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pour la gentillesse et l’affection avec lesquelles elle m’a guidé à travers de
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Résumé

Cette thèse est un travail autour de la stabilité de fibrés vectoriels. Elle est
divisée en quatre parties, dont la première est introductive, et les trois autres
sont constituées par des résultats originaux.

Dans la deuxième partie on montre que sur chaque variété projective lisse
sur un corps algébriquement clos, les fibrés stables fournissent un ensemble de
générateurs pour l’anneau de Chow de la variété. Ce résultat provient de la
recherche de formes différentielles particulières fournissant des représentants
de classes de Chern des fibrés vectoriels. Pour obtenir des tels représentants
on cherche une résolution projective pour chaque fibré vectoriel, faite par des
fibrés stables ou polystables. La recherche d’une telle résolution nous a amenés
à la construction d’une résolution pour les faisceaux d’idéaux, entraı̂nant le
résultat sur les groupes de Chow.

Afin de rechercher si une résolution polystable existe pour tout fibré, un
point essentiel est la recherche de transformées stables de fibrés donnés. Par
transformée on désigne le noyau de l’application d’évaluation sur un sous-
espace de sections globales d’un fibré.

La stabilité de ces noyaux a été étudiée par plusieurs auteurs, avec des
motivations différentes. Paranjape et Ramanan, et par Butler, pour étudier la
génération normale de certains fibrés vectoriels. Ein and Lazarseld pour mon-
trer la stabilité du fibré de Picard. Beauville pour étudier la réductibilité des
diviseur thêta, et Mercat pour étudier la dimension des lieux de Brill-Noether.

Le troisième chapitre donne une réponse à la question de la stabilité des
transformées dans des cas particuliers, pour des fibrés en droites sur des courbes
projectives lisses de genre plus grand que 1.

Dans la quatrième partie, un autre cas de stabilité est traité, dans le cadre
des produits symétriques des courbes.

Les techniques utilisées sont purement algébriques, et valables en toute car-
actéristique, bien que l’existence des métriques de Hermite-Einstein sur des
fibrés vectoriels stables était la motivation pricipale pour le projet.

Bien que la question de la stabilité des transformées soit assez naturelle, il
ne s’agit que de résultats partiels qu’on a trouvé, ne permettant pas la construc-
tion des résolutions recherchées.

Les résultats obtenus laissent envisager de toute façon, de pouvoir étudier
plus profondément la stabilité de certains fibrés sur les produits symétriques
de courbes, ou surfaces.

v





Introduction

This thesis deals with stable vector bundles over projective varieties. Vector
bundles are objects used in various areas of mathematics, from differential
equations to number theory. In algebraic geometry they are an instrument to
study the geometry of the variety over which they are defined. Their simplest
numerical invariants are rank and Chern classes.

Stability is a concept arising when we want to construct a moduli space of
vector bundles fixing those numerical invariants.

The starting point of our work is the construction of a polystable resolution
of ideal sheaves.

The motivations leading to this construction are to be found in the
Kobayashi-Hitchin correspondence, relating the stability of a vector bundle on
a complex projective variety to the existence of a Hermite-Einstein metric. The
existence of a particular metric on a vector bundle implies the possibility of
choosing in a “canonical” way differential forms representing Chern classes of
the vector bundle.

Hence, looking for some polystable resolution was a first step to find a way
of choosing particular differential forms representing Chern classes of every
vector bundle. And eventually a lift of the cycle map γX :

A2i
closed(X)

��
CHi(X)

99r
r

r
r

r
γX // H2i

DR(X)

Unfortunately this turned out to be too optimistic, and we were not able to
find such a resolution. In any case, even when the polystable resolutions exist,
the associated Chern form might depend on the resolution.

The main reason for this, is the difficulties arising when we want to verify
the stability of a given vector bundle coming from some construction.

However, we were able to find such a resolution for ideal sheaves, and this
was sufficient to exhibit stable bundles as generators for the Chow ring of any
projective smooth variety (and for the K-theory and the derived category as
well).

The text is organized as follows.
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2 Introduction

In the first chapter we find all the basic notions, and the first elementary
lemmas. We describe how to construct Chow groups, and Chern classes. We
show the origins of stability in the construction of moduli spaces, and the de-
tailed description of slope stability as well as the properties we are going to use.
We give also an idea of the meaning of Kobayashi-Hitchin correspondence.

All of the notions in the first chapter are well known, and can be found in
many places in the literature. We give the references that we have followed.

The other chapters are our results.
The second part is dedicated to the construction of the polystable resolution

of ideal sheaves. This construction is possible by restricting on curves, and
using a result of Butler, asserting the stability of kernels of evaluation maps
(that we call transforms in the rest of the thesis).

One of the main tool to show stability on a higher dimensional variety is by
restriction on curves, where stability can be more easily checked.

A main problem in trying to construct resolutions as above, is to find out
whether we have stability of some transforms of vector bundles.

The question about stability of transforms appears in many different stud-
ies in the literature. It is observed in particular by Paranjape and Ramanan to
prove normal generation of canonical ring of curves, by Butler also to study
normal generation of certain vector bundles, by Ein and Lazarsfeld to show
the stability of the Picard bundle, by Beauville to study theta divisors, and by
Mercat to describe some Brill-Noether loci.

The third chapter is a partial answer to a question of this kind for line bun-
dles on curves.

The fourth chapter is also dedicated to the stability of transforms, on sym-
metric product of curves. It is shown that tautological bundles and their trans-
forms are stable with respect to a canonical polarization.

Even though stability of transforms is a very natural question, we have
only partial results for the time being. We think however that this results can
be generalized to symmetric products of surfaces, where tautological sheaves
are used on various purposes.



Chapter 1

Notations, and basic lemmas

In algebraic geometry vector bundles are an instrument to study the geometry
of the variety over which they are defined. Stability is a concept arising when
we want to construct a moduli space of vector bundles having a given rank and
Chern classes. Its original definition as well as its numerical characterization
are due to Mumford in the case of quotients of varieties by some group (cf.
[MFK94]).

In the complex case stability has also a differential description by the exis-
tence of a unique metric on the vector bundle satisfying a certain condition on
the curvature. This is a Hermite-Einstein metric, and the relation between such
metric properties and stability, i.e. the Hitchin-Kobayashi correspondence, was
described by Kobayashi (cf. [Kob87]). Narasimhan and Seshadri proved it
in [NS65] in the case of curves (relating stability and unitary representations
of the fundamental group). Donaldson in the case of projective surfaces (cf.
[Don85]), and then for all projective variety in [Don87]. Uhlenbeck and Yau,
proved it for compact Kähler manifolds (cf. [UY86]).

1.0.1 References of the preliminary notions

In this chapter we will go over the notions just mentioned, even though we
will deal in the rest only with their algebraic part. We will try to explain the
interest in stability of vector bundles and give some basic lemmas, setting up
our context and notations.

All of the theorems and constructions of this chapter are well known, and
can be found in various places in the literature, except for theorem 1.2.25 on
stability and restrictions, which is widely used, but we were not able to find in
this form. We will try to describe how the main objects are constructed, only
the theorems we will use the most (existence of a maximal semistable subsheaf
and stability through restrictions) will be proved in more details.

For more details on the themes treated in this chapter, here are the refer-
ences we have followed:

3



4 CHAPTER 1. NOTATIONS, AND BASIC LEMMAS

- for the construction of the Chow ring, Chevalley [Che58], and Fulton
[Ful98];

- for the Quot and Hilbert’s schemes, Grothendieck [Gro95];
- for Chern classes, Grothendieck [Gro58];
- for moduli spaces, Mumford [MFK94] for GIT, Huybrechts and Lehn [HL97]

and Le Potier [LP95] for muduli of vector bundles;
- for Hermite Einstein metrics, Kobayashi [Kob87].

1.1 Chow ring and Chern classes

Throughout this thesis by variety we mean a smooth integral projective scheme
over an algebraically closed field k.

1.1.1 Algebraic cycles on a projective variety

In this paragraph, we show the classical construction of a ring structure on the
set of formal sums of integral closed subschemes modulo rational equivalence
in a smooth projective variety, with intersection as product. The functorial
construction of such a ring, graded by codimension, is called an “intersection
theory for cycles”.

The description we follow can be used, or axiomatized, to construct an in-
tersection theory for cycles on nonsingular quasi-projective varieties, with very
few chanhgings (as considering only proper push-forwards). As we will not use
intersection theory on quasi-projective varieties, we stick to our notation and
call variety a nonsingular projective scheme over a fixed algebraically closed
field k.

We remark that any morphism between projective varieties is proper, and
in particular closed.

Definition 1.1.1 A cycle on a variety X is a finite formal sum of closed integral sub-
schemes of X, with coefficients in Z. The set of all cycles of X forms an abelian group,
graded by codimension:

C∗(X) =
n⊕

p=0
Cp(X) , Cp(X) :=

⊕
Y⊂X

Y integral
codimXY=p

ZY .

Given a morphism of varieties ϕ : X1 → X2 we define the push-forward morphism
ϕ∗ : C∗(X1)→ C∗+q(X2) of the groups of cycles (shifting the degrees by q = dim X2−
dim X1) in the following way

ϕ∗(Y) = 0 if dim ϕ(Y) < dim Y

ϕ∗(Y) = [k(Y) : k(ϕ(Y))] · ϕ(Y) if dim ϕ(Y) = dim Y

for all integral subscheme Y ⊂ X1, then extending to C∗(X) by linearity.
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If we have a closed non integral subscheme Y ⊂ X of codimension p in X,
then we associate to Y the cycle

∑
α

mαYα ,

were Yα are the reduced irreducible components of Y of codimension p in X,
with generic points yα, counted with multiplicities mα := lengthOY,yα

.
We want to define a graded ring structure in C∗(X), where intersection of

subschemes induces the product law. This is not possible as the intersection of
two integral subschemes does not necessarily have the good dimension, hence
we allow cycles to be deformed in such a way that they can intersect properly.

Definition 1.1.2 A cycle Z ∈ C∗(X×T) is flat over T if it is a formal sum of integral
subscemes flat over T.

An algebraic family {Zt}t∈T of p-codimensional cycles on X, parametrized by a
connected scheme T, is a p-codimensional cycle Z ⊂ X× T, flat over T. All the fibers
Zt are said to be algebraically equivalent. We note ∼alg the equivalence relation in
C∗(X) generated by algebraically equivalent cycles.

We say that an algebraic family is a rational family, when it is parametrized by
an open subset T ⊆ P1. We call rationally equivalent two cycles in any such family,
and we note∼rat the equivalence relation in C∗(X) generated by rationally equivalent
cycles.

We define Chow group of order q of X the group of cycles of codimension q modulo
rational equivalence, noted

CHq(X) := Cq(X)/ ∼rat=: CHn−q(X).

In the above definition, the cycles Zt, t ∈ T, are the cycles associated to the
schematic intersection Z ∩ (X× t), when Z is a closed integral subscheme, and
we extend this in the natural way to a cycle Z = ∑ nαYα with every Yα integral
and flat over T.

Example 1.1.3 If we consider divisors, i.e. cycles of codimension 1, on a curve
C, then D1 = ∑ nixi and D2 = ∑ mjyj are algebraically equivalent if and only if
they have the same degree, i.e. if ∑ mj = ∑ ni. To prove this, notice that every
two points x, y ∈ C are algebraically equivalent.

And they are rationally equivalent if and only if they represent the same
invertible sheaf, i.e. if OC(D1) = OC(D2): in general, for a smooth quasi-
projective variety X, the group C1(X) of 1-codimensional cycles is exactly the
group of Weil divisors, and it can be shown that rational equivalence coincides
with linear equivalence, hence the group C1(X)/ ∼rat of divisors modulo ra-
tional equivalence, is isomorphic to the group Pic(X) of line bundles on X.

Definition 1.1.4 We say that two integral subschemes Z1 and Z2 intersect properly
if every component Yα of Z1 ∩ Z2 verifies codimXYα = codimXZ1 + codimXZ2.
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When two integral subschemes Z1 and Z2 intersect properly, and Z1 ∩ Z2
has irreducible components Yα (with reduced structure), we define their prod-
uct as

Z1.Z2 := ∑
α

I(Z1.Z2, Yα; X)Yα ,

where the coefficients are the intersection multiplicities

I(Z1.Z2, Yα; X) := ∑
i
(−1)ilenght Tori

OX,Yα
(OX,Yα

/IZ1 ,OX,Yα
/IZ2) .

Thus, intersection product of two integer subschemes intersecting properly
is the sum of the intersection components counted with multiplicities. Intersec-
tion product W.Z of two cycles Y = ∑ nαYα, Z = ∑ mβZβ ∈ C∗(X) is defined
any times that every component Yα of Y intersect properly every component
Zβ of Z.

When two subvarieties intersect transversally, then intersection multiplici-
ties are 1 for all components of the intersection.

Proposition 1.1.5 The intersection product, extended as far as possible to C∗(X), is
commutative and associative whenever defined, and has X ∈ C0(X) as identity.

The fact that allows to define intersection products in the Chow groups
is Chow’s moving lemma, which assures that given two cycles, one can be
rationally deformed to intersect properly the other one.

Lemma 1.1.6 (Chow) Given two cycles Z, W on a variety X, there exist a cycle Y,
rationally equivalent to W, such that the intersection cycle Z.Y is defined.

Then we can define a ring structure on C∗(X)/ ∼rat and C∗(X)/ ∼alg,
thanks to he following

Lemma 1.1.7 Let Z, W, Y be three cycles on a variety X. Suppose that Y is ratio-
nally (algebraically) equivalent to W and hat Z.Y and Z.W are defined. Then Z.W is
rationally (algebraically) equivalent to Z.Y.

Definition 1.1.8 We call Chow ring of a variey X the commutative graded ring of
rationally equivalent cycles on X, and we note it

CH∗(X) = C∗(X)/ ∼rat .

We call rational Chow ring the ring CH∗Q(X) := CH∗(X)⊗Q .

Remark 1.1.9 In the following, we will often note in the same way a cycle Z,
and its rational class [Z]rat. In particular, given two cycles Z ∈ Cp(X), Y ∈
Cq(X), we will write Z.Y ∈ CHp+q(X) instead of [Z]rat.[Y]rat ∈ CHp+q(X).
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Given a graded product structure on the Chow groups

CHq(X)×CHs(X)→ CHq+s(x)

on each variety X, we define the pull-back ϕ∗ of cycles by a morphism ϕ : X1 →
X2 as:

ϕ∗(Y) := p1∗(Γϕ.(X1 ×Y))

where p1 is the natural projection X1 × X2 → X1, and Γϕ is the cycle corre-
sponding to the graph of ϕ in X1 × X2.

Properties 1.1.10 The following are properties of the Chow ring which can be
axiomatized for the graded product structures on the Chow groups to give rise
to an intersection theory:

i. Product. CH∗(X) is a graded commutative ring with identity, for every
variety X.

ii. Functoriality. For any morphism ϕ : X1 → X2 of varieties,
ϕ∗ : CH∗(X2) → CH∗(X1) is a graded ring homomorphism. If ψ : X2 →
X3 is another morphism, then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

iii. (Proper) Push-forward. For any (proper) morphism ϕ : X1 → X2 of vari-
eties, ϕ∗ : CH∗(X1)→ CH∗(X2) is a graded group homomorphism shift-
ing degrees by dim X2 − dim X1. If ψ : X2 → X3 is another morphism,
then (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

iv. Projection Formula. For any (proper) morphism ϕ : X1 → X2 of varieties,
and any classes W ∈ CH∗(X1) and Z ∈ CH∗(X2), we have ϕ∗(W.ϕ∗Z) =
(ϕ∗W).Z ∈ CH∗(X2).

v. Reduction to the diagonal. If Y and Z are cycles on X, and if ∆ : X → X× X
is the diagonal morphism, then

Y.Z = ∆∗(Y× Z) .

vi. Local Intersection. If Z1 and Z2 are subvarieties of X which intersect prop-
erly, then

Z1.Z2 := ∑
α

I(Z1.Z2, Yα; X)Yα ,

where Yα are the components of Z1 ∩ Z2, and I(Z1.Z2, Yα; X) depends
only on a neighborhood of the generic point of of Yα in X.

vii. Normalization. Let Z be an effective Cartier divisor given by a section
f : X → L of a line bundle L, and let Y be a subvariety of X intersecting
properly Z, then Y.Z is the cycle associated to the cartier divisor Y ∩ Z on
Y, obtained by restricting f to Y.
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Proposition 1.1.11 There exists a unique intersection product on rational equiva-
lence classes of cycles

CHq(X)×CHs(X)→ CHq+s(X)

satisfying properties 1.1.10.

The following property of the Chow ring allow us to define Chern classes
with values in the Chow groups.

