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velles idées à proposer et aussi fait preuve de beaucoup de patience envers moi. Sans
lui ce travail n’aurait pas vu le jour. Je lui en suis très reconnaissant. Je veux aussi
remercier chaleureusement Sedki dont l’optimisme et les encouragements, ainsi que
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Claude Sureson.

J’ai eu la chance d’être introduit aux sujet passionnant des modèles de l’arithmétique
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Introduction

Arithmétique Bornée

On parle d’ Arithmétiques Bornées pour évoquer les théories arithmétiques où le
schéma d’induction est restreint aux formules dont les quantifications sont bornées:
des formules comme ∃x ≤ t ∀y ≤ s θ pour θ ouverte. Elles ont été introduites dans les
années 70 par Parikh [17] pour étudier des questions liées à des longueurs des preuves.
En particulier le système I∆0, induction pour toute formule à quantificateurs bornés
dans le langage {0, 1,+,×, <}.

Ces théories ne démontrent pas que la fonction exponentielle est totale. En effet,
le théorème de Parikh [17] dit que toute fonction prouvablement totale dans un tel
système est bornée par un terme du langage, un polynôme dans le cas de I∆0. En
conséquence la formalisation de certaines notions telles que les fonctions récursives
ou la manipulation de la syntaxe, devient une tâche nettement plus compliquée.
I∆0 peut néanmoins définir les fonctions de la hiérarchie linéaire de Wrathall (voir
[30],[23] ) ce qui a donné lieu à des travaux pioniers faisant le lien entre complexité
d’algorithmes et modèles de l’arithmétique (voir [18]). En revanche, cette théorie
est incapable de parler de fonctions calculables en temps polynomial, non plus de
substitution dans une formule, ni de preuves de taille polynomiale.

Pour ces raisons Paris et Wilkie [29] ont étudié dans les années 80 l’extension de
cette théorie à I∆0+Ω1, où Ω1 est un axiome disant que la fonction x|x| existe, et |x|
est la longueur de l’expansion binaire de x. Ce n’est pas l’exponentielle mais cette
théorie est en fait suffisament forte pour définir les fonctions correspondant à PH,
la hiérarchie polynomiale (Σp

i )i∈ω de Stockmeyer [24], à laquelle les informaticiens
s’intéressaient de plus en plus.

Plus tard Buss [4] introduit un langage avec, notamment, des symboles pour |x|
et la fonction x|x|. Il définit une théorie S2 qui est une extension conservative de
I∆0+Ω1 et des fragments qui vont “capturer” chaque niveau de PH. Pour cela Buss
introduit une hiérachie de formules (Σb

i)i∈ω, analogue à la hiérarchie arithmétique,
où à chaque niveau correspond un dans la hiérarchie polynomiale. Par exemple
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les formules Σb
1 définissent des prédicats NP . Ensuite il considère des théories

Si
2 avec un schéma d’induction jusqu’à |x| pour les formules Σb

i et caractérise les
fonctions Σb

i -définissables de Si
2 comme étant celles du niveau correspondant dans

la hiérarchie polynomiale, c’est à dire les fonctions calculables en temps polynomial
par une machine de Turing qui utilise un oracle pour un prédicat Σp

i−1. On a en
particulier Si

2 ⊂ Si+1
2 et S2 =

⋃
i∈ω S

i
2.

Montrer que la quantité d’induction disponible dans chaque théorie suffit à définir
la classe de fonctions correspondante est une vérification techniquement compliquée
mais plus ou moins de routine. C’est le problème inverse qui est plus intéressant, à
savoir, montrer que la théorie en question capture exactement la classe C de fonctions
voulue.

Il s’agit de prouver des théorèmes qu’on appelle witnessing theorems: si T démontre
∀x∃yφ(x, y) alors il existe une fonction f appartenant à C telle que ∀xφ(x, f(x)),
c’est à dire f(x) “témoigne” pour le quantificateur existentiel. Un théorème classique
de ce genre est celui de Mints-Parsons’s (voir [15],[19],[26]) qui caractérise les fonc-
tions primitives récursives comme étant celles prouvablement totales et récursives
dans IΣ1. Les techniques utilisées pour le prouver proviennent de la Théorie de la
Démonstration.

De même, Buss développa pour ses résultats une technique connue sous le nom
de witness function method. En analysant la dérivation d’une formule A dans le
système donné on constate qu’il est possible de mener au fur et a mesure le calcul
d’une suite de valeurs servant a vérifier la véracité de A, et ce par une fonction de
C. Il est à noter que cette méthode, bien qu’elle possède un caractère constructif, ne
permet pour autant de profiter pour en tirer des algorithmes intéressants car elle se
sert, afin de normaliser les preuves, d’un théorème d’élimination des coupures dont
le bornes connues à ce jour demandent un temps excessif.

En vue de cette correspondance entre la hiérarchie polynomiale et les théories Si
2 il

n’est pas surprenant que l’étude de nombreuses questions concernant la première soit
étroitement liée aux secondes. Kraj́ıček, Pudlák et Takeuti [14] ont démontré que
si S2 est finiment axiomatizable alors la hiérarchie polynomiale collapse. Plus tard
ceci a été amélioré indépendamment par Buss [5] et Zambella [31] : S2 est finiment
axiomatisable si et seulement si elle est capable de prouver le collapse de PH. Il
est relativement simple de voir que chaque Si

2 est finiment axiomatizable (voir [10]),
donc la même question pour S2 est équivalente à savoir si les théories Si

2 forment une
hiérarchie stricte, d’où l’importance d’obtenir des résultats de conservation, même
partiels, entre ces théories.

Ces dernières années, sous l’impulsion notamment de Pollett [20], d’autres sous-
systèmes plus généraux T̂ i,τ ont commencé à être étudiés. Ceux-ci comprennent
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essentiellement un schéma d’induction de longueur t(x), pour t appartenant à un
ensemble de termes τ et des formules Σ̂b

i (une sous-classe de Σb
i). Quand τ ne con-

tient que des termes à croissance lente, tels que la fonction |x| itérée plusieurs fois,
ces systèmes capturent des classes de complexité plus petites mais où l’on retrouve
souvent la même problématique que pour PH, savoir si les inclusions sont strictes.
D’où l’intérêt d’obtenir des witnessing theorems et des résultats de conservation
pour ces théories. Une autre motivation pour l’étude de ces systèmes est de mon-
trer d’éventuels résultats d’indépendance des principales questions concernant PH.
Résultats par exemple du type “on ne peut pas prouver le collapse de PH dans
le système S”, où S serait quand même capable de formaliser certains arguments
connus de complexité servant à séparer d’autres classes. Quelques résultats ont été
obtenus dans cette direction par Pollett [21].

La plus uniforme des méthodes utilisées pour obtenir ces résultats continue de se
fonder sur la technique de Buss. Néanmoins Wilkie [28] donna une preuve du
théorème de Buss par construction d’un modèle non standard (voir une version
simplifiée de Pudlák dans [10]). Zambella, qui considère des systèmes du second or-
dre, en donna une autre dans [31]. Ressayre [22] utilisa une construction de modèle
pour démontrer un résultat de conservation. Dans [13] on trouve d’autres construc-
tions de modèles ainsi que dans les travaux de Boughattas (voir [3] par exemple) et
Sureson [25].

Problèmes abordés dans la thèse et résultats

Le problème de conservation entre S1
2 et R2

2 (voir [7],[2]) a été la motivation pour
le travail du chapitre 2 . R2

2 est la théorie avec induction de longueur ||x|| pour
des formules Σb

2, notée aussi Σb
2-LLIND. En effet, bien que ceci était méconnu

par l’auteur au moment d’entreprendre les recherches, il avait été démontré par
Buss,Kraj́ıček, Takeuti [7] que S1

3 ≡∀Σb
2
R2

3, l’indice 3 indiquant la présence dans le
langage de #3 (cela revient à se placer dans le contexte des fonctions calculables en
temps superpolynomial 2|n|

ω
). La question se posait si ce résultat était valable pour

le langage L2.

On peut déjà se poser la question de savoir s’il y a conservation entre S1
2 et R2

2 pour
les formules Σb

1. Grâce au théorème de Buss on connâıt la classe de fonctions Σb
1-

définissable dans S1
2 , les fonctions calculables en temps polynomial. Afin de pouvoir

démontrer S1
2 ≡∀Σb

1
R2

2 il suffit de construire un sous-modèle Σb
0-élémentaire de R2

2 à
l’intérieur d’un ensemble, que nous appelons ressource, de la forme R(a) = {M(a) :
M est une machine de Turing de code ≤ r et M(a) est calculé en moins de |a|r
étapes } pour a, r ∈M\N, M étant un modèle de S1

2 .
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La difficulté de réaliser une telle construction réside dans le fait qu’on veut satisfaire
l’induction pour des formules Σb

2 sans avoir recours à des oracles, comme c’est le cas
dans la preuve de Wilkie du théorème de Buss. En effet, dans celle là on prouve,
dans le cas i = 2, que T 1

2 ≡∀Σb
2
S2

2 en construisant un modèle de Σb
2-LIND dans une

ressource R(a) comme ci-dessus, sauf que les fonctions ont accès à un oracle pour
décider sur les prédicats Σb

1. Certes, ici on demande seulement d’aller jusqu’à ||x||,
mais le problème de traiter deux alternances de quantificateurs reste.

Les constructions réalisées dans ce chapitre, fondées sur une idée de Ressayre, don-
nent une solution à ce problème dans le cas où le langage est enrichi avec #3. On
démontre donc qu’il est possible de construire un modèle de Σ̂b

2-LLIND(#3), qu’on
note R̂2

3, à l’intérieur d’une ressource R(a) = {M(a) : M est une machine de Turing
de code ≤ r et M(a) est calculé en moins de 2||a||

r
étapes } caractérisant de cette

façon les fonctions Σb
1-définissables de R̂2

3 et obtenant ainsi une preuve par théorie
des modèles d’un résultat de conservation entre S1

3 et R̂2
3 pour des formules Σb

1. Ce
travail a fait l’objet d’une publication [8] et une version plus simple contenant des
résultats antérieurs se trouve dans [9].

Deux questions se posent ensuite. Premièrement, est-il possible de réaliser une
construction similaire si on se restreint au langage L2? Deuxièmement, y a-t-il une
construction permettant d’étendre ce résultat à R̂2

3 ≡∀Σ̂b
2
S1

3 ?

L’ intérêt de la première question est évident, une réponse positive donnerait une
solution au problème de conservation entre S1

2 et R2
2, au niveau des formules Σb

1.
Nous avons cherché dans cette direction. La ressource R(a) en temps polynomial
parâıt petite pour abriter un modèle de R2

2. On peut alors essayer de contruire un
modèle d’une théorie entre R2

2 et S1
2 . Nous pouvons traiter l’induction Σb

2 jusqu’à
|||x||| mais à priori cette théorie ne contient pas S1

2 et la ressource s’épuise avant de
pouvoir inclure des axiomes pour cette partie là. Ceci conduit à se demander dans
quelle type de ressource on peut mener à bien la construction d’un modèle de R2

2 sans
avoir recours à des oracles. En trouvant des exemples naturels de telles ressources
on peut par comparaison avec (FNC)NP , la classe des fonctions Σb

1-définissable de
R2

2, conjecturer sur la validité de la conservation entre les deux théories. Cette
technique ouvre donc des perspectives intéressantes pour continuer les recherches et
rejoint l’esprit du travail mené depuis plusieurs années par Boughattas et Ressayre
où l’on cherche des ressources appropiées pouvant servir de terrain pour construire
des modèles de l’arithmétique.

Toutefois il faut noter aussi qu’il est naturellement possible qu’une telle construction
ne soit pas réalisable et que le résultat de conservation cherché s’avère faux. En
effet, Bloch [2] démontre que celui-ci impliquerait l’égalité entre les classes NC1

et NC, collapse qu’il considère peu probable. Mais l’approfondissement des idées
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allant dans la direction positive parâıt un moyen important d’éclaircir le problème
de toute manière.

La deuxième question est intéressante dans le sens où elle conduit à chercher des sous-
modèles Σb

1-élémentaires et pour ce faire on est amené à considérer des ressources
R(a) où les functions ont accès à des oracles NP , des fonctions Σb

2-définissables.
Mais pour avoir une bonne caractérisation de ces fonctions dans les théories T̂ i,τ

2

on admet des multifonctions. Une multifunction f est une relation binaire totale,
c.à.d. telle que ∀x∃yf(x, y). On sait que T̂ i,τ

2 peut Σ̂b
i+1-définir les multifonctions de

la classe FPΣp
i (wit, |τ |) (voir [20]) . Celle-ci correpond en particulier à un modèle

de calcul par machine de Turing avec une borne polynomiale pour le temps et la
possibilité de consulter un oracle Σp

i au plus |τ | fois. Le wit indique que cet oracle
est en mesure de fournir des témoins pour le quantificateur existentiel de la question
posée dans le cas où la réponse est affirmative. Une possibilité est alors d’élargir
ainsi nos ressources, les propriétés d’ élémentarité requises étant satisfaites. Mais
la façon de traiter les multifonctions n’est pas claire. Ces classes manquent de
certaines propriétés et par conséquent les techniques employées pour les fonctions
ne s’appliquent pas. On aborde cette question dans la première partie du chapitre
3, où l’on expose une façon de dépouiller les multifonctions en ne gardant que les
“bonnes” images afin d’obtenir des propriétés de clôture adéquates. On obtient
comme corollaire une preuve modèle-théorique du witnessing theorem pour Σ̂b

i+1-

définissabilité dans T̂ i,2|τ |
ω

2 prouvé par Pollett [20]. En conjonction avec une idée de
Visser utilisée par Zambella [31] pour donner une preuve par modèles du théorème
de Buss, on emploie dans la deuxième partie notre contruction pour étendre un

modèle de T̂ i,2|τ |
ω

2 en un de T̂
i+1,|τ |
2 . Il découle de ceci les théorèmes de witnessing et

conservation correspondant pour ces théories (voir [20]) et en particulier S1
3 ≡∀Σ̂b

2
R̂2

3

donc une réponse affirmative à la deuxième question posée ci-dessus.

La technique utilisée dans le chapitre 2 exploite les possibilités des modèles non
standard en considérant des machines de Turing indexées par des entiers inférieurs
à r pour un “petit” r > N et calculant en un temps polynomial à exposant aussi
non standard. Dans le chapitre 3 les multifonctions sont entièrement standard, mis
à part le fait qu’elles peuvent utiliser d’autres paramètres. S’ouvre donc ici une voie
de recherche, à savoir, combiner les deux méthodes en utilisant le débordement pour
une classe de multifonctions. Celle-là pourrait servir, par exemple, pour tenter de
construire un modèle de R2

2 dans une ressource obtenue par débordement à partir
de FPΣp

1(wit, log n)(a), où a ∈M |= S1
2 .

Dans le chapitre 4 on considère des schémas dits “de remplacement”. Dans [20]
l’auteur prouve des witnessing theorems pour Σ̂b

i+1-REPL
|τ | caractérisant ainsi la

classe des fonctions Σb
i+1-définissables par cette théorie, et obtient en comparant
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avec les résultats analogues pour T̂
i,|τ |
2 des théorèmes de conservation entre les

deux théories. Nous proposons ici une approche purement modèle-théorique de ce
problème au moyen d’une technique complètement différente de celles des premiers
chapitres. Elle a été employée par Ressayre [22] pour démontrer la Σb

i+1 conser-
vation de Σb

i+1-REPL sur Si
2 et garde quelques points de contact avec la preuve

du résultat analogue de ∀Σn+1-conservation entre BΣn+1 et IΣn (voir [10] p.230).
Cette méthode est assez propre dans le sens où elle utilise presque directement
les axiomes, en plus de quelques outils classiques de Théorie des Modèles comme
la saturation récursive. Aucune considération concernant, par exemple, la classe
des fonctions définissable par la théorie, n’est nécessaire. Afin d’appliquer cette
méthode dans le cas plus général des théories T̂ i,τ

2 un travail préliminaire plus at-
tentif est nécessaire. En particulier on a besoin d’un argument de débordement
appliqué au schéma d’induction, mais nous restons dans un cadre purement modèle
théorique. Nous obtenons ainsi des preuves directes des résultats de conservation
pour Σb

i+1-conséquences entre T̂
i,|τ |
2 et Σ̂b

i+1-REPL
|τ |.
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Chapter 1

Bounded Arithmetic

We introduce basic notions of Bounded Arithmetic and do some preliminary work,
proceeding rather swiftly as this is well done in many texts. Good introductory refer-
ences for these topics are [4], [10], [13]. Here we follow the more general approach
of [20].

1.1 Basic notions

Buss introduced in [4] a language which extends that of Peano’s Arithmetic by
adding bx

2
c, |x|,# where bx

2
c means the integer part of x

2
, |x| is the length of the

binary expansion of x and x#y (read x smash y) means 2|x|.|y|. Following [27] and
[20] we add two other primitives to allow smooth bootstrapping and to be able to
consider theories with very little induction.

Definition 1.1.1 (Language of Bounded Arithmetic)

LBA := {0,+, ·, .− ,≤, bx
2
c, |x|,#,MSP}

Here x .− y means x−y if y ≤ x and 0 otherwise. MSP is for “the most significant
part”: MSP (x, i) corresponds to number x without the last i digits, i.e. b x

2i c. As
usual we use 1 for S(0), 2 for S(S(0)), etc.

In chapter 2 we will consider a language containing a symbol #3 allowing a bit more
exponentiation than #.

Definition 1.1.2 BASIC is the open theory consisting in the following axioms:

1. x ≤ y → x ≤ S(y)

2. x 6= S(x)

7



3. 0 ≤ x

4. (x ≤ y ∧ x 6= y) → S(x) ≤ y

5. x 6= 0 → 2x 6= 0

6. x ≤ y ∨ y ≤ x

7. (x ≤ y ∧ y ≤ x) → x = y

8. (x ≤ y ∧ y ≤ z) → x ≤ z

9. |0| = 0

10. x 6= 0 → (|2x| = S(|x|) ∧ |S(2x)| = S(|x|))
11. |1| = 1

12. x ≤ y → |x| ≤ |y|
13. |x#y| = S(|x|.|y|)
14. 0#x = 1

15. x 6= 0 → (1#2x = 2(1#x) ∧ 1#S(2x) = 2(1#x))

16. x#y = y#x

17. |x| = |y| → x#z = y#z

18. |x| = |y|+ |z| → x#t = (y#t).(z#t)

19. x ≤ x+ y

20. x+ 0 = x

21. x+ (y + 1) = (x+ y) + 1

22. (x+ y) + z = x+ (y + z)

23. x+ y ≤ x+ z ↔ y ≤ z

24. x.0 = 0

25. x.S(y) = x.y + x

26. x.y = y.x

27. x.(y + z) = x.y + x.z

8



28. 1 ≤ x→ (x.y ≤ x.z ↔ y ≤ z)

29. x 6= 0 → |x| = S(|bx
2
c|)

30. x = by
2
c ↔ (2x = y ∨ S(2x) = y)

31. MSP (a, 0) = a

32. MSP (a, S(i)) = bMSP (a,i)
2

c
33. x .− y = z ↔ (y + z = x ∨ (z = 0 ∧ x ≤ y)).

As we have passed to a richer language we can already do some bootstrapping
without need of induction. In particular it is possible to define some kind of coding
functions as LBA-terms.

Definition 1.1.3 For n, k ∈ N new LBA-terms are defined by:

2|y| := 1#y

2|y|
n

:= b2|y|
n−1

2
c#y

2k.|y|n := 2|y|
n
.2(k−1).|y|n

cond(x, y, z) := (1 .− x).y + (1 .− (1 .− x)).z

K≤(x, y) := 1 .− (x .− y)

max(x, y) := cond(K≤(x, y), x, y)

min(x, y) := cond(K≤(x, y), y, x)

2min(|y|,x) := MSP (2|y|, |y| .− x)

LSP (x, i) := x .− MSP (x, i).2min(|x|,i)

β̂(x, |y|, w) := MSP (LSP (w, Sx.|y|), x.|y|)

Bit(x, i) := β̂(i, 1, x)

β̇(x, |y|, z, w) := cond(K≤(β̂(x, |y|, w), z), β̂(x, |y|, w), z).

9



Definition 1.1.4 (Bounded formulas)

• Quantifiers of the form Qx ≤ t, where t is a term, are called bounded quanti-
fiers. Those of the form Qx ≤ |t| are called sharply bounded quantifiers.

• Formulas with only sharply bounded quantifiers are called sharply bounded for-
mulas. This class is noted ∆b

0, Σb
0 or Πb

0.

• For i ≥ 0, Σb
i+1 Πb

i+1 are the smallest classes of formulas satisfying

1. Σb
i ∪ Πb

i ⊂ Σb
i+1 ∩ Πb

i+1

2. Negations of Πb
i+1 are Σb

i+1, and negations of Σb
i+1 are Πb

i+1

3. Both Σb
i+1 and Πb

i+1 are closed by ∧, ∨, and sharply bounded quantifiers.

4. Σb
i+1 is closed under bounded existential quantification.

5. Πb
i+1 is closed under bounded universal quantification.

• If T is any theory and i ≥ 1, we say that ψ is ∆b
i(T ) if

T ` (ψ ↔ ψ1) ∧ (ψ ↔ ψ2)

for some ψ1 ∈ Σb
i and ψ2 ∈ Πb

i .

Another hierarchy of formulas arises if we construct them by alternating existential
and universal bounded quantifiers. They are said to be in strict or prenex form.

• Σ̂b
0 are formulas of the form ∃x ≤ |t|ψ with ψ open.

• Π̂b
0 are formulas of the form ∀x ≤ |t|ψ with ψ open.

• Σ̂b
i+1 are formulas of the form ∃x ≤ t ψ with ψ ∈ Π̂b

i .

• Π̂b
i+1 are formulas of the form ∀x ≤ t ψ with ψ ∈ Σ̂b

i .

• If T is any theory and i ≥ 1, ∆̂b
i(T ) is defined analogously as ∆b

i(T ).

For any set of formulas Ψ we say that α ∈ B(Ψ) if α is a boolean combination of
formulas of Ψ.

Clearly every Σ̂b
i -formula is Σb

i but the converse need not to be true. In the standard
structure Σb

i and Σ̂b
i -formulas define the same sets. For i ≤ 1 they are those in the

i-th level of the polynomial hierarchy, Σp
i . Some theories are strong enough to prove

that every Σb
i formula is equivalent to a Σ̂b

i one. This has to do with replacement
schemes, defined in section 1.2. In this thesis we will be mainly concerned with the
prenex hierarchy.

10



Definition 1.1.5 (Induction) Given α(x), a formula which might contain param-
eters, we note by α-INDa the formula

α(0) ∧ ∀x(α(x) → α(x+ 1)) → α(a).

When Ψ is a set of formulas and τ a set of unary terms, we note Ψ-INDτ the
scheme {α-INDl(x) : α ∈ Ψ, l ∈ τ}. In particular we write α-IND for α-INDx,
α-LIND for α-IND|x| and α-LLIND for α-IND||x||.

Definition 1.1.6 ([20]) EBASIC is the theory containing BASIC plus the follow-
ing axioms:

1. y < 2min(u.|z|,|z|2) →MSP (x.2min(u.|z|,|z|2) + y,min(u.|z|, |z|2)) = x

2. y < 2|z| ∧ x < 2|z| → (β̂(0, |z|, x.2|z| + y) = y ∧ β̂(1, |z|, x.2|z| + y) = x)

3. S(x).|y| ≤ u→ β̂(x, |y|, w) = β̂(x, |y|, LSP (w, u)).

These axioms are necessary to get a form of pairing and coding in our theories. It
has to be noted that they can be derived from BASIC using only Open-LIND [20],
so assuming them costs very little.

