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Premiere partie
Introduction en francais

Cette these a pour objet la construction et ’étude de C*-systemes dynamiques
généralisant celui introduit dans l'article de Bost et Connes [3]. L’essentiel de cette
these réside dans sa seconde partie (p. 13), qui a été publiée séparément?.

C*-systemes dynamiques et mécanique statistique

Un C*-systeme dynamique est un couple (A, (o¢)) ou A est une C*-algebre et
t — oy est un morphisme de groupes de R dans Aut(A) tel que pour chaque x € A,
l'application ¢ +— o,(z) est continue.

Les systemes dynamiques topologiques “classiques” correspondent au cas par-
ticulier ou l'algebre A est commutative. On a alors A = Cy(X) ot X est le spectre
de A, et o; provient d’un flot sur X.

Soient (A, (0y)) un C*-systeme dynamique et [ un réel strictement positif.
Désignons par Sz la bande horizontale

Sz = {z€C, 0<Imz< g}

Un état KMSs de (A, (04)) est un état ¢ sur A tel que pour tous « et y appartenant
a A, il existe une application continue et bornée Fj, de Sz dans C, holomorphe
sur I'intérieur de Sg, telle que I'on ait, pour tout réel ¢,

Foy(t) = olzo(y)) et Foy(t+16) = (o(y)r).

Le parametre 3 est appelé température inverse, parce que les états KMSg généralisent
les états de Gibbs a température Ty/(5 en mécanique statistique, ou T est une
constante de température dépendant du systeme physique modélisé.

Si g est un état KMSg de (A, (01)) et est fidele, on a Iidentité suivante reliant
le flot 0; au flot modulaire o} :

of = o pour tout t € R.

Les états KMSs forment un simplexe de Choquet, compact pour la topologie
+-faible, dont les points extrémaux sont exactements les états KMSg factoriels.

IB. Jacob, Bost-Connes type systems for function fields, J. Noncommut. Geom. 1 (2007), pp.
141-211.



Lorsque A est séparable, tout état KMSs se décompose de fagon unique comme ba-
rycentre d’une mesure sur les états KMSg factoriels. Pour cette raison, on considere
que pour classifier les états KMSz d'un C*-systeme dynamique, il suffit de classifier
ses états KMSg factoriels. On cherche donc, pour chaque 8 € R, a écrire expli-
citement tous les états KMSg factoriels, et a déterminer la structure des facteurs

correspondants.

Il peut arriver qu’'une variation arbitrairement petite de [ autour d’une cer-
taine valeur [y donne lieu a un changement de la structure de 1’espace des états
KMSg factoriels ou de la structure des facteurs correspondants. On dit alors que
le systeme (A, (0y)) a une transition de phase a la température inverse 3.

Les textes de physique parlent parfois de la fonction de partition d'un C*-
systeme dynamique. Il semble impossible de donner un sens mathématique précis
a cette notion en toute généralité. Cependant, lorsque pour tout [ suffisament
grand tous les états KMSg factoriels sont de type I et de la forme

Tr(e P r(z))
p(r) = W

pour un hamiltonien H indépendant de (5 et ¢, on définit la fonction de partition
Z en posant

Z(B) = Te(e™™).

On sait au moins depuis les travaux de Yang et Lee (1952) que pour certains
systemes physiquement intéressants, par exemple pour certains modeles de mécanique
statistique sur des réseaux, la fonction de partition admet un prolongement méromorphe
sur C et que la répartition de ses zéros dans C est physiquement intéressante. Il
semble donc que la fonction de partition soit la bonne notion de “fonction zéta”

en mécanique statistique, a condition bien stur que I'on sache la définir.

Le systeme de Bost-Connes

Le systeme de Bost-Connes est un C*-systeme dynamique qui a été introduit
par Bost et Connes dans [3]. On peut le construire comme suit. Considérons le
semigroupe multiplicatif N* et son action par multiplication sur le groupe Q/Z.
Définissons la C*-algebre de Bost-Connes Cg par :

Cy = C*(Q/Z) x N*.

Expliquons ce que nous entendons par ce produit croisé par le semigroupe N*.
La C*-algebre C*(Q/Z) est par définition la C*-algebre universelle possédant une
famille d’éléments (e(7)),cq/z satisfaisant

e(0) =1, e(n+m)=-enelr), el=7)=el)
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et donc en particulier unitaires. Le produit croisé C*(Q/Z) x N* est alors par
définition la C*-algebre universelle possédant une famille d'unitaires (e(7))yeq/z
comme ci-dessus et une famille d’isométries (p,)nen+ satisfaisant les relations sui-
vantes entre elles :

tn b = Hnm pour tous n,m € N*

et
ot = [ fby,  poOUr tous n,m € N* premiers entre eux,

et telles que pour tout n € N* et pour tout v € Q/Z, on ait :

e(Vpn = pme(ny)

et

e, = + 3 e(6).

nd=y

Définissons un flot (o) sur Cg en posant, pour tout ¢ € R,

et

or(pn) = nit,un-
Le couple (Cy, (0¢)) est le systeme de Bost-Connes. Il possede des propriétés qui lui
conferent un certain intérét, et qui suggerent un lien avec ’'arithmétique du corps
Q des nombres rationnels et de ses extensions abéliennes. Rappelons brievement
quelques résultats de [3]. Le théoreme de Kronecker-Weber affirme que 1’extension
abélienne maximale de QQ est engendrée par les racines de I'unité :

Q™ = Q(e*™, v € Q/2).

Faisons agir Gal(Q*®/Q) sur Q/Z en identifiant Q/Z au groupe des racines de
I'unité dans C par

v - 627ri'y )

Ceci nous donne une action de Gal(Q* /Q) sur la C*-algebre Cq : pour tout o €
Gal(Q™/Q),

o(in) = pn et ole(y)) = e(a(y)).
On vérifie que cette action de Gal(Q*/Q) sur Cg est continue pour la topologie
de Krull sur Gal(Q*®/Q) et la topologie normique sur Cg. L’ensemble Cgal((@ab/ v
des points fixes de cette action est donc une sous-C*-algebre de Cy.

Théoréme 1 (Bost-Connes [3]). La sous-C*-algébre C’gal((@ab/@) est engendrée par
les p, avec n € N*.

De ce théoreme, on déduit assez facilement :



Théoréme 2 (Bost-Connes [3]). Pour tout 3 € R*, le groupe Gal(Q*/Q) agit
transitivement sur l'ensemble des états KMSy factoriels de (Cg, (0v)).

Ce dernier théoreme est un ingrédient tres important de la classification des
états KMS. Il montre en particulier que le type des états KMS ne dépend que de
la température, et permet de définir la fonction de partition.

Un élément important de la preuve du théoreme 1 et de beaucoup d’autres
résultats est que I'on connait une base comme C-espace vectoriel d'une sous-*-
algebre ‘H dense dans Cg. Plus précisément :

Définition 3 (Bost-Connes [3]). Soit H la sous-x-algébre de Cgy engendrée par les
tn avec n € N* et les e(y) avec v € Q/Z.

Théoréeme 4 (Bost-Connes [3]). Une base de H comme C-espace vectoriel est
donnée par les pye(y)us, avec n,m € N* premiers entre euz et v € Q/Z.

Passons maintenant a la classification des états KMS.

Théoréme 5 (Bost-Connes [3]). Pour tout 8 €]0; 1], il existe un unique état KMSg
de (Cq, (01)). Le facteur correspondant est l'unique facteur hyperfini de type 111;.

La preuve du théoreme 5 est tres complexe. Sergey Neshveyev a donné dans
[29] une preuve plus simple de I'unicité. Dans cette these, nous suivons I"approche
initiale de Bost-Connes pour 1'unicité, et nous donnons une preuve plus simple de
Iexistence, cf. Proposition 4.1.2, qui se transpose facilement au systeme de Bost-
Connes. Quant au calcul du type, il est entierement différent dans notre cadre.

Soit (€,)nen+ la base hilbertienne standard de ¢*(N*). Soit H 1'opérateur non-
borné sur ¢*(N*) défini par
He, = (logn)e,
pour n € N*. Pour tout 3 €]1;00[, pour tout o € Gal(Q*/Q), définissons une
représentation g, de Cg sur *(N*) en posant :

T6.0(Hn)(Em) = Enm

et

Tao(e(7)(Em) = o (€™ )em.

Définissons un état KMSs g, de (Cg, (1)) en posant
Tr(e P, (7))
Tre—AH
Théoréme 6 (Bost-Connes [3]). Pour tout 3 €]1; 00[, pour tout o € Gal(Q*/Q),

l'état pg, est factoriel de type 1. L’application o — g, est une bijection entre
Gal(Q™/Q) et l’ensemble des états KMSs factoriels de (Cp, (o).

Ppo(T) =
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Ce théoreme montre au passage que la fonction de partition est donnée par

Z(B) = Tr(e™) = Y n”

neN*

et est donc la fonction zéta de Riemann.

Généralisations du systeme de Bost-Connes

De nombreux auteurs ont cherché des généralisations de cette situation a des
corps globaux autres que Q. En premiere approximation, on peut considérer que le
probleme est le suivant : étant donné un corps global k, construire un C*-systeme
dynamique (Cy, (0y)) satisfaisant les conditions suivantes :

1. Le groupe Gal(k®/k) agit contintiment sur Cy. Cette action commute avec le
flot o} et induit une action transitive de Gal(k*/k) sur 'ensemble des états
KMS; factoriels de (Cy, (01)) pour tout 3 € RY, de sorte que la fonction de
partition est bien définie en tout 3 tel qu'il existe des états KMSg factoriels
de type semifini.

2. On sait classifier entierement les états KMSg de (Cy, (o)), la fonction de
partition est la fonction zéta de k éventuellement privée d’un facteur eulérien,
et on a une transition de phase avec brisure spontanée de symétrie au pole
£ =1 de la fonction zéta.

Un espoir est que le systeme de Bost-Connes et ses généralisations pourraient
fournir une nouvelle approche intéressante pour 1’étude des corps globaux et de
leurs fonctions zéta, voir en particulier I'article de Connes, Consani et Marcolli
[10]. Un bref résumé de la littérature sur les généralisations du systeme de Bost-
Connes est donné page 18.

Plusieurs généralisations de la construction Bost-Connes remplacent Q/Z par
k/O ou k est un corps de nombres et O son anneau d’entiers algébriques, cf. en
particulier article de Harari et Leichtnam [17] et celui de Laca et van Franken-
huijsen [27]. Un probléme est alors qu’il n’y a pas en général d’action naturelle du
semigroupe des idéaux de O sur k/O, ce qui rend difficile d’obtenir a la fois la
bonne fonction de partition (la fonction zéta) et le bon groupe de symétries (un
quotient de Gal(k*/k)). La seule construction qui réponde simultanément & ces
deux critéres pour tout corps de nombres est celle de Ha et Paugam dans [16], mais
il semble difficile de classifier les états KMS du systeme obtenu par cette construc-
tion.

Le role important joué par la théorie explicite du corps de classes sur Q dans
le systeme de Bost-Connes suggere d’utiliser une théorie analogue dans les cas ou
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il en existe. Rappelons qu’on appelle théorie explicite du corps de classes toute
théorie qui fournit une famille de générateurs de 'extension abélienne maximale
d’un corps global, et qui décrit I'action des idéaux ou des ideles sur ces générateurs
par I'application d’Artin. La recherche d’une telle théorie pour tous les corps glo-
baux constitue le douzieme probleme de Hilbert. A I'heure actuelle, la théorie
explicite du corps de classes est connue seulement pour Q, les corps CM (et en
particulier les corps quadratiques imaginaires), et les corps de fonctions (voir sec-
tion suivante). Dans chacun de ces cas, les générateurs de l'extension abélienne
maximale sont obtenus en considérant les points de torsion de certains groupes.
Par exemple, dans le cas de Q les générateurs sont les racines de I'unité, qui sont les
points de torsion du groupe C*. Dans le cas d'un corps quadratique imaginaire k,
les générateurs sont obtenus comme valeurs d'une fonction dite fonction de Weber
évaluée aux points de torsion d’une courbe elliptique a multiplication complexe. En
utilisant des courbes elliptiques a multiplication complexe, Connes, Marcolli et Ra-
machandran [12] ont obtenu une bonne généralisation du systeme de Bost-Connes
pour les corps quadratiques imaginaires.

Résultats de cette these

Dans cette these, nous construisons des systemes de type Bost-Connes pour tous
les corps de fonctions, c¢’est-a-dire pour tous les corps globaux de caractéristique
non-nulle, et nous démontrons qu’ils ont toutes les propriétés que ’on pourrait at-
tendre de C*-systemes de Bost-Connes pour des corps de fonctions; en particulier,
nous classifions entierement les états KMS et étudions la structure des facteurs
correspondants.

L’idée de base est que I'analogue d’une courbe elliptique a multiplication com-
plexe est un module de Drinfeld de rang 1. Il y a ici une difficulté supplémentaire
par rapport au cas des corps quadratiques imaginaires traité par Connes, Marcolli
et Ramachandran dans [12] : les modules de Drinfeld de rang 1 sur un anneau
de Dedekind fixé ne forment pas un espace localement compact. Cette difficulté
provient du fait que le corps qui joue le role d’analogue de C n’est lui-méme pas
localement compact.

Heureusement, il existe une théorie explicite du corps de classes die a Hayes
[18], [19], [20], qui fournit un ensemble fini de modules de Drinfeld de rang 1 sur un
anneau de Dedekind donné, satisfaisant des propriétés tres fortes de multiplication
complexe, en particulier au niveau de la compatibilité partielle entre les actions
des idéaux et du groupe de Galois sur les points de torsion de ces modules de Drin-
feld. Un résumé de cette théorie est proposé dans la sous-section 1.3. La théorie
de Hayes constitue 'ingrédient de base de la contruction effectuée dans cette these.



Comme les rappels de théorie des nombres occupent toute la section 1 de la
deuxieme partie, il serait inutile d’en faire ici. Nous nous contentons donc ici d’es-
quisser notre construction, en utilisant les notations introduites dans ces rappels.

Soient k£ un corps de fonctions et oo une place de k. Soit O le sous-anneau
de Dedekind de k des fonctions régulieres en dehors de la place co. Notons Jp le
semigroupe multiplicatif des idéaux de O. Fixons-nous une fonction-signe sgn sur
k. Soit H(sgn) 'ensemble fini de modules de Drinfeld-Hayes correspondant a sgn.
Soit X la réunion disjointe des groupes duaux des groupes de point de torsion des
modules de Drinfeld-Hayes appartenant a H(sgn). Comme les groupes de points de
torsion sont des groupes abéliens discrets de torsion, leurs duaux sont profinis, et
I'on en déduit que X est un espace topologique compact et totalement discontinu.
De plus, X est muni d’actions naturelles fideles de Jo et de Gal(K/k), on K est
I'extension de k£ engendrée par les coefficients et les points de torsion des éléments
de H(sgn). Si la définition de K peut sembler technique au premier abord, il suffit
pour le moment de retenir que

kP C K C k.
Une facon de définir notre C*-algebre Cj,  est de poser
Ck,oo = C(X) X 3(9.

Cependant, pour mener a bien des calculs il est plus pratique de voir cette C*-
algebre comme provenant d’un groupoide, et c¢’est donc ’approche que nous suivons
dans cette these. A partir de I'action du semigroupe Jp» sur X, nous construisons
une action partiellement définie de son groupe enveloppant Fo, qui n’est autre
que le groupe des idéaux fractionnaires associés a (. Nous définissons alors un
groupoide G par

G = {(x,¢c) € X xFo, c-xest défini}

muni des lois évidentes de composition et d’inversion. Notre C*-algebre est alors
définie par

Croo = C*(G).

A partir du moment ou ce choix de construction est fait, des pans entiers de
I’étude faite par Bost et Connes se transposent directement dans notre contexte. En
particulier, de nombreuses idées de preuves peuvent étre réutilisées de fagon plus
ou moins directe. Certains aspects cependant divergent du cas traité par Bost et
Connes. Par exemple, les facteurs a température inverse 3 < 1 sont de type III,-5
(théoreme 4.5.8) pour un corps de fonctions ayant I, pour corps de constantes,
alors qu’ils sont de type III; pour Q. Le calcul du type III -s dans notre cadre
n’était pas évident car le calcul du ratio-set du facteur d’Araki-Woods ne suffit



pas; voir point 3. (c) ci-dessous.

Listons brievement les principaux résultats que nous établissons concernant
notre C*-systeme dynamique (Cy oo, (o)) :

1. Nous construisons une sous-x-algebre dense H, nous donnons une base dénombrable
de H comme C-espace vectoriel (cf. Lemme 3.2.2), et nous obtenons une
présentation par générateurs et relations a la fois de H et de C o, cf. Pro-
positions 3.1.2, 3.2.3, 3.3.6. Ces relations sont a coefficients rationnels.

2. Nous étudions une action de Gal(K/k) sur (Cj o, (01)) et nous calculons la
sous-C*-algebre fixée par cette action, cf. Proposition 3.5.2. Nous obtenons
aussi divers résultats algébriques concernant cette action, cf. Proposition 3.6.9
et Lemme 3.8.3, qui seront utilisés pour la classification des états KMS.

3. Nous classifions entierement les états KMSs de (Cy o, (0¢)). Nous identifions
une transition de phase avec brisure spontanée de symétrie en g =1 :

(a) Nous montrons que, quelle que soit 3, il existe un unique état KMSg
invariant par Gal(K/k), cf. Proposition 4.1.2 pour I'existence et Propo-
sition 4.1.3 pour 'unicité.

(b) Dans la phase de basse température (§ > 1), nous montrons que 1’es-
pace des états KMSy factoriels est principal homogene pour Gal(K/k)
muni de la topologie de Krull, cf. Théoreme 4.3.10. Nous montrons
que ces états sont de type I, (cf. Proposition 4.3.8) en calculant leurs
représentations GNS (cf. Lemme 4.3.7), et vérifions que la fonction de
partition est égale a la fonction zéta de Dedekind de O, c’est-a-dire a
la fonction zéta de k privée du facteur correspondant a la place oo, cf.
Lemme 4.3.3. Enfin, nous exprimons certaines valeurs spéciales de ces
états KMSs extrémaux en termes de valeurs spéciales de fonctions zéta
partielles associées a ces classes d’idéaux, cf. Théoreme 4.3.12.

