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Résumé

Cette these est un travail autour de la stabilité de fibrés vectoriels. Elle est
divisée en quatre parties, dont la premieére est introductive, et les trois autres
sont constituées par des résultats originaux.

Dans la deuxiéme partie on montre que sur chaque variété projective lisse
sur un corps algébriquement clos, les fibrés stables fournissent un ensemble de
générateurs pour 'anneau de Chow de la variété. Ce résultat provient de la
recherche de formes différentielles particulieres fournissant des représentants
de classes de Chern des fibrés vectoriels. Pour obtenir des tels représentants
on cherche une résolution projective pour chaque fibré vectoriel, faite par des
fibrés stables ou polystables. La recherche d"une telle résolution nous a amenés
a la construction d'une résolution pour les faisceaux d’idéaux, entrainant le
résultat sur les groupes de Chow.

Afin de rechercher si une résolution polystable existe pour tout fibré, un
point essentiel est la recherche de transformées stables de fibrés donnés. Par
transformée on désigne le noyau de l'application d’évaluation sur un sous-
espace de sections globales d"un fibré.

La stabilité de ces noyaux a été étudiée par plusieurs auteurs, avec des
motivations différentes. Paranjape et Ramanan, et par Butler, pour étudier la
génération normale de certains fibrés vectoriels. Ein and Lazarseld pour mon-
trer la stabilité du fibré de Picard. Beauville pour étudier la réductibilité des
diviseur théta, et Mercat pour étudier la dimension des lieux de Brill-Noether.

Le troisiéme chapitre donne une réponse a la question de la stabilité des
transformées dans des cas particuliers, pour des fibrés en droites sur des courbes
projectives lisses de genre plus grand que 1.

Dans la quatriéme partie, un autre cas de stabilité est traité, dans le cadre
des produits symétriques des courbes.

Les techniques utilisées sont purement algébriques, et valables en toute car-
actéristique, bien que 'existence des métriques de Hermite-Einstein sur des
fibrés vectoriels stables était la motivation pricipale pour le projet.

Bien que la question de la stabilité des transformées soit assez naturelle, il
ne s’agit que de résultats partiels qu’on a trouvé, ne permettant pas la construc-
tion des résolutions recherchées.

Les résultats obtenus laissent envisager de toute facon, de pouvoir étudier
plus profondément la stabilité de certains fibrés sur les produits symétriques
de courbes, ou surfaces.






Introduction

This thesis deals with stable vector bundles over projective varieties. Vector
bundles are objects used in various areas of mathematics, from differential
equations to number theory. In algebraic geometry they are an instrument to
study the geometry of the variety over which they are defined. Their simplest
numerical invariants are rank and Chern classes.

Stability is a concept arising when we want to construct a moduli space of
vector bundles fixing those numerical invariants.

The starting point of our work is the construction of a polystable resolution
of ideal sheaves.

The motivations leading to this construction are to be found in the
Kobayashi-Hitchin correspondence, relating the stability of a vector bundle on
a complex projective variety to the existence of a Hermite-Einstein metric. The
existence of a particular metric on a vector bundle implies the possibility of
choosing in a “canonical” way differential forms representing Chern classes of
the vector bundle.

Hence, looking for some polystable resolution was a first step to find a way
of choosing particular differential forms representing Chern classes of every
vector bundle. And eventually a lift of the cycle map yx:

’A%liosed(x)
-7 l
CH(X) —— HEp(X)

Unfortunately this turned out to be too optimistic, and we were not able to
find such a resolution. In any case, even when the polystable resolutions exist,
the associated Chern form might depend on the resolution.

The main reason for this, is the difficulties arising when we want to verify
the stability of a given vector bundle coming from some construction.

However, we were able to find such a resolution for ideal sheaves, and this
was sufficient to exhibit stable bundles as generators for the Chow ring of any
projective smooth variety (and for the K-theory and the derived category as
well).