Now there are many ways EBASIC can define a pairing function. We will use the
following one as it has a clear decoding function. To form a pair 〈x, y〉 you first add,
if necessary, some leading zeros to the binary representation of the shortest number
to give them both the same length. Then you add a leading 1 bit to both and finally
concatenate them. To recover the coordinates you only have to cut 〈x, y〉 in half
and then delete the first bit of each half.

Definition 1.1.7 ([20]) For any x, y we set

〈x, y〉 := (2|max(x,y)| + y).2|max(x,y)|+1 + (2|max(x,y)| + x).

The two projection functions are defined by

〈z〉1 := DMSB(LSP (z, b|z|
2
c))

〈z〉2 := DMSB(MSP (z, b|z|
2
c))

where DMSB means “delete most significant bit”:

DMSB(x) := x .− b2
|x|

2
c.
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Contrary to the classical Cantor form of pairing, not every integer codes a pair here.
Nevertheless you can define a simple predicate saying when this holds. Moreover
you can prove in EBASIC existence and uniqueness of this pairing code.

Definition 1.1.8 ([20]) We note ispair(z) the following formula

Bit(z, b|z|
2
c .− 1) = 1 ∧ 2.|maz(〈z〉1, 〈z〉2)|+ 2 = |z|.

Theorem 1.1.9 EBASIC proves the following

1. ∀x∀y∃!z(ispair(z) ∧ 〈z〉1 = x ∧ 〈z〉2 = y)

2. 〈x, y〉 ≤ 16 ·max2(x, y), for x, y 6= 0.

Pairing will allow us to contract variables that are consecutively quantified by the
same kind of quantifier. Consider for example a formula ∃x∃y α(x, y, u). Over
EBASIC this is equivalent to ∃z(ispair(z)∧α(〈z〉1, 〈z〉2, u). This argument will be
used frequently, sometimes implicitly.

Definition 1.1.10 For n ≥ 3 we inductively define n-tuples by

〈x1, . . . , xn〉 := 〈〈x1, . . . , xn−1〉, xn〉

and we note by 〈z〉n the n-th projection.

Of course a theorem like 1.1.9 can be proved for any n. In particular we need the
notion of triple which can be easily defined as follows. Please note that we use ≡
for syntactical equality.

Definition 1.1.11 istriple(z) ≡ ispair(z) ∧ ispair(〈z〉1).

Definition 1.1.12 Sequences w are triples 〈cd(w),mx(w), lh(w)〉 where cd(w),
mx(w), and lh(w) are intended to mean respectively the code, the maximal number
coded and the length of the sequence. So we put simply seq(w) ≡ istriple(w) and
define functions cd(w),mx(w), lh(w) as the three projections when w is a sequence,
and 0 otherwise. Decoding is defined by

(w)x =

{
β̂(x, |mx(w)|, cd(w)) if seq(w) and x < lh(w)
0 otherwise.

12



Definition 1.1.13 For i ≥ 0 and τ any set of unary terms, T̂ i,τ
2 is the theory

EBASIC ∪ Σ̂b
i-IND

τ .

For τ being {x}, {|x|} or {||x||}, we call it respectively T̂ i
2, Ŝ

i
2 and R̂i

2.

The following theorem states a well known property of some induction schemes.

Lemma 1.1.14 T̂ i,τ
2 is equivalent to the theory EBASIC ∪ Π̂b

i-IND
τ .

Notation: If t is any LBA-term, T
i,t(ω)
2 is the theory

⋃
n∈ω T

i,t(n)
2 . Similarly, if τ is

a set of LBA-terms, τω is the set
⋃

n∈ω{ln : l ∈ τ}.

1.2 Other schemes

In this section we introduce other axiom systems, some of them being equivalent to
an induction scheme. We will use them especially in the last two chapters.

Definition 1.2.1 (Replacement) Given α(x, y), a formula which might contain
parameters, we note by α-REPLa

b the formula

∀x ≤ a∃y ≤ b α(x, y) → ∃w ∀x ≤ a((w)x ≤ b ∧ α(x, (w)x)).

When Ψ is a set of formulas and τ a set of unary terms, Ψ-REPLτ is the scheme

{∀a∀b α-REPL
l(a)
b : α ∈ Ψ, l ∈ τ}.

Theorem 1.2.2 For i ≥ 1, T̂
i,|τ |
2 ` Σ̂b

i-REPL
|τ |.

Proof This is a straightforward induction argument on the length of w. ¤

Therefore in the presence of T̂
i,|τ |
2 we can push inside |τ |-bounded quantifiers in front

of Σ̂b
i -formulas enlarging in this way the class of formulas T̂

i,|τ |
2 -provably equivalent

to Σ̂b
i -ones.

In particular, if τ = {x} then we are talking about the so-called sharply bounded
quantifiers of Definition 1.1.4. If we can push inside those quantifiers then Σb

i -
formulas become Σ̂b

i after contraction of some variables, thus we have that Ŝi
2 = Si

2,
and incidentally T̂ i

2 = T i
2 too, where Si

2 and T i
2 are the well known theories defined

by Buss in [4].
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By contracting variables it can be easily seen that Π̂b
i -REPL

τ implies Σ̂b
i+1-REPL

τ .
Thus we have

Lemma 1.2.3 The schemes Π̂b
i-REPL

τ and Σ̂b
i+1-REPL

τ are equivalent over
EBASIC.

Definition 1.2.4 (Comprehension) Given α(x), a formula which might contain
parameters, we note by α-COMP a the formula

∃w∀x ≤ a (α(x) ↔ Bit(w, x) = 1).

When Ψ is a set of formulas and τ a set of unary terms, Ψ-COMP τ is the scheme

{∀a α-COMP l(a) : α ∈ Ψ, l ∈ τ}.
The following theorem is from [20].

Theorem 1.2.5 For i ≥ 1 the theory T̂
i,|τ |
2 proves the Σ̂b

i-COMP |τ | axioms.

As Σ̂b
i -COMP |τ | says that for arguments under |τ | we can substitute a Σ̂b

i -formula for
an open one depending on an extra parameter, it follows that this system augmented
with Open-IND|τ | is equivalent to T̂

i,|τ |
2 .

Theorem 1.2.6 For i ≥ 1, Open-IND|τ | ∪ Σ̂b
i-COMP |τ | implies T̂

i,|τ |
2 .

Definition 1.2.7 (Strong replacement) Given α(x, y), a formula which might
contain parameters, we note by α-STRONG REPLa

b the formula

∃w∀x ≤ a(∃y ≤ b α(x, y) → (w)x ≤ b ∧ α(x, (w)x)).

When Ψ is a set of formulas and τ a set of unary terms, Ψ-STRONG REPLτ is
the scheme

{∀a∀b α-STRONG REPL
l(a)
b : α ∈ Ψ, l ∈ τ}.

Theorem 1.2.8 For i ≥ 1 the theory T̂
i,|τ |
2 proves the Σ̂b

i-STRONG REPL|τ | ax-
ioms.

Proof: Take α ∈ Π̂b
i−1 and consider the logically valid formula

∀x ≤ |l(a)| ∃u ≤ b (∃y ≤ b α(x, y) → α(x, u)).

By Theorem 1.2.5 we can use Σ̂b
i -COMP |τ | to substitute the formula ∃y ≤ b α(x, y)

by an open one φ(x, c) with one more parameter, the equivalence between both
expressions being valid for x ≤ |l(a)|. Then we can apply Σ̂b

i -REPL
|τ | available by

Theorem 1.2.2 to the formula ∀x ≤ |l(a)| ∃u ≤ b (φ(x, c) → α(x, u)), the expression
in the scope of the ∃u quantifier being Π̂b

i−1, and the result follows. ¤
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Theorem 1.2.9 For i ≥ 1, Open-IND|τ | ∪ Σ̂b
i-STRONG REPL|τ | implies T̂

i,|τ |
2 .

Proof This is proved by induction on i using the fact that strong replacement
axioms allow us to substitute a Σ̂b

i -formula for a Π̂b
i−1 one with an extra parameter

for values under |τ |. ¤

Following Zambella [31] we introduce another scheme for practical purposes. It will
be used in section 3.4.

Definition 1.2.10 (Dependent choices) Given α(j, x, y), a formula which might
contain parameters, we note by α-DCa

b the formula

∀j∀x < b∃y < b α(j, x, y) →
∃w∀j < a((w)j < b ∧ (w)j+1 < b ∧ α(j, (w)j, (w)j+1)).

When Ψ is a set of formulas and τ a set of unary terms, Ψ-DCτ is the scheme

{∀a∀b α-DC
l(a)
b : α ∈ Ψ, l ∈ τ}.

Lemma 1.2.11 The schemes Σ̂b
i+1-DC

τ and Π̂b
i-DC

τ are equivalent over EBASIC.

Proof By a simple contraction of variables. ¤

Theorem 1.2.12 For i ≥ 1 the theory T̂
i,|τ |
2 proves the Σ̂b

i-DC
|τ | axioms .

Proof We derive Π̂b
i−1-DC

|τ |. Let α(j, x, y) ∈ Π̂b
i−1, l ∈ τ , and suppose that

∀j∀x < b ∃y < b α(j, x, y). Consider the formula θ(z) given by

∃w ≤ s(a, b)∀j < |l(a)|(j ≤ z → (w)j < b ∧ (w)j+1 < b ∧ α(j, (w)j, (w)j+1))

where s(a, b) is a suitable term, a bound for the sequence of length |l(a)| with
identical entries b for example. By Theorem 1.2.2 θ(z) is equivalent to a Σ̂b

i -formula.
It is easily seen that we have

θ(0) ∧ ∀z(θ(z) → θ(z + 1)).

Then θ(|l(a)|) by Σ̂b
i -IND

|τ |. Thus T̂
i,|τ |
2 ` Π̂b

i−1-DC
|τ | and we conclude by Lemma

1.2.11. ¤

Theorem 1.2.13 For i ≥ 0, ∆b
0-IND

|τ | ∪ Σ̂b
i-DC

|τ | implies T̂
i,|τ |
2 .
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Proof We use induction on i. The case i = 0 is trivial. Let ψ(j) be the Σ̂b
i+1-

formula ∃x ≤ t(j)ϕ(j, x) where ϕ ∈ Π̂b
i with possibly other parameters. Let l ∈ τ

and suppose we are in a model of ∆b
0-IND

|τ | ∪ Σ̂b
i+1-DC

|τ | satisfying

ψ(0) ∧ ∀j < |l(a)|(ψ(j) → ψ(j + 1)).

Then

∃x0 ≤ t(0)ϕ(0, x0) ∧

∀j < |l(a)| ∀x < b ∃y < b(x ≤ t(j) ∧ ϕ(j, x) → y ≤ t(j + 1) ∧ ϕ(j + 1, y))

where b is an element bounding all the t(j) for j ≤ |l(a)|. Fix such an x0. Then we
have

∀j < |l(a)| ∀x < b ∃y < b

((j = 0 → x = x0) ∧ (x ≤ t(j) ∧ ϕ(j, x) → y ≤ t(j + 1) ∧ ϕ(j + 1, y))).

As the lower part of the formula is equivalent to a Σb
i+1 one, we obtain by Σ̂b

i+1-DC
|τ |

∃w ∀j < |l(a)|((w)0 = x0 ∧((w)j ≤ t(j)∧ϕ(j, (w)j) → (w)j+1 ≤ t(j+1)∧ϕ(j, (w)j+1))).

Putting ϕ̃(j, w) ≡ (w)j ≤ t(j) ∧ ϕ(j, (w)j) we have that ϕ̃ ∈ Π̂b
i and

∃w(ϕ̃(0, w) ∧ ∀j < |l(a)|(ϕ̃(j, w) → ϕ̃(j + 1, w))).

By induction hypothesis and Lemma 1.1.14 our model satisfies Π̂b
i -IND

|τ |. Thus we
get ϕ̃(|l(a)|, w), hence ∃x ≤ t(|l(a)|)ϕ(|l(a)|, x), i.e. ψ(|l(a)|). ¤

Putting together the above results we get

Theorem 1.2.14 For i ≥ 1 and any set of unary terms τ the following schemes
are equivalent in the presence of EBASIC ∪∆b

0-IND
|τ |:

1. Σ̂b
i-IND

|τ |

2. Σ̂b
i-COMP |τ |

3. Σ̂b
i-STRONG REPL|τ |

4. Σ̂b
i-DC

|τ |.
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1.3 Some model theory

To end this chapter we mention some classical model theoretic results that we use
in this thesis. Apart from the compactness and Löwenheim-Skolem theorems, we
use chain constructions and recursive saturation.

Theorem 1.3.1 (Union of Σ̂b
i-elementary chains) Let (Mn)n∈ω be an increas-

ing chain of LBA-structures such that for every n ∈ ω
Mn ≺Σ̂b

i
Mn+1.

Let M :=
⋃

n∈ω Mn. Then for every n ∈ ω, Mn ≺Σ̂b
i
M .

This hold also for unbounded formulas. In particular, Mn ≺∀Σ̂b
i
Mn+1 implies

Mn ≺∀Σ̂b
i
M .

Proof By induction on the complexity of formulas. ¤

Theorem 1.3.2 (Preservation of ∀∃B(Σ̂b
i)-formulas) Let (Mn)n∈ω be an increas-

ing chain of LBA-structures such that for every n ∈ ω
Mn ≺Σ̂b

i
Mn+1.

Let M :=
⋃

n∈ω Mn. Let Θ be a sentence of the form ∀x∃yφ(x, y) with φ ∈ B(Σ̂b
i)

and such that for every n ∈ ω, Mn |= Θ. Then M |= Θ.

Proof By induction on the complexity of formulas. ¤

As a consequence we get that the union of a Σ̂b
i -elementary chain of models of T̂ i,τ

2

is a itself a model of T̂ i,τ
2 .

Corollary 1.3.3 Let (Mn)n∈ω be an increasing chain of models of T̂ i,τ
2 such that for

every n ∈ ω
Mn ≺Σ̂b

i
Mn+1.

Let M :=
⋃

n∈ω Mn. Then M |= T̂ i,τ
2 .

Proof Just note that for α ∈ Σ̂b
i the formula α-INDτ is ∀∃Σ̂b

i . ¤

Theorem 1.3.4 (Tarski-Vaught criterion for BA) Let N ⊂ M be an LBA-
substructure such that for each formula φ(x, ū) ∈ Π̂b

i , t ∈ Term(LBA) and pa-
rameters b̄ ∈ N the following holds:

if M |= ∃x ≤ t(b̄)φ(x, b̄) then for some a ∈ N, M |= a ≤ t(b̄) ∧ φ(a, b̄).

Then N ≺Σ̂b
i
M .
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Proof By induction on the complexity of formulas. ¤

For the notion of recursive saturation and a proof of the following theorem we refer
to [11].

Theorem 1.3.5 (Existence of recursively saturated models) Let M be an
LBA-structure. Then there is an elementary extension M ′ of M of the same cardi-
nality which is recursively saturated.
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Chapter 2

A model of R̂2
3 inside a

sub-exponential time resource

This chapter contains essentially the paper published in Notre Dame Journal of
Formal Logic [8] with some minor changes. We kept its original notation and it can
be read independently of the rest of the dissertation. Using non standard methods
we construct a model of Σ̂b

2-LLIND inside a “resource” of the form {M(a) : M is a
Turing machine of code ≤ r, and M(a) is calculated in less than 2||a||

r
steps}, where

a, r are non standard parameters in a model of S1
3 .

2.1 Basic notions and results

We use Buss’s notations (see [4]), working in the extended arithmetical language

L3 = {0, 1,+, ·, <, bx/2c, |x|,#2,#3}

where |x| is the length of the binary expansion of x, x#2y means 2|x|.|y| and x#3y
stands for 2|x|#2|y|. Most of Buss’s results in [4] were stated for theories in language
L2 without the #3 symbol (read “smash 3”). But, as he pointed out, they readily
generalise to languages Li including a function symbol #i with same rate of growing
as function ωi−1 of [29] (x#iy = 2|x|#i−1|y|), provided we substitute polynomial time
by the corresponding Si-time (also called #i-time in some texts). In particular, to

language L3 corresponds 2|n|
O(1)

-time, to L4 is 22||n||
O(1)

-time, etc.
Quantifiers of the form Qx ≤ t, where t is a term, are called bounded quantifiers.
Those of the form Qx ≤ |t| are called sharply bounded quantifiers. Formulas with
only sharply bounded quantifiers are called sharply bounded formulas. This class
is noted ∆b

0, Σb
0 or Πb

0. For i ≥ 0, Σb
i+1 is the smallest class of formulas containing

Σb
i , Πb

i and negations of Πb
i+1, and closed by ∧, ∨, sharply bounded quantifiers and

∃x ≤ t. Classes Πb
i are defined analogously. A formula is said to be strictΣb

1 if it

19



has the form ∃y ≤ t[∆b
0]. More generally, a formula is strictΣb

i if it has the form
∃y ≤ t[strictΠb

i−1]. We denote by Σ̂b
i the class of strictΣb

i -formulas. The class Π̂b
i

is defined analogously. If T is any theory and i ≥ 1, we say that Ψ is ∆b
i(T ) if

T ` (Ψ ≡ Ψ1) ∧ (Ψ ≡ Ψ2) for some Ψ1 ∈ Σb
i and Ψ2 ∈ Πb

i . By α(x)-IND up to y we
denote the formula

[α(0) ∧ ∀x < y(α(x) → α(x+ 1))] → α(y)

and if Γ is a class of formulas and m ∈ N, Γ-L(m)IND denote the scheme α(x)-IND
up to |y|m for α in Γ, where |y|m = |(|y|m−1)| and |y|0 = y. In this chapter we are
concerned with m = 1, 2 so we write LIND, LLIND and ||y|| for L(1)IND, L(2)IND
and |y|2. BASIC3 is a finite set of open axioms for the symbols of L3 and Si

3 is
the theory BASIC3 + Σb

i -LIND (originally it is defined by another induction scheme
called PIND, but these two axiomatisations are equivalent (see [6]). Ri

3 is the theory

BASIC3 + Σb
i -LLIND

By Ŝi
3, R̂

i
3 we denote the corresponding theories for strict formulas.

We shall suppose included in our language some other useful primitives. These are
known to be definable from L3 with a little amount of induction, and its inclusion
does not increase the strength of theories containing S1

3 , for example. In particular
we suppose in L3 the Cantor pairing function 〈x, y〉 and its projections 〈z〉1, 〈z〉2, as
well as a binary function y = (c)x for “y is the x-th element in the sequence coded
by c”. In general we will be able to code sequences of logarithmic length.

By Σb
i -replacement we denote the scheme

∀x ≤ |a|∃y ≤ bΨ(x, y) → ∃c∀x ≤ |a|Ψ(x, (c)x)

for Ψ ∈ Σb
i . In fact c can be bounded by a term of L3, so the conclusion is also Σb

i and,
moreover, implies trivially the premise. Hence, this scheme allows to push inside
sharply bounded quantifiers in Σb

i -formulas. This, together with the possibility to
merge two consecutive quantifiers of the same type into a single one using coding,
permits to put Σb

i -formulas in the strict form. As Ŝi
3 ` Σb

i -replacement, we have
that Ŝi

3 ≡ Si
3. On the other hand we have that Ri

3 ` Σb
i -replacement (see [1]), but it

is not known if this holds for R̂i
3. Nevertheless, we can derive in R̂i

3 the Σ̂b
i−1-LIND

axioms, thus proving that R̂i
3 ` Si−1

3 .

We note by S3 the class of total functions which are computable in time 2|n|
O(1)

. For
an integer a we put S3(a) := {f(a) : f ∈ S3} and we say that an L3-structure K is
S3-closed if S3(a) ⊂ K for every a ∈ K.
Let C(e, T, x, y) means

“y is calculated from x in time T by {e}, the Turing machine coded by e”
Later we will see that this is is definable in S1

3 . The aim of this chapter is to prove:
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Theorem 2.1.1 Let M be a countable non standard model of S1
3 . Let a, r ∈ M\N

and suppose that M |= ∃y(y = 22||a||
r

). Let R = {y : M |= ∃e ≤ r C(e, 2||a||
r
, a, y)}.

There is an L3-substructure K∗ of M such that

1. a ∈ K∗

2. K∗ is S3-closed, and so K∗ <∆b
0
M .

3. K∗ ⊂ R

4. K∗ |= R̂2
3 .

As a consequence we get two known corollaries. Their proofs are classic, we give it
for the sake of completeness.

Corollary 2.1.2 Let ϕ(x, y) a Σb
1-formula and suppose that

R̂2
3 ` ∀x∃y ϕ(x, y) .

Then for some f ∈ S3, S
1
3 ` ∀xϕ(x, f(x)) .

Corollary 2.1.3 The theory R̂2
3 is ∀Σb

1-conservative over S1
3 .

Proof of corollary 2.1.2 As explained above we can suppose ϕ ∈ Σ̂b
1. Then,

using coding to merge two consecutive existential quantifiers into a single one, we
can assume that ϕ is ∆b

0. Let a be a new constant symbol and let T be the theory

S1
3 ∪ {∀y(C(e, 2||a||

k

, a, y) → ¬ϕ(a, y)) : e, k ∈ N}

We claim that T is inconsistent.
Suppose the contrary and let

T ′ = T ∪ {∀y(C(e, , 2||a||
k

, a, y) → y < d) : e, k ∈ N}

where d is another new constant symbol. Clearly T ′ is also consistent. Let M be a
countable model for it. As d is a bound for S3(a), M must be non standard. We
have for every r0 ∈ N

M |= ∀k ≤ r0∀e ≤ k∀y(C(e, 2||a||
k

, a, y) → ¬ϕ(a, y))

In particular

M |= ∀k ≤ r0∀e ≤ k∀y ≤ d(C(e, 2||a||
k

, a, y) → ¬ϕ(a, y))
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As we will see later, this last formula is equivalent to a Πb
1 one in S1

3 , and we have
S1

3 ` Πb
1-LIND. So by overspill it must be valid for some r0 ∈M\N.

If a is interpreted by some standard integer then S3(a) = N and thus, as M |= T ,
we would have for every y ∈ N M |= ¬ϕ(a, y). By elementarity this formula holds
in N, hence N |= ∀y¬ϕ(a, y). As N is obviously a model of R̂2

3, this contradicts the
hypothesis of the theorem.