(c) Dans la phase de haute température (5 < 1), nous montrons (cf. Théoréme
4.4.15) qu’il n’existe qu'un unique état KMSgs, a savoir I’état invariant
par Gal(K/k) évoqué plus haut. Nous montrons alors que cet état est de
type III,-s, cf. Théoreme 4.5.8. Dans ce but, nous commencons par cal-
culer le type de la restriction de cet état a l'algebre fixée par Gal(K/k),
cf. Lemme 4.5.1, ce qui est facile puisqu’il suffit de calculer un ratio-set.
Puis nous montrons que le centre du centralisateur de cet état est fixé
par Gal(K/k), cf. Lemme 4.5.5, ce qui constitue 1’étape la plus impor-
tante. Nous en déduisons alors que ce centralisateur est un facteur, cf.
Lemme 4.5.6, ce qui permet d'une part de calculer I'invariant T du fac-
teur dont nous cherchons le type, et d’autre part de montrer que ce type
n’est pas IIly. Le résultat s’obtient alors par orthogonalité des invariants
SetT.
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Deuxieme partie
Bost-Connes type systems for
function fields

Abstract

We describe a construction which associates to any function field £ and
any place oo of k a C*-dynamical system (C} c,0¢) that is analogous to
the Bost—Connes system associated to Q and its archimedean place. Our
construction relies on Hayes’ explicit class field theory in terms of sign-
normalized rank one Drinfel’d modules. We show that C}, o has a faithful
continuous action of Gal(K/k), where K is a certain field constructed by
Hayes such that k> c K C k®P. Here k*»* is the maximal abelian ex-
tension of £ that is totally split at co. We classify the extremal KMSg states
of (Cj 00, 0¢) at any temperature 0 < 1/3 < oo and show that a phase tran-
sition with spontaneous symmetry breaking occurs at temperature 1/5 = 1.
At high temperature 1/3 > 1, there is a unique KMSg state, of type HI,-s,
where ¢ is the cardinal of the constant subfield of k. At low temperature
1/8 < 1, the space of extremal KMSg states is principal homogeneous under
Gal(K/k). Each such state is of type I, and the partition function is the
Dedekind zeta function (i . Moreover, we construct a x-subalgebra H, we
give a presentation of H and of Cf ~, and we show that the values of the
low-temperature extremal KMSg states at certain elements of H are related

to special values of partial zeta functions.
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Introduction

Statement of the main results

Let k£ be any global function field. Let oo be any place of k. In this paper, we shall
associate to the pair (k, 00) a C*-dynamical system (C o, (0¢)).

Our system aims to be an analog of the Bost—Connes (BC for short) system
associated to @, cf. Bost and Connes [3]. The partition function of the BC system
is the Riemann zeta function without the I'-factor at infinity. Similarly, we shall
check (Lemma 4.3.3) that the partition function of our system is the zeta function
of the field k£ without the factor corresponding to the place oo of k.

The BC system admits Gal(Q**/Q) as symmetry group. Similarly, we shall
check (Proposition 3.4.2) that our system has Gal(K/k) as symmetry group (mean-
ing that Gal(K/k) acts continuously and faithfully on Cj o, commuting with the
flow 0,), where K is a field having the following property:

kP C K C R,

where k*”* is the maximal abelian extension of k that is totally split at co. The
field K is generated over k by coefficients and torsion points of certain rank one
Drinfel’d modules; this is part of David R. Hayes’ explicit class field theory for
function fields, cf. Hayes [18], [19] and [20], which we shall quickly review. If oo’ is
any place of k& other than oo, we have (cf. [18], Theorem 7.2)

k,ab,oo’ . kab,oo _ kab

We shall construct our C*-algebra Cj o, as the maximal C*-algebra of a certain
groupoid G. We shall also give (Proposition 3.3.6) a presentation of C . as a
C*-algebra.

For any temperature 1/8 € R%, let K3 be space of KMSg states of (Cj, o, (0¢)),
endowed with the weak* topology. By Bratteli and Robinson [4], II, Theorem
5.3.30, the space K3 is a compact simplex (in particular, it is convex). Let £(Kjp)
denote the subspace of extreme points of Kz. The elements of £(Kj) are called
the extremal KMSg states. By loc. cit., a KMSg state is extremal if, and only if it
is a factor state. Thus, £(K3) is equal to the space of KMSg factor states.

We shall classify the KMSg states of our system for any temperature 1/8 € R*.:
At low temperature 1/5 < 1, we shall prove (Theorem 4.3.10) that £(Kj) is
principal homogeneous® under Gal(K/k). The states in £(Kj3) are of type I
(Proposition 4.3.8). At high temperature 1/5 > 1, we shall prove (Theorem 4.4.15)
that there exists a unique KMSg state. It is of type IIL,-s (Theorem 4.5.8), where
q is the cardinal of the constant subfield of k.

5Let G be topological group acting on a topological space X. One says that X is principal
homogeneous under G if, for any z € X, the map g — gx is a homeomorphism G — X.
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We shall construct a dense *-subalgebra H which gives an arithmetic structure
to our dynamical system, as in [3]. For example, we shall show (Theorem 4.3.12)
that evaluating low-temperature extremal KMSgs states on certain elements of the
subalgebra H gives rise to formulas involving special values of partial zeta functions.

Many of our proofs are adapted from [3], and we have also borrowed several
ideas from Harari and Leichtnam [17].

Outline

This paper is divided into four sections. In Section 1 we first review definitions and
results in the arithmetic of function fields and in the analytic theory of Drinfel’d
modules. We review Hayes’ explicit class field theory for function fields, in terms
of sign-normalized rank one Drinfel’d modules. We choose once and for all a sign-
function sgn, and Hayes’ theory provides us with a finite set H(sgn) of Drinfel’d
modules with special arithmetic properties. In particular, their coefficients and
torsion points generate the extension K /k which we mentioned above. In the rest
of this paper, the only Drinfel’d modules which we consider are the elements of
H(sgn).

In Section 2 we do the actual construction of the C*-dynamical system
(Ck,00, (01)). From the finite set H(sgn) provided by Hayes’ theory, we construct
a compact topological space X in the following way: for any ¢ € H(sgn), let X
denote the dual group of the discrete group of torsion points of the Drinfel’d mod-
ule ¢. Let X be the disjoint union of the X, where ¢ runs over H(sgn). The
compact space X is endowed with a natural action of the semigroup Jo of ide-
als. This gives rise to a groupoid G, and the C*-algebra C o is obtained as the
maximal groupoid C*-algebra of G. The flow (0y) is then easy to define.

In Section 3 we prove a number of results about the algebraic structure of
(Ck.00, (01)). We introduce a *-subalgebra H which plays the role of the algebra H
in the paper [3]. We prove that H is dense in C}, ., and we give a presentation of H
as a *-algebra and of C} o, as a C*-algebra. We then study an action of Gal(K/k)
on Ck~ and compute the fixed-point subalgebra C;. The rest of this section is
devoted to miscellaneous arithmetical results which we use in the last section.

In Section 4 for any temperature 1/3 € R%, we describe the space £(Kjp) of
extremal KMSg states (endowed with the weak* topology), and we compute the
type of all such states. We first construct a KMSg state ¢z and show that it
is the unique Gal(K/k)-invariant KMSs state. We then show that the action of
Gal(K/k) on £(K ) is transitive and continuous. Thus, in order to describe £(Kjp),
it is enough to find an element of £(K) and to describe its orbit under Gal(K/k).
At low temperature 1/3 < 1, we associate to any admissible character x a Gibbs
state @g, in the regular representation at x. We prove that the map x — ¢z,
is a homeomorphism from the space X*™ of admissible characters to £(Kjz). We
also prove that both spaces are principal homogeneous under Gal(K/k). We check
that the states in £(Kjp) are of type I, that the partition function is the Dedekind

17



zeta function (i, and we compute the values of the g3, at some points of H in
terms of special values at [ of partial zeta functions of k. At high temperature
1/6 > 1, we prove that £(K3) = {ps} and that the type of g is I1I,-5, where g is
the cardinal of the constant subfield of k.

Literature on Bost—Connes type constructions

The 1995 paper [3] has inspired many mathematicians. Unfortunately, it would
be impossible to mention all of them here; we refer to Section 1.4 of Connes and
Marcolli [11] for a more complete summary. M. Laca, N. Larsen, I. Raeburn and
others have investigated in a number of papers (see for instance [2], [25], [26],
[27], [28]) the semigroup crossed product and Hecke algebra aspects of the BC
construction and generalizations of it. In 1997, D. Harari and E. Leichtnam have
obtained in [17] a system with spontaneous symmetry breaking for any global field.
In 1999, P. Cohen has obtained in [6] a system for number fields whose partition
function is the Dedekind zeta function. In 2002, S. Neshveyev has given in [29]
a new proof of the uniqueness of the KMSg state at high temperature. In 2004,
A. Connes and M. Marcolli have introduced in [11] the noncommutative space
of Q-lattices up to scaling and commensurability, allowing for a comprehensive
reformulation of the BC construction, and have studied the case of rank 2. In
2005, A. Connes, M. Marcolli and N. Ramachandran have obtained in [12], [13]
the “good” system for quadratic imaginary number fields and have studied its
relation to complex multiplication of elliptic curves. The same year, E. Ha and
F. Paugam have extended in [16] the Connes—Marcolli setting to arbitrary Shimura
varieties. Finally, in the paper [10], A. Connes, C. Consani and M. Marcolli have
introduced the notion of an endomotive, putting the BC construction into a much
wider perspective which also includes A. Connes’ spectral realization [9] of the
zeroes of the Riemann zeta function.

Acknowledgements. I thank Eric Leichtnam for giving me this research subject,
for many helpful comments on early versions of this paper, and for his explanations
on operator algebras. I thank Matilde Marcolli for encouraging me to give a talk on
this material at MPI, Bonn, in October 2005. During this research, I enjoyed the
excellent working environment of the “Projet Algebres d’Opérateurs” at Jussieu,
and 1 thank Etienne Blanchard for letting me talk in its seminar. I am very
grateful to Alain Connes, David R. Hayes, Georges Skandalis and Stefaan Vaes
who kindly answered mathematical questions. I also thank Cécile Armana, Pierre
Fima, Eugene Ha, Cyril Houdayer and Frédéric Paugam for helpful discussions.

Here are two interesting remarks that people made at the end of my MPI talk.
1. As Alain Connes pointed out, our system lacks one feature of the BC system:
fabulous states. The reason for that is obvious: values of states are elements of
C, so the symmetry group Gal(K/k) does not act naturally on them. Obtaining
fabulous states would require to have a theory of dynamical systems of positive
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characteristic, where states would take values in some field of positive character-
istic. Note that even though the low temperature extremal KMSs states of our
system do not have the fabulous property, they have interesting special values
(Theorem 4.3.12).

2. Arkady Kholodenko mentioned that it might be possible to adapt his work
on 2+ 1 gravity [23] in order to obtain zeta functions of function fields as partition
functions, and that Drinfel’d modules should play a role.

Notations

In this paper, N denotes the set of nonnegative integers, N* denotes the set of
positive integers, and R’ denotes the set of positive real numbers. Thus 0 € N,
0 ¢ N*, and 0 ¢ R* . For any Hilbert space H, we let B(H) denote the algebra of
all bounded linear operators on H. For any set X, we write B¢*(X) for B(£*(X)).
For any x € R, we set

|z] = max{n € Z | n < z}.

For any predicate P, we define 1p to be equal to 1 if P is true, and 0 if P is false.
Thus, we have for any two predicates P and Q:

1pand @ = 1plg.

1 Function fields, Drinfel’d modules, and Hayes’
explicit class field theory

1.1 Function fields

Here are three equivalent definitions of a function field:
e A field which is a finite extension of F,(T), for some prime number p.
e A global field of positive characteristic.

e The field K(C) of rational functions on a projective curve C' over a finite
field. The curve C' can always be chosen to be smooth.

Thus, global fields fall into two categories: those of characteristic 0 are the
number fields, and those of positive characteristic are the function fields.

Recall that at the beginning of this paper, we chose a function field k£ and a
place oo of k.

Function fields have many similarities with number fields. An important part
of algebraic number theory works in the same way for all global fields.

The analog of the Dedekind ring of integers is defined as follows. According to
the third definition of a function field, view k as the field K (C') of rational functions
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on a smooth projective curve C' over a finite field. View oo as a closed point of C.
Let O be the subring of k of all functions having no pole away from oc. In other
words, O is the ring of regular functions on the affine curve C' — {oo}. Note that
k = K(C) is the field of fractions of O.

Example. k = F,(T") and oo is the place corresponding to an absolute value | - |
such that |T| > 1. The subring O is then the polynomial ring IF,[T7].
Call finite the places of k other than co. We have a natural bijection

finite places of k «+—— maximal ideals of O.

Let p denote the characteristic of k. The range of the unique unital ring morphism
Z — k is a finite field with p elements; we denote it by F,. The algebraic closure
of F,, in k is called the constant subfield of k. Let g denote its cardinal. Of course,
q is a power of p. We let IF, denote the constant subfield of k. An element of k is
said to be constant if it belongs to F,.

For any place p of k, we let Np denote the cardinal of the residue field of p.
Thus, Np = ¢" for some positive integer n, called the degree of p. Note that if p
is finite, then the residue field is the quotient O/p.

The rest of this subsection is a review of a few well-known theorems about
function fields, which will be used in the proofs of our classification of KMSg
states. These theorems are: the strong approximation theorem, Weil’s “Riemann
Hypothesis for curves”, and the abelian case of the Cebotarev density theorem for
the natural density. The first one will be used in Subsection 3.6, which in turn will
be used in the classification of KMSgs states at low temperature. The two other
ones will be used in the classification of KMSgs states at high temperature.

Let Ay denote the ring of finite adeles of k. This is the restricted product of the
k, with respect to the Oy, where p runs over all finite places of k. Let ¢f: k — Ay
be the diagonal embedding.

Theorem 1.1.1 (Strong approximation theorem). The field vf(k) is dense in Ay.
Proof. See Cassels and Frohlich [5], Chapter 11, §15, p. 67. O]

This is contrasted with the fact that if ¢: k <— A is the diagonal embedding
into the full ring of adeles, then «(k) is discrete in A. Note that

A= As X ke,

where k., is the completion of £ at oco.

Let us now recall Weil’s “Riemann hypothesis for curves” theorem. The genus
of a function field is the genus of any projective smooth curve of which it is the
function field. For the statement of the following theorem, we temporarily forget
that we already chose a function field k and defined ¢ as the cardinal of its constant
subfield.
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Theorem 1.1.2 (A. Weil, the Riemann Hypothesis for curves). Let k be a function
field of genus g. Let q be the cardinal of its constant subfield. Let N be the number
of places of k with norm q (i.e. with degree 1). Then

q—29/q+1<N<qg+29q+1
Proof. Weil’s original proof is published in [34]. O

Let us now come back to the function field £ that we fixed at the beginning of
this paper. Let g denote the genus of k.

Given an integer n > 1, one may ask how to obtain a result similar to Theo-
rem 1.1.2 for places of k£ with norm ¢" (i.e. with degree n). Note that one cannot
replace ¢ by ¢" in Theorem 1.1.2. Here one has to be wary of the distinction be-
tween closed points, which correspond to places of k, and geometric points, which
correspond to places of suitable extensions of k. The following corollary will be
used in Subsections 4.4 and 4.5.

Corollary 1.1.3. For any n > 1, let Q(k,q™) denote the number of places of k
with norm q", and let P(k,q") denote the number of places k with norm < ¢". The
following estimates hold when n — oc:

Q(k,q") = =+ 0(q"?), (1)
q n

P(k,q") ~ 1 (2)

3|

R

Proof. For any n > 1, let k, = k ®p, Fgn. Note that the constant subfield of k,, is
Fsn. Let N,, denote the number of places of k,, with norm ¢". By Theorem 1.1.2
applied to the function field k,,, we have

" —29¢"? +1< N, < ¢"+29¢™? + 1. (3)
Let n > 1. One easily checks that for any m | n there is a bijection

places of k with norm ¢ «— Gal(k,/k)-orbits with cardinal m

of places of k, with norm ¢".

Thus we have

mln
This gives
nQ(k,q") =N, — Y mQ(k,q").

m|n,m<n/2
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By equation (4), we have mQ(k, ¢™) < Ny, so we find

Ny =2nQ(k,q") >Ny — > N

min, m<n/2
> Ny = (/2)Ninjay.
Applying the inequality (3), we get
¢" 294" + 12 nQ(k,q") > ¢" — 294" + 1 — (n/2)(¢"* + 294"/ + 1),

and the estimate (1) follows. From the estimate (1), using the equality

P(k,q") = Qk,q™),

one can obtain the estimate (2) by an elementary computation. O

For any s € C with Res > 1, put

1

Cr(s) = 1;[ T_Np*
where the product is taken over all places of k. One shows that (j can be continued
to a meromorphic function on C. Note that ¢, is periodic, with period 27i/loggq.
The inequality (3) for all n > 1 is then equivalent to the statement that all zeroes
of ( have real part 1/2. One defines the zeta function without the factor at oo,
denoted by (., to be the meromorphic continuation of the function defined when
Res > 1 by

Goo(s) =[] ﬁ = (1 — Noo %)Gu(s).
pF#oo

Note that when Res > 1, we have

Goels) = O

acedo

Let us now recall a version of the Cebotarev density theorem.
Let S denote the set of all places of k. A set P of places of k is said to have a
Dirichlet density if the following limit exists in R:

N —S
d(P) = lim ZPGP—’[
s—1y ZPGS Np $
Moreover, P is said to have a natural density if the following limit exists in R:
P|Np<N
5(P)= lim Card{p € P | Np < N}
N—+oo Card{p € S | Np < N}

If a set P has a natural density, then it also has a Dirichlet density, and d(P) =
I(P).
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Theorem 1.1.4 (Cebotarev density theorem, abelian case, for the natural den-
sity). Let L be a finite abelian extension of k. Let o € Gal(L/k). Let P de-
note the set of all places p of k unramified in L and such that o, = o, where
op, = (p,L/k) € Gal(L/k) is the Artin automorphism of L associated to p. Then
P has natural density 6(P) = 1/[L : k|. Therefore, it also has Dirichlet density
d(P)=1/[L : k].

Proof. Combine [5], Chapter VIII, Theorem 4 with the Artin reciprocity law. [

We shall use the Cebotarev density theorem in Subsection 4.4, and we shall
also use the following corollary in Subsection 4.5.

Corollary 1.1.5. Let L be a finite abelian extension of k. Let o € Gal(L/k). For
any n > 1, let P(L/k,q", o) denote the number of places of p of k unramified in
L such that Np < ¢" and 0, = o, where o, = (p,L/k) € Gal(L/k) is the Artin
automorphism of L associated to p. Let Q(L/k,q", o) denote the number of places
of p of k unramified in L such that Np = ¢" and 0, = 0. The following estimates
hold when n — oo:

n

q q

P@/h@”ﬂ)”m'g’ (5)
QLfka o) ~ - L (6

Proof. The estimate (5) follows from Theorem 1.1.4 and the estimate (2). We have

Q(L/k.q",0) = P(L/k,q",0) — P(L/k,q""",0),

SO
Q(L/k.q",0) _P(L/k,q",0) P(L/k,q""",0) P(k,q"")
P(k,q") P(k,q") P(k.q")  P(k.q")
Hence
QLK G"0) w1 L1 g1
P(k,q") [L:k] [L:k] ¢ q[L:k]
Applying the estimate (2) to that, we get the estimate (6). O

1.2 Drinfel’d modules over C,

Our references in this subsection are [20] and Chapter IV of Goss [15].

Recall that the maximal abelian extension of a quadratic imaginary number
field is generated by the j-invariant and the torsion points of a suitable elliptic
curve over C. One wishes to develop a similar theory for function fields. Thus,
one looks for good analogs of C and of the notion of an elliptic curve over C. The
analog of the field C has been well known for a long time and is what we shall
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denote C,. The analog of the notion of an elliptic curve over C is going to be the
notion of a Drinfel’d module over C.

We begin with describing the analog of C. Let k., be the completion of £ at oc.
The problem is that k., is not algebraically closed. Take an algebraic closure
k2 /k... One shows that co extends uniquely to a place of k2. Then the problem
is that k% is not complete. So let C,, denote the completion of k%% at co. The
field C,, is both complete and algebraically closed.

Let us choose once and for all an imbedding ¢: k — C,, and use it to view k
as a subfield of C.