The text is organized as follows.



2 Introduction

In the first chapter we find all the basic notions, and the first elementary
lemmas. We describe how to construct Chow groups, and Chern classes. We
show the origins of stability in the construction of moduli spaces, and the de-
tailed description of slope stability as well as the properties we are going to use.
We give also an idea of the meaning of Kobayashi-Hitchin correspondence.

All of the notions in the first chapter are well known, and can be found in
many places in the literature. We give the references that we have followed.

The other chapters are our results.

The second part is dedicated to the construction of the polystable resolution
of ideal sheaves. This construction is possible by restricting on curves, and
using a result of Butler, asserting the stability of kernels of evaluation maps
(that we call transforms in the rest of the thesis).

One of the main tool to show stability on a higher dimensional variety is by
restriction on curves, where stability can be more easily checked.

A main problem in trying to construct resolutions as above, is to find out
whether we have stability of some transforms of vector bundles.

The question about stability of transforms appears in many different stud-
ies in the literature. It is observed in particular by Paranjape and Ramanan to
prove normal generation of canonical ring of curves, by Butler also to study
normal generation of certain vector bundles, by Ein and Lazarsfeld to show
the stability of the Picard bundle, by Beauville to study theta divisors, and by
Mercat to describe some Brill-Noether loci.

The third chapter is a partial answer to a question of this kind for line bun-
dles on curves.

The fourth chapter is also dedicated to the stability of transforms, on sym-
metric product of curves. It is shown that tautological bundles and their trans-
forms are stable with respect to a canonical polarization.

Even though stability of transforms is a very natural question, we have
only partial results for the time being. We think however that this results can
be generalized to symmetric products of surfaces, where tautological sheaves
are used on various purposes.



Chapter 1

Notations, and basic lemmas

In algebraic geometry vector bundles are an instrument to study the geometry
of the variety over which they are defined. Stability is a concept arising when
we want to construct a moduli space of vector bundles having a given rank and
Chern classes. Its original definition as well as its numerical characterization
are due to Mumford in the case of quotients of varieties by some group (cf.
[MEKO94]).

In the complex case stability has also a differential description by the exis-
tence of a unique metric on the vector bundle satisfying a certain condition on
the curvature. This is a Hermite-Einstein metric, and the relation between such
metric properties and stability, i.e. the Hitchin-Kobayashi correspondence, was
described by Kobayashi (cf. [Kob87]). Narasimhan and Seshadri proved it
in [NS65] in the case of curves (relating stability and unitary representations
of the fundamental group). Donaldson in the case of projective surfaces (cf.
[Don85]), and then for all projective variety in [Don87]. Uhlenbeck and Yau,
proved it for compact Kédhler manifolds (cf. [UY86]).

1.0.1 References of the preliminary notions

In this chapter we will go over the notions just mentioned, even though we
will deal in the rest only with their algebraic part. We will try to explain the
interest in stability of vector bundles and give some basic lemmas, setting up
our context and notations.

All of the theorems and constructions of this chapter are well known, and
can be found in various places in the literature, except for theorem on
stability and restrictions, which is widely used, but we were not able to find in
this form. We will try to describe how the main objects are constructed, only
the theorems we will use the most (existence of a maximal semistable subsheaf
and stability through restrictions) will be proved in more details.

For more details on the themes treated in this chapter, here are the refer-
ences we have followed:
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- for the construction of the Chow ring, Chevalley [Che58], and Fulton
[Fulog];

- for the Quot and Hilbert’s schemes, Grothendieck [Gro95];

- for Chern classes, Grothendieck [Gro58];

- for moduli spaces, Mumford [MEK94] for GIT, Huybrechts and Lehn [HL97]
and Le Potier [LP95]] for muduli of vector bundles;

- for Hermite Einstein metrics, Kobayashi [Kob87].

