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Introduction

The central theme of the present thesis is concerned with arithmetic properties of Bost-
Connes systems, which are of central importance in the slowly emerging field of mathe-
matics shimmering at the horizon where Noncommutative Geometry and Number Theory
meet and hopefully fertilize each other one day in both directions. For the time being
it seems that mainly NCG is profiting as NT gives rise to interesting and rich objects in
the world of NCG, and among the most prominent and interesting ones are Bost-Connes
systems.

The history of BC-systems starts in ’95 with the seminal paper of Bost and Connes [BC95]
introducing the now called BC-system AQ = (AQ, σt) which is a C∗-dynamical system, or
in physical terms a quantum statistical mechanical system, with many interesting proper-
ties. For example, its partition function is given by the Riemann zeta function, it obeys an
interesting phase transition and, moreover, its dynamics realizes the class field theory of Q.

It was a natural problem to generalize the BC-system to arbitrary number fields and
this was achieved by Ha and Paugam [HP05] and Laca, Larsen and Neshveyev [LLN09]
(building upon important earlier work of [BC95], Laca [Lac98], Neshveyev [Nes02], Connes
and Marcolli [CM06] and Connes, Marcolli and Ramachandran [CMR05] and [CMR06]).
They constructed 2 for every number field K a C∗-dynamical system (cf., sections 2.1 and
1.5.1)

AK = (AK , σt) (0.1)

with the following four properties generalizing the classical BC-system

(i) The partition function of AK is given by the Dedekind zeta function ζK(β) of K.
(ii) The maximal abelian Galois group Gal(Kab/K) of K acts as symmetries on AK .
(iii) For each inverse temperature β ∈ (0, 1] there is a unique KMSβ-state.
(iv) For each β ∈ (1,∞] the action of the symmetry group Gal(Kab/K) on the set of
extremal KMSβ-states is free and transitive.

(0.2)
For this reason we call the system AK the BC-system for K. The following question,
whether BC-systems admit an arithmetic model, was, in general, an open problem before
this thesis and goes back to [BC95]. Explicitely the problem was first stated in the paper
[CMR05]. A BC-system AK is said to admit an arithmetic model if there exists a K-
rational subalgebra

AarithK ⊂ AK

2. More precisely, Ha and Paugam constructed the systems AK and showed property (i) and (ii). Laca,
Larsen and Neshveyev showed that (iii) and (iv) hold by classifying the KMSβ-states of AK .
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such that

(v) For every extremal KMS∞-state % and every f ∈ AarithK we have

%(f) ∈ Kab

and further Kab is generated over K by these values.
(vi) If we denote by ν% the action of a symmetry ν ∈ Gal(Kab/K) on an extremal
KMS∞-state % (given by pull-back) we have for every element f ∈ AarithK the
compatibility relation

ν%(f) = ν−1(%(f)).

(vii) The C-algebra AarithK ⊗KC is dense in AK .
(0.3)

In this case the K-algebra AarithK is called an arithmetic subalgebra of AK . In particular,
arithmetic models relate BC-systems to class field theory and potentially to Hilbert 12th
problem, which asks for an explicit class field theory. The latter problem is widely open,
except for the rational field, imaginary quadratic fields and partially for CM fields.
The existence of arithmetic models for BC-sytems, before this thesis, was known in the
case of the rational number field, cf. [BC95], and in the case of imaginary quadratic fields,
see [CMR05], based on the theory of Complex Multiplication on the modular curve and
the GL2-system of [CM06].

The main result achieved in this thesis is the construction of arithmetic models for BC-
systems in complete generality.

Outline of our results

In the first chapter we generalize the work of Connes, Marcolli and Ramachandran
[CMR05] and [CMR06] to the case of arbitrary CM fields. The main ingredients of our
construction are the theory of Complex Multiplication on general Siegel modular varieties,
e.g., [MS81], and the GSp2n-systems of Ha and Paugam [HP05]. Due to the fact that for
a CM field K which is not quadratic over Q the theory of Complex Multiplication does
not generate the maximal abelian extension Kab we obtain only partial, but still very
interesting, arithmetic subalgebra in these cases. Moreover, due to the fact that our con-
struction involves arithmetic modular functions and Shimura’s reciprocity law our partial
arithmetic subalgebra has a quite explicit flavour.

In the second chapter we prove the existence of arithmetic models in full generality.
This is the main result of the present thesis. It was already remarked by Marcolli
[Mar09] that the classical BC-system can be described in the framework of Endomotives
and Λ-rings. We follow this route and show that the theory of Endomotives, introduced
by Connes, Consani and Marcolli [CCM07], and a classification result of certain Λ-rings
in terms of the Deligne-Ribet monoid by Borger and de Smit [BdS11] provide the correct
ingredients to construct (in a non-explicit manner) arithmetic models of arbitrary BC-
systems. Moreover, our construction shows that BC-systems are in general closely related
to Witt-vectors, Λ-rings and Frobenius-lifts. In the case of the classical BC-system the
relation to Witt vectors has been exploited very recently by Connes and Consani [CC11]
who constructed p-adic representations of the BC-system. We expect that our results will
provide p-adic representations of BC-systems for arbitrary number fields.
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Further, the second chapter contains an appendix by Sergey Neshveyev who showed that
our arithmetic model is essentially unique.

The last chapter is concerned with functoriality properties of BC-systems. More pre-
cisely, in the context of Endomotives, we will construct an algebraic refinement of a functor
from the category of number fields to an appropriate category of BC-systems which was
recently constructed by Laca, Neshveyev and Trifkovic [LNT]. For this we introduce a
notion of base-change for certain algebraic endomotives and show that this gives rise nat-
urally to the functor of [LNT].

The results of chapter one are based on [Yal10] and the results of chapter two and three
are based on [Yal11].





Introduction française

Le thème principal de cette thèse est l’étude des propriétés arithmétiques des systèmes
de Bost-Connes qui sont d’une importance centrale dans le domaine situé à l’interface
entre la géométrie non-commutative et la théorie des nombres. On espère qu’un jour les
deux théories vont s’enrichir mutuellement. Actuellement la géométrie non-commutative
en profite davantage dans la mesure où la théorie des nombres donne naissance à des objets
très riches et intéressants dans le monde de la géométrie non-commutative et parmi eux
se trouvent les systèmes de Bost-Connes.

L’histoire des systèmes de Bost-Connes commence en 1995 avec le papier fondateur de
Bost et Connes [BC95]. Ces dernièrs introduisent un C∗-système dynamique ou, en lan-
gage de la physique, un système mécanique statistique quantique AQ = (AQ, σt) qu’on
appelle système de Bost-Connes avec des propriétés très remarquables. Par exemple sa
fonction de partition est donnée par la fonction zêta de Riemann, il obéit à un phénomène
de brisure spontanée de symétries très intéressant et de plus sa dynamique réalise la théorie
de corps des classes sur Q.

C’est un problème naturel et très intéressant de généraliser le système BC aux corps
de nombres quelconques et cela a été réalisé par Ha et Paugam [HP05] et Laca, Larsen,
Neshveyev [LLN09] (inspiré par les travaux importants de [BC95], Laca [Lac98], Nehveyev
[Nes02], Connes et Marcolli [CM06] et Connes, Marcolli et Ramachandran [CMR05],
[CMR06]). Ils ont construit 3, pour chaque corps de nombresK, un C∗-système dynamique
(cf. sections 2.1 et 1.5.1)

AK = (AK , σt),

qu’on appelle système de Bost-Connes associé à K généralisant le système BC classique
et vérifiant les quatre propriétés suivantes:

(i) La fonction partition de AK est la fonction zêta de Dedekind ζK(β) de K.
(ii) Le groupe abélien maximal Gal(Kab/K) de K agit par des symétries sur AK .
(iii) Pour chaque température inverse β ∈ (0, 1] il existe un seul état KMSβ.
(iv) Pour chaque β ∈ (1,∞] l’action du groupe des symétries Gal(Kab/K) sur
l’ensemble des états extrémaux KMSβ est libre et transitive.

La question de savoir si les systèmes de Bost-Connes possèdent un modèle arithmétique en
général, introduit dans [BC95], était un problème ouvert avant cette thèse. Le problème
explicite a été formulé pour la première fois dans [CMR05]. On dit qu’un système BC AK
possède un modèle arithmétique s’il existe une-sous algèbre K-rationnelle

AarithK ⊂ AK
3. Plus précisément Ha et Paugam ont construit les systèmes AK et ont affirmé les propriétés (i) et (ii).

Laca, Larsen et Neshveyev ont démontré les propriétés (iii) et (iv) en classifiant les états KMSβ de AK .
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tel que

(v) Pour tout état KMS∞ extremal % et tout element f ∈ AarithK on a

%(f) ∈ Kab

et Kab est engendré sur K par ces valeurs.
(vi) Notons ν% l’action d’une symétrie ν ∈ Gal(Kab/K) sur un état KMS∞ extremal
% (par image inverse), pour tout element f ∈ AarithK on a la relation suivante

ν%(f) = ν−1(%(f)).

(vii) L’algèbre obtenue par extension des scalaires de AarithK sur C est dense dans AK .

On appelle l’algèbre AarithK une sous-algèbre arithmétique de AK . En particulier les mod-
èles arithmétiques relient les systèmes BC à la théorie du corps de classes et potentiellement
au douzième problème de Hilbert qui demande une théorie du corps de classes explicite.
Le douzième problème de Hilbert est toujours ouvert à ce jour sauf pour le corps des
rationnels, les corps imaginaires quadratiques et partiellement pour les corps CM.
Avant cette thèse l’existence des modèles arithmétiques était établie uniquement dans le
cas du corps rationnel [BC95] et le cas d’un corps imaginaire quadratique (cf. [CMR05])
basé sur la théorie de multiplication complexe sur la courbe modulaire et le système GL2
de [CM06].

Le résultat principal de cette thèse est la construction d’un modèle arithmétique pour
les systèmes BC en toute généralité.

Des résultats de cette thèse

Le premier chapitre consiste à généraliser les travaux de Connes, Marcolli et Ramachan-
dran [CMR05] et [CMR06] aux cas des corps CM quelconques. Les ingrédients principaux
de notre construction viennent de la théorie de la multiplication complexe sur les variétés
modulaires de Siegel générales [MS81] et les systèmes GSp2n de Ha et Paugam [HP05].
Comme la théorie de la multiplication complexe pour un corps CM K non-quadratique
n’engendre pas l’extension abélienne maximale deK on obtient seulement une sous-algèbre
arithmétique partielle qui est néanmoins très intéressante. Dû au fait que notre construc-
tion utilise des fonctions modulaires arithmétiques et la loi de réciprocité de Shimura,
cette sous-algèbre partielle est définie très explicitement.

Dans le deuxième chapitre on démontre, le résultat principal de cette thèse, l’existence
des modèles arithmétiques en toute généralité. Marcolli avait déjà remarqué [Mar09] qu’on
peut décrire le système BC classique dans le cadre des endomotifs et Λ-anneaux. On suit
cette route et démontre que la théorie des endomotifs introduite par Connes, Consani
et Marcolli [CCM07] et la classification de certains Λ-anneaux en termes des monoides
de Deligne-Ribet obtenue par Borger et de Smit [BdS11] fournissent les bons ingrédients
pour la construction des modèles arithmétiques des systèmes BC arbitraires. (Notre con-
struction n’est pas suffisammant explicite pour pouvoir résoudre le douzième problème
de Hilbert). Mais en particulier cette construction montre qu’en général les systèmes BC
sont étroitement liés aux vecteurs de Witt, Λ-anneaux et relèvements de Frobenius. Dans
le cas du système BC classique la relation avec les vecteurs de Witt a été exploitée très
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récemment par Connes et Consani [CC11] qui ont construit des représentations p-adiques
du système BC classique. Nous pensons que ces résultats fournissent des représentations
p-adiques pour les systèmes BC arbitraires.
En outre le deuxième chapitre contient une annexe de Sergey Neshveyev qui a démontré
que notre modèle arithmétique est (essentiellement) unique.

Le dernier chapitre est concerné aux propriétés fonctorielles des systèmes BC. Plus
précisément dans le contexte des endomotifs on va construire un raffinement algébrique
d’un foncteur de la catégorie des corps de nombres vers une catégorie appropriée des sys-
tèmes BC construit récemment par Laca, Neshveyev et Trifkovic [LNT]. Pour cela on
introduit une notion de changement de base pour certains endomotifs et démontre que
cela donne lieu au foncteur de [LNT].

Le premier chapitre est basé sur [Yal10] et les deux autres chapitres sur [Yal11].





Chapter 1

On BC-systems and Complex
Multiplication

In this chapter we generalize the work of Connes, Marcolli and Ramachandran [CMR05]
in the case of imaginary quadratic fields to general CM fields by constructing partial arith-
metic models of BC-systems AK when K contains a CM field.

A CM field is a imaginary quadratic extension of a totally real number field. So for
example cyclotomic number fields Q(ζn), ζn being a primitive n-th root of unity, are seen
to be CM fields. In nature a CM field arises as (rational) endomorphism ring of an Abelian
variety with Complex Multiplication.

The construction of arithmetic models in [CMR05] is based on the theory of Complex Mul-
tiplication (see section 1.3), which is a part of the arithmetic theory of Shimura Varieties.
The theory of Complex Multiplication allows to construct explicitly abelian extensions of
CM fields which are obtained by evaluating arithmetic Modular functions on CM-points
on a Siegel upper half plane (see section 1.3.1 for more information).
Except for the case of an imaginary quadratic field, it is unfortunately not possible to
generate the maximal abelian extension Eab of a CM field E in this way, but still a non-
trivial abelian extension of infinite degree over E. We denote the latter abelian extension
of E by

Ec ⊂ Eab.

A characterization of Ec was given by Wei [Wei94], cf., Theorem 1.6.

Due to the lack of a general knowledge of the explicit class field theory of an arbitrary
number field K we content ourself with the following weakening of an arithmetic model:

Definition 1.1. Let F ⊂ Kab be an arbitrary abelian extension of K. A partial arith-
metic subalgebra for the extension F/K of the BC-system AK is a K-rational subalgebra

AFK ⊂ AK
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such that

(v)’ For every extremal KMS∞-state % and every f ∈ AFK we have

%(f) ∈ F

and further F is generated over K by these values.
(vi) If we denote by ν% the action of a symmetry ν ∈ Gal(Kab/K) on an extremal
KMS∞-state % (given by pull-back) we have for every element f ∈ AFK the fol-
lowing compatibility relation

ν%(f) = ν−1(%(f))

(1.1)

The right framework for working with Shimura varieties and C∗-dynamical systems is
provided by the theory of Ha and Paugam [HP05], which allows to attach a C∗-dynamical
system to an arbitrary Shimura variety. Their approach is inspired by [CMR05] and
[CMR06].

The main result of this chapter will be a proof of the following theorem.

Theorem 1.1. Let K be a number field containing a CM field. Denote by E the maximal
CM field contained in K and define the abelian extension Kc of K to be the compositum

Kc = K · Ec. (1.2)

Then the BC-system AK admits a partial arithmetic subalgebra AKc

K .

Idea of our construction
Let (G,X, h) be a Shimura datum and denote by Sh(G,X, h) the associated Shimura
variety. In [HP05] the authors attach to the datum (G,X, h), the variety Sh(G,X, h) and
some additional data a quotient map

U −→ Z (1.3)

between a topological groupoid U and a quotient Z = Γ\U for a group Γ. Out of this
data they construct a C∗-dynamical system A = (A, (σt)t∈R). A dense ∗-subalgebra H of
A is thereby given by the compactly supported, continuous functions

H = Cc(Z) (1.4)

on Z, where the groupoid structure of U induces the ∗-algebra structure on H.

Moreover there are two variations of the above quotient map, called positive and adjoint,
respectively, which are related by the following (commutative) diagram

U // Z

U+

OO

//

��

Z+

OO

��
Uad // Zad.

(1.5)
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All this is explained in section 1.4. We will apply this general procedure in two special
cases. For this we fix a number field K together with a maximal CM subfield E.

I) The BC-system AK
The (0-dimensional) Shimura datum SK = (TK , XK , hK) gives rise to a quotient map
denoted by

UK −→ ZK .

In this case the groupoid UK is of the form (cf., (1.9))

UK = TK(Af ) � (ÔK × Sh(TK , XK , hK)).

The associated C∗-dynamical system is denoted by

AK = (AK , (σt)r∈R). (1.6)

It gives rise to the BC-system for K. For the precise definition of AK and its properties
we refer the reader to section 1.2.1 and 1.5.1. Moreover we denote by HK the dense
subalgebra of AK given by

HK = Cc(ZK). (1.7)

II) The Shimura system ASh
To the CM field E we attach the Shimura datum

SSh = (GSp(VE , ψE),H±g , hcm)

where in fact the construction of the morphism hcm takes some time (see 1.2.2). This is
due to two difficulties that arise in the case of a general CM field E which are not visible
in the case of imaginary quadratic fields. On the one hand one has to use the Serre group
SE and on the other hand in general the reflex field E∗ of a CM field E is not anymore
equal to E (see B.3). We denote the associated quotient map by

USh −→ ZSh

and analogously its variations (see 1.5.2). Here the relevant groupoids are of the form

USh = GSp(Af ) � (ΓSh,M × Sh(GSp(VE , ψE),H±g , hcm))

and

UadSh = GSpad(Q)+ � (ΓadSh,M ×Hg).

We denote the resulting C∗-dynamical system by ASh and call it Shimura system (cf.,
section 1.4.3).

Remark 1.1. In the case of an imaginary quadratic field K the Shimura system ASh gives
rise to the GL2-system of Connes and Marcolli [CM08].
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The second system is of great importance for us because of the following: Denote by
xcm ∈ Hg the CM-point associated with hcm and denote by Mcm the ring of arithmetic
Modular functions on Hg defined at xcm. By the theory of Complex Multiplication we
know that for every f ∈Mcm we have (cf., (1.2) and 1.3.3)

f(xcm) ∈ Kc ⊂ Kab

and moreover Kc is generated in this way. Our idea is now that Mcm gives rise to the
arithmetic subalgebra AKc

K . More precisely we will construct a (commutative) diagram
(see 1.5.3)

UK //

��

ZK

��
USh // ZSh

(1.8)

which is induced by a morphism of Shimura data SK → SSh constructed in section 1.2.3.
Then, using criterion 1.10, we see that the morphism Z+

Sh → ZSh (see (1.5)) is invertible
and obtain in this way a continuous map

Θ : ZK −→ ZSh −→ Z+
Sh −→ ZadSh.

Using easy properties of the automorphism group ofMcm, we can model each f inMcm as
a function f̃ on the space ZadSh (which might have singularities). Nevertheless in Proposition
1.15 we see that for every f ∈Mcm the pull back f̃ ◦Θ lies in HK = Cc(ZK) and we can
define AKc

K as the K-algebra generated by these elements:

AK
c

K = < f̃ ◦Θ | f ∈Mcm >K .

Now, using the classification of extremal KMS∞-states of AK (see section 1.5.1), the
verification of property (v)’ is an immediate consequence of our construction and property
(vi) follows by using Shimura’s reciprocity law and the observation made in Proposition
1.8 (see section 1.7 for the details).

Outline
This chapter is organized along the lines of the preceding section, recalling on the way the
necessary background. In addition we put some effort in writing a long Appendix which
covers hopefully enough information to make this chapter "readable" for a person which
has little beforehand knowledge of the arithmetic theory of Shimura varieties.

Notations and conventions
If A denotes a ring or monoid, we denote its group of multiplicative units by A×. A
number field is a finite extension of Q. The ring of integers of a number field K is denoted
by OK . We denote by AK = AK,f × AK,∞ the adele ring of K (with its usual topology),
where AK,f denotes the finite adeles and AK,∞ the infinite adeles of K. AK contains
K by the usual diagonal embedding and by ÔK we denote the closure of OK in AK,f .
Invertible adeles are called ideles. The idele class group A×K/K× of K is denoted by CK ,
its connected component of the identity by DK .
We fix an algebraic closure Q of Q in C. Usually we think of a number field K as lying
in C by an embedding τ : K → Q ⊂ C. Complex conjugation on C is denoted by ι.
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Sometimes we write zι for the complex conjugate of a complex number z.
Artin’s reciprocity map A×K → Gal(Kab/K) : ν 7→ [ν] is normalized such that an uni-
formizing parameter maps to the arithmetic Frobenius element. Further given a group G
acting partially on a set X we denote by

G�X = {(g, x) ∈ G×X | gx ∈ X} (1.9)

the corresponding groupoid (see p. 327 [LLN09]).
If X denotes a topological space we write π0(X) for its set of connected components.

1.1 On the arithmetic subalgebra for Q(i)
Before we describe our general construction we will explain the easiest case K = Q(i),
where many simplifications occur, in some detail and point out the modifications necessary
for the general case. For the reminder of this section K always denotes Q(i), although
many of the definitions work in general. For the convenience of the reader we will try to
make the following section as self-contained as possible.

