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Introduction

Arithmétique Bornée

On parle d’ Arithmétiques Bornées pour évoquer les théories arithmétiques ou le
schéma d’induction est restreint aux formules dont les quantifications sont bornées:
des formules comme dz < tVy < s6 pour 0 ouverte. Elles ont été introduites dans les
années 70 par Parikh [17] pour étudier des questions liées a des longueurs des preuves.
En particulier le systeme I A, induction pour toute formule a quantificateurs bornés
dans le langage {0, 1, +, x, <}.

Ces théories ne démontrent pas que la fonction exponentielle est totale. En effet,
le théoreme de Parikh [17] dit que toute fonction prouvablement totale dans un tel
systeme est bornée par un terme du langage, un polynome dans le cas de 14y. En
conséquence la formalisation de certaines notions telles que les fonctions récursives
ou la manipulation de la syntaxe, devient une tache nettement plus compliquée.
IAg peut néanmoins définir les fonctions de la hiérarchie linéaire de Wrathall (voir
[30],[23] ) ce qui a donné lieu a des travaux pioniers faisant le lien entre complexité
d’algorithmes et modeles de 'arithmétique (voir [18]). En revanche, cette théorie
est incapable de parler de fonctions calculables en temps polynomial, non plus de
substitution dans une formule, ni de preuves de taille polynomiale.

Pour ces raisons Paris et Wilkie [29] ont étudié dans les années 80 'extension de
cette théorie & TAg+ €y, ol ) est un axiome disant que la fonction /7! existe, et |z|
est la longueur de ’expansion binaire de . Ce n’est pas l’exponentielle mais cette
théorie est en fait suffisament forte pour définir les fonctions correspondant a PH,
la hiérarchie polynomiale (X});c,, de Stockmeyer [24], & laquelle les informaticiens
s'intéressaient de plus en plus.

Plus tard Buss [4] introduit un langage avec, notamment, des symboles pour |z|
et la fonction z/*l. Il définit une théorie Sy qui est une extension conservative de
I Ay+$2 et des fragments qui vont “capturer” chaque niveau de PH. Pour cela Buss
introduit une hiérachie de formules (X?);c., analogue a la hiérarchie arithmétique,
ou a chaque niveau correspond un dans la hiérarchie polynomiale. Par exemple



les formules Y% définissent des prédicats NP. Ensuite il considere des théories
S avec un schéma d’induction jusqu’a |x| pour les formules X% et caractérise les
fonctions Y:2-définissables de Si comme étant celles du niveau correspondant dans
la hiérarchie polynomiale, c¢’est a dire les fonctions calculables en temps polynomial
par une machine de Turing qui utilise un oracle pour un prédicat 3% ;. On a en
particulier 55 C S3™ et Sy = ;. Si-

Montrer que la quantité d’induction disponible dans chaque théorie suffit a définir
la classe de fonctions correspondante est une vérification techniquement compliquée
mais plus ou moins de routine. C’est le probleme inverse qui est plus intéressant, a
savoir, montrer que la théorie en question capture exactement la classe C de fonctions
voulue.

Il s’agit de prouver des théoremes qu’on appelle witnessing theorems: si T" démontre
VaxJyo(x,y) alors il existe une fonction f appartenant a C telle que Vxo(x, f(z)),
c’est a dire f(z) “témoigne” pour le quantificateur existentiel. Un théoréme classique
de ce genre est celui de Mints-Parsons’s (voir [15],[19],[26]) qui caractérise les fonc-
tions primitives récursives comme étant celles prouvablement totales et récursives
dans IY;. Les techniques utilisées pour le prouver proviennent de la Théorie de la
Démonstration.

De méme, Buss développa pour ses résultats une technique connue sous le nom
de witness function method. En analysant la dérivation d’une formule A dans le
systeme donné on constate qu’il est possible de mener au fur et a mesure le calcul
d’une suite de valeurs servant a vérifier la véracité de A, et ce par une fonction de
C. Il est a noter que cette méthode, bien qu’elle possede un caractere constructif, ne
permet pour autant de profiter pour en tirer des algorithmes intéressants car elle se
sert, afin de normaliser les preuves, d’un théoreme d’élimination des coupures dont
le bornes connues a ce jour demandent un temps excessif.

En vue de cette correspondance entre la hiérarchie polynomiale et les théories S4 il
n’est pas surprenant que I’étude de nombreuses questions concernant la premiere soit
étroitement liée aux secondes. Krajicek, Pudldk et Takeuti [14] ont démontré que
si S est finiment axiomatizable alors la hiérarchie polynomiale collapse. Plus tard
ceci a été amélioré indépendamment par Buss [5] et Zambella [31] : Sy est finiment
axiomatisable si et seulement si elle est capable de prouver le collapse de PH. 11
est relativement simple de voir que chaque S est finiment axiomatizable (voir [10]),
donc la méme question pour Sy est équivalente a savoir si les théories S3 forment une
hiérarchie stricte, d’ou 'importance d’obtenir des résultats de conservation, méme
partiels, entre ces théories.

Ces dernieres années, sous I'impulsion notamment de Pollett [20], d’autres sous-
systemes plus généraux 77 ont commencé a étre étudiés. Ceux-ci comprennent



essentiellement un schéma d’induction de longueur t(x), pour ¢ appartenant a un
ensemble de termes 7 et des formules 2¢ (une sous-classe de %?). Quand 7 ne con-
tient que des termes a croissance lente, tels que la fonction |z| itérée plusieurs fois,
ces systemes capturent des classes de complexité plus petites mais ou 1’on retrouve
souvent la méme problématique que pour PH, savoir si les inclusions sont strictes.
D’ou l'intéret d’obtenir des witnessing theorems et des résultats de conservation
pour ces théories. Une autre motivation pour 1’étude de ces systemes est de mon-
trer d’éventuels résultats d’indépendance des principales questions concernant PH.
Résultats par exemple du type “on ne peut pas prouver le collapse de PH dans
le systeme S”, ou § serait quand méme capable de formaliser certains arguments
connus de complexité servant a séparer d’autres classes. Quelques résultats ont été
obtenus dans cette direction par Pollett [21].

La plus uniforme des méthodes utilisées pour obtenir ces résultats continue de se
fonder sur la technique de Buss. Néanmoins Wilkie [28] donna une preuve du
théoréme de Buss par construction d’'un modeéle non standard (voir une version
simplifiée de Pudlak dans [10]). Zambella, qui considere des systemes du second or-
dre, en donna une autre dans [31]. Ressayre [22] utilisa une construction de modele
pour démontrer un résultat de conservation. Dans [13] on trouve d’autres construc-
tions de modeles ainsi que dans les travaux de Boughattas (voir [3] par exemple) et
Sureson [25].

Probléemes abordés dans la these et résultats

Le probléme de conservation entre S3 et R2 (voir [7],[2]) a été la motivation pour
le travail du chapitre 2 . R3 est la théorie avec induction de longueur ||z|| pour
des formules X3, notée aussi X5-LLIND. En effet, bien que ceci était méconnu
par I'auteur au moment d’entreprendre les recherches, il avait été démontré par
Buss,Krajicek, Takeuti [7] que S} =vsy RZ, lindice 3 indiquant la présence dans le
langage de #3 (cela revient a se placer dans le contexte des fonctions calculables en
temps superpolynomial 2‘"‘W). La question se posait si ce résultat était valable pour
le langage L.

On peut déja se poser la question de savoir s’il y a conservation entre Si et R2 pour
les formules X%, Grace au théoreme de Buss on connait la classe de fonctions X5-
définissable dans S3, les fonctions calculables en temps polynomial. Afin de pouvoir
démontrer S3 =vx R? il suffit de construire un sous-modele Y3-élémentaire de R3 &
I'intérieur d’un ensemble, que nous appelons ressource, de la forme R(a) = {M(a) :
M est une machine de Turing de code < r et M(a) est calculé en moins de |a|"
étapes } pour a,7 € M\N, M étant un modele de S;.
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La difficulté de réaliser une telle construction réside dans le fait qu’on veut satisfaire
I'induction pour des formules ¥ sans avoir recours & des oracles, comme c’est le cas
dans la preuve de Wilkie du théoreme de Buss. En effet, dans celle la on prouve,
dans le cas i = 2, que Ty =vxy S en construisant un modele de X%-LIN D dans une
ressource R(a) comme ci-dessus, sauf que les fonctions ont acces a un oracle pour
décider sur les prédicats 5. Certes, ici on demande seulement d’aller jusqu’a ||z]|,
mais le probleme de traiter deux alternances de quantificateurs reste.

Les constructions réalisées dans ce chapitre, fondées sur une idée de Ressayre, don-
nent une solution a ce probleme dans le cas ou le langage est enrichi avec #3. On
démontre donc qu’il est possible de construire un modele de f]g—LL] ND(#3), qu'on
note 122, & Vintérieur d’une ressource R(a) = {M(a) : M est une machine de Turing
de code < r et M(a) est calculé en moins de 2/l%lI" étapes } caractérisant de cette
facon les fonctions -définissables de ]%% et obtenant ainsi une preuve par théorie
des modeles d'un résultat de conservation entre Si et R2 pour des formules X2, Ce
travail a fait I'objet d’une publication [8] et une version plus simple contenant des
résultats antérieurs se trouve dans [9].

Deux questions se posent ensuite. Premierement, est-il possible de réaliser une
construction similaire si on se restreint au langage L,? Deuxiemement, y a-t-il une
construction permettant d’étendre ce résultat & R = ¢ S5 7

2

L’ intérét de la premiere question est évident, une réponse positive donnerait une
solution au probléeme de conservation entre Si et R2, au niveau des formules 0.
Nous avons cherché dans cette direction. La ressource R(a) en temps polynomial
parait petite pour abriter un modele de R3. On peut alors essayer de contruire un
modele d’une théorie entre R3 et Si. Nous pouvons traiter I'induction ¥4 jusqu’a
|||||| mais & priori cette théorie ne contient pas Si et la ressource s’épuise avant de
pouvoir inclure des axiomes pour cette partie la. Ceci conduit a se demander dans
quelle type de ressource on peut mener a bien la construction d’un modele de R sans
avoir recours a des oracles. En trouvant des exemples naturels de telles ressources
on peut par comparaison avec (FNC)MF | la classe des fonctions ¥:%-définissable de
RZ, conjecturer sur la validité de la conservation entre les deux théories. Cette
technique ouvre donc des perspectives intéressantes pour continuer les recherches et
rejoint I'esprit du travail mené depuis plusieurs années par Boughattas et Ressayre
ou l'on cherche des ressources appropiées pouvant servir de terrain pour construire
des modeles de I'arithmétique.

Toutefois il faut noter aussi qu’il est naturellement possible qu’une telle construction
ne soit pas réalisable et que le résultat de conservation cherché s’avere faux. En
effet, Bloch [2] démontre que celui-ci impliquerait I'égalité entre les classes NC*
et NC, collapse qu’il considere peu probable. Mais ’approfondissement des idées
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allant dans la direction positive parait un moyen important d’éclaircir le probleme
de toute maniere.

La deuxieme question est intéressante dans le sens ou elle conduit a chercher des sous-
modeles Y¢-élémentaires et pour ce faire on est amené a considérer des ressources
R(a) ou les functions ont acces & des oracles NP, des fonctions Y4-définissables.
Mais pour avoir une bonne caractérisation de ces fonctions dans les théories TAQ”
on admet des multifonctions. Une multifunction f est une relation binaire totale,
c.a.d. telle que Vz3y f(x,y). On sait que TQZT peut ifﬂ—déﬁnir les multifonctions de
la classe FP™ (wit,|]) (voir [20]) . Celle-ci correpond en particulier & un modele
de calcul par machine de Turing avec une borne polynomiale pour le temps et la
possibilité de consulter un oracle ¥¥ au plus |7| fois. Le wit indique que cet oracle
est en mesure de fournir des témoins pour le quantificateur existentiel de la question
posée dans le cas ou la réponse est affirmative. Une possibilité est alors d’élargir
ainsi nos ressources, les propriétés d’ élémentarité requises étant satisfaites. Mais
la facon de traiter les multifonctions n’est pas claire. Ces classes manquent de
certaines propriétés et par conséquent les techniques employées pour les fonctions
ne s’appliquent pas. On aborde cette question dans la premiere partie du chapitre
3, ou 'on expose une facon de dépouiller les multifonctions en ne gardant que les
“bonnes” images afin d’obtenir des propriétés de cloture adéquates. On obtient
comme corollaire une preuve modele-théorique du witnessing theorem pour f]f -

3,217

définissabilité dans T2 prouvé par Pollett [20]. En conjonction avec une idée de
Visser utilisée par Zambella [31] pour donner une preuve par modeles du théoreme
de Buss, on emploie dans la deuxieme partie notre contruction pour étendre un

N £ 271 S, , . . . .
modele de 7y en un de T} "I, 11 découle de ceci les théoremes de witnessing et
conservation correspondant pour ces théories (voir [20]) et en particulier S5 = ¢, R3

. N LN . 7 . 2
donc une réponse affirmative a la deuxieme question posée ci-dessus.

La technique utilisée dans le chapitre 2 exploite les possibilités des modeles non
standard en considérant des machines de Turing indexées par des entiers inférieurs
a r pour un “petit” r > N et calculant en un temps polynomial a exposant aussi
non standard. Dans le chapitre 3 les multifonctions sont entierement standard, mis
a part le fait qu’elles peuvent utiliser d’autres parametres. S’ouvre donc ici une voie
de recherche, a savoir, combiner les deux méthodes en utilisant le débordement pour
une classe de multifonctions. Celle-1a pourrait servir, par exemple, pour tenter de

construire un modele de R3 dans une ressource obtenue par débordement & partir
de F P> (wit,logn)(a), ot a € M = SI.

Dans le chapitre 4 on considere des schémas dits “de remplacement”. Dans [20]

l’auteur prouve des witnessing theorems pour i)f ' 1-REPLI™ caractérisant ainsi la
classe des fonctions X? ,1-définissables par cette théorie, et obtient en comparant

5



avec les résultats analogues pour Té’m des théoremes de conservation entre les
deux théories. Nous proposons ici une approche purement modele-théorique de ce
probleme au moyen d’une technique completement différente de celles des premiers
chapitres. Elle a été employée par Ressayre [22] pour démontrer la 3 .1 conser-
vation de X! -REPL sur S et garde quelques points de contact avec la preuve
du résultat analogue de VX, -conservation entre BY, ;. et %, (voir [10] p.230).
Cette méthode est assez propre dans le sens ou elle utilise presque directement
les axiomes, en plus de quelques outils classiques de Théorie des Modeles comme
la saturation récursive. Aucune considération concernant, par exemple, la classe
des fonctions définissable par la théorie, n’est nécessaire. Afin d’appliquer cette
méthode dans le cas plus général des théories TA2” un travail préliminaire plus at-
tentif est nécessaire. En particulier on a besoin d’un argument de débordement
appliqué au schéma d’induction, mais nous restons dans un cadre purement modele
théorique. Nous obtenons ainsi des preuves directes des résultats de conservation
pour X!, -conséquences entre 7317 et b, -REPLI!.



Chapter 1

Bounded Arithmetic

We introduce basic notions of Bounded Arithmetic and do some preliminary work,
proceeding rather swiftly as this is well done in many texts. Good introductory refer-
ences for these topics are [4], [10], [13]. Here we follow the more general approach

of [20].

1.1 Basic notions

Buss introduced in [4] a language which extends that of Peano’s Arithmetic by
adding | 3], |z, # where |$] means the integer part of &, |z| is the length of the
binary expansion of ¥ and z#y (read x smash y) means 2" Following [27] and
[20] we add two other primitives to allow smooth bootstrapping and to be able to
consider theories with very little induction.

Definition 1.1.1 (Language of Bounded Arithmetic)
x
LBA = {07 + T S7 L§J7 |ZE|7 #a MSP}

Here x — y means x —y if y < x and 0 otherwise. MSP 1is for “the most significant

T

part”: MSP(x,i) corresponds to number x without the last i digits, i.e. |5]. As
usual we use 1 for S(0), 2 for S(S(0)), ete.

In chapter 2 we will consider a language containing a symbol #3 allowing a bit more
exponentiation than #.

Definition 1.1.2 BASIC is the open theory consisting in the following axioms:
1.z <y—x<8S(y)



10.
11,
12.
13,
1.
15,
16.
17,
18.
19.
20.
21.
22,
23,
2.
25,
26.
27,

© NS ;v S

0<zx

(z<yAz#y)— S)<y
r#0—2x#0
r<yvVy<zx
(z<yny<z)—z=y
(x<yANy<z)—zx<z

0] =0

z#0— (|22] = S(|lz]) A [S(22)] = S(|z))

1] =1

v <y—lz[ <|y|
lz#y| = S(|z|.ly])
O0#x =1

r#0— (1#20 = 2(1#x) N 1#S(2x) = 2(1#x))

THY = Y#HT

|z = [y| — z#tz = y#tz
|z = [yl + |z — a#t = (y#1).(2#1)
z<x+y

r+0==x
z+y+1)=(x+y) +1
(z+y)+z=z+(y+2)
r+y<zr4+zeoy<z
z.0=0

r.Sy) =ry+x

Y =YX

r(y+z)=zy+xz



28. 1<z — (zy<zzeoy<2)
29. v #0— x| = 5(|[3]])

30. x =4~ (2r=yVS2z)=1y)
31. MSP(a,0) =a

32. MSP(a,S(i)) = | M50 |

3. x~y=z< (yY+z=zV(z=0Az<y)).

As we have passed to a richer language we can already do some bootstrapping
without need of induction. In particular it is possible to define some kind of coding
functions as Lpga-terms.

Definition 1.1.3 For n,k € N new Lga-terms are defined by:

bl = 14y
e [ gy
oklyl™ .—  9lyl" 9(k=1).|y"
cond(z,y,z) = (1=-z)y+ (1= (1=2x)).z
K<(z,y) = 1= (z=y)
max(z,y) = cond(K<(x,y),x,y)
min(z,y) = cond(K<(z,y),y,x)
gminllvle) —.—  MSPQW |y| ~ )
LSP(zx,i) := x =~ MSP(x,i).2mm=l)
Bl lyl,w) = MSP(LSP(w,Sz.lyl),z.|y|)

~

Bit(xz,1) = p(i,1,x)

B(I’ |y|7 2 w) = CO?’Ld(KS(B(SB, |y|>w)> Z)a B($’ |y|’ w)’ Z)



Definition 1.1.4 (Bounded formulas)

o Quantifiers of the form Qx < t, wheret is a term, are called bounded quanti-
fiers. Those of the form Qx < |t| are called sharply bounded quantifiers.

o Formulas with only sharply bounded quantifiers are called sharply bounded for-
mulas. This class is noted Ab, 35 or T15.

e fori >0, Zﬁ»’ﬂ Hé’ﬂ are the smallest classes of formulas satisfying

SPUTlb b, NI,
Negations of 11, are £Y,,, and negations of ¥t | are 12,
Both 32, and 11%,, are closed by A, V, and sharply bounded quantifiers.