1.1 Chow ring and Chern classes

Throughout this thesis by variety we mean a smooth integral projective scheme
over an algebraically closed field k.

1.1.1 Algebraic cycles on a projective variety

In this paragraph, we show the classical construction of a ring structure on the
set of formal sums of integral closed subschemes modulo rational equivalence
in a smooth projective variety, with intersection as product. The functorial
construction of such a ring, graded by codimension, is called an “intersection
theory for cycles”.

The description we follow can be used, or axiomatized, to construct an in-
tersection theory for cycles on nonsingular quasi-projective varieties, with very
few chanhgings (as considering only proper push-forwards). As we will not use
intersection theory on quasi-projective varieties, we stick to our notation and
call variety a nonsingular projective scheme over a fixed algebraically closed
field k.

We remark that any morphism between projective varieties is proper, and
in particular closed.

Definition 1.1.1 A cycle on a variety X is a finite formal sum of closed integral sub-
schemes of X, with coefficients in Z. The set of all cycles of X forms an abelian group,
graded by codimension:

n
C'(X)=Cr(X), C’(X):= & zvx.
p=0 Y infegral
codimyxY=p

Given a morphism of varieties ¢: X1 — Xp we define the push-forward morphism
@+« C*(X1) — C*M1(Xy) of the groups of cycles (shifting the degrees by g = dim X, —
dim X1) in the following way

p«(Y)=0 if dimg(Y) < dimY

9-(Y) = [k(Y) : k(p(Y))] - 9(¥) if dimg(Y) = dim Y
for all integral subscheme Y C Xj, then extending to C*(X) by linearity.
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If we have a closed non integral subscheme Y C X of codimension p in X,
then we associate to Y the cycle

Emayzx ’
«

were Y, are the reduced irreducible components of Y of codimension p in X,
with generic points y,, counted with multiplicities 1, := lengthOy .

We want to define a graded ring structure in C*(X), where intersection of
subschemes induces the product law. This is not possible as the intersection of
two integral subschemes does not necessarily have the good dimension, hence
we allow cycles to be deformed in such a way that they can intersect properly.

Definition 1.1.2 A cycle Z € C*(X x T) is flat over T if it is a formal sum of integral
subscemes flat over T.

An algebraic family {Z; }ic1 of p-codimensional cycles on X, parametrized by a
connected scheme T, is a p-codimensional cycle Z C X x T, flat over T. All the fibers
Zy are said to be algebraically equivalent. We note ~ , the equivalence relation in
C*(X) generated by algebraically equivalent cycles.

We say that an algebraic family is a rational family, when it is parametrized by
an open subset T C P'. We call rationally equivalent two cycles in any such family,
and we note ~ 4 the equivalence relation in C*(X) generated by rationally equivalent
cycles.

We define Chow group of order q of X the group of cycles of codimension q modulo
rational equivalence, noted

CHY(X) 1= C1(X)/ ropar=: CHy_4(X).

In the above definition, the cycles Z;, t € T, are the cycles associated to the
schematic intersection Z N (X x t), when Z is a closed integral subscheme, and
we extend this in the natural way to a cycle Z = }_n,Y, with every Y, integral
and flat over T.

Example 1.1.3 If we consider divisors, i.e. cycles of codimension 1, on a curve
C, then Dy = }_n;x; and D, = ) m;y; are algebraically equivalent if and only if
they have the same degree, i.e. if } m; = }_ n;. To prove this, notice that every
two points x,y € C are algebraically equivalent.

And they are rationally equivalent if and only if they represent the same
invertible sheaf, i.e. if Oc(D1) = Oc(Dy): in general, for a smooth quasi-
projective variety X, the group C!(X) of 1-codimensional cycles is exactly the
group of Weil divisors, and it can be shown that rational equivalence coincides
with linear equivalence, hence the group c! (X)/ ~yar of divisors modulo ra-
tional equivalence, is isomorphic to the group Pic(X) of line bundles on X.

