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Marc Levine Universität Duisburg-Essen
Vincent Maillot Université Pierre et Marie Curie
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Abstract

In this thesis we construct a weak group of arithmetic cobordism in the con-
text of Arakelov geometry. We introduce weak versions of arithmetic K-theory
and arithmetic Chow groups, that give rise to the notion of oriented homological
theory of arithmetic type. We then build a universal such homological theory,
and prove its main structural features.

Keywords Cobordism, Arakelov geometry, arithmetic intersection theory, arith-
metic K-theory, oriented homological theory

Abstract

Dans cette thèse nous construisons un groupe faible de cobordisme arithmétique
dans le contexte de la géométrie d’Arakelov. Nous introduisons des versions
faibles des groupes de K-théorie arithmétique et de Chow arithmétique, et en
dégageons une notion de théorie homologique orientée de type arithmétique.
Nous construisons alors un groupe universel parmi ces théories homologiques et
prouvons ses principales propriétés structurelles.

Mots-Clés Cobordisme, géométrie d’Arakelov, théorie de l’intersection arithmétique,
K-théorie arithmétique, théorie cohomologique orientée.
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Introduction

In this thesis we propose to give a generalization of the algebraic cobordism groups
constructed by Levine and Morel in [LM07] in the context of Arakelov geometry.

The context

Arakelov theory is a refinement of arithmetic algebraic geometry destined to make
it possible to use the tools of classical algebraic geometry in Diophantine problems.
Perhaps the easiest way to grasp the essence of the theory is to look at the case of
so-called arithmetic surfaces, which was the case studied first by Arakelov in [Ara75]
and [Ara74].

The main idea is to compactify an arithmetic curve over SpecZ (or SpecOk
where k is a number field), which is a integral projective flat regular scheme over
SpecZ of relative dimension 1, by adding the data of the complex points X(C) which
is a compact Riemann surface. Arakelov proved that you could define an intersection
pairing that satisfied all the properties that you could expect from a counterpart
of the classical intersection pairing of divisors. In order to do this he added to the
classical number of intersection of two divisors D =

∑
ni[xi] and D′ =

∑
mi[yi] an

analytic part defined by

−
∑

log g(D(C), D′(C))

where g is the so called Green-Arakelov function on X(C)×X(C), and D(C) (resp.
D′(C)) the complex points of D (resp. D′) through the different embeddings of k in
C. Arakelov also defined a notion of degree for such divisors with value in R.

Later, Faltings extended to this context classical tools of intersection theory on
algebraic curves such as the Hodge index theorem, Noether formula, or a Riemann-
Roch formula, in his seminal paper [Fal84].

It was then natural to investigate how one could extend those results to higher
dimensional varieties, but this posed tremendous technical difficulties.

In [GS], Gillet and Soulé define an arithmetic intersection theory for arbitrary
arithmetic varieties i.e integral, projective, regular schemes flat over SpecOk. They
define an arithmetic cycle to be a pair [Z, g] where Z in cycle over X and g is
a Green current for X(C), that is any real current g, of (•, •) type1, satisfying
F ∗∞(g{p}) = (−1)pg{p} where g{p} denotes the (p, p)-type part of g, such that

ddcg + δZ

is a smooth form. They define arithmetic Chow groups, ĈH(X) to be classes of arith-

metic cycles modulo the principal divisors d̂iv(f) for any f rational function over a

sub-variety V of X, and modulo im ∂+im ∂, where d̂iv(f) = [div(f),− log |f |2], here
log |f |2 denotes the current defined by integration over V ns(C) of the locally inte-
grable function log |f |2 against any smooth compactly supported form of appropriate
type.

These arithmetic Chow groups contain Arakelov Chow groups, CH(X) as a direct
factor. They are defined via the choice of a Kähler metric over X, invariant under
conjugation. One can define an ω map, determined by the following equality

ω(Z, g) = ddcg + δZ

which is a closed real smooth form, and set CH(X) =
⊕

p ω
−1(Hp,p(X)) where

Hp,p(X) is the space of real harmonic forms of (p, p) type, satisfying F ∗∞(w) =

1meaning that it is the sum of real currents of type (p, p) for various p’s
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(−1)pw. These groups are the natural generalization of the initial theory constructed
by Arakelov, on Riemann surfaces, but have the fundamental flaw of not being a
sub-algebra of ĈH(X) which explains why we need to define those bigger groups

ĈH.
Gillet and Soulé define an intersection pairing

ĈH(X)Q ⊗ ĈH(X)Q → ĈH(X)Q

by defining the star-product of two Green currents for two arithmetic cycles.
A key difference between the geometric and arithmetic case lies in the functorial-

ity properties of the ĈH ring, as the datum of a Green current for a cycle Z depends
notably on the ambient variety, it is not possible to define a direct image morphism
for closed immersions, therefore arithmetic Chow groups are covariant only with re-
spect to projective morphisms that are generically smooth i.e the induced morphism
XQ → YQ need to be smooth. This makes it possible to define the arithmetic degree

of an arithmetic cycle with value in ĈH(SpecZ) ' R.
On the other hand Gillet and Soulé developed the notion of arithmetic K-theory

in [GS86] and [GS92], let us describe their construction.
Recall that a hermitian vector bundle E over an arithmetic variety X, is a

coherent locally free sheaf over X, such that Ean the analytified vector bundle over
X(C) is equipped with a hermitian metric invariant under complex conjugation. An
exact sequence of such hermitian bundles

0→ E
′ f−→ E

g−→ E
′′ → 0

is simply an exact sequence of the locally free sheaves over X. We say that this
sequence is ortho-split if

0→ E′
f−→ E

g−→ E′′ → 0

is split and if the section g−1 of g maps E′′an isometrically as the orthogonal comple-
ment of f(E′an) in E′an. In general it is possible to associate to any exact sequence
of hermitian vector bundle, say E , a smooth form up to im ∂ + im ∂, called the
secondary Bott-Chern form of E satisfying

ddc c̃h(E) = ch(E)− ch(E
′
)− ch(E

′′
)

which is natural with respect to holomorphic map and that vanishes when E is ortho-
split, the construction of that form can be found for instance in [GS90], but is due
to Bott and Chern [BC65].

Let X be an arithmetic variety, Gillet and Soulé set K̂0(X) to be the free abelian
group built on symbols [E,ω] where E is a (isometry class of) hermitian vector
bundle over Xand ω a real smooth form up to an element in im ∂ + im ∂, modulo
the relations

[E, 0] = [E
′
, 0] + [E

′′
, 0] + c̃h(E)

for
E : 0→ E

′ f−→ E
g−→ E

′′ → 0

every short exact sequence of hermitian bundles.
These arithmetic K̂-theory groups are contravariant with respect to flat equidi-

mensional morphism, but it turned out to be much harder to define a direct image
for projective morphisms, even when restricted to the class of generically smooth
ones.
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We will describe their construction at length in the thesis, but let’s already give
the gist of it.

In the case of a generically smooth submersion, π : X → B, endowed with the
structure of a Kähler fibration, and a hermitian bundle, E that is π∗-acyclic, they
set π∗[E, 0] to be

[π∗E
L2

, T (E, π∗E
L2
, hX/B)]

where T (E, π∗E
L2
, hX/Y ) is the higher analytic torsion form defined by Bismut and

Köhler in [BK92] satisfying the Riemann-Roch equation

i

2π
∂∂T (E, π∗E

L2
, hX/Y ) = − ch(π∗E

L2

) +

∫
X(C)/B(C)

ch(E) Td(TX/B)

and whose 0-th component is the classical holomorphic torsion defined by Ray and
Singer, [RS73] and studied by Quillen [Qui85] among others.

An important feature of the theory and a critical discrepancy from the classical
geometric case is the fact that this direct image depends on some of the choices made
for the construction, namely the Kähler structure on the submersion. This depen-
dency was made explicit by Bismut and Zhang who proved the so-called anomaly
formulas in [BZ92].

Continuing the analogy with the geometrical case, Gillet and Soulé built a theory
of arithmetic characteristic classes in [GS90], the importance of the role of a first
arithmetic Chern class and of a Riemann-Roch formula for it had already been
highlighted by the works of Faltings [Fal84] and Vojta [Voj91].

The main step in that construction is to construct a splitting principle for hermi-
tian vector bundles, Gillet and Soulé manage to do so, by computing the Arakelov
Chow groups of the Grassmanian over SpecZ, and by imposing several natural con-
ditions on the putative arithmetic characteristic classes, they later show that this
determines uniquely these arithmetic characteristic classes.

Once this general framework was set up it was natural to ask for a general
Riemann-Roch formula, computing the difference between

ĉh(π∗E)

and
π∗(ĉh(E) T̂d(Tπ))

for a smooth submersion endowed with a Kähler fibration structure.
The question of addressing the case of a closed immersion has been treated in

numerous ways, since then. In [BGS], Bismut, Gillet and Soulé study the behavior
of the direct image in K̂-theory for a diagram

Z
i //

f ��

X

g~~
B

where f and g are both generically smooth, and i is a regular immersion.
A more direct attempt has been made by Zha [Zha99], and then later by Burgos,

Freixas and Litcanu [BGFiML14] and [BGL10]. In every case, they had to modify

the groups ĈH and K̂ to weaker versions in order to be able to define a general
push forward for projective morphisms, and in any case a thorough study of the
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behavior of the analytic torsion through immersions had to be done, and this was
made possible by deep results of Bismut such as [BL91].

The situation was totally clarified by the landmark papers of Burgos, Freixas
and Litcanu [BGFiML14, BGFiML12, GiML12a].

They show that we can define an arithmetic analog of derived categories by defin-
ing the notion of hermitian structure on the derived category of coherent sheaves
on a projective algebraic variety, the arithmetic derived category on X consisting
complexes of metric hermitian coherent sheaves together with an element of the
Deligne complex on X. They show that one can define a general push forward in
this setting, and that this push-forwards naturally gives rise to a push forward in a
modified version of K̂-theory, with forms taken in the Deligne complex via an Euler-
Poincaré map, in happy concord with the geometric case. Moreover they classify all
the possible choices for these direct images and show that they’re parametrized by
the choice of the additive R-genus appearing in the Riemann-Roch formula.

The goal of this thesis was to add up the cobordism to this picture.
The notion of (unoriented) cobordism was studied mainly by Thom. Two smooth

real compact manifolds of dimension n without boundaries are said to be cobordant
if their disjoint union is the boundary of a compact manifold of dimension n + 1.
This defines an equivalence relation on the class of real compact manifolds and
the quotient is denoted by N•. The disjoint sum, the Cartesian product, and the
dimension confer a structure of graded ring to N•.

The structure of this ring was computed by Thom in [Tho54]. He proved that N•
is isomorphic to a polynomial algebra over F2, and also that the Np where isomorphic
to the p-th stable homotopy group of the Thom Spectrum MO. Several versions of
the cobordism were defined since then.

We will be interested firstly in complex cobordism. For the obvious reason that
a complex manifold is always even dimensional as e real one, it was not possible
to adopt the previous definition to the complex case. Milnor in [Mil60], proposed
the following definition for the complex cobordism ring U•. Recall that an oriented
complex structure on a proper morphism of complex manifolds f : Z → X is a
decomposition of f∗ : Z → X∗ into an immersion of Z into a complex bundle E
over X∗ equipped with a complex structure on NZ/E and followed by the structural
morphism E → X∗ where X∗ = X is the relative dimension of f is even, and
X∗ = X×R if f is of odd relative dimension. Two such decompositions (Z,X,E,N)
and (Z,X,E′, N ′) are equivalent if we can find a ”roof” (Z,X,E′′, N ′′) such that we
have a commutative diagram

Z

j′′

��

i

!!

i′

~~
E

j

  

��

E′

j′

}}

��

E′′

��
X∗

such that j and j′ are isotopic and that N ′′ induces the the complex structure on
both N and N ′.
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The ring U• is then defined to be the quotient of all classes of oriented complex
proper morphisms modulo the cobording relation defined to be the following: two
oriented morphism g0 : Z → X and g1 : Z ′ → X of complex manifolds are said to be

cobordant if we can find a proper oriented complex morphism V
f−→ X×R transverse

to the inclusions of X as both the fiber over 0 and 1 of f , and such that f0 : V0 → X
and f1 : V1 → X are equivalent to g0 and g1 as oriented complex morphisms. In
other words if g0 and g1 are both fibers of a family of proper oriented complex maps
parametrized by the real line.

The set U• can be given a natural structure of graded ring, and Milnor in [Mil60]
proved that U•(pt) is isomorphic to a polynomial algebra over Z and that after ten-
sorization by Q that algebra was isomorphic to Q[P1,P2, ...] the polynomial algebra
generated by the classes of projective spaces.

Inspired by some of the ideas of Grothendieck, Quillen refined Milnor’s com-
putations, and proved in [Qui71] that U•(pt) was isomorphic to the Lazard ring L
classifying the commutative 1-dimensional formal group laws. He proves that the
complex cobordism ring is the universal (co)homological oriented theory over the
category of differentiable manifolds.

This version of complex cobordism made it possible for Levine and Morel to
define the analog of cobordism in algebraic geometry in [LM07]. In this paper they
define the notion of Borel-Moore functor over an admissible category of schemes,
that we will take to be the category of smooth quasi-projective schemes over a
field k, roughly speaking this is an additive functor endowed with projective push
forwards, smooth equidimensional pull-backs and first Chern operators that satisfy
compatibility conditions modeled on those satisfied by CH-theory (see further on for
the precise definitions), among such functors they distinguish the ones of geometric
type satisfying three additional properties

1. nilpotence of the action of the first Chern class operator.

2. compatibility of the direct image via a smooth section of a line bundle and
action of the first Chern operator.

3. the formula for the action of the first Chern class of a tensor product should
be given by a formal group law.

With this in mind they build up a universal such functor of geometric type, denoted
Ω, and prove that it is indeed a (co)homological oriented theory, at least when the
base field k admits a resolution of singularities2 by proving that it satisfies a Leray-
Hirsh type formula for Ω(P(E)), that Ω is homotopy invariant, and that for a line
bundle, the first Chern operator factors through the image of Ω(D) where D is the
divisor of a global smooth section of L (provided it exists). These conditions define
a weak homology theory.

More precisely they prove that Ω(P(E)) is a free Ω(X)-module generated by
the powers of the first Chern class of the tautological line bundle over P(E), that

the natural pull-back Ω(X)
q∗−→ Ω(V ) induces an isomorphism for any torsor V

over a vector bundle over X, and that there exists a fundamental localization exact
sequence

Ω(Z)→ Ω(X)→ Ω(U)→ 0

for any closed immersion Z → X of a quasi-projective algebraic schemes. This last
point being the main technical tool of all the construction. The proof of this last

2meaning that all reduced algebraic schemes over k admit a resolution of singularities
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fact is highly non trivial and relies essentially on the resolution of singularities and
the weak factorization theorem for such a resolution.

Levine and Morel then set up to prove several comparison theorems with other
(co)homological oriented theories such as Chow theory, or K-theory, or rather a
graded version of the latter, and prove that X 7→ CH(X) is the universal oriented
homology theory with additive group law and that X 7→ K0(X)[β, β−1] is the uni-
versal oriented homology theory with multiplicative group law.

Moreover, they compute the structure of Ω(k) and just like for complex cobor-
dism prove that

Ω•(k) ' L•

at least for fields admitting a resolution of singularities.
Let us quickly mention, although we won’t be using those facts in the following,

that Morel and Levine go much further in their theory.
They construct pull-backs for local complete intersection morphisms, generaliz-

ing the intersection product in both Chow and K-theory.
They give a different proof of Rost degree formula.
They complete the analogy between algebraic topology and algebraic geometry,

by establishing the existence of a morphism

Ω•(X)→ MGL2•,•(X)

which they conjecture to be an isomorphism, where MGL is the oriented homology
theory associated to the algebraic Thom spectrum which is the analog in motivic
homotopy theory of the Thom Spectrum MU of complex cobordism.

All these questions transposed in the Arakelov context deserve to be adequately
treated, a task which is yet to be done3.

For a more detailed discussion on these topics see [Loe03].

Let us now turn to a more detailed description of the contents of the paper.

Contents of the paper

In the first section, we introduce some specializations of certain notions defined
by Burgos, Freixas and Litcanu, mostly coming from [BGFiML14]. The notion of
metrized sheaf, and secondary forms associated to it was already existent in the
literature for instance in [GS92], although we give a slightly different version of
it, using the language of [BGFiML14], notably the notion of meager complex and
of quasi-isometry. The reader familiar with [BGFiML14] won’t find anything new,
although some of our proofs are different. This language will make it easy for us to
introduce the different notions of weak arithmetic homological theories.

The second section contains the cobordism theory per se. In order to mimic the
functorial construction of the cobordism group of Levine and Morel, we need to have
good functorial properties for our arithmetic objects. Therefore we introduce a weak
version of arithmetic Chow groups CĤ(X) for an arithmetic variety X, that is an
algebraic variety together with a Kähler metric on its tangent bundle invariant by
complex conjugation. Those groups were introduced by Zha, Burgos and Moriwaki
independently, we prove that these groups are the prototype of what we call an
oriented Borel Moore functor of arithmetic type.

3Let us hope that this paper will convince the reader of the richness of this still vastly unexplored
subject and encourage them to explore those topics
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We then review the theory of Bott-Chern singular currents, and of the Analytic
torsion forms both essentially to Bismut and his collaborators, we make heavy use
of the language defined in [BGFiML14] which makes the analogy between those two
objects clear. We then introduce the notion of weak arithmetic K̂-theory and prove
that it is also an oriented Borel Moore of arithmetic type.

The parallel between Chow and K-groups show the particular place occupied by
the Todd form. It appears that both those theories have a Todd form, but the Todd
form in the case of arithmetic Chow theory is just 1, therefore it disappears from
the classical presentation of the theory and the usual Todd form appears to be a
specificity of K̂-theory.

We then proceed to construct a universal Borel Moore functor of arithmetic type.
For this, we will need a universal Todd form, for various reasons we define a universal
inverse Todd form which we denote g, we also introduce secondary forms associated
to it.

This g class will enable us to construct a universal Bott-Chern singular current
for the immersion of a smooth divisor. The crucial observation is that in the case of
Chow theory we have the following relation4 relating the first Chern class and the
direct image via the immersion of a divisor

i∗(1Z) = ĉ1(L)(1X) + a(log ‖s‖2)

whereas in K̂ theory this relations become

i∗(1Z) = ĉ1(L)(1X) + a(log ‖s‖2 Td(L)−1)

It is therefore natural to replace the Td−1 form by the most general form g(L).
The formal group law giving the action of ĉ1(L ⊗M) in function of ĉ1(L) and

ĉ1(M) imposes relations between the coefficient of g and those of FL the universal
law group on Lazard ring. We show that this enables to relate g to the universal
logarithmic class defined by Hirzebruch in U•. In other words, the formal group law
imposed what the Todd form should be and vice versa. This sheds lights on various
constructions of classical Arakelov theory and especially explains why it is possible
to define covariant arithmetic Chow groups on the category of algebraic varieties
but that it is only possible to define covariant arithmetic K̂ groups on arithmetic
varieties, the difference being explained by the triviality of the Todd form in Chow
theory but not in K̂-theory.

We then proceed to a technical discussion about projective Borel-Moore functor,
essentially destined to prove that there are no surprises in passing from the quasi-
projective to the projective case for Borel-Moore functors of geometric type.

We can now prove the fundamental exact sequence

D̃•,•
L̂

(X)
a−→ Ω̂(X)

ζ−→ Ω(X)→ 0

which fulfills the goal of building arithmetic cobordism as an extension of the geo-
metric cobordism by the space of currents.

We then prove that an analog of the star product lies in the groups Ω̂ that
gives back the star-product of Gillet-Soulé when mapped to arithmetic Chow theory,
and we prove a universal anomaly formula that, here again, explains the differences
between arithmetic Chow and K-theory (the anomaly term being 0 in Chow theory).

This enables us to compute the structure of Ω̂(k). It can be given the structure
of a commutative ring because, over a point, strong object and weak objects should

4under a technical meager condition
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coincide. In doing so we prove some kind of universal Hirzebruch-Riemann-Roch
formula for the g class, which is a reflexion of the isomorphism

U ' L

this formula is the key fact that ensures that the groups Ω̂(X) have a natural Ω̂(k)-
module structure. The explicit description that we then give of Ω̂(k) seems to fit
perfectly in the general framework of Arakelov theory.

Finally we prove the existence of different arrows form ΩZ to CĤ and K̂ and
make explicit the notion of Borel-Moore functor of arithmetic type.

Notations and conventions

Throughout all the paper k will be a number field. If X is a complex manifold

we set A
(p,p)
R (X) to be the set of smooth real forms over X of (p, p) type satisfying

F ∗∞(w) = (−1)pw, the notation D
(p,p)
R (X) will represent the space of real currents of

(p, p)-type, satisfying F ∗∞(η) = (−1)pη, and Ã
(p,p)
R (X) will be A

(p,p)
R (X)/(im ∂+im ∂),

in the same way D
(p,p)
R (X)/(im ∂ + im ∂) is to be denoted D̃p,p

R (X).
When X is a complex quasi-projective variety, we will use the same notations

to denote the corresponding for X(C) seen as a complex manifold consisting of the
disjoint union of the complex points of Xσ(C) = X×σ,k SpecC where σ runs through
the embeddings of k in the complex numbers.

The suggestion to differentiate weak objects and strong objects by capping them
with a ”check” for the former and a ”hat” for the latter had been made to me by
C.Soulé.
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1 Metric Sheaves

1.1 Meager Complexes

1.1.1 Resolutions

We introduce here a theory of metrized coherent sheaves, that is a specialization
of the general theory of metrized structures on derived categories see [BGFiML12]
as we only need to metrize sheaves, and not complexes of sheaves we present the
general theory in the context.

In this section X will denote a projective complex manifold (smooth over C).

Definition 1.1.1. Let F be a coherent sheaf over X, a metric structure (or some-
times just metric) on F , will consist in the datum of a (finite) resolution of F by
algebraic vector bundles, endowed with hermitian metrics.

The following lemma is common knowledge

Lemma 1.1.2. Let X a smooth projective variety over C, every coherent sheaf F ,
over X, can be resolved (on the left) by a finite complex of locally free coherent
sheaves.

Proof. Recall that Gaga enables us to assume that F can be written j∗Fa where
Fa is a coherent sheaf on an algebraic variety over C and j is the inclusion of the
closed points of this variety in X. As j∗ is exact (in the category of ringed spaces),
it is sufficient to prove the proposition for an algebraic projective variety over C and
a coherent sheaf over it.

By Serre’s lemma we may then assume that a certain twist, say F(n) is generated
by a finite number of global sections, and we thus have a surjection

OdX → F(n)→ 0

It follows that F is the quotient of a locally free sheaf.
Recall that the homological dimension of a coherent sheaf, hd(F) is the length

of the smallest left resolution of F by locally free sheaves, moreover hd(F) ≤ n if
and only if E xti(F ,G) = 0 for any G quasi-coherent, and all i > n, on the one hand
as F is coherent, E xti(F ,G)x = ExtiOX,x(Fx,Gx), on the other hand as OX,x is local,

noetherian, and regular proj. dim(Fx) ≤ dimOX,x, and over a local noetherian ring,
free modules and projective modules coincide so we deduce ExtiOX,x(Fx,Gx) = 0 for

all i > dimX, thus hd(F) <∞. And the proof is complete.

Remark 1.1.3. This result is actually true for every separated regular noetherian
scheme [BGI, 2.2.7.1.]

