université

PARIS

DIDEROT

-
>
=
@
~

Université Paris VII - Denis Diderot

Ecole Doctorale de Sciences Mathématiques de Paris Centre

THESE DE DOCTORAT

Discipline : Mathématiques

présentée par

Fathi BEN ARIBI

A study of properties and computation techniques
of the L?>-Alexander invariant in knot theory

—SZEE2E2E2=

dirigée par Jéréme DUBOIS

Soutenue le 10 juillet 2015 devant le jury composé de :

Christian BLANCHET Université Paris 7

Michel BOILEAU
Jérome DUBOIS
Louis FUNAR

Rinat KASHAEV
Thang LE

Thomas SCHICK
Georges SKANDALIS

Université Aix-Marseille
Université de Clermont-Ferrand 2
Université de Grenoble 1
Université de Geneve

Georgia Institute of Technology
Universitat Gottingen

Université Paris 7

examinateur
rapporteur
directeur
examinateur
examinateur
rapporteur
examinateur
examinateur






UMRT7586 Ecole Doctorale de Sciences

Institut de Mathématiques de Jussieu- Mathématiques de Paris Centre
Paris Rive Gauche 4 place Jussieu

Université Paris Diderot 75252 Paris Cedex 05

Campus des Grands Moulins Boite courrier 290

Batiment Sophie Germain, case 7012
75205 Paris Cedex 13



Cette theése est dédiée a Marie,
parce que ce n’est pas un livre de 1500 pages de Python.



Remerciements

J’aimerais tout d’abord remercier Jéréme Dubois pour avoir accepté de diriger ma
these. Il m’a fait découvrir les invariants L?, un sujet passionnant ol beaucoup reste
a comprendre. Il a toujours été disponible pour me guider vers la bonne direction, aussi
bien du point de vue mathématique qu’administratif. J’ai énormément appris de lui durant
cette theése, que ce soit sur la théorie des noeuds, le métier de chercheur ou les meilleurs
restaurants clermontois. Il a ma plus profonde gratitude pour son soutien indéfectible, ses
excellents conseils et tous ses enseignements, du Master 2 & la fin de ce doctorat.

Un grand merci & Michel Boileau pour avoir accepté de relire mon manuscrit, pour
ses précieux conseils et pour son accueil a I'Université d’Aix-Marseille. Nos discussions
mathématiques furent un plaisir et un enrichissement.

I would like to thank Thang Le very deeply for reading my manuscript, and for the
very interesting discussions we shared in Toulouse.

Je suis honoré de compter autant de chercheurs éminents dans mon jury. Un grand
merci a eux d’avoir accepté d’en faire partie.

Merci a Christian Blanchet pour son cours de M2 sur la théorie des nceuds, et pour
avoir toujours offert conseils, soutien et bonne humeur durant ma theése au sein de I’équipe
TGA.

Merci & Georges Skandalis pour m’avoir fait découvrir comment on pouvait relier la
théorie des nceuds avec les algebres d’opérateurs durant mon mémoire de M2, pour m’avoir
guidé a travers la jungle de la convexité du déterminant, et pour sa culture, sa disponibilité
et son humour simplement époustouflants.

Merci & Louis Funar pour son accueil & I'Institut Fourier, pour les discussions passion-
nantes, les conseils précieux, et son continuel soutien.

Merci a Rinat Kashaev pour son accueil a I’Université de Geneéve et les discussions
mathématiques que nous avons eu. Aurai-je assez d’une vie pour apprendre tant de nou-
veaux sujets passionnants ?

Merci & Thomas Schick pour son accueil chaleureux a Goéttingen, ses conseils, son
soutien et les nombreuses suggestions mathématiques que j’ai hate d’explorer. Un grand
merci a lui et sa famille pour leur gentillesse.

Une profonde gratitude va naturellement & Stefan Friedl pour son continuel soutien et
les nombreuses discussions trés enrichissantes que nous avons eues sur les invariants L2

Durant mon Master 2 et ma these a Paris 7 j’ai eu la chance de cétoyer d’incroyables
chercheurs, notamment dans les équipes de Topologie et Géométrie Algébriques et Algebres
d’Opérateurs. Merci tout particulierement a Pierre Vogel pour son assistance, a Christian
Leruste pour ses enseignements, a Catherine Gille pour sa gentillesse et le plaisir que j’ai
eu a étre chargé de TD pour son cours, a Julie Déserti pour son soutien, a Andrzej Zuk
pour son cours fondateur de géométrie non commutative et a Pierre Fima pour le groupe
de travail passionnant sur les algebres de von Neumann.



Merci a nos voisins topologues et géometres de Paris 6, notamment Nicolas Bergeron,
Julien Marché et Gregor Masbaum, pour les discussions enrichissantes.

J’ai eu loccasion de présenter mes travaux a de nombreuses équipes de recherche,
et jaimerais ainsi remercier les chercheurs qui m’ont accueilli a ces occasions et m’ont
offert plus de suggestions de futures recherches que je n’aurais pu espérer. Merci a Ben-
jamin Audoux, Sebastian Baader, Paolo Bellingeri, Hans Boden, David Cimasoni, Vincent
Colin, Francgois Constantino, Pierre Dehornoy, Pierre de La Harpe, Thomas Fiedler, Vin-
cent Florens, Damien Gaboriau, Paolo Ghiggini, Etienne Ghys, John Guaschi, Michael
Heusener, Teruaki Kitano, Francois Laudenbach, Christine Lescop, Gwenaél Massuyeau,
Jean-Baptiste Meilhan, Stepan Orevkov, Jean Raimbault, Jean-Claude Sikorav, Paul
Turner et Emmanuel Wagner.

Merci aux organisateurs des conférences Winterbraids, Swiss Knots, Young Topologist
Meeting, de ’école d’hiver & La Llagonne et de 1’école d’été « Topologie géométrique et
quantique en dimension 3 ». Je ne saurais quantifier 'apport mathématique et humain de
ces événements.

Durant ces déplacements et ces conférences, j’ai eu la chance de rencontrer de fantas-
tiques camarades, dans cette grande aventure qu’est le doctorat en topologie. Un immense
merci & Anne, Anthony, Ben, Benoit, Bruno, Céleste, Cristina, Delphine, Elsa, Filip, Fy-
odor, Guillem, Jean-Matthieu, Juan, Julia, Julien, Juliette, Kévin, Léo, Livio, Louis,
Marco, Maylis, Miguel, Mounir, Natalia, Peter, Philippe, Ramanujan, Renaud, Sakie,
Xavier, et tous les autres, pour les nuits blanches de discussions, les excursions dans la
nature sauvage, les soirées mémorables et plus généralement tous les bons moments de
franche camaraderie.

My deepest thanks to Senja, for her help, her advice, her pleasantness and mainly her
friendship.

Je remercie tout particulierement celles et ceux qui m’ont gentiment accueilli lors de
mes vadrouilles mathématiques : Julien, la bonne humeur incarnée, Zoé et Achraf, le
couple le plus sympathique de Geneéve, Jhih-Huang mon camarade d’Arabe, et Coline, qui
est un inépuisable puits de bonté. Merci a Roland et Sébastien pour leurs conseils. Merci
a Peter Feller pour son aide dans I’Annexe A.2. et sa bonne humeur.

Je remercie 'Ecole Normale Supérieure pour la formation mathématique d’excellence
qu’elle m’a offerte, et 'opportunité de continuer I’aventure en theése. En particulier, je
remercie Mikaél de la Salle pour m’avoir fait découvrir les algebres d’opérateurs et pour
nos discussions plus récentes a 'ENS Lyon, Grégory Ginot qui, étant mon tuteur, me
guida admirablement bien de la fin de la scolarité a la these, et Frédéric Paulin, dont les
cours sont un modele de clarté et d’exhaustivité : je lui dois ma passion pour la topologie.

Avant ma scolarité a 'ENS, j’ai eu la chance d’étudier des mon plus jeune age avec des
professeurs qui encouragerent toujours ma passion pour les mathématiques et ma volonté
d’en découvrir toujours plus. J’aimerais tout particulierement remercier Roger Mansuy,
Denis Monasse, et Jean-Pierre Sanchez, pour la formation qu’ils m’ont offerte au lycée
Louis-Le-Grand.

De lautre coté de la barriere, j’aimerais remercier mes éléves pour m’avoir permis de
devenir un meilleur enseignant, et donc un meilleur chercheur. Les opérations élémentaires
sur les opérateurs G-équivariants de la Section 1.3.4. leur sont dédiées.

J’aimerais également remercier les responsables administratifs pour faciliter contin-
uellement notre vie de recherches et de pérégrinations. Merci tout particulierement a
Pascal Chiettini pour son amabilité et son aide précieuse, et & Elodie Destrebecq pour
Passistance continuelle a I'équipe TGA et sa gentillesse. Une pensée également pour Lau-
rence Vincent, sans qui le DMA n’aurait pas aussi bien marché.



Un grand merci aux éleves et enseignants de I’Olympiade Francaise de Mathématiques,
pour m’avoir montré comment m’amuser encore plus avec les nombres.

Ces années de these n’auraient pas été aussi plaisantes et productives sans mes com-
patriotes du bureau 7047 : merci a Alexandre, pour sa gentillesse et sa culture épous-
touflante, merci & Jérémy pour nos débats passionnés et passionnants (et pas seulement
sur le théoreme de Lie-Kolchin), merci & Martin pour les bons moments de rigolade et
les théoremes de torsion que nous finirons par découvrir, merci & Simon pour mettre le
« science » dans « omniscience » et notamment pour m’avoir permis de me raccrocher
aux branches de la jungle glissante des algebres d’opérateurs. Merci a eux tous pour nos
discussions mathématiques, et pour étre eux tout simplement.

Au-dela de mon bureau, j’ai eu la chance de cOtoyer de fantastiques doctorants a
Paris 7, sans qui ma theése n’aurait pas été aussi plaisante et productive. Merci aux
anciens : Arnaud, Hoel, Louis-Hadrien, Lukas et Victoria, mes ainés en théorie des nocuds ;
Matthieu, pour I'avertissement sur la durée d’écriture du premier article ; Elodie et Robert
pour leur expérience et leur bonne humeur ; Ismaél le roi de I'informatique ; Sary qui m’a
donné l'occasion de reprendre le vélo ; Amaury pour le GDT fondateur sur la K-théorie.
Merci aux plus jeunes : Baptiste notre chef a 'esprit aiguisé, Julie-san pour les geekeries,
Victoria pour sa bonne humeur communicative, Marco pour notre amour partagé des
comics ; merci également a Assia, Aurélien, Charles, Charlotte, David, David, Florent,
Jesus, Kévin, Kévin, Martin, Nicolas, Richard, Taqfarinas, Tony et Zoé pour les bons
moments de rigolade pendant les passages a vide de la rédaction.

Merci & Elie de Panafieu pour son enthousiasme inaltérable, et toutes nos aventures
de séries génératrices et de combinatoire des groupes ; l'algorithme en SAGE de I'annexe
B.1. lui doit son existence. Merci a Pierre Nicodeme et Andrew Rechnitzer pour leur
judicieuses observations. J’en profite pour remercier les informaticiens du quatrieme étage
d’avoir toléré mes passages a répétition, pas seulement dus au travail. Merci a Jehanne
pour les bons moments passés en monitorat, ce fut une agréable surprise de la revoir autant
d’années apres le lycée.

Merci a Baptiste, Florian, Marco et Nathanagél pour les parties de Magic salvatrices.

Merci & mes amis de la République Démocratique Populaire du C6 et confreres de
I’Abbé Mole, pour les bons moments d’internat, d’agrégation, et de vie tout simplement.
Tout particulierement, merci & Max, pour me (re)donner le sourire & chaque conversation,
et pour le théoreme de Ben Aribi-Fathi que nous ne manquerons pas de découvrir des que
je me serai mis aux probas (ou lui a la topologie) ; merci a Nicolas pour sa bonhomie,
sa gentillesse et sa maitrise de la saucisse ; merci a Vincent, compagnon d’audition, et
boxeur devant I’éternel ; merci a Bastien, pour les photos compromettantes et les mangas
sur l'algebre linéaire ; merci a Silvain pour les visites surprise ; merci a Stéphane pour
I’accueil au Japon ; merci a Nathanaél pour les conseils de lectures et de deck Modern
(aux couleurs de la couverture de ce manuscrit) ; merci a Julia pour m’avoir appris qu’il
ne fallait pas mettre la sauce tomate dans I’eau des pates ; merci & David, best man de
la Californie a Coulommiers. Merci a tou-te-s mes ami-e-s de 'ENS, qui se reconnaitront.

Merci a mes camarades de Debating, des N’improtequoi, du club Pompom, et du club
Rock pour m’avoir appris & m’exprimer et me dépasser. Merci a mes ainés du club Cirque
pour leurs conseils, leurs acrobaties et leur amitié. Merci a la rédaction de Disharmonies
pour m’avoir appris & écrire, lire et relire, et 'importance des petites capitales.

Merci a tous les membres de ma famille pour leur amour et leur soutien. Merci & mes
parents, pour m’avoir toujours encouragé dans la voie que je suivais. Merci a ma soeur



Leila pour son affection et m’avoir appris a comparer des fractions avant la mat. sup.

Enfin, merci a Marie, pour tout, pour rien, et pour le reste. Merci de t’accorder
a merveille avec la couverture de ce manuscrit. Merci de me supporter au quotidien, de
m’aimer comme je suis et de me donner envie d’étre meilleur. Vivre avec toi, c’est vraiment
trop cool !



Résumé

Résumé

Cette these présente plusieurs propriétés, des valeurs explicites et des techniques de calcul
des torsions d’Alexander L? des variétés de dimension 3 compactes & bord vide ou torique,
notamment des extérieurs de nceuds et d’entrelacs. Les torsions d’Alexander L? sont des
généralisations des polynomes d’Alexander tordus, ot le complexe de chaines cellulaires du
revétement universel de la variété est tordu par une représentation du groupe fondamental
de la variété sur I’espace des opérateurs d’un espace de Hilbert de dimension infinie.

Les torsions d’Alexander L? des 3-variétés ont été définies en 2014 par J. Dubois, S.
Friedl et W. Liick, et généralisent Iinvariant d’Alexander L? des nceuds introduit par W.
Li et W. Zhang en 2006. Ces torsions sont des invariants topologiques qui sont des classes
de fonctions sur les réels strictement positifs. Elles existent uniquement lorsque certaines
conditions techniques sont vérifiées, et sont difficiles a calculer en général. Malgré tout,
nous pouvons extraire d’importantes informations de ces invariants, comme le volume
simplicial de la variété ou la norme de Thurston.

Dans cette these, nous démontrons que l'invariant d’Alexander L? des noeuds détecte
le noeud trivial.

Nous démontrons également une formule de chirurgie de Dehn pour les torsions
d’Alexander L2.

De méme, par diverses techniques, nous calculons explicitement les torsions des ex-
térieurs d’entrelacs toriques dans la sphere S? et le tore solide, ce qui nous permet de
démontrer des formules générales de sommes connexes et de cadblages pour les entrelacs.

Mots-clefs

Neeuds, variétés de dimension 3, déterminant de Fuglede-Kadison, CW-complexes, torsion
L?, chirurgie de Dehn, polynéme d’Alexander
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A study of properties and computation techniques of the
L?-Alexander invariant in knot theory

Abstract

This manuscript presents several properties, explicit values and computation techniques of
L?-Alexander torsions for compact 3-manifolds with empty or toroidal boundary, especially
for knot exteriors and link exteriors. The L?-Alexander torsions are generalisations of the
twisted Alexander polynomials, as the cellular chain complex of the universal covering of
a manifold is twisted by an infinite-dimensional Hilbert representation of the fundamental
group of the manifold.

The L?-Alexander torsions of 3-manifolds were defined in 2014 by J. Dubois, S. Friedl
and W. Liick, and generalize the L?-Alexander invariant of a knot introduced by W. Li and
W. Zhang in 2006. These torsions are topological invariants that are classes of maps on
the positive real numbers. They only exist when certain technical conditions are satisfied,
and they are hard to compute in general. Despite these difficulties, we are able to extract
important information from these invariants, like the simplicial volume of the manifold or
the Thurston norm.

In this thesis, we prove that the L?-Alexander invariant of knots detects the trivial
knot.

We also prove a Dehn surgery formula for the L?-Alexander torsions.

Similarly, using various techniques, we compute explicitly the torsions of exteriors of
torus links in the 3-sphere and in the solid torus, which leads us to prove general formulas
for connected sums and cablings of links.

Keywords

Knots, 3-manifolds, Fuglede-Kadison determinant, CW-complexes, L?-torsion, Dehn surgery,
Alexander polynomial
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Introduction

Historique

Prenez une ficelle, recollez ses deux bouts, et vous obtenez un nceud. Prenez-en une
seconde, qui suivra un autre chemin dans I'espace, collez ses deux bouts, vous obtenez un
autre nceud. Maintenant, comment savoir si I’on peut passer du premier noeud au second
simplement en déformant la ficelle, sans la couper ? Le but de la théorie des nocuds est
de répondre a cette question.

En termes plus mathématiques, un noeud K est un plongement du cercle S' dans
la spheére S? ; deux nceuds sont considérés équivalents, ou isotopes, s’il existe un auto-
homéomorphisme de S? envoyant un nceud sur l’autre.

Classifier les noeuds a isotopie pres est une tache ardue. Heureusement, de nombreux
invariants de nceuds ont été découverts et étudiés durant le dernier siecle. Les théoriciens
des nceuds disposent maintenant d’outils venant de nombreux domaines des mathéma-
tiques pour détecter des nceuds non isotopes, des domaines tels que la combinatoire, la
topologie algébrique, la théorie des groupes, la géométrie, la théorie quantique des champs
topologique, les algebres d’opérateurs, etc.

En 1928, J.W. Alexander définit dans [Ale2§| le premier invariant polynomial des
nceuds. Ceci révolutionna la théorie des nceuds, car cet invariant était non seulement
facile a calculer et a manipuler, mais il était également assez puissant pour distinguer la
plupart des nceuds premiers. Le polynéome d’Alexander n’est cependant pas un invariant
complet, pas méme parmi les noeuds premiers ; en particulier, il ne détecte pas le noeud
trivial.

Le polyndéme d’Alexander est sans doute l'invariant de nceuds ayant le plus grand
nombre de définitions différentes possibles. On peut le définir a partir de I’homologie du
revétement infini cyclique de I'extérieur du noeud comme ’avait initialement fait Alexander
dans [Ale28], ou par le calcul de Fox sur une présentation du groupe du neeud & la maniére
de R. Fox dans [Fox54] (nous détaillons cette construction dans ’Annexe [A.3)). En 1962,
J. Milnor prouva dans [Mil62] que le polynéme d’Alexander d’un noeud peut étre obtenu a
partir de la torsion de Reidemeister de ’extérieur du nceud correspondant a I’abélianisation
du groupe du nceud.

En 1976, M. Atiyah développa dans [Ati76] les fondations de la théorie des invariants
L?, en définissant notamment les nombres de Betti L2. L’idée des invariants L? est la
suivante : la topologie algébrique compte plusieurs invariants qui mettent en jeu des
espaces vectoriels de dimension finie et des applications linéaires, comme les nombres de
Betti ou la caractéristique d’Euler ; en effectuant des procédés similaires a ces procédés
classiques mais sur des espaces de Hilbert de dimension infinie (comme #?(G) ot G est un
groupe infini) et en considérant des algebres d’opérateurs sur ces espaces, nous pouvons
définir de nouveaux invariants, les invariants L?.

Ainsi, dans les années 1990, A. L. Carey et V. Mathai, J. Lott, W. Liick et M. Rothen-
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berg, S. P. Novikov et M. A. Shubin développérent la théorie des torsions L?, un analogue
L? de la théorie des torsions de Reidemeister. Une vue d’ensemble de ces théories est
présentée dans [Liic02b].

Enfin, en 2006, W. Li et W. Zhang introduisirent dans [LZ06| !’invariant d’Alexander

L? Ag) d’un neeud K, un analogue L? du polynéme d’Alexander Ay, et prouvérent qu’on
pouvait I’exprimer en fonction d’une certaine torsion L? de l'extérieur du nceud tordue
par 'abélianisation du groupe du nceud, a 'image de la formule de Milnor. Cet invariant
de noeuds est une classe d’équivalence de fonctions sur les réels positifs. Il a été étudié
en détail par F. Ben Aribi, J. Dubois, S. Friedl, W. Liick et C. Wegner, dans [BA13],
[DFL14], [DW13], puis généralisé a une famille de torsions d’Alexander L? des 3-variétés
compactes a bord vide ou torique, par J. Dubois, S. Friedl et W. Liick dans [DFL14].

Les torsions d’Alexander L2

Les torsions d’Alexander L? sont les invariants centraux étudiés dans cette these. Elles
englobent d’autres invariants topologiques des 3-variétés tres profonds tels que le volume
simplicial et la norme de Thurston, comme nous le détaillerons dans la suite.

Pour M une 3-variété compacte, on peut associer une structure de CW-complexe
finie X3y a M, par exemple en considérant une triangulation de M (dont l'existence est
assurée par le théoreme de Moise, cf. [Moi52]). Soient m = 71 (Xps) = m1(M) son groupe
fondamental, t > 0 un réel, et ¢ : 7 — Z, v : 1 — G deux morphismes de groupes tels que
¢ factorise & travers . On dit alors que (7, ¢,) est un triplet admissible :

m(M)=mn G
X‘Z

Le groupe m = 71 (M) contient souvent beaucoup d’information sur la topologie de la
variété M. Notamment W. Whitten a montré dans [Whi87] que le type d’homéomorphisme
de l'extérieur d’'un nceud premier est déterminé par son groupe fondamental ; F. Wald-
hausen avait méme montré dans [Wal68] que le groupe d’un nceud quelconque pris avec
un systeme méridien-longitude détecte le type d’isotopie du noeud. Ainsi, si M = My =
S3\ V(K) est I'extérieur d'un noeud K (avec V(K) un voisinage tubulaire ouvert de K),
alors le groupe m = m(Mg) complété par un systeme périphérique méridien-longitude
(qui engendre 71 (0Mf)) contient toute I'information de ce noeud. Le probléme est main-
tenant d’extraire 'information du groupe m, et pour ce faire il est pratique d’utiliser des
représentations de groupes ; ce sont les roles que vont jouer ¢ et ~.

Le complexe de chaines cellulaires du revétement universel )E;; de X/ :

Co(Xar, Z) = ( — P zlr)ek - )

décrit la topologie de X : grosso modo, les applications bord 9 sont des morphismes
de Z[r]-modules qui décrivent comment les cellules e de Xy, se recollent entre elles. Le
morphisme d’anneau

H(W,(b,’y,t):( Z|[7] — R[G] )

roimygy o Y mt?9)y(g;)
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définit une action a droite de Z[r] sur l'espace de Hilbert

CG) =D Ng | AT, D Mg <0
geG geq

par multiplication a droite, ce qui nous permet de considérer par produit tensoriel
9 N
CO(Xa1,6,7,1) = Q) @i g0y Co(Xnr, 2)
%% o)
= (... B PrGEE - ...
i

le N(G)-complexe de chaines cellulaires de X); associé, ot N (G) est l'algébre de von
Neumann des opérateurs G-équivariants agissant sur £2(G).

Pour construire un analogue L? de la torsion de Reidemeister d’un complexe de chaines,
il nous faut une version en dimension infinie du déterminant d’un opérateur ; c’est le déter-
minant de Fuglede-Kadison det ;) qui jouera ce role pour les opérateurs G-équivariants
agissant sur les espaces £2(G)™. Ce déterminant fut introduit par B. Fuglede et R. Kadi-
son dans [FK52] pour les opérateurs inversibles, et fut étendu ensuite aux opérateurs plus
généraux (voir [Liic02bl, Section 3.2] et le compendium [dIH13]). La définition du déter-
minant de Fuglede-Kadison est relativement technique (voir Définition , nous ne la
détaillerons donc pas dans cette introduction ; mentionnons seulement qu’il peut étre
construit comme un produit infini avec multiplicités des valeurs spectrales de I'opérateur
considéré, a l’aide d’une intégrale sur une certaine mesure sur le spectre de 'opérateur (qui
n’est en général pas fini, ni méme discret). Par conséquent, le déterminant de Fuglede-
Kadison est difficile & manipuler et a calculer explicitement ; néanmoins, les propriétés
classiques qu'il partage avec le déterminant usuel (comme la multiplicativité pour la com-
position des opérateurs dans certains cas) nous permettent parfois d’en déterminer la
valeur.

Si le N(G)-complexe de chaines C£2) (Xnr,¢,7,t) est faiblement acyclique, ce qui veut
dire qu’il forme une suite exacte faible (dans le sens ot on considére ’adhérence de I'image
d’un opérateur bord et non son image) et s’il est a classe de déterminant, ce qui veut dire
que tous les opérateurs 81(3) sont de déterminant de Fuglede-Kadison det ;) strictement
positif (ces deux définitions sont détaillées a la Section , alors on peut définir la
torsion d’Alezander L* du triplet (X7, ¢,7) ent > 0 comme :

(=1)

k
T3 (Xar,6,7)(1) = T (CP(Xor,6,7.1)) = [[det ey (07) € Rsg
k

Pour deux fonctions f, g € F(Rso,Rs), nous noterons f = g s’il existe un entier m € Z
tel que g = (t +—t™) - f. A cette relation d’équivalence = prés, la torsion d’Alexander L2
(t — TP (Xpr, ¢,7)(t)) de X ne dépend ni de P'ordre, ni de lorientation, ni des choix
des relevés des cellules de Xy, ; en effet, un tel changement de choix sur les cellules revient
a composer les opérateurs bord par des opérateurs de permutation ou de dilatation, dont
le déterminant de Fuglede-Kadison est connu et vaut t™ pour un certain m € Z.

Mieux, nous montrons ensuite que si X et Y sont deux CW-complexes équivalents par
homotopie simple, alors ils ont les mémes torsions d’Alexander L?. Plus précisément :

Théoréme 0.1. (Theorem[2.19)
Pour f : X — Y wune équivalence d’homotopie simple entre deux CW-complexes fi-
nis induisant l'isomorphisme de groupes fondamentauz f. : 7 (X) — m(Y), un triplet
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(Y, ¢,7) est admissible si et seulement si (X, ¢ o fi,v o fi) Uest, le N(G)-compleze de
chaines 0*2) (X, 00 fe,v0 fo,t) est faiblement acyclique et a classe de déterminant si et
seulement si Ciz)(K ®,7,t) Uest, et dans ce cas

TA(X,¢o0 fi,vo f)(t) = TOY, ¢,7)(t).

Nous montrons ce résultat en incluant Ciz) (X, ¢ 0 fi,yo0 fo,t) et Ciz) (Y, ¢,v,t) dans
une suite exacte courte de N'(G)-complexes de chaines dans le cas ol f est une expansion
élémentaire de CW-complexes puis en utilisant la propriété de multiplicativité de la torsion
L? détaillée dans [Liic02B, Theorem 3.35 (1)]. Le théoréme découle alors du fait que
toute homotopie simple est une suite finie d’expansions élementaires et de rétractions
élémentaires (voir [Coh73l Section 4]).

Comme deux structures de CW-complexes sur une 3-variété compacte M sont équiv-
alentes par homotopie simple (voir [Cha74]), deux 3-variétés homéomorphes M et M’
sont équivalentes par homotopie simple et ont donc mémes torsions d’Alexander L?. Les
torsions d’Alexander L? sont donc des invariants topologiques des 3-variétés compactes.

Si M est une 3-variété compacte irréductible a bord vide ou torique, W. Liick et
T. Schick ont montré dans [LS99] que la torsion L? classique de M n’est autre qu'une
reformulation de son volume simplicial :

T (M) = T (M, 0,id)(1) = exp (VOI(M )) .

61

Le théoreme de rigidité de Mostow-Prasad-Marden (voir par exemple [AFW12, Theorem
1.10]) assure qu’une structure hyperbolique compléte de volume fini sur une 3-variété M
est unique a isométrie pres et ne dépend que de la topologie de M ; ainsi, tout invariant
géométrique construit a partir de la structure hyperbolique d’une variété, tel que le volume,
est en fait un invariant topologique. Le volume hyperbolique d’une 3-variété hyperbolique
(et plus généralement le volume simplicial d’une variété irréductible) est ainsi un invariant
profond et puissant. Par exemple, la plupart des nceuds premiers hyperboliques sont
distingués par le volume hyperbolique de leur complément.

Si 'on inclut maintenant la déformation abélienne des complexes de chaines donnée
par t?, les torsions d’Alexander L2 de M détectent également la norme de Thurston x/(¢)
pour tout morphisme 7 si M est une variété fibrée sur le cercle (cf. [DEL14, Theorem 8.2]).
On peut comparer cette derniere propriété au fait que le degré du polynéme d’Alexander
d’un nceud fibré est le double du genre du nceud. Pour M plus générale, la torsion
d’Alexander L? de M T®) (M, ¢,~) détecte aussi la norme de Thurston zy;(¢), mais pour
un certain v a valeurs dans un groupe G virtuellement abélien (cf. [DEFLI4, Theorem
10.1]).

Vérifier que C’f) (M, ¢,7,t) est faiblement acyclique et a classe de déterminant est
souvent difficile. On peut relier ces questions a de vastes conjectures de la théorie des
invariants L? comme la conjecture d’Atiyah forte. Si jamais ces conditions sont vérifiées,
calculer exactement les déterminants de Fuglede-Kadison des opérateurs de bord est encore
un probléeme ardu. Néanmoins nous pouvons parfois déceler des propriétés de la variété
M, comme la valeur de son volume simplicial ou de sa norme de Thurston, en considérant
ses torsions d’Alexander L? mais sans les calculer explicitement.

Ainsi, dans le Chapitre 2, nous prouvons que les torsions d’Alexander L? distinguent
le noeud trivial des autres nocuds.
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L’invariant d’Alexander L2 détecte le noeud trivial

Quand la 3-variété M est I'extérieur My = S3\ V(K) d’un nceud K, I’étude des torsions
d’Alexander L? de M = Mp se simplifie de deux facons.

D’une part, le groupe fondamental Gx = 71(Mf) de My a pour abélianisé G le
groupe cyclique infini Z, et comme tout morphisme de groupe ¢ : G — 7Z factorise par
I’abélianisation ax : Gx — G = 7, ¢ s’écrit donc comme un multiple entier de ag. Il
provient naturellement des définitions que T2 (M, ré, v)(t) et T3 (M, ¢, ~)(t") sont égales
pour tous ¢,7, t > 0 et r € Z (voir Proposition . Quand M = Mg est un extérieur de
neceud, il nous suffit donc de considérer le cas ¢ = ax pour connaitre toutes les torsions
d’Alexander L? de M.

D’autre part, My est une variété compacte irréductible a bord torique et de groupe
fondamental infini (et est en particulier un espace d’Eilenberg-Maclane K (G, 1)), ce qui
implique qu’elle est équivalente par homotopie simple a tout CW-complexe de dimension
2 Wp construit & partir d'une présentation de groupe P de défaut 1 du groupe Gi (la
démonstration de ce résultat est détaillée dans la Section . Le Théoréeme assure
donc que 'on peut calculer les torsions d’Alexander L? de My a l'aide de celles de Wp.

Tout ceci justifie donc ’étude non plus des torsions d’Alexander L? générales de My,

mais de celle de I'invariant d’Alexander L? Ag(t) de K égal a
AL () = TO (M, ag.id)(t) - max(1,t) = T (Wp, a, id)(t) - max(L, )

Nous nous restreignons dans la suite au cas ou 7 = id pour simplifier les notations
et pour suivre au plus pres I’étude originelle de Li-Zhang dans [LZ06]. II est également
possible de définir et d’étudier un invariant d’Alexander L? tordu

AR (t) = T (My, ax,7)(t) - max(1, )

mais nous n’en avons pas besoin pour établir des propriétés fortes comme le fait que
l'invariant d’Alexander L? détecte le noeud trivial.

Considérer I'invariant d’Alexander L? est pratique car C®)(Wp, a, id, t) s’écrit sim-
plement a l'aide du calcul de Fox sur la présentation P du groupe G, ce qui rejoint la
construction originelle de Ag) (t) par le calcul de Fox que nous détaillons ci-aprés. Cette

construction de l'invariant d’Alexander L? Ag) (t) offre une méthode alternative efficace
pour calculer les torsions d’Alexander L? de I'extérieur d’un nceud.

Considérons K un noeud et P = (g1,..., gk|r1,...,rx—1) une présentation de Wirtinger
de son groupe Gi. Rappelons qu’une présentation de Wirtinger est une présentation du
groupe du nceud K construite a partir d’'un diagramme planaire D qui représente K,
avec k croisements et k arcs ; chaque générateur g; de la présentation représente un lacet
méridien d'un arc et chaque relation r; de la forme g;grg;” 191_ ! représente le croisement
associé. Tous les générateurs sont conjugués et une des k relations est redondante. Ainsi

I’abélianisation de G i vérifie
<G K — Z)
oK .

gi—1

Soit Wp le CW-complexe de dimension 2 construit a partir de la présentation P, avec
une O-cellule, une 1-cellule pour chaque générateur g; et une 2-cellule pour chaque relateur
rj, recollée sur les g; suivant le mot libre r;. La matrice de Fox de la présentation P

a .
Fp = ((gﬂ )) € My r-1(C[GK])
gi 1<i<k,1<j<k—1
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décrit alors le morphisme de Z|G k]-modules qu’est I'opérateur bord
Co(Wp,Z) — C(Wp, Z).

Comme Wp est équivalent par homotopie simple & My, la matrice Fp nous donne des
informations sur la topologie de M.
Considérons alors, pour ¢t > 0,

Ry(Groaidt)(Fpy)  C(GRr) T = 2(Gr)F

I'opérateur "multiplication a droite" induit par la représentation t“% : G — R* et par
Fpy € My_1 ,-1(C[Gk]), la matrice de Fox privée de sa premiere ligne. Si cet opérateur est
injectif, une condition technique similaire a 1’acyclité faible mentionnée dans la définition
des torsions d’Alexander L?, on peut alors définir I'invariant d’Alexander L? du noeud K
comme le déterminant de Fuglede-Kadison de 'opérateur précédent :

AR () = det yc) (RH(GK,QK,m,t)(FP,l)) :

A multiplication par (t — t™), m € Z prés, Ag) ne dépend pas de la présentation de
Wirtinger P choisie (voir Proposition [2.21]), comme nous le montrons & l'aide des mou-
vements de Tietze forts introduits par Wada dans [Wad94] pour décrire les polynomes
d’Alexander tordus. L’invariant d’Alexander L? peut également étre défini pour une
présentation quelconque de Gi de défaut 1 (voir Théoreme , par les considérations
d’homotopie simple et d’asphéricité déja mentionnées. Cette derniére propriété avait été
précédemment établie dans [DW13].

En ¢t = 1, linvariant d’Alexander L? de K coincide avec la torsion L? usuelle de la
variété My, et vaut donc, par le théoreme de W. Liick et T. Schick (cf. [LS99]) :

Ag)(l) = exp <Voé(7f()> .

L’objet principal du Chapitre [2] est la preuve du résultat suivant :

Théoréme principal 1. (Théoréme
Soit K un neud dans S3. L’invariant d’Alexander L? de K est trivial, i.e.
(t — Ag) (t)) = (t— 1), si et seulement si K est le neeud trivial.

Nous prouvons ce théoréme en utilisant la propriété classique (voir par exemple [MMO1,
Lemma 5.5]) suivante : pour un nceud K donné, ou bien son extérieur Mg posséde un
volume simplicial non nul, ou bien Mk est une variété graphée, et dans ce second cas K est
un neeud torique itéré, i.e. K peut étre obtenu par sommes connexes et cablages a partir
du nceud trivial. Dans le premier cas, le théoreme de W. Liick et T. Schick que nous avons
mentionné précédemment implique que (t — Ag) (t)) # (t — 1), et nous traitons le second
cas par induction a l'aide des formules suivantes de cablages et de sommes connexes :

Théoréme 0.2. (Théorémes et[2.36)

(1) L’invariant d’Alexander L? est multiplicatif pour la somme connexe des neeuds.
(2) L’invariant d’Alexander L? vérifie la formule de cablage suivante :
st S est le (p,q)-cablage du neud compagnon C, alors

AP (t) = AD () max(1, ) (Pl=Dal-1)
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Pour prouver ces formules-ci, nous calculons des présentations appropriées des groupes
de noeuds composés ou cables a I’aide du théoréeme de Seifert van Kampen (voir I’Annexe
; nous remarquons ensuite que les matrices de Fox associées sont presque triangulaires
par blocs, ce qui nous permet de décomposer le déterminant de Fuglede-Kadison des
opérateurs associés comme un produit de déterminants déja connus. Ces résultats font
I'objet de la publication [BAI13].

Par un raisonnement similaire a celui de la preuve du Théoréme Principal [I] nous
établissons aussi que parmi tous les nceuds, I'invariant d’Alexander L? caractérise la paire
des noeuds de tréfle gauche et droit. Plus précisément :

Théoréme 0.3. (Théoréme[2.41])
Soit K un neeud dans S3. Linvariant d’Alezander L? de K est de la forme

(t= AR @) = (¢t > max(1,1)%)
si et seulement si K est le neud de tréfle gauche ou droit.

Manipuler des matrices de Fox et des morphismes d’abélianisation nécessite de tra-
vailler réellement au niveau combinatoire de la présentation du groupe du nceud, en con-
servant précisément 1’origine topologique des générateurs de la présentation. Ainsi, selon
Iorientation du nceud K, un générateur g représentant le méme méridien géométrique en-
lacera positivement ou négativement K et sera donc envoyé sur 1 ou —1 par 'abélianisation
ax. Ces subtilités sont fondamentales dans les calculs de I'invariant d’Alexander L? de
I'image miroir (voir Théoréeme ou de 'inverse d’un neeud (voir Corollaire .

Enfin, nous concluons le Chapitre 2 en simplifiant I’écriture des torsions d’Alexander
L? pour un entrelacs L & ¢ composantes : comme le morphisme ¢ : G, — Z factorise par
I’abélianisation o, : Gp, — Z€, on peut écrire ¢ comme (ny,...,ne) 0 ar, OU Ny,...,Ne €
7. Les torsions d’Alexander L? s’expriment donc naturellement comme des invariants
d’entrelacs décorés par un entier sur chaque composante.

Propriétés de recollement

Selon un théoréeme de W. B. Lickorish et A. H. Wallace (voir [Rol90, Theorem 9I1]) toute
3-variété connexe compacte orientable sans bord peut étre obtenue comme remplissage de
Dehn sur Pextérieur d’'un entrelacs dans S, i.e. un recollement de tores solides le long
des composantes de bord de ’extérieur de I’entrelacs, suivant certaines pentes rationnelles
qui sont les coefficients de la chirurgie de Dehn. Les chirurgies de Dehn sur les entrelacs
fournissent donc un outil pratique de description des 3-variétés.