So let suppose a ∈ M\N and let r ≤ r0 such that M |= ∃y < d (y = 22||a||
r

) (see
lemma 2.4.1). Then we have

M |= ∀e ≤ r∀y ≤ d(C(e, 2||a||
r

, a, y) → ¬ϕ(a, y))

By definition of R we have y < 22||a||
r

< d for every y ∈ R, and so the last equation
reads

M |= ∀y ∈ R ¬ϕ(a, y)

By theorem 2.1.1 there is a L3-structure K∗ ⊂M such that

1. a ∈ K∗

2. K∗ is S3-closed

3. K∗ ⊂ R

4. K∗ |= R̂2
3 .

By (1),(2),(3) we have K∗ |= ∀y¬ϕ(a, y), and by (4) K∗ |= ∀x∃y ϕ(x, y). Thus we
get a contradiction and the claim is proved.
As T is inconsistent, by compactness there is some n, e0, . . . , en, k0, . . . , kn ∈ N such
that

S1
3 `

n∨
i=0

∃y(C(ei, 2
||a||ki , a, y) ∧ ϕ(a, y))

By theorem on constants

S1
3 ` ∀x

n∨
i=1

∃y(C(ei, 2
||x||ki , x, y) ∧ ϕ(x, y))

Let f(x) be the result of the following search: for i = 0 to n we run {ei} on input
x with clock 2||x||

ki looking for an output y satisfying ϕ(x, y). Clearly f ∈ S and by
the last equation S1

3 ` ∀xϕ(x, f(x)). Hence the corollary is proved. ¤

Corollary 2.1.3 follows immediately.
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Remarks

1. Buss, Kraj́ıček, Takeuti [7] have shown a result stronger than this corollary:
the theory R2

3 is ∀Σb
2-conservative over S1

3 . We prove S1
3 ≡∀Σ̂b

2
R̂2

3 in chapter 3

(see 3.4.7).

2. Theorem 2.1.1 can be generalised as follows: if M |= Si
3, i > 1, we can consider

a larger resource R by giving the Turing machines access to oracles in the i-th
level of the S3-time hierarchy. Then we can construct a ∆b

i−1-elementary L3-

substructure K∗ of M which is a model of R̂i+1
3 . The corresponding witnessing

and conservation corollaries follows similarly as 2.1.2 and 2.1.3.

3. To drop the “strict” in theorem 2.1.1 it would suffice to carry out the con-
struction with formulas of the form ∀x ≤ |u|∃y ≤ t∀z ≤ s ψ, ψ ∈ ∆b

0, instead
of simply Σ̂b

2-formulas. The theory obtained in this way would prove Σb
2-

replacement. But the inclusion of an extra quantifier, even a sharply bounded
one, poses some problems. A solution for these could throw some light on
how to treat the Σb

3 case without use of oracles. Note parenthetically that we
cannot use oracles if we want sub-exponential time witnessing theorems, and
this makes it non trivial to construct models for Σb

i induction axioms inside
the corresponding resources.

The rest of the chapter is devoted to prove theorem 2.1.1. In section 2.2 we briefly
explains how the proof goes. Section 2.3 presents some tools needed to work with
Turing machines. Next we introduce the notions of sparse sequences and resources
in 2.4, and finally we present construction of model K∗ in section 2.5.

2.2 Sketch of the proof of theorem 2.1.1

Fix an enumeration of axioms θ-IND up to ||d|| with parameters in M and θ running
over Σ̂b

2-formulas. We construct K∗ as the union of an increasing chain (Kn)n<ω.
Let K0 = S3(a) = {f(a) : f ∈ S3} and let θ1-IND up to l1 be the first axiom in the
enumeration having its parameters in K0. We want K1 ⊃L3 K0, K1 S3-closed and
satisfying

¬θ1(0) ∨ ∃j < l1[θ1(j) ∧ ¬θ1(j + 1)] ∨ θ1(l1)

where θ1(j) ≡ ∃y ≤ t∀z ≤ s ψ(j, y, z). We can suppose r < ||a|| and r = 2|r|−1. Let
(Tj)j≤l1+2 be a decreasing sequence such that

2||a||
r À T0 À T1 À . . .À Tl1+2 À 1
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where A À B means A > B.2||a||
O(1)

, and such that the Tj’s are easy to calculate

from a and r (for example Tj = 2||a||
r−(j+1)||a||r/2

). For j = 0, . . . , l1 + 2 let

Rj(x) = { y : C(e, Tj, x, y) for some e ≤ r}

K1 will be generated by an element a1 obtained by running on input a the next
program P (which depends on a code for |r|):

1: Compute r = 2|r|−1.
2: Compute the parameters of θ1-IND up to l1 and T0 from the input a.
3: Put j := 0 , y−1 := 0.
4: Compute Tj+1.
5: Look for yj ∈ Rj(〈j, a, yj−1〉), yj ≤ t, such that for every z ∈ Rj+1(〈j + 1, a, yj〉)

such that z ≤ s, M |= ψ(j, yj, z).
6: If there is no such yj, stop the machine with output a1 = 〈j, a, yj−1〉.
7: If yj is found and j < l1, then put j := j + 1 and go to 4.
8: If yl1 is found, stop the machine with output a1 = 〈l1 + 1, a, yl1〉.

Let a1 = 〈J1 + 1, a, yJ1〉 and suppose for example 0 ≤ J1 < l1. Then we have

• for every z ∈ RJ1+1(a1) such that z ≤ s, M |= ψ(J1, yJ1 , z).

• for every y ∈ RJ1+1(a1) such that y ≤ t, there is some z ∈ RJ1+2(〈J1 +2, a, y〉)
such that z ≤ s and M |= ¬ψ(J1 + 1, y, z).

So, in order to have K1 |= θ1(J1)∧¬θ1(J1 +1), we choose K1 contained in RJ1+1(a1)
and allowing computations in time TJ1+2 :

K1 = { {e}(a1) < 22||a||
O(1)

calculated in time < O(1).r2.TJ1+2, e < |r|O(1)} .

It is easy to see that K0 ⊂L3 K1 and K1 is S3-closed. To prove that K1 ⊂ R we use
the fact that P can be coded by some p < |r|O(1) and calculates a1 in less than r2.T0

steps.
Consider now θ2-IND up to l2, the next axiom in the enumeration having its param-
eters in K1. We want K2 ⊃L3 K1 satisfying this axiom while preserving θ1(J1) ∧
¬θ1(J1+1). The new axiom will be satisfied by letting the construction of K2 imitate
that of K1, replacing a, θ1, l1 by a1, θ2, l2 and the sequence Ti by another sequence
T ′i . As explained above, θ1(J1)∧¬θ1(J1 +1) will be preserved if K2 ⊂ RJ1+1(a1) and
K2 allows computations in time TJ1+2. In other words, the maximal computation

times T ′i are chosen between TJ1+1 and TJ1+2 (for example T ′j = TJ1+1/2
(j+1)||a||r/4

if

Tj = 2||a||
r−(j+1)||a||r/2

). In this way

TJ1+1 À T ′0 À T ′1 À . . .À T ′l2+2 À TJ1+2
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Let P ′ be a program similar to P , running on input a1, with θ2-IND up to l2 and T ′i
in place of θ1-IND up to l1 and Ti. Let a2 = 〈J2 + 1, a1, yJ2〉 be its output and

K2 = { {e}(a2) < 22||a||
O(1)

calculated in time < O(1).r2.T ′J2+2, e < |r|O(1)}

Then we prove as above that K1 ⊂L3 K2, K2 is S3-closed, K2 ⊂ R and

K2 |= θ1-IND up to l1 ∧ θ2-IND up to l2

In this way we get K3, K4, . . . and putting K∗ =
⋃

n<ω Kn we have the desired
model. ¤

2.3 Definability of Turing machine computations

We call S3 the set of total functions which are computable in time 2|n|
O(1)

in the
standard structure N. For a predicate X we say that X ∈ S3 if its characteristic
function belongs to S3. Note that (the intended interpretation in N of) function

symbols of L3 are in S3. In particular ∆b
0 predicates are decidable in time 2|n|

O(1)
,

therefore, S3-closed substructures are ∆b
0-elementary. This will be used everywhere.

Σb
i predicates correspond exactly to predicates in the i-th level of the 2|n|

O(1)
-time

hierarchy.

We present here some known facts saying roughly that in any model of S1
3 these

functions are definable and have the expected properties, and this will also hold
for some non standard functions when M 6= N. Proofs are omitted since they are
tedious and contains no new idea. For a reference see [4] and [10].

In order to formalise computations we consider deterministic k-tapes Turing ma-
chines, for a fixed k ∈ N, and a natural coding of its programs and computations. If
e is an index for a Turing machine,i.e. a code for its program, we note by {e} both
the machine itself and the function it computes. By e ∈ S3 we mean {e} ∈ S3 and
e ∈ N.

Lemma 2.3.1 For every standard Turing machine M there is a ∆b
1(S

1
3)-formula

CompM(c, x) expressing that c is the code of a computation of M on input x.

In S1
3 we can code sequences of logarithmic length and there are terms tk(x) standing

for 22||x||
k

. In consequence we get

Lemma 2.3.2 Every predicate in S3 is ∆b
1 definable in S1

3 .
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Lemma 2.3.3 For every standard Turing machine M

S1
3 ` ∀v∀x∃!c(CompM(c, x) ∧ lh(c) = |v|)

where lh(c) is the length of the computation coded by c.

If M |= S1
3 and log(M) := {|y| : y ∈ M}, this lemma will allow us to define

computations in time T provided T ∈ log(M). In particular, as 2||a||
k ∈ log(M) for

every k ∈ N, we have

Lemma 2.3.4 Every function in S3 is provably ∆b
1 (total) in S1

3 .

Remark By Buss’s theorem (the version for S1
3) every function provably Σb

1 in
S1

3 is in S3 (see [4]). As a consequence every ∆b
1(S

1
3) predicate is decidable in time

2|n|
O(1)

.

Now using lemma 2.3.4 we can define a restricted version of an universal Turing
machine which will be nevertheless able to simulate all functions in S3.

Lemma 2.3.5 There is a ∆b
1(S

1
3)-formula U(e, v, x, y) expressing that e is the code

of a (probably non standard) Turing machine and {e} calculates y from x in less
than |v| steps.

We assume that for every term t(x̄) in L3, if φ(x̄, y) is the ∆b
1 definition of the

corresponding function in S3, then S1
3 ` y = t(x̄) ↔ φ(x̄, y).

Definition 2.3.6 C(e, T, x, y) is the ∃∆b
1-formula ∃v(|v| = T ∧ U(e, v, x, y)). It

means that the Turing machine {e} running on input x stops with output y before
T steps.

Lemma 2.3.7 There is k0 ∈ N such that

1. S1
3 ` ∀e, e′ ∃e′′ < (e.e′)k0 ∀x ({e}(〈e′, x〉) = {e′′}(x))

2. S1
3 ` ∀e, e′ ∃e′′ < (e.e′)k0 ∀T, T ′, x, y, z, d

(T, T ′, T + T ′ < |d| ∧ C(e, T, x, y) ∧ C(e′, T ′, y, z) → C(e′′, T + T ′, x, z)).

Remarks

• Condition (1) will help us to estimate the code of a Turing machine. For
example suppose that X is a multiplicative closed cut in a model of S1

3 and M
a Turing machine. If M can be viewed as a standard program with some extra
inputs p1, . . . , pn ∈ X, n ∈ N, then by (1) M can be coded by some p ∈ X.

• By condition (2), if e, e′ ∈ X are Turing machine codes, then the composite
function {e} ◦ {e′}, if defined, has a code e′′ ∈ X.
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2.4 Sparse sequences, resources and basic struc-

tures.

Notation Let M be a non standard model of S1
3 and F a function from N to M .

We put

• A > F (O(1)) iff A > F (n) for every n ∈ N

• F (O(1)) > B iff F (n) > B for some n ∈ N

Even in a nonstandard model we keep O(1) running over standard constants.

Lemma 2.4.1 Let M be a non standard model of S1
3 and let a, d ∈M\N such that

S3(a) is bounded by d. There is some r ∈ M\N such that following properties hold
in M :

1. ∃y < d (y = 22||a||
r

).

2. r is a power of 2, and so r = 2|r|−1.

3. r < ||a||.

Moreover, r can be chosen smaller than any given r0 ∈M\N.

Proof We know that for every k ∈ N, tk(a) ∈ S3(a) and tk(a) = 22||a||
k

in M . Thus
we have for every r1 ∈ N,

M |= ∀k ≤ |r1|(∃y < d y = 22||a||
k

)

This formula is Σb
1 in M and so by overspill it is true for some r1 ∈ M\N. Now let

r2 ∈ M\N such that r2 < |r1| and r2 < ||a||, and put r = 2|r2|−1. Then we have
r ∈M\N, r is a power of 2, as |r2| = |r|, and finally r ≤ r2 < ||a||. ¤

Remarks

1. In fact we have proved M |= ∀x ≤ r ∃y < d (y = 22||a||
x

).

2. By (1) of lemma 2.4.1 we have [0, 2||a||
r
] ⊂ log(M) and then, by lemma 2.3.3,

computations in time T ≤ 2||a||
r

are definable in M .

3. We want r to be computable from some Turing machine of code < |r|O(1).
That is why we impose condition 2 (see (3) of lemma 2.4.6).
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4. We want also 2||a||
r ∈ S3(〈a, r〉). For this r < ||a||O(1) would suffice, we put

r < ||a|| for simplicity. In this way 2||a||
r

is calculated from 〈a, r〉 by the

function 〈x, y〉 7→ 2||x||
min(y,||x||)

which is clearly in S3.

Definition 2.4.2 Let M be a model of S1
3 , A,B, l, α ∈M , (Tj)j≤l a sequence in M

and F function from N to M . Suppose A > B.

1. The sequence (Tj)j≤l is between A and B if (Tj)j≤l is decreasing and
A > (Tj)j≤l > B.

2. The sequence (Tj)j≤l between A and B is generated by α if for some e ∈ S3

• T0 = {e}(〈α,A〉)
• Tj+1 = {e}(〈α, Tj〉), j < l.

3. The sequence (Tj)j≤l between A and B is F (O(1))-sparse if

• A > F (O(1)).T0

• Tj > F (O(1)).Tj+1, j < l

• Tl > F (O(1)).B

Lemma 2.4.3 Let M,a, r be as in lemma 2.4.1. Let A,B, α ∈M and suppose that
2||a||

r ≥ A > B, a ∈ S3(α), (Tj)j≤l is a sequence between A and B generated by α,

and l < 2||a||
O(1)

. Then for some e ∈ S3 we have Tj = {e}(〈j, α,A〉), j ≤ l.

Proof Let e′ ∈ S3 such that

T0 = {e′}(〈α,A〉) and Tj+1 = {e′}(〈α, Tj〉), j < l

Let k ∈ N such that l < 2||a||
k

and consider the standard Turing machine which
on input 〈j, α, A〉 calculates a from α, then 2||a||

k
(k is coded in its program); next

it compares j and 2||a||
k

and if j < 2||a||
k

it computes {e′}(j+1)(〈α,A〉). It runs in

time 2|n|
O(1)

as e′ ∈ S3 and we iterate this function at most 2||a||
k

times (note that

2||a||
k
< 2||α||

O(1)
as a ∈ S3(α)). Finally, we have that it calculates Tj when j ≤ l.

This can be proved by induction on l as l ∈ log(M) and the condition considered is
∆b

1. ¤

Lemma 2.4.4 Let M,a, r be as in lemma 2.4.1. Let A,B, l ∈M and suppose that

1. 2||a||
r ≥ A > 2||a||

O(1)
.B
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2. l < ||a||O(1)

There is a 2||a||
O(1)

-sparse sequence (Tj)j≤l between A and B generated by 〈a, ρ〉 for
some ρ ∈ M\N. Moreover, ρ can be chosen smaller than any given non standard
integer in M .

Proof We have for every k ∈ N

M |= ∃y ≤ a(y = 2||a||
k ∧ A > y.B)

By overspill this formula is true for some ρ ∈ M\N, and we can choose it as small
as we want. Take ρ < ||a|| and consider the function

f(x, y, z) = msp(x, ||y||min(bz/2c,||y||))

where msp(u, v) stands for bu/2vc when v ≤ |u| (msp is for “most significant part”;
see [4]).

Then clearly f ∈ S3 and so is g defined by g(u, x) = f(x, 〈u〉1, 〈u〉2). Put

T0 = g(〈a, ρ〉, A) and Tj+1 = g(〈a, ρ〉, Tj), for j < l.

Then we have

• T0 = bA/2||a||bρ/2cc

• For j < l, Tj+1 = bTj/2
||a||bρ/2cc

It is then clear than (Tj)j≤l is 2||a||
O(1)

-sparse, between A and B and generated by
〈a, ρ〉. ¤

Definition 2.4.5 Let M be a model of S1
3 and let a, r, T, c ∈M .

• We use R(r, T, c) to denote the subset {y ∈M : ∃e ≤ r C(e, T, c, y)}.
We call these definable sets resources.

• The basic L3-structures we will consider are of the form

{y ∈M : ∃k ∈ N ∃e < |r|k (y < 22||a||
k

∧ C(e, k.T, c, y))}.

We write K(a, r, T, c) as an abbreviation for the expression above.
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Lemma 2.4.6 Let M,a, r be as in lemma 2.4.1. Let c, T ∈M be such that
2||a||

r
> O(1).T and let K = K(a, r, T, c). Then K has the following closure property:

1. If y ∈ K and T ′ < O(1).T , then K(a, r, T ′, y) ⊂ K.

Moreover, if T > 2||a||
O(1)

then

2. K is S3-closed.

3. [0, |r|O(1)[ ∪ {r} ⊂ K

Proof 1. Let T ′ < O(1).T , k ∈ K, e < |r|k, be such that C(e, k.T, c, y). If

z ∈ K(a, r, T ′, y) then for some k′ ∈ N, z < 22||a||
k′

and C(e′, k′.T ′, y, z) for some
e′ < |r|k′ . We have that

k.T + k′.T ′ < O(1).T < 2||a||
r

Hence by 2 of lemma 2.3.7 there is some k′′ ∈ N, k′′ sufficiently large, and some
e′′ < |r|k′′ such that C(e′′, k′′.T, c, z), i.e. z ∈ K.

2. If T > 2||a||
O(1)

and z ∈ S3(y) for some y ∈ K, then since y < 22||a||
O(1)

we have

that z < 22||a||
O(1)

and C(e, T ′, y, z) for some e ∈ N and T ′ < 2||a||
O(1)

< T . Hence
z ∈ K and K is S3-closed.

3. If p ≤ |r|O(1) there is some e ≤ |r|O(1) such that ∀x({e}(x) = p) and C(e, |p|, x, p)
({e} is just a Turing machine that writes p regardless of the input; its program can

be coded by some e < |p|O(1)). As |p| < 2||a||
O(1)

< T we have that p ∈ K.
In particular |r| ∈ K. Now, r can be calculated from |r| easily by a standard Turing
machine in S3 because r = 2|r|−1. Hence, by (2), r ∈ K. ¤

Remarks

• We will consider only structures K(a, r, T, c) with T > 2||a||
O(1)

. By (2) we
are guaranteed these structures will naturally be L3-substructures of M and
moreover, they will be ∆b

0-elementary. In particular the BASIC3 axioms will
hold.

• In connection with lemma 2.4.4, condition (3) will be useful to generate 2||a||
O(1)

-
sparse sequences, any “small” non standard integer being available in K.

Lemma 2.4.7 Let M,a, r be as in lemma 2.4.1. Let c, c′, T2, T, Tc′ ∈M and let
K = K(a, r, T2, c), K

′ = K(a, r, T ′, c′). Suppose that
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1. c ∈ K ′

2. 2||a||
r
> O(1).T ′

3. T ′ ≥ T2.

Then K ⊂ K ′.

Proof Let z ∈ K. Then z < 22||a||
O(1)

and C(e, k.T2, c, z) for some k ∈ N and
e < |r|k. But k.T2 < O(1).T ′ < 2||a||

r
and c ∈ K ′, hence, by lemma 2.4.6, z ∈ K ′. ¤

Lemma 2.4.8 Let M,a, r be as in lemma 2.4.1. Let c, c′, T1, T
′, Tc′ ∈M and let

K ′ = K(a, r, T ′, c′). Suppose that

1. C(p, Tc′ , c, c
′) for some p < |r|O(1)

2. 2||a||
r ≥ T1 > Tc′ +O(1).T ′

Then K ′ ⊂ R(r, T1, c).

Proof Let y ∈ K ′ and let k ∈ N, e < |r|k such that C(e, k.T ′, c′, y). We have that
C(p, Tc′ , c, c

′) for some p < |r|O(1) and

Tc′ + k.T ′ < T1 ≤ 2||a||
r

By (2) of lemma 2.3.7 there is some e′ < |r|O(1) < r such that C(e′, T1, c, y) , hence
y ∈ R(r, T1, c). ¤

2.5 Constructing a model of R̂2
3

Let M,a, r be as in lemma 2.4.1. Let R denote the resource R(r, 2||a||
r
, a). We call

it the main resource. The aim of this section is to construct inside it a model K∗ of
R̂2

3 containing a. This model will be constructed as the union of an increasing chain
(Kn)

n∈N, each Kn satisfying a new instance of Σ̂b
2-LLIND while preserving those

satisfied previously. First we prove the key lemma which will help us to pass from
Kn to Kn+1.

Lemma 2.5.1 Let M,a, r be as in lemma 2.4.1. Let c, T1, T2 ∈ M\N and let
K = K(a, r, T2, c). Let b0, . . . , bm ∈ K, l ∈ log(log(K)), ψ(j, y, z, b̄) a ∆b

0-formula
with parameters b̄ and let

θ(j, b̄) ≡ ∃y ≤ t∀z ≤ s ψ(j, y, z, b̄)

where t = t(j, b̄), s = s(j, y, b̄) are L3-terms (parameters b̄ will frequently be omitted).
Suppose that
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a. a ∈ K and c ∈ K(a, r, Tc, a) for some Tc such that 2||a||
r
> O(1).Tc.

b. T1 ∈ K and 2||a||
r ≥ T1 > T2 > 2||a||

O(1)
.

c. (Tj)j≤l+2 is a ||a||O(1)-sparse sequence between T1 and T2 generated by 〈a, ρ〉 for
some ρ ∈ K.

Then there are integers p, q, c′, Y ∈ M , J ∈ M ∪ {−1}, and an L3-structure K ′

satisfying

1. p < |r|O(1) and C(p, r2.T ′0, c, c
′).

2. c′ = 〈J + 1, c, Y 〉, −1 ≤ J ≤ l and Y ≤ t(J).

3. If J 6= −1 then ∀z ∈ R(r, T ′J+1, c
′), z ≤ s(J, Y ) → ψ(J, Y, z)

4. q < |r|O(1) and ∀y∃z ≤ s(J + 1, y) C(q, r2.T ′J+2, 〈c′, y〉, z)
5. If J 6= l then ∀y ∈ R(r, T ′J+1, c

′),

y ≤ t(J + 1) ∧ z = {q}(〈c′, y〉) → z ≤ s(J + 1, y) ∧ ¬ψ(J + 1, y, z)

6. K ′ = K(a, r, r2.T ′J+2, c
′)

7. K ′ is S3-closed

8. K ⊂ K ′ ⊂ R

9. K ′ ⊂ R(r, T1, c)

10. If x ∈ K ′, K(a, r, r2.T2, x) ⊂ K ′

11. K ′ |= BASIC3 + θ(j)-IND up to l.

Proof First note that r ∈ K by lemma 2.4.6 and integers a, b̄, l, T1, ρ are in K by
hypothesis. Hence we can obtain them all from c in time O(1).T2 by means of some
(possibly) non standard Turing machine of code < |r|O(1), and these integers are

bounded by 22||a||
O(1)

.
The integer p will be the index of the Turing machine P that is working as follows
on input c :

1: Compute r, a, b̄, l, T1, ρ from c.

2: Compute T ′0 from a, ρ, T1.

3: Put j := 0 , y−1 := 0.
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4: Compute T ′j+1 from a, ρ, T ′j .