We will need some facts about complexes of vector bundles on a smooth manifold,
that we recall here. Let us state some conventions, following [BGFiML12], we’ll

denote Vb(X) (resp. V
b
(X)) the category of complexes of vector bundles (resp.

hermitian vector bundles) over X; such a complex will be written homologically

0→ En
dn−→ ...→ E1

d1−→ E0
d0−→ 0

If we have a complex E• resolving a coherent sheaf F , we will label the resolution

..→ E1 → E0 → F

with F in degree −1.
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Proposition 1.1.4. Let E•, F• and G• be three complexes of vector bundles over
X such that we have a diagram of quasi-isomorphisms

F•

f   

E•

g~~
G•

Then there exists a complex of vector bundles H• such that we have a diagram,
commuting up to homotopy

H•

!!~~
F•

  

E•

}}
G•

where the top arrows are quasi-isomorphisms.

Proof. We have a map from E• to cone(f) given by sending x to (0, g(x)), we set
H = cone(E, cone(f))[−1], we have Hn = En ⊕ Fn ⊕Gn−1 and we get diagram

H•

!!~~
F•

  

E•

}}
G•

as well as a homotopy h : Hn → Gn−1 that makes the diagram commutes up to
homotopy.

Recall that in the general formalism of derived category, a basic observation is
that a resolution of a coherent sheaf should be defined up to a ”roof”, we mimic this
situation in the metric case, the analog of quasi-isomorphisms will be called quasi-
isometries (a small discrepancy of [BGFiML14]’s vocabulary, but i believe it is a nice
”visual” name). In order to define them we first define the notion of meager complex
which is already introduced in [BGFiML14] this is the analog (and a refinement) of
the notion of acyclic complex is the context of hermitian sheaves.
We have the following lemma.

Lemma 1.1.5. Let E• → F be a resolution of a coherent sheaf and G → F a mor-
phism of sheaves, we can find a resolution H• of G such that we have a commutative
diagram

H• //

��

G

��
E• // F

Moreover if G → F is onto, then we can choose the Hi → Ei to be onto too.
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Proof. We build the resolution H• by induction. Set π the morphism from G to F ,

we set K the kernel of the diagonal embedding E0 ⊕ G
π−d0−−−→ F , as K is a coherent

sheaf, it is a quotient of some locally free sheaf, say H1. We thus get a commutative
diagram

H1
//

��

G //

��

0

E1
// F // 0

On the other hand if π is surjective, it is obvious that, by construction π1 : H1 → E1

is too.
Now, assume that we have built the bundles Hi, and the morphisms πi for

i = 1...n. If we introduce the kernels of the differentials Hn → Hn−1 and En → En−1

and by re-iterating the procedure described in the previous paragraph we build a
commutative diagram

Hn+1
//

��

ker(Hn → Hn−1) //

��

0

En+1
// kerdn−1

// 0

which enable us to construct Hn+1. the arrow from Hn+1 to En+1 being surjective
by construction if the one form Hn to En is, because in that case, the arrow induced
on the level of kernels will be surjective.

After a (finite!) number of steps, we’re left with the following commutative
diagram

0

��

// ker(Hp+1 → Hp) //

��

H• //

��

G //

��

0

0 // 0 // E• // F // 0

As ker(Hp+1 → Hp) is a coherent sheaf, it will be enough to replace it by a resolution
by locally free sheaves to prove the proposition.

1.1.2 Acyclic calculus of Burgos, Freixas and Litcanu

Let X be a complex algebraic variety (the C-valued points of an algebraic variety to
be precise), we review here the theory of acyclic calculus developed in [BGFiML12]

Definition 1.1.6. The class of meager complexes, denoted M(X) is the smallest
class of complexes of hermitian bundles over X satisfying,

1. Every ortho-split complex is meager.

2. Every complex isometric to F • ⊕ F •[1], for F• an acyclic complex endowed
with any metric, i.e the cone of the zero map from an acyclic complex to itself
is meager.

3. The cone of the identity of a complex F • is meager.

4. For every morphism of complex f : E• → F •, if any two of the following
complexes E•, F •, cone(f) are meager, so is the third.

5. Every shift of a meager complex, is meager.
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Remark 1.1.7. We will call a family of complexes of hermitian vector bundles satis-
fying the above conditions, a hermitian admissible class. It is easy to see that the
intersection of a family of hermitian admissible classes is still an hermitian admis-
sible class, thus the class of meager complexes is the intersection of all hermitian
admissible classes.

Proposition 1.1.8. Let E• be a meager complex, then E• is acyclic.

Proof. Set ACL(X) for the class of all complexes of hermitian bundles, E• such that
the underlying complex, E• is acyclic. It will be sufficient to prove that ACL(X) is
an hermitian admissible class.
It is clear that ortho-split complexes are acyclic, just as clear as that for every
complex F•, the cone of the zero map of an acyclic complex and of the identity map
of any complex, is acyclic. Now let’s consider f : E• → F• a morphism of complexes,
we have a long exact sequence in cohomology

...→ Hi−1(cone(f))→ Hi(E•)→ Hi(F•)→ Hi(cone(f))→ ...

that ensures that if any two of the three complexes, E•, F•, cone(f) are acyclic, the
the third is too.
Of course the shift of any acyclic complex is still acyclic.

In the same way that a quasi-isomorphism has an acyclic cone, we define an
equivalence relation between metric resolutions by declaring equivalent two resolu-
tions differing by a meager cone.

Definition 1.1.9. A morphism f : E• → F • is said to be tight iff cone(f) is meager.

The preceding proposition admits the following translation

Corollary 1.1.10. A tight morphism between two complexes of hermitian vector
bundles is a quasi-isomorphism.

Let us state

Definition 1.1.11. We will say that two complexes of hermitian vector bundles, E•
and F •, are quasi-isometric5 iff there exists a complex of hermitian bundles H• such
that we have a diagram

H•

  ~~
F • E•

where the two arrows are tight morphisms.

We have the following characterization of the quasi-isometry relation

Proposition 1.1.12. Two complexes of hermitian vector bundles, E• and F • are
quasi-isometric iff we can find a complex of hermitian vector bundles H• such that
we have a diagram

H•
f

  

g

~~
E• F •

with g a quasi-isomorphism and such that complex cone(f)⊕ cone(g)[1] is meager.

5In [BGFiML12] the term used is tightly related.
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Proof. This is [BGFiML12, Lemma 2.20]

Moreover we have

Proposition 1.1.13. Any diagram of tight morphisms of the form

E•

  

F •

~~
G•

can be completed as

H•

  ~~
E•

  

F •

~~
G•

where all the arrows are tight.

Proof. This is [BGFiML12, Lemma 2.21]

It is important to note that

Proposition 1.1.14. The quasi-isometry is an equivalence relation.

Proof. The only part that is not obvious is the transitivity of this relation.

Let us consider E
i
•, for i = 1, 2, 3 three complexes of hermitian vector bundles, we

assume that E
1
• and E

2
• are quasi-isometric and that E

2
• and E

3
• are also quasi-

isometric. We thus have a diagram

H•

�� ��

H
′
•

�� ��

E
1
• E

2
• E

3
•

We can complete this diagram into a diagram which is commutative up to homotopy

G•

  ~~
H•

��

H
′
•

��
E

2
•

where all the arrows are tight thanks to 1.1.13, as the composition of tight morphisms
is tight, we deduce the result.
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Let us set V
b
(X)/M(X) to be the class of hermitian vector bundle modulo the

quasi-isometry relation and KA(X) be the subset of V
b
(X)/M(X) corresponding

to the image of complexes of hermitian vector bundles such that the underlying
complex is acyclic.

One can endow V
b
(X)/M(X) with a structure of monoid using the orthogonal

sum as the addition, the image of a complex E• in V
b
(X)/M(X) will be denoted

[E•].
This object inherits several properties summing up some diagram constructions,

and that make proofs much less cumbersome that we list in the following proposition

Proposition 1.1.15. In V
b
(X)/M(X) we have

1. A complex [E•] is invertible iff it is acyclic and then its inverse is given by the
shift [E•[1]].

2. For every arrow E• → F •, if E• is acyclic (resp. F • acyclic) then

[cone(E,F )•] = [E•]− [F •]

( resp. [cone(E,F )•] = [E•] + [F [1]•])

3. For every diagram

G•

  ~~
H•

  

H
′
•

~~
E•

which is commutative up to homotopy, we have

[cone(cone(G,H), cone(H ′, E))] = [cone(cone(G,H ′), cone(H,E))]

4. If f : E• → F •; g : F • → G• are two morphism between metrized complexes
then we have

[cone(cone(g ◦ f), cone(g))] = [cone(f)[1]]

[cone(cone(f), cone(g ◦ f))] = [cone(g)]

Moreover if g or f is a quasi-isomorphism (resp. if g◦f is a quasi-isomorphism)
then

[(cone(g ◦ f)] = [cone(g))] + [cone(f)]

(resp. [cone(g ◦ f)] + [cone(f)[1]] = [cone(g)])

Proof. This is [BGFiML12, Theorem 2.27].
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1.1.3 Metric resolutions

In their article [BGFiML14], Burgos, Freixas et Litcanu, define a notion of equiv-
alence for hermitian structure on the derived category of coherent sheaves, here
we will simply restrict their definition to the case of a single coherent sheaf over a
projective complex variety X.

Definition 1.1.16. We say that two hermitian structures E• → F and F • → F
on a coherent sheaf are quasi-isometric if there exists a complex of hermitian vector
bundles H• and a diagram commutative up to homotopy

H•
f

  

g

~~
E•

!!

F •

}}
F

such that f and g are tight morphisms.

Notice that as f and g are tight, they’re quasi-isomorphisms and therefore H• is
a resolution of F (in two different homotopic ways).

We will need the following lemma

Lemma 1.1.17. Assume that we have a diagram of complex of hermitian vector
bundles

E•
f //

g

��

E•
′

g′

��
F •

f ′ // F ′•

that commutes up to a homotopy, say h.
Then h induces two morphisms of complex

ψ : cone(f)→ cone(f ′)

and
ϕ : cone(−g)→ cone(g′)

and we have a natural isometry

cone(ψ) ' cone(ϕ)

Proof. This is [BGFiML12, Lemma 2.3]

Proposition 1.1.18. Let F be a coherent sheaf on a complex algebraic variety and
let E• → F and G• → F be two metric resolutions of F , the following conditions
are equivalent

i) The two metric structures E• → F and G• → F are quasi-isometric.
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ii) There exists H• → F a metric resolution such that we have a diagram that
commutes up to homotopy

H•
f

  

g

~~
E•

!!

F •

}}
F

with g a quasi-isomorphism and such that complex cone(f) ⊕ cone(g)[1] is
meager.

iii) For any metric resolution H• → F such that we have a diagram that commutes
up to homotopy

H•
f

  

g

~~
E•

!!

F •

}}
F

where g is a quasi-isomorphism, the complex cone(f)⊕ cone(g)[1] is meager.

Proof. The fact that i) implies ii) is obvious as the orthogonal sum of two meager
complexes is meager.

Let’s prove that ii) implies iii), so assume that there exists a metric resolution
H of F like the one in the proposition.

Now let us consider H
′
• any other metric resolution giving a diagram which is

commutative up to homotopy just like the one in the proposition. We can, using
proposition 1.1.4, find a complex of vector bundles, say G• such that we have a
commutative diagram up to homotopy

G•
β

  

α

~~
H•

δ
((

g

��

H ′•
f

vv
δ′

��
E• F•

with α and β being quasi-isomorphisms. Let us endow G• with any metric.
By the previous lemma, we have cone(cone(α), cone(δ)) isometric to cone(cone(β), cone(f))

and cone(cone(α), cone(δ′)) isometric to cone(cone(β), cone(g))

Therefore, in V
b
(X)/M(X), using that α and β, as well as g and δ are quasi-

isomorphisms and 1.1.15 we have

−[cone(α)] + [cone(δ)] = −[cone(β)] + [cone(g)]

−[cone(α)] + [cone(δ′)] = −[cone(β)] + [cone(f)]
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by subtracting the first equation to the second (which is possible because all the
cones appearting in the first equation are acyclic), we get

[cone(δ′)]− [cone(δ)] = [cone(f)]− [cone(g)] = [cone(g)[1]] + [cone(f)] = 0

and we are done.
For the implication iii)⇒ i) it results from 1.1.12

The following proposition is already proved because two resolutions define the
same metric structure if the complexes of hermitian bundles obtained by truncating
the F are quasi-isometric.

Proposition 1.1.19. The relation of quasi-isometry is an equivalence relation over
the set of metrized locally free finite resolutions of a given sheaf F

Remark 1.1.20. The group KA(X) is identified with the metric structures on the zero
sheaf over X, we shall call this group, the group of universal secondary characteristic
classes, or the group of acyclic K-theory.

1.1.4 Fitness

Observe now that for vector bundles there are two notion of metrics, the classical
one, which we will refer to as a hermitian metric, and the one given by a resolution
by hermitian vector bundles which we will refer to as a hermitian structure. It is
natural to wonder whether every hermitian structure is a hermitian metric. To make
this assertion precise, notice that every hermitian metric is a hermitian structure
in a canonical way, namely E → E is the natural hermitian structure associated to
the hermitian metric on E. The question being: is every hermitian structure on a
vector bundle quasi-isometric to one coming from a hermitian metric?

I do not know a general answer for this question, but we can give at least a
sufficient condition.

Let X be a smooth projective complex variety over C, we say that X satisfies
a fitness lemma (resp. strong fitness lemma) iff for every acyclic complex of vector
bundle

0→ En → En−1 → ...→ E1 → E0 → 0

(resp. for every acyclic complex of vector bundle with all the Ei’s equipped with a
metric except E0) there exists a choice of metrics on the Ei’s (resp. E0) such that

0→ En → En−1 → ...→ E1 → E0 → 0

is meager.
The following proposition follows directly from the definitions.

Proposition 1.1.21. Assume that a complex projective manifold X satisfies a
strong fitness lemma then every hermitian structure on a vector bundle is quasi-
isometric to a hermitian metric.

In the case of line bundles we can say a bit more about that question.
Recall that P̂ic(X) is the group of hermitian line bundles over X up to isometry,

with the tensor product as group law. We will denote Piĉ(X) the monöıd of line
bundles over X equipped with a hermitian structure, it is easy to see that it is indeed
a monöıd for the tensor product of resolutions.
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Lemma 1.1.22. (Weak Fitness Lemma)

For every projective smooth variety over C, we have a map Piĉ(X) → P̂ic(X),
let us denote FD(X) its kernel, there is a natural isomorphism of monöıds

Piĉ(X) ' P̂ic(X)⊕ FD(X)

Proof. Assume that we have a resolution of a line bundle L given by

0→ En → ...→ E1 → L→ 0

we see that the line bundle

det(En)(−1)n ⊗ ...⊗ det(E1)∨ ⊗ L

is trivial.
Let us endow the Ei’s with arbitrary metrics and L with the metrics rendering

isometric the isomorphism

det(En)(−1)n+1 ⊗ ...⊗ det(E1) ' L

where each Ei is of course equipped with the determinant metric.
This metric does not depend on the class of quasi isometry of the hermitian

structure on L, to see this, let

0→ Hn → Hn−1 → ...→ H1 → H0 → 0

be a meager complex over X then⊗
i≥0

detH
(−1)i

i

is a trivial hermitian line bundle (that is trivial, and equipped with the trivial
metric), because

ĉ1(
⊗
i≥0

detH
(−1)i

i ) =
∑
i≥0

(−1)i ĉ1(detH i) =
∑
i

(−1)i ĉ1(H i) = c̃h
{1}

[H•] = 0

where the last equality follows6 from 1.1.24 and the fact that H• is meager, now

as we have an isomorphism ĈH
1
(X) ' P̂ic(X) given by the first arithmetic Chern

class (see [ABKS94, 4.2 Prop 1]) the claim follows.

Apply this for H• being the (meager) complex cone(F ,E)[1]⊕ cone(F ,E
′
) for a

diagram commutative up to homotopy

F •

����
E
′
•

  

E•

~~
L

giving the quasi-isometry between two hermitian structures E• and E
′
• for L. This

gives us an arrow from P̂ic(X) to Piĉ(X), that is a section of the obvious arrow and

we have the desired decomposition for FD(X) being the kernel of Piĉ(X)→ P̂ic(x).

6the reader can check that we do not use anything proved in this paragraph to prove the men-
tioned lemma
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The proof of that proposition shows that we have a map from KA(X) to Piĉ(X)
given by

H• 7→

⊗
i≥0

detH
(−1)i

i
∼−→
⊗
i≥0

detH
(−1)i

i


the monöıd FD(X) appears to be some kind of multiplicative version of meager com-
plexes resolving line bundles, as the KA group remains very mysterious, for instance
the only case where it has been computed it the case of a point, [BGFiML12], maybe
FD(X) could be easier to study. We will not pursue this study here7.

1.1.5 Secondary classes

In this section we will construct a notion of secondary characteristic classic fitted
for our needs. This construction is an analog of the one already provided by Zha in
his thesis [Zha99], but with a different definition of metric structure. Those classes
are concrete realization of universal classes built up in [BGFiML14]. In this whole
section, X will design a complex algebraic variety, which we may assume to be pro-
jective and smooth over C.

Theorem 1.1.23. Let F• be an acyclic complex of hermitian coherent sheaves, that
is hermitian sheaves equipped with a metric structure. There exists a unique way of
attaching to every such complex a Bott-Chern secondary characteristic form, denoted
c̃h(F•) ∈ Ã•,•(X), satisfying the following conditions.

1. (Compatibility with Bott-Chern forms) If E : 0 → E1 → E2 → E3 → 0 is an
exact sequence of hermitian vector bundles, then

c̃h(E) = c̃h
BC

(E)

where c̃h
BC

is the Bott-Chern form associated to the exact sequence (see [GS90])

2. (Normalization) If E• → F is the metric resolution defining the hermitian
structure over F , then c̃h(E• → F) = 0

3. (Devissage) If we have a complex of acyclic coherent metrized sheaves F• that
can be split up into exact sequences

Ei, 1 ≤ i ≤ n− 1 : 0→ Gi → Fi → Gi−1 → 0

with G−1 = F0 et Gn−1 = Fn. We have

c̃h(F•) +
∑
i≥1

(−1)ic̃h(Ei) = 0

for every choice of metric structure on the sheaves Gi for 1 ≤ i ≤ n− 2

7These questions certainly require further investigations, especially because I believe that the
KA group should play a key role in a strong version of the arithmetic cobordism. One indication

in this direction is the fact that the natural map KA(X)
c̃h−→ Ã•,•R (X) is onto where it should be

(namely on forms of degree not exceeding (p− 1, p− 1)), this result is readily implied by a paper of
Pingali and Takhtajan [PT14]
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4. (Exactitude) If we have a commutative diagram with exact rows and columns

0

��

0

��

0

��
0 // F1,1

//

��

F1,2
//

��

F1,3
//

��

0

0 // F2,1
//

��

F2,2
//

��

F2,3
//

��

0

0 // F3,1
//

��

F3,2
//

��

F3,3
//

��

0

0 0 0

then we have the following equality c̃h(L1)−c̃h(L2)+c̃h(L3) = c̃h(C1)−c̃h(C2)+
c̃h(C3) where Ci (resp. Li) designs the i-th exact column (resp. the i-th exact
row).

Proof. This is proved in [Zha99].

Let us simply note that these Bott-Chern classes are in fact defined for hermitian
sheaves up to quasi-isometry in the sense of Burgos, Freixas, Litcanu. Notice that,
now that we have at our disposition the notion of hermitian structure for a sheaf
it is easy to prove the analog of 1.1.17 where the complexes of vector bundles are
replaced with complexes of hermitian sheaves.

Lemma 1.1.24. Assume that we have a short exact sequence of the form 0 →
(F , h1) → (F , h2) → 0 where the hermitian structures on both copies of F are
quasi-isometric, then its secondary Bott-Chern form c̃h(F , h1, h2) vanishes.

Proof. Set E
1
• and E

2
• two metric structures on F , that are assumed to be quasi-

isometric. Then there exists a metric resolution, say H•, and a commutative square
up to homotopy

H•
g

��

f

��
E

1
•

  

E
2
•

~~
F

such that cone(f)⊕ cone(g)[1] is meager, it will be sufficient to prove that for every
meager complex M•, we have c̃h(M•) = 0. Indeed, if such a result is satisfied, we
have

0 = c̃h(cone(f)⊕ cone(g)[1])

= c̃h(E
1
• → (F , h1))− c̃h(E

2
• → (F , h1))

= −c̃h(E
1
• → (F , h2)) + c̃h(E

2
• → (F , h2))

which will imply the result by the normalization condition. This also proves that
in the general case, if E• → F is a metric structure on F and E

′
• another metric
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structure on F , then as expected

c̃h(E• → (F, h′)) = c̃h(F , h′, h)

So let us first prove that a meager complex has a vanishing secondary class.
Let us first consider 0 → E → F → G → 0 a short exact sequence of hermitian

bundles, that is orhto-split, then using the compatibility condition with traditional

Bott-Chern classes we have c̃h(0→ E → F → G→ 0) = c̃h
BC

(0→ E → F → G→
0) = 0, so let us set CSN (X) the class of acyclic complex of hermitian bundles that
have vanishing secondary classes.
This class certainly contains the cone of the identity map, and of the zero map of
acyclic complexes, but also ortho-split complexes, and according to the preceding
remark, it is also true that if any two of the three complexes E•, F •, cone(f) (where,
of course, f is an arrow from E• to F•) have zero secondary classes, then so does the
third, finally a shifting of an acyclic complex only changes the sign of the secondary
classes of the complex in question; hence CSN (X) is an admissible class, and as
such, contains the class of meager complexes, which make the proof complete.

Corollary 1.1.25. Secondary characteristic classes, only depend on the quasi-isometry
class of the metric structure on the sheaves and not on the particular choice of a
resolution within this quasi-isometry class.

Proof. We readily see that it is enough to prove that for every exact sequence 0→
F1 → F2 → F3 → 0 the associated secondary class does not depend on the quasi-
isometry class of the hermitian sheaves, the general result will follow by devissage.
Let us consider exact sequence 0 → F ′1 → F ′2 → F ′3 → 0 where the sheaves are
the same, but where the hermitian structures on the F ′i ’s are quasi-isometric to the
ones on the Fi’s, then we certainly have a commutative diagram with exact rows
and columns.

0 // F1
//

��

F2
//

��

F3
//

��

0

0 // F ′1 // F ′2 // F ′3 // 0

So, using exactness, and the previous lemma, we get

c̃h(0→ F1 → F2 → F3 → 0) = c̃h(0→ F ′1 → F ′2 → F ′3 → 0)

Theorem 1.1.26. Let F : 0 → F1 → F2 → F3 → 0 a short exact sequence of
coherent sheaves, and let E be a hermitian vector bundle. We have

1. ddcc̃h(F) = ch(F2)− ch(F1)− ch(F3)

2. c̃h(F ⊗ E) = c̃h(F). ch(E)

Proof. The first formula is immediate, it results from the fact that the formula is
known to hold for complex of bundles, and from the the definitions we have given
for secondary forms.

The second one is easy too, it follows from the fact that tensoring with a vector
bundle is an exact functor and thus preserves dominating resolutions, and, there
again, from the fact that the result is known to hold for complex of bundles for
classical Bott-Chern forms.
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From the first formula one can deduce the following result, which is the one that
interests us.