Property 1.1.12 Let E be a rank r vector bundle on the variety X, determining
the projective bundle π : P(E) → X. And let ξ ∈ CH1(P(E)) ∼= Pic(P(E))
the class coresponding to the line bundle OP(E)(1). Then the ring homomor-
phism π∗ : CH∗(X) → CH∗(P(E)) makes CH∗(P(E)) a free CH∗(X)-module
generated by 1, ξ, ξ2, . . . , ξr−1.

In this thesis we use intersection theory to compute Chern classes. What
we will need in effect, is to cut a given divisor with an ample one many times
until we get to some number of points. This number does not depend on the
rational or algebraic class of those divisors, as we explain in the following.

Definition 1.1.13 We call degree map the map < . > : C∗(X) → Z, which is the
zero map on Cq(X) when q < n = dim(X), and is the map

∑
i

mi pi 7→∑
i

mi

couting points on the group of 0-cycles.

Remark 1.1.14 Clearly, the map is well defined on algebraic or rational classes
of divisors, hence we get degree maps < . > : CH∗(X) → Z, and <
. > : C∗(X)/ ∼alg→ Z.

When it does not create ambiguities, we will omit the <> signs for the
degree map, in particular given a divisor D, and a cycle Z ∈ Cq(X) we will
write Dn−q.Z > 0 instead of < Dn−q.Z > > 0.

In this frame, we state the famous ampleness criterion by Nakai and Moishe-
zon. A detailed proof can be found in [Kle66] (in larger generality than here).

Proposition 1.1.15 (Nakai-Moishezon criterion) Let H be a divisor on a variety
X, then H is ample if and only if for every closed integral r-dimensional subscheme
Y ⊆ X we have Hr.Y > 0.

Definition 1.1.16 We say that two cycles Z1 and Z2 in a variety X are numerically
equivalent, and we note Z1 ≡ Z2, or Z1 ∼num Z2, if for every cycle Y ∈ C∗(X) we
have < Z1.Y >=< Z2.Y >. We call group of Neron-Severi, the finitely generated (by
theorem of Neron and Severi) group of Divisors modulo algebraic equivalence, noted

NS(X) := C1(X)/ ∼alg ,

and we note N1(X) := C1(X)/ ∼num.
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By Nakai-Moishezon criterion we see that if a divisor D ∈ C1(X) verifies
D ≡ H, H ample, then D itself is ample. So when we are interested only in
intersection numbers, e.g. in the definition of stability (1.2.9) below, we can
consider only divisors up to numerical equivalence, i.e. divisors in N1(X).

Remark 1.1.17 Throughout this thesis, whenever it will not create ambiguities,
we will make the abuse of notation of noting in the same way D, a divisor
D ∈ C1(X), its rational equivalence class [D]rat ∈ CH1(X), its invertible sheaf
OX(D) ∈ Pic(X), and its numerical equivalence class [D]num ∈ N1(X).

We will identify as usual any vector bundle E → X with its locally free
sheaf of sections OX(E).

We verify immediately the following

Proposition 1.1.18 Let Y and Z be two cycles in C∗(X), then

Y ∼rat Z ⇒ Y ∼alg Z ⇒ Y ≡ Z .

1.1.2 Chern classes in the Chow ring

Roughly speaking, the ith Chern class of a vector bundle E is the locus where
r− i + 1 generic sections don’t have maximal rank. We give some example of
what this means, and then the general definition.

If a line bundle L on a variety X admits a non zero global section s : X → L,
then the vanishing locus of this section is a divisor 1 in X, and the rational class
of this divisor is exactly L (through the correspondence CH1(X) ∼= Pic(X)).

In the same way, consider a rank r vector bundle E on the variety X of
dimension n, such that r 6 n. Let us suppose there is a global section s : X →
E, transversal to the zero section. Then the vanishing locus Z(s) := {x ∈
X | s(x) = 0} is a r codimensional subvariety of X. The class of Z(s) in CHr(X)
does not depend on the section s, and is an invariant of E called the rth Chern
class cr(E) of E.

Furthermore, let us suppose that E is globally generated, and consider r
generic global sections s1, . . . , sr. Then the locus

Z(s1, . . . , sr) := {x ∈ X | rk(s1(x), . . . , sr(x)) 6 r− 1}

where those sections do not have maximal rank r is a 1-codimensional subvari-
ety of X, i.e. a divisor of X. The r sections s1, . . . , sr give us a section s1 ∧ · · · ∧ sr
of the line bundle det(E), that vanishes exactly on Z(s1, . . . , sr). The class of
Z(s1, . . . , sr) in CH1(X) ∼= Pic(X) does not depend on the chosen sections. It is
an invariant of E called the first Chern class c1(E), and corresponds to the line
bundle det(E).

The properties of Chow rings allow us to formalize such idea and construct
Chern classes ci(E) ∈ CHi(X) for every vector bundle E on X, and then for
every sheaf F ∈ CohX .

1the divisor 0 ∈ C1(X) in the case of the empty set.
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If we have a vector bundle E on X, let P(E) → X the projective bundle2

associated to E, and let ξ be the class of OP(E)(1) in CH1(P(E)). Then, by
property 1.1.12 of the Chow ring, we can express ξr in a unique way as a linear
combination of 1, ξ, ξ2, . . . , ξr−1, with coefficients in CH(X). Those coefficients
define the Chern classes in the following way:

Definition 1.1.19 Let E be a rank r vector bundle on the variety X, define for all
0 6 i 6 r the ith Chern class ci(E) ∈ CHi(X) by c0(E) = 1 and

r

∑
i=0

π∗ci(E).ξr−i = 0 . (1.1)

We call total Chern class c(E) := c0(E) + c1(E) + · · ·+ cr(E) and Chern poly-
nomial

ct(E) :=
r

∑
i=0

ci(E)ti ∈ CH(X)[t] .

We give a list of main properties of Chern calsses.

Properties 1.1.20 Let E be a vector bundle on a variety X. Then the Chern
classes and polynomial satisfy the following properties:

i. If D is a divisor, and E = OX(D), then ct(E) = 1 + Dt ∈ CH(X)[t].

ii. If f : Y → X is a morphism, then for all i, ci( f ∗E) = f ∗ci(E).

iii. If E is an extension of vector bundles 0 → F → E → G → 0, then
ct(E) = ct(F) · ct(G) ∈ CH(X)[t].

Thus if E admits a filtration E = E0 ⊃ E1 ⊃ . . . Er = 0, whose quotients are
invertible sheaves Li = O(Di) = Ei−1/Ei, then ct(E) = ∏r

i=1(1 + Dit).
We can always write the Chern polynomial of E as ct(E) = ∏r

i=1(1 + ait),
where ai are formal symbols, and the elementary symmetric functions of the ai
are the Chern classes of E. Thanks to this, we can define the Chern character of
E as

ch(E) =
r

∑
i=1

eai ∈ CH∗Q(X) ,

where eai = 1 + ai + 1
2 (ai)2 + . . . .

This definition is well posed because it is a linear combination of the ele-
mentary symmetric functions of ai with rational coefficients.

We can verify easily that the terms of low order of the Chern character of a
rank r vector bundle are

ch(E) = r + c1(E) +
1
2
(c1(E)2 − 2c2(E)) + . . . .

2 we follow the “italian” notations for projective spaces, see examples 1.2.1 and 1.2.3 below.
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In the same way the Todd class of E is defined by

td(E) =
r

∏
i=1

ai
1− eai

.

Properties 1.1.21 Let E be a vector bundle on a variety X. Then the Chern
character satisfy the following properties:

i. For any variety Y, and any morphism Y → X, ch( f ∗E) = f ∗(ch(E)).

ii. If E = F⊕ G, then ch(E) = ch(F) + ch(G).

iii. If E = F⊗ G, then ch(E) = ch(F) · ch(G).

By the properties above, the Chern character can be extended in a unique
natural way to any coherent sheaf on X, considering a locally free resolution.
More generally, we have a map ch : K(X)→ CH∗Q(X).

For any morphism f : Y → X of projective varieties, we define

f! : K(Y) → K(X)
F 7→ ∑(−1)iRi f∗(F ) ,

with these notations, we can state Grothendieck’s generalization of Riemann-
Roch theorem (cf. Borel and Serre [BS58]):

Theorem 1.1.22 (Grothendieck-Riemann-Roch) Let f : Y → X be a smooth mor-
phism of nonsingular projective varieties. Then for any F ∈ K(Y) we have

ch( f!(F )).td(TX) = f∗(ch(F ).td(TY))

in CH∗Q(X).

Considering the application ϕ : X → Speck, the application ϕ∗ : CH∗Q(X)→
CH(Speck)Q = Q is exactly the degree map. Hence we have Hirzebruch-
Riemann-Roch as a particular case Grothendieck-Riemann-Roch theorem:

Theorem 1.1.23 (Hirzebruch-Riemann-Roch) Let F be a coherent sheaf on a va-
riety X. Then we have

χ(X,F ) =< ch(F ).td(TX) > .

In particular, this implies that the Hilbert polynomial of a coherent sheaf F ,
with respect to a polarization H, depends only on the numerical equivalence
classes of the Chern classes of F and H.
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1.1.3 Chern classes and cohomology

We briefly review how to construct Chern classes in the cohomology ring of a
complex variety, as a different way to view what Chern classes are and how
to compute them or their intersections. And we note that given a Hermitian
metric on a holomorphic vector bundle, we have a way of choosing differential
forms which represent the Chern classes.

There are many ways to consider Chern classes with value in the cohomol-
ogy ring. Those ways can be found following two main directions.

i. The cycle map γX is an application associating to any cycle Z ∈ Cp(X), a
cohomology class γX(Z) ∈ H2p(X) in a Weil cohomology theory H∗(X).
Composing γ with Chern classes or Chern character we obtain Chern
classes with values in the cohomology theory H∗(X).

ii. When we have algebraic varieties over the complex numbers C, then we
have differential geometric properties other than algebraic ones, and we
can use those to obtain Chern forms ci(E, h) of hermitian vector bundles
(E, h), with values in closed differential forms. Passing to the cohomol-
ogy classes those forms represent, we will get the same Chern classes as
those of point i. (independent of the hermitian metric).

We explain the second point which is the one of interest to us. Let us con-
sider a differentiable manifold M, and a rank r complex vector bundle E→ M.
We noteA0

M = C∞(M) the algebra of C∞ functions on M with complex values,
and Ap(E) = C∞(

∧p T∗ ⊗R E) the p-differential forms with values in E.
A connection on E is a C-linear application

∇ : A0(E)→ A1(E)

satisfying Leibniz rule: for all f ∈ A0
M, and s ∈ A0(E),

∇( f · s) = d f ⊗ s + f · ∇(s) .

Proposition 1.1.24 The set of connections on E form an affine space modeled on the
vector space A1(End(E)) of differential 1-forms taking values in the complex vector
bundle End(E) of endomorphisms of E.

A connection can be uniquely extended to a C-linear form,

∇ : A∗(E)→ A∗(E)

of degree 1, i.e. such that ∇(Ap(E)) ⊆ Ap+1(E). This extension is character-
ized by the Leibniz rule: for all ω ∈ Ap

M and s ∈ A0(E)

∇(ω⊗ s) = dω⊗ s + (−1)pω⊗∇(s) .

Given a connection on a complex vector bundle E, the composition
∇2 : A∗(E) → A∗+2(E) is a A0

M-linear operator, i.e. ∇2( f ω) = f∇2(ω), for
all ω ∈ Aq(E) and f ∈ A0

M.
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Such an operator ∇2 : A0(E) → A2(E) is the coupling with a differential
form Θ ∈ A2(End(E)) called the curvature of the connection ∇.

Definition 1.1.25 We call the total Chern form of the connection ∇ the differential
form

c(E) := det(1 +
i

2π
Θ) = 1 + c1(E,∇) + · · ·+ cr(E,∇) ∈ A∗M

where ci(E,∇) ∈ A2i
X are called the i-th Chern forms of the connection ∇.

Properties 1.1.26 The following are the main properties of Chern forms.

i. The differential forms ci(E,∇) are closed.

ii. The cohomology classes ci(E) ∈ H2i
DR(M) of ci(E,∇) do not depend on

the connection ∇ on E. They are called Chern classes of E. The cohomol-
ogy class c(E) = ∑ ci(E) is called total Chern class of E.

iii. If E and F are 2 vector bundles on M, their total Chern classes verify

c(E⊕ F) = c(E) · c(F)

in HDR(M) = ⊕Hi
DR(M). In particular c1(E⊕ F) = c1(E) + c1(F)

We see from this description that Chern classes of a complex vector bundle
E depend only on the topology of E (and M).

Now let X be a complex manifold, and let E → X be a holomorphic vector
bundle on X, carrying a Hermitian metric h : E×X E → C. Then there exists
a unique connection ∇h which is holomorphic, i.e. in any holomorphic frame
field its connection form is of degree (1, 0), and which makes h parallel, i.e.
verifies d(h(ξ, η)) = h(∇ξ, η) + h(ξ,∇η), for all ξ, η ∈ A0(E).

Thus, we see that when we have a holomorphic and a Hermitian structure,
then there are canonical Chern forms ci(E, h) = ci(E,∇h) that represent the
Chern classes ci(E) ∈ H2i

DR(X).
To see that these Chern classes coincide with those defined in the Chow

ring and then in cohomology through the cycle map, one can observe that the
De Rham cohomnology HDR(X) → HDR(P(E)) of projective bundles verifies
properties analogue to property 1.1.12, that Chern classes verify an equation as
equation 1.1 in the definition of Chern classes, and that the cycle maps γX and
γP(E) are functorial.

1.2 Stable Bundles

1.2.1 Origins of stability

The origins of stability lie in the construction of moduli spaces. A moduli
space, is a space classifying objects with some fixed invariants (e.g. varieties
or vector bundles on a given variety, with fixed Chern classes).
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By classify we mean that we want to describe that set of objects, by some
other algebraic object. This can be done in two ways: either we find a scheme
M whose closed points are in a “natural” bijection with the set of objects we
want to describe. Here, natural means that whenever we have a family of
objects parametrized by a scheme T, then we have a map from T to M, associ-
ating to a closed point t ∈ T the point of M which correspond to the object in
the family over the point t.

Or we find a “universal” family over the scheme M, such that there is a
bijection between morphisms from T to M, and families of objects defined over
any scheme T. This bijection associating to every morphism T → M the pull-
back to T of the universal family on M.

The natural framework to explain and formalize what this means is the
language of categories and representability of functors: we consider the func-
tor from schemes to sets, associating to a scheme the set of families of objects
over that scheme. Those two possibilities correspond respectively to a coarse
moduli space (or a corepresentable functor), and a fine moduli space (or a rep-
resentable functor).

We give some example of what we mean by fine moduli space.

Example 1.2.1 The most trivial example of a fine moduli space is the projective
space: we describe first the classical definition of the projective space, and then
the functorial one, comparing the two.

Let us fix a vector space V of finite dimension over k. By definition a poiint
of the projective space 3 is a linear subspace of V of dimension 1:

P(V) := {` ⊂ V | dim ` = 1} .

This space is given an algebraic structure in the classical way. On the projective
space, consider the subbundle H ⊂ V ×P(V) of the trivial bundle defined in
the following way:

H := {(v, `) ∈ V ×P(V) | v ∈ `} .

The line bundleH is called the tautological line bundle, and its invertible sheaf
of local sections is OP(V)(−1). We have an exact sequence

0→ OP(V)(−1)→ V ⊗OP(V) → Q → 0

called the Euler sequence, and it can be shown that TP(V) = H∗ ⊗Q.
The functorial point of view: given a scheme T over k, let us consider exact

sequences
0→ L→ V ⊗k OT → M→ 0 , (∗∗)

where L and M are locally free sheaves on T, respectively of rank 1 and n− 1.

3 We follow in this thesis the “italian” notations, dual to Grothendieck’s ones, where the projec-
tive space associated a vector space V is the space of homogeneous lines in V, rather than hyper-
planes.
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We say that two such exact sequences are equivalent if there exists a com-
mutative diagram

0 → L → V ⊗OT → M → 0→̃ = →̃

0 → L′ → V ⊗OT → M′ → 0

Then there is a contravariant functor

PV : Schemes/k → Sets
T 7→ {sequences (∗∗)}/ ∼

where the functor applied to a morphism of schemes f : T → S is the pull-back
f ∗ on exact sequences (∗∗).

Proposition 1.2.2 The functor PV is represented by the projective space P(V).
Proof.

To every morphism f : T → P(V) we can associate the pull-back of the
Euler sequence

0→ f ∗OP(V)(−1)→ V ⊗OT → f ∗Q → 0 .

