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Mathématiques
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Première partie

Introduction en français
Cette thèse a pour objet la construction et l’étude de C∗-systèmes dynamiques

généralisant celui introduit dans l’article de Bost et Connes [3]. L’essentiel de cette
thèse réside dans sa seconde partie (p. 13), qui a été publiée séparément1.

C∗-systèmes dynamiques et mécanique statistique

Un C∗-système dynamique est un couple (A, (σt)) où A est une C∗-algèbre et
t 7→ σt est un morphisme de groupes de R dans Aut(A) tel que pour chaque x ∈ A,
l’application t 7→ σt(x) est continue.

Les systèmes dynamiques topologiques “classiques” correspondent au cas par-
ticulier où l’algèbre A est commutative. On a alors A = C0(X) où X est le spectre
de A, et σt provient d’un flot sur X.

Soient (A, (σt)) un C∗-système dynamique et β un réel strictement positif.
Désignons par Sβ la bande horizontale

Sβ = {z ∈ C, 0 6 Im z 6 β}.

Un état KMSβ de (A, (σt)) est un état ϕ sur A tel que pour tous x et y appartenant
à A, il existe une application continue et bornée Fx,y de Sβ dans C, holomorphe
sur l’intérieur de Sβ, telle que l’on ait, pour tout réel t,

Fx,y(t) = ϕ(xσt(y)) et Fx,y(t+ iβ) = ϕ(σt(y)x).

Le paramètre β est appelé température inverse, parce que les états KMSβ généralisent
les états de Gibbs à température T0/β en mécanique statistique, où T0 est une
constante de température dépendant du système physique modélisé.

Si ϕ est un état KMSβ de (A, (σt)) et est fidèle, on a l’identité suivante reliant
le flot σt au flot modulaire σϕt :

σϕt = σβt pour tout t ∈ R.

Les états KMSβ forment un simplexe de Choquet, compact pour la topologie
∗-faible, dont les points extrémaux sont exactements les états KMSβ factoriels.

1B. Jacob, Bost-Connes type systems for function fields, J. Noncommut. Geom. 1 (2007), pp.
141–211.
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Lorsque A est séparable, tout état KMSβ se décompose de façon unique comme ba-
rycentre d’une mesure sur les états KMSβ factoriels. Pour cette raison, on considère
que pour classifier les états KMSβ d’un C∗-système dynamique, il suffit de classifier
ses états KMSβ factoriels. On cherche donc, pour chaque β ∈ R∗+, à écrire expli-
citement tous les états KMSβ factoriels, et à déterminer la structure des facteurs
correspondants.

Il peut arriver qu’une variation arbitrairement petite de β autour d’une cer-
taine valeur β0 donne lieu à un changement de la structure de l’espace des états
KMSβ factoriels ou de la structure des facteurs correspondants. On dit alors que
le système (A, (σt)) a une transition de phase à la température inverse β0.

Les textes de physique parlent parfois de la fonction de partition d’un C∗-
système dynamique. Il semble impossible de donner un sens mathématique précis
à cette notion en toute généralité. Cependant, lorsque pour tout β suffisament
grand tous les états KMSβ factoriels sont de type I∞ et de la forme

ϕ(x) =
Tr(e−βHπ(x))

Tr(e−βH)

pour un hamiltonien H indépendant de β et ϕ, on définit la fonction de partition
Z en posant

Z(β) = Tr(e−βH).

On sait au moins depuis les travaux de Yang et Lee (1952) que pour certains
systèmes physiquement intéressants, par exemple pour certains modèles de mécanique
statistique sur des réseaux, la fonction de partition admet un prolongement méromorphe
sur C et que la répartition de ses zéros dans C est physiquement intéressante. Il
semble donc que la fonction de partition soit la bonne notion de “fonction zêta”
en mécanique statistique, à condition bien sûr que l’on sache la définir.

Le système de Bost-Connes

Le système de Bost-Connes est un C∗-système dynamique qui a été introduit
par Bost et Connes dans [3]. On peut le construire comme suit. Considérons le
semigroupe multiplicatif N∗ et son action par multiplication sur le groupe Q/Z.
Définissons la C∗-algèbre de Bost-Connes CQ par :

CQ = C∗(Q/Z) o N∗.

Expliquons ce que nous entendons par ce produit croisé par le semigroupe N∗.
La C∗-algèbre C∗(Q/Z) est par définition la C∗-algèbre universelle possédant une
famille d’éléments (e(γ))γ∈Q/Z satisfaisant

e(0) = 1, e(γ1 + γ2) = e(γ1)e(γ2), e(−γ) = e(γ)∗

4



et donc en particulier unitaires. Le produit croisé C∗(Q/Z) o N∗ est alors par
définition la C∗-algèbre universelle possédant une famille d’unitaires (e(γ))γ∈Q/Z
comme ci-dessus et une famille d’isométries (µn)n∈N∗ satisfaisant les relations sui-
vantes entre elles :

µnµm = µnm pour tous n,m ∈ N∗

et
µ∗nµm = µmµ

∗
n pour tous n,m ∈ N∗ premiers entre eux,

et telles que pour tout n ∈ N∗ et pour tout γ ∈ Q/Z, on ait :

e(γ)µn = µne(nγ)

et

µne(γ)µ
∗
n =

1

n

∑
nδ=γ

e(δ).

Définissons un flot (σt) sur CQ en posant, pour tout t ∈ R,

σt(e(γ)) = e(γ)

et
σt(µn) = nitµn.

Le couple (CQ, (σt)) est le système de Bost-Connes. Il possède des propriétés qui lui
confèrent un certain intérêt, et qui suggèrent un lien avec l’arithmétique du corps
Q des nombres rationnels et de ses extensions abéliennes. Rappelons brièvement
quelques résultats de [3]. Le théorème de Kronecker-Weber affirme que l’extension
abélienne maximale de Q est engendrée par les racines de l’unité :

Qab = Q(e2πiγ, γ ∈ Q/Z).

Faisons agir Gal(Qab/Q) sur Q/Z en identifiant Q/Z au groupe des racines de
l’unité dans C par

γ 7→ e2πiγ.

Ceci nous donne une action de Gal(Qab/Q) sur la C∗-algèbre CQ : pour tout σ ∈
Gal(Qab/Q),

σ(µn) = µn et σ(e(γ)) = e(σ(γ)).

On vérifie que cette action de Gal(Qab/Q) sur CQ est continue pour la topologie

de Krull sur Gal(Qab/Q) et la topologie normique sur CQ. L’ensemble C
Gal(Qab/Q)
Q

des points fixes de cette action est donc une sous-C∗-algèbre de CQ.

Théorème 1 (Bost-Connes [3]). La sous-C∗-algèbre C
Gal(Qab/Q)
Q est engendrée par

les µn avec n ∈ N∗.

De ce théorème, on déduit assez facilement :
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Théorème 2 (Bost-Connes [3]). Pour tout β ∈ R∗+, le groupe Gal(Qab/Q) agit
transitivement sur l’ensemble des états KMSβ factoriels de (CQ, (σt)).

Ce dernier théorème est un ingrédient très important de la classification des
états KMS. Il montre en particulier que le type des états KMS ne dépend que de
la température, et permet de définir la fonction de partition.

Un élément important de la preuve du théorème 1 et de beaucoup d’autres
résultats est que l’on connâıt une base comme C-espace vectoriel d’une sous-∗-
algèbre H dense dans CQ. Plus précisément :

Définition 3 (Bost-Connes [3]). Soit H la sous-∗-algèbre de CQ engendrée par les
µn avec n ∈ N∗ et les e(γ) avec γ ∈ Q/Z.

Théorème 4 (Bost-Connes [3]). Une base de H comme C-espace vectoriel est
donnée par les µne(γ)µ

∗
m avec n,m ∈ N∗ premiers entre eux et γ ∈ Q/Z.

Passons maintenant à la classification des états KMS.

Théorème 5 (Bost-Connes [3]). Pour tout β ∈]0; 1], il existe un unique état KMSβ
de (CQ, (σt)). Le facteur correspondant est l’unique facteur hyperfini de type III1.

La preuve du théorème 5 est très complexe. Sergey Neshveyev a donné dans
[29] une preuve plus simple de l’unicité. Dans cette thèse, nous suivons l’approche
initiale de Bost-Connes pour l’unicité, et nous donnons une preuve plus simple de
l’existence, cf. Proposition 4.1.2, qui se transpose facilement au système de Bost-
Connes. Quant au calcul du type, il est entièrement différent dans notre cadre.

Soit (εn)n∈N∗ la base hilbertienne standard de `2(N∗). Soit H l’opérateur non-
borné sur `2(N∗) défini par

Hεn = (log n)εn

pour n ∈ N∗. Pour tout β ∈]1;∞[, pour tout σ ∈ Gal(Qab/Q), définissons une
représentation πβ,σ de CQ sur `2(N∗) en posant :

πβ,σ(µn)(εm) = εnm

et
πβ,σ(e(γ))(εm) = σ(e2πimγ)εm.

Définissons un état KMSβ ϕβ,σ de (CQ, (σt)) en posant

ϕβ,σ(x) =
Tr(e−βHπβ,σ(x))

Tr e−βH
·

Théorème 6 (Bost-Connes [3]). Pour tout β ∈]1;∞[, pour tout σ ∈ Gal(Qab/Q),
l’état ϕβ,σ est factoriel de type I∞. L’application σ 7→ ϕβ,σ est une bijection entre
Gal(Qab/Q) et l’ensemble des états KMSβ factoriels de (CQ, (σt)).
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Ce théorème montre au passage que la fonction de partition est donnée par

Z(β) = Tr(e−βH) =
∑
n∈N∗

n−β

et est donc la fonction zêta de Riemann.

Généralisations du système de Bost-Connes

De nombreux auteurs ont cherché des généralisations de cette situation à des
corps globaux autres que Q. En première approximation, on peut considérer que le
problème est le suivant : étant donné un corps global k, construire un C∗-système
dynamique (Ck, (σt)) satisfaisant les conditions suivantes :

1. Le groupe Gal(kab/k) agit continûment sur Ck. Cette action commute avec le
flot σt et induit une action transitive de Gal(kab/k) sur l’ensemble des états
KMSβ factoriels de (Ck, (σt)) pour tout β ∈ R∗+, de sorte que la fonction de
partition est bien définie en tout β tel qu’il existe des états KMSβ factoriels
de type semifini.

2. On sait classifier entièrement les états KMSβ de (Ck, (σt)), la fonction de
partition est la fonction zêta de k éventuellement privée d’un facteur eulérien,
et on a une transition de phase avec brisure spontanée de symétrie au pôle
β = 1 de la fonction zêta.

Un espoir est que le système de Bost-Connes et ses généralisations pourraient
fournir une nouvelle approche intéressante pour l’étude des corps globaux et de
leurs fonctions zêta, voir en particulier l’article de Connes, Consani et Marcolli
[10]. Un bref résumé de la littérature sur les généralisations du système de Bost-
Connes est donné page 18.

Plusieurs généralisations de la construction Bost-Connes remplacent Q/Z par
k/O où k est un corps de nombres et O son anneau d’entiers algébriques, cf. en
particulier l’article de Harari et Leichtnam [17] et celui de Laca et van Franken-
huijsen [27]. Un problème est alors qu’il n’y a pas en général d’action naturelle du
semigroupe des idéaux de O sur k/O, ce qui rend difficile d’obtenir à la fois la
bonne fonction de partition (la fonction zêta) et le bon groupe de symétries (un
quotient de Gal(kab/k)). La seule construction qui réponde simultanément à ces
deux critères pour tout corps de nombres est celle de Ha et Paugam dans [16], mais
il semble difficile de classifier les états KMS du système obtenu par cette construc-
tion.

Le rôle important joué par la théorie explicite du corps de classes sur Q dans
le système de Bost-Connes suggère d’utiliser une théorie analogue dans les cas où
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il en existe. Rappelons qu’on appelle théorie explicite du corps de classes toute
théorie qui fournit une famille de générateurs de l’extension abélienne maximale
d’un corps global, et qui décrit l’action des idéaux ou des idèles sur ces générateurs
par l’application d’Artin. La recherche d’une telle théorie pour tous les corps glo-
baux constitue le douzième problème de Hilbert. A l’heure actuelle, la théorie
explicite du corps de classes est connue seulement pour Q, les corps CM (et en
particulier les corps quadratiques imaginaires), et les corps de fonctions (voir sec-
tion suivante). Dans chacun de ces cas, les générateurs de l’extension abélienne
maximale sont obtenus en considérant les points de torsion de certains groupes.
Par exemple, dans le cas de Q les générateurs sont les racines de l’unité, qui sont les
points de torsion du groupe C∗. Dans le cas d’un corps quadratique imaginaire k,
les générateurs sont obtenus comme valeurs d’une fonction dite fonction de Weber
évaluée aux points de torsion d’une courbe elliptique à multiplication complexe. En
utilisant des courbes elliptiques à multiplication complexe, Connes, Marcolli et Ra-
machandran [12] ont obtenu une bonne généralisation du système de Bost-Connes
pour les corps quadratiques imaginaires.

Résultats de cette thèse

Dans cette thèse, nous construisons des systèmes de type Bost-Connes pour tous
les corps de fonctions, c’est-à-dire pour tous les corps globaux de caractéristique
non-nulle, et nous démontrons qu’ils ont toutes les propriétés que l’on pourrait at-
tendre de C∗-systèmes de Bost-Connes pour des corps de fonctions ; en particulier,
nous classifions entièrement les états KMS et étudions la structure des facteurs
correspondants.

L’idée de base est que l’analogue d’une courbe elliptique à multiplication com-
plexe est un module de Drinfeld de rang 1. Il y a ici une difficulté supplémentaire
par rapport au cas des corps quadratiques imaginaires traité par Connes, Marcolli
et Ramachandran dans [12] : les modules de Drinfeld de rang 1 sur un anneau
de Dedekind fixé ne forment pas un espace localement compact. Cette difficulté
provient du fait que le corps qui joue le rôle d’analogue de C n’est lui-même pas
localement compact.

Heureusement, il existe une théorie explicite du corps de classes dûe à Hayes
[18], [19], [20], qui fournit un ensemble fini de modules de Drinfeld de rang 1 sur un
anneau de Dedekind donné, satisfaisant des propriétés très fortes de multiplication
complexe, en particulier au niveau de la compatibilité partielle entre les actions
des idéaux et du groupe de Galois sur les points de torsion de ces modules de Drin-
feld. Un résumé de cette théorie est proposé dans la sous-section 1.3. La théorie
de Hayes constitue l’ingrédient de base de la contruction effectuée dans cette thèse.
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Comme les rappels de théorie des nombres occupent toute la section 1 de la
deuxième partie, il serait inutile d’en faire ici. Nous nous contentons donc ici d’es-
quisser notre construction, en utilisant les notations introduites dans ces rappels.

Soient k un corps de fonctions et ∞ une place de k. Soit O le sous-anneau
de Dedekind de k des fonctions régulières en dehors de la place ∞. Notons IO le
semigroupe multiplicatif des idéaux de O. Fixons-nous une fonction-signe sgn sur
k. Soit H(sgn) l’ensemble fini de modules de Drinfeld-Hayes correspondant à sgn.
Soit X la réunion disjointe des groupes duaux des groupes de point de torsion des
modules de Drinfeld-Hayes appartenant à H(sgn). Comme les groupes de points de
torsion sont des groupes abéliens discrets de torsion, leurs duaux sont profinis, et
l’on en déduit que X est un espace topologique compact et totalement discontinu.
De plus, X est muni d’actions naturelles fidèles de IO et de Gal(K/k), où K est
l’extension de k engendrée par les coefficients et les points de torsion des éléments
de H(sgn). Si la définition de K peut sembler technique au premier abord, il suffit
pour le moment de retenir que

kab,∞ ⊂ K ⊂ kab.

Une façon de définir notre C∗-algèbre Ck,∞ est de poser

Ck,∞ = C(X) o IO.

Cependant, pour mener à bien des calculs il est plus pratique de voir cette C∗-
algèbre comme provenant d’un groupöıde, et c’est donc l’approche que nous suivons
dans cette thèse. A partir de l’action du semigroupe IO sur X, nous construisons
une action partiellement définie de son groupe enveloppant FO, qui n’est autre
que le groupe des idéaux fractionnaires associés à O. Nous définissons alors un
groupöıde G par

G = {(x, c) ∈ X × FO, c · x est défini}

muni des lois évidentes de composition et d’inversion. Notre C∗-algèbre est alors
définie par

Ck,∞ = C∗(G).

A partir du moment où ce choix de construction est fait, des pans entiers de
l’étude faite par Bost et Connes se transposent directement dans notre contexte. En
particulier, de nombreuses idées de preuves peuvent être réutilisées de façon plus
ou moins directe. Certains aspects cependant divergent du cas traité par Bost et
Connes. Par exemple, les facteurs à température inverse β 6 1 sont de type IIIq−β
(théorème 4.5.8) pour un corps de fonctions ayant Fq pour corps de constantes,
alors qu’ils sont de type III1 pour Q. Le calcul du type IIIq−β dans notre cadre
n’était pas évident car le calcul du ratio-set du facteur d’Araki-Woods ne suffit
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pas ; voir point 3. (c) ci-dessous.

Listons brièvement les principaux résultats que nous établissons concernant
notre C∗-système dynamique (Ck,∞, (σt)) :

1. Nous construisons une sous-∗-algèbre denseH, nous donnons une base dénombrable
de H comme C-espace vectoriel (cf. Lemme 3.2.2), et nous obtenons une
présentation par générateurs et relations à la fois de H et de Ck,∞, cf. Pro-
positions 3.1.2, 3.2.3, 3.3.6. Ces relations sont à coefficients rationnels.

2. Nous étudions une action de Gal(K/k) sur (Ck,∞, (σt)) et nous calculons la
sous-C∗-algèbre fixée par cette action, cf. Proposition 3.5.2. Nous obtenons
aussi divers résultats algébriques concernant cette action, cf. Proposition 3.6.9
et Lemme 3.8.3, qui seront utilisés pour la classification des états KMS.

3. Nous classifions entièrement les états KMSβ de (Ck,∞, (σt)). Nous identifions
une transition de phase avec brisure spontanée de symétrie en β = 1 :

(a) Nous montrons que, quelle que soit β, il existe un unique état KMSβ
invariant par Gal(K/k), cf. Proposition 4.1.2 pour l’existence et Propo-
sition 4.1.3 pour l’unicité.

(b) Dans la phase de basse température (β > 1), nous montrons que l’es-
pace des états KMSβ factoriels est principal homogène pour Gal(K/k)
muni de la topologie de Krull, cf. Théorème 4.3.10. Nous montrons
que ces états sont de type I∞ (cf. Proposition 4.3.8) en calculant leurs
représentations GNS (cf. Lemme 4.3.7), et vérifions que la fonction de
partition est égale à la fonction zêta de Dedekind de O, c’est-à-dire à
la fonction zêta de k privée du facteur correspondant à la place ∞, cf.
Lemme 4.3.3. Enfin, nous exprimons certaines valeurs spéciales de ces
états KMSβ extrémaux en termes de valeurs spéciales de fonctions zêta
partielles associées à ces classes d’idéaux, cf. Théorème 4.3.12.

(c) Dans la phase de haute température (β 6 1), nous montrons (cf. Théorème
4.4.15) qu’il n’existe qu’un unique état KMSβ, à savoir l’état invariant
par Gal(K/k) évoqué plus haut. Nous montrons alors que cet état est de
type IIIq−β , cf. Théorème 4.5.8. Dans ce but, nous commençons par cal-
culer le type de la restriction de cet état à l’algèbre fixée par Gal(K/k),
cf. Lemme 4.5.1, ce qui est facile puisqu’il suffit de calculer un ratio-set.
Puis nous montrons que le centre du centralisateur de cet état est fixé
par Gal(K/k), cf. Lemme 4.5.5, ce qui constitue l’étape la plus impor-
tante. Nous en déduisons alors que ce centralisateur est un facteur, cf.
Lemme 4.5.6, ce qui permet d’une part de calculer l’invariant T du fac-
teur dont nous cherchons le type, et d’autre part de montrer que ce type
n’est pas III0. Le résultat s’obtient alors par orthogonalité des invariants
S et T .
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nombreuses remarques utiles. Enfin, il a tout fait pour m’intégrer à la communauté
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dont les membres aussi compétents que sympathiques sont toujours prêts à aider
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plus que je me suis arrangé pour que sa table soit attenante à la mienne. Maŕıa
Gómez-Aparicio, Paulo Carrillo3 et Pierre Clare sont des compagnons de route
depuis l’année du DEA, et Pierre Fima depuis le magistère à l’ENS. Je voudrais
aussi saluer Aı̈cha Hachemi, Athina Mageira, Cécile Armana (merci pour les expli-
cations sur les modules de Drinfeld !), Claire Chavaudret, Jean-François Planchat,
Jérémie Brieussel, Joël Riou, Manuel Pégourié-Gonnard, Marco Porta, Maŕıa Car-
rizosa, Masseye Gaye, Olivier Fouquet et Philippe Hesse pour leurs contributions
respectives à la joyeuse ambience qui règne parmi les thésards de l’IMJ.

2Reviens nous voir de temps en temps quand tu seras à Los Angeles !
3Signe distinctif : se déplace toujours avec une tasse de café à la main.
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Un clin d’œil au passage à mes amis du MPI-Bonn que j’ai toujours bien aimé
retrouver lors des conférences : Ivan Dynov, Snigdhayan Mahanta, Jorge Plazas,
en plus d’Eugene Ha mentionné plus haut.

Ces remerciements seraient incomplets si je ne citais pas ma compagne Irène.
Mais comme elle est juste à côté, je peux lui dire directement toute ma reconnais-
sance et n’ai donc pas besoin de le faire ici !

Merci enfin à Michel Blanc pour avoir dit4 “sur un malentendu, ça peut mar-
cher” car cela s’applique très bien à la façon dont je suis venu aux algèbres
d’opérateurs.