Corollary 1.1.27. The Chern form associated to a metrized sheaf only depends on
the quasi-isometry class of the metric structure on the sheaf.
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2 Weak arithmetic cobordism group

2.1 Weak arithmetic theories

2.1.1 Weak Arithmetic Chow Groups

Let X be an algebraic projective smooth variety over a number field k. Let V be a
subvariety of X of dimension d+ 1, and let f be any rational function on V , recall
that div(f) is the cycle on X defined as

div(f) =
∑

irreducible W⊂V ;codimV (W )=1

ordW (f)[W ]

We also set log |f |2 to be the current over X defined in the following manner; let ω
be any real smooth compactly supported form over X, of type (d+ 1, d+ 1), we set

〈 log |f |2, ω 〉 =

∫
V ns

log |f |2ω

where V ns denotes the open subset of V (C) consisting of smooth points. As the
singular locus of V is of codimension at least 1 in V , and as log |f |2 is a locally
integrable function over V ns, this is a well defined current over X, notice that log |f |2
is of type (dX − dV , dX − dV ). We could also define log |f |2 using the resolution of
singularities of V .
We define the weak arithmetic Chow group in the following manner

Definition 2.1.1. We call the arithmetic weak Chow group of X and we denote by

CĤ(X) the group Ẑ(X)/R̂at(X) where

• The group Ẑ(X) is the direct sum of the free abelian groups built on symbol
[Z] for every, Z, closed irreducible subset of X and the group D̃•,•R (X).

• The subgroup R̂at(X) is the subgroup of Ẑ(X) generated by [div(f)]− log |f |2
for every f ∈ kV ∗ for every subvariety V of X.

Remark 2.1.2. We have a natural grading over CĤ(X), where the homogenous piece
of degree d is given by

Ẑd(X) =
⊕

dimZ=d

Z[V ]⊕ D̃dX−1−d,dX−1−d
R (X)

For any d + 1-dimensional subvariety V , div(f) is of degree d, and log |f |2 being

of type (dX − (d + 1), dX − (d + 1)) is of degree d, thus R̂at(X) is a homogenous

subgroup of Ẑ•(X), and CĤ(X) inherits the grading.

From now on, we will simplify notations a bit, by writing [Z, g], instead of ([Z], g),

of course we have two natural maps a : D̃•,•R (X) → CĤ(X) sending g to [0, g] and

ζ : CĤ(X)→ CH(X) sending [Z, g] to [Z].
Let us briefly examine the different operations that we can define on such groups.

Definition 2.1.3. Let π : X → Y be a projective morphism between arithmetic
varieties, we define

π∗[Z, g] = [π∗[Z], π∗g]

where π∗[Z] is the push forward of geometric cycles defined in [Ful86]; and π∗(g) is
the push forward of current (which definition is recalled in 2.2.20).
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It is a well known fact (see for instance [GS, Theorem 3.6.1]) that this push
forward is well defined and gives a functorial map

CĤ(X)
π∗−→ CĤ(Y )

this map is degree preserving.
In the same manner we can define a pull back-operation.

Definition 2.1.4. (Pull-Back) Let f : X
′ → X be a smooth equidimensional mor-

phism between arithmetic varieties, we define

f∗[Z, g] = [f∗[Z], f∗g]

where f∗[Z] is the cycle associated to the equidimensional scheme X ′ ×X Z, see
[Ful86]; and f∗(g) is defined in 2.2.24

The proof that this map is well defined on the level of the CĤ, and is functorial
can be found in [GS, Theorem 3.6.1]

Remark 2.1.5. Here, the morphism f∗, for f equidimensional of relative dimension
d increases degree by d, the relative dimension.

We can also define a first Chern class operator, but to do so let us fist notice
that if f ∈ k(V ) is a rational function defined on a subvariety V of X, then for
every closed subvariety Z of X generically transverse to V , we can restrict log |f |2
so a (locally integrable) function defined on V ∩ Z, that defines a current on X by
integration along the smooth locus of V ∩ Z (with the appropriate coefficient for
each irreducible component of V ∩ Z, namely its geometric multiplicity), we will
denote such current as δZ ∧ log |f |2, notice that we have a projection formula

i∗i
∗(log |f |2) = δZ ∧ log |f |2 = i∗i

∗(1Z) ∧ log |f |2

For every (regular) closed immersion Z
i−→ X it is a well known fact that we can find

for every closed subvariety V of X, another variety, say W , rationally equivalent to
V and transverse to i so that we can extend that procedure to arbitrary arithmetic
cycles onX, in fact we can also extend this definition to rational sections of hermitian
bundles, as locally such a section can be represented as a rational function via a
holomorphic trivialization, for details see [GS, 1.3].

We can now define a First Chern class operator

Definition 2.1.6. (First Chern class operator)

Let L ∈ P̂ic(X) be a hermitian line bundle over X, we define ĉ1(L) as an endomor-

phism of CĤ(X) by the following formula

ĉ1(L)[Z, g] = [div(s).[Z], c1(L) ∧ g − log ‖s‖2 ∧ δZ ]

where s is any rational section of L over Z, and c1(L) is the curvature of the bundle
L, which can be defined locally as (−2iπ)−1∂∂ log ‖s‖2 for any holomorphic local
section of L.

Remark 2.1.7. Notice that ĉ1(L) decreases degree by 1, and that on D̃•,•R (X), ĉ1(L)
only acts as g 7→ g ∧ c1(L).

Let’s sum up the fundamental properties of these operations in the following
proposition
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Proposition 2.1.8. (Borel-Moore properties)
Let X,Y, Y ′, S and S′, be smooth projective varieties and let π : X → Y and π′ :
Y → Y ′ be projective morphisms and f : S → X and f ′ : S′ → S be smooth
equidimensional morphism. We also fix M (resp. L and L

′
), a (resp. two) hermitian

bundle on Y (resp. X), we have

1. (Functoriality of the push forward) (π′ ◦ π)∗ = π′∗π∗

2. (Functoriality of the pull back) (f ◦ f ′)∗ = f ′∗f∗

3. (Naturality of the 1st Chern class) f∗ ◦ ĉ1(L) = ĉ1(f∗L) ◦ f∗.

4. (Projection Formula) π∗ ◦ ĉ1(π∗M) = ĉ1(L) ◦ π∗

5. (Commutativity of the 1st Chern Classes) ĉ1(L) ◦ ĉ1(L
′
) = ĉ1(L

′
) ◦ ĉ1(L)

6. (Grading) The degree of π∗ is 0, the degree of f∗ is d, the degree of ĉ1(L) is
−1.

Proof. In each case we can evaluate the veracity of these statements on cycles of the
form [Z, 0] and [0, g]

1, 2. The functoriality on classes of the form [Z, 0] is [Ful86, Thm 1.4, Thm 1.7], the
result for currents results immediately form the functoriality of the pull-back
(resp. of the integration over the fiber) of forms by proper (resp. submersive)
maps between compact manifolds.

3 This is [Ful86, Prop 2.5.d] for cycles [Z, 0] and the naturality of the Chern
form for currents.

4 This is [Ful86, Prop 2.5.c] for cycles [Z, 0] and the naturality of the Chern form
for forms which implies this formula for currents by duality.

5 This is [Ful86, Prop 2.5.b] for cycles [Z, 0] and a special case of [GS, Cor 2.2.9]
for currents. Another proof can be given using 2.2.52.

6 This results from the definitions.

This properties give the functor X 7→ CĤ(X) the properties of a Borel-Moore
functor. The following ones illustrate the ”arithmetic” nature of this functor.

Proposition 2.1.9. (Arithmetic Type of CĤ)
Let X be a projective smooth variety over k of dimension d, we have

1. For any hermitian line bundles over X, L1, ..., Ld+2, we have

ĉ1(L1) ◦ ... ◦ ĉ1(Ld+2) = 0

as an endomorphism of CĤ(X).

2. Let L be a hermitian line bundle over X, with s a global section of L that is
transverse to the zero section. Let Z be the zero scheme of such a section, and
i : Z → X the corresponding immersion. We have

i∗(1Z) = ĉ1(L)(1X) + a(log ‖s‖2)
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3. Given two hermitian bundles L and M over X we have

ĉ1(L⊗M) = ĉ1(L) + ĉ1(M)

Proof. 1. This results simply from the fact that we have a decomposition of
abelian group

CĤ(X) = CĤd(X)⊕ ...⊕ CĤ0(X)⊕ CĤ−1(X)

and from the fact that the first Chern class operator is of degree −1.

2. Keeping the notation of the proposition we have i∗(1Z) = [Z, 0], and ĉ1(L)(1X) =
[div(s),− log ‖s‖2] = [Z, 0]− a(log ‖s‖2), and the result follows.

3. We have c1(L ⊗ M) = c1(L) + c1(M) in CH(X) [Ful86], and by the very
definition of the tensor product metric we have log ‖s ⊗ t‖2 = log[‖s‖2‖t‖2],
which implies the result.

To complete our description let us note that the weak arithmetic chow groups
are an extension of classical geometric Chow groups by the space of real currents
modulo im ∂ + im ∂.

Proposition 2.1.10. We have an exact sequence

D̃•,•R (X)
a−→ CĤ(X)

ζ−→ CH(X)→ 0

that breaks up into

D̃d−1−p,d−1−p
R (X)

a−→ CĤp(X)
ζ−→ CHp(X)→ 0

Proof. Let α =
∑
ni[Zi, gi] be a weak arithmetic cycle. The fact that

∑
ni[Zi] is

trivial in CH(X) is equivalent to the existence of subvarieties Vj of X and fj ∈ k(Vj)
rational functions over Vj ,such that

∑
[Zi] =

∑
div(fj) as cycles, we thus have

α =
∑
a(gi) +

∑
div(fj) =

∑
a(gi) +

∑
a(log ‖fj‖2) which is evidently in the image

of a.
The fact that the first exact sequence implies the others is simply a reformulation

of the fact that the maps a and ζ preserve the grading.

Remark 2.1.11. The reader will compare this exact sequence to the one found in
[ABKS94], and see that we have just replaced the space of real smooth forms by
the space of general real currents, which has the advantage of having much better
functoriality properties. This is why we have replaced the notion of arithmetic cycle
presented in [GS] using a green current, by the notion of weak arithmetic cycle.

For a general subvariety Z of X we have a distinguished current, namely the
current of integration over Z that we have mentioned earlier, as the push forward
of current commutes with differentiation we have ∂∂δZ = ∂∂i∗(1Z) = i∗∂∂(1Z) = 0,

we thus have a well defined map, called w, from CĤp(X) → Zd−pR (X) = {g ∈
Dd−p,d−p

R (X); ∂∂g = 0} defined by w[Z + a(g)] = δZ + ddcg, which we call the
double transgression map.

This map is an extension of the map ω defined for instance in [ABKS94], ex-
cept that in this case the current obtained is a smooth closed form. If we denote

by CĤ(X)w=ζ the kernel of the map CĤp(X)
(w,ζ)−−−→ Zd−pR (X) ⊕ CHp(X)

[.]−cl−−−→
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Hd−p,d−p(X), we can describe CĤ(X)w=ζ in terms of cycles using the ”tame regu-
lator”, as it is the case in the ”strong” construction of [GS], where we have an exact
sequence

CHp,p−1 ρ−→ Hp−1,p−1(X)→ ĈH
p
(X)

(w,ζ)−−−→ Zd−pR (X)⊕CHp(X)
[.]−cl−−−→ Hd−p,d−p(X)→ 0

Remark 2.1.12. It appears here that the arithmetic objects are a ”double” trans-
gression of the cohomological ones. What is meant by this is that what we associate
with a geometric object, here a cycle, is a current that will give back the cohomo-
logical class of this object (here the image of the cycle through the cycle class map)
after the application of ∂∂. We will later apply the same process to refine K-theory
and give an arithmetic version of it.

Remark 2.1.13. The idea to double transgress cohomological theory to extract arith-
metic information from a geometrical one is not at all obvious ”at first glance”, to
see why we can apply Arakelov techniques to Diophantine geometry see [Fal91],
[Voj91], [Lan88].

2.1.2 Higher Analytic Torsion of Bismut-Köhler

Recall the definition of arithmetic K̂-theory given by Gillet and Soulé in [GS90]

Definition 2.1.14. Set K̂0(X) to be the free abelian group
⊕

Z[E]× Ã•,•R (X) where
E is an isometry class of hermitian vector bundle over X, subject to the following
relations: for every exact sequence E : 0→ E′′ → E → E′ → 0,

[E, 0] = [E′′, 0] + [E′, 0] + [0, c̃h(E)]

One of the most profound problem in Arakelov theory is to define a direct image
for such groups and to compute it, firstly we need to fix a metric on π∗E, unfor-
tunately a priori this is only a sheaf, and not a vector bundle, so Gillet and Soulé
chose to examine a particular situation of utmost interest.

Consider a holomorphic proper submersion between complex manifolds, π : M →
B. Let g be a hermitian metric on the holomorphic relative tangent bundle to π,
denoted TM/B, and let J be the complex structure on the underlying real bundle to
TM/B and HM/B the choice of a horizontal bundle i.e a smooth subbundle of TM
such that we have TM = TM/B ⊕HM/B.

Definition 2.1.15. (Kähler Fibration)
We say that this data defines a Kähler Fibration is there exists a smooth (1, 1)-real
form, say ω over M such that

1. The form ω is closed

2. The real bundles HM/BR and TM/BR are orthogonal with respect to ω

3. We have ω(X,Y ) = g(X, JY ) for X and Y vertical real vector fields.

Let us take E a hermitian bundle, we will make the two following assumptions

(A1) Assume that π is a (proper) smooth submersion that is equipped with a struc-
ture of Kähler fibration.

(A2) Assume that E is π∗-acyclic, meaning that Rqπ∗E = 0 as soon as q > 0.
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In this case, the upper-semi-continuity theorem ensures that π∗E is a vector bundle
over Y , and for each (closed) point of y we have j∗yπ∗E = H0(Xy, E|Xy). Now, using
the Kähler fibration structure on π, we get a smooth family of metrics over the
relative tangent spaces to π, that give a Kähler structure to the fiber Xy. Now, we
can identify the space H0(Xy, E|Xy) to the subspace of A0(Xy, E) of smooth forms

with coefficients in E, that are holomorphic, i.e killed by ∂. Now, on A0(Xy, E) we
have a natural hermitian form given by the Kähler metric, defined by

〈 s, t 〉 =

∫
Xy

hE(s(x), t(x))ω

where ω is the volume form defined by the Kähler metric on Xy.
We have thus defined a (punctual) metric on each fiber of the vector bundle π∗E,

which we will call the L2-metric associated to the Kähler fibration.

Theorem 2.1.16. Assuming the previous conditions, on X,Y, π and E, the L2

metric is smooth and thus define a hermitian vector bundle structure on π∗E.

Proof. See [BGV92, p 278]

We will denote π∗E
L2

the vector bundle π∗E equipped with its L2-metric sub-
ordinated to the choice of metrics on both X and Y . The problem now is to choose
a form say Ξ such that

π∗[E, 0] = [π∗E
L2

,Ξ]

A first step to understand what this Ξ should be, is to investigate the Riemann-Roch
formula, let us recall the

Theorem 2.1.17. (Grothendieck-Riemann-Roch) Let π : X → Y be a projective
morphism between smooth projective varieties over a field k, and E be a vector
bundle over X, then we have an equality of cycles in CHQ(Y ),

ch(π∗E) = π∗(ch(E) Td(Tπ))

Here, the class Td(Tπ) denotes the Todd class of the virtual tangent bundle,
defined as an element in K-theory, as

Tπ = [j∗TP/Y ]− [NX/P ]

for any smooth variety P such that we have a factorization

X
j−→ P

p−→ Y

with j being a (regular) immersion and p being a smooth submersion, this virtual
class does not depend on the choice of P .

Now, as we have equipped the bundle E mentioned in the previous theorem with
a hermitian metric, we then have a canonical connection on E, defined by

1. preservation of the metric d 〈 s, t 〉 = 〈∇s, t 〉+ 〈 s,∇t 〉.

2. compatibility with the ∂ operator, ∇0,1 = ∂
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this connection is called the Chern connection on E. And we can define the Chern
character form of such a connection as

ch(E) = tr(e
i

2π
∇2

) ∈ Ap,pR (X)

This is a closed form and if we change the metric on E the corresponding form is
altered by a ∂∂-exact form, so its cohomology class does not depend on the different
metrics involved in its definition. In fact we can relate the secondary Bott-Chern
form to the infinitesimal generator of one-parameter family of metric on E (see for
instance [Fal92, p.21-22])

Proposition 2.1.18. Assume that we have a family of metrics over E, say ht,
depending smoothly on a real parameter t, let us denote by Et the exact sequence
0→ (E, h0)→ (E, ht)→ 0, then we have

∂t tr(e
i

2π
∇2
t ) = ddc tr(

1

2
Nte

i
2π
∇2
t ) =

1

2
ddc c̃h(Et)

where Nt denotes the number-operator associated to ht defined by ∂tht(a, b) = ht(Nta, b).

This results implies, by integration (and using the fact that the differential on X
commutes with integration along A1), the fact that the class of the Chern character
form of the connection does not depend on the metric, in fact we could simply
prove a simple transgression formula much more easily (see [BGV92, Prop 1.41])
and deduce this result from it.

Now, using Grothendieck-Riemann-Roch Theorem we see that

ch(π∗E
L2

)− π∗[ch(E) Td(TX/Y )]

must be the ∂∂ of some smooth form over Y , and our form Ξ should be one of those
forms, of course there are many possible choices.

Bismut and Köhler were able to give a satisfying choice for Ξ. Let us show how
they proceed.

Over each point y of Y , we have the relative Dolbeault complex, given by

0→ A0(Xy, E)→ A0,1(Xy, E)
∂−→ A0,2(Xy, E)→ ...

where A0,q(Xy, E) denotes the space of smooth sections of the bundle E ⊗
∧q T 0,1

Xy
.

This complex, is equipped with a hermitian form extending the one defined of smooth
sections of E, by the formula

〈 s⊗ µ, t⊗ ν 〉 =

∫
Xy

hE(s(x), t(x))hXy(µ, ν)ω

where we extend the Kähler metric on TXy to
∧q T 0,1

Xy
. For this metric, the operator

∂ has a formal adjoint, ∂
∗
, and an associated Laplacian ∆E = ∂∂

∗
+∂
∗
∂. We need to

define the notion of determinant of this Laplacian, for this, we use a ζ-regularization
process. As the eigenvalues of ∆q, the restriction of the Laplacian, on (0, q)-forms,
form a discrete subset of the real positive numbers, we set for <(s) large enough

ζ∆q(s) =
∑
λi>0

λ−si

34



this function extends to a meromorphic function over C, which is holomorphic at
the origin, so we can set

det(∆q) = e
−ζ′∆q (0)

the analytic torsion (at the point y) is defined to be

Ty =
∑

(−1)q
q

2
ζ ′∆q

(0)

this gives a smooth function on the base Y . This gives the 0-th degree part of the
Higher analytic forms constructed by Bismut-Köhler, in general they defined (see
[BK92, Def 1.7, Def 1.8, the paragraph before Thm 3.4 and Def 3.7] for the definition
of the different terms, which we will not need)

Theorem 2.1.19. (Bismut, Köhler)
Let E be a hermitian bundle and π : X → Y a holomorphic submersion endowed
with a Kähler fibration structure, set T (TX/Y , E) = ζ ′E(0) where

ζE(s) =
1

Γ(s)

∫ ∞
0

us

u

[
ϕ trs(Nue

−B2
u)− ϕ trs(NV e

−∇2
π)
]
du

then
π∗[ch(E) Td(TX/Y )]− ch(π∗E

L2

) = ddcT (TX/Y , E)

The form T (TX/Y , E) is called the Higher Analytic Torsion form associated to E

and TX/Y

Proof. This is [BK92, Theorem 0.2]

Remark 2.1.20. In the previous theorem the higher analytic torsion form T (TX/Y , E)
is associated to a Kähler fibration structure on π, note however that when TX and TY
are equipped with Kähler metrics, we have a natural structure of Kähler fibration on
π (see [BGS88b, Thm 1.5]), in this case, we will then denote T (TX , T Y , E) instead
of T (TX/Y , E) to mean the higher analytic torsion form associated to the Kähler
fibration structure induced by the Kähler metrics over TX and TY

We list here the fundamental properties of this higher analytic torsion that we
may need.

Proposition 2.1.21. Let π : X → Y be a smooth submersion equipped with a
Kähler fibration structure, let E be a π∗-acyclic vector bundle, and let’s endow π∗E
with its L2-metric. The analytic torsion associated to this data, T (TX/Y , E) is a

smooth form in Ã•,•R (Y ) that satisfy

1. (Naturality) Let g : Y ′ → Y be projective morphism, then XY ′ → Y ′ is a
Kähler fibration, and we have

T (g∗TX/Y , g
∗E) = g∗T (TX/Y , E)

2. (Additivity) For every pair E1, E2 of hermitian vector bundles on X, we have

T (TX/Y , E1 ⊕⊥ E2) = T (TX/Y , E1) + T (TX/Y , E2)

3. (Compatibility with the projection formula) For F a hermitian vector bundle
on Y , we have

T (TX/Y , E ⊗ π∗F ) = T (TX/Y , E)⊗ ch(F )

35



4. (Transitivity) If π : X → Y and π′ : Y → Z are two Kähler fibration structures
and E is a bundle π∗-acyclic, such π∗E is also π′∗-acyclic we have the following
relation between the different analytic torsions

T (TX/Z , E) = T (TY/Z , π∗E
L2

) + π′∗(T (TX/Y , E) Td(TY/Z))

+ c̃h(π′ ◦ π∗E
L2

, π′∗(π∗E
L2)

L2

)

+π′∗π∗(ch(E)T̃ d(E) Td(TX/Y ) Td−1(TX))

where E is the exact sequence

E : 0→ TX/Y → TX/Z → π∗TY/Z → 0

Proof. This is [BGFiML14, Cor 8.10, Cor 8.11].

2.1.3 Generalized Analytic Torsion of Burgos, Freixas, Litcanu

To investigate the situation for a general projective morphism, Burgos, Freixas and
Litcanu have split the problem into two different ones. First one wants to construct
direct images for projective spaces PrY → Y and for closed immersions, and ask for
a compatibility condition that would ensure a general functoriality property.

That’s why Burgos, Freixas and Litcanu defined

Definition 2.1.22. (Generalized Theory of Analytic torsion for submersions)
A theory of generalized analytic torsion forms for submersions is an assignment of a
smooth real form, T (TX , TY , E) in Ã•,•R (Y ) to every smooth submersion X

π−→ Y and
every hermitian bundle E over X, with TX and TY equipped with a Kähler metric,
and E being π∗-acyclic, satisfying

π∗[ch(E) Td(TX/Y )]− ch(π∗E
L2

) = ddcT (TX , T Y , E)

We say that a theory of generalized analytic torsion forms for submersions is well
behaved, if it satisfies the following properties

1. (Naturality) Let g : Y ′ → Y be projective morphism, then X ′ = XY ′
g′−→ Y ′ is

a also a smooth submersion, and for any choice of metrics over TX′ and TY ′

such that we have an isometry TX′/Y ′ ' g′∗TX/Y we have

T (TX′ , TY ′ , g
′∗E) = g∗T (TX , TY , E)

2. (Additivity) For every pair E1, E2 of hermitian vector bundles on X, we have

T (TX , TY , E1 ⊕⊥ E2) = T (TX , TY , E1) + T (TX , TY , E2)

3. (Compatibility with the projection formula) For F a hermitian vector bundle
on Y , we have

T (TX , TY , E ⊗ π∗F ) = T (TX , TY , E)⊗ ch(F )

Remark 2.1.23. The theory of analytic torsion defined by Bismut and Köhler, is an
example of such a well-behaved theory, we will denote it TBK .
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Let’s now turn to the case of a closed immersion, so assume now, that we’ve been
given i a (regular) closed immersion between projective smooth complex varieties.
The geometric situation is somewhat more complicated given that in general i∗E will
not be a vector bundle on Y , so we can just arbitrarily choose a hermitian structure
on i∗E, given by a resolution of that sheaf on Y , let us choose such a resolution
E• → i∗E → 0.