And given an exact sequence

0→ L→ V ⊗k OT → M→ 0 , (∗∗)

we can consider the dual map ϕ : V∗ ⊗OT � L∗. We define a morphism T →
P(V) associating to a point t ∈ T the line `t ⊂ V defined by the hyperplane
Ht ⊂ V∗:

Ht := {s ∈ V∗ | (ϕs)(t) = 0} .

�

We see that, the functor PV being represented by P(V), the closed points
of P(V) correspond naturally to PV(Spec k) = {` ⊂ V}. And the universal
object on P(V) is the Euler sequence.

We can say that the classical description of the projective space consists in
giving the definition of the space through the properties of its points, while the
functorial one looks at properties of families (in the case of projective space,
families of linear subspaces parametrized by T), rather than single points.

This has the first advantage of being a “natural” construction, hence it can
be generalized easily (e.g. when we want to construct the projectivization of a
vector bundle).

Also, in some cases it gives a better frame to construct particular spaces.
Mainly when when we want to parametrize objects which are naturally given
in families (see the example of the Quot scheme below), or when we do not
have a representable functor, but only corepresentable, as in the case of coarse
moduli spaces of vector bundles.
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Example 1.2.3 A natural generalization of the projective space, is the projec-
tivization of a vector bundle E on a variety X. In this case the functor is

PE : SchX → Sets
t : T → X 7→ {sequences 0→ L→ t∗E→ M→ 0}/ ∼

where L ⊂ t∗E is a subbundle of dimension 1. And PE is represented by the
projectivization π : P(E) → X of E on X. Then giving rise to a tautological
sequence 0→ OP(E)(−1)→ π∗E→ Q→ 0 on P(E).

In the same way the Grassmannian Gr(k, E) → X is a scheme representing
the functor of exact sequences of sheaves on a X-scheme T

0→ N → t∗E→ M→ 0 ,

with N and M locally free sheaves of ranks k and n− k.

One of the schemes constructed by Grothendieck in this framework, and
most used in the theory of moduli spaces, is the Quot scheme: let us fix a
noetherian scheme S, a projective S-scheme X, a coherent sheaf E on X, and
a polynomial P(d).

For an S-scheme T → S, consider the coherent sheaf quotients (∗) : ET � Q
on X ×S T, where ET is the pull-back to X ×S T of E , with the equivalence
relation (∗) ∼ (∗)′ if there is a commuting diagram

(∗) ET � Q → 0= →̃

(∗)′ ET � Q′ → 0

Then there there is a contravariant functor QE ,P(d):

SchS → Sets
T {equivalence classes of quotients (∗)
↓ 7→ such that Q is flat over T and
S each Qt has Hilbert polynomial P(d)}

where morphisms f : T′ → T induce the map f̃ ∗ : QE ,P(d)(T) → QE ,P(d)(T′),
with f̃ : X×S T′ → X×S T.

Proposition 1.2.4 (Grothendieck) The functor QE ,P(d) is represented by a projec-
tive S-scheme Quot(E , P(d)).

Proof. [Gro95].
�
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If S = Spec(k) then the closed points of Quot(E , P(d)) are exactly the co-
herent quotient sheaves E � Q with Hilbert polynomial P(d).

Example 1.2.5 Let us consider the Quot scheme in the following case: S =
Spec(k), X is a variety over k, and E = OX is the structure sheaf. Then the
Quot scheme parametrizes subschemes of X with Hilbert polynomial P(d). In
fact the kernel of any quotient OX � Q is an ideal sheaf determining a sub-
scheme i : Z ↪→ X, and identifying Q with i∗OZ. In this case the Quot scheme
is often called Hilbert’s scheme. If the chosen polynomial is a constant posi-
tive integer n ∈ N, then quotients of OX having such Hilbert polynomial are
0-dimensional subschemes of X of lenght n, and the Hilbert’s scheme of points
is noted X[n]. If X is a curve, then X[n] coincides with the symmetric product
SnX; if X is a surface, X[n] is smooth, and is a resolution of singularities of the
symmetric product SnX.

Those are examples of fine moduli spaces, i.e. schemes M representing a
functor F : SchS → Sets. Hence any morphism from an object T ∈ SchS to the
fine moduli spaceM corresponds to a unique element in F(T). In particular
the identity morphism 1M : M−̃→M corresponds to a universal object U ∈
F(M).

However this is not always the case, and it may happen that a functor is not
representable but only corepresentable, and in this case the schemeM corep-
resenting the functor is called a coarse moduli space. This is what happens in the
case of moduli spaces of vector bundles over a variety, or moduli of curves.
Even in those cases though, we parametrize only stable objects, and not all sort
of vector bundles or curves.

The main ingredient to construct a moduli space of vector bundles (or tor-
sion free sheaves) is Geometric Invariant Theory, which allows to describe quo-
tients of schemes by the action of an algebraic group. This is used because
when we want construct a space parametrizing all semistable vector bundles
with given Chern classes, we rigidify the problem adding some extra structure.
We are able then to construct a (fine) moduli space of vector bundles plus the
extra structure. Eventually we want to forget the extra structure by identifying
those points giving isomorphic vector bundles.

In particular, instead of considering a semistable (in a sense that we will
specify) torsion free sheaf E with Hilbert polynomial P, we consider E and a
basis for the vector space H0(X, E(m)) for some fixed large integer m. If m is
large enough this basis defines a quotient OX(−m)P(m) � E, hence a point of
the Quot scheme Quot(OX(−m)P(m), P). We have then an open subset of the
Quot scheme, consisting of points coming from this construction, i.e. points
OX(−m)P(m) � F such that F is torsion free and semistable, and the quotient
induces an isomorphism kP(m)−̃→H0(X, F(m)). Then we want to divide out
the ambiguity in the choice of the basis, by quotienting this open set by the
action of GL(P(m), k).

In this operation of quotient comes out the notion of GIT-stability. We will
not define in detail all the notions in Geometric Invariant Theory, but try to give
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an idea on the origin of GIT-stability and its relations with stability of vector
bundles.

Definition 1.2.6 Let X be a variety with an action of an algebraic group G. A G-
linearized sheaf on X, is a coherent sheaf E on X, such that we have an isomorphism
Φ : σ∗E→̃p∗1 E of sheaves on X×G, where σ : X×G → X is the action, and p1 is the
projection X × G → X, satisfying the compatibility hypothesis for those morphisms
on X× G× G:

(idX × µ)∗Φ = p∗12Φ ◦ (σ× idG)∗Φ

where µ : G× G → G is the multiplication map, and p12 : X × G× G → X × G is
the projection on the first two factors.

A morphism ψ : E → F of G-linearized sheaves is G-equivariant if p∗1ψ ◦ Φ =
Φ′ ◦ σ∗ψ, where Φ and Φ′ are the given linearizations of E and F respectively.

Remark 1.2.7 If E is a G-linearized sheaf on X, the linearization Φ : σ∗E→̃p∗1 E
induces for all g ∈ G, an isomorphism

Φg : g∗E−̃→E ,

and the compatibility hypothesis (also called the cocycle condition) means that,
for all g and h in G,

Φgh = Φh◦g = Φg ◦ g∗Φh : g∗h∗E−̃→g∗E−̃→E .

In the same way, the G-equivariance of a morphism ψ : E→ F of G-linearized
sheaves, is equivalent to the commutativity of the following diagram

g∗E
g∗ψ−→ g∗FyΦg o

yo Φ′g

E
ψ−→ F

for all g ∈ G, where Φ and Φ′ are the G-linearizations respectively of E and F.

Let us suppose that X is a projective k scheme, with an action of a reductive
group G, and that L is a G-linearized ample line bundle. Then X = Proj(R),
where R =

⊕
n>0 H0(X, L⊗n) is the ring of homogeneous coordinates. Let Y

be the projective scheme associated to the homogeneous ring of G-invariant
sections: Y := Proj(RG). Then RG ⊂ R induces a rational map X 99K Y. This
map is defined on points x ∈ X such that there exist a G-invariant section
s ∈ H0(X, L⊗n)G with s(x) 6= 0. Those are exactly semistable points:

Definition 1.2.8 A point x ∈ X is GIT-semistable with respect to a G-linearized am-
ple divisor L, if there is an integer n, and an invariant global section s ∈ H0(X, L⊗n)G,
such that s(x) 6= 0.

A point x ∈ X is GIT-stable, if it is a GIT-semistable point, such that the stabilizer
Gx is finite, and the G-orbit is closed in the set of GIT-semistable points of X.
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The key point in GIT is the possibility of constructing good quotients Y for
the action of G on semistable points of X.

In the construction of moduli spaces one verifies that, in the cases
we are interested with, the GIT-(semi)stable points of the Quot scheme
Quot(OX(−m)P(m), P) with respect to a well chosen GL(P(m), k)-invariant po-
larization, correspond to quotients OX(−m)P(m) � F such that F is Gieseker
(semi)stable, and the quotient induces an isomorphism kP(m)−̃→H0(X, F(m)).

We will not define here Gieseker stability, as we will use another notion of
stability called slope stability, or µ-stability, that we define in 1.2.9 below. It is
related to Gieseker stability through the following implications

µ-stability⇒ Gieseker stability⇒ Gieseker semistability⇒ µ-semistability .

In the case of vector bundles on projective curves, then µ-(semi)stability and
Gieseker (semi)stability coincide.

A detailed description of the construction of moduli spaces of semistable
sheaves on a variety can be found in chapter 4 of [HL97], and in chapter 7 of
[LP95] in the case of vector bundles on curves.

1.2.2 Definition of stability

The definition of (semi)stability we will use is that of slope stability, or µ-
stability, as it is the one that fits well in the context we will treat. As we are
interested in vector bundles, we will consider only torsion free sheaves in our
definition of stability.

In the following, stability will always mean slope stability with respect to a
fixed polarization H. As we see from the definition below, stability with respect
to H or to a positive multiple mH are equivalent. Hence we will suppose, when
needed, that H is sufficiently positive or very ample.

We recall that a torsion free sheaf E is locally free on an open set U ⊆ X,
such that codimX(X − U) > 2. We say that the rank of E is the rank of the
vector bundle E|U , i.e. the rank of E at the generic point of X.

Definition 1.2.9 Let E be a torsion free coherent sheaf on a variety X. We say that E
is semistable (or slope semistable, or µ-semistable), with respect to a polarization
H of X, if for any coherent proper subsheaf F ↪→ E, i.e. such that 0 6= F 6= E, we have

µH(F) =
c1(F).Hn−1

rkF
6

c1(E).Hn−1

rkE
= µH(E) . (1.2)

If the equation (1.2) holds with strict inequality for all F ↪→ E with rkF < rkE,
then we say that E is stable. If E is semistable not stable, we say that E is strictly
semistable, or properly semistable. A torsion free sheaf which is not semistable is
called unstable.

Remark 1.2.10 We notice that if L is a line bundle, then a tosion free sheaf E is
(semi)stable if and only if E⊗ L is (semi)stable.
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Remark 1.2.11 In the definition 1.2.9 of stability, we can suppose that the equa-
tion (1.2) holds for all saturated subsheaves F ↪→ E, i.e. such that E/F is torsion
free.

In fact if E/F is not torsion free we can consider its torsion T. We have then
a commutative diagram

F ↪→ E � E/F↪→ = �
F′ ↪→ E � E/F

T

where F′ is called the saturation of F in E, and F′/F ∼= T. As c1(T) is effective
or 0, then c1(F).H−1 6 c1(F′).Hn−1, therefore µ(F) 6 µ(F′) as they have the
same rank. To see that c1(T) is effective or vanishing, notice that c1(T) =
c1(F′)⊗ c1(F)−1, hence the associated line bundle has a section coming from
the injection F ↪→ F′.

For the same reason we see that it is sufficient to consider equation (1.2),
only for subsheaves F ↪→ E with rkF < rkE.

Remark 1.2.12 In the definition of stability we can consider torsion free quo-
tient sheaves E � G instead of subsheaves F ↪→ E.

Then E is (semi)stable if and only if µ(E) < µ(G) for every torsion free
quotient E � G (6 for semistability).

In fact from remark 1.2.11 we can consider equation (1.2) for subsheaves
F ↪→ E eith torsion free quotient.

And from the exact sequance 0→ F → E→ G → 0 we deduce that

c1(E).Hn−1 = c1(F).Hn−1 + c1(G).Hn−1 and µ(E) =
rkFµ(F) + rkGµ(G)

rkF + rkG
.

Remark 1.2.13 When considering stability on curves, we have

c1(F).1 = c1(F).[X] = deg F

for every vector bundle, and we can restrict the equation 1.2 to subbundles F ⊂
E: we apply remark 1.2.11 and the fact that torsion free sheaves on curves are
locally free.

The following are the first properties of stable bundles, allowing us to have
some examples

Proposition 1.2.14 Let E and F be two semistable torsion free sheaves on a variety
X. Then if Hom(E, F) 6= 0, µ(E) 6 µ(F). If E is stable, F is semistable, and
µ(E) = µ(F), then any nontrivial homomorphism ϕ : E→ F is injective.

If E and F are stable vector bundles, and µ(E) = µ(F), then any non trivial
homomorphism ϕ : E→ F is an isomorphism.
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Proof.
Let ϕ : E→ F be a morphism between the two semistable sheaves E and F,

and let I ⊆ F be the image of ϕ. Then, if I 6= 0, by semistability µ(E) 6 µ(I) 6
µ(F).

If furthermore we have µ(E) = µ(F), then µ(E) = µ(I) = µ(F). If E is
stable this implies E = I, i.e. the morphism is injective. In fact I cannot have
a smaller rank than E otherwise it would contradict the stability of E. And the
map E→ I cannot have a rank 0 kernel because E is torsion free.

And if F is stable, and E and F are vector bundles, this implies that I = F,
i.e. the morphism is surjectve. In fact, E cannot have smaller rank than F,
otherwise it would contradict the stability of F. And an injective morphism
between vector bundles of the same rank is either an isomorphism or has cok-
ernel supported on an effective divisor, but this last case is not possible because
c1(E).Hn−1 = c1(F).Hn−1.

�

Corollary 1.2.15 All stable sheaves are simple, i.e. their endomorphisms are scalar
multiples of the identity.
Proof.

For every coherent sheaf F, the algebra End(F) has finite dimension over k.
If E is a stable sheaf, then by proposition 1.2.14 End(E) is an extension field

of k. As we are supposing that k is algebraically closed, then End(E) = k.
�

Example 1.2.16 Here are some examples of stable vector bundles:

i. Line bundles: every line bundle is trivially stable, as it does not contain
any nontrivial subsheaf with torsion free quotient.

ii. Tangent bundle of a projective space. Consider a projective space P(V),
with V a k-vector space of dimension n + 1. We can suppose that n > 1
otherwise we have nothing to prove. We have the Euler sequence de-
scribed in example 1.2.1

0→ OP(V)(−1)→ V ⊗OP(V) → Q→ 0

where Q = TP(V) ⊗OP(V)(−1). By remark 1.2.10 it is sufficient to prove
the stability of Q.

Let us suppose that Q is not stable, then there is a quotient Q � F
with µ(F) < µ(Q) = 1/n. As rkF < rkQ, then we have µ(F) 6 0.
Without lack of generality we can suppose that F is stable. As we have
V ⊗OP(V) � F, then µ(V ⊗OP(V)) = 0 6 µ(F), by proposition 1.2.14,
so µ(F) = 0. As there must be one of the factors O of V ⊗ OP(V) that
maps to F, and F is stable of slope 0, then we deduce that rkF = 1, and
we have O ↪→ F, with cokernel of codimension at least 2. But dualizing



22 CHAPTER 1. NOTATIONS, AND BASIC LEMMAS

this implies that we have a global sectionO → Q∗, and this is impossible
because of the dual of the Euler sequence

0→ Q∗ → V∗ ⊗O → O(1)→ 0

where V∗ = H0(P(V),O(1)).

iii. Extensions of line bundles on curves. Consider a line bundle L on a
genus g > 1 curve. Then Ext1(L(p), L) = H1(C,OC(−p)) ∼= H0(C, ωC(p)) 6=
0, and let E the rank 2 vector bundle corresponding to a non trivial exten-
sion. Then E is a stable bundle: in fact from the exact sequence

0→ L→ E→ L(p)→ 0

we deduce that the slope of E is µ(E) = deg E/2 = deg L + 1/2. A
subbundle of E is a line bundle F either injecting to L, or having a non
zero map to L(p). As a non zero map between two line bundles is always
an injection of sheaves, and F → L(p) cannot be an isomorphism as the
sequence does not split, we deduce that deg F 6 deg L < µ(F).

iv. Direct sums. Let E and F be two semistable shaves of the same slope
µ(E) = µ(F) = µ. Then E⊕ F is semistable of slope µ

In fact E⊕ F is easily seen to have slope µ. Then assume we have G →
E⊕ F such that µ(G) > µ. We can suppose that G is semistable, then by
proposition 1.2.14, the maps G → E and G → F are the zero morphism.
Hence G → E⊕ F is zero.

v. Tangent bundle of a complex K3 surface. This is a consequence of the
Hitchin-Kobayashi correspondence (cf. section 1.3), and the existence of
Kähler-Einstein metrics on a K3 surface.

