Thèse de doctorat en Mathématiques
de
Université de Paris
Ecole Doctorale de Sciences Mathématiques de Paris Centre (ED 386)
Institut de Mathématiques de Jussieu-Paris Rive Gauche (UMR 7586)

Surfaces in 3D contact sub-Riemannian manifolds and controllability of nonlinear ODEs

Présentée et soutenue publiquement par
Daniele Cannarsa

le 30 septembre 2021

Devant un jury composé de :

André Belotto Da Silva,
Président
Professor, Université de Paris
Ludovic Rifford, RAPPORTEUR
Professor, Université Côte d'Azur
Andrey Sarychev, Rapporteur
Professor, Università di Firenze
Katrin FÄSSLER,
Examinatrice
Senior Lecturer, Jyväskylän yliopisto
Davide Barilari,
Directeur de thèse
Professor, Università degli Studi di Padova
Ugo Boscain,
Directeur de thèse
Professor, Sorbonne Université

Abstract

The four chapters of this thesis present original results about smooth surfaces in a 3-dimensional contact sub-Riemannian manifold, and properties involving controllability in geometric control theory. They are preceded by an introduction, which gives an overview of the results and the previous literature.

The topic of smooth surfaces is studied from two viewpoints. First, given a surface in a 3-dimensional contact sub-Riemannian manifold, we investigate the metric structure induced on the surface, in the sense of length spaces. We define a new metric coefficient at any characteristic point, which determines locally the characteristic foliation of the surface, and we identify some global conditions for the induced distance to be finite. In particular, we prove that the induced distance is finite for surfaces with the topology of a sphere embedded in a tight coorientable distribution, with isolated characteristic points.

Second, we study a new canonical stochastic process on such surfaces. Precisely, employing the Riemannian approximations with respect to the Reeb vector field of the sub-Riemannian manifold, we obtain a second order partial differential operator on the surface arising as a limit of Laplace-Beltrami operators. The stochastic process associated with this limiting operator moves along the characteristic foliation induced on the surface by the contact distribution. For this stochastic process we show that elliptic characteristic points are inaccessible, while hyperbolic characteristic points are accessible from the separatrices. We illustrate this process with examples, and we recognise some well-known stochastic processes appearing on certain surfaces embedded in the canonical model spaces for sub-Riemannian structures on 3-dimensional Lie groups.

Concerning controllability, we show that a control system on a connected manifold satisfying the local reachability property is controllable, as it was somehow implicitly expected. Herein we say that a control systems satisfies the local reachability property if the attainable sets from any initial state are a neighbourhood of the respective initial states, while a system is controllable if the attainable set from every state is the entire state manifold. Quite surprisingly, the question of whether local reachability implies controllability seems not to have been considered in the literature, despite the apparent absence of elementary arguments justifying the implication.

Finally, we show that a bilinear control system is approximately controllable if and only if it is controllable in $\mathbb{R}^{n} \backslash\{0\}$. We approach this property by looking at the foliation made by the orbits of the system, and by showing that there does not exist a codimension-one foliation in $\mathbb{R}^{n} \backslash\{0\}$ with dense leaves that are everywhere transversal to the radial direction. The proposed geometric approach allows to extend the result to homogeneous systems that are angularly controllable.

Keywords: contact geometry, sub-Riemannian manifold, Stochastic process, controllability, local reachability, approximate controllability, bilinear control systems, foliations, length space, Riemannian approximation, Gaussian curvature, Heisenberg group

Resumé

Les quatre chapitres de cette thèse contiennent des résultats originaux relatifs aux surfaces dans une variété sous-riemanienne de contact de dimension trois, et à certaines propriétés concernant la contrôlabilité en théorie géométrique du contrôle. Ils sont précédés par une introduction, qui donne un aperçu de ces résultats et de la littérature antérieure.

Nous avons étudié le sujet des surfaces de deux points de vue. En premier lieu, étant donnée une surface dans une variété sous-riemannienne de contact de dimension trois, nous examinons la structure métrique induite sur la surface, au sens des espaces de longueur. Nous définissons un nouveau coefficient métrique en tout point caractéristique de la surface, et nous identifions des conditions globales pour que la distance induite soit finie. En particulier, nous montrons que la distance induite est finie pour des surfaces avec la topologie d'une sphère, plongées dans une distribution coorientable tendue, et avec des points caractéristiques isolés.

En second lieu, nous étudions un nouveau processus stochastique sur des telles surfaces. Précisément, en utilisant l'approximation riemanienne par rapport au champ de Reeb de la structure sous-riemanienne, nous obtenons un opérateur différentiel d'ordre deux sur la surface résultant de la limite d'opérateurs de Laplace-Beltrami. Le processus stochastique associé avec cet opérateur se déplace le long du feuilletage caractéristique induit sur la surface par la distribution de contact. Pour ce processus stochastique nous montrons que les points caractéristiques elliptiques sont inaccessibles, tandis que les points caractéristiques hyperboliques sont accessibles à travers les séparatrices. Nous illustrons ce processus avec des exemples, et nous reconnaissons des processus stochastiques classiques qui apparaissent sur certaines surfaces plongées dans les espaces modèles de structure sous-riemanienne sur les groupes de Lie de dimension trois.

Quant à la contrôlabilité, nous montrons qu'un système qui satisfait la propriété d'atteignabilité locale dans une variété connexe est contrôlable. Ci-dessus nous disons qu'un système de contrôle satisfait la propriété d'atteignabilité locale si les ensembles atteignables à partir de tout état sont un voisinage de l'état de départ, tandis que le système est contrôlable si les ensembles atteignables à partir de tout état coïncident avec la variété entière. Étrangement, le fait que l'atteignabilité locale implique la contrôlabilité globale semble ne pas avoir été considéré dans la littérature, en dépit de l'apparente absence d'arguments élémentaires justifiants cette implication.

Pour conclure, nous montrons qu'un système de contrôle bilinéaire est contrôlable de façon approchée si et seulement s'il est contrôlable en $\mathbb{R}^{n} \backslash\{0\}$. Nous étudions ce problème en analysant le feuilletage défini par les orbites du système, et en montrant qu'il n'existe pas de feuilletage de codimension un en $\mathbb{R}^{n} \backslash\{0\}$ dont les feuilles sont denses et partout transversales à la direction radiale. L'approche géométrique ainsi proposée permet d'étendre ce résultat aux systèmes homogènes qui sont contrôlables angulairement.

Mots-clés : géométrie de contact, variété sous-riemanienne, processus stochastique, contrôlabilité, atteignabilité locale, contrôlabilité approchée, système de contrôle bilinéaire, feuilletage, espace de longueur, approximation riemanienne, courbure de Gauss, groupe d'Heisenberg

Remerciements

J'exprime ma profonde reconnaissance à Davide BARILARI et Ugo Boscain pour avoir encouragé, dirigé, et animé mon travail pendant ces trois ans. Cette these n'aurait pas vu le jour sans leurs enseignements, leurs conseils et leurs encouragements.

Je tiens à remercier Ludovic Rifford et Andrey Sarychev pour l'honneur qu'ils m'ont fait en acceptant de rapporter sur ma thèse, et j'exprime ma gratitude à André Belotto dA Silva et à Katrin Fässler pour participer à ce jury.

C'est avec plaisir que je remercie les collaborateurs et les collègues que j'ai rencontré pendant ces trois ans, en particulier Valentina Franceschi, Karen Habermann et Mario Sigalotti. Merci à Laurent Desvillettes de m'avoir guidé en tant que tuteur pendant ma thèse.

Lors de séminaires cela fut un plaisir d'échanger avec Yacine Chitour, Frederic Jean, Roberto Monti, Robert Neel, Sebastiano Nicolussi Golo, Eugenio Pozzoli, Luca Rizzi, Tommaso Rossi et Emmanuel Trélat ; certains de ces noms doivent être remerciés également pour l'organisation de ces séminaires, si importants pour la communauté. Un remerciement special à Enrico Le Donne pour avoir créé un lien avec Jyväskylä et avec qui je me réjouis de collaborer.

Une forte pensée à ceux que j'ai eu le bonheur de rencontrer dans les couloirs de l'Université de Paris. En particulier, un chaleureux merci pour les beaux échanges à Antoine, Charazade, Maud, Maxime, Tommaso et Willie, et à Gregoire, Mingkun et Oussama pour en plus de belles vacances ensemble. Un grand merci également à Pierre-Cyril pour son accueil et pour ses conseils toujours pertinents.

Je voudrais remercier le laboratoire IMJ-PRG pour m'avoir offert un excellent lieu où préparer cette thèse, et au DIM Math-Innov pour l'avoir financée. Un grand merci à Amina Hariti, sans qui les dernières procédures administratives auraient été insurmontables. De plus, je suis très reconnaissant au team CAGE d'Inria pour l'accueil et pour la belle ambiance que j'y ai trouvé. Un remerciement spécial à la FSMP pour m'avoir amené à Paris il y a cinq ans. Mes souvenirs liés à cette ville sont riches et variés, je le dois aux personnes que j'y ai rencontré : un grand merci à Marie-Line et à Thilina avec les respectifs groupes de théâtre, et également à Sophie avec l'équipe des bénévoles secouristes de Paris 5 .

J'ai passé mes années à Paris avec la compagnie attentionnée et bienveillante de ma tante Lucia, à qui je suis très reconnaissant pour m'être venue en aide dans les moments où ça n'allait pas. Ma rencontre la plus importante à Paris fut le bel Enguerrand, avec qui un jour ne passe sans que je n'apprenne quelque chose. Je lui suis extrêmement reconnaissant pour m'avoir accompagné et cadré dans cette écriture, et pour m'avoir fait connaitre les aimables Odile, Pierre-Yves, Maxence, Landry et Marion.

Je ne serai jamais assez reconnaissant à Maria Cristina et à Raffaele d'avoir accepté mon déménagement, et de m'avoir toujours réservé ma chambre quand je revenais à la maison. Enfin, je dois le plus grand merci à Maman et à Papa, qui depuis toujours ont pris soin de me faire grandir, à la fois comme humain tout comme mathématicien. Vous êtes pour moi ma référence.

Contents

I. Introduction - en 1
1.1. Control systems associated with a family of vector fields. 2
1.1.1 Local reachability and controllability 3
1.1.2 Orbits, distributions and Lie-brackets 4
1.1.3 Approximate controllability for bilinear control systems 6
1.2. Sub-Riemannian manifolds 7
1.2.1 Surfaces in 3D contact manifolds 8
1.2.2 The Riemannian approximation 10
1.2.3 Induced distance on surfaces 12
1.3. Stochastic processes on sub-Riemannian surfaces. 13
II. On The induced Geometry on surfaces 17
2.1. Riemannian approximations and Gaussian curvature 18
2.1.1 Proof of Theorem 1.13 19
2.2. Local study near a characteristic point. 21
2.2.1 Proof of Proposition 1.14 21

| 2.2 .2 | Proof of Proposition | 1.15 |
| :--- | :--- | :--- | 24

2.3. Global study of the characteristic foliation 25
2.3.1 Topological structure of the characteristic foliation 26
2.4. Spheres in a tight contact distribution 29
2.5. Examples of surfaces in the Heisenberg structure. 31
2.5.1 Planes. 31
2.5.2 Ellipsoids 32
2.5.3 Symmetric paraboloids 32
2.5.4 Horizontal torus 33
2.5.5 Vertical torus 33
2.6. Appendix on the center manifold theorem 34
III. Stochastic processes and diffusion 36
3.1. Family of Laplace-Beltrami operators on the embedded surface 37
3.2. Canonical stochastic process on the embedded surface 40
3.3. Stochastic processes on quadric surfaces in the Heisenberg group 44
3.3.1 Paraboloid of revolution] 45
3.3.2 Ellipsoid of revolution 47
3.3.3 Hyperbolic paraboloid 50
3.4. Stochastic processes on canonical surfaces in $\operatorname{SU}(2)$ and $\operatorname{SL}(2, \mathbb{R})$ 51
3.4.1 Special unitary group SU(2) 51
3.4.2 Special linear group $\operatorname{SL}(2, \mathbb{R})$ 53
3.4.3 A unified viewpoint. 55
IV. Approximately controllable bilinear systems are controllable 56
4.1. Properties of approximately controllable systems. 56
4.2. Bilinear control systems 58
4.2.1 Proof of Theorem 1.9 58
4.3. Complementary remarks 60
V. Control systems satisfying local reachability are controllable 63
5.1. Introduction 63
5.2. Local reachability implies controllability 64
5.2.1 Proof of Lemma 5.1 65
5.2.2 Proof of Lemma|5.2 65
5.3. Complementary remarks 67
Bibliography 69

Introduction

Contents

1.1. Control systems associated with a family of vector fields 2
1.1.1 Local reachability and controllability 3
1.1.2 Orbits, distributions and Lie-brackets 4
1.1.3 Approximate controllability for bilinear control systems 6
1.2. Sub-Riemannian manifolds 7
1.2.1 Surfaces in 3D contact manifolds 8
1.2.2 The Riemannian approximation 10
1.2.3 Induced distance on surfaces 12
1.3. Stochastic processes on sub-Riemannian surfaces 13

In this chapter we present some original results about controllability in geometric control theory, and about properties of smooth surfaces in a three-dimensional contact sub-Riemannian manifold. The results are accompanied by the relevant literature and are proven in the forthcoming chapters.

Precisely, in Section 1.1 we introduce control systems, and we present some new relations:

- between controllability and local reachability (in Subsection 1.1.1),
- between controllability and approximate controllability (in Subsection 1.1.3).

The former result is discussed in Chapter 5, following my paper BCFS21 (joint work with U. Boscain, V. Franceschi and M. Sigalotti), soon to be submitted for review. The latter is developed in Chapter 4 and published in CS21 (joint work with M. Sigalotti).

Next, in Section 1.2 we present some new metric properties of surfaces embedded in 3D contact sub-Riemannian manifolds. Indeed, we present:

- a new metric invariant \widehat{K} at the characteristic points (in Subsection 1.2.2),
- an analysis of the length distance induced on surfaces (in Subsection 1.2.3).

These results are discussed more extensively in Chapter 2 and published in my paper BBC21 (joint work with D. Barilari and U. Boscain).

Finally, in Section 1.3 we discuss the properties of a new canonical stochastic process defined on such surfaces. These results are discussed in Chapter 3 and published in my paper [BBCH21] (joint work with D. Barilari U. Boscain and K. Habermann).

Notations. In what follows M is a smooth n-dimensional manifold. We denote the vector fields of M by capital letters such as X, Y and Z. The notations $X(f)=X f$ and $X(q)$ indicate, respectively, the derivative of a smooth function f in $C^{\infty}(M)$ with respect to X, and the derivation based at a point q in M defined by X. The $C^{\infty}(M)$-module of vector fields of M is denoted $\Gamma(T M)$, which with the Lie bracket $[\cdot, \cdot]$ is a Lie algebra. The flow at time t of a vector field X is denoted by $e^{t X}$. For notational simplicity we assume that the vector fields are complete, i.e., their flows are defined for all t in \mathbb{R}.

1.1 Control systems associated with a family of vector fields

Let $\mathcal{F} \subset \Gamma(T M)$ be any set of smooth vector fields on a manifold M. Let Ω be a set of indices for the family \mathcal{F}, i.e., $\mathcal{F}=\left\{X_{u} \mid u \in \Omega\right\}$. The control system associated to the family \mathcal{F} is the system

$$
\begin{equation*}
\dot{p}(t)=X_{u(t)}(p(t)), \quad p \in M, X_{u(t)} \in \mathcal{F}, \tag{C}
\end{equation*}
$$

where as control we use maps $u \in \mathcal{U}_{p c}$, where $\mathcal{U}_{p c}=\bigcup_{T \geq 0}\{u:[0, T] \rightarrow \Omega \mid u$ piecewise constant $\}$. Following the vocabulary of control systems, an element $u \in \Omega$ is called a control parameter, Ω is the space of control parameters, points in M are states, and M is the state space.

Since (for the moment) we use piecewise constant controls, the differential equation (C) is defined in the classical sense, up to a discrete set of times in which the control is not continuous. Therefore, once a control u is fixed, the solution of (C) is determined by the initial conditions. Let us note $\phi(t, p, u)$ the value at time t of the solution of (C) starting from p. Precisely, consider a control $u:[0, T] \rightarrow \Omega$ such that there exists a partition $0=t_{0}<t_{1}<\cdots<t_{k}=T$ and control parameters $u_{1}, \ldots, u_{k} \in \Omega$ satisfying

$$
u(t)=u_{i}, \quad \forall t \in\left(t_{i-1}, t_{i}\right), i=1, \ldots, k .
$$

If $t \in\left[t_{i-1}, t_{i}\right]$ for a certain $i=1, \ldots, k$, then

$$
\phi(t, p, u)=e^{\left(t-t_{i-1}\right) X_{u_{i}}} \circ e^{\left(t_{i-1}-t_{i-2}\right) X_{u_{i-1}}} \circ \cdots \circ e^{t_{1} X_{u_{1}}}(p),
$$

namely $\phi(t, p, u)$ is constructed by concatenating the flows of the vector fields in \mathcal{F} indexed by the control u. The attainable set \mathcal{A}_{p} from a state p in M for system (C) is the set of points reached by solutions of (C) starting from p using positive times; precisely,

$$
\mathcal{A}_{p}=\left\{e^{t_{k} X_{k}} \circ \cdots \circ e^{t_{1} X_{1}}(p) \mid k \in \mathbb{N}, t_{1}, \ldots, t_{k} \geq 0, X_{1}, \ldots, X_{k} \in \mathcal{F}\right\} .
$$

Similarly, the set of points reached using positive and negative times is called the orbit \mathcal{O}_{p} of a state x; precisely,

$$
\mathcal{O}_{p}=\left\{e^{t_{k} X_{k}} \circ \cdots \circ e^{t_{1} X_{1}}(p) \mid k \in \mathbb{N}, t_{1}, \ldots, t_{k} \in \mathbb{R}, X_{1}, \ldots, X_{k} \in \mathcal{F}\right\} .
$$

Attainable sets are of greater interest than orbits from the point of view of control theory, since they are obtained following strictly the vector fields in \mathcal{F}. Indeed, to follow the flow of a vector field $X \in \mathcal{F}$ for negative time is equivalent to follow the flow of $-X$, but $-X$ need not to be in the family \mathcal{F}. Note that orbits and attainable sets coincide if the family \mathcal{F} is symmetric, i.e., if $-\mathcal{F}=\mathcal{F}$.

Sometimes we want to use measurable, essentially bounded functions as controls, instead of piecewise constant maps. When this is the case, we implicitly assume that Ω is a subset of \mathbb{R}^{m}, for some $m \in \mathbb{N}$, and that a smooth function $X: M \times \Omega \rightarrow T M$ parametrises \mathcal{F}, i.e., $\mathcal{F}=\{X(\cdot, u) \mid u \in \Omega\}$. To adhere to the notation in system (C), we continue to write $X_{u}=X(\cdot, u)$ for all u in Ω. We denote the set of essentially bounded controls as

$$
\mathcal{U}_{\infty}=\bigcup_{T \geq 0} L^{\infty}([0, T], \Omega)
$$

Fixed a control u in \mathcal{U}_{∞}, the non-autonomous differential equation (C) is well-posed in the space of absolutely continuous functions. More precisely, for any given initial condition p in M, there exist
$T>0$ and a neighbourhood V of p such that $\phi(t, q, u)$ is defined for $(t, q) \in[0, T] \times V$ and absolutely continuous with respect to time. Moreover, for $t \in[0, T]$, the flow $\phi(t, \cdot, u)$ restricted to V is a local diffeomorphism (see, e.g., [Jea17, Thm. 6.2] or [Son90, Thm. 1]).

In what follows \mathcal{U} denotes one of the control set presented above. (Observe that $U_{p c} \subset \mathcal{U}_{\infty}$.) The attainable set from a state p in M is written in full generality as

$$
\mathcal{A}_{p}=\{\phi(T, p, u) \mid T \geq 0, u \in \mathcal{U}, \phi(\cdot, p, u) \text { is defined on }[0, T]\}
$$

System (C) is said to be controllable if the attainable set from any state in M coincides with the entire state space, i.e.,

$$
\mathcal{A}_{p}=M, \quad \forall p \in M
$$

1.1.1 Local reachability and controllability

System (C) satisfies the local reachability property if, for each $p \in M$ the attainable set \mathcal{A}_{p} contains a neighbourhood of p, i.e.,

$$
\begin{equation*}
p \in \operatorname{Int} \mathcal{A}_{p}, \quad \forall p \in M \tag{LR}
\end{equation*}
$$

The property of local reachability has been studied extensively in the literature, especially in the stronger forms of small-time local reachability (for which the attainable set \mathcal{A}_{p} is replaced by the set of points reachable from p within an arbitrarily small positive time) and localised local reachability (for which one considers the set of points reachable from p by admissible trajectories that stay in an arbitrarily small neighbourhood of p). If both properties hold at the same time, we stay that system (C) satisfies small-time localised local reachability. Interest in small time local reachability is motivated, for example, by its relation with the continuity of the minimum time function, as explained in [Sus87]. (Observe that in this reference the term local controllability is used instead of local reachability: here we preferred the latter not to confuse it with the one used, e.g., in Cor07, Def. 3.2].)

Although it is somehow expected that controllability can be deduced by its local counterparts, we found that the issue has not been really discussed in the literature. An exception is [CLH ${ }^{+} 07$, Sec. 12.3], where it is stated (without proof) that small-time localised local reachability implies controllability. However, in some situation it is more natural to consider local reachability instead of localised local reachability: for instance, a linear control system $\dot{x}=A x+B u$ satisfies localised reachability only if the range of B is the entire state space. (See $\overline{\mathrm{BS} 83}$ for more results on controllability and local reachability of control-affine systems with unbounded controls.) Thus, in Chapter 5 we prove the following more general statement.

Theorem 1.1 BCFS21, Thm. 1]

Assume that M is connected and that system (C) is equipped with controls in $\mathcal{U}_{p c}$ or \mathcal{U}_{∞}. If system (C) satisfies the local reachability property, then it is controllable.

Our proof of Theorem 1.1 is based on the following property: if system (C) satisfies the local reachability property, then for all p, q in M one has that $p \in \mathcal{A}_{q}$ if and only if $q \in \mathcal{A}_{p}$ (see Lemma 5.2. This property is shown by proving that the trajectories of (C) can be retraced back by finding a control driving their endpoints to their starting points. More precisely, assume $q \in \mathcal{A}_{p}$ and consider a control u such that $q=\phi(T, p, u)$. For t in a left neighbourhood of T, the states $\phi(t, p, u)$ can be reached from q due to local reachability. By repeating this argument and concatenating controls, one can find smaller and smaller times $t \geq 0$ such that $\phi(t, p, u)$ can be reached from q. In order to reach $p=\phi(0, p, u)$ one has to show that the sequence of times t found following such a procedure eventually attains zero, unlike the situation depicted in Figure 1.1.

Figure 1.1: When retracing back the trajectory $\phi(\cdot, p, u)$ the reachable sets might get smaller and smaller and collapse to a point z before attaining x, since a priori their size is not lower semi-continuous. Lemma 5.2 shows that this situation cannot happen, proving a key step for the proof of Theorem 1.1.

Remark 1.2. The argument of the proof of Theorem 1.1 generalises to more general classes of controls, provided that the control system remains well-posed in the space of absolutely continuous functions, in the sense expressed in Section 1.1. Here we decided to use essentially bounded controls rather than to stick with piecewise constant controls in order to show that the differences which arise between controls in \mathcal{U}_{∞} and $\mathcal{U}_{p c}$ do not affect Theorem 1.1.

We mention that if localised local reachability holds, then the proof that (\mathbb{C}) is controllable follows by a simpler argument than the one in Theorem 1.1 (see Proposition 5.4 and Remark 5.3). Still the fact that (C) is controllable does not follow immediately from the definitions, since reachability is not a symmetric property. Indeed, the fact that one can reach an open neighbourhood of any initial state does not imply directly that one can control the neighbourhood back to the initial state.

Finally, Theorem 1.1 implies that any sufficient condition for local reachability also yields controllability. Actually, in the literature it is more common to find conditions for (small-time) localised local reachability, since those can be deduced from Lie algebraic arguments (see, e.g., KN21 and references therein).

1.1.2 Orbits, distributions and Lie-brackets

In this section we recall some important classical properties of orbits and attainable sets. First, orbits are immersed submanifolds of M. Precisely, an immersed k-dimension submanifold is a subset $S \subset M$ with a structure of smooth k-dimensional manifold (not necessarily with the topology inherited by M) such that the pushforward of the inclusion $i: S \hookrightarrow M$ satisfies $\operatorname{dim} i_{*}\left(T_{p} S\right)=k$ for all $p \in S$, i.e., the inclusion is an immersion.

Theorem 1.3 (Orbit theorem, Sus73]). For every $q \in M$, the orbit \mathcal{O}_{q} is a connected, immersed submanifold of M. Moreover, for all $p \in \mathcal{O}_{q}$,

$$
\begin{equation*}
T_{p} \mathcal{O}_{q}=\operatorname{span}_{\mathbb{R}}\left\{\left(e_{*}^{t_{k} X_{k}} \circ \ldots \circ e_{*}^{t_{1} X_{1}} Y\right)(p) \mid k \in \mathbb{N}, t_{1}, \ldots, t_{k} \in \mathbb{R}, X_{1}, \ldots, X_{k}, Y \in \mathcal{F}\right\} . \tag{1.1}
\end{equation*}
$$

It follows from the orbit theorem that the orbits define a foliation, i.e., a partition of X in connected, immersed submanifolds (called leaves), possibly of varying dimension. Furthermore, the foliation described by the orbits is a smooth foliation, i.e., for any p in M and vector $v \in T_{p} M$ tangent to the leaf through p can be extended to a smooth vector field everywhere tangent to the leafs of the foliation. Indeed, the fact that foliations arising as orbits of control systems as in (C) are smooth is a consequence of the orbit theorem and formula (1.1). Conversely, any smooth foliation is the orbit partition of a control system. For this, it suffices to take as family of admissible vector fields the collection of all vector fields that are everywhere tangent to the leaves.
Remark 1.4. In some texts the term foliation describes what we shall call here a regular foliation, i.e., a foliation which admits locally around each point a chart (U, x) such that $x(U)$ can be written as
$x(U)=V^{\prime} \times V^{\prime \prime} \subset \mathbb{R}^{k} \times \mathbb{R}^{n-k}$, for a fixed $k \in \mathbb{N}$, and such that the intersection of a leaf with U is either empty or the countable union of sets of the form $x^{-1}\left(V^{\prime} \times\{c\}\right)$ for $c \in V^{\prime \prime}$. Such a chart is called a foliated chart, and k is the dimension of the foliation.

We will call a distribution D the arbitrary assignment, for each point $p \in M$, of a linear subspace $D_{p} \subset T_{p} M$. Given a vector field $X: M \rightarrow T M$ we say that X is a section of D if $X_{p} \in D_{p}$ for all $p \in M$. We denote by $\Gamma(D)$ the set of sections of D. A distribution D is smooth if, for all points $p \in M$, there exist smooth sections X_{1}, \ldots, X_{k} of D such that $\left(X_{1}\right)_{p}, \ldots,\left(X_{k}\right)_{p}$ is a basis of D_{p}. In such a case, we call k the rank of D in p.

Now, define Lie \mathcal{F} to be the smallest Lie subalgebra of $\Gamma(T M)$ containing \mathcal{F}. Precisely,

$$
\text { Lie } \mathcal{F}=\operatorname{span}_{C^{\infty}(U)}\left\{\left[X_{1}, \ldots\left[X_{k-1}, X_{k}\right] \ldots\right] \mid k \in \mathbb{N}, X_{1}, \ldots, X_{k} \in \mathcal{F}\right\}
$$

For any family \mathcal{G} of vector fields, denote by $D^{\mathcal{G}}$ the smooth distribution defined by assigning, for all $p \in M$, the subspace $D_{p}^{\mathcal{G}}=\operatorname{span}\left\{X_{p} \mid X \in \mathcal{G}\right\}$. Since the Lie bracket of two vector fields X and Y can be expressed as

$$
[X, Y]_{p}=\left.\frac{d}{d t}\right|_{t=0} e^{-\sqrt{t} Y} \circ e^{-\sqrt{t} X} \circ e^{\sqrt{t} Y} \circ e^{\sqrt{t} X}(p),
$$

formula (1.1) for the tangent space of an orbit implies that

$$
\begin{equation*}
D_{p}^{\mathcal{F}} \subset D_{p}^{\mathrm{Lie} \mathcal{F}} \subset T_{p} \mathcal{O}_{q}, \quad \forall q \in M, p \in \mathcal{O}_{q} \tag{1.2}
\end{equation*}
$$

We say that the control system (C) is Lie-determined if the last inclusion in $\sqrt{1.2}$ is an equality, i.e.,

$$
\begin{equation*}
D^{\mathrm{Lie} \mathcal{F}}=T \mathcal{O} \tag{1.3}
\end{equation*}
$$

Under some rather general hypotheses, system (C) is Lie-determined. In this regard, let us recall some additional definitions. As before, let \mathcal{G} be a family of vector fields of M.
(i) \mathcal{G} is analytic if M is an analytic manifold and, for all $X \in \mathcal{G}, X$ is analytic.
(ii) \mathcal{G} is locally finitely generated if for every $q \in M$ there exist an open neighbourhood U of q and finite vector fields X_{1}, \ldots, X_{k} in \mathcal{G} such that $\left.\mathcal{G}\right|_{U} \subset \operatorname{span}_{C^{\infty}(U)}\left\{\left.X_{1}\right|_{U}, \ldots,\left.X_{k}\right|_{U}\right\}$.
(iii) $D^{\mathcal{G}}$ is \mathcal{G}-invariant if for all X in \mathcal{G} one has $e_{*}^{t X}\left(D_{p}^{\mathcal{G}}\right)=D_{e^{t X} p}^{\mathcal{G}}$ for all $p \in M$ and t.

The theorem of Nagano Nag66, the theorem of Hermann Her62, and the theorem of Stefan-Sussmann Sus73, Ste74 state that if, respectively, \mathcal{F} is analytic, Lie \mathcal{F} is locally finitely generated, $D^{\text {Lie } \mathcal{F}}$ is Lie \mathcal{F}-invariant, then system (C) is Lie-determined. We recall here also the renewed Frobenius theorem Fro77] stating that if $D^{\text {Lie } \mathcal{F}}$ is a constant rank distribution, then system (C) is Lie-determined and the foliation described by the orbits is regular. For additional details to the subject we refer to Lav18.

Under the assumption that system (\sqrt{C}) is Lie-determined, it can be shown that orbits cannot be of a greater dimension than attainable sets. This is the content of Krener's theorem.

Theorem 1.5 (Krener's theorem (Kre74]). Assume that (C) is Lie-determined. Then, for every p in M, the attainable set \mathcal{A}_{p} has a nonempty interior in the orbit \mathcal{O}_{p}.

The family \mathcal{F} is said to satisfy the Lie algebra rank condition at $p \in M$ if the evaluation at p of the Lie algebra generated by \mathcal{F} has maximal dimension, i.e.,

$$
\begin{equation*}
D_{p}^{\mathrm{Lie} \mathcal{F}}=T_{p} M \tag{1.4}
\end{equation*}
$$

Remark 1.6. When M is a real-analytic manifolds and the vector fields in \mathcal{F} are real-analytic, the following holds true: if system (C) satisfies the local reachability property, then \mathcal{F} satisfies the Lie-algebra rank condition at any point. See for instance [SJ72, Thm. 3.1].

1.1.3 Approximate controllability for bilinear control systems

A first result obtained studying approximate controllability is that, if system (C) is approximately controllable, then the foliation described by its orbits is a regular foliation of M.

Lemma 1.7 ([CS21, Lem. 4]). Assume that system (C) is approximately controllable. Then, the orbits of (C) form a regular foliation of M with dense leaves.

The proof of this lemma, which is given in Chapter 4, follows from the lower semi-continuity of the dimension of the orbits. Lemma 1.7 provides no direct information about controllability. Indeed, there might be only one orbit and still the attainable sets might not coincide with M. However, with the additional hypothesis that (\bar{C}) is Lie-determined, one deduces the following.

Corollary 1.8 ($(\overline{\mathrm{CS} 21}, \mathrm{Cor} .5])$. Assume that system (C) is Lie-determined and approximately controllable. Then, exactly one of the following alternatives holds:
(a) \mathcal{F} satisfies the Lie algebra rank condition at all points in M; hence, system (C) is controllable.
(b) There exists an integer k with $0<k<n$ such that the orbits of (C) form a regular k-dimensional foliation of N with dense leaves.

Corollary 1.8 turns out to be useful if one can exclude the existence of a regular foliation of M with the properties described in (b) this might be possible thanks to the particular form of system (C) or some topological properties of M. This is what we managed to do for the control systems of the form

$$
\begin{equation*}
\dot{p}=A(t) p, \quad p \in \mathbb{R}^{n} \backslash\{0\}, A(t) \in \mathcal{M} \tag{BL}
\end{equation*}
$$

for piecewise constant controls $A:[0,+\infty) \rightarrow \mathcal{M}$ taking values in a subset \mathcal{M} of the space $M_{n}(\mathbb{R})$ of $n \times n$ matrices with real coefficients, $n \geq 1$. By a slight abuse of notation, we refer to control systems such as (BL) as bilinear control systems, although the latter term usually denotes systems for which $M(t)=A+u^{1}(t) B_{1}+\cdots+u^{m}(t) B_{m}$ for some fixed $A, B_{1}, \ldots, B_{m} \in M_{n}(\mathbb{R})$, with control $t \mapsto\left(u^{1}(t), \ldots, u^{m}(t)\right)$ taking values in some subset Ω of \mathbb{R}^{m}. For an introduction to bilinear control system we refer to CK00 Ell09. Precisely, we proved the following result.

Theorem 1.9 [CS21, Thm. 1]

Consider the bilinear control system (BL) of $\mathbb{R}^{n} \backslash\{0\}$. System (BL) is approximately controllable if and only if it is controllable.

The proof, which is given in Chapter 4 is as follows. First, we deduce from BS20, BV13 that, if the projection of (BL) onto $\mathbb{R P}^{n-1}$ is approximately controllable, then the orbits of (BL) are transversal to the radial direction. Corollary 1.8 applies since $(\overline{B L}$ is Lie-determined due to Nagano theorem. If (BL) is not controllable, then the orbit foliation has codimension one with leaves transversal to the radial direction. Next, we show in Lemma 4.5 that such a foliation cannot have dense leaves, giving the desired result. As a byproduct of the above method, we extend Theorem 1.9 to angularly controllable homogenous control systems; see Corollary 4.6.

This result shows that the a priori weaker notion of approximate controllability implies controllability with no additional assumption, other than that the systems being a finite-dimensional bilinear control system. A possible way of applying Theorem 1.9 is the following: if for a bilinear system one is able to identify vector fields compatible with (BL), in the sense of [AS02, Def. 8.4], which lead to approximate controllability when added to the admissible ones, then controllability of (BL) follows without the need of checking the Lie algebra rank condition. Such an extension argument by compatible vector fields is at the core, for instance, of the results in Che05, which can therefore be improved by our
result. In particular, Theorem 1.9 implies that the hypotheses ii) and iii) on the existence of stable and antistable equilibria can be dropped from Che05, Theorem 4.3]. Similarly, [Che05, Prop. 3.3 and $3.6]$ can be strengthened by replacing in their conclusions approximate and practical controllability by controllability.