We thus have a current, represented by a smooth form ch(i∗E) which is equal to∑
(−1)i ch(Ei), we want to compare it to the current i∗[ch(E) Td(N)−1] for a choice

of metric over the normal bundle to i.
Notice here that ch(E) Td(N)−1 is a well-defined smooth form on X, but is only

a current on Y , when we push it forward through i∗, however as the cohomology
of currents coincide with that of forms ([GH94]), we do know that there exists a
current Ξ ∈ D̃•,•R (Y ) depending a priori on the choice of the metric on N , and the
metric structure on i∗E such that

i∗[ch(E) Td(N)−1]−
∑

(−1)i ch(Ei) = ∂∂Ξ

we can, here again, try to give an explicit formula, let us examine the case of a
smooth effective divisor.

Assume that we’ve been given a hermitian line bundle L over Y , such that X
is the zero locus of a section s of L, transverse to the zero section. We have the
following exact sequence

0→ L∨ → OY → i∗OX → 0

that gives a resolution of i∗OX over Y , if we equip OX with the trivial metric, and
L∨ with the dual metric, we get a hermitian structure on i∗OX . Moreover as i∗L is
naturally isomorphic to NX/Y we also have a natural metric on the normal bundle
to i. For this data, a current Ξ solving the Grothendieck-Riemann-Roch equation is
easy to compute.

Proposition 2.1.24. Let L be a hermitian vector bundle over a smooth complex
variety, say Y , and let X be the zero scheme of a transverse section. We denote by
j the corresponding regular immersion. We have

ch(j∗OX) = ch([OY ]− [L
∨

]) = j∗(ch(OX) Td(j∗L)−1)− ddc(Td(L)−1 ∧ log ‖s‖2)

Proof. First let us compute

ch(j∗OX) = ch([OY ]− [L
∨

])

= ec1(OY ) − ec1(L
∨

)

= 1− e−c1(L)

Let’s now compute

j∗(ch(OX) Td(j
∗
L)−1) = j∗(Td[j∗L]−1)

= Td(L)−1j∗(1X)

= Td(L)−1 ∧ δX
= Td(L)−1 ∧ (ddc log ‖s‖2 + c1(L))

= ddc(Td(L)−1 ∧ log ‖s‖2) + c1(L) ∧ Td(L)−1

= ddc(Td(L)−1 ∧ log ‖s‖2) + (1− e−c1(L))
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where we have used the projection formula, the definition of δX , the Poincaré-Lelong
formula, the fact that the Todd form is closed, and finally the definition of the Todd
form. The proposition follows.

Remark 2.1.25. The next case that we can explicitly compute is the case of the
immersion of X into P(1 +E) where E is a vector bundle over X. Here we have an
explicit resolution given by the Koszul complex

0→
r∧
Q→ ...→

2∧
Q→ Q

s−→ OP(1+E) → i∗OX → 0

where s is a section having X for zero locus, given by the vanishing of the image of
1 in Q∨ in the exact sequence

0→ O(−1)→ q∗E ⊕ 1→ Q∨ → 0

Of course the general strategy to build a current Ξ is then to use the deformation to
the normal cone process to deform an arbitrary resolution of i∗E into this explicit
one.

To generalize this phenomenon, we need the following definition.

Definition 2.1.26. (Singular Bott-Chern Current)
Let i : Z → X be a (regular) immersion between smooth projective complex varieties
and E a hermitian bundle over Z, we assume that we’ve been given a hermitian
structure on i∗E and on N = NZ/X .

A singular Bott-Chern current for this data, which we will denote bc(N, i∗E) is
current defined up to im ∂ + im ∂ satisfying the following differential equation

ch(i∗E) =
∑
i≥0

(−1)i ch(Ei) = i∗(chE Td(N)−1)− ddc(bc(N, i∗E))

Remark 2.1.27. Notice that we have chosen to compare i∗[ch(E) Td(N)−1] with∑
(−1)i ch(Ei) but there is another choice, just as natural, namely to compare∑
(−1)i ch(Ei) with i∗[ch(E) Td(i∗TX)−1 Td(TZ)] as both classes are mapped to

the same cohomology class.
We could of course give the same definition replacing bc(N, i∗E) by bc(TZ , TX , i∗E)

which would satisfy the equation

ch(i∗E) =
∑
i≥0

(−1)i ch(Ei) = i∗[ch(E) Td(i∗TX)−1 Td(TZ)]− ddc(bc(TZ , TX , i∗E))

If we have a singular Bott-Chern current for one of these two choices, it is easy to
find a singular Bott-Chern current for the other by the following formula

bc(TZ , TX , i∗E) = bc(N, i∗E) + i∗[ch(E)T̃d
−1

(E) Td(TZ)]

where E is the exact sequence

0→ TX → i∗TY → N → 0

Of course if that exact sequence were to be meager for the different metrics chosen,
then the two Bott-Chern singular currents would agree.

In the situations that will be of primal interest to us, we will have metrics
on X and Y instead of N , so we will use the singular Bott-Chern determined by
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the tangent metrics rather than the normal one, nevertheless in the literature, the
formulae for singular Bott-Chern currents are usually given for a choice of metric on
the normal bundle, that’s why we chose to follow this convention in the remainder
of this section.

We hope that the reader will have no problem in making the occasional switch
between properties for bc(N, i∗E) and bc(TZ , TX , i∗E)

The previous proposition gives us a useful characterization of a singular Bott-
Chern current in the case of the immersion of a divisor.

Notice that, the fact that a singular Bott-Chern current always exists is a triv-
ial consequence of the Grothendieck-Riemann-Roch theorem (and the ∂∂-lemma
for currents), but notice also that there are many possible choices a priori for
bc(N, i∗E), all differing by a cohomology class.

The general case of a (regular) immersion is much more complicated but Bismut-
Gillet-Soulé in [BGS] gave an explicit formula for a singular Bott-Chern current. Just
like for the case of the analytic torsion a little bit of technology (which we will not
explicitly describe) is needed to be able to state the result.

We can state the following formula (see [BGS] for the definition of the terms, we
won’t need those in the following)

Theorem 2.1.28. ( Bismut-Gillet-Soulé)
Let j : X → Y be an immersion between compact complex manifold and E a hermi-
tian vector bundle on X, let us endow NX/Y with a hermitian metric and i∗E with

a hermitian structure Ei → i∗E satisfying the condition (A) of Bismut, then ζ ′E(0)
is a singular Bott-Chern Current for this data, where

ζE(s) =
1

Γ(s)

∫ ∞
0

us

u

[
trs(Ne

−A2
u)− i∗

∫
X

trs(Ne
−B2

)

]
du

This current agrees with − log ‖s‖2 Td(L)−1 in the case of the immersion of a smooth
divisor.

Proof. See [BGS, Theorem 1.9, Theorem 3.17]

Here again, there are a priori many possible choices for a singular Bott-Chern
current, and we wish to determine uniquely a choice for it that agrees with our
explicit choice for divisors. Fortunately the classification of the theories of singular
Bott-Chern currents has been accomplished by Burgos and Litcanu in [BGL10].

We now turn to a brief description of their theory, to do so we need to describe a
paradigmatic situation in which we will state the analog of the properties of 2.1.21
for a singular Bott-Chern current.

Let i : X → Y and j : Y → Z, be regular immersions of complex varieties, we
have the following exact sequence

0→ NX/Y → NX/Z → j∗NY/Z → 0 (†)

and assume that we have chose a hermitian structure on i∗E given by a complex
E•, as j∗ is exact we have an exact sequence

0→ j∗En → ...→ j∗E1 → j∗i∗E → 0

if we equip all the Ei’s with hermitian structures, say Ei,• we get a global resolution
of j∗i∗E given by the total complex of the double complex E•,•. This is the hermitian
structure that j∗i∗E will be equipped with.
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Definition 2.1.29. A theory of singular Bott-Chern classes is an assignment of
a current bc(N,E, i∗E) to each immersion i : X → Y between smooth projective
complex varieties and a hermitian bundle E over X, equipped with a hermitian
structure on both NX/Y and i∗E, satisfying

ch(i∗E) = i∗(chE Td(N)−1)− ddc bc(N,E, i∗E)

A theory of singular Bott-Chern Classes is said to be

1. natural: if given g : Y ′ → Y a morphism transverse to i (e.g smooth), recall
that the transversality condition implies g∗NX/Y ' NX′/Y ′, we have

bc(g∗NX/Y , g
∗E, g∗i∗E) = g∗ bc(NX/Y , E, i∗E)

2. additive: if

bc(N,E1 ⊕⊥ E2, i∗E1 ⊕⊥ i∗E2) = bc(N,E1, i∗E1) + bc(N,E2, i∗E2)

3. compatible with the projection formula: if

bc(N,E ⊗ i∗F , i∗E ⊗ F ) = bc(N,E1, i∗E1) ch(F )

where F is a hermitian vector bundle on Y

4. transitive: if it is additive and if for every composition of closed immersion
i : X → Y , and j : Y → Z, and for every choice of metrics on the normal
bundles, we have

bc(NX/Z , E, j∗i∗E) =
∑
r≥0

(−1)r bc(NY/Z , Er, j∗Er)

+j∗[bc(NX/Y , E, i∗E) Td(NY/Z)−1] + j∗i∗[ch(E)T̃d
−1

(†)]

Remark 2.1.30. If the different conditions in the previous definition are only satisfied
for a particular class of metric structure we will say that the corresponding theory
of singular Bott-Chern is the corresponding adjective with respect to that particular
choice of metrics.

If a theory of Bott-Chern singular currents satisfies all of the assumptions above,
we will say that it is well-behaved.

We have the following proposition

Proposition 2.1.31. The theory of singular Bott-Chern Classes defined by Bismut
and given for a metric satisfying condition (A) by formula 2.1.28 is well-behaved.

Proof. This is [BGL10, Prop 9.28]

Therefore the singular Bott-Chern current constructed by Bismut-Gillet-Soulé
(that we will denote bcBGS) is an example of a well-behaved theory of singular
Bott-Chern current, but it is far from being the only one. Indeed we have

Theorem 2.1.32. For any choice of a real additive genus S there exists a unique
theory of well behaved Bott-Chern singular currents satisfying

bc(E, i∗E,N) = bcBGS(E, i∗E,N) + i∗[ch(E) Td(N)S(N)]
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Proof. This is [BGFiML14, 7.14]

Remark 2.1.33. If Λ is a ring, a genus over Λ is simply a power series over Λ. We
will say that a genus g is multiplicative (resp. additive) if we extend it as a power
series given by

g(T1, ..., Tn) = g(T1)...g(Tn)(resp. g(T1) + ...+ g(Tn))

We can associate to such a genus over Λ a characteristic form with coefficients
in Λ, which will be also called a genus.

Up to this point we have considered two kinds of secondary objects, the (higher)
analytic torsion form for Kähler fibrations π : X → Y , and the singular Bott-Chern
classes for immersions i : Y → Z, anticipating just a bit on the following section, we
will see that these two secondary objects help us define a direct image in arithmetic
weak K̂-theory, each construction will assure functoriality of this direct image with
respect to the kind of morphism it is defined with, i.e we will have (ij)∗ = i∗j∗ for
composition of closed immersions, and we will have (ππ′)∗ = π∗π

′
∗ for composition

of Kähler fibrations.
In order to have a general functoriality property for arbitrary projective mor-

phism, one needs to impose a compatibility condition between analytic torsion, and
singular Bott-Chern classes. Burgos, Freixas, and Litcanu have studied that question
in [BGFiML14] and it turns out that it can be done as soon as we have compatibility
for them in a mild situation.

Let’s consider the following diagram

Pn ∆ //

id

$$

Pn × Pn p1 //

p2

��

Pn

��
Pn // Spec k

If we want to achieve functoriality in K̂-theory, the least we can ask is that
p2,∗∆∗ = id, let us write down explicit equations for this condition to be true for
the trivial bundle over Pn.

We have an explicit resolution of ∆∗OPn given by the Koszul complex

0→
r∧

(p∗2Q⊗p∗1O(1))→ ...→
2∧

(p∗2Q⊗p∗1O(1))→ (p∗2Q⊗p∗1O(1))→ OPn×Pn → ∆∗OX → 0

where Q is the universal subbundle on Pn. Now if we choose a trivial metric on the
trivial bundle of rank n + 1 on Pn we get a Fubini-Study metric on O(1), and on
TPn and also on TPn×Pn , moreover, the universal exact sequence

0→ Q→ q∗On+1
Pn → O(1)

enables us to equip Q with a metric too.
Therefore we have a metric structure on ∆∗OPn , now let us define p2∗∆∗OPn

as
∑

(−1)ip2∗
∧r(p∗2Q⊗ p∗1O(1))

L2

where we use the structure of Kähler fibration
defined by the Fubini Study metrics over Pn and Pn × Pn, of course as the normal
bundle to the diagonal immersion is naturally isomorphic to the tangent bundle of
Pn, we also have a metric on it.

We need to compare this class in K̂-theory, with the class of OPn with trivial
metric; in order to have compatibility of the two kinds of secondary objects that
have been added, the difference between them must be zero, and this justifies the
following definition extracted form [BGFiML14, Def 6.2]
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Definition 2.1.34. We say that a well behaved theory of Bott-Chern singular class
is compatible with a well behaved theory of analytic torsion if the following identity
holds for the situation previously defined

0 =
∑

(−1)rT (Pn × Pn,Pn, p2∗

r∧
p∗2Q⊗ p∗1O(1))

L2

)

+p2∗[bc(NPn/Pn×Pn , i∗OPn).Td(TPn×Pn/Pn)]

The following proposition is due to Burgos, Freixas and Litcanu

Theorem 2.1.35. For any choice of well-behaved theory of singular Bott-Chern
currents for closed immersions, there exists a well-behaved theory of higher analytic
torsion classes compatible with it.

Proof. This is [BGFiML14, Thm 7.7]

Remark 2.1.36. In [BGFiML14] they use a different normalization of the singular
Bott-Chern current of Bismut-Gillet-Soulé, due to the fact that they work with the
Deligne complex, instead of general currents, therefore they have to multiply the
singular Bott-Chern current by −1

2 in order to have compatibility.

Recall the the R-genus of Bismut-Gillet-Soul is the additive characteristic class
determined by the following equation

R(L) =
∑
m odd

(2ζ(−m) + ζ ′(−m)(1 +
1

2
+ ...+

1

m
))
c1(L)m

m!

Theorem 2.1.37. (Bismut; Burgos-Freixas-Litcanu)
The theory of analytic torsion for Kähler fibrations associated to the singular Bott-
Chern current bcBGS is given by

T (TX , TY , E) = TBK(TX , TY , E)−
∫
X/Y

ch(E) Td(TX/Y )R(TX/Y )

where R is the R-genus of Bismut-Gillet-Soulé.

Proof. This is the conjunction of [BGFiML14, Thm 7.14] and [Bis97, Thm 0.1 and
0.2]

Remark 2.1.38. This result which is absolutely essential to us, is remarkable in
many ways. Not only is it, technically, a very impressive formula to prove, that re-
lies on hard analysis, it illustrates that the two constructions that Bismut, Gillet and
Soulé made for the analytic torsion and the singular Bott-Chern currents were corre-
sponding to each other enough to ensure functoriality for direct images in arithmetic
K-theory.

In fact, in their strong K-theory groups it was not possible to define a direct
image morphism for a closed immersion, but Bismut studied the compatibility of
analytic torsion for closed immersions in [Bis97] (see also [GRS08]) and his main
result ensures that when one has a diagram

X
g

  

i // P

p��
B

with p and g smooth, then in weak K̂-theory, we have p∗i∗ = g∗, which we will have
to check later (see 2.1.57)
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From now on we will only work with the theory of singular Bott-Chern current
of Bismut-Gillet-Soulé, whose Bott-Chern current associated to the immersion of a
divisor is given by − log ‖s‖2 Td(L)−1, which we will simply denote bc and with the
analytic torsion for submersions compatible to it, which we will simply denote T .

2.1.4 Weak Ĝ and K̂-theory

We’re now able to define a weak arithmetic analog of K-theory, and of G-theory.
Recall thatG0(X) ' K0(X) for regular schemes, and a fortiori for smooth projective
varieties over a number field. During this part, we will fix X an arithmetic variety.

Definition 2.1.39. (Arithmetic variety)
Let X be a smooth algebraic variety over a field k, such that its (holomorphic)
tangent bundle is equipped with a hermitian Kähler metric TX , that is invariant
under complex conjugation.

Remark 2.1.40. We will often denote dX the dimension of X as a complex manifold,
moreover, note that on the algebraic variety Spec k there is only one metric. We
will thus simply denote Spec k for the arithmetic variety Spec k equipped with that
metric.

Definition 2.1.41. (Weak Ĝ-theory)
We set Ĝ0(X) to be the free abelian group

⊕
Z[F ] × D̃•,•R (X) where F is a quasi-

isometry class of hermitian coherent sheaves over X, subject to the following rela-
tions: for every exact sequence E : 0→ F ′′ → F → F ′ → 0,

F = F ′′ + F ′ + c̃h(E)

Similarly we define

Definition 2.1.42. (Weak K̂-theory) We set K̂0(X) to be the free abelian group⊕
Z[E]× D̃•,•R (X) where E is an isometry class of hermitian vector bundle over X,

subject to the following relations: for every exact sequence E : 0→ E′′ → E → E′ →
0,

E = E′′ + E′ + c̃h(E)

For the case of smooth projective varieties it makes no difference to work with
either one of them as the next proposition shows

Theorem 2.1.43. Let X be a smooth variety, then we have a natural isomorphism

Ĝ0(X)
∼−→ K̂0(X)

Proof. We have an obvious map form K̂0(X) to Ĝ0(X) that maps a hermitian bundle

E to the same bundle equipped with the hermitian structure 0 → E
id−→ E → 0,

and that maps [0, g] to itself. Let us construct a map from Ĝ0(X) to K̂0(X), let
E• → F be a hermitian coherent sheaf, we map F to

∑
(−1)i[Ei].

This map is well defined, if E
′
• → F is another hermitian structure on F quasi-

isometric to the first one, then we have a commutative up to homotopy diagram

H•

  ~~
E•

  

E
′
•

~~
F
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where the two top arrows are tight.
Now, by the very definition of K̂0(X), if M• is a meager complex of vector

bundles then
∑

(−1)iM i = 0, therefore the complex cone(H•, E•)[1]⊕ cone(H•, F •)
(which is a hermitian structure on the zero sheaf over X) being meager gives us the
following identity in K̂0(X),∑

(−1)iH i −
∑

(−1)iEi −
∑

(−1)iH i +
∑

(−1)iE
′
i = 0

which ensures that our map does not defined on the quasi-isometry class of the
chosen metric structure.

Now if
E : 0→ F ′′ → F → F ′ → 0

is an exact sequence of hermitian sheaves we have to prove that∑
(−1)iF

′′
i +

∑
(−1)iF

′
i −
∑

(−1)iF i + c̃h(E) = 0 (?)

Let us take another choice of resolutions of F and F ′′, dominating the previous ones,
such that we have a diagram with exact rows and columns

0 // G′• //

��

G• //

��

F ′• //

��

0

0 // F ′ //

��

F //

��

F ′ //

��

0

0 0 0

this is always possible as we have seen numerous times in the first part. Let us
endow G′• and G• with arbitrary metrics. Now, by its very definition, we have

c̃h(0→ G′′• → G• → F ′• → 0) + c̃h(G′• → F
′
•)− c̃h(G• → F •) = c̃h(E)

on the other hand we have in K̂0(X),

c̃h(G• → F •) =
∑

(−1)iF i −
∑

(−1)iGi

and similarly

c̃h(G′′• → F
′′
•) =

∑
(−1)iF

′′
i −

∑
(−1)iG

′′
i

and of course

c̃h(0→ G′′• → G• → F ′• → 0) =
∑

(−1)iGi −
∑

(−1)iG
′′
i −

∑
(−1)iF

′
i

Putting all this together this yields (?), and our map is well defined.
This obviously gives a left inverse to the natural map from K̂0(X) to Ĝ0(X), it

suffices thus to prove the surjectivity of this map, but this results immediately from
the definition.

Remark 2.1.44. One may wonder where the smoothness hypothesis intervene in the
previous proof. It does not. By our very definition we have restricted ourselves to
sheaves that admit finite locally free resolutions in Ĝ0 but the smoothness hypothesis
implies that every coherent sheaf admits such resolutions, and this in turn will imply
the surjectivity of the forgetful arrow ζ : Ĝ0(X)→ G0(X) which will be important
for us, when given an arbitrary coherent sheaf, we want to equip it with a metric
and view it as an element of the K̂0 as we will often do.
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Remark 2.1.45. In the same spirit we could have defined an intermediate group
where the vector bundles are equipped with hermitian structures given by resolutions
instead of ”classical metrics”, we leave it to the reader to check that this group would
have also been isomorphic to the K̂0 we defined.

Let’s define a first Chern class operator and a pull-back operation.

Definition 2.1.46. (Pull-Back)

Let f : X
′ → X be a smooth equidimensional morphism between arithmetic varieties,

we define f∗ : K̂0(X)→ K̂0(X
′
) by the following formula

f∗[E, g] = [f∗E, f∗g]

where f∗E is the pull-back of E equipped with the hermitian metric that renders
isometric the isomorphism f∗Ex ' Ef(x); and f∗(g) is the pull back of current (we
recall its definition in 2.2.24).

The fact that this operation is well defined follows from the naturality of the
secondary Bott-Chern classes.

Definition 2.1.47. (First Chern class operator)

Let L ∈ P̂ic(X) be a hermitian line bundle over X, we define

ĉ1(L)[E, g] = [E, g]− [E ⊗ L∨, g ∧ ch(L
∨

)]

we will call this operator the first Chern class operator.

We have to check that this operator is well defined, namely that it sends a class
(coming from an exact sequence E : 0→ E′′ → E → E′ → 0) of the form

E − [E′′ + E′ + c̃h(E)]

to zero, but this follows from the second point of 1.1.26, as the following sequence
is exact

E ⊗ L∨ : 0→ E′′ ⊗ L∨ → E ⊗ L∨ → E′ ⊗ L∨ → 0

therefore E ⊗ L∨ = E′′ ⊗ L∨ + E′ ⊗ L∨ + c̃h(E ⊗ L∨) = E′′ ⊗ L∨ + E′ ⊗ L∨ +

c̃h(E) ch(L
∨

)

Remark 2.1.48. Let’s precise the action of ĉ1(L) on classes of the form [E, 0] and
[0, g] = a(g), we see that

• ĉ1(L)[E, 0] = [E, 0]− [E ⊗ L∨, 0]

• ĉ1(L)a(g) = a(g ∧ (1− ch(L
∨

))) = a(g ∧ c1(L) Td(L)−1)

Remark 2.1.49. The attentive reader will have noticed that up to this point, nothing
depends on the Kähler metric we have chosen on X. This dependency will play a
part in the definition of the push-forward that we will give now.

Let us prove now that, as expected, arithmetic K̂-theory is an extension of
classical K-theory by the space of currents.

Proposition 2.1.50. We have an exact sequence

D̃•,•R (X)
a−→ K̂0(X)

ζ−→ K0(X)→ 0
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Proof. Let α =
∑

i ni[Ei, gi] be any element in the kernel of ζ. We thus have∑
i ni[Ei] =

∑
jmj([Fj ]− [F ′j ]− [F ′′j ]) for some exact sequences Fj : 0→ F ′j → Fj →

F ′′j → 0, more precisely each Ei is isomorphic to an Fi. Therefore in K̂0(X) we have

α =
∑
j

mj([F j ]− [F
′
j ]− [F

′′
j ]) + a(g) =

∑
j

a(c̃h(Fj)) + a(g)

and we are done.

It is much harder to define a push forward in arithmetic K̂-theory, for two
essential reasons.

