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Abstract

In this thesis, we study Kuperberg’s Hopf algebra approach to quantum invariants
of closed 3-manifolds. We show that, for involutive Hopf superalgebras, Kuperberg
invariants extend to the more general class of balanced sutured 3-manifolds, and in
particular, to link complements. To achieve this, we bring many aspects of Reide-
meister torsion theory into the realm of quantum invariants, such as twisting, Fox
calculus and Spinc structures and we make clear to which aspects of Hopf algebra
theory these correspond. When our construction is specialized to an exterior algebra,
we show that it recovers the twisted Reidemeister torsion of sutured 3-manifolds.

Keywords: quantum invariants, Hopf algebras, twisted Reidemeister torsion, twisted
Alexander polynomials, sutured 3-manifolds, Heegaard diagrams.

i



Résumé

Dans cette thèse, on étudie les invariants quantiques des 3-variétés de Kuperberg,
qui sont basées sur les algèbres de Hopf. On montre que, pour les super-algèbres de
Hopf involutives, les invariants de Kuperberg s’étendent à la classe, plus générale,
des 3-variétés suturées balancées et en particulier aux complements d’entrelacs. Pour
accomplir ceci, on relève plusieurs aspects de la théorie des torsions de Reidemeister
au monde des invariants quantiques, tels que la procédure pour tordre des invariants,
le calcul de Fox et les structures Spinc, et on clarifie les aspects de la théorie des
algèbres de Hopf auxquels ils correspondent. Quand notre construction est spécialisée
au cas d’une algèbre extérieure, on montre qu’elle calcule la torsion de Reidemeister
tordue des 3-variétés suturées.

Mots clés: invariants quantiques, algèbres de Hopf, torsion de Reidemeister tordue,
polynômes d’Alexander tordus, 3-variétés suturées, diagrammes de Heegaard.
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Introduction

Low dimensional topology consists of the study of topological objects in dimension
less or equal than four. One of the central objects of study are knots, that is, strings
in three-dimensional space with the ends glued together. The fundamental problem
of knot theory is to determine whether, given two knots in space, one can be deformed
into the other without breaking the chords.

Figure 1: Three knots of which only two are isomorphic.

The other central objects of study are manifolds of dimension three and four,
which are tightly linked between them and with knot theory. In order to study
knots, 3-manifolds or 4-manifolds one needs topological invariants, that is, quantities
associated to the given object that are unchanged after a deformation that preserves
the topology.

For a long period of time, low dimensional topology was studied as a branch of
algebraic topology, that is, through topological invariants such as the fundamental
group and homology theory. As there is no efficient algorithm to compare the funda-
mental groups of distinct knots or 3-manifolds, one usually extracts simpler invariants
from the homology (or the chain complex) of appropriate covering spaces, such as
the Alexander polynomial of knots and, more generally, the Reidemeister torsion of
3-manifolds [Ale28,Rei35]. Such invariants, usually referred as classical invariants,
have a very clear topological meaning and capture a good deal of topological informa-
tion. Moreover, as studied by many people since the 90’s, this information becomes
sharper if one uses twisted versions of these invariants, that is, those associated to
non-abelian covering spaces, see e.g. [FV11a].

Quite unexpectedly, low dimensional topology turned out to be not just a branch
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of algebraic topology. This was evidenced during the 80’s through the seminal work
of Donaldson in dimension four and that of Jones and Witten in dimension three, in
which tight new connections with mathematical physics were found [Don83, Jon85,
Wit89]. The theory of Jones and Witten, and its mathematical formulation by
Reshetikhin-Turaev [RT90, RT91], grew up into a whole new field now known as
quantum topology. Here a central role is played by the notion of topological quantum
field theory (TQFT), as axiomatized by Atiyah [Ati88]. This notion is radically dif-
ferent from anything existing in algebraic topology, notably because the “morphisms"
of the theory are cobordisms instead of the usual continuous functions, and the addi-
tive axiom is replaced by a monoidal axiom. The topological invariants of knots and
3-manifolds derived from quantum topology are referred as quantum invariants.

There exist several mathematical approaches to define quantum invariants of knots
and 3-manifolds, all revolving around the notion of Hopf algebra. Under a condition
called quasi-triangularity, the main example being the quantum groups of Drinfeld
and Jimbo [Dri89], any representation of the Hopf algebra comes equipped with a
solution to the so called quantum Yang-Baxter equation. This easily leads to topolog-
ical invariants of knots and links in S3, the Jones polynomial being the most famous
example [Tur88, RT90]. However, extending these invariants to links in arbitrary
closed 3-manifolds and, in particular, to closed 3-manifolds themselves, is a bit more
complicated. The original approach of Reshetikhin and Turaev relied on a deeper
study of the representation theory of the given Hopf algebra [RT91], in their case a
quantum group, eventually leading to the notion of modular category [Tur94]. This
approach has been the subject of intensive research, as modular categories are rich
mathematical objects with relations to other fields such as physics and quantum com-
puting. It turns out that there is a simpler procedure to define quantum invariants
of closed 3-manifolds, one that relies directly on Hopf algebra theory. This procedure
was introduced by Hennings and Kuperberg independently [Hen96,Kup91,Kup96],
and both rely on the theory of Hopf algebra integrals, which are analogues of the
Haar integral on a Lie group. However, neither of these received as much attention
as the approach of Reshetikhin-Turaev, notably because they do not directly extend
to a TQFT. This has recently been settled for the Hennings approach in [DRGPM18].

As of today, the differences between classical and quantum invariants are not
yet fully understood. Indeed, their difference not only radicates in the mathematics
behind their definition, but rather in the information that they contain. This was
observed in the early days of quantum topology, when the then new invariants lead
to a simple proof of the long-standing Tait conjectures. Later, the sl2 quantum knot
invariants were observed to be related to hyperbolic geometry, leading to the (still
unsolved) volume conjecture of Kashaev and Murakami-Murakami, see e.g. [Mur11].
However, these invariants seem to have no relationship to purely topological prop-
erties of knots, such as the Seifert genus, fiberedness or sliceness, as do classical
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invariants. For closed 3-manifolds, the quantum invariants derived from modular
categories have clearer topological limitations [Fun13] and the invariants of Hennings
and Kuperberg haven’t been studied at all from a topological perspective. These dif-
ferences are quite puzzling if one takes into account that some classical invariants can
be obtained from the methods of quantum topology. This is the case of the Alexander
polynomial of links in S3 [Res92,RS92,Mur92] and the abelian Reidemeister torsion
of closed 3-manifolds [BCGPM16], which can be obtained from the representation
theory of an appropriate quantum group. However, these results rely on the skein
relation characterization of the Alexander polynomial, which completely hides its
topological meaning and thus they give no insight on the possible topological content
of more general quantum invariants.

The aim of this thesis is twofold. On the one hand, we want to develop further
the Hopf algebraic approach to quantum invariants of Kuperberg. Though less devel-
oped than its Reshetikhin-Turaev or Hennings counterparts, it has a more topological
flavour and we believe that it may help clarify some topological aspects of quantum
invariants. On the other hand, we want to better understand Reidemeister torsion as
part of quantum topology. We will see that Kuperberg’s approach, when appropri-
ately extended, allows to give a Hopf algebra theoretic explanation to many aspects
of Reidemeister torsion theory such as twisting, Fox calculus and Spinc structures.
In particular, it allows for a simple way to see classical invariants as twisted quantum
invariants, in the sense of Turaev’s homotopy field theory [Tur00].

Kuperberg invariants

Let H be an arbitrary finite dimensional Hopf algebra over a field K. In [Kup91,
Kup96], Kuperberg constructed for any framed closed oriented 3-manifold (Y, f),
where f is a trivialization of the tangent bundle TY , a topological invariant

ZKup
H (Y, f) ∈ K.

To define this invariant, one first encodes Y in a Heegaard diagram, consisting of a
surface Σ with two sets of pairwise disjoint circles on it. Then the structure maps
of the Hopf algebra are combined with the combinatorics of the Heegaard diagram
to produce a tensor of the Hopf algebra which is then contracted with the Hopf
algebra cointegral and integral. Recall that a right cointegral is an element c ∈ H
characterized up to scalar by c · x = c · ǫ(x) for all x ∈ H , if this relation holds from
both sides one says that H is unimodular. Kuperberg’s invariant is independent of the
framing f when H is involutive (that is, the antipode satisfies S2 = idH), unimodular
and counimodular.

The relation between Kuperberg’s invariant and other quantum invariants is now
more or less understood. Indeed, as recently shown by Chang-Cui [CC19], ZKup

H (Y, f)
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coincides with the Hennings invariants of Y at the Drinfeld double D(H) of H , for any
Hopf algebra H . Now, though the invariants of Hennings and WRT are equivalent
for links in S3, the case of arbitrary closed 3-manifolds is less understood. Indeed,
there is no general procedure to obtain a modular category from the representations
of a non-semisimple ribbon Hopf algebra, and hence there is not a WRT invariant
obtained from an arbitrary Drinfeld double. What is known is that the Hennings
invariant from quantum sl2 at a root of unity coincides with the sl2 WRT invariant,
at least for homology 3-spheres [CKS09]. Since quantum groups are quotients of the
Drinfeld double of its Borel subalgebra, it is reasonable to expect that Kuperberg’s
invariant at Borel parts of quantum groups at roots of unity should be related to
WRT invariants, at least for homology 3-spheres.

Main results

Our first main result, which constitutes Chapter 3, deals with an extension of Ku-
perberg invariants to a wider class of 3-manifolds, namely, the sutured 3-manifolds
introduced by Gabai [Gab83]. By a sutured 3-manifold we mean a pair (M, γ) where
M is a compact oriented 3-manifold-with-boundary and γ ⊂ ∂M is a collection of
pairwise disjoint annuli dividing ∂M into two subsurfaces R±(γ), we say that (M, γ)
is balanced if χ(M,R−(γ)) = 0 among with some other simple conditions. Balanced
sutured 3-manifolds generalize closed 3-manifolds, link complements and Seifert sur-
face complements.

Now consider a finite dimensional Hopf superalgebra H over a field K. Let Aut(H)
be the group of Hopf algebra automorphisms of H . We suppose H is involutive,
unimodular and counimodular, this is the context to define unframed Kuperberg
invariants as mentioned above.

Theorem 1. Let (M, γ) be a balanced sutured 3-manifold endowed with a represen-
tation ρ : π1(M) → Aut(H), a relative Spinc structure s and an orientation ω of
H∗(M,R−(γ);R). Then Kuperberg’s construction can be extended to define a topo-
logical invariant

Zρ
H(M, γ, s, ω) ∈ K

of the tuple (M, γ, ρ, s, ω).

If Y is a closed oriented 3-manifold, then our invariant recovers the original (in-
volutive) Kuperberg invariant ZKup

H (Y ) as follows: let M0 be the complement of the
interior of a closed 3-ball embedded in Y and γ0 be a single annuli in ∂M0. Then
(M0, γ0) is a balanced sutured 3-manifold and if ρtriv denotes the trivial representation
of π1(M0) (that is, ρtriv(x) = idH for all x ∈ π1(M0)), then

Zρtriv

H (M0, γ0, s, ω) = ±ZKup
H (Y ).
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The idea of the construction of the invariant Zρ
H is the following. First, sutured

3-manifolds are represented by sutured Heegaard diagrams, that is, Heegaard dia-
grams in which the Heegaard surface has boundary [Juh06]. Then the invariant of
the above theorem is roughly defined from such a diagram by “twisting" the con-
struction of [Kup91] using the representation ρ. This twisting takes a form of Fox
calculus and is justified by considering the semidirect product K[Aut(H)] ⋉ H . In-
deed, the latter Hopf algebra can be considered as a Hopf group-algebra (with group
Aut(H)), the dual notion of Turaev’s Hopf group-coalgebras [Tur00], and we show
that the group-algebra multiplication reduces to “Fox calculus" over H . Note that
in [Vir05], Virelizier extended Kuperberg’s invariant by using an involutive Hopf G-
coalgebra, leading to an invariant of pairs (Y, ρ) where Y is a closed 3-manifold and
ρ : π1(Y ) → G is a group homomorphism. Our construction can be seen as an ex-
tension of (the dual version of) Virelizier’s construction to sutured 3-manifolds, but
restricted to a semidirect product. It has to be noted that both [Kup91], [Vir05]
assume semisimplicity of the Hopf algebras, hence no extra structure is needed on
3-manifolds.

A relative Spinc structure is a very simple extra piece of structure on (M, γ) (in-
deed, they are parametrized by H1(M ;Z)) and they appear by the following reason:
the semidirect product K[Aut(H)]⋉H may be non-unimodular, even if H is unimod-
ular. The comodulus of the semidirect product is essentially determined by the homo-
morphism rH : Aut(H) → K× characterized by φ(c) = rH(φ)c for any φ ∈ Aut(H),
hence the invariant does not depend on Spinc structures when Im (ρ) ⊂ Ker (rH)
(indeed the Hopf subalgebra K[Ker (rH)]⋉H is unimodular). This is similar to what
happens with Reidemeister torsion (cf. [Tur01] or [FJR11] in the sutured case): the
GL(V )-torsion is normalized with a Spinc structure, but the SL(V )-torsion is inde-
pendent of it. An advantage of Spinc structures is that they are easily represented on
a sutured Heegaard diagram via multipoints as in [Juh06], therefore posing no fur-
ther complexity in computation as opposed to the framings of [Kup96] which would
be necessary in an involutive non-unimodular case. On the other hand, homology
orientations arise in order to fix some sign indeterminacies when the cointegral has
degree one. This is also a phenomenon existing in Reidemeister torsion theory, cf.
[Tur01,FJR11].

A special feature of our construction is that, when H is N-graded, the above
invariants can be lifted to polynomials by a canonical “degree twist". More precisely,
let HM be H with the coefficients extended to the group ring K[H1(M)], that is HM :=
H ⊗K K[H1(M)]. Then there is a canonical “degree" representation h : H1(M ;Z) →
Aut(HM), where x ∈ H1(M) acts on the degree n part of HM by multiplication by
xn. This can be combined with an arbitrary representation ρ : π1(M) → Aut(H) to
define a twisted Kuperberg polynomial

Zρ⊗h
HM

(M, γ) ∈ K[H1(M)].
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This is defined up to unit of K[H1(M)], which can be fixed by picking a Spinc structure
and homology orientation.

Our second main result, constituting Chapter 4, specializes the above construc-
tion to a particular Hopf algebra and relates it to classical invariants. More pre-
cisely, let Λ(V ) be the exterior algebra over a finite dimensional vector space V .
This is a Hopf superalgebra satisfying the hypothesis of our theorem and one has
Aut(Λ(V )) ∼= GL(V ). The homomorphism rΛ(V ) : GL(V ) → K× is the determinant
so Ker (rΛ(V )) = SL(V ). Since Λ(V ) is N-graded, we can define twisted Kuperberg
polynomials having values in K[H1(M)].

Theorem 2. Let (M, γ) be a balanced sutured 3-manifold and let ρ : π1(M) → SL(V )
be an homomorphism. Then the twisted Kuperberg polynomial at H = Λ(V ) reduces
to twisted Reidemeister torsion:

Zρ⊗h

Λ(V )M
(M, γ) = τ (ρ⊗h)−t

(M,R−(γ))

in K[H1(M)]/ ±H1(M).

In particular, our invariant is equivalent to the twisted Alexander polynomials
of Lin and Wada [Lin01, Wad94] if (M, γ) is the sutured manifold associated to a
link complement and H is an exterior algebra. In other words, our procedure of
“degree twisting" Kuperberg invariants leads to powerful invariants containing a lot of
topological information. Indeed, twisted Alexander polynomials can detect mutation,
non-invertibility of some knots, the knot genus and fiberedness [Wad94,KL99,FV11b,
FV15]. The relative torsion of (M,R−(γ)) is also an interesting invariant for Seifert
surface complements as shown in [Alt12]. However, if M is the sutured manifold
associated to a closed 3-manifold Y (that is M = Y \ B3 and γ = S1 ⊂ ∂B where
B is a 3-ball), then τ(M,R−) is uninteresting. In particular, our theorem does not
recovers the absolute torsion τ(Y ) as in [BCGPM16]. This indicates that Kuperberg’s
construction admits a further refinement in the case of closed 3-manifolds.

Theorem 2 suggests that Kuperberg invariants may be categorified with the meth-
ods of Lagrangian Floer homology. Indeed, it is shown in [FJR11] that the Reide-
meister torsion τ 1⊗h(M,R−) is the Euler characteristic of the sutured Floer homology
of Juhász [Juh06]. That Kuperberg invariants may be categorified was indeed sug-
gested by Crane-Frenkel themselves in their influential paper [CF94] which started
the categorification program, though with a more algebraic machinery.

A first version of the above results appeared in [LN19a]. There we introduced
relative notions of the Hopf algebra cointegral and integral, where a relative cointegral
in a Hopf algebra J is a map c : A → J satisfying some properties analogue to that
of a cointegral, but relative to a Hopf subalgebra A ⊂ J . Similarly, we introduced
relative integrals µ : J → B, where B ⊂ J is another Hopf subalgebra. Under
certain conditions, we showed that an involutive Hopf algebra endowed with these

xi



relative structures produced a topological invariant of balanced sutured 3-manifolds
endowed with an appropriate representation of H1(M). We found this structure on
the Borel part J of quantum gl(1|1) and showed that the resulting invariant was the
abelian relative Reidemeister torsion. In our second paper [LN19b], we considerably
improved a particular case of this approach. We restricted to a semidirect product
J = K[Aut(H)] ⋉H and took the subalgebra A = K[Aut(H)]. However, instead of
using relative cointegrals, we considered J as an Aut(H)-graded Hopf algebra, so we
had graded cointegrals for free as shown in [Vir02] (in the dual case). Moreover, we
realized that Fox calculus only comes from the semidirect product structure, and is
not special to the Borel of quantum gl(1|1) as we initially considered.

The manuscript is organized as follows. Chapter 1 contains the necessary prelim-
inaries on Hopf algebras, namely, we discuss the involutivity condition, the theory of
Hopf algebra integrals, and Hopf group-algebras from semidirect products. In Chap-
ter 2 we define sutured 3-manifolds, sutured Heegaard diagrams and extended Hee-
gaard diagrams. Chapter 3 is the body of this thesis. Here we construct the invariant
of Theorem 1. We treat first the unimodular case, that is, when Im (ρ) ⊂ Ker (rH)
and then we treat the general case using Spinc structures. We end this chapter with
the definition of the twisted Kuperberg polynomials. Finally, in Chapter 4 we recall
some facts from Reidemeister torsion theory and prove Theorem 2.
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Chapter 1

Hopf superalgebras

In this chapter, we introduce the notions from Hopf algebra theory that we will use
throughout this thesis. In Section 1.1 we define (involutive) Hopf superalgebras,
we give several examples and we explore further the involutivity condition through
bosonization and its relation to semisimplicity. In Section 1.2 we define integrals and
cointegrals of Hopf algebras, which are the main ingredients in the construction of
3-manifold invariants. We end with a short discussion on Hopf G-algebras, the dual
notion of Turaev’s Hopf G-coalgebras, and we give a good supply of examples.

1.1 Basic notions and examples

In what follows, we let K be a field. Vector spaces will be assumed to be over K.

1.1.1 Super vector spaces

Definition 1.1.1. A super vector space consists of a vector space V endowed with a
direct sum decomposition V = V0 ⊕ V1. A vector v ∈ V is said to be homogeneous
if v ∈ V0 or v ∈ V1. If v ∈ Vi, we say that v has degree i, denoted |v| = i. A linear
map f : V → W is said to have degree k if f(Vi) ⊂ Wi+k for i = 0, 1. Both notions of
degree are considered mod 2. We denote by SVectK the category whose objects are
super vector spaces and whose morphisms are degree zero linear maps.

The category SVectK has some extra structure, namely, it is a symmetric monoidal
category. This means that there is a tensor product ⊗, a unit object 1 and a family
of isomorphisms τV,W : V ⊗W → W⊗V satisfying a bunch of axioms. The symmetry
condition refers to the fact that τW,V ◦τV,W = idV⊗W . Indeed, if V,W are super vector
spaces, then the vector space tensor product V ⊗K W is a super vector space with

(V ⊗W )i :=
⊕

j

Vj ⊗Wi−j
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where the indices are taken mod 2. The unit object is K, considered as a super vector
space concentrated in degree zero. The symmetry

τV,W : V ⊗W → W ⊗ V

is defined on homogeneous elements by

τV,W : V ⊗W → W ⊗ V

v ⊗ w 7→ (−1)|v||w|w ⊗ v.

Notation 1.1.2. Let V be a super vector space. For each n ≥ 1 and 1 ≤ i ≤ n− 1
we can define τi : V

⊗n → V ⊗n by τi := id
⊗(i−1)
V ⊗ τV,V ⊗ id

⊗(n−i−1)
V where τV,V is the

above symmetry. It is not difficult to see that the correspondence σi 7→ τi defines a
representation Sn → GLSVectK

(V ⊗n), where σi is the usual transposition (i i+1) (the
latter denotes automorphisms in the category SVectK). We denote by Pτ the image
of τ ∈ Sn under this map. We also denote by P ′

τ the unsigned permutation (i.e. we
use the symmetry c of VectK instead). Thus if v1, . . . , vn ∈ V have degree one, then

Pτ (v) = sign (τ)vτ(1) ⊗ . . .⊗ vτ(n) = sign (τ)P ′
τ (v)

where v = v1 ⊗ . . .⊗ vn.

