
Université Pierre et Marie Curie-Paris 6
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L’écriture, mon travail noir, ne renvoyait à rien, et du coup, se prenait elle-même pour fin. J’écrivais
pour écrire. Je ne regrette rien. Eussé-je été lu, je tentais de plaire, je redevenais merveilleux. Clandestin,
je fus vrai.

Jean-Paul Sartre, dans Les mots.

Mais c’est pas une raison pour plus vous laver les joues !

Jacques, dans La classe américaine.
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Comment des brouillons illisibles

sont devenus une thèse

Paris, septembre 2005.

L’air de rien, cette partie est l’une des plus difficiles à écrire. Pour commencer, il va falloir dire je
tout le temps, ce qui est un exercice assez désagréable, dans la lignée des classiques rédactions de collège
où l’on est censé raconter ses vacances. On ne se rend pas compte à quel point c’est dur pour un enfant
de raconter ses vacances, alors qu’il s’est ennuyé pendant deux mois à attendre de retrouver l’école et les
copains. Du coup, il a été insupportable avec ses parents, mais il ne peut quand même pas raconter ça.
Ses parents mériteraient pourtant d’être les premiers remerciés, pour l’avoir supporté tout ce temps-là,
ainsi, le cas échéant, que son petit frère, qui lui a passé un bon été, comme tous les étés, et comme le reste
de l’année d’ailleurs. De toute façon, maintenant que la rentrée est là et bien là, on se dit que finalement
les vacances avaient du bon.

En ce qui me concerne, les vacances qui viennent de s’écouler furent relativement idylliques. Mais si
je les raconte ici, je vais être complètement hors sujet. Ici, on s’attend plutôt à ce que j’évoque ce qu’il
a fallu faire pour avoir enfin droit à ces vacances-là. Mais tout ça je le raconte déjà dans les chapitres
qui suivent, quoique sous une forme un peu différente. Non, ce qu’il est vraiment important de dire ici,
c’est qu’il s’en est fallu de pas grand chose pour que les dites vacances ne fussent remises aux calendes
grecques, tant ces pages furent difficiles à écrire. Evidemment, quand on consacre trois ou quatre ans
à réfléchir à un problème, on empiète pas mal sur le reste, et ça peut rendre les choses assez pénibles,
surtout pour l’entourage de celui qui tente de réfléchir. Fort heureusement, mon entourage à moi est
d’une qualité exceptionnelle. Mes parents par exemple, qui m’ont absolument tout donné. En plus ils
ont le sens de l’humour, ce qui fait que globalement, on s’entend bien, même par-delà les mers et les
montagnes. Et puis mon frère, un grand gars tout tranquille qui me sourit tout le temps, même quand je
l’ennuie avec mes histoires. Longtemps il a habité avec moi, et a donc eu la lourde tâche de me supporter
au quotidien, tâche qu’il a fini par confier à Hakim pour partir vivre avec une fille, la charmante Marie.
Après deux ans de vie avec moi, Hakim est lui aussi parti vivre avec une fille (Béatrice); je commence
à me poser des questions sur mes qualités de colocataire. Pourtant j’ai bien essayé de convertir Hakim
et Béa au punk mâtiné de salsa et de vallenato mais rien n’y a fait, ils sont partis. Cela dit, sans
eux non plus rien de tout ceci n’eût été possible. Et puis il y a aussi tous mes amis, qui n’ont jamais
reculé devant le risque de me voir tirer une tête de dix mille pieds de long lorsqu’ils me demandaient
périodiquement : “alors, cette thèse, ça avance?”. Il faut dire que tous semblaient intéressés par mon sujet
parce que régulièrement ils me demandaient de leur donner le titre de ma thèse, surtout lorsqu’on sortait
et qu’on rencontrait des gens nouveaux. Bizarrement, je n’ai que très rarement revu les gens nouveaux
en question, peut-être parce que tous étaient en général assez déçus quand je leur annonçais qu’après
plus de deux ans de travail je ne savais toujours pas quel titre j’allais bien pouvoir donner à ma thèse.
Malgré ça, mes amis à moi ont toujours été convaincus du fait que j’allais bien la soutenir un jour cette
thèse, ce qui a été réconfortant plus d’une fois, parce que personnellement, j’ai connu des moments où je
n’y croyais vraiment plus. Ça fait du bien d’avoir des amis comme eux : Anis, Riwall, Thomas, Réda,
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Elodie, Michel, Adriana, Rémi, Frank, Gregory, et tous les autres, d’ici et d’ailleurs. A tous ces gens-là,
je peux ajouter ceux que j’ai rencontrés au cours de mes (longues) études de maths, et qui m’ont aussi
apporté beaucoup, pour les maths et parfois pour le reste : Pierre, Aurélien, Anne, et quelques autres,
mon interlocuteur privilégié pour toutes ces questions restant quand même Hakim, parfois malgré lui,
personne d’autre n’étant disponible passé une heure du matin. Chose plus étonnante, il s’est également
trouvé une poignée (littéralement) de professeurs qui ont essayé, au cours de ma scolarité post-mâıtrise,
de me donner confiance en ma capacité à comprendre deux ou trois choses en maths. Jean-Pierre Marco
par exemple, qui a le premier accepté de guider mes pas dans cet univers parfois impitoyable, alors que
je n’avais que bien peu à lui proposer en retour, pour les maths comme pour beaucoup d’autres choses
qu’il m’a apprises. Elisha Falbel ensuite, qui a accepté de diriger ma thèse, et qui l’a fait avec une
patience infinie et une disponibilité constante, sachant à la fois me laisser une liberté totale et offrir un
regard critique et constructif sur mes balbutiements. D’autres ont été encourageants avec moi et je les
en remercie : Jiang-Hua Lu, Alan Weinstein, Pierre Lochak, Richard Wentworth, et autres gens dont
la gentillesse n’a d’égal que la quantité impressionnante des sujets qu’ils dominent. Comme je le disais
donc, mon entourage est d’une qualité exceptionnelle, que ces seules lignes ne sauraient traduire. Tout
ce qui suit, et sans doute l’essentiel de ce qui suivra, n’aurait jamais vu le jour sans eux tous. Il y a en
outre des gens dont je n’ai pas parlé dans ces quelques lignes, mais j’espère qu’ils savent que je pense
quand même à eux et que je les remercie pour leur soutien. Une personne en particulier m’a accompagné,
et supporté, durant une bonne partie de ce périple, parfois sans qu’elle le sache. Peut-être qu’un jour je
trouverai les mots pour le lui dire directement. En attendant, je nous souhaite à tous de fêter comme il
se doit la fin d’une époque intéressante mais heureusement révolue. La prochaine fois, je vous raconterai
mes vacances.
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Chapter 1

Introduction and motivation

Contents

1.1 French version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 English version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1 French version

Le but de cette thèse est de donner un exemple de sous-variété lagrangienne de l’espace des modules

MC := HomC(π, U)
/
U

où π := π1(S
2\{s1, . . . , sl}) est le groupe fondamental de la sphère privé de l points (l ≥ 1) et où U

est un groupe de Lie compact connexe quelconque. Nous préciserons sous peu les notations utilisées
ci-dessus et nous verrons par la suite qu’il nous faudra par moments supposer que le groupe compact
connexe U est de plus simplement connexe. Nous reviendrons sur ces questions au fil de ce travail et plus
particulièrement dans la conclusion. Pour l’heure, nous souhaiterions donner un bref aperçu du domaine
d’étude dans lequel s’inscrit cette thèse et dresser un panorama succint des principaux thèmes qui fondent
la géométrie symplectique des espaces de modules.

On désigne communément par modules des coordonnées sur l’espace des orbites associé à une action de
groupe. Si l’on considère par exemple l’action par conjugaison du groupe unitaire sur lui-même, l’espace
des orbites est l’ensemble Conj(U(n)) des classes de conjugaison de U(n), et chacune de ces classes
est entièrement déterminée par l’ensemble des valeurs propres de l’un quelconque de ses représentants,
comptées avec leurs multiplicités respectives :

Conj
(
U(n)

)
' Tn/Sn

Les modules de cette action sont alors par définition les éléments de Tn/Sn. De manière plus élémentaire
encore, les modules de l’action par rotations de S1 ' SO(2) sur l’ensemble des droites du plan euclidien
sont les nombres réels appartenant à l’intervalle [0, π[, généralement appelés angles orientés. Les espaces
de modules auxquels nous nous intéresserons dans cette thèse sont les espaces (des classes d’équivalence) de
représentations du groupe fondamental πg.l := π1(Σg,l) d’une surface de Riemann Σg,l := Σg\{s1, . . . , sl}
où Σg est une surface de Riemann compacte de genre g ≥ 0, où l est un entier naturel l ≥ 0 (en convenant
que Σg,0 := Σg) et où s1, . . . , sl sont l points distincts de Σg. Ces variétés de représentations sont un
objet d’étude important depuis plusieurs décennies maintenant, et se situent à l’intersection de diverses
branches des mathématiques, toutes très riches, qui apportent chacune un éclairage différent sur ces
espaces. Ainsi l’espace

Rep(πg,l, U) := Hom(πg,l, U)
/
U
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CHAPTER 1 1.1

des classes d’équivalence de représentations de πg,l dans un groupe de Lie U apparâıt-il de manière na-
turelle en géométrie algébrique complexe car il s’identifie à l’espace des classes d’équivalence de fibrés
vectoriels holomorphes sur Σg,l, comme l’ont montré Narasimhan et Seshadri dans les années 60 (voir
[NS65]). Au début des années 80, Atiyah et Bott ont donné une nouvelle impulsion (voir [AB83]) à l’étude
de ces espaces en les identifiant aux modules des connexions plates sur les fibrés principaux de groupe U
sur Σg,l, révélant ainsi l’importance des variétés de représentations en théorie de jauge. Ces espaces appa-
raissent également en théorie de Galois différentielle et en théorie des algèbres d’opérateurs. Enfin, il est
possible d’utiliser ces espaces pour construire des déformations de sous-groupes discrets de groupes de Lie
(voir par exemple [MG88]). La diversité des théories auxquelles sont reliées ces variétés de représentations
justifie l’étude de leur structure géométrique, dont la description est susceptible d’interprétation dans cha-
cun des domaines ci-dessus. On trouvera une introduction à l’étude de ces structures par exemple dans
[Gol88]. En ce qui nous concerne, nous privilégierons l’étude de la structure symplectique de certains
de ces espaces de représentations. Cette structure symplectique peut être obtenue et décrite de diverses
manières (voir par exemple [GHJW97, AM95, AMM98, MW99]), qui présentent toutes des avantages.
Une description particulièrement bien adaptée à l’étude des représentations de πg,l est celle donnée par
Alekseev, Malkin et Meinrenken dans [AMM98]. Elle repose sur la notion d’espace quasi-hamiltonien,
qui permet notamment d’éviter le recours à des variétés de dimension infinie tout en se limitant à des
objets relativement simples pour construire une forme symplectique sur les variétés de représentations.
Nous verrons en détail les étapes de cette construction dans le chapitre 4 et nous poursuivrons l’étude
de la géométrie symplectique de ces espaces de modules dans le chapitre 7. Pour ce qui est d’exhiber
une sous-variété lagrangienne, nous nous limiterons dans la suite au groupe fondamental de la sphère
épointée mais nous pensons que cet exemple et les méthodes utilisées dans cette thèse peuvent servir de
point de départ pour la recherche de sous-variétés lagrangiennes dans l’espace des modules associé à un
groupe de surface quelconque. En particulier, nous verrons que les résultats généraux sur les espaces
quasi-hamiltoniens obtenus ici (chapitres 7 et 8) s’appliquent indépendamment du groupe de surface con-
sidéré. Dans la suite, nous étudierons exclusivement les représentations de π = π1(S

2\{s1, . . . , sl}) où
l’on a fixé la classe de conjugaison de chacun des générateurs. Afin de pouvoir être plus précis, rappelons
que le groupe π = π1(S

2\{s1, . . . , sl}) admet la présentation finie par générateurs et relations suivante :

π =< γ1, . . . , γl | γ1 . . . γl = 1 >

On suppose donné un système de représentants γ1, . . . , γl des générateurs de π, et on se donne par ailleurs
l classes de conjugaison C1, . . . , Cl de U . On étudie alors l’ensemble

HomC(π, U) := {ρ : π → U | ∀j ∈ {1, . . . , l}, ρ(γj) ∈ Cj}

qui est un sous-ensemble (éventuellement vide) de l’ensemble Hom(π, U) des morphismes de groupes de
π dans U . Les éléments de Hom(π, U) sont également appelés représentations de π dans U . Remarquons
que grâce au choix des générateurs γ1, . . . , γl de π, on a :

Hom(π, U) '
{
(u1, . . . , ul) ∈ U × · · · × U | u1 . . . ul = 1

}

et
HomC(π, U) '

{
(u1, . . . ul) ∈ C1 × · · · × Cl | u1 . . . ul = 1

}

Dans toute la suite, nous supposerons que les classes de conjugaison C1, . . . Cl de U sont choisies de
manière à ce que HomC(π, U) 6= ∅. Dans le cas où U = SU(n), un ensemble de conditions nécessaires et
suffisantes portant sur les Cj pour que ceci soit vrai a été donné par exemple par Agnihotri et Woodward
dans [AW98] (voir aussi [Bis98, Bis99, Bel01, JW92, Gal97, KM99]). Il s’agit d’inégalités linéaires portant
sur les arguments des valeurs propres qui définissent les Cj . La forme générale de ces inégalités fait appel
à des outils sophistiqués mais nous verrons qu’il est possible, dans le cas particulier où U = U(2) et l = 3,
de les obtenir par des méthodes géométriques élémentaires (voir corollaire 5.4.12).

Deux représentations ρ, ρ′ ∈ Hom(π, U) de π dans U sont dites équivalentes s’il existe un élément ϕ ∈ U
tel que ϕρ(γj)ϕ

−1 = ρ′(γj) pour tout j ∈ {1, . . . , l} (en particulier, si U ⊂ Gl(V ) est un groupe de
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1.1 CHAPTER 1

transformations linéaires d’un espace vectoriel V , cette notion cöıncide bien avec la notion d’équivalence
pour les représentations linéaires : il existe un automorphisme ϕ de V tel que ∀γ ∈ π on ait ϕ(ρ(γ).v) =
ρ′(γ).ϕ(v) pour tout v ∈ V ). Cette relation d’équivalence laisse stable la classe de conjugaison de chacun
des ρ(γj) et induit donc une relation d’équivalence sur HomC(π, U). Remarquons que si l’on utilise la
description de Hom(π, U) (resp. HomC(π, U)) donnée plus haut, alors ρ = (u1, . . . , ul) est équivalent à
ρ′ = (u′1, . . . , u

′
l) si et seulement si (u1, . . . , ul) et (u′1, . . . , u

′
l) sont dans une même orbite de l’action

diagonale de U sur U × · · · × U (resp. C1 × · · · × Cl) donnée par :

ϕ.(u1, . . . , ul) := (ϕu1ϕ
−1, . . . , ϕulϕ

−1)

L’espace des classes d’équivalence pour cette relation est appelé l’espace des modules des représentations
de π dans U et est noté M (resp. MC) :

M := Hom(π, U)
/
U = {(u1, . . . , ul) ∈ U × · · · × U | u1 . . . ul = 1}

/
U

MC := HomC(π, U)
/
U = {(u1, . . . , ul) ∈ C1 × · · · × Cl | u1 . . . ul = 1}

/
U

Ces espaces ne sont pas des variétés lisses en général, mais ils possèdent une structure stratifiée que
nous évoquerons au chapitre 4. Dans la suite, nous étudierons exclusivement l’espace MC, dont l’une
des propriétés les plus remarquables est de porter une structure symplectique stratifiée. Pour nous, cela
signifiera simplement que MC est réunion disjointe de variétés lisses (de dimensions différentes) appelées
strates portant chacune une structure symplectique, et nous appellerons sous-variété lagrangienne de
MC un sous-ensemble de MC dont l’intersection avec chaque strate est une sous-varíté lagrangienne de
la strate considérée. Nous appellerons représentation de π aussi bien les éléments de HomC(π, U) que les
éléments de MC , sauf si le contexte ne permet pas de dire duquel de ces deux ensembles il est question.

La démarche suivie pour trouver une sous-variété lagrangienne de MC = HomC(π, U)/U consiste à :

1. introduire une notion de représentation décomposable.

2. caractériser ces représentations comme les éléments du lieu des points fixes d’une involution définie
sur MC.

3. montrer que l’involution considérée est antisymplectique et que l’ensemble de ses points fixes est
non vide (formant ainsi une sous-variété lagrangienne de MC).

Comme nous le verrons dans le chapitre 5, l’idée d’introduire une notion de représentation décomposable a
une origine géométrique très simple. Cette origine géométrique nous conduira à étudier les configurations
de sous-espaces lagrangiens de Cn et à définir une notion d’angle entre deux tels sous-espaces. Le fait
de vouloir ensuite caractériser l’ensemble des représentations décomposables comme le lieu des points
fixes d’une involution découlera alors d’une tentative de formulation d’une version infinitésimale de ce
problème de configurations. L’autre mérite de cette version infinitésimale sera de montrer pourquoi l’on
doit s’attendre à ce que l’involution considérée sur MC soit antisymplectique.

Le cadre de ce travail sera celui de la géométrie quasi-hamiltonienne, que nous utiliserons à la fois
pour décrire la structure symplectique de MC et pour étudier la notion de représentation décomposable
(caractérisation et existence). La structure symplectique de MC sera en effet obtenue par réduction
symplectique à partir de l’espace quasi-hamiltonien C1×· · ·×Cl et l’involution permettant de caractériser
les représentations décomposables sera induite par une involution sur l’espace total C1 × · · · × Cl. Nous
donnerons en particulier des conditions suffisantes pour qu’une involution construite sur un espace quasi-
hamiltonien induise une involution antisymplectique sur le quotient symplectique associé. Le point de
notre étude le plus difficile techniquement sera de montrer l’existence des représentations décomposables
(c’est-à-dire de montrer que l’involution construite sur MC admet effectivement des points fixes). Comme
nous le verrons, cela découle d’un théorème de convexité, dit théorème de convexité réel, pour les ap-
plications moment à valeurs dans un groupe de Lie, dont la démonstration fait l’objet du chapitre 8, et
pour lequel nous supposerons de plus que le groupe compact connexe U est simplement connexe.
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Nous pouvons désormais résumer la discussion ci-dessus de la manière suivante, qui sera considérablement
détaillée par la suite. On se donne un groupe de Lie compact connexe quelconque U , muni d’un auto-
morphisme involutif τ et d’un produit scalaire Ad-invariant (. | .) sur u = Lie(U). On note τ− l’involution
τ− : u ∈ U 7→ τ(u−1). Un élément w ∈ U vérifiant τ−(w) = w (soit τ(w) = w−1) est dit symétrique. On
supposera de plus que le lieu des points fixes Fix(τ−) de l’involution τ− est un ensemble connexe. Cette
hypothèse est par exemple vérifiée par le groupe U(n) muni de l’involution τ(u) := u (voir les remarques
5.2.3 et 7.4.2 pour des commentaires sur cette hypothèse) . On se donne enfin l classes de conjugaison
C1, . . . , Cl de U , choisies de manière à ce que HomC(π, U) 6= ∅. L’espace C1 × · · · × Cl est un espace
quasi-hamiltonien lorsqu’on le munit de l’action diagonale de U , d’une certaine 2-forme notée ω, et de
l’application

µ : C1 × · · · × Cl −→ U
(u1, . . . , ul) 7−→ u1 . . . ul

appelée application moment. L’ensemble des représentations de π est alors la fibre du moment au-dessus
de 1 :

HomC(π, U) = µ−1({1}) = {(u1, . . . .ul) ∈ C1 × · · · × Cl |u1 . . . ul = 1}
et l’espace des modules MC est le quotient symplectique associé à l’espace quasi-hamiltonien C1×· · ·×Cl :

MC = C1 × · · · × Cl //U := µ−1({1})/U

Donnons maintenant la définition d’une représentation décomposable. Nous verrons dans le chapitre 5
comment arriver à cette définition de nature algébrique par des considérations géométriques.

Définition (Représentation décomposable). Soit (U, τ) un groupe de Lie muni d’un automorphisme
involutif τ . Une représentation (u1, . . . , ul) ∈ µ−1({1}) de π dans U est dite décomposable s’il existe l
éléments w1, . . . , wl de U vérifiant :

(i) τ(wj) = w−1
j pour tout j (chaque wj est un élément symétrique de U au sens de l’involution τ).

(ii) u1 = w1w
−1
2 , u2 = w2w

−1
3 , . . . , et ul = wlw

−1
1 .

Une représentation est dite σ0-décomposable si elle est décomposable avec w1 = 1.

On définit alors l’involution suivante sur C1 × · · · × Cl :

β : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→

(
τ−(ul) . . . τ

−(u2)τ
−(u1)τ(u2) . . . τ(ul), . . . , τ

−(ul)τ
−(ul−1)τ(ul), τ

−(ul)
)

Nous verrons au chapitre 6 comment cette involution est obtenue et nous démontrerons alors le théorème
suivant :

Théorème 1 (Caractérisation des représentations décomposables). Une représentation u =
(u1, . . . , ul) ∈ µ−1({1}) est σ0-décomposable si et seulement si β(u) = u. Elle est décomposable si et
seulement si β(u) ∼ u en tant que représentations de π.

Nous verrons par ailleurs que l’involution β vérifie Fix(β) 6= ∅, β(ϕ.u) = τ(ϕ).β(u) pour tout u ∈
C1 × · · · × Cl et tout ϕ ∈ U , et µ ◦ β = τ− ◦ µ. Ceci montre que β induit une involution

β̂ : [u] ∈ MC 7→ [β(u)]

sur l’espace MC des classes d’équivalence de représentations de π dans U . On remarque que si u est
décomposable alors ϕ.u est décomposable pour tout ϕ ∈ U , et on a alors immédiatement :

Corollaire 2. [u] ∈ MC est décomposable si et seulement si β̂([u]) = [u].

De plus, nous verrons au chapitre 7 que l’on a :

12



1.1 CHAPTER 1

Proposition 3. β∗ω = −ω sur C1 × · · · × Cl, de sorte que β̂ est antisymplectique sur MC.

Il reste à montrer que β̂ a effectivement des points fixes, ou, de manière équivalente, que µ−1({1}) ∩
Fix(β) 6= ∅. Ceci est un corollaire du théorème suivant :

Théorème 4 (Un théorème de convexité réel pour les applications moment à valeurs dans
un groupe de Lie). Soit (U, (. | .), τ) un groupe de Lie compact connexe et simplement connexe muni
d’un automorphisme involutif τ tel que l’involution τ− : u 7→ τ(u−1) laisse un tore maximal T de U fixe
point par point, et soit W ⊂ t = Lie(T ) une alcôve de Weyl fermée. Soit (M,ω, µ : M → U) un U -espace
quasi-hamiltonien connexe tel que l’application moment µ : M → U soit propre et soit β : M → M une
involution sur M vérifiant :

(i) β∗ω = −ω

(ii) β(u.x) = τ(u).β(x) pour tout x ∈M et tout u ∈ U

(iii) µ ◦ β = τ− ◦ µ

(iv) Mβ := Fix(β) 6= ∅

Alors :
µ(Mβ) ∩ exp(W) = µ(M) ∩ exp(W)

En particulier, µ(Mβ) ∩ exp(W) est un sous-polytope convexe de exp(W) ' W ⊂ t, égal au polytope
moment µ(M) ∩ exp(W) tout entier.

Corollaire 5 (Existence de points fixes pour β̂). Si µ−1({1}) 6= ∅ alors µ−1({1}) ∩ Fix(β) 6= ∅.

L’existence des représentations décomposables est donc garantie dès lors que HomC(π, U) 6= ∅. On peut
alors conclure de la manière suivante :

Théorème 6 (Une sous-variété lagrangienne de MC). L’ensemble des classes d’équivalence de
représentations décomposables du groupe π = π1(S

2\{s1, . . . , sl}) est une sous-variété lagrangienne de
l’espace symplectique stratifié MC = HomC(π, U)/U , égale au lieu des points fixes d’une involution anti-

symplectique β̂ définie sur MC.

Les chapitres 2 et 3 de cette thèse rappellent quelques notions et résultats sur les groupes de Lie qui
seront utiles par la suite et qui sont exposés en détail par exemple dans [Hel01] et [Loo69b]. Le chapitre 4
donne la définition et les principaux exemples d’espaces quasi-hamiltoniens, ainsi que les propriétés dont
nous aurons besoin ultérieurement. Il suit [AMM98] de très près. Les chapitres 5 à 9 constituent quant à
eux le coeur de cette thèse. Les résultats énoncés ci-dessus y sont démontrés et l’on tente d’y exposer au
mieux les motivations et les idées qui ont permis de les obtenir. Outre les résultats principaux mentionnés
ci-dessus, on trouvera aussi dans cette thèse une formule, obtenue en collaboration avec Elisha Falbel et
Jean-Pierre Marco, pour calculer l’indice d’inertie d’un triplet de sous-espaces lagrangiens de Cn à partir
des angles mesurés deux à deux entre les lagrangiens considérés (voir proposition 5.5.10).

L’un des intérêts de ce travail de thèse me semble être de donner, en plus d’un exemple explicite de
sous-variéte lagrangienne d’un espace de modules (voir aussi [Gol88] et [Ho04] 1), une façon d’en chercher
d’autres lorsque l’on change le groupe de surface considéré initialement. Ainsi, pour peu que l’on sache
construire une involution β vérifiant certaines propriétés sur l’espace quasi-hamiltonien dont la réduction
symplectique donne l’espace de modules qui nous intéresse, les résultats obtenus ici garantissent l’existence

1Dans cet article, Ho construit une involution antisymplectique sur l’espace

Mg,0 :=
˘

(a1, b1, . . . , ag , bg) ∈ SU(n) × · · · × SU(n) |
n

Y

i=1

[ai, bi] = 1
¯

/SU(n)

des représentations du groupe fondamental d’une surface de Riemann compacte de genre g ≥ 1.
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de points fixes pour l’involution β̂ induite sur le quotient, et montrent que l’ensemble de ces points fixes
forme une sous-variété lagrangienne de cet espace de modules. Il reste à obtenir effectivement de telles
involutions β dans le cas d’un groupe de surface π quelconque, et l’on peut penser que cela passe par la
définition d’une notion appropriée de représentation décomposable.

Les principales références ayant servi de point de départ à ce travail de thèse sont d’une part l’article
d’Alekseev, Meinrenken et Woodward ([AMW01]) sur la conjecture de Thompson et l’article d’Alekseev,
Malkin et Meinrenken ([AMM98]) sur la notion d’espace quasi-hamiltonien, et d’autre part l’article de
Hilgert, Neeb et Plank ([HNP94]) sur les propriétés de convexité du moment pour les espaces hamiltoniens
usuels et l’article de O’Shea et Sjamaar ([OS00]) donnant une version réelle de ces résultats dont nous
démontrons ici un analogue dans le cadre quasi-hamiltonien.

Une partie des résultats nouveaux contenus dans cette thèse a déjà fait l’objet de publications. Ainsi le
chapitre 5 reprend-il les résultats obtenus en collaboration avec Elisha Falbel et Jean-Pierre Marco dans
[FMS04], tandis que les chapitres 6 et 9 contiennent les résultats publiés dans [Sch06].

La notion de représentation décomposable a été introduite dans le cas du groupe unitaire U = U(n)
par Elisha Falbel et Richard Wentworth, avec qui j’ai eu la chance de pouvoir beaucoup discuter de ces
questions, et que je remercie beaucoup pour l’aide qu’ils m’ont apportée lors de ces discussions. Le fait
que l’ensemble des représentations décomposables constitue une sous-variété lagrangienne de l’espace des
modules dans le cas particulier U = U(n) a été obtenu simultanément et par des méthodes différentes
dans [FW] et dans [Sch06], ce dernier article utilisant le résultat principal de [FW] pour prouver la non-
vacuité de l’ensemble des représentations décomposables de π1(S

2\{s1, . . . , sl}) dans U(n). Dans cette
thèse, la notion de représentation décomposable est étendue à un groupe de Lie quelconque U muni d’une
involution τ , et la caractérisation de ces représentations décomposables obtenue dans le chapitre 6 est
valable pour tout groupe de Lie compact connexe (sous l’hypothèse que Fix(τ−) est connexe). L’existence
des représentations décomposables est quant à elle obtenue pour les groupes de Lie compacts connexes et
simplement connexes, ce qui ne permet donc pas de retrouver le résultat obtenu par Falbel et Wentworth
dans [FW] (voir à ce propos la section 9.3). Je souhaiterais également remercier Alan Weinstein pour
m’avoir encouragé dans l’idée d’aborder l’étude des représentations décomposables à l’aide de la notion
d’application moment et pour m’avoir suggéré l’approche infinitésimale développée dans la section 6.1,
ainsi que Johannes Huebschmann pour m’avoir aiguillé vers la notion d’espace quasi-hamiltonien. Enfin,
je remercie vivement Sam Evens et Jiang Hua Lu pour la discussion qui m’a conduit à écrire les sections
6.3 et 6.4, étapes cruciales vers la caractérisation des représentations décomposables obtenue dans le
chapitre 6.

1.2 English version

The purpose of this thesis is to give an example of a Lagrangian submanifold of the moduli space

MC := HomC(π, U)
/
U

where π := π1(S
2\{s1, . . . , sl}) is the fundamental group of an l-punctured sphere (l ≥ 1), and where

U is an arbitrary compact connected Lie group. We will specify the above notations shortly, and see
that it will sometimes be necessary to suppose that the compact connected group U is in addition simply
connected. We shall come back to these considerations later on in this work, notably in the last chapter.
For now, we would like to give an outline of the field which this thesis is attached to, and an overview of
the foundational material for the study of symplectic geometry of moduli spaces.

It is customary to call modules coordinates on the orbit space associated to a group action. For
instance, if we consider the conjugacy action of the unitary group on itself, then the orbit space is the set
Conj(U(n)) of conjugacy classes of U(n), and each of these conjugacy classes is completely determined
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by the eigenvalues of any of its representatives, counted with their respective multiplicities :

Conj
(
U(n)

)
' Tn/Sn

Then by definition the modules of this action are the elements of Tn/Sn. In an even more elementary
way, the modules of the rotation action of S1 ' SO(2) on the set of lines of the Euclidean plane are the
real numbers in the interval [0, π[, usually called oriented angles. In this thesis, the moduli spaces that we
shall be interested in are the spaces of (equivalence classes of) representations of the fundamental group
πg,l := π1(Σg,l) of a Riemann surface Σg,l := Σg\{s1, . . . , sl} where Σg is a compact Riemann surface
of genus g ≥ 0, where l is an integer l ≥ 0 (with the convention that Σg,0 := Σg) and where s1, . . . , sl
are l pairwise distinct points of Σg. These representations varieties have been an important object of
study for several decades now, and are located at the intersection of various areas of mathematics, each
of which is very rich and sheds interesting lightning on these spaces. Thus, the space

Rep(πg,l, U) := Hom(πg,l, U)
/
U

of equivalence classes of representations of πg,l in a Lie group U arises naturally in complex algebraic
geometry as it can be identified to the space of equivalence classes of holomorphic vector bundles on
Σg,l, as it was shown by Narasimhan and Seshadri in the 1960s (see [NS65]). At the beginning of the
1980s, Atiyah and Bott gave a new impulsion (see [AB83]) to the subject by identifying these spaces
as the moduli spaces of flat connections on principal bundles of group U on Σg,l, thereby revealing the
importance of the representation varieties in gauge theory. These spaces also arise in differential Galois
theory and in operator algebra theory. Finally, it is possible to use these spaces to construct deformations
of discrete subgroups of Lie groups (see for instance [MG88]). The diversity of the fields which these
representation spaces are attached to justifies the fact that they are such an important object of study
and that their geometry should be investigated. One may for instance find an introduction to the study of
geometric structures of moduli spaces in [Gol88]. As for us, we shall focus our attention on studying the
symplectic structure of some of these representation spaces. This symplectic structure can be obtained and
described in a wide variety of ways (see for instance [GHJW97, AM95, AMM98, MW99]), each of which
has its own advantages. The description given by Alekseev, Malkin and Meinrenken in [AMM98] is in our
sense particularly well-suited for studying representations of πg,l. This description rests on the notion of
quasi-Hamiltonian space, which enables one to avoid infinite-dimensional manifolds while limiting oneself
to relatively simple objects to construct a symplectic form on representation varieties. We will get into
the details of each step of this construction in chapter 4 and carry on studying symplectic geometry
of moduli spaces in chapter 7. As for giving examples of Lagrangian submanifolds, we shall restrict
ourselves to the case of the fundamental group of a punctured sphere, but we think that this example
and the methods used in this thesis can be used as a starting point to find Lagrangian submanifolds in
the moduli space associated to an arbitrary surface group. In particular, we will see that the general
results on quasi-Hamiltonian spaces obtained here (chapters 7 and 8) can be applied regardless of the
considered surface group. In the following, we will study representations of π = π1(S

2\{s1, . . . , sl})
whose generators lie in a prescribed conjugacy class exclusively. To be able to be more precise in our
statements, let us recall that the group π = π1(S

2\{s1, . . . , sl}) admits the following finite presentation
by generators and relations :

π =< γ1, . . . , γl | γ1 . . . γl = 1 >

We start with a system of representatives γ1, . . . , γl of generators of π, and l conjugacy classes C1, . . . , Cl
of U . We then study the set

HomC(π, U) := {ρ : π → U | ∀j ∈ {1, . . . , l}, ρ(γj) ∈ Cj}

which is a (possibly empty) subset of the set Hom(π, U) of group morphisms of π into U . Elements of
Hom(π, U) are also called representations of π into U . Thanks to the choice of generators γ1, . . . , γl of
π, one has :

Hom(π, U) '
{
(u1, . . . , ul) ∈ U × · · · × U | u1 . . . ul = 1

}
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and
HomC(π, U) '

{
(u1, . . . ul) ∈ C1 × · · · × Cl | u1 . . . ul = 1

}

In all of the following, we will assume that the conjugacy classes C1, . . . Cl of U satisfy the condition
HomC(π, U) 6= ∅. In the case where U = SU(n), a set of necessary and sufficient conditions lying
on the Cj for this to be true has been given for instance by Agnihotri and Woodward in [AW98] (see
also [Bis98, Bis99, Bel01, JW92, Gal97, KM99]). These conditions are linear inequalities satisfied by the
arguments of the eigenvalues defining the Cj. The general form of these inequalities calls for sophisticated
tools, but we will see that in the case where U = U(2) and l = 3, it is possible to obtain them using only
elementary geometric methods (see corollary 5.4.12).

Two representations ρ, ρ′ ∈ Hom(π, U) of π into U are said to be equivalent if there exists an element
ϕ ∈ U such that ϕρ(γj)ϕ

−1 = ρ′(γj) for all j ∈ {1, . . . , l} (in particular, if U ⊂ Gl(V ) is a group of linear
transformations of a vector space V , this is indeed the same notion as equivalent linear representations :
there exists an automorphism ϕ of V such that ∀γ ∈ π one has ϕ(ρ(γ).v) = ρ′(γ).ϕ(v) for all v ∈
V ). This equivalence relation preserves the conjugacy class of each of the ρ(γj), so that it induces an
equivalence relation on HomC(π, U). Observe that if we use the above-given description of Hom(π, U)
(resp. HomC(π, U)), then ρ = (u1, . . . , ul) is equivalent to ρ′ = (u′1, . . . , u

′
l) if and only if (u1, . . . , ul)

and (u′1, . . . , u
′
l) lie in a same orbit of the diagonal action of U on U × · · · ×U (resp. C1 × · · · × Cl) given

by :
ϕ.(u1, . . . , ul) := (ϕu1ϕ

−1, . . . , ϕulϕ
−1)

The space of equivalence classes for this relation is called the moduli space of representations of π into U
and denoted by M (resp. MC) :

M := Hom(π, U)
/
U = {(u1, . . . , ul) ∈ U × · · · × U | u1 . . . ul = 1}

/
U

MC := HomC(π, U)
/
U = {(u1, . . . , ul) ∈ C1 × · · · × Cl | u1 . . . ul = 1}

/
U

These spaces are generally not smooth manifolds but they carry a stratified structure that we shall evoke
in chapter 4. In the following, we will focus our attention on the space MC, whose main remarkable
property is that it carries a stratified symplectic structure. To us, this will simply mean that MC is
a disjoint union of smooth manifolds (of different dimensions) called strata, each of which carries a
symplectic structure. And we will call Lagrangian submanifold of MC a subset of MC whose intersection
with each stratum is a Lagrangian submanifold of the considered stratum. Elements of HomC(π, U) will
be called representations of π. We shall also call elements of MC representations of π, unless it is not
clear from the context which of these two sets we are precisely alluding to.

The path we shall follow to find a Lagrangian submanifold of MC = HomC(π, U)/U consists in :

1. introducing a notion of decomposable representation.

2. characterizing these representations as the elements of the fixed-point set of an involution defined
on MC .

3. showing that this involution is anti-symplectic and that its fixed-point set is non-empty (being
therefore a Lagrangian submanifold of MC).

As we shall see in chapter 5, the idea of introducing a notion of decomposable representation has a very
simple geometric origin, which will lead us to studying configurations of Lagrangian subspaces of Cn and
to defining a notion of angle between two such subspaces. The idea of trying to characterize the set of
decomposable representations as the fixed-point set of an in involution will then follow from an attempt
at giving an infinitesimal formulation of this configuration problem. Another upshot of this infinitesimal
formulation is to show why one should expect the involution at stake to be anti-symplectic on MC.

The setting of this thesis will be quasi-Hamiltonian geometry. We shall encounter this geometry both
to describe the symplectic structure of MC and to study the notion of decomposable representation
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(characterization and existence). Indeed, the symplectic structure on MC will be obtained by symplectic
reduction from the quasi-Hamiltonian space C1 × · · · × Cl, and the involution that shall enable us to
characterize decomposable representations will be induced by an involution on the total space C1×· · ·×Cl.
In particular, we will give sufficient conditions on an involution defined on a quasi-Hamiltonian space for
it to induce an anti-symplectic involution on the associated symplectic quotient. The most technically
difficult point of our study will be to prove the existence of decompoable representations (that is, to
prove that the fixed-point set of the involution constructed on MC is non-empty). As we shall see later
on, this will follow from a convexity theorem, more precisely from what is usually called a real convexity
theorem, for group-valued momentum maps, whose proof, for which we will suppose that the compact
connected Lie group U is in addition simply connected, will be presented in chapter 8.

We may now summarize the above discussion in a way that shall be considerably detailed in the following.
We start with a compact connected Lie group U , endowed with an involutive automorphism τ and whose
Lie algebra u = Lie(U) is equipped with an Ad-invariant scalar product (. | .). We denote by τ− the
involution τ− : u ∈ U 7→ τ(u−1). An element w ∈ U satisfying τ−(w) = w (or equivalently, τ(w) = w−1)
is said to be symmetric. We shall suppose additionally that the fixed-point set Fix(τ−) of the involution
τ− is a connected set. This assumption is for instance satisfied by the unitary group U(n) endowed with
the involution τ(u) := u (see remarks 5.2.3 and 7.4.2 for comments on this assumption). Finally, we
suppose given l conjugacy classes C1, . . . , Cl of U , picked in a way that HomC(π, U) 6= ∅. The space
C1 × · · · × Cl is a quasi-Hamiltonian space when it is endowed with the diagonal action of U , a certain
2-form ω, and the map

µ : C1 × · · · × Cl −→ U
(u1, . . . , ul) 7−→ u1 . . . ul

called the momentum map. Then the set of representations of π is the fibre above 1 of the momentum
map :

HomC(π, U) = µ−1({1}) = {(u1, . . . .ul) ∈ C1 × · · · × Cl |u1 . . . ul = 1}
and the moduli space MC is the symplectic quotient associated to the quasi-Hamiltonian space C1×· · ·×Cl :

MC = C1 × · · · × Cl //U := µ−1({1})/U

Let us now give the definition of a decomposable representation. We will see in chapter 5 how to reach
this definition using geometric considerations.

Definition (Decomposable representations). Let (U, τ) be a Lie group endowed with an involutive
automorphism τ . A representation (u1, . . . , ul) of π = π1(S

2\{s1, . . . , sl}) into U is called decomposable
if there exist l elements w1, . . . , wl ∈ U satisfying :

(i) τ(wj) = w−1
j for all j (each wj is a symmetric element of U with respect to τ).

(ii) u1 = w1w
−1
2 , u2 = w2w

−1
3 , . . . , ul = wlw

−1
1 .

A representation will be called σ0-decomposable if it is decomposable with w1 = 1.

We then define the following involution on C1 × · · · × Cl :

β : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→

(
τ−(ul) . . . τ

−(u2)τ
−(u1)τ(u2) . . . τ(ul), . . . , τ

−(ul)τ
−(ul−1)τ(ul), τ

−(ul)
)

We shall see in chapter 6 how this involution is obtained and we will then show the following result :

Theorem 1 (Characterization of decomposable representations). A representation u = (u1, . . . ,
ul) ∈ µ−1({1}) is σ0-decomposable if and only if β(u) = u. It is decomposable if and only if β(u) ∼ u as
representations of π.
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We shall also see that the involution β satisfies Fix(β) 6= ∅, β(ϕ.u) = τ(ϕ).β(u) for all u ∈ C1 × · · · × Cl
and all ϕ ∈ U , and µ ◦ β = τ− ◦ µ. This shows that β induces an involution

β̂ : [u] ∈ MC 7→ [β(u)]

on the space MC of equivalence classes of representations of π in U . One then observes that if u is
decomposable then so is ϕ.u for all ϕ ∈ U , therefore one immediately has :

Corollary 2. [u] ∈ MC is decomposable if and only if β̂([u]) = [u].

Additionally, we shall see in chapter 7 that one has :

Proposition 3. β∗ω = −ω on C1 × · · · × Cl, so that β̂ is anti-symplectic on MC.

It remains to show that β̂ indeed has fixed points, or equivalently, that µ−1({1}) ∩ Fix(β) 6= ∅. This is
a corollary of the following theorem :

Theorem 4 (A real convexity theorem for group-valued momentum maps). Let (U, (. | .), τ) be
a compact connected simply connected Lie group endowed with an involutive automorphism τ such that
the involution τ− : u 7→ τ(u−1) leaves a maximal torus T of U pointwise fixed and let W ⊂ t = Lie(T )
be a closed Weyl alcove. Let (M,ω, µ : M → U) be a connected quasi-Hamiltonian U -space with proper
momentum map µ : M → U and let β : M →M be an involution on M such that :

(i) β∗ω = −ω

(ii) β(u.x) = τ(u).β(x) for all x ∈M and all u ∈ U

(iii) µ ◦ β = τ− ◦ µ

(iv) Mβ := Fix(β) 6= ∅

Then :

µ(Mβ) ∩ exp(W) = µ(M) ∩ exp(W)

In particular, µ(Mβ)∩exp(W) is a convex subpolytope of exp(W) ' W ⊂ t, equal to the whole momentum
polytope µ(M) ∩ exp(W).

Corollary 5 (Existence of fixed points for β̂). If µ−1({1}) 6= ∅ then µ−1({1}) ∩ Fix(β) 6= ∅.

Thus, the existence of decomposable representations is guaranteed as soon as HomC(π, U) 6= ∅. One may
then conclude in the following way :

Theorem 6 (A Lagrangian submanifold of MC). The set of equivalence classes of decomposable
representations of the group π = π1(S

2\{s1, . . . , sl}) is a Lagrangian submanifold of the stratified sym-

plectic space MC = HomC(π, U)/U , equal to the fixed-point set of an anti-symplectic involution β̂ defined
on MC.

Chapters 2 and 3 of this thesis are devoted to recalling a few notions and results on Lie groupe that
are exposed in detail for instance in [Hel01] and [Loo69b]. In chapter 4, we give the definition and main
examples of quasi-Hamiltonian spaces, as well as the properties we shall need in the following. It follows
[AMM98] closely. Chapters 5 to 9 constitute the heart of this thesis. The results announced above are
proved there, and we try to explain the motivation and ideas that led to them. In addition to the main
results mentioned above, this thesis contains a formula, obtained in collaboration with Elisha Falbel and
Jean-Pierre Marco, that enables ones to compute the inertia index of a Lagrangian triple of Cn from the
angles between them (see proposition 5.5.10).
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1.2 CHAPTER 1

In addition to giving an explicit example of a Lagrangian submanifold in a moduli space (see also [Gol88]
and [Ho04] 2), one of the interests of this thesis work is, in my opinion, to give a way of finding others
when one changes the surface group considered initially. As a matter of fact, if one is able to obtain
an involution β satisfying certain properties on the quasi-Hamiltonian space whose symplectic reduction
is the moduli space one is interested in, the results contained in this work ensure that the involution
β̂ induced on the associated quotient indeed has fixed points and that the set of such fixed points is a
Lagrangian submanifold of the moduli space at hand. And we would think that obtaining such involutions
in the case of an arbitrary surface group π is a matter of defining an appropriate notion of decomposable
representation.

The main references serving for starting point for this thesis work are on the one hand the article
of Alekseev, Meinrenken and Woodward on the Thompson conjecture ([AMW01]) and the article of
Alekseev, Malkin and Meinrenken on quasi-Hamiltonian spaces ([AMM98]), and on the other hand the
article of Higert, Neeb an Plank on convexity properties of momentum maps in the usual Hamiltonian
setting and the article of O’shea and Sjamaar giving a real version of these results, which we prove here
a quasi-Hamiltonian analogue of.

Some of the results contained in this thesis has already been accepted for publication. Thus, chapter 5
is an expanded version of results obtained in collaboration with Elisha Falbel and Jean-Pierre Marco in
[FMS04], whereas chapters 6 and 9 contain the results published in [Sch06].

2In this paper, Ho constructs an antisymplectic involution on the space

Mg,0 :=
˘

(a1, b1, . . . , ag , bg) ∈ SU(n) × · · · × SU(n) |
n

Y

i=1

[ai, bi] = 1
¯

/SU(n)

of representations of the fundamental group of a compact Riemann surface of genus g ≥ 1.
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Chapter 2

Generalities on actions of compact

connected Lie groups

Contents

2.1 The action of a compact Lie group on an arbitrary manifold . . . . . . . . 21

2.2 The conjugacy action of a compact connected simply connected Lie group

on itself . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

In this chapter, we recall some properties of actions of compact Lie groups. In particular, we study
the conjugacy action of a compact connected simply connected Lie group on itself.

The sole purpose of this chapter is to serve as a reference for results that we shall need in the remainder
of this thesis. The properties we remind here are all standard, and proofs might be found in the books
indicated below. Whenever we need one of these results in the forthcoming chapters, a precise reference
will be made, so that one may for now skip the present chapter and come back to it when necessary.

2.1 The action of a compact Lie group on an arbitrary manifold

In this section, we recall a few facts about compact group actions that we will need in the forthcoming
chapters. We freely quote results from [GS84c], [DK00], [Bre72] and [Bou82], and begin with the notion
of manifold of symmetry :

Proposition 2.1.1. Let U be a compact Lie group acting on a manifold M and let K ⊂ U be a closed
subgroup of U . Let MK denote the set of points of M whose stabilizer is exactly K :

MK := {x ∈M | Ux = K}
Then MK is a submanifold of M , called the manifold of symmetry K, whose tangent space at any x ∈MK

consists of K-fixed vectors of TxM :

TxMK = {v ∈ TxM | for all k ∈ K, k.v = v}
We refer to [GS84c] (p.203) for a proof of this result. Observe that for x ∈MK , the group K indeed acts
on TxM : since x is fixed by any k ∈ K, the tangent map to the diffeomorphism y ∈ M 7→ k.y sends
TxM to itself. Also observe that the subgroup K is assumed to be closed because a stabilizer always is.

When studying the action of a Lie group U on a manifold M , it is often useful to understand what
the manifold M looks like in the neighbourhood of an orbit U.x of this action. One key notion in this
context is that of a slice through x ∈M (see for instance [DK00], p.98) :
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CHAPTER 2 2.2

Definition 2.1.2. Let U be a Lie group acting on a manifold M and let x ∈ M be a point of M . A
submanifold S ⊂M is called a slice through x if :

(i) x ∈ S

(ii) S is Ux-stable

(iii) if u.S ∩ S 6= ∅ then u ∈ Ux

(iv) TxM = Tx(U.x) ⊕ TxS and for all y ∈ S, TyM = Ty(U.y) + TyS

In particular, the set U.S = {u.y : y ∈ S, u ∈ U} is an open neighbourhood of the orbit U.x, and S is
closed in U.S.

We then have :

Proposition 2.1.3. If U is a compact Lie group acting on a manifold M , then for every x ∈ M there
exists a slice through x. Furthermore, we can choose coordinates on S so that S is an open ball in a
vector space upon which Ux acts linearly.

We refer to [GS84c] (p.201) for the proof. See also [DK00] for the case of proper actions of arbitrary Lie
groups. One very interesting consequence of the existence of slices is the possibility of establishing a local
normal form for compact group actions (see for instance [DK00], p.102) :

Proposition 2.1.4. Let U be a compact Lie group acting on a manifold M . Then any x ∈M possesses
a U -stable open neighbourhood Vx such that :

M ⊃ Vx ' U ×Ux

(
TxM

/
Tx(U.x)

)

where U ×Ux
(TxM/Tx(U.x)) =: U ×Ux

Vx is the quotient of the manifold U × Vx by the free action of
the compact group Ux given by u.(g, v) := (gu−1, u.v). Furthermore, if we denote by [g, v] the Ux-orbit of
(g, v) in U ×Vx for this action, then the manifold U ×Ux

Vx inherits a U -action given by u.[g, v] = [ug, v]
and the above diffeomorphism between Vx and U ×Ux

Vx is equivariant.