The result in Theorem 1.9 is in sharp contrast with the case of bilinear systems in infinite-dimension: when the controlled operators B_{i} appearing in the representation $M(t)=A+u^{1}(t) B_{1}+\cdots+u^{m}(t) B_{m}$ are bounded, these systems cannot be controllable (see BMS82, Thm 3.6] and also BCC20 for recent extensions), while there exist some criteria for approximate controllability (see, e.g., Kha10, Chap. 4 and 9] and CFK17, BCS14]).

Theorem 1.9 does not hold for general finite-dimensional systems (to which the notions of controllability and approximate controllability straightforwardly extend). Indeed, while controllability clearly implies approximate controllability, the converse may fail to hold. A standard example can be provided using the irrational winding of a line in the torus $\mathbb{T}^{n}, n \geq 2$. On the other hand, the equivalence stated in Theorem 1.9 is known to hold for some other classes of control systems. This is the case for linear control systems, that is, systems of the form

$$
\begin{equation*}
\dot{x}=A x+B u(t), \quad u:[0,+\infty) \rightarrow \mathbb{R}^{m}, \quad x \in \mathbb{R}^{n}, \tag{1.5}
\end{equation*}
$$

with $A \in M_{n}(\mathbb{R})$ and $B \in M_{n \times m}(\mathbb{R})$. Indeed, the approximate controllability of 1.5) implies in particular that the attainable set from the origin \mathcal{A}_{0} is dense in \mathbb{R}^{n}. Since \mathcal{A}_{0} is a linear space (and in particular it is closed), it follows that $\mathcal{A}_{0}=\mathbb{R}^{n}$, which is well known to be equivalent to the controllability of (1.5) due to the linear structure of the system. Few other classes of control systems for which approximate controllability implies controllability are known: closed quantum systems on S^{n-1} BGRS15, Thm. 17]; right-invariant control systems on simple Lie groups (as it follows from JS72, Lem. 6.3] and Smi42, Note at p. 312]); control systems obtained by projecting onto $\mathbb{R P}^{n-1}$ systems of the form of (BL) BS20, Prop. 44].

1.2 Sub-Riemannian manifolds

Let \mathcal{F} be a family of vector fields on a smooth manifold M. Assume that the distribution defined by \mathcal{F} has constant rank, i.e., there exists $k \in N$ such that

$$
\begin{equation*}
\operatorname{dim} D_{p}^{\mathcal{F}}=k \quad \forall p \in M \tag{1.6}
\end{equation*}
$$

We say that a locally Lipschitz curve $\gamma: I \rightarrow M$ is horizontal with respect to \mathcal{F} if $\dot{\gamma}(t) \in D^{\mathcal{F}}$ for almost every $t \in I$. Recall that a Lipschitz curve admits a derivative almost everywhere; e.g., see [Hei04, p. 18]. We call a curve admissible if it is Lipschitz and horizontal. In other words, a curve is admissible if and only if for any sufficiently small intervals $I^{\prime} \subset I$ there exist X_{1}, \ldots, X_{k} in \mathcal{F} and measurable, essentially bounded functions $u^{1}, \ldots, u^{k}: I^{\prime} \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
\dot{\gamma}(t)=u^{1}(t) X_{1}(\gamma(t))+\cdots+u^{k}(t) X_{k}(\gamma(t)), \quad \text { for almost every } t \in I^{\prime} \tag{1.7}
\end{equation*}
$$

This is a version of the control equation (C), with essentially bounded controls and symmetric control parameters. Now, assume that a smooth scalar product g has been chosen on the distribution $D^{\mathcal{F}}$. In this case, the sub-Riemannian length of an admissible curve γ is defined as

$$
\begin{equation*}
L_{s R}(\gamma)=\int_{I} \sqrt{g(\dot{\gamma}, \dot{\gamma})} \tag{1.8}
\end{equation*}
$$

Ultimately, one would like to define the sub-Riemannian distance between two points p and q in M as

$$
\begin{equation*}
d_{s R}(p, q)=\inf \left\{L_{s R}(\gamma) \mid \gamma:[a, b] \rightarrow M \text { admissible, } \gamma(a)=p, \gamma(b)=q\right\} \tag{1.9}
\end{equation*}
$$

A property which is required is that the topology defined by $d_{s R}$ should coincide with the topology of M. This is the case when the family \mathcal{F} to satisfy the Lie algebra rank condition at every
point. The latter property depends uniquely on the distribution $D^{\mathcal{F}}$, motivating the following definition. A smooth constant rank distribution D is said to be bracket-generating if, for any family \mathcal{F} of vector fields with $D=D^{\mathcal{F}}$, the family \mathcal{F} satisfies the Lie algebra rank condition at every point. Finally, a sub-Riemannian structure on a manifold M consists of a smooth, bracket-generating distribution D, and a smooth scalar product g defined on D. The triple (M, D, g) is a sub-Riemannian manifold.

The above definition of sub-Riemannian manifold is not the most general one can give, but it is sufficient for the purposes of this thesis. For a general introduction to sub-Riemannian geometry we refer the reader to the monographs (ABB20], LD17], Jea14, Mon02] and Rif14. In what follows it is assumed that M is a three-dimensional manifold and D is a distribution of rank two.

1.2.1 Surfaces in 3 D contact manifolds

From now on, the manifold M is supposed to be 3 -dimensional. The distribution D is said to be coorientable if there exists a one-form ω on M such that

$$
\begin{equation*}
\operatorname{ker} \omega_{p}=D_{p}, \quad \forall p \in M \tag{1.10}
\end{equation*}
$$

Under the assumption that D is coorientable, the pair (M, D) is called a contact manifold if any one-form ω satisfying locally 1.10 satisfies also $\left.\mathrm{d} \omega\right|_{D} \neq 0$, or equivalently

$$
\begin{equation*}
\omega \wedge \mathrm{d} \omega \neq 0 \tag{1.11}
\end{equation*}
$$

Such one-form ω is called a contact form. One can verify that if (M, D) is a contact manifold then, for every p in M and $X_{1}, X_{2} \in \Gamma(D)$, one has

$$
\begin{equation*}
\operatorname{span}\left\{X_{1}(p), X_{2}(p)\right\}=D_{p} \Longrightarrow\left[X_{2}, X_{1}\right]_{p} \notin D_{p} \tag{1.12}
\end{equation*}
$$

In this section we recall some relevant facts about contact manifolds, and we refer to Etn03 and Gei08 for an introduction to the subject.

Les S be an embedded surface in M. A point p in S is a characteristic point if the tangent space $T_{p} S$ coincides with the distribution D_{p}. The set of characteristic points of S is the characteristic set, noted $\Sigma(S)$. The characteristic set is closed due to the lower semi-continuity of the rank, and it cannot contain open sets due to the contact condition. Moreover, since the distribution D is contact, the set $\Sigma(S)$ is contained in a 1-dimensional submanifold of S (see Lemma 2.5) and, generically, it is composed of isolated points (see Gei08, Par. 4.6]).

Outside the characteristic set, the intersection $T S \cap D$ is a one-dimensional distribution and defines (due to Frobenius theorem) a regular one-dimensional foliation on $S \backslash \Sigma(S)$. This foliation extends to a smooth foliation (cf. Subsection 1.1.2) of S by adding a singleton at every characteristic point. The resulting foliation is the characteristic foliation of S. Characteristic foliations of surfaces in 3D contact manifolds are studied in numerous references; in this regard we refer to Gir91, Gir00, Ben83. See Figure 1.3 (at the end of the current chapter) for a graphical representation of the characteristic foliation on a sphere in the Heisenberg group.

We call characteristic vector fields the vector fields of S whose orbit partition coincides with the characteristic foliation of S. Precisely, given an open set U in S, a vector field X is a characteristic vector field of S in U if, for all q in U,

$$
\operatorname{span}_{\mathbb{R}} X(q)= \begin{cases}\{0\}, & \text { if } q \in \Sigma(S) \tag{1.13}\\ T_{q} S \cap D_{q}, & \text { otherwise }\end{cases}
$$

and satisfies the condition

$$
\begin{equation*}
\operatorname{div} X(p) \neq 0, \quad \forall p \in \Sigma(S) \cap U \tag{1.14}
\end{equation*}
$$

Notice that $\operatorname{div} X(p)$ is well-defined since $X(p)=0$, i.e., p is a characteristic point, and it is independent on the volume form; in particular $\operatorname{div} X(p)=\operatorname{tr} D X(p)$. Under some classical hypothesis, one can assure the existence of a global characteristic vector field as recalled in the following lemma. Moreover, these hypotheses always hold locally, in an open neighbourhood of any point.

Lemma 1.10 ([Gei08, Par. 4.6]). Assume that S is orientable and that D is coorientable. Then, S admits a global characteristic vector field; moreover, the characteristic vector fields of S are the vector fields X for which there exists a volume form Ω of S such that

$$
\begin{equation*}
\Omega(X, Y)=\omega(Y) \quad \text { for all } Y \in T S \tag{1.15}
\end{equation*}
$$

Indeed, in Gei08 it is shown that, if a vector field satisfies 1.15 , then it satisfies 1.13 and 1.14 . Reciprocally, a vector field \bar{X} satisfying (1.13) is a multiple of any other vector field X satisfying (1.15) for some function ϕ with $\left.\phi\right|_{S \backslash(S)} \neq 0$; additionally, if 1.14 holds, then $\left.\phi\right|_{\Sigma(S)} \neq 0$; thus, \bar{X} satisfies (1.15) with $\frac{1}{\phi} \Omega$ as volume form of S.

Remark 1.11. Formula 1.15 means that the characteristic vector fields are dual to the restrictions of the contact forms $\left.\omega\right|_{S}$ with respect to the volume forms Ω of S. Since the volume forms of S are proportional by nowhere-zero functions, the same holds for the characteristic vector fields. In particular, if X is a characteristic vector field, then also $-X$ is a characteristic vector field.

Let us provide another way to find, locally, an explicit expression for a local characteristic vector field. Any point in S admits a neighbourhood U in M in which there exists an orthonormal frame $\left(X_{1}, X_{2}\right)$ for $\left.D\right|_{U}$, and a submersion u of class C^{2} for which S is a level set, i.e.,

$$
\begin{equation*}
S \cap U=\{q \in U: u(q)=0\}, \quad \text { and } \mathrm{d} u \neq 0 \text { on } S \cap U \tag{1.16}
\end{equation*}
$$

Observe that for any point $p \in U \cap S$, one has

$$
\begin{equation*}
p \in \Sigma(S) \quad \text { if and only if } \quad X_{1} u(p)=X_{2} u(p)=0 \tag{1.17}
\end{equation*}
$$

Here we used that a vector V is in $T S$ if and only if $V u=0$. Now, the vector field X_{u} defined by

$$
\begin{equation*}
X_{u}=\left(X_{1} u\right) X_{2}-\left(X_{2} u\right) X_{1} \tag{1.18}
\end{equation*}
$$

is a characteristic vector field of S. Indeed, X_{u} satisfies (1.13) since it follows from the definition that, for all q in S, the vector $X_{u}(q) \in T_{q} S \cap D_{q}$, and $X_{u}(p)=0$ if and only if $p \in \Sigma(S)$, due to (1.17). Moreover, X_{u} satisfies (1.14) since the divergence of X_{u} at the characteristic points is nonzero due to the contact condition 1.12 and the following expression

$$
\operatorname{div} X_{u}(p)=X_{2} X_{1} u(p)-X_{1} X_{2} u(p)=\left[X_{2}, X_{1}\right] u(p), \quad \forall p \in \Sigma(S)
$$

In the literature, the study of surfaces in three-dimensional contact manifolds has found a lot of interest since, amongst others, the characteristic foliations of surfaces provide an important invariant used to classify contact structures. Moreover, the following theorem holds.

Theorem 1.12 (Giroux, Gei08, Thm. 2.5.22 and 2.5.23]). Let S_{i} be closed surfaces in contact threedimensional manifolds $\left(M_{i}, D_{i}\right), i=0,1$, with D_{i} cooriented. Assume that and $\phi: S_{0} \rightarrow S_{1}$ is a diffeomorphism between the respective characteristic foliations. Then there is a contactomorphism $\psi: N\left(S_{0}\right) \rightarrow N\left(S_{1}\right)$ of suitable neighbourhoods $N\left(S_{i}\right)$ of S_{i}, i.e., $\left.\psi_{*} D_{1}\right|_{N\left(S_{1}\right)}=\left.D_{0}\right|_{N\left(S_{0}\right)}$, with $\left.\psi\right|_{S_{0}}=\phi$.

Tight contact structures

Roughly, a distribution is tight if it does not admit an overtwisted disk, i.e., an embedding of a disk with horizontal boundary such that the distribution does not twists along the boundary. The notion of tight distribution will be necessary to state Theorem 1.16 . However, a reader who is satisfied with the
above definition might skip ahead.

To define an overtwisted disk, let us first consider an embedding of $\Delta=\left\{x \in \mathbb{R}^{2}:|x| \leq 1\right\}$ in M, and denote $\Gamma=\partial \Delta$. Let Γ be horizontal with respect to the contact distribution D, i.e., $T \Gamma \subset D$. Then, the normal bundle $N \Gamma=\left.T M\right|_{\Gamma} / T \Gamma$ can be decomposed in two ways: the first with respect to the tangent space of Δ, i.e.,

$$
\begin{equation*}
N \Gamma \cong T M / T \Delta \oplus^{T \Delta} / T \Gamma \tag{1.19}
\end{equation*}
$$

and the second with respect to the contact distribution D, i.e.,

$$
\begin{equation*}
N \Gamma \cong T M / D^{D} / T \Gamma \tag{1.20}
\end{equation*}
$$

A frame $\left(Y_{1}, Y_{2}\right)$ of $N \Gamma$ is called a surface frame if it respects the splitting (1.19), i.e., $Y_{1} \in T M \backslash T \Delta$ and $Y_{2} \in T \Delta \backslash T \Gamma$; similarly, it is called a contact frame if it respects the splitting 1.20 . Since the contact distribution is cooriented near Δ, both bundles 1.19 and 1.20 are trivial, thus one can always find contact and surface frames.

The Thurston-Bennequin invariant of Γ, denoted by $\operatorname{tb}(\Gamma)$, is the number of twists of a contact frame of Γ with respect to a surface frame: the right-handed twists are counted positively, and the left-handed twists negatively (cf. for instance Gei08, Def. 3.5.4]). Note that $\mathrm{tb}(\Gamma)$ is independent of the orientation of Γ. The requirement that the distribution D does not twist along the boundary of Δ is equivalent to $\operatorname{tb}(\partial \Delta)=0$, i.e., the Thurston-Bennequin invariant of $\partial \Delta$ being zero.

An embedded disk Δ in a cooriented contact manifold (M, D) with smooth boundary $\partial \Delta$ is an overtwisted disk if $\partial \Delta$ is a horizontal curve of $D, \operatorname{tb}(\partial \Delta)=0$, and there is exactly one characteristic point in the interior of the disk. Note that the elimination lemma of Giroux allows to remove the condition that there is only one characteristic point in the interior of the overtwisted disk, as discussed for instance in Gei08, Def. 4.5.2].

1.2.2 The Riemannian approximation

The construction of Riemannian approximation of a sub-Riemannian structure is a key tool used in this thesis, and their use to define sub-Riemannian geometric invariants is a well-known technique. For a general description of the properties of the Riemannian approximation in the Heisenberg group we refer to [CDPT07]. In this thesis, we use the Riemannian approximation for two purposes. First to associate with each characteristic point a real number \widehat{K}, as explained below in Theorem 1.13 . Second, as explained in Section 1.3, to construct a canonical stochastic process on S.

Assume that (M, D, g) is a three-dimensional manifold equipped with a cooriented distribution D of rank two. Under this assumption, one can fix a vector field X_{0} transverse to the distribution, i.e.,

$$
\operatorname{span}\left\{D, X_{0}\right\}=T M
$$

Once this choice has been made, one can extend the sub-Riemannian metric g to a Riemannian metric $g^{X_{0}}$ by defining X_{0} to be unitary and orthogonal to D. The Riemannian metrics $g^{\varepsilon X_{0}}$, for $\varepsilon>0$, are the Riemannian approximations of (D, g) with respect to X_{0}. Precisely, for every $\varepsilon>0$, one has

$$
\left\langle D, X_{0}\right\rangle_{g^{\varepsilon X_{0}}}=0, \quad\left|X_{0}\right|_{g^{\varepsilon X_{0}}}=\frac{1}{\varepsilon}, \quad \forall \varepsilon>0
$$

To simplify the notation, once it is clear which transversal vector field has been chosen we might drop the dependance on X_{0} in the superscript, writing $g^{\varepsilon}=g^{\varepsilon X_{0}}$.

Let $K^{X_{0}}$ be the Gaussian curvature of S with respect to $g^{X_{0}}$. Fixed a characteristic point $p \in \Sigma(S)$, the coefficient \widehat{K} will be defined as the limit for $\varepsilon \rightarrow 0$ of $K^{\varepsilon X_{0}}$, using a suitably normalisation of the

Lie bracket structure on the distribution. Precisely, let $B^{X_{0}}$ be the bilinear form $B^{X_{0}}: D \times D \rightarrow \mathbb{R}$ defined by

$$
B^{X_{0}}(X, Y)=\alpha \quad \text { if } \quad[X, Y]=\alpha X_{0} \quad \bmod D .
$$

Since D is endowed with the metric g, the bilinear form $B^{X_{0}}$ admits a well-defined determinant.

Theorem 1.13 BBC21, Thm. 1.1]

Let S be a C^{2} surface embedded in a 3D contact sub-Riemannian manifold. Let p be a characteristic point of S, and let X_{0} be a vector field transverse to the distribution D in a neighbourhood of p. Then, in the notations defined above, the limit

$$
\begin{equation*}
\widehat{K}_{p}=\lim _{\varepsilon \rightarrow 0} \frac{K_{p}^{\varepsilon X_{0}}}{\operatorname{det} B_{p}^{\varepsilon X_{0}}} \tag{1.21}
\end{equation*}
$$

is finite and independent on the vector field X_{0}.

Notice that in the previous literature the Riemannian approximation is employed to define subRiemannian geometric invariants outside of the characteristic set. For instance, in [BTV17] the authors defined the sub-Riemannian Gaussian curvature at a point $x \in S \backslash \Sigma(S)$ as

$$
\begin{equation*}
\mathcal{K}_{S}(x)=\lim _{\varepsilon \rightarrow 0} K_{x}^{\varepsilon X_{0}} \tag{1.22}
\end{equation*}
$$

and they proved that a Gauss-Bonnet type theorem holds; here the authors worked in the setting of the Heisenberg group, and with X_{0} equals to the Reeb vector field of the Heisenberg group. This construction is extended in [WW20] to the affine group and to the group of rigid motions of the Minkowski plane, and in Vel20 to a general sub-Riemannian manifold. In the latter, the author linked \mathcal{K}_{S} with the curvature introduced in [DV16], and, when $\Sigma(S)=\emptyset$, they proved a Gauss-Bonnet theorem by Stokes formula. A Gauss-Bonnet theorem (in a different setting) was also proven in ABS08. We finally notice that the invariant \mathcal{K}_{S} also appears in [Lee13], where it is called curvature of transversality. An expression for \mathcal{K}_{S} is provided also in Proposition 1.18.

As we shall see, the coefficient \widehat{K}_{p} determines the qualitative behaviour of the characteristic foliation near a characteristic point p. Following the terminology of contact geometry (cf. for instance [Gei08, Par. 4.6]), given a characteristic point $p \in \Sigma(S)$ and a characteristic vector field X, the point p is called non-degenerate if $\operatorname{det} D X(p) \neq 0$. Furthermore, p is called elliptic if $\operatorname{det} D X(p)>0$, and hyperbolic if det $D X(p)<0$. In the theory of dynamical systems, saddles and hyperbolic points are, respectively, what we call hyperbolic characteristic points and non-degenerate characteristic points.

Proposition 1.14 ($\left(\overline{\mathrm{BBC} 21}\right.$, Prop. 1.2]). Let S be a C^{2} surface embedded in a 3D contact subRiemannian manifold. Given a characteristic point p in $\Sigma(S)$, let X be a characteristic vector field X near p. Then, $\operatorname{tr} D X(p) \neq 0$ and

$$
\begin{equation*}
\widehat{K}_{p}=-1+\frac{\operatorname{det} D X(p)}{(\operatorname{tr} D X(p))^{2}} \tag{1.23}
\end{equation*}
$$

Thus, p is hyperbolic if and only if $\widehat{K}_{p}<-1$, and p it is elliptic if and only if $\widehat{K}_{p}>-1$.
This equality links \widehat{K}_{p} to the eigenvalues of $D X(p)$, which determine the qualitative behaviour of the characteristic foliation around the characteristic point p. This relation is made explicit in Corollary 2.10 for a non-degenerate characteristic point, and in Corollary 2.12 for a degenerate characteristic point. Moreover, equation (1.23) shows that \widehat{K}_{p} is independent on the sub-Riemannian metric, and depends only on the line field defined by D on S.

Figure 1.2: The qualitative picture for the characteristic foliation at an isolated characteristic point, for the corresponding values of \widehat{K}. Left to right, we recognise a saddle, a saddle-node, a node, and a focus.

1.2.3 Induced distance on surfaces

The study of the geometry of submanifolds S of an ambient manifold M with a given geometric structure is a classical subject. A familiar example, whose study goes back to Gauss, is that of a surface S embedded in the Euclidean space \mathbb{R}^{3}. In such a case, S inherits its natural Riemannian structure by restricting the metric tensor to the tangent space of S. The distance induced on S by this metric tensor is not the restriction of the distance of \mathbb{R}^{3} to points on S, but rather the length space structure induced on S by the ambient space.

Things are less straightforward for a smooth 3-manifold M endowed with a contact sub-Riemannian structure (D, g). Indeed, for a two-dimensional submanifold S, the intersection $T_{x} S \cap D_{x}$ is onedimensional for most points x in S; thus, $T S \cap D$ is not a bracket-generating distribution and there is no well-defined sub-Riemannian distance induced by (M, D, g) on S. This fact is indeed more general, as already observed in Gro96, Sec. 0.6.B]. Nevertheless, one can still define a distance on S following the length space viewpoint: the sub-Riemannian distance $d_{s R}$ defines the length of any continuous curve $\gamma:[0,1] \rightarrow M$ as

$$
L_{s R}(\gamma)=\sup \left\{\sum_{i=1}^{N} d_{s R}\left(\gamma\left(t_{i}\right), \gamma\left(t_{i+1}\right)\right) \mid 0=t_{0} \leq \ldots \leq t_{N}=1\right\}
$$

and one can define $d_{S}: S \times S \rightarrow[0,+\infty]$ by

$$
d_{S}(x, y)=\inf \left\{L_{s R}(\gamma) \mid \gamma:[0,1] \rightarrow S, \gamma(0)=x, \gamma(1)=y\right\}
$$

The space $\left(S, d_{S}\right)$ is called a length space, and d_{S} the induced distance defined by $\left(M, d_{s R}\right)$. (In the theory of length metric spaces, the induced distance d_{S} is called intrinsic distance, emphasising that it depends uniquely on lengths of curves in S, see BBI01.) We stress that the induced distance d_{S} is not the restriction $\left.d_{s R}\right|_{S \times S}$ of the sub-Riemannian distance to S.

We started the investigation by looking for necessary and sufficient conditions on the surface S so that the induced distance d_{S} is finite. i.e., $d_{S}(x, y)<+\infty$ for all points x, y in S; this is equivalent to $\left(S, d_{S}\right)$ being a metric space. This can be formulated through the use of the characteristic foliation of S. Precisely, consider a continuous curve $\gamma:[0,1] \rightarrow S$. Its length is finite, i.e., $L_{s R}(\gamma)<+\infty$, if and only if γ is a reparametrisation of a curve $\bar{\gamma}$ horizontal with respect to D; in such case, the length of γ coincides with the sub-Riemannian length of $\bar{\gamma}$. We refer to BBI01, Ch. 2] and ABB20, Sec. 3.3] for more details. In conclusion, the distance $d_{S}(x, y)$ between two points x and y in S is finite if and only if there exists a finite-length continuous concatenation of leaves of the characteristic foliation of S connecting them.

From a local point of view, for the induced distance to be finite one needs characteristic points to be accessible from their complement. In this regard, we were able to prove that the one-dimensional leaves of the characteristic foliation of S which converge to a characteristic point have finite length. Precisely, let ℓ be a leaf of the characteristic foliation of S; we say that a point p in S is a limit point of ℓ if there exists a point q in ℓ and a characteristic vector field X of S such that

$$
\begin{equation*}
e^{t X}(q) \rightarrow p \quad \text { for } t \rightarrow+\infty \tag{1.24}
\end{equation*}
$$

where $e^{t X}$ is the flow of X. In such case, we denote the semi-leaf $\ell_{X}^{+}(q)=\left\{e^{t X}(q) \mid t \geq 0\right\}$. With the above definition, a leaf can have at most two limit points: one for each extremity. Finally, notice that a limit point of a leaf must be a zero of the corresponding characteristic vector field X, i.e., a characteristic point of S.
Proposition 1.15 ($\widehat{\mathrm{BBC} 21}$, Thm. 1.3]). Let S be a C^{2} surface embedded in a 3D contact subRiemannian manifold, and let p be a limit point of a one-dimensional leaf ℓ. Let $x \in \ell$, and X be a characteristic vector field such that $e^{t X}(x) \rightarrow p$ for $t \rightarrow+\infty$. Then, the length of $\ell_{X}^{+}(x)$ is finite.

This result is a consequence of the sub-Riemannian structure being contact. Indeed, for a noncontact distribution this conclusion is false; for instance, in ZZ95, Lem. 2.1] the authors prove that the length of the semi-leaves of the characteristic foliation of a Martinet surface converging to an elliptic point is infinite.

On the global side, we determine some conditions for the induced metric d_{S} to be finite under the assumption that there exists a global characteristic vector field of S. In such a case, for a compact, connected surface S with isolated characteristic points, in Proposition 2.16 we show that d_{S} is finite in the absence of the following classes of leaves in the characteristic foliation of S : nontrivial recurrent trajectories, periodic trajectories, and sided contours. Those conditions are satisfied by spheres in coorientable, tight contact spaces,

Theorem 1.16 BBC21, Thm. 1.4]

Let (M, D, g) be a tight coorientable sub-Riemannian contact structure, and let S be a C^{2} embedded surface with isolated characteristic points, homeomorphic to a sphere. Then the induced distance d_{S} is finite.

We stress that having isolated characteristic points is a generic property for a surface in a contact manifold. Example 2.5.4 and Example 2.5 .5 in the Heisenberg distribution show that, if S is not a topological sphere, then S presents possibly nontrivial recurrent trajectories or periodic trajectories, cases in which d_{S} is not finite. Moreover, if one removes the hypothesis of the contact structure being tight, then a sphere S might present a periodic trajectory, hence the induced distance d_{S} would not be finite. The compactness hypothesis is also important, as one can see in Example 2.5.1.

1.3 Stochastic processes on sub-Riemannian surfaces

Let (M, D, g) be a contact, cooriented sub-Riemannian space. We shall assume that the distribution D is free, i.e., globally generated by a pair of vector fields $\left(X_{1}, X_{2}\right)$ which constitute an orthonormal frame for D oriented with respect to the volume form vol_{g} on D defined by g. Moreover, we choose the contact form ω to be normalised so that

$$
\begin{equation*}
\left.\mathrm{d} \omega\right|_{D}=\operatorname{vol}_{g} \tag{1.25}
\end{equation*}
$$

Associated with such a contact form ω, we have a canonical choice of a vector field everywhere transversal to D : this is the Reeb vector field X_{0}, which is the unique vector field on M satisfying

$$
\begin{equation*}
\mathrm{d} \omega\left(X_{0}, \cdot\right) \equiv 0, \quad \text { and } \quad \omega\left(X_{0}\right) \equiv 1 \tag{1.26}
\end{equation*}
$$

Let g^{ε}, for $\varepsilon>0$, be the Riemannian approximations of (M, D, g) with respect to the Reeb vector field X_{0}, as described in Section 1.2.2. Recall that g^{ε} is defined by requiring ($X_{1}, X_{2}, \varepsilon X_{0}$) to be a global orthonormal frame for g^{ε}. Let S be a surface embedded in M, and assume that S is globally defined by a submersion u in the sense of equation (1.16). Namely, one has

$$
\begin{equation*}
S=\{x \in M: u(x)=0\}, \quad \text { and } \mathrm{d} u \neq 0 \text { on } S \tag{1.27}
\end{equation*}
$$

This implies that the characteristic vector field X_{u} introduced in 1.18 is defined globally on S. Let \widehat{X}_{S} be the vector field on $S \backslash \Sigma(S)$ defined by $\widehat{X}_{S}=X_{u} /\left|X_{u}\right|_{g}$. Explicitly,

$$
\begin{equation*}
\widehat{X}_{S}=\frac{\left(X_{1} u\right) X_{2}-\left(X_{2} u\right) X_{1}}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}}} \tag{1.28}
\end{equation*}
$$

Even though \widehat{X}_{S} is expressed in terms of X_{1}, X_{2} and u, it only depends on the sub-Riemannian manifold (M, D, g), the embedded surface S and a choice of sign. Let $b: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ be the function given by

$$
\begin{equation*}
b=\frac{X_{0} u}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}}} \tag{1.29}
\end{equation*}
$$

Similarly to the vector field \widehat{X}_{S}, the function b can be understood intrinsically. Indeed, let \widehat{X}_{S}^{\perp} be such that $\left(\widehat{X}_{S}, \widehat{X}_{S}^{\perp}\right)$ is an oriented orthonormal frame for $\left.D\right|_{S \backslash \Sigma(S)}$. Then, the function b is uniquely defined by requiring $b \widehat{X}_{S}^{\perp}-X_{0}$ to be a vector field on $S \backslash \Sigma(S)$. Finally, define

$$
\begin{equation*}
\Delta_{0}=\widehat{X}_{S}^{2}+b \widehat{X}_{S} \tag{1.30}
\end{equation*}
$$

which is a second order partial differential operator on $S \backslash \Sigma(S)$. The operator Δ_{0} is invariant under multiplications of u by nonzero functions. As stated in the theorem below, it arises as the limiting operator of the Laplace-Beltrami operators Δ_{ε} of the Riemannian approximations g^{ε}, for $\varepsilon \rightarrow 0$.

Theorem $1.17(\| \mathrm{BBCH} 21, ~ T h m .1 .1])$. For any twice differentiable function $f \in C_{c}^{2}(S \backslash \Sigma(S))$ compactly supported in $S \backslash \Sigma(S)$, the functions $\Delta_{\varepsilon} f$ converge uniformly on $S \backslash \Sigma(S)$ to $\Delta_{0} f$ as $\varepsilon \rightarrow 0$.

Following the definition in Balogh, Tyson and Vecchi BTV17] for surfaces in the Heisenberg group, the intrinsic Gaussian curvature \mathcal{K}_{S} of a surface in a general three-dimensional contact sub-Riemannian manifold is defined as the limit of the Gaussian curvatures with respect to the Riemannian metrics g_{ε}, as described in 1.22 . In the following proposition we derive an expression for \mathcal{K}_{S}, employing the same orthogonal frame exhibited to prove Theorem 1.17.
Proposition 1.18 ([|BBCH21, Prop. 1.2]). Uniformly on compact subsets of $S \backslash \Sigma(S)$, we have

$$
\mathcal{K}_{S}:=\lim _{\varepsilon \rightarrow 0} K^{\varepsilon}=-\widehat{X}_{S}(b)-b^{2}
$$

We now consider the canonical stochastic process on $S \backslash \Sigma(S)$ whose generator is $\frac{1}{2} \Delta_{0}$. Assuming that it starts at a certain point then, up to explosion, the process moves along the unique leaf of the characteristic foliation picked out by the starting point. This follows from the fact that the vector field \widehat{X}_{S} is tangent to the characteristic foliation of S. As shown by the next theorem and the following proposition, for this stochastic process, elliptic characteristic points are inaccessible, while hyperbolic characteristic points are accessible from the separatrices.

Theorem 1.19 |BBCH21, Thm. 1.3]

The set of elliptic characteristic points in a surface S embedded in M is inaccessible for the stochastic process with generator $\frac{1}{2} \Delta_{0}$ on $S \backslash \Sigma(S)$.

In Section 3.3.3, we discuss an example of a surface in the Heisenberg group whose induced stochastic process is killed in finite time if started along the separatrices of the characteristic point. Indeed, this phenomena always occurs in the presence of a hyperbolic characteristic point.

Theorem 1.20 BBCH21, Prop. 1.4]

Suppose that the surface S embedded in M has a hyperbolic characteristic point. Then the stochastic process having generator $\frac{1}{2} \Delta_{0}$ and started on the separatrices of the hyperbolic characteristic point reaches that characteristic point with positive probability.

Sections 3.3 and 3.4 are devoted to illustrating the various behaviours shown by the canonical stochastic process induced on the surface S. Besides illustrating Proposition 1.20 , we show in Theorem 1.21 below that three classes of familiar stochastic processes arise when considering a natural choice for the surface S in the three classes of model spaces for three-dimensional sub-Riemannian structures, which are the Heisenberg group in \mathbb{R}^{3}, and the special unitary group $\mathrm{SU}(2)$ and the special linear group $\mathrm{SL}(2, \mathbb{R})$ equipped with sub-Riemannian contact structures with scalar products differing by a constant multiple. In all these cases, the orthonormal frame $\left(X_{1}, X_{2}\right)$ for the distribution D is formed by two left-invariant vector fields which together with the Reeb vector field X_{0} satisfy, for some $\kappa \in \mathbb{R}$, the commutation relations $\left[X_{2}, X_{1}\right]=X_{0},\left[X_{1}, X_{0}\right]=\kappa X_{2}$, and $\left[X_{2}, X_{0}\right]=-\kappa X_{1}$, with $\kappa=0$ in the Heisenberg group, $\kappa>0$ in $\mathrm{SU}(2)$ and $\kappa<0$ in $\mathrm{SL}(2, \mathbb{R})$. Associated with each of these Lie groups and their Lie algebras, we have the group exponential map exp for which we identify a left-invariant vector field with its value at the origin.

Theorem $1.21(\| \overline{\mathrm{BBCH} 21}$, Thm. 1.5]). Fix $\kappa \in \mathbb{R}$. For $\kappa \neq 0$, let $k \in \mathbb{R}$ with $k>0$ be such that $|\kappa|=4 k^{2}$. Set $I=\left(0, \frac{\pi}{k}\right)$ if $\kappa>0$ and $I=(0, \infty)$ otherwise. In the model space for three-dimensional sub-Riemannian structures corresponding to κ, we consider the embedded surface S parameterised as

$$
S=\left\{\exp \left(r \cos \theta X_{1}+r \sin \theta X_{2}\right): r \in I \text { and } \theta \in[0,2 \pi)\right\}
$$

Then, the limiting operator Δ_{0} on S is given by $\Delta_{0}=\frac{\partial^{2}}{\partial r^{2}}+b(r) \frac{\partial}{\partial r}$, where

$$
b(r)= \begin{cases}2 k \cot (k r) & \text { if } \kappa=4 k^{2} \\ \frac{2}{r} & \text { if } \kappa=0 \\ 2 k \operatorname{coth}(k r) & \text { if } \kappa=-4 k^{2}\end{cases}
$$

The stochastic process induced by the operator $\frac{1}{2} \Delta_{0}$ moving along the leaves of the characteristic foliation of S is a Bessel process of order 3 if $\kappa=0$, a Legendre process of order 3 if $\kappa>0$ and a hyperbolic Bessel process of order 3 if $\kappa<0$.