Definition 1.1.4 We say that two integral subschemes Z1 and Z; intersect properly
if every component Yy of Z1 N Zy verifies codimyY, = codimyZ; + codimyxZ,.
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When two integral subschemes Z; and Z; intersect properly, and Z; N Z,
has irreducible components Y, (with reduced structure), we define their prod-
uct as

Z1.Z5 =Y (Z1.25,Yo; X)Ya,
o
where the coefficients are the intersection multiplicities

I(Zl.ZZ, Yo, X) = Z(—l)ilenght TOT’?)X’M (OX,YA /Izl, OX,Y:x /IZZ) .

i

Thus, intersection product of two integer subschemes intersecting properly
is the sum of the intersection components counted with multiplicities. Intersec-
tion product W.Z of two cycles Y = Y n,Yy, Z = Y mpZg € C*(X) is defined
any times that every component Y, of Y intersect properly every component

When two subvarieties intersect transversally, then intersection multiplici-
ties are 1 for all components of the intersection.

Proposition 1.1.5 The intersection product, extended as far as possible to C*(X), is
commutative and associative whenever defined, and has X € C°(X) as identity.

The fact that allows to define intersection products in the Chow groups
is Chow’s moving lemma, which assures that given two cycles, one can be
rationally deformed to intersect properly the other one.

Lemma 1.1.6 (Chow) Given two cycles Z, W on a variety X, there exist a cycle Y,
rationally equivalent to W, such that the intersection cycle Z.Y is defined.

Then we can define a ring structure on C*(X)/ ~yat and C*(X)/ ~ug,
thanks to he following

Lemma 1.1.7 Let Z,W,Y be three cycles on a variety X. Suppose that Y is ratio-
nally (algebraically) equivalent to W and hat Z.Y and Z.W are defined. Then Z.W is
rationally (algebraically) equivalent to Z.Y .

Definition 1.1.8 We call Chow ring of a variey X the commutative graded ring of
rationally equivalent cycles on X, and we note it

CH*(X) = C*(X)/ ~rat -
We call rational Chow ring the ring CHG(X) := CH*(X) ® Q.
Remark 1.1.9 In the following, we will often note in the same way a cycle Z,

and its rational class [Z],s. In particular, given two cycles Z € CP(X),Y €
C1(X), we will write Z.Y € CH™(X) instead of [Z],q1.[Y]ar € CHPT(X).
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Given a graded product structure on the Chow groups

CHY(X) x CH*(X) — CHI"3(x)

on each variety X, we define the pull-back ¢* of cycles by a morphism ¢: X; —
X5 as:

¢*(Y) = p1.(Tp. (X1 X Y))

where p; is the natural projection X; x X — Xy, and Iy, is the cycle corre-
sponding to the graph of ¢ in X; x Xj.

Properties 1.1.10 The following are properties of the Chow ring which can be
axiomatized for the graded product structures on the Chow groups to give rise
to an intersection theory:

i.

i.

iil.

vi.

vil.

Product. CH*(X) is a graded commutative ring with identity, for every
variety X.

Functoriality. For any morphism ¢: X; — X, of varieties,
¢*: CH"(Xp) — CH*(X;) is a graded ring homomorphism. If ¢: X, —
X3 is another morphism, then (o ¢)* = ¢* o ¢p*.

(Proper) Push-forward. For any (proper) morphism ¢: X; — X of vari-
eties, ¢, : CH"(X;) — CH*(Xj) is a graded group homomorphism shift-
ing degrees by dim X; — dim Xj. If ¢: X, — X3 is another morphism,
then (o @)« = s 0 @s.

Projection Formula. For any (proper) morphism ¢: X; — X; of varieties,

and any classes W € CH*(X;) and Z € CH*(X;), we have ¢.(W.9*Z) =
(9:W).Z € CH*(X).