Lattices

We are now ready to introduce Drinfel’d modules. The most concrete way to
introduce elliptic curves over C is to first define lattices in C. Similarly, we are
going to first define lattices in C.

Recall that O is the subring of integers of k, defined in the previous subsection.
A subgroup L C C, is said to be discrete if there exists a neighborhood U of 0 in
Cw such that UN L = {0}.

Definition 1.2.1. An O-lattice in C, is a discrete, finitely generated O-submodule
of Cy.

We shall say “lattice” instead of “O-lattice in C.”.

This is an abstract definition, but in this paper we shall only have to deal
with a special case of lattices, rank one lattices, for which there is a very concrete
definition. Let us first define the rank of a lattice.

Let L be a lattice. As C, is a field containing O, it is obviously a torsion-free
O-module. Hence L is also torsion-free. As O is a Dedekind ring, the O-module
L, being finitely generated and torsion-free, is automatically projective, so there
exist an integer » > 1 and ideals ay,...,a, € Jp such that L is isomorphic as an
O-module toa; & --- P a,.

Definition 1.2.2. The integer r above is called the rank of L.

Let Jo be the semigroup of all nonzero ideals of O, under the usual multipli-
cation law of ideals. For rank one lattices, we have the following result:

A subset of Cy 1s a rank one lattice if, and only if it is of the form &a
with £ € C’, and a € Jo.

The Drinfel’d module associated to a lattice

Let L be a lattice (of any rank). Remember the following product formula:

sinz = z H (1—2z/t) forall z € C.

tenZ—{0}
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Similarly, let us define a function ey : C,, — C, by the following formula:
er(z) =x H (1—=z/0) forall xz € Cy.
LeL—{0}
One shows that this product converges for all z. The function ey should be called

the “sinus function associated to L”, but authors have decided to call it the “ex-
ponential function associated to L”. We have

er(z+y) =er(r) +er(y) foralzyeCy, (7)
and

er(ax) = ¢t (ep(x)) forallae O, x € Cq, (8)

a

where ¢L € C,[X] is the polynomial given by the following formula if a # 0:
or=aX I —=X/e(0)),
0#£lca—1L/L
and ¢§ = 0. Note that if a is a nonzero constant (that is, a € F}), then it is
invertible in @ and hence a 'L = L. Thus, one has

¢o =aX forallael,. 9)

As we shall shortly see, this allows to check that for any a € O the polynomial ¢~
is [F;-linear, which means that it can have nonzero coefficients only in degrees that
are powers of q.

Equation (7) is an analog of the classical formula for sin(z + y), not of the for-
mula for exp(z+vy). The fact that ey, is additive, while sin is not, is a phenomenon
typical of characteristic p algebra, just like the additivity of the Frobenius map
x + 2P. The polynomials ¢ can be viewed as analogs of the classical Chebycheff
polynomials of trigonometry.

One shows, by analytic means, that ey induces a bijection

€r . COO/L—> Coo

So this is a group isomorphism. Use it to transport the O-module structure of
C./L to a new O-module structure on C,,, which we denote ¢*(C.,). Thus,
#*(Cy) is the O-module that is equal to C., as an additive group and whose
O-module structure is given by

(a,2) = ¢ (2).
Thus, by definition, the map ey, is an isomorphism of O-modules
er: Co/L — ¢"(Cw). (10)
The Drinfel’d module associated to L is the map
¢ O — Cuo[X],

as o
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Definition of a Drinfel’d module over C_,

The map ¢ that we have just defined satisfies

Gary = ¢ + ¢ forallabe O, (11)

aLb = ¢5o¢£:¢{;o¢£ for all a,b € O. (12)

Let 7 = X9 and, for n > 0, 7" = X4". In particular, 7° = X. Let C,.{7} denote
the (noncommutative) C..-algebra whose underlying vector space is the C..-linear
span of the 7", for n > 0, and where the “multiplication” law is the composition

law o. Note that C{7} consists exactly of those polynomials that are F -linear.
Combining equations (9) and (12), one obtains that the polynomial ¢ is F,-linear,

¢ € Coo{r} forallac O,

and that the map O — Co{7}, a — ¢~ is F -linear as well. Thus, it is a morphism
of F,-algebras

o*: O — Coo {7},

ars .

Let

D: C{r} - Cy
be the derivative-at-0 map. In other words, D is the C.-linear map defined by
D(7%) =1 and D(7") = 0 for any n > 1. We have

D(¢t) =a foralla € O.

This leads to the general definition of a Drinfel’d module over C.:

Definition 1.2.3. Let ¢: O — C. {7}, a — ¢4, be a morphism of F -algebras.
Then ¢ is a Drinfel’d module over C., if and only if

1. for all a € O, D(¢,) = a,

2. ¢ is non-trivial, i.e. ¢ is not the map a — a7°.

To any lattice L of any rank we have associated a Drinfel’d module over C,
which we denoted by ¢”. The uniformization theorem states that any Drinfel'd
module over Co, comes from a unique lattice. Thus, the map L — ¢* is a bijection
between lattices and Drinfel’d modules over C.

The rank of a Drinfel’d module over C, is the rank of the associated lattice.
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Action of the ideals

For any Drinfel’d module ¢ over C,, and any a € Jp, we define the polynomial
¢a € Coo{7} as follows. Let I, 4 be the left ideal of Coo{7} generated by the ¢,,
for a € a. One can show that every left ideal of C,.{7} is principal, so there exists
a unique monic ¢, € Coo{7} such that I, = Coo{7} s

For any Drinfel’d module ¢ over C,, and any nonzero a € O, we define an
element p4(a) € Ci by

te(a) = leading (highest-degree) coefficient of the polynomial ¢,.

Note that if a is a nonzero principal ideal of O, for any a € O such that a = aQO,
we have

¢a = “¢(a)_1¢a'

It is easy to see that for any b € O, we have I, 40, C I54. Thus, for any b € O we
have ¢qdp € I44, so there is a unique ¢} € C{7} such that

¢a¢b = (b;;(ba-

One shows that the map b — ¢} is a Drinfel’d module over C,,. We denote it by
ax ¢. For any two a,b € Jp, we have

ax (bx¢)=(ab)*o.

Thus, (a,¢) — ax¢ is an action of J» on the set of all Drinfel’d modules over Cq.
Let §o be the enveloping (“Grothendieck”) group of the abelian semigroup Jp.
The abelian group §» may be realized concretely as the group of fractional ideals
of k£ with respect to the Dedekind ring O. One shows that the action of J» on the
set of Drinfel’d modules over C,, extends to an action of Fn. One also has the

equality
bas = (6% 0)ade (13)

Torsion points

Let ¢: O — Cy {7}, a — ¢,, be a Drinfel’d module over C,,. Remember that
#(Cw) is the O-module that is equal to C as an abelian group and whose O-
module structure is given by

(a,z) — ¢q(x).
Let ¢(Cuo)™ denote the O-torsion submodule of ¢(Cy). In other words, an ele-
ment = € ¢(Cy) is in ¢(Cu)™ if and only if ¢,(x) = 0 for some nonzero a € O.
For any a € O, let ¢[a] = ker¢,. For any a € Jp, let ¢[a] = ker ¢,. Under
the bijection given by equation (10) the sets ¢(Cy)'", ¢la] and ¢[a] are identified
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with the following subsets of Co./L:

er (6(Cx)"™") = kL/L,
e;'(dla)) =a'L/L for all a € O — {0},
e; (¢la])) =a*L/L forall a € Jo.

1

Here a™ is the inverse of a as a fractional ideal with respect to O, i.e.

al'={reck|zacO}
The following equalities follow from the definitions:

dla] = ¢laQ] for all a € O,
ola] = ) ¢la] for all a € Tp,

$(Co)" " = gofb[a],
$(Coo)™ = g ¢lal,
and
alb< ¢la] C ¢lb] forall a,be Jo. (14)

One also checks that, for all a,b € Jp,

¢la] N @[b] = la + b], (15)
¢la] + ¢[b] = ¢lanb (16)

We have
Card ¢[a] = (Na)" for all a € Jp, (17)

where 7 is the rank of ¢ and Na is the absolute norm of a, i.e., Na is the cardinal
of O/a.
Let a € Jp. By construction, ¢, is an O-module morphism

¢a: #(Cxo) — (a % 9)(Cxo).
For any b € Jo, let ¢o|4s denote the restriction of ¢, to ¢[b].

Lemma 1.2.4. Let ¢ be a Drinfel’d module over Cy,. Let a,b € Jo. Letd =a+0b
be the ged of a and b. We have

Ker(¢alsr) = o[0];
Im(alsfe) = (a¢)[0~"b].
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Proof. First equality: we have Ker(dq|g1e)) = ¢[a] () #[b], so the result follows from
equation (15).
Second equality: let r denote the rank of ¢. We have

Card(Im(¢algs))) = Card(¢[b])/ Card(Ker(¢alss)))
= Card(¢[b])/ Card(¢[0])
= (Nb)"/(No)"

and
Card((a  ¢)[0~'6]) = N(o~'b)",

so the two cardinals are equal, so it is enough to show one inclusion. Let x €
Im(a|gg). It is enough to show that (a * ¢)y-15(x) = 0. Let y € ¢[b] such that
ba(y) = z. Let ¢ = anb be the lem. We have 97'b = a~'c. But

(a* @)a1c(z) = (a* @)a1c(da(y)),
so,by equation (13), we get
(@x @)a1e(2) = c(y)-
But b | c and y € ¢[b], so y € ¢[c], so
(a5 6)are(z) = 0. =

Corollary 1.2.5. Let ¢ be a Drinfel’d module over Cy. Let a,b € Jo. For all
A € ¢[b], there exists pu € (a™' * ¢)[ab] such that

(a_l * ¢)a(,u) = A

Proof. Let 1 = a= ! x ¢. Let by = ab. Let 0, = a, so that 0, is the ged of a and bs.
By Lemma 1.2.4, we have

Im (Yq|y[os)) = G[05 'b2),

SO

Im(a|yae)) = 0[0]. O
Corollary 1.2.6. Let ¢ be a Drinfel’d module over Cy,. For all a € Jo, the map

(a5 @) (a7 % 0)(Coo)™ — ¢(Coo)'™"

18 surjective.
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1.3 Hayes’ explicit class field theory

In this subsection we review D.R. Hayes’ explicit class field theory for function
fields, in terms of sign-normalized rank one Drinfel’d modules. We follow [20],
Part II, and [15], Chapter VII. Recall that k. is the completion of k at co. Let
F. denote the constant subfield of k.. The field F is a finite extension of I,
and its degree is equal to the degree of the place oo.

Definition 1.3.1. A sign function on k7 is a group morphism sgn: k%, — [F%
which induces the identity map on F7_.

Let us choose once and for all a sign-function sgn (by [20], Corollary 12.2, the
number of possible choices is equal to the cardinal of F%_ ). We let sgn(0) = 0 so
that sgn becomes a function k., — F..

Definition 1.3.2. A Drinfel’d module ¢ over C,, is said to be sgn-normalized if
there exists an element o € Gal(F,/F,) such that

pe(a) = o(sgn(a)) forall a € O.
Let us now focus on the case of Drinfel’d modules of rank one.

Definition 1.3.3. Let H(sgn) denote the set of sgn-normalized rank one Drinfel’d
modules over C,,. The elements of H(sgn) are also called Hayes modules (for the
triple (k, co,sgn)).

Proposition 1.3.4. H(sgn) is a finite set, and its cardinal h(sgn) is given by

Card F?

h(sgn) = Card P h(0O),
q

where h(O) is the class number of the Dedekind ring O.
Proof. See [20], Corollary 13.4. O

Proposition 1.3.5. For any ¢ € H(sgn) and any a € o, we have ax¢ € H(sgn).
Thus, o acts on H(sgn).

Proof. See [20], p. 22. ]

Definition 1.3.6. Let ¢ € H(sgn), and let y € O —F, (recall that IF, denotes the
constant subfield of k). Let H™ be the field generated over k by the coefficients

of ¢,.
One shows (see [20], p. 23) that H' does not depend on the choice of ¢ and y.

Proposition 1.3.7. The extension H* /k is finite, abelian, and unramified away
from oc.
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Proof. See [20], Propositions 14.1 and 14.4. O

One shows (see [20], §15) that H* contains a subfield H which plays the role
of the Hilbert class field for the pair (k, c0).

Here is a concrete picture of the Galois group Gal(H ' /k). First, let PJ be the
following subgroup of §o:

Ph={z0 |z €k, sgn(x) =1}
We then have the following proposition.

Proposition 1.3.8. The Artin map (-, H"/k) induces an isomorphism from
So/Ph to Gal(H T /k).

Proof. See [20], Theorem 14.7. O

The Galois group Gal(H™/k) acts on H(sgn) by (o,¢) +— o¢, where o¢ is
defined by (0¢), = 0(¢,) for all a € O (one checks that ov) € H(sgn)).

Theorem 1.3.9. For any a € Jo, if 0, = (a, H"/k) € Gal(H*/k) denotes the
Artin automorphism of H™ associated to a, then we have

gup =ax¢ for all o € H(sgn).
The set H(sgn) is principal homogeneous under the action of Gal(H™/k).
Proof. See [20], Theorems 13.8 and 14.7. O

Definition 1.3.10. For any ¢ € H(sgn), let K denote the field generated over H™
by the elements of ¢(C..)*". For any ¢ € Jp, let K, denote the field generated
over HT by the elements of ¢[c].

One shows (see [20], p. 28) that K and K, are independent of the choice of
¢. The extension K./k is called the narrow ray class extension modulo ¢. By
construction, we have

K= | K.

c€Jo

Theorem 1.3.11. For any ¢ € Jo, the extension K./k is finite, abelian, and
unramified away from oo and the prime divisors of ¢. Moreover, K. contains the
ray class field of k of conductor ¢ totally split at co. For any a € Jo prime to ¢, if
0. = (0, K./k) € Gal(K,/k) denotes the Artin automorphism of K. associated to
a, then we have

Ta\ = ¢a(N)  for all ¢ € H(sgn), X € ¢[c].

Proof. See [20], p. 28, or [19], Section 8. O
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In particular, this shows that
kab,oo cKcC kab’

where k*> is the maximal abelian extension of k that is totally split at oo.

Let us give a concrete picture of the Galois group Gal(K./k), for ¢ € Jo. Let
So(c) denote the subgroup of Fo of all fractional ideals that are prime to ¢, and
let

Ph(c) ={zO |z €k, sgn(z) =1, =1 mod c}.

We then have the following proposition.

Proposition 1.3.12. The Artin map (-, K./k) induces an isomorphism from
So(c)/Ph(c) to Gal(K./k).

Proof. See [20], p. 28. ]

Moreover, the Galois group Gal(K./H™) has an even simpler description: one

can check (loc. cit.) that it is isomorphic to the group of invertible elements in
OJe.

2 Construction of the C*-dynamical system (C}, , (0¢))

2.1 The space X of characters

For any ¢ € H(sgn), let X be the dual group of the discrete abelian torsion group
#(Cw)t". Thus, an element of X, is a character of ¢(Cy)". The group Xy is
profinite,

—_

X¢ = lim (b[a},

where a runs over Jp ordered by divisibility. Let X be the (disjoint) union of the
X4,
X= U X

¢E€H (sgn)

Note that the elements of X are reminiscent of characters in [17] and of Q-
lattices (or k-lattices) in [11] and [12], [13].

Lemma 2.1.1. For any character x € X, we have
Imy C U,
where Uy, is the group of p-th roots of unity in C.

Proof. Recall that for any ¢ € H(sgn), as a group, ¢(C) is equal to Co,, which
is a field of characteristic p. Thus, for all A € ¢(Cy)™", we have x(A\)P = x(pA) =
x(0) = 1. O
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Lemma 2.1.2. X is compact (and Hausdorff).

Proof. For any ¢ € H(sgn), the group X, is profinite, hence compact. As H(sgn)
is finite, X is compact. [

We define an action of Jp on X by
x*=xo(a ' xp), forallaeTp, ¢ € H(sgn), x € Xy. (18)

Recall that (a™!*¢), is a map from (a7 %$)(Cy) to ¢(Cu). Thus, if x € X then
X" € Xg-1.4. Note that equation (13) guarantees that this is a semigroup action
of 3(9.

The exponent notation (x?) is inspired by what happens with characters of
Q/Z. These characters may be composed with the map ¢,: z — nz, for any
n € N*. By definition of a character, we have x o ¢, = x". In our case N* is
replaced by J» and the maps ¢,, are replaced by the ¢,.

We define an action of Gal(K/k) on X by

ox=xooc foralloeGal(K/k), x € X. (19)

One checks that the actions of Gal(K/k) and of Jo on X commute with one
another.

Lemma 2.1.3. For all a € Jo, the map X — X, x — X%, is injective.

Proof. Let x1,x2 € X such that x§ = x5. For i = 1,2 let ¢' be such that x; € Xy.
By definition, we have x¥ € X-1,4i, s0 a ™' x ¢! = a™' % ¢?, so ¢! = ¢%. Let
¢ = ¢! = ¢*. We have

xio (@™ x)a=x20 (a7 * )
Corollary 1.2.6 then shows that x; = xo». O]
Corollary 2.1.4. Let ai,as,bq,bs € Jo be such that aflag = bflbg.

1. Let x1,x2 € X. We have
ap __ . as by __ . b2
X1 = X2 <= X1 = X2
2. Let x1,Xx2,x3 € X. We have
XT = x5 and x3' = x5 = X1 =Xz

Proof. Let us first prove (1). Suppose that x& = x$2. We have x}**> = y22%. But

agbl = Clle, SO X?bl = X;QbQ, SO

(8" = ()"
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so Lemma 2.1.3 gives Xfl = XSQ, which proves one implication, and the other
implication follows by swapping a; with b; for i = 1, 2.
Let us now prove (2). We have

ar by az by a be a1 by

X1 — X2t T X2 T T Xz
so Lemma 2.1.3 gives x1 = Xs. [

Corollary 2.1.4 allows to extend the action of Jp on X to a partially defined
action of Fp as follows.

Definition 2.1.5. For any x € X, let §, denote the set of all ¢ € Fo such that
there exists x; € X satisfying

XT = x™ (20)

for some a;,ay € Jp with ¢ = al_lag. By Corollary 2.1.4 (1), the existence of y;
only depends on x and ¢, and does not depend on the choice of a;,a, € Jo such
that ¢ = a; 'ay. By Corollary 2.1.4 (2), the character x;, when it exists, is uniquely
determined by x and ¢. When ¢ € §,, we define a character x* by

XS = X1-

The partially defined map §o x X — X, (¢, x) — X, should be regarded as
a partially defined group action of §o on X. For any (c, ), the character x°© is
defined if and only if ¢ € §,. For any ¢, ¢y in §, if ¢cico € §, one checks that
X2 = (x)%2. Of course, when ¢ € Jp the character x© is just the one that was
defined in equation (18).

For any , we have Jp C §,. Characters xy € X for which this inclusion is an
equality (§, = Jo) will be called admissible, and will play an important role later
(see Subsection 3.6).