1.1.2 Graphical notation

Let S be a symmetric monoidal category, with tensor product ⊗, unit 1 and symmetry
isomorphisms cV,W : V ⊗W → W ⊗ V for any objects V,W of S (in this thesis we
will restrict to S = SVectK). We will represent morphisms in S by diagrams to be
read from bottom to top. For example, if f : U → V and g : V → W are morphisms
in S we depict f and gf respectively as follows:

f

f

g

U

V

W
V

U

If f : V → W and g : X → Y are two morphisms, then f ⊗ g is represented by
juxtaposition:

f

W

V X

Y

g
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If V,W are two objects of S, the symmetry isomorphism cV,W is depicted by

V W

VW

There is no over-crossing in the above picture since we work with symmetric
monoidal categories (as opposed to braided monoidal categories).

1.1.3 Hopf superalgebras

By a superalgebra we mean a K-algebra (A,m, η), where m : A ⊗ A → A is the
multiplication and η : K → A is the unit, in which A has a super-vector space
structure satisfying m(Ai ⊗ Aj) ⊂ Ai+j for any i, j. If A,B are superalgebras, then
A⊗ B is a superalgebra with the product defined over homogeneous elements by

(a⊗ b)(a′ ⊗ b′) := (−1)|b||a
′|aa′ ⊗ bb′.

Definition 1.1.3. A Hopf superalgebra is a superalgebra (H,m, η) endowed with
degree zero linear maps ∆ : H → H ⊗H, ǫ : H → K and S : H → H satisfying the
following axioms:

1. ∆ is a superalgebra morphism for the above superalgebra structure on H ⊗H .

2. ǫ is a superalgebra morphism, where K is concentrated in degree zero.

3. One has

(ǫ⊗ idH)∆ = (idH ⊗ ǫ)∆ = idH .

4. The map S satisfies

m(idH ⊗ S)∆ = ηǫ = m(S ⊗ idH)∆.

We call ∆ the coproduct, ǫ the counit and S the antipode. We will both use
Sweedler’s notation for the coproduct, that is, we write ∆(x) = x(1) ⊗ x(2) omitting
the sumation sign, as well as the following graphical notation for the Hopf algebra
tensors:

η = ǫ = S =m = ∆ =, ,
bc

,
bc

, bc .
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This way, we can use the graphical notation to write the Hopf superalgebra ax-
ioms. For example, the fact that ∆ is an algebra morphism is written as

=

where we used the symmetry of SVectK on the right. The Hopf algebra axioms
imply that the antipode is an algebra and coalgebra antihomomorphism, that is

S(xy) = (−1)|x||y|S(y)S(x), ∆(S(x)) = (−1)|x(1)||x(2)|S(x(2))⊗ S(x(1))

for any homogeneous x, y ∈ H .

Remark 1.1.4. Any (ungraded) Hopf algebra can be seen as a Hopf superalgebra
concentrated in degree zero. In what follows we reserve the term Hopf algebra exclu-
sively for the ungraded case.

Definition 1.1.5. We say that H is commutative if m = m◦τH,H and cocommutative
if ∆ = τH,H ◦ ∆ where τH,H is the symmetry map. We say that H is involutive if
S2 = idH .

Lemma 1.1.6. A commutative or cocommutative Hopf superalgebra is involutive.

Proof. This is standard (see e.g. [Rad12]) but we give a proof for completeness. By
definition, the antipode S is characterized by

S(x(1))x(2) = ǫ(x)

for any x ∈ H , where we use Sweedler’s notation ∆(x) = x(1) ⊗ x(2). Applying S−1

on both sides and assuming H cocommutative, we get

S−1(x(1))x(2) = ǫ(x).

Thus, S−1 is also an antipode and therefore S = S−1 i.e. S2 = idH by uniqueness of
the antipode. A similar argument applies if H is commutative.

Definition 1.1.7. If (H,m, η,∆, ǫ, S) is a finite dimensional Hopf superalgebra, then
the dual vector space H∗ becomes a Hopf superalgebra if we set H∗

i = (Hi)
∗ for i = 0, 1

and we dualize all structure maps, that is, mH∗ := ∆∗, ηH∗ := ǫ∗,∆H∗ := m∗, ǫH∗ := η∗

and SH∗ := S∗. This requires an identification (H ⊗H)∗ ∼= H∗ ⊗H∗ which we take
as

(f ⊗ g)(x⊗ y) := f(x)⊗ g(y).
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Note that there is no sign in the latter equation, this ensures that ∆H∗ is a
superalgebra morphism. Note also that this is the opposite of the convention used in
[KV19].

Finally, we give a name to some very special elements of a Hopf superalgebra.

Definition 1.1.8. An element g ∈ H is said to be group-like if ∆(g) = g ⊗ g and
ǫ(g) = 1. An element x ∈ H is said to be primitive if ∆(x) = 1⊗ x+ x⊗ 1.

The sets of group-like and primitive elements of H are respectively denoted by
G(H) and P (H). It is easy to see that G(H) is a group with the multiplication of H ,
P (H) is a Lie superalgebra with the bracket [x, y] := xy−(−1)|x||y|yx on homogeneous
x, y ∈ H and that G(H) acts on P (H) by conjugation.

1.1.4 Examples

We now give several examples of involutive Hopf superalgebras. The three examples
below are cocommutative and hence involutive.

Example 1.1.9. Let G be a finite group. Let K[G] be the K-vector space with basis
the elements of G. This is an algebra if we extend the multiplication of G by linearity.
It is a Hopf algebra if we set

∆(g) = g ⊗ g, ǫ(g) = 1, S(g) = g−1,

for all g ∈ G.

Example 1.1.10. Let V be a finite dimensional vector space. The exterior algebra
Λ(V ) on V is the quotient of the tensor algebra T (V ) = ⊕n≥0V

⊗n (where V ⊗0 = K)
by the ideal generated by the elements of the form v ⊗ w + w ⊗ v with v, w ∈ V .
This becomes a superalgebra by letting V ⊂ Λ(V ) be in degree one and it is a Hopf
superalgebra if we set

∆(v) = 1⊗ v + v ⊗ 1, ǫ(v) = 0, S(v) =− v

for any v ∈ V and extend ∆, ǫ (resp. S) by letting them be superalgebra homo-
morphisms (resp. antihomomorphism). More generally, if g is a Lie superalgebra,
then the universal enveloping algebra U(g) is a cocommutative Hopf superalgebra
constructed in a similar way, only that one takes the quotient of T (g) by the ideal
generated by the [x, y] − x ⊗ y + (−1)|x||y|y ⊗ x for x, y ∈ g. The exterior algebra
is obtained when g is a trivial Lie algebra concentrated in degree one. However, we
will mainly be interested in finite dimensional examples, and exterior algebras are
the only ones among enveloping algebras.
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Example 1.1.11. Let G be a finite group acting on a finite dimensional vector space
V . Then there is a semidirect product Hopf superalgebra H = K[G] ⋉ Λ(V ). Here
the product is characterized by the fact that K[G] and Λ(V ) are Hopf subalgebras,
and

g · v = g(v) · g

for any g ∈ G, v ∈ V , where v → g(v) is the action of g on V and · denotes the
product of H .

Remark 1.1.12. If K is algebraically closed of characteristic zero, the above ex-
amples exhaust the class of cocommutative Hopf superalgebras. This is a theorem
originally due to Milnor-Moore and subsequently refined by Kostant and Cartier-
Gabriel, see [Car07, Theorem 3.8.2] or [AEG01, Theorem 2.3.4]. This states that if
H is a cocommutative Hopf superalgebra over an algebraically closed field K with
char (K) = 0, then there is an isomorphism of Hopf superalgebras

H ∼= K[G(H)]⋉ U(P (H))

where U(P (H)) is the universal enveloping algebra of the Lie superalgebra P (H).
The above semidirect product is finite dimensional only when G(H) is finite and
P (H) is trivial, as in Example 1.1.11.

In positive characteristic there are much more examples of finite dimensional
cocommutative Hopf (super)algebras. Indeed, if g is an arbitrary finite dimensional
p-restricted Lie (super)algebra over a field K with char (K) = p > 0, then the restricted
enveloping algebra U res(g) is a finite dimensional cocommutative Hopf (super)algebra.
For example, the Hopf algebra K[X ]/(Xpn) (in which X is primitive) is among this
class for any n ≥ 1.

Of course, there are (finite-dimensional) involutive Hopf superalgebras which are
neither commutative nor cocommutative. The quantum group Uq(gl(1|1)) at a root
of unity (see e.g. [Sar15]) is such an example, for another one see [KV19, Example
5.6].

1.1.5 Bosonization of Hopf superalgebras

We describe a useful procedure to pass from a Hopf superalgebra to a Hopf algebra
and conversely. We follow [AEG01].

Let H = (H0 ⊕H1, m, 1,∆, ǫ, S) be a Hopf superalgebra. Let g : H → H be the
Hopf automorphism defined by the degree, that is, g(x) := (−1)|x|x for homogeneous
x ∈ H . Let H ′ be the semidirect product Hopf algebra K[Z/2Z] ⋉ H , where Z/2Z
acts over H by g. We use the same notation for the structure maps of H ′. Write

∆(h′) = ∆0(h
′) + ∆1(h

′)
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where ∆i(h
′) ∈ H ′ ⊗H ′

i for i = 0, 1 and homogeneous h′ ∈ H ′. Now set

∆′(h′) := ∆0(h
′)− (−1)|h

′|(g ⊗ 1)∆1(h
′), S ′(h′) := g|h

′|S(h′).

Then (H ′, m, 1,∆′, S ′) is an ordinary (ungraded) Hopf algebra.

Definition 1.1.13. Given a Hopf superalgebra H , the bosonization of H is the Hopf
algebra (H ′, m, 1,∆′, ǫ, S ′) constructed above.

Example 1.1.14. Suppose H = K[X ]/(X2) is an exterior algebra in one generator
(of degree one). It is easy to see that the bosonization of H is the Hopf algebra H ′

with two generators K,X satisfying KX = −XK,X2 = 0, K2 = 1 and coproduct
defined by

∆(K) = K ⊗K, ∆(X) = X ⊗ 1 +K ⊗X.

In other words, the bosonization of an exterior algebra is the Borel part of Uq(sl2) at
q = i. Thus, the bosonization of a commutative and cocommutative Hopf superalge-
bra can be non-commutative and non-cocommutative.

Proposition 1.1.15. The representation categories of a Hopf superalgebra and of its
bosonization are monoidally equivalent.

Here, a representation of a Hopf superalgebra is a super vector space V = V0⊕V1

together with an action H⊗V → V that preserves the degree. It is easy to see that V
extends to a representation (still denoted V ) of the semidirect product K[Z/2Z]⋉H .
Now, let V ′ be the representation of this semidirect product, but where we forget
the mod 2 grading. Then one can prove that the correspondence V 7→ V ′ defines the
desired equivalence of monoidal categories.

Thus, for the purposes of representation theory, there is not an essential difference
in working with a Hopf superalgebra H or its bosonization H ′. However, in Kuper-
berg’s approach to 3-manifold invariants, involutivity makes things much simpler.
Noting that (S ′)2(h′) = (−1)|h

′|S2(h′) for any homogeneous h′ ∈ H we see that if H
is involutive and H1 6= 0, then H ′ is non-involutive. Thus, for the purpose of Ku-
perberg’s 3-manifold invariants, it is simpler to work with Hopf superalgebras rather
than their bosonizations.

1.1.6 Involutivity and semisimplicity

We now discuss some important consequences of the involutivity condition.

Theorem 1.1.16. ([LR88a,LR88b]) Let H be a finite dimensional (ungraded) Hopf
algebra over a field of characteristic zero. Then H is involutive if and only if H is
semisimple. This extends to positive characteristic as follows: H is involutive and
dim(H) 6= 0 if and only if H is semisimple and cosemisimple.
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As far as the author knows, all examples of semisimple Hopf algebras (in charac-
teristic zero) are somehow built from group algebras. Therefore, no interesting Hopf
algebras (for our purposes) will be found in such case. Fortunately, the aforemen-
tioned theorem of Larson-Radford is no longer true for Hopf superalgebras. Indeed,
the opposite holds [AEG01, Corollary 3.1.2]:

Proposition 1.1.17. If H = H0 ⊕H1 is a finite dimensional involutive Hopf super-
algebra over a field of characteristic zero, then H is non-semisimple if and only if
H1 6= 0.

Proof. We sketch the proof given in [AEG01]. If H1 = 0, then H is semisimple
by the theorem above. For the converse, let H ′ be the bosonization of H . If H is
involutive, then (S ′)2(x) = (−1)|x|x so H ′ is non-involutive if H1 6= 0. Therefore,
Larson-Radford’s theorem implies that H ′ is non-semisimple and hence so is H , since
their representation categories are equivalent by Proposition 1.1.15.

1.2 Integrals and cointegrals

We now turn to introduce one of the fundamental notions of Hopf algebra theory, that
of cointegrals and integrals. This notion has its origins in the theory of Lie groups,
where the property of right invariance of the Haar integral can be appropriately
abstracted leading to the notion of Hopf algebra integral. We begin by giving the basic
definitions, and then we discuss the unimodularity condition and some properties.

1.2.1 Definitions and examples

Definition 1.2.1. A right cointegral in a finite dimensional Hopf superalgebra H is
an element cr ∈ H such that

cr · x = cr · ǫ(x)

for all x ∈ H . A left cointegral of H is defined as a right cointegral of Hop. A right
integral is an element µr ∈ H∗ such that

(µr ⊗ idH)∆(x) = µr(x)1H

for all x ∈ H . Equivalently, a right integral over H is the same as a right cointegral
of H∗.

Theorem 1.2.2 ([LS69]). If H is a finite dimensional Hopf superalgebra over an
arbitrary field K, then there is a right cointegral and it is unique up to scalar.

By applying this theorem to Hop or H∗ one also obtains existence and uniqueness
(up to scalar) of left cointegrals and right or left integrals.
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Example 1.2.3. Let G be a finite group. Then cG :=
∑

g∈G g is a two-sided cointegral
in K[G]. The functional defined by µ(g) := δg,e for g ∈ G is a two-sided integral of
K[G].

Example 1.2.4. Let Λ(V ) be the exterior algebra over a finite-dimensional vector
space V . Let X1, . . . , Xn be a basis of V . Then the product cV := X1 ∧ · · · ∧Xn is a
two-sided cointegral and the functional defined by µ(X i1

1 ∧ · · · ∧X in
n ) = δi1,1 . . . δin,1

is a two-sided integral over Λ(V ).

Example 1.2.5. Let G be a finite group acting on a finite dimensional vector space
V . Let H = K[G]⋉Λ(V ) as in Example 1.1.11. Let cG, and cV be the cointegrals of
K[G] and Λ(V ) respectively, as defined above. Then

cl := cG · cV , cr := cV · cG

are respectively a left cointegral and a right cointegral of H . However, noting that
g(cV ) = det(g)cV for any g ∈ G, one has

cl = cG · cV =
∑

g∈G

g · cV

=
∑

g∈G

g(cV ) · g

=
∑

g∈G

det(g)cV · g

which is different from cr, even up to a scalar, provided det(g : V → V ) 6= 1 for some
g ∈ G. Thus, a left cointegral is not a right cointegral in such a case. The integral of
H is given by µK[G] ⊗ µΛ(V ), which is two-sided (since H is cocommutative).

1.2.2 Unimodularity

As shown in the last section, it is not always true that a left cointegral is also a right
cointegral, and similarly for integrals. We now turn to discuss this issue.

Definition 1.2.6. A Hopf superalgebra H is said to be unimodular if any right
cointegral is also a left cointegral. We say that H is counimodular if H∗ is unimodular.

Example 1.2.7. Group-algebras and exterior algebras are always unimodular and
counimodular. If a finite group G acts over a finite dimensional vector space V
through an homomorphism ϕ : G → GL(V ), then the semidirect product K[G]⋉Λ(V )
is unimodular if and only if ϕ(G) ⊂ SL(V ) as shown in Example 1.2.5.

Remark 1.2.8. By Theorem 1.1.16, a finite dimensional (ungraded) involutive Hopf
algebra H over a characteristic zero field is semisimple and hence unimodular. How-
ever, an involutive Hopf superalgebra may be non-unimodular as Example 1.2.5
shows.
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We now study the action of the group of Hopf algebra automorphisms over coin-
tegrals.

Definition 1.2.9. Let cr be a right cointegral in H and let α ∈ Aut(H). Clearly,
α(cr) is a right cointegral so by uniqueness, there is a scalar rH(α) ∈ K× such that

α(cr) = rH(α)cr.

This defines a group homomorphism rH : Aut(H) → K×. Note that if µr is a right
integral normalized by µr(cr) = 1, then rH can also be defined by

rH(α) = µr(α(cr)).

Remark 1.2.10. The homomorphism rH can be thought as the distinguished group-
like of the Hopf G-algebra H associated to K[G]⋉H with G = Aut(H), see Section
1.3 below. Therefore, if rH 6= 1, H is non-unimodular even if H is unimodular.

Example 1.2.11. Let Λ(V ) be the exterior algebra on a finite dimensional vector
space V . Any automorphism of Λ(V ) defines a linear isomorphism over its subspace
of primitive elements, which is V . Conversely, any linear isomorphism of V extends
to a Hopf automorphism of Λ(V ) so Aut(Λ(V )) ∼= GL(V ). Recall from Example
1.2.4 that cV := X1 ∧ · · · ∧Xn is a cointegral of Λ(V ), where X1, . . . , Xn is any basis
of V and that

α(cV ) = α(X1) ∧ · · · ∧ α(Xn) = det(α)X1 ∧ · · · ∧Xn = det(α)cV

for any α ∈ Aut(Λ(V )). Thus, rΛ(V ) : GL(V ) → K× is just the determinant.

Proposition 1.2.12. Let H be a finite-dimensional unimodular Hopf superalgebra
and c be its two-sided cointegral. Then the following holds:

1. S(c) = (−1)|c|c,

2. ∆(c) = ∆op(c),

3. µ ◦ α = rH(α)µ for any α ∈ Aut(H), where rH is defined as above.

Proof. The first two properties are standard, cf. [Rad12, Chapter 10]. The third one
follows from uniqueness of integrals: if µr is a right integral, then µr ◦ α = r′H(α)µr

for some scalar r′H(α) ∈ K×. Evaluating on cr gives

µr(rH(α)cr) = µr(α(cr)) = r′H(α)µr(cr)

and since µr(cr) 6= 0, the equality rH(α) = r′H(α) follows.

Remark 1.2.13. Note that a Hopf algebra is semisimple if and only if ǫ(cr) 6= 0, see
[LS69, Proposition 3]. This implies that rH(α) = 1 for any α ∈ Aut(H). Note further
that if H is semisimple and the base field has characteristic zero, then Aut(H) is a
finite group by [Rad90].
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1.3 Hopf G-algebras

All the concepts introduced so far admit a graded version, where the grading group
may be an arbitrary group G. This is the theory of Hopf G-coalgebras introduced by
Turaev [Tur00] in order to build homotopy field theories, and further developed by
Virelizier [Vir02]. This theory can be seen as an “equivariant" Hopf algebra theory.
Here we prefer to work with the dual notion of a Hopf G-algebra, since semidirect
products provide a general class of examples. All the results of [Vir02] apply to our
setting.

1.3.1 Definitions and basic properties

Definition 1.3.1. Let G be a group with neutral element denoted by 1G. A Hopf
G-algebra is a family of coalgebras H = {(Hα,∆α, ǫα)}α∈G indexed by α ∈ G endowed
with coalgebra morphisms

mα1,α2 : Hα1 ⊗Hα2 → Hα1α2 ,

a unit 1 ∈ H1G and maps Sα : Hα → Hα−1 satisfying graded versions of the associa-
tivity, unitality and antipode axioms (see [Vir02] for the dual notion). Note that H1G

is a Hopf algebra in the usual sense. We say that H is involutive if Sα−1Sα = idHα

for each α ∈ G. We say that H is of finite type if each Hα is finite dimensional. If
H is of finite type, a right cointegral is a family c = {cα}α∈G, where cα ∈ Hα for each
α ∈ G, satisfying

cα1 · x = ǫα2(x) · cα1α2

for all α1, α2 ∈ G and x ∈ Hα2 . Hopf G-superalgebras are defined in a similar way,
where each Hα is a super-coalgebra and the multiplication involves a (Koszul) sign
when appropriate.

Let H = {Hα}α∈G be a finite type Hopf G-algebra. Since the dual of a Hopf
G-algebra is a Hopf G-coalgebra, the existence and uniqueness theorems of integrals
of [Vir02] have analogous statements in the G-algebra case. In particular, there exists
a unique family g∗ = {g∗α}α∈G where g∗α ∈ H∗

α satisfying

x · cα2 = cα1α2 · g
∗
α1
(x)

for all x ∈ Hα1 and α1, α2 ∈ G. We call g∗ the comodulus of H .