Definition 1.2.17 A vector bundle which is a direct sum of stable vector bundles of
the same slope is called polystable.

Example 1.2.18 A vector bundle which is a direct sum E1 ⊕ E2 of two vector
bundles with different slope is unstable: the vector bundle E1 with higher slope
injects into the direct sum, and

µ(E1) > µ(E1 ⊕ E2) =
rkE1µ(E1) + rkE2µ(E2)

rkE1 + rkE2
> µ(E2) .

In the same way any extension 0→ E → F → G → 0 is unstable if µ(E) >
µ(G).
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1.2.3 Harder-Narasimhan Filtration

In this section we show how to associate to every vector bundle E on X, a
filtration that measures how far it is from being semistable.

The key point is the fact that every vector bundle contains a unique maxi-
mal semistable subsheaf:

Definition 1.2.19 Let E be a torsion free sheaf on a polarized variety (X, H), a sub-
sheaf F ⊆ E is called maximal semistable subsheaf of E, if every subsheaf G ⊆ E
verifes µ(G) 6 µ(F), and G ⊆ F whenever µ(G) = µ(F).

Remark 1.2.20 By definition if such a subsheaf exists, it is semistable and unique.

Proposition 1.2.21 Every torsion free sheaf E admits a maximal semistable sub-
sheaf F ⊆ E.
Proof.

Consider the following order relation� on the set of non-trivial subsheaves
of E: we say that F1 � F2 if and only if F1 ⊆ F2 and µ(F1) 6 µ(F2). As
any ascending chain of subsheaves terminates, there is a �-maximal element
F ⊂ E. Furthermore for every subsheaf G ⊆ E there is a G ⊆ G′ ⊆ E such that
G′ is �-maximal. Let F be of minimal rank among �-maximal subsheaves of
E. Then we can show that F is a maximal semistable subsheaf.

Suppose there exists a G ⊆ E such that µ(G) > µ(F). Then we can assume
that G ⊆ F, in fact otherwise we have µ(G ∩ F) > µ(G) > µ(F): indeed if
G * F then F is a proper subsheaf of F + G, and hence µ(F) > µ(F + G). Using
the exact sequence

0→ F ∩ G → F⊕ G → F + G → 0

we find that

c1(F).Hn−1 + c1(G).Hn−1 = c1(F⊕G).Hn−1 = c1(F∩G).Hn−1 + c1(F + G).Hn−1

and
rkF + rkG = rk(F⊕ G) = rk(F ∩ G) + rk(F + G) .

Hence we have that

rk(F ∩ G)(µ(G)− µ(F ∩ G)) =

= rk(F + G)(µ(F + G)− µ(F)) + (rkG− rk(F ∩ G))(µ(F)− µ(G))

and using that µ(F) < µ(G) and µ(F) > µ(F + G), this implies that

µ(F) 6 µ(G) < µ(F ∩ G) .

So let us suppose there exists G ⊂ F with µ(G) > µ(F), and assume that
G is �-maximal among subsheaves of F. Then there exists G′ ⊆ E which is
�-maximal such that G ⊆ G′. In particular we have µ(F) < µ(G) 6 µ(G′).
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As both F and G′ are �-maximal, then we cannot have G′ ⊆ F, otherwise we
would either contradict the minimality of rkF, or the fact that µ(F) < µ(G′).
Therefore F is a proper subsheaf of F + G′, and by maximality of F we have
µ(F) > µ(F + G′). As above, the inequalities µ(F) < µ(G′) and µ(F) > µ(F +
G′) imply

µ(F ∩ G′) > µ(G′) > µ(G) .

As G ⊂ G′ ∩ F ⊂ F, this means that G ≺ G′ ∩ F and they are both subsheaves
of F, so we contradict the assumption on G.

�

Definition 1.2.22 Let E be a torsion free sheaf. A Harder-Narasimhan filtration
for E is an increasing filtration

0 = HN0(E) ⊂ HN1(E) ⊂ · · · ⊂ HNl(E) = E ,

such that the factors grHN
i = HNi(E)/HNi−1(E) are semistable torsion free sheaves

for i = 1, . . . , l, with slopes satisfying

µmax(E) := µ(grHN
1 ) > µ(grHN

2 ) > · · · > µ(grHN
l ) =: µmin(E) .

Proposition 1.2.23 Every torsion free sheaf E has a unique Harder-Narasimhan fil-
tration.

Proof.
We can proceed by induction on the rank of E: if E has rank 1 we have

nothing to prove, assume that E has rank r and is not semistable. Then E has
a unique proper maximal semistable subsheaf E1 ⊂ E. Then E/E1 has smaller
rank than E and so admits a unique Harder-Narasimhan filtration, pulling it
back to E we get the desired filtration.

Also for uniqueness part we can use induction, so let us assume that there
is a unique Harder-Narasimhan filtration for sheaves of smaller rank than E,
and suppose we have two filtrations E• and E′•. We can suppose that µ(E′1) >
µ(E1), and let j be minimal such that E′1 ⊂ Ej. Then we have a non-trivial
homomorphism composing

E′1 → Ej → Ej/Ej−1 .

By proposition 1.2.14, this implies µ(Ej/Ej−1) > µ(E′1) > µ(E1) > µ(Ej/Ej−1).
Then µ(Ej/Ej−1) = µ(E′1) = µ(E1) = µ(Ej/Ej−1), implying that j = 1, and so
E′1 ⊂ E1. But as they are semistable, by proposition 1.2.14 µ(E′1) 6 µ(E1), and
we can repeat the argument inverting E′1 and E1. So E′1 = E1, and we can apply
the induction on E/E1.

�
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1.2.4 Stability and restrictions

If a vector bundle E on a variety X is stable, it is difficult in general to know
whether its restriction to a subvariety is stable or not. Some general results
assert stability of the restricion of a stable vector bundle on an ample hyper-
surface of high degree (notably, theorems of Flenner [Fle84], Mehta and Ra-
manathan [MR82], Bogomolov [Bog93]).

We will treat one example of stability on a curve in Chapter 3, where we
want to know whether the tangent bundle of the projective space restricted to
a given curve is stable (see theorem 3.1.8).

On the converse, it is more esasy to show that the stability of the vector
bundle E|Y restriction of E on a smooth ample hypersurface Y in |mH| implies
stability with respect to H.

We will use the following elementary useful lemma:

Lemma 1.2.24 Let F be a torsion free sheaf on X, locally free outside of a closed subset
Z ⊂ X of codimension at least 3 in X. Let Y be a smooth hypersurface, and let
H ∈ CH1(X) its rational equivalence class. Then

< c1(F).Hn−1 >X=< c1(F|Y).(H|Y)n−2 >Y ,

where <>X and <>Y are the degree maps on X and Y.
Proof. We remark at first that, if i : Y ↪→ X is the immersion of Y in X, then

c1(F|Y) = c1(i∗F) = i∗c1(F) .

This is clear when F is a vector bundle. Otherwise note that c1(F|Y) and i∗c1(F)
are two line bundles on Y, isomorphic on an open subset U = Y \ Z whose
complementary Y ∩ Z has codimension at least 2. So they are isomorphic.
Hence c1(F|Y).(H|Y)n−2 = i∗(c1(F).Hn−2).

To show the lemma observe that, as i is an immersion, for any cycle W ∈
C∗(Y), < W >Y=< i∗W >X . And by the projection formula

i∗(c1(F|Y).(H|Y)n−2) = i∗([Y].i∗(c1(F).Hn−2)) = i∗([Y]).c1(F).Hn−2 ,

where [Y] is the identity in CH∗(Y), and clearly i∗([Y]) = H.
�

Theorem 1.2.25 Let E be a vector bundle on a variety X of dimension n > 2. Assume
that E|Y is (semi)stable on a fixed ample smooth hypersurface Y ∈ |mH|, with respect
to the polarization H|Y. Then E is (semi)stable on X with respect to the polarization
H.
Proof.

We want to prove that given F ↪→ E, we have µH(F) < µH(E), knowing
that this inequality holds on a given ample hypersurface Y ∈ |mH|.

As we remarked in 1.2.11 we can assume that the quotient G := E/F is
torsion free.
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Furthermore we can assume that F is a reflexive sheaf, i.e. it satisfies F→̃F∗∗,
where the dual of a sheaf F is defined as the sheaf of homomorphisms F ∗ :=
HomOX (F ,OX). Otherwise we have the following diagram

F ↪→ E � G↪→ = �

F∗∗ ↪→ E � G′

where F∗∗ maps in E because E is a vector bundle and the homomorphism
sheaf from F to E is HomOX (F, E) = HomOX (F,OX)⊗ E = F∗ ⊗ E = (F∗∗)∗ ⊗
E = HomOX (F∗∗, E). But as we supposed that G is torsion free it cannot contain
a torsion sheaf T := ker(G → G′) ∼= coker(F → F∗∗).

Reflexive sheaves F are exactly those torsion free sheaves satisfying Serre’s
condition S2: for all schematic points x ∈ X,

depth(Fx) > min{2, dim(OX,x)} .

This implies that their singular locus

sing(F ) := {x ∈ X | Fx is not a free OX,x-module} = {x ∈ X | dh(Fx) 6= 0}

has codimension at least 3.
Restricting the sequence 0 → F → E → G → 0 to the hypersurface Y we

get
0→ T or1

OX
(G,OY)→ F|Y → E|Y → G|Y → 0 .

As codimXsing(F) > 3 in X, then codimYsing(F|Y) > 2 in Y.
As supp(T or1

OX
(G,OY)) ⊂ sing(G) ∩ Y, and codimXsing(G) > 2 in X,

then T or1
OX

(G,OY) is a torsion sheaf on Y, injecting in F|Y. So its support must
be contained in sing(F|Y).

Hence c1(F|Y) = c1(F|Y/T or1
OX

(G,OY)), because sheaves concentrated on
high codimension subsets do not affect the first Chern class.

On Y we have the following exact sequence

0→ F|Y/T or1
OX

(G,OY)→ E|Y → G|Y → 0 .

Hence by stability of E|Y we have that

c1(F|Y).Hn−2

rkF
<

c1(E|Y).Hn−2

rkE
,

where dim X = n. As codimXsing(F) > 3, and E is a vector bundle, then by
lemma 1.2.24 c1(F|Y).Hn−2 = c1(F).Hn−1, and c1(E|Y).Hn−2 = c1(E).Hn−1, so
we get stability of E on X.

Same thing for semistability.
�
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1.2.5 Stability and regularity

For vector bundles on curves, stability gives some interesting constraints on
global generation and cohomology.

Proposition 1.2.26 Let E be a semistable vector bundle on a genus g curve. Then the
following hold:

i. if µ(E) < 0, then H0(E) = 0;

ii. if µ(E) > 2g− 2, then H1(E) = 0;

iii. if µ(E) > 2g− 1, then E is globally generated.
Proof. For the first point, observe that if H0(E) 6= 0, then any section gives
an injection of sheaves O ↪→ E.

For the second we use Serre’s duality, which implies that H1(E) ∼= H0(E∗⊗
ω)∗. As µ(E∗ ⊗ω) = −µ(E) + 2g− 2 and E∗ ⊗ω is semistable as well, we can
use the first point.

For global generation, let us consider the exact sequence of evaluation on a
point p

0→ E(−p)→ E→ E|p → 0 .

As µ(E(−p)) = µ(E) − 1 > 2g − 2 and E(−p) is semistable, we can pass to
cohomology and use the second point.

�

1.3 Hermite-Einstein metrics

We define here Hermite-Einstein metrics, and enunciate the Kobayashi-Hitchin
correspondence between those metrics and stability.

Let us consider a hermitian holomorphic vector bundle (E, h) on a complex
projective variety X.

We have seen in paragraph 1.1.3, that there is a unique holomorphic her-
mitian connection ∇h. This connection gives rise to a curvature form Θh ∈
A2(End(E)). Contracting this form with the adjoint Λ of the Lefschetz op-
erator (depending on the Kähler metric on X), we obtain the mean curvature
endomorphism Rh := iΛΘh ∈ A0(End(E)).

Definition 1.3.1 We say that (E, h) is a Hermite-Einstein vector bundle, or that h
satisfies the Einstein-Hermite condition, if there exists a constant λ ∈ R such that
Rh = λ · Id.

The following theorem is a deep result, relating stability with the existence
of Hermite-Einstein metrics. It was described by Kobayashi as a higher dimen-
sional analogue of a characterization, by Narasimhan and Seshadri (cf. [NS65]),
of stable vector bundles on curves as those admitting projectively flat unitary
connections. It was proved by Donaldson in the case of projective surfaces (cf.



28 CHAPTER 1. NOTATIONS, AND BASIC LEMMAS

[Don85]), and then for all projective variety in [Don87]. Uhlenbeck and Yau,
proved it for compact Kähler manifolds (cf. [UY86]).

We will not use this characterization in the rest of this work, as we will deal
only with the algebraic side of stability. As it has been one of the motivations
for the constructions that follow, we think it is useful to enunciate this corre-
spondence:

Theorem 1.3.2 (Kobayashi-Hitchin Correspondence) Let E be a holomorphic vec-
tor bundle on a smooth polarized projective variety (X,OX(1)) over C. Then E is
polystable if and only if it admits a (“unique”) Hermite-Einstein metric with respect
to the Kähler metric of X induced by OX(1).

Thus, we see that a polystable vector bundle E, admits some “canonical”
closed differential forms, coming from its unique Hermite-Einstein metric, that
represent Chern classes of E.



Chapter 2

Stable bundles and Chow ring

2.1 Introduction

In this chapter, X is a smooth projective variety over an algebraically closed
field k, with a fixed polarization H.

The main result shows that the ideal sheaf IZ of an effective cycle Z ⊂ X
admits a resolution by polystable vector bundles. In particular, this implies that
the rational Chow ring CH∗Q(X), the K-theory K(X), and the derived category
Db(X) are generated (in a sense that we will specify) by stable vector bundles.

Note that, through the Harder-Narashiman and Jordan-Hölder filtrations,
it is easy to see that Chern classes of stable not necessary locally free sheaves
generate CH∗Q(X) or K(X) (cf. Remark 2.3.6). Since polystability for vector
bundles on complex varieties is equivalent to the existence of Hermite-Einstein
metrics, it seems desirable to work with the more restrictive class of locally free
stable sheaves.

In the case of a K3-surface S our result can be compared with a recent ar-
ticle of Beauville and Voisin. In [BV04] they show that all points lying on
rational curves are rationally equivalent, hence giving rise to the same class
cX ∈ CH2(S), and that c2(S) and the intersection product of two Picard divi-
sors are multiples of that class. A new formulation of this fact, stating that poly-
nomial cohomological relations involving only CH1(X) and the Chern classes
of X are satisfied already in CH(X), can be found in [Voi06], where it is verified
on some cases of hyper-Kähler manifolds.

As the tangent bundle TS and line bundles are stable, one might wonder
what happens if we allow arbitrary stable bundles. Our result shows that sec-
ond Chern classes of stable bundles generate (as a group) CH2(S), and that this
is true on every surface.

Related results, using the relation between moduli spaces and Hilbert schemes
(cf. [GH96]), and between Hilbert schemes and the second Chow group (cf.
[Mac03]), had been obtained before.

We will first show the main theorem in the case of surfaces, as it already

29
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gives the above description for CH2(X). The higher dimensional case is a gen-
eralization of this argument.

2.1.1 Notations

Stability will always mean slope stability with respect to the fixed polarization
H as in definition 1.2.9. Since stability with respect to H or to a multiple mH
are equivalent, we can suppose that H is sufficiently positive, in particular it is
globally generated.

2.2 Zero dimensional cycles on a surface

Throughout this section S will be a smooth projective surface, Z a 0-dimensional
subscheme of S, and C ∈ |H| a fixed smooth curve such that C ∩ Z = ∅. As H
is very positive, we suppose g(C) > 1.

We will show the following

Proposition 2.2.1 If m � 0, and if V ⊂ H0(S, IZ(mH)) is a generic subspace of
dimension h0(C,OC(mH)), then the sequnce

0→ ker(ev)→ V ⊗OS →ev IZ(mH)→ 0 (2.1)

is exact and defines a stable vector bundle MZ,m := ker(ev).