Note that we obviously have

Sye = a_l{S'X for all y € X, a € Jo. (21)

Lemma 2.1.6. Let x € X. Let ¢ € H(sgn) such that x € X4. For any a € Jp,
we have

ol eF, = x(\) =1 forall )€ ¢[al.
When this is the case, the character Xcr1 15 given by

—1

TN = Na)h Y x(w) for all A€ (ax¢)(Coo)'".
da(1)=A

Proof. If a=! € §,, then there exists x; € X such that x = x§. Thus, for all
A € ¢la], we have x(A\) = x1(da(N)), but ¢q(N) =0, so x(A\) = 1.
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Now suppose that for all A € ¢[a], x(A) = 1. For all A € (a* ¢)(Cu )™, set
xi(d) = Na)™ > x(w).
¢u(ﬂ):>‘

Let us show that this defines a character x; of (a%¢)(Cy.)™". Let A € (ax¢)(Cy)t".
By Lemma 1.2.6, there exists pu; € ¢(Cuo)™" such that ¢q(u1) = A\. We have

xi(A) = (Na)™ )y x(uo+u1)=(Na)*1( > X(uo))x(m)-

po€glal po€gla]

But we have x(po) = 1 for all ug € ¢[a], and by equation (17) we have that
Card(¢[a]) = Na. Thus, we get

x1(A) = x(u1) for all A € (a*¢)(Cy)' and for all g with ¢a(uy) = A
Now let X € (a* ¢)(Cy)'" and ) such that ¢q(p)) = N'. We have

A+ N = ¢alpn) + dalpt)) = dalpn + 1)),

hence
X1(A+N) = x1(balpr + p17)) = x(pa + p17) = x () x(117),

S0
X1 (A + ) = xa(A)xa(\),
which implies x1(A)P = x1(pA) = x1(0) = 1, i.e.,

x1(A) € U, forall A € (ax Qﬁ)(coo)tor‘

Hence x; is a group morphism (a * ¢)(Cu)™ — U, so x1 € X, and we have by
construction x¢ = x. Thus, we have a™! € §, and x* ' = x1. O

Lemma 2.1.7. For all x € X, for all a,b € Jp relatively prime, we have
a'bEF, = a'EF,.

Proof. Let ¢ be such that y € X;. Wehavea 'b € §, < a™t e Sye. Lemma 2.1.6
applied to x° thus gives

a7t eF, = x((67 % ¢)p(N) =1 forall e (b~ *¢)al.

But, as a and b are relatively prime, by Lemma 1.2.4, the map A — b\ is a bijection
from (b=! % ¢)[a] onto @[a]. Thus we get

a b eF, = x(\) =1 forall A € ¢a],

and, by Lemma 2.1.6, this is equivalent to a™* € §,. Il
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Lemma 2.1.8. For all x € X, for all a,b € Jp relatively prime, we have
(ab) ' e, =a'teF, andb ! €53,

Proof. Let ¢ be such that x € X,. By Lemma 2.1.6, the statement that we want
to prove is equivalent to the following:

_ x(A) =1 forall X € ¢[a],
XA =1 forall A€ glab] = x(A) =1 forall A € ¢[b]. (22)

By equations (15) and (16), as a and b are relatively prime, we have

¢lab] = ¢la] ® ¢[b],

so, for any A € ¢[ab], there exists a unique pair (A, Ag) € ¢la] x ¢[b] such that
A= A1 + Ay, We have x(A) = x(A1)x(A2), so equation (22) follows. O

2.2 Construction of the groupoid G and of the dynamical
system (Cj «, (0¢))

Let G be the following subset of X x Fo:

G={(xc)eX xFo|ceF}

We turn G into a groupoid by endowing it with the groupoid law

(X1, ¢1) 0 (X2, ¢2) = (X2, c12) if X1 = X%’

and the inverse map

(6ot = (xS
One checks that, under the identification G = X x {1} ~ X, the range and
source maps r and s are respectively given by r(x,¢) = x¢ and s(x,¢) = x.

The abelian group §o is endowed with the discrete topology. The groupoid G
is endowed with its topology as a subset of X X §o.

Lemma 2.2.1. G is a locally compact groupoid.

Proof. X x §o is locally compact by Lemma 2.1.2 and G is a closed subset of it,
so it is also locally compact. It is clear that the composition and inverse maps are
continuous, so this is a locally compact groupoid. Il

The C*-algebra C}, » that was advertised in the introduction of this paper is the
maximal® C*-algebra of the groupoid G. Let us quickly explain what that means.

6 Actually, it coincides with the reduced C*-algebra because o is an abelian group, but we
shall not need that in this paper.
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For x € X, let G, denote the fiber of s above x, that is,
gx = {X} X SX;

so G, is discrete and is in bijection with §,.
Let C.(G) denote the convolution algebra of continuous maps G — C with
compact support, where the convolution product is given by

(fuf2)(9) = Z fi(g1) f2(g2)- (23)

91092=9g

C.(G) is endowed with the involution f +— f* defined by

f(g) = flg7).
For any y € X, we define a *-representation of C.(G) on the Hilbert space £*(G,)
by
(md(NE9) = Y flg)é(ge) forall f€CulG), € (Gy).  (24)

In other words, 7, is the left regular representation on ¢*(G,). Let us define a
C*-norm || - || on C.(G) by

1f1l = sup [[x (/)]
where 7 runs over all x-representations of C.(G). The completion C*(G) of C.(G)
under || - || is a C*-algebra, called the mazimal C*-algebra of the groupoid G.

For more details about groupoid C*-algebras, see Renault [31], Khoshkam and
Skandalis [24], or Connes [8], Chapter II, §5.

Definition 2.2.2. We define the C*-algebra C , by letting
Croo = C*(G).

By definition, any x-representation 7 of C.(G) extends uniquely to a represen-
tation of U}, which we still denote 7.

Lemma 2.2.3. For any x-automorphism o of C.(G), there ezists an unique exten-
sion of o to a x-automorphism of Ch .

Proof. For any x-automorphism o of C.(G) and any -representation 7 of C.(G),
note that oo is a *-representation of C,.(G). Thus, by definition of the norm || - ||,
o is an isometry: for all f € C.(G) we have ||o(f)|| = ||f|l. The result then follows
easily. O

For any g = (x,¢) € G, put Ng = N¢, where Nc¢ is the absolute norm of the
fractional ideal ¢, defined by N¢ = (Na)!INb for any a,b € Jp such that ¢ = a~'b.
Let us define a one parameter s-automorphism group (o;);er of Ce(G) by

(0e(f))(g) = (Ng)"f(g) forallteR, feC.(G), g€g.
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Definition 2.2.4. We still denote oy the unique extension (given by Lemma 2.2.3)
of o, to an automorphism of Cj, .

It remains to check that the pair (Ck o, (01)) is a C*-dynamical system in the
sense of [4], i.e. that the flow (o) is strongly continuous, which means that for any
f € Ckoo, the map ¢ — oy(f) is continuous.

Lemma 2.2.5. The flow (o) on Cy o is strongly continuous.

Proof. Let f € Cpo. Let us show that the map ¢ — oy(f) is continuous. Let
e > 0. It is enough to show that when [t| is small enough, we have ||f —o:(f)]| < e.
Let f' € C.(G) be such that ||f — f’|| < &/3. Like any x-automorphism, o is an
isometry, so we have o0(f) — a(F)]| = loe(f — ) = I = Il < /3, s it is
enough to show that when |¢| is small enough, we have ||f" — o¢(f')|| < /3. For
any 0 € §o, define a function f; € C.(G) by

f'x;¢) ife=0,

for all (x.¢) € G.
0 oo, rAllluaed

falx,©) = {

Note that, as f’ has compact support, the set {9 € Fo | f5 # 0} is finite, and we
have f' =3, f. For any 9 we have oy(f}) = No" f}, so

1= o< DN = o)l < D 11— No"||| 7.

It is now obvious that when |¢| is small enough, this is smaller than /3. O

The resulting C*-dynamical system (Cj o, (o)) is the one that was announced
in the introduction of this paper.

3 Algebraic structure of (C} «, (0v))

3.1 The x-subalgebra H

In this subsection, we construct a x-subalgebra H which will play the role of the
algebra H in the Bost—Connes construction.
For any a € Jp, let p, € C.(G) be defined by

pa(x,¢) = 1= forall (x,c¢) € G.

For any ¢ € H(sgn) and for any A € ¢(Cu)™, let us define a function e(¢, \) €
Ce(G) by
e(d, N)(x,¢) = Le=1 Lyex, x(A) forall (x,¢) € G.

Definition 3.1.1. Let H denote the %-subalgebra of C.(G) generated by the pg,
for all a € Jp, and the e(p, \), for all A € ¢p(Cy )™ and for all ¢ € H(sgn).
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We shall later show (Proposition 3.3.5) that H is dense in Cf . For now we
concentrate on checking several algebraic relations between the generators i, and
e(¢,\) (see Proposition 3.1.2). We shall later see (Proposition 3.2.3) that the
relations of Proposition 3.1.2 define a presentation of H.

Recall that the inverse map in G is given by

(o)™ = (e, (25)

The product law in C.(G), defined by equation (23), can be rewritten as

(f9) 0 0) = Y f(x® ;) glx,e2) forall f,g € CoG), (x,c) €G.  (26)

CZESX

From equation (25), we check that for any a € Jp, the adjoint p? is given by

pa(x,¢) = le—g—1 forall (x,c) €G.

Using formula (26), we then check that, for all f € C.(G) and all (x,¢) € G, we
have

(af)(x: €) = legreg f(x, ca™), (27)
(fra)(x; ©) = f(x% ca™), (28)
(Haf)(x:¢) = f(x; ca), (29
(Fre) (€)= Loreg fF(XE, ca).

From that we deduce that C.(G) is unital, with unit p; (where, as usual, 1 denotes
the principal ideal (1) = O)

pr =1,
and we also deduce the formulas
(taf15) (x: ) = Leareg Lomreg (X" ca™'b), (30)
(Hp.fra) (X, €) = (X ca”'b),
(Hatt) (X €) = lo-1e5, Lemap-1, (31)
(Hpta) (X €) = Lemqp1- (32)

In particular, for b = a, equation (31) gives

(NaMZ)(Xa c) = 1u*163X1t:1- (33)

The next proposition establishes some relations between the generators p, and
e(p, ). As we said above, it will later turn out that these relations really define
a presentation of H as a x-algebra (Proposition 3.2.3) and also a presentation of
Cr.o as a C*-algebra (Proposition 3.3.6).
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Proposition 3.1.2. The functions p,, for a € Jo, and e(p, N), for ¢ € H(sgn)
and X € ¢(Cy.)™", satisfy the following relations:

(a1) pipta = p1 for alla € Jp.
(a3) 3, e(6,0) = py where ¢ runs over H(sgn).
(b) pafte = ptap for all a,b € Jo.
(¢) pajty = i for all a,b € Jo relatively prime.
(di) e(p,\)* =e(p,—N) for all ¢ € H(sgn), A € ¢p(Cq)™".
(dz) e(p, M1)e(d, A2) = e(p, A1+ Xa) for all ¢ € H(sgn), A\, Ay € ¢(Cx)™ .
(ds) e(d', Ai)e(d%, X2) =0 for all ¢ # ¢* € H(sgn), \i € ¢'(Coo)™".
(¢) e(d, \pa = pac(ax ¢, da(X)) for alla € Jo, ¢ € H(sgn), A € $(Coo)™".

(f) pae(o, Nt = NLCLZ(a’1*¢)a(M):A e(a™t x ¢, p) for all a € Jo, ¢ € H(sgn),
A€ ¢(Cy)ter.

Proof. (a1): Equation (32) applied with b = a gives

(atta) (X; €) = o=t = pa(X; ©).

(a2): One checks directly that 3, e($,0) = .
(b): Equation (27) applied with f = pup gives

(Maﬂh)(Xa C) - 1ca*16§X1b:ca*1 = 1beﬁxlb:ca*1~
As b is in Jp, we always have b € §,, so we find
(Maﬂb)(X7 C) = lp—ca-t = lap=c

Thus, plafte = fae-
(c): By equations (31), (32) it is enough to show that for all (x,¢) € G, we have

1b*1€§X Le—ap-1 = lezap1-

If ¢ # ab™!, then both sides are zero, so the equality holds. If ¢ = ab™!, then we
have ab™' € F,. As a and b are relatively prime, Lemma 2.1.7 then shows that
b~! € F,, so the equality holds.

(dy): For all x € X, as x is a character we have

X(=A) = x(\) for all A € (Cy)™".

Relation (d;) follows.
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(d2) and (d3): From equation (26) and the formula x(A; + A2) = x(A1)x(A2),
one checks directly that for all (x,¢) € G, letting ¢ be such that x € Xy, we have

(e(@", A)e(d”, A2)) (X, €) = L Lpi—ge—yx (M + o),

which proves (ds) and (d3).
(e): By equation (27) and the definition of e(¢, \), we have, for any ¢ € H(sgn),
A € P(Cyo)t and (x,¢) € G,

(#ae(a * ¢7 gba()‘)))(Xa C) = lcaflesxlcaflzl 1xeXu*¢X(¢a()\))
= 1ca*1:11xeXa*¢Xa(/\)'

By equation (28), this is equal to (e(¢p, A)pa) (X, ¢)-
(f): For any ¢ € H(sgn), A € ¢(Cuo)™ and (x,¢) € G, we have

(rae(ds M pg) (X, €) = Llea1e5, Loz, (&, /\)(X‘fl, ¢) by equation (30)

-1
= 1ta’1€i§x 111*163)( ]_czl 1x€Xa,1*¢Xa (/\)
-1

= lg1eg, L=t 1X6Xa,1*¢Xa (A)

= ]-a*1€SX]-c:lleXa,lm(Na)_l Z X(M)a
(a=1%p)a ()=X

where the last equality follows from Lemma 2.1.6. Let us first suppose that a=! €
Sy- We then have

(trae(d, M) (X, ©) = Temilyex,,,(Na)™ > x(n)
(a150)a ()=

=(Na)™" > elaxo,pm)(x.0),

(= Lx6)a ()=

so we are done.

Let us now suppose that a=! ¢ §F,. We then have lg-1e3, = 0 and hence
(Hae(@, A pg)(x;¢) = 0. Thus, it is enough to show that >_ -1, (=r e(a! x
o, 1) (x, ¢) = 0. We have

Z e(a_l * ¢7 M)(X? C) = ]-til]'XEXa—1*¢, Z X(“))

(a=1xg)a (1)=A (a7 xg)a (p)=A

so it is enough to show that if xy € Xy-1,4, then Z%(u):/\ x(1) = 0, where we have
set v = a~tx ¢, Let py € ¥(Cy)' such that 4(p1) = X (see Lemma 1.2.6). We

then have
ST oxw= > xpo+m),

Pa (M):A Ya (HO):O
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SO

> = (X xlwo))x(m):

wu(.‘"):/\ #061#[‘1}
But by Lemma 2.1.6, since a™! & §,, the restriction of x to ¢[a] is a non-trivial

character of ¢[a], so
> X(mo) =0,

Ho€Y[a]

S0 Dy (= X(1) = 0, which completes the proof. O

3.2 Presentation of 'H

The goal of this subsection is to show (Proposition 3.2.3) that the relations (a)—(f)
of Proposition 3.1.2 define a presentation of H as a x-algebra.
The proof of the next lemma follows that of Proposition 18 in [3].

Lemma 3.2.1. Let H be a x-algebra with elements fi, for a € Jo, and é(¢, \),
for ¢ € H(sgn) and A € ¢(Cx)™", satisfying the relations (a)—(f) of Proposition
3.1.2. Let S be the following subset of H:

S = {fia€(, \) g | a,b € To relatively prime, ¢ € H(sgn), X € ¢(Cyo)™ }.
Then:

1. The elements fiq, for a € Jo, and é(p,\), for ¢ € H(sgn) and X € ¢(Cy)"™",
belong to the linear span of S. More specifically:

fla= Y fiaf(¢,0)1; and &, N\) = jué(d, \)ij.

pEH (sgn)

2. Let x1,29 € S. Fori = 1,2 write x; = uaie(qﬁi,)\i)u’gi. Let 0 = as + by
be the gcd of as and by. Let ¢ be the ged of 9 'ajas and 0716 by. Set ¥ =
¢l x ¢t and X = ¢y (M) + d51, (N2). Then:

T1T2 = 1a2*¢1:b1*¢>2/10*1a1agé(a_1a2 * ¢1, A’)ﬂ;‘—lbl@ (34)
= 1a2*¢1=b1*¢>2 Z ﬂc—10_1a1a2é<¢77),&2‘*10*15152- (35)
¢c('7):>\/

In particular, equation (35) shows that x1x9 belongs to the C-linear span of

S.

3. If the elements [i, and &(¢,\) generate H as a x-algebra, then the set S
generates ‘H as a C-vector space.
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Proof. (1) easily follows from relations (a;), (ag) of Proposition 3.1.2.

(2): We have

T1Tg = Mu1€(¢17 Al)ﬂzlﬂaQQ(ﬁan )‘Q)MZQ
Using relations (a1), (b) and (c) of Proposition 3.1.2, we find
ﬂzlﬂaz = ﬂ;—lbl ﬂ;ﬂb/j@*l@ = /l;—l bl/lbflag-
Hence we get
T1T2 = /]alé(QSl, )‘1):&0*1&2/1;*1[)16(¢27 )\2)/’1;2

Using relations (e) and (d;) of Proposition 3.1.2, we get

T1T2 = ﬁmﬁbflazé(a_laQ * ¢17 qb%*laz()\l))é(a_lbl * ¢27 ¢g*161 ()\2))1&;*1611&;2'

Hence relation (b) of Proposition 3.1.2 gives
P10y = flo- 1y (7 A2 O, 1, (A1))EQ b1 % 07, dg oy, (A2)) g1,
Thus, using relations (ds) and (ds) of Proposition 3.1.2, we get
T122 = 1a2*¢1:[31*¢2 ﬁoflalazé(a_lcb * Cbla Q%flaQ()\l) + qbg*lbl()‘?))ﬂ;*lblbz‘
By definition of ¥, X’ and ¢, and using relation (b) of Proposition 3.1.2, we obtain
X112 = 1a2*¢1:bl*¢2 ﬂc—lo—lalag (/lcé(c * ?/17 )\/)ﬂt)ﬂjﬂa*lblbz‘

Relation (f) of Proposition 3.1.2 then gives the result.

(3): The C-linear span of S contains the generators fi, and é(¢, A) by (1) and
is stable under multiplication by (2). Moreover, it is obviously stable under the
involution. Hence it is equal to H. Il

Lemma 3.2.2. The functions pqe(p, )y, for a,b € Jo relatively prime, ¢ €
H(sgn) and X € ¢(Cy)'", form a basis of H as a C-vector space.