The stochastic processes we recover here are all related to one-dimensional Brownian motion by the same type of Girsanov transformation, with only the sign of a parameter distinguishing between them. For the details, see Revuz and Yor RY99, p. 357]. Let us recall here that a Bessel process of order 3 arises by conditioning a one-dimensional Brownian motion started on the positive real line to never hit the origin, whereas a Legendre process of order 3 is obtained by conditioning a Brownian motion started inside an interval to never hit either endpoint of the interval. The examples making up Theorem 1.21 can be considered as model cases for our setting, and all of them illustrate Theorem 1.19 .

Finally, notice that the limiting operator we obtain on the leaves is not the Laplacian associated with the metric structure restricted to the leaves as the latter has no drift term. However, the operator Δ_{0} restricted to a leaf can be considered as a weighted Laplacian. For a smooth measure $\mu=h^{2} \mathrm{~d} x$ on an interval I of the Euclidean line \mathbb{R}, the weighted Laplacian applied to a scalar function u yields

$$
\operatorname{div}_{\mu}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{2 h^{\prime}(x)}{h(x)} \frac{\partial f}{\partial x}
$$

In the model cases above, we have

$$
h(r)= \begin{cases}\sin (k r) & \text { if } \kappa=4 k^{2} \\ r & \text { if } \kappa=0 \\ \sinh (k r) & \text { if } \kappa=-4 k^{2}\end{cases}
$$

Figure 1.3: The characteristic foliation defined by the Heisenberg distribution $\left(\mathbb{R}^{3}, \operatorname{ker}\left(d z+\frac{1}{2}(y d x-x d y)\right)\right.$ on an Euclidean sphere centred at the origin: any horizontal curve connecting points on different spirals goes though one of the characteristic points, at the North or the South pole. The sub-Riemannian length of the leaves spiralling around the characteristic points is finite because of Proposition 1.15 . Thus, the induced distance d_{S} is finite: this is a particular case of Theorem 1.16. The canonical stochastic process started outside the characteristic points never hits neither the north pole nor the south pole, and it induces a one-dimensional process on the unique leaf of the characteristic foliation picked out by the starting point, due to Theorem 1.19 .

On the induced geometry on surfaces in 3D contact sub-Riemannian manifolds

Contents

2.1. Riemannian approximations and Gaussian curvature. 18
2.1.1 Proof of Theorem 1.13 19
2.2. Local study near a characteristic point 21

| 2.2 .1 | Proof of Proposition |
| :--- | :--- | 21

| 2.2 .2 | Proof of Proposition | 1.15 |
| :--- | :--- | :--- | 24

2.3. Global study of the characteristic foliation 25
2.3.1 Topological structure of the characteristic foliation 26
2.4. Spheres in a tight contact distribution. 29
2.5. Examples of surfaces in the Heisenberg structure 31
2.5.1 Planes. 31
2.5.2 Ellipsoids 32
2.5.3 Symmetric paraboloids 32
2.5.4 Horizontal torus 33
2.5.5 Vertical torus 33
2.6. Appendix on the center manifold theorem 34

This chapter describes the results in the paper (BBC21, joint work with Davide Barilari and Ugo Boscain, and it is currently submitted for publication.

First, in Section 2.1 we discuss the limit for $\varepsilon \rightarrow 0$ of the Gaussian curvature K^{ε} of a surface S in the Riemannian approximations $g^{\varepsilon X_{0}}$; this will give the asymptotic presented in Theorem 1.13 at the characteristic points. Next, we focus on the characteristic foliation of a surface S and its local properties around a characteristic point, and we prove Proposition 1.14 (pictured in Figure 1.2 for isolated characteristic points), and Proposition 1.15. Next, in Section 2.3 we discuss the global features of the characteristic foliations which might prevent the intrinsic distance d_{S} to be finite, and we prove Proposition 2.16. In Section 2.4 we show that such conditions are satisfied by spheres with the hypothesis that the distribution D is contact, proving Theorem 1.16. Finally, in Section 2.5 we discuss some examples.

2.1 Riemannian approximations and Gaussian curvature

Following the notations introduced in the introduction, let M be a smooth 3-dimensional manifold, and (D, g) be a smooth contact sub-Riemannian structure on M. As in Subsection 1.2 .2 , assume having fixed a vector field X_{0} transverse to the distribution, and extend the sub-Riemannian metric g to a family of Riemannian metrics $g^{\varepsilon}=g^{\varepsilon X_{0}}, \varepsilon>0$, for which X_{0} is transversal to D and with norm $1 / \varepsilon$. Let $\bar{\nabla}^{\varepsilon}$ be the Levi-Civita connection of $\left(M, g^{\varepsilon}\right)$. Let us express this connection locally, in a domain equipped with an orthonormal frame $\left(X_{1}, X_{2}\right)$ of D oriented with respect to vol_{g}; thus, $\left(\varepsilon X_{0}, X_{1}, X_{2}\right)$ is an orthonormal basis of g^{ε}. Due to the Koszul formula, for all $i, j, k=0,1,2$, one has

$$
\left\langle\bar{\nabla}_{X_{i}}^{\varepsilon} X_{j}, X_{k}\right\rangle_{g^{\varepsilon}}=\frac{1}{2}\left(-\left\langle X_{i},\left[X_{j}, X_{k}\right]\right\rangle_{g^{\varepsilon}}+\left\langle X_{k},\left[X_{i}, X_{j}\right]\right\rangle_{g^{\varepsilon}}+\left\langle X_{j},\left[X_{k}, X_{i}\right]\right\rangle_{g^{\varepsilon}}\right)
$$

This identity enables us to describe $\bar{\nabla}^{\varepsilon}$ using the frame $\left(X_{0}, X_{1}, X_{2}\right)$, which is independent from ε. This is done using the Lie bracket structure of the frame, i.e., the C^{∞} functions $c_{i j}^{k}$ called the structure constants of the frame $\left(X_{0}, X_{1}, X_{2}\right)$ defined by

$$
\begin{equation*}
\left[X_{j}, X_{i}\right]=c_{i j}^{1} X_{1}+c_{i j}^{2} X_{2}+c_{i j}^{0} X_{0} \quad \text { for } i, j=0,1,2 \tag{2.1}
\end{equation*}
$$

It follows immediately from Koszul formula that

$$
\begin{array}{ll}
\bar{\nabla}_{X_{0}}^{\varepsilon} X_{0}=\frac{c_{01}^{0}}{\varepsilon^{2}} X_{1}+\frac{c_{02}^{0}}{\varepsilon^{2}} X_{2} \tag{2.2}\\
\bar{\nabla}_{X_{0}}^{\varepsilon} X_{1}=-c_{01}^{0} X_{0}+\frac{1}{2}\left(c_{02}^{1}-c_{01}^{2}+\frac{c_{12}^{0}}{\varepsilon^{2}}\right) X_{2} \\
\bar{\nabla}_{X_{0}}^{\varepsilon} X_{2}=-c_{02}^{0} X_{0}+\frac{1}{2}\left(c_{01}^{2}-c_{02}^{1}-\frac{c_{12}^{0}}{\varepsilon^{2}}\right) X_{1} \\
\bar{\nabla}_{X_{1}}^{\varepsilon} X_{0}=c_{01}^{1} X_{1}+\frac{1}{2}\left(c_{02}^{1}+c_{01}^{2}+\frac{c_{12}^{0}}{\varepsilon^{2}}\right) X_{2} \\
\bar{\nabla}_{X_{1}}^{\varepsilon} X_{1}=-c_{01}^{1} \varepsilon^{2} X_{0}+c_{12}^{1} X_{2} \\
\bar{\nabla}_{X_{1}}^{\varepsilon} X_{2}=\frac{1}{2}\left(-c_{02}^{1} \varepsilon^{2}-c_{01}^{2} \varepsilon^{2}-c_{12}^{0}\right) X_{0}-c_{12}^{1} X_{1} \\
\bar{\nabla}_{X_{2}}^{\varepsilon} X_{0}=\frac{1}{2}\left(c_{01}^{2}+c_{02}^{1}-\frac{c_{12}^{0}}{\varepsilon^{2}}\right) X_{1}+c_{02}^{2} X_{2} \\
\bar{\nabla}_{X_{2}}^{\varepsilon} X_{1}=\frac{1}{2}\left(-c_{01}^{2} \varepsilon^{2}-c_{02}^{1} \varepsilon^{2}+c_{12}^{0}\right) X_{0}+c_{12}^{2} X_{2} \\
\bar{\nabla}_{X_{2}}^{\varepsilon} X_{2}=-c_{02}^{2} \varepsilon^{2} X_{0}-c_{12}^{2} X_{1}
\end{array}
$$

Now, let S be an embedded surface in M. The Gaussian curvature $K^{\varepsilon}=K^{\varepsilon X_{0}}$ of S in $\left(M, g^{\varepsilon}\right)$ is defined by the Gauss formula

$$
\begin{equation*}
K^{\varepsilon}=K_{\mathrm{ext}}^{\varepsilon}+\operatorname{det}\left(\mathrm{II}^{\varepsilon}\right) \tag{2.3}
\end{equation*}
$$

where, given a frame (X, Y) of $T S$, the extrinsic curvature $K_{\mathrm{ext}}^{\varepsilon}$ is

$$
\begin{equation*}
K_{\mathrm{ext}}^{\varepsilon}=\frac{\left\langle\bar{\nabla}_{X}^{\varepsilon} \bar{\nabla}_{Y}^{\varepsilon} Y-\bar{\nabla}_{Y}^{\varepsilon} \bar{\nabla}_{X}^{\varepsilon} Y-\bar{\nabla}_{[X, Y]}^{\varepsilon} Y, X\right\rangle_{g^{\varepsilon}}}{|X|_{g^{\varepsilon}}^{2}|Y|_{g^{\varepsilon}}^{2}-\langle X, Y\rangle_{g^{\varepsilon}}^{2}} \tag{2.4}
\end{equation*}
$$

and the determinant $\operatorname{det} \mathrm{II}^{\varepsilon}$ of the second fundamental form is

$$
\begin{equation*}
\operatorname{det} \mathrm{II}^{\varepsilon}=\frac{\left\langle\mathrm{II}^{\varepsilon}(X, X), \mathrm{II}^{\varepsilon}(Y, Y)\right\rangle_{g^{\varepsilon}}-\left\langle\mathrm{II}^{\varepsilon}(X, Y), \mathrm{II}^{\varepsilon}(X, Y)\right\rangle_{g^{\varepsilon}}}{|X|_{g^{\varepsilon}}^{2}|Y|_{g^{\varepsilon}}^{2}-\langle X, Y\rangle_{g^{\varepsilon}}^{2}} \tag{2.5}
\end{equation*}
$$

In this last formula, the second fundamental form $\mathrm{II}^{\varepsilon}$ of S is defined as the projection of the Levi-Civita connection $\bar{\nabla}^{\varepsilon}$ on the orthogonal to the tangent space of the surface. Both quantities (2.4) and (2.5) are independent on the frame (X, Y) of $T S$ chosen to compute them.

2.1.1 Proof of Theorem 1.13

To prove the theorem, we explicitly compute the asymptotic of the quantities in limit 1.21 . Let us fix a characteristic point p, and, in a neighbourhood of p, let us fix an oriented orthonormal frame $\left(X_{1}, X_{2}\right)$ of D and a submersion u defining S in the sense of 1.16).

The determinant of the bilinear form $B_{p}^{\varepsilon X_{0}}$ is homogeneous in ε, and satisfies

$$
\begin{equation*}
\operatorname{det} B_{p}^{\varepsilon X_{0}}=\frac{\operatorname{det} B_{p}^{X_{0}}}{\varepsilon^{2}}=\frac{B_{p}^{X_{0}}\left(X_{1}, X_{2}\right)^{2}}{\varepsilon^{2}}=\frac{\left(c_{12}^{0}(p)\right)^{2}}{\varepsilon^{2}} \tag{2.6}
\end{equation*}
$$

where c_{12}^{0} is defined in 2.1. Therefore, in order to prove the convergence of the limit in 1.21 , it suffices to show that the Gaussian curvature $K_{p}^{\varepsilon X_{0}}$ at p diverges at most as $1 / \varepsilon^{2}$.

Let us start with the computation of the determinant 2.5 of the second fundamental form at a characteristic point. It is convenient to write the second fundamental form as

$$
\mathrm{II}^{\varepsilon}(X, Y)=\left\langle\bar{\nabla}_{X}^{\varepsilon} Y, N^{\varepsilon}\right\rangle N^{\varepsilon}
$$

where N^{ε} is the Riemannian unitary gradient of u, i.e.,

$$
N^{\varepsilon}=\frac{\left(X_{1} u\right) X_{1}+\left(X_{2} u\right) X_{2}+\varepsilon\left(X_{0} u\right) X_{0}}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}+\varepsilon\left(X_{0} u\right)^{2}}}
$$

At the characteristic point p, the gradient $N^{\varepsilon}(p)$ simplifies to

$$
\begin{equation*}
N^{\varepsilon}(p)=\varepsilon \operatorname{sign}\left(X_{0} u\right) X_{0}(p) \tag{2.7}
\end{equation*}
$$

To compute 2.5 one needs to choose a frame of $T S$; we will use the frame $\left(F_{1}, F_{2}\right)$ with

$$
\begin{equation*}
F_{i}=\left(X_{0} u\right) X_{i}-\left(X_{i} u\right) X_{0} \quad \text { for } i=1,2 \tag{2.8}
\end{equation*}
$$

This frame is well-defined for $X_{0} u \neq 0$; in particular, it is suited to calculate the Gaussian curvature at the characteristic points. Recall that the horizontal Hessian of u is

$$
\operatorname{Hess}_{H}(u)=\left(\begin{array}{ll}
X_{1} X_{1} u & X_{1} X_{2} u \tag{2.9}\\
X_{2} X_{1} u & X_{2} X_{2} u
\end{array}\right)
$$

Lemma 2.1. Let $p \in S$ be a characteristic point. Then, in the previous notations, for every $\varepsilon>0$, the determinant 2.5) of the second fundamental form in p is

Proof. Let p be a characteristic point. Because $X_{1} u(p)=X_{2} u(p)=0$, one can show that,

$$
\bar{\nabla}_{F_{i}}^{\varepsilon} F_{j}(p)=\left.\left(\left(X_{0} u\right)^{2} \bar{\nabla}_{X_{i}}^{\varepsilon} X_{j}+\left(X_{0} u\right)\left(X_{i} X_{0} u\right) X_{j}-\left(X_{0} u\right)\left(X_{i} X_{j} u\right) X_{0}\right)\right|_{p}
$$

for $i, j=1,2$. Using formula 2.7 for N^{ε}, one finds that only the component along X_{0} plays a role in the second fundamental form in p. Thus, using the covariant derivatives in (2.2),

$$
\left.\left\langle\bar{\nabla}_{F_{i}}^{\varepsilon} F_{j}, N^{\varepsilon}\right\rangle\right|_{p}=-\left.\frac{\left|X_{0} u(p)\right|}{\varepsilon}\left(X_{i} X_{j} u+\left(X_{0} u\right) \frac{c_{i j}^{0}}{2}+\left(X_{0} u\right) \varepsilon^{2} \frac{c_{0 i}^{j}+c_{0 j}^{i}}{2}\right)\right|_{p}
$$

for $i, j=1,2$. This, together with $\left.\left(\left|F_{1}\right|^{2}\left|F_{2}\right|^{2}-\left\langle F_{1}, F_{2}\right\rangle^{2}\right)\right|_{p}=\left(X_{0} u(p)\right)^{4}$, gives the result.

Next, the extrinsic curvature (2.4) is the sectional curvature of the plane $T_{p} S$ in M, which is known when X_{0} is the Reeb vector field and $\varepsilon=1$; this can be found for instance in [BBL20, Prop. 14]. In our setting, the resulting expression for $\varepsilon \rightarrow 0$ is the following.
Lemma 2.2. Let $p \in S$ be a characteristic point. Then, for every $\varepsilon>0$,

$$
K_{\mathrm{ext}}^{\varepsilon}(p)=-\frac{3}{4 \varepsilon^{2}}\left(c_{12}^{0}(p)\right)^{2}+O(1)
$$

Proof. To compute the extrinsic curvature we use the frame $\left(X_{1}, X_{2}\right)$ of $T M$, which coincides with $T_{p} S=D_{p}$ at the characteristic point p. Then, to compute

$$
K_{\mathrm{ext}}^{\varepsilon}(p)=\left.\left\langle\bar{\nabla}_{X_{1}}^{\varepsilon} \bar{\nabla}_{X_{2}}^{\varepsilon} X_{2}-\bar{\nabla}_{X_{2}}^{\varepsilon} \bar{\nabla}_{X_{1}}^{\varepsilon} X_{2}-\bar{\nabla}_{\left[X_{1}, X_{2}\right]}^{\varepsilon} X_{2}, X_{1}\right\rangle\right|_{p}
$$

it suffices to use the expressions (2.2).
Remark 2.3. Following the proof of Lemma 2.1 and Lemma 2.2, the exact expressions for $\operatorname{det} \mathrm{II}^{\varepsilon}(p)$ and $K_{\mathrm{ext}}^{\varepsilon}(p)$ at a characteristic point p are, for all $\varepsilon>0$,

$$
\begin{aligned}
\operatorname{det} \mathrm{II}^{\varepsilon}(p)= & +\left.\frac{1}{\varepsilon^{2}}\left(\frac{\operatorname{det} \operatorname{Hess}_{H} f}{\left(X_{0} u\right)^{2}}-\frac{\left(c_{12}^{0}\right)^{2}}{4}\right)\right|_{p}+\left.\varepsilon^{2}\left(c_{01}^{1} c_{02}^{2}-\frac{\left(c_{02}^{1}+c_{01}^{2}\right)^{2}}{4}\right)\right|_{p} \\
& +\left.\frac{1}{X_{0} u(p)}\left(c_{02}^{2} X_{1} X_{1} u+c_{01}^{1} X_{2} X_{2} u-\frac{c_{01}^{2}+c_{02}^{1}}{2}\left(X_{2} X_{1} u+X_{1} X_{2} u\right)\right)\right|_{p} \\
K_{\mathrm{ext}}^{\varepsilon}(p)= & -\frac{3}{4} \frac{\left(c_{12}^{0}(p)\right)^{2}}{\varepsilon^{2}}-\left.\varepsilon^{2}\left(c_{01}^{1} c_{02}^{2}-\frac{\left(c_{01}^{2}+c_{02}^{1}\right)^{2}}{4}\right)\right|_{p} \\
& +\left.\left(X_{2}\left(c_{12}^{1}\right)-X_{1}\left(c_{12}^{2}\right)-\left(c_{12}^{1}\right)^{2}-\left(c_{12}^{2}\right)^{2}+c_{12}^{0} \frac{c_{01}^{2}-c_{02}^{1}}{2}\right)\right|_{p}
\end{aligned}
$$

If one chooses as transversal vector field the Reeb vector field of the contact sub-Riemannian manifold, then one recognises the first and the second functional invariants of the sub-Riemannian structure, defined in ABB20, Ch. 17]. Finally, notice that these expressions are still valid for non-contact distributions.

Proof of Theorem 1.13. In the previous notations, due to the Gauss formula (2.3), Lemma 2.1 and Lemma 2.2, the Gaussian curvature at a characteristic point p satisfies

$$
K_{p}^{\varepsilon}=K_{p}^{\varepsilon X_{0}}=\frac{\left(c_{12}^{0}(p)\right)^{2}}{\varepsilon^{2}}\left(-1+\frac{\operatorname{det} \operatorname{Hess}_{H} u(p)}{\left[X_{2}, X_{1}\right] u(p)^{2}}\right)+O(1)
$$

Here we have used that $c_{12}^{0}(p) X_{0} u(p)=\left[X_{2}, X_{1}\right] u(p)$ at p, which holds due to definition 2.1) and $X_{1} u(p)=X_{2} u(p)=0$. Using formula 2.6 for the determinant of $B_{p}^{\varepsilon X_{0}}$, one finds that

$$
\begin{equation*}
\frac{K_{p}^{\varepsilon X_{0}}}{\operatorname{det} B_{p}^{\varepsilon X_{0}}}=-1+\frac{\operatorname{det} \operatorname{Hess}_{H} u(p)}{\left[X_{2}, X_{1}\right] u(p)^{2}}+O\left(\varepsilon^{2}\right) \tag{2.10}
\end{equation*}
$$

which shows that the limit 1.21 is finite. Moreover, \widehat{K}_{p} is independent of X_{0} because the transversal vector field X_{0} is absent in the constant term of equation 2.10.

Formula 2.10 is useful to compute \widehat{K}_{p} explicitly, as it contains only derivatives of the submersion u; thus, let us enclose it with the following corollary.

Corollary 2.4. Let p be a characteristic point of S. Let u be a local submersion of class C^{2} describing S, and let $\left(X_{1}, X_{2}\right)$ be a local oriented orthonormal frame of D. Then,

$$
\begin{equation*}
\widehat{K}_{p}=-1+\frac{\operatorname{det} \operatorname{Hess}_{H} u(p)}{\left[X_{2}, X_{1}\right] u(p)^{2}} \tag{2.11}
\end{equation*}
$$

Note that both det $\operatorname{Hess}_{H} u(p)$ and $\left[X_{2}, X_{1}\right] u(p)$ calculated at the characteristic point p are invariant with respect to the frame $\left(X_{1}, X_{2}\right)$. Moreover, we emphasise that their ratio, which appears in 2.11), is independent on the choice of u.

2.2 Local study near a characteristic point

In this section, we prove Proposition 1.14, and we discuss the local qualitative behaviour of the characteristic foliation near $\Sigma(S)$ in relation to the metric coefficient \widehat{K}; next, we estimate the length of a semi-leaf converging to a point, proving Proposition 1.15 .

However, let us begin by mentioning a fact which was already known in the literature, but whose proof is straightforward with setting explained in Subsection 1.2.1. For a more general discussion on the size of the characteristic set, we refer to Bal03 and references therein.

Lemma 2.5 ($\overline{\mathrm{BBC} 21}$, Lem. 2.1]). The characteristic set $\Sigma(S)$ of a surface S of class C^{2} is contained in a 1-dimensional submanifold of S of class C^{1}.

Proof. It suffices to show that for every point p in $\Sigma(S)$ there exists a neighbourhood V of p such that $V \cap \Sigma(S)$ is contained in an embedded C^{1} curve. Let us fix a point p in $\Sigma(S)$, and a neighbourhood U of p in M equipped with a frame $\left(X_{1}, X_{2}\right)$ and a function u with the properties described above. Because of (1.17), the characteristic points in $V=U \cap S$ are the solutions of the system $X_{1} u=X_{2} u=0$.

Due to the implicit function theorem, it suffices to show that $d_{p}\left(X_{1} u\right) \neq 0$ or $d_{p}\left(X_{2} u\right) \neq 0$. Thanks to the contact condition, we have that $\left[X_{2}, X_{1}\right] u(p) \neq 0$. As a consequence, since $X_{2} X_{1} u(p)=$ $\left[X_{2}, X_{1}\right] u(p)+X_{1} X_{2} u(p)$, at least one of the following is true: $X_{2} X_{1} u(p) \neq 0$, or $X_{1} X_{2} u(p) \neq 0$. Assume that the first is true; then $d_{p}\left(X_{1} u\right)\left(X_{2}\right)=X_{2} X_{1} u(p) \neq 0$. The other case being similar, the lemma is proved.

Let us fix a characteristic point p in $\Sigma(S)$, and a characteristic vector field X. Since $X(p)=0$, there exists a well-defined linear map $D X(p): T_{p} S \rightarrow T_{p} S$. Indeed, let $e^{t X}$ be the flow of X. The pushforward of the flow gives, for every x in S, a family of linear maps $e_{*}^{t X}: T_{x} S \rightarrow T_{e^{t X}(x)} S$. Since $e^{t X}(p)=p$ for all t, then the preceding gives the linear flow $e_{*}^{t X}: T_{p} S \rightarrow T_{p} S$, whose infinitesimal generator is the differential $D X(p)$.

Definition 2.6. A characteristic point $p \in \Sigma(S)$ is non-degenerate if, given a characteristic vector field X of S, the differential $D X(p)$ is invertible. Otherwise, p is called degenerate.

Remark 2.7. Condition (1.14) in the definition of characteristic vector field ensures that the degeneracy of a characteristic point is independent on the choice of characteristic vector field.

Since $T_{p} S$ coincides with D_{p} at the characteristic point p, we can endow $T_{p} S$ with a metric; thus, $D X(p)$ admits a well-defined determinant and trace. Now, let X be the vector field $X=a_{1} X_{1}+a_{2} X_{2}$, where $\left(X_{1}, X_{2}\right)$ is an orthonormal oriented frame of D and $a_{i} \in C^{1}(S)$, for $i=1,2$. Then, in the frame defined by $\left(X_{1}, X_{2}\right)$ one has

$$
D X=\left(\begin{array}{ll}
X_{1} a_{1} & X_{2} a_{1} \tag{2.12}\\
X_{1} a_{2} & X_{2} a_{2}
\end{array}\right)
$$

and the formulas for the determinant and the trace are

$$
\begin{align*}
\operatorname{det} D X & =\left(X_{1} a_{1}\right)\left(X_{2} a_{2}\right)-\left(X_{1} a_{2}\right)\left(X_{2} a_{1}\right) \tag{2.13}\\
\operatorname{tr} D X & =\operatorname{div} X=\left(X_{1} a_{1}\right)+\left(X_{2} a_{2}\right) \tag{2.14}
\end{align*}
$$

2.2.1 Proof of Proposition 1.14

Let us fix a characteristic point p in $\Sigma(S)$. We claim that the right-hand side of 1.23 is independent on the choice of the characteristic vector field X. Indeed, due to Remark 1.11 any two characteristic vector fields are multiples by nonzero functions, thus, at characteristic point p, their differentials are multiples by nonzero scalars; precisely, if $Y=\phi X$, for ϕ in $C^{1}(S)$, then one has $D Y(p)=\phi(p) D X(p)$. Thus, the claim follows because both determinant and trace-squared are homogenous of the degree two.

Thus, we fix a local submersion u defining S near p, and the characteristic vector field $X_{f}=$ $\left(X_{1} u\right) X_{2}-\left(X_{2} u\right) X_{1}$ defined in 1.18). Using expression (2.12) for the differential of a vector field, we get

$$
D X_{f}(p)=\left(\begin{array}{cc}
-X_{1} X_{2} u(p) & -X_{2} X_{2} u(p) \\
X_{1} X_{1} u(p) & X_{2} X_{1} u(p)
\end{array}\right)
$$

Thus, using expressions (2.13) and 2.14 for the determinant and the trace, we find that $\operatorname{det} D X_{f}(p)=$ $\operatorname{det} \operatorname{Hess}_{H} u(p)$, and $\operatorname{tr} D X_{f}(p)=\left[X_{2}, X_{1}\right] u(p)$. In conclusion,

$$
\frac{\operatorname{det} D X_{f}(p)}{\operatorname{tr} D X_{f}(p)^{2}}=\frac{\operatorname{det} \operatorname{Hess}_{H} u(p)}{\left[X_{2}, X_{1}\right] u(p)^{2}}
$$

which, together with Corollary 2.4, gives the desired result.

The eigenvalues of the linearisation $D X(p)$ of a characteristic vector field X can be written as a function of \widehat{K}_{p} by rearranging equation 1.23 , as in the following corollary.

Corollary 2.8. In the hypothesis of Proposition 1.14, let $\lambda_{+}(X, p)$ and $\lambda_{-}(X, p)$ be the two eigenvalues of $D X(p)$. Then

$$
\begin{equation*}
\lambda_{ \pm}(X, p)=\operatorname{tr} D X(p)\left(\frac{1}{2} \pm \sqrt{-\frac{3}{4}-\widehat{K}_{p}}\right) \tag{2.15}
\end{equation*}
$$

Proof. Let us note $\lambda_{ \pm}=\lambda_{ \pm}(X, p)$, and $\alpha=\operatorname{tr} D X(p)$. Equation 1.23) reads

$$
\widehat{K}_{p}=-1+\frac{\lambda_{+} \lambda_{-}}{\alpha^{2}}
$$

Using that $\lambda_{+}+\lambda_{-}=\alpha$, equation (1.23) implies that the eigenvalues satisfy the equation $z^{2}-\alpha z+$ $\alpha^{2}\left(\widehat{K}_{p}+1\right)=0$, which implies 2.15 .

Remark 2.9. It is possible to choose canonically a characteristic vector field with trace 1. Indeed, in the notations used to define X_{u} in 1.18, let us define the characteristic vector field

$$
\begin{equation*}
X_{S}=\frac{\left(X_{1} u\right) X_{2}-\left(X_{2} u\right) X_{1}}{Z f} \tag{2.16}
\end{equation*}
$$

where Z is the Reeb vector field of the contact form ω of D normalised as in 1.25 . Recall that the Reeb vector field was defined in 1.26 as the unique vector field satisfying $\omega(Z)=1$ and $d \omega(Z, \cdot)=0$. The vector field X_{S} is a characteristic vector field in a neighbourhood of p because it is a nonzero multiple of X_{f} near $\Sigma(S)$, since $Z u(p)=\left[X_{2}, X_{1}\right] u(p) \neq 0$. Using the latter, one can verify that $\operatorname{div} X_{S}(p)=\operatorname{tr} D X_{S}(p)=1$.

It is worth mentioning that the vector field X_{S} is independent on u and on the frame $\left(X_{1}, X_{2}\right)$, i.e., it depends uniquely on S and (M, D, g). Moreover, the norm of X_{S} satisfies $\left|X_{S}\right|_{g}^{-1}=\left|p_{S}\right|$, where p_{S} is the degree of transversality defined in [Lee13]; in the case of the Heisenberg group, p_{S} coincides with the imaginary curvature introduced in AF07, AF08.

Expression 2.15 for the eigenvalues of the linearisation $D X(p)$ implies the following relations between the eigenvalues and the metric coefficient \widehat{K}_{p} :
(i) $\widehat{K}_{p}<-1$ if and only if $\lambda_{ \pm} \in \mathbb{R}^{*}$ with different signs;
(ii) $\widehat{K}_{p}=-1$ if and only if $\lambda_{-}=0$ and $\lambda_{+} \in \mathbb{R}^{*}$;
(iii) $-1<\widehat{K}_{p} \leq-3 / 4$ if and only if $\lambda_{ \pm} \in \mathbb{R}^{*}$ with same sign;
(iv) $-3 / 4<\widehat{K}_{p}$ if and only if $\Re\left(\lambda_{ \pm}\right) \neq 0 \neq \Im\left(\lambda_{ \pm}\right)$and $\lambda_{-}=\bar{\lambda}_{+}$.

Notice that the characteristic point p is degenerate if and only if $\widehat{K}_{p}=-1$, which is case (ii).
Assume that p is a non-degenerate characteristic point. Then, the linear dynamical system defined by $D X(p)$ is a saddle, a node, and a focus respectively in case (i), (iii) and (iv). In these cases there exists a local C^{1}-diffeomorphism near p which sends the flow of X to the flow of $D X(p)$ in \mathbb{R}^{2}, i.e., the flows are C^{1}-conjugate, as proven by Hartman in Har60. For this theorem to hold, one needs the characteristic vector field X to be of class C^{2}. For this reason, in the following corollary we assume the surface S to be of class C^{3}.

Corollary 2.10. Assume that the surface S is of class C^{3}, and let p be a non-degenerate characteristic point in $\Sigma(S)$. Then, $\widehat{K}_{p} \neq-1$, and the characteristic foliation of S in a neighbourhood of p is C^{1}-conjugate to

- a saddle if and only if $\widehat{K}_{p}<-1$;
- a node if and only if $-1<\widehat{K}_{p} \leq-3 / 4$;
- a focus if and only if $-3 / 4<\widehat{K}_{p}$.

The cases are depicted, respectively, in the first, third and fourth image in Figure 1.2 in Subsection 1.2.2.
Remark 2.11. For surfaces of class C^{2}, i.e., with characteristic vector fields of class C^{1}, one can use the Hartman-Grobman theorem, by which one recovers a C^{0}-conjugation to the corresponding linearisation. However, under this hypothesis, a node and a focus become indistinguishable. For the Hartman-Grobman theorem we refer to Per12, Par. 2.8]. Finally, for a C^{∞} surface some informations can be found in GHR03.

Next, if p is a degenerate characteristic point, then we are in case (ii). Thus, $\widehat{K}_{p}=-1$, and the differential $D X(p)$ has a zero eigenvalue with multiplicity one. In this situation, the qualitative behaviour of the characteristic foliation does not depend uniquely on the linearisation, but also on the nonlinear dynamic along a center manifold, i.e., an embedded curve $\mathcal{C} \subset S$ with the same regularity as X, invariant with respect to the flow of X, and tangent to the zero eigenvector of $D X(p)$. The analogue of Corollary 2.10 is the following.

Corollary 2.12. Assume that the surface S is of class C^{2}, and let p be a degenerate characteristic point in $\Sigma(S)$. Then, $\widehat{K}_{p}=-1$, and the characteristic foliation in a neighbourhood centred at p is C^{0}-conjugate at the origin to the orbits of a system of the form

$$
\left\{\begin{array}{l}
\dot{u}=\phi(u) \tag{2.17}\\
\dot{v}=v
\end{array}\right.
$$

for a function ϕ with $\phi(0)=\phi^{\prime}(0)=0$. If p is isolated, then the characteristic foliation described in (2.17) at the origin is either a saddle, a saddle-node, or a node; those cases are depicted, respectively, in the first, second, and third image in Figure 1.2.

The proof of Corollary 2.12 follows from considerations on the center manifold of the dynamical system defined by X, which we recall in Section 2.6.
Remark 2.13. A node and a focus are not distinguishable by a conjugation C^{0}. However, the center manifold of the characteristic point p is an embedded curve of class C^{1}, thus it does not spiral around p. Therefore, the existence of a center manifold gives further properties then what is expressed in Corollary 2.12 .

To justify the last sentence of Corollary 2.12 let us get a sense of the qualitative properties of a system as 2.17). The line $\{v=0\}$, parametrised by u, is a center manifold of 2.17), and the function ϕ determines the dynamic of (2.17); this illustrates the fact that the nonlinear terms on a center manifold
determine the dynamic near a degenerate characteristic point.

The equilibria of 2.17 occur only in $\{v=0\}$, i.e., on a center manifold, and a point $(u, 0)$ is an equilibrium if and only if $\phi(u)=0$. Thus, if the characteristic point p is isolated, then $u_{0}=0$ is an isolated zero of ϕ. In such case, let us note $\phi^{+}=\left.\phi\right|_{u>0}$ and $\phi^{-}=\left.\phi\right|_{u<0}$, and without loss of generality let us suppose that the signs of ϕ^{+}and ϕ^{-}are constant.

- If $\phi^{+}>0$ and $\phi^{-}<0$, then the origin is a topological node.
- If $\phi^{+}<0$ and $\phi^{-}>0$, then the origin is a a topological saddle.
- If ϕ^{+}and ϕ^{-}have the same sign, then the two half spaces $\{u>0\}$ and $\{u<0\}$ have two different behaviours: one is a node, and the other one is a saddle. This gives the characteristic foliation called saddle-node.

Remark 2.14. For an isolated characteristic point, combining Corollary 2.10 and Corollary 2.12, we obtain the four characteristic foliations depicted in Figure 1.2 .

2.2.2 Proof of Proposition 1.15

In this section we prove the finiteness of the sub-Riemannian length of a semi-leaf converging to a point. Since we are interested in a local property, it is not restrictive to assume the existence of a global characteristic vector field X of S.