5: Look for yj ∈ R(r, T ′j , 〈j, c, yj−1〉) such that

yj ≤ t ∧ ∀z ∈ R(r, T ′j+1, 〈j + 1, c, yj〉) (z ≤ s→ ψ(j, yj, z)).

(Searching in R(r, T, x) is done by simulating no more than T steps in the computa-
tion of {e}(x), if e is the code of a Turing machine, and this for all values of e from
0 to r. Verification of a condition for every z ∈ R(r, T, x) is done in a similar way.)

6: If there is no such yj, stop the machine with output P (c) = 〈j, c, yj−1〉.
7: If yj is found and j < l, then put j := j + 1 and go to 4.

8: If yl is found, stop the machine with output P (c) = 〈l + 1, c, yl〉.

Let 〈J + 1, c, Y 〉 be the output, i.e. Y = yJ , and let us name it c′. Then (2) and
(3) follows easily from the definition of P , once the existence of the computation is
established.

As explained above, to execute the first line the machine needs a standard number
of programs of code < |r|O(1) (namely 6 + m programs, as b̄ = b0, . . . , bm). By
(c) a unique standard function in S3 suffices to obtain T ′0 from a, ρ, T1 and T ′j+1

from a, ρ, T ′j . Having r, T ′j , j, c, yj−1 we generate the elements of R(r, T ′j , 〈j, c, yj−1〉)
by means of a standard program. Computation of the values of terms t, s and
evaluation of ∆b

0-formulas is also done by standard programs in S3. Thus P can be
viewed as a standard Turing machine running on c with a standard number of extra
inputs bounded by |r|O(1). By (1) of lemma 2.3.7 we conclude that P can be coded
by some p < |r|O(1).

For the running time we have that r, a, b0, . . . , bm, l, T1, ρ, are calculated in time

O(1).r2.T2 from c. As T1, ρ ∈ K we have T1, ρ < 22||a||
O(1)

and then

T ′j < T1 < 22||a||
O(1)

, j ≤ l + 2

By (c) we have T ′0 ∈ S3(〈a, ρ, T1〉) and T ′j+1 ∈ S3(〈a, ρ, T ′j〉), j ≤ l + 1. Hence T ′j is

obtained in time 2||a||
O(1)

for every j. It is known that simulating T ′j steps of the
computation of {e} can be done in time O(1).|e|.T ′j by an universal program (see
Papadimitriou [16], for example). As e ≤ r we can bound it by |r|2.T ′j . We calculate

the values of terms t(j, b̄), s(j, y, b̄) in time 2||a||
O(1)

, as they correspond to functions

in S3 and its arguments are all bounded by 22||a||
O(1)

. Deciding if yj ≤ t is done in

time O(1).|t|, thus less than 2||a||
O(1)

since t < 22||a||
O(1)

. The same is valid for z ≤ s.
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Evaluation of ψ(j, yj, z, b̄) when yj ≤ t and z ≤ s takes time 2||a||
O(1)

because ψ is

∆b
0 and j, t, s, b0, . . . , bm < 22||a||

O(1)

. Thus, we have that c′ is calculated in time T
less than

O(1).T2 + 2||a||
O(1)

+
l∑

j=0

[2||a||
O(1)

+ r(|r|2.T ′j + 2||a||
O(1)

+ r(|r|2.T ′j+1 + 2||a||
O(1)

))]

Remembering that T ′j > T2 > 2||a||
O(1)

we get that

T <

l∑
j=0

r[|r|2.T ′j + r(|r|2 + 1)T ′j+1]

But r(|r|2 + 1).T ′j+1 < T ′j since r < ||a|| and (T ′j)j≤l+2 is ||a||O(1)-sparse, thus

T < r(|r|2 + 1).
l∑

j=0

T ′j < r(|r|2 + 1)(T ′0 + l.T ′1)

Now, l.T ′1 < T ′0 because l < ||a||O(1) and (T ′j)j≤l+2 is ||a||O(1)-sparse. So we conclude
that c′ is calculated in time

T < 2r(|r|2 + 1).T ′0 < r2.T ′0

Finally note that r2.T ′0 ∈ log(M) since r2.T ′0 < T1 ≤ 2||a||
r

and 2||a||
r ∈ log(M) by

lemma 2.4.1. Therefore we have

∃w(|w| = r2.T ′0 ∧ U(p, w, c, c′))

i.e. C(p, r2.T ′0, c, c
′) and (1) is proved.

The required integer q will be the index of the Turing machine Q working as follows
on input 〈c′, y〉:

1: Compute J + 2, c from c′.

2: Compute r, a, b0, . . . , bm, T1, ρ from c.

3: Compute t = t(J + 1, b̄) from J + 2, b0, . . . , bm.

4: Compute T ′J+2 from J + 2, a, ρ, T1.

5: If y ≤ t, compute s = s(J +1, y, b̄) and look for z ∈ R(r, T ′J+2, 〈J +2, c, y〉) such
that z ≤ s ∧ ¬ψ(J + 1, y, z).

Else, stop the machine with output 0.
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6: If such a z is found, stop the machine with output z.

Else, stop it with output 0.

As c′ = 〈J + 1, c, Y 〉 we can obtain J + 2 and c from c′ by means of two stan-
dard functions in S3. Integers r, a, b0, . . . , bm, T1, l can be calculated from c using
a standard number of functions of code < |r|O(1) since they belong to K, as we
explained above. The values of terms t, s are calculated by standard functions in S3.
By lemma 2.4.3 and hypothesis (c), T ′J+2 is obtained from J + 2, a, ρ, T1 by means
of a standard function in S3. The computations of line 5 requires only a standard
program, analogously as for line 5 of program P . In the same way as we did for P ,
we conclude that Q can be coded by some q < |r|O(1).

For its running time first note that c < 22||a||
O(1)

since c ∈ K(a, r, Tc, a) by hypothesis

(a). We have also t, l < 22||a||
O(1)

, hence

Y < t < 22||a||
O(1)

and J + 1 ≤ l + 1 < 22||a||
O(1)

Thus we get that c′ = 〈J +1, c, Y 〉 < 22||a||
O(1)

. As J +2, c ∈ S3(c
′), computations on

line 1 are done in time 2||a||
O(1)

. Integers in line 2 are in K, hence they are calculated
in time O(1).T2 from c. The value of t is calculated in time 2||a||

O(1)
as for program

P . We obtain T ′J+2 in time 2||a||
O(1)

as

T ′J+2 ∈ S3(〈J + 2, a, ρ, T1〉) and J + 2, a, ρ, T1 < 22||a||
O(1)

Deciding if y ≤ t takes time 2||a||
O(1)

and when this inequality holds the value of s is

calculated in time 2||a||
O(1)

since y ≤ t < 22||a||
O(1)

and the other arguments of s are

also bounded by 22||a||
O(1)

. Searching for z in R(r, T ′J+2, 〈J + 2, c, y〉) verifying the

condition in line 5 is done in time less than r(|r|2.T ′J+2 + 2||a||
O(1)

). Thus, Q(〈c′, y〉)
is calculated in time less than

2||a||
O(1)

+O(1).T2 + r(|r|2.T ′J+2 + 2||a||
O(1)

)

Since T ′J+2 > T2 > 2||a||
O(1)

, we can conclude that Q(〈c′, y〉) is calculated in time less
than r2.T ′J+2. Thus if z = Q(〈c′, y〉) then C(q, r2.T ′J+2, 〈c′, y〉, z) and it is clear that
z ≤ s(J + 1, y) in all cases. This shows (4).

To see (5) suppose J < l. As c′ = 〈J + 1, c, Y 〉 and Y = yJ , J < l means that
the program P did not find the yJ+1 it looked for. In other words this says that
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for every y in R(r, T ′J+1, 〈J + 1, c, Y 〉) such that y ≤ t(J + 1), there is some z ∈
R(r, T ′J+2, 〈J + 2, c, Y 〉) satisfying

z ≤ s(J + 1, y) ∧ ¬ψ(J + 1, y, z)

Then, the program Q will eventually find this z and so (5) holds.

Now let K ′ = K(a, r, r2.T ′J+2, c
′). We have

O(1).r2.T ′J+2 > r2.T2 > 2||a||
O(1)

so (7) and (10) follows from lemma 2.4.6. By (2), c ∈ S3(c
′), and by (7) S3(c

′) ⊂ K ′,
so c′ ∈ K ′. Also

2||a||
r

> O(1).T1 > O(1).r2.T ′J+2

since (Tj)j≤l+2 is ||a||O(1)-sparse and r < ||a||, and clearly r2.T ′J+2 > T2 because
(Tj)j≤l+2 is between T1 and T2. We can then apply lemma 2.4.7 to conclude that
K ⊂ K ′.

Now we use lemma 2.4.8 to prove (9) and K ′ ⊂ R. We have C(p, r2.T ′0, c, c
′) and

p < |r|O(1) by (1), and

2||a||
r ≥ T1 > O(1).r2.T ′0 > r2.T ′0 +O(1).r2.T ′J+2

thus by lemma 2.4.8 K ′ ⊂ R(r, T1, c) and (9) is proved. By (a) there is some
k ∈ N and e < |r|k such that C(e, k.Tc, a, c). By (1) we have C(p, r2.T ′0, c, c

′)
and p < |r|O(1). Then by (2) of lemma 2.3.7 there is some e′ < |r|O(1) such that
C(e′, k.Tc + r2.T ′0, a, c

′). We have

2||a||
r

> k.Tc + T1

since 2||a||
r
> O(1).Tc and 2||a||

r
> O(1).T1 by hypothesis. As indicated above

T1 > r2.T ′0 +O(1).r2.T ′J+2

thus we get that
2||a||

r

> k.Tc + r2.T ′0 +O(1).r2.T ′J+2

which implies by lemma 2.4.8 that K ′ ⊂ R(r, 2||a||
r
, a), that is K ′ ⊂ R and (8) is

proved.

By (7) K ′ ≺∆b
0
M and so K ′ |= BASIC3. Now we use the previous points to get

two easy consequences implying (11). Remember that −1 ≤ J ≤ l.

Fact 1: If 0 ≤ J ≤ l then K ′ |= θ(J).
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Proof: First note that J, Y ∈ S3(c
′) ⊂ K ′ by (2) and (7), and alsoK ′ ⊂ R(r, T ′J+1, c

′),
since K ′ = K(a, r, r2.T ′J+2, c

′) and T ′J+1 > r2.T ′J+2. Let z ∈ K ′, z ≤ s(J, Y ). Then
z ∈ R(r, T ′j+1, c

′) and by (3) M |= ψ(J, Y, z). We just noted that K ′ ≺∆b
0
M , so

K ′ |= ψ(J, Y, z) and thus

K ′ |= ∃y ≤ t(J)∀z ≤ s(J, y)ψ(J, y, z)

i.e. K ′ |= θ(J).

Fact 2: if −1 ≤ J ≤ l − 1 then K ′ |= ¬θ(J + 1).

Proof: Let y ∈ K ′, y ≤ t(J+1) and let z = {q}(〈c′, y〉)). We have y ∈ R(r, T ′J+1, c
′),

so by (5) we get
M |= z ≤ s(J + 1, y) ∧ ¬ψ(J + 1, y, z)

By lemma 2.4.6 and (4), z ∈ K ′, so by elementarity,

K ′ |= z ≤ s(J + 1, y) ∧ ¬ψ(J + 1, y, z)

Thus we have proved

K ′ |= ∀y ≤ t(J + 1)∃z ≤ s(J + 1, y)¬ψ(J + 1, y, z)

that is K ′ |= ¬θ(J + 1). This proves fact 2.

From Facts 1 and 2 we obtain

K ′ |= ¬θ(0) ∨ ∃j < l[θ(j) ∧ ¬θ(j + 1)] ∨ θ(l)

i.e. K ′ |= θ(j)-IND up to l . ¤

Now we are ready to construct the chain (Kn)
n∈N. Starting from some K0 (for

practical reasons chosen different from the one used in the sketch of the proof), we
inductively define Kn for n ≥ 1, using the procedure of extension exhibited in lemma
2.5.1. This is the content of the next lemma. First we define some useful notation
for the rest of the section.

Notation Suppose that M,a, r as in lemma 2.4.1 are fixed and sequences (T i
j )j≤li ,

i = 0, 1, . . . are defined. We use the following notation:

• A À B means A > 2||a||
O(1)

.B

• Ri
j(x) is the resource R(r, T i

j , x)

• (b̄)i is a set of parameters bi0, . . . , b
i
mi
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Lemma 2.5.2 Let M,a, r be as in lemma 2.4.1. Let T 0
1 , T

0
2 ∈ M such that

T 0
1 ∈ S3(〈a, r〉) and 2||a||

r ≥ T 0
1 À T 0

2 À 1

Let K0 = K(a, r, T 0
2 , a), J0 = 0, a0 = a.

Let n ∈ N, n ≥ 1 and suppose we have n L3-structures K0, . . . , Kn−1 , a Σ̂b
2-formula

θn(j) ≡ ∃y ≤ tn ∀z ≤ sn ψn(j, y, z), ψn(j, y, z) ∈ ∆b
0, with parameters (b̄)n ∈ Kn−1,

and some integer ln ∈ log(log(Kn−1)). If n = 1 we have just K0, θ1 and l1. If n > 1
suppose we have also for each 1 ≤ i < n :

• integers (b̄)i, ρi ∈ Ki−1, li ∈ log(log(Ki−1))

• a Σ̂b
2-formula θi(j) ≡ ∃y ≤ ti ∀z ≤ si ψi(j, y, z) with parameters (b̄)i, where

ψi(j, y, z) ∈ ∆b
0

• integers pi, qi, ai, Yi ∈M , Ji ∈M ∪ {−1}

• a 2||a||
O(1)

-sparse sequence (T i
j )j≤li+2 between T i−1

Ji−1+1 and T i−1
Ji−1+2 generated by

〈a, ρi〉

satisfying (1)-(8) below:

1. pi < |r|O(1) and C(pi, r
2.T i

0, ai−1, ai).

2. ai = 〈Ji + 1, ai−1, Yi〉, −1 ≤ Ji ≤ li and Yi ≤ ti(Ji).

3. If Ji 6= −1 then ∀z ∈ Ri
Ji+1(ai), z ≤ si(Ji, Yi) → ψi(Ji, Yi, z)

4. qi < |r|O(1) and ∀y∃z ≤ si(Ji + 1, y)C(qi, r
2.T i

Ji+2, 〈ai, y〉, z)
5. If Ji 6= li then ∀y ∈ Ri

Ji+1(ai),

y ≤ ti(Ji + 1) ∧ z = {qi}(〈ai, y〉) → z ≤ si(Ji + 1, y) ∧ ¬ψi(Ji + 1, y, z)

6. Ki = K(a, r, r2.T i
Ji+2, ai)

7. Ki is S3-closed

8. Ki−1 ⊂ Ki ⊂ R

Then there is a 2||a||
O(1)

-sparse sequence (T n
j )j≤ln+2 between T n−1

Jn−1+1 and T n−1
Jn−1+2 gen-

erated by 〈a, ρn〉 for some ρn ∈ Kn−1, integers pn, qn, an, Yn ∈ M , Jn ∈ M ∪ {−1},
and a L3-structure Kn such that (1)-(8) holds for i = n and

9. Kn ⊂ Ri
Ji+1(ai) , for i = 0, . . . , n
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10. If y ∈ Kn then {qi}(〈ai, y〉) ∈ Kn , for i = 1, . . . , n

11. Kn |= BASIC3 + θi(j)-IND up to li, for i = 1, . . . , n.

Proof Let n ≥ 1. By hypothesis

T n−1
Jn−1+1 À T n−1

Jn−1+2

and from ln ∈ log(log(Kn)) it follows that ln < ||a||O(1). By recurrence on n we

have that 2||a||
r ≥ T n−1

Jn−1+1. Thus by lemma 2.4.4 there is a 2||a||
O(1)

-sparse sequence

(T n
j )j≤ln+2 between T n−1

Jn−1+1 and T n−1
Jn−1+2 generated by 〈a, ρn〉 for some small ρn.

As T n−1
Jn−1+2 À 1 is easily proved by recurrence on n, we can use lemma 2.4.6 to argue

that ρn can be chosen in Kn−1.
We want to apply lemma 2.5.1 for K = Kn−1. So let us first check its hypothesis
(a),(b),(c). If n = 1 then

Kn−1 = K0 = K(a, r, T 0
2 , a)

and thus hypothesis (a) is trivially verified (c = a). We have

2||a||
r ≥ T 0

1 À T 0
2 À 1

and hence by lemma 2.4.6 K0 is S3-closed and r ∈ K0. Thus

T 0
1 ∈ S3(〈a, r〉) ⊂ K0

and so, condition (b) is verified for T1 = T 0
1 and T2 = T 0

2 . As the sequence (T 1
j )j≤l1+2

is obviously ||a||O(1)-sparse, and ρ1 ∈ K0, we have (c) for T ′j = T 1
j , l = l1 and ρ = ρ1.

If n > 1 we check hypothesis of Lemma 2.5.1 for c = an−1, T1 = T n−1
Jn−1+1, T2 =

r2.T n−1
Jn−1+2, K = Kn−1, b̄ = (b̄)n, l = ln, θ = θn and T ′j = T n

j for j ≤ ln + 2. First, we

have (b̄)n ∈ Kn−1 and ln ∈ log(log(Kn−1)) by hypothesis. Now we check (a),(b),(c):

(a) From ai = 〈Ji+1, ai−1, Yi〉 it follows that ai−1 ∈ S3(ai), i = 1, . . . , n−1. It follows

also, by recurrence on i, that ai, Ji, Yi < 22||a||
O(1)

. In particular this implies ai ∈ Ki

for every i < n. Composing functions in S3 we get that that a = a0 ∈ S3(an−1), and
by (7) S3(an−1) ⊂ Kn−1. Therefore a ∈ Kn−1 .
Now, we have that

an−1 = {pn−1}(an−2), . . . , a1 = {p1}(a0) and pi < |r|O(1), i = 1, . . . , n− 1
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By (2) of lemma 2.3.7 there is some e < |r|O(1) such that, for T =
∑n−1

i=1 r
2.T i

0, we
have C(e, T, a0, an−1). But

n−1∑
i=1

r2.T i
0 < (n− 1).r2.T 1

0 ¿ T 0
1 ¿ 2||a||

r

Hence 2||a||
r
> O(1).T and an−1 ∈ K(a, r, T, a).

(b) We prove by recurrence on n that

T n−1
Jn−1+1 ∈ Kn−1.

For n = 1 it was stated above. Suppose T n−2
Jn−2+1 ∈ Kn−2. By (8) T n−2

Jn−2+1 is in Kn−1

also, as well as ρn−1, an−1 and, consequently, Jn−1 + 1. By lemma 2.4.3

T n−1
Jn−1+1 ∈ S3(〈Jn−1 + 1, a, ρn−1, T

n−2
Jn−2+1〉)

hence T n−1
Jn−1+1 ∈ Kn−1 as Kn−1 is S3-closed. The rest follows from

2||a||
r ≥ T n−1

Jn−1+1 À T n−1
Jn−1+2 À 1

which was remarked at the beginning of the proof.

(c) The sequence (T n
j )j≤ln+2 is obviously ||a||O(1)-sparse and is between T n−1

Jn−1+1 and

r2.T n−1
Jn−1+2 since r < ||a||.

Applying now lemma 2.5.1 we get pn, qn, an, Yn ∈ M , Jn ∈ M ∪ {−1} and a L3-
structure Kn satisfying already (1)-(8). Let us see (9)-(11):

(9) For i = n it is clear by definition (6) of Kn and the fact that

T n
Jn+1 > O(1).r2.T n

Jn+2.

Consider the case i < n. We have that an can be calculated from ai by composing
successively {pi+1}, . . . , {pn}, and the total computing time is bounded by

r2.(T i+1
0 + . . .+ T n

0 ) < (n− i).r2.T i+1
0 ¿ T i

Ji+1

By (2) of lemma 2.3.7 we have C(e, T, ai, an) for some e < |r|O(1) and T ¿ T i
Ji+1.

Since
T +O(1).T n

Jn+2 < T i
Ji+1 < 2||a||

r

we can apply lemma 2.4.8 to conclude that Kn ⊂ Ri
Ji+1(ai).
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(10) Let 1 ≤ i ≤ n and y ∈ Kn. Clearly ai ∈ Kn and then so is 〈ai, y〉 since Kn is
S3-closed. If z = {qi}(〈ai, y〉) then by (4) we have that

z ≤ si(Ji + 1, y) and C(qi, r
2.T i

Ji+2, 〈ai, y〉, z)

If y ≤ ti(Ji + 1) then si(Ji + 1, y) < 22||a||
O(1)

, and when y > ti(Ji + 1) then z = 0 by

definition of {qi}. In all cases we have z < 22||a||
O(1)

. But since T i
Ji+2 ≤ T n

Jn+2 when
i ≤ n we have

r2.T i
Ji+2 < O(1).r2.T n

Jn+2

so we can apply lemma 2.4.6 to conclude that z ∈ Kn.

(11) This fact is a direct consequence of (3),(5),(8),(9) and (10). Surprisingly, it
will not be used later, and this is because our extensions preserve only ∆b

0-formulas.
We will rather imitate its proof for a bigger model of the form

⋃
Kn in the proof of

theorem 2.1.1 below. This is the reason we do not prove it here. ¤

Proof of theorem 2.1.1 Arguing like in the proof of lemma 2.4.1, there is some

r0 ∈M\N, r0 ≤ r (and thus 22||a||
r0

exists also), such that r0 = 2|r0|−1 and r0 < ||a||.
Since

R(a, r0, 2
||a||r0 ) ⊂ R

it suffices to prove the theorem for r0. So we can assume r = 2|r|−1 and r < ||a||
without losing generality.

Let T 0
1 = 2||a||

r
and let T 0

2 be such that T 0
1 À T 0

2 À 1 (any 2||a||
ρ

with r > ρ > O(1),
for example). As we remarked after lemma 2.4.1, we have 2||a||

r ∈ S3(〈a, r〉). Set

K0 = K(a, r, T 0
2 , a)

Fix an enumeration with infinite repetitions of pairs (θ(j, b̄), ||d||) where θ is a Σ̂b
2-

formula and b̄, d are parameters in M . Consider the first pair in the enumeration
with parameters in K0 and name it (θ1(j, (b̄)1), l1).

Then θ1(j) ≡ ∃y ≤ t1∀z ≤ s1ψ1(j, y, z), with ψ1 a ∆b
0-formula with parameters

(b̄)1, and we are in the case n = 1 of hypothesis of lemma 2.5.2. This gives us K1.
Suppose we have just obtained Kn from Kn−1 using this lemma, and let

(θn+1(j, (b̄)n+1), ln+1)

be the first pair in the enumeration after (θn, ln) having its parameters inKn. Lemma
2.5.2 says that Kn satisfies also (1)-(8), thus we are again verifying its hypothesis
and therefore we obtain Kn+1.
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In this way we get an increasing chain of L3-structures (Kn)
n∈N. At each step a

new Σ̂b
2-LLIND axiom is satisfied while the precedent ones are preserved. But the

chain is only ∆b
0-elementary and hence preservation of these axioms under the union

of the chain is not guaranteed since they are ∆b
3-formulas. Rather, this preservation

is a consequence of the specific way the models are built. In other words, we have
not yet proved that

K∗ :=
⋃

n∈N
Kn

is a model of Σ̂b
2-LLIND . Instead, (a),(b),(c) are promptly verified, and thus we

obtain that
K∗ ≺∆b

0
M.

Let θ(j) a Σ̂b
2-formula with parameters b̄ ∈ K∗ and let l ∈ log(log(K∗)). Suppose

that (θ(j), l) was considered when constructing Kn, i.e. θ(j) ≡ θn(j) is the formula

∃y ≤ tn ∀z ≤ sn ψn(j, y, z)

and b̄ = (b̄)n, l = ln, with (b̄)n ∈ Kn−1, ln ∈ log(log(Kn−1)). Note that an ∈ K∗ and
hence by (b) Jn and Yn are also in K∗. Note too that

K∗ ⊂ Rn
Jn+1(an)

by (9) of lemma 2.5.2. Remember that −1 ≤ Jn ≤ ln.