4Dans le rôle de Jean-Claude Dusse dans l’œuvre immortelle Les Bronzés font du ski.
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Deuxième partie

Bost-Connes type systems for
function fields

Abstract

We describe a construction which associates to any function field k and
any place ∞ of k a C*-dynamical system (Ck,∞, σt) that is analogous to
the Bost–Connes system associated to Q and its archimedean place. Our
construction relies on Hayes’ explicit class field theory in terms of sign-
normalized rank one Drinfel’d modules. We show that Ck,∞ has a faithful
continuous action of Gal(K/k), where K is a certain field constructed by
Hayes such that kab,∞ ⊂ K ⊂ kab. Here kab,∞ is the maximal abelian ex-
tension of k that is totally split at∞. We classify the extremal KMSβ states
of (Ck,∞, σt) at any temperature 0 < 1/β <∞ and show that a phase tran-
sition with spontaneous symmetry breaking occurs at temperature 1/β = 1.
At high temperature 1/β > 1, there is a unique KMSβ state, of type IIIq−β ,
where q is the cardinal of the constant subfield of k. At low temperature
1/β < 1, the space of extremal KMSβ states is principal homogeneous under
Gal(K/k). Each such state is of type I∞ and the partition function is the
Dedekind zeta function ζk,∞. Moreover, we construct a ∗-subalgebra H, we
give a presentation of H and of Ck,∞, and we show that the values of the
low-temperature extremal KMSβ states at certain elements of H are related
to special values of partial zeta functions.
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Index

1P (P a predicate), 19

∗ (as in “a ∗ φ”), 27
∞, 16
bxc (x ∈ R), 19

Ac,σ (c ∈ IO, σ ∈ Gal(Kc/H
+)), 64

Af , 20
A+, 63
a ∗ φ (φ a Drinfel’d module, a ∈ IO), 27
α, 69

B(H) (H a Hilbert space), 19
B`2, 19

C1, 49, 66
C1,E (reduced C*-algebra), 69
Cc(G), 37
Cν (ν a character of Gal(K/k)), 66
C∞, 24
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Gal(K/k)
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χa (χ ∈ X, a ∈ IO), 33
χc (χ ∈ X, c ∈ FO), 34
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k,∞, 64
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Introduction

Statement of the main results

Let k be any global function field. Let∞ be any place of k. In this paper, we shall
associate to the pair (k,∞) a C*-dynamical system (Ck,∞, (σt)).

Our system aims to be an analog of the Bost–Connes (BC for short) system
associated to Q, cf. Bost and Connes [3]. The partition function of the BC system
is the Riemann zeta function without the Γ-factor at infinity. Similarly, we shall
check (Lemma 4.3.3) that the partition function of our system is the zeta function
of the field k without the factor corresponding to the place ∞ of k.

The BC system admits Gal(Qab/Q) as symmetry group. Similarly, we shall
check (Proposition 3.4.2) that our system has Gal(K/k) as symmetry group (mean-
ing that Gal(K/k) acts continuously and faithfully on Ck,∞, commuting with the
flow σt), where K is a field having the following property:

kab,∞ ⊂ K ⊂ kab,

where kab,∞ is the maximal abelian extension of k that is totally split at ∞. The
field K is generated over k by coefficients and torsion points of certain rank one
Drinfel’d modules; this is part of David R. Hayes’ explicit class field theory for
function fields, cf. Hayes [18], [19] and [20], which we shall quickly review. If ∞′ is
any place of k other than ∞, we have (cf. [18], Theorem 7.2)

kab,∞′ · kab,∞ = kab.

We shall construct our C*-algebra Ck,∞ as the maximal C*-algebra of a certain
groupoid G. We shall also give (Proposition 3.3.6) a presentation of Ck,∞ as a
C*-algebra.

For any temperature 1/β ∈ R∗+, let Kβ be space of KMSβ states of (Ck,∞, (σt)),
endowed with the weak∗ topology. By Bratteli and Robinson [4], II, Theorem
5.3.30, the space Kβ is a compact simplex (in particular, it is convex). Let E(Kβ)
denote the subspace of extreme points of Kβ. The elements of E(Kβ) are called
the extremal KMSβ states. By loc. cit., a KMSβ state is extremal if, and only if it
is a factor state. Thus, E(Kβ) is equal to the space of KMSβ factor states.

We shall classify the KMSβ states of our system for any temperature 1/β ∈ R∗+:
At low temperature 1/β < 1, we shall prove (Theorem 4.3.10) that E(Kβ) is
principal homogeneous5 under Gal(K/k). The states in E(Kβ) are of type I∞
(Proposition 4.3.8). At high temperature 1/β > 1, we shall prove (Theorem 4.4.15)
that there exists a unique KMSβ state. It is of type IIIq−β (Theorem 4.5.8), where
q is the cardinal of the constant subfield of k.

5Let G be topological group acting on a topological space X. One says that X is principal
homogeneous under G if, for any x ∈ X, the map g 7→ gx is a homeomorphism G→ X.

16



We shall construct a dense ∗-subalgebra H which gives an arithmetic structure
to our dynamical system, as in [3]. For example, we shall show (Theorem 4.3.12)
that evaluating low-temperature extremal KMSβ states on certain elements of the
subalgebraH gives rise to formulas involving special values of partial zeta functions.

Many of our proofs are adapted from [3], and we have also borrowed several
ideas from Harari and Leichtnam [17].

Outline

This paper is divided into four sections. In Section 1 we first review definitions and
results in the arithmetic of function fields and in the analytic theory of Drinfel’d
modules. We review Hayes’ explicit class field theory for function fields, in terms
of sign-normalized rank one Drinfel’d modules. We choose once and for all a sign-
function sgn, and Hayes’ theory provides us with a finite set H(sgn) of Drinfel’d
modules with special arithmetic properties. In particular, their coefficients and
torsion points generate the extension K/k which we mentioned above. In the rest
of this paper, the only Drinfel’d modules which we consider are the elements of
H(sgn).

In Section 2 we do the actual construction of the C*-dynamical system
(Ck,∞, (σt)). From the finite set H(sgn) provided by Hayes’ theory, we construct
a compact topological space X in the following way: for any φ ∈ H(sgn), let Xφ

denote the dual group of the discrete group of torsion points of the Drinfel’d mod-
ule φ. Let X be the disjoint union of the Xφ, where φ runs over H(sgn). The
compact space X is endowed with a natural action of the semigroup IO of ide-
als. This gives rise to a groupoid G, and the C*-algebra Ck,∞ is obtained as the
maximal groupoid C*-algebra of G. The flow (σt) is then easy to define.

In Section 3 we prove a number of results about the algebraic structure of
(Ck,∞, (σt)). We introduce a ∗-subalgebra H which plays the rôle of the algebra H
in the paper [3]. We prove that H is dense in Ck,∞, and we give a presentation of H
as a ∗-algebra and of Ck,∞ as a C*-algebra. We then study an action of Gal(K/k)
on Ck,∞ and compute the fixed-point subalgebra C1. The rest of this section is
devoted to miscellaneous arithmetical results which we use in the last section.

In Section 4 for any temperature 1/β ∈ R∗+, we describe the space E(Kβ) of
extremal KMSβ states (endowed with the weak∗ topology), and we compute the
type of all such states. We first construct a KMSβ state ϕβ and show that it
is the unique Gal(K/k)-invariant KMSβ state. We then show that the action of
Gal(K/k) on E(Kβ) is transitive and continuous. Thus, in order to describe E(Kβ),
it is enough to find an element of E(Kβ) and to describe its orbit under Gal(K/k).
At low temperature 1/β < 1, we associate to any admissible character χ a Gibbs
state ϕβ,χ in the regular representation at χ. We prove that the map χ 7→ ϕβ,χ
is a homeomorphism from the space Xadm of admissible characters to E(Kβ). We
also prove that both spaces are principal homogeneous under Gal(K/k). We check
that the states in E(Kβ) are of type I∞, that the partition function is the Dedekind
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zeta function ζk,∞, and we compute the values of the ϕβ,χ at some points of H in
terms of special values at β of partial zeta functions of k. At high temperature
1/β > 1, we prove that E(Kβ) = {ϕβ} and that the type of ϕβ is IIIq−β , where q is
the cardinal of the constant subfield of k.

Literature on Bost–Connes type constructions

The 1995 paper [3] has inspired many mathematicians. Unfortunately, it would
be impossible to mention all of them here; we refer to Section 1.4 of Connes and
Marcolli [11] for a more complete summary. M. Laca, N. Larsen, I. Raeburn and
others have investigated in a number of papers (see for instance [2], [25], [26],
[27], [28]) the semigroup crossed product and Hecke algebra aspects of the BC
construction and generalizations of it. In 1997, D. Harari and E. Leichtnam have
obtained in [17] a system with spontaneous symmetry breaking for any global field.
In 1999, P. Cohen has obtained in [6] a system for number fields whose partition
function is the Dedekind zeta function. In 2002, S. Neshveyev has given in [29]
a new proof of the uniqueness of the KMSβ state at high temperature. In 2004,
A. Connes and M. Marcolli have introduced in [11] the noncommutative space
of Q-lattices up to scaling and commensurability, allowing for a comprehensive
reformulation of the BC construction, and have studied the case of rank 2. In
2005, A. Connes, M. Marcolli and N. Ramachandran have obtained in [12], [13]
the “good” system for quadratic imaginary number fields and have studied its
relation to complex multiplication of elliptic curves. The same year, E. Ha and
F. Paugam have extended in [16] the Connes–Marcolli setting to arbitrary Shimura
varieties. Finally, in the paper [10], A. Connes, C. Consani and M. Marcolli have
introduced the notion of an endomotive, putting the BC construction into a much
wider perspective which also includes A. Connes’ spectral realization [9] of the
zeroes of the Riemann zeta function.

Acknowledgements. I thank Éric Leichtnam for giving me this research subject,
for many helpful comments on early versions of this paper, and for his explanations
on operator algebras. I thank Matilde Marcolli for encouraging me to give a talk on
this material at MPI, Bonn, in October 2005. During this research, I enjoyed the
excellent working environment of the “Projet Algèbres d’Opérateurs” at Jussieu,
and I thank Étienne Blanchard for letting me talk in its seminar. I am very
grateful to Alain Connes, David R. Hayes, Georges Skandalis and Stefaan Vaes
who kindly answered mathematical questions. I also thank Cécile Armana, Pierre
Fima, Eugene Ha, Cyril Houdayer and Frédéric Paugam for helpful discussions.

Here are two interesting remarks that people made at the end of my MPI talk.
1. As Alain Connes pointed out, our system lacks one feature of the BC system:

fabulous states. The reason for that is obvious: values of states are elements of
C, so the symmetry group Gal(K/k) does not act naturally on them. Obtaining
fabulous states would require to have a theory of dynamical systems of positive
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characteristic, where states would take values in some field of positive character-
istic. Note that even though the low temperature extremal KMSβ states of our
system do not have the fabulous property, they have interesting special values
(Theorem 4.3.12).

2. Arkady Kholodenko mentioned that it might be possible to adapt his work
on 2+1 gravity [23] in order to obtain zeta functions of function fields as partition
functions, and that Drinfel’d modules should play a rôle.

Notations

In this paper, N denotes the set of nonnegative integers, N∗ denotes the set of
positive integers, and R∗+ denotes the set of positive real numbers. Thus 0 ∈ N,
0 6∈ N∗, and 0 6∈ R∗+. For any Hilbert space H, we let B(H) denote the algebra of
all bounded linear operators on H. For any set X, we write B`2(X) for B(`2(X)).
For any x ∈ R, we set

bxc = max{n ∈ Z | n 6 x}.

For any predicate P , we define 1P to be equal to 1 if P is true, and 0 if P is false.
Thus, we have for any two predicates P and Q:

1P and Q = 1P1Q.

1 Function fields, Drinfel’d modules, and Hayes’

explicit class field theory

1.1 Function fields

Here are three equivalent definitions of a function field :

• A field which is a finite extension of Fp(T ), for some prime number p.

• A global field of positive characteristic.

• The field K(C) of rational functions on a projective curve C over a finite
field. The curve C can always be chosen to be smooth.

Thus, global fields fall into two categories: those of characteristic 0 are the
number fields, and those of positive characteristic are the function fields.

Recall that at the beginning of this paper, we chose a function field k and a
place ∞ of k.

Function fields have many similarities with number fields. An important part
of algebraic number theory works in the same way for all global fields.

The analog of the Dedekind ring of integers is defined as follows. According to
the third definition of a function field, view k as the field K(C) of rational functions
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on a smooth projective curve C over a finite field. View ∞ as a closed point of C.
Let O be the subring of k of all functions having no pole away from ∞. In other
words, O is the ring of regular functions on the affine curve C − {∞}. Note that
k = K(C) is the field of fractions of O.

Example. k = Fp(T ) and ∞ is the place corresponding to an absolute value | · |
such that |T | > 1. The subring O is then the polynomial ring Fp[T ].

Call finite the places of k other than ∞. We have a natural bijection

finite places of k ←→ maximal ideals of O.

Let p denote the characteristic of k. The range of the unique unital ring morphism
Z → k is a finite field with p elements; we denote it by Fp. The algebraic closure
of Fp in k is called the constant subfield of k. Let q denote its cardinal. Of course,
q is a power of p. We let Fq denote the constant subfield of k. An element of k is
said to be constant if it belongs to Fq.

For any place p of k, we let Np denote the cardinal of the residue field of p.
Thus, Np = qnp for some positive integer np called the degree of p. Note that if p

is finite, then the residue field is the quotient O/p.

The rest of this subsection is a review of a few well-known theorems about
function fields, which will be used in the proofs of our classification of KMSβ
states. These theorems are: the strong approximation theorem, Weil’s “Riemann
Hypothesis for curves”, and the abelian case of the Čebotarev density theorem for
the natural density. The first one will be used in Subsection 3.6, which in turn will
be used in the classification of KMSβ states at low temperature. The two other
ones will be used in the classification of KMSβ states at high temperature.

Let Af denote the ring of finite adèles of k. This is the restricted product of the
kp with respect to the Op, where p runs over all finite places of k. Let ιf : k ↪→ Af
be the diagonal embedding.

Theorem 1.1.1 (Strong approximation theorem). The field ιf (k) is dense in Af .

Proof. See Cassels and Fröhlich [5], Chapter II, §15, p. 67.

This is contrasted with the fact that if ι : k ↪→ A is the diagonal embedding
into the full ring of adèles, then ι(k) is discrete in A. Note that

A = Af × k∞,

where k∞ is the completion of k at ∞.
Let us now recall Weil’s “Riemann hypothesis for curves” theorem. The genus

of a function field is the genus of any projective smooth curve of which it is the
function field. For the statement of the following theorem, we temporarily forget
that we already chose a function field k and defined q as the cardinal of its constant
subfield.
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Theorem 1.1.2 (A. Weil, the Riemann Hypothesis for curves). Let k be a function
field of genus g. Let q be the cardinal of its constant subfield. Let N be the number
of places of k with norm q (i.e. with degree 1). Then

q − 2g
√
q + 1 6 N 6 q + 2g

√
q + 1.

Proof. Weil’s original proof is published in [34].

Let us now come back to the function field k that we fixed at the beginning of
this paper. Let g denote the genus of k.

Given an integer n > 1, one may ask how to obtain a result similar to Theo-
rem 1.1.2 for places of k with norm qn (i.e. with degree n). Note that one cannot
replace q by qn in Theorem 1.1.2. Here one has to be wary of the distinction be-
tween closed points, which correspond to places of k, and geometric points, which
correspond to places of suitable extensions of k. The following corollary will be
used in Subsections 4.4 and 4.5.

Corollary 1.1.3. For any n > 1, let Q(k, qn) denote the number of places of k
with norm qn, and let P (k, qn) denote the number of places k with norm 6 qn. The
following estimates hold when n→∞:

Q(k, qn) =
qn

n
+O

(
qn/2

)
, (1)

P (k, qn) ∼ q

q − 1
· q

n

n
. (2)

Proof. For any n > 1, let kn = k ⊗Fq Fqn . Note that the constant subfield of kn is
Fqn . Let Nn denote the number of places of kn with norm qn. By Theorem 1.1.2
applied to the function field kn, we have

qn − 2gqn/2 + 1 6 Nn 6 qn + 2gqn/2 + 1. (3)

Let n > 1. One easily checks that for any m | n there is a bijection

places of k with norm qm ←→ Gal(kn/k)-orbits with cardinal m

of places of kn with norm qn.

Thus we have
Nn =

∑
m|n

mQ(k, qm). (4)

This gives

nQ(k, qn) = Nn −
∑

m|n,m6n/2

mQ(k, qm).
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By equation (4), we have mQ(k, qm) 6 Nm, so we find

Nn > nQ(k, qn) > Nn −
∑

m|n,m6n/2

Nm.

> Nn − (n/2)Nbn/2c.

Applying the inequality (3), we get

qn + 2gqn/2 + 1 > nQ(k, qn) > qn − 2gqn/2 + 1− (n/2)(qn/2 + 2gqn/4 + 1),

and the estimate (1) follows. From the estimate (1), using the equality

P (k, qn) =
n∑

m=1

Q(k, qm),

one can obtain the estimate (2) by an elementary computation.

For any s ∈ C with Re s > 1, put

ζk(s) =
∏

p

1

1−Np−s

where the product is taken over all places of k. One shows that ζk can be continued
to a meromorphic function on C. Note that ζk is periodic, with period 2πi/ log q.
The inequality (3) for all n > 1 is then equivalent to the statement that all zeroes
of ζk have real part 1/2. One defines the zeta function without the factor at ∞,
denoted by ζk,∞, to be the meromorphic continuation of the function defined when
Re s > 1 by

ζk,∞(s) =
∏
p6=∞

1

1−Np−s
= (1−N∞−s)ζk(s).

Note that when Re s > 1, we have

ζk,∞(s) =
∑
a∈IO

1

Nas
.

Let us now recall a version of the Čebotarev density theorem.
Let S denote the set of all places of k. A set P of places of k is said to have a

Dirichlet density if the following limit exists in R:

d(P ) = lim
s→1+

∑
p∈P Np−s∑
p∈S Np−s

.

Moreover, P is said to have a natural density if the following limit exists in R:

δ(P ) = lim
N→+∞

Card{p ∈ P | Np 6 N}
Card{p ∈ S | Np 6 N}

.

If a set P has a natural density, then it also has a Dirichlet density, and d(P ) =
δ(P ).
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Theorem 1.1.4 (Čebotarev density theorem, abelian case, for the natural den-
sity). Let L be a finite abelian extension of k. Let σ ∈ Gal(L/k). Let P de-
note the set of all places p of k unramified in L and such that σp = σ, where
σp = (p, L/k) ∈ Gal(L/k) is the Artin automorphism of L associated to p. Then
P has natural density δ(P ) = 1/[L : k]. Therefore, it also has Dirichlet density
d(P ) = 1/[L : k].

Proof. Combine [5], Chapter VIII, Theorem 4 with the Artin reciprocity law.

We shall use the Čebotarev density theorem in Subsection 4.4, and we shall
also use the following corollary in Subsection 4.5.

Corollary 1.1.5. Let L be a finite abelian extension of k. Let σ ∈ Gal(L/k). For
any n > 1, let P (L/k, qn, σ) denote the number of places of p of k unramified in
L such that Np 6 qn and σp = σ, where σp = (p, L/k) ∈ Gal(L/k) is the Artin
automorphism of L associated to p. Let Q(L/k, qn, σ) denote the number of places
of p of k unramified in L such that Np = qn and σp = σ. The following estimates
hold when n→∞:

P (L/k, qn, σ) ∼ q

(q − 1) [L : k]
· q

n

n
, (5)

Q(L/k, qn, σ) ∼ 1

[L : k]
· q

n

n
. (6)

Proof. The estimate (5) follows from Theorem 1.1.4 and the estimate (2). We have

Q(L/k, qn, σ) = P (L/k, qn, σ)− P (L/k, qn−1, σ),

so
Q(L/k, qn, σ)

P (k, qn)
=
P (L/k, qn, σ)

P (k, qn)
− P (L/k, qn−1, σ)

P (k, qn−1)
· P (k, qn−1)

P (k, qn)
.

Hence
Q(L/k, qn, σ)

P (k, qn)

n→∞−−−→ 1

[L : k]
− 1

[L : k]
· 1
q

=
q − 1

q[L : k]
.

Applying the estimate (2) to that, we get the estimate (6).

1.2 Drinfel’d modules over C∞

Our references in this subsection are [20] and Chapter IV of Goss [15].
Recall that the maximal abelian extension of a quadratic imaginary number

field is generated by the j-invariant and the torsion points of a suitable elliptic
curve over C. One wishes to develop a similar theory for function fields. Thus,
one looks for good analogs of C and of the notion of an elliptic curve over C. The
analog of the field C has been well known for a long time and is what we shall
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denote C∞. The analog of the notion of an elliptic curve over C is going to be the
notion of a Drinfel’d module over C∞.

We begin with describing the analog of C. Let k∞ be the completion of k at∞.
The problem is that k∞ is not algebraically closed. Take an algebraic closure
kalg
∞ /k∞. One shows that∞ extends uniquely to a place of kalg

∞ . Then the problem
is that kalg

∞ is not complete. So let C∞ denote the completion of kalg
∞ at ∞. The

field C∞ is both complete and algebraically closed.
Let us choose once and for all an imbedding ι : k ↪→ C∞, and use it to view k

as a subfield of C∞.

Lattices

We are now ready to introduce Drinfel’d modules. The most concrete way to
introduce elliptic curves over C is to first define lattices in C. Similarly, we are
going to first define lattices in C∞.

Recall that O is the subring of integers of k, defined in the previous subsection.
A subgroup L ⊂ C∞ is said to be discrete if there exists a neighborhood U of 0 in
C∞ such that U ∩ L = {0}.

Definition 1.2.1. AnO-lattice in C∞ is a discrete, finitely generatedO-submodule
of C∞.

We shall say “lattice” instead of “O-lattice in C∞”.
This is an abstract definition, but in this paper we shall only have to deal

with a special case of lattices, rank one lattices, for which there is a very concrete
definition. Let us first define the rank of a lattice.

Let L be a lattice. As C∞ is a field containing O, it is obviously a torsion-free
O-module. Hence L is also torsion-free. As O is a Dedekind ring, the O-module
L, being finitely generated and torsion-free, is automatically projective, so there
exist an integer r > 1 and ideals a1, . . . , ar ∈ IO such that L is isomorphic as an
O-module to a1 ⊕ · · · ⊕ ar.

Definition 1.2.2. The integer r above is called the rank of L.

Let IO be the semigroup of all nonzero ideals of O, under the usual multipli-
cation law of ideals. For rank one lattices, we have the following result:

A subset of C∞ is a rank one lattice if, and only if it is of the form ξa
with ξ ∈ C∗∞ and a ∈ IO.

The Drinfel’d module associated to a lattice

Let L be a lattice (of any rank). Remember the following product formula:

sin z = z
∏

t∈πZ−{0}

(1− z/t) for all z ∈ C.
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Similarly, let us define a function eL : C∞ → C∞ by the following formula:

eL(x) = x
∏

`∈L−{0}

(1− x/`) for all x ∈ C∞.