Let ℓ be a one-dimensional leaf of the characteristic foliation of S, and $x \in \ell$ such that $e^{t X}(x) \rightarrow p$ as $t \rightarrow+\infty$. The limit point p has to be an equilibrium of X, i.e., $X(p)=0$, hence p is a characteristic point of S. Let U be a small open neighbourhood of p in S for which we have a coordinate chart $\Phi: U \rightarrow B \subset \mathbb{R}^{2}$ with $\Phi(p)=0$, where B is the open unit ball. Let y be the point of last intersection between $\ell_{X}^{+}(x)$ and the boundary ∂U. Since $L_{s R}\left(\ell_{X}^{+}(x)\right)=L_{s R}\left(\left.\ell\right|_{[x, y]}\right)+L_{s R}\left(\ell_{X}^{+}(y)\right)$ and $L_{s R}\left(\left.\ell\right|_{[x, y]}\right)$ is finite, it suffices to show that $L_{s R}\left(\ell_{X}^{+}(y)\right)$ is finite. We claim that there exists a constant $C>0$ such that

$$
\begin{equation*}
\frac{1}{C}|V|_{\mathbb{R}^{2}} \leq|V|_{g} \leq\left. C|V|_{\mathbb{R}^{2}} \quad \forall V \in D \cap T S\right|_{U} \tag{2.18}
\end{equation*}
$$

where we have dropped Φ_{*} in the notation. Indeed, let \tilde{g} be any Riemannian extension of g on the surface S (for example $\tilde{g}=\left.g^{X_{0}}\right|_{S}$). Since \tilde{g} is an extension, one has $|v|_{g}=|v|_{\tilde{g}}$ for all v in $D \cap T S$. Equivalence 2.18 follows from the local equivalence of \tilde{g} with the pullback by Φ of the Euclidean metric of \mathbb{R}^{2}. Now, inequality (2.18) implies that

$$
\begin{equation*}
L_{s R}\left(\ell_{X}^{+}(y)\right)=\int_{0}^{+\infty}\left|X\left(e^{t X}(y)\right)\right|_{g} d t \leq C \int_{0}^{+\infty}\left|X\left(e^{t X}(y)\right)\right|_{\mathbb{R}^{2}} d t \tag{2.19}
\end{equation*}
$$

At this point the proof of the finiteness of the sub-Riemannian length of $\ell_{X}^{+}(y)$ differs depending on whether p is a non-degenerate or a degenerate characteristic point.

First, assume that p is a non-degenerate characteristic point. Since p is non-degenerate, then the set of point w with $e^{t X}(w) \rightarrow p$ for $t \rightarrow+\infty$ form a manifold, called the stable manifold at p for the dynamical system defined by X. In our case, since $e^{t X}(y) \rightarrow p$ for $t \rightarrow+\infty$, the semi-leaf $\ell_{X}^{+}(y)$ is contained in the stable manifold at p. Moreover, the stable manifold convergence property, precisely stated in Per12, Par. 2.8], shows that each trajectory inside the stable manifold converges to p sub-exponentially in t. Precisely, if α satisfies $\left|\Re\left(\lambda_{ \pm}(p, X)\right)\right|>\alpha$, then there exists constants $C, t_{0}>0$ such that

$$
\begin{equation*}
\left|e^{t X}(y)-p\right|_{\mathbb{R}^{2}} \leq C e^{-\alpha t} \quad \forall t>t_{0} \tag{2.20}
\end{equation*}
$$

Since $X(p)=0$, for all $t>0$ one has

$$
\left|X\left(e^{t X}(y)\right)\right|_{\mathbb{R}^{2}}=\left|X\left(e^{t X}(y)\right)-X(p)\right|_{\mathbb{R}^{2}} \leq \sup _{B}\|D X(x)\|\left|e^{t X}(y)-p\right|_{\mathbb{R}^{2}}
$$

Due to the inequality 2.19 and 2.20 , this shows that $L_{s R}\left(\ell_{X}^{+}(y)\right)$ is finite.
Next, assume that p is a degenerate characteristic point. As we said in the introduction of Corollary 2.12, there exists a center manifold \mathcal{C} at p for the dynamical system defined by X. The asymptotic approximation property of the center manifold, recalled in Proposition 2.26, shows that if a trajectory converges to p, then it approximates any center manifold exponentially fast. Precisely, since $e^{t X}(y) \rightarrow p$, then there exist constants $C, \alpha, t_{0}>0$ and a trajectory $e^{t X}(z)$ contained in \mathcal{C}, such that

$$
\begin{equation*}
\left|e^{t X}(y)-e^{t X}(z)\right|_{\mathbb{R}^{2}} \leq C e^{-\alpha t} \quad \forall t \geq t_{0} \tag{2.21}
\end{equation*}
$$

The triangle inequality implies that

$$
\begin{equation*}
\left|X\left(e^{t X}(y)\right)\right|_{\mathbb{R}^{2}} \leq\left|X\left(e^{t X}(y)\right)-X\left(e^{t X}(z)\right)\right|_{\mathbb{R}^{2}}+\left|X\left(e^{t X}(z)\right)\right|_{\mathbb{R}^{2}} \tag{2.22}
\end{equation*}
$$

Due to inequality (2.19), to prove that $L_{s R}\left(\ell_{X}^{+}(y)\right)$ is finite, it suffices to show that the two terms on the right-hand side of 2.22 are integrable for $t \geq 0$. Thanks to 2.21) and

$$
\left|X\left(e^{t X}(y)\right)-X\left(e^{t X}(z)\right)\right|_{\mathbb{R}^{2}} \leq \sup _{B}\|D X\|\left|e^{t X}(y)-e^{t X}(z)\right|_{\mathbb{R}^{2}}
$$

the first term in 2.22 is integrable. Next, because $e^{t X}(z)$ is a regular parametrisation of a bounded interval inside a C^{1} embedded curve (the center manifold \mathcal{C}), then its derivative $\left|X\left(e^{t X}(z)\right)\right|_{\mathbb{R}^{2}}$ is integrable.

Remark 2.15. Let X be a characteristic vector field of a compact surface S. If the ω-limit set with respect to X of a non-periodic leaf ℓ contains more then one point, then $L_{s R}\left(\ell_{X}^{+}\right)=+\infty$. Therefore, if a leaf ℓ does not converge to a point in any of its extremities, then the points in ℓ have infinite distance from the points in $S \backslash \ell$.

In particular, if the characteristic set of a surface S is empty, then the induced distance d_{S} is not finite. For a discussion on non-characteristic domains we refer to [DGN06, Ch. 3].

2.3 Global study of the characteristic foliation

The main goal of this section is to identify a sufficient condition for the induced distance d_{S} to be finite. As explained in the introduction, this is done by excluding the existence of certain leaves in the characteristic foliation of S, as in Proposition 2.16. In this section we assume the existence of a global characteristic vector field X of S.

The leaves the characteristic foliation of S are precisely the orbits of the dynamical system defined by X, therefore we are going to call them trajectories, stressing that they are parametrised by the flow of X. Moreover, the vector field X enables us to use the notions of ω-limit set and α-limit set of a point y in S, which are, respectively,

$$
\omega(y, X)=\left\{q \in S \mid \exists t_{n} \rightarrow+\infty \text { such that } e^{t_{n} X}(y) \rightarrow q\right\}, \quad \alpha(y, X)=\omega(y,-X)
$$

The points y in a leaf ℓ have the same limit sets, thus one can define $\omega(\ell, X)$ and $\alpha(\ell, X)$.
Proposition 2.16. Let S be a compact, connected surface C^{2} embedded in a contact sub-Riemannian structure. Assume that S has isolated characteristic points, and that the characteristic foliation of S is described by a global characteristic vector field of S which does not contain any of the following trajectories:

- nontrivial recurrent trajectories,
- periodic trajectories,
- sided contours.

Then, d_{S} is finite.
Let us give a formal definition of these objects. A periodic trajectory is a leaf of the characteristic foliation homeomorphic to a circle. A periodic trajectory has infinite distance from its complementary, hence it is necessary to exclude its presence for d_{S} to be finite.

Next, a leaf ℓ is recurrent if $\ell \subset \omega(\ell, X)$ and $\ell \subset \alpha(\ell, X)$. A nontrivial recurrent trajectory is a recurrent trajectory which is not an equilibrium nor a periodic trajectory. Because the ω-limit and the α-limit set of a nontrivial recurrent trajectory contains more then one point, then, due to Remark 2.15, those trajectories have infinite distance from their complementary.

Lastly, a sided contour is either a left-sided or right-sided contour. A right-sided contour (resp. leftsided) is a family of points p_{1}, \ldots, p_{s} in $\Sigma(S)$ and trajectories $\ell_{1}, \ldots, \ell_{s}$ such that:

- for all $j=1, \ldots, s$, we have $\omega\left(\ell_{j}, X\right)=p_{j}=\alpha\left(\ell_{j+1}, X\right)\left(\right.$ where $\left.\ell_{s+1}=\ell_{1}\right)$;
- for every $j=1, \ldots, s$, there exists a neighbourhood U_{j} of p_{j} such that U_{j} is a right-sided hyperbolic sector (resp. left-sided) for p_{j} with respect to ℓ_{j} and ℓ_{j+1}.

Let us give a precise definition of a hyperbolic sector. Note that, given a non-characteristic point $x \in S$, and a curve T going through x and transversal to the flow of X, the orientation defined by X defines the right-hand and the left-hand connected component of $T \backslash\{x\}$, denoted T^{r} and T^{l} respectively.

Definition 2.17. Let p be a characteristic point, and ℓ_{1} and ℓ_{2} be two trajectories such that $\omega\left(\ell_{1}, X\right)=$ $p=\alpha\left(\ell_{2}, X\right)$. A neighbourhood U of p homeomorphic to a disk is a right-sided hyperbolic sector (resp. left-sided) with respect to ℓ_{1} and ℓ_{2} iu, for every point $x_{i} \in \ell_{i} \cap U$, for $i=1,2$, there exists a curve T_{i} going through x_{i} and transversal to the flow of X such that:

- for every point $y \in T_{1}^{r}$ (resp. T_{1}^{l}) the positive semi-trajectory $\ell_{X}^{+}(y)$ starting from y intersects T_{2}^{r} (resp. T_{2}^{l}) before leaving U;
- the point of first intersection of $\ell_{X}^{+}(y)$ and T_{2}^{r} (resp. T_{2}^{l}) converges to x_{2}, for $y \rightarrow x_{1}$.

Figure 2.1: The illustration of a right-sided hyperbolic sector
Note that a right-sided hyperbolic sector for X is a left-sided hyperbolic sector for $-X$. An illustration of hyperbolic sector can be found in Figure 2.1, an example of sided contours can be found in Figure 2.4, and for the general theory we refer to ABZ96, Par. 2.3.5].

2.3.1 Topological structure of the characteristic foliation

Now, assume that S does not contain any nontrivial recurrent trajectories. To prove Proposition 2.16 we are going to use the topological structure of a flow. We resume here the relevant theory, following the exposition in ABZ96, Par. 3.4].

The singular trajectories of the characteristic foliation of S are precisely the following:

Figure 2.2: The sectors of an isolated equilibrium of a dynamical system.

- characteristic points;
- separatrices of characteristic points (see ABZ96, Par. 2.3.3]);
- isolated periodic trajectories;
- periodic trajectories which contain in every neighbourhood both periodic and non-periodic trajectories.

The union of the singular trajectories is noted $S T(S)$, and it is closed. The open connected components of $S \backslash S T(S)$ are called cells. The leaves of the characteristic foliation of S contained in the same cell have the same behaviour, as shown in the following proposition.

Proposition 2.18 (\|BZ96, Par. 3.4.3]). Assume that the flow of X has a finite number of singular trajectories. Let R be a cell filled by non-periodic trajectories; then:
(i) R is homeomorphic to a disk, or to an annulus;
(ii) the trajectories contained in R have all the same ω-limit and α-limit sets;
(iii) the limit sets of any trajectory in R belongs to ∂R;
(iv) each connected component of ∂R contains points of the ω-limit or α-limit sets.

Using this proposition, we show the following lemma.
Lemma 2.19. Let S be surface satisfying the hypothesis of Proposition 2.16. Then, for every cell R of the characteristic foliation of S, we have that

$$
d_{S}(x, y)<+\infty \quad \forall x, y \in R \cup \partial R
$$

Proof. Since the surface S is compact and the characteristic points in $\Sigma(S)$ are isolated, there is a finite number of characteristic points. Moreover, there are no periodic trajectories. This implies that there is a finite number of singular trajectories, hence we can apply Proposition 2.18 .

Let R be a cell of the characteristic foliation of S, and let Γ be one of the connected components of the boundary ∂R (of which there are either one or two, due to Proposition 2.18). The curve Γ is the union of characteristic points and separatrices. If all characteristic points have a hyperbolic sector towards R (right-sided or left-sided), then Γ would be a sided contour, which is excluded. Therefore, there exists a characteristic point $p \in \Gamma$ without a hyperbolic sector towards R. As shown in ALGM73, Par. 8.18], around an isolated equilibrium there are only the three kinds of sectors depicted in Figure 2.2. Since there is no elliptic sector due to Remark 2.14, the point p has a parabolic sector towards R.

Due to Proposition 2.18, the point p is the ω-limit or the α-limit of every trajectory in R. Then, for every point $x \in R$, there exists a semi-leaf $\ell_{X}^{+}(x)$ or $\ell_{-X}^{+}(x)$ starting from x and converging to p. Due to Proposition 1.15, this semi-leaf has finite sub-Riemannian length, hence $d_{S}(x, p)$ is finite.

Figure 2.3: How to connect the points of a cell with the points in the boundary.

Next, for every point $y \in \Gamma$, note that

$$
d_{S}(x, y) \leq d_{S}(x, p)+d_{S}(p, y)
$$

We have already proven that $d_{S}(x, p)$ is finite, and the same holds for $d_{S}(p, y)$. Indeed, one can find a horizontal curve of finite length connecting p and y using a concatenation of the separatrices contained in Γ.

If the boundary of R has a second connected component, then the above argument holds also for the other connected component because it suffices to repeat the above argument for it. Thus, we have shown that

$$
d_{S}(x, y)<+\infty \quad \forall x \in R, y \in \partial R
$$

which implies the statement of the lemma.

Lemma 2.20. Let S be surface satisfying the hypothesis of Proposition 2.16. Then, for every x in S, there exists an open neighbourhood U of x such that, for all y in U,

$$
d_{S}(x, y)<+\infty
$$

Proof. Let x be a point of S. If x does not belong to the union of the singular trajectories, then it is in the interior of a cell R. Thus, due to Lemma 2.19, one can choose $U=R$. Otherwise, the point x belongs to a separatrix, or it is a characteristic point of S.

Assume that x belongs to a separatrix Γ. Then, there exists a neighbourhood U of x which is divided by Γ in two connected components. Those two connected components are contained in some cell R_{1} and R_{2}, which contain Γ in their boundary. For every $y \in U$, then either $y \in R_{i}$, for $i=1,2$, or $y \in \Gamma$. If $y \in R_{i}$, then it suffices to apply Lemma 2.19. Otherwise, if $y \in \Gamma$, the separatrix Γ itself connects x and y.

Finally, assume that x is a characteristic point. Due to Corollary 2.10, Remark 2.11, and Corollary 2.12, there exists a neighbourhood U of x in which the characteristic foliation of S is topologically conjugate to a saddle, a node or a saddle-node. Thus, one can repeat the same argument as before: for every $y \in U$, if y belongs to a cell then one applies Lemma 2.19, otherwise, if y belongs to a separatrix one can connect x and y directly.

The proof of Proposition 2.16 is a corollary of Lemma 2.20 .

Proof of Proposition 2.16 . The property of having finite distance is an equivalence relation on the points of S. Because of Lemma 2.20, the equivalence classes are open. Thus, because S is connected, there is only one class.

Figure 2.4: An embedded polygon which bounds a right-sided contour

2.4 Spheres in a tight contact distribution

In this section we prove Theorem 1.16, i.e., in a tight coorientable contact distribution the topological spheres have finite induced distance. This is done by showing that the hypothesis of Proposition 2.16 are satisfied in this setting.

An overtwisted disk, precisely defined at the end of Section 1.2.1, is an embedding of a disk with horizontal boundary such that the distribution does not twist along the boundary. A contact distribution is called overtwisted if it admits a overtwisted disk, and it is called tight if it is non-overtwisted.

Remark 2.21. Note that if the boundary of a disk is a periodic trajectory of its characteristic foliation, then the disk is overtwisted. Indeed, since a periodic trajectory does not contain characteristic points, then the plane distribution never coincides with the tangent space of the disk, thus the distribution can't perform any twists.

Lemma 2.22. Let (M, D) be a tight contact 3-manifold, and S an embedded surface with the topology of a sphere. Then, the characteristic foliation of S does not contain periodic trajectories.

Proof. Assume that the characteristic foliation of S has a periodic trajectory ℓ. Then, because ℓ does not have self-intersections, the leaf ℓ divides S in two topological half-spheres Δ_{1} and Δ_{2}. The disks Δ_{i}, for $i=1,2$, are overtwisted, which contradicts the hypothesis that the distribution is tight because Remark 2.21.

Now, let us discuss the sided contours.
Lemma 2.23. Let (M, D) be a tight contact 3-manifold, and $S \subset M$ an embedded surface with the topology of a sphere. Then the characteristic foliation of S does not contain sided contours.

Proof. Assume that the characteristic foliation presents a sided contour Γ. Its complementary $S \backslash \Gamma$ has two connected components, which are topologically half-spheres. Let us call Δ the component on the same side of Γ, i.e., if Γ is right-sided (resp. left-sided) then Δ is on the right (resp. left). For instance, if Γ is right-sided, then the characteristic foliation of Δ looks like that of the polygon in Figure 2.4 .

Let p be one of the vertices of Δ, let ℓ_{1} and ℓ_{2} be the separatrices adjacent to p, and let U be a neighbourhood of p such that we are in the condition of Definition 2.17. Let us fix two points $x_{i} \in \ell_{i} \cap U$, for $i=1,2$. Due to the definition of hyperbolic sector, in a neighbourhood of x_{1} the leaves pass arbitrarily close to x_{2}.

We are going to give the idea of how to perturb the surface near x_{1} and x_{2} so that the separatrices ℓ_{1} and ℓ_{2} are diverted to the same nearby leau, therefore bypassing p. In other words, via a $C^{\infty}{ }_{-s m a l l}$ perturbation of S supported in a neighbourhood of x_{1} and x_{2}, we obtain a sphere which contains a sided contour with one less vertex, see Figure 2.5. By repeating such perturbation for every vertex, one

Figure 2.5: The characteristic foliation of the perturbed surface.
obtains a new surface with a periodic trajectory in its characteristic foliation, which is excluded due to Lemma 2.22.

Consider the Heisenberg distribution $\left(\mathbb{R}^{3}, \operatorname{ker}\left(d z+\frac{1}{2}(y d x-x d y)\right)\right.$. Let \mathcal{P} be the vertical plane $\mathcal{P}=\{x=0\}$, and q a point in \mathcal{P} contained in the y-axis. As one can see in Example 2.5.1, the characteristic foliation of \mathcal{P} is made up of parallel horizontal lines.

Locally, it is possible to rectify the surface S into the plane \mathcal{P} using a contactomorphism of the respective ambient spaces, as explained in the following lines. Due to the rectification theorem of dynamical systems, the characteristic foliation of S in a neighbourhood of x_{1} is diffeomorphic to that of a neighbourhood of q in \mathcal{P}. A generalisation of a theorem of Giroux [Gei08, Thm. 2.5.23] implies that the C^{1}-conjugation between the characteristic foliations of the two surfaces can be extended, in a smaller neighbourhood, to a contactomorphism. Precisely, there exists a contactomorphism ψ from a neighbourhood $V \subset M$ of x_{1} to a neighbourhood of q in \mathbb{R}^{3}, with $\psi(S) \subset \mathcal{P}$.

For what it has been said above, the image of ℓ_{1} by ψ is contained in the y-axis. By creating a small bump in \mathcal{P} after the point q, we will be able to divert the leaf going through q to any other parallel line. Precisely, for any curve $\gamma(t)=(x(t), y(t))$, defining

$$
z(t)=\frac{1}{2} \int_{t_{1}}^{t} x(s) y^{\prime}(s)-y(s) x^{\prime}(s) d s \quad \forall t \in\left[t_{1}, t_{2}\right],
$$

we obtain a horizontal curve $(x(t), y(t), z(t))$. Now, let γ be a smooth curve which joins smoothly to the y-axis at its end points $\gamma\left(t_{1}\right)=q$ and $\gamma\left(t_{2}\right)$, and let Ω be the set between γ and the y-axis. One can verify that $z\left(t_{2}\right)=$ Area (Ω), where the area is a signed area. By choosing an appropriate curve γ, we can connect the y-axis from q to any other parallel line in \mathcal{P} via a horizontal curve (Figure 2.6). Next, by creating a small bump in \mathcal{P} in order to include this horizontal curve one has successfully diverted the leaf. This procedure can be done C^{∞}-small, provided one wants to connect to parallel lines sufficiently close to the y-axis. Thus, one can make sure that no new characteristic points are created. Finally, this perturbation has to be transposed to a perturbation of S using ψ.

The same argument has to be repeated mutatis mutandis in a neighbourhood of x_{2}, ensuring that one connects x_{2} exactly to the leaf coming from x_{1}. This is possible due to the continuity property of a hyperbolic sector, which ensures that the leaf coming from x_{1} intersects the domain of the rectifying contactomorphism of x_{2}.

We can finally prove Theorem 1.16.
Proof of Theorem 1.16. The surface S admits a global characteristic vector field, due to Lemma 1.10 Next, a surface with the topology of a sphere doesn't allow flows with nontrivial recurrent trajectories, see ABZ96, Lem. 2.4]. Indeed, from a nontrivial recurrent trajectory one can construct a closed curve transversal to the flow which does not separate the surface, which contradicts the Jordan curve theorem.

Figure 2.6: The lift to an horizontal curve connecting different leaves.

Then, Lemma 2.22 and Lemma 2.23 imply that the flow of a characteristic vector field of S does not contain periodic trajectories and sided contours, thus the hypothesis of Proposition 2.16 are satisfied. Consequently, d_{S} is finite.

2.5 Examples of surfaces in the Heisenberg structure

In this section we present some examples of surfaces in the Heisenberg sub-Riemannian structure, that is the contact, tight, sub-Riemannian structure of \mathbb{R}^{3} for which $\left(X_{1}, X_{2}\right)$ is a global orthonormal frame, where

$$
X_{1}=\partial_{x}-y / 2 \partial_{z}, \quad X_{2}=\partial_{y}+x / 2 \partial_{z} .
$$

If $(u, v) \mapsto(x(u, v), y(u, v), z(u, v))$ is a parametrisation of a surface S, then the characteristic vector field X in coordinates u, v becomes

$$
\begin{equation*}
X=-\left(z_{v}+x_{v} \frac{y}{2}-y_{v} \frac{x}{2}\right) \frac{\partial}{\partial u}+\left(z_{u}+x_{u} \frac{y}{2}-y_{u} \frac{x}{2}\right) \frac{\partial}{\partial v}, \tag{2.23}
\end{equation*}
$$

where have used the subscripts to denote a partial derivative. When the surface is the graph of a function $S=\{z=h(x, y)\}$, then in the graph coordinates

$$
X=\left(\frac{x}{2}-\partial_{y} h\right) \frac{\partial}{\partial x}+\left(\partial_{x} h+\frac{y}{2}\right) \frac{\partial}{\partial y},
$$

and, at a characteristic point $p=(x, y, z)$, the metric coefficient \widehat{K}_{p} is computed by

$$
\widehat{K}_{p}=-3 / 4+\partial_{x x}^{2} h(x, y) \partial_{y y}^{2} h(x, y)-\partial_{x y}^{2} h(x, y) \partial_{y x}^{2} h(x, y) .
$$

2.5.1 Planes.

Let us consider affine planes in Heisenberg. Thanks to the left-invariance, it is not restrictive to consider a plane \mathcal{P} going throughout the origin. Thus,

$$
\mathcal{P}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid a x+b y+c z=0\right\} \quad \text { with }(a, b, c) \neq(0,0,0) .
$$

If $c=0$, i.e., the plane is vertical, then \mathcal{P} does not contain characteristic points. Every characteristic vector field is parallel to the vector $(b,-a, 0)$, therefore the characteristic foliation of \mathcal{P} consists of lines that are parallel to the $x y$-plane. This implies that points with different z-coordinate are not at finite distance from each other, see Figure 2.7 (left).

Otherwise, if $c \neq 0$, then \mathcal{P} has exactly one characteristic point $p=(-2 b / c, 2 a / c, 0)$. One has that

$$
\widehat{K}_{p}=-\frac{3}{4} .
$$

Figure 2.7: The qualitative picture of the characteristic foliation of a vertical plane (left), and of a non-vertical plane (right).

Thus, because of formula (2.15), there is one eigenvalue of multiplicity two. Due to Corollary 2.10, the characteristic foliation of \mathcal{P} has a node at p. An explicit computation of X_{S} shows that

$$
X_{S}(q)=\frac{q-p}{2} \quad \forall q \in \mathcal{P},
$$

which shows that the characteristic foliation of \mathcal{P} is composed of Euclidean half-lines radiating out of p. The metric $d_{\mathcal{P}}$ induced by the Heisenberg group on \mathcal{P} satisfies the following relation: for all $q, q^{\prime} \in \mathcal{P}$, one has

$$
d_{\mathcal{P}}\left(q, q^{\prime}\right)= \begin{cases}\left|(x, y)-\left(x^{\prime}, y^{\prime}\right)\right|_{\mathbb{R}^{2}}, & \text { if }(q-p) / /\left(q^{\prime}-p\right) \\ d_{\mathcal{P}}(q, p)+d_{\mathcal{P}}\left(q^{\prime}, p\right), & \text { otherwise },\end{cases}
$$

where we have written $q=(x, y, z)$ and $q^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$. This distance is sometimes called British Rail metric. See Figure 2.7 (right).

2.5.2 Ellipsoids

Fix $a, b, c>0$, and consider the surface $\mathcal{E}=\mathcal{E}_{a, b, c}$ defined by

$$
\mathcal{E}_{a, b, c}=\left\{(x, y, z) \in \mathbb{R}^{3} \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1=0\right.\right\} .
$$

This surface has exactly two characteristic points $p_{1}=(0,0, c)$ and $p_{2}=(0,0,-c)$, respectively at the North and the South pole. For both points, one has

$$
\widehat{K}_{p_{i}}=-\frac{3}{4}+\frac{c^{2}}{a^{2} b^{2}}, \quad i=1,2 .
$$

Because of Corollary 2.10, the characteristic foliation of \mathcal{E} spirals around the two poles, as in Figure 1.3. Due to Proposition 1.15, the spirals converging to the poles have finite sub-Riemannian length, thus the length distance $d_{\mathcal{S}}$ is finite. Indeed, $d_{\mathcal{S}}$ is realised by the length of the curves joining the points with either the North, or the South pole. Here, the finiteness of d_{S} is also a particular case of Theorem 1.16 .

2.5.3 Symmetric paraboloids

Let $a \in \mathbb{R}$, and consider the paraboloid \mathcal{P}_{a} with

$$
\mathcal{P}_{a}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=a\left(x^{2}+y^{2}\right)\right\} .
$$

The origin p is the unique characteristic point of \mathcal{P}_{a}. Note that

$$
\widehat{K}_{p}=-\frac{3}{4}+4 a^{4},
$$

therefore the characteristic foliation is a focus.

Figure 2.8: A leaf of the characteristic foliation of two Horizontal tori. On the left-hand side the leaf is periodic, and on the right-hand side there is a portion of an everywhere dense leaf.

2.5.4 Horizontal torus

Fix $R>r>0$, and consider the torus parametrised by

$$
\Phi(u, v)=((R+r \cos u) \cos v,(R+r \cos u) \sin v, r \sin u)
$$

This is the torus obtained by revolving a circle of radius $r>0$ in the $x z$-plane around a circle of radius $R>r$ surrounding the z-axis. Using formula (2.23), a characteristic vector field X in the coordinates (u, v) is

$$
\begin{equation*}
X=\frac{(R+r \cos (u))^{2}}{2} \frac{\partial}{\partial u}-\frac{r \cos (u)}{2} \frac{\partial}{\partial v} \tag{2.24}
\end{equation*}
$$

It is immediate to see that the characteristic set is empty. Thus, no point can be a limit point of any leaves of the characteristic foliation; due to Remark 2.15 , this implies that the length distance is infinite.

Lemma 2.24. The characteristic foliation of a horizontal torus is filled either with periodic trajectories, or with everywhere dense trajectories.

Proof. Using expression (2.24), in the coordinates u, v the trajectories of X satisfy

$$
\left\{\begin{array}{l}
\dot{u}=(R+r \cos (u))^{2} / 2 \tag{2.25}\\
\dot{v}=-r \cos (u) / 2
\end{array}\right.
$$

Because the Heisenberg distribution and the horizontal torus are invariant under rotations around the z-axis, the same applies to the characteristic foliation. Thus, the solutions of 2.25 are v-translations of the solution $\gamma_{0}(t)=(u(t), v(t))$ with initial condition $\gamma_{0}(0)=(0,0)$.

Note that $(r+R)^{2} / 2 \geq \dot{u}(t) \geq(R-r)^{2} / 2$. Thus, there exists a time t_{0} in which the trajectory $\gamma_{0}(t)$, satisfies $u\left(t_{0}\right)=2 \pi$. Define $\alpha_{r, R}=v\left(t_{0}\right)$. If $\alpha_{r, R} /(2 \pi)=m / n$ is rational, then $\gamma_{0}\left(n t_{0}\right)=0(\bmod 2 \pi)$. This shows that $\gamma_{0}(t)$ is periodic, as every other trajectory. On the other hand, if $\alpha_{r, R} /(2 \pi)$ is irrational, then a classical argument shows that $\gamma(t)$ is dense in the torus, see for instance ABZ96, E.g .2.3.1].

See Figure 2.8 for a picture of a leaf in these two cases.

2.5.5 Vertical torus

Fix $R>r>0$, and consider the torus $\mathcal{T}=\mathcal{T}_{r, R}$ parametrised by

$$
\Phi(u, v)=(r \sin u,(R+r \cos u) \cos v,(R+r \cos u) \sin v)
$$

This is the torus obtained by turning a circle of radius r in the $x y$-plane around a circle of radius R surrounding the x-axis. Due to formula (2.23), a characteristic vector field X in coordinates u, v is

$$
\begin{aligned}
X= & (R+r \cos u)\left(\cos v+\frac{r}{2} \sin v \sin u\right) \frac{\partial}{\partial u} \\
& +\frac{r}{2}(2 \sin u \sin v-R \cos u \cos v-r \cos v) \frac{\partial}{\partial v}
\end{aligned}
$$

The characteristic points are critical points of the vector field X. If $\cos v=\sin u=0$, then (u, v) corresponds to a solution; this gives 4 characteristic points

$$
F_{ \pm}=(0,0, \pm(R+r)), \quad V_{ \pm}=(0,0, \pm(R-r))
$$

The other critical points of X occur if and only if

$$
\begin{equation*}
\tan v=-\frac{2}{r \sin u}, \quad \cos u=-\frac{4+r^{2}}{r R} \tag{2.26}
\end{equation*}
$$

System (2.26) has solutions if and only if $R>4$ and $|2 r-R| \leq \sqrt{R^{2}-16}$, in which case we have 4 additional characteristic points $S_{i}(r, R)$, for $i=1,2,3,4$. Now, the metric coefficient at the characteristic points $F_{ \pm}$and $V_{ \pm}$is

$$
\begin{aligned}
\widehat{K}_{F_{ \pm}} & =-\frac{3}{4}+\frac{1}{r(R+r)} \\
\widehat{K}_{V_{ \pm}} & =-\frac{3}{4}-\frac{1}{r(R-r)}
\end{aligned}
$$

Note that $\widehat{K}_{F_{ \pm}}>-3 / 4$, thus, due to Corollary 2.10, $F_{ \pm}$is a focus for all value of r and R. On the other hand, $\widehat{K}_{V_{ \pm}}$can attain any value between $-\infty$ and $-3 / 4$; precisely:

- if $R<4$ or $|2 r-R|>\sqrt{R^{2}-16}$, then $\widehat{K}_{V_{ \pm}}<-1$ and $V_{ \pm}$are saddles.
- if $|2 r-R|=\sqrt{R^{2}-16}$, then $\widehat{K}_{V_{ \pm}}=-1$ and $V_{ \pm}$is a degenerate characteristic point; due to the Poincaré Index theorem, the points $V_{ \pm}$are saddles.
- if $|2 r-R|<\sqrt{R^{2}-16}$, then $-1<\widehat{K}_{V_{ \pm}}<-3 / 4$ and $V_{ \pm}$are nodes.

The values for which $|2 r-R|=\sqrt{R^{2}-16}$ are a bifurcation of the dynamical system X, because the number of characteristic point changes from 4 to 8 . The characteristic points S_{i} which appears at this bifurcation are saddles, due to the Poincaré Index theorem. The bifurcation which takes place is the one presented in Per12, E.g. 4.2.6].

2.6 Appendix on the center manifold theorem

In the language of dynamical systems, a non-degenerate characteristic point p is a hyperbolic equilibrium for any characteristic vector field X, i.e., an equilibrium for which the real parts of the eigenvalues of $D X(p)$ are non-zero. For a hyperbolic equilibrium p, the Hartman-Grobman theorem and the Hartman theorem give a conjugation between the flow of X and the flow of $D X(p)$, see [Per12, Par. 2.8] and Har60.

Let us discuss here the case of a non-hyperbolic equilibrium, i.e., of a degenerate characteristic point. Let E be an open set of \mathbb{R}^{n} containing the origin, and let X be a vector field in $C^{1}\left(E, \mathbb{R}^{n}\right)$ with $X(0)=0$. Due to the Jordan decomposition theorem, we can assume that the linearisation of X at the origin is

$$
D X(0)=\left(\begin{array}{lll}
C & & \\
& P & \\
& & Q
\end{array}\right)
$$

Figure 2.9: The topological skeleton, i.e., the singular trajectories, of the characteristic foliations of two vertical tori: the torus on the left-hand side has four characteristic points, and the torus on the right-hand side has eight characteristic points.
where C is a square $c \times c$ matrix with c complex (generalised) eigenvalues with zero real part, P with p complex (generalised) eigenvalues with positive real part, and Q with q complex (generalised) eigenvalues with negative real part. Thus, the dynamical system $\dot{\gamma}=X(\gamma)$ can be rewritten as

$$
\left\{\begin{array}{l}
\dot{x}=C x+F(x, y, z) \\
\dot{y}=P y+G(x, y, z) \\
\dot{z}=Q z+H(x, y, z)
\end{array}\right.
$$

for $(x, y, z) \in \mathbb{R}^{c} \times \mathbb{R}^{p} \times \mathbb{R}^{q}=\mathbb{R}^{n}$, and for suitable functions F, G and H with $F(0)=G(0)=H(0)=0$ and $D F(0)=D G(0)=D H(0)=0$.