. Reduction to the diagonal. If Y and Z are cycleson X, and if A: X — X x X

is the diagonal morphism, then

Y.Z =AY x Z).

Local Intersection. If Z1 and Z, are subvarieties of X which intersect prop-
erly, then
Z1.Z5 =Y 1(Z1.25,Yo; X)Ya,
o

where Y, are the components of Z1 N Z,, and [(Z1.Z,, Yy; X) depends
only on a neighborhood of the generic point of of Y, in X.

Normalization. Let Z be an effective Cartier divisor given by a section
f: X — L of aline bundle L, and let Y be a subvariety of X intersecting
properly Z, then Y.Z is the cycle associated to the cartier divisor Y N Z on
Y, obtained by restricting f to Y.
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Proposition 1.1.11 There exists a unique intersection product on rational equiva-
lence classes of cycles

CH’(X) x CH*(X) — CHI"™(X)
satisfying properties|1.1.10)

The following property of the Chow ring allow us to define Chern classes
with values in the Chow groups.

Property 1.1.12 Let E be a rank r vector bundle on the variety X, determining
the projective bundle 77: P(E) — X. And let & € CHY(IP(E)) = Pic(PP(E))
the class coresponding to the line bundle Op g (1). Then the ring homomor-
phism 77*: CH*(X) — CH*(IP(E)) makes CH*(IP(E)) a free CH"(X)-module
generated by 1, ¢, §2, ey é’_l.

In this thesis we use intersection theory to compute Chern classes. What
we will need in effect, is to cut a given divisor with an ample one many times
until we get to some number of points. This number does not depend on the
rational or algebraic class of those divisors, as we explain in the following.

Definition 1.1.13 We call degree map the map < . >: C*(X) — Z, which is the
zero map on C1(X) when g < n = dim(X), and is the map

E mip; = Z m;
i i
couting points on the group of O-cycles.

Remark 1.1.14 Clearly, the map is well defined on algebraic or rational classes
of divisors, hence we get degree maps < . >: CH"(X) — Z, and <
> CH(X)/ ~ag— Z.

When it does not create ambiguities, we will omit the <> signs for the
degree map, in particular given a divisor D, and a cycle Z € C7(X) we will
write D"71.Z > 0 instead of < D"79.Z > > 0.

In this frame, we state the famous ampleness criterion by Nakai and Moishe-
zon. A detailed proof can be found in [Kle66] (in larger generality than here).

Proposition 1.1.15 (Nakai-Moishezon criterion) Let H be a divisor on a variety
X, then H is ample if and only if for every closed integral r-dimensional subscheme
Y C X we have H'.Y > 0.

Definition 1.1.16 We say that two cycles Zy and Zy in a variety X are numerically
equivalent, and we note Zy = Zy, or Z1 ~num Zy, if for every cycle Y € C*(X) we
have < Z1.Y >=< Z,.Y >. We call group of Neron-Severi, the finitely generated (by
theorem of Neron and Severi) group of Divisors modulo algebraic equivalence, noted

NS(X) := CH(X)/ ~ayg,
and we note N*(X) := CY(X)/ ~uum.
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By Nakai-Moishezon criterion we see that if a divisor D € C!'(X) verifies
D = H, H ample, then D itself is ample. So when we are interested only in
intersection numbers, e.g. in the definition of stability below, we can
consider only divisors up to numerical equivalence, i.e. divisors in N'(X).

Remark 1.1.17 Throughout this thesis, whenever it will not create ambiguities,
we will make the abuse of notation of noting in the same way D, a divisor
D € C'(X), its rational equivalence class [D],;; € CH!(X), its invertible sheaf
Ox(D) € Pic(X), and its numerical equivalence class [D]uum € N!(X).

We will identify as usual any vector bundle E — X with its locally free
sheaf of sections Ox (E).

We verify immediately the following

Proposition 1.1.18 Let Y and Z be two cycles in C*(X), then
Y~ 2 = Ywang = Y=Z.