1.3.2 The semidirect product case

Now let H be a finite dimensional Hopf (super)algebra with automorphism group
G. Recall that the semidirect product K[G] ⋉ H is a Hopf algebra with the tensor
product coalgebra structure and with the algebra structure given by α · x = α(x) · α
for α ∈ G, x ∈ H .
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Proposition 1.3.2. Let G = Aut(H). If

Hα := {x · α | x ∈ H} ⊂ K[G]⋉H

then H := {Hα}α∈G is a Hopf G-algebra with the structure morphisms induced from
the semidirect product. A right cointegral is given by cα := cr · α ∈ Hα where cr is a
right cointegral of H. The comodulus of H is given by

g∗α(x · α) := rH(α)g
∗
1(x)

for x ∈ H,α ∈ G, where g∗1 ∈ H∗ is the comodulus of H.

Here, as usual, rH : Aut(H) → K× is the homomorphism characterized by α(cr) =
rH(α)cr.

Proof. That H is a Hopf G-algebra follows from the definitions, for instance, if xα1 ∈
Hα1 , x

′α2 ∈ Hα2 then

(xα1)(x
′α2) = x(α1(x

′))α1α2 ∈ Hα1α2 .

For the second assertion, let xα2 = xα2 ∈ Hα2 then

cα1 · xα2 = crα1xα2 = crα1(x)α1α2 = crǫ(α1(x))α1α2 = crǫ(x)α1α2

= cα1α2ǫα2(xα2)

so that (cr · α) is a right integral in H . For the third assertion, let xα1 = xα1 ∈ Hα1

(x ∈ H) then one has

xα1 · cα2 = (xα1)(crα2) = xα1(cr)α1α2 = rH(α1)xcrα1α2

= rH(α1)g
∗
1(x)crα1α2

proving the assertion.

In particular, if H is unimodular, the comodulus of H is g∗α = rH(α)ǫα, see Remark
1.2.10.
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Chapter 2

Sutured 3-manifolds

In this chapter we recall some notions of sutured manifold theory. We start by
defining sutured manifolds and give some examples in Section 2.1. In Section 2.2 we
explain how these manifolds are represented using Heegaard diagrams and we state
the strong form of the Reidemeister-Singer theorem, following [JTZ12]. In Section 2.3,
we define extended Heegaard diagrams and extend the Reidemeister Singer theorem
to this setting, following [LN19a]. We end with a discussion on homology orientations,
as in [FJR11].

In what follows, all surfaces and 3-manifolds will be assumed to be compact
and oriented, unless explicitly stated. If the boundary of a surface or 3-manifold
is considered as an oriented manifold, we will always assume it has the (outward
pointing) induced orientation.

2.1 Balanced sutured 3-manifolds

Sutured manifolds were introduced by Gabai in order to study foliations of 3-manifolds
[Gab83]. We use a slightly less general definition, as in [Juh06,JTZ12].

Definition 2.1.1. A sutured manifold is a pair (M, γ) where M is a 3-manifold-
with-boundary and γ is a collection of pairwise disjoint annuli contained in ∂M .
Each annuli in γ is supposed to be the tubular neighborhood of an oriented simple
closed curve, called a suture, the set of which is denoted by s(γ). We further suppose
that each component of R(γ) := ∂M \ int (γ) is oriented and we require that each
(oriented) component of ∂R(γ) is oriented-parallel to a suture. We denote by R+(γ)
(resp. R−(γ)) the union of the components of R(γ) whose orientation coincides (resp.
is opposite) with the induced orientation of ∂M .

Note that the last condition in the above definition implies that for each annuli
A in γ, one component of ∂A is contained in R−(γ) while the other is contained in
R+(γ).
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Definition 2.1.2. A balanced sutured manifold is a sutured manifold (M, γ) in which
M has no closed components, χ(R−(γ)) = χ(R+(γ)) and every component of ∂M
has at least one suture.

If M has no closed components and every component of ∂M contains a suture (a
proper sutured manifold as in [JTZ12]), then s(γ) determines R±(γ). Thus, we only
need to specify s(γ) in order to define a balanced sutured manifold.

We now give some examples of balanced sutured manifolds.

Example 2.1.3. Pointed closed 3-manifolds: consider a closed 3-manifold Y together
with a basepoint p ∈ Y . Then if B is a closed ball neighborhood of p in Y , the
complement Y \ int (B) becomes a balanced sutured 3-manifold if we let s(γ) be a
single oriented simple closed curve on ∂B. Both surfaces R− and R+ are disks in this
case. We denote this sutured manifold by Y (1). Note that a pointed diffeomorphism
between pointed closed 3-manifolds is equivalent to a diffeomorphism between the
associated sutured 3-manifolds.

Example 2.1.4. Link complements: let L be a link in a closed 3-manifold Y and let
N(L) be a closed tubular neighborhood of L. Then Y \int (N(L)) becomes a balanced
sutured manifold if we put two oppositely oriented meridians on each component of
∂N(L). We denote this sutured 3-manifold by Y (L). Here R+ consist of one annulus
component for each component of L and similarly for R−.

Example 2.1.5. Seifert surface complements: Let S be a compact oriented surface-
with-boundary with no closed components which is embedded in a closed 3-manifold
Y and let N(S) ∼= S × [−1, 1] be a closed tubular neighborhood of S in Y . Then
Y \ int (N(S)) is a balanced sutured manifold if we let s(γ) = ∂S × {0}, γ = ∂S ×
[−1, 1], R+ = S × {1} and R− = S × {−1}.

2.2 Heegaard diagrams

We now describe how to represent sutured manifolds via sutured Heegaard diagrams
as in [Juh06, Sect. 2]. We denote by I the interval [−1, 1]. By a circle in a surface
we will always mean an embedded simple closed curve.

Definition 2.2.1. A sutured Heegaard diagram is a tuple H = (Σ,α,β) consisting
of the following data:

1. A compact oriented surface-with-boundary Σ,

2. A set α = {α1, . . . , αn} of pairwise disjoint embedded circles in int (Σ),

3. A set β = {β1, . . . , βm} of pairwise disjoint embedded circles in int (Σ).

14



A sutured Heegaard diagram H = (Σ,α,β) defines a sutured 3-manifold, denoted
MH, as follows: attach 3-dimensional 2-handles to Σ× I along the curves αi × {−1}
for each i = 1, . . . , n and along the curves βj × {1} for j = 1, . . . , m. Then let
s(γ) := ∂Σ×{0} and γ := ∂Σ×I. We orient MH by extending the product orientation
of Σ× I to the 2-handles. Note that the surface R− (resp. R+) is obtained by doing
surgery on Σ along α (resp. β).

α

βΣ

Figure 2.1: A sutured Heegaard diagram H = (Σ, α, β) and the associated sutured
manifold MH. The arrows in the picture indicate where the 2-handles are to be glued.
For this particular diagram, if one thinks that Σ is embedded in S3, then it is easy
to see that the 2-handles can be attached inside S3. Thus MH ⊂ S3, indeed, MH is
diffeomorphic to the left trefoil complement.

Remark 2.2.2. The manifold MH could also be constructed in the following way:
first, attach n 3-dimensional 1-handles to R− × I along R− × {1} so that the αi

become the belt circles of these 1-handles. The upper boundary of the manifold thus
obtained can be identified with Σ. Then, attach m 3-dimensional 2-handles along the
curves βi ⊂ Σ. The resulting manifold is MH. Thus, a sutured Heegaard diagram
specifies a handlebody decomposition of MH relative to R−×I, where the handles are
attached in increasing order according to their index. In other words, it corresponds
to a self-indexing Morse function on MH (see [Mil65]).

Definition 2.2.3. We say that a sutured Heegaard diagram (Σ,α,β) is balanced if
|α| = |β| and every component of Σ \ α contains a component of ∂Σ (and similarly
for Σ \ β).

Proposition 2.2.4 ([Juh06, Prop. 2.9]). Let H = (Σ,α,β) be a sutured Heegaard
diagram. Then the sutured manifold MH is balanced if and only if H is balanced.
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Given a sutured manifold (M, γ), we will need Heegaard diagrams to be em-
bedded in M . We follow [JTZ12, Section 2], in which embedded diagrams and the
Reidemeister-Singer theorem for these is treated in detail.

Definition 2.2.5. Let (M, γ) be a sutured manifold. An (embedded) sutured Hee-
gaard diagram of (M, γ) is a tuple H = (Σ,α,β) consisting of the following data:

1. An embedded oriented surface-with-boundary Σ ⊂ M such that ∂Σ = s(γ) as
oriented 1-manifolds,

2. A set α = {α1, . . . , αn} of pairwise disjoint embedded circles in int (Σ) bounding
disjoint disks to the negative side of Σ,

3. A set β = {β1, . . . , βm} of pairwise disjoint embedded circles in int (Σ) bounding
disjoint disks to the positive side of Σ.

We further require that if Σ is surgered along the disks with boundary α (resp. β)
inside M , then we get a surface isotopic to R− (resp. R+) relative to γ. Thus, M can
be written as M = Uα ∪Uβ with Uα ∩Uβ = Σ where Uα (resp. Uβ) is homeomorphic
to the sutured manifold obtained from R− × I (resp. R+ × I) by gluing 1-handles to
R− × {1} (resp. R+ × {0}) with belt circles the α curves (resp. β curves). We say
that Uα (resp. Uβ) is the lower (resp. upper) compression body corresponding to the
Heegaard diagram.

If H = (Σ,α,β) is an embedded diagram of (M, γ), then of course it is also an
abstract diagram. Conversely, an abstract diagram H is an embedded diagram of
MH. Thus, from now on we assume all Heegaard diagrams are embedded diagrams
(of some sutured manifold). The fact that H is embedded in M implies that there is
a canonical homeomorphism (up to isotopy) d : M → MH. Usually, one says that an
abstract diagram H is a diagram for (M, γ) if there is an homeomorphism M ∼= MH,
but this is not enough to define the homology classes (in H1(M)) of Subsection 2.3.3
below.

The following theorem is proved in [Juh06, Prop. 2.14].

Theorem 2.2.6. Any balanced sutured 3-manifold admits a balanced sutured Hee-
gaard diagram.

Proof. We include the proof since some of the ideas behind it will be used later (see
Subsection 3.3.1). Fix an orientation-preserving diffeomorphism h : γ → s(γ)×[−1, 4]
and let f : γ → [−1, 4] be h composed with projection onto the second factor. Then
f can be extended to ∂M by setting f(R−) ≡ −1 and f(R+) ≡ 4. Now, extend f to a
Morse function M → R which we still denote by f . After an appropriate perturbation,
one can assume f is self-indexing, that is f(p) = i for each critical point of index i,
and its critical points are of index one or two. We denote these by p1, . . . , pd (index 1)
and q1, . . . , qd (index 2). Let Σ := f−1(3/2) and Uα := f−1[−1, 3/2], Uβ := f−1[3/2, 4].
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Then Uα is a sutured handlebody built from R−×I by attaching one handles with core
disks the stable submanifolds W s(pi) of f at the index one critical points. Similarly,
Uβ is a sutured handlebody with core disks the unstable submanifolds W u(qi) of the
index two critical points. Therefore if we set αi := W s(pi) ∩ Σ and βi := W u(qi) ∩ Σ
for each i = 1, . . . , d, then (Σ,α,β) is a Heegaard diagram of (M, γ).

2.2.1 The Reidemeister-Singer theorem

The Reidemeister-Singer theorem describes how two Heegaard diagrams of a same
sutured manifold are related. Since we work with embedded diagrams, we will use a
slightly stronger form than the usual theorem. For this, we make a few definitions. If
H1 = (Σ1,α1,β1),H2 = (Σ2,α2,β2) are two Heegaard diagrams, a diffeomorphism
d : H1 → H2 consists of an orientation-preserving diffeomorphism d : Σ1 → Σ2 such
that d(α1) = α2 and d(β1) = β2.

Definition 2.2.7 ([JTZ12, Definition 2.34]). Let H1 = (Σ1,α1,β1),H2 = (Σ2,α2,β2)
be two Heegaard diagrams of (M, γ) and denote by ji : Σi → M the inclusion map,
for i = 1, 2. A diffeomorphism d : H1 → H2 is isotopic to the identity in M if
j2 ◦ d : Σ1 → M is isotopic to j1 : Σ1 → M relative to s(γ).

Definition 2.2.8. Let H = (Σ,α,β) be a Heegaard diagram. Let δ be an arc
embedded in int (Σ) connecting a point of a curve αj to a point of a curve αi and
such that int (δ) ∩ α = ∅. There is a neighborhood of αj ∪ δ ∪ αi which is a pair of
pants embedded in Σ and whose boundary consists of the curves αj , αi and a curve
α′
j. We say that α′

j is obtained by handlesliding the curve αj over αi along the arc
δ. Similarly, we can handleslide a β curve over another along an arc δ ⊂ int (Σ) such
that int (δ) ∩ β = ∅. See Figure 2.2 below.

αiαj

α′
j

δ

Figure 2.2: Handlesliding a curve αj over a curve αi along an arc δ ⊂ Σ.

Definition 2.2.9. Let H = (Σ,α,β) be a Heegaard diagram of a sutured manifold
(M, γ). Let D ⊂ int (Σ) \ (α ∪ β) be a disk. Let Σ′ be a connected sum Σ′ =
Σ#T along D, where T is a torus embedded in M . Let α′, β ′ be two curves in T
intersecting transversely in one point and suppose that both α′, β ′ bound a disk in
M . If α′ = α ∪ {α′}, β′ = β ∪ {β ′}, then H′ = (Σ′,α′,β′) is a Heegaard diagram
of (M, γ) which we say is obtained by a stabilization of the diagram H. We also say
that H is obtained by destabilization of H′.
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Theorem 2.2.10 ([JTZ12, Prop. 2.36]). Any two embedded Heegaard diagrams of a
sutured 3-manifold (M, γ) are related by a finite sequence of the following moves:

1. Isotopy of α (or β) in int (Σ).

2. Diffeomorphisms isotopic to the identity in M .

3. Handlesliding an α curve (resp. β curve) over another α curve (resp. β curve).

4. Stabilization.

Note that this theorem is stronger than the usual Reidemeister-Singer theorem
[Juh06, Prop. 2.15] which states that a diffeomorphism class of sutured manifolds
is specified by a Heegaard diagram up to isotopy, handlesliding, stabilization and
diagram diffeomorphism.

2.3 Extended Heegaard diagrams

In order to extend Kuperberg invariants to sutured 3-manifolds we will need a slight
extension of the concept of Heegaard diagram. Most of this section is taken from
[LN19a].

2.3.1 Cut systems of surfaces

In what follows, we let R be a compact orientable surface-with-boundary. We suppose
R has no closed components.

Definition 2.3.1. A cut system of R is a collection a of pairwise disjoint arcs properly
embedded in R such that for any component R′ of R, R′\R′∩N(a) is homeomorphic
to a disk. Here N(a) is an open tubular neighborhood of a in R.

A cut system is equivalent to a handlebody decomposition of R with a single
0-handle on each component and no 2-handles. Indeed, the cocores of the 1-handles
define a cut system of R, and viceversa.

Definition 2.3.2. Let a = {a1, . . . , al} be a cut system of R and suppose that an
arc aj has an endpoint on the same component C of ∂R as another arc ai. Suppose
there is an arc γ in C connecting these two endpoints such that no other endpoint
of an arc of a lies on γ. Then there is a neighborhood of aj ∪ γ ∪ ai which is a disk
D embedded in R and whose boundary [∂D] ∈ H1(R, ∂R), consists of the arcs aj , ai
and a new arc a′j . We say that a′j is obtained by arc-sliding (or just sliding) aj over
ai. It is clear that (a \ {aj}) ∪ {a′j} also defines a cut system of R. See Figure 2.3.

We now prove that these moves suffice to relate any two cut systems over R. In
the following lemma, we assume all arcs are properly embedded (see [OS04, Prop.
2.4] for a similar statement).
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aj ai

a′j

Figure 2.3: An arc aj is slided over an arc ai.

Lemma 2.3.3. Let a = {a1, . . . , al} be a cut system of R. If a′ is a properly embedded
arc in R with [a′] 6= 0 in H1(R, ∂R), then there is an i such that a′ is isotopic to an
arc obtained by sliding ai over some of the aj with j 6= i.

Proof. It suffices to suppose R is connected. We think of R as obtained from a disk D
by attaching l one-handles, where each handle is attached along two points pi, qi ∈ ∂D
and has cocore ai for i = 1, . . . , l. We isotope each ai to a small arc contained in
D around pi. Thus, sliding ai over the other arcs of a corresponds to isotoping the
endpoints of ai through ∂D \ {pi, qi}. We suppose a′ is transversal to a and proceed
by induction on N = |a′ ∩a|. Suppose first N = 0, so a′ is disjoint from a. Thus, we
can suppose that a′ is contained in D, so it separates the points of F := ∪l

i=1{pi, qi}
into two disjoint sets, call them X and Y . Now, since [a′] 6= 0 in H1(R, ∂R), there
must exist an i such that pi ∈ X and qi ∈ Y . We can then isotope the endpoints of ai
along ∂D to reach a′. During the isotopy ai will cross all the points of X \ {pi}, and
as noted above, this corresponds to sliding ai along the arcs aj associated to those
points. This proves the base of the induction. Now let N > 0, let x0 ∈ ∂D \F be one
of the endpoints of a′ and let x1 be the first intersection point of a′ with a starting
from x0, say x1 ∈ a′ ∩ a1. As before, the subarc of a′ from x0 to x1 (or rather a short
extension of it that ends at p1 ∈ ∂D) separates the points of F into two disjoints
sets X, Y . Suppose q1 ∈ Y , then we can isotope one of the endpoints of a1 across
X to get rid of the intersection point x1. This corresponds to sliding inside a and
decreases N at least by one, so we are done by the induction hypothesis.

Proposition 2.3.4. Any two cut systems of a compact orientable surface-with-boundary
R (without closed components) are related by isotopy and arc-sliding.

Proof. It suffices to suppose R connected. Let a,a′ be two cut systems over R. Let
a′1 ∈ a′. Since [a′1] 6= 0 in H1(R, ∂R), by the above lemma we can do isotopy and
arc-sliding inside a to get a new cut system (still denoted a), with an arc a1 ∈ a

isotopic to a′1. We can as well suppose a′1 = a1, hence we can cut R along a1 to
get two cut systems on a surface R′ with rkH1(R

′) = rkH1(R)− 1. The proof then
follows by induction.
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Remark 2.3.5. If the surface R has a basepoint p ∈ ∂R, then the above arguments
can be refined to show that any two cut systems are related by isotopy and arc-sliding
in the complement of p, see [BVV18, Lemma 2.7].

2.3.2 Extended diagrams and extended moves

Definition 2.3.6. Let H = (Σ,α,β) be a Heegaard diagram of a sutured manifold
(M, γ). A cut system of (Σ,α) consists of a set of pairwise disjoint properly embedded
arcs a ⊂ Σ\α such that a is a cut system of Σ[α], the surface obtained by surgering
Σ along the disks (in Uα) bounded by α (note that Σ[α] is isotopic to R−(γ)).
An extended Heegaard diagram is a Heegaard diagram (Σ,α,β) endowed with a cut
system a of (Σ,α). We will often denote αe = α∪a and if |α| = d, |a| = l, then we
denote α = {α1, . . . , αd} and a = {αd+1, . . . , αd+l}.

We will call extended Heegaard moves the following moves on an extended Hee-
gaard diagram.

1. Usual Heegaard moves of (Σ,α,β), just that we always suppose the α’s are
isotoped or handleslided in the complement of the arcs in a.

2. Isotopies of arcs.

3. Sliding an arc over an arc.

4. Sliding an arc over a curve.

Proposition 2.3.7. Any two extended Heegaard diagrams of a sutured 3-manifold
(M, γ) are related by extended Heegaard moves.

Proof. Let H = (Σ,αe,β) and H′ = (Σ,α′e,β′) be two extended Heegaard diagrams
of (M, γ). By Proposition 2.3.4 it suffices to prove that whenever the diagrams are
related by one of the moves of Theorem 2.2.10, then the latter move can be performed
in the complement of the cut systems. This is obvious for all moves except when
handlesliding closed curves. So suppose H′ is obtained from H by handlesliding a
curve αj over a curve αi along an arc γ. Suppose the arc γ intersects some arcs in a.
Then we can successively slide these arcs along αi to get a new cut system a′′ for H
which is disjoint of γ. Hence, a′′ is also a cut system for H′. By Proposition 2.3.4,
a′ and a′′ are related by isotopy and arc-sliding in Σ′[α′]. But isotoping an arc past
the trace of the surgery is the same thing as sliding that arc over the corresponding
curve in α. Thus we can pass from H to H′ using extended Heegaard moves, as
desired.
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2.3.3 Dual curves

Let (M, γ) be a balanced sutured 3-manifold with a basepoint p ∈ s(γ) and suppose
that R−(γ) is connected. Let H = (Σ,αe,β) be an extended Heegaard diagram of
(M, γ).

Definition 2.3.8. We say that H is oriented if each curve in α ∪ β is oriented.

Suppose H is oriented and that the arcs in a are also oriented (though the orien-
tation of the arcs will be irrelevant soon). One can construct elements α∗ ∈ π1(M, p)
for each α ∈ αe as follows. Let αe = α ∪ a where α = {α1, . . . , αd} are the closed
curves and a = {αd+1, . . . , αd+l} is a cut system of (Σ,α). Write M = Uα ∪ Uβ

where Uα, Uβ denote respectively the lower and upper compression bodies associated
to H. We can think of Uα as constructed from R− × I by attaching 3-dimensional
1-handles with belt circles the closed α curves. The cocores of these 1-handles are
disks D1, . . . , Dd with ∂Di = αi for each i = 1, . . . , d. On the other hand, we have
disks Di = αi×I ⊂ R−×I for each i = d+1, . . . , d+ l. Since we assumed that R−(γ)
is connected, the complement Uα \ (D1 ∪ · · · ∪ Dd+l) is a single 3-ball, we denote it
by Bαe .