The origin is a non-hyperbolic characteristic point if and only if $c \geq 1$. Under these hypotheses, the following theorem shows that there exists an embedded submanifold \mathcal{C} of dimension c, tangent to \mathbb{R}^{c}, and invariant for the flow of X. Such manifold is called a central manifold of X at the origin.
Proposition 2.25 (Per12, Par. 2.12]). Under the previous notations, there exists an open set $U \subset \mathbb{R}^{c}$ containing the origin, and two functions $h_{1}: U \rightarrow \mathbb{R}^{p}$ and $h_{2}: U \rightarrow \mathbb{R}^{q}$ of class C^{1} with $h_{1}(0)=$ $h_{2}(0)=0$ and $D h_{1}(0)=D h_{2}(0)=0$, and such that the map $x \mapsto\left(x, h_{1}(x), h_{2}(x)\right)$ parametrises a submanifold invariant for the flow of X. Moreover, the flow of X is C^{0}-conjugate to the flow of

$$
\left\{\begin{array}{l}
\dot{x}=C x+F\left(x, h_{1}(x), h_{2}(x)\right) \tag{2.27}\\
\dot{y}=P y \\
\dot{z}=Q z .
\end{array}\right.
$$

In general, the central manifold \mathcal{C} is non-unique. Note that the dynamic of the x-variable in equation (2.27) is simply the restriction of X to the center manifold \mathcal{C}. One can show that the trajectory converging to the origin approaches \mathcal{C} exponentially fast: this is the asymptotic approximation property we used in (2.21).
Proposition 2.26 ($[$ Bre07, p. 330]). Under the previous assumptions, let us denote \mathcal{C} a center manifold of the flow of X at the origin. Then, for every trajectory $l(t)$ such that $l(t) \rightarrow 0$ as $t \rightarrow+\infty$, there exists $\eta>0$ and a trajectory $\zeta(t)$ in the center manifold \mathcal{C}, such that

$$
e^{\eta t}|l(t)-\zeta(t)|_{\mathbb{R}^{n}} \rightarrow 0, \quad \text { as } \quad t \rightarrow+\infty
$$

Stochastic processes on embedded surfaces in sub-Riemannian manifolds

Contents

3.1. Family of Laplace-Beltrami operators on the embedded surface 37
3.2. Canonical stochastic process on the embedded surface 40
3.3. Stochastic processes on quadric surfaces in the Heisenberg group 44
3.3.1 Paraboloid of revolution 45
3.3.2 Ellipsoid of revolution 47
3.3.3 Hyperbolic paraboloid 50
3.4. Stochastic processes on canonical surfaces in $\operatorname{SU}(2)$ and $\operatorname{SL}(2, \mathbb{R})$ 51
3.4.1 Special unitary group $\mathrm{SU}(2)$ 51
3.4.2 \quad Special linear group $\operatorname{SL}(2, \mathbb{R})$ 53
3.4.3 A unified viewpoint 55

This chapter presents the results in $\overline{\mathrm{BBCH} 21}$ as a joint work with Davide Barilari, Ugo Boscain and Karen Habermann in the journal Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

First, in Section 3.1 we prove Theorem 1.17 and Proposition 1.18. Their proofs rely on the expression of $\left.\Delta_{\varepsilon}\right|_{S \backslash \Sigma(S)}$ given in Lemma 3.2 in terms of an orthogonal frame for $T(S \backslash \Sigma(S))$. In Section 3.2 , we prove Theorem 1.19 and Proposition 1.20 using Lemma 3.3 and Lemma 3.4 , which expand the function $b: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ from 1.29 in terms of the arc length along the integral curves of \widehat{X}_{S}. These results are illustrated in the last two sections with some examples. In Section 3.3, we study quadric surfaces in the Heisenberg group, whereas in Section 3.4, we consider canonical surfaces in $\mathrm{SU}(2)$ and $\mathrm{SL}(2, \mathbb{R})$ equipped with the standard sub-Riemannian contact structures. The examples establishing Theorem 1.21 are discussed in Section 3.3.1, Section 3.4.1 and Section 3.4.2, with a unified viewpoint presented in Section 3.4.3.

Given a coorientable sub-Riemannian contact manifold (M, D, g), in this section we make the choice to normalise the contact form ω using $\left.\mathrm{d} \omega\right|_{D}=-\mathrm{vol}_{g}$; this in order to change the sign of the Reeb vector field. This will ease the references to BBCH21, where this convention is used.

3.1 Family of Laplace-Beltrami operators on the embedded surface

Let (M, D, g) be a sub-Riemannian contact manifold, and assume that distribution D is free, that is, globally generated by a pair of vector fields X_{1} and X_{2}, which we can choose so that $\left(X_{1}, X_{2}\right)$ is an oriented orthonormal frame for D. Let $\left(M, g_{\varepsilon}\right)$ be the Riemannian approximations constructed (canonically) using the Reeb vector field X_{0} associated to the contact sub-Riemannian structure. By the Cartan formula and due to $\left.\mathrm{d} \omega\right|_{D}=-\mathrm{vol}_{g}$, we have

$$
\omega\left(\left[X_{1}, X_{2}\right]\right)=-\mathrm{d} \omega\left(X_{1}, X_{2}\right)=1
$$

Since X_{0} is the Reeb vector field, we have that

$$
\omega\left(\left[X_{0}, X_{i}\right]\right)=-\mathrm{d} \omega\left(X_{0}, X_{i}\right)=0 \quad \text { for } i \in\{1,2\}
$$

It follows that the structure constant defined in (2.1) are given by

$$
\begin{align*}
& {\left[X_{1}, X_{2}\right]=c_{12}^{1} X_{1}+c_{12}^{2} X_{2}+X_{0}} \tag{3.1}\\
& {\left[X_{0}, X_{1}\right]=c_{01}^{1} X_{1}+c_{01}^{2} X_{2}} \tag{3.2}\\
& {\left[X_{0}, X_{2}\right]=c_{02}^{1} X_{1}+c_{02}^{2} X_{2}} \tag{3.3}
\end{align*}
$$

In particular, it becomes clear that vector fields X_{1}, X_{2} and $\left[X_{1}, X_{2}\right]$ are linearly independent everywhere.
Following the introduction, let Δ_{ε} be the Laplace-Beltrami operator of the Riemannian manifold $\left(S, i^{*} g_{\varepsilon}\right)$, where $i: S \hookrightarrow M$ is the natural immersion. We now express Δ_{ε} in terms of two vector fields on the surface S (independent on ε) which are orthogonal for each of the Riemannian approximations. Using these expressions of the Laplace-Beltrami operators Δ_{ε} where only the coefficients and not the vector fields depend on $\varepsilon>0$, we prove Theorem 1.17. The orthogonal frame exhibited further allows us to establish Proposition 1.18.

For a vector field X on the manifold M, the property $\left.X u\right|_{S} \equiv 0$ ensures that $X(x) \in T_{x} S$ for all $x \in S$. Therefore, we see that F_{1} and F_{2} given by

$$
\begin{align*}
& F_{1}=\frac{\left(X_{2} u\right) X_{1}-\left(X_{1} u\right) X_{2}}{\sqrt{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}} \quad \text { and }} \tag{3.4}\\
& F_{2}=\frac{\left(X_{0} u\right)\left(X_{1} u\right) X_{1}+\left(X_{0} u\right)\left(X_{2} u\right) X_{2}}{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}}-X_{0} \tag{3.5}
\end{align*}
$$

are indeed well-defined vector fields on $S \backslash \Sigma(S)$ due to 1.17 and because we have $\left.F_{1} u\right|_{S \backslash \Sigma(S)} \equiv 0$ as well as $\left.F_{2} u\right|_{S \backslash(S)} \equiv 0$. Here, $S \backslash \Sigma(S)$ is a manifold itself because the characteristic set $\Sigma(S)$ is a closed subset of S. We observe that both F_{1} and F_{2} remain unchanged if the function u defining the surface S is multiplied by a positive function, whereas F_{1} changes sign and F_{2} remains unchanged if u is multiplied by a negative function. Since the zero set of the twice differentiable submersion defining S needs to remain unchanged, these are the only two options which can occur. Observe that the vector field F_{1} on $S \backslash \Sigma(S)$ is opposite to the vector field \widehat{X}_{S} defined in 1.28.

Recalling that g_{ε} is obtained by requiring $\left(X_{1}, X_{2}, \varepsilon X_{0}\right)$ to be a global orthonormal frame, we further obtain

$$
g_{\varepsilon}\left(F_{1}, F_{2}\right)=0
$$

as well as

$$
\begin{equation*}
g_{\varepsilon}\left(F_{1}, F_{1}\right)=1 \quad \text { and } \quad g_{\varepsilon}\left(F_{2}, F_{2}\right)=\frac{\left(X_{0} u\right)^{2}}{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}}+\frac{1}{\varepsilon^{2}} \tag{3.6}
\end{equation*}
$$

Thus, $\left(F_{1}, F_{2}\right)$ is an orthogonal frame for $T(S \backslash \Sigma(S))$ for each Riemannian manifold $\left(S, i^{*} g_{\varepsilon}\right)$. While in general, the frame $\left(F_{1}, F_{2}\right)$ is not orthonormal it has the nice property that it does not depend on $\varepsilon>0$,
which aids the analysis of the convergence of the operators Δ_{ε} in the limit $\varepsilon \rightarrow 0$. Since F_{1} and F_{2} are vector fields on $S \backslash \Sigma(S)$, there exist functions $b_{1}, b_{2}: S \backslash \Sigma(S) \rightarrow \mathbb{R}$, not depending on $\varepsilon>0$, such that

$$
\begin{equation*}
\left[F_{1}, F_{2}\right]=b_{1} F_{1}+b_{2} F_{2} \tag{3.7}
\end{equation*}
$$

Whereas determining the functions b_{1} and b_{2} explicitly from (3.4) and (3.5) is a painful task, we can express them nicely in terms of, following the notations in BK19, the characteristic deviation h and a tensor η related to the torsion. Let $J: D \rightarrow D$ be the linear transformation induced by the contact form ω by requiring that, for vector fields X and Y in the distribution D,

$$
\begin{equation*}
g(X, J(Y))=\mathrm{d} \omega(X, Y) \tag{3.8}
\end{equation*}
$$

Under the assumption of the existence of the global orthonormal frame $\left(X_{1}, X_{2}\right)$ this amounts to saying that

$$
\begin{equation*}
J\left(X_{1}\right)=X_{2} \quad \text { and } \quad J\left(X_{2}\right)=-X_{1} \tag{3.9}
\end{equation*}
$$

For a unit-length vector field X in the distribution D, we use $\left.[X, J(X)]\right|_{D}$ to denote the restriction of the vector field $[X, J(X)]$ on M to the distribution D and we set

$$
\begin{aligned}
h(X) & =-g\left(\left.[X, J(X)]\right|_{D}, X\right) \\
\eta(X) & =-g\left(\left[X_{0}, X\right], X\right)
\end{aligned}
$$

where the expression for η is indeed well-defined because according to 3.2 and 3.3$)$, the vector field $\left[X_{0}, X\right]$ lies in the distribution D.

Lemma 3.1. For $b: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ defined by 1.29), we have

$$
\left[F_{1}, F_{2}\right]=-\left(b h\left(F_{1}\right)+\eta\left(F_{1}\right)\right) F_{1}-b F_{2}
$$

that is, $b_{1}=-b h\left(F_{1}\right)-\eta\left(F_{1}\right)$ and $b_{2}=-b$.
Proof. We first observe that due to (3.9), we can write

$$
F_{2}=b J\left(F_{1}\right)-X_{0}
$$

Using (3.2) and (3.3) as well as (3.8), it follows that

$$
\omega\left(\left[F_{1}, F_{2}\right]\right)=\omega\left(\left[F_{1}, b J\left(F_{1}\right)-X_{0}\right]\right)=-\mathrm{d} \omega\left(F_{1}, b J\left(F_{1}\right)\right)=-g\left(F_{1}, b J^{2}\left(F_{1}\right)\right)=b
$$

On the other hand, from (3.4), (3.5) and (3.7), we deduce

$$
\omega\left(\left[F_{1}, F_{2}\right]\right)=\omega\left(b_{2} F_{2}\right)=-b_{2},
$$

which implies that $b_{2}=-b$, as claimed. It remains to determine b_{1}. From (3.8), we see that

$$
g\left(F_{1}, J\left(F_{1}\right)\right)=-\omega\left(\left[F_{1}, F_{1}\right]\right)=0
$$

Together with (3.7) this yields

$$
b_{1}=g\left(\left[F_{1}, F_{2}\right], F_{1}\right)=g\left(\left[F_{1}, b J\left(F_{1}\right)-X_{0}\right], F_{1}\right)=b g\left(\left.\left[F_{1}, J\left(F_{1}\right)\right]\right|_{D}, F_{1}\right)+g\left(\left[X_{0}, F_{1}\right], F_{1}\right)
$$

and therefore, we have $b_{1}=-b h\left(F_{1}\right)-\eta\left(F_{1}\right)$, as required.
To derive an expression for the Laplace-Beltrami operators Δ_{ε} of $\left(S, i^{*} g_{\varepsilon}\right)$ restricted to $S \backslash \Sigma(S)$ in terms of the vector fields F_{1} and F_{2}, it is helpful to consider the normalised frame associated with the orthogonal frame $\left(F_{1}, F_{2}\right)$. For $\varepsilon>0$ fixed, we define $a_{\varepsilon}: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
a_{\varepsilon}=\left(\frac{\left(X_{0} u\right)^{2}}{\left(X_{1} u\right)^{2}+\left(X_{2} u\right)^{2}}+\frac{1}{\varepsilon^{2}}\right)^{-\frac{1}{2}} \tag{3.10}
\end{equation*}
$$

and we introduce the vector fields E_{1} and $E_{2, \varepsilon}$ on $S \backslash \Sigma(S)$ given by

$$
\begin{equation*}
E_{1}=F_{1} \quad \text { and } \quad E_{2, \varepsilon}=a_{\varepsilon} F_{2} \tag{3.11}
\end{equation*}
$$

In the Riemannian manifold $\left(S, g_{\varepsilon}\right)$, this yields the orthonormal frame $\left(E_{1}, E_{2, \varepsilon}\right)$ for $T(S \backslash \Sigma(S))$.

Lemma 3.2. For $\varepsilon>0$, the operator Δ_{ε} restricted to $S \backslash \Sigma(S)$ can be expressed as

$$
\left.\Delta_{\varepsilon}\right|_{S i \Sigma(S)}=F_{1}^{2}+a_{\varepsilon}^{2} F_{2}^{2}+\left(b-\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}\right) F_{1}-a_{\varepsilon}^{2}\left(b h\left(F_{1}\right)+\eta\left(F_{1}\right)\right) F_{2} .
$$

Proof. Fix $\varepsilon>0$ and let $\operatorname{div}_{\varepsilon}$ denote the divergence operator on the Riemannian manifold (S, g_{ε}) with respect to the corresponding Riemannian volume form. Since ($E_{1}, E_{2, \varepsilon}$) is an orthonormal frame for $T(S \backslash \Sigma(S))$, we have

$$
\begin{equation*}
\left.\Delta_{\varepsilon}\right|_{S \backslash(S)}=E_{1}^{2}+E_{2, \varepsilon}^{2}+\left(\operatorname{div}_{\varepsilon} E_{1}\right) E_{1}+\left(\operatorname{div}_{\varepsilon} E_{2, \varepsilon}\right) E_{2, \varepsilon} \tag{3.12}
\end{equation*}
$$

Let ($\nu_{1}, \nu_{2, \varepsilon}$) denote the dual to the orthonormal frame ($E_{1}, E_{2, \varepsilon}$). Proceeding, for instance, in the same way as in Bar13, Proof of Proposition 11], we show that, for any vector field X on $S \backslash \Sigma(S)$,

$$
\operatorname{div}_{\varepsilon} X=\nu_{1}\left(\left[E_{1}, X\right]\right)+\nu_{2, \varepsilon}\left(\left[E_{2, \varepsilon}, X\right]\right) .
$$

This together with (3.11) and Lemma 3.1 implies that

$$
\operatorname{div}_{\varepsilon} E_{1}=\nu_{2, \varepsilon}\left(\left[a_{\varepsilon} F_{2}, F_{1}\right]\right)=-\nu_{2, \varepsilon}\left(a_{\varepsilon}\left[F_{1}, F_{2}\right]+F_{1}\left(a_{\varepsilon}\right) F_{2}\right)=b-\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}
$$

as well as

$$
\operatorname{div}_{\varepsilon} E_{2, \varepsilon}=\nu_{1}\left(\left[F_{1}, a_{\varepsilon} F_{2}\right]\right)=\nu_{1}\left(a_{\varepsilon}\left[F_{1}, F_{2}\right]+F_{1}\left(a_{\varepsilon}\right) F_{2}\right)=-a_{\varepsilon}\left(b h\left(F_{1}\right)+\eta\left(F_{1}\right)\right) .
$$

The desired result follows from (3.11) and (3.12).
Note that $\left.\Delta_{\varepsilon}\right|_{S \Sigma(S)}$ in Lemma 3.2 can equivalently be written as

$$
\left.\Delta_{\varepsilon}\right|_{S \backslash \Sigma(S)}=F_{1}^{2}+a_{\varepsilon}^{2} F_{2}^{2}+\left(b-\frac{F_{1}\left(a_{\varepsilon}^{2}\right)}{2 a_{\varepsilon}^{2}}\right) F_{1}-a_{\varepsilon}^{2}\left(b h\left(F_{1}\right)+\eta\left(F_{1}\right)\right) F_{2} .
$$

Using Lemma 3.2 we can prove Theorem 1.17 .
Proof of Theorem 1.17. From (1.29) and (3.10), we obtain that

$$
\begin{equation*}
a_{\varepsilon}^{2}=\left(b^{2}+\frac{1}{\varepsilon^{2}}\right)^{-1}=\frac{\varepsilon^{2}}{\varepsilon^{2} b^{2}+1}, \tag{3.13}
\end{equation*}
$$

which we use to compute

$$
\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}=\frac{F_{1}\left(a_{\varepsilon}^{2}\right)}{2 a_{\varepsilon}^{2}}=-\frac{\varepsilon^{2} b F_{1}(b)}{\varepsilon^{2} b^{2}+1} .
$$

It follows that

$$
\begin{equation*}
a_{\varepsilon}^{2} \leq \varepsilon^{2} \quad \text { as well as } \quad\left|\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}\right| \leq \varepsilon^{2}\left|b F_{1}(b)\right| \tag{3.14}
\end{equation*}
$$

Since $u \in C^{2}(M)$ by assumption, both $b: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ and $F_{1}(b): S \backslash \Sigma(S) \rightarrow \mathbb{R}$ are continuous and therefore bounded on compact subsets of $S \backslash \Sigma(S)$. In a similar way, we argue that the function $b_{1}=-b h\left(F_{1}\right)-\eta\left(F_{1}\right)$ is bounded on compact subsets of $S \backslash \Sigma(S)$. Due to (3.14), this implies that, uniformly on compact subsets of $S \backslash \Sigma(S)$,

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} a_{\varepsilon}^{2}=0, \quad \lim _{\varepsilon \rightarrow 0} \frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}=0 \quad \text { and } \quad \lim _{\varepsilon \rightarrow 0} a_{\varepsilon}^{2}\left(b h\left(F_{1}\right)+\eta\left(F_{1}\right)\right)=0 . \tag{3.15}
\end{equation*}
$$

Let $f \in C_{c}^{2}(S \backslash \Sigma(S))$. We then have $F_{1} f, F_{2} f \in C_{c}^{1}(S \backslash \Sigma(S))$ and $F_{1}^{2} f, F_{2}^{2} f \in C_{c}^{0}(S \backslash \Sigma(S))$. Since the expression (1.30) for Δ_{0} can be rewritten as

$$
\Delta_{0}=F_{1}^{2}+b F_{1}
$$

and since the convergence in (3.15) is uniformly on compact subsets of $S \backslash \Sigma(S)$, we deduce from Lemma 3.2 that

$$
\lim _{\varepsilon \rightarrow 0}\left\|\Delta_{\varepsilon} f-\Delta_{0} f\right\|_{\infty, S \Sigma(S)}=\lim _{\varepsilon \rightarrow 0}\left\|a_{\varepsilon}^{2} F_{2}^{2} f-\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}} F_{1} f-a_{\varepsilon}^{2}\left(b h\left(F_{1}\right)+\eta\left(F_{1}\right)\right) F_{2} f\right\|_{\infty, S \Sigma \Sigma(S)}=0
$$

that is, the functions $\Delta_{\varepsilon} f$ indeed converge uniformly on $S \backslash \Sigma(S)$ to $\Delta_{0} f$.
Using the orthonormal frames $\left(E_{1}, E_{2, \varepsilon}\right)$, we easily derive the expression given in Proposition 1.18 for the intrinsic Gaussian curvature K_{0} of the surface S in terms of the vector field \widehat{X}_{S} and the function b. Unlike the reasoning presented in [BTV17], which further exploits intrinsic symmetries of the Heisenberg group \mathbb{H}, our derivation does not rely on the cancellation of divergent quantities and holds for surfaces in any three-dimensional contact sub-Riemannian manifold, cf. [BTV17, Remark 5.3].

Proof of Proposition 1.18. From Lemma 3.1 and due to (3.7) as well as 3.11), we have

$$
\left[E_{1}, E_{2, \varepsilon}\right]=\left[F_{1}, a_{\varepsilon} F_{2}\right]=a_{\varepsilon}\left[F_{1}, F_{2}\right]+F_{1}\left(a_{\varepsilon}\right) F_{2}=a_{\varepsilon} b_{1} E_{1}+\left(-b+\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}\right) E_{2, \varepsilon}
$$

According to the classical formula for the Gaussian curvature of a surface in terms of an orthonormal frame, see e.g. ABB20, Proposition 4.40], the Gaussian curvature K_{ε} of the Riemannian manifold (S, g_{ε}) is given by

$$
\begin{equation*}
K_{\varepsilon}=F_{1}\left(-b+\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}\right)-a_{\varepsilon} F_{2}\left(a_{\varepsilon} b_{1}\right)-\left(a_{\varepsilon} b_{1}\right)^{2}-\left(-b+\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}\right)^{2} . \tag{3.16}
\end{equation*}
$$

We deduce from (3.13) that

$$
a_{\varepsilon} F_{2}\left(a_{\varepsilon}\right)=\frac{1}{2} F_{2}\left(a_{\varepsilon}^{2}\right)=-\frac{\varepsilon^{4} b F_{2}(b)}{\left(\varepsilon^{2} b^{2}+1\right)^{2}}
$$

as well as

$$
F_{1}\left(\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}\right)=-F_{1}\left(\frac{\varepsilon^{2} b F_{1}(b)}{\varepsilon^{2} b^{2}+1}\right)=-\frac{\varepsilon^{2} F_{1}\left(b F_{1}(b)\right)}{\varepsilon^{2} b^{2}+1}+\frac{2 \varepsilon^{4} b^{2}\left(F_{1}(b)\right)^{2}}{\left(\varepsilon^{2} b^{2}+1\right)^{2}},
$$

which, in addition to (3.14), implies

$$
\left|a_{\varepsilon} F_{2}\left(a_{\varepsilon}\right)\right| \leq \varepsilon^{4}\left|b F_{2}(b)\right| \quad \text { and } \quad\left|F_{1}\left(\frac{F_{1}\left(a_{\varepsilon}\right)}{a_{\varepsilon}}\right)\right| \leq \varepsilon^{2}\left|F_{1}\left(b F_{1}(b)\right)\right|+2 \varepsilon^{4} b^{2}\left(F_{1}(b)\right)^{2} .
$$

By passing to the limit $\varepsilon \rightarrow 0$ in (3.16), the desired expression follows.
Notice that, by construction, the function b and the intrinsic Gaussian curvature K_{0} are related by the Riccati-like equation

$$
\dot{b}+b^{2}+K_{0}=0,
$$

with the notation $\dot{b}=\widehat{X}_{S}(b)$, which is independent on the convection used to determine the sign of the Reeb vector field.

3.2 Canonical stochastic process on the embedded surface

We study the stochastic process with generator $\frac{1}{2} \Delta_{0}$ on $S \backslash \Sigma(S)$. After analysing the behaviour of the drift of the process around non-degenerate characteristic points, we prove Theorem 1.19 and Proposition 1.20 .

By construction, the process with generator $\frac{1}{2} \Delta_{0}$ moves along the characteristic foliation of S, that is, along the integral curves of the vector field \widehat{X}_{S} on $S \backslash \Sigma(S)$ defined in 1.28). Around a fixed
non-degenerate characteristic point $x \in \Sigma(S)$, the behaviour of the canonical stochastic process is determined by how $b: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ given in 1.29 depends on the arc length along integral curves emanating from x. Since the vector fields X_{1}, X_{2} and the Reeb vector field X_{0} are linearly independent everywhere, the function $X_{0} u: S \rightarrow \mathbb{R}$ does not vanish near characteristic points. In particular, we may and do choose the function $u \in C^{2}(M)$ defining the surface S such that $X_{0} u \equiv 1$ in a neighbourhood of x.

Understanding the expression for the horizontal Hessian Hess u in (2.9) as a matrix representation in the dual frame of (X_{1}, X_{2}), and noting that the linear transformation $J: D \rightarrow D$ defined in (3.8) has the matrix representation

$$
J=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

we see that

$$
(\operatorname{Hess} u) J=\left(\begin{array}{ll}
X_{1} X_{2} u & -X_{1} X_{1} u \\
X_{2} X_{2} u & -X_{2} X_{1} u
\end{array}\right) .
$$

The dynamics around the characteristic point $x \in \Sigma(S)$ is uniquely determined by the eigenvalues λ_{1} and λ_{2} of $((\operatorname{Hess} u)(x)) J$. Since $x \in \Sigma(S)$ is non-degenerate by assumption both eigenvalues are non-zero, and due to $X_{0} u \equiv 1$ in a neighbourhood of x, we further have

$$
\begin{equation*}
\lambda_{1}+\lambda_{2}=\operatorname{Tr}(((\operatorname{Hess} u)(x)) J)=\left(X_{1} X_{2} u\right)(x)-\left(X_{2} X_{1} u\right)(x)=\left(X_{0} u\right)(x)=1 \tag{3.17}
\end{equation*}
$$

Thus, one of the following three cases occurs, where we use the terminology from Rob95, Section 4.4] to distinguish between them. In the first case, where the eigenvalues λ_{1} and λ_{2} are complex conjugate, the characteristic point x is of focus type and the integral curves of \widehat{X}_{S} spiral towards the point x. In the second case, where both eigenvalues are real and of positive sign, we call $x \in \Sigma(S)$ of node type, and all integral curves of \widehat{X}_{S} approaching x do so tangentially to the eigendirection corresponding to the smaller eigenvalue, with the exception of the separatrices of the larger eigenvalue. In the third case with the characteristic point x being of saddle type, the two eigenvalues are real but of opposite sign, and the only integral curves of \widehat{X}_{S} approaching x are the separatrices.

Note that an elliptic characteristic point is of focus type or of node type, whereas a hyperbolic characteristic point is of saddle type. Depending on which of theses cases arises, we can determine how the function b depends on the arc length along integral curves of \widehat{X}_{S} emanating from x. The choice of the function $u \in C^{2}(M)$ such that $X_{0} u \equiv 1$ in a neighbourhood of x fixes the sign of the vector field \widehat{X}_{S}. In particular, an integral curve γ of \widehat{X}_{S} which extends continuously to $\gamma(0)=x$ might be defined either on the interval $[0, \delta)$ or on $(-\delta, 0]$ for some $\delta>0$. As the derivation presented below works irrespective of the sign of the parameter of γ, we combine the two cases by writing $\gamma: I_{\delta} \rightarrow S$ for integral curves of \widehat{X}_{S} extended continuously to $\gamma(0)=x$.

The expansion around a characteristic point of focus type is a result of the fact that the real parts of complex conjugate eigenvalues satisfying (3.17) equal $\frac{1}{2}$.

Lemma 3.3. Let $x \in \Sigma(S)$ be a non-degenerate characteristic point and suppose that $u \in C^{2}(M)$ is chosen such that $X_{0} u \equiv 1$ in a neighbourhood of x. For $\delta>0$, let $\gamma: I_{\delta} \rightarrow S$ be an integral curve of the vector field \widehat{X}_{S} extended continuously to $\gamma(0)=x$. If the eigenvalues of $((\operatorname{Hess} u)(x)) J$ are complex conjugate then, as $s \rightarrow 0$,

$$
b(\gamma(s))=\frac{2}{s}+O(1) .
$$

Proof. Since $X_{0} u \equiv 1$ in a neighbourhood of x, we may suppose that $\delta>0$ is chosen small enough such that, for $s \in I_{\delta} \backslash\{0\}$,

$$
b(\gamma(s))=\frac{1}{\sqrt{\left(\left(X_{1} u\right)(\gamma(s))\right)^{2}+\left(\left(X_{2} u\right)(\gamma(s))\right)^{2}}} .
$$

A direct computation shows

$$
\frac{\partial}{\partial s}\left(b(\gamma(s))^{-1}\right)=\widehat{X}_{S}\left(b(\gamma(s))^{-1}\right)=((\operatorname{Hess} u)(\gamma(s)))\left(J\left(\widehat{X}_{S}(\gamma(s))\right), \widehat{X}_{S}(\gamma(s))\right) .
$$

By the Hartman-Grobman theorem, it follows that, for $s \rightarrow 0$,

$$
\frac{\partial}{\partial s}\left(b(\gamma(s))^{-1}\right)=((\operatorname{Hess} u)(x))\left(J\left(\widehat{X}_{S}(\gamma(s))\right), \widehat{X}_{S}(\gamma(s))\right)+O(s) .
$$

As complex conjugate eigenvalues of $((\operatorname{Hess} u)(x)) J$ have real part equal to $\frac{1}{2}$ and due to \widehat{X}_{S} being a unit-length vector field, the previous expression simplifies to

$$
\begin{equation*}
\frac{\partial}{\partial s}\left(b(\gamma(s))^{-1}\right)=\frac{1}{2}+O(s) . \tag{3.18}
\end{equation*}
$$

Since $\left(X_{1} u\right)(x)=\left(X_{2} u\right)(x)=0$ at the characteristic point x, we further have

$$
\begin{equation*}
\lim _{s \rightarrow 0} \frac{1}{b(\gamma(s))}=0 \tag{3.19}
\end{equation*}
$$

A Taylor expansion together with (3.18) and (3.19) then implies that, as $s \rightarrow 0$,

$$
\frac{1}{b(\gamma(s))}=\frac{s}{2}+O\left(s^{2}\right)
$$

which yields, for $s \rightarrow 0$,

$$
b(\gamma(s))=\frac{2}{s}(1+O(s))^{-1}=\frac{2}{s}+O(1),
$$

as claimed.
The expansion of the function b around characteristic points of node type or of saddle type depends on along which integral curve of \widehat{X}_{S} we are expanding. By the discussions preceding Lemma 3.3, all possible behaviours are covered by the next result.

Lemma 3.4. Fix a non-degenerate characteristic point $x \in \Sigma(S)$. For $\delta>0$, let $\gamma: I_{\delta} \rightarrow S$ be an integral curve of the vector field \widehat{X}_{S} which extends continuously to $\gamma(0)=x$. Assume $u \in C^{2}(M)$ is chosen such that $X_{0} u \equiv 1$ in a neighbourhood of x and suppose $((\operatorname{Hess} u)(x)) J$ has real eigenvalues. If the curve γ approaches x tangentially to the eigendirection corresponding to the eigenvalue λ_{i}, for $i \in\{1,2\}$, then, as $s \rightarrow 0$,

$$
b(\gamma(s))=\frac{1}{\lambda_{i} s}+O(1) .
$$

Proof. As in the proof of Lemma 3.3, we obtain, for $\delta>0$ small enough and $s \in I_{\delta} \backslash\{0\}$,

$$
\widehat{X}_{S}\left(b(\gamma(s))^{-1}\right)=((\operatorname{Hess} u)(\gamma(s)))\left(J\left(\widehat{X}_{S}(\gamma(s))\right), \widehat{X}_{S}(\gamma(s))\right) .
$$

Since γ is an integral curve of the vector field \widehat{X}_{S}, we deduce that

$$
\frac{\partial}{\partial s}\left(\frac{1}{b(\gamma(s))}\right)=((\operatorname{Hess} u)(\gamma(s)))\left(J\left(\gamma^{\prime}(s)\right), \gamma^{\prime}(s)\right) .
$$

By Taylor expansion, this together with (3.19) yields, for $s \rightarrow 0$,

$$
\frac{1}{b(\gamma(s))}=((\operatorname{Hess} u)(x))\left(J\left(\gamma^{\prime}(0)\right), \gamma^{\prime}(0)\right) s+O\left(s^{2}\right) .
$$

By assumption, the vector $\gamma^{\prime}(0) \in T_{x} S$ is a unit-length eigenvector of ((Hess $\left.\left.u\right)(x)\right) J$ corresponding to the eigenvalue λ_{i}, which has to be non-zero because x is a non-degenerate characteristic point. It follows that

$$
((\operatorname{Hess} u)(x))\left(J\left(\gamma^{\prime}(0)\right), \gamma^{\prime}(0)\right)=\lambda_{i} \neq 0
$$

which implies, for $s \rightarrow 0$,

$$
b(\gamma(s))=\frac{1}{\lambda_{i} s}(1+O(s))^{-1}=\frac{1}{\lambda_{i} s}+O(1)
$$

as required.
Remark 3.5. We stress Lemma 3.4 does not contradict the positivity of the function b near the point x ensured by the choice of $u \in C^{2}(M)$ such that $X_{0} u \equiv 1$ in neighbourhood of x. The derived expansion for b simply implies that on the separatrices corresponding to the negative eigenvalue of a hyperbolic characteristic point, the vector field \widehat{X}_{S} points towards the characteristic point for that choice of u, that is, we have $s \in(-\delta, 0)$. At the same time, we notice that

$$
\frac{\partial^{2}}{\partial s^{2}}+b(\gamma(s)) \frac{\partial}{\partial s}
$$

remains invariant under a change from s to $-s$. Therefore, in our analysis of the one-dimensional diffusion processes induced on integral curves of \widehat{X}_{S}, we may again assume that the integral curves are parameterised by a positive parameter.

With the classification of singular points for stochastic differential equations given by Cherny and Engelbert in CE05, Section 2.3], the previous two lemmas provide what is needed to prove Theorem 1.19 and Proposition 1.20. One additional crucial observation is that for a characteristic point of node type both eigenvalues of $((\operatorname{Hess} u)(x)) J$ are positive and less than one, whereas for a characteristic point of saddle type, the positive eigenvalue is greater than one.

Proof of Theorem 1.19. Fix an elliptic characteristic point $x \in \Sigma(S)$. For $\delta>0$, let $\gamma:[0, \delta] \rightarrow S$ be an integral curve of the vector field \widehat{X}_{S} extended continuously to $x=\lim _{s \downarrow 0} \gamma(s)$. Following Cherny and Engelbert CE05, Section 2.3], since the one-dimensional diffusion process on γ induced by $\frac{1}{2} \Delta_{0}$ has unit diffusivity and drift equal to $\frac{1}{2} b$, we set

$$
\begin{equation*}
\rho(t)=\exp \left(\int_{t}^{\delta} b(\gamma(s)) \mathrm{d} s\right) \quad \text { for } t \in(0, \delta] \tag{3.20}
\end{equation*}
$$

If the characteristic point x is of node type the real positive eigenvalues λ_{1} and λ_{2} of $((\operatorname{Hess} u)(x)) J$ satisfy $0<\lambda_{1}, \lambda_{2}<1$ by (3.17). As x is of focus type or of node type by assumption, Lemma 3.3 and Lemma 3.4 establish the existence of some $\lambda \in \mathbb{R}$ with $0<\lambda<1$ such that, as $s \downarrow 0$,

$$
b(\gamma(s))=\frac{1}{\lambda s}+O(1)
$$

We deduce, for $\delta>0$ sufficiently small,

$$
\rho(t)=\exp \left(\int_{t}^{\delta}\left(\frac{1}{\lambda s}+O(1)\right) \mathrm{d} s\right)=\exp \left(\frac{1}{\lambda} \ln \left(\frac{\delta}{t}\right)+O(\delta-t)\right)=\left(\frac{\delta}{t}\right)^{\frac{1}{\lambda}}(1+O(\delta-t))
$$

Due to $\frac{1}{\lambda}>1$, this implies that

$$
\int_{0}^{\delta} \rho(t) \mathrm{d} t=\infty
$$

According to CE05, Theorem 2.16 and Theorem 2.17], it follows that the elliptic characteristic point x is an inaccessible boundary point for the one-dimensional diffusion processes induced on the integral curves of \widehat{X}_{S} emanating from x. Since $x \in \Sigma(S)$ was an arbitrary elliptic characteristic point, the claimed result follows.