1.1.1 The quotient map UK → ZK

We denote by TK the Q-algebraic torus given by the Weil restriction TK = ResK/Q(Gm,K)
of the multiplicative group Gm,K , i.e., for a Q-algebra R the R-points of TK are given
by TK(R) = (R ⊗Q K)×. In particular we see that TK(Q) = K×, TK(Af ) = A×K,f
and TK(R) = A×K,∞. In our special case we obtain that, after extending scalars to R,
the R-algebraic group TKR is isomorphic to S = ResC/R(Gm,R). Further the finite set
XK = TK(R)/TK(R)+ = π0(TK(R)) consists in our case of only one point. With this in
mind we consider the 0-dimensional Shimura datum (see D.5)

SK = (TK , XK , hK) (1.10)

where the morphism hK : S → TKR is simply given by the identity (thanks to TKR ∼= S).
(In the general case hK is chosen accordingly to Lemma 1.2.)
The (0-dimensional) Shimura variety Sh(SK) is in our case of the simple form

Sh(SK) = TK(Q)\(XK × TK(Af )) = K×\A×K,f . (1.11)

We write [z, l] for an element in Sh(SK) meaning that z ∈ XK and l ∈ TK(Af ).
(For general number fields the description of Sh(SK) is less explicit but no difficulty
occurs.)
Remark 1.2. The reader should notice that by class field theory we can identify Sh(SK) =
K×\A×K,f with the Galois group Gal(Kab/K) of the maximal abelian extension Kab of K.
This is true in general, see section 1.5.1.
The (topological) groupoid UK underlying the BC-system AK = (AK , (σt)t∈R) is now of
the form (see (1.9) for the notation)

UK = TK(Af ) � (ÔK × Sh(SK)) (1.12)

with the natural action of TK(Af ) on Sh(SK) (see D.2) and the partial action of TK(Af ) =
A×K,f on the multiplicative semigroup ÔK ⊂ AK,f by multiplication. The group

Γ2
K = Ô×K × Ô

×
K (1.13)
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is acting on UK as follows

(γ1, γ2)(g, ρ, [z, l]) = (γ−1
1 gγ2, γ2ρ, [z, lγ−1

2 ]), (1.14)

where γ1, γ2 ∈ Ô×K , g, l ∈ TK(Af ), ρ ∈ ÔK and z ∈ XK , and we obtain the quotient map

UK −→ ZK = Γ2
K\UK . (1.15)

In the end of this section we will construct the arithmetic subalgebra AK
c

K of the BC
system AK which is contained in HK = Cc(ZK) ⊂ AK . For this we will need

1.1.2 The quotient map USh −→ ZSh

In our case of K = Q(i) the maximal CM subfield E of K is equal to K. The Shimura
datum SSh associated with E is of the form (see 1.2.2)

SSh = (GSp(VE , ψE),H±, hcm). (1.16)

Here GSp = GSp(VE , ψE) is the general symplectic group (cf., D.3) associated with the
symplectic vector space (VE , ψE).
The latter is in general chosen accordingly to (1.51). Due to the fact that the reflex field E∗
(cf., B.3) is equal to E and the Serre group SE is equal to TE = TK we can simply choose
the Q-vector space VE to be the Q-vector space E and the symplectic form ψE : E×E → Q
to be the map (x, y) 7→ TrE/Q(ixyι). A simple calculation shows that ψE(f(x), f(y)) =
det(f)ψE(x, y), for all f ∈ EndQ(VE) and all x, y ∈ VE , therefore we can identify GSp with
GL2 = GL(VE). Now again using the fact that the Serre group SE equals TE , we see that
the general construction of hcm : S = TER → GSpR = GL2,R (see (1.55)) is given on the R-

points by a+ ib ∈ C× = S(R)→
(
a −b
b a

)
∈ GL2(R). Each α ∈ GSp(R) defines a map

α−1hcmα : S→ GSpR given on the R-points by a+ ib ∈ C× 7→ α−1hcm(a+ ib)α ∈ GL2(R)
and the GSp(R)-conjugacy class X = {α−1hcmα | α ∈ GSpR(R)} of hcm can be identified
with the Siegel upper lower half space H± = C− R by the map

α−1hcmα ∈ X 7→ (α−1hcm(i)α) · i ∈ H±,

where the latter action · denotes Moebius transformation. Under this identification, the
morphism hcm corresponds to the point xcm = i on the upper half plane H. The point
xcm ∈ H is a so-called CM-point (see D.6).
Remark 1.3. The definition of a CM-point and the observation made in (1.54) explain the
need of using the Serre group in the general construction of hcm. The explanation given in
1.3.1 shows in particular why we have to define the vector space VE in general accordingly
to (1.51).
The Shimura variety Sh(SSh) is of the nice form (cf., (D.1))

Sh(SSh) = GSp(Q)\(H± ×GSp(Af )).

Again we write elements as [z, l] ∈ Sh(SSh) with z ∈ H± and g ∈ GSp(Af ).
In our case the topological groupoid USh underlying the Shimura system ASh is given by
(cf., 1.5.2)

USh = GSp(Af ) � (M2(Ẑ)× Sh(SSh)), (1.17)
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where GSp(Af ) = GL2(Af ) is acting in the natural way on Sh(SSh) and partially on the
multiplicative monoid of 2× 2-matrices M2(Ẑ) ⊂M2(Af ) with entries in Ẑ. The group

Γ2
Sh = GL2(Ẑ)×GL2(Ẑ) (1.18)

is acting on USh exactly like in (1.14) and induces the quotient map

USh −→ ZSh = Γ2
Sh\USh. (1.19)

Remark 1.4. Note that the quotient ZSh is not a groupoid anymore (see top of p. 251
[HP05]).
In our example it is sufficient to consider the positive groupoid U+

Sh (see 1.5.2) associated
with USh. (In the general case the adjoint groupoid UadSh seems to be more appropriate.)
It is given by

U+
Sh = GSp(Q)+ � (M2(Ẑ)×H) (1.20)

together with the group

(Γ+
Sh)2 = GL2(Z)+ ×GL2(Z)+ = SL2(Z)× SL2(Z) (1.21)

acting by

(γ1, γ2)(g, ρ, z) = (γ1gγ
−1
2 , γ2ρ, γ2z) (1.22)

and inducing the quotient map

U+
Sh −→ Z+

Sh = (Γ+
Sh)2\U+

Sh. (1.23)

By construction GSp(R) is acting (free and transitively) on H± and GSp(R)+, the con-
nected component of the identity, can be thought of as stabilizer of the upper half plane
H+ = H which explains the action of GSp(Q)+ = GSp(Q) ∩ GSp(R)+ on H. Thanks to
criterion 1.10 we know that the natural (equivariant) morphism of topological groupoids
U+
Sh → USh given by (g, ρ, z) 7→ (g, ρ, [z, 1]) induces a homeomorphism on the quotient

spaces Z+
Sh −→ ZSh in the commutative diagram

USh // ZSh

U+
Sh

//

OO

Z+
Sh.

∼=

OO (1.24)

Remark 1.5. The groupoid U+
Sh corresponds to the GL2-system of Connes and Marcolli

(see [CM08] and 5.8 [HP05])

1.1.3 A map relating UK and USh

We want to define an equivariant morphism of topological groupoids UK −→ USh, where
equivariance is meant with respect to the actions of ΓK on UK and ΓSh on USh. For this it
is necessary (and more or less sufficient) to construct a morphism of Shimura data between
SK = (TK , XK , hK) and SSh = (GSp(VE , ψE)),H±, hcm), which is given by a morphism
of algebraic groups

ϕ : TK −→ GSp (1.25)
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such that hcm = ϕR ◦ hK . In our case the general construction of ϕ, stated in (1.56),
reduces to the simple map (on the Q-points)

a+ ib ∈ K× = TK(Q) 7→
(
a −b
b a

)
∈ GL2(Q) = GSp(Q)

and we see in fact that after extending scalars to R the morphism ϕR : TKR = S → GSpR
is already equal to hcm : S→ GSpR. The simplicity of our example comes again from the
fact that we don’t have to bother about the Serre group, which makes things less explicit,
although the map ϕ : TK → GSp still has a quite explicit description even in the general
case thanks to Lemma 1.4.

Now by functoriality (see section D.5) we obtain a morphism of Shimura varieties

Sh(ϕ) : Sh(SK)→ Sh(SSh)

which can be explicitly described by

[z, l] ∈ K×\(XK × TK(Af )) 7→ [xcm, ϕ(Af )(l)] ∈ GSp(Q)\(H± ×GSp(Af )).

In the general case we have essentially the same description (see (1.101)), the point being
that every element z in XK is mapped to xcm ∈ H±, as in the general case. Using
ÔK = Ẑ⊗ZOK we can continue the map ϕ(Af ) to a morphism of (topological) semigroups

M(ϕ)(Af ) : ÔK → M2(Ẑ) by setting n ⊗ (a + ib) 7→
(
an −bn
bn an

)
. By continuation we

mean that ϕ(Af ) and M(ϕ)(Af ) agree on the intersection of TK(Af ) ∩ ÔK ⊂ AK,f . In
the general case the explicit description of ϕ given in (1.58) is used to continue ϕ to M(ϕ)
(see 1.5.3), the above example being a special case. Now it can easily be checked that

(g, ρ, [z, l]) ∈ UK 7→ (ϕ(Af )(g),M(ϕ)(Af )(ρ), [xcm, ϕ(Af )(l)]) ∈ USh (1.26)

defines the desired equivariant morphism of topological groupoids

UK −→ USh. (1.27)

Summarizing we obtain the following commutative diagram (using (1.24))

UK //

��

ZK

��
USh // ZSh

U+
Sh

OO

// Z+
Sh

∼=

OO

(1.28)

which gives us the desired morphism of topological spaces

Θ : ZK −→ ZSh −→ Z+
Sh. (1.29)

In general, we have to go one step further and use the adjoint groupoid ZadSh (cf., 1.5.2) but
this only due to the general description of the automorphism group AutQ(M) of the field
of arithmetic automorphic functionsM, see 1.3.3 and the next section for explanations.
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1.1.4 Interlude: Theory of Complex Multiplication

In this section we will provide the number theoretic background which is necessary to
understand the constructions done so far.
We are interested in constructing the maximal abelian extension Eab of E = K = Q(i),
and there are in general two known approaches to this problem.

I) The elliptic curve A : y2 = x3 + x

Let us denote by A the elliptic curve defined by the equation

A : y2 = x3 + x. (1.30)

It is known that the field of definition of A and its torsion points generate the maximal
abelian extension Eab of E. (By field of definition of the torsion points of A, we mean the
coordinates of the torsion points.)
Notice that in our case, the complex points of our elliptic curve A are given by A(C) =
C/OE and the rational ring of endomorphisms of A turns out to be End(A(C))Q = Q⊗Z
OE = E. We say that A has complex multiplication by E. Remember that OE = Z[i].
Remark 1.6. To obtain the abelian extensions of K provided by A explicitly, one may
use for example the Weierstrass p-function associated with A (see [Sil94]), but as we will
use another approach, we don’t want to dive into this beautiful part of explicit class field
theory.

II) The (Siegel) Modular curve Sh(GSp,H±, hcm)

We want to interpret the Shimura variety Sh(SSh) = Sh(GSp,H±, hcm) constructed in the
last section as moduli space of elliptic curves with torsion data.

The moduli theoretic picture

For this, we consider the connected component Sho = Sh(SSh)o of our Shimura variety
which is described by the projective system (see D.4 and [Mil04])

Sho = lim←−
N

Γ(N)\H, (1.31)

where Γ(N), for N ≥ 1, denotes the subgroup of Γ = Γ(1) = SL2(Z) defined by Γ(N) =

{g ∈ Γ | g ≡
(

1 0
0 1

)
mod N}. We can view the quotient Γ(N)\H as a complex ana-

lytic space, but thanks to the work of Baily and Borel, it carries also a unique structure
of an algebraic variety over C (see [Mil04]). We will use both viewpoints. Seen as an ana-
lytic space we write H(N) = Γ(N)\H and for the algebraic space we write ShoN = Γ(N)\H.

Observe now that the space H(N) classifies isomorphism classes of pairs (A, t) given by an
elliptic curve A over C together with a N -torsion point t of A. In particular H(1) = Γ\H
classifies isomorphism classes of elliptic curves over C.

In this picture, our CM-point [xcm]1 = [i]1 ∈ H(1) corresponds to the isomorphism class
of the elliptic curve A from (1.30). More generally, the points [xcm]N ∈ H(N) capture
the field of definition of A and its various torsion points. In this way, they recover the
maximal abelian extension Eab of E! By [z]N we denote the image of z ∈ H in H(N)
under the natural quotient map H→ H(N).
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Remark 1.7. For the relation between Sh and Sho we refer the reader to pp. 51 [Mil04].

The field of arithmetic Modular functions M

To construct explicitly the abelian extensions provided by the various points [xcm]N we
proceed as follows: we consider the connected canonical modelMo of Sho (see D.7), which
provides us with an algebraic model Mo

N = Γ(N)\Mo of the algebraic variety ShoN over
the cyclotomic field Q(ζN ). In general, we obtain algebraic models over subfields of Qab.
This means Mo

N is an algebraic variety defined over the cyclotomic field Q(ζN ), and after
scalar extension to C, it becomes isomorphic to the complex algebraic variety ShoN . Let us
denote by k(Mo

N ) the field of rational functions on Mo
N , in particular, this means elements

in k(Mo
N ) are rational over Q(ζN ). It makes sense to view the point [xcm]N as a point on

Mo
N , and if a function f ∈ k(Mo

N ) is defined at [xcm]N , then we know (cf., 1.3.3) that

f([xcm]N ) ∈ Eab. (1.32)

In particular varying over the various N and the rational functions in k(Mo
N ), the values

f([xcm]N ) generate Eab over E. The next step is to realize that the function field k(Mo
N )

can be seen as a subset of the field of rational functions k(ShoN ) on the complex algebraic
variety ShoN (cf., 1.3.3). As rational functions in k(ShoN ) correspond to meromorphic func-
tions on H(N), and meromorphic functions on H(N) are nothing else than meromorphic
functions on H that are invariant under the action of Γ(N), we can view each rational
function in k(Mo

N ) as a meromorphic function on H which is invariant under Γ(N). If
we denote by k(Mo

N )cusp the subfield of k(Mo
N ) consisting of functions f ∈ k(Mo

N ) that
give rise to meromorphic functions on H that are meromorphic at the cusps (see 1.3.3), it
makes sense to define the field of meromorphic functionsM on H given by the union

M =
⋃
N

k(Mo
N )cusp. (1.33)

Due to (1.32), we know furthermore that for every f ∈ M, which is defined in xcm, we
have

f(xcm) ∈ Kab = Eab (1.34)

and Kab is generated in this way. Therefore we call the fieldM the field of arithmetic
Modular functions.
Explicitly M is described for example in [Shi00] or [CM08] (Def. 3.60). A very famous
arithmetic Modular function is given by the j-function which generates the Hilbert class
field of an arbitrary imaginary quadratic field.

Remark 1.8. 1) In light of 1.3.1 and 1.3 2), we mention that the field of definition E(xcm)
of xcm is, in our example, equal to E = Q(i), which is the reason why our example is
especially simple.
2) If we take a generic meromorphic function g on H(N) that is defined in [xcm]N , then
the value g([xcm]N ) ∈ C will not even be algebraic. This is the reason why we need the
canonical model Mo which provides an arithmetic structure for the field of meromorphic
functions on H(N).

In the general case, the construction ofM is quite similar to the construction above (see
section 1.3), the only main difference being that in general the theory is much less explicit
(e.g. the description ofM).
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Automorphisms of M and Shimura’s reciprocity law

In our example K = E = Q(i), using the notation from 1.3.3, we have the equality
E = GSp(Af )

Q× , and obtain a group homomorphism

GSp(Af ) −→ E −→ AutQ(M), (1.35)

where the first arrow is simply the projection, and the second arrow comes from 1.3.3. We
denote the action of α ∈ GSp(Af ) on a function f ∈ M by αf . In particular we see that
α ∈ GSp(Q)+ = SL2(Q) is acting by

αf = f ◦ α−1, (1.36)

where α−1 acts on H by Mobius transformation. The adjoint system, which is well suited
for the general case (cf., 1.5.2), is not needed in our special example. We note that the
group GSpad(Q)+ occuring in (1.5.2) is given by SL2(Q)/{±I}, where I denotes the unit in
SL2(Q). Due to the fact that {±I} acts trivially on H, we can lift the action to GSp(Q)+.
Further, there is a morphism of algebraic groups

η : TK → GSp (1.37)

which induces a group homomorphism denoted by (compare (1.71))

η = η(Af ) : TK(Af )→ GSp(Af ). (1.38)

The reciprocity law of Shimura can be stated in our special case as follows:
Let ν be in A×K,f , denote by [ν] ∈ Gal(Kab/K) its image under Artin’s reciprocity map
and let f ∈M be defined in xcm ∈ H. Then η(ν)f is also defined in xcm ∈ H and

η(ν)f(xcm) = [ν]−1f(xcm) ∈ Kab. (1.39)

The formulation in the general case concentrates on the group E (see 1.3.4).

1.1.5 Construction of the arithmetic subalgebra

DefineMcm to be the subring of functions inM which are defined at xcm ∈ H. For every
f ∈Mcm, we define a function f̃ on the groupoid U+

Sh by

f̃(g, ρ, z) =
{

ρf(z) ρ ∈ GSp(Ẑ)
0 ρ ∈M2(Ẑ)−GSp(Ẑ)

(1.40)

Thanks to (1.36), f̃ is invariant under the action of Γ+
Sh = SL2(Z)×SL2(Z), and therefore

f̃ descends to the quotient Z+
Sh (cf., (1.23)). Proposition 1.15 shows further that the pull-

back f̃ ◦Θ (see (1.29)) defines a compactly supported, continuous function on ZK , i.e., we
have f̃ ◦Θ ∈ HK = Cc(ZK) ⊂ AK . Therefore we can define a K-subalgebra AarithK of HK

by

AarithK =< f̃ ◦Θ | f ∈Mcm >K . (1.41)

Now we want to show that AarithK is indeed an arithmetic subalgebra for AK (see (0.3)).
The set E∞ of extremal KMS∞-states of AK is indexed by the set Sh(SK) and for every
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ω ∈ Sh(SK) the corresponding KMS∞-state %ω is given on an element f ∈ HK = Cc(ZK)
by (cf., 1.5.1)

%ω(f) = f(1, 1, ω). (1.42)

Using remark 1.2 we write [ω] for an element ω ∈ Sh(SK) when regarded as element in
Gal(Kab/K). Now, if we take a function f ∈ Mcm and ω ∈ Sh(SK), we immediately see
that

%ω(f̃ ◦Θ) = [ω]−1(f(xcm)) ∈ Kab (1.43)

and property (v) follows (in general we will only show property (v’) of course). To show
property (vi) we take a symmetry ν ∈ CK = A×K/K× (see 1.5.1) of AK and denote by
[ν] ∈ Gal(Kab/K) its image under Artin’s reciprocity homomorphism and let f and ω be
as above. We denote the action (pull-back) of ν on %ω by ν%ω and obtain

ν%ω(f̃ ◦Θ) = ϕ(Af )(ν)f(xcm). (1.44)

But thanks to Proposition 1.8 we know that

ϕ(Af )(ν) = η(ν) ∈ GSp(Af ) (1.45)

and now thanks to Shimura’s (1.39) we can conclude that
ν%ω(f̃ ◦Θ) = η(ν)f(xcm) = [ν]−1(f(xcm)) = [ν]−1(%ω(f̃ ◦Θ)) ∈ Kab, (1.46)

which proves property (vi). For the general case and more details we refer the reader to
1.7.
Remark 1.9. Our arithmetic subalgebra AK in the case of K = Q(i) is essentially the
same as in [CMR05].
Remark 1.10. In a fancy (and very sketchy) way, we might say that the two different
pictures, one concentrating on the single elliptic curve A the other on the moduli space
of elliptic curves (see the beginning of section 1.1.4), are related via the Langlands corre-
spondence. In terms of Langlands correspondence, the single elliptic curve A lives on the
motivic side whereas the moduli space of elliptic curves lives (partly) on the automorphic
side. As we used the second picture for our construction of an arithmetic subalgebra, we
might say that our construction is automorphic in nature. This explains the fact that we
have a "natural" action of the idele class group on our arithmetic subalgebra (see above).
Using the recent theory of endomotives (see chapter 4 and in particular p. 551 [CM08])
one can recover the arithmetic subalgebra AarithK by only using the single elliptic curve
A. In particular one obtains a natural action of the Galois group. This and more will be
elaborated in chapter 2 and elsewhere.
We now concentrate on the general case.

1.2 Two Shimura data and a map
As throughout this chapter, let K denote a number field and E its maximal CM subfield.
We fix an embedding τ : K → Q→ C and denote complex conjugation on C by ι.
To K, resp. E, we will attach a Shimura datum SK , resp. SSh, and show how to construct
a morphism ϕ : SK → SSh between them. We will freely use the Appendix: every object
not defined in the following can be found there or in the references given therein.
Recall that the Serre group attached to K is denoted by SK (cf., C.1), it is a quotient
of the algebraic torus TK (defined below), the corresponding quotient map is denoted by
πK : TK → SK .
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1.2.1 Protagonist I: SK
The 0-dimensional Shimura datum SK = (TK , XK , hK) (see section D.5) is given by the
Weil restriction TK = ResK/Q(Gm,K), the discrete and finite set XK = TK(R)/TK(R)+ ∼=
π0(A×K,∞) and a morphism hK : S = ResC/R(Gm,C)→ TKR which is chosen accordingly to
the next lemma,

Lemma 1.2. There is a morphism of algebraic groups hK : S→ TKR such that the diagram

S hK //

hK

��

TKR

πKR
��

SKR

(1.47)

commutes.

Proof. Remember that hK : S→ SKR is defined as the composition

S
ResC/R(µK)

// ResC/R(SKC )
NmC/R // SKR , (1.48)

where µK : Gm,C → TKC is defined by µK = πKC ◦µτ (cf., C.2). Define hK : S→ TER simply
by

S
ResC/R(µτ )

// ResC/R(TKC )
NmC/R // TKR . (1.49)

For proving our claim it is enough to show that the following diagram

S

ResC/R(µK) **

ResC/R(µτ )
// ResC/R(TKC )

NmC/R //

ResC/R(πKC )
��

TKR

πKR
��

ResC/R(SKC )
NmC/R // SKR

(1.50)

is everywhere commutative.
The triangle on the left is commutative, because ResC/R is a functor. Thanks to Theorem
A.1 it is enough to show that rectangle on the right is commutative after applying the
functor X∗ (cf., A.3). Since πK : TK → SK is defined to be the inclusion X∗(SK) ⊂
X∗(TK) on the level of characters (cf., C.1), we see that X∗(ResC/R(πKC )) and X∗(πKR )
are inclusions as well, and the commutativity follows.