Proof. By Lemma 3.2.1(3), they generate H as a C-vector space. Thus we only
have to prove that they are linearly independent. Let us suppose that there exist
at,...,a, €C,ag,...,a,,bg,...,0, € Jp with a; relatively prime to b; for each i,
@', ..., ¢" € H(sgn) and, for each i, \; € ¢(Cy )", such that

Hay€ ¢ o) ,ubo ZazMaz ¢Z

By equation (30) and the definition of e(¢", );), we have

(M%e(¢iv AZ)le)(Xv C)
= 1ca¢_1€3><15i_1€§x1C0i_1bz‘=11X€Xb_—l*¢iXhi_l(Ai) for all (X, C) € Q
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Thus, the support of pq e(@?, \;) fty, is included in
{g9=(x¢c)€G|x€Xy1,4 and c = a;b; "'},

Let I denote the set of all i # 0 such that a;b; "' = agby ™" and b; ' % ¢' = by* * ¢°.
We thus have
Hay€ ¢ o) ,ubo Z Qi fhg; € ¢Z :ubl

el

As q; is relatively prime to b;, we see that for all ¢ € I, we have a; = ag and b; = by,
so ¢' = ¢°. Hence we get

fape(¢”; o) g, = Zazuaoe ¢’ \ i) g, -
i€l

Hence, multiplying by py on the left and by pug, on the right, and using relation
(a) of Proposition 3.1.2, we get

(6 N0) = 3 (@, )
el

But the e(¢", \), for A € ¢°(Cy. )™, are linearly independent (use e.g. the isomor-
phism C(Xg X {1}) ~ C*(¢°(Cx)™") as in Lemma 3.3.2), so this is absurd. [

Proposition 3.2.3. The relations (a)—(f) of Proposition 3.1.2 define a presentation
of H as a *-algebra.

Proof. Let H be another x-algebra having elements fiq, for a € Jo, and é(¢, \), for
¢ € H(sgn) and \ € ¢(Cy)™", satisfying the relations (a)—(f) of Proposition 3.1.2.
We want to show that there exists a unique morphism o: H — H such that

Olg = fiq and ge(p, A) = é(p, N).
The uniqueness is clear by definition of H. Let us now prove existence. By
Lemma 3.2.2, we may define a C-linear map o: H — H by letting

o (kae(d N pig) = [1a€(D, N iy

for all a,b € Jp relatively prime, ¢ € H(sgn) and A € ¢(Cy)*™". Clearly, o(f*) =
o(f)*. Moreover, Lemma 3.2.1 shows that o, = fiq, ce(p, A) = é(¢, \) and

o(fif2) = o(fi)o(f2),

which completes the proof. O]
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3.3 Presentation of Cj; o

The goal of this subsection is to show (Proposition 3.3.6) that the relations (a)—(f)
of Proposition 3.1.2 define a presentation of Cj o, as a C*-algebra.

Let ¢ € H(sgn). Let C4 denote the subset of C.(G) of all functions whose
support is a subset of X4 x {1}.

Lemma 3.3.1. Let fi, fo € Cy. For all g € G, we have

(frf2)(g) = fi(g) f2(g)-

Proof. Let g = (x,¢) € G. By equation (26), we have

(fif)(xe) = D> A ey ) falx ).

CQGSX

Thus, since f1, fo € Cy, we can only have a nonzero term when cc; '—1lande, =1.
If ¢ # 1 then we get (f1f2)(x,¢) =0, as expected. If ¢ = 1 we obtain

(flf?)(X7 1) = fl(X7 1)f2(X7 1)a

as expected. O

In particular, we see that for any f1, fo € Cy4, we have f; fo € C;. We also have
fi € Cy. Thus Cy is a x-subalgebra of C.(G).
Let us define a norm || - ||4 on Cy by:

[ flls =sup|f(g)] forall f e Cy.
geg

Lemma 3.3.2. C,, is a C*-algebra for the norm || - ||s. We have isomorphisms of
C*-algebras
Cy ~ C(Xy) = C*(6(Cux)™).

Proof. The identification X, x {1} ~ X, gives a bijection C;, ~ C(Xy). By
Lemma 3.3.1, this is a *-isomorphism. By definition of || - ||, this is an isometry, so
| - |ls is & C*-norm on Cy. The isomorphism C'(Xy) ~ C*(¢(Cy)™") is a classical
result, see Davidson [14], Proposition VIL.1.1. O

Corollary 3.3.3. C, is a C*-subalgebra of Ci oo-

Proof. Tt is a classical result that any injective x-morphism between two C*-
algebras is an isometry; see [14], Theorem 1.5.5. Apply this to the inclusion map
L: C¢ — Ck,oo- ]

Lemma 3.3.4. The e(¢, N), for A € ¢(C)™", generate a norm-dense *-subalgebra
Of C¢.
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Proof. By definition of the e(¢, A), the isomorphism Cy ~ C*(¢(Cs)™") given by
Lemma 3.3.2 identifies e(¢, A) with A. But, by definition of C*(¢(Cx)™"), the A
generate a dense *-subalgebra of C*(¢(C4)""), so the result follows. O

Proposition 3.3.5. H is dense in Cy and any *-representation of H extends
uniquely to a representation of Ch .

Proof. Let us first prove density. Since C.(G) is dense in Cj, ., it is enough to show
that any f € C.(G) can be approached by elements of H. Let f € C.(G). As f
has compact support, there is a finite subset {c1,...,¢,} C Fo such that for all
(x,¢) €G,if c & {c1,...,¢,}, then f(x,¢) =0. Let f; be defined by

filx,e) = 1=, f(x,c) forall (x,¢) € G.

We have
f=h++/n
It is thus enough to show that each of the f; can be approached by elements of
H. Let i € N such that 1 < i < n. Write ¢; = a;lbi, with a;,b; € Jo relatively
prime. Let fi = g, fipy,. We have fi = . fipe,, so it is enough to show that each
of the f! can be approached by elements of H. By equation (30), we have, for all
(x.¢) €6,
f;<X7 ) 1 car teFy 1b‘le§X fz( i CCZ').
ghus, the support of f is a subset of X x {1}. For ¢ € H(sgn), let f;, be defined
Yy
f;d)(X; C) - 1X€X¢fi/(X7 C) fOI' all (X? C) E g

= > fla

o€ H (sgn)

We have

so it is enough to show that each of the f; , can be approached by elements of .
We have f; , € Cy, so the result follows from Lemma 3.3.4.

Now let us prove that any s-representation of H extends uniquely to a repre-
sentation of C} ~. Uniqueness follows from the density of H in C} . Let us show
existence. Let m be a *-representation of H. By definition of C} ., it is enough
to show that 7 extends to a x-representation of C.(G). The construction we just
made with the f;, f/ and f] ; shows that as a *-algebra, C.(G) is generated by the
Cy, for ¢ € H(sgn), and the pi,, for a € Jo. It is thus enough to show that the
restriction of m to the group algebra C[¢(Cy)*] extends to a representation of
Cy. But this follows from Lemma 3.3.2 O

Proposition 3.3.6. The relations (a)—(f) of Proposition 3.1.2 define a presentation
of Cr.0o as a C*-algebra.
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Proof. Let C be another C*-algebra having elements fi4, for a € Jp, and é(¢, A), for
¢ € H(sgn) and A € ¢(Cy)™, satisfying the relations (a)—(f) of Proposition 3.1.2.
We want to show that there exists a unique morphism o: Cj o — C such that
Ol = fiq and oe(p, \) = é(p, A).

Uniqueness follows from the density of H in Cj ~, see Proposition 3.3.5. Let
us prove existence.

Let H denote the x-algebra generated by the fi, and the é(¢, \). By the universal
property of H (Proposition 3.2.3), there exists a *-morphism o: H — H such that
Ollg = fig and ge(p, \) = é(p, A). Composing it with the inclusion H— C gives
a x-representation of H. By Proposition 3.3.5, this representation extends to a
*-morphism from Cj, o, into C, so we are done. O

The flow (0;) has a simple expression for this presentation: one checks directly
that '
o¢(pe) = Nay, forallteR, a€Jo (36)

and
oe(p, ) =e(p,\) forallt € R, ¢ € H(sgn), A € ¢(Cq)™". (37)

3.4 Galois symmetry of (Cj ., (0¢))

Recall that an action of Gal(K/k) on X has been defined by equation (19).
Let Gal(K/k) act by s-automorphisms on C.(G) by

(cf)(x,¢) = f(ox,¢c) forall o € Gal(K/k), f € C.(G), (x,¢) €G.

Definition 3.4.1. We still denote (o, f) — of the unique extension (given by
Lemma 2.2.3) of this action to an action of Gal(K/k) on Cj .

One checks directly that the action of Gal(K/k) on the generators is given by
olg = g for all o € Gal(K/k), a € Jp (38)

and
o(e(p,\) = e(ogp, o)) for all o € Gal(K/k), ¢ € H(sgn), A € ¢(Cs)™. (39)

Proposition 3.4.2. The group Gal(K/k), endowed with its profinite topology, is a
topological symmetry group of (Ck oo, (0¢)). In other words, the action of Gal(K/k)
on Cho 18 faithful, continuous, and commutes with the flow (oy), i.e.,

o(oi(f)) =oi(af) forallo € Gal(K/k), t e R, f € Cy . (40)
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Proof. By Lemma 2.2.3, it is enough to check equation (40) for f € C.(G), which
is easily done by going back to the definitions.

Let us check that the action of Gal(K/k) on Cj o is faithful. Let o € Gal(K/k)
with o # 1. Let ¢ € H(sgn). If ¢ # ¢ then it is clear that o acts non-trivially
on Ckeo. If 0 = ¢ then, by definition of H*, we have ¢ € Gal(K/H™). By
definition of K, the action of Gal(K/H™) on ¢(Cy)™" is faithful. Thus there
exists A € ¢(Cy)'" such that o\ # A, so e(¢, o) # e(é, A). Thus, by equation
(39), ge(¢p, A) # e(¢, N), so the action of Gal(K/k) on C  is faithful.

Let us check that the action of Gal(K/k) on Cj « is continuous. Let f € Cy
and € > 0. By Proposition 3.3.5, the subalgebra H is dense in C} o, so there exists
fo € H with || f — fol| < ¢&/3. Write fy in the basis provided by Lemma 3.2.2,

Jo= Z Ci,uaie(¢i: )\z):uzla

el

where [ is a finite set and where, for all © € I, we have ¢; € C, a;,b; € Jp relatively
prime, ¢* € H(sgn), and \; € ¢'(C4)'". Let Ky be the extension of k generated
by the \; and all their conjugates under Gal(K/k). Thus, Ky/k is a finite Galois
subextension of K'/k. Let V' = Gal(K/K,). By definition of the profinite topology,
V' is a neighborhood of 1 in Gal(K/k). For all ¢ € V| we have ofy = fo. We
have [lof — foll = llo(f — fo)ll = If — foll < /3, 50 we find ||of — f]| < 2/3.
Let W denote the open ball of radius /3 centered at f. For all f' € W, we have
lof'—afll = llo(f = )l = Ilf'— Il < /3, whence |[of'— f < e, which completes
the proof of the continuity. m

3.5 The Galois-fixed subalgebra

In this subsection, we introduce two C*-subalgebras of Cj ., and it will turn out
(Lemma 3.5.2) that they are the same one.

The first one, denoted by C*(Jo), is the C*-subalgebra of C} o, generated by
the pg, for all a € Jp. The second one, denoted by C’,S fi(K/ k), is the subset of Cj,
of all fixed points under the action of Gal(K/k). This is a C*-subalgebra of Cf .

Let

(I)tjo—>N

and
M:Jp—7Z

denote the Euler totient and Mobius inversion functions respectively, i.e., ® and
M are the multiplicative functions defined, for all primes p and for all n > 0, by

q)(pn) — an o 1n>1an_1

and
M(pn) = 1n=0 - 1n:1-
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Note that we have, for all a € Jp,

O(a) = M(b~'a)Nb.

bla

Lemma 3.5.1. For all ¢ € H(sgn), for all a € Jp, the O-module ¢[a] has ezxactly
®(a) generators.

Proof. Let a =[], p;" be the factorization of a. Since the p; are relatively prime,
we have a = (), p;", so by equations (15) and (16), we have

ola) = D ol

so it is enough to do the proof when a is a prime power, which is then easy. O]

The proof of the next lemma has been inspired by that of Proposition 21 (b) in
[3] and of Proposition 4.1 (3) in [17].

Lemma 3.5.2. The two subalgebras C*(Jp) and C’,Szi(K/k) of Co are the same:

C* (30> _ CGal(K/k) '

k,00

Definition 3.5.3. We let C; denote this C*-algebra:

Cl _ C«*(jo) _ CGal(K/k)'

k,00

This notation will be justified in Subsection 4.4, where C; will be viewed as a
spectral subspace of Cj o, for the action of Gal(K/k).

Proof. One inclusion is clear: C’E i(K/ ") contains C* (Jo). Let us check the other

inclusion. The Galois group Gal(K/k) is endowed with its profinite topology, so it
is a compact abelian group. Let do be the normalized Haar measure on it. Let us
consider the map E defined by

E: O — CSUE/mw

k,00
(41)
T o(x)do.
Gal(K/k)

By Proposition 3.3.5, H is dense in C} , so E(H) is dense in C,Si(mk). But, by
Lemma 3.2.1, H is the linear span of the pqe(¢, A\)uf, for a,b € Jo, ¢ € H(sgn),
and A € ¢(Cy)™". Thus E(H) is the linear span of the u.E(e(¢, \))ug. Hence, it
is enough to show that for all ¢ € H(sgn) and for all A € ¢(Cy)™, the element
E(e(¢, \)) belongs to C*(Jo).

Solet ¢ € H(sgn) and A € ¢(Cy)*". Let us first assume that A = 0. The group
Gal(H™ /k) acts transitively on H(sgn) (see Theorem 1.3.9). By Galois theory,
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the restriction map Gal(K/k) — Gal(H*/k) is surjective. Hence Gal(K/k) acts
transitively on H(sgn). Thus, by relation (ay) in Proposition 3.1.2, we get
E(e(¢,A)) = 1/h(sgn), (42)
where h(sgn) is the cardinal of H(sgn). So the proof is complete.
Let us now assume that A # 0. Let

a=annp(A) = {a € O] ¢.(\) = 0}.
We have \ € ¢la] and, for all b # a such that b | a, A & ¢[b]. So A is a generator of
the O-module ¢[a]. Let K, denote the extension of H' generated by the elements
of ¢[a]. By [20], Theorem 16.2, Gal(K,/k) acts transitively on the set X, defined
by
Xo={(,p) | ¥ € H(sgn), p is a generator of ¥ [a]}.

By Galois theory, the map Gal(K/k) — Gal(K,/k) is surjective, so Gal(K/k) also
acts transitively on X,;. Thus E(e(¢, A)) only depends on a. We therefore note

E(e(a™)) = E(e(, V).
Relation (f) of Proposition 3.1.2 gives, for all ¢y € H(sgn) and b € Jp,

1
e, Oy =1 D, e(67 x v p).

HE(b~ 1)) [b]

Thus equation (ag) of Proposition 3.1.2 gives

ol = x5 D > e(b xp).

wGH (sgn) pe(b=1xy)[b]
Applying E to this equality and using Lemma 3.5.1, we get
Nbyisy = h(san) 3 @(©)B(e(c)).
/b
where h(sgn) is the cardinal of H ( n). Doing a Mdbius inversion, we then find
h(sgn) ®(b)E(e(b™!) Z M(c b)) Ne prepir.
b

Thus, for all b € Jp, we get the following explicit expression of E(e(b™1)) as an
element of C*(Jp):
Doqe M(c7H0) Nepiepy D0, M(e71b) Ne puepug

B(e(67)) = h(sgn)®(b) " T(sgn) oo M(c10) Ne’ (43)

]

Proposition 3.5.4. Cy is isomorphic to the universal C*-algebra generated by
elements [iq, for a € Jo, subject to the relations (ay), (b) and (c) of Proposition
3.1.2.

Proof. This follows directly from Proposition 3.3.6 and Lemma 3.5.2. m
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3.6 Admissible characters

Some ideas in this subsection have been inspired by [17], §5. Our main goal here
is to prove Proposition 3.6.9, which will be useful for the classification of extremal
KMSg states at low temperature.

Lemma 3.6.1. Let x € X. Let ¢ € H(sgn) be such that x € X,. The following
conditions are equivalent:

1. For any mazximal ideal p € T, the restriction of x to ¢[p] is non-trivial.

2. For any b € Jo different from 1, the restriction of x to ¢[b] is non-trivial.

3. = Jo.

Proof. (2) = (1) is trivial. (1) = (2): Since b # 1 there exists a maximal ideal
p dividing b. By equation (14), we then have ¢[p] C ¢[b], so the result follows.
(2) = (3): Let ¢ € §,. Write ¢ = b~'a with a,b € Jo relatively prime. By Lemma
2.1.7, we have b~! € §,. Thus, by Lemma 2.1.6, the restriction of x to ¢[b] is
trivial, so b =1, s0 ¢ € Jo. (3) = (2): Let b € Jp with b # 1. We have b™! &€ §,,
so the result follows by Lemma 2.1.6. ]

Definition 3.6.2. A character y € X is said to be admissible if it satisfies the
above equivalent conditions. Let X2 denote the topological subspace of X of
admissible elements.

Recall that Ay is the ring of finite adeles of k£ with respect to O. Thus, Ay is
the restricted product of the k, with respect to the O,, where p runs over all finite
places of k.

The following lemma is well known.

Lemma 3.6.3. Let a € Jo. The diagonal map ¢: k — Ay induces an O-module
1somorphism
kfa = @ kp/ap,
p
where p runs over all finite places of k, ky is the completion of k at p, and a, s
the closure of a in k.
Proof. Let R =[], a, C Ay. This contains (a). Hence ¢ induces a map
k:/a — Af/R

This map is an O-module morphism. It is injective because t!(R) = a. By the
strong approximation theorem (Theorem 1.1.1), the range of ¢ is dense in A. But
by definition of the restricted product, R is an open subset of A;. Hence ¢ induces
a surjection modulo R. Thus ¢ induces an isomorphism of O-modules k/a ~ A;/R.
But A;/R = €D, kp/ap, so the result follows. O
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Lemma 3.6.4. For any ideal a € Jo and for any finite place p of k, there exists
a character x of kyp/a, whose restriction to p~'a,/a, is non-trivial.

Proof. Let F, denote the residue field of O,. This is a finite extension of IF,. The
ring O, is principal (as is any local ring of a Dedekind ring), so its maximal ideal
pO, is equal to uO, for some u € O,. Now a, is also an ideal of O,, so it is equal
to u’O, for some v > 0. Hence we have p~'a,/a, = u’~'O0,/u’O,. But we have
ky, =Fy((u)) and O, = Fy[[u]], so we can define a character x on k,/a, by letting

X( Z akuk> = exp (2im Tr%’) (av-1)/p).
keZ

The restriction of x to p~'a,/a, is non-trivial since we have y(u’~') = exp(2ir/p).
[

Lemma 3.6.5. For any ideal a € Jp, there ezists a character x of k/a whose
restriction to p~tay/ay, for any finite place p of k, is non-trivial.

Proof. Use Lemma 3.6.3 to identify k/a with GBP kp/a,. For all p, let x, be a
character of k,/a, as given by the preceding lemma. Let x = Hp Xp- Then x is a
character of k/a which has the required property. O]

Lemma 3.6.6. For any ¢ € H(sgn), there exists an admissible character x € X.
In particular, X®™ is non-empty.

Proof. Let L denote the lattice corresponding to ¢. Write L = £a with £ € CX_
and a € Jp. Let xo be a character of k/a as given by Lemma 3.6.5. Define a
character x of ¢(Cy )™ by

xX(A) = xo(e; (V)/€).
Then y is admissible. [l
Lemma 3.6.7. For any x € X*™ the map Jo — X, a — X%, is injective.