Proof of Proposition 1.20. We consider the stochastic process with generator $\frac{1}{2} \Delta_{0}$ on $S \backslash \Sigma(S)$ near a hyperbolic point $x \in \Sigma(S)$. Let γ be one of the four separatrices of x parameterised by arc length $s \geq 0$ and such that $\gamma(0)=x$. Let λ_{1} be the positive eigenvalue and λ_{2} be the negative eigenvalue of $((\operatorname{Hess} u)(x)) J$. From the trace property (3.17), we see that $\lambda_{1}>1$. By Lemma 3.4 and Remark 3.5. we have, for $i \in\{1,2\}$ and as $s \downarrow 0$,

$$
b(\gamma(s))=\frac{1}{\lambda_{i} s}+O(1)
$$

As in the previous proof, for $\delta>0$ sufficiently small and $\rho:(0, \delta] \rightarrow \mathbb{R}$ defined by (3.20), we have

$$
\rho(t)=\left(\frac{\delta}{t}\right)^{\frac{1}{\lambda_{i}}}(1+O(\delta-t))
$$

However, this time, due to $\frac{1}{\lambda_{i}}<1$ for $i \in\{1,2\}$, we obtain

$$
\int_{0}^{\delta} \rho(t) \mathrm{d} t<\infty
$$

Using $\frac{1}{\lambda_{1}}>0$, we further compute that, on the separatrices corresponding to the positive eigenvalue,

$$
\int_{0}^{\delta} \frac{1+\frac{1}{2}|b(\gamma(t))|}{\rho(t)} \mathrm{d} t=\int_{0}^{\delta} \frac{t^{\frac{1}{\lambda_{1}}-1}}{2 \lambda_{1} \delta^{\frac{1}{\lambda_{1}}}}(1+O(t)) \mathrm{d} t<\infty
$$

and

$$
\int_{0}^{\delta} \frac{|b(\gamma(t))|}{2} \mathrm{~d} t=\infty
$$

On the separatrices corresponding to the negative eigenvalue, we have, due to $\frac{1}{\lambda_{2}}<0$,

$$
\int_{0}^{\delta} \frac{1+\frac{1}{2}|b(\gamma(t))|}{\rho(t)} \mathrm{d} t=\int_{0}^{\delta} \frac{t^{\frac{1}{\lambda_{2}}-1}}{2 \lambda_{2} \delta^{\frac{1}{\lambda_{2}}}}(1+O(t)) \mathrm{d} t=\infty
$$

as well as

$$
s(t)=\int_{0}^{t} \rho(s) \mathrm{d} s=\frac{\lambda_{2} \delta^{\frac{1}{\lambda_{2}}}}{\lambda_{2}-1} t^{1-\frac{1}{\lambda_{2}}}(1+O(t))
$$

and

$$
\int_{0}^{\delta} \frac{1+\frac{1}{2}|b(\gamma(t))|}{\rho(t)} s(t) \mathrm{d} t=\int_{0}^{\delta} \frac{1}{2\left(\lambda_{2}-1\right)}(1+O(t)) \mathrm{d} t<\infty
$$

Hence, as a consequence of the criterions CE05, Theorem 2.12 and Theorem 2.13], the hyperbolic characteristic point x is reached with positive probability by the one-dimensional diffusion processes induced on the separatrices. Thus, the canonical stochastic process started on the separatrices is killed in finite time with positive probability.

3.3 Stochastic processes on quadric surfaces in the Heisenberg group

Let \mathbb{H} be the first Heisenberg group, that is, the Lie group obtained by endowing \mathbb{R}^{3} with the group law, expressed in Cartesian coordinates,

$$
\left(x_{1}, y_{1}, z_{1}\right) *\left(x_{2}, y_{2}, z_{2}\right)=\left(x_{1}+x_{2}, y_{1}+y_{2}, z_{1}+z_{2}+\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right)\right)
$$

On \mathbb{H}, we consider the two left-invariant vector fields

$$
X=\frac{\partial}{\partial x}-\frac{y}{2} \frac{\partial}{\partial z} \quad \text { and } \quad Y=\frac{\partial}{\partial y}+\frac{x}{2} \frac{\partial}{\partial z}
$$

and the contact form

$$
\omega=\mathrm{d} z-\frac{1}{2}(x \mathrm{~d} y-y \mathrm{~d} x)
$$

We note that the vector fields X and Y span the contact distribution D corresponding to ω, that they are orthonormal with respect to the smooth fibre inner product g on D given by

$$
g_{(x, y, z)}=\mathrm{d} x \otimes \mathrm{~d} x+\mathrm{d} y \otimes \mathrm{~d} y
$$

and that

$$
\left.\mathrm{d} \omega\right|_{D}=-\mathrm{d} x \wedge \mathrm{~d} y=-\operatorname{vol}_{g}
$$

Therefore, the Heisenberg group \mathbb{H} understood as the three-dimensional contact sub-Riemannian manifold (\mathbb{R}^{3}, D, g) falls into our setting, with $X_{1}=X, X_{2}=Y$ and the Reeb vector field

$$
X_{0}=\frac{\partial}{\partial z}=\left[X_{1}, X_{2}\right]
$$

In Section 3.3.1 and in Section 3.3.2, we discuss paraboloids and ellipsoids of revolution admitting one or two characteristic points, respectively, which are elliptic and of focus type. For these examples, the characteristic foliations can be described by logarithmic spirals in \mathbb{R}^{2} lifted to the paraboloids and spirals between the poles on the ellipsoids, which are loxodromes, also called rhumb lines, on spheres. The induced stochastic processes are the Bessel process of order 3 for the paraboloids and Legendre-like processes for the ellipsoids moving along the leaves of the characteristic foliation. In Section 3.3.3, we consider hyperbolic paraboloids where, depending on a parameter, the unique characteristic point is either of saddle type or of node type, and we analyse the induced stochastic processes on the separatrices.

3.3.1 Paraboloid of revolution

For $a \in \mathbb{R}$, let S be the Euclidean paraboloid of revolution given by the equation $z=a\left(x^{2}+y^{2}\right)$ for Cartesian coordinates (x, y, z) in the Heisenberg group \mathbb{H}. This corresponds to the surface given by 1.27 with $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined as

$$
u(x, y, z)=z-a\left(x^{2}+y^{2}\right)
$$

We compute

$$
X_{0} u \equiv 1, \quad\left(X_{1} u\right)(x, y, z)=-2 a x-\frac{y}{2} \quad \text { and } \quad\left(X_{2} u\right)(x, y, z)=-2 a y+\frac{x}{2}
$$

which yields

$$
\begin{equation*}
\left(\left(X_{1} u\right)(x, y, z)\right)^{2}+\left(\left(X_{2} u\right)(x, y, z)\right)^{2}=\frac{1}{4}\left(1+16 a^{2}\right)\left(x^{2}+y^{2}\right) \tag{3.21}
\end{equation*}
$$

Thus, the origin of \mathbb{R}^{3} is the only characteristic point on the paraboloid S. It is elliptic and of focus type because $X_{0} u \equiv 1$ and

$$
(\operatorname{Hess} u) J \equiv\left(\begin{array}{cc}
\frac{1}{2} & 2 a \\
-2 a & \frac{1}{2}
\end{array}\right)
$$

has eigenvalues $\frac{1}{2} \pm 2 a$ i. On $S \backslash \Sigma(S)$, the vector field \widehat{X}_{S} defined by 1.28 can be expressed as

$$
\begin{equation*}
\widehat{X}_{S}=\frac{1}{\sqrt{\left(1+16 a^{2}\right)\left(x^{2}+y^{2}\right)}}\left((x-4 a y) \frac{\partial}{\partial x}+(y+4 a x) \frac{\partial}{\partial y}+2 a\left(x^{2}+y^{2}\right) \frac{\partial}{\partial z}\right) \tag{3.22}
\end{equation*}
$$

Changing to cylindrical coordinates (r, θ, z) for $\mathbb{R}^{3} \backslash\{0\}$ with $r>0, \theta \in[0,2 \pi), z \in \mathbb{R}$ and using

$$
r \frac{\partial}{\partial r}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \quad \text { as well as } \quad \frac{\partial}{\partial \theta}=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}
$$

the expression 3.22 for the vector field \widehat{X}_{S} simplifies to

$$
\widehat{X}_{S}=\frac{1}{\sqrt{1+16 a^{2}}}\left(\frac{\partial}{\partial r}+\frac{4 a}{r} \frac{\partial}{\partial \theta}+2 a r \frac{\partial}{\partial z}\right)
$$

From (3.21, we further obtain that the function $b: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ defined by 1.29 can be written as

$$
b(r, \theta, z)=\frac{1}{\sqrt{1+16 a^{2}}} \frac{2}{r}
$$

Characteristic foliation The characteristic foliation induced on the paraboloid S of revolution by the contact structure D of the Heisenberg group \mathbb{H} is described through the integral curves of the vector field \widehat{X}_{S}, cf. Figure 3.1. Its integral curves are spirals emanating from the origin which can be indexed by $\psi \in[0,2 \pi)$ and parameterised by $s \in(0, \infty)$ as follows

$$
\begin{equation*}
s \mapsto\left(\frac{s}{\sqrt{1+16 a^{2}}}, 4 a \ln \left(\frac{s}{\sqrt{1+16 a^{2}}}\right)+\psi, \frac{a s^{2}}{1+16 a^{2}}\right) \tag{3.23}
\end{equation*}
$$

By construction, the vector field \widehat{X}_{S} is a unit vector field with respect to each metric induced on the surface S from Riemannian approximations of the Heisenberg group. In particular, it follows that the parameter $s \in(0, \infty)$ describes the arc length along the spirals 3.23).

Figure 3.1: Characteristic foliation described by logarithmic spirals
Remark 3.6. The spirals on S defined by (3.23) are logarithmic spirals in \mathbb{R}^{2} lifted to the paraboloid of revolution. In polar coordinates (r, θ) for \mathbb{R}^{2}, a logarithmic spiral can be written as

$$
\begin{equation*}
r=\mathrm{e}^{k\left(\theta+\theta_{0}\right)} \quad \text { for } k \in \mathbb{R} \backslash\{0\} \text { and } \theta_{0} \in[0,2 \pi) \tag{3.24}
\end{equation*}
$$

Therefore, the spirals in 3.23 correspond to lifts of logarithmic spirals 3.24 with $k=\frac{1}{4 a}$. The arc length $s \in(0, \infty)$ of a logarithmic spiral (3.24) measured from the origin satisfies

$$
s=\sqrt{1+\frac{1}{k^{2}}} r
$$

which for $k=\frac{1}{4 a}$ yields $s=\sqrt{1+16 a^{2}} r$. Note that this is the same relation between arc length and radial distance as obtained for integral curves 3.23 of the vector field \widehat{X}_{S}. For further information on logarithmic spirals, see e.g. Zwikker [Zwi63, Chapter 16].

Using the spirals (3.23) which describe the characteristic foliation on the paraboloid of revolution, we introduce coordinates (s, ψ) with $s>0$ and $\psi \in[0,2 \pi)$ on the surface $S \backslash \Sigma(S)$. The vector field \widehat{X}_{S} on $S \backslash \Sigma(S)$ and the function $b: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ are then given by

$$
\widehat{X}_{S}=\frac{\partial}{\partial s} \quad \text { and } \quad b(s, \psi)=\frac{2}{s} .
$$

Thus, the canonical stochastic process induced on $S \backslash \Sigma(S)$ has generator

$$
\frac{1}{2} \Delta_{0}=\frac{1}{2}\left(\widehat{X}_{S}^{2}+b \widehat{X}_{S}\right)=\frac{1}{2} \frac{\partial^{2}}{\partial s^{2}}+\frac{1}{s} \frac{\partial}{\partial s}
$$

This gives rise to a Bessel process of order 3 which out of all the spirals (3.23) describing the characteristic foliation on S stays on the unique spiral passing through the chosen starting point of the induced stochastic process. In agreement with Theorem 1.19, the origin is indeed inaccessible for this stochastic process because a Bessel process of order 3 with positive starting point remains positive almost surely. It arises as the radial component of a three-dimensional Brownian motion, and it is equal in law to a one-dimensional Brownian motion started on the positive real line and conditioned to never hit the origin. We further observe that the operator Δ_{0} coincides with the radial part of the Laplace-Beltrami operator for a quadratic cone, cf. $\left[\mathrm{BN} 20, \overline{\mathrm{BP} 16]}\right.$ for $\alpha=-2$, where the self-adjointness of Δ_{0} is also studied.

As the limiting operator Δ_{0} does not depend on the parameter $a \in \mathbb{R}$, the behaviour described above is also what we encounter on the plane $\{z=0\}$ in the Heisenberg group \mathbb{H}, where the spirals (3.23) degenerate into rays emanating from the origin. We note that the stochastic process induced by $\frac{1}{2} \Delta_{0}$ on the rays differs from the singular diffusion introduced by Walsh Wal78 on the same type of structure, but that it falls into the setting of Chen and Fukushima CF15.

3.3.2 Ellipsoid of revolution

For $a, c \in \mathbb{R}$ positive, we study the Euclidean spheroid, also called ellipsoid of revolution, in the Heisenberg group \mathbb{H} given by the equation

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{a^{2} c^{2}}=1
$$

in Cartesian coordinates (x, y, z). To shorten the subsequent expressions, we choose $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defining the Euclidean spheroid S through (1.27) to be given by

$$
u(x, y, z)=x^{2}+y^{2}+\frac{z^{2}}{c^{2}}-a^{2} .
$$

Proceeding as in the previous example, we first obtain

$$
\left(X_{0} u\right)(x, y, z)=\frac{2 z}{c^{2}}
$$

as well as

$$
\left(X_{1} u\right)(x, y, z)=2 x-\frac{y z}{c^{2}} \quad \text { and } \quad\left(X_{2} u\right)(x, y, z)=2 y+\frac{x z}{c^{2}}
$$

which yields

$$
\begin{equation*}
\left(\left(X_{1} u\right)(x, y, z)\right)^{2}+\left(\left(X_{2} u\right)(x, y, z)\right)^{2}=\left(x^{2}+y^{2}\right)\left(4+\frac{z^{2}}{c^{4}}\right) . \tag{3.25}
\end{equation*}
$$

This implies the north pole $(0,0, a c)$ and the south pole $(0,0,-a c)$ are the only two characteristic points on the spheroid S. We further compute that

$$
\begin{equation*}
\left(X_{2} u\right) X_{1}-\left(X_{1} u\right) X_{2}=\left(2 y+\frac{x z}{c^{2}}\right) \frac{\partial}{\partial x}-\left(2 x-\frac{y z}{c^{2}}\right) \frac{\partial}{\partial y}-\left(x^{2}+y^{2}\right) \frac{\partial}{\partial z} . \tag{3.26}
\end{equation*}
$$

Using adapted spheroidal coordinates (θ, φ) for $S \backslash \Sigma(S)$ with $\theta \in(0, \pi)$ and $\varphi \in[0,2 \pi)$, which are related to the coordinates (x, y, z) by

$$
x=a \sin (\theta) \cos (\varphi), \quad y=a \sin (\theta) \sin (\varphi), \quad z=a c \cos (\theta),
$$

we have

$$
\begin{aligned}
\frac{a \sin (\theta)}{c} \frac{\partial}{\partial \theta} & =\frac{x z}{c^{2}} \frac{\partial}{\partial x}+\frac{y z}{c^{2}} \frac{\partial}{\partial y}-\left(x^{2}+y^{2}\right) \frac{\partial}{\partial z} \quad \text { and } \\
\frac{\partial}{\partial \varphi} & =-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}
\end{aligned}
$$

It follows that 3.26 on the surface $S \backslash \Sigma(S)$ simplifies to

$$
\left(X_{2} u\right) X_{1}-\left(X_{1} u\right) X_{2}=\frac{a \sin (\theta)}{c} \frac{\partial}{\partial \theta}-2 \frac{\partial}{\partial \varphi},
$$

whereas (3.25) on $S \backslash \Sigma(S)$ rewrites as

$$
\left(\left(X_{1} u\right)(\theta, \varphi)\right)^{2}+\left(\left(X_{2} u\right)(\theta, \varphi)\right)^{2}=a^{2}(\sin (\theta))^{2}\left(4+\frac{a^{2}(\cos (\theta))^{2}}{c^{2}}\right) .
$$

This shows that the vector field \widehat{X}_{S} on $S \backslash \Sigma(S)$ defined by 1.28 is given as

$$
\begin{equation*}
\widehat{X}_{S}=\frac{1}{\sqrt{4 c^{2}+a^{2}(\cos (\theta))^{2}}}\left(\frac{\partial}{\partial \theta}-\frac{2 c}{a \sin (\theta)} \frac{\partial}{\partial \varphi}\right) . \tag{3.27}
\end{equation*}
$$

For the function $b: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ defined by 1.29 , we further obtain that

$$
\begin{equation*}
b(\theta, \varphi)=\frac{2 \cot (\theta)}{\sqrt{4 c^{2}+a^{2}(\cos (\theta))^{2}}} . \tag{3.28}
\end{equation*}
$$

As in the preceding example, in order to understand the canonical stochastic process induced by the operator $\frac{1}{2} \Delta_{0}$ defined through 1.30 , we need to express the vector field \widehat{X}_{S} and the function b in terms of the arc length along the integral curves of \widehat{X}_{S}. Since both \widehat{X}_{S} and b are invariant under rotations along the azimuthal angle φ, this amounts to changing coordinates on the spheroid S from (θ, φ) to (s, φ) where $s=s(\theta)$ is uniquely defined by requiring that

$$
\frac{\partial}{\partial s}=\frac{1}{\sqrt{4 c^{2}+a^{2}(\cos (\theta))^{2}}}\left(\frac{\partial}{\partial \theta}-\frac{2 c}{a \sin (\theta)} \frac{\partial}{\partial \varphi}\right) \quad \text { and } \quad s(0)=0 .
$$

This corresponds to

$$
\begin{equation*}
\frac{\mathrm{d} \theta}{\mathrm{~d} s}=\frac{1}{\sqrt{4 c^{2}+a^{2}(\cos (\theta))^{2}}} \tag{3.29}
\end{equation*}
$$

which together with $s(0)=0$ yields

$$
s(\theta)=\int_{0}^{\theta} \sqrt{4 c^{2}+a^{2}(\cos (\tau))^{2}} \mathrm{~d} \tau=\int_{0}^{\theta} \sqrt{\left(4 c^{2}+a^{2}\right)-a^{2}(\sin (\tau))^{2}} \mathrm{~d} \tau \quad \text { for } \theta \in(0, \pi) .
$$

Hence, the arc length s along the integral curves of \widehat{X}_{S} is given in terms of the polar angle θ as a multiple of an elliptic integral of the second kind. Consequently, the question if θ can be expressed
explicitly in terms of s is open. However, for our analysis, it is sufficient that the map $\theta \mapsto s(\theta)$ is invertible and that (3.28) as well as (3.29) then imply

$$
b(s, \varphi)=2 \cot (\theta(s)) \frac{\mathrm{d} \theta}{\mathrm{~d} s}
$$

Therefore, using the coordinates (s, φ), the operator $\frac{1}{2} \Delta_{0}$ on $S \backslash \Sigma(S)$ can be expressed as

$$
\frac{1}{2} \Delta_{0}=\frac{1}{2} \frac{\partial^{2}}{\partial s^{2}}+\left(\cot (\theta(s)) \frac{\mathrm{d} \theta}{\mathrm{~d} s}\right) \frac{\partial}{\partial s}
$$

which depends on the constants $a, c \in \mathbb{R}$ through 3.29 . Without the Jacobian factor $\frac{\mathrm{d} \theta}{\mathrm{d} s}$ appearing in the drift term, the canonical stochastic process induced by the operator $\frac{1}{2} \Delta_{0}$ and moving along the leaves of the characteristic foliation would be a Legendre process, that is, a Brownian motion started inside an interval and conditioned not to hit either endpoint of the interval. The reason for the appearance of the additional factor $\frac{\mathrm{d} \theta}{\mathrm{d} s}$ is that the integral curves of \widehat{X}_{S} connecting the two characteristic points are spirals and not just great circles. For some further discussions on the characteristic foliation of the spheroid, see the subsequent Remark 3.8.

The emergence of an operator which is almost the generator of a Legendre process moving along the leaves of the characteristic foliation motivates the search for a surface in a three-dimensional contact sub-Riemannian manifold where we do exhibit a Legendre process moving along the leaves of the characteristic foliation induced by the contact structure. This is achieved in Section 3.4.1.

Remark 3.7. The northern hemisphere of the spheroid could equally be defined by the function

$$
u(x, y, z)=z-c \sqrt{a^{2}-x^{2}-y^{2}} .
$$

With this choice we have $X_{0} u \equiv 1$. We further obtain

$$
((\operatorname{Hess} u)(0,0, a c)) J=\left(\begin{array}{cc}
\frac{1}{2} & -\frac{c}{a} \\
\frac{c}{a} & \frac{1}{2}
\end{array}\right),
$$

whose eigenvalues are $\frac{1}{2} \pm \frac{c}{a}$ i. A similar computation on the southern hemisphere implies that both characteristic points are elliptic and of focus type. Thus, by Theorem 1.19, the stochastic process with generator $\frac{1}{2} \Delta_{0}$ hits neither the north pole nor the south pole, and it induces a one-dimensional process on the unique leaf of the characteristic foliation picked out by the starting point.
Remark 3.8. With respect to the Euclidean metric $\langle\cdot, \cdot\rangle$ on \mathbb{R}^{3}, we have for the adapted spheroidal coordinates (θ, φ) of $S \backslash \Sigma(S)$ as above that

$$
\left\langle\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \theta}\right\rangle=a^{2}(\cos (\theta))^{2}+a^{2} c^{2}(\sin (\theta))^{2} \quad \text { and } \quad\left\langle\frac{\partial}{\partial \varphi}, \frac{\partial}{\partial \varphi}\right\rangle=a^{2}(\sin (\theta))^{2} .
$$

It follows that the angle α formed by the vector field \widehat{X}_{S} given in (3.27) and the azimuthal direction satisfies

$$
\cos (\alpha(\theta, \varphi))=-\frac{2 c}{\sqrt{a^{2}(\cos (\theta))^{2}+a^{2} c^{2}(\sin (\theta))^{2}+4 c^{2}}} .
$$

Notably, on spheres, that is, if $c=1$, the angle α is constant everywhere. Hence, the integral curves of \widehat{X}_{S} considered as Euclidean curves on an Euclidean sphere are loxodromes, cf. Figure 1.3, which are also called rhumb lines. They are related to logarithmic spirals through stereographic projection. Loxodromes arise in navigation by following a path with constant bearing measured with respect to the north pole or the south pole, see Carlton-Wippern CW92.

3.3.3 Hyperbolic paraboloid

For $a \in \mathbb{R}$ positive and such that $a \neq \frac{1}{2}$, we consider the Euclidean hyperbolic paraboloid S in the Heisenberg group \mathbb{H} given by 1.27 with $u: \mathbb{R}^{3} \rightarrow \mathbb{R}$ defined as

$$
u(x, y, z)=z-a x y
$$

for Cartesian coordinates (x, y, z). We compute

$$
\begin{equation*}
X_{0} u \equiv 1, \quad\left(X_{1} u\right)(x, y, z)=-a y-\frac{y}{2} \quad \text { as well as } \quad\left(X_{2} u\right)(x, y, z)=-a x+\frac{x}{2}, \tag{3.30}
\end{equation*}
$$

and further that

$$
(\operatorname{Hess} u) J \equiv\left(\begin{array}{cc}
\frac{1}{2}-a & 0 \tag{3.31}\\
0 & \frac{1}{2}+a
\end{array}\right) .
$$

Due to

$$
\left(\left(X_{1} u\right)(x, y, z)\right)^{2}+\left(\left(X_{2} u\right)(x, y, z)\right)^{2}=\left(\frac{1}{2}-a\right)^{2} x^{2}+\left(\frac{1}{2}+a\right)^{2} y^{2},
$$

the hyperbolic paraboloid S has the origin of \mathbb{R}^{3} as its unique characteristic point. By (3.31), this characteristic point is elliptic and of node type if $0<a<\frac{1}{2}$, and hyperbolic and therefore of saddle type if $a>\frac{1}{2}$. The reason for having excluded the case $a=\frac{1}{2}$ right from the beginning is that it gives rise to a line of degenerate characteristic points.

We note that the x-axis and the y-axis lie in the hyperbolic paraboloid S. From (3.30), we see that the positive and negative x-axis as well as the positive and negative y-axis are integral curves of the vector field \widehat{X}_{S} on $S \backslash \Sigma(S)$. In the following, we restrict our attention to studying the behaviour of the canonical stochastic process on these integral curves, which nevertheless nicely illustrates Theorem 1.19 and Proposition 1.20 .

We start by analysing the one-dimensional diffusion process induced on the positive y-axis γ_{y}^{+}, which by symmetry is equal in law to the process induced on the negative y-axis. For all positive $a \in \mathbb{R}$ with $a \neq \frac{1}{2}$, we have

$$
\left.\widehat{X}_{S}\right|_{\gamma_{y}^{+}}=\frac{\partial}{\partial y},
$$

implying that the arc length $s>0$ along γ_{y}^{+}is given by $s=y$. This yields, for all $s>0$,

$$
b\left(\gamma_{y}^{+}(s)\right)=\frac{1}{\left(\frac{1}{2}+a\right) s} .
$$

Thus, the one-dimensional diffusion process on γ_{y}^{+}induced by $\frac{1}{2} \Delta_{0}$ has generator

$$
\frac{1}{2} \frac{\partial^{2}}{\partial s^{2}}+\frac{1}{(1+2 a) s} \frac{\partial}{\partial s},
$$

which gives rise to a Bessel process of order $1+\frac{2}{1+2 a}$. If started at a point with positive value this diffusion process stays positive for all times almost surely if $1+\frac{2}{1+2 a}>2$ whereas it hits the origin with positive probability if $1+\frac{2}{1+2 a}<2$. This is consistent with Theorem 1.19 and Proposition 1.20 because for $a>\frac{1}{2}$ the positive y-axis is a separatrix for the hyperbolic characteristic point at the origin and

$$
2<1+\frac{2}{1+2 a} \quad \text { if } 0<a<\frac{1}{2} \quad \text { as well as } \quad 2>1+\frac{2}{1+2 a} \quad \text { if } a>\frac{1}{2} .
$$

Some more care is needed when studying the diffusion process induced on the positive x-axis γ_{x}^{+}. As before, this process is equal in law to the process induced on the negative x-axis. We obtain

$$
\left.\widehat{X}_{S}\right|_{\gamma_{x}^{+}}=\left\{\begin{aligned}
\frac{\partial}{\partial x} & \text { if } 0<a<\frac{1}{2} \\
-\frac{\partial}{\partial x} & \text { if } a>\frac{1}{2} \\
50 &
\end{aligned}\right.
$$

as well as, for $x>0$,

$$
b(x, 0,0)=\left\{\begin{array}{cl}
\frac{1}{\left(\frac{1}{2}-a\right) x} & \text { if } 0<a<\frac{1}{2} \\
-\frac{1}{\left(\frac{1}{2}-a\right) x} & \text { if } a>\frac{1}{2}
\end{array} .\right.
$$

It follows that the one-dimensional diffusion process on γ_{x}^{+}induced by $\frac{1}{2} \Delta_{0}$ has generator

$$
\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+\frac{1}{(1-2 a) x} \frac{\partial}{\partial x} .
$$

This yields a Bessel process of order $1+\frac{2}{1-2 a}$. In agreement with Theorem 1.19 and Proposition 1.20 , if started at a point with positive value this process never reaches the origin if $0<a<\frac{1}{2}$ which ensures $1+\frac{2}{1-2 a}>3$, whereas the process reaches the origin with positive probability if $a>\frac{1}{2}$ as this corresponds to $1+\frac{2}{1-2 a}<1$.

3.4 Stochastic processes on canonical surfaces in $\mathrm{SU}(2)$ and $\mathrm{SL}(2, \mathbb{R})$

In Section 3.3.1, we establish that for a paraboloid of revolution embedded in the Heisenberg group \mathbb{H}, the operator $\frac{1}{2} \Delta_{0}$ induces a Bessel process of order 3 moving along the leaves of the characteristic foliation, which is described by lifts of logarithmic spirals emanating from the origin. As discussed in Revuz and Yor RY99, Chapter VIII.3], the Legendre processes and the hyperbolic Bessel processes arise from the same type of Girsanov transformation as the Bessel process, where these three cases only differ by the sign of a parameter. We further recall that in Section 3.3 .2 we encounter a canonical stochastic process which is almost a Legendre process moving along the leaves of the characteristic foliation induced on a spheroid in the Heisenberg group \mathbb{H}. This motivates the search for surfaces in three-dimensional contact sub-Riemannian manifolds where the canonical stochastic process is a Legendre process of order 3 or a hyperbolic Bessel process of order 3 moving along the leaves of the characteristic foliation.

We consider surfaces in the Lie groups $\operatorname{SU}(2)$ and $\operatorname{SL}(2, \mathbb{R})$ endowed with standard sub-Riemannian structures. Together with the Heisenberg group, these sub-Riemannian geometries play the role of model spaces for three-dimensional contact sub-Riemannian manifolds. In the first two subsections, we find, by explicit computations, the canonical stochastic processes induced on certain surfaces in these groups, when expressed in convenient coordinates. The last subsection proposes a unified geometric description, justifying the choice of our surfaces.

3.4.1 Special unitary group $\mathrm{SU}(2)$

One obstruction to recovering Legendre processes moving along the characteristic foliation in Section 3.3 .2 is that the characteristic foliation of a spheroid in the Heisenberg group is described by spirals connecting the north pole and the south pole instead of great circles. This is the reason for considering S^{2} as a surface embedded in $\mathrm{SU}(2) \simeq S^{3}$ understood as a contact sub-Riemannian manifold because this gives rise to a characteristic foliation on S^{2} described by great circles.

The special unitary group $\operatorname{SU}(2)$ is the Lie group of 2×2 unitary matrices of determinant 1 , that is,

$$
\mathrm{SU}(2)=\left\{\left(\begin{array}{rr}
z+w \mathrm{i} & y+x \mathrm{i} \\
-y+x \mathrm{i} & z-w \mathrm{i}
\end{array}\right): x, y, z, w \in \mathbb{R} \text { with } x^{2}+y^{2}+z^{2}+w^{2}=1\right\}
$$

with the group operation being given by matrix multiplication. Using the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right) \quad \text { and } \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

we identify $\operatorname{SU}(2)$ with the unit quaternions, and hence also with S^{3}, via the map

$$
\left(\begin{array}{rr}
z+w \mathrm{i} & y+x \mathrm{i} \\
-y+x \mathrm{i} & z-w \mathrm{i}
\end{array}\right) \mapsto z I_{2}+x \mathrm{i} \sigma_{1}+y \mathrm{i} \sigma_{2}+w \mathrm{i} \sigma_{3} .
$$

The Lie algebra $\mathfrak{s u}(2)$ of $\operatorname{SU}(2)$ is the algebra formed by the 2×2 skew-Hermitian matrices with trace zero. A basis for $\mathfrak{s u}(2)$ is $\left\{\frac{\mathrm{i} \sigma_{1}}{2}, \frac{\mathrm{i} \sigma_{2}}{2}, \frac{\mathrm{i} \sigma_{3}}{2}\right\}$ and the corresponding left-invariant vector fields on the Lie group $\operatorname{SU}(2)$ are

$$
\begin{aligned}
& U_{1}=\frac{1}{2}\left(-x \frac{\partial}{\partial z}+z \frac{\partial}{\partial x}-w \frac{\partial}{\partial y}+y \frac{\partial}{\partial w}\right), \\
& U_{2}=\frac{1}{2}\left(-y \frac{\partial}{\partial z}+w \frac{\partial}{\partial x}+z \frac{\partial}{\partial y}-x \frac{\partial}{\partial w}\right), \\
& U_{3}=\frac{1}{2}\left(-w \frac{\partial}{\partial z}-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}+z \frac{\partial}{\partial w}\right),
\end{aligned}
$$

which satisfy the commutation relations $\left[U_{1}, U_{2}\right]=-U_{3},\left[U_{2}, U_{3}\right]=-U_{1}$ and $\left[U_{3}, U_{1}\right]=-U_{2}$. Thus, any two of these three left-invariant vector fields give rise to a sub-Riemannian structure on $\mathrm{SU}(2)$. To streamline the subsequent computations, we choose $k \in \mathbb{R}$ with $k>0$ and equip $\mathrm{SU}(2)$ with the sub-Riemannian structure obtained by setting $X_{1}=2 k U_{1}, X_{2}=2 k U_{2}$ and by requiring (X_{1}, X_{2}) to be an orthonormal frame for the distribution D spanned by the vector fields X_{1} and X_{2}. The appropriately normalised contact form ω for the contact distribution D is

$$
\omega=\frac{1}{2 k^{2}}(w \mathrm{~d} z+y \mathrm{~d} x-x \mathrm{~d} y-z \mathrm{~d} w)
$$

and the associated Reeb vector field X_{0} satisfies

$$
X_{0}=\left[X_{1}, X_{2}\right]=-4 k^{2} U_{3}=2 k^{2}\left(w \frac{\partial}{\partial z}+y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}-z \frac{\partial}{\partial w}\right) .
$$

In $\mathrm{SU}(2)$, we consider the surface S given by the function $u: \mathrm{SU}(2) \rightarrow \mathbb{R}$ defined by

$$
u(x, y, z, w)=w .
$$

The surface S is isomorphic to S^{2} because

$$
S=\left\{\left(\begin{array}{cc}
z & y+x \mathrm{i} \\
-y+x \mathrm{i} & z
\end{array}\right): x, y, z \in \mathbb{R} \text { with } x^{2}+y^{2}+z^{2}=1\right\} .
$$

We compute

$$
\left(X_{0} u\right)(x, y, z, w)=-2 k^{2} z, \quad\left(X_{1} u\right)(x, y, z, w)=k y \quad \text { and } \quad\left(X_{2} u\right)(x, y, z, w)=-k x
$$

which yields

$$
\left(\left(X_{1} u\right)(x, y, z, w)\right)^{2}+\left(\left(X_{2} u\right)(x, y, z, w)\right)^{2}=k^{2}\left(x^{2}+y^{2}\right) .
$$

Due to $x^{2}+y^{2}+z^{2}=1$, it follows that a point on S is characteristic if and only if $z= \pm 1$. Thus, the characteristic points on S are the north pole $(0,0,1)$ and the south pole $(0,0,-1)$. The vector field \widehat{X}_{S} on $S \backslash \Sigma(S)$ defined by 1.28 is given as

$$
\begin{equation*}
\widehat{X}_{S}=\frac{k}{\sqrt{x^{2}+y^{2}}}\left(\left(x^{2}+y^{2}\right) \frac{\partial}{\partial z}-x z \frac{\partial}{\partial x}-y z \frac{\partial}{\partial y}\right) \tag{3.32}
\end{equation*}
$$

and for the function $b: S \backslash \Sigma(S) \rightarrow \mathbb{R}$ defined by (1.29), we obtain

$$
\begin{equation*}
b(x, y, z)=-\frac{2 k z}{\sqrt{x^{2}+y^{2}}} \tag{3.33}
\end{equation*}
$$

We now change coordinates for $S \backslash \Sigma(S)$ from (x, y, z) with $x^{2}+y^{2}+z^{2}=1$ and $z \neq \pm 1$ to (θ, φ) with $\theta \in\left(0, \frac{\pi}{k}\right)$ and $\varphi \in[0,2 \pi)$ by

$$
x=\sin (k \theta) \cos (\varphi), \quad y=\sin (k \theta) \sin (\varphi) \quad \text { and } \quad z=\cos (k \theta)
$$

We note that

$$
\frac{\partial}{\partial \theta}=k \cos (k \theta) \cos (\varphi) \frac{\partial}{\partial x}+k \cos (k \theta) \sin (\varphi) \frac{\partial}{\partial y}-k \sin (k \theta) \frac{\partial}{\partial z}
$$

as well as

$$
x z=\sin (k \theta) \cos (k \theta) \cos (\varphi), \quad y z=\sin (k \theta) \cos (k \theta) \sin (\varphi) \quad \text { and } \quad \sqrt{x^{2}+y^{2}}=\sin (k \theta)
$$

This together with 3.32 and (3.33) implies that

$$
\widehat{X}_{S}=-\frac{\partial}{\partial \theta} \quad \text { and } \quad b(\theta, \varphi)=-2 k \cot (k \theta)
$$

We deduce that the integral curves of \widehat{X}_{S} are great circles on S and that

$$
\frac{1}{2} \Delta_{0}=\frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}}+k \cot (k \theta) \frac{\partial}{\partial \theta}
$$

which indeed, on each great circle, induces a Legendre process of order 3 on the interval $\left(0, \frac{\pi}{k}\right)$. These processes first appeared in Knight Kni69 as so-called taboo processes and are obtained by conditioning Brownian motion started inside the interval $\left(0, \frac{\pi}{k}\right)$ to never hit either of the two boundary points, see Bougerol and Defosseux [BD19, Section 5.1]. As discussed in Itô and McKean [IM74, Section 7.15], they also arise as the latitude of a Brownian motion on the three-dimensional sphere of radius $\frac{1}{k}$.