This has the following consequence :

Corollary 2.1.5. Every x ∈ M possesses a U -stable open neighbourhood Vx such that the stabilizer of
any y ∈ Vx is conjugate to a subgroup of Ux. In particular, dim (U.y) ≥ dim (U.x) for any y ∈ Vx.

Proof. Take y = [g, v] ∈ U ×Ux
Vx ' Vx. Then u.y = y if and only if [ug, v] = [g, v], that is, if and only if

there exists k ∈ Ux such that ugk−1 = g and k.v = v. In particular, u = gkg−1 ∈ gUxg
−1.

I would like to thank Pierre Sleewaegen for discussions on these topics, and refer to [Slea] for further
properties of compact group actions and a comprehensive study of convexity properties of momentum
maps for torus actions on symplectic manifolds.

Finally, we quote one last result on actions of compact Lie groups, for the proof of which we refer to
[DK00] (p.118, see also [Bou82], pp.95-99).

Proposition 2.1.6. Let U be a compact Lie group acting on a manifold M and let N ⊂M be a connected
subset of M such that N is the union of open connected pieces of U -orbits. Set :

q := max{dim (U.x) : x ∈ N}

and :
Nq := {x ∈ N | dim (U.x) = q}

Then Nq is an open, connected, and dense subset of N .
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2.2 CHAPTER 2

2.2 The conjugacy action of a compact connected simply con-

nected Lie group on itself

In this section, we study the conjugacy action of a compact connected simply connected Lie group on
itself. More precisely, we investigate the geometry of a fundamental domain for this action. We freely
quote results from [Bou82], [Hum78], [BtD95], [Ada69] and [Loo69b]. The material presented here will
be useful to us in chapter 8.

Let U be a compact connected Lie group and let T ⊂ U be a maximal torus of U . We denote by
N (T ) the normalizer of T in U and by W (T ) := N (T )/T (or simply W ) the associated Weyl group,
which is a finite group operating on T . The compact connected group U acts on itself by conjugation,
and we denote the orbit space by U/Int(U). We then have :

U/Int(U) ' T/W (2.1)

(see for instance [BtD95], p.166). If we additionally assume U to be simply connected, we can obtain
a fundamental domain D := exp(W) ⊂ U for the conjugacy action as the exponential of a convex
polyhedron W ⊂ t := Lie(T ) ⊂ u := Lie(U) called a closed Weyl alcove on which the exponential map is
injective. We will give a description of such a closed Weyl alcove in terms of roots of (U, T ). Let us first
recall the following definition :

Definition 2.2.1 (Fundamental domain). A subset D ⊂ X of a U -space X is called a fundamental
domain for the action of U if it intersects each U -orbit in exactly one point. Consequently, the map
D ⊂ X → X/U is a bijection from the fundamental domain D onto the orbit space X/U .

We now consider the adjoint action of the maximal torus T ⊂ U on the complexification uC of u = Lie(U),
and we denote by R the corresponding root system (see for instance [Loo69b], ch. 5) :

R :=
{
α ∈ t∗ | uC

α 6= {0}
}

where for any linear form α : t → R we set :

uC

α := {Y ∈ uC | for all X ∈ t, [X,Y ] = 2iπα(X)Y }

In the following, we will always assume that u = Lie(U) is equipped with an Ad-invariant positive definite
scalar product (. | .) . In particular, we may identify the co-adjoint action of U on u∗ with the adjoint
action of U on u. Since U is compact connected and simply connected, it is in particular semisimple,
and we may for instance take (. | .) to be minus the Killing form κ(X,Y ) = tr(adX adY ). To every root
α ∈ R we associate the hyperplane

Hα = {X ∈ t | α(X) = 0} = kerα ⊂ t

Definition 2.2.2 (Weyl chamber). A connected component of t\ ∪α∈R Hα is called a Weyl chamber
of the root system R. By definition, it is an open cone of t. In particular, it is convex. A Weyl chamber
is commonly denoted by t∗+ ⊂ t∗ ' t. We will denote its closure by t∗+ and call it a closed Weyl chamber.
It is a closed convex subset of t.

We now choose a Weyl chamber t∗+ ⊂ t and denote by R+(t∗+) (or simply R+) the set of associated
positive roots :

R+(t∗+) := {α ∈ R | α(X) > 0 for one and therefore all X ∈ t∗+}
A positive root α ∈ R+ is then said to be decomposable if it can be written as a sum α =

∑
β∈R+

nβ.β

where nβ ≥ 0 are integers. Otherwise it is called indecomposable, or simple. We denote by ∆(t∗+) (or
simply ∆) the set of simple roots in R+, also called a basis of R, since it can be shown that every root
α ∈ R is of the form

∑
β∈∆ nβ .β where nβ ∈ Z. As a matter of fact, bases of R and Weyl chambers are

in one-to-one correspondence (see for instance [BtD95], p.204). One of the interests of the notion of a
Weyl chamber is that it provides a fundamental domain for the (co-)adjoint action of U on u ' u∗.
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Proposition 2.2.3. The inclusion maps t∗+ ↪→ t ↪→ u induce homeomorphisms :

t∗+
'−→ t/W (T )

'−→ u/AdU

We refer to [Bou82] (p.46) for a proof of this result.

The set of simple roots ∆ associated to the choice of a Weyl chamber t∗+ enables one to give a very

nice description of the polyhedral structure of the closure t∗+ of the Weyl chamber, which we will recall
shortly. This description is key to the proof of the momentum convexity theorem presented in [HNP94].
By describing in a similar way the polyhedral structure of a fundamental domain for the conjugacy action
of U on itself, we lay the ground for the proof of the momentum convexity theorem that we will give in
chapter 8. Generalizing the definition of the hyperplanes Hα, we set, for all α ∈ R and all n ∈ Z :

Hα,n := {X ∈ t | α(X) = n} ⊂ t

The set
D :=

⋃

α∈R, n∈Z

Hα,n

is called the (Stiefel) diagram of t. It is a family of affine hyperplanes of t.

Definition 2.2.4 (Weyl alcove). A connected component W of t\D is called a Weyl alcove of the root
system R. By definition, it is an open bounded convex polyhedron. For each choice of a Weyl chamber
t∗+ ⊂ t (with associated set of positive roots R+ and set of simple roots ∆), there exists a unique Weyl
alcove W whose closure contains 0 ∈ t :

W = {X ∈ t | ∀α ∈ ∆, α(X) > 0 and ∀α ∈ R+\∆, α(X) < 1}

We call it the fundamental alcove associated to the Weyl chamber t∗+. Its closure W , called the closed
fundamental alcove, is a convex polytope of t.

We then have :

Proposition 2.2.5. Let U be a compact connected simply connected Lie group and let W ⊂ u = Lie(U)
be a Weyl alcove for U . Then the set exp(W) ⊂ U is a fundamental domain for the conjugacy action
of U on itself. Moreover, the exponential map exp : u → U induces a one-to-one map from the compact
convex polytope W onto the closed set exp(W) ⊂ U . Consequently, we have homeomorphisms :

W '−→
exp

exp(W)
'−→ U/Int(U)

We refer to [Bou82] (p.45) or to [Loo69b] (p.37) for a proof of this result. We now wish to describe the
polyhedral structure of the convex polytope W ⊂ t. We begin with the polyhedral structure of the closed
Weyl chamber t∗+ (see [HNP94]). By definition of ∆ ⊂ R+, we have :

t∗+ = {X ∈ t | ∀α ∈ ∆, α(X) > 0}

and :
t∗+ = {X ∈ t | ∀α ∈ ∆, α(X) ≥ 0}

For each subset S ⊂ ∆, we set :

FS := {X ∈ t | ∀α ∈ S, α(X) = 0 and ∀α ∈ ∆\S, α(X) > 0} ⊂ t∗+

And we then have :
t∗+ = F∅ and t∗+ =

⊔

S⊂∆

FS
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One remarkable feature of the sets (FS)S⊂∆, which we will call the cells of t∗+, is that two elements
X,Y lying in a same FS have the same stabilizer UX = UY for the (co-)adjoint action of U on u ' u∗

(see lemma 6.3 in [HNP94]). We will establish an analogous property for the closed fundamental alcove
W ⊂ t∗+ (see proposition 2.2.8). We first observe that W is also a union of cells. Instead of corresponding
to subsets S ⊂ ∆ of the set of simple roots, these cells correspond to subset S ⊂ R+ of the whole set of
positive roots. More precisely, each subset S ⊂ R+ can be uniquely written S = S1 ∪ S2 where S1 ⊂ ∆
and S2 ⊂ R+\∆, and for such an S = S1 ∪ S2, we set :

WS :=

{
X ∈ t |

{
∀α ∈ S1, α(X) = 0

∀α ∈ ∆\S1, α(X) > 0
and

{
∀α ∈ S2, α(X) = 1

∀α ∈ (R+\∆)\S2, α(X) < 1

}

In particular :

W = {X ∈ t | ∀α ∈ ∆, α(X) > 0 and ∀α ∈ R+\∆, α(X) < 1} = W∅

and :
W = {X ∈ t | ∀α ∈ ∆, α(X) ≥ 0 and ∀α ∈ R+\∆, α(X) ≤ 1} =

⊔

S⊂R+

WS

As a matter of fact, by using the notion of highest root (see [Bou68], p.165), this description can be
simplified : there exists a unique positive root α0 ∈ R+\∆, called the highest root, such that for all
X ∈ t∗+, α0(X) > α(X). In particular, if α0(X) < 1 then necessarily α(X) < 1. Then :

W = {X ∈ t | ∀α ∈ ∆, α(X) > 0 and α0(X) < 1}

And in fact :
W = {X ∈ t | ∀α ∈ ∆, α(X) ≥ 0 and α0(X) ≤ 1}

and the cells of W correspond to subsets S ⊂ ∆ ∪ {α0} :

W =
⊔

S⊂∆∪{α0}
WS

Definition 2.2.6. The sets (WS)S⊂∆∪{α0} are called the cells of the closed fundamental alcove W .

We now write this down explicitly in the case where U = SU(4) (see [Loo69b] pp.16-18 for the case
U = SU(3)). We do so because in the SU(3) case there is only one positive root which is not simple,
so that it is automatically the highest root. In contrast, in the SU(4) case, there are three positive
roots which are not simple (see below) and we will see that it is enough for our purposes to consider the
highest one. Additionally, since SU(4) is of rank 3, it is still possible to draw the Weyl alcove explicitly,
which helps developing intuition on this object. This will be useful in chapter 8. We choose the following
Ad-invariant positive definite scalar product on su(4) :

(X |Y ) = −tr(XY ) = −1

8
κsu(4)(X,Y )

The 3-dimensional torus

T =

{



t1
t2

t3
t4


 : tj ∈ S1, t1t2t3t4 = 1

}
⊂ SU(4)

is a maximal torus of SU(4), with Lie algebra

t =

{



x1

x2

x3

x4


 : xj ∈ iR, x1 + x2 + x3 + x4 = 0

}
⊂ su(4)
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The associated set of roots is

R = {±α12, ±α23, ±α34, ±α13, ±α24, ±α14}

where

αjk(X) =
xj − xk

2iπ
∈ R for any X =




x1

x2

x3

x4


 ∈ t

A set of positive roots is
R+ = {α12, α23, α34, α13, α24, α14}

The corresponding set of simple roots is

∆ = {α12, α23, α34}

and
α14 = α12 + α23 + α34 ∈ R+\∆

is the highest root. As in [Loo69b], we define the inverse roots {α∨
12, α

∨
23, α

∨
34} to be the following

elements of t :

α∨
jk :=

2−→αjk
(−→αjk | −→αjk)

where −→αjk satisfies (−→αjk |X) = α(X) for all X ∈ t. Explicitly here :

α∨
12 = 2iπ




1
−1

0
0


 , α∨

23 = 2iπ




0
1

−1
0


 , and α∨

34 = 2iπ




0
0

1
−1




Then ‖α∨
jk‖ = 2π

√
2 and the angles between the inverse roots are :

(α∨
12, α

∨
23) =

2π

3
, (α∨

23, α
∨
34) =

2π

3
, and (α∨

12, α
∨
34) =

π

2

As a basis for the central lattice exp−1(Z(SU(4))), we obtain, by inverting the Cartan matrix (see for
instance [Ada69]) :

X1 :=
1

4
(3α∨

12 + 2α∨
23 + α∨

34)

X2 :=
1

4
(2α∨

12 + 4α∨
23 + 2α∨

34)

X3 :=
1

4
(α∨

12 + 2α∨
23 + 3α∨

34)

and the tetrahedron of t whose vertices are (X0 := 0, X1, X2, X3) is a closed fundamental alcove for
SU(4). In particular, {exp(Xj)}0≤j≤3 = {1,−i,−1, i} = Z(SU(4)). As all the −→αjk have same norm,
we have α∨

14 = α∨
12 + α∨

23 + α∨
34, and we can then represent the closed fundamental alcove of (SU(4),∆)

as shown in figure 2.1. The cells of the alcove W in the sense of definition 2.2.6 are the cells of the
tetrahedron represented in figure 2.1. In particular, two elements X,Y ∈ W lying in the same cell have
the same number of distinct eigenvalues with the same respective multiplicities, so that the conjugacy
classes of exp(X) and exp(Y ) have the same dimension (see proposition 2.2.8 for the general case).

We now go back to our general study of the conjugacy action of a compact connected simply connected
Lie group U on itself. First, we will show in all generality that the stabilizer, for the conjugacy action,
of an element exp(X) ∈ T for some X ∈ W only depends on the cell of W containing X .
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W =
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(x, y, z) ∈ R3 | α12(x, y, z) ≥ 0, α23(x, y, z) ≥ 0, α34(x, y, z) ≥ 0. and α14(x, y, z) ≤ 1}

Figure 2.1: The closed fundamental alcove of (SU(4),∆)

Lemma 2.2.7. Let U be a compact connected simply connected Lie group. Then for any u ∈ U , the
centralizer Uu = {v ∈ U | vuv−1 = u} is connected.

We refer to [Bou82] (p.48) for a proof of this result.

Proposition 2.2.8. If u, v ∈ expW = tS⊂∆∪{α0} exp(WS) lie in a same exp(WS), then the centralizers
Uu and Uv are equal.

Proof. Since U is compact connected and simply connected, lemma 2.2.7 shows that Uu and Uv are
compact connected subgroups of U . Therefore Uu = Uv if and only if their Lie algebras are equal. We
then know from [Loo69b] (p.7) that the Lie algebra of Uu is :

Lie(Uu) = t ⊕
∑

α | exp
(
i2πα(X)

)
=1

u ∩ uC

α

where X ∈ t satisfies exp(X) = u. But for X ∈ W, the set

{
α ∈ ∆ ∪ {α0} | exp

(
i2πα(X)

)
= 1
}

is equal to {
α ∈ ∆ ∪ {α0} | α(X) = 0 or α(X) = 1

}

so that it only depends on the cell WS ⊂ W in which X lies, which prove the proposition.

Definition 2.2.9. For any subset S ⊂ ∆ ∪ {α0}, we denote by US the stabilizer of any element u ∈
exp(WS).

Finally, if we consider, for any integer j, the set

Σj := {u ∈ U | dim U.u = j}

of points of U whose conjugacy class is of dimension j, we have :

Proposition 2.2.10. The intersection of Σj with exp(W) is :

Σj ∩ exp(W) =
⊔

S | dim US=dim U−j
exp(WS)
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In addition to that, Σj is a submanifold of U and so is every exp(WS). For any u ∈ exp(WS), one has :

TuΣj = Tu(U.u) ⊕ Tu exp(WS)

Proof. This result is a consequence of the slice theorem (proposition 2.1.3) : for any slice S through u ∈ U ,
the set of elements whose conjugacy class has the same dimension as U.u consists of elements which are
fixed by Uu (since the stabilizer of such an element y ∈ S is a subgroup of Uu by (iii) in definition 2.1.2),
and for a linear action the set of such fixed points is a subspace, so that Σj is a submanifold of U , and
it is U -invariant. Now for any S ⊂ ∆ ∪ {α0}, exp(WS) is a submanifold of U (the chart is given by the
exponential map) and it follows from the fact that exp(W) = t exp(WS) is a fundamental domain for
the conjugacy action and from proposition 2.2.8 that

Σj ∩ exp(W) =
⊔

S | dim US=dim U−j
exp(WS)

and that exp(WS) is a slice through any u ∈ exp(WS), which concludes the proof.
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A few facts about compact

connected Lie groups as compact

symmetric spaces
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In this chapter, we recall a few facts about symmetric spaces and symmetric pairs that will be useful to
us in the rest of this work. The standard references for these questions are [Hel01] and [Loo69a, Loo69b]
(see also appendix B in [OS00] for a summary of the theory of symmetric pairs with a view towards
symplectic geometry).

The sole purpose of this chapter is to serve as a reference for results that we shall need in the remainder
of this thesis. The properties we remind here are all standard, and proofs might be found in the books
indicated below. Whenever we need one of these results in the forthcoming chapters, a precise reference
will be made, so that one may for now skip the present chapter and come back to it when necessary.

3.1 Symmetric spaces and symmetric pairs

Here we briefly recall the definition and main examples of symmetric spaces, following [Loo69a, Loo69b].
Roughly speaking, a symmetric space is a manifold M on which there is a notion of symmetry (or
reflection) around each point x ∈ M , the correct definition of a symmetry being that it is an involutive
transformation having x as an isolated fixed point and satisfying the composition rule depicted in figure
3.1.

Definition 3.1.1 (Symmetric space). A symmetric space (M, (sx)x∈M ) is a manifold M endowed
with an application

s : M −→ Diff(M)
x 7−→ sx

from M to the group of its diffeomorphisms, satisfying, for all x ∈M :

(i) sx(x) = x

(ii) sx(sx(y)) = y for all y ∈M
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(iii) sx ◦ sy(z) = ssx(y) ◦ sx(z) for all y, z ∈M (see figure 3.1)

• x

•
y

•
z

•
sy(z)

•
sx(z)

•
sx(y)

•
sx ◦ sy(z) = ssx(y) ◦ sx(z)

Figure 3.1: Composition rules for symmetries on M

(iv) x possesses a neighbourhood Vx such that if y ∈ Vx satisfies sx(y) = y then y = x.

All the symmetric spaces (M, (sx)x∈M ) that we shall consider henceforth will be supposed to be connected
(meaning that the underlying manifold M is connected). Basic examples of symmetric spaces are the
vector spaces Rn, with central symmetry sx at each x ∈ Rn :

sx(y) = −(y − x) + x = 2x− y

(in particular s0(y) = −y). More generally, any Lie group U becomes a symmetric space by setting :

su(v) = u(u−1v)−1 = uv−1u

(in particular s1(v) = v−1). Another example is the sphere of radius r in Rn : Sr = {x ∈ Rn | (x |x) = r2}
with symmetry at x the transformation :

sx(y) = 2
(x | y)
(x |x)x− y

For any symmetric space (M, (sx)), the subgroup G of Diff(M) generated by all transformations of
the form sxsy (x, y ∈M) is called the group of displacements of M . It is a normal subgroup of Diff(M)
(since ϕsxϕ

−1 = sϕ(x)) and it is actually a (finite-dimensional) Lie group acting transitively on M . By
choosing a base point x0 in M , one obtains the following homogeneous description of M :

M ' G/Gx0

where Gx0 is the stabilizer of the base-point x0. The map

σ : G −→ G
g 7−→ sx0gsx0

is an involutive automorphism of G and Gx0 lies between the group Gσ of fixed-points of σ and its neutral
component :

(Gσ)0 ⊂ Gx0 ⊂ Gσ

(see [Loo69a], p.91). Conversely, if G is a Lie group and σ is an involutive automorphism of G, then any
subgroup K ⊂ G satisfying (Gσ)0 ⊂ K ⊂ Gσ is necessarily closed and the coset space G/K endowed
with the transformations

s[x]
(
[y]
)

:=
[
xσ(x−1)σ(y)

]
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(in particular, s[1]([y]) = [σ(y)] for all y ∈ G) is a symmetric space. As an example, when the sym-
metric space M is a compact connected Lie group U , one may consider the group G = U × U and the
automorphism σ(u1, u2) = (u2, u1). Then

Gσ =
{
(u, u) : u ∈ U

}
=: U∆

and the map
Φ : U × U −→ U

(u1, u2) 7−→ u1u
−1
2

induces an isomorphism of symmetric spaces

ϕ : U × U/U∆
'−→ U

(meaning that ϕ(s[x]([y])) = sϕ([x])(ϕ([y]))).

In the following, the only example of symmetric space that will be really useful to us is the space
M = U/U τ , where U is a compact connected Lie group and τ is an involutive automorphism of U . In
this case, the symmetric space U/U τ may in fact be thought of as a subspace of U :

Proposition 3.1.2. If U is a compact connected Lie group and τ is an involutive automorphism of U ,
the map

q : U −→ U
u 7−→ uτ(u−1)

induces a homeomorphism
U/U τ '

{
uτ(u−1) : u ∈ U

}
⊂ U

If one denotes by τ− the map
τ− : U −→ U

u 7−→ τ(u−1)

then the set {uτ(u−1) : u ∈ U} is the connected component of 1 in Fix(τ−). In particular, if Fix(τ−)
is connected then any w ∈ Fix(τ−) may be written w = uτ(u−1) for some u ∈ U .

We refer to [Loo69a] (pp.73 and 182) for a proof of this result. We will call such a pair (U, τ) a symmetric
pair. This definition is less general than that appearing in [Hel01] and [OS00] but it will be sufficient for
us.

Definition 3.1.3 (Symmetric pair). A compact connected Lie group (U, τ) endowed with an involutive
automorphism τ will be called a symmetric pair.

As a matter of fact, we will now restrain ourselves even further by considering symmetric pairs of maximal
rank (see definition 3.2.1).

3.2 Symmetric pairs of maximal rank

As we did not go into enough detail in the general theory of symmetric spaces, we do not have a notion
of rank of a symmetric space, and therefore cannot define a symmetric space M of maximal rank the way
it should be, as a symmetric space whose rank is equal to the rank of its group of displacements. We
refer to [Loo69b] (pp.49-86) for this matter, and concentrate on the case where M = U/U τ , where (U, τ)
is a symmetric pair. Following [Loo69b] (p.78), we may then set :

Definition 3.2.1 (Symmetric pair of maximal rank). A symmetric pair (U, τ) is said to be of
maximal rank if one has :

dim U/U τ =
1

2
(dim U + rk U)

(where rk U is the dimension of any maximal torus T ⊂ U of U).
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As noted in [Loo69b] (p.80), compact semisimple symmetric spaces of maximal rank correspond to normal
(or split) real forms of complex semisimple Lie algebras. In particular :

Proposition 3.2.2. If U is a compact connected simply connected Lie group, there exists an involutive
automorphism τ of U such that the symmetric pair (U, τ) is of maximal rank. Additionally, two such
automorphisms τ and τ ′ are conjugate by an inner automorphism of U .

We refer to [Loo69b] (pp.78-81) for a proof of this result. To us, the most important feature of symmetric
pairs of maximal rank will be the existence of a maximal torus T of U such that τ(t) = t−1 for all t ∈ T .

Proposition 3.2.3. If (U, τ) is a symmetric pair of maximal rank, then there exists a maximal torus T
of U such that τ(t) = t−1 for all t ∈ T . Equivalently, denoting by τ− the involution τ−(u) := τ(u−1) on
U , one has τ−(t) = t for all t ∈ T .

We refer to [Loo69b] (pp.78-81) for a proof of this result. In the rest of this chapter, we shall assume
that the fixed-point set

Fix(τ−) =
{
w ∈ U | τ(w−1) = w

}

is connected, in which case proposition 3.1.2 shows that Fix(τ−) = {uτ−(u) : u ∈ U}. This assumption
is in particular satisfied for the Lie group SU(n) equipped with the involutive automorphism τ(u) := u ∈
SU(n) (see proposition 5.1.3), which is of maximal rank since one has :

dim SU(n)
/
SO(n) = (n2 − 1) − n(n− 1)

2
=

1

2
(n2 + n− 2)

and :
1

2
(dim SU(n) + rk SU(n)) =

1

2

(
(n2 − 1) + (n− 1)

)
=

1

2
(n2 + n− 2)

Observe that the same is true for the symmetric pair (U(n), τ(u) := u). These are the examples that we
will keep in mind throughout this work, as they motivated and inspired most of our results. We refer to
remarks 5.2.3 and 7.4.2 for additional comments on the assumption that Fix(τ−) is connected.

We now quote a series of results that will be useful to us in the forthcoming chapters.

Lemma 3.2.4. Let (U, τ) be a symmetric pair of maximal rank and let T ⊂ U be a maximal torus
of U fixed pointwise by τ−. Then any element of the associated Weyl group W (T ) := N (T )/T can be
represented by an element in the neutral component K0 of the group K := U τ .

Proof. We need to prove that for any n ∈ N (T ), there exists k ∈ K0 such that for all t ∈ T , ntn−1 =
ktk−1. For all n ∈ N (T ), we have, for all t ∈ T , ntn−1 ∈ T ⊂ Fix(τ−), so that τ(n)tτ(n−1) = ntn−1,
hence (τ−(n)n)t(τ−(n)n)−1 = t for all t ∈ T . Therefore τ−(n)n ∈ Z(T ) = T since a maximal torus is its
own centralizer (see for instance [Loo69b], p.4). Write τ−(n)n = exp(X) for some X ∈ t = Lie(T ) and
set w = exp(X2 ) (so that w ∈ T ⊂ Fix(τ−) and w2 = τ−(n)n). Set now k := nw−1. Then :

τ(k)k−1 = τ(n) τ(w−1)w︸ ︷︷ ︸ n
−1

= τ(n) w2 n−1

= τ(n)
(
τ−(n)n

)
n−1

= 1

so that k ∈ Fix(τ). Since w−1 ∈ T acts trivially on T , one has, for all t ∈ T :

ktk−1 = nw−1twn−1 = ntn−1

To prove that we may even choose k to lie in K0, we refer to lemma B.1 in the appendix of [OS00] :
K = U τ = K0.T [2], where T [2] := {t ∈ T : t2 = 1} = T τ , so that our k above writes k = k0a with
k0 ∈ K0 and a ∈ T [2]. Since a ∈ T [2] ⊂ T , it acts trivially on T and ktk−1 = k0tk

−1
0 for all t ∈ T .
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Proposition 3.2.5. Let (U, τ) be a symmetric pair of maximal rank and let T ⊂ U be a maximal torus
of U fixed pointwise by τ−. Recall that we assume Fix(τ−) to be connected. Then for all w ∈ Fix(τ−),
there exists k ∈ K0 (where K = U τ ) such that kwk−1 ∈ T .

We refer to [Loo69b] (p.56) for a proof of this result (recall that we assumed Fix(τ−) to be connected
and see also proposition 5.1.3 for a proof of this result in the case where (U, τ) = (U(n), τ(u) = u)).

Corollary 3.2.6. Assume U to be simply connected. If exp(W) ⊂ T is a fundamental domain for the
conjugacy action of U on itself (see proposition 2.2.5) and if w ∈ Fix(τ−), then there exists k ∈ K0 such
that kwk−1 ∈ exp(W).

Proof. By proposition 3.2.5, there exists k ∈ K0 such that kwk−1 ∈ T . Recall that exp(W) ' T/W (T )
(see proposition 2.2.5 and relation (2.1) in section 2.2), so that by conjugating by an appropriate Weyl
group element, which may be taken in K0 according to lemma 3.2.4, we obtain k′w(k′)−1 ∈ exp(W) for
some k′ ∈ K0.

Finally :

Proposition 3.2.7 (K×K-orbits in U). Let (U, τ) be a symmetric pair of maximal rank and let T ⊂ U
be a maximal torus of U fixed pointwise by τ−. Take u, v ∈ U . Then there exists (k1, k2) ∈ K ×K such
that v = k1uk

−1
2 if and only if τ−(v)v and τ−(u)u lie in a same conjugacy class of U .

Proof. The first implication is obvious. Conversely, suppose that ∆v := τ−(v)v is conjugate to ∆u :=
τ−(u)u in U . Then, by proposition 3.2.5, there exists k1, k2 ∈ U τ such that k1∆uk

−1
1 = k2∆vk

−1
2 ∈ T =

exp(t), where t = Lie(T ). Write k1∆uk
−1
1 = k2∆vk

−1
2 = exp(X) for some X ∈ t and set w := exp(X2 ),

δu := k−1
1 wk1 and δv := k−1

2 wk2. Set now ku := uδ−1
u and kv := vδ−1

v . Then :

τ(ku)k
−1
u = τ(u)τ(δ−1

u )δuu
−1

= τ(u)δ2uu
−1

= τ(u)τ−(u)uu−1

= 1

so that τ(ku) = ku. Likewise τ(kv) = kv. And we then have :

v = kvδv

= kvk
−1
2 wk2

= kvk
−1
2 k1δuk

−1
1 k2

= (kvk
−1
2 k1k

−1
u︸ ︷︷ ︸)

∈K

u (k−1
1 k2︸ ︷︷ ︸)
∈K
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Quasi-Hamiltonian spaces
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In this chapter, we give the definition of a quasi-Hamiltonian space, as well as the main examples of
manifolds carrying such a structure. The purpose of doing so is to obtain a fairly easy and convenient
description of the symplectic structure of moduli spaces of representations of surface groups (see section
4.6).

The notion of quasi-Hamiltonian space was derived from the definition of a usual Hamiltonian space
in [AMM98]. A related construction appeared before that in [GHJW97], where it was noticed that the
Cartan 3-form χ of a Lie group whose Lie algebra is equipped with an Ad-invariant non-degenerate
product, which is always closed, is exact when restricted to a conjugacy class. The resulting 2-form
ω such that dω = χ is, up to a sign, the form used in [AMM98] to show that a conjugacy class of a
Lie group is a quasi-Hamiltonian space. A larger notion, the one of quasi-Poisson manifold, was later
on identified in [AKS00] and investigated in [AKSM02]. Loosely speaking, a quasi-Poisson manifold is
a manifold endowed with an action of a Lie group G (whose Lie algebra is supposed to be equipped
with an Ad-invariant non-degenerate symmetric bilinear form) and an invariant bivector field satisfying
a compatibility condition with this group action. The basic example of a quasi-Poisson manifold is the
group G itself, endowed with the conjugacy action, in analogy with the dual of a Lie algebra being a
basic example of Poisson manifold (one should notice, though, that in the quasi-Poisson setting, the
quasi-Poisson structure is always defined with respect to a given group action, for instance the action of
G on itself by conjugation). Of particular interest are the Hamiltonian quasi-Poisson manifolds (that is,
those admitting a (group-valued) momentum map). Again, the basic example of a Hamiltonian quasi-
Poisson manifold is the group G itself, with momentum map the identity Id : G→ G. A large part of the
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theory of quasi-Poisson manifolds can then be derived from the analogy with usual Hamiltonian Poisson
manifolds :

- Hamiltonian quasi-Poisson manifolds are foliated by non-degenerate quasi-Poisson manifolds, cor-
responding to symplectic leaves of Poisson manifolds. When the quasi-Poisson manifold at hand
is a Lie group, its non-degenerate leaves are the conjugacy classes, in analogy with the co-adjoint
orbits being the symplectic leaves of the dual of a Lie algebra.

- non-degenerate quasi-Poisson manifolds correspond to quasi-Hamiltonian spaces in the sense of
[AMM98].

- homogeneous non-degenerate Hamiltonian quasi-Poisson manifolds are coverings of conjugacy clas-
ses, just like homogeneous Hamiltonian symplectic manifolds are coverings of co-adjoint orbits.

All these properties are discussed in detail in [AKSM02], along with many other very nice features
of quasi-Poisson manifolds, like reduction, products and cohomology. The framework of quasi-Poisson
geometry was made use of in [Tre02] to study the symplectic geometry of the space of polygons on the
sphere S3 ' SU(2), where a symplectic structure was obtained on the moduli space of polygons with
fixed sidelengths by reduction from the quasi-Hamiltonian space C1 × · · · × Cl where Cj is a conjugacy
class in SU(2).

Here, we will likewise obtain, given a surface group π and a Lie group U , a symplectic structure on
the moduli space MC = HomC(π, U)/U (see section 4.6 for a precise definition) by reduction from a
quasi-Hamiltonian space, which is why we will present this notion only, without entering the broader
and richer notion of quasi-Poisson manifold. We will follow [AMM98] very closely, except for the fact
that we do not assume the Lie group entering the definition of quasi-Hamiltonian space to be compact.
Indeed, the results of this part of the theory hold for non-compact groups as well, as we shall see in the
course of the proofs. So we start with a Lie group U , and we assume the existence of an Ad-invariant
non-degenerate symmetric bilinear form on its Lie algebra u (which could for instance be a Euclidean
scalar product obtained by averaging in the case a compact group, or the Killing form of a semi-simple
group, compact or not). We point this out now to stress the fact that there is probably little to be done to
generalize the results contained in this thesis to the case where U belongs to a large class of non-compact
groups (although more serious problems regarding this generalization will appear for example in chapter
8, where we shall prove a convexity theorem for momentum maps defined on a quasi-Hamiltonian space).

4.1 From Hamiltonian to quasi-Hamiltonian spaces

In this section, we will show how to derive the notion of quasi-Hamiltonian space from the notion of a
usual Hamiltonian space, following the process of [AMM98], in which the aim was to develop a theory of
Lie-group valued momentum maps. Previous examples of such theories include the notion of momentum
maps for Poisson Lie groups (taking value in the Poisson dual of a Poisson Lie group acting on a given
symplectic manifold, see [Lu91, LW90, Vai94]) and S1-valued momentum maps for actions of S1 on
symplectic manifolds considered in [McD88, Wei93] (so that this time the target space for the momentum
map is the acting group itself). The Poisson Lie group setting provided a whole new series of examples
of symplectic manifolds, that were later related to Kostant’s famous nonlinear convexity theorems (see
[Kos74, LR91, FR96]) and to matrix spectral problems (see for instance the work on the Thompson
conjecture in [AMW01, EL05]). A possible proof for both these applications is to show that the Poisson
Lie situation is equivalent to the usual Hamiltonian one (meaning that there exists another symplectic
form on the given manifold for which the group action admits a Lie-algebra valued momentum map,
see [Ale97, AMW01]). On the contrary, the examples of symplectic manifolds laid forward in [McD88]
did not reduce to usual Hamiltonian manifolds. The starting point of [AMM98] is to study this same
situation in the case of non-abelian groups. The first consequence of this fact is that the manifolds at
hand are no longer symplectic : the 2-form defining the quasi-Hamiltonian structure is neither closed
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nor non-degenerate, except when the acting group is abelian, in which case one recovers the situation of
[McD88].

Let us now proceed to defining quasi-Hamiltonian spaces. We will follow [AMM98] closely (another
presentation of the notion of a quasi-Hamiltonian space, emphasizing the comparison with Hamiltonian
spaces, can be found in [Rac03]). Throughout this section, we shall designate by U a Lie group whose Lie
algebra u = Lie(U) = T1U is equipped with an Ad-invariant non-degenerate symmetric bilinear form (for
instance an invariant Euclidean product in the compact case, or the Killing form in the (non-necessarily
compact) semi-simple case) denoted by (. | .). We will call such a form an Ad-invariant scalar product
(or simply product). To fix notation right away, let χ be (half) the Cartan 3-form of U , that is, the
left-invariant 3-form on U defined on u = T1U by :

χ1(X,Y, Z) :=
1

2
(X | [Y, Z]) =

1

2
([X,Y ] |Z)

where the last equality follows by derivation from the Ad-invariance property of (. | .). It is then a
consequence of the Jacobi identity that dχ = 0. Observe that, since (. | .) is Ad-invariant, χ is also
right-invariant. Further, let us denote by θL and θR the respectively left-invariant and right-invariant
Maurer-Cartan 1-forms on U : they take value in u and are the identity on u, meaning that for any u ∈ U
and any ξ ∈ TuU ,

θLu (ξ) = u−1.ξ and θRu (ξ) = ξ.u−1

(where we denote by a point . the effect of translations on tangent vectors). In particular, by definition
of χ, one has, for all ∈ U and all ξ1, ξ2, ξ3 ∈ TuU :

χu(ξ1, ξ2, ξ3) =
1

2

(
θLu (ξ1) | [θLu (ξ2), θ

L
u (ξ3)]

)
(4.1)

As earlier, it then follows from the Ad-invariance of (. | .) and from the fact that

Adu.(θLu (ξ)) = u.(u−1.ξ).u−1 = ξ.u−1 = θRu (ξ)

that one has :

χu(ξ1, ξ2, ξ3) =
1

2

(
θRu (ξ1) | [θRu (ξ2), θ

R
u (ξ3)])

Finally, we denote by M a manifold on which the group U acts, and by X] the fundamental vector field
on M defined, for any X ∈ u, by the action of U in the following way :

X]
x := d

dt
|t=0

(
exp(tX).x

)
(4.2)

for any x ∈ M . In particular, we will denote by X† the fundamental vector field on U associated to
X ∈ u by the conjugacy action of U on itself :

X†
u =

d

dt
|t=0

(
exp(tX)u exp(−tX)

)
= X.u− u.X (4.3)

One then has :
θLu (X†

u) = Adu−1.X −X and θRu (X†
u) = X −Adu.X

The map X ∈ u 7→ X# ∈ Γ(TM) is an anti-homomorphism of Lie algebras from u to the Lie algebra
Γ(TM) of vector fields on M , meaning that it is linear and that it satisfies :

[X,Y ]# = −[X#, Y #]

Indeed, observe that, for any Z ∈ u :

Z#
x =

d

dt
|t=0

(
exp(tZ).x

)
= T1Φx.Z
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where Φx is the map :
Φx : U −→ M

u 7−→ u.x

so that (X + Y )#x = X#
x + Y #

x and (λX)#x = λX#
x for all x ∈ M . Further, the bracket of two vector

fields satisfies :

[X#, Y #]x = − d

dt
|t=0

(
(ψX

#

t )∗Y
#
)
x

where ψX
#

t : x ∈ M 7→ exp(tX).x is the local flow of X# (see for instance [Spi99], p.150). Hence, for a
given x ∈M :

[X#, Y #]x = − d

dt
|t=0

(
Texp(−tX).xψ

X#

t .Y #
exp(−tX).x

)

= − d

dt
|t=0

( d
ds

|s=0

(
ψX

#

t

(
exp(sY ) exp(−tX).x

)))

= − d

dt
|t=0

( d
ds

|s=0

(
exp(tX) exp(sY ) exp(−tX).x︸ ︷︷ ︸
=Φx

(
exp(tX) exp(sY ) exp(−tX)

)

))

= − d

dt
|t=0

(
T1Φx ◦

(
Ad exp(tX)︸ ︷︷ ︸

=ead(tX)

)
.Y
)

= −T1Φx.
( d
dt
|t=0

(
et(adX).Y

))
since T1Φx is a linear map

= −T1Φx.(adX.Y ) = −T1Φx.[X,Y ]

Hence :

[X#, Y #]x = −T1Φx.[X,Y ] = −[X,Y ]#x

Sometimes, a minus sign is introduced in the definition of fundamental vector fields

X#
x :=

d

dt
|t=0 (exp(−tX).x)

in order to make the map X 7→ X# a homomorphism of Lie algebras. Indeed, if ϕ : u → g is an
anti-homomorphism of Lie algebras, then the map ϕ̃(X) := ϕ(−X) satisfies :

ϕ̃([X,Y ]) = ϕ(−[X,Y ])

= ϕ([Y,X ])

= −[ϕ(Y ), ϕ(X)]

= [ϕ(X), ϕ(Y )]

= [−ϕ̃(X),−ϕ̃(Y )]

= [ϕ̃(X), ϕ̃(Y )]

We shall nevertheless not use this definition and continue with the one introduced in (4.2). We will follow
the conventions in [Spi99] to compute exterior products and exterior differentials of differential forms.

We start by recalling the definition of a Hamiltonian space in the usual sense. Let (M,ω) be a
symplectic manifold (that is to say, a manifold M equipped with a closed non-degenerate 2-form ω).
Since ω is non-degenerate, one can associate to each function f : M → R an unique vector field Vf on M ,
called the Hamiltonian vector field associated to f , satisfying ιVf

ω = df , where ι designates the interior
product between a vector field and a differential form. If now the group U acts on M leaving ω invariant
(that is, for all u ∈ U , the corresponding diffeomorphism ϕu of M satisfies ϕ∗

uω = ω) then, since ω is
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closed, one sees from the Cartan homotopy formula (see for instance [Mor01], p.74) that for all X ∈ u,
the 1-form ιX]ω is closed :

d(ιX]ω) = LX]ω − ιX](dw) = 0 − 0 = 0

When this closed 1-form is exact, that is, when every fundamental vector field is a Hamiltonian vector
field, the action is called Hamiltonian. Actually, one usually asks for the following stronger definition
(see for instance [LM87] for a discussion on this).

Definition 4.1.1 (Hamiltonian space in the usual sense). A symplectic action of a Lie group U
on a symplectic manifold (M,ω) is said to be Hamiltonian if there exists an U -equivariant map (with
respect to the co-adjoint action of U on u∗) µ : M → u∗, called the momentum map, satisfying for all
X ∈ u the relation :

ιX]ω = d < µ,X > (4.4)

where < , > denotes the duality bracket between u and u∗ and < µ,X > is the function on M defined
by x ∈M 7→< µ(x) , X >.

When u is endowed with an Ad-invariant scalar product (. | .), we can identify equivariantly u∗ with u

and write (µ |X) instead of < µ , X >, where µ : M → u is equivariant with respect to the adjoint action
of U on u and (µ |X) is the function on M defined by x ∈ M 7→ (µ(x) |X). Now (. |X) is a (linear)
function on u and (µ |X) is simply the pull-back of this function by the map µ, so that one has, for all
X ∈ u :

ιX]ω = d(µ |X)

= d
(
µ∗(. |X)

)

= µ∗(d(. |X)
)

Since (. |X) is linear, the 1-form d(. |X) on u is :

d(. |X) : u −→ T ∗u
Y 7−→

(
Y +H︸ ︷︷ ︸

∈TY u=Y+u

7→ (H |X)
)

If one identifies TY u with u by translation from vector Y in the vector space u, one is led to introduce
the u-valued 1-form θ on u defined by :

θ : u −→ T ∗u ⊗ u

Y 7−→ (Y +H︸ ︷︷ ︸
∈TY u

7→ H︸︷︷︸
∈u

)

and the R-valued 1-form (θ |X) on u defined by :

(θ |X) : u −→ T ∗u
Y 7−→

(
Y +H 7→ (H |X)

)

so that d(. |X) = (θ |X), and we can therefore rewrite the momentum condition (4.4) under the form :

ιX]ω = µ∗(θ |X) (4.5)

As a consequence of this point of view, one understands that to change the space where µ takes its values
and still obtain a momentum condition similar to (4.5), one has to change the 1-form θ, which translates
vectors in TY u = Y + u to vectors in u = T0u (translation of vector Y ). In the Lie group U , one has
a choice as how to translate tangent vectors from TuU to T1U for a given u ∈ U . Namely, one can use
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either θL or θR. If the group U is abelian, then θL = θR, and one can define the a priori momentum map
condition to be, for all X ∈ u :

ιX]ω = µ∗(θL |X) = µ∗(θR |X)

Of course, up to this point, we have not verified that this will indeed lead to a theory of group-valued
momentum maps, but is a first step. To complete this first step, let us consider the non-abelian case.
In this case, if one wants the relation ω(X], Y ]) = −ω(Y ], X]) (which is simply the antisymmetry of ω
expressed on fundamental vector fields) to hold for all X,Y ∈ u when one tries to define a momentum
map condition, one sees that the only possibility is to set :

ιX]ω =
1

2
µ∗(θL + θR |X) (4.6)

Indeed, if one asks µ : M → U to be equivariant with respect to the conjugacy action of U on itself (which
is the analogue of the (co-) adjoint action in the usual Lie-algebra setting), one has, using equation (4.5)
with θ = θL, for all x ∈M :

ωx(X
]
x, Y

]
x ) = (ιX]ω)x(Y

]
x )

=
(
µ∗(θL |X)

)
x
(Y ])x

=
(
θLµ(x)(Txµ.Y

]
x ) |X

)

Since µ is equivariant, Txµ sends the vector Y #
x to the value at µ(x) of the fundamental vector field Y †

(see (4.3)) on U . Indeed, for all x ∈M :

Txµ.Y
#
x =

d

dt
|t=0

(
µ(exp(tY ).x)

)

=
d

dt
|t=0

(
exp(tY )µ(x) exp(−tY )

)

= Y.µ(x) − µ(x).Y

= Y †
µ(x)

One therefore has, for all x ∈M (setting u = µ(x) ∈ U) :

ωx(X
]
x, Y

]
x ) =

(
u−1.(Y.u− u.Y ) |X

)

= (Adu−1.Y − Y |X)

= (Adu−1.Y |X) − (Y |X)

= (Y |Adu.X) − (Y |X)

= −
(
Y | (X.u− u.X).u−1

)

= −
(
Y | θRu (Tuµ.X

]
u)
)

= −
(
µ∗(θR |Y )

)
u
(X]

u)

which would be equal to −ωx(X]
x, Y

]
x ) if one had θR = θL. Making the same computation with ιX]ω =

1
2µ

∗(θL + θR |X) gives indeed ω(X], Y ]) = −ω(Y ], X]).

Let us now try and understand the consequences of the momentum condition (4.6). If we still want
ω to be invariant by the action of U , one has LX]ω = 0 for all X ∈ u, so that by the Cartan homotopy
formula, one has d(ιX]ω) + ιX](dω) = 0, which is then equivalent, using (4.6), to :

d
(1
2
µ∗(θL + θR |X)

)
+ ιX](dω) = 0

that is :

µ∗(
1

2
d(θL + θR |X)

)
+ ιX](dω) = 0 (4.7)
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Let us compute d(θL + θR |X) = (d(θL + θR) |X) = (dθL + dθR |X) on fundamental vector fields on U .
The structure equations for Lie groups (see for instance [Spi99], ch. 10 p.404) say that :

dθL = −1

2
[θL ∧ θL] and dθR =

1

2
[θR ∧ θR]

where 1
2 [θj ∧ θj ] is the u-valued 2-form defined, for all u ∈ U and all ξ1, ξ2 ∈ TuU , by :

1

2
[θj ∧ θj ]u(ξ1, ξ2) :=

1

2

(
[θju(ξ1), θ

j
u(ξ2)] − [θju(ξ2), θ

j
u(ξ1)]

)
= [θju(ξ1), θ

j
u(ξ2)]

This, together with the Ad-invariance of (. | .), shows that for all X,Y, Z ∈ u, one has :

1

2

(
d(θL + θR |X)

)
u
(Y †
u , Z

†
u) =

1

2

(
− [θLu (Y †

u ), θL(Z†
u)] + [θRu (Y †

u ), θR(Z†
u)] |X

)

=
1

2

((
[Adu−1.Y − Y,Adu−1.Z − Z] |X

)

+
(
[Y −Adu.Y, Z −Adu.Z] |X

))

=
1

2

((
−Adu−1.[Y −Adu.Y, Z −Adu.Z] |X

)

+
(
[Y −Adu.Y, Z −Adu.Z] |X

))

=
1

2

(
[Y −Adu.Y, Z −Adu.Z] |X −Adu.X

)

=
1

2

(
θLu (X†

u) | [θLu (Y †
u ), θLu (Z†

u)]
)

=
(
ιX†(χ)

)
u

(
Y †
u , Z

†
u

)

(where χ is the Cartan 3-form, see (4.1)), whence we obtain :

1

2
d(θL + θR |X) = ιX†(χ)

Since µ is equivariant, this yields :

µ∗(1
2
d(θL + θR |X)

)
= µ∗(ιX†(χ)) = ιX](µ∗χ)

so that by re-injecting in (4.7), we obtain :

ιX](µ∗χ+ dω) = 0, for all X ∈ u

The easiest way to ensure this is to ask that dω = −µ∗χ. In particular, one will not ask the 2-form ω to
be closed.

We shall now see that the momentum condition (4.6) actually also implies that ω is degenerate.
Indeed, let us compute ωx(X

]
x, v) for x ∈M , X ∈ u and v ∈ TxM (setting u = µ(x) and ξ = Txµ.v) :

ωx(X
]
x, v) =

1

2

(
µ∗(θL + θR |X)

)
x
.v

=
1

2

(
θLµ(x)(Txµ.v) + θRµ(x)(Txµ.v) |X

)

=
1

2
(u−1.ξ + ξ.u−1 |X)

=
1

2
(ξ.u−1 |Adu.X +X)
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whence we see that if (Adµ(x) + Id).X = 0 then ωx(X
]
x, v) = 0 for all v ∈ TxM , that is :

{X]
x : X ∈ ker(Adµ(x) + Id)} ⊂ kerωx for all x ∈M

One then asks this necessary degeneracy condition to be minimal in the sense that the above inclusion
is required to be an equality. We can now sum up the above discussion and give the definition of a
quasi-Hamiltonian space. What is truly remarkable is that although the last two conditions might seem
somewhat arbitrary (albeit derived from a quite reasonable momentum condition), we will see in the
following section that there are very natural examples of spaces satisfying the axioms appearing in the
following definition, and that these spaces are moreover very nice analogues of known Hamiltonian spaces.