One shows that this product converges for all x. The function eL should be called
the “sinus function associated to L”, but authors have decided to call it the “ex-
ponential function associated to L”. We have

eL(x+ y) = eL(x) + eL(y) for all x, y ∈ C∞, (7)

and
eL(ax) = φLa (eL(x)) for all a ∈ O, x ∈ C∞, (8)

where φLa ∈ C∞[X] is the polynomial given by the following formula if a 6= 0:

φLa = aX
∏

0 6=`∈a−1L/L

(1−X/eL(`)),

and φL0 = 0. Note that if a is a nonzero constant (that is, a ∈ F∗q), then it is
invertible in O and hence a−1L = L. Thus, one has

φa = aX for all a ∈ Fq. (9)

As we shall shortly see, this allows to check that for any a ∈ O the polynomial φLa
is Fq-linear, which means that it can have nonzero coefficients only in degrees that
are powers of q.

Equation (7) is an analog of the classical formula for sin(x+ y), not of the for-
mula for exp(x+y). The fact that eL is additive, while sin is not, is a phenomenon
typical of characteristic p algebra, just like the additivity of the Frobenius map
x 7→ xp. The polynomials φLa can be viewed as analogs of the classical Chebycheff
polynomials of trigonometry.

One shows, by analytic means, that eL induces a bijection

eL : C∞/L→ C∞.

So this is a group isomorphism. Use it to transport the O-module structure of
C∞/L to a new O-module structure on C∞, which we denote φL(C∞). Thus,
φL(C∞) is the O-module that is equal to C∞ as an additive group and whose
O-module structure is given by

(a, x) 7→ φLa (x).

Thus, by definition, the map eL is an isomorphism of O-modules

eL : C∞/L → φL(C∞). (10)

The Drinfel’d module associated to L is the map

φL : O → C∞[X],

a 7→ φLa .
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Definition of a Drinfel’d module over C∞

The map φL that we have just defined satisfies

φLa+b = φLa + φLb for all a, b ∈ O, (11)

φLab = φLa ◦ φLb = φLb ◦ φLa for all a, b ∈ O. (12)

Let τ = Xq and, for n > 0, τn = Xqn . In particular, τ 0 = X. Let C∞{τ} denote
the (noncommutative) C∞-algebra whose underlying vector space is the C∞-linear
span of the τn, for n > 0, and where the “multiplication” law is the composition
law ◦. Note that C∞{τ} consists exactly of those polynomials that are Fq-linear.
Combining equations (9) and (12), one obtains that the polynomial φLa is Fq-linear,

φLa ∈ C∞{τ} for all a ∈ O,

and that the map O → C∞{τ}, a 7→ φLa , is Fq-linear as well. Thus, it is a morphism
of Fq-algebras

φL : O → C∞{τ},
a 7→ φLa .

Let
D : C∞{τ} → C∞

be the derivative-at-0 map. In other words, D is the C∞-linear map defined by
D(τ 0) = 1 and D(τn) = 0 for any n > 1. We have

D(φLa ) = a for all a ∈ O.

This leads to the general definition of a Drinfel’d module over C∞:

Definition 1.2.3. Let φ : O → C∞{τ}, a 7→ φa, be a morphism of Fq-algebras.
Then φ is a Drinfel’d module over C∞ if and only if

1. for all a ∈ O, D(φa) = a,

2. φ is non-trivial, i.e. φ is not the map a 7→ aτ 0.

To any lattice L of any rank we have associated a Drinfel’d module over C∞,
which we denoted by φL. The uniformization theorem states that any Drinfel’d
module over C∞ comes from a unique lattice. Thus, the map L 7→ φL is a bijection
between lattices and Drinfel’d modules over C∞.

The rank of a Drinfel’d module over C∞ is the rank of the associated lattice.
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Action of the ideals

For any Drinfel’d module φ over C∞ and any a ∈ IO, we define the polynomial
φa ∈ C∞{τ} as follows. Let Ia,φ be the left ideal of C∞{τ} generated by the φa,
for a ∈ a. One can show that every left ideal of C∞{τ} is principal, so there exists
a unique monic φa ∈ C∞{τ} such that Ia,φ = C∞{τ}φa.

For any Drinfel’d module φ over C∞ and any nonzero a ∈ O, we define an
element µφ(a) ∈ C∗∞ by

µφ(a) = leading (highest-degree) coefficient of the polynomial φa.

Note that if a is a nonzero principal ideal of O, for any a ∈ O such that a = aO,
we have

φa = µφ(a)
−1φa.

It is easy to see that for any b ∈ O, we have Ia,φφb ⊂ Ia,φ. Thus, for any b ∈ O we
have φaφb ∈ Ia,φ, so there is a unique φ′b ∈ C∞{τ} such that

φaφb = φ′bφa.

One shows that the map b 7→ φ′b is a Drinfel’d module over C∞. We denote it by
a ∗ φ. For any two a, b ∈ IO, we have

a ∗ (b ∗ φ) = (ab) ∗ φ.

Thus, (a, φ) 7→ a∗φ is an action of IO on the set of all Drinfel’d modules over C∞.
Let FO be the enveloping (“Grothendieck”) group of the abelian semigroup IO.

The abelian group FO may be realized concretely as the group of fractional ideals
of k with respect to the Dedekind ring O. One shows that the action of IO on the
set of Drinfel’d modules over C∞ extends to an action of FO. One also has the
equality

φab = (b ∗ φ)aφb. (13)

Torsion points

Let φ : O → C∞{τ}, a 7→ φa, be a Drinfel’d module over C∞. Remember that
φ(C∞) is the O-module that is equal to C∞ as an abelian group and whose O-
module structure is given by

(a, x) 7→ φa(x).

Let φ(C∞)tor denote the O-torsion submodule of φ(C∞). In other words, an ele-
ment x ∈ φ(C∞) is in φ(C∞)tor if and only if φa(x) = 0 for some nonzero a ∈ O.

For any a ∈ O, let φ[a] = kerφa. For any a ∈ IO, let φ[a] = kerφa. Under
the bijection given by equation (10) the sets φ(C∞)tor, φ[a] and φ[a] are identified
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with the following subsets of C∞/L:

e−1
L (φ(C∞)tor) = kL/L,

e−1
L (φ[a]) = a−1L/L for all a ∈ O − {0},
e−1
L (φ[a]) = a−1L/L for all a ∈ IO.

Here a−1 is the inverse of a as a fractional ideal with respect to O, i.e.

a−1 = {x ∈ k | xa ⊂ O}.

The following equalities follow from the definitions:

φ[a] = φ[aO] for all a ∈ O,
φ[a] =

⋂
a∈a

φ[a] for all a ∈ IO,

φ(C∞)tor =
⋃
a∈O

φ[a],

φ(C∞)tor =
⋃

a∈IO

φ[a],

and
a | b⇐⇒ φ[a] ⊂ φ[b] for all a, b ∈ IO. (14)

One also checks that, for all a, b ∈ IO,

φ[a] ∩ φ[b] = φ[a + b], (15)

φ[a] + φ[b] = φ[a ∩ b]. (16)

We have
Cardφ[a] = (Na)r for all a ∈ IO, (17)

where r is the rank of φ and Na is the absolute norm of a, i.e., Na is the cardinal
of O/a.

Let a ∈ IO. By construction, φa is an O-module morphism

φa : φ(C∞)→ (a ∗ φ)(C∞).

For any b ∈ IO, let φa|φ[b] denote the restriction of φa to φ[b].

Lemma 1.2.4. Let φ be a Drinfel’d module over C∞. Let a, b ∈ IO. Let d = a+b

be the gcd of a and b. We have

Ker(φa|φ[b]) = φ[d],

Im(φa|φ[b]) = (a ∗ φ)[d−1b].
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Proof. First equality: we have Ker(φa|φ[b]) = φ[a]
⋂
φ[b], so the result follows from

equation (15).
Second equality: let r denote the rank of φ. We have

Card(Im(φa|φ[b])) = Card(φ[b])/Card(Ker(φa|φ[b]))

= Card(φ[b])/Card(φ[d])

= (Nb)r/(Nd)r

and
Card((a ∗ φ)[d−1b]) = N(d−1b)r,

so the two cardinals are equal, so it is enough to show one inclusion. Let x ∈
Im(φa|φ[b]). It is enough to show that (a ∗ φ)d−1b(x) = 0. Let y ∈ φ[b] such that
φa(y) = x. Let c = a ∩ b be the lcm. We have d−1b = a−1c. But

(a ∗ φ)a−1c(x) = (a ∗ φ)a−1c(φa(y)),

so,by equation (13), we get

(a ∗ φ)a−1c(x) = φc(y).

But b | c and y ∈ φ[b], so y ∈ φ[c], so

(a ∗ φ)a−1c(x) = 0.

Corollary 1.2.5. Let φ be a Drinfel’d module over C∞. Let a, b ∈ IO. For all
λ ∈ φ[b], there exists µ ∈ (a−1 ∗ φ)[ab] such that

(a−1 ∗ φ)a(µ) = λ.

Proof. Let ψ = a−1 ∗ φ. Let b2 = ab. Let d2 = a, so that d2 is the gcd of a and b2.
By Lemma 1.2.4, we have

Im(ψa|ψ[b2]) = φ[d−1
2 b2],

so
Im(ψa|ψ[ab]) = φ[b].

Corollary 1.2.6. Let φ be a Drinfel’d module over C∞. For all a ∈ IO, the map

(a−1 ∗ φ)a : (a−1 ∗ φ)(C∞)tor → φ(C∞)tor

is surjective.
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1.3 Hayes’ explicit class field theory

In this subsection we review D. R. Hayes’ explicit class field theory for function
fields, in terms of sign-normalized rank one Drinfel’d modules. We follow [20],
Part II, and [15], Chapter VII. Recall that k∞ is the completion of k at ∞. Let
F∞ denote the constant subfield of k∞. The field F∞ is a finite extension of Fq,
and its degree is equal to the degree of the place ∞.

Definition 1.3.1. A sign function on k∗∞ is a group morphism sgn: k∗∞ → F∗∞
which induces the identity map on F∗∞.

Let us choose once and for all a sign-function sgn (by [20], Corollary 12.2, the
number of possible choices is equal to the cardinal of F∗∞). We let sgn(0) = 0 so
that sgn becomes a function k∞ → F∞.

Definition 1.3.2. A Drinfel’d module φ over C∞ is said to be sgn-normalized if
there exists an element σ ∈ Gal(F∞/Fq) such that

µφ(a) = σ(sgn(a)) for all a ∈ O.

Let us now focus on the case of Drinfel’d modules of rank one.

Definition 1.3.3. Let H(sgn) denote the set of sgn-normalized rank one Drinfel’d
modules over C∞. The elements of H(sgn) are also called Hayes modules (for the
triple (k,∞, sgn)).

Proposition 1.3.4. H(sgn) is a finite set, and its cardinal h(sgn) is given by

h(sgn) =
Card F∗∞
Card F∗q

· h(O),

where h(O) is the class number of the Dedekind ring O.

Proof. See [20], Corollary 13.4.

Proposition 1.3.5. For any φ ∈ H(sgn) and any a ∈ FO, we have a∗φ ∈ H(sgn).
Thus, FO acts on H(sgn).

Proof. See [20], p. 22.

Definition 1.3.6. Let φ ∈ H(sgn), and let y ∈ O− Fq (recall that Fq denotes the
constant subfield of k). Let H+ be the field generated over k by the coefficients
of φy.

One shows (see [20], p. 23) that H+ does not depend on the choice of φ and y.

Proposition 1.3.7. The extension H+/k is finite, abelian, and unramified away
from ∞.
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Proof. See [20], Propositions 14.1 and 14.4.

One shows (see [20], §15) that H+ contains a subfield H which plays the rôle
of the Hilbert class field for the pair (k,∞).

Here is a concrete picture of the Galois group Gal(H+/k). First, let P+
O be the

following subgroup of FO:

P+
O = {xO | x ∈ k, sgn(x) = 1}.

We then have the following proposition.

Proposition 1.3.8. The Artin map ( · , H+/k) induces an isomorphism from
FO/P+

O to Gal(H+/k).

Proof. See [20], Theorem 14.7.

The Galois group Gal(H+/k) acts on H(sgn) by (σ, φ) 7→ σφ, where σφ is
defined by (σφ)a = σ(φa) for all a ∈ O (one checks that σψ ∈ H(sgn)).

Theorem 1.3.9. For any a ∈ IO, if σa = (a, H+/k) ∈ Gal(H+/k) denotes the
Artin automorphism of H+ associated to a, then we have

σaφ = a ∗ φ for all φ ∈ H(sgn).

The set H(sgn) is principal homogeneous under the action of Gal(H+/k).

Proof. See [20], Theorems 13.8 and 14.7.

Definition 1.3.10. For any φ ∈ H(sgn), let K denote the field generated over H+

by the elements of φ(C∞)tor. For any c ∈ IO, let Kc denote the field generated
over H+ by the elements of φ[c].

One shows (see [20], p. 28) that K and Kc are independent of the choice of
φ. The extension Kc/k is called the narrow ray class extension modulo c. By
construction, we have

K =
⋃

c∈IO

Kc.

Theorem 1.3.11. For any c ∈ IO, the extension Kc/k is finite, abelian, and
unramified away from ∞ and the prime divisors of c. Moreover, Kc contains the
ray class field of k of conductor c totally split at ∞. For any a ∈ IO prime to c, if
σa = (a, Kc/k) ∈ Gal(Kc/k) denotes the Artin automorphism of Kc associated to
a, then we have

σaλ = φa(λ) for all φ ∈ H(sgn), λ ∈ φ[c].

Proof. See [20], p. 28, or [19], Section 8.
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In particular, this shows that

kab,∞ ⊂ K ⊂ kab,

where kab,∞ is the maximal abelian extension of k that is totally split at ∞.
Let us give a concrete picture of the Galois group Gal(Kc/k), for c ∈ IO. Let

FO(c) denote the subgroup of FO of all fractional ideals that are prime to c, and
let

P+
O(c) = {xO | x ∈ k, sgn(x) = 1, x ≡ 1 mod c}.

We then have the following proposition.

Proposition 1.3.12. The Artin map ( · , Kc/k) induces an isomorphism from
FO(c)/P+

O(c) to Gal(Kc/k).

Proof. See [20], p. 28.

Moreover, the Galois group Gal(Kc/H
+) has an even simpler description: one

can check (loc. cit.) that it is isomorphic to the group of invertible elements in
O/c.

2 Construction of the C*-dynamical system (Ck,∞, (σt))

2.1 The space X of characters

For any φ ∈ H(sgn), let Xφ be the dual group of the discrete abelian torsion group
φ(C∞)tor. Thus, an element of Xφ is a character of φ(C∞)tor. The group Xφ is
profinite,

Xφ = lim
←a

φ̂[a],

where a runs over IO ordered by divisibility. Let X be the (disjoint) union of the
Xφ,

X =
⋃

φ∈H(sgn)

Xφ.

Note that the elements of X are reminiscent of characters in [17] and of Q-
lattices (or k-lattices) in [11] and [12], [13].

Lemma 2.1.1. For any character χ ∈ X, we have

Imχ ⊂ Up,

where Up is the group of p-th roots of unity in C.

Proof. Recall that for any φ ∈ H(sgn), as a group, φ(C∞) is equal to C∞, which
is a field of characteristic p. Thus, for all λ ∈ φ(C∞)tor, we have χ(λ)p = χ(pλ) =
χ(0) = 1.
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Lemma 2.1.2. X is compact (and Hausdorff ).

Proof. For any φ ∈ H(sgn), the group Xφ is profinite, hence compact. As H(sgn)
is finite, X is compact.

We define an action of IO on X by

χa = χ ◦ (a−1 ∗ φ)a for all a ∈ IO, φ ∈ H(sgn), χ ∈ Xφ. (18)

Recall that (a−1 ∗φ)a is a map from (a−1 ∗φ)(C∞) to φ(C∞). Thus, if χ ∈ Xφ then
χa ∈ Xa−1∗φ. Note that equation (13) guarantees that this is a semigroup action
of IO.

The exponent notation (χa) is inspired by what happens with characters of
Q/Z. These characters may be composed with the map φn : x 7→ nx, for any
n ∈ N∗. By definition of a character, we have χ ◦ φn = χn. In our case N∗ is
replaced by IO and the maps φn are replaced by the φa.

We define an action of Gal(K/k) on X by

σχ = χ ◦ σ for all σ ∈ Gal(K/k), χ ∈ X. (19)

One checks that the actions of Gal(K/k) and of IO on X commute with one
another.

Lemma 2.1.3. For all a ∈ IO, the map X → X, χ 7→ χa, is injective.

Proof. Let χ1, χ2 ∈ X such that χa
1 = χa

2. For i = 1, 2 let φi be such that χi ∈ Xφi .
By definition, we have χa

i ∈ Xa−1∗φi , so a−1 ∗ φ1 = a−1 ∗ φ2, so φ1 = φ2. Let
φ = φ1 = φ2. We have

χ1 ◦ (a−1 ∗ φ)a = χ2 ◦ (a−1 ∗ φ)a.

Corollary 1.2.6 then shows that χ1 = χ2.

Corollary 2.1.4. Let a1, a2, b1, b2 ∈ IO be such that a−1
1 a2 = b−1

1 b2.

1. Let χ1, χ2 ∈ X. We have

χa1
1 = χa2

2 ⇐⇒ χb1
1 = χb2

2 .

2. Let χ1, χ2, χ3 ∈ X. We have

χa1
1 = χa2

2 and χb1
3 = χb2

2 =⇒ χ1 = χ3.

Proof. Let us first prove (1). Suppose that χa1
1 = χa2

2 . We have χa1b2
1 = χa2b2

2 . But
a2b1 = a1b2, so χa2b1

1 = χa2b2
2 , so

(χb1
1 )a2 = (χb2

2 )a2 ,
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so Lemma 2.1.3 gives χb1
1 = χb2

2 , which proves one implication, and the other
implication follows by swapping ai with bi for i = 1, 2.

Let us now prove (2). We have

χa1b1
1 = χa2b1

2 = χa1b2
2 = χa1b1

3 ,

so Lemma 2.1.3 gives χ1 = χ3.

Corollary 2.1.4 allows to extend the action of IO on X to a partially defined
action of FO as follows.

Definition 2.1.5. For any χ ∈ X, let Fχ denote the set of all c ∈ FO such that
there exists χ1 ∈ X satisfying

χa1
1 = χa2 (20)

for some a1, a2 ∈ IO with c = a−1
1 a2. By Corollary 2.1.4 (1), the existence of χ1

only depends on χ and c, and does not depend on the choice of a1, a2 ∈ IO such
that c = a−1

1 a2. By Corollary 2.1.4 (2), the character χ1, when it exists, is uniquely
determined by χ and c. When c ∈ Fχ, we define a character χc by

χc = χ1.

The partially defined map FO × X → X, (c, χ) 7→ χc, should be regarded as
a partially defined group action of FO on X. For any (c, χ), the character χc is
defined if and only if c ∈ Fχ. For any c1, c2 in Fχ, if c1c2 ∈ Fχ one checks that
χc1c2 = (χc1)c2 . Of course, when c ∈ IO the character χc is just the one that was
defined in equation (18).

For any χ, we have IO ⊂ Fχ. Characters χ ∈ X for which this inclusion is an
equality (Fχ = IO) will be called admissible, and will play an important rôle later
(see Subsection 3.6).

Note that we obviously have

Fχa = a−1Fχ for all χ ∈ X, a ∈ IO. (21)

Lemma 2.1.6. Let χ ∈ X. Let φ ∈ H(sgn) such that χ ∈ Xφ. For any a ∈ IO,
we have

a−1 ∈ Fχ ⇐⇒ χ(λ) = 1 for all λ ∈ φ[a].

When this is the case, the character χa−1
is given by

χa−1

(λ) = (Na)−1
∑

φa(µ)=λ

χ(µ) for all λ ∈ (a ∗ φ)(C∞)tor.

Proof. If a−1 ∈ Fχ, then there exists χ1 ∈ X such that χ = χa
1. Thus, for all

λ ∈ φ[a], we have χ(λ) = χ1(φa(λ)), but φa(λ) = 0, so χ(λ) = 1.
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Now suppose that for all λ ∈ φ[a], χ(λ) = 1. For all λ ∈ (a ∗ φ)(C∞)tor, set

χ1(λ) = (Na)−1
∑

φa(µ)=λ

χ(µ).

Let us show that this defines a character χ1 of (a∗φ)(C∞)tor. Let λ ∈ (a∗φ)(C∞)tor.
By Lemma 1.2.6, there exists µ1 ∈ φ(C∞)tor such that φa(µ1) = λ. We have

χ1(λ) = (Na)−1
∑

µ0∈φ[a]

χ(µ0 + µ1) = (Na)−1
( ∑
µ0∈φ[a]

χ(µ0)
)
χ(µ1).

But we have χ(µ0) = 1 for all µ0 ∈ φ[a], and by equation (17) we have that
Card(φ[a]) = Na. Thus, we get

χ1(λ) = χ(µ1) for all λ ∈ (a ∗ φ)(C∞)tor and for all µ1 with φa(µ1) = λ.

Now let λ′ ∈ (a ∗ φ)(C∞)tor and µ′1 such that φa(µ
′
1) = λ′. We have

λ+ λ′ = φa(µ1) + φa(µ
′
1) = φa(µ1 + µ′1),

hence
χ1(λ+ λ′) = χ1(φa(µ1 + µ′1)) = χ(µ1 + µ′1) = χ(µ1)χ(µ′1),

so
χ1(λ+ λ′) = χ1(λ)χ1(λ

′),

which implies χ1(λ)p = χ1(pλ) = χ1(0) = 1, i.e.,

χ1(λ) ∈ Up for all λ ∈ (a ∗ φ)(C∞)tor.

Hence χ1 is a group morphism (a ∗ φ)(C∞)tor → Up, so χ1 ∈ X, and we have by
construction χa

1 = χ. Thus, we have a−1 ∈ Fχ and χa−1
= χ1.

Lemma 2.1.7. For all χ ∈ X, for all a, b ∈ IO relatively prime, we have

a−1b ∈ Fχ ⇐⇒ a−1 ∈ Fχ.

Proof. Let φ be such that χ ∈ Xφ. We have a−1b ∈ Fχ ⇔ a−1 ∈ Fχb . Lemma 2.1.6
applied to χb thus gives

a−1b ∈ Fχ ⇐⇒ χ((b−1 ∗ φ)b(λ)) = 1 for all λ ∈ (b−1 ∗ φ)[a].

