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Abstract

The four chapters of this thesis present original results about smooth surfaces in a 3-dimensional
contact sub-Riemannian manifold, and properties involving controllability in geometric control theory.
They are preceded by an introduction, which gives an overview of the results and the previous literature.

The topic of smooth surfaces is studied from two viewpoints. First, given a surface in a 3-dimensional
contact sub-Riemannian manifold, we investigate the metric structure induced on the surface, in the
sense of length spaces. We define a new metric coefficient at any characteristic point, which determines
locally the characteristic foliation of the surface, and we identify some global conditions for the induced
distance to be finite. In particular, we prove that the induced distance is finite for surfaces with
the topology of a sphere embedded in a tight coorientable distribution, with isolated characteristic points.

Second, we study a new canonical stochastic process on such surfaces. Precisely, employing the
Riemannian approximations with respect to the Reeb vector field of the sub-Riemannian manifold, we
obtain a second order partial differential operator on the surface arising as a limit of Laplace-Beltrami
operators. The stochastic process associated with this limiting operator moves along the characteristic
foliation induced on the surface by the contact distribution. For this stochastic process we show that
elliptic characteristic points are inaccessible, while hyperbolic characteristic points are accessible from
the separatrices. We illustrate this process with examples, and we recognise some well-known stochastic
processes appearing on certain surfaces embedded in the canonical model spaces for sub-Riemannian
structures on 3-dimensional Lie groups.

Concerning controllability, we show that a control system on a connected manifold satisfying the
local reachability property is controllable, as it was somehow implicitly expected. Herein we say that a
control systems satisfies the local reachability property if the attainable sets from any initial state are
a neighbourhood of the respective initial states, while a system is controllable if the attainable set from
every state is the entire state manifold. Quite surprisingly, the question of whether local reachability
implies controllability seems not to have been considered in the literature, despite the apparent absence
of elementary arguments justifying the implication.

Finally, we show that a bilinear control system is approximately controllable if and only if it is
controllable in R™\ {0}. We approach this property by looking at the foliation made by the orbits
of the system, and by showing that there does not exist a codimension-one foliation in R™\ {0} with
dense leaves that are everywhere transversal to the radial direction. The proposed geometric approach
allows to extend the result to homogeneous systems that are angularly controllable.



Keywords: contact geometry,  sub-Riemannian manifold, Stochastic process,  controllability,
local reachability, approximate controllability, bilinear control systems, foliations,
length space, Riemannian approximation, Gaussian curvature, Heisenberg group



Resumé

Les quatre chapitres de cette thése contiennent des résultats originaux relatifs aux surfaces dans
une variété sous-riemanienne de contact de dimension trois, et a certaines propriétés concernant la
contrélabilité en théorie géométrique du controle. Ils sont précédés par une introduction, qui donne un
apercu de ces résultats et de la littérature antérieure.

Nous avons étudié le sujet des surfaces de deux points de vue. En premier lieu, étant donnée une
surface dans une variété sous-riemannienne de contact de dimension trois, nous examinons la structure
métrique induite sur la surface, au sens des espaces de longueur. Nous définissons un nouveau coefficient
métrique en tout point caractéristique de la surface, et nous identifions des conditions globales pour
que la distance induite soit finie. En particulier, nous montrons que la distance induite est finie pour
des surfaces avec la topologie d’une sphére, plongées dans une distribution coorientable tendue, et avec
des points caractéristiques isolés.

En second lieu, nous étudions un nouveau processus stochastique sur des telles surfaces. Pré-
cisément, en utilisant ’approximation riemanienne par rapport au champ de Reeb de la structure
sous-riemanienne, nous obtenons un opérateur différentiel d’ordre deux sur la surface résultant de
la limite d’opérateurs de Laplace—Beltrami. Le processus stochastique associé avec cet opérateur se
déplace le long du feuilletage caractéristique induit sur la surface par la distribution de contact. Pour
ce processus stochastique nous montrons que les points caractéristiques elliptiques sont inaccessibles,
tandis que les points caractéristiques hyperboliques sont accessibles a travers les séparatrices. Nous
illustrons ce processus avec des exemples, et nous reconnaissons des processus stochastiques classiques
qui apparaissent sur certaines surfaces plongées dans les espaces modéles de structure sous-riemanienne
sur les groupes de Lie de dimension trois.

Quant a la contrélabilité, nous montrons qu’un systéme qui satisfait la propriété d’atteignabilité
locale dans une variété connexe est contrélable. Ci-dessus nous disons qu’un systéme de contrdle
satisfait la propriété d’atteignabilité locale si les ensembles atteignables & partir de tout état sont un
voisinage de ’état de départ, tandis que le systéme est contrélable si les ensembles atteignables & partir
de tout état coincident avec la variété entiére. Etrangement, le fait que l'atteignabilité locale implique
la controélabilité globale semble ne pas avoir été considéré dans la littérature, en dépit de ’apparente
absence d’arguments élémentaires justifiants cette implication.

Pour conclure, nous montrons qu’un systéme de controle bilinéaire est controlable de fagon approchée
si et seulement s’il est controlable en R™\ {0}. Nous étudions ce probléme en analysant le feuilletage
défini par les orbites du systéme, et en montrant qu’il n’existe pas de feuilletage de codimension un
en R™\ {0} dont les feuilles sont denses et partout transversales a la direction radiale. L’approche
géométrique ainsi proposée permet d’étendre ce résultat aux systémes homogénes qui sont controélables
angulairement.



Mots-clés : géométrie de contact, variété sous-riemanienne, processus stochastique, controélabilité,
atteignabilité locale, contrélabilité approchée, systéme de controle bilinéaire, feuilletage,
espace de longueur, approximation riemanienne, courbure de Gauss, groupe d’Heisenberg



Remerciements

J’exprime ma profonde reconnaissance & Davide BARILARI et Ugo BOSCAIN pour avoir encouragé,
dirigé, et animé mon travail pendant ces trois ans. Cette these n’aurait pas vu le jour sans leurs
enseignements, leurs conseils et leurs encouragements.

Je tiens a remercier Ludovic RIFFORD et Andrey SARYCHEV pour ’honneur qu’ils m’ont fait en
acceptant de rapporter sur ma thése, et j'exprime ma gratitude & André BELOTTO DA SILVA et &
Katrin FASSLER pour participer a ce jury.

C’est, avec plaisir que je remercie les collaborateurs et les collégues que j’ai rencontré pendant ces trois
ans, en particulier Valentina FRANCESCHI, Karen HABERMANN et Mario SIGALOTTI. Merci a Laurent
DESVILLETTES de m’avoir guidé en tant que tuteur pendant ma theése.

Lors de séminaires cela fut un plaisir d’échanger avec Yacine CHITOUR, Frederic JEAN, Roberto
MoNTI, Robert NEEL, Sebastiano N1coLUSSI GOLO, Eugenio P0zzoL1, Luca Rizz1, Tommaso ROSSI
et Emmanuel TRELAT ; certains de ces noms doivent étre remerciés également pour 'organisation de
ces séminaires, si importants pour la communauté. Un remerciement special & Enrico LE DONNE pour
avoir créé un lien avec Jyviskyla et avec qui je me réjouis de collaborer.

Une forte pensée a ceux que j’ai eu le bonheur de rencontrer dans les couloirs de 'Université de Paris.
En particulier, un chaleureux merci pour les beaux échanges & Antoine, Charazade, Maud, Maxime,
Tommaso et Willie, et & Gregoire, Mingkun et Oussama pour en plus de belles vacances ensemble. Un
grand merci également & Pierre-Cyril pour son accueil et pour ses conseils toujours pertinents.

Je voudrais remercier le laboratoire IMJ-PRG pour m’avoir offert un excellent lieu ol préparer cette
thése, et au DIM Math-Innov pour I’avoir financée. Un grand merci & Amina HARITI, sans qui les
derniéres procédures administratives auraient été insurmontables. De plus, je suis trés reconnaissant au
team CAGE d’Inria pour I'accueil et pour la belle ambiance que j’y ai trouvé. Un remerciement spécial
a la FSMP pour m’avoir amené & Paris il y a cinq ans. Mes souvenirs liés & cette ville sont riches et
variés, je le dois aux personnes que j’y ai rencontré : un grand merci & Marie-Line et & Thilina avec les
respectifs groupes de théatre, et également & Sophie avec I’équipe des bénévoles secouristes de Paris 5.

J’ai passé mes années a Paris avec la compagnie attentionnée et bienveillante de ma tante Lucia, & qui

je suis trés reconnaissant pour m’étre venue en aide dans les moments ot ¢a n’allait pas. Ma rencontre

la plus importante & Paris fut le bel Enguerrand, avec qui un jour ne passe sans que je n’apprenne
)

quelque chose. Je lui suis extrémement reconnaissant pour m’avoir accompagné et cadré dans cette

écriture, et pour m’avoir fait connaitre les aimables Odile, Pierre-Yves, Maxence, Landry et Marion.

Je ne serai jamais assez reconnaissant & Maria Cristina et a Raffaele d’avoir accepté mon déménagement,
et de m’avoir toujours réservé ma chambre quand je revenais & la maison. Enfin, je dois le plus grand
merci & Maman et & Papa, qui depuis toujours ont pris soin de me faire grandir, & la fois comme humain
tout comme mathématicien. Vous étes pour moi ma référence.






Contents

I [INTRODUCTION — en

1.1. |_Control systems associated with a family of vector ﬁelds|. . o
[T.T1T Tocal reachability and controllability] . . . . . . . . . . .. ... ... ......
[1.1.2 Orbits, distributions and Lie-brackets| . . . . . . . ... ... ... ... ....
|1.1.3  Approximate controllability for bilinear control systems| . . . . . ... ... ..

1.2. |S_ub—Riemannian manifolds| ..

1.3. |Stochastic processes on sub-Riemannian surfaces|. .

II. |ON THE INDUCED GEOMETRY ON SURFACESl

2.1. E{iemannian approximations and Gaussian curvature| .

2.2. |I_Jocal study near a characteristic point|. C e
[2.2.1 Proof of Proposition[T.14] . . . . . . . . . . ... . ... .. . ... ... ...,
[2.2.2 Proof of Proposition [1.15| . . . . . . . ... ...

2.3. |Global study of the characteristic foliationl. C e
[2.3.1 Topological structure of the characteristic foliation] . . . . . . . . ... ... ..

2.4. |Spheres in a tight contact distributionl. .o

2.5. Elxamples of surfaces in the Heisenberg structure].

2.5.2 Ellipsoids| . . . . . . ..
[2.5.3  Symmetric paraboloids|. . . . . ... ... o

2.6. |Appendix on the center manifold theorem| .

o S = W N

17

18
19

21
21
24

25
26

29

31
31
32
32
33
33

34



I1I. [STOCHASTIC PROCESSES AND DIFFUSION|

3.1. |Family of Laplace—Beltrami operators on the embedded surface|. .

3.2. |Canonical stochastic process on the embedded surfacel -

3.3. |Stochastic processes on quadric surfaces in the Heisenberg group| .o Ce
8.3.1 Paraboloid of revolution| . . . . . . . . . ...
[3.3.2  Ellipsoid of revolution| . . . . . . .. .. ...
[3.3.3  Hyperbolic paraboloid| . . . . . . ... ... ... ... ... . ... ...

3.4. [Stochastic processes on canonical surfaces in SU(2) and SL(2,R)| .

3.4.1 Special unitary group SU(2)|. . . . . .. ... ... ...
3.4.2 Special linear group SL(2,R)| . . . . .. .. ... ... ... ...
[3.4.3 A unified viewpoint|. . . . . .. ... L

IV. |APPROXIMATELY CONTROLLABLE BILINEAR SYSTEMS ARE CONTROLLABLE

4.1. |Properties of approximately controllable systems|.

4.2. |Bilinear control systems| .o

4.3. |Complementary remarksl .

V. |CONTROL SYSTEMS SATISFYING LOCAL REACHABILITY ARE CONTROLLABLE

1. -

5.3. |Complementary remarksl .

|BIBLIOGRAPHY|

36
37
40

44
45
47
50

o1
51
53
55

56
56

58
58

60

63
63

64
65
65

67

69



Chapter

Introduction

Contents

1.1. |Control systems associated with a family of vector ﬁelds| e e e e e
I1.1.1  Local reachability and controllability| . . . . . . ... .. ... ... ... ...
[1.1.2  Orbits, distributions and Lie-brackets| . . . . .. ... .. ... ... .. ...

[1.1.3  Approximate controllability for bilinear control systems| . . . . . . ... ...

1.2. [Sub-Riemannian manifolds| . .

o N O~ w N

1.3. |Stochastic processes on sub-Riemannian surfaces| e

In this chapter we present some original results about controllability in geometric control theory,
and about properties of smooth surfaces in a three-dimensional contact sub-Riemannian manifold. The
results are accompanied by the relevant literature and are proven in the forthcoming chapters.

Precisely, in Section [I.1] we introduce control systems, and we present some new relations:

- between controllability and local reachability (in Subsection |1.1.1)),

- between controllability and approximate controllability (in Subsection [1.1.3)).

The former result is discussed in Chapter [5, following my paper |[BCFS21| (joint work with U. Boscain,
V. Franceschi and M. Sigalotti), soon to be submitted for review. The latter is developed in Chapter EI
and published in |CS21] (joint work with M. Sigalotti).

Next, in Section [1.2] we present some new metric properties of surfaces embedded in 3D contact
sub-Riemannian manifolds. Indeed, we present:

- a new metric invariant K at the characteristic points (in Subsection ,
- an analysis of the length distance induced on surfaces (in Subsection |1.2.3)).

These results are discussed more extensively in Chapter [2] and published in my paper [BBC21| (joint
work with D. Barilari and U. Boscain).

Finally, in Section [I.3] we discuss the properties of a new canonical stochastic process defined on
such surfaces. These results are discussed in Chapter [3| and published in my paper [BBCH21| (joint
work with D. Barilari U. Boscain and K. Habermann).
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Notations. In what follows M is a smooth n-dimensional manifold. We denote the vector fields of M
by capital letters such as X, Y and Z. The notations X (f) = X f and X(q) indicate, respectively, the
derivative of a smooth function f in C°°(M) with respect to X, and the derivation based at a point ¢
in M defined by X. The C*°(M)-module of vector fields of M is denoted I'(T"M ), which with the Lie
bracket [-,] is a Lie algebra. The flow at time ¢ of a vector field X is denoted by e*. For notational
simplicity we assume that the vector fields are complete, i.e., their flows are defined for all ¢ in R.

1.1 Control systems associated with a family of vector fields

Let F C T'(T'M) be any set of smooth vector fields on a manifold M. Let © be a set of indices for the
family F, i.e., F = {X, | u € Q}. The control system associated to the family F is the system

p(t) = Xu(t)(p(t))a peM, Xu(t) er, (C)

where as control we use maps u € Upe, where Up. = (Jpsofu : [0,7] — Q | u piecewise constant}.
Following the vocabulary of control systems, an element u € € is called a control parameter, 2 is the
space of control parameters, points in M are states, and M is the state space.

Since (for the moment) we use piecewise constant controls, the differential equation is defined in
the classical sense, up to a discrete set of times in which the control is not continuous. Therefore, once
a control u is fixed, the solution of is determined by the initial conditions. Let us note ¢(t, p, u)
the value at time ¢ of the solution of starting from p. Precisely, consider a control u: [0,7] —
such that there exists a partition 0 =tg < t; < --- <ty = T and control parameters uj,...,u; € 2
satisfying

u(t):ui, Vte(ti,l,ti), i=1,...,k.

If t € [ti—1,t;] for a certain i = 1,...,k, then

o(t,p,u) = eltti-1)Xu; o ellisiti-2)Xui g oL 6 ot X (p),
namely ¢(¢,p,u) is constructed by concatenating the flows of the vector fields in F indexed by the
control u. The attainable set A, from a state p in M for system is the set of points reached by
solutions of starting from p using positive times; precisely,

Ap:{et’“X’“o---oe“Xl(p)|I<:€N, ti,...,tg >0, X1,..., X € F}.

Similarly, the set of points reached using positive and negative times is called the orbit O, of a state x;
precisely,
Op = {etXk oo™ (p)|keN, t1,...,t, €R, X1,..., X, € F}.

Attainable sets are of greater interest than orbits from the point of view of control theory, since they
are obtained following strictly the vector fields in F. Indeed, to follow the flow of a vector field X € F
for negative time is equivalent to follow the flow of —X, but —X need not to be in the family F. Note
that orbits and attainable sets coincide if the family F is symmetric, i.e., if —F = F.

Sometimes we want to use measurable, essentially bounded functions as controls, instead of piecewise
constant maps. When this is the case, we implicitly assume that €2 is a subset of R™, for some m € N,
and that a smooth function X : M x Q — T'M parametrises F, i.e., F = {X(-,u) | u € Q}. To adhere
to the notation in system (C]), we continue to write X, = X(-,u) for all u in Q. We denote the set of
essentially bounded controls as

Uso = | L=([0,T],9).
>0

Fixed a control u in Uy, the non-autonomous differential equation is well-posed in the space of
absolutely continuous functions. More precisely, for any given initial condition p in M, there exist
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T > 0 and a neighbourhood V of p such that ¢(¢, ¢, ) is defined for (¢,q) € [0,7] x V and absolutely
continuous with respect to time. Moreover, for ¢ € [0, 7], the flow ¢(t, -, u) restricted to V' is a local
diffeomorphism (see, e.g., |[Jeal7, Thm. 6.2] or [Son90, Thm. 1]).

In what follows U denotes one of the control set presented above. (Observe that Up. C Uso.) The
attainable set from a state p in M is written in full generality as

Ay = {6(T,p,u) | T >0, u €U, ¢(-p,u) is defined on [0, 7]},

System is said to be controllable if the attainable set from any state in M coincides with the entire
state space, i.e.,
A, =M, Vpe M.

1.1.1 Local reachability and controllability

System satisfies the local reachability property if, for each p € M the attainable set A, contains a
neighbourhood of p, i.e.,
p € Int A, Vpe M. (LR)

The property of local reachability has been studied extensively in the literature, especially in the
stronger forms of small-time local reachability (for which the attainable set A, is replaced by the set
of points reachable from p within an arbitrarily small positive time) and localised local reachability
(for which one considers the set of points reachable from p by admissible trajectories that stay in an
arbitrarily small neighbourhood of p). If both properties hold at the same time, we stay that system
satisfies small-time localised local reachability. Interest in small time local reachability is motivated,
for example, by its relation with the continuity of the minimum time function, as explained in [Sus87].
(Observe that in this reference the term local controllability is used instead of local reachability: here
we preferred the latter not to confuse it with the one used, e.g., in |[Cor07, Def. 3.2].)

Although it is somehow expected that controllability can be deduced by its local counterparts, we
found that the issue has not been really discussed in the literature. An exception is [CLHT07, Sec. 12.3],
where it is stated (without proof) that small-time localised local reachability implies controllability.
However, in some situation it is more natural to consider local reachability instead of localised local
reachability: for instance, a linear control system & = Ax + Bu satisfies localised reachability only
if the range of B is the entire state space. (See [BS83| for more results on controllability and local
reachability of control-affine systems with unbounded controls.) Thus, in Chapter |5 we prove the
following more general statement.

Theorem 1.1 [BCFS21, Thm. 1]

Assume that M is connected and that system is equipped with controls in U, or Uy. If
system satisfies the local reachability property, then it is controllable.

Our proof of Theorem is based on the following property: if system satisfies the local
reachability property, then for all p,q in M one has that p € A, if and only if ¢ € A, (see Lemma
5.2)). This property is shown by proving that the trajectories of can be retraced back by finding a
control driving their endpoints to their starting points. More precisely, assume ¢ € 4, and consider
a control u such that ¢ = ¢(T,p,u). For t in a left neighbourhood of T, the states ¢(¢, p,u) can be
reached from ¢ due to local reachability. By repeating this argument and concatenating controls, one
can find smaller and smaller times ¢ > 0 such that ¢(¢, p,u) can be reached from ¢. In order to reach
p = ¢(0,p,u) one has to show that the sequence of times ¢ found following such a procedure eventually
attains zero, unlike the situation depicted in Figure [1.1

3



Figure 1.1: When retracing back the trajectory ¢(-,p,u) the reachable sets might get smaller and
smaller and collapse to a point z before attaining x, since a priori their size is not lower semi-continuous.
Lemma shows that this situation cannot happen, proving a key step for the proof of Theorem (1.1

Remark 1.2. The argument of the proof of Theorem generalises to more general classes of controls,
provided that the control system remains well-posed in the space of absolutely continuous functions, in
the sense expressed in Section Here we decided to use essentially bounded controls rather than to
stick with piecewise constant controls in order to show that the differences which arise between controls
in U, and Uy, do not affect Theorem

We mention that if localised local reachability holds, then the proof that is controllable fol-
lows by a simpler argument than the one in Theorem (see Proposition and Remark .
Still the fact that is controllable does not follow immediately from the definitions, since reach-
ability is not a symmetric property. Indeed, the fact that one can reach an open neighbourhood of
any initial state does not imply directly that one can control the neighbourhood back to the initial state.

Finally, Theorem [I.T] implies that any sufficient condition for local reachability also yields controlla-
bility. Actually, in the literature it is more common to find conditions for (small-time) localised local
reachability, since those can be deduced from Lie algebraic arguments (see, e.g., [KN21| and references
therein).

1.1.2 Orbits, distributions and Lie-brackets

In this section we recall some important classical properties of orbits and attainable sets. First, orbits
are immersed submanifolds of M. Precisely, an immersed k-dimension submanifold is a subset S C M
with a structure of smooth k-dimensional manifold (not necessarily with the topology inherited by M)
such that the pushforward of the inclusion i : S — M satisfies dim,(7},S) =k for all p € S, i.e., the
inclusion is an immersion.

Theorem 1.3 (Orbit theorem, [Sus73|). For every ¢ € M, the orbit Oy is a connected, immersed
submanifold of M. Moreover, for all p € O,

T,0, = spang { (55 0 -0 1Y) (p) | K EN, t1,... 84 €R, X1,..., XY € F}. (L1

It follows from the orbit theorem that the orbits define a foliation, i.e., a partition of X in connected,
immersed submanifolds (called leaves), possibly of varying dimension. Furthermore, the foliation
described by the orbits is a smooth foliation, i.e., for any p in M and vector v € T, M tangent to the
leaf through p can be extended to a smooth vector field everywhere tangent to the leafs of the foliation.
Indeed, the fact that foliations arising as orbits of control systems as in are smooth is a consequence
of the orbit theorem and formula . Conversely, any smooth foliation is the orbit partition of a
control system. For this, it suffices to take as family of admissible vector fields the collection of all
vector fields that are everywhere tangent to the leaves.