1.2.2 Protagonist II: SSh
The construction of the Shimura datum SSh in this section goes back to Shimura [Shi00],
see also [Wei94]. It is of the form SSh = (GSp(VE , ψE),H±g , hcm). The symplectic Q-vector
space (VE , ψE) is defined as follows.
Choose a finite collection of primitive CM types (Ei,Φi), 1 ≤ i ≤ r, such that
i) for all i the reflex field E∗i is contained in E, i.e. ∀i E∗i ⊂ E, and
ii) the natural map (take (B.2) and apply the universal property from C.1)

SE

∏
NE/E∗

i // ∏r
i=1 S

E∗i

∏
ρΦi // ∏r

i=1 T
Ei (1.51)
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is injective. (Proposition 1.5.1 [Wei94] shows that this is allways possible).
For every i ∈ {1, .., r}, we define a symplectic form ψi : Ei ×Ei → Q on Ei by choosing a
totally imaginary generator ξi of Ei (over Q) and setting

ψi(x, y) = TrEi/Q(ξixyι). (1.52)

Now we define (VE , ψE) as the direct sum of the symplectic spaces (Ei, ψi). Instead of
GSp(VE , ψE) we will sometimes simply write GSp.

To define the morphism hcm the essential step is to observe (see Remark 9.2 [Mil98])
that the image of the map ρΦi ◦ NE/E∗i

: SE → TEi is contained in the subtorus T Ei of
TEi , which is defined on the level of Q-points by

T Ei(Q) = {x ∈ E×i | xx
ι ∈ Q×} (1.53)

and analogously, TEi(R) is defined for an arbitrary Q-algebra R. This is an important
observation, because there is an obvious inclusion of algebraic groups (cf., A.2)

i :
r∏
i=1
T Ei → GSp(VE , ψE), (1.54)

whereas there is in general no embedding
∏
TEi → GSp.

With this in mind, we define hcm as the composition

S hE // SER

∏
NE/E∗

i
,R
// ∏r

i=1 S
E∗i
R

∏
ρΦi,R // ∏r

i=1 T
Ei
R

iR // GSpR. (1.55)

Write h′cm : S→
∏r
i=1 T

Ei
R for the composition of the first three arrows.

Remark 1.11. 1) By construction hcm is a CM point (cf., D.6) which is needed later to
construct explicitly abelian extensions K. See 1.3.1.
2) Viewed as a point on the complex analytic space H±g , we write xcm instead of hcm.
Further, we denote the connected component of H±g containing xcm by Hg, i.e., xcm ∈ Hg.
Our CM point hcm enjoys the following properties:

Lemma 1.3. 1) We have hcm = i ◦
∏r
i=1 hΦi (see (B.1)).

2) The field of definition E(xcm) of xcm is equal to the composite of the reflex fields
Ẽ = E∗1 · · ·E∗r ⊂ E, i.e. the associated cocharacter µcm of hcm is defined over Ẽ (see
D.6).
3) The GSp(R)-conjugacy classes of hcm can be identified with the Siegel upper-lower half
plane H±g , for some g ∈ N depending on E.

Proof. 1) This follows immediately from (C.9) and (C.13).
2) This follows from p. 105 [Mil04] and 1).
3) For this, we refer to the proof of lemma 3.11 [Wei94].

1.2.3 The map ϕ : SK → SSh
On the level of algebraic groups, ϕ : TK → GSp is simply defined as the composition

TK
πK // SK

NK/E // SE

∏
NE/E∗

i // ∏r
i=1 S

E∗i

∏
ρΦi // ∏r

i=1 T Ei
i // GSp. (1.56)
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For ϕ being a map between SK and SSh we have to check that the diagram

S hK //

hcm !!

TKR

ϕR

��
GSpR

(1.57)

commutes, but this compatibility is built into the construction of hK . Using the reflex
norm (cf., B.3 and (C.11)) we can describe ϕ as follows
Lemma 1.4. The map ϕ : TK → GSp is equal to the composition

TK

∏
NK/E∗

i // ∏TE
∗
i

∏
NΦi // ∏r

i=1 T Ei
i // GSp. (1.58)

1.3 About arithmetic modular functions

1.3.1 Introduction

We follow closely our references [Del79], [MS81] and [Wei94]. See also [Hid04]. The reader
should be aware of the fact that we are using a different normalization of Artin’s reci-
procity map than in [MS81] and have to correct a "sign error" in [Del79] as pointed out
on p. 106 [Mil04].

As usual, we denote by K a number field containing a CM subfield, and denote by E
the maximal CM subfield of K. In this section we want to explain how the theory of Com-
plex Multiplication provides (explicit) abelian extensions of K. In general one looks at a
CM-point x ∈ X on a Shimura variety Sh(G,X) and by the theory of canonical models,
one knows that the point [x, 1] on the canonical model M(G,X) of Sh(G,X) is rational
over the maximal abelian extension E(x)ab of the field of definition E(x) of x (see D.6).

In our case we look at Siegel modular varieties Sh(GSp,H±g ) which can be considered
as (fine) moduli spaces of Abelian varieties over C with additional data (level structure,
torsion data and polarization). See chap. 6 [Mil04] for an explanation of this. Each point
x ∈ Hg corresponds to an Abelian variety Ax.
In opposite to the case of imaginary quadratic fields, in general, the field of definition E(x)
is not contained in E. Therefore, in order to construct abelian extensions of K, we have
to find an Abelian variety Ax such that

E(x) ⊂ K. (1.59)

This is exactly the reason for our choice of xcm ∈ Hg, because we know (see 1.3) that

E(xcm) = Ẽ = E∗1 · · ·E∗r ⊂ E ⊂ K. (1.60)

Here xcm corresponds to a product Acm = A1 × · · · × Ar of simple Abelian varieties
Ai, with complex multiplication given by Ei. This construction is the best one can do to
generate abelian extensions of K using the theory of Complex Multiplication. The miracle
here is again that the field of definition of Acm and of its torsion points generate abelian
extensions of E(xcm). Now, to obtain these abelian extensions explicitly, one proceeds in
complete analogy with the case of Q(i) explained in 1.1.4, namely rational functions on
the connected canonical model Mo of the connected Shimura variety Sh(GSp,H±g )o give
rise to arithmetic Modular functions on Hg which generate the desired abelian extensions
when evaluated at xcm. This will be explained in detail in the following.
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1.3.2 Working over Q

The field F of arithmetic automorphic functions

We start with the remark that the reflex field of (GSp,H±g ) (cf., D.6) is equal to Q (see
remark D.3).
Remark 1.12. This is the second notion of "reflex field". But the reader shouldn’t get
confused.
Denote by Σ the set of arithmetic subgroups Γ of GSpad(Q)+ which contain the image of
a congruence subgroup of GSpder(Q). The connected component of the identity Sho of
Sh = Sh(GSp,H±g ) is then given by the inverse limit Sho = lim←−Γ∈Σ Γ\Hg (cf., D.4).
Denote by Mo = Mo(GSp,H±g ) the canonical model of Sho in the sense of 2.7.10 [Del79],
i.e. Mo is defined over Q. For every Γ ∈ Σ the space Γ\Hg is an algebraic variety over C
and Γ\Mo a model over Q.
The field of rational functions k(Γ\Mo) on Γ\Mo is contained in the field of rational func-
tions k(Γ\Hg). Elements in the latter field correspond to meromorphic functions on Hg

(now viewed as a complex analytic space) that are invariant under Γ ∈ Σ.
Following [MS81] we call the field F =

⋃
Γ∈Σ k(Γ\Mo) the field of arithmetic automor-

phic functions on Hg.

About AutQ(F)

The (topological) group E defined by the extension (see 2.5.9 [Del79])

1 // GSpad(Q)+ // E σ // Gal(Q/Q) // 1 (1.61)

is acting continuously on Mo (2.7.10 [Del79]) and induces an action on F by
αf = σ(α) · (f ◦ α−1) = (σ(α)f) ◦ (σ(α)α−1) (1.62)

(see [MS81] 3.2). This is meaningful because f and α−1 are both defined over Q. Using
this action one can prove

Theorem 1.5 (3.3 [MS81]). The map E → AutQ(F) given by (1.62) identifies E with an
open subgroup of AutQ(F).

1.3.3 Going down to Qab

We said that Mo is defined over Q, but it is already defined over a subfield k of Qab. More
precisely, k is the fixed field of the kernel of the map Gal(Q/Q)ab → π0π(GSp) defined
in 2.6.2.1 [Del79]. Therefore the action of E on Mo factors through the quotient E of
E defined by the following the commutative diagram with exact rows (see 4.2 and 4.12
[MS81] or 2.5.3 [Del79])

1 // GSpad(Q)+ //

id
��

E σ //

pr

��

Gal(Q/Q) //

res

��

1

1 // GSpad(Q)+ //

id
��

E σ //

τ
��

Gal(k/Q) //

l

��

1

1 // GSpad(Q)+ // GSp(Af )
C(Q)

// π0π(GSp) // 1,

(1.63)
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here C denotes the center of GSp.
Remark 1.13. 1) We know that C(Q) = Q× is discrete in GSp(Af ) (cf., [Hid04]).
2) Because l is injective, τ is injective as well and we can identify E with an (open)
subgroup of GSp(Af )

Q× .
3) E is of course depending on K, but we suppress this dependence in our notation.

The field M of arithmetic modular functions

Let f ∈ F be a rational function, i.e. f is a rational function on Γ\Mo, for some Γ ∈ Σ.
We call f an arithmetic modular function if it is rational over k, and meromorphic at
the cusps (when viewed on the corresponding complex analytic space). Compare this to
3.4 [Wei94] or pp. 35 [Mil98].

Definition 1.3.1. The subfield of F generated by all arithmetic modular functions is
denoted by M. Further we denote by Mcm the subring of M of all arithmetic modular
functions which are defined in xcm.

The importance ofMcm for our purposes is explained (see 14.4 [Mil98] and 3.11 [Wei94])
by

Theorem 1.6. Let Acm denote the abelian variety corresponding to xcm (cf., 1.3.1).
Denote by KAcm the field extension of K obtained by adjoining the field of definition of
Acm and all of its torsion points.
Further, denote by KM the field extension of K obtained by adjoining the values f(xcm),
for f ∈Mcm.
Finally, denote by Kc the composition of K with the fixed field of the image of the Ver-
lagerungsmap Ver : Gal(F ab/F ) → Gal(Eab/E), where F is the maximal totally real
subfield of E. Then we have the equality

Kc = KAcm = KM (1.64)

Remark 1.14. Notice we are not simply using the field of arithmetic automorphic functions
as considered by Shimura, see 4.8 [MS81] for his definition, because the exact size of the
abelian extension obtained by using these functions is not clear (at least to the author). It
is clear that the field of Shimura is contained in KM and we guess that it should generate
the same extension Kc of K.

About AutQ(M)

It is clear thatM is closed under the action of E (see 3.2 or 4.4 [MS81]) and therefore we
obtain a continuous map

E → AutQ(M) (1.65)

given like above by

αf = σ(α) · (f ◦ α−1) = (σ(α)f) ◦ (σ(α)α−1). (1.66)

In particular GSpad(Q)+ is acting onM by

αf = f ◦ α−1. (1.67)
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1.3.4 The reciprocity law at xcm
Write

µcm : Gm,C // SEC
(h′cm)C // ∏r

i=1 T Ei,C
i // GSpC (1.68)

for the associated cocharacter of hcm (cf., D.6). From Lemma 1.3 1) we know that hcm =
i ◦
∏
hφi and therefore µcm = i ◦

∏
µφi . Because µφi is defined over E∗i the cocharacter

µ′cm =
∏
µφi is defined over Ẽ = E∗1 · · ·E∗r ⊂ E ⊂ K. To simplify the notation set

T =
∏r
i=1 T Ei . Define the morphism

η : TK → GSp (1.69)

as composition of

TK
ResK/Q(µ′cm)

// ResK/Q(TK)
NmK/Q // T i // GSp. (1.70)

If we identify E with an (open) subset of GSp(Af )
Q× using τ (see (1.63)), we can show (see

4.5 [MS81] or 2.6.3 [Del79]) that η(A) : A×K → GSp(A) induces, by ν 7→ η(Af )(ν) mod
Q×, a group homomorphism

η : A×K → E . (1.71)

If we denote by [ν] ∈ Gal(Kab/K) the image of ν ∈ A×K under Artin’s reciprocity map,
we can show (cf., 4.5 [MS81] and (1.63)) that

σ(η(ν)) = [ν]−1
|k . (1.72)

Remark 1.15. The careful reader will ask why it is allowed to define η using the extension
K of the field of definition of the cocharacter µcm given by Ẽ, because our reference [MS81]
uses Ẽ to define η. The explanation for this is given by lemma 1.9 and standard class field
theory.
Now we are able to state the reciprocity law

Theorem 1.7 (see 4.6 and 4.10 [MS81]). Let ν ∈ A×K and f ∈ Mcm. Then f(xcm) is
rational over Kab. Further η(ν)f is defined in xcm and

η(ν)f(xcm) = [ν]−1(f(xcm)). (1.73)

Proof. We simply reproduce the argument given in the proof of Thm. 4.6 [MS81]. The
first assertion is clear by the definition of the canonical model (cf., D.6) and the other two
assertions follow from the following calculation.
Regard the special point xcm as a point on the canonical model [xcm, 1] ∈ Mo. The
action of η(ν)−1 is given by η(ν)−1[xcm, 1] = σ(η(ν)−1)[xcm, η(ν)] and further we know
[xcm, η(ν)] = [ν]−1[xcm, 1] (by (D.7)). Therefore we obtain

η(ν)f(xcm) = σ(η(ν)) · (f ◦ η(ν)−1)([xcm, 1])
= (σ(η(ν)f) ◦ (σ(η(ν))η(ν)−1)([xcm, 1])
= (σ(η(ν)f) ◦ (σ(η(ν))σ(η(ν))−1)([xcm, η(ν)])
(1.72)= ([ν]−1|kf)([ν]−1[xcm, 1]) = [ν]−1(f([xcm, 1]))
= [ν]−1(f(xcm)).
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The next observation is one of the key ingredients in our construction of the arithmetic
subalgebra.

Proposition 1.8. The two maps of algebraic groups ϕ and η are equal.

Proof. This is an immediate corollary of Proposition C.1, Lemma 1.4 , the compatibility
properties of the norm map and the next simple Lemma.

Lemma 1.9. Let (L, φ) a CM type and L′ a finite extension of the reflex field L∗. Then
the following diagram

TL
′ ResL′/QµL′ //

NL′/L∗

��

ResL′/Q(TLL′)
NmL′/Q // TL

TL
∗ ResL∗/QµL∗ // ResL∗/Q(TLL∗)

NmL∗/Q

66 (1.74)

is commutative.

Now having all the number-theoretic ingredients we need in hand, we can move on to the
"operator-theoretic" part of this chapter.

1.4 On Bost-Connes-Marcolli systems
We review very briefly the general construction of C∗-dynamical systems, named Bost-
Connes-Marcolli systems, as given in [HP05].

1.4.1 BCM pairs

A BCM pair (D,L) is a pair consisting of a BCM datum D = (G,X, V,M) together with
a level structure L = (L,Γ,ΓM ) of D.
A BCM datum is a Shimura datum (G,X) together with an enveloping algebraic semigroup
M and a faithful representation φ : G→ GL(V ) such that φ(G) ⊂M ⊂ End(V ). Here V
denotes a Q-vector space of finite dimension.
A level structure L of D consists of a lattice L ⊂ V , a compact open subgroup Γ ⊂ G(Af )
and a compact open semigroup ΓM ⊂ M(Af ) such that φ(Γ) ⊂ ΓM and ΓM stabilizes
L⊗Z Ẑ.
Remark 1.16. In 3.1 [HP05], a more general notion of Shimura datum is allowed than ours
given in the Appendix.
To every BCM datum D and lattice L ⊂ V , one can associate the following so-called
maximal level structure to obtain a BCM pair by setting ΓM = M(Af )∩End(L⊗Z Ẑ)
and Γ = φ−1(Γ×M ).

The level structure L is called fine if Γ is acting freely on G(Q)\(X ×G(Af )).
Remark 1.17. For the definition of the topology of G(Af ) and M(Af ) we refer the reader
to [PR94]. Especially, one can show that φ(Af ) : G(Af ) → M(Af ) is a continuous map
(cf., lemma 5.2 [PR94]).

1.4.2 Quotient maps attached to BCM pairs

Let (D,L) be a BCM pair.
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The BCM groupoid

There is a partially defined action of G(Af ) on the direct product ΓM × Sh(G,X) given
by

g(ρ, [z, l]) = (gρ, [z, lg−1]), (1.75)

where we suppressed the mophism φ. Using this the BCM groupoid U is the topological
groupoid (using the notation given in (1.9)) defined by

U = G(Af ) � (ΓM × Sh(G,X)). (1.76)

There is an action of the group Γ× Γ on U given by

(γ1, γ2)(g, ρ, [z, l])(γ1gγ
−1
2 , γ2ρ, [z, lγ−1

2 ]). (1.77)

We denote the quotient by Z = (Γ× Γ)\U and obtain a natural quotient map

U // Z. (1.78)

We denote elements in Z by [g, ρ, [z, l]].
Remark 1.18. In general the quotient Z is not a groupoid anymore, see 4.2.1 [HP05].

The positive BCM groupoid

Assume that the Shimura datum (G,X) of our BCM pair satisfies (SV 5) (cf., D.1). More-
over we choose a connected component X+ of X and set G(Q)+ = G(Q) ∩G(R)+, where
G(R)+ denotes the connected component of the identity of G(R). Then G(Q)+ is acting
naturally on X+, because X+ can be regarded as a G(R)+-conjugacy class (see D.4). Now
we can consider the positive (BCM) groupoid U+ which is the topological groupoid given
by

U+ = G(Q)+ � (ΓM ×X+). (1.79)

If we set Γ+ = Γ ∩G(Q)+ we see further that Γ+ × Γ+ is acting on U+ by

(γ1, γ2)(g, ρ, z) = (γ1gγ
−1
2 , γ2ρ, γ2z). (1.80)

We denote the quotient by Z+ = (Γ+ × Γ+)\U+ and obtain another quotient map

U+ // Z+. (1.81)

There is a natural equivariant morphism of topological groupoids

U+ // U (1.82)

given by (g, ρ, z) 7→ (g, ρ, [z, 1]), inducing a commutative diagram

U // Z

U+

OO

// Z+

OO (1.83)

The following criterion given in 5.1 of [HP05] will be crucial for our approach.
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Criterion 1.10. If the natural map G(Q)∩Γ→ G(Q)/G(Q)+ is surjective and |G(Q)\G(Af )/Γ| =
1, then the natural morphism (1.82) induces a homeomorphism of topological spaces

Z+ // Z. (1.84)

Remark 1.19. 1) In other words the two conditions of the criterion simply mean that we
have a decomposition of the form G(Af ) = G(Q)+ · Γ.
2) The inverse Z −→ Z+ of the above homeomorphism is given explicitly as follows.
By using the first remark we can write every l ∈ G(Af ) as a product l = αβ with
α ∈ G(Q)+ and β ∈ Γ (this decomposition is unique up to an element in Γ+ = Γ ∩
G(Q)+). In particular every element [g, ρ, [z, l]] ∈ Z can be written as [g, ρ, [z, l]] =
[gβ−1, βρ, [α−1z, 1]] and, under the inverse of the above homeomorphism, this element is
sent to [gβ−1, βρ, α−1z] ∈ Z+.

The adjoint BCM algebra

Let us denote by C the center of G and assume further that φ(C(Q)) is a normal sub-
semigroup of M(Af ). The adjoint group Gad of G is the quotient of G by its center C
(in the sense of algebraic groups, see [Wat79]). Let us define the semigroup ΓadM to be the
quotient of ΓM by the normal subsemigroup φ(C(Q))∩ΓM and remember that X+ can be
naturally regarded as a Gad(R)+-conjugacy class (see D.4). With this in hand we define
the adjoint (BCM) groupoid Uad to be the topological groupoid

Uad = Gad(Q)+ � (ΓadM ×X+). (1.85)

It is known that the projection G −→ Gad induces a surjective group homomorphism
πad : G(Q)+ −→ Gad(Q)+ (see 5.1 [Mil04]). Setting Γad = πad(Γ+) we see immediately
that Γad × Γad is acting on Uad exactly as in 1.80. We obtain yet another quotient map

Uad // Zad. (1.86)

Using the two projections ΓM → ΓadM and πad there is by construction an obvious equiv-
ariant morphism of topological groupoids

U+ −→ Uad (1.87)

which induces (together with (1.83)) a commutative diagram

U // Z

U+

OO

//

��

Z+

OO

��
Uad // Zad.

(1.88)

1.4.3 BCM algebras and systems

Let (D,L) be a BCM pair. The BCM algebra H = HD,L is defined to be the set of
compactly supported, continuous function on the quotient Z = (Γ × Γ)\U of the BCM
groupoid U , i.e.

H = Cc(Z). (1.89)
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By viewing functions in H as Γ× Γ-invariant functions on the groupoid U , we can equip
H with the structure of a ∗-algebra by using the usual convolution and involution on U
(like in the construction of groupoid C∗-algbras). We refer to 4.3.2 [HP05] for the details.
After completing H in a suitable norm we obtain a C∗-algebra A (see 6.2 [HP05]). Further
there is a time evolution (σt)t∈R on H (resp. A) so that we end up with the BCM system
A = AD,L given by the C∗-dynamical system

A = (A, (σt)t∈R) (1.90)

associated with the BCM pair (L,D). For the general definition of the time evolution, we
refer to 4.4 of [HP05]. We will state the time evolution (σt)t∈R only in the case of our
BC-systems AK (cf., 1.5.1).
Remark 1.20. In complete analogy one, might construct a positive (respectively adjoint)
BCM system, but we don’t need this.