Definition 4.1.2 (Quasi-Hamiltonian space). Let (M,ω) be a manifold endowed with a 2-form ω and
an action of the Lie group (U, (. | .)) leaving the 2-form ω invariant. Recall that (. | .) is an Ad-invariant
non-degenerate symmetric bilinear form on u = Lie(U), that χ is the Cartan 3-form of U , and that θL

and θR are the Maurer-Cartan 1-forms of U . Let µ : M → U be a U -equivariant map (for the conjugacy
action of U on itself).
Then (M,ω, µ : M → U) is said to be a quasi-Hamiltonian space with respect to the action of U if the
map µ : M → U satisfies the following three conditions :

(i) dω = −µ∗χ

(ii) for all x ∈M , kerωx = {X]
x : X ∈ u | (Adµ(x) + Id).X = 0}

(iii) for all X ∈ u, ιX]ω = 1
2µ

∗(θL + θR |X)

where (θL + θR |X) is the real-valued 1-form defined on U for any X ∈ u by (θL + θR |X)u(ξ) :=
(θLu (ξ) + θRu (ξ) |X) (where u ∈ U and ξ ∈ TuU).
In analogy with the usual Hamiltonian case, the map µ is called the momentum map.

4.2 Fundamental examples of quasi-Hamiltonian spaces

There are two fundamental examples of quasi-Hamiltonian spaces : a conjugacy class of the Lie group
U and the manifold U × U endowed with a particular action of the product group U × U . Only the
first example will be really fundamental to us in this work, since the quasi-Hamiltonian space we are
mainly interested in is a product of conjugacy classes. Before entering considerations on products of
quasi-Hamiltonian spaces, let us describe these two examples explicitly.

4.2.1 Conjugacy classes of a Lie group

In the usual Hamiltonian setting, orbits O ⊂ u∗ of the co-adjoint action of U on u∗ are basic examples
of Hamiltonian spaces, with momentum map the inclusion i : O ↪→ u∗. Here, it is natural to study the
orbits of the conjugacy action of U on itself : the conjugacy classes of U . Let us consider a conjugacy
class C ⊂ U and the inclusion map

µ : C ↪→ U

and let us compute 1
2µ

∗(θL + θR |X) for all X ∈ u. First, let us observe that, for each u ∈ C, one can
describe C as a homogeneous space under U in the following way :

C = {gug−1 : g ∈ U}

Consequently :

TuC = { d
dt
|t=0 (gtug

−1
t ) | g0 = 1 ∈ U} = {X.u− u.X : X =

d

dt
|t=0 gt ∈ u = T1U}
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that is, a tangent vector to C at u ∈ C is always the value of a fundamental vector field for the conjugacy
action of U on C :

X.u− u.X =
d

dt
|t=0

(
exp(tX)u exp(−tX)

)
= X†

u for all X ∈ u (see (4.3))

This is just a consequence of the fact that C is a homogeneous space under U . It will also be useful to
write :

X.u− u.X = u.(Adu−1.X −X) = (X −Adu.X).u

In particular :

θLu (X.u− u.X) = Adu−1.X −X and θRu (X.u− u.X) = X −Adu.X

Finally, another way to say the above is to say that the map

Ψu : u −→ TuC
X 7−→ X†

u = X.u− u.X

is surjective with kernel kerΨu = {X ∈ u | Adu.X = X}. We may now compute 1
2µ

∗(θL + θR |X) using
fundamental vector fields :

for all Y ∈ u,
1

2

(
µ∗(θL + θR |X)

)
u

(
Y †
u ) =

1

2

(
θLu (Y †

u ) + θR(Y †
u ) |X

)

=
1

2
(Adu−1.Y − Y + Y −Adu.Y |X)

=
1

2

(
(Y |Adu.X) − (Adu.Y |X)

)

This expression defines a 2-form on TuC. Indeed, if Y, Y ′ ∈ u satisfy Y.u − u.Y = Y ′.u − u.Y ′ (that is ,
(Y − Y ′) ∈ kerΨu), then Adu.Y − Y = Adu.Y ′ − Y ′ and one has :

(Y |Adu.X) − (Adu.Y |X) = (Adu.Y −Adu.Y ′ + Y ′ |Adu.X) − (Y +Adu.Y ′ − Y ′ |X)

= (Y ′ |Adu.X) − (Adu.Y ′ |X)

whence we see that the expression

ωu(X
†
u, Y

†
u ) =

1

2

(
(Adu.X |Y ) − (Adu.Y |X)

)

gives a well-defined 2-form ω on C. The U -invariance of ω follows from the fact that C is a homogeneous
space. By construction, the 2-form ω satisfies :

ιX†ω =
1

2
µ∗(θL + θR |X) for all X ∈ u

It actually follows from the construction that such a 2-form is unique. Let us now consider X†
u ∈ kerωu.

Then, for all Y ∈ u, (Adu.X − Adu−1.X |Y ) = 0, so that (Adu.X − Adu−1.X) = 0 since (. | .) is
non-degenerate. Equivalently, X ∈ Fu := ker((Adu)2 − Id). But (Adu)|Fu

is diagonalizable (since the
polynom P = (X − 1)(X + 1) = X2 − 1 satisfies P ((Adu)|Fu

) = 0 on Fu = ker((Adu)2 − Id)), and
therefore we have :

ker
(
(Adu)2 − Id

)
= ker(Adu− Id) ⊕ ker(Adu + Id)

But for X2 ∈ ker(Adu− Id), one has (X2)
†
u = 0, so that X†

u = (X1)
†
u, with X1 ∈ ker(Adu+ Id). Hence :

kerωu = {X†
u : X ∈ ker(Adu+ Id)}
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Finally, let us compute dw. One has, for all X,Y, Z ∈ u :
(
(dω)(X†, Y †, Z†)

)
= LX†

(
ω(Y †, Z†)

)
− LY †

(
ω(X†, Z†)

)
+ LZ†

(
ω(X†, Y †)

)

−ω
(
[X†, Y †], Z†)+ ω

(
[X†, Z†], Y †)− ω

(
[Y †, Z†], X†)

where, for all u ∈ U :

LX†

(
ω(Y †, Z†)

)
(u) =

d

dt
|t=0

(
ω(Y †, Z†)

)(
exp(tX)u exp(−tX)

)

=
1

2

((
[X,Adu.Y ] |Z

)
−
(
Adu.[X,Y ] |Z

)

−
(
[X,Adu.Z] |Y

)
+
(
Adu.[X,Z] |Y

))

and for all u ∈ U :
(
ω
(
[X†, Y †], Z†))(u) = ωu

(
− [X,Y ]†u, Z

†
u

)

= −1

2

((
Adu.[X,Y ] |Z

)
−
(
Adu.Z | [X,Y ]

))

so that, all computations made, one obtains :

(dω)u(X
†
u, Y

†
u , Z

†
u) =

1

2

((
[X,Adu.Y ] |Z

)
−
(
[Y,Adu.X ] |Z)

+
(
Adu.[Y,X ] |Z

)
+
(
[Y,Adu.Z] |X

)

−
(
Adu.[Z,X ] |Y

)
+
(
Adu.[Z, Y ] |X

))

On the other hand, µ being the inclusion map C ↪→ U :

(µ∗χ)u(X
†
u, Y

†
u , Z

†
u) =

1

2

(
u−1.X†

u | [u−1.Y †
u , u

−1.Z†
u]
)

=
1

2

(
Adu−1.X −X | [Adu−1.Y − Y,Adu−1.Z − Z]

)

Expanding this expression and comparing it with the above using the Ad-invariance of (. | .) shows that :

dω = −µ∗χ

Other proofs of this fact can be found for instance in [AMM98] and [GHJW97]. We can then sum up the
above in the following proposition :

Proposition 4.2.1 ([AMM98]). Let C ⊂ U be a conjugacy class of a Lie group (U, (. | .)). The tangent
space to C at u ∈ C is TuC = {X.u− u.X : X ∈ u}. The 2-form ω on C given at u ∈ C by

ωu(X.u − u.X, Y.u− u.Y ) =
1

2

(
(Adu.X |Y ) − (Adu.Y |X)

)

is well-defined and makes C a quasi-Hamiltonian space for the conjugacy action with momentum map the
inclusion µ : C ↪→ U . Such a 2-form is actually unique.

4.2.2 The double of a Lie group

The second example of quasi-Hamiltonian space associated to a given Lie group (U, (. | .)) is the manifold
D(U) := U ×U equipped with the action of the product group U ×U defined for all (a, b) ∈ D(U) and all
(u1, u2) ∈ U × U by :

(u1, u2).(a, b) := (u1au
−1
2 , u2bu

−1
1 )
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Let us explain how this is obtained. This example is actually a first step in the construction of another
example of a quasi-Hamiltonian U -space, which we will denote later by D(U) and which is obtained
from D(U) by internal fusion (see section 4.4 and particularly proposition 4.4.4, and observe that as
a manifold, D(U) is just U × U as well). This space D(U) comes into play when one wants to obtain
symplectic structures on spaces of representations of fundamental groups of surfaces of genus g ≥ 1, which
shows its importance. To this end, the manifold D(U) = U × U is equipped with the diagonal U -action
and the quasi-Hamiltonian structure is defined with respect to the momentum map :

µ : D(U) = U × U −→ U
(a, b) 7−→ aba−1b−1

The relevance of this map when it comes to describing symplectic structures on moduli spaces associated
to surface groups will become clearer later on (see section 4.6). We shall also see that the momentum
map µ above is obtained from the momentum map µD : D(U) → U ×U , defining the quasi-Hamiltonian
structure on the U × U -space D(U), by multiplication of its two components. This is a consequence of
the notion of fusion that we will study later (see section 4.4) and this explains that one is led to define :

µD : D(U) = U × U −→ U × U
(a, b) 7−→ (ab, a−1b−1)

Then in order to obtain an equivariant map µD (where the target space U ×U acts on itself by conjuga-
tion), one has to set :

(u1, u2).(a.b) = (u1au
−1
2 , u2bu

−1
1 )

So that indeed :

µD
(
(u1, u2).(a, b)

)
= (u1au

−1
2 u2bu

−1
1 , u2a

−1u−1
1 u1b

−1u−1
2 )

= (u1abu
−1
1 , u2a

−1b−1u−1
2 )

= (u1, u2)µD(a, b)(u1, u2)
−1

We now want to determine an expression for a 2-form ωD on D(U) satisfying, for all (X,Y ) ∈ u × u =
Lie(U × U) :

ι(X,Y )#ω
D =

1

2
µ∗
D

(
θLU×U + θRU×U | (X,Y )

)
u×u

(4.8)

where the Lie algebra u × u = Lie(U × U) is equipped with the Ad-invariant scalar product

(
(X,Y ) | (X ′, Y ′)

)
u×u

:= (X |X ′) + (Y |Y ′)

the scalar product (. | .) being the given invariant product on u. Observe that, for all (X,Y ) ∈ u× u, one
has :

(X,Y )#(a,b) = (X.a− a.Y, Y.b− b.X) ∈ T(a.b)D(U) = TaU × TbU

And that for all (u1, u2) ∈ U × U and all (ξ1, ξ2) ∈ Tu1U × Tu2U :

(θLU×U )(u1,u2) = (u−1
1 .ξ1, u

−1
2 .ξ2) and (θRU×U )(u1,u2)(ξ1, ξ2) = (ξ1.u

−1
1 , ξ2.u

−1
2 )

Further, since µD(a, b) = (ab, a−1b−1), one has, for all (v, w) ∈ T(a,b)D(U) = TaU × TbU :

T(a,b)µ.(v, w) =
(
v.b+ a.w,−(a−1.v).a−1b−1 − a−1b−1.(w.b−1)

)

Therefore, by computing
1

2

(
µ∗
D

(
θLU×U + θRU×U | (X,Y )

)
u×u

)
(a,b)

.
(
v, w

)
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we can rewrite equation (4.8) and obtain the expression of ωD on tangent vectors which are values of
fundamental vector fields. Explicitly, we have :

(
ι(X,Y )#ω

D
)
(a,b)

.(v, w) =
1

2

(
µ∗
D

(
θLU×U + θRU×U | (X,Y )

)
u×u

)
(a,b)

.
(
v, w

)

=
1

2

((
θL
)
(ab,a−1b−1)

(
v.b+ a.w,−(a−1.v).a−1b−1 − a−1b−1.(w.b−1)

)

+
(
θR
)
(ab,a−1b−1)

(
v.b+ a.w,−(a−1.v).a−1b−1 − a−1b−1.(w.b−1)

)

|
(
X,Y

))
u×u

=
1

2

((
Ad b−1.(a−1.v) + b−1.w,−Ad b.(v.a−1) − w.b−1

)

+
(
v.a−1 +Ada.(w.b−1),−a−1.v −Ada−1.(b−1.w)

)
|
(
X,Y

))
u×u

=
1

2

(
(a−1.v |Ad b.X) + (b−1.w |X) − (v.a−1 |Ad b−1.Y ) − (w.b−1 |Y )

+(v.a−1 |X) + (w.b−1 |Ada−1.X) − (a−1.v |Y ) − (b−1.w |AdY )
)

=
1

2

(
(a−1.v |Ad b.X − Y ) + (b−1.w |X −Ada.Y )

−(v.a−1 |Ad b−1.Y −X) − (w.b−1 |Y −Ada−1.X)
)

=
1

2

((
a−1.(X.a− a.Y ) |w.b−1

)
−
(
a−1.v | (Y.b− b.X).b−1

))

+
1

2

((
(X.a− a.Y ).a−1 | b−1.w

)
−
(
v.a−1 | b−1.(Y.b− b.X)

))

Therefrom, one can guess the expression of the 2-form ωD on tangent vectors which are not necessarily
values of fundamental vector fields and define, for all (a, b) ∈ D(U) = U×U and all (vi, wi) ∈ T(a,b)D(U) =
TaU × TbU :

ωD(a,b)
(
(v1, w1), (v2, w2)

)
:=

1

2

(
(a−1.v1 |w2.b

−1) − (a−1.v2 |w1.b
−1)
)

+
1

2

(
(v1.a

−1 | b−1.w2) − (v2.a
−1 | b−1.w1)

)

or more concisely :

ωD :=
1

2
(α∗θL ∧ β∗θR) +

1

2
(α∗θR ∧ β∗θL)

where :
α : D(U) −→ U and β : D(U) −→ U

(a, b) 7−→ a (a, b) 7−→ b

We then refer to [AMM98] for the proof of the following result :

Proposition 4.2.2 ([AMM98]). The manifold D(U) = U ×U , equipped with the U ×U -action defined
by

(u1, u2).(a, b) = (u1au
−1
2 , u2bu

−1
1 )

the U × U invariant 2-form

ωD =
1

2
(α∗θL ∧ β∗θR) +

1

2
(α∗θR ∧ β∗θL)

and the equivariant momentum map

µD : D(U) = U × U −→ U × U
(a, b) 7−→ (ab, a−1b−1)

is a quasi-Hamiltonian space called the double of U .
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The term double alludes to the theory of quantum groups (see [AMM98] for an explanation).

4.3 Properties of quasi-Hamiltonian spaces

We now give a few properties of quasi-Hamiltonian spaces that we shall need in the following, especially
when considering the reduction theory of quasi-Hamiltonian spaces (see section 4.5) and convexity prop-
erties of Lie-group valued momentum maps (see chapter 8). The results below are quasi-Hamiltonian
analogues of classical lemmas entering the reduction theory and momentum convexity properties for usual
Hamiltonian spaces (see for instance [GS84c] or [MS98]). For other results, specific to quasi-Hamiltonian
spaces, we refer to [AMM98].

Proposition 4.3.1 ([AMM98]). Let (M,ω, µ : M → U) be a quasi-Hamiltonian U -space and let x ∈M .
Then :

(i) The map
Λx : ker(Adµ(x) + Id) −→ kerωx

X 7−→ X#
x = d

dt
|t=0

(
exp(tX).x

)

is an isomorphism.

(ii) kerTxµ ∩ kerωx = {0}

(iii) The left translation
U −→ U

u 7−→
(
µ(x)

)−1
u

induces an isomorphism
Im Txµ ' u⊥x

where ux = {X ∈ u | X#
x = 0} is the Lie algebra of the stabilizer Ux of x and u⊥x denotes its

orthogonal with respect to (. | .). Equivalently, Im (µ∗θL)x = u⊥x (and likewise, Im (µ∗θR)x = u⊥x ).

(iv) (kerTxµ)⊥ω = {X#
x : X ∈ u}, where (kerTxµ)⊥ω ⊂ TxM denotes the subspace of TxM orthogonal

to kerTxµ with respect to ωx.

(v) kerTxµ ⊂ (Tx(U.x))
⊥ω where U.x denotes the orbit of x in M under U .

We will need the following lemma, coming from the general theory of bilinear forms on vector spaces, in
the course of the proof.

Lemma 4.3.2. For every subspace F ⊂ E := TxM , one has dim E = dim F + dim F⊥ωx − dim (F ∩
kerωx).

Proof of lemma 4.3.2. The bilinear form ωx : E × E → R induces a non-degenerate bilinear form ωx :
E/ kerωx × E/ kerωx → R and the map F⊥ωx ↪→ E → E/ kerωx sends F⊥ωx onto

((
F + kerωx

)
/ kerωx

)⊥ωx

and its kernel is F⊥ωx ∩ kerωx = kerωx (since kerωx = E⊥ωx ⊂ F⊥ωx ). Hence :

F⊥ωx/ kerωx '
((
F + kerωx

)
/ kerωx

)⊥ωx

Since ωx is non-degenerate, this yields :

dim F⊥ωx − dim kerωx = dim E/ kerωx − dim (F + kerωx)/ kerωx

= dim E − dim kerωx − dim (F + kerωx) + dim kerωx
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so that
dim F⊥ωx = dim E − dim F − dim kerωx + dim (F ∩ kerωx) + dim kerωx

Proof of proposition 4.3.1. (i) It follows from the definition of a quasi-Hamiltonian space that the map
Λx is surjective. Now take X ∈ ker(Adµ(x) + Id) such that X#

x = 0. Then Txµ.X
#
x = 0 and, since

µ is equivariant, this yields X†
µ(x) = Txµ.X

#
x = 0, that is X.µ(x) − µ(x).X = 0, or equivalently

Adµ(x).X = X . But Adµ(x).X = −X by assumption, so that X = 0 and Λx is injective.

(ii) Consider v ∈ kerTxµ ∩ kerωx. It follows from the definition of a quasi-Hamiltonian space that we

can write v = X#
x for some X ∈ ker(Adµ(x) + Id). Then Txµ.v = 0 implies X†

µ(x) = 0 as above.

Hence, we have again : X ∈ ker(Adµ(x) − Id) ∩ ker(Adµ(x) + Id) = {0}, so that v = 0.

(iii) Here we follow [Rac03]. Let us first show that Im (µ∗θL)x ⊂ u⊥x . Take v ∈ TxM and X ∈ ux. Then
X#
x = 0 and as above one has X†

x = 0, that is, Adµ(x).X = X . Therefore :

(
(µ∗θL)x.v |X

)
=

(
Adµ(x).

(
(µ∗θL)x.v

)
|Adµ(x).X

)

=
(
(µ∗θR)x.v |X)

hence :

(
(µ∗θL)x.v |X

)
=

1

2

(
(µ∗θL + µ∗θR)x.v) |X

)

= ωx(X
#
x , v)

= 0 since X#
x = 0

so that (µ∗θL)x.v ∈ u⊥x .
Let us now consider X ∈ u⊥x and show that there exists a v ∈ TxM such that X = (µ∗θL)x.v . If
this is true then for all Y ∈ u one has :

ωx(Y
#
x , v) =

1

2

(
(µ∗θL + µ∗θR)x.v |Y

)

=
1

2

((
Id+Adµ(x)

)
.
(
(µ∗θL)x.v

)
|Y
)

=
1

2

((
Id+Adµ(x)

)
.X |Y

)

So in order to show the existence of v, we will show that the map

αx : Y #
x 7−→ 1

2

((
Id+Adµ(x)

)
.X |Y

)

is a well-defined linear map on Vx := {Y #
x : Y ∈ u} ⊂ TxM and that if one extends it to the whole

of TxM (for instance by choosing a complement Wx to Vx in TxM and deciding that αx|Wx
= 0)

then this extended αx can be represented by some v ∈ TxM . To this end, it is enough to show
that αx is well-defined on Vx and that kerwx (which is included in Vx by (i)) satisfies αx|kerωx

= 0.
First, if Y #

x = 0 (that is, Y ∈ ux), then as usual Adµ(x).Y = Y , therefore :

1

2

((
Id+Adµ(x)

)
.X |Y

)
=

1

2

((
Adµ(x).X |Y

)
+
(
X |Y )

)

=
1

2

((
X |Ad

(
µ(x)

)−1
.Y︸ ︷︷ ︸

=Y

)
+
(
X |Y

))

= (X |Y )

= 0 since Y ∈ ux and X ∈ u⊥x
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Thus, αx is well-defined on Vx and can be extended linearly to TxM . Second, if w ∈ kerωx, then
by (i), w = Z#

x with Adµ(x).Z = −Z. Hence :

αx(w) =
1

2

((
Adµ(x) + Id

)
.X |Z

)

=
1

2

(
X |
(
Ad
(
µ(x)

)−1
+ Id

)
.Z︸ ︷︷ ︸

=0

)

= 0

Therefore, there exists some v ∈ TxM such that αx = ωx(., v), that is, for all Y ∈ u, αx(Y
#
x ) =

ωx(Y
#
x , v). Hence, for all Y ∈ u :

1

2

((
Adµ(x) + Id

)
.X |Y

)
=

1

2

((
Adµ(x) + Id

)(
(µ∗θL)x.v

)
|Y
)

Since (. | .) is non-degenerate, this yields :
(
Adµ(x) + Id

)
.X =

(
Adµ(x) + Id

)(
(µ∗θL)x.v

)

Therefore :
X ′ := X − (µ∗θL)x.v ∈ ker

(
Adµ(x) + Id)

But ker(Adµ(x) + Id) ⊂ Im (µ∗θL)x. Indeed, if Y ∈ u satisfies Adµ(x).Y = −Y then :

(µ∗θL)x.(−
1

2
Y )#x = −1

2
θLµ(x).(Txµ.Y

#
x︸ ︷︷ ︸

=Y †
µ (x)

)

= −1

2

(
Ad
(
µ(x)

)−1
.Y︸ ︷︷ ︸

=−Y

− Y
)

= Y

so that Y ∈ Im (µ∗θL)x. and therefore X = X ′ + (µ∗θL)x.v ∈ Im (µ∗θL)x, which proves that
u⊥x ⊂ Im (µ∗θL)x. Thus we have proved that Im (µ∗θL)x = u⊥x . The proof that Im (µ∗θR)x = u⊥x
is obtained similarly by writing (µ∗θL + µ∗θR)x.v = (Ad (µ(x))−1 + Id).((µ∗θR)x.v) in the above
proof and proceeding accordingly.

(iv) Take X ∈ u and v ∈ kerTxµ. Then :

ωx(X
#
x , v) =

1

2

(
(θL + θR)µ(x) .(Txµ.v︸ ︷︷ ︸

=0

) |X
)

= 0

that is :

{X#
x : X ∈ u} ⊂ (kerTxµ)⊥ωx (4.9)

Further, {X#
x : X ∈ u} ' u/ux, therefore its dimension is :

dim u − dim ux = dim u⊥x = dim Im Txµ

since Im Txµ ' u⊥x by (iii). Therefore :

dim {X#
x : X ∈ u} = dim TxM − dim kerTxµ

But kerTxµ ∩ kerωx = {0} by (ii), so that by lemma 4.3.2 :

dim (kerTxµ)⊥ωx = dim TxM − dim kerTxµ

and the inclusion (4.9) above is therefore an equality by dimension count.
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(v) Observe first that :

Tx(U.x) = { d
dt
|t=0 (ut.x) : ut ∈ U, u0 = 1} = {X#

x : X ∈ u}

so that (iv) means that (kerTxµ)⊥ωx = Tx(U.x). Therefore, ((kerTxµ)⊥ωx )⊥ωx = (Tx(U.x))
⊥ωx .

But kerTxµ ⊂ ((kerTxµ)⊥ωx )⊥ωx , hence :

kerTxµ ⊂
(
Tx(U.x)

)⊥ωx

In fact, one can show, using lemma 4.3.2, that ((kerTxµ)⊥ωx )⊥ωx = kerTxµ+ kerωx, and this last
sum is actually a direct sum since kerTxµ ∩ kerωx = {0} by (ii).

4.4 Products of quasi-Hamiltonian spaces

For now, given a Lie group (U, (. | .)), we only have two examples of associated quasi-Hamiltonian spaces
at our disposal : a conjugacy class C ⊂ U and the U × U -space D(U) = U × U (see subsection 4.2). In
particular, only one of these two examples is a U -space. We now wish to construct new examples of quasi-
Hamiltonian U -spaces. Drawing from the usual Hamiltonian setting, one can for instance look for a quasi-
Hamiltonian structure on a product M1 ×M2 of two quasi-Hamiltonian U -spaces (M1, ω1, µ1 : M1 → U)
and (M2, ω2, µ2 : M2 → U). In the usual Hamiltonian framework, the product manifold is endowed with
the diagonal action of U , the direct symplectic form ω1 ⊕ ω2 and the direct sum momentum map :

µ1 ⊕ µ2 : M1 ×M2 −→ u∗

(x1, x2) 7−→ µ1(x1) + µ2(x2)

Of particular interest in the Hamiltonian setting is the case of a product of two co-adjoint orbits (see for
instance [Knu00] for the relation of this with the Weyl-Horn problem). Here, it is therefore natural to
consider the diagonal action of U on a product of conjugacy classes. Further, since we are in a Lie group
setting, it seems reasonable to expect the map µ1 ⊕ µ2 to be replaced by the map :

µ1 · µ2 : M1 ×M2 −→ U
(x1, x2) 7−→ µ1(x1)µ2(x2)

Observe that this map is U -equivariant. The question then is : which 2-form is appropriate on M1 ×M2

to obtain a quasi-Hamiltonian structure on this product manifold when endowed with the diagonal action
of U and the U -equivariant map µ1 ·µ2 ? We will see shortly that it is not the direct sum 2-form ω1 ⊕ω2

but rather this 2-form plus a residual term ωres. To obtain an expression for the correct 2-form ω on
M1 ×M2, one can try and guess it from the momentum map condition :

ιX#ω =
1

2
µ∗(θL + θR |X)

If one computes ιX#(ω1⊕ω2)− 1
2 (µ1 ·µ2)

∗(θL+θR |X), one obtains a non-zero term which turns out to be
of the form ιX#ωres, where ωres is a 2-form on M1 ×M2. As a matter of fact, to obtain an expression for
ωres, it is even enough to compute this in the simple explicit case where M1 ×M2 = C1 ×C2 is a product
of two conjugacy classes. To do so, take X ∈ u, (u1, u2) ∈ C1 × C2 and (ξ1, ξ2) ∈ Tu1C1 × Tu2C2. Then
there exist Y1, Y2 ∈ u such that ξ1 = Y1.u1 − u1.Y1 = Y †

u1
and ξ2 = Y2.u2 − u2.Y2 = Y †

u2
(see proposition

4.2.1). We denote by ωi the 2-form defining the quasi-Hamiltonian structure on Ci (see proposition 4.2.1).
Since U acts diagonally on C1 × C2, one has :

X#
(u1,u2)

= (X†
u1
, X†

u2
)
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Consequently, one has, on the one hand :
(
ιX#(ω1 ⊕ ω2)

)
(u1,u2)

(ξ1, ξ2) = (ω1 ⊕ ω2)(u.1,u2)

((
X†
u1
, X†

u2

)
,
(
(Y1)

†
u1
, (Y2)

†
u2

))

= (ω1)u1

(
X†
u1
, (Y1)

†
u1

)
+ (ω2)u2

(
X†
u2
, (Y2)

†
u2

)

=
1

2

(
(Adu1.X |Y1) − (Adu1.Y1 |X)

)

+
1

2

(
(Adu2.X |Y2) − (Adu2.Y2 |X)

)

and on the other hand :

T(u1,u2)(µ1 · µ2).(ξ1, ξ2) = (Tu1µ1.ξ1).µ2(u2) + µ1(u1).(Tu2µ2.ξ2)

= ξ1.u2 + u1.ξ2 since µi : Ci ↪→ U

= (Y1)
†
u1
.u2 + u1.(Y2)

†
u2

and therefore :
(1

2
(µ1 · µ2)

∗(θL + θR)
)

(u1,u2)
.(ξ1, ξ2) =

1

2
(θL + θR)u1u2

(
(Y1)

†
u1
.u2 + u1.(Y2)

†
u2

)

=
1

2

((
u1u2)

−1.(Y1)
†
u1
.u2 + u−1

2 .(Y2)
†
u2

+(Y1)
†
u1
.u−1

1 + u1.(Y2)
†
u2
.(u1u2)

−1 |X
)

=
1

2

((
u−1

1 .(Y1)
†
u1

|Adu2.X
)

+
(
u−1

2 .(Y2)
†
u2

|X
)

+
(
(Y1)

†
u1
.u−1

1 |X
)

+
(
(Y2)

†
u2
.u−1

2 |Adu−1
1 .X

))

=
1

2

(
(Adu−1

1 .Y1 − Y1 |Adu2.X) + (Adu−1
2 .Y2 − Y2 |X)

+(Y1 −Adu1.Y1 |X) + (Y2 −Adu2.Y2 |Adu−1
1 .X)

)

so that :
(
ιX#(ω1 ⊕ ω2) −

1

2
(µ1 · µ2)

∗(θL + θR |X)
)

(u1,u2)
.(ξ1, ξ2)

=
1

2

(
(Adu1.X |Y ) − (Adu2.Y2 |X) − (Adu−1

1 .Y1 − Y1 |Adu2.X)

+(Y2 |X) − (Y1 |X) − (Y2 −Adu2.Y2 |X)
)

=
1

2

((
X |Adu−1

1 .Y1

)
−
(
Adu2.Y2 |X

)
−
(
u−1

1 .(Y1)
†
u1

|Adu2.X
)

(
Y1 |X

)
−
(
(Y2)

†
u2
.u−1

2 |Adu−1
1 .X

))

=
1

2

((
X |u−1

1 .(Y1)
†
u1

)
+
(
(Y2)

†
u2
.u−1

2 |X
)

−
(
u−1

1 .(Y1)
†
u1

|Adu2.X
)
−
(
(Y2)

†
u2

|Adu−1
1 .X

))

=
1

2

((
X −Adu2.X |u−1

1 .(Y1)
†
u1

)
−
(
(Y2)

†
u2
.u−1

2 |Adu−1
1 .X −X

))

=
1

2

((
X†
u2
.u−1

2 |u−1
1 .(Y1)

†
u1

)
−
(
(Y2)

†
u2
.u−1

2 |u−1
1 .X†

u1

))

This last quantity can be rewritten under the form :

−1

2

((
θLu1

(X†
u1

) | θRu2

(
(Y2)

†
u2

))
−
(
θLu1

(
(Y1)

†
u1

) | θRu2
(X†

u2
)
))

(4.10)
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This expression defines a 2-form on C1 × C2. To guess the expression of the appropriate 2-form on any
product M1 ×M2, denote by µ̃i the map :

µ̃i : M1 ×M2 −→ U
(x1, x2) 7−→ µi(xi)

Then, by the equivariance of µi, one has T(x1,x2)µ̃i.X
#
(x1,x2)

= X†
µi(xi)

, so that expression (4.10) transforms
into :

(4.10) = −1

2

((
(µ̃1

∗
θL)x1 .X

#
x1

| (µ̃2
∗
θR)x2 .v2

)
−
(
(µ̃1

∗
θL)x1 .v1 | (µ̃2

∗
θR).X#

x2

))

= −1

2

(
µ̃1

∗
θL ∧ µ̃2

∗
θR
)
(x1,x2

(
X]

(x1,x2)
, (v1, v2)

)

= −(ιX#ωres)(x1,x2).(v1, v2)

where (v1, v2) ∈ Tx1M1 × Tx2M2 is supposed to satisfy T(x1,x2)µ̃i.(v1, v2) = ξi ∈ Tµi(xi)U and where

ωres = 1
2 (µ̃1

∗
θL ∧ µ̃2

∗
θR). In the following, we shall use the conventions of [AMM98] and write simply :

ωres =
1

2
(µ∗

1θ
L ∧ µ∗

2θ
R)

That is :

(µ∗
1θ
L ∧ µ∗

2θ
R)(x1,x2)

(
(v1, v2), (w1, w2)

)

:=
(
θLµ1(x1)

(Tx1µ1.v1) | θRµ2(x2)
(Tx2µ2.w2)

)
−
(
θLµ1(x1)

(Tx1µ1.w1) | θRµ2(x2)
(Tx2µ2.v2)

)

Observe that this expression coincides indeed with (4.10) whenM1×M2 = C1×C2. The above calculations
then show that for all X ∈ u :

ιX #

(
(ω1 ⊕ ω2) + ωres

)
=

1

2
(µ1 · µ2)

∗(θL + θR |X)

The product space M1 ×M2 endowed with the 2-form ω := (ω1 ⊕ ω2) + 1
2 (µ∗

1θ
L ∧ µ∗

2θ
R) is called the

fusion product of M1 and M2 (it is denoted M1 ~M2 in [AMM98]). The term fusion product alludes to
the theory of quantum groups (see [AMM98] for an explanation and references).

Proposition 4.4.1 (Fusion product of quasi-Hamiltonian spaces, [AMM98]). Let (M1, ω1, µ1)
and (M2, ω2, µ2) be two quasi-Hamiltonian U -spaces. Endow M1 ×M2 with the diagonal action of U .
Then the 2-form

ω := (ω1 ⊕ ω2) +
1

2
(µ∗

1θ
L ∧ µ∗

2θ
R)

makes M1 ×M2 a quasi-Hamiltonian space with momentum map :

µ1 · µ2 : M1 ×M2 −→ U
(x1, x2) 7−→ µ1(x1)µ2(x2)

We refer to [AMM98] for a complete proof of this result (one still has to verify that ω is U -invariant and to
compute dω and kerω(x1,x2)). As a consequence of this result, every finite product of quasi-Hamiltonian
U -spaces is a quasi-Hamiltonian U -space for the diagonal action, with momentum map the product map

µ1 · . . . · µl : M1 × · · · ×Ml −→ U
(x1, . . . , xl) 7−→ µ1(x1). . .µl(xl)

In particular :

Corollary 4.4.2. The product C1 × · · · × Cl of l conjugacy classes of U is a quasi-Hamiltonian space for
the diagonal action of U , with momentum map the product µ(u1, . . . , ul) = u1 . . . ul.
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As pointed out in [AMM98], the fusion product defined above is associative; meaning that the fusion
product form on (M1 ×M2) ×M3 obtained by taking the product M1 ×M2 first and then the product
(M1 ×M2) ×M3 is equal to the fusion product form obtained similarly on M1 × (M2 ×M3) :

((
(ω1 ⊕ ω2) + 1

2 (µ∗
1θ
L ∧ µ∗

2θ
R)
)
⊕ ω3

)
+ 1

2

(
(µ1 · µ2)

∗θL ∧ µ∗
3θ
R
)

=
(
ω1 ⊕

(
(ω2 ⊕ ω3) + 1

2 (µ∗
2θ
L ∧ µ∗

3θ
R)
))

+ 1
2

(
µ∗

1θ
L ∧ (µ2 · µ3)

∗θR
)

To obtain an expression for the 2-form defining a quasi-Hamiltonian structure on a product M1×· · ·×Ml

of l quasi-Hamiltonian U -spaces, we re-arrange the above expressions and proceed by induction using the
Ad-invariance of (. | .) :

- on M1 ×M2, the structural 2-form is :

ω = (ω1 ⊕ ω2) +
1

2
(µ∗

1θ
L ∧ µ∗

2θ
R) = (ω1 ⊕ ω2) +

1

2

(
θR ∧ (µ∗

1Ad).(µ
∗
2θ
R)
)

- on M1 ×M2 ×M3, the structural 2-form is :

ω =
(
ω1 ⊕ ω2 ⊕ ω3

)
+

1

2

(
θR ∧ (µ∗

1Ad).µ
∗
2θ
R
)

+
1

2

(
((µ1 · µ2)

∗Ad).θL ∧ µ∗
3θ
R
)

=
(
ω1 ⊕ ω2 ⊕ ω3

)
+

1

2

(
θR ∧ (µ∗

1Ad).µ
∗
2θ
R
)

+
1

2

(
θR ∧ ((µ1 · µ2)

∗Ad).µ∗
3θ
R
)

- on M1 × · · · ×Ml, the structural 2-form is :

ω = (ω1 ⊕ . . .⊕ ωl) +
1

2

l−1∑

i=1

(
θR ∧

(
(µ1 · . . . · µi)∗Ad

)
.µ∗
i+1θ

R
)

As one can see, these expressions might make computations somewhat long and intricate. In chapter 7,
we will need to compute the pull-back of the 2-form ω on C1 × · · · × Cl by a certain map β. By using
certain properties of the map β, we will avoid the explicit computation of β∗ω (see lemma 7.3.3). See
also [Tre02] for expressions of fusion product forms on products of conjugacy classes.

Another interesting problem is to consider a product of two quasi-Hamiltonian spaces (M1, ω1, µ1 :
M1 → U1) and (M2, ω2, µ2 : M2 → U2) acted on by different groups U1 and U2. One then has the
following result, which is verified immediately from the definition of a quasi-Hamiltonian space (see
definition 4.1.2) :

Proposition 4.4.3 ([AMM98]). Let (M1, ω1, µ1 : M1 → U1) and (M2, ω2, µ2 : M2 → U2) be two
quasi-Hamiltonian spaces and endow M1 ×M2 with the U1 × U2-action defined by :

(u1, u2).(x1, x2) = (u1.x1, u2.x2)

the U -invariant 2-form ωP = ω1 ⊕ ω2 and the equivariant map

µP : M1 ×M2 −→ U1 × U2

(x1, x2) 7−→
(
µ1(x1), µ2(x2)

)

Then the triple (M1 ×M2, ω
P , µP ) is a quasi-Hamiltonian U1 × U2-space.

If now U1 = U2 = U , then one can embed U diagonally in U1 ×U2 and consider the induced U -action on
M1 ×M2, which is just the diagonal action. We can then recover the fusion product 2-form on M1 ×M2

obtained in proposition 4.4.1 by using the following lemma, the upshot being that this lemma applies to
U × U -spaces which are not necessarily product manifolds.
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Lemma 4.4.4 (Internal fusion of quasi-Hamiltonian U ×U-spaces). [AMM98] Let (M,ωD, µD =
(µ1, µ2) : M → U × U) be a quasi-Hamiltonian U × U -space. Consider the action of U on M defined by
u.x := (u, u).x and the map

µ : M −→ U
x 7−→ µ1(x)µ2(x)

Then, the 2-form

ω := ωD +
1

2
(µ∗

1θ
L ∧ µ∗

2θ
R)

makes M a quasi-Hamiltonian U -space with momentum map the map µ.

When (M,ωD, µD) = (M1×M2, ω
P , µP : M1×M2 → U ×U), applying lemma 4.4.4 to this U ×U -space,

we indeed obtain the fusion product space of proposition 4.4.1. But a more interesting feature of the
above lemma is the construction of a new quasi-Hamiltonian U -space associated to any given Lie group
(U, (. | .)) called the internally fused double of U : it is obtained by applying internal fusion to the double
D(U) = U × U constructed in proposition 4.2.2.

Proposition 4.4.5 ([AMM98]). The manifold D(U) := U × U equipped with the diagonal conjugacy
action of U , the U -invariant 2-form

ω =
1

2
(α∗θL ∧ β∗θR) +

1

2
(α∗θR ∧ β∗θL) +

1

2

(
(α · β)∗θL ∧ (α−1 · β−1)∗θR

)

and the equivariant momentum map

µ : D(U) = U × U −→ U
(a, b) 7−→ aba−1b−1

(where α and β are the projections respectively on the first and second factors of D(U)) is a quasi-
Hamiltonian U -space, called the internally fused double of U .

This space plays a very important role in the description of symplectic structures on representation spaces
of fundamental groups of Riemann surfaces whose genus is greater or equal to 1 (see [AMM98] and section
4.6 below). Before concluding this section, we would like to point out the fact that, in [AMM98], all the
above results concerning products of quasi-Hamiltonian spaces, including internal fusion, are presented
in a unified way. We chose to be more analytic here. Alekseev, Malkin and Meinrenken also prove in
[AMM98] that the fusion product is commutative on isomorphism classes of quasi-Hamiltonian spaces
and relate fusion to reduction to reproduce the “shifting trick” for symplectic reduction in the usual
Hamiltonian setting. We refer to this paper for details.

4.5 Reduction theory of quasi-Hamiltonian spaces

In this section, we will show, mainly following [AMM98], how to obtain a symplectic manifold from a
quasi-Hamiltonian space by a reduction procedure, that is to say, by taking the quotient of a fiber µ−1({u})
of the momentum map by the action of the stabilizer group Uu, which preserves the fiber µ−1({u}) since
µ is equivariant. We refer to [MW01] for a historical account on the idea of reduction (which consists,
to try a physical picture, in diminishing the number of degrees of liberty of a Hamiltonian system, that
is, the dimension of a symplectic manifold called the phase space, by consideration of symmetry, that, is
by taking the quotient by a group action to obtain a smaller phase space). The modern formulation of
reduction that we will be dealing with in the following is due to Meyer and Marsden and Weinstein (see
respectively [Mey73] and [MW74]).

Let us first recall how to obtain differential forms on an orbit space N/G where N is a manifold acted
on by a Lie group G. We will assume that the action is proper and free, so that N/G is a manifold
(and the submersion p : N → N/G is a locally trivial principal fibration with structural group G, see for
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instance [DK00], pp.53-55). Let [x] denote the G-orbit of x ∈ N . Then the tangent space T[x](N/G) is
isomorphic to TxN/ kerTxp (since p is surjective). And kerTxp consists exactly of the vectors tangent
to N at x which are actually tangent to the G-orbit of x in N . Those are exactly the values at x of
fundamental vector fields :

kerTxp = Tx(G.x) = {X#
x : X ∈ g = Lie(G)}

Let then α be a differential form on N (say, a 2-form). Under what conditions does α define a 2-form α
on N/G verifying p∗α = α ? This last condition amounts to saying that α[x]([v], [w]) = αx(v, w) for all
x ∈ N and all v, w ∈ TxN . One then checks that the left-hand side term of this equation is well-defined
by this relation if and only if the 2-form α is G-invariant. Further, since X#

x is sent to 0 in T[x](N/G) by
the map Txp, the relation p∗α = α implies that ιX#α = 0 for all X ∈ g. These two conditions turn out
to be enough :

Lemma 4.5.1. Let p : N → B = N/G be a locally trivial principal fibration with structural group G and
let α be a differential form on N . If α satisfies

g∗α = α for all g ∈ G (G−invariance)

and

ιX#α = 0 for all X ∈ g = Lie(G)

then there exists a unique differential form α on B satisfying p∗α = α. In such a case, the 2-form α on
N is said to be basic.

Observe that if G is compact and connected (so that the exponential map is surjective), the condition
g∗α = α for all g ∈ G may be replaced by LXα = 0 for all X ∈ g (which is always implied by the
G-invariance).

We can now use this result to construct differential forms on orbit spaces associated to level manifolds
of the momentum map. Let us start by considering the usual Hamiltonian case. Let (M,ω) be a symplectic
manifold endowed with a Hamiltonian action of a Lie group U with momentum map µ : M → u∗, and
take N := µ−1({ζ}) where ζ ∈ u∗. Because of the equivariance of µ, the stabilizer G := Uζ of ζ for the
co-adjoint action of U on u∗ acts on N = µ−1({ζ}). Assuming that ζ is a regular value of µ and that Uζ
acts freely and properly on µ−1({ζ}), we then have a principal fibre bundle p : µ−1({ζ}) → µ−1({ζ})/Uζ
and the following diagram :

µ−1({ζ})
p

��

�

� i // M

µ−1({ζ})/Uζ

where i : µ−1({ζ}) ↪→ M is the inclusion map. The 2-form ω on M induces a 2-form i∗ω on µ−1({ζ}),
which turns out to be basic (see the proof of proposition 4.5.2 for similar reasoning). Therefore, by
lemma 4.5.1, there exists a unique 2-form ωred on µ−1({ζ})/Uζ such that π∗ωred = i∗ω. Since ω is
closed, so is ωred (we may first check that if α is basic then dα is basic, as follows from the Cartan
homotopy formula). And one may then notice that a vector v ∈ TxN = kerTxµ is sent by Txp to a
vector in kerωred[x] if and only if v is contained in (TxN)⊥ω = (kerTxµ)⊥ω = {X#

x : X ∈ u} as well. But

then v = X#
x ∈ kerTxµ ∩ (kerTxµ)⊥ω , so that by the equivariance of µ, one has, denoting by X† the

fundamental vector field on u∗ associated to X by the co-adjoint action of U : X†
ζ = X†

µ(x) = Txµ.X
#
x = 0,

so that X ∈ uζ = Lie(Uζ). We have thus proved that Txp.v ∈ kerωred[x] if and only if v ∈ {X#
x : X ∈ uζ}.

Consequently, for such a v, one has Txp.v = 0, so that ωred is non-degenerate and µ−1({ζ})/Uζ is
a symplectic manifold. When ζ = 0 ∈ u∗, Uζ = U and one usually denotes µ−1({0})/U by M//U .
This manifold is called the symplectic quotient of M by U . Observe that in this case µ−1({0}) is a

55



CHAPTER 4 4.5

co-isotropic submanifold of M , since, if µ(x) = 0, then for all X ∈ u, Txµ.X
#
x = X†

0 = 0, so that
(kerTxµ)⊥ω ⊂ kerTxµ. And the 2-form ωred is then symplectic because the leaves of the null-foliation of
ω|N (that is, the foliation corresponding to the distribution x 7→ ker(ω|N )x = (TxN)⊥ω = (kerTxµ)⊥ω )
are precisely the U -orbits. One may also define the reduced space at ζ to be µ−1(Oζ)/U , where Oζ is the
co-adjoint orbit of ζ. We refer to [Mey73] and [MW74] for further details in that direction (in particular
for the shifting trick, that reduces the study of µ−1(Oζ) to the study of (M ×O−ζ)//U ).

In [LS91] and in [BL97], the authors study the case where the regularity assumptions (0 is a regular
value of µ and the action of U on µ−1({0}) is free) are dropped. In the rest of this section, we will
restrict ourselves to the case where U is compact, so that the action is automatically proper. This
is the situation studied in [LS91]. We refer to [BL97] for proper actions of non-compact Lie groups
and references concerning singular symplectic quotients (notably the survey paper [AGJ90]). In [LS91],
Lerman and Sjamaar showed that when the above regularity assumptions are dropped, the reduced space
M//U is a union of symplectic manifolds which are the strata of a stratified space. Their proof relies
on a normal form theorem for the momentum map obtained by Marle in [Mar86] and by Guillemin and
Sternberg in [GS84b]. See subsection 4.5.2 for further comments.

4.5.1 The smooth case

Let us now come back to the quasi-Hamiltonian setting. In [AMM98], Alekseev, Malkin and Meinrenken
showed how to construct new quasi-Hamiltonian spaces from a given quasi-Hamiltonian U -space (M,ω, µ :
M → U) by a reduction procedure, assuming that U is a product group U = U1 ×U2 (so that µ has two
components µ = (µ1, µ2)). Their result says that the reduced space µ−1

1 ({u})/Uu is a quasi-Hamiltonian
U2-space. In particular, when U2 = {1}, they obtain a symplectic manifold. Since this is the case we
are interested in, we will state their result in this way and give a proof that is valid in this particular
situation. We refer to [AMM98] for the general case. It is quite remarkable that one can obtain symplectic
manifolds from quasi-Hamiltonian spaces by a reduction procedure. As a matter of fact, this is one of the
nicest features of the notion of quasi-Hamiltonian spaces : it enables one to obtain symplectic structures
on quotient spaces (typically, moduli spaces) using simple finite dimensional objects as a total space. The
most important example in that respect is the moduli space of flat connections on a Riemann surface Σ,
first obtained (in the case of a compact surface) by Atiyah and Bott in [AB83] by symplectic reduction
of an infinite-dimensional symplectic manifold. We refer to [AMM98] and to section 4.6 below to see how
one can recover these symplectic structures using quasi-Hamiltonian spaces. Let us now state and prove
the result we are interested in.

Proposition 4.5.2 (Symplectic reduction of quasi-Hamiltonian spaces, the smooth case,
[AMM98]). Let (M,ω, µ : M → U) be a quasi-Hamiltonian U -space. Assume that 1 is a regular value
of µ and that U acts freely on µ−1({1}). Let i : µ−1({1}) ↪→ M be the inclusion of the level manifold
µ−1({1}) in M and let p : µ−1({1}) → µ−1({1})/U be the projection on the orbit space. Then there exists
a unique symplectic form ωred on the reduced manifold M red := µ−1({1})/U such that p∗ωred = i∗ω on
µ−1({1}).