Remark 1.4. In some texts the term foliation describes what we shall call here a regular foliation, i.e.,
a foliation which admits locally around each point a chart (U, z) such that z(U) can be written as

4



z(U) =V'x V" C R¥ x R"* for a fixed k € N, and such that the intersection of a leaf with U is
either empty or the countable union of sets of the form x=1(V’ x {c}) for ¢ € V. Such a chart is called
a foliated chart, and k is the dimension of the foliation.

We will call a distribution D the arbitrary assignment, for each point p € M, of a linear subspace
D, Cc T,M. Given a vector field X: M — TM we say that X is a section of D if X, € D, for all
p € M. We denote by I'(D) the set of sections of D. A distribution D is smooth if, for all points
p € M, there exist smooth sections X1,..., X} of D such that (X1)p,...,(Xg)p is a basis of D,. In
such a case, we call k the rank of D in p.

Now, define Lie F to be the smallest Lie subalgebra of I'(T'M) containing F. Precisely,
Lie F = spancoo(U){[Xl, - [Xk:thk] .. ] ’ keN, Xi,....X, € ,F}

For any family G of vector fields, denote by DY the smooth distribution defined by assigning, for all
p € M, the subspace Dg = span{X, | X € G}. Since the Lie bracket of two vector fields X and Y can
be expressed as

d
X,Y :7’ -
[ ]p n t:Oe

formula ([1.1]) for the tangent space of an orbit implies that

VY

oe

)]
D] c D7 c T,0,, YqgeM, peO,. (1.2)
We say that the control system is Lie-determined if the last inclusion in ((1.2)) is an equality, i.e.,

pDHeF — 10, (1.3)

Under some rather general hypotheses, system is Lie-determined. In this regard, let us recall some
additional definitions. As before, let G be a family of vector fields of M.

(i) G is analytic if M is an analytic manifold and, for all X € G, X is analytic.

(ii) G is locally finitely generated if for every q € M there exist an open neighbourhood U of ¢ and
finite vector fields Xi, ..., Xy in G such that G|y C spange({Xilu, ..., Xklv}-

(iii) DY is G-invariant if for all X in G one has etX (Dg) = Degtxp for all p € M and t.

The theorem of Nagano [Nag66|, the theorem of Hermann |Her62|, and the theorem of Stefan-Sussmann
[Sus73||Ste74] state that if, respectively, F is analytic, Lie F is locally finitely generated, D™¢7 is
Lie F-invariant, then system is Lie-determined. We recall here also the renewed Frobenius theorem
[Fro77| stating that if D¢ is a constant rank distribution, then system is Lie-determined and the
foliation described by the orbits is regular. For additional details to the subject we refer to |[Lav1§|.

Under the assumption that system is Lie-determined, it can be shown that orbits cannot be of
a greater dimension than attainable sets. This is the content of Krener’s theorem.

Theorem 1.5 (Krener’s theorem [Kre74]). Assume that is Lie-determined. Then, for every p in
M, the attainable set A, has a nonempty interior in the orbit O,.

The family F is said to satisfy the Lie algebra rank condition at p € M if the evaluation at p of the
Lie algebra generated by F has maximal dimension, i.e.,

Dy” = T,M. (1.4)

Remark 1.6. When M is a real-analytic manifolds and the vector fields in F are real-analytic, the
following holds true: if system satisfies the local reachability property, then F satisfies the
Lie-algebra rank condition at any point. See for instance |[SJ72, Thm. 3.1].
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1.1.3 Approximate controllability for bilinear control systems

A first result obtained studying approximate controllability is that, if system is approximately
controllable, then the foliation described by its orbits is a regular foliation of M.

Lemma 1.7 (|CS21} Lem. 4]). Assume that system is approzimately controllable. Then, the orbits
of form a regqular foliation of M with dense leaves.

The proof of this lemma, which is given in Chapter [4] follows from the lower semi-continuity of the
dimension of the orbits. Lemma provides no direct information about controllability. Indeed, there
might be only one orbit and still the attainable sets might not coincide with M. However, with the
additional hypothesis that is Lie-determined, one deduces the following.

Corollary 1.8 (|CS21, Cor. 5|). Assume that system 1s Lie-determined and approzimately control-
lable. Then, exactly one of the following alternatives holds:

(a) F satisfies the Lie algebra rank condition at all points in M; hence, system 1s controllable.

(b) There exists an integer k with 0 < k < n such that the orbits of form a regular k-dimensional
foliation of N with dense leaves.

Corollary [1.8| turns out to be useful if one can exclude the existence of a regular foliation of M with
the properties described in this might be possible thanks to the particular form of system or
some topological properties of M. This is what we managed to do for the control systems of the form

p=At)p, peR"\{0}, A{t) e M (BL)

for piecewise constant controls A : [0, +00) — M taking values in a subset M of the space M, (R)
of n X n matrices with real coefficients, n > 1. By a slight abuse of notation, we refer to control
systems such as as bilinear control systems, although the latter term usually denotes systems
for which M(t) = A+ u'(t)By + - -+ + u™(t) By, for some fixed A, By,..., By, € M,(R), with control
t = (ul(t),...,u™(t)) taking values in some subset 2 of R™. For an introduction to bilinear control
system we refer to [CKO00|EII09]. Precisely, we proved the following result.

Theorem 1.9 [CS21, Thm. 1]

Consider the bilinear control system (BL) of R”\ {0}. System (BL]) is approximately controllable
if and only if it is controllable.

The proof, which is given in Chapter [4] is as follows. First, we deduce from [BS20,[BV13] that, if the
projection of onto RP"~! is approximately controllable, then the orbits of are transversal
to the radial direction. Corollary applies since is Lie-determined due to Nagano theorem. If
is not controllable, then the orbit foliation has codimension one with leaves transversal to the
radial direction. Next, we show in Lemma that such a foliation cannot have dense leaves, giving the
desired result. As a byproduct of the above method, we extend Theorem [I.9] to angularly controllable
homogenous control systems; see Corollary

This result shows that the a priori weaker notion of approximate controllability implies controllability
with no additional assumption, other than that the systems being a finite-dimensional bilinear control
system. A possible way of applying Theorem is the following: if for a bilinear system one is able to
identify vector fields compatible with , in the sense of [AS02, Def. 8.4], which lead to approximate
controllability when added to the admissible ones, then controllability of follows without the
need of checking the Lie algebra rank condition. Such an extension argument by compatible vector
fields is at the core, for instance, of the results in [Che05|, which can therefore be improved by our
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result. In particular, Theorem implies that the hypotheses ii) and iii) on the existence of stable
and antistable equilibria can be dropped from |Che05, Theorem 4.3|. Similarly, |[Che05, Prop. 3.3 and
3.6] can be strengthened by replacing in their conclusions approximate and practical controllability by
controllability.

The result in Theorem [I.9]is in sharp contrast with the case of bilinear systems in infinite-dimension:
when the controlled operators B; appearing in the representation M(t) = A +u'(t)By + - - - 4+ u™(t) B
are bounded, these systems cannot be controllable (see [BMS82, Thm 3.6] and also [BCC20] for recent
extensions), while there exist some criteria for approximate controllability (see, e.g., [KhalO, Chap. 4
and 9] and [CFK17,BCS14]).

Theorem does not hold for general finite-dimensional systems (to which the notions of controlla-
bility and approximate controllability straightforwardly extend). Indeed, while controllability clearly
implies approximate controllability, the converse may fail to hold. A standard example can be provided
using the irrational winding of a line in the torus T", n > 2. On the other hand, the equivalence stated
in Theorem [1.9]is known to hold for some other classes of control systems. This is the case for linear
control systems, that is, systems of the form

& = Ax + Bu(t), u:[0,+00) - R™, =z eR", (1.5)

with A € M,(R) and B € Mpxm(R). Indeed, the approximate controllability of implies in
particular that the attainable set from the origin Ay is dense in R™. Since Ay is a linear space (and
in particular it is closed), it follows that Ay = R™, which is well known to be equivalent to the
controllability of due to the linear structure of the system. Few other classes of control systems
for which approximate controllability implies controllability are known: closed quantum systems on
S7=1 IBGRS15, Thm. 17]; right-invariant control systems on simple Lie groups (as it follows from
[JS72, Lem. 6.3] and |Smi42, Note at p. 312]); control systems obtained by projecting onto RP"~!
systems of the form of [BS20, Prop. 44].

1.2 Sub-Riemannian manifolds

Let F be a family of vector fields on a smooth manifold M. Assume that the distribution defined by F
has constant rank, i.e., there exists k € N such that

dimD] =k  Vpe M. (1.6)

We say that a locally Lipschitz curve v: I — M is horizontal with respect to F if 4(t) € D’ for almost
every t € I. Recall that a Lipschitz curve admits a derivative almost everywhere; e.g., see [Hei04, p. 18].
We call a curve admissible if it is Lipschitz and horizontal. In other words, a curve is admissible if and

only if for any sufficiently small intervals I’ C I there exist X1, ..., X} in F and measurable, essentially
bounded functions u',...,u*: I’ — R such that
A(t) = ut () X1 (y() + - - - + uF () Xp(y(t)),  for almost every ¢ € I'. (1.7)

This is a version of the control equation , with essentially bounded controls and symmetric control
parameters. Now, assume that a smooth scalar product ¢ has been chosen on the distribution D*. In
this case, the sub-Riemannian length of an admissible curve - is defined as

Ler(y) = /I VG, (1)

Ultimately, one would like to define the sub-Riemannian distance between two points p and ¢ in M as

dsr(p,q) = inf{Lsr(vy) | v : [a,b] — M admissible, v(a) = p, v(b) = q}. (1.9)

A property which is required is that the topology defined by dsgr should coincide with the topol-
ogy of M. This is the case when the family F to satisfy the Lie algebra rank condition at every
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point. The latter property depends uniquely on the distribution D7, motivating the following defi-
nition. A smooth constant rank distribution D is said to be bracket-generating if, for any family F
of vector fields with D = D7, the family F satisfies the Lie algebra rank condition at every point.
Finally, a sub-Riemannian structure on a manifold M consists of a smooth, bracket-generating distribu-
tion D, and a smooth scalar product g defined on D. The triple (M, D, g) is a sub-Riemannian manifold.

The above definition of sub-Riemannian manifold is not the most general one can give, but it is
sufficient for the purposes of this thesis. For a general introduction to sub-Riemannian geometry we
refer the reader to the monographs [ABB20|, [LD17|, [Jeald], [Mon02| and |Rif14]. In what follows it is
assumed that M is a three-dimensional manifold and D is a distribution of rank two.

1.2.1 Surfaces in 3D contact manifolds

From now on, the manifold M is supposed to be 3-dimensional. The distribution D is said to be
coorientable if there exists a one-form w on M such that

ker wy, = D, Vp € M. (1.10)

Under the assumption that D is coorientable, the pair (M, D) is called a contact manifold if any
one-form w satisfying locally (1.10]) satisfies also dw|p # 0, or equivalently

wAdw # 0. (1.11)

Such one-form w is called a contact form. One can verify that if (M, D) is a contact manifold then, for
every p in M and X, Xy € I'(D), one has

span{X1(p), Xa(p)} = D, = [X2, X1]p & Dp. (1.12)

In this section we recall some relevant facts about contact manifolds, and we refer to [Etn03| and
|Gei08] for an introduction to the subject.

Les S be an embedded surface in M. A point p in S is a characteristic point if the tangent space
T,S coincides with the distribution D,. The set of characteristic points of S is the characteristic set,
noted X(S). The characteristic set is closed due to the lower semi-continuity of the rank, and it cannot
contain open sets due to the contact condition. Moreover, since the distribution D is contact, the set
¥(S) is contained in a 1-dimensional submanifold of S (see Lemma and, generically, it is composed
of isolated points (see |Gei08, Par. 4.6]).

Outside the characteristic set, the intersection 7S N D is a one-dimensional distribution and defines
(due to Frobenius theorem) a regular one-dimensional foliation on S\ X(S). This foliation extends
to a smooth foliation (cf. Subsection of S by adding a singleton at every characteristic point.
The resulting foliation is the characteristic foliation of S. Characteristic foliations of surfaces in 3D
contact manifolds are studied in numerous references; in this regard we refer to [Gir91}/Gir00, Ben83).
See Figure (at the end of the current chapter) for a graphical representation of the characteristic
foliation on a sphere in the Heisenberg group.

We call characteristic vector fields the vector fields of S whose orbit partition coincides with the
characteristic foliation of S. Precisely, given an open set U in S, a vector field X is a characteristic

vector field of S in U if, for all ¢ in U,

0 if (S
spang X (q) = {0}, Hae ( ) (1.13)
T,S N Dy, otherwise,
and satisfies the condition
div X (p) # 0, VpeX(S)NU. (1.14)
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Notice that div X (p) is well-defined since X (p) = 0, i.e., p is a characteristic point, and it is independent
on the volume form; in particular div X (p) = tr DX (p). Under some classical hypothesis, one can
assure the existence of a global characteristic vector field as recalled in the following lemma. Moreover,
these hypotheses always hold locally, in an open neighbourhood of any point.

Lemma 1.10 (|Gei08, Par. 4.6]). Assume that S is orientable and that D is coorientable. Then, S
admits a global characteristic vector field; moreover, the characteristic vector fields of S are the vector
fields X for which there exists a volume form Q0 of S such that

QX,Y)=w(Y) forall Y € TS. (1.15)

Indeed, in [Gei08] it is shown that, if a vector field satisfies (L.15), then it satisfies (1.13)) and (L.14).

Reciprocally, a vector field X satisfying is a multiple of any other vector field X satisfying
for some function ¢ with ¢|gx(s) # 0; additionally, if holds, then ¢[5g) # 0; thus, X satisfies
(1.15)) with %Q as volume form of S.
Remark 1.11. Formula means that the characteristic vector fields are dual to the restrictions
of the contact forms w|g with respect to the volume forms € of S. Since the volume forms of S are
proportional by nowhere-zero functions, the same holds for the characteristic vector fields. In particular,
if X is a characteristic vector field, then also —X is a characteristic vector field.

Let us provide another way to find, locally, an explicit expression for a local characteristic vector
field. Any point in S admits a neighbourhood U in M in which there exists an orthonormal frame
(X1, X3) for D|y, and a submersion u of class C2 for which S is a level set, i.e.,

SNU={¢qeU:u(q)=0}, anddu#0onSNU . (1.16)
Observe that for any point p € U N S, one has
p € X(S) if and only if Xju(p) = Xou(p) = 0. (1.17)
Here we used that a vector V is in T'S if and only if Vu = 0. Now, the vector field X,, defined by
Xy = (Xju)Xs — (Xou) X7, (1.18)

is a characteristic vector field of S. Indeed, X,, satisfies since it follows from the definition that,
for all ¢ in S, the vector X, (q) € T;S N Dy, and X,(p) = 0 if and only if p € 3(S), due to (1.17).
Moreover, X, satisfies @ since the divergence of X, at the characteristic points is nonzero due to
the contact condition @ and the following expression

div Xu(p) = XQXlu(p) — XlXQU(p) = [XQ, Xl]u(p), A p e Z(S)

In the literature, the study of surfaces in three-dimensional contact manifolds has found a lot of
interest since, amongst others, the characteristic foliations of surfaces provide an important invariant
used to classify contact structures. Moreover, the following theorem holds.

Theorem 1.12 (Giroux, |Gei08, Thm. 2.5.22 and 2.5.23]). Let S; be closed surfaces in contact three-
dimensional manifolds (M;, D;), i = 0,1, with D; cooriented. Assume that and ¢ : Sy — Sy is a
diffeomorphism between the respective characteristic foliations. Then there is a contactomorphism

Y2 N(So) — N(S1) of suitable neighbourhoods N (S;) of Si, i.e., ¥« D1|n(s,) = Doln(sy), with¥ls, = ¢

Tight contact structures

Roughly, a distribution is tight if it does not admit an overtwisted disk, i.e., an embedding of a disk
with horizontal boundary such that the distribution does not twists along the boundary. The notion of
tight distribution will be necessary to state Theorem [1.16| However, a reader who is satisfied with the
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above definition might skip ahead.

To define an overtwisted disk, let us first consider an embedding of A = {x € R? : |z| < 1} in M,
and denote I' = 9A. Let T" be horizontal with respect to the contact distribution D, i.e., TT' C D.
Then, the normal bundle NT' = TM|p/TT can be decomposed in two ways: the first with respect to
the tangent space of A, i.e.,

Nre=TMo o TA (1.19)

and the second with respect to the contact distribution D, i.e.,
N =TM p e D (1.20)

A frame (Y7, Y2) of NT is called a surface frame if it respects the splitting , ie, Y1 e TM\TA
and Yo € TANTT; similarly, it is called a contact frame if it respects the splitting . Since the
contact distribution is cooriented near A, both bundles (1.19)) and ([1.20]) are trivial, thus one can
always find contact and surface frames.

The Thurston-Bennequin invariant of I", denoted by tb(I"), is the number of twists of a contact
frame of I with respect to a surface frame: the right-handed twists are counted positively, and the
left-handed twists negatively (cf. for instance |GeiO8| Def. 3.5.4]). Note that tb(I") is independent of
the orientation of I'. The requirement that the distribution D does not twist along the boundary of A
is equivalent to tb(0A) = 0, i.e., the Thurston—Bennequin invariant of A being zero.

An embedded disk A in a cooriented contact manifold (M, D) with smooth boundary 0A is an
overtwisted disk if OA is a horizontal curve of D, tb(0A) = 0, and there is exactly one characteristic
point in the interior of the disk. Note that the elimination lemma of Giroux allows to remove the

condition that there is only one characteristic point in the interior of the overtwisted disk, as discussed
for instance in [Gei08, Def. 4.5.2].

1.2.2 The Riemannian approximation

The construction of Riemannian approximation of a sub-Riemannian structure is a key tool used in
this thesis, and their use to define sub-Riemannian geometric invariants is a well-known technique. For
a general description of the properties of the Riemannian approximation in the Heisenberg group we
refer to [CDPTO07]. In this thesis, we use the Riemannian approximation for two purposes First to
associate with each characteristic point a real number K, as explained below in Theorem . Second,
as explained in Section [I[.3] to construct a canonical stochastic process on S.

Assume that (M, D, g) is a three-dimensional manifold equipped with a cooriented distribution D
of rank two. Under this assumption, one can fix a vector field Xy transverse to the distribution, i.e.,

span{D, Xy} = T M.

Once this choice has been made, one can extend the sub-Riemannian metric g to a Riemannian metric
¢~ by defining Xy to be unitary and orthogonal to D. The Riemannian metrics ¢°X0, for € > 0, are
the Riemannian approximations of (D, g) with respect to Xg. Precisely, for every € > 0, one has

1
<D,X0>gsxo =0, |X0|gsxo = g, Ve > 0.

To simplify the notation, once it is clear which transversal vector field has been chosen we might drop
the dependance on Xy in the superscript, writing ¢° = ¢=*X°.

Let K0 be the Gaussian curvature of S with respect to gX°. Fixed a characteristic point p € %(S),
the coefficient K will be defined as the limit for € — 0 of KXo, using a suitably normalisation of the
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Lie bracket structure on the distribution. Precisely, let BX0 be the bilinear form BX0 : D x D — R
defined by
BX¥(X,Y)=a if [X,Y]=aX, modD.

Since D is endowed with the metric g, the bilinear form BX0 admits a well-defined determinant.

Theorem 1.13 [BBC21, Thm. 1.1]

Let S be a C? surface embedded in a 3D contact sub-Riemannian manifold. Let p be a characteristic
point of S| and let Xy be a vector field transverse to the distribution D in a neighbourhood of p.
Then, in the notations defined above, the limit

~ KgXo
K, = lim d

_— 1.21
0 det B0 (1.21)

is finite and independent on the vector field Xj.

Notice that in the previous literature the Riemannian approximation is employed to define sub-
Riemannian geometric invariants outside of the characteristic set. For instance, in [BTV17| the authors
defined the sub-Riemannian Gaussian curvature at a point x € S\ X(9) as

Ks(x) = lim KXo, (1.22)
e—0

and they proved that a Gauss-Bonnet type theorem holds; here the authors worked in the setting
of the Heisenberg group, and with Xy equals to the Reeb vector field of the Heisenberg group. This
construction is extended in [WW20| to the affine group and to the group of rigid motions of the
Minkowski plane, and in [Vel20] to a general sub-Riemannian manifold. In the latter, the author linked
Ks with the curvature introduced in [DV16|, and, when 3(S) = (), they proved a Gauss-Bonnet theorem
by Stokes formula. A Gauss-Bonnet theorem (in a different setting) was also proven in [ABS08|. We
finally notice that the invariant Kg also appears in |Leel3|, where it is called curvature of transversality.
An expression for Kg is provided also in Proposition [1.18]

As we shall see, the coefficient IA(p determines the qualitative behaviour of the characteristic
foliation near a characteristic point p. Following the terminology of contact geometry (cf. for instance
|Gei08, Par. 4.6|), given a characteristic point p € %(S) and a characteristic vector field X, the point
p is called non-degenerate if det DX (p) # 0. Furthermore, p is called elliptic if det DX (p) > 0, and
hyperbolic if det DX (p) < 0. In the theory of dynamical systems, saddles and hyperbolic points are,
respectively, what we call hyperbolic characteristic points and non-degenerate characteristic points.

Proposition 1.14 (|[BBC21, Prop. 1.2]). Let S be a C? surface embedded in a 3D contact sub-
Riemannian manifold. Given a characteristic point p in X(S), let X be a characteristic vector field X
near p. Then, tr DX (p) # 0 and

~ det DX
R, = -1 (t:DX(g))Q. (1.23)

Thus, p is hyperbolic if and only if I?p < —1, and p it is elliptic if and only if IA(p > —1.

This equality links I?p to the eigenvalues of DX (p), which determine the qualitative behaviour of the
characteristic foliation around the characteristic point p. This relation is made explicit in Corollary [2.10]
for a non-degenerate characteristic point, and in Corollary for a degenerate characteristic point.
Moreover, equation shows that I?p is independent on the sub-Riemannian metric, and depends
only on the line field defined by D on S.
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— (—3/4,+00) —

Figure 1.2: The qualitative picture for the characteristic foliation at an isolated characteristic point, for
the corresponding values of K. Left to right, we recognise a saddle, a saddle-node, a node, and a focus.

1.2.3 Induced distance on surfaces

The study of the geometry of submanifolds S of an ambient manifold M with a given geometric
structure is a classical subject. A familiar example, whose study goes back to Gauss, is that of a surface
S embedded in the Euclidean space R3. In such a case, S inherits its natural Riemannian structure
by restricting the metric tensor to the tangent space of S. The distance induced on S by this metric
tensor is not the restriction of the distance of R3 to points on S, but rather the length space structure
induced on S by the ambient space.