The first one is geometric, we have to chose metrics on direct image of vector
bundles, these images will in general be only coherent sheaves, but that’s not a
serious problem because of 2.1.43, however choosing a natural hermitian metric on
the image sheaf is a much more serious question.

The second obstacle is due to the double-transgressive nature of Arakelov theory.
We can extend the definition of characteristic form to K̂-theory, by

ch[E, g] = ch(E) + ddcg

Notice that this is the right choice because we obviously want

ch
(
E − [E′′ + E′ + c̃h(E)]

)
= 0

and the secondary Bott-Chern forms satisfy

ddcc̃h(E) = ch(E)− ch(E′)− ch(E′′)

Therefore whichever definition we choose, and whichever metric structure on the
direct image sheaf we pick out, say f∗E we must have

a(D̃•,•R (X)) 3 δ = f∗[E, 0]− [f∗E, 0]

to be a higher generalized analytic torsion for f,E, f∗E, where f∗[E, 0] denotes the
putative direct image in K̂-theory.

Fortunately we can circumvent both difficulties, in order to do this let us state
a lemma due to Quillen.

Lemma 2.1.51. Let f : X → Y be a projective morphism between separated noethe-
rian schemes, then K0(X) in generated as a group by f∗-acyclic vector bundles.

Proof. This is [Qui73, p.41, paragraph 2.7]

For f a projective morphism between arithmetic varieties, X and Y , we set

K̂
f

0(X) to be the free abelian group built on symbols [E] where E is a f∗-acyclic
vector bundle, times D̃•,•R (X), modulo [E] = [E′′] + [E′] + c̃h(E) for every exact
sequence E : 0 → E′′ → E → E′ → 0 where the bundles are f∗-acyclic. We can
reformulate Quillen’s lemma as

Lemma 2.1.52. The natural map

K̂
f

0(X)
c−→ K̂0(X)

is an isomorphism.
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In view of the previous lemma, it will be sufficient to construct a direct image for

f∗-acyclic vector bundles: we will give below a definition for a map f∗ : K̂
f

0(X) →
K̂0(Y ), the morphism f∗ : K̂0(X)→ K̂0(Y ) will simply be f∗ ◦ c−1.

We will examine separately the case of a smooth submersion and that of an
immersion.

Definition 2.1.53. (Direct image for a submersion)
Let π : X → Y be a smooth submersion, the Kähler metrics on X and Y induce a
structure of Kähler fibration on π, if E is a π∗-acyclic hermitian bundle on X we
set

π∗[E, g] =

[
π∗E

L2

, T (TX/Y , E) +

∫
X/Y

g ∧ Td(TX/Y )

]
We need to check that this definition makes sense, namely that if

E : 0→ E′′ → E → E′ → 0

is an exact sequence of hermitian vector bundle that are π∗-acyclic, then as the exact
sequence π∗E remains acyclic,

π∗[E, 0] = π∗[E′′ + E′, c̃h(E)]

This is achieved by the following anomaly formula

Proposition 2.1.54. (Anomaly Formula for the analytic torsion)
Let E : 0 → E′′ → E → E′ → 0 be an exact sequence of π∗-acyclic vector bundles
where π is a Kähler fibration from X to Y , we have

T (TX/Y , E)− T (TX/Y , E
′
)− T (TX/Y , E

′′
)− c̃h(π∗E) =

∫
X/Y

c̃h(E) Td(TX/Y )

Proof. This is the equation (47) of [GS91, p. 46] and 2.1.37

We thus obtain a well defined direct image for smooth submersions from X to
Y . Let us now turn to the case of an immersion.

Definition 2.1.55. (Direct image for an immersion)
Let i : X → Y be a (regular) immersion between arithmetic varieties, for any
hermitian vector bundle E, we equip i∗E with any hermitian structure, we set

i∗[E, g] =
[
i∗E,bc(TX , TY , E, i∗E

′
) + i∗[g ∧ Td(i∗TX)−1 Td(TZ)]

]
Here again we need to check that everything is well defined, we have to check

that
[i∗E,bc(TX , TY , E, i∗E

′
) + i∗[gTd(i∗TX)−1 Td(TZ)]

does not depend on the hermitian structure chosen on i∗E, and that for an exact
sequence E : 0→ E′′ → E → E′ → 0, we have

i∗[E, 0] = i∗[E′′ + E′, c̃h(E)]

We have the following anomaly formulae that ensure us that this is the case.

Proposition 2.1.56. (Anomaly Formulae for the singular Bott-Chern current)
Let E : 0 → E′′ → E → E′ → 0 be an exact sequence vector bundles and i be a
closed immersion from X to Y , let us chose hermitian structures on i∗E, i∗E

′, and
i∗E

′′, we have an exact sequence i∗E : 0→ i∗E′′ → i∗E → i∗E′ → 0
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1. If i∗E and i∗E
′

denote two different hermitian structures on i∗E, we have

bc(TX , TY , E, i∗E)− bc(TX , TY , E, i∗E
′
) = c̃h(0→ i∗E

′ → i∗E → 0)

2. Furthermore we have

bc(TX , TY , E, i∗E)− bc(TX , TY , E
′
, i∗E′)− bc(TX , TY , E

′′
, i∗E′′)

= i∗[c̃h(E) Td(i∗TX)−1 Td(TZ)] + c̃h(i∗E)

Proof. The first formula is a particular case of the second one for a very short exact
sequence. The second formula is [BGS, Thm 2.9]

This completes the definition of the direct image for a closed immersion, to have
a fully fledged definition we need the following proposition

Theorem 2.1.57. (Direct image in K̂-theory)
Let f : X → Y be a projective morphism between two arithmetic varieties, and let

PrY
p

  
X

i
>>

j

  

Y

P`Y

q
??

be two decompositions of f into an immersion followed by a smooth morphism8

(where the projective spaces are endowed with the Fubini-Study metric and P•Y with
the product metric). Then p∗i∗ = q∗j∗ and this morphism only depends on the
hermitian metrics on X and Y .

Proof. The proof of this result can essentially be found in the literature, for instance
in [BGFiML14, Theo 10.7] albeit using a slightly different language, or [GiML12b,
Prop 5.8]

Therefore the following definition makes sense

Definition 2.1.58. Let f : X → Y be a projective morphism between arithmetic

varieties, we set f∗ = p∗i∗ for any choice9 of factorization of f into X
i−→ P`Y

p−→ Y

We see now that arithmetic K̂-theory satisfies the same properties as arithmetic
weak Chow theory except for the fact that the latter is graded whereas the former
is not.

Proposition 2.1.59. (Borel-Moore properties)
Let X,Y, Y ′, S and S′, be smooth projective varieties and let π : X → Y and π′ :
Y → Y ′ be projective morphisms and f : S → X and f ′ : S′ → S be smooth
equidimensional morphism. We also fix M (resp. L and L

′
), a (resp. two) hermitian

bundle on Y (resp. X), we have

1. (Functoriality of the push forward) (π′ ◦ π)∗ = π′∗π∗

8In fact we would replace the projective spaces over Y by any variety smooth over Y equipped
with a Kähler metric.

9we can choose ` = 0 if f is an immersion
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2. (Functoriality of the pull back) (f ◦ f ′)∗ = f ′∗f∗

3. (Naturality of the 1st Chern class) f∗ ◦ ĉ1(L) = ĉ1(f∗L) ◦ f∗.

4. (Projection Formula) π∗ ◦ ĉ1(π∗M) = ĉ1(L) ◦ π∗

5. (Commutativity of the 1st Chern Classes) ĉ1(L) ◦ ĉ1(L
′
) = ĉ1(L

′
) ◦ ĉ1(L)

Proof. The first point is 2.1.57, the second point is obvious, so is the third using the
naturality of the Chern character, and the last one is just as obvious. Let us prove
the projection formula, we have

π∗(Td(T π) ∧ g ∧ (1− ch(π∗L
∨

))) = π∗(Td(T π) ∧ g) ∧ (1− ch(L
∨

)))

To prove the result on classes [E, 0] we prove it first for a closed immersion, we have

i∗[ĉ1(i∗L)[E]] = i∗([E]− [E ⊗ i∗L∨])

= [i∗E]− [i∗(E ⊗ i∗L
∨

)] + bc(TX , TY , E, i∗E)− bc(TX , TY , E ⊗ i∗L
∨
, i∗E ⊗ L

∨
)

= [i∗E]− [i∗E ⊗ L
∨

] + bc(TX , TY , E, i∗E)− bc(TX , TY , E, i∗E) ch(L
∨

)

= ĉ1(L)
[
[i∗E] + bc(TX , TY , E, i∗E)

]
= ĉ1(L)i∗[E]

where we have used the definition of the first Chern class, the definition of the direct
image, the isometry of the chosen resolutions i∗E ⊗ L

∨ ' i∗(E ⊗ i∗L
∨

) and the
compatibility of the Bott-Chern singular current with the projection formula.

To prove the result for Kähler fibrations, we may assume that E is π∗-acyclic,
and the same proof applies.

As before, for arithmetic weak Chow groups, we have more, let us give now the
properties that encodes the arithmetic nature of this functor

Proposition 2.1.60. (Arithmetic Type of K̂)
Let X be an arithmetic variety of dimension d, we have

1. For any hermitian line bundles over X, L1, ..., Ld+2, we have

ĉ1(L1) ◦ ... ◦ ĉ1(Ld+2) = 0

as an endomorphism of K̂(X).

2. Let L be a hermitian line bundle over X, with s a global section of L that is
transverse to the zero section. Let Z be the zero scheme of such a section, and
i : Z → X the corresponding immersion. We have

i∗(1Z) = ĉ1(L)(1X) + a(log ‖s‖2 Td(L)−1) + i∗[T̃d
−1

(E) Td(TZ)]

where E is the exact sequence 0 → TZ → i∗TX → i∗L → 0 associated to the
immersion.

3. Given two hermitian bundles L and M over X we have

ĉ1(L⊗M) = ĉ1(L) + ĉ1(M)− ĉ1(L) ĉ1(M)

Proof. Let us keep the notation of the proposition
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1. Firstly, we see that ĉ1(L1) ◦ ... ◦ ĉ1(Ld+2).a(g) = 0 as the action of the first
Chern class increases the type by (1, 1).

It is now a good time to notice that we can see K̂0(X) as a module over K̂0(X)

and that the action of the ĉ1 is given by multiplication by [OX ]− [L
∨

], so the
identity we want to prove is in fact an identity in K̂0(X), where a product is
defined in a way that the composition of the actions of the first Chern classes
is just the multiplication of the corresponding classes.

Now since X is regular we have K̂0(X) ' Ĝ0(X) ([GS92, Lem. 13]) and in

Ĝ0(X) we have [OX ]− [L
∨

] = [i∗OZ ] as soon as L is effective, where Z is the
zero scheme of any global section of L (where the hermitian structure on i∗OZ
is of course given by the obvious exact sequence).

Let us assume for a moment, that all the Li’s are very ample, we want to
prove [i1∗OZ1 ]...[i(d+2)∗OZd+2

] = 0, using Bertini’s theorem [Mur94, Theo 2.3],
we can choose global sections of each Li such that Zi = div(si) is generically
transverse to

⋂
j<i Zj , but this is tantamount to saying that

⋂
i=1...d+1 Zi is

empty, therefore [i1∗OZ1 ]...[i(d+2)∗OZd+1
] = 0.

Let us now assume that all the bundles Li are very ample, except one, which
is anti-very-ample i.e its dual is very ample, and assume for simplicity that it
is L1 = L. As for any line bundles M and M

′
we have (in K̂0(X) or Ĝ0(X)

where the product is defined)

[OX ]−[M
∨⊗M ′] = ([OX ]−[M

∨
])+([OX ]−[M

′
])−([OX ]−[M

∨
]).([OX ]−[M

′
])

(which incidentally proves the third point), we see, plugging L = M i = M
′
i,

that

0 = [OX ]− [L
∨⊗L] = ([OX ]− [L]) + ([OX ]− [L

∨
])− ([OX ]− [L])([OX ]− [L

∨
])

therefore we can replace ([OX ]−[L]) by ([OX ]−[L])([OX ]−[L
∨

])−([OX ]−[L
∨

]),

and as L
∨

is very ample, the results follow from the previous case.

Now let us consider the general case recall that each Li can be written as
Mi⊗M ′i

∨ with Mi and M ′i very ample, let’s endow these two line bundles with
any metric rendering the previous isomorphism, isometric. As

[OX ]−[M
∨
i ⊗M

′
i] = ([OX ]−[M

∨
i ])+([OX ]−[M

′
i])−([OX ]−[M

∨
i ]).([OX ]−[M

′
i])

we’re reduced to the case of ample and anti-ample line bundles which yields
the result.

2. In view of the exact sequence

0→ L∨ → OX → i∗OZ → 0

We have

i∗(1Z) = [OX ]− [L
∨

] + bc(TZ , TX ,OZ , i∗OZ)

= [OX ]− [L
∨

] + Td(L)−1 ∧ log ‖s‖2 + i∗[T̃d
−1

(E) Td(TZ)]

and on the other hand ĉ1(L)(1X) = [OX ]− [L
∨

], the result follows.

3. It has been proven in the course of the demonstration of the first point.
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2.2 Weak Cobordism Group

We now proceed to the construction of a weak arithmetic cobordism group

2.2.1 Arithmetic Lazard Ring, Universal Todd class and secondary forms
associated to it

I will define here a modified version of the Lazard ring.

Definition 2.2.1. We set the arithmetic Lazard ring to be the ring

L̂ = Z[aij , tk, (i, j) ∈ N× N, k ∈ N]

divided by the ideal I such that the following relations hold in L̂[[u, v, w]],

•
∑
i≥0

ti(u+ v)i+1 =
∑

i≥0,j≥0

ai,juivj

(∑
k

tku
k

)i(∑
r

tru
r

)j
• F(u,F(v, w)) = F(F(u, v), w)

• F(u, v) = u+ v mod (u, v)2

• F(u, v) = F(v, u)

• F(0, u) = u

• t0 = a1,0 = a0,1 = 1

where F is the universal law group F(u, v) =
∑
ai,juivj.

We need to check that this ring is not zero. To do so, we can build a quotient
of that ring that is not zero. Let us consider the map {ai,j , ti} → Q defined by
a1,1 7→ −1 and ai,j 7→ 0 for (i, j) /∈ {(1, 1), (1, 0), (0, 1)} and ti 7→ (−1)i/(i + 1)! for
i > 0. This map induces a map form L̂ to Q that is not 0 ensuring that L̂ is not
trivial.

We will let g(u) denote the universal power series over Z[t],

g(u) =
∑
r

tru
r

we can re-write the first axiom as

F(ug(u), vg(v)) = (u+ v)g(u+ v)

Let us denote the unique power series h over Q[t], defined by h(g(u)u) = u, we see
that

h(u) + h(v) = h(F(u, v))

in other words, h is a morphism of formal group laws, from the universal group law
to the additive group law; what is surprising is that h is in fact an isomorphism after
tensorization by Q.

Let us set up a bit of terminology
We can now prove

Proposition 2.2.2. As rings the arithmetic Lazard ring and the Lazard ring are
isomorphic after tensorization by Q,

LQ ' L̂Q
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Proof. Let h be the power series over Q[t] previously defined, this power series define
a formal law group on Q[t] given by

h−1(h(u) + h(v)) = F (u, v) (?)

and this defines a morphism
LQ → Q[t]

which is an isomorphism, because there is a natural bijection between

1. Λ 7→ HomQ−algebras(LQ,Λ).

2. Λ 7→ FGL(Λ) (the set of formal group laws over the Q-algebra Λ).

3. Λ 7→ Genera(Λ) (the set of genera over Λ i.e satisfying g(u) = u mod u2)

where the bijection between 2 and 3 is given by (?) (see [Och87]), let us denote ψ
the isomorphism LQ

∼−→ Q[t] defined in this way.

With this in mind, we see that L̂Q is isomorphic (as a left LQ-module) to LQ ⊗
LQ/I where I is the ideal generated by a⊗ 1− 1⊗ ψ(a). Let us consider the arrow
m : LQ⊗LQ → LQ given by multiplication a⊗ b 7→ aψ(b), this map certainly factors

through L̂Q.
To see that it is an isomorphism we have to prove that the kernel of the multipli-

cation map is exactly I, but this is easy, as we have a section s : LQ → LQ⊗LQ given
by a 7→ a⊗ 1, and the kernel of the multiplication if generated as a left LQ-module
by elements of the form

∑
1⊗ xi with

∑
m(1⊗ xi) = 0 thus∑

1⊗ xi =
∑

1⊗ xi − 0 =
∑

1⊗ xi − s ◦m(1⊗ ψ(xi)) =
∑

1⊗ xi − ψ(xi)⊗ 1

and the proof is complete.

We see that L̂Q doesn’t have a richer structure than LQ, because it is equipped
with a formal group law and a genus that corresponds to it, this is essentially the
fact that in characteristic zero, there is only one formal group law. In a way L̂Q is
just a different way of looking at LQ.

Corollary 2.2.3. (Mishenko10, [Nov67, Appendix 1, p. 72])
We have through the identification LQ ' Ω(k)Q ' Q[P1,P2, ...],

h(u) =
∑
i≥0

[Pi]
i+ 1

ui+1

Remark 2.2.4. We have a natural grading for the Lazard ring given by deg(ai,j) =
i + j − 1, if we set deg(ti) = i then we have a natural grading on L̂ given by the
grading on the tensor product, namely deg(ai,jtk) = k + i+ j − 1

Remark 2.2.5. Before proceeding to the study of arithmetic cobordism let us intro-
duce a couple notations defined below

Z[t0, t1, ..] = Z[t]

Z[t]⊗ Ã•,•R (X) = Ã•,•[t] (X) Z[t]⊗A•,•R (X) = A•,•[t] (X)

Z[t]⊗ D̃•,•R (X) = D̃•,•[t] (X) Z[t]⊗D•,•R (X) = D•,•[t] (X)

Z[t]⊗ Z•,•R (X) = Z•,•[t] (X)

L̂⊗ D̃•,•R (X) = D̃•,•
L̂

(X)

10There’s a typo in the first appearance of the formula in the paper, the correct formula is in its
appendix
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where we’ve extended the usual operations defined on D•,•, such as ∂, ∂, the pull
back and push forward operations for suited maps etc..., by Z[t]-linearity. Notice
that we still have a product

Z•,•[t] (X)⊗ D̃•,•[t] (X)→ D̃•,•[t] (X)

that preserves Ã•,•[t] (X)

We now wish to construct both multiplicative characteristic forms associated to
g with value in A•,•[t] (X), and secondary Bott-Chern forms with value in Ã•,•[t] (X).
This can be done in a straightforward manner, let’s quickly review the way to do so.

As we’ve seen before, if we have X a complex manifold, with E a hermitian
vector bundle over it, E comes equipped with a natural Chern connection. Let us
consider the power series ϕ(T1, ..., Tn) ∈ Z[t][[T1, ..., Tn]] defined by

ϕ(T1, ..., Tn) =
n∏
i=1

g(Ti)

we can write ϕ as a sum of ϕ(`) with each ϕ(`) homogenous of degree ` (in T1, ..., Tn).
There exists a unique map, still denoted ϕ(`) defined on matrix with coefficients in
A1,1(X) and invariant by conjugation such that

ϕ(`)


ω1

. . .

ωn


 = ϕ(`)(ω1, ..., ωn)

By identifying locally End(E) with the space of matrix with complex coefficients,
we can define

g(E) =
∑
k

ϕ(k)(
i

2π
∇2) ∈ A•,•[t] (X)

We get a closed form whose cohomology class (with coefficients in Z[t]) does not
depend on the metric chosen on E. Let’s sum up the properties of this characteristic
class.

Proposition 2.2.6. The characteristic form g(E) ∈ A•,•[t] (X) associated to a her-
mitian bundle on a complex manifold X, satisfies the following properties

1. (Naturality) For any holomorphic map of complex manifold f : Y → X we
have g(f∗E) = f∗(g(E)).

2. (Definition for a line bundle) For a hermitian line bundle L, we have g(L) =∑
r trc1(L)r.

3. (Mulitplicativity) If 0 → E
′′ → E → E

′ → 0 is an ortho-split exact sequence
of hermitian bundles on X we have

g(E) = g(E
′
)g(E

′′
)

4. (Closedness) The form g(E) satisfies dg(E) = 0

Remark 2.2.7. The closedness property can easily be deduced from Bianchi’s second
identity using the fact that the Chern connection is torsion free on a Kähler manifold.

Remark 2.2.8. As g(E)(0) = 1, the class g(E) is invertible in A•,•[t] (X).
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Remark 2.2.9. If f : X → Y is a morphism between arithmetic varieties we will
denote g(Tf ) for g(TX)g(f∗TY )−1

We can now construct secondary forms with value in Ã•,•[t] (X) to measure the
defect of multiplicativity in the case of an arbitrary exact sequence of hermitian
bundles.

Proposition 2.2.10. To each exact sequence

E : 0→ E
′ → E → E

′′ → 0

of hermitian vector bundles on X we can associate a form in Ã•,•[t] (X), denoted g̃(E)
uniquely determined by the following properties

1. (Naturality) For any holomorphic map of complex manifold f : Y → X we
have g̃(f∗E) = f∗(g̃(E)).

2. (Differential equation) We have

g(E) = g(E
′
)g(E

′′
) + ddcg̃(E)

3. (Vanishing) When E is orhto-split, g̃(E) = 0

Proof. This is the same proof as [BGS88a, Theo 1.2.9], almost verbatim.

Remark 2.2.11. We can give an explicit expression of g̃(E), if

0→ E
′ → E → E

′′ → 0

is a short exact sequence of hermitian bundles, we set Ẽ to be (p∗2E⊕p∗2E′(1))/p∗2E
′

over P1
X where O(1) is equipped with its Fubini-Study metric, and we endow Ẽ with

any metric rendering isometric the isomorphisms over the fibers of Ẽ at 0 and ∞
with E and E

′ ⊕ E′′ respectively then we have

g̃(E) = −
∫
P1
X/X

log |z|2g(Ẽ)

See [GS90, 1.2] for details.

Proposition 2.2.12. (Naturality with respect to t)
Let R be a ring equipped with a morphism ϕ : Z[t]→ R and let gR be the formal

power series over R given by
∑
ϕ(ti)u

i then we have

1. In A•,•R (X), gR(E) = ϕ(g(E)) for every hermitian bundle E over a manifold
X.

2. In Ã•,•R (X)R, g̃R(E) = ϕ(g̃(E)) for every exact sequence of hermitian bundles
over X. where g(E) (resp. g̃(E)) is obtained by the same process as above.

Proof. The second point results from the first one as we have

g̃R(E) = −
∫
P1
X/X

log |z|2gR(Ẽ)

and the integration over the fiber commutes with ϕ by definition.
Let us prove the first one, in fact the properties mentioned in 2.2.6, characterize

the form gR over R, but using the fact that ϕ commutes with d and pull-back ensures
us that ϕ(g) = gR and the proposition follows.
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In every case that we will consider R will be a subring of R. If

E : 0→ E
′ → E → E

′′ → 0

is a short exact sequence of hermitian vector bundles, we set

g̃−1(E) = −g̃(E)g−1(E
′′
)g−1(E

′
)g−1(E)

using the fact that g−1 is closed and the differential equation satisfied by g̃ we see
that

ddcg̃−1(E) = g−1(E)− g−1(E
′
)g−1(E

′′
)

moreover g̃−1(E) = 0 as soon as (E) is ortho-split, and natural with respect to pull
back, thus it is the secondary Bott-Chern form (with coefficient in Z[t]) associated
to g−1.

Remark 2.2.13. If α is a closed (p, p)-form (or current), we see that

αg(E)− αg(E
′
)g(E

′′
) = αddcg̃(E) = ddc(αg̃(E))

therefore if we work in D̃•,•
L̂

(X), we have αg(E) = αg(E
′
)g(E

′′
) for any closed form

α, a fact that we will use in the following.