1.4.4 On Symmetries of BCM algebras

In section 4.5 [HP05], the authors define symmetries of BCM algebras, but for our purpose,
we need to deviate from their definition in order to be in accordance with the definition
of symmetries for BC-systems given in [LLN09].

Let (D,L) be a BCM pair with fine level structure (see 1.4.1), and recall (D.2) that
there is a natural right action of G(Af ) on the Shimura variety Sh(G,X) which is denoted
by m[z, l] = [z, lm]. Define the subgroup GΓ(Af ) = {g ∈ G(Af ) | gγ = γg ∀γ ∈ Γ}.
Further, if we denote by C the center of G, the group C(R) is acting on Sh(G,X) by
c[z, l] = [cz, l]. We end up with a right action of GΓ(Af ) × C(R) as symmetries on the
BCM algebra HD,L given on a function f ∈ Cc(Z) by

(m,c)f(g, ρ, [z, l]) = f(g, ρ, [cz, lm]). (1.91)

Remark 1.21. If G(Af ) is a commutative group and we have a decomposition G(Af ) =
G(Q) · Γ then it is immediate that our symmetries agree with the ones defined in 4.5 of
[HP05].

1.5 Two BCM pairs and a map
In this section we will apply the constructions from the last section to our Shimura data
SK = (TK , XK , hK) and SSh = (GSp(VE , ψE),H±g , hcm) from section 1.2, and show how
the two resulting systems can be related.

1.5.1 Costume I: (DK ,LK) and AK
This section is valid for an arbitrary number field K.

The BCM groupoid (DK ,LK)

Let us recall the BCM pair (DK ,LK) from 5.5 [HP05] attached to SK . It is given by

(DK ,LK) = ((SK ,K,MK), (OK , Ô×K , ÔK)), (1.92)

where the algebraic semigroup MK is represented by the functor which assigns to a Q-
algebra R the semigroup of Q-algebra homomorphismsHom(K[X],K⊗QR). By definition
we have that MK(R)× = TK(R) for every Q-algebra R, which gives an embedding φ :
TK →MK . Further, It will be convenient to set ΓK = Ô×K .
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The quotient map UK → ZK

The corresponding BCM groupoid, denoted by UK , is given by

UK = TK(Af ) � (ÔK × Sh(SK)) (1.93)

with Γ2
K = Ô×K × Ô

×
K acting as in (1.77). We denote the quotient of this action by

ZK = Γ2
K\UK . (1.94)

The time evolution

Following 7.1 of [HP05] the time evolution (σt)t∈R on the BCM algebra HK = Cc(ZK) is
given as follows. Denote by N : A×K,f → R the usual idele norm. If f ∈ HK is a function,
then we have

σt(f)(g, ρ, [z, l]) = N (g)itf(g, ρ, [z, l]). (1.95)

On symmetries

First, from 2.2.3 [Del79], we know that there is an isomorphism between Sh = Sh(TK , XK , hK)
and π0(CK). By class field theory, the latter space π0(CK) = CK/DK is identified with
the Galois group Gal(Kab/K) of the maximal abelian extension of K using the Artin reci-
procity homomorphism. Under this identification, the natural action of TK(Af ) = A×K,f
on Sh corresponds simply to the Artin reciprocity map, i.e. if ν is a finite idele in T (Af )
and ω1 = [g, l] ∈ Sh corresponds to the identity in Gal(Kab/K), then νω1 = [g, lν] corre-
sponds to the image [ν] in Gal(Kab/K) of ν under Artin’s reciprocity map.

Now, because TK is commutative, we see that C(Af ) × C(R) = TK(A) = A×K is acting
by symmetries on HK . By what we just said, this action is simply given by the natural
map A×K → π0(CK) = CK/DK so that we obtain (tautologically) the desired action of
CK/DK

∼= Gal(Kab/K) on HK .
Remark 1.22. The reader should notice that in the case of an imaginary quadratic number
field K, our symmetries do not agree with the symmetries defined [CMR05] (except when
the class number of K is equal to one, where the two definitions agree). For a short
discussion on this matter we refer the reader to remark 1.24 and Appendix E.

About extremal KMS∞-states of AK
We refer to pp. 445 [CM08] or [BR81] for the notion of extremal KMS∞-states.

Let AK = (AK , (σt)t∈R) denote the corresponding BCM system (cf., 1.4.3). In Theo-
rem 2.1 (vi) [LLN09], it is shown that the set E∞ of extremal KMS∞-states of AK is
indexed by the set Sh = Sh(TK , XK , hK), and the extremal KMS∞-state %ω associated
with ω ∈ Sh is given on a function f ∈ HK by evaluation, namely

%ω(f) = f(1, 1, ω). (1.96)

Remark 1.23. It follows immediately that the symmetry group CK/DK is acting freely
and transitively on the set of extremal KMS∞-states.

All put together we get the following theorem.
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Theorem 1.11 ([HP05] and [LLN09]). Let K be an arbitrary number field. Then the
BCM system AK = (AK , (σt)t∈R) satisfies all four properties from (0.2).

To follow the general convention, we call the systems AK simply BC-systems.

1.5.2 Costume II: (DSh,LSh)
The BCM groupoid (DSh,LSh)

Recall the construction of the symplectic vector space (VE , ψE) (see 1.2.2). We still have
some freedom in specifying the totally imaginary generators ξi of the (primitive) CM fields
Ei, which in turn define the symplectic form ψE (cf., (1.52)). Let us denote by LE the
lattice LE = ⊕ri=1OEi ⊂ VE = ⊕ri=1Ei. We now fix generators ξi according to the following
lemma.

Lemma 1.12. For each i ∈ {1, .., r}, there exists a totally imaginary generator ξi ∈ Ei,
such that the associated symplectic vector space (VE , ψE) is integral with respect to LE,
i.e., there exists a symplectic basis {ej} for (VE , ψE) such that ej ∈ LE, for each j.

Proof. For each i, choose any totally imaginary generator ξ̃i ∈ Ei, and regard the asso-
ciated symplectic form ψ̃E on VE (see (1.52)). It is known that there exists a symplectic
basis {ẽj} for (VE , ψ̃E). Now, for each j, there exists a qj ∈ N such that ej = qj ẽj ∈ LE ,
because Ei = OEi ⊗ZQ. Set q =

∏
j qj , and define the symplectic form ψE on VE by using

the totally imaginary generators ξi = q−2ξ̃i ∈ Ei, for every i. By construction it is now
clear that {ej} is an integral symplectic basis for (VE , ψE).

Now having fixed our Shimura datum SSh = (GSp(VE , ψE),H±g , hcm), we define the BCM
pair (DSh,LSh) equipped with the maximal level structure (cf., 1.4.1) with respect to the
lattice LE by

(DSh,LSh) = ((SSh, VE ,MSp), (LE ,ΓSh,ΓSh,M )), (1.97)

where the algebraic semigroup MSp = MSp(VE , ψE) is represented by the functor which
assigns to a Q-algebra R the semigroup

MSp(R) =
{f ∈ EndR(VE ⊗Q R) | ∃ ν(f) ∈ R : ψE,R(f(x), f(y)) = ν(f)ψE,R(x, y) ∀x, y}.

It is clear by definition (compare A.2) that MSp(R)× = GSp(R) which defines a natural
injection φ : GSp→ MSp.

Some quotient maps

We denote the corresponding BCM groupoid by

USh = GSp(Af ) � (ΓSh,M × Sh(SSh)), (1.98)

where the group Γ2
Sh = ΓSh × ΓSh is acting as usual. We denote the quotient of USh by

this action by

ZSh = Γ2
Sh\USh. (1.99)

Thanks to D.3 and Remark 1.13 1) we are allowed to consider the positive and adjoint BCM
groupoid, which we denote by U+

Sh and UadSh respectively. The corresponding quotients are
denoted analogously by Z+

Sh = (Γ+
Sh)2\U+

Sh and ZadSh = (ΓadSh)2\UadSh.
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1.5.3 The map Θ : ZK → Zad
Sh

The aim in this section is to construct a continuous map Θ : ZK −→ ZadSh.

Relating ZK and ZSh

Recall that the morphism of Shimura data ϕ : SK → SSh constructed in 1.2.3 is a mor-
phism of algebraic groups ϕ : TK → GSp, inducing a morphism Sh(ϕ) : Sh(SK)→ Sh(SSh)
of Shimura varieties. Moreover there is a natural continuation of ϕ to a morphism of alge-
braic semigroups M(ϕ) : MK → MSp due to the following. We know that ϕ : TK → GSp
can be expressed in terms of reflex norms (see lemma 1.4 and B.3), which are given by
determinants, and this definition still makes sense if we replace TK and GSp by their
enveloping semigroups MK and MSp, respectively. Now we can define an equivariant
morphism of topological groupoids

Ω : UK → USh, (1.100)

by

(g,m, z) ∈ UK 7→ (ϕ(Af )(g),M(ϕ)(Af )(z), Sh(ϕ)(z)) ∈ USh. (1.101)

To show the equivariance of Ω, use ϕ(Af )(ΓK) ⊂ ΓSh and the equivariance of Sh(ϕ) (cf.,
D.2). We obtain a continuous map

Ω : ZK → ZSh. (1.102)

Relating ZSh and ZadSh

In order to relate ZSh and ZadSh, we will show that we are allowed to apply Criterion 1.10
by proving the following two lemmata.

Lemma 1.13. We have GSp(VE , ψE)(Af ) = GSp(VE , ψE)(Q) · ΓSh.

Proof. Let {ej} be an integral symplectic basis of VE with respect to LE (cf., Lemma 1.12).
Each f ∈ GSp(Af ) is Af -linear and therefore determined by the values on ej ⊗ 1 ⊗ 1 ∈
LE ⊗Z Q⊗Z Ẑ given by

f(ej ⊗ 1⊗ 1) =
∑
k

ak,j ⊗ bk,j ⊗ ck,j ∈ LE ⊗Z Q⊗Z Ẑ. (1.103)

Let dk,j ∈ N be the denominator of bk,j , and define c(f) =
∏
k,j dk,j ∈ N.

Now observe that the map
Mf : ei 7→ c(f)ei

is a map in GSp(Q) ⊂ GSp(Af ) , i.e., Mf is compatible with the symplectic struture ψE .
Obviously,

Mf ◦ f ∈ ΓSh,

and we thus obtain the desired decomposition

f = M−1
f ◦ (Mf ◦ f) ∈ GSp(Q) · ΓSh.

Lemma 1.14. The map GSp(Q) ∩ ΓSh → GSp(Q)/GSp(Q)+ is surjective.



42 Chapter 1. On BC-systems and Complex Multiplication

Proof. We know that GSp(R)+ = {f ∈ GSp(R)|ν(f) > 0} (see A.2).
From this we get GSp(Q)+ = GSp(Q) ∩GSp(R)+ = {f ∈ GSp(Q)|ν(f) > 0}.
Let f be an element in GSp(Q). If we define Mf exactly like in the proof above, we see
that Mf ∈ GSp(Q)+ and can conclude Mf ◦ f ∈ GSp(Q) ∩ ΓSh.

Thus we see that the natural morphism Z+
Sh → ZSh (see 1.82) is a homeomorphism, so

that we can invert this map and compose it with the natural map Z+
Sh → ZadSh (cf., 1.87),

to obtain a continuous map
ZSh // ZadSh. (1.104)

Finally, if we compose the last map with Ω from above, we obtain a continuous morphism
denoted

Θ : ZK // ZadSh. (1.105)

One crucial property of Θ is that every element z ∈ ZK will be sent to an element of the
form

Θ(z) = [gβ−1, βρ, α−1xcm] ∈ ZadSh, (1.106)

where g ∈ Gad(Q)+, ρ ∈ ΓadSh,M , α ∈ Gad(Q) and β ∈ ΓadSh, such that αβ ∈ πad(ϕ(TK(Af ))) ⊂
Gad(Af ).

1.6 Construction of our partial arithmetic subalgebra
The idea of the construction to follow goes back to [CMR05] and [CMR06].

We constructed the ring Mcm of arithmetic Modular functions on Hg that are defined
in xcm (see 1.3.3). Further the group E acts by automophisms onMcm according to 1.3.3.
(Recall that we use the notation αf to denote the action of an automorphism α on a
function f ∈Mcm.) Thanks to the embeddings (cf., 1.3.3)

E // GSp(Af )
Q×

// MSp(Af )
Q× ΓadSh,Moo (1.107)

the intersection E ∩ ΓadSh,M is meaningful, and thus we can define, for each f ∈ Mcm, a
function f̃ on UadSh by

f̃(g, ρ, z) =
{

ρf(z), if ρ ∈ E ∩ ΓadSh,M
0 else. (1.108)

By construction f̃ is invariant under the action of (γ1, γ2) ∈ ΓadSh × ΓadSh, because

f̃(γ1gγ
−1
2 , γ2m, γ2z)

def= γ2mf(γ2z)
(1.67)= γ−1

2 γ2mf(z) = f̃(g,m, z). (1.109)

Therefore, we can regard f̃ as function a on the quotient ZadSh = (ΓadSh)2\UadSh.

We set WK = Ô×K ×ÔK × Sh(TK , XK), which is a compact and clopen subset of UK , and
invariant under the action of Γ2

K , i.e., Γ2
K ·WK ⊂ WK . With these preliminaries we have

the following.

Proposition 1.15. Let f be a function inMcm. Then f̃ ◦Θ is contained in Cc(ZK), i.e.,

f̃ ◦Θ ∈ HK ⊂ AK . (1.110)
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Proof. As we already remarked in (1.106) the image of an element z ∈ ZK under Θ is
of the form [gβ−1, βρ, α−1xcm] ∈ ZadSh. Therefore fK = f̃ ◦ Θ is continous, because Θ is
continuous, the action of E is continuous and does not produce singularities at special
points (see Theorem 1.7).
Let us now regard fK as a Γ2

K-invariant function on UK . Thanks to E ⊂ GSp(Af )
Q× and

(1.108), we see that the support of our function fK is contained in the clopen subset
Ô×K × Ô

×
K × Sh(TK , XK) ⊂ UK . Using the compact subset WK ⊂ UK , the next easy

lemma finishes the proof.

Lemma 1.16. Let G be a topological group, X be a topological G-space and Y ⊂ X a
compact, clopen subset such that GY ⊂ Y . If we have a continuous, G-invariant function
f ∈ CG(X) then f |Y ∈ Cc(G\X).

Now we can define our arithmetic subalgebra of AK = (AK , σt) (cf., 1.5.1).

Definition 1.6.1. Denote by AKc

K the K-rational subalgebra of AK generated by the set
of functions {f̃ ◦Θ | f ∈Mcm}.

1.7 Proof of Theorem 1.1
Let f ∈ Mcm and denote fK = f̃ ◦ Θ ∈ AK

c

K . Further denote by %ω the extremal
KMS∞-state of AK corresponding to ω ∈ Sh = Sh(TK , XK , hK) (see 1.5.1). Recall the
isomorphism Gal(Kab/K) ∼= π0(CK) = Sh given by Artin reciprocity. Considered as
element in Gal(Kab/K) we write [ω] for ω.

Property (vi)

Let ν ∈ A×K be a symmetry of AK (see 1.5.1). Thanks to Lemma 1.12 and 1.13, we can
write ϕ(Af )(ν) = αβ ∈ GSp(Af ) with α ∈ GSp(Q)+ and β ∈ ΓSh. By α resp. β we will
denote their images in GSpad(Q)+ resp. ΓadSh under the map πad ◦ ϕ(Af ). Moreover, we
denote the image of ν under Artin reciprocity by [ν] ∈ Gal(Kab/K).
The action of the symmetries on the extremal KMS∞-states is given by pull-back, and
because this action is free and transitive, it is enough to restrict to the case of the extremal
KMS∞-state %1 corresponding to the identity in Gal(Kab/K).
Using Proposition 1.8 and the reciprocity law (1.73), we can calculate the action of ν on
%ω(fK) as follows

ν%1(fK) def= %1(νfK) (1.106)= f̃(β−1
, β, α−1xcm) 1.8= η(β)f(α−1xcm)

(1.67)= η(α)η(β)f(xcm) = η(ν)f(xcm) (1.73)= [ν]−1(f(xcm))
= [ν]−1(%1(fK))

This is precisely the intertwining property we wanted to prove.

Property (v)

Using the notation from above, we conclude immediately that by construction and Theo-
rem 1.6 we have

%1(fK) = f̃(1, 1, xxm) = f(xcm) ∈ Kc ⊂ Kab (1.111)
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and the above calculation shows further that

%ω(fK) = [ω]%1(fK) = [ω]−1(f(xcm)) ∈ Kc ⊂ Kab, (1.112)

finishing our proof.
Remark 1.24. We want to conclude this chapter with a short discussion comparing our
construction with the original construction of Connes, Marcolli and Ramachdran (see
[CMR05]) in the case of an imaginary quadratic field K. Apart from the fact that we are
not dealing with the "K-lattice" picture as done in [CMR05], the main difference lies in
the different definitions of symmetries. If the class number hK of K is equal to one, it is
immediate that the two definitions agree, however for hK > 1 their symmetries contain
endomorphisms (see Prop. 2.17 [CMR05]) whereas our symmetries are always given by
automorphisms. We want to mention that it is no problem to generalize (this is already
contained in [CM08]) their definition to the context of a BC-system for an arbitrary
number field and, without changing the definition of our arithmetic subalgebra, we could
have proved Theorem 1.1 by using the new definition of symmetries (now containing
endomorphisms).
This might look odd at first sight but is explained in Appendix E.



Chapter 2

On arithmetic models of
BC-systems

In this chapter, we show the existence of arithmetic models of Bost-Connes systems for
arbitrary number fields, which was an open problem before this thesis going back to the
work of Bost and Connes [BC95] and has first been stated explicitely in the paper of
Connes, Marcolli and Ramachandran [CMR05].

The starting point of our investigations was the observation that the classical BC-system
AQ can be described in the context of endomotives, introduced by Connes, Consani and
Marcolli [CCM07], and the theory of Λ-rings, i.e., rings with a commuting family of Frobe-
nius lifts as extra structure. This was already observed by Marcolli in [Mar09]. We will
show in this chapter that this approach is in fact the correct one for the general case. An
elegant classification result of Borger and de Smit [BdS11] of certain Λ-rings in terms of
the Deligne-Ribet monoid paves the way for the case of arbitrary number fields.

More precisely, for every number field K, the results of [BdS11] allow us to construct
an algebraic endomotive (cf., 2.6.1)

EK = EK o IK

over K, where the K-algebra EK is a direct limit lim−→Ef of finite, étale K-algebras Ef

which come from a refined Grothendieck-Galois correspondence in terms of the Deligne-
Ribet monoid DRK (see Corollary 2.7). The monoid of (non-zero) integral ideals IK of K
is acting by Frobenius lifts on EK .
In general, there is a functorial way of attaching to an algebraic endomotive E a C∗-
algebra Ean containing E , which is called the analytic endomotive of E . Moreover, in good
situations, E determines naturally a time evolution σ : R→ Aut(Ean) on Ean by means of
Tomita-Takesaki theory, so we end up with a C∗-dynamical system

Emean = (Ean, σt)

depending only on E called the measured analytic endomotive of E (cf., section 2.2). Our
first main result will be

Theorem 2.1. For every number field K, the measured analytic endomotive EmeanK of the
algebraic endomotive EK exists, and is in fact naturally isomorphic to the BC-system AK .
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The key observations for proving this theorem are Proposition 2.11 which shows that the
Deligne-Ribet monoid DRK is naturally isomorphic to ÔK ×Ô×K

Gal(Kab/K) and Propo-
sition 2.19 which shows that the time evolutions of both systems agree.

The most important result of this thesis is to show that all AK possess an arithmetic
model.

Theorem 2.2. For all number fields K, the BC-systems AK (resp. EmeanK ) possess an
arithmetic model, with arithmetic subalgebra given by the algebraic endomotive EK = EKo
IK (cf., (0.3)).

The proof of this theorem relies on the fact that the algebras Ef defining the algebraic
endomotive EK are finite products of strict ray class fields of K (cf., (2.24)). In particular
our main result shows that the class field theory of an arbitrary number field can be real-
ized through the dynamics of an operator algebra.

In the appendix 2.9, Sergey Neshveyev has shown moreover that under very natural con-
ditions, satisfied by our arithmetic subalgebra, the arithmetic model of a BC-system is in
fact unique, see Theorem 2.22 and 2.24.

Outline

Before we explain and perform our construction of arithmetic subalgebras in form of the
algebraic endomotives EK , we will briefly recall the definition and properties of the systems
AK of Ha and Paugam, present the theory of endomotives to an extent sufficient for our
applications and explain then in some detail the Deligne-Ribet monoid DRK , which will
be an object of central importance for the construction of the algebraic endomotives EK ,
and the classification result of Borger and de Smit.

Notations and Conventions

K will always denote a number field with ring of integersOK . Further, we fix an embedding
K ⊂ C, and consider the algebraic closure K of K in C. The maximal abelian algebraic
extension ofK is denoted byKab. By IK we denote the monoid of (non-zero) integral ideals
of OK and by JK the group of fractional ideals ofK. As usual, we write AK = AK,f×AK,∞
for the adele ring of K, with AK,f the finite adeles, and AK,∞ the infinite adeles. If R is a
ring, we denote by R× its group of invertible elements. Invertible adeles are called ideles.
By ÔK ⊂ AK we denote the finite, integral adeles of K, further we set Ô\K = A×K,f ∩ ÔK .
We denote Artin’s reciprocity map by [·]K : A×K → Gal(Kab/K). Usually we omit the
subscript K and write only [·]. Moreover we denote the idele norm by NK/Q : A×K,f → A×Q,f
which induces in particular the norm maps NK/Q : JK = A×K,f/Ô

×
K → Q and NK/Q : IK =

Ô\K/Ô
×
K → Z. Also, we use the delta function δa,b =

{
1 if a = b
0 otherwise . Finally, we denote

the cardinality of a set X by |X|.
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2.1 BC-systems
Let us recall the definition of the C∗-dynamical systems AK and some of its properties,
following [LLN09]. Consider the topological space

YK = ÔK ×Ô×K
Gal(Kab/K) (2.1)

defined as the quotient space of the direct product ÔK ×Gal(Kab/K) under the action of
Ô×K given by

s · (ρ, α) = (ρs, [s]−1α)

There are two natural actions on YK . On the one hand, the monoid IK ∼= Ô\K/Ô
×
K of

(non-zero) integral ideals of K acts by

s · [ρ, α] = [ρs, [s]−1α],

and, on the other hand, the maximal abelian Galois group Gal(Kab/K) acts by

γ · [ρ, α] = [ρ, γα].