Things are less straightforward for a smooth 3-manifold M endowed with a contact sub-Riemannian
structure (D, g). Indeed, for a two-dimensional submanifold S, the intersection 7S N D, is one-
dimensional for most points x in S; thus, T'S N D is not a bracket-generating distribution and there is
no well-defined sub-Riemannian distance induced by (M, D, g) on S. This fact is indeed more general,
as already observed in |Gro96, Sec. 0.6.B|. Nevertheless, one can still define a distance on S following
the length space viewpoint: the sub-Riemannian distance dsr defines the length of any continuous
curve v : [0,1] — M as

N
Lip(y) =supq D dsr(y(t),y(ti41) [0=to < ... <ty =14,
and one can define dg : S x S — [0, +00] by

ds(z,y) = inf{Lsr(7) | v: [0,1] = S, 7(0) =z, 7(1) = y}.

The space (S,dg) is called a length space, and dg the induced distance defined by (M,dsgr). (In the
theory of length metric spaces, the induced distance dg is called intrinsic distance, emphasising that it
depends uniquely on lengths of curves in S, see |[BBI01].) We stress that the induced distance dg is not
the restriction dsp|sxs of the sub-Riemannian distance to S.

We started the investigation by looking for necessary and sufficient conditions on the surface S so
that the induced distance dg is finite. i.e., dg(x,y) < +oo for all points z,y in S; this is equivalent to
(S,ds) being a metric space. This can be formulated through the use of the characteristic foliation of S.
Precisely, consider a continuous curve 7 : [0,1] — S. Its length is finite, i.e., Lsr(y) < 400, if and only if
v is a reparametrisation of a curve 4 horizontal with respect to D; in such case, the length of v coincides
with the sub-Riemannian length of 7. We refer to [BBIO1, Ch. 2] and |[ABB20, Sec. 3.3] for more details.
In conclusion, the distance dg(x,y) between two points z and y in S is finite if and only if there ex-
ists a finite-length continuous concatenation of leaves of the characteristic foliation of .S connecting them.
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From a local point of view, for the induced distance to be finite one needs characteristic points to
be accessible from their complement. In this regard, we were able to prove that the one-dimensional
leaves of the characteristic foliation of S which converge to a characteristic point have finite length.
Precisely, let £ be a leaf of the characteristic foliation of S; we say that a point p in S is a limit point
of £ if there exists a point ¢ in £ and a characteristic vector field X of S such that

eX(q) = p for t — +o0, (1.24)
where €' is the flow of X. In such case, we denote the semi-leaf £} (q) = {e/*(q) | t > 0}. With
the above definition, a leaf can have at most two limit points: one for each extremity. Finally, notice
that a limit point of a leaf must be a zero of the corresponding characteristic vector field X, i.e., a
characteristic point of S.

Proposition 1.15 (|[BBC21, Thm. 1.3]). Let S be a C? surface embedded in a 3D contact sub-
Riemannian manifold, and let p be a limit point of a one-dimensional leaf £. Let x € £, and X be a
characteristic vector field such that eX (x) — p for t — 4o00. Then, the length of 0 (z) is finite.

This result is a consequence of the sub-Riemannian structure being contact. Indeed, for a non-
contact distribution this conclusion is false; for instance, in [ZZ95 Lem. 2.1] the authors prove that the
length of the semi-leaves of the characteristic foliation of a Martinet surface converging to an elliptic
point is infinite.

On the global side, we determine some conditions for the induced metric dg to be finite under the
assumption that there exists a global characteristic vector field of S. In such a case, for a compact,
connected surface S with isolated characteristic points, in Proposition [2.16] we show that dg is finite in
the absence of the following classes of leaves in the characteristic foliation of S: nontrivial recurrent
trajectories, periodic trajectories, and sided contours. Those conditions are satisfied by spheres in
coorientable, tight contact spaces,

Theorem 1.16 [BBC21, Thm. 1.4]

Let (M, D,g) be a tight coorientable sub-Riemannian contact structure, and let S be a C?
embedded surface with isolated characteristic points, homeomorphic to a sphere. Then the
induced distance dg is finite.

We stress that having isolated characteristic points is a generic property for a surface in a contact
manifold. Example and Example in the Heisenberg distribution show that, if S is not a
topological sphere, then S presents possibly nontrivial recurrent trajectories or periodic trajectories,
cases in which dg is not finite. Moreover, if one removes the hypothesis of the contact structure being
tight, then a sphere S might present a periodic trajectory, hence the induced distance dg would not be
finite. The compactness hypothesis is also important, as one can see in Example

1.3 Stochastic processes on sub-Riemannian surfaces

Let (M, D, g) be a contact, cooriented sub-Riemannian space. We shall assume that the distribution
D is free, i.e., globally generated by a pair of vector fields (X1, X2) which constitute an orthonormal
frame for D oriented with respect to the volume form vol, on D defined by g. Moreover, we choose the
contact form w to be normalised so that

dw|p = volg . (1.25)

Associated with such a contact form w, we have a canonical choice of a vector field everywhere
transversal to D: this is the Reeb vector field Xy, which is the unique vector field on M satisfying

dw(Xo,) =0, and w(Xp) =1. (1.26)
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Let g%, for € > 0, be the Riemannian approximations of (M, D, g) with respect to the Reeb vector field
Xy, as described in Section . Recall that ¢ is defined by requiring (X1, X2,2X() to be a global
orthonormal frame for g°. Let S be a surface embedded in M, and assume that S is globally defined
by a submersion u in the sense of equation . Namely, one has

S={x € M:u(x) =0}, andduz#0onséS. (1.27)

This implies that the characteristic vector field X, introduced in (1.18) is defined globally on S. Let
Xs be the vector field on S\ 3(S) defined by Xg = X, /| Xy|g. Explicitly,
IS Xiu)Xg — (Xou) X
Ry = KW Xe = (Xow) Xy (1.28)
VOXaP + (Xou)?

Even though X s is expressed in terms of X1, X5 and u, it only depends on the sub-Riemannian manifold
(M, D, g), the embedded surface S and a choice of sign. Let b: S\ X(S) — R be the function given by
X
b= oY . (1.29)
V(X1u)? + (Xau)?

Similarly to the vector field X s, the function b can be understood intrinsically. Indeed, let X § be such
that (Xg, X §) is an oriented orthonormal frame for D|gy(g). Then, the function b is uniquely defined
by requiring bX § — Xp to be a vector field on S\3(S). Finally, define

Ao = X2 +bXs, (1.30)

which is a second order partial differential operator on S\ X(S). The operator Ay is invariant under
multiplications of u by nonzero functions. As stated in the theorem below, it arises as the limiting
operator of the Laplace—Beltrami operators A, of the Riemannian approximations ¢¢, for € — 0.

Theorem 1.17 (|[BBCH21, Thm. 1.1]). For any twice differentiable function f € C?(S\X(S)) compactly
supported in S\X(S), the functions Acf converge uniformly on S\X(S) to Aof ase — 0.

Following the definition in Balogh, Tyson and Vecchi [BTV17| for surfaces in the Heisenberg group,
the intrinsic Gaussian curvature g of a surface in a general three-dimensional contact sub-Riemannian
manifold is defined as the limit of the Gaussian curvatures with respect to the Riemannian metrics
ge, as described in ((1.22)). In the following proposition we derive an expression for Kg, employing the
same orthogonal frame exhibited to prove Theorem [1.1
Proposition 1.18 (|[BBCH21, Prop. 1.2]). Uniformly on compact subsets of S\3(S), we have

Kg:=lim K° = —Xg(b) — b* .
e—0

We now consider the canonical stochastic process on S\ 3(S) whose generator is %Ao. Assuming
that it starts at a certain point then, up to explosion, the process moves along the unique leaf of the
characteristic foliation picked out by the starting point. This follows from the fact that the vector field
Xg is tangent to the characteristic foliation of S. As shown by the next theorem and the following

proposition, for this stochastic process, elliptic characteristic points are inaccessible, while hyperbolic
characteristic points are accessible from the separatrices.

Theorem 1.19 [BBCH21, Thm. 1.3]

The set of elliptic characteristic points in a surface S embedded in M is inaccessible for the
stochastic process with generator 2Ag on S\ X(S).

In Section [3.3.3] we discuss an example of a surface in the Heisenberg group whose induced stochastic
process is killed in finite time if started along the separatrices of the characteristic point. Indeed, this
phenomena always occurs in the presence of a hyperbolic characteristic point.
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Theorem 1.20 [BBCH21, Prop. 1.4

Suppose that the surface S embedded in M has a hyperbolic characteristic point. Then the stochas-
tic process having generator %Ag and started on the separatrices of the hyperbolic characteristic
point reaches that characteristic point with positive probability.

Sections [3.3| and [3.4] are devoted to illustrating the various behaviours shown by the canonical stochastic
process induced on the surface S. Besides illustrating Proposition [I.20} we show in Theorem [I.21] below
that three classes of familiar stochastic processes arise when considering a natural choice for the surface
S in the three classes of model spaces for three-dimensional sub-Riemannian structures, which are the
Heisenberg group in R3, and the special unitary group SU(2) and the special linear group SL(2,R)
equipped with sub-Riemannian contact structures with scalar products differing by a constant multiple.
In all these cases, the orthonormal frame (X7, X3) for the distribution D is formed by two left-invariant
vector fields which together with the Reeb vector field X satisfy, for some k € R, the commutation
relations [Xo, X1] = Xo, [X1, Xo] = kX2, and [X2, Xo] = —k X1, with £ = 0 in the Heisenberg group,
k> 0in SU(2) and k < 0 in SL(2,R). Associated with each of these Lie groups and their Lie algebras,
we have the group exponential map exp for which we identify a left-invariant vector field with its value
at the origin.

Theorem 1.21 (|[BBCH21, Thm. 1.5|). Fiz k € R. For k # 0, let k € R with k > 0 be such that
k| =4k?. Set I = (0,%) if £ >0 and I = (0,00) otherwise. In the model space for three-dimensional
sub-Riemannian structures corresponding to k, we consider the embedded surface S parameterised as

S ={exp(rcosfX; +rsinfXs):r el and 6 € [0,27)} .
Then, the limiting operator Ag on S is given by Ag = 86722 +b(r) % , where

2k cot(kr)  if k = 4k?
b(r) = 2 if k=0

2k coth(kr) if k = —4k?

The stochastic process induced by the operator %Ao moving along the leaves of the characteristic foliation
of S is a Bessel process of order 3 if k = 0, a Legendre process of order 3 if kK > 0 and a hyperbolic
Bessel process of order 3 if k < 0.

The stochastic processes we recover here are all related to one-dimensional Brownian motion by
the same type of Girsanov transformation, with only the sign of a parameter distinguishing between
them. For the details, see Revuz and Yor |[RY99, p. 357|. Let us recall here that a Bessel process of
order 3 arises by conditioning a one-dimensional Brownian motion started on the positive real line to
never hit the origin, whereas a Legendre process of order 3 is obtained by conditioning a Brownian
motion started inside an interval to never hit either endpoint of the interval. The examples making up
Theorem [1.21] can be considered as model cases for our setting, and all of them illustrate Theorem [1.19

Finally, notice that the limiting operator we obtain on the leaves is not the Laplacian associated
with the metric structure restricted to the leaves as the latter has no drift term. However, the operator
Ay restricted to a leaf can be considered as a weighted Laplacian. For a smooth measure = h?dz on
an interval I of the Euclidean line R, the weighted Laplacian applied to a scalar function u yields

. (Of\ _*F 2W(z)df

In the model cases above, we have
sin (kr) if K = 4k?
h(r)=«qr ifk=0
sinh (kr) if K = —4k?

15



Figure 1.3: The characteristic foliation defined by the Heisenberg distribution (R?, ker(dz+3 (ydz—=zdy))
on an Euclidean sphere centred at the origin: any horizontal curve connecting points on different spirals
goes though one of the characteristic points, at the North or the South pole. The sub-Riemannian
length of the leaves spiralling around the characteristic points is finite because of Proposition [1.1
Thus, the induced distance dg is finite: this is a particular case of Theorem [1.16, The canonical
stochastic process started outside the characteristic points never hits neither the north pole nor the
south pole, and it induces a one-dimensional process on the unique leaf of the characteristic foliation
picked out by the starting point, due to Theorem @
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This chapter describes the results in the paper [BBC21|, joint work with Davide Barilari and Ugo
Boscain, and it is currently submitted for publication.

First, in Section we discuss the limit for ¢ — 0 of the Gaussian curvature K¢ of a surface S
in the Riemannian approximations ¢g°X°; this will give the asymptotic presented in Theorem at
the characteristic points. Next, we focus on the characteristic foliation of a surface S and its local
properties around a characteristic point, and we prove Proposition m (pictured in Figure for
isolated characteristic points), and Proposition m Next, in Section we discuss the global features
of the characteristic foliations which might prevent the intrinsic distance dg to be finite, and we
prove Proposition 2.16] In Section [2.4] we show that such conditions are satisfied by spheres with the
hypothesis that the distribution D is contact, proving Theorem [I.16] Finally, in Section [2.5] we discuss
some examples.
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2.1 Riemannian approximations and Gaussian curvature

Following the notations introduced in the introduction, let M be a smooth 3-dimensional manifold, and
(D, g) be a smooth contact sub-Riemannian structure on M. As in Subsection assume having
fixed a vector field X transverse to the distribution, and extend the sub-Riemannian metric g to a
family of Riemannian metrics g° = ¢g°%°, ¢ > 0, for which X is transversal to D and with norm 1/e.
Let V° be the Levi-Civita connection of (M, g%). Let us express this connection locally, in a domain
equipped with an orthonormal frame (X1, X2) of D oriented with respect to voly; thus, (€ Xg, X1, X2)
is an orthonormal basis of ¢g°. Due to the Koszul formula, for all 4, 7,k = 0,1, 2, one has

1( - <X’L’ [vaXkDgE + <X/€a [XivXngE + <Xj’ [XkaXngE)

<§§(1XJ’ Xk>gf = 2

This identity enables us to describe V° using the frame (Xo, X1, X2), which is independent from e.

This is done using the Lie bracket structure of the frame, i.e., the C* functions c¥ ;; called the structure
constants of the frame (X, X1, X2) defined by

X5, X)) = ch X1+ 3 Xo+ < Xo  fori,j=0,1,2. (2.1)

It follows immediately from Koszul formula that

0 0
Vi Xo = 01X +- 2 X, Ve >0 (2.2)

_ 1 O
V;OXl = —C81XO + § <C(1) COl + 1 > X2
< 0 Lo 1 0(1)2
Vix, X2 = —cpeXo + 5\~ 2T X3
=< 1 2 0(1)2
VXlXO :COIX]_+ 9 002+001+€72 X2

Avad _ 1 2 1
VXle — _6018 XO + 612X2

1
V;IXQ =3 (—05262 — 3 - 0?2) Xo — ch Xy
=° Lo 1 0(1)2 2
VX2X0 = 5 Co1 + Co2 — 572 X1 + CO2X2

1
V_‘EXQXI =3 (—03152 — e + 092) Xo + 25X
6;2)(2 = —63252)(0 — C%QXl.

Now, let S be an embedded surface in M. The Gaussian curvature K¢ = KXo of S in (M, ¢°) is
defined by the Gauss formula

K® = K& + det(T1°), (2.3)

ext

where, given a frame (X,Y) of T'S, the extrinsic curvature K& is
. (VAWWY =V VXY = Vi Y. X) .
Kexe = 2 [y 2 2 ’
“Xv|g6 |Y|g‘3 - <Xa Y>g£

(2.4)

and the determinant det II¢ of the second fundamental form is

115 (X, X),IIE(Y,Y)) . — (IIF(X,Y),IIF(X,Y)
det IT° = (I . )y _ < ( )ur . (2.5)
XY — (X, V)2
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In this last formula, the second fundamental form 1I¢ of S is defined as the projection of the Levi-Civita
connection V- on the orthogonal to the tangent space of the surface. Both quantities (2.4) and (2.5)
are independent on the frame (X,Y’) of T'S chosen to compute them.

2.1.1 Proof of Theorem m

To prove the theorem, we explicitly compute the asymptotic of the quantities in limit (1.21)). Let us
fix a characteristic point p, and, in a neighbourhood of p, let us fix an oriented orthonormal frame
(X1, X2) of D and a submersion u defining S in the sense of (1.16]).

The determinant of the bilinear form B;XO is homogeneous in €, and satisfies

X X
det Bj* B, (X1, X2)? _ (c}a(p))? (2.6)
2 2 g2 .

det B;XO =

where 0(1)2 is defined in (2.1). Therefore, in order to prove the convergence of the limit in (1.21), it

suffices to show that the Gaussian curvature K;XO at p diverges at most as 1/e2.
Let us start with the computation of the determinant (2.5)) of the second fundamental form at a
characteristic point. It is convenient to write the second fundamental form as
~<
IF(X,Y) = (VyY,N°)N°.
where N°¢ is the Riemannian unitary gradient of u, i.e.,

(Xlu)Xl + (XQU)XQ + 6(XOU)X0
\/(Xlu)2 + (Xou)? + e(Xou)? ‘

£

At the characteristic point p, the gradient N¢(p) simplifies to
N*(p) = € sign(Xou) Xo(p). (2.7)
To compute one needs to choose a frame of T'S; we will use the frame (F, F») with
Fi = (Xou)X; — (Xju)Xo  fori=1,2. (2.8)

This frame is well-defined for Xgu # 0; in particular, it is suited to calculate the Gaussian curvature at
the characteristic points. Recall that the horizontal Hessian of u is

X1X1u X1X2U>

Hessp (u) = <X2X1u XoXou (2.9)

Lemma 2.1. Let p € S be a characteristic point. Then, in the previous notations, for every ¢ > 0, the
determinant of the second fundamental form in p is

€ essy u CO 2

Proof. Let p be a characteristic point. Because Xju(p) = Xou(p) = 0, one can show that,

)

Vi Fj(p) = ((Xou)ﬁ}ixj + (Xou) (Xi Xou) X — (Xou)(Xinu)X()) )

for i, j = 1,2. Using formula (2.7) for N¢, one finds that only the component along Xy plays a role in
the second fundamental form in p. Thus, using the covariant derivatives in (2.2]),

X A chi + by
_ [ Xoup)] (Xinu + (Xou) 5 + (X0“)52OZ20J>
g

)
p

<ﬁ;zF]7 NE) ‘p =

for i,j = 1,2. This, together with (|F}|?|Fa|? — (F}, F»)?) ‘p = (Xou(p))*, gives the result. O
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Next, the extrinsic curvature (2.4)) is the sectional curvature of the plane 7},S in M, which is known
when Xy is the Reeb vector field and € = 1; this can be found for instance in [BBL20, Prop. 14]. In our
setting, the resulting expression for € — 0 is the following.

Lemma 2.2. Let p € S be a characteristic point. Then, for every e > 0,

Kalp) = — 12 (ea(p))? + 001).

Proof. To compute the extrinsic curvature we use the frame (X, X2) of T'M, which coincides with
T,S = D, at the characteristic point p. Then, to compute

—& ¢ —& € —€
Ko (p) = (Vx, Vx, X2 — Vi, Vix, Xo = Vix, x,) X2, X1) )
it suffices to use the expressions ([2.2)). O

Remark 2.3. Following the proof of Lemma and Lemma , the exact expressions for det I1°(p)
and K:(p) at a characteristic point p are, for all € > 0,

ext
2
1 (detHessy [ (cfy)? of 1.2 (coptch)
detIF(p) =+ 52< o IR G e 1§

1 2, +c}
=+ m (c%QXleu + C(l)lXQXQU — %(XQXlU + X1X2u)> p,
3 (s (p))? (cg1 + co)?
Kgxt(p) - - 1 1252 - 62 8(1)1032 o 4 0 ’p

2 1
Co1 — C
+ (Xg(cb) — X1(y) — (c}y)? = (3))? + 0(1)201202> ‘p_

If one chooses as transversal vector field the Reeb vector field of the contact sub-Riemannian manifold,
then one recognises the first and the second functional invariants of the sub-Riemannian structure,
defined in [ABB20, Ch. 17]. Finally, notice that these expressions are still valid for non-contact
distributions.

Proof of Theorem[I.13 In the previous notations, due to the Gauss formula (2.3)), Lemma and

Lemma the Gaussian curvature at a characteristic point p satisfies

e _ 1eXo _ (692(19))2 B det Hessy ’LL(p)
o =87 = (1 T ) O

)
Here we have used that c{y(p) Xou(p) = [X2, X1]u(p) at p, which holds due to definition (2.1)) and
Xiu(p) = Xou(p) = 0. Using formula 1} for the determinant of B;XO, one finds that

KeXo det Hess u(p)
— P — 14— L O(eY), 2.10
det B5X° [X2, X1]u(p)? ) (210
which shows that the limit 1) is finite. Moreover, IA(p is independent of Xy because the transversal
vector field X is absent in the constant term of equation (2.10)). O

Formula 1D is useful to compute IA(p explicitly, as it contains only derivatives of the submersion
u; thus, let us enclose it with the following corollary.

Corollary 2.4. Let p be a characteristic point of S. Let u be a local submersion of class C? describing
S, and let (X1, X2) be a local oriented orthonormal frame of D. Then,

det Hessy u(p)
(X2, XaJu(p)?

Note that both det Hessy u(p) and [ X2, X;]u(p) calculated at the characteristic point p are invariant
with respect to the frame (X7, X3). Moreover, we emphasise that their ratio, which appears in (2.11]),
is independent on the choice of u.

K,=—1+ (2.11)
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2.2 Local study near a characteristic point

In this section, we prove Proposition and we discuss the local qualitative behaviour of the
characteristic foliation near ¥(S) in relation to the metric coefficient K; next, we estimate the length
of a semi-leaf converging to a point, proving Proposition [1.15]

However, let us begin by mentioning a fact which was already known in the literature, but whose
proof is straightforward with setting explained in Subsection For a more general discussion on
the size of the characteristic set, we refer to |Bal03| and references therein.

Lemma 2.5 (|[BBC21, Lem. 2.1]). The characteristic set $(S) of a surface S of class C? is contained
in a 1-dimensional submanifold of S of class C'.

Proof. Tt suffices to show that for every point p in 3(S) there exists a neighbourhood V' of p such that
V NY(S9) is contained in an embedded C! curve. Let us fix a point p in ¥(S), and a neighbourhood U of
p in M equipped with a frame (X7, X5) and a function u with the properties described above. Because
of , the characteristic points in V' = U N S are the solutions of the system Xju = Xou = 0.
Due to the implicit function theorem, it suffices to show that dp(Xju) # 0 or dy(Xou) # 0. Thanks
to the contact condition, we have that [Xs, Xi]Ju(p) # 0. As a consequence, since XoXju(p) =
[X2, X1]u(p) + X1 Xou(p), at least one of the following is true: XoXju(p) # 0, or X;Xsu(p) # 0.
Assume that the first is true; then dp(Xiu)(X2) = XoXju(p) # 0. The other case being similar, the
lemma is proved. O

Let us fix a characteristic point p in X(5), and a characteristic vector field X. Since X (p) = 0,
there exists a well-defined linear map DX (p) : 7,8 — T,,S. Indeed, let e!X be the flow of X. The

pushforward of the flow gives, for every x in S, a family of linear maps ‘X : T, — Tix(5)S. Since

e!X(p) = p for all ¢, then the preceding gives the linear flow /X : T,S — T,S, whose infinitesimal

generator is the differential DX (p).