Z?—i—l 1s closed under bounded existential quantification.

AR

I1%, , is closed under bounded universal quantification.
o IfT is any theory and i > 1, we say that v is AY(T) if
TE @) AW < 1)

for some 1y € ¥ and 1, € T1Y.

Another hierarchy of formulas arises if we construct them by alternating existential
and universal bounded quantifiers. They are said to be in strict or prenex form.

° ‘28 are formulas of the form 3z < |t|1) with ¥ open.
° f[g are formulas of the form Yz < |t|) with ¢ open.
. f]i?ﬂ are formulas of the form Jx <ty with ¢ € f[f
° ﬂfﬂ are formulas of the form Vx <t with ¢ € i]f
e IfT is any theory and i > 1, A?(T) is defined analogously as Ab(T).

For any set of formulas ¥ we say that o € B(V) if o is a boolean combination of
formulas of .

Clearly every 20-formula is X2 but the converse need not to be true. In the standard
structure X and 2P-formulas define the same sets. For i < 1 they are those in the
i-th level of the polynomial hierarchy, ¥¥. Some theories are strong enough to prove
that every XY formula is equivalent to a if one. This has to do with replacement
schemes, defined in section 1.2. In this thesis we will be mainly concerned with the
prenex hierarchy.

10



Definition 1.1.5 (Induction) Given a(x), a formula which might contain param-
eters, we note by a-IND* the formula
a(0) AVz(a(z) = a(z+ 1)) — ala).

When VU is a set of formulas and T a set of unary terms, we note V-IND" the
scheme {a-IND'®) : o € U1 € 7}. In particular we write a-IND for a-IND?,
a-LIND for a-INDW! and a-LLIND for a-I N D!lI*Il.

Definition 1.1.6 ([20]) EBASIC is the theory containing BASIC' plus the follow-
g arioms:

1.y < 2mintulzbl=) — ApS P (g 2minCelzb=®) £y min(u.|z|, |2]?)) = @
2.y <2 A < 2B — (30, 2], 2.2 +y) =y A B(L, |2], 2.27 +y) = 2)
3. S(x).lyl <u— Bz, |y, w) = Bz, |y|, LSP(w,u)).

These axioms are necessary to get a form of pairing and coding in our theories. It
has to be noted that they can be derived from BASIC using only Open-LIN D [20],
so assuming them costs very little.

Now there are many ways EBASIC can define a pairing function. We will use the
following one as it has a clear decoding function. To form a pair (x,y) you first add,
if necessary, some leading zeros to the binary representation of the shortest number
to give them both the same length. Then you add a leading 1 bit to both and finally
concatenate them. To recover the coordinates you only have to cut (z,y) in half
and then delete the first bit of each half.

Definition 1.1.7 ([20]) For any z,y we set
<l" y> = (2|max(x7y)| + y)2|max($ay)|+1 _|_ (2‘max(x7y)| + .:E)
The two projection functions are defined by
z
(z)1 := DMSB(LSP(z, L%J))
z
(2)g := DMSB(MSP(z, L%J))
where DM S B means “delete most significant bit”:

olz|

DMSB(z) =z — | 5

I.
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Contrary to the classical Cantor form of pairing, not every integer codes a pair here.
Nevertheless you can define a simple predicate saying when this holds. Moreover
you can prove in FBASIC existence and uniqueness of this pairing code.

Definition 1.1.8 ([20]) We note ispair(z) the following formula

Bit(z, L%J = 1)=1 A 2 |maz({z)1,(2)2)| +2 = |2|.

Theorem 1.1.9 EBASIC proves the following
1. VaVy3lz(ispair(z) A (z)1 = x A (2)2 = y)

2. (z,y) <16 - maz*(z,y), for z,y # 0.

Pairing will allow us to contract variables that are consecutively quantified by the
same kind of quantifier. Consider for example a formula 323y a(z,y,u). Over
EBASIC this is equivalent to Jz(ispair(z) Aa((z)1, (2)2, u). This argument will be
used frequently, sometimes implicitly.

Definition 1.1.10 For n > 3 we inductively define n-tuples by
(1, ..y xpn) = ((T1,. .., Tpo1), Tn)
and we note by (z), the n-th projection.

Of course a theorem like 1.1.9 can be proved for any n. In particular we need the
notion of triple which can be easily defined as follows. Please note that we use =
for syntactical equality.

Definition 1.1.11 istriple(z) = ispair(z) A ispair((z)1).

Definition 1.1.12 Sequences w are triples (cd(w), mx(w), h(w)) where cd(w),
mx(w), and lh(w) are intended to mean respectively the code, the mazximal number
coded and the length of the sequence. So we put simply seq(w) = istriple(w) and
define functions cd(w), mz(w), lh(w) as the three projections when w is a sequence,
and 0 otherwise. Decoding is defined by

(), = { Bz, |mz(w)|, cd(w)) if seq(w) and z < lh(w)

0 otherwise.

12



Definition 1.1.13 For i > 0 and 7 any set of unary terms, Tz” 15 the theory

EBASIC U SV-IND".

For 7 being {z}, {|z|} or {||z]|}, we call it respectively T2, Si and RY.
The following theorem states a well known property of some induction schemes.
Lemma 1.1.14 TQM is equivalent to the theory EBASIC U ﬂf—]NDT.

Notation: If ¢ is any Lpa-term, Tg’t(w) is the theory |J Té’t("). Similarly, if 7 is

a set of Lpa-terms, 7 is the set J, . {I" : l € 7}

new

1.2 Other schemes

In this section we introduce other axiom systems, some of them being equivalent to
an induction scheme. We will use them especially in the last two chapters.

Definition 1.2.1 (Replacement) Given a(x,y), a formula which might contain
parameters, we note by a-REPL} the formula

Ve <ady <ba(r,y) — Jw Ve <a((w), <b Aa(x,(w))).
When U is a set of formulas and 7 a set of unary terms, V-REPL" s the scheme
{Va¥b a-REPL" : a e ¥ e}
Theorem 1.2.2 Fori > 1, Tg"TI - ZA]?-REPLM.
Proof This is a straightforward induction argument on the length of w. O

Therefore in the presence of Té"ﬂ we can push inside |7|-bounded quantifiers in front
of S-formulas enlarging in this way the class of formulas 731" -provably equivalent
to Ml-ones.

In particular, if 7 = {2z} then we are talking about the so-called sharply bounded
quantifiers of Definition 1.1.4. If we can push inside those quantifiers then X?-
formulas become Zb after contraction of some variables, thus we have that SZ = Si,
and incidentally T ! = T4 too, where S§ and Ty are the well known theories defined

by Buss in [4].

13



By contracting variables it can be easily seen that I1%-REPLT implies 3¢, ,-REPL".
Thus we have

Lemma 1.2.3 The schemes f[?—REPLT and 2§+1—REPLT are equivalent over
EBASIC.

Definition 1.2.4 (Comprehension) Given o(z), a formula which might contain
parameters, we note by a-COM P® the formula

JuwVz < a (a(x) < Bit(w,z) = 1).

When U is a set of formulas and 7 a set of unary terms, V-COM P7 is the scheme
{VYa a-COMP'@ . o c ¥ e}

The following theorem is from [20].

Theorem 1.2.5 For i > 1 the theory Té’lﬂ proves the ZA]i-’—C'O]MP‘T| axioms.

As 32-COM PV says that for arguments under |7| we can substitute a >-?-formula for
an open one depending on an extra parameter, it follows that this system augmented
with Open-IN DIl is equivalent to 70"

Theorem 1.2.6 Fori > 1, Open-IND!" U St-COM Pl implies Ti'™.

Definition 1.2.7 (Strong replacement) Given «a(x,y), a formula which might
contain parameters, we note by a-STRONG REPLY the formula

JuwVr < a(Fy < b alz,y) — (w), <b ANa(z, (w),)).
When W is a set of formulas and 7 a set of unary terms, V-STRONG REPL™ is

the scheme

{Va¥b a-STRONG REPLY” : a €U, lc 1}

Theorem 1.2.8 For i > 1 the theory Tg"f' proves the f]i?-STRONG REPL" ag-
10ms.

Proof: Take a € II?_, and consider the logically valid formula
Ve < |l(a)] FJu<b (Jy <ba(z,y) — alz,u)).

By Theorem 1.2.5 we can use i]f—C’OMP'T‘ to substitute the formula Jy < b a(x,y)
by an open one ¢(x,c) with one more parameter, the equivalence between both
expressions being valid for 2 < |I(a)|. Then we can apply S0-REPLI™ available by
Theorem 1.2.2 to the formula Va < |l(a)| Ju < b (¢(z,¢) — a(z,u)), the expression
in the scope of the Ju quantifier being ﬂi-’_l, and the result follows. Il
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Theorem 1.2.9 Fori > 1, Open-INDI" U$t-STRONG REPLI" implies Ti"".
Proof This is proved by induction on ¢ using the fact that strong replacement
axioms allow us to substitute a ¥:2-formula for a II?_ | one with an extra parameter

for values under |7|. O

Following Zambella [31] we introduce another scheme for practical purposes. It will
be used in section 3.4.

Definition 1.2.10 (Dependent choices) Given a(j,z,y), a formula which might
contain parameters, we note by a-DCY the formula

ViVe < bJy < b a(j,z,y) —

FuwVj < a((w); <bA ()1 <bAalf, (w);, (w)1)).

When U is a set of formulas and 7 a set of unary terms, V-DC™ is the scheme
{Vavb a-DC' : o € W, 1 € 7}.

Lemma 1.2.11 The schemes i]i?H—DCT and IL-DC™ are equivalent over EBASIC.
Proof By a simple contraction of variables. 0
Theorem 1.2.12 For ¢ > 1 the theory T;'"T‘ proves the f]i?—DC’M azrioms .

Proof We derive f[i’_l-DC’“'. Let a(j,z,y) € f[i-’_l, [ € 7, and suppose that
ViVe < b3y < b a(j, x,y). Consider the formula 6(z) given by

Fw < s(a,b)Vi < |l(a)|(j < 2 = (w); <OA(w)j11 <bA (g, (w);, (w)j41))
where s(a,b) is a suitable term, a bound for the sequence of length |I(a)| with

identical entries b for example. By Theorem 1.2.2 (z) is equivalent to a ¥:¢-formula.
It is easily seen that we have

0(0) AVz(0(z) — 0(z+1)).

Then 6(|I(a)|) by S-IND'™l. Thus T;M =112 ,-DC'"! and we conclude by Lemma
1.2.11. O

Theorem 1.2.13 Fori > 0, Ab-INDI U St-DCI implies Ty'™.

15



Proof We use induction on i. The case ¢ = 0 is trivial. Let ¢ (j) be the f]ﬁ?ﬂ—

formula 3z < t(j)¢(j, #) where ¢ € I with possibly other parameters. Let | € 7
and suppose we are in a model of AS-TN DIl Ut |-DCI satisfying

(0) AV < [l(a)|(V(G) = ¥(j +1)).

Then
g < t(0)e(0, z9) A

Vj < |l(@)| Ve < b3y < bz < 1) A plj.x) =y < (G + 1) A (i +1,y)

where b is an element bounding all the ¢(j) for j < |i(a)|. Fix such an z5. Then we
have

Vi <|l(a)|Vr < b3y <b

(=0—=2=20) Az <t(j) Np(j,z) =y <t(j+1) Ap(j+1,y))).

As the lower part of the formula is equivalent to a %2 +1 one, we obtain by i]f 1-DC I~
JwVj < |I(a)|((w)o = zo A((w); < AL, (w);) = (W) < LFF1)AR(, (w)41)))-
Putting ¢(j, w) = (w); < t(j) A (4, (w);) we have that ¢ € I1? and

Fw(@(0,w) AVG < [l(a)[(¢(d, w) = &(j +1,w))).

By induction hypothesis and Lemma 1.1.14 our model satisfies fIé’—I NDVl. Thus we
get p(|l(a)], w), hence Jx < t([l(a)])e([l(a)], ), ie. P(|l(a)]). 0

Putting together the above results we get

Theorem 1.2.14 For ¢ > 1 and any set of unary terms 7 the following schemes
are equivalent in the presence of EBASIC U AY-INDI™!:

1. SP-INDI

2. 3b-COM PV

3. X0-STRONG REPL"
4. Sb-DCI,
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1.3 Some model theory

To end this chapter we mention some classical model theoretic results that we use
in this thesis. Apart from the compactness and Lowenheim-Skolem theorems, we
use chain constructions and recursive saturation.

Theorem 1.3.1 (Union of X’-elementary chains) Let (M,)ne., be an increas-
ing chain of Lpa-structures such that for every n € w

Mn {22) Mn+1.

Let M :=J, . M,. Then for every n € w, M, <¢, M.

new

This hold also for unbounded formulas. In particular, M, < s» M,41 implies
Mn <y M.

Proof By induction on the complexity of formulas. O

Theorem 1.3.2 (Preservation of Y3B(3!)-formulas) Let (M,)ne. be an increas-
ing chain of Lpa-structures such that for every n € w

Let M =, c, M. Let © be a sentence of the form VYa3yp(x,y) with ¢ € B(%)
and such that for every n € w, M, = ©. Then M = ©.

Proof By induction on the complexity of formulas. U

As a consequence we get that the union of a SP-elementary chain of models of 73"
is a itself a model of T,".

Corollary 1.3.3 Let (M,)new be an increasing chain of models of TQZT such that for
every n € w

Mn {ib Mn+1.
Let M :=J, ., M,. Then M = Ty".
Proof Just note that for o € 3¢ the formula a-IN D™ is Y350, O

Theorem 1.3.4 (Tarski-Vaught criterion for BA) Let N C M be an Lpa-
substructure such that for each formula ¢(z,u) € 12, t € Term(Lga) and pa-
rameters b € N the following holds:

if M =3z < t(b)p(z,b) then for some a € N, M |=a < t(b) A ¢(a,b).
Then N <s» M.
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Proof By induction on the complexity of formulas. U]

For the notion of recursive saturation and a proof of the following theorem we refer
to [11].

Theorem 1.3.5 (Existence of recursively saturated models) Let M be an

Lpa-structure. Then there is an elementary extension M’ of M of the same cardi-
nality which is recursively saturated.
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Chapter 2

A model of fi% inside a
sub-exponential time resource

This chapter contains essentially the paper published in Notre Dame Journal of
Formal Logic [8] with some minor changes. We kept its original notation and it can
be read independently of the rest of the dissertation. Using non standard methods
we construct a model of f)g-LL]ND inside a “resource” of the form {M(a) : M is a
Turing machine of code < r, and M (a) is calculated in less than 2llall” steps}, where
a,r are non standard parameters in a model of Si.

2.1 Basic notions and results

We use Buss’s notations (see [4]), working in the extended arithmetical language

LS = {07 17+7 5 < Lw/QJa |$|7#27#3}

where |z| is the length of the binary expansion of z, x#,y means 21M¥ and z#3y
stands for 2/#1#21¥l Most of Buss’s results in [4] were stated for theories in language
Lo without the #3 symbol (read “smash 3”). But, as he pointed out, they readily
generalise to languages L; including a function symbol #; with same rate of growing
as function w;_; of [29] (x#;y = 21#1#i-1W) provided we substitute polynomial time
by the corresponding S;-time (also called #;-time in some texts). In particular, to

language L3 corresponds 2‘”'0(1)—time, to Ly is 22H"HO(1) -time, etc.

Quantifiers of the form Qz < ¢, where t is a term, are called bounded quantifiers.
Those of the form Qx < |t| are called sharply bounded quantifiers. Formulas with
only sharply bounded quantifiers are called sharply bounded formulas. This class
is noted Aj, 3f or II}. For i > 0, £%,, is the smallest class of formulas containing
¥t 12 and negations of I1% 1, and closed by A, V, sharply bounded quantifiers and
Jr < t. Classes I1? are defined analogously. A formula is said to be stricty} if it
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has the form Jy < t[Ab]. More generally, a formula is strict:? if it has the form
Jy < t[strictll? ,]. We denote by if the class of strict¥i-formulas. The class ﬂf
is defined analogously. If T is any theory and i > 1, we say that U is AY(T) if
TH(V=U)A (¥ =U,) for some ¥, € 3¢ and ¥, € I12. By a(z)-IND up to y we
denote the formula

[2(0) AV < yla(z) = alz +1))] — aly)

and if T is a class of formulas and m € N, T-LU™IND denote the scheme a(x)-IND
up to |y|m for a in T'; where |yl = |(|y|m—1)| and |ylo = y. In this chapter we are
concerned with m = 1,2 so we write LIND, LLIND and ||y|| for LWIND, L@IND
and |y|o. BASICj is a finite set of open axioms for the symbols of L3 and S} is
the theory BASIC3 + X2-LIND (originally it is defined by another induction scheme
called PIND, but these two axiomatisations are equivalent (see [6]). R} is the theory

BASIC; + X-LLIND

By Sg, Ré we denote the corresponding theories for strict formulas.

We shall suppose included in our language some other useful primitives. These are
known to be definable from L3 with a little amount of induction, and its inclusion
does not increase the strength of theories containing S3, for example. In particular
we suppose in Lz the Cantor pairing function (z,y) and its projections (z)1, (2)9, as
well as a binary function y = (¢), for “y is the z-th element in the sequence coded
by ¢”. In general we will be able to code sequences of logarithmic length.

By Yl-replacement we denote the scheme
Vo < |a|3y < bV (x,y) — IV < |a|¥(z, (c),)

for ¥ € 3. In fact ¢ can be bounded by a term of Ls, so the conclusion is also $:¢ and,
moreover, implies trivially the premise. Hence, this scheme allows to push inside
sharply bounded quantifiers in ¥2-formulas. This, together with the possibility to
merge two consecutive quantifiers of the same type into a single one using coding,
permits to put Yb-formulas in the strict form. As S” F Yb-replacement, we have
that Si = Si. On the other hand we have that R + Eb replacement (see [1]), but it
is not known if this holds for R}. Nevertheless, we can derive in R} the 32 |-LIND

axioms, thus proving that R} - Sit.

We note by S5 the class of total functions which are computable in time 2lnl®  For
an integer a we put Ssz(a) := {f(a) : f € S3} and we say that an Ls-structure K is
Ss-closed if S3(a) C K for every a € K.
Let C(e, T, x,y) means

“y is calculated from x in time T by {e}, the Turing machine coded by e”
Later we will see that this is is definable in S3. The aim of this chapter is to prove:
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Theorem 2.1.1 Let M be a countable non standard model of Si. Let a,r € M\N
and suppose that M = Jy(y = 22"""). Let R = {y : M |= 3e < r C(e, 24" a,y)}.
There is an Ls-substructure K* of M such that

1. a € K*

2. K™ is S3-closed, and so K* <xy M.

3. K*CR

4. K* = R? .
As a consequence we get two known corollaries. Their proofs are classic, we give it
for the sake of completeness.
Corollary 2.1.2 Let p(z,y) a X4-formula and suppose that

R§ F Ve dyp(z,y) .