Let us finish by some basic comments about degrees in D̃•,•
L̂

(X), in the context

of the weak cobordism group we will set (see 2.2.17)

deg(D̃p,p
R (X)) = dX − (p+ 1)

that gives us a graded group structure on D̃•,•
L̂

(X), of course this grading is not
compatible with the product of currents even when it is defined because our theory
will be homological in nature. However we see that deg(g(E)ϕ(t)g) = deg(ϕ(t).g)
(and the same thing for g−1), that deg(ddc(ϕ(t).g)) = deg(ϕ(t)g)− 1 and therefore
deg(g̃(E)) = dX , these observations will ensure that the class

a[i∗[g̃(E)g−1(TZ)]] + a(g(L) log ‖s‖2)

that will appear later, is homogenous of degree dX − 1.

2.2.2 Construction of the Borel Moore Functor

We first construct a Borel-Moore functor on arithmetic varieties, we will only need
a subclass of the traditionally defined arithmetic varieties (which are usually regular
schemes over SpecOK the spectrum of the ring of integers of a number field, whereas
we will restrict to the case of Spec k)

Remark 2.2.14. In the following sections, many of our definitions could still make
sense for arithmetic varieties over a Dedekind domain, or even a Dedekind scheme,
however since we do not know how to prove even the geometric version of the prop-
erties of the arithmetic cobordism group I’ve chosen to remain in the context of
varieties over a field, where the geometric theory is known to be well behaved.

Definition 2.2.15. Let X be an arithmetic variety over k. We set Z(X) as the
group

Z ′(X)/R′(X)×
[
Z[t]⊗ D̃•,•R (X)

]
where Z ′(X) denotes the free abelian group built on symbols

[Z
f−→ X,L1, ..., Lr]

with
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• The morphism f is a projective morphism between arithmetic varieties.

• The variety Z is integral (connected).

• The line bundle Li is a hermitian line bundle over Z.

The group R′(X) denotes the subgroup of Z ′(X) generated by the classes

[Z
f−→ X,L1, ..., Lr]− [Z

′ f ′−→ X,L
′
1, ..., L

′
r]

such that there exists h an X-isometry of Z on Z
′
, that is to say an isomorphism

Z
h //

f ��

Z ′

f ′~~
X

inducing an isometry from Z(C) to Z
′
(C); and such that there exists a permutation

σ ∈ Sr and isomorphisms of hermitian line bundles Li ' L
′
σ(i), in other words, we

allow re-indexing of the (classes of) hermitian line bundles.

Remark 2.2.16. In other, simpler, terms, we make no difference between two arith-
metic varieties as long as they are isometric, ibidem for line bundles and we allow
to permute the line bundles.

We naturally have a map

a :

{
D̃•,•[t] (X) → Z(X)

ϕ(t).g 7→ (0, ϕ(t).g)

We will sometimes write [Z
f−→ X,L1, ..., Lr, ϕ(t).g] for the element [Z

f−→ X,L1, ..., Lr]+
a(ϕ(t).g).
The group Z(X) is equipped with a natural grading, defined in the following way.

Definition 2.2.17. We set deg([Z → X,L1, ..., Lr]) = dZ − r, deg(D̃p,p
R (X)) =

dX − (p+ 1), and deg(ti) = i. On set Zd(X) the subgroup of Z(X) of d-degree, and
we shall note Z•(X) the graded group.

Remark 2.2.18. If Z
i−→ X is the closed immersion of a smooth divisor, then [Z → X]

has degree d− 1, where d is the dimension of X, and a Green current for Z is given
by a current of D̃0,0

R (X), which has degree d − 1, hence for such a current and for
any (1, 1) closed smooth form ω, the class [Z → X]− a(g(ω) ∧ g) is homogenous of
degree dX − 1, which should explain the different choices in the grading, that differ
slightly from the usual ones used in Arakelov geometry where we tend to grade by
the codimension, which is not possible here.

Remark 2.2.19. We will call a class of the form [Z → X,L1, ..., Lr]+a(g) a standard
class, and we will refer to the term [Z → X,L1, ..., Lr] as the geometric part of the
class, and to the term a(g) as the analytic part. A class [Z → X] will be called a
purely geometric class.
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2.2.3 Dynamics of the group Z(X)

Let’s have a closer look on the functoriality properties of the group Z(X).

Definition 2.2.20. (Push-forward)
Let π : X → Y be a projective morphism between arithmetic varieties, we define

π∗[Z
f−→ X,L1, ..., Lr, g] = [Z

f−→ X
π−→ Y, L1, ..., Lr, π∗(g ∧ g−1(Tπ))]

where the current π∗(g) is defined in the following way, for every smooth differen-
tial form ω compactly supported on Y and with appropriate degree 〈π∗(g), ω 〉 =<
g, π∗(ω) >. We extend this morphism by linearity and we get a morphism

π∗ : Z(X)→ Z(Y )

whose functoriality is easy to verify.

Remark 2.2.21. Let us note that if π is a projective morphism between smooth
equidimensional varieties, and if d designs the relative codimension of π, then π∗
induces a morphism from Dp,p

R (X) to Dp−d,p−d
R (Y ), as dim(Y ) − dim(X) = −d, we

have deg(π∗(g)) = dim(Y ) − p + d = dim(X) − p = deg(g), thus π∗ is a graded
morphism.

Remark 2.2.22. The equidimensionality hypothesis in the preceding remark is not
really a restriction, in fact the smoothness hypothesis on the arithmetic varieties,
forces their connected components over C to be their irreducible components, which
means that over C such a variety is a disjoint union of integral varieties, and for
such a variety Z(X) = ⊕Z(Xi) where the Xi’s are the irreducible components of X.
Hence the case of arbitrary varieties is easily reducible to the case of equidimensional
varieties (or even integral ones).

Remark 2.2.23. Notice here, that we have been a bit sloppy and used the same
notation for two different things: the natural push forward of currents and the
”twisted” push-forward of currents are both denoted π∗.

It is also possible to define the pull back of any element in Z(X) along a smooth
morphism.

Definition 2.2.24. (Pull-back)
Let f : S → X be a smooth equidimensional morphism between arithmetic varieties,
we define

f∗[Z
f−→ X,L1, ..., Lr, g] = [Z ×X S

p−→2 S, p∗1L1, ..., p∗1Lr, f
∗(g)]

The metric on Z ×X S is defined in the following way, as X/k is separated, we
have a closed immersion Z ×X S → Z ×k S, which gives an embedding TZ×XS/k →
TZ×kS/k ' p

∗
1TZ/k⊕p∗2TS/k, this former bundle being equipped with a natural metric,

we can induce this metric on TZ×XS/k.
The current f∗(g) is defined in the following way : as f is smooth, it induces

an ”integration along the fibers” morphism, Ap,pc (S)→ Ap−d,p−dc (X), which in turn
gives a dual morphism Dp,p

R (X) → Dp,p
R (S) We extend this morphism by linearity

and we get a morphism
f∗ : Z(X)→ Z(Y )

whose functoriality is easy to verify.
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Remark 2.2.25. Here again, for equidimensional varieties (e.g connected), this mor-
phism is a graded morphism with degree the relative codimension δ = dim(S) −
dim(X).

At last, it is also possible to define a first Chern class operator.

Definition 2.2.26. (First Chern Class)

Let L ∈ P̂ic(X) be a hermitian line bundle over X, we define

ĉ1(L)[Z
f−→ X,L1, ..., Lr, g] = [Z

f−→ X,L1, ..., Lr, f∗L, c1(L) ∧ g(L) ∧ g]

We extend this morphism by linearity and we get a morphism

ĉ1(L) : Z•(X)→ Z•−1(X)

Remark 2.2.27. It will be useful to keep in mind the ”different parts” of the action
of ĉ1(L), on geometric classes we have

ĉ1(L)[Z
f−→ X,L1, ..., Lr] = [Z

f−→ X,L1, ..., Lr, f∗L]

whereas on analytic classes ĉ1(L) acts by multiplication by c1(L)g(L), which we will
sometimes denote h−1(L) because it is the (composition) inverse of the h class we’ve
defined earlier11.

We list in the next proposition, the different compatibility properties between
these morphisms.

Proposition 2.2.28. Let X,Y and S be arithmetic varieties, and let π : Y → X
be a projective morphism, f : X → S a smooth equidimensional morphism, and L a
hermitian line bundle over X.

1. Over Z(X), π∗ ◦ ĉ1(π∗L) = ĉ1(L) ◦ π∗.

2. Over Z(X), f∗ ◦ ĉ1(L) = ĉ1(f∗L) ◦ f∗.

3. Over Z(X), ĉ1(L) ◦ ĉ1(M) = ĉ1(M) ◦ ĉ1(L).

Finally, if we have a fiber diagram

X ′
t′
//

π′

��

X

π
��

S′
t // S

with π projective, and t smooth equidimensional, and X ′ = X ×S S′ equipped with
its natural metric, then

π′∗t
′∗ = t∗π∗

Proof. It suffices to check all assertions on standard classes, as any standard class
[Z → S,L1, ..., Lr, g] can be written as [Z → S,L1, .., Lr] + a(g), it is enough to
check the identities on both summands.

11A word of warning, g−1 denotes the multiplicative inverse of g whereas h−1 denotes the com-
position inverse of h, it maybe unfortunate to use the same notation for two different things, but it
shouldn’t confuse the reader as h does not have any multiplicative inverse, and g doesn’t have any
composition one.
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At the level of the analytic term, the identity f∗◦ĉ1(L)(a(g)) = ĉ1(f∗L)◦f∗(a(g))
is a consequence of the naturality of the g-class, the naturality of the action of Chern
forms on differential smooth forms and the density of smooth forms in the space of
currents.

This identity remains true for f projective if we replace the current g by a smooth
form, and this, in turns, implies the first one by duality. The first three identities
are evident enough for the geometric term.

Let’s prove the last one, here again only the a(g) term is not a priori clear, we
need to prove that π′∗t

′∗a(g) = t∗π∗a(g), so in other words

π′∗(g
−1(TX′/S′)t

′∗g) = t∗(π∗(g
−1(TX/S)g))

Now using the naturality of the g-class and the fact that for a Cartesian diagram
such as the one in the proposition we have g−1(TX′/S′) = t′∗g−1(TX/S) we only need
to prove that for any current η, we have

π′∗t
′∗(η) = t∗π∗(η)

By duality, it is sufficient to prove that for any smooth compactly supported form
ω on S′ we have π∗t∗ω = t′∗π

′∗ω. but this is tantamount to proving that∫
X′/X

π′∗ω = π∗
∫
S′/S

ω

.
Notice that S′ being proper over k, and S being separated over k, t is proper, and

thus closed, but it is also open because it is flat, we can thus assume that t(S′) is a
connected component of S, and even surjective by making the base change with the
respect to the connected component in question. By Ehresmann theorem [Kod86,
Thm 2.4, p. 64], we can thus assume that S′ → S is a proper fibration of typical
fiber F .

Let (Ui) be an open cover of S, trivializing the fibration t, and let µi be a
partition of unity associated with Ui × F , which is an open cover of S′. We can
choose Ui small enough so that it is isomorphic to an open subset of Cn As by its
very definition, for any smooth form ω, t∗(ω) =

∑
i t∗(µiω), and using the linearity

of π∗, we may assume that ω is compactly supported in a open subset of the form
Ui×F , and can thus be written as a sum of α∧β, where α (resp. β) is the pull-back
of a smooth form on Ui (resp. F )

But then both sides of the identity we want to prove are equal to π∗(α)∧
∫
F β

2.2.4 Saturation of a subset of Z(X)

Assume we’ve been given, for every arithmetic variety, Y , an assignment Y 7→
µ(Y ) ⊂ Z(Y ).

Definition 2.2.29. (Saturation of µ)
We call the saturation of µ (if it exists) and we denote 〈µ 〉, the map X 7→ 〈µ 〉(X),
where 〈µ 〉(X) is the smallest class of subgroups of Z(X) satisfying, for every projec-
tive morphism π : Y → X, for every smooth equidimensional morphism f : X → S,
and for every hermitian line bundle L ∈ P̂ic(X),

π∗(〈µ 〉(Y )) ⊂ 〈µ 〉(X); f∗(〈µ 〉(S)) ⊂ 〈µ 〉(X); ĉ1(L)(〈µ 〉(X)) ⊂ 〈µ 〉(X)
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Proposition 2.2.30. If the mapping µ is such that for every X, µ(X) consists
of homogenous elements, then the saturation 〈µ 〉 exists, and the quotient Zµ(X)
inherits a natural grading from Z(X).

Proof. Let us notice that every standard class in Z(X) verifies

[Z
f−→ X,L1, ..., Lr, g] = [Z

f−→ X,L1, ..., Lr] + a(g)

= f∗[Z → Z,L1, ..., Lr] + a(g)

= f∗ ◦ ĉ1(Lr) ◦ ... ◦ ĉ1(Lr)[Z → Z] + a(g)

= f∗ ◦ ĉ1(Lr) ◦ ... ◦ ĉ1(Lr)π
∗
Z

(1k) + a(g)

For every arithmetic variety Y , set 〈µ 〉(Y ) the subgroup of Z(Y ) generated by the
set

A(Y ) = {f∗◦ĉ1(Lr)◦...◦ĉ1(Lr)π
∗(α)|α ∈ µ(Z), π : T → Z projective, f : T → Y smooth, Li ∈ P̂ic(T )}

we’re left to check that the set A(Y ) is mapped to A(Z) (resp. A(S)) under the
action of a projective (resp. smooth equidimensional) morphism from Y → Z (resp.
from S to Y ). But this results simply from 2.2.28.

The fact that the quotient is naturally graded if µ takes only subset of homoge-
nous elements in Z as value, and the fact that pull-backs, push-forwards and first
Chern class operators, preserve the grading is immediate.

If the saturation of µ exists, we shall denote Zµ(X) the (possibly graded) quotient
Z(X)/ 〈µ 〉(X).

2.2.5 The final construction

We will now impose the relations that’ll turn our basic object Z(X) into an object
with a real geometric and arithmetic significance, for that we need to impose the
following three relations

(DIM) [Y → X,L1, ..., Ld+2] = 0

for d = dim(Y ).

(SECT) [X → X,L] + a[i∗[g̃(E)g−1(TZ)]] = [Z → X]− a(g(L) log ‖s‖2)

with s a section of L with smooth zero scheme, and ‖ · ‖ the norm induced by the
norm on L, where E is the exact sequence

E : 0→ TZ → i∗TX → i∗L→ 0

and

(FGL) ĉ1(L⊗M) = F(ĉ1(L), ĉ1(M))

where F is the universal formal law group.
In order to do this, we first need to impose the (DIM) condition, and to tensor

over Z by L the Lazard ring, for the last relation to make any sense.
As the set SECT + DIM(X) = {[Y → X,L1, ..., Lr]|r > dim(Y )} ∪ {[X →

X,L] − [Z → X] + a(log ‖s‖2)|s smooth section of L} is made up of homogenous
elements, we can consider the graded group ZDIM,SECT,•(X).

Let’s now return to the construction of arithmetic cobordism, we set Ẑ(X) =
L⊗ZZ(X)DIM,SECT, we can grade this group via the natural grading on both factors.
It is naturally a L-module, and we can extend all operations defined in the previous
section, by linearity and we can prove the analog of 2.2.28 for L-modules.
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Definition 2.2.31. (Arithmetic weak Cobordism)
We set

Ω̂(X) = ẐFGL(X)

where

FGL(X) = {ĉ1(L⊗M)(1X) = F(ĉ1(L), ĉ1(M))(1X)}∪{ĉ1(L⊗M)(a(g)) = F(ĉ1(L), ĉ1(M))(a(g))}

It is a graded L-module that we will call the arithmetic weak cobordism group of X.

Remark 2.2.32. Notice that the operator ĉ1(L) being locally nilpotent (i.e for every
a, there exists n > 0, such that ĉ1(L)n(a) = 0), the term F(ĉ1(L), ĉ1(M)) does make
sense.

Proposition 2.2.33. Let X be an arithmetic variety, the map a : L ⊗ Z[t] ⊗
D̃•,•R (X) → Ω̂(X) factors through D̃•,•

L̂
(X), we will still denote by a this map

D̃•,•
L̂

(X)→ Ω̂(X)

Proof. The proof hinges on the following key remark∫
Pr×P`

c1(p∗1O(1))ic1(p∗2O(1))j = δirδjl

To exploit this we will compute

Irl =

∫
Pr×P`

ĉ1(p∗1O(1)⊗ p∗2O(1))a(1)

in two different ways. To ease notations we will simply write u for c1(p∗1O(1)) and
v for c1(p∗2O(1)).

On the one hand, using FGL and the key remark we see that

Irl =
∑
i,j

ai,j
∫
Pr×P`

(h−1(u))i(h−1(v))j =
∑
i,j

ai,j
[
(h−1(u))i(h−1(v))j

]{(r,l)}
where {(r, l)} denotes the coefficient in front of urvl.

On the other hand using the explicit expression of the action of the first Chern
operator on a(1) we see that

Irl = (h−1(u+ v)){(r,l)}

we thus have

(h−1(u+ v)){(r,l)}a(1) =
∑
i,j

ai,j
[
(h−1(u))i(h−1(v))j

]{(r,l)}
a(1)

in Ω̂(k), and this pulls back to the same relation in Ω̂(X) but those are exactly the
relations between the ti’s and the ai,j ’s in L̂, so the proof is complete.

2.2.6 A remark on Borel-Moore Functors

We need to restrict the notion of Borel-Moore functor introduced in [LM07]. The
reason for this is that the smallest class Levine and Morel consider to define a Borel-
Moore functor is the class of quasi-projective smooth varieties over a field k whereas
we are solely interested in the class of projective smooth varieties. We refer the
reader to [LM07] for notations and vocabulary that we may not define.

61



Definition 2.2.34. (Projective Borel-Moore functor, compare with [LM07, p.13])
Let R be a graded ring, we call a (graded) projective R-Borel-Moore functor an

assignment X → H•(X) for each X projective and smooth over k, such that

1. H•(X) is a (graded) R-module

2. (direct image homomorphisms) a homomorphism f∗ : H•(X) → H•(Y ) of
degree zero for each projective morphism f : X → Y ,

3. (inverse image homomorphisms) a homomorphism f∗ : H•(Y ) → H•(X) of
degree d for each smooth morphism f : X → Y of relative dimension d,

4. (first Chern class homomorphisms) a homomorphism c1(L) : H•(X)→ H•(X)
of degree -1 for each line bundle L on X,

satisfying the axioms

1. the map f 7→ f∗ is functorial;

2. the map f 7→ f∗ is functorial;

3. if f : X → Z is a projective morphism, g : Y → Z a smooth equidimensional
morphism, and the square

W
g′ //

f ′

��

X

f
��

Y
g // Z

is Cartesian, then one has

g∗ ◦ f∗ = f ′∗ ◦ g′∗

4. if f : Y → X is projective and L is a line bundle on X, then one has

f∗ ◦ c1(f∗(L)) = c1(L) ◦ f∗

5. if f : Y → X is a smooth equidimensional morphism and L is a line bundle
on X, then one has

c1(f∗(L)) ◦ f∗ = f∗ ◦ c1(L)

6. if X is a projective smooth variety and L and M are line bundles on X, then
one has

c1(L) ◦ c1(M) = c1(M) ◦ c1(L)

We will only be interested in projective Borel-Moore L-functor of a particular
type.

Definition 2.2.35. (Geometric type)
A projective oriented Borel-Moore functor with product is the data of a projective

oriented Borel-Moore functor together with the data of

1. (external product) a bilinear graded multiplication map

× : H•(X)×H•(Y )→ H•(X × Y )

which is associative, commutative, and admits a unit 1K ∈ H0(Spec k),
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satisfying the axioms

1. if f : X → Y and g : X ′ → Y ′ are projective morphisms, one has the equality

× ◦ (f∗ × g∗) = (f × g)∗ ◦ × : H•(X)×H•(X ′)→ H•(Y × Y ′);

2. if f : X → Y and g : X ′ → Y ′ are smooth equidimensional morphisms, one
has the equality

× ◦ (f∗ × g∗) = (f × g)∗ ◦ × : H•(Y )×H•(Y ′)→ H•(X ×X ′);

3. if L is a line bundle on X, and α ∈ H•(X), β ∈ H•(Y ), then one has the
equality

c1(L)(α)× β = c1(p∗(L))(α× β)

in H•(X × Y ).

We will say that an L projective Borel-Moore functor with product, H• is of geometric
type if the following additional properties are satisfied

1. (Dim) For X a smooth projective variety and (L1, . . . , Ln) a family of line
bundles on X with n > dim(X), one has

c1(L1) ◦ · · · ◦ c1(Ln)(1X) = 0

in H•(X).

2. (Sect) For X a smooth projective variety, L a line bundle on X, and s a section
of L which is transverse to the zero section, one has the equality

c1(L)(1X) = i∗(1Z)

where i : Z → X is the closed immersion defined by the section s.

3. (FGL) There exists a formal law group FH on L such that, for X a smooth
projective variety and L,M line bundles on X, one has the equality

FH(c1(L), c1(M))(1Y ) = c1(L⊗M)(1Y )

where FH acts on H(X) via its L-module structure. Moreover we require the
different pull-backs and push-forward maps to preserve FH .

Remark 2.2.36. Two classical examples of (projective) Borel-Moore functor of geo-
metric type are given by CH and K0 (the latter being non graded12). In fact one
can show ([LM07, Thm 1.2.2 and Thm 1.2.3]) that CH is the universal additive13

Borel-Moore functor of geometric type, while K0 is the universal multiplicative uni-
tary14 Borel-Moore functor of geometric type, at least over fields of characteristic
zero.

12It is possible to render it graded by considering K0(X)⊗Z[β, β−1] where β is an indeterminate
of degree 1.

13that means that the formal law group is given by the ordinary addition
14that means that the formal law group is given by F (u, v) = u+ v − uv
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Remark 2.2.37. To illustrate the depth of the fact that K0 is a universal Borel-Moore
functor, let us show how we can deduce Grothendieck-Riemann-Roch from this fact
(this proof is given in [LM07]).

Let us define CH! as the Borel-Moore functor determined by CH!(X) = CH(X)Q,
with pull-backs and products left unchanged, but with push-forwards and first Chern
operator defined as

f!(α) = f∗(αTd(Tf )), c1!(L) = c1(L) Td(L)−1

the axiom (sect) is still satisfied but CH! is multiplicative unitary as a direct com-
putation shows. Therefore the exists a natural map that we will call ch such that
the following diagram commutes

K0(X)
ch //

π∗
��

CH!(X)

π!

��
K0(Y )

ch
// CH!(Y )

Now, as ch is a morphism of Borel-Moore functors it should preserve the first Chern
operators, let [E] be the class of a vector bundle on X, let us assume for a minute
that E is a sum of line bundles, then

[E] = [L1] + ...+ [Lr] = r− ((1− [L1]) + ...+ (1− [Lr])) = r− (c1(L∨1 ) + ...+ c1(L∨r ))

therefore

ch(E) = r − (c1!(L
∨
1 ) + ...+ c1!(L

∨
r ))

= r − (c1(L∨1 ) Td(L∨1 )−1 + ...+ c1(L∨r ) Td(L∨r )−1)

= r − (1− e−c1(L∨1 ) + ...+ 1− e−c1(L∨r ))

= ec1(L1) + ...+ ec1(Lr)

and we see that ch is indeed the usual Chern character, at least for decomposable
bundles, but we can reduce the general case to this case by using the splitting
principle.

Rewriting the previous diagram in a more traditional manner we get that

K0(X)
Td(TX) ch //

π∗
��

CH(X)Q

π∗
��

K0(Y )
Td(TY ) ch

// CH(Y )Q

is commutative and this is Grothendieck-Riemann-Roch.