Definition 2.6. A characteristic point p € X(5) is non-degenerate if, given a characteristic vector
field X of S, the differential DX (p) is invertible. Otherwise, p is called degenerate.

Remark 2.7. Condition ([1.14)) in the definition of characteristic vector field ensures that the degeneracy
of a characteristic point is independent on the choice of characteristic vector field.

Since 1,5 coincides with D,, at the characteristic point p, we can endow 7},S with a metric; thus,
DX (p) admits a well-defined determinant and trace. Now, let X be the vector field X = a1 X1 + a2 Xo,
where (X1, X2) is an orthonormal oriented frame of D and a; € C(S), for i = 1,2. Then, in the frame

defined by (X1, X2) one has
[ Xqjar Xoay
DX = <X1a2 X2a2> : (2.12)

and the formulas for the determinant and the trace are

det DX = (Xlal)(XQ(lg) — (Xlag)(Xgal), (2.13)
trDX =divX = (Xlal) + (X2a2). (2.14)

2.2.1 Proof of Proposition m

Let us fix a characteristic point p in %(.S). We claim that the right-hand side of is independent
on the choice of the characteristic vector field X. Indeed, due to Remark [I.11] any two characteristic
vector fields are multiples by nonzero functions, thus, at characteristic point p, their differentials are
multiples by nonzero scalars; precisely, if Y = ¢X, for ¢ in C*(S), then one has DY (p) = ¢(p)DX (p).
Thus, the claim follows because both determinant and trace-squared are homogenous of the degree two.
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Thus, we fix a local submersion u defining S near p, and the characteristic vector field X; =
(X1u) X9 — (Xou) X1 defined in ([1.18). Using expression (2.12) for the differential of a vector field, we
get

X1 Xou(p) —Xa2Xou(p)
DX
7(p) = (Xleu( ) XoXju(p)

Thus, using expressions (2.13) and (2.14)) for the determinant and the trace, we find that det DX ¢(p) =
det Hessg u(p), and tr DXf(p) = [Xg, X1]u(p). In conclusion,

det DX;(p)  det Hessp u(p)
tr DXy(p)?  [Xz, Xi]u(p)?

which, together with Corollary 2.4] gives the desired result.
U

The eigenvalues of the linearisation DX (p) of a characteristic vector field X can be written as a
function of K, by rearranging equation (1.23), as in the following corollary.

Corollary 2.8. In the hypothesis of Proposition let A\t (X,p) and A\_(X,p) be the two eigenvalues
of DX (p). Then

1
Ae(X,p) = tr DX(p)<2 + —Z R > (2.15)
Proof. Let us note Ax = Ay (X,p), and o = tr DX (p). Equation (1.23)) reads

R, :71+)\+)\,

Using that A4 + A_ = «, equation (1.23) implies that the eigenvalues satisfy the equation 22 — az +
a?(Kp + 1) = 0, which implies (2.15). O

Remark 2.9. It is possible to choose canonically a characteristic vector field with trace 1. Indeed, in
the notations used to define X, in ([1.18)), let us define the characteristic vector field

(Xlu)Xg — (XQU)Xl
Zf '

Xg = (2.16)
where Z is the Reeb vector field of the contact form w of D normalised as in . Recall that the
Reeb vector field was defined in as the unique vector field satisfying w(Z) =1 and dw(Z,-) = 0.
The vector field Xg is a characteristic vector field in a neighbourhood of p because it is a nonzero
multiple of Xy near 3(S5), since Zu(p) = [X2, Xi]u(p) # 0. Using the latter, one can verify that
div Xg(p) = tr DXg(p) = 1.

It is worth mentioning that the vector field Xg is independent on w and on the frame (X1, X2), i.e
it depends uniquely on S and (M, D, g). Moreover, the norm of Xg satisfies |X5];1 = |ps|, where pg
is the degree of transversality defined in |Leel3|; in the case of the Heisenberg group, pg coincides with
the #maginary curvature introduced in [AF07,|AF08].

Expression ([2.15)) for the eigenvalues of the linearisation DX (p) implies the following relations
between the elgenvalues and the metric coefficient K

(i) IA( —1 if and only if A+ € R* with different signs;
(i1) K
(111) —1 < IA(p < —3/4 if and only if Ay € R* with same sign;

= —1if and only if A\_ =0 and A\, € R*;

(iv) —3/4 < K, if and only if R(OA+) # 0 # S(Ax) and A_ = A,
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Notice that the characteristic point p is degenerate if and only if K, = —1, which is case

Assume that p is a non-degenerate characteristic point. Then, the linear dynamical system defined
by DX (p) is a saddle, a node, and a focus respectively in case and . In these cases there
exists a local C''-diffeomorphism near p which sends the flow of X to the flow of DX (p) in R?, i.e.,
the flows are C'-conjugate, as proven by Hartman in [Har60|. For this theorem to hold, one needs the
characteristic vector field X to be of class C2. For this reason, in the following corollary we assume the
surface S to be of class C3.

Corollary 2.10. Assume that the surface S is of class C®, and let p be a non-degenerate characteristic
point in X(S). Then, K, # —1, and the characteristic foliation of S in a neighbourhood of p is
C'-conjugate to

- a saddle if and only if I?p < —-1;
- a node if and only if —1 < IA(p < —3/4;
- a focus if and only if —3/4 < I?p.
The cases are depicted, respectively, in the first, third and fourth image in Figure[1.9 in Subsection[1.2.3

Remark 2.11. For surfaces of class C?, i.e., with characteristic vector fields of class C', one can
use the Hartman-Grobman theorem, by which one recovers a C%-conjugation to the corresponding
linearisation. However, under this hypothesis, a node and a focus become indistinguishable. For the
Hartman-Grobman theorem we refer to [Perl2, Par. 2.8]. Finally, for a C*° surface some informations
can be found in [GHRO3J.

Next, if p is a degenerate characteristic point, then we are in case Thus, I?p = —1, and
the differential DX (p) has a zero eigenvalue with multiplicity one. In this situation, the qualitative
behaviour of the characteristic foliation does not depend uniquely on the linearisation, but also on the
nonlinear dynamic along a center manifold, i.e., an embedded curve C C S with the same regularity
as X, invariant with respect to the flow of X, and tangent to the zero eigenvector of DX (p). The
analogue of Corollary is the following.

Corollary 2.12. Assume that the surface S is of class C?, and let p be a degenerate characteristic
point in X(S). Then, K, = —1, and the characteristic foliation in a neighbourhood centred at p is
CC-conjugate at the origin to the orbits of a system of the form

{ U= gu) (2.17)

V="

for a function ¢ with ¢(0) = ¢'(0) = 0. If p is isolated, then the characteristic foliation described in
(2.17) at the origin is either a saddle, a saddle-node, or a node; those cases are depicted, respectively,
in the first, second, and third image in Figure[1.9

The proof of Corollary follows from considerations on the center manifold of the dynamical
system defined by X, which we recall in Section [2.6

Remark 2.13. A node and a focus are not distinguishable by a conjugation C°. However, the center
manifold of the characteristic point p is an embedded curve of class C!, thus it does not spiral around
p. Therefore, the existence of a center manifold gives further properties then what is expressed in

Corollary 2.12]

To justify the last sentence of Corollary let us get a sense of the qualitative properties of a
system as (2.17). The line {v = 0}, parametrised by u, is a center manifold of (2.17)), and the function ¢
determines the dynamic of (2.17)); this illustrates the fact that the nonlinear terms on a center manifold
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determine the dynamic near a degenerate characteristic point.

The equilibria of occur only in {v = 0}, i.e., on a center manifold, and a point (u,0) is an
equilibrium if and only if ¢(u) = 0. Thus, if the characteristic point p is isolated, then ug = 0 is an
isolated zero of ¢. In such case, let us note ¢ = ¢|,>0 and ¢~ = ¢|,<0, and without loss of generality
let us suppose that the signs of ¢+ and ¢~ are constant.

- If 7 > 0 and ¢~ < 0, then the origin is a topological node.
- If ¢ < 0 and ¢~ > 0, then the origin is a a topological saddle.

- If T and ¢~ have the same sign, then the two half spaces {u > 0} and {u < 0} have two different
behaviours: one is a node, and the other one is a saddle. This gives the characteristic foliation
called saddle-node.

Remark 2.14. For an isolated characteristic point, combining Corollary and Corollary 2.12] we
obtain the four characteristic foliations depicted in Figure [1.2

2.2.2 Proof of Proposition m

In this section we prove the finiteness of the sub-Riemannian length of a semi-leaf converging to a
point. Since we are interested in a local property, it is not restrictive to assume the existence of a
global characteristic vector field X of S.

Let ¢ be a one-dimensional leaf of the characteristic foliation of S, and € ¢ such that !X (z) — p
as t — +o00. The limit point p has to be an equilibrium of X, i.e., X (p) = 0, hence p is a characteristic
point of S. Let U be a small open neighbourhood of p in S for which we have a coordinate chart
®: U — B C R? with ®(p) = 0, where B is the open unit ball. Let y be the point of last intersection
between €% () and the boundary U. Since Lsp((% () = Lsr(€|j3,)) + Lsr(0% (y)) and Lor (€] ) is
finite, it suffices to show that Lsr(¢£%(y)) is finite. We claim that there exists a constant C' > 0 such
that

1
=Vl < VI, <CVle ¥V eDNTS|, (2.18)

where we have dropped ®, in the notation. Indeed, let g be any Riemannian extension of g on the
surface S (for example § = g*°|g). Since g is an extension, one has |v|, = |v|; for all v in DN TS.
Equivalence follows from the local equivalence of g with the pullback by ® of the Euclidean
metric of R2. Now, inequality implies that

+00 too
Lsr(tx(y) = / X (e (y))]g dt < C/ X (" (y))lpe dt. (2.19)
0 0

At this point the proof of the finiteness of the sub-Riemannian length of f} (y) differs depending on
whether p is a non-degenerate or a degenerate characteristic point.

First, assume that p is a non-degenerate characteristic point. Since p is non-degenerate, then
the set of point w with e'* (w) — p for t — +o0o form a manifold, called the stable manifold at p
for the dynamical system defined by X. In our case, since !X (y) — p for t — 400, the semi-leaf
6} (y) is contained in the stable manifold at p. Moreover, the stable manifold convergence property,
precisely stated in [Per12) Par. 2.8], shows that each trajectory inside the stable manifold converges
to p sub-exponentially in ¢. Precisely, if « satisfies |R(A+(p, X))| > «, then there exists constants
C,tg > 0 such that

e (y) — plgz < Ce o vVt > t. (2.20)

Since X (p) = 0, for all ¢ > 0 one has
X (@ @)z = [X (@ 1) = X(p)]ge < sup IDX(@)]] e (4) — pleo-
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Due to the inequality (2.19) and (2.20)), this shows that Lsg (€% (y)) is finite.

Next, assume that p is a degenerate characteristic point. As we said in the introduction of
Corollary [2.12] there exists a center manifold C at p for the dynamical system defined by X. The
asymptotic approximation property of the center manifold, recalled in Proposition shows that if a
trajectory converges to p, then it approximates any center manifold exponentially fast. Precisely, since
e!X(y) — p, then there exist constants C,a,ty > 0 and a trajectory eX (z) contained in C, such that

X (y) — X (2)|ge < Ce ™™ Vit >t (2.21)
The triangle inequality implies that
X (e () [re < 1X (¢ (1) = X (" (2) g2 + | X (e (2)) |g2- (2.22)

Due to inequality (2.19)), to prove that Lsg(¢%(y)) is finite, it suffices to show that the two terms on
the right-hand side of (2.22)) are integrable for ¢ > 0. Thanks to (2.21) and

X (e (y) = X (" (2))]m2 < sup [| DX e (y) — ¥ (2) g2,

the first term in ([2.22) is integrable. Next, because !X (z) is a regular parametrisation of a bounded
interval inside a C! embedded curve (the center manifold C), then its derivative |X (e!X(2))|g2 is
integrable. O

Remark 2.15. Let X be a characteristic vector field of a compact surface S. If the w-limit set with
respect to X of a non-periodic leaf ¢ contains more then one point, then LSR(E}) = +o00. Therefore, if
a leaf ¢ does not converge to a point in any of its extremities, then the points in £ have infinite distance
from the points in S\ ¢.

In particular, if the characteristic set of a surface .S is empty, then the induced distance dg is not
finite. For a discussion on non-characteristic domains we refer to [DGNO06, Ch. 3].

2.3 Global study of the characteristic foliation

The main goal of this section is to identify a sufficient condition for the induced distance dg to be
finite. As explained in the introduction, this is done by excluding the existence of certain leaves in the
characteristic foliation of S, as in Proposition In this section we assume the existence of a global
characteristic vector field X of S.

The leaves the characteristic foliation of S are precisely the orbits of the dynamical system defined
by X, therefore we are going to call them trajectories, stressing that they are parametrised by the flow
of X. Moreover, the vector field X enables us to use the notions of w-limit set and a-limit set of a
point y in S, which are, respectively,

wly, X) = {q es ‘ 3 t, — +oo such that e"*(y) — q}, a(y,X) = w(y, —X).

The points y in a leaf ¢ have the same limit sets, thus one can define w(¢, X) and a(¢, X).

Proposition 2.16. Let S be a compact, connected surface C? embedded in a contact sub-Riemannian
structure. Assume that S has isolated characteristic points, and that the characteristic foliation of
S is described by a global characteristic vector field of S which does not contain any of the following
trajectories:

- nontrivial recurrent trajectories,

- periodic trajectories,
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- stded contours.
Then, dg is finite.

Let us give a formal definition of these objects. A periodic trajectory is a leaf of the characteristic
foliation homeomorphic to a circle. A periodic trajectory has infinite distance from its complementary,
hence it is necessary to exclude its presence for dg to be finite.

Next, a leaf ¢ is recurrent if ¢ C w(¢,X) and ¢ C «(¢, X). A nontrivial recurrent trajectory is a
recurrent trajectory which is not an equilibrium nor a periodic trajectory. Because the w-limit and the
o-limit set of a nontrivial recurrent trajectory contains more then one point, then, due to Remark
those trajectories have infinite distance from their complementary.

Lastly, a sided contour is either a left-sided or right-sided contour. A right-sided contour (resp. left-
sided) is a family of points p1,...,ps in 3(S) and trajectories 1, ..., {5 such that:

- forall j=1,...,s, we have w({;, X) = pj = a(lj4+1,X) (where {11 = {1);

- for every j = 1,...,s, there exists a neighbourhood U; of p; such that U; is a right-sided
hyperbolic sector (resp. left-sided) for p; with respect to £; and £;41.

Let us give a precise definition of a hyperbolic sector. Note that, given a non-characteristic point = € S,
and a curve T going through x and transversal to the flow of X, the orientation defined by X defines
the right-hand and the left-hand connected component of T\ {z}, denoted 7" and T" respectively.

Definition 2.17. Let p be a characteristic point, and ¢; and ¢5 be two trajectories such that w(f;, X) =
p = a(f2,X). A neighbourhood U of p homeomorphic to a disk is a right-sided hyperbolic sector
(resp. left-sided) with respect to ¢1 and ¢ iu, for every point z; € ¢; N U, for i = 1,2, there exists a
curve T; going through x; and transversal to the flow of X such that:

- for every point y € T7 (resp. T}) the positive semi-trajectory ¢4 (y) starting from y intersects T3
(resp. T%) before leaving U;

- the point of first intersection of £ (y) and T4 (resp. T%) converges to x2, for y — 1.

Figure 2.1: The illustration of a right-sided hyperbolic sector

Note that a right-sided hyperbolic sector for X is a left-sided hyperbolic sector for —X. An
illustration of hyperbolic sector can be found in Figure [2.1] an example of sided contours can be found
in Figure and for the general theory we refer to [ABZ96, Par. 2.3.5].

2.3.1 Topological structure of the characteristic foliation

Now, assume that S does not contain any nontrivial recurrent trajectories. To prove Proposition [2.16
we are going to use the topological structure of a flow. We resume here the relevant theory, following
the exposition in [ABZ96, Par. 3.4].

The singular trajectories of the characteristic foliation of S are precisely the following:
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parabolic sector

Figure 2.2: The sectors of an isolated equilibrium of a dynamical system.

- characteristic points;
- separatrices of characteristic points (see [ABZ96| Par. 2.3.3]);
- isolated periodic trajectories;

- periodic trajectories which contain in every neighbourhood both periodic and non-periodic
trajectories.

The union of the singular trajectories is noted ST'(.S), and it is closed. The open connected components
of S\ ST(S) are called cells. The leaves of the characteristic foliation of S contained in the same cell
have the same behaviour, as shown in the following proposition.

Proposition 2.18 (|[ABZ96, Par. 3.4.3]). Assume that the flow of X has a finite number of singular
trajectories. Let R be a cell filled by non-periodic trajectories; then:

(i) R is homeomorphic to a disk, or to an annulus;
(ii) the trajectories contained in R have all the same w-limit and o-limit sets;
(iii) the limit sets of any trajectory in R belongs to OR;
(iv) each connected component of OR contains points of the w-limit or a-limit sets.
Using this proposition, we show the following lemma.

Lemma 2.19. Let S be surface satisfying the hypothesis of Proposition[2.16 . Then, for every cell R
of the characteristic foliation of S, we have that

ds(z,y) < 400 Vz,y € RUOR.

Proof. Since the surface S is compact and the characteristic points in 3(S) are isolated, there is a
finite number of characteristic points. Moreover, there are no periodic trajectories. This implies that
there is a finite number of singular trajectories, hence we can apply Proposition [2.18]

Let R be a cell of the characteristic foliation of S, and let I" be one of the connected components
of the boundary OR (of which there are either one or two, due to Proposition . The curve I'
is the union of characteristic points and separatrices. If all characteristic points have a hyperbolic
sector towards R (right-sided or left-sided), then I' would be a sided contour, which is excluded.
Therefore, there exists a characteristic point p € T" without a hyperbolic sector towards R. As shown in
[ALGM73, Par. 8.18], around an isolated equilibrium there are only the three kinds of sectors depicted
in Figure 2.2} Since there is no elliptic sector due to Remark [2.14] the point p has a parabolic sector
towards R.

Due to Proposition the point p is the w-limit or the a-limit of every trajectory in R. Then,
for every point x € R, there exists a semi-leaf E}(a:) or £F () starting from = and converging to p.
Due to Proposition , this semi-leaf has finite sub-Riemannian length, hence dg(z, p) is finite.
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Figure 2.3: How to connect the points of a cell with the points in the boundary.

Next, for every point y € I', note that

ds(w,y) < ds(x,p) +ds(p,y).

We have already proven that dg(x,p) is finite, and the same holds for dg(p,y). Indeed, one can find a
horizontal curve of finite length connecting p and y using a concatenation of the separatrices contained
in IT".

If the boundary of R has a second connected component, then the above argument holds also for
the other connected component because it suffices to repeat the above argument for it. Thus, we have
shown that

ds(z,y) < +o0 Vx€eR, yeoR,

which implies the statement of the lemma. O

Lemma 2.20. Let S be surface satisfying the hypothesis of Proposition|2.16, Then, for every x in S,
there exists an open neighbourhood U of x such that, for all y in U,

ds(z,y) < +o0.

Proof. Let x be a point of S. If x does not belong to the union of the singular trajectories, then it is
in the interior of a cell R. Thus, due to Lemma [2.19] one can choose U = R. Otherwise, the point x
belongs to a separatrix, or it is a characteristic point of S.

Assume that x belongs to a separatrix I'. Then, there exists a neighbourhood U of x which is
divided by I' in two connected components. Those two connected components are contained in some
cell R; and R, which contain I' in their boundary. For every y € U, then either y € R;, for i = 1,2,
ory € I'. If y € R;, then it suffices to apply Lemma [2.19] Otherwise, if y € ', the separatrix I" itself
connects x and y.

Finally, assume that z is a characteristic point. Due to Corollary Remark and Corol-
lary there exists a neighbourhood U of x in which the characteristic foliation of S is topologically
conjugate to a saddle, a node or a saddle-node. Thus, one can repeat the same argument as before: for
every y € U, if y belongs to a cell then one applies Lemma [2.19} otherwise, if y belongs to a separatrix
one can connect x and y directly. O

The proof of Proposition [2.16]is a corollary of Lemma, [2.20

Proof of Proposition[2.16 . The property of having finite distance is an equivalence relation on the
points of S. Because of Lemma [2.20] the equivalence classes are open. Thus, because S is connected,
there is only one class. O
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Figure 2.4: An embedded polygon which bounds a right-sided contour

2.4 Spheres in a tight contact distribution

In this section we prove Theorem [I.16] i.e., in a tight coorientable contact distribution the topological
spheres have finite induced distance. This is done by showing that the hypothesis of Proposition [2.16
are satisfied in this setting.

An overtwisted disk, precisely defined at the end of Section [1.2.1] is an embedding of a disk with
horizontal boundary such that the distribution does not twist along the boundary. A contact distribution
is called overtwisted if it admits a overtwisted disk, and it is called tight if it is non-overtwisted.

Remark 2.21. Note that if the boundary of a disk is a periodic trajectory of its characteristic foliation,
then the disk is overtwisted. Indeed, since a periodic trajectory does not contain characteristic points,
then the plane distribution never coincides with the tangent space of the disk, thus the distribution
can’t perform any twists.

Lemma 2.22. Let (M, D) be a tight contact 3-manifold, and S an embedded surface with the topology
of a sphere. Then, the characteristic foliation of S does not contain periodic trajectories.

Proof. Assume that the characteristic foliation of S has a periodic trajectory £. Then, because ¢ does
not have self-intersections, the leaf £ divides S in two topological half-spheres A and As. The disks
Ay, for i = 1,2, are overtwisted, which contradicts the hypothesis that the distribution is tight because
Remark 2271 O

Now, let us discuss the sided contours.

Lemma 2.23. Let (M, D) be a tight contact 3-manifold, and S C M an embedded surface with the
topology of a sphere. Then the characteristic foliation of S does not contain sided contours.

Proof. Assume that the characteristic foliation presents a sided contour I'. Its complementary S\I" has
two connected components, which are topologically half-spheres. Let us call A the component on the
same side of ', i.e., if I" is right-sided (resp. left-sided) then A is on the right (resp. left). For instance,
if " is right-sided, then the characteristic foliation of A looks like that of the polygon in Figure 2.4]

Let p be one of the vertices of A, let {1 and #5 be the separatrices adjacent to p, and let U be
a neighbourhood of p such that we are in the condition of Definition 2.I7} Let us fix two points
x; € £; NU, for i = 1,2. Due to the definition of hyperbolic sector, in a neighbourhood of z; the leaves
pass arbitrarily close to xs.