Then for some f € Ss, S3 = Vrp(x, f(x)) .
Corollary 2.1.3 The theory R2 is YX'-conservative over Si.

Proof of corollary 2.1.2 As explained above we can suppose ¢ € f]lf Then,
using coding to merge two consecutive existential quantifiers into a single one, we
can assume that ¢ is A). Let a be a new constant symbol and let T be the theory

Sy U{Vy(C(e, 21" a,y) — —p(a,y)) : e,k € N}

We claim that T is inconsistent.
Suppose the contrary and let

T=TU {Vy(C(e,,Q”“Hk,a,y) —y<d):ekeN}

where d is another new constant symbol. Clearly 7" is also consistent. Let M be a
countable model for it. As d is a bound for S3(a), M must be non standard. We
have for every ry € N

M =k < roVe < k¥y(C(e, 21", a,y) — —¢(a,y))
In particular
M Yk < roVe < k¥y < d(C(e, 21" a,y) — —~p(a,y))
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As we will see later, this last formula is equivalent to a I one in Si, and we have
S3 = TI%-LIND. So by overspill it must be valid for some ry € M\N.

If @ is interpreted by some standard integer then S3(a) = N and thus, as M | T,
we would have for every y € N M |= —p(a,y). By elementarity this formula holds
in N, hence N = Vy—(a,y). As N is obviously a model of R2, this contradicts the
hypothesis of the theorem.

So let suppose a € M\N and let r < 1y such that M = Jy < d (y = 22HQHT) (see
lemma 2.4.1). Then we have

M = Ve < rVy < d(C(e, 21" a,y) — —p(a,y))

By definition of R we have y < 22" < d for every y € R, and so the last equation
reads

M = Vy € R =p(a,y)

By theorem 2.1.1 there is a Ls-structure K* C M such that

1. a e K*

2. K* is S3-closed

3. K*CR

4. K* = R? .
By (1),(2),(3) we have K* |= Vy—¢(a,y), and by (4) K* = Vax 3y p(z,y). Thus we
get a contradiction and the claim is proved.

As T is inconsistent, by compactness there is some n, e, ..., e,, ko, ..., k, € N such
that

S\ 3y(Cer, 21 a,y) A pla,y))

1=0

By theorem on constants
z||ki
Sy =V \/ Jy(Cles, 2V 2, y) A p(x,y))
i=1

Let f(z) be the result of the following search: for i = 0 to n we run {e;} on input
z with clock 2/l=ll* looking for an output y satisfying ¢(x,y). Clearly f € S and by
the last equation S F Vzp(z, f(z)). Hence the corollary is proved. O

Corollary 2.1.3 follows immediately.
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Remarks

1. Buss, Krajicek, Takeuti [7] have shown a result stronger than this corollary:
the theory R} is VX3-conservative over Sj. We prove Sj =ygp 3 in chapter 3
(see 3.4.7).

2. Theorem 2.1.1 can be generalised as follows: if M |= S%, i > 1, we can consider
a larger resource R by giving the Turing machines access to oracles in the i-th
level of the S3-time hierarchy. Then we can construct a A? j-elementary Ls-
substructure K* of M which is a model of Ré“. The corresponding witnessing
and conservation corollaries follows similarly as 2.1.2 and 2.1.3.

3. To drop the “strict” in theorem 2.1.1 it would suffice to carry out the con-
struction with formulas of the form Va < |u|3y < tVz < s 1, ¢ € Ab, instead
of simply f)g—formulas. The theory obtained in this way would prove ¥5-
replacement. But the inclusion of an extra quantifier, even a sharply bounded
one, poses some problems. A solution for these could throw some light on
how to treat the X% case without use of oracles. Note parenthetically that we
cannot use oracles if we want sub-exponential time witnessing theorems, and
this makes it non trivial to construct models for ¥¢ induction axioms inside
the corresponding resources.

The rest of the chapter is devoted to prove theorem 2.1.1. In section 2.2 we briefly
explains how the proof goes. Section 2.3 presents some tools needed to work with
Turing machines. Next we introduce the notions of sparse sequences and resources
in 2.4, and finally we present construction of model K* in section 2.5.

2.2 Sketch of the proof of theorem 2.1.1

Fix an enumeration of axioms #-IND up to ||d|| with parameters in M and € running
over Y4-formulas. We construct K* as the union of an increasing chain (K, )p<o.
Let Ko = S3(a) = {f(a) : f € S3} and let 0;-IND up to l; be the first axiom in the
enumeration having its parameters in Ky. We want K; D, Ky, K; Ss-closed and
satisfying

=01(0) V35 < L[0:1(5) AN=0:1(5 + 1)V 61(Ly)

where 0,(7) = 3y < tVz < s1¢(j,y, z). We can suppose 7 < ||a|| and 7 = 2I"71. Let
(T});<i,+2 be a decreasing sequence such that
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where A > B means A > B.2”“”O(1), and such that the T;’s are easy to calculate
from a and r (for example T; = ollall"=G+Dlall™y " For j =0,...,1 +2 let

Ri(x)={y:C(e,T},x,y) for somee <t}

K, will be generated by an element a; obtained by running on input a the next
program P (which depends on a code for |r|):

1: Compute 7 = 2/"=1,

2: Compute the parameters of ;-IND up to l; and Ty from the input a.

3: Put j:=0,y_1:=0.

4: Compute Tj .

5: Look for y; € R;((j,a,y;-1)), y; < t, such that for every z € R;11((j + 1, a,y;))
such that z <'s, M = ¢(4,y;, 2).

6: If there is no such y;, stop the machine with output a; = (j, a, y;_1).

7: If y; is found and j < [y, then put j := j 4+ 1 and go to 4.

8: If y;, is found, stop the machine with output a; = (l; + 1, a,y;,)-
Let a; = (J; + 1,a,yy,) and suppose for example 0 < .J; < [;. Then we have

e for every z € Ry 11(ay) such that z < s, M = (J1,yy,2).

e for every y € Ry +1(aq) such that y < ¢, there is some z € Ry, 12((J1 +2,a,y))
such that z < s and M = —¢(J; + 1,9, 2).

So, in order to have Ky = 61(J;) A—6;(J1 +1), we choose K; contained in Ry, 11(aq)
and allowing computations in time 77, ;o :

a0
Ky ={{e}a) < 221" calculated in time < O(1).r2 Ty 40, e < |r|PDY .

It is easy to see that Ky Cp, K7 and K; is Ss-closed. To prove that K; C R we use
the fact that P can be coded by some p < |r|°) and calculates a; in less than 2.7}
steps.

Consider now 6o-IND up to l5, the next axiom in the enumeration having its param-
eters in K;. We want K, Dy, K; satisfying this axiom while preserving 6;(J;) A
=6, (J1+1). The new axiom will be satisfied by letting the construction of K5 imitate
that of K7, replacing a, 61, l; by aq, 65, 5 and the sequence T; by another sequence
T!. As explained above, 6;(J;) A—60;(J; +1) will be preserved if Ky C Rj,4+1(a1) and
K5 allows computations in time T, 4o. In other words, the maximal computation
times 7} are chosen between Ty, 11 and T}, 45 (for example T} = Ty, 41/ 20Dl i

T; = 2llell’=G+Dllel”*) T this way
Ty >TE>Ti> . .1 > T
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Let P’ be a program similar to P, running on input a;, with 6o-IND wup to I, and T
in place of 0;-IND up to l; and T;. Let ay = (Jy + 1,a1,y,,) be its output and

O
Ky ={ {e}(a2) < 22" calculated in time < O(1).r2T) s, e < |r|°D}
Then we prove as above that K; Cr, Ky, Ks is Ss-closed, K» C R and
Ky = 01-IND up to ly A 65-IND up to Iy

In this way we get K3, Ky, ... and putting K* = (J,_, K, we have the desired
model. U

2.3 Definability of Turing machine computations

We call S5 the set of total functions which are computable in time 2In°™ in the
standard structure N. For a predicate X we say that X € S5 if its characteristic
function belongs to S3;. Note that (the intended interpretation in N of) function
symbols of Lz are in S3. In particular A} predicates are decidable in time 2'”'0(1),
therefore, Ss-closed substructures are Aj-elementary. This will be used everywhere.
¥ predicates correspond exactly to predicates in the i-th level of the 2ml° _time

hierarchy.

We present here some known facts saying roughly that in any model of Si these
functions are definable and have the expected properties, and this will also hold
for some non standard functions when M # N. Proofs are omitted since they are
tedious and contains no new idea. For a reference see [4] and [10].

In order to formalise computations we consider deterministic k-tapes Turing ma-
chines, for a fixed & € N, and a natural coding of its programs and computations. If
e is an index for a Turing machinei.e. a code for its program, we note by {e} both
the machine itself and the function it computes. By e € S3 we mean {e} € S3 and

e € N.

Lemma 2.3.1 For every standard Turing machine M there is a Ab(S3)-formula
Compy(c,x) expressing that c is the code of a computation of M on input x.

In S5 we can code sequences of logarithmic length and there are terms ¢4 (x) standing

[EIl
for 22" . In consequence we get

Lemma 2.3.2 Every predicate in Sz is Ab definable in Si.
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Lemma 2.3.3 For every standard Turing machine M
S3 F Vouva3le(Compy (e, v) Alh(c) = |v|)
where lh(c) is the length of the computation coded by c.

If M | S} and log(M) := {Jy| : y € M}, this lemma will allow us to define
computations in time T provided T € log(M). In particular, as 29" € log(M) for
every k € N, we have

Lemma 2.3.4 Every function in Ss is provably Ab (total) in Si.

Remark By Buss’s theorem (the version for S1) every function provably % in

Sa (i)s(l)in Ss (see [4]). As a consequence every Ab(Si) predicate is decidable in time
207

Now using lemma 2.3.4 we can define a restricted version of an universal Turing
machine which will be nevertheless able to simulate all functions in Sj.

Lemma 2.3.5 There is a AY(SY)-formula U(e,v,z,y) expressing that e is the code
of a (probably non standard) Turing machine and {e} calculates y from x in less
than |v| steps.

We assume that for every term #(Z) in Ls, if ¢(Z,y) is the A} definition of the
corresponding function in Sz, then S3 by = t(z) < ¢(z,y).

Definition 2.3.6 C(e,T,x,y) is the A, -formula Jv(jv| =T A Ule,v,z,y)). It
means that the Turing machine {e} running on input x stops with output y before
T steps.

Lemma 2.3.7 There is kg € N such that
1. S} Ve, e " < (e.d)fo Vo ({e}((¢/,z)) = {€"}(x))
2. Stk Ve, e Fe" < (e Yo VT, T 2.y, 2,d
(T, T, T+T <|d ANC(e,T,z,y) NC(e, Ty, z) = C(", T+ T, z,z2)).
Remarks

e Condition (1) will help us to estimate the code of a Turing machine. For
example suppose that X is a multiplicative closed cut in a model of S3 and M
a Turing machine. If M can be viewed as a standard program with some extra
inputs py,...,pn € X, n € N, then by (1) M can be coded by some p € X.

e By condition (2), if e,¢’ € X are Turing machine codes, then the composite
function {e} o {€'}, if defined, has a code ¢’ € X.
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2.4 Sparse sequences, resources and basic struc-
tures.

Notation Let M be a non standard model of S; and F a function from N to M.
We put

e A>F(O(1) iff A> F(n)foreveryneN

e F(O(1))>B iff F(n)> B for somen €N
Even in a nonstandard model we keep O(1) running over standard constants.

Lemma 2.4.1 Let M be a non standard model of Si and let a,d € M\N such that
S3(a) is bounded by d. There is some r € M\N such that following properties hold
in M:

1. Jy<d (y= 22HaHr).
-1

2. 1 is a power of 2, and so r = 2I

3. r <|lall.

Moreover, r can be chosen smaller than any given ro € M\N.

Proof We know that for every k € N, tx(a) € S3(a) and tx(a) = 22" i1 M. Thus
we have for every r; € N,

allk
MEVE<|n|Gy<dy=2")

This formula is ¥4 in M and so by overspill it is true for some 7, € M\N. Now let
7y € M\N such that 7, < |r;] and 7, < ||a]|, and put 7 = 2/"/='. Then we have
r € M\N, r is a power of 2, as |r3| = |r|, and finally r < ry < ||al|. O

Remarks
1. In fact we have proved M Ve <r Jy <d (y = 22HQHE).

2. By (1) of lemma 2.4.1 we have [0,2/%"] € log(M) and then, by lemma 2.3.3,
computations in time 7' < 2/l9lI" are definable in M.

3. We want r to be computable from some Turing machine of code < |r|°W.

That is why we impose condition 2 (see (3) of lemma 2.4.6).
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4. We want also 2/l°l" € Ss({a,r)). For this r < ||a||°" would suffice, we put
r < [a|| for simplicity. In this way 2llll” is calculated from (a,r) by the
function (z,y) — 2= which is clearly in Ss.

Definition 2.4.2 Let M be a model of S5, A, B,l,a € M, (T});< a sequence in M
and F function from N to M. Suppose A > B.

1. The sequence (T;),<; is between A and B if (T}),<; is decreasing and
A> (Tj)j< > B.

2. The sequence (T});<; between A and B is generated by « if for some e € Ss
o 7o = {e}({, 4))
o T ={et((a,T3)), j <.

3. The sequence (1};);<; between A and B is F(O(1))-sparse if
e A> F(0O(1)).Ty

o I; > F(O()) T4, g <l
e 1,>F(0O(1)).B
Lemma 2.4.3 Let M,a,r be as in lemma 2.4.1. Let A, B, € M and suppose that

2l > A > B, a € S3(a), (T})<i is a sequence between A and B generated by «,
and | < 211° " Then for some e € S we have T; ={e}((j,a, A)), j <.

Proof Let ¢’ € S3 such that
To = {e'}((a, A)) and Ty = {e'}({a, T})), j <!

Let k € N such that I < 21" and consider the standard Turing machine which
on input (j, a, A) calculates a from «, then ollall® (k is coded in its program); next
it compares j and 2/l9I" and if j < 2/l it computes {¢/}Y™ ((a, A)). It runs in
time 2" as ¢’ € 93 and we iterate this function at most 2/9/* times (note that
ollall® < 2llell” a5 g € Sy(a)). Finally, we have that it calculates T; when j < [.

This can be proved by induction on [ as [ € log(M) and the condition considered is
AV, 0

Lemma 2.4.4 Let M,a,r be as in lemma 2.4.1. Let A, B,l € M and suppose that

7. 2llalm > A > ollall°® B
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2. 1< [|a]|o®)

There is a 21191°" _sparse sequence (Tj)j<i between A and B generated by (a, p) for
some p € M\N. Moreover, p can be chosen smaller than any given non standard
integer i M.

Proof We have for every k € N
ME3y<aly=21"AA>yB)

By overspill this formula is true for some p € M\N, and we can choose it as small
as we want. Take p < ||a|| and consider the function

f(x,y, 2) = msp(x, ||y||™m =210y

where msp(u, v) stands for |u/2"| when v < |u| (msp is for “most significant part”;
see [4]).

Then clearly f € Ss and so is g defined by g(u,z) = f(x, (u)1, (u)2). Put
Ty =g({a,p),A) and Ty = g({a,p),T;), forj <I.
Then we have
o Ty = |A/2llall]
o For j <1, Tjyy = |T;/2"™ |
It is then clear than (7});<; is 2”“”0(1)—sparse, between A and B and generated by

(a, p). O

Definition 2.4.5 Let M be a model of Si and let a,r,T,c € M.

o We use R(r, T, c) to denote the subset {y € M :3e <r C(e,T,c,y)}.

We call these definable sets resources.

e The basic Lz-structures we will consider are of the form

llal|®
{yeM:3keNJe<|r|" (y<22" AC(e,k.T,c,y))}.

We write K (a,r,T,c) as an abbreviation for the expression above.
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Lemma 2.4.6 Let M, a,r be as in lemma 2.4.1. Let c¢,T € M be such that
2llel” > O(1).T and let K = K(a,r,T,c). Then K has the following closure property:

1. Ifye K and T' < O(1).T, then K(a,r,T7",y) C K.
Moreover, if T > 201l then
2. K is Sz-closed.

3. [0,[r°D[u {r} c K

Proof 1. Let T" < O(1).T, k € K, e < |r|*, be such that C(e,k.T,c,y). If

a k/
z € K(a,r,T",y) then for some k' € N, z < 221" and C(e, k. Ty, z) for some
¢/ < |r|¥. We have that

T+ K. T < 0(1).T < 2l

Hence by 2 of lemma 2.3.7 there is some k” € N, k" sufficiently large, and some
¢ < |r|*" such that C(e”, k".T,c,2), ie. z € K.

10(1)

2. If T > 21ll°" and z € S4(y) for some y € K, then since y < 22" we have

a0
that »z < 22 et and C(e,T",y, z) for some e € N and 7" < ollall®" 7 Hence
z € K and K is Ss-closed.

3. If p < |r|°W there is some e < |r|°M) such that Va({e}(z) = p) and C(e, |p|, z, p)
({e} is just a Turing machine that writes p regardless of the input; its program can
be coded by some e < |p|°M). As |p| < 211°" < T we have that p € K.

In particular |r| € K. Now, r can be calculated from |r| easily by a standard Turing
machine in S3 because r = 2I"~!. Hence, by (2), r € K. O

Remarks

e We will consider only structures K (a,r,T,c) with T > 2141 By (2) we
are guaranteed these structures will naturally be Ls-substructures of M and

moreover, they will be Al-elementary. In particular the BASIC3 axioms will
hold.

e In connection with lemma 2.4.4, condition (3) will be useful to generate 2llal[ )
sparse sequences, any “small” non standard integer being available in K.

Lemma 2.4.7 Let M,a,r be as in lemma 2.4.1. Let ¢,d,T5,T, T, € M and let
K =K(a,r,Ty,c), K' = K(a,r,T',c). Suppose that
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1. ce K’
2. 2" > O(1).7
3. T >T,.

Then K C K'.

o] O
Proof Let z € K. Then = < 22" and C(e, k. Ty, c,z) for some k € N and
e < |r|*. But k.Ty < O(1).7" < 2ol and ¢ € K’, hence, by lemma 2.4.6, z € K'. O

Lemma 2.4.8 Let M, a,r be as in lemma 2.4.1. Let ¢,d,T1,T", T, € M and let
K' = K(a,r, T",c). Suppose that

1. C(p, Ty, c, ) for some p < |r|0)
2. 2l > Ty > T, +0(1).T
Then K" C R(r, T}, c¢).

Proof Lety € K’ and let k € N, e < |r[* such that C(e, k.T", ¢, y). We have that
C(p,Tw,c,c) for some p < |r|°1) and

Ty + kT < Ty < 2llell

By (2) of lemma 2.3.7 there is some ¢’ < |r|°") < such that C(¢’, T, ¢, y) , hence
yER(r,Tl,c). [

2.5 Constructing a model of f{%

Let M,a,r be as in lemma 2.4.1. Let R denote the resource R(r, 219" a). We call
it the main resource. The aim of this section is to construct inside it a model K* of
R§ containing a. This model will be constructed as the union of an increasing chain
(Kn),cN> each K, satisfying a new instance of i)g-LLIND while preserving those

satisfied previously. First we prove the key lemma which will help us to pass from
Kn to Kn+1.