Definition 2.3.9. For each i = 1, . . . , d + l we let α∗
i ∈ π1(M, p) be the homotopy

class of a loop based at p contained in Uα which intersects D1 ∪ · · · ∪ Dd+l only at
a single point in Di. We orient α∗

i in such a way that αi · α
∗
i = +1 when α∗

i is
represented as a curve in Σ.

a1 a2

R− × I

α

β
b

p

Figure 2.4: An (oriented) extended Heegaard diagram (Σ,αe, β) where α = {α} and
a = {a1, a2} with its dual curves α∗, a∗1, a

∗
2 ∈ π1(M, p) indicated in blue.

Remark 2.3.10. We will need to understand how the elements α∗
i ∈ π1(M, p) change

when performing extended Heegaard moves:

1. Suppose αj is handleslided over αi (with (αj, αi) /∈ α×a) and let α′
j , α

′
i denote

the curves after handlesliding, so α′
i = αi and α′

j = αi#αj . If P denotes the
handlesliding region, we suppose that the basepoint p ∈ s(γ) does not lies in
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P (this matters when one of αi, αj is an arc). Suppose the curves αi, αj, α
′
j

are oriented so that ∂P = αi ∪ αj ∪−α′
j in H1(Σ, ∂Σ)) as oriented 1-manifolds

(P has the induced orientation from Σ). It is clear that (α′
j)

∗ = α∗
j . However,

the dual α∗
i intersects α′

j positively in one point. To get rid of this intersection
point, we slide α∗

i over (α′
j)

∗ = α∗
j , see Figure 2.5. Therefore, the dual of αi in

the Heegaard diagram after handlesliding is

(α′
i)
∗ = α∗

i (α
∗
j )

−1.

αi(= α′
i) α′

j

α∗
j

α∗
i

(α′
i)
∗

Figure 2.5: A portion of a Heegaard diagram in which a curve or arc αj has been
slided over αi.

2. Suppose an arc a ∈ a is isotoped along ∂Σ past the basepoint p. We suppose the
arc a is oriented so that a · δ = +1 where δ is the oriented boundary component
of ∂Σ containing p. Suppose further that the arc a is isotoped to the right of p
(this has sense since Σ is oriented), and denote by a′ the new arc and by H′ the
new extended Heegaard diagram. If we denote by α′

i the curves αi in H′, then

(α′
i)
∗ = a∗α∗

i (a
∗)−1

for all i = 1, . . . , d+ l. See Figure 2.6.

Now let c ⊂ Σ be an embedded oriented arc or an embedded oriented circle with a
basepoint (which we can consider as an oriented arc by deleting a small neighborhood
of the basepoint). Suppose c is transversal to αe and has endpoints in Σ \αe.

Definition 2.3.11. We let c ∈ π1(M, p) be the homotopy class of the loop obtained
by joining the basepoint p to the beginning point of c by an arc contained in Bαe =
Uα \ (∪d+l

i=1Di), then following c according to its orientation and finally coming back
to the basepoint p by an arc contained in Bαe . Equivalently, c is obtained by taking
the product from left to right of the (α∗)m(x)’s for each x ∈ αe ∩ c, ordered by their
appearance along c and where m(x) ∈ {±1} is the sign of the intersection.
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bbbb bbbbb b
a a′ai aip p

δ δ

Figure 2.6: An arc a is slided past the basepoint p ∈ δ ⊂ ∂Σ. On the left we draw a∗i
as γAiγ

−1, where Ai is a circle in int (Σ) intersecting αe once at ai and γ ⊂ Σ \αe is
an arc connecting the basepoint p to a point in Ai. On the right the arc γ has been
slided over a∗ to avoid an intersection with a. This shows that (a′i)

∗ = a∗a∗i (a
∗)−1.

The orientation of the arcs in a is needed to write c as a word in the α∗’s, but as
an element of π1(M, p), c is independent of this. Note that if c ⊂ Σ is an oriented
circle with a basepoint, then changing the basepoint along c leaves the conjugacy
class of c unchanged. As an example, if we put a basepoint on the leftmost part of β
in Figure 2.4, then we have β = (α∗)−1a∗2a

∗
1.

Lemma 2.3.12. Let H = (Σ,αe,β) be an oriented extended Heegaard diagram of
(M, γ). The fundamental group of M at p has a presentation

π1(M, p) = 〈α∗
1, . . . , α

∗
d+l | β1, . . . , βd〉.

Proof. This is direct from Van Kampen’s theorem.

Definition 2.3.13. Suppose a curve β ∈ β is oriented and has a basepoint q ∈ β\αe.
For each x ∈ β ∩ αe let qx ∈ β be a point defined as follows: if the crossing at x
is positive (resp. negative), then qx is right before (resp. after) x along β. Then
we denote βx = cx where cx is the subarc of β starting at q and ending at qx. More
precisely, suppose x ∈ αi ∩ β (i = 1, . . . , d + l) and write β = w(α∗

i )
m(x)w′ where w

(resp. w′) is the product of the α∗’s corresponding to the crossings of β that precede
(resp. succeed) x. Then

βx :=

{
w if m(x) = 1

w(α∗
i )

−1 if m(x) = −1.
(2.1)

Remark 2.3.14. With this notation the Fox derivatives are computed by

∂β

∂α∗
i

=
∑

x∈αi∩β

m(x)βx ∈ Z[F ], (2.2)

for any β ∈ β, where F is the free group generated by α∗
1, . . . , α

∗
d+l.
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2.4 Homology orientations

Let (Σ,α,β) be a balanced Heegaard diagram of (M, γ) and d = |α| = |β|. Denote
R− = R−(γ). Let A ⊂ H1(Σ;R) (resp. B) be the subspace spanned by α (resp. β).
These subspaces have dimension d by [Juh06, Lemma 2.10]. There is a bijection o
between orientations of the vector space H∗(M,R−;R) and orientations of the vector
space Λd(A) ⊗ Λd(B) [FJR11, Sect. 2.4]. This is seen as follows. The Heegaard
diagram specifies a handle decomposition of (M, γ) relative to R−×I with no handles
of index zero or three. There are d handles of index one and two, so the handlebody
complex C∗ = C∗(M,R− × I;R) is just C1 ⊕ C2 where both C1, C2 have dimension
d. Now let ω be an orientation of H∗(M,R−;R) and let h1

1, . . . , h
1
m, h

2
1, . . . , h

2
m be an

ordered basis of H∗(M,R−;R) compatible with ω, where hi
j ∈ Hi(M,R−;R). Let

c11, . . . , c
1
m, c

2
1, . . . , c

2
m ∈ C∗ be chains representing this basis, where cij ∈ Ci. Then, for

any b1, . . . , bd−m ∈ C2 such that c21, . . . , c
2
m, b1, . . . , bd−m is a basis of C2 the collection

c11, . . . , c
1
m, ∂b1, . . . , ∂bd−m, c

2
1, . . . , c

2
m, b1, . . . , bd−m

is a basis of C∗ whose orientation ω′ depends only on ω. Now, an orientation of C∗

is specified by an ordering and orientation of the handles of index one and two. This
is the same as an ordering and orientation of the curves in α ∪ β or equivalently, an
orientation of Λd(A)⊗ Λd(B). This way, the orientation ω induces an orientation of
Λd(A)⊗ Λd(B) via ω′. We denote this orientation of Λd(A)⊗ Λd(B) by o(ω).

There are a few cases in which there is a canonical orientation of H∗(M,R−(γ);R),
and hence there is a canonical sign-ordering of a sutured Heegaard diagram. For
example, let Y be a closed oriented 3-manifold. If M = Y \ B where B is an open
ball in Y and γ = S1 ⊂ ∂B, then H∗(M,R−(γ);R) = H2(Y ;R) ⊕ H1(Y ;R). Now,
any basis of H1(Y ;R) determines a Poincaré dual basis of H2(Y ;R) via the (non-
degenerate) intersection pairing H2(Y )⊗H1(Y ) → R. The orientation of the basis of
H∗(M,R−(γ)) thus obtained is independent of the basis of H1(Y ) chosen. However,
reversing the orientation of Y , multiplies this orientation by (−1)b1(Y ).

Another situation is when H∗(M,R−;R) = 0, for example for knots in an homol-
ogy 3-sphere. Here the orientation ω′ of C∗(M,R−;R) constructed above is canonical
and an ordering and orientation of the curves of α ∪ β corresponds to the canonical
orientation if and only if

det(αi · βj) > 0

where αi · βj ∈ Z denotes the intersection number.
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Chapter 3

Kuperberg invariants for sutured

3-manifolds

In this chapter, we will construct the topological invariant Zρ
H(M, γ, s, ω) ∈ K of

Theorem 1, following mainly [LN19b]. In Section 3.1, we recall the original con-
struction of Kuperberg as well as Virelizier’s extension, which are defined for closed
3-manifolds (endowed with a representation of the fundamental group in the second
case). In Section 3.2 we define a scalar Zρ

H(H) from a sutured Heegaard diagram of
(M, γ), but we show this is a topological invariant only when Im (ρ) ⊂ Ker (rH). The
case of arbitrary ρ is treated in Section 3.3 using Spinc structures.

3.1 Kuperberg invariants of closed 3-manifolds

In this section, we recall the constructions of [Kup91] and [Vir05]. In what follows,
we let Y be a compact, oriented, connected closed 3-manifold.

3.1.1 Tensors associated to Heegaard diagrams

Let H = (Σ,α,β) be a Heegaard diagram of Y . We will follow the conventions and
notation of [KV19].

Definition 3.1.1. A Heegaard diagram H = (Σ,α,β) is ordered if the sets α and β

are totally ordered. We say that H is based if each curve α ∈ α (resp. β ∈ β) has a
basepoint p ∈ α \ β (resp. q ∈ β \α).

Notation 3.1.2. If H is oriented (i.e. every curve of α∪β is oriented), then at each
crossing x ∈ α ∩ β of H we let mx ∈ {±1} be its intersection sign. Thus, mx = 1
if the tangent vectors to α and β at x form a positive basis of TxΣ, and mx = −1
otherwise. We define ǫx ∈ {0, 1} by ǫx = 0 if mx = 1 and ǫx = 1 if mx = −1.
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Suppose H is ordered, oriented and based. We denote by I the set of crossings of
H, that is, I = α∩β. For each i = 1, . . . , d, where d = |α| = |β|, the basepoint of αi

together with its orientation determine a total ordering on the set of crossing through
αi. Using the total ordering of α, we get a total ordering on the set I. We denote
by Iα the set I with the total ordering coming from α. Similarly, the ordering,
orientation and basepoints of β determine a total ordering on I, we denote by Iβ

the set of crossings with this ordering. These orderings differ by some permutation
in SN , where N is the total number of crossings of H. We let

PH : H⊗N → H⊗N

be the map induced by the symmetry of the category SVectK and this permutation
(see Notation 1.1.2). Here we suppose the domain of PH is ordered according to Iα

and the target is ordered according to Iβ.

Now, for each α ∈ α, let |α| be the number of crossings through α and similarly
we define |β| for β ∈ β. We set

∆α :=

d⊗

i=1

∆|αi| : H⊗d → H⊗N

and

mβ :=

d⊗

i=1

m|βi| : H⊗N → H⊗d.

Here ∆k : H → H⊗k and mk : H⊗k → H denote iterated coproducts and products
for each k ≥ 0. For k = 0 we set ∆0 = ǫ,m0 = η while for k = 1, ∆1 = idH = m1.
Finally, we define

Sα :=
⊗

x∈Iα

Sǫx : H⊗N → H⊗N .

Note that in this tensor product, the order of Iα is relevant. If Sβ denotes the tensor
product of the same maps, but using the order of Iβ, then this relates to the previous
tensor by PHSα = SβPH.

3.1.2 The original construction of Kuperberg

Let H be a finite dimensional involutive Hopf algebra over a field K. If char (K) =
p > 0, one further supposes p ∤ dim(H). This guarantees that H is semisimple and
hence there is a two-sided cointegral c ∈ H and a two-sided integral µ ∈ H∗, we
suppose they are normalized by µ(c) = 1.
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Definition 3.1.3. Let Y be a (compact, oriented, connected) closed 3-manifold rep-
resented by a Heegaard diagram H = (Σ,α,β) with d = |α| = |β|. Suppose H is
arbitrarily ordered, oriented and based. We define

KKup
H (H) := mβPHSα∆α : H⊗d → H⊗d

and

ZKup
H (H) := µ⊗d(KKup

H (H)(c⊗d)) ∈ K.

It is shown in [Kup91] that ZKup
H (H) is invariant under Heegaard moves, the main

point being that handlesliding invariance follows directly from the defining equations
of the cointegral and integral. By the Reidemeister-Singer theorem, it follows that
ZKup

H (Y ) defines a topological invariant of the underlying 3-manifold Y .

Remark 3.1.4. The hypothesis on H may be weakened: one only needs H to be
finite dimensional, involutive, unimodular and counimodular for the above formula
to define a topological invariant. Thus, H may be a Hopf superalgebra and the
characteristic may be positive and divide dim(H), provided unimodularity holds.
However, when H is a Hopf superalgebra with a cointegral of degree one, ZKup

H (Y )
has a sign indeterminacy. This indeterminacy can be removed by picking an homology
orientation ω, which can be done in canonical way if Y is oriented (see Section 2.4),
and multiplying ZKup

H (H) by the sign δω(H) defined below.

3.1.3 Virelizier’s extension

We now sketch Virelizier’s extension of Kuperberg’s invariant. This relies on the
notion of Hopf G-coalgebra, and produces and invariant of a closed 3-manifold Y
endowed with a representation ρ : π1(Y ) → G. We will actually use the dual notion,
that of a Hopf G-algebra as introduced in Section 1.3.

Thus let H = {Hα}α∈G be a finite type involutive Hopf G-algebra. If char (K) =
p > 0, it is further required in [Vir05] that p ∤ dim(H1) 6= 0. As mentioned above, this
implies semisimplicity and hence unimodularity of H and counimodularity (of H1),
but only the last two conditions are needed. Let (cα)α∈G be the two-sided cointegral
and µ ∈ H∗

1 be the two-sided integral, normalized by µ(c1) = 1.

Let Y be a closed oriented 3-manifold with a basepoint p ∈ Y and let ρ :
π1(Y, p) → G be a group homomorphism into the grading group of H. Let H =
(Σ,α,β) be an ordered, oriented, based Heegaard diagram of Y with p ∈ Σ\ (α∪β).
More precisely, we let H be an embedded sutured Heegaard diagram of the su-
tured 3-manifold (Y \ int (B), γ), where B is a small embedded closed 3-ball with
p ∈ s(γ) ⊂ ∂B. This implies that every curve α ∈ α has a well-defined dual
α∗ ∈ π1(Y, p).
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We extend the tensors of Subsection 3.1.1 to the Hopf G-algebra setting. For
simplicity, we note Hα instead of Hρ(α∗) for each α ∈ α. Suppose a curve β ∈ β has
associated the word

β = (α∗
i1
)m1 . . . (α∗

ik
)mk

when starting from its basepoint and following its orientation. Since β = 1 in
π1(M, p), we get a multiplication

mβ : Hα
m1
i1

⊗ . . .⊗Hα
mk
ik

→ H1.

We let
mβ :=

⊗

β∈β

mβ :
⊗

x∈Iβ

Hα
mx
x

→ H⊗d
1 .

Now, for each α ∈ α let ∆
|α|
α : Hα → H

⊗|α|
α be the |α|-iterated coproduct of the

coalgebra Hα and let

∆α :=
⊗

α∈α

∆|α|
α :

⊗

α∈α

Hα →
⊗

α∈α

H⊗|α|
α =

⊗

x∈Iα

Hαx
.

We let
Sα :=

⊗

x∈Iα

Sǫx
αx

:
⊗

x∈Iα

Hαx
→
⊗

x∈Iα

Hα
mx
x

.

Let PH be the map that takes the Hα
mx
x

’s, ordered according to Iα, and reorders
them according to Iβ. Then one can define

Kρ
H(H) := mβPHSα∆α :

⊗

α∈α

Hρ(α∗) → H⊗d
1 .

If (cα)α∈G is a (two-sided) cointegral of H , normalized by µ(c1) = 1, then let

Zρ
H(H) := µ⊗d

(
Kρ

H(H)

(
⊗

α∈α

cα

))
.

This is shown to be a topological invariant of (Y, ρ) in [Vir05], denoted Zρ
H(Y ).

More precisely, if Y ′ is another closed 3-manifold with a basepoint p ∈ Y ′ and ρ′ :
π1(Y

′, p′) → G is a group homomorphism for which there is an homeomorphism
f : Y → Y ′ with f(p) = p′ and ρ′ ◦ f∗ = ρ (where f∗ : π1(Y, p) → π1(Y

′, p′) is induced
by f), then

Zρ
H(Y ) = Zρ′

H (Y
′).
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3.2 Extending to sutured manifolds: the unimodular

case

We begin this section by defining a scalar Zρ
H(H) out of a sutured Heegaard diagram

H of a balanced sutured 3-manifold (M, γ) with connected R−(γ). We explain the
relation of our formula with Virelizier’s extension in Subsection 3.2.3. Then in Sub-
section 3.2.4 we prove some lemmas on Zρ

H(H), valid for arbitrary ρ. From these, we
deduce in Subsection 3.2.5 that Zρ

H(H) is a topological invariant (= Zρ
H(M, γ)) when

Im (ρ) ⊂ Ker (rH). We say that the condition Im (ρ) ⊂ Ker (rH) is the unimodular
case, since it corresponds to the unimodular Hopf algebra K[Ker (rH)]⋉H . Finally,
in Subsection 3.2.6 we extend everything to the case of disconnected R−(γ) (e.g. link
complements), provided Im (ρ) ⊂ Ker (rH) as well.

In what follows, we let H be a finite-dimensional Hopf superalgebra over a field K
which we suppose is involutive, unimodular and counimodular. We let c ∈ H, µ ∈ H∗

be a two-sided cointegral and integral respectively, normalized by µ(c) = 1.

3.2.1 A direct Fox calculus-like formula

Let (M, γ) be a (compact, oriented, connected) balanced sutured 3-manifold with
connected subsurface R−(γ) ⊂ ∂M . We will suppose that M has a basepoint p in
some suture of s(γ) (though we show in Corollary 3.2.12 that our formulas do not
depend on the basepoint). Let ρ : π1(M, p) → Aut(H) be a group homomorphism.

Let H = (Σ,α,β) be a sutured Heegaard diagram of (M, γ). We suppose H is
ordered, oriented and based, that is, both sets α,β are ordered, oriented and based.
The tensors mβ, PH, Sα,∆α defined in Subsection 3.1.1 do not depend on whether the
Heegaard surface has boundary or not. Therefore, these tensors are equally defined
for H.

Now suppose further that H is an embedded extended Heegaard diagram, so αe =
α∪a where the α are closed curves, a consists of arcs and Σ[α]\a is homeomorphic
to a disk (where Σ[α] denotes Σ surgered along α). We suppose the basepoints of
β are disjoint from all of αe. Then for each β ∈ β and x ∈ β ∩ α there is an
element βx ∈ π1(M, p) obtained by joining the basepoint p ∈ s(γ) to the basepoint
of β through an arc in Σ \ αe, traversing β until reaching qx, and joining qx back
to the basepoint p through an arc in Σ \ αe, see Definition 2.3.13. Recall that
qx ∈ β \αe is a point that lies just before x (resp. after x) along β if m(x) = 1 (resp.
m(x) = −1). These elements appear when expanding the Fox derivatives ∂β/∂α∗,
see Remark 2.3.14. The arcs in a don’t need to be oriented, but sometimes we will
assume that they are to have a well-defined dual a∗ ∈ π1(M, p), which together with
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the α∗, generate π1(M, p). We denote

ρH :=

(
⊗

x∈Iα

ρ(βx)

)
: H⊗N → H⊗N

where N = |α ∩ β|.

Definition 3.2.1. Let (M, γ) be a balanced sutured 3-manifold with connected
R−(γ), endowed with a representation ρ : π1(M, p) → Aut(H) where p ∈ s(γ).
Let H = (Σ,αe,β) be an ordered, oriented, based, extended Heegaard diagram of
(M, γ) and let d = |α| = |β|. We denote by Kρ

H(H) the tensor

Kρ
H(H) := mβPHρHSα∆α : H⊗d → H⊗d.

If c ∈ H, µ ∈ H∗ denote the two-sided cointegral and integral of H respectively,
normalized by µ(c) = 1, then we set

Zρ
H(H) := µ⊗d(Kρ

H(H)(c⊗d)) ∈ K.

To treat some sign indeterminacies in the case that the cointegral has degree one,
we pick an orientation ω of the vector space H∗(M,R−(γ);R). Since H is ordered
and oriented, we can compare it to the orientation ω via the map o of Section 2.4. If
δ ∈ {±1} is determined by o(H) = δω, then we define

δω(H) := δ|c|. (3.1)

In particular, if the cointegral has degree zero then δω(H) = 1.

Definition 3.2.2. If ω is an orientation of H∗(M,R−(γ);R), we write

Zρ
H(H, ω) := δω(H)Zρ

H(H)

where δω(H) is the sign defined above.