We are going to give the idea of how to perturb the surface near 1 and x2 so that the separatrices
¢1 and {5 are diverted to the same nearby leau, therefore bypassing p. In other words, via a C*°-small
perturbation of S supported in a neighbourhood of x1 and 2, we obtain a sphere which contains a
sided contour with one less vertex, see Figure [2.5] By repeating such perturbation for every vertex, one
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Figure 2.5: The characteristic foliation of the perturbed surface.

obtains a new surface with a periodic trajectory in its characteristic foliation, which is excluded due to
Lemma [2.22]

Consider the Heisenberg distribution (R3, ker(dz + 3(ydz — zdy)). Let P be the vertical plane
P = {x = 0}, and ¢ a point in P contained in the y-axis. As one can see in Example , the
characteristic foliation of P is made up of parallel horizontal lines.

Locally, it is possible to rectify the surface .S into the plane P using a contactomorphism of the
respective ambient spaces, as explained in the following lines. Due to the rectification theorem of
dynamical systems, the characteristic foliation of S in a neighbourhood of x; is diffeomorphic to that
of a neighbourhood of ¢ in P. A generalisation of a theorem of Giroux |Gei08, Thm. 2.5.23] implies
that the C'-conjugation between the characteristic foliations of the two surfaces can be extended, in a
smaller neighbourhood, to a contactomorphism. Precisely, there exists a contactomorphism ) from a
neighbourhood V' C M of x1 to a neighbourhood of ¢ in R?, with 4(S) C P.

For what it has been said above, the image of /1 by v is contained in the y-axis. By creating a
small bump in P after the point ¢, we will be able to divert the leaf going through ¢ to any other
parallel line. Precisely, for any curve v(t) = (z(t),y(t)), defining

t
o) = » / £(s)/(s) — y(s)2'(s)ds Vb€ [tr,ha],

1

we obtain a horizontal curve (z(t), y(t), z2(t)). Now, let v be a smooth curve which joins smoothly to
the y-axis at its end points y(¢1) = g and (t2), and let Q be the set between v and the y-axis. One
can verify that z(t2) = Area (Q), where the area is a signed area. By choosing an appropriate curve 7,
we can connect the y-axis from ¢ to any other parallel line in P via a horizontal curve (Figure .
Next, by creating a small bump in P in order to include this horizontal curve one has successfully
diverted the leaf. This procedure can be done C*°-small, provided one wants to connect to parallel
lines sufficiently close to the y-axis. Thus, one can make sure that no new characteristic points are
created. Finally, this perturbation has to be transposed to a perturbation of S using 1.

The same argument has to be repeated mutatis mutandis in a neighbourhood of x2, ensuring that
one connects xo exactly to the leaf coming from x1. This is possible due to the continuity property of
a hyperbolic sector, which ensures that the leaf coming from x; intersects the domain of the rectifying
contactomorphism of xs. O

We can finally prove Theorem [I.16]

Proof of Theorem[1.16 The surface S admits a global characteristic vector field, due to Lemma [T.10}
Next, a surface with the topology of a sphere doesn’t allow flows with nontrivial recurrent trajectories,
see [ABZ96, Lem. 2.4]. Indeed, from a nontrivial recurrent trajectory one can construct a closed curve
transversal to the flow which does not separate the surface, which contradicts the Jordan curve theorem.
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Figure 2.6: The lift to an horizontal curve connecting different leaves.

Then, Lemma [2.22| and Lemma [2.23 imply that the flow of a characteristic vector field of S does not
contain periodic trajectories and sided contours, thus the hypothesis of Proposition [2.16] are satisfied.
Consequently, dg is finite. O

2.5 Examples of surfaces in the Heisenberg structure

In this section we present some examples of surfaces in the Heisenberg sub-Riemannian structure, that
is the contact, tight, sub-Riemannian structure of R? for which (X1, X3) is a global orthonormal frame,
where

X1 =0, —y/2 0., Xo =0y +1x/20,.

If (u,v) = (x(u,v),y(u,v), z(u,v)) is a parametrisation of a surface S, then the characteristic vector
field X in coordinates u, v becomes

_ y_ z)ﬁ ( y_ z)é 9 9
X = (Zv+xv2 yv2 8u+ Zu+xu2 yu2 o’ (3>

where have used the subscripts to denote a partial derivative. When the surface is the graph of a
function S = {z = h(x,y)}, then in the graph coordinates

K= (oo g ()

and, at a characteristic point p = (x, vy, z), the metric coefficient IA(p is computed by

~

Ky = _3/4 + agach(xa y) 6§yh(x7 y) - agzyh(x’ y) aggazh(xa y)

2.5.1 Planes.

Let us consider affine planes in Heisenberg. Thanks to the left-invariance, it is not restrictive to consider
a plane P going throughout the origin. Thus,

P ={(z,y,2) € R® | ax + by + cz = 0} with (a, b, c) # (0,0,0).

If ¢ =0, i.e., the plane is vertical, then P does not contain characteristic points. Every characteristic
vector field is parallel to the vector (b, —a, 0), therefore the characteristic foliation of P consists of
lines that are parallel to the xy-plane. This implies that points with different z-coordinate are not at
finite distance from each other, see Figure (left).

Otherwise, if ¢ # 0, then P has exactly one characteristic point p = (—2b/c,2a/c,0). One has that
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Figure 2.7: The qualitative picture of the characteristic foliation of a vertical plane (left), and of a non-vertical
plane (right).

Thus, because of formula ([2.15)), there is one eigenvalue of multiplicity two. Due to Corollary the
characteristic foliation of P has a node at p. An explicit computation of Xg shows that

_41-p
2

which shows that the characteristic foliation of P is composed of Euclidean half-lines radiating out of p.
The metric dp induced by the Heisenberg group on P satisfies the following relation: for all ¢,q¢" € P,

one has
z,y) — (@, y)|ge, if(g—p) ) (d —p
dp (4, ) = (2, y) — ( y)/h@z ( .)//( )
dp(q,p) +dp(q',p), otherwise,

Xs(q) VqeP,

where we have written ¢ = (z,y, 2) and ¢ = (2/,9/, 2"). This distance is sometimes called British Rail
metric. See Figure (right).

2.5.2 Ellipsoids

Fix a,b,c > 0, and consider the surface & = &, . defined by

2 2 2
_ 3|2 Y c _
Ea,b,c—{(x,y,z)ER (12+b2+02_1_0}'

This surface has exactly two characteristic points p; = (0,0, ¢) and ps = (0,0, —c), respectively at the
North and the South pole. For both points, one has

~ 3 c?

Koo = =31
Because of Corollary [2.10] the characteristic foliation of £ spirals around the two poles, as in Figure [1.3
Due to Proposition the spirals converging to the poles have finite sub-Riemannian length, thus the
length distance dg is finite. Indeed, dg is realised by the length of the curves joining the points with
either the North, or the South pole. Here, the finiteness of dg is also a particular case of Theorem

i=1,2.

2.5.3 Symmetric paraboloids

Let a € R, and consider the paraboloid P, with
Po={(z,y,2) eR® | z=a(2® + %) }.
The origin p is the unique characteristic point of P,. Note that
= 3
K,=-=+4d*
p 4 + 4a s

therefore the characteristic foliation is a focus.
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Figure 2.8: A leaf of the characteristic foliation of two Horizontal tori. On the left-hand side the leaf is
periodic, and on the right-hand side there is a portion of an everywhere dense leaf .

2.5.4 Horizontal torus

Fix R > r > 0, and consider the torus parametrised by
®(u,v) = ((R+rcosu)cosv, (R+ rcosu)sinv, rsinu).

This is the torus obtained by revolving a circle of radius 7 > 0 in the xz-plane around a circle of radius
R > r surrounding the z-axis. Using formula , a characteristic vector field X in the coordinates
(u,v) is
(R+7rcos(u))* @  rcos(u) 0
2 du 2
It is immediate to see that the characteristic set is empty. Thus, no point can be a limit point of
any leaves of the characteristic foliation; due to Remark this implies that the length distance is
infinite.

X = (2.24)

Lemma 2.24. The characteristic foliation of a horizontal torus is filled either with periodic trajectories,
or with everywhere dense trajectories.

Proof. Using expression ([2.24)), in the coordinates u, v the trajectories of X satisfy

L= rcos(u))?
Ty (2.25)

Because the Heisenberg distribution and the horizontal torus are invariant under rotations around the
z-axis, the same applies to the characteristic foliation. Thus, the solutions of are v-translations
of the solution 7o(t) = (u(t),v(¢)) with initial condition ~y(0) = (0,0).

Note that (r+ R)2/2 > u(t) > (R—7)%/2. Thus, there exists a time ¢y in which the trajectory vo(t),
satisfies u(tg) = 2. Define o, p = v(to). If . g/(27) = m/n is rational, then yy(ntyg) =0 (mod 27).
This shows that vo(t) is periodic, as every other trajectory. On the other hand, if o r/(27) is irrational,
then a classical argument shows that ~(t) is dense in the torus, see for instance [ABZ96, E.g .2.3.1]. O

See Figure for a picture of a leaf in these two cases.

2.5.5 Vertical torus

Fix R > r > 0, and consider the torus 7 = 7, r parametrised by

®(u,v) = (rsinu, (R + rcosu) cosv, (R+rcosu) sinv).
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This is the torus obtained by turning a circle of radius r in the xy-plane around a circle of radius R
surrounding the z-axis. Due to formula ([2.23)), a characteristic vector field X in coordinates u, v is

0
X :(R+7“cosu)<cosv+ gsinvsinu)%

r . .
+ 5(2SIHUS1HU — Rcosucosv —TCOS'U)af.
v

The characteristic points are critical points of the vector field X. If cosv = sinu = 0, then (u,v)
corresponds to a solution; this gives 4 characteristic points

Fy =(0,0,£(R+7)),  Vi=(0,0,£(R—r)).
The other critical points of X occur if and only if

2 4+ 1r?
cosu = — .
rsinu’ rR
System (22.26)) has solutions if and only if R > 4 and |2r — R| < v/ R? — 16, in which case we have 4
additional characteristic points S;(r, R), for i = 1,2, 3,4. Now, the metric coefficient at the characteristic

points F and Vi is

tanv = —

(2.26)

-~ 3 1
K
Fx 4 + r(R+r)’
-~ 3 1
K e
Vi 4 r(R—r)

Note that I?Fi > —3/4, thus, due to Corollary F is a focus for all value of » and R. On the
other hand, Ky, can attain any value between —oo and —3/4; precisely:

- if R<4or|2r— R| > VR?— 16, then I?Vi < —1 and V4 are saddles.

- if |2r — R| = vV R? — 16, then I?Vi = —1 and V4 is a degenerate characteristic point; due to the
Poincaré Index theorem, the points V4 are saddles.

- if |2r — R| < VR? — 16, then —1 < IA(Vi < —3/4 and V4 are nodes.

The values for which |2r — R| = V' R? — 16 are a bifurcation of the dynamical system X, because the
number of characteristic point changes from 4 to 8. The characteristic points S; which appears at this
bifurcation are saddles, due to the Poincaré Index theorem. The bifurcation which takes place is the
one presented in [Perl2, E.g. 4.2.6].

2.6 Appendix on the center manifold theorem

In the language of dynamical systems, a non-degenerate characteristic point p is a hyperbolic equilibrium
for any characteristic vector field X, i.e., an equilibrium for which the real parts of the eigenvalues of
DX (p) are non-zero. For a hyperbolic equilibrium p, the Hartman-Grobman theorem and the Hartman
theorem give a conjugation between the flow of X and the flow of DX (p), see |Per12 Par. 2.8] and
[Har60].

Let us discuss here the case of a non-hyperbolic equilibrium, i.e., of a degenerate characteristic
point. Let E be an open set of R™ containing the origin, and let X be a vector field in C'(E,R") with
X (0) = 0. Due to the Jordan decomposition theorem, we can assume that the linearisation of X at the
origin is

C
DX(0) = P ,
Q
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Figure 2.9: The topological skeleton, i.e., the singular trajectories, of the characteristic foliations of two vertical
tori: the torus on the left-hand side has four characteristic points, and the torus on the right-hand side has eight
characteristic points.

where C is a square ¢ X ¢ matrix with ¢ complex (generalised) eigenvalues with zero real part, P
with p complex (generalised) eigenvalues with positive real part, and @ with ¢ complex (generalised)
eigenvalues with negative real part. Thus, the dynamical system 4 = X () can be rewritten as

t=Czx+ F(x,y,z2)
y=Py+G(z,y,2)
£=Qz+ H(v,y,2)

for (z,y,2) € R®xRP x RY = R", and for suitable functions F', G and H with F'(0) = G(0) = H(0) =0
and DF(0) = DG(0) = DH(0) = 0.

The origin is a non-hyperbolic characteristic point if and only if ¢ > 1. Under these hypotheses, the
following theorem shows that there exists an embedded submanifold C of dimension ¢, tangent to R¢,
and invariant for the flow of X. Such manifold is called a central manifold of X at the origin.

Proposition 2.25 ( Par. 2.12]). Under the previous notations, there exists an open set U C R€
containing the origin, and two functions hy : U — RP and hy : U — RY of class C' with hy(0) =
h2(0) = 0 and Dhy(0) = Dho(0) = 0, and such that the map x — (x,h1(x), ho(x)) parametrises a
submanifold invariant for the flow of X. Moreover, the flow of X is C'-conjugate to the flow of
t=Cx+ F(CC, hl(a:), hg(m))
§ = Py (2.27)
Z2=Q-z.
In general, the central manifold C is non-unique. Note that the dynamic of the z-variable in equation
is simply the restriction of X to the center manifold C. One can show that the trajectory converging
to the origin approaches C exponentially fast: this is the asymptotic approximation property we used

in (220).
Proposition 2.26 (|Bre07, p. 330]). Under the previous assumptions, let us denote C a center manifold
of the flow of X at the origin. Then, for every trajectory l(t) such that I(t) — 0 as t — +oo, there
exists 1 > 0 and a trajectory ((t) in the center manifold C, such that
e™(t) — C(t)|gn — 0, as t— 4o0.
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This chapter presents the results in [BBCH21| as a joint work with Davide Barilari, Ugo Boscain
and Karen Habermann in the journal Annales de I'Institut Henri Poincaré, Probabilités et Statistiques.

First, in Section [3.1] we prove Theorem [[.17]and Proposition[I.18] Their proofs rely on the expression
of A¢lgs(s) given in Lemma in terms of an orthogonal frame for T'(S\ X(5)). In Section
we prove Theorem and Proposition [I.20] using Lemma [3.3] and Lemma [3.4] which expand the
function b: S\X(S) — R from in terms of the arc length along the integral curves of X 5. These
results are illustrated in the last two sections with some examples. In Section [3.3] we study quadric
surfaces in the Heisenberg group, whereas in Section we consider canonical surfaces in SU(2) and
SL(2,R) equipped with the standard sub-Riemannian contact structures. The examples establishing
Theorem [1.21] are discussed in Section Section [3.4.1| and Section [3.4.2] with a unified viewpoint
presented in Section [3.4.3]

Given a coorientable sub-Riemannian contact manifold (M, D, g), in this section we make the choice
to normalise the contact form w using dw|p = — volg; this in order to change the sign of the Reeb
vector field. This will ease the references to [BBCH21|, where this convention is used.
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3.1 Family of Laplace—Beltrami operators on the embedded surface

Let (M, D, g) be a sub-Riemannian contact manifold, and assume that distribution D is free, that
is, globally generated by a pair of vector fields X; and Xy, which we can choose so that (X1, X2) is
an oriented orthonormal frame for D. Let (M, g.) be the Riemannian approximations constructed
(canonically) using the Reeb vector field X associated to the contact sub-Riemannian structure. By
the Cartan formula and due to dw|p = — voly, we have

w([Xl,XQ]) = —dOJ(Xl,XQ) =1.
Since X is the Reeb vector field, we have that
w([Xo,Xl]) = —dw(X(],Xi) =0 forice {1,2} .

It follows that the structure constant defined in (2.1]) are given by

(X1, X2 = ¢]o X1 + 55 X0 + X0, (3.1)
[Xo,Xl] = C(l)le + CngQ s
(X0, Xo] = cpo X1 + 2y Xo . (3.3)

In particular, it becomes clear that vector fields X7, X7 and [ X7, X»] are linearly independent everywhere.

Following the introduction, let A, be the Laplace—Beltrami operator of the Riemannian manifold
(S,i*ge), where i: S < M is the natural immersion. We now express A, in terms of two vector fields
on the surface S (independent on €) which are orthogonal for each of the Riemannian approximations.
Using these expressions of the Laplace—Beltrami operators A, where only the coefficients and not the
vector fields depend on € > 0, we prove Theorem [I.17] The orthogonal frame exhibited further allows
us to establish Proposition |1.18

For a vector field X on the manifold M, the property Xu|s = 0 ensures that X (x) € T,.S for all
x € S. Therefore, we see that F} and Fy given by
Xou) X7 — (Xqu)X
= 20X - (X (3.4)
VX + (Gu)?
(Xou)(Xlu)Xl + (Xou)(XQU)XQ
(X1u)? + (Xou)?

= - Xo, (3.5)
are indeed well-defined vector fields on S\ X(S) due to and because we have F1u|gyss) =0
as well as Fyu|g\sy(g) = 0. Here, S\ X(S) is a manifold itself because the characteristic set %(S) is a
closed subset of S. We observe that both F} and F» remain unchanged if the function u defining the
surface S is multiplied by a positive function, whereas F; changes sign and F» remains unchanged if u
is multiplied by a negative function. Since the zero set of the twice differentiable submersion defining
S needs to remain unchanged, these are the only two options which can occur. Observe that the vector
field F1 on S\ X(S) is opposite to the vector field Xg defined in .

Recalling that g. is obtained by requiring (Xi, X2,eX() to be a global orthonormal frame, we
further obtain

9e(F1, F2) =0
as well as
(Xou)2 1

(Xi0)? + (Xqu)? T2

Thus, (F1, F3) is an orthogonal frame for T'(S\ X(5)) for each Riemannian manifold (.5, :*g.). While in
general, the frame (F, F3) is not orthonormal it has the nice property that it does not depend on £ > 0,
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which aids the analysis of the convergence of the operators A, in the limit ¢ — 0. Since F} and F; are
vector fields on S\ X(.S5), there exist functions by, by: S\3(S) — R, not depending on € > 0, such that

[F1, 5] = b1 Fy + bo Fy . (3.7)

Whereas determining the functions b; and by explicitly from and is a painful task, we can
express them nicely in terms of, following the notations in [BK19|, the characteristic deviation h and a
tensor 7 related to the torsion. Let J: D — D be the linear transformation induced by the contact
form w by requiring that, for vector fields X and Y in the distribution D,

g(X,J(Y)) = dw(X,Y). (3.8)

Under the assumption of the existence of the global orthonormal frame (X7, X2) this amounts to saying
that
J(Xl) = XQ and J(XQ) = —X1 . (39)

For a unit-length vector field X in the distribution D, we use [X, J(X)]|p to denote the restriction of
the vector field [X, J(X)] on M to the distribution D and we set

WX) = =g (X, J(X)][p, X) ,
n(X) = —g ([Xo, X], X) ,

where the expression for 7 is indeed well-defined because according to (3.2]) and (3.3]), the vector field
[X0, X] lies in the distribution D.

Lemma 3.1. For b: S\X(S) — R defined by , we have
[F1, Fo] = — (bh(F1) + n(F1)) FL — bFY
that is, by = —bh(Fy) — n(Fy) and by = —b.
Proof. We first observe that due to , we can write
Fy =bJ(F1) — Xp .
Using and as well as , it follows that
w ([F1, F»]) = w ([F1,bJ(F1) — Xo]) = —dw(Fy,bJ(F)) = —g(F1,bJ*(Fy)) = b .
On the other hand, from , and , we deduce
w ([F1, F2]) = w (baFy) = —ba,
which implies that by = —b, as claimed. It remains to determine b;. From , we see that
g(F1, J(F1)) = —w([F1, F1]) = 0.
Together with this yields
b1 = g ([F1, F2], F1) = g ([F1,bJ (F1) — Xol, F1) = bg ([F1, J(F1)l|p, F1) + g ([Xo, F1], F1)
and therefore, we have by = —bh(Fy) — n(F}), as required. O

To derive an expression for the Laplace-Beltrami operators A, of (S, *g.) restricted to S\ X(S) in
terms of the vector fields F; and F5, it is helpful to consider the normalised frame associated with the
orthogonal frame (F7, F3). For € > 0 fixed, we define a.: S\X(S) — R by

1

(Xou)? 1) 2
= - 3.10
e ((Xlu)2 + (Xou)? + g2 (3.10)

and we introduce the vector fields £y and Ea . on S\ X(S) given by
E1 = F1 and EQ’e = ang . (311)

In the Riemannian manifold (.5, g-), this yields the orthonormal frame (Eq, Es ) for T(S\X(S5)).
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Lemma 3.2. For e > 0, the operator A. restricted to S\X(S) can be expressed as

b— Fi(ac)

Qe

Adloss) = F2 + a2F3 + ( ) Fy — a2 (bh(FY) + n(FL)) Fy .

Proof. Fix € > 0 and let div. denote the divergence operator on the Riemannian manifold (5, g.) with
respect to the corresponding Riemannian volume form. Since (E, Es.) is an orthonormal frame for
T(S\X(Y)), we have

Aclssis) = Ef + E3 . + (dive E1) Ey + (dive By ) Es e . (3.12)

Let (v1,12,.) denote the dual to the orthonormal frame (Ej, E2.). Proceeding, for instance, in the
same way as in [Barl3, Proof of Proposition 11], we show that, for any vector field X on S\ X(S),

div. X =1y ([El,X]) +vo. ([Egﬁ, X]) .
This together with (3.11)) and Lemma implies that
Fi(ac)

Qe

dive Bh = Voe ([agFg, Fl]) = Vo, (ag[Fl, FQ} + Fl(aE)FQ) =b—

as well as
dive By e = v1 ([F1, acFa)) = v1 (ac[F1, Fo] + Fi(ae) F2) = —ac (bh(Fy) +n(FY)) -

The desired result follows from (3.11)) and (3.12)). O

Note that A.|gy(s) in Lemma can equivalently be written as

F1 ag
Aclsw(s) = FT +alF5 + (b— (2)

202 ) Fy — a2 (bh(Fy) + n(F1)) Fy .