Lemma 2.5.1 Let M,a,r be as in lemma 2.4.1. Let ¢,T1,Ty € M\N and let
K = K(a,r,Ty,¢). Letby,...,byn € K, I € log(log(K)), ¥(j,v,2,b) a Ab-formula
with parameters b and let

0(4,b) = Iy < tVz < s1(j,y, 2,b)

where t = t(5,b), s = s(j,y,b) are Ls-terms (parameters b will frequently be omitted).
Suppose that
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a. a € K and c € K(a,r,T,,a) for some T, such that 2" > O(1).T,.

jo()

b. T e K and QHULHT >T1>1T, > 2Ha|

c. (T})i<ir2 is a ||a|]|°W-sparse sequence between Ty and Ty generated by {(a,p) for
some p € K.

Then there are integers p,q,c,Y € M , J € M U{-1}, and an Ls-structure K’
satisfying

~

. p < |r|°D and C(p,r2.T),c, ).
d=({J+1c¢Y), -1<J<landY <t(J).
If J# =1 thenVz € R(r,T7,,,c),2 < s(J,Y) = ¢(J Y, 2)

q < |r|°DV and Vy3z < s(J +1,y) C(q, T 5, (c,y), 2)

If J # 1 then Yy € R(r, T}, ,,¢),

y<t(J+D)nz={q}({c,y)) =2z <s(J+Ly)A=p(J +1,y,2)
K'=K(a,r,r*T},,,)

K’ is S3-closed

KCcK CR

AN S

K’ C R(T,Tl,C)
10. If v € K', K(a,r,m*.Ty,z) C K’
11. K' = BASICs + 0(j)-IND up to l.

Proof First note that » € K by lemma 2.4.6 and integers a,b,l, T}, p are in K by
hypothesis. Hence we can obtain them all from ¢ in time O(1).7% by means of some
(possibly) non standard Turing machine of code < |r|°()] and these integers are

ele)

bounded by 22" v

The integer p will be the index of the Turing machine P that is working as follows
on input c :

1: Compute r,a,b,l, Ty, p from c.
2: Compute T} from a, p, 1.

3: Put y:=0,y_1:=0.
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4: Compute T}, from a, p, Tj.

5: Look for y; € R(r, T, (j,c,y;j—1)) such that

Y 77

yj S t A \V/Z € R(7”7 T’]{J,-la <] + 1767 yj>) (Z S s — ¢(]7 yjaz))‘

(Searching in R(r, T, x) is done by simulating no more than 7" steps in the computa-
tion of {e}(x), if e is the code of a Turing machine, and this for all values of e from
0 to r. Verification of a condition for every z € R(r,T,x) is done in a similar way.)

6: If there is no such y;, stop the machine with output P(c) = (j, ¢, y;_1).
7. If y; is found and j <, then put j := j + 1 and go to 4.
8: If y; is found, stop the machine with output P(c) = (I + 1,¢,y;).

Let (J 4+ 1,¢,Y) be the output, i.e. Y = y,, and let us name it ¢’. Then (2) and
(3) follows easily from the definition of P, once the existence of the computation is
established.

As explained above, to execute the first line the machine needs a standard number
of programs of code < |r|°M) (namely 6 4+ m programs, as b = by,...,by). By
(c) a unique standard function in S3 suffices to obtain Tj from a,p, Ty and Tj,,
from a, p, Tj. Having r,T}, j, ¢, y;_1 we generate the elements of R(r,T7, (j,c,y;-1))
by means of a standard program. Computation of the values of terms ¢, s and
evaluation of Aj-formulas is also done by standard programs in S3. Thus P can be
viewed as a standard Turing machine running on ¢ with a standard number of extra
inputs bounded by |r|°®). By (1) of lemma 2.3.7 we conclude that P can be coded

by some p < |r|9W.

For the running time we have that r a,bg,..., by, [, T, p, are calculated in time
o]0
O(1).72.Ty from c. As Ty, p € K we have Ty, p < 22" and then

T ollal| M)

By (c) we have Ty € S3({a, p,T1)) and Tj,, € S3({a,p,T})),j < 1+ 1. Hence T} is
obtained in time 2/1¢1°" for every j. It is known that simulating T; steps of the

computation of {e} can be done in time O(1).|e[.T} by an universal program (see

Papadimitriou [16], for example). As e <7 we can bound it by |r[>.T}. We calculate
all o

the values of terms ¢(4,b), s(j,y,b) in time 2! , as they correspond to functions
al|OM .. . . .
in S3 and its arguments are all bounded by 21l Deciding if y; < t is done in

a9 . .
time O(1).[t|, thus less than 2191°? since ¢ < 22" The same is valid for z < s.
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Evaluation of ¥(j,y;,2,b) when y; <t and 2z < s takes time 2llall®™ hecause Y is

“ ow : . .
Ab and j,t,8,bg, ..., by < 2l Thus, we have that ¢ is calculated in time T’
less than
!
O1). 1T, + ollalle® | Z 2Ha|\0 r(|r|2. T’ ollall o™ T(’TPTJ{H n QIIaHO‘”m
7=0

Remembering that T} > T, > 2llall®® e get that

l
T < Y ol T+ (] + 1)T7,]

J=0

But r(|r|* +1).77,, < T} since r < ||a|| and (T});<i42 is ||a||?D-sparse, thus

l
T < r(|r)* + ZT; < r(|r)?+ )T} +1.T))

Now, I.T{ < T}, because | < |la||°®) and (T}) ;<42 is ||a||?(-sparse. So we conclude
that ¢ is calculated in time

T <2r(r*+1).7T) < r2.1T}
Finally note that r2.T}, € log(M) since r2. T} < T < 2llll” and 2lll” € log(M) by
lemma 2.4.1. Therefore we have

w(lw| =r*Tg AU (p,w,c,c))
ie. C(p,m*.T},c,c) and (1) is proved.

The required integer ¢ will be the index of the Turing machine ) working as follows
on input (¢, y):

1: Compute J + 2, ¢ from .

2: Compute 7,a,bg, ...,by,,T1, p from c.

3: Compute t = t(J + 1,b) from J + 2, by, ..., by,.
4: Compute 17, from J + 2, a, p,T}.

5: If y < t, compute s = s(J+1,y,b) and look for z € R(r,T},,, (J +2,¢,y)) such
that 2 < s A - (J + 1,9, 2).

Else, stop the machine with output 0.
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6: If such a z is found, stop the machine with output z.

Else, stop it with output 0.

As ¢ = (J +1,¢,Y) we can obtain J + 2 and ¢ from ¢ by means of two stan-
dard functions in S3. Integers 7, a,bg,...,b,,T1,l can be calculated from ¢ using
a standard number of functions of code < |r|°(1) since they belong to K, as we
explained above. The values of terms t, s are calculated by standard functions in Ss.
By lemma 2.4.3 and hypothesis (c), T7,, is obtained from J + 2,a, p, T} by means
of a standard function in S3. The computations of line 5 requires only a standard
program, analogously as for line 5 of program P. In the same way as we did for P,
we conclude that ) can be coded by some ¢ < MO(U.

a P | .
For its running time first note that ¢ < 22" gince ¢ € K(a,r,T,,a) by hypothesis
a0
(a). We have also t,1 < 22" hence

9llal|OM) ollal| O
Y <t <2 and J+1<[+1<2

21101 .

Thus we get that ¢ = (J+1,¢,Y) < 22T As J+2,c€ S3(c), computations on
line 1 are done in time 2/lall°®. Integers in line 2 are in K, hence they are calculated
in time O(1).T, from c¢. The value of ¢ is calculated in time 2llall®® a5 for program
P. We obtain 717, in time 2llall®) 4

, ollal|OM)
TJ+2 S S3(<J + 270’7 P T1>) and J + 27 a, p, Tl <2

Deciding if y < t takes time 2lall®™ and when this inequality holds the value of s is
al| O

calculated in time 2/191°" since y<t< 92! and the other arguments of s are

a0 . . o .
also bounded by 22" v Searching for z in R(r, T} 5, (J 4+ 2,¢,y)) verifying the

condition in line 5 is done in time less than r(|r[>.77,, + 2llelly Thus, Q((c, y))
is calculated in time less than

‘0(1> |O<1)

9llal

+ O(1).Ty + r(|r[2. Ty + 21417

Since 17,4 > To > 211l “we can conclude that Q((¢',y)) is calculated in time less
than r2. 7%, ,. Thus if z = Q({(,y)) then C(q,r*.T}.,, (¢, y),z) and it is clear that
z < s(J+1,y) in all cases. This shows (4).

To see (5) suppose J < [l. As ¢ = (J+1,¢,Y) and Y = y;, J < [ means that
the program P did not find the y;,; it looked for. In other words this says that
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for every y in R(r, T, (J 4+ 1,¢,Y)) such that y < t(J + 1), there is some z €
R(r, T} 5, (J +2,¢,Y)) satisfying

z2<s(J+1,y) ANp(J+1,y,2)
Then, the program () will eventually find this z and so (5) holds.
Now let K" = K(a,r, 2T}, ,,¢). We have

O(l).?“Q.TL',Jr2 > 2Ty > 9llallo®

so (7) and (10) follows from lemma 2.4.6. By (2), ¢ € S5(¢’), and by (7) S3(¢') € K’,
so d € K'. Also ‘
2lel” > 0(1).1y > 0(1).r2 T,

since (1)) <42 is ||a]|°M-sparse and r < ||al|, and clearly 727" , > T, because
(Tj)j<i+2 is between T and T5. We can then apply lemma 2.4.7 to conclude that
K cCK'

Now we use lemma 2.4.8 to prove (9) and K’ C R. We have C(p,r%.T},c,¢) and
p < [r[?® by (1), and

2lell” > 1y > O(1).r2. T} > r2. Ty + 0(1) 72T,
thus by lemma 2.4.8 K’ C R(r,T1,c¢) and (9) is proved. By (a) there is some
k € N and e < |r|* such that C(e,k.T.,a,c). By (1) we have C(p,r%.T},c,c)
and p < |r|°M. Then by (2) of lemma 2.3.7 there is some ¢/ < |r|°1) such that
C(e,k.T.+r*T§,a,c). We have
2lal” > kT, + T
since 219" > O(1).T, and 2/9I" > O(1).T} by hypothesis. As indicated above
Ty > r* Ty 4+ O0(1).r* 1),

thus we get that
lell” > k. T, + 7275 + O(1) 2. T,

which implies by lemma 2.4.8 that K’ C R(r,2lel" a), that is K’ ¢ R and (8) is
proved.

By (7) K" <53 M and so K' |= BASIC;. Now we use the previous points to get
two easy consequences implying (11). Remember that —1 < J < [.

Fact 1: If 0 < J < then K’ |=0(J).
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Proof: First note that J, Y € S3(c) C K’ by (2) and (7), and also K’ C R(r,T},4,¢),
since K' = K(a,r,r> T}, 4, c) and T, > r2T) ,. Let z € K', z < s(J,Y). Then
z € R(r,Tj,,c) and by (3) M |= ¢(J,Y,2). We just noted that K" <, M, so
K' E(J,Y, z) and thus

K' =3y < t(J)Vz < s(J,9)e(J,y, 2)
ie. K'E0(J).
Fact 2:if -1 < J <[ —1then K" = —-0(J + 1).

Proof: Let y € K', y <t(J+1) and let z = {¢}({c,y))). We havey € R(r,T7,,,c),
so by (5) we get
MEz<s(J+1y) A~o(J+1y,z)

By lemma 2.4.6 and (4), z € K’, so by elementarity,
K Ez<s(J+1,y) AN—(J+1,y,2)
Thus we have proved
K EVy <t(J+1)3z <s(J+1,y)~(J + 1,y,2)
that is K’ = =60(J + 1). This proves fact 2.
From Facts 1 and 2 we obtain
K' E=-0(0)Vv3j<Il0G)A-60G+1)] Vo)
ie. K'l= 0(5)-IND up tol . O

Now we are ready to construct the chain (K,) . Starting from some Ky (for
practical reasons chosen different from the one used in the sketch of the proof), we
inductively define K, for n > 1, using the procedure of extension exhibited in lemma
2.5.1. This is the content of the next lemma. First we define some useful notation
for the rest of the section.

Notation Suppose that M, a,r as in lemma 2.4.1 are fixed and sequences (Tj)jgli,
1 =0,1,... are defined. We use the following notation:

e A > B means A > ollall®® B

o Ri(x) is the resource R(r, T}, z)

e (b); is a set of parameters b}, ..., bi

rrmy
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Lemma 2.5.2 Let M, a,r be as in lemma 2.4.1. Let T, Ty € M such that
TP € Ss({a,r)) and 219" > 70> 79> 1

Let Ko = K(a,r,Ty,a), Jo =0, ag = a.

Letn € N, n > 1 and suppose we have n Ls-structures Koy, ..., K, 1, a f]g—formula
0,(7) = Jy < t, V2 < 8, 0n(4,9,2), ¥u(d,y, 2) € AL, with parameters (b), € K,_1,
and some integer 1, € log(log(K,_1)). If n = 1 we have just Ky, 61 and ly. Ifn > 1
suppose we have also for each 1 <i<mn :

o integers (b),, pi € K;_1, l; € log(log(K;_1))

o a X4-formula 0,(j) = Iy < t;Vz < s; i(j,y, 2) with parameters (b),, where
1/}Z(ja Y, Z) < Ag

e integers p;, q;,a;,Y; € M, J;€ MU{-1}

jal]o®)

e g2
<aapi>

i i—1 i1
-sparse sequence (T});<i, 42 between Ty | and T |, generated by

satisfying (1)-(8) below:
1. p; < |r|°M) and C(ps, 2. T8, ai_1, a;).
2. a;=(Ji+1,a,.1,Y;), =1 < J; <l; and Y; < t;(J;).
8. If Ji # =1 thenVz € R\ (a;), z < 5(J;, Vi) — ¥i(J;, Y}, 2)
4o g < |1V and Vy3z < si(Ji + 1,9)C(qi, 7 T, 9, (a3, 9), 2)
5. If J; # 1; then Yy € Rf]iﬂ(ai),
y<t;(Ji+ 1) Nz={q}{ai,y) — 2z <si(Ji + 1,y) A (J; + 1,9, 2)
6. K;=K(a,r,m*.T) 5, a)
7. K; is Ss-closed

8. Ki1 CK;,CR

Then there is a 2”“”0(1)—3])a7“se sequence (T7')j<i,+2 between T;,;llﬂ and T}Ln_}lJr2 gen-
erated by (a, pn) for some p, € K,_1, integers pn, Gn, an, Yn € M, J, € M U {—1},
and a Ls-structure K,, such that (1)-(8) holds for i =n and

9. Ky, C Ry, (a;) , fori=0,...,n
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10. Ify € K,, then {q;}({a;,y)) € K, , fori=1,...,n

11. K, = BASIC3+ 0,(3)-IND up to l;, fori=1,.

Proof Let n > 1. By hypothesis

1 1
15, > T5 e

and from I, € log(log(K,,)) it follows that I, < ||a||°"). By recurrence on n we
have that 2" > T"_1 . Thus by lemma 2.4.4 there is a 2/lall°®_ -sparse sequence
(T7) j<t,+2 between T” S and T7 ! . generated by (a, p,) for some small p,,.

As T}~ ! o > 1is easﬂy proved by recurrence on n, we can use lemma 2.4.6 to argue
that p, can be chosen in K,,_;.

We want to apply lemma 2.5.1 for K = K,,_;. So let us first check its hypothesis
(a),(b),(c). If n =1 then

Ky =Ko = K(a,r,T3,a)
and thus hypothesis (a) is trivially verified (¢ = a). We have
ollall” > 70 > 79 > 1
and hence by lemma 2.4.6 K is S3-closed and r € K. Thus
0 € Sy({a,r)) C K

and so, condition (b) is verified for Ty = T and Ty = T3. As the sequence (T})j<t1+2
is obviously ||a||°(-sparse, and p; € K, we have (c) for T;=1T;,l=1 and p = p;.

If n > 1 we check hypothesis of Lemma 2.5.1 for ¢ = a1, T1 = T} 11+1, Ty =
T" 1+2, K=K, b= (B)n, l=1,,0=0,and T; = T} for j <[, + 2. First, we

have (b)n € K,_1 and [,, € log(log(K,,—1)) by hypothesis. Now we check (a),(b),(c):

(a) From a; = (J;+1,a;_1,Y;) it follows that a;_; € S3(a;),i=1,...,n—1. It follows

also, by recurrence on ¢, that a;, J;, Y; < QQHGHO(I). In particular this implies a; € K;
for every i < n. Composing functions in S3 we get that that a = ag € S3(a,_1), and
by (7) Ss(an—1) C K, 1. Therefore a € K,,_; .

Now, we have that

an_1 = {pn_1Han_2),...,a1 = {p1}(ag) and p; < |7’|O(1), i=1,....,n—1
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By (2) of lemma 2.3.7 there is some e < |r|°(1) such that, for T = 3207 r2.T¢, we
have C(e, T, ag,a,—1). But

n—1
S riTi < (n—1)r2 Ty < TP < 2l
i=1

Hence 2/9I" > O(1).T and a,,_, € K(a,r,T,a).
(b) We prove by recurrence on n that

Ty € Ko

—1

For n = 1 it was stated above. Suppose T} 2, € K,_5. By (8) T7 2, isin K, 1
also, as well as p,_1,a,_1 and, consequently, .J,,_; + 1. By lemma 2.4.3

T3t € S5((Jumr + Lay puer, T2 00))

1

hence T }n__ll 41 € Ky as K,y is Ss-closed. The rest follows from
all” n—1 n—1
llall” > =t > Tl >l
which was remarked at the beginning of the proof.

(c) The sequence (T");<, +2 is obviously ||a||?(-sparse and is between T " .| and

+

r2 Ty, since r < |[a]].

Applying now lemma 2.5.1 we get p,, qn,an, Y, € M, J, € M U{—1} and a Ls-
structure K, satisfying already (1)-(8). Let us see (9)-(11):

(9) For i = n it is clear by definition (6) of K, and the fact that
7 > O0).r2 T .