But, as a and b are relatively prime, by Lemma 1.2.4, the map λ 7→ bλ is a bijection
from (b−1 ∗ φ)[a] onto φ[a]. Thus we get

a−1b ∈ Fχ ⇐⇒ χ(λ) = 1 for all λ ∈ φ[a],

and, by Lemma 2.1.6, this is equivalent to a−1 ∈ Fχ.
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Lemma 2.1.8. For all χ ∈ X, for all a, b ∈ IO relatively prime, we have

(ab)−1 ∈ Fχ ⇐⇒ a−1 ∈ Fχ and b−1 ∈ Fχ.

Proof. Let φ be such that χ ∈ Xφ. By Lemma 2.1.6, the statement that we want
to prove is equivalent to the following:

χ(λ) = 1 for all λ ∈ φ[a],
χ(λ) = 1 for all λ ∈ φ[ab] ⇐⇒

χ(λ) = 1 for all λ ∈ φ[b].
(22)

By equations (15) and (16), as a and b are relatively prime, we have

φ[ab] = φ[a]⊕ φ[b],

so, for any λ ∈ φ[ab], there exists a unique pair (λ1, λ2) ∈ φ[a] × φ[b] such that
λ = λ1 + λ2. We have χ(λ) = χ(λ1)χ(λ2), so equation (22) follows.

2.2 Construction of the groupoid G and of the dynamical
system (Ck,∞, (σt))

Let G be the following subset of X × FO:

G = {(χ, c) ∈ X × FO | c ∈ Fχ}.

We turn G into a groupoid by endowing it with the groupoid law

(χ1, c1) ◦ (χ2, c2) = (χ2, c1c2) if χ1 = χc2
2

and the inverse map
(χ, c)−1 = (χc, c−1).

One checks that, under the identification G(0) = X × {1} ' X, the range and
source maps r and s are respectively given by r(χ, c) = χc and s(χ, c) = χ.

The abelian group FO is endowed with the discrete topology. The groupoid G
is endowed with its topology as a subset of X × FO.

Lemma 2.2.1. G is a locally compact groupoid.

Proof. X × FO is locally compact by Lemma 2.1.2 and G is a closed subset of it,
so it is also locally compact. It is clear that the composition and inverse maps are
continuous, so this is a locally compact groupoid.

The C*-algebra Ck,∞ that was advertised in the introduction of this paper is the
maximal6 C*-algebra of the groupoid G. Let us quickly explain what that means.

6Actually, it coincides with the reduced C*-algebra because FO is an abelian group, but we
shall not need that in this paper.
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For χ ∈ X, let Gχ denote the fiber of s above χ, that is,

Gχ = {χ} × Fχ,

so Gχ is discrete and is in bijection with Fχ.
Let Cc(G) denote the convolution algebra of continuous maps G → C with

compact support, where the convolution product is given by

(f1f2)(g) =
∑

g1◦g2=g

f1(g1)f2(g2). (23)

Cc(G) is endowed with the involution f 7→ f ∗ defined by

f ∗(g) = f(g−1).

For any χ ∈ X, we define a ∗-representation of Cc(G) on the Hilbert space `2(Gχ)
by

(πχ(f)ξ)(g) =
∑

g1◦g2=g

f(g1)ξ(g2) for all f ∈ Cc(G), ξ ∈ `2(Gχ). (24)

In other words, πχ is the left regular representation on `2(Gχ). Let us define a
C*-norm ‖ · ‖ on Cc(G) by

‖f‖ = sup
π
‖π(f)‖,

where π runs over all ∗-representations of Cc(G). The completion C∗(G) of Cc(G)
under ‖ · ‖ is a C*-algebra, called the maximal C*-algebra of the groupoid G.
For more details about groupoid C*-algebras, see Renault [31], Khoshkam and
Skandalis [24], or Connes [8], Chapter II, §5.

Definition 2.2.2. We define the C*-algebra Ck,∞ by letting

Ck,∞ = C∗(G).

By definition, any ∗-representation π of Cc(G) extends uniquely to a represen-
tation of Ck,∞, which we still denote π.

Lemma 2.2.3. For any ∗-automorphism σ of Cc(G), there exists an unique exten-
sion of σ to a ∗-automorphism of Ck,∞.

Proof. For any ∗-automorphism σ of Cc(G) and any ∗-representation π of Cc(G),
note that π ◦σ is a ∗-representation of Cc(G). Thus, by definition of the norm ‖ · ‖,
σ is an isometry: for all f ∈ Cc(G) we have ‖σ(f)‖ = ‖f‖. The result then follows
easily.

For any g = (χ, c) ∈ G, put Ng = Nc, where Nc is the absolute norm of the
fractional ideal c, defined by Nc = (Na)−1Nb for any a, b ∈ IO such that c = a−1b.

Let us define a one parameter ∗-automorphism group (σt)t∈R of Cc(G) by

(σt(f))(g) = (Ng)itf(g) for all t ∈ R, f ∈ Cc(G), g ∈ G.
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Definition 2.2.4. We still denote σt the unique extension (given by Lemma 2.2.3)
of σt to an automorphism of Ck,∞.

It remains to check that the pair (Ck,∞, (σt)) is a C*-dynamical system in the
sense of [4], i.e. that the flow (σt) is strongly continuous, which means that for any
f ∈ Ck,∞, the map t 7→ σt(f) is continuous.

Lemma 2.2.5. The flow (σt) on Ck,∞ is strongly continuous.

Proof. Let f ∈ Ck,∞. Let us show that the map t 7→ σt(f) is continuous. Let
ε > 0. It is enough to show that when |t| is small enough, we have ‖f−σt(f)‖ < ε.
Let f ′ ∈ Cc(G) be such that ‖f − f ′‖ < ε/3. Like any ∗-automorphism, σt is an
isometry, so we have ‖σt(f) − σt(f ′)‖ = ‖σt(f − f ′)‖ = ‖f − f ′‖ < ε/3, so it is
enough to show that when |t| is small enough, we have ‖f ′ − σt(f ′)‖ < ε/3. For
any d ∈ FO, define a function f ′d ∈ Cc(G) by

f ′d(χ, c) =

{
f ′(χ, c) if c = d,

0 if c 6= d,
for all (χ, c) ∈ G.

Note that, as f ′ has compact support, the set {d ∈ FO | f ′d 6= 0} is finite, and we
have f ′ =

∑
d f
′
d. For any d we have σt(f

′
d) = Nditf ′d, so

‖f ′ − σt(f ′)‖ 6
∑

d

‖f ′d − σt(f ′d)‖ 6
∑

d

|1−Ndit|‖f ′d‖.

It is now obvious that when |t| is small enough, this is smaller than ε/3.

The resulting C*-dynamical system (Ck,∞, (σt)) is the one that was announced
in the introduction of this paper.

3 Algebraic structure of (Ck,∞, (σt))

3.1 The ∗-subalgebra H
In this subsection, we construct a ∗-subalgebra H which will play the rôle of the
algebra H in the Bost–Connes construction.

For any a ∈ IO, let µa ∈ Cc(G) be defined by

µa(χ, c) = 1c=a for all (χ, c) ∈ G.

For any φ ∈ H(sgn) and for any λ ∈ φ(C∞)tor, let us define a function e(φ, λ) ∈
Cc(G) by

e(φ, λ)(χ, c) = 1c=1 1χ∈Xφ χ(λ) for all (χ, c) ∈ G.

Definition 3.1.1. Let H denote the ∗-subalgebra of Cc(G) generated by the µa,
for all a ∈ IO, and the e(φ, λ), for all λ ∈ φ(C∞)tor and for all φ ∈ H(sgn).
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We shall later show (Proposition 3.3.5) that H is dense in Ck,∞. For now we
concentrate on checking several algebraic relations between the generators µa and
e(φ, λ) (see Proposition 3.1.2). We shall later see (Proposition 3.2.3) that the
relations of Proposition 3.1.2 define a presentation of H.

Recall that the inverse map in G is given by

(χ, c)−1 = (χc, c−1). (25)

The product law in Cc(G), defined by equation (23), can be rewritten as

(fg)(χ, c) =
∑

c2∈Fχ

f(χc2 , cc−1
2 ) g(χ, c2) for all f, g ∈ Cc(G), (χ, c) ∈ G. (26)

From equation (25), we check that for any a ∈ IO, the adjoint µ∗a is given by

µ∗a(χ, c) = 1c=a−1 for all (χ, c) ∈ G.

Using formula (26), we then check that, for all f ∈ Cc(G) and all (χ, c) ∈ G, we
have

(µaf)(χ, c) = 1ca−1∈Fχf(χ, ca−1), (27)

(fµa)(χ, c) = f(χa, ca−1), (28)

(µ∗af)(χ, c) = f(χ, ca), (29)

(fµ∗a)(χ, c) = 1a−1∈Fχf(χa−1

, ca).

From that we deduce that Cc(G) is unital, with unit µ1 (where, as usual, 1 denotes
the principal ideal (1) = O)

µ1 = 1,

and we also deduce the formulas

(µafµ
∗
b)(χ, c) = 1ca−1∈Fχ1b−1∈Fχf(χb−1

, ca−1b), (30)

(µ∗bfµa)(χ, c) = f(χa, ca−1b),

(µaµ
∗
b)(χ, c) = 1b−1∈Fχ1c=ab−1 , (31)

(µ∗bµa)(χ, c) = 1c=ab−1 . (32)

In particular, for b = a, equation (31) gives

(µaµ
∗
a)(χ, c) = 1a−1∈Fχ1c=1. (33)

The next proposition establishes some relations between the generators µa and
e(φ, λ). As we said above, it will later turn out that these relations really define
a presentation of H as a ∗-algebra (Proposition 3.2.3) and also a presentation of
Ck,∞ as a C*-algebra (Proposition 3.3.6).
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Proposition 3.1.2. The functions µa, for a ∈ IO, and e(φ, λ), for φ ∈ H(sgn)
and λ ∈ φ(C∞)tor, satisfy the following relations:

(a1) µ∗aµa = µ1 for all a ∈ IO.

(a2)
∑

φ e(φ, 0) = µ1 where φ runs over H(sgn).

(b) µaµb = µab for all a, b ∈ IO.

(c) µaµ
∗
b = µ∗bµa for all a, b ∈ IO relatively prime.

(d1) e(φ, λ)∗ = e(φ,−λ) for all φ ∈ H(sgn), λ ∈ φ(C∞)tor.

(d2) e(φ, λ1)e(φ, λ2) = e(φ, λ1 + λ2) for all φ ∈ H(sgn), λ1, λ2 ∈ φ(C∞)tor.

(d3) e(φ1, λ1)e(φ
2, λ2) = 0 for all φ1 6= φ2 ∈ H(sgn), λi ∈ φi(C∞)tor.

(e) e(φ, λ)µa = µae(a ∗ φ, φa(λ)) for all a ∈ IO, φ ∈ H(sgn), λ ∈ φ(C∞)tor.

(f) µae(φ, λ)µ∗a = 1
Na

∑
(a−1∗φ)a(µ)=λ e(a

−1 ∗ φ, µ) for all a ∈ IO, φ ∈ H(sgn),

λ ∈ φ(C∞)tor.

Proof. (a1): Equation (32) applied with b = a gives

(µ∗aµa)(χ, c) = 1c=1 = µ1(χ, c).

(a2): One checks directly that
∑

φ e(φ, 0) = µ1.
(b): Equation (27) applied with f = µb gives

(µaµb)(χ, c) = 1ca−1∈Fχ1b=ca−1 = 1b∈Fχ1b=ca−1 .

As b is in IO, we always have b ∈ Fχ, so we find

(µaµb)(χ, c) = 1b=ca−1 = 1ab=c.

Thus, µaµb = µab.
(c): By equations (31), (32) it is enough to show that for all (χ, c) ∈ G, we have

1b−1∈Fχ1c=ab−1 = 1c=ab−1 .

If c 6= ab−1, then both sides are zero, so the equality holds. If c = ab−1, then we
have ab−1 ∈ Fχ. As a and b are relatively prime, Lemma 2.1.7 then shows that
b−1 ∈ Fχ, so the equality holds.

(d1): For all χ ∈ X, as χ is a character we have

χ(−λ) = χ(λ) for all λ ∈ ψ(C∞)tor.

Relation (d1) follows.
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(d2) and (d3): From equation (26) and the formula χ(λ1 + λ2) = χ(λ1)χ(λ2),
one checks directly that for all (χ, c) ∈ G, letting ψ be such that χ ∈ Xψ, we have

(e(φ1, λ1)e(φ
2, λ2))(χ, c) = 1c=11φ1=φ2=ψχ(λ1 + λ2),

which proves (d2) and (d3).
(e): By equation (27) and the definition of e(φ, λ), we have, for any φ ∈ H(sgn),

λ ∈ φ(C∞)tor and (χ, c) ∈ G,

(µae(a ∗ φ, φa(λ)))(χ, c) = 1ca−1∈Fχ1ca−1=11χ∈Xa∗φχ(φa(λ))

= 1ca−1=11χ∈Xa∗φχ
a(λ).

By equation (28), this is equal to (e(φ, λ)µa)(χ, c).
(f): For any φ ∈ H(sgn), λ ∈ φ(C∞)tor and (χ, c) ∈ G, we have

(µae(φ, λ)µ∗a)(χ, c) = 1ca−1∈Fχ1a−1∈Fχe(φ, λ)(χa−1

, c) by equation (30)

= 1ca−1∈Fχ1a−1∈Fχ1c=11χ∈Xa−1∗φ
χa−1

(λ)

= 1a−1∈Fχ1c=11χ∈Xa−1∗φ
χa−1

(λ)

= 1a−1∈Fχ1c=11χ∈Xa−1∗φ
(Na)−1

∑
(a−1∗φ)a(µ)=λ

χ(µ),

where the last equality follows from Lemma 2.1.6. Let us first suppose that a−1 ∈
Fχ. We then have

(µae(φ, λ)µ∗a)(χ, c) = 1c=11χ∈Xa−1∗φ
(Na)−1

∑
(a−1∗φ)a(µ)=λ

χ(µ)

= (Na)−1
∑

(a−1∗φ)a(µ)=λ

e(a−1 ∗ φ, µ)(χ, c),

so we are done.
Let us now suppose that a−1 6∈ Fχ. We then have 1a−1∈Fχ = 0 and hence

(µae(φ, λ)µ∗a)(χ, c) = 0. Thus, it is enough to show that
∑

(a−1∗φ)a(µ)=λ e(a
−1 ∗

φ, µ)(χ, c) = 0. We have∑
(a−1∗φ)a(µ)=λ

e(a−1 ∗ φ, µ)(χ, c) = 1c=11χ∈Xa−1∗φ

∑
(a−1∗φ)a(µ)=λ

χ(µ),

so it is enough to show that if χ ∈ Xa−1∗φ, then
∑

ψa(µ)=λ χ(µ) = 0, where we have

set ψ = a−1 ∗ φ. Let µ1 ∈ ψ(C∞)tor such that ψa(µ1) = λ (see Lemma 1.2.6). We
then have ∑

ψa(µ)=λ

χ(µ) =
∑

ψa(µ0)=0

χ(µ0 + µ1),
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so ∑
ψa(µ)=λ

χ(µ) =
( ∑
µ0∈ψ[a]

χ(µ0)
)
χ(µ1).

But by Lemma 2.1.6, since a−1 6∈ Fχ, the restriction of χ to ψ[a] is a non-trivial
character of ψ[a], so ∑

µ0∈ψ[a]

χ(µ0) = 0,

so
∑

ψa(µ)=λ χ(µ) = 0, which completes the proof.

3.2 Presentation of H
The goal of this subsection is to show (Proposition 3.2.3) that the relations (a)–(f)
of Proposition 3.1.2 define a presentation of H as a ∗-algebra.

The proof of the next lemma follows that of Proposition 18 in [3].

Lemma 3.2.1. Let H̃ be a ∗-algebra with elements µ̃a, for a ∈ IO, and ẽ(φ, λ),
for φ ∈ H(sgn) and λ ∈ φ(C∞)tor, satisfying the relations (a)–(f) of Proposition

3.1.2. Let S be the following subset of H̃:

S = {µ̃aẽ(φ, λ)µ̃∗b | a, b ∈ IO relatively prime, φ ∈ H(sgn), λ ∈ φ(C∞)tor}.

Then:

1. The elements µ̃a, for a ∈ IO, and ẽ(φ, λ), for φ ∈ H(sgn) and λ ∈ φ(C∞)tor,
belong to the linear span of S. More specifically:

µ̃a =
∑

φ∈H(sgn)

µ̃aẽ(φ, 0)µ̃∗1 and ẽ(φ, λ) = µ̃1ẽ(φ, λ)µ̃∗1.

2. Let x1, x2 ∈ S. For i = 1, 2 write xi = µaie(φ
i, λi)µ

∗
bi
. Let d = a2 + b1

be the gcd of a2 and b1. Let c be the gcd of d−1a1a2 and d−1b1b2. Set ψ =
c−1d−1a2 ∗ φ1 and λ′ = φ1

d−1a2
(λ1) + φ2

d−1b1
(λ2). Then:

x1x2 = 1a2∗φ1=b1∗φ2µ̃d−1a1a2
ẽ(d−1a2 ∗ φ1, λ′)µ̃∗d−1b1b2

(34)

= 1a2∗φ1=b1∗φ2

∑
ψc(γ)=λ′

µ̃c−1d−1a1a2
ẽ(ψ, γ)µ̃∗c−1d−1b1b2

. (35)

In particular, equation (35) shows that x1x2 belongs to the C-linear span of
S.

3. If the elements µ̃a and ẽ(φ, λ) generate H̃ as a ∗-algebra, then the set S

generates H̃ as a C-vector space.
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Proof. (1) easily follows from relations (a1), (a2) of Proposition 3.1.2.
(2): We have

x1x2 = µa1e(φ
1, λ1)µ

∗
b1
µa2e(φ

2, λ2)µ
∗
b2
.

Using relations (a1), (b) and (c) of Proposition 3.1.2, we find

µ̃∗b1
µ̃a2 = µ̃∗d−1b1

µ̃∗dµ̃dµ̃d−1a2
= µ̃∗d−1b1

µ̃d−1a2
.

Hence we get
x1x2 = µ̃a1 ẽ(φ

1, λ1)µ̃d−1a2
µ̃∗d−1b1

ẽ(φ2, λ2)µ̃
∗
b2
.

Using relations (e) and (d1) of Proposition 3.1.2, we get

x1x2 = µ̃a1µ̃d−1a2
ẽ(d−1a2 ∗ φ1, φ1

d−1a2
(λ1))ẽ(d

−1b1 ∗ φ2, φ2
d−1b1

(λ2))µ̃
∗
d−1b1

µ̃∗b2
.

Hence relation (b) of Proposition 3.1.2 gives

x1x2 = µ̃d−1a1a2
ẽ(d−1a2 ∗ φ1, φ1

d−1a2
(λ1))ẽ(d

−1b1 ∗ φ2, φ2
d−1b1

(λ2))µ̃
∗
d−1b1b2

.

Thus, using relations (d2) and (d3) of Proposition 3.1.2, we get

x1x2 = 1a2∗φ1=b1∗φ2 µ̃d−1a1a2
ẽ(d−1a2 ∗ φ1, φ1

d−1a2
(λ1) + φ2

d−1b1
(λ2))µ̃

∗
d−1b1b2

.

By definition of ψ, λ′ and c, and using relation (b) of Proposition 3.1.2, we obtain

x1x2 = 1a2∗φ1=b1∗φ2 µ̃c−1d−1a1a2
(µ̃cẽ(c ∗ ψ, λ′)µ̃∗c )µ̃∗c−1d−1b1b2

.

Relation (f) of Proposition 3.1.2 then gives the result.
(3): The C-linear span of S contains the generators µ̃a and ẽ(φ, λ) by (1) and

is stable under multiplication by (2). Moreover, it is obviously stable under the

involution. Hence it is equal to H̃.

Lemma 3.2.2. The functions µae(φ, λ)µ∗b, for a, b ∈ IO relatively prime, φ ∈
H(sgn) and λ ∈ φ(C∞)tor, form a basis of H as a C-vector space.

Proof. By Lemma 3.2.1 (3), they generate H as a C-vector space. Thus we only
have to prove that they are linearly independent. Let us suppose that there exist
α1, . . . , αn ∈ C, a0, . . . , an, b0, . . . , bn ∈ IO with ai relatively prime to bi for each i,
φ1, . . . , φn ∈ H(sgn) and, for each i, λi ∈ φ(C∞)tor, such that

µa0e(φ
0, λ0)µ

∗
b0

=
n∑
i=1

αiµaie(φ
i, λi)µ

∗
bi
.

By equation (30) and the definition of e(φi, λi), we have

(µaie(φ
i, λi)µ

∗
bi

)(χ, c)

= 1cai−1∈Fχ1bi
−1∈Fχ1cai−1bi=11χ∈X

b−1
i

∗φi
χbi
−1(λi) for all (χ, c) ∈ G.

43



Thus, the support of µaie(φ
i, λi)µ

∗
bi

is included in

{g = (χ, c) ∈ G | χ ∈ Xb−1
i ∗φi

and c = aibi
−1}.

Let I denote the set of all i 6= 0 such that aibi
−1 = a0b0

−1 and b−1
i ∗ φi = b−1

0 ∗ φ0.
We thus have

µa0e(φ
0, λ0)µ

∗
b0

=
∑
i∈I

αiµaie(φ
i, λi)µ

∗
bi
.

As ai is relatively prime to bi, we see that for all i ∈ I, we have ai = a0 and bi = b0,
so φi = φ0. Hence we get

µa0e(φ
0, λ0)µ

∗
b0

=
∑
i∈I

αiµa0e(φ
i, λi)µ

∗
b0
.

Hence, multiplying by µ∗a0
on the left and by µb0 on the right, and using relation

(a) of Proposition 3.1.2, we get

e(φ0, λ0) =
∑
i∈I

αie(φ
0, λi).

But the e(φ0, λ), for λ ∈ φ0(C∞)tor, are linearly independent (use e.g. the isomor-
phism C(Xφ0 × {1}) ' C∗(φ0(C∞)tor) as in Lemma 3.3.2), so this is absurd.

Proposition 3.2.3. The relations (a)–(f) of Proposition 3.1.2 define a presentation
of H as a ∗-algebra.

Proof. Let H̃ be another ∗-algebra having elements µ̃a, for a ∈ IO, and ẽ(φ, λ), for
φ ∈ H(sgn) and λ ∈ φ(C∞)tor, satisfying the relations (a)–(f) of Proposition 3.1.2.

We want to show that there exists a unique morphism σ : H → H̃ such that
σµa = µ̃a and σe(φ, λ) = ẽ(φ, λ).