Proof. By definition of admissibility and equation (21), we have §,« = a *Jp, so
the result follows. O

Lemma 3.6.8. For any x € X*™ and for any o € Gal(K/k), we have oy € X2,

Proof. The actions of Gal(K/k) and of 3o on X commute with one another. Hence,
Sox = 8x = Jo. Hence o is admissible. ]

Proposition 3.6.9. For any x € X*™ the map Gal(K/k) — X o oy, is
imjective.
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Proof. Let ¢ € H(sgn) such that x € Xy4. Let 1 # o € Gal(K/k). Suppose that
ox = x. We have oy € X,-14, 50 0 '¢ = ¢. Thus 0¢ = ¢, so by definition of H,
we see that o € Gal(K/H™). Also ¢ induces a map

o (b(Cm)tor N ¢(Cm)t0r-

For any A € ¢(Cu)™, for any a € O, we have ¢o(cA) = (0¢a) (o) = o(¢a(N)),
so o is an O-module automorphism of ¢(Cy)*". Let L denote the lattice corre-
sponding to ¢. Write L = £a with £ € C_ and a € J». Thus, we have O-module
isomorphisms

k/a S kL/L <5 ¢(Cu )™, (44)

which we use to identify k/a with ¢(Cy)'" as O-modules. Thus, o is seen as an
O-module automorphism of k/a. Use Lemma 3.6.3 to identify k/a with B, ky/a,.
For any finite place p of k, writing k, as a field of Laurent series as in the proof
of Lemma 3.6.4, one sees that k,/a, >~ k,/O, as Op-modules, hence as O-modules.
Hence Endp(ky/a,) = O,, acting by multiplication. Thus

Endo(k/a) = [ [ Oy

View o as an element of Endo(k/a) and write o = [[, oy with o}, € O, for all p.

By definition of K, the action of Gal(K/H™) on ¢(Cy)™" is faithful. Thus, as
an O-module automorphism of ¢(C..)™", we have o # 1. Thus, there exists a p
such that o, # 1, so 0, — 1 € O, — {0}. Since y is admissible, there exists A € ¢[p]
such that x(\) # 1. View \ as an element of p~'a,/a,. Let Ae p~la, C ky be a
representative of A. Let ji = (o, — )\ e ky. Let p denote the class of i in ky/a,,.
We have (o, — 1) =\, s0 (0 — 1) = A, so

X((o = 1Dp) #1

and so
x(ow) # x(p),

which is absurd since oy = . O]

3.7 Irreducibility of regular representations at admissible
characters

The goal of this subsection is to show that the regular representations of G associ-
ated to admissible characters are irreducible. This will be used to classify extremal
KMS states at low temperature.

Recall that for any x € X we defined the regular representation m, of C.(G)
by equation (24). By definition of Cj «, m, extends uniquely to a representation
of C k,00-

Recall that X?d™ is the subset of X of admissible elements.
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Lemma 3.7.1. For all x € X*™  the reqular representation m, of Ci.oo is irre-
ducible.

Proof. Let x € X™™. Let ¢ be such that x € Xy The representation 7, is a
map Ci o — Bl*(G,). Identify §, with G, through the map ¢ — (x,¢). As x is
admissible, we have §, = Jo. Thus G, is identified with Jo. Let A € Bl*(Jp)
such that

T (f)A=Am (f) forall f € Cy .

Let us show that A is a scalar multiple of the identity. For that let us first prove
that A is diagonal. Let (e)ces, be the standard orthonormal basis of ¢2(Jp): in
other words, for all ¢,a € Jp, e(a) = 1o—. Let (ap) be the matrix representing A
in this basis. Thus we have

Aegy = Zac,asc for all ¢ € Jo.
c

Using equation (24), we check that
Ty(la)ee = €aqp for all a € Jp, b€ Tp (45)
and
T (e(¥, \)ep = Lymp-1.x"(N)ep  for all o € H(sgn), A € ¥(Cu)', b € Jo.
Now let A = (Ay)yer(sgn) be a family with Ay, € (Cu)*" for all ¢ € H(sgn). Let
eA)= D el M)
YEH (sgn)

We have
T (e(A)ee = X (Np-149)c6  for all b € Jo.

Thus, for all b € Jp, we get
Amy(e(A)ge = D aapx " (Ne-110)ea;

acJo

Ty (e(A))Agy = Z Aa X" (Aa-140)Ea-

acedo

Thus, for all a,b € Jp with a,p # 0 and for all A, we get
Xb<)\b—1*¢> = Xa()\a—l*(z)). (46)

If b=1% ¢ # a=!* ¢, since y is admissible, we can obviously choose A to make
equation (46) fail. Thus we have b~ x ¢ = a=! x ¢. By letting A vary, we see that
x® and x® are the same character of (a7 % ¢)(Cy)™". Thus x* = x" Thus, as
X is admissible, by Lemma 3.6.7, we find a = b. Thus (a.,) is a diagonal matrix.
Finally, using the equality Am, (pq) = my(1ta)A for all a € Jo, one sees that the
diagonal entries (a.) are all equal, so that (a.y) is a scalar multiple of the identity
matrix. Thus m, is an irreducible representation. O]
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3.8 A lemma on the action of Gal(K/k) on 'H

In this subsection we prove an important lemma which we shall use in Subsections
4.4 and 4.5.

Definition 3.8.1. Let I’ be a set of finite places of k. An ideal ¢ € Jo is said to
be F-localized if all its prime divisors belong to F'.

Definition 3.8.2. Let 0 € Jp. Let F, be the set of all places of k£ dividing 0.
We define H[d] to be the x-algebra generated by the puq, for all Fy-localized ideals
a € Jo, and the e(¢, \), for all ¢ € H(sgn) and X € ¢[0].

Note that for any ? € Jp, Gal(K/K,) acts trivially on H[0]. Thus the ac-
tion of Gal(K/k) on H[0] gives an action of the quotient group Gal(K,/k) =
Gal(K/k)/ Gal(K/K,) on H[0] (remember that the field K, was defined in Defini-
tion 1.3.10).

Lemma 3.8.3. Let 0 € Jo. Let p be a mazximal ideal of Jo not dividing 0. Let
op = (p, K /k) € Gal(K,/k) be the Artin automorphism of Ky associated to p. For
all x € H[d], we have

Thp = Hpop(T). (47)
Proof. Let A denote the subset of H[d] of all elements = such that equation (47)
holds. Obviously, A is a C-subalgebra of H[0]. But H[d] is generated as a C-
algebra by the pgq, the pf and the e(¢, A), for all Fy-localized ideals a € Jp, all
¢ € H(sgn) and all A € ¢[0]. Indeed, by relation (d;) of Proposition 3.1.2, we
have e(¢, \)* = e(¢, —A). Hence in order to prove that A = H|[0|, it is enough to
check that p, € A, pf € A and e(¢, \) € A for any Fy-localized ideal a € Jp, any
¢ € H(sgn) and any \ € ¢[0].

Let a € Jp be a Fy-localized ideal. By relation (b) of Proposition 3.1.2; we have
Pallp = fhpita = HpOp(fia); SO fta € A. As a is Fy-localized and p does not divide 0,
relation (c) of Proposition 3.1.2 gives puip, = ppptl = ppop(pl), so pis € A,

Now let ¢ € H(sgn) and \ € ¢[0]. We have

e, Ny = fpe(p * @, dp(N)) by relation (e) of Proposition 3.1.2
= ppe(opd, dp(N)) by Theorem 1.3.9
= ppe(opd, op(N)) by Theorem 1.3.11

= ppop(e(d, ).
Thus e(¢, \) € A, which completes the proof. ]

4 KMS; equilibrium states of (Cj o, (0y))

4.1 The Galois-invariant KMSj; state at any temperature

The goal of this subsection is to construct (Proposition 4.1.2), for any 8 € R* , a
Galois-invariant KMSg state g of (Ck o, (01)). We shall also show (Proposition
4.1.3) that pg is the only Galois-invariant KMSg state of (Cj oo, (01)).
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Proposition 3.5.4 shows that (' is isomorphic to the infinite tensor product
Cr =@
p

where p runs over the finite places of £ and where, for each p, 7, is the (Toeplitz)
C*-algebra generated by p,. Note that the 7, are nuclear.
Let B8 € R%. For each p, define a state g, on 7, by

Papbyy”) = Ly Np™™  for all n,m > 0.
Define a state g on C by

¥p = ® PB,p-
p

Note that we have
©0s(papty) = 1a—eNa™  for all a,b € Jp. (48)
Recall that the map E: Cy o — C) was defined in equation (41).

Definition 4.1.1. We extend ¢g to a state on C}, o by letting

ws(f) = s (BE(f)) forall f € C o

Proposition 4.1.2. For any 3 € R, the state pg on Cj is a KMSg state of
(Cho0s (01)). In particular, the state ¢z on Cy is a KMSg state of (Cy, (01)).

Proof. For any f1, fa € Cj 0, we look for a bounded holomorphic function Fj g, 4,
on the strip 0 < Imz < [ realizing the KMSg property for the state ¢z and the
pair (f17 f2>

Since H is a dense (oy)-invariant *-subalgebra of Cy ., by [4], §5.3.1, it is
enough to do that for fi, fo € H. In Lemma 3.2.2, we found a basis of H as a
C-vector space. Obviously, it is enough to check the KMSs condition in the case
when fi; and f, are elements of that basis. Thus, write f; = pq,e(¥, Ar)p, and
f2 = pae(?, X)) py, with a;,b; € Jo relatively prime, with ¥* € H(sgn) and with
i € ¥'(Cy)'". By Lemma 3.2.1(2),

-1 1
Jif2 = Lagupi—py02 Ho1aras e(0 Tag ¢ :)\/) M;*1b1b2

where 0 is the ged of az and by and X' = ¢35 (A1) + 951, (A2). We thus have

o1py
E(f1f2) = layspi=bys2 Ho-tara E(€(07 a9 % 1, X)) 11314, -
Let ¢ = annp()\'). Using equation (43), we deduce

e M(F o) N e
E = 1 sl =phy %12 -1 1 *7 5
(flfQ) agxpl=byxy Ho—1ajay h(sgn)@(c) :LLD 161 by
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where h(sgn) is the cardinal of H(sgn). Using the formula for ¢g(pqaug) given in
equation (48), we then get

ps(fif2) = WZM ONFlotayapi—o- 16,6 N (0 Ay )

Now the condition 0 ta;asf = 071b,bof is equivalent to a;as = biby and, as a; is
relatively prime to b;, this is equivalent to a; = by and ay = b;. We thus get

. a1 bzlaz bllwl =12 _ _
eo(fif2) = = ) ;M ') NfN( " aiazf)

Now if as = by, then @ = ay = by, and so ¢ = annp (A + Ag). Summing this up, we
have

ool f) = e s SLMEONN@)

where ¢ = annp(A; + A2). Swapping f; with f amounts to swapping 1 with 2 in
the indices, so we get

. 01 bz az=by 11,111 =92
Soﬂ(fol) - h(sgn)fb(c) ZM NfN(CQf)

where ¢ = annp (A + Ag). Thus we find

N -8
Spﬂ(f2f1) = <N_Zj> S%(flf2)-

We already know that both sides vanish unless a; = by, so we get

Nay\
wa(fofr) = (N_E;> ©s(f1f2)-

Now we have for all t € R,

Na,\ *
01(f2) = or(Ha,e(¥*, Ao)pag,,) = Naag' g e(1)?, Aa) Nby “pig,, = (NTE) fa.

Thus, letting

N 1z
Fﬁ,fl,fz(z) = (N_:Z> @B(f1f2)

defines a bounded holomorphic function Fjp ¢, s, on the strip, realizing the KMSg
property for the state pg and the pair (fi, f2). O

Proposition 4.1.3. Let 3 € RY.
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1. The state pg on Cy is the only KMSg state of (Cy, (0¢)).
2. The state pg on Cy  is the only Galois-invariant KMSy state of (Ci 0, (01)).

Proof. Clearly, the two statements are equivalent. Let us prove (1). Let ¢ be a
KMSj state of (Cf, (0¢)). Let us show that

¥ = -
Let a,b € Jo. We have
o(papty) = e(piois(e) = Na ™ o( o). (50)

Let us first work in the case when a # b. Let us prove that ¢(pqu;) = 0. Since
o(papel) = @(peps), we may swap a and b, and therefore we may assume without
loss of generality that atb. Let 0 = a + b denote the ged of a and b. We have

[ha = Hy-1pHatofio-ta = Hy-1pHo-1a: (51)
Since 0~ 'a and ?7'b are relatively prime, we have
Ho-1pMo-1a = Ho-Laky-1p- (52)
Thus, equation (50) applied to 9~ 'a and 27'b gives
P(Ho-tatty-15) = N7 a) Pop(pa-1atty-1y). (53)
As atb, we have 97 'a # 1, so equation (53) gives
@(to-14att3-15) = 0.

Hence equation (52) gives ¢(ju5-1,40-1a) = 0, so equation (51) gives p(ugita) = 0,
so equation (50) gives p(uqug) = 0. Hence we have proven that

a#b — (tapy) = 0= @p(ttapty)-
In the case when a = b equation (50) gives
p(uatty) = Na™Pp(pgpa) = Na™ = 5(papty).
Thus we have proven that

O(papey) = pp(iapy) for all a,b € Jo.

As the linear span of the pqu is the x-algebra generated by the fi4, it is dense in
C1 (by Definition 3.5.3), so we get ¢ = @g. O
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4.2 Action of Gal(K/k) on extremal KMS; states

As usual Gal(K/k) is endowed with its profinite topology. It acts on the set of
states by (o,¢) — ¢ oo. Obviously the KMSs condition and factoriality are
preserved by this action. Hence, the sets K3 and £(Kjp) are invariant under the
action of Gal(K/k).

The proof of the next proposition comes from that of Theorem 25 in [3].

Proposition 4.2.1. For any € RY, the action of Gal(K/k) on E(Kp) is transi-
tive.

Proof. The main ingredient is that the Galois-fixed subalgebra has a unique KMSg
state (cf. Proposition 4.1.3). As in the proof of Lemma 3.5.2, let do be the nor-
malized Haar measure on Gal(K/k), and let E denote the map defined in equation
(41).

Let 1,92 € E(Kp). Then ¢; o E and ¢, o E are Galois-invariant elements of
Kpg. Thus, by Proposition 4.1.3, they are equal:

p10E =y 0E.

But we have, for 1 = 1, 2,

goz-oE:/ @; oo do. (54)
Gal(K/k)

Equation (54) gives two decompositions of the same state as a barycenter of ex-
tremal KMSy states, but such a decomposition is unique (cf. [4], II, Theorem
5.3.30), so the orbits of ¢; and of ¢y under Gal(K/k) are the same one. O

Let S denote the space of all states of C} o, endowed with the weak™ topol-
ogy. Recall that the weak* topology on S is the one for which a basis of open
neighborhoods of a state g is given by the

B(go;x1, ..., xn;6) ={p € S| |p(x;) — wo(z;)| < € for all i} (55)
foralln > 1, zy,...,2, € Ck o and € > 0.

Lemma 4.2.2. The action of Gal(K/k) on S, given by (o, ) — poa, is contin-
uous.

Proof. Let @9 € S, n < 1, let x1,...,2, € Cioo, and let € > 0. Let
U = B(go;x1,...,%n;€), as defined in equation (55). Let us find an open set
V C Gal(K/k) and an open set W C S such that

pooelU foralloeV, peW. (56)
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Let us take W = B(pog € S;x1,...,2,;¢/2). By Proposition 3.4.2, for any i,
1 < i < n, the map

Gal(K/k) = Ck o0,

o — o(x;)

is continuous, so the finite intersection
V=N{o € Gal(K/k) | ||lo(x;) — z;|]| < e/2}
i=1

is an open neighborhood of 1 in Gal(K/k). Hence, all we have to do is to check
equation (56). Let 0 € V and ¢ € W. Let 1 < i < n. We have ||o(x;) —z;|| < e/2,
so, as ¢ is a state, |p(o(z;)) — ¢(x;)] < £/2. On the other hand, as ¢ € W, we
have |¢(x;) — @o(x;)| < e/2. Thus |p(o(z;)) — wo(z;)] < &,80 poo € U. O

4.3 Extremal KMS; states at low temperature 1/3 < 1 and
special values

Recall that X2 is the subspace of X of admissible elements, that £(Kp) is en-
dowed with the weak* topology, and that Gal(K/k) is endowed with its profinite
topology. In this subsection, for any # > 1, we shall construct a homeomorphism
Xdm — E(Kp), X — ¢p., commuting with the actions of Gal(K/k), and we shall
show that both £(Kj) (for 3 > 1) and X®™ are principal homogeneous spaces un-
der Gal(K/k). Moreover, we shall compute the values of g, at certain elements
of H and relate them to special values of partial zeta functions of k.

For any y € X®™  as at the beginning of the proof of Lemma 3.7.1, let us make
the identification G, = §, = Jo so that 7, is seen as a representation in *(30).
Let (€4)aeq, be the standard orthonormal basis of £2(Jp).

Definition 4.3.1. Let H be the unbounded operator on ¢?(Jp) defined by
Hey = (logNa)e, for all a € Jp.
Lemma 4.3.2. For any x € X®™  for all t € R and for all f € Cy o, we have
T (0:(f)) = e (f)e H,

Proof. By Lemma 2.2.3, it is enough to do the proof in the case when f € C.(G).
It is then a straightforward computation. O]

The function 3 +— Tr(e ) is trivially computed:
Lemma 4.3.3. For all 8 > 1, we have Tr(e ") = (. . (5).
Proof. Tr<€_ﬂH) = Zaejo e PlosNe = Zaejo Na ™7 = Ck,OO(ﬁ) 0
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Definition 4.3.4. For any y € X2 for any 3 > 1, we define a linear functional
08 on C oo by X .
28 (f) = Croo(B) 7 Tr(my (f)e™).

Let (£4)aeq, denote the standard basis of £2(Jp).

Lemma 4.3.5. For any x € X*™ and for any 3 > 1, ¢z, is a KMSy state of the
C*-dynamical system (C. oo, (0¢))-

Proof. By Lemma 4.3.3, we have ¢g,(1) = 1. We also have, for any f € Cj o,

P (FI7) = Geoo(B) ™ Ta(my (f)e ™ m(f)) 2 0,

SO @3, 1s a state on Cj, o. For any f, f’ € Cy o, let us define a bounded continuous
function Fj,, s on the strip {z € C| 0 <Imz < 8} by

Fx.rp(2) = Ck,oo(ﬁ)il Tr(e*ﬂHﬂX(f)eiZHﬂX(f/)efizH)'

One checks that the restriction of Fj, r ¢ to {z € C| 0 < Im z < 8} is holomorphic.
By Lemma 4.3.2, we have, for all ¢t € R,

Fonppr(t) = @px(fou( ) and  Fay pp(t +1i83) = wp(ou(f)f).
So g is a KMSg state of (Cj oo, (04)). O

Lemma 4.3.6. For any x € X*™ for any 8 > 1, for any o € Gal(K/k), we have

PBox = PBxCO0-

Proof. By definition of ¢g,,, it is enough to check that 7., (f) = m(of). By
Proposition 3.3.5, it is enough to prove it when f is one of the e(y), A) or one of
the . The result then follows from equations (38), (39). O

Lemma 4.3.7. For any x € X®™ and for any 3 > 1, the GNS representation of
o 15 (Mg, sy ), where mgy: Croo — B(l*(Jo) @ 12(Jp)) is given by

Tex () E@n) = m(f)E@n,

and the cyclic vector Qg,, € (*(Jo) @ (*(Jo) is given by

oy = Croo(B) 72 Y Na e @ e,

acJo

Proof. We obviously have

Pax () = (max(F)sx: Qo x)-
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Hence, we only have to show that 25, is a cyclic vector for 7g .. For any maximal
ideal p of O and any n > 0, using equation(45), we find

Ty (fgn)€a = Lynjagp-na  for all a € Jo
and hence
Ty (i )Ea = Lpnja€a  for all a € Jo.