Using Lemma [3.2) we can prove Theorem [I.17]
Proof of Theorem[I.17. From (1.29) and (3.10), we obtain that

2 _ (2 1 _1_ g 1
Ge = +? Te2p2 41 (3.13)

which we use to compute
Fl(ae) _ Fl(ag) _ 7€2bF1(b)
ae 2a? 22 +1°

Fl(as)

Qe

Since u € C?(M) by assumption, both b: S\ 3(S) — R and Fy(b): S\ X(S) — R are continuous
and therefore bounded on compact subsets of S\X(S). In a similar way, we argue that the function
by = —bh(Fy) — n(F}) is bounded on compact subsets of S\ X(S). Due to (3.14), this implies that,
uniformly on compact subsets of S\ X(S5),

It follows that

a? <e? as well as < 2 |bFy(b)| . (3.14)

F
lima?=0, lim Fila:) =0 and lima? (bh(Fy) +n(F1)) =0. (3.15)

e—0 e—=0  ag e—0

Let f € C2(S\X(S)). We then have Fy f, Fof € CL(S\X(S)) and F2f, F3f € CO(S\%(S)). Since the
expression ([1.30)) for Ag can be rewritten as

Ay = F12 + bF}
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and since the convergence in (3.15]) is uniformly on compact subsets of S\ X(S), we deduce from
Lemma [3:2] that

. : Fy (ac)

_ 2 2 1 (@ 2 _
;1_13(1) [Af = AOfHOO,S\E(S) = il_rg% azFy f — a Fif —ag (bh(F1) +n(F1)) Fof ‘OO’S\E(S) =0,
that is, the functions A. f indeed converge uniformly on S\ 3(S) to Agf. O

Using the orthonormal frames (Eq, Ea ), we easily derive the expression given in Proposition m
for the intrinsic Gaussian curvature Ky of the surface S in terms of the vector field X s and the function
b. Unlike the reasoning presented in [BTV17], which further exploits intrinsic symmetries of the
Heisenberg group H, our derivation does not rely on the cancellation of divergent quantities and holds
for surfaces in any three-dimensional contact sub-Riemannian manifold, cf. [BTV17, Remark 5.3].

Proof of Proposition[I.18 From Lemma [3.1] and due to (3.7)) as well as (3.11]), we have

Fi(a
B1.Bac] = [FioacF] = alFu B+ Fi(o B = acbi B+ (b4 20 )
g
According to the classical formula for the Gaussian curvature of a surface in terms of an orthonormal
frame, see e.g. [ABB20) Proposition 4.40], the Gaussian curvature K. of the Riemannian manifold
(S, g-) is given by

K.=F (—b + Fl(a)) — acFy (achy) — (achy)® — (—b + Fl(“€)>2 . (3.16)

Qe Ae

We deduce from (3.13)) that

A0

1 2
aela(a) =5 (0) =3 )

as well as

)

Fi(a.) £2bFy (b) e2F (bFy(b))  2e*b? (Fy(b))?
() = on (G ) = e

which, in addition to (3.14]), implies

F
0y (a2)| < €' [bFo(b)|  and ‘Fl (”) ‘ < 2 |y (bR ()] + 252 (Fa(6)? .
By passing to the limit € — 0 in (3.16)), the desired expression follows. O

Notice that, by construction, the function b and the intrinsic Gaussian curvature K are related by
the Riccati-like equation
b+b?+Ky=0,

with the notation b = X 5(b), which is independent on the convection used to determine the sign of the
Reeb vector field.

3.2 Canonical stochastic process on the embedded surface

We study the stochastic process with generator %Ao on S\ X(S). After analysing the behaviour
of the drift of the process around non-degenerate characteristic points, we prove Theorem and
Proposition [1.20]

By construction, the process with generator %Ao moves along the characteristic foliation of .S,

that is, along the integral curves of the vector field Xg on S\ ¥(S) defined in 1) Around a fixed
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non-degenerate characteristic point € 3(S), the behaviour of the canonical stochastic process is
determined by how b: S\ X(S) — R given in depends on the arc length along integral curves
emanating from z. Since the vector fields X7, X2 and the Reeb vector field X are linearly independent
everywhere, the function Xgu: S — R does not vanish near characteristic points. In particular, we may
and do choose the function u € C?(M) defining the surface S such that Xou = 1 in a neighbourhood
of x.

Understanding the expression for the horizontal Hessian Hessu in as a matrix representation
in the dual frame of (X7, X3), and noting that the linear transformation J: D — D defined in
has the matrix representation

0 —1
=(1 )

X1X2u —X1X1u
XoXou —XoXju)

we see that

(Hessu) s = (

The dynamics around the characteristic point z € X(5) is uniquely determined by the eigenvalues
A1 and Ao of ((Hessw)(x))J. Since x € X(S) is non-degenerate by assumption both eigenvalues are
non-zero, and due to Xou = 1 in a neighbourhood of x, we further have

A+ A2 = Tr (((Hessu)(z))J) = (X1 Xou) () — (XoXqu) (z) = (Xou) (z) = 1. (3.17)

Thus, one of the following three cases occurs, where we use the terminology from |[Rob95, Section 4.4]
to distinguish between them. In the first case, where the eigenvalues A\; and Ay are complex conjugate,
the characteristic point x is of focus type and the integral curves of X s spiral towards the point z. In
the second case, where both eigenvalues are real and of positive sign, we call € ¥(S) of node type,
and all integral curves of X s approaching = do so tangentially to the eigendirection corresponding to
the smaller eigenvalue, with the exception of the separatrices of the larger eigenvalue. In the third case
with the characteristic point x being of saddle type, the two eigenvalues are real but of opposite sign,
and the only integral curves of X s approaching = are the separatrices.

Note that an elliptic characteristic point is of focus type or of node type, whereas a hyperbolic
characteristic point is of saddle type. Depending on which of theses cases arises, we can determine how
the function b depends on the arc length along integral curves of X s emanating from x. The choice
of the function u € C2(M) such that Xou = 1 in a neighbourhood of z fixes the sign of the vector
field X 5. In particular, an integral curve v of X s which extends continuously to v(0) = x might be
defined either on the interval [0,4) or on (—d,0] for some § > 0. As the derivation presented below
works irrespective of the sign of the parameter of v, we combine the two cases by writing ~: Is — S for
integral curves of Xg extended continuously to v(0) = =.

The expansion around a characteristic point of focus type is a result of the fact that the real parts
of complex conjugate eigenvalues satisfying equal %

Lemma 3.3. Let x € X(S) be a non-degenerate characteristic point and suppose that u € C?(M) is
chosen such that Xou =1 in a neighbourhood of x. For 6 >0, let v: Is — S be an integral curve of the
vector field Xg extended continuously to v(0) = x. If the eigenvalues of ((Hessu)(z))J are complex

conjugate then, as s — 0,

br(s)) = - +0(1)

Proof. Since Xpu = 1 in a neighbourhood of z, we may suppose that 4 > 0 is chosen small enough
such that, for s € Is\ {0},




A direct computation shows

L0 = K () ™) = ((Hess ) (4(3)) (7 (X5 (1) K (1(5))) -

By the Hartman—Grobman theorem, it follows that, for s — 0,

L 00 ™) = (Hessu) () (7 (B (1)) . Ks (4(5))) +0(s)

As complex conjugate eigenvalues of ((Hessu)(x))J have real part equal to % and due to Xg being a
unit-length vector field, the previous expression simplifies to

0

OGN = 5 +06) (3.18)

2
Since (Xju)(z) = (Xou)(z) = 0 at the characteristic point x, we further have

1

lim o 0. (3.19)

A Taylor expansion together with (3.18) and (3.19|) then implies that, as s — 0,

"3 0)
which yields, for s — 0,
br(s)) = 2 (14 0(s)) 1 = 2+ 0(1).
as claimed. 0

The expansion of the function b around characteristic points of node type or of saddle type depends
on along which integral curve of Xg we are expanding. By the discussions preceding Lemma all
possible behaviours are covered by the next result.

Lemma 3.4. Fiz a non-degenerate characteristic point x € X(S). For 6 > 0, let v: Is — S be an
integral curve of the vector field )?S which extends continuously to v(0) = x. Assume u € C*(M) is
chosen such that Xou = 1 in a neighbourhood of x and suppose ((Hessw)(z))J has real eigenvalues.
If the curve v approaches x tangentially to the eigendirection corresponding to the eigenvalue N\;, for
i€ {1,2}, then, as s — 0,

1

b(v(s)) = PV o) .

Proof. As in the proof of Lemma we obtain, for § > 0 small enough and s € I5\ {0},

Ko (b(x(s) ™) = ((Hessw) (+(s)) (7 (X5 (v())) . X (2(5)) ) -
Since + is an integral curve of the vector field X s, we deduce that

0 1 / !
e <W> = ((Hessu) (v(s))) (J (’Y (3)) )Y (3)) :

By Taylor expansion, this together with (3.19) yields, for s — 0,

= ((Hessu) (2)) (J (+/(0)) ,7(0)) s + O () .
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By assumption, the vector 7/(0) € TS is a unit-length eigenvector of ((Hessu)(x)).J corresponding
to the eigenvalue \;, which has to be non-zero because x is a non-degenerate characteristic point. It
follows that

((Hessu) (x)) (7 (7'(0)) ,7'(0)) = A # 0,

which implies, for s — 0,

as required. O

Remark 3.5. We stress Lemma [3.4] does not contradict the positivity of the function b near the point x
ensured by the choice of u € C?(M) such that Xou = 1 in neighbourhood of x. The derived expansion
for b simply implies that on the separatrices corresponding to the negative eigenvalue of a hyperbolic
characteristic point, the vector field X s points towards the characteristic point for that choice of u,
that is, we have s € (—4,0). At the same time, we notice that
2
b)) o

remains invariant under a change from s to —s. Therefore, in our analysis of the one-dimensional
diffusion processes induced on integral curves of Xg, we may again assume that the integral curves are
parameterised by a positive parameter.

With the classification of singular points for stochastic differential equations given by Cherny and
Engelbert in [CE05, Section 2.3], the previous two lemmas provide what is needed to prove Theoremm
and Proposition [[.20] One additional crucial observation is that for a characteristic point of node type
both eigenvalues of ((Hessu)(x)) J are positive and less than one, whereas for a characteristic point of
saddle type, the positive eigenvalue is greater than one.

Proof of Theorem[I.19. Fix an elliptic characteristic point x € X(S). For 6 > 0, let v: [0,0] — S be
an integral curve of the vector field Xg extended continuously to z = limg o y(s). Following Cherny
and Engelbert |[CE05| Section 2.3|, since the one-dimensional diffusion process on v induced by %Ao
has unit diffusivity and drift equal to %b, we set

p(t) = exp ( /t ’ b(+(s)) ds> for t € (0,4] . (3.20)

If the characteristic point z is of node type the real positive eigenvalues \; and Ay of ((Hessu)(x))J
satisfy 0 < A1, Ay < 1 by (3.17)). As x is of focus type or of node type by assumption, Lemma and
Lemma [3.4] establish the existence of some A € R with 0 < A < 1 such that, as s | 0,

b (s)) = 1= +0(1)

We deduce, for § > 0 sufficiently small,

o(t) = exp </t5 (;8+0(1)> ds) ~ exp <iln <‘z) +O(6—t)> _ (i) (1+0( - 1)).

Due to % > 1, this implies that
6
/ p(t)dt = oo .
0

According to |[CE05, Theorem 2.16 and Theorem 2.17|, it follows that the elliptic characteristic point x
is an inaccessible boundary point for the one-dimensional diffusion processes induced on the integral
curves of X, s emanating from z. Since x € X(S) was an arbitrary elliptic characteristic point, the
claimed result follows. O
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Proof of Proposition[1.20. We consider the stochastic process with generator A on S\X(S) near a
hyperbolic point x € 3(S). Let v be one of the four separatrices of & parameterised by arc length
s > 0 and such that v(0) = x. Let A; be the positive eigenvalue and A2 be the negative eigenvalue of

((Hessu)(z))J. From the trace property (3.17), we see that A\; > 1. By Lemma [3.4] and Remark [3.5]
we have, for ¢ € {1,2} and as s | 0,

As in the previous proof, for 6 > 0 sufficiently small and p: (0,9] — R defined by (3.20)), we have

(1) = (f) (1+0(-1)) .

However, this time, due to )\i < 1 for i € {1,2}, we obtain

6
/ p(t)dt < oo .
0

Using /\% > 0, we further compute that, on the separatrices corresponding to the positive eigenvalue,
71+ (1) oA
/'2dﬁ:/1(1+0@»dp<m
0 p(t) 0 2)\ 6%
and

*p(y@®)| L,
/Ozdt—oo.

On the separatrices corresponding to the negative eigenvalue, we have, due to )%2 < 0,

L_1

51 4 Lip(~(t O 43g
/‘+z“ﬁﬁﬂdﬁ:/t21(1+0@»dﬁ=w
0 p(t) 0 2X08*2
as well as 1
t Ao
and

> 1+ 50b(y(t))] A
AmwS@@_A2W_Uu+mmm<m.

Hence, as a consequence of the criterions |[CE05, Theorem 2.12 and Theorem 2.13|, the hyperbolic
characteristic point x is reached with positive probability by the one-dimensional diffusion processes
induced on the separatrices. Thus, the canonical stochastic process started on the separatrices is killed
in finite time with positive probability. O

3.3 Stochastic processes on quadric surfaces in the Heisenberg group

Let H be the first Heisenberg group, that is, the Lie group obtained by endowing R?® with the group
law, expressed in Cartesian coordinates,

1
(x1,91,21) * (2, Y2, 22) = <l’1 +x9,y1 +Y2,21 + 22 + 5 (x1y2 — x2y1)> .
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On H, we consider the two left-invariant vector fields

x
 dx 20z Y_8y+§8z’

and the contact form )
w:dz—i(aﬁdy—ydx) .

We note that the vector fields X and Y span the contact distribution D corresponding to w, that they
are orthonormal with respect to the smooth fibre inner product g on D given by

I(z,y,2) = dz@dr+dy®dy,

and that
dw|p = —dz Ady = —vol, .

Therefore, the Heisenberg group H understood as the three-dimensional contact sub-Riemannian
manifold (R3, D, g) falls into our setting, with X; = X, X5 = Y and the Reeb vector field

Xo= ;Z = [X1, Xo] .

In Section and in Section [3.3.2] we discuss paraboloids and ellipsoids of revolution admitting one
or two characteristic points, respectively, which are elliptic and of focus type. For these examples, the
characteristic foliations can be described by logarithmic spirals in R? lifted to the paraboloids and
spirals between the poles on the ellipsoids, which are loxodromes, also called rhumb lines, on spheres.
The induced stochastic processes are the Bessel process of order 3 for the paraboloids and Legendre-like
processes for the ellipsoids moving along the leaves of the characteristic foliation. In Section [3.3.3
we consider hyperbolic paraboloids where, depending on a parameter, the unique characteristic point
is either of saddle type or of node type, and we analyse the induced stochastic processes on the
separatrices.

3.3.1 Paraboloid of revolution

For a € R, let S be the Euclidean paraboloid of revolution given by the equation z = a(2? + y?)
for Cartesian coordinates (z,y, z) in the Heisenberg group H. This corresponds to the surface given

by (1.27) with u: R? — R defined as
u(x,y,z) =2z —a (x2 —|—y2) .

We compute

Xou=1, (Xju)(x,y,z)=—2ax — g and (Xou) (z,y,2) = —2ay + g )

which yields

(X1u)(z,y,2)* + (Xou)(z,y,2))* = i (1+16a%) (z* +y?) . (3.21)

Thus, the origin of R3 is the only characteristic point on the paraboloid S. It is elliptic and of focus

type because Xou = 1 and
i 2
3 a
(Hessu) J = .
—2a 5

has eigenvalues % +2ai. On S\ X(S5), the vector field X s defined by 1} can be expressed as

~ 1 0 0 0
Xo = — day) — dax) — + 2a (22 + %) =— | . 22
N (53 = new (0= 40) g1+ -+ 400) 5 20 (2 447) ) (322)
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Changing to cylindrical coordinates (r, 6, z) for R3\ {0} with » > 0, 6 € [0,27), z € R and using
0 0 0 0

S T il 2o = il
Tor T Top TV MV 5g T TVar TG,

the expression 1} for the vector field X s simplifies to

IS 1 0 4a 0 0

Xs=—F—=|5+—7 +2ar— | .

5 V1 + 1642 (37’ + r 00 * ar@z)
From ({3.21)), we further obtain that the function b: S\ X(S) — R defined by (1.29) can be written as
1 2

b('l",e, Z) = m; .

Characteristic foliation The characteristic foliation induced on the paraboloid S of revolution by the
contact structure D of the Heisenberg group H is described through the integral curves of the vector
field X s, cf. Figure Its integral curves are spirals emanating from the origin which can be indexed
by ¢ € [0,27) and parameterised by s € (0, 00) as follows

2
S s as
s | ——,4aln| ——= ) + ,—) . 3.23
(\/1 + 16a2 (\/1 + 16a2> v 1+ 16a? (3.23)
By construction, the vector field X’S is a unit vector field with respect to each metric induced on the

surface S from Riemannian approximations of the Heisenberg group. In particular, it follows that the
parameter s € (0,00) describes the arc length along the spirals (3.23)).

Figure 3.1: Characteristic foliation described by logarithmic spirals

Remark 3.6. The spirals on S defined by (3.23) are logarithmic spirals in R? lifted to the paraboloid of
revolution. In polar coordinates (r,6) for R?, a logarithmic spiral can be written as

r = b9 for k e R\{0} and 6, € [0, 27) . (3.24)

Therefore, the spirals in 1} correspond to lifts of logarithmic spirals 1D with k& = ﬁ. The arc
length s € (0,00) of a logarithmic spiral (3.24])) measured from the origin satisfies

s = 1+ﬁr,

which for k = ﬁ yields s = v/1 + 16a? . Note that this is the same relation between arc length and

radial distance as obtained for integral curves 1} of the vector field X g. For further information on
logarithmic spirals, see e.g. Zwikker |Zwi63, Chapter 16].
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Using the spirals (3.23]) which describe the characteristic foliation on the paraboloid of revolution,
we introduce coordinates (s, 1) with s > 0 and 1 € [0,27) on the surface S\ %(S). The vector field
Xg on S\X(S) and the function b: S\X(S) — R are then given by

~ 0 2
Xs—% and b(s,w)—g.

Thus, the canonical stochastic process induced on S\ X(S) has generator

1 1/ S 10> 10
pdo =3 (R&+0%s) =555+ 5,

This gives rise to a Bessel process of order 3 which out of all the spirals describing the characteristic
foliation on S stays on the unique spiral passing through the chosen starting point of the induced
stochastic process. In agreement with Theorem the origin is indeed inaccessible for this stochastic
process because a Bessel process of order 3 with positive starting point remains positive almost surely.
It arises as the radial component of a three-dimensional Brownian motion, and it is equal in law to a
one-dimensional Brownian motion started on the positive real line and conditioned to never hit the
origin. We further observe that the operator Ay coincides with the radial part of the Laplace—Beltrami
operator for a quadratic cone, cf. |[BN20,BP16| for « = —2, where the self-adjointness of Ag is also
studied.

As the limiting operator Ag does not depend on the parameter a € R, the behaviour described above
is also what we encounter on the plane {z = 0} in the Heisenberg group H, where the spirals
degenerate into rays emanating from the origin. We note that the stochastic process induced by %Ao on
the rays differs from the singular diffusion introduced by Walsh [Wal78| on the same type of structure,
but that it falls into the setting of Chen and Fukushima |[CF15|.

3.3.2 Ellipsoid of revolution

For a,c € R positive, we study the Euclidean spheroid, also called ellipsoid of revolution, in the
Heisenberg group H given by the equation
2 2 2
LA d—
a? + a?c?
in Cartesian coordinates (z,, z). To shorten the subsequent expressions, we choose u: R® — R defining
the Euclidean spheroid S through (1.27) to be given by
52

u(z,y, 2) :x2+y2—|——2 —a?.

c

Proceeding as in the previous example, we first obtain

2z
(Xou) (.’E,y, Z) = 07
as well as ) N
(Xlu) (5'37%2’) =2r — 672 and (XQU) (.T,y,Z) :2y+§ )
which yields
52
(X1u)(,9,2))° + (Xaw)(@,y,2))* = (2* + ) <4 + 4) . (3.25)

This implies the north pole (0,0, ac) and the south pole (0,0, —ac) are the only two characteristic
points on the spheroid 5. We further compute that

(Xou) X1 — (X1u) X = <2y + g) ;x - (233 - %) ay 2+ 2 (3.26)
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Using adapted spheroidal coordinates (6, ) for S\ 3(S) with 6 € (0,7) and ¢ € [0,27), which are
related to the coordinates (z,y, z) by

x = asin(f)cos(p), y=asin(f)sin(y), z=accos(f),

we have
asin(f) 0 w2z 0  yz 0 9 o9y O
c 00 c2or 2oy (2 +y)8z and
090
o0~ Yor Moy
It follows that (3.26) on the surface S\ X(S) simplifies to
asin(f) 0 0
Xou) X1 — (X1u) Xz = A
(Xou) X1 — (X1u) X c 00 2o,

whereas (3.25) on S\ X(S) rewrites as

2
(X1u)(0,9))* + ((Xou)(0, ¢))* = a* (sin(0))” (4 + W) ‘

This shows that the vector field X s on S\ X(S) defined by 1) is given as

~ 1 2
Xg = <§9 - 6988> (3.27)
V4e + a (cos(9))? asin(f) Op
For the function b: S\ X(S) — R defined by (1.29), we further obtain that
2 cot (6
b0, ) = ) (3.29)

\/402 + a2 (cos(6))? .

As in the preceding example, in order to understand the canonical stochastic process induced by the
operator 2A0 defined through (|1 , we need to express the vector field X, s and the function b in
terms of the arc length along the 1ntegral curves of Xs Since both XS and b are invariant under
rotations along the azimuthal angle ¢, this amounts to changing coordinates on the spheroid S from
(0,9) to (s,p) where s = s(0) is uniquely defined by requiring that

0 1 < 0 2¢c 0 )
- = _— - and  s(0)=0.
0s \/402 + a2 (cos(6))? 00  asin(f) Oy
This corresponds to
g 1
ds \/402 + a2 (cos(h))?

, (3.29)

which together with s(0) = 0 yields

s(0) = / \/402 + a2 (cos(7))* dr = / \/ 4¢2 4 a2) — a? (sin(7))*dr  for 6 € (0, 7) .