Consider the case i < n. We have that a, can be calculated from a; by composing
successively {pii1}, ..., {pn}, and the total computing time is bounded by

I 4 TR < (n— )P T < T

By (2) of lemma 2.3.7 we have C(e, T, a;,a,) for some e < |[r|°®) and T < T , ;.
Since A
T+O)T} o < Th .y <20

we can apply lemma 2.4.8 to conclude that K,, C R’ ., (a;).
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(10) Let 1 <i <mnandy € K,. Clearly a; € K,, and then so is (a;,y) since K, is
Ss-closed. If z = {¢;}({(a;,y)) then by (4) we have that
z < s;(J; +1,y) and C’(qi,r2.T}i+2, (a;,y), z)

a0
If y < t;(J; +1) then s;(J; +1,y) < 22 1°a

definition of {¢;}. In all cases we have z < 22
1 < n we have

, and when y > t;(J; + 1) then z = 0 by
21100 _ .
. But since T5 0 <Tj .5 when

r? Ty, <O).r” Ty

so we can apply lemma 2.4.6 to conclude that z € K,.

(11) This fact is a direct consequence of (3),(5),(8),(9) and (10). Surprisingly, it
will not be used later, and this is because our extensions preserve only Ab-formulas.
We will rather imitate its proof for a bigger model of the form | K,, in the proof of
theorem 2.1.1 below. This is the reason we do not prove it here. O

Proof of theorem 2.1.1 Arguing like in the proof of lemma 2.4.1, there is some
ro € M\N, ro < r (and thus 22" exists also), such that o = 21=! and ro < [|a]|.
Since

R(a,ry, 2™y c R

it suffices to prove the theorem for 79. So we can assume r = 2"=! and r < ||a||
without losing generality.

Let TP = 2llel” and let T be such that 77 > Ty > 1 (any 2/l41” with r > p > O(1),
for example). As we remarked after lemma 2.4.1, we have 2/l°l" € Ss((a,r)). Set

Ky = K(a,r,TQO,a)

Fix an enumeration with infinite repetitions of pairs (A(j, b),||d||) where 6 is a 525
formula and b, d are parameters in M. Consider the first pair in the enumeration

with parameters in Ky and name it (61(j, (b)1),11).

Then 0,(j) = Jy < t:1V2 < s191(4,9,2), with ¢ a Ab-formula with parameters
(b)1, and we are in the case n = 1 of hypothesis of lemma 2.5.2. This gives us K.
Suppose we have just obtained K, from K,,_; using this lemma, and let

(9n+1 (]» (b)n+1)> ln+1)

be the first pair in the enumeration after (6,,,[,,) having its parameters in K,,. Lemma
2.5.2 says that K, satisfies also (1)-(8), thus we are again verifying its hypothesis
and therefore we obtain K, .
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In this way we get an increasing chain of Ls-structures (K,) cN- At each step a

new f]g—LLIND axiom is satisfied while the precedent ones are preserved. But the
chain is only Ab-elementary and hence preservation of these axioms under the union
of the chain is not guaranteed since they are Aj-formulas. Rather, this preservation
is a consequence of the specific way the models are built. In other words, we have
not yet proved that

K* = U K,
neN

is a model of 35-LLIND . Instead, (a),(b),(c) are promptly verified, and thus we
obtain that

Let A(j) a S4-formula with parameters b € K* and let [ € log(log(K*)). Suppose
that (0(j),!) was considered when constructing K, i.e. 6(j) = 0,,(j) is the formula

Ely < tnvz < s, ¢n(]ay>z)

and b = (b),,, [ = I,,, with (b), € K,,_1, l,, € log(log(K,_1)). Note that a, € K* and
hence by (b) J,, and Y,, are also in K*. Note too that

K*C R} | (an)
by (9) of lemma 2.5.2. Remember that —1 < J,, < ,,.
Fact 1: if 0 < J,, <[, then K* = 0,,(J,).

Proof: Let z € K* such that z < 5,(J,Y,). As we just remarked, z € R} |,(ay) so
by (5) of Lemma 2.5.2

M ): wn(‘L% Yn7 Z)
and by (2) Y,, < t.(J,). By Aj-elementarity K* |= 1,(J,, Yy, 2). We have proved

K*EJy <t,Vz < s Un(Jnyy, 2)
that is K* = 0,(J,).
Fact 2: if -1 < J, <, — 1 then K* = —0,,(J,, + 1).

Proof: Let y € K* such that y < t,(J,) and let m > n such that y € K,,. We have
a, € K,, C K, so by (10) of lemma 2.5.2 {¢,}({a,,y)) € K,,. By (9)

K C R 1 (an)
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hence y € R} ,,(a,) and by (5), if 2 = {gn}({an,y)) then
M 2 < $p(Jn, y) A ¥n(Jn + 1,9, 2)
Therefore we have that z € K* and by Ab-elementarity

K* = 2 < sy(Jn,y) Ay (Jn + 1,9y, 2)

Thus
K™ =Yy <t,32 < sptbu(Jn + 1,9, 2)

ie. K* = —0,(J, + 1). This proves fact 2.
From Facts 1 and 2,
K™ | =0,(0) V 3j < a[0n(5) A =005 + D]V 0, (L)

i.e. K* = 6,(5)-IND up to l,. Thus we have proved that K* = S3-LLIND.
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Chapter 3

Multifunction resources

In this chapter we consider models of general theories TAQMM and Té“"ﬂ and re-
sources generated by its Eé’ﬂ—deﬁnable multifunctions. In section 3.1 we introduce

these classes and do some preliminary work. Given a model M of TS’QMW and a f]f—
condition o(a,y) depending on one special parameter a, we construct in sections 3.2
and 3.3 a f]?—substructure N of an elementary extension of M whose elements satisfy
the condition. In order to have 2?-preservatz’0n of formulas we consider structures
with some closure properties under multifunctions consulting 22’—0mcles. We use

. . . . &g ol7l® ~itl,
this construction in section 3.4 to extend a model of T, to one of T, 7l we
derive also some known witnessing and conservation results for these theories.

L] L L] L L] ~ 2|T|w
3.1 Definability of (multi)functions in 7,
In this section we introduce the classes of (multi)functions we will consider. We

recall how a definability theorem is proved in TS’QIT‘ for the class F[|7|“]* (wit) and
then derive a kind of representation theorem for multifunctions in this theory, a
result that proves to be useful further on.

Definition 3.1.1 Leti > 0 and 7 a set of unary terms.

. F[T]Ef 18 the class of functions which can be computed by a Turing machine
equipped with a X¥-oracle, in less than O(L(t(x))) steps (if x is the input) for
somel €T andt € Term(Lpa).

o [7]% is the class of predicates whose characteristic function belongs to F[r]™

e We say that a theory T W-defines the function f if for some p(x,y) € U the
following holds:
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1. T FVa23yp(z,y)

2. T F Vavyvy/ (¢ (a:,y) ( )=y =)
3. NEVmv¥n f(m)= w(m,n).

Theorem 3.1.2 The theory TQMT‘ can f]?+1-deﬁne the functions in F[|7|*]> .

Proof This is classic. The case 7 = {z} (i.e. the identity term) corresponds to well
known Buss’s theories T4 and function classes F P> of polynomial-time computable
functions using oracles from X. In [10] this case is treated using Turing machines.
The general case can be handled in the same way. O

Definition 3.1.3 (Multifunctions) Leti > 0 and T a set of unary terms.

o A multifunction f is a binary relation such that Vx3yf(x,y). We think of
a multifunction as a correspondence which to each x can associate different

values of y. To avoid confusion with the single-valued case, we rather note
y € Im(f)(x) instead of the usual y = f(x).

o F[r]™ (wit) is the same as F[r]™ but the oracle gives a witness for the exis-
tential query when the answer is YES. So this makes these functions possibly
multi-valued.

o [7]™

F[7]

o We say that a theory T W-defines a multifunction f if for some formula
o(x,y) € U the following holds

( it) is the class of predicates whose characteristic function belongs to
= (wit).

1. T+ Vx3Iyp(z,y)
2. N =VmVn f(m,n) < p(m,n).

Let us state more precisely what we mean by a multifunction being computed by
a Turing machine. It is possible to adopt two points of view: the first wants the
machine to be able to output every y € I'm(f)(z) while the second thinks of f as a
search problem where we are looking for some y € Im(f)(z) and so accepts that for
some images there is no computation leading to them. We choose the first definition
although this is not relevant for the subsequent work. Choosing the second would
make the classes F[|7|]* (wit) and F P (wit,|r|) identical (see [20]) while in our
setting we have an only inclusion as |7|-time is less than or equal to polynomial-time.
See also [7] for a discussion of such topics.
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Theorem 3.1.4 The theory Té’wﬂw can f]?+1—deﬁne the multifunctions in the class
Fl|7[“T% (wit).

Proof This is a well-known result. We only give some indications of how its proof
goes, as this proof has an important application further on. We refer to [12] and
[20] for a detailed exposition.

Take f € F[|7]“]* (wit) and let M be a Turing machine computing f in time
I(s(x))|* for some | € 7, s € Term(Lpa) and k € N. There is a II?_,-formula
QCompy(z, w,v) with the meaning that w is like the code of a computation of
M on x but requiring only that the positive answers of the oracle are correct (to
require the negative answers correct also would make the formula too complex). The
variable v keeps track of this having 1 as its j-th bit if and only if the answer to
the j-th query is YES. Using i?—[NDW‘W it is proved that there is a maximal v for
which JwQCompys(x,w,v) holds. The maximality of this v implies that the negative
answers of the oracle must be correct, hence such a w codes in fact a computation
of M on x and we can extract the output y by a simple decoding operation, a term

Output € Lpa in fact. Hence Té’Qlle proves
Va3y3v < 26O [Fy < t(Output(w) = y A QCompas(z, w, v))

A=T < 2@ 3y < 40 > v A QCompyy (z,w',v'))]

and y = f(x) can be defined by the f]fﬂ—formula in the scope of Jy. U
As an immediate consequence of this proof we obtain

Theorem 3.1.5 For every multifunction f € F||7|°] (wit) there is a 12, -formula
A, termst,s,h € Lga, l € T, and k € N such that

1. Té’zmw FVedy <t B(z,y)
2. N E=VmV¥n B(m,n) < n € Im(f)(m).
where B(x,y) is the formula
v < 21O Fy < t(h(w) = y A Alz, w,v))

A=T < M@ 3y < (1) > v A Alz, W', v'))].
U

Classes F[7]* and F[r]™ (wit) can be alternatively defined as some particular alge-
bras (see [20]). In particular they are closed under the following recursion scheme.
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Definition 3.1.6 We say that f is defined by BPR™ (T-bounded primitive recur-
sion) from g, h,t and r if

F0,z) = g(z)
Fin+1,2) = min(h(n,z, F(n,z)),r(n,x))
f(n,z) = F(I(t(n,2)),7)

for some t,r € Ly and l € T.

So we will be able to define new (multi)functions by 7-depth recursion when it will
be clear that our functions remain bounded.

Remark 3.1.7 It can also be proved that multifunctions defined as in Theorem
3.1.5 are Té’QlTl -provably closed under composition and BPR!™ (see [20]). As a

. ~iolml” . : .
consequence, when in a model of T§’2 , we will be able to define new multifunctions
preserving the recursive properties of the definition.

From Theorem 3.1.5 we get the following results.

Theorem 3.1.8 For every f € F|[|7|*]™ (wit) there is a 3'-formula 6(x,v,y) and

a function g € F[|7|*]™ such that Té’Qlle proves
1. O(x,v,y) — y < t(x), for some term t € Lpa

2. Yoyl (z, g(z),y)

3. Vavy(0(z, g(x),y) =y € Im(f)(x)).

Proof Let f € F[|7|“]* (wit) and let A,t,s,h,l be as in Theorem 3.1.5. Consider
the function )
g(z) == maz v < M@ (T <t Az, w,v)).

By Theorem 3.1.5 such a v exists. Moreover it can be found using binary search in
I(s(z))|* steps by asking the X:F-oracle

Fo < WOy < t(z) < v < 20 A Az, w,v))

for suitably choosen values of zy, 2z, at each step. This means that g € F[|7|“]™.

Defining g appropriately we can have TA;"Q'T prove the following properties:

o Vz3ly(y = g(x))
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o Va(g(x) < 2MG@IIY)
o Vziw < tA(x,w,g(zx))
o Vo < 1@ (4 > g(z) — —Fw < t Az, w,v)).
Thus we have
~iolTl

T, FVedy <t3w <t(h(w) =y A Az, w, g(x))).

Taking 6(z,v,y) to be the f]i’—formula y <tAJw <t(h(w)=yAA(r,w,v)) gives
the desired result. O

Theorem 3.1.9 For every f € F[|7|“|™ (wit) there is a multifunction
f1 € Fl|7|°)% (wit) such that T;Qlﬂw proves:

1. Yadyly € Im(f")(x))

2. flcf

3.y € Im(f')(x) < 0(z,9(x),y)

for some function g € F[|7|“1 and f]?—formula O(x,v,y) satisfying
O(z,v,y) =y <t(x) for somet € Term(Lpa).

Proof Let f € F[|7|°]™ (wit) and let 6(x,v,y), g € F[|7|“]* be as in Theorem
3.1.8. Define f’ as a multifunction that first computes g(z), then asks the oracle for
a witness y for 6(z, g(x),y). O

This theorem says that it is possible to get, maybe not all, but at least some values
of the multifunction f € F[|7|*]* (wit) by asking the oracle just once for a witness.
Of course the other YES-NO answers are needed; they are provided by ¢. Similar
results were proved in [12] and [7]. As a corollary of this we have the following
equality of classes.

Theorem 3.1.10 [\T!“]Ef(wit) = [|T\“’]Ef.

Proof: Let X € [|7]“]% (wit) and let f be its characteristic function. By Theorem
3.1.8 there is a X0-formula 6(z, v, y) and a function g € F[|7|*]* such that

Vavy(0(z, g(x), y) — y € Im(f)(x)).

Then we have Vz(0(z, g(z),0)VO(z, g(z),1)). Consider the function h that on input
x computes g(z), then asks 0(z, g(x),1)? and outputs 1 if the answer is YES, and
0 otherwise. Clearly h € F[|7|*]* and in fact h = f. Hence X € [|7]“]*'. We have
proved [|7|“]% (wit) C [|7]*]*. The other inclusion is obvious. O
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We will have to consider (multi)functions using parameters from a fixed set S. This
class can be defined as follows:

Definition 3.1.11 We fix S an enumerable set of new constant symbols.
® ,CS = LBA usS.
e We continue to use the notation Té’T for our theories when working with Ls.

~olT|@ P
o We say that TQZ’Q‘ | proves that f € F[|7‘|w]§ (wit) if for some n > 1 there are
symbols z1, ..., 2z, € {x}US and g € F[|7“1* (wit) such that

752 EVa(Im(f)(x) = Tm(g) (21, - 2a)))

(recall this is an equality between sets).

° F[|T|w]§?cl,...,cm(Wit) means F[‘T’w]iz{cl,...,cm}(Wit): when ¢, ...,¢, are other
constant symbols.

o F[|T|W]§f is defined similarly.

We prove some easy facts about these classes that will be used later.

Lemma 3.1.12 Let S U {a,b,c,d} be an enumerable set of constant symbols and
suppose that T;"Q‘T‘

also:

proves d = (b, c) and a = t(c) for some Lga-term. Then it proves

WP, o=
1. F[|7| ]S,d(w2t> = F|7| ]S,b,c(wlt)
wiZt wzt
2. Fl|r["]s,(wit) C F|7["]s.(wit)

3. for every f € F[\T!w]g?bjc(wit) there is some f' € F[|T\w]§?c(wit) such that

Im(f)(a) = Im(f")(b).

The same results hold in the single-valued case of FHT\“’]?F

Proof: Using (b, c) or {b, ¢} as parameters is the same, as you can do some coding
P

or decoding before running your function in F[|7|“]¥i (wit), these operations being
included in that class. A similar reasoning shows that

wx? w1} .
Fllr s (wit) = FlIT["]sq o(wit)
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P
7

and so condition 2 is clear. Let g € F[|7|“]* (wit) and sy,...,s, € S such that

A

T2i’2|7|w FIm(f)(a) =Im(g)({(a,c,b,s1,...,8))

(a previous reordering of variables may be necessary, but this is also allowed in
F[|7|“T¥ (wit)). Let f" be the multifunction defined by

f(x)=g(a,c,x,s1,...,8,)).

Then f’ € F[[T|w]§?a7c(wit) and clearly

1327 F Im(f)(@) = Im(f)(0).
By condition 2 we have in fact f’ € F[[T\w]gi(wzt} O

Theorem 3.1.4 readily generalises to this setting, as well as the subsequent Theorems
3.1.5, 3.1.8 and 3.1.9. In particular we have the following version of Theorem 3.1.9
which is needed later.

Theorem 3.1.13 Let T be a theory on Ls containing Té’zm . Then, for every
2 7

f € Fl|r|°]5 (wit) there is a multifunction f' € F|[|7|*]5 (wit) such that T* proves
1. Ya3y(y € Im(f')(x))
2. flcf
3.y € Im(f")(z) < 0(z,9(z),y)

for some function g € F[|T|“’]§f and Sb-formula 0(x,v,y) of Ls satisfying
O(x,v,y) =y < t(x) for somet € Term(Ls). O

This theorem has a useful application in the next lemma.

Lemma 3.1.14 Let T" be a theory on Ls containing Té’QlTl . Let o(x,y,u) be a
~ P
112-formula with parameters i in S and suppose that for every f € F[|7‘|“’]§Z (wit)

T ¥ Vavy(y € Im(f)(z) — ¢(z,y, 1))
Then the theory TT U {Jy(y € Im(f)(a) A —p(a,y,a)) : f € F[|T\w]§§(wit)} is
consistent, where a is a new constant symbol not in Ls.
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Proof Suppose that the following theory is inconsistent:

P
@

T+ U {3y(y € Im(f)(a) A~p(a,y,0)) : f € F[Ir*]5" (wit)}.

By compactness there are some multifunctions fy,..., f, € F[|7’]w}§f (wit) such that
T 9o\ Vy(y € Im(f;)(z) = ¢(w,y,u)).
Jj<n
For every j < n let f; € F[\T!w]gf(wit), 0i(x,v,y) € f]i’, gj € F[|T]“’]§f, and
t; € Term(L) be as in Theorem 3.1.13, i.e.
L fiCf
2.y € Im(fj)(x) < 0;(x, g;(x), y)
3. 0;(z,v,y) =y <tj(x).
Then we have:
T+ Ve \/ Vy(0;(z, g;(x),y) — o(z,y,1)). (3.1)

Jjsn

Consider the multifunction f operating as follows on input x:
1: For j =0ton do

2: Calculate g;(z).

3: Ask Vy < t;(2)(0;(z, g;(x),y) — oz, y,1)) ?

4: If the answer is YES ask for a witness y
for ;(z, g;(z),y) and STOP with output y.

5: If the answer is NO put j := 7+ 1 and go to 1.