Proof. The proof consists in showing that i∗ω is basic with respect to the principal fibration p and then
verifying that the unique 2-form ωred on µ−1({1})/U such that p∗ωred = i∗ω is indeed symplectic.
Let us first show that i∗ω is basic :

u∗(i∗ω) = i∗ω for all u ∈ U

and

ιX#i∗ω = 0 for all X ∈ u

The first condition is obvious since ω is U -invariant. Consider now X ∈ u. Then :
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ιX#(i∗ω) = i∗(ιX#ω)

= i∗
(1
2
µ∗(θL + θR |X)

)

=
1

2

(
i∗ ◦ µ∗(θL + θR |X)

)

=
1

2
(µ ◦ i)∗(θL + θR |X)

= 0

since µ ◦ i is constant on µ−1({1}) and therefore T (µ ◦ i) = 0, hence (µ ◦ i)∗ = 0. Then there exists, by
lemma 4.5.1, a unique 2-form ωred on µ−1({1})/U such that p∗ωred = i∗ω.
Let us now prove that ωred is a symplectic form. First :

p∗(dωred) = d(p∗ωred)

= d(i∗ω)

= i∗(dω)

= i∗(−µ∗χ)

= −(µ ◦ i)∗︸ ︷︷ ︸
=0

χ

= 0

so that dωred = 0. Second, take [x] ∈ µ−1({1})/U , where x ∈ µ−1({1}), and [v] ∈ kerωred[x] , where

v ∈ Txµ
−1({1}) = kerTxµ. Then, for all w ∈ Txµ

−1({1}) = kerTxµ, one has :

(i∗ω)x(v, w) = (p∗ωred)x(v, w) = ωred[x] ([v], [w]) = 0

since [v] ∈ kerωred[x] . Hence :

v ∈ ker(i∗ω)x = {s ∈ kerTxµ | ∀w ∈ kerTxµ, ωx(s, w) = 0}
= kerTxµ ∩ (kerTxµ)⊥ω ⊂ TxM

But, by proposition 4.3.1, (kerTxµ)⊥ = {X#
x : X ∈ u}, so v = X#

x for some X ∈ u. Hence :

[v] = Txp.v = Txp.X
#
x = 0

so that ωred is non-degenerate.

4.5.2 The stratified case

What happens if we now drop the regularity assumptions of proposition 4.5.2 ? Following the techniques
used in [LS91] and [BL97] for usual Hamiltonian spaces, we will show that if we do not assume 1 to be
a regular value of µ : M → U , nor that U acts freely on µ−1({1}), then the orbit space µ−1({1})/U is a
disjoint union, over subgroups K ⊂ U , of symplectic manifolds M red

K :

µ−1({1})/U =
⊔

K⊂U
M red
K

each M red
K being obtained by applying proposition 4.5.2 to a quasi-Hamiltonian space (MK , ωK , µ̂K :

MK → LK). Actually, the study conducted in [LS91] (and in [BL97] for the case of proper actions of
non-compact groups) is far more precise and ensures that the reduced space M red := µ−1({1})/U is a
stratified space (in particular, there is a notion of smooth function on M red, and the set C∞(M red) of
smooth functions is an algebra over the field R, see [LS91] for a precise definition), with strata (SK)K⊂U ,
such that :
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- each stratum SK is a symplectic manifold.

- C∞(M red) is a Poisson algebra.

- the restriction maps C∞(M red) → C∞(SK) are Poisson maps.

A stratified space satisfying these additional three conditions is called a stratified symplectic space. In
[LS91], to show that M red is always a stratified symplectic space, Lerman and Sjamaar actually obtain
this space as a disjoint union of symplectic manifolds in two differents ways. The first one enhances the
stratified structure ofM red (the stratification being induced by the partition ofM according to orbit types
for the action of U), and relies on a normal form theorem for the momentum map obtained by Marle in
[Mar86] and by Guillemin and Sternberg in [GS84b]. It also shows that each stratum carries a symplectic
structure. The second description of M red as a disjoint union of symplectic manifolds then aims at
relating this reduction to the regular Marsden-Meyer-Weinstein procedure (see for instance [dS01]) : the
symplectic structure on each stratum is obtained by symplectic reduction from a submanifold of M .

Here, we shall not be dealing with the notion of stratified space and we will content ourselves with
a description of µ−1({1})/U as a disjoint union of symplectic manifolds obtained by reduction from a
quasi-Hamiltonian space MK ⊂M . We will nonetheless call the case at hand the stratified case.

We start with a quasi-Hamiltonian space (M,ω, µ : M → U) and use the partition of M given by
what we may call the isotropy type :

M =
⊔

K⊂U
MK

where K ⊂ U is a closed subgroup of U and MK is the set of points of M whose stabilizer is exactly K :

MK = {x ∈M | Ux = K}

Observe that if one wants K to be the stabilizer of some x ∈ M , one has to assume that K is closed,
since a stabilizer always is. If MK is non-empty, it is a submanifold of M (see proposition 2.1.1), called
the manifold of symmetry K in [LS91], whose tangent space at some point x ∈MK consists of all vectors
in TxM which are fixed by K :

TxMK = {v ∈ TxM | for all k ∈ K, k.v = v}

where k ∈ K acts on TxM as the tangent map of the diffeomorphism y ∈ M 7→ k.y which sends x to
itself by definition. The action of U does not preserve MK but MK is globally stable under the action of
elements n ∈ N (K) ⊂ U , where N (K) denotes the normalizer of K in U :

N (K) := {u ∈ U | for all k ∈ K,uku−1 ∈ K}

It is actually the largest subgroup of U leaving MK invariant, since the stabilizer of u.x for some x ∈MK

and some u ∈ U is still Ux if and only if uUxu
−1 = Ux, that is, uKu−1 = K. Observe that we have :

Lie
(
N (K)

)
= {X ∈ u | for all Y ∈ k, [X,Y ] ∈ k}

That is, the Lie algebra of the normalizer of K in U is the normalizer of n(k) of the Lie algebra k := Lie(K)
in u = Lie(U). The subgroup K is normal in N (K) and acts trivially on MK by definition of the manifold
of symmetry K, so that MK inherits an action of the quotient group N (K)/K. It actually follows from
the definition of MK that this induced action is free : if n ∈ N (K) stabilizes some x in MK , then n ∈ K
and so is the identity in N (K)/K. We now wish to show that MK is a quasi-Hamiltonian space with
respect to this action. We need to find a momentum map µK : MK → N (K)/K and a 2-form ωK
satisfying the axioms of definition 4.1.2. The natural candidates are µK := µ|MK

and ωK := ω|MK
, but

the problem is then that µK does not take its values in N (K)/K. We will now show that µ(MK) ⊂ N (K)
and that we can therefore consider the composed map µ̂K := pK ◦ µK : MK → N (K)/K, where pK is
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the projection map pK : N (K) → N (K)/K. Denote then by LK the group LK := N (K)/K. As K
is closed in U , so is N (K), and since U is compact, N (K) is compact. Therefore LK = N (K)/K is a
compact Lie group. We will then show that (MK , ω|MK

, µ̂K) is a quasi-Hamiltonian space. Moreover,

we will show that 1 ∈ LK is a regular value of µ̂K and that LK acts freely on µ̂K
−1

({−1}), so that, by

proposition 4.5.2, the reduced space M red
K := µ̂K

−1
({1})/LK is a symplectic manifold.

To do so, we start by studying µ(MK). This whole analysis adapts the ideas of [LS91] to the quasi-
Hamiltonian setting. Let us denote ωK := ω|MK

and µK := µ|MK
. First, since K acts trivially on MK ,

we have, for all x ∈MK and all k ∈ K :

µK(x) = µK(k.x) = kµK(x)k−1

so that µ(x) belongs to the subgroup UK of points of U whose centralizer contains K :

UK := {u ∈ U | for all k ∈ K, kuk−1 = u} (4.11)

Thus : µ(MK) ⊂ UK , and therefore, for all x ∈MK :

Im TxµK ↪→ Lie(UK) = {X ∈ u | for all Y ∈ k, [X,Y ] = 0}

(this is not strictly speaking an inclusion since Im TxµK ⊂ TµK(x)U , but it is true up to a translation :
Im (µ∗

Kθ
L)x ⊂ Lie(UK), as in proposition 4.3.1). Observe that the Lie algebra of UK is the subalgebra

uk of elements of u whose centralizer in u contains k :

uk := {X ∈ u | for all Y ∈ k, [X,Y ] = 0}

Second, for all X ∈ k, we have :

ιX#ωK = 1
2µ

∗
K(θL + θR |X) (4.12)

(where θL and θR denote as usual the Maurer-Cartan 1-forms of U , so that the above relationship simply
follows from the fact that (M,ω, µ : M → U) is a quasi-Hamiltonian space). Hence, by proposition 4.3.1,
we have, for all x ∈MK :

Im TxµK ⊂ Im Txµ ' u⊥x = k⊥ (4.13)

It follows from (4.11) and (4.13) that for all x ∈MK :

Im TxµK ↪→ uk ∩ k⊥

(again, this could be written : Im (µ∗
Kθ

L)x ⊂ uk ∩ k⊥). We then have :

Lemma 4.5.3. The Lie subalgebra uk ∩ k⊥ ⊂ u is equal to the orthogonal of k in n(k) :

uk ∩ k⊥ = k⊥n(k)

Proof. To prove the first inclusion, it suffices to show that any X ∈ uk∩k⊥ belongs to n(k). Since X ∈ uk,
we have, for all Y ∈ k, [X,Y ] = 0 ∈ k, so that X ∈ n(k).
To prove the converse inclusion, it is enough to show that any X ∈ k⊥n(k) belongs to uk, that is, to show
that for all Y ∈ k, [X,Y ] = 0. Take Y ∈ k. Then for all Z ∈ n(k) :

([X,Y ] |Z) = (X | [Y, Z]) = 0

since [Y, Z] ∈ k (because Z ∈ n(k)) and X ∈ k⊥n(k) . Since the restriction (. | .)n(k) is non-degenerate, this
implies that [X,Y ] = 0.
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Observe now that k is an ideal in n(k) and that k⊥n(k) is therefore a Lie subalgebra of n(k) (hence a Lie
subalgebra of u) which is isomorphic to n(k)/k. Moreover, we have just seen that, for all x ∈MK :

Im TxµK ↪→ k⊥n(k) (4.14)

(again, this could be written : Im (µ∗
Kθ

L)x ⊂ k⊥n(k)). In particular, for all x ∈ MK , Im TxµK ↪→ n(k),
so that µK(MK) ⊂ N (K). We can therefore consider the map µ̂K := pK ◦ µK : MK → LK = N (K)/K,
where pK : N (K) → N (K)/K. Furthermore, we may identify the Lie algebra of LK to n(k)/k. Under
this identification, the Maurer-Cartan 1-forms θLLK

and θRLK
of LK are obtained by restricting those of

U to N (K) (which gives n(k)-valued 1-forms) and composing by the projection n(k) → n(k)/k. It is then
immediate from relation (4.12), that for all X ∈ Lie(LK), one has :

ιX#ωK =
1

2
µ̂K

∗
(θLLK

+ θRLK
| X)

Likewise, the Cartan 3-form χLK
of LK is obtained by restricting that of U to N (K) and composing the

n(k)-valued 3-form thus obtained by the projection n(k) → n(k)/k. Then, it follows from the fact that
dω = −µ∗χ that we have :

dωK = −µ∗
Kχ|N (K) = −µ̂K∗χLK

Thus, we have almost proved that (MK , ωK , µ̂K) is a quasi-Hamiltonian LK-space. In order to compute
ker(ωK)x for all x ∈ MK , we observe the following two facts, the first of which is classical in symplectic
geometry and the second of which is a quasi-Hamiltonian analogue :

Lemma 4.5.4. Let (V, ω) be a symplectic vector space and let K be a compact group acting linearly on
V preserving ω. Then the subspace

VK := {v ∈ V | for all k ∈ K, k.v = v}

of K-fixed vectors in V is a symplectic subspace of V .

Proof. Since K is compact, there exists a K-invariant positive definite scalar product on V , that we shall
denote by (. | ). Since ω is non-degenerate, there exists, for any v ∈ V , a unique vector Av ∈ V satisfying

(v |w) = ω(Av,w)

for all w ∈ V , and the map A : V → V thus defined is an automorphism of V . Moreover, it satisfies
A(VK) ⊂ VK . Indeed, if v ∈ VK , then for all k ∈ K, one has, for all w ∈ V :

ω(k.Av,w) = ω(Av, k−1.w)

= (v | k−1.w)

= (k.v |w)

= ω(A(k.v), w)

= ω(Av,w)

and therefore k.Av = Av for all k ∈ K (incidentally, if one forgets the last equality, which used the fact
that k.v = v, this also proves that Ak = kA for all k ∈ K), hence Av ∈ VK . If now v ∈ VK satisfies
ω(v, w) = 0 for all w ∈ VK , then in particular for w = Av, one obtains ω(v,Av) = 0, that is, (v | v) = 0,
hence v = 0, since (. | ) is positive definite.

Lemma 4.5.5. Let (V, ω) be a vector space endowed with a possibly degenerate antisymmetric bilinear
form and let K be a compact group acting linearly on V preserving w. Then the 2-form wK := ω|VK

defined on the subspace
VK := {v ∈ V | for all k ∈ K, k.v = v}

of K-fixed vectors of V has kernel :
kerωK = kerω ∩ VK
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Proof. If ω is non-degenerate then this is simply lemma 4.5.4. Assume now that kerω 6= {0}. Observe
that kerωK = V ⊥ω

K ∩ VK ⊃ kerω ∩ VK . We now consider the reduced vector space V red := V/ kerω.
The 2-form ω induces a 2-form ωred on V red, which is non-degenerate by construction. The map VK ↪→
V → V/ kerω induces an inclusion VK/(kerω ∩ VK) ↪→ V/ kerω. Further, the action of K on V induces
an action k.[v] := [k.v] on V red : this action is well-defined because K preserves ω and therefore if
r ∈ kerω then k.r ∈ kerω. The subspace (V red)K of K-fixed vectors for this action can be identified
with VK/(kerω ∩ VK). Indeed, if [v] ∈ V red satisfies, for all k ∈ K, [k.v] = [v], then set :

w :=

∫

k∈K
(k.v)dλ(k)

where λ is the Haar measure on the compact Lie group K (such that λ(K) = 1, see for instance [BtD95],
p.46). Then for all k′ ∈ K :

k′.w = k′.
( ∫

k∈K
(k.v)dλ(k)

)

=

∫

k∈K
(k′k.v)dλ(k)

=

∫

h∈K
(h.v)dλ(h)

since the Haar measure on K is invariant by translation. Thus w ∈ VK and we have :

[w] =
[ ∫

k∈K
(k.v)dλ(k)

]

=

∫

k∈K
[k.v]︸︷︷︸
=[v]

dλ(k)

= [v] ×
∫

k∈K
dλ(k)

= [v]

Thus [v] ∈ VK/(kerω ∩ VK) ⊂ V red, which proves that (V red)K ⊂ VK/(kerω ∩ VK), and therefore :

(V red)K = VK/(kerω ∩ VK)

(the converse inclusion being obvious). Consequently, since V red is a symplectic space, lemma 4.5.4
applies and we obtain :

kerωred|(V red)K
= {0}

Now ωK = ω|VK
induces a 2-form (ωK)red on VK/(kerω∩VK) = (V red)K , whose kernel is, by definition :

ker(ωK)red = kerωK/(kerω ∩ VK)

But, again by definition, (ωK)red = ωred|(V red)K
, so that ker(wK)red = {0}, hence kerωK = kerω ∩ VK ,

which proves the lemma.

We then obtain a new class of examples of quasi-Hamiltonian spaces :

Proposition 4.5.6. For each closed subgroup K ⊂ U , the compact Lie group LK := N (K)/K acts freely
on the manifold of symmetry

MK = {x ∈M | Ux = K}
In addition to that, µ(MK) ⊂ NK and (MK , ωK := ω|MK

, µ̂K := pK ◦ µ|MK
), where pK is the projection

map pK : N (K) → N (K)/K = LK, is a quasi-Hamiltonian space.
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Proof. The only thing left to prove is that, for all x ∈MK :

ker(ωK)x = {X#
x : X ∈ n(k)/k | Ad µ̂K(x).X = −X}

Since Im TxµK ↪→ k⊥n(k) (see (4.14)), this is equivalent to proving that :

ker(ωK)x = {X#
x : X ∈ n(k) | AdµK(x).X = −X}

Further, for X ∈ u, one has X#
x ∈ TxMK if and only if X ∈ n(k), so that what we really need to prove is

that :

ker(ωK)x = {X#
x : X ∈ u | Adµ(x).X = −X} ∩ TxMK

= kerωx ∩ TxMK

But TxMK = {v ∈ TxM | for all k ∈ K, k.v = v}, so that what we want follows from lemma 4.5.5.

And we then observe that :

Corollary 4.5.7. 1 ∈ LK is a regular value of µ̂K and the reduced space M red
K := µ̂K

−1
({1})/LK is a

symplectic manifold.

Proof. By proposition 4.3.1, we have, for all x ∈ MK , Im Txµ̂K ' l⊥x , where lx is the Lie algebra of the
stabilizer of x in LK . Since the action of LK on MK is free, we have lx = 0, and therefore µ̂K : MK → LK
is a submersion. In particular, 1 ∈ LK is a regular value of µ̂K . The fact that M red

K := µ̂K
−1({1})/LK

is a symplectic manifold then follows from proposition 4.5.2.

Observe that for a given K ⊂ U closed, either MK or µ̂K
−1

({1}) may very well be empty. We are
obviously only interested in closed subgroups of U such that this is not the case, and we then have the
following description of the orbit space M red := µ−1({1})/U as a disjoint union of symplectic manifolds :

Proposition 4.5.8 (Symplectic reduction of quasi-Hamiltonian spaces, the stratified case).
Let (M,ω, µ : M → U) be a quasi-Hamiltonian U -space. Then the orbit space M red := µ−1({1})/U is

the disjoint union, over closed subgroups K ⊂ U , of the symplectic manifolds M red
K := µ̂K

−1({1})/LK
introduced in proposition 4.5.6 and corollary 4.5.7 :

µ−1({1})/U =
⊔

K⊂U

(
(µ̂K

−1
({1})

)/
LK

Proof. This is purely set-theoretic. Let us write K ∈ (Ux) to say that K is conjugate to (Ux) in U .
Then :

µ−1({1})/U =
⊔

x∈µ−1({1})
U.x

=
⋃

x∈µ−1({1})

⋃

K∈(Ux)

⋃

y∈MK∩µ−1({1})
LK .y

=
⋃

K⊂U

⊔

y∈ cµK
−1({1})

LK .y

=
⋃

K⊂U

(
µ̂K

−1
({1})

)/
LK

To show that this union is disjoint, consider K,K ′ such that there exists y ∈ µ̂K
−1

({1}) satisfying

(LK .y) ∈ µ̂K′
−1

({1})/LK′ . Then there exists y′ ∈ µ̂K′
−1

({1}) such that LK .y = LK′ .y′. In particular,
y′ ∈ LK .y, hence Uy′ = nUyn

−1 for some n ∈ LK . Since Uy = K and LK normalizes K, one has
K ′ = Uy′ = Uy = K. Therefore µ̂K′ = µ̂K , LK′ = LK and µ−1

K′ ({1})/LK′ = µ−1
K ({1})/LK.
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Thus, for every quasi-Hamiltonian space (M,ω, µ : M → U), the reduced space M red := µ−1({1})/U is
a disjoint union of symplectic manifolds. We may then denote it by M//U , as in the usual Hamiltonian
case :

Definition 4.5.9 (Quasi-Hamiltonian quotient). The reduced space M//U := µ−1({1})/U associ-
ated, by means of propositions 4.5.2 and 4.5.8, to a given quasi-Hamiltonian space (M,ω, µ : M → U) is
called the quasi-Hamiltonian quotient associated to M .

Remark 4.5.10. Observe that when the action of U on M is free, then 1 ∈ U is necessarily a regular
value of µ (see the proof of corollary 4.5.7) and the only subgroup K ⊂ U such that the manifold of
symmetry MK is non-empty is K = {1}, so that the results of propositions 4.5.2 and 4.5.8 do coincide
in this case, which is the nicest case one can hope for.

As we shall see in section 4.6, representation spaces naturally arise as quasi-Hamiltonian quotients. Since
in this case it is known that representation spaces are stratified symplectic spaces in the sense of [LS91]
(see for instance [Hue95a]), it should be possible to obtain this stratified symplectic structure in the
quasi-Hamiltonian framework. Following [LS91], the first step to do so should be a normal form for
momentum maps defined on quasi-Hamiltonian spaces.

4.6 Symplectic structure of the moduli space of representations

of a surface group : the quasi-Hamiltonian description

In this section, we wish to explain how the notion of quasi-Hamiltonian space provides a proof of the fact
that, for any Lie group (U, (. | )) endowed with an Ad-invariant non-degenerate product and any collection
C = {Cj}1≤j≤l of l conjugacy classes of U , there exists a symplectic structure on the representation spaces

HomC(πg,l, U)
/
U

(see 4.6.1 below for a precise definition). Here, πg,l denotes the fundamental group of the surface Σg,l :=
Σg\{s1, . . . , sl}, Σg being a compact Riemann surface of genus g ≥ 0, l being an integer l ≥ 1 and
s1, . . . , sl being l pairwise distinct points of Σg. When l = 0, we set C := ∅ and Σg,0 := Σg. Everything
we will say is valid for any g ≥ 0 and any l ≥ 0 but we will not always distinguish between the cases
l = 0 and l ≥ 1, to lighten the presentation.

Before entering the description of the symplectic structure of HomC(πg,l, U)/U , we would like to say
that we will keep this description naive and elementary : first, we will not enter considerations about
the stratified structure of HomC(πg,l, U)/U (meaning that we choose to forget that these spaces are not
smooth manifolds, even if U is assumed to be compact, see for instance [Wei95, Hue95a, Hue95b, Hue01b])
and second, we will not compare the symplectic structure we obtain with known symplectic structures on
representation spaces (see [AB83, Gol84, Kar92, Wei95, Hue95a, Hue95b, Jef94, Jef95, HJ94, GHJW97,
AM95, MW99, FR93, FR97, BF99]), which are in fact one and the same. As briefly mentioned in the
introduction to this work, the description of symplectic structures on moduli spaces has a quite large
history and we refer to [AMM98] for a comparison of the quasi-Hamiltonian description and the original
gauge-theoretic description of [AB83]. The point of keeping this description naive and elementary is to
hopefully make it easier to grasp the nice features of quasi-Hamiltonian spaces when it comes to obtaining
symplectic structures on representation spaces. The upshot of the quasi-Hamiltonian description of these
symplectic structures is, first, that it is fairly easy (insofar as it does not call for infinite-dimensional
manifolds nor tools of group cohomology) and second, that it seems very natural (insofar as the total
space M of the symplectic quotient M//U entering the description is a simple object appearing naturally
in the set-theoretic description of HomC(πg,l, U)/U). Of course, all descriptions of the symplectic structure
of HomC(πg,l, U)/U are interesting in their own right and they all have their own advantages, depending
on the motivation for studying these representation spaces. Here, we felt that the quasi-Hamiltonian
description was the most suited for our problem and we simply wish to explain why.
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Recall that the fundamental group of the surface Σg,l = Σg\{s1, . . . , sl} has the following finite
presentation :

πg,l =< A1, . . . , Ag, B1, . . . , Bgγ1, . . . , γl |
g∏

i=1

[Ai, Bi]

l∏

j=1

γj = 1 >

each γj being the homotopy class of a loop around the puncture sj . In particular, if l ≥ 1, it is a free
group on (2g+l−1) generators. As a consequence of this presentation, we see that giving a representation
of πg,l in the group U (that is, a group morphism from πg,l to U) amounts to giving (2g + l) elements
(ai, bi, uj)1≤i≤g,1≤j≤l of U satisfying :

g∏

i=1

[ai, bi]

l∏

j=1

uj = 1

Two representations (ai, bi, uj)i,j and (a′i, b
′
i, u

′
j)i,j are then called equivalent if there exists an element

u ∈ U such that a′i = uaiu
−1, b′i = ubiu

−1, u′j = uuju
−1 for all i, j. The original approach to describing

symplectic structures on spaces of representations (see [NS65, MS80, AB83]) shows that, in order to
obtain symplectic structures, one has to prescribe the conjugacy class of each uj, 1 ≤ j ≤ l. Otherwise,
one may obtain Poisson structures, but we shall not enter these considerations and refer to [Hue01a] and
[AKSM02] instead. We are then led to studying the space HomC(πg,l, U) of representations of πg,l in U
with prescribed conjugacy classes for the (uj)1≤j≤l :

Definition 4.6.1. We define the space HomC(πg,l, U) to be the following set of group morphisms :

HomC(πg,l, U) = {ρ : πg,l → U | ρ(γj) ∈ Cj for all j ∈ {1, . . . , l}}

Observe that this space may very well be empty, depending on the choice of the conjugacy classes
(Cj)1≤j≤l. As a matter of fact, conditions on the (Cj) for this set to be non-empty are quite difficult to
obtain (see for instance [AW98] for the case g = 0 and U = SU(n), and [TW03] for the case g = 0 and U
compact). As earlier, giving such a morphism ρ ∈ HomC(πg,l, U) amounts to giving appropriate elements
of U :

HomC(πg,l, U) ' {(a1, . . . , ag, b1, . . . , bg, u1, . . . ul) ∈ U × · · · × U︸ ︷︷ ︸
2g times

× C1 × · · · × Cl |
g∏

i=1

[ai, bi]

l∏

j=1

uj = 1}

In particular, two representations (ai, bi, uj)i,j and (a′i, b
′
i, u

′
j)i,j are equivalent if and only if they are

in a same orbit of the diagonal action of U on U × · · · × U × C1 × · · · × Cl. The representation space
RepC(πg,l, U) is then defined to be the quotient space for this action :

RepC(πg,l, U) := HomC(πg,l, U)
/
U

Following for instance [Hue95a], the idea to obtain a symplectic structure on the representation space, or
moduli space, RepC(πg,l, U) is then to see this quotient as a symplectic quotient, meaning that one wishes
to identify HomC(πg,l, U) with the fibre of a momentum map defined on an extended moduli space (the
expression comes from [Jef94, Hue95a]). The notion of quasi-Hamiltonian space then arises naturally
from the choice of

U × · · · × U︸ ︷︷ ︸
2g times

× C1 × · · · × Cl

as an extended moduli space, and of the map

µg,l(a1, . . . , ag, b1, . . . , bg, u1, . . . , ul) = [a1, b1]. . .[ag, bg]u1. . .ul

as U -valued momentum map, so that :

RepC(πg,l, U) = µ−1
g,l ({1})/U
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Actually, because of the occurence of the commutators [ai, bi], it is more appropriate to re-arrange the
arguments of the map µg,l in the following way :

µg,l(a1, b1, . . . , ag, bg, , u1, . . . , ul) = [a1, b1]. . .[ag, bg]u1. . .ul = 1

and to write the extended moduli space :

(U × U) · · · × (U × U)︸ ︷︷ ︸
g times

× C1 × · · · × Cl

In the case where g = 0, one simply has :

µ0,l : C1 × · · · × Cl −→ U
(u1, . . . , ul) 7−→ u1. . .ul

When g = 1 and l = 0, one has :

µ1,0 : U × U −→ U
(a, b) 7−→ aba−1b−1

These two particular cases correspond to the examples we have studied in propositions 4.4.2 and 4.4.5
and motivate the notion of quasi-Hamiltonian space. Thus, in general, the extended moduli space is the
following quasi-Hamiltonian space :

Mg,l := D(U) × · · · × D(U)︸ ︷︷ ︸
g times

× C1 × · · · × Cl

(where D(U) is the internally fused double of U of proposition 4.4.5) equipped with the diagonal U -action
and the momentum map

µg,l : D(U) × · · · × D(U) × C1 × · · · × Cl −→ U
(a1, b1, . . . , ag, bg, u1, . . . , ul) 7−→ [a1, b1]. . .[ag, bg]u1. . .ul

The representation space RepC(πg,l, U) is then the associated quasi-Hamiltonian quotient (see definition
4.5.9) :

RepC(πg,l, U) = Mg,l//U = (D(U) × · · · × D(U)︸ ︷︷ ︸
g times

× C1 × · · · × Cl)//U

In particular, in the case of an l-punctured sphere (g = 0), which is the one we are mainly interested in
in this work, we have :

HomC
(
π1(S

2\{s1, . . . , sl}), U
)/
U = (C1 × · · · × Cl)//U

For the record, we also spell out the case of torus :

Hom
(
π1(T

2), U
)/
U = D(U)//U

(there are no conjugacy classes necessary here, as the surface T2 is closed) and of the punctured torus :

HomC
(
π1(T

2\{s}
)
, U)

/
U = (D(U) × C)//U

We then know from propositions 4.5.2 and 4.5.8 that these representation spaces RepC(πg,l, U) = Mg,l//U
carry a symplectic structure, obtained by reduction from the quasi-Hamiltonian space Mg,l. Observe
that one essential ingredient to obtain this symplectic structure was the fact that πg,l admits a finite
presentation with a single relation, which was used as a momentum relation. We refer to [Hue95a] for
further comments on representations of groups which are not necessarily surface groups.
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One sees that the choice of the quasi-Hamiltonian description of the symplectic structure of the
representation space RepC(π1(S

2\{s1, . . . , sl}), U) was dictated by the very form of our problem :
as we were interested (see chapter 1) in characterizing decomposable representations (u1, . . . , ul) of
π1(S

2\{s1, . . . , sl}), which are elements of C1 × · · · × Cl satisfying u1. . .ul = 1, it seemed appropriate to
favour a description using the space C1 × · · · × Cl as an extended moduli space.

We now have all the theoretical prerequisites to prove the results announced in the introduction. In the
following two chapters, we shall define and study decomposable representations of π1(S

2\{s1, . . . , sl}).
Chapter 5 is elementary in nature and provides nice applications of the notion of decomposable represen-
tation. In chapter 6, we use a Lie-theoretic point of view to obtain a characterization of decomposable
representations by reducing the problem to a fundamental class called σ0-decomposable representations.
These particular decomposable representations are then characterized as the elements of the fixed-point
set of an involution β defined on the quasi-Hamiltonian space C1 × · · · × Cl. As a consequence, we shall
return to the general theory of quasi-Hamiltonian spaces in chapter 7. There, we will show how to obtain
an anti-symplectic involution β̂ on a quasi-Hamiltonian quotient M//U starting from an involution β
on the given quasi-Hamiltonian space (M,ω, µ : M → U). In particular, we will study the case where
the manifold M is a product space M = M1 ×M2, in order to apply the results obtained there to the
quasi-Hamiltonian space C1 × · · · × Cl.
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Decomposable representations of

π1(S
2\{s1, . . . , sl}) and configurations

of Lagrangian subspaces of Cn
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In this chapter, we define and study decomposable representations of the fundamental group of an
l-punctured sphere (l ≥ 1) :

π := π1(S
2\{s1, . . . , sl})

This is the only surface group we will be dealing with in the rest of this work. Recall from section 4.6
that we are interested in representations of π with prescribed conjugacy classes of generators, that is, in
elements of HomC(π, U) (see definition 4.6.1), where (U, (. | .)) is an arbitrary Lie group equipped with
an Ad-invariant non-degenerate product.
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First, we shall describe a geometric approach to the notion of decomposable representation, using the
unitary group U = U(n) as a prototype. This approach relies on the notion of Lagrangian involution σL
associated to a Lagrangian subspace L of Cn (see definition 5.1.1)

Second, we shall investigate the notion of Lagrangian involution so as to obtain an algebraic definition
of decomposable representations, which will be easier to work with in chapter 6, and which is valid for
an arbitrary Lie group (U, τ) equipped with an involutive automorphism.

Third, we will see that this geometric viewpoint naturally leads to studying angles of Lagrangian
subspaces of Cn : we will show that the orbit of a pair (L1, L2) of Lagrangian subspaces of Cn under
the diagonal action of the unitary group U(n) is characterized by the spectrum of the transformation
σL1 ◦ σL2 , where σLj

is the Lagrangian involution associated to Lj (see proposition 5.3.10). We shall
also verify that this classification result for pairs of Lagrangian subspaces is equivalent to known results
on this matter (see [Nic91] and propositions 5.3.4, 5.3.6 and 5.3.10). As they enter the definition of a
decomposable representation, it is important to acquire geometric intuition on Lagrangian involutions.
Indeed, in chapter 6, we will use this geometric intuition to obtain a characterization of decomposable
representations.

Fourth, we shall conduct an elementary study of decomposable representations in the case where
U = U(2) and l = 3. Our main concern will be to prove the existence of such decomposable represen-
tations. This difficulty arises from the fact that we have fixed the conjugacy classes of the generators.
Geometrically, this amounts to asking if there exists a triple (L1, L2, L3) of Lagrangian subspaces of Cn

with prescribed angles (L1, L2), (L2, L3) and (L3, L1) (see section 5.3). To handle the case of arbitrary n
and arbitrary l ≥ 1, we will have to wait until chapter 8, where we shall prove the existence of decompos-
able representations of π = π1(S

2\{s1, . . . , sl}) for an arbitrary compact connected Lie group (U, (. | ))
and for any choice of l ≥ 1 conjugacy classes C1, . . . , Cl ⊂ U such that HomC(π, U) 6= ∅ . There, the
existence result will be a consequence of a general real convexity theorem for Lie-group valued momentum
maps (see theorems 8.3.9 and 8.3.14).

Finally, we shall give a nice application of the notion of angle between Lagrangian subspaces by
showing how it provides a way of computing the inertia index of a triple of Lagrangian subspaces of Cn.
The results stated in sections 5.4 and 5.5 have been obtained in collaboration with Elisha Falbel and
Jean-Pierre Marco and have been published in [FMS04].

5.1 A geometric approach to the notion of decomposable rep-

resentation

Recall that a decomposition of the fundamental group π1(S
2\{s1, . . . , sl}) into a given Lie group U

consists of l elements u1, . . . , ul of U satisfying the relation u1. . .ul = 1. In this section, we shall use the
unitary group U = U(n) as a prototype to acquire geometric intuition on representations. In particular,
when n = 1, eah uj = ei2θj , θj ∈ [0, π[ is a rotation of the complex plane C ' R2. Consequently, it can
be decomposed as a product of two orhtogonal symmetries u = σ1σ2 with respect to real lines of C ' R2

and the direct angle between these two lines is θj . How does this situation extend to a unitary matrix
u ∈ U(n) ? The appropriate orthogonal symmetries (also called reflections) to consider turn out to be
what we will call Lagrangian involutions in the following : they are orthogonal symmetries with respect
to a Lagrangian subspace of Cn. Let us now write this down with further details.

Recall that Cn is endowed with the symplectic form ω := −Im h where h is the canonical Hermitian
product h :=

∑n
k=1 dzk ⊗ dzk, for which it is symplectomorphic to R2n endowed with the canonical

symplectic form ω =
∑n
k=1 dxk ∧dyk . Multiplication by i ∈ C in Cn corresponds to an R-endomorphism

J of R2n satisfying J2 = −Id. Denoting by g := Re h =
∑n
k=1(dxk ⊗ dxk + dyk ⊗ dyk) the canonical

Euclidean product on R2n, we have g = ω(., J.) (J is called a complex structure and is said to be compatible
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with ω). A real subspace L of Cn is said to be Lagrangian if ω|L×L = 0 and if dimR L = n (that is,
L is maximal isotropic with respect to ω). One may then check that L is Lagrangian if and only if its
g-orthognal complement is L⊥g = JL . We then have the following definition :

Definition 5.1.1 (Lagrangian involution). For any Lagrangian subspace L of Cn, the R-linear map

σL : Cn = L⊕ JL −→ Cn

x+ Jy 7−→ x− Jy

is called the Lagrangian involution associated to L.

Observe that σL is anti-holomorphic : σL ◦ J = −J ◦ σL. In the following, we denote by L(n) the set
of all Lagrangian subspaces of Cn (the Lagrangian Grassmannian of Cn). Finally, recall that, under
the identification (Cn, h) ' (R2n, J, ω), we have U(n) = O(2n) ∩ Sp(n). As Lagrangian involutions are
orthogonal symmetries which are anti-holomorphic, they are elements of O(2n) which are not contained in
U(n). Furthermore, the action of U(n) on L(n) is transitive and the stabilizer of the horizontal Lagrangian
L0 := Rn ⊂ Cn is the orthogonal group O(n) ⊂ U(n), giving the usual homogeneous description L(n) =
U(n)/O(n) (see for instance [MS98], p.51). Observe that O(n) = Fix(τ) where τ : u 7→ u is complex
conjugation on U(n), so that L(n) is a compact symmetric space.

Proposition 5.1.2. Let L ∈ L(n) be a Lagrangian subspace of Cn. Then :

(i) There exists a unique anti-holomorphic map σL whose fixed point set is exactly L.

(ii) If L′ is a Lagrangian subspace such that σL = σL′ , then L = L′ : there is a one-to-one correspon-
dence between Lagrangian subspaces and Lagrangian involutions.

(iii) σL is anti-unitary : for all z, z′ ∈ Cn, h(σL(z), σL(z′)) = h(z, z′).

(iv) For any ϕ ∈ U(n), σϕ(L) = ϕσLϕ
−1.

Proof. (i) Since L is Lagrangian, Cn = L⊕JL. Let σ be an anti-holomorphic map leaving L pointwise
fixed. Let z = x + Jy ∈ Cn, where x, y ∈ L. Then σ(z) = σ(x) − Jσ(y) = x − Jy, so that σL is
uniquely defined. If z = x + Jy satisfies σL(z) = z then 2Jy = z − σL(z) = 0, hence y = 0 and
z ∈ L. That is, the fixed-point set of σL is exactly L.

(ii) If now σL′ = σL then one has, for all x ∈ L, σL′(x) = σL(x) = x, therefore x ∈ L′ by (i) above, so
that L ⊂ L′. Likewise, L′ ⊂ L, hence L = L′.

(iii) For any x, y, x′, y′ ∈ L, we have

h(x− Jy, x′ − Jy′) = h(x, x′) + h(y, y′) − h(x, Jy′) − h(Jy, x′)

= g(x, x′) + g(y, y′) + i(g(x, y′) − g(x′, y))

= h(x+ Jy, x′ + Jy′)

(iv) ϕσLϕ
−1 is anti-holomorphic and leaves ϕ(L) pointwise fixed. By unicity of such a map, we then

have ϕσLϕ
−1 = σϕ(L).

We now recall an alternative description of the Lagrangian Grassmannian L(n) of Cn. The underlying
idea is that the elements of the compact symmetric space L(n) = U(n)/O(n) can be identified with the
symmetric elements of U(n) (that is, elements of U(n) satisfying τ(u) = u−1, see chapter 3), all of them
being of the form ϕtϕ, where ϕ ∈ U(n) and ϕt denotes the transpose of ϕ (so that the symmetric elements
of U(n) are indeed symmetric unitary matrices).

Proposition 5.1.3. Let W (n) := {w ∈ U(n) | wt = w} be the set of symmetric unitary matrices.
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(i) Let u ∈ U(n). Then u ∈ W (n) if and only if there exists k ∈ O(n) such that kuk−1 is diagonal.
Moreover, any w ∈ W (n) may be written w = exp(iS) where S is a real symmetric matrix, which
shows in particular that W (n) is connected.

(ii) If w ∈ W (n), then there exists ϕ ∈W (n) such that ϕ2 = w.

(iii) For any w ∈ W (n), define Lw := {z ∈ Cn | z − wz = 0}. Then, if ϕ is any element in W (n) such
that ϕ2 = w, we have ϕ(L0) = Lw. Consequently, Lw is a Lagrangian subspace of Cn. Furthermore,
σLw

σL0 = w.

(iv) The map w ∈ W (n) 7→ Lw ∈ L(n) is a diffeomorphism whose inverse is the well-defined map

L(n) = U(n)
/
O(n) −→ W (n)

L = u(L0) 7−→ uut

(v) For any L ∈ L(n), we have σL0σL = vtv, where v is any unitary map such that v(L) = L0.

Proof. (i) Observe that, alternatively, W (n) = {w ∈ U(n) | w−1 = w}. Now take w ∈W (n) and write
w = x + iy where x, y are real matrices. Then wt = w implies xt = x and yt = y, and ww = Id
implies x2 + y2 = Id and xy − yx = 0. Thus x and y are commuting real symmetric matrices,
so there exists k ∈ O(n) such that dx := kxk−1 and dy := kyk−1 are both diagonal. Therefore,
kwk−1 = dx+idy is diagonal. The converse is obvious. Since d2

x+d2
y = k(x2 +y2)k−1 = Id, one has

dx+ idy = exp(iS) where S is a real symmetric (diagonal) matrix. Consequently, w = exp(ik−1Sk)
with k−1Sk real and symmetric. In particular, W (n) is the continuous image of a vector space, and
therefore is connected.

(ii) is an immediate consequence of (i).

(iii) Take ϕ ∈W (n) | ϕ2 = w. Then z − wz = 0 iff z − ϕ2z = 0 , that is, ϕ−1z − ϕz = 0. But ϕ−1 = ϕ
so that z ∈ Lw is equivalent to ϕ−1z = ϕ−1z hence to ϕ−1z ∈ L0, hence to z ∈ ϕ(L0), which
shows that Lw = ϕ(L0) is a Lagrangian subspace of Cn. Furthermore, σLw

σL0 = ϕσL0ϕ
−1σL0 .

But since σL0 is complex conjugation in Cn and since ϕ is both symmetric and unitary, we have
ϕ−1σL0 = ϕtσL0 = (σL0ϕ

tσL0)σL0 = σL0ϕ, therefore σLw
σL0 = ϕσ2

L0
ϕ = ϕ2 = w.

(iv) Observe that if u, v are two unitary maps sending L0 to L ∈ L(n) then v−1u ∈ Stab(L0) = O(n) so
that uut = vvt. Then, if L = u(L0) ∈ L(n), one has Luut = {z − uutz = 0}. But z − uutz = 0 iff
u−1z = u−1z , that is, u−1z ∈ L0 so Luut = u(L0). Conversely, we know that Lw = ϕ(L0) where
ϕ ∈W (n) | ϕ2 = w so that indeed ϕϕt = ϕ2 = w.

(v) For a given L ∈ L(n), take v ∈ U(n) such that v(L) = L0. Then L = v−1(L0) and so we
know from (iii) and (iv) that L = {z − (v−1)(v−1)tz = 0} and that σLσL0 = v−1(v−1)t. Hence
σL0σL = (σLσL0)

−1 = vtv.

Statement (v) may seem a bit useless at this point as it is just a way of rephrasing (ii), but it will prove
useful to us when formulating the centered Lagrangian problem (see section 6.2). We now obtain from
proposition 5.1.3 the following result, which when n = 1, boils down to saying that a rotation in the
complex plane is a product of two reflections.

Proposition 5.1.4. For any unitary matrix u ∈ U(n), there exist two Lagrangian subspaces L1, L2 ∈
L(n) such that u = σL1σL2 .

Proof. Let d = diag (α1, . . . , αl) ∈ U(n) be a diagonal matrix such that u = ϕd2ϕ−1 for some ϕ ∈ U(n),
and set L := d(L0). Then we know from statement (iii) of proposition 5.1.3 that σLσL0 = d2, hence
u = ϕσLσL0ϕ

−1 = σϕ(L)σϕ(L0).
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Thus, any unitary matrix u ∈ U(n) is a product u = σ1σ2 of two orthogonal symmetries with respect to
Lagrangian subspaces of Cn ' R2n. These symmetries are no longer unitary transformations (they are
anti-holomorphic) but are elements of order 2 in the orthogonal group O(2n). Consequently, one may
notice that if u1 = σ1σ2, u2 = σ2σ3, . . . and ul = σlσ1, then one automatically has :

u1. . .ul = (σ1σ2)(σ2σ3). . .(σlσ1)

= σ1(σ2σ2). . .(σ3σ3)σ1

= 1

That is : giving l Lagrangian subspaces L1, . . . , Ll of Cn automatically furnishes a representation of
π1(S

2\{s1, . . . , sl}). We call such a representation a Lagrangian representation. The natural question
to ask is then the following one : when is a given representation a Lagrangian one ? We will give a
precise answer to this in this work (see corollary 6.6.5). Of particular interest will be the Lagrangian
representations (u1 = σ1σ2, . . . , ul = σlσ1) where σ1 = σ0 is the Lagrangian involution with respect to
the horizontal Lagrangian L0 = Rn ⊂ Cn. We will call this particular class of Lagrangian representa-
tions the class of σ0-Lagrangian representations. Recall finally that we are interested in representations
of π1(S

2\{s1, . . . , sl}) with prescribed conjugacy classes C1, . . . , Cl ⊂ U(n) of generators, that is, in
elements of

HomC
(
π, U(n)

)
= {(u1, . . . , ul) ∈ C1 × · · · × Cl | u1. . .ul = 1}

(see definition 4.6.1). Since Lagrangian representations are those for which generators decompose in a
good way as products of Lagrangian involutions, we shall also call them decomposable representations.

Definition 5.1.5 (Decomposable representations of π1(S
2\{s1, . . . , sl}) into U = U(n)). A given

unitary representation (u1, . . . , ul) ∈ HomC(π, U(n)) is said to be Lagrangian (or decomposable) if there
exist l Lagrangian subspaces L1, . . . , Ll of Cn such that uj = σjσj+1 for all j ∈ {1, . . . , l}, where σj is
the Lagrangian involution associated to Lj and where σl+1 = σ1.
A Lagrangian representation is said to be σ0-Lagrangian (or σ0-decomposable) if in addition σ1 = σ0 (the
Lagrangian involution associated to the horizontal Lagrangian L0 = Rn ⊂ Cn).

Observe that, as we have shown that any unitary matrix u ∈ U(n) admits a decomposition u = σ1σ2 as
a product of two reflections, it is also natural to ask, in analogy with the n = 1 case, if this defines a
notion of angle between the Lagrangian subspaces L1 and L2. We postpone work on this question until
section 5.3. For now, we wish to work out additional properties of Lagrangian involutions in order to be
able to generalize the notion of decomposable representation to Lie groups other than U(n).

5.2 An algebraic definition of decomposable representations

Denote by LInv(n) := {σL : L ∈ L(n)} the subset of O(2n) consisting of Lagrangian involutions.
Observe that it is not a subgroup, as it is not stable by composition of maps. Statement (iv) of proposition

5.1.2 then shows that the subgroup Û(n) :=< U(n) ∪ LInv(n) >⊂ O(2n) generated by Lagrangian

involutions and unitary transformations is in fact generated by U(n) and σL0 : Û(n) =< U(n)∪{σL0} >.
As a word in < U(n)∪{σL0} > contains either an even or an odd number of occurrences of σL0 (depending
only on whether it represents a holomorphic or an anti-holomorphic transformation of (R2n, J) ' Cn), it
can be written uniquely under the reduced form uε where u ∈ U(n) and ε = 1 or ε = σL0 . Consequently,

we have < U(n) ∪ {σL0} >= U(n) t U(n)σL0 , so that U(n) is a subgroup of index 2 of Û(n). Further,
if we write Z/2Z = {1, σL0} and consider the action of this group on U(n) given by σL0 .u := σL0uσL0 =
u = τ(u), then the map

U(n) o Z/2Z −→ U(n) t U(n)σL0

(u, ε) 7−→ uε

(where ε = 1 or ε = σL0) is a group isomorphism. Finite subgroups of U(2) o Z/2Z generated by

Lagrangian involutions are studied in [Fal01] and [FP04]. If one uses the description of Û(n) as a
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semi-direct product given above, the notion of Lagrangian representation makes sense even when the
compact connected Lie group U at hand is not necessarily the unitary group U(n). Indeed, endow such
a Lie group U with an involutive automorphism τ and define an action of Z/2Z = {1, σ0} on U by
σ0.u := τ(u). We then consider the semi-direct product U o Z/2Z for this action. When U = U(n)

and τ(u) = u then we have indeed U(n) o Z/2Z = Û(n) = U(n) t U(n)σL0 . Under this identification,
σ0.u = τ(u) = u = σL0uσL0 and the Lagrangian involutions are the elements σL = σϕ(L0) = ϕσL0ϕ

−1 =
(ϕσL0ϕ

−1σL0)σL0 = (ϕϕ−1)σL0 = (ϕϕt)σL0 ↔ (ϕϕt, σL0) ∈ U(n) o Z/2Z. Observe that the element
ϕϕt does not depend on the choice of ϕ ∈ U(n) such that L = ϕ(L0), as was shown in proposition 5.1.3.
If Fix(τ−) is connected (see remarks 5.2.3 and 7.4.2 for comments on this assumption), any symmetric
element of U (that is, an element w of U satisfying τ(w) = w−1) can be written uτ(u−1) for some
u ∈ U (see proposition 3.1.2), and the elements of order 2 that we are interested in are the elements
(w, σ0) ∈ U o Z/2Z where w ∈ U satisfies τ(w) = w−1 (in particular, we see again that these elements of
order 2 are in one-to-one correspondence with the symmetric elements of U). The product of two such
elements is then of the form (w1, σ0).(w2, σ0) = (w1(σ0.w2), σ

2
0) = (w1τ(w2), 1) ∈ U ⊂ UoZ/2Z (observe

that when w2 = w1, we indeed obtain 1 because τ(w1) = w−1
1 ). One can then say that a U -representation

(u1, . . . , ul) of π = π1(S
2\{s1, . . . , sl}) is decomposable (or Lagrangian) if there existw1, . . . , wl ∈ U such

that τ(wj) = w−1
j for all j and u1 = (w1, σ0).(w2, σ0), u2 = (w2, σ0).(w3, σ0), . . . , ul = (wl, σ0).(w1, σ0).