1.1.2 Chern classes in the Chow ring

Roughly speaking, the ith Chern class of a vector bundle E is the locus where
r — i+ 1 generic sections don’t have maximal rank. We give some example of
what this means, and then the general definition.

If a line bundle L on a variety X admits a non zero global sections: X — L,
then the vanishing locus of this section is a diVisorin X, and the rational class
of this divisor is exactly L (through the correspondence CH! (X) 2 Pic(X)).

In the same way, consider a rank r vector bundle E on the variety X of
dimension 7, such that r < n. Let us suppose there is a global section s: X —
E, transversal to the zero section. Then the vanishing locus Z(s) := {x €
X | s(x) = 0} is a r codimensional subvariety of X. The class of Z(s) in CH" (X)
does not depend on the section s, and is an invariant of E called the rth Chern
class ¢,(E) of E.

Furthermore, let us suppose that E is globally generated, and consider r
generic global sections sy, ..., s,. Then the locus

Z(s1,.-.,8) :={x € X|rk(s1(x),...,sr(x)) <r—1}

where those sections do not have maximal rank r is a 1-codimensional subvari-
ety of X, i.e. a divisor of X. The r sections s1, ..., s, give us a sectionsy A - - - A's;
of the line bundle det(E), that vanishes exactly on Z(sy,...,s;). The class of
Z(s1,...,sr) in CH!(X) = Pic(X) does not depend on the chosen sections. It is
an invariant of E called the first Chern class ¢1 (E), and corresponds to the line
bundle det(E).

The properties of Chow rings allow us to formalize such idea and construct
Chern classes ¢;(E) € CH!(X) for every vector bundle E on X, and then for
every sheaf 7 € Cohy.

Ithe divisor 0 € C!(X) in the case of the empty set.
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If we have a vector bundle E on X, let P(E) — X the projective bundleﬂ
associated to E, and let ¢ be the class of Op)(1) in CH'(PP(E)). Then, by
property [1.1.12)of the Chow ring, we can express " in a unique way as a linear
combination of 1,&,&2,...,& 1, with coefficients in CH(X). Those coefficients
define the Chern classes in the following way:

Definition 1.1.19 Let E be a rank r vector bundle on the variety X, define for all
0 < i < rthe ith Chern class ¢;(E) € CH'(X) by co(E) = 1 and

i e (E).& 1 =0. (1.1)
=0

We call total Chern class c¢(E) := ¢o(E) + c1(E) + - - - + ¢,(E) and Chern poly-

nomial
r

ct(E) ==Y c;(E)t € CH(X)[H] .
i=0

We give a list of main properties of Chern calsses.

Properties 1.1.20 Let E be a vector bundle on a variety X. Then the Chern
classes and polynomial satisfy the following properties:

i. If D is a divisor, and E = Ox(D), then ¢;(E) = 1+ Dt € CH(X)[t].
ii. If f: Y — X is a morphism, then for all i, ¢;(f*E) = f*¢;(E).

i1i. If E is an extension of vector bundles 0 — F — E — G — 0, then
ct(E) = ¢t(F) - ¢t(G) € CH(X)[H].

Thus if E admits a filtration E = Ey D E; D ... E, = 0, whose quotients are
invertible sheaves L; = O(D;) = E;_1/E;, then ¢;(E) =TT;_; (1 + D;t).

We can always write the Chern polynomial of E as ¢¢(E) = [1/_; (1 + a;t),
where g; are formal symbols, and the elementary symmetric functions of the a;
are the Chern classes of E. Thanks to this, we can define the Chern character of
E as .

ch(E) = Ze"" € CHp(X),

i=1

wheree® =1+a;+ 1(a;)>+....

This definition is well posed because it is a linear combination of the ele-
mentary symmetric functions of a; with rational coefficients.