By (1) above there is some j < n for which the answer is YES. On the other hand
we have that the queries are 112 and they are, in number, less than

(HTo(so(@))* +1) + -+ (|l(su ()™ + 1)

for some terms [; € 7, s; € Term(Lpa) and k; € N. Note that this is bounded by
I(s(z))|* for some | € 7, s € Term(Lpa) and k € N. Also f uses a finite number of

parameters from S, thus f € F[|T|w]§f(wit). Now note that f satisfies
3% F vavy(y € Im(£)(@) — (.4, )

but this is in contradiction with the hypothesis. U
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3.2 Constructing in a multifunction resource

Definition 3.2.1 For the purposes of this section we fix a set S of constant symbols
plus two other constant symbols a,c. We use the following notation:

o o(z,y) is a Xb-formula of Ls.

e T'" is a theory on Ls containing Té’zw .
o Ly:=LsU{a}.

o T}y is the Ly- theory
w1 2P .
TTU{3y(y € Im(f)(a) No(a,y)) : f € FlIr[*]5" (wit)}.
Moreover, we suppose Ty consistent.

We want a model M of Ty with a 2-substructure N = TS’Q‘T‘W satisfying Vy o(a,y).
This will be done in section 3.3 and will have as a consequence the witnessing
Theorem 3.3.4. This will also allow us to get the extension result of section 3.4 and
its corresponding conservation and witnessing corollaries 3.4.5 and 3.4.6.

For N to be a f]?—substructure clearly it suffices to have some kind of closure under
multifunctions in F[|7]|“]* (wit). Recall how a similar result is proved for Buss’s
theory T% : inside a model of it the closure of an element under functions in F P>
is again a model of T%, which is Sl-elementary (see [10], [31]). Here we would like
for example to take

N ={y € Im(f)(a) : f € Fllr[*]* (wit)}

but the problem is that not every image y of a by f is “good” in the sense that it
satisfies o(a,y). We can put in N only “good” images y of a but the same problem
arises when considering the images of those y.

We will see in this section that it is possible to iterate this process of selecting “good”
images to obtain a set N, that is F[|7|“]* (wit)-closed in the sense that

Vo € N,y € N, (y € Im(f)(z)).

The problem now is that nothing guarantees that N, is an Lga-structure. Take for
example in N, some b; € Im(f;)(a) for j = 1,2, and ask if by + by € N,. If we
consider the multifunction x — fi(x) + fa(x), all that we know is that 0] + 0, € N,
for some 0} € I'm(f;)(a), but maybe by + by # b} + b5. This problem is resolved in
section 3.3 by constructing N as an intersection of sets V. starting with N,,.
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Definition 3.2.2 Let M =Ty and ¢ € M. We abbreviate by C(M, c,a) the follow-
ing conditions
1. For every f € F[’T|w]§i(wit>, M EJy(y € Im(f)(a) No(a,y)).

2. a=t(c) for somet € Term(Lpa).

So condition 1 means that the fact of including ¢ as a parameter for the multi-
functions does not change the property of a of having “good” images under any
f e F[|7’]w]§f(wz’t). Note for example that we have C(M,a,a), or C(M,s,a) for
s € §. We understand condition 2 as “a can be easily extracted from ¢”. To help
reading the following lemmas you can think as if ¢ = a. In fact we will use this
possibility of substituting ¢ by a to construct N,, but in order to have N closed
under L, we will allow our multifunctions to use parameters ¢ € N, and so we
need the more general approach.

Definition 3.2.3 Let M =Ty and c € M. We call RM the set defined by

RM .= {x € M : for every f € F[\T!w]gi(wit),M = Jy(y € Im(f)(z) No(a,y))}

P
Elements of RM are those having “good” images under any f € F [\T!w]g (wit) using

c as an additional parameter. For example a € RM. The letter R is for “resource”.
It is inside this kind of set that we will construct our models.

Lemma 3.2.4 Let M =Ty and ¢ € M satisfy C(M,c,a). Then

1. a,c € R¥

2.¥r e RM, M E o(a,x)

Proof That a € RM follows from the remark after Definition 3.2.2. To see that
c € RM take f € F[\T|w]§fc(wz't). Let f. be the constant function x — ¢ and let

h=fof. Then h € F[|T|w]§i(wit) and as a € RM we have that

M = 3y(y € Im(h)(a) A o(a,y)).

But I'm(h)(a) = Imf(c), so c € RM.
For the last point just take f to be the identity function. O
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The next lemma is a first tool allowing to keep only “good” images from a multi-
function.

Lemma 3.2.5 Let M |= Ty and let ¢ € M satisfy C(M,c,a). Then, for every
f e F[|T|w]§fc(wit) there is a T -provably total multifunction f € F[|7‘|w]§fc(wz't)
such that f C f and for every b € RM

M = Vy(y € Im(f)(b) — o(a,y)).

Proof Let f € F[|T|“]§i(wit). Using Theorem 3.1.13 (and considering 7" as an
Lo U {c}-theory w.l.o.g.) f can be restricted to a TT-provably total multifunction

f' € Flj7|“]5 (wit) defined by
y € Im(f')(z) < 0(z, g(7),y)

for a 0-formula 6(x, v, y) with parameters from SU{c} and a function g € FPSEZ(T)

Let f be the multifunction in F [|T]w]§;(wit) which on input z do the following:
1: Compute g(x).

2: Ask Jy(0(z, g(x),y) No(a,y)) ?

3: If the answer is YES then output a witness y for this.

4: Else, output a witness for Jy 0(x, g(z),y) (there is always some one).

Clearly f C f and T proves f is total. Now let b € RM. By definition of RM we
have that M |= Jy(y € Im(f')(b) A o(a,y)), i.e.

M = 3y (0(z, g(b), y) Ao(a,y)).
Then for = b the answer in line 2 is YES, hence Yy(y € Im(f)(b) — o(a,y)). O

Now we would like to restrict a multifunction f to have its images not only “good”
but having themselves “good” images under a fixed g. This is a first kind of closure
property we ask for, treating composition of multifunctions. The next lemma shows
how to satisfy the condition above but only for the set of images of a fixed element
be RY.
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Lemma 3.2.6 Let M |= Ty and ¢ € M satisfy C(M,c,a). Let b € RM. For every
f g€ F[|7‘|w]§fc(wit) there is a T -provably total multifunction f € F[|7‘|w]§fc(wit)
such that

LM Im(f;)(b) € Im(f)(b)

2. M =y e Im(f)(b) o(a,y)
3. M= Yy e Im(f))(b) 3z € Im(g)(y) o(a, z).

Proof Consider the multifunction A defined on input x by:
1: Compute y € Im(f)(x).

2: Compute z € I'm(g)(y), while keeping y in memory.

Ask o(a,z) ?

If the answer is YES, output y.

AN S

Else, output z.

Clearly h € F[\T!w]gi(wit) and can be defined in 77 in such a way as to prove that
w € Im(h)(z) if and only if

Fy3z(y € Im(f)(z) Az € Im(g)(y) A(o(a, 2) Nw =y) V (mo(a, z) Aw = 2)]).
By Lemma 3.2.5 there is h € F[|7[*|5 (wit) such that
hch A Yolwe Im(h)(b) — ola,w)).
Then we have
w € Im(h)(b) — Jy3z(y € Im(f)(b) Az € Im(g)(y) Aal(a,2) Aw = y).
From this we get that
w e Im(f)(b) A J2(z € Im(g)(w) A o(a, 2)).

Hence h is the multifunction f{ we were looking for. U

Thanks to this lemma, for b € R¥ and f,g € F[|T|w]§;(wit) we can speak about
the “good” images of b by f which have “good” images under g. This set is defined
as follows.
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Definition 3.2.7 For every b € RM and f,g € F[[T|w]§i(wit) we put
[fB))? :={yeM : MEyecIn(f)(b) Nola,y) NIz(z € Im(g)(y) No(a,z))}.
The next lemma contains some easy remarks which are used later.

Lemma 3.2.8 Let M = Ty and let ¢ € M satisfy C(M,c,a). Then, for every
bt € RM and f,g € F[|T|w]§fc(wit) the following holds:

1M = Im(f;)(b) C [f(b)]?

M= [f(0)]7 #0

M =y € [f(b)) o(a,y)

M |= Im(f)(b) < Im(f) (V) — [fO) < [f'(0)]
M= (Vadly y € Im(f)(x)) — [f()) = {f(b)}-

SR

Proof From definitions conditions 1,3,4 follows easily. We get condition 2 from
condition 1 and the fact that f; is total in M, while condition 5 is implied by
condition 2. U

D
Now we ask for a bit more: we want, for b € RM and f € F[|T|w}§fc(wit), a restric-
tion of the set Im(f)(b) such that every element has “good” images under every

P
multifunction g € F [|T|w]§ic(wit). For this we naturally want to take intersections

of sets [f(b)]? with ¢g varying in F [\T|w]§pc(wzt) The following two lemmas allow us
to do this for a finite number of multifunctions ¢ by proving that the intersection is
not empty.

Lemma 3.2.9 Let M = Ty and let ¢ € M satisfy C(M,c,a). Let b € RM. Then,
for every f,qg,h € F[|T|w]§fc(wit) we have

M = Im(((f))(b) € Im(f1)(b) N [f(B)]"-

Proof By Lemma 3.2.6 we have
M = Im((f);)(®b) € Im(f) () A Im(f)(b) € Im(f)(D).

From the second inclusion above we get by Lemma 3.2.8 that
M = Im((f))5) () C [F ()] C [f0)]"
Hence M = Im(((f{)1)(5) € Im(f)() N [ ()" O
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Lemma 3.2.10 LetM =Ty and c € M satisfy C(M,c,a). Letb € RM. Fizn € w,

£ 90,90 € F[|7|” ]Sc(wzt) and put fo = f° and fr1 = (fr))™ for k <n.
Then

1. M = Im(fn)(b) C Ny [F (D))
2. M = Ny, [£(D)]% # 0.

Proof We prove condition 1 by induction on n. The case n = 0 is Lemma 3.2.8-1.
Suppose condition 1 holds for n. We have

m(fni1)(0) = Im((fa)y" ) (0) = Im(((fa-1)5" )" ) (D).

Then by Lemma 3.2.9 and induction hypothesis
m(far1)(0) C Im((fu-1)5")(0) N [fr1 (D)}

C IT”(fh)(b)rW[fh_l(b”9n+1
C ﬂkgn [f<b>]gk N [fnil(b)]ganl

Now note that by Lemma 3.2.6-1 Im(fy)(b) C Im(f)(b) and for every k <n

m(fre1)(0) = Im((fr)y")(b) € Im(fi) (D).

This implies in particular Im(f,—1)(b) C Im(f)(b) which combined with Lemma
3.2.8-3 gives [fn_1(b)]9 C [f(b )]gn+1 Thus

m( fas1)(b ﬂ DI N [fB))er = () [F(B)]e*.

k<n+1

From 1 we get 2 as f, is a total multifunction. O

Now we can prove the main theorem of this section, constructing a set N, of “good”

elements which is ¥ [[T|”]§i(wit)—closed, and setting conditions enabling us to iterate
the construction in order to extend this closure property to multifunctions using
other parameters. We have to use a compactness argument in order to take infinite
intersections, so we move to an elementary extension of the original model.

Theorem 3.2.11 Let M be a countable model of Ty, and let ¢ € M satisfy C(M, ¢, a).
There is a countable elementary extension M, of M and a subset N. C M, such that

1. {a}US C N,
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2. N. C RM-
3. Yy € N, M. = 0(a,y)
J. Va € N, Vf € Fl|r[*|5.(wit) , Im(f)(x) N N, # 0

5. Vx € N, (c,z) € N, and C(M,, (¢, x),a).

Proof For every f € F[|7’|w]§i(wit) let e; be a new constant symbol. As ¢ € RM
we obtain from Lemma 3.2.10 with b = ¢ that the theory

Th(M) U U {es € [f(0)7: g € Fl|r|*T5 (wit)}
seFlIrIlan (wit)

is finitely consistent. By compactness and Lowenheim-Skolem theorem we get M., a
countable model for it, which we can suppose w.l.o.g. extending M. Then for every

f € Flir|lss (wit)
M, N [F(b)]e # 0. (3.2)
seFIrI]5 (wit)

Put
N.=UNO@F . f.g€ Flirl*sL wit).
f 9

Remark: Note that N, can alternatively be defined by letting f vary only in

F [\T|w]§f(wz’t) (i.e. both definitions give exactly the same set). This is because for
every f € F[|T\“’]§?C(wit) there is some [’ € F[[T\w]gf(wit) such that Im(f)(c) =
Im(f")(c) (by Lemma 3.1.12-3 with b = ¢ and d € S) and so, by Lemma 3.2.8-4,

[f(c)]? = [f'(c)]?. This will be used in the proof of lemma 3.2.12.

We supposed C(M, ¢, a) so there is some term t of Lg4 such that a = t(c). Consider
the function f(x) :=t(z). As was remarked in Lemma 3.2.8-5,

[f())? = {f(c)} = {a}

and this for every g € F[|T|w]§i(wit). This proves that a € N.. A similar argument
considering constant functions f(z) = b for every b € S shows that S C N.. From
Lemma 3.2.8-3 it follows that Vy € N., M = o(a,y), and of course this is valid in
M. too. From definitions it is clear that N. C RMe . So we proved conditions 1,2,3
(condition 3 follows also from condition 2).
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To prove condition 4, let b € N, and let h € F[|7’]w]§i(wit) such that

be N [h(c)]e.

0 F[|7|] 5% (wit)

For every g € F[|T|w]§?c(wit) we have that [f(b)]? C Im(f)(b), and as b € Im(h)(c)
we have [f(b)]Y C [f o h(c)]¢ also. Hence

F®)I c Im(f®) N[(VIf oh(e)l* < Im(f)(B) NN,

g

where ¢ varies over F[\T!w]gpc(wzt) By (3.2) we conclude that Im(f)(b) N N, # 0.

Now we prove condition 5. Let b € N.. To see that (c¢,b) € N. consider the
function h € F[|T|w]§fc(wit) given by h(z) = (c¢,z) and apply condition 4. For
C(M.,{c,b),a) let f € F[[T\w]iic’b)(wit). As C(M, ¢, a) holds, we have a = t(c) for

some t € Term(Lpa). So by Lemma 3.1.12 there is some f’' € F[|7’|w]§i(wit) such
that

M, |= Im(f)(a) = Im(f")(b).
By condition 2 we have b € RMe hence M, = Jy(y € Im(f')(b) A o(a,y)). That

gives us the first condition of C(M,, (c,b),a). The other one is clear as you can
extract first ¢ from (¢, b), then a from ¢ by using Lpa-terms. O

Starting from M and ¢ € M satisfying some hypotheses, namely C(M, ¢, a), Theorem
3.2.11 gives thus an extension M, of M and a set N, with some properties. But it
says too that those hypotheses are also verified by M, and any (c,b) with b € N,
(3.2.11-5). So application of the theorem can be iterated to obtain an increasing
elementary chain of models (M, ),e, with corresponding sets N,,. We already know
that these sets contain a US. Next we prove that in fact they form a decreasing
sequence.

Lemma 3.2.12 Let M be a countable model of Ty, ¢ € M satisfying C(M, c,a), and
let M., N. as in the proof of Theorem 3.2.11. Let b € N, and ¢ = (c,b), and let
M., Ny be obtained by applying again 3.2.11 to M, and ¢'. Then N, C N.,.

Proof By Theorem 3.2.11-5 we have that ¢ € N.. So let h € F[[T\w]gi(wit) such
that



P
@

In particular ¢ € Im(h)(c). Then for every f € F[|T\w]§ (wit) we have

Im(f)(c') € Im(f o h)(c)
and then [f(¢)]9 C [f o h(c)]? by Lemma 3.2.8-4. Thus we have

N ) c (\ [foh(e).
v (7] (wit) s <F (7[5 (wit)
From ¢ = (c,b) we get by Lemma 3.1.12 that F[|T|w]§i(wit) C F[|T|w]§i/(’wit).
Hence

N ) c ) [feoh(o)r.
yeF (|75l (wit) seF 7[5 (wit)
Using the remark in the proof of Theorem 3.2.11 we obtain
Ne = U ARG
P[5 (wit)  geFlirIo, (wit

Hence

N, C U N [foh(c))? C N..
seFlIrTst (wit) - geF[Ir]sk (wit)

O

Remark 3.2.13 Note also that Ny is F[\T|w]§i, (wit)-closed, which is the same as

being F[[T\w]ifcb(wit)—closed by Lemma 3.1.12. So this says that we have gained a
little in terms of closure with respect to N, as we can use an additional parameter
from N,.. By iterating this procedure, as the N.’s are decreasing, we eventually
obtain a set N closed under every f € F [|7’|w]§f (wit) using any parameter from N,
i.e. N will be closed under two-variables multifunctions. In particular N will be a

Lp4-substructure of an elementary extension of M preserving f]f—formulas.

3.3 A model of 702"

Let My = To. In this section we use Theorem 3.2.11 to construct an elementary

extension of M, with a ﬁ)?—substructure N TS’ZM consisting of “good” elements.
We start with N, and proceed as explained in remark 3.2.13.
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Theorem 3.3.1 Let T be a theory on Ls containing Ty* | o a XY(Ls)-formula

and My a countable model of
T U {3yly € Im(f)(a) Aola,y) : f € FllrJ5" (wit)}.

There is an elementary extension M of My and an Ls-substructure N of M such
that

1. ae N
2. N <¢0 M

3. N 12"
4. N EVyo(a,y).

Proof We repeatedly use Theorem 3.2.11 to construct a increasing elementary
chain of models (M,,)ne., With corresponding sets (N,,),>1. Each set N,, C M,, will
be of the form N,, for some a, € M,. Apply Theorem 3.2.11 a first time with
¢ = a; := a to obtain M; = My and N; = N, (a is in fact the only element ¢ € M,
for which we are sure C(M, ¢, a) holds). Now fix an enumeration of N;. Suppose
that for n > 1 we have obtained M,, and N, from M,_; and a, as in 3.2.11, and
suppose also that NV,, C Nj. Let b, 1 be the first element in the enumeration of N;
lying in N,, and put a, .1 := (an, bpy1). Apply Theorem 3.2.11 to get M, 1, Npi1-
By Lemma 3.2.12 N,,,; C N,, C Ny, so we can continue in this way. Put

M:=JM, ., N:=[)N.

new n>1

For every n > 1 we have {a} US C N,, and M,,_; < M,, by Theorem 3.2.11. Hence
My < M and {a} US C N. Now we prove the closure property of N we wanted.

Lemma 3.3.2 Let ¢, € N, f € F[|7[*|5.(wit). Then N N Im(f)(c') # 0.

Proof of Lemma 3.3.2 Let ¢ € N. By the construction of N =, ., N, we have
that a,+1 = (a,,c) for some n € w. Let k > n. As ¢ € N, we have by Theorem
3.2.11-(4) that

Vf € Fllr|°ley, (wit), No, 0Im(f)(c) # 0.

ie, My =be Im(f)(c) for some b € N,,. As My < M, this holds in M too. Now
note that by the a,’s construction we have ¢ = t(ay) for some Lpa-term t, hence by
Lemma 3.1.12 we have

Fll7[“)5 (wit) © Fl7|“)5, (wit)

Ak

and the result follows. O
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Lemma 3.3.3 Let u and ¢ means respectwvely uy,...,u, and ci,...,cn and let
Y(u,e) be a 112, formula of Ls with implicit bounds for i and parameters ¢ from
N. The following hold

1. If c€ N, then t(c) € N, for every term t of Ls.
2. Ife,d € N, then (c,d) € N.
3. If M |= 3u y(u,c) then Ju € N such that M = ¢ (u,c).
Proof of Lemma 3.3.3 By considering respectively the functions x — t(x) and

z +— (c,x) we deduce conditions 1 and 2 from Lemma 3.3.2 . By condition 2 we
have that ¢ := (ci1,...,¢,) € N. Consider a II? | formula 1 (u, ¢) such that

M, ¢) o (), (), 0).