2.2.1 Proof of proposition 2.2.1

We remark that if a subspace V ⊂ H0(S, IZ(mH)) generates IZ(mH), the exact
sequence

0→ M→ V ⊗OS → IZ(mH)→ 0 (2.2)

defines a vector bundle M, for S has cohomological dimension 2.
By theorem 1.2.25 a vector bundle on a variety is stable if its restriction to a

smooth hypersurface linearly equivalent to a multiple of H is stable.
So it is sufficient to show that the restriction of M to the curve C is a stable

vector bundle. As the chosen curve C doesn’t intersect Z, the restriction of (2.2)
to C yields a short exact sequence:

0→ M|C → V ⊗OC → OC(mH)→ 0 . (2.3)

We want to choose the space V so that the sequence (2.3) equals:

0→ MOC(mH) → H0(C,OC(mH))⊗OC → OC(mH)→ 0 . (2.4)

In this case, by general results (cf. [But94], and Theorem 2.3.2 below), the
vector bundle M|C = MOC(mH) is stable for m� 0.

We will use the following lemmas:
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Lemma 2.2.2 For m� 0, the restriction map

H0(S, IZ(mH))→ H0(C,OC(mH))

induces an isomorphism between a generic subspace V ⊂ H0(S, IZ(mH)) of dimen-
sion h0(C,OC(mH)), and H0(C,OC(mH)).
Proof. This follows immediately from the vanishing of H1(S, IZ((m− 1)H))
for m� 0, and from the consideration that, in the grassmanian
Gr(h0(C,OC(mH)), H0(S, IZ(mH))), the spaces V avoiding the subspace
H0(S, IZ((m − 1)H)) form an open subset, and project isomorphically on
H0(C,OC(mH)).

�

So if we show that such a space generates IZ(mH), then the sequence (2.2)
restricted to the curve will give the sequence (2.4).

Since the dimension h0(C,OC(mH)) of such V grows linearly in m, this is a
consequence of a general lemma which is true for a variety of any dimension:

Lemma 2.2.3 Let Y be a variety of dimension n, E a vector bundle of rank r globally
generated on Y, F a coherent sheaf on Y, and H an ample divisor. Then:

i. If W ⊂ H0(Y, E) is a generic subspace of dimension at least r + n, then W
generates E;

ii. There are two integers R, m0 > 0, depending on Y, H, and F , such that for any
m > m0, if V ⊂ H0(Y,F (mH)) is a generic subspace of dimension at least
R, then V generates F (mH).

Proof.
i. Let W ⊂ H0(Y, E) be a generic subspace of dimension v. Then the closed

subscheme Ys ⊂ Y where the evaluation homomorphism W ⊗ OY → E has
rank less than or equal to s is either empty or of codimension (v− s)(r− s) (cf.
[HL97] ch.5, p.121)1. Hence, taking v = dim W > r + n, and s = r− 1, we see
that the evaluation map must be surjective.

ii. By Serre’s theorem there exists a m1 > 0 such that F (mH) is globally
generated and acyclic for any m > m1. Hence, there exists a (trivial) glob-
ally generated vector bundle E of rank r = h0(Y,F (m1H)) and a surjection
E � F (m1H); if we call K its kernel, then K(mH) is globally generated and
acyclic for any m > m2, and we have for all m ≥ m1 + m2 :

0→ H0(Y,K((m−m1)H))→ H0(Y, E((m−m1)H))→ H0(Y,F (mH))→ 0 .

Let now ν be an integer such that r + n ≤ ν ≤ h0(Y,F (mH)). In
Gr(ν, H0(Y, E((m − m0)H))) there is the open subset of the spaces W avoid-
ing H0(Y,K((m−m0)H)), and this open set surjects to Gr(ν, H0(Y,F (mH))).

1 in [HL97] is used a transversal version of Kleiman’s theorem which holds only in caracteristic
0, but the dimension count we need is true in any characteristic (see [Kle74]).
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So a generic V ⊂ H0(Y,F (mH)) of dimension ν lifts to a generic
W ⊂ H0(Y, E((m−m0)H)) of dimension ν, and since ν ≥ r + n, the first part
of this lemma gives the result.

�

Lemmas 2.2.2 and 2.2.3 immediately yield Proposition 2.2.1.

2.2.2 Generators for the Chow group of a surface

We have shown that any effective 0-cycle Z admits a resolution

0→ MZ,m → V ⊗OS → IZ(mH)→ 0 , (2.5)

where MZ,m is stable and locally free.

Corollary 2.2.4 The Chow group CH2(S) is generated as a group by

{c2(M) |M is a stable vector bundle} .

Proof. The class of Z in CH2(S) is given by [Z] = −c2(OZ), hence,

c2(IZ) = [Z] ,

furthermore we know that c1(OZ) = c1(IZ) = 0.
Using the sequences

0→ OS(−H)→ OS → OC → 0 and,

0→ IZ((m− 1)H)→ IZ(mH)→ OC(mH)→ 0 ,

we can easily calculate the Chern classes appearing in (2.5):

c1(IZ(mH)) = mH and c2(IZ(mH)) = c2(IZ) = [Z] .

So by the sequence (2.5) we obtain

c1(MZ,m) = −c1(IZ(mH)) = −mH , and

[Z] = c2(IZ(mH)) = −c2(MZ,m) + m2H2 ,

thus second Chern classes of stable vector bundles and the class of H2 generate
the second Chow group of the surface.

Clearly, H2 = c2(H ⊕ H) is the second Chern class of a polystable vector
bundle, but it can also be obtained as a linear combination of c2(Ei) with Ei
stable: since H2 = [Z′] is an effective cycle, we deduce from (2.2) that

[Z′] = −c2(MZ′ ,m) + m2[Z′] or, equivalently

(m2 − 1)H2 = (m2 − 1)[Z′] = c2(MZ′ ,m)

for every m� 0. Choosing m1 and m2 such that (m2
1− 1) and (m2

2− 1) are rela-
tively prime, we find that H2 is contained in the subgroup of CH2(S) generated
by second Chern classes of stable vector bundles.

�
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Remark 2.2.5 This result can also be proven (when char(k) = 0) by using the
fact that, for every r > 0, c1, and c2 � 0, stable locally free sheaves form an
open dense subset U in the moduli space N = N(r, c1, c2) of semi-stable not
necessarily locally free sheaves with fixed rank and homological Chern classes
(see [O’G96]).

For any such N, up to desingularizing compactifying and passing to a finite
covering, we obtain a homomorphism φc2 : CH0(N) → CH0(S), which asso-
ciates the class of a point E ∈ N to the class c2(E) ∈ CH0(S). This morphism is
given by the correspondance c2(F), where F is the universal sheaf on N × S.

Next we notice that CH0(U) spans CH0(N): in fact if we consider a point
x ∈ N, we can take a curve passing through x and U. In the normalization of
this curve, we see that the class of x is the difference of two very ample divisors,
so x is rationally equivalent to a 0-cycle supported on U.

Hence the image of the map φc2 : CH0(N) → CH0(S) is spanned by
the image of CH0(U). Letting vary r, c1, and c2 � 0, and observing that⊕

r,c1,c2
CH0(N) � CH(S) we get the result.

(This remark is due to Claire Voisin).

2.2.3 Bounded families of stable vector bundles generating the
Chow group of of a surface

Corollary 2.2.4 is interesting in the case of a K3 surface over C, where CH(S) =
Z⊕ Pic(S)⊕CH2(S), Pic(S) is a lattice, and CH2(S) is very big (cf. [Mum68])
and torsion free (since CH2(S)tor ⊂ Alb(S)tor for [Roj80], and Alb(S) = 0).

Beauville and Voisin have shown in [BV04] that every point lying on a ra-
tional curve has the same class cS ∈ CH2(S), that the intersection pairing of
divisors maps only to multiples of that class:

Pic(S)⊗ Pic(S)→ Z · cS ⊂ CH2(S) ,

and that c2(S) = 24cS.
It would be interesting to see whether the fact that CH2(S) is generated

by second Chern classes of stable vector bundles can be used to get a better
understanding of this group.

We have shown that {c2(M) | M is a stable vector bundle} is a set of genera-
tors for CH2(S). This set is “very big” as we are varying arbitrarily the rank
and Chern classes of the stable vector bundles. However we can limit this set
even in cases where the Chow group is very big.

Proposition 2.2.6 For every surface S there is a bounded family V of stable vector
bundles on S, such that the second Chern classes of vector bundles in V generate the
Chow group of zero cycles in this surface.
Proof.

A bounded family of generating stable bundles can be constructed in vari-
ous ways. We can consider the fact that, as 0-cycles are formal sums of points
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on the surface, then to generate the Chow group we just need to generate any
(rational class of) single point on the surface.

We want to find a bounded family of stable vector bundles, such that their
second Chern classes generate every point.

We can apply our construction to find a resolution of the ideal sheaf IZ,
with Z = {s} a point on the surface S.

Following the proof of proposition 2.2.1 we see that the numerical invari-
ants chosen in the resolution 2.5

0→ Ms,V → V ⊗OS → Is(mH)→ 0 ,

i.e. the twisting factor m and the dimension of the vector space V do not depend
on the point p ∈ S, but only on the ample class of the curve C, and can be fixed
for all points.

Consider, the diagonal ∆ ⊂ S× S, and the exact sequence

0→ I∆(mH1)→ OS×S(mH1)→ O∆(mH1)→ 0 ,

where H1 is the pull-back of H to S× S through the projection p1 of S× S to
the first factor.

Then I := p2∗I∆(mH1) is a vector bundle on S, whose fiber over s ∈ S is
H0(S, Is(mH)).

We can consider the Grassmannian on S,

Gr(k, I)→ S

where the number k is h0(C,OC(mH)) as in the proof of proposition 2.2.1.
Then a point on Gr(k, I) corresponds to a couple (s, V), where s ∈ S and
V ⊂ H0(S, Is(mH)) is a k-dimensional subsapce.

Hence we have a bounded family V = {Ms,V}(s,V)∈Gr(k,I). And we have
shown that second Chern classes of the stable bundles Ms,V which are in V
(corresponding to generic V’s) generate the Chow group of 0-cycles.

�

2.3 The general case

Let now X be a variety of dimension n > 2, with a fixed ample divisor H.
We want to prove the following

Theorem 2.3.1 For every subscheme Z ⊂ X, its ideal sheaf IZ admits a resolution

0→ E→ Pe → · · · → P1 → P0 → IZ → 0 (2.6)

where E is a stable vector bundle, the Pi are locally free sheaves of the form Vi ⊗
OX(−mi H), and e = dim X− 2.
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By passing to a multiple of H we may assume that a generic intersection
of n − 1 sections is a smooth curve C such that g(C) > 1. We want to prove
Theorem 2.3.1 by the same method as in the surface case, i.e. finding vector
spaces Vi that can be identified with the spaces of all global sections of a stable
vector bundle on a smooth curve.

2.3.1 Proof of the theorem

We recall Butler’s theorem for vector bundles on curves [But94]:

Theorem 2.3.2 (Butler) Let C be a smooth projective curve of genus g > 1 over an
algebraically closed field k, and E a stable vector bundle over C with slope µ(E) > 2g,
then the vector bundle ME := ker(H0(C, E)⊗OC � E) is stable.

Let us now consider a closed sub-scheme Z of codimension at least 2. We
want to construct a sequence as in Theorem 2.3.1, which splits into short exact
sequences in the following way:

0 // E // Pe //

""F
FFF

Pe−1 // . . . // P2 //

  B
BB

P1 //

  B
BB

P0 // IZ // 0

Ke−1

::uuuu
K1

>>|||
K0

>>|||

where the Ki are stable sheaves on the variety X which restricted to a curve C
(an intersection of n− 1 generic sections of OX(H)) are stable vector bundles
Mi, and the Pi = Vi⊗OX(−mi H) are obtained by successively lifting the space
of global sections H0(C, Mi−1(mi H)) as in the surface case.

In other words the Vi ⊂ H0(X, Ki−1(mi H)) are spaces isomorphic to
H0(C, Mi(mi H)) by the restriction of global sections to the curve (for the sake
of clarity we should pose in the former discussion K−1 := IZ and M−1 := OC).

We remark that the stability condition is invariant under tensoring by a line
bundle.
Proof. (Theorem 2.3.1)

As a first step we want to choose m0 and V0 ⊂ H0(X, IZ(m0H)).
Choosing n− 1 generic2 sections s1, ..., sn−1 ∈ |OX(H)|, gives us a filtration

of X by smooth sub-varieties:

X0 := X ⊃ X1 = V(s1) ⊃ X2 = V(s1, s2) ⊃ ... ⊃ Xn−1 = C = V(s1, . . . , sn−1).

Let V ⊂ H0(X, IZ(mH)) be a subspace generating IZ(mH). The restriction
of the exact sequence

0→ K → V ⊗OX → IZ(mH)→ 0

to the hypersurface X1 yields an exact sequence

0→ K|X1 → V ⊗OX1 → IZ ⊗OX1(mH)→ 0 ,

2 By generic we mean that the element (s1, . . . , sn−1) ∈ |OX(H)|n−1 is generic.
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due to the generality of the sections.
Restricting further we eventually obtain an exact sequence

0→ K|C → V ⊗OC → OC(mH)→ 0

of vector bundles on the curve C. In other words we are supposing the se-
quence (s1, . . . , sn−1) to be regular for IZ, and such that C ∩ Z = ∅, both of
which are open conditions. Furthermore, (s1, . . . , sn−1) being generic, we can
suppose that all the T orq

OXi
(IZ|Xi ,OXi+1) vanish, for q > 0 and i = 0, . . . , n− 2:

to see this, let us fix an arbitrary locally free resolution

0→ Fs → · · · → F0 → IZ → 0

of IZ, which splits into short exact sequences 0 → Pi → Fi → Pi−1 → 0.
The sequence (s1, . . . , sn−1) being generic, we can suppose that it is regular for
the shaves IZ, P0, . . . , Ps−1. Hence, from the short exact sequences above, we
deduce that T orq

OXi
(IZ|Xi ,OXi+1) ∼= T or1

OXi
(Pq−2|Xi ,OXi+1) = 0.

For m � 0, we have H1(Xi, IZ ⊗OXi ((m − 1)H)) = 0 for every i. As in
Lemma 2.2.2, a generic V ⊂ H0(X, IZ(mH)) of dimension h0(C,OC(m)) will
map injectively to the global sections on the Xi:

0

��
H0(Xi, IZ ⊗OXi ((m− 1)H))

·si+1

��
V � � //

o
��

H0(Xi, IZ ⊗OXi (mH))

��
V � � // H0(Xi+1, IZ ⊗OXi+1(mH))

��
0

until we have an isomorphism V→̃H0(C,OC(m)).
So we can choose m0 � 0 and V generating IZ(m0H) such that the kernel

K0 of V ⊗OX(−m0)→ IZ is stable (since it’s stable on the curve C which is a
complete intersection of n− 1 sections of H), but K0 is, in general, not locally
free (even though it is a vector bundle on the curve C).

As we have chosen (s1, . . . , sn−1) such that T orq
OXi

(IZ|Xi ,OXi+1) = 0 for

q > 0 and i = 0, . . . , n− 2, we deduce from the sequence

0→ K0 → V ⊗OX(−m0)→ IZ → 0
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that also the T orq
OXi

(K0|Xi ,OXi+1) vanish, for q > 0 and i = 0, . . . , n − 2. In

particular, the sequence (s1, . . . , sn−1) is K0-regular.
Repeating the argument, we obtain, tensoring K0 by H enough times, exact

sequences:

o → K1(m1H)|Xi → V1 ⊗OXi → K0(m1H)|Xi → 0 .

Again, we can suppose that H1(Xi, K0 ⊗OXi (m1H)) = 0 and lift the vector
space H0(C, K0(m1H)|C) on a generic generating space V1 ⊂ H0(X, K0(m1H)).
Butler’s theorem tells us that the vector bundle K1|C, satisfying

0→ K1(m1H)|C → H0(C, K0(m1H)|C)⊗OC → K0(m1H)|C → 0 ,

is a stable vector bundle (for m1 � 0), because K0|C is stable and locally free.
So we can continue and find the resolution (2.6), where we remark that if

e > n− 2, E is a vector bundle because X is smooth and so has cohomological
dimension n = dim X, and it is stable because it is so on the curve C.

�

2.3.2 Stable vector bundles as generators

We can apply then this result to calculate the Chern class and character of IZ;
we know that in general for any sheaf F and any resolution P• → F by vector
bundles, its Chern character is ch(F ) = ∑ (−1)ich(Pi).

Corollary 2.3.3 A set of generators of CH∗Q(X), as a group, is

{ch(E)|E stable vector bundle} .

Proof. From the resolution (2.6) we have:

ch(IZ) = (−1)e+1ch(E) +
e

∑
i=0

(−1)i dim Vi · ch(OX(−mi H)) .