The uniqueness is clear by definition of H. Let us now prove existence. By
Lemma 3.2.2, we may define a C-linear map σ : H → H̃ by letting

σ(µae(φ, λ)µ∗b) = µ̃aẽ(φ, λ)µ̃∗b

for all a, b ∈ IO relatively prime, φ ∈ H(sgn) and λ ∈ φ(C∞)tor. Clearly, σ(f ∗) =
σ(f)∗. Moreover, Lemma 3.2.1 shows that σµa = µ̃a, σe(φ, λ) = ẽ(φ, λ) and

σ(f1f2) = σ(f1)σ(f2),

which completes the proof.
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3.3 Presentation of Ck,∞

The goal of this subsection is to show (Proposition 3.3.6) that the relations (a)–(f)
of Proposition 3.1.2 define a presentation of Ck,∞ as a C*-algebra.

Let φ ∈ H(sgn). Let Cφ denote the subset of Cc(G) of all functions whose
support is a subset of Xφ × {1}.

Lemma 3.3.1. Let f1, f2 ∈ Cφ. For all g ∈ G, we have

(f1f2)(g) = f1(g)f2(g).

Proof. Let g = (χ, c) ∈ G. By equation (26), we have

(f1f2)(χ, c) =
∑

c2∈Fχ

f1(χ
c2 , cc−1

2 )f2(χ, c2).

Thus, since f1, f2 ∈ Cφ, we can only have a nonzero term when cc−1
2 = 1 and c2 = 1.

If c 6= 1 then we get (f1f2)(χ, c) = 0, as expected. If c = 1 we obtain

(f1f2)(χ, 1) = f1(χ, 1)f2(χ, 1),

as expected.

In particular, we see that for any f1, f2 ∈ Cφ, we have f1f2 ∈ Cφ. We also have
f ∗1 ∈ Cφ. Thus Cφ is a ∗-subalgebra of Cc(G).

Let us define a norm ‖ · ‖φ on Cφ by:

‖f‖φ = sup
g∈G
|f(g)| for all f ∈ Cφ.

Lemma 3.3.2. Cφ is a C*-algebra for the norm ‖ · ‖φ. We have isomorphisms of
C*-algebras

Cφ ' C(Xφ) ' C∗(φ(C∞)tor).

Proof. The identification Xφ × {1} ' Xφ gives a bijection Cφ ' C(Xφ). By
Lemma 3.3.1, this is a ∗-isomorphism. By definition of ‖ ·‖φ, this is an isometry, so
‖ · ‖φ is a C*-norm on Cφ. The isomorphism C(Xφ) ' C∗(φ(C∞)tor) is a classical
result, see Davidson [14], Proposition VII.1.1.

Corollary 3.3.3. Cφ is a C*-subalgebra of Ck,∞.

Proof. It is a classical result that any injective ∗-morphism between two C*-
algebras is an isometry; see [14], Theorem 1.5.5. Apply this to the inclusion map
ι : Cφ → Ck,∞.

Lemma 3.3.4. The e(φ, λ), for λ ∈ φ(C∞)tor, generate a norm-dense ∗-subalgebra
of Cφ.
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Proof. By definition of the e(φ, λ), the isomorphism Cφ ' C∗(φ(C∞)tor) given by
Lemma 3.3.2 identifies e(φ, λ) with λ. But, by definition of C∗(φ(C∞)tor), the λ
generate a dense ∗-subalgebra of C∗(φ(C∞)tor), so the result follows.

Proposition 3.3.5. H is dense in Ck,∞ and any ∗-representation of H extends
uniquely to a representation of Ck,∞.

Proof. Let us first prove density. Since Cc(G) is dense in Ck,∞, it is enough to show
that any f ∈ Cc(G) can be approached by elements of H. Let f ∈ Cc(G). As f
has compact support, there is a finite subset {c1, . . . , cn} ⊂ FO such that for all
(χ, c) ∈ G, if c 6∈ {c1, . . . , cn}, then f(χ, c) = 0. Let fi be defined by

fi(χ, c) = 1c=ci f(χ, c) for all (χ, c) ∈ G.

We have
f = f1 + · · ·+ fn.

It is thus enough to show that each of the fi can be approached by elements of
H. Let i ∈ N such that 1 6 i 6 n. Write ci = a−1

i bi, with ai, bi ∈ IO relatively
prime. Let f ′i = µaifiµ

∗
bi

. We have fi = µ∗aif
′
iµbi , so it is enough to show that each

of the f ′i can be approached by elements of H. By equation (30), we have, for all
(χ, c) ∈ G,

f ′i(χ, c) = 1ca−1
i ∈Fχ

1b−1
i ∈Fχ

fi(χ
b−1
i , cci).

Thus, the support of f ′i is a subset of X ×{1}. For φ ∈ H(sgn), let f ′i,φ be defined
by

f ′i,φ(χ, c) = 1χ∈Xφf
′
i(χ, c) for all (χ, c) ∈ G.

We have
f ′i =

∑
φ∈H(sgn)

f ′i,φ,

so it is enough to show that each of the f ′i,φ can be approached by elements of H.
We have f ′i,φ ∈ Cφ, so the result follows from Lemma 3.3.4.

Now let us prove that any ∗-representation of H extends uniquely to a repre-
sentation of Ck,∞. Uniqueness follows from the density of H in Ck,∞. Let us show
existence. Let π be a ∗-representation of H. By definition of Ck,∞, it is enough
to show that π extends to a ∗-representation of Cc(G). The construction we just
made with the fi, f

′
i and f ′i,φ shows that as a ∗-algebra, Cc(G) is generated by the

Cφ, for φ ∈ H(sgn), and the µa, for a ∈ IO. It is thus enough to show that the
restriction of π to the group algebra C[φ(C∞)tor] extends to a representation of
Cφ. But this follows from Lemma 3.3.2

Proposition 3.3.6. The relations (a)–(f) of Proposition 3.1.2 define a presentation
of Ck,∞ as a C*-algebra.
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Proof. Let C̃ be another C*-algebra having elements µ̃a, for a ∈ IO, and ẽ(φ, λ), for
φ ∈ H(sgn) and λ ∈ φ(C∞)tor, satisfying the relations (a)–(f) of Proposition 3.1.2.

We want to show that there exists a unique morphism σ : Ck,∞ → C̃ such that
σµa = µ̃a and σe(φ, λ) = ẽ(φ, λ).

Uniqueness follows from the density of H in Ck,∞, see Proposition 3.3.5. Let
us prove existence.

Let H̃ denote the ∗-algebra generated by the µ̃a and the ẽ(φ, λ). By the universal

property of H (Proposition 3.2.3), there exists a ∗-morphism σ : H → H̃ such that

σµa = µ̃a and σe(φ, λ) = ẽ(φ, λ). Composing it with the inclusion H̃ → C̃ gives
a ∗-representation of H. By Proposition 3.3.5, this representation extends to a
∗-morphism from Ck,∞ into C̃, so we are done.

The flow (σt) has a simple expression for this presentation: one checks directly
that

σt(µa) = Naitµa for all t ∈ R, a ∈ IO (36)

and
σte(φ, λ) = e(φ, λ) for all t ∈ R, φ ∈ H(sgn), λ ∈ φ(C∞)tor. (37)

3.4 Galois symmetry of (Ck,∞, (σt))

Recall that an action of Gal(K/k) on X has been defined by equation (19).
Let Gal(K/k) act by ∗-automorphisms on Cc(G) by

(σf)(χ, c) = f(σχ, c) for all σ ∈ Gal(K/k), f ∈ Cc(G), (χ, c) ∈ G.

Definition 3.4.1. We still denote (σ, f) 7→ σf the unique extension (given by
Lemma 2.2.3) of this action to an action of Gal(K/k) on Ck,∞.

One checks directly that the action of Gal(K/k) on the generators is given by

σµa = µa for all σ ∈ Gal(K/k), a ∈ IO (38)

and

σ(e(φ, λ)) = e(σφ, σλ) for all σ ∈ Gal(K/k), φ ∈ H(sgn), λ ∈ φ(C∞)tor. (39)

Proposition 3.4.2. The group Gal(K/k), endowed with its profinite topology, is a
topological symmetry group of (Ck,∞, (σt)). In other words, the action of Gal(K/k)
on Ck,∞ is faithful, continuous, and commutes with the flow (σt), i.e.,

σ(σt(f)) = σt(σf) for all σ ∈ Gal(K/k), t ∈ R, f ∈ Ck,∞. (40)
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Proof. By Lemma 2.2.3, it is enough to check equation (40) for f ∈ Cc(G), which
is easily done by going back to the definitions.

Let us check that the action of Gal(K/k) on Ck,∞ is faithful. Let σ ∈ Gal(K/k)
with σ 6= 1. Let φ ∈ H(sgn). If σφ 6= φ then it is clear that σ acts non-trivially
on Ck,∞. If σφ = φ then, by definition of H+, we have σ ∈ Gal(K/H+). By
definition of K, the action of Gal(K/H+) on φ(C∞)tor is faithful. Thus there
exists λ ∈ φ(C∞)tor such that σλ 6= λ, so e(φ, σλ) 6= e(φ, λ). Thus, by equation
(39), σe(φ, λ) 6= e(φ, λ), so the action of Gal(K/k) on Ck,∞ is faithful.

Let us check that the action of Gal(K/k) on Ck,∞ is continuous. Let f ∈ Ck,∞
and ε > 0. By Proposition 3.3.5, the subalgebra H is dense in Ck,∞, so there exists
f0 ∈ H with ‖f − f0‖ < ε/3. Write f0 in the basis provided by Lemma 3.2.2,

f0 =
∑
i∈I

ciµaie(φ
i, λi)µ

∗
bi
,

where I is a finite set and where, for all i ∈ I, we have ci ∈ C, ai, bi ∈ IO relatively
prime, φi ∈ H(sgn), and λi ∈ φi(C∞)tor. Let K0 be the extension of k generated
by the λi and all their conjugates under Gal(K/k). Thus, K0/k is a finite Galois
subextension of K/k. Let V = Gal(K/K0). By definition of the profinite topology,
V is a neighborhood of 1 in Gal(K/k). For all σ ∈ V , we have σf0 = f0. We
have ‖σf − f0‖ = ‖σ(f − f0)‖ = ‖f − f0‖ < ε/3, so we find ‖σf − f‖ < 2ε/3.
Let W denote the open ball of radius ε/3 centered at f . For all f ′ ∈ W , we have
‖σf ′−σf‖ = ‖σ(f ′−f)‖ = ‖f ′−f‖ < ε/3, whence ‖σf ′−f‖ < ε, which completes
the proof of the continuity.

3.5 The Galois-fixed subalgebra

In this subsection, we introduce two C*-subalgebras of Ck,∞, and it will turn out
(Lemma 3.5.2) that they are the same one.

The first one, denoted by C∗(IO), is the C*-subalgebra of Ck,∞ generated by

the µa, for all a ∈ IO. The second one, denoted by C
Gal(K/k)
k,∞ , is the subset of Ck,∞

of all fixed points under the action of Gal(K/k). This is a C*-subalgebra of Ck,∞.
Let

Φ: IO → N

and
M : IO → Z

denote the Euler totient and Möbius inversion functions respectively, i.e., Φ and
M are the multiplicative functions defined, for all primes p and for all n > 0, by

Φ(pn) = Npn − 1n>1Npn−1

and
M(pn) = 1n=0 − 1n=1.
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Note that we have, for all a ∈ IO,

Φ(a) =
∑
b|a

M(b−1a)Nb.

Lemma 3.5.1. For all φ ∈ H(sgn), for all a ∈ IO, the O-module φ[a] has exactly
Φ(a) generators.

Proof. Let a =
∏

i p
ni
i be the factorization of a. Since the pi are relatively prime,

we have a =
⋂
i p

ni
i , so by equations (15) and (16), we have

φ[a] =
⊕
i

φ[pnii ],

so it is enough to do the proof when a is a prime power, which is then easy.

The proof of the next lemma has been inspired by that of Proposition 21 (b) in
[3] and of Proposition 4.1 (3) in [17].

Lemma 3.5.2. The two subalgebras C∗(IO) and C
Gal(K/k)
k,∞ of Ck,∞ are the same:

C∗(IO) = C
Gal(K/k)
k,∞ .

Definition 3.5.3. We let C1 denote this C*-algebra:

C1 = C∗(IO) = C
Gal(K/k)
k,∞ .

This notation will be justified in Subsection 4.4, where C1 will be viewed as a
spectral subspace of Ck,∞ for the action of Gal(K/k).

Proof. One inclusion is clear: C
Gal(K/k)
k,∞ contains C∗(IO). Let us check the other

inclusion. The Galois group Gal(K/k) is endowed with its profinite topology, so it
is a compact abelian group. Let dσ be the normalized Haar measure on it. Let us
consider the map E defined by

E : Ck,∞ → C
Gal(K/k)
k,∞ ,

x 7→
∫

Gal(K/k)

σ(x)dσ.
(41)

By Proposition 3.3.5, H is dense in Ck,∞, so E(H) is dense in C
Gal(K/k)
k,∞ . But, by

Lemma 3.2.1, H is the linear span of the µae(φ, λ)µ∗b, for a, b ∈ IO, φ ∈ H(sgn),
and λ ∈ φ(C∞)tor. Thus E(H) is the linear span of the µaE(e(φ, λ))µ∗b. Hence, it
is enough to show that for all φ ∈ H(sgn) and for all λ ∈ φ(C∞)tor, the element
E(e(φ, λ)) belongs to C∗(IO).

So let φ ∈ H(sgn) and λ ∈ φ(C∞)tor. Let us first assume that λ = 0. The group
Gal(H+/k) acts transitively on H(sgn) (see Theorem 1.3.9). By Galois theory,
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the restriction map Gal(K/k) → Gal(H+/k) is surjective. Hence Gal(K/k) acts
transitively on H(sgn). Thus, by relation (a2) in Proposition 3.1.2, we get

E(e(φ, λ)) = 1/h(sgn), (42)

where h(sgn) is the cardinal of H(sgn). So the proof is complete.
Let us now assume that λ 6= 0. Let

a = annO(λ) = {a ∈ O | φa(λ) = 0}.
We have λ ∈ φ[a] and, for all b 6= a such that b | a, λ 6∈ φ[b]. So λ is a generator of
the O-module φ[a]. Let Ka denote the extension of H+ generated by the elements
of φ[a]. By [20], Theorem 16.2, Gal(Ka/k) acts transitively on the set Xa defined
by

Xa = {(ψ, µ) | ψ ∈ H(sgn), µ is a generator of ψ[a]}.
By Galois theory, the map Gal(K/k)→ Gal(Ka/k) is surjective, so Gal(K/k) also
acts transitively on Xa. Thus E(e(φ, λ)) only depends on a. We therefore note

E(e(a−1)) = E(e(φ, λ)).

Relation (f) of Proposition 3.1.2 gives, for all ψ ∈ H(sgn) and b ∈ IO,

µbe(ψ, 0)µ∗b =
1

Nb

∑
µ∈(b−1∗ψ)[b]

e(b−1 ∗ ψ, µ).

Thus equation (a2) of Proposition 3.1.2 gives

µbµ
∗
b =

1

Nb

∑
ψ∈H(sgn)

∑
µ∈(b−1∗ψ)[b]

e(b−1 ∗ ψ, µ).

Applying E to this equality and using Lemma 3.5.1, we get

Nbµbµ
∗
b = h(sgn)

∑
c|b

Φ(c)E(e(c−1)),

where h(sgn) is the cardinal of H(sgn). Doing a Möbius inversion, we then find

h(sgn) Φ(b)E(e(b−1)) =
∑
c|b

M(c−1b)Ncµcµ
∗
c .

Thus, for all b ∈ IO, we get the following explicit expression of E(e(b−1)) as an
element of C∗(IO):

E(e(b−1)) =

∑
c|b M(c−1b)Ncµcµ

∗
c

h(sgn)Φ(b)
=

∑
c|b M(c−1b)Ncµcµ

∗
c

h(sgn)
∑

c|b M(c−1b)Nc
. (43)

Proposition 3.5.4. C1 is isomorphic to the universal C*-algebra generated by
elements µ̃a, for a ∈ IO, subject to the relations (a1), (b) and (c) of Proposition
3.1.2.

Proof. This follows directly from Proposition 3.3.6 and Lemma 3.5.2.
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3.6 Admissible characters

Some ideas in this subsection have been inspired by [17], §5. Our main goal here
is to prove Proposition 3.6.9, which will be useful for the classification of extremal
KMSβ states at low temperature.

Lemma 3.6.1. Let χ ∈ X. Let φ ∈ H(sgn) be such that χ ∈ Xφ. The following
conditions are equivalent:

1. For any maximal ideal p ∈ IO, the restriction of χ to φ[p] is non-trivial.

2. For any b ∈ IO different from 1, the restriction of χ to φ[b] is non-trivial.

3. Fχ = IO.

Proof. (2) ⇒ (1) is trivial. (1) ⇒ (2): Since b 6= 1 there exists a maximal ideal
p dividing b. By equation (14), we then have φ[p] ⊂ φ[b], so the result follows.
(2)⇒ (3): Let c ∈ Fχ. Write c = b−1a with a, b ∈ IO relatively prime. By Lemma
2.1.7, we have b−1 ∈ Fχ. Thus, by Lemma 2.1.6, the restriction of χ to φ[b] is
trivial, so b = 1, so c ∈ IO. (3) ⇒ (2): Let b ∈ IO with b 6= 1. We have b−1 6∈ Fχ,
so the result follows by Lemma 2.1.6.

Definition 3.6.2. A character χ ∈ X is said to be admissible if it satisfies the
above equivalent conditions. Let Xadm denote the topological subspace of X of
admissible elements.

Recall that Af is the ring of finite adèles of k with respect to O. Thus, Af is
the restricted product of the kp with respect to the Op, where p runs over all finite
places of k.

The following lemma is well known.

Lemma 3.6.3. Let a ∈ IO. The diagonal map ι : k ↪→ Af induces an O-module
isomorphism

k/a
∼−→

⊕
p

kp/ap,

where p runs over all finite places of k, kp is the completion of k at p, and ap is
the closure of a in kp.

Proof. Let R =
∏

p ap ⊂ Af . This contains ι(a). Hence ι induces a map

k/a→ Af/R.

This map is an O-module morphism. It is injective because ι−1(R) = a. By the
strong approximation theorem (Theorem 1.1.1), the range of ι is dense in Af . But
by definition of the restricted product, R is an open subset of Af . Hence ι induces
a surjection modulo R. Thus ι induces an isomorphism of O-modules k/a ' Af/R.
But Af/R =

⊕
p kp/ap, so the result follows.

51



Lemma 3.6.4. For any ideal a ∈ IO and for any finite place p of k, there exists
a character χ of kp/ap whose restriction to p−1ap/ap is non-trivial.

Proof. Let Fp denote the residue field of Op. This is a finite extension of Fp. The
ring Op is principal (as is any local ring of a Dedekind ring), so its maximal ideal
pOp is equal to uOp for some u ∈ Op. Now ap is also an ideal of Op, so it is equal
to uvOp for some v > 0. Hence we have p−1ap/ap = uv−1Op/u

vOp. But we have
kp = Fp((u)) and Op = Fp[[u]], so we can define a character χ on kp/ap by letting

χ
( ∑
k∈Z

aku
k
)

= exp
(
2iπTr

Fp

Fp(av−1)/p
)
.

The restriction of χ to p−1ap/ap is non-trivial since we have χ(uv−1) = exp(2iπ/p).

Lemma 3.6.5. For any ideal a ∈ IO, there exists a character χ of k/a whose
restriction to p−1ap/ap, for any finite place p of k, is non-trivial.

Proof. Use Lemma 3.6.3 to identify k/a with
⊕

p kp/ap. For all p, let χp be a
character of kp/ap as given by the preceding lemma. Let χ =

∏
p χp. Then χ is a

character of k/a which has the required property.

Lemma 3.6.6. For any φ ∈ H(sgn), there exists an admissible character χ ∈ Xφ.
In particular, Xadm is non-empty.

Proof. Let L denote the lattice corresponding to φ. Write L = ξa with ξ ∈ C∗∞
and a ∈ IO. Let χ0 be a character of k/a as given by Lemma 3.6.5. Define a
character χ of φ(C∞)tor by

χ(λ) = χ0(e
−1
L (λ)/ξ).

Then χ is admissible.

Lemma 3.6.7. For any χ ∈ Xadm, the map IO → X, a 7→ χa, is injective.

Proof. By definition of admissibility and equation (21), we have Fχa = a−1IO, so
the result follows.

Lemma 3.6.8. For any χ ∈ Xadm and for any σ ∈ Gal(K/k), we have σχ ∈ Xadm.

Proof. The actions of Gal(K/k) and of IO onX commute with one another. Hence,
Fσχ = Fχ = IO. Hence σχ is admissible.

Proposition 3.6.9. For any χ ∈ Xadm, the map Gal(K/k) → Xadm, σ 7→ σχ, is
injective.
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Proof. Let φ ∈ H(sgn) such that χ ∈ Xφ. Let 1 6= σ ∈ Gal(K/k). Suppose that
σχ = χ. We have σχ ∈ Xσ−1φ, so σ−1φ = φ. Thus σφ = φ, so by definition of H+,
we see that σ ∈ Gal(K/H+). Also σ induces a map

σ : φ(C∞)tor → φ(C∞)tor.

For any λ ∈ φ(C∞)tor, for any a ∈ O, we have φa(σλ) = (σφa)(σλ) = σ(φa(λ)),
so σ is an O-module automorphism of φ(C∞)tor. Let L denote the lattice corre-
sponding to φ. Write L = ξa with ξ ∈ C∗∞ and a ∈ IO. Thus, we have O-module
isomorphisms

k/a
ξ−→ kL/L

eL−→ φ(C∞)tor, (44)

which we use to identify k/a with φ(C∞)tor as O-modules. Thus, σ is seen as an
O-module automorphism of k/a. Use Lemma 3.6.3 to identify k/a with

⊕
p kp/ap.

For any finite place p of k, writing kp as a field of Laurent series as in the proof
of Lemma 3.6.4, one sees that kp/ap ' kp/Op as Op-modules, hence as O-modules.
Hence EndO(kp/ap) = Op, acting by multiplication. Thus

EndO(k/a) =
∏

p

Op.