When H is a Heegaard diagram of a closed 3-manifold and ρ ≡ 1, Zρ≡1
H (H) reduces

to ZKup
H (H) of Definition 3.1.3. Therefore, by Remark 2.3.14, for general ρ one can

think of Zρ
H(H) as a Fox calculus extension of the construction of [Kup91] to sutured

manifolds. We will prove the following in Subsection 3.2.5.

Theorem 3.2.3. Whenever rH ◦ρ ≡ 1, the scalar Zρ
H(H) (resp. Zρ

H(H, ω) if the coin-
tegral has degree one) defined above is independent of the (ordered, oriented, based)
extended sutured Heegaard diagram of (M, γ) chosen. Thus, it defines a topological
invariant of the tuple (M, γ, ρ) (resp. (M, γ, ρ, ω)).

We denote the topological invariant above by Zρ
H(M, γ) (resp. Zρ

H(M, γ, ω)).
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Figure 3.1: From left to right: extended Heegaard diagrams of the left trefoil and
figure eight knot respectively. The opposite sides of each square have to be identified,
so in both cases Σ is a torus with two punctures. The closed curves of both diagrams
are oriented and based as indicated.

3.2.2 Examples of computation

We now compute the tensor Kρ
H(H) and the scalar Zρ

H(H) for some knot comple-
ments.

Example 3.2.4. Let K ⊂ S3 be the left trefoil and M = S3 \ N(K). Recall
that M is a sutured 3-manifold if we let γ consist of two meridional sutures in
∂M (see Example 2.1.4). Consider the (oriented, based) extended Heegaard diagram
(Σ, α, a, β) of Figure 3.1. We assume both α, a are oriented, so we have α∗, a∗ ∈ π1(M)
and ρ(α∗), ρ(a∗) ∈ Aut(H). For simplicity, we will denote these Hopf automorphisms
just by α, a. If x1, x2, x3 are the points of β ∩ α, encountered as one follows the
orientation of β starting from the given basepoint, then βx1

= a, βx2
= aαa−1α−1

and βx3
= aαa−1α−1a−1. Hence Kρ(H) : H → H is given by

Kρ
H(H)(h) = a(h(1)) · (aαa

−1α−1)(S(h(2))) · (aαa
−1α−1a−1)(h(3)).

As a particular example, let H = Λ be an exterior algebra on one generator X, so
that Aut(Λ) ∼= K×. Then ρ descends to H1(M ;Z) ∼= Z which is generated by a∗. If
a = ρ(a∗) satisfies a(X) = tX, then we get

Zρ
H(H) = µ(Kρ(H)(X))

= µ(a(X(1)) · S(X(2)) · a
−1(X(3)))

= µ(a(X)) + µ(S(X)) + µ(a−1(X))

= t− 1 + t−1,

the Alexander polynomial of K.

Example 3.2.5. Consider the (oriented, based) extended Heegaard diagram of the
figure eight knot of Figure 3.1. Then we have

Kρ(H)(h) = a(h(1)) · ([a, α] ◦ S)(h(4)) · ([a, α]a)(h(3)) · (α
−1a ◦ S)(h(2)) · α

−1(h(5))
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where we use the commutator notation [a, α] := aαa−1α−1 (considered as an element
of Aut(H)) for simplicity. Note that if H is cocommutative, then this can be rewritten
as a convolution product

Kρ(H) = a ∗ ([a, α] ◦ S) ∗ [a, α]a ∗ (α−1a ◦ S) ∗ α−1

where f ∗g := mH(f⊗g)∆H for any f, g : H → H . If H = Λ(C2) and ρ : π1(S
3\K) →

SL(2,C) this implies

Zρ
H(H) = µ(Kρ

Λ(C2)(H)(c))

= det(a− [a, α] + [a, α]a− α−1a+ α−1)

= det(ρ(∂β/∂α)).

The second equality follows from Lemma 4.3.1 below together with rΛ(C2) = det, see
Example 1.2.11. This is the SL(2,C) Alexander polynomial of K up to a factor, cf.
[DFJ12, Proposition 2.5].

3.2.3 Relation to Virelizier’s extension

We now explain how the formula of Definition 3.2.1 can be seen as (a sutured extension
of) that of Subsection 3.1.3 specialized to a semidirect product. We also explain why
we only consider semidirect products instead of more general Hopf G-algebras.

Let H be a Hopf G-algebra and ρ : π1(M, p) → G a group homomorphism.
Let H be an extended sutured Heegaard diagram which is ordered, oriented, based.
Suppose that the set a is also ordered and oriented. We extend the order to all of
αe by declaring the closed curves to come before the arcs. Since all the α ∈ αe are
oriented, we have a well-defined dual α∗ ∈ π1(M, p) for each α ∈ αe. For simplicity
of notation, for each α ∈ αe we denote Hρ(α∗) simply by Hα. Then, the construction
of Subsection 3.1.3 extends to a tensor

Kρ
H(H) := mβPHSαe∆αe :

⊗

α∈αe

Hα → H⊗d
1G

where ∆αe := ⊗α∈αe∆
|α|
α and Sαe := ⊗x∈IαeS

ǫx
αx

. Here Iαe denotes the set of crossings
αe ∩ β ordered according to αe.

Let’s see what happens to this tensor when we restrict to the semidirect product
Hopf G-algebra associated to K[G]⋉H (where G = Aut(H)) as in Subsection 1.3.2.
Recall that this is defined by Hα = {x · α | x ∈ H} ⊂ K[G] ⋉ H for each α ∈ G
and the structure maps of H are induced from those of K[G]⋉H . We introduce first
some notation. Let β ∈ β and suppose that when following the orientaton of β ∈ β

starting from its basepoint, the crossings through β are x1, . . . , xk, say xi ∈ αxi
∩ β

for every i, where αxi
∈ αe. Let ǫ1, . . . , ǫk ∈ {0, 1} be determined by mi = (−1)ǫi
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where mi is the intersection sign at xi. Recall that, since β = αm1
x1

. . . αmk
xk

= 1 in
π1(M, p), there are maps

mβ : Hα
m1
x1

⊗ . . .⊗Hα
mk
xk

→ H1G = H.

We denote Sβ := ⊗k
i=1S

ǫi
αxi

where Sα : Hα → Hα−1 denotes the antipode of H. We

denote by m and S the multiplication and antipode of H and let Sβ := ⊗k
i=1S

ǫi.

Lemma 3.2.6. Let H be the Hopf G-algebra associated to the semidirect product
K[G] ⋉ H, where G = Aut(H). Let H be an extended Heegaard diagram as above,
and let β ∈ β and k = |αe ∩ β|. Then one has

mβ ◦ Sβ ◦

(
k⊗

i=1

καxi

)
= m⊗k ◦ Sβ ◦

(
k⊗

i=1

ρ(βxi
)

)
: H⊗k → H

where κα : H → Hα is the canonical coalgebra isomorphism x 7→ x · α.

In other words, the semidirect product structure of K[Aut(H)] ⋉ H (i.e. the
tensors on the left) reduces to Fox calculus on H (tensors on the right).

Proof. Suppose first that all crossings are positive, that is ǫi = 0 for each i (so both
Sβ, Sβ are identity maps). Then βxi

= αx1αx2 . . . αxi−1
for all i = 1, . . . , k (βx1

= 1)
and for any h1, . . . , hk ∈ H

mβ ◦ Sβ ◦
(
⊗k

i=1καxi

)
(h1 ⊗ . . .⊗ hk)

= (h1α1)(h2α2) . . . (hkαk)

= h1(α1(h2)α1)α2 . . . (hkαk)

= h1α1(h2)(α1α2(h3))α1α2α3 . . .

...

= h1(α1(h2))(α1α2(h3)) . . . (α1 . . . αk−1)(hk)(α1 . . . αk)

= h1(α1(h2))(α1α2(h3)) . . . (α1 . . . αk−1)(hk)

= ρ(βx1
)(h1)ρ(βx2

)(h2) . . . ρ(βxk
)(hk).

In the first equalities we successively used the semidirect product relation α · x =
α(x) ·α for α ∈ G, x ∈ H and in the second-to-last equality we used that α1 . . . αk = 1
in G. This proves what we wanted. If a crossing xi is negative, then from

Sαxi
(hiαxi

) = α−1
xi
S(hi) = α−1

xi
(S(hi))α

−1
xi

we get the α−1
xi

term at the end of βxi
(as in the definition of βxi

). This proves the
lemma.
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Let κ := ⊗α∈αeκα : H⊗d+l → ⊗α∈αeHα and ηl := id⊗d
H ⊗η⊗l : H⊗d → H⊗d+l where

η : K → H is the unit of H.

Proposition 3.2.7. Let H be the Hopf G-algebra associated to K[G]⋉H. Then

Kρ
H(H) ◦ κ ◦ ηl = Kρ

H(H).

Here the left hand side denotes Kuperberg’s tensor at the Hopf G-algebra H and the
right hand side is the Fox calculus extension of Kuperberg’s tensor of Definition 3.2.1.

Proof. We will denote by me
β, S

e
β, P

e
H, Sαe ,∆αe the tensors of Subsection 3.1.1 defined

from H using the whole extended diagram (Σ,αe,β). Let mβ, Sβ, PH, Sα,∆α be the
tensors defined from H using (Σ,α,β), i.e., without using the arcs. (these are the
tensors involved in our definition of Kρ

H(H)). Then it is clear that

(
me

βP
e
H

(
⊗

x∈Iαe

ρ(βx)

)
Sαe∆αe

)
◦ ηl = Kρ

H(H)

Now, we have

Kρ
H(H) ◦ κ = mβSβPH∆αe(⊗α∈αeκα)

= mβSβPH(⊗x∈Iαeκαx
)∆αe

= mβSβ(⊗x∈β∩αeκαx
)P e

H∆αe

= me
βS

e
β(⊗x∈β∩αeρ(βx))P

e
H∆αe

= me
βP

e
H

(
⊗

x∈Iαe

ρ(βx)

)
Sαe∆αe .

We used that the κα’s are coalgebra morphisms in the second equality and Lemma
3.2.6 in the fourth one. Composing both sides with ηl gives the desired result.

Remark 3.2.8. In Theorem 3.2.3, we supposed that ρ has image in Ker (rH) ⊂
Aut(H) and obtained an invariant of (M, γ) with no extra structure. Indeed, if G =
Ker (rH), the Hopf G-algebra K[G] ⋉H is unimodular. As mentioned in Subsection
3.1.3, this is all that is needed to define invariants of a pair (Y, ρ) (with no extra
structure) in the closed case.

Why we do not consider Hopf G-algebras in general? The reason is the following:
if H is an arbitrary involutive finite type Hopf G-algebra, then to turn the G-graded
Kuperberg tensor Kρ

H(H) : ⊗α∈αeHα → H⊗d
1G

into a scalar we need to evaluate it on
some special element of Hα for each α ∈ αe. For closed α it is reasonable to use
the cointegral cα ∈ Hα. However, this is not reasonable to do over the arcs: if we
did that, then the scalar obtained would be invariant under handlesliding a curve
over an arc, which has no sense. What is reasonable to do is to suppose that each
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Hα comes equipped with a group-like element gα ∈ Hα, satisfying gα1gα2 = gα1α2 for
each α1, α2 ∈ G. Then one can evaluate Kρ

H(H) at cα over each closed α ∈ α and
at gα for each arc α ∈ a. The resulting scalar would then be invariant exactly under
the three extended handlesliding moves of Proposition 2.3.7. However, under these
conditions, conjugation by gα defines a Hopf automorphism φ(α) of H1G , defining a
group homomorphism φ : G → Aut(H1G). If H1G denotes the Hopf Aut(H1G)-algebra

coming from K[Aut(H1G)]⋉H1G , then it is easy to see that we get a Hopf morphism
H → H1G above φ, that is, we have coalgebra maps Φα : Hα → Hφ(α) for each α ∈ G
satisfying obvious algebra properties. It follows that

Kρ
H(H) = Kφ◦ρ

H1G
(H) ◦

(
⊗

α∈αe

Φ(α)

)
.

Since (Φ(cα)) is a cointegral of the φ(G)-algebra {Hφ(α)}, it is a multiple of (c1 ·φ(α)),
where c1 is the cointegral of H1G . It follows that

Zρ
H(H) = Zφ◦ρ

H1G
(H)

and so we are reduced to the case of a semidirect product.

3.2.4 Some lemmas

We now establish some properties concerning the tensors Zρ
H . In what follows, we

let H be an ordered, oriented, based extended Heegaard diagram of a sutured 3-
manifold (M, γ) with connected R−(γ) and let ρ : π1(M, p) → Aut(H) be an arbitrary
homomorphism, i.e. we do not suppose Im (ρ) ⊂ Ker (rH).

Proposition 3.2.9. Let H be an ordered, oriented, based Heegaard diagram. Chang-
ing the basepoints along the α’s has no effect on Zρ

H(H). Now, let H′ be the (ordered,
oriented, based) Heegaard diagram obtained from H by moving a single basepoint
qi ∈ βi of H to q′i ∈ βi. Let b ⊂ βi be the oriented arc from qi to q′i. Then

Zρ
H(H) = rH(ρ(b))Z

ρ
H(H

′).

Proof. Suppose we move the basepoint p1 ∈ α1 to p′1 and let H′ be the new based Hee-
gaard diagram. By definition Kρ(H′) differs from Kρ(H) only on the permutations
P (H′) and P (H) and these differ as follows: let k denote the number of crossings
between p1 to p′1 along α1 and l = |α1| − k. Then one has

P (H) = P (H′) ◦ (Pk,l ⊗ idN−k−l
H )

where Pk,l : H
⊗(k+l) → H⊗(k+l) is induced by the permutation of Sk+l that sends the

first k letters to the last l and viceversa. But by Proposition 1.2.12, the cyclic order
of ∆(k+l)(c) is irrelevant, that is,

∆(k+l)(c) = Pk,l∆
(k+l)(c)
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for any k, l. From this it follows that Zρ
H(H) = Zρ

H(H
′) as desired. Now suppose we

move a basepoint along a curve in β, say β1. Then not only the permutation P (H)

changes, but the β1,x’s are also affected. For each β ∈ β and x ∈ α ∩ β, let β
′

x be

the element corresponding to H′. Then we have β1,x = b · β
′

1,x for each x ∈ α ∩ β1

while for β 6= β1, βx = β
′

x. Thus

ρH = mβ(ρ(b)
⊗|β1| ⊗ id

⊗N−|β1|
H )ρH′

= (ρ(b)⊗ idd−1
H )mβρH′ .

Using that µ ◦ ρ(b) = rH(ρ(b))µ (Proposition 1.2.12) and that µ is cyclic as in the
argument of the first assertion, we obtain the desired relation.

Note that Proposition 3.2.9 requires unimodularity of H and H∗ in an essential
way. On the other hand Lemma 3.2.10 below requires involutivity of H .

Lemma 3.2.10. Let H be an ordered, oriented, based Heegaard diagram. Reversing
the orientation of a curve in β has no effect in Zρ

H . Now let H′ be the ordered,
oriented, based Heegaard diagram obtained from H by reversing the orientation of a
single oriented closed curve αi ∈ α. Then

Zρ
H(H

′, ω) = rH(ρ(α
∗
i ))Z

ρ
H(H, ω).

Proof. Suppose the orientation of β1 ∈ β is reversed. Since β1 = 1 it follows that the
β1,x’s are unchanged, hence ρH is unchanged. The only changes comes in the order
of the multiplication along β1 and the evaluation of the antipode, since the crossings
through β1 reverse order and sign. But using that S is an algebra anti-automorphism
and S2 = idH it is easy to see that

Kρ
H(H

′) = (S ⊗ idd−1
H )Kρ

H(H).

Using that µ ◦S = (−1)|c|µ (Proposition 1.2.12), we get Zρ
H(H) = (−1)|c|Zρ

H(H
′) and

hence the equality if we take the orientation ω into account. Now suppose we reverse
the orientation of a curve αi ∈ α, say αi = α1. The only difference with the preceding
argument is that now the βx’s change. Indeed, for each β ∈ β let m′(x) be the sign
of intersection, in H′, of x ∈ αj ∩ β so m′(x) = m(x) if j 6= 1 and m′(x) = −m(x) if

j = 1. Recall that if x ∈ αj ∩ β, there is a α∗
j at the end of β

′

x if m′(x) is negative,
but this α∗

j does not appears if m′(x) is positive. Therefore, we have

β
′

x = βx · α
∗
1
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for each x ∈ α1 ∩ β and β
′

x = βx for x ∈ αj ∩ β with j 6= 1. Combining this with
the preceding argument (so we use that S is a coalgebra anti-automorphism and
S2 = idH), it follows that

Kρ(H′) = Kρ(H)((Sρ(α∗
1))⊗ id⊗d−1

H ).

Since (Sρ(α∗
1))(c) = (−1)|c|rH(ρ(α

∗
1)), it follows that Zρ

H(H
′) = (−1)|c|rH(ρ(α

∗
1))Z

ρ
H(H)

and hence the desired equality if we consider the orientation ω as before.

Now, given a fixed φ ∈ Aut(H), let ρφ : π1(M, p) → Aut(H) be the homomor-
phism defined by ρφ(x) := φ ◦ ρ(x) ◦ φ−1 for any x ∈ π1(M, p).

Lemma 3.2.11. For any φ ∈ Aut(H) we have Z
ρφ
H (H) = Zρ

H(H).

Proof. Since φ is a Hopf automorphism and Kρ
H(H) only involves the structure maps

of H , we have

K
ρφ
H (H) = φ⊗d ◦Kρ

H(H) ◦ (φ−1)⊗d.

Therefore, by definition of rH and Proposition 1.2.12, we get

Z
ρφ
H (H) = (µ ◦ φ)⊗dKρ

H(H)((φ−1(c))⊗d)

= rH(φ)
d · Zρ

H(H) · rH(φ
−1)d

= Zρ
H(H).

Now let p1, p2 ∈ s(γ) be basepoints and let δ : [0, 1] → M be a path from p1 to
p2. Let C[δ] : π1(M, p1) → π1(M, p2) be the isomorphism defined by C[δ](α) = [δ]α[δ]
for α ∈ π1(M, p1).

Corollary 3.2.12. The scalar Zρ
H(H) is independent of the basepoint p ∈ s(γ).

More precisely, let p1, p2 ∈ s(γ) be two basepoints and let ρi : π1(M, pi) → Aut(H)
for i = 1, 2 be group homomorphisms related by ρ1 = ρ2 ◦ C[δ] for some path δ from
p1 to p2. Then Zρ1

H (H) = Zρ2
H (H).

Proof. Note that changing the path δ by another path changes C[δ] by an inner
automorphism of π1(M, p2). Therefore, by Proposition 3.2.11, it suffices to prove the
corollary for a specific path δ. Let α∗

pi
∈ π1(M, pi) be the dual curves of the α’s

coming from the diagram H with basepoint pi, i = 1, 2. If we just let δ be a path
from p1 to p2 contained in Σ \ αe (which is connected) then α∗

p2
= δα∗

p1
δ. Using

ρ1 = ρ2 ◦ C[δ] we get ρ1(α
∗
p1
) = ρ2(δα

∗
p1
δ) = ρ2(α

∗
p2
) for each α ∈ α. It follows that

ρ1(H) = ρ2(H) and hence Zρ1(H) = Zρ2(H).
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3.2.5 Proof of invariance, special case

We now prove Theorem 3.2.3. Of course, most of the proof is essentially as in [Kup91]
or [Vir05], with some extra care because of the appearance of the arcs.

Proof of Theorem 3.2.3. Since Im (ρ) ⊂ Ker (rH), Proposition 3.2.9 and Lemma 3.2.10
imply that Zρ

H(H) is independent of the basepoints and the orientation of the curves in
α∪β. Changing the ordering of the closed curves introduces a sign (whenever |c| = 1)
into Zρ

H(H), but since δω(H) also changes sign, Zρ
H(H, ω) is unchanged. Therefore,

Zρ
H(H) is independent of all the extra structure we put on H (ordering, orientation

and basepoints) and so we only need to show it is invariant under extended Heegaard
moves. Each time we perform such a move we will denote by H′ = (Σ′,α′,β′) the

new Heegaard diagram obtained (so Σ′ = Σ except for stabilization), β
′

x the elements
in π1(M, p) defined from H′, and so on.

1. Isotopy inside αe ∪ β: if the isotopy occurs in int (Σ) this follows from the
antipode axiom as in [Kup91]. Now, suppose we isotope an arc in a past the
basepoint p ∈ s(γ) and let H′ be the extended diagram after the isotopy. Then
all the dual curves become conjugated by (a∗)±1, see Remark 2.3.10. Therefore,

all the β
′

x’s get conjugated by (a∗)±1. If φ = ρ((a∗)±1) ∈ Aut(H) it follows that
Zρ(H′) = Zρφ(H) where recall that ρφ is defined by ρφ(x) = φ ◦ ρ(x) ◦ φ−1

for all x ∈ π1(M, p). By Proposition 3.2.11, one has Zρφ(H) = Zρ(H) and so
Zρ(H′) = Zρ(H) as desired.