From the Grothendieck-Riemann-Roch theorem (cf. [Gro58]) we know that

ch(IZ) = 1− ch(OZ) = 1− [Z] + higher order terms

so applying our result to the higher order terms, we see that we can express [Z]
as a sum of Chern characters of stable vector bundles.

�
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In order to have the same results in the K-theory and the derived category
we will use the following

Lemma 2.3.4 Any coherent sheaf Fon X admits a filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂
F` = F where each quotient Fi/Fi−1 admits a polystable resolution.
Proof. Consider first a torsion sheaf T : it has then a filtration 0 = T0 ⊂ T1 ⊂
· · · ⊂ T` = T , where every quotient Ti/Ti−1 is of the form OZi (−mH), for
cycles Zi . Hence T admits such a filtration.

A torsion free sheaf F admits an extension

0→ V ⊗OX(−m)→ F → F
V ⊗OX(−m)

→ 0 ,

where m� 0, V ⊆ H0(X,F (m)) is the subspace generated by R generically in-
dependent sections ofF (m), R is the generic rank ofF , andF/(V⊗OX(−m))
is a torsion sheaf. Hence taking the pull-back toF of the torsion sheaf filtration,
we get the requested filtration.

Finally, any coherent sheaf fits into an extension with its torsion and torsion
free parts:

0→ T (F )→ F → F/T (F )→ 0 ,

so we can take the filtration for T (F ) and the pull-back to F of the filtration
for F/T (F ).

�

The following result is an immediate consequence:

Corollary 2.3.5 The Grothendieck ring K(X) is generated, as a group, by the classes
of stable vector bundles.

Remark 2.3.6 Every torsion free sheaf admits a (unique) Harder-Narashiman
filtration, whose quotients are semistable sheaves (not necessarely locally free).
And every semistable sheaf admits a (non unique) filtration with stable quo-
tients. Mixing those two kinds of filtrations we obtain a filtration with stable
quotients of any torsion free sheaf.

Hence, it can be easily proven that the class in K(X) of any coherent sheafF
is obtained as a sum of classes of stable not necessarily locally free sheaves. In
fact we can construct an exact sequence 0 → K → V ⊗OX(−mH) → F → 0,
and take the filtration of the torsion free sheaf K, whose quotients are stable
not necessarily locally free sheaves. (The same argument holds for the Chow
group).

For what concerns the derived category, let Db(X) be the bounded derived
category of coherent sheaves on X. We will identify, as usual, any coherent
sheaf F to the object (0→ F → 0) ∈ Db(X) concentrated in degree 0.

Definition 2.3.7 We say that a triangulated subcategory D ⊆ Db(X), is generated
by a family of objects E ⊆ Db(X), if it is the smallest full triangulated subcategory of
Db(X), stable under isomorphisms, which contains E . We will denote it by < E >.
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We can prove the following lemma:

Lemma 2.3.8 Let E be a family of objects of Db(X). If < E > contains two coherent
sheaves F1 and F2, then it contains all their extensions.
Proof. Let 0 → F1 → F → F2 → 0 be an extension. Consider the distin-
guished triangle F1 → F → F2 → F1[1] in Db(X) associated to this exten-
sion. It will induce the distinguished triangle F2 → F1[1] → F [1] → F2[1].
Extending the arrow F2 → F1[1] to a distinguished triangle in < E >, we get
a distinguished triangle F2 → F1[1] → G → F2[1]. As G is isomorphic to
F [1] in Db(X) and < E > is stable under isomorphisms, then F [1] belongs to
< E >.

�

Obviously, if a family E of objects of Db(X) is such that < E > contains
every coherent sheaf, then < E >= Db(X). So, using lemma 2.3.4, we get
immediately the following

Corollary 2.3.9 The bounded derived category Db(X) is generated by the family of
stable vector bundles.





Chapter 3

Line bundle transforms

3.1 Introduction

In the previous chapter we described how to take stable vector bundles as gen-
erators of the Chow ring of a variety. This was done exhibiting for all effective
cycles Z ⊂ X the polystable resolution (2.6):

0→ K → Pe → · · · → P1 → P0 → IZ → 0 . (3.1)

A first question concerning resolution (3.1) is how canonical it is, for a given
Z ⊂ X.

This resolution is highly non canonical, in fact it depends on e and on the
choice of the Pi’s, where we have Pi = Vi ⊗ OX(−mi). We could fix e =
dim X − 2 and the mi’s as the smallest such that our construction works, but
as for Vi we have to pick a generic vector space in a Grassmannian, we cannot
make a canonical choice.

As we show also that the derived category of the variety is generated by
stable vector bundles, some natural questions arise.

Question 3.1.1 Given a variety X,

i. Is any object of the derived category Db(X) isomorphic to a complex of
polystable vector bundles?

ii. Is any vector bundle on X, as an object inDb(X), isomorphic to a complex
of polystable vector bundles?

iii. Does any vector bundle on X admits a resolution by polystable vector
bundles?

Unfortunately we do not have an answer yet to those questions, and our
definition of a derived category being generated by a class of objects is too
“naive” to allow us to construct such resolutions. A natural step to try and

41
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construct some resolution as in the question above, is the studying of stability
of kernels of evaluation maps on subspaces of the space of global sections of
a given vector bundle. In fact, the main tool we use for showing stability is
the restriction to curves. And when restricting to curve we want to know what
happens evaluating on proper subspaces of the space of global sections.

By Butler’s result, we know that on a curve the kernel of the evaluation map
is not stable if the vector bundle we are starting from is not. So we ask whether
we can “improve” stability by considering proper subspaces, and what hap-
pens in higher dimensional varieties. This leads to the following natural ques-
tions:

Question 3.1.2 Given a globally generated vector bundle E on a curve C, and
a subspace V ⊂ H0(E), under which hypothesis is MV,E := ker(V ⊗O � E)
stable?

Question 3.1.3 Let X be a variety of dimension n > 2, and E a globally gener-
ated vector bundle on X, is ME := ker(H0(X, E)⊗O � E) stable?

There are many cases in the literature where the stability of kernels of eval-
uation maps on global sections is investigated for various purposes. All results
we have found concern vector bundles on curves.

This was used in particular by Paranjape and Ramanan (cf. [PR88]) to prove
normal generation of canonical ring of curves, by Butler ([But94]) also to study
normal generation of certain vector bundles, by Ein and Lazarsfeld (cf. [EL92])
to show the stability of the Picard bundle, by Beauville (e.g. in [Bea03]) to study
theta divisors, and by Mercat (cf. [Mer99]) to describe some Brill-Noether loci.

We recall Butler’s result that we used to construct the resolution (3.1) we
needed in the previous chapter (cf. [But94]):

Theorem 3.1.4 (Butler) Let C be a smooth projective curve of genus g > 1 over
an algebraically closed field k, and E a semistable vector bundle over C with slope
µ(E) > 2g, then the vector bundle ME := ker(H0(C, E)⊗OC � E) is semistable.
Furthermore, if E is stable and µ(E) > 2g, then ME is stable, unless µ(E) = 2g, and
either C is hyperelliptic or ωC ↪→ E.

We will call this vector bundle ME, a transform of the vector bundle E:

Definition 3.1.5 Let X be a variety and E a globally generated vector bundle on X.
We call MV,E := ker(V ⊗OC � E) the transform of the vector bundle E with re-
spect to the generating subspace V, and ME := MH0(E),E = ker(H0(C, E)⊗OC �
E) the total transform of E.

Starting from the result of Butler, we want to investigate here the stability
of transforms of line bundles on curves with respect to generic subspaces of
certain codimensions.

In the next chapter we will also treat and example concerning question
3.1.3. The results of this chapter will give a partial answer to question 3.1.2,
which can be resumed to the following theorem:
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Theorem 3.1.6 Let L be a line bundle of degree d on a curve C of genus g > 2, such
that d > 2g + 2c, with 1 6 c 6 g. Then MV,L is semistable for a generic subspace
V ⊂ H0(L) of codimension c. It is stable unless d = 2g + 2c and the curve is
hyperelliptic, in which case MV,L is strictly semistable for a generic V ⊂ H0(L) of
codimension c.

Similar results can be deduced by some constructions in Vincent Mercat’s
work [Mer99] on Brill-Noether’s loci, but we think that in our case it is useful to
give a more direct proof which applies to all line bundles of degree d > 2g + 2c
and not only generic ones.

Remark 3.1.7 A geometrical interpretation of those kinds of results goes as fol-
lows: a generating subspace V ⊂ H0(C,L) gives rise to a base point free linear
system |V| ⊂ |L| on the curve C, and determines a map ϕV : C → P(V∗),
which asociates to a point x ∈ C the hyperplane of global sections in V vanish-
ing in x. The Euler sequence on P(V∗) is the dual of the tautological sequence:

0→ ΩP(V∗)(1)→ V ⊗OP(V∗) → OP(V∗)(1)→ 0

which restricted to C gives the evaluation sequence

0→ MV,L → V ⊗OC → L → 0 .

As stability of a vector bundle is not affected by dualizing and tensorizing
by a line bundle, we see that stability of MV,L = Ω(1)|C is equivalent to the
stability of the restriction of the tangent bundle of the projective space P(V∗)
to the curve C.

So our theorem translates to

Theorem 3.1.8 Let C ⊂ Pd−g be a genus g > 2 degree d non-degenerate smooth
curve, where d > 2g + 2c, and c is a constant such that 0 6 c 6 g. Then for the
generic projection Pd−g 99K Pd−g−c the restriction TPd−g−c |C is stable.

3.2 Stability of transforms

We essentially use the following two lemmas:

Lemma 3.2.1 (Butler) Let C be a curve of genus g > 2, F a vector bundle on C with
no trivial summands, and such that h1(F) 6= 0. Suppose that V ⊂ H0(F) generates
F. If N = MV,F is stable, then µ(N) 6 −2. Furthermore, µ(N) = −2 implies that
either C is hyperelliptic F is the hyperelliptic bundle and N its dual, or F = ω and
N = Mω.

The proof of this lemma is based on the result by Paranjape, Ramanan as-
serting the stability of Mω (see [But94] and [PR88]).
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Lemma 3.2.2 Let L be a degree d > 2g + 2c line bundle on a curve C of genus
g > 2, with c 6 g and let V ⊂ H0(L) be a generating subspace of codimension
c. Supppose there exists a stable subbundle of maximal slope N ↪→ MV,L such that
0 6= N 6= MV,L and µ(N) > µ(MV,L).

Then there exists a line bundle F of degree f 6 d − 1, a generating subspace
W ⊂ H0(F), and an injection F ↪→ L such that N fits into the following commutative
diagram

0 → N → W ⊗OC → F → 0↪→ ↪→ ↪→

0 → MV,L → V ⊗OC → L → 0 ,

i.e. a destabilization of MV,L must be the transform of a line bundle injecting into L
such that the global sections we are transforming by are in V.

The importance of this lemma lies in the fact that we associate a line bundle
F to a destabilizing N, and this allows us more easily to parametrize destabi-
lizations and bound their dimension.
Proof. We remark that µ(MV,L) = −d/(d − g − c) > −2 for d > 2g + 2c.
Consider a stable subbundle N ↪→ MV,L of maximal slope. Then it fits into the
commutative diagram

0 → N → W ⊗OC → F → 0↪→ ↪→ ↓
0 → MV,L → V ⊗OC → L → 0

where W ↪→ V is defined by W∗ := Im(V∗ → H0(N∗)), hence W∗ generates
N∗, and we call F∗ := ker(W∗ ⊗O � N∗).

Then F is a vector bundle with no trivial summands. Moreover the mor-
phism F → L is not zero, as W ⊗O does not map to MV,L. We have to show
that rkF = 1 and that W = H0(F). We distinguish the two cases h1(F) = 0 or
h1(F) 6= 0.
• Let us suppose that h1(F) = 0. Then h0(F) = χ(F) = rkF(µ(F) + 1− g).

On the other hand, h0(F) > rkF as F is globally generated and not trivial.
Together this yields

µ(F) > g . (3.2)

Furthermore

µ(N) = −deg F/(dim W − rkF) 6 −µ(F)/(µ(F)− g) = µ(MF) , (3.3)

as dim W 6 h0(F) = rkF(µ(F) + 1− g).
Consider the image I = Im(F → L) ⊆ L. The commutative diagram

W ↪→ H0(F) → H0(I)↪→ ↪→

V ↪→ H0(L)

shows that the map W → H0(I) is injective and its image W ′ ⊂ H0(I) is con-
tained in V ⊂ H0(L), hence N ↪→ MW ′ ,I ↪→ MV,L. As N is a subbundle
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of MV,L of maximal slope, this yields µ(N) > µ(MW ′ ,I), i.e. −deg F/rkN >
−deg I/rkMW ′ ,I . Then

deg F 6 deg I(rkN/rkMW ′ ,I) 6 deg I 6 degL = d .

If rkF > 2, then µ(F) 6 degL/2 = d/2, so

µ(N) 6
−µ(F)

µ(F)− g
6
−d/2

d/2− g
=
−d

d− 2g
6

−d
d− g− c

= µ(MV,L) .

Here the first inequality is (3.3). For the second one shows that the function
−x/(x − g) is strictly increasing for x > g. Then use µ(F) > g due to (3.2).
Equality holds only if rkF = 2, deg F = d, W = H0(F), and g = c. But in this
case we would find that dim W = h0(F) = d + 2− 2g > d + 1− g− c = dim V,
wich is impossible as by construction W ↪→ V.

Hence rkF = 1. So F = I is a globally generated and acyclic line bundle of
degree f 6 d, and µ(N) = − f /(dim W − 1).

It is easy to see that the case f = d cannot hold, as in that case we cannot
have µ(N) > µ(MV,L). So f 6 d− 1.
• In the case h1(F) 6= 0, by lemma 3.2.1, µ(N) 6 −2. Equality holds only if

F = ωC and W = H0(ω), or if the curve C is hyperelliptic and F is the hyper-
elliptic bundle. In the latter case the only generating space of global sections is
H0(F). In any case we have f = deg F < d− 1. �

Remark 3.2.3 The diagram in the statement of the lemma is a construction
from Butler’s proof of theorem 3.1.4.

Remark 3.2.4 Loking carefully at the numerical invariants in the above proof,
we can deduce some inequalities which will be useful in the following: let us
consider again the diagram in the above lemma

0 → N → W ⊗OC → F → 0↪→ ↪→ ↪→

0 → MV,L → V ⊗OC → L → 0

and suppose that h1(F) = 0. Let us call f := deg F, s := d − f , and b :=
codimH0(F)W. Then we can show that

0 < c− b < s 6
d

g + c
(c− b) . (3.4)

In fact, as W ↪→ V, and W 6= V, then

d− s + 1− g− b = h0(F)− b = dim W < dim V = d + 1− g− c ,

hence c− b < s. And as

− d− s
d− s− g− b

= µ(N) > µ(MV,L) = − d
d− g− c

,

then s(g + c) 6 d(c− b), hence c− b > 0 and s 6 d
g+c (c− b).
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3.2.1 Line bundles of degree d = 2g + 2

A first consequence of these lemmas is the following proposition asserting
semistability for hyperplane tranforms of line bundles of degree 2g + 2.

Proposition 3.2.5 Let L be a line bundle of degree d = 2g + 2 on a curve C of genus
g > 2. Then MV,L is semistable for every generating hyperplane V ⊂ H0(L). It is
strictly semistable if C is hyperelliptic.
Proof. Let us prove the semistability of MV,L.

Consider a stable subbundle N ↪→ MV,L of maximal slope, and suppose
that it destabilizes MV,L in the strict sense, i.e. µ(N) > −2 = µ(MV,L). By
lemma 3.2.2 and remark 3.2.4 (we have b = 0 in this case), we know that N fits
into a diagram

0 → N → H0(F)⊗OC → F → 0↪→ ↪→ ↪→

0 → MV,L → V ⊗OC → L → 0

with F a line bundle of degree deg F 6 d− 2 = 2g. Moreover, h1(F) = 0 since
otherwise µ(N) 6 −2 by lemma 3.2.1. Hence rkN = deg F− g, and

µ(N) = −deg F/(deg F− g) 6 −2g/(2g− g) = −2 ,

(again, use that the function −x/(x− g) is strictly increasing for x > g). So it
is not possible to find a strictly destabilizing N.

If the curve is hyperelliptic, then MV,L is strictly semistable: we can show
that there is a line bundle of degree −2 injecting in MV,L. In fact we can con-
sider the line bundle A dual of the only g1

2 of the curve, i.e the dual of the
hyperelliptic bundle.

The hyperelliptic bundle A∗ has h0(A∗) = 2, and from the exact sequence
0 → MV,L ⊗ A∗ → V ⊗ A∗ → L⊗ A∗ → 0 , we see that there are destabiliza-
tions of MV,L by the line bundle A if and only if

H0(MV,L ⊗ A∗) = ker(ϕ : V ⊗ H0(A∗)→ H0(L⊗ A∗)) 6= 0 .