The first action gives rise to the semigroup crossed product C∗-algebra

AK = C(YK) o IK , (2.2)

and together with the time evolution defined by

σt(fus) = NK/Q(s)itfus, (2.3)

where f ∈ C(YK) and us the isometry encoding the action of s ∈ IK , we end up with the
BC-system of K in form of the C∗-dynamical system

AK = (AK , σt). (2.4)

Moreover, the action of the Galois group Gal(Kab/K) on YK induces naturally a map

Gal(Kab/K) −→ Aut(AK)

Later we will need the classification of extremal σ-KMSβ-states, as given elegantly in
[LLN09], at β = 1 and β = ∞. The approach of [LLN09] relates KMSβ-states of AK to
measures on YK with certain properties. We recommend the reader to consult their paper.

2.1.1 Classification at β = 1
In the proof of [LLN09] Theorem 2.1 it is shown that the unique KMS1-state of AK
corresponds to the measure µ1 on YK which is given by the push-forward (under the
natural projection) of the product measure∏

p

µp × µG

on ÔK ×Gal(Kab/K), where µG is the normalized Haar measure on Gal(Kab/K), and µp
is the additive normalized Haar measure on OKp . Equivalently, it is shown that µ1 is the
unique measure on YK satisfying µ1(YK) = 1, and the scaling condition

µ1(gZ) = NK/Q(g)−1µ1(Z) (2.5)

for every Borel subset Z ⊂ YK and g ∈ JK = A×K,f/Ô
×
K such that gZ ⊂ YK 1.

1. The action of the group A×K′f/Ô×K of fractional ideals of K on YK is the obvious one.



48 Chapter 2. On arithmetic models of BC-systems

2.1.2 Classification at β =∞
The set of extremal KMS∞-states of AK is parametrized by the subset Y ×K = Ô×K ×Ô×K
Gal(Kab/K) of YK , and for ω ∈ Y ×K the corresponding extremal KMS∞-state ϕω is given
by

ϕω(fus) = δs,1f(ω).

In other words, extremal KMS∞-states of AK correspond to Dirac measures on YK with
support in Y ×K .

2.2 Endomotives
We will recall briefly the theory of endomotives, following our main reference [CM08].
Endomotives come in three different flavours: algebraic, analytic and measured analytic.
Each aspect could be developed independently, but for our purposes, it is enough to con-
centrate on algebraic endomotives, and show how to associate an analytic and a measured
analytic endomotive to it.

Recall that we fixed an embedding K ⊂ C and understand K to be the algebraic clo-
sure of K in C.

2.2.1 Algebraic flavour

We denote by EK the category of finite dimensional, étale K-algebras with morphisms
given by K-algebra homomorphisms. Let ((Ai)i∈I , S) be a pair consisting of an inductive
system (Ai)i∈I (with transition maps ξi,j for i ≤ j) in EK and an abelian semigroup S
acting on the inductive limit A = lim−→i

Ai by K-algebra endomorphisms. We don’t require
the action of S to respect the levels Ai or to be unital, so in general e = ρ(1), for ρ ∈ S,
will only be an idempotent, i.e., e2 = e. Moreover, we assume that every ρ ∈ S induces
an isomorphism of K-algebras ρ : A

∼=−→ eAe = eA.
Definition 2.2.1. Let ((Ai), S) be a pair like above. Then the associated algebraic endo-
motive E is defined to be the associative, unital K-algebra given by the crossed product

E = Ao S

The algebraic endomotive E can be described explicitly in terms of generators and relations
by adjoining to A new generators Uρ and U∗ρ , for ρ ∈ S, and imposing the relations

U∗ρUρ = 1, UρU
∗
ρ = ρ(1), ∀ ρ ∈ S

Uρ1Uρ2 = Uρ1ρ2 , U∗ρ2ρ1 = U∗ρ1U
∗
ρ2 , ∀ ρ1, ρ2 ∈ S

Uρa = ρ(a)Uρ, aU∗ρ = U∗ρρ(a), ∀ ρ ∈ S, ∀ a ∈ A
(2.6)

Lemma 2.3 (Lemma 4.18 [CM08]). 1) The algebra E is the linear span of the monomials
U∗ρ1aUρ2, for a ∈ A and ρ1, ρ2 ∈ S.
2) The product Ug = U∗ρ2Uρ1 only depends on the ratio ρ1/ρ2 in the group completion S̃ of
S.
3) The algebra E is the linear span of the monomials aUg, for a ∈ A and g ∈ S̃.
Remark 2.1. Equivalently one can rephrase the theory of algebraic endomotives in the
language of Artin motives. Namely, every finite, étale K-algebra B gives rise to a zero-
dimensional variety Spec(B), or in other words, to an Artin motive. This coined the term
"endomotive".
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2.2.2 Analytic flavour

Given an algebraic endomotive ((Ai), S), we obtain a topological space X defined by the
projective limit

X = lim←−
i

HomK-alg(Ai,K),

which is equipped with the profinite topology, i.e., X is a totally disconnected compact
Hausdorff space 2. Using X ∼= HomK-alg(lim−→Ai,K) = HomK-alg(A,K), we see in par-
ticular that each ρ ∈ S induces a homeomorphism ρ : X e = Hom(eA,K) −→ X by
χ ∈ X e 7→ χ ◦ ρ ∈ X , where e = ρ(1). In this way, we get an action of S on the abelian
C∗-algebra C(X ) by endomorphisms

φ(f)(x) =
{

0 if χ(e) = 0
f(χ ◦ ρ) if χ(e) = 1 (2.7)

and we can consider the semigroup crossed product C∗-algebra (see, e.g., [Lac00] and
[LR96])

Ean = C(X ) o S, (2.8)

which we define to be the analytic endomotive of the algebraic endomotive ((Ai), S).
Using the embedding ι : K → C we obtain an embedding of commutative algebras A ↪→
C(X ) by

a 7→ eva : χ 7→ χ(a),

and this induces an embedding of algebras

E = Ao S ↪→ C(X ) o S. (2.9)

The algebraic endomotive is said to give an arithmetic structure to the analytic endomotive
Ean.

Galois action

The natural action of the absolute Galois group Gal(K/K) on X = Hom(A,K) induces
an action of Gal(K/K) on the analytic endomotive Ean by automorphisms preserving the
abelian C∗-algebra C(X ) and fixing the Uρ and U∗ρ . Moreover, the action is compatible
with pure states on Ean which do come from C(X ) in the following sense (see Prop. 4.29
[CM08]). For every a ∈ A, α ∈ Gal(K/K), and any pure state ϕ on C(X ), we have
ϕ(a) ∈ K and

α(ϕ(a)) = ϕ(α−1(a)).

Moreover, it is not difficult to show (see Prop. 4.30 [CM08]) that in case where all the Ai
are finite products of abelian, normal field extensions of K, as in our applications later
on, the action of Gal(K/K) on Ean descends to an action of the maximal abelian quotient
Gal(Kab/K).

2. In other words X is given by the K-points of the provariety lim←−Spec(Ai)
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2.2.3 Measured analytic flavour

Let us start again with an algebraic endomotive ((Ai), S). On every finite space Xi =
Hom(Ai,K), we can consider the normalized counting measure µi. We call our algebraic
endomotive uniform if µi = (ξi,j)∗µj for all i ≤ j. In this case the µi give rise to a projective
system of measures and induce a propability measure µ, the so-called Prokhorov extension,
on X = lim←−Xi (compare p. 545 [CM08]).

A time evolution

Now, let us write ϕ = ϕµ for the corresponding state on the analytic endomotive Ean =
C(X ) o S given by

ϕ(fus) = δs,1

∫
X
fdµ

The GNS construction gives us a representation πϕ of Ean on a Hilbert space Hϕ (de-
pending only on ϕ). Further, we obtain a von Neumann algebraMϕ as the bicommutant
of the image of πϕ, and, under certain technical assumptions on ϕ (see pp. 616 [CM08]),
the theory of Tomita-Takesaki equipsMϕ with a time evolution σϕ : R→ Aut(Mϕ), the
so-called modular automorphism group. Now, if we assume that πϕ is faithful, and more-
over, the time evolution σϕ respects the C∗-algebra C(X )oS ∼= πϕ(C(X )oS) ⊂Mϕ, we
end up with a C∗-dynamical system

Emean = (C(X ) o S, σϕ)

which we call a measured analytic endomotive. If it exists, it only depends on the (uniform)
algebraic endomotive we started with.

2.3 The Deligne-Ribet monoid

We follow [DR80] and [BdS11] in this section. Recall that IK denotes the monoid of (non-
zero) integral ideals of our number field K. For every f ∈ IK we define an equivalence
relation ∼f on IK by

a ∼f b :⇔ ∃ x ∈ K×+ ∩ (1 + fb−1) : (x) = ab−1,

where K×+ denotes the subgroup of totally positive units in K and (x) the fractional ideal
generated by x. The quotient

DRf = IK/ ∼f

is a finite monoid under the usual multiplication of ideals. Moreover, for every f | f′ we
obtain a natural projection map ff,f′ : DRf′ → DRf and thus a projective system (If)f∈IK
whose limit

DRK = lim←−
f

DRf (2.10)

is a (topological) monoid 3 that we call the Deligne-Ribet monoid of K.

3. We take the profinite topology.



2.3. The Deligne-Ribet monoid 51

2.3.1 Some properties of DRK

First, we have to recall some notations. A cycle h is given by a product
∏

p p
np running

over all primes of K, where the np’s are non-negative integers, with only finitely many of
them non zero. Further np ∈ {0, 1} for real primes, and np = 0 for complex primes. The
finite part

∏
p-∞ pnp can be viewed as an element in IK . Moreover, we write (∞) for the

cycle
∏

p real p.

If we denote by Cf the (strict) ray class group of K associated with the cycle f(∞),
for f ∈ IK , one can show that

DR×f = Cf, (2.11)

i.e., the group of invertible elements DR×f can be identified naturally with Cf (see (2.6)
[DR80]).
As an immediate corollary we obtain

DR×K = lim←−
f

Cf
∼= Gal(Kab/K), (2.12)

i.e., using class field theory, we can identify the invertible elements of DRK with the
maximal abelian Galois group of K. Moreover we have the following description

DRf
∼=
∐
d|f
Cf/d, (2.13)

where an element a ∈ Cf/d is sent to ad ∈ DRf (see the bottom of p. 239 [DR80] or
[BdS11]).
There is an important map of topological monoids

ι : ÔK −→ DRK (2.14)

given as follows: For mf ∈ OK/f, we choose a lift m+
f ∈ OK,+, and map this to the ideal

(m+
f ) ∈ DRf. The map ι is then defined by

(mf) ∈ lim←−
f

OK/f ∼= ÔK 7−→ ((m+
f )) ∈ lim←−

f

DRf = DRK ,

which can be shown to be independent of the choice of the liftings (Prop. 2.13 [DR80]).
Let us denote by U+

K the closure of the totally positive units O×K,+ = O×K ∩K
×
+ in Ô×K .

Proposition 2.4 (Prop. 2.15 [DR80]). Let ρ, ρ′ ∈ ÔK . Then ι(ρ) = ι(ρ′) if and only if
ρ = uρ′ for some u ∈ U+

K .

Therefore, it makes sense to speak of ι having kernel U+
K . Moreover, if we denote by

(ρ) ∈ I(OK) (resp. [ρ] ∈ Gal(Kab/K)) the ideal generated by an idele (resp. the image
under Artin reciprocity’s map), then we have the following:

Proposition 2.5 (Prop. 2.20 and 2.23 [DR80]). For ρ ∈ Ô\K , we have

ι(ρ) = (ρ)[ρ]−1 ∈ DRK .

In particular, for ρ ∈ Ô×K , we obtain

ι(ρ) = [ρ]−1 ∈ DR×K .

Remark 2.2. The reader should keep in mind, that the intersection I(OK)∩DR×K is trivial.
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2.4 A classification result of Borger and de Smit

The results in this section are based on the unpublished preprint [BdS11] of Borger and
de Smit. First we will fix again some notation.

For a prime ideal p ∈ IK , we denote by κ(p) the finite residue field OK/p. The Frobenius
endomorphism Frobp of a κ(p)-algebra is defined by x 7→ x|κ(p)|. An endomorphism f of
a OK-algebra E is called a Frobenius lift (at p) if f ⊗ 1 equals Frobp on E ⊗OK κ(p).

Definition 2.4.1. Let E be a torsion-free OK-algebra. A ΛK-structure on E is given by
a family of endomorphisms (fp) indexed by the (non-zero) prime ideals of K, such that
for all p, q

1) fp ◦ fq = fq ◦ fp
2) fp is a Frobenius lift

Definition 2.4.2. A K-algebra E is said to have an integral ΛK-structure if there exists
a OK-algebra Ẽ with ΛK-structure and an isomorphism E ∼= Ẽ⊗OK K. In this case, Ẽ is
called an integral model of E.

Remark 2.3. The Frobenius-lift property is vacuous for K-algebras. This is why we need
to ask for an integral structure.
In [BdS11], Borger and de Smit were able to classify finite, étale K-algebras with integral
ΛK-structure. Their result can be described as an arithmetic refinement of the classical
Grothendieck-Galois correspondence, which says that the category EK of finite, étale K-
algebras is antiequivalent to the category SGK of finite sets equipped with a continuous
action of the absolute Galois group GK = Gal(K/K) 4. The equivalence is induced by the
contravariant functor A 7→ Hom(A,K).
The first observation is that giving a ΛK-structure to a finite, étale K-algebra E is the
same as giving a monoid map 5

IK → EndSK (Hom(A,K)),

so that we end up with an action of the direct product IK ×GK on HomK(E,K).
Asking for an integral model of E is much more delicate and is answered beautifuly in
[BdS11] by making extensive use of class field theory as follows.

Theorem 2.6 ([BdS11] Theorem 1.2). Let E be a finite, étale K-algebra with ΛK-
structure. Then E has an integral model if and only if there is an integral ideal f ∈ IK
such that the action of IK × GK on HomK(E,K) factors (necessarily uniquely) through
the map IK ×Gal(Kab/K) −→ DRf given by the natural projection on the first factor and
by the Artin reciprocity map 6 on the second factor.

In particular one obtains the following arithmetic refinement of the classical Grothendieck-
Galois correspondence.

Corollary 2.7 ([BdS11]). The functor HK : E 7→ Hom(E,K) induces an antiequivalence

HK : EΛ,K −→ SDRK (2.15)

4. The morphisms are given by K-algebra homomorphisms resp. GK-equivariant maps of sets.
5. Recall that IK is generated as a (multiplicative) monoid by its (non-zero) prime ideals.
6. GK → Gab

k → Cf ⊂ DRf.
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between the category EΛ,K of finite, étale K-algebras with integral ΛK-structure and the
category SDRK of finite sets equipped with a continuous action of the Deligne-Ribet monoid
DRK

7.

Note that we will use the same notation HK to denote the induced functor

Eind-Λ,K −→ Spro-DRK (2.16)

from the category of inductive systems in EΛ,K to projective systems in SDRK .

2.5 A simple decomposition of the Deligne-Ribet monoid

In this section, we describe an observation on the Deligne-Ribet monoid that will be used
later on. First, notice (see (2.5) [DR80]) that for ideals a, b and d in IK we have the simple
fact

a ∼f b⇔ da ∼df db. (2.17)

This allows us to define a DRK-equivariant embedding

d· : DRf ↪→ DRdf ; a 7→ da, (2.18)

and we can identify DRf with its image dDRdf. Now taking projective limits, we obtain
an injective map

%d : DRK → DRK (2.19)

defined by
lim←−f

DRf

∼=
d·
// lim←−f

dDRdf inc
// lim←−f

DRdf

∼= // lim←−f
DRf (2.20)

which is in fact just a complicated way of writing the multiplication map

a ∈ DRK 7−→ da ∈ DRK . (2.21)

We profit from our reformulation in that we see immediately that the image Im(%d) =
lim←−f

dDRdf is a closed subset of DRK . Also, using (2.17), we see that the complement
of Im(%d) in DRK is closed, and therefore we obtain for every d ∈ IK a (topological)
decomposition

DRK = Im(%d) t Im(%d)c. (2.22)

2.6 The endomotive EK
For every number field K, we want to construct an algebraic endomotive EK .
The correspondence (2.15) tells us that for every f ∈ IK there exists a finite, étale K-
algebra Ef with integral ΛK-structure such that

DRf
∼= Hom(Ef,K) = Hom(Ef,K

ab) (2.23)

7. The morphisms are given by K-algebra homomorphisms respecting the integral ΛK-structure resp.
by DRK-equivariant maps of finite sets.
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More precisely the decomposition (2.13) shows that we have in fact

Ef
∼=
∏
d|f
Kδ, (2.24)

where Kδ denotes the (strict) ray class field associated with the cycle d(∞). Moreover, the
transition maps of the projective system (DRf) are equivariant with respect to the action
of DRK so that we obtain an inductive system (Ef) in EΛ,K , i.e., we obtain a natural
action of IK on the commutative K-algebra

EK = lim−→
f

Ef, (2.25)

given by Frobenius lifts which we denote, for d ∈ IK , by

σd ∈ Endind-EΛ,K (EK). (2.26)

By construction we have, for every d ∈ IK , the equality

HK(σd) = %d.

On the other hand, the decomposition (2.22) shows the existence 8 of an idempotent ele-
ment πd in EK , for every d ∈ IK , such that Im(%d) = Hom(πdEK ,K), or in other words

EK = πdEK ⊕ (1− πd)EK . (2.27)

The projections satisfy the following basic properties.

Lemma 2.8. For all d, e in IK we have

πdπe = πlcm(d,e) (2.28)

Further, if d divides f we have

πdπf = πd (2.29)

Proof. The first assertion follows from the second together with Lemma 2.9. The second
assertion follows from the fact that f ·DRK ⊂ d ·DRK (see section 2.5).

Invoking the refined Grothendieck-Galois correspondence, we define for every d ∈ IK the
endomorphism ρd ∈ End(EK) by

ρd = i ◦ H−1
K (%−1

d : Im(%d)
∼=−→ DRK) (2.30)

where i : πdEK → EK denotes the natural inclusion.
Remark 2.4. The reader should be aware of the fact that the ρd are not level preserving
like the σd, in the sense that the latter restricts to a map Ef → Ef.
Let us give a schematic overview in the form of the following everywhere commutative
diagram

EK
σd

##
pr

��

EK

πdEK

id

77
∼= // EK

ρd
;;

∼= // πdEK

inc

OO (2.31)

The following relations hold by construction.

8. Because Hom(A⊕B, K) = Hom(A, K) tHom(B, K).
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Lemma 2.9. For all d, e in IK and every x ∈ EK we have
ρd(1) = πd,
σd ◦ σe = σde, ρd ◦ ρe = ρde,

ρd ◦ σd(x) = πdx, σd ◦ ρd(x) = x

Now we can define our desired algebraic endomotive.
Definition 2.6.1. The algebraic endomotive EK is given by the inductive system (Ef)f∈IK
together with the action of IK on EK = lim−→Ef by means of the ρδ.
Remark 2.5. It might be interesting to construct an integral version of our endomotive,
as done in [CCM09] in the case of K = Q. The integrality of the Af should make this
possible.

2.7 Proof of Theorem 2.1 and 2.2
Theorem 2.10. The algebraic endomotive EK gives rise to a C∗-dynamical system that
is naturally isomorphic to the BC-system AK (see (2.4)).
We will prove the theorem in two steps.

2.7.1 Step One

For every number field K there is a natural map of topological monoids
Ψ : YK = ÔK ×Ô×K

Gal(Kab/K) −→ DRK

given by
[ρ, α] 7−→ ι(ρ)α−1.

This map is well defined due to the fact that ι(s) = [s]−1 ∈ Gal(Kab/K) for s ∈ Ô×K .
Proposition 2.11. The map Ψ is an equivariant isomorphism of topological monoids with
respect to the natural actions of IK and Gal(Kab/K).
Proof. It is enough to show that the map

Ψf : OK/f×(OK/f)× Cf 7−→ DRf, (2.32)
given by

[ρ, α] 7→ ιf(ρ)α−1,

is an isomorphism of finite monoids for every f ∈ IK . This follows from the compactness
of YK,f = OK/f ×(OK/f)× Cf and the simple fact that lim←−f

YK,f ∼= YK . Denote by π0 the
group of connected components of the infinite idele group (AK,∞)× and consider, for every
f ∈ IK , the following everywhere commutative and exact diagram

1

π0 × (OK/f)× // Cf
// CK

OO

// 1

(OK/f)×

OO

jf // Cf
//

=
OO

C1

OO

// 1

π0

OO

(2.33)
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as can be found for example in [Neu99]. From F.1 we know that OK/f and
∐

d|f(OK/d)×
are isomorphic as sets, but they are in fact isomorphic as monoids:

Lemma 2.12. There is an isomorphism of monoids σf : OK/f→
∐

d|f(OK/d)× such that
the following diagram is commutative

OK/f

σf

��

ιf // DRf

��∐
d|f(OK/(f/d))×

∐
jf/d // ∐

d|fCf/d

(2.34)

Proof. It is enough to consider the case f = pk where p a prime ideal. The general case
follows using the chinese reminder theorem. It is well known that OK/pk is a local ring
with maximal ideal p/pk, i.e. we have a disjoint union OK/pk = (OK/pk)×tp/pk. Further,
there is a filtration {0} ⊂ pk−1/pk ⊂ pk−2/pk ⊂ . . . ⊂ p/pk and, for x ∈ p/pk and x+ ∈ OK
a (positive) lift, we have

x ∈ pk−i/pk − pk−i+1/pk ⇔ pk−i || (x+)⇔ x+ ∈ (OK/pk−i+1)×

A counting argument as in F.1, and recalling the definition of (2.13), finishes the proof.