Getting back to our problem, we can easily construct a universal projective
Borel-Moore functor of geometric type by following the exact same procedure as in
[LM07]. But what’s a bit less obvious it that such a functor should coincide with
the restriction of Ω to the category of smooth projective varieties.

The reason for this is that we may have some relationships in Ω(X) that may
”come from quasi-projective varieties”, that is to say that in Ω(X) we may observe
the vanishing of classes of the form π∗(a) (resp. f∗(a)) for a a vanishing class in
Ω(Y ) with Y quasi-projective.

The first case is totally innocent of course, because the composition of projective
morphisms is projective, so no relation in Ω(X) with X projective can come from
the cobordism ring of a quasi-projective variety. Let us take care of the second case.
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Proposition 2.2.38. The cobordism functor restricted to the category of projective
smooth varieties is the universal projective Borel-Moore functor of geometric type.

Proof. It is easy to give explicit generators for the saturation with respect to the
relations we want to impose (see [LM07, Lemma 2.4.2; 2.4.7 and Remark 2.4.11],
whose notations we will use).

More precisely Ω(X) can be constructed as the quotient of L ⊗ Ω by the sub
L-module generated by the relations

f∗ ◦ c1(L1) ◦ ... ◦ c1(Lp) ([L⊗M ]− [F(L,M)])

where f is projective between smooth projective varieties.
Moreover Ω is the quotient of Z(X) by the subgroup generated by relations

[Z → X,L1, .., Lr] = [Z ′ → X, i∗L1, ..., i
∗Lr−1]

where Z and Z ′ are (of course) projective and smooth.
And that Z(X) is the quotient of Z(X) by the subgroup generated by relation

of the form
[Y → X,π∗L1, ..π

∗Lr,M1, ...,Md] (?)

for every smooth equidimensional morphism π : Y → Z where where Z is a smooth
quasi-projective variety of dimension strictly lower than r.

It will be sufficient to prove that we can replace the relations of the form (?) by
the same relations but where Z is a smooth projective variety of dimension strictly
lower than r.

To see this let f : Y → Z be a projective morphism from a projective smooth
variety to a quasi-projective smooth variety, that we may assume to be embedded in
some P`. Let us consider Z̃

q−→ Z a desingularization of the closure of Z in P`, which
exists by [Hir64] and because that closure is of course reduced, as Z is isomorphic to
an open subset of Z̃ we have a (projective) morphism π : Y → Z̃ with Z̃ projective,
of the same dimension as Z, with f∗Li ' π∗q∗Li which proves the claim and the
proposition.

From now on, we will only use the term Borel-Moore functor to mean a projective
Borel-Moore functor.

2.2.7 An exact sequence

We will begin by a basic observation, notice that is X if a smooth projective variety,
the choice of the metric on TX doesn’t change the structure of Ω̂(X). To be precise

Proposition 2.2.39. The natural map X → X
′

gives an isomorphism of L-module

Ω̂(X)→ Ω̂(X
′
)

Proof. This is simply the functoriality of the push forward.

Definition 2.2.40. Let X be an arithmetic variety, we denote by Ωn.a(X) the L-
module Ω̂(X)/a(D̃•,•

L̂
(X)) and we let ω(X) be the image of Ωn.a(X) through ζ in

Ω(X).
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Remark 2.2.41. Notice that, obviously ω(X) does not depend on the metric struc-
ture chosen on X, as a standard class [Z → X,L1, ..., Lr] is mapped to [Z →
X,L1, ..., Lr], moreover ζ ◦ a is of course trivial so our definition of ω(X) makes
sense. We will still denote ζ the induced map from Ωn.a(X) to ω(X).

We will usually denote [Z → X,L1, ..., Lr]n.a for the image of [Z → X,L1, ..., Lr, g]
in Ωn.a(X)

With this definition it is not clear how Ωn.a(X) depends on the choice of metric
over X, even though its L-module structure Ωn.a(X) does not depend on it. In fact
Ωn.a(X) doesn’t depend on the metric chosen on X at all. Let us prove that essential
fact.

Firstly, let us notice that we have commutative diagrams (when they’re defined)

D̃•,•
L̂

(X)
a //

π∗
��

Ω̂(Y )

π∗
��

D̃•,•
L̂

(Y ) a
// Ω̂(Y )

, D̃•,•
L̂

(X)
a //

f∗

��

Ω̂(S)

f∗

��

D̃•,•
L̂

(S) a
// Ω̂(S)

, D̃•,•
L̂

(X)
a //

ĉ1(L)
��

Ω̂(X)

ĉ1(L)

��

D̃•,•
L̂

(X) a
// Ω̂(X)

that ensure that the maps are well defined on the level of Ωn.a.

Lemma 2.2.42. Let X and X
′

be two arithmetic variety structures on the same
underlying algebraic variety, and let π : X

′ → X be the identity morphism. Then

π∗[X
′ id−→ X

′
] = [X

id−→ X] modulo a(D̃•,•
L̂

(X))

Proof. Let Y = P1
X be the projective line over X, and let s[a:b] be the section of

O(1) over P1 defined by− ax, if we see P1 as Proj(k[X,Y ]), for any (a, b) ∈ k2, s[a:b]

is transverse to the zero section, and gives rise to an isomorphism

j∗[a,b]TP1
∼−→ j∗[a:b]O(−1)

if we look at the fiber square

X

p1

��

i[a,b] // Y

p1

��
Spec k

j[a,b] // P1

we have an exact sequence over X,

0→ i∗[a,b]p
∗
2TX → i∗[a,b]p

∗
2TX ⊕ i∗[a,b]p

∗
1TP1 → i∗[a,b]p

∗
1O(1)→ 0

the term in the middle being isomorphic to i∗[a,b]TY . From now on let us assume that

both TP1 and O(−1) are equipped with metric rendering isometric the isomorphisms
given by s0 and s∞. Now as TY ' p∗2TX ⊕ p∗1TP1 , we can choose on TY a metric,
say h (resp. h′) such that we have an isometry (TY , h) ' p∗2TX ⊕ p∗1TP1 (resp.
(TY , h

′) ' p∗2TX′ ⊕ p∗1TP1). If ϕ is now any smooth function over P1(C), such that
ϕ(0) = 1 and ϕ(∞) = 1, let us consider the metric h′′ = ϕ(t)h + ϕ(1/t)h′ over Y ,
the two following exact sequences are meager (because they’re ortho-split)

0→ TX → i∗0p
∗
2TX ⊕ i∗0p∗1TP1 → i∗0p

∗
1O(1)→ 0

0→ TX′ → i∗∞p
∗
2TX′ ⊕ i∗∞p∗1TP1 → i∗∞p

∗
1O(1)→ 0
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Let us now consider the class [Y → Y , p∗1O(1)], where Y is equipped with the metric

h′′, by SECT we have, up to terms in a(D̃•,•
L̂

(Y ))

[Y → Y , p∗1O(1)] = [X → Y ]

= [X
′ → Y ]

the result follows from pushing-forward along p2 : Y → X.

Let us further investigate the independence on the metrics in Ωn.a(X).

Lemma 2.2.43. Let X and Z be two arithmetic varieties, and f any projective
morphism between them, let us consider L ∈ Pic(Z) and let h and h′ be two metrics
on L, we have,

[Z
f−→ X, (L, h)] = [Z

f−→ X, (L, h′)] modulo a(D̃•,•
L̂

(X))

Proof. This is the same idea as the previous lemma. Let us consider Y = P1
X

equipped with its ”horizontal” metric that induces the metric on X over the fiber at
0 and ∞. Let us equip p∗1L with the metric h′′ = ϕ(t)h+ϕ(1/t)h′, where as before,
ϕ is any smooth function over P1(C), such that ϕ(0) = 1 and ϕ(∞) = 1. Using
SECT, we see that the class [Y → Y , p∗1L, p

∗
2O(1)] equals both [X → Y , i∗0p

∗
1L] and

[X → Y , i∗∞p
∗
1L], up to an analytic class, this yields

[X → Y , (L, h)] = [X → Y , (L, h′)]

and pushing forward along p1 we get

[X → X, (L, h)] = [X → X, (L, h′)]

but this is enough to prove the proposition as

[Z → X, (L, h)] = f∗[Z → Z, (L, h)] = f∗[Z → Z, (L, h′)] = [Z → X, (L, h)]

and we are done.

Proposition 2.2.44. Let X (resp. Z) and X
′
, (resp. Z

′
) be two arithmetic variety

structures on the same underlying algebraic variety, and let π be the identity mor-
phism. Assume that we’ve been given L1, ..., Lr, r line bundles over Z, which we will
equip with two set of hermitian metric, Li and L

′
i for each i. We have

π∗[Z
′ → X

′
, L
′
1, ..., L

′
r]n.a = [Z → X,L1, ..., Lr]n.a

Proof. Let us denote, for precision’s sake, the different morphisms as in the following
commutative diagram

Z

f
��

i // Z ′

f ′
��

X
π // X

′

where i the identity morphism from Z to Z
′
. Of course we have i∗Li = Li because

the morphism i is the identity on the underlying variety. Using 2.2.42 and 2.2.43 we
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see that

[Z → Z
′
, L1]n.a = ĉ1(L1)[Z → Z

′
]n.a

= ĉ1(L1)[Z
′ → Z

′
]n.a

= ĉ1(L1)i∗[Z
′ → Z]n.a

= i∗ ĉ1(L1)[Z
′ → Z]n.a

= i∗ ĉ1(L
′
1)[Z

′ → Z]n.a

= i∗[Z
′ → Z,L

′
1]n.a

= [Z
′ → Z

′
, L
′
1]n.a

By iterating, we see that

[Z → Z
′
, L1, ..., Lr]n.a = [Z

′ → Z
′
, L
′
1, ..., L

′
r]n.a

now pushing forward along f ′ yields

[Z
′ → X

′
, L
′
1, ..., L

′
r]n.a = [Z → X

′
, L1, ..., Lr]n.a = π∗[Z → X,L1, ..., Lr]n.a

and the proof is complete.

Corollary 2.2.45. Let us fix a choice of metric on every (isomorphism class of)
algebraic smooth projective variety. We have a Borel-Moore functor associated to
this choice given by X → Ωn.a(X) for the specific choice of metric over X.

If we take two of these Borel-Moore functors associated to two different choices
of metrics, they’re naturally isomorphic.

From now on we will denote Ωn.a(X) instead of Ωn.a(X) for this group, and we
will omit the metrics when writing the elements of Ωn.a(X). We shall now prove
that we have in fact an isomorphism of Borel-Moore functor

Ωn.a(•)
∼−→ ω(•) ∼−→ Ω(•)

In order to do this, we next show that in Ωn.a(X) we have a stronger version of DIM

Lemma 2.2.46. In Ωn.a(X) , we have

[Y → X,L1, ..., Lr]n.a = 0

as soon as r > dim(Y ).

Proof. It is clear that we only need to prove [Y → Y,L1, ..., Lr]n.a = 0, because
pushing this formula will give the formula above.

Let us first show that it suffices to prove [Y → Y,L1, ..., Lr]n.a = 0 where
L1, ..., Lr are very ample line bundles to prove the general case. Indeed, every
line bundle on a projective variety may be written as M ⊗M ′ where M (resp. M ′)
is very ample (resp. anti very ample), therefore if one of the bundles, say L1 is not
very ample we have15

[Y → Y,L1, ..., Lr]n.a =
∑

ai,jc1(M)iχ(c1(M ′∨))j [Y → Y,L2, ..., Lr]

so it suffices to prove that [Y → Y,L1, ..., Lr]n.a = 0 as soon as the Li’s are very
ample to ensure that this class vanishes.

Now using SECT we see that

[Y → Y,L1, ..., Lr]n.a = [∅ → Y ]n.a = 0

and the result follows.
15Here χ denotes the formal inverse characterized by F(u, χ(u)) = 0
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Remark 2.2.47. We have a natural external product structure of Ωn.a given by

[Y → X,L1, ..., Lr]n.a⊗[Z → X ′,M1, ...,Mk]n.a 7→ [Y×Z → X×X ′, p∗1L1, ..., p
∗
2Mk]n.a

this endows Ωn.a with the structure of a Borel-Moore functor with (external) prod-
ucts.

In happy concord with what happens for other weak homological theory we have

Proposition 2.2.48. We have an exact sequence

D̃•,•
L̂

(X)
a−→ Ω̂(X)

ζ−→ Ω(X)→ 0

Proof. We will prove that ζ induces an isomorphism of Borel-Moore Functor of
geometric type between Ωn.a and Ω. We’ve already proven that Ωn.a is a Borel-
Moore functor with products and the fact that ζ is a morphism of Borel-Moore
functor is obvious. The fact that Ωn.a is of geometric type is easy as axioms (SECT)
and (FGL) when ζ is applied to them, give the usual (SECT) and (FGL) axioms of
a Borel-Moore functor of geometric type, as for (DIM) this is 2.2.46

So we get a map from Ω to Ωn.a, and a commutative diagram

Ω̂(X)
ζ //

ζ ##

Ωn.a(X)

Ω(X)

::

This map is an inverse of ζ, to check this we need to check that the standard
classes [X → Y,L1, ..., Lr] are left invariant by the application of Ω → Ωn.a → Ω,
but that is obvious by construction.

The proof is then complete.

Remark 2.2.49. It can be seen in the preceding proof that the exact sequence ob-
tained is in fact an exact sequence of graded L-modules, and it splits into exact
sequences

D̃L̂,p(X)
a−→ Ω̂p(X)

ζ−→ Ωp(X)→ 0

where D̃L̂,p(X) denotes the degree p part of D̃•,•
L̂

(X) which is made up of

D̃dX−p−1,dX−p−1
R (X)⊕ D̃dX−p,dX−p

R (X)⊗ L̂1 ⊕ ...⊕ D̃dX ,dX
R (X)⊗ L̂p+1

After tensorization by Q we can give a more explicit decomposition as

D̃dX−p−1,dX−p−1
R (X)⊕Q[P1]D̃dX−p,dX−p

R (X)⊕ ...⊕Q[Pp+1]D̃dX ,dX
R (X)

Anticipating a little we get the result that served as a guideline during the
construction of Ω̂

Corollary 2.2.50. We have the following exact sequences (which we will refine in
the following sections).

D̃•,•
L̂

(X)p

��

a // Ω̂(X)Z,p
ζ // Ω(X)Z,p

��

// 0

D̃dX−p+1,dX−p+1
R (X)

a // CĤp(X)
ζ // CHp(X) // 0
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and

D̃•,•
L̂

(X)
a //

��

Ω̂(X)Z
ζ // Ω(X)Z

��

// 0

D̃•,•R (X)
a // K̂0(X)

ζ // K0(X) // 0

2.2.8 Some computations

In this section we will investigate more closely the different dependencies on the
metric, by proving an anomaly formula.

According to 2.2.48 we see that the difference

[X → X]− [X
′ → X]

where X
′

and X are two different arithmetic structures on the same underlying
variety should lie in the image of a, so it is a natural investigation to try and find
an expression for that class. The answer is fairly simple and given by the

Proposition 2.2.51. (Anomaly Formula)

Let X be an algebraic projective smooth variety and let X,X
′

and X
′′

be three
arithmetic structures on it, we have

[X
′ → X]− [X

′′ → X] = a(g(TX)g̃−1(TX , h
′, h′′))

and
[X
′ → X]− [X

′′ → X] = a(−g−1(TX)g̃(TX , h
′, h′′))

Proof. Let’s use our usual trick consisting of endowing Y = P1
X with a metric such

that the fiber at 0 (resp. ∞) of TY is isometric to the orthogonal sum of T ′X (resp.

T ′′X) and TP1 where P1 is equipped with its Fubini-Study metric. Let us compute

[Y → Y , p∗1O(1)] = [X
′ → Y ]−a(g(p∗1O(1)) log ‖x‖2) = [X

′′ → Y ]−a(g(p∗1O(1)) log ‖y‖2)

Therefore

[X
′ → X]− [X

′′ → X] =

∫
P1
X/X

log |z|2g(p∗1O(1))g−1(TP1
X

)g(p∗2TX)

We obviously have [X
′ → X]− [X

′′ → X] = 0 as soon as X ′ and X ′′ are isometric,
moreover we have

ddc([X
′ → X]− [X

′′ → X]) = g(TX)

∫
P1
X/X

dzd
c
z(log |z|2)g(p∗1O(1))g−1(TP1

X
)

= g(TX)[i∗0g(p∗1O(1))g−1(TP1
X

)− i∗∞g(p∗1O(1))g−1(TP1
X

)]

= g(TX)[g(i∗0p
∗
1O(1))g−1(i∗0TP1

X
)− g(i∗∞p

∗
1O(1))g−1(i∗∞TP1

X
)]

= g(TX)[g−1(TX′)− g−1(TX′′)]

and this suffices16 to ensure that

[X
′ → X]− [X

′ → X] = g(TX)g̃−1(TX , h
′, h′′)

so the first formula holds and the second results directly form the first one.

16One could also directly check that this is the formula that defined the secondary form associated
to g
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In [GS], Gillet and Soulé define a star-product operator on Green currents, to be
able to define an intersection pairing for arithmetic cycles.

To this end, given two irreducible closed subsets of the ambient variety, say Z and
Y , they need to select a specific green current for Z in the family of all admissible
green current, that satisfies a ”logarithmic-growth” condition. They prove that such
a Green current always exists, and that we can multiply it with gY to get a green
current for [Z].[Y ].

But if we look more closely at their construction, we see that we only need for a
current to be of log-type singularities along the singular locus of another current to
define a star-product between those two currents. This makes it possible to define an
intersection pairing for divisors (or more precisely for classes of arithmetic divisors
associated to hermitian line bundles), as in that case, we have a (family of) favored
log-type current, namely log ‖s‖2. It turns out that this construction is already
embedded in the group Ω̂(X).

Lemma 2.2.52. Let L1, .., Lr be very ample hermitian line bundles over an arith-
metic variety X. Then

[X → X,L1, L2] = [Z
′ → X]− a(log ‖s2‖2g(L2)g(L1)δZ) + a(h−1(L2) log ‖s1‖2g(L1))

−a(g(L2)j∗(g̃(Z/X)g(TZ))) + a(j∗(i∗g̃−1(Z ′/Z)g(NZ′/X)g(j∗TX))))

where Z
′

(resp Z) is the smooth locus div(s1)∩div(s2) (resp. div(s1)) endowed with
any metric.

Proof. let us compute

ĉ1(L)[Z
j−→ X, g]

where j : Z → X is a regular immersion of smooth integral varieties, L is a very
ample hermitian line bundle on X and g is any current on X, and where Z ′ is the
smooth zero locus of a global section of j∗L over Z.

First, let us note that, by Bertini’s theorem, such a section always exists. We
have

ĉ1(L)[Z → X, g] = ĉ1(L)[Z → X] + a(h−1(L) ∧ g)

= ĉ1(L)j∗[Z → Z] + a(h−1(L) ∧ g)

= j∗[[Z
′ i−→ Z]− a(g(j∗L) log ‖j∗s‖2)− a(i∗[g̃(Z ′/Z)g−1(TZ′)])] + a(h−1(L) ∧ g)

= [Z
′ → X]− g(L)a(log ‖s‖2j∗(g−1(TZ)g(j∗TX))))

−a
[
j∗(i∗g̃(Z ′/Z)g−1(TZ′))g

−1(TZ)g(j∗TX)
]

+ a(h−1(L) ∧ g)

= [Z
′ → X]− g(L)a(log ‖s‖2j∗(g(NZ/X)))− g(L)a(log ‖s‖2j∗(ddcg̃(Z/X)g−1(TZ)))

+a(j∗(i∗g̃−1(Z ′/Z)g(NZ′/X)g(j∗TX)))) + a(h−1(L) ∧ g)

= [Z
′ → X]− g(L)a(log ‖s‖2j∗(g(NZ/X)))

−a(g(L)j∗(g̃(Z/X)g−1(TZ)))− a(h−1(L)j∗(g̃(Z/X)g−1(TZ)))

+a(j∗(i∗g̃−1(Z ′/Z)g(NZ′/X)g(j∗TX)))) + a(h−1(L) ∧ g)

Where we’ve used the fact that for the composition of regular immersion we have
an exact sequence

0→ NZ′/Z → NZ′/X → i∗NZ/X → 0

replacing g by the expression given by SECT and using that NZ/X = j∗L1 yields
the desired formula.
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Remark 2.2.53. In the preceding formula we can see that there is a variable part
depending on the metrics chosen on the different strata of Z1 ∩Z2 ⊂ Z1 ⊂ X and a
fixed part depending only on the metrics chosen on the bundles. For two hermitian
line bundles over X, we set

(L1, L2)X = −a(log ‖s2‖2g(L2)g(L1)δZ) + a(h−1(L2) log ‖s1‖2g(L1)) ∈ Ω̂(X)

inductively we can define

(L1, ..., Lp)X = h−1(Lp)(L1, ..., Lp−1)X + log ‖sp‖2g(Lp)δZ1∩...∩Zp−1

for a family of ample line bundles over X, and sp a transverse section of Lp over X.
This bracket is easily seen to be symmetric in the Li’s, moreover, if we can find

metrics on the Zi’s such that the different strata of the intersection of divisors
⋂
Zi

can be endowed with metrics rendering all the associated exact sequences meager
then

[X → X,L1, ..., Lp] = [
⋂
Zi → X] + (L1, ..., Lp)X

If f is projective morphism fromX to Y we will denote (L1, ..., Lp)Y for f∗(L1, ..., Lp)X ,
and (L1, ..., Lp) for (L1, ..., Lp)Spec k

We thus have a formula for the class of the inclusion of a smooth subscheme
given as a local complete intersection of smooth divisors. We can easily reduce the
case of arbitrary intersection of divisors to this case, of course the formula obtained
is more complicated.

Proposition 2.2.54. Let L
′
1, ..., L

′
r be arbitrary hermitian line bundles over an

arithmetic variety X. For each 0 ≤ i ≤ r there exists very ample hermitian line
bundles Li,M i such that

[X → X,L
′
1, ..., L

′
r] =

∑
i1,j1,...,ir,jr

ai1,j1 ...air,jr [X → X,L1, ..., L1, ...,M
∨
r , ...,M

∨
r ]

where the bundle Lk (resp. Mk) is repeated ik (resp jk) times.

Proof. As X is projective over k, every bundle L′i can be written as Li⊗M∨i where Li
and Mi are very ample line bundles. Let’s equip either one of them, say Li with an
arbitrary metric and the other one, Mi with the metric that turns the isomorphism
Mi ' Li ⊗ L′∨i into an isometry.

The proposition readily follows.

Remark 2.2.55. In the previous formula, the class

[X → X,L1, ..., L1,M
∨
1 , ...,M

∨
1 , ...,M

∨
r , ...,M

∨
r ]

can be computed via 2.2.52 and the observation that M
∨

is the inverse of M for the
formal law F, and thus [X → X,L1, ..., Lr,M

∨
] = χ(ĉ1(M))[X → X,L1, ..., Lr] and

this enables us to define the bracket (L1, ..., Lp)X for any family of hermitian line
bundles.

Corollary 2.2.56. As an L-module, the group Ω̂(X) is generated by purely geomet-
ric classes and analytic classes.
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2.2.9 Structure of Ω̂(k)

Let’s start by a basic observation

Proposition 2.2.57. Let u be any element in k∗, in Ω̂(k) we have a(− log |u|) = 0

Proof. It suffices to consider the trivial line bundle over Spec k, with metric |u|2 (i.e,
if x and y are lying in the line Ok(C);x.y = |u|2xy), which will be denoted by Ouk .
Multiplication by u induces an (algebraic) isometry for the trivial bundle with trivial
metric to Ouk , thus the classes [Spec k → Spec k,Ok] and [Spec k → Spec k,Ouk ] are
equal. The first one is equal to [∅ → Spec k]− a(log |1|2) = 0, and the second one is
equal to [∅ → Spec k]− a(log |u|2).