Counting dimensions we see that the map ϕ cannot be injective:

dim V · dim H0(A∗) = (g + 2)2 > g + 5 = dim H0(L⊗ A∗).

�

In order to prove stability for non hyperelliptic curves though, we need to
take a generic hyperplane, and not just a generating one.

The following is a special case of a more general result proven in section
3.2.3

Theorem 3.2.6 Let L be a line bundle of degree d = 2g + 2 on a curve C of genus
g > 2. Then MV,L is stable for a generic hyperplane V ⊂ H0(L) if and only if C is
non hyperelliptic.
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3.2.2 Line bundles of degree d > 2g + 2c

Here we show that for a generic subspace the transform of a line bundle of de-
gree d > 2g + 2c is stable. In contrast to proposition 3.2.5, we have to consider
generic hyperplanes, and not just generating ones.

Theorem 3.2.7 Let L be a line bundle of degree d on a curve C of genus g > 2, such
that d > 2g + 2c, with 1 6 c 6 g. Then MV,L is stable for a generic subspace
V ⊂ H0(L) of codimension c.
Proof.

Let us proceed as in proposition 3.2.5. We have that −2 < µ(MV,L) < −1.
Consider a stable subbundle N ↪→ MV,L of maximal slope. By lemma 3.2.2

we know it fits into a diagram

0 → N → W ⊗OC → F → 0↪→ ↪→ ↪→

0 → MV,L → V ⊗OC → L → 0 .

We can right away conclude that h1(F) = 0, as by lemma 3.2.1 we would
otherwise have µ(N) 6 −2.

So F is a globally generated line bundle with h1(F) = 0, deg F =: d− s 6
d− 2, and W is a b-codimensional subspace of H0(F). By remark 3.2.4, we see
that for every b with 0 6 b < c there is a finite number of s giving rise to a
possible destabilization of MV,L.

For any of those b and s we will construct a parameter space allowing F, W,
and the subspace V ⊂ H0(L) to vary.

For any such b and s we want to consider the parameter spaceDb,s, parametriz-
ing subspaces V ⊂ H0(L) together with a destabilizing bundle of MV,L of
degree s− d originating from a subspace W as in the construction above:

Db,s := {(F , F ↪→ L , W ⊂ H0(F)) , V ⊂ H0(L)) | F ∈ Picd−s(C) ,

(ϕ : F ↪→ L) ∈ P(H0(F∗ ⊗L)) , W ∈ Gr(b, H0(F))

V ∈ Gr(c, H0(L)) , ϕ|W : W ↪→ V ⊂ H0(L)} .

In order to estimate its dimension, we use the natural morphisms

πb,s : Db,s → Picd−s(C) , (F, F ↪→ L, W, V) 7→ F ,

and ρb,s : Db,s → Gr(c, H0(L)), (F, F ↪→ L, W, V) 7→ V.
The image of πb,s is formed by all the line bundles F ∈ Picd−s(C) such that

h0(F∗ ⊗ L) 6= 0. In particular dim πs(Ds) = min(s, g), because the degree of
F∗ ⊗L is s. The fiber over F ∈ πb,s(Ds) has the same dimension as P(H0(F∗ ⊗
L))×Gr(b, (H0(F)))×Gr(c, (H0(L)/W)).

By Clifford’s theorem, h0(F∗ ⊗ L) = s/2 + 1 if s 6 2g, and h0(F∗ ⊗ L) =
s + 1− g otherwise. So,

dimDb,s 6 min(s, g) + sup(s/2, s− g) + b(d− s− g + 1− b) + c(s + b− c) 6
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(3/2)s + b(d− s− g + 1− b) + c(s + b− c) .

Claim: for g, d, c as in the hypothesis and s, b satisfying the inequalities of
remark 3.2.4, we have

(3/2)s + b(d− s− g + 1− b)+ c(s + b− c) < c(d + 1− g)− c2 = dim Gr(c, H0(L)) .

Proving the claim, we show that for all s and b giving rise to possible desta-
bilizations, the morphisms ρb,s : Db,s → Gr(c, H0(L)) have a locally closed im-
age of dimension strictly smaller than Gr(c, H0(L)), hence the generic sub-
space avoids all possible destabilizations of MV,L.

The claim is equivalent to

3s
2(c− b)

+ s + b < d + 1− g ,

using inequalities (3.4) we get

3s
2(c− b)

+ s + b 6
3/2 + (c− b)

g + c
d + b ,

hence we want to prove

3/2 + (c− b)
g + c

d + b < d + 1− g ,

which is equivalent to
b + g− 1

b + g− 3/2
<

d
g + c

,

and as b > 0 > 2− g then b+g−1
b+g−3/2 6 2 < d

g+c . �

3.2.3 Line bundles of degree d = 2g + 2c

Theorem 3.2.8 Let L be a line bundle of degree d = 2g + 2c on a curve C of genus
g > 2. Then MV,L is semistable for a generic subspace V ⊂ H0(L) of codimension c.
It is stable if and only if C is non hyperelliptic.
Proof. As in the proof of theorem 3.2.7 we want to construct parameter
spaces for destabilizations, and verify by dimension count that the generic sub-
space avoids them.

Let us consider a line bundle L of degree d = 2g + 2c on a curve C of genus
g > 2, and the transform MV,L for a subspace V ⊂ H0(L) of codimension c.

To show semistability, let us suppose that there is a destabilizing stable vec-
tor bundle N ↪→ MV,L, with µ(N) > µ(MV,L) = −2.

By lemma 3.2.2 we know it fits in the diagram

0 → N → W ⊗OC → F → 0↪→ ↪→ ↪→

0 → MV,L → V ⊗OC → L → 0 .
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and we can suppose that h1(F) = 0 by lemma 3.2.1.
In this case we can follow the same computations as in theorem 3.2.7: we

have a parameter space for destabilizations

Db,s := {(F , F ↪→ L , W ⊂ H0(F)) , V ⊂ H0(L)) | F ∈ Picd−s(C) ,

(ϕ : F ↪→ L) ∈ P(H0(F∗ ⊗L)) , W ∈ Gr(b, H0(F))

V ∈ Gr(c, H0(L)) , ϕ|W : W ↪→ V ⊂ H0(L)} ,

whose dimension is bounded by

dimDb,s 6 (3/2)s + b(d− s− g + 1− b) + c(s + b− c) ,

with b and s satisfying 0 < c− b < s 6 d
g+c (c− b).

Except in the case b = 0 and g = 2, we can follow the very same proof
of theorem 3.2.7, and we see that this bound shows that the generic subspace
avoids the destabilization locus.

In the case b = 0 and g = 2 as well, it can be easily shown that dimDb,s <

dim Gr(c, H0(L)), for all s giving rise to destabilizations.
To show that we have strict semistability in the hyperelliptic case, we can

proceed as in proposition 3.2.5, and show that dual of the hyperlliptic bundle
is a subbundle of MV,L, of slope −2.

To show that we have stability in the non hyperelliptic case, we have to
exclude slope −2 subbundles N ↪→ MV,L.

Again we can apply lemma 3.2.2 and consider the diagram

0 → N → W ⊗OC → F → 0↪→ ↪→ ↪→

0 → MV,L → V ⊗OC → L → 0 ,

where we can distinguish the two cases H1(F) = 0, and H1(F) 6= 0.
In the case H1(F) = 0 we can follow again the same computations as in

theorem 3.2.7.
In the case H1(F) 6= 0, lemma 3.2.1 implies F = ω and N = Mω, hence the

parameter space for destabilizations will be

D := {(ω ↪→ L , V ⊂ H0(L)) | H0(ω) ⊂ V} ,

and it can be shown that dimD < dim Gr(c, H0(L)).
�

3.3 Conclusions

We have proven stability of transforms of line bundles with respect to sub-
spaces of low codimension. On the converse, it is rather easy to show the sta-
bility of transforms with respect to subspaces of low dimension: any stable
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vector bundle M∗ of slope µ(M∗) > 2g− 1 is globally generated as it is shown
in lemma 1.2.26; hence we can pick any stable vector bundle M∗ of determi-
nant L and rank r, such that r < d/(2g− 1), where degL = d. Choosing any
generating subspace V∗ ⊂ H0(M∗) of rank r + 1, we get an exact sequence

0→ L∗ → V∗ ⊗O → M∗ → 0 .

Dualizing we get an exact sequence

0→ M→ V ⊗O → L → 0 ,

where M is a stable transform of L. Hence, every stable bundle of rank r <
d/(2g− 1) and determinant L∗, is a stable transform of L. So the rational map
Gr(r + 1, H0(L)) 99K SU (r,L) is dominant.

By the same argument we see that there is only one globally generated vec-
tor bundle, among vector bundles of determinant L and rank d − g with no
trivial summands, where d = degL > 2g. Furthermore this is semistable, and
even stable if d > 2g. In fact having such a globally generated bundle N, we
can pick a vector space V of global sections of dimension rkN + 1 generating
N. This gives rise to the exact sequence

0→ L∗ → V ⊗O → N → 0 ,

and dualizing
0→ N∗ → V∗ ⊗O → L → 0 .

But as N is globally generated and has no trivial summands, then H0(N∗) =
0. And since V∗ and H0(L) have the same dimension, then V∗→̃H0(L). Hence
N∗ = ML is unique.

So when we consider the rational map Gr(r + 1, H0(L)) 99K SU (r,L) , V 7→
(MV,L)∗, we are saying that its image is made by globally generated bundles,
and we can sum all this up in the following table, where we suppose that
d > 2g + 2c, with 1 6 c 6 g:

rk(MV,L) stability map
1 6 r < d/(2g− 1) stable Gr(r + 1, H0(L)) 99K SU (r,L) dominant

d
2g−1 6 r < d− g− c ?? ??
d− g− c 6 r < d− g stable Gr(r + 1, H0(L)) 99K SU (r,L)

r = d− g stable {∗} ↪→ SU (r,L)

where theorem 3.2.7 corresponds to the existence of the rational map

Gr(r + 1, H0(L)) 99K SU (r,L) .



Chapter 4

Symmetric products

4.1 Introduction

In the previous chapter we have seen a few cases of stability of a line bundle
transform with respect to a subspace of global sections. We give here an ex-
ample of stability of the total transform of a stable vector bundle on a higher
dimensional variety.

The examples treated are vector bundles on symmetric products of curves.
As stability, or rather poly-stability, is invariant when passing to a finite cov-
ering, we use the quotient map from the product to the symmetric product of
the curve. We obtain then linearized vector bundles, and we show that having
a linearization allows to pose remarkable restrictions on the possible destabi-
lizations.

The examples treated concern tautological sheaves on the symmetric prod-
uct of curves, and were inspired by the work of Scala [Sca05] and Dănilă [Dăn99],
[Dăn01], [Dăn04], about cohomology of tautological sheaves on the Hilbert’s
schemes of points on surfaces.

4.2 Stability and group actions

Let X be a variety with an action of an algebraic group G. We recall that a
G-linearized sheaf on X admits for all g ∈ G, an isomorphism Φg : g∗E−̃→E,
satisfying the usual cocycle conditions.

And that a morphism ψ : E→ F of G-linearized sheaves is G-equivariant if
the following diagram

g∗E
g∗ψ−→ g∗FyΦg o

yo Φ′g

E
ψ−→ F

commutes for all g ∈ G (cf. definition 1.2.6 and following remark).

51
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Definition 4.2.1 Let H be a divisor on X, we say that H is numerically G-invariant,
if for all g ∈ G, g∗H ∼num H.

We have the following property

Proposition 4.2.2 Let F ↪→ E be the maximal semistable subsheaf with respect to the
polarization H, where E is a G-linearized torsion free sheaf, and H is a numerically G-
invariant divisor. Then F admits a G-linearization such that F ↪→ E is G-equivariant.

Proof. Consider the following diagram

F ↪→ E
o ↓ 	 ↓ o

ϕ(F) ↪→ g∗E
g∗F ↪→

where the isomorphism ϕ : E→̃g∗E is induced by the G-linearizaion. We want
to show that ϕ(F) and g∗F are the same subbundle of g∗E, i.e. the linearization
of E induces a linearization of F.

We will show that they both are semistable subsheaves of maximal slope of
g∗E. First notice that g∗F is a subbundle of g∗E, and its degree is given by

c1(g∗F).Hn−1 = g∗c1(F).g∗Hn−1 = g∗(c1(F).Hn−1) = c1(F).Hn−1 .

By the same computation we see that the slope of a sheaf is invariant by the
action of G, hence also g∗F is semistable, and it is the semistable maximal sheaf
of g∗E.

As ϕ(F)→̃F, then c1(ϕ(F)).Hn−1 = c1(F).Hn−1 as well. So we deduce that
ϕ(F) ⊆ g∗F, by maximality of g∗F. We have an exact sequence

0→ ϕ(F)→ g∗F → T → 0 ,

where T is a torsion sheaf. Suppose that codimXsupp(T) = p, then cp(T) is
a sum of integer p-codimensional subschemes of X, with positive coefficients
and ci(T) = 0 for i < p. Then cp(ϕ(F)).Hn−p = cp(g∗F).Hn−p − cp(T).Hn−p,
and cp(T).Hn−p > 0. But this is impossible as cp(ϕ(F)).Hn−p = cp(g∗F).Hn−p

by the same argument as above.
Then ϕ(F) = g∗F.
Hence, the linearization on E induces a linearization on F, and clearly the

morphism is G-equivariant.
�

We see from this proposition that having a group action poses strict condi-
tions on linearized sheaves for being destabilized, and this is what we use to
investigate the stability of tautological sheaves.
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4.3 Symmetric product of a curve

We define in this section what the tautological sheaves are, and what are their
total transforms.

Let C be a smooth projective curve, X = Cn the cartesian product of C, and
G = Sn the symmetric group acting on X permutating the factors.

As C is a smooth curve, the symmetric product X/G := SnC is a smooth
variety. In fact it coincides with the Hilbert scheme of length-n 0-dimensional
subschemes of C.

We will denote the elements of SnC, wich are n-tuples of points of C order
free, either x1 + · · ·+ xn, or [x1, . . . , xn].

We can consider the universal family associated to the Hilbert scheme: the
universal subscheme Z ⊂ SnC×C consists of all the couples (ξ, x) where ξ is a
0-dimensional subscheme, and x is a point of X lying in ξ. Tere are two natural
projections π1 and π2 of SnC× C to SnC and C, respectively.

On the product SnC× C we have the following exact sequence:

0→ IZ → OSnC×C → OZ → 0 .

As C is a curve, then Z is a divisor in SnC× C, and IZ = OSnC×C(−Z). A
“tautological” bundle on SnC is defined as follows, given a vector bundle E on
C:

E[n] := π1∗(π∗2 E⊗OZ) .

From the exact sequence above we get an exact sequence

0→ π1∗(π∗2 E⊗O(−Z))→ H0(C, E)⊗OS2C → E[n] → R1π1∗(π∗2 E⊗O(−Z)) .

By projection formula

H∗(SnC, E[n]) = H∗(C, E)⊗ Sn−1H∗(C,OC) ,

hence, H0(SnC, E[n]) = H0(C, E), and in the sequence above the map
H0(C, E)⊗OS2C → E[n] is the evaluation map.

When E[n] is globally generated, we call NE the total transform of E[n], i.e.
π1∗(π∗2 E⊗O(−Z)). In the following we want to investigate about the stability
of the tautological sheaf L[n] of a line bundle L on the curve C, and of its total
transform NL. We will consider first the case n = 2 as it will clarify the strategy
used to prove the stability of L[n].

Remark 4.3.1 We recall that, in characteristic 0, if ϕ : X → Y is a finite mor-
phism, and M is a torsion free coherent sheaf on Y, then M is polystable if and
only if ϕ∗M is polystable.

More precisely, if M is (poly)stable, then ϕ∗M is polystable. And, in any
characteristic, if ϕ∗M is (semi)stable, then M is (semi)stable (cf. [HL97], chapter
3).
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4.3.1 Tautological sheaf of a line bundle on S2C

Let us now consider the case where E = L is a degree d line bundle, and n = 2,
with d > 2g. With these hypotheses we have that H1(C, L(−x− y)) = 0 for all
x and y in C, hence R1π1∗(π∗2 L⊗O(−Z)) = 0.

So we have the exact sequence,

0→ NL → H0(C, L)⊗OS2C → L[2] → 0 . (4.1)

We want to prove that both the right and left side of this exact sequence are
stable bundles, with respect to the ample divisor H̃ = p + C, whose pull-back
to C× C is the divisor H = C× p + p× C.