Observe that we then have indeed u1. . .ul = 1, for u1. . .ul = (w1τ(w2), 1).(w2τ(w3), 1). . .(wlτ(w1), 1) =
(w1τ(w2)w2τ(w3). . .wlτ(w1), 1) = 1 since τ(wj) = w−1

j . A representation will be called σ0-decomposable
if it is decomposable with w1 = Id. Observe further that by definition of the semi-direct product we
have in fact : (wj , σ0).(wj+1, σ0) = wjσ0wj+1σ0 = wjτ(wj+1) = wjwj+1 in U . We can now define
decomposable representations of π1(S

2\{s1, . . . , sl}) into an arbitrary Lie group (U, τ) equipped with an
involution.

Definition 5.2.1 (Decomposable representations of π1(S
2\{s1, . . . , sl})). Let (U, τ) be a Lie group

endowed with an involutive automorphism τ . A representation (u1, . . . , ul) of π = π1(S
2\{s1, . . . , sl})

into U is called decomposable if there exist l elements w1, . . . , wl ∈ U satisfying :

(i) τ(wj) = w−1
j for all j (each wj is a symmetric element of U with respect to τ).

(ii) u1 = w1w
−1
2 , u2 = w2w

−1
3 , . . . , ul = wlw

−1
1 .

A representation will be called σ0-decomposable if it is decomposable with w1 = 1.

In particular, for σ0-decomposable representations, the elements u1 and ul are themselves symmetric.
We then observe the following fact :

Proposition 5.2.2. Let (u1, . . . , ul) be a representation of π = π1(S
2\{s1, . . . , sl}) into U . Then

(u1, . . . , ul) is decomposable if and only if the representation ϕ.(u1, . . . , ul) := (ϕu1ϕ
−1, . . . , ϕulϕ

−1) is
decomposable for any ϕ ∈ U .

Proof. If (u1, . . . , ul) is decomposable, then there exist w1, . . . , wl ∈ Fix(τ−) satisfying uj = wjw
−1
j+1 for

all j (with wl+1 = w1). Therefore :

ϕujϕ
−1 = ϕwjw

−1
j+1ϕ

−1

= ϕwjτ
−(ϕ)τ(ϕ)w−1

j+1ϕ
−1

=
(
ϕwjτ

−(ϕ)
)(
ϕwj+1τ

−(ϕ)
)−1

and each ϕwjτ
−(ϕ) lies in Fix(τ−), so that the representation ϕ.(u1, . . . , ul) is indeed decomposable.

The converse implication is obvious.

Observe that this result is clear in the case where U = U(n) since one has, by proposition 5.1.2 :

ϕσLj
σLj+1ϕ

−1 = ϕσLj
ϕϕ−1σLj+1ϕ

−1 = σϕ(Lj)σϕ(Lj+1)
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Remark 5.2.3. The above definition rests on the fact that Fix(τ−) is assumed to be connected. If
this is not the case, condition (i) is to be replaced by the condition wj ∈ {τ−(u)u : u ∈ U}, which is
the connected component of 1 in Fix(τ−) (see proposition 3.1.2). We refer to remark 7.4.2 for further
comments on this assumption.

5.3 Pairs of Lagrangian subspaces

As mentioned at the end of section 5.1, introducing orthogonal symmetries with respect to Lagrangian
subspaces of Cn leads to studying angles between two such subspaces. When n = 1 and ei2θ = σL1σL2 ,
the direct angle between the lines L1 and L2 is θ ∈ [0, π[. This means that given two pairs (L1, L2) and
(L′

1, L
′
2) of real lines of C, there exists a unitary map ϕ sending L1 to L′

1 and L2 to L′
2 if and only if

σL1σL2 = σL′
1
σL′

2
. We will now see how this situation extends to the case of an arbitrary n by studying

the diagonal action of U(n) on L(n) × L(n).

Recall that the unitary group U(n) acts transitively on the Lagrangian Grassmannian L(n). Fixing a
LagrangianL in L(n), its stabilizer can be identified to O(n), and L(n) is therefore a compact homogenous
space diffeomorphic to U(n)/O(n). We shall here be concerned with the diagonal action of U(n) on
L(n) × L(n). Observe that requiring ψ(L) to be Lagrangian when L is Lagrangian and ψ ∈ O(2n) is
equivalent to requiring that ψ be unitary (since L ⊕ JL = Cn, a g-orthogonal basis B of L over R is
a unitary basis of Cn over C, and if L is Lagrangian and ψ orthogonal with ψ(L) Lagrangian, then
ψ(B) is also a unitary basis, so that ψ is a unitary map). Equivalently, the orbit of a pair (L1, L2) of
Lagrangian subspaces under the diagonal action of U(n) is the intersection with L(n)×L(n) of the orbit
of (L1, L2) under the diagonal action of O(2n). The orbit [L1, L2] of the pair (L1, L2) under the diagonal
action of U(n) may therefore be called the Lagrangian angle formed by L1 and L2. In the following, we
shall simply speak of the angle (L1, L2) to designate the orbit [L1, L2]. We now wish to find complete
numerical invariants for this action : to each angle (L1, L2) we shall associate a measure, denoted by
meas(L1, L2), in a way that two pairs (L1, L2) and (L′

1, L
′
2) lie in a same orbit of the action of U(n) if and

only if meas(L1, L2) = meas(L′
1, L

′
2). This can be done in three equivalent ways, which we shall describe

and compare (see propositions 5.3.4, 5.3.6 and 5.3.10).

5.3.1 Projective properties of Lagrangian subspaces of Cn

A real subspace W of Cn is said to be totally real if h(u, v) ∈ R for all u, v ∈ W . Therefore, a real
subspace L of V is Lagrangian if and only if it is totally real and of maximal dimension with respect
to this property. Let p be the projection p : Cn\{0} → CPn−1 on the (n − 1)-dimensional complex
projective space, and for any real subspace W of Cn, let p(W ) be the image of W\{0}. When L is
a Lagrangian subspace of Cn, recall that we denote by σL the only anti-holomorphic involution of Cn

leaving L pointwise fixed (called the Lagrangian involution associated to L, see definition 5.1.1). The
map σL being anti-holomorphic, it induces a map

σ̂L : CPn−1 −→ CPn−1

[z] 7−→ [σL(z)]

Further, σL is anti-unitary so that, if we endow CPn−1 with the Fubiny-Study metric (see for instance
[ABK+94] p.40 or [Kli82] pp.106-108), σ̂L is an isometry, and p(L) is the fixed point set of this isometry.
Therefore, for any Lagrangian L of Cn, the subspace l := p(L) of CPn−1, called a projective Lagrangian,
is a totally geodesic embedded submanifold of CPn−1 (see for instance [Kli82] p.94). More generally,
every totally real subspace W of Cn is sent by p to a closed embedded submanifold of CPn−1 which is
diffeomorphic to RP(W ) (see [Nic91], p.73). These projective properties can be used to prove the first
diagonalization lemma (proposition 5.3.3), as shown in [Nic91]. They will also be important to us in the
study of projective Lagrangians of CP1.
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5.3.2 First diagonalization lemma and unitary classification of Lagrangian

pairs

We state here the results obtained by Nicas in [Nic91]. Let (L1, L2) be a pair of Lagrangian subspaces of
Cn and let B1 = (u1, . . . , un) and B2 = (v1, . . . , vn) be orthonormal bases of L1 and L2 respectively.
Let A be the n × n complex matrix with coefficients Aij = h(vj , ui). Observe that A is the matrix of a
unitary transformation sending L1 to L2.

Definition 5.3.1 (Souriau matrix, [Nic91]). The matrix AAt, where At is the transpose of A, is
called the Souriau matrix of the pair (L1, L2) with respect to the bases B1 and B2.

The matrix AAt is both unitary and symmetric. If B′
1 = (u′1, . . ., u

′
n) and B′

2 = (v′1, . . ., v
′
n) are other

orthonormal bases of L1 and L2 respectively, and A′A′t is the corresponding Souriau matrix where
A′
ij = h(v′j , u

′
i), let P and Q be the matrices with coefficients Pij = h(ui, u

′
j) and Qij = h(vi, v

′
j). Since

L1 and L2 are Lagrangian, P and Q are real orthogonal matrices. Furthermore A = PA′Q, hence
AAt = PA′QQt(A′)tP t = P (A′A′t)P t. Thus AAt is conjugate to A′A′t. It follows that the characteristic
polynomial of a Souriau matrix of the pair (L1, L2) is independent of the choice of the orthonormal bases
B1 and B2.

Definition 5.3.2 ([Nic91]). The characteristic polynomial of the pair (L1, L2), denoted by P (L1, L2),
is by definition the characteristic polynomial of any Souriau matrix of the pair (L1, L2).

In particular, P (L1, L2) is a monic complex polynomial of degree n, and since a Souriau matrix is unitary,
the roots of P (L1, L2) lie in the unit circle of C.

Proposition 5.3.3 (First diagonalization lemma, [Nic91]). Let (L1, L2) be a pair of Lagrangian
subspaces of Cn. Then there exists an orthonormal basis (u1, . . . , un) of L1 and unit complex numbers
eiλ1 , . . . , eiλn such that (eiλ1u1, . . ., e

iλnun) is an orthonormal basis of L2. Furthermore, the squares
ei2λ1 , . . ., ei2λn of these numbers are the roots of the characteristic polynomial of the pair (L1, L2), counted
with their multiplicities.

We refer to [Nic91] for a proof of this result exploiting the positivity of the sectional curvature of the
complex projective space endowed with the Fubiny-Study metric. The name given to this result is justified
by the fact that the Souriau matrix of the pair (L1, L2) with respect to the bases provided by the lemma
is the diagonal matrix diag(ei2λ1 , . . . , ei2λn).

Proposition 5.3.4 (Unitary classification of Lagrangian pairs of Cn, [Nic91]). Let (L1, L2) and
(L′

1, L
′
2) be two pairs of Lagrangian subspaces of Cn. Then, there exists a unitary map ψ ∈ U(n) such

that ψ(L1) = L′
1 and ψ(L2) = L′

2 if and only if the characteristic polynomials P (L1, L2) and P (L′
1, L

′
2)

are equal.

Proof. If such a ψ exists, let (u1, . . . , un) be any orthonormal basis of L1 and let (v1, . . . , vn) be any
orthonormal basis of L2. Since the map ψ is unitary, (ψ(u1), . . ., ψ(un)) is an orthonormal basis of L′

1 and
(ψ(v1), . . ., ψ(vn)) is an orthonormal basis of L′

2, and we have h(ψ(vj), ψ(uj)) = h(uj , vj). Therefore, the
Souriau matrices of (L1, L2) and (L′

1, L
′
2) in the above bases are equal, so that P (L1, L2) and P (L′

1, L
′
2)

have the same roots with the same multiplicities. Since both these polynomials are monic, we then have
P (L1, L2) = P (L′

1, L
′
2).

Conversely, suppose that P (L1, L2) = P (L′
1, L

′
2) and let α2

1, . . ., α
2
n be the roots of this polynomial

counted with their multiplicities. By the first diagonalization lemma 5.3.3, there exists an orthonormal
basis (u1, . . . , un) of L1 and an orthonormal basis (u′1, . . . , u

′
n) of L′

1 such that (α1u1, . . . , αnun) is an
orthonormal basis of L2 and (α1u

′
1, . . ., αnu

′
n) is an orthonormal basis of L′

2. L1 and L′
1 being Lagrangian,

(u1, . . . , un) and (u′1, . . . , u
′
n) are unitary bases of Cn over C. Let ψ be the C-linear map defined by

sending uk to vk. Then ψ is unitary and sends αkuk to αku
′
k. Therefore ψ(L1) = L′

1 and ψ(L2) = L′
2.
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5.3.3 Second diagonalization lemma

It is possible to express the result of the first diagonalization lemma in terms of unitary maps sending L1

to L2, in a way that generalizes the situation of real lines in C.

Proposition 5.3.5 (Second diagonalization lemma). Given two Lagrangian subspaces of L1 and
L2 of Cn, there exists a unique unitary map ϕ12 ∈ U(n) sending L1 to L2 and verifying the following
diagonalization conditions :

(i) the eigenvalues of ϕ12 are unit complex numbers eiλ1 , . . . , eiλn satisfying π > λ1 ≥ . . . ≥ λn ≥ 0

(ii) there exists an orthonormal basis (u1, . . . , un) of L1 such that uk is an eigenvector of ϕ12 (with
eigenvalue eiλk) .

Proof. The existence is a direct consequence of the first diagonalization lemma. As for unicity, observe
that two such unitary maps have the same eigenspaces and the same corresponding eigenvalues (see
subsection 5.3.6 to fully understand this : the eigenspaces of ϕ12 as a map from L1 to L2 are exactly the
Wk of proposition 5.3.12), and are therefore equal.

It is also possible to give a direct proof of this result, which then proves the first diagonalization lemma
5.3.3 without making use of projective geometry (see [Arn67] or [LMS03]). Observe that condition (i) is
essential for the unicity part: for any Lagrangian L, the two maps J and −J are both unitary, they both
send L to JL = (−J)L and satisfy condition (ii) for any orthonormal basis of L, but J is the only one of
these two maps whose eigenvalues are located in the upper half of the unit circle of C.

Observe that the Souriau matrix of the pair (L1, L2) with respect to the bases (u1, . . ., un) and
(eiλ1u1, . . . , e

iλnun) is the diagonal matrix diag(ei2λ1 , . . . , ei2λn). Therefore, the roots of the character-
istic polynomial P (L1, L2) are the squares of the eigenvalues of ϕ12.

Finally, observe that if (L1, L2) and (L′
1, L

′
2) lie in a same orbit of the diagonal action of U(n)

on L(n) × L(n), then the two associated unitary maps ϕ12 and ϕ′
12 are conjugate in U(n). Indeed, if

ψ(L1) = L′
1 and ψ(L2) = L′

2 with ψ ∈ U(n), then ψ◦ϕ12 ◦ψ−1 sends L′
1 to L′

2 and satisfies the conditions
of the second diagonalization lemma 5.3.5, hence by unicity of such a map : ψ ◦ ϕ12 ◦ ψ−1 = ϕ′

12. The
unitary maps ϕ12 will be very useful in the study of the diagonal action of U(2) on triples of Lagrangian
subspaces of C2 (see section 5.4). For now, we can already use them to reformulate the classification
result for pairs of Lagrangian subspaces (proposition 5.3.4) :

Proposition 5.3.6. Let (L1, L2) and (L′
1, L

′
2) be two pairs of Lagrangian subspaces of Cn, and let ϕ12

(resp. ϕ′
12) be the only unitary map sending L1 (resp. L′

1) to L2 (resp. L′
2) and satisfying the conditions

of the second diagonalization lemma 5.3.5. Let eiλ1 , . . . , eiλn , where π > λ1 ≥ . . . ≥ λn ≥ 0, be the
eigenvalues of ϕ12 counted with their multiplicities, and let eiλ

′
1 , . . . , eiλ

′
n , where π > λ′1 ≥ . . . ≥ λ′n ≥ 0,

be the eigenvalues of ϕ′
12 counted with their multiplicities.

Then, there exists a unitary map ψ ∈ U(n) such that ψ(L1) = L′
1 and ψ(L2) = L′

2 if and only if λk = λ′k
for k = 1, . . . , n.

Proof. Let (u1, . . . , un) (resp. (u′1, . . . , u
′
n)) be an orthonormal basis of L1 (resp. L′

1) formed by
eigenvectors of ϕ12 (resp. ϕ′

12). Then eiλkuk = ϕ12(uk) ∈ L2 and eiλ
′
ku′k = ϕ′

12(u
′k) ∈ L′

2. The maps ϕ12

and ϕ′
12 being unitary, (eiλ1u1, . . . , e

iλnun) is an orthonormal basis of L2 and (eiλ
′
1u′1, . . . , e

iλ′
nu′n) is an

orthonormal basis of L′
2. The Souriau matrix of the pair (L1, L2) (resp. (L′

1, L
′
2)) in the bases (u1, . . . , un)

and (eiλ1u1, . . . , e
iλnun) (resp. (u′1, . . . , u

′
n) and (eiλ

′
1u′1, . . . , e

iλ′
nu′n)) is diag(ei2λ1 , . . . , ei2λn) (resp.

diag(ei2λ
′
1 , . . . , ei2λ

′
n)). Therefore, by proposition 5.3.4, (L1, L2) and (L′

1, L
′
2) lie in a same orbit of the

action of U(n) if and only if the eigenvalues ei2λk and ei2λ
′
k are the same up to permutation, and since

we forced π > λ1 ≥ . . . ≥ λn ≥ 0 and π > λ′1 ≥ . . . ≥ λ′n ≥ 0, this is equivalent to ei2λk = ei2λ
′
k for all k.

Since λk, λ
′
k ∈ [0, π[, this last condition is equivalent to λk = λ′k for all k.
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Observe that this point of view indeed generalizes the classification result for pairs of real lines in C ' R2

under the diagonal action of the unitary group U(1) ' SO(2), λ1 being in that case the measure of the
oriented Euclidean angle between the two real lines L1 and L2.

5.3.4 Lagrangian involutions and angles of Lagrangian subspaces

The following result establishes a relation between Lagrangian involutions and angles of Lagrangian
subspaces.

Proposition 5.3.7. Let L1 and L2 be two Lagrangian subspaces of Cn. The eigenvalues of the unitary
map σL2 ◦ σL1 are the roots of the characteristic polynomial P (L1, L2) of the pair (L1, L2), with the
same multiplicity. Equivalently, since P (L1, L2) is monic, it is the characteristic polynomial of the map
σL2 ◦ σL1 .

Proof. By the first diagonalization lemma 5.3.3, there exists an orthonormal basis (u1, . . . , un) of L1

and unit complex numbers α1, . . . , αn ∈ S1 such that (α1u1, . . . , αnun) is an orthonormal basis of L2

and α2
1, . . . , α

2
n are the roots of P (L1, L2), counted with their multiplicities. Let ψ be the unitary map

sending uk to αkuk for k = 1, . . . , n. Then ψ sends L1 to L2 and α2
1, . . . , α

2
n are the eigenvalues of ψ2,

counted with their multiplicities, and it is therefore sufficient to prove that σL2 ◦ σL1 = ψ2. The map
ψ ◦σL1 ◦ψ−1 is anti-holomorphic and leaves L2 pointwise fixed, hence σL2 = ψ ◦σL1 ◦ψ−1. Furthermore,
for all j = 1, . . . , n, we have σL1 ◦ ψ−1(uj) = σL1(

1
αj
uj) = αjσL1(uj) = αjuj = ψ(uj) = ψ ◦ σL1(uj), so

that σL2 = ψ ◦ σL1 ◦ ψ−1 = σL1 ◦ (ψ−1)2, hence σL2 ◦ σL1 = ψ2, which is what we needed.

In particular, setting ψ = ϕ12 in the above proof, we obtain the following corollary :

Corollary 5.3.8. Let ϕ12 be the only unitary map sending L1 to L2 and satisfying the conditions of
proposition 5.3.5. Then ϕ2

12 = σL2 ◦ σL1 .

5.3.5 Measure of a Lagrangian angle

In order to reformulate one more time the classification result of propositions 5.3.4 and 5.3.6, we introduce
the following notion :

Definition 5.3.9 (Measure of a Lagrangian angle). Let L1 and L2 be two Lagrangians of Cn and
let eiθ1 , . . . , eiθn be the eigenvalues of the unitary map σL2 ◦ σL1 , counted with their multiplicities. The
symmetric group Sn acts on S1 × · · · × S1 by permuting the elements of the n-tuples of unit complex
numbers, and we denote by [eiθ1 , . . . , eiθn ] the equivalence class of (eiθ1 , . . . , eiθn) ∈ S1 × · · · × S1, and
call it the measure of the angle formed by L1 and L2 :

meas(L1, L2) = [eiθ1 , . . . , eiθn ] ∈ (S1 × · · · × S1)/Sn

As σψ(L) = ψ ◦ σL ◦ ψ−1 for any unitary map ψ ∈ U(n), we have meas(ψ(L1), ψ(L2)) = meas(L1, L2), so
this notion is well-defined. This definition of a measure does not extend the usual one (in the case n = 1,
we obtain ei2λ, where λ ∈ [0, π[ is the usual measure). It will nonetheless prove relevant.

Observe that, since σL1 ◦ σL2 = (σL2 ◦ σL1)
−1, it would be equivalent to define meas(L1, L2) to be

the eigenvalues of the unitary map σL1 ◦ σL2 , counted with their multiplicities. As a consequence, if
meas(L1, L2) = [eiθ1 , . . . , eiθn ] then meas(L2, L1) = [e−iθ1 , . . . , e−iθn ]. In particular, meas(L1, L2) =
meas(L′

1, L
′
2) if and only if meas(L2, L1) = meas(L′

2, L
′
1).

In the following, we shall identify S1×· · ·×S1 with the n-torus Tn = Rn/2πZn, to which it is homeo-
morphic. The measure of the angle (L1, L2) will be denoted by meas(L1, L2) = [eiθ1 , . . . , eiθn ] ∈ Tn/Sn.
In view of proposition 5.3.7 above, we may now reformulate the classification result for Lagrangian pairs
of proposition 5.3.4 in the following way :
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Proposition 5.3.10. Given two pairs of Lagrangian subspaces (L1, L2) and (L′
1, L

′
2) of Lagrangian sub-

spaces of Cn, there exists a unitary map ψ ∈ U(n) such that ψ(L1) = L′
1 and ψ(L2) = L′

2 if and only if
σL1 ◦ σL2 is conjugate to σL′

1
◦ σL′

2
. Equivalently, the map

χ : (L(n) × L(n))/U(n) −→ Tn/Sn

[L1, L2] 7−→ meas(L1, L2)

is one-to-one.

The map χ is in fact a bijection : given [ei2λ1 , . . . , ei2λn ] ∈ Tn/Sn, consider any Lagrangian L1 ∈
L(n), (u1, . . . , un) an orthonormal basis of L1 and let L2 be the real subspace of Cn generated by
(eiλ1u1, . . . , e

iλnun). Since (eiλ1u1, . . . , e
iλnun) is a unitary basis of Cn over C, L2 is Lagrangian and

meas(L1, L2) = [ei2λ1 , . . . , ei2λn ].

Corollary 5.3.11. The angle space (L(n) ×L(n))/U(n), endowed with the quotient topology, is homeo-
morphic to the quotient space Tn/Sn, both being Hausdorff and compact.

As a final remark, observe that the corresponding symplectic problem admits a simple answer : a necessary
and sufficient condition for the existence of a symplectic map ψ ∈ Sp(n) such that ψ(L1) = L′

1 and
ψ(L2) = L′

2 is that dim (L1 ∩L2) = dim (L′
1 ∩L′

2) that is, the measure of the symplectic angle formed by
two Lagrangian subspaces of Cn simply is the dimension of their intersection (see for instance [Vai87]).

5.3.6 Orthogonal decomposition of L1 associated to meas(L1, L2)

The presentation given here follows that of [Nic91]. The notion of orthogonal decomposition will enable
us to classify triples of Lagrangian subspaces of C2 (proposition 5.4.1).

Let (L1, L2) be a pair of Lagrangian subspaces of Cn, and let (α2
1, . . . , α

2
n) be a representative of

meas(L1, L2) ∈ Tn/Sn. By proposition 5.3.7, the unit complex numbers α2
1, . . . , α

2
n then are the roots

of the characteristic polynomial P (L1, L2) of the pair (L1, L2). Let α2
j1
, . . . , α2

jm
be the distinct roots

of P (L1, L2). For k = 1, . . . ,m, define the real subspace Wk of L1 by Wk = {u ∈ L1 | αjku ∈ L2}
Observe that Wk is independent of the choice of the square root of α2

jk
, and that W1 ⊕ · · · ⊕ Wm is

independent, up to permutation of the subspaces, of the choice of the representative (α2
1, . . . , α

2
n) of

meas(L1, L2) ∈ Tn/Sn.

Proposition 5.3.12 ([Nic91]). L1 decomposes as an orthogonal direct sum : L1 = W1 ⊕ · · · ⊕Wm, the
dimension of Wk being the multiplicity of α2

jk
as a root of P (L1, L2).

Proof. By the first diagonalization lemma 5.3.3, there exists an orthonormal basis (u1, . . . , un) of L1 such
that (α1u1, . . . , αnun) is an orthonormal basis of L2, so that ui belongs to Wk if and only if αi = αjk .
Thus, {ui | αi = αjk} is a basis of Wk, which proves the proposition.

Observe that L2 then also decomposes as an orthogonal direct sum : L2 = αj1W1 ⊕ · · · ⊕ αjmWm.
Furthermore, by considering the representative (ei2λ1 , . . . , ei2λn) of meas(L1, L2), where eiλ1 , . . . , eiλn

are the eigenvalues of the unitary map ϕ12, we see that the subspace Wk of L1 is the intersection with L1

of the eigenspace of ϕ12 with respect to the eigenvalue eiλjk . Given a Lagrangian triple (L1, L2, L3), the
unitary maps ϕ12 and ϕ13 therefore have the same eigenspaces if and only if the orthogonal decompositions
of L1 associated to meas(L1, L2) and meas(L1, L3) are the same (see definition 5.5.6).

5.4 The case where U = U(2) and l = 3

In this section, we study decomposable representations of π1(S
2\{s1, . . . , sl}) into U(2). Geometrically,

this amounts to studying configurations of triples of Lagrangian subspaces (L1, L2, L3) of C2, or more
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precisely, to studying the diagonal action of U(2) on L(2)×L(2)×L(2). In particular, we will completely
describe the image of the map

κ̂ : L(2) × L(2) × L(2) −→ T2/S2 × T2/S2 × T2/S2

(L1, L2, L3) 7−→ (meas(L1, L2),meas(L2, L3),meas(L3, L1))

and prove that it induces a homeomorphism κ from the orbit space (L(2) × L(2) × L(2))/U(2) onto
a closed subset of T2/S2 × T2/S2 × T2/S2 (see proposition 5.4.7). As a consequence, we will obtain
necessary and sufficient conditions on three conjugacy classes C1, C2, C3 ⊂ U(2) for the representation space
HomC(π1(S

2\{s1, s2, s3}), U(2)) to be non-empty. This provides an alternative elementary description of
these conditions that were already known to Jeffrey and Weitsman (see [JW92]), to Gallitzer (see [Gal97])
and to Biswas (see [Bis98]), among others. For a description of these conditions for arbitrary dimension
n and arbitrary number of punctures l, we refer for instance to the work of Agnihotri and Woodward in
[AW98], Biswas in [Bis99], Kapovich and Millson in [KM99] and Belkale in [Bel01] (see also Teleman and
Woodward in [TW03]).

5.4.1 A first classification result for triples of Lagrangian subspaces of C2

The following remark is valid for any n. If (L1, L2, L3) and (L′
1, L

′
2, L

′
3) are two triples of Lagrangian

subspaces of Cn which lie in a same orbit of the diagonal action of U(n) on L(n) × L(n) × L(n), it
follows from section 5.3 that we have in particular meas(L1, L2) = meas(L′

1, L
′
2) and meas(L1, L3) =

meas(L′
1, L

′
3). Let L1 = W1⊕· · ·⊕Wm be the orthogonal decomposition of L1 associated to meas(L1, L2)

(see proposition 5.3.12) and let L1 = Z1 ⊕ · · · ⊕ Zp be the orthogonal decomposition of L1 associated
to meas(L1, L3). Define L′

1 = W ′
1 ⊕ · · · ⊕W ′

m and L′
1 = Z ′

1 ⊕ · · · ⊕ Z ′
p similarly. Since meas(L1, L2) =

meas(L′
1, L

′
2) and meas(L1, L3) = meas(L′

1, L
′
3), the respective numbers of factors m and p in the above

decompositions are indeed pairwise the same. Furthermore, dim Wk = dim W ′
k for k = 1, . . .,m and

dim Zl = dim Z ′
l for l = 1, . . ., p. More specifically, if the unitary map ψ ∈ U(n) sends Lj to L′

j for
j = 1, 2, 3, then ψ(Wk) = W ′

k for k = 1, . . .,m and ψ(Zl) = Z ′
l for l = 1, . . ., p, as follows from the

definition of Wk and Zl. Since ψ is unitary, we even have ψ(Wk ⊕ JWk) = W ′
k ⊕ JW ′

k for all k and
ψ(Zl ⊕ JZl) = Z ′

l ⊕ JZ ′
l for all l.

When n = 2, the above remark admits an easy converse, which gives a first classification result for
triples of Lagrangians of C2. We shall use the following notations : given two triples (L1, L2, L3) and
(L′

1, L
′
2, L

′
3) of Lagrangian subspaces of C2, let ϕ12 be the only unitary map sending L1 to L2 and satis-

fying the conditions of the second diagonalization lemma (proposition 5.3.5), and let (eiλ12 , eiµ12) be its
eigenvalues, where π > λ12 ≥ µ12 ≥ 0, and define ϕ13, ϕ

′
12, ϕ

′
13 and (eiλ13 , eiµ13), (eiλ

′
12 , eiµ

′
12), (eiλ

′
13 , eiµ

′
13)

similarly. As a preliminary remark to the statement of the classification result, observe that when both
ϕ12 and ϕ13 have two distinct eigenvalues, respectively denoted by (eiλ12 , eiµ12 ) and by (eiλ13 , eiµ13),
where π > λ12 > µ12 ≥ 0 and π > λ13 > µ13 ≥ 0, then W1 = {u ∈ L1 | eiλ12u ∈ L2} and
Z1 = {u ∈ L1 | eiλ13u ∈ L3} are one-dimensional real subspaces of the Euclidean space L1, and therefore
form a (non-oriented) angle measured by a real number θ ∈ [0, π2 ], that will be denoted by meas(W1, Z1).
A real number θ′ may be defined similarly in L′

1, since W ′
1 are Z ′

1 are also one-dimensional.

Proposition 5.4.1 (Unitary classification of Lagrangian triples of C2, first version). Given two
triples (L1, L2, L3) and (L′

1, L
′
2, L

′
3) of Lagrangian subspaces of C2, there exists a unitary map ψ ∈ U(n)

such that ψ(L1) = L′
1, ψ(L2) = L′

2 and ψ(L3) = L′
3 if and only if one either has :

(A) λ12 6= µ12, λ13 6= µ13 and





(λ12, µ12) = (λ′12, µ
′
12)

(λ13, µ13) = (λ′13, µ
′
13)

θ = θ′

where θ = meas(W1, Z1) ∈ [0, π2 ] and θ′ = meas(W ′
1, Z

′
1) ∈ [0, π2 ] are defined as above, or :

(B) λ12 = µ12 or λ13 = µ13, and

{
(λ12, µ12) = (λ′12, µ

′
12)

(λ13, µ13) = (λ′13, µ
′
13)
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Observe that, in each case, the condition (λjk, µjk) = (λ′jk, µ
′
jk) is equivalent to the condition meas(Lj , Lk)

= meas(L′
j , L

′
k).

Proof. Suppose that such a ψ ∈ U(2) exists. Then, as we have seen earlier, meas(L1, L2) = meas(L′
1, L

′
2)

and meas(L1, L3) = meas(L′
1, L

′
3). Furthermore, ψ(W1) = W ′

1 and ψ(Z1) = Z ′
1, so that if ϕ12 and

ϕ13 both have distinct eigenvalues (that is, we are in the situation (A) above), we have θ = θ′ since
ψ|L1 : L1 → L′

1 is an orthogonal map.
Conversely, suppose first that conditions (A) are fulfilled. Let w1 ∈ L1 be a generator of W1 and let
w′

1 ∈ L′
1 be a generator of W ′

1. By choosing w2 in L1 orthogonal to w1 and w′
2 in L′

1 orthogonal to
w′

1, we may define an orthogonal map ν : L1 → L′
1 sending W1 to W ′

1 (and therefore W2 = W⊥
1 to

W ′
2 = (W ′

1)
⊥). Then the measure of the angle (W ′

1, ν(Z1)) = (ν(W1), ν(Z1)) is θ = θ′, so that there exists
an orthogonal map ξ ∈ O(L′

1) satisfying ξ ◦ ν(W1) = W ′
1 and ξ ◦ ν(Z1) = Z ′

1. The subspace L1 being
Lagrangian, the orthogonal map ξ ◦ν can be extended C-linearly to a unitary transformation ψ ∈ U(2) of
C2 = L1⊕JL1 sending L1 to L′

1 by construction. But L2 = eiλ12W1⊕eiµ12W2 and L3 = eiλ13Z1⊕eiµ13Z2

(see proposition 5.3.12), hence ψ(L2) = eiλ12W ′
1 ⊕ eiµ12W ′

2 = L′
2 and ψ(L3) = eiλ13Z ′

1 ⊕ eiµ13Z ′
2 = L′

3.
If now the conditions (B) are fulfilled, then for instance L2 = eiλL1 and the result is a consequence of
the classification of pairs.

Observe that, given real numbers (λ12, µ12, λ13, µ13, θ) as in (A), it is always possible to find a triple
(L1, L2, L3) such that meas(L1, L2) = [ei2λ12 , ei2µ12 ], meas(L1, L3) = [ei2λ13 , ei2µ13 ] and meas(W1, Z1) =
θ. Indeed, let L1 be any Lagrangian of C2 and let (u1, u2) be an orthonormal basis of L1, let d1 = Ru1,
d2 = Ru2, and let d be the image of d1 by the rotation of the Euclidean space L1 with matrix

(
cos θ − sin θ
sin θ cos θ

)

in the basis (u1, u2), and set L2 = eiλ12d1 ⊕ eiµ12d2 and L3 = eiλ13d ⊕ eiµ13d⊥. Given numbers (λ12 =
µ12 = λ, λ13, µ13) as in (B), we only need to set L2 = eiλL1 and L3 = eiλ13d1 ⊕ eiµ13d2.

Thus, the orbits of the diagonal action of U(2) on L(2)×L(2)×L(2) are generically characterized by
the five invariants λ12, µ12, λ13, µ13 and θ.

5.4.2 Geometric study of projective Lagrangians of CP1

The aim of this section is to study the space (L(2) × L(2) × L(2))/U(2) of the orbits of the diagonal
action of U(2) on triples of Lagrangians subspaces of C2, and more specifically to describe it in terms of
the map

κ :
(
L(2) × L(2) × L(2)

)
−→ T2/S2 × T2/S2 × T2/S2

[L1, L2, L3] 7−→
(
meas(L1, L2),meas(L2, L3),meas(L3, L1)

)

which will enable us to obtain another classification result for Lagrangian triples of C2 , and to state it
in a way (proposition 5.4.7) that is similar to the corresponding result for Lagrangian pairs (proposition
5.3.10). We shall see in subsection 5.4.3 that this way of doing things is equivalent to our previous
approach which consisted in considering orthogonal decompositions of one of the three subspaces (see
subsection 5.4.1). We are first going to describe the image of the map κ and then prove that it is one-
to-one. This will also give a topological description of the orbit space. Our main tool to characterize the
image of κ will be the study of projective Lagrangians of CP1.

5.4.2.1 Configurations of projective Lagrangians of CP1

In the following, we shall constantly identify the complex projective line CP1, endowed with the Fubini-
Study metric (see for instance [ABK+94] p.40 or [Kli82] pp.106-108), with the Euclidean sphere S2 ⊂ R3
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endowed with its usual structure of oriented Riemannian manifold. We will denote by p the projection :

p : C2\{0} −→ CP1

z = (z1, z2) 7−→ p(z) = [z] = [z1, z2]

As seen in 5.3.1, the image of a Lagrangian subspace of C2 is a totally geodesic submanifold of CP1 ' S2

that is diffeomorphic to RP1 ' S1. Therefore l = p(L) is a great circle of S2, and the isometry σ̂L of
CP1, induced by the Lagrangian involution σL, acts on S2 as the reflexion with respect to the plane of R3

containing the great circle l = p(L). Recall that the unitary groupU(2) acts transitively on the Lagrangian
Grassmannian L(2). The action of U(2) on CP1 is the same as the action of the special unitary group
SU(2), which acts on S2 by the 2-sheeted universal covering map h : SU(2) → SO(3) = SU(2)/{±1}.
The map L ∈ L(2) 7→ l = p(L) ⊂ CP1 ' S2 is equivariant for these actions. For any ϕ ∈ GL(2,C), we
shall denote by ϕ̂ the induced map of CP1 ' S2 into itself : ϕ̂.[z] = [ϕ(z)]. If ϕ ∈ U(2) then ϕ̂ acts

on S2 as an element of SO(3) : indeed ϕ = ei
δ
2ψ, where eiδ = detϕ and ψ ∈ SU(2), and then ϕ̂ = ψ̂

in Aut(CP1), the action on S2 being obtained by considering h(ψ), which we shall from now on simply

denote by ψ̂.

In the following, let (L1, L2, L3) be a triple of Lagrangian subspaces of C2 and let (l1, l2, l3) be the
triple of corresponding great circles of S2 : lj = p(Lj) for j = 1, 2, 3. As above, we denote by ϕjk the
only unitary map sending Lj to Lk and satisfying the conditions of the second diagonalization lemma
(proposition 5.3.5). Let (eiλjk , eiµjk ) be its eigenvalues, where π > λjk ≥ µjk ≥ 0, and let (ujk, vjk) be an
orthonormal basis of Lj formed by eigenvectors of ϕjk : ϕjk(ujk) = eiλjkujk and ϕ(vjk) = eiµjkvjk. Recall
that (ei2λjk , ei2µjk) is then a representative of meas(Lj , Lk) ∈ T2/S2. We denote by L0 the Lagrangian
subspace L0 = {(x, y) ∈ C2 : x, y ∈ R} of C2. We denote its projection on CP1 by l0 = p(L0).

We are now going to relate the angles of projective Lagrangians of CP1 ' S2 with the Lagrangian
angles defined in section 5.3. Furthermore, in order to study configurations of projective Lagrangians of
CP1, we are going to define a notion of sign of a projective Lagrangian triple. To do so, we shall first
define such a notion in a generic case and then extend it to the remaining cases. Finally, we shall see
that there is also a notion of sign for Lagrangian triples of Cn and that in the case n = 2, the triples
(L1, L2, L3) and (l1, l2, l3) have same sign.

Proposition 5.4.2 (Projection of a Lagrangian pair). Let (L1, L2) be a pair of Lagrangian subspaces
of C2 and let (eiλ12 , eiµ12) be the eigenvalues of ϕ12. Then l1 = l2 if and only if λ12 = µ12. Furthermore,
if λ12 6= µ12, then l2 is the image of l1 by the (direct) rotation of angle α12 = λ12 −µ12 ∈]0, π[ around the
point [v12] ∈ CP1 ' S2 ⊂ R3, [v12] = Cv12 being the complex eigenline of ϕ12 associated to the eigenvalue
eiµ12 of lowest argument.

l1

l2

�

[v12]

α12

Figure 5.1: Two projective Lagrangians of CP1

Proof. If λ12 = µ12 = λ then L2 = eiλL1 and therefore l2 = l1 in CP1.
If now λ12 6= µ12, suppose first that L1 = L0 and that (u12, v12) is the standard basis of C2. Then L2 is
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the image of L1 by the unitary map whose matrix in the standard basis of C2 is :

(
eiλ12 0

0 eiµ12

)

so that L2 = {(eiλ12x, eiµ12y) : x, y ∈ R} and l2 = p(L2) = {[eiλ12x, eiµ12y] : x, y ∈ R}. Therefore,
in the chart [z1, z2] 7→ z1

z2
of CP1 containing [v12] = [0, 1], l2 is sent diffeomorphically onto the real line

{ei(λ12−µ12) x
y

: x, y ∈ R, y 6= 0} = ei(λ12−µ12)d0 of the plane C ' R2, where d0 is the image of l0 = l1
in this same chart. Thus, l2 and l1 intersect at a12 = [u12] and b12 = [v12], and l2 is the image of
l1 by the rotation of angle α12 = λ12 − µ12 ∈]0, π[ around the point b12 = v12, which means that the
oriented angle formed by l1 and l2 at b12 has measure α12 = λ12 − µ12. Note that the oriented angle
at a12 has measure π − α12 ∈]0, π[, since in the chart [z1, z2] 7→ z2

z1
, l2 is diffeomorphic to the real line

ei(µ12−λ12)d0 = ei(π−(λ12−µ12))d0.
If now (u12, v12) is not the standard basis of C2, consider the unitary map ψ ∈ U(2) sending the standard

basis (e, f) of C2 to (u12, v12). Then L0 = ψ−1(L1), and let L = ψ−1(L2). Then [v12] = ψ̂.[f ], l2 = ψ̂(l)

and l1 = ψ̂(l0). Then, since meas(L0, L) = meas(L1, L2), we deduce from the above paragraph that

l = p(L) is the image of l0 by the rotation of angle α12 around the point [f ]. Hence, since ψ̂ ∈ SO(3),
the oriented angle between l1 and l2 at b12 = [v12] ∈ l1 ∩ l2 also has measure α12.

Observe that this proof also provides an elementary way of seeing why L0, and therefore every Lagrangian
subspace of C2, projects to a great circle of S2 ' CP1. We shall state a converse to the above result later
(see proposition 5.4.5).

Note that the preceding result gives a complete description of the relative position of the projective
Lagrangians l1 and l2 only by means of the unitary map ϕ12. In particular, the rotation described above
is no other than the map ϕ̂12 of CP1 ' S2 into itself : l2 = ϕ̂12(l1). The axis of this rotation is the real
line of R3 generated by any of the antipodal points a12 = [u12] and b12 = [v12] of S2, (u12, v12) being a
unitary basis of C2 into which the matrix of ϕ12 is diagonal.

We are now going to describe all possible configurations of the projective Lagrangians l1, l2 and l3 of
CP1 ' S2 satisfying the following condition for (j, k) = (1, 2), (2, 3), (3, 1) : if lj 6= lk then lk is the image
of lj by the direct rotation ϕ̂jk of S2 ⊂ R3 of angle αjk ∈]0, π[ around a specified point bjk ∈ lj ∩ lk.

First case : l1, l2 and l3 are pairwise distinct.
(a) Suppose first that the three points b12, b23, b31 are linearly independent in R3 (that is, l1, l2, l3 do
not have a common diameter). We may then consider the spherical triangle (b12, b23, b31), whose sides
[b12, b23], [b23, b31], [b31, b12] are respectively contained in the geodesics l2, l3, l1. Since lk is the image of
lj by a direct rotation around bjk, the only possible configurations are the ones shown in figure 5.2.

l1

l2

�

l3

�

�

A negative triple

l1

l3l2

�

��

A positive triple

Figure 5.2: Triples of projective Lagrangians of CP1 in general position
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On each sphere, we represent the angles αjk around the point bjk and we shall continue to do so in
the following. We call the first triangle negative and the second triangle positive. Let us explain this
terminology and prove that these cases are indeed the only possible ones when the bjk are pairwise
distinct.
Let ϕ = ϕ31 ◦ ϕ23 ◦ ϕ12 ∈ U(2). Then ϕ(L1) = L1 and therefore ϕ̂(l1) = l1. There are only two possible
cases : either ϕ̂ preserves a given orientation on l1, or it reverses that orientation. But ϕ̂ = ϕ̂31◦ϕ̂23◦ϕ̂12 is
the map obtained by composing the three rotations ϕjk around the bjk. When ϕ̂ reverses the orientation
of l1, which we will call the negative case, then (α12, α23, α31) are the angles of the spherical triangle
(b12, b23, b31). When ϕ̂ preserves the orientation of l1, which we will call the positive case, the angles of
the triangle (b12, b23, b31) are βjk, where βjk = π−αjk ∈]0, π[. Observe that this gives a series of necessary
conditions for the existence of a triple (L1, L2, L3) of Lagrangian subspaces of C2 projecting onto a triple
(l1, l2, l3) of great circles of S2 that do not have a common diameter. Indeed, assume for instance that the
triangle (b12, b23, b31) has angles αjk (negative case), then we necessarily have the following conditions on
these angles :

(∆) α12, α23, α31 ∈]0, π[ and





α12 + α23 + α31 > π
α12 + π > α23 + α31

α23 + π > α31 + α12

α31 + π > α12 + α23

since (α12, α23, α31) are the angles of a spherical triangle (see for instance [Ber], pp.396 sqq). In the
positive case, the same conditions apply to (β12, β23, β31). In the following we shall write (α12, α23, α31)
∈ ∆ to say that (α12, α23, α31) satisfy this set of conditions. ∆ is an open subset of R3 and its closure ∆
in R3 is a tetrahedron (see figure 5.3). In the following, we will relate the set of equations and inequations
describing the faces, edges and vertices of this tetrahedron to the possible configurations of Lagrangian
subspaces of Cn.

π

π

π

(π, π, π)

Figure 5.3: The tetrahedron (∆)

(b) Suppose now that b12, b23 and b31 are not linearly independent. Then l1, l2, l3 have a common
diameter and we either have b12 = b23 = b31 or, for instance, b12 = b23 and b31 6= b12. Since l1, l2, l3 are
still supposed to be pairwise distinct and satisfying lk = ϕ̂jk(lj), the only possible configurations are the
ones shown in figure 5.4 (we indicate in each case the sign of the triple (l1, l2, l3)).

These 4 cases correspond to degenerate spherical triangles, so that we respectively have the following
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l1

l2l3

�

b12 = b23 = b31

−

l1

l3l2

�

b12 = b23 = b31

+

l1

l2l3

�

�

b12 = b23 6= b31

+

l1

l3l2

�

�

b12 = b23 6= b31

−

Figure 5.4: Exceptional triples of pairwise distinct projective Lagrangians of CP1

necessary conditions :

α12, α23, α31 ∈ ]0, π[
α12 + α23 + α31 = π

α12 + π > α23 + α31

α23 + π > α31 + α12

α31 + π > α12 + α23

β12, β23, β31 ∈ ]0, π[
β12 + β23 + β31 = π

β12 + π > β23 + β31

β23 + π > β31 + β12

β31 + π > β12 + β23

β12, β23, β31 ∈ ]0, π[
β12 + β23 + β31 > π

β12 + π > β23 + β31

β23 + π > β31 + β12

β31 + π = β12 + β23

α12, α23, α31 ∈ ]0, π[
α12 + α23 + α31 > π

α12 + π > α23 + α31

α23 + π > α31 + α12

α31 + π = α12 + α23

This means that either the αjk or the βjk, depending on the negativity or positivity of the triple (l1, l2, l3),
are located in an open face of the tetrahedron ∆ (see figure 5.3). The remaining faces are obtained when
b23 = b31 and b12 6= b23, and when b31 = b12 and b23 6= b31.

Second case : l1, l2 and l3 are not pairwise distinct.
(a) Suppose first, for instance, that l1 = l2 and l3 6= l1. Since l1 = l2, we may consider either that α12 = 0
or that α12 = π and that it is the angle of a direct rotation around b23 ∈ l2 ∩ l3 = l1 ∩ l3, so that the
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notion of negative and positive triples is still valid. Then the only possible configurations of l1, l2, l3 are
the ones shown in figure 5.5.

l1 = l2

l3

�

α12 = 0

−

l1 = l2

l3

�

�

α12 = 0

+

l1 = l2

l3

�

α12 = π

+

l1 = l2

l3

�

�

α12 = π

−

Figure 5.5: Triples of non pairwise distinct projective Lagrangians of CP1

Those configurations correspond to open edges of ∆ (see figure 5.3) :

α12 = 0 α23, α31 ∈]0, π[
α12 + α23 + α31 = π

α12 + π = α23 + α31

α23 + π > α31 + α12

α31 + π > α12 + α23

β12 = π β23, β31 ∈]0, π[
β12 + β23 + β31 > π

β12 + π > β23 + β31

β23 + π = β31 + β12

β31 + π = β12 + β23

β12 = 0 β23, β31 ∈]0, π[
β12 + β23 + β31 = π

β12 + π = β23 + β31

β23 + π > β31 + β12

β31 + π > β12 + β23

α12 = π α23, α31 ∈]0, π[
α12 + α23 + α31 > π

α12 + π > α23 + α31

α23 + π = α31 + α12

α31 + π = α12 + α23

The remaining edges are obtained when l2 = l3 and l1 6= l2 and when l3 = l1 and l2 6= l3.
(b) Finally, suppose that l1 = l2 = l3. The notion of negative and positive triples remains valid by
considering either that αjk = 0 or that αjk = π, and that the bjk all are a same b chosen arbitrarily in
l1 = l2 = l3. Then the possible configurations on S2 correspond to vertices of ∆, that is, in the negative
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case, (α12, α23, α31) = (π, 0, 0), (0, π, 0), (0, 0, π) or (π, π, π), and in the positive case : (β12, β23, β31) =
(π, 0, 0), (0, π, 0), (0, 0, π) or (π, π, π). Observe that in the cases where the three rotations ϕ̂jk occur
around a same point bjk or around two diametrically opposed points, then the negative case corresponds
to (α12 +α23 +α31) ≡ π (mod 2π), and the positive case corresponds to (β12 +β23 +β31) ≡ π (mod 2π),
that is to (α12 + α23 + α31) ≡ 0 (mod 2π). Also note that if l1, l2, l3 are pairwise distinct great circles
of S2 that do not have a common diameter, the pairwise intersections lj ∩ lk determine 6 points on S2,
which in turn give rise to 8 spherical triangles, four of which are negative, the other four being positive.
Two triangles with a common edge have opposite sign, whereas two triangles with only a common vertex
have same sign.