Thus, if we let vgn = pugn pgn — flpn+1fignsr We get
Ty (Vpr)€a = Lpnjaand prtige€a for all a € Jo.

Now let b € Jo. Let us show that €, ® € is in the closure of 75, (Ch ) (25, ).
Write b = Hp p™ with n, > 0. For T' > 0, let Pr denote the set of all maximal
ideals p with Np < 7. The family (Pr)r is a growing family of finite sets whose
union is the set of all maximal ideals of O. For all T', let vy € C}, o be defined by

VT - H Vpnp .
pEPr

We have
T (1) () = G (B) V2 Y Na e, @ e,

acQr

where Q) is the set of all a € Jp such that for all p € Pr, the p-adic valuations of
a and b are equal. Since the series ) aNa_ﬁ is convergent, we see that

T (1) () 2% Go(B)V2ND 22, @ g4,

Thus, we have shown that €, ® €y is in the closure of 73, (C.)(23,). Applying
the 73, (pa) and the mg, (k) to that shows that for all by, by € Jo, the element
Ep, @ €p, 1 in the closure of 75, (Ck.00)(25,y)- O

Proposition 4.3.8. For any x € X*™ and for any 8 > 1, the state pg, is
factorial (hence extremal) of type 1.

Proof. Let A denote the weak closure of 75, (Ck.oo) in B(f*(Jo) ® (*(Jo)). By
Lemma 3.7.1, the representation 7, is irreducible. Thus inside B¢*(Jp), we have
Ty (Cr00) = C. Using Takesaki [33], I, Chapter IV, Proposition 1.6 (i), we deduce
that inside B(¢*(Jp) ® (*(Jp)), we have

7T57X(Ck7oo)l =Co® sz(jo)
Thus, using [33], I, Chapter IV, Proposition 1.6 (ii), we deduce
A=75,(Cro) = B (J0) ® C.

In particular, we have A ~ B*(Jp), so A is a factor of type I.. n

62



Lemma 4.3.9. For any > 1, the map X*™ — E(Kjp), x — p., is injective.

Proof. We reuse the notations of the proof of the previous lemma. Let us extend
©p 10 a state P, on the von Neumann algebra A = B*(Jp) ® C by

Pox(a®1) = {a(Qp,), Q) for all a € BFE(Jp).

For any 3 > 0 , we have ePH ¢ Bl?(Jp). We have, for all 1) € H(sgn) and for all
A € P(Cy)ter:

Groo(B) 1im B (myle(th, M) ™ @ 1) = (my(e(w, V) (1), 21) = Lyex, X(V).

Btoo
Thus, x is uniquely determined. O]

We can now prove the main result classifying extremal KMSgs states at low
temperature. Recall that Gal(K/k) is endowed with its profinite topology, and
E(Kp) is endowed with the weak* topology.

Theorem 4.3.10. For any [ > 1, the topological space E(Kpg) is principal homo-
geneous under Gal(K/k).

Proof. We must show that for any ¢ € E£(Kjp), the map Gal(K/k) — E(Kjs),
o — @ oo, is a homeomorphism. We already know that it is surjective (Propo-
sition 4.2.1) and continuous (Lemma 4.2.2). Thus, as Gal(K/k) is compact, it
only remains to show that it is injective. Let ¢ € £(Kp) and o € Gal(K/k) such
that ¢ o 0 = ¢. We have to show that ¢ = 1. Let y € X2, By Proposition
4.3.8 we have ¢z, € E(K3). By Proposition 4.2.1, there exists 7 € Gal(K/k) such
that ¢ = ¢g, o 7. By Lemma 4.3.6 we have ¢ = ¢g,, and ¢ 0 0 = g ory, SO
Ppory = Ppry- By Lemma 4.3.9, we deduce o7y = 7x. By Proposition 3.6.9 we
find o7 = 7,80 0 = 1. n

Theorem 4.3.11. For any § > 1, the map X*™ — E(Kj), X — @py, IS a
homeomorphism.

Proof. 1t is injective by Lemma 4.3.9. Let us check surjectivity. Let ¢ € £(Kj) and
let Yo € X*™. By Proposition 4.2.1 and Lemma 4.3.6, there exists o € Gal(K/k)
such that ¢ = g 4y,. Thus, the map x — g, is bijective. One checks that it is
continuous. By definition of an admissible character, X®™ is a closed subspace of
X. Thus X2™ is compact, so the considered map is a homeomorphism. O

Relations between certain special values of KMS; states and
of partial zeta functions

Let us now compute the values of the states g, on some of the generators e(¢, A).
Let A, denote the subset of Jo of all ideals a such that o, = 1, where o, =
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(a, HY/k) € Gal(H™"/k) is the Artin automorphism of H* associated to a. For
any ¢ € Jo and any o € Gal(K./k), let A., denote the subset of A, of all ideals
a prime to ¢ and such that o, = o, where 0, = (a, K./k) € Gal(K /k) is the Artin
automorphism of K. associated to a. Note that A, and the A, are generalized

ideal classes of O.
Let ¢, and (7 (for any ¢ € Jp and ¢ € Gal(K./H™)) be the partial zeta
functions associated to A} and A, respectively:

Grae(B) =D Na™”,

ﬂ€A+

#= ) Na’

acAc o
Theorem 4.3.12. Let 3> 1, ¢ € H(sgn), and y € X*™ N Xj.

1. We have
(o)

Ck,oo (5) '

2. For any mazimal ideal p of O, for any \ € ¢[p], we have

Pon(e(d,0) = G (D) NP (0) + X X(eNEEL(8)).

o€Gal(K, /H+)

pox(e(9,0)) =

Proof. Let us first prove (1). By definition, A, is the subset of Jp of all ideals a
such that o, = 1, where 0, = (a, H*/k) € Gal(H" /k) is the Artin automorphism
of HT associated to a. Hence, by Theorem 1.3.9, we have

A, ={a€dp|axgp=0¢t={acTo|alxp=0}={acTo|x*€ Xy}

Thus, by definition of ¢ ,, for any A € ¢(Cu)™", we have

QOﬁ,X(€(§Z5 ) Ckoo Z 1 “€X¢ NCl_’B

acJo 57
= G ()3 X(6a(N) N (57)

CKGA+

Applying this equality to A = 0 we get (1).
Let us now prove (2). Let a € A;. In the case when p | a, we have ¢4(\) =0,

X(0a(N)) =1

SO
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In the case when p t a, by Theorem 1.3.11, we have ¢4(\) = o4(A). Hence,
equation (57) gives

Groo(B)pn(e(@ M) = D x(da(AM)Na ™+ > x(¢a() Na™”
acAL, pla acAy, pla
= Y Na’+ > x(0a())Na?
acAi,pla a€A,pla
= Z N(pa)™? + Z Z (0A) Na™"
acAy c€Gal(Ky/HT) a€Ap .o

=Np %G B+ Y. XN LB,

oE€Gal(K, /H+)

which proves (2). O

4.4 Uniqueness of the KMS; state at high temperature
1/6>1

Recall that in Proposition 4.1.2, for any § € R, we found a Galois-invariant KMSg
state g of (Ci oo, (01)).

In this subsection we shall prove (Theorem 4.4.15) that when § < 1, there is
no other KMSg state of (C 0, (0¢)). In other words,

B<1 = Kz={ps}

Most of the ideas here come from [3], §7.

Let § € R be such that 5 < 1, and let 1) be a KMSg state of (Cj, o0, (01)). We
must show that 1 = 3.

Let G@k) be the dual group of Gal(K/k). Since Gal(K/k) is profinite,
GJK\/ k) is discrete.

Let F' be a non-empty finite set of finite places of k. Recall from Definition
3.8.1 that an ideal a € Jp is F-localized if all its prime divisors belong to F'. We
also need to define what it means to be F-localized for an element of Gal(K/k)
and for an element of C'(X).

Let us first define what it means to be F-localized for an element of Gal(K/k).
We have

K = lim K.,
SO

Gal(K/k) = lim Gal(K./k),
SO

Gal(K/k;) = hm Gal( Jk).

This means that for any character v of Gal(K /k), there exists ¢ € Jp such that v
factors through the projection Gal(K/k) — Gal(K./k).
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Definition 4.4.1. A character v of Gal(K/k) is said to be F-localized if there
exists an F-localized ideal ¢ € Jp such that v factors through the projection
Gal(K/k) — Gal(K./k).

Thus any v € Gal(K/k) is F-localized for some F'.
Let Kp denote the extension of HT generated by the elements of the ¢[F], for
¢ € H(sgn). In other words,
Kp =lm K.,

where ¢ runs over Jo. Thus a character v of Gal(K/k) is F-localized if and only if
it factors through the surjection

Gal(K/k) — Gal(Kg/k).

Let us now define what it means to be F-localized for an element of C'(X). For
any ¢ € H(sgn), let ¢[F] denote the following subgroup of ¢(C,)™":

olF= U ¢lc

¢ is F-loc.

Here ¢ runs over all the F-localized ideals in Jp. Let Xy r denote the dual group
of ¢[F]. The restriction-to-¢[F| map is a surjective morphism

X¢ — X¢7F.

Let X denote the (disjoint) union of the Xy g, for all ¢ € H(sgn). The restriction
maps X, — Xy p give a surjection

X — Xp.
This gives an injective morphism of C*-algebras
C(Xp) — C(X).
Thus, we regard C'(Xp) as a C*-subalgebra of C'(X).

Definition 4.4.2. An element f € C(X) is said to be F-localized if it belongs to
C(XF). In other words, f is F-localized if, seen as a function f: X — C, it factors
through the map X — Xp.

Lemma 4.4.3. The C*-algebra C(Xf) is generated by the e(p, N), for all ¢ €
H(sgn) and all X € ¢[F].

Proof. This can be checked like Lemma 3.3.4. [

For any character v of Gal(K/k), let C, be the following spectral subspace of
Ck’ooi
C,={f€Cro|0of =v(o)f for all 0 € Gal(K/k)}.
Thus, when v = 1 is the trivial character, the corresponding subspace C] is the
Galois-fixed subalgebra computed in 3.5.2.
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Lemma 4.4.4. The following subspace is dense in Cj

P c.

veGal(K k)

Proof. Since Gal(K/k) is a compact abelian group of x-automorphisms of Cj .,
this follows from a result found in Pedersen [30], §§8.1.4 and 8.1.10, p. 349. O

Lemma 4.4.5. The states 1 and g agree on C.

Proof. We saw in Proposition 4.1.3 that (C4, 0¢) has only one KMSg state. Thus,
as ¢ and ¢g are KMSg, they must agree on C}. [

—

Lemma 4.4.6. Suppose that for any v € Gal(K/k) with v # 1 the state 1 vanishes
on the spectral subspace C,. Then ¥ = pg.

Proof. By Lemma 4.4.4, in order to show that ¢ and ¢z are equal, it is enough to
show that they agree on C, for all v. We already know that i) and ¢z agree on
C1. As pg is Gal(K/k)-invariant, it is easy to see that it vanishes on C, for any
non-trivial v, so we deduce that ¢ = @g. [

Thus, in order to prove that i = g, it is enough to prove that v vanishes
on each of the spectral subspaces C,, for v # 1. The following lemma, which is
inspired by Lemma 27 (c) in [3], will be useful to show this.

—

Lemma 4.4.7. Let v € Gal(K/k) with v # 1. Let F' be a non-empty finite set of
finite places of k such that v is F'-localized. Suppose that for any F'-localized partial
isometry V € C(X)NC,, we have

Y(Va)=0 forall x € Cy.
Then v vanishes on the spectral subspace C,.

Proof. From Theorems 4.3.10 and 4.3.11 we know that X2 is principal homoge-
neous under Gal(K/k). Thus, by choosing a base point yo € X2™ we can identify
Gal(K/k) with X2 through the map o + o)o. Let § € Jo be defined by

=11

peF

For any n > 1, let V,, € C(X) be defined as follows. Let x € X. If §, is of the
form a='Jp with a | {*, write y = ox§ with 0 € Gal(K/k) and put V,,(x) = v(0).
Otherwise, put V,,(x) = 0. Note that V,, is a partial isometry and belongs to C,,.
Moreover, V,, is F-localized because v is.
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For any x € X we have [V,,(x)| = 1if §, is of the form a~*Jp for some a | {* and
[V,.(x)| = 0 otherwise. As |V,,| takes values in {0, 1}, we have |V,| = |V, |* = V,V*.
Thus, by Lemmas 2.1.7 and 2.1.8, for any y € X, we have

VaVi(0) = Lgicrmao = | 1
pel

Hence, by equation (33), we get

VaV, = H(1 — Hinphinp)-
per

Since 1 and ¢z agree on € (Lemma 4.4.5) and F' is finite, we obtain

W) = s ( TT0 = peptio)) 2= 1, (58)

peF

Now let z € C,. We want to prove that ¢)(x) = 0. For any n > 1, let
P, =1-V,V*. The Schwarz inequality gives

[W(Pux)? < (P)ip(xa”). (59)

n—oo

By equation (58), we have 9(P,) ——— 0, so equation (59) gives ¥(P,x) —— 0,
S0

Y(VaVyiw) == (). (60)

Foranyn > 1,asx € C, and V, € C,-1, we have V*x € (. Hence, by assumption,
we have

Y(V,Vrix) = 0.

Together with equation (60), this gives ¢ (z) = 0, which completes the proof of
Lemma 4.4.7. L

Thus in order to prove that ¢ = g it is enough to prove the following lemma.

—

Lemma 4.4.8. Let v € Gal(K/k) with v # 1. Let F' be a non-empty finite set of
finite places of k such that v is F-localized. For any F-localized partial isometry

Vel(X)nC,, we have
w(Vx) =0 forallz € Cy.

Proof. This proof is directly inspired by the proof of Lemma 27 (b) of [3]. It will
make use of Lemmas 4.4.9, 4.4.10, 4.4.11, 4.4.12, 4.4.13 and 4.4.14, and will only
be completed on p. 74.

Let V € C(X) be an F-localized partial isometry such that V' € C,.
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Let E = V*V = VV* (the algebra C(X) is commutative). Note that F is a
projection and belongs to C. Let

Cp=FECE={fecC|f=fE=Ef}

denote the reduced algebra. As V is fixed by the flow (o) and ¢ and g are KMSg
states for the flow (o), we see that V' belongs to the centralizer of ¢ and of ¢g.
Let o denote the following automorphism of C g:

a(f)=V V" forall f e Cp.

Let M be the weak closure of Cj, o in the GNS representation of ¢g. Let us extend
the state ¢z to a normal state ¢g on M. Let M; C M denote the weak closure of
C in the GNS representation of ¢g.

Since V' belongs to the centralizer of g for all f € C} g, we have gg(a(f)) =
©(f). Thus a preserves g, so it extends to an automorphism of the reduced
algebra M p preserving ¢g.

Let ¢ € Jp be an F-localized ideal such that v factors through Gal(K./k).

Lemma 4.4.9. Let p be a finite place of k with p & F. We have
Ep, e Cig and oEpy) =v(oy)Ep, forallp & F, (61)

where o, = (p, Kp/k) € Gal(Kp/k) is the Artin automorphism of Kr associated
to p.

Proof. Let Hp denote the x-algebra generated by the e(¢, \), for all ¢ € H(sgn)
and all A € ¢[F]. By Proposition 4.4.3, we know that H g is norm-dense in C(Xp).
So let (V,)nen be a sequence of elements of Hp converging to V' in the norm
topology. Obviously we have

Hr C U H[D],

€30, 0F-loc.

where 0 runs over the F-localized elements of J». Thus, for any n € N, there
exists an F-localized 0,, € Jp such that V,, € H[9,]. Since p ¢ F and 0, is F-
localized, we have p 1 9,,, so Lemma 3.8.3 gives V1, = p1,0,(V;,). Now view o, as
an automorphism of the C*-algebra C'(Xr). In particular it is continuous. Hence
we obtain

Vi = ppop(V) = viop)p,V for all p & F, (62)
and the result follows. O]
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The ITPFI structure of M;

For any p, recall that 7, is the (Toeplitz) C*-algebra generated by s, and that
©a,p is the restriction of g to 7,. Let (e,,)n>0 denote the standard orthonormal
basis of £*(N). Let 74, be the following representation of 7:

Tapt T — BIC(N) @ (4(N),

Pp = (En @ Em — Ent1 @ Em).

Let Qp, € (*(N) ® (?(N) be the following vector:

Qpp=1+1—NpF Z Np "%, @ e,.

n>0

It is easy to check that the pair (73, g,) is the GNS representation of ¢g,. Let
M, , denote the weak closure of 7, in the representation m3,. One checks that

My, = B(N)® C. (63)

In particular M, is a type I factor. Let ¢g, be the unique extension of ¢z, to
a normal linear functional on M, ,. Alternatively, @g, is the restriction of ¢z to
M, ,. Note that the eigenvalue list of @3, is the sequence

((1 = Np™?)Np ™).

We have
(M, 85) = Q)(Mip, Psp) (64)
p

where p runs over the finite places of k. Recall from [33], III, Chapter XIV,
Corollary 1.10, that any I'TPFI is a factor. In particular, M; is a factor. We shall
check later (Lemma 4.5.1) that it is of type III 5.

For any A € C with |A\| = 1, let p, » denote the x-automorphism of 7, such that
P (1hp) = Aptp. As pp\ Preserves gy, it extends to an automorphism of M ,. Let
0r, be the following automorphism of M;:

Or, = (®per idan,) ® (DpgrPpv(oy))-
Lemma 4.4.10. 0p, is an outer automorphism of M.

Proof. Suppose that p, is inner. Lemma 1.3.8 (b) from Connes [7] states that
there exists a sequence (uy,) where, for any finite place p of k, u, is an unitary of

Or. () = upruy  for all x € M, (65)

and such that

> (1= losp(up)]) < oo (66)

p

70



Since M, is a factor, equation (65) determines u, up to multiplication by a z € C
with |z| = 1. By definition of 05, when p € F one can take u, = 1. When p ¢ F
one can take u, € M;, = B{*(N) to be the diagonal matrix with eigenvalue list
(v(0}))nen. Using the expression of the GNS representation of ps, that we saw
above, we get

1—Np?»
1 —v(0p)Np=F

©ap(up) = (1 = Np~ )Z (gp)"prnﬁ

neN

This is equal to 1 whenever v(o,) = 1; so, letting
Y = {p | p is a finite place of k, p & F, and v(o,) # 1},

equation (66) gives

§<1_‘1ju_c1:)prﬂ><°°' (67)

Recall that we let ¢ be an F-localized ideal such that v factors through Gal(K/k).
This is a finite group, so the range of v is finite, so there exists a v with 0 < v < 1
such that for any o € Gal(K/k) with v(o) # 1, we have Rev(c) <. Let p € Y.
We have |1 — v(o,)Np~?| > 1 — yNp~?. Thus we find

1—Np~” 1—Np¥ 1—7 N_ﬁ
1 —v(op)Np~=F 1 —~Np—~8 1 —~vNp—~
Since 1 — v > 0, together with equation (67) this gives
> Np < oo (68)

pey

Since ( < 1, this implies that for all s > 1 we have

D Np <) Np ' < oo (69)

peY pey

The Cebotarev density theorem (Theorem 1.1.4) states that for any o € Gal(K./k)
the following set P, of places of k,

P, = {p | p does not ramify in K, and 0, = o},

has a positive Dirichlet density
d(P,) > 0.