Now, we can conclude the injectivity of Ψf, because assuming ιf(ρ)α−1 = ιf(σ)β−1, for
ρ, σ ∈ OK/f, α, β ∈ Cf, we must have that α and β map to the same element in C1. This
is, because ιf(σ)αβ−1 lies in the image of ιf and is therefore mapped to the trivial element
in C1. But lying over the same element in C1 means that there exists s ∈ (OK/f)× such
that αβ−1 = [s] = ιf(s)−1, and therefore, we get [ρ, α] = [σ, β] ∈ YK,f.
To prove surjectivity, we use again the decomposition DRf =

∐
d|fCf/d. We have to show

that for every d | f we have Cf · Im(jd) = Cf/d, where · denotes the multiplication in the
monoid DRf. One has to be careful because it is not true that Cf acts transitively on
Im(jd). 9 Instead, we show that Cf · d intersects every fibre of Cf/d → C1 non-trivially.
For every element x ∈ C1 we find lifts xf ∈ Cf and xf/d ∈ Cf/d such that xf is mapped to
xf/d under the natural projection DRf → DRf/d. Our claim is equivalent to xfd ∼f xf/dd,
which is equivalent (see (2.17)) to xf ∼f/d xf/d, which is is true by construction.
To finish the proof, we have to show that Ψ is compatible with the natural actions of IK and
Gal(Kab/K) on YK and DRK respectively. Let us recall that the action of IK ∼= Ô\K/Ô

×
K

on YK is given by s[ρ, α] = [ρs, [s]−1α], and Gal(Kab/K) is acting by γ[ρ, α] = [ρ, γα].
The equivariance of Ψ under the action of Gal(Kab/K) is clear, and the equivariance
under the action of IK follows from Proposition 2.5, namely Ψ(s[ρ, α]) = ι(ρ)ι(s)[s]α−1 2.5=
ι(ρ)(s)α−1 = (s)Ψ([ρ, α]). This shows that Ψ is an isomorphism of topological DRK-
monoids.

Now we obtain immediately:

Corollary 2.13. Let K be a number field. Then the isomorphism Ψ from above induces
an isomorphism

Ψ : AK = C(YK) o IK −→ EanK = C(DRK) o IK (2.35)

between the C∗-algebra AK of the BC-system AK and the analytic endomotive EanK .

9. Consider for the example the case when gcd(d, f/d) = 1, then d, d2 ∈ Im(jd) but d2 /∈ Cf · d
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2.7.2 Step Two

It remains to show that EK defines a measured analytic endomotive whose time evolution
on EanK agrees with the time evolution of the BC-system AK (see (2.4)).

First, we will show that EK is a uniform endomotive, i.e., the normalized counting mea-
sures µf on DRf give rise to a measure µK = lim←−µf on DRK = Hom(EK ,K).
Then, in order to show that µK indeed defines a time evolution on EanK using the proce-
dure described in section 2.2.3 which, in addition, agrees with the time evolution of AK ,
we only have to show that µK equals the measure µ1 on YK characterizing the unique
KMS1-state of AK (see section 2.1.1).
This follows from standard arguments in Tomita-Takesaki theory. Namely, if µK de-
fines a time evolution σt on EanK , then we know a priori that the corresponding state
ϕµK : EanK → C is a KMS1-state characterizing the time evolution σt uniquely (cf., chap-
ter 4 4.1 [CM08] and the references therein).

Lemma 2.14. Let f be an arbitrary ideal in IK . Then we have

|DRf| = 2r1hKNK/Q(f) (2.36)

where hK denotes the class number of K and r1 is equal to the real embeddings of K.

Proof. Recall the fundamental exact sequence of groups (see e.g. [Neu99])

1 // Uf
// (OK/f)×

jf // Cf
// C1 // 1 (2.37)

with notations as in (2.33) and Uf making the sequence exact, from which we obtain
immediately

|Cf| =
2r1ϕK(f)hK
|Uf|

(2.38)

where ϕK denotes the generalized Euler totient function from Appendix F. In order to
count the elements of DRK we notice (cf., Prop. 2.4) that the fibers of the natural
projection OK/f× Cf → OK/f×(OK/f)× Cf

∼= DRf all have the same cardinality given by
ϕK(f)
|Uf| and this finishes the proof.

Lemma 2.15. Let f and g be in IK such that f divides g. Then the cardinalities of all the
fibres of the natural projection DRg → DRf are equal to |DRg|/|DRf| = NK/Q(g/f).

Proof. To show that all the cardinalities of the fibers of the projection DRg → DRf are
equal, we look at the following commutative diagram (with the obvious maps)

OK/g× Cg
//

��

OK/g×(OK/g)× Cg

ξ

��
OK/f× Cf

// OK/f×(OK/f)× Cf

(2.39)

All the maps in the diagram are surjective, and in order to show that the cardinalities of
all the fibers of ξ are equal, it is enough to show this property for the other three maps.
In the proof of the preceding lemma, we have shown that the horizontal maps have this
property, and for the remaining vertical map on the left, this property is trivial. Therefore,
we conclude that the cardinalities of all the fibers of ξ are equal and, together with the
isomorphism (2.32) and the preceding lemma, the assertion follows.
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Corollary 2.16. The algebraic endomotive EK is uniform.

Proof. Let f, g ∈ IK with f | g, and denote by ξ the natural projection DRg → DRf. In
order to show that EK is uniform, we have to show that ξ∗(µg) = µf, which follows directly
from the preceding lemma. More precisely, if we take a subset X ⊂ DRK , we obtain

ξ∗(µg)(X) = µg(ξ−1(X)) 2.15= |X| ·NK/Q(g/f)/|DRg|
2.15= |X|/|DRf| = µf(X)

Lemma 2.17. Denote by µ̃f the push-forward of µ1 under the projection πf : YK
Ψ−→

DRK −→ DRf. Then µ̃f is the normalized counting measure on DRf.

Proof. We only have to show that

µ̃f(q) = µ̃f(q′) for all q, q′ ∈ DRf,

because by definition we have 1 = µ̃f(DRf) =
∑
q µ̃f(q). Recall that µ1 is defined to

be the push forward of the product measure µ =
∏

p µp × µG on ÔK × Gal(Kab/K),
where the µp and µG are normalized Haar measures under the natural projection π :
ÔK × Gal(Kab/K) → YK (cf., section 2.1.1). It is immediate that for given q and q′ in
IK , we find m = mq,q′ ∈ IK and s = sq,q′ ∈ Gal(Kab/K), such that the translate of
Xq = π−1

f (π−1(q)) under m and s equals Xq′ , i.e.

mXqs := {(m+ ρ, sα) | (ρ, α) ∈ Xq} = Xq′ .

Due to translation invariance of Haar measures we can conclude µ(Xq) = µ(mXqs) =
µ(Xq′) and therefore

µ̃f(q) = µ̃f(q′).

Lemma 2.18. The measure µK = lim←−µf satisfies the scaling condition (2.5).

Proof. Let d and f be in IK . Without loss of generality, we can assume that d divides f,
because we are looking at the limit measure. Recall further the commutative diagram

DRf
d· //

����

DRf

DRf/d

- 


d·
;;

(2.40)

In order to show that µK satisfies the scaling condition, it is enough to show that the
cardinalities of the (non-trivial) fibers of the multiplication map d· : DRf → DRf are all
equal to the norm NK/Q(d) = |OK/d|. By the commutativity of the last diagram, we only
have to show that the fibres of the natural projection DRf → DRf/d all have cardinality
NK/Q(d). This follows immediately from lemma 2.15.

As corollary of the last two lemma we obtain the following.

Proposition 2.19. We have the equality of measures

µK = µ1. (2.41)
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Proof. We have seen that µK satisfies the two defining properties of µ1 (cf., section 2.1.1).

Corollary 2.20. The procedure described in 2.2.3 defines a time evolution (σt)t∈R on
EanK , and the resulting measured analytic endomotive Emean = (EanK , (σt)t∈R) is naturally
isomorphic to AK , via Ψ.

Next we will show that EK = EK o IK provides AK with an arithmetic subalgebra. This
follows in fact directly from the construction.

Theorem 2.21. For all number fields K the BC-systems AK (resp. EmeanK ) posses an
arithmetic model with arithmetic subalgebra given by the algebraic endomotive EK = EKo
IK .

Proof. Recall from section 2.1.2 that extremalKMS∞-states are indexed by Gal(Kab/K)
(2.12)∼=

DR×K ⊂ Hom(EK ,K), i.e., an extremal KMS∞-state %ω for ω ∈ DR×K is given on a func-
tion f ∈ C(DRK) simply by

%ω(f) = f(ω).

Now, if we an element eva ∈ EK ⊂ C(DRK) which was defined by eva : g ∈ Hom(EK ,K) 7→
g(a) ∈ Kab (see (2.23)), we find that

%ω(eva) = eva(ω) = ω(a) ∈ Kab, (2.42)

and this shows together with the definition of EK that property (v) from the list of axioms
of a Bost-Connes system is valid. In order to show property (vi), we take a symmetry
ν ∈ Gal(Kab/K) and simply calculate

ν%ω(eva) = %ω(νeva) = νeva(ω) = eva(ν−1 ◦ ω) = ν−1(ω(a)) = ν−1(%ω(eva)). (2.43)

2.8 Outlook

We would like to state some questions and problems which might be interesting for further
research.

– As already mentioned above it would be interesting to construct integral models
AOK of our Bost-Connes systems AK (by using integral models of our arithmetic
subalgebras) as done in [CCM09] in the case of the classical BC-system for K = Q.
In particular, one could investigate whether general BC-systems can be defined over
F1 or some (finite) extensions of F1 (depending maybe on the roots of unity contained
in K).

– In a recent preprint [CC11] Connes and Consani construct p-adic representations of
the classical Bost-Connes system AQ using its integral model AZ. One of the main
tools is thereby the classical Witt functor which attaches to a ring its ring of Witt
vectors. Borger [Bor08] has introduced a more general framework of Witt functors
which are compatible with our arithmetic subalgebras. It might be interesting to
construct analogous p-adic representations of general Bost-Connes systems.
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– In particular, Connes and Consani [CC11] recover p-adic L-functions in the p-adic
representations of AQ. Using the results of [DR80], it would be interesting to try to
recover p-adic L-functions of totally real number fields in the p-adic representations
of BC-systems of totally real number fields.

– On the other hand, it seems interesting to ask whether p-adic BC-systems are related
to Lubin-Tate theory.

2.9 On uniqueness of arithmetic models. Appendix by Sergey
Neshveyev

The goal of this appendix is to show that the endomotive EK constructed in this chapter
is, in an appropriate sense, the unique endomotive that provides an arithmetic model for
the BC-system AK . We will also give an alternative proof of the existence of EK .

Assume E = E o S is an algebraic endomotive such that the analytic endomotive Ean
is AK = C(YK) o IK . By this we mean that S = IK and there exists a Gal(K/K)- and
IK-equivariant homeomorphism of HomK-alg(E,K) onto YK = ÔK ×Ô×K

Gal(Kab/K).
Then E considered as a K-subalgebra of C(YK) has the following properties:

(a) every function in E is locally constant;
(b) E separates points of YK ;
(c) E contains the idempotents ρna (1) for all a ∈ IK and n ∈ N;
(d) for every f ∈ E we have f(YK) ⊂ Kab and the map f : YK → Kab is Gal(Kab/K)-

equivariant.
Recall that the endomorphism ρa is defined by ρa(f) = f(a−1·), with the convention that
ρa(f)(y) = 0 if y /∈ aYK .

Theorem 2.22. The subalgebra EK = lim−→Ef of C(YK) constructed in this chapter is the
unique K-subalgebra of C(YK) with properties (a)-(d). It is, therefore, the K-algebra of
locally constant Kab-valued Gal(Kab/K)-equivariant functions on YK .

Proof. We have to show that if a K-subalgebra E ⊂ C(YK) satisfies properties (a)-(d),
then it contains every locally constant Kab-valued Gal(Kab/K)-equivariant function f .
Fix a point y ∈ YK . Let L ⊂ Kab be the field of elements fixed by the stabilizer Gy of y
in Gal(Kab/K). Then f(y) ∈ L by equivariance.

Lemma 2.23. The map E 3 h 7→ h(y) ∈ L is surjective.

Proof. Let L′ be the image of E under the map h 7→ h(y). Since E is a K-algebra, L′ is a
subfield of L. If L′ 6= L then there exists a nontrivial element of Gal(L/L′) ⊂ Gal(L/K) =
Gal(Kab/K)/Gy. Lift this element to an element g of Gal(Kab/K). Then, on the one hand,
gy 6= y, and, on the other hand, for every h ∈ E we have h(gy) = gh(y) = h(y). This
contradicts property (b).

Therefore there exists h ∈ E such that h(y) = f(y). Since the functions f and h are
locally constant, there exists a neighbourhood W of y such that f and h coincide on W .
We may assume that W is the image of an open set of the form(∏

v∈F
Wv × ÔK,F

)
×W ′ ⊂ ÔK ×Gal(Kab/K)
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in YK , where F is a finite set of finite places of K; here we use the notation ÔK =∏
v∈VK,f OK,v, ÔK,F =

∏
v∈VK,f\F OK,v. Furthermore, we may assume that F = F ′ t F ′′

and for v ∈ F ′ we have Wv ⊂ pnvv O×K,v, while for v ∈ F ′′ we have Wv = pnvv OK,v. Since
the functions f and h are equivariant, they coincide on the set U = Gal(Kab/K)W . The
equality

Gal(Kab/K)W =

 ∏
v∈F ′

pnvv O×K,v ×
∏
v∈F ′′

pnvv OK,v × ÔK,F

×Ô×K Gal(Kab/K)

shows that the characteristic function p of U belongs to E: it is the product of ρnvpv (1) −
ρnv+1
pv (1), v ∈ F ′, and ρnvpv (1), v ∈ F ′′. Therefore fp = hp ∈ E.

Thus we have proved that for every point y ∈ YK there exists a neighbourhood U of y
such that the characteristic function p of U belongs to E and fp ∈ E. By compactness
we conclude that f ∈ E.

The following consequence of the above theorem shows that the arithmetic subalgebra
EK = EK o IK of the BC-system is unique within a class of algebras not necessarily
arising from endomotives.

Theorem 2.24. The K-subalgebra EK of AK constructed in this chapter is the unique
arithmetic subalgebra that is generated by some locally constant functions on YK and by
the elements Ua and U∗a , a ∈ IK .

Proof. Assume E is such an arithmetic subalgebra. Consider the K-algebra E = E ∩
C(YK). It satisfies properties (a)-(c), while (d) a priori holds only on the subset Y ×K ⊂ YK .
However, the algebra E is invariant under the endomorphisms σa, a ∈ IK , defined by
σa(f) = f(a ·) = U∗a fUa. Hence property (d) holds on the subsets aY ×K of YK . Since
∪a∈IKaY

×
K is dense in YK and the functions in E are locally constant, it follows that

(d) holds on the whole set YK . Therefore E = EK by the previous theorem, and so
E = EK .

Let E be the K-algebra of locally constant Kab-valued Gal(Kab/K)-equivariant functions
on YK . Let us now show directly that E o IK is an arithmetic subalgebra of AK .
In order to prove the density of the C-algebra generated by E o IK in AK , by the Stone-
Weierstrass theorem it suffices to check that E separates points of YK . Note that E
is closed under complex conjugation, since complex conjugation defines an element of
Gal(Kab/K).
Consider two points y′, y′′ ∈ YK . We have a canonical projection YK → ÔK/Ô×K =∏
v∈VK,f OK,v/O

×
K,v, so for y ∈ YK it makes sense to talk about ordv(y). Consider two

cases:
1) Assume there exists v ∈ VK,f such that ordv(y′) 6= ordv(y′′). We may assume that

ordv(y′) 6= +∞. Then the characteristic function of the set of points y ∈ YK such that
ordv(y) = ordv(y′), is in E and separates the points y′ and y′′.

2) Assume nv := ordv(y′) = ordv(y′′) for all v ∈ VK,f . There exists a finite (possibly
empty) subset F ⊂ VK,f such that the projections of y′ and y′′ onto OK,F×Ô×K

Gal(Kab/K)
are different, where OK,F =

∏
v∈F OK,v. Replacing F by a smaller set we may further

assume that nv 6= +∞ for all v ∈ F . Consider the points

z′ = a−1y′ and z′′ = a−1y′′, where a =
∏
v∈F

pnvv .
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If we could find a function f in E separating z′ and z′′, then ρa(f) would separate y′ and
y′′. Therefore we may assume that z′ = y′, which means nv = 0 for all v ∈ F . In other
words, the projections of y′ and y′′ onto OK,F ×Ô×K

Gal(Kab/K) lie in

O×K,F ×Ô×K
Gal(Kab/K) ∼= Gal(Kab/K)/[Ô×K,F ]

and define two different points g′ and g′′ in the latter group. Let L ⊂ Kab be the subfield
of elements fixed by [Ô×K,F ]. Take a point a ∈ L such that g′a 6= g′′a. We now define a
function f separating y′ and y′′ as follows: on the set (O×K,F × ÔK,F )×Ô×K

Gal(Kab/K) it
is the composition of the projection

(O×K,F × ÔK,F )×Ô×K
Gal(Kab/K)→ O×K,F ×Ô×K

Gal(Kab/K) = Gal(L/K)

with the map Gal(L/K) 3 g 7→ ga, and on the complement it is zero.
The property that Kab is generated by the values f(y), f ∈ E, for any y ∈ Y ×K , follows now
from Lemma 2.23 as Gal(Kab/K) acts freely on Y ×K . It can also be proved by the same ar-
gument as in case 2) above, since any point a ∈ Kab is fixed by [Ô×K,F ] for sufficiently large
F . Thus E o IK ⊂ AK is indeed an arithmetic subalgebra. Furthermore, using that E
consists of locally constant equivariant functions and separates points of YK , it is easy to
show that E is an inductive limit of finite, étale K-algebras and HomK-alg(E,K) = YK .
Therefore E = E o IK is, in fact, an endomotive and Ean = AK .

We finish by making a few remarks about general arithmetic subalgebras of the BC-
system AK . Assume E ⊂ AK is an arithmetic subalgebra. Also assume that it contains
the elements Ua and U∗a for all a ∈ IK . Consider the image of E under the canonical con-
ditional expectation AK → C(YK), and let E be the K-algebra generated by this image.
Then E satisfies the following properties:

(a′) every function in E is continuous;
(b′) the C-algebra generated by E is dense in C(YK); in particular, E separates points

of YK ;
(c′) E is invariant under the endomorphisms ρa and σa for all a ∈ IK ;
(d′) for every f ∈ E we have f(Y ×K ) ⊂ Kab and the map f : Y ×K → Kab is Gal(Kab/K)-

equivariant.
Conversely, if E is a unital K-algebra of functions on YK with properties (a′)-(d′), then
E = EoIK is an arithmetic subalgebra of AK and the intersection E∩C(YK), as well as the
image of E under the conditional expectation onto C(YK), coincides with E. Note again
that the property that Kab is generated by the values f(y), f ∈ E, for any y ∈ Y ×K , follows
from the proof of Lemma 2.23. The largest algebra satisfying properties (a′)-(d′) is the
K-algebra of continuous functions such that their restrictions to aY ×K are Kab-valued and
Gal(Kab/K)-equivariant for all a ∈ IK . This algebra is strictly larger than the algebra
EK . Indeed, it, for example, contains the functions of the form

∑∞
n=0 qnρ

n
pv(1), where∑

n qn is any convergent series of rational numbers. Such a function takes value
∑∞
n=0 qn,

which can be any real number, at every point y ∈ YK with ordv(y) = +∞.



Chapter 3

On functoriality of BC-systems

In [LNT], Laca, Neshveyev and Trifkovic were able to construct a functor from the category
of number fields to the category of BC-systems. In the latter, morphisms are given by
correspondences in form of a Hilbert C∗-bimodule. More precisely, for an inclusion σ :
K → L of number fields, they construct, quite naturally, an AL-AK correspondence Z =
ZLK,σ, i.e., a right Hilbert AK-module Z with a left action of AL (cf., (2.4)). Unfortunately,
the time evolutions of AK and AL are not compatible under Z, which is in fact not
surprising. In order to remedy the situation, the authors of [LNT] introduce a normalized
time evolution σ̃t on the AK given by

σ̃t(fus) = NK/Q(s)it/[K:Q]fus. (3.1)

With this normalization, they obtain a functor K 7→ (AK , σ̃t), where the correspondences
are compatible with the time evolutions.

We will show that their functor arises naturally in the context of (algebraic) endomotives.
However it doesn’t seem likely that the normalized time evolution (3.1) can be recovered
naturally in the framework of endomotives, at least not in a naive sense (see section 3.4.3).

The first obstacle in constructing an algebraic version of the functor constructed in [LNT]
is that the different algebraic endomotives EK are defined over different number fields,
which means that they live in different categories.
To overcome this, we introduce the notion of "base-change" in this context. More pre-
cisely, one finds two natural ways of changing the base of EK , which correspond to the
two fundamental functoriality properties of class field theory given by the Verlagerung and
restriction map respectively. Although both procedures change the algebraic endomotive,
the analytic endomotive of the initial and base-changed endomotive will remain the same.