Note that we can suppose w.lo.g. that u is bounded in ). AS M E Ju Y(u,c) we

have M |= Jutp(u, ). Consider the multifunction f in F[|7|* ] (wzt) which assigns
to = a witness u for ¢)(u, z) if there is one, and 0 else. Then

M = Yu(u € Im(f)(c) — d(u, c)).
By Lemma 3.3.2 there is some b € N such that M = (b, ¢). Hence

M= 9((b)y; - (b))

and by condition 1 we know that (b),,...,(b), € N. O

As a consequence we get that N is an Lg-substructure of M (consider formulas like
Jy(y = t(xy,...,2,)) for t € Ls) and we can deduce by Theorem 1.3.4 that

N < M. (3.3)

Now we prove that N = T2 2 et 0(j,c) be a X! formula with parameter ¢ € N

(now it suffices to consider formulas With one single parameter as we know N is
Ls-closed). Let d € N of the form 21" for some I € 7, s € Term(Ls), k € N
and b € N and suppose that

N E=0(0,¢) AN=6(d,c).

By (3.3) above M satisfies this also. Consider the function f with parameter ¢ that
on input x uses binary search to find some j € M such that

M = j < 206EIN A3 ) A=6(j +1,¢).
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As M = TS’QIT‘W we can define f in M. This function queries a 3! oracle |I(s(x))[*

times, hence f € F [|T|w]§?c(wit). Moreover f is single-valued, so by Lemma 3.3.2
j:= f(b) € N. Finally, as N <4, M we have

NEj<dA0G,e)A—00 +1,¢).
Now let b € N. For any n > 1 we have b € N, thus M,, | o(a,b) by Theorem

3.2.11-3 . But M,, < M and N <¢» M, hence N = o(a,b). So N = Vy o(a,y).
This ends the proof of Theorem 3.3.1. U

As a consequence we obtain a model-theoretic proof of a witnessing theorem for

> . . A~ olTl® . . .
32, ,-definable multifunctions of Ty*" . For another proof using the witness function
method of proof-theoretic character see [20].

Theorem 3.3.4 (Witnessing theorem for Té’QlTl ) Suppose that

732" - Vadyp(a, )
where ¢ € 3, |. Then for some f € F[|7|“]™ (wit),

132" FVavy(y € Im(f)(x) — o(x,y))-

Proof First we argue that it suffices to prove the result for ¢ € ﬂi’ Suppose
the theorem established for any ¢ € II? and let us prove it for a ¥? ;-formula

Y(x,y) = Jup(z,y,u). We suppose that o(z,y,u) is a ﬂf—formula containing a
bound for u. Note that
£ 271

T3 F a3y (e, y) — Ya3zo(e, (2)1, (2)s)-

By our assumption there is some f € F[|7|“]* (wit) such that

~

13*7" V(= € Im(f)(@) = ele, (2, (2)2)).
Defining f'(z) := (f(x)); we have TA;?‘T‘W FVaVy(y € Im(f')(x) — Jup(z,y,u)).
We now prove the theorem for ¢ € II?. Suppose that for every f € F[|7|“]™ (wit)
3% ¥ avy(y € Im(f)(x) = o(e,y)).
By Lemma 3.1.14 the theory
;%" U {3yl € Im(f)(@) A —p(a,y) : ] € Fllrl*P (wit)

is consistent, where a is a new constant symbol. Take M, any countable model
of this theory. By Theorem 3.3.1 there is an extension M of M, with a substruc-

ture N containing a and satisfying TAQi’QlT‘ and Yy—¢(a,y). This contradicts the
hypothesis. U
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3.4 Extending to a model of T,

The technique used in this section is inspired from Zambella [31]. In his proof of
Buss’s theorem he adapts an unpublished model-theoretic argument used by Albert
Visser to prove the Mint’s-Parsons theorem of ¥;-conservativity between PRA and
I3, ([15],]19],[26]). The difficulty of applying this technique is that we need theorem
3.3.1 (see comments at the beginning of section 3.2).

Theorem 3.4.1 Leti > 1. Every countable model M = Té’ww has aVZA]f-elementary

extension K = TA2i’2|T‘ such that for every ﬁf—formula o(x,y), possibly with param-
eters, there is f € F[|7‘|w]i (wit) satisfying

K | Vaedye(z,y) — Vavy(y € Im(f)(z) — »(z,y)). (3.4)

Proof Model K is constructed as the union of an increasing Vf]f—elementary chain
M = M, =y M, =<ysp - - Sys M, ...

of countable models of Tg’z”' . Let us suppose My, ..., M, constructed and consider

for every j < n enumerations (¢(; ) )rew of Il-formulas ¢(xz,y) with parameters in

M.

J

To construct M, consider the formula ¢ such that (j,k) = n (note that its
parameters are in M;, hence in M, as j < n). We want M, satisfying (3.4),,, which
is formula (3.4) with ¢, in place of ¢ and parameters in M,. Note that formula
(3.4) is equivalent to a EIVif—formula. As the chain is ‘v’if-elementary this implies
by Theorem 1.3.1 that formulas (3.4),, will be preserved up to the union K. Note
also that at the end all the f[é?—formulas with parameters in K will be considered.

If M, already satisfies (3.4),, for some f € FHT|W]§;” (wit) then we let M, = M,.
Otherwise, we extend M, in a way to satisfy JxVy—¢,(z,y). If (3.4), is false for

every f € FHT’w]?;n (wit) then

Vf € Fl|r[“Ta (wit), M, ¥Va¥y(y € Im(f)(x) — ¢(x,9)).

This is the same as saying that for every f € F[|T|w]§;n (wit),

Th(M,) ¥ Vavy(y € Im(f)(x) — p(z,y)).

Now Th(M,) is a theory containing TAS’Qllein a language L, extending Lpa by a
countable set of constants for M,,. Hence by Lemma 3.1.14 we have that

T, == Th(M,) U {3y(y € Im(f)(a) A ~pula,y)) : f € Fllr[*I3 (wit)}
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is consistent, with a a new constant symbol. Using Theorem 3.3.1 we get a countable
model M’ of T,,, in particular M’ is elementarily equivalent to M,, and we can suppose
w.l.o.g. that M’ is an L,-extension, and M’ contains an L,-substructure, which is
our M, 1, such that

1. a€ Mn+1

2. Mn+1 = M’

Aol
3. My ET57°

4. My |E Yy—pn(a,y).

As M, Cp, M and M, 1 C,, M', and L,, has constants for the elements of M,,, we
have that M,, C,, M,,;. This extension is ¥:’-elementary because M,, < M’ and
M,+1 <s» M'. Moreover it preserves also VX-formulas: from M, to M’ because

M, < M’Z, and from M’ to M, 4, because M, 1 <¢» M’. Now put

K::UMn.

new
By Theorem 1.3.1 we have M,, <,s» K for every n € w, in particular M <, K, and
thus K = T;’Q‘T‘ . Finally, as explained above, K satisfies (3.4) for every II’-formula

with parameters in K. Il

Lemma 3.4.2 Leti > 1. Let K = TAS’WPJ be such that for every I -formula @(z, 1)
D
possibly with parameters, there is f € F[|7‘|w]}2{ (wit) satisfying

K = Vadyp(z,y) — Vavy(y € Im(f)(x) — »(z,y)).
Then K |= %0, ,-DCI7.
Proof By Lemma 1.2.11 it suffices to show K | f[g’-DC‘T'. Solet a,be K, €T,

and suppose
K EVjVe <b3Jy <ba(j,z,y).

After the usual transformations that contract variables j and x into a single one using

pairing, it follows from hypothesis that there is a multifunction f € F HT’W]?; (wit)
such that

K | Vjve <bvy (y € Im(f)((j,z)) — y <bAal(jz,y)).

Define g € F[|T\w]?gp(wit) by BPRI” as follows (by (x) we note the one-element
sequence w such that (w)y = z):
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G(0) = (£((0,0)))
G+ 1) = min(G(5)"(f({4,(G(1));))),r(a; b))
9(z) = G(I(z)))-

Functions G and g use parameters a, b. Here 7(a, b) is a term bounding the sequence
v of length |l(a)| such that Vj < |l(a)| ((v); = b). As was remarked in 3.1.7 the

i,2l71

multifunction g can be defined by TQ in such a way that this theory proves g’s
recursive properties. In particular we have that (h(g(a)) = |l(a)| and

Vi <l(a)[((g9(a))j+1 < bA(g9(a))j+1 € Im(f)({4, (9(a));)))-
Putting w = g(a) we have
K V) < @)l((w); < bA ()51 < bAal, (@), (@)551)).
]

As a consequence of the preceding results we obtain the following extension theorem

Aol . . . .
for models of TQZ’2| . First we say what we mean by M satisfying an equality between
complexity classes.

Definition 3.4.3 Leti > 1 and M = TS’Z‘T‘w. We say that
M & (e = £, N eoS2,,
if for every formula ¢(x) satisfying
M = Vz((e(z) < 0(2) A (o(z) < P(2)))
for some § € XL, and ¢ € I, ,, there is a 0-1 function f € F[|T|“’]§; such that
M EVr(p(r) < f(z) =1).

Theorem 3.4.4 (i > 1) Every countable model M = Té’QlTlu has an exstension K
such that:

1. M—<V25 K.

9 K | T

3. K (|71 = Xip1 Moy,
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Proof By Theorem 3.4.1 and Lemma 3.4.2 we know that M has a Vf]ﬁ?—elementary
extension K |= 32, -DCI™l but clearly K satisfies already EBASIC and AS-INDI"!

hence by Lemma 1.2 K =T Now let o(z) such that

M = Vr(p(r) < g (z,y1) < —Iyaaa(r, y2)). (3.5)

for some «; € ﬂf, j =1,2. Then we have

M = VaIy(ai(z,y) V ai(z,y)).

As the formula in the scope of Jy is f[f, Theorem 3.4.1 applies, so there is some
Y4
f € Fl|7°]% (wit) such that

M = Vavy(y € Im(f)(x) — (au(z,y) V aa(z, y)). (3.6)

Now let g the function that on input x computes some y € I'm(f)(x) and then asks
ap(z,y)? If the answer is YES then g(z) = 1, else g(x) = 0. Note that by (3.5) and

(3.6) the value of g(x) does not depend on y. So g € F[|T|w]?; (wit) is single-valued
and clearly:

K Va(p(a) & gla) = 1),

To conclude we argue as in the proof of 3.1.10 to prove that in fact g € F[|T|”]§:
O

In the case i = 1 and 7 = {z} we get that every model of T} has a V3!-elementary
extension to a model of S? satisfying A = 38 N co-%. See [13] p. 127 for a model
of PV satistying P = NP Nco-NP.

Theorem 3.4.5 (i > 1) The theory Tg“"ﬂ is V3XL, | -conservative over T;Q‘Tl :

Proof Suppose Tgiﬂ’m F Vzo(z), ¢ € Hifﬂ- Let M E Tzi’QlTlu and let M’ be
countable and elementarily equivalent to M. Extend M’ to K | T3 using
Theorem 3.4.4. Then M’ < ¢» K and K = Vap(z). But M’ < s K is the same as

M’ <asp K, hence M' = Vxp(x) and the result follows. O

Theorem 3.4.6 (Witnessing theorem for T§+1’|T|) Suppose that
Ty Vadye(e, )

where ¢ € X, |. Then for some f € F[|7|“]™ (wit),

T2 vavy(y € Im(f)(x) — o(x, ).
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Proof Follows immediately from the witnessing theorem for Té’QlTI (Theorem 3.3.4)
and the conservativity result above. U]

Remark 3.4.7 It is not difficult to see that the method used in this chapter applies

in the general case of a language containing #; for any k > 2 (see section 2.1 for a
definition). In particular we obtain for k =3, i =1 and 7 = {||z||}:

R2 =5y S-IND?""

but the latter theory is Si as in the presence of #5 we have that Vo Jy 217" = |y|.
So this strengthens corollary 2.1.3.
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Chapter 4

Replacement

Inside a recursively saturated model of TS’M we construct a f]?—elementary substruc-
ture satisfying EfH—REPL'T‘. The technique used is purely model theoretical and
comes from Ressayre’s [22] conservation theorem between Zﬁ’ﬂ—REPLle and S§ .

Thus, we obtain a model theoretic proof of the ‘v’ifﬂ-conservatwity of ifﬂ-REPL'T'

over T;"T‘ which was proved by Pollett [20] using the witness function method of proof
theoretic character. In section 4.1 we do some preliminaries. In section 4.2 we give
conditions which suffice to obtain the desired structures, and in section 4.3 we show
how these conditions are fulfilled in a recursively saturated model.

4.1 Preliminaries

In this chapter, we will use some equivalent versions of replacement and strong-
replacement schemes. They will allow us to keep control of the length of the se-
quences, particularly when we will concatenate them.

Definition 4.1.1 (Replacement+) Given o(z,y), a formula which might contain
parameters, we note by a-REPL.j the formula
Ve <ady <ba(x,y) —

Jw (seq(w) ANlh(w) =a+1Amz(w) =bAVr <a alz, (w),)).
If T is a set of terms, V-REPL,™ is the scheme

{Va¥h a-REPLA® . aeW,ler}.

Lemma 4.1.2 The schemes $0-REPL™ and S'-REPL.™ are equivalent over EBASIC.
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Proof: The only important difference with respect to the original replacement
scheme is that we impose [h(w) = a+1, i.e. (w), = 0 for z > a. However, this does
not cause any problem as we want only to conclude Vz < a a(z, (w),)). O

Definition 4.1.3 (Strong replacement+) Given a(x,y), a formula which might
contain parameters, we note by a-STRONG REPL.} the formula

Jw(seq(w) A lh(w) =a+ 1 Ama(w) =b A
Ve < a(@y <baley) — alz, (w).)).
If T is a set of terms, W-STRONG REPL-" is the scheme
{Va¥b a-STRONG REPL“ : a e U,l €1},

Lemma 4.1.4 The schemes Y'-STRONG REPL™ and %!-STRONG REPL.
are equivalent over EBASIC.

Proof: Same remarks as for the proof of Lemma 4.1.2. O

So we will continue to refer indistinctly to REPL or STRONG REPL when using
the + versions of them.

The following lemmas recall some easy consequences of the theories 7. 2” For con-
venience we state them in a model theoretic setting.

Lemma 4.1.5 Let M be an Lpa-structure, a € M such that M |= Ty*. Then
M =T,

Proof: This is done by a classical speed-up argument. We only prove the special
A -

case Ty" — Ty, since the general case can be handled in a similar way. Let o(z)

be a Yt-formula and suppose that

M = ¢(0) AV (p(z) — @z +1)).

We want to derive p(a?). Let 6(z) = a(ax). Then we have M = 6(0). Let b € M
and suppose M |= 0(b). Set a(b,y) = p(ab + y). Then we clearly have

M = «a(b,0) AVy (a(b,y) — a(b,y + 1)).

Since o € 3¢, we get by induction a(b, a), i.e. p(ab+a), i.e. O(a(b+1)). Therefore,
we have proved
M EVz (0(x) — 0(x + 1))

so we get M |=6(a), i.e. M |= p(a?). O
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Lemma 4.1.6 Let M be an Lpa-structure, a,b € M such that a < b and M = Tg’b.
Then M = Ty°.

Proof: Let p(z) be a f]i?—formula and suppose that
M = @(0) AV (p(x) = ¢z +1)).

Apply IND? to the formula 8(x) = (z < a A p(x)) V (. > a A p(a)). O

Lemma 4.1.7 Let M be an Lpa-structure, a € M such that M = Té’M. Then
M Ty g

Proof: The fact Té’lal — T;’Ia‘w follows from Lemma 4.1.5. Let & € N. Then
2llallk < |g[F+1 and the result follows by Lemma 4.1.6. O

Lemma 4.1.8 Let M be an Lpa-structure, and let a,b € M such that a < |b| and
M E=Ty%. Then

a. M |=X'-REPL®
b. M = $-COMP*
c. M =3"-STRONG REPL®.

Proof:  This is a more general statement than the theorems 1.2.2, 1.2.5 and
1.2.8 as a need not to be equal to |¢| for some ¢ € M. In other words, the set
log(M) :={]z| : x € M} is not necessarily an initial segment of M (this is true
if M | Sj for example). Nevertheless the proof is the same, and it is done by
induction on a. The fact that a < |b| allows to bound the corresponding w in each
scheme. O

The following lemma says that we can concatenate sequences in a suitable way.
Lemma 4.1.9 Suppose that wy and wsy are sequences in a model M such that:
1. For j =1,2, mj := ma(w;), l; := lh(w;)
2. M E3J2(l + 15 < |2])
3. M = Sb-INDh+,
Then there is a sequence w € M such that:

e mz(w) = max(my, ms)
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o [h(w)=11+1

o Vu < max(ly,la)((u<ly — (w)y = (w1)y) A (u <ly = (W) 44 = (W2)u)).

Moreover this w is unique. We call it the concatenation of wy and ws and note it
by w1 ws.

Proof: Note that we have
Ve <l + 1y Jy <max(my,ms) (x <l Ay=(w)) V(e >l Ay = (w2)ey,)).
By Lemma 4.1.8 we can use f]l{—REPLh“? in M. We get that
Jw(seq(w) A lh(w) =l + lo A ma(w) = maz(my, ma)A

Ve<li+l (x<lhANw)e=(w):) V(x> A(w)=(w)sy,))-

The result follows after some easy transformations. Uniqueness is proved by f]l{—[ ND
on the length of w. Il

4.2 Obtaining substructures

The first lemma gives a general way to obtain f]?—substructures via some simple
conditions.

Lemma 4.2.1 Let M be an Lga-structure, I a cut in M. Suppose for every k € I
we are giwen some elements b € M and subsets W), C M. Let M := Ukel Wi and
suppose that the following holds:

1. Wy C Wiy for every ke 1

2. (br)ker is cofinal in M

3. for every ﬂz’_l-formula v, kel and x € Wy,

if M3y <bpp(r,y), then Iy € Wiia s.t. M Ey < by p(,y)
4. My CLga M.
Then My <¢p M.
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Proof Let t be a term of Lgya, a(y,c) a ﬂf_l—formula with parameter ¢ € M,
and suppose M = Jy < t(c)a(y, c) (the case with many parameters can be reduced
to this one using the pairing function). As ¢ € M; we have by condition 4 that
t(c) € My, then by conditions 1 and 2 there is some k € I such that t(c) < by and
¢ € Wy. Thus, we have

M | 3y < be(y < t(e) Aa(y, ).