We can verify easily that the terms of low order of the Chern character of a
rank r vector bundle are

h(E) = r+a(E) + 5 (e(E) ~26a(E)) +...

2 we follow the “italian” notations for projective spaces, see examples and below.
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In the same way the Todd class of E is defined by

0
td(E) =] [ I _Zeui .

i=1

Properties 1.1.21 Let E be a vector bundle on a variety X. Then the Chern
character satisfy the following properties:

i. For any variety Y, and any morphism Y — X, ch(f*E) = f*(ch(E)).
ii. If E=F @ G, then ch(E) = ch(F) + ch(G).
iii. If E=F ® G, then ch(E) = ch(F) - ch(G).

By the properties above, the Chern character can be extended in a unique
natural way to any coherent sheaf on X, considering a locally free resolution.
More generally, we have a map ch: K(X) — CHg/(X).

For any morphism f: Y — X of projective varieties, we define

fie K(Y) — K(X)
Fo o= LEDRL(F),

with these notations, we can state Grothendieck’s generalization of Riemann-
Roch theorem (cf. Borel and Serre [BS58]):

Theorem 1.1.22 (Grothendieck-Riemann-Roch) Let f: Y — X beasmooth mor-
phism of nonsingular projective varieties. Then for any F € K(Y) we have

ch(fi(F))4d(Tx) = fi(ch(F)td(Ty))
in CHg(X).
Considering the application ¢: X — Speck, the application ¢..: CHg(X) —

CH(Speck)q = Q is exactly the degree map. Hence we have Hirzebruch-
Riemann-Roch as a particular case Grothendieck-Riemann-Roch theorem:

Theorem 1.1.23 (Hirzebruch-Riemann-Roch) Let F be a coherent sheaf on a va-
riety X. Then we have

X(X, F) =< ch(F)td(Tx) > .
In particular, this implies that the Hilbert polynomial of a coherent sheaf F,

with respect to a polarization H, depends only on the numerical equivalence
classes of the Chern classes of F and H.
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1.1.3 Chern classes and cohomology

We briefly review how to construct Chern classes in the cohomology ring of a
complex variety, as a different way to view what Chern classes are and how
to compute them or their intersections. And we note that given a Hermitian
metric on a holomorphic vector bundle, we have a way of choosing differential
forms which represent the Chern classes.

There are many ways to consider Chern classes with value in the cohomol-
ogy ring. Those ways can be found following two main directions.

i. The cycle map yx is an application associating to any cycle Z € CP(X), a
cohomology class yx(Z) € H?(X) in a Weil cohomology theory H*(X).
Composing v with Chern classes or Chern character we obtain Chern
classes with values in the cohomology theory H*(X).

ii. When we have algebraic varieties over the complex numbers C, then we
have differential geometric properties other than algebraic ones, and we
can use those to obtain Chern forms ¢;(E, h) of hermitian vector bundles
(E, h), with values in closed differential forms. Passing to the cohomol-
ogy classes those forms represent, we will get the same Chern classes as
those of point[j (independent of the hermitian metric).

We explain the second point which is the one of interest to us. Let us con-
sider a differentiable manifold M, and a rank r complex vector bundle E — M.
We note A%, = C®(M) the algebra of C* functions on M with complex values,
and A”(E) = C®(\F T* ®R E) the p-differential forms with values in E.

A connection on E is a C-linear application

v: A%(E) — AY(E)
satisfying Leibniz rule: for all f € A%, and s € A°(E),
V(f-s)=df@s+f-V(s).

Proposition 1.1.24 The set of connections on E form an affine space modeled on the
vector space A'(End(E)) of differential 1-forms taking values in the complex vector
bundle End(E) of endomorphisms of E.

A connection can be uniquely extended to a C-linear form,
V:A*(E) — A*(E)
of degree 1, i.e. such that V(AP (E)) C APT1(E). This extension is character-
ized by the Leibniz rule: for all w € A}, and s € A°(E)
Viw®s)=dw®s+ (-1)Pwa V(s).