En comparant certaines présentations de groupe de l'entrelacs de Whitehead et des
neeuds twists, on remarque une relation entre leurs torsions d’Alexander L? (voir Théoréme
, qui illustre le fait que les noeuds twists sont obtenus par 1/n-chirurgie sur une com-
posante de ’entrelacs de Whitehead.

On observe également que les torsions d’Alexander L? d’un entrelacs L et du sous-
entrelacs L' obtenu en supprimant une composante de L, vérifient une relation similaire
a celle que Torres établit dans [Tor53] pour le polynéme d’Alexander classique (voir
Théoreme . Or L' peut étre vu comme le résultat d’une oo-chirurgie sur une com-
posante de L.

Les torsions d’Alexander L? vérifient en fait une formule générale de chirurgie de Dehn :

Théoréme 0.4. (Théoreme [3.6))
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Soient N une 3-variété obtenue par remplissage de Dehn sur une variété M,
Q: m (M) — w1 (N) le morphisme de groupe surjectif et 1 : ¢“ = m(S' x D?) = 71(N) le
morphisme de groupe induits par ce remplissage.

Pour un tm’plet admissible (mn,¢,7) tel que v(u(c)) est d’ordre infini, et pour tout
t>0, si C’ (M poQ,voQ)(t) est faiblement acyclique et da classe de déterminant, alors
C,EQ)(N, ®,7)(t) Uest aussi et dans ce cas

L TO(M,¢0Q,v0Q) ()
W60 =

Dans le Chapitre |3] nous présentons cette formule, ses variations, sa preuve et les
conséquences que nous en tirons en théorie des nocuds et entrelacs et en géométrie des
3-variétés plus générales.

La formule de chirurgie du Théoreme est un cas particulier d’une formule de type
Mayer-Vietoris : si un CW-complexe X est obtenu comme union de deux CW-complexes
A et B le long de leur intersection V, alors les torsions d’Alexander L? des quatre CW-
complexes sont reliées, a condition de considérer quatre paires (¢,~y) compatibles avec les
morphismes de groupes induits par les inclusions de V, A, B dans X, que l'on peut voir
dans le diagramme suivant :

V/L/I&X / \ m(X) —— G
kB/B \}13/ ki

C’est ici que l'on peut voir l'intérét du parametre v dans la deﬁnition de la tor-
sion d’Alexander L? : comment relier sinon un complexe de chaines C\* ( ,¢,1d)(t) de

N (m1(A))-modules avec un complexe de chaines c? (X ¢',id)(t) de N(m1(X))-modules
en général ? La formule de Mayer-Vietoris pour les torsions d’Alexander L? s’écrit :

Théoréme principal 2. (Théoréme
Si les trois N'(G)-complexes de chaines cellulaires

COW,poiyoit),CP (A pojayoint),CP(B,¢ojp,ojnt)

sont faiblement acycliques et a classe de déterminant, alors C’g) (X, ¢,7,t) Uest également,
et

2)(X7 Qb,’)/)(t) T(Q)(V,qu’L”yO’L)(t) = T(2)(A,¢OjA7’ijA)(t) T(2)(Ba¢O]B”YO]B)(t)

Nous démontrons cette formule en incluant les quatre N (G)-complexes de chaines de
V, A, B et X dans une suite exacte courte, puis en utilisant la propriété de multiplicativité
de la torsion L? détaillée dans [Liic02b, Theorem 3.35 (1)]. Le point délicat est de relier
entre elles les bases cellulaires des quatre N'(G)-complexes de chaines, ce qui implique que
les opérateurs de bord ont une forme matricielle triangulaire qui garantit I'existence de la
suite exacte courte.

La formule de chirurgie du Théoréme est ainsi une conséquence de cette formule
de Mayer-Vietoris, obtenue en calculant au préalable les torsions d’Alexander L? du tore
(Théoréme et du tore solide (Théoréme [3.4)).
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La formule de chirurgie nous permet de calculer certaines torsions d’Alexander L2,
quand le morphisme ~ correspond & un remplissage de Dehn. En particulier nous pouvons
calculer plusieurs exemples de fonctions (t — T3 (My, (n1,n2) o ap,~)(t)) quand L est
I'entrelacs de Whitehead (voir Théoréme et Proposition .

Dans le Chapitre 4 nous généralisons les formules du Chapitre 2 de sommes connexes
et de cablages en passant des nceuds aux entrelacs. Pour ce faire nous calculons notam-
ment les torsions d’Alexander L? de tous les entrelacs dont I'extérieur est une variété de
Seifert. Rappelons qu’une 3-variété compacte orientable est dite de Seifert si elle admet
un feuilletage par des cercles (ceci équivaut a la définition classique de [Hat00, p. 13] par
le théoréeme d’Epstein énoncé dans [Eps72]).

Considérons S? alternativement comme la sphére unité de C? et le compactifié de R3
avec un point co. On définit

e T(m,n) = {(21,22) € S C C?|21" = 2§} l'entrelacs torique de type (m,n) (&
e = pged(m, n) composantes),

o H, ={(2,0) € 53} le cercle représenté par une droite verticale dans R3 passant par
oo (en assimilant S3 & R3 U {oo}),

e H;, = {(0, 22) € S3} le cercle unité dans le plan horizontal de R3.

Ceci nous permet de décrire tous les entrelacs L dans S® dont Iextérieur est une variété
de Seifert (voir [Bud06l, Proposition 3.3]) : un tel L est de la forme T'(m,n), T(m,n)U H,
ou T'(m,n) U H, U Hy, (nous excluons les entrelacs toriques de la forme 7'(m,0) pour
|m| > 2 car leur extérieur n’est pas une variété irréductible). Nous calculons les torsions
d’Alexander L? des entrelacs de cette forme :

Théoréme 0.5. (Théorémes|4.14, [4.11 et|4.10})

e Si L =T(m,n)=T(ep,eq) avec p,q premiers entre eux (et non nuls quand e > 2),
alors

T (My, (n1, ..., ne) o ar,id)(t) = max(1, ¢)EPal=Ipl=laDimt. sne]

e Si L =T(ep,eq) U H, avec p,q premiers entre eux et p non nul, alors

T (M, (n1, ... nesnes1) o o, id)(t) = max(1, ¢)EPI= DIt tne)tneil

e Si L =T(ep,eq) U H,U H}, avec p,q premiers entre euz, alors

T (M, (n1, ..., Ne, ey 1, Neya) © ap, id)(t) = max(1, t)elPamatetne)tpneitanes2|

Pour démontrer ces formules, nous utilisons des outils variés. Pour les entrelacs peu
complexes (comme les nceuds toriques), nous calculons explicitement une présentation
de défaut 1 du groupe de lentrelacs G, et nous calculons la torsion d’Alexander L?
TA(Mp, (nq,...,ne) o ar,v)(t) a laide du calcul de Fox et des mémes considérations
d’homotopie simple que pour l'invariant d’Alexander L? des nceuds. Nous pouvons aussi
identifier un extérieur d’entrelacs par homéomorphisme a un autre déja calculé, il suffit
alors d’expliciter la correspondance entre les morphismes ¢. Enfin, nous utilisons la for-
mule de Mayer-Vietoris du Théoréme Principal [2] en exprimant I'extérieur d’un entrelacs
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compliqué comme recollement d’extérieurs d’entrelacs plus simples le long de tores. No-
tamment nous utilisons le fait qu'un entrelacs torique T'(ep, eq) est un (e, epq)-cablage sur
un neeud torique 7'(p, ¢) (voir Annexe [A.2)).

La formule de Mayer-Vietoris nous permet plus généralement d’exprimer des torsions
d’Alexander L? d’une variété M irréductible en fonction des torsions d’Alexander L? des
composantes M; de sa décomposition JSJ (voir Proposition. Une 3-variété irréductible
se scinde en effet selon une famille minimale de tores incompressibles disjoints en une
réunion de variétés hyperboliques ou de Seifert, ce qu’on appelle sa décomposition JSJ.
Les torsions d’Alexander L? d'une variété de Seifert générale M sont de la forme max(1,t)",
ou n est en fait la norme de Thurston xs(¢) associée (voir [DFLI14] Theorem 8.5]) ; quand
la variété M est un extérieur d’entrelacs, le Théoréeme nous offre donc une méthode
pour calculer explicitement la norme de Thurston de M.

Enfin, en utilisant les formules du Théoreme et la formule de recollement JSJ, nous

établissons des formules de somme connexe et de ciblages pour les torsions d’Alexander
L? des entrelacs, dans les Théorémes et



Chapter 1

Preliminaries, Context, Notations
and Tools

In this chapter we recall definitions and present several objects that will be often used in
this manuscript.

1.1 Topology, combinatorics, algebra and group theory

1.1.1 Basic knot theory
Knots and links

Here we follow mostly [BZHI14]. We choose an orientation for the 3-sphere
A knot in S2 is a (topological) embedding (i.e. an homeomorphism onto its image) of
a circle [STinto S3. All knots will be assumed oriented.

Definition 1.1. Two knots K: S' < 3 and K': S' < 83 are ambient isotopic if there
is an orientation-preserving homeomorphism

H: 8% x [0;1] — S x [0;1]
(y,1) = (he(y),1)

such that hg = Idgs and hy o K = K'. We call H an ambient isotopy connecting K and
K.

We will only consider tame knots, i.e. knots that are ambient isotopic to a piece-wise
linear embedding of S! into S3.

A knot K will mean alternatively an embedding, a class of embeddings up to ambient
isotopy, the image of an embedding (which is a 1-dimensional sub-manifold of S®) or the
class of images of embeddings up to ambient isotopy.

Let K be an oriented knot in S3, and an open tubular neighbourhood of K.
The exterior of K is denoted S3\ V(K), it is a compact 3-manifold with toroidal
boundary. For V(K) thin enough, Mg does not depend on the chosen V(K). The
orientation of My comes from the one of S, and does not depend on the orientation
of K. The boundary torus My is oriented with the convention that vectors normal to
the boundary point outside of M.

Since K is oriented, there is, up to isotopy, a unique pair of simple closed curves
and on the 2-torus My = OV (K) such that px bounds a disk in V(K) and Ak is
homologous to K in V(K). We choose an orientation for these two curves such that the
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Figure 1.1 — The two Hopf links

linking number (see Section[L.1.4)) between px and K and the intersection number between
pux and Mg are both +1. The pair (ux, Ag) is called a preferred meridian-longitude pair
for K . Any such pg is called a meridian curve. Here we have used the notations and
definitions of [Tsa8§].

A link with ¢ € N components, or c- link is an embedding of a disjoint union of ¢
circles LIS, S Linto S3; we will assume that all links have ordered oriented components

(we note for instance|[L; U...U L/J). We consider links up to ambient isotopies in S® that
preserve the order and the orientation of the components, unless precised otherwise. We

only consider tame links as well.

Example 1.2. The natural unit circle of a plane in R? is called the trivial knot[Ol The
disjoint union of m such circles included in m parallel planes is called the trivial m-link.

Example 1.3. The two Hopf links of Figure [I.I] are ambient isotopic as unoriented links
but not as oriented links.

Any component L; of a link L can be seen as a knot in S3, and thus we can choose a
preferred meridian-longitude pair (ur,, Ar,) for each Lj;.

A split link is a link L C S3 such that there exists a 2-sphere ¥ C 83, L = L' U L"
with L' and L” sub-links, and L’ and L” are contained in different connected components
of $3\ X. Most of the time we will assume that links are non-split.

Knot invariants and diagrams

Definition 1.4. Let F' be a correspondence from the class of knots to any other class.
F is a knot invariant if

(K is ambient isotopic to K') = (F(K) = F(K"))
F is a complete knot invariant if

(K is ambient isotopic to K') & (F(K) = F(K'))
Similar definitions hold for links.

The following theorem allows us to define knot invariants from topological invariants
defined on the knot exteriors.

Theorem 1.5 (Gordon-Luecke, [GL89]). Two knots K and K' in S3 are (orientation-
preserving) ambient isotopic if and only if Mg and My are homeomorphic by an orientation-
preserving homeomorphism. Any such homeomorphism sends a meridian to a meridian.
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One such invariant is the knot group, defined in Section [1.1.4

Remark 1.6. For links, the result is a little different: two links L and L’ are (order and
orientation-preserving) ambient isotopic if and only if My and M, are homeomorphic
by an orientation-preserving homeomorphism that sends a meridian curve to a meridian
curve (with respect of the orderings).

For instance, the two 4-component links of Figure and Figure are not ambi-
ent isotopic, but their exteriors are homeomorphic. The assumption about meridians is
essential.

Regular diagrams offer an other way of clarifying this class of embeddings considered
up to ambient isotopies without losing information.

Definition 1.7. A regular diagram is an immersion of a finite number of oriented circles
in the plane such that multiple points are only double points with non-tangent intersection
(the crossings), and are granted with «under-over » information at each crossing.

If L is a link in S, then we can choose a point |oo|in S3\ L, and this gives an embedding
of L in R3 = §3\ co. Let Lo, denote this embedding . A reqular diagram of a link L is a
projection D = p(Ls) of Lo (With any chosen oo) on an affine plane of R? that is itself
a regular diagram.

A planar isotopy between two regular diagrams D and D’ is an orientation-preserving
homeomorphism

H:R?x [0;1] — R? x [0;1]
(yv t) = (ht(y)7 t)
such that hg = Idg2 and hy(D) = D'".

For example, a regular diagram of an embedding of the trefoil knot is given in

Figure

Figure 1.2 — A canonical trefoil knot diagram

Inverse and mirror image

Definition 1.8. Let K be a knot in S3. The knot K comes with a chosen orientation.
Its inverse knot[—K]is K with the opposite orientation. Let L = L; U...U L. be a ¢-link
in S3. The inverse of L is denoted and defined as

—L=(-L1)U...U(—L,).
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Remark 1.9. Let (mg,lx) denote the preferred meridian-longitude system of the knot
K. Then (—mpg,—lk) is a preferred meridian-longitude system for — K.

Definition 1.10. Let L be a link in S3. The mirror image of L is the image of L by any
planar reflection in R3. It is written The link L* does not depend on the plane of
reflection up to isotopy.

In particular, if D is a regular diagram of L in the plane, let [D¥] be the diagram
obtained from D by swapping all under-crossings for over-crossings and vice-versa. Then
the link corresponding to D* is L* and the plane of reflection is implicitly parallel to the
plane of D.

For example, the two Hopf links of Figure [I.1] are mirror images of each other.

Remark 1.11. Let (mg,lx) denote the preferred meridian-longitude system of the knot
K and o the planar reflection that sends K to K*. Then (—o(mg),o(lx)) is a preferred
meridian-longitude system for K*.

1.1.2 Algebraic topology

In this section we fix notations and recall classical results about fundamental groups,
covering spaces and CW-complexes. We mostly follow the presentation given by V. Turaev
in [Tur01].

Fundamental group

Let X be a topological space. If ¢,d: [0,1] — X are (continuous) paths in X such that
¢(1) = d(0), then let ¢ * d denote the concatenation of paths, where c is followed at twice
the speed, and then d at twice the speed. We denote [[c|x]| (or [[c]|if there is no ambiguity)
the homotopy class (of paths in X with ends ¢(0) and ¢(1)) of the path c¢. The fundamental
group of X with respect to the base point P € X is the set of classes [y] where v is a loop
in X of base point P, the group operation being *; we denote it by (11 (X, P)| or |1 (X)| (we
will omit the base point P in the notation when it is not relevant).

If f: X =Y is a continuous map that preserves base points, then the induced group
homomorphism [f,]: m1(X) — m1(Y) is defined by f.([7]x) := [f o]y where 7 is a loop in
X.

Let us recall the Seifert van Kampen theorem, which is useful for computing presen-
tations of fundamental groups.

Theorem 1.12. [Hat02, p. 43] Let X be a path-connected topological space and let A, B C
X be open path-connected subspaces of X such that AUB = X and such that V = ANB is
path connected and non-empty. Let P € V be the basepoint for the four spaces V, A, B, X.
The topological inclusions induce the following group homomorphisms:

om(4)
T (V) i m1(X)
i\ZJ (B)/

Furthermore, 71(X) is isomorphic to the amalgamated product m1(A) %5, vy m1(B). If
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o Py = (ciluj) is a group presentation of mi (V)
o Py = (ak|r) is a group presentation of m(A)
o Pp = (bp|sp) is a group presentation of m1(B)
then P = (ag, bm |71, Sp, 11(c;) = 12(¢;)) is a group presentation of m (X).

Remark 1.13. Tt follows from [MKS04, Theorem 4.3] that j; and js are both injective if
and only if the map i1(¢;) — i2(c;) from i1 (71 (V)) to ia(m1(V)) is an isomorphism.
In particular, if 7; and 79 are both injective, then j; and jo are both injective.

CW-complexes

Let @ denote the closed k-ball in R¥, Int(D¥) its interior and dD¥ its boundary.

For X, X’ two topological spaces such that X C X', we say that X’ is obtained from
X by adjoining k-cells if there exists a continuous map f = L;fi: U; DF — X’ such that

® fumt(pr): Ui Int(D*) — X'\ X is an homeomorphism

e asubset U C X’ is open in X’ if and only if UNX is open in X and f;*(U) C (D),
is open in DF, for all 4.

The map f;: (D¥); — X' is called a characteristic map, and the set fi(Int(D*)) is
called an open k-cell.

A topological space X is a CW-complez if there exists an increasing sequence of closed
subspaces X? ¢ X! C ... such that

e XY is a discrete space

o X =Ujso X*

e X**1 is obtained form X* by adjoining k-cells

e U C X is open in X if and only if U N X* is open in X* for each k.

The subspace is called the k-skeleton of X. A CW-complex X is finite if it is formed
by a finite number of cells. Remark that X is finite if and only if X is compact. We
implicitly orient and order the cells of a CW-complex X. A continuous map f: X — Y is
called cellular if f(X*) = Y* for every k.

In this thesis, we will often require the stronger property that f maps every
k-cell to a k-cell.

If X is finite, then its Euler characteristic is defined as

o0

X(X)=> (-1 €2
k=0

where nj is the number of k-cells. The integer x(X) is a topological invariant of X, and
does not depend on its cellular decomposition.
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Coverings

For X,Y two CW-complexes, a surjective continuous map p: Y — X is called a covering
map if each point z € X has an open neighbourhood U C X such that p~!(U) is a union
of disjoint open subsets of Y, each of which is mapped homeomorphically onto U by p.

Let Z be a connected CW-complex and f: Z — Y be a continuous map. For z € Z
and y € p~(f(2)) C Y, if fim(Z, 2) C psm1(Y,y) (notably if Z is simply connected), then
there exists a unique continuous map f: Z — Y such that f(z) =yand po f: f. This
is called the Unique Lifting Property.

Universal covering

Any connected CW-complex X admits a unique universal covering : X =X , l.e. a
covering such that |X| has trivial fundamental group.
The universal cover X of X is defined as

X ={[ | e: [0,1] = X, ¢(0) = P},

the set of homotopy classes of paths of X starting at the base point P. The natural base
point of X is [P} the homotopy class of the constant path at P.
The corresponding covering map is

) X - X
P =)
One can define a topology on X, and prove that px is a covering map. Details can be
found in [Hat02, Pages 64-65].

CW-complex structure on the universal covering

The CW-structure of X is defined in the following way. For each k-cell e of X,
e = f(Int(D¥)) with f the corresponding characteristic map. Choose d € Int(D*) and
de px (f(d)). There exists a unique lift f: D¥ — X of f such that f(d) = d by the Unique
Lifting Property. The set & := f(Int(D*)) is an open k-cell of X with characteristic map
f, and ¢ is homeomorphic to e by p. The k-skeleton of X is X* = p;(l (XF).

There is a 7 (X)-action (on the left) on X, defined as follows: If [y] € m(X) and
[c] € X, then [[].[c] := [y * ] € X.

Remark that px ([v].[¢]) = px([c]) since the endpoint does not change. Thus px is
invariant by the action of 71(X) and this action sends a k-cell of X to an other k-cell.
Moreover, the action is free and transitive. For details we refer to [Tur0O1, Chapter 5].

Boundary operator and cellular chain complex

If f: S™ — S™is a continuous map, its degree is the integer d such that f.: Z[S] =
H,(S™) — H,(S™) = Z[S] satisfies f.([S]) = d[5].

Take a k-cell ef of X, with characteristic map : DF — X, ef = fF(Int(DF)).

Let be the composition of maps:

_ Flopk ke _ _ 17 _
fiy: SPTH=0DF TR X D XL/ X =\ g = g

J
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where r is the topological quotient map that collapses X*~2 to a point, which naturally
makes X*~1/X*=2 a wedge of spheres Sj]-“_l indexed by the (k —1)-cells {e;?_l}j of X, and
r; is the topological quotient map that collapses every (k — 1)-sphere but the j-th one.
The orientations on the cells induce orientations on S¥~' = 9D* and S]’-“_l.

The k-th cellular chain group of X is P, Zef , the free abelian group gen-
erated by the set of oriented k-cells of X.

The boundary homomorphism : Cv(X,Z) — Ci-1(X,Z), abbreviated by @ is

defined by:
= Zdeg( Z-’fj)e;?_l.
J

The complex (... = Cp(X,Z) LA Cr-1(X,Z) — ...) is a chain complex, and

is called the cellular chain complex of X.

Cellular chain complex of the universal covering

Let X be a finite connected CW-complex and px : X — X its universal covering. We orient
the cells of X and then the cells of X such that px restricted to each cell is orientation
preserving. The group 7 = m1(X) acts on X (on the left) and thus on Cy( X) as well. If
we extend this action linearly to an action of Z[r], Cy(X) becomes a left Z[r]-module.

The boundary homomorphism 9: Cy(X) — Ci_1(X) is linear over Z[x]. To see this
we only need to prove that for any k-cell E of X and for any g € m (X),0(g-FE)=g-0FE.
Let E; denote the (k — 1)-cells of X with j indexed by a possibly infinite set J. Let
fE: Dk — X be the characteristic map of E. Take any j € J, and let [ € J be such that
E; = g - Ej. Then the following diagram

Skfl — aDk fE'ﬁ;k Xk 1 L> Xk 1/Xk 2 __ \/ Sjl?—l i> Skil
1= lg +g 1=
Gk=1 _ gpk fg'Ej)Dk Xkl T, Xkl k-2 - v, Sj'-“_l i, gk-l

is commutative, since g- fg = fy.g by the Unique Lifting Property and since g maps every
m-cell to a m-cell for every integer m. This proves that deg(fg ;) = deg(fy. ;) (Where
[E,; is the first long horizontal composite map in the previous diagram and f, g, is the
second one) and therefore that d(g - E) = g - OFE.

Let {ef} be the set of oriented k-cells of X ordered in an arbitrary way, and choose
for each ef a k-cell € in X in the pre-image of e¥. Then the set {¢¥} is a Z[r]-basis of
. Cu(X) = @, Zirlet ,

Thus, the cellular chain complex is a free based chain complex of left Z[rn]-

modules.

1.1.3 Case of a pair of CW-complexes: universal coverings, cellular
chain complexes

Note that contrary to the rest of this chapter, the content of this section does not follow
the classical notations and conventions.
Let V, X be compact connected topological spaces endowed with structures of finite

CW-complexes such that the inclusion V <i> X maps every k- cell to a k- Cell Let P be a

base point in V. Let QQ = I(P) be the base point in X. Let V2V and X2 X be the
universal coverings. Choose P €V the natural lift of P and Q € X the natural lift of Q.
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The space Vis a simply connected CW-complex, therefore by the Unique Lifting
Property the continuous map I o py : V — X lifts to an unique map |/| : V — X such that

I(P)=0.

Remark 1.14. Here V is the actual universal covering of V, not the lift px (I(V)) as the
reader may be used to. In particular, I: V — X will not be injective in general.

Let my = m(V, P) and m(X,Q). If g = [a] € my where a is a loop in V, then
I(g) = [Ioa] € mx.

Let ¢ denote a k-cell of V, and e = - pv(€) the corresponding k-cell of V. The image
f = I(e)is a k-cell of X and its lift f = I(€) is a k-cell of X, since it is a connected
component of the pre-image by px of the cell f. Thus I: V — )~( maps every k-cell to a
k-cell (but is not necessarily injective).

Recall that the universal cover V is the set of homotopy classes [a] of paths o in V
starting at the base point P. Since the map ([a]y — [I o a]x) is a lift of I o py that
maps P (the class of the constant path at P) to Q (the class of the constant path at
Q = I(P)), the map ([a]y — [I o a]x) is equal to I by the Unique Lifting Property.
Therefore I([a]y) = [I o a]x. Besides, if ¢ = [y]y € 71 (V) where 7 is a loop in (V, P),
and R = [a]y € V, then

Ig-R)=I(Wv - lalv) =I([y*aly) = [[o(yxa)lx = [[ov]x - [[ o a]lx = L(g) - I(R).

Now let us prove that I commutes with the boundary operators. Let € be a k-cell of
V as above. Let us prove that d(I(€)) = 1(8¢). Let {€j}jes be the set of (k — 1)-cells of
V. Then {:f(e?)} is a subset of the set of (k — 1)-cells of X but contains all the boundary
cells of T (€). With the same notations as above, the following diagram

Skfl _ 8Dk fZ‘aDk kal L> ‘A/J'kfl/‘?k:fQ _ v ) Slj;—l E} Sk71
~ _ VI
1= LI VI 1=
. P~ ~
st ot TR gir o greger_y gt TG gen

is commutative, therefore deg( ff(~) T(N-)) = deg(fs e~j). Hence 9(I(¢)) = I(d€). Be careful
e),I(e; )

that different cells €; # €; can have the same image I (€5) = 1(&).

The map I commutes with the group actions and the boundary operators, therefore
if 8~7 (€) = 32, mj(h; - €), where m; € Z, then 05 %k e I(e)) = > My (L(hy) - 1(&)). If
we equip the cellular chain compvlexes of V and X of bases as finite free Z[my]-module
and Z[nx]-module { J} and { ( ?)} U { ff} respectively, then as matrices over Z[my | and
Z|rx] the boundary operators satisfy:

%k (@ Z[ﬂ'x]f(%) ® @Z[WX]};I; — @Z[WX]T(EJI;) &) @Z[?Tx]}})

8~:CN%J(@mwka@zm])j'

Xk 0 *

The fact that the matricial forms of the boundary operators of X are naturally block
trigonal, with one diagonal block being obtained from the boundary operators of V', is the
main point of this section. We will use this result several times in Section
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1.1.4 Groups and knot theory
Knot group

Let K be a knot in S3. The knot group m1(Mp) of K is the fundamental group of
its exterior My = $3\ V(K). Recall that if G is a group, |G| is its commutator subgroup
and the abelianization of G denotes both the quotient group G /G’ and the quotient
group homomorphism : G — G®. The abelianization of a knot group G is the infinite
cyclic group. There are therefore exactly two surjective group homomorphisms from G g
to Z. We will denote[ag]: Gk — Z the one that sends homotopy classes of meridian curves
to 1. Note that this choice depends on the orientation of K.

This generalises to links. Let L = L1 U...U L, be a c-link in S3. The link group of L

is 71(83\ V(L)). The abelianization || is

aj,: GL — Z°
[’7] = (lk(77 Ll)a s 71k('77 Lc))

where is the linking number between two simple oriented closed curves v and ¢
in S3, which can be defined as the number of positive crossings of v under § minus the
number of negative crossings of v under §. Other equivalent definitions of the linking
number can be found in [Rol90, Section 5D].

Group presentations with generators and relations

When considering a group presentation P = (g1,...,gk|r1,...,7), it is usual to identify
the combinatoric (k+1)-tuple and the generated group. In this manuscript, we distinguish
between the two and we denote the quotient of the free group by its
normal subgroup generated by the free words r1,..., ;.

Sometimes we will write a relator r as a free word, sometimes as r = 1 or r = 7’ an
equality between free words in the generators, whatever is clearer at the moment.

We will say that a group G' admits the presentation P = (g1, ..., gk|r1,...,7) when G is
isomorphic to Gr(P), and we will assume that this isomorphism is implicit, or equivalently
that we implicitly know which elements of G are associated to g1, ..., gk.

For instance, the well-known Wirtinger process takes a regular diagram D of a knot
K and gives a group presentation P of the knot group G, and the generators of P all
implicitly correspond to homotopy classes of meridian curves in Gg; therefore they are
all sent to the same image 1 by the abelianization homomorphism ag. This process is
recalled in the next section.

The deficiency of a presentation P = (g1, ..., gk|r1,...,r) is the integer k—I.
The deficiency of a group G is the maximum deficiency of a group presentation of
G. It is easy to add redundant relators and leave the underlying group unchanged, but
it is much harder to find a minimal number of relators for one given group and one given
set of generators.

The following theorem give us the deficiency of link groups.

Theorem 1.15. [Hili2, Theorem 1.2] A link L € S3 is split if and only if def(G) > 2.
A link L € S® is non-split if and only if def(Gr) = 1.

In this manuscript, we will mostly be interested in groups and group presentations of
deficiency one.
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P=<a,b,c|ab=ca, bc =ab, ca=bc >

Figure 1.3 — A Wirtinger presentation for the trefoil knot

Wirtinger presentations for knots and links

Let D be a regular diagram of a knot K. We construct a group presentation P of the knot
group G in the following way. For every (oriented) arc e; on D we define a generator
gi, which is the homotopy class in G = 71 (S \ V(K)) of the meridian curve circling
e; positively (with the base point of the fundamental group being the eye of the reader
looking at the diagram from above, this means the curve goes under e; from right to left
when e; goes from bottom to top); then for every crossing ¢; on D we define a relator
r; of the form g,gp = g.ga Where g4, gy, g. are the generators associated to the three arcs
meeting at the crossing c¢;. See the example of the trefoil knot in Figure @ for clarity.

As we can see in the example of Figure any relator is a consequence of all the
others. This is actually true in general (see [BZH14, Corollary 3.6]). We will therefore
consider P to be a Wirtinger presentation of Gk if P is obtained by the previous process
on a regular diagram of K and by taking out one relator. If the diagram has k arcs and
k crossings, P has therefore k generators and k£ — 1 relators, and thus is of deficiency one.
One such presentation for the example of Figure would be (a, b, c|ab = ca, bc = ab).

Note that we can do the same process with any link L. Two generators g;,g; of a
Wirtinger presentation are conjugates in Gy, if and only if they are homotopy classes of
meridian curves associated to the same component of L.

Remark 1.16. Be careful that sometimes the link diagram has more arcs than crossings,
for example if it is a naturally embedded circle (1 arc, no crossings) or the natural diagram
of the trivial m-link, with m disjoint naturally embedded circles in the plane (m arcs, no
crossings). Fortunately, since by Theorem a link group has deficiency one if and
only if it is split, we can define the Wirtinger presentation as a deficiency one presentation
obtained from the diagram D of a non-split link L, either by taking the whole presentation
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if it already has deficiency one (like in the case of the circle for L the trivial knot), or by
taking out one relator from the presentation of deficiency zero (for all the other cases, as
above).

Note finally that the same diagram can generate many different Wirtinger presenta-
tions, since we did not choose any order on the generators nor any rule on writing the
relators. These ambiguities will be described by the Strong Tietze moves on group pre-
sentations (we recall their definition in the proof of Proposition .

Fox calculus

Let P ={(g1,...,9k|71,...71) be a presentation of a finitely presented group G. If w is an
element of the free group F[gi,...,gx] on the generators g;, we let W denote the element
of G that is the image of w by the composition of the quotient homomorphism (quotient
by the normal subgroup (r;) generated by rq,...,r;) and the implicit group isomorphism
between this quotient Gr(P) and G. To simplify the notations in the sequel, we will
often write an element of G a instead of @ when there is no ambiguity. We write the
corresponding ring morphisms similarly: if w € C[Flgy, ..., gx]] then its quotient image is
written w € C[G].
The Fox derivatives associated to the presentation P are the linear maps

ai: C[F[g1,---,9k]] — CI[Flg1,...,9k]] for i =1,...,k, defined by induction as follows:
gi
8—8—58*1—5*1115'11'—'(1
agi(l) =0, @(gj) = i js GTJZ-(Qj ) = —6ijg;  (where[§; ;| is 1 when ¢ = j and 0
when i # j) and for all u,v € Flg1,...,gnl], 8—91(1”)) = 86;(14) +u88gi(v)'

Or
The matrix <<8T])> € My (C[G]) is called the Fox matriz of the
9i/ J1<iski<i<i

presentation P.

For i = 1,...k, Mj,—1,(C[G]) is defined as the matrix obtained from Fp by
deleting its i-th row.

We will sometimes use the following notation, to «remember the coordinates»:

71 T

-1
U ou
Remark 1.17. As a quick consequence of the definition, —— = —u ="' —

dg dg

for g a gener-
ator and u a free word in the generators.

Remark 1.18. We will often use the following fact: if r is a relator of P and r = uv ™",

or Ou Ov or Ou Ov
where r, u, v are free words in the generators, then — = — —r— and thus — = — — —.
99 99 g dg 0Og 9y
This is why, in the following sections, we will sometimes use the convention that if a
relator is written u = v, its Fox derivative (seen in the quotient G, not in the free group)
ou Ov

is —— — —

dg Og
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1.1.5 Torus knots and torus links

Let p and ¢ be relatively prime integers and let V' be a solid torus with a preferred
meridian-longitude system (and thus an oriented core). The knot on the boundary
OV of V will denote the knot that wraps around V ¢ times in the meridional direction
and p times in the longitudinal direction; it will be called the (p, q)-torus knot.

Note that this follows the conventions of [Rol90] but not the ones of [BZH14] and
[Cro04], where the roles of p and ¢ are reversed.

One can also define T'(p, q) as the knot on the boundary 0V of the solid torus obtained
in the following way: let ¢ be the oriented core of V' and m an oriented meridian such that
the linking number of ¢ and m is +1.

o if p =0, then 7°(0,+£1) is a meridian of V.

e if p > 0, then T(p, q) is obtained by taking p parallel strands following the core ¢

2w sign(q)
p

and twisting them |¢| times by an angle of in the direction of m.

1

e if p < 0, then T'(p,q) is obtained by taking |p| parallel strands following ¢~ and

£ 2w sign(q)
p

twisting them |g| times by an angle o in the direction of m™1.

For example, the right trefoil knot of Figure |[1.2|is the torus knot 7'(2, 3).

Note that T'(p, q) and T(q,p) are ambient isotopic in S3, as are T(p, q) and its inverse
T(—p,—q). The mirror image of T'(p, q) is T'(p, —q) and is not ambient isotopic to T'(p, q).

These definitions extend to the case when e = ged(p, q) > 2. Then T'(p, q) =I'(ea,ed)
is a e-component link called the (p, q)-torus link. Each of its components is a torus knot
T(a,b).

Torus knots and torus links will be studied in more detail in Section [1.2]

Remark 1.19. Torus knots are the only knots whose group has a non-trivial center. The
classical group presentation of T'(p,q) is (z,y|zP = y9), and the center is infinite cyclic
generated by xP.

1.1.6 Connected sum of knots

Let K1 and K5 be knots in S3. Their connected sum K is the knot obtained by removing
one small arc on K; and K and joining the four vertices by two other arcs respecting the
orientations and forming a single knot; it is denoted K =[K;§K5| Up to ambient isotopy,
the knot K does not depend on the choice of the two small arcs. The connected sum of
two knots can be seen in the following Figure [I.4] for closed projections and «vertical»
projections, i.e. projections in S% where the knots pass by the point at infinity (from
seeing S® as the one-point compactification of R?); in this case, obtaining K consists in
knotting K; on the vertical strand, then knotting K a little further. We say that K; and
K> are factors of K. A knot is prime if its only factors are itself or the trivial knot.

Let G1, G2 and G be the fundamental groups of the knots K;, Ko and K in R3
respectively. In Section we will use the following technical lemma (see [BZH14,
Proposition 7.10)):

Lemma 1.20. The groups G1,Go admit Wirtinger presentations
P = <3§'1, s ,.%'k;|7"1, s ark—1>; Py = <y17 s ayl|51> cee Sl—1> such that

-1
P = <=/1:17‘°'7xk7y17"‘7yl|7‘17"‘7rk—17817"'75l—1)xkyl >

is a Wirtinger presentation of G.
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oo

Figure 1.4 — The connected sum of the trefoil knot and the figure-eight knot

The following proposition is a consequence of Remark [I.I3] and will be useful for
induction properties in Section

Proposition 1.21. If K is the connected sum of the knots K1 and Ko, and G,G1,Go
are their respective groups, then there exist injective group homomorphisms Gy — G and
G2 — G.

We can extend this definition and the previous statements to links, the connected sum
being done on one component of each of the two links. A prime link is a non-split link
whose only factors are itself and the trivial knot.

For example, the keychain link of Figure is a connected sum of several Hopf links.

We will study connected sum of links in more detail in Section

1.1.7 Satellites

Let C be a non-trivial knot in S (it will be called the companion knot).

We consider P a knot inside an open solid torus Tp being also naturally embedded
in $3 (P will be called the pattern knot). We choose an orientation for the core of Tp.
We assume that P meets every meridional disk of Tp. We let np € Z denote the linking
number between P and a preferred meridian curve of d7Tp (assumed to be positively
oriented with the orientation of the core of Tp); is walled the winding number of P.
Note that preferred longitude curves of Tp have zero linking number with the core of Tp
and follow the same direction.

Let be an open tubular neighbourhood of C' (its core having the same orientation
as C'). Remark that a preferred longitude curve of T has zero linking number with C.
Thus the homotopy class in G¢ of such a curve is sent to zero by the abelianization ac.

Let [hpcl: Tp — Tc be an orientation-preserving homeomorphism between the two
solid tori. We also assume that hpc sends a preferred meridian-longitude pair of Tp to a
preferred meridian-longitude pair of T¢.

Then : hpc(P) is a knot in S3 and is called the satellite knot of companion C
and pattern P.

If P is a torus knot T'(p, q) (naturally defined on the boundary of a solid sub-torus of
Tp) with p # 0, then we say that Sc p is a cable knot, or the (p,q)-cable of C. In this case
np = p. Figure gives an example of S¢ p when C' is the trefoil knot and P is the torus
knot pattern T'(2, —1). The orientations are not marked but should be clear.
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Figure 1.5 — The (2, —1)-cabling of the trefoil knot

Remark that if K is a knot in 3, then the (1, 0)-cable of K is K and the (—1,0)-cable
of K is its inverse — K.