3.4.2 Special linear group $\mathrm{SL}(2, \mathbb{R})$

The appearance of the Bessel process on the plane $\{z=0\}$ in the Heisenberg group \mathbb{H} and of the Legendre processes on a compactified plane in $\mathrm{SU}(2)$ understood as a contact sub-Riemannian manifold suggests that the hyperbolic Bessel processes arise on planes in the special linear group $\mathrm{SL}(2, \mathbb{R})$ equipped with a sub-Riemannian structure. This is indeed the case if we consider the standard subRiemannian structures on $\operatorname{SL}(2, \mathbb{R})$ where the flow of the Reeb vector field preserves the distribution and the fibre inner product.

The special linear group $\operatorname{SL}(2, \mathbb{R})$ of degree two over the field \mathbb{R} is the Lie group of 2×2 matrices with determinant 1 , that is,

$$
\mathrm{SL}(2, \mathbb{R})=\left\{\left(\begin{array}{cc}
x & y \\
z & w
\end{array}\right): x, y, z, w \in \mathbb{R} \text { with } x w-y z=1\right\}
$$

where the group operation is taken to be matrix multiplication. The Lie algebra $\mathfrak{s l}(2, \mathbb{R})$ of $\mathrm{SL}(2, \mathbb{R})$ is the algebra of traceless 2×2 real matrices. A basis of $\mathfrak{s l}(2, \mathbb{R})$ is formed by the three matrices

$$
p=\frac{1}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad q=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad j=\frac{1}{2}\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

whose corresponding left-invariant vector fields on $\mathrm{SL}(2, \mathbb{R})$ are

$$
\begin{aligned}
X & =\frac{1}{2}\left(x \frac{\partial}{\partial x}-y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}-w \frac{\partial}{\partial w}\right) \\
Y & =\frac{1}{2}\left(y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}+w \frac{\partial}{\partial z}+z \frac{\partial}{\partial w}\right) \\
K & =\frac{1}{2}\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}-w \frac{\partial}{\partial z}+z \frac{\partial}{\partial w}\right)
\end{aligned}
$$

These vector fields satisfy the commutation relations $[X, Y]=K,[X, K]=Y$ and $[Y, K]=-X$. For $k \in \mathbb{R}$ with $k>0$, we equip $\operatorname{SL}(2, \mathbb{R})$ with the sub-Riemannian structure obtain by considering the distribution D spanned by $X_{1}=2 k X$ and $X_{2}=2 k Y$ as well as the fibre inner product uniquely given by requiring $\left(X_{1}, X_{2}\right)$ to be a global orthonormal frame. The appropriately normalised contact form corresponding to this choice is

$$
\omega=\frac{1}{4 k^{2}}(z \mathrm{~d} x+w \mathrm{~d} y-x \mathrm{~d} z-y \mathrm{~d} w)
$$

and the Reeb vector field X_{0} associated with the contact form ω satisfies

$$
X_{0}=\left[X_{1}, X_{2}\right]=4 k^{2} K=2 k^{2}\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}-w \frac{\partial}{\partial z}+z \frac{\partial}{\partial w}\right)
$$

The plane in $\mathrm{SL}(2, \mathbb{R})$ passing tangentially to the contact distribution through the identity element is the surface S given as 1.27 by the function $u: \operatorname{SL}(2, \mathbb{R}) \rightarrow \mathbb{R}$ defined by

$$
u(x, y, z, w)=y-z
$$

Observe that, on S, we have the relation $x w=1+y^{2} \geq 1$. Therefore, if a point (x, y, z, w) lies on the surface S then so does the point $(-x, y, z,-w)$, and neither x nor w can vanish on S. Thus, the function $u: \operatorname{SL}(2, \mathbb{R}) \rightarrow \mathbb{R}$ induces a surface consisting of two sheets. By symmetry, we restrict our attention to the sheet containing the 2×2 identity matrix, henceforth referred to as the upper sheet. We compute

$$
\left(X_{1} u\right)(x, y, z, w)=-k(y+z) \quad \text { and } \quad\left(X_{2} u\right)(x, y, z, w)=k(x-w)
$$

as well as

$$
\left(X_{0} u\right)(x, y, z, w)=2 k^{2}(x+w)
$$

We note that

$$
\left(\left(X_{1} u\right)(x, y, z, w)\right)^{2}+\left(\left(X_{2} u\right)(x, y, z, w)\right)^{2}=k^{2}(y+z)^{2}+k^{2}(x-w)^{2}
$$

vanishes on S if and only if $y=z=0$ and $x=w$. From $x w=1+y^{2}$, it follows that the surface S admits the two characteristic points $(1,0,0,1)$ and $(-1,0,0,-1)$, that is, one unique characteristic point on each sheet. Following Rogers and Williams [RW00, Section V.36], we choose coordinates (r, θ) with $r>0$ and $\theta \in[0,2 \pi)$ on the upper sheet of $S \backslash \Sigma(S)$ such that

$$
\begin{aligned}
x & =\cosh (k r)+\sinh (k r) \cos (\theta), \\
w & =\cosh (k r)-\sinh (k r) \cos (\theta), \quad \text { and } \\
y & =\sinh (k r) \sin (\theta)
\end{aligned}
$$

On the upper sheet of $S \backslash \Sigma(S)$, we obtain

$$
\left(X_{1} u\right)(r, \theta)=-2 k \sinh (k r) \sin (\theta) \quad \text { and } \quad\left(X_{2} u\right)(r, \theta)=2 k \sinh (k r) \cos (\theta)
$$

which yields

$$
\sqrt{\left(\left(X_{1} u\right)(r, \theta)\right)^{2}+\left(\left(X_{2} u\right)(r, \theta)\right)^{2}}=2 k \sinh (k r)
$$

as well as

$$
\left(X_{0} u\right)(r, \theta)=4 k^{2} \cosh (k r)
$$

A direct computation shows that on the upper sheet of $S \backslash \Sigma(S)$, we have

$$
\widehat{X}_{S}=\frac{\partial}{\partial r} \quad \text { and } \quad b(r, \theta)=2 k \operatorname{coth}(k r)
$$

which implies that

$$
\frac{1}{2} \Delta_{0}=\frac{1}{2} \frac{\partial^{2}}{\partial r^{2}}+k \operatorname{coth}(k r) \frac{\partial}{\partial r}
$$

Hence, we recover all hyperbolic Bessel processes of order 3 as the canonical stochastic processes moving along the leaves of the characteristic foliation of the upper sheet of $S \backslash \Sigma(S)$, and similarly on its lower sheet. For further discussions on hyperbolic Bessel processes, see Borodin Bor08], Gruet Gru00], Jakubowski and Wiśniewolski [JW13, and Revuz and Yor RY99, Exercise 3.19]. As for the Bessel process of order 3 and the Legendre processes of order 3, the hyperbolic Bessel processes of order 3 can be defined as the radial component of Brownian motion on three-dimensional hyperbolic spaces.

3.4.3 A unified viewpoint

The surfaces considered in the last two examples together with the plane $\{z=0\}$ in the Heisenberg group are particular cases of the following construction.

Let G be a three-dimensional Lie group endowed with a contact sub-Riemannian structure whose distribution D is spanned by two left-invariant vector fields X_{1} and X_{2} which are orthonormal for the fibre inner product g defined on D. Assume that the commutation relations between X_{1}, X_{2} and the Reeb vector field X_{0} are given by, for some $\kappa \in \mathbb{R}$,

$$
\left[X_{1}, X_{2}\right]=X_{0}, \quad\left[X_{0}, X_{1}\right]=\kappa X_{2}, \quad\left[X_{0}, X_{2}\right]=-\kappa X_{1}
$$

Under these assumptions the flow of the Reeb vector field X_{0} preserves not only the distribution, namely $\mathrm{e}_{*}^{t X_{0}} D=D$, but also the fibre inner product g. The examples presented in Section 3.3.1 and in Sections 3.4 .1 and 3.4 .2 satisfy the above commutation relations with $\kappa=0$ in the Heisenberg group, and for a parameter $k>0$, with $\kappa=4 k^{2}$ in $\mathrm{SU}(2)$ and $\kappa=-4 k^{2}$ in $\mathrm{SL}(2, \mathbb{R})$. These are the three classes of model spaces for three-dimensional sub-Riemannian structures on Lie groups with respect to local sub-Riemannian isometries, see for instance ABB20, Chapter 17] and AB12 for more details.

In each of the examples concerned, the surface S that we consider can be parameterised as

$$
\begin{aligned}
S & =\left\{\exp \left(x_{1} X_{1}+x_{2} X_{2}\right): x_{1}, x_{2} \in \mathbb{R}\right\} \\
& =\left\{\exp \left(r \cos \theta X_{1}+r \sin \theta X_{2}\right): r \geq 0, \theta \in[0,2 \pi)\right\}
\end{aligned}
$$

Observe that S is automatically smooth, connected, and contains the origin of the group. Under these assumptions, the sub-Riemannian structure is of type $\mathbf{d} \oplus \mathbf{s}$ in the sense of ABB20, Section 7.7.1], and for θ fixed, the curve $r \mapsto \exp \left(r \cos \theta X_{1}+r \sin \theta X_{2}\right)$ is a geodesic parameterised by length. Hence, $r \geq 0$ is the arc length parameter along the corresponding trajectory. It follows that the surface S is ruled by geodesics, each of them having vertical component of the initial covector equal to zero. We refer to [ABB20, Chapter 7] for more details on explicit expressions for sub-Riemannian geodesics in these cases, see also BR08.

Approximately controllable finite-dimensional bilinear systems are controllable

Contents

4.1. Properties of approximately controllable systems 56
4.2. Bilinear control systems. 58
4.2.1 Proof of Theorem 1.9 58
4.3. Complementary remarks 60

This chapter presents the results in the paper CS21, joint work with Mario Sigalotti and published in the journal Systems \& Control Letters.

We begin in Section 4.1 with the proofs for Lemma 1.7 and Corollary 1.8 . Next, in Section 4.2 we specialise in bilinear control systems, proving Theorem 1.9.

4.1 Properties of approximately controllable systems

Consider a control system defined as in (C) by a fixed family \mathcal{F} on vector fields on M. We now prove Lemma 1.7, which shows that if (C) is approximately controllable, then the orbits of (C) form a regular foliation of M.

Proof of Lemma 1.7. As noticed above, the orbits of system (C) form a partition of M in immersed submanifolds. Since the attainable sets are contained in the orbits, the approximate controllability implies that the orbits are dense. Finally, due to the expression of the tangent space of the orbits in Theorem 1.3 , the dimension of the orbits is lower semi-continuous, i.e., for all x in M, there exists a neighbourhood $V(x)$ of x such that

$$
\operatorname{dim} \mathcal{O}_{x} \leq \operatorname{dim} \mathcal{O}_{y}, \quad \forall y \in V(x)
$$

Now let \mathcal{O}_{x} be an orbit of maximal dimension; since \mathcal{O}_{x} is dense, all other orbits have the same dimension as \mathcal{O}_{x}. Finally, an integral foliation of constant rank is a regular foliation.

Recall that the family \mathcal{F} is said to satisfy the Lie algebra rank condition at $x \in M$ if the evaluation at x of the Lie algebra generated by \mathcal{F} has maximal dimension, i.e., $D_{x}^{\text {Lie } \mathcal{F}}=T_{x} M$.

Figure 4.1: The admissible vector fields for the control system introduced in Example 4.2.

Proof of Corollary 1.8. If there exists a point x in M at which \mathcal{F} satisfies the Lie algebra rank condition, then (C) has a single orbit. Indeed, Krener's theorem implies that the interior of \mathcal{A}_{x} is nonempty. Hence, due to the approximate controllability assumption, the attainable set from any other point intersects \mathcal{A}_{x}, and therefore is contained in \mathcal{O}_{x}. Thus, (C) has a single orbit and, due to the Lie-determinedness property (1.3), every point in M satisfies the Lie algebra rank condition. The controllability follows as a corollary of Krener's theorem (see, e.g., AS02, Cor. 8.3]).

Otherwise, assume that \mathcal{F} does not satisfy the Lie algebra rank condition at any point. Then, Lemma 1.7 shows that the orbits of (C) form a regular foliation, whose leaves are dense since they contain the attainable sets. Finally, the dimension of the orbits is less than the dimension of M, otherwise \mathcal{F} would satisfy the Lie algebra rank condition due to (1.3).

Remark 4.1. Corollary 1.8 is useful if one can exclude the existence of a foliation with the properties described in (b) this might be possible thanks to the particular form of system (C) or some topological properties of M. Most of the results in this direction are for codimension-one regular foliations: for example, it is known that even dimensional spheres do not admit codimension-one regular foliations Dur72. We recall also that a compact manifold with finite fundamental group has no analytic regular foliations of codimension one Hae57; some additional results can be found in Law74.

The hypothesis of Lie-determinedness in Corollary 1.8 is necessary. Indeed, if we drop the hypothesis that the system is Lie-determined, it is possible to construct an approximately controllable and not controllable system having only one orbit. This is shown in the following example.
Example 4.2. Let $M=\mathbb{R}^{2}$ and consider the family $\mathcal{F}=\left\{f_{1}, f_{2}, f_{3}^{+}, f_{3}^{-}\right\}$with

$$
f_{1}=\frac{\partial}{\partial y}, \quad f_{2}=-\phi(x, y) f_{1}, \quad f_{3}^{ \pm}= \pm \phi(x, y) \frac{\partial}{\partial x},
$$

where $\phi: \mathbb{R}^{2} \rightarrow[0,+\infty)$ is a smooth function such that, for all $(x, y) \in \mathbb{R}^{2}, \phi(x, y)=0$ if and only if $x=0$ and $y \leq 0$. The four vector fields are illustrated in Figure 4.1. It is not hard to check that this system has a single orbit, is approximately controllable, and still it is not controllable.

Finally, there are examples of controllable systems which are nowhere Lie-determined. For instance, one can consider the following system.
Example 4.3. Let $M=\mathbb{R}^{3}$, and consider the family $\mathcal{F}=\left\{f_{1}^{+}, f_{1}^{-}, f_{2}^{+} f_{2}^{-}, f_{3}^{+}, f_{3}^{-}\right\}$with

$$
f_{1}^{ \pm}= \pm \frac{\partial}{\partial x}, \quad f_{2}^{ \pm}= \pm \psi(x) \frac{\partial}{\partial y}, \quad f_{3}^{ \pm}= \pm \psi(-x) \frac{\partial}{\partial z},
$$

Figure 4.2: The vector fields of the control system of \mathbb{R}^{3} in Example 4.3 .
where $\psi: \mathbb{R} \rightarrow \mathbb{R}$ is a smooth function with support in $\mathbb{R} \backslash[1,2]$ and such that $\left.\psi\right|_{(1,2)}>0$. It can be easily verified that this system is controllable (see Figure 4.2), but the dimension of Lie \mathcal{F} is everywhere less or equal to 2 .

4.2 Bilinear control systems

Consider a bilinear control system, as defined in (BL). Given a matrix A in \mathcal{M}, let us denote by f_{A} the associated vector field

$$
f_{A}: x \mapsto A x, \quad x \in \mathbb{R}^{n} \backslash\{0\} .
$$

Since the vector fields f_{A} are \mathbb{R}-homogenous for each A in \mathcal{M}, the set $\mathcal{F} \mathcal{M}=\left\{f_{A} \mid A \in \mathcal{M}\right\}$ is a family of analytical, homogenous vector fields in $\mathbb{R}^{n} \backslash\{0\}$.

Let us introduce two systems which can be naturally associated with ($\overline{\mathrm{BL}}$): the projections of system (BL) onto S^{n-1} and $\mathbb{R P}^{n-1}$. First, consider the projection $\pi: \mathbb{R}^{n} \backslash\{0\} \rightarrow S^{n-1}$ defined by $\pi(x)=x /|x|$. For every x in S^{n-1} and every $v \in T_{x} \mathbb{R}^{n}$, consider the pushforward $\pi_{*}(v)=v-\langle x, v\rangle x$, and let us introduce the control system

$$
\begin{equation*}
\dot{x}=\pi_{*}(A(t) x), \quad A(t) \in \mathcal{M}, x \in S^{n-1} . \tag{SL}
\end{equation*}
$$

Due to homogeneity, the trajectories of $(S \Sigma)$ are the image of the trajectories of $\overline{B L}$ via π; thus, the orbits \mathcal{O}^{S} of (SL) are projections of the orbits of (BL), that is

$$
\begin{equation*}
\mathcal{O}_{\pi(y)}^{S}=\pi\left(\mathcal{O}_{y}\right), \quad \forall y \in \mathbb{R}^{n} \backslash\{0\} . \tag{4.1}
\end{equation*}
$$

We say that $(\overline{\mathrm{BL}})$ is angularly controllable if $(\overline{\mathrm{S} \mathrm{\Sigma}})$ is controllable. Similarly, consider the canonical projection $\omega: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{p-1}$ and the system

$$
\dot{q}=\omega_{*}(A(t) x), \quad A(t) \in \mathcal{M}, q=\omega(x) \in \mathbb{R}^{n-1} .
$$

This system is well-defined because $\omega_{*}(A(t) x)$ depends only on q and not on the choice of the specific $x \in \mathbb{R}^{n} \backslash\{0\}$ such that $q=\omega(x)$.

4.2.1 Proof of Theorem 1.9

Assume that system ($\overline{\mathrm{BL}}$ is approximately controllable and that $n \geq 2$, the case $n=1$ being trivial. System (BL) is Lie-determined due to the analyticity of each linear vector field and the already cited Nagaro theorem (Nag66]. Thus, Corollary 1.8 applies: either system (BL) is controllable, or the partition of $\mathbb{R}^{n} \backslash\{0\}$ into the orbits of $\overline{B L}$ forms a regular foliation of positive codimension as
described in (b). Let us assume the latter, and show that this leads to a contradiction.
As mentioned in the introduction, Theorem 1.9 holds if one replaces $(\overline{B L})$ by $(\mathbb{P} \Sigma)$, as shown in [BS20, Prop. 44]. Using this result, let us deduce the following property.

Lemma 4.4. If $(\overline{\mathrm{BL}}$ is approximately controllable then BL is angularly controllable.
Proof. Since the projection of the trajectories of (BL) are trajectories of $(\mathbb{P} \Sigma)$, if the former is approximately controllable then the same holds for the latter. Due to $\operatorname{BS20}$, Prop. 44], if $\mathbb{P} \Sigma$ is approximately controllable then it is controllable. In $[\mathrm{BV13}$, Thm. 1] the authors show that system $(\sqrt[P]{ } \Sigma)$ is controllable if and only if system $(\overline{\mathrm{S} \Sigma})$ is controllable. Therefore, system $(\overline{\mathrm{S} \Sigma})$ is controllable, meaning that system ($\overline{\mathrm{BL}})$ is angularly controllable.

Let us denote by $\mathcal{O}=\left\{\mathcal{O}_{x} \mid x \in \mathbb{R}^{n} \backslash\{0\}\right\}$ the orbit partition of system (BL). Due to (4.1) and Lemma 4.4, one has

$$
\pi_{*}\left(T_{y} \mathcal{O}_{x}\right)=T_{\pi(y)} \mathcal{O}_{\pi(x)}^{S}=T_{\pi(y)} S^{n-1}, \quad \forall x \in \mathbb{R}^{n} \backslash\{0\}, \forall y \in \mathcal{O}_{x}
$$

Therefore, we have that

$$
\begin{equation*}
T_{y} \mathcal{O}_{x}+\mathbb{R} y=\mathbb{R}^{n}, \quad \forall x \in \mathbb{R}^{n} \backslash\{0\}, \forall y \in \mathcal{O}_{x} \tag{4.2}
\end{equation*}
$$

which is to say that the orbits are transversal to the radial direction. Additionally, since we assumed to be in case (b) of Corollary 1.8 , this implies that $\operatorname{dim} T_{y} \mathcal{O}_{x}=n-1$. It follows that \mathcal{O} is a codimension-one regular foliation of $\mathbb{R}^{n} \backslash\{0\}$ transversal to the radial direction and with dense leaves. In the following lemma we show that such a foliation cannot exist.

Lemma 4.5. Assume that $n \geq 2$. Then, there does not exist a homogenous, codimension-one regular foliation of $\mathbb{R}^{n} \backslash\{0\}$ transversal to the radial direction and with dense leaves.

The hypothesis of transversality between the foliation and the radial direction is necessary, as counterexamples can be constructed otherwise. For instance, in Hec76] the author presents an example of codimension-one regular foliation of \mathbb{R}^{3} with dense leaves; this construction is presented with additional details in CN13, Chap. 4], and in this thesis in Example 4.8 for completeness.

Proof of Lemma 4.5. By contradiction, suppose there exists a codimension-one regular foliation $\mathcal{L}=$ $\left\{L_{\alpha} \mid \alpha \in A\right\}$ of $\mathbb{R}^{n} \backslash\{0\}$ with dense leaves transversal to the radial direction.

Let us first consider the case $n=2$. Orienting the foliation using the clockwise direction and applying Whitney's theorem (see ABZ96. Thm. 2.3 at p. 23]), the foliation can be identified with the set of trajectories of a vector field. Using the stereographic projection, the flow of such a vector field can be pushed to the sphere S^{2} minus two points. However, a flow with dense trajectories on S^{2} minus finitely many points does not exist: see, for instance, ABZ96, Lem. 2.4 at p. 56].

Assume that $n \geq 3$. Let us fix the point $p=(0, \ldots, 0,1) \in \mathbb{R}^{n}$, and denote by S^{n-2} the embedded sphere $S^{n-2} \times\{0\} \subset \mathbb{R}^{n}$. For every θ in S^{n-2}, let \mathcal{P}_{θ} be the plane

$$
\mathcal{P}_{\theta}=\operatorname{span}\{p, \theta\}
$$

as depicted in Figure 4.3. Because of the transversality between the leaves of \mathcal{L} and the radial direction, the linear subbundle $I_{\theta}=\left.\mathcal{P}_{\theta} \cap T \mathcal{L}\right|_{\mathcal{P}_{\theta} \backslash\{0\}}$ is a one-dimensional distribution on $\mathcal{P}_{\theta} \backslash\{0\}$ satisfying

$$
\begin{equation*}
I_{\theta}(x) \oplus \mathbb{R} x=T_{x} \mathcal{P}_{\theta}, \quad \forall x \in \mathcal{P}_{\theta} \backslash\{0\} \tag{4.3}
\end{equation*}
$$

By definition, the intersection $L_{p} \cap \mathcal{P}_{\theta}$ contains the integral curve to I_{θ} starting at p. The integral curves of I_{θ} are nothing but the leaves of the one-dimensional foliation defined by the distribution I_{θ} in $\mathcal{P}_{\theta} \backslash\{0\}$. We claim that such a foliation is orientable. Indeed, for each x in $\mathcal{P}_{\theta} \backslash\{0\}$, we can say that a nonzero vector v in $I_{\theta}(x)$ has a positive orientation if (v, x) is an oriented frame of \mathcal{P}_{θ}. It follows from

Figure 4.3: A graphic representation of the construction in the proof of Lemma 4.5
the already cited Whitney's theorem that the foliation defined by I_{θ} is the orbit partition of $\mathcal{P}_{\theta} \backslash\{0\}$ by the flow of a vector field g_{θ} everywhere transversal to the radial direction.

Because of the transversality condition and the homogeneity, the flow of g_{θ} spirals around the origin. Let us choose the vector field g_{θ} such that, starting from p, one intersects $\mathbb{R}_{>0} \theta$ before $-\mathbb{R}_{>0} \theta$. Define p_{θ} to be the point of first intersection between the integral curve of g_{θ} starting at p and the ray $-\mathbb{R}_{>0} p$, and C_{θ} to be the arc between p and p_{θ} (see Figure 4.3).

Now, let us define the map $\Phi: S^{n-2} \rightarrow-\mathbb{R}_{>0} p$ by $\Phi(\theta)=p_{\theta}$. The map Φ is well-defined, in the sense that p_{θ} does not depend on the vector field g_{θ} (once the latter is chosen with the appropriate orientation). Moreover, the map Φ is continuous, as it follows from the transversality between $I_{\theta}(-p)$ and $-\mathbb{R}_{>0} p$ for all θ in S^{n-2}. In addition, the image of Φ is contained in the intersection $L_{p} \cap-\mathbb{R}_{>0} p$, which has empty interior because of the transversality between $T \mathcal{L}$ and the radial direction. Since S^{n-2} is connected ($n>2$), it follows that Φ is constant. Let us define

$$
S=\bigcup_{\theta \in S^{n-2}} C_{\theta} .
$$

By the transversality between $I_{\theta}(-p)$ and $-\mathbb{R}_{>0} p$ for all θ in S^{n-2} it follows that we can parameterize C_{θ} as a continuous arc on $[0,1]$ continuously with respect to θ. Hence, the topology of S as a subset of \mathbb{R}^{n} is that of $\left(S^{n-2} \times[0,1]\right) / \sim$, where \sim is the equivalence relation which identifies the points in $S^{n-2} \times\{0\}$ to a single equivalence class, and analogously for the points in $S^{n-2} \times\{1\}$. That is, S is a topological manifold homeomorphic to the sphere S^{n-1}. In particular, $S \subset L_{p}$ is closed in \mathbb{R}^{n}, and therefore it is closed in L_{p}. Since S has the same topological dimension as L_{p}, we have that S is open in the topology of L_{p}. Since L_{p} is connected, we can conclude that $S=L_{p}$. This is contradicts the assumptions that the leaves are dense.

Lemma 4.5 shows that the supposition that we are in case (b) of Corollary 1.8 leads to a contradiction. Therefore, we are in case (a), and $(\overline{\mathrm{BL}})$ is controllable. This concludes the proof of Theorem 1.9

4.3 Complementary remarks

The result in Lemma 4.5 implies that Theorem 1.9 generalises for control systems which are Liedetermined, homogeneous, and angularly controllable. We say that (C) is homogeneous if $X=\mathbb{R}^{n} \backslash\{0\}$ and for every $x \in X, u \in U$, and $\lambda>0, \pi_{*}\left(f_{u}(\lambda x)\right)=\pi_{*}\left(f_{u}(x)\right)$, where $\pi: \mathbb{R}^{n} \backslash\{0\} \rightarrow S^{n-1}$ still denotes the canonical projection. Just as in the bilinear case, the projection of such systems on the
sphere S^{n-1} is

$$
\begin{equation*}
\dot{x}=\pi_{*}\left(f_{u(t)}(x)\right), \quad f_{u(t)} \in \mathcal{F}, x \in S^{n-1} \tag{SC}
\end{equation*}
$$

and we say that (C) is angularly controllable if (SC) is controllable.
Corollary 4.6. Let $n \geq 2$. Assume that the control system (C) is Lie-determined, homogenous, and angularly controllable. Then, (C) is approximately controllable if and only if it is controllable.

Since for $n=2$ system (C) projects to S^{1}, in this case the hypothesis of angular controllability can be easily removed.

Remark 4.7. For all n odd, $n=2 k+1$ with $k \geq 1$, the hypothesis of angular controllability in Corollary 4.6 is superfluous. Indeed, if system (C) is Lie-determined, homogenous, and approximately controllable, then Corollary 1.8 implies that either (C) is angularly controllable, or the projection of its orbits forms a nontrivial regular foliation of the even-dimensional sphere $S^{2 k}$. Since even dimensional spheres do not admit nontrivial regular foliations (indeed their tangent spaces do not admit any nontrivial subbundles; see, e.g., MS74, Problem 9C]), the angular controllability follows.

However, it has not been possible to fully remove the hypothesis of angular controllability in Corollary 4.6. In this regard, let us discuss the case $n=4$. Due to Corollary 1.8, if (C) is Lie-dermined, homogeneous, approximately controllable, and (SC) is not controllable, then the orbits of (SC) form a regular foliation of S^{3} of either dimension one or codimension one. The latter gives a contradiction, since the Novikov compact leaf theorem implies that any codimension-one regular foliation of the sphere S^{3} has a compact leaf Nov65]. The former implies that the orbits of (SC) are given by the flow of a minimal vector field, i.e., a vector field whose orbits are dense. The existence of such flows has been raised as an open question in Got58 for compact metric spaces, and for the sphere S^{3} has been mentioned by Smale in [Sma98] under the name Gottschalk conjecture; further details can be found in [FPW07]. If the Gottschalk conjecture were to be true, it would imply the existence of Lie-determined, homogenous, approximate controllable, yet not controllable systems, showing that Corollary 1.8 fails to hold if we remove the angular controllability hypothesis.

Finally, we mention that the hypotheses of transversality to the radial direction in Lemma 4.5 is necessary. Indeed, the following example gives a sketch of the construction of a smooth foliation of \mathbb{R}^{3} with dense leaves, from which one can obtain a regular foliation of $\mathbb{R}^{3} \backslash\{0\}$ by subtracting the origin.
Example 4.8 (Hector's example, Hec76). This example is due to Hector. The first part of the construction is to associate to certain diffeomorphisms $f: \mathbb{R} \rightarrow \mathbb{R}$ a foliation ξ_{f} of the three-dimensional cylinder $D^{2} \times \mathbb{R}$, where D^{2} is a closed two-dimensional disk; the hypothesis demanded on f is the existence of an interval $[a, b]$ such that $f(x)=x$ for all $x \in[a, b]$. Given such a diffeomorphism f, one first constructs a foliation in the solid cylinder $D^{2} \times \mathbb{R} \backslash\{0\} \times[(-\infty, a) \cup(b,+\infty)]$ with the property that (r, θ, z) and $(r, \theta, f(z))$ are in the same leaf, for all $r \in(0,1], \theta \in S^{1}$ and $z \in \mathbb{R}$ (see the image on the left in Figure 4.4. Next, one can obtain a foliation on the whole cylinder by performing a C^{∞} deformation supported on $\frac{2}{3} D^{2} \times \mathbb{R}$ (i.e., not changing a neighbourhood of $S^{1} \times \mathbb{R}$) sending a and b to $-\infty$ and $+\infty$ respectively (see the image on the right in Figure 4.4 . Denote this foliation by ξ_{f}.

Now, suppose having two solid cylinders $D_{1}^{2} \times \mathbb{R}$ and $D_{2}^{2} \times \mathbb{R}$ with two respective foliations $\xi_{f_{1}}$ and $\xi_{f_{2}}$. Fix two compact arcs $V_{i} \subset S^{1}$, for $i=1,2$, and take a diffeomorphism $\phi: V_{1} \times \mathbb{R} \rightarrow V_{2} \times \mathbb{R}$ for which $\phi_{*}\left(\left.\xi_{f_{2}}\right|_{V_{2} \times \mathbb{R}}\right)=\left.\xi_{f_{1}}\right|_{V_{1} \times \mathbb{R}}$. The cylinders $D_{1}^{2} \times \mathbb{R}$ and $D_{2}^{2} \times \mathbb{R}$ in can be glued together along ϕ to obtain the foliation $\xi_{f_{1}, f_{2}}$ on $\left(D_{1}^{2} \cup_{\phi} D_{2}^{2}\right) \times \mathbb{R}$. Observe that the intersection of the leaf of $\xi_{f_{1}, f_{2}}$ going thought a point z in S_{1} (denoted by $\left.\xi_{f_{1}, f_{2}}(z)\right)$ and the vertical line $\{z\} \times \mathbb{R}$ is

$$
\xi_{f_{1}, f_{2}}(z) \cap(\{z\} \times \mathbb{R})=\left\{f_{1}^{i_{1}} \circ f_{2}^{j_{1}} \circ \cdots \circ f_{1}^{i_{k}} \circ f_{2}^{j_{k}}(z) \mid i_{1}, j_{1}, \ldots, i_{k}, j_{k} \in \mathbb{Z}\right\}
$$

This can be verified by looking at the fundamental group of the bouquet of two circles $S^{1} \wedge S^{1}$; see Figure 4.5. Notice that $D_{1}^{2} \cup_{\phi} D_{2}^{2}$ is diffeomorphic to a disk, and that the gluing described above can

Figure 4.4: On the left-hand side the foliation constructed from the suspension by the diffeomorphism $f: \mathbb{R} \rightarrow \mathbb{R}$, and on the right-hand side the whirlwind defined by f on the whole cylinder.