Remark 2.2.58. Let us draw the attention of the reader on the fact that over a
point it is always possible to render an exact sequence of vector space 0 → V →
V ′ → V ′′ → 0 meager by an appropriate choice of metrics because it is obviously
holomorphically split! Moreover if two of the three vector spaces appearing in this
exact sequence are already equipped with metrics, it is possible to endow the last
one with a metric rendering the short exact sequence meager. In short, a strong
fitness lemma is true for the point.

Corollary 2.2.59. We have a surjective arrow of groups∏
τ :k↪→C

R/(⊕f∈k∗Q log |τf |)→ Ω̂(k)−1,Q

as well as a global exact sequence∏
τ :k↪→C

LR/(⊕f∈k∗L log |τf |)→ Ω̂(k)→ L→ 0

A word of warning what we denoted somehow sloppily
∏
τ :k↪→C designs in fact

the product over all real embeddings of k in C as well as pair of complex conjugate
ones for the non real ones. Every time this notation appears that’s how it should
be understood.

Remark 2.2.60. In the geometric case we have Ω(k) ' L, for any field k that admits
a resolution of singularities, that is for instance any fields of characteristic zero. This
is a fundamental difference with the arithmetic theory developed here. The fact that
k is a number field is used in a crucial manner to obtain the preceding corollary.

Notice also that Ω̂(k) already depends on the number field k in a manner that
is common in Arakelov theory, in fact the presence of the log(f) is some kind of
artifact due to the fact that we work over fields instead of ring of integers, if we were
able to define Ω̂(Z) then we would expect that the log f ’s in the preceding formula
should disappear.

Remark 2.2.61. We will later see that∏
τ :k↪→C

R/(⊕f∈k∗Q log |τf |)→ Ω̂(k)−1,Q

is in fact an isomorphism. I believe that the other exact sequences in higher degree
are also exact on the left.

Due to the fact that we chose to work with weak groups we will not be able to
define a ring structure on Ω̂(X) in full generality, however it is possible to define
a ring structure on Ω̂(k) and to deduce a module structure over Ω̂(k), on Ω̂(X).
To understand that ring structure we need the following proposition that is closely
related to the Riemann-Roch theorem of Hirzebruch
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Proposition 2.2.62. (Hirzebruch-Riemann-Roch)
Let X be a projective smooth variety over a field k, and assume that we have

equipped X with an arithmetic variety structure, we have in Ω̂(k)Q,∫
X
g−1(TX)a(1) = `(X)a(1)

here ` denotes the composition

Ω̂(k)
ζ−→ Ω(k) ' L

(recall that the isomorphism Ω(k)→ L is canonical).

Proof. This is essentially a combinatorics proof. Notice that it will be sufficient to
prove this result in D̃•,•

L̂
(k)Q and to push this identity forward in Ω̂(k)Q via the map

a, notice also that the left hand side does not depend on the metric on TX because
of Stokes formula. So we’ll prove the identity∫

X
g−1(TX) = `(X)

in D̃•,•
L̂

(k)Q. This is tantamount to showing that g−1(TX){dX} = `(X) where {n}
denotes the degree n part.

Let us first prove the result for projective spaces, if X = Pr we have the following
Euler exact sequence

0→ OX → O(1)r+1 → TX → 0

and thus g−1(TX) = g−1(O(1))r+1.
Now in view of Mishenko’s formula 2.2.3, it will be sufficient to prove that(

g−1(O(1))r+1
){r}

= (r + 1)h(O(1)){r+1}

and this results from the following

Lemma 2.2.63. (Lagrange Inversion formula)
We have (

1

g(u)r+1

){r}
= (r + 1)h(u){r+1}

Proof. This is [Sta12, Thm 5.4.2, p. 38]

Let us turn to the case of the product of projective spaces X = Pr1 × ... × Prk .
We have

g−1(TX) = g−1

(
k⊕
i=1

p∗iTPri

)
=

k∏
i=1

g−1(p∗iTPri ) =

k∏
i=1

p∗i g
−1(TPri )

therefore∫
X
g−1(TX) =

∫
X

k∏
i=1

p∗i g
−1(TPri ) =

k∏
i=1

∫
Pri

g−1(TPri ) = [Pr1 ]...[Prk ] = [Pr1×...×Prk ]

thus the results holds for a product of projective spaces.
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Now, LQ is a polynomial ring over Q generated by the projective spaces, as the
right hand side of the formula we want to prove is Q-linear, it will be sufficient to
prove that ∫

X
g−1(TX) =

∑
α(r1,..,rk)

∫
Pr1×...×Prk

g−1(TPr1×...×Prk )

as soon as we have
[X] =

∑
α(r1,..,rk)[Pr1 ]...[Prk ]

in Ω̂(k)Q.
Recall [Mil60] that two complex manifold are in the same cobording class if

and only if they share the same Chern numbers, CI(X) =
∫
X ci1(TX)...cip(TX) =∫

X cI(X) for I = (i1, ..., ip) any partition dX = i1 + ... + ip. Let a1, ..., ad be the
Chern roots of TX , we see that

g−1(TX){d} = (
∏
i

g−1(ai))
{d} = (

∏
i

(
∑
k

tka
k
i )
−1){d} =

∑
I

vd,I(t)cI(X)

where vd,I(t) is a universal polynomial in (a finite number of) the ti’s depending
only on the dimension of X. Therefore∫

g−1(TX) =

∫
X

∑
I

vd,I(t)cI(X) =
∑
I

vd,I(t)CI(X)

Now, as CI(X) =
∑

J αJCI(PJ) for J some multi-indices of length d, we get∑
I

vd,I(t)CI(X) =
∑
I

vd,I(t)
∑
J

αJCI(PJ)

=
∑
J

αJ
∑
I

vd,I(t)CI(PJ)

=
∑
J

αJ

∫
PJ

g−1(TPJ )

=
∑
J

αJ`(PJ) = `(X)

and the results follows.

This result is the key ingredient that will enable us to show that we have a
Ω̂(k)-module structure on Ω̂(X)

Proposition 2.2.64. (Ring and Module Structures)
We have a commutative L-algebra structure on Ω̂(k) given by

[X → Spec k, ϕ(t)α]⊗[Y → Spec k, ψ(t)β] 7→ [X×Y → Spec k]+`(X)ψ(t)a(β)+`(Y )ϕ(t)a(α)

We have a natural Ω̂(k)-module structure on Ω̂(X) given by

[X → Spec k, ϕ(t)α]⊗ [Z
f−→ Y , L1, ..., Lr, ψ(t)g] 7→ [X × Z → Y , p∗2L1, ..., p

∗
2Lr]

+`(X)ψ(t)a(g)

+ϕ(t)f∗[ĉ1(L1) ◦ ... ĉ1(Lr)π
∗
Z(α)]

where πZ is the structural morphism of Z (π∗Z(α) is simply the locally function
function τα over each connected component Zτ (C) of Z(C)).
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Proof. We need to show that all these operations are well defined. We will simply
denote [Y ] the class [Y → Spec k]

Firstly let us notice that, by the usual trick of writing a possibly non very ample
line bundle as the difference of two very ample line bundles, every class in Ω̂(k) can
be written as a linear combination of classes of the form [Y ] + a(g) with coefficients
in L. So we only need to prove that this multiplication structure is compatible with
SECT,DIM and FGL.

The case of DIM is obvious because [Z,L1..., Ld + 2] = [∅] = 0 by the previous
proposition, the case of SECT is just as obvious for the very same reason and the
remark following the previous proposition. Concerning the case of FGL... there is
nothing to prove.

Let’s turn to the case of the module structure. We now need to check that
the pairing vanishes as soon as the class on the right hand side is on of the form
SECT(Y ), DIM(Y ) or FGL(Y ) (the fact that is vanishes on the left hand side when
the class is of the form SECT(k), DIM(k) or FGL(k) is just a repetition of the
previous argument).

Let’s start by DIM, and let’s do the multiplication by an element of the form
a(α) first. We have

a(α)[Z
f−→ Y , L1, ..., Lr] = f∗[ĉ1(L1) ◦ ... ĉ1(Lr)π

∗
Z(α)]

but this zero as soon as r > dZ + 1 because the action of the first Chern class
increases the type of the forms by (1, 1). Now for the case of a product

[X][Z
f−→ Y , L1, ..., Lr] = [X × Z → Y , p∗2L1, ..., p

∗
2Lr]

which is also zero as soon as r > dZ + 1 because this is f∗p2∗p
∗
1[Z → Z,L1, ..., Lr]

and [Z → Z,L1, ..., Lr] is zero.
Concerning SECT, for the multiplication by an analytic class, as the multiplica-

tion by an analytic class vanishes on analytic classes we’re left with checking that

0 = α
(
[Z → X]− [X → X,L]

)
= αi∗(1)− ĉ1(L)α

= g(L)α(δZ − c1(L))

and Poincare-Lelong formula ensures that this vanishes up to an exact current.
On the other hand, let us examine

µ = [Y ]
(

[Z
i−→ X]− [X → X,L]− log ‖s‖2g(L)− i∗(g̃(E)g−1(TZ))

)
we have

µ = [Y × Z → X]− [Y ×X → X, p∗2L]− `(Y )g(L) log ‖s‖2 − `(Y )i∗(g̃(E)g−1(TZ))

= p2∗

[
[Y × Z j−→ Y ×X]− [Y ×X → Y ×X, p∗2L]

]
−`(Y )i∗(g̃(E)g−1(TZ))− `(Y )g(L) log ‖s‖2

= p2∗[log ‖p∗2s‖2g(p∗2L) + j∗(g̃(p∗2E)g−1(p∗2TZ)g−1(p∗1TY ))]

−`(Y )i∗(g̃(E)g−1(TZ))− `(Y )g(L) log ‖s‖2

= g(L) log ‖s‖2[p2∗p
∗
2a(1)− `(Y )a(1)]− i∗(`(Y )g̃(E)g−1(TZ)) + i∗p2∗(g̃(p∗2E)g−1(p∗2TZ)g−1(p∗1TY ))

= g(L) log ‖s‖2[p2∗p
∗
2a(1)− `(Y )a(1)]− i∗[`(Y )g̃(E)g−1(TZ)− g̃(E)g−1(TZ)p2∗p

∗
2a(1)]

=
(
g(L) log ‖s‖2 − g̃(E)g−1(TZ)δZ

)
[p2∗p

∗
2a(1)− `(Y )a(1)]
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and this is seen to be zero because of 2.2.62.
Let’s now tackle the case of FGL, an easy computation shows that

[X]. ĉ1(L) = ĉ1(L)[X], a(α) ĉ1(L) = ĉ1(L)a(α)

and this readily implies that the multiplication by [X] + a(α) of a class in FGL
vanishes, which completes the proof.

Remark 2.2.65. It may appear surprising at first glance that classes of the form
a(α).a(g) vanish, but this should not be so because in other (strong) arithmetic
theories, the product of such classes is given by a(α∂∂g) which is a((∂∂α)g) up to
something in im ∂ + im ∂, and this is of course zero.

Recall that a Milnor hypersurface is defined as a hypersurface in Pn×Pm defined
by the vanishing of a section of p∗1O(1) ⊗ p∗2O(1) = O(1, 1), transverse to the zero
section. In fact we’ve already used them without saying so explicitly in 2.2.33.
They’re the original reason for the appearance of formal group laws in cobordism,
as was shown in a pioneering work of Milnor [Mil60]. So it should not be surprising
that we may need to study them.

Proposition 2.2.66. Milnor hypersurfaces don’t depend on the choice of the section
of O(1, 1)(provided it is transverse to the zero section), are smooth over k, and can
be given the structure of a Pn−1-bundle over Pm

Proof. We may assume m ≤ n, if T0, ..., Tn (resp. S0, ..., Sm) design the standard
homogenous coordinates over Pn (resp. Pm, then a generic section of O(1) over
Pn is given by a0.T0 + ... + an.Tn, thus a generic section of O(1, 1) is given by∑

0≤`≤n
∑

0≤r≤m a`brT`Sr, an easy computation yields the fact that the zero scheme
of that section is smooth if and only if it can be written as

∑
0≤`≤m T`S` after a

suitable linear change of coordinates.
As a linear change of coordinates is a k-automorphism of Pn × Pm, it follows

that Hn,m as a k-scheme, does not depend on the choice of the section of O(1, 1).
Moreover it suffices to prove that over V+(TiSj), Hn,m can be written as Pn−1 ×
V+(Sj) which follows immediately from the description above.

In algebraic cobordism Milnor hypersurfaces are important because they give
generators for the cobordism ring over Z as well as expressions for ai,j up to de-
composable elements. Here it is, of course impossible to give such a combinatorial
description for Ω̂(k) because of uncountability of the analytic term, as we’ve men-
tioned before we have ∏

τ :k↪→C
R/(⊕f∈k∗Q log |τf |)→ Ω̂(k)−1,Q

Nevertheless we can hope that we will obtain a description of Ω̂(k) with respect to
the class of Milnor hypersurfaces equipped with different family of metrics.

Definition 2.2.67. Let Hn,m be a Milnor hypersurface and h a metric over THn,m

we will denote 〈Hn,m, h 〉 the class [Hn,m]

In the following all the projective spaces will be endowed with their Fubini-Study
metric coming from the trivial metric on the trivial bundle of rank n + 1 over Pn.
We can prove the following
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Proposition 2.2.68. We have the following relation in Ω̂(k),

〈Hn,m, h 〉−
∫
Hn,m

g̃−1(Eh)g(i∗O(1, 1))

+

∫
Pn×Pm

log(
∑
‖xi‖2‖yi‖2)g(O(1, 1))g−1(TPn×Pm)

=
∑
i,j≥0

ai,j [Pn−i][Pm−j ] + (p∗1O(1)
i
, p∗2O(1)

j
)

where (p∗1O(1)
i
, p∗2O(1)

j
) denotes the bracket (p∗1O(1), ..., p∗1O(1), p∗2O(1), ..., p∗2O(1))

where the first (resp. second) bundle is repeated i times (resp. j times), and where
Eh is the exact sequence

0→ THn,m → i∗TPn×Pm → i∗O(1, 1)→ 0

Proof. For s =
∑
xiyi the global section of the bundle p∗1O(1)⊗ p∗2O(1), we have

[Pn × Pm → Pn × Pm,O(1, 1)] = [Hn,m → Pn × Pm] +

a(g(O(1, 1)) log(
∑
‖xi‖2‖yi‖2)) + a(i∗g̃(Eh)g−1(h))

=
∑

i≥0,j≥0

ai,j [Pn × Pm → Pn × Pm, p∗1O(1)
i
, p∗2O(1)

j
]

=
∑

i≥0,j≥0

ai,j [Pn−i × Pm−j → Pn × Pm] + (p∗1O(1)
i
, p∗2O(1)

j
)Pn×Pm

To prove the last equality it will be sufficient to show that for the Fubini metrics
over the different terms, the following exact sequence

0→ TPk×Pr → j∗0TPk+1×Pr → j∗0p
∗
1O(1)→ 0

is meager, where j0 is the closed immersion defined by the vanishing of the first
homogenous coordinate. But this reduces to proving that

0→ TPk → j∗0TPk+1 → j∗0O(1)→ 0

is meager, which is clear as this exact sequence is dual to the one defined by

0→ O(−1)→ j∗0Ω1
Pk+1 → Ω1

Pk → 0

where the second arrow is (in the standard D+(xj) affine chart)

(d(x0/xj), ..., d(xk+2/xj)) 7→ ( ̂d(x0/xj), ..., d(xk+2/xj))

which is ortho-split for the Fubini-Study metric.
Now pushing forward along Pn × Pm yields the formula.

In this formula we notice that the term

〈Hn,m, h 〉−
∫
Hn,m

g̃−1(Eh)g(i∗O(1, 1))

is equal to a term that does not depend on the metric h chosen. Therefore

〈Hn,m, h 〉−
∫
Hn,m

g̃−1(Eh)g(i∗O(1, 1)) = 〈Hn,m, h′ 〉−
∫
Hn,m

g̃−1(Eh′)g(i∗O(1, 1))
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but we already know, thanks to the anomaly formula that

〈Hn,m, h 〉 = 〈Hn,m, h′ 〉+
∫
Hn,m

g̃−1(h, h′)

therefore we can sum up the previous proposition as

〈Hn,m, h 〉 = a fixed term +

∫
Hn,m

g̃−1(h, h′)

where the fixed term corresponds to the choice of a specified fixed metric.

2.2.10 Arrows

We will now construct arrows from the group Ω̂(X)Z to the groups CĤ(X) and
K̂0(X), these arrows will be compatible with the different maps we have defined
between those groups. To define those we will introduce the notion of Borel-Moore
functor of arithmetic type on the category of arithmetic varieties.

Definition 2.2.69. (Hermitian Borel Moore Functor)
We will call a (graded) hermitian Borel-Moore functor an assignment X →

Ĥ•(X) for each arithmetic variety X, such that we have

1. H•(X) is a (graded) L-module with a specified element denoted 1X , and called
the unit element,

2. H•(X) is equipped with an action of D̃•,•
L̂

(X) denoted by a,

3. (genus) a multiplicative genus ϕ ∈ Ĥ(k)[[u]]

4. (direct image homomorphisms) a homomorphism f∗ : Ĥ•(X) → Ĥ•(Y ) of
degree zero for each projective morphism f : X → Y ,

5. (inverse image homomorphisms) a homomorphism f∗ : Ĥ•(Y ) → Ĥ•(X) of
degree d for each smooth equidimensional morphism f : X → Y of relative
dimension d that preserves the unit element,

6. (first Chern class homomorphisms) a homomorphism ĉ1(L) : Ĥ•(X)→ Ĥ•(X)
of degree -1 for each hermitian line bundle L on X,

satisfying the axioms

1. the map f 7→ f∗ is functorial;

2. the map f 7→ f∗ is functorial;

3. if f : X → Z is a projective morphism, g : Y → Z a smooth equidimensional
morphism, and the square

W
g′ //

f ′

��

X

f
��

Y
g // Z

is Cartesian, then one has

g∗ ◦ f∗ = f ′∗ ◦ g′∗
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4. if f : Y → X is projective and L is a hermitian line bundle on X, then one
has

f∗ ◦ ĉ1(f∗(L)) = ĉ1(L) ◦ f∗

5. if f : Y → X is a smooth equidimensional morphism and L is a hermitian line
bundle on X, then one has

ĉ1(f∗L) ◦ f∗ = f∗ ◦ ĉ1(L)

6. if L and M are hermitian line bundles on X, then one has

ĉ1(L) ◦ ĉ1(M) = ĉ1(M) ◦ ĉ1(L)

7. if f : Y → X is projective, then one has

f∗ ◦ a(g) = a(g ∧ ϕ(Tf ))

8. if L is a hermitian line bundle on X, then one has

ĉ1(L) ◦ a(g) = a(c1(L)ϕ(L)g)

Just like for the geometric case we need to restrict the class of Borel Moore
functors we’ll be interested in, in order to give them an arithmetic significance.

Definition 2.2.70. (Arithmetic Type)
A Hermitian Borel-Moore functor with weak product is the data of a hermitian

Borel-Moore functor together with the data of

1. a commutative L-algebra structure on Ĥ(k),

2. a Ĥ(k)-module structure on Ĥ(X) compatible with its L structure.

We will say that a hermitian Borel-Moore functor with weak product, Ĥ• is of arith-
metic type if the following additional properties are satisfied

1. (Dim) For X an arithmetic variety and (L1, . . . , Ln) a family of hermitian line
bundles on X with n > dim(X) + 1, one has

ĉ1(L1) ◦ · · · ◦ ĉ1(Ln)(1X) = 0

in Ĥ•(X).

2. (Sect) For X an arithmetic variety, L a hermitian line bundle on X, and s a
section of L which is transverse to the zero section, one has the equality

ĉ1(L)(1X) + a(i∗[ϕ̃(E)ϕ−1(TZ)]) + a(ϕ(L) log ‖s‖2) = i∗(1Z)

where i : Z → X is the closed immersion defined by the section s and E is the
exact sequence

0→ TZ → i∗TX → i∗L→ 0

3. (FGL) If FH is the formal group law defined by L→ Ĥ(Spec k), then for X an
arithmetic variety and L,M hermitian line bundles on X, one has the equality

FH(ĉ1(L), ĉ1(M)) = ĉ1(L⊗M)

where FH acts on Ĥ(X) via its L-module structure. Moreover we require the
different pull-backs and push-forward maps to preserve FH .
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The following theorem is a tautology

Theorem 2.2.71. The assignment X 7→ Ω̂(X) is the universal (weak) Borel-Moore
functor of arithmetic type.

Remark 2.2.72. In fact in view of (sect) the genus of an arithmetic Borel-Moore
functor is completely determined by its formal group law, we can prove it from the
axiom sect, but as it is already the case with Ω̂, it will be automatically the case in
every such functor also.

Remark 2.2.73. We’ve proven in 2.1.8 and 2.1.9 that X 7→ CĤ(X) is a (weak) Borel-
Moore functor of arithmetic type, its formal group law is additive, and its genus is
given by 1, which explains that CĤ(X) does not depend on the choice of hermitian
structure on X.

We’ve also proven in 2.1.59 and 2.1.60 that X 7→ K̂(X) is a (weak) Borel-Moore
functor of arithmetic type with multiplicative unitary law, and the usual Todd-genus
as genus.

Corollary 2.2.74. We have natural arrows

Ω̂(X)Z → CĤ(X) Ω̂(X)Z → K̂0(X)

that make the following diagrams commute

D̃•,•
L̂

(X)p

��

a // Ω̂(X)Z,p
ζ //

��

Ω(X)Z,p

��

// 0

D̃dX−p+1,dX−p+1
R (X)

a // CĤp(X)
ζ // CHp(X) // 0

and

D̃•,•
L̂

(X)
a //

��

Ω̂(X)Z
ζ //

��

Ω(X)Z

��

// 0

D̃•,•R (X)
a // K̂0(X)

ζ // K0(X) // 0

Proof. Both arrows are given by the choices of the formal group law, if we chose
the additive one, we get a map from Ω̂(X)Z to CĤ(X), notice that by the anomaly
formula and the fact that the arithmetic cobordism group is generated by purely
analytic and purely geometric classes we have that Ω̂(X)Z does not depend on the
metric on X.

The arrow Ω̂(X)Z → K̂0(X) is given by the choice of the multiplicative unitary
law.

Corollary 2.2.75. We have an isomorphism∏
τ :k↪→C

R/(⊕f∈k∗Q log |τf |)→ Ω̂(k)−1,Q

Proof. We already know that the map is surjective it remains to show that it is
injective, but

CĤ−1(X) '
∏

τ :k↪→C
R/(⊕f∈k∗Z log |τf |)
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therefore if the image of any element in
∏
τ :k↪→CR/(⊕f∈k∗Q log |τf |) would be zero

in Ω̂(k)−1,Q then a multiple of it would be mapped to zero in CĤ−1(X) and∏
τ :k↪→C

R/(⊕f∈k∗Q log |τf |)→ CĤ−1(X)Q

would not be injective, a contradiction.

These results shed some light on different constructions in Arakelov theory.
It explains why the direct image in K-theory depend on a choice of metric on

the varieties whereas it is possible to construct a push forward for arithmetic Chow
groups without specifying any metric. This is because the Todd class of the Chow
theory is 1, and therefore the secondary forms associated to it are 0.

It also explains why the star product of [GS] is what it is, because the com-
putation of the bracket (L,M)X reduces to the computation of the star-product
− log ‖s‖2 ?− log ‖t‖2
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