Our strategy is then, first, to base-change all the EK down to Q and then, second, construct
a functor from the category of number fields to the category of algebraic endomotives over
Q. Finally, we will show that our functor recovers the functor constructed in [LNT] (except
for the normalization (3.1)). More precisely, we prove:

Theorem 3.1. The functor from the category of number fields to the category of algebraic
endomotives over Q defined by K 7→ EQK and (K → L) 7→ ZLK , cf., 3.4.1, recovers,
by passing to the analytic endomotive, the functor constructed by Laca, Neshveyev and
Trifkovic [LNT].
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Notations and Conventions

In the following, when speaking about extensions of number fields, instead of saying σ :
K → L, we simply write L/K. Moreover we fix a tower M/L/K of finite extensions of
number fields (contained in C). We denote the Artin reciprocity map by [·]K : A×K →
Gal(Kab/K).

3.1 Algebraic preliminaries
Recall the two fundamental functoriality properties of Artin’s reciprocity map in form of
the following two commutative diagrams (cf., [Neu99])

A×L
[·]L // Gal(Lab/L) A×L

NL/K
��

[·]L // Gal(Lab/L)

Res
��

A×K
[·]K //

iK/L

OO

Gal(Kab/K)

V er

OO

A×K
[·]K // Gal(Kab/K)

(3.2)

Remark 3.1. Notice that the Verlagerung V er is injective.
The diagrams allow one to define two maps of topological monoids (which are of central
importance for everything that eventually follows)

VL/K : ÔK ×Ô×K
Gal(Kab/K) −→ ÔL ×Ô×L

Gal(Lab/L) ; [ρ, α] 7→ [iK/L(ρ), V er(α)] (3.3)

and

NL/K : ÔL ×Ô×L
Gal(Lab/L) −→ ÔK ×Ô×K

Gal(Kab/K) ; [γ, β] 7→ [NL/K(γ), Res(β)].
(3.4)

Remark 3.2. The first map is always injective 1, whereas the second map is in general
neither injective nor surjective.
Now, using these two maps, we can define two "base-change" functors relating the cate-
gories SDRK and SDRL (cf., section 2.4).
The first functor

V = VL/K : SDRL −→ SDRK (3.5)

is given by sending a finite set S with action of DRL to the set S with an action of DRK
given by restricting the action of DRL via VL/K .
The second functor

N = NL/K : SDRK −→ SDRL (3.6)

is defined by sending a finite set S with its action by DRK to the same set S with an
action of DRL defined by pulling back the action of DRK via NL/K . Using the functorial
equivalence SDRK → EΛK (see (2.15)), we obtain corresponding functors on the algebraic
side

Valg : EΛL −→ EΛK (3.7)

and

Nalg : EΛK −→ EΛL . (3.8)

1. This follows from a Galois descent argument.
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Lemma 3.2. 1) The functor Valg is determined by the fact that a finite abelian extension
L′ of L is sent to the direct product

∏h
i=1K

′, where the finite, abelian extension K ′ of K
and the index h are specified below.
2) The functor Nalg is given by E 7→ E ⊗K L.

Proof. 1) Define the map φ to be the composition of the Verlagerung Gal(Kab/K) →
Gal(Lab/L) and the projection Gal(Lab/L) → Gal(L̃′/L) where L̃′ denotes the Galois
closure of L′. We can identify the quotient Gal(Kab/K)/Kerφ with a finite, abelian
Galois group Gal(K̃/K) sitting inside Gal(L̃′/L), i.e. Gal(K̃/K) ∼= Gal(L̃′/LK) for a
subfield LK ⊂ L̃′. We define K ′ to be the subfield of K̃ corresponding to the subgroup
Gal(L̃′/L′)∩Gal(L̃′/LK) ⊂ Gal(K̃/K). Using again only basic Galois theory we see that
the fraction

|Gal(L̃′/L)| · |Gal(L̃′/L′) ∩Gal(L̃′/LK)|
|Gal(L̃′/LK)| · |Gal(L̃′/L′)|

is actually a natural number and this will be the index h. In particular we see that we
have the equality |HomL(L′, L)| = h · |HomK(K ′,K)| = |HomK(

∏h
i=1K

′,K)|.
2) This is obvious.

Remark 3.3. If L′/L is Galois then K ′/K is also Galois.
Let us make the functorValg more transparent in the context of strict ray class fields which
occur in the definition of the EK . For this, let us first introduce the following notation. If
d denotes a non-zero, integral ideal in IK , we denote by dL the corresponding ideal in IL.
For example, if d = p is a prime ideal then pL = pOL is usually written in the form

pL =
∏
P|p

Pe(P|p)

where P denotes a prime ideal of L and e(P|p) the ramification index of P in p. Moreover,
let us denote by Kd and LdL the corresponding strict ray class fields and by KdL the field
constructed from LdL above. Then we have the following:

Lemma 3.3. With the notations from above let d be in IK . Then we have

Kd = KdL ⊂ LdL . (3.9)

Proof. Using basic class field theory (cf., [Neu99]) the two assertions can be reformulated
in the idelic language and are seen to be equivalent to

ι−1
L/K(CdL

L ) = Cd
K and ιL/K(NL/K(CdL

L )) ⊂ CdL

L ,

where Cd
K is the standard open subset of CK = A×K/K× such that CK/Cd

K
∼= Gal(Kd/K)

and analogously for CdL
L . Further, it is enough to consider the case d = pi for some i ≥ 1.

Let us recall the following fact from ramification theory. If P divides p with ramification
index e = e(P|p) and if we denote by ιP : Kp → LP the natural inclusion of local fields,
we have

ι−1
P (PeiOLP

) = piOKp

This proves the first assertion, and the second assertion follows directly from the definition
of the norm map NL/K .
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As a first application, it is shown in the next proposition how one can relate the different
algebras EK (cf., (2.25)).

Proposition 3.4. 1) The functor Valg induces a K-algebra homomorphism Valg(EL)→
EK compatible with the ΛK-structure.
2) The functor Nalg induces a L-algebra homomorphism EK ⊗K L→ EL compatible with
the ΛL-structure.
3) There exists an injective K-algebra homomorphism EK → EL.

Proof. Using the two commutative diagrams

DRL

VL/K

WW DRKWW
VL/Koo DRK

NL/K

WW DRL
NL/Koo

WW

DRK DRK DRL DRL

(3.10)

the first two assertions follow immediately if we can show that VL/K : DRK → DRL
and NL/K : DRL → DRK are compatible with the profinite structures of DRK and DRL.
In this case we can simply apply the equivalence (2.16). The compatibility of NL/K with
the profinite structure of DRL follows from the compatibility of VL/K with the profinite
structure of DRK , and this would follow if VL/K factors over

OK/f×(OK/f)× Cf → OL/fL ×(OL/fL)× CfL

But this is true thanks to our previous lemma.
To prove the third assertion we define a surjective map

ωf : {D | D divides fL} → {d | d divides f}

by

D 7−→
∏
p|f

pmax{j : Pje(P|p)|D ∀ P|p}.

Now we can define an embedding of K-algebras

EK,f =
∏
d|f
Kd −→ EL,fL =

∏
D|fL

LD

by embedding Kd into LD whenever ωf(D) = d. It is not very difficult to check that these
maps induce a K-algebra embedding of the corresponding inductive systems.

Remark 3.4. Due to the fact that fM = (fL)M we see that the third map of the last
proposition is in fact functorial, i.e., the composition EK → EL → EM equals EK → EM .
But, on the other hand, the inclusion EK → EL is not compatible with any Λ-structure.

3.2 On correspondences of endomotives

In this section we will follow our main reference [CM08] pp. 594.
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3.2.1 Algebraic correspondences

An algebraic endomotive E = A o S can be described equivalently as a groupoid G as
follows. Let us introduce, for s = ρ1/ρ2 ∈ S̃, two projections E(s) = ρ−1

1 (ρ2(1)ρ1(1)) and
F (s) = ρ−1

2 (ρ2(1)ρ1(1)). They satisfy the relations E(s−1) = F (s) = s(E(s)) and show up
naturally in that they are the biggest projections such that s : AE(s) = E(s)A→ AF (s) is
an isomorphism. Now, as a set G is defined by

G = Spec(
⊕
s∈S̃

AF (s)) = t
s∈S̃Spec(AF (s)) (3.11)

The range and source maps

r, s : Spec(
⊕
s∈S̃

AF (s))→ Spec(A) (3.12)

are given by the natural projection A→ AF (s), and the natural projection composed with
the antipode P :

⊕
AF (s) →

⊕
AF (s) given by

P (a)s = s(as−1), ∀s ∈ S̃.

An algebraic correspondence between two algebraic endomotives E ′ = A′ o S′ and
E = A o S is given by a disjoint union of zero-dimensional pro-varietes Z = Spec(C)
together with compatible left and right actions of G′ and G respectively. A right action of
G on Z is given by a continuous map

g : Spec(C)→ Spec(A) (3.13)

together with a family of partial isomorphisms

z ∈ g−1(Spec(AE(s))) 7→ z · s ∈ g−1(Spec(AF (s))) ∀s ∈ S̃ (3.14)

satisfying the obvious rules for a partial action of an abelian group (cf., [CM08] p. 597).
Analogously, one defines a left action. It is straightforward to check that a left (resp.
right) action of G on Z is equivalent to a left (resp. right) E-module structure on C.
The composition of algebraic correspondences is given by the fibre product over a groupoid.
On the algebraic side this corresponds to the tensor product over a ring.

Remark 3.5. The main advantage of using the groupoid language comes from the fact that
it provides a natural framework for constructing so called analytic correspondences Zan
between E ′an and Ean out of algebraic correspondences. In fact, the procedure is functorial
(see Thm. 4.34 [CM08])

In our reference [CM08], morphisms of the category of algebraic endomotives over K are
defined in terms of étale correspondences, where Z is étale if it is finite, and projective as
a right module. We shall eventually see that the finiteness condition is too restrictive for
our applications. Nevertheless, the functorial assignment Z 7→ Zan has a domain much
larger than only étale correspondences, containing in particular the algebraic correspon-
dences occurring in our applications. In summary, we enlarge tacitly the morphisms in
the category of algebraic endomotives by allowing those contained in the domain of the
assignment Z 7→ Zan.
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3.2.2 Analytic correspondences

As we have already seen in the section 2.2.2 about analytic endomotives, the (functorial)
transition between algebraic and analytic endomotives is based on the functor X 7→ X(K)
taking K-valued points.
Given an algebraic endomotive E with corresponding groupoid G, we define the analytic
endomotive Gan to be the totally disconnected locally compact space G(K) of K-valued
points of G. An element of Gan is therefore given by a pair (χ, s) with s ∈ S̃ and χ a
character of the (reduced) algebra AF (s), i.e. χ(F (s)) = 1. The range and source maps

r, s : Gan → Hom(A,K) (3.15)

are given by

r(χ, s) = χ and s(χ, s) = χ ◦ s. (3.16)

One shows that Ean = C(Hom(A,K)) is isomorphic to the groupoid C∗-algebra C∗(Gan).

Now, given an algebraic correspondence Z between E ′ and E , i.e., we have (for the right
action) a continuous map

g : Z → Spec(A),

together with partial isomorphisms, we obtain, by taking theK-valued points, a continuous
map of totally disconnected locally compact spaces

gK = g(K) : Z(K) = Hom(C,K)→ Hom(A,K), (3.17)

together with partial isomorphisms

z ∈ g−1
K (Hom(AF (s),K)) 7→ z ◦ s ∈ g−1

K (Hom(AE(s),K)) (3.18)

fulfilling again the obvious rules.
As in the algebraic case, this right action of Gan on Z(K) gives the space of continuous
and compactly supported functions Cc(Z(K)) on Z(K) the structure of a right Cc(Gan)-
module. Moreover, if the fibers of gK are discrete (and countable) there is a natural way
of defining a Cc(Gan)-valued inner product on Cc(Z(K)) by setting

〈ξ, η〉(χ, s) =
∑

z∈g−1
K (χ)

ξ(z)η(z ◦ s). (3.19)

In this case we obtain a right Hilbert-C∗-module Zan over C∗(Gan) by completion. To-
gether with the left action Zan becomes a C∗(G′an)-C∗(Gan) Hilbert-C∗-bimodule.

3.2.3 Examples

1) Every algebraic endomotive E is a correspondence over itself. In particular the inner
product is given on Ean = C(X ) o S simply by

〈ξ, η〉 = ξ∗η ∀ξ, η ∈ Ean

2) Let S ⊂ T be an inclusion of abelian semigroups. Then the algebraic endomotive
K[T ] = KoT is naturally a K[T ]-K[S] correspondence with the obvious continuous map
g : Spec(

⊕
t∈T̃ K) → Spec(K) and partial isomorphisms. If we denote the corresponding
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analytic endomotives by C∗(T ) and C∗(S), which are related by the natural conditional

expectation E : C∗(T ) → C∗(S) induced by t ∈ T 7→
{
t if t ∈ S
0 otherwise , we see that the

C∗(S)-valued inner product on C∗(T ) is given by

〈ξ, η〉 = E(ξ∗η), ∀ξ, η ∈ C∗(T ).

3.3 On base-change
Let us start with the data defining our algebraic endomotive EL, namely the inductive
system (Ef)f∈IL and the collection of "Frobenius lifts" σd (cf., (2.30)), where the latter
define of course the ρd but are better suited for the functors Valg

L/K and Nalg
M/L due to their

level preserving property. Let us concentrate on the functor V = Valg
L/K , the arguments for

Nalg
M/L are analogous. Define the K-algebras Ẽf = V(Ef), ẼL = lim−→ Ẽf and the K-algebra

homomorphisms σ̃d = V(σd) : ẼL → ẼL. Due to the fact that (cf., (2.16))

HL(ẼL) = DRL (3.20)

and

HL(σ̃d) = σd : DRL → DRL (3.21)

the same arguments as in section 2.6 show the existence of projections π̃d and endomor-
phisms ρ̃d of ẼL such that

EKL = Valg
L/K(EL) = ((Ẽf), ĨL) (3.22)

is in fact an algebraic endomotive over K. Analogously we construct

EML = Nalg
M/L(EL) (3.23)

and obtain in summary the following base-change properties of our algebraic endomotives
EL.

Proposition 3.5. With the notations from above we have that EKL and EML are algebraic
endomotives over K and M , respectively. Moreover, on the analytic level we have

(EKL )an = EanL = (EML )an. (3.24)

Remark 3.6. Both assignments are functorial.

3.4 A functor, a pseudo functor and proof of Theorem 3.1

3.4.1 Going down to Q

The base-change mechanism from the last section enables us now to construct a functor
from the category of number fields to the category of algebraic endomotives over Q which
sends a number field K to EQK . Unfortunately, it is not possible to construct an algebra
homomorphism between EQK and EQL because the actions of IK and IL are not compatible.
Instead, given an extension L/K we construct an algebraic EQL -E

Q
K correspondence ZLK

as follows. Recall the examples 3.2.3. From the first one, we see that we can regard
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EQK as a Q[IK ]-EQk correspondence, because we have naturally the inclusion Q[IK ] ⊂ EQK .
Using the second example in the case of the inclusion IK ⊂ IL we obtain the Q[IL]-Q[IK ]
correspondence Q[IL]. In performing the fibre product over Q[IK ] we obtain the Q[IL]-EQK
correspondence ZLK = Q[IL]×Q[IK ] EQK which can be described algebraically by

ZLK = Q[IL]⊗Q[IK ] EQK . (3.25)

We want to show that there is a natural left action of EQL making ZLK the desired EQL -E
Q
K

correspondence. Namely, using the same arguments as in Proposition 3.4, we obtain a
Q-algebra homomorphism φ : Valg

L/Q(EL) → VK/Q(EK) which is furthermore compatible
with the IK-actions on both algebras induced by functoriality from the actions of DRK
and VL/K(DRK) on DRK and DRL, respectively. Thus, we see that

eUs · (Ut ⊗ f) = Ust ⊗ φ(ẽ)f, (3.26)

for s, t ∈ IL, e ∈ Valg
L/Q(EL), f ∈ EQK and ẽ defined by the equation eUst = Ustẽ ∈ EQL , gives

a well-defined left EQL -module structure on ZLK .

We can now prove the main result of this chapter.

Theorem 3.6. 1) The assignments K 7→ EQK and L/K 7→ ZLK define a (contravariant)
functor from the category of number fields to the category of algebraic endomotives over
Q.
2) The corresponding functor given by K 7→ (ELK)an and L/K 7→ (ZLK)an from the cate-
gory of number fields to the category of analytic endomotives is equivalent to the functor
constructed by Laca, Neshveyev and Trifkovic in Thm. 4.4 [LNT].

Proof. 1) One only has to show that ZML ⊗EQL Z
L
K
∼= ZMK , which is obvious.

2) One can check without difficulties that (ZLK)an is given as a Hilbert C∗-module by the
inner tensor product of the right C∗(IK)-module C∗(IL) and the right EanK -module EanK
with its natural left action of C∗(IK), i.e.,

(ZLK)an = C∗(IL)⊗C∗(IK) EanK , (3.27)

and this is exactly the same correspondence as constructed in Theorem 4.4 of [LNT].

Remark 3.7. We see that ZLK is not an étale correspondence because the complement of IK
in IL is infinite. Nevertheless the definition of ZLK seems to be the most natural one under
the circumstances that it is not possible to define interesting algebra homomorphisms
between E(Q)

K and E(Q)
L which comes from the fact that Verlagerung and Restriction are not

inverse to each other in general and therefore the actions of IK and IL are not compatible.

3.4.2 Q is too big

In analogy with the last section, where we constructed algebraic correspondences using the
base-change induced by the functor Valg

L/K , one can also use the functor Nalg
L/K to construct

bimodules of algebraic endomotives.

Again, by Proposition 3.4, we see that

YLK = L[IK ]⊗L[IL] EL (3.28)
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is an ELK-EL correspondence. The right L[IL]-module structure of L[IK ] is induced by the
norm map IL → IK .
But this time, we do not obtain a functor. Of course, one can check that for a tower
M/L/K of number fields we have an isomorphism of EMK -EM bimodules

(M [IK ]⊗M [IL] EML )⊗EML (M [IL]⊗M [IM ] EM ) ∼= M [IK ]⊗M [IM ] EM ,

but in order to make this functorial for all number fields, we would have to make sense of
a Λ-structure over Q which is compatible with Λ-structures over number fields and this
does not seem likely to the author.

3.4.3 On the time evolution

In this section we would like to make some remarks about the question of whether the
normalized time evolution (3.1) introduced in [LNT] fits into the framework of endomo-
tives.

Due to the fact that the analytic endomotive of the base-changed algebraic endomotive
EQK is equal to EanK we see in particular that EQK is an uniform endomotive (over Q) with
the same measure µK as the natural measure of EK . So, in particular the base-changed
endomotive EQK does not recover the normalized time evolution, if one tries to define the
time evolution on EQK by means of normalized counting measures. This is clear, because
the normalized norm Ñ = N

1/[K:Q]
K/Q used in [LNT] is no longer rational-valued on ideals of

K, so Ñ cannot arise from a counting procedure as one can for the usual norm NK/Q. This
shows that in order to extend the base-change EK 7→ EQK in a way such that the normalized
time evolution appears on (EQK)an one has to find a natural method of assigning to µK
a measure µQK which recovers the normalized time evolution 2. We have argued that this
cannot be done in the naive sense, but it would surely be interesting to find a natural
method solving this problem.

2. The methods of [LLN09] show that such a measure should exist and is in fact determined by the
normalized norm Ñ .





Appendix A

Algebraic Groups

Our references are [Wat79] and [Mil06]. Let k denote a field of characteristic zero, K
a finite field extension of k and k an algebraic closure of k. Further we denote by R a
k-algebra.

A.1 Functorial definition and basic constructions

An (affine) algebraic group G (over k) is a representable functor from (commutative,
unital) k-algebras to groups. We denote by k[G] its representing algebra, i.e. for any R
we have G(R) = Homk−alg(k[G], R).
A homomorphism F : G→ H between two algebraic groups G and H (over k) is given
by a natural transformation of functors.

Let G and H be two algebraic groups over k, then their direct product G × H is
the algebraic group (over k) given by R 7→ G(R)×H(R).
Let G be an algebraic group over k and K and extension of k. Then by extension of
scalars we obtain an algebraic group GK over K represented by K ⊗k k[G].
Now let G be an algebraic group over K. TheWeil restriction ResK/k(G) is an algebraic
group over k defined by ResK/k(G)(R) = G(K ⊗k R).

Remark A.1. All three constructions are functorial.

A.2 Examples

1) The multiplicative group Gm,k (over k) is represented by k[x, x−1] = k[x, y]/(xy−1),
i.e. Gm,k(R) = R×.
2) Define S = ResC/R(Gm,C). We have S(R) = C× and S(C) ∼= C××C×. In particular we
have SC ∼= Gm,C ×Gm,C.
3) More general an algebraic group T over k is called a torus if Tk is isomorphic to a
product of copies of Gm,k.
4) The general symplectic group GSp(V, ψ) attached to a symplectic Q-vector space
(V, ψ) is an algebraic group over Q defined on a Q-algebra R by

GSp(R) =
{f ∈ EndR(V ⊗Q R) | ∃ ν(f) ∈ R× : ψR(f(x), f(y)) = ν(f)ψR(x, y) ∀x, y ∈ V ⊗Q R}.
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A.3 Characters
Let G be an algebraic group over k and set Λ = Z[Gal(k/k)]. The character group
X∗(G) of G is defined by Hom(Gk,Gm,k). There is a natural action of Gal(k/k) on
X∗(G), i.e. X∗(G) is a Λ-module. Analogously the cocharacter group X∗(G) of G is
the Λ-module Hom(Gm,k, Gk). We denote the action of σ ∈ Λ on a (co)character f by σf
or fσ. There is the following important

Theorem A.1 (7.3 [Wat79]). The functor G 7→ X∗(G) is a contravariant equivalance
from the category of algebraic groups of multiplicative type over k and the category of
finitely generated abelian groups with a continuous action of Gal(k/k).