If P is the pattern in Figure called the Whitehead double pattern, then np = 0
and S¢ p is called the Whitehead double of C.

Remark 1.22. This construction generalises to links in three cases:

e if C is a link, do the satellite construction by using one of its components as com-
panion.

e if P is a c-link in Tp, define S¢ p as hpc(P) as before, it will be a c¢-link.
e if C' and P are links, mix the two previous constructions.
We will study these cases in more detail in Chapter

We give a detailed proof of the following proposition in Section[A.T]of the Annex. Note
that this result can be found in a different flavour in [BZH14l Section 4.12] and [Rol90,
Theorem 4D9).

Proposition 1.23. Let us consider the (p,q)-cable knot S of companion C.
(1) There exists Po = (a1,...,ak|r1,...,rx—1) a Wirtinger presentation of G¢o such
that
Ps ={a1,...,a5,x,\|r1,...,mp—1,2Pa; IA7P, AW (ay))
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Figure 1.6 — The Whitehead double pattern

is a presentation of Gg, with x and A the homotopy classes of the core and a longitude of
Tc, and W(a;) a word in the ai, ..., af.
(2) Furthermore, as(x) = q, as(A) =0 and ag(a;) =p, fori=1,... k.

The following proposition is a consequence of Remark and will be useful for
induction properties.

Proposition 1.24. If S is the satellite knot obtained from the companion C and the
pattern P, then there exist injective group homomorphisms Go — Gg and m(Tp \ P) —
Gs.

Proof. Apply Remark with A = S3\ T, B = hpo(Tp \ P), X = AUB = S\ S
and V = AN B = 0T¢. Since C is not trivial, it follows from |[Rol90, Theorem 4B2] that
V — A induces an injective group homomorphism in the fundamental groups. Similarly,
it follows from assumptions on P and [Rol90, Exercise 4D3] that V' < B induces an
injective group homomorphism in the fundamental groups. O

1.2 Geometry

1.2.1 Genus and Thurston norm
Genus of knots and links

Compact connected oriented surfaces are determined up to homeomorphism by two non-
negative integers: the number b of boundary (circular) components and the genus g, that
counts the numbers of «handles». Such a surface will be written [S} 5|

Example 1.25. The 2-sphere S? is S, the disk is Sp 1, the annulus is Sp 2. The 2-torus
Sl X Sl is SLO‘

Recall that the Euler characteristic of Sy is x(Sgp) =2 — 29 — b.

Let L be a c-component (oriented) link in S3. A Seifert surface for L is a compact

oriented surface S embedded in S? whose boundary 9S is equal to L as an oriented 1-
manifold. The minimal genus g of a Seifert surface spanning a link L is called the genus

of the link L and is written |g(L)

Remark 1.26. The genus detects the trivial knot, i.e. a knot K has genus 0 if and only
if K is the trivial knot (see [BZH14, Section 2.B]).
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Thurston norm

Let M be a 3-manifold and let ¢ € H'(M;Z) = Hom (71(M),Z) be a non-trivial 1-
cohomology class.

Definition 1.27. The Thurston norm of the class ¢ is denoted |xy/(¢)| and is defined as

k
211(6) = min {x_@) = 3" max(~x(), o>}
=1

where ¥ = 3 ... U Yy is a surface (properly embedded in M) dual to ¢ (meaning that
the homology class [X] € Hay(M,dM) is the Poincaré dual of ¢ € H*(M)).

Observe that xy; is a semi-norm on H'(M;Z) and not a norm in general (z/(4) can
sometimes vanish for non zero ¢).

Example 1.28. If K is a knot in S3, and M = Mg = S3\V(K), then for ¢ = ax: Gx —
Z the abelianization, zp(ax) = 29(K) — 1.

For a c-link L the situation is more complex, since there are as many possible classes
¢ € HY(Mp,Z) as there are linear maps from Z° to Z.

Example 1.29. (see [Thu86l Section 2, Example 1]) If L = L; U Ly is the Whitehead
link, then for ¢ = ((n1,n2) o ar) € Hom(Gyr,Z) (with ny,ne € Z), zpr, (¢) = |n1| + |n2|
and xs, is a norm.

1.2.2 Hyperbolic knots and links

A 3-manifold M is called hyperbolic if its interior admits a complete Riemannian metric
whose sectional curvature is constant equal to —1. We refer to [Rat06] for details.
Hyperbolic structures of finite volume on 3-manifolds are rigid in the following sense:

Theorem 1.30. (Mostow-Prasad-Marden Rigidity theorem,)
Let M and N be finite-volume hyperbolic 3-manifolds. Any isomorphism m (M) —
m1(N) is induced by a unique isometry M — N.

This statement can be found in [AFWI2, Theorem 1.10], it summarizes theorems of
[Mos68], [Mos73], [Pra73] and [Mar74].

This fundamental result implies that the hyperbolic structure on a finite volume hyper-
bolic 3-manifold is determined by its topology and is unique up to isometry. In particular,
any invariants which are defined in terms of the hyperbolic structure of such a manifold,
such as the volume, are actually topological invariants of the 3-manifold.

A knot K in S is hyperbolic if its complement S\ K admits a hyperbolic structure
of finite volume. The volume of this hyperbolic structure is called the volume of the knot
K and is written

Unless we say otherwise, in the remainder of the manuscript, a hyperbolic 3-manifold
is always understood to have finite volume.

We can then see that a knot K C S is hyperbolic if and only if My = S3\ V(K) is
hyperbolic, since the interior of M is homeomorphic to S3 \ K.

The volume of a knot is thus a invariant of knots up to isotopy. The volume is a very
deep and powerful knot invariant, deep because computing an exact value of the volume
is hard (fortunately, Jeffrey Weeks’ SnapPea computer program can approximate it as far
as one could want) and powerful because it distinguishes most of the prime hyperbolic
knots.
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Example 1.31. The figure-eight knot 4; is hyperbolic. Its complement can be seen as a
gluing of two regular ideal hyperbolic tetrahedra, thus its volume is twice the volume of
such a tetrahedra:

vol(41) = 2.0298832.

It has the smallest hyperbolic volume among hyperbolic knots. Details of the hyperbolic
structure and the computation of this volume can be found in [Thu91].

Remark 1.32. W. Thurston and T. Jorgensen proved that the set of the volumes of ori-
entable hyperbolic 3-manifolds is a well-ordered subset of R, see [BP92, Corollary E.7.5].
In particular, the set of volumes of 3-manifolds with one toroidal boundary component
has a minimal element, which is vol(4;), as Cao and Meyerhoff proved in [CMO1].

These definitions immediately generalise to links.

1.2.3 JSJ decompositions of 3-manifolds

For this section we refer to [Hat00, Chapter 1] and [AFW12| Section 1].
All 2-manifolds and all 3-manifolds will be considered connected, orientable, compact
and with possibly non-empty boundary, unless specified otherwise.

Prime decomposition

Let M be a 3-manifold. A 2-manifold S C M is properly embedded in M if SNOM = 0S
in a transverse intersection. This means that if S has any boundary, it must be exactly
the only part of S intersecting OM.

If S C M is a properly embedded 2-sphere (thus S N IM = &), then let be the
3-manifold obtained by deleting a small tubular (open) neighbourhood from M. Let
us assume M |S has two connected components M{ and M/, and let M; be the 3-manifold
obtained from M/ by filling the boundary sphere corresponding to S by a 3-ball. In this
case we say that M is the connected sum of My and My and we write M

A theorem of Alexander states that every embedded 2-sphere in R? bounds an em-
bedded 3-ball. Therefore S is a neutral element for the operation . Moreover, f is
commutative and associative (up to homeomorphism).

A 3-manifold M is called prime if M = PH#Q implies P = S or Q = S3, and irreducible
if every 2-sphere S?2 C M bounds a 3-ball B3 C M.

These two properties are not exactly equivalent: if M is irreducible, then M is prime,
but S x S? is prime and not irreducible. This is the only counter-example: if M # S x S2,
then M is prime if and only if M is irreducible.

Theorem 1.33. (Sphere decomposition) Let M be a 3-manifold. There is a decomposition
M = Pif... 4P, with each P; prime, and this decomposition is unique up to order, and
insertion or deletion of S3’s.

Example 1.34. Let L be a c-component link in S, V(L) an open tubular neighbour-
hood and My, = S%\ V(L) the exterior of L. My is compact, connected and orientable.
Furthermore, M7, is irreducible if and only if L is not a split link. In particular, if L = K
is a knot, then My is irreducible.
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Tori decomposition

Once we cannot properly split a 3-manifold M along spheres, we can find deeper geometric
information by splitting M along tori.

A properly embedded connected surface S C M? is called 2-sided if V(S) \ S has two
connected components (V(S) is still an open neighbourhood of S). A connected 2-sided
surface S not equal to S? nor D?, S C M is incompressible if for each disk D C M with
DN S = 9D there is a disk D’ C S with D’ = dD.

Note that a connected 2-sided surface S ¢ {52, D?} is incompressible if and only if the
group homomorphism 71 (S) — 71 (M) induced by the inclusion is injective. This algebraic
characterization will often be useful.

The fact that we exclude the sphere and the disk means an incompressible surface
necessarily has infinite fundamental group. It can be an annulus, a disk with many holes,
a torus, a punctured torus, a g-genus surface, punctured or not, etc. We will be especially
interested in incompressible tori.

If M is an irreducible 3-manifold, a 2-sided torus 72 C M?3 is compressible if and only
if T2 bounds a solid torus in M or lies in a 3-ball in M. Moreover, every torus 72 C S3
bounds a solid torus on one side or the other (see [Hat00, Exercise 1.1-3]).

Example 1.35. Here is a 2-torus that lies in a 3-ball B3 but does not bound a solid torus
in B3.

But if we add a point at infinity to B3 and turn it into S3, then this torus bounds a solid
torus in the form of a trefoil knot. This picture comes from
https://themathingpot.wordpress.com/category /low-dimensional-topology/

Note that if S C M is a finite collection of disjoint, properly embedded incompressible
surfaces, then M is irreducible if and only if M|S is irreducible and any surface T'C M|S
is incompressible in M|S if and only if it is incompressible in M.

An irreducible 3-manifold M is called atoroidal if every incompressible torus in M is
isotopy equivalent to a subsurface of OM, or boundary parallel.

We will say that a (compact oriented) 3-manifold M is a Seifert manifold, or a Seifert-
fibered manifold if M admits a foliation by circles. This is equivalent to the classical
definition (of [Hat00, p.13]) by Epstein’s theorem (see [Eps72]). We will not study ge-
ometric structures of Seifert manifolds in detail but we give this definition to help the
reader picture simple examples.

The following results come from [AFWI12| Section 1.4].

Theorem 1.36. (JSJ decomposition, [AFW12, Theorem 1.7])

For an irreducible 3-manifold M with empty or toroidal boundary there exists a col-
lection T C M of disjoint incompressible tori (the JSJ tori) such that each connected
component of M|T (called a JSJ piece) is either atoroidal or a Seifert manifold, and a
minimal (with respect to inclusions of such collections) such collection T is unique up to
isotopy.
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By the Hyperbolization Theorem, every irreducible atoroidal 3-manifold M with empty
or toroidal boundary and infinite fundamental group is hyperbolic of finite volume. Be-
sides, by the Elliptization Theorem, every closed 3-manifold with finite fundamental group
is spherical. Since every spherical 3-manifold is Seifert, we can re-formulate the JSJ de-
composition theorem as:

Corollary 1.37. (Geometrization Theorem, [AFW12, Theorem 1.14])

For an irreducible 3-manifold M there exists a collection T C M of disjoint incom-
pressible tori such that each connected component of M|T is either a Seifert manifold or
a hyperbolic manifold of finite volume.

Remark 1.38. The JSJ tori must be incompressible, in particular no JSJ component can
be a solid torus. It follows from Remark [I.13|that if ¢: M; < M is a JSJ piece of M, then
i is mi-injective (since the JSJ tori are incompressible). This will be useful for simplifying
JSJ formulas for L?-Alexander torsions in Chapter

Definition 1.39. Let M be a irreducible 3-manifold. The JSJ-decomposition of M, de-
noted is the partition of M

JSJ(M) = (Tl,...,Ta,Sl,...,Sb,Hl,...,Hc)

where (71,...,T,) is a minimal collection of disjoint incompressible sub-tori of M, the S;
are the Seifert manifolds and the H; are the hyperbolic ones.

The volume of M, or simplicial volume of M, is defined as the sum of the hyperbolic
volumes of the H; and noted

The manifold M is a graph manifold if its JSJ decomposition does not contain any
hyperbolic pieces.

Recall that the simplicial volume is proportional to the Gromov norm (see for instance
[BP92, Theorem C.4.2]).

JSJ-decomposition of link exteriors

We study the JSJ-decompositions of knot and link exteriors, following [Bud06].

Remark 1.40. Thanks to Thurston’s work, we know that a knot K is either torus, satellite
or hyperbolic. More precisely,

e K is a torus knot when there is an incompressible annulus in S? \ K, drawn with its
core z in Figure[A4]in the Annex.

e K is a satellite knot when there exists an incompressible torus not isotopic to the
boundary in 2\ K. This is the torus T¢ in Section m

e when K is of neither of the two previous types, Thurston proved that its complement
admits a complete hyperbolic structure of finite volume, i.e. K is hyperbolic.

Example 1.41. The (k + 1)-component keychain link L drawn in Figure has
a Seifert-fibered exterior My. In this case, JSJ(My) = (M). We will list all the links
that have a Seifert-fibered exterior in Section [£.2.7]

Proposition 1.42. Let K be the connected sum of r non trivial knots Ky,..., K,.. We
denote

IS (M) = (1", 70,80, ..., s 1Y, ... HD).
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There exist r irreductible tori Ty, ..., T, that separate My into r + 1 manifolds home-
., Mk, (with homeomorphisms onto My denoted respectively

omorphic to Mic,, Mk, ..
fos fi,--- fr), and the JSJ-decomposition of My is:

Tla cee 7T/€7f1(T1(1))7 DI fl(Ta(ll))a .. '7fT(T1(T))) .. '7fT(T(£:))7
ISIMi) = | fo(KCy), fi(S™), ooy fi(SED), oo £ (ST, (S,
fl(Hfl)% o FHED), ffr(Hfr)), o f(HD)

In particular, vol(Mp) = vol(Mg,) + ...+ vol(Mk,).

| | ces
\_/ \_/ N
k circles
Figure 1.7 — The k-keychain link, a (k + 1)-component link

Proposition 1.43. Let K = Sc.p be a satellite knot of non trivial companion C and

pattern P C Tp, where Tp is a solid torus. Let Lp denote the intuitive 2-component link
such that My, is homeomorphic to Tp \ V(P). We denote
TS, ... Sl H, .. H).

JSI(My,,) = (T}, ...,

Let h: My, — Tc \ V(K) denote the previous homeomorphism. We denote

JSI(M¢) = (Ti, ..., Ta, S, ..., Sp, Hy, ..., Hy).

Then 0T is a separating torus for Mg and
ST, h(TY), ..., h(T),

oTe, 11, . .
JSJ(MK): Sla~"7Sb>h(Si)7"'7h( 1,7/)7
Hy, ... Ho, h(H}),... h(H)

In particular, vol(Sc,p) = vol(C) + vol(Lp).

These results generalise to connected sums on links and satellite operations with links
as companion or pattern. One only has to be careful of the torus component on which the

operation is made. Particular examples will be studied in Chapter [4]
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1.3 L2-invariants

1.3.1 L2-invariants

Let G be a countable discrete group (a knot group, for example). In the following, every
algebra will be a C-algebra, unless specified otherwise.
Consider the vector space @Dycc Cg (which is also an algebra) and its scalar

product:
<Z A9, Z ugg> = Z Agitg-

geG geG geG

The completion of C[G] is

2(G) = {Z Agg | Ag €T, AP < oo},

geG geG

the Hilbert space of square-summable complex functions on the group G.

We denote the algebra of operators on that are continuous (or equiva-

lently, bounded) for the operator norm.
To any h € G we associate a left-multiplication : 2(G) — ?(G) defined by

Ly (Z Agg) =3 Ag(hg) =D Ap-1g9

geG geG geG

and a right-multiplication : ?(G) — (@) defined by

Ry, (Z )\gg) =) Aglgh) =D A9

geG geG geG

Both Lj and Ry, are isometries, and therefore belong to B(¢(G)).
We will use the same notation for right-multiplications by elements of the complex

group algebra C[G]:
k

Ry~r 0= > ARy, € B(*(G)).
=1 i=1

We will also use this notation to define a right-multiplication by a matrix A with
coefficients in C[G], p rows and ¢ columns, in the following way:
If A= (aij)1cicpicjcq € Mpq(C[G]), then the operator is defined as:

Ra:=(Ra,) . €BEGLEP).

Here will denote the direct sum of p copies of £2(G), endowed with a natural
Hilbert structure.

We denote [V (G)|the algebraic commutant of {Ly; g € G} in B(€?(G)). It will be called
the von Neumann algebra of the group G.

Let us remark that Ry, € N(G) for all g in G.

The trace of an element ¢ of N'(G) is defined as
trare) () == (g(e), e)
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where e is the neutral element of G. This induces a trace on the M, ,(N(G)) for n > 1
by summing up the traces of the diagonal elements. We will denote this new trace tryr(q)
as well.

We will call a finitely generated Hilbert N'(G)-module any Hilbert space V' on which
there is a left G-action by isometries, and such that there exists a positive integer m and
an embedding ¢ of V into @, ¢*(G) (an embedding meaning here a linear isometrical
injective G-equivariant map, where the left G-action on @}, ¢*(G) is by left-multiplication
coordinate by coordinate).

The von Neumann dimension of such a finitely generated Hilbert N (G)-
module V is defined as the trace of the projection:

dimN(G)(V) =ty o) (pr¢(v)) € Ry,

where
o)t DE(G) = DEG)
i=1 i=1

is the orthogonal projection onto ¢(V). The von Neumann dimension does not depend on
the embedding of V into the finite direct sum of copies of £?(G).

For U and V two finitely generated Hilbert N (G)-modules, we will call f: U — V a
morphism of finitely generated Hilbert N'(G)-modules if f is a linear G-equivariant map,
bounded for the respective scalar products of U and V.

Remark 1.44. If G is finite of order |G|, then £2(G) = C[G] = CI¢|, N'(G) is isomorphic
to @, M;, (C) with Y-, i = |G|, Ly and R, are permutation matrices for any g € G (they

1
are the left and right regular representations of G) and trar () = @tr M((C)-

Let us now write a little about induction. Let ¢: H < G be an injective group homo-
morphism. To simplify notations, we will also call ¢ the inducted algebra homomorphism
on C[H] and matrices over C[H], and the isometric injection on ¢2(H). Let M be a finitely
generated Hilbert AV'(H)-module. Then, according to [Liic02bl Section 1.1.5], we can con-
struct an induction covariant functor [i,| from the category (finitely generated Hilbert
N (H)-modules, morphisms of finitely generated Hilbert A'(H)-modules) to (finitely gen-
erated Hilbert N (G)-modules, morphisms of finitely generated Hilbert N (G)-modules),
such that i,(¢2(H)) = *(G).

The following properties of this induction functor will be used in this manuscript:

Proposition 1.45. (1) Let w € C[H] and Ry,: ¢*>(H) — (*>(H) be the corresponding right
multiplication. Then ixRy, = Rj). A similar result stands for matrices over C[H].

(2) Let f: M — N be a morphism of finitely generated Hilbert N'(H )-modules. If f is
injective (resp. surjective), then i, f: i M — 1. N is also injective (resp. surjective).
(3) If M is a finitely generated Hilbert N'(H)-module, then

Remark 1.46. For any ¢ € N (H), i.¢ is in N(G), because commuting with the left
multiplications is the same as being equivariant for the group action.
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1.3.2 The Fuglede-Kadison determinant

Let G be a finitely generated group and U,V be two finitely generated Hilbert N(G)-
modules. Let f: U — V be a morphism of finitely generated Hilbert A/(G)-modules. The

spectral density of f is the map A € Rxg —{F(f)()\)| defined by:
F(f)(A) := sup{dim ) (L)L € L(f, M)}

where is the set of finitely generated Hilbert N/ (G)-sub-modules of U on which the
restriction of f has a norm smaller than or equal to A.

Let us remark that F(f)(A) is monotonous and right-continuous, and thus defines a
measure on the Borel set of R>( solely determined by the equation

dF(f)(la,b]) = F(f)(b) — F(f)(a)
for all a < b.

Remark 1.47. Observe that £(f,0) is the set of finitely generated Hilbert N (G)-sub-
modules of Ker(f), and F(f)(0) = dim ) (Ker(f)).

For any A > || f||, £(f,A) is the set of finitely generated Hilbert N (G)-sub-modules of
U, and F(f)(\) = dimpr)(U).

Remark 1.48. For all \, F(f)(\) = F(f*f)(\?) = F(|f|)(\) where f*f: U — U is a
positive operator and is its square root.

We can thus think with positive operators and observe that dF'(f) measures the «den-
sity of eigenvaluesy. If A is atomic then dF(f)()\) is the von Neumann dimension of the
eigenspace associated to A.

Definition 1.49. The Fuglede-Kadison determinant of f is defined by:

[e.9]

+

detxea() = e ([ WO aF(O)

if [of In(A)dF(f)(A) > —oo; if not, detyr ) (f) = 0.
When [5¥ In(X) dF(f)(X\) > —oo, we say that f is of determinant class.

Remark 1.50. If GG is finite and f is positive invertible, then finitely generated Hilbert
1
N (G)-modules are finitely dimensional complex vector spaces and (det yry (f )= | det(f)]TeT.

Here are several properties of the determinant we will use in the rest of this paper (see
[Liic02b] for more details and proofs).

Proposition 1.51. (1) dety/(0: U — V) = 1.
(2) For every nonzero complex number X, detyrq)(Mdy) = |A|dimae) ),
(3) For all f,g morphisms of finitely generated Hilbert N'(G)-modules,

det ar(q) <<‘£ 2)) = det (e (f) - det ar () (9)-

(4) Let f: U — V and g: V — W be morphisms of finitely generated Hilbert N'(G)-
modules. Assume that f has dense image and g is injective. Then

det nr(q)(g 0 f) = det nrg)(9) - det ar e (f)-
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(5) Let f1: Uy — Vi, fo: Us — Vo, f3: Uy — Vi be morphisms of finitely generated
Hilbert N'(G)-modules. If f1 has dense image and fo is injective, then

det ar(c) ((J;l ﬁ)) = det n(q)(f1) - det arq)(f2)-

(6) Leti: H— G be an injective group homomorphism. Let M and N be two finitely
generated Hilbert N'(H)-modules and f: M — N be a map of finitely generated Hilbert
N (H)-modules. Then

det nr(q) (ix(f)) = det arcay (f)-
(7) Let f be a morphism of finitely generated Hilbert N'(G)-modules. Then

det x(c)(f) = det x) () = \/det ni) (F*F) = y/det pre (FF7)-

Remark 1.52. If f: U — V is a morphism of finitely generated Hilbert A (G)-modules
that have the same von Neumann dimension, then f is injective if and only if f has dense
image (see [Liic02bl Lemma 1.13]).

Therefore, when dealing with «square» operators, the property «has dense image» can
be replaced by «is injective» in the assumptions of Proposition [1.51] (4) and (5).

Proposition 1.53. Let g € G be of infinite order, let t € C, then Id — tR, is injective
and
det or(q)(Id — tRy) = max(1, [t]).

The proof of this proposition can be found in [LZ06, Proposition 3.2, Remark 3.3].
The value of the determinant can also be computed as a direct consequence of [Liic02b),
Example 3.22].

Remark 1.54. Note that for t > 0 and any integer k, max(1,t*) = 5" max(1, t)*l.
This shall be used often and implicitly in the following proofs.

1.3.3 Combinatorial computations

In this section we follow [Liic02bl, Section 3.7]. We want to give a more combinatorial
approach to von Neumann dimensions and Fuglede-Kadison determinants. In general it is
very hard to compute the spectral density function of some morphism of finitely generated
Hilbert N/ (G)-modules. However in the geometric situation these morphisms are induced
by matrices over the group ring R[G], for which we can compute algorithms to approximate
the L2-invariants.

Let A € M(n,m,C[G]) and R4: £?(G)™ — ¢*(G)™ the induced G-equivariant operator.
Let C > 0 such that C > ||Ral|co, i-e. C is greater than the operator norm of Ry.

The characteristic sequence of the matrix A and the positive real number C satisfying

C > ||Ral|co is the sequencewhere
1 \P
c(A, C)p = trar(a) ((Idgz(G)m - CQRARA) > eR.

Remark that trarq)(32; MiRy,) = 30,21 Ai-

Proposition 1.55. (Combinatorial computations, [Lic02b, Theorem 3.172])
With A, C' as above,
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(1) (c(A,C)p) ey s a monotone decreasing sequence of non-negative real numbers;

(2) We have
dimyy () (Ker(Ra)) = lim (4, O)p;

In particular, Ra is injective if and only if ¢(A,C), v 0.

(3) The operator R4 is of determinant class if and only if the sum of non-negative real

numbers
> 1

> (e(A, C), = dimyyg)(Ker(Ra)))
p=1

converges, and in this case

. 1
det ar(q)(Ra) = Ccr—dimye) (Ker(Ra)) oxpy (—2 Z (C(A, C)p — dimN(G)(Ker(RA))>) .

Each term of the characteristic sequence c¢(A, C), can be computed by an algorithm
as long as the word problem for G has a solution. This provides a way of approximating
dim/(q)(Ker(R4)) and detpr(q)(Ra) numerically.

1.3.4 Elementary operations on L?>-matrices

Similarly as the transvection, dilatation and permutation operators in classical finite-
dimensional linear algebra, B(¢?(G)P) contains interesting particular classes of operators.

Dilatations

T ... 0
Dilatations are diagonal operators, of the form [ : .. : | and they act on the rows

0 ... T,
by left multiplication and on the columns by right multiplication.

The typical example to remember is:

LD
B -

(Here, A, B,C, D, T,T; all lie in B(¢*(Q))).
T ... 0
The operator | @ .. 1 | is injective (resp. invertible) if and only if each T is

0 ... T,
injective (resp. invertible), and by Proposition [1.51] (3), its Fuglede-Kadison determinant

is [T}, detyr)(Th)-
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Permutations

A permutation operator in B(¢%(G)P) is simply Ry, where o € S, is a permutation on p
elements and is the associated matrix in M, (C) that permutes the coordinates of CP
by o. A permutation operator contains thus exactly one coefficient Idy2(g) by row and by
column, and zeroes everywhere else.
al ag(l)
Since My, - | : | = : and (a1 ap> - M, = (aa_l(l) ag_l(p)), then
ap Ao (p)
for T € B((?(G)P), Ryr, o T is T with its rows permuted by o and T o Ry, is T with its
columns permuted by o~ 1.
The operator Ry, is always unitary, since Ry, = Ry |, = R]T/llo, therefore Ry, is
always invertible and detr(g)(Ry,) = 1 by Proposition (7).

Transvections

A transvection operator T € B({?(G)P), as a p — p-matrix over B(£?(G)), has diagonal
coefficients equal to Id and zeroes everywhere else except maybe at a single coefficient
(i,4),i # j, where the coefficient in question is an operator S € B(£?(G)).

Every transvection operator is invertible, the inverse operator simply swaps .S for —5,
and the Fuglede-Kadison determinant is always 1 by Proposition m (5).

The typical example to remember is:

Id S\ (A B\ (A+SC B+SD
o 1d)"\c D)~ c D
A B\ (1d S\ (A B+AS
¢ p)-\o 1d) ~\Cc D+cCS)"

1.3.5 [L?-torsion

We follow the notations of [Liic02b] and [DFL14].
A finite Hilbert N'(G)-chain complex Cy is a sequence of morphisms of finitely generated
Hilbert N (G)-modules

On On— 0 0
C,=0-0C, 25 Ch1 253 ... 20,5 0—0

such that 9, o 9p41 = 0 for all p.

The p-th L?-homology of C,, denoted is defined as:
HP(C,) = Ker(dy) /Tm(p41)
is a finitely generated Hilbert A'(G)-module. Its von Neumann dimension

b2 (C,) = dimp ) (HP (CL))
is called the p-th Betti number of C, and is denoted S C,

We say that C, is weakly acyclic if its L?-homology is trivial, i.e. if all its L?-Betti
numbers vanish. We say that C. is of determinant class if all the operators 9, are of
determinant class.
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Proposition 1.56. Let i: H — G be an injective group homomorphism and C a finite
Hilbert N'(H)-chain complex. Thenli.(C.)| is a finite Hilbert N'(G)-chain complex and for
allpe?Z

HP (i,(Cy) = i (HP(CL))

b2 (i.(Cy)) = b (Cy).

p

Definition 1.57. Let C, be a finite Hilbert N (G)-chain complex as above. If C, is weakly
acyclic and of determinant class, define its L?-torsion by

T(2)(C*) = H detN(G) (81)(_1)1 S R>0.
=1

Note that in [Liic02D, Definition 3.29] weak acyclicity is not assumed, it is in fact not
necessary to define However we will often require the weak acyclicity assumption
in the various formulas of this manuscript, that is why we chose to assume it in the
definition.

_ detyrg)(02)

det () (O1)
defined to be zero if 9; is of determinant class but 05 is not. This is why the L?-Alexander
invariant of knots defined in Section [2.2.1] can theoretically be zero for some knots K and
some values t, since we do not need to assume that the operators are of determinant class.

Finally let us point out that we could define T2 (C4) = 0 when C. is either not weakly
acyclic or not of determinant class, as done in [DFL14]. We will not use this convention in
this manuscript, because even if it allows us to state the results more simply, we prefer to
keep track of the precise cases where weak acyclicity or determinant class are important
properties.

The following proposition will be useful for computations of L?-torsions. Compare
with [DFL14, Lemma 3.1].

Besides, when C, is simply 2-dimensional, T® (Cy) can be naturally

Proposition 1.58. Let
C, =0 — (G 2 (G 2 2(G) - 0

be a 2-dimensional finite Hilbert N'(G)-chain complex and let J C {1,...,k+1} be a subset
of {1,....k+1} of sizel.

Fori = 1,2, 0; is naturally written as a matriz with coefficients operators in B(£*(Q)).
We denote 01(J): 2(G)! — ¢2(G)! the operator composed of the columns of 9 indexed by
J, and O2(J): L2(G)F — £2(G)* the operator obtained from Oy by deleting the rows indexed
by J.

If 02(J) and O1(J) are injective and of determinant class, then C, is weakly acyclic
and of determinant class, and

TO(C,) = dety(c)(92) _ dety(g)(92())
T detn(y (1) detye) (01(J))

/
Proof. Let us first assume that J = {1,...,l}. Then 0, = <g>, H(J) =B, 01 = <j44/>7

0y = A, where A and B are square matrices.
Let
A, =0 2G) L 26)
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and
B, = (G)F L 2(G)F =0

be two 2-dimensional finite Hilbert N'(G)-chain complexes.
Then there exists an exact sequence of finite Hilbert N (G)-chain complexes

0 A, 2 C. B, >0

(meaning that 0 — Ap N Cp BN B, — 0 is exact at each p and that ¢, and ¢, commute
with the boundary operators) detailed below:

We assume A and B are injective. The square operator A is injective, thus A has dense
!/

B) is injective too.

image and (A A’ ) has dense image too. Since B is injective, (

This implies that the long exact homology sequence

LHS, = LHS,(A.,C,,B,)

(LHS,(As,Cx,By)|is defined in [Liic02b, Theorem 1.21]) is a sequence where all the finitely

generated Hilbert A (G)-modules are equal to zero, except maybe H 1(2) (Cy); however, since
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the sequence is exact, H 1(2)(0*) is zero as well and C, is weakly acyclic. Hence LHS, is

trivial, of determinant class and of L2-torsion equal to 1.

We assume that A and B are of determinant class, thus A,, B, and LH S, are of deter-
minant class. Therefore, by the multiplicativity of the L?-torsion (see [Liic02b, Theorem
3.35 (1)]), Cy is of determinant class and

T(2)(C*) . T(Z)(A*,C*,B*) — T(2)(A*) . T(2)(B*)

where

_1)p
T®(A,,C,,B,) = ﬁ (dﬁN(G)(w)( 1)
’ ’ p=0 detN(G)(Qp)

is the L2-torsion of the short exact sequence (I (A,,C.,B,)|is defined in [Liic02b), (3.34)]),
well defined and equal to 1 since all the ¢, and ¢, are of determinant 1.

det B
Hence T?)(C,) = M.
detN’(G)(A)
If J is a more general subset of {1,... &k + [}, the situation is almost identical, the

operators are simply multiplied by appropriate permutation matrices, which does not
change their injectivity, the fact that they are of determinant class and the values of their
Fuglede-Kadison determinants. Hence the formula is proven.

O






Chapter 2

The L?-Alexander torsion detects
the trivial knot

In this chapter we define the central object of this manuscript, the L2-Alexander torsion
T® (M, ¢,) associated to a 3-manifold M with boundary and two group homomorphisms
#,v. One can see the L?-Alexander torsion as a infinite-dimensional version of the twisted
Alexander invariants. This is the object of the first section.

In the second section we give two equivalent definitions of the L?-Alexander invari-
ant for knots of [LZ06]. The first definition comes from Fox’s free differential calculus
on the knot group, and the second is built from the L?-Alexander torsion of the knot
exterior associated to the abelianization. One can see the L?-Alexander invariant Ag) as
a convenient way of computing the L?-Alexander torsion T (2)(M K, QK id).

In the third section we state several properties of the L?-Alexander invariant that help
us eventually prove the main result of this chapter in the fourth section, i.e. the fact that
the L?-Alexander invariant detects the trivial knot. This result was first announced in
[BAT3]. In the fifth section, we use similar tools to prove that the L2-Alexander invariant
detects the trefoil knot.

In the last section we extend the notations and some useful properties from knots to
links .

2.1 The L2-Alexander torsion

2.1.1 The L?*-Alexander torsion of a CW-complex

We follow the definitions and notations of [DFL14].

Let m be a group, ¢: m — Z a homomorphism, and ~: 7 — G an homomorphism. We
say that forms an admissible triple if ¢: m — Z factors through ~ (i.e. there is a
group homomorphism ¢ : G — Z such that ¢ = ¢ o).

s 7 G
Ny
7

Let X be a CW-complex, then we say that (X, ¢: m1(X) — Z,v: m(X) — G) forms
an admissible triple if (m1(X), ¢,~) forms one.
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Let |(X,0,7)| be an admissible triple, 7 = 71 (X) and ¢t > 0. We define a ring homomor-
phism
Zml  — R[G]
K(m,@,7,t): . r .
(m,6,7,1) ( J=1Mmigp X mt?93)y(g;)

and we also denote its induction over the M, 4(Z[r]).

Assume X is compact. The cellular chain complex of X

C.(X,Z) = < —>@Z & —. )

is a chain complex of (left) Z[n]-modules and contains all the topological information on
how the cells are glued with one another. Here the [ are lifts of the cells eF of X. The
group 7 acts on the right on £2(G) by g Ry (r,¢.7,)(g)> a0 action which induces a structure
of right Z[r]-module on ¢*(G).

Let

CP (X, 6,7,1) = £3(G) Op(rpya) Co(X, Z)
= ( .= @ (gz(G) ®I€(7T,¢,’y,t) Z[W]gf) — .. )

denote the finite Hilbert A/(G)-chain complex obtained by tensor product; we will call

C(X,p7.)| a N (G)-cellular chain complex of X.

We will denote the modules (2(G) @y (x p.4.4) Z[7|€ as [(*(G)é| to simplify notations, the
implicit isometric isomorphism of finitely generated N (G)-Hilbert modules being

O (G) ®p(mpry) LIT]E — £2(G)

s s
Z a; @ (wie (Z R (m,,7,¢) (w;) )) ® €<+ Z Rm(md)mt)(wi) (az)
i=1

=1

(where w; € Z[x], a; € (*(Q)).
The boundary operators are as follows: if € is a k-cell of X and if

.
7@ => w-&
Jj=1

(where w; € Z[r] is a word that can be trivial), then for a € £*(G),

0 (a©?) =a® (95(2)

T
=a® (Z wy - g;?_l)
j=1

r s
=Y Re(rpmtwy (@) @
=1

By pyy,0) (wi)
This is why we can naturally write 8,(62) 2y 2(Ge — EB’]"-:IEZ(G)%?*1 as :

By py,0) (wr)
and the whole 819) as the concatenation of those columns.
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We denote the N(G)-cellular chain complex of X associated to the admissible triple
(m,¢,7) and the parameter ¢ > 0 in the following way:

C*(<2) (X7 d)a 7> t) = EQ(G) ®n(7r,¢,'y,t) C* (Xa Z)
o) o
= ( =5 P eEG)E - ) .
Definition 2.1. If Cg) (X, ¢,7,t) is weakly acyclic and of determinant class, then we call
TO(X, ¢,9)(t) =T (C (X, 6,7.1))

the L2-Alezander torsion of (X, ¢,7) at t > 0.

As for the classical twisted Alexander invariants, we try to numerically extract some
of the topological information of X contained in 7 = 71(X) and in C«(X,Z), by twisting
C.(X,Z) by an infinite-dimensional representation of m on 2(G).

We want to study the map ¢ T X,p,7)(t) defined on a subset of R+, the set

of the ¢ such that CLEQ) (X, ¢,7,1) is weakly acyclic and of determinant class.

We have to check that this map is well defined. Actually, it depends on the CW-
structure of X in the following way: we implicitly chose an ordering and an orientation
of the cells of X, and then a particular lift in X for each cell; this endowed @; (2(G)é¥
with a basis as a free left //(G)-module and a natural isometric isomorphism with a power
of (2(G) (defined above). Let us see how other choices would impact the value of the
L?-Alexander torsion.

2)

e Reversing the orientation of a cell 5;“ would multiply the i-th row of 8,(€ /1 and the i-th
(2)

column of 9, by —1, which is a multiplication with a dilatation operator, invertible
of determinant 1, which does not change T3 (X, ¢, v, 1).

e Changing the ordering of the cells &F would similarly multiply the operators 3&3}1
and 8,(62) by permutation operators, which does not change 7@ (X, 0,7,1).

e However, changing a lift €F by ¢g-é¥, g € m, would multiply the operators 8,(321 and

8,22) by dilatation operators, the i-th diagonal term being t¢(9)R,y(g), which multiplies
TO (X, ¢,v,t) by a term t", m € Z.