Hence, the arc length s along the integral curves of )?g is given in terms of the polar angle 6§ as a
multiple of an elliptic integral of the second kind. Consequently, the question if 6 can be expressed
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explicitly in terms of s is open. However, for our analysis, it is sufficient that the map 6 — s(0) is
invertible and that (3.28]) as well as (3.29) then imply

b(s, ) = 2cot (0(s)) j—i :

Therefore, using the coordinates (s, ¢), the operator 3Ag on S\ X(S) can be expressed as

1 1 92 do\ o
580 = 2a2+< ot (6(s)) )83

which depends on the constants a, ¢ € R through (3.29). Without the Jacobian factor 4 d— appearing
in the drift term, the canonical stochastic process mduced by the operator 2A0 and moving along
the leaves of the characteristic foliation would be a Legendre process, that is, a Brownian motion
started inside an interval and condltloned not to hit either endpoint of the interval. The reason for the
appearance of the additional factor 1s that the integral curves of X s connecting the two characteristic
points are spirals and not just great cwcles. For some further discussions on the characteristic foliation
of the spheroid, see the subsequent Remark

The emergence of an operator which is almost the generator of a Legendre process moving along the
leaves of the characteristic foliation motivates the search for a surface in a three-dimensional contact
sub-Riemannian manifold where we do exhibit a Legendre process moving along the leaves of the
characteristic foliation induced by the contact structure. This is achieved in Section [3.4.1]

Remark 3.7. The northern hemisphere of the spheroid could equally be defined by the function

u(z,y,z) =z —cva? —z? —y?.

With this choice we have Xgu = 1. We further obtain
C
T a
l b
2

whose eigenvalues are % + £i. A similar computation on the southern hemisphere implies that both
characteristic points are elliptic and of focus type. Thus, by Theorem the stochastic process with
generator %Ao hits neither the north pole nor the south pole, and it induces a one-dimensional process
on the unique leaf of the characteristic foliation picked out by the starting point.

((Hessu) (0,0,ac)) J = (

Qo M=

Remark 3.8. With respect to the Euclidean metric (-,-) on R, we have for the adapted spheroidal
coordinates (0, p) of S\ X(S) as above that

<889, 880> = a® (cos(0))* + a®¢? (sin(0))*  and <8(?0’ 88<p> = a? (sin(0))* .

It follows that the angle o formed by the vector field X s given in 1) and the azimuthal direction

satisfies
2c

Vo (cos(6))” + ¢ (sin(0)) + 4>

cos (a6, ¢)) = —

Notably, on spheres, that is, if ¢ = 1, the angle « is constant everywhere. Hence, the integral curves
of Xg considered as Euclidean curves on an Euclidean sphere are loxodromes, cf. Flgure 3L which
are also called rhumb lines. They are related to logarithmic spirals through stereographic projection.
Loxodromes arise in navigation by following a path with constant bearing measured with respect to
the north pole or the south pole, see Carlton-Wippern |[CW92|.
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3.3.3 Hyperbolic paraboloid

For a € R positive and such that a # %, we consider the Euclidean hyperbolic paraboloid S in the
Heisenberg group H given by (1.27) with u: R? — R defined as

U(.%',y, Z) =z—axry,
for Cartesian coordinates (x,y, z). We compute
Xou=1, (Xju)(x,y,2)=—ay— % as well as  (Xou) (x,y,2) = —ax + g , (3.30)

and further that
(Hess ) J 3= O (3.31)
essu) J = . )
0 % +a
Due to

(e 2+ (e = (§-a) o+ (5 a) o7,

the hyperbolic paraboloid S has the origin of R? as its unique characteristic point. By , this
characteristic point is elliptic and of node type if 0 < a < %, and hyperbolic and therefore of saddle
type if a > % The reason for having excluded the case a = % right from the beginning is that it gives
rise to a line of degenerate characteristic points.

We note that the z-axis and the y-axis lie in the hyperbolic paraboloid S. From , we see that
the positive and negative x-axis as well as the positive and negative y-axis are integral curves of the
vector field X, s on S\X(S). In the following, we restrict our attention to studying the behaviour of the
canonical stochastic process on these integral curves, which nevertheless nicely illustrates Theorem [1.19
and Proposition [T.20]

We start by analysing the one-dimensional diffusion process induced on the positive y-axis ’y;r ,
which by symmetry is equal in law to the process induced on the negative y-axis. For all positive a € R
with a # %, we have
0
oy’
implying that the arc length s > 0 along %j is given by s = y. This yields, for all s > 0,

Xsl,s =

Thus, the one-dimensional diffusion process on 'y;r induced by %Ao has generator

102 N 1 0

2052 (1+42a)sds’
which gives rise to a Bessel process of order 1 + 14—% If started at a point with positive value this
diffusion process stays positive for all times almost surely if 1+ 5 +22a > 2 whereas it hits the origin with

positive probability if 1+ 22a < 2. This is consistent with Theorem and Proposition m because

I+
for a > % the positive y-axis is a separatrix for the hyperbolic characteristic point at the origin and

1 1
Hfo<a< = as well as 2>1+ ifa>-=.

2<1
+1—|—2a 2 14 2a 2

Some more care is needed when studying the diffusion process induced on the positive z-axis v;". As
before, this process is equal in law to the process induced on the negative z-axis. We obtain

o) : 1

oz 1f0<a<§
Xk = 9 1
— 9z lfa/>§



as well as, for z > 0,

if0<a<%

- ifa>1
(3-a)z ’
It follows that the one-dimensional diffusion process on 7, induced by %Ao has generator

']
2022 (1—2a)zdx

This yields a Bessel process of order 1 + 1—22(1' In agreement with Theorem and Proposition m
if started at a point with positive value this process never reaches the origin if 0 < a < % which
ensures 1 + ﬁ > 3, whereas the process reaches the origin with positive probability if a > % as this

corresponds to 1 + ﬁ < 1.

3.4 Stochastic processes on canonical surfaces in SU(2) and SL(2,R)

In Section [3.3.1], we establish that for a paraboloid of revolution embedded in the Heisenberg group
H, the operator %Ao induces a Bessel process of order 3 moving along the leaves of the characteristic
foliation, which is described by lifts of logarithmic spirals emanating from the origin. As discussed in
Revuz and Yor [RY99, Chapter VIIL3|, the Legendre processes and the hyperbolic Bessel processes
arise from the same type of Girsanov transformation as the Bessel process, where these three cases
only differ by the sign of a parameter. We further recall that in Section [3.3.2] we encounter a canonical
stochastic process which is almost a Legendre process moving along the leaves of the characteristic
foliation induced on a spheroid in the Heisenberg group H. This motivates the search for surfaces
in three-dimensional contact sub-Riemannian manifolds where the canonical stochastic process is a
Legendre process of order 3 or a hyperbolic Bessel process of order 3 moving along the leaves of the
characteristic foliation.

We consider surfaces in the Lie groups SU(2) and SL(2,R) endowed with standard sub-Riemannian
structures. Together with the Heisenberg group, these sub-Riemannian geometries play the role of
model spaces for three-dimensional contact sub-Riemannian manifolds. In the first two subsections, we
find, by explicit computations, the canonical stochastic processes induced on certain surfaces in these
groups, when expressed in convenient coordinates. The last subsection proposes a unified geometric
description, justifying the choice of our surfaces.

3.4.1 Special unitary group SU(2)

One obstruction to recovering Legendre processes moving along the characteristic foliation in Sec-
tion is that the characteristic foliation of a spheroid in the Heisenberg group is described by
spirals connecting the north pole and the south pole instead of great circles. This is the reason for
considering S? as a surface embedded in SU(2) ~ S% understood as a contact sub-Riemannian manifold
because this gives rise to a characteristic foliation on S? described by great circles.

The special unitary group SU(2) is the Lie group of 2 x 2 unitary matrices of determinant 1, that is,

SU(2) = {( Frwl y““.) L2,y 2w € R with 2% + 3% + 22 + w? = 1} 7
—y+xr1 z—wi
with the group operation being given by matrix multiplication. Using the Pauli matrices
_ (0 1 _ (0 —i 4 oo (L0
1=\t o) 27 o) BT o 1)

51



we identify SU(2) with the unit quaternions, and hence also with S3, via the map

< z+w'1 y+x1> — 2zl +xioc|y +yios +wios .

—y+xr1 z—wl

The Lie algebra su(2) of SU(2) is the algebra formed by the 2 x 2 skew-Hermitian matrices with trace
zero. A basis for su(2) is {*3*, %32, 3%} and the corresponding left-invariant vector fields on the Lie
group SU(2) are

U'1 — 1 <_$8+za _w8+y8>
2 0z 0 oy ow )’
ST (PRI S
2 0z 0 oy ow)’
U3—1<—w8— a+xa+z8>
2 0z Ox dy “ow)’
which satisfy the commutation relations [Uy, U] = —Us, [Ua,Us] = —U; and [Us,U;] = —Us. Thus,

any two of these three left-invariant vector fields give rise to a sub-Riemannian structure on SU(2).
To streamline the subsequent computations, we choose k € R with £ > 0 and equip SU(2) with the
sub-Riemannian structure obtained by setting X; = 2kU;, X9 = 2kU; and by requiring (X1, X2) to be
an orthonormal frame for the distribution D spanned by the vector fields X; and Xs. The appropriately
normalised contact form w for the contact distribution D is

w wdz +ydzr — xdy — zdw)

1
R

and the associated Reeb vector field Xy satisfies

0 0 0 0
X _AR2U 2 _ _ _
Xo =X, X WUs =2k (w 9z " Vor xay ‘ 8w)

In SU(2), we consider the surface S given by the function u: SU(2) — R defined by
u(z,y,z,w) =w .

The surface S is isomorphic to S? because

SZ{(—yj—xi erZx1) :x,y,zeRWithx2+y2+22:1} ]

We compute
(Xou)(z,y, z,w) = —2k?z,  (Xyu)(z,y,z,w) =ky and (Xou)(z,y,z w) = —kz,

which yields
((Xlu)(x,y, 2, w))2 + ((XQU)(xvya Z7w))2 =k (‘Tz + y2) .

Due to x? + y? + 22 = 1, it follows that a point on S is characteristic if and only if z = £1. Thus, the
characteristic points on S are the north pole (0,0, 1) and the south pole (0,0, —1). The vector field Xg
on S\X(S) defined by ([1.28]) is given as

S k 3} 3} 0
e — 2, 9% 99 9 392
° Va?+y? ((x +v) oz o yz@y) ’ (3.32)
and for the function b: S\ X(S) — R defined by (1.29), we obtain
2kz

b(x,y,2) = ———n—.
(v 2) ==
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We now change coordinates for S\ ¥(S) from (z,vy,2) with 22 + y?> 4+ 22 = 1 and z # £1 to (8, ) with
6 € (0,%) and ¢ € [0,27) by

x = sin(kf) cos(¢) , y =sin(kf)sin(p) and 2z = cos(kf) .
We note that

0 0 . 0 . 0
0= k cos(k6) cos(gp)% + k cos(k0) s1n(g0)a—y —k sm(k:&)&

as well as

xz = sin(kf) cos(kB) cos(p) , yz = sin(kf) cos(kf)sin(p) and /22 + y? = sin(k6) .
This together with (3.32)) and (3.33]) implies that

~

Xs = —(;90 and b(0, ) = —2k cot (k) .

We deduce that the integral curves of X s are great circles on S and that

1 1 62 0
—Ag==-—= + kcot(kf) —
250 = g g Rtk g,
which indeed, on each great circle, induces a Legendre process of order 3 on the interval (0, 7). These
processes first appeared in Knight [Kni69| as so-called taboo processes and are obtained by conditioning
Brownian motion started inside the interval (0, 7) to never hit either of the two boundary points, see
Bougerol and Defosseux [BD19, Section 5.1|. As discussed in It6 and McKean [IM74] Section 7.15],

they also arise as the latitude of a Brownian motion on the three-dimensional sphere of radius %

3.4.2 Special linear group SL(2,R)

The appearance of the Bessel process on the plane {z = 0} in the Heisenberg group H and of the
Legendre processes on a compactified plane in SU(2) understood as a contact sub-Riemannian manifold
suggests that the hyperbolic Bessel processes arise on planes in the special linear group SL(2,R)
equipped with a sub-Riemannian structure. This is indeed the case if we consider the standard sub-
Riemannian structures on SL(2,R) where the flow of the Reeb vector field preserves the distribution
and the fibre inner product.

The special linear group SL(2,R) of degree two over the field R is the Lie group of 2 x 2 matrices
with determinant 1, that is,

SL(2,R) = {<i i) cx,y, 2z, w € R with xw — yz = 1} ,

where the group operation is taken to be matrix multiplication. The Lie algebra sl(2,R) of SL(2,R) is
the algebra of traceless 2 x 2 real matrices. A basis of s[(2,R) is formed by the three matrices

1(1 0 Loy o 101
P=35%0 —=1) 973\1 o J=5\<1 o)

whose corresponding left-invariant vector fields on SL(2,R) are

(0 0 o b
2\ oz y@y 0z ow )’
“2\Yar TPy T8 T Fow )

1 0 0 0

K:2<_y8:c+$8_w82+ 6w>



These vector fields satisfy the commutation relations [X,Y] = K, [X, K] =Y and [Y, K] = —X. For
k € R with k£ > 0, we equip SL(2,R) with the sub-Riemannian structure obtain by considering the
distribution D spanned by X; = 2kX and X9 = 2kY as well as the fibre inner product uniquely given
by requiring (X7, X2) to be a global orthonormal frame. The appropriately normalised contact form
corresponding to this choice is

1
= a2

w zdz +wdy —xdz —ydw) ,

and the Reeb vector field X associated with the contact form w satisfies

0 0 0 0
Xo = [X1, Xo] = 4k?K =2k | —yy— + 02— —w— +2— | .
0 = [X1, X] k k(yE a:ywzzw>

The plane in SL(2,R) passing tangentially to the contact distribution through the identity element is
the surface S given as ((1.27)) by the function u: SL(2,R) — R defined by

u(z,y,z,w):y—z.

Observe that, on S, we have the relation zw = 1 + y? > 1. Therefore, if a point (z,y, z,w) lies on
the surface S then so does the point (—z,y, z, —w), and neither x nor w can vanish on S. Thus, the
function u: SL(2,R) — R induces a surface consisting of two sheets. By symmetry, we restrict our
attention to the sheet containing the 2 x 2 identity matrix, henceforth referred to as the upper sheet.
We compute

(Xiu)(z,y,z,w) = —k(y+2z) and (Xou)(x,y,z,w)==Fk(x—w),

as well as
(Xou)(z,y,z,w) = 2k (r+w) .

We note that
(X1u) (2, y, 2,w))" + (Xou) (2,9, 2,w))" = K (y + 2)* + & (& — w)”

vanishes on S if and only if y = 2 = 0 and £ = w. From zw = 1 + ¢, it follows that the surface S
admits the two characteristic points (1,0,0,1) and (—1,0,0,—1), that is, one unique characteristic
point on each sheet. Following Rogers and Williams [RW00, Section V.36], we choose coordinates (r,6)
with 7 > 0 and 6 € [0,27) on the upper sheet of S\ 3(S) such that

x = cosh (kr) + sinh (kr) cos(6) ,
w = cosh (kr) — sinh (kr) cos(d) , and
y = sinh (kr) sin(0) .

On the upper sheet of S\X(S), we obtain
(X1u)(r,0) = —2ksinh (kr)sin(d) and (Xou)(r,0) = 2ksinh (kr) cos(0) ,

which yields

V((X1u)(r,0)) + (Xau)(r,0))° = 2ksinh (kr) |

as well as
(Xou)(r,0) = 4k? cosh (kr) .

A direct computation shows that on the upper sheet of S\ 3(S), we have

~

and b(r,0) = 2k coth (kr) ,
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which implies that ,

%AO = ;(;12 + k coth (kr) (i .
Hence, we recover all hyperbolic Bessel processes of order 3 as the canonical stochastic processes moving
along the leaves of the characteristic foliation of the upper sheet of S\ X(S), and similarly on its lower
sheet. For further discussions on hyperbolic Bessel processes, see Borodin [Bor08|, Gruet |Gru00],
Jakubowski and Wisniewolski [JW13|, and Revuz and Yor [RY99, Exercise 3.19]. As for the Bessel
process of order 3 and the Legendre processes of order 3, the hyperbolic Bessel processes of order 3 can

be defined as the radial component of Brownian motion on three-dimensional hyperbolic spaces.

3.4.3 A unified viewpoint

The surfaces considered in the last two examples together with the plane {z = 0} in the Heisenberg
group are particular cases of the following construction.

Let G be a three-dimensional Lie group endowed with a contact sub-Riemannian structure whose
distribution D is spanned by two left-invariant vector fields X7 and X9 which are orthonormal for the
fibre inner product g defined on D. Assume that the commutation relations between X7, X2 and the
Reeb vector field Xy are given by, for some x € R,

(X1, Xo] = Xo, [Xo,X1]=rXo, [Xo,Xo]=—-rX1.

Under these assumptions the flow of the Reeb vector field Xy preserves not only the distribution,

namely /X0 D = D, but also the fibre inner product ¢g. The examples presented in Section and in

Sections and satisfy the above commutation relations with £ = 0 in the Heisenberg group,

and for a parameter k > 0, with k = 4k? in SU(2) and x = —4k? in SL(2,R). These are the three

classes of model spaces for three-dimensional sub-Riemannian structures on Lie groups with respect to

local sub-Riemannian isometries, see for instance [ABB20, Chapter 17| and [AB12| for more details.
In each of the examples concerned, the surface S that we consider can be parameterised as

S = {exp(r1 X1 + 22X3) : 21,29 € R}
= {exp(rcos0X; +rsinfXs) :r>0,0 € [0,27)} .

Observe that S is automatically smooth, connected, and contains the origin of the group. Under these
assumptions, the sub-Riemannian structure is of type d @ s in the sense of [ABB20, Section 7.7.1], and
for 0 fixed, the curve r — exp(rcosX; + rsinfXs) is a geodesic parameterised by length. Hence,
r > 0 is the arc length parameter along the corresponding trajectory. It follows that the surface S is
ruled by geodesics, each of them having vertical component of the initial covector equal to zero. We
refer to [ABB20|, Chapter 7| for more details on explicit expressions for sub-Riemannian geodesics in
these cases, see also [BROS].
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Chapter

Approximately controllable finite-dimensional
bilinear systems are controllable
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This chapter presents the results in the paper [CS21], joint work with Mario Sigalotti and published
in the journal Systems & Control Letters.

We begin in Section [£.1] with the proofs for Lemma [I.7] and Corollary Next, in Section [4.2] we
specialise in bilinear control systems, proving Theorem

4.1 Properties of approximately controllable systems

Consider a control system defined as in by a fixed family F on vector fields on M. We now prove
Lemma which shows that if is approximately controllable, then the orbits of form a regular
foliation of M.

Proof of Lemma[Il.7. As noticed above, the orbits of system form a partition of M in immersed
submanifolds. Since the attainable sets are contained in the orbits, the approximate controllability
implies that the orbits are dense. Finally, due to the expression of the tangent space of the orbits in
Theorem the dimension of the orbits is lower semi-continuous, i.e., for all x in M, there exists a
neighbourhood V' (x) of  such that

dim O, < dim Oy, VyeV(x).

Now let O, be an orbit of maximal dimension; since O, is dense, all other orbits have the same
dimension as O,. Finally, an integral foliation of constant rank is a regular foliation. O

Recall that the family F is said to satisfy the Lie algebra rank condition at x € M if the evaluation
at x of the Lie algebra generated by F has maximal dimension, i.e., DM¢% = T, M.
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Figure 4.1: The admissible vector fields for the control system introduced in Example

Proof of Corollary[I.8. If there exists a point x in M at which F satisfies the Lie algebra rank condition,
then has a single orbit. Indeed, Krener’s theorem implies that the interior of A, is nonempty. Hence,
due to the approximate controllability assumption, the attainable set from any other point intersects
A, and therefore is contained in O,. Thus, has a single orbit and, due to the Lie-determinedness
property , every point in M satisfies the Lie algebra rank condition. The controllability follows as
a corollary of Krener’s theorem (see, e.g., [AS02, Cor. 8.3]).

Otherwise, assume that F does not satisfy the Lie algebra rank condition at any point. Then,
Lemma shows that the orbits of form a regular foliation, whose leaves are dense since they
contain the attainable sets. Finally, the dimension of the orbits is less than the dimension of M,
otherwise F would satisfy the Lie algebra rank condition due to (|1.3)). O

Remark 4.1. Corollary is useful if one can exclude the existence of a foliation with the properties
described in this might be possible thanks to the particular form of system or some topological
properties of M. Most of the results in this direction are for codimension-one regular foliations: for
example, it is known that even dimensional spheres do not admit codimension-one regular foliations
[Dur72|. We recall also that a compact manifold with finite fundamental group has no analytic regular
foliations of codimension one |[Hae57|; some additional results can be found in [LawT74)].

The hypothesis of Lie-determinedness in Corollary [I.8]is necessary. Indeed, if we drop the hypothesis
that the system is Lie-determined, it is possible to construct an approximately controllable and not
controllable system having only one orbit. This is shown in the following example.

Ezample 4.2. Let M = R? and consider the family F = {f1, fo, f3", f3 } with

0

fi=gos fr=—ol@a)h, = ol 0

oz’

where ¢ : R? — [0, +00) is a smooth function such that, for all (z,y) € R?, ¢(z,y) = 0 if and only if
x =0 and y < 0. The four vector fields are illustrated in Figure It is not hard to check that this
system has a single orbit, is approximately controllable, and still it is not controllable.

Finally, there are examples of controllable systems which are nowhere Lie-determined. For instance,
one can consider the following system.

Ezample 4.3. Let M = R3, and consider the family F = {f;", fi, fi f5, f3+, f5 } with

0 0 0
fF=tg Ji=%@g, fF=+(-ag,
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Figure 4.2: The vector fields of the control system of R? in Example

where ¢ : R — R is a smooth function with support in R\ [1,2] and such that 9| 9) > 0. It can be
easily verified that this system is controllable (see Figure , but the dimension of Lie F is everywhere
less or equal to 2.

4.2 Bilinear control systems

Consider a bilinear control system, as defined in (BL|). Given a matrix A in M, let us denote by f4
the associated vector field
fa:x— Az, z € R"\{0}.

Since the vector fields f4 are R-homogenous for each A in M, the set FM = {fa | A € M} is a family
of analytical, homogenous vector fields in R™\ {0}.

Let us introduce two systems which can be naturally associated with : the projections of
system onto S"~' and RP"~!. First, consider the projection m : R*\ {0} — S"~! defined by
7(z) = x/|z|. For every z in S"~! and every v € T,R"™, consider the pushforward . (v) = v — (x,v)x,
and let us introduce the control system

i=m(Alt)z), Alt)eM, ze S (SD)

Due to homogeneity, the trajectories of (SY)) are the image of the trajectories of (BL|) via 7r; thus, the
orbits O of (SY) are projections of the orbits of (BIJ), that is

Oy =7(0y), ¥y eR"\{0}, (4.1)

We say that (BL) is angularly controllable if (SY)) is controllable. Similarly, consider the canonical
projection w : R®\ {0} — RP" ! and the system

G = w.(A(t)z), Alt) e M, q=w(x) e RP"L (PX)

This system is well-defined because w,(A(t)z) depends only on g and not on the choice of the specific
x € R\ {0} such that ¢ = w(x).