Given a connection on a complex vector bundle E, the composition
V2: A*(E) — A*T2(E) is a A, -linear operator, ie. V2(fw) = fV?(w), for
allw € A1(E) and f € A%,
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Such an operator V2: A%(E) — A?(E) is the coupling with a differential
form ® € A?(End(E)) called the curvature of the connection V.

Definition 1.1.25 We call the total Chern form of the connection V the differential
form

¢(E) := det(1 + ﬁ@) =14¢(EV)+-+c(EV) € Ay
where c;(E, V) € A3 are called the i-th Chern forms of the connection V.

Properties 1.1.26 The following are the main properties of Chern forms.
i. The differential forms ¢;(E, V) are closed.

ii. The cohomology classes c;(E) € HZ (M) of ¢;(E, V) do not depend on
the connection V on E. They are called Chern classes of E. The cohomol-
ogy class c(E) = Y_c;(E) is called total Chern class of E.

iii. If E and F are 2 vector bundles on M, their total Chern classes verify
c(E®F) =c(E)-c(F)
in Hpgr (M) = @HL (M). In particular ¢1(E ® F) = ¢1(E) + ¢1(F)

We see from this description that Chern classes of a complex vector bundle
E depend only on the topology of E (and M).

Now let X be a complex manifold, and let E — X be a holomorphic vector
bundle on X, carrying a Hermitian metric i: E xx E — C. Then there exists
a unique connection Vj, which is holomorphic, i.e. in any holomorphic frame
field its connection form is of degree (1,0), and which makes h parallel, i.e.
verifies d(h(&, 7)) = h(VEn) + k(& V), forall &y € A%(E).

Thus, we see that when we have a holomorphic and a Hermitian structure,
then there are canonical Chern forms ¢;(E,h) = c¢;(E, V},) that represent the
Chern classes ¢;(E) € HZ (X).

To see that these Chern classes coincide with those defined in the Chow
ring and then in cohomology through the cycle map, one can observe that the
De Rham cohomnology Hpr(X) — Hpgr(IP(E)) of projective bundles verifies
properties analogue to property[1.1.12] that Chern classes verify an equation as
equation [1.T)in the definition of Chern classes, and that the cycle maps yx and
Yp(E) are functorial.

1.2 Stable Bundles

1.2.1 Origins of stability

The origins of stability lie in the construction of moduli spaces. A moduli
space, is a space classifying objects with some fixed invariants (e.g. varieties
or vector bundles on a given variety, with fixed Chern classes).
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By classify we mean that we want to describe that set of objects, by some
other algebraic object. This can be done in two ways: either we find a scheme
M whose closed points are in a “natural” bijection with the set of objects we
want to describe. Here, natural means that whenever we have a family of
objects parametrized by a scheme T, then we have a map from T to M, associ-
ating to a closed point ¢ € T the point of M which correspond to the object in
the family over the point .

Or we find a “universal” family over the scheme M, such that there is a
bijection between morphisms from T to M, and families of objects defined over
any scheme T. This bijection associating to every morphism T — M the pull-
back to T of the universal family on M.

The natural framework to explain and formalize what this means is the
language of categories and representability of functors: we consider the func-
tor from schemes to sets, associating to a scheme the set of families of objects
over that scheme. Those two possibilities correspond respectively to a coarse
moduli space (or a corepresentable functor), and a fine moduli space (or a rep-
resentable functor).

We give some example of what we mean by fine moduli space.

Example 1.2.1 The most trivial example of a fine moduli space is the projective
space: we describe first the classical definition of the projective space, and then
the functorial one, comparing the two.

Let us fix a vector space V of finite dimension over k. By definition a poiint
of the projective spaceE]is a linear subspace of V of dimension 1:

P(V):={{CV|dim/l=1}.

This space is given an algebraic structure in the classical way. 