Fact 1: if 0 ≤ Jn ≤ ln then K∗ |= θn(Jn).

Proof: Let z ∈ K∗ such that z ≤ sn(Jn, Yn). As we just remarked, z ∈ Rn
Jn+1(an) so

by (5) of Lemma 2.5.2
M |= ψn(Jn, Yn, z)

and by (2) Yn ≤ tn(Jn). By ∆b
0-elementarity K∗ |= ψn(Jn, Yn, z). We have proved

K∗ |= ∃y ≤ tn ∀z ≤ sn ψn(Jn, y, z)

that is K∗ |= θn(Jn).

Fact 2: if −1 ≤ Jn ≤ ln − 1 then K∗ |= ¬θn(Jn + 1).

Proof: Let y ∈ K∗ such that y ≤ tn(Jn) and let m ≥ n such that y ∈ Km. We have
an ∈ Kn ⊂ Km, so by (10) of lemma 2.5.2 {qn}(〈an, y〉) ∈ Km. By (9)

Km ⊆ Rn
Jn+1(an)
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hence y ∈ Rn
Jn+1(an) and by (5), if z = {qn}(〈an, y〉) then

M |= z ≤ sn(Jn, y) ∧ ¬ψn(Jn + 1, y, z)

Therefore we have that z ∈ K∗ and by ∆b
0-elementarity

K∗ |= z ≤ sn(Jn, y) ∧ ¬ψn(Jn + 1, y, z)

Thus
K∗ |= ∀y ≤ tn∃z ≤ sn¬ψn(Jn + 1, y, z)

i.e. K∗ |= ¬θn(Jn + 1). This proves fact 2.

From Facts 1 and 2,

K∗ |= ¬θn(0) ∨ ∃j < ln[θn(j) ∧ ¬θn(j + 1)] ∨ θn(ln)

i.e. K∗ |= θn(j)-IND up to ln. Thus we have proved that K∗ |= Σ̂b
2-LLIND. ¤
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Chapter 3

Multifunction resources

In this chapter we consider models of general theories T̂ i,2|τ |
ω

2 and T̂
i+1,|τ |
2 and re-

sources generated by its Σ̂b
i+1-definable multifunctions. In section 3.1 we introduce

these classes and do some preliminary work. Given a model M of T̂ i,2|τ |
ω

2 and a Σ̂b
i-

condition σ(a, y) depending on one special parameter a, we construct in sections 3.2
and 3.3 a Σ̂b

i-substructure N of an elementary extension of M whose elements satisfy
the condition. In order to have Σ̂b

i-preservation of formulas we consider structures
with some closure properties under multifunctions consulting Σ̂b

i-oracles. We use

this construction in section 3.4 to extend a model of T̂ i,2|τ |
ω

2 to one of T̂
i+1,|τ |
2 . We

derive also some known witnessing and conservation results for these theories.

3.1 Definability of (multi)functions in T̂ i,2
|τ |ω

2

In this section we introduce the classes of (multi)functions we will consider. We

recall how a definability theorem is proved in T̂ i,2|τ |
ω

2 for the class F [|τ |ω]Σ
p
i (wit) and

then derive a kind of representation theorem for multifunctions in this theory, a
result that proves to be useful further on.

Definition 3.1.1 Let i ≥ 0 and τ a set of unary terms.

• F [τ ]Σ
p
i is the class of functions which can be computed by a Turing machine

equipped with a Σp
i -oracle, in less than O(l(t(x))) steps (if x is the input) for

some l ∈ τ and t ∈ Term(LBA).

• [τ ]Σ
p
i is the class of predicates whose characteristic function belongs to F [τ ]Σ

p
i .

• We say that a theory T Ψ-defines the function f if for some ϕ(x, y) ∈ Ψ the
following holds:
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1. T ` ∀x∃yϕ(x, y)

2. T ` ∀x∀y∀y′(ϕ(x, y) ∧ ϕ(x, y′) → y = y′)

3. N |= ∀m∀n f(m) = n↔ ϕ(m,n).

Theorem 3.1.2 The theory T̂ i,2|τ |
ω

2 can Σ̂b
i+1-define the functions in F [|τ |ω]Σ

p
i .

Proof This is classic. The case τ = {x} (i.e. the identity term) corresponds to well
known Buss’s theories T i

2 and function classes FPΣp
i of polynomial-time computable

functions using oracles from Σp
i . In [10] this case is treated using Turing machines.

The general case can be handled in the same way. ¤

Definition 3.1.3 (Multifunctions) Let i ≥ 0 and τ a set of unary terms.

• A multifunction f is a binary relation such that ∀x∃yf(x, y). We think of
a multifunction as a correspondence which to each x can associate different
values of y. To avoid confusion with the single-valued case, we rather note
y ∈ Im(f)(x) instead of the usual y = f(x).

• F [τ ]Σ
p
i (wit) is the same as F [τ ]Σ

p
i but the oracle gives a witness for the exis-

tential query when the answer is YES. So this makes these functions possibly
multi-valued.

• [τ ]Σ
p
i (wit) is the class of predicates whose characteristic function belongs to

F [τ ]Σ
p
i (wit).

• We say that a theory T Ψ-defines a multifunction f if for some formula
ϕ(x, y) ∈ Ψ the following holds

1. T ` ∀x∃yϕ(x, y)

2. N |= ∀m∀n f(m,n) ↔ ϕ(m,n).

Let us state more precisely what we mean by a multifunction being computed by
a Turing machine. It is possible to adopt two points of view: the first wants the
machine to be able to output every y ∈ Im(f)(x) while the second thinks of f as a
search problem where we are looking for some y ∈ Im(f)(x) and so accepts that for
some images there is no computation leading to them. We choose the first definition
although this is not relevant for the subsequent work. Choosing the second would
make the classes F [|τ |]Σp

i (wit) and FPΣp
i (wit, |τ |) identical (see [20]) while in our

setting we have an only inclusion as |τ |-time is less than or equal to polynomial-time.
See also [7] for a discussion of such topics.
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Theorem 3.1.4 The theory T̂ i,2|τ |
ω

2 can Σ̂b
i+1-define the multifunctions in the class

F [|τ |ω]Σ
p
i (wit).

Proof This is a well-known result. We only give some indications of how its proof
goes, as this proof has an important application further on. We refer to [12] and
[20] for a detailed exposition.

Take f ∈ F [|τ |ω]Σ
p
i (wit) and let M be a Turing machine computing f in time

|l(s(x))|k for some l ∈ τ , s ∈ Term(LBA) and k ∈ N. There is a Π̂b
i−1-formula

QCompM(x,w, v) with the meaning that w is like the code of a computation of
M on x but requiring only that the positive answers of the oracle are correct (to
require the negative answers correct also would make the formula too complex). The
variable v keeps track of this having 1 as its j-th bit if and only if the answer to

the j-th query is YES. Using Σ̂b
i -IND

2|τ |
ω

it is proved that there is a maximal v for
which ∃wQCompM(x,w, v) holds. The maximality of this v implies that the negative
answers of the oracle must be correct, hence such a w codes in fact a computation
of M on x and we can extract the output y by a simple decoding operation, a term

Output ∈ LBA in fact. Hence T̂ i,2|τ |
ω

2 proves

∀x∃y∃v ≤ 2|l(s(x))|k [∃w ≤ t(Output(w) = y ∧QCompM(x,w, v))

∧¬∃v′ ≤ 2|l(s(x))|k∃w′ ≤ t(v′ > v ∧QCompM(x,w′, v′))]

and y = f(x) can be defined by the Σ̂b
i+1-formula in the scope of ∃y. ¤

As an immediate consequence of this proof we obtain

Theorem 3.1.5 For every multifunction f ∈ F [|τ |ω]Σ
p
i (wit) there is a Πb

i−1-formula
A, terms t, s, h ∈ LBA, l ∈ τ , and k ∈ N such that

1. T̂ i,2|τ |
ω

2 ` ∀x∃y ≤ t B(x, y)

2. N |= ∀m∀n B(m,n) ↔ n ∈ Im(f)(m).

where B(x, y) is the formula

∃v ≤ 2|l(s(x))|k [∃w ≤ t(h(w) = y ∧ A(x,w, v))

∧¬∃v′ ≤ 2|l(s(x))|k∃w′ ≤ t(v′ > v ∧ A(x,w′, v′))].

¤

Classes F [τ ]Σ
p
i and F [τ ]Σ

p
i (wit) can be alternatively defined as some particular alge-

bras (see [20]). In particular they are closed under the following recursion scheme.
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Definition 3.1.6 We say that f is defined by BPRτ (τ -bounded primitive recur-
sion) from g, h, t and r if

F (0, x̄) = g(x̄)
F (n+ 1, x̄) = min(h(n, x̄, F (n, x̄)), r(n, x̄))

f(n, x̄) = F (l(t(n, x̄)), x̄)

for some t, r ∈ LBA and l ∈ τ .

So we will be able to define new (multi)functions by τ -depth recursion when it will
be clear that our functions remain bounded.

Remark 3.1.7 It can also be proved that multifunctions defined as in Theorem

3.1.5 are T̂ i,2|τ |
ω

2 -provably closed under composition and BPR|τ |
ω

(see [20]). As a

consequence, when in a model of T̂ i,2|τ |
ω

2 , we will be able to define new multifunctions
preserving the recursive properties of the definition.

From Theorem 3.1.5 we get the following results.

Theorem 3.1.8 For every f ∈ F [|τ |ω]Σ
p
i (wit) there is a Σ̂b

i-formula θ(x, v, y) and

a function g ∈ F [|τ |ω]Σ
p
i such that T̂ i,2|τ |

ω

2 proves

1. θ(x, v, y) → y ≤ t(x), for some term t ∈ LBA

2. ∀x∃yθ(x, g(x), y)
3. ∀x∀y(θ(x, g(x), y) → y ∈ Im(f)(x)).

Proof Let f ∈ F [|τ |ω]Σ
p
i (wit) and let A, t, s, h, l be as in Theorem 3.1.5. Consider

the function
g(x) := max v ≤ 2|l(s(x))|k(∃w ≤ t A(x,w, v)).

By Theorem 3.1.5 such a v exists. Moreover it can be found using binary search in
|l(s(x))|k steps by asking the Σp

i -oracle

∃v ≤ 2|l(s(x))|k∃w ≤ t(z1 < v ≤ z2 ∧ A(x,w, v))

for suitably choosen values of z1, z2 at each step. This means that g ∈ F [|τ |ω]Σ
p
i .

Defining g appropriately we can have T̂ i,2|τ |
ω

2 prove the following properties:

• ∀x∃!y(y = g(x))
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• ∀x(g(x) ≤ 2|l(s(x))|k)

• ∀x∃w ≤ t A(x,w, g(x))

• ∀x∀v ≤ 2|l(s(x))|k(v > g(x) → ¬∃w ≤ t A(x,w, v)).

Thus we have

T̂ i,2|τ |
ω

2 ` ∀x∃y ≤ t∃w ≤ t (h(w) = y ∧ A(x,w, g(x))).

Taking θ(x, v, y) to be the Σ̂b
i -formula y ≤ t ∧ ∃w ≤ t (h(w) = y ∧ A(x,w, v)) gives

the desired result. ¤

Theorem 3.1.9 For every f ∈ F [|τ |ω]Σ
p
i (wit) there is a multifunction

f ′ ∈ F [|τ |ω]Σ
p
i (wit) such that T̂ i,2|τ |

ω

2 proves:

1. ∀x∃y(y ∈ Im(f ′)(x))

2. f ′ ⊂ f

3. y ∈ Im(f ′)(x) ↔ θ(x, g(x), y)

for some function g ∈ F [|τ |ω]Σ
p
i and Σ̂b

i-formula θ(x, v, y) satisfying
θ(x, v, y) → y ≤ t(x) for some t ∈ Term(LBA).

Proof Let f ∈ F [|τ |ω]Σ
p
i (wit) and let θ(x, v, y), g ∈ F [|τ |ω]Σ

p
i be as in Theorem

3.1.8. Define f ′ as a multifunction that first computes g(x), then asks the oracle for
a witness y for θ(x, g(x), y). ¤

This theorem says that it is possible to get, maybe not all, but at least some values
of the multifunction f ∈ F [|τ |ω]Σ

p
i (wit) by asking the oracle just once for a witness.

Of course the other YES-NO answers are needed; they are provided by g. Similar
results were proved in [12] and [7]. As a corollary of this we have the following
equality of classes.

Theorem 3.1.10 [|τ |ω]Σ
p
i (wit) = [|τ |ω]Σ

p
i .

Proof: Let X ∈ [|τ |ω]Σ
p
i (wit) and let f be its characteristic function. By Theorem

3.1.8 there is a Σ̂b
i -formula θ(x, v, y) and a function g ∈ F [|τ |ω]Σ

p
i such that

∀x∀y(θ(x, g(x), y) → y ∈ Im(f)(x)).

Then we have ∀x(θ(x, g(x), 0)∨θ(x, g(x), 1)). Consider the function h that on input
x computes g(x), then asks θ(x, g(x), 1)? and outputs 1 if the answer is YES, and
0 otherwise. Clearly h ∈ F [|τ |ω]Σ

p
i and in fact h = f . Hence X ∈ [|τ |ω]Σ

p
i . We have

proved [|τ |ω]Σ
p
i (wit) ⊂ [|τ |ω]Σ

p
i . The other inclusion is obvious. ¤
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We will have to consider (multi)functions using parameters from a fixed set S. This
class can be defined as follows:

Definition 3.1.11 We fix S an enumerable set of new constant symbols.

• LS := LBA ∪ S.

• We continue to use the notation T i,τ
2 for our theories when working with LS .

• We say that T̂ i,2|τ |
ω

2 proves that f ∈ F [|τ |ω]
Σp

i
S (wit) if for some n ≥ 1 there are

symbols z1, . . . , zn ∈ {x} ∪ S and g ∈ F [|τ |ω]Σ
p
i (wit) such that

T̂ i,2|τ |
ω

2 ` ∀x(Im(f)(x) = Im(g)(〈z1, . . . , zn〉))

(recall this is an equality between sets).

• F [|τ |ω]
Σp

i
S,c1,...,cm

(wit) means F [|τ |ω]
Σp

i

S∪{c1,...,cm}(wit), when c1, . . . , cm are other
constant symbols.

• F [|τ |ω]
Σp

i
S is defined similarly.

We prove some easy facts about these classes that will be used later.

Lemma 3.1.12 Let S ∪ {a, b, c, d} be an enumerable set of constant symbols and

suppose that T̂ i,2|τ |
ω

2 proves d = 〈b, c〉 and a = t(c) for some LBA-term. Then it proves
also:

1. F [|τ |ω]
Σp

i
S,d(wit) = F [|τ |ω]

Σp
i

S,b,c(wit)

2. F [|τ |ω]
Σp

i
S,a(wit) ⊂ F [|τ |ω]

Σp
i

S,c(wit)

3. for every f ∈ F [|τ |ω]
Σp

i
S,b,c(wit) there is some f ′ ∈ F [|τ |ω]

Σp
i

S,c(wit) such that
Im(f)(a) = Im(f ′)(b).

The same results hold in the single-valued case of F [|τ |ω]
Σp

i
S .

Proof: Using 〈b, c〉 or {b, c} as parameters is the same, as you can do some coding
or decoding before running your function in F [|τ |ω]Σ

p
i (wit), these operations being

included in that class. A similar reasoning shows that

F [|τ |ω]
Σp

i
S,c(wit) = F [|τ |ω]

Σp
i

S,a,c(wit)
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and so condition 2 is clear. Let g ∈ F [|τ |ω]Σ
p
i (wit) and s1, . . . , sn ∈ S such that

T̂ i,2|τ |
ω

2 ` Im(f)(a) = Im(g)(〈a, c, b, s1, . . . , sn〉)

(a previous reordering of variables may be necessary, but this is also allowed in
F [|τ |ω]Σ

p
i (wit)). Let f ′ be the multifunction defined by

f ′(x) = g(〈a, c, x, s1, . . . , sn〉).

Then f ′ ∈ F [|τ |ω]
Σp

i
S,a,c(wit) and clearly

T̂ i,2|τ |
ω

2 ` Im(f)(a) = Im(f ′)(b).

By condition 2 we have in fact f ′ ∈ F [|τ |ω]
Σp

i
S,c(wit). ¤

Theorem 3.1.4 readily generalises to this setting, as well as the subsequent Theorems
3.1.5, 3.1.8 and 3.1.9. In particular we have the following version of Theorem 3.1.9
which is needed later.

Theorem 3.1.13 Let T+ be a theory on LS containing T̂ i,2|τ |
ω

2 . Then, for every

f ∈ F [|τ |ω]
Σp

i
S (wit) there is a multifunction f ′ ∈ F [|τ |ω]

Σp
i

S (wit) such that T+ proves

1. ∀x∃y(y ∈ Im(f ′)(x))

2. f ′ ⊂ f

3. y ∈ Im(f ′)(x) ↔ θ(x, g(x), y)

for some function g ∈ F [|τ |ω]
Σp

i
S and Σ̂b

i-formula θ(x, v, y) of LS satisfying
θ(x, v, y) → y ≤ t(x) for some t ∈ Term(LS). ¤

This theorem has a useful application in the next lemma.

Lemma 3.1.14 Let T+ be a theory on LS containing T̂ i,2|τ |
ω

2 . Let ϕ(x, y, ū) be a

Π̂b
i-formula with parameters ū in S and suppose that for every f ∈ F [|τ |ω]

Σp
i

S (wit)

T+ 0 ∀x∀y(y ∈ Im(f)(x) → ϕ(x, y, ū)).

Then the theory T+ ∪ {∃y(y ∈ Im(f)(a) ∧ ¬ϕ(a, y, ū)) : f ∈ F [|τ |ω]
Σp

i
S (wit)} is

consistent, where a is a new constant symbol not in LS .
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Proof Suppose that the following theory is inconsistent:

T+ ∪ {∃y(y ∈ Im(f)(a) ∧ ¬ϕ(a, y, ū)) : f ∈ F [|τ |ω]
Σp

i
S (wit)}.

By compactness there are some multifunctions f0, . . . , fn ∈ F [|τ |ω]
Σp

i
S (wit) such that

T+ ` ∀x
∨
j≤n

∀y(y ∈ Im(fj)(x) → ϕ(x, y, ū)).

For every j ≤ n let f ′j ∈ F [|τ |ω]
Σp

i
S (wit), θj(x, v, y) ∈ Σ̂b

i , gj ∈ F [|τ |ω]
Σp

i
S , and

tj ∈ Term(L) be as in Theorem 3.1.13, i.e.

1. f ′j ⊂ fj

2. y ∈ Im(f ′j)(x) ↔ θj(x, gj(x), y)

3. θj(x, v, y) → y ≤ tj(x).

Then we have:

T+ ` ∀x
∨
j≤n

∀y(θj(x, gj(x), y) → ϕ(x, y, ū)). (3.1)

Consider the multifunction f operating as follows on input x:

1: For j = 0 to n do

2: Calculate gj(x).

3: Ask ∀y ≤ tj(x)(θj(x, gj(x), y) → ϕ(x, y, ū)) ?

4: If the answer is YES ask for a witness y
for θj(x, gj(x), y) and STOP with output y.

5: If the answer is NO put j := j + 1 and go to 1.

By (1) above there is some j ≤ n for which the answer is YES. On the other hand
we have that the queries are Π̂b

i and they are, in number, less than

(|l0(s0(x))|k0 + 1) + · · ·+ (|ln(sn(x))|kn + 1)

for some terms lj ∈ τ , sj ∈ Term(LBA) and kj ∈ N. Note that this is bounded by
|l(s(x))|k for some l ∈ τ , s ∈ Term(LBA) and k ∈ N. Also f uses a finite number of

parameters from S, thus f ∈ F [|τ |ω]
Σp

i
S (wit). Now note that f satisfies

T̂ i,2|τ |
ω

2 ` ∀x∀y(y ∈ Im(f)(x) → ϕ(x, y, ū))

but this is in contradiction with the hypothesis. ¤

52



3.2 Constructing in a multifunction resource

Definition 3.2.1 For the purposes of this section we fix a set S of constant symbols
plus two other constant symbols a, c. We use the following notation:

• σ(x, y) is a Σ̂b
i-formula of LS .

• T+ is a theory on LS containing T̂ i,2|τ |
ω

2 .

• L0 := LS ∪ {a}.
• T0 is the L0- theory

T+ ∪ {∃y(y ∈ Im(f)(a) ∧ σ(a, y)) : f ∈ F [|τ |ω]
Σp

i
S (wit)}.

Moreover, we suppose T0 consistent.

We want a model M of T0 with a Σ̂b
i -substructure N |= T̂ i,2|τ |

ω

2 satisfying ∀y σ(a, y).
This will be done in section 3.3 and will have as a consequence the witnessing
Theorem 3.3.4. This will also allow us to get the extension result of section 3.4 and
its corresponding conservation and witnessing corollaries 3.4.5 and 3.4.6.

For N to be a Σ̂b
i -substructure clearly it suffices to have some kind of closure under

multifunctions in F [|τ |ω]Σ
p
i (wit). Recall how a similar result is proved for Buss’s

theory T i
2 : inside a model of it the closure of an element under functions in FPΣp

i

is again a model of T i
2, which is Σ̂b

i -elementary (see [10], [31]). Here we would like
for example to take

N = {y ∈ Im(f)(a) : f ∈ F [|τ |ω]Σ
p
i (wit)}

but the problem is that not every image y of a by f is “good” in the sense that it
satisfies σ(a, y). We can put in N only “good” images y of a but the same problem
arises when considering the images of those y.

We will see in this section that it is possible to iterate this process of selecting “good”
images to obtain a set Na that is F [|τ |ω]Σ

p
i (wit)-closed in the sense that

∀x ∈ Na ∃y ∈ Na (y ∈ Im(f)(x)).

The problem now is that nothing guarantees that Na is an LBA-structure. Take for
example in Na some bj ∈ Im(fj)(a) for j = 1, 2, and ask if b1 + b2 ∈ Na. If we
consider the multifunction x 7→ f1(x) + f2(x), all that we know is that b′1 + b′2 ∈ Na

for some b′j ∈ Im(fj)(a), but maybe b1 + b2 6= b′1 + b′2. This problem is resolved in
section 3.3 by constructing N as an intersection of sets Nc starting with Na.
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Definition 3.2.2 Let M |= T0 and c ∈M . We abbreviate by C(M, c, a) the follow-
ing conditions

1. For every f ∈ F [|τ |ω]
Σp

i
S,c(wit), M |= ∃y(y ∈ Im(f)(a) ∧ σ(a, y)).

2. a = t(c) for some t ∈ Term(LBA).