2. Handlesliding in α: suppose we handleslide a closed curve α2 over α1 along an
arc δ ⊂ int (Σ). We denote by α′

2 the curve obtained after handlesliding. We
suppose that α1, α2, α

′
2 are oriented so that

∂P = α1 ∪ α2 ∪ −α′
2

as oriented 1-manifolds, where P is the handlesliding region. We also suppose
that the basepoints of β are outside of P . By isotopy invariance, we can further
suppose δ ∩ β = ∅, so we can write

α′
2 ∩ β = I ′1 ∪ I ′2

where I ′i is the set of crossings through α′
2 that sit next to the crossings of αi

for i = 1, 2. More precisely, there is an obvious bijection j : αi ∩ β → I ′i for
which each point of I ′i is consecutive to the corresponding point in αi∩β in the
order of Iβ (since the basepoints of β are outside P ).

Claim: With these choices, we have β
′

j(x) = β
′

x · (α′
1)

∗ for each x ∈ I ′1 and

β
′

x = βx for every crossing of H′ not in I ′1 (we identify the points of I ′2 with
α2 ∩ β for simplicity).
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We will further suppose that the basepoint of α′
2 is placed right before I ′1, so

that when following α′
2 starting from this basepoint, the crossings in I ′1 appear

first and then come those of I ′2. Thus, I ′1, I
′
2 inherit the order coming from α1, α2

and x < y for all x ∈ I ′1, y ∈ I ′2. The following figure illustrates our choices:

α1α2

α′
2 b b

b

b

b

b

b

b

I ′1I ′2

Let k = |α1| and l = |α2|. For each i = 1, . . . , k, let ρi = ρ(β
′

xi
) and

ρ′i = ρ(β
′

j(xi)
) = ρi ◦ α′

1, where α′
1 ∈ Aut(H) stands for ρ((α′

1)
∗). With the

above choice of orientations and basepoints, the portion of the tensor Kρ
H(H

′)
corresponding to α1, α

′
2 looks as follows:

∆(k) ∆(l)∆(k)

∆(l)∆(k)

=

. . .
. . .

ρ1

. . .

α′
1

ρk ρ′1 ρ′k

ρ1 ρk

On the right hand side we used that each ρi ∈ Aut(H) is an algebra morphism,
that α′

1 ∈ Aut(H) is a coalgebra morphism and that ∆ is an algebra morphism.
In other words, we obtained

Kρ
H(H

′) = Kρ
H(H) ◦ (Tα′

1
⊗ id⊗d−2

H )

where we let Tφ := (mH ⊗ idH)(idH ⊗ φ⊗ idH)(idH ⊗∆H) for any φ ∈ Aut(H).
By definition of the cointegral, one can see that

Tφ(c⊗ h) = c⊗ h

for any φ ∈ Aut(H) and h ∈ H . It follows that Zρ
H(H

′) = Zρ
H(H) as was to be

shown.

3. Sliding an arc over αe: by isotopy invariance, we can suppose that the base-
point p ∈ s(γ) is outside the handlesliding region. Then it is easy to see that
sliding an arc over another does not changes the βx’s and since (Σ,α,β) is
unaffected, the tensor Kρ

H(H) is unaffected as well. Now suppose we slide an
arc over a closed curve. If we further suppose the basepoints of β are outside
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the handlesliding region (which we can as a consequence of Proposition 3.2.9),
then the βx’s are unaffected. As before, this implies that Kρ

H(H), and hence
Zρ

H(H), is unchanged.

4. Handlesliding in β: the situation is similar to the case of α handlesliding. If
we slide β2 over β1 to get a curve β ′

2 and we put orientations and basepoints

as above, then one has β
′

x = βx for all x ∈ α ∩ β and also β
′

j(x) = βx for all
x ∈ β1 ∩α. It then follows that

Kρ
H(H

′) = (TidH
⊗ id⊗d−2

H )Kρ
H(H)

and so Zρ
H(H

′) = Zρ
H(H) by the defining property of the integral µ.

5. Stabilization follows directly from the normalization µ(c) = 1.

3.2.6 The disconnected case

We now extend the definition of Zρ
H(M, γ) to the case when R−(γ) is disconnected

(e.g. link complements). We also extend Z to disconnected balanced sutured 3-
manifolds by declaring it to be multiplicative under disjoint union.

Let (M, γ) be a balanced sutured manifold with possibly disconnected subsurface
R = R−(γ) and let ρ : π1(M, p) → Ker (rH) ⊂ Aut(H). Then we can construct a
balanced sutured manifold (M ′, γ′) containing M and with connected R′ = R−(γ

′)
as follows (see [FJR11, Section 3.6]). First, attach a 2-dimensional 1-handle h along
s(γ). This handle can be thickened to a 3-dimensional 1-handle h × I attached to
γ = s(γ)× I. This produces a new balanced sutured manifold, and after sufficiently
many handle attachments, we get (M ′, γ′) with connected R′. Note that π1(M

′) =
π1(M) ∗ F where F is the free group generated by loops piercing the newly attached
one-handles in a single point. Thus, a group homomorphism ρ : π1(M, p) → Ker (rH)
can always be extended to ρ′ : π1(M

′, p) → Ker (rH).

Lemma 3.2.13. Let (M ′, γ′) be a sutured 3-manifold obtained from (M, γ) by attach-
ing 1-handles to γ as above. Let ρ′ be an extension of ρ taking values in Ker (rH) ⊂
Aut(H). Suppose R = R−(γ) is connected so that both Zρ

H(M, γ) and Zρ′

H (M
′, γ′) are

defined. Then

Zρ
H(M, γ) = Zρ′

H(M
′, γ′).

Proof. It suffices to suppose (M ′, γ′) is obtained by adding a single 3-dimensional
1-handle to R− × I. Then, an extended Heegaard diagram of M ′ is obtained from
an extended diagram H = (Σ,αe,β) of M by attaching a 2-dimensional 1-handle
h to Σ along ∂Σ and letting a′ = a ∪ {a}, where a is the cocore of the 1-handle
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attached (as usual we note αe = α∪a). If Σ′ denotes the surface Σ with h attached,
then (Σ′,αe ∪ {a},β) is an extended diagram of (M ′, γ′). Thus, the tensors defining
Z(M, γ) and Z(M ′, γ′) are the same except possibly for the βx’s. Indeed, these also

coincide: since the β’s are disjoint from a, we have β
′

x = i∗(βx) for each β ∈ β and

x ∈ β ∩ α, where the β
′

x ∈ π1(M
′, p) are defined from H′. From ρ′i∗ = ρ we get

ρ(βx) = ρ′(β
′

x). Thus,

Zρ
H(H) = Zρ′

H(H
′)

proving the lemma.

Proposition 3.2.14. Let (M, γ) be a balanced sutured manifold with possibly discon-
nected R = R−(γ). Let (M ′, γ′) be any sutured manifold with connected R′ = R−(γ

′)

constructed as above and let ρ′ be such that ρ′i∗ = ρ. The scalar Zρ′

H(M
′, γ′) is inde-

pendent of how the one-handles are attached to R (provided R′ is connected) and of
the extension ρ′ of ρ chosen.

Proof. Suppose (M ′, γ′) and (M ′′, γ′′) are obtained from (M, γ) by attaching 1-
handles to R as above and that R′, R′′ are connected. One can keep attaching 1-
handles to find a sutured manifold (M0, γ0) containing both M ′ and M ′′. If ρ′, ρ′′ are
extensions of ρ to M ′,M ′′ respectively, then there is an extension ρ0 to M0 restricting
to both ρ′, ρ′′. This is because π1(M0) = π1(M) ∗ F ′ ∗ F ′′ ∗ F for some free groups
F ′, F ′′, F , where π1(M

′) = π1(M) ∗ F ′, π1(M
′′) = π1(M) ∗ F ′′. By the lemma above,

it follows that Zρ′

H (M
′, γ′) = Zρ0

h (M0, γ0) = Zρ′′

H (M ′′, γ′′) as desired.

Definition 3.2.15. Let (M, γ) be a connected balanced sutured manifold with pos-
sibly disconnected R = R−(γ). We define

Zρ
H(M, γ) := Zρ′

H(M
′, γ′)

where (M ′, γ′) is any balanced sutured manifold obtained by adding 1-handles to M
as above and ρ′ is any extension of ρ to π1(M). If M is disconnected with connected
components M1, . . . ,Mm then we let

Zρ
H(M, γ) :=

m∏

i=1

Zρi
H (Mi, γii)

where γi = γ ∩Mi, ρi = ρ|H1(Mi) for each i = 1, . . . , m.

3.3 Extending to sutured manifolds: non-unimodular

case

In this section we explain how to normalize Zρ
H(H) with Spinc structures to obtain

a topological invariant whenever Im (ρ) is not contained in Ker (rH). We begin by
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defining Spinc structures and explaining how they are represented on a Heegaard
diagram. In Subsection 3.3.2, we give a simple trick to turn a Heegaard diagram
with a multipoint into a based diagram. Then in Subsection 3.3.3 we show how to
turn Z into a well-defined topological invariant Zρ

H(M, γ, s) where s ∈ Spinc(M, γ)
using the affine structure of Spinc.

3.3.1 Spinc structures and multipoints

Let (M, γ) be a connected sutured manifold. Fix a nowhere vanishing vector field v0
on ∂M with the following properties:

1. It points into M along intR−,

2. It points out of M along intR+,

3. It is given by the gradient of the height function γ = s(γ) × [−1, 1] → [−1, 1]
on γ.

Definition 3.3.1. Let v and w be two non-vanishing vector fields on M such that
v|∂M = v0 = w|∂M . We say that v and w are homologous if they are homotopic rel
∂M in the complement of an open 3-ball embedded in int (M) where the homotopy
is through non-vanishing vector fields. A Spinc structure is an homology class of such
non-vanishing vector fields on M . We denote the set of Spinc structures on M by
Spinc(M, γ).

The space of boundary vector fields v0 with the above properties is contractible.
This implies that there is a canonical identification between the set of Spinc structures
coming from different boundary vector fields. Thus, we make no further reference to
v0.

Proposition 3.3.2 ([Juh10, Prop. 3.6]). Let M be a connected sutured manifold.
Then Spinc(M, γ) 6= ∅ if and only if M is balanced. In such a case, the group
H2(M, ∂M) acts freely and transitively over Spinc(M, γ).

We denote the action of H2(M, ∂M) over Spinc(M, γ) by (h, s) 7→ s+ h. If s1, s2
denote two Spinc structures on M , we denote by s1− s2 the element h ∈ H2(M, ∂M)
such that s1 = s2 + h.

We now proceed to understand Spinc structures from a Heegaard diagram. For
this, we need the following definition.

Definition 3.3.3. Let H = (Σ,α,β) be a balanced Heegaard diagram, where α =
{α1, . . . , αd} and β = {β1, . . . , βd}. A multipoint in H is an unordered set x =
{x1, . . . , xd} where xi ∈ αi ∩ βσ(i) for each i = 1, . . . , d and σ is some permutation in
Sd. The set of multipoints of H is denoted by Tα ∩ Tβ.
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We use the notation Tα ∩Tβ for the set of multipoints by the following reason. If
we let Symd(Σ) := Σd/Sd where the symmetric group Sd acts on Σd = Σ× . . .×Σ by
permuting the factors, then the Heegaard diagram induces two tori Tα := α1×. . .×αd

and Tβ := β1 × . . . × βd contained in Symd(Σ). A multipoint x = {x1, . . . , xd}
corresponds to an intersection point x ∈ Tα ∩ Tβ.

Given a balanced Heegaard diagram H = (Σ,α,β) of (M, γ) with d = |α| = |β|,
one can construct a map

s : Tα ∩ Tβ → Spinc(M, γ)

(see [OS04, Section 2.6] for the closed case and [Juh06, Section 4] for the sutured
extension). To do this, we first fix a Riemannian metric on M . Now, take a Morse
function f : M → [−1, 4] satisfying the following conditions:

1. f(R−) = −1, f(R+) = 4 and f |γ is the height function γ = s(γ) × [−1, 4] →
[−1, 4]. Here we choose a diffeomorphism γ = s(γ) × [−1, 4] such that s(γ)
corresponds to s(γ)× {3/2}.

2. For i = 1, 2, f has d index i critical points and has value i on these points.
These lie in int (M) and there are no other critical points.

3. One has Σ = f−1(3/2), the α curves coincide with the intersection of the
unstable manifolds of the index one critical points with Σ and the β curves
coincide with the intersection of the stable manifolds of the index two critical
points with Σ.

Such a Morse function always exists (see e.g. [JTZ12, Prop. 6.17]). By the first
condition, ∇f |∂M satisfies the properties of the vector field v0 in Definition 3.3.1.
Note that the only singularities of ∇f are the index one and index two critical points
of f , denote them by P1, . . . , Pd and Q1, . . . , Qd respectively. Then the last condition
above means

W u(Pi) ∩ Σ = αi and W s(Qi) ∩ Σ = βi

for each i. Here W u and W s denote respectively the unstable and stable submanifolds
of ∇f at the corresponding critical point. Thus, an intersection point x ∈ αi ∩ βj

corresponds to a trajectory of ∇f starting at Pi and ending at Qj . In particular, a
multipoint x ∈ Tα ∩ Tβ corresponds to a d-tuple γx of trajectories of ∇f connecting
all the index one critical points to all the index two critical points.

Definition 3.3.4. Let (Σ,α,β) be a balanced Heegaard diagram of (M, γ) and
x ∈ Tα ∩Tβ . Let f be a Morse function adapted to the Heegaard diagram as above.
We define a Spinc structure s(x) as follows: let N be a tubular neighborhood of γx in
M homeomorphic to a disjoint union of d 3-balls. Then ∇f is a non-vanishing vector
field over M \N . Since the critical points of f have complementary indices on each
component of N , one can extend ∇f |M\N to a non-vanishing vector field over all of
M . We let s(x) be the homology class of this vector field.
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Figure 3.2: Basepoints qi = qi(x) on β coming from x ∈ Tα ∩ Tβ . We suppose the
surface is oriented towards the reader, so that the left crossing is positive and the
right one is negative. The white dot represents xi ∈ αi ∩ βi.

3.3.2 Multipoints and basepoints

In order to fix the indeterminacy of Zρ
H(H) coming from the basepoints and orienta-

tions of the curves in H and to obtain a topological invariant defined for an arbitrary
ρ we will pick the basepoints in a very special way. The following is [LN19a, Definition
5.22].

Definition 3.3.5. Let H be an oriented sutured Heegaard diagram and let x ∈
Tα ∩ Tβ be a multipoint in H, say x = {x1, . . . , xd} where xi ∈ αi ∩ βi for each
i = 1, . . . , d. For each i, we let qi(x) ∈ βi be a basepoint defined as follows: if the
crossing xi is positive (resp. negative), then qi(x) lies just before xi (resp. after xi)
when following the orientation of βi, see Figure 3.2. In other words, the basepoint qi is
always to the right side of αi. If H is based with these basepoints on β and arbitrary
basepoints on α, we denote the tensor Zρ

H(H) (resp. Zρ
H(H, ω)) by Zρ

H(H,x) (resp.
Zρ

H(H,x, ω)).

3.3.3 Normalizing Z via Spinc

We now treat the case of an arbitrary ρ : π1(M, p) → Aut(H). Let (M, γ) be a con-
nected balanced sutured 3-manifold with connected R−(γ) and fix a Spinc structure
s on (M, γ).

Let H be an ordered, oriented, extended Heegaard diagram of (M, γ). Let x ∈
Tα ∩ Tβ be a multipoint, and suppose H is based via x using the convention of
Definition 3.3.5. Recall that we note by Zρ

H(H,x) the tensor Zρ
H(H) where H has

the basepoints on β induced from x and arbitrary basepoints on α. The multipoint
x defines a Spinc structure s(x) as in Subsection 3.3.1, and comparing this with our
chosen s ∈ Spinc(M, γ) we get an homology class

hs,x := PD[s(x)− s] ∈ H1(M).

The composition rH ◦ρ : π1(M, p) → K× descends to H1(M) and so can be evaluated
over hs,x.
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Theorem 3.3.6. Let H be an ordered, oriented, extended Heegaard diagram of (M, γ)
and x ∈ Tα ∩ Tβ be a multipoint. Then the scalar

rH ◦ ρ(hs,x)Z
ρ
H(H, x, ω) ∈ K

is independent of all choices and defines a topological invariant of the tuple (M, γ, ρ, s)
(resp. (M, γ, ρ, s, ω) if the cointegral of H has degree one) where s ∈ Spinc(M, γ).

Definition 3.3.7. We denote the above invariant by Zρ
H(M, γ, s, ω), that is,

Zρ
H(M, γ, s, ω) := rH ◦ ρ(hs,x)Z

ρ
H(H,x, ω) ∈ K

where H is any ordered, oriented, extended Heegaard diagram of (M, γ) with base-
points coming from an arbitrary multipoint x of H.

Our invariant depends on the Spinc structure as follows: for any h ∈ H2(M, ∂M)

Zρ
H(M, γ, s+ h, ω) = r ◦ ρ(PD[h])−1Zρ

H(M, γ, s, ω) (3.2)

where PD : H2(M, ∂M) → H1(M) is Poincaré duality. This follows from the defini-
tions using that PD[s(x)− (s+ h)] = PD[s(x)− s]PD[h]−1.

3.3.4 Proof of invariance

We now prove Theorem 3.3.6. We need to establish a few easy lemmas beforehand.

To show that the formula of Theorem 3.3.6 is independent of the multipoint
chosen, we need to know what happens to s(x) and how do the x-basepoints on
H change when performing Heegaard moves. It turns out that both changes are
expressed in terms of the same homology class.

Definition 3.3.8. Let x,y ∈ Tα ∩ Tβ be two multipoints say xi ∈ αi ∩ βi and
yi ∈ αi ∩ βσ(i) for each i. Let ci be an arc joining xi to yi along αi and di be an arc
joining yσ−1(i) to xi along βi. Then

d∑

i=1

ci +

d∑

i=1

di

is a cycle in Σ. We denote by ǫ(x,y) the element of H1(M) induced by the cycle
above.

Note that for each i there are two choices for an arc ci joining xi and yi along αi

(similarly for di) but the class ǫ(x,y) ∈ H1(M) is independent of which arc is chosen.
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Lemma 3.3.9 ([Juh06, Lemma 4.7]). For any x, y ∈ Tα ∩ Tβ we have

PD[s(x)− s(y)] = ǫ(x, y)

where PD : H2(M, ∂M) → H1(M) is Poincaré duality.

Now let x,y ∈ Tα ∩ Tβ , say xi ∈ αi ∩ βi and yi ∈ αi ∩ βσ(i) for each i = 1, . . . , d.
By Definition 3.3.5, we get two basepoints on βi for each i, which we will denote by
qi(x) and qi(y). We let d′i ⊂ βi be the oriented arc from qi(x) to qi(y). Recall that
from such an arc we obtain an element d′i ∈ π1(M, p).

Lemma 3.3.10. For any x, y ∈ Tα ∩ Tβ one has

ǫ(y, x) =

d∏

i=1

h(d′i)

in H1(M), where ǫ(x, y) is the homology class of Subsection 3.3.1 and h : π1(M) →
H1(M) is the projection.

Proof. For each i let ci be the oriented subarc of αi starting at yi and ending at
xi and let di be the oriented subarc of βi from xi to yσ−1(i), so that ∪d

i=1(ci ∪ di)
represents ǫ(y,x) (see Definition 3.3.8). Let c′i be an oriented arc parallel to ci, on
its right side, that goes from qσ(i)(y) to qi(x). It is clear that ∪d

i=1(ci ∪ di) can be
pushed off to the right side of α to match ∪d

i=1(c
′
i∪d

′
i), so they are isotopic as oriented

1-submanifolds of Σ. Thus, ǫ(y,x) is represented by the 1-submanifold
⋃d

i=1(c
′
i ∪ d′i),

which is transversal to αe and so

ǫ(y,x) = h(∪d
i=1(c

′
i ∪ d′i))

= h(∪d
i=1d

′
i)

=

d∏

i=1

h(d′i)

where we used c′i = 1 since the c′i’s are disjoint from αe.

We further need to know what happens with the map s when doing Heegaard
moves. So let H = (Σ,α,β),H′ = (Σ′,α′,β′) be two balanced Heegaard diagrams of
(M, γ). Then we have two maps

s : Tα ∩ Tβ → Spinc(M, γ) and s′ : Tα′ ∩ Tβ′ → Spinc(M, γ).

Suppose H′ is obtained from H by one of the moves of Theorem 2.2.10. In the case
of isotopy, we suppose that H′ is obtained by an isotopy of an α or β curve that adds
just two new intersection points. For all such moves there is an obvious map

j : Tα ∩ Tβ → Tα′ ∩ Tβ′ .
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In the case of isotopies (that increase the number of intersection points) or han-
dlesliding, it is clear that Tα ∩ Tβ ⊂ Tα′ ∩ Tβ′ so we let j be the inclusion. For
diffeomorphisms isotopic to the identity in M we just let j be the bijection between
multipoints induced by the diffeomorphism. For stabilization, if αd+1, βd+1 are the
stabilized curves intersecting in a point xd+1 ∈ Σ′ then we let j be the bijection
x 7→ x ∪ {xd+1}.

Lemma 3.3.11. If H′ is obtained from H by a Heegaard move and if the map j is
defined as above, then

s′(j(x)) = s(x)

for all x ∈ Tα ∩ Tβ.