View σ as an element of EndO(k/a) and write σ =
∏

p σp with σp ∈ Op for all p.
By definition of K, the action of Gal(K/H+) on φ(C∞)tor is faithful. Thus, as

an O-module automorphism of φ(C∞)tor, we have σ 6= 1. Thus, there exists a p

such that σp 6= 1, so σp− 1 ∈ Op−{0}. Since χ is admissible, there exists λ ∈ φ[p]
such that χ(λ) 6= 1. View λ as an element of p−1ap/ap. Let λ̃ ∈ p−1ap ⊂ kp be a
representative of λ. Let µ̃ = (σp−1)−1λ̃ ∈ kp. Let µ denote the class of µ̃ in kp/ap.
We have (σp − 1)µ = λ, so (σ − 1)µ = λ, so

χ((σ − 1)µ) 6= 1

and so
χ(σµ) 6= χ(µ),

which is absurd since σχ = χ.

3.7 Irreducibility of regular representations at admissible
characters

The goal of this subsection is to show that the regular representations of G associ-
ated to admissible characters are irreducible. This will be used to classify extremal
KMS states at low temperature.

Recall that for any χ ∈ X we defined the regular representation πχ of Cc(G)
by equation (24). By definition of Ck,∞, πχ extends uniquely to a representation
of Ck,∞.

Recall that Xadm is the subset of X of admissible elements.
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Lemma 3.7.1. For all χ ∈ Xadm, the regular representation πχ of Ck,∞ is irre-
ducible.

Proof. Let χ ∈ Xadm. Let φ be such that χ ∈ Xφ. The representation πχ is a
map Ck,∞ → B`2(Gχ). Identify Fχ with Gχ through the map c 7→ (χ, c). As χ is
admissible, we have Fχ = IO. Thus Gχ is identified with IO. Let A ∈ B`2(IO)
such that

πχ(f)A = Aπχ(f) for all f ∈ Ck,∞.
Let us show that A is a scalar multiple of the identity. For that let us first prove
that A is diagonal. Let (εc)c∈IO be the standard orthonormal basis of `2(IO): in
other words, for all c, a ∈ IO, εc(a) = 1a=c. Let (ac,d) be the matrix representing A
in this basis. Thus we have

Aεd =
∑

c

ac,dεc for all c ∈ IO.

Using equation (24), we check that

πχ(µa)εb = εab for all a ∈ IO, b ∈ IO (45)

and

πχ(e(ψ, λ))εb = 1ψ=b−1∗φχ
b(λ)εb for all ψ ∈ H(sgn), λ ∈ ψ(C∞)tor, b ∈ IO.

Now let λ = (λψ)ψ∈H(sgn) be a family with λψ ∈ ψ(C∞)tor for all ψ ∈ H(sgn). Let

e(λ) =
∑

ψ∈H(sgn)

e(ψ, λψ).

We have
πχ(e(λ))εb = χb(λb−1∗φ)εb for all b ∈ IO.

Thus, for all b ∈ IO, we get

Aπχ(e(λ))εb =
∑
a∈IO

aa,bχ
b(λb−1∗φ)εa,

πχ(e(λ))Aεb =
∑
a∈IO

aa,bχ
a(λa−1∗φ)εa.

Thus, for all a, b ∈ IO with aa,b 6= 0 and for all λ, we get

χb(λb−1∗φ) = χa(λa−1∗φ). (46)

If b−1 ∗ φ 6= a−1 ∗ φ, since χ is admissible, we can obviously choose λ to make
equation (46) fail. Thus we have b−1 ∗ φ = a−1 ∗ φ. By letting λ vary, we see that
χb and χa are the same character of (a−1 ∗ φ)(C∞)tor. Thus χa = χb. Thus, as
χ is admissible, by Lemma 3.6.7, we find a = b. Thus (ac,d) is a diagonal matrix.
Finally, using the equality Aπχ(µa) = πχ(µa)A for all a ∈ IO, one sees that the
diagonal entries (ac,c) are all equal, so that (ac,d) is a scalar multiple of the identity
matrix. Thus πχ is an irreducible representation.
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3.8 A lemma on the action of Gal(K/k) on H
In this subsection we prove an important lemma which we shall use in Subsections
4.4 and 4.5.

Definition 3.8.1. Let F be a set of finite places of k. An ideal c ∈ IO is said to
be F -localized if all its prime divisors belong to F .

Definition 3.8.2. Let d ∈ IO. Let Fd be the set of all places of k dividing d.
We define H[d] to be the ∗-algebra generated by the µa, for all Fd-localized ideals
a ∈ IO, and the e(φ, λ), for all φ ∈ H(sgn) and λ ∈ φ[d].

Note that for any d ∈ IO, Gal(K/Kd) acts trivially on H[d]. Thus the ac-
tion of Gal(K/k) on H[d] gives an action of the quotient group Gal(Kd/k) =
Gal(K/k)/Gal(K/Kd) on H[d] (remember that the field Kd was defined in Defini-
tion 1.3.10).

Lemma 3.8.3. Let d ∈ IO. Let p be a maximal ideal of IO not dividing d. Let
σp = (p, Kd/k) ∈ Gal(Kd/k) be the Artin automorphism of Kd associated to p. For
all x ∈ H[d], we have

xµp = µpσp(x). (47)

Proof. Let A denote the subset of H[d] of all elements x such that equation (47)
holds. Obviously, A is a C-subalgebra of H[d]. But H[d] is generated as a C-
algebra by the µa, the µ∗a and the e(φ, λ), for all Fd-localized ideals a ∈ IO, all
φ ∈ H(sgn) and all λ ∈ φ[d]. Indeed, by relation (d1) of Proposition 3.1.2, we
have e(φ, λ)∗ = e(φ,−λ). Hence in order to prove that A = H[d], it is enough to
check that µa ∈ A, µ∗a ∈ A and e(φ, λ) ∈ A for any Fd-localized ideal a ∈ IO, any
φ ∈ H(sgn) and any λ ∈ φ[d].

Let a ∈ IO be a Fd-localized ideal. By relation (b) of Proposition 3.1.2, we have
µaµp = µpµa = µpσp(µa), so µa ∈ A. As a is Fd-localized and p does not divide d,
relation (c) of Proposition 3.1.2 gives µ∗aµp = µpµ

∗
a = µpσp(µ

∗
a), so µ∗a ∈ A.

Now let φ ∈ H(sgn) and λ ∈ φ[d]. We have

e(φ, λ)µp = µpe(p ∗ φ, φp(λ)) by relation (e) of Proposition 3.1.2
= µpe(σpφ, φp(λ)) by Theorem 1.3.9
= µpe(σpφ, σp(λ)) by Theorem 1.3.11
= µp σp(e(φ, λ)).

Thus e(φ, λ) ∈ A, which completes the proof.

4 KMSβ equilibrium states of (Ck,∞, (σt))

4.1 The Galois-invariant KMSβ state at any temperature

The goal of this subsection is to construct (Proposition 4.1.2), for any β ∈ R∗+, a
Galois-invariant KMSβ state ϕβ of (Ck,∞, (σt)). We shall also show (Proposition
4.1.3) that ϕβ is the only Galois-invariant KMSβ state of (Ck,∞, (σt)).
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Proposition 3.5.4 shows that C1 is isomorphic to the infinite tensor product

C1 =
⊗

p

τp,

where p runs over the finite places of k and where, for each p, τp is the (Toeplitz)
C*-algebra generated by µp. Note that the τp are nuclear.

Let β ∈ R∗+. For each p, define a state ϕβ,p on τp by

ϕβ,p(µ
n
pµ
∗m
p ) = 1n=mNp−nβ for all n,m > 0.

Define a state ϕβ on C1 by

ϕβ =
⊗

p

ϕβ,p.

Note that we have

ϕβ(µaµ
∗
b) = 1a=bNa−β for all a, b ∈ IO. (48)

Recall that the map E : Ck,∞ → C1 was defined in equation (41).

Definition 4.1.1. We extend ϕβ to a state on Ck,∞ by letting

ϕβ(f) = ϕβ (E(f)) for all f ∈ Ck,∞.

Proposition 4.1.2. For any β ∈ R∗+, the state ϕβ on Ck,∞ is a KMSβ state of
(Ck,∞, (σt)). In particular, the state ϕβ on C1 is a KMSβ state of (C1, (σt)).

Proof. For any f1, f2 ∈ Ck,∞, we look for a bounded holomorphic function Fβ,f1,f2
on the strip 0 < Im z < β realizing the KMSβ property for the state ϕβ and the
pair (f1, f2).

Since H is a dense (σt)-invariant ∗-subalgebra of Ck,∞, by [4], §5.3.1, it is
enough to do that for f1, f2 ∈ H. In Lemma 3.2.2, we found a basis of H as a
C-vector space. Obviously, it is enough to check the KMSβ condition in the case
when f1 and f2 are elements of that basis. Thus, write f1 = µa1e(ψ

1, λ1)µ
∗
b1

and
f2 = µa2e(ψ

2, λ2)µ
∗
b2

with ai, bi ∈ IO relatively prime, with ψi ∈ H(sgn) and with
λi ∈ ψi(C∞)tor. By Lemma 3.2.1 (2),

f1f2 = 1a2∗ψ1=b1∗ψ2 µd−1a1a2
e(d−1a2 ∗ ψ1, λ′)µ∗d−1b1b2

where d is the gcd of a2 and b1 and λ′ = ψ1
d−1a2

(λ1) + ψ2
d−1b1

(λ2). We thus have

E(f1f2) = 1a2∗ψ1=b1∗ψ2 µd−1a1a2
E(e(d−1a2 ∗ ψ1, λ′))µ∗d−1b1b2

.

Let c = annO(λ′). Using equation (43), we deduce

E(f1f2) = 1a2∗ψ1=b1∗ψ2 µd−1a1a2

∑
f|c M(f−1c)Nfµfµ

∗
f

h(sgn)Φ(c)
µ∗d−1b1b2

,
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where h(sgn) is the cardinal of H(sgn). Using the formula for ϕβ(µaµ
∗
b) given in

equation (48), we then get

ϕβ(f1f2) =
1a2∗ψ1=b1∗ψ2

h(sgn)Φ(c)

∑
f|c

M(f−1c)Nf1d−1a1a2f=d−1b1b2fN(d−1a1a2f)
−β.

Now the condition d−1a1a2f = d−1b1b2f is equivalent to a1a2 = b1b2 and, as ai is
relatively prime to bi, this is equivalent to a1 = b2 and a2 = b1. We thus get

ϕβ(f1f2) =
1a1=b21a2=b11ψ1=ψ2

h(sgn)Φ(c)

∑
f|c

M(f−1c)NfN(d−1a1a2f)
−β.

Now if a2 = b1, then d = a2 = b1, and so c = annO(λ1 + λ2). Summing this up, we
have

ϕβ(f1f2) =
1a1=b2 1a2=b1 1ψ1=ψ2

h(sgn)Φ(c)

∑
f|c

M(f−1c)NfN(a1f)
−β (49)

where c = annO(λ1 + λ2). Swapping f1 with f2 amounts to swapping 1 with 2 in
the indices, so we get

ϕβ(f2f1) =
1a1=b2 1a2=b1 1ψ1=ψ2

h(sgn)Φ(c)

∑
f|c

M(f−1c)NfN(a2f)
−β

where c = annO(λ1 + λ2). Thus we find

ϕβ(f2f1) =

(
Na2

Na1

)−β
ϕβ(f1f2).

We already know that both sides vanish unless a1 = b2, so we get

ϕβ(f2f1) =

(
Na2

Nb2

)−β
ϕβ(f1f2).

Now we have for all t ∈ R,

σt(f2) = σt(µa2e(ψ
2, λ2)µ

∗
b2

) = Nait2 µa2e(ψ
2, λ2)Nb−it2 µ∗b2

=

(
Na2

Nb2

)it

f2.

Thus, letting

Fβ,f1,f2(z) =

(
Na2

Nb2

)iz

ϕβ(f1f2)

defines a bounded holomorphic function Fβ,f1,f2 on the strip, realizing the KMSβ
property for the state ϕβ and the pair (f1, f2).

Proposition 4.1.3. Let β ∈ R∗+.
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1. The state ϕβ on C1 is the only KMSβ state of (C1, (σt)).

2. The state ϕβ on Ck,∞ is the only Galois-invariant KMSβ state of (Ck,∞, (σt)).

Proof. Clearly, the two statements are equivalent. Let us prove (1). Let ϕ be a
KMSβ state of (C1, (σt)). Let us show that

ϕ = ϕβ.

Let a, b ∈ IO. We have

ϕ(µaµ
∗
b) = ϕ(µ∗bσiβ(µa)) = Na−βϕ(µ∗bµa). (50)

Let us first work in the case when a 6= b. Let us prove that ϕ(µaµ
∗
b) = 0. Since

ϕ(µaµ
∗
b) = ϕ(µbµ∗a), we may swap a and b, and therefore we may assume without

loss of generality that a - b. Let d = a + b denote the gcd of a and b. We have

µ∗bµa = µ∗d−1bµ
∗
dµdµd−1a = µ∗d−1bµd−1a. (51)

Since d−1a and d−1b are relatively prime, we have

µ∗d−1bµd−1a = µd−1aµ
∗
d−1b. (52)

Thus, equation (50) applied to d−1a and d−1b gives

ϕ(µd−1aµ
∗
d−1b) = N(d−1a)−βϕβ(µd−1aµ

∗
d−1b). (53)

As a - b, we have d−1a 6= 1, so equation (53) gives

ϕ(µd−1aµ
∗
d−1b) = 0.

Hence equation (52) gives ϕ(µ∗d−1bµd−1a) = 0, so equation (51) gives ϕ(µ∗bµa) = 0,
so equation (50) gives ϕ(µaµ

∗
b) = 0. Hence we have proven that

a 6= b =⇒ ϕ(µaµ
∗
b) = 0 = ϕβ(µaµ

∗
b).

In the case when a = b equation (50) gives

ϕ(µaµ
∗
a) = Na−βϕ(µ∗aµa) = Na−β = ϕβ(µaµ

∗
a).

Thus we have proven that

ϕ(µaµ
∗
b) = ϕβ(µaµ

∗
b) for all a, b ∈ IO.

As the linear span of the µaµ
∗
b is the ∗-algebra generated by the µa, it is dense in

C1 (by Definition 3.5.3), so we get ϕ = ϕβ.
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4.2 Action of Gal(K/k) on extremal KMSβ states

As usual Gal(K/k) is endowed with its profinite topology. It acts on the set of
states by (σ, ϕ) 7→ ϕ ◦ σ. Obviously the KMSβ condition and factoriality are
preserved by this action. Hence, the sets Kβ and E(Kβ) are invariant under the
action of Gal(K/k).

The proof of the next proposition comes from that of Theorem 25 in [3].

Proposition 4.2.1. For any β ∈ R∗+, the action of Gal(K/k) on E(Kβ) is transi-
tive.

Proof. The main ingredient is that the Galois-fixed subalgebra has a unique KMSβ
state (cf. Proposition 4.1.3). As in the proof of Lemma 3.5.2, let dσ be the nor-
malized Haar measure on Gal(K/k), and let E denote the map defined in equation
(41).

Let ϕ1, ϕ2 ∈ E(Kβ). Then ϕ1 ◦ E and ϕ2 ◦ E are Galois-invariant elements of
Kβ. Thus, by Proposition 4.1.3, they are equal:

ϕ1 ◦ E = ϕ2 ◦ E.

But we have, for i = 1, 2,

ϕi ◦ E =

∫
Gal(K/k)

ϕi ◦ σ dσ. (54)

Equation (54) gives two decompositions of the same state as a barycenter of ex-
tremal KMSβ states, but such a decomposition is unique (cf. [4], II, Theorem
5.3.30), so the orbits of ϕ1 and of ϕ2 under Gal(K/k) are the same one.

Let S denote the space of all states of Ck,∞, endowed with the weak∗ topol-
ogy. Recall that the weak∗ topology on S is the one for which a basis of open
neighborhoods of a state ϕ0 is given by the

B(ϕ0;x1, . . . , xn; ε) = {ϕ ∈ S | |ϕ(xi)− ϕ0(xi)| < ε for all i} (55)

for all n > 1, x1, . . . , xn ∈ Ck,∞ and ε > 0.

Lemma 4.2.2. The action of Gal(K/k) on S, given by (σ, ϕ) 7→ ϕ ◦ σ, is contin-
uous.

Proof. Let ϕ0 ∈ S, n 6 1, let x1, . . . , xn ∈ Ck,∞, and let ε > 0. Let
U = B(ϕ0;x1, . . . , xn; ε), as defined in equation (55). Let us find an open set
V ⊂ Gal(K/k) and an open set W ⊂ S such that

ϕ ◦ σ ∈ U for all σ ∈ V, ϕ ∈ W. (56)
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Let us take W = B(ϕ0 ∈ S;x1, . . . , xn; ε/2). By Proposition 3.4.2, for any i,
1 6 i 6 n, the map

Gal(K/k)→ Ck,∞,

σ 7→ σ(xi)

is continuous, so the finite intersection

V =
n⋂
i=1

{σ ∈ Gal(K/k) | ‖σ(xi)− xi‖ < ε/2}

is an open neighborhood of 1 in Gal(K/k). Hence, all we have to do is to check
equation (56). Let σ ∈ V and ϕ ∈ W . Let 1 6 i 6 n. We have ‖σ(xi)−xi‖ < ε/2,
so, as ϕ is a state, |ϕ(σ(xi)) − ϕ(xi)| < ε/2. On the other hand, as ϕ ∈ W , we
have |ϕ(xi)− ϕ0(xi)| < ε/2. Thus |ϕ(σ(xi))− ϕ0(xi)| < ε, so ϕ ◦ σ ∈ U .

4.3 Extremal KMSβ states at low temperature 1/β < 1 and
special values

Recall that Xadm is the subspace of X of admissible elements, that E(Kβ) is en-
dowed with the weak∗ topology, and that Gal(K/k) is endowed with its profinite
topology. In this subsection, for any β > 1, we shall construct a homeomorphism
Xadm → E(Kβ), χ 7→ ϕβ,χ, commuting with the actions of Gal(K/k), and we shall
show that both E(Kβ) (for β > 1) and Xadm are principal homogeneous spaces un-
der Gal(K/k). Moreover, we shall compute the values of ϕβ,χ at certain elements
of H and relate them to special values of partial zeta functions of k.

For any χ ∈ Xadm, as at the beginning of the proof of Lemma 3.7.1, let us make
the identification Gχ = Fχ = IO so that πχ is seen as a representation in `2(IO).
Let (εa)a∈IO be the standard orthonormal basis of `2(IO).

Definition 4.3.1. Let H be the unbounded operator on `2(IO) defined by

Hεa = (log Na)εa for all a ∈ IO.

Lemma 4.3.2. For any χ ∈ Xadm, for all t ∈ R and for all f ∈ Ck,∞, we have

πχ(σt(f)) = eitHπχ(f)e−itH .

Proof. By Lemma 2.2.3, it is enough to do the proof in the case when f ∈ Cc(G).
It is then a straightforward computation.

The function β 7→ Tr(e−βH) is trivially computed:

Lemma 4.3.3. For all β > 1, we have Tr(e−βH) = ζk,∞(β).

Proof. Tr(e−βH) =
∑

a∈IO
e−β log Na =

∑
a∈IO

Na−β = ζk,∞(β).
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Definition 4.3.4. For any χ ∈ Xadm, for any β > 1, we define a linear functional
ϕβ,χ on Ck,∞ by

ϕβ,χ(f) = ζk,∞(β)−1 Tr(πχ(f)e−βH).

Let (εa)a∈IO denote the standard basis of `2(IO).

Lemma 4.3.5. For any χ ∈ Xadm and for any β > 1, ϕβ,χ is a KMSβ state of the
C*-dynamical system (Ck,∞, (σt)).

Proof. By Lemma 4.3.3, we have ϕβ,χ(1) = 1. We also have, for any f ∈ Ck,∞,

ϕβ,χ(ff
∗) = ζk,∞(β)−1 Tr(πχ(f

∗)e−βHπχ(f)) > 0,

so ϕβ,χ is a state on Ck,∞. For any f, f ′ ∈ Ck,∞, let us define a bounded continuous
function Fβ,χ,f,f ′ on the strip {z ∈ C | 0 6 Im z 6 β} by

Fβ,χ,f,f ′(z) = ζk,∞(β)−1 Tr(e−βHπχ(f)eizHπχ(f
′)e−izH).

One checks that the restriction of Fβ,χ,f,f ′ to {z ∈ C | 0 < Im z < β} is holomorphic.
By Lemma 4.3.2, we have, for all t ∈ R,

Fβ,χ,f,f ′(t) = ϕβ,χ(fσt(f
′)) and Fβ,χ,f,f ′(t+ iβ) = ϕβ,χ(σt(f

′)f).

So ϕβ,χ is a KMSβ state of (Ck,∞, (σt)).

Lemma 4.3.6. For any χ ∈ Xadm, for any β > 1, for any σ ∈ Gal(K/k), we have

ϕβ,σχ = ϕβ,χ ◦ σ.

Proof. By definition of ϕβ,σχ, it is enough to check that πσχ(f) = πχ(σf). By
Proposition 3.3.5, it is enough to prove it when f is one of the e(ψ, λ) or one of
the µa. The result then follows from equations (38), (39).

Lemma 4.3.7. For any χ ∈ Xadm and for any β > 1, the GNS representation of
ϕβ,χ is (πβ,χ,Ωβ,χ), where πβ,χ : Ck,∞ → B(`2(IO)⊗ `2(IO)) is given by

πβ,χ(f)(ξ ⊗ η) = πχ(f)ξ ⊗ η,

and the cyclic vector Ωβ,χ ∈ `2(IO)⊗ `2(IO) is given by

Ωβ,χ = ζk,∞(β)−1/2
∑
a∈IO

Na−β/2εa ⊗ εa.

Proof. We obviously have

ϕβ,χ(f) = 〈πβ,χ(f)Ωβ,χ,Ωβ,χ〉.
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Hence, we only have to show that Ωβ,χ is a cyclic vector for πβ,χ. For any maximal
ideal p of O and any n > 0, using equation(45), we find

πχ(µ
∗
pn)εa = 1pn|aεp−na for all a ∈ IO

and hence
πχ(µpnµ

∗
pn)εa = 1pn|aεa for all a ∈ IO.

Thus, if we let νpn = µpnµ
∗
pn − µpn+1µ∗pn+1 we get

πχ(νpn)εa = 1pn|a and pn+1-aεa for all a ∈ IO.

Now let b ∈ IO. Let us show that εb ⊗ εb is in the closure of πβ,χ(Ck,∞)(Ωβ,χ).
Write b =

∏
p pnp with np > 0. For T > 0, let PT denote the set of all maximal

ideals p with Np < T . The family (PT )T is a growing family of finite sets whose
union is the set of all maximal ideals of O. For all T , let νT ∈ Ck,∞ be defined by

νT =
∏

p∈PT

νpnp .