From the study above, we deduce that a Lagrangian triple (L1, L2, L3) projects on a triple (l1, l2, l3) of
great circles of S2, that is either positive with (α12, α23, α31) ∈ ∆ or negative with (β12, β23, β31) ∈ ∆.
In particular, these conditions are necessary conditions for ([ei2λ12 , ei2µ12 ], [ei2λ23 , ei2µ23 ], [ei2λ31 , ei2µ31 ])
to be the triple of measures of a Lagrangian triple. Before showing that these conditions are sufficient,
we shall give another way of determining if a triple (l1, l2, l3) is negative or positive.

Proposition 5.4.3. Let (L1, L2, L3) be a triple of Lagrangian subspaces of C2, and set ϕ = ϕ31◦ϕ23◦ϕ12.
Write detϕ = eiδ, where δ = (λ12 +µ12)+ (λ23 +µ23)+ (λ31 +µ31). Then δ ≡ 0 (mod π), and (l1, l2, l3)
is negative if δ ≡ π (mod 2π) and positive if δ ≡ 0 (mod 2π).

Proof. Suppose first that L1 = L0 and that (u12, v12) is the standard basis of C2. Write

ϕjk = ei
λjk+µjk

2 ψjk

where ψjk ∈ SU(2) and ei(λjk+µjk) = detϕjk. Set ψ = ψ31 ◦ ψ23 ◦ ψ12, so that ϕ = ei
δ
2ψ, where

δ =
∑
j,k(λjk + µjk). Note that ϕ̂jk = ψ̂jk and ϕ̂ = ψ̂. In particular, ψ̂(l0) = l0. But the matrix of ψ in

the standard basis of C2 is of the form

A =

(
s −t
t s

)

where s, t ∈ C and satisfy |s|2 + |t|2 = 1. Since l0 = {[x, y] ∈ CP1 : x, y ∈ R}, ψ̂(l0) = l0 if and only if

A =

(
a −b
b a

)
or A =

(
ia ib
ib −ia

)

where a, b ∈ R and satisfy a2 + b2 = 1.
In the first case ψ(L0) = L0, so that L0 = ϕ(L0) = ei

δ
2 .L0, and since L0 is totally real we have δ

2 ≡ 0

(mod π), that is δ ≡ 0 (mod 2π). In the second case ψ(L0) = i.L0, so that L0 = ϕ(L0) = ei
δ
2 i.L0 and

therefore δ
2 ≡ π

2 (mod π), that is δ ≡ π (mod 2π). Now recall that ϕ̂(l0) = (l0). When

A =

(
a −b
b a

)

ψ̂ preserves a given orientation on l0 (since, in the chart [z1, z2] 7→ z1
z2

, the map x ∈ R 7→ ax−b
bx+a is

increasing), so that the triple (l0, l2, l3) is positive. When

A =

(
ia ib
ib −ia

)

ψ̂ reverses a given orientation on l0 (since, in the chart [z1, z2] 7→ z1
z2

, the map x ∈ R 7→ ax+b
bx−a is decreasing),

so that the triple (l0, l2, l3) is negative.
Suppose now that (u12, v12) is not the standard basis of C2, and define the unitary map ν ∈ U(2) sending
the standard basis to (u12, v12). Let L′

2 = ν−1(L2), L
′
3 = ν−1(L3), l

′
2 = p(L′

2) and l′3 = p(L3). Then the
map ν−1 ◦ ϕ ◦ ν sends L0 to L0 and det(ν−1 ◦ ϕ ◦ ν) = detϕ = eiδ. From the study above, the triple
(l0, l

′
2, l

′
3) is positive if and only if δ ≡ 0 (mod 2π), and negative if and only if δ ≡ π (mod 2π). But

since l1 = ν̂(l0), l2 = ν̂(l′2) and l3 = ν̂(l′3) with ν̂ ∈ SO(3), the triples (l1, l2, l3) and (l′0, l
′
2, l

′
3) have same

sign.
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Remark 5.4.4. In particular, we have shown that we always have δ ≡ 0 (mod π). Observe that when
δ ≡ 0 (mod 2π), we have detϕ = 1, so that we might also say that the triple (L1, L2, L3) of Lagrangian
subspaces of C2 is positive. Similarly, when δ ≡ π (mod 2π), detϕ = −1 and (L1, L2, L3) will be said to
be negative. The above proposition then says that the triples (L1, L2, L3) and (l1, l2, l3) have same sign.
Note that the notion of sign of a Lagrangian triple (L1, L2, L3) is also valid for Lagrangian subspaces
of Cn. Indeed, by corollary 5.3.8, we have ϕ2

jk = σLk
◦ σLj

. But (σL1σL3)(σL3σL2)(σL2σL1) = 1, hence

(detϕ)2 = 1 (where ϕ = ϕ31 ◦ ϕ23 ◦ ϕ12), so that ei2δ = 1. Consequently, 2δ ≡ 0 (mod 2π) and therefore
δ ≡ 0 (mod π). When δ ≡ 0 (mod 2π), the triple (L1, L2, L3) is said to be positive and when δ ≡ π
(mod 2π) it is said to be negative.

5.4.2.2 A second classification result for triples of Lagrangian subspaces of C2

As a converse to proposition 5.4.2, it is possible, given two distinct great circles l1 6= l2 of S2 ' CP1, to
describe the measure of the angle (L1, L2) between two Lagrangians of C2 that project respectively to l1
and l2. Recall that two distinct great circles l1 6= l2 intersect along two antipodal points a, b, and that
α ∈]0, π[ is said to be the measure of the oriented angle between l1 and l2 at b ∈ l1 ∩ l2 if l2 is the image
of l1 by the (direct) rotation of angle α around b.

Proposition 5.4.5 (Lifting lemma). Let l1 6= l2 be two distinct projective Lagrangians of CP1 ' S2,
let b ∈ l1 ∩ l2 and let α ∈]0, π[ be the measure of the oriented angle (l1, l2) at b. Then, given λ and µ such
that π > λ > µ ≥ 0, and given a Lagrangian subspace L1 ∈ p−1(l1), there exists a unique Lagrangian
subspace L2 ∈ p−1(l2) such that meas(L1, L2) = [ei2λ, ei2µ].

Proof. Let v ∈ L1 such that p(v) = b. We may choose v such that ‖v‖ = h(v, v) = 1. Then, take u ∈ L1

such that (u, v) is an orthonormal basis of L1. Since L1 is Lagrangian, (u, v) is a unitary basis of C2. Let
ψ be the unitary transformation of C2 whose matrix in the basis (u, v) is

(
eiλ 0
0 eiµ

)

and let L = ψ(L1). Then L is Lagrangian and meas(L1, L) = [ei2λ, ei2µ]. Therefore, by proposition 5.4.2,
l = p(L) is a great circle of S2, distinct of l1 since λ 6= µ, that intersects l1 at p(v) = b and the measure
of the oriented angle between l1 and l at b is λ− µ = α, so that l = l2.
As for unicity, if L′ ∈ p−1(l2), then, again by proposition 5.4.2, we know that L′ = eiθ.L, where θ ∈]0, π[.
The unitary map eiθ.ψ then sends L1 to L′, and its matrix in the unitary basis (u, v), which is an
orthonormal basis of L1 is (

ei(θ+λ) 0

0 ei(θ+µ)

)

so that meas(L1, L
′) = [ei2((θ+λ) mod π), ei((θ+µ) mod π)], with π > (θ+λ) mod π > (θ+µ) mod π ≥ 0.

Since meas(L1, L) = meas(L1, L
′), we have in particular (θ + λ) mod π = λ, hence θ mod π = 0 (and

so θ = 0) and L′ = eiθ.L = L.

The next proposition completely describes the image of the map κ and lays the ground for the second
classification result for triples of Lagrangian subspaces of C2.

Proposition 5.4.6 (Possible triples of measures for triples of Lagrangian subspaces of C2).
Given a triple of measures

([ei2λ12 , ei2µ12 ], [ei2λ23 , ei2µ23 ], [ei2λ31 , ei2µ31 ])

satisfying the conditions π ≥ λjk ≥ µjk ≥ 0, set αjk = λjk − µjk ∈ [0, π], βjk = π − αjk ∈ [0, π] and

δ = (λ12 + µ12) + (λ23 + µ23) + (λ31 + µ31)
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Then, there exists a triple (L1, L2, L3) of Lagrangian subspaces of C2 such that




meas(L1, L2) = [ei2λ12 , ei2µ12 ]
meas(L2, L3) = [ei2λ23 , ei2µ23 ]
meas(L3, L1) = [ei2λ31 , ei2µ31 ]

if and only if :

δ ≡ π (mod 2π) and (α12, α23, α31) ∈ ∆ (negative case)
or

δ ≡ 0 (mod 2π) and (β12, β23, β31) ∈ ∆ (positive case)

(Here we allow λjk = π so that we may have αjk = π and βjk = 0).

Proof. The study made in 5.4.2.1 shows that these conditions are necessary.
Conversely, suppose first that δ ≡ π (mod 2π) and that (α12, α23, α31) lie in the open set ∆. Then there
exists a negative triple (l1, l2, l3) of pairwise distinct great circles of S2 such that lk is the image of lj by
the direct rotation of angle αjk around a certain point bjk ∈ lj ∩ lk for (j, k) = (1, 2), (2, 3), (3, 1), and
we may suppose that l1 = l0. Let L1 = L0. Then, by proposition 5.4.5, there exists a unique Lagrangian
L2 ∈ p−1(l2) such that meas(L1, L2) = [ei2λ12 , ei2µ12 ]. Again by proposition 5.4.5, there exists a unique
Lagrangian L3 ∈ p−1(l3) such that meas(L2, L3) = [ei2λ23 , ei2µ23 ], and a unique Lagrangian L4 ∈ p−1(l1)
such that meas(L3, L4) = [ei2λ31 , ei2µ31 ]. Let ϕ34 be the unique unitary map sending L3 to L4 and
satisfying the conditions of the second diagonalization lemma 5.3.5, and let ϕ = ϕ34 ◦ ϕ23 ◦ ϕ12. Then
ϕ(L1) = L4 and detϕ = eiδ. Write ϕ = ei

δ
2ψ, where ψ ∈ SU(2). Then ψ̂(l1) = l1, and since (l1, l2, l3)

is negative, we deduce from the study made in 5.4.2.1 that ψ(L1) = i.L1, hence, as δ ≡ π (mod 2π), we

have L4 = ϕ(L1) = ei
δ
2 i.L1 = L1.

Suppose now that (α12, α23, α31) ∈ ∂∆. If (α12, α23, α31) lay in an open face of ∆, there exists a negative
triple (l1, l2, l3) of pairwise distinct great circles of S2 such that lk is the image of lj by the direct rotation
of angle αjk around a certain point bjk ∈ lj ∩ lk for (j, k) = (1, 2), (2, 3), (3, 1), and we can therefore
conclude as earlier. If now (α12, α23, α31) lay in an open edge of ∆, there exists a negative triple, for
instance of the form (l1, l2 = l1, l3 6= l2), such that l3 is the image of l2 by the rotation of angle α23

around b23 ∈ l2 ∩ l3 and such that l1 is the image of l3 by the rotation of angle α31 around b31 ∈ l3 ∩ l1.
Since l2 = l1, α12 is either 0 or π, and by setting b12 = b23 (or b12 = b31), we have that l2 is the image
of l1 by the rotation of angle α12 around b12 ∈ l1 ∩ l2 (see figure 5.5). Let L1 = L0. If α12 = 0, then
λ12 = µ12 and we set L2 = eiλ12 .L1. If α12 = π, then λ12 = π and µ12 = 0, and we set L2 = L1. In
both cases L2 ∈ p−1(l2) = p−1(l1) and meas(L1, L2) = [ei2λ12 , ei2µ12 ]. Since l1 = l2 6= l3, there exists,
by proposition 5.4.5, a unique Lagrangian L3 ∈ p−1(l3) such that meas(L2, L3) = [ei2λ23 , ei2µ23 ], and
a unique Lagrangian L4 ∈ p−1(l1) such that meas(L3, L4) = [ei2λ31 , ei2µ31 ]. As earlier, since the triple

(l1, l2, l3) is negative, we have L4 = ei
δ
2 i.L1 = L1.

Finally, if (α12, α23, α31) is a vertex of ∆, that is, if (α12, α23, α31) = (π, 0, 0), (0, π, 0), (0, 0, π) or (π, π, π),
then L1 = L2 = L3 = L0 meet the required conditions.
If now, δ ≡ 0 (mod 2π), the condition (β12, β23, β31) ∈ ∆ implies the existence of a positive triple
(l1, l2, l3) of pairwise distinct great circles of S2, with angles αjk as required. Reasoning the same way, we
find 4 Lagrangians L1, L2, L3 and L4 with prescribed angles [ei2λjk , ei2µjk ], and since (l1, l2, l3) is positive

we have: L4 = ϕ(L1) = ei
δ
2 .L1, and therefore, as δ ≡ 0 (mod 2π), L4 = L1.

The other cases are treated identically.

We now obtain the following classification result for triples of Lagrangian subspaces of C2.

Proposition 5.4.7 (Unitary classification of Lagrangian triples of C2, second version). Given
two triples (L1, L2, L3) and (L′

1, L
′
2, L

′
3) of Lagrangian subspaces of C2, there exists a unitary map ϕ ∈

U(2) such that ϕ(L1) = L′
1, ϕ(L2) = L′

2 and ϕ(L3) = L′
3 if and only if :





meas(L1, L2) = meas(L′
1, L

′
2)

meas(L2, L3) = meas(L′
2, L

′
3)

meas(L3, L1) = meas(L′
3, L

′
1)
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Equivalently, the map

κ :
(
L(2) × L(2) × L(2)

)
−→ T2/S2 × T2/S2 × T2/S2

is one-to-one and is therefore a homeomorphism from the orbit space (L(2) × L(2) × L(2))/U(2) onto a
closed subset of the measure space T2/S2 × T2/S2 × T2/S2.

Proof. It only remains to prove that the above conditions are sufficient. Let (L1, L2, L3) and (L′
1, L

′
2, L

′
3)

be two Lagrangian triples such that meas(Lj, Lk) = meas(L′
j , L

′
k) for all j, k. Then, the (generalized)

triangles (b12, b23, b31) and (b′12, b
′
23, b

′
31) have the same angles, so that there exists a map ψ ∈ SU(2) such

that ψ̂(bjk) = b′jk for all j, k. Since moreover δ = δ′, the triples (l1, l2, l3) and (l′1, l
′
2, l

′
3) have same sign

and we therefore even have ψ̂(lj) = l′j for all j. Equivalently, p(ψ(Lj)) = ψ̂(p(Lj)) = ψ̂(lj) = l′j = p(L′
j).

In particular, by proposition 5.4.2, we have L′
1 = eiθ.ψ(L1) for some θ ∈ [0, π[. Set ϕ = eiθ.ψ ∈ U(2).

Then ϕ(L1) = L′
1 and p(ϕ(L2)) = ϕ̂(p(L2)) = ψ̂(l2) = l′2 and meas(L′

1, ϕ(L2)) = meas(ϕ(L1), ϕ(L2)) =
meas(L1, L2) = meas(L′

1, L
′
2), hence, by unicity in proposition 5.4.5, ϕ(L2) = L′

2. Likewise, p(ϕ(L3)) = l′3
and meas(L′

2, ϕ(L3)) = meas(L′
2, L

′
3), therefore ϕ(L3) = L′

3.

5.4.3 Equivalence of the two classification results

We now wish to explain why the two classification results that we have obtained (propositions 5.4.1 and
5.4.7) are equivalent.

Let (L1, L2, L3) be a triple of Lagrangian subspaces of C2. If one of the unitary maps ϕjk is of the
form eiλId (for instance if L2 = eiλ.L1), and if (L′

1, L
′
2, L

′
3) is a triple of Lagrangian subspaces such

that meas(L1, L2) = meas(L′
1, L

′
2) and meas(L1, L3) = meas(L′

1, L
′
3) (or equivalently meas(L3, L1) =

meas(L′
3, L

′
1)), we necessarily have meas(L2, L3) = meas(L′

2, L
′
3). Indeed, since

meas(L′
1, L

′
2) = meas(L1, L2) = [ei2λ, ei2λ]

one has L′
2 = eiλ.L′

1. Therefore :

σL′
3
◦ σL′

2
= σL′

3
◦ σeiλL′

1
= σL′

3
◦ (eiλσL′

1
e−iλ) = e−iλ(σL′

3
◦ σL′

1
)e−iλ

But meas(L3, L1) = meas(L′
3, L

′
1), so that, by proposition 5.3.10, σL3 ◦ σL1 is conjugate to σL′

3
◦ σL′

1
.

Since we also have L2 = eiλ.L1, the above computation shows that σL3 ◦ σL2 is conjugate to σL′
3
◦ σL′

2

and this means that meas(L2, L3) = meas(L′
2, L

′
3), which proves that in this case the two classification

results are indeed the same.

If now each unitary map ϕjk has two distinct eigenvalues eiλjk and eiµjk , where π > λjk > µjk ≥ 0,
set d12 = Ru12 ⊂ L1 and d13 = Ru13 ⊂ L1 (where u12 and u13 are defined as earlier by means of
ϕ12 and ϕ13), and let θ = meas(d12, d13) ∈ [0, π2 ] be the measure of the non-oriented angle formed by
the real lines d12 and d13 in the Euclidean space L1. Recall that L1 = d12 ⊕ d⊥12 = d13 ⊕ d⊥13, where
d⊥12 = Rv12 and d⊥13 = Rv13, and observe that θ is also the measure of the angle (d⊥12, d

⊥
13). As earlier,

define bjk = [vjk] ∈ lj ∩ lk ⊂ CP1 ' S2. We then formulate the following remark :

Lemma 5.4.8. The measure of the non-oriented angle formed by the two vectors b12 and b13 of S2 ⊂ R3

is 2θ ∈ [0, π]. In particular, two orthogonal vectors of L1 project onto antipodal points of S2.

Proof. Suppose first that L1 = L0 and that (u12, v12) is the standard basis of C2. Since meas(Rv12,Rv13)
= θ and since v13 has norm 1, we either have v13 = (sin θ, cos θ) or v13 = (− sin θ, cos θ) in L0. We
may assume θ 6= 0, otherwise v13 = v12, hence b13 = b12 and meas(b12, b13) = 0. If for instance v13 =

(sin θ, cos θ) with θ ∈]0; π2 ], then [v13] = [sin θ, cos θ] ∈ CP1 is sent by the diffeomorphism CP1 '−→ S2

to (− sin 2θ, 0,− cos2θ). Since [v12] = [0; 1] is sent to (0, 0,−1), the measure of the non-oriented angle
between these two vectors of R3 is indeed 2θ. The case v13 = (− sin θ, cos θ) is similar ([v13] is then sent
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to (sin 2θ, 0,− cos2θ)).
If now (u12, v12) is not the standard basis (e, f) of C2, define the unitary map ψ sending (e, f) to
(u12, v12). Since ψ|L0 : L0 → L1 is an orthogonal map, meas(f, ψ−1(v13)) = meas(v12, v13) = θ and

since ψ̂ ∈ SO(3), we deduce from the preceding case that meas(b12, b13) = meas(ψ̂([f ]), ψ̂([ψ−1(v13)])) =
meas([f ], [ψ−1(v13)]) = 2θ.

Observe now that b31 ∈ l1 ∩ l3 is one of the two antipodal points a13 or b13 ∈ l1 ∩ l3. Therefore, we have :

Lemma 5.4.9. If µ13 = 0 then b31 = b13 and therefore meas(b12, b31) = 2θ. If µ13 6= 0 then b31 = a13

and therefore meas(b12, b31) = π − 2θ.

Proof. Recall that we have supposed that λ13 6= µ13, and that we have : ϕ13(u13) = eiλ13u13, ϕ13(v13) =
eiµ13v13, and π > λ13 > µ13 ≥ 0. Similarly : ϕ31(u31) = eiλ31u31, ϕ31(v31) = eiµ31v31, and, since
λ13 6= µ13, π > λ31 > µ31 ≥ 0. Set w31 = eiλ13u13 ∈ L3. Then ei(π−λ13)w31 = −u13 ∈ L3, with
π−λ13 ∈]0;π[. Therefore, w31 is an eigenvector of ϕ31, so w31 ∈ Ru31 or w31 ∈ Rv31. If µ13 6= 0, we have
π > π − µ13 > π − λ13 > 0, so that the eigenvalues of ϕ31 are π − λ13 and π − µ13, hence µ31 = π − λ13

and w31 ∈ Rv31. Consequently, [u13] = [w31] = [v31] in CP1, that is : a13 = b31. By lemma 5.4.8,
meas(b12, b31) = π − 2θ.
If now µ13 = 0, then v13 ∈ L1 ∩ L3, hence µ31 = 0 and v31 = v13, so that b31 = [v31] = [v13] = b13, and
therefore meas(b12, b31) = 2θ.

Let now (γ12, γ23, γ31) be the measures of the angles of the spherical triangle (b12, b23, b31) (from the study
of projective Lagrangians of CP1 conducted in 5.4.2.1, we know that either (γ12, γ23, γ31) = (α12, α23, α31)
or (γ12, γ23, γ31) = (β12, β23, β31), where αjk = λjk−µjk and βjk = π−αjk). Let η ∈ [0, π] be the measure
of the non-oriented angle (b12, b31) (from the study above, we know that either η = 2θ or η = π − 2θ).
Then we know from spherical trigonometry that :

cos γ23 = sin γ12 sinγ31 cos η − cos γ12 cos γ31

(see for instance [Ber], pp.396 sqq). The next proposition completes the explanation why our two classi-
fication results are indeed equivalent.

l1
�

�

�η

η = 2θ or π − 2θ

Figure 5.6: Relation between the two classification results

Proposition 5.4.10 (Equivalence of the two classification results). Let (L1, L2, L3) be a triple
of Lagrangian subspaces of C2 such that ϕ12, ϕ23 and ϕ31 have distinct eigenvalues. Let (L′

1, L
′
2, L

′
3)

be a triple of Lagrangian subspaces of C2 such that meas(L1, L2) = meas(L′
1, L

′
2) and meas(L1, L3) =

meas(L′
1, L

′
3), this last condition being equivalent to meas(L3, L1) = meas(L′

3, L
′
1). Define θ = meas(d12,

d13) ∈ [0, π2 ] to be the measure of the non-oriented angle (d12, d13) in L1 and define θ′ = meas(d′12, d
′
13) ∈

[0, π2 ] in L′
1 similarly. Then meas(L2, L3) = meas(L′

2, L
′
3) if and only if θ = θ′.
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Proof. Assume first that meas(L2, L3) = meas(L′
2, L

′
3). Since we also have meas(L1, L2) = meas(L′

1, L
′
2)

and meas(L1, L3) = meas(L′
1, L

′
3), we get δ = δ′ : the triples (l1, l2, l3) and (l′1, l

′
2, l

′
3) have same sign. As

a consequence, the spherical triangles (b12, b23, b31) and (b′12, b
′
23, b

′
31) have the same angles : γjk = γ′jk ∈

]0, π[ for all j, k. Since meas(L1, L3) = meas(L′
1, L

′
3) we have µ13 = µ′

13, therefore, by lemma 5.4.9, either
b31 = b13 and b′31 = b′13 (when µ13 and µ′

13 equal zero) or b31 = a13 and b′31 = a′13 (when µ13 = µ′
13 6= 0),

so that either η = 2θ and η′ = 2θ′ or η = π − 2θ and η′ = π − 2θ′. But then from the relation from
spherical trigonometry recalled above, since sin γjk 6= 0 for all j, k, we have cos η = cos η′, and since
η, η′ ∈ [0, π] we get η = η′, therefore θ = θ′.
Assume now that θ = θ′. Then, as in proposition 5.4.1, there exists a unitary map ψ ∈ U(2) such that
ψ(Lj) = L′

j for j = 1, 2, 3, so that meas(L′
2, L

′
3) = meas(L2, L3).

5.4.4 Two-dimensional unitary representations of π1(S
2\{s1, s2, s3})

The purpose of this subsection is twofold :

- to show that when C1, C2, C3 ⊂ U(2) are three conjugacy classes of the unitary group U(2) such that
HomC(π1(S

2\{s1, s2, s3}), U(2)) 6= ∅ (that is, when there exist two-dimensional unitary represen-
tations of π1(S

2\{s1, s2, s3}) with generators lying in the prescribed conjugacy classes) then there
exist two-dimensional Lagrangian representations for the same conjugacy classes (that is, there exist
three Lagrangian subspaces of C2 with prescribed angles (Lj , Lj+1) ∼ Cj).

- to determine, using Lagrangian representations, explicit necessary and sufficient conditions on such
C1, C2, C3 ⊂ U(2) for the representation space HomC(π1(S

2\{s1, s2, s3}), U(2)) to be non-empty.

The point of doing so is first to show that, in the very particular case where n = 2 and l = 3, we can prove
the existence of Lagrangian representations by elementary methods, whereas for the general case of a
compact Lie group (U, (. | )) and arbitrary l ≥ 1, we will need to prove a real convexity theorem for group-
valued momentum maps (see chapter 8). Second, the analysis of this particular situation will give a simple
and geometric interpretation of the conditions on C1, C2, C3 ⊂ U(2) for HomC(π1(S

2\{s1, s2, s3}), U(2)) to
be non-empty, using spherical geometry and the results of subsection 5.4.2. This result is to be compared
with other answers to this question given for instance in [JW92], [Gal97] and [Bis98]. In particular, in
[Gal97], Gallitzer deals with the case of an arbitrary l using spherical polygons.

Before entering the detailed statements and proofs, we would like to add one more comment. As it
turns out, we will prove that when n = 2 and l = 3, every (two-dimensional) unitary representation (of
π1(S

2\{s1, s2, s3})) is in fact Lagrangian. This is a very special case, as we will see in chapter 9, where
we will prove that the set of Lagrangian representations is actually a Lagrangian submanifold of the
representation space HomC(π, U)/U (in particular its dimension is half the dimension of the representation
space). To see why there is no contradiction in this, one has to notice that when n = 2 and l = 3, this
representation space is zero-dimensional and actually reduces to a point as it is connected. This was for
instance proved in [FW], where dimensions of representation spaces for U = U(n) and arbitrary choice of
conjugacy classes C1, . . . , Cl ⊂ U(n) were computed, and where the Lagrangian nature of decomposable
representations of π1(S

2\{s1, . . . , sl}) in U = U(n) was also proved (see also [HL03] and[HL04] for a
study of connected components of representation varieties). We now have the following result :

Proposition 5.4.11 (Every two-dimensional unitary representation of π1(S
2\{s1, s2, s3}) is

decomposable). Let u1, u2, u3 ∈ U(2) be three unitary 2×2 matrices satisfying u1u2u3 = 1. Then there
exist three Lagrangian subspaces L1, L2, L3 of C2 such that u1 = σ1σ2, u2 = σ2σ3 and u3 = σ3σ1, where
σj is the Lagrangian involution associated to Lj.

Proof. Denote by (ei2λj , ei2µj ) the eigenvalues of uj (where π > λj ≥ µj ≥ 0) and let (vj , wj) be a basis
of eigenvectors for uj : uj(vj) = ei2λjvj and uj(wj) = ei2µjwj . Let l1 be a great circle of CP1 ' S2

containing both [w1] and [w3] (such a great circle always exists). Define l3 to be unique great circle of
S2 such that l1 is the image of l3 by the rotation of angle λ3 − µ3 ∈ [0, π] around [w3] and choose a

90



5.4 CHAPTER 5

Lagrangian subspace of L1 ∈ p−1(l1) arbitrarily. Set L := Rv3 ⊕ Rw3. Since (v3, w3) is a unitary basis
of C2, we have that L is Lagrangian. Set l := p(L). Then [w3] ∈ l and consequently l1 is the image of

l by a rotation ψ̂ ∈ SO(3) around [w3] for some ψ ∈ SU(2). Set L′ = ψ(L). Then L′ is a Lagrangian

subspace of C2 and p(L′) = ψ̂(l) = l1. Therefore, by proposition 5.4.2, we have L1 = eiθ.L′ for some
θ ∈ [0, π[. Set v′3 := eiθv3 ∈ L1 and w′

3 := eiθw3 ∈ L1. Then (v′3, w
′
3) is an orthonormal basis of L1. Set

L3 := Reiλ3v′3 ⊕ Reiµ3w′
3 . Then L3 is Lagrangian (and one may check that, by proposition 5.4.2, p(L3)

is the image of p(L) = l1 by the rotation of angle (λ3 − µ3) around [w′
3] = [w3], so that p(L3) = l3).

Finally, denote by σj the Lagrangian involution associated to Lj for j = 1 and j = 3. Then :

σ3 ◦ σ1(v
′
3) = σ3(v

′
3)

= σ3(e
−iλ3eiλ3v′3)

= eiλ3σ3(e
iλ3v′3)

= ei2λ3v′3

so that σ3σ1(e
iθv3) = ei2λ3eiθv3 and therefore σ3σ1(v3) = ei2λ3v3 = u3(v3). Likewise, σ3σ1(w3) = u3(w3),

so that σ3σ1 = u3.
Now, set L0 := Rv1 ⊕ Rw1. As earlier, L0 is Lagrangian and we set l0 := p(L0). Then [w1] ∈ l0, so

that l1 is the image of l0 by a rotation ψ̂0 ∈ SO(3) around [w1], where ψ0 ∈ SU(2) is a special unitary

map having v1 and w1 as eigenvectors (since ψ̂0 is a rotation around [w1] = −[v1] ∈ R3) : ψ0(v1) = αv1
and ψ0(w1) = βw1 for some α, β ∈ S1 . Set L′

0 := Rαv1 ⊕ Rβw1 = ψ0(L0). Then L′
0 is a Lagrangian

subspace of C2 and p(L′
0) = ψ̂0(l0) = l1. But L1 ∈ p−1(l1) so that, by proposition 5.4.2, L1 = eiθ

′

L′
0 for

some θ′ ∈ [0, π[ . Set v′1 := eiθ
′

αv1 and w′
1 := eiθ

′

βw1 . Then (v′1, w
′
1) is an orthonormal basis of L1. Set

L2 := Re−iλ1v′1 ⊕ Re−iµ1w′
1. Then L2 is Lagrangian (and one may check that p(L2) is the image of l1

by the rotation of angle λ1 − µ1 around [w′
1] = [w1]). Finally, denote by σ2 the Lagrangian involution

associated to L2. Then one has :

σ1 ◦ σ2(v
′
1) = σ1σ2(e

iλ1e−iλ1v′1)

= σ1(e
−iλ1σ2(e

−iλ1v′1))

= σ1(e
−i2λ1v′1)

= ei2λ1σ1(v
′
1)

= ei2λ1v′1

so that σ1σ2(v1) = σ1σ2(e
−iθ′α−1v′1) = e−iθ

′

α−1σ1σ2(v
′
1) = e−iθ

′

α−1ei2λ1v′1 = ei2λ1v1 = u1(v1). Like-
wise, σ1σ2(w1) = u1(w1), so that σ1σ2 = u1. Therefore : σ2σ3 = (σ2σ1)(σ1σ3) = u−1

1 u−1
3 = u2 since

u1u2u3 = 1 .

Corollary 5.4.12 (Inequalities for n = 2 and l = 3). Let C1, C2, C3 ⊂ U(2) be three conjugacy classes
of the unitary group U(2) given by the respective eigenvalues (ei2λ1 , ei2µ1), (ei2λ2 , ei2µ2) and (ei2λ3 , ei2µ3),
where π ≥ λj ≥ µj ≥ 0 . Set

δ := (λ1 + µ1) + (λ2 + µ2) + (λ3 + µ3)

as well as
αj := λj − µj ∈ [0, π] and βj := π − αj ∈ [0, π]

Then, there exist three unitary matrices u1, u2, u3 ∈ C1 × C2 × C3 satisfying u1u2u3 = 1 if and only if :

δ ≡ π (mod 2π) and (α1, α2, α3) ∈ ∆
or

δ ≡ 0 (mod 2π) and (β1, β2, β3) ∈ ∆

where ∆ is the tetrahedron defined in 5.4.2.1 (see figure 5.3).
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Proof. By proposition 5.4.11, there exist three 2 × 2 unitary matrices u1, u2, u3 ∈ U(2) satisfying uj ∈
Cj and u1u2u3 = 1 if and only if there exist three Lagrangian subspaces L1, L2, L3 of C2 satisfying
σjσj+1 ∈ Cj, where σj is the Lagrangian involution associated to Lj for j = 1, 2, 3 and where σ4 := σ1.
By proposition 5.4.6, such a triple exists if and only if :

δ ≡ π (mod 2π) and (α1, α2, α3) ∈ ∆
or

δ ≡ 0 (mod 2π) and (β1, β2, β3) ∈ ∆

This result provides a set of necessary and sufficient conditions for HomC(π1(S
2\{s1, s2, s3}), U(2)) to be

non-empty. These conditions are linear inequalities to be satisfied by the arguments of the eigenvalues
defining the conjugacy classes C1, C2, C3 ⊂ U(2). They had already been obtained by Jeffrey and Weitsman
in [JW92], by Gallitzer in [Gal97] and by Biswas in [Bis98], among others. For the case of arbitrary l
and n, we refer for instance to [AW98, Bel01].

5.5 Angles of Lagrangian subspaces and computation of the in-

ertia index of a Lagrangian triple

In this section, we give a formula to compute the inertia index τ(L1, L2, L3) of a triple (L1, L2, L3) of
Lagrangian subspaces of a Hermitian vector space (see proposition 5.5.10). This formula relates the index
to the measures of the angles (L1, L2), (L2, L3) and (L3, L1), as defined in section 5.3. The point of doing
this is to show how the additional structure provided in this case by a compatible complex structure gives
a new description of the symplectic invariant τ(L1, L2, L3) .

5.5.1 Basic properties of the inertia index

In contrast with the corresponding situation for pairs of Lagrangian subspaces, the orbit of a triple
(L1, L2, L3) of Lagrangian subspaces of a 2n-dimensional symplectic vector space (V, ω) under the diagonal
action of the symplectic group Sp(V ) is not characterized by the integers n12 = dim (L1 ∩ L2), n23 =
dim (L2 ∩ L3), n31 = dim (L3 ∩ L1) and n0 = dim (L1 ∩ L2 ∩ L3), which are invariants of this action. To
classify the orbits, one introduces the notion of inertia index (sometimes called Maslov index, or simply
index, or signature) of a Lagrangian triple (L1, L2, L3). For the following definition and properties of the
inertia index, we refer to [KS90], pp.486 sqq (see also [LM87], [LV80] and [Sou76]).

Definition 5.5.1 (Inertia index). The inertia index of the Lagrangian triple (L1, L2, L3), denoted
by τ(L1, L2, L3), is the signature of the quadratic form q defined on the 3n-dimensional vector space
L1 × L2 × L3 by : q(x1, x2, x3) = ω(x1, x2) + ω(x2, x3) + ω(x3, x1).

In a suitable basis of L1 × L2 × L3, one can represent q by a diagonal matrix whose entries consist of
r terms equal to +1, s terms equal to −1 and 3n − r − s terms equal to 0, the integers r and s being
independent from the choice of the basis. What is called signature of q here, and denoted by sgn(q), is
the integer sgn(q) := r − s. From the definition, we see that for any symplectic map ψ ∈ Sp(n), we have
τ(ψ(L1), ψ(L2), ψ(L3)) = τ(L1, L2, L3). We summarize here some of the properties of the inertia index
that we will need in the following.

Proposition 5.5.2 ([KS90]). The inertia index has the following properties :

(i) τ(L1, L2, L3) ≡ n− (n12 + n23 + n31) (mod 2Z)

(ii) |τ(L1, L2, L3)| ≤ n+ 2n0 − (n12 + n23 + n31)
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We may now state the theorem of symplectic classification of triples of Lagrangian subspaces of (V, ω),
which is due to Kashiwara. For d = (n0, n12, n23, n31, τ) ∈ N4 × Z, we set :

Od =





(L1, L2, L3) ∈ L(V ) × L(V ) × L(V ) |

dim (L1 ∩ L2 ∩ L3) = n0,
dim (L1 ∩ L2) = n12,
dim (L2 ∩ L3) = n23,
dim (L3 ∩ L1) = n31,
τ(L1, L2, L3) = τ





Proposition 5.5.3 (Symplectic classification of Lagrangian triples, [KS90], p.493)). Od is
non-empty if and only if d = (n0, n12, n23, n31, τ) satisfies the conditions:

(i) 0 ≤ n0 ≤ n1, n2, n3 ≤ n
(ii) n12 + n23 + n31 ≤ n+ 2n0

(iii) |τ | ≤ n+ 2n0 − (n12 + n23 + n31)
(iv) τ ≡ n− (n12 + n23 + n31) mod 2Z

If (L1, L2, L3) and (L′
1, L

′
2, L

′
3) are two triples of Lagrangian subspaces of V , there exists a symplectic

map ψ ∈ Sp(V ) such that ψ(L1) = L′
1, ψ(L2) = L′

2 and ψ(L3) = L′
3 if and only if n0 = n′

0, n12 = n′
12,

n23 = n′
23, n31 = n′

31 and τ = τ ′.

Thus, the diagonal action of Sp(V ) on L(V )×L(V )×L(V ) has only finitely many orbits and these orbits
are the Od, where d satisfies conditions (i) to (iv) of proposition 5.5.3. We now specialize to the case
where V = Cn, that is, we endow the symplectic vector space (V, ω) with a compatible complex structure
J and choose a unitary basis of (V, ω, J), and we show how in this context it is possible to compute the
inertia index of a triple (L1, L2, L3) from the angles (L1, L2), (L2, L3) and (L3, L1).

5.5.2 From angles to inertia index

We saw earlier (proposition 5.4.3) that the quantity δ = (λ12 + µ12) + (λ23 + µ23) + (λ31 + µ31) defined
for triples of Lagrangian subspaces of C2, satisfies δ ≡ 0 (mod π) and contains information about the
triple (L1, L2, L3). Namely, if δ ≡ 0 (mod 2π) the triple (L1, L2, L3) is positive (that is, setting ϕ =
ϕ31 ◦ ϕ23 ◦ ϕ12, we have detϕ = eiδ = 1 > 0), and if δ ≡ π (mod 2π) the triple is negative (that is
detϕ = eiδ = −1 < 0). The interest of that notion was that the triple (l1, l2, l3) of projective Lagrangians
of CP1 had same sign as (L1, L2, L3) : if δ ≡ 0 (mod 2π) the transformation ϕ̂ = ϕ̂31 ◦ ϕ̂23 ◦ ϕ̂12 of CP1

preserves a given orientation on l1 (the triple (l1, l2, l3) is then said to be positive), and if δ ≡ π (mod 2π)
then ϕ̂ reverses a given orientation (the triple (l1, l2, l3) is said to be negative), and this enabled us to
distinguish between positive and negative spherical triangles, which was essential in order to determine
the image of the map κ : (L(2) ×L(2) ×L(2))/U(2) → T2/S2 × T2/S2 × T2/S2. But δ can actually be
defined for a triple of Lagrangian subspaces of Cn for any integer n. Since σ2

Lj
= Id, we have, for such a

triple (L1, L2, L3), the following relation : (σL1 ◦σL3)◦(σL3 ◦σL2)◦(σL2 ◦σL1) = Id, and the determinant
of this unitary map is therefore of the form ei2δ with δ ≡ 0 (mod π). When n = 2, the eigenvalues of the
unitary map σLk

◦σLj
are ei2λjk and ei2µjk , so that we have indeed δ = (λ12+µ12)+(λ23+µ23)+(λ31+µ31).

In the following, we shall consider a triple (L1, L2, L3) of Lagrangian subspaces of Cn, for arbitrary n. We
shall denote the measures of the angles (L1, L2), (L2, L3) and (L3, L1) by meas(L1, L2) = [ei2α1 , . . ., ei2αn ],
meas(L2, L3) = [ei2β1 , . . ., ei2βn ] and meas(L3, L1) = [ei2γ1 , . . ., ei2γn ], where π > α1 ≥ . . . ≥ αn ≥ 0,
π > β1 ≥ . . . ≥ βn ≥ 0 and π > γ1 ≥ . . . ≥ γn ≥ 0. We then have δ =

∑n
j=1(αj +βj +γj), where ei2δ = 1

is the determinant of the unitary map (σL1 ◦σL3) ◦ (σL3 ◦σL2) ◦ (σL2 ◦σL1) = Id, so that δ ≡ 0 (mod π).
Since δ, which we shall also denote δ(L1, L2, L3) to avoid confusion, is defined by means of the measures
of the angles (Lj , Lk) (that is, up to permutation, the eigenvalues of the unitary maps σLk

◦ σLj
), δ is

invariant under the diagonal action of the unitary group U(n) on L(n) × L(n) × L(n) : if ϕ ∈ U(n),
then δ(ϕ(L1), ϕ(L2), ϕ(L3)) = δ(L1, L2, L3). We now study properties of δ and show that it is in fact a
symplectic invariant of (L1, L2, L3)
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Lemma 5.5.4. If c : t ∈ [0, 1] 7→ (L1(t), L2(t), L3(t)) ∈ L(n) × L(n) × L(n) is a continuous map such
that the dimensions njk(t) = dim (Lj(t)∩Lk(t)) of the pairwise intersections are constant functions of t,
then the map δ : t 7−→ δ(L1(t), L2(t), L3(t)) is a constant map.

Observe that this result is also true for the inertia index (see [KS90], pp.487-488).

Proof of lemma 5.5.4. Since the njk’s remain constant along the deformation, the non-zero αj(t), βj(t)
and γj(t) vary continuously. Therefore, δ(L1, L2, L3) varies continuously. As δ(t) ≡ 0 (mod π), δ is a
constant map.

Proposition 5.5.5. Let (L1, L2, L3) be a triple of Lagrangian subspaces of Cn and let ψ ∈ Sp(n) be a
symplectic map. Then δ(ψ(L1), ψ(L2), ψ(L3)) = δ(L1, L2, L3), that is : δ is a symplectic invariant.

Proof. Since the symplectic group is connected, there exists a continuous path t ∈ [0, 1] 7→ ψt ∈ Sp(n)
such that ψ0 = Id and ψ1 = ψ. For all t ∈ [0, 1], set Lj(t) = ψt(Lj) for j = 1, 2, 3. As ψt is invertible,
n12(t), n23(t) and n31(t) are constant, and, by lemma 5.5.4, so is δ(t), so that δ(ψ(L1), ψ(L2), ψ(L3)) =
δ(1) = δ(0) = δ(L1, L2, L3).

Since we now know that δ is a symplectic invariant of the triple (L1, L2, L3), it is natural to try and
relate it to the inertia index τ . To be able to do so, we need to learn to compute δ for a particular class
of Lagrangian triples called exceptional triples :

Definition 5.5.6. A triple (L1, L2, L3) of Lagrangian subspaces of Cn is said to be an exceptional triple
if the unitary maps ϕ12 and ϕ13 (defined as in proposition 5.3.5) have the same eigenspaces.

As can be seen from the case n = 2, a triple (L1, L2, L3) is generically not exceptional (since being
exceptional in this case requires either that ϕ12 and ϕ13 have non-distinct eigenvalues or, in the notation
of proposition 5.4.1, that θ ≡ 0 (mod π

2 )), which justifies the terminology. Exceptional Lagrangian triples
of C2 project to triples (l1, l2, l3) of great circles of S2 which have at least one common diameter (the
angles between any two of them may have measure 0, see figures 5.4 and 5.5).
The interest of the notion of exceptional Lagrangian triple is first that we know how to compute δ for
those triples (and we shall soon see that the inertia index is computed very similarly for such triples,
see lemmas 5.5.7 and 5.5.8), and second that every Lagrangian triple is symplectically equivalent to an
exceptional triple (which then has same δ, see proposition 5.5.9).

Lemma 5.5.7. Let (L1, L2, L3) be an exceptional triple of Lagrangian subspaces of Cn. Denote by
(u1, . . . , un) an orthonormal basis of L1 formed of eigenvectors of ϕ12 : ϕ12(uk) = eiαkuk, where
[ei2α1 , . . ., ei2αn ] = meas(L1, L2). For all k, set C(k) := Cuk, d

k
1 := L1 ∩ C(k), dk2 := L2 ∩ C(k) and

dk3 := L3∩C(k). Then dk1 , d
k
2 and dk3 are real lines of C(k) and, if one denotes by meas(dk1 , d

k
2), meas(d2

k, d
3
k)

and meas(dk3 , d
k
1) ∈ [0, π[ the measures of the oriented angles (dk1 , d

k
2), (dk2 , d

k
3) and (dk3 , d

k
1) in C(k), one

has :

δ(L1, L2, L3) =
n∑

k=1

(
meas(dk1 , d

k
2) + meas(d2

k, d
3
k) + meas(dk3 , d

k
1)
)

Proof. Set meas(L1, L3) = [ei2ε1 , . . ., ei2εn ]. Observe first that L1 intersects the complex line C(k) = Cuk
because uk ∈ L1. Since (u1, . . . , un) is a basis of L1 formed of eigenvectors of ϕ12, and since ϕ12 and
ϕ13 have the same eigenspaces, there exists a permutation g ∈ Sn such that, for all k ∈ {1, . . ., n},
ϕ13(uk) = eiεg(k)uk ∈ L3. Therefore, we have eiαkuk ∈ L2 and eiεkuk ∈ L3, so that C(k) also intersects
both L2 and L3. But if u ∈ Cn\{0} is contained in a Lagrangian subspace L of Cn then L ∩ Cu = Ru.
Indeed, if v ∈ L ∩ Cu then v = λu + µJu with λ, µ ∈ R, and since L is Lagrangian ω(u, v) = 0. But
ω(u, v) = λω(u, u) + µω(u, Ju) = µg(u, u) with g(u, u) 6= 0, therefore v = λu ∈ Ru. Therefore, since
ϕ12(uk) = eiαkuk ∈ L2, we have dk1 = L1 ∩ Cuk = Ruk and d2

k = L2 ∩ Cuk = R(eiαkuk) = eiαkdk1 , hence
meas(dk1 , d

k
2) = αk ∈ [0, π[. Likewise, since eiεg(k)uk ∈ L3, we have dk3 = eiεg(k)dk1 , so that meas(dk1 , d

k
3) =

εg(k), hence, setting ξk = π − εg(k) mod π, meas(dk3 , d
k
1) = ξk ∈ [0, π[. Setting wk = eiεg(k)uk ∈ L3,

we have eiξkwk = ±ei(π−εg(k))wk = ±uk ∈ L1. The (eiξk ) therefore are the roots of the characteristic
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polynomial P (L3, L1) of the pair (L3, L1), hence [ei2xi1 , . . ., ei2ξn ] = meas(L3, L1) = [ei2γ1 , . . ., ei2γn ], and
since ξk, γk ∈ [0, π[, there exists a permutation g3 ∈ Sn such that, for all k, ξk = γg3(k). Similarly,

setting vk = eiαkuk ∈ L2 and ζk = (εg(k) − αk) mod π, we have eiζkvk = ±eiεg(k)uk ∈ L1, hence

[ei2ζ1 , . . ., ei2ζn ] = meas(L2, L3) = [ei2β1 , . . ., ei2βn ], and since ζk, βk ∈ [0, π[, there exists g2 ∈ Sn such
that, for all k, ζk = βg2(k). Furthermore, since dk2 = Rvk and dk3 = Reiεg(k)uk = Reiζkvk, we have

meas(d2
k, d

k
3) = ζk. Hence :

n∑

k=1

(meas(dk1 , d
k
2) + meas(dk2 , d

k
3) + meas(dk3 , d

k
1)) =

n∑

k=1

αk +
n∑

k=1

ζk +
n∑

k=1

ξk

=

n∑

k=1

αk +

n∑

k=1

βg2(k) +

n∑

k=1

γg3(k)

=
n∑

k=1

(αk + βk + γk)

= δ(L1, L2, L3)

Lemma 5.5.8. Let (L1, L2, L3) be an exceptional triple of Lagrangian subspaces of Cn. Define dk1 , d
k
2 , d

k
3

as in lemma 5.5.7 for k = 1, . . ., n. Let τk be the inertia index of the Lagrangian triple (dk1 , d
k
2 , d

k
3) in the

complex line C(k). Then τ(L1, L2, L3) =
∑n

k=1 τk.

Proof. Since, with the notations introduced in lemma 5.5.7, we have L1 = d1
1⊕· · ·⊕d1

n, L2 = d2
1⊕· · ·⊕d2

n

and L3 = d3
1⊕· · ·⊕d3

n, and since Cn = C(1)⊕· · ·⊕C(n) is the symplectic direct sum of the C(k), dk1 , d
k
2 , d

k
3

being Lagrangian in the symplectic space C(k), we have, by definition of the index, τ(L1, L2, L3) =∑n
k=1 τ(d

k
1 , d

k
2 , d

k
3) =

∑n
k=1 τk.

Proposition 5.5.9. Let (L1, L2, L3) be a triple of Lagrangian subspaces of Cn. Then there exists an
exceptional triple (L′

1, L
′
2, L

′
3) and a symplectic map ψ ∈ Sp(n) such that L′

j = ψ(Lj) for j = 1, 2, 3. In
particular, by proposition 5.5.5, δ(L1, L2, L3) = δ(L′

1, L
′
2, L

′
3).

This means that each orbit Od of the diagonal action of the symplectic group Sp(n) on L(n)×L(n)×L(n)
contains at least one exceptional triple.