Proof. This is obvious for isotopies and diffeomorphisms isotopic to the identity in
M . Suppose H′ is obtained from H by stabilization. The union of the newly attached
one-handle/two-handle pair is a 3-ball and it is clear that in the complement of this
ball, the vector fields representing s(x) and s′(j(x)) coincide so s(x) = s′(j(x)) by
definition. Now suppose H′ is obtained from H by handlesliding a curve α1 over
α2 and let α′

1 = α1#α2. Let Uα be the lower handlebody and let D1, D2, D
′
1 ⊂ Uα

be the compressing disks corresponding to α1, α2, α
′
1 respectively. The complement

of these three disks in Uα has two components: one contains the index zero critical
point and the other is homeomorphic to a 3-ball B. Note that the boundary of B is
the union of D1, D2, D

′
1 and the pair of pants bounded by α1, α2, α

′
1. One can pick

Morse functions f, f ′ adapted to H,H′ respectively such that in the complement of
B in M , the vector fields −∇f and −∇f ′ coincide. Moreover, the trajectories of f
associated to x coincide with the trajectories of f ′ associated to j(x), so the vector
fields representing s(x) and s′(j(x)) coincide in the complement of d+1 3-balls, which
implies that s(x) = s′(j(x)).

Proof of Theorem 3.3.6. We have to show that the scalar rH ◦ ρ(hs,x)Z
ρ
H(H,x, ω) is

independent of the multipoint x ∈ Tα ∩Tβ , of the ordering and orientation of H and
of extended Heegaard moves. Most of the proof is exactly as that of Subsection 3.2.5
with some extra care for the multipoint and Spinc structure. We do the proof step
by step.

1. Independence of the multipoint x ∈ Tα ∩ Tβ: let y ∈ Tα ∩ Tβ be another
multipoint and for each i = 1, . . . , d, let d′i ⊂ βi be the arc from qi(x) to qi(y).
Then

Z(H,x) = rH

(
d∏

i=1

ρ(d′i)

)
Z(H,y)

= rH ◦ ρ(ǫ(y,x))Z(H,y).
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The first equality follows by using Proposition 3.2.9 over each β curve and the
second follows from Lemma 3.3.10 above. Now, we have

hs,x = PD[s(x)− s]

= PD[s(x)− s(y) + s(y)− s]

= ǫ(x,y) + hs,y

where we used Lemma 3.3.9 above in the third equality. Hence

rH ◦ ρ(hs,x)Z
ρ
H(H,x) = rH ◦ ρ(hs,y)rH ◦ ρ(ǫ(x,y)))Zρ

H(H,x)

= rH ◦ ρ(hs,y)Z
ρ
H(H,y)

as was to be shown.

2. Independence of ordering and orientations: independence of ordering follows as
before. Now let H′ be the ordered, oriented, based Heegaard diagram obtained
from H only by reversing the orientation of αi. Let H be the ordered, oriented,
based Heegaard diagram obtained from H by reversing the orientation of αi

and with the basepoints coming from x. Then H differs from H′ only on the
basepoint over βi, so

Zρ
H(H,x) = rH(ρ(α

∗
i ))

−1Zρ
H(H

′)

by Proposition 3.2.9. By Lemma 3.2.10 we thus get

Zρ
H(H,x) = rH(ρ(α

∗
i ))

−1rH(ρ(α
∗
i ))Z

ρ
H(H,x)

= Zρ
H(H,x)

as we wanted.

3. Independence of extended Heegaard moves: the proof is as before, but we have
to be careful on the multipoints and Spinc structures. Recall that if H′ is
obtained from H by a Heegaard move, then there is a map j : Tα ∩Tβ → Tα′ ∩
Tβ′ . The proof of Subsection 3.2.5 extends to show that Z(H,x) = Z(H′, j(x))
and so we only need to show that hs,x = hs,j(x). But this follows from Lemma
3.3.11 above:

hs,x = PD[s(x)− s] = PD[s′(j(x))− s] = hs,j(x).
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3.3.5 The disconnected case with Spinc

We extend the considerations of Subsection 3.2.6 to the case of arbitrary ρ.

Let (M ′, γ′) be a sutured 3-manifold obtained from (M, γ) by attaching one-
handles along γ. Since the newly attached one-handles belong to a neighborhood
of R′, given s ∈ Spinc(M, γ) there is a unique way to extend s to a relative Spinc

structure on M ′. We denote it by i(s). The map i : Spinc(M, γ) → Spinc(M ′, γ′)
thus obtained is an affine map: if s1, s2 ∈ Spinc(M, γ), then

PD[i(s1)− i(s2)] = i∗(PD[s1 − s2])

where i∗ : H1(M) → H1(M
′) is induced by inclusion. If H is a Heegaard diagram of

(M, γ) and H′ is the diagram of (M ′, γ′) obtained from H by attaching handles to
∂Σ, then there is an obvious bijection j : Tα ∩ Tβ → Tα′ ∩ Tβ′ which clearly satisfies
i(s(x)) = s′(j(x)) for any x ∈ Tα ∩Tβ (see [FJR11, Section 3.6]). Therefore, one has

hi(s),j(x) = PD[i(s)− s′(j(x))]

= PD[i(s)− i(s(x))]

= i∗PD[s− s(x))]

= i∗(hs,x).

Lemma 3.2.13 shows that Zρ
H(H,x) = Zρ′

H(H
′, j(x)). Thus, if R = R−(γ) is

connected, it follows that

Zρ
H(M, γ, s) = Zρ′

H(M
′, γ′, i(s))

for any ρ′ : π1(M
′, p) → Aut(H) such that ρ′◦i∗ = ρ, where i∗ : π1(M, p) → π1(M

′, p)
is induced by inclusion. Thus, the argument of Proposition 3.2.14 applies, and we
can make the following definition.

Definition 3.3.12. Let (M, γ) be a balanced sutured 3-manifold with possibly dis-
connected subsurface R = R−(γ) and let ρ : π1(M, p) → Aut(H), s ∈ Spinc(M, γ)
and ω an orientation of H∗(M,R;R). Let (M ′, γ′) be an arbitrary sutured 3-manifold
obtained by adding one-handles to M along γ and let ρ′ be an extension of ρ to
π1(M

′, p). Then we define

Zρ
H(M, γ, s, ω) := Zρ′

H (M
′, γ′, i(s), ω′)

where i : Spinc(M, γ) → Spinc(M ′, γ′) is the map defined above. Here ω′ is the
orientation of H∗(M

′, R′;R) induced from ω by the isomorphism H∗(M,R;R) ∼=
H∗(M

′, R′;R).
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3.4 Twisted Kuperberg polynomials

The Kuperberg invariants for sutured manifolds we defined are scalars in the base
field K. We explain a notable feature of our construction: provided H is N-graded,
Kuperberg invariants can be upgraded to polynomials.

So suppose that H is a N-graded Hopf superalgebra. This means that H has a
vector space decomposition H = ⊕n∈NHn such that Hi · Hj ⊂ Hi+j and ∆(Hn) ⊂∑

i+j=nHi ⊗ Hj. It is required that ∆ is a morphism of N-graded algebras, where
H⊗H is N-graded by (H⊗H)n = ⊕i+j=nHi⊗Hj and the algebra structure is defined
by

(x⊗ y)(x′ ⊗ y′) = (−1)|x
′||y|xx′ ⊗ yy′

where | · | denotes the N-degree of an homogeneous element of H . Thus, H can be
considered as a Hopf superalgebra by letting H0 = ⊕n≥0H2n and H1 = ⊕n≥0H2n+1.
If the product in H ⊗H is defined as above but without the sign, we call H just an
N-graded Hopf algebra. In this sense, an N-graded Hopf algebra can be seen as an
N-graded superalgebra concentrated in even degree.

Let Autgr(H) be the group of Hopf algebra automorphisms of H that preserve
the degree. Given a balanced sutured 3-manifold (M, γ), we define

HM := H ⊗K K[H1(M)].

This is an N-graded K[H1(M)]-linear Hopf (super)algebra in an obvious way. Now,
given an element α ∈ Autgr(H) and h ∈ H1(M) we can define a N-graded K[H1(M)]-
linear Hopf automorphism α⊗ h of HM by

α⊗ h(x⊗ f) := α(x)⊗ (h|x| · f)

where x ∈ H is homogeneous and f ∈ H1(M). Therefore, a group homomorphism ρ :
π1(M, p) → Autgr(H) can be combined with the projection h : π1(M) → H1(M ;Z)
to define a representation

ρ⊗ h : π1(M, p) → Autgr(HM)

δ 7→ ρ(δ)⊗ h(δ).

Note that though K[H1(M)] is only a ring, HM has a two-sided cointegral and integral
induced from that of H . More precisely, if jH : H → HM is the inclusion map
x 7→ x ⊗ 1, then the cointegral of HM is jH(c) while the integral is µHM

:= µ ⊗
idK[H1(M)] : HM → K[H1(M)], where c and µ are the two-sided cointegral and integral
of H respectively. Thus, we can apply our construction to the K[H1(M)]-linear Hopf
superalgebra HM , and this gives a topological invariant

Zρ⊗h
HM

(M, γ, s, ω) ∈ K[H1(M)]

is one is given s ∈ Spinc(M, γ) and an orientation ω of H∗(M,R−(γ);R)
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Definition 3.4.1. If HM = H ⊗K K[H1(M)], we call Zρ⊗h
HM

(M, γ, s, ω) ∈ K[H1(M)]

the twisted Kuperberg polynomial of (M, γ) with respect to ρ. We also refer to Z1⊗h
HM

as
the (untwisted) Kuperberg polynomial, which we denote simply by ZHM

(M, γ, s, ω) ∈
K[H1(M)].

The twisted Kuperberg polynomials specializes to our previous construction as
follows. Recall that the augmentation map aug : K[H1(M)] → K is the K-linear map
defined by aug (f) = 1 for all f ∈ H1(M).

Proposition 3.4.2. If aug : K[H1(M)] → K is the augmentation map, then the
twisted Kuperberg polynomial satisfies

aug (Zρ⊗h
HM

(M, γ, s, ω)) = Zρ
H(M, γ, s, ω).

Proof. Set aug H := idH⊗aug : HM → H . It is easy to see that aug ◦µHM
= µ◦aug H

and aug H ◦(ρ⊗h(δ))◦jH = ρ(δ) for any δ ∈ π1(M), where jH : H → HM , x 7→ x⊗1 is
the inclusion as above. Since the cointegral of HM is jH(c), where c is the cointegral
of H , it follows that aug (Zρ⊗h

HM
(H)) = Zρ

H(H) where H is a Heegaard diagram of
(M, γ). From this the result follows.

Example 3.4.3. Consider the left trefoil complement as in Example 3.2.4 and let
ρ ≡ 1. Let t be a generator of H1(M) ∼= Z. Then, for the diagram of Figure 3.1, the
twisted Kuperberg invariant is given by

Z1⊗h
H (H) = µ(t|c(1)|c(1) · S(c(2)) · t

−|c(3)|c(3))

= t|c(1)|−|c(3)|µ(c(1)S(c(2))c(3)).

As usual, it is understood that this is a sum running through all the terms of ∆(3)(c).
When H is set to be an exterior algebra on one generator of degree one, this formula
reduces to the Alexander polynomial of the trefoil knot.

Lemma 3.4.4. The homomorphism rHM
: Aut(HM) → K[H1(M)]× induced from the

cointegral of HM satisfies

rHM
(α⊗ f) = rH(α)f

|c|

for any α ∈ Aut(H) and f ∈ H1(M).

Proof. Indeed, the cointegral of HM = H ⊗K K[H1(M)] is c⊗ 1 so that

α⊗ f(c⊗ 1) = α(c)⊗ f |c|

= rH(α)c⊗ f |c|

= rH(α)f
|c|(c⊗ 1)

and so rHM
(α⊗ f) = rH(α)f

|c| by definition of rHM
.
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Changing the Spinc structure has the following effect in the twisted Kuperberg
polynomial:

Zρ⊗h
HM

(M, γ, s+ h, ω) = rHM
◦ (ρ⊗ h)(PD[h])−1Zρ⊗h

HM
(M, γ, s, ω).

From the above lemma, we find

Zρ⊗h
HM

(M, γ, s+ h, ω) = rH ◦ ρ(PD[h])−1PD[h]−|c|Zρ⊗h
HM

(M, γ, s, ω).

Thus if Im (ρ) ⊂ Ker (rH), Z
ρ⊗h
HM

depends on the Spinc structure only up to multi-

plication by f |c|, where f ∈ H1(M). Hence, we can drop the Spinc structure and the
homology orientation only up to a ±H1(M) indeterminacy, and denote

Zρ⊗h
HM

(M, γ) ∈ K[H1(M)]/±H1(M).

If the cointegral of H has degree zero, we can further drop the sign indeterminacy.
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Chapter 4

Recovering Reidemeister torsion

This chapter is devoted to the proof of Theorem 2 and deducing some corollaries.
We start by recalling the basics of the theory of Reidemeister torsion in Section 4.1.
Then in Section 4.2 we specialize the torsion to sutured 3-manifolds. The proof of
Theorem 2 is devoted to Section 4.3.

4.1 Basics of Reidemeister torsion

In this section we recall the definition of the torsion function, the torsion of CW
complexes and 3-manifolds, and its relation with (twisted) Alexander polynomials.
The material presented here is standard, cf. [Tur01,FV11a].

4.1.1 Algebraic torsion

Let R be a commutative domain with unit. Consider a finitely generated free R-
module V . Given two R-basis b and c of V , then we denote by [b/c] ∈ R× the
determinant of the change of base matrix from b to c, where R× is the group of
units of R. Two bases of V are said to be equivalent if [b/c] = 1. Consider an exact
sequence

0 // C // D // E // 0

of R-modules C,D,E. Given two bases c, e of C,E, one can lift e to ẽ ⊂ D and
then ce := (c, ẽ) is a basis of D whose equivalence class is independent of the lifting
(indeed, one has [ce/c′e′] = [c/c′][e/e′]). Now consider an acyclic chain complex

C : 0 → Cm → · · · → C0 → 0

with chosen bases ci of the Ci. Thus, for each i there is a short exact sequence

0 → Bi → Ci → Bi−1 → 0

where Bi is the image of ∂ : Ci+1 → Ci. For each i, let bi be a basis of Bi (image at
Ci), then bibi−1 is a basis of Ci.
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Definition 4.1.1. The torsion of an acyclic based chain complex (C, c) is

τ(C, c) :=

m∏

i=0

[bibi−1/ci]
(−1)i+1

∈ Q(R)

where Q(R) is the quotient field of R.

It is easy to prove that this is well-defined, i.e., independent of the choice of each
basis bi of Bi.

4.1.2 Twisted Reidemeister torsion

We now define the (twisted) Reidemeister torsion of CW complexes and of 3-manifolds.
In all that follows, we let X be a finite connected CW complex and Y a (possibly

empty) subcomplex such that χ(X, Y ) = 0. Let p : X̃ → X be the universal covering
space of X and Y ′ := p−1(Y ). Let x0 ∈ Y be a basepoint (just x0 ∈ X if Y is empty)
and let π = π1(X, x0).

Consider the cellular chain complex C∗(X̃, Y ′). This becomes a left Z[π]-module
if we let π act by Deck transformations and it is a free Z[π]-module with basis in

bijection with the cells of X \ Y . We will rather consider C∗(X̃, Y ′) as a right Z[π]-

module by letting c · g := g−1c where g ∈ π and c is a cell of X̃ (this is the same
convention as in [FV11a,DFJ12]).

Now let ρ : π → GL(V ) be a representation, where V is a finitely generated free
module over some commutative domain with unit R. Then V becomes a Z[π]-module
on the left via ρ. We thus get a complex of R-modules defined by

Cρ
∗ (X, Y ) := C∗(X̃, Y ′)⊗Z[π] V.

We denote the homology of this complex by Hρ
∗ (X, Y ). Suppose the cells of X \Y are

ordered and oriented and let e be a choice of lifts to X̃ of the cells of X \ Y . Then e

defines an (ordered, oriented) Z[π]-basis of C∗(X̃, Y ′) and tensoring with an R-basis of
V we get a basis e of Cρ

∗ (X, Y ). More precisely, if e = (e1, . . . , ek) and (v1, . . . , vn) is an
ordered basis of V , then e is ordered by e = (e1⊗v1, . . . , e1⊗vn, . . . , ek⊗v1, . . . , ek⊗vn).

Definition 4.1.2. Let e be a choice of lifts to X̃ of the cells of X \Y . The Reidemeis-
ter torsion τρ(X, Y, e) is defined as the torsion of the based complex (Cρ

∗ (X, Y ), e),
that is,

τρ(X, Y, e) := τ(C∗(X̃, Y ′)⊗Z[π] V, e) ∈ Q(R)

where the Z[π]-module structure of V is defined via ρ. As before, Q(R) denotes the
fraction field of R. The torsion τρ(X, ∅, e) is denoted just by τρ(X, e).
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Changing the basis of V multiplies τρ(X, Y, e) by det(A)χ(X,Y ) where A ∈ Mn×n(R)
is the change of basis matrix. Since χ(X, Y ) = 0, the torsion only depends on the
choice of lifts e. Changing the choice e of lifts of the cells of X \ Y or changing the
order and orientation of the cells of X multiplies τρ(X, Y, e) by ± det(ρ(g)) for some
g ∈ π.

Now suppose we have a representation ρ : π → GL(V ), where V is a finite
dimensional vector space over a field K. Let h : π → FX be the projection onto the
free abelian group FX := H1(X)/TorsH1(X). Note that K[FX ] is a domain. Then
we get a tensor product representation

ρ⊗ h : π → GL(V ⊗K K[FX ])

where for any γ ∈ π, ρ⊗ h(γ) is defined by

v ⊗ f 7→ ρ(γ)(v)⊗ (h(γ) · f)

for v ∈ V, f ∈ FX .

Definition 4.1.3. Given a representation ρ : π1(X, x0) → GL(V ) where V is a finite
dimensional vector space over a field K, the twisted Reidemeister torsion of (X, Y ) is
the Reidemeister torsion τρ⊗h(X, Y, e) ∈ K(FX).

By the remarks above, changing the choice of lifts e multiplies the twisted torsion
by ± det(ρ(g))f for some g ∈ π and f ∈ FX . We will denote by τρ⊗h(X, Y ) the torsion
up to this ambiguity. Note that if ρ takes values in SL(n,K), the indeterminacy is
only an element of ±F . This ambiguity can be fixed by picking a combinatorial Euler
structure of X \ Y (cf. [Tur01]).

Now, let M be a compact 3-manifold and S ⊂ M a compact embedded subman-
ifold such that χ(M,S) = 0. Then M admits a triangulation T such that T ∩ S
is a triangulation of S. This induces a CW structure X on M and a CW structure
Y on S such that Y is a subcomplex of X. Given a representation ρ : π1(M) →
GL(V ), where V is a finite dimensional vector space over a field K, we get a torsion
τρ⊗h(X, Y ) ∈ K(FM ) which is defined up to an indeterminacy of the form ±λf with
λ ∈ K×, f ∈ FM . Since the relative torsion is invariant under cellular subdivision,
this torsion depends only on (M,S), cf. [Tur01, Section 14] for more details.

Definition 4.1.4. The twisted Reidemeister torsion of (M,S) is the twisted torsion
of any CW pair (X, Y ) obtained from a triangulation of M as above.

4.1.3 Twisted Alexander polynomials

Let R be a commutative domain with unit and M a finitely presented R-module. Let
p : Rm → Rn be a presentation of M , so Coker(p) ∼= M . If A is the m × n-matrix
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representing p in the canonical bases of Rm and Rn, then the ideal of R generated
by the (n − k)-minors of A depends only on M and not on the presentation matrix
A chosen. This is the k-th elementary ideal of M , denoted Ek(M). If R is a unique
factorization domain (UFD), then ∆0(M) := gcdE0(M) is called the order of M .
Note that this is defined up to multiplication by a unit of R. For more details see
[Tur01, Chapter I].

Definition 4.1.5. Let X be a finite CW complex, ρ : π → GL(V ) be a representation
into a finite dimensional K-vector space V and h : π → FX = H1(X)/TorsH1(X)
be the projection, where π = π1(X, x0) for some x0 ∈ X. Note that K[FX ] is a
polynomial ring, hence a UFD. We define the i-th twisted Alexander polynomial of X,
denoted ∆ρ⊗h

X,i , as the order of the K[FX ]-module Hρ⊗h
i (X). If X is the complement of

a link L in a closed 3-manifold Y , then we call ∆ρ⊗h
X,1 the twisted Alexander polynomial

of L and we denote it by ∆ρ⊗h
L .

The twisted torsion is related to the twisted Alexander polynomials by the fol-
lowing formula, cf. [Tur01, Theorem 4.7]: if ∆ρ⊗h

X,i 6= 0 for all i then

τρ⊗h(X)=̇
∏

i≥0

(∆ρ⊗h
X,i )

(−1)i+1

∈ K(FX) (4.1)

where =̇ means equality up to multiplication by a unit of K[FX ].

4.2 Twisted torsion of sutured manifolds

We now specialize the (twisted) torsion to balanced sutured 3-manifolds (M, γ). Note
that since χ(M,R−(γ)) = 0, the torsion of (M,R−(γ)) is defined (it may be zero, but
that would be non-trivial). We begin by giving a handy formula to compute twisted
torsion from a sutured Heegaard diagram. In Subsection 4.2.2 we relate the relative
torsion to twisted Alexander polynomials in the case of link complements.