Hence the equivalence class of (t — T3 (X, $,~,t)) up to multiplication by the (¢ —
t"), m € Z, is a well-defined invariant of (X, ¢,7). For two maps f,g: Rsg — Rsq, we
write

f=g < ImeZVt>0,f[f(t)=t"g(t)

and extend immediately this notation [=] to maps defined only on a subset D of Rxy.
For X a CW-complex, its L?-torsion is defined as
T (X) := TP (X,0,id)(1)

when Cg) (X,0,id,1) is weakly acyclic and of determinant class. We refer to [LiicO2b,
Section 3.4] for details.
We call
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the p-th L?-Betti number of X (see [Liic02bl, Definition 1.30]).

The L?-Betti numbers of a CW-complex with infinite fundamental group have
very little relation with the classical Betti numbers, except for the following formula:

Proposition 2.2. [Luc02b, Theorem 1.35 (2)] Let X be a finite CW-complex. We have

Remark 2.3. Since we need C£2) (X, ¢,7,t) to be weakly acyclic to compute the L2-
Alexander torsion of (X, ¢,7), it is necessary that x(X) = 0. Indeed, if x(X) # 0,
then the von Neumann dimensions of the modules CI(,Z) (X,0,7,t), i.e. the number of
cells of X of each dimension, do not give a zero alternating sum (by Proposition ,
thus C’g) (X, ¢,7,t) cannot possibly be weakly acyclic. Like Reidemeister torsion, the L2-
Alexander torsion is an invariant we turn to only when the Euler characteristic vanishes,
and more precisely when all L2-Betti numbers (of c? (X, ¢,7,t)) vanish.

Compact connected orientable closed 3-manifolds have zero Euler characteristic by
Poincaré duality. If there is boundary, it needs to have zero total Euler characteristic,
like a finite union of tori. This is the case we consider in this manuscript: we study L?*-
Alexander torsions for 3-manifolds M only when M is closed or compact with toroidal
boundary.

The following astonishing theorem of W. Liick and T. Schick (see [LS99]) states that
the L2-torsion of a 3-manifold gives precisely the simplicial volume of this manifold.

Theorem 2.4 ([Liic02b], Theorem 4.3). Let M be a compact connected orientable prime
3-manifold with infinite fundamental group and empty or incompressible toroidal boundary.

According to the JSJ-decomposition, M splits along disjoint incompressible tori into
pieces that are Seifert manifolds or hyperbolic manifolds. The hyperbolic pieces M1, ..., My
have all finite hyperbolic volume.

Then CiQ)(M,O,id, 1) is weakly acyclic and of determinant class, and

where vol is the simplicial volume.

2.1.2 Basic properties of the L?-Alexander torsion

We review several basic properties of the L2-Alexander torsion. The first one is an appli-
cation of induction formulas of Proposition [1.45

Proposition 2.5. |[DFL1j, Lemma 5.1] Let X be a compact CW-complez, 1 = m(X),
¢o:m— 7L, v: ™ — G group homomorphisms and v: G — H an injective group homomor-
phism such that (X, ¢,107) is an admissible triple. Let t > 0.

Then C>£2) (X, ¢,7,t) is weakly acyclic and of determinant class if and only if
CLQ) (X, ¢, 0,t) is weakly acyclic and of determinant class, and in this case

TO(X, ¢,009)(t) = TH(X, ¢,7)(t).
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Proof. Assume that (X, ¢, 1 0+) is an admissible triple, and let ¢ > 0.
By the definitions of the previous section, let

CI(X,Z) = ... — &Zr)e" 25 0,2t = ...

)

denote the cellular chain complex of X. Consider

Co= CP(X,6,7,1) = ... = &il2(Q)E 25 a,2(@)E - ...
and .
D, = CO(X,6,007,8) = ... - &i2(H)E T @, (H)E - .

where Sk = Rﬁ(”@»'ﬁt)(agk) and Tk = R,{(ﬂ.’(b’w%t)(

8§,k)'

Let ¢: C[G] — C[H] also denote the induction of ¢ to group algebras. Then

(T, ¢ 007, t) = Lo r(m, ¢, 7,1)

and thus T, = 1.(Sy) for all k, by Proposition Hence D, = 1,(C), and by Proposition
O, and D, have the same Betti numbers. Therefore C, is weakly acyclic if and only
if D, is weakly acyclic.
Finally, by Proposition M(G), Cy is of determinant class if and only if D, is of
determinant class, and in this case they have same L?-torsion. The proposition follows.
O

Remark 2.6. By Proposition [2.5] we can always assume that ~ is surjective, by consid-
ering ¢: y(m) — G.

The admissible homomorphisms ~ will be exactly the quotients of m between 7 itself
and the one induced by ¢, the maximal one.

The following result follows immediately from the definitions.

Proposition 2.7. [DFL1j, Lemma 5.2] Let X be a compact CW-complez, 1 = m(X),
¢:m = L, v: m — G group homomorphisms such that (X, ¢,v) is an admissible triple.

Lett > 0 and r € Z. Then Ciz) (X, ro,v,t) is weakly acyclic and of determinant class if
and only if C>£2) (X, ¢,7,t) is weakly acyclic and of determinant class, and in this case

7@ (X,ro,7)(t) = T (X, ¢, 7)(t").

The following proposition states that the L2-Alexander torsion is symmetric as a map
on R+q.

Proposition 2.8. [DFL1j, Theorem 5.4] Let (N, ®,~y) be an admissible triple and let T
be a representative of (t — TP (N, ¢,~)(t)). Then there exists an integer n such that
n = xn(¢) mod 2 and such that for all t > 0,

T(t7h) = "7 (1).

Finally we explain why taking ¢ € C* offers exactly the same information as taking
t>0:

Proposition 2.9. Let (m,¢,v: 7 — G) be an admissible triple, A € M(m,n,R[n]) a
matriz, t > 0 and 0 € R. Let Ry denote the G-equivariant operator

Ro = Ry pryievy(ay: P(G)™ = £2(G)"
and let C > |Ryl|so. Then



58 CHAPTER 2. THE L2-ALEXANDER TORSION DETECTS THE TRIVIAL KNOT

the characteristic sequence (c(Rp, C)p) e

the dimension of the kernel dim(q)(Ker(Ry)),

the dimension of the closure of the image dimyyc)(Im(Ry)),

the fact that Ry is of determinant class or not,
e the determinant detyr()(Rg) if Rg is of determinant class,
do not depend on 6.

Proof. Let us first prove that (c(Rg,C)p),cy does not depend on 6. Let p € N. Let Ag C

N (G) denote the real vector space generated by the family of operators ew‘f’(g)Rv(g) ,g €.
By definition of k(, ¢, 7, te?), all nm coefficients of Ry are in Ag. Since

i * 00 P R 0 -t
(e 0¢(9)R7(9)) — e G(j)(g)Rfy(g) — e 9¢(9)R7(g_1) — ¢i09(9 )R’y(g—l),

Ay is stable by . Moreover Ay is stable by composition, since ¢ is a group homomorphism.
Therefore the operator

1

S - (Ide(G)m 02

P
R§R9>
is in Ay, thus S is of the form

i00(g;
S = Z/\je d)(g’)R»y(gj),
J

where \; € R; hence

v(g5)=1 (g;)=1

since v(gj) = 1 implies ¢(g;) = 0. Consequently ¢(Ry, C'), does not depend on 6.

The characteristic sequence (c(Rg, C)p),cy converges to the dimension of the kernel
dim () (Ker(Rg)) by Proposition (2), thus this dimension does not depend on 6.

Since dimyr()(Im(Rg)) = m — dim ) (Ker(Rpg)) (see [Lilc02b, Theorem 1.12 (2)]),
the dimension of the closure of the image of Ry does not depend on 6.

Finally, by Proposition m (3), whether Ry is of determinant class or not and the
value of its Fuglede-Kadison determinant depend only on C, on (c(Ry, C)P)peN and on
dim () (Ker(Ryp)), thus do not depend on 6.

[

As a consequence we prove that the L?-Alexander torsions are rigid regarding the
unitary part of the parameter ¢t. This result was proven in [LZ06, Section 6] for the
L?-Alexander invariant on the unit circle.

Corollary 2.10. Let X be a compact CW-complex, 7 = m(X), ¢: 1 = Z, v:1m = G
group homomorphisms such that (X, ®,7y) is an admissible triple. Let t € C*. Then

C>£2) (X, ¢,7,t) is weakly acyclic and of determinant class if and only if C’iQ)(X, b,7,|t]) is
weakly acyclic and of determinant class, and in this case

T(X, $,7)(t) = T(X, 6,7)(|t])-
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Proof. Let
- 9~
CO(X,2)=... » eZret 25 o,z - ...

denote the cellular chain complex of X. Consider the corresponding N (G)-cellular chain
complexes:

C.=CP(X,0,7.t) = ... > &G 5 @A@Y — ..
and .

D. = COX, 6,7, [t) = ... —» @G 1 @, (@)t — ..
where S, = R and T, = R

w(root) (0%, w(romtt) (05, )

We apply Proposition here, A = 8)?’]6 and e = |i| As a consequence, the pairs
(Ker(Sy), Ker(Ty)), (Im(Sk),Im(T})) are both pairs of finitely generated Hilbert N(G)-
modules of same dimension. Consequently, the L2-Betti numbers of C, and D, are the
same, and C, and D, are either both weakly acyclic or both not weakly acyclic. Likewise,
for each k, Sy and T}, are of determinant class at the same time and have the same Fuglede-
Kadison determinant, therefore Ciz) (X, ¢,7,t) is weakly acyclic and of determinant class

if and only if C£2) (X, ¢,7, |t]) is weakly acyclic and of determinant class, and in this case

TA(X,¢,7)(t) = TP (X, ¢, 7)([t]).

2.1.3 Computing L?-Alexander torsion with group presentations

Let M be a connected compact orientable irreducible 3-manifold with boundary OM a
non-empty finite union of tori, and infinite fundamental group m1(M). The typical
example of such an M is a (non-split) link exterior.

We will explain how we can compute L>-torsions of M using deficiency one group
presentations of Gys. Notably we will prove that L?-Alexander torsions are invariants
under simple homotopy in Theorem [2.12

2-CW-complexes and asphericity

Recall that a CW-complex Y is aspherical if all its homotopy groups m; vanish for ¢ > 2.
By considering L?-Betti numbers, we prove that any M as above is aspherical.

The manifold M admits a triangulation (by works of Bing and Moise, see for example
[Moi52]), and this triangulation defines a finite CW-structure on M. Now for any 3-
simplex ¢ having one of its four faces f in the boundary 0M, we elementary retract M
by taking out the 2-cell f and the 3-cell Int(c), the interior of ¢; we obtain an elementary
retract of M with one less 3-cell. We can continue this process of «pushing the boundary
inside» and finally we obtain a 2-CW complex W which is homotopically equivalent to
M. Thus (W) = w1 (M) = G-

The 3-manifold M has toroidal boundary, therefore x(AM) = 0 (as a consequence of
Poincaré duality and the fact that a solid torus has zero Euler characteristic). Each step
of the process does not change the Euler characteristic (since we take out one 2-cell and
one 3-cell), therefore x (W) = 0. Similarly, since M is connected, W is connected as well.

The first L?-Betti number of a finite CW-complex depends only of its fundamental

group (see [Hil02, Section 2.2]), therefore 6%2)(W) = 652)(6’]\4) = §2) (M). Besides, since
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M is prime with toroidal boundary and infinite fundamental group, ﬁ?) (M) = 0 by

[Liic02b, Theorem 4.1]. Therefore ﬁ@(W) =0.
By [Hil02, Theorem 2.4], since W is a connected 2-CW complex with

X(W) =0 = =82 (m (W),

we conclude that W is aspherical.
Since M is homotopically equivalent to W, M is aspherical as well.

The 2-CW-complex constructed from a group presentation

Definition 2.11. If P = (g1, ..., gk|r1,... ) is a presentation of a group G, we can build
a 2-dimensional CW-complex having;:

e one (O-cell eg.
o k 1-cells v1,...,7 with boundary sent to e (k circles passing by eg so to speak).

e [ 2-cells p1,...,p; with the boundary of p; sent to 7;, * ..., (note that we can
see the cells 7; as loops of base point eg) if r; is written g;, ... gi,,.

It follows from the Seifert-van Kampen theorem that 71 (Wp) is isomorphic to G.

Now, let P = (g1,...,9k|r1,...7k—1) be a deficiency one group presentation of Gjy.
Then 71 (Wp) = G and by construction x(Wp) = 0.

Since Wp is a connected 2-CW complex satisfying x(Wp) =0 = —5%2) (m (Wp)), Wp
is aspherical by [Hil02, Theorem 2.4].

Eilenberg MacLane spaces and homotopy equivalence

The CW-complexes M and Wp are aspherical and have the same fundamental group Gy,
therefore they are Eilenberg-MacLane spaces K (G, 1) (see [Hat02l Section 4.2] for more
details on the , thus they are homotopically equivalent by [Hat02, Proposition
4.30].

We have proven that any connected compact prime orientable 3-manifold M with non-
empty toroidal boundary and infinite fundamental group G is homotopically equivalent
to any 2-dimensional CW-complex Wp constructed from a deficiency one group presenta-
tion P of Gy.

Whitehead group and simple homotopy equivalence

An homotopy equivalence f: X — Y between two CW-complexes is called simple if it can
be decomposed into a finite sequence of elementary expansions and elementary collapses.
In this case we say that X and Y are simple homotopy equivalent. We refer to [TurOL,
Section 8] and [Coh73, Section 4] for the details, and we will give a description of these
elementary operations in the proof of Theorem [2.12

Note that by construction the two CW-complexes M and W of the previous sections
are simple homotopy equivalent. A sufficient condition for M and Wp (the 2-CW-complex
constructed from the presentation P) to be simple homotopy equivalent is if G has trivial
Whitehead group, according to [Coh73, (22.2)]. One can read |Coh73| for a detailed
definition of the Whitehead group of a group and the Whitehead torsion of a homotopy
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equivalence, but we will only need to consider the following cases when the Whitehead
group vanish:

By [Wal73], if M is the exterior of a link in S3, then the Whitehead group of Gy
vanishes, and thus M and Wp are simple homotopy equivalent.

More generally, by [AFW12, (D.9)]:

e if M is a non-spherical compact orientable irreducible 3-manifold, then the White-
head group of 71 (M) vanishes.

e if M is a 3-manifold such that 71 (M) is torsion-free, then the Whitehead group of
m1 (M) vanishes.

In particular, if M is irreducible and 71 (M) is infinite, then 71 (M) is torsion-free (see
[AFW12) (C.2)]) and thus the Whitehead group of 1 (M) vanishes.

Consequences on L?-Alexander torsions

The following theorem states that the L?-Alexander torsions are invariant by simple homo-
topy equivalence (compare with [Tur0O1, Corollary 9.2] and [Liic02b, Theorem 3.96 (1)]).

Theorem 2.12. Let f: X — Y be a simple homotopy equivalence between two finite CW-
complezxes inducing the group isomorphism f.: m(X) — m1(Y). The triple (Y, $,7) is an
admissible triple if and only if (X, ¢ o fe,v o f) is one, the N(G)-cellular chain complex
c? (X, dofr,yofx,t) is weakly acyclic and of determinant class if and only z'fC,,(P) (Y, p,7,t)
is, and in this case one has

T(X, po fu,y0 f)(t) = TO(Y,6,7) ().

Proof. Since any simple homotopy is a finite composition of elementary collapses or ele-
mentary expansions, we can prove Theorem [2.12] in the case when f =1: X < Y is an
elementary expansion (therefore an inclusion that maps every k-cell to a k-cell).

The CW-complex Y is obtained from X by adjoining a (k — 1)-cell ¢#~! and then
adjoining a k-cell e* such that the boundary of e* is the union of the closures of e*~! and
of some other (k — 1)-cells of X. As in Section the cellular chain complexes of the
universal coverings X and Y are parts of the following commutative diagram:
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Crr1(X) ! Crr1(Y) ’ 0
a}?,kﬂ (I(a)%k“)) 0
I
R (Q ) (0 0 Id)
Cr(X) Cu(Y) Zlrye"
(50 <*>
I
~ (Q (0 0 Id)
Cr—1(X) Cr—1(Y) Zlmy)er!
0% -1 (103,1) *) 0
Cro(X) — s o o(7) 0 0

where &* and é*~! are lifts of e¥ and e* 1 in Y and h € Ty is such that h-e*~1 is part
of the boundary of &*.

Observe that the N (G)-cellular chain complexes C@ (X,00 fe,70 fs,t) and
CZ,EQ)(Y, ®,7,t) are part of the exact sequence

0= CP(X,po fovofui,t) S CP Y, ¢,7,8) 5 Dy — 0
where D, is the L? cellular chain complex which reduces to

S 1O Ry ()

.= 0= 2(G) 3G 50—

at dimensions k and k — 1. Indeed, this sequence is of the form:
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Id 0
C,gi)l(X7¢0f*7'7°f*at) C]gi)l(}/;qs?f%t) 0
A
4 (o) :
Id
(0 0 Id)
2 2 ~
CO(X, ¢ furyo furt) CAY, 6,7, 1) 2(G)e
B *
B (0 tqg(h)R’y(h)) t‘b(h)R,y(h)
Id
, ) (o 0 Id)
CP (X, ¢0 furyo furt) P (Y, 6,7, 1) (G
C (C *) 0
Id 0
CPY (X, 0 furyo furt) (Y, 6,7, 1) 0

determinant class.

acyclic and therefore two of the three

CA (X, po foyo furt), CP (Y, 6,7,1), D.

Exactness and commutativity are immediate consequences of the ones of (x).
Assume that either C{? (X,¢p0 fe,70 fu,t) Or CLEQ)(Y, ®,7,t) is weakly acyclic and of

The finite Hilbert N'(G)-chain complex D, is composed of a single operator t‘ﬂh)Rv(h),
which is invertible with Fuglede-Kadison determinant equal to [t|?®) thus D, is weakly

are weakly acyclic; as a consequence the three are and the long exact homology sequence

LHS, = LHS.(CP (X, ¢ 0 fu,v0 fur t), CP(Y, 6,7, 1), D)

is trivial.
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The chain complex LH S, is of determinant class, and since D, is too, three of the four
chain complexes

CA(X, b0 fuyo furt), CPY,6,7,1), Do, LHS,

are of determinant class, therefore, according to [Liic02b, Theorem 3.35 (1)] all four are
and one has:

TO(X,¢o fuyo fu)(t) - TP (D) = TP (Y, $,7)(t) - T

where T = T(2) (C}EZ)(X7 G0 fi,y0 furt), CZEZ)(Y, ,7,1), D*) =1 (since all the horizontal
maps have determinant 1).
The formula follows from the fact that T2 (D, (¢,7,t))) = [t|F?("). O

Let N be a compact smooth 3-manifold. It follows from theorems due to Chapman
and Cohen (see [Cha74], [Coh73]) that any two CW-structures on N are simple homotopy
equivalent. Therefore, for any admissible triple (m1(NV), ¢, ), T (N, ¢,7) is a well defined
invariant of the manifold N up to homeomorphism.

Conclusion

Let M be a connected orientable compact smooth 3-manifold of fundamental group
Gy = m(M). Let ¢: Gy — Z and v: Gy — G be group homomorphisms such that
(G, @, y) forms an admissible triple. Let ¢ > 0. Then both the fact that Cg) (M, p,v)(t)
is weakly acyclic and of determinant class and the value of T2 (M, ¢, v)(t) in this case do
not depend on the CW-structure chosen on M.

If one of the following conditions is satisfied:

e M is a sub-manifold of S? (for instance M is the exterior of a link L in S3),
e M is non-spherical and irreducible,

e Gy is torsion-free (for instance M is irreducible and Gy is infinite),

then the Whitehead group of G = (M) vanishes.

Assume that Gjps has trivial Whitehead group and also that M is irreducible and
OM is a non-empty finite union of tori. Then for all group presentations P of Gj; with
deficiency one, both the fact that CZEZ) (X, ¢,7)(t) is weakly acyclic and of determinant
class and the value of T(® (X, ¢,~)(t) are the same for X = M and for X = Wp the
2-dimensional CW-complex constructed from P (see Definition [2.11]).

2.1.4 Weak acyclicity and determinant class

To compute L2-Alexander torsions, we need to assume technical conditions on the N (G)-
cellular chain complexes: weak acyclicity and determinant class. These technical condi-
tions are often hard to check. Fortunately, there are particular cases where these technical
conditions are satisfied; this is the object of the following section.
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Determinant class

Let M be a connected orientable compact smooth 3-manifold of fundamental group
Gy = m(M). Let ¢: Gyy — Z and v: Gpy — G be group homomorphisms such that
(G, @, 7y) forms an admissible triple. Let ¢ > 0. Then Gy is in the class G of sofic groups,
referenced in [DFL14] Section 2.6].

The following result was proven by G. Elek E. Szabé in [ES05].

Proposition 2.13. ([ES05]) If G is a sofic group (for instance if G is the fundamental
group of a compact 3-manifold) then the following hold.

1. The operator R4 € B(£%(G)") is of determinant class for all matrices A € M,(Q[G]).

2. The operator Ry € B(£*(G)") is of Fuglede-Kadison determinant
det n(q)(Ra) =1
for all matrices A € M, (Z[G]).

3. The operator R4 € B(£*(G)") is of Fuglede-Kadison determinant
det @y (Ra) =1
for all matrices A € GL,(Z[G]) that are invertible over Z[G].

Remark 2.14. Let M denote a compact 3-manifold and (M, ¢,v: 71 (M) — G) an admis-

sible triple such that G is sofic. It follows from Proposition ml) that C£2)(M 0, 7) (1)
is of determinant class for all t € Q<.

Weak acyclicity

By Proposition [[.58] assuming we have determinant class, weak acyclicity of a 2-
dimensional finite Hilbert N/(G)-chain complex follows from the injectivity of two operators
of the form R4, A € Mi(R[G]), k € N*.

Injectivity of such operators can be related to the strong Atiyah conjecture, see [Liic02bl,
Section 10]:

Definition 2.15. Given a group G, let [FIN(G)| be the set of finite subgroups of G.

Denote by ﬁ(c)z the additive subgroup of R generated by the set of rational numbers

{ﬁ\H € FIN(G)}. Let [K| be a subfield of C. A group G satisfies the strong Atiyah
conjecture for K if for any matrix A € M (m,n,KG) the von Neumann dimension of the
kernel of the induced operator R4 satisfies dim ;) Ker(Ra) € ﬁ(g)l.

In particular, if G is torsion-free (for example if G is a link group) then FIN(G) contains
only the trivial subgroup, thus ﬁ(G)Z is simply Z.

If GG is torsion-free and satisfies the strong Atiyah conjecture for K, then for all w € KG,
the von Neumann dimension of R,: ¢*(G) — (*(G) is an integer, thus is zero or one,
therefore

Ry, is injective <= Ry, # 0 <= w # 0.

The following proposition follows from [Liic02a, Lemma 2.2] and the computation of
the L2-Betti numbers of 3-manifolds in [Liic02b, Theorem 4.1].
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Proposition 2.16. ([Lic02d, Lemma 2.2/, [Lic02Y, Theorem 4.1])

Let G be a finitely presented torsion-free infinite group, such that for every CW-complex
X of fundamental group m (X) = G, the L?-Betti numbers b}(,Q) (X) of X are all integers.
Then G satisfies the strong Atiyah conjecture for Q.

Suppose that M is the connected sum of compact connected orientable prime 3-manifolds
all of which having infinite fundamental group. If G = 71 (M) is infinite and torsion-free,
then G satisfies the strong Atiyah conjecture for Q.

Finally, the following proposition establishes that a certain class of groups satisfies the
strong Atiyah conjecture for C.

Proposition 2.17. ([Lin93, Theorem 1.5], [Sch0d, Theorem 1.9])

Let C be the smallest class of groups which contains all free groups and is closed under
directed union and extensions with virtually abelian quotients.

If G € C is torsion-free, then G satisfies the strong Atiyah conjecture for C.

Let K be a fibered knot and let S denote its associated fiber surface (see Section
and [BZH14, Chapter 5] for details). The group Gg of K is a semi-direct product of
the infinite cyclic group Z by the free group m1(F) = G', thus Gk is an extension of
a free group with a virtually abelian quotient, therefore G satisfies the strong Atiyah
conjecture for C.

2.2 Definition and invariance

We now review two definitions of the L2-Alexander invariant of a knot, introduced in

[LZ06].

2.2.1 Definition from Fox calculus

Let K be a knot in S%, G its group, and P = {(gi,..., gk |r1,...7—1) a Wirtinger
presentation of Gx. Let ax: Gx — Z, g; — 1 denote the abelianization of G .
For t € C*, we define the algebra homomorphism:

C[GK] — (C[GK]
wK,t: Z ng|_> Z Cg.taK(g).g
9€GK 9eG K

and we also call its induction to any matrix ring with coefficients in C[Gk]. Think
of it as a way of «tensoring by the abelianization representationy.

Let P be any presentation of Gx with deficiency one, not necessarily Wirtinger; we
say that (P,?) has Property T if Ry, (rp,): (G — 2(Gg)*! is injective.

We let denote the set of all ¢ € C* such that (P,¢) has Property Z.

Definition 2.18. Let K be a knot, let P be a Wirtinger presentation of its knot group
Gk, and let t € C*.

If (P,t) has Property Z then the L?-Alezander invariant of K for the presentation P
at t is:

2
A%?P(t) = detN(GK) (R¢K,t(FP,1)) € [0, 00[.

The L?-Alexander invariant of K associated to the presentation P is the map

Ag?P = (t = Ag,)P(ﬂ) € F(Dp;Rxo).
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Remark 2.19. We do not require the operator Ry, (r, ) to be of determinant class in

the definition, thus Ag) pl(t) can theoretically be zero. In practice, in the following of this
thesis, when the number ¢ is such that Ry, ,(ry,) is injective, this operator is often also
of determinant class. In particular, for t € Q<o and k = 2, it follows from Section
that Ry, ,(#p,) is both injective and of determinant class.

Example 2.20. Let us compute the invariant for the trivial knot O.

Figure 2.1 — A diagram for the unknot

The «doubly twisted rubber band» knot diagram of Figure gives the Wirtinger
presentation P = (g, h|gh™!) of the unknot group G (which is isomorphic to Z), and the
1
—1

Therefore for all ¢ > 0, Ry, (rp,) = —1d: 2(Go) — £*(Go) has Property T and
Ag)P(t) = 1, from Proposition [1.51| (2). Thus, the invariant for the trivial knot is the
constant map equal to 1.

associated Fox matrix is Fp =

Proposition 2.21. Let K be a knot in S3. Let P and Q be two Wirtinger presentations
of the knot group Gg. Then Dp = Dg and there exists an integer m € 7Z such that

A%,)Q(t) = A%,)p(t) < [t|™ for all t in Dp.

The proof of this proposition is somewhat technical. It is based on a study of Tietze
transformations between Wirtinger presentations and of how the respective associated
operators are consequently modified by these transformations. We include the following
detailed proof for the sake of completeness (compare with [Wad94l, Section 5] and [LZ06),
Proposition 3.4)).

Proof. Let P and @ be two Wirtinger presentations with deficiency one of the same knot
group Gg. This means that P and @ were constructed respectively from two diagrams
D and D’ of the same knot K. Therefore D’ is obtained from D by a finite sequence
of planar isotopies and Reidemeister moves (see for example [BZHI14, Proposition 1.17]).
As explained in [Wad94, Lemma 6], this means that ) can be obtained from P by a
finite sequence of certain Tietze transformations (and their inverses), called Strong Tietze
moves, which are the following:

e [,. To replace one of the relators r; by its inverse r; !

e I;. To replace one of the relators r; by its conjugate wryw ™! where w is a word in
the generators.

e [.. To replace one of the relators r; by its product r;r;, with a different relator (k # 1)
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e [Iyy. To add a new generator x and a new relator x = w where w is of the form

xjxix-_l or x-_lxi:zj with z; and x; some previous generators.

J J

e [I]. To apply a permutation on the generators.

Note that the transformation 71 simply describes the ambiguity in ordering the genera-
tors during the Wirtinger process. Moreover, we use the transformation /Iy and not the
transformation /7 of [Wad94l, Section 1] because Iy is sufficient to describe the modifica-
tions caused by Reidemeister moves; this helps us ensure the following fact: if a sequence
of such Tietze moves transforms the Wirtinger presentation P into the Wirtinger presen-
tation @, then all intermediate presentations are not necessarily Wirtinger presentations
but they all have the fundamental property that their generators are all conjugates of one
another.

To prove Proposition 2:21] it suffices to prove that if @ is obtained from P by a
single previous transformation, then Dp = Dg and there is an integer m such that

AP (1) = AR (1) - [t for all ¢ in D,

1. If @ is obtained from P by a I, move, for example the j-th relator r is changed to
r~!, then by construction the respective free groups in the generators and quotient
maps are the same (notably Gr(P) = Gr(Q)). Remark that this will also be the
case for moves of type I, I. and I11. Since for any generator x

0 0 0

— (1) = [ —p—1 -

o) = (=1 0)) == 0,

we deduce that ¢k (Fp,1) is simply i (Fp1) with the j-th column multiplied
by —1. Therefore Ry,  (r,.) = Ryy (Fp,) - D where D is the dilatation operator

(defined in Section |1.3.4]) with all diagonal coefficients Id except the j-th which is
—Id. Thus RwK,t(FQ,l) and wa,t(Fm) are both injective for the same values of ¢, i.e.

Dp = Dg, and furthermore A%)Q(t) = A%)P(t) (by Proposition [1.51| (2) and (4)).

2. If @ is obtained from P by a I move, for example the j-th relator r is changed to
wrw™! with w a word in the generators, then since for any generator

we deduce that ¢x(Fp,1) is simply ¥ (Fp1) with the j-th column multiplied
on the left by ¢k (w) = ¢"w where m is an integer. Therefore Ry,  (r,,) =
Ry (Fpy) - D where D is the dilatation operator with all diagonal coefficients Id
except the j-th which is Rym,,. The operator D is invertible and of Fuglede-Kadison
determinant |¢|"*. Therefore ¢ +(Fg,1) and ¢k (Fp1) are both injective for the

same values of t, i.e. Dp = Dg, and furthermore A%Q(t) = A%P(t) - [t|™ (by
Proposition [1.51] (2) and (4)).

3. If @ is obtained from P by a I. move, for example the j-th relator r is changed to
rr’ with v’ the [-th relator, then since for any generator x

., . 0 . . D a
%(”)—%(T%LT%(T)—%(T%L%(T),
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we deduce that ¢ (Fg,1) is simply ¥k (Fp1) where the I-th column was added
to the j-th one. Therefore Ry, (ry.) = Ryy (Fp,) - T where T' is the transvection
operator with only nonzero nondiagonal coefficient is Id at the (I, j) position. Propo-
sition [L.51] (2) and (4) let us conclude that Dp = D¢ (composing by an invertible

transvection operator does not change the injectivity) and that A(I?’)Q (t) = A(I??P(t)
(since a transvection operator has Fuglede-Kadison determinant 1).

. Suppose that @ is obtained from P by a Il move, then write

P={g1,...,9k|m1,...7k—1) and Q = (g1,..., gk, h| 71, ... Tk—1,wh™1) where w is a
word in the g;. Here Gr(P) and Gr(Q) are naturally isomorphic via

Gr(P) = Flgil/(rj) = Flgi, h/{rj) — Flgi, h]/(rj,wh™") = Gr(Q)

(where (r;) is the normal generated subgroup), therefore we dare an abuse of notation
by writing
T Tp—1 whTl
91 *
FQ _ Fp
9k *

h 0 ... 0 -1

where the * are elements of Z[Gk]. Thus R it (Fon

wa,t(Fp,1) is injective, i.e. Dp = Dg. Hence, by Proposition ﬁ (2) and (5),
ARo(t) = AP L(1) for all t € Dp.

) is injective if and only if

. Suppose that @ is obtained from P by a 1] move. A permutation is a finite product

of transpositions, therefore we can assume that the 111 move is a transposition 7.

Let us assume that 7 leaves the first generator fixed. In this case the Fox matrix
Fg,1 is Fp1 with two of its rows swapped, i.e. Fg 1 is equal to Fp; multiplied by
a permutation matrix S. Since the associated operator Ry, ,(s) = Rg is unitary, it

is invertible and has Fuglede-Kadison determinant 1. Thus R is injective
Vit (Fo.1)

if and only if wa,t(FP,l) is injective, i.e. Dp = Dg. Hence, by Proposition W (5),
ARDo(t) = AP (1) for all t € Dp.

Now let us assume that 7 swaps the first and second generators. We denote Fp =
Ly Ly
Ly

L1 or:
and Fp = | . | where L; = ( TJ' ) denotes the i-th row of Flp. Let us

Ly Ly
remind the reader that the generators g; are conjugates of one another, therefore they
have the same image 1 by the abelianization o, which means that ¢x (g — 1) =
tg; — 1 for each i.

The fundamental formula of Fox calculus (see for instance [BZH14, Proposition 9.8])
implies that the following formula stands in C[Gk]:

k

S Li-@-1)=0. (*)

i=1
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Let
Rig,—1 0
Ry
A= tgzs—1 7
0 Rtgkfl
Rtglfl 0
B— Rtgg—l 7
0 Rtgk—l
—Id —-Id ... —Id
Id 0
C =
0 Id

We recognize a transvection matrix in C, which is thus invertible and of determinant
1. Proposition[I.53]tells us that A and B are injective and that their Fuglede-Kadison
determinant is max(1, [t])*~1.

Formula () implies the following equality for operators in B(¢£2(Gx)*1)

Ry (L1(91-1) = Byre i (La(gs—1) = -+ = By (Li(gr—1))
Rl/JK,t(Ls(QS*l))

CoAo RwK,t(FP,l) =
Rdfk,t(Lk(gk*l))

Ry (La(92-1))

Ry (L3(gs-1) = Bo Ry, .(ry)
: - K,t(Fg,1)°

Ry o (Li(9—1))

Since C; A and B are injective, Ry (Fp,) is injective if and only if Ry (Fo.) 18
injective, i.e. Dp = Dg. Finally, by Proposition (4) and the values of the
determinants of A, B, C, we conclude that A(I??Q(t) = A;?P(t) for all t € Dp.

Any permutation can be decomposed as a finite product of transpositions swapping

the first and second elements and transpositions leaving the first element fixed.
Therefore the case of the I11 move is treated, and the proposition is proven.

O]

Definition 2.22. Let K be a knot. Let P be any Wirtinger presentation of its knot group
Gk and let be the set of t € C* such that (P,t) has Property Z (according to the
previous proposition, this does not depend on P). The L2-Alexander invariant of K is

the class of functions (¢ '—>Ag) (t)) defined as the equivalence class of (t > A%P(t)) up

to multiplication by (¢ ~ [t|%) on the functions from Dx to Rxg.
It is a knot invariant by the previous proposition.

Remark 2.23. Until now we know of no knots K such that Dg # C*. However we know
that Dg always contains at least the entire unit circle, thanks to Theorem |2.2
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Remark 2.24. Let us remark that we can take Fp; for any i # 1 instead of Fip; in the
definition of the invariant, since it simply corresponds to an other Wirtinger presentation
where the generators are permuted.

The following result is proven for the unit circle in [LZ06), Section 6] and can be easily
extended to C*. Compare with Corollary

Proposition 2.25. ([LZ06, Section 6])

1. Let K be a knot and P a Wirtinger presentation of Gr, and let t € C*. Then (P,t)
has Property T if and only if (P,|t|) has Property T.

2. Let K be a knot and t € C*, such that there is a Wirtinger presentation P with (P,t)
having Property Z. Then Ag) (t) = Ag)ﬂt\).

We will now always assume ¢ > 0. The L?-Alexander invariant is thus a class of maps
from (a subset Dg of) Rsg to Rxg (up to multiplication by (¢t — t™), m € Z).

2.2.2 Definition from the L?-torsion

Let K be a knot in S, Mg = S%\ V(K) its exterior, Gx = w1 (M) the group of
K, ag: Gxg — 7 the abelianization, and P = (g1,...,9k|r1,...7x—1) a deficiency one
presentation of Gg.
Any homomorphism ¢: Gx — Z factors through the abelianization, thus ¢ = rag,
for some r € Z. Therefore, up to using Proposition we can assume that ¢ = ag.
Section [2.1.3] tells us that Mp is simple homotopy equivalent to the 2-dimensional
CW-complex Wp constructed from P, therefore:

T (Mg, ar,id)(t) = T (Wp, ag, id)(t).
The finite Hilbert A'(G)-chain complex C®)(Wp, ak,id)(t) is:
CO(Wp, ak,id)(t) = ... = 0 — C(Gr)* 1 B 2Gr)F B 2(Gr) =0 ...

where
02 = Ry, (Fp) = Bu(Gr,ax idt)(Fp)

and
o= (1R, —1d5 ... 5 k@R, — Id).

Let ¢ be such that g; # 1 € Gg. Then (tO‘K(gi)Rgi — Id) is injective and of determi-
nant class by Proposition [I.53] and the fact that G is torsion-free. Therefore, by Propo-
sition E C®(Wp, ag,id)(t) is weakly acyclic if the operator Ry (Fpo): C(Gr) Tt —
2(G )"~ is injective.

If this is the case (i.e. if (f’,t) has Property Z, where P is P where the generators
are permuted), then the L2-torsion of C® (Wp, ay,id)(t) is defined and is non-zero if and
only if Ry, ,(Fp,) is of determinant class. In this case the L?-Alexander torsion is equal
to:

T(Q)(WP ax,id)(t) = detN(GK)(RTIJK,t(FP,i)) - detN(GK)(Rle,t(FP,i))
O Aot (LR @) Ry, — 1d)  max(L, £)lox (@]
If @ is an other deficiency one presentation of G, then Wy is simple homotopy
equivalent to Mp, thus to Wp. Therefore T®) (Mg, ag,id)(t) = T3 (Wp, ak,id)(t) does
not depend on the chosen presentation P.
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If K and K’ are ambient isotopic, then M and My are homeomorphic by an home-
omorphism h: Mg — My that preserves meridians by Theorem therefore M and
My are simple homotopy equivalent, and if we denote by xk: Gx — G+ the group iso-
morphism induced by h, then ags o kK = ag. Thus

T (Mg, ag,id)(t) = TP (Mg, o, id) ()

by Proposition since k is injective.
Hence, we could define the L?-Alexander invariant of K as

T (Mg, ag,id)(t) - max(1,t),

it would be a knot invariant equal to detpr(q,)(Ry, ,(Fp,)) When Ry, () is injective;

this corresponds to the L2-Alexander invariant Ag) (t) defined in the previous section.
Note that the reasoning leading to the formula

» _ detya (Rw F, 1)
T (Wp, ag,id)(t) = mf(iXI({l) t)\af;?(gi)ltl,y :

gives an alternative proof of Theorem [2.28]
We can now sum up this result in the following terms:

Proposition 2.26. With the previous notations, if P = (g1, ...,gk|r1,...Tk—1) is a defi-
ciency one presentation of G, if (P,t) has Property Z and g1 # 1, then

det (R ) A(Q)(t)
2 ' - N(G)\ Iy (Fp1)) . A
T (Wp, ak,id)(t) = max(L, O)lx @l max(1,1)

2.3 Formulas

2.3.1 The simplicial volume appears at ¢t =1

Theorem of W. Liick and T. Shick states that the L?-torsion of a 3-manifold gives
precisely the simplicial volume of this manifold. In the case of knots, using the double
language of L?-Alexander invariant and L?-Alexander torsions, we can write it as follows:

Theorem 2.27 (|Liic02b], Theorem 4.6). If K is a non-trivial knot then the 3-manifold
Mg is irreducible and, according to the JSJ-decomposition, splits along disjoint incom-
pressible tori into pieces that are Seifert manifolds or hyperbolic manifolds. The hyper-
bolic pieces My, ..., My have all finite hyperbolic volume. Then for any deficiency one
presentation P of the knot group G, (P,1) has Property T and

1 & 1
AP (1) = exp (M > vol(Mi)> — exp (L ooz
where vol is the simplicial volume.