Up to a finite set of places of k, we have

Y= U P,



where o runs over Gal(K,/k). Hence, as v # 1, we have d(Y) > 0, so

contradicting equation (69). O

Define two subfactors M{* of Mj,

M = Q) My,
peF

MlF_ = ®(MLP7 6/3,33)7
pEF

where p runs over the finite places of k. We thus have
M, = Mo M.
As the projection F is F-localized, we have E € M1F+, so letting
N = (MlFJr)E
and using [33], I, Chapter IV, Proposition 1.9, we get
My p=N®MI-. (70)
Lemma 4.4.11. « is an outer automorphism of M g.

Proof. Suppose that « is an inner automorphism of M; p. Let 7 = alto Or, €
Aut (M, g). By construction, 7 induces the identity on CE @ M{~. As N ® C is
of type I, the restriction of 7 to N ® C is inner. By equation (70), we get that 7
is an inner automorphism of M; . Hence, 0, restricts to an inner automorphism
of My g. As M, is a factor, using Lemma 1.5.2 of [7], we deduce that 6, is an
inner automorphism of My, contradicting Lemma 4.4.10. O

As we already noted, V' belongs to the centralizer of ¢). Define a linear functional
L on C) g by
L(z)=9¢(Vz) =¢(@V) forall z € Cp.

We want to prove by contradiction that L is zero. Thus suppose that L is nonzero.
The Schwarz inequality gives

|L(2)]* < (E)y(z*z) forall v € C) p.

By Lemma 4.4.5, the states ¢ and g agree on C g, so Y(z*x) = pg(z*z). Thus L
extends to a normal linear functional on M; g, which we still denote L.

Since ¢g is KMSs on C o, by [4], II, Corollary 5.3.4 there exists a unique
extension of (o) to an ultraweakly continuous flow (o;) on M for which ¢g is
KMS;.
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Lemma 4.4.12. The linear functional L satisfies the a-twisted KMSg condition
for the flow (a;) on My g. In other words, for any x,y € M g, there exists a
bounded continuous function F, on the strip 0 < Imz < 3, holomorphic on the
interior of the strip, such that for any t € R we have

Foy(t) = L(zoy(y)) and  Fyy(t+if) = L(ow(y)a(x)). (71)

Proof. In the case when z,y € C) g, this can be easily checked by applying the
KMSg; condition for ¢ to the pair (Vz,y). As both (¢;) and L are ultraweakly
continuous, the result follows. Il

Lemma 4.4.13. There exists a nonzero oi-invariant w € M,y g such that
L(z) = pg(wz) for all x € M g.

Proof. Let L = |L|u be the polar decomposition of L (see [33], I, Chapter III,
Theorem 4.2). In particular, u € M; g is a partial isometry, |L| is a positive
normal linear functional on M; g, and

L(z) = |L|(ux) for all x € M p.

We want to apply Connes’ Radon-Nikodym theorem to |L| and @g, seen as finite
normal faithful weights on M; g.
Since L is op-invariant, by uniqueness of the polar decomposition, u and |L|

are o-invariant. As $g is KMSs for the flow (5;), we deduce that |L| is o} -
invariant, where (o;”) is the modular automorphism group associated to the fi-

nite faithful normal weight ¢z on M; g. Connes’ Radon-Nikodym theorem ([7],
Lemme 1.2.3 (b)) then states that there exists a positive o-invariant h € M) g
such that

|L|(x) = pg(hx) forall z € M, p.

Letting w = hu, we get
L(z) = pg(wz) for all x € M g,

and w is nonzero by our assumption that L is nonzero. It is os-invariant because
both v and h are. O

Lemma 4.4.14. Let w be given by Lemma 4.4.13. Then
a(x)w =wz for allz € M g.

Proof. Let x,y € My . Let Fa{jy be the function given by Lemma 4.4.12 such that
for any ¢t € R we have

FL(t) = L(zoy(y)) and FF (t +iB) = L(0:(y) ().

73



By definition of w, we get
Fry(t) = $s(wadi(y)) and  Fy(t +if) = @s(0:(wy)a(x)).

Now let F%?

a(z),wy

pair (a(x),wy) so that

be the function given by the KMSg property of ¢z applied to the

P8

a(z),wy

(t) = Pola(2)di(wy)) and Fi. . (t+i0) = §a(Gi(wy)a(x)).

Let G = Ff(i) wy —FmL’y. Note that G vanishes on R+1¢3. Therefore, one can extend

G to a holomorphic function on the broader strip 0 < Im z < 23 by letting
G(z) =G(z2+2i3) forall z € C with § < Imz < 25.

As G vanishes on R + i3 and is holomorphic on an open set containing R + ¢4, it

vanishes everywhere, so F*”
oz),w

_ L . .
y = F,,. In particular, evaluating that at 0, we get
Pp(wry) = pp(a(@)wy).
Since this holds for all y € M; g and the state g is faithful on M; g, we get

wr = ax)w. O

We already know by Lemma 4.4.11 that « is outer. Thus, Proposition 4.1.16
of Sunder [32] shows that

{y € Mg | a(x)y =yx for all z € My g} = {0}.

Together with Lemma 4.4.14 this shows that w = 0. But w is nonzero by construc-
tion (cf. Lemma 4.4.13), so we get a contradiction. Thus our assumption that L is
nonzero was false. Thus L is zero, so

Y(Vz)=0 forall x € Cy .

Now let x € Cy. We have ExE € Cy g, so it follows that ¢(VEzE) = 0.
As E = V*V = VV* is a projection and belongs to the centralizer of i, we get
Y(VEzE) =¢(EVEx) = (Vz), so ¥(Vz) = 0, which proves Lemma 4.4.8. [

From this we can deduce the main result of this subsection. Recall that we
have assumed 0 < 3 < 1.

Theorem 4.4.15. The C*-system (C 0, 0¢) has ezactly one KMSp state, pg.
Proof. This follows from Lemmas 4.4.6, 4.4.7 and 4.4.8. O]

Corollary 4.4.16. The state pg of Cy s a factor state, i.e., the von Neumann
algebra M 1is a factor.

Proof. This follows from Theorem 4.4.15 and [4], II, Theorem 5.3.30 (3). O
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4.5 The type III, s of the KMSj; state at high temperature
1/8>1

Let us go on with the notations of the preceding subsection. In particular, we
assume that § < 1. The goal of this subsection is to prove (Theorem 4.5.8) that
the state pg on Ci o is of type III,-s. In other words, we want to show that the
factor M is of type III,-s. Before doing that we show that the subfactor M; is of
type 11I,-5.

Recall from equation (64) that M is the following infinite tensor product, where
p runs over the finite places of k:

(M1, 3p) = Q)M p, Bap)-
p

Here each of the M , is a type L, factor, so the usual methods (cf. Araki and Woods
[1], [8]) allowing to compute asymptotic ratio sets cannot be applied directly to
M, . Instead we first find an integer 7 € N and, for each p, a projection e, € M,
such that the reduced factor M., is of type I, and the infinite tensor product
e = ®peyp 1s a nonzero projection in M;.

Let 7 € N be such that 7 > 1/3. For any finite place p of k, let e, = 1 —pujus" €
M. Recall from equation (63) that M, is naturally identified with B¢*(N).
Under this identification, the projection e, is the diagonal matrix whose 7 first
diagonal entries are 1 and whose other entries are 0. Thus, the reduced subfactor
M pe, is of type I;. Note that

Ppplep) =1— Np~"". (72)

Any decreasing sequence of projections in a von Neumann algebra converges weakly
to a projection, so we can define a projection e € M; by

p p
By definition of 7 we have 73 > 1, so
1

pple) = H@ﬁ,p(ep) = 1;[(1 —Np ™) = G B) # 0.

In particular, e # 0. Let us define a state ¢z, on M; . by

08.e(x) = (oo (T0) Pp(x) = g,ﬂ((i)) for all x € M.

For any p, let us define a state pg ., on My, by

Pape, (1) = (1 — Np_Tﬁ)_lfég,p(x) = m for all z € M pe,.
Sﬂﬂ,p(ep)
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Coming back to the definition of the infinite tensor product ([33], III, Chapter
XIV, §1) and using the expression (64) of M; as the infinite tensor product of the
(M, P3,p), one can check that

(Ml,ea &676) = ®(M1,p,ep s &ﬁ,p,ep ) (73>
p

Let (O’fﬁ) denote the modular flow of @g. Since @3z is KMSg for the flow (oy),

we have B
¢

o, =0 forallteR. (74)
Lemma 4.5.1. The factor M, is of type 111 5.

Proof. Let us first prove that ¢=° belongs to the asymptotic ratio set 7o (M; ).
We want to apply the criterion given on p. 465 of [8] to the ITPFI in equation

.....

(1 —Np)Np~*

Apa =
" 1 —Np-3

Let r be such that 0 < r < 1. For any n € N, let

r(n) = |rq"/n).

By equation (1), there exists an ng > 1 such that for any n > ng, there exist (at
least) r(n) distinct finite places

Prs s P
of k such that '
Np, =q¢" forallie{l,...,r(n)}.
For any n > ng, let I, be the following set of places of k:

r(2n

[n = {p%na s 7p2n

Let X (1I,,) = {0, ..., 7—1}! be the set of all maps from I,, to {0, ...,7—1}. Define
a measure A on X(I,,) by

2n
)7pén+17 te 7p251+i .

r(2n)
=1

For any i € {1,...,r(2n)}, define elements k' and k>* of X(I,,) by

k}lz(P) = 1p:p§n and k?j(p) - 1p:pén+1 for all p € Iy,
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Let K! = {kM, .. k"®) and let K2 = {k2!,... ko"®"}.  For any
i€{1,...,7(2n)}, we have A\({k>'}) = A({k}'}), so
M) = r(2n) A({k, ')

—2n rg®™ /(2n —(2n ra2™ /(2n B "
. 1—q 28 Lrq™"/(2n)] 1 — g~ @nt1)8 lrq®" /( )J(qlg)g
N 1—q=2nP 1 — g~ @n+brs (2n)

Since # < 1, one checks easily that

> ME,) = . (75)

n=ng
Let ¢,: K! — K? be the bijection defined by ¢, (k%) = k**. For any i €
{1,...,2n}, we have

A({QSN(kqlz’l)}) _ )\pénvOApénH’l _ q7(2n+1)[3 — qfﬁ
A({kn'}) Mo Mgy, 0 4

Together with equation (75), this allows to apply the criterion given on p. 465 of
8], and we get
q_ﬁ € roo(Ml,e)-

Hence, by [7], Théoreme 3.6.1, we have ¢=? € S(M,;.). Hence, by [7], Corol-
laire 3.2.8 (b), we have

g7 € S(M).
In particular, this shows that S(M;) # {0,1}, so, by [7], Théoréeme 3.4.1, one
gets that S(M;) NR% is the orthogonal of T'(My) for the duality (s,t) — s". By
construction, 0oy /1054 = 1, 50 equation (74) gives

7o 1. (76)

Ton/(Blogq) —

Thus
27

Blogq

T (M) D
Hence, by orthogonality, we get

S(M;) NR*: C ¢,
Since we already know that ¢=% € S(M), we obtain

S(My)NRY = q*".
Thus M, is of type III,-5. O]

Let M, g, denote the centralizer of @5 in M;. We only use Lemma 4.5.1 for the
proof the following corollary:

7



Corollary 4.5.2. The centralizer My, is a factor, of type II;.

Proof. Lemma 4.5.1 and equation (76) allow to apply [7], Théoréme 4.2.6, and we
obtain that M3, is a factor. Note that ¢z is a finite faithful normal trace on
M, z,. Hence, the type of M, z, can only be either II; or I, with n € N*. Let p be
a finite place of k. For any n > 1, set x, = pypu,". Note that the x, are fixed by
the flow (o), hence by equation (74) they belong to M; z,. Equation (33) shows
that the z, are linearly independent over C. Thus, Mz, is infinite-dimensional
over C, so its type cannot be I,, with n € N*. Hence, it must be II;. Il

Our next goal is to prove (Lemma 4.5.6) that the centralizer Mg, of g in M
is also a factor.

Definition 4.5.3. For any ? € Jo, let M 0] denote the weak closure of H[0] in M.

Lemma 4.5.4. Let 0 € Jp. Let p be a mazximal ideal of Jo not dividing 0. Let
op = (p, Ky/k) € Gal(Ky/k) be the Artin automorphism of Ky associated to p.
Then:

1. The automorphism o, of H[d] extends uniquely to an ultraweakly continuous
automorphism of M[9].

2. For all x € M[d], we have
Thtp = fpop(). (77)

Proof. Let us first prove (1). Uniqueness is clear because, by the von Neumann
density theorem, H[0] is ultraweakly dense in M[d]. Let 0 € Gal(K/k) be such
that 0|k, = 0p. As @goo = @ on Cj o, we know that o extends to an ultraweakly
continuous automorphism of M, which we still note . The required extension of
0y is then obtained by taking the restriction of o to M|0].

Let us now check (2). By density, it is enough to check equation (77) when
x € ‘H[?]. It then follows from Lemma 3.8.3. O

Lemma 4.5.5. Let 0 € Jo. Let M0, denote the centralizer of gg in Md]. Let

Z(M[d]3,) denote the center of M[d]z,. Then:

Z(M[D]szﬁ) C M.

Proof. Let  belong to Z(M[0]z,). As x belongs to M[0], it is fixed by Gal(K/Kjy).
Let 0 € Gal(K,/k) = Gal(K/k)/ Gal(K/K,). By Corollary 1.1.5, there exist finite
places p,q of k not dividing ? such that Np = Ngq, 0, = 0 and o4 = 1. Since
Np = Ng, we have

ot (fptly) = Npith_itupu’; = pipply for allt € R.
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Hence, by equation (74), ppuy € M[o]3

35 Thus, as x belongs to the center of
M[d]5,, we have

Tfiphly = HpllgL. (78)
On the other hand, by Lemma 4.5.4 (2), we have
Tftphly = Hp0p(T) i, (79)

and we also compute

fphg® = pp(2" 11q)"
= pp(pqoq(z*))" by Lemma 4.5.4 (2)

— 0w (50)
Combining equations (78), (79), and (80), we get
pp0p () g = ppoq(T) g (81)

Multiplying both sides of equation (81) by py; on the left and by pq on the right,
and applying relation (a;) of Proposition 3.1.2, we get

Since o, = 0 and o4 = 1, we get

Thus, x € M,. ]
Let M3, denote the centralizer of ¢z in M.
Lemma 4.5.6. The centralizer Mz, is a factor of type II;.

Proof. Note that ¢ is a finite, faithful, normal, positive, normalized trace on Ms,.
Let tr be another such trace on Mg,. Let us prove that tr = ¢3. Let 0 € Jo. By
Connes’ Radon-Nikodym theorem, [7], Lemme 1.2.3 (b), there exists a positive
element h of M[0]5, such that

tr(z) = @g(hx) for all x € M[o]z,.

Since ¢g and tr are faithful traces, one easily checks that h belongs to the center
Z(M[0]z,). Thus, by Lemma 4.5.5, h € M;. Hence, the restriction of tr to M[0],
is Gal(K /k)-invariant, so

tr(z) = tr(E(z)) for all z € M[0]5,. (82)
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As (0]?) is (27/ log q)-periodic, we have a normal conditional expectation

E@*ﬁ: M — MQZB’

1 2r/logq  _
T (;iq/ o)’ (x) dt.
0

Since H is norm-dense in Cj o (see Proposition 3.3.5), it is ultraweakly dense in
M, and it follows that Egz,(H) is ultraweakly dense in Ej,(M). We have

Eg,(H) = Ez,( U HPJ) € Ez,( U M)

€T €T

C U Eg (MP])c U Mg,

0edo [JSWIG)

Thus, Uaeﬂo M[U](ﬁ

, is ultraweakly dense in Ez,(M) = M;z,. Thus equation (82)
gives

tr(z) = tr(E(z)) for all z € M;,. (83)

We know by Corollary 4.5.2 that M, 3, is a type II; factor. Hence, by Jones [22],
Corollary 7.1.19, we know that tr and g agree on M; z,. Thus, by equation (83),
we deduce that tr and ¢s agree on Mp,. Hence, by [22], Corollary 7.1.20, we
deduce that Mg, is a factor, and the same argument that we made for M; 5, shows
that M3, is also of type II;. m

Corollary 4.5.7. We have S(M) # {0,1}. In other words, the factor M is not of
type I11;.

Proof. Suppose that S(M) = {0,1}. Then, by [7], Corollaire 3.2.7 (b), the center
of Mz, has no minimal nonzero projection. Hence, by Lemma 4.5.6, one deduces
that C has no minimal nonzero projection, which is absurd. Il

Finally we can prove the main result of this subsection. Recall that we have
assumed 0 < 3 < 1.

Theorem 4.5.8. The state pg on Cy o is of type Il ,—s. In other words, the factor
M s of type 111 ,—5.

Proof. By Corollary 4.5.7 and [7], Théoreme 3.4.1, the set S(M) NRY is the or-
thogonal of T'(M) for the duality (s,t) — s. Hence, it is enough to prove that

2m
T(M) = - 7.
(M) Blogq
Since Tor/10gq = 1, equation (74) gives
2
e T (M),
ploggq (M)
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which proves one inclusion. Let us prove the other one. Let t; € R be such that
to/B € T(M). Thus, by equation (74), oy, is an inner automorphism of M. Let u
be an unitary of M such that

o1, (x) = uzu®  for all x € M.

For any t € R and x € M, we have

or(u)oy(x)o(u)" = oy (uzu™) = uoy(z)u’,
so the unitaries u and o;(u) implement the same inner automorphism of the factor
M, so there exists some z; € C with |z| = 1 and oy(u) = z;u. The map t — z is
a character of R, so there exists # € R such that

2z =% forallt € R,

The KMSg property of the state ¢ for the flow (7;) applied to the pair (u*,u)
gives a bounded continuous function F' on the strip 0 < Im 2z < , holomorphic on
the interior of the strip, such that

F(t) = gp(u’o(u)) and F(t +if) = pg(o(u)u”) for all t € R.
Thus,
F(t)=¢e% = F(t+iB) forallteR. (84)

Hence F is the holomorphic function z +— e*
t =0, one gets

and, evaluating equation (84) at
e =1.

Thus € = 0, so u is fixed by the flow (7,). Hence, by equation (74), the unitary u
belongs to the centralizer Mg, of ¢g. Moreover, by equation (74), any element of
Mg, is fixed by the flow (6;) and so commutes with u, by definition of u. Hence u
belongs to the center of Mz,. Thus, by Lemma 4.5.6, one deduces that u € C, so,
as an automorphism of M,

5150 - 1 (85)

By equation (1), for any sufficiently large n, there exist finite places p and q of k
such that Np = ¢" and Ng = ¢"*'. We then have oy, (pqpy) = q("H)”O*m'tO,uqu; =

q"* pgpty. On the other hand, equation (85) gives oy, (pqity) = pgity. Thus, we get
1 = ¢, so ty € 21/(log q)Z, which completes the proof. ]
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