Remark A.2. See 7.2 [Wat79] for the definition of groups of multiplicative type. We only
have to know that algebraic tori are of multiplicative type.
There is a natural bi-additive and Gal(k/k)-invariant pairing < ·, · >: X∗(G)×X∗(G)→ Z
given by< χ, µ >= µ◦χ ∈ Hom(Gm,k,Gm,k) ∼= Z. IfG is of multiplicative type the pairing
is perfect, i.e. there is an isomorphism of Λ-modules X∗(G) ∼= Hom(X∗(G),Z).

A.4 Norm maps
Let L be a finite field extension of K, i.e. we have a tower k ⊂ K ⊂ L, and let T be a
torus over k. Then there are two types of morphisms of algebraic groups which we call
norm maps. The first one

NmL/K : ResL/K(TL)→ TK (A.1)

is induced by the usual norm map of algebras R⊗KL→ R, for R a K-algebra. In applying
the Weil restriction functor ResK/k we obtain the second one, namely

NL/K : ResL/k(TL)→ ResK/k(TK).

A.5 The case of number fields
Let K be a number field. We are interested in the algebraic group TK = ResK/Q(Gm,K)
(over Q). We have TK(R) = (K ⊗Q R)×.
It is easy to see that the isomorphism K ⊗Q Q ∼=

∏
ρ∈Hom(K,Q) Q induces an isomorphism

of algebraic groups TKQ
∼=
∏
ρ∈Hom(K,Q) Gm,Q. It follows that X∗(TK) ∼= ZHom(K,Q) with

Gal(Q/Q) acting as follows.
For f =

∑
ρ∈Hom(K,Q) aρ[ρ] ∈ ZHom(K,Q) and σ ∈ Gal(Q/Q) we have

σf =
∑

ρ∈Hom(K,Q)

aρ[σ ◦ ρ] =
∑

ρ∈Hom(K,Q)

aσ−1◦ρ[ρ].

For any inclusion K ⊂ L of number fields the norm map NL/K : TL → TK is defined
by saying that a character f =

∑
ρ∈Hom(K,Q) aρ[ρ] ∈ X∗(TK) is mapped to the character

fL =
∑
ρ′∈Hom(L,Q)(aρ′|K)[ρ′] ∈ X∗(TL).
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CM fields

We follow [Mil06] and [Mil04]. By ι we denote the complex conjugation of C.

B.1 CM fields and CM types
Let E denote a number field. If E is a totally imaginary quadratic extension of a totally
real field, we call E a CM field. In particular the degree of a CM field is always even.
A CM type (E,Φ) is a CM field E together with a subset Φ ⊂ Hom(E,C) such that
Φ ∪ ιΦ = Hom(E,C) and Φ ∩ ιΦ = ∅.

B.2 About hφ and µφ

Let (E,Φ) be a CM type. Then there are natural isomorphisms TER ∼=
∏
φ∈Φ S resp.

TEC
∼=
∏
φ∈Φ Gm,C ×

∏
φ∈ιΦ Gm,C, where the first one is induced by E ⊗Q R ∼=

∏
φ∈Φ C and

the second one by E ⊗ C ∼=
∏
φ∈Φ C×

∏
φ∈ιΦ C.

Thus we obtain natural morphisms

hΦ : S→ TER ; z 7→ (z)φ∈Φ (B.1)

and

µΦ : Gm,C → TEC ; z 7→ (z)φ∈Φ × (1)φ∈ιΦ. (B.2)

If we take µΦ for granted we could have defined hΦ by the composition

ResC/R(Gm,C)
ResC/R(µΦ)

// ResC/R(TEC )
NmC/R // TER . (B.3)

In particular we see that hΦ and µΦ are related by

hΦ,C(z, 1) = µΦ(z). (B.4)

Remark B.1. In the last two sections one might have replaced C by Q.

B.3 The reflex field and reflex norm
Let (E,Φ) be a CM type. The reflex field E∗ of (E,Φ) is the subfield of Q defined by
any one of the following conditions:
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a) σ ∈ Gal(Q/Q) fixes E∗ if and only if σΦ = Φ ;
b) E∗ is the field generated over Q by the elements

∑
φ∈Φ φ(e), e ∈ E ;

c) E∗ is the smallest subfield of Q such that there exists a E ⊗Q E
∗-module V such that

TrE∗(e|V ) =
∑
φ∈Φ

φ(e), for all e ∈ E. (B.5)

The reflex norm of (E,Φ) is the morphism of algebraic groups NΦ : TE∗ → TE given,
for R a Q-algebra, by

a ∈ TE∗(R) 7→ detE⊗QR(a|V ⊗Q R) ∈ TE(R). (B.6)
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The Serre group

Our references are [Mil98], [Mil06] and [Wei94]. Let K be a number field. We fix an
embedding τ : K → Q→ C and denote by ι complex conjugation on C.

C.1 Definition of the Serre group
The following are equivalent:

(1) The Serre group attached to K is a pair (SK , µK) consisting of a Q-algebraic torus
SK and a cocharacter µK ∈ X∗(SK) defined by the following universal property. For every
pair (T, µ) consisting of a Q-algebraic torus T and a cocharacter µ ∈ X∗(T ) defined over
K satisfying the Serre condition

(ι+ 1)(σ − 1)µ = 0 = (σ − 1)(ι+ 1)µ ∀σ ∈ Gal(Q/Q) (C.1)

there exists a unique morphism ρµ : SK → T such that the diagram

SKQ

ρ
µ,Q // TQ

Gm,Q

µK

aa
µ

==
(C.2)

commutes.

(2) The Serre group SK is defined to be the quotient of TK such that X∗(SK) is the
subgroup of X∗(TK) given by all elements f ∈ X∗(TK) which satisfy the Serre condition

(σ − 1)(ι+ 1)f = 0 = (ι+ 1)(σ − 1)f ∀σ ∈ Gal(Q/Q).

The cocharacter µK is induced by the cocharacter µτ ∈ X∗(TK) defined by

< µτ ,Σnσ[σ] >= nτ , ∀ Σnσ[σ] ∈ ZHom(K,Q) ∼= X∗(TK).

(3) If K does not contain a CM subfield, we set E = Q, otherwise E denotes the maximal
CM subfield of K and F the maximal totally real subfield of E. Then there is an exact
sequence of Q-algebraic groups

1 // ker(NF/Q : TF → TQ) i // TK
πK // SK // 1, (C.3)
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where i is the obvious inclusion. The cocharacter µτ of TK , defined as in (2), induces µK ,
i.e. µK = πK ◦ µτ .
Remark C.1. For K = Q or K an imaginary quadratic field there is the obvious equality
SK = TK .

C.2 About µK and hK

The cocharacter µK = πK ◦ µτ : Gm,C → SKC from the last section induces a natural
morphism

hK : S→ SKR (C.4)

defined by

ResC/R(Gm,C)
ResC/R(µK)

// ResC/R(SKC )
NmC/R // SKR . (C.5)

We see that µK and hK are related by

hKC (z, 1) = µK(z) (C.6)

or in other words, for z ∈ C×, we have hK(z) = µK(z)µK(z)ι.

C.3 About ρΦ and the reflex norm NΦ

Let (E,Φ) be a CM type. The natural morphism µΦ ∈ X∗(TE) (cf., B.2) is defined over
the reflex field E∗ and an easy calculation shows that it satisfies the Serre condition (C.1).
By the universal property of the Serre group we obtain a Q-rational morphism

ρΦ : SE∗ −→ TE (C.7)

such that

µΦ = ρΦ,C ◦ µE
∗
. (C.8)

Also, we see immediately that

hΦ = ρΦ,R ◦ hE
∗
. (C.9)

Moreover we can relate ρΦ and µΦ by the following commutative diagram

TE
∗ Res(µΦ,E∗ )

//

πE
∗

!!

ResE∗/Q(TEE∗)
NE∗/Q // TE

SE
∗

ρΦ

33 (C.10)

which can be seen on the level of characters. The relation with the reflex norm NΦ :
TE
∗ → TE (see B.3) is given by the following important

Proposition C.1 ([Mil06]). We have the equality

NΦ = NE∗/Q ◦Res(µΦ,E∗). (C.11)
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C.4 More properties of the Serre group
The following properties are all taken from [Mil06].

Proposition C.2. Let E ⊂ K denote two number fields.
1. The norm map NK/E : TK → TE induces a commutative diagram

TK
NK/E //

πK
��

TE

πE
��

SK // SE .

(C.12)

We call the induced morphism NK/E : SK → SE.
2. There is a commutative diagram

S hK //

hE

  

SK

NK/E
��

SE

(C.13)

3. Let E denote the maximal CM field contained in K, if there is no such subfield we
set E = Q. Then NK/E : SK → SE is an isomorphism.

4. Let (E,Φ) be a CM type and K1 ⊂ K2 two number fields, such that E∗ ⊂ K1, and
let ρΦ,i : SKi → TE be the corresponding maps from the universal property of the
Serre group. Then we have

ρΦ,1 ◦NK2/K1 = ρΦ,2.
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Shimura Varieties

Our references are Deligne’s foundational [Del79], Milne’s [Mil04] and Hida’s [Hid04].

Let G be an algebraic group over Q. Then the adjoint group Gad of G is defined to
be the quotient of G by its center C. The derived group Gder of G is defined to be the
intersection of the normal algebraic subgroups of G such that G/N is commutative. By
G(R)+ we denote the identity component of G(R) relative to its real topology and set
G(Q)+ = G(Q) ∩G(R)+. If G is reductive, we denote by G(R)+ the group of elements of
G(R) whose image inGad(R) lies in its identity component and setG(Q)+ = G(Q)∩G(R)+.

D.1 Shimura datum
A Shimura datum is a pair (G,X) consisting of a reductive group G (over Q) and a
G(R)-conjugacy class X of homomorphisms h : S → GR, such that the following (three)
axioms are satisfied

(SV 1): For each h ∈ X, the representation Lie(GR) defined by h is of type {(−1, 1), (0, 0), (1,−1)}.
(SV 2): For each h ∈ X, ad(h(i)) is a Cartan involution on GadR .
(SV 3): Gad has no Q-factors on which the projection of h is trivial.

Because G(R) is acting transitively on X it is enough to give a morphism h0 : S → GR
to specify a Shimura datum. Therefore a Shimura datum is sometimes written as triple
(G,X, h0) or simply by (G, h0).
Further in our case of interest the following axioms are satisfied and (simplify the situation
enormously).

(SV 4): The weight homomorphism ωX : Gm,R → GR is defined over Q.
(SV 5): The group C(Q) is discrete in C(Af ).
(SV 6): The identity component of the center Co splits over a CM field.
(SC): The derived group Gder is simply connected.
(CT ): The center C is a cohomologically trivial torus.

Remark D.1. 1) Axioms (SV 1−6) are taken from [Mil04], the other two axioms are taken
from [Hid04].
2) The axioms of a Shimura variety (SV 1-3) imply, for example, that X is a finite union
of hermitian symmetric domains. When viewed as an analytic space we sometimes write
x instead of h for points in X and hx for the associated morphism hx : S→ GR.
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3) In 3.1 [HP05] a more general definition of a Shimura datum is given. For our purpose
Deligne’s original definition, as given above, and so called 0-dimensional Shimura varieties
are sufficient.

A morphism of Shimura data (G,X) → (G′, X ′) is a morphism G → G′ of algebraic
groups which induces a map X → X ′.

D.2 Shimura varieties
Let (G,X) be a Shimura datum and let K be a compact open subgroup of G(Af ). Set
ShK = ShK(G,X) = G(Q)\X × G(Af )/K, where G(Q) is acting on X and G(Af ) on
the left, and K is acting on G(Af ) on the right. On can show (see 5.13 [Mil04]) that
there is a homeomorphism ShK ∼=

⊔
Γg\X+. Here X+ is a connected component of X

and Γg is the subgroup gKg−1 ∩ G(Q)+ where g runs runs over a set of representatives
of G(Q)+\G(Af )/K. When K is chosen sufficiently small, then Γg\X+ is an arithmetic
locally symmetric variety. For an inclusion K ′ ⊂ K we obtain a natural map ShK′ → ShK
and in this way an inverse system (ShK)K . There is a natural right action of G(Af ) on
this system (cf., p 55 [Mil04]).
The Shimura variety Sh(G,X) associated with the Shimura datum (G,X) is defined to
be the inverse limit of varieties lim←−K ShK(G,X) together with the natural action of G(Af ).
Here K runs through sufficiently small compact open subgroups of G(Af ). Sh(G,X) can
be regarded as a scheme over C.
Let (G,X) be a Shimura datum such that (SV 5) holds, then one has

Sh(G,X) = lim←−
K

ShK(G,X) = G(Q)\X ×G(Af ). (D.1)

In this case we write [x, l] for an element in Sh(G,X) and the (right) action of an element
g ∈ G(Af ) is given by

g[x, l] = [x, lg]. (D.2)

In the general case, wenn (SV 5) is not holding we use the same notation, understanding
that [x, l] stands for a family (xK , lK)K indexed by compact open subgroups K of G(Af ).
A morphism of Shimura varieties Sh(G,X) → Sh(G′, X ′) is an inverse system of
regular maps of algebraic varieties compatible with the action of G(Af ). We have the
following functorial property:
A morphism ϕ : (G,X) → (G′, X ′) of Shimura data defines an equivariant morphism
Sh(ϕ) : Sh(G,X) → Sh(G′, X ′) of Shimura varieties, which is a closed immersion if
G→ G′ is injective (Thm 5.16 [Mil04]).

D.3 Example
We want to give some details about the Shimura varieties attached to the data SSh con-
structed in 1.2.2. For the identification of the GSp(R)-conjugacy class of hcm with the
higher Siegel upper lower half space

H±g = {M = A+ iB ∈Mg(C) | A = At, B positive or negative definitive }

we refer further to exercise 6.2 [Mil04].
In addition the data SSh fulfill all the axioms stated in D.1. The validity of (SV 1-6) is
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shown on p. 67 [Mil04] and the validity of (SC) and (CT ) in [Hid04]. The latter two
axioms are important for making the arguments in [MS81] in this case. From (SV 5)
follows in particular that we don’t have to bother about the limits in the definition of
Sh(GSp,H±g ) because we have

Sh(GSp,H±g ) = GSp(Q)\(H±g ×GSp(Af )).

D.4 Connected Shimura varieties
A connected Shimura datum is a pair (G,X+) consisting of a semisimple algebraic
group G over Q and a Gad(R)+-conjugacy class of homomorphisms h : S→ GadR satisfying
axioms (SV 1-3).
The connected Shimura variety Sho(G,X+) associated with a connected Shimura
datum (G,X+) is defined by the inverse limit

Sho(G,X+) = lim←−
Γ

Γ\X+ (D.3)

where Γ runs over the torsion-free arithmetic subgroups of Gad(Q)+ whose inverse image
in G(Q)+ is a congruence subgroup.

If we start with a Shimura datum (G,X) and choose a connected component X+ of X,
we can view X+ as a Gad(R)+-conjugacy class of morphisms h : S → GadR by projecting
elements in X+ to GadR . One can show that (Gder, X+) is a connected Shimura datum.
Further if we choose the connected component Sh(G,X)o of Sh(G,X) containing X+×1,
one has the following compatibility relation

Sh(G,X)o = Sho(Gder, X+). (D.4)

D.5 0-dimensional Shimura varieties
In section 1.2.1 we defined a "Shimura datum" SK = (TK , XK) which is not a Shimura
datum in the above sense because XK has more than one conjugacy class (recall that TK
is commutative). Rather SK is a Shimura datum in the generalized sense of Pink [Pin90]
which we don’t want to recall here. Instead we define the notion of a 0-dimensional
Shimura varieties following [Mil04] which covers all exceptional Shimura data we consider.
We define a 0-dimensional Shimura datum to be a triple (T, Y, h), where T is a torus
over Q, Y a finite set on which T (R)/T (R)+ acts transitively and h : S→ TR a morphism
of algebraic groups. We view Y as a finite cover of {h}. We remark that the axioms
(SV 1− 3) are automatically satisfied in this setup.
The associated 0-dimensional Shimura variety Sh(T, Y, h) is defined to be the inverse
system of finite sets T (Q)\Y ×T (Af )/K with K running over the compact open subgroups
of T (Af ).
A morphism (T, Y, h) → (H,h0) from a 0-dimensional Shimura datum to a Shimura
datum, with H an algebraic torus, is given by a morphism of algebraic groups ϕ : T → H
such that h = ϕR ◦ h0.
If ϕ is such a morphism it defines a morphism Sh(ϕ) : Sh(T, Y, h)→ Sh(H,h0) of Shimura
varieties.
Remark D.2. We have that SK fulfills axiom (SV 5) if and only ifK = Q orK an imaginary
quadratic field (see 3.2 [HP05]).
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D.6 Canonical model of Shimura varieties
Let (G,X) be a Shimura datum. A point x ∈ X is called a special point if there exists a
torus T ⊂ G sucht that hx factors through TR. The pair (T, x) or (T, hx) is called special
pair. If (G,X) satisfies the axioms (SV 4) and (SV 6), then a special point is called CM
point and a special pair is called CM pair.

Now given a special pair (x, T ) we can consider the cocharacter µx of GC defined by
µx(z) = hx,C(z, 1). Denote by E(x) the field of definition of µx, i.e. the smallest subfield
k of C such that µx : Gm,k → Gk is defined.
Let Rx denote the composition

TE(x) ResE(x)/Q(µx)
// ResE(x)/Q(TE(x))

NmE(x)/Q // T (D.5)

and define the reciprocity morphism

rx = Rx(Af ) : A×E(x),f → T (Af ). (D.6)

Moreover every datum (G,X) defines an algebraic number field E(G,X), the reflex field
of (G,X). For the definition we refer the reader to 12.2 [Mil04].
Remark D.3. 1) For the Shimura datum SSh = (GSp,H±g ) (see 1.2.2) we have E(SK) = Q
(cf., p. 112 [Mil04]).
2) For explanations to relations with the reflex field of a CM field (cf., B.3), see example
12.4 b) of pp. 105 [Mil04].
A model Mo(G,X) of Sh(G,X) over the reflex field E(G,X) is called canonical if
1)Mo(G,X) is equipped with a right action of G(Af ) that induces an equivariant isomor-
phism Mo(G,X)C ∼= Sh(G,X), and
2) for every special pair (T, x) ⊂ (G,X) and g ∈ G(Af ) the point [x, g] ∈ Mo(G,X) is
rational over E(x)ab and the action of σ ∈ Gal(E(x)ab/E(x)) is given by

σ[x, g] = [x, rx(ν)g] (D.7)

where ν ∈ A×E(x),f is such that [ν] = σ−1 under Artin’s reciprocity map.
In particular, for every compact open subgroup K ⊂ G(Af ), it follows that Mo

K(G,X) =
Mo(G,X)/K is a model of ShK(G,X) over E(G,X).
Remark D.4. Canonical models are known to exist for all Shimura varieties (see [Mil04]).

D.7 Canonical model of connected Shimura varieties
We refer to 2.7.10 [Del79] for the precise definition of the canonical model Mo(G,X+) of
a connected Shimura variety Sh(G,X+). Here we just want to mention the compatibility

Mo(Gder, X+) = Mo(G,X)o (D.8)

where the latter denotes a correctly chosen connected component of the canonical model
Mo(G,X).



Appendix E

Compatibility of symmetries with
other constructions

We would like to clarify the relation between the different definitions of symmetries of
Bost-Connes systems occurring in the literature.
In [LLN09] or in the framework of endomotives, as in our work, symmetries are always
given by automorphisms, on the other hand e.g. in [CMR05] symmetries occur also in
form of endomorphisms.
Apart from the two natural actions used to define the Bost-Connes system AK in form of
the action of IK = Ô\K/Ô

×
K on YK = ÔK ×Ô×K

Gal(Kab/K) by

s · [ρ, α] = [ρs, [s]−1α]

and the action of Gal(Kab/K) on YK given by

γ · [ρ, α] = [ρ, γα],

there is a third natural action of Ô\K on YK given by

s ? [ρ, α] = [ρs, α]

In this way we get an action of Gal(Kab/K) as automorphisms on C(YK) by
γf([ρ, α]) = f([ρ, γ−1α])

and an action of Ô\K on C(YK) as endomorphisms by

s?f([ρ, α]) =
{
f([ρs−1, α]) , if ρs−1 ∈ ÔK

0 otherwise

The latter action is used for example in [CMR05] to define the symmetries of the corre-
sponding Bost-Connes systems. The two notions of symmetries are related as follows. If
we take s ∈ Ô\K , denote by γ = [s] ∈ Gal(Kab/K) its image under Artin’s reciprocity map
and by s ∈ IK the associated integral ideal, we see that for every function f ∈ C(YK) the
following relation holds

s?f(s · [ρ, α]) = γf([ρ, α]) (E.1)

This explains why both definitions of symmetries induce the same action on extremal
KMSβ-states, for β > 1, and on extremal KMS∞-states evaluated on the arithmetic
subalgebra.
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Remark E.1. One does immediately see that the strict ray class group Cl+K = Gal(Kab/K)/[Ô×K ]
of K is responsible for the fact that Ô\K acts by endomorphisms on C(YK). If the strict
ray class group of K is trivial then Ô\K acts by automorphisms as well and the actions of
Gal(Kab/K) and Ô\K agree, in fact.



Appendix F

On Euler’s formula

In the following we show that the classical Euler totient function can be naturally gener-
alized to arbitrary number fields. This is surely a well-known result.

Lemma F.1. For K a number field define the function ϕK : IK → N by setting

ϕK(f) = |(OK/f)×| (F.1)

Then the following equality holds

N(f) = |OK/f| =
∑
d|f
ϕK(d). (F.2)

Proof. Thanks to the Chinese reminder theorem, it is enough to show ϕK(pk) = N(pk)−
N(pk−1) for all k ≥ 1. Using the fact that OK/pk is a local ring with maximal ideal p/pk we
obtain ϕK(pk) = |OK/pk|− |p/pk| = N(pk)−|p/pk|. The isomorphism (OK/pk)/(p/pk) ∼=
OK/p and the multiplicativity of the norm imply |p/pk| = N(pk−1) which finishes the
proof.
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