We have
πβ,χ(νT )(Ωβ,χ) = ζk,∞(β)−1/2

∑
a∈QT

Na−β/2εa ⊗ εa,

where QT is the set of all a ∈ IO such that for all p ∈ PT , the p-adic valuations of
a and b are equal. Since the series

∑
a Na−β is convergent, we see that

πβ,χ(νT )(Ωβ,χ)
T→+∞−−−−−→ ζk,∞(β)−1/2Nb−β/2εb ⊗ εb.

Thus, we have shown that εb ⊗ εb is in the closure of πβ,χ(Ck,∞)(Ωβ,χ). Applying
the πβ,χ(µa) and the πβ,χ(µ

∗
a) to that shows that for all b1, b2 ∈ IO, the element

εb1 ⊗ εb2 is in the closure of πβ,χ(Ck,∞)(Ωβ,χ).

Proposition 4.3.8. For any χ ∈ Xadm and for any β > 1, the state ϕβ,χ is
factorial (hence extremal) of type I∞.

Proof. Let A denote the weak closure of πβ,χ(Ck,∞) in B(`2(IO) ⊗ `2(IO)). By
Lemma 3.7.1, the representation πχ is irreducible. Thus inside B`2(IO), we have
πχ(Ck,∞)′ = C. Using Takesaki [33], I, Chapter IV, Proposition 1.6 (i), we deduce
that inside B(`2(IO)⊗ `2(IO)), we have

πβ,χ(Ck,∞)′ = C⊗B`2(IO).

Thus, using [33], I, Chapter IV, Proposition 1.6 (ii), we deduce

A = πβ,χ(Ck,∞)′′ = B`2(IO)⊗ C.

In particular, we have A ' B`2(IO), so A is a factor of type I∞.
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Lemma 4.3.9. For any β > 1, the map Xadm → E(Kβ), χ 7→ ϕβ,χ, is injective.

Proof. We reuse the notations of the proof of the previous lemma. Let us extend
ϕβ,χ to a state ϕ̃β,χ on the von Neumann algebra A = B`2(IO)⊗ C by

ϕ̃β,χ(a⊗ 1) = 〈a(Ωβ,χ),Ωβ,χ〉 for all a ∈ B`2(IO).

For any β̂ > 0 , we have e−β̂H ∈ B`2(IO). We have, for all ψ ∈ H(sgn) and for all
λ ∈ ψ(C∞)tor:

ζk,∞(β) lim
β̂→+∞

ϕ̃β,χ(πχ(e(ψ, λ))e−β̂H ⊗ 1) = 〈πχ(e(ψ, λ))(ε1), ε1〉 = 1χ∈Xψχ(λ).

Thus, χ is uniquely determined.

We can now prove the main result classifying extremal KMSβ states at low
temperature. Recall that Gal(K/k) is endowed with its profinite topology, and
E(Kβ) is endowed with the weak∗ topology.

Theorem 4.3.10. For any β > 1, the topological space E(Kβ) is principal homo-
geneous under Gal(K/k).

Proof. We must show that for any ϕ ∈ E(Kβ), the map Gal(K/k) → E(Kβ),
σ 7→ ϕ ◦ σ, is a homeomorphism. We already know that it is surjective (Propo-
sition 4.2.1) and continuous (Lemma 4.2.2). Thus, as Gal(K/k) is compact, it
only remains to show that it is injective. Let ϕ ∈ E(Kβ) and σ ∈ Gal(K/k) such
that ϕ ◦ σ = ϕ. We have to show that σ = 1. Let χ ∈ Xadm. By Proposition
4.3.8 we have ϕβ,χ ∈ E(Kβ). By Proposition 4.2.1, there exists τ ∈ Gal(K/k) such
that ϕ = ϕβ,χ ◦ τ . By Lemma 4.3.6 we have ϕ = ϕβ,τχ and ϕ ◦ σ = ϕβ,στχ, so
ϕβ,στχ = ϕβ,τχ. By Lemma 4.3.9, we deduce στχ = τχ. By Proposition 3.6.9 we
find στ = τ , so σ = 1.

Theorem 4.3.11. For any β > 1, the map Xadm → E(Kβ), χ 7→ ϕβ,χ, is a
homeomorphism.

Proof. It is injective by Lemma 4.3.9. Let us check surjectivity. Let ϕ ∈ E(Kβ) and
let χ0 ∈ Xadm. By Proposition 4.2.1 and Lemma 4.3.6, there exists σ ∈ Gal(K/k)
such that ϕ = ϕβ,σχ0 . Thus, the map χ 7→ ϕβ,χ is bijective. One checks that it is
continuous. By definition of an admissible character, Xadm is a closed subspace of
X. Thus Xadm is compact, so the considered map is a homeomorphism.

Relations between certain special values of KMSβ states and
of partial zeta functions

Let us now compute the values of the states ϕβ,χ on some of the generators e(φ, λ).
Let A+ denote the subset of IO of all ideals a such that σa = 1, where σa =
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(a, H+/k) ∈ Gal(H+/k) is the Artin automorphism of H+ associated to a. For
any c ∈ IO and any σ ∈ Gal(Kc/k), let Ac,σ denote the subset of A+ of all ideals
a prime to c and such that σa = σ, where σa = (a, Kc/k) ∈ Gal(Kc/k) is the Artin
automorphism of Kc associated to a. Note that A+ and the Ac,σ are generalized
ideal classes of O.

Let ζ+
k,∞ and ζc,σ

k,∞ (for any c ∈ IO and σ ∈ Gal(Kc/H
+)) be the partial zeta

functions associated to A+ and Ac,σ, respectively:

ζ+
k,∞(β) =

∑
a∈A+

Na−β,

ζc,σ
k,∞(β) =

∑
a∈Ac,σ

Na−β.

Theorem 4.3.12. Let β > 1, φ ∈ H(sgn), and χ ∈ Xadm ∩Xφ.

1. We have

ϕβ,χ(e(φ, 0)) =
ζ+
k,∞(β)

ζk,∞(β)
.

2. For any maximal ideal p of O, for any λ ∈ φ[p], we have

ϕβ,χ(e(φ, λ)) = ζk,∞(β)−1(Np−βζ+
k,∞(β) +

∑
σ∈Gal(Kp/H+)

χ(σλ)ζp,σ
k,∞(β)).

Proof. Let us first prove (1). By definition, A+ is the subset of IO of all ideals a

such that σa = 1, where σa = (a, H+/k) ∈ Gal(H+/k) is the Artin automorphism
of H+ associated to a. Hence, by Theorem 1.3.9, we have

A+ = {a ∈ IO | a ∗ φ = φ} = {a ∈ IO | a−1 ∗ φ = φ} = {a ∈ IO | χa ∈ Xφ}.

Thus, by definition of ϕβ,χ, for any λ ∈ φ(C∞)tor, we have

ϕβ,χ(e(φ, λ)) = ζk,∞(β)−1
∑
a∈IO

1χa∈Xφ χ
a(λ)Na−β

= ζk,∞(β)−1
∑
a∈A+

χ(φa(λ))Na−β.
(57)

Applying this equality to λ = 0 we get (1).
Let us now prove (2). Let a ∈ A+. In the case when p | a, we have φa(λ) = 0,

so
χ(φa(λ)) = 1.
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In the case when p - a, by Theorem 1.3.11, we have φa(λ) = σa(λ). Hence,
equation (57) gives

ζk,∞(β)ϕβ,χ(e(φ, λ)) =
∑

a∈A+, p|a

χ(φa(λ))Na−β +
∑

a∈A+, p|a

χ(φa(λ))Na−β

=
∑

a∈A+, p|a

Na−β +
∑

a∈A+, p|a

χ(σa(λ))Na−β

=
∑
a∈A+

N(pa)−β +
∑

σ∈Gal(Kp/H+)

∑
a∈Ap,σ

χ(σλ)Na−β

= Np−βζ+
k,∞(β) +

∑
σ∈Gal(Kp/H+)

χ(σλ) ζp,σ
k,∞(β),

which proves (2).

4.4 Uniqueness of the KMSβ state at high temperature
1/β > 1

Recall that in Proposition 4.1.2, for any β ∈ R∗+, we found a Galois-invariant KMSβ
state ϕβ of (Ck,∞, (σt)).

In this subsection we shall prove (Theorem 4.4.15) that when β 6 1, there is
no other KMSβ state of (Ck,∞, (σt)). In other words,

β 6 1 =⇒ Kβ = {ϕβ}.

Most of the ideas here come from [3], §7.
Let β ∈ R∗+ be such that β 6 1, and let ψ be a KMSβ state of (Ck,∞, (σt)). We

must show that ψ = ϕβ.

Let ̂Gal(K/k) be the dual group of Gal(K/k). Since Gal(K/k) is profinite,
̂Gal(K/k) is discrete.
Let F be a non-empty finite set of finite places of k. Recall from Definition

3.8.1 that an ideal a ∈ IO is F -localized if all its prime divisors belong to F . We
also need to define what it means to be F -localized for an element of Gal(K/k)
and for an element of C(X).

Let us first define what it means to be F -localized for an element of Gal(K/k).
We have

K = lim
c→

Kc,

so
Gal(K/k) = lim

←c
Gal(Kc/k),

so
̂Gal(K/k) = lim

c→
̂Gal(Kc/k).

This means that for any character ν of Gal(K/k), there exists c ∈ IO such that ν
factors through the projection Gal(K/k)→ Gal(Kc/k).
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Definition 4.4.1. A character ν of Gal(K/k) is said to be F -localized if there
exists an F -localized ideal c ∈ IO such that ν factors through the projection
Gal(K/k)→ Gal(Kc/k).

Thus any ν ∈ Gal(K/k) is F -localized for some F .
Let KF denote the extension of H+ generated by the elements of the φ[F ], for

φ ∈ H(sgn). In other words,
KF = lim

c→
Kc,

where c runs over IO. Thus a character ν of Gal(K/k) is F -localized if and only if
it factors through the surjection

Gal(K/k)→ Gal(KF/k).

Let us now define what it means to be F -localized for an element of C(X). For
any φ ∈ H(sgn), let φ[F ] denote the following subgroup of φ(C∞)tor:

φ[F ] =
⋃

c is F -loc.

φ[c].

Here c runs over all the F -localized ideals in IO. Let Xφ,F denote the dual group
of φ[F ]. The restriction-to-φ[F ] map is a surjective morphism

Xφ → Xφ,F .

Let XF denote the (disjoint) union of the Xφ,F , for all φ ∈ H(sgn). The restriction
maps Xφ → Xφ,F give a surjection

X → XF .

This gives an injective morphism of C*-algebras

C(XF ) ↪→ C(X).

Thus, we regard C(XF ) as a C*-subalgebra of C(X).

Definition 4.4.2. An element f ∈ C(X) is said to be F -localized if it belongs to
C(XF ). In other words, f is F -localized if, seen as a function f : X → C, it factors
through the map X → XF .

Lemma 4.4.3. The C*-algebra C(XF ) is generated by the e(φ, λ), for all φ ∈
H(sgn) and all λ ∈ φ[F ].

Proof. This can be checked like Lemma 3.3.4.

For any character ν of Gal(K/k), let Cν be the following spectral subspace of
Ck,∞:

Cν = {f ∈ Ck,∞ | σf = ν(σ)f for all σ ∈ Gal(K/k)}.
Thus, when ν = 1 is the trivial character, the corresponding subspace C1 is the
Galois-fixed subalgebra computed in 3.5.2.
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Lemma 4.4.4. The following subspace is dense in Ck,∞:⊕
ν∈ ̂Gal(K/k)

Cν .

Proof. Since Gal(K/k) is a compact abelian group of ∗-automorphisms of Ck,∞,
this follows from a result found in Pedersen [30], §§8.1.4 and 8.1.10, p. 349.

Lemma 4.4.5. The states ψ and ϕβ agree on C1.

Proof. We saw in Proposition 4.1.3 that (C1, σt) has only one KMSβ state. Thus,
as ψ and ϕβ are KMSβ, they must agree on C1.

Lemma 4.4.6. Suppose that for any ν ∈ ̂Gal(K/k) with ν 6= 1 the state ψ vanishes
on the spectral subspace Cν. Then ψ = ϕβ.

Proof. By Lemma 4.4.4, in order to show that ψ and ϕβ are equal, it is enough to
show that they agree on Cν for all ν. We already know that ψ and ϕβ agree on
C1. As ϕβ is Gal(K/k)-invariant, it is easy to see that it vanishes on Cν for any
non-trivial ν, so we deduce that ψ = ϕβ.

Thus, in order to prove that ψ = ϕβ, it is enough to prove that ψ vanishes
on each of the spectral subspaces Cν for ν 6= 1. The following lemma, which is
inspired by Lemma 27 (c) in [3], will be useful to show this.

Lemma 4.4.7. Let ν ∈ ̂Gal(K/k) with ν 6= 1. Let F be a non-empty finite set of
finite places of k such that ν is F -localized. Suppose that for any F -localized partial
isometry V ∈ C(X) ∩ Cν, we have

ψ(V x) = 0 for all x ∈ C1.

Then ψ vanishes on the spectral subspace Cν.

Proof. From Theorems 4.3.10 and 4.3.11 we know that Xadm is principal homoge-
neous under Gal(K/k). Thus, by choosing a base point χ0 ∈ Xadm, we can identify
Gal(K/k) with Xadm through the map σ 7→ σχ0. Let f ∈ IO be defined by

f =
∏
p∈F

p.

For any n > 1, let Vn ∈ C(X) be defined as follows. Let χ ∈ X. If Fχ is of the
form a−1IO with a | fn, write χ = σχa

0 with σ ∈ Gal(K/k) and put Vn(χ) = ν(σ).
Otherwise, put Vn(χ) = 0. Note that Vn is a partial isometry and belongs to Cν .
Moreover, Vn is F -localized because ν is.
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For any χ ∈ X we have |Vn(χ)| = 1 if Fχ is of the form a−1IO for some a | fn and
|Vn(χ)| = 0 otherwise. As |Vn| takes values in {0, 1}, we have |Vn| = |Vn|2 = VnV

∗
n .

Thus, by Lemmas 2.1.7 and 2.1.8, for any χ ∈ X, we have

VnV
∗
n (χ) = 1Fχ⊂f−nIO =

∏
p∈F

1f−np−1 6∈Fχ .

Hence, by equation (33), we get

VnV
∗
n =

∏
p∈F

(1− µfnpµ
∗
fnp).

Since ψ and ϕβ agree on C1 (Lemma 4.4.5) and F is finite, we obtain

ψ(VnV
∗
n ) = ϕβ

( ∏
p∈F

(1− µfnpµ
∗
fnp)

)
n→∞−−−→ 1. (58)

Now let x ∈ Cν . We want to prove that ψ(x) = 0. For any n > 1, let
Pn = 1− VnV ∗n . The Schwarz inequality gives

|ψ(Pnx)|2 6 ψ(Pn)ψ(xx∗). (59)

By equation (58), we have ψ(Pn)
n→∞−−−→ 0, so equation (59) gives ψ(Pnx)

n→∞−−−→ 0,
so

ψ(VnV
∗
n x)

n→∞−−−→ ψ(x). (60)

For any n > 1, as x ∈ Cν and V ∗n ∈ Cν−1 , we have V ∗n x ∈ C1. Hence, by assumption,
we have

ψ(VnV
∗
n x) = 0.

Together with equation (60), this gives ψ(x) = 0, which completes the proof of
Lemma 4.4.7.

Thus in order to prove that ψ = ϕβ it is enough to prove the following lemma.

Lemma 4.4.8. Let ν ∈ ̂Gal(K/k) with ν 6= 1. Let F be a non-empty finite set of
finite places of k such that ν is F -localized. For any F -localized partial isometry
V ∈ C(X) ∩ Cν, we have

ψ(V x) = 0 for all x ∈ C1.

Proof. This proof is directly inspired by the proof of Lemma 27 (b) of [3]. It will
make use of Lemmas 4.4.9, 4.4.10, 4.4.11, 4.4.12, 4.4.13 and 4.4.14, and will only
be completed on p. 74.

Let V ∈ C(X) be an F -localized partial isometry such that V ∈ Cν .
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Let E = V ∗V = V V ∗ (the algebra C(X) is commutative). Note that E is a
projection and belongs to C1. Let

C1,E = EC1E = {f ∈ C1 | f = fE = Ef}

denote the reduced algebra. As V is fixed by the flow (σt) and ψ and ϕβ are KMSβ
states for the flow (σt), we see that V belongs to the centralizer of ψ and of ϕβ.

Let α denote the following automorphism of C1,E:

α(f) = V fV ∗ for all f ∈ C1,E.

Let M be the weak closure of Ck,∞ in the GNS representation of ϕβ. Let us extend
the state ϕβ to a normal state ϕ̃β on M . Let M1 ⊂M denote the weak closure of
C1 in the GNS representation of ϕβ.

Since V belongs to the centralizer of ϕβ for all f ∈ C1,E, we have ϕβ(α(f)) =
ϕβ(f). Thus α preserves ϕβ, so it extends to an automorphism of the reduced
algebra M1,E preserving ϕ̃β.

Let c ∈ IO be an F -localized ideal such that ν factors through Gal(Kc/k).

Lemma 4.4.9. Let p be a finite place of k with p 6∈ F . We have

Eµp ∈ C1,E and α(Eµp) = ν(σp)Eµp for all p 6∈ F, (61)

where σp = (p, KF/k) ∈ Gal(KF/k) is the Artin automorphism of KF associated
to p.

Proof. Let HF denote the ∗-algebra generated by the e(φ, λ), for all φ ∈ H(sgn)
and all λ ∈ φ[F ]. By Proposition 4.4.3, we know that HF is norm-dense in C(XF ).
So let (Vn)n∈N be a sequence of elements of HF converging to V in the norm
topology. Obviously we have

HF ⊂
⋃

d∈IO, dF -loc.

H[d],

where d runs over the F -localized elements of IO. Thus, for any n ∈ N, there
exists an F -localized dn ∈ IO such that Vn ∈ H[dn]. Since p 6∈ F and dn is F -
localized, we have p - dn, so Lemma 3.8.3 gives Vnµp = µpσp(Vn). Now view σp as
an automorphism of the C*-algebra C(XF ). In particular it is continuous. Hence
we obtain

V µp = µpσp(V ) = ν(σp)µpV for all p 6∈ F, (62)

and the result follows.
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The ITPFI structure of M1

For any p, recall that τp is the (Toeplitz) C*-algebra generated by µp, and that
ϕβ,p is the restriction of ϕβ to τp. Let (εn)n>0 denote the standard orthonormal
basis of `2(N). Let πβ,p be the following representation of τp:

πβ,p : τp → B(`2(N)⊗ `2(N)),

µp 7→ (εn ⊗ εm 7→ εn+1 ⊗ εm).

Let Ωβ,p ∈ `2(N)⊗ `2(N) be the following vector:

Ωβ,p =
√

1−Np−β
∑
n>0

Np−nβ/2εn ⊗ εn.

It is easy to check that the pair (πβ,p,Ωβ,p) is the GNS representation of ϕβ,p. Let
M1,p denote the weak closure of τp in the representation πβ,p. One checks that

M1,p = B`2(N)⊗ C. (63)

In particular M1,p is a type I∞ factor. Let ϕ̃β,p be the unique extension of ϕβ,p to
a normal linear functional on M1,p. Alternatively, ϕ̃β,p is the restriction of ϕ̃β to
M1,p. Note that the eigenvalue list of ϕ̃β,p is the sequence

((1−Np−β)Np−nβ)n>0.

We have
(M1, ϕ̃β) =

⊗
p

(M1,p, ϕ̃β,p), (64)

where p runs over the finite places of k. Recall from [33], III, Chapter XIV,
Corollary 1.10, that any ITPFI is a factor. In particular, M1 is a factor. We shall
check later (Lemma 4.5.1) that it is of type IIIq−β .

For any λ ∈ C with |λ| = 1, let ρp,λ denote the ∗-automorphism of τp such that
ρp,λ(µp) = λµp. As ρp,λ preserves ϕβ,p, it extends to an automorphism of M1,p. Let
θF,ν be the following automorphism of M1:

θF,ν = (⊗p∈F idM1,p)⊗ (⊗p6∈Fρp,ν(σp)).

Lemma 4.4.10. θF,ν is an outer automorphism of M1.

Proof. Suppose that θF,ν is inner. Lemma 1.3.8 (b) from Connes [7] states that
there exists a sequence (up) where, for any finite place p of k, up is an unitary of
M1,p with

θF,ν(x) = upxu
∗
p for all x ∈M1,p (65)

and such that ∑
p

(1− |ϕβ,p(up)|) <∞. (66)
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Since M1,p is a factor, equation (65) determines up up to multiplication by a z ∈ C
with |z| = 1. By definition of θF,ν , when p ∈ F one can take up = 1. When p 6∈ F
one can take up ∈ M1,p = B`2(N) to be the diagonal matrix with eigenvalue list
(ν(σnp ))n∈N. Using the expression of the GNS representation of ϕβ,p that we saw
above, we get

ϕβ,p(up) = (1−Np−β)
∑
n∈N

ν(σp)
nNp−nβ =

1−Np−β

1− ν(σp)Np−β
.

This is equal to 1 whenever ν(σp) = 1; so, letting

Y = {p | p is a finite place of k, p 6∈ F, and ν(σp) 6= 1},

equation (66) gives ∑
p∈Y

(
1−

∣∣∣ 1−Np−β

1− ν(σp)Np−β

∣∣∣ )
<∞. (67)

Recall that we let c be an F -localized ideal such that ν factors through Gal(Kc/k).
This is a finite group, so the range of ν is finite, so there exists a γ with 0 < γ < 1
such that for any σ ∈ Gal(K/k) with ν(σ) 6= 1, we have Re ν(σ) 6 γ. Let p ∈ Y .
We have |1− ν(σp)Np−β| > 1− γNp−β. Thus we find

1−
∣∣∣ 1−Np−β

1− ν(σp)Np−β

∣∣∣ > 1− 1−Np−β

1− γNp−β
=

(1− γ)Np−β

1− γNp−β
> (1− γ)Np−β.

Since 1− γ > 0, together with equation (67) this gives∑
p∈Y

Np−β <∞. (68)

Since β 6 1, this implies that for all s > 1 we have∑
p∈Y

Np−s 6
∑
p∈Y

Np−1 <∞. (69)

The Čebotarev density theorem (Theorem 1.1.4) states that for any σ ∈ Gal(Kc/k)
the following set Pσ of places of k,

Pσ = {p | p does not ramify in Kc and σp = σ},

has a positive Dirichlet density
d(Pσ) > 0.