2.3.2 Computing with any presentation

The following result helps us compute the L?-Alexander invariant of a knot using any
deficiency one presentation. Compare with the end of Section [2.2.2]
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Theorem 2.28 ([DW13], Theorem 3.5 and Proposition 6.2).
(1) Let K be a knot, Gk its group, and P = {(g1,..., gk |r1,...Tk—1) any deficiency one
detyray) (R¢K,t(FP,1))
max (1, t)lex (911

does not depend on P, and is equal to Ag)P(t) when P is Wirtinger. Thus we will also

presentation of Gi. Ift > 0 is such that (P,t) has Property I, then

call this quantity Ag?P(t).

(2) If K is the (p, q)-torus knot, then for any t > 0, Ag) (t) is defined (i.e. Dx = R<q)
and equals max(1,t)(PI=D(al=1),

Remark 2.29. This theorem implies that the L?-Alexander invariant is not a complete
knot invariant. For example T'(2,7) and 7(3,4) are distinct torus knots but they both
have (¢ — max(1,t)%) as their L?-Alexander invariant.

Furthermore, since these two knots have different Alexander polynomials, we con-
clude that the L2-Alexander invariant is not a «strictly stronger» knot invariant than the
Alexander polynomial (the Alexander polynomial is not strictly stronger either, since the
L?-Alexander invariant detects the trivial knot and the Alexander polynomial does not).

2.3.3 Mirror image formula

We compute the L?-Alexander invariant of the mirror image of a knot. Compare this
to the classical property for the Alexander polynomial (see for example [Cro04, Theorem
7.1.4 (d)] and the Annex [A.3).

Theorem 2.30. Let K be a knot in S® and K* its mirror image. Let P be a Wirtinger
presentation of G and let t > 0. Suppose (P,t) has Property T.
Then G+ admits a group presentation P* naturally obtained from P, (P*,t~') has

Property T and Agl (1) = Ag) (t).

Proof. Take a diagram D of K and its image D’ by a reflection by a line £ not intersecting
D. Then D’ is a diagram for the image of K by a planar reflection in R? for a plane
generated by the line £ and the normal at the plane of D. Thus D’ is a diagram of K*.
Take a base point in R3 above the common plane of the diagrams D and D’.

Each crossing of D corresponds to a crossing of D’ as in Figure

ba(__c C'__)AB
i 1|1
| | | |
a—|— —|—4

Figure 2.2 — A crossing of D, its mirror image in D', and the associated meridians

Let P = (a;|r;) be a Wirtinger presentation of Gx = m(S3\ V(K)) associated to
D. Tts relators are of the form aba™'c™!. As in Figure for each generator a; of P,
define A; a (negatively-oriented) meridian curve of D', and for r; = aba~'c™!, define
Rj = ABA7'C~!. Then P* = (A;|R;) is a presentation for Gx+ = m(S®\ K*). Note
that agx-(A;) = —1 for all 7.
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Let ¢: Gx — Gk~ denote the natural group isomorphism sending a; to A; and its
induction on the associated complex group algebras. Then
VKt
C[G K] — (C[G K]
X A
Ypex 4—
ClGk-] 5" ClGxk]
is a commutative diagram, since 9y« ;-1 (A;) = tA; for all 4.
Suppose (P, t) has Property Z, thus Ry (Fpy) 1s Injective. Therefore, by Proposition
1.45| (1), the commutativity of the previous diagram, and Proposition m (2), in this
order,

(¢)*(R¢K,t(FP,1)) = Rd)(?ﬁx,t(FP,l)) = RU’K*,rl(d’(FP,l)) = RwK*,tfl(FP*,l)

is injective. Thus (P*,¢+~!) has Property Z.
By Theorem [2.28] since P* has deficiency one,

detN(GK*)(RwK*ytfl (FP*,I))

(2) ;-1\ -
AK*(t ) - max(l,t)'o‘K*(Al)l_l

= detpr(G ) ((¢)*(RwK,t(FP,1))) ’

and by Proposition m (6) we conclude that Ag) (t1) = Ag) (t). O

Remark 2.31. Propositionimplies that the L2-Alexander invariant cannot distinguish
a knot from its mirror image.

2.3.4 Connected sum formula

Let K7 and K5 be knots in S® and K = K11 K> their connected sum. We prove that the L2
Alexander invariant of K can be computed from those of its factors. This multiplicativity
of the invariant can be compared to the classical property of the Alexander polynomial of
a composite knot, see for example [BZH14, Proposition 8.14] and Annex

Lemma 2.32. Let K be the connected sum of Ky and Ko, with G,G1 and Go their
respective groups.
Then for j = 1,2 and for all t > 0 we have the commutative diagram

VKt

ClG;] — C[Gy]
Lij b
clqg] Y g

where ij: G; — G denotes both the group inclusion of Proposition and its induction
on the complex group algebras.

Proof. Let us take P;, P, and P like in Lemma [I.20} and ¢ > 0. We have
Pl = (xlv s ,.Tk’?"l, s 7Tk—1>7

P2 = <y17"'7yl|817"'7sl*1>7

-1
P= (xla---7$kay17--'ayl|r17'"77nk’717817"'78171axk‘yl >
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These three presentations are Wirtinger presentations, therefore the x; are sent to 1
by ak, as elements of G; and by ax as elements of G, and the same can be said for the
generators y;.

It follows that the diagram is commutative for any g € C[G;] where g is a generator of
Py or P,. The result follows from the fact that the 9 ; and i; are algebra homomorphisms
and that the previous g generate the two group algebras. O

Theorem 2.33. Let K be the connected sum of K1 and Ko, with G,G1 and Go their
respective groups, and P, Py, Py the presentations given by Lemma [1.20,

Let t be any positive number. If we assume that (Py,t) and (Py,t) have Property T,
then (P,t) has Property Z and Ag) (t) = A(Igz (t)A% (t).

Proof. Let P, P, and P be like in Lemma and t > 0. We have two injective group
homomorphisms i1 : G1 — G and i2: G — G by Proposition [1.21
The values of P, Py, P, imply that Ry, (Fp) is written:

1 Te_1 | S1 S1_1 zkyl_l
1 0 0 0
: Rl/)K,z(il(FPl,k)) : :
Th—1 0 o O O
Y1 0 .. 0 0
: ka,t(h(FPZ,l))
Yi—1 0 R 0 0

Y1 0 .. 0 * —1d

Since (P,t) has Property Z, R%Z,Kl’t(pp1 ,) is injective (by Remark . Therefore, by
Proposition [1.45] (1), Lemma and Proposition [I.45 (2), in this order,

(11)x (Ryge, o(Fp 1)) = Risore, 1 (Fpy 1)) = Bipse (i1 (Fpy 1)

is injective. Similarly, Ry, (iy( Fp,,)) 18 injective. Finally, —Ids ) is clearly injective.
Therefore the block trigonal matrix R, x.+(Fpy,) 18 injective, thus, by Remark , (P,t)
has Property Z.
Hence by Proposition [l.51] (5) and (2),

det xr(q) (wa,t(Fp,w) = det v (q) (RwK,tm(Fpl,k))) ~det v(q) (RwK,tuz(Fpg,l))) :

Finally,

det () (wa,t@l(Fpl,k))) = det x(q) ((il)*(wal,prl,k))) = det x(ay) (Rwl,t(Fpl,k))

by Lemma and Proposition [1.51] (6). We use a similar argument for the second term,
and thus

AP (1) = AR 6)aZ ).
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2.3.5 Cabling formula

Let C be a knot in S3 and S denote its (p, q)-cable, where p, ¢ are relatively prime in-
tegers. We prove that the L?-Alexander invariant of S can be computed from the one
of its companion C. This results mirrors the classical satellite formula for the Alexander
polynomial (see for example [BZH14, Theorem 8.23)).

Lemma 2.34. Let S be the (p,q)-cable of C, and let Gs,G¢ be their respective groups.
Then for all t > 0 we have the commutative diagram
Yo

ClGc] ClGc]

Lic Lic

cles] %% clGs]
where ic: Go — Gg denotes both the group inclusion of Proposition[I.24 and its induction
on the complex group algebras.

Proof. Let us take Po = (aq,...,ax|r1,...,7k—1) and
Ps = (ai,...,a, x,A|r1, ..., rp_1,2Pa, IA7P, AW (a))

like in Proposition Let t > 0.

Proposition [1.23] (2) tells us that every a; is sent to 1 by ac as an element of G¢ and
is sent to p by ag as an element of Gg.

Therefore the diagram is commutative for any a; € C[G¢] where q; is a generator of
Pc. The lemma follows from the fact that ¢c s, ¥s; and ic are algebra homomorphisms
and that the a; generate C[G¢]. O

Lemma 2.35. Let G be a discrete countable group, let g € G of infinite order, let p be a
positive integer and let t > 0. Then Id+tRy+ ...+ t(pfl)Rgpq is injective and

det wr(y (Td+tRy + ..+ PR ) = max(1, 1)

Proof. Let R = Id +tRy+ ...+ t®P VR 1. We have (Id — tRy) o R = Id — t?Rp». By
Proposition Id —tPRgp is injective, therefore R is injective.
Both Id — tR, and R are injective, therefore, by Proposition (4),

det Ar(q) (Id —tPRgp) = det N(G) (Id —tRy) - det N(G) (R).

Thus, by Proposition max(1,P) = max(1,t)-dety () (1) and the lemma follows.
O

Theorem 2.36. Let S be the (p, q)-cable knot of companion knot C, Gg,G¢ their respec-
tive groups, and t any positive real number.

If there exists P, a Wirtinger presentation of G¢ such that (Py,tP) has Property T,
then there is a presentation Ps of Gg such that (Ps,t) has Property I, and

Ag?) (t) = A(cz) () - max(1,¢)(IPI=D 0l =1) — A(CZ) (tp)Ag()M) (t).

Proof. Let Po = (ay,...,ak|r1,...,rx—1) and

Ps = (ai,...,ag,x,A|r1,...,Tk—1, acpa,;q)\_p, A_lW(ai)>
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be like in Proposition |1.23

Observe that Po is a Wirtinger presentation of G¢, as is P,, therefore (Pg,tP) also
has Property Z, by Proposition [2.21

Besides, Pg is a presentation of deficiency one, thus by Theorem m Ag) (u) will be
equal to Ag}gs (u) for any w > 0 such that (Ps,u) has Property Z.

Recall from Proposition (2) that ag(a;) = p,as(x) = ¢ and ag(A) = 0.

The values of Py and Pc imply that Ry Fpy) is written:

r1 rh—1 | @Pay IATP | AW (ag) !

a1 0 *

R¢s,t(ic(ch,k))

ak—1 0 *
ak * * * *
x 0 0 T 0
A 0 0 * Id
where T = Id 4+ t9R, + ... 4+ t?P~UR_,_1 if p is positive, and
T=—t"Ry — ... = t7WRy = (—7 IR,y ) o (Id+ R, + ... + 1PV R ), 1)

if p is negative. In both cases T' is injective, by Lemma [2.35|and the fact that (—t_‘I|p|Rzp)
is invertible.

We know (Pc,tP) has Property Z, thus R@[,C’tp(ppc’k) is injective, by Remark We
have the injective group homomorphism ic: Go — Gg by Proposition erefore,
by Proposition [L.45 (1), Lemma and Proposition [1.45] (2), in this order,

(ic)*(ch,tp(FPC,k)) - Ric(¢c,tp(FPC,k)) - R¢S,t(iC(FPC,k))
is injective.
Finally Idp ) is clearly injective.
Thus the block trigonal square matrix Ry (r,_,) is injective, hence,by Remark IE[I,
(Ps,t) has Property Z. Therefore, by Proposition (5) and (2),
det n(s) (Rus (g 1)) = 40t n(Gs) (Russ stic (e ) - detaras) (T)

However we have

det n(as) (Russtic (Frp ) ) = A€t aGs) ((00)e(Ru (1)) = det ciey (Ruses (g, )

by Lemma and Proposition [1.51] (6).
Besides, from Lemma [2.35] we have

detN(GS) (Id + thx + . + tqﬂp\il)Rx\p\fl) = max(]_’ tQ)|p|717

therefore, by the fact that det () (—t_q|p|Rxp> € t* and Proposition|1.51|(4), detnr(qo)(T)

is equal to max(1,t?)PI=1 up to tZ.
Note that max(1,#9)PI=1 = max(1,¢)/9/(PI=D) up to t* from Remark
Finally, Theorem tells us that

AD ) = det wr(cg) (R o(Fpg 1)) detar(Gi) (Rusernn (o)) - max(1, £)lal(1=D
s max(l, t)|0‘S(ak)|_1 max(]_’ t)\pl—l '
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Thus we have proven the formula
A(S2)(t) - A(g)(tp) . max(l,t)“p‘_l)('q‘_l).
O

Corollary 2.37. Let K be a knot, —K its inverse knot, and P and P_ Wirtinger presen-
tations of their respective groups. Then for all positive real numbers t, (P,t) has Property
T if and only if (P_,t~') has Property I, and in this case

2) 1\ - A2
ALY = AR ).
Proof. Observe that —K is a (—1,0)-cable of K, and apply Theorem m O

2.3.6 The class of iterated torus knots

Let us call @ the class of iterated torus knots, i.e. the class of knots in S® generated by
the trivial knot, the connected sum operation, and all cabling operations.

Theorem 2.38. Let K be a knot in ZT, and P a Wirtinger presentation of the group G
of K. Then for allt >0, (P,t) has Property Z and

(t—aR®) = (¢ max(1,0)m)

where ng = 2g(K).

Proof. 1. From Example the result is true for the unknot O for which
no =0 = 2¢(0).

2. If the result is true for Ky and Ky in Z7, then, using Theorem [2:33]
(t AR, (1) = (> max(1, 1) aess)
KifKo - ’

where ng 4K, = Nk, +nK,. Besides, g(K) = g(K1) + g(K?2), see for example [Rol90,
Theorem 5.14], thus the result holds for K1§K».

3. If the result is true for C' € Z7 and S is the (p, g)-cable of C, then
(t= AP @) = (> max(1,0)")

where ng = [p| - nc + (|p| — 1)(lg| — 1), by Theorem Furthermore, it follows

-1 -1
from the main formula of [Shi89] that g(S) = |p|g(C) + i )2(|q‘ ), therefore
the result is proven for S.
We have proven the theorem by induction on the class Z7T. O

From [MMO1, Lemma 5.5], ZT is exactly the class of knots whose exterior has zero
simplicial volume, i.e. the knots whose exterior has no hyperbolic JSJ pieces (see Section
1.2.3).

Remark 2.39. Theorem [2.38 can be restated as follows.
For a knot K, the following properties are equivalent:

o Wt >0, AP (t) = max(1, )25,
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e dncZ,Vt>0, Ag)(t) = max(1,1)";
o AP(1) =1;

e vol(K) = 0;

e KcIT.

2.4 Detection of the unknot

Let us state the main result of this chapter:

Theorem 2.40. Let K be a knot in S®. The L?-Alexander invariant of K is trivial, i.e.
(t — Ag) (t)) = (t— 1), if and only if K is the trivial knot.

Proof. First, let Ky be an arbltrary knot. If the exterior of Ky has hyperbolic pleces in
its JSJ decomposition, then A ( ) # 1, by Theoremu Therefore, let us assume K is

a knot whose exterior does not have hyperbolic pieces and such that Ag) = (t+—1). Let

us prove that K is the unknot. N
From [MMO01, Lemma 5.5] we know that K € Z7. Thus, by Theorem m

A2 = (¢ max(1,1)")

where n = QgLR/ ). Therefore K has genus zero, and is thus the unknot.
Thus, if K is a knot whose exterior does not have hyperbolic pieces and such that

A%) = (t — 1), then K is the unknot. The theorem follows.
U

2.5 Detection of the trefoils

Since a knot and its mirror image have the same L2-Alexander invariant, this invariant
cannot distinguish the two trefoils from one another. However, it can single them out from
the other knots.

Theorem 2.41. Let K be a knot in S3. Its L?-Alexander invariant satisfies
(t=AR®) = (¢t max(1,0)%)
if and only if K 1is the left or right trefoil knot.

Proof. 1t follows from Theorem M(Q) that the L2-Alexander invariant of the two trefoils
is equal to (¢ — max(1,t)?).

Now let K be a knot in S? such that (t — A )( )) = (t > max(1,t)?).

It follows from Remark [2.39 that K € Z7 and its genus g(K) is equal to 1. Since the
genus is additive under connected sum and g(K) = 1, K is a prime knot. Thus K is a
(p, q)-cable on a (possibly trivial) knot C.

By [SESI, 1 = g(K) = [plg(C) + LP1= 1)2(IQI —1)

o if g(C) =0, then (p, q) is equal to (£2,£3) or (£3,+2), thus K is either the torus
knot T'(2,3) or the torus knot 7'(2, —3), i.e. a right or left trefoil knot.

. Two cases are possible:
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e if g(C) =1, then p = 41 and C = £K, thus the cabling operation is trivial.
[

Remark 2.42. The L?-Alexander invariant cannot single out any torus knot of genus
bigger than the trefoils. For example, the knots having L?-Alexander invariant equal to

(t — max(1, t)4>
are the iterated torus knots of genus 2

T(2,+5), T(2,£3)4T(2,£3), S,+1) (T(2,£3)).

2.6 General L2-Alexander torsions for knots and links

To conclude this chapter we will extend the L?-Alexander invariant for knots to more
general L2-Alexander torsions for knot and link exteriors, as in Section [2.2.2}

2.6.1 A twisted L?-Alexander invariant for knots

If (Mg,ak,v: Gk — G) is an admissible triple, we can define Ag)v as a class of maps
from a subset Dk , of R-g to R> up to multiplication by the maps (¢ — t™),m € Z, in

the two equivalent ways:

1. Ag)v(t) = dety(a) (RH(GK7QK7'77t)(FP,1)> for P a Wirtinger presentation of G, if the
operator Ry (G ag .t)(Fp,) 1S injective.

2. Ag?v(t) = T (Mg, ag,~)(t) - max(1,t) if C,EQ)(MK, ax,,t) is weakly acyclic and
of determinant class.

The equivalence between these two points of view comes from the same arguments as in
Section 2.2.2

In particular, if 7 is the abelianization ax, we can compute the L?-Alexander invariant
with coefficient ag from the value of the Alexander polynomial:

Proposition 2.43. ([DFL1J, Proposition 7.2]) Let K be a knot and Ak (z) € Z[zF1] be
a representative of the Alexander polynomial of K. We write

k
Ag(z)=C-2z"- H(z —a;)
i=1
where C € Z*, m € Z,aq,...,a, € C*. Then 052)(MK,aK,aK,t) is weakly acyclic and of
determinant class for all t > 0, and
k
2 )
ARy 1) = 1C1 - [] max(Ja. ).
i=1

)

For a given knot K, many twisted L2-Alexander invariants Agﬁ(t) may exist. We can
sort them by the groups G such that Gx — G — Z, i.e. the quotients of Gx by normal
subgroups of G contained in the commutator subgroup G'.

We cannot hope for a relation between these invariants of the magnitude of:

Y Yoy

(GK Lela o z> — (AP0 = AP 1> a2, 0> a2, ©).

since there are knots K with A(I?,)a;( (1) < Ag) (1), like Whitehead doubles of an hyperbolic
knot, and knots K with Ag?a}{(l) > Ag)(l), like the figure-eight knot (see Annex .
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2.6.2 The L?-Alexander torsion for link exteriors

Let L =LiU...UL.bea clink in S3, My = S3\ V(L) its exterior and G = my(My) its
group.

Let ar: G — Z° denote the abelianization that sends homotopy classes of meridian
curves of the component L; to (0,...,0,1,0,...,0) where 1 is at the i-th place.

Any group homomorphism ¢: G — Z factors through the abelianization «ay,, therefore
depends only on the linear map Z¢ — Z, which will be denoted by its natural matrix
(n1,...,n.) where the n; are in Z.

The following theorem generalises Corollary

Theorem 2.44. (Reversing the orientation of a component of a link)

Let L=L1U...UL. and L' = L1 U...Li_1U(—L;)UL;1+1U...U L, the link obtained
by reversing the orientation on the i-th component of L. Then Gr and G are equal and
Clgz)(ML, (n1,...,mc) o arp,v,t) is weakly acyclic and of determinant class if and only if
CLQ)(ML/, (N1, ey M1y, =Ny N1, - . - Ne) © upyr, 7Y, ) @8, and in this case:

T(Q)(M[n (nla .. 7nC) o OéL,")/)(t) = T(2)<ML’7 (nla ey Mg—1, = NG M1,y - - - nc) o CYL/,’)/)(t)~

Proof. The manifolds M; and My, are equal as oriented 3-manifolds, the difference is
in the orientation of meridian curves, which depends on the orientation of the links L
and L'. Therefore G, and G/ are equal as groups of homotopy classes of loops in the
same topological spaces, but aj and «js are not the same group homomorphisms from
GL =G L’ to Z°.

If we call u; € G, the homotopy class of a meridian curve of L; for all j € {1,...,c},
then ar(uj) = ap(py) for all j # i and ar(p) =1 = —ap ().

Therefore, for all integers ny, ..., ne,
((n1s..sne) oar) = ((n1s ooy Mim1, =Ny Nig1, .. ne) o Q)
as group homomorphisms from G, to Z. The result follows. O

Theorem 2.45. (Reordering the components of a link)
Let L=IL1U...UL, and L' = Ly1yU...U Ly the link obtained by re-ordering the
components of L by a permutation . Then Gr and G, are equal and

C>£2)(ML, |(n1, ...,N¢) O aLL'y,t) is weakly acyclic and of determinant class if and only if

0*2)(ML/, (Ne(1), -+ > Na(e)) © AL, 75 1) 08, and in this case:

T(Q)(MLv (nlv s 7nc) © OLL,’}/)(t) = T(Q)(Ml/v (n0(1)> s 7n0'(6)) 0 (X[/,’)’)(t).

Proof. The manifolds My, and My, are equal as oriented 3-manifolds, and G, and G, are
equal as groups of homotopy classes of loops in the same topological spaces, but af, and
ays are not the same group homomorphisms from Gy = G/ to Z¢, because they depend
on the ordering of the components of the link.

If o € G is the homotopy class of a meridian curve of the component L;, then
ar(p) =(0,...,0,1,0,...,0) where the 1 is in i-th place; in L’ the component L; is now
the o~ 1(i)-th one, and thus az/(u) = (0,...,0,1,0,...,0) where the 1 is in 0~ !(i)-th place.

Therefore, for all integers nq, ..., ne,

((nl, s nC) 0 OCL)(M) =Ny = ((no(l)v ce 7na(c)) © O‘L/)(:u’)'
Since this is true for every ¢, we have
((nl, ceey TLC) ] aL) = ((ng(l), ey na(c)) o OéL/)

as group homomorphisms from G, to Z. The result follows. O
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The following theorem generalises Theorem [2.30)

Theorem 2.46. (Mirror image of a link)

Let L =Ly U...UL. and L* the mirror image of L. Then there is a natural group
isomorphism k: Gy, — Gp« and for all t > 0, C£2)(ML, (n1,...,n¢) o ar,v,t) is weakly
acyclic and of determinant class if and only if CiQ)(ML*, (=n1,...,—nc)oaps,yo(k™1),t)
is, and in this case

T(Q) (ML7 ("I’Ll, s 7nC) o O‘L?V)(t) = T(Q) (ML*7 (_n17 R _nC) OQx,"7 0 (’{71)) (t)
In particular
T (Mg, (n1,...,ne) 0 ap,id)(t) = TP (Mp-,(—n1,...,—ne) o ape,id))(t).

Proof. The manifolds My, and My~ are homeomorphic as unoriented 3-manifolds by the
restriction of a planar reflection p in R3. Therefore there is a natural group isomorphism
k = py: G — G such that ap- o k = —ay. Indeed, L and L* are seen as links in S3
with S3 having the same orientation, but the planar reflection p sends a meridian curve
of L to its mirror image, which reverses its orientation as a curve in the exterior of a link.
The first part of the theorem follows from Theorem [2.12

The second formula follows from Proposition [2.5 since ™!

is injective. O

Remark 2.47. As a consequence of Proposition[2.7]and Proposition[2.8] the L?-Alexander
torsion cannot distinguish a link from its mirror image.

Remark 2.48. If L is a split link, then M = $3\ V(L) is not irreducible, and the link
group G, = m1(My) has deficiency at least two. The manifold My, is not aspherical (see
[Rol90, Exercise 4E4]) therefore we cannot use Section m to compute its L?-Alexander
torsions from group presentations of Gp.

This is why we will exclude the cases of split link exteriors.



Chapter 3

Surgery formulas

In this chapter we prove a Mayer-Vietoris formula for the L?-Alexander torsion. As a
consequence, we deduce a general Dehn Surgery formula. We then review three particular
cases of Dehn surgeries on exteriors of links in S3: forgetting one component of the link
(oco-surgery), filling the exterior of the Whitehead link to obtain the exteriors of the twist
knots (1/n-surgeries) and finally 0-surgery that involves considering exteriors of links in

52 x St

3.1 Mayer-Vietoris formula for the L?-Alexander torsion

We prove a Mayer-Vietoris type formula for the L?-Alexander torsions.
Let X, A, B,V be compact connected topological spaces, such that X = AU B and
V = AN B. Assume that these four spaces are endowed with structures of finite CW-

complexes such that the inclusions V' !3 AV g B, A <J—A> X, B <J—B> X and V 4 X all
map a k-cell to a k-cell (which means that the CW-structure of X is constructed from
those of A and B), and such that I = J4 014 = JgoIp. Let P be a base point in V.

Let Py = I4(P), Pgp = Ip(P), Q = I(P) denote the base points of A, B and X.

We call my 4 ma, 7y B 7p, ma 2B nx, 75 28 mx and 7y 5 7y the group homomor-
phisms induced by I4,1Ig,Ja,Jp,I. Remark that i = jqsoiqa = jpoip.

These numerous maps are all written on a diagram below for clarity.

I . Ja & JA
/I\ \WI(X)L’
e 2N

Theorem 3.1. Let ¢: m1x — Z and v: 71x — G such that (7x,¢p,7) is an admissible
triple. Let t > 0. If the three N(G)-cellular chain complezes

7

o
1A
X 7T1(V)/
i (
T

Vv G

Z

COWV,poi,yoit), CPA dpoja,yojat), C(B,dojp,voist)

are weakly acyclic and of determinant class, then C’»@(X, ®,7,t) is weakly acyclic and of
determinant class as well, and

T(2)(X7 gb,’)/)(t) T(Q)(V,qu’L”yO’L)(t) = T(2)(Av¢ojA7ryojA)(t) T(2)(Ba¢O]B”YOJB)(t)
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Proof. Let
e ¢! be the cells of V,
o ¥ =Ty(eF) and aF € A\ 14(V) be the cells of A,
e nF =1Ip(eF) and BF € B\ Ip(V) be the cells of B,

EF = I(ef), A = Ja(af) € Ja(A)\I(V), Bf = Jp(8F) € Jp(B) \ I(V)
be the cells of X.

Let ek be choices of lifts of the e¥ in V. Let & =1 A( %) be the correspondmg lifts of
€F in A, nr = IB( %) the correspondmg hfts of 77Z in B, and Ek = I( %) the corresponding
hfts of Ek in X. Choose some lifts a of a in A, some 11fts ﬁk of 5"3 in B, and let
Ak = Ja(akF) and BF = JB(Bk) be the correspondmg lifts of A¥ and BF in X.

Consequently the maps 14, Ip B, J4 4, Jg and I all send a k- cell to a k cell and commute
with the boundary operators and the actions of the fundamental groups on the universal
covers. We draw them on the following diagram for the reader’s convenience.

1% X
IBEJB

The cellular chain complexes of the four universal covers are written:

C.(V,Z) = 8V’“@Zwef%...
C.(A,Z) = aA“@Zme @@Zm
C.(B,7) =... 0nx D zlrslit © P Zins)5t Bk
C.(X,z)=.. . "%kt D zlrx| B © D Zlrx)AF © @ Zirx] B oxk

The boundary maps of these four cellular chain complexes are of the following forms:

8\/7]6: (@ Z[Wv]gf — @Z[Wv]€?_1>
Dk (@ Zlmalef @ @ Ll alaf — EBZ[WA]E?1 ® EBZ[WAW“l)
Oag = (iA(((a)V’k) gi)

(@Zﬂgm@@ZWBﬁk%@Zﬂ'B @@ZﬁBﬁk 1)
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s — (iB(av,k) UB)

0 Dp
@iZ[WX]Ef @iZ[WX]Ezil
Oxk: | @@ Zinx]AF — & @, Zrx] Al
& @, Zlnx|BY @ @, Z[rx|Bf
i(Ovk) jaUa) jB(Us)
Ox = 0 ja(Da) 0
0 0 iB(DB)

We observe that these boundary operators have block trigonal matricial forms with
immediate correspondences, as in Section[1.1.3] Of course this follows from the compatible
choices of cellular bases we made for the four cellular chain complexes.

Now let us look at the N(G)-cellular chain complexes twisted by the actions of ¢, ~y
and t. As in Section 2.1.1] we write

o (2(G)é for (*(G) ey ,poi,yoirt) LITV]E,

2
o \(/,I)c for RK(WV7¢01’7’Y°Z’¢)(5V,1¢)'

We compute the four N(G)-cellular chain complexes Vi, Ay, B, and C, associated to
V, A, B and X and also the sum A, @ B, since, as we will see, (V,, A. ® By, C,) forms an
exact sequence. The five N(G)-cellular chain complexes and their boundary operators are
of the following forms:

) Wit N 2y ke Ok
Vo =C(Vigoi,yoit)=... — PG — ...

i

(2) _ _
O g = Ri(my goiyoit)(0vp) = B
2 f)k 1 af)k
A*:C#E)(A doja,yoja,t)=... @52 )€ @@KQ(G)NfH
R A A ) R A A
(9(2) = Reir ' oismoi 5 _ ( K(TA,405A,7054,t) (1A (Ov,k)) N(?TA@OJANOJAJ)(UA))
Ak (mA,905 4,705 4,8) (DA k) 0 Rm(ﬂA,qﬁOjA,’ijA,t)(DA)
_ (R Rua
~ \0 Rpa)’
( (B2>k+1 1(32)k
B, =C."(B,¢ojp,yojp.t)=... @EQ N’“@@EQ G)pF =4
2 _
aB,k - RH(WBy¢Oj377°jBat)(aB,k)

0 Ryi(np.60j5,70im.t)(Dp)

_ (R»e(m(ﬁomnojB,t)(iB(av,k)) Rn(@,mm,wom,ww}a))
<0 Rpp

R RUB>
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A, @B, =CP (A ¢poja,vojat)®CP (B, pojpoipt)
5@ (2)

=... AHB’“*I@EQ &k e @ AG)ake @ EG)N @@ﬁ L

, R Rya 0 0
P O 0\ _|0 Rpa 0 0
AUBk 0 8(B2)k 0 0 R RUB ’
’ 0 0 0 Rps
2 g?)k 1 Iy = ag)k
C,=CH(X, p,7,t)=... 22 @ﬁ VEF o PAG)AY e @ AG)BEF 4

Ri(nx000)i0ve)  Brrx,omt)a@a)  Brlrx,67,008U5))

ag,)k = RH(WX@,%t)(aX,k) = 0 R”(”X’¢77vt)(jA(DA)) 0
0 0 Ry .67.)(i5(Dp))
R Rya Rus
=10 Rpa 0
0 0 Rpg

From the forms of these N (G)-cellular chain complexes, we deduce that there is an
exact sequence of finite Hilbert A(G)-chain complexes

05V, 5 A, ®&B, 2 C,—0

—1Id

0 Id 0 Id O
where 1, = 1d and p,=| 0 Id 0 0 | for every k (the size of each square sub-
0 0 0 0 Id

matrice I'd depends of the number of cells of each kind at each k, and the zero submatrices
may not be square). The exactness is immediate.
Moreover, if we let n; denote the number of cells e , then it follows from Proposition

1.51] (2), (3) and (7) that

det nr(q) () = y/det nra) (thun) = V2™ = /det ) (prpf) = det vy (pr),

therefore the L2-torsion T(2)(V*,A* @ B, C,) of the exact sequence (Vi, A, @ By, Cy)
(defined in [Liic02bl (3.34)]) is equal to 1.
We assumed that A, = C,EQ)(A, poja,yoja,t) and By = C’iQ)(B, ¢ojp,yojp,t) were
weakly acyclic and of determinant class, therefore A, @ B, is as well.
Since V, = C’ig)(V, ¢poi,yoi,t)and A, ® B, are weakly acyclic, the long homology
sequence
LHS, = LHS, (V., A, ® B,,C.)

(defined in [Liic02b, Theorem 1.21]) is trivial and thus C is weakly acyclic as well. Fur-
thermore, as a trivial finite N'(G)-Hilbert chain complex, LHS, is of determinant class
and T®(LHS,) =1
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We assumed that V, was of determinant class, and we proved that A, ® B, and LH S,
were of determinant class as well. It follows from the multiplicativity of the L2-torsion
(see [Liic02bl Theorem 3.35 (1)]) that C. is of determinant class and

7@ C,) - TW,) - TA(LHS,) = T® (A, & B,).

Since T®)(LHS,) = 1, and since T® (A, @ B,) = T®(A,) - T®(B,) by Proposition m
(3), we conclude that

TO(X, $,7)(t) - TA(V,poi,yoi)(t) = T (A dpoja,yojat) TD(B,pojp,vojpt).

O]

3.2 General formula for Dehn surgery

We are going to apply the Mayer-Vietoris formula we just proved to the case of Dehn
surgery, where we glue a solid torus on a toroidal boundary component of a 3-manifold.
First we recall the definition of Dehn surgery.

3.2.1 Dehn Surgery

We follow [Rol90, Section 9F].

Let M be a 3-manifold and let T7,...,7T}, be 2-tori that are connected components of
OM. For each i = 1,...,n, specify a simple closed curve |J;| on each T;. Let

M =My, ((SlxD2)l_|...|_|(Sl><D2)>

where A is an union of homeomorphisms h;: S* x S — T, each of which take a meridian
curve m; of (S x D?) to the curve J;.

Up to homeomorphism M’ does not depend on the choice of h. We say that M’ is
obtained by Dehn Filling on M.

Dehn surgery refers to the more general process of drilling out links in M and then
filling them along certain curves. We will mostly be interested in the Dehn filling process.

When M is the exterior of an oriented link L =L;U...U...Ly,UL,;1U...UL.in 3
and T; = OV (L;) for i = 1,...,n, each L; has a preferred meridian-longitude pair (u;, A;).
We only need to specify the homotopy class of J; in T;, described by two relatively prime
integers p;, q;:

[Ji] = pilpil + qi[Ail-

We call QU {00} the surgery coefficient associated with the component L;.

Example 3.2. A p/g-surgery on the trivial knot yields the lens space |L(p,q)|
In particular, a O-surgery on the trivial knot yields S2 x S!, and a +1/n-surgery, n € N
on the trivial knot yields S3.

A co-surgery on any knot yields 3 (this corresponds to the trivial filling of the knotted
tunnel).
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P
Figure 3.1 — The CW-complex structure on S!

3.2.2 [?-Alexander torsion of the solid torus

Let X be the circle S! with the CW-structure of one O-cell P (equal to the base point)

and one 1-cell a, as in Figure Let us write 7 = 71(X) = (c|) multiplicatively. Let P
and a be lifts of P and a in X.

Then the cellular chain complex of X is

Cu(X) =0 — Z[r]a 2% Z[x]P — 0

where
01(a) = P —mp = (e — 1)]5

with m € Z depending on the lifts.
Let ¢: m — Z and v: m — G such that (7, ¢, ) is an admissible triple.
The N(G)-cellular chain complex of X = S is

) B
CO(ST, ¢, 1) = 0 — 2[Gla 2 2[G1P — 0

where 8%2) = tmgb(C)Rw(C)m o (t¢(C)R7(C) — Id).

By Proposition the operator 8§2) is injective and of determinant class if and only
if y(c) is of infinite order in G, and in this case:

Proposition 3.3. For c a generator of m(SY), if v(c) is of infinite order in G, then

CZ,EQ)(Sl, b,7,1) is weakly acyclic and of determinant class for all t, and its L?-Alezander

torsion is
1

(2)( gl -
T (S 7¢77)(t) - max(l,t)“ﬁ(cﬂ

This result was first proven in [Liic02b]. Since the solid torus S' x D? is simple
homotopy equivalent to the circle S* (by two successive elementary expansions), it follows
from Theorem 2.12] that

Proposition 3.4. For ¢ a generator of m1(S* x D?), if v(c) is of infinite order in G,

then C’iZ)(Sl x D2, ¢,v,t) is weakly acyclic and of determinant class for all t, and its
L?-Alexander torsion is

1

T3 (8 x D? ) = ————— .
( X 7¢7’Y)( ) max(l,t)“b(cﬂ
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3.2.3 L2-Alexander torsion of the torus

The following proposition states that the L2-Alexander torsions of the torus S' x S! are
trivial; this result was proven in [Liic02b] and [DFLI14, Lemma 5.6], and we detail the
proof for the reader’s convenience.

Proposition 3.5. Let 1 = m1(S* x S') = Z2? denote the fundamental group of the torus,
and let o, B denote a pair of generators of w. Let ¢: m — Z, v: 1 — G be group homo-
morphisms such that (mw,¢,v) is an admissible triple. Let t > 0.