So condition 1 means that the fact of including c as a parameter for the multi-
functions does not change the property of a of having “good” images under any

f ∈ F [|τ |ω]
Σp

i
S (wit). Note for example that we have C(M,a, a), or C(M, s, a) for

s ∈ S. We understand condition 2 as “a can be easily extracted from c”. To help
reading the following lemmas you can think as if c = a. In fact we will use this
possibility of substituting c by a to construct Na, but in order to have N closed
under LBA we will allow our multifunctions to use parameters c ∈ N , and so we
need the more general approach.

Definition 3.2.3 Let M |= T0 and c ∈M . We call RM
c the set defined by

RM
c := {x ∈M : for every f ∈ F [|τ |ω]

Σp
i

S,c(wit),M |= ∃y(y ∈ Im(f)(x) ∧ σ(a, y))}.

Elements of RM
c are those having “good” images under any f ∈ F [|τ |ω]

Σp
i

S (wit) using
c as an additional parameter. For example a ∈ RM

a . The letter R is for “resource”.
It is inside this kind of set that we will construct our models.

Lemma 3.2.4 Let M |= T0 and c ∈M satisfy C(M, c, a). Then

1. a, c ∈ RM
c

2. ∀x ∈ RM
c , M |= σ(a, x)

Proof That a ∈ RM
c follows from the remark after Definition 3.2.2. To see that

c ∈ RM
c take f ∈ F [|τ |ω]

Σp
i

S,c(wit). Let fc be the constant function x 7→ c and let

h = f ◦ fc. Then h ∈ F [|τ |ω]
Σp

i
S,c(wit) and as a ∈ RM

c we have that

M |= ∃y(y ∈ Im(h)(a) ∧ σ(a, y)).

But Im(h)(a) = Imf(c), so c ∈ RM
c .

For the last point just take f to be the identity function. ¤
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The next lemma is a first tool allowing to keep only “good” images from a multi-
function.

Lemma 3.2.5 Let M |= T0 and let c ∈ M satisfy C(M, c, a). Then, for every

f ∈ F [|τ |ω]
Σp

i
S,c(wit) there is a T+-provably total multifunction f̃ ∈ F [|τ |ω]

Σp
i

S,c(wit)

such that f̃ ⊂ f and for every b ∈ RM
c

M |= ∀y(y ∈ Im(f̃)(b) → σ(a, y)).

Proof Let f ∈ F [|τ |ω]
Σp

i
S,c(wit). Using Theorem 3.1.13 (and considering T+ as an

L0 ∪ {c}-theory w.l.o.g.) f can be restricted to a T+-provably total multifunction

f ′ ∈ F [|τ |ω]
Σp

i
S,c(wit) defined by

y ∈ Im(f ′)(x) ↔ θ(x, g(x), y)

for a Σ̂b
i -formula θ(x, v, y) with parameters from S∪{c} and a function g ∈ FPΣp

i
S,c(τ̇).

Let f̃ be the multifunction in F [|τ |ω]
Σp

i
S,c(wit) which on input x do the following:

1: Compute g(x).

2: Ask ∃y(θ(x, g(x), y) ∧ σ(a, y)) ?

3: If the answer is YES then output a witness y for this.

4: Else, output a witness for ∃y θ(x, g(x), y) (there is always some one).

Clearly f̃ ⊂ f and T+ proves f̃ is total. Now let b ∈ RM
c . By definition of RM

c we
have that M |= ∃y(y ∈ Im(f ′)(b) ∧ σ(a, y)), i.e.

M |= ∃y(θ(x, g(b), y) ∧ σ(a, y)).

Then for x = b the answer in line 2 is YES, hence ∀y(y ∈ Im(f̃)(b) → σ(a, y)). ¤

Now we would like to restrict a multifunction f to have its images not only “good”
but having themselves “good” images under a fixed g. This is a first kind of closure
property we ask for, treating composition of multifunctions. The next lemma shows
how to satisfy the condition above but only for the set of images of a fixed element
b ∈ RM

c .

55



Lemma 3.2.6 Let M |= T0 and c ∈ M satisfy C(M, c, a). Let b ∈ RM
c . For every

f, g ∈ F [|τ |ω]
Σp

i
S,c(wit) there is a T+-provably total multifunction f g

b ∈ F [|τ |ω]
Σp

i
S,c(wit)

such that

1. M |= Im(f g
b )(b) ⊂ Im(f)(b)

2. M |= ∀y ∈ Im(f g
b )(b) σ(a, y)

3. M |= ∀y ∈ Im(f g
b )(b) ∃z ∈ Im(g)(y) σ(a, z).

Proof Consider the multifunction h defined on input x by:

1: Compute y ∈ Im(f)(x).

2: Compute z ∈ Im(g)(y), while keeping y in memory.

3: Ask σ(a, z) ?

4: If the answer is YES, output y.

5: Else, output z.

Clearly h ∈ F [|τ |ω]
Σp

i
S,c(wit) and can be defined in T+ in such a way as to prove that

w ∈ Im(h)(x) if and only if

∃y∃z(y ∈ Im(f)(x) ∧ z ∈ Im(g)(y) ∧ [(σ(a, z) ∧ w = y) ∨ (¬σ(a, z) ∧ w = z)]).

By Lemma 3.2.5 there is h̃ ∈ F [|τ |ω]
Σp

i
S,c(wit) such that

h̃ ⊂ h ∧ ∀w(w ∈ Im(h̃)(b) → σ(a, w)).

Then we have

w ∈ Im(h̃)(b) → ∃y∃z(y ∈ Im(f)(b) ∧ z ∈ Im(g)(y) ∧ σ(a, z) ∧ w = y).

From this we get that

w ∈ Im(f)(b) ∧ ∃z(z ∈ Im(g)(w) ∧ σ(a, z)).

Hence h̃ is the multifunction f g
b we were looking for. ¤

Thanks to this lemma, for b ∈ RM
c and f, g ∈ F [|τ |ω]

Σp
i

S,c(wit) we can speak about
the “good” images of b by f which have “good” images under g. This set is defined
as follows.
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Definition 3.2.7 For every b ∈ RM
c and f, g ∈ F [|τ |ω]

Σp
i

S,c(wit) we put

[f(b)]g := {y ∈M : M |= y ∈ Im(f)(b) ∧ σ(a, y) ∧ ∃z(z ∈ Im(g)(y) ∧ σ(a, z))}.
The next lemma contains some easy remarks which are used later.

Lemma 3.2.8 Let M |= T0 and let c ∈ M satisfy C(M, c, a). Then, for every

b, b′ ∈ RM
c and f, g ∈ F [|τ |ω]

Σp
i

S,c(wit) the following holds:

1. M |= Im(f g
b )(b) ⊂ [f(b)]g

2. M |= [f(b)]g 6= ∅
3. M |= ∀y ∈ [f(b)]g σ(a, y)

4. M |= Im(f)(b) ⊂ Im(f ′)(b′) → [f(b)]g ⊂ [f ′(b′)]g

5. M |= (∀x∃!y y ∈ Im(f)(x)) → [f(b)]g = {f(b)}.

Proof From definitions conditions 1,3,4 follows easily. We get condition 2 from
condition 1 and the fact that f g

b is total in M , while condition 5 is implied by
condition 2. ¤

Now we ask for a bit more: we want, for b ∈ RM
c and f ∈ F [|τ |ω]

Σp
i

S,c(wit), a restric-
tion of the set Im(f)(b) such that every element has “good” images under every

multifunction g ∈ F [|τ |ω]
Σp

i
S,c(wit). For this we naturally want to take intersections

of sets [f(b)]g with g varying in F [|τ |ω]
Σp

i
S,c(wit). The following two lemmas allow us

to do this for a finite number of multifunctions g by proving that the intersection is
not empty.

Lemma 3.2.9 Let M |= T0 and let c ∈ M satisfy C(M, c, a). Let b ∈ RM
c . Then,

for every f, g, h ∈ F [|τ |ω]
Σp

i
S,c(wit) we have

M |= Im(((f g
b )h

b ))(b) ⊂ Im(f g
b )(b) ∩ [f(b)]h.

Proof By Lemma 3.2.6 we have

M |= Im((f g
b )h

b )(b) ⊂ Im(f g
b )(b) ∧ Im(f g

b )(b) ⊂ Im(f)(b).

From the second inclusion above we get by Lemma 3.2.8 that

M |= Im((f g
b )h

b )(b) ⊂ [f g
b (b)]h ⊂ [f(b)]h.

Hence M |= Im(((f g
b )h

b ))(b) ⊂ Im(f g
b )(b) ∩ [f(b)]h. ¤
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Lemma 3.2.10 Let M |= T0 and c ∈M satisfy C(M, c, a). Let b ∈ RM
c . Fix n ∈ ω,

f, g0, . . . , gn ∈ F [|τ |ω]
Σp

i
S,c(wit) and put f0 = f g0

b and fk+1 = (fk)
gk+1

b for k < n.
Then

1. M |= Im(fn)(b) ⊂ ⋂
k≤n [f(b)]gk

2. M |= ⋂
k≤n [f(b)]gk 6= ∅.

Proof We prove condition 1 by induction on n. The case n = 0 is Lemma 3.2.8-1.
Suppose condition 1 holds for n. We have

Im(fn+1)(b) = Im((fn)
gn+1

b )(b) = Im(((fn−1)
gn

b )
gn+1

b )(b).

Then by Lemma 3.2.9 and induction hypothesis

Im(fn+1)(b) ⊂ Im((fn−1)
gn

b )(b) ∩ [fn−1(b)]
gn+1

⊂ Im(fn)(b) ∩ [fn−1(b)]
gn+1

⊂ ⋂
k≤n [f(b)]gk ∩ [fn−1(b)]

gn+1

Now note that by Lemma 3.2.6-1 Im(f0)(b) ⊂ Im(f)(b) and for every k ≤ n

Im(fk+1)(b) = Im((fk)
gk+1

b )(b) ⊂ Im(fk)(b).

This implies in particular Im(fn−1)(b) ⊂ Im(f)(b) which combined with Lemma
3.2.8-3 gives [fn−1(b)]

gn+1 ⊂ [f(b)]gn+1 . Thus

Im(fn+1)(b) ⊂
⋂

k≤n

[f(b)]gk ∩ [f(b)]gn+1 =
⋂

k≤n+1

[f(b)]gk .

From 1 we get 2 as fn is a total multifunction. ¤

Now we can prove the main theorem of this section, constructing a set Nc of “good”

elements which is F [|τ |ω]
Σp

i
S,c(wit)-closed, and setting conditions enabling us to iterate

the construction in order to extend this closure property to multifunctions using
other parameters. We have to use a compactness argument in order to take infinite
intersections, so we move to an elementary extension of the original model.

Theorem 3.2.11 Let M be a countable model of T0, and let c ∈M satisfy C(M, c, a).
There is a countable elementary extension Mc of M and a subset Nc ⊂Mc such that

1. {a} ∪ S ⊂ Nc
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2. Nc ⊂ RMc
c

3. ∀y ∈ Nc, Mc |= σ(a, y)

4. ∀x ∈ Nc, ∀f ∈ F [|τ |ω]
Σp

i
S,c(wit) , Im(f)(x) ∩Nc 6= ∅

5. ∀x ∈ Nc, 〈c, x〉 ∈ Nc and C(Mc, 〈c, x〉, a).

Proof For every f ∈ F [|τ |ω]
Σp

i
S,c(wit) let ef be a new constant symbol. As c ∈ RM

c

we obtain from Lemma 3.2.10 with b = c that the theory

Th(M) ∪
⋃

f∈F [|τ |ω]
Σp

i
S,c(wit)

{ef ∈ [f(c)]g : g ∈ F [|τ |ω]
Σp

i
S,c(wit)}

is finitely consistent. By compactness and Löwenheim-Skolem theorem we get Mc, a
countable model for it, which we can suppose w.l.o.g. extending M . Then for every

f ∈ F [|τ |ω]
Σp

i
S,c(wit)

Mc |=
⋂

g∈F [|τ |ω]
Σp

i
S,c(wit)

[f(b)]g 6= ∅. (3.2)

Put

Nc :=
⋃

f

⋂
g

[f(c)]g , f, g ∈ F [|τ |ω]
Σp

i
S,c(wit).

Remark: Note that Nc can alternatively be defined by letting f vary only in

F [|τ |ω]
Σp

i
S (wit) (i.e. both definitions give exactly the same set). This is because for

every f ∈ F [|τ |ω]
Σp

i
S,c(wit) there is some f ′ ∈ F [|τ |ω]

Σp
i

S (wit) such that Im(f)(c) =
Im(f ′)(c) (by Lemma 3.1.12-3 with b = c and d ∈ S) and so, by Lemma 3.2.8-4,
[f(c)]g = [f ′(c)]g. This will be used in the proof of lemma 3.2.12.

We supposed C(M, c, a) so there is some term t of LBA such that a = t(c). Consider
the function f(x) := t(x). As was remarked in Lemma 3.2.8-5,

[f(c)]g = {f(c)} = {a}

and this for every g ∈ F [|τ |ω]
Σp

i
S,c(wit). This proves that a ∈ Nc. A similar argument

considering constant functions f(x) = b for every b ∈ S shows that S ⊂ Nc. From
Lemma 3.2.8-3 it follows that ∀y ∈ Nc, M |= σ(a, y), and of course this is valid in
Mc too. From definitions it is clear that Nc ⊂ RMc

c . So we proved conditions 1,2,3
(condition 3 follows also from condition 2).
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To prove condition 4, let b ∈ Nc and let h ∈ F [|τ |ω]
Σp

i
S,c(wit) such that

b ∈
⋂

g∈F [|τ |ω]
Σp

i
S,c(wit)

[h(c)]g.

For every g ∈ F [|τ |ω]
Σp

i
S,c(wit) we have that [f(b)]g ⊂ Im(f)(b), and as b ∈ Im(h)(c)

we have [f(b)]g ⊂ [f ◦ h(c)]g also. Hence

⋂
g

[f(b)]g ⊂ Im(f)(b) ∩
⋂
g

[f ◦ h(c)]g ⊂ Im(f)(b) ∩Nc

where g varies over F [|τ |ω]
Σp

i
S,c(wit). By (3.2) we conclude that Im(f)(b) ∩Nc 6= ∅.

Now we prove condition 5. Let b ∈ Nc. To see that 〈c, b〉 ∈ Nc consider the

function h ∈ F [|τ |ω]
Σp

i
S,c(wit) given by h(x) = 〈c, x〉 and apply condition 4. For

C(Mc, 〈c, b〉, a) let f ∈ F [|τ |ω]
Σp

i

S,〈c,b〉(wit). As C(M, c, a) holds, we have a = t(c) for

some t ∈ Term(LBA). So by Lemma 3.1.12 there is some f ′ ∈ F [|τ |ω]
Σp

i
S,c(wit) such

that
Mc |= Im(f)(a) = Im(f ′)(b).

By condition 2 we have b ∈ RMc
c , hence Mc |= ∃y(y ∈ Im(f ′)(b) ∧ σ(a, y)). That

gives us the first condition of C(Mc, 〈c, b〉, a). The other one is clear as you can
extract first c from 〈c, b〉, then a from c by using LBA-terms. ¤

Starting fromM and c ∈M satisfying some hypotheses, namely C(M, c, a), Theorem
3.2.11 gives thus an extension Mc of M and a set Nc with some properties. But it
says too that those hypotheses are also verified by Mc and any 〈c, b〉 with b ∈ Nc

(3.2.11-5). So application of the theorem can be iterated to obtain an increasing
elementary chain of models (Mn)n∈ω with corresponding sets Nn. We already know
that these sets contain a ∪ S. Next we prove that in fact they form a decreasing
sequence.

Lemma 3.2.12 Let M be a countable model of T0, c ∈M satisfying C(M, c, a), and
let Mc, Nc as in the proof of Theorem 3.2.11. Let b ∈ Nc and c′ = 〈c, b〉, and let
Mc′, Nc′ be obtained by applying again 3.2.11 to Mc and c′. Then Nc′ ⊂ Nc.

Proof By Theorem 3.2.11-5 we have that c′ ∈ Nc. So let h ∈ F [|τ |ω]
Σp

i
S,c(wit) such

that

c′ ∈
⋂

g∈F [|τ |ω]
Σp

i
S,c(wit)

[h(c)]g.

60



In particular c′ ∈ Im(h)(c). Then for every f ∈ F [|τ |ω]
Σp

i
S (wit) we have

Im(f)(c′) ⊂ Im(f ◦ h)(c)
and then [f(c′)]g

′ ⊂ [f ◦ h(c)]g′ by Lemma 3.2.8-4. Thus we have

⋂

g′∈F [|τ |ω]
Σp

i

S,c′(wit)

[f(c′)]g
′ ⊂

⋂

g′∈F [|τ |ω]
Σp

i

S,c′(wit)

[f ◦ h(c)]g′ .

From c′ = 〈c, b〉 we get by Lemma 3.1.12 that F [|τ |ω]
Σp

i
S,c(wit) ⊂ F [|τ |ω]

Σp
i

S,c′(wit).
Hence

⋂

g′∈F [|τ |ω]
Σp

i

S,c′(wit)

[f(c′)]g
′ ⊂

⋂

g∈F [|τ |ω]
Σp

i
S,c(wit)

[f ◦ h(c)]g.

Using the remark in the proof of Theorem 3.2.11 we obtain

Nc′ =
⋃

f∈F [|τ |ω]
Σp

i
S (wit)

⋂

g′∈F [|τ |ω ]
Σ

p
i
S,c′ (wit)

[f(c′)]g
′
.

Hence

Nc′ ⊂
⋃

f∈F [|τ |ω]
Σp

i
S (wit)

⋂

g∈F [|τ |ω]
Σp

i
S,c(wit)

[f ◦ h(c)]g ⊂ Nc.

¤

Remark 3.2.13 Note also that Nc′ is F [|τ |ω]
Σp

i

S,c′(wit)-closed, which is the same as

being F [|τ |ω]
Σp

i
S,c,b(wit)-closed by Lemma 3.1.12. So this says that we have gained a

little in terms of closure with respect to Nc as we can use an additional parameter
from Nc. By iterating this procedure, as the Nc’s are decreasing, we eventually

obtain a set N closed under every f ∈ F [|τ |ω]
Σp

i
S (wit) using any parameter from N ,

i.e. N will be closed under two-variables multifunctions. In particular N will be a
LBA-substructure of an elementary extension of M preserving Σ̂b

i -formulas.

3.3 A model of T̂ i,2
|τ |ω

2

Let M0 |= T0. In this section we use Theorem 3.2.11 to construct an elementary

extension of M0 with a Σ̂b
i -substructure N |= T̂ i,2|τ |

ω

2 consisting of “good” elements.
We start with Na and proceed as explained in remark 3.2.13.
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Theorem 3.3.1 Let T+ be a theory on LS containing T̂ i,2|τ |
ω

2 , σ a Σ̂b
i(LS)-formula

and M0 a countable model of

T+ ∪ {∃y(y ∈ Im(f)(a) ∧ σ(a, y)) : f ∈ F [|τ |ω]
Σp

i
S (wit)}.

There is an elementary extension M of M0 and an LS-substructure N of M such
that

1. a ∈ N
2. N ≺Σ̂b

i
M

3. N |= T̂ i,2|τ |
ω

2

4. N |= ∀y σ(a, y).

Proof We repeatedly use Theorem 3.2.11 to construct a increasing elementary
chain of models (Mn)n∈ω with corresponding sets (Nn)n≥1. Each set Nn ⊂ Mn will
be of the form Nan for some an ∈ Mn. Apply Theorem 3.2.11 a first time with
c = a1 := a to obtain M1 Â M0 and N1 = Na (a is in fact the only element c ∈ M0

for which we are sure C(M, c, a) holds). Now fix an enumeration of N1. Suppose
that for n ≥ 1 we have obtained Mn and Nn from Mn−1 and an as in 3.2.11, and
suppose also that Nn ⊂ N1. Let bn+1 be the first element in the enumeration of N1

lying in Nn and put an+1 := 〈an, bn+1〉. Apply Theorem 3.2.11 to get Mn+1, Nn+1.
By Lemma 3.2.12 Nn+1 ⊂ Nn ⊂ N1, so we can continue in this way. Put

M :=
⋃
n∈ω

Mn , N :=
⋂
n≥1

Nn.

For every n ≥ 1 we have {a} ∪ S ⊂ Nn and Mn−1 ≺Mn by Theorem 3.2.11. Hence
M0 ≺M and {a} ∪ S ⊂ N . Now we prove the closure property of N we wanted.

Lemma 3.3.2 Let c, c′ ∈ N , f ∈ F [|τ |ω]
Σp

i
S,c(wit). Then N ∩ Im(f)(c′) 6= ∅.

Proof of Lemma 3.3.2 Let c ∈ N . By the construction of N =
⋂

k∈ω Nak
we have

that an+1 = 〈an, c〉 for some n ∈ ω. Let k > n. As c′ ∈ Nak
we have by Theorem

3.2.11-(4) that

∀f ∈ F [|τ |ω]
Σp

i
S,ak

(wit), Nak
∩ Im(f)(c′) 6= ∅.

i.e., Mk |= b ∈ Im(f)(c′) for some b ∈ Nak
. As Mk ≺ M , this holds in M too. Now

note that by the an’s construction we have c = t(ak) for some LBA-term t, hence by
Lemma 3.1.12 we have

F [|τ |ω]
Σp

i
S,c(wit) ⊂ F [|τ |ω]

Σp
i

S,ak
(wit)

and the result follows. ¤
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Lemma 3.3.3 Let ū and c̄ means respectively u1, . . . , un and c1, . . . , cm and let
ψ(ū, c̄) be a Π̂b

i−1 formula of LS with implicit bounds for ū and parameters c̄ from
N . The following hold

1. If c ∈ N , then t(c) ∈ N , for every term t of LS .
2. If c, c′ ∈ N , then 〈c, c′〉 ∈ N .

3. If M |= ∃ū ψ(ū, c̄) then ∃ū ∈ N such that M |= ψ(ū, c̄).

Proof of Lemma 3.3.3 By considering respectively the functions x 7→ t(x) and
x 7→ 〈c, x〉 we deduce conditions 1 and 2 from Lemma 3.3.2 . By condition 2 we
have that c := 〈c1, . . . , cm〉 ∈ N . Consider a Π̂b

i−1 formula ψ̃(u, c) such that

M |= ψ̃(u, c) ↔ ψ(〈u〉1, . . . , 〈u〉n, c̄).

Note that we can suppose w.l.o.g. that u is bounded in ψ̃. As M |= ∃ū ψ(ū, c̄) we

have M |= ∃uψ̃(u, c). Consider the multifunction f in F [|τ |ω]
Σp

i
S (wit) which assigns

to x a witness u for ψ̃(u, x) if there is one, and 0 else. Then

M |= ∀u(u ∈ Im(f)(c) → ψ̃(u, c)).

By Lemma 3.3.2 there is some b ∈ N such that M |= ψ̃(b, c). Hence

M |= ψ(〈b〉1, . . . , 〈b〉n, c̄)
and by condition 1 we know that 〈b〉1, . . . , 〈b〉n ∈ N . ¤

As a consequence we get that N is an LS-substructure of M (consider formulas like
∃y(y = t(x1, . . . , xn)) for t ∈ LS) and we can deduce by Theorem 1.3.4 that

N ≺Σ̂b
i
M. (3.3)

Now we prove that N |= T̂ i,2|τ |
ω

2 . Let θ(j, c) be a Σ̂b
i formula with parameter c ∈ N

(now it suffices to consider formulas with one single parameter as we know N is
LS-closed). Let d ∈ N of the form 2|l(s(b))|

k
for some l ∈ τ , s ∈ Term(LS), k ∈ N

and b ∈ N and suppose that

N |= θ(0, c) ∧ ¬θ(d, c).