Up to a finite set of places of k, we have

Y =
⋃

ν(σ) 6=1

Pσ,
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where σ runs over Gal(Kc/k). Hence, as ν 6= 1, we have d(Y ) > 0, so

lim
s→1+

∑
p∈Y

Np−s =∞,

contradicting equation (69).

Define two subfactors MF±
1 of M1,

MF+
1 =

⊗
p∈F

M1,p,

MF−
1 =

⊗
p6∈F

(M1,p, ϕ̃β,p),

where p runs over the finite places of k. We thus have

M1 = MF+
1 ⊗MF−

1 .

As the projection E is F -localized, we have E ∈MF+
1 , so letting

N =
(
MF+

1

)
E

and using [33], I, Chapter IV, Proposition 1.9, we get

M1,E = N ⊗MF−
1 . (70)

Lemma 4.4.11. α is an outer automorphism of M1,E.

Proof. Suppose that α is an inner automorphism of M1,E. Let τ = α−1 ◦ θF,ν ∈
Aut (M1,E). By construction, τ induces the identity on CE ⊗MF−

1 . As N ⊗ C is
of type I∞, the restriction of τ to N ⊗C is inner. By equation (70), we get that τ
is an inner automorphism of M1,E. Hence, θF,ν restricts to an inner automorphism
of M1,E. As M1 is a factor, using Lemma 1.5.2 of [7], we deduce that θF,ν is an
inner automorphism of M1, contradicting Lemma 4.4.10.

As we already noted, V belongs to the centralizer of ψ. Define a linear functional
L on C1,E by

L(x) = ψ(V x) = ψ(xV ) for all x ∈ C1,E.

We want to prove by contradiction that L is zero. Thus suppose that L is nonzero.
The Schwarz inequality gives

|L(x)|2 6 ψ(E)ψ(x∗x) for all x ∈ C1,E.

By Lemma 4.4.5, the states ψ and ϕβ agree on C1,E, so ψ(x∗x) = ϕβ(x
∗x). Thus L

extends to a normal linear functional on M1,E, which we still denote L.
Since ϕβ is KMSβ on Ck,∞, by [4], II, Corollary 5.3.4 there exists a unique

extension of (σt) to an ultraweakly continuous flow (σ̃t) on M for which ϕ̃β is
KMSβ.

72



Lemma 4.4.12. The linear functional L satisfies the α-twisted KMSβ condition
for the flow (σ̃t) on M1,E. In other words, for any x, y ∈ M1,E, there exists a
bounded continuous function Fx,y on the strip 0 6 Im z 6 β, holomorphic on the
interior of the strip, such that for any t ∈ R we have

Fx,y(t) = L(xσt(y)) and Fx,y(t+ iβ) = L(σt(y)α(x)). (71)

Proof. In the case when x, y ∈ C1,E, this can be easily checked by applying the
KMSβ condition for ψ to the pair (V x, y). As both (σ̃t) and L are ultraweakly
continuous, the result follows.

Lemma 4.4.13. There exists a nonzero σ̃t-invariant w ∈M1,E such that

L(x) = ϕ̃β(wx) for all x ∈M1,E.

Proof. Let L = |L|u be the polar decomposition of L (see [33], I, Chapter III,
Theorem 4.2). In particular, u ∈ M1,E is a partial isometry, |L| is a positive
normal linear functional on M1,E, and

L(x) = |L|(ux) for all x ∈M1,E.

We want to apply Connes’ Radon–Nikodým theorem to |L| and ϕ̃β, seen as finite
normal faithful weights on M1,E.

Since L is σ̃t-invariant, by uniqueness of the polar decomposition, u and |L|
are σ̃t-invariant. As ϕ̃β is KMSβ for the flow (σ̃t), we deduce that |L| is σ

eϕβ
t -

invariant, where (σ
eϕβ
t ) is the modular automorphism group associated to the fi-

nite faithful normal weight ϕ̃β on M1,E. Connes’ Radon–Nikodým theorem ([7],
Lemme 1.2.3 (b)) then states that there exists a positive σ̃t-invariant h ∈ M1,E

such that
|L|(x) = ϕ̃β(hx) for all x ∈M1,E.

Letting w = hu, we get

L(x) = ϕ̃β(wx) for all x ∈M1,E,

and w is nonzero by our assumption that L is nonzero. It is σ̃t-invariant because
both u and h are.

Lemma 4.4.14. Let w be given by Lemma 4.4.13. Then

α(x)w = wx for all x ∈M1,E.

Proof. Let x, y ∈M1,E. Let FL
x,y be the function given by Lemma 4.4.12 such that

for any t ∈ R we have

FL
x,y(t) = L(xσ̃t(y)) and FL

x,y(t+ iβ) = L(σ̃t(y)α(x)).
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By definition of w, we get

FL
x,y(t) = ϕ̃β(wxσ̃t(y)) and FL

x,y(t+ iβ) = ϕ̃β(σ̃t(wy)α(x)).

Now let F
eϕβ
α(x),wy be the function given by the KMSβ property of ϕ̃β applied to the

pair (α(x), wy) so that

F
eϕβ
α(x),wy(t) = ϕ̃β(α(x)σ̃t(wy)) and F

eϕβ
α(x),wy(t+ iβ) = ϕ̃β(σ̃t(wy)α(x)).

Let G = F
eϕβ
α(x),wy−FL

x,y. Note that G vanishes on R+iβ. Therefore, one can extend
G to a holomorphic function on the broader strip 0 < Im z < 2β by letting

G(z) = G(z̄ + 2iβ) for all z ∈ C with β < Im z < 2β.

As G vanishes on R + iβ and is holomorphic on an open set containing R + iβ, it

vanishes everywhere, so F
eϕβ
α(x),wy = FL

x,y. In particular, evaluating that at 0, we get

ϕ̃β(wxy) = ϕ̃β(α(x)wy).

Since this holds for all y ∈M1,E and the state ϕ̃β is faithful on M1,E, we get

wx = α(x)w.

We already know by Lemma 4.4.11 that α is outer. Thus, Proposition 4.1.16
of Sunder [32] shows that

{y ∈M1,E | α(x)y = yx for all x ∈M1,E} = {0}.

Together with Lemma 4.4.14 this shows that w = 0. But w is nonzero by construc-
tion (cf. Lemma 4.4.13), so we get a contradiction. Thus our assumption that L is
nonzero was false. Thus L is zero, so

ψ(V x) = 0 for all x ∈ C1,E.

Now let x ∈ C1. We have ExE ∈ C1,E, so it follows that ψ(V ExE) = 0.
As E = V ∗V = V V ∗ is a projection and belongs to the centralizer of ψ, we get
ψ(V ExE) = ψ(EV Ex) = ψ(V x), so ψ(V x) = 0, which proves Lemma 4.4.8.

From this we can deduce the main result of this subsection. Recall that we
have assumed 0 < β 6 1.

Theorem 4.4.15. The C*-system (Ck,∞, σt) has exactly one KMSβ state, ϕβ.

Proof. This follows from Lemmas 4.4.6, 4.4.7 and 4.4.8.

Corollary 4.4.16. The state ϕβ of Ck,∞ is a factor state, i.e., the von Neumann
algebra M is a factor.

Proof. This follows from Theorem 4.4.15 and [4], II, Theorem 5.3.30 (3).
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4.5 The type IIIq−β of the KMSβ state at high temperature
1/β > 1

Let us go on with the notations of the preceding subsection. In particular, we
assume that β 6 1. The goal of this subsection is to prove (Theorem 4.5.8) that
the state ϕβ on Ck,∞ is of type IIIq−β . In other words, we want to show that the
factor M is of type IIIq−β . Before doing that we show that the subfactor M1 is of
type IIIq−β .

Recall from equation (64) thatM1 is the following infinite tensor product, where
p runs over the finite places of k:

(M1, ϕ̃β) =
⊗

p

(M1,p, ϕ̃β,p).

Here each of theM1,p is a type I∞ factor, so the usual methods (cf. Araki and Woods
[1], [8]) allowing to compute asymptotic ratio sets cannot be applied directly to
M1. Instead we first find an integer τ ∈ N and, for each p, a projection ep ∈ M1,p

such that the reduced factor M1,p,ep is of type Iτ and the infinite tensor product
e = ⊗pep is a nonzero projection in M1.

Let τ ∈ N be such that τ > 1/β. For any finite place p of k, let ep = 1−µτpµ∗τp ∈
M1,p. Recall from equation (63) that M1,p is naturally identified with B`2(N).
Under this identification, the projection ep is the diagonal matrix whose τ first
diagonal entries are 1 and whose other entries are 0. Thus, the reduced subfactor
M1,p,ep is of type Iτ . Note that

ϕ̃β,p(ep) = 1−Np−τβ. (72)

Any decreasing sequence of projections in a von Neumann algebra converges weakly
to a projection, so we can define a projection e ∈M1 by

e =
∏

p

ep =
⊗

p

ep.

By definition of τ we have τβ > 1, so

ϕ̃β(e) =
∏

p

ϕ̃β,p(ep) =
∏

p

(1−Np−τβ) =
1

ζk,∞(τβ)
6= 0.

In particular, e 6= 0. Let us define a state ϕ̃β,e on M1,e by

ϕ̃β,e(x) = ζk,∞(τβ) ϕ̃β(x) =
ϕ̃β(x)

ϕ̃β(e)
for all x ∈M1,e.

For any p, let us define a state ϕ̃β,p,ep on M1,p,ep by

ϕ̃β,p,ep(x) = (1−Np−τβ)−1ϕ̃β,p(x) =
ϕ̃β,p(x)

ϕ̃β,p(ep)
for all x ∈M1,p,ep .
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Coming back to the definition of the infinite tensor product ([33], III, Chapter
XIV, §1) and using the expression (64) of M1 as the infinite tensor product of the
(M1,p, ϕ̃β,p), one can check that

(M1,e, ϕ̃β,e) =
⊗

p

(M1,p,ep , ϕ̃β,p,ep). (73)

Let (σ
eϕβ
t ) denote the modular flow of ϕ̃β. Since ϕ̃β is KMSβ for the flow (σ̃t),

we have
σ

eϕβ
t = σ̃βt for all t ∈ R. (74)

Lemma 4.5.1. The factor M1 is of type IIIq−β .

Proof. Let us first prove that q−β belongs to the asymptotic ratio set r∞(M1,e).
We want to apply the criterion given on p. 465 of [8] to the ITPFI in equation
(73). The eigenvalue list of ϕ̃β,p,ep is (λp,a)a=0,...,τ−1, where

λp,a =
(1−Np−β)Np−aβ

1−Np−τβ
.

Let r be such that 0 < r < 1. For any n ∈ N, let

r(n) = brqn/nc.

By equation (1), there exists an n0 > 1 such that for any n > n0, there exist (at
least) r(n) distinct finite places

p1
n, . . . , p

r(n)
n

of k such that
Npin = qn for all i ∈ {1, . . . , r(n)}.

For any n > n0, let In be the following set of places of k:

In = {p1
2n, . . . , p

r(2n)
2n , p1

2n+1, . . . , p
r(2n)
2n+1}.

Let X(In) = {0, . . . , τ−1}In be the set of all maps from In to {0, . . . , τ−1}. Define
a measure λ on X(In) by

λ({f}) =

r(2n)∏
i=1

λpi2n,f(pi2n) λpi2n+1,f(pi2n+1).

For any i ∈ {1, . . . , r(2n)}, define elements k1,i
n and k2,i

n of X(In) by

k1,i
n (p) = 1p=pi2n

and k2,i
n (p) = 1p=pi2n+1

for all p ∈ In.
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Let K1
n = {k1,1

n , . . . , k
1,r(2n)
n } and let K2

n = {k2,1
n , . . . , k

2,r(2n)
n }. For any

i ∈ {1, . . . , r(2n)}, we have λ({k1,i
n }) = λ({k1,1

n }), so

λ(K1
n) = r(2n)λ({k1,1

n })

= r ·
(

1− q−2nβ

1− q−2nτβ

)brq2n/(2n)c(
1− q−(2n+1)β

1− q−(2n+1)τβ

)brq2n/(2n)c
(q1−β)2n

(2n)
.

Since β 6 1, one checks easily that∑
n>n0

λ(K1
n) =∞. (75)

Let φn : K1
n → K2

n be the bijection defined by φn(k
1,i
n ) = k2,i

n . For any i ∈
{1, . . . , 2n}, we have

λ({φn(k1,i
n )})

λ({k1,i
n })

=
λpi2n,0

λpi2n+1,1

λpi2n,1
λpi2n+1,0

=
q−(2n+1)β

q−2nβ
= q−β.

Together with equation (75), this allows to apply the criterion given on p. 465 of
[8], and we get

q−β ∈ r∞(M1,e).

Hence, by [7], Théorème 3.6.1, we have q−β ∈ S(M1,e). Hence, by [7], Corol-
laire 3.2.8 (b), we have

q−β ∈ S(M1).

In particular, this shows that S(M1) 6= {0, 1}, so, by [7], Théorème 3.4.1, one
gets that S(M1) ∩ R∗+ is the orthogonal of T (M1) for the duality (s, t) 7→ sit. By
construction, σ̃2π/ log q = 1, so equation (74) gives

σ
eϕβ
2π/(β log q) = 1. (76)

Thus

T (M1) ⊃
2π

β log q
Z.

Hence, by orthogonality, we get

S(M1) ∩ R∗+ ⊂ qβZ.

Since we already know that q−β ∈ S(M1), we obtain

S(M1) ∩ R∗+ = qβZ.

Thus M1 is of type IIIq−β .

Let M1,eϕβ denote the centralizer of ϕ̃β in M1. We only use Lemma 4.5.1 for the
proof the following corollary:
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Corollary 4.5.2. The centralizer M1,eϕβ is a factor, of type II1.

Proof. Lemma 4.5.1 and equation (76) allow to apply [7], Théorème 4.2.6, and we
obtain that M1,eϕβ is a factor. Note that ϕ̃β is a finite faithful normal trace on
M1,eϕβ . Hence, the type of M1,eϕβ can only be either II1 or In with n ∈ N∗. Let p be
a finite place of k. For any n > 1, set xn = µnpµ

∗n
p . Note that the xn are fixed by

the flow (σt), hence by equation (74) they belong to M1,eϕβ . Equation (33) shows
that the xn are linearly independent over C. Thus, M1,eϕβ is infinite-dimensional
over C, so its type cannot be In with n ∈ N∗. Hence, it must be II1.

Our next goal is to prove (Lemma 4.5.6) that the centralizer Meϕβ of ϕ̃β in M
is also a factor.

Definition 4.5.3. For any d ∈ IO, let M [d] denote the weak closure of H[d] in M .

Lemma 4.5.4. Let d ∈ IO. Let p be a maximal ideal of IO not dividing d. Let
σp = (p, Kd/k) ∈ Gal(Kd/k) be the Artin automorphism of Kd associated to p.
Then:

1. The automorphism σp of H[d] extends uniquely to an ultraweakly continuous
automorphism of M [d].

2. For all x ∈M [d], we have

xµp = µpσp(x). (77)

Proof. Let us first prove (1). Uniqueness is clear because, by the von Neumann
density theorem, H[d] is ultraweakly dense in M [d]. Let σ ∈ Gal(K/k) be such
that σ|Kd = σp. As ϕβ ◦σ = ϕβ on Ck,∞, we know that σ extends to an ultraweakly
continuous automorphism of M , which we still note σ. The required extension of
σp is then obtained by taking the restriction of σ to M [d].

Let us now check (2). By density, it is enough to check equation (77) when
x ∈ H[d]. It then follows from Lemma 3.8.3.

Lemma 4.5.5. Let d ∈ IO. Let M [d]eϕβ denote the centralizer of ϕ̃β in M [d]. Let
Z(M [d]eϕβ) denote the center of M [d]eϕβ . Then:

Z(M [d]eϕβ) ⊂M1.

Proof. Let x belong to Z(M [d]eϕβ). As x belongs to M [d], it is fixed by Gal(K/Kd).
Let σ ∈ Gal(Kd/k) = Gal(K/k)/Gal(K/Kd). By Corollary 1.1.5, there exist finite
places p, q of k not dividing d such that Np = Nq, σp = σ and σq = 1. Since
Np = Nq, we have

σt(µpµ
∗
q) = NpitNq−itµpµ

∗
q = µpµ

∗
q for all t ∈ R.
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Hence, by equation (74), µpµ
∗
q ∈ M [d]eϕβ . Thus, as x belongs to the center of

M [d]eϕβ , we have
xµpµ

∗
q = µpµ

∗
qx. (78)

On the other hand, by Lemma 4.5.4 (2), we have

xµpµ
∗
q = µpσp(x)µ

∗
q, (79)

and we also compute

µpµ
∗
qx = µp(x

∗µq)
∗

= µp(µqσq(x
∗))∗ by Lemma 4.5.4 (2)

= µpσq(x)µ
∗
q. (80)

Combining equations (78), (79), and (80), we get

µpσp(x)µ
∗
q = µpσq(x)µ

∗
q. (81)

Multiplying both sides of equation (81) by µ∗p on the left and by µq on the right,
and applying relation (a1) of Proposition 3.1.2, we get

σp(x) = σq(x).

Since σp = σ and σq = 1, we get

σ(x) = x.

Thus, x ∈M1.

Let Meϕβ denote the centralizer of ϕ̃β in M .

Lemma 4.5.6. The centralizer Meϕβ is a factor of type II1.

Proof. Note that ϕ̃β is a finite, faithful, normal, positive, normalized trace on Meϕβ .
Let tr be another such trace on Meϕβ . Let us prove that tr = ϕ̃β. Let d ∈ IO. By
Connes’ Radon–Nikodým theorem, [7], Lemme 1.2.3 (b), there exists a positive
element h of M [d]eϕβ such that

tr(x) = ϕ̃β(hx) for all x ∈M [d]eϕβ .
Since ϕ̃β and tr are faithful traces, one easily checks that h belongs to the center
Z(M [d]eϕβ). Thus, by Lemma 4.5.5, h ∈M1. Hence, the restriction of tr to M [d]eϕβ
is Gal(K/k)-invariant, so

tr(x) = tr(E(x)) for all x ∈M [d]eϕβ . (82)
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As (σ
eϕβ
t ) is (2π/ log q)-periodic, we have a normal conditional expectation

Eeϕβ : M →Meϕβ ,
x 7→ log q

2π

∫ 2π/ log q

0

σ
eϕβ
t (x) dt.

Since H is norm-dense in Ck,∞ (see Proposition 3.3.5), it is ultraweakly dense in
M , and it follows that Eeϕβ(H) is ultraweakly dense in Eeϕβ(M). We have

Eeϕβ(H) = Eeϕβ( ⋃
d∈IO

H[d]
)
⊂ Eeϕβ( ⋃

d∈IO

M [d]
)

⊂
⋃

d∈IO

Eeϕβ (M [d]) ⊂
⋃

d∈IO

M [d]eϕβ .
Thus,

⋃
d∈IO

M [d]eϕβ is ultraweakly dense in Eeϕβ(M) = Meϕβ . Thus equation (82)
gives

tr(x) = tr(E(x)) for all x ∈Meϕβ . (83)

We know by Corollary 4.5.2 that M1,eϕβ is a type II1 factor. Hence, by Jones [22],
Corollary 7.1.19, we know that tr and ϕ̃β agree on M1,eϕβ . Thus, by equation (83),
we deduce that tr and ϕ̃β agree on Meϕβ . Hence, by [22], Corollary 7.1.20, we
deduce that Meϕβ is a factor, and the same argument that we made for M1,eϕβ shows
that Meϕβ is also of type II1.

Corollary 4.5.7. We have S(M) 6= {0, 1}. In other words, the factor M is not of
type III0.

Proof. Suppose that S(M) = {0, 1}. Then, by [7], Corollaire 3.2.7 (b), the center
of Meϕβ has no minimal nonzero projection. Hence, by Lemma 4.5.6, one deduces
that C has no minimal nonzero projection, which is absurd.

Finally we can prove the main result of this subsection. Recall that we have
assumed 0 < β 6 1.

Theorem 4.5.8. The state ϕβ on Ck,∞ is of type IIIq−β . In other words, the factor
M is of type IIIq−β .

Proof. By Corollary 4.5.7 and [7], Théorème 3.4.1, the set S(M) ∩ R∗+ is the or-
thogonal of T (M) for the duality (s, t) 7→ sit. Hence, it is enough to prove that

T (M) =
2π

β log q
· Z.

Since σ̃2π/ log q = 1, equation (74) gives

2π

β log q
∈ T (M),
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which proves one inclusion. Let us prove the other one. Let t0 ∈ R be such that
t0/β ∈ T (M). Thus, by equation (74), σ̃t0 is an inner automorphism of M . Let u
be an unitary of M such that

σ̃t0(x) = uxu∗ for all x ∈M.

For any t ∈ R and x ∈M , we have

σ̃t(u)σ̃t(x)σ̃t(u)
∗ = σ̃t0+t(uxu

∗) = uσ̃t(x)u
∗,

so the unitaries u and σt(u) implement the same inner automorphism of the factor
M , so there exists some zt ∈ C with |zt| = 1 and σt(u) = ztu. The map t 7→ zt is
a character of R, so there exists θ ∈ R such that

zt = eiθt for all t ∈ R.

The KMSβ property of the state ϕ̃β for the flow (σ̃t) applied to the pair (u∗, u)
gives a bounded continuous function F on the strip 0 6 Im z 6 β, holomorphic on
the interior of the strip, such that

F (t) = ϕ̃β(u
∗σt(u)) and F (t+ iβ) = ϕ̃β(σt(u)u

∗) for all t ∈ R.

Thus,
F (t) = eiθt = F (t+ iβ) for all t ∈ R. (84)

Hence F is the holomorphic function z 7→ eiθz and, evaluating equation (84) at
t = 0, one gets

e−θβ = 1.

Thus θ = 0, so u is fixed by the flow (σ̃t). Hence, by equation (74), the unitary u
belongs to the centralizer Meϕβ of ϕ̃β. Moreover, by equation (74), any element of
Meϕβ is fixed by the flow (σ̃t) and so commutes with u, by definition of u. Hence u
belongs to the center of Meϕβ . Thus, by Lemma 4.5.6, one deduces that u ∈ C, so,
as an automorphism of M ,

σ̃t0 = 1. (85)

By equation (1), for any sufficiently large n, there exist finite places p and q of k
such that Np = qn and Nq = qn+1. We then have σt0(µqµ

∗
p) = q(n+1)it0−nit0µqµ

∗
p =

qit0µqµ
∗
p. On the other hand, equation (85) gives σt0(µqµ

∗
p) = µqµ

∗
p. Thus, we get

1 = qit0 , so t0 ∈ 2π/(log q)Z, which completes the proof.
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