If v(m) is infinite, i.e. if y(a) or v(B) is of infinite order in G, then
C’LQ)(S1 x St ¢, 7,t) is weakly acyclic and of determinant class, and its L?-Alevander
torsion is

T (SY x 8, ¢, 4)(t) = 1.
Proof. Let X = S! x S' be the torus endowed with its classical CW structure:
e one 0-cell P, base point of the fundamental group,
e two 1-cells a and b, that are loops of base point P,
-1

e one 2-cell R, attached on the 1-skeleton following the path a*bxa™' % b
The cells are drawn on Figure for clarity.

af R

b P
Figure 3.2 — The CW-complex structure on S x S!

Let a, B denote the homotopy classes of a and b in m = 71(X). The group 7 admits the
presentation (o, 3|a3 = fa) and is naturally isomorphic to Z2. Let ¢: m — Z be a group
homomorphism; this homomorphism is exactly determined by the integers n; = ¢(a) and
ny = ¢(B). Let v: m — G be a group homomorphism such that ¢ factors through . We
assume 7y is surjective, according to Remark

The cellular chain complex of X is

(=)
C.(X,7) = 77|k G Z[x]a @ Z[x]b R AL

for appropriate lifts of the cells.
Consequently, the N (G)-cellular chain complex c? (X, ¢,7,t) associated to (X, ¢, 7, t)

is:
"2 Ry (p) — 1d
_\Id—tm Ry, (" Ry~ 1d 5 "2 Ryg) — 1d)
—

()R — 2(Q)a @ 2 (G)b Q)P
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Assume that (7) is a finite group; this implies that ny =no =0. Let w =3 ,cqh €

Z[G). Then since any Ry, h € G, acts by permutation of the coordinates on £?(G), w is in
t"™R 1d R —Id
v(B) ~ — [ 1"(B) ; ; ;

the kernel of ( Td— iR (a)> ( Id— Ry(@)) and thus the finite Hilbert chain complex
Cg) (X, ¢,7,t) is not weakly acyclic.

However, if v(7) is infinite, which is equivalent to the fact that either v(«a) or () is of
infinite order in G, then assume for instance that v(«) is of infinite order in G. Then, by
applying Proposition and Proposition we conclude that C,EQ) (X, p,7,1) is weakly

acyclic and of determinant class, and

detN(G) (Id—t"R (a)) max(1,¢)™

2) = - = -
(6.0 = G e = s~

3.2.4 The Dehn Surgery formula

Let M be a 3-manifold with non-empty toroidal boundary, B a solid torus, T' a boundary
part of M, and [J]a simple closed curve on T'. Let N be the manifold obtained by doing a
surgery on the curve J the boundary part T" of M.

Thus N =MUB and T = M N B. Let |[J'| be a simple closed curve on T such that
the classes of J and J’ form a system of generators of 71(T) = Z?. We can assume that
J and J' intersect on a single point P, which will be the base point for all the following
fundamental groups.

We choose a CW-structure on M and T such that P is a 0-cell and J and J’ are 1-cells.
For constructing the CW-structure of B we choose a 2-cell D bounded by J, and a 3-cell
p glued in the usual way to close the solid torus. Thus J’ and the core of B have the same
homotopy class in 71(B). We can thus see J as a meridian of B and J' as a longitude of
B. Finally we give N the CW-structure composed of those of M, T and B.

Let mpr = m (M), 7y = w1 (IV) and ¢ the homotopy class of the core of B in 1 (B).
Then the inclusion Jy;: M C N induces a quotient group homomorphism [@Q: 7 — 7x
(whose kernel is normally generated by [J]), and the inclusion Jg: B C N induces a
group homomorphism ¢: ¢ — my.

T}/I/]\j\%N
N

Theorem 3.6. Let ¢: 1y — Z and v: 71y — G be group homomorphisms such that
(7N, @,7) forms an admissible triple. For allt > 0, if v(c(c)) is of infinite order in G and
if CZ@(M, $oQ,yoQ,t) is weakly acyclic and of determinant class, then C’,E2)(N, ®,7,1)
1s weakly acyclic and of determinant class, and

L TO(M,$0Q,v0Q)()
W60 =
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Proof. Since y(t(c)) is of infinite order in G, by Proposition M Ciz)(B, pout,you,t)is
weakly acylic and of determinant class, and T3)(B, ¢ o1,y 01)(t) =

max (1, t)/¢((e)]’
Likewise, v(i(m1 (7)) = v(¢(m1(B))) is an infinite subgroup of G, thus, by Proposition
CZ,EQ) (T, ¢ oi,yoi,t)is weakly acylic and of determinant class, and

TO(T, poi,yoi)(t) =1
(2)

Finally, since C;™ (M, ¢poQ,voQ, t) is assumed weakly acyclic and of determinant class,

it follows from Theorem Mthat c? (N, ¢,v)(t) is weakly acyclic and of determinant class,
and

L T (M, $0Q,7y0Q)(t)
TE(N, ¢, 7)(t) = max(L, DE@T

3.3 Dehn surgery of link exteriors

Let M be the exterior of an oriented link L = Ly U... U L. in S% and T = 9V (L.). Let
(11, A) be a preferred meridian-longitude pair for 7. We describe a simple closed curve J
on T by its homotopy class, which is characterised by two relatively prime integers p, q:

[J] = plu] + g[A]

Let r,s € Z be relatively prime integers such that

()

and let J’ be a curve in T such that
[J'] = ru] + s[A].

We can assume that J and J’ intersect on a single point P.

Let N denote the manifold obtained by Dehn surgery on L. with coefficient p/q, and
B the filling solid torus. Then @Q: w1 (M) — 71 () is the quotient group homomorphism
that adds the relation [p|P[A]? = 1. We have trivialised the curve [J].

Theorem can thus be re-written as:

Theorem 3.7. Let ¢: 1y — Z and v: 7y — G be group homomorphisms such that
(7N, @,7y) forms an admissible triple. For all t > 0, if (v o Q)([p]"[N]?) is of infinite

order in G and if CZE?)(M, poQ,v0Q)(t) is weakly acyclic and of determinant class, then
Cg)(N, ®,7)(t) is weakly acyclic and of determinant class, and

TA(M,¢0Q,v0Q)(t)
() = : :
T(N, ¢, 7)(t) max (L, )7 @@ )+ PN
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3.3.1 oo-surgery: erasing one component of a link

Let L=L1U...UL._1UL. a c-component link, and L' = L1 U...UL._1 the link obtained
by forgetting the last component, or alternatively by applying a trivial Dehn filling of the
last component.

Then the natural injection i: My — My, passes to fundamental groups as a surjective
homomorphism () = i,: G — G/, which is the same as the quotient homomorphism
by the normal subgroup generated by any meridian of L.. Let (u., A:) be a preferred
meridian-longitude system of L.

Here the surgery coefficients are p=1,¢q =0,r =0,s = 1.

Note that if L is brunnian, then L’ is trivial split. We need to assume that neither L
nor L' is split, or equivalently that M, and M|, are both irreducible.

Theorem 3.8. Let ¢: m (M) — Z and v: m(Mp/) — G be group homomorphisms such
that (m (M), &,v) forms an admissible triple.

We can denote ¢ = (ny,...,n.—1)oar and thus ¢po@Q = (ny,...,n.1,0)oar for some
non zero vector (ni,...,ne_1) € Z¢ L.

For allt >0, if (7o Q)([X]) is of infinite order in G and if
CZEQ)(ML, (n1,...,mc—1,0) oar,vo Q)(t) is weakly acyclic and of determinant class, then
CLQ)(ML,, (n1,...,ne—1) oap,y)(t) is weakly acyclic and of determinant class, and

T(Q)(MLa (nh s anC*bO) car,yo° Q)

@) (M, ; =
T (Myps, (01, ne—1) 0 apr, y)(t) max(L, ¢) R+ Mo Lonei]

It seems one can prove this result with a purely diagrammatic reasoning, by study-
ing Wirtinger presentations and the consequences on the Fox matrices of removing one
component of the link.

Proof. We apply Theorem [3.7] and we use the fact that here

T(¢OQ)([M])+S(¢OQ)(P\]) (¢>OQ)([ )
;ne—1,0) 0 ap([Ac])
H{(Ll, )n1+ +1k( ce—1,L )nc_l,

A

the last equality following from the results of Section O

3.3.2 1/n-surgery: Twist knots and the Whitehead link

Let L be the Whitehead link in S, and My, its exterior. We draw it as in Figure with
components Ly and Lo. Note that L is actually ambient isotopic to the link obtained by
reordering the components, therefore doing a given surgery on L; or Lo yields the same
manifold up to homeomorphism. We will do a 1/n-surgery on the component Lo.

The following theorem relates a particular L?-Alexander torsion of the Whitehead link,
where ¢ sends the second component to zero and + is an epimorphism to a knot group, to
the L2-Alexander torsion of this knot group. The possible knots in question are the twist
knots described by the diagram of Figure [3.4]

Note that n € Z can be positive or negative, that Ko = O is the trivial knot, K; = 3;
is the trefoil knot, K_1 = 4, is the figure-eight knot, Ko = 5o, K_o = 61, etc.

All non-trivial twist knots have genus 1.

All twist knots except for O and 3; are hyperbolic.

Let (o, 5) be a preferred meridian-longitude system for Ly as in Figure Note that
« is called A in Figure [A77] in the Annex, since there it represents the longitude of the
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- J " lay

Figure 3.3 — The Whitehead link

1 T4

2n crossings

Figure 3.4 — The twist knot K,

solid torus S2\ V(Lz) and 3 is called u because it represents a meridian of this same solid
torus. In this section, however, « is the meridian and S the longitude of the component
we are doing the surgery on, that is to say Lo.

Here we do 1/n-surgery on Lo, which means that (p,q) = (1,n), and thus (r, s) = (0, 1)
is a possible choice of coefficients for the curve .J/, which means we can assume J' = 3.

Let N be the manifold obtained by this surgery on M. Let Jy;: My — N be the
associated natural inclusion, which extends to an inclusion S3 \ V(L) < S® since 1/n-
surgery on the trivial knot in S3 yields S®. The image of Li by this inclusion is K,,, as
Figures and illustrate. Thus N = My, = S\ V(K,). The inclusion Jj; induces
an epimorphism : m1 (M) — m1 (Mg, ) whose kernel is the normal subgroup generated
by [7] = [a] [8]".

As a conclusion the following diagram is commutative.

n 7y
m(Mp) —— m(Mg,) — G

oo fem

72 7"
(1,0)

Theorem 3.9. Let~y: m (Mg, ) — G be a group homomorphism such that (m1(Mk,,), ok, ,7)
forms an admissible triple.

For allt > 0, if v(m) is of infinite order in G and if C,E2)(ML, (L,0)car,vyoQn)(t) is
weakly acyclic and of determinant class, then CLEQ)(MKn, ak,,v)(t) is weakly acyclic and
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of determinant class, and
T® (Mg, ar,7)(t) = T (My, (1,0) 0 ar,y 0 Qu)(0).

Proof. We apply Theorem 3.7, Here M is My, N is Mk, , ¢ is ak,,, (p,q,r,s) = (1,n,0,1),
[1]"[\? = [B], Q is equal to @y, and thus

(v 0 Qu)([e]"8]%) = (v 0 @u)([B]) = 7(m).

Observe also that
(ak, o Qn) = (1,0) - ay.

As a consequence, the assumptions of Theorem [3.9match exactly with the ones of Theorem
.7 therefore one has

T (M, (1,0) 0 g,y o Qn)(t)
max(l,t)((l,o)oaL)([ﬁ])

T(Q)(MKnvaKnaﬂy)(t) =
Since (agk, o Qn)([8]) = (1,0) - ar([8]) = (1,0) - (8) = 0, we conclude that the

denominator is equal to 1 and the theorem follows.

Remark 3.10. We can also prove Theorem by using Fox calculus on two particular
group presentations [P7| and of G, and Gk, :

Pr = {(a1,a, 8| = [al,a][afl,a],aﬁ = Ba)

PKn = <CL1,0&,ﬁ|B = [alaa][aflaa]aaﬁn = 1>

(here [a,b] = aba~'b~1) The presentation P, is interesting for its brevity.

Remark 3.11. Results of W. Thurston and T. Jorgensen demonstrate that if one does
p/q-Dehn filling on a hyperbolic link complement, with p? + ¢? large enough the resulting
manifold will also be hyperbolic with volume approaching the volume of the original link
complement by smaller values as p? + ¢> — 0o.

In particular, as n — oo, by Theorem [3.9

T (Mp,(1,0) 0 ar, Q) (1) = T ( Mk, , ag, ,id)(1)

sy (2
— exp <V01(L)>

n—00 (s

_ T(Z)(ML, (1,0) o g, id) (1)

It is now natural to wonder if there exists a similar convergence of the L?-Alexander
torsions for ¢ # 1.

Question 3.12. Do we have

T (M, (1,0) 0 az, Qu)(t) — T (My, (1,0) 0 ar,id)(t)

for every t > 07 for every t € Q<¢?
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Figure 3.5 — 0-surgery on the Whitehead link: a knot inside S? x S!

3.3.3 O-surgery: the Whitehead link into S? x S!

Let L be the Whitehead link as in the previous section. Let My be the manifold obtained

by a O-surgery on the component Lo in M7p. Since Lo is unknotted in S and since 0-

surgery on the trivial knot in S3 yields S? x S!, we can see My as the exterior of a non

trivial knot in S? x S' (the image of Ly in §% x S1). See Figure for clarity.
According to the previous section,

PL = <(11,0é,,8‘5 = [alua][al_laa]aaﬁ = Ba>

is a group presentation for Gy = m(Mp). Thus Gy = m1(Mp) admits the presentation

<a17a7/6‘/8 = [al,a][afl,a],aﬁ = ﬁawB)

since O-surgery kills the curve J = o' = 3. The previous presentation simplifies to the
following presentation of Gy = m1(Mp):

Py = (a1, allar,a] = [a,af1]>

= (a1, alarca; o = aa o ay)
= <a1,a\a1 (ozal_lofl) = (aal_lofl) a1>

We will prove that My is irreducible by using properties of Gg.

Let us assume M) is not irreducible and find a contradiction. Since My is not irreducible
and My # S' x S§%, My is not prime, thus My = N§N’ with N, N’ compact connected
oriented manifolds with empty or toroidal boundary both different from $%. Assume for
instance that N is closed and N’ has the single toroidal boundary component of M.
By the Poincaré conjecture, since N # S3 G = 71(N) is not trivial. Besides, since
ON’ = S' x S! has non trivial Hy, so does N’; indeed, by the homology exact sequence
(and Poincaré duality)

... — H{(N') =2 Hy(N';0ON') = H,(ON') =2 Z? — H;(N') — ...

we can see that Hy(N') cannot be zero. Thus H = 71(N’) is not trivial. Hence, by the
Seifert van Kampen theorem, Gy = G* H is a free product. However, by a Corollary of the
Grushko-Neumann theorem (see [MKS04, p.192]), the rank of a group (i.e. its minimal
number of generators) is additive under free product. Since G and H are not trivial, they
have rank at least 1, but since Gy admits the presentation Py, it has rank at most two.
Thus G and H both have rank 1, and are therefore cyclic, of the form Z or Z/m. However,
we can see from Py that the abelianization of Gy is Z?; since the abelianization of a free
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product is the direct product of the abelianizations of the free factors, we conclude that
G =2 H = 7Z. But this implies that Gg is the free group on two generators, thus since a;
and aaja~! commute in Gy, they are powers of the same element w by [MKS04, Corollary
4.1.6], which contradicts the fact that, as conjugates, they are sent to the same nonzero
element in the abelianization Z? of Gy. We have our contradiction. Thus My is irreducible.

By Section [2.1.3] since My is a compact connected oriented irreducible 3-manifold with
nonempty toroidal boundary and infinite fundamental group, then My is aspherical and
Gy has trivial Whitehead group, therefore we can compute the L?-Alexander torsion of
My from the deficiency one presentation Py, that we rewrite

Py = (b, c|bcbc™! = cbetb)

for clarity (a; becomes b and o becomes c¢). The Fox matrix is
1—c—cbe™! +be _[(1—c—cbct+be
~14ebe b +b—bebe )\ (b—1)(1 —cbe™t)
Let (Go,¢: Go — Z,v: Go — G) be an admissible triple. From the form of the Fox
matrix, the L?-Alexander torsion of M exists and is equal to
T (Mo, 6,7)(t) = detyg) (Id — £ Ry gy ) = max(1, )1l = max(1,)/40)
as long as v(b) is of infinite order in G.

From this we conclude that Mj is of zero volume, thus Seifert-fibered, and the value
of its Thurston norm follows from Proposition

Now we can use the Surgery formula of Theorem [3.7] to obtain information on certain
L?-Alexander torsions of the Whitehead link.

The abelianization oy, sends a; to (1,0) and « to (0,1) in Z2 Let a,: Go — Z2
denote the abelianization that sends b = a; to (1,0) and ¢ = « to (0,1). Here, the
curve J' of the previous sections is a~!, since (p,q,7,s) = (0,1, —1,0), and it follows from
Theorem that for all integers n1,ns not both zero, if 7(0_1) has infinite order in G,
then
T@ (My, (n1,n2) 0 ar, 7 © Qo)(t)

max(1, )"l
where [Qg: G, — Gy is the quotient group epimorphism by 2.
Finally we conclude that:

T (Mo, (n1,n2) 0 angy, 7)(t) =

Proposition 3.13. For allt >0, if v: Gy — G is such that (70 Qp)(«) and (7o Qp)(a1)
are of infinite order in G and if CXEQ)(ML, (n1,n2) o ar,vy o Qo,t) is weakly acyclic and of
determinant class, then

T(Q)(Mb (n1,n2) o ap,y o Qo)(t) = max(1, t)|n1\+|n2|.

We studied the example of the Whitehead link in this section, but the reasoning can
be extended to 0-surgeries on other knots and links.

3.3.4 Consequences for closed manifolds

If M is a smooth compact connected oriented irreducible 3-manifold with non-empty
toroidal boundary (and thus infinite fundamental group) then by the Conclusion of Section
we can compute the L2-Alexander torsion of M from any deficiency one presentation
of Gy = m(M).

We can no longer do this if M is closed. However, the fundamental theorem of W. B.
Lickorish and A. H. Wallace (see for instance [Rol90, Theorem 9I1]) states that:
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Theorem 3.14. If M is a connected orientable closed manifold, then M can be obtained
by surgery on a link L in S>.

Moreover, one may always find such a surgery presentation in which the surgery coef-
ficients are all £1 and the individual components of the link are unknotted.

Using Theorem we can thus compute L?-Alexander torsions of M from particular
L2-Alexander torsions of link exteriors S3\ V(L), for which we can simplify computations
using deficiency one group presentations.

Therefore we can hope to compute T2 (M, ¢, ~v)(t) for closed M from Fuglede-Kadison
determinants of operators with a small number of terms, and thus extract relevant geo-
metrical information.

Remark 3.15. One has to be careful about the abelianization of G if M is such a closed
manifold.

For example, if K is a knot in S3, then G% = Z. Therefore, if M is obtained by
p/g-surgery on K, then G¢¢ = Z/p is finite every time except in the case of a O-surgery.
But if G4) is finite, any group homomorphism ¢: G s — Z factors through G¢% and thus
is trivial, therefore

T(M, ¢,9)(t) = TP (M,0,7)(1) = T® (M, ¢ 0 Q, 70 Q)(t) = T® (Mg, 0,70 Q)(1)

and we lose any information of the L?-Alexander torsions of the knot for ¢ # 1. Note that
for v = id, this still offers us the hope of computing the volume of a closed manifold M
from Fuglede-Kadison determinants of operators on a small number of terms.






Chapter 4

Link operations, cablings and JSJ
decompositions

In this chapter we compute the L?-Alexander torsions for all link exteriors that are Seifert-
fibered, like exteriors of torus links. As a consquence of the Mayer-Vietoris formula of the
previous chapter, we also prove a formula for the L?- Alexander torsions of 3-manifolds that
are obtained as gluings of simpler manifolds along tori; often this tori are incompressible
and correspond to the JSJ decomposition of the 3-manifold.

These various computations allow us to determine the L2-Alexander torsions of a
connected sum of links and of a general multi-component cabling of a link by a torus link.

4.1 Toroidal gluings and L?-Alexander torsions

The following result appeared first in [DFL14, Theorem 5.5]. We will illustrate how it can
be seen as a consequence of Theorem [3.1

Proposition 4.1. Let N be a 3-manifold and ¢ € Hom(m1(N);Z).

Let Ty, ..., Ty be disjoint tori in M and N1, ..., N; the connected components of
M’(Tlu...UTk).

Fori=1,...,l, we denote by 1;: N; = N and 7;: T; — N the inclusions.

Let v: m(N) — G be a homomorphism such that (71 (N), ¢,7) is an admissible triple
and the restriction y o (7;)« to each wi(T}) has infinite image. Let t > 0.

If c® (Ni, 0 (¢)s,y © (13)x,t) is weakly acyclic and of determinant class for all N,
then CZ.EZ)(N, ®,7,t) is weakly acyclic and of determinant class and

l
TO(N,¢,7)(t) = T[T (Niyd 0 (t)ssy 0 (13)s).
=1

Furthermore, if N is irreducible, then for T1,..., Ty the associated collection of JSJ
tori and Ni,...,N; the JSJ pieces, the homomorphisms (1;)« and the (7). are injective

and
l

i=1
Proof. Let us first assume that k = 1 and [ = 2. We apply Theorem [3.1]with A = N1, B =
No,V =T1,X = N. If we assume that (v o (71),)(m1(71)) is infinite, then by Theorem
c? (T1, ¢0 (1), 70 (1), ) is weakly acyclic, of determinant class, and of L?-torsion
equal to 1.
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Besides, we assumed that C£2)(NZ~, @0 (Li)x,7y 0 (L), t) is weakly acyclic and of deter-
minant class for ¢ = 1,2. The first part of the theorem follows from Theorem

For bigger k£ and [ one just applies the previous reasoning by induction on k, tori by
tori. Note that rigorously speaking, the base points of the fundamental groups change at
each step but this does not change the final formula.

For the second part of the theorem, the key property is that the tori 7 are incompress-
ible in N, thus the homomorphisms (7;), are injective. Therefore the homomorphisms (¢;).
are injective as well by Remark [I.13] The formula follows from Proposition 2.5 O

This formula is a great help for computing the L?-Alexander torsions of an irreducible
3-manifold, assuming we know the L2-Alexander torsions of its JSJ pieces. When such
a piece M is Seifert-fibered, we can use the following Proposition to compute its L2-
Alexander torsions, which depend only on the Thurston norm x7(¢) of the homomorphism

é.

Proposition 4.2. ([DFL1j, Theorem 8.5]) Let (M, ¢,v: (M) — G) be an admissible
triple with M a Seifert-fibered 3-manifold not equal to S* x S? nor the solid torus S' x D?,
and such that the image of any regular fiber under v is an element of infinite order in G.
Then for all t > 0, CZEQ)(M, ®,7,1t) is weakly acyclic and of determinant class, and

TO(M,$,7) = max(1, 0",

As an immediate consequence of the two previous results, we can compute the L2-
Alexander torsions of graph manifolds.

Proposition 4.3. ([DFL1j, Theorem 8.6]) Let (N,¢,~v: m1(N) — G) be an admissible
triple with N a graph manifold not equal to S* x S? nor the solid torus S* x D?, and such
that given any JSJ component N; of N, with v;: N; — N, the image of any regqular fiber
of N; under yo (t;)«: m1(N;) = G is an element of infinite order in G. Then for allt > 0,
CQEQ)(N, ®,7,t) is weakly acyclic and of determinant class, and

l .
T(z)(N, ¢77) -~ max(17t)|:(:]\;(¢)| _ max(l,t)‘Zi:I »"UNl((?b (ti)«) '

Computing Thurston norms is a difficult problem in general. Thus in this chapter,
for all Seifert-fibered link exteriors, we will use convenient tools such as explicit group
presentations and Fox calculus to compute the values of the L-Alexander torsions. This
will allow us to prove formulas for connected sum and cabling of links, which will generalise
the ones for knots of Theorem 2.33] and Theorem 2.36]

Remark 4.4. In the following sections, we will only consider gluings of link exteriors
along a toroidal boundary with a slope zero, in the sense that a preferred meridian of a
component of the first link will be glued with a preferred longitude of a component of
the second link, and vice-versa. This is the case for connected sums of links, satellite
operations like cabling, and also oco-surgery (removing one component of the link).

However, Proposition allows us to compute L?-Alexander torsions of manifolds
obtained by toroidal gluings of any slope p/q. Changing the slopes p;/g; changes the
inclusions N; < N and thus changes ¢ o (¢;)« and v o (4;)«. The surgery formulas of
Chapter [3| can be seen as a particular example of this, where a solid torus (i.e. the
exterior of a trivial knot) is glued to a 3-manifold.
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4.2 Seifert link exteriors, connected sums and cablings

4.2.1 Links with Seifert-fibered exterior

Let us consider S both as the unit sphere of C? and as the one-point compactification of
R3 by the point co. We define

o T(m,n) = {(21,2) € S C C?2 = 25} the torus link of type (m,n) (with
e = ged(m, n) components),

. {(21,0) € S3} the trivial knot drawn as the vertical line passing through oo in
R3,

o {(0, z9) € S3} the trivial knot drawn in R? as the unit circle of an horizontal
plane (normal to H, in its origin).

This allows us to describe the links L in S® whose exterior is a Seifert manifold:

Proposition 4.5. (see [Bud06, Proposition 3.3])
Let L be a non-split link in S3. Its exterior My, is Seifert-fibered if and only if L is
one of the following links:

e a torus link T (m,n) = T (ep, eq) with p, q relatively prime (and both nonzero ife > 2),
e a link T(ep,eq) U H, with p,q relatively prime and p # 0,
e a link T(ep,eq) U H, U Hy, with p,q relatively prime.

We exclude the torus links of the form 7'(m,0) with |m| > 2 since they are split.

4.2.2 The strategy

We want to compute the L?-Alexander torsions of all links listed in Proposition We
will need various tools for this: Fox calculus, Mayer-Vietoris formulas, toroidal gluing for-
mulas, explicit homeomorphisms between link exteriors, oo-surgery, etc. For the reader’s
convenience we outline the several steps of our strategy:

1. We compute the torsions for the keychain links 7'(e, 0) U H, with Fox calculus.
2. We deduce the torsions for a connected sum of links thanks to the gluing formula.

3. We compute the torsions for the links T'(e, ek) U H,, by identifying their exterior with
the exterior of the keychain link T'(e,0) U H,,.

4. We compute the torsions for the links T'(p,q) U H, U H}, with the Mayer-Vietoris
formula.

5. We deduce the torsions for the links T'(ep, eq) U H,U Hy, thanks to the gluing formula.

6. We apply two successive oco-surgeries and deduce the torsions for the links
T(ep,eq) U H, and T'(ep, eq).

7. We deduce general cabling formulas for links, thanks to the gluing formula.
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ay |
1
1

CL1‘I’
Ly

Figure 4.1 — The keychain link, for e = 3

4.2.3 Keychain links

Let e > 1. Let L be the (e + 1)-component link T'(e,0) U H, drawn in Figure Let
us call Lq,... L. the e parallel components of T'(e,0) and L.y; = H, the one that circles
them all.

The link group G, = m1(My) is isomorphic to Flgi, ... ge] X Z and one of its presenta-
tions is

P={(a1,...0qc,0c41|010ct1 = Qey101,. .., 0Qclet] = Qet10e).

We can prove this fact either by the Wirtinger process from the diagram of Figure (for
general e) or by e successive applications of the Seifert van Kampen theorem, since L is a
connected sum of (e — 1) Hopf links 7'(1,0) U H,, (the connected sum being always made
on the same component H,). The abelianization ay: Gy — 7t sends a;, the meridian
of L;, to the i-th vector of the natural base of Z¢*1.

Theorem 4.6. Let e > 1. The L?-Alexander torsion for the exterior of the (e + 1)-
component keychain link L exists for all admissible triples (Gr,(ni,...,Net+1) © ar,7)
such that vy(aet+1) has infinite order in G and for all t > 0. One has:

TN (My, (n1, ..., nep1) 0 ag,y)(t) = max(1,¢)leDInestl,
Proof. Let ni,...,net1 € Z. Let v: G — G such that (G, (ni,...,Net1) © ap,7y) is an

admissible triple.
The Fox matrix associated to P is

A10e+1=0e+101 Aele+1=0e+10e
ay 1-— Ae41 e 0
Fp = :
Qe 0 cee 1-— Ae+1
Qo1 a; — 1 ae — 1

Thus, the N (G)-cellular chain complex C,E2)(WP, (n1,...,net1) © g, 7, t) associated
to the presentation P is

@ @)
CO(Wp, (n1, ..., ne1) 0 ar,7,t) = £2(G)° %, (Gt a, 2(G)
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where
A10e+1=0e+101 Aele+1=0e+10e
al Id — tne"'lR,y(ae_‘_l) 0
6%2) : .. :
Qe 0 oo Id— tne+1R,Y(ae+1)
Qet1 tan'Y(al) —Id e tneR,y(ae) —Id
and
(9%2) = (tnl R’y(al) —Id ; ... ; tn€+1R’Y(ae+1) — Id) .

If we assume that y(ae41) has infinite order in G, then by Proposition Proposi-
i

tion and Proposition

determinant class, and

] C’g)(Wp, (n1,...,Met1)0ap,”,t) is weakly acyclic and of

detN(G) (Id — tneJrlR,y(ae_H))
detnr(c) (11 By (ay.) — 1d)

= max(1, ¢)(¢DInerl,

T(Q)(WP7 (n17 ce ,n5+1) o O‘L)V)(t) =

The result follows from the fact that M and Wp are simple homotopy equivalent. [J

4.2.4 Connected sum for links

Let L =L1U...ULcyy and L' = Ly U... UL} | be two non-split links in S3 such that
LU L' is split. Let L” be the (¢ + d + 1)-component link obtained by deleting small parts
of Ley1 and of Ly, | and then connecting them to form a single component (in a way that
respects the orientations of L.y and of Lj;, ;). The link L" is the connected sum of L and
L' along the components Loy1 and L, +1, and we order its components in the following
way:

L'=L{u...UL/UL! U...ULl ;UL ;.4
=LiU...UL. UL U ...uLdu( 418104 1)

The manifold My is the toroidal gluing of My, My, and a 3-component keychain link
KC =1T(2,00UH, = KC;UKCyU KC3, where L¢y1 is glued with KC1, L, is glued
with KC5, and the boundary of KC3 becomes the boundary of L” For details and
examples we refer to [Bud06].

Let ni,...,nergr1 € Z and let v: Gp» — G such that (Gpr, (n1,...,Nerde1) © apr, )
is an admissible triple. Let £ > 0.

Let J: My — Mp» and J': My, — M, denote the inclusions associated with the
toroidal gluing and j, 5’ the induced injective group homomorphisms on the fundamental
groups (see the following diagram for clarity)

RN ?G\ ,y

c+d+1°

Mykc — My KC Gy G
OV (L) — My e g

(155 Neqdy1)
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We can see that

(P15 Meyat1) o apr © j = (N1, ., Ney Netd41) © L
and that
./
(n17 v ’nc+d+1) okypm o] = (nc+17 vy Nt d,s nc+d+1) oy

by checking these identities on each of the meridians of L”.
Let m[/, 4., a preferred meridian of L7 , ;. Then m ;. = j(mer1) = j'(my,)
where mcy 1 is a preferred meridian of L.y1 and m], ; a preferred meridian of L ;.

Theorem 4.7. Assume that

° Cg) (Mg, (n1,...,ne, Netdr1) 0L, yo g, t) is weakly acyclic and of determinant class,
° Cf)(ML/, (Metly - vy Netds Netdr1) 0o, yoji'  t) is weakly acyclic and of determinant
class,

o (M, 4.1) is of infinite order in G,
then CZ,EQ)(MLH, (n1,...,Nerdr1)oapr, vy, t) is weakly acyclic and of determinant class, and
T (M, (n1, ... netasr) o apr,y)(t) = T - T' - max(1, t)merart]

where
T =T3(Mp, (n1,...,1%nerar1) © ar,v o j)(t)

and
T =T (Mp, (et -« s Nevds Nerart) © apr,y 0 ') (t).

This theorem generalizes Theorem (where ¢ = 0,d =0,n1 = 1).

Proof. We can prove this theorem in two different ways.
The first way is a generalisation of the proof of Theorem for links and general
coeflicients n;. We can write Wirtinger presentations

P={ay,...ax|r1,...76—1)

for GGy, and
Pl = <bla---bl’317---3l71>

for G/ such that ag represents m.y1 and b; represents m’d y1- Then
/!
P’ = <LL1, . A, bl, ce bl|7“1, oo Th—1581y...81—-1,0 = bl>

is a (Wirtinger) group presentation of G, by the Seifert-van Kampen theorem.

One can see this with the help of Figure |4.2] where ¢ = 2, d = 1, and the components
L3 and L} are drawn in R? as passing through the point at infinity. The base point pt
for the fundamental groups is marked, one can see that U is homotopy equivalent to My,
U’ is homotopy equivalent to My, and U N U’ retracts to a circle generated by a meridian
w, that circles the interval (A; B). We can choose Wirtinger presentations of G, and G/
such that p is sent to ay and by, therefore the presentation P” is the concatenation of P
and P’ with the relator a; = b; added.

From the form of P”, one can see that the Fox matrix Fp» is almost block diagonal of
blocks Fpj, and Fpr, like in the proof of Theorem The assumptions of the theorem
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Figure 4.2 — The Seifert-van Kampen partition

allow us then to compute T3 (M, (ny,. .., Neras1) © apr,v)(t) from the Fox matrices
and the formula follows.

The second way consists in using Proposition and Theorem Since we assume
that y(m{, ;) is of infinite order in G, it follows that the tori d(V (K C1)) and 9(V (K Cy))
have infinite image under «, because their preferred longitudes are homotopic to a preferred
meridian of K C3 which is sent to m/. +d+1- The formula follows then from Proposition
and Theorem O

4.2.5 The link T'(e,ek)U H,

We consider the link L = T'(e,ek) UH, = L1 U...U L U Leyq1. An example is drawn in
Figure for e = 3,k = 2. We compute the L?-Alexander torsions of its exterior.

Let A denote a meridian of H, and p a preferred longitude of H,. Remark that A, u
are respectively a longitude and a meridian of the torus on which T'(e, ek) is drawn. Let
b; denote the meridians of the components of T'(e, ek), as in Figure

Theorem 4.8. The L?-Alezander torsion for the exterior of the (e + 1)-component link
L =T(e,ek)U H, exists for all admissible triples (G, (ni,...,Ne,Net1) 0 p,7y) such that
Y(AF) has infinite order in G and for all t > 0. One has:

T(Z)(ML, (n1,...,NeyNey1) o, y)(t) = max(l,t)(6_1)|"‘3+1+k("1+"'+ne)|.

Proof. Let KC = T(e,0) UH!, = KC1U...UKC. U KCcy; be the (e 4+ 1)-component
keychain link, see Figure 4.1
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—
|

LT

Figure 4.3 — The link 7'(3,6) U H,

Then the exteriors My and Mg are homeomorphic, by a sequence of k twists of the
solid torus S\ V(K Cey1) = S3\ V(Ley1).

The induced group isomorphism ¢: Gxc — G, relates the generators written in the
two figures in the following way:

Ze+1 aKC GKC’ P GL ajg, Ze+1

(1,...,0,0) «—aj <— by —> (1,...,0,0)
(0,...,1,0) «— ae «— b — (0,...,1,0)
(0,...,0,1) ¢— aey1 «— M — (k... k1)
Thus, for all integers ny, ..., Ne, Net1,
(N1, ..., NeyNeg1) oar o) = (N1, ..., Ne, Net1 + kny + ... + kne) o age.
Let ¢ denote (ni,...,ne,Net1) 0 ap. Since (Gre, ¢ o1,y o) is an admissible triple

and since y(¢(aes1)) = v(Au¥) has infinite order in G, it follows from Theorem that
CiQ)(M KC, o, yo1,t) is weakly acyclic and of determinant class and

T(Q)(MKC, d) o w, Yo ¢)(t) = max(l, t)(e_1)|¢(¢(ae+1))| — max(l, t)(8—1)|ne+1+k’n1+---+kne|.

Since Mj, and Mgc are homeomorphic, they are simple homotopy equivalent and the
result follows from Theorem [2.12]
O

Note that we could also have proven this theorem by direct computations of the Fox
matrix of the presentation

P =(by,....be; \ pupFbrip™® = A0\, o pF Do ™R = A TIb, be . boby = 1)
of the link group G = 71(S3\ V(L)).

4.2.6 The link T'(p,q) U H, U Hy,

We consider the 3-component link L = T'(p, ¢) UH, U H}, where p # 0 and p, g are relatively
prime. An example for p = 3,¢ = 4 is drawn in Figure
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m\ T(p,q)

—
— |

] HJ

Figure 4.4 — The link 7'(3,4) U H, U Hy,

>

= A

Hy

Tubular neighbourhoods of Hj, and H, have a torus T as a common boundary. The
manifold My = S3\ (V(H,) UV (H})) is homeomorphic to a thickened torus 7' x [—1;1].
We identify "= T x {0} to the torus on which the torus knot T'(p, ¢) is drawn.

The space Z =T \ V(T'(p,q)) is homeomorphic to an annulus. Let ¢ be a curve that
generates m1(Z). The curve |§| is thus locally parallel to the torus knot T'(p, q). See Figure

for clarity.

Figure 4.5 — The generator § of 71(Z)

Theorem 4.9. The L?-Alezander torsion for the exterior of the link L = T (p, q)UH,UH)},
exists for all admissible triples (Gr,(n1,n2,n3) o ar,vy) such that the homotopy class of
the curve § is sent by v to an element of infinite order, and for allt > 0. One has:

T (Mp, (n1,n2,n3) 0 ap,7)(t) = max(1,1)Prmteretas],

Proof. The torus T separates My in two thickened tori Ny = V(H,) \ H, and
Ny =V(Hp) \ Hp.

Let X = Mp, A= NyUT\V(T(p.q)), B = N2UT\V(T'(p,q)) and Z = T\V(T'(p,q)),
sothat X = AUB and Z = AN B, and X, A, B, Z are path connected. We pick a base
point pt € Z for all the following fundamental groups.

The space Z is an annulus, and its group 7z = m1(Z) is isomorphic to Z and is
generated by an element ¢ that runs between the p strands of T'(p, q).