Figure 4.5: A portion of a leaf of the foliation $\xi_{f_{1}, f_{2}}$.
be repeated multiple times to obtain a foliation $\xi_{f_{1}, \ldots, f_{k}}$ on $D^{2} \times \mathbb{R}$. Moreover, for all z in S^{1}, the intersection of the leaf going through z and the vertical line $\{z\} \times \mathbb{R}$ is

$$
\xi_{f_{1}, \ldots, f_{k}}(z) \cap(\{z\} \times \mathbb{R})=\left\{f_{i_{1}}^{j_{1}} \circ \cdots \circ f_{i_{n}}^{j_{n}}(z) \mid i_{1}, \ldots, i_{n} \in\{1, \ldots, k\}, j_{1}, \ldots, j_{n} \in \mathbb{Z}\right\} .
$$

Observe that if the intersection $\xi_{f_{1}, \ldots, f_{k}}(z) \cap(\{z\} \times \mathbb{R})$ is dense, then the leaf $\xi_{f_{1}, \ldots, f_{k}}(z)$ is dense in the cylinder $D^{2} \times \mathbb{R}$.
Lemma 4.9. There exists $f_{1}, f_{2}, f_{3}, f_{4}: \mathbb{R} \rightarrow \mathbb{R}$ diffeomorphism for which the above construction can be applied, and such that, for all z, the set

$$
\left\{f_{i_{1}}^{j_{1}} \circ \cdots \circ f_{i_{n}}^{j_{n}}(z) \mid i_{1}, \ldots, i_{n} \in\{1, \ldots, 4\}, j_{1}, \ldots, j_{n} \in \mathbb{Z}\right\}
$$

is dense in \mathbb{R}.
Proof. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}$ smooth and increasing, with $\left.\phi\right|_{(-\infty, 0]} \equiv 0$ and $\left.\phi\right|_{[1,+\infty)} \equiv 1$. Define $f_{1}(x)=$ $x+\alpha \phi(x)$ and $f_{2}(x)=f_{1}^{-1}(\alpha+x)$, and $f_{3}(x)=x+\phi(x)$ and $f_{4}(x)=f_{1}^{-1}(x+1)$. By definition, $f_{1} \circ f_{2}(x)=x+\alpha$ and $f_{3} \circ f_{4}=x+1$, therefore

$$
\left(f_{1} \circ f_{2}\right)^{n} \circ\left(f_{3} \circ f_{4}\right)^{m}(x)=x+\alpha n+m, \quad \forall n, m \in \mathbb{Z}, \forall x \in \mathbb{R} .
$$

If α is irrational, then the set of numbers $\{\alpha n+m \mid n, m \in \mathbb{Z}\}$ is dense in \mathbb{R}.
Thus, using the functions constructed in Lemma 4.9, one obtains a foliation of $D^{2} \times \mathbb{R}$ for which every leaf is dense. Finally, by sending the boundary S^{1} to the infinity of \mathbb{R}^{2} one has a foliation of $\mathbb{R}^{2} \times \mathbb{R}=\mathbb{R}^{3}$ with dense leaves.

Control systems satisfying local reachability are controllable

Contents

5.1. Introduction 63
5.2. Local reachability implies controllability 64
5.2.1 Proof of Lemma|5.1 65
5 5.2.2 Proof of Lemmal5.2 65
5.3. Complementary remarks 67

This chapter presents the results collected in the paper BCFS21, joint work with Ugo Boscain, Valentina Franceschi and Mario Sigalotti and currently submitted for publication.

5.1 Introduction

As in the introduction, let M be a connected smooth manifold. Consider the control system C with piecewise constant controls or essentially bounded controls. The proof of Theorem 1.1 relies on the following lemmas.

Lemma 5.1. If (C) satisfies the local reachability property, then it is approximately controllable.
The proof of this lemma, presented in the next section, relies on the regularity of the flow of (C) for a fixed control, and on the connectedness of M. Lemma 5.1 is a key step in the proof of the following key property.

Lemma 5.2. Assume (C) satisfies the local reachability property. Then, for any state x and y in M,

$$
y \in \mathcal{A}_{x} \Longrightarrow x \in \mathcal{A}_{y} .
$$

Given a state x in M, the controllable set to x is the set of states from which x is reached, i.e., $\mathcal{A}_{x}^{-}=\left\{y \in M \mid x \in \mathcal{A}_{y}\right\}$. Observe that \mathcal{A}_{x}^{-}is the attainable set from x for the control system defined by $-F$, whose solutions are the solutions of (C) followed in the opposite time direction.
Remark 5.3. Assume that (C) is approximately controllable (recalling that, according to Lemma 5.1, this is the case if the system satisfies local reachability). If a state x in M satisfies $\operatorname{Int} \mathcal{A}_{x}^{-} \neq \emptyset$, then the state x can be reached from any other state. Indeed, for any y in M, since \mathcal{A}_{y} is dense in M it intersects the interior of A_{x}^{-}. Thus, there exists $z \in A_{y} \cap A_{x}^{-}$. Since $z \in \mathcal{A}_{x}$ and $z \in \mathcal{A}_{y}$, one can steer the system from y to x (see Figure 5.1).

Figure 5.1: Situation in Remark 5.3. The gray ball is contained in the interior of \mathcal{A}_{x}^{-}and it contains reachable points from any $y \in M$ by approximate controllability. Thus $x \in \mathcal{A}_{y}$.

Remark 5.3 together with the following proposition shows that a system satisfying the localised local reachability property is controllable.

Proposition 5.4. If system (C) is localized locally reachable, then for any state $x \in M$ the set \mathcal{A}_{x}^{-} has nonempty interior.

Proof. The argument mimics the proof of Krener's theorem Kre74. Let x in M. We claim that there exists $X_{1} \in \mathcal{F}$ such that $X_{1}(x) \neq 0$. Indeed, if that was not the case, any solution $\phi(\cdot, x, u)$ for $u \in \mathcal{U}$ would be constant. Let

$$
N_{1}=\left\{e^{-t X_{1}}(x) \mid t \in(0, \delta)\right\}
$$

for $\delta>0$. If M is one-dimensional, then we have concluded. Otherwise, we claim there exist $y_{1} \in N_{1}$ and $X_{2} \in \mathcal{F}$ a such that $X_{1}\left(y_{1}\right)$ and $X_{2}\left(y_{1}\right)$ are transverse. Indeed, let \mathcal{V}_{1} be a neighbourhood of $e^{-\delta / 2 X_{1}}(x)$ not containing x nor $e^{-\delta X_{1}}(x)$ and assume that every $f \in \mathcal{F}$ is tangent to $V_{1} \cap N$. Then the trajectories of (C) starting from $N_{1} \cap V_{1}$ and staying in V_{1} cannot quit $N_{1} \cap V_{1}$. This contradicts the localized local reachability property.

Thus, define the embedded two-dimensional submanifold

$$
N_{2}=\left\{e^{-t_{2} X_{2}} \circ e^{-t X_{1}}(x) \mid\left(t_{1}, t_{2}\right) \in I_{2} \times\left(0, \delta_{2}\right)\right\}
$$

for a suitable nonempty open subinterval I_{2} of $(0, \delta)$ and a suitable $\delta_{2}>0$. If the dimension of M is equal to 2 the proof is concluded, otherwise there exist $y_{2} \in N_{2}$ and $X_{3} \in \mathcal{F}$ such that $X_{3}\left(y_{2}\right)$ is transversal to N_{2} and we iterate the construction up to reaching the dimension of M.

Remark 5.5. As an alternative of the self-contained proof proposed above, Proposition 5.4 could have been directly deduced from Gra92, Theorem 5.3], since the property of localized local reachability implies, in the terminology of [Gra92], that (C) has the nontangency property.

5.2 Local reachability implies controllability

Once Lemma 5.2 is proven, Theorem 1.1 follows from the following classical argument.

Proof of Theorem 1.1. Assume that (C) satisfies the local reachability property. Define the equivalence relation \sim on M by requiring $x \sim y$ if and only if $x \in \mathcal{A}_{y}$. Thanks to Lemma 5.2, this is indeed an equivalence relation. Due to local reachability, the equivalence classes are open. The classes are also closed, since one class is the complementary of the union of the other classes, and this union is open. Due to the connectedness of M, there is only one class and system (C) is controllable.

5.2.1 Proof of Lemma 5.1

Assume that (C) satisfies the local reachability property. Let $x \in M$. We want to show that $\operatorname{cl}\left(\mathcal{A}_{x}\right)$ is open. By connectedness of M, this implies that $\operatorname{cl}\left(\mathcal{A}_{x}\right)=M$, thus proving the lemma.

Let $y \in \operatorname{cl}\left(\mathcal{A}_{x}\right)$. We claim that for every control $u \in \mathcal{U}$ and $t>0$ such that $\phi(t, y, u)$ is defined, we have that

$$
\begin{equation*}
\phi(t, y, u) \in \operatorname{cl}\left(\mathcal{A}_{x}\right) . \tag{5.1}
\end{equation*}
$$

This concludes the proof of the lemma. Indeed, from (5.1) it follows that $\mathcal{A}_{y} \subset \operatorname{cl}\left(\mathcal{A}_{x}\right) ;$ since \mathcal{A}_{y} contains y in its interior due to $\overline{\mathrm{LR}})$, this proves that $\operatorname{cl}\left(\mathcal{A}_{x}\right)$ is open.

In order to prove (5.1), take y, u, t as in the assumptions and fix any neighbourhood V of $\phi(t, y, u)$: we show that V has nonempty intersection with \mathcal{A}_{x}. Consider a neighbourhood W of y such that the map $\varphi: W \ni z \mapsto \phi(t, z, u) \in \varphi(W)$ is a diffeomorphism. In particular, $\varphi(W)$ is a neighbourhood of $\phi(t, y, u)$, and the set $W^{\prime}=\varphi^{-1}(V \cap \varphi(W))$ is a neighborhood of y. Since y is in the closure of \mathcal{A}_{x}, there exists $y_{1} \in W^{\prime} \cap \mathcal{A}_{x}$. Consider an admissible control from x to y_{1} : by concatenating this control with u one finds that $\phi\left(t, y_{1}, u\right)$ is in \mathcal{A}_{x}. This implies that $\phi\left(t, y_{1}, u\right)$ belongs to $V \cap \mathcal{A}_{x}$, proving that $V \cap \mathcal{A}_{x}$ is nonempty, as required.

Observe that if system (C) satisfies local controllability, then the attainable sets are open. Let us now proceed with the proof of Lemma 5.2 .

5.2.2 Proof of Lemma 5.2

Let x and y in M be such that $y \in \mathcal{A}_{x}$. We argue by contradiction supposing that $x \notin \mathcal{A}_{y}$. We claim that this implies the existence of a state z in M (actually $z \in \mathcal{A}_{x}$) such that

$$
\begin{equation*}
z \notin \mathcal{A}_{y} \quad \text { and } \quad \operatorname{Int} \mathcal{A}_{z}^{-} \neq \emptyset . \tag{5.2}
\end{equation*}
$$

This is a contradiction, since the assertions in (5.2) cannot hold both at the same time due to Remark 5.3. The rest of the proof is dedicated to proving the existence of a point z satisfying (5.2).

Consider a control $u \in \mathcal{U}$ and $T>0$ such that $\phi(T, x, u)=y$. Define the absolutely continuous curve $\gamma:[0, T] \rightarrow M$ by $\gamma(t)=\phi(t, x, u)$. Let

$$
\tau=\inf \left\{t \in[0, T] \mid \gamma(t) \in \mathcal{A}_{y}\right\} .
$$

We claim that $\gamma([0, T]) \cap \mathcal{A}_{y}=\gamma((\tau, T])$. Indeed, $\gamma^{-1}\left(\gamma([0, T]) \cap \mathcal{A}_{y}\right)$ is open since \mathcal{A}_{y} is open, and its complementary is nonempty since it contains zero (we supposed that $x \notin \mathcal{A}_{y}$). Moreover, if a certain $s \in[0, T]$ satisfies $\gamma(s) \in \mathcal{A}_{y}$, then, for all t in $[s, T]$, one has $\gamma(t) \in \mathcal{A}_{y}$ since it suffices to concatenate the control from y to $\gamma(s)$ with $\left.u\right|_{[s, t]}$ in order to to attain $\gamma(t)$. Up to renaming $\gamma(\tau)$ as x, we can assume that $\tau=0$. Namely, without loss of generality, one can assume (see Figure 1.1)

$$
x \notin \mathcal{A}_{y} \quad \text { and } \quad \phi(t, x, u) \in \mathcal{A}_{y} \text { for all } t \in(0, T] .
$$

Let V be a neighbourhood of x contained in \mathcal{A}_{x}. We now construct a parametrisation $C_{n}: I_{n} \rightarrow M$ $\left(I_{n} \subset \mathbb{R}^{n}\right.$) of a n-dimensional embedded sub-manifold of M satisfying $C_{n}\left(I_{n}\right) \subset \mathcal{A}_{x}^{-}$, and therefore x (or more exactly $\gamma(\tau)$) satisfies (5.2). This will be done by a recursive argument, by constructing parametrisations $C_{k}: I_{k} \rightarrow M\left(I_{k} \subset \mathbb{R}^{k}\right)$, for $k=1, \ldots, n$, with

$$
\begin{equation*}
C_{k}(s) \in V, \quad \text { and } \quad x \in \mathcal{A}_{C_{k}(s)} \quad \text { for all } s \in I_{k} . \tag{5.3}
\end{equation*}
$$

Let us begin with $k=1$. Let $v \in \Omega$ (constant) such that $X_{v}(x) \neq 0$, and let I_{1} an open interval of the form $\left(0, \delta_{1}\right)$ such that the map $C_{1}: I_{1} \rightarrow M$ defined by $C_{1}(t)=e^{-t X_{v}}(x)$ parametrises an embedded curve. Since the constant control defined by v belongs to \mathcal{U}, then one can reach x from any point in C_{1}. Moreover, one has that C_{1} is contained in V, up to choosing δ_{1} sufficiently small. Thus, C_{1} satisfies (5.3) for $k=1$.

Figure 5.2: A graphic representation of the iterations in the proof of Lemma 5.2 in dimension two, and for piecewise constants controls. On can control any point in C_{2} to x by first attaining S_{1}, then attaining C_{1} via the control u_{1} from which one can reach x.

Now, suppose having constructed a k-dimensional parametrisation C_{k} satisfying (5.3), with $1 \leq$ $k \leq n-1$. Fix a point $x_{k} \in C_{k}\left(I_{k}\right)$, and consider a control u_{k} in \mathcal{U} and a time $T_{k} \geq 0$ such that $x_{k}=\phi\left(T_{k}, x, u_{k}\right)$. Let W_{k} be a neighbourhood of x such that $\varphi_{k}: W_{k} \ni y \mapsto x\left(T_{k}, y, u_{k}\right)=\varphi_{k}\left(W_{k}\right)$ is a diffeomorphism. Define $S_{k}=\varphi_{k}^{-1} \circ C_{k}$, this parametrises an embedded submanifold of dimension k containing x. Moreover,

$$
\begin{equation*}
x \in \mathcal{A}_{S_{k}(s)}, \quad \forall s \in I_{k}, \tag{5.4}
\end{equation*}
$$

since $x \in \mathcal{A}_{C_{k}(s)}$, and $C_{k}(s) \in \mathcal{A}_{S_{k}(s)}$ using u_{k} as control. In particular, we have that $S_{k}(s) \notin \mathcal{A}_{y}$ for all $s \in I_{k}$. As a consequence, since $\phi(t, x, u) \in \mathcal{A}_{y}$ for all $t \in(0, T]$, we have that

$$
\begin{equation*}
S_{k}\left(I_{k}\right) \cap\{\phi(t, x, u) \mid t \in(0, T]\}=\emptyset . \tag{5.5}
\end{equation*}
$$

This implies the existence of $t_{k}>0$ and of $\sigma \in I_{k}$ with $S_{k}(\sigma)$ arbitrarily close to x and such that $X\left(S_{k}(\sigma), u\left(t_{k}\right)\right)$ and $T_{S_{k}(\sigma)} S_{k}$ are transverse, i.e.,

$$
\begin{equation*}
\operatorname{dim}\left(\operatorname{span}\left\{X\left(S_{k}(\sigma), u\left(t_{k}\right)\right)\right\} \oplus T_{S_{k}(\sigma)} S_{k}\right)=k+1 \tag{5.6}
\end{equation*}
$$

Indeed, if one had $X\left(S_{k}(\sigma), u(t)\right) \subset T_{S_{k}(s)} S_{k}$ for all $s \in I_{k}$ and $t \in[0, T]$, then, by uniqueness of solutions, the flow starting from x would belong to $S_{k}\left(I_{k}\right)$, at least for $t>0$ sufficiently small. However, this contradicts (5.5). Moreover, σ can be chosen so that $S_{k}(\sigma)$ belongs to V. Let X_{k} be the vector field $X\left(\cdot, u\left(t_{k}\right)\right)$

Therefore, there exists an open neighbourhood $I_{k}^{\prime} \subset I_{k}$ containing σ and a $\delta_{k+1}>0$ such that the map $C_{k+1}: I_{k+1}:=I_{k}^{\prime} \times\left(-\delta_{k+1}, \delta_{k+1}\right) \rightarrow M$ defined by

$$
C_{k+1}(s, t)=e^{t X_{k}} \circ S_{k}(s), \quad \forall(s, t) \in I_{k}^{\prime} \times\left(-\delta_{k+1}, \delta_{k+1}\right),
$$

is a parametrisation of an embedded submanifold of dimension $k+1$. This is due to the fact that the differential of C_{k+1} at $(\sigma, 0)$ has full rank, as it follows from 5.6). Moreover, since $C_{k+1}(\sigma, 0)=S_{k}(\sigma) \in V$, the set I_{k+1} can be chosen so that $C_{k+1}\left(I_{k+1}\right) \subset V$. We are now left to observe that, for all $(s, t) \in I_{k}^{\prime} \times\left(-\delta_{k+1}, 0\right)$, we have that $x \in \mathcal{A}_{C_{k+1}(s, t)}$. In fact, starting from $C_{k+1}(s, t)$ one can reach $S_{k}(s)$ using the (constant) control corresponding to X_{k}, and x can be reached from $S_{k}(s)$ due to 5.4. This concludes the iteration, since $\left.C_{k+1}\right|_{I_{k}^{\prime} \times\left(-\delta_{k+1}, 0\right)}$ satisfies (5.3).

5.3 Complementary remarks

As mentioned in Remark 1.2 Lemma 5.2 (and consequently Theorem 1.1) generalises to other classes of controls provided that for any fixed control one still has existence and uniqueness in the class of absolutely continuous functions, and regularity on the initial conditions. In particular, uniqueness in necessary to prove the base case of the induction, and to find the transverse vector field in (5.6); on the other hand, regularity is used to define the submanifolds S_{k} starting from the submanifolds C_{k}.

In Theorem 1.1 we have shown that if system C satisfies local reachability then it is controllable. The property of local reachability means that one can reach an open neighbourhood of any initial condition. A slight modification of Example 4.2 gives a system which satisfies local reachability at every point except for one. The resulting system is not controllable, showing that the lack of local reachability even only at a point might impair global cotrollability.
Example 5.6. Let $M=\mathbb{R}^{2}$, and denote by V the half-line $V=\{0\} \times \mathbb{R}_{\leq 0}$. Consider the control system defined by the family $\mathcal{F}=\left\{f_{1}, f_{2}, f_{3}^{+}, f_{3}^{-}\right\}$with

$$
f_{1}=\frac{\partial}{\partial y}, \quad f_{2}=-\psi(x, y) \frac{\partial}{\partial y}, \quad f_{3}^{ \pm}= \pm \phi(x, y) \frac{\partial}{\partial x}
$$

for two smooth functions $\phi, \psi: \mathbb{R}^{2} \rightarrow[0,+\infty)$ satisfying, for all $(x, y) \in \mathbb{R}^{2}, \phi(x, y)=0$ if and only if $(x, y) \in V$, and $\psi(x, y)=0$ if and only if $x=y=0$, respectively. For any $p \in \mathbb{R}^{2} \backslash V$ one has that $\mathcal{A}_{p}=\mathbb{R}^{2} \backslash V$, while for any $p \in V \backslash\{0\}$ one has that $\mathcal{A}_{p}=\mathbb{R}^{2}$. Thus, at these points the system satisfies the local controllability property. However, for $p_{0}=0$ one has $\mathcal{A}_{p_{0}}=\left\{p_{0}\right\} \cup \mathbb{R}^{2} \backslash V$ which does not contain p_{0} in its interior.

Bibliography

[AB12] A. Agrachev and D. Barilari, Sub-Riemannian structures on 3D Lie groups, J. Dyn. Control Syst. 18 (2012), no. 1, 21-44. MR2902707
[ABB20] A. Agrachev, D. Barilari, and U. Boscain, A comprehensive introduction to sub-Riemannian geometry, Cambridge Studies in Advanced Mathematics, vol. 181, Cambridge University Press, Cambridge, 2020. From the Hamiltonian viewpoint, With an appendix by Igor Zelenko. MR3971262
[ABS08] A. Agrachev, U. Boscain, and M. Sigalotti, A Gauss-Bonnet-like formula on two-dimensional almostRiemannian manifolds, Discrete \& Continuous Dynamical Systems - A 20 (2008), no. 4, 801-822.
[ABZ96] S. Kh. Aranson, G. R. Belitsky, and E. V. Zhuzhoma, Introduction to the qualitative theory of dynamical systems on surfaces, Translations of Mathematical Monographs, vol. 153, American Mathematical Society, Providence, RI, 1996. Translated from the Russian manuscript by H. H. McFaden. MR1400885
[AF07] N. Arcozzi and F. Ferrari, Metric normal and distance function in the Heisenberg group, Mathematische Zeitschrift 256 (2007), no. 3, 661-684.
[AF08] , The Hessian of the distance from a surface in the Heisenberg group, Annales Academiae Scientiarum Fennicae. Mathematica 33 (2008), no. 1, 35-63.
[ALGM73] A. A. Andronov, E. A. Leontovich, I. I. Gordon, and A. G. Maier, Qualitative theory of second order dynamic systems, Israel Program for Scientific Trasnlations Ltd., 1973.
[AS02] A. Agrachev and Y. Sachkov, Control theory from the geometric viewpoint, Springer, Berlin, Heidelberg, 2002.
[Bal03] Z. M. Balogh, Size of characteristic sets and functions with prescribed gradient, Journal für die Reine und Angewandte Mathematik. [Crelle's Journal] 564 (2003), 63-83. MR2021034
[Bar13] D. Barilari, Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry, J. Math. Sci. (N.Y.) 195 (2013), no. 3, 391-411. Translation of Sovrem. Mat. Prilozh. No. 82 (2012). MR3207127
[BBC21] D. Barilari, U. Boscain, and D. Cannarsa, On the induced geometry on surfaces in 3d contact sub-riemannian manifolds, ESAIM: Control, Optimisation and Calculus of Variations (2021).
[BBCH21] D. Barilari, U. Boscain, D. Cannarsa, and K. Habermann, Stochastic processes on surfaces in three-dimensional contact sub-Riemannian manifolds, Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques (2021). 25 pages, 2 figures.
[BBI01] D. Burago, Y. Burago, and S. Ivanov, A course in metric geometry, Graduate Studies in Mathematics, vol. 33, American Mathematical Society, Providence, RI, 2001. MR1835418
[BBL20] D. Barilari, I. Beschastnyi, and A. Lerario, Volume of small balls and sub-Riemannian curvature in 3D contact manifolds, Journal of Symplectic Geometry 18 (2020), no. 2.
[BCC20] N. Boussaïd, M. Caponigro, and T. Chambrion, Regular propagators of bilinear quantum systems, J. Funct. Anal. 278 (2020), no. 6, 108412, 66. MR4054112
[BCFS21] U. Boscain, D. Cannarsa, V. Franceschi, and M. Sigalotti, Local reachability indeed implies global controllability, soon on arXiv e-prints (2021).
[BCS14] U. Boscain, M. Caponigro, and M. Sigalotti, Multi-input Schrödinger equation: controllability, tracking, and application to the quantum angular momentum, J. Differential Equations 256 (2014), no. 11, 3524-3551. MR3186837
[BD19] P. Bougerol and M. Defosseux, Pitman transforms and Brownian motion in the interval viewed as an affine alcove, arXiv e-prints (2019).
[Ben83] D. Bennequin, Entrelacements et équations de Pfaff., IIIe rencontre de géométrie du Schnepfenried, 10-15 mai 1982. Vol. 1: Feuilletages. Géométrie symplectique et de contact. Analyse non standard et applications, 1983, pp. 87-161 (French).
[BGRS15] U. Boscain, J.-P. Gauthier, F. Rossi, and M. Sigalotti, Approximate controllability, exact controllability, and conical eigenvalue intersections for quantum mechanical systems, Comm. Math. Phys. 333 (2015), no. 3, 1225-1239.
[BK19] D. Barilari and M. Kohli, On sub-riemannian geodesic curvature in dimension three, arXiv e-prints (2019).
[BMS82] J. Ball, J. Marsden, and M. Slemrod, Controllability for distributed bilinear systems, SIAM Journal on Control and Optimization 20 (1982).
[BN20] U. Boscain and R. W. Neel, Extensions of Brownian motion to a family of Grushin-type singularities, Electron. Commun. Probab. 25 (2020), Paper No. 29, 12. MR4089736
[Bor08] A. N. Borodin, Hypergeometric diffusion, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 361 (2008), no. Veroyatnost'i Statistika. 13, 29-44, 182. MR2760464
[BP16] U. Boscain and D. Prandi, Self-adjoint extensions and stochastic completeness of the Laplace-Beltrami operator on conic and anticonic surfaces, J. Differential Equations 260 (2016), no. 4, 3234-3269. MR3434398
[BR08] U. Boscain and F. Rossi, Invariant Carnot-Caratheodory metrics on S^{3}, $\mathrm{SO}(3)$, $\mathrm{SL}(2)$, and lens spaces, SIAM J. Control Optim. 47 (2008), no. 4, 1851-1878. MR2421332
[Bre07] A. Bressan, Tutorial on the center manifold theorem, Lecture Notes in Mathematics, Springer Verlag, Germany, 2007 (English (US)).
[BS20] F. Boarotto and M. Sigalotti, Dwell-time control sets and applications to the stability analysis of linear switched systems, J. Differential Equations 268 (2020), no. 4, 1345-1378.
[BS83] A. Bacciotti and G. Stefani, On the relationship between global and local controllability, Math. Systems Theory 16 (1983), no. 1, 79-91. MR689492
[BTV17] Z. M. Balogh, J. T. Tyson, and E. Vecchi, Intrinsic curvature of curves and surfaces and a Gauss-Bonnet theorem in the Heisenberg group, Math. Z. 287 (2017), no. 1-2, 1-38. MR3694666
[BV13] A. Bacciotti and J.-C. Vivalda, On radial and directional controllability of bilinear systems, Systems \& Control Letters 62 (2013), 575-580.
[CDPT07] L. Capogna, D. Danielli, Scott D. Pauls, and Jeremy T. Tyson, An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, Progress in Mathematics, vol. 259, Birkhäuser Verlag, Basel, 2007 (English (US)).
[CE05] A. S. Cherny and H.-J. Engelbert, Singular stochastic differential equations, Lecture Notes in Mathematics, vol. 1858, Springer-Verlag, Berlin, 2005. MR2112227
[CF15] Z.-Q. Chen and M. Fukushima, One-point reflection, Stochastic Process. Appl. 125 (2015), no. 4, 1368-1393. MR3310351
[CFK17] P. Cannarsa, G. Floridia, and A. Y. Khapalov, Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign, J. Math. Pures Appl. (9) 108 (2017), no. 4, 425-458. MR3698164
[Che05] D. Cheng, Controllability of switched bilinear systems, IEEE Transactions on Automatic Control 50 (2005), no. 4, 511-515.
[CK00] F. Colonius and W. Kliemann, The dynamics of control, Systems \& Control: Foundations \& Applications, Birkhäuser Boston, Inc., Boston, MA, 2000.
$\left[\mathrm{CLH}^{+} 07\right]$ H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki, and S. Thrun, Principles of robot motion: Theory, algorithms and implementations, Vol. 22, Cambridge University Press, 2007.
[CN13] C. Camacho and A. L. Neto, Geometric theory of foliations, Birkhäuser Boston, 2013.
[Cor07] J.-M. Coron, Control and nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007. MR2302744
[CS21] D. Cannarsa and M. Sigalotti, Approximately controllable finite-dimensional bilinear systems are controllable, Systems \& Control Letters (2021), available at arXiv:2104.03375
[CW92] K. C. Carlton-Wippern, On Loxodromic Navigation, Journal of Navigation 45 (1992), no. 2, 292-297.
[DGN06] D. Danielli, N. Garofalo, and D.-M. Nhieu, Non-doubling Ahlfors measures, perimeter measures, and the characterization of the trace spaces of Sobolev functions in Carnot-Carathéodory spaces, Memoirs of the American Mathematical Society 182 (2006), no. 857.
[Dur72] A. H. Durfee, Foliations of odd-dimensional spheres, Annals of Mathematics 96 (1972), no. 2, 407-411.
[DV16] M. M. Diniz and J. M. M. Veloso, Gauss-Bonnet theorem in sub-Riemannian Heisenberg space H^{1}, Journal of Dynamical and Control Systems 22 (2016), no. 4, 807-820.
[Ell09] D. Elliott, Bilinear control systems: Matrices in action, Applied Mathematical Sciences, Springer Netherlands, 2009.
[Etn03] J. B. Etnyre, Introductory lectures on contact geometry, Topology and Geometry of Manifolds (2003), 81-107.
[FPW07] W. F. Basener, K. Parwani, and T. Wiandt, Minimal flows, Open Problems in Topology II, 2007, pp. 453-462.
[Fro77] G. Frobenius, Ueber das Pfaffsche Problem, Journal für die reine und angewandte Mathematik 1877 (1877), no. 82, 230-315.
[Gei08] H. Geiges, An introduction to contact topology, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 2008.
[GHR03] M. Guysinsky, B. Hasselblatt, and V. Rayskin, Differentiability of the Hartman-Grobman linearization, Discrete and Continuous Dynamical Systems 9 (2003), no. 4, 979-984.
[Gir00] E. Giroux, Structures de contact en dimension trois et bifurcations des feuilletages de surfaces, Inventiones mathematicae 141 (2000), no. 3, 615-689.
[Gir91] E. Giroux, Convexité en topologie de contact., Commentarii mathematici Helvetici 66 (1991), no. 4, 637-677.
[Got58] W. H. Gottschalk, Minimal sets: An introduction to topological dynamics, Bulletin of the American Mathematical Society 64 (1958), no. 6, 336-351.
[Gra92] K. A. Grasse, On the relation between small-time local controllability and normal self-reachability, Math. Control Signals Systems 5 (1992), no. 1, 41-66. MR1137191
[Gro96] M. Gromov, Carnot-Carathéodory spaces seen from within (A. Bellaïche and J.-J. Risler, eds.), Progress in Mathematics, vol. 144, Birkhäuser Basel, Basel, 1996.
[Gru00] J.-C. Gruet, A note on hyperbolic von Mises distributions, Bernoulli 6 (2000), no. 6, 1007-1020. MR1809732
[Hae57] A. Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoidess, Commentarii mathematici Helvetici 32 (1957/58), 248-329.
[Har60] P. Hartman, On local homeomorphisms of Euclidean space, Boletin de la Sociedad Matematica Mexicana (2) 5 (1960), 220-241.
[Hec76] G. Hector, Quelques exemples de feuilletages espèces rares, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, xi, 239-264.
[Hei04] J. Heinonen, Lectures on Lipschitz analysis, 2004. Lectures at the 14th Jyväskylä Summer School.
[Her62] R. Hermann, The differential geometry of foliations. II, J. Math. Mech. 11 (1962), 303-315.
[IM74] K. Itô and H. P. McKean Jr., Diffusion processes and their sample paths, Springer-Verlag, Berlin-New York, 1974. Second printing, corrected, Die Grundlehren der mathematischen Wissenschaften, Band 125. MR0345224
[Jea14] F. Jean, Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning, SpringerBriefs in Mathematics, Springer International Publishing, 2014.
[Jea17] , Stabilité et commande des systèmes dynamiques, 2nd ed., Les presses de l'Ecole Nationale Supérieure de Techniques Avancées (ENSTA), 2017.
[JS72] V. Jurdjevic and H. J Sussmann, Control systems on Lie groups, Journal of Differential Equations 12 (1972), no. 2, 313-329.
[JW13] J. Jakubowski and M. Wiśniewolski, On hyperbolic Bessel processes and beyond, Bernoulli 19 (2013), no. 5B, 2437-2454. MR3160560
[Kha10] A. Y. Khapalov, Controllability of partial differential equations governed by multiplicative controls, Lecture Notes in Mathematics, vol. 1995, Springer-Verlag, Berlin, 2010. MR2641453
[KN21] M. I. Krastanov and M. N. Nikolova, A necessary condition for small-time local controllability, Automatica J. IFAC 124 (2021), 109258, 5. MR4192998
[Kni69] F. B. Knight, Brownian local times and taboo processes, Trans. Amer. Math. Soc. 143 (1969), 173-185. MR253424
[Kre74] A. J Krener, A generalization of Chow's theorem and the bang-bang theorem to nonlinear control problems, SIAM Journal on Control 12 (1974), no. 1, 43-52.
[Lav18] S. Lavau, A short guide through integration theorems of generalized distributions, Differential Geom. Appl. 61 (2018), 42-58.
[Law74] H. Lawson, Foliations, Bulletin (New Series) of the American Mathematical Society 80 (1974).
[LD17] E. Le Donne, Lecture notes on sub-Riemannian geometry, 2017.
[Lee13] P. W. Y. Lee, On surfaces in three dimensional contact manifolds, Canadian Journal of Mathematics 65 (2013Jun), no. 3, 621-633.
[Mon02] R. Montgomery, A tour of sub-Riemannian geometries, their geodesics and applications, Mathematical surveys and monographs, American Mathematical Society, 2002.
[MS74] J. W. Milnor and J. D. Stasheff, Characteristic classes, Annals of mathematics studies, Princeton University Press, 1974.
[Nag66] T. Nagano, Linear differential systems with singularities and an application to transitive Lie algebras, J. Math. Soc. Japan 18 (1966), 398-404.
[Nov65] S. P. Novikov, Topology of foliations, Transactions of the Moscow Mathematical Society 14 (1965), 248-278.
[Per12] L. Perko, Differential equations and dynamical systems, Texts in Applied Mathematics, Springer New York, 2012.
[Rif14] L. Rifford, Sub-Riemannian Geometry and Optimal Transport, SpringerBriefs in Mathematics, Springer International Publishing, 2014.
[Rob95] C. Robinson, Dynamical systems, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. Stability, symbolic dynamics, and chaos. MR1396532
[RW00] L. C. G. Rogers and D. Williams, Diffusions, Markov processes, and martingales. Vol. 2, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 2000. Itô calculus, Reprint of the second (1994) edition. MR1780932
[RY99] D. Revuz and M. Yor, Continuous martingales and Brownian motion, Third, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, Springer-Verlag, Berlin, 1999. MR1725357
[SJ72] H. J. Sussmann and V. Jurdjevic, Controllability of nonlinear systems, J. Differential Equations 12 (1972), 95-116. MR338882
[Sma98] S. Smale, Mathematical problems for the next century, The Mathematical Intelligencer 20 (1998), no. 2, 7-15.
[Smi42] P. A. Smith, Everywhere dense subgroups of Lie groups, Bull. Amer. Math. Soc. 48 (1942), 309-312. MR6547
[Son90] E. D. Sontag, Mathematical control theory, Texts in Applied Mathematics, vol. 6, Springer-Verlag, New York, 1990. Deterministic finite-dimensional systems. MR1070569
[Ste74] P. Stefan, Accessible sets, orbits, and foliations with singularities, Proc. London Math. Soc. (3) 29 (1974), 699-713.
[Sus73] H. J. Sussmann, Orbits of families of vector fields and integrability of distributions, Transactions of the American Mathematical Society 180 (1973), 171-188.
[Sus87] H. J. Sussmann, A general theorem on local controllability, SIAM J. Control Optim. 25 (1987), no. 1, 158-194. MR872457
[Vel20] J. Veloso, Limit of Gaussian and normal curvatures of surfaces in Riemannian approximation scheme for sub-Riemannian three dimensional manifolds and Gauss-Bonnet theorem, 2020.
[Wal78] J. B. Walsh, A diffusion with a discontinuous local time, Temps locaux, 1978 (en).
[WW20] Y. Wang and S. Wei, Gauss-Bonnet theorems in the affine group and the group of rigid motions of the Minkowski plane, Science China Mathematics (2020Apr).
[Zwi63] C. Zwikker, The advanced geometry of plane curves and their applications, Dover Publications, Inc., New York, 1963. (Formerly titled: Advanced plane geometry). MR0166651
[ZZ95] I. Zelenko and M. Zhitomirskii, Rigid paths of generic 2-distributions on 3-manifolds, Duke Mathematical Journal 79 (1995).