By (3.3) above M satisfies this also. Consider the function f with parameter c that
on input x uses binary search to find some j ∈M such that

M |= j < 2|l(s(x))|k ∧ θ(j, c) ∧ ¬θ(j + 1, c).
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As M |= T̂ i,2|τ |
ω

2 we can define f in M . This function queries a Σ̂b
i oracle |l(s(x))|k

times, hence f ∈ F [|τ |ω]
Σp

i
S,c(wit). Moreover f is single-valued, so by Lemma 3.3.2

j := f(b) ∈ N . Finally, as N ≺Σ̂b
i
M we have

N |= j < d ∧ θ(j, c) ∧ ¬θ(j + 1, c).

Now let b ∈ N . For any n ≥ 1 we have b ∈ Nn, thus Mn |= σ(a, b) by Theorem
3.2.11-3 . But Mn ≺ M and N ≺Σ̂b

i
M , hence N |= σ(a, b). So N |= ∀y σ(a, y).

This ends the proof of Theorem 3.3.1. ¤

As a consequence we obtain a model-theoretic proof of a witnessing theorem for

Σ̂b
i+1-definable multifunctions of T̂ i,2|τ |

ω

2 . For another proof using the witness function
method of proof-theoretic character see [20].

Theorem 3.3.4 (Witnessing theorem for T̂ i,2|τ |
ω

2 ) Suppose that

T̂ i,2|τ |
ω

2 ` ∀x∃yϕ(x, y)

where ϕ ∈ Σ̂b
i+1. Then for some f ∈ F [|τ |ω]Σ

p
i (wit),

T̂ i,2|τ |
ω

2 ` ∀x∀y(y ∈ Im(f)(x) → ϕ(x, y)).

Proof First we argue that it suffices to prove the result for ϕ ∈ Π̂b
i . Suppose

the theorem established for any ϕ ∈ Π̂b
i and let us prove it for a Σ̂b

i+1-formula

ψ(x, y) ≡ ∃uϕ(x, y, u). We suppose that ϕ(x, y, u) is a Π̂b
i -formula containing a

bound for u. Note that

T̂ i,2|τ |
ω

2 ` ∀x∃yψ(x, y) → ∀x∃zϕ(x, 〈z〉1, 〈z〉2).
By our assumption there is some f ∈ F [|τ |ω]Σ

p
i (wit) such that

T̂ i,2|τ |
ω

2 ` ∀x∀z(z ∈ Im(f)(x) → ϕ(x, 〈z〉1, 〈z〉2)).
Defining f ′(x) := 〈f(x)〉1 we have T̂ i,2|τ |

ω

2 ` ∀x∀y(y ∈ Im(f ′)(x) → ∃uϕ(x, y, u)).

We now prove the theorem for ϕ ∈ Π̂b
i . Suppose that for every f ∈ F [|τ |ω]Σ

p
i (wit)

T̂ i,2|τ |
ω

2 0 ∀x∀y(y ∈ Im(f)(x) → ϕ(x, y)).

By Lemma 3.1.14 the theory

T̂ i,2|τ |
ω

2 ∪ {∃y(y ∈ Im(f)(a) ∧ ¬ϕ(a, y)) : f ∈ F [|τ |ω]Σ
p
i (wit)}

is consistent, where a is a new constant symbol. Take M0 any countable model
of this theory. By Theorem 3.3.1 there is an extension M of M0 with a substruc-

ture N containing a and satisfying T̂ i,2|τ |
ω

2 and ∀y¬ϕ(a, y). This contradicts the
hypothesis. ¤
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3.4 Extending to a model of T̂
i+1,|τ |
2

The technique used in this section is inspired from Zambella [31]. In his proof of
Buss’s theorem he adapts an unpublished model-theoretic argument used by Albert
Visser to prove the Mint’s-Parsons theorem of Σ1-conservativity between PRA and
IΣ1 ([15],[19],[26]). The difficulty of applying this technique is that we need theorem
3.3.1 (see comments at the beginning of section 3.2).

Theorem 3.4.1 Let i ≥ 1. Every countable model M |= T̂ i,2|τ |
ω

2 has a ∀Σ̂b
i-elementary

extension K |= T̂ i,2|τ |
ω

2 such that for every Π̂b
i-formula ϕ(x, y), possibly with param-

eters, there is f ∈ F [|τ |ω]
Σp

i
K (wit) satisfying

K |= ∀x∃yϕ(x, y) → ∀x∀y(y ∈ Im(f)(x) → ϕ(x, y)). (3.4)

Proof Model K is constructed as the union of an increasing ∀Σ̂b
i -elementary chain

M = M0 ≺∀Σ̂b
i
M1 ≺∀Σ̂b

i
. . . ≺∀Σ̂b

i
Mn . . .

of countable models of T̂ i,2|τ |
ω

2 . Let us suppose M0, . . . ,Mn constructed and consider
for every j ≤ n enumerations (ϕ〈j,k〉)k∈ω of Π̂b

i -formulas ϕ(x, y) with parameters in
Mj.

To construct Mn+1 consider the formula ϕ〈j,k〉 such that 〈j, k〉 = n (note that its
parameters are in Mj, hence in Mn as j ≤ n). We wantMn+1 satisfying (3.4)n, which
is formula (3.4) with ϕn in place of ϕ and parameters in Mn. Note that formula
(3.4) is equivalent to a ∃∀Σ̂b

i -formula. As the chain is ∀Σ̂b
i -elementary this implies

by Theorem 1.3.1 that formulas (3.4)n will be preserved up to the union K. Note
also that at the end all the Π̂b

i -formulas with parameters in K will be considered.

If Mn already satisfies (3.4)n for some f ∈ F [|τ |ω]
Σp

i
Mn

(wit) then we let Mn+1 = Mn.
Otherwise, we extend Mn in a way to satisfy ∃x∀y¬ϕn(x, y). If (3.4)n is false for

every f ∈ F [|τ |ω]
Σp

i
Mn

(wit) then

∀f ∈ F [|τ |ω]
Σp

i
Mn

(wit), Mn 2 ∀x∀y(y ∈ Im(f)(x) → ϕ(x, y)).

This is the same as saying that for every f ∈ F [|τ |ω]
Σp

i
Mn

(wit),

Th(Mn) 0 ∀x∀y(y ∈ Im(f)(x) → ϕ(x, y)).

Now Th(Mn) is a theory containing T̂ i,2|τ |
ω

2 in a language Ln extending LBA by a
countable set of constants for Mn. Hence by Lemma 3.1.14 we have that

Tn := Th(Mn) ∪ {∃y(y ∈ Im(f)(a) ∧ ¬ϕn(a, y)) : f ∈ F [|τ |ω]
Σp

i
Mn

(wit)}
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is consistent, with a a new constant symbol. Using Theorem 3.3.1 we get a countable
modelM ′ of Tn, in particularM ′ is elementarily equivalent toMn and we can suppose
w.l.o.g. that M ′ is an Ln-extension, and M ′ contains an Ln-substructure, which is
our Mn+1, such that

1. a ∈Mn+1

2. Mn+1 ≺Σ̂b
i
M ′

3. Mn+1 |= T̂ i,2|τ |
ω

2

4. Mn+1 |= ∀y¬ϕn(a, y).

As Mn ⊂Ln M
′ and Mn+1 ⊂Ln M

′, and Ln has constants for the elements of Mn, we
have that Mn ⊂Ln Mn+1. This extension is Σ̂b

i -elementary because Mn ≺ M ′ and
Mn+1 ≺Σ̂b

i
M ′. Moreover it preserves also ∀Σ̂b

i -formulas: from Mn to M ′ because

Mn ≺M ′, and from M ′ to Mn+1 because Mn+1 ≺Σ̂b
i
M ′. Now put

K :=
⋃
n∈ω

Mn.

By Theorem 1.3.1 we have Mn ≺∀Σ̂b
i
K for every n ∈ ω, in particular M ≺∀Σ̂b

i
K, and

thus K |= T̂ i,2|τ |
ω

2 . Finally, as explained above, K satisfies (3.4) for every Π̂b
i -formula

with parameters in K. ¤

Lemma 3.4.2 Let i ≥ 1. Let K |= T̂ i,2|τ |
ω

2 be such that for every Π̂b
i-formula ϕ(x, y)

possibly with parameters, there is f ∈ F [|τ |ω]
Σp

i
K (wit) satisfying

K |= ∀x∃yϕ(x, y) → ∀x∀y(y ∈ Im(f)(x) → ϕ(x, y)).

Then K |= Σ̂b
i+1-DC

|τ |.

Proof By Lemma 1.2.11 it suffices to show K |= Π̂b
i -DC

|τ |. So let a, b ∈ K, l ∈ τ ,
and suppose

K |= ∀j∀x < b ∃y < b α(j, x, y).

After the usual transformations that contract variables j and x into a single one using

pairing, it follows from hypothesis that there is a multifunction f ∈ F [|τ |ω]
Σp

i
K (wit)

such that

K |= ∀j∀x < b∀y (y ∈ Im(f)(〈j, x〉) → y < b ∧ α(j, x, y)).

Define g ∈ F [|τ |ω]
Σp

i
K (wit) by BPR|τ |

ω
as follows (by (x) we note the one-element

sequence w such that (w)0 = x):
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G(0) = (f(〈0, 0〉))

G(j + 1) = min(G(j)a(f(〈j, (G(j))j〉)), r(a, b))
g(z) = G(|l(z)|).

Functions G and g use parameters a, b. Here r(a, b) is a term bounding the sequence
v of length |l(a)| such that ∀j < |l(a)| ((v)j = b). As was remarked in 3.1.7 the

multifunction g can be defined by T̂ i,2|τ |
ω

2 in such a way that this theory proves g’s
recursive properties. In particular we have that lh(g(a)) = |l(a)| and

∀j < |l(a)|((g(a))j+1 ≤ b ∧ (g(a))j+1 ∈ Im(f)(〈j, (g(a))j〉)).

Putting w = g(a) we have

K |= ∀j < |l(a)|((w)j < b ∧ (w)j+1 < b ∧ α(j, (w)j, (w)j+1)).

¤

As a consequence of the preceding results we obtain the following extension theorem

for models of T̂ i,2|τ |
ω

2 . First we say what we mean byM satisfying an equality between
complexity classes.

Definition 3.4.3 Let i ≥ 1 and M |= T̂ i,2|τ |
ω

2 . We say that

M |= [|τ |ω]Σ
p
i = Σp

i+1 ∩ co-Σp
i+1

if for every formula ϕ(x) satisfying

M |= ∀x((ϕ(x) ↔ θ(x)) ∧ (ϕ(x) ↔ ψ(x)))

for some θ ∈ Σb
i+1 and ψ ∈ Πb

i+1, there is a 0-1 function f ∈ F [|τ |ω]
Σp

i
M such that

M |= ∀x(ϕ(x) ↔ f(x) = 1).

Theorem 3.4.4 (i ≥ 1) Every countable model M |= T̂ i,2|τ |
ω

2 has an extension K
such that:

1. M ≺∀Σ̂b
i
K.

2. K |= T̂
i+1,|τ |
2 .

3. K |= [|τ |ω]Σ
p
i = Σp

i+1 ∩ co-Σp
i+1.
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Proof By Theorem 3.4.1 and Lemma 3.4.2 we know that M has a ∀Σ̂b
i -elementary

extension K |= Σ̂b
i+1-DC

|τ |, but clearly K satisfies already EBASIC and ∆b
0-IND

|τ |

hence by Lemma 1.2 K |= T̂
i+1,|τ |
2 . Now let ϕ(x) such that

M |= ∀x(ϕ(x) ↔ ∃y1α1(x, y1) ↔ ¬∃y2α2(x, y2)). (3.5)

for some αj ∈ Π̂b
i , j = 1, 2. Then we have

M |= ∀x∃y(α1(x, y) ∨ α1(x, y)).

As the formula in the scope of ∃y is Π̂b
i , Theorem 3.4.1 applies, so there is some

f ∈ F [|τ |ω]
Σp

i
K (wit) such that

M |= ∀x∀y(y ∈ Im(f)(x) → (α1(x, y) ∨ α1(x, y)). (3.6)

Now let g the function that on input x computes some y ∈ Im(f)(x) and then asks
α1(x, y)? If the answer is YES then g(x) = 1, else g(x) = 0. Note that by (3.5) and

(3.6) the value of g(x) does not depend on y. So g ∈ F [|τ |ω]
Σp

i
K (wit) is single-valued

and clearly:
K |= ∀x(ϕ(x) ↔ g(x) = 1).

To conclude we argue as in the proof of 3.1.10 to prove that in fact g ∈ F [|τ |ω]
Σp

i
K .

¤

In the case i = 1 and τ = {x} we get that every model of T 1
2 has a ∀Σ̂b

i -elementary
extension to a model of S2

2 satisfying ∆p
2 = Σp

2 ∩ co-Σp
2. See [13] p. 127 for a model

of PV satisfying P = NP ∩ co-NP .

Theorem 3.4.5 (i ≥ 1) The theory T̂
i+1,|τ |
2 is ∀∃Σ̂b

i+1-conservative over T̂ i,2|τ |
ω

2 .

Proof Suppose T̂
i+1,|τ |
2 ` ∀xϕ(x), ϕ ∈ ∃Σ̂b

i+1. Let M |= T̂ i,2|τ |
ω

2 and let M ′ be

countable and elementarily equivalent to M . Extend M ′ to K |= T̂
i+1,|τ |
2 using

Theorem 3.4.4. Then M ′ ≺∀Σ̂b
i
K and K |= ∀xϕ(x). But M ′ ≺∀Σ̂b

i
K is the same as

M ′ ≺∃Σ̂b
i+1

K, hence M ′ |= ∀xϕ(x) and the result follows. ¤

Theorem 3.4.6 (Witnessing theorem for T̂
i+1,|τ |
2 ) Suppose that

T̂
i+1,|τ |
2 ` ∀x∃yϕ(x, y)

where ϕ ∈ Σ̂b
i+1. Then for some f ∈ F [|τ |ω]Σ

p
i (wit),

T̂ i,2|τ |
ω

2 ` ∀x∀y(y ∈ Im(f)(x) → ϕ(x, y)).
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Proof Follows immediately from the witnessing theorem for T̂ i,2|τ |
ω

2 (Theorem 3.3.4)
and the conservativity result above. ¤

Remark 3.4.7 It is not difficult to see that the method used in this chapter applies
in the general case of a language containing #k for any k ≥ 2 (see section 2.1 for a
definition). In particular we obtain for k = 3, i = 1 and τ = {||x||}:

R̂2
3 ≡∀Σ̂b

2
Σ̂b

1-IND
2||x||

ω

but the latter theory is S1
3 as in the presence of #3 we have that ∀x ∃y 2||x||

n
= |y|.

So this strengthens corollary 2.1.3.

69



70



Chapter 4

Replacement

Inside a recursively saturated model of T
i,|τ |
2 we construct a Σ̂b

i-elementary substruc-
ture satisfying Σ̂b

i+1-REPL
|τ |. The technique used is purely model theoretical and

comes from Ressayre’s [22] conservation theorem between Σb
i+1-REPL

|x| and Si
2 .

Thus, we obtain a model theoretic proof of the ∀Σ̂b
i+1-conservativity of Σ̂b

i+1-REPL
|τ |

over T
i,|τ |
2 which was proved by Pollett [20] using the witness function method of proof

theoretic character. In section 4.1 we do some preliminaries. In section 4.2 we give
conditions which suffice to obtain the desired structures, and in section 4.3 we show
how these conditions are fulfilled in a recursively saturated model.

4.1 Preliminaries

In this chapter, we will use some equivalent versions of replacement and strong-
replacement schemes. They will allow us to keep control of the length of the se-
quences, particularly when we will concatenate them.

Definition 4.1.1 (Replacement+) Given α(x, y), a formula which might contain
parameters, we note by α-REPL+

a
b the formula

∀x ≤ a∃y ≤ b α(x, y) →

∃w (seq(w) ∧ lh(w) = a+ 1 ∧mx(w) = b ∧ ∀x ≤ a α(x, (w)x)).

If τ is a set of terms, Ψ-REPL+
τ is the scheme

{∀a∀b α-REPL+
l(a)
b : α ∈ Ψ, l ∈ τ}.

Lemma 4.1.2 The schemes Σ̂b
i-REPL

τ and Σ̂b
i-REPL+

τ are equivalent over EBASIC.
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Proof: The only important difference with respect to the original replacement
scheme is that we impose lh(w) = a+1, i.e. (w)x = 0 for x > a. However, this does
not cause any problem as we want only to conclude ∀x ≤ a α(x, (w)x)). ¤

Definition 4.1.3 (Strong replacement+) Given α(x, y), a formula which might
contain parameters, we note by α-STRONG REPL+

a
b the formula

∃w(seq(w) ∧ lh(w) = a+ 1 ∧mx(w) = b ∧
∀x ≤ a(∃y ≤ b α(x, y) → α(x, (w)x)).

If τ is a set of terms, Ψ-STRONG REPL+
τ is the scheme

{∀a∀b α-STRONG REPL+
l(a)
b : α ∈ Ψ, l ∈ τ}.

Lemma 4.1.4 The schemes Σ̂b
i-STRONG REPLτ and Σ̂b

i-STRONG REPL+
τ

are equivalent over EBASIC.

Proof: Same remarks as for the proof of Lemma 4.1.2. ¤

So we will continue to refer indistinctly to REPL or STRONG REPL when using
the + versions of them.

The following lemmas recall some easy consequences of the theories T i,τ
2 . For con-

venience we state them in a model theoretic setting.

Lemma 4.1.5 Let M be an LBA-structure, a ∈ M such that M |= T i,a
2 . Then

M |= T i,aω

2 .

Proof: This is done by a classical speed-up argument. We only prove the special

case T i,a
2 → T i,a2

2 , since the general case can be handled in a similar way. Let ϕ(x)
be a Σ̂b

i -formula and suppose that

M |= ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)).

We want to derive ϕ(a2). Let θ(x) ≡ α(ax). Then we have M |= θ(0). Let b ∈ M
and suppose M |= θ(b). Set α(b, y) ≡ ϕ(ab+ y). Then we clearly have

M |= α(b, 0) ∧ ∀y (α(b, y) → α(b, y + 1)).

Since α ∈ Σ̂b
i , we get by induction α(b, a), i.e. ϕ(ab+ a), i.e. θ(a(b+ 1)). Therefore,

we have proved
M |= ∀x (θ(x) → θ(x+ 1))

so we get M |= θ(a), i.e. M |= ϕ(a2). ¤
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Lemma 4.1.6 Let M be an LBA-structure, a, b ∈M such that a ≤ b and M |= T i,b
2 .

Then M |= T i,a
2 .

Proof: Let ϕ(x) be a Σ̂b
i -formula and suppose that

M |= ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x+ 1)).

Apply INDb to the formula θ(x) ≡ (x < a ∧ ϕ(x)) ∨ (x > a ∧ ϕ(a)). ¤

Lemma 4.1.7 Let M be an LBA-structure, a ∈ M such that M |= T
i,|a|
2 . Then

M |= T
i,|a|ω
2 ∪ T i,2||a||.ω

2 .

Proof: The fact T
i,|a|
2 → T

i,|a|ω
2 follows from Lemma 4.1.5. Let k ∈ N. Then

2||a||.k < |a|k+1 and the result follows by Lemma 4.1.6. ¤

Lemma 4.1.8 Let M be an LBA-structure, and let a, b ∈ M such that a ≤ |b| and
M |= T i,a

2 . Then

a. M |= Σ̂b
i-REPL

a

b. M |= Σ̂b
i-COMP a

c. M |= Σ̂b
i-STRONG REPLa.

Proof: This is a more general statement than the theorems 1.2.2, 1.2.5 and
1.2.8 as a need not to be equal to |c| for some c ∈ M . In other words, the set
log(M) := {|x| : x ∈ M} is not necessarily an initial segment of M (this is true
if M |= S1

2 for example). Nevertheless the proof is the same, and it is done by
induction on a. The fact that a < |b| allows to bound the corresponding w in each
scheme. ¤

The following lemma says that we can concatenate sequences in a suitable way.

Lemma 4.1.9 Suppose that w1 and w2 are sequences in a model M such that:

1. For j = 1, 2, mj := mx(wj), lj := lh(wj)

2. M |= ∃z(l1 + l2 < |z|)
3. M |= Σ̂b

1-IND
l1+l2 .

Then there is a sequence w ∈M such that:

• mx(w) = max(m1,m2)
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• lh(w) = l1 + l2

• ∀u < max(l1, l2)((u < l1 → (w)u = (w1)u) ∧ (u < l2 → (w)l1+u = (w2)u)).

Moreover this w is unique. We call it the concatenation of w1 and w2 and note it

by w1
aw2.

Proof: Note that we have

∀x ≤ l1 + l2 ∃y ≤ max(m1,m2) ((x < l1 ∧ y = (w1)x) ∨ (x ≥ l1 ∧ y = (w2)x−l1)).

By Lemma 4.1.8 we can use Σ̂b
1-REPL

l1+l2 in M . We get that

∃w(seq(w) ∧ lh(w) = l1 + l2 ∧mx(w) = max(m1,m2)∧

∀x < l1 + l2 ((x < l1 ∧ (w)x = (w1)x) ∨ (x ≥ l1 ∧ (w)x = (w2)x−l1)).

The result follows after some easy transformations. Uniqueness is proved by Σ̂b
1-IND

on the length of w. ¤

4.2 Obtaining substructures

The first lemma gives a general way to obtain Σ̂b
i -substructures via some simple

conditions.

Lemma 4.2.1 Let M be an LBA-structure, I a cut in M . Suppose for every k ∈ I
we are given some elements bk ∈M and subsets Wk ⊂ M . Let MI :=

⋃
k∈I Wk and

suppose that the following holds:

1. Wk ⊂ Wk+1 for every k ∈ I

2. (bk)k∈I is cofinal in MI

3. for every Π̂b
i−1-formula ϕ, k ∈ I and x ∈ Wk,

if M |= ∃y ≤ bk ϕ(x, y), then ∃y ∈ Wk+1 s.t. M |= y ≤ bk ϕ(x, y)

4. MI ⊂LBA
M.

Then MI ≺Σ̂b
i
M .
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Proof Let t be a term of LBA, α(y, c) a Π̂b
i−1-formula with parameter c ∈ MI ,

and suppose M |= ∃y ≤ t(c)α(y, c) (the case with many parameters can be reduced
to this one using the pairing function). As c ∈ MI we have by condition 4 that
t(c) ∈ MI , then by conditions 1 and 2 there is some k ∈ I such that t(c) ≤ bk and
c ∈Wk. Thus, we have

M |= ∃y ≤ bk(y ≤ t(c) ∧ α(y, c)).

By condition 3, there is such a witness y in Wk+1, hence in MI as I is a cut. We
conclude applying Theorem 1.3.4. ¤

The following lemma recalls an easy fact, useful to get elementarity properties when
constructing models.

Notation: For an LBA-structure M and a, b ∈M , we put

[a, b]M := {x ∈M : M |= a ≤ x ≤ b}.