The space A is homeomorphic to a thickened torus, by filling the missing surface lines
of V(T(p,q)). Let (y,A) be a preferred meridian-longitude system of A, as in Figure
Note that A\ acts as a meridian of the unknot H,. The group m4 = m(A) has the
presentation (y, A\[yA = A\y) and is isomorphic to Z2.
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Similarly, the space B is homeomorphic to a thickened torus, by filling the missing
surface lines of V(7T'(p,q)). Let (m,c) be a preferred meridian-longitude system of A.
Note that m acts as a meridian of the unknot Hj. The group mp = mi(B) has the
presentation (m, c/mc = em) and is isomorphic to Z2.

The element z is sent to APy? in 74 and to ¢m? in wp. Thus the group G = m(X)
admits the presentation

(y, \, e, m|Ny? = Pm? y\ = Ay, mc = cm)

by the Seifert van Kampen theorem.

A - om(4)
AR P N
Z X m(2) G e
P4 S e
: R

Let ¢ denote the homomorphism (n1,ng,n3)oar. We assume that the homotopy class
of 0 is sent by v to an element of infinite order, i.e. yo0i(d) = y(cPm?) = v(A\Py?) has
infinite order in G. Therefore v(74) and y(7p) are infinite and it follows from Theorems
and [3.5| that the three N (G)-cellular chain complexes

CP(Z,¢0i,70i,t), CP(A, ¢ 0 ja,vojat), O (B,do jp, v o ju,t)
are weakly acyclic and of determinant class, and
TA(A, poja,yoia)t) =TI (B,¢ojp,yojp)t) =1,
TON(Z, ¢poi,voi)(t) = max(1,t)” 1l

Hence, by Theorem C’£2)(M L, (n1,n2,n3)oar,,t) is weakly acyclic and of deter-
minant class as well, and

T (M, (n1,n2,n3) 0 ar,7)(t) = max(1, )™ = max (1, ¢)lpamteretans],

4.2.7 The link T'(ep,eq) U H, U Hp,

We can now compute the L?-Alexander torsions for a general link L = T'(ep, eq) U H, U Hy,
by using the fact that the torus link 7T'(ep, eq) is a (e, epq)-cable on the torus knot
K =T(p,q) (see Annex[A.2).

In Figure we draw a torus link T'(e, epq) inside a solid torus S% \ V(Hf), the link
T(p,q) U H, U Hy, and the torus link T'(ep, eq) which is a (e, epg)-cable on T'(p, q) (we did
not draw H, and Hj, in the third part in order to make the figure easier to read). Here
p=2,qg=1e=2.

One can see the torus Tk (drawn with red dotted lines) that separates Mp(y9) in
the disjoint union of the exterior of the torus knot T'(2,1) in S and the exterior of the
torus link 7°(2,4) U Hg. This torus Tk is the boundary of a tubular neighbourhood of
K =T(p,q). A preferred longitude lx of K is drawn on the figure. We identify S3\V (H)
to the solid torus V(K); the component Hy looks like a preferred meridian of K.
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K=T(21)

X X X X
O] >
1 by T Y Hp,
1 ¢

&
L
S
=
L

Figure 4.6 — The torus link 7'(4,2) as a (2,4) cable on T'(2,1)

As a consequence, the torus link exterior S%\ V(T (ep,eq)) is the JSJ gluing of S\
V(T(p,q)) and S* x D>\ V(T'(e, epq)).

Let M = M, denote the exterior of L = T'(ep,eq) UH, UHy, A= S3\V(KUH,UH})
and B = S%\ V(T'(e,epq) U Hg) (in Figure A is the exterior of the drawing up right
and B of the one up left). We see that M is the toroidal gluing of A and B along their
intersection T = AN B. The following diagrams are commutative:

A 71 (A)
I A i JA
TK/ ! \KM Wl(TK)/ i \f‘NM) =Gy ! G
B m(B) 7o 7,

(nl, N ,7’Le+2)

As in the previous section, let T" be the torus on which K is drawn, and § a simple
closed curve that generates the fundamental group of 7'\ V(K). The curve ¢ is once again
locally parallel to the components of T'(ep, eq).

Theorem 4.10. Let e > 2. The L?-Alexander torsion for the exterior of the link

L =T(ep,eq)UH,UH)}, exists for all admissible triples (G, (ni,...,Nes Net1,Net2) 0L, 7Y)
such that the homotopy class of the curve § is sent by v to an element of infinite order,
and for allt > 0. One has:

7(2) (M, (1, - .., ey Nes 1, Mer2) 0 ap, Y)(t) = max(1, t)e|PQ(n1+...+ne)+pne+1+qne+2|‘

Proof. Let t > 0. Let ¢ denote the homomorphism (n1,...,net2) 0 ar. We assume that
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the homotopy class of § is sent by v to an element of infinite order. First, as the cabling
torus Tk is the boundary of a tubular neighbourhood V(K) of K = T'(p,q) and contains

such a curve 9, the torus Tk has thus infinite image under ~y, therefore C’£2)(TK, ¢poi,yoi,t)

is weakly acyclic and of determinant class and its L?-torsion is 1, by Theorem
Secondly, the curve A = AP of Theorem [4.8is ambient isotopic to &, thus it is sent

by 7 to an element of infinite order (in Figure A is written g, and p is parallel to

Hg), therefore C£2) (B,¢ojp,yojp,t) is weakly acyclic and of determinant class, and

T(B,¢ojp,vojp)(t)
=7@ (53 \V(T'(e,epq) U H), (na, ..., nes2) © ap 0 jip, 7y © jB) ®)
=7® (53 \V(T(e,epq) U Hi), (11, - .-, Me, Pliet1 + qNet2) © O (e epg) Ut » Y © jB) ®)

= max(l’ t) (6_1)|pn€+1+qn6+2+pq(n1+'”+ne)| .

Finally, the last piece of the toroidal gluing is A = My \ V(K), which corresponds to
the case e = 1 of the previous section; from the assumption on §, it follows from Theorem

that C’iQ) (A, o ja,voja,t)is weakly acyclic and of determinant class, and

TP(A, ¢ 0 ja,yoja)t)
=7® (53 \V(T(p,q) U Hy U Hp), (n1, ..., net2) o ag 0 ja,yo jA) ®)

=7? (53 \V(T(p,q) UH,UHp),(n1+...+ne,Ney1,Neq2) 0 QT(p,q)UH,UH» Y © jA) (t)

= max(1,1) [prc+1+qner2+pg(nit...4ne)|

It then follows from Proposition that C’iZ)(M L, ®,7,t) is weakly acyclic and of
determinant class, and

T(2) (ML7 (nla <oy ey Met 1, n6+2) car, 7)(t)

= T(Q)(Aa ¢ O.jA77 O]A)(t) : T(Q)(Ba ¢ Oj377 OJB)(t)
= max(l, t)(e,mpneﬂ+qne+2+pq(m+...+ne)| - max(1, t)\pne+1+qne+2+pQ(n1+...+ne)\

= max(1, t)e\pneﬂ+qne+2+pq(n1+m+ne)\'

4.2.8 The link T'(ep,eq) U H,

The link L = L1 U...UL.UH, = T(ep, eq) U H, is obtained from L' = T'(ep, eq) U H, U Hp,
by deleting the component Hy, therefore My is obtained from M, by a oco-surgery on
the boundary component of Hy,. This helps us compute the L?-Alexander torsions of L.
Let Aj, be the homotopy class of Hy in My, and § the simple closed curve locally parallel
to the strands of T'(ep, eq) as in the previous section. The epimorphism Q: G — G,
corresponds to the trivialization of the curve Ay.

Theorem 4.11. The L?-Alexander torsion for the exterior of the link L = T(ep, eq) U H,
exists for all admissible triples (Gr, (n1,...,net1) o ar,y) such that v(0) and y(A\p,) have
infinite order in G and for all t > 0. One has:

T (Mp, (n1,...,net1) 0 ag,y)(t) = max(1, ¢)EPI=Dineritalmte4no)l,
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Proof. We will use Theorem Here Aj, corresponds to the curve A in the assumptions
of Theorem (3.8, Since y(d) has infinite order in G, it follows from Theorem that

CZEQ)(ML/, (n1,...,Met1,0) 0, voQ,t) is weakly acyclic and of determinant class, and
T(2) (ML’y (n17 ey Mes, O) oar/,yo Q)(t) - maX(l, t)e|PCI(n1+...+ne)+pne+1|‘

Since y(Ap) has infinite order in G, it follows from Theorem (3.8 that
CZ.(?)(ML, (n1,...,Meq1) 0 g, 7, t) is weakly acyclic and of determinant class, and

T(2)(ML,, (n1,...,Met1,0) 0,y 0 Q)(t)
max(1, £) I Hy)r A1k Le, Hne+ Tk (Ho Hyne]

T(2)(ML, (N1, ... Neg1) 0 g, ¥)(t) =

) maX(Lt)elpq(n1+...+ne)+pne+1|

max(17 t) ‘qn1+---+qne+ne+1‘

— max(1, £)(€lpl-Dinesrtalu+tne)]

O]

Note that we could also have proven this theorem by direct computations of the Fox
matrix of the presentation P of the link group G with generators

m, Lz, y, N\, by ... be

and relators
b OMPY) = (\PDbrs . beet (MPD) = (AuP)be_1,

be...by=p=m=m(z,y), 27 = NPyl \=1=I(z,y), Ny=1yN,

where m(z,y) and I(z,y) are words in z,y.

4.2.9 The torus link T'(ep, eq)

Now we can compute L2-Alexander torsions for general torus links of the form L =
T(ep,eq), where e > 2 is an integer and p, q are relatively prime integers. The link T'(ep, eq)
is obtained by oo-surgery from T'(ep,eq) U H, on the component H,. The epimorphism
Q: Gr(ep,eq)uH, — GT(ep,eq) COTTESPONdS to the trivialization of the curve A,.

Let 6 and Aj be as in the previous sections, and let A, denote the homotopy class of
Hy in Gr(epeq)- Note that the fundamental group of the torus 7' (on which T'(ep, eq) is
drawn) is generated by classes of curves homotopic to A, and A,. Thus the equality

§ = APXI

stands in Grp(epeq)- This equality and the fact that ApA, =
homomorphism v: Gp(ep.eq) — G, if two elements of {7(d),~(
order, then the third is of infinite order as well.

Ay imply that, for any
An),v(Ay)} are of infinite

Theorem 4.12. The L?-Alexander torsion for the exterior of the torus link L = T (ep, eq)
exists for all admissible triples (Gr, (n1,...,ne)oar,y) such that two of the three elements
¥(9),v(An),v(Ay) have infinite order in G, and for allt > 0. One has:

TO(Mp, (n1,...,ne) o ar,y)(t) = max(L,t)lm+-+nelelplla=lpl-la)

This theorem generalises Theorem [2.28] (2).
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Proof. We will use Theorem Here A, corresponds to the curve A in the assumptions
of Theorem Since v(6) and 7y(Ap) have infinite order in G, it follows from Theorem
4.11| that C,E2 (M7 (epeqyutys (N5 - -+ s 1e,0) © Qp(ep eqium, s Y © @ t) is weakly acyclic and of
determinant class, and

TN (Myp(epeqyutt,s (M1 - - 76, 0) © O (epequr,» ¥ © Q)(1) = max(1, )P Dlallnatnel,
Since (Ay) has infinite order in G, it follows from Theorem that
CiQ)(ML, (n1,...,me) o ag,,t) is weakly acyclic and of determinant class, and

T(Q) (MT(ep,eq)UHua (nla <oy Te,y O) O Q7 (ep,eq)UH,s 7 © Q)(t)

(2) -
T (Mp, (n1, ... ne) oap,y)(t) = max (1, 6K k(Lo e

. max(1,¢)ElPl=Dlallnt.4nel

- max (1, t)lPnit-tpne|

= max(1, t)(Pllal=Ipl=laDinit. 4ne]

O]

Note that we could also have proven this theorem by direct computations of the Fox
matrix of the presentation P of the link group G, = m1(S®\ V(T'(ep, eq))) with generators

mal7x7y7)\7,u'7b1-~-be

and relators
bi(AP?) = (AP )by, ooy be1 (ApP?) = (ApP?)be—1,

be...bp = p=m=m(z,y), 2> =y, A=1=1(z,y),

where m(x,y) and [(z,y) are words in z,y.

4.2.10 General cabling formulas

We can now prove a general cabling formula for L?-Alexander torsions as a consequence
of Theorem 171

Let L =LjU...ULcq alinkin §% and L' = LyU...UL, UL, U...UL.,, the
link obtained by cabling the component L.;1 by the torus link T'(ep,eq) with p,q two
relatively prime integers.

Then M = My, = $3\ V(L') is obtained by a toroidal gluing of A = My, = S3\ V(L)
and B = (S' x D)\ V(T(ep,eq)) = S3\ V(T (ep, eq) U H,) between the components L. 1
and H,.

Let ni,...,nere € Z. Let v: G — G be a group homomorphism such that
(Grry (N1, ... Nete) © apr,y) is an admissible triple. Let ¢ > 0.

The following diagrams should help the reader picture the various maps we consider.

A
oy

B

T

ary g
ettt — 7
(N1, ... Nete)

%“AFGL i
M m(T) ! \m(M):GL/ a
% (B)j/B
st
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T(2,0)=P1U P

t~

Figure 4.7 — The (2, 0)-cabling on the second component of L = L U Ly

Let
N:nc+1—{—...—|—nc+e

and .
€ =" "1k(Lj, Ley1)ni.
i=1
To clarify the notations, let us consider the example in Figure [£.7] The link L has two
components (¢ = 1), L1 which is unknotted and Lo which is a trefoil, with linking number
Ik(L1,Lg) = 1. We do a (2,0)-cabling on Ly (thus e = 2,p = 1,q = 0), and the resulting
link L' has 3 components. We glue the tori 9(V(Lz2)) and (V') such that a meridian of

Ly is identified with my the meridian of V' that circles both components of T'(2,0). Here
N =ng9+ng and £ = nq.

Theorem 4.13. Assume that
° C’iz)(ML, (n1,...,ne,pN)oar,voja,t) is weakly acyclic and of determinant class

2 . . .
. C’i )(MT(eneq)qu, (Met1y -+ s Netes ) © Qp(ep.eq)uH, >V © JB, t) 8 weakly acyclic and of
determinant class
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o T'=0(V)=Z9(V(Let1)) has infinite image under
then CZEQ)(ML/, (N1, ... Neye) 0,7, t) is weakly acyclic and of determinant class and

T(2) (ML’v (nla s anche) oay, 7) (t)
= T(Q)(ML, (n1,...,ne,pN)oar,voja)(t) max(1, t)(e‘m_l)'“qm,

Proof. First let us prove that
(N1, Nete) 0 0ja = (n1,...,nc,pN) o ag

and that
(nl, ey nc+e) oQypr O jB = (7’LC+1, vy Netes Z) @) O‘T(ep,eq)UHU'

The group G, = m1(A) is generated by my, ... me41, preferred meridians of Ly, ... L1
in Mj,. We have

(01, neye) 0 a0 ja)(mi) = (01, .-+, ne, pN) 0 aup) (i)
for i = 1,...,c since Ly,..., L. are the c first components of L’. The identity is also
true for i = ¢ + 1, since js(meq1) circles the e components L., ,..., L., p times and is

unlinked with Ly, ..., L.

The group Gp = 71 (B) = m1(S* x D?\ V(T(ep,eq))) is generated by by, ..., b. (pre-
ferred meridians of the components of T'(ep,eq)) and A a longitude of the solid torus
St x D* = 9V(Ley1). Note that jp(\) = ja(ler1) in My, where l.4q is a preferred
longitude of L.y; in My. The identity

(nla s >nc+e) oap ojp = (nc+17 <oy Nete E) O Q7 (ep,eq)UH,

is true on each of the generators b;, i = 1..., e (both terms of the equality are immediately
equal to n.4;), and for A the second term is equal to ¢, and the first term is equal to

((n1,. -y nere) cap)(GB(A) = ((n1, -+, nete) 0 apr)(Ga(ley1))
=((n1,...,ne,pN)oap)(let1)
=nilk(Ly, Leg1) + - .. + nelk(Ley Ley1) +0 = £.

We have proven that the three different coefficients ¢ of the statement of the result
were indeed compatible. Now, since the cabling torus T'= 9(V(L.4+1)) has infinite image
under 7, the result follows from Proposition [£.I] and Theorem [£.11}

O

Note that Theorem generalizes Theorem where ¢ = 0,e =1,/ =0 and
N = ny = 1.



Chapter 5

The L?-Alexander invariant for
fibered knots

In this chapter we prove that the L?-Alexander invariant of a fibered knot is eventually
monomial as a function on the positive real numbers; our proof is based on Fox calculus
and elementary operations on operators. This provides an alternative proof of [DFL14]
Theorem 8.2] in the case of knot exteriors.

As a consequence, we prove that the L?-Alexander invariant detects the figure-eight
knot.

5.1 Fibered knots and fibered manifolds

Let M be a 3-manifold and let ¢ € H*(M;Z) = Hom(71 (M), Z) be a 1-cohomology class.

Definition 5.1. The homomorphism ¢ is fibered if there exists a surface bundle
p: M — S and an integer r € Z such that the induced homomorphism p,: w1 (M) — Z
is equal to r¢.

A knot K in S is fibered if the abelianization ax: Gx — Z is fibered.

Proposition 5.2. ([BZH1/, Corollary 5.4])

The exterior M = S3\ V(K) of a fibered knot K of genus g = g(K) is obtained from
the product space ¥ x [0; 1], where Sg.1 45 a compact surface of genus g with connected
nonempty boundary, by the identification

(2,0) = (h(z), 1), z €%
where[h]: ¥ — X is an orientation preserving homeomorphism:
Mg = (X x [0;1])/h.

The homeomorphism h is called the monodromy associated to K.
Furthermore, G = m (M) is a semidirect product G = Z x G’ where
e = m(X) =2 Flar, ..., az) is the free group on 2g generators, and Gg admits the group
presentation

P =(T,a1,...,a24|TarT™" = hi(a1),...,Tazg,T™" = hi(as,)),

where hy: m(X) — m1(X) is the isomorphism induced by h.
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5.2 Eventual monomiality

The following technical property follows from Proposition and [CFM97, Theorem
1.10(e)], and establishes that the Fuglede-Kadison determinant of certain operators de-

pending on a parameter ¢ > 0 is monomial in ¢ for small and great values of t. Compare
with [DFL14, Proposition 8.4].

Proposition 5.3. Let G be a sofic group, let a: G — Z denote a surjective group ho-
momorphism and H = Ker(«a) its kernel. Let T € G such that o(T) = 1 and let
W € GL,(Z[H]) be a matriz invertible over Z[H]. _

Lett > 0, let A = Ry = RyqGa,idyw) and let : (G)" — 2(G)™ denote the
diagonal operator with Rr at each coefficient.

Let N = max (]| Alloo, (|4 |) ™).

1. If t €]0; %[, then the operator tRy — A is invertible and

det N(G) (t/R?; — A) =1.

2. If t > N, then the operator tRy — A is invertible and
det N(G) (t/R? — A) ="
Proof. Let t €]0;+[. The operator A = Ry is invertible and detyry(4) = 1, as a
consequence of Proposition m (3). Since
tRy — A= (—A)o (Id — tA~'Ry),

it follows from Proposition that we simply have to prove that Id —tA~ Ry is invertible
of Fuglede-Kadison determinant equal to 1.
For all u € [0; 1], the operator

Sy :=1Id—utA'Rp
is invertible, since

15 _ -
[t A~ Brlloo < H]A™ oo < 147 oo < 1.

In particular, S = Id and S1 = Id — tA_lﬁ;.
It then follows from [CEMO97, Theorem 1.10(e)] that

det N(G)(Sl) 1 -1 aSv
det = —— " = t v=u | d .
o) (51) det ar(c) (So) P <Re (/0 N©) (S“ rn > u))

We compute

oS, —
C= AT
ov Rr

and )
Sl = Id+wtA 'Ry + (utA*lRT) T

Thus the operator

oS — —\2
-1 v _ -1 42 -1 _
8! 0 5 o=y = —tA”' Ry —ut (A~'ERr)
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is an infinite sum of terms R, where a(g) > 1 (since the terms of A~ come from H), and
its Von Neumann trace tr () is therefore zero (since none of these g can be the neutral
element of G).

Consequently det N(G)(Sl) = 1 and the first part of the proposition is proven.

To prove the second part of the proposition, let ¢ > N and observe that

tRp — A = ({R?) o (Id - 11%?34) :

since tﬁ; is invertible of Fuglede-Kadison determinant t", as a consequence of Proposition

—1
1.51} it suffices to prove that the operator Id — %RT A is invertible of Fuglede-Kadison
determinant 1. This follows from the fact that ¢t > || A||s0, from [CEM97, Theorem 1.10(e)]
and from the definition of A, similarly as above. O

5.3 The L2-Alexander torsions for fibered manifolds

Let N be a 3-manifold, and let ¢: m1(N) — Z. We assume that there exists a surface
bundle p: N — S' whose fiber is a surface ¥ and such that there exists r € Z, p, = r¢.
In this case the manifold N is called fibered, and can be obtained as:

N = (2 x [0:1])/h

where h: ¥ — ¥ is a self diffeomorphism called the monodromy and (z,0) is identified with
(h(x),1) for all x € 3. It follows from the works of Thurston that when N is an hyperbolic
manifold, the monodromy h is pseudo-Anosov, i.e. there exist two transverse measured
foliations on ¥ and a real number A > 1 such that h is isotopic to a diffeomorphism
that preserves the two foliations and multiply their transverse measures by A > 1 and
A~ < 1 respectively. The number A > 1 is called the dilatation factor associated to the
monodromy h. See [FLPT12| for details.

The following theorem establishes that the L2-Alexander torsions (t = TA(N, ¢,7) (t))
are monomial for small and great values of ¢.

Theorem 5.4. ([DFL1J, Theorem 8.2]) Let (N, ¢,~v: m1(N) — G) be an admissible triple
such that ¢ € HY(N,Z) is fibered and such that G is sofic. Then there exists a represen-
tative T of T (N, ¢,~) such that for a certain T > 0, we have 7(t) =1 if 0 < t < % and
7(t) = ") ift > T,

This is true for T equal to the dilatation factor of the monodromy associated to ¢.

5.4 The L?-Alexander invariant for fibered knots

The following theorem establishes that the L?-Alexander invariant of a knot is monomial
in t for extremal values of ¢, and that the span between the degrees of the two monomials is
equal to twice the genus of the knot. Compare with the monicity property of the Alexander
polynomial for fibered knots (see Theorem [A.7). This theorem is a variant of Theorem
for knot exteriors, in the sense that the bound N for monomiality is computed from
operator norms associated to the monodromy, and is not necessarily equal to the dilatation
factor of this monodromy as in Theorem

Theorem 5.5. Let K be a fibered knot of genus g, and

P =(T,ay,...,a25|TaryT™" = hi(a1),...,Taz,T™" = hi(agy))
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the presentation of its group G associated to the fibration.
There exists a real number N > 1 and a representative (t — §(t)) of Ag) such that for
all t €]0; % [U]N; +oo|, (P,t) has Property I and

1 ift< L,
o(t) = {t29 ift>J]¥f.

Example 5.6. If K = 4, is the figure-eight knot, then there exists a 7' > 1 such that

1 if t < £,
1(4

AR (1) = { exp (V°6(1)> ~1113 it =1,
T

t2 ift>T.

The smallest known T satisfying the above is

3+5

T:
2

~ 2.618,

the dilatation factor associated to the monodromy.

Proof. Let K be a fibered knot of genus g, X the associated fibre, a once-punctured surface
of genus g. The group m(X) is a free group on 2¢g elements ay,...as,, and Gg has the
presentation P = (T, a1,...,as|Ta;T~' = Wi(a;)) where Wi(aj) = h(a;) is a word in
the letters a; (see Proposition .

The abelianization ai: Gx — Z sends T to 1 and the a; to 0.

Since the presentation P is of deficiency one, we can compute the L?-Alexander in-
variant of K from the Fox matrix Fp, using Theorem [2:28

The Fox matrix Fp is written

1—-Ta;T7' 1-TaT™' ... 1-Ta,T7!
T — wl,l —w172 e —wLn
Fp = —wa.1 T—woo ... —Wan ,
—Wnp,1 —Wn 2 . T — wnnp

oWi(a,...,a ) . ..

where n = 2g and w; ; = i 18 29) € Z|Gk] is a linear combination of words on
a;

the generators ai,. .., as,; these words are all sent to zero by the abelianization o .

Let W denote the jacobian matrix

w1 ... Win
: o da; 1<i,j<n

Wp1 ... Wnpn

and A = Ry, () the associated operator.
For all ¢ > 0, the operator Ry, ,(r,,) is of the form

tRT — A171 —ALQ ... —Ai,
— —A271 tRp — A272 c. —As

R¢K,t(FP,1) =tRp - A= . . . .
—Ap1 —A,2 . tR—Ann,

)
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where n = 2g and A; ; = Ry o for all 4, 7, and E;; is the diagonal operator with Rp
at each coeflicient.
Since hy: Flai,...,a,] — Flai,...,a,) is an isomorphism, (hs(ai),...,h«(ay)) is a

basis for the free group Flay, ..., a,], it follows from [Bir73] that the jacobian matrix

. <a<h*<aj>>)
Oa; 1<i,j<n

wi,;5)

is invertible over Z[F[ay,...,a]]. Let N = max <||A||oo, (HA_lHOO)_l). It follows from
Proposition that if ¢ €]0; % [U]N; 400, then the operator Ry (Fpy) = tRp — A is
invertible and
1. If t €]0; +[, then
detN(G) (R¢K,1(FP,1)) =1.
2. If t > N, then
det n(c) (wa,t(Fp,n) ="

It follows from Theorem that for all ¢ €]0; 1[U]N; 4+o00[, (P, t) has Property T and:

. detN(G) (ka,t(FP,1)> 1 ift< %,

@) _ _
A = w1 = 4@ (Roetrnn) = {t29 itt> N.

O]

5.5 The L?*-Alexander invariant detects the figure-eight knot

Theorem 5.7. Let K be a knot in S3 such that its L?-Alezander invariant Ag) is of the

form:
1 ift <%
AP () = { exp (“Oé(41)> ~1.113 ift=1
™
t2 ift>T

for a certain T € [1,4+o00[. Then K is the figure-eight knot 4.

Proof. Let K be a knot satisfying the assumptions of the theorem. It follows from Theorem
that vol(Mf) = vol(4,).

The JSJ-decomposition of Mg contains Seifert-fibered and hyperbolic pieces; these
pieces are all sub-manifolds of S3 whose boundary is a non-empty finite union of tori.

A compact hyperbolic 3-manifold with toroidal boundary and at least three boundary
components has volume at least three times the volume of a regular ideal terahedron (see
[Ada88]), thus it has volume greater than 3. Moreover, a compact hyperbolic 3-manifold
with toroidal boundary and two boundary components has volume at least 3.66... (the
volume of the Whitehead link) by [Agol0]. Since the simplicial volume vol(Mg ) of M is
equal to vol(4;) = 2.029..., it is smaller than 3 and since vol(Mf) is equal to the sum of
the simplicial volumes of the JSJ-pieces of My, we conclude that all the hyperbolic pieces
in the JSJ decomposition of My have exactly one boundary component (which is a torus).

A compact hyperbolic 3-manifold with one toroidal boundary component has volume
at least vol(41) = 2.029...; among these manifolds, only the exterior of the figure-eight
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knot My, and its sibling (which can be described as the (—5/1)-Dehn filling on the
Whitehead link) have volume equal to this number (see [CMO1]).

This implies that the JSJ decomposition of Mg has exactly one hyperbolic piece IV,
which is homeomorphic to My, or M’; the other pieces are Seifert-fibered manifolds that
we denote by S;.

The manifold N is a compact sub-manifold of S? with boundary a single torus, thus
N is the exterior Mg+ of a knot K’ (see for example [Bud06, Proposition 2.2]). Since the
first homology group of the manifold M’ is

Hi(M';Z) =7 ® 7/5Z,

the manifold M’ cannot be the exterior of a knot in S3 and therefore N = My, .

Since the manifold My has a JSJ decomposition composed of My, and Seifert-fibered
manifolds S;, it follows from [Bud06, Theorem 4.18] and Section that K is obtained
from 4, by a finite number of

e cablings,
e connected sums with an iterated torus knot.

The knot 44 is fibered, all iterated torus knots are fibered, the connected sum of two fibered
knots is fibered and all cablings of a fibered knot are fibered (see for example [Rol90, p.
326] and [Sta78]). Thus the knot K is fibered.

It follows from Theorem and the assumptions on K that g(K) = 1. Since the only
hyperbolic fibered knot of genus 1 is 4; (see [BZH14| Proposition 5.14]) we conclude that
K is the figure-eight knot 4;.

O



Chapter 6

Open questions and future
prospects

6.1 Approximate values of the L?>-Alexander torsion

In Annex we present a method to compute upper bounds (Ax(t))y>1 of the L%
Alexander invariant Ag?(t) for a 2-generator hyperbolic knot K. Since the computing
time of Ay (t) is exponential in N, we cannot compute many of these upper bounds. We
thus wish to better the algorithm and reduce its complexity, in order to find more bounds

for L2-Alexander invariants of knots.

Similar computations of upper bounds of Fuglede-Kadison determinants could offer
approximations for more general L2-Alexander torsions T(Q)(M , D, Y)-

6.2 Regularity properties

All the upper approximations of Ag) we computed with the algorithm described in Annex
[B.T]turn out to be convex functions. Since convexity is preserved by pointwise convergence,
we state the following conjecture:

Conjecture 6.1. Let K be a knot in S® and I an open interval contained in Dy . The
L2-Alexander invariant (t — Ag) (t)) is a convex function on I, therefore it is continuous
on I.

Continuity properties of the L?-Alexander invariant are related to continuity prop-
erties of the Fuglede-Kadison determinant on injective operators. The Fuglede-Kadison
determinant is known to be continuous on invertible operators (see [CEM97, Theorem 1.10
(d)]), but its regularity properties on certain classes of noninvertible injective operators
remain unknown. W. Liick constructed an explicit example of a sequence of operators
converging for the operator norm and on which the Fuglede-Kadison determinant is not
continuous.

Note that we cannot hope the L?-Alexander invariant (t — Ag) (t ) to be differentiable

everywhere on R+, since it is known to be of the form (¢ — max(1,¢)"), n € N, for iterated
torus knots.
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6.3 Virtually fibered manifolds

It follows from Theorem [5.4]that the L2-Alexander torsions associated to a fibered manifold
M and a fibered cohomology class ¢ are eventually monomial.
Moreover, the L?-Alexander torsions satisfy the following covering formula:

Proposition 6.2. [DFL1j, Lemma 5.3/ R
Let (N,¢,v: m = m(N) = G) be an admissible triple . Let p: N — N be a finite

d-sheeted regular cover such that Ker(vy) C # = m(N). Let v = py: T — m denote the
group inclusion induced by the covering. Then

TOWN, do1,700(0) = (TAN,6,7)1)"

It is now natural to wonder if certain L?-Alexander torsions of a virtually fibered
manifold M are eventually monomial.

The main difficulty in combining Theorem and Proposition is the following.
For (M, ¢,~) an admissible triple with M a virtually fibered manifold, and p: M — M
a finite regular cover such that M is fibered, the homomorphism ¢ o p, is not necessarily
fibered.

Computations of approximations of the L?-Alexander invariant (t > Ag) (t)) of twist

knots (see Annex let us observe that the first approximations of the maps Ag) behave
similarly for different twist knots K.

The twist knots K are not fibered, except for O, 31,4, but are all virtually fibered (see
[Lei02] and [Wal05]) and are all of genus one (except for O). From the observations we
just mentioned and the fact that twist knots are virtually fibered, we conjecture that all
non-trivial twist knots have an eventually monomial L?-Alexander invariant like 3; and
4.

Conjecture 6.3. Let K be a non-trivial twist knot. The L?-Alexander invariant Ag) (t)
is defined for allt > 0 and is equal to

1 ift < 7,

Ag) (t) = S exp (UOZ(K)> ift =1,
61

12 ift >T.

where T > 1 is a real number depending on K.

6.4 Asymptotic properties

It follows from results of W. Thurston and T. Jorgensen that if one does p/g-Dehn filling
on a hyperbolic link complement My, with p? + ¢? large enough the resulting manifold
M,,/, will also be hyperbolic with volume approaching the volume of the original link
complement vol(L) by inferior values, as p* + ¢> — oc.

In particular, as p® + ¢> — 0o, by Theorem

T(z) (ML7 0, Qp/q)(l) = T(Q) (Mp/zp 07 Zd)(l)

vol(M,/,)
— exp ( 67rp/q )

Yy ew (vol(ML)>

p?+q2—o00 6m

=T®(Mp,0,id)(1)
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where Q,,/,: m1(My) — m1(Mp,) is the group epimorphism induced by the Dehn filling.

It is now natural to wonder if there exists a similar convergence of the L?-Alexander
torsions for ¢ # 1.

Let us denote L = Ly U...U L.t such that the previous p/¢-Dehn filling is applied
on the component L.y1. The result manifold M, /g 18 the exterior of a c-link in the lens
space L(p,q), whose components are the images of L1, ..., L.. The abelianization of the
fundamental group of M, is

/gt T (Mpyq) — L ® L/ pL.

Let Q: Z¢® Z/pZ — Z° the quotient homomorphism that trivialises the torsion elements.
Any group homomorphism ¢: 71 (M,/,) — Z factors through Q o o/, and is thus written

¢=(n1,...,nc) 0 Q oy,

where ny,...,n. € Z. Consequently the following diagram is commutative:
@p/q
Gp=m(Mp) —— 7T1(Mp/q)
Ap/q
or, 7t ® L/ pZ
e
ZeH 7° 7
(Id 0) (n1,...,ne)

Question 6.4. Do we have

T(Q)(MLa(nla"'vn&O) OaL?Qp/q)(t) — T(2)(ML7(n17"'7nC7O) OaLaid)(t)

P g% —o0

forall t > 0 and for all ny,...,n. € Z ?






Appendix A

Knots and groups

A.1 Group presentation for a cable knot

The aim of this section is to give a detailed proof of the following technical result (see
Proposition |1.23)):

Proposition A.1. Let us consider the (p,q)-cable knot S of companion C.
(1) There exists Po = (a1,...,ak|r1,...,mx—1) a Wirtinger presentation of G¢ such
that
Ps ={a1,...,a5,x,\|r1,...,mp—1,2Pa; IA7P, AW (a4y))

s a presentation of Gg, with x and A the homotopy classes of the core and a longitude of
Tc, and W(a;) a word in the aq, ..., ag.
(2) Furthermore, as(x) = q, as(A) =0 and ag(a;) =p, fori=1,... k.

Compare with [BZH14, Exercise 9.4]. In order to prove this result we will develop a
general way of computing a group presentation for the exterior of a link in a solid torus,
a method interesting in its own right.

A.1.1 Group of a torus knot pattern

Let be an open solid torus and an open tubular neighbourhood of Tj,;, thus a

second solid torus. We will draw the torus knot K = T'(p,q) on the boundary of Tj,;.

Let us take pt any point on 0T, ~ K. It will be the base point for all the following

fundamental groups. Figure (where p = 3 and ¢ = 4) should clarify the notations.
We want to prove the following result:

Lemma A.2. The presentation P, 4 = (x,y, A|zP = Ny, Ay = y)) is a presentation of
71 (Text ~ K). Furthermore, the elements of ép,q represented by A\ and y are the
homotopy classes of a longitude curve and a meridian curve of Teys \ Ting, and x is the
homotopy class of the core of Tins.

The following proof has been inspired by the computation of the classical presentation
of torus knot groups (see for example [Rol90, Section 3.C]).

Proof. We will use the Seifert-van Kampen theorem (see Theorem [1.12)).
We denote Uy = Topt ~ (Tt UK), Uy = Ty ~ K, W = Toyy N K, V = 0T ~ K and
G1, G2, G, Gy their respective fundamental groups (for the same base point pt in V).
The space Uy can be deformed to Teyy \ Tipne (by «filling up K»), and so it is homo-

topically equivalent to a 2-torus. Thus (y, A\lyA = \y) is a presentation of G, where y
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Teact

Figure A.1 — The inside and outside tori Tj,; and T,y and the (p, ¢)-torus knot K

and A are the homotopy classes of a natural meridian-longitude system of Teys \ Tint, see
Figure
Tea;t

Figure A.2 — A natural meridian-longitude system

The space Uy can be deformed to Tj,: by a similar process, therefore Go admits the
presentation (z|—), where z is the homotopy class of the core of T}y, see Figure

The space V' is homeomorphic to an annulus, thus Go admits the presentation (z|—)
where the generator z is drawn on Figure Note that z follows the direction of the
strands, that is the same as the one of the core if p > 0 and the opposite if p < 0.

The inclusions V' C U; and V' C U; induce homotopy maps that send z to 2P and y9\P
respectively. We hope the figures make this point clearer.

Thus, by the Seifert-van Kampen theorem, G = C:’p,q admits the presentation

Py g = (2,9, AzP = Nyl Ay = yA).
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Figure A.3 — The generator x, core of Tj,;

Figure A.4 — The generator z of Gg

A.1.2 A meridian-longitude system in the group presentation of the
pattern

In this section we will explain how to obtain in general a group presentation for
m1(Tp \ P) containing the homotopy classes of a preferred meridian-longitude pair of Tp
as generators. This will not help us to prove Proposition [I.23] but this illustrates that the
hypotheses of Lemma are not as restrictive as we could have thought.

The method will use Wirtinger presentations, and thus is not the same as the one used
in Lemma [A-2] but it will work for any pattern P.

Figure A.5 — The pattern seen as one (m,m)-tangle B and m parallel strands

First, notice that we can draw P as m parallel strands (not necessarily going in the
same direction) and a (m,m)-tangle B. See Figure where we took m = 2 and P the
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Whitehead double pattern.

1Ip
(B O

— Mp

Figure A.6 — The knot P inside Tp is the same as the 2-link P U Mp inside S3

To compute a presentation of Gpcr, = m(Tp \ P), we remark that this group is
naturally isomorphic to G puy, = m1(S3\ (PUMp)) where is a meridian curve of Tp,

see Figure
Now we can compute a Wirtinger presentation of G pyuyr, by the well-known process
of the same name (see for example [BZH14| Section 3.B]).

The Wirtinger generators are:

e ) the generator for the arc of Mp that passes over the m strands, which corresponds
naturally to a longitude loop of Tp.

® Ai,..., A\p_1 the other generators of Mp, listed from the outside to the inside.

® aj,...,an, and af,...,a,, the generators for the m strands of P, listed from the

outside to the inside, such that a} = Aa; AL
® by,...,b. the generators for the arcs strictly inside the tangle B.