4.2.1 Proof of Theorem |1.9

Assume that system is approximately controllable and that n > 2, the case n = 1 being trivial.
System is Lie-determined due to the analyticity of each linear vector field and the already
cited Nagaro theorem [Nag66|. Thus, Corollary applies: either system (BL) is controllable, or
the partition of R™\ {0} into the orbits of forms a regular foliation of positive codimension as
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described in Let us assume the latter, and show that this leads to a contradiction.

As mentioned in the introduction, Theorem holds if one replaces (BL|) by (PX), as shown in
[BS20, Prop. 44]. Using this result, let us deduce the following property.

Lemma 4.4. If (BL) is approzimately controllable then (BL) is angularly controllable.

Proof. Since the projection of the trajectories of are trajectories of , if the former is
approximately controllable then the same holds for the latter. Due to |[BS20, Prop. 44|, if is
approximately controllable then it is controllable. In [BV13| Thm. 1] the authors show that system
(PY)) is controllable if and only if system is controllable. Therefore, system is controllable,
meaning that system is angularly controllable. O

Let us denote by O = {O, | x € R"\{0}} the orbit partition of system (BL)). Due to (4.1) and
Lemma [4:4] one has

Te(TyOs) = Ta() 032y = TeyS™ ™, Vo €R™"\{0}, Vy € O,
Therefore, we have that
7,0, + Ry = R", VvV eR"\{0}, Vye O, (4.2)

which is to say that the orbits are transversal to the radial direction. Additionally, since we assumed to
be in case@of Corollary this implies that dim 7, O, = n—1. It follows that O is a codimension-one
regular foliation of R™\ {0} transversal to the radial direction and with dense leaves. In the following
lemma we show that such a foliation cannot exist.

Lemma 4.5. Assume that n > 2. Then, there does not exist a homogenous, codimension-one reqular
foliation of R\ {0} transversal to the radial direction and with dense leaves.

The hypothesis of transversality between the foliation and the radial direction is necessary, as
counterexamples can be constructed otherwise. For instance, in [Hec76| the author presents an example
of codimension-one regular foliation of R? with dense leaves; this construction is presented with
additional details in [CN13, Chap. 4], and in this thesis in Example for completeness.

Proof of Lemmal[4.5 By contradiction, suppose there exists a codimension-one regular foliation £ =
{Ly | @ € A} of R"\ {0} with dense leaves transversal to the radial direction.

Let us first consider the case n = 2. Orienting the foliation using the clockwise direction and
applying Whitney’s theorem (see [ABZ96, Thm. 2.3 at p. 23]), the foliation can be identified with the
set of trajectories of a vector field. Using the stereographic projection, the flow of such a vector field
can be pushed to the sphere S? minus two points. However, a flow with dense trajectories on S? minus
finitely many points does not exist: see, for instance, [ABZ96| Lem. 2.4 at p. 56].

Assume that n > 3. Let us fix the point p = (0,...,0,1) € R", and denote by S"~2 the embedded
sphere S"2 x {0} C R™. For every 6 in S"2, let Py be the plane

P@ - Span{p7 9}7

as depicted in Figure Because of the transversality between the leaves of £ and the radial direction,
the linear subbundle Iy = Py N TL|p,\(0} is a one-dimensional distribution on Py \ {0} satisfying

Iy(x) @ Rx = T, Py, vV x € Pyp\{0}. (4.3)

By definition, the intersection L, N Py contains the integral curve to Iy starting at p. The integral
curves of Iy are nothing but the leaves of the one-dimensional foliation defined by the distribution Iy in
Py \{0}. We claim that such a foliation is orientable. Indeed, for each = in Py\ {0}, we can say that a
nonzero vector v in Iy(z) has a positive orientation if (v, x) is an oriented frame of Py. It follows from
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Figure 4.3: A graphic representation of the construction in the proof of Lemma

the already cited Whitney’s theorem that the foliation defined by Iy is the orbit partition of Py\ {0}
by the flow of a vector field gy everywhere transversal to the radial direction.

Because of the transversality condition and the homogeneity, the flow of gy spirals around the origin.
Let us choose the vector field gg such that, starting from p, one intersects R o6 before —R 6. Define
Py to be the point of first intersection between the integral curve of gy starting at p and the ray —Rqp,
and Cy to be the arc between p and py (see Figure .

Now, let us define the map ® : "2 — —Rsgp by ®() = pg. The map @ is well-defined, in the
sense that py does not depend on the vector field gy (once the latter is chosen with the appropriate
orientation). Moreover, the map ® is continuous, as it follows from the transversality between Ip(—p)
and —Rsp for all # in S”~2. In addition, the image of ® is contained in the intersection L, N —R>op,
which has empty interior because of the transversality between T'L and the radial direction. Since
S™=2 is connected (n > 2), it follows that ® is constant. Let us define

S= J G

fesSn—2

By the transversality between Iy(—p) and —R~qp for all § in S"~2 it follows that we can parameterize
Cy as a continuous arc on [0, 1] continuously with respect to 6. Hence, the topology of S as a subset
of R™ is that of (8”2 x [0,1])/ ~, where ~ is the equivalence relation which identifies the points in
S"=2 x {0} to a single equivalence class, and analogously for the points in S"~2 x {1}. That is, S is a
topological manifold homeomorphic to the sphere S”~!. In particular, S C L, is closed in R", and
therefore it is closed in L,. Since S has the same topological dimension as L,, we have that S is open
in the topology of L,. Since L, is connected, we can conclude that S = L,. This is contradicts the
assumptions that the leaves are dense. ]

Lemma shows that the supposition that we are in case of Corollary leads to a contradic-
tion. Therefore, we are in case and (BL) is controllable. This concludes the proof of Theorem O

4.3 Complementary remarks

The result in Lemma implies that Theorem generalises for control systems which are Lie-
determined, homogeneous, and angularly controllable. We say that is homogeneous if X = R™\ {0}
and for every z € X, u € U, and X\ > 0, m.(fu(A\7)) = m(fu(z)), where 7 : R\ {0} — S~ still
denotes the canonical projection. Just as in the bilinear case, the projection of such systems on the
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sphere S"~1 is
i=mfun(@),  fup €F, xS (5C)

and we say that is angularly controllable if (SC) is controllable.

Corollary 4.6. Let n > 2. Assume that the control system 1s Lie-determined, homogenous, and
angularly controllable. Then, is approzimately controllable if and only if it is controllable.

Since for n = 2 system projects to S!, in this case the hypothesis of angular controllability can
be easily removed.

Remark 4.7. For all n odd, n = 2k + 1 with k£ > 1, the hypothesis of angular controllability in Corollary
is superfluous. Indeed, if system is Lie-determined, homogenous, and approximately controllable,
then Corollary implies that either is angularly controllable, or the projection of its orbits forms
a nontrivial regular foliation of the even-dimensional sphere S?*. Since even dimensional spheres do not
admit nontrivial regular foliations (indeed their tangent spaces do not admit any nontrivial subbundles;
see, e.g., [IMS74, Problem 9C]J), the angular controllability follows.

However, it has not been possible to fully remove the hypothesis of angular controllability in
Corollary In this regard, let us discuss the case n = 4. Due to Corollary if is Lie-dermined,
homogeneous, approximately controllable, and is not controllable, then the orbits of form a
regular foliation of S3 of either dimension one or codimension one. The latter gives a contradiction,
since the Novikov compact leaf theorem implies that any codimension-one regular foliation of the
sphere S has a compact leaf [Nov65|. The former implies that the orbits of are given by the flow
of a minimal vector field, i.e., a vector field whose orbits are dense. The existence of such flows has
been raised as an open question in |[Got58| for compact metric spaces, and for the sphere S3 has been
mentioned by Smale in [Sma98| under the name Gottschalk conjecture; further details can be found in
[FPWO7]. If the Gottschalk conjecture were to be true, it would imply the existence of Lie-determined,
homogenous, approximate controllable, yet not controllable systems, showing that Corollary fails to
hold if we remove the angular controllability hypothesis.

Finally, we mention that the hypotheses of transversality to the radial direction in Lemma [4.5]is
necessary. Indeed, the following example gives a sketch of the construction of a smooth foliation of R?
with dense leaves, from which one can obtain a regular foliation of R3\ {0} by subtracting the origin.

Ezample 4.8 (Hector’s example, [Hec76|). This example is due to Hector. The first part of the
construction is to associate to certain diffeomorphisms f : R — R a foliation £ of the three-dimensional
cylinder D? x R, where D? is a closed two-dimensional disk; the hypothesis demanded on f is the
existence of an interval [a, b] such that f(x) =« for all « € [a,b]. Given such a diffeomorphism f, one
first constructs a foliation in the solid cylinder D? x R\ {0} x [(—o0, a) U (b, +00)] with the property
that (r,6,z) and (1,0, f(2)) are in the same leaf, for all r € (0,1], § € S! and z € R (see the image on
the left in Figure . Next, one can obtain a foliation on the whole cylinder by performing a C*
deformation supported on %D2 x R (i.e., not changing a neighbourhood of S! x R) sending a and b to
—oo and 400 respectively (see the image on the right in Figure . Denote this foliation by &;.

Now, suppose having two solid cylinders D3 x R and D3 x R with two respective foliations & 7 and
&f,- Fix two compact arcs V; C S 1 for i = 1,2, and take a diffeomorphism ¢ : Vi x R — V5 x R for
which ¢4 (€4, [vaxr) = &f |vaxr - The cylinders D x R and D3 x R in can be glued together along ¢ to
obtain the foliation &y, f, on (D} Ug D3) x R. Observe that the intersection of the leaf of &y, f, going
thought a point z in S; (denoted by &, £,(2)) and the vertical line {z} x R is

£f17f2(z) N ({Z} X R) = {f]’fl o gl IS Ofik Ofgk(z) ‘ il?jl)' "7ik7jk S Z}

This can be verified by looking at the fundamental group of the bouquet of two circles S' A St; see
Figure Notice that D? Ug D2 is diffeomorphic to a disk, and that the gluing described above can
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Figure 4.4: On the left-hand side the foliation constructed from the suspension by the diffeomorphism
f R — R, and on the right-hand side the whirlwind defined by f on the whole cylinder.

D2 Q TN

Figure 4.5: A portion of a leaf of the foliation &y, ¢,.

be repeated multiple times to obtain a foliation &, s on D? x R. Moreover, for all z in S!, the
intersection of the leaf going through z and the vertical line {z} x R is

Ehr ()N ({2} xR) = {fg'; oo fIm(2) | ity yin € {1, kY, J1yeeesdn € L)

Observe that if the intersection £y, 5, (2) N ({z} x R) is dense, then the leaf £y, 7, (z) is dense in the
cylinder D? x R.

Lemma 4.9. There exists fi1, fa, f3, fa : R = R diffeomorphism for which the above construction can be
applied, and such that, for all z, the set

{fllo o fln(z) | ir,....in € {1,...,4}, j1,....jn € Z}
1s dense in R.

Proof. Let ¢ : R — R smooth and increasing, with ¢[(_0 = 0 and ¢|; ;o) = 1. Define fi(z) =
z+ ap(z) and fo(x) = f; Y(a +2), and f3(z) = 2 + ¢(z) and fy(x) = f; '(x + 1). By definition,
fio fo(x) =2+ a and f3o fy = x + 1, therefore

(flon)nO(f3of4)m(;U):.CU—i—Og’n,—i—m’ Vn,m € Z, Vx € R.
If o is irrational, then the set of numbers {an +m | n,m € Z} is dense in R. O

Thus, using the functions constructed in Lemma , one obtains a foliation of D? x R for which
every leaf is dense. Finally, by sending the boundary S® to the infinity of R? one has a foliation of
R? x R = R3 with dense leaves.
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This chapter presents the results collected in the paper |[BCFS21|, joint work with Ugo Boscain,
Valentina Franceschi and Mario Sigalotti and currently submitted for publication.

5.1 Introduction

As in the introduction, let M be a connected smooth manifold. Consider the control system [C| with
piecewise constant controls or essentially bounded controls. The proof of Theorem relies on the
following lemmas.

Lemma 5.1. If satisfies the local reachability property, then it is approzimately controllable.

The proof of this lemma, presented in the next section, relies on the regularity of the flow of for
a fixed control, and on the connectedness of M. Lemma is a key step in the proof of the following
key property.

Lemma 5.2. Assume (C]) satisfies the local reachability property. Then, for any state x and y in M,
ye A, = zc€ A,

Given a state x in M, the controllable set to x is the set of states from which x is reached, i.e.,
Ay ={ye M |z € Ay}. Observe that A} is the attainable set from « for the control system defined
by —F', whose solutions are the solutions of followed in the opposite time direction.

Remark 5.3. Assume that is approximately controllable (recalling that, according to Lemma
this is the case if the system satisfies local reachability). If a state z in M satisfies Int A, # (), then
the state x can be reached from any other state. Indeed, for any y in M, since A, is dense in M it
intersects the interior of A, . Thus, there exists z € A, N A, . Since z € A, and z € Ay, one can steer
the system from y to x (see Figure .
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Figure 5.1: Situation in Remark The gray ball is contained in the interior of A and it contains
reachable points from any y € M by approximate controllability. Thus z € A,.

Remark [5.3] together with the following proposition shows that a system satisfying the localised
local reachability property is controllable.

Proposition 5.4. If system is localized locally reachable, then for any state x € M the set A,
has nonempty interior.

Proof. The argument mimics the proof of Krener’s theorem |Kre74]. Let x in M. We claim that there
exists X7 € F such that X;(x) # 0. Indeed, if that was not the case, any solution ¢(-, z,u) for u € U
would be constant. Let

Ny = {1 (2) |t € (0,0)}

for § > 0. If M is one-dimensional, then we have concluded. Otherwise, we claim there exist y; € Ny
and Xy € F a such that X;(y;) and X2(y1) are transverse. Indeed, let V; be a neighbourhood of
e~9/2X1(z) not containing x nor e %%1(z) and assume that every f € F is tangent to Vi N N. Then
the trajectories of starting from N; N V; and staying in Vi cannot quit Ny N V4. This contradicts
the localized local reachability property.

Thus, define the embedded two-dimensional submanifold

Ny ={e™*2 01 (2) | (t1,t2) € I x (0,82)},

for a suitable nonempty open subinterval I of (0,d) and a suitable d2 > 0. If the dimension of M
is equal to 2 the proof is concluded, otherwise there exist yo € No and X3 € F such that X3(y2) is
transversal to Ny and we iterate the construction up to reaching the dimension of M. O

Remark 5.5. As an alternative of the self-contained proof proposed above, Proposition [5.4] could have
been directly deduced from |Gra92, Theorem 5.3], since the property of localized local reachability
implies, in the terminology of [Gra92|, that has the nontangency property.

5.2 Local reachability implies controllability

Once Lemma [5.2]is proven, Theorem follows from the following classical argument.

Proof of Theorem[1.1] Assume that satisfies the local reachability property. Define the equivalence
relation ~ on M by requiring x ~ y if and only if x € A,. Thanks to Lemma [5.2} this is indeed an
equivalence relation. Due to local reachability, the equivalence classes are open. The classes are also
closed, since one class is the complementary of the union of the other classes, and this union is open.
Due to the connectedness of M, there is only one class and system is controllable.

O
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5.2.1 Proof of Lemma

Assume that satisfies the local reachability property. Let x € M. We want to show that cl(A,) is
open. By connectedness of M, this implies that cl(A,) = M, thus proving the lemma.
Let y € cl(A;). We claim that for every control u € U and ¢ > 0 such that ¢(t,y,u) is defined, we
have that
o(t,y,u) € cl(Ay). (5.1)

This concludes the proof of the lemma. Indeed, from it follows that A, C cl(Ay); since A,
contains y in its interior due to , this proves that cl(.A,) is open.

In order to prove , take y,u,t as in the assumptions and fix any neighbourhood V' of ¢(t, y, u):
we show that V' has nonempty intersection with A,. Consider a neighbourhood W of y such that the
map p: W 3z ¢(t,z,u) € p(W) is a diffeomorphism. In particular, (W) is a neighbourhood of
é(t,y,u), and the set W' = o=V N (W)) is a neighborhood of y. Since y is in the closure of Ay,
there exists y; € W' N A,. Consider an admissible control from z to y;: by concatenating this control
with u one finds that ¢(¢,y1,u) is in A,. This implies that ¢(¢, y1,u) belongs to V N A, proving that
V N A, is nonempty, as required. O

Observe that if system satisfies local controllability, then the attainable sets are open. Let us
now proceed with the proof of Lemma [5.2]

5.2.2 Proof of Lemma

Let « and y in M be such that y € A,. We argue by contradiction supposing that = ¢ A,. We claim
that this implies the existence of a state z in M (actually z € A;) such that

z¢ Ay and Int A7 #0. (5.2)

This is a contradiction, since the assertions in cannot hold both at the same time due to Remark
m The rest of the proof is dedicated to proving the existence of a point z satisfying .

Consider a control v € U and T > 0 such that ¢(T,z,u) = y. Define the absolutely continuous
curve 7y : [0,T] — M by ~(t) = ¢(t,x,u). Let

T =inf{t € [0,T] | v(t) € Ay}.

We claim that v([0,7]) N A, = v((7,T]). Indeed, v~ (v([0,T]) N A,) is open since A, is open, and its
complementary is nonempty since it contains zero (we supposed that = ¢ A,). Moreover, if a certain
s € (0,77 satisfies y(s) € Ay, then, for all ¢ in [s, T, one has v(t) € A, since it suffices to concatenate
the control from y to y(s) with u(,4 in order to to attain y(t). Up to renaming (7) as z, we can
assume that 7 = 0. Namely, without loss of generality, one can assume (see Figure

r¢ Ay, and o(t,x,u) € A, for all t € (0,T].

Let V be a neighbourhood of z contained in A,. We now construct a parametrisation Cy, : I, — M
(I, C R™) of a n-dimensional embedded sub-manifold of M satisfying C,(I,) C A7, and therefore
z (or more exactly (7)) satisfies (5.2)). This will be done by a recursive argument, by constructing
parametrisations Cy, : I, — M (I C R¥), for k = 1,...,n, with

Cr(s) €V, and z € Ag, ) forallse . (5.3)

Let us begin with £ = 1. Let v € Q (constant) such that X,(z) # 0, and let I; an open interval of
the form (0, 6;) such that the map Cy: Iy — M defined by C;(t) = e~'*v(z) parametrises an embedded
curve. Since the constant control defined by v belongs to U, then one can reach x from any point in Cj.
Moreover, one has that C; is contained in V', up to choosing §; sufficiently small. Thus, C; satisfies

(5.3) for k = 1.
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Figure 5.2: A graphic representation of the iterations in the proof of Lemma in dimension two,
and for piecewise constants controls. On can control any point in Cy to by first attaining S1, then
attaining C'1 via the control u; from which one can reach x.

Now, suppose having constructed a k-dimensional parametrisation C} satisfying , with 1 <

k <n—1. Fix a point z; € Ck(I), and consider a control uy in Y and a time T} > 0 such that

gk = ¢(Ty, x,ur). Let Wi be a neighbourhood of x such that @i : Wi 3 y — x(Tk, y, ux) = wr(Wy) is

a diffeomorphism. Define S), = 90;1 o (Y, this parametrises an embedded submanifold of dimension k
containing x. Moreover,

T < -ASk(s)v Vs € I, (5.4)

since x € Ag, (5), and Cr(s) € Ag, (s) using uy as control. In particular, we have that Sy(s) ¢ A, for
all s € I;. As a consequence, since ¢(t,z,u) € A, for all t € (0,7T], we have that

Se(Ix) N{o(t,x,u) | t € (0,T]} = 0. (5.5)

This implies the existence of ¢ > 0 and of o € I with Si(o) arbitrarily close to z and such that
X (Sk(0),u(ty)) and Ty, () Sk are transverse, i.e.,

dim (span{X(Sk(a), u(tk))} D Tsk(g)sk) =k+1. (56)

Indeed, if one had X (Si(c),u(t)) C T, (s)Sk for all s € I and ¢t € [0,T], then, by uniqueness of
solutions, the flow starting from x would belong to Si(Ix), at least for ¢ > 0 sufficiently small. However,
this contradicts . Moreover, o can be chosen so that Si(o) belongs to V. Let X be the vector
field X (-, u(tx))

Therefore, there exists an open neighbourhood I;, C Ij, containing o and a dx41 > 0 such that the
map Cyi1 @ g1 = I} X (=0k+1,0k+1) — M defined by

Crr1(s,t) = €™ 0 5p(s),  V(s,t) € I X (=041, 0k41),

is a parametrisation of an embedded submanifold of dimension k41. This is due to the fact that the differ-
ential of Cj41 at (0,0) has full rank, as it follows from (5.6)). Moreover, since Cy41(0,0) = Sk(o) € V,
the set Ixy1 can be chosen so that Ciiq1(Ixr1) € V. We are now left to observe that, for all
(s,t) € I} X (=0k11,0), we have that x € A, (s, In fact, starting from Cj11(s,t) one can reach
Sk(s) using the (constant) control corresponding to Xy, and z can be reached from S(s) due to (5.4).
This concludes the iteration, since Cj1] I % (~6541,0) satisfies . O
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5.3 Complementary remarks

As mentioned in Remark Lemma (and consequently Theorem generalises to other classes
of controls provided that for any fixed control one still has existence and uniqueness in the class of
absolutely continuous functions, and regularity on the initial conditions. In particular, uniqueness in
necessary to prove the base case of the induction, and to find the transverse vector field in ; on
the other hand, regularity is used to define the submanifolds S starting from the submanifolds Cj.

In Theorem we have shown that if system [C] satisfies local reachability then it is controllable.
The property of local reachability means that one can reach an open neighbourhood of any initial
condition. A slight modification of Example [£.2] gives a system which satisfies local reachability at
every point except for one. The resulting system is not controllable, showing that the lack of local
reachability even only at a point might impair global cotrollability.

Ezample 5.6. Let M = R? and denote by V the half-line V = {0} x R<o. Consider the control system
defined by the family F = {f1, fa, f5, f; } with

0

873/’ f2:_w($7y)2a f?ft::l:¢<x7:l/)2

f1: ay o’

for two smooth functions ¢, : R? — [0, +00) satisfying, for all (z,%) € R?, ¢(x,y) = 0 if and only
if (x,y) € V, and ¥(x,y) = 0 if and only if x = y = 0, respectively. For any p € R2\V one has that
A, = R2\ V| while for any p € V\{0} one has that A, = R?. Thus, at these points the system satisfies
the local controllability property. However, for py = 0 one has A,, = {po} UR?*\ V which does not
contain pg in its interior.
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