4.2.1 Twisted torsion from a Heegaard diagram

Let (M, γ) be a balanced sutured 3-manifold with connected R− = R−(γ). Let
p ∈ s(γ) be a basepoint and ρ : π1(M, p) → GL(V ) be a representation, where V
is a finite dimensional vector space over a field K. For simplicity, we will denote
π = π1(M, p), FM = H1(M)/TorsH1(M) and h : π → FM the projection.

Now, let H = (Σ,αe,β) be an extended Heegaard diagram of M which is or-
dered, oriented and based. We write αe = α ∪ a with α = {α1, . . . , αd} and
a = {αd+1, . . . , αd+l}. We suppose the arcs in a are oriented. Thus, we have a
well-defined element α∗ ∈ π for every α ∈ αe and since the curves in β are oriented
and have basepoints, we have a presentation of π of the form

π1(M, p) = 〈α∗
1, . . . , α

∗
d+l | β1, . . . βd〉 (4.2)
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cf. Subsection 2.3.3. Now, Fox calculus gives elements

∂βj

∂α∗
i

∈ Z[π]

for all i, j, cf. [Tur01]. Let A be the d× d-matrix with Z[π] coefficients whose (i, j)-
entry is ∂βj/∂α

∗
i for i, j = 1, . . . , d, that is, we only derivate with respect to the

closed curves. Let σ : Z[π] → Z[π] be the Z-linear map characterized by σ(g) = g−1

for each g ∈ π and let σ(A) be the matrix obtained by applying this map to each
entry of A.

Proposition 4.2.1. Let H = (Σ,αe,β) be an extended Heegaard diagram of (M, γ)
which is ordered, oriented and based and let A = (σ(∂βj/∂α

∗
i )) as above. The twisted

torsion of the pair (M,R−) at ρ : π1(M) → GL(V ) is computed via Fox calculus by

τρ⊗h(M,R−(γ))=̇ det((ρ⊗ h)(σ(A))) ∈ K[FM ]

where =̇ denotes equality up to a unit in K[FM ].

Proof. The extended Heegaard diagram specifies a presentation of π1(M) as in (4.2)
from which we build a CW complex X as follows: X has a single 0-cell, (d + l)
1-cells corresponding to the generators of the given presentation, and d 2-cells e2j
corresponding to the relations. The boundary of each cell e2j is attached to X(1)

along the path determined by the word βj. We let Y be the subcomplex of X(1)

determined by the l 1-cells associated to the arcs in a. It is easy to see that the pair
(M,R−) is simple homotopy equivalent to (X, Y ) and hence

τρ⊗h(M,R−) = τρ⊗h(X, Y ).

Indeed, the pair (X, Y ) can be obtained from (M,R−) by collapsing each handle
of M (specified by H) to its core, and this operation preserves the relative torsion
by [Tur01, Corollary 8.5]. We now show that τρ⊗h(X, Y ) is given by the above

Fox calculus matrix. Thus, let p : X̃ → X be the universal covering space of X
and let Y ′ = p−1(Y ). The cellular complex C∗ = C∗(X̃, Y ) is thus a complex of
free Z[π1(X)]-modules with Ci = 0 for i 6= 1, 2 and C2 ⊕ C1 has a Z[π1(X)]-basis
corresponding to lifts of the cells of X associated to the closed curves of the diagram.
Under an appropiate choice of lifts, the boundary map ∂2 : C2 → C1 is represented
by the matrix A ∈ Md×d(Z[π]), cf. [Tur01, Claim 16.6]. Since our convention is that
(g · c) ⊗ v = c ⊗ [(ρ ⊗ h)(σ(g)) · v] in Cρ⊗h

∗ (X, Y ), where g ∈ π, v ∈ V and c is a

cell of X̃, the boundary operator ∂ρ⊗h
2 is represented by the matrix (ρ ⊗ h)(σ(A)).

Thus, the torsion of the complex Cρ⊗h
∗ (X, Y ), and hence the torsion of (M,R−), is

the determinant of this matrix.

Remark 4.2.2. The right hand side of the above proposition is defined as an element
of K[H1(M)]. Therefore, we will consider the twisted torsion of a balanced sutured
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3-manifold as an element of K[H1(M)]. Note however that if we want to express the
torsion in terms of twisted Alexander polynomials (as in Corollary 4.2.4 below), then
one has to pass to K[FM ], which is a Noetherian UFD.

Recall that, if Y is a closed 3-manifold, we get a sutured 3-manifold by M =
Y \ int (B), γ = S1 ⊂ ∂B where B is a closed 3-ball embedded in Y (Example 2.1.3).
However, as a consequence of the above proposition, the torsion of (M,R−) is not
very interesting.

Corollary 4.2.3. Let M = Y \ B be the sutured manifold associated to a closed
3-manifold Y and let ρ : π1(M) → GL(V ) be a group homomorphism. Then

τρ(M,R−) =

{
0 if ρ 6≡ 1

±|H1(Y ;Z)| if ρ ≡ 1.

Here |H1(Y ;Z)| is defined to be zero if b1(Y ) > 0.

Proof. Let H = (Σ,α,β) be a (sutured) Heegaard diagram of M , equivalently, H
is obtained from a Heegaard diagram of Y by removing a disk from the Heegaard
surface. This specifies a cell decomposition X of M with one 0-cell and an equal
number d = |α| = |β| of 1-cells and 2-cells (see Remark 2.2.2). Let ∂ρ

i : Cρ
i (X) →

Cρ
i−1(X) be the boundary operator of the complex Cρ

∗ (X) := C∗(X̃) ⊗Z[π] V where

X̃ is the universal cover of X and V is considered as a Z[π]-module via ρ. For an
appropriate choice of basis in Cρ

∗ (X), the boundary operator ∂ρ
1 is represented by

(ρ(α∗
1)− 1, . . . , ρ(α∗

d)− 1) and ∂ρ
2 is represented by A = (ρ(∂βj/∂α

∗
i )). Suppose first

that ρ ≡ 1, so Cρ≡1
∗ (M) = C∗(M) and let ∂i := ∂ρ≡1

i . Then ∂1 = 0, and hence
H1(M) = Coker(∂2). It follows that

±|H1(Y )| = ±|H1(M)| = |Coker(∂2)| = det(A) = τρ≡1(M,R−)

where the last equality follows from Proposition 4.2.1. Note that b1(Y ) > 0 if and
only if det(A) = 0, hence τρ≡1(M,R−) = 0. Now, if ρ 6≡ 1, then ∂ρ

1 6= 0 and from
∂ρ
1 ◦ ∂ρ

2 = 0 it follows that ∂ρ
2 is non-surjective. Therefore det(A) = 0 and hence

τρ(M,R−) = det(A) = 0.

4.2.2 Twisted torsion for link complements

Now let L be an ordered oriented link in S3, with components L1, . . . , Lm. Let (M, γ)
be the associated sutured manifold (see Example 2.1.4), that is, M = S3\N(L), where
N(L) is a tubular neighborhood of L and γ consists of a pair of annuli, one pair for
each component of ∂M . The ordering and orientation of L induce an isomorphism
Z[H1(M)] ∼= Z[t±1

1 , . . . , t±1
m ] where ti corresponds to the (positively oriented) meridian

of Li. Let ρ : π1(M, p) → GL(V ) be an homomorphism, where p ∈ s(γ).
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Recall that R = R−(γ) consists of one annuli Ri ⊂ N(Li) for each i = 1, . . . , m.
For each i, let yi ∈ Ri be a basepoint and a∗i be a generator of π1(Ri, yi). This has
an orientation induced from that of Li and its image in H1(M) is ti. Note that a∗i
is defined in π1(M, p) up to conjugation, so det(tiρ(a

∗
i ) − In) is well-defined (here

n = dim(V )).

Corollary 4.2.4. Let M be the sutured manifold associated to the complement of an
m-component oriented link L ⊂ S3. If m > 1 then

τρ⊗h(M,R−)=̇

m∏

i=1

det(tiρ(a
∗
i )− In) ·∆

ρ⊗h
L ∈ K[t±1

1 , . . . , t±1
m ].

The above holds for m = 1 provided ρ is irreducible and non-trivial over Ker (h). If
m = 1 and ρ ≡ 1 one has τh(M,R−) = ∆L, the multivariable Alexander polynomial
of (the knot) L.

Proof. Indeed, since χ(R−) = 0 we have τρ⊗h(M,R−) = τρ⊗h(M)τρ⊗h(R−)
−1. From

the well-known fact that τρ⊗h(R−)
−1 =

∏m

i=1 det(tiρ(a
∗
i )− In) together with Formula

(4.1) relating torsion to twisted Alexander polynomials we find

τρ⊗h(M,R−)=̇

m∏

i=1

det(tiρ(a
∗
i )− In) ·

∆ρ⊗h
L,1 ∆

ρ⊗h
L,3

∆ρ⊗h
L,0 ∆

ρ⊗h
L,2

.

Now we use that ∆ρ⊗h
L,3 = 1 always holds, that ∆ρ⊗h

L,2 = 1 holds provided ∆ρ⊗h
L,1 6= 0

and that ∆ρ⊗h
L,0 = 1 if m > 1 or m = 1 and ρ is irreducible and non-trivial over

Ker (h), see [FV11a, Proposition 3.2]. If m = 1 and ρ is trivial over Ker (h), then
∆ρ⊗h

L,0 = det(tiρ(α
∗
i ) − In) and we obtain the second assertion. This completes the

proof.

4.3 Reidemeister torsion from Hopf algebra theory

In this section we prove Theorem 2. We begin with some easy lemmas on exterior
algebras in Subsection 4.3.1. In Subsection 4.3.2 we deduce Theorem 2 from a much
stronger statement, namely, that the twisted Kuperberg tensor at an exterior algebra
is essentially equivalent to the boundary map ∂ρ

2 : Cρ
2 (M,R−) → C1(M,R−) after

applying the exterior algebra functor. Some corollaries of Theorem 2 are stated in
Subsection 4.3.3.

4.3.1 Lemmas on exterior algebras

Recall that for any finite dimensional vector space the exterior algebra Λ(V ) is the
quotient of the tensor algebra T (V ) = ⊕n≥0V

⊗n by the ideal spanned by the v ⊗ v
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with v ∈ V . It becomes a superalgebra by letting V be in degree one and a Hopf
superalgebra if one sets ∆(v) = v ⊗ 1 + 1 ⊗ v for any v ∈ V . The exterior algebra
construction is functorial: if T : V → W is a linear map between vector spaces V,W ,
then there is an induced Hopf morphism Λ(T ) : Λ(V ) → Λ(W ). This is defined
to be T over V ⊂ Λ(V ) and is extended to all of Λ(V ) by letting it be an algebra
morphism. It is easy to see that Λ(T ) is indeed a Hopf morphism. We derive a few
lemmas concerning the functoriality of the exterior algebra construction.

Lemma 4.3.1. If T1, T2 : V → W are linear maps, then

Λ(T1 + T2) = mΛ(W ) ◦ (Λ(T1)⊗ Λ(T2)) ◦∆Λ(V ).

In other words, the exterior algebra functor transforms operator sum into convolution
product.

Proof. Indeed, it is easy to see that the right hand side is an algebra morphism by
commutativity of Λ(W ). The left hand side is an algebra morphism by definition. It
is easy to see that both coincide over V ⊂ Λ(V ) (a generating set of Λ(V )), hence
the lemma follows.

For the next lemma, note that there is a natural Hopf superalgebra isomorphism

Λ(V ⊕W ) ∼= Λ(V )⊗ Λ(W )

where (v, w) ∈ V ⊕W corresponds to v⊗1+1⊗w. Let T be a linear endomorphism
of V ⊕W . Denote by TV V , TVW , TWV , TWW its components, so for example TVW =
πWTjV where jV : V → V ⊕ W is the inclusion and πW : V ⊕ W → W is the
projection.

Lemma 4.3.2. Under the above natural isomorphism, one has

Λ(T ) = (mΛ(V ) ⊗mΛ(W )) ◦ (idΛ(V ) ⊗ τΛ(W ),Λ(V ) ⊗ idΛ(W ))

◦ (ΛTV V ⊗ ΛTVW ⊗ ΛTWV ⊗ ΛTWW ) ◦ (∆Λ(V ) ⊗∆Λ(W )).

Proof. As above, one can see that both sides are algebra morphisms and coincide
over V ⊕W , so they are equal.

Now let T be an endomorphism of a direct sum V1 ⊕ · · · ⊕ Vd. Then by induction
we get

Λ(T ) =
(
⊗d

j=1m
(d)
Λ(Vj)

)
Pd(Λ(T1∗)⊗ . . .⊗ Λ(Td∗))

(
⊗d

j=1∆
(d)
Λ(Vj)

)
(4.3)

where Λ(Ti∗) := Λ(Ti1)⊗. . .⊗Λ(Tid) for each i = 1, . . . , d. Here Pd is the isomorphism

(Λ(V1)⊗ . . .⊗ Λ(Vd))
⊗d → Λ(V1)

⊗d ⊗ . . .⊗ Λ(Vd)
⊗d

induced from the symmetry of the category of super vector spaces by the permutation
defined by Pd((k − 1)d+ i) = (i− 1)d+ k.
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4.3.2 Proof of Theorem 2

Let (M, γ) be a balanced sutured 3-manifold, p ∈ s(γ) and let ρ : π1(M, p) → GL(V )
be a representation. We also denote by ρ the map into Aut(Λ(V )) ∼= GL(V ). Let
H = (Σ,αe,β) be an extended Heegaard diagram of (M, γ) which is ordered, oriented
and based.

For the following proposition, suppose that R−(γ) is connected, so that the α∗ ∈
π1(M, p) are defined for all α ∈ αe. We thus get a presentation of π1(M, p) as in
(4.2).

Proposition 4.3.3. Let H = (Σ,αe,β) be an extended Heegaard diagram of (M, γ)
as above. If R−(γ) is connected, then

Zρ

Λ(V )(H) = det

(
ρ

(
∂βi

∂α∗
j

))

i,j=1,...,d

∈ K.

Note that if we had used the convention that (g · c) ⊗ v = c ⊗ (ρ(g)t(v)) for the

tensor product C∗(M̃)⊗Z[π] V (as in [Por18]), then Zρ⊗h

Λ(V ) would be exactly τρ⊗h.

Proposition 4.3.3 in turn follows from the following stronger proposition.

Proposition 4.3.4. Under the hypothesis and notation of Proposition 4.3.3 we have

Kρ

Λ(V )(H) = Λ(T )

where T : V ⊕d → V ⊕d is the map given in components by Tij = ρ(∂βj/∂α
∗
i ), that is,

Tij = πjT ιi where ιi (resp. πj) is the inclusion of V (resp. projection) into the i-th
factor of V ⊕d (resp. j-th factor).

In other words, T is dual to the boundary map ∂ρ
2 : Cρ

2 (M,R) → Cρ
1 (M,R) of the

universal covering of M twisted by ρ.

Proof. We will expand the tensor Λ(T ) using the lemmas of Subsection 4.3.1 and use
commutativity and cocommutativity of Λ(V ) to show it equals Kuperberg’s tensor.
For simplicity, we will suppose d = 2, the general case is proved similarly. For
simplicity, denote ρx = ρ(βx) ∈ GL(V ) for any β ∈ β and x ∈ α ∩ β, so that

Tij =
∑

x∈αi∩βj

m(x)ρx

for any i, j (Remark 2.3.14). By Lemma 4.3.2 we have

Λ(T ) = (m⊗m)(id ⊗ τ ⊗ id)(ΛT11 ⊗ ΛT12 ⊗ ΛT21 ⊗ ΛT22)(∆⊗∆)
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where m,∆ are the structure maps of the Hopf algebra Λ(V ). Now, by Lemma 4.3.1
each ΛTij can be expressed as a convolution

ΛTij = Λ


 ∑

x∈αi∩βj

m(x)ρx




= m(kij )


 ⊗

x∈αi∩βj

Λ(m(x)ρx)


∆(kij )

= m(kij ) ◦ Aij ◦∆
(kij)

where kij := |αi ∩ βj | and

Aij =
⊗

x∈αi∩βj

Λ(ρx) ◦ S
ǫx .

Recall that m(n) : H⊗n → H denotes iterated multiplication and similarly for ∆(n).
Hence, by coassociativity of ∆ we can write

(ΛT11 ⊗ ΛT12)∆ = m(k11) ⊗m(k12) (A11 ⊗A12)∆
|α1|

and similarly for (ΛT21 ⊗ ΛT22)∆. Thus, we obtain

Λ(T ) = m⊗2(id ⊗ τ ⊗ id)(m(k11) ⊗m(k12) ⊗m(k21) ⊗m(k22))(A11 ⊗ . . .⊗A22)∆α

= m⊗2(m(k11) ⊗m(k21) ⊗m(k12) ⊗m(k22))(id ⊗ τ ⊗ id)(A11 ⊗ . . .⊗A22)∆α

= mβ(id ⊗ τ ⊗ id)(A11 ⊗ . . .⊗ A22)∆α.

By commutativity and cocommutativity of Λ(V ), the terms inside the last tensor
can be reordered. More precisely, let Pαi

(i = 1, 2) be the permutation of the set of
crossings through αi that puts the crossings of αi∩β1 first, and then those of αi∩β2.
Similarly, let Pβj

be the inverse of the permutation of the crossings through βj that
puts the crossings of α1 ∩ βj first, and then those of α2 ∩ βj. Then it is clear that

PH = (Pβ1 ⊗ Pβ2)(id ⊗ τ ⊗ id)(Pα1 ⊗ Pα2).

By commutativity and cocommutativity of Λ(V ) we have

mβ = mβ(Pβ1 ⊗ Pβ2) and ∆α = (Pα1 ⊗ Pα2)∆α,

therefore

Λ(T ) = mβ(Pβ1 ⊗ Pβ2)(id ⊗ τ ⊗ id)(A11 ⊗ . . .⊗ A22)(Pα1 ⊗ Pα2)∆α

= mβPH

(
⊗

x∈Iα

Λ(ρx)

)
Sα∆α.

This is exactly Kρ

Λ(V )(H) as desired.
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Proof of Proposition 4.3.3. By the preceding proposition we get

det(ρ(∂βi/∂α
∗
j )) = det(T )

= µΛ(V )⊗d(Λ(T )(cΛ(V )⊗d))

= µΛ(V )⊗d(Kρ

Λ(V )(H)(cΛ(V )⊗d))

= Zρ

Λ(V )(H)

as was to be shown.

Proof of Theorem 2. Suppose first that R−(γ) is connected. Note that the inverse-
transpose satisfies (ρ⊗ h)−t(σ(x)) = (ρ ⊗ h)(x)t for any x ∈ Z[π], where recall that
σ : Z[π] → Z[π] is the map defined by σ(g) = g−1 for g ∈ π. Then we get

Zρ⊗h

Λ(V )M
(M, γ)=̇Zρ⊗h

Λ(V )M
(H) = det((ρ⊗ h)(∂βi/∂α

∗
j ))

= det((ρ⊗ h)(∂βj/∂α
∗
i )

t)

= det((ρ⊗ h)−t(σ(∂βj/∂α
∗
i )))

=̇τ (ρ⊗h)−t

(M,R−)

where we use Proposition 4.3.3 in the second equality and Proposition 4.2.1 in the
last equality. When R−(γ) is disconnected, then by definition Zρ⊗h

Λ(V )M
(M, γ) :=

Zρ′⊗h′

Λ(V )M′
(M ′, γ′) where (M ′, γ′) is obtained by adding one handles to R = R−(γ)

in such a way that R′ = R−(γ
′) is connected. But then

Zρ⊗h(M, γ) := Zρ′⊗h′

(M ′, γ′) = τ (ρ
′⊗h′)−t

(M ′, R′) = τ (ρ⊗h)−t

(M,R)

where the last equality follows from [FJR11, Lemma 3.20].

4.3.3 Particular cases of Theorem 2

Combining Theorem 2 to Corollary 4.2.3 we get the following.

Corollary 4.3.5. Let Y be a closed oriented 3-manifold and M = Y \ int (B), γ =
S1 ⊂ ∂B where B is some closed embedded 3-ball. Then

Zρ

Λ(V )(M, γ) =

{
0 if ρ 6= 1,

±|H1(Y ;Z)| if ρ ≡ 1.

Now let L be an ordered oriented m-component link in S3. As in Subsection 4.2.2
we identify Z[H1(M)] ∼= Z[t±1

1 , . . . , t±1
m ] where M = S3 \ L. Combining Theorem 2

with Corollary 4.2.4 and using the same notation as in that corollary we get:
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Corollary 4.3.6. Let L ⊂ S3 be an ordered oriented m-component link and let (M, γ)
be the sutured manifold complementary to L. If m > 1 or if m = 1 and ρ is irreducible
with ρ|Ker (h) 6= 1, the twisted Alexander polynomial of L is recovered as

∆ρ⊗h
L (t1, . . . , tm) = Zρ⊗h

Λ(V )M
(M, γ) ·

m∏

i=1

det(tiρ(a
∗
i )− In)

−1.

If m = 1, ρ ≡ 1 and dim(V ) = 1, then ∆L(t) = Z1⊗h
Λ(K)M

(M, γ).

Remark 4.3.7. The torsion of (M,R−), and hence the invariant Zρ

Λ(V ), is also inter-

esting when M is a Seifert surface complement (as in Example 2.1.5). Indeed, it can
distinguish minimal genus Seifert surfaces of some knots up to isotopy [Alt12].
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