Figure pictures them partially (as always, the base point is assumed to be above
the diagram).

Figure A.7 — The Wirtinger generators
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Note that we can assume that the a; and the a] are all distinct, since we can add a
first Reidemeister move twist at each of the 2m points of entrance of P into B.
The relators are:

® ri,...,"m+k—1, which are words in the a;, a; and bj;, corresponding to the crossings
inside B.

e a, = Aa;\7! for the crossings where Mp passes over P.

o\ =af'da; N Ay = afPhiay P, X = afr Ap—1a,,fm for the crossings where Mp
passes under P (here e; = £1 depends on the orientation of the i-th strand).

Thus G pun, admits the Wirtinger presentation
Q = {(a;,al,bj, Ao, A1y, a; = AaidH A = at Aay o N =aim Ap—1a,,5™),
wherei=1,...,m,j=1,...k,a=1,... m—1landl=1,... m+k— 1.

A preferred longitude of Tp is among the generators of ), as A. We also want a
meridian p. As shown in Figure w is equal to afm . ..af'. We can thus write

Ql = <aia (l;, b]’ )\aa )\7:u

T, ah = A AT A = af a7t N = alr A 14,6,
p=agm...aft

an other presentation of G'pyuar,, that has the form we wanted.

Now we can simplify this presentation and get rid of the generators .

By substituting A, with af*A,—1a,% from o = 1 to m — 1 (with the convention
Ao = A), we obtain the simplified presentation

Qo = {az,a}, b, A\, plry,ah = A A A = (a8 .. a§)Na] .. at™), = alr L af)

that is equivalent to
Q3 = (a;, al, bj, A\, plry, a; = A A H A\ = p, o= alm . .afh).

In conclusion, the group of the pattern knot P inside its solid torus Tp admits a group
presentation of the form of (3. This presentation is simple in the sense that the generators
a;,a;, b; and the relators r; can all be read of the diagram of P. Moreover, ()3 contains a
preferred meridian-longitude pair of Tp in its generators.

Remark A.3. This method gives us the (simplified) presentation
DNV S TRE N YD SRl R V7T, )

for the Whitehead link.

A.1.3 Group presentation of a satellite knot

The following lemma gives us a group presentation of the satellite knot group when we
know a presentation of the pattern group with a preferred meridian-longitude pair of the
pattern torus among its generators and any presentation of the companion group.
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Lemma A.4. Let T be a tubular neighbourhood of T distinct from it. We will take
any point in T \ To, it will be the base point for all the following fundamental groups.
Notice that Gpcrp, = m (T \ Sc.p) is isomorphic to m(Tp \ P, pt') where hpe(pt).

Suppose there exists Ppcrp, = (b1,...,b1—1, A, t|s1,...,s1) a presentation of Gpcry
where X\ and v are the homotopy classes of a longitude curve and a meridian curve of Tp.

Then there exists a presentation Po = (ai,...,ag|r1,...,17k-1) of Go and a presenta-
tion

PS - <(11, .. 'aak7bla .. '7bl—17)\7,u"r17 ey T—1,S815- - 7Sl—1))‘_1W(ai)aa];1,u>
of Gs = m(S3\ Sc.p), with W(a;) a word in the a;,i =1,...,k.

Proof. We will use the Seifert-van Kampen theorem with the base point pt. We denote
W = 53 AN SC,p, UC = 53 AN T707 UP =T\ Sc',P, V=T \Tc, and Gs,GC,GPCTP,GO
their respective fundamental groups.

The drawings of Figure are meant to represent an angular fraction of the C-shaped
sets, a fraction that contains the «essence of the pattern P» and also the base point pt.
They are here to make perfectly clear what W, Uc, Up,V are.

Figure A.8 — The four open sets for the Seifert-van Kampen theorem

We take a Wirtinger presentation Po = (a1,...,ag|r1,...,rx—1) of
Geo = m(S3\C) = m(S*\Tc) = m1(Uc) associated to a planar regular diagram projection
of C.

We then consider P inside Tp. The open set Up = T\ S¢,p is homotopy equivalent
to Tc ~ Sc,p, which is the image of T» . P by the homeomorphism hpc. Thus
m(Up) = Gpcr,. Let X denote a longitude of Tp and the corresponding element of
Gpcrp-

The space V' is homotopy equivalent to a 2-torus, thus Gy admits the group presen-
tation (o, po| Mooy Tpg 1), where (uo, Ao) is the homotopy class of a preferred meridian-
longitude pair.

The inclusion V' C Ug maps po to any meridian of G¢, for instance ag, and Ag to
W (a;) a word in the a; such that W (a;) is a longitude loop of the knot C.

The inclusion V' C Up maps po to p (a meridian of 9Tp that passes around the m
strands), and Ag to A.
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Hence, by the Seifert-van Kampen theorem,
P={ar,...,a5,b1,. .. b— 1, M |71, Tty S15 -+ S1—1, A W (a), a,;l,u>

is a presentation of Gg = m (W) = m1(S3\ Sc.p).

A.1.4 Details of the proof

Let us prove (1) of the Proposition [1.23]

Let us consider the cable knot S of companion C' and pattern T'(p,q). There exists
Poc = (a1,...,ag|r1,...,r5_1) a Wirtinger presentation of Go = 71(S%\ O).

Lemma and Lemma [A4] give us the following presentation of Gg:

P = <CL1, ceey Ok, 2, Y, >‘|T1) -y Th—1, l’p?/_q)\_pv y)‘y_l)‘_lv )‘_1W(ai)7 a];ly>

with b; being x and p being y.

Then we can suppress the relation yA = Ay because it is equivalent to the relation
arW(a;) = W(a;)a which is already true in G¢ because ay, is the homotopy class of a
meridian curve of the knot C' and W (a;) is a corresponding longitude loop. Furthermore,
we can replace y by ag in the relators and delete the generator y and the relator a,?ly.

Therefore

Ps = (ai,...,ag,x,\|r1,...,Tk—1, xpa,;q)\_p, A_lW(ai)>

is a presentation of G = 71(S%\ S), with W(a;) a word in the a;,i = 1,..., k.

Furthermore, A is a longitude loop of C and z is the homotopy class of the core of T,
since it is the image of the core of Tp by hpc.

Now let us prove (2):

Since A is a longitude loop of C| its linking number with C' is zero, thus its linking
number with S is zero (it is multiplied by p at each crossing during the cabling process),
thus ag(\) = 0.

All the a; have the same abelianization as ay, and a; = y is a meridian of 0T¢ and
therefore circles p strands. Thus ag(y) = p.

Finally, the relation 2Py~ 9A"P in Gg implies that ag(z) = ¢, which concludes the proof
of Proposition [1.23

A.2 A torus link is a cable on a torus knot

The following proposition is somewhat known among knot theorists but we could not find
a written proof of it in the literature. We deeply thank Peter Feller for offering us a proof
where pictures are not strictly necessary; we adapted his proof to our setting, thus any
inconsistency should be assumed to originate from us.

Proposition A.5. Let e > 2 and p,q be two relatively prime integers. The torus link
T(ep,eq) is a (e, epq)-cable on the torus knot T(p,q).

Proof. To simplify notation we will assume that p > 0 and ¢ > 0. Let V be an unknotted
solid torus naturally embedded in S3, ¢ its core and (m, ) a preferred meridian longitude
system of T'= 9V. The torus T will denote the torus on which both T'(p, ¢) and T'(ep, eq)
will be drawn.
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The torus knot T'(p, q) is obtained by taking p parallel strands on T following ¢ and
2
twisting them ¢ times by an angle of il following m.
p
The torus link T'(ep, eq) is obtained by taking ep parallel strands on T following ¢ and

2
twisting them eq times by an angle of il following m, which is the same as twisting them
ep

2
g times by an angle of 2T Thus we see that T'(ep, eq) is obtained by taking T'(p, q) and

replacing it with e parallel copies of itself lying next to each other on 7.

Therefore T'(ep, eq) is obtained as a certain (e, ek)-cable on T'(p,q), with k € Z. We
want to prove that k& = pq.

We follow the notation of Section on satellite operations; here T'(p,q) is the
companion C, T(e,ek) is the pattern P and T'(ep,eq) is the corresponding cable knot.
Any two components L, Ly of the torus link pattern T'(e,ek) inside the solid torus Tp

T
have linking number k, since each sequence of e twists of angle — is a full turn and adds
e

1 to this linking number.

Since the cabling operation sends a preferred meridian-longitude system of d7p to a
preferred meridian-longitude system of 0T = OV (T(p,q)), the images L} and L, of Ly
and Lo by this operation, which are components of T'(ep, eq), still have linking number k.

Thus k is equal to the linking number of L} = T'(p, ¢) and L} a parallel copy of T'(p, q)
lying next to it on 7. This linking number does not change if we slightly isotope L} outside
of T, and one can then see that L, wraps ¢ times in the meridional direction around the
p strands of L}, thus the linking number is equal to pq. O

A.3 The Alexander polynomial

For the classical results of this section we refer for example to [BZH14], [Cro04] and [Rol90].
Let K be a knot in §3, G its knot group, and P = (g1, 0k ‘ 1,...75—1) a Wirtinger

presentation of Gg.
GK — 7
ag:
gi— 1

Recall that
is the abelianization of Ggx. We extend it to a ring homomorphism defined as:
ZIGr] — Z[t,t7]
107 g
Lo S nigi — 3 ngtx )
i i

For Q, R € Z[t,t™!], we denote if 3m € Z, R(t) = £t™Q(t). This means that the
Laurent polynomials @), R are equal up to multiplication with an invertible element of the
ring Z[t,t~1].

The Alexander polynomial of K is the Laurent polynomial

Ak (t) :=det ((t“%)(Fp1))

and does not depend of the Wirtinger presentation P up to the equivalence relation ~. The
Alexander polynomial [A g ()| will denote either the equivalence class for ~ or a particular
Laurent polynomial in this equivalence class.

Example A.6. The trivial knot has Alexander polynomial Ap(t) = 1.
The trefoil knot has Alexander polynomial Az, (t) =1 —t + ¢
The figure-eight knot has Alexander polynomial Ay, (t) = 1 — 3t + 2.
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Theorem A.7. ([BZH1/, Propositions 8.12, 8.14, 8.16, 8.23, Example 9.15])

For any knot K, Ag(1) = £1.

For any knot K, A (t™!) = Ag(t).

For any knots K, K', Agyr(t) = Ag(t) Ak (2).

For any knot K, A_g(t) = Ag~(t) = Ak (t).

o For any satellite knot Sc p of companion C and pattern P with winding number np,

Ase p(t) = Ac(t"")Ap(t).

For any torus knot T(p,q),

(tP1—1)(t —1)
PO (- (- 1)

Ar

For any fibered knot K, Ag(t) is monic and the span of its exponents is equal to
29(K).

Remark A.8. As an immediate consequence of these properties, the Alexander polyno-
mial of any Whitehead double of a knot is 1, thus the Alexander polynomial does not
detect the trivial knot.






Appendix B

Databases for knots and links

B.1 Combinatorial computation and approximation

Let K be an hyperbolic knot in S3. Using the results mentioned in Section we can
compute approximations of the L?-Alexander invariant (t > Ag) (t)) of K.

We assume that the knot group Gx admits a presentation P = (a,b|r) with two
generators and one relation r (which is a free word in a,b). The Fox matrix of P is

or
v -
- (0)-(z)
ob
where v, w € Z|Gk].

For t > 0, let Ry (v 2(G) — 2(G). Tt follows from Theorem that if Ay is
injective, then (P, t) has Property Z and

det ar(q)(Ar)
max(1, )lox()]-1"

AD(t) =

For t > 0, let f(t) denote det n(g)(A:). It follows from Proposition m that, for
C > || At|| 0o, one has:

f(t) = detN(G)(At) = Cexp ( Z *C Ata > ’
where (A, C)n = trarq) ((Id o2 A*At) )
The map (¢ — f(t)) € F(Rso,R>0) is thus the pointwise limit of the maps

N
t— fn(t) == Cexp ( Z c(A, C ) .

Since ¢(A¢, C')y, is polynomial in ¢ and nonnegative for all n (see Proposition [1.55)), N>1
is a decreasing sequence of smooth functions that converges pointwise to f. The map f is
thus upper-semi-continuous, and the L?-Alexander invariant

(2) _ ft)
A = (t H max(l,t)|aK(b)|_1>
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is upper-semi-continuous as well.
To compute c¢(A¢, C)p, we start from the operator A; = >5_; mitO‘K(gi)Rgi, where the
m; € Z. We then compute

1, c
B = <Id - A At) = 1j(t)Ry,
j=1

where the p;(t) are polynomials in ¢ and the g; are distinct. We observe that

(A, O =trney(BF) = > iy (B) - g, (B),

91 --Gin=1

thus we can compute ¢(Ay, C),, as long as we know how to solve the word problem on G .
A convenient way to determine whether or not an element g = g;,...g;, € Gk is
trivial is to use a linear faithful representation p: G < GL2(C) and to compare the

matrix p(g) to the matrix <(1) (1)> When K is hyperbolic, there exists such a faithful

representation p, which is built from the complete hyperbolic structure on S\ K; the
computer program Snappea computes the value of this representation p on the generators
of G K-

To summarize, our method of computing upper approximations of Ag), for K a 2-
generator hyperbolic knot, is as follows:

1. Compute a 2-generator presentation P = (a,b|r) of Gk.

2. Compute the Fox derivative v = gr € Z|G k] and the operator Ay = Ry, ,(,)-
a :

3. Choose an interval I = [to;t1] C Rso and a constant C' > 0 such that C > || A¢||eo
forallt e I.

1
4. Compute the operator Id— @AZ‘At as a sum of u;(t)Ry,, j=1,...,c

5. Fix an integer N > 1, and an integer n € [1; N].

6. Consider a faithful linear representation p: Gxg — GL2(C) and compute p(g;) for
j=1,...,c using Snappea.

7. For all n € {1;...; N}, determine which of the ¢" words g = gj, ... g;, are trivial by
computing p(g) and comparing it to the identity matrix.

8. For all n € {1;...; N}, compute c(A;, C), as the sum of the pj, (¢) ... pj, (t) associ-
ated to such words g = g, ...g;, = 1.

1 1
9. Compute the map t — fn(t) = Cexp (—2 SN (4, C’)n) on the interval 1.
n

n=1

In(t)
max(1,¢)lex(®)]-1

imation of the L2-Alexander invariant Ag) on the interval I.

10. Compute the sequence (t — > , which gives an upper approx-
N>1
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The longest parts of the algorithm are parts 7. and 8., the computing time being
exponential in n. As a consequence, we can only compute fxn(t) for N up to 6 or 7,
depending on the size of the operator A;.

We deeply thank Elie de Panafieu for his tremendous help in writing the algorithm in
SAGE.

Observe that our algorithm and our conclusions are exactly the same if we choose C
no longer a constant, but a polynomial in ¢ such that C(t) > || A¢||co for all ¢ € I.

Examples of computations for the figure-eight knot are drawn in Figures and

B.2 Values of the invariant for particular knots and links

In this section, the knot and link diagrams are obtained from the websites KnotInfo and
LinkInfo created by Chuck Livingston and Jae Choon Cha.

B.2.1 Torus knots and torus links

We use the results of Chapter 4. For L a c-component link in S such that M; =
S3\ V(L) is Seifert-fibered, it follows from the various theorems of Chapter 4 that
TO(Mp, (n1,...,n:) 0 ar,id)(t) is well-defined for all t > 0 and all n1,...,n, € Z.

e The L2-Alexander invariant of the torus knot K = T'(p, q) is well-defined everywhere
and is equal to
A%)(t) = max(1, ¢){PI=D(lal=1),

In particular

T(2,5)
AP () = AT, 7)(t) = max(1, 1)

e The L2-Alexander torsions with v = id for the torus link L = T(m,n) = T(ep, eq)
(where p, q are relatively prime) is well-defined for all t > 0 and ¢: G, — Z and is
equal to

T (Mp, (n1,...,ne) o ar,id)(t) = max(1, ¢)epa=lpl=laDim+. sne]

B.2.2 Twist knots

According to Remark the group Gk, of the twist knot K, (obtained by 1/n-surgery
on the Whitehead link) admits the following presentation:

PKn - <a17047/8‘[a1704] [a1_1705] - /Ba aﬁn - 1>
(here [a,b] = aba=tb~1).
The abelianisation ok, : Gk, — Z acts as follows:
ag,:a;—0, a,f— 1.

The fox matrix of the presentation Pk, is

1 —ajaay! = [a1,ala;t + a1, ojar a0

Fpy, = a1 — a1, o] + a1, alayt — B 1],
-1 *
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where * denotes a(1+ 8+ ...8" Difn>0and —(1+ 8+ ...48"" ) if n < 0.

The operator R bt (Frpe. ) thus has the following form:
1 1
. Id_Ralaal_l _gR[aha]al—l +¥R[U«1, }(Zl—la 0

R —
VKt (FPKn,S) tRal _ R[ | L R
al,a

+ Har,ala;?

— Ry Id

Since ax () = 0, it follows from Theorem that (Pg,,t) has Property Z if and
1
Only lfId_R l_gR[al a}a;1+

aioal ER[aha]af

since knot groups satisfy the Atiyah conjecture for Q (see Section [2.1.4)). In this case

1,, is injective, which is true for all ¢ € Qx¢

1
AR (1) = det ey ) (Id — Ry oat — Ry

aiaa; t

1
1+ R[al,a]al_la) . max(l,t).

a1,ola; t

Observe that, as n changes, the form of the operator stays the same, but the underlying

group G, changes. As a consequence, computations of upper approximations of Ag) (t)
using this operator display similar behaviours for all twist knots K, (see Figure for
K = 41).

B.2.3 The figure-eight knot 4,

&

. 2 2
K | Vol(K) | g(K) | Fibered |  Ag(t) N0 At
Lif t < 0.38
49 | 2.029 1 yes | 1—3t+t? | max(0.38,¢) max(2.61,¢) 1113 if t =1
t2 if t > 2.618

The knot group G satisfies the strong Atiyah Conjecture on C (since K is fibered, see
Section . Since G is 2-generator, we conclude that Ag) (t) is defined for all ¢ > 0
and non-zero for all t € Q.

Wirtinger presentation

A Wirtinger presentation of Gk reduces (by a finite sequence of Strong Tietze moves) to
the presentation
P = (z,y|lzyXyr = yzYay),

where X =z land Y =y~ L.
The abelianization acts as:
ag: x,y— 1.

The associated operator is

A= R¢K,t(FP,2) =1d—tRy —tRyyx — tRysy + tszwa
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and the L2-Alexander invariant is
2 .
AP (1) = det prce) (A)-

We compute upper approximations of Afl) (t) from the operator A;. We choose C(t) =
1+ 3t +t? and the interval I = [0.001;4]. The approximations up to N = 6 are drawn in
blue in Figure The known exact values of Afl) (t) (1 on ]0;0.38], 1.113 in 1 and #* on
]2.618;4[, see Example are drawn in red.

B

0 1 2 3

Figure B.1 — Upper approximation for Affl) (t) from the Wirtinger presentation

Twist knot presentation

The figure-eight knot 41 is the twist knot K 1. Its group admits the presentation
Px_, = (a1, Bl[ar, a][art, 0] = 8,87 = 1).
The abelianization acts as:
ag:a;— 1, a,0— 0.

The associated operator is

1 1
A:ﬁ =1Id— Ralaal_l - ER[al,a]al_l + ;R[al,a}al_la’

and the L2-Alexander invariant is
2 .
Afh) (t) = detN(GK)(A;) -max(1,t).
(2)

We compute upper approximations of A; ’(t) from approximations fx (t) of det n(q ) (tA})-
We choose C(t) = 242t and the interval I = [0.001; 4]. The approximations (fy(t) - max(1,t))

up to N = 7 are drawn in blue in Figure [B.2l The known exact values of Affl) (t) (1 on
]0;0.38[, 1.113 in 1 and #? on ]2.618;4[, see Example are drawn in red.
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251

201

15}

10

Figure B.2 — Upper approximation for Afj) (t) from the twist knot presentation

Fibered presentation

The group presentation of Gx coming from the fibered structure is:
Py = (T,a,b|TaT" = aba, THT ' = ab)
The abelianization acts as:
ag: T 1, a,b— 0.
The associated operator is

A — tRT — Id — Ry —1d
Lt —R, tRr — Ry )’

and the L2-Alexander invariant is

2 .
AL (1) = det prcye) (A).

B.2.4 The three-twist knot 5,

D

. 2 2
K | Vol(K) | g(K) | Fibered |  Ag(t) AR () AP (¢)
5y | 2.828 1 no 2 — 3t + 2t | 2max(1,t)? | 1.161 for t = 1

The knot group G satisfies the strong Atiyah Conjecture on Q (see Section [2.1.4)).
Since G is 2-generator, we conclude that Ag) (t) is defined and non-zero for all t € Q.
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The three-twist knot 59 is the twist knot Ks. Its group admits the presentation

Pr, = (a1, 0, B[a1, o][ay ", a] = B,a8% = 1).

The abelianization acts as:

and the L2-Alexander invariant is
Ag)(t) = det nr(q ) (At) - max(1,1).

B.2.5 The Whitehead link L5al

L 1k<L) VOI(L) :cML((nl, TLQ) o OcL) T(Q) (L, (041, OéQ))(t)
L5a1{0} Lift <7
L5a1{1} 0 3.663 [ni| + |ne| For ny,ng # 0: 1214 ift =1

thml+inzl if ¢ > T

The link group G satisfies the strong Atiyah conjecture on Q (see Section [2.1.4)).
Since Gy, is 2-generator, we conclude that 73 (L, (a1, a2))(t) is well-defined for all t € Qs

and ni,ne € Z, as a quotient of Fuglede-Kadison determinants of injective operators of
determinant class.

It follows from Remark that the link group G, admits the presentation
Pp, = <a17 O‘?/BHalv a][al_l, a] =p,af = /804>
The abelianization ay: Gy — Z? acts as follows:

ar:a; — (1,0), a— (0,1), g~ (0,0).
The fox matrix of the presentation P, is
-1 -1 -1
1 —ajaa;” —[ar,ala]” + a1, ofa; a0

Fp, = al—[al,a]+[a1,a]af1—6 1-06
-1 a—1
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Let Wp, denote the 2-dimensional CW-complex constructed from the group presenta-
tion P, (see Definition [2.11)). For ny,ng € Z and t > 0, the N'(Gp)-cellular chain complex

CCEQ)(WPL, (n1,n2) o ay,id)(t) is of the following form:

(2) (2)
O (W, (n1,n2) 0 ar, id)(t) = (ﬁ(aﬁ %, (e ﬁ(GL)) ,

where
Id—t"R, -1 — t’”lR[a ajar! + t"Q’"lR[a ajala 0
2) mp ot S
0y = 1" Ry, — R[al,a] + 1 R[al,a]afl — Rg Id — Rg
—Id t"R, — Id
and

o = (t”lRal —Id ;t"R,—1Id ; Rs— Id) :

If t € Q-g, then the operators Id—t"2Ra1aa;1 —t*’“R[aha]af —i—t"?*"lR[al’a]afa, Id—Rg

and Rg — Id are injective and of determinant class. It follows from Proposition
Proposition (5), Proposition the fact that M, and Wp, are simple homotopy

equivalent (see Section ) and Theorem that C%) (M, (n1,n2)oar,id)(t) is weakly
acyclic and of determinant class, and

T@ (Mg, (n1,n2) 0 o, id) (t)

= det yay) (1d =t R, ot =t Ry ot + R, )

Assume that n; and ny are non-zero, for example that they are both positive. In this
case, one has:

Id_tn2RCL1aa71 _tian[al a}a71 +tn2in1R 1
1 ’ 1

[a1,0]a] "o

=t (mId — iR ~R VR o)

= (=t Ry) o (Id— " R, — " Ry + t" " Ry)

alaafl [a1,0]ay

where ¢,d, f € G, are words in a1, a. It follows from |[CFM97, Theorem 1.10(e)] and the
same kind of argument as in the proof of Proposition [5.3] that there exists a 7' > 1 such
that

lift <

det v(ay) (Id — MR — 1" Ry + tm+n2Rf) - {t”1+”2 ift>T

The same reasoning applies for general non-zero ni,ns, so that there exists a T > 1
(potentially depending on m1,ny) such that:

4 lift < X%
7(2) (Mg, (n1,n2) o ag,id)(t) = {t|n1|+”2| if tT> T

B.2.6 Whitehead doubles

Let K be a Whitehead double of a non-trivial knot C'; then the knot K is never fibered,
has genus one and has trivial Alexander polynomial: Ag(t) = 1. We observe that the
L?-Alexander invariant of K is not trivial but is the same for an infinite number of knots
knots.
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Let L denote the Whitehead link. It follows from Proposition that there exist two
injective homomorphisms i¢c: Go — Gk and ip: G — Gk.

The groups G¢, G, Gi satisfy the strong Atiyah conjecture for Q and admit a
presentation with two generators, therefore the Alexander torsions for My, My, Mo for
~ = id are well-defined for all t € Q- (see Section .

It follows from Proposition that

T3 ( My, ag,id)(t) = T® (M, 0,ic)(1) - T (My, (1,0) 0 ag,ir)(t)

= exp <VOéSTC)> . T(Q)(ML, (1, 0) o OJL,id)(t).

As a consequence, the L2-Alexander invariant of K is:
AP (1) = T (M, ok, id)(t) - max(1, t)

— exp (Voé(c)> T (M, (1,0) o ay, id)(#) - max(1, £);

™

remark that it depends only on vol(C).
proportional L?-Alexander invariant.

In particular, all Whitehead doubles have

B.3 Tables

In the following table we list the knots K up to seven crossings, their simplicial volume
vol(K), their genus g(K), whether or not they are fibered, their Alexander polynomial
Ak (t) and their twisted L2-Alexander invariant Ag,)a;( (t) for v = ak (this one is computed
from the value of the Alexander polynomial, see Proposition .

K | vol(K) | g(K) | Fibered Ak(t) AR (1)

01 0 0 yes 1 1

3 0 1 yes 1—t+¢t? max(1,1)?

4, | 2.029 1 yes 1— 3t + ¢ max(0.38,t) max(2.61,t)

51 0 2 yes I—t+t2 -3+ ¢4 max(1,t)*

5y | 2.828 1 no 2 — 3t + 2t° 2max(1,t)?

61 | 3.163 1 no 2 — 5t + 2t? 2max(0.5, ) max(2,t)

62 | 4.400 2 yes 1—3t+3t2 =35 + t* max(0.46, t) max(1,t)? max(2.15,t)
63 | 5.693 2 yes 1 — 3t +5t2 — 3% + t* max(0.58, )% max(1.72, t)?

7 0 3 yes | 1—t+t2 -3+t —>+ 145 max(1,)°

75 | 3.331 1 no 3 — 5t + 3t* 3max(1,t)?

73 | 4.592 2 no 2 — 3t + 3t2 — 3t3 + 2t 2max(1,t)*

74 | 5.137 1 no 4 — Tt + 4t? 4max(1,t)?

75 | 6.443 2 no 2 — 4t + 5t — 4¢3 + 2t 2max(1,t)*

76 | 7.084 2 yes 1 —5t+7t2 — 563 + ¢ max(0.3,¢) max(1,¢)? max(3.31,¢)
T | 7.643 2 yes 1 —5t+9t2 — 513 + ¢4 max(0.42,t)? max(2.36, t)*

In the following table we list the same knots up to seven crossings, the set Dg on

which the L2-Alexander invariant Ag) (t) is known to be defined, and the known values of
this invariant. The bound T for fibered knots either comes from Theorem [5.4] or Theorem
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and can be computed. Observe that the set Dx always contains Qsg, and is equal to
the whole set R+ if K is fibered, since all knots up to seven crossings are 2-bridge and
thus are 2-generator knots (see Section [2.1.4)).

K | vol(K) | g(K) | Fibered | Known Dk Ag) (t)

01 yes R<o 1

31 0 1 yes Rso max(1,t)*

1 ift <0.38
41| 2.029 | 1 yes R-o 1113 ift=1
t2 ift> 261

51 0 2 yes R<o max(1,t)?

5y | 2.828 1 no Q<o 1.161 for t =1

6; | 3.163 1 no Q-0 1.182 for t =1
1ift <1/T

62 | 4.400 2 yes R+ 1.263 ift =1
thift >T
1ift <1/T

63 | 5.693 2 yes R+ 1.352ift =1
thift >T

71 0 3 yes R0 max(1,t)°

75 | 3.331 1 1o Q-0 1.193 for t = 1

T3 | 4.592 2 no Q<o 1.275 for t =1

T4 | 5.137 1 no Q<o 1.313 fort =1

75 | 6.443 2 no Q<o 1.407 for t =1
lift <1/T

76 | 7.084 2 yes R<o 1.456 if t =1
thift > T
lift <1/T

77 | 7.643 2 yes R<o 1.500ift =1
thift > T

The following table lists all 2-component links L = L; U Ly up to five crossings, their
linking number 1k(L), their simplicial volume vol(L), their associated Thurston norm
zp1, ((n1,m2) o ), and their L?-Alexander torsions for v = id.

L k(L) | vol(L) | zar, ((n1,m2) 0 ag) T (Mp, (n1,n2) o ag,id)(t)
L2a1{0} | -1 0 0 1
L2a1{1} | +1 0 0 1
() | 2 [ 0 | -l T
L) [ 72 [ 0 | Jmewl A

lift <
éiﬁ?ﬁ 0 | 3.663 1] + |nzl For ni,ng £ 0: { 12141 ¢ = 1
thiltinel if ¢ >
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Notations

C(X,Z) The cellular chain complex of the CW-complex X.
Crx(X,Z) The k-th cellular chain group of the CW-complex X.

(X,6,y) An admissible triple of a CW-complex X and two group homomorphisms ¢,y on
m1(X).

(m,¢,y) An admissible triple of a group 7 and two group homomorphisms ¢, 7.

(n1,...,n¢) oar The typical form of a homomorphism from the group of a link L to Z.

Bl
—K The inverse of the knot K. [25]
—L The inverse of the link L. 2§
A A G-equivariant operator on £2(G). [135
By A positive G-equivariant operator on £?(G) associated to A;. m

C(X) The cellular chain complex of left Z[m (X )]-modules for X.

c? (X,0,7,t) A N(G)-cellular chain complex of the CW-complex X.
Ci(X) The k-th cellular left Z[r;(X)]-module of X.

D* The mirror image of the regular diagram D.

DF The k-dimensional closed ball in R¥. 27

F(f)(A\) The spectral density of the operator f at A > 0.
Fp The Fox matrix associated to the presentation P. [33]
Fp; The Fox matrix of P without its i-th row. [33]

G’ The commutator subgroup of G.

G The abelianization of G. 1]

Gk The group of the knot K.

G, The group of the link L.

G The fundamental group of the 3-manifold M.

Gpcrp The fundamental group of the solid torus Tp minus the pattern knot P.



156 LIST OF NOTATIONS

Gr(P) The group naturally associated to the presentation P.

H;, The trivial knot drawn in R? as the unit circle of an horizontal plane. m
HP(C,) The p-th L2-homology of C,.

H, The trivial knot drawn as the vertical line passing through oo in R3. m

J A curve on a boundary torus of a 3-manifold associated to a Dehn surgery.
J" A curve on a boundary torus of a 3-manifold transverse to the curve .J.

J; A curve on a boundary torus of a 3-manifold associated to a Dehn surgery.
K(G,1) The Eilenberg-MacLane space associated to the group G.

KC} The (k + 1)-component keychain link.

K $Ky The connected sum of the knots K7 and K». [34]

K,, The twist knot obtained by 1/n-surgery on the Whitehead link.

L(p,q) The (p,q)-lens space, with fundamental group Z/pZ.

LHS, (A, Cy,By) The long exact homology sequence associated to (A, Cy, By).
L* The mirror image of the link L.

LyU...UL, The c-component link with components the knots L1, ..., L.. [24]
Ly, The left-multiplication operator by the group element h.

M]|S The 3-manifold M minus a tubular neighbourhood of the surface S.

M’ The sibling of the figure-eight knot exterior. [120]

M #Ms The connected sum of the 3-manifolds M; and Ms. B9

My The exterior of the knot K.

Mp A meridian curve of the solid torus Tp. [12§]

M, The permutation matrix associated to the permutation o.

O The trivial knot. 24]

Py, A particular presentation of the group of the Whitehead link. [94]

Pk, A particular presentation of the group of the twist knot K. [94]

@ A quotient group homomorphism induced by a Dehn surgery. [90]

@o The quotient group homomorphism induced by 0-surgery on the Whitehead link.

@n The quotient group homomorphism induced by 1/n-surgery on the Whitehead link.
Dol

R4 The right-multiplication operator by the matrix A of group ring elements. [43]

R;, The right-multiplication operator by the group element h.
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S1 The circle. 23]

S3 The three-dimensional sphere.

Sk=1 The (k — 1)-dimensional sphere.

Sc,p The satellite knot of companion C' and pattern P.

Sy The compact connected oriented surface of genus g and with b boundary components.

B7
T'(ea,eb) The (ea,eb)-torus link with e components.
T(p,q) The (p,q)-torus knot.
T(Q)(A*,C*,B*) The L2-torsion of the short exact sequence (A, Cs, By).
T®(C,) The L*torsion of the finite Hilbert A'(G)-chain complex Cs.
T®?)(X) The L-torsion of the CW-complex X.
7% (X,¢,7)(t) The L?-Alexander torsion of the triple (7, $,v) at t > 0.
Tc An open tubular neighbourhood of the companion knot C.
Tp The open solid torus associated to the pattern knot P.
Text An open tubular neighbourhood of the solid torus Tj,;. [125]
Tint An open solid torus in S3.
V(K) An open tubular neighbourhood of the knot K.
V(S) An open tubular neighbourhood of the surface S.
Wp The 2-dimensional CW-complex associated to the group presentation P.
X* The k-skeleton of the CW-complex X.
[7].[c] The action of [y] € 71 (X) on [¢] € X.
[c] The homotopy class of the path c.

[c]x The homotopy class of the path ¢ in X.

Ag)P The L?-Alexander invariant of the knot K associated to the presentation P.

Ag) The L?-Alexander invariant of the knot K.

Ak(t) The Alexander polynomial of the knot K.

AgL The L?-Alexander invariant of the knot K twisted by the homomorphism 7.
Flg1,-..,9x] The free group on the generators g;.

K A subfield of C.

Y A fiber surface associated to a fibered knot. 115



158 LIST OF NOTATIONS

ag The abelianization homomorphism of G.

ak The abelianization homomorphism of the knot group G .
ay, The abelianization homomorphism of the link group Gy,. 3]
X(X) The Euler characteristic of the CW-complex X.

deg(f) The degree of the continuous map f.

0 A curve parallel to the torus knot T'(p, q). [L07]

d;; The integer that is 1 if ¢ = j and 0 if ¢ # j.

det () (f) The Fuglede-Kadison determinant of the operator f.

0
0 The Fox derivative associated to the generator g;.
9i

dimys () (V) The von Neumann dimension of the finitely generated Hilbert NV(G)-module
V. 4

= Equality to a function on R<g up to multiplication by a monomial function.
(*(G)é The Hilbert space £2(G) @(r p..t) L[T]E.

?2(G) The Hilbert space of square-summable complex functions on the group G.
¢2(G)P The Hilbert direct sum of p copies of £2(G).

oo The point at infinity in S3 as the compactification of R3.

k(m,¢,y,t) The ring homomorphism associated to the triple (, ¢,~) and ¢ > 0.
Ax The preferred longitude of the knot K. 23]

(c(A,C)p) The characteristic sequence of the matrix A and the number C.

peN
C[G] The algebra of the group G.
B(/?(G)) The algebra of bounded operators on £2(G).

Dk The set of the ¢ > 0 such that (P,t) has Property Z for any presentation P of the
group of K. [70]

Dp The set of the t > 0 such that (P,t) has Property 7.

Dx The set of the t > 0 such that C’iz) (X, ¢,7,t) is weakly acyclic and of determinant
class. B3

Z7T The class of iterated torus knots.

L(f,\) The set of sub-modules on which f has an operator norm smaller than or equal to

. E3]
N(G) The von Neumann algebra of the group G.
FIN(G) The set of finite subgroups of G.
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JSJ(M) The JSJ decomposition of the 3-manifold M.

def(G) The deficiency of the group G.

def(P) The deficiency of the presentation P.

Ik(v,0) The linking number of the simple oriented closed curves v and ¢.
vol(K) The volume of the knot K.

vol(M) The simplicial volume of the 3-manifold M.

pr The preferred meridian of the knot K. 23]

0 A boundary homomorphism.

8,(62) A boundary operator in a N (G)-cellular chain complex.

Ox . The k-th boundary homomorphism for the CW-complex X. @

71(X) The fundamental group of the topological space X.

71(X,P) The fundamental group of the topological space X with basepoint P.

mx The fundamental group of the CW-complex X. [30]

Y ¢+ The algebra homomorphism associated to the knot K and ¢ > 0. @

~ Equality up to multiplication by an invertible element in the ring of integral Laurent

polynomials. [132]

équ The fundamental group of a solid torus minus a (p, ¢)-torus knot. [125

I The lift of the inclusion I of CW-complexes to the universal covers.

P The natural base point of the universal cover of the pointed space (X, P).
E; The diagonal operator with Rr at each coefficient. [116

X The universal cover of the CW-complex X.

éF A lift of the cell ef in the universal cover.

(2
b2 (C.) The p-th Betti number of C,.
b2 (X) The p-th L? Betti number of the CW-complex X.
dF(f) The spectral density measure associated to the operator f.

ef An open k-cell of a CW-complex.

f+ The group homomorphism on the fundamental groups induced by the continuous map

f.
fn An upper approximation of the map f on the positive real numbers.
fF The characteristic map of the cell €.

k . . . . . k
i; A Dbi-restriction of the characteristic map f;".
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g(L) The genus of the link L.

h The monodromy map on the surface X associated to a fibration. [115

hpc The preferred homeomorphism betwen Tp and T¢.

i» The induction functor associated to the injective group homomorphism . [44]
i+(Cy) The finite Hilbert N'(G)-chain complex induced by C, and i..

np The winding number of the pattern knot P.

px The universal covering map from X to X.

pi/q; A rational coefficient associated to a Dehn surgery.

pt A base point common to several topological spaces.

pt’ The base point sent to pt by the homeomorphism hpc. m

t*K The ring homomorphism from the group ring of the knot K to the ring of Laurent
polynomials.

trarc)(¢) The trace of the operator ¢ € N(G).
x37(¢) The Thurston norm of the class ¢ € H'(M;Z).

|f| The positive operator associated to the operator f.
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