By condition 3, there is such a witness y in Wy, hence in M; as [ is a cut. We
conclude applying Theorem 1.3.4. O

The following lemma recalls an easy fact, useful to get elementarity properties when
constructing models.

Notation: For an Lga-structure M and a,b € M, we put
[a,b]p :={z €M : MEa<z<b}.

Lemma 4.2.2 Let M, M’ be Lpa-structures such that M' <¢, M. Let c € M such
that [0,c]y € M'. If 6(z) € B(XY) with parameters in M’ then

M E 3z <c(x) if and only if M' = Fz < ¢ 6(x).

Proof Obvious. O

By adding such a condition to those of Lemma 4.2.1 we obtain sufficient conditions
to get X0-elementary substructures of models of Ty” satisfying also that theory.

Theorem 4.2.3 Leti > 1, 7 a set of unary terms. Let M = To", I a cut in M.
Suppose for every k € I we are given some elements by, € M and subsets W), C M.
Let My := U,y Wi and suppose that the conditions 1-4 of Lemma 4.2.1 hold, and
additionally

Vier, ce My, [0,i(c)]a C M.
Then

a. My =5 M

b. M; =Ty
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Proof By Lemma 4.2.1 we get M; <g M. Now let a(j,d) be a 20-formula with
parameter d € M;. Let [ € 7, ¢ € M; and suppose that

M; E a(0,d) A —a(l(c), d).
By (a) this is also satisfied in M. As M = Ty" we have that
M E3j <l(c)(a(j,d) AN —a(j+1,d)).
By condition 5 we can apply Lemma 4.2.2 to conclude that M also satisfies this. [

From now on we suppose 7 is recursively given. This is a natural assumption as
otherwise the theory T, would not be recursive.

Notation: When M |= seq(w) AVEk < r seq((w)x) we note:
o wy = (W)
o Wiy:={zeM:ME Ju<lh(w) (r = (wg),)}, the set coded by wy

Now we give sufficient conditions to get a substructure satisfying a property which
is near from our desired replacement scheme. A special cut is used and the model
M ; becomes in fact an intersection of sets Wy, for k =r to r — w.

Lemma 4.2.4 Let M be a recursively saturated Lpa-structure, let r € M\N and
let w € M such that M = seq(w) ANVEk < r seq((w)g). Set

Ji={r—n:n<uw}
and let My :=J,c; Wi. Let c € My and suppose the following holds:
1. Wy C Wiy for every k <r
2. (wi)res C My
3. 10,¢]lp € My
4. My <gp M.
Then for every 0(x,y) € I | d € My, if
M;EVr<c3dy<d(z,vy)
there is k € J such that

MEVYr<caye Wy (y <dAl(x,y)).
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Proof Suppose that M; = Ve < ¢ Jy < d 6(z,y). By condition 3, 4 and Lemma
4.2.2, M also satisfies this formula. By 1 we have M; C W,_, for every n < w.
Thus for every n < w

MEVr<c3dyeW,_,(y <dAb(z,y)).
That means that the following type t(k) is finitely satisfiable in M
{Ve<cIye Wi(y <dANb(z,y)}U{k<r—n:n<w}

By saturation there is some k realizing t(k), and this k is clearly in J. O

4.3 A model of 3!, -REPL"! inside one of T;"

In this section we prove that the conditions given in 4.2 are sufficient to obtain a
f]f—substructure satisfying f]i’ +1—REPL|T‘ in a recursively saturated model of T: 21"7‘.
Then we show that these conditions can be fulfilled in such a model, by constructing
suitable sequences w and b. To this aim we need an overspill argument in the length
of the induction available in M. This is done in the following lemma.

Lemma 4.3.1 Leti > 1, 7 a set of unary terms. Let M be a recursively saturated
model of T2, There is some q € M\N such that

a. M | Va3y 2@ <|y| | for every l € 7

b. M ): Té’mlfﬂ“ql.

Proof Consider the following recursive type ¢(q)
(vaIy 2@ < )1 e 7} U - IND?" M < wlertU{g>nin <w)

where (1, )n<y is an enumeration of 3’-formulas. By Lemma 4.1.7 M |= TS’QW@)H'"
for every [ € 7,n < w. But

T2172Hl(z)|\.n - ‘v’xEIy 2||l(x)||.n < |y|
Hence t(q) is finitely satisfied and the result follows by saturation. O

The following lemma includes the conditions of section 4.2. These conditions to-
gether with the conclusion of Lemma 4.2.4 yield that our substructure also satisfies
¥t -REPLI.
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Lemma 4.3.2 Leti > 1, 7 a set of unary terms. Let M be a recursively saturated
model of Tg"ﬂ and let ¢ € M as in Lemma 4.3.1. Let r € M\N, r < |||q|||, and
let w,b € M such that M |= seq(w) A seq(b) ANVk < r seq((w)y). Let J be the cut
{r—n:n<w} and let My :=J,c, Wi. Suppose the following holds:

1. Wy C Wiy for every k € J

2. (wi)kes, (bk)res C My, g € M,

3. (bi)kes s cofinal in M

4. [0, 22%‘”(5”)“'“‘1”]]\4 C My for everyk e J,l €T,z € M,
5. [0, Ih(wg)|y € My for every k € J

6. My Cp,, M

7. My E T for every k € J

8. for every f[ﬁ’_l-formula v, ke J and x € Wy,

if M E=3Jy<b, p(x,y), then Jy € Wiy s.t. M =y < by o(x,y).

Then

a. MJ‘<2I_;M

b. My | %2, -REPLIF.

Proof By Lemma 4.2.1 we have M; <4, M. Now note that, as in the proof of

Theorem 4.2.3(b), we can deduce from condition 4 and Lemma 4.2.2 that for every
kelJ

§,22% 1711 1all

M, T . (4.1)

For 3¢ -REPLVF it suffices to derive TI:-REPLI™” by Lemma 1.2.3. So let
O(z,y) € f[f, leT,n<w,cde My and suppose that

M; | Va < [i(¢)]"3y < d 8(x.y).

As [I(c)|* < 2l we have that [0, [I(c)|"]ss € My. Then by Lemma 4.2.4 there
is some k € J such that

M EVz <|l(c)]"Ty € Wi(y < dAO(z,y)).
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That is, for some k£ € J

M EVz <|l(c)]"Fu < Ih(wg)((wg), < dAO(x, (wg)y))-

(4.2)

By condition 2 this formula has its parameter wy inside M;. By condition 5 and

Lemma 4.2.2 we have that 4.2 is satisfied also in M;. Now set

O(z,u) = (wi)y < dAO(x, (Wg)y).

Using pairing we can code variables x,u into a single one. We set

O(2) = ispair(z) A (z)1 < |I()]" A (2)a < lh(wk) A P((2)1, (2)2).

Then we have
My b=V < |I(c)|"Vu < Th(w)(®(z,u) — D((z,u))).
By Lemma 1.1.9

z < |I()|" Au < Th(wg) — {x,u) <16 - max®(|l(c)|", Ih(wy)).

(4.3)

Let a := 16 - max?(|i(c)|, Ih(wy)). As |I(c)|" < 2l we have by Lemma 4.1.6
and (4.1) above that M; = T II" From this and condition 7 we deduce, by
applying Lemmas 4.1.5 and 4.1.6, that M; |= T%. Hence, by Lemma 4.1.8 we can

code validity of ®(z) under a :

M; = FVz < a (®(2) < Bit(v,z) = 1).

Thus, we have

M; | Ve < |l(c)["Vu < lh(wg)(P(z,u) < Bit(v, (x,u)) = 1).

From this and (4.2) above with M in the place of M we get
M; E Ve < |i(c)|"Fu < lh(wy)(Bit(v, (z,u)) = 1).

Now we can use Ab-REPL!™” in M; to obtain

M | FuasVz < |l(e)|"((s)z < lh(wg) A (Bit(v, (z, (s))) = 1)).

Substituting according to (4.4) and (4.3) we obtain successively

M; = 3sVr < |I(c)["((8)z < lh(wy) A P(z, (8)2))

and
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My b 3s(Ve < UM (s), < thlwn) A (w0, < dAO, (0)w.)-  (45)
To conclude we use again Ab-REPLI”. Clearly we have
My VsV < |i(c)]"Fu < d((wk)(s), = u)

thus
M; V53 Ve < 10NV < dA (). = (A)a).

From this and (4.5) we get finally
M = 3AVe < ()" (N)a < dAO(2, (N)a)))-
U

In fact nothing is gained by satisfying ig’H—REPL'T'w instead of ifﬂ—REPL'T' as
these two schemes are easily seen to be equivalent over EBASIC (see [20]).

In the following theorem we construct sequences w, b in order to get the conditions
of the precedent lemma satisfied.

Lemma 4.3.3 Leti > 1, 7 a set of unary terms. Let M be a recursively saturated
model of T;’M and let ¢ € M\N as in Lemma 4.3.1. Let a be an arbitrary element
of M.

Then, there are two sequences w,b of nonstandard length r +1 < |||q||| such that
M E=VE <r seq(wg), and for every k < r the following holds:

a. q,a € W

b. by = maa:{wk+1,2|bk|2}

C. Wg,br € Wiy

d. W, C Wiy

e. Wi x W, C Wy

£. 0,22 @Il € Wiy for every l € T, x € Wy
g. [0,lh(wg)]pr C Wi

h. M = T

i. for every ﬂ?fl—formula oV,

M EVr e W3y < by p(x,y) — Jy € Wi (y < b Ap(z,y))).
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Proof We can express all these conditions by the following type ¢(w, b) with
parameters g, a:

(t1) seq(w) A seq(b)

(£2) {n < th(w) = th(d) < Illall| : n < w}

(t3) Yk < lh(w) seq(wg)

(t4) q,a € Wy

(t5) Yk < lh(w) — 1 (bpy1 = maz{wgyq, 257}

(t6) Yk < lh(w) — 1 ({wyg, b} U W, U (Wy x Wi) U [0, lh(wg)]pr C Wiya)
(t7) {Vk < lh(w) — 1 Vo € W, [0,22" @Il c Wi,y : 1 eT}

(t8) {Y-IND™MwK) : ¢ e 30}

(29)

t9) {Vk <lh(w) —1 Ve € Wi(Jy < b p(z,y) — Fy € Wiy < b Ap(x,y))) -
pelly_}

Now we prove that ¢(w,b) is finitely satisfied. Let ¢;, be a finite subset of t(w, b).
For suitables n,m < w and some finite 7y C 7, we have that ¢y, is included in the
type t72,,,(w, b) obtained from ¢(w, b) by replacing (t2), (t7) and (t9) respectively by:

(t20) th(w) =1h(b) =n+1
(t70) {Vk <nVzeW [07222kl|l(x)||-||¢1|\]M C Wi @ L€ 7_0}

(t9) {Vk <nVe e W3y < by pj(z,y) — Fy € Wiga(y < b Apj(x,y))) : 5 < mb.

Here (¢;)j<, is some enumeration of 12 -formulas. Note parenthetically that
t70,.(w, ) is infinite, as we have not changed (t8). Consider now the following finite
type s;?m(w, b):

s1) seq(w) A seq(b)
s2) Ih(w) =1h(b) =n+1

s4

s5) Yk < n (bpy1 = maz{wyyq, 2%°})

(s1)
(2)
(s3) Vk < n seq(wy)
(s4)
(s5)
(56)

s6) Vk < n ({wk,bk} U, u (Wk X Wk) C Wk+1)
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(s7) {Vk < nVaz e W, [0,22" M@l c Wiy 1 e}
(s8) Vk < n (Ih(wg) < 22 sEollldly for some I, € 7o and some e € Wy

(s9) {Vk <nVx e Wi(Jy < bk pj(z,y) = Fy € Win(y < b Apj(a,y))) = j < m}.
We argue now that in order to show that 70, (w,b) is satisfied, it suffices to check
the satisfacion of s7°, (w,b). This is trivial for (t1), (t20), (t3), (t4), (t5) and (29).
From (s6), (s7) and (s8) we get (t6) and (7). Now note that

k< |l|q]|| — 2% IFlHlall < olilllal

so by the Lemmas 4.3.1(b), 4.1.6 and 4.1.8 we have
Vee M, M k=< 22 Illdl = pf = Ti¢ U S2-STRONG REPLS.  (4.6)
From this and (s8) we get SL-TNDW0) je. (18).

Now we prove that s7, (w,b) is satisfied for every n,m < w. Let us fix an arbitrary
m < w and finite 7o C 7 , and prove that M F s7°, (w,b) by induction on n.

For n = 0 put by = ¢, let b := (by), the one element sequence containing by, and
let wy be the two element sequence containing g and a. Conditions (s1)-(s9) are
trivially satisfied.

Suppose now the type t7°, (w,b) is satisfied by some w,b € M, ie. we have
Wo, - .., wy, and by, ..., b, satisfying (s1)-(s9). We will add elements w41, b, 41 to
each sequence w, b respectively.

Condition (s5) forces b,11 = max{wn+1,2‘b“|2}. Sequence w,; is defined as the
concatenation of some sequences vy, ..., v,.5 described below:

e v is the two elements sequence containing w,, and b,

® VU2 = Wp

vy codes the (Ih(w,))? elements of W,, x W,

227 li(eo)l-lall for some suitable | € To, Co € W,

vy codes all numbers less than 2

for every j < m, vs,; is such that

Vo € Wo(Jy < by @j(z,y) — Fu < 1h(vs;)((Vs15)u < bn A @j(2, (Vsi5)u)))-

Moreover we can ask for

o [h(vg) = 22" llin(en)ll llall+4
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o [h(vy) = 22" o)l lall 4 1
o Ih(vss;) = 22" InCenlllall for overy j < m.
The existence of vy, vs is clear. By Lemma 1.1.9 we have that if
x,y < lh(w,) < 922" [ln (en)||-I1all

then
(z,y) < 22" Hlinen)lllall+4

By the property (4.6) above we have that

M E Jug(seq(vs) Alh(vg) = 22" lin(enlllalta g v < 922 lin(en)]l-lal -+4
(ispair(z) A (x)1 < Th(wa) A (z)2 < Th(wn) = ((Wn) @) (Wn) @) = (v3)a))-

In order to satisfy (s7) we have to choose for v, some I € 70 and ¢y € W, such that
l(co) > l(x) for every | € 79 and x € W,,. To do this consider the formula 6(u) given

by

dz < lh(wy,)(z < un \/ Vy < h(w,)(y <u— /\ (lj((wn)w) > lj’((wn)y))))

j<card(o) j'<card(To)

where (I;) j<card(r) 1S any enumeration of 75. By (s8) and Lemma 4.3.1(a) we have
that 6(u) is in fact a Ab-formula. It says that a maximal element as the one we
are looking for exists if we restrict ourselves to the first u elements coded by W,,.
Clearly we have

M E 0(0) AVu(O(u) — 0w+ 1)).

By conditions (s8) and 4.6 we can use induction up to lh(w,) in M, thus getting
O(lh(wy,)). Once those [ € 75 and ¢y € W), determined it is easy to get vy coding the
set [0, 22°" 1)l llall], - with the desired length.

The existence of vs,; for j < m follows also from $-STRONG REPL2Z " ImemiHlal
We have for every j < m

M 3usy;(seq(vssy) Alh(vsyy) = 22 el A vz < 222" llin(en)ll gl
(@ < lh(wn) Ay < bpg;((Wn)e,y) = (V545)e < bn A @j((Wa)a, (51)z)))-

By Lemma 4.1.9 there is some w,, 11 coding the union of the sets coded by vy, ..., Vs
and such that [h(w,+1) = lh(v1) + - - - + [h(vs4;). Thus,
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(wny) = Th(w,) + (m+ 1)22" lmEnlHlall | 92 iim(en)lHall+4 | 92" lieo)lllall 4 3
< 922" Fn(en)llllal+5 4 922" li(co)llllall

Now set )
1 >
(lnt1, €ns1) = { (Lo, en) 1 bnlen) 2 Uco)

(I,co)  otherwise.
Then l,41 € 19, €01 € W,, C W,,11 and

fanlll

Ih(wpi) < 922 lint1(ent1)ll-llal|+5 ~ 92 n1(ens)l]. gl

Hence, every type t°,, (w, b) is satisfied. We conclude that ¢(w, b) is finitely satisfied,
and the result follows then by the saturation of M. O

Now we can prove the main theorem of this chapter.

Theorem 4.3.4 Leti > 1, 7 a set of unary terms. Let M be a recursively saturated
model of T and let a € M. Then there is a submodel N of M such that

a. a€ N

c. M =3P -REPLI.

Proof Let ¢ € M\N as in Lemma 4.3.1 and let w,b,r € M and (W}),<, satisfying
(a)-(i) of Lemma 4.3.3. Put J := {r —n:n < w} and M; := |J, ., Wi. We check
that conditions 1-8 of Lemma 4.3.2 are satisfied.

Note that conditions 1,5,8 are respectively consequences of (d),(g),(i) of Lemma
4.3.3; condition 2 follows from (c) and (a), and condition 7 from condition 5 and

(h).

Let z € M; and k € J such that x € W. By (b) we have z < wy, < by, hence (bg)res
is cofinal in M ;. This is condition 3.

Now let k € J,l € 7, x € M;. Let k' € J such that ¥’ > k and x € W},. Then
92 N@Illlall < 92 N@ILlall and by (£) we have

[O, 222k ||l(33)”||q|‘]M C Wk/+1‘
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As Wiy C My we get condition 4.

Now we prove condition 6, i.e. that M; is an Lga-structure. Let ¢i,co € M; and
k € Mj such that ¢;,co < bg. Let t € Term(Lpa). Clearly we have t(cq, co) < 9lbk|*"
for some n < w, and by (b) this is bounded by by,. Using (e) and (d) we get that
d := (c1, o) € Wiy Hence

M = Jy < bryn(y = t((d)1, {d)2)).

By (h) there is such an element y in Wj,,+1, hence in M;. Of course this y is unique
and equal to t(cq, ).

So Lemma 4.3.2 can be applied and we get that M; <¢ M and M; = fJ?H—REPL'T‘.
To conclude note that a € M; by (a). O

As a consequence we get a purely model-theoretic proof of the following theorem
(see [20] for a proof-theoretic one).

Theorem 4.3.5 Let ¢ > 1, 7 a set of unary terms. The theory EA]?H—REPL‘T' I8

VEIZA]i-’H-conservative over Té’lﬂ.
Proof Let us suppose that for some ¢ € if 1
EA]SH-REPL'T‘ FVe3dyp(z,y).
Let M = T. Qi’lﬂ and let M’ be a recursively saturated model elementarily equivalent
to M. Let a € M’ and apply Theorem 4.3.4 to get a Y’-elementary submodel

N E f]i-’Jrl—REPL‘T' containing a. Then N = Jyp(a,y). As N < M and M' = M
the result follows. Z O
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