Let us consider first the tautological bundle L[2], it is a rank 2 vector bundle
on S2C. The pull-back of L[2] by the map σ : C× C → S2C fits in the following
sequence:

0→ σ∗L[2] → L � L→ L∆ → 0 , (4.2)

where L � L = p∗1 L ⊕ p∗2 L, with p1 and p2 the 2 projections of C × C, and
L∆ = ∆∗L, with ∆ : C ↪→ C× C the diagonal inclusion.

To see this, we can use the following diagram

Z′
� � //

"" ""F
FFFFFFF

σ×1|Z′

����

C× C× C

σ×1

����

p12xxxxqqqqqqqqqq

p3

�� ��/
//

//
//

//
//

//
//

//
//

//
//

C× C

σ

����

Z � � //

"" ""E
EE

EE
EE

EE S2C× C

π1yyyyrrrrrrrrrr
π2

$$ $$I
IIIIIIIII

S2C C

where Z is the universal subscheme defined above,

Z := {(x + y, z) ∈ S2C× C | z ∈ {x, y}} ⊂ S2C× C ,

and Z′ is its pull-back to C× C× C, i.e.

Z′ := {(x, y, z) ∈ C× C× C | z ∈ {x, y}} = ∆13 ∪ ∆23 ⊂ C× C× C .

We can tensorize by p∗3 L the exact sequence on C× C× C

0→ OZ′ → O∆13 ⊕O∆23 → O∆123 → 0 ,

where ∆13 , ∆23 , and ∆123 are the diagonals defined respectively by x = z,
y = z, and x = y = z, on C× C× C. And the second map is given by s⊕ t 7→
s|∆123

− t|∆123
. Then using the projection formula, we obtain the exact sequence

(4.2).
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As it is a pull-back from S2C, σ∗L[2] is a S2-equivariant vector bundle. And
L � L is S2-equivariant as well, by identification of the 2 factors. Furthermore
the map σ∗L[2] → L � L is clearly S2-equivariant, we will use this map to show
the stability of L[2]. In fact to show its stability, we need only to suppose that
deg L > 1.

Proposition 4.3.2 Let L be a line bundle on C of degree d > 1, then σ∗L[2] is an
H-semistable bundle, and L[2] is H̃-semistable.
Proof. Let us suppose that they are not semistable bundles. There would be a
destabilizing line bundle A ↪→ σ∗L[2], by proposition 4.2.2 this is an equivariant
map.

Hence we have an equivariant map A ↪→ p∗1 L⊕ p∗2 L. As A is destabilizing,

c1(A).H = µH(A) > µH(σ∗L[2]) =
1
2
(2d− 2) = d− 1 > 0 .

The chosen polarization H is in the numerical equivalence class [C × p +
p × C], hence H = f1 + f2, where f1 = [C × p] and f2 = [p × C]. Hence we
have either c1(A). f1 > 0 or c1(A). f2 > 0.

Let us suppose that c1(A). f1 > 0. Then deg(A|C×p) > 0, for all p ∈ C.
Hence, restricting to C × p the map ψ : A ↪→ p∗1 L ⊕ p∗2 L, we have that the
second component of A|C×p ↪→ L ⊕ O vanishes as A|C×p is a line bundle of
positive degree. This being true for all p ∈ C, then the second component of
the map ψ vanishes on all C× C.

Now we just need to show that if one component of a S2-equivariant map
to p∗1 L⊕ p∗2 L vanishes, the the whole map vanishes.

In fact, consider any invariant map ψ = (ψ1, ψ2) : A → p∗1 L⊕ p∗2 L, then if
we call ψ(x, y) : A(x, y)→ L(x)⊕ L(y), then

g∗ψ(x, y) = ψ(y, x) = (ψ1 ⊕ ψ2)(y, x) : g∗A(x, y) = A(y, x)→ L(y)⊕ L(x) .

Then, using remark 1.2.7, and observing the diagram of the maps ψ and the
linearizations on the fibers over (x, y) ∈ C× C

ψ
(x,y)
1−→ L(x)

A(x, y) ↪→ ⊕
ψ

(x,y)
2−→ L(y)

o

←
− Φg ↑ o

ψ
(y,x)
1−→ L(y)

A(y, x) ↪→ ⊕
ψ

(y,x)
2−→ L(x)

(the right vertical arrow is the obvious isomorphism) we see that the morphism
ψ : A→ p∗1 L⊕ p∗2 L of S2-linearized bundles is equivariant if and only if

ψ1(x, y) ◦Φg(x, y) = ψ2(y, x) : A(y, x)→ L(x) ,
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and ψ2(x, y) ◦Φg(x, y) = ψ1(y, x) : A(y, x)→ L(y) .

So we see that ψ1 = 0 implies that also ψ2 = 0, hence we cannot have an
S2-equivariant injection A ↪→ L � L, with c1(A).H > 0

Oviously, if we had a destabilization of L[2], we would have a destabiliza-
tion of σ∗L[2] as well, so the proposition is proved.

�

Corollary 4.3.3 Let L be a line bundle on C of degree d > 2, then σ∗L[2] is an H-
stable bundle, and L[2] is H̃-stable.
Proof. By the proposition above we know that the bundles σ∗L[2] and L[2]

are semistable. Again we need only to show he stability of σ∗L[2]. By the same
argument, a destabilization A ↪→ σ∗L[2] is given by an injection of a line bundle
A (not necessarily S2-linearized this time), such that

µH(A) = c1(A).H = µH(σ∗L[2]) =
c1(σ∗L[2]).H

2
= d− 1 > 0 .

Hence, we would have c1(A). f1 > 0 or c1(A). f2 > 0, and therefore A ↪→
p∗i L with i = 1 or 2. But the exact sequence (4.2) implies that A ↪→ p∗i L(−∆) in
this case, hence we would have

c1(A).H 6 c1(p∗i L(−∆)) = d− 2 < d− 1 = µH(σ∗L[2]) .

�

Remark 4.3.4 We could use this technique to prove directly proposition 4.3.2,
but the method we have shown in the proof will be generalized to higher prod-
ucts.

In fact also NL is an H̃-stable bundle, we will prove this in the case of SnC
in paragraph 4.3.3.

4.3.2 Tautological sheaf of a line bundle on SnC

We apply in this section the same methods as above to show stability results
on SnC.

We will consider the ample divisor H = Σn
i=1 p−1

i (p) in Cn, which is the
pull-back of the divisor H̃ = p + Sn−1C in SnC. In the literature the polariza-
tion H̃ is often called x. And we call as usual ∆ the big diagonal in SnC, i.e. the
divisor {x1 + · · ·+ xn ∈ SnC | ∃i 6= j with xi = xj}, which is divisible by 2, as
it is the branch locus of the quotient map σ : Cn → SnC.

In characteristic 0, if we show that the vector bundle L[n] is stable with re-
spect to the polarization H̃, then the vector bundle σ∗L[n] is polystable with
respect to H.
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Lemma 4.3.5 c1(L[n]) ≡ (deg L)x− ∆
2

Proof.
From Göttsche’s appendix in [BS91], we know that

c1(L[n]) = L�n − ∆
2

,

where L�n is the unique line bundle on SnC such that its pull-back via σ : Cn →
SnC is equal to p∗1 L ⊗ . . . p∗nL. And we can verify that L�n ∼alg (deg L)x, so
L�n ≡num (deg L)x.

�

Proposition 4.3.6 Let L be a line bundle of degree d > n on C, then L[n] is an H̃-
stable vector bundle on SnC.
Proof. Let us suppose that there exists a destabilization of L[n], i.e. an injec-
tion of sheaves F̃ ↪→ L[n], such that µH̃(F) > µH̃(L[n]), with F̃ torsion free of
rank r < n. And let us assume that F̃ is locally free. We call F := σ∗ F̃.

Pulling the injection F̃ ↪→ L[n] back to Cn by the quotient map σ : Cn → SnC
we have a Sn-invariant injection F ↪→ σ∗L[n]. We can compose this injection
with the natural Sn-equivariant morphism σ∗L[n] ↪→ ⊕n

i=1 p∗i L, where pi are
the projections Cn → C.

Hence we have a Sn-equivariant injective morphism

F ↪→
n⊕

i=1

p∗i L .

As A =
∧r F = det F and

∧r ⊕n
i=1 p∗i L carry a linearization induced by that of

F and
⊕n

i=1 p∗i L we have a Sn-equivariant morphism

ψ : A→
r∧ n⊕

i=1

p∗i L .

We proceed now as in proposition 4.3.2 to show that this morphism must
be zero, hence the maps F → σ∗L[n] and F̃ → L[n] cannot be injective.

Decomposing
∧r ⊕n

i=1 p∗i L as
⊕
|J|=r LJ , where LJ = p∗j1 L⊗ · · · ⊗ p∗jr L, we

decompose also the map ψ =
⊕

ψJ : A→ ⊕
LJ .

Let us call fi := p−1
i (p) the hypersurface in Cn. Then H = Σn

i=1 fi, Hn−1 =
Σn

i=1(n − 1)! f1 . . . f̂ j . . . fn, and Hn = n!, furthermore the class f1 . . . f̂ j . . . fn
is represented by the curve x1 × · · · × xj−1 × C × xj+1 × · · · × xn, for any
(x1, . . . , x̂j, . . . , xn) ∈ Cn−1.

By construction we have that

c1(F).Hn−1 = c1(det F).Hn−1 >
r
n

c1(σ∗L[n]).Hn−1 =
r
n

(n!)(d− n + 1) > 0 .
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We can suppose that c1(F).( f2. f3 . . . fn) > 0. Hence deg(A|C×x2×···×xn) > 0,
for all (x2 . . . , xn) ∈ Cn−1.

For all J such that 1 /∈ J, LJ|C×x2×···×xn = O. Hence, for all such J, ψJ : A→
LJ is the zero map, as we can see by restriction to the curve C× x2 × · · · × xn.

Again we can use remark 1.2.7 and proceed as in the proposition 4.3.2: ob-
serve that by the following diagram

ψ(x1, . . . , xn) = ⊕ψJ
A(x1, . . . , xn) ↪→ ⊕

LJ

o

←
− Φg

←
− o

A(xg1 , . . . , xgn) ↪→ ⊕
g∗LJ

ψ(xg1 , . . . , xgn)

the map ψ is Sn-equivariant if and only if

ψJ(x1, . . . , xn) ◦Φg = ψgJ(xg1 , . . . , xgn) : A(xg1 , . . . , xgn)→ LJ(x1, . . . , xn)

for all (x1, . . . , xn) ∈ Cn and g ∈ Sn.
Hence if the map ψJ vanishes for a J, then the whole map ψ vanishes, and

the morphism F → ⊕n
i=1 p∗i L cannot be injective.

The assumption that F is locally free is not limiting, as for any F torsion
free of rank r, we have a line bundle A, such that c1(A) = c1(F), with A =∧r F on the locus where F is locally free, and such that F → ⊕n

i=1 p∗i L induces
A→ ∧r ⊕n

i=1 p∗i L. This last map being zero, the map F → ⊕n
i=1 p∗i L cannot be

injective.
�

Corollary 4.3.7 In characteristic 0, σ∗L[n] is poly-stable. In any characteristic, it is
semistable.
Proof.

The first assertion follows from remark 4.3.1. To prove the second assertion,
we use the fact that a maximal semistable subsheaf is Sn-linearized, and then
follow the proof of proposition 4.3.6.

�

4.3.3 Transform of the tautological sheaf of a line bundle

In this paragraph we want to use the proof of Ein and Lazarsfeld of the stability
of ML for line bundles (cf. [EL92]), to show that when deg L > 2g + n the total
transform

NL = ML[n] = ker(H0(C, L)⊗OSnC � L[n])

is stable.
In [EL92] the stability of the Picard bundle is shown proving the stability

of a total transform, we recall their argument, as it is useful for a better under-
standing of the stability of NL.
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Consider a pointed smooth curve (C, x0) of genus g > 1, for all d there is
a Picard scheme Picd(C), which is a fine moduli scheme for line bundles of
degree d on C. And a universal sheaf U on C × Picd(C) such that U|C×ξ = Lξ

for all points ξ ∈ Picd(C), representing a line bundle Lξ , and U|x0×Picd(C) =
OPicd(C).

The Picard sheaf Pd is the push forward of U to Picd(C). When d > 2g− 1,
Pd is a vector bundle, whose fiber upon a point ξ ∈ Picd(C) is H0(C, Lξ).

The Picard schemes are all isomorphic, an isomorphism Picd(C)−̃→Picd+1(C)
is given by the map L 7→ L⊗OC(x0). In degree 0 the Picard scheme is the Jaco-
bian of the curve H1(C,OC)/H1(C, Z), and is smooth projective of dimension
g.

The Picard schemes Picd(C) have a canonical polarization. It is given by
the theta divisor Θ ⊂ Picd(C), which is the ample divisor represented by the
image of the map

Cg−1 → Picg−1(C), (x1, . . . , xg−1) 7→ OC(x1 + · · ·+ xg−1)

in Picg−1(C). By the isomorphisms above it corresponds to ample divisors on
all Picard schemes.

Given a line bundle A ∈ Picd(C), we can consider the applications

vr
A : Cr → Picd−r(C) , (x1, . . . , xr) 7→ A⊗OC(−x1 − · · · − xr) .

Then by Poincaré’s formula, when r < g the class of the image is

Wr := [Θ]g−r/(g− r)!

in particular, the class of the image v1
A(C) is [Θ]g−1/(g− 1)!.

Hence to prove stability of Pd with respect to Θ, i.e. to show that for all
subsheaves F ↪→ Pd we have

c1(F).[Θ]g−1

rk(F)
<

c1(Pd).[Θ]g−1

rk(Pd)
,

it is sufficient to show that (v1
A)∗Pd is stable for an A ∈ Picd+1(C), and then ap-

ply theorem 1.2.25. And this is done, when d > 2g, by showing that (v1
A)∗Pd =

MA ⊗OC(x0), and that the transform MA is stable.

Remark 4.3.8 To show that the stability of Pd is implied by the stability of a
curve whose class is a multiple of [Θ]g−1, it is not used in [EL92] a restric-
tion result like theorem 1.2.25 but rather the generality of the line bundle A ∈
Picd+1(C).

Remark 4.3.9 Actually Ein and Lazarsfeld show something stronger than sta-
bility of ML, they prove that ML is cohomologically stable, but we will not use
such concept.
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We can use the same argument to show the stability of the total transform
NL of a tautological bundle L[n] on SnC.

Theorem 4.3.10 Let C be a smooth curve of genus g > 2, and let L be a line bundle
on C of degree d > 2g + n. Then NL is a stable bundle on SnC with respect to the
polarization H̃.

To prove this we show that for all (x1, . . . , xn−1) ∈ Cn−1 the restriction
NL|x1+···+xn−1+C is stable, and then use theorem 1.2.25
Proof.

We want to show that for all (x1, . . . , xn−1) ∈ Cn−1 the restriction NL|x1+···+xn−1+C
is stable.

To prove it we could just use the restriction to x1 + · · · + xn−1 + C of the
exact sequence

0→ π1∗(π∗2 L⊗O(−Z))→ H0(C, L)⊗OS2C → L[n] → 0 ,

but it seems more clarifying if we look at our total transform as the pull back
of the Picard bundle via by the map

vn
L : SnC → Picd−n(C) , (x1, . . . , xn) 7→ L⊗OC(−x1 − · · · − xn) .

Claim: (vn
L)∗(Pd−n) = ÑL ⊗OSnC(x0 + Sn−1C).

From the claim we deduce that NL|x1+···+xn−1+C is ML(−x1−···−xn−1) tensorized
by a line bundle, hence it is stable by Ein and Lazarsfeld results, or by Butler’s
theorem (3.1.4).

To prove the claim, we can observe that (vn
L)∗(Pd−n) = π1∗((vn

L × 1C)∗U )
by the theorem on cohomology and base change. Then use see-saw principle
to show that

(vn
L × 1C)∗U = π∗2 L⊗OSnC×C(−Z)⊗ π∗1OSnC(x0 + Sn−1C) ,

where π1 and π2 are the two naturale projections of SnC × C, p1 is the pro-
jection of Picd−n(C) × C to the first factor. And U is the universal sheaf on
Picd−n(C)× C.

�



Bibliography

[Bea03] Arnaud Beauville, Some stable vector bundles with reducible theta divisor,
Manuscripta Math. 110 (2003), no. 3, 343–349.

[Bog93] Fedor A. Bogomolov, Stability of vector bundles on surfaces and curves,
Einstein metrics and Yang-Mills connections (Sanda, 1990), Lecture
Notes in Pure and Appl. Math., vol. 145, Dekker, New York, 1993,
pp. 35–49.

[BS58] Armand Borel and Jean-Pierre Serre, Le théorème de Riemann-Roch,
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