Proof of proposition 5.5.9. Set τ = τ(L1, L2, L3). We are now going to construct an exceptional triple
(L′

1, L
′
2, L

′
3) such that τ(L′

1, L
′
2, L

′
3) = τ , and such that dim (L′

1 ∩ L′
2 ∩ L′

3) = dim (L1 ∩ L2 ∩ L3) and
dim (L′

j ∩ L′
k) = dim (Lj ∩ Lk) for all j, k. By theorem 5.5.3, there will then exist a symplectic map

ψ ∈ Sp(n) such that ψ(Lj) = L′
j for j = 1, 2, 3.

As earlier, set n0 = dim (L1 ∩ L2 ∩ L3), njk = dim (Lj ∩ Lk). Recall that n12 + n23 + n31 ≤ n + 2n0.
Let (u1, . . . , un) be the standard basis of Cn over C and let L′

1 be the Lagrangian subspace L′
1 =

Ru1 ⊕ · · · ⊕ Run.

- for k ∈ {1, . . ., n0}, set vk = wk = uk

- for k ∈ {n0 + 1, . . ., n12}, set vk = uk and wk = ei
π
4 uk

- for k ∈ {n12 + 1, . . ., n12 + n23 − n0}, set vk = wk = ei
π
2 uk

- for k ∈ {n12 + n23 − n0 + 1, . . ., n12 + n23 + n31 + 2n0}, set wk = uk and vk = ei
π
2 uk

Since |τ | ≤ n+2n0− (n12 +n23 +n31) and τ ≡ n− (n12 +n23 +n31) mod 2Z, τ can be written as a sum

τ =

n∑

k=n12+n23+n31−2n0+1

τk

of n+ 2n0 − (n12 + n23 + n31) summands τk = ±1. One then has :
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- for k such that τk = −1, set vk = ei
π
2 uk and wk = ei

π
4 uk

- for k such that τk = 1, set vk = ei
π
2 uk and wk = ei

3π
4 uk

Now set, for all k, dk1 = Ruk, d
k
2 = Rvk, and dk3 = Rwk. Then L′

1 = d1
1 ⊕ · · · ⊕ dn1 and we set

L′
2 = d1

2 ⊕ · · · ⊕ dn2 and L′
3 = d1

3 ⊕ · · · ⊕ dn3 . Since (v1, . . . , vn) and (w1, . . ., wn) are unitary bases of Cn

over C, L′
2 and L′

3 are Lagrangian. By construction, dim (L′
1 ∩ L′

2 ∩ L′
3) = n0 and dim (L′

j ∩ L′
k) = njk

for all j, k. For all k, set τ ′k = τ(dk1 , d
k
2 , d

k
3). For k ∈ {1, . . ., n12 + n23 + n31 − 2n0} there are always

two non-distinct Lagrangians among the dkj , so that τ ′k = 0. For k ∈ {n12 + n23 + n31 − 2n0 + 1, . . ., n},
we have by construction τ ′k = τk, with τk defined as above. Since, for all k, there exist αk ∈ [0, π[ and
εk ∈ [0, π[ such that eiαkuk ∈ L′

2 and eiεkuk ∈ L′
3, each uk is an eigenvector of both ϕ12 and ϕ13 and

since (u1, . . . , un) is a basis of L1, these unitary maps have the same eigenspaces up to permutation, so
that (L′

1, L
′
2, L

′
3) is an exceptional triple. Therefore, by lemma 5.5.8 :

τ(L′
1, L

′
2, L

′
3) =

n∑

k=1

τ ′k =
n∑

k=n12+n23+n31−2n0+1

τk = τ

This completes the proof, as indicated above.

Incidentally, we have proved that Od is non-empty when d satisfies the conditions of proposition 5.5.3.

We now have all the material that we need to relate δ to τ and show that the inertia index can be
computed from the measures of the Lagrangian angles (L1, L2), (L2, L3) and (L3, L1), that is, from the
eigenvalues of the unitary maps σLk

◦ σLj
, where σLj

is the Lagrangian involution associated to Lj.

Proposition 5.5.10. Let (L1, L2, L3) be a triple of Lagrangian subspaces of Cn, and set njk = dim (Lj ∩
Lk), τ = τ(L1, L2, L3) and δ = δ(L1, L2, L3). Then :

τ = 3n− 2δ

π
− (n12 + n23 + n31)

In particular, when Lj ∩ Lk = {0} for all j, k, one has :

τ = 3n− 2δ

π

Proof. By proposition 5.5.9, there exists a symplectic map ψ ∈ Sp(n) such that (ψ(L1), ψ(L2), ψ(L3))
is an exceptional triple. Since such a transformation leaves τ , δ and the njk invariant, we may assume
that (L1, L2, L3) is itself exceptional. Let us recall the notations meas(L1, L2) = [ei2α1 , . . ., ei2αn ] and
meas(L1, L3) = [ei2ε1 , . . ., ei2εn ], where π > α1 ≥ . . . ≥ αn ≥ 0 and π > ε1 ≥ . . . ≥ εn ≥ 0. Then,
since (L1, L2, L3) is exceptional, there exists an orthonormal basis (u1, . . . , un) of L1 and a permutation
g ∈ Sn such that (eiα1u1, . . ., e

iαnun) is an orthonormal basis of L2 and (eiε1ug(1), . . ., e
iεnug(n)) is an

orthonormal basis of L3. By abandoning the condition π > ε1 ≥ . . . ≥ εn ≥ 0, we may suppose that
g = Id. Set dk1 = Ruk, d

k
2 = eiαkdk1 , dk3 = eiεkdk1 , and τk = τ(dk1 , d

k
2 , d

k
3) in the symplectic space Cuk.

Set δk = meas(dk1 , d
k
2) + meas(dk2 , d

k
3) + meas(dk3 , d

k
1) and set, as in lemma 5.5.7, ζk = (εk − αk) mod π

and ξk = (π − εk) mod π, so that δk = αk + ζk + ξk. Observe that δk = δ(dk1 , d
k
2 , d

k
3) in the symplectic

space Cuk. In particular, this implies that δk ≡ 0 mod π. If dk1 = dk2 = dk3 , which happens n0 times,
then τk = 0 and δk = 0. If either dk1 = dk2 6= dk3 or dk2 = dk3 6= dk1 or dk3 = dk1 6= dk2 , which happens
(n12 − n0) + (n23 − n0) + (n31 − n0) times, then τk = 0 and 0 < δk = αk + ζk + ξk < 2π (since one of
these numbers is 0 and since all of them are < π and two of them are non-zero), but δk ≡ 0 mod π so
δk = π. If dk1 6= dk2 6= dk3 6= dk1 , which happens n+ 2n0 − (n12 + n23 + n31) times, then either τk = 1 and
δk = π or τk = −1 and δk = 2π, so that τk = 3 − 2δk

π
(see figure 5.7). To sum up :

number of occurences δ τ
n0 0 0

(n12 − n0) + (n23 − n0) + (n31 − n0) δk = π 0

n+ 2n0 − (n12 + n23 + n31) δk = ±1 3 − 2δk

π
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d1

d2

d3

τ = 1 and δ = π

d1

d2

d3

τ = −1 and δ = 2π

Figure 5.7: Relation between δ and τ for exceptional triples of Lagrangians

Since (L1, L2, L3) is an exceptional triple, we have, by proposition 5.5.7, δ =
∑n

k=1 δk. Likewise, τ =∑n
k=1 τk, so that we have :

τ =

n+2n0−(n12+n23+n31)∑

k=1

(3 − 2δk
π

)

= 3(n+ 2n0 − (n12 + n23 + n31)) −
2

π

n+2n0−(n12+n23+n31)∑

k=1

δk

= 3(n+ 2n0 − (n12 + n23 + n31)) −
2

π
(δ − π((n12 − n0) + (n23 − n0) + (n31 − n0)))

= 3n− 2δ

π
− (n12 + n23 + n31)
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Chapter 6

Decomposable representations of

π1(S
2\{s1, . . . , sl}) as fixed-point set

of an involution

Contents

6.1 The infinitesimal picture and the momentum map approach . . . . . . . . 100

6.2 The centered Lagrangian problem . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Complexification of the centered Lagrangian problem . . . . . . . . . . . . 101

6.4 Equivalence between the complexification of the centered Lagrangian pro-

blem and the unitary problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Seeing the Lagrangian problem as a real version of the unitary problem . 106

6.6 The set of σ0-decomposable representations . . . . . . . . . . . . . . . . . . 110

In this chapter, we obtain a characterization of decomposable representations of the fundamental
group π = π1(S

2\{s1, . . . , sl}) in terms of the fixed-point set of an involution β defined on the quasi-
Hamiltonian space C1 × · · · × Cl. More precisely, we show that the σ0-decomposable representations
(u1, . . . , ul) ∈ C1 × · · · × Cl introduced in definition 5.2.1 are exactly the elements of the fixed-point set
of an involution β. This enables us to characterize all decomposable representations in terms of β : they
are the elements u = (u1, . . . , ul) ∈ HomC(π, U) satisfying β(u) ∼ u as representations of π.

To understand why an involution comes into play here, we use the geometric intuition on Lagrangian
involutions acquired in chapter 5. Indeed, by continuing to use the Lie group U = U(n) as a prototype,
we formulate an infinitesimal version of the problem of knowing whether or not a given representation is
decomposable (or in this case, Lagrangian, see definition 5.1.5). This will give us insight on why decom-
posable representations should be characterized using involutions, and even on why such an involution
should induce an anti-symplectic involution on the moduli space MC = HomC(π, U)/U , as we shall see
eventually in chapters 7 and 9.

The first five sections explain how these results (in particular the involution β) were obtained, but
may be skipped if one wants to go straight to the characterization results of propositions 6.6.2 and 6.6.5,
whose proofs may be read without knowledge of the previous sections.

Despite its relative short length, this chapter is really the core of this thesis work, around which
everything else revolves, the key step being to find the involution β. The results obtained here and in
chapter 9 were accepted for publication in [Sch06].
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6.1 The infinitesimal picture and the momentum map approach

Let us recall our problem : given l unitary matrices u1, . . . , ul ∈ U(n) satisfying uj ∈ Cj and u1 . . . uj = 1,
do there exist l Lagrangian subspaces L1, . . . , Ll of Cn such that σjσj+1 = uj (where σj is the Lagrangian
involution associated with Lj and σl+1 = σ1) ? As was shown in proposition 5.3.10, the condition
σjσj+1 ∈ Cj, which lies on the spectrum of the unitary map σjσj+1, can be interpreted geometrically as
the measure of an angle between Lagrangian subspaces. The Lagrangian problem above can therefore be
thought of as a configuration problem in the Lagrangian Grassmannian L(n) of Cn : given eigenvalues
exp(iλj), λj ∈ Rn, do there exist l Lagrangian subspaces L1, . . . , Ll such that measure(Lj, Lj+1) =
exp(iλj) ? Under this geometrical form, the Lagrangian problem is slightly more general than our original
representation theory problem. It is very much linked to the unitary problem studied for instance in
[JW92, Gal97, Bis98, AW98, KM99, Bis99, Bel01], which is the following : given λj ∈ Rn, do there
exist l unitary matrices u1, . . . , ul satisfying Specuj = exp(iλj) and u1 . . . ul = 1 ? In fact, a solution
(L1, . . . , Ll) to the Lagrangian problem (second version) provides a solution uj = σjσj+1 to the unitary
problem.

The fact that the unitary problem admits a symplectic description (see for instance [AW98]) was our
first motivation to study the Lagrangian problem from a symplectic point of view. The second motivation
is derived from the above-given geometrical formulation of the problem. To better understand this, let us
try and formulate an infinitesimal version of the Lagrangian problem. Take three Lagrangian subspaces
L1, L2, L3 close enough so that we can think of these points in L(n) as tangent vectors to L(n) at some
point L0 representing the center of mass of L1, L2, L3. Tangent vectors to the Lagrangian Grassmannian
are identified with real symmetric matrices S1, S2, S3 and the center of mass condition then turns into
S1+S2+S3 = 0. It seems reasonable in this context to translate the angle condition measure(Lj , Lj+1) =
exp(iλj) (that is, Specσjσj+1 = exp(iλj)) into the spectral condition SpecSj = λj ∈ Rn. We then
recognize a real version (replacing complex Hermitian matrices with real symmetric ones) of a famous
problem in mathematics (see [Ful98] for a review of this problem and those related to it) : given λj ∈ Rn,
do there exist Hermitian matricesH1, H2, H3 such that SpecHj = λj andH1+H2+H3 = 0 ? In fact, these
last two problems are equivalent (meaning that, for given (λj)j , one of them has a solution if and only if
the other one does) and this can be shown in a purely symplectic framework (see [AMW01] and section
6.5) using momentum maps to translate the condition H1 +H2 +H3 = 0 into (H1, H2, H3) ∈ µ−1({0}).
Therefrom, it seems promising to try to think of the Lagrangian problem as a real version, in a sense that
will be made precise in section 6.5, of the unitary problem (since a solution to the Lagrangian problem
provides an obvious solution to the unitary problem). We shall come back to the infinitesimal picture
later on in this work (see section 9.2), and formalize further the analogy between the Lagrangian problem
and the symmetric problem (that is, the real version of the Hermitian problem above).

6.2 The centered Lagrangian problem

As a consequence of the above infinitesimal picture, we replace our Lagrangian problem with a centered
problem, meaning that instead of measuring the angles (Lj, Lj+1), we measure the angles (L0, Lj) where
L0 is the horizontal Lagrangian L0 = Rn ⊂ Cn (playing the role of an origin in L(n)). Recall from
chapter 5 (proposition 5.3.10) that this angle is measured by the spectrum of σ0σj = utjuj , where uj
is any unitary map sending Lj to L0 (see proposition 5.1.3 for this last statement). We then ask the
following question, which we will call the centered Lagrangian problem :

given l conjugacy classes C1, . . . , Cl ⊂ U(n), does there exist l unitary matrices u1, . . . , ul such
that utjuj ∈ Cj and u1 . . . ul = 1 ?

The main observation here is then to see that the condition Specutu = exp(iλ), for some λ ∈ Rn (that
is, utu lies in some fixed conjugacy class of U(n)) means that u belongs to a fixed orbit of the action of
O(n) × O(n) on U(n) given by (k1, k2).u = k1uk

−1
2 , as is shown by the following result :
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Lemma 6.2.1. For any u, v ∈ U(n), Specutu = Spec vtv if and only if there exists (k1, k2) ∈ O(n)×O(n)
such that v = k1uk

−1
2 .

Proof. Take u, v ∈ U(n) and suppose that Specutu = Spec vtv and set ∆u := utu and ∆v = vtv. Then,
∆u and ∆v are symmetric unitary matrices with the same spectrum so that, by proposition 5.1.3 (and
the fact that the entries of a diagonal matrix can be permuted by conjugating by an appropriate SO(n)
element, see lemma 3.2.4), there exist orthogonal matrices k1, k2 ∈ O(n) such that k1∆uk

−1
1 = k2∆vk

−1
2

is a diagonal unitary matrix. Now denote by
√

∆u (resp.
√

∆v) any symmetric unitary matrix satisfying
(
√

∆u)
2 = ∆u (resp. (

√
∆v)

2 = ∆v). Such matrices always exist since k1∆uk
−1
1 is diagonal and is

therefore the exponential of i times some real symmetric matrix : for instance k1∆uk
−1
1 = exp(iS) where

S = diag(λ1, . . . , λn) is a real diagonal matrix, and we set
√

∆u := k−1
1 exp(iS2 )k1, which is unitary and

symmetric. Since k1∆uk
−1
1 = k2∆vk

−1
2 , we then have

√
∆v = k

√
∆uk

−1 for k := k−1
2 k1 ∈ O(n). Set now

ku := u(
√

∆u)
−1 and kv := u(

√
∆v)

−1. Then it is immediate that ktuku = 1 and ktvkv = 1, and we then
have :

v = kv
√

∆v = kvk
√

∆uk
−1 = (kvkk

−1
u )ku

√
∆uk

−1 = (kvkk
−1
u )︸ ︷︷ ︸

∈O(n)

u k−1
︸︷︷︸
∈O(n)

The converse implication is obvious.

Remark 6.2.2 (Another proof of lemma 6.2.1, using Lagrangian subspaces). The proof of
lemma 6.2.1 is directly modelled on the proof of proposition 3.2.7. However, we can take advantage of
the fact that we are working with the unitary group to write a proof which is different in spirit. To
prove the non-obvious implication, set, as in proposition 5.1.3, L = u−1(L0) and L′ = v−1(L0). Then
one has utu = σL0σL and vtv = σL0σL′ . Assuming that Specutu = Spec vtv, proposition 5.3.10 then
shows that there exists ψ ∈ U(n) such that ψ(L0) = L0 and ψ(L) = L′. Since ψ(L0) = L0, one actually
has ψ ∈ Stab(L0) = O(n) and we set k2 := ψ. Then L0 = v(L′) = vk2(L) = vk2u

−1(L0), and therefore
k1 := vk2u

−1 ∈ Stab(L0) = O(n), hence v = k1uk
−1
2 with k1, k2 ∈ O(n).

Since we think of the above problem as a real version of some complex problem, we now wish to find this
complex version, which is done by abstracting a bit our situation to put it in the appropriate framework,
which turns out to be adopting a Lie-theoretic viewpoint.

6.3 Complexification of the centered Lagrangian problem

Let us formulate the centered Lagrangian problem in greater generality. For everything regarding the
theory of Lie groups and symmetric spaces, especially regarding real forms and duality, we refer to [Hel01]
(see also [Loo69b] and chapter 3).

We start with a real Lie group H . Let G = HC be its complexification and let τ be the Cartan
involution on G associated to H , that is to say, the involutive automorphism of G such that Fix(τ) = H .
Let U be a compact connected real form of G such that the associated Cartan involution θ satisfies
θτ = τθ. Such a compact group always exists and is stable under τ . The group H is then stable under θ
and U andH are said to be dual to each other (whenH is non-compact, they indeed define dual symmetric
spaces U/(U∩H) andH/(U∩H)). Moreover, because of the fact that τ is the Cartan involution associated
to the non-compact dual H of U , the compact connected group U contains a maximal torus T such that
τ(t) = t−1 for all t ∈ T ((U, τ) is said to be of maximal rank, see proposition 3.2.3). Let K := U ∩H .
Then K = Fix(τ |U ) ⊂ U and K = Fix(θ|H) ⊂ H . We consider the action of K × K on U given by
(k1, k2).u = k1uk

−1
2 . Notice that if H is compact to start with, then K = U = H and the above action

defines congruence in U . As for us though, we are interested in the case where H is non-compact. For
H = Gl(n,R), we have U = U(n) and K = O(n), and we are then led to asking the following question,
which is the abstract formulation of our centered Lagrangian problem : given l orbits D1, . . . ,Dl of the
action of K×K on U , do there exist u1, . . . , ul ∈ U such that uj ∈ Dj and u1 . . . ul = 1 ? This is a typical
Lie theory problem (see for instance [EL05]), the goal being to find necessary and sufficient conditions
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on the Dj for this question to admit a positive answer. Observe that, as a generalization of lemma 6.2.1,
these orbits are in one-to-one correspondence with the conjugacy classes in U of elements of the form
τ−(u)u, where u is any element in a given orbit D and τ−(u) = τ(u−1). Indeed, this was recalled in
proposition 3.2.7 : given two elements u, v ∈ U , there exists (k1, k2) ∈ K ×K such that v = k1uk

−1
2 if

and only if τ−(v)v and τ−(u)u lie in a same conjugacy class of U .

Now, to find the complex version of our problem, we apply the same construction to the complex Lie
group G = HC viewed as a real Lie group. Then GC = G × G is the complexification of G and
Ũ = U × U ⊂ G × G = GC is a compact real form of GC. Its non-compact dual (which needs to be

a subgroup of GC = G × G) is then H̃ = {(g, θ(g)) : g ∈ G} ' G where θ is the Cartan involution

associated to U . The Cartan involution associated to Ũ is θ̃ : (g1, g2) ∈ G̃ 7→ (θ(g1), θ(g2)) and the

Cartan involution associated to H̃ is τ̃ : (g1, g2) 7→ (θ(g2), θ(g1)). Indeed, Fix(θ̃) = Ũ , Fix(τ̃ ) = H̃ and

θ̃τ̃ = τ̃ θ̃. We then define :

K̃ := Ũ ∩ H̃
=

{(
g, θ(g)

)
| θ̃
(
g, θ(g)

)
=
(
g, θ(g)

)}

=
{(
g, θ(g)

)
| θ(g) = g

}

=
{
(u, u) : u ∈ U

}

We will also use the notation U∆ := {(u, u) : u ∈ U} instead of K̃. We now consider the action of

K̃ × K̃ = U∆ × U∆ on Ũ = U × U defined by :
(
(u1, u1), (u2, u2)

)
.(u, v) = (u1uu

−1
2 , u1vu

−1
2 )

Our problem then states : given l orbits D̃1, . . . , D̃l of the above action, do there exist l pairs (u1, v1), . . . ,

(ul, vl) ∈ Ũ = U × U such that (uj , vj) ∈ D̃j and (u1, v1). . . . .(ul, vl) = 1, that is, u1 . . . ul = 1 and
v1 . . . vl = 1 ? We will call this problem the complexification of the centered Lagrangian problem.

Before passing on to the next section, we wish to point out that if we consider the action of K ×K
not on U but rather on its dual H , then the orbits of this action are characterized by the singular
values (Sing h := Spec (θ−(h)h) where h ∈ H and θ−(h) = θ(h−1)) of any of their elements. As a
consequence, our (centered) Lagrangian problem appears as a compact version of the (real) Thompson
problem, replacing θ with τ in the latter to formulate the former (see [AMW01] and [EL05] for a proof
of the Thompson conjecture in the real case). To understand this better, we consider the simple original
case where H = Gl(n,R). Then U = U(n) and K = O(n). The O(n) × O(n)-orbits in Gl(n,R) are the
sets of matrices with fixed singular values :

O(n) ×O(n) . h0 = {h ∈ Gl(n,R) | Sing (h) = Sing (h0)}
= {h ∈ Gl(n,R) | Spec (hth) = Spec (ht0h0)}

Observe that ht0h0 is a positive definite real symmetric matrix, so that it is conjugate to a diagonal matrix
d = exp(λ) with λ ∈ Rn. The (real) Thompson problem then asks : given λ1, . . . , λl ∈ Rn, do there
exist l invertible matrices h1, . . . , hl ∈ Gl(n,R) such that Spec (htjhj) = exp(λj) and h1. . .hl = 1 ? Our
centered Lagrangian problem, as defined in section 6.2, asked : given λ1, . . . , λl ∈ Rn, do there exist l
invertible matrices u1, . . . , ul ∈ U(n) such that Spec (utjuj) = exp(iλj) and u1. . .ul = 1 ? We see here
that these two questions are formally the same, replacing the non-compact group H = Gl(n,R) by its
compact dual U = U(n), which is why we think of our problem as a compact version of the Thompson
problem. We shall come back upon this analogy in propositions 6.4.3 and 6.5.7. Further, if we consider
K̃ × K̃-orbits in H̃ instead of in Ũ , we obtain :

K̃ × K̃ .
(
g, θ(g)

)
=

{(
u1, u1

)(
g, θ(g)

)(
u−1

2 , u−1
2

)
: u1, u2 ∈ U

}

' {u1gu
−1
2 : u1, u2 ∈ U}
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since θ(uj) = uj. And once again these orbits are characterized by the singular values of g, Sing (g) :=

Spec (θ−(g)g). In other words, the map g ∈ H̃ 7→ θ−(g)g sends a K̃ × K̃-orbit in H̃ onto a conjugacy
class in G. If H = Gl(n,R), then G = Gl(n,C), Sing (g) := Spec (g∗g), and we have :

g = u1g0u
−1
2 for some (u1, u2) ∈ U(n) × U(n) if and only if Spec (g∗g) = Spec (g∗0g0)

As g∗0g0 is a positive definite Hermitian matrix, it is conjugate to some diagonal matrix exp(λ) with
λ ∈ Rn. The Thompson problem then asks : given λ1, . . . , λl ∈ Rn, do there exist l invertible matrices
g1, . . . , gl ∈ Gl(n,C) such that Spec (g∗j gj) = exp(λj) and g1. . .gl = 1 ? We then have a Thompson
problem for both Gl(n,C) and Gl(n,R), the latter being in fact a real version of the former in a sense
that will be made precise in section 6.5. For an explanation of this fact and further reference on the
Thompson problem and the Thompson conjecture, we refer to [Kly00], [AMW01] and [EL05], and we
recall the following result, first proved in [Kly00] and then proved using symplectic geometry in [AMW01] :

Proposition 6.3.1. [Kly00, AMW01] Consider λ1, . . . , λl ∈ Rn. Then the following statements are
equivalent :

(i) There exist l invertible complex matrices g1, . . . , gl ∈ Gl(n,C) such that :

Spec (g∗j gj) = exp(λj) and g1. . .gl = 1

(ii) There exist l complex Hermitian matrices H1, . . . Hl ∈ H(n) such that :

SpecHj = λj and H1 + · · · +Hl = 0

(iii) There exist l invertible real matrices h1, . . . , hl ∈ Gl(n,R) such that :

Spec (htjhj) = exp(λj) and h1. . .hl = 1

(iv) There exist l real symmetric matrices S1, . . . Sl ∈ S(n) such that :

SpecSj = λj and S1 + · · · + Sl = 0

The equivalence of (i) and (ii) is the Thompson conjecture, and the equivalence of (iii) and (iv) is the real
Thompson conjecture. We refer to [AMW01] to see how the equivalence of (ii) and (iv) relies on a real
convexity result on Lie-algebra-valued momentum maps. Statements (iii) and (iv) are real versions of
statements (i) and (ii) respectively, and we refer to section 6.5 for further comments on that terminology.
Observe in particular that statement (iv) corresponds to the infinitesimal version of our Lagrangian
problem (see section 6.1, and subsection 9.2). Finally, we refer to [Kly98] for necessary and sufficient
conditions on the λj for problem (ii) (and therefore any of the other three) to have a solution. These
conditions are linear inequalities satisfied by the λj .

We now wish to relate the complexification of our centered Lagrangian problem to another know
problem.

6.4 Equivalence between the complexification of the centered

Lagrangian problem and the unitary problem

From now on, the initial data is a compact connected Lie group U . For such a group, we can formulate :

- the centered Lagrangian problem (concerning K × K-orbits in U , where K = U ∩H with H the
non-compact dual of U).

- a complex version of this (concerning U∆ × U∆-orbits in U × U).
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- the unitary problem (concerning conjugacy classes in U).

We now claim that these last two problems are in fact equivalent, meaning that the first one has a solution
if and only if the second one does. To show that this is indeed the case, the main observation to make is
the following one :

Lemma 6.4.1. The map

η : U × U −→ U
(u, v) 7−→ u−1v

sends a U∆ ×U∆-orbit D̃ in U ×U onto a conjugacy class C in U , and if η(u′, v′) is conjugate to η(u, v)

in U then (u′, v′) and (u, v) lie in a same U∆ × U∆-orbit D̃ in U × U .

Proof. If (u, v) = (u1u0u
−1
2 , u1v0u

−1
2 ) then u−1v = u2(u

−1
0 v0)u

−1
2 so that η(D̃) ⊂ C where C is a well-

defined conjugacy class in U . Further, let (u, v) ∈ D̃ and take any w ∈ C. Then there exists u2 ∈ U such
that w = u2u

−1vu−1
2 so that :

(1, w) = (1, u2u
−1vu−1

2 ) =
(
(u2u

−1, u2u
−1), (u2, u2)

)
︸ ︷︷ ︸

∈U∆×U∆

.
(
u, v
)

︸ ︷︷ ︸
∈ eD

hence (1, w) ∈ D̃, therefore w = η(1, w) ∈ η(D̃). Likewise, if η(u′, v′) = u0η(u, v)u
−1
0 for some u0 ∈ U ,

then :

(u′, v′) ∼
U∆×U∆

(
1, (u′)−1v

)
=
(
1, u0(u

−1v)u−1
0

)
∼

U∆×U∆

(u, v)

We now have the following result, which says that the complexification of the centered Lagrangian
problem has a solution if and only if the unitary problem has a solution (that is, these two problems are
equivalent) :

Proposition 6.4.2. Let D̃1, . . . , D̃l be l orbits of U∆ × U∆ in U × U and let C1, . . . , Cl ⊂ U be the
corresponding conjugacy classes : Cj = η(D̃j). Then there exists

(
(u1, v1), . . . , (ul, vl)

)
∈ D̃1 × · · · × D̃l

such that u1 . . . ul = 1 and v1 . . . vl = 1 if and only if there exists (w1, . . . , wl) ∈ C1 × · · · × Cl such
that w1 . . . wl = 1.

Proof. Setting (uj, vj) := (1, wj) for every j, we see that the second condition implies the first one.

Conversely, assume that ((u1, v1), . . . , (ul, vl)) ∈ D̃1 × · · · × D̃l satisfy u1 . . . ul = 1 and v1 . . . vl = 1.
Then (u1 . . . ul)

−1v1 . . . vl = 1, hence u−1
l . . . u−1

2 (u−1
1 v1)v2 . . . vl = 1, with u−1

1 v1 ∈ C1. Hence :

u−1
l . . . u−1

2 (u−1
1 v1)u2 . . . ul︸ ︷︷ ︸

∈C1

u−1
l . . . u−1

3 (u−1
2 v2)u3 . . . ul︸ ︷︷ ︸

∈C2

. . . (u−1
l vl)︸ ︷︷ ︸
∈Cl

= 1

Setting w1 = u−1
l . . . u−1

2 (u−1
1 v1)u2 . . . ul, w2 = u−1

l . . . u−1
3 (u−1

2 v2)u3 . . . ul, . . . , and wl = u−1
l vl then

gives a solution (w1, . . . , wl) to the unitary problem.

In analogy with a result on double cosets of U(n) in Gl(n,C) (which are characterized by the singular
values Sing g = Spec (θ−(g)g) of any of their elements) and dressing orbits of U(n) in (U(n))∗ = {b ∈
Gl(n,C) | b is upper triangular and diag(b) ∈ (R∗+)n} appearing in [AMW01], the above proposition can

be formulated more precisely in the following way. Consider the action of U l on D̃1 × · · · × D̃l given by

(ϕ1, . . . , ϕl).
(
(u1, v1), . . . , (ul, vl)

)
=
(
ϕ1.(u1, v1).ϕ

−1
2︸ ︷︷ ︸

=(ϕ1u1ϕ
−1
2 ,ϕ1v1ϕ

−1
2 )

, ϕ2.(u2, v2).ϕ
−1
3 , . . . , ϕl.(ul, vl).ϕ

−1
1

)
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and the diagonal action of U on C1 × · · · × Cl : ϕ.(w1, . . . , wl) = (ϕw1ϕ
−1, . . . , ϕwlϕ

−1). These actions
respectively preserve the relations u1 . . . ul = v1 . . . vl = 1 and ω1 . . . ωl = 1. We may then define the
orbit spaces :

M eD :=
{(

(uj, vj)
)
j
∈ D̃1 × · · · × D̃l | u1 . . . ul = v1 . . . vl = 1

}/
U l

and :

MC =
{
(wj)j ∈ C1 × · · · × Cl | w1 . . . wl = 1

}/
U

And we then have :

Proposition 6.4.3. The map

η(l) : D̃1 × · · · × D̃l −→ C1 × · · · × Cl(
(u1, v1), . . . , (ul, vl)

)
7−→

(
u−1
l . . . u−1

2 (u−1
1 v1)u2 . . . ul, . . . , u

−1
l (u−1

l−1vl−1)ul, u
−1
l vl

)

induces a homeomorphism M eD ' MC.

Proof. First, observe that if u1. . .ul = v1. . .vl = 1 and wj = u−1
l . . .u−1

j+1(u
−1
j vj)uj+1. . .ul, then w1. . .wl =

(u1. . .ul)
−1v1. . .vl = 1. Second, the map η(l) sends a U l-orbit in D̃1×· · ·×D̃l into an orbit of the diagonal

action of U on C1 × · · · × Cl :

η(l)
(
(ϕ1, . . . , ϕl).

(
(u1, v1), . . . , (ul, vl)

))
= ϕ1.η

(l)
(
(u1, v1), . . . , (ul, vl)

)

so that we indeed have a map M eD → MC , that we shall still denote by η(l). Take now ((uj , vj))1≤j≤l and

((u′j , v
′
j))1≤j≤l in D̃1 × · · · × D̃l such that u1. . .ul = v1. . .vl = 1 and u′1. . .u

′
l = v′1. . .v

′
l = 1, and suppose

that there exists ϕ ∈ U such that :

η(l)
(
(u′j , v

′
j)
)

= ϕ.η(l)
(
(uj , vj)

)

Then for all j ∈ {1, . . . l} :

(u′l)
−1. . .(u′j+1)

−1
(
(u′j)

−1v′j
)
u′j+1. . .u

′
l = ϕ

(
u−1
l . . .u−1

j+1(u
−1
j vj)uj+1. . .ul

)
ϕ−1 (6.1)

Hence, using (6.1), we have for all j :

(u′j , v
′
j) =

(
(u′j , u

′
j), (1, 1)

)
.
(
1, (u′j)

−1v′j
)

=
(
(u′j , u

′
j), (1, 1)

)
.
(
1, (u′j+1. . .u

′
lϕu

−1
l . . .u−1

j+1)(u
−1
j vj)(u

′
j+1. . .u

′
lϕu

−1
l . . .u−1

j+1)
−1
)

=
((

(u′j . . .u
′
l)ϕ(uj . . .ul)

−1, . . .
)
,
(
(u′j+1. . .u

′
l)ϕ(uj+1. . .ul)

−1, . . .
))
.
(
uj, vj

)

So that, if we set ϕj := (u′j . . .u
′
l)ϕ(uj . . .ul)

−1, we have :

(
ϕ1, . . . , ϕl

)
.
(
(u1, v1), . . . , (ul, vl)

)
=
(
(u′1, v

′
1), . . . , (u

′
l, v

′
l)
)

which shows that the induced map η(l) : M eD → MC is injective. Let us now show that it is surjective :
take (w1, . . . , wl) ∈ C1 × · · · × Cl satisfying w1. . .wl = 1, and set uj := 1 and vj := wj . Then lemma

6.4.1 shows that (uj , vj) ∈ D̃j and we have indeed u1. . .ul = v1. . .vl = 1 and η(l)((uj , vj)) = (w1, . . . , wl),
which concludes the proof.

We point out the fact that this result reinforces the analogy between our problem and the Thompson
problem. We now wish to explain in what precise sense the Lagrangian problem is a real version of these
two equivalent problems.
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6.5 Seeing the Lagrangian problem as a real version of the uni-

tary problem

The important idea of thinking of possible solutions to a real problem as the fixed point set of an
involution defined on the set of possible solutions to a corresponding complex problem is well-established
in symplectic geometry and is due to Michael Atiyah and Alan Weinstein (see [Ati82, Dui83] and [LR91]).
In fact, the idea is that the set of possible solutions to a complex problem carries a symplectic structure and
that the corresponding real problem is formulated for elements of the fixed point set of an anti-symplectic
involution defined on this symplectic manifold. Examples of results obtained using this idea include the
(linear and non-linear) real Kostant convexity theorems (see [Dui83, LR91]) and the real Thompson
conjecture (see [AMW01, EL05]). Although we will have to replace symplectic manifolds with quasi-
Hamiltonian spaces for technical considerations, the above idea plays a key role in our approach. Keeping
this in mind, we will eventually define an involution β(l) on the quasi-Hamiltonian space C1 × · · · × Cl.
But, to explain how this involution is obtained, we will first work on the product D̃1 × · · · × D̃l of l
U∆ × U∆-orbits in U × U .
The key here is to try and see the K ×K-orbit of w ∈ U as a subset of some U∆ ×U∆-orbit D̃ ⊂ U ×U .
This is done by observing the following fact :

Lemma 6.5.1. The condition (w ∈ D) is equivalent to (τ−(w)w ∈ C), where C is defined as the conjugacy

class of τ−(w0)w0 for any w0 ∈ D, which in turn is equivalent to (τ(w), w) ∈ D̃, where D̃ is the U∆×U∆-
orbit of (τ(w), w).

Proof. The first equivalence is proposition 3.2.7. Then we know from lemma 6.4.1 that C = η(D̃) where

D̃ is the U∆ × U∆-orbit of (1, τ−(w)w) ∼ (τ(w), w), which gives the second equivalence.

In order to obtain elements of the form (τ(w), w) as fixed points of an involution, we set :

α : U × U −→ U × U
(u, v) 7−→

(
τ(v), τ(u)

)

Then α2 = Id and Fix(α) = {(τ(v), v) | v ∈ U} ' U . In particular, Fix(α) is always non-empty.
Moreover, we have :

Lemma 6.5.2. α(D̃) = D̃, so that α defines an involution on D̃, whose fixed point set is isomorphic to
D and therefore non-empty.

Proof. If (u, v) ∈ D̃, we have η(α(u, v)) = τ−(v)τ(u) = τ(v−1u) = τ−(u−1v). But if w ∈ U , then τ−(w)
is conjugate to w. Indeed, there exists a maximal torus of U which is pointwise fixed by τ−, and w is
conjugate to an element in such a torus : w = ϕtϕ−1 with τ−(t) = t so that τ−(w) = τ(ϕ)tτ(ϕ−1) =
τ(ϕ)ϕ−1wϕτ(ϕ−1) (observe that when U = U(n) then τ−(w) = wt and all of this becomes clear). Thus,

η(α(u, v)) = τ(u−1v) and u−1v = η(u, v) lie in the same conjugacy class C = η(D̃), so, by lemma 6.4.1,

we have indeed α(u, v) ∈ D̃. Further, by lemma 6.5.1 :

Fix(α| eD) =
{(
τ(v), v)

)
|
(
τ−(v)v

)
∈ C
}

hence Fix(α| eD) ' D 6= ∅.

On the product D̃1 × · · · × D̃l of l U∆ × U∆-orbits in U × U , we can therefore define the involution :

α(l) : D̃1 × · · · × D̃l −→ D̃1 × · · · × D̃l(
(u1, v1), . . . , (ul, vl)

)
7−→

((
τ(v1), τ(u1)

)
, . . . ,

(
τ(vl), τ(ul)

))

Observe that its fixed point set satisfies Fix(α(l)) ' D1 × · · · × Dl and is therefore non-empty. We then
have the following result, which says that the centered Lagrangian problem has a solution if and only if
there exists a solution of the complexified problem which is fixed by α(l) :
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Proposition 6.5.3. Let D1, . . . ,Dl be l K × K-orbits in U . For every j ∈ {1, . . . , l}, let Cj be the

conjugacy class of τ−(w)w where w is any element in Dj, and let D̃j be the corresponding U∆ ×U∆-orbit

in U × U (i.e., such that η(D̃j) = Cj, where η(u, v) = u−1v). Then there exists

(w1, . . . , wl) ∈ D1 × · · · × Dl

such that w1 . . . wl = 1 if and only there exists

(
(u1, v1), . . . , (ul, vl)

)
∈ D̃1 × · · · × D̃l

such that

u1 . . . ul = 1, v1 . . . vl = 1 and uj = τ(vj)

for all j ∈ {1, . . . , l}, that is, ((u1, v1), . . . , (ul, vl)) ∈ Fix(α(l)).

Proof. For a given (w1, . . . , wl) ∈ D1 × · · · × Dl | w1 . . . wl = 1, set (uj , vj) := (τ(wj), wj). By lemma

6.4.1, (uj, vj) then belongs to D̃j and we have indeed u1 . . . ul = v1 . . . vl = 1. Conversely, for ((uj , vj))j ∈
D̃1×· · ·× D̃l | u1 . . . ul = v1 . . . vl = 1 and such that uj = τ(vj) for all j, set wj := vj . Then w1 . . . wl = 1
and τ−(wj)wj = u−1

j vj ∈ Cj, so that, by proposition 3.2.7, wj ∈ Dj .

This type of result is exactly why some given problem (A) is called a real version of another problem (B) :
if SC denotes the set of solutions to problem (B) (we assume that SC 6= ∅) and SR the set of solutions to
problem (A), then there exists an involution α on some spaceM ⊃ SC, whose fixed point set is non-empty,
such that SR 6= ∅ if and only if SC ∩ Fix(α) 6= ∅. See for instance [Fot] for a more systematic treatment
of these questions.

The question then is : what is the real version of the unitary problem ? Given what we have done so
far, we see that giving an answer to this question amounts to defining an involution β(l) on C1 × · · · × Cl
such that β(l) ◦η(l) = η(l) ◦α(l), where η(l) : D̃1×· · ·×D̃l → C1×· · ·×Cl is defined as in proposition 6.4.3,
so that η(l)(Fix(α(l))) ⊂ Fix(β(l)), which in particular implies that Fix(β(l)) 6= ∅. The only possibility
is then to set, for any (w1, . . . , wl) ∈ C1 × · · · × Cl :

β(l)(w1, . . . , wl) =
(
τ−(wl) . . . τ

−(w2)τ
−(w1)τ(w2) . . . τ(wl), . . . , τ

−(wl)τ
−(wl−1)τ(wl), τ

−(wl)
)

The fact that this map β is well-defined is a consequence of the following lemma :

Lemma 6.5.4. The involution τ− : U → U sends a conjugacy class C ⊂ U into itself.

Proof. This follows from the fact that there exists a maximal torus T of U which is pointwise fixed by
τ− (see proposition 3.2.3). Indeed, if we take u ∈ C, then u = vdv−1 for some v ∈ U and some d ∈ T .
Then τ−(u) = τ(v)τ−(d)τ−(v) = τ(v)dτ−(v) is conjugate to d and therefore to u.

We now set :

Definition 6.5.5 (Definition of the involution β). Let C1, . . . , Cl denote l conjugacy classes of U .
Let then β denote the map :

β : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→

(
τ−(ul) . . . τ

−(u2)τ
−(u1)τ(u2) . . . τ(ul), . . . , τ

−(ul)τ
−(ul−1)τ(ul), τ

−(ul)
)

Proposition 6.5.6. β is a well-defined involution on the quasi-Hamiltonian space C1 × · · · × Cl, and
satisfies Fix(β) 6= ∅. Additionally, β is compatible with the diagonal action of U on C1 × · · · × Cl and
with the momentum map µ : (u1, . . . , ul) ∈ C1 × · · · × Cl 7→ u1. . .ul ∈ U in the sense that :

β
(
u.(u1, . . . , ul)

)
= τ(u).β(u1, . . . , ul) and µ ◦ β = τ− ◦ µ
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Proof. Lemma 6.5.4 shows that β is well-defined. Let us compute β ◦ β(u1, . . . , ul). The jth element in
β(u1, . . . , ul) is :

τ−(ul). . .τ
−(uj+1)τ

−(uj)τ(uj+1). . .τ(ul)

So the jth element of β ◦ β(u1, . . . , ul) is :

τ−
(
τ−(ul)

)
. . .τ−

(
τ−(ul). . .τ

−(uj+2)τ
−(uj+1)τ(uj+2). . .τ(ul)

)

× τ−
(
τ−(ul). . .τ

−(uj+1)τ
−(uj)τ(uj+1). . .τ(ul)

)

× τ
(
τ−(ul). . .τ

−(uj+2)τ
−(uj+1)τ(uj+2). . .τ(ul)

)
. . .τ

(
τ−(ul)

)

= ul. . .u
−1
l . . .u−1

j+2uj+1uj+2. . .ul

× u−1
l . . .u−1

j+1ujuj+1. . .ul

× u−1
l . . .u−1

j+2u
−1
j+1uj+2. . .ul. . .u

−1
l

= uj

so that β ◦ β = Id. Now, since there exists a maximal torus of T which is fixed pointwise by τ−, each
conjugacy class Cj contains an element dj ∈ Fix(τ−) ∩ T . We then have :

β(d1, . . . , dl) = (dl. . .d2d1d
−1
2 . . .d−1

l , . . . , dldl−1d
−1
l , dl) = (d1, . . . , dl)

as T is abelian. Hence Fix(β) 6= ∅. Compatibility with the action of U and the momentum map µ is a
simple verification, along the same lines (see section 7.2).

We then have the following result (proposition 6.5.7), along the lines of proposition 6.4.3. As earlier, we
see that the group K l acts on Fix(α(l)) and preserves the relations u1 . . . ul = v1 . . . vl = 1. Likewise, K
acts diagonally on Fix(β(l)), preserving the relation w1 . . . wl = 1. We may therefore define :

Mα
eD :=

{(
(uj, vj)

)
j
∈ D̃1 × · · · × D̃l | u1 . . . ul = v1 . . . vl = 1 and

(
(uj , vj)

)
j
∈ Fix(α(l))

}/
K l

and

Mβ
C =

{
(wj)j ∈ C1 × · · · × Cl |w1 . . . wl = 1 and (wj)j ∈ Fix(β(l))

}/
K

We then have :

Proposition 6.5.7. The map η(l) : D̃1×· · ·×D̃l → C1×· · ·×Cl induces a homeomorphism Mα
eD ' Mβ

C .

Proof. Since η(l)(Fix(α(l))) ⊂ Fix(β(l)), the map η(l) induces a map Mα
eD → Mβ

C , that we still denote by

η(l). Take now ((uj , vj))j and ((u′j , v
′
j)) in Fix(α(l)) (in particular uj = τ(vj) and u′j = τ(v′j)) satisfying

u1. . .ul = v1. . .vl = 1 and u′1. . .u
′
l = v′1. . .v

′
l = 1, and suppose that there exists k ∈ K such that :

η(l)
(
(u′j , v

′
j)
)

= k.η(l)
(
(uj , vj)

)

Then for all j ∈ {1, . . . , l} :

τ−(v′l). . .τ
−(v′j+1)

(
τ−(v′j)v

′
j

)
τ(v′j+1). . .τ(v

′
l) = k

(
τ−(vl). . .τ

−(vj+1)
(
τ−(vj)vj

)
τ(vj+1). . .τ(vl)

)
k−1

that is :

τ(v′j . . .v
′
l)kτ

−(vj . . .vl) = v′jτ(v
′
j+1 . . .v

′
l)kτ

−(vj+1. . .vl)v
−1
j (6.2)

And we have, as in the proof of proposition 6.4.3 :

(
(τ(v′j), v

′
j)
)

=
(
ϕ1, . . . , ϕl

)
.
(
(τ(vj), vj)

)
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with ϕj = τ(v′j . . .v
′
l)kτ

−(vj . . .vl), so that for all j < l :

τ(ϕj) = τ
(
τ(v′j . . .v

′
l)kτ

−(vj . . .vl)
)

= τ(v′jτ(v
′
j+1. . .v

′
l)kτ

−(vj+1. . .vl)
)

(using (6.2) )

= τ(v′j)τ(ϕj+1)τ
−(vj)

Additionally :

τ(ϕl) = τ
(
τ(v′l)kτ

−(vl)
)

= τ(v′lkv
−1
l ) (using(6.2) )

= τ(v′l)τ(k)τ
−(vl)

= τ(v′l)kτ
−(vl) since τ(k) = k

= ϕl

so by induction (using (6.2) again), one has τ(ϕj) = ϕj for all j, which shows that (ϕ1, . . . , ϕl) ∈ K l,

thus that the induced map η(l) : Mα
eD → Mβ

C is injective.

Let us now show that it is surjective. Consider (w1, . . . , wl) ∈ C1 × · · · × Cl such that w1. . .wl = 1 and
β(w1, . . . , wl) = (w1, . . . , wl). Then in particular τ−(wl) = wl. As Fix(τ−) is connected, wl = τ−(vl)vl
for some vl ∈ U , and lemma 6.5.1 shows that (τ(vl), vl) ∈ D̃l. Further, since (wj)j ∈ Fix(β(l)), we also
have :

τ−(wl)τ
−(wl−1)τ(wl) = wl−1

that is :
τ−(vl)vlτ

−(wl−1)v
−1
l τ(vl) = wl−1

hence :
τ−
(
τ(vl)wl−1τ

−(vl)
)

= τ(vl)wl−1τ
−(vl)

so that τ(vl)wl−1τ
−(vl) = τ−(vl−1)vl−1 for some vl−1 ∈ U , and as earlier (τ(vl−1, vl−1)) ∈ D̃l−1. Con-

tinuing like this, we obtain for all j ∈ {2, . . . , l} :

τ−(vj)vj = τ(vj+1. . .vl)wjτ
−(vj+1. . .vl) (6.3)

In particular, (τ(vj), vj) ∈ D̃j by lemma 6.5.1. We then set v1 := (v2. . .vl)
−1. Then :

τ−(v2. . .vl)τ
−(v1)v1τ(v2. . .vl) = τ−(v2. . .vl)τ(v2. . .vl)(v2. . .vl)

−1τ(v2. . .vl)

=
(
τ−(v2. . .vl)v2. . .vl

)−1

= (w2. . .wl)
−1 (using (6.3) )

= w1

Thus :

τ−(v2. . .vl)τ
−(v1)v1τ(v2. . .vl) = w1 (6.4)

and τ−(v1)v1 is conjugate to w1 ∈ C1, so that (τ(v1), v1) ∈ D̃1 by lemma 6.5.1. Further, relations (6.3)
and (6.4) show that we have, for all j :

τ−(vj+1. . .vl)τ
−(vj)vjτ(vj+1. . .vl) = wj

hence :
η(l)
(
(τ(vj), vj)j

)
= (w1, . . . , wl)

Since (τ(vj), vj)j ∈ Fix(α(l) by definition of α(l), we have have shown that the map η(l) : Mα
eD → Mβ

C is
indeed surjective.