Lemma 4.2.2 Let M,M ′ be LBA-structures such that M ′ ≺Σ̂b
i
M . Let c ∈M such

that [0, c]M ⊂M ′. If θ(x) ∈ B(Σ̂b
i) with parameters in M ′ then

M |= ∃x ≤ c θ(x) if and only if M ′ |= ∃x ≤ c θ(x).

Proof Obvious. ¤

By adding such a condition to those of Lemma 4.2.1 we obtain sufficient conditions
to get Σ̂b

i -elementary substructures of models of T i,τ
2 satisfying also that theory.

Theorem 4.2.3 Let i ≥ 1, τ a set of unary terms. Let M |= T i,τ
2 , I a cut in M .

Suppose for every k ∈ I we are given some elements bk ∈ M and subsets Wk ⊂ M .
Let MI :=

⋃
k∈I Wk and suppose that the conditions 1-4 of Lemma 4.2.1 hold, and

additionally

∀ l ∈ τ, c ∈MI , [0, l(c)]M ⊂MI .

Then

a. MI ≺Σ̂b
i
M

b. MI |= T i,τ
2 .
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Proof By Lemma 4.2.1 we get MI ≺Σ̂b
i
M . Now let α(j, d) be a Σ̂b

i -formula with
parameter d ∈MI . Let l ∈ τ , c ∈MI and suppose that

MI |= α(0, d) ∧ ¬α(l(c), d).

By (a) this is also satisfied in M . As M |= T i,τ
2 we have that

M |= ∃j < l(c)(α(j, d) ∧ ¬α(j + 1, d)).

By condition 5 we can apply Lemma 4.2.2 to conclude that MI also satisfies this. ¤

From now on we suppose τ is recursively given. This is a natural assumption as
otherwise the theory T i,τ

2 would not be recursive.

Notation: When M |= seq(w) ∧ ∀k < r seq((w)k) we note:

• wk := (w)k

• Wk := {x ∈M : M |= ∃u < lh(wk) (x = (wk)u)}, the set coded by wk

Now we give sufficient conditions to get a substructure satisfying a property which
is near from our desired replacement scheme. A special cut is used and the model
MJ becomes in fact an intersection of sets Wk for k = r to r − ω.

Lemma 4.2.4 Let M be a recursively saturated LBA-structure, let r ∈ M\N and
let w ∈M such that M |= seq(w) ∧ ∀k < r seq((w)k). Set

J := {r − n : n < ω}
and let MJ :=

⋃
k∈J Wk. Let c ∈MJ and suppose the following holds:

1. Wk ⊂ Wk+1 for every k ≤ r

2. (wk)k∈J ⊂MJ

3. [0, c]M ⊂MJ

4. MJ ≺Σ̂b
i
M.

Then for every θ(x, y) ∈ Π̂b
i , d ∈MJ , if

MJ |= ∀x ≤ c ∃y ≤ d θ(x, y)

there is k ∈ J such that

M |= ∀x ≤ c ∃y ∈ Wk (y ≤ d ∧ θ(x, y)).
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Proof Suppose that MJ |= ∀x ≤ c ∃y ≤ d θ(x, y). By condition 3, 4 and Lemma
4.2.2, M also satisfies this formula. By 1 we have MJ ⊂ Wr−n for every n < ω.
Thus for every n < ω

M |= ∀x ≤ c ∃y ∈Wr−n(y ≤ d ∧ θ(x, y)).

That means that the following type t(k) is finitely satisfiable in M

{∀x ≤ c ∃y ∈ Wk(y ≤ d ∧ θ(x, y))} ∪ {k < r − n : n < ω}.

By saturation there is some k realizing t(k), and this k is clearly in J . ¤

4.3 A model of Σ̂b
i+1-REPL

|τ | inside one of T
i,|τ |
2

In this section we prove that the conditions given in 4.2 are sufficient to obtain a
Σ̂b

i -substructure satisfying Σ̂b
i+1-REPL

|τ | in a recursively saturated model of T
i,|τ |
2 .

Then we show that these conditions can be fulfilled in such a model, by constructing
suitable sequences w and b. To this aim we need an overspill argument in the length
of the induction available in M . This is done in the following lemma.

Lemma 4.3.1 Let i ≥ 1, τ a set of unary terms. Let M be a recursively saturated
model of T

i,|τ |
2 . There is some q ∈M\N such that

a. M |= ∀x∃y 2||l(x)||.|q| ≤ |y| , for every l ∈ τ

b. M |= T i,2||τ ||.|q|
2 .

Proof Consider the following recursive type t(q)

{∀x∃y 2||l(x)||.|q| ≤ |y| : l ∈ τ} ∪ {ψn-IND2||l(x)||.|q|
: n < ω, l ∈ τ} ∪ {q > n : n < ω}

where (ψn)n<ω is an enumeration of Σ̂b
i -formulas. By Lemma 4.1.7 M |= T i,2||l(x)||.n

2

for every l ∈ τ, n < ω. But

T 1,2||l(x)||.n
2 ` ∀x∃y 2||l(x)||.n ≤ |y|.

Hence t(q) is finitely satisfied and the result follows by saturation. ¤

The following lemma includes the conditions of section 4.2. These conditions to-
gether with the conclusion of Lemma 4.2.4 yield that our substructure also satisfies
Σ̂b

i+1-REPL
|τ |.
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Lemma 4.3.2 Let i ≥ 1, τ a set of unary terms. Let M be a recursively saturated
model of T

i,|τ |
2 and let q ∈ M as in Lemma 4.3.1. Let r ∈ M\N, r < |||q|||, and

let w, b ∈ M such that M |= seq(w) ∧ seq(b) ∧ ∀k ≤ r seq((w)k). Let J be the cut
{r − n : n < ω} and let MJ :=

⋃
k∈J Wk. Suppose the following holds:

1. Wk ⊂ Wk+1 for every k ∈ J
2. (wk)k∈J , (bk)k∈J ⊂MJ , q ∈MJ

3. (bk)k∈J is cofinal in MJ

4. [0, 222k||l(x)||.||q||]M ⊂MJ for every k ∈ J , l ∈ τ , x ∈MJ

5. [0, lh(wk)]M ⊂MJ for every k ∈ J
6. MJ ⊂LBA

M

7. MJ |= T
i,lh(wk)
2 for every k ∈ J

8. for every Π̂b
i−1-formula ϕ, k ∈ J and x ∈ Wk,

if M |= ∃y ≤ bk ϕ(x, y), then ∃y ∈ Wk+1 s.t. M |= y ≤ bk ϕ(x, y).

Then

a. MJ ≺Σ̂b
i
M

b. MJ |= Σ̂b
i+1-REPL

|τ |ω .

Proof By Lemma 4.2.1 we have MJ ≺Σ̂b
i
M . Now note that, as in the proof of

Theorem 4.2.3(b), we can deduce from condition 4 and Lemma 4.2.2 that for every
k ∈ J

MJ |= T i,222k||τ ||.||q||
2 . (4.1)

For Σ̂b
i+1-REPL

|τ |ω it suffices to derive Π̂b
i -REPL

|τ |ω by Lemma 1.2.3. So let

θ(x, y) ∈ Π̂b
i , l ∈ τ , n < ω, c, d ∈MJ and suppose that

MJ |= ∀x ≤ |l(c)|n∃y ≤ d θ(x, y).

As |l(c)|n < 2||l(c)||.||q|| we have that [0, |l(c)|n]M ⊂ MJ . Then by Lemma 4.2.4 there
is some k ∈ J such that

M |= ∀x ≤ |l(c)|n∃y ∈ Wk(y ≤ d ∧ θ(x, y)).
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That is, for some k ∈ J

M |= ∀x ≤ |l(c)|n∃u < lh(wk)((wk)u ≤ d ∧ θ(x, (wk)u)). (4.2)

By condition 2 this formula has its parameter wk inside MJ . By condition 5 and
Lemma 4.2.2 we have that 4.2 is satisfied also in MJ . Now set

Φ(x, u) ≡ (wk)u ≤ d ∧ θ(x, (wk)u). (4.3)

Using pairing we can code variables x, u into a single one. We set

Φ̃(z) ≡ ispair(z) ∧ 〈z〉1 ≤ |l(c)|n ∧ 〈z〉2 < lh(wk) ∧ Φ(〈z〉1, 〈z〉2).

Then we have

MJ |= ∀x ≤ |l(c)|n ∀u < lh(wk)(Φ(x, u) ↔ Φ̃(〈x, u〉)).

By Lemma 1.1.9

x ≤ |l(c)|n ∧ u < lh(wk) → 〈x, u〉 ≤ 16 ·max2(|l(c)|n, lh(wk)).

Let a := 16 ·max2(|l(c)|n, lh(wk)). As |l(c)|n < 2||l(c)||.||q|| we have by Lemma 4.1.6
and (4.1) above that MJ |= T i,|l(c)|n . From this and condition 7 we deduce, by
applying Lemmas 4.1.5 and 4.1.6, that MJ |= T i,a. Hence, by Lemma 4.1.8 we can
code validity of Φ̃(z) under a :

MJ |= ∃v∀z ≤ a (Φ̃(z) ↔ Bit(v, z) = 1).

Thus, we have

MJ |= ∃v∀x ≤ |l(c)|n∀u < lh(wk)(Φ(x, u) ↔ Bit(v, 〈x, u〉) = 1). (4.4)

From this and (4.2) above with MJ in the place of M we get

MJ |= ∃v∀x ≤ |l(c)|n∃u < lh(wk)(Bit(v, 〈x, u〉) = 1).

Now we can use ∆b
0-REPL

|τ |ω in MJ to obtain

MJ |= ∃v∃s∀x ≤ |l(c)|n((s)x < lh(wk) ∧ (Bit(v, 〈x, (s)x〉) = 1)).

Substituting according to (4.4) and (4.3) we obtain successively

MJ |= ∃s∀x ≤ |l(c)|n((s)x < lh(wk) ∧ Φ(x, (s)x))

and
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MJ |= ∃s(∀x ≤ |l(c)|n((s)x ≤ lh(wk) ∧ (wk)(s)x ≤ d ∧ θ(x, (wk)(s)x))). (4.5)

To conclude we use again ∆b
0-REPL

|τ |ω . Clearly we have

MJ |= ∀s∀x ≤ |l(c)|n∃u ≤ d((wk)(s)x = u)

thus
MJ |= ∀s∃λ ∀x ≤ |l(c)|n((λ)x ≤ d ∧ (wk)(s)x = (λ)x).

From this and (4.5) we get finally

MJ |= ∃λ(∀x ≤ |l(c)|n((λ)x ≤ d ∧ θ(x, (λ)x))).

¤

In fact nothing is gained by satisfying Σ̂b
i+1-REPL

|τ |ω instead of Σ̂b
i+1-REPL

|τ | as
these two schemes are easily seen to be equivalent over EBASIC (see [20]).

In the following theorem we construct sequences w, b in order to get the conditions
of the precedent lemma satisfied.

Lemma 4.3.3 Let i ≥ 1, τ a set of unary terms. Let M be a recursively saturated
model of T

i,|τ |
2 and let q ∈ M\N as in Lemma 4.3.1. Let a be an arbitrary element

of M .
Then, there are two sequences w, b of nonstandard length r + 1 ≤ |||q||| such that
M |= ∀k ≤ r seq(wk), and for every k < r the following holds:

a. q, a ∈ W0

b. bk+1 = max{wk+1, 2
|bk|2}

c. wk, bk ∈Wk+1

d. Wk ⊂ Wk+1

e. Wk ×Wk ⊂ Wk+1

f. [0, 222k||l(x)||.||q||]M ⊂ Wk+1 for every l ∈ τ , x ∈Wk

g. [0, lh(wk)]M ⊂ Wk+1

h. M |= T i,lh(wk)

i. for every Π̂b
i−1-formula ϕ,

M |= ∀x ∈ Wk(∃y ≤ bk ϕ(x, y) → ∃y ∈ Wk+1(y ≤ bk ∧ ϕ(x, y))).

80



Proof We can express all these conditions by the following type t(w, b) with
parameters q, a:

(t1) seq(w) ∧ seq(b)
(t2) {n < lh(w) = lh(b) < |||q||| : n < ω}
(t3) ∀k < lh(w) seq(wk)

(t4) q, a ∈ W0

(t5) ∀k < lh(w)− 1 (bk+1 = max{wk+1, 2
|bk|2})

(t6) ∀k < lh(w)− 1 ({wk, bk} ∪Wk ∪ (Wk ×Wk) ∪ [0, lh(wk)]M ⊂ Wk+1)

(t7) {∀k < lh(w)− 1 ∀x ∈ Wk [0, 222k||l(x)||.||q||]M ⊂ Wk+1 : l ∈ τ}
(t8) {ψ-INDlh(wk) : ψ ∈ Σ̂b

i}
(t9) {∀k < lh(w)− 1 ∀x ∈ Wk(∃y ≤ bk ϕ(x, y) → ∃y ∈ Wk+1(y ≤ bk ∧ ϕ(x, y))) :

ϕ ∈ Π̂b
i−1}

Now we prove that t(w, b) is finitely satisfied. Let tfin be a finite subset of t(w, b).
For suitables n,m < ω and some finite τ0 ⊂ τ , we have that tfin is included in the
type tτ0n,m(w, b) obtained from t(w, b) by replacing (t2), (t7) and (t9) respectively by:

(t20) lh(w) = lh(b) = n+ 1

(t70) {∀k < n ∀x ∈ Wk [0, 222k||l(x)||.||q||]M ⊂ Wk+1 : l ∈ τ0}
(t90) {∀k < n ∀x ∈Wk(∃y ≤ bk ϕj(x, y) → ∃y ∈ Wk+1(y ≤ bk ∧ϕj(x, y))) : j ≤ m}.

Here (ϕj)j<ω is some enumeration of Π̂b
i−1-formulas. Note parenthetically that

tτ0n,m(w, b) is infinite, as we have not changed (t8). Consider now the following finite
type sτ0

n,m(w, b):

(s1) seq(w) ∧ seq(b)
(s2) lh(w) = lh(b) = n+ 1

(s3) ∀k ≤ n seq(wk)

(s4) q, a ∈ W0

(s5) ∀k < n (bk+1 = max{wk+1, 2
|bk|2})

(s6) ∀k < n ({wk, bk} ∪Wk ∪ (Wk ×Wk) ⊂ Wk+1)
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(s7) {∀k < n ∀x ∈ Wk [0, 222k||l(x)||.||q||]M ⊂ Wk+1 : l ∈ τ0}
(s8) ∀k ≤ n (lh(wk) ≤ 222k||lk(ek)||.||q||) for some lk ∈ τ0 and some ek ∈Wk

(s9) {∀k < n ∀x ∈ Wk(∃y ≤ bk ϕj(x, y) → ∃y ∈ Wk+1(y ≤ bk ∧ϕj(x, y))) : j ≤ m}.

We argue now that in order to show that tτ0n,m(w, b) is satisfied, it suffices to check
the satisfacion of sτ0

n,m(w, b). This is trivial for (t1), (t20), (t3), (t4), (t5) and (t9).
From (s6), (s7) and (s8) we get (t6) and (t70). Now note that

k < |||q||| → 222k||τ ||.||q|| ≤ 2||τ ||.|q|

so by the Lemmas 4.3.1(b), 4.1.6 and 4.1.8 we have

∀c ∈M, M |= c ≤ 222k||τ ||.||q|| ⇒ M |= T i,c
2 ∪ Σ̂b

i -STRONG REPLc. (4.6)

From this and (s8) we get Σ̂b
i -IND

lh(wk), i.e. (t8).

Now we prove that sτ0
n,m(w, b) is satisfied for every n,m < ω. Let us fix an arbitrary

m < ω and finite τ0 ⊂ τ , and prove that M ` sτ0
n,m(w, b) by induction on n.

For n = 0 put b0 = q, let b := (b0), the one element sequence containing b0, and
let w0 be the two element sequence containing q and a. Conditions (s1)-(s9) are
trivially satisfied.
Suppose now the type tτ0n,m(w, b) is satisfied by some w, b ∈ M , i.e. we have
w0, . . . , wn and b0, . . . , bn satisfying (s1)-(s9). We will add elements wn+1, bn+1 to
each sequence w, b respectively.
Condition (s5) forces bn+1 = max{wn+1, 2

|bn|2}. Sequence wn+1 is defined as the
concatenation of some sequences v1, . . . , vm+5 described below:

• v1 is the two elements sequence containing wn and bn

• v2 = wn

• v3 codes the (lh(wn))2 elements of Wn ×Wn

• v4 codes all numbers less than 222n||l̃(c0)||.||q|| for some suitable l̃ ∈ τ0, c0 ∈ Wn

• for every j ≤ m, v5+j is such that

∀x ∈ Wn(∃y ≤ bn ϕj(x, y) → ∃u < lh(v5+j)((v5+j)u ≤ bn ∧ ϕj(x, (v5+j)u))).

Moreover we can ask for

• lh(v3) = 222n+1||ln(en)||.||q||+4
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• lh(v4) = 222n||l̃(c0)||.||q|| + 1

• lh(v5+j) = 222n||ln(en)||.||q||, for every j ≤ m.

The existence of v1, v2 is clear. By Lemma 1.1.9 we have that if

x, y < lh(wn) < 222n||ln(en)||.||q||

then

〈x, y〉 < 222n+1||ln(en)||.||q||+4.

By the property (4.6) above we have that

M |= ∃v3(seq(v3) ∧ lh(v3) = 222n+1||ln(en)||.||q||+4 ∧ ∀x < 222n+1||ln(en)||.||q||+4

(ispair(x) ∧ 〈x〉1 < lh(wn) ∧ 〈x〉2 < lh(wn) → 〈(wn)〈x〉1 , (wn)〈x〉2〉 = (v3)x)).

In order to satisfy (s7) we have to choose for v4 some l̃ ∈ τ0 and c0 ∈Wn such that
l̃(c0) ≥ l(x) for every l ∈ τ0 and x ∈ Wn. To do this consider the formula θ(u) given
by

∃x < lh(wn)(x ≤ u∧
∨

j≤card(τ0)

∀y ≤ lh(wn)(y ≤ u→
∧

j′≤card(τ0)

(lj((wn)x) ≥ lj′((wn)y))))

where (lj)j≤card(τ0) is any enumeration of τ0. By (s8) and Lemma 4.3.1(a) we have
that θ(u) is in fact a ∆b

0-formula. It says that a maximal element as the one we
are looking for exists if we restrict ourselves to the first u elements coded by Wn.
Clearly we have

M |= θ(0) ∧ ∀u(θ(u) → θ(u+ 1)).

By conditions (s8) and 4.6 we can use induction up to lh(wn) in M , thus getting
θ(lh(wn)). Once those l̃ ∈ τ0 and c0 ∈ Wn determined it is easy to get v4 coding the

set [0, 222n||l̃(c0)||.||q||]M with the desired length.

The existence of v5+j for j ≤ m follows also from Σ̂b
i -STRONG REPL222n||ln(en)||.||q||

.
We have for every j ≤ m

M |= ∃v5+j(seq(v5+j) ∧ lh(v5+j) = 222n||ln(en)||.||q|| ∧ ∀x < 222n||ln(en)||.||q||

(x < lh(wn) ∧ ∃y < bnϕj((wn)x, y) → ((v5+j)x ≤ bn ∧ ϕj((wn)x, (v5+j)x))).

By Lemma 4.1.9 there is some wn+1 coding the union of the sets coded by v1, . . . , vm+5

and such that lh(wn+1) = lh(v1) + · · ·+ lh(v5+j). Thus,
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lh(wn+1) = lh(wn) + (m+ 1)222n||ln(en)||.||q|| + 222n+1||ln(en)||.||q||+4 + 222n||l̃(c0)||.||q|| + 3

≤ 222n+1||ln(en)||.||q||+5 + 222n||l̃(c0)||.||q||.

Now set

(ln+1, en+1) :=

{
(ln, en) if ln(en) ≥ l̃(c0)

(l̃, c0) otherwise.

Then ln+1 ∈ τ0, en+1 ∈ Wn ⊂ Wn+1 and

lh(wn+1) ≤ 222n+1||ln+1(en+1)||.||q||+5 ≤ 222(n+1)||ln+1(en+1)||.||q||.

Hence, every type tτ0n,m(w, b) is satisfied. We conclude that t(w, b) is finitely satisfied,
and the result follows then by the saturation of M . ¤

Now we can prove the main theorem of this chapter.

Theorem 4.3.4 Let i ≥ 1, τ a set of unary terms. Let M be a recursively saturated
model of T

i,|τ |
2 and let a ∈M . Then there is a submodel N of M such that

a. a ∈ N
b. N ≺Σ̂b

i
M

c. M |= Σ̂b
i+1-REPL

|τ |.

Proof Let q ∈M\N as in Lemma 4.3.1 and let w, b, r ∈M and (Wk)k≤r satisfying
(a)-(i) of Lemma 4.3.3. Put J := {r − n : n < ω} and MJ :=

⋃
k∈J Wk. We check

that conditions 1-8 of Lemma 4.3.2 are satisfied.

Note that conditions 1,5,8 are respectively consequences of (d),(g),(i) of Lemma
4.3.3; condition 2 follows from (c) and (a), and condition 7 from condition 5 and
(h).

Let x ∈MJ and k ∈ J such that x ∈ Wk. By (b) we have x < wk ≤ bk hence (bk)k∈J

is cofinal in MJ . This is condition 3.

Now let k ∈ J , l ∈ τ , x ∈ MJ . Let k′ ∈ J such that k′ ≥ k and x ∈ Wk′ . Then

222k||l(x)||.||q|| ≤ 222k′ ||l(x)||.||q|| and by (f) we have

[0, 222k′ ||l(x)||.||q||]M ⊂ Wk′+1.
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As Wk′+1 ⊂MJ we get condition 4.

Now we prove condition 6, i.e. that MJ is an LBA-structure. Let c1, c2 ∈ MJ and

k ∈MJ such that c1, c2 < bk. Let t ∈ Term(LBA). Clearly we have t(c1, c2) < 2|bk|2n

for some n < ω, and by (b) this is bounded by bk+n. Using (e) and (d) we get that
d := 〈c1, c2〉 ∈ Wk+n. Hence

M |= ∃y ≤ bk+n(y = t(〈d〉1, 〈d〉2)).

By (h) there is such an element y in Wk+n+1, hence in MJ . Of course this y is unique
and equal to t(c1, c2).

So Lemma 4.3.2 can be applied and we get thatMJ ≺Σ̂b
i
M andMJ |= Σ̂b

i+1-REPL
|τ |.

To conclude note that a ∈MJ by (a). ¤

As a consequence we get a purely model-theoretic proof of the following theorem
(see [20] for a proof-theoretic one).

Theorem 4.3.5 Let i ≥ 1, τ a set of unary terms. The theory Σ̂b
i+1-REPL

|τ | is

∀∃Σ̂b
i+1-conservative over T

i,|τ |
2 .

Proof Let us suppose that for some ϕ ∈ Σ̂b
i+1

Σ̂b
i+1-REPL

|τ | ` ∀x∃yϕ(x, y).

Let M |= T
i,|τ |
2 and let M ′ be a recursively saturated model elementarily equivalent

to M . Let a ∈ M ′ and apply Theorem 4.3.4 to get a Σ̂b
i -elementary submodel

N |= Σ̂b
i+1-REPL

|τ | containing a. Then N |= ∃yϕ(a, y). As N ≺Σ̂b
i
M ′ and M ′ ≡M

the result follows. ¤
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