Again, this is an analogue of a result in [AMW01], which justifies that we may consider our Lagrangian
problem a compact version of the Thompson problem. We may now move on the main results of this
chapter.
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6.6 The set of σ0-decomposable representations

Let C1, . . . , Cl be l conjugacy classes in U such that there exist (u1, . . . , ul) ∈ C1 × · · · × Cl satisfying
u1 . . . ul = 1. We denote by µ the map

µ : C1 × · · · × Cl −→ U
(u1, . . . , ul) 7−→ u1. . .ul

Recall that a representation (u1, . . . , ul) of π1(S
2\{s1, . . . , sl}) is said to be decomposable if there exist

w1, . . . wl ∈ Fix(τ−) such that uj = wjw
−1
j+1 (see definition 5.2.1). It is said to be σ0-decomposable if

it is decomposable with w1 = 1. Also recall that two representations (u1, . . . , ul) and (v1, . . . , vl) of
π1(S

2\{s1, . . . , sl}) are called equivalent if there exists an element ϕ ∈ U such that ϕujϕ
−1 = vj for

all j ∈ {1, . . . , l}. Recall finally that Fix(τ−) is assumed to be connected (see remark 5.2.3). We then
make the following observation :

Lemma 6.6.1. A representation (u1, . . . , ul) of π1(S
2\{s1, . . . , sl}) is decomposable if and only if it is

equivalent to a σ0-decomposable representation.

Proof. Assume first that (u1, . . . , ul) is decomposable. Then there exist w1, . . . , wl ∈ Fix(τ−) such that
u1 = w1w

−1
2 , . . . , ul = wlw

−1
1 . Then, since Fix(τ−) is connected, there exists, by proposition 3.1.2, an

element ϕ ∈ U such that w1 = τ−(ϕ)ϕ. In particular, τ(ϕ)w1ϕ
−1 = 1. If we set w′

j := τ(ϕ)wjϕ
−1, we

have ω′
j ∈ Fix(τ−), as τ−(w′

j) = τ−(ϕ−1)τ−(wj)τ
−(τ(ϕ)) = τ(ϕ)wjϕ

−1 = w′
j , as well as :

w′
j(w

′
j+1)

−1 = τ(ϕ)wjϕ
−1ϕw−1

j+1τ
−(ϕ) = τ(ϕ)wjω

−1
j+1τ

−(ϕ) = τ(ϕ)ujτ
−(ϕ)

and w′
1 = 1 by definition, so that the representations τ(ϕ).(u1, . . . , ul) is σ0-decomposable.

Conversely, if there exists u ∈ U such that u.(u1, . . . , ul) is σ0-decomposable, then there exist w1, . . . , wl ∈
Fix(τ−) such that w1 = 1 and uuju

−1 = wjw
−1
j+1. Set w′

j := u−1wjτ
−(u−1). Then w′

j ∈ Fix(τ−), since

τ−(w′
j) = τ−(τ−(u−1))τ−(wj)τ

−(u−1) = u−1wjτ
−(u−1) = w′

j , and :

w′
j(w

′
j+1)

−1 = u−1wjτ
−(u−1)

(
u−1wj+1τ

−(u−1)
)−1

= u−1wjτ
−(u−1)τ(u−1)w−1

j+1u

= u−1wjw
−1
j+1u

= uj

so that the representation (u1, . . . , ul) is decomposable.

Recall now that we have an involution β on C1 × · · · × Cl defined by :

β : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→

(
τ−(ul) . . . τ

−(u2)τ
−(u1)τ(u2) . . . τ(ul), . . . , τ

−(ul)τ
−(ul−1)τ(ul), τ

−(ul)
)

(see definition 6.5.5 and proposition 6.5.6). We may then state and prove the following characterization
of σ0-decomposable representations :

Theorem 6.6.2 (Characterization of σ0-decomposable representations). Consider (u1, . . . , ul) ∈
C1 × · · · × Cl such that u1. . .ul = 1. Then, the representation of π1(S

2\{s1, . . . , sl}) corresponding to
(u1, . . . , ul) is σ0-decomposable if and only if β(u1, . . . , ul) = (u1, . . . , ul).

Remark 6.6.3. We could as well have defined β on U × · · · × U and obtained a similar result but we
deliberately stated our result this way, as it will be more appropriate to work with the quasi-Hamiltonian
space C1 × · · · × Cl in the following.

We will give two proofs of theorem 6.6.2, the first of which is valid in the special case where U = U(n)
and emphasizes the geometric point of view that we have adopted to guide us in the earlier sections and
chapters. In this case, τ(u) = u, and we have :
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Proof of theorem 6.6.2 in the case where U = U(n). Let us start with (u1, . . . , ul) ∈ Fix(β), that is :

u−1
l . . . u−1

2 ut1u2 . . . ul = u1

u−1
l . . . u−1

3 ut2u3 . . . ul = u2

...

u−1
l . . . u−1

j+1u
t
juj+1 . . . ul = uj

...

u−1
l utl−1ul = ul−1

utl = ul

Then we have utl = ul (so that ul = u−1
l ), (ul−1ul)

t = (u−1
l utl−1ulul)

t = (utlu
t
l−1)

t = ul−1ul, . . . ,

(uj . . . ul)
t = (u−1

l . . . u−1
j+1u

t
juj+1 . . . ul . . . u

−1
l utl−1ulul)

t = (utlu
t
l−1 . . . u

t
j+1u

t
j)
t = uj . . . ul, . . . , and

(u1 . . . ul)
t = (u−1

l . . . u−1
2 ut1u2 . . . ulu

−1
l utl−1ulul)

t = (utlu
t
l−1 . . . u

t
2u
t
1)
t = u1 . . . ul. To these l symmetric

unitary matrices we can associate, by proposition 5.1.3, l Lagrangian subspaces :

L1 := {z ∈ Cn | z − (u1 . . . ul)z = 0}
L2 := {z ∈ Cn | z − (u2 . . . ul)z = 0}

...

Lj := {z ∈ Cn | z − (uj . . . ul)z = 0}
...

Ll−1 := {z ∈ Cn | z − (ul−1ul)z = 0}
Ll := {z ∈ Cn | z − ulz = 0}

and denote by σj the Lagrangian involution associated to Lj. Let us now assume that (u1, . . . , ul)
satisfy the full hypotheses of the theorem, that is, that we have u1 . . . ul = 1. Then L1 = L0. Therefore,
by proposition 5.1.3, since Ll = {z − ulz = 0}, we have σlσ0 = ul, that is, σlσ1 = ul. Further,
since L2 = {z − (u2 . . . ul)z = 0}, we have σ2σ0 = u2 . . . ul = u−1

1 hence u1 = σ1σ2. Finally, for
all j ∈ {2, . . . , l − 1}, since (uj . . . ul)

t = uj . . . ul, there exists, by proposition 5.1.3, a unitary map
ϕj ∈ U(n) | ϕtj = ϕj and ϕ2

j = uj . . . ul, and we then have ϕj(L0) = Lj. Set L′
j = ϕ−1

2 (Lj) = L0 and

L′
j+1 = ϕ−1

j (Lj+1), and denote by σ′
j and σ′

j+1 the associated involutions. Then :

L′
j+1 = {z | ϕj(z) ∈ Lj+1}

= {z | ϕj(z) − uj+1 . . . ulϕj(z) = 0}
= {z | ϕj(z) − uj+1 . . . ul ϕj︸︷︷︸

=ϕ−1
j

(z) = 0}

= {z | z − (ϕ−1
j uj+1 . . . ulϕ

−1
j )z = 0}

but (ϕ−1
j uj+1 . . . ulϕ

−1
j )t = ϕ−1

j uj+1ϕ
−1
j since (ϕ−1

j )t = (ϕtj)
−1 = ϕ−1

j and (uj+1 . . . ul)
t = uj+1 . . . ul.

Therefore, by proposition 5.1.3, we have σ′
j+1σ

′
j = ϕ−1

j uj+1 . . . ulϕ
−1
j . Since ϕ2

j = uj . . . ul, we then

have ϕ−1
j uj+1 . . . ulϕ

−1
j = ϕ−1

j (u−1
j ϕ2

j )ϕ
−1
j = ϕ−1

j u−1
j ϕj , therefore u−1

j = ϕjσ
′
j+1σ

′
jϕ

−1
j = σj+1σj since

Lj = ϕj(L
′
j), Lj+1 = ϕj(L

′
j+1) and σϕ(L) = ϕσLϕ−1. Hence uj = σjσj+1 and the representation of π

corresponding to (u1, . . . , ul) is σ0-Lagrangian.
Conversely, assume that a given representation (u1, . . . , ul) is σ0-Lagrangian. Then ul = σlσ0. Now
observe that for any unitary map u, one has u = σ0uσ0, therefore here utl = u−1

l = σ0u
−1
l σ0 =
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σ0(σlσ0)
−1σ0 = σ0(σ0σl)σ0 = σlσ0 = ul. Likewise :

u−1
l utl−1ul = (σ0u

−1
l σ0)(σ0u

−1
l−1σ0)(σ0ulσ0)

= σ0(u
−1
l u−1

l−1ul)σ0

= σ0(σ0σl)(σlσl−1)(σlσ0)σ0

= σl−1σl

= ul−1

and so on, until :

u−1
l . . . u−1

2 ut1u2 . . . ul = σ0(σ0σl) . . . (σ3σ2)(σ2σ1)(σ2σ3) . . . (σ3σ0)σ0

= σ1σ2

= u1

so that β(u1, . . . , ul) = (u1, . . . , ul).

Proof of theorem 6.6.2 in the general case. Let us start with (u1, . . . , ul) ∈ Fix(β), that is :

τ−(u2. . .ul)τ
−(u1)τ(u2. . .ul) = u1

...

τ−(ul)τ
−(ul−1)τ(ul) = ul−1

τ−(ul) = ul

Then we have τ−(ul) = ul, τ
−(ul−1ul) = ul−1τ

−(ul) = ul−1ul, . . . , until τ−(u1. . .ul) = u1. . .ul. Set
wj := uj . . .ul. In particular, w1 = u1. . .ul = 1. Then τ−(wj) = wj for all j ∈ {1, . . . , l} and one has :

wjw
−1
j+1 = (uj . . .ul)(uj+1. . .ul)

−1

= uj

so that the representation (u1, . . . , ul) is σ0-decomposable. Observe that the algebraic definition of σ0-
decomposable representations indeed enabled us to write a simple proof of our characterization result.
Conversely, if uj = wjw

−1
j+1 with wj ∈ Fix(τ−) for all j and w1 = 1, then :

τ−(uj+1. . .ul)τ
−(uj)τ(uj+1. . .ul) = τ−(wj+1w

−1
1 )τ−(wjw

−1
j+1)τ(wj+1w

−1
1 )

= τ−(wj+1)τ(wj+1)τ
−(wj)τ(wj+1)

= wjw
−1
j+1

= uj

so that (u1, . . . , ul) ∈ Fix(β).

Remark 6.6.4. Should we choose to work with U×· · ·×U instead of C1×· · ·×Cl, there is an interesting
“non-homogeneous” description of the involution β. The map

Φ : U × · · · × U −→ U × · · · × U
(u1, . . . , ul) 7−→ (u1 . . . ul, u2 . . . ul, . . . , ul−1ul, ul) =: (v1, . . . , vl)

is a diffeomorphism from U × · · · × U on itself, whose inverse is the map

Φ−1(v1, . . . , vl) = (v1v
−1
2 , . . . , vl−1v

−1
l , vl)
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These maps are U -equivariant with respect to the diagonal action of U on U × · · · × U . Using these
“non-homogeneous” coordinates on U × · · · × U , the involution β takes the simpler form :

Φ ◦ β ◦ Φ−1 : U × · · · × U −→ U × · · · × U(
v1, . . . , vl

)
7−→

(
τ−(v1), . . . , τ

−(vl)
)

This is to be related to the work of Treloar on the moduli space of polygons in S3 (see [Tre02]), where
the map Φ is used to give a Lie group description of this moduli space.

We can then characterize those among representations of π1(S
2\{s1, . . . , sl}) which are Lagrangian in

the following way :

Corollary 6.6.5 (Characterization of decomposable representations). Consider (u1, . . . , ul) ∈
C1× · · ·×Cl such that u1. . .ul = 1. Then the representation of π := π1(S

2\{s1, . . . , sl}) corresponding to
(u1, . . . , ul) is decomposable if and only if β(u1, . . . , ul) ∼ (u1, . . . , ul) as representations of π, that is, if
and only if there exists u ∈ U such that :

β(u1, . . . , ul) = u.(u1, . . . , ul)

Proof. We know from lemma 6.6.1 that if (u1, . . . , ul) is decomposable, then there exists ϕ ∈ U such that
τ(ϕ).(u1, . . . , ul) is σ0-decomposable, so that, by theorem 6.6.2, one has :

β
(
τ(ϕ).(u1, . . . , ul)

)
= τ(ϕ).(u1, . . . , ul)

Hence, from the compatibility of β and τ :

ϕ.β(u1, . . . , ul) = τ(ϕ).(u1, . . . , ul)

That is :
β(u1, . . . , ul) =

(
ϕ−1τ(ϕ)

)
.
(
u1, . . . , ul)

Conversely, assume that β(u1, . . . , ul) = u.(u1, . . . , ul) for some u ∈ U . Observe then that, because of

the compatibility of β with τ and µ, the involution β induces an involution β̂ on µ−1({1})/U :

β̂ : µ−1({1})/U −→ µ−1({1})/U[
(u1, . . . , ul)

]
7−→

[
β(u1, . . . , ul)

]

And the condition β(u1, . . . , ul) = u.(u1, . . . , ul) means that β̂( [(u1, . . . , ul] ) = [(u1, . . . , ul)]. We then
anticipate on a result from the general theory of quasi-Hamiltonian spaces that we will prove in chapter
7 : as Fix(τ−) is connected, proposition 7.4.5 shows that the map

pβ : Fix(β) ∩ µ−1({1}) → Fix(β̂) ⊂ µ−1({1})/U

is surjective. Consequently, there exists (v1, . . . , vl) ∈ Fix(β) ∩ µ−1({1}) such that [(v1, . . . , vl)] =
[(u1, . . ., ul)] that is, (u1, . . . , ul) is equivalent to a σ0-decomposable representation so that, by lemma
6.6.1, (u1, . . . , ul) is decomposable.

We shall now move on to the next chapter, where we will see that the involution β that we have just
used to characterize decomposable representations of π = π1(S

2\{s1, . . . , sl}) induces an anti-symplectic
involution of the moduli space MC = HomC(π, U)/U . This brings us back to studying general properties
of symplectic quotients associated to quasi-Hamiltonian spaces.
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Chapter 7

Anti-symplectic involutions on

quasi-Hamiltonian quotients

Contents
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7.4 Projection of the fixed-point set of a form-reversing involution . . . . . . . 126

In this chapter, we introduce the tools that we shall need in chapter 9 to show that the decompos-
able representations of π = π1(S

2\{s1, . . . , sl}) which we have characterized in chapter 6 project to a
Lagrangian submanifold of the moduli space MC = C1 × · · · × Cl//U .

7.1 Motivation

Recall that the representations of π = π1(S
2\{s1, . . . , sl}) are the elements of µ−1({1}), where µ is the

map :
µ : C1 × · · · × Cl −→ U

(u1, . . . , ul) 7−→ u1. . .ul

As we have seen in the previous chapter, the σ0-decomposable representations of π are the elements
u = (u1, . . . , ul) of µ−1({1}) satisfying β(u) = u. Furthermore, the heuristic approach that we have
been following so far suggests that the set of equivalence classes of decomposable representations should
be obtained as the fixed-point set of an antisymplectic involution defined on the moduli space MC (see
section 6.1). If we can prove that the involution β, defined on C1×· · ·×Cl, induces such an antisymplectic

involution β̂ on MC = C1 × · · · × Cl//U which fixes equivalence classes of decomposable representations,
then the result we hope for (the Lagrangian nature of decomposable representations) will be a consequence
of the following result, which is classical in symplectic geometry :

Lemma 7.1.1. Let (N,ω) be a symplectic manifold and let σ be an antisymplectic involution on N
(meaning that σ∗ω = −ω and σ2 = IdN ). Denote by Nσ := Fix(σ) the fixed-point set of σ. Then : if
Nσ 6= ∅, it is a Lagrangian submanifold of N .

Proof. There always exists a Riemannian metric g0 on M such that σ is an isometry for g0 (to obtain
it, simply average any Riemannian metric over the group {1, σ}). We can then associate to the metric
g0 an almost complex structure J = r(g0) (see [MS98], proposition 2.50, (ii), p.63, for a definition of the
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map r) such that J is compatible with ω (that is, such that g(. , .) := ω(. , J.) is a Riemannian metric
on N). It then follows from the construction of J = r(g0) (see [MS98], p.64), that the g0-isometry σ is
anti-holomorphic with respect to J (that is, Tσ ◦ J = −J ◦ Tσ). Consequently, σ is an isometry for the
Riemannian metric g :

gx(Txσ.v, Txσ.w) = ωx(Txσ.v, JTxσ.w)

= −ωx(Txσ.v, Txσ.Jw)

= −(σ∗w)x(v, Jw)

= ωx(v, Jw)

= gx(v, w)

and Nσ = Fix(σ) is therefore a totally geodesic submanifold of N whenever it is non-empty (see for
instance [Kli82] p.95).
Let us now show that for all x ∈ Nσ, the subspace TxN

σ ⊂ TxN is a Lagrangian subspace of TxN . For
all v ∈ TxN

σ, Txσ.v = d
dt
|t=0 (σ(xt)), where xt ∈ Nσ for all t (that is, σ(xt) = xt for all t), x0 = x and

d
dt
|t=0 xt = v, so that Txσ.v = v and TxN

σ = ker(Txσ − Id) (the inclusion ⊃ being a consequence of the
fact that Nσ is totally geodesic). Further, since Txσ is an involution on TxN , one has :

TxN = ker(Txσ − Id) ⊕ ker(Txσ + Id)

But ker(Txσ + Id) = J(TxN
σ). Indeed, if v ∈ TxN

σ, Txσ.(Jv) = −J(Txσ.v) = −Jv, so that Jv ∈
ker(Txσ+Id) and conversely, if Txσ.w = −w, then Txσ.(Jw) = −J(Txσ.w) = Jw, so that w = J(−Jw) ∈
J(TxN

σ). Therefore :
TxN = TxN

σ ⊕ J(TxN
σ)

and consequently :

dim TxN
σ =

1

2
dim TxN

Finally, since Txσ is antisymplectic, TxN
σ is isotropic. Indeed, for all v, w ∈ TxN

σ, one has :

ωx(v, w) = −(σ∗ω)x(v, w) = −wσ(x)(Txσ.v, Txσ.w) = −ωx(v, w)

so that ωx(v, w) = 0.

Remark 7.1.2. Observe that an anti-symplectic involution does not necessarily have fixed points. For
instance, the map (−IdR3)|S2 : (x, y, z) ∈ S2 7→ −(x, y, z) reverses orientation on S2 (so that it is anti-
symplectic with respect to the volume form xdy ∧ dz − y dx ∧ dz − z dx ∧ dy on S2), and has no fixed
points on S2.

As a matter of fact, to apply the preceding lemma, what we really need to prove is that β induces
an involution β̂ on MC , which is antisymplectic, and which satisfies Fix(β̂) 6= ∅. In the remaining
part of this chapter, we will give general sufficient conditions on an involution β defined on a quasi-
Hamiltonian space (M,ω, µ : M → U) for it to induce an antisymplectic involution on the associated
quasi-Hamiltonian quotient M//U (see proposition 7.2.2). Giving such conditions mainly consists in
carrying over a standard procedure for usual symplectic quotients (appearing for instance in [OS00]) to
the quasi-Hamiltonian setting. We will then show that the map β constructed in chapter 6 satisfies these
conditions. To do this, we will actually give a general way of obtaining such involutions on product
spaces, and apply this to C1×· · ·×Cl to prove the result for β (although the general result we shall state,
namely lemma 7.3.3, was of course really inspired by the form of β itself). As for the existence of fixed

points for β̂, we postpone work on this question until the next chapter, as it is technically more difficult
and calls for notions and methods which are very different from the ones we have encountered so far in
this work. It is true, though, that if β satisfies the hypotheses of proposition 7.2.2 then β̂ necessarily has
fixed points (see corollary 8.3.11).
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7.2 Lagrangian submanifolds of a quasi-Hamiltonian quotient

The purpose of this section is to give a way of finding Lagrangian submanifolds in a symplectic manifold
M//U obtained by reduction from a quasi-Hamiltonian space (M,ω, µ : M → U) (see proposition 4.5.2).
As a matter of fact, we would like to apply lemma 7.1.1 to an antisymplectic involution σ defined on the
symplectic manifold N = M//U . The idea is to obtain such a σ from an involution β defined on the
whole quasi-Hamiltonian space M . We would then have to give sufficient conditions on β for it to induce
indeed an antisymplectic involution σ = β̂ on M//U = µ−1({1})/U . To obtain these conditions, we draw
from the corresponding situation in the usual Hamiltonian setting, which is studied in [OS00]. If we want
β to induce a map on µ−1({1})/U , it has to let µ−1({1}) stable, and to map U -orbits to U -orbits. In
the usual Hamiltonian case, the appropriate conditions, given in [OS00], are the following ones. Let U
be a Lie group acting on a symplectic manifold (M,ω) in a Hamiltonian fashion with momentum map
Φ : M → u∗. Let τ denote an involutive automorphism of U and still denote by τ the involution :

(T1 τ)
∗ : u∗ −→ u∗

λ 7−→ λ ◦ T1 τ

that it induces on the dual u∗ of the Lie algebra u = T1 U of U . Let β be an anti-symplectic involution on
M (that is, such that β∗ω = −ω and β2 = IdM ). In the above notations, β is said to be compatible with
the action of U if for all u ∈ U , for all x ∈ M , β(u.x) = τ(u).β(x) and β is said to be compatible with
the momentum map Φ : M → u∗ if for all x ∈M , Φ ◦ β(x) = −τ ◦ Φ(x). Since in the quasi-Hamiltonian
case the momentum map takes value in a group instead of a vector space, we are led to formulate the
following compatibility conditions :

Definition 7.2.1 (Compatible involutions). Let (M,ω, µ : M → U) be a quasi-Hamiltonian space and
let τ be an involutive automorphism of U . Denote by τ− the involution on U defined by τ−(u) = τ(u−1).
An involution β on M is said to be compatible with the action of U if β(u.x) = τ(u).β(x) for all x ∈ M
and all u ∈ U , and it is said to be compatible with the momentum map µ if µ ◦ β = τ− ◦ µ.

Let us mention here that when U = T is a torus and τ is the involutive automorphism τ(t) = t−1 of
the abelian group T , compatibility with the momentum map amounts to saying that µ ◦ β = µ. This
condition, that one may recognize from the work of Duistermaat in [Dui83], will play an important role
in chapter 8, where we will study the image, under the momentum map µ of the fixed-point set Mβ of
an involution β defined on M and satisfying the compatibility conditions of definition 7.2.1 above and
the additional condition β∗ω = −ω.

Proposition 7.2.2. Let (M,ω, µ : M → U) be a quasi-Hamiltonian space and let τ be an involutive
automorphism of U . Denote by τ− the involution on U defined by τ−(u) = τ(u−1) and let β be an
involution on M such that :

(i) ∀u ∈ U , ∀x ∈M , β(u.x) = τ(u).β(x)

(ii) ∀x ∈M , µ ◦ β(x) = τ− ◦ µ(x)

(iii) β∗ω = −ω

then β induces an anti-symplectic involution β̂ on the reduced space M red := µ−1({1})/U . If β̂ has fixed

points, then Fix(β̂) is a Lagrangian submanifold of M red.

Proof. We give a proof under the following regularity assumptions : 1 is a regular value of µ and the
compact group U acts freely on the level manifold µ−1({1}). The proof in the stratified case works
the same since, by proposition 4.5.8, the symplectic structure on each stratum of the reduced space
µ−1({1})/U is obtained using the reduction procedure of the smooth case (see proposition 4.5.2). In

particular, Fix(β̂) is a disjoint union of Lagrangian submanifolds.
Compatibility with the momentum map (condition (ii)) shows that β maps µ−1({1}) into µ−1({1}) (since
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τ−(1) = 1). Compatibility with the action (condition (i)) then shows that β(u.x) and β(x) lie in the
same U -orbit, so that we have a map :

β̂ : µ−1({1})/U −→ µ−1({1})/U
U.x 7−→ U.β(x)

We know from quasi-Hamiltonian reduction (see proposition 4.5.2) that there exists a unique symplectic
form ωred on M red = µ−1({1})/U such that p∗ωred = i∗ω where i : µ−1({1}) ↪→ M and p : µ−1({1}) →
M red. Observe that, by definition of β̂, one has p ◦ β = β̂ ◦ p. To show that β̂∗ωred = −ωred, we first
prove that i∗(β∗ω) is basic with respect to the fibration p. Then there will exist a unique 2-form γ on

M red such that p∗γ = i∗(β∗ω). Since both γ = −ωred and γ = β̂∗ωred satisfy this condition, they have to
be equal. The last part of the proposition then follows from lemma 7.1.1. Let us now write this explicitly.
Verifying that i∗(β∗ω) is basic is easy since β∗ω = −ω and i∗ω is basic (see proposition 4.5.2) but it is
actually true without this assumption so we prove it for β satisfying only conditions (i) and (ii) above. We
have to show that i∗(β∗ω) is U -invariant and that for every X ∈ u = Lie(U), we have ιX](i∗(β∗ω)) = 0,
where X] is the fundamental vector field X]

x = d
dt
|t=0(exp(tX).x) (for any x ∈ M) associated to X ∈ u

by the action of U on M . Let u ∈ U and denote by ϕu the corresponding diffeomorphism of M . The
map µ being equivariant ϕu sends µ−1({1}) into itself, hence i ◦ ϕu = ϕu ◦ i on µ−1({1}). Furthermore,
compatibility with the action yields β ◦ ϕu = ϕτ(u) ◦ β. We then have, on µ−1({1}) :

ϕ∗
u(i

∗(β∗ω)) = (β ◦ i ◦ ϕu)∗ω
= (ϕτ(u) ◦ β ◦ i)∗ω
= i∗(β∗(ϕ∗

τ(u)ω︸ ︷︷ ︸
=ω

))

where the very last equality follows from the U -invariance of ω. Further, let X ∈ u. Since β is compatible
with the action, one has β(exp(tX).x) = τ(exp(tX)).β(x) = exp(tτ(X)).β(x) (where we still denote by

τ the involution T1 τ on u = T1U), hence Txβ.X
]
x = (τ(X))]

β(x), hence ιX](β∗ω) = β∗(ι(τ(X))]ω). Since

ιX](i∗(β∗ω)) = i∗(ιX](β∗ω)), we have, using the fact that β is compatible with µ :

ιX](β∗ω) = β∗(ι(τ(X))]ω)

= β∗
(1

2
µ∗(θL + θR | τ(X)

))

=
1

2
(µ ◦ β)∗

(
θL + θR | τ(X)

)

=
1

2
(τ− ◦ µ)∗

(
θL + θR | τ(X)

)

=
1

2
µ∗
(
(τ−)∗

(
θL + θR | τ(X)

))

hence i∗(ιX](β∗ω)) = 1
2 i

∗ ◦ µ∗ (. . .) = 1
2 (µ ◦ i)∗ (. . .). But µ ◦ i : µ−1({1}) → U is a constant map,

therefore T (µ ◦ i), and consequently (µ ◦ i)∗, are zero, which completes the proof that i∗(β∗ω) is basic.

Finally, let us show that p∗(β̂ωred) = i∗(β∗ω) = p∗(−ωred) (this is where we really use β∗ω = −ω). We

have, on µ−1({1}), p∗(β̂∗ωred) = (β̂ ◦ p)∗ωred = (p ◦ β)∗wred = β∗(p∗ωred) = β∗(i∗ω) = (i ◦ β)∗ω =
(β ◦ i)∗ω = i∗(β∗ω) = i∗(−ω) = −i∗ω = −p∗ωred = p∗(−ωred). This completes the proof, as indicated
above.

Remark 7.2.3 (On the assumption that Fix(β̂) 6= ∅). The assumption that Fix(β̂) 6= ∅ in propo-
sition 7.2.2 is in fact automatically satisfied by an involution β satisfying the compatibility relations of
definition 7.2.1 and the additional condition Fix(β) 6= ∅, as we shall see in corollary 8.3.11.

We now would like to apply this result to the involution β on C1 × · · ·×Cl that we constructed in chapter
6. To that end, we must show that β satisfies the conditions of proposition 7.2.2. Recall from definition
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6.5.5 that :

β : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→

(
τ−(ul). . .τ

−(u2)τ
−(u1)τ(u2). . .τ(ul), . . . , τ

−(ul)τ
−(ul−1)τ(ul), τ

−(ul)
)

Here, the involution τ on U is supposed to satisfy the following assumption, already used in chapter 6 :
the involution τ− : u 7→ τ(u−1) leaves a maximal torus of U pointwise fixed. In particular, this implies
that τ− leaves each conjugacy class C ⊂ U globally invariant, therefore the map β above is well-defined.
Let us then show that this map β satisfies the compatibility conditions of definition 7.2.1 :

β
(
u.(u1, . . . , ul)

)
= β(uu1u

−1, . . . , uulu
−1)

=
(
τ−(u−1)τ(ul)τ

−(u). . .τ−(u−1)τ−(u1)τ
−(u). . .τ(u)τ(ul)τ(u

−1),

. . . , τ−(u−1)τ−(ul)τ
−(u)

)

= τ(u).
(
τ−(ul). . .τ

−(u1). . .τ(ul), . . . , τ
−(ul)

)

= τ(u).β(u1, . . . , ul)

and :

µ ◦ β(u1, . . . , ul) = µ
(
τ−(ul). . .τ

−(u2)τ
−(u1)τ(u2). . .τ(ul), . . . , τ

−(ul)
)

= τ−(ul). . .τ
−(u1)

= τ−(u1. . .ul)

= τ− ◦ µ (u1, . . . , ul)

Thus, to apply proposition 7.2.2 to the involution β, it remains to show that β∗ω = −ω, where ω is
the 2-form defining the quasi-Hamiltonian structure on C1 × · · · × Cl, and that β̂ has fixed points. As
we mentioned earlier, we postpone work on this last question to chapter 8, and we shall only prove for
now that β∗ω = −ω (see proposition 7.3.4). To do so, we will show that β is constructed by induction
from the involution τ− : u ∈ C → τ(u−1) on a single conjugacy class (see lemma 7.3.2), and that this
construction gives rise to form-reversing involutions on product spaces when starting from form-reversing
involutions on each factor (see lemma 7.3.3).

7.3 Constructing form-reversing involutions on product spaces

From now on, we make the further assumption that the involutive automorphism τ of U is such that the
involution T1τ of u = T1U is an isometry for the Ad-invariant scalar product (. | .) on u. In the following,
we shall still denote by τ the map T1τ . Again, recall from definition 6.5.5, that :

β : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→

(
τ−(ul). . .τ

−(u2)τ
−(u1)τ(u2). . .τ(ul), . . . , τ

−(ul)τ
−(ul−1)τ(ul), τ

−(ul)
)

In the rest of this section, to avoid confusion, we shall denote by β(l) the involution β above defined
on a product of l conjugacy classes. For instance, β(2) designates the involution β on a product of two
conjugacy classes, regardless of whether this product space is C1×C2 or C2 ×C3. Likewise, we will denote
by µ(l) the momentum map µ : (u1, . . . , ul) 7→ u1. . .ul defined on a product of l conjugacy classes, and by
ω(l) the 2-form defining the quasi-Hamiltonian structure on C1 × · · · × Cl with respect to the momentum
map µ(l) (see corollary 4.4.2). Observe now that when l = 1, we simply have β(1)(u) = τ−(u) on a single
conjugacy class C. The first thing to notice is then the following result :

Lemma 7.3.1. The involution β(1) = τ− : u 7→ τ(u−1), restricted to a single conjugacy class C of U ,
reverses the 2-form ω(1) defining the quasi-Hamiltonian structure on C , that is : (β(1))∗ ω(1) = −ω(1).
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Proof. To lighten notations, we will denote ω(1) by ω and β(1) by β in the course of this proof. First, recall
from proposition 6.5.4 that the involution τ− on U sends any conjugacy class C ⊂ U to itself. Second,
recall from proposition 4.2.1 that we have, for any X,Y ∈ u (denoting [X ]u = X.u− u.X ∈ TuC) :

ωu([X ]u, [Y ]u) =
1

2

(
(Adu.X |Y ) − (Adu.Y |X)

)

Further, β(u) = τ(u−1) and Tuβ.[X ]u = [τ(X)]τ(u−1). Therefore :

(β∗ω)u
(
[X ]u, [Y ]u

)
= ωβ(u)

(
Tuβ.[X ]u, Tuβ.[Y ]u

)

=
1

2

((
Ad τ(u−1).τ(X) | τ(Y )

)
−
(
Ad τ(u−1).τ(Y ) | τ(X)

))

=
1

2

((
τ(Adu−1.X) | τ(Y )

)
−
(
τ(Adu−1.Y ) | τ(X)

))

Since τ is an isometry for (. | .), we then have :

(β∗ω)u
(
[X ]u, [Y ]u

)
=

1

2

(
(Adu−1.X |Y ) − (Adu−1.Y |X)

)

=
1

2

(
(X |Adu.Y ) − (Y |Adu.X)

)

= −ωu
(
[X ]u, [Y ]u

)

When now l = 2, the involution β writes :

β(2) : C1 × C2 −→ C1 × C2

(u1, u2) 7−→
(
τ−(u2)τ

−(u1)τ(u2) , τ
−(u2)

)

So that :

β(2)(u1, u2) =
(
τ−(u2).τ

−(u1) , τ
−(u2)

)
(7.1)

where the action denoted by a point . is the conjugacy action of U on itself. The fruitful observation to
make is then to notice that :

β(2)(u1, u2) =
((
τ− ◦ µ(1)

︸ ︷︷ ︸
=µ(1)◦β(1)

(u2)
)
.β(1)(u1) , β

(1)(u2)
)

When µ(1) : C2 ↪→ U is the inclusion map, we indeed obtain expression (7.1). Likewise :

β(3)(u1, u2, u3) =
(
τ−(u3)τ

−(u2)τ
−(u1)τ(u2)τ(u3) , τ

−(u3)τ
−(u2)τ(u3), τ

−(u3)
)

=
(
τ−(u2u3).τ

−(u1) , β
(2)(u2, u3)

)

=
((
τ− ◦ µ(2)

︸ ︷︷ ︸
=µ(2)◦β(2)

(u2, u3)
)
.τ−(u1) , β

(2)(u2, u3)
)

=
((
µ(2) ◦ β(2)(u2, u3)

)
.β(1)(u1) , β

(2)(u2, u3)
)

In fact, the involution β(l) is obtained in the same way from the involution β(l−1) on C2 × · · · × Cl and
the involution β(1) on C1. More precisely, we can sum up the above discussion in the following way :

Lemma 7.3.2. Consider an integer l ≥ 1 and let C1, . . . , Cl be l conjugacy classes in U . Let β(1) be the
involution defined on C1 by

β(1) : C1 −→ C1

u1 7−→ τ−(u1)
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and let β(l−1) be the involution defined on the product C2 × · · · × Cl of (l − 1) conjugacy classes by :

β(l−1) : C2 × · · · × Cl −→ C2 × · · · × Cl
(u2, . . . , ul) 7−→

(
τ−(ul). . .τ

−(u3)τ
−(u2)τ(u3). . .τ(ul), . . . , τ

−(ul)
)

Let µ(l−1) be the map from C2 × Cl to U defined by :

µ(l−1) : C2 × · · · × Cl −→ C2 × · · · × Cl
(u2, . . . , ul) 7−→ u2 . . . ul

Finally, let β(l) be the involution defined on C1 × · · · × Cl = C1 × (C2 × · · · × Cl) by :

β(l) : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→

(
τ−(ul). . .τ

−(u2)τ
−(u1)τ(u2). . .τ(ul), . . . , τ

−(ul)
)

Then we have :

β(l)(u1, . . . , ul) =
((
µ(l−1) ◦ β(l−1)(u2, . . . , ul)

)
.β(1)(u1) , β

(l−1)(u2, . . . , ul)
)

which we will write :
β(l) =

((
µ(l−1) ◦ β(l−1)

)
.β(1) , β(l−1)

)

Now, to prove that (β(l))∗ ω(l) = −ω(l), we will use the following lemma, which is general in nature and
gives a way of constructing form-reversing involutions on products of quasi-Hamiltonian spaces starting
from form-reversing involutions on each factor. It was inspired by the form of our involution β.

Lemma 7.3.3. Let (M1, ω1, µ1 : M1 → U) and (M2, ω2, µ2 : M2 → U) be two quasi-Hamiltonian
U -spaces. Let τ be an involutive automorphism of (U, (. | .)) and let βi be an involution on Mi satisfying :

(i) β∗
i ωi = −ωi

(ii) βi(u.xi) = τ(u).βi(xi) for all u ∈ U and all xi ∈Mi

(iii) µi ◦ βi = τ− ◦ µi
Consider the quasi-Hamiltonian U -space (M := M1 ×M2, ω := ω1 ⊕ ω2 + 1

2 (µ∗
1θ
L ∧ µ∗

2θ
R), µ := µ1 · µ2)

(with respect to the diagonal action of U) and the map :

β :=
(
(µ2 ◦ β2).β1, β2

)
: M −→ M

(x1, x2) 7−→
(
(µ2 ◦ β2(x2)).β1(x1), β2(x2)

)

Then β is an involution on M satisfying :

(i) β∗ω = −ω

(ii) β(u.x) = τ(u).β(x) for all u ∈ U and all x ∈M

(iii) µ ◦ β = τ− ◦ µ
Proof. First, we have :

β(β(x1, x2)) =

((
µ2 ◦ β2

(
β2(x2)

))
.β1

((
µ2 ◦ β2(x2)

)
.β1(x1)

)
, β2

(
β2(x2))

)

=

((
µ2(x2)

)
.
(
τ
(
µ2 ◦ β2︸ ︷︷ ︸
=τ−◦µ2

(x2)
)
.β1

(
β1(x1)

))
, x2

)

=
((
µ2(x2)

)(
µ2(x2)

)−1
.x1, x2

)

= (x1, x2)
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so that β is indeed an involution. Second :

β(u.x1, u.x2) =
(
µ2 ◦ β2(u.x2).β1(u.x1), β2(u.x2)

)

=
(

µ2

(
τ(u).β2(x2)

)
︸ ︷︷ ︸

=τ(u)µ2

(
β2(x2)

)
τ(u)−1

.
(
τ(u).β1(x1)

)
, τ(u)β2(x2)

)

=

(
τ(u).

((
µ2 ◦ β2(x2)

)
.β1(x1)

)
, τ(u).β2(x2)

)

= τ(u).β(x1 , x2)

and :

µ ◦ β(x1, x2) = µ1

((
µ2 ◦ β2(x2)

)
.β1(x1)

)
µ2

(
β2(x2)

)

=
(
µ2 ◦ β2(x2)µ1 ◦ β1(x1)

(
µ2 ◦ β2(x2)

)−1
)(
µ2 ◦ β2(x2)

)

= τ− ◦ µ2(x2)τ
− ◦ µ1(x1)

= τ− ◦ (µ1 · µ2)(x1, x2)

= τ− ◦ µ(x1, x2)

So the only thing left to prove is that β∗ω = −ω. Let us start by computing Tβ. For all (x1, x2) ∈ M ,
and all (v1, v2) := d

dt
|t=0(x1(t), x2(t)) (where xi(0) = xi), one has :

T(x1,x2)β.(v1, v2) =
d

dt
|t=0

((
µ2 ◦ β2(x2)

)
.β1

(
x1(t)

)
, β2

(
x2(t)

))

=

((
µ2 ◦ β2(x2)

)
.

{(
θLµ2◦β2(x2)

(
Tx2(µ2 ◦ β2).v2

))]
β1(x1)

+ Tx1β1.v1

}
, Tx2β2.v2

)

Recall indeed that if a Lie group U acts on a manifold M then :

d

dt
|t=0 (ut.xt) = u0.X

]
x0

+ u0.
( d
dt
|t=0 xt

)

where X ∈ u = Lie(U) is such that ut = u0 exp(tX) for all t, that is :

X = u−1
0 .
( d
dt

|t=0 ut

)
= θLu0

( d
dt
|t=0 ut

)

Let us now compute β∗(ω1 ⊕ ω2). We obtain, for all (x1, x2) ∈M and all (v1, v2), (w1, w2) ∈ T(x1,x2)M :

(
β∗(ω1 ⊕ ω2)

)
(x1,x2)

(
(v1, v2), (w1, w2)

)

= (ω1)(
µ2◦β2(x2)

)
.β1(x1)

(
(
µ2 ◦ β2(x2)

)
.





(
θLµ2◦β2(x2)

(
Tx2(µ2 ◦ β2).v2

))]
β1(x1)

+ Tx1β1.v1︸ ︷︷ ︸
(A)




, (7.2)

(
µ2 ◦ β2(x2)

)
.





(
θLµ2◦β2(x2)

(
Tx2(µ2 ◦ β2).w2

))]
β1(x1)

+ Tx1β1.w1︸ ︷︷ ︸
(A)





)
(7.3)
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+ (ω2)β2(x2)(Tx2β2.v2, Tx2β2.w2)︸ ︷︷ ︸
(B)

Since ω1 is U -invariant, we can drop the terms µ2◦β2(x2) ∈ U appearing on lines (7.2) and (7.3). Further,
since β∗ω1 = −ω1 and β∗ω2 = −ω2, we have, by the l = 1 case :

(A) + (B) = −(w1)x1(v1, w1) − (w2)x2(v2, w2) (7.4)

= −(ω1 ⊕ ω2)(x1,x2)

(
(v1, v2), (w1, w2)

)
(7.5)

The remaining terms on lines (7.2) and (7.3) then are :

(w1)β1(x1)

((
θLµ◦β2(x2)

(
Tx2(µ2 ◦ β2).v2

))]
β1(x1)

, Tx1β1.w1

)
(7.6)

+ (w1)β1(x1)

(
Tx1β1.v1 ,

(
θLµ◦β2(x2)

(
Tx2(µ2 ◦ β2).w2

))]
β1(x1)

)
(7.7)

+ (w1)β1(x1)

((
θLµ◦β2(x2)

(
Tx2(µ2 ◦ β2).v2

))]
β1(x1)

,
(
θLµ◦β2(x2)

(
Tx2(µ2 ◦ β2).w2

))]
β1(x1)

)
(7.8)

and we notice that each of these three terms is of the form ιX]ω1 = 1
2µ

∗
1(θ

L + θR |X) for some X ∈ u.
To facilitate the computations, we set, for i = 1, 2 :

gi := µi ◦ βi(xi) ∈ U

ζi := Txi
(µi ◦ βi).vi ∈ Tµi◦βi(xi)U = Tgi

U

ηi := Txi
(µi ◦ βi).wi ∈ Tµi◦βi(xi)U = Tgi

U

We can then rewrite lines (7.6), (7.7) and (7.8) under the form :

1

2

(
θLg1(η1)︸ ︷︷ ︸

(1)

+ θRg1(η1)︸ ︷︷ ︸
C

| θLg2(ζ2)
)

(7.9)

−1

2

(
θLg1(ζ1)︸ ︷︷ ︸

(2)

+ θRg1(ζ1)︸ ︷︷ ︸
D

| θLg2(η2)
)

(7.10)

+
1

2

(
θLg1
(
θLg2(η2).g1 − g1.θ

L
g2

(η2)
)

+ θRg1
(
θLg2(η2).g1 − g1.θ

L
g2

(η2)
)
| θLg2(ζ2)

)
(7.11)

where the expression for the last term follows from the equivariance of µ1 :

Tβ1(x1)µ1.
(
θLµ2◦β2(x2)

(Tx2(µ2 ◦ β2).w2)
)]
β1(x1)

=
(
θLµ2◦β2(x2)

(Tx2(µ2 ◦ β2).w2)
)∼
µ1◦β1(x1)

=
(
θLg2(η2)

)∼
g2

(where X∼
u = X.u − u.X is the value at u of the fundamental vector field associated to X ∈ u by the

action of U on itself by conjugation). We can simplify the expression in (7.11) further by using the
definition of θL and θR and the Ad-invariance of (. | .) :

(7.11) =
1

2

(
Adg−1

1 .θLg2(η2) −Adg1.θ
L
g2

(η2) | θLg2(ζ2)
)

(7.12)

=
1

2

(
θLg2(η2) |Adg1.θLg2(ζ2)

)
− 1

2

(
Adg1.θ

L
g2

(η2) | θLg2(ζ2)
)

(7.13)

123



CHAPTER 7 7.3

Let us now compute β∗(µ∗
1θ
L ∧ µ∗

2θ
R).

(
β∗(µ∗

1θ
L ∧ µ∗

2θ
R)
)
(x1,x2)

(
(v1, v2), (w1, w2)

)
(7.14)

= (µ∗
1θ
L ∧ µ∗

2θ
R)(

µ2◦β2(x2).β1(x1),β2(x2)
)(T(x1,x2)β.(v1, v2), T(x1,x2)β.(w1, w2)

)
(7.15)

=
1

2

(
θLµ1(g2.β1(x1)︸ ︷︷ ︸

g2µ1(β1(x1))g
−1
2

(
Tg2.β1(x1)µ1.

(
µ2 ◦ β2(x2)

)
.
{(
θLg2(ζ2)

)]
β1(x1)

+ Tx1β1.v1

})
| θRg2(η2)

)
(7.16)

−1

2

(
θLµ1(g2.β1(x1)

(
Tg2.β1(x1)µ1.

(
µ2 ◦ β2(x2)

)
.
{(
θLg2(η2)

)]
β1(x1)

+ Tx1β1.w1

})
| θRg2(ζ2)

)

Since µ1 is equivariant, we have, for any v ∈ Tβ1(x1)M1 :

Tg2.β1(x1)µ1.
(
µ2 ◦ β2(x2)

)
.v =

(
µ2 ◦ β2(x2)

)
.
(
Tβ1(x1)µ1.v

)

where the action in the right side term is conjugation. We then have :

(7.16) =
1

2

(
θL
g2g1g

−1
2

(
g2.
(
Tβ1(x1)µ1.

((
θLg2(ζ2)

)]
β1(x1)

+ Tx1β1.v1

))
.g−1

2

)
| θRg2(η2)

)

−1

2

(
θL
g2g1g

−1
2

(
g2.
(
Tβ1(x1)µ1.

((
θLg2(η2)

)]
β1(x1)

+ Tx1β1.w1

))
.g−1

2

)
| θRg2(ζ2)

)

=
1

2

(
g2g

−1
1 g−1

2 g2.
(
θLg2(ζ2).g1 − g1.θ

L
g2

(ζ2)
)
.g−1

2 | θRg2(η2)
)

+
1

2

(
g2g

−1
1 g−1

2 g2.ζ1︸ ︷︷ ︸
=θL

g1
(ζ1)

.g−1
2 | θRg2(η2)

)

−1

2

(
g2g

−1
1 g−1

2 g2.
(
θLg2(η2).g1 − g1.θ

L
g2

(η2)
)
.g−1

2 | θRg2(ζ2)
)

+
1

2

(
g2g

−1
1 g−1

2 g2.η1︸ ︷︷ ︸
=θL

g1
(η1)

.g−1
2 | θRg2(ζ2)

)

=
1

2

(
Adg2Adg

−1
1 .θLg2(ζ2) | θRg2(η2)

)
− 1

2

(
Adg2.θ

L
g2

(ζ2) | θRg2(η2)
)

+
1

2

(
Adg2.θ

L
g1

(ζ1) | θRg2(η2)
)

−1

2

(
Adg2Adg

−1
1 .θLg2(η2) | θRg2(ζ2)

)
+

1

2

(
Adg2.θ

L
g2

(η2) | θRg2(ζ2)
)
− 1

2

(
Adg2.θ

L
g1

(η1) | θRg2(ζ2)
)

=
1

2

(
θLg2(ζ2) |Adg1.θLg2(η2)

)

︸ ︷︷ ︸
(3′)

− 1

2

(
θLg2(ζ2) | θLg2(η2)︸ ︷︷ ︸

(4)

)
+

1

2

(
θLg1(ζ1) | θLg2(η2)

)

︸ ︷︷ ︸
(2′)

(7.17)

−1

2

(
θLg2(η2) |Adg1.θLg2(ζ2)

)

︸ ︷︷ ︸
(3′)

+
1

2

(
θLg2(η2) | θLg2(ζ2)︸ ︷︷ ︸

(4′)

)
− 1

2

(
θLg1(η1) | θLg2(ζ2)

)

︸ ︷︷ ︸
(1′)

(to obtain this last expression, one uses the Ad-invariance of (. | .) and the fact that Adg−1
2 ◦ θRg2 = θLg2).

Observe that (4) and (4′) cancel in the above expression. Likewise, (1′), (2′) and (3′) in (7.17) cancel
respectively with (1), (2) in (7.9) and (7.10) and with (7.13) when computing the sum β∗(ω1 ⊕ ω2) +
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β∗(µ∗
1θ
L∧µ∗

2θ
R). The non-vanishing terms in this sum are therefore (A) and (B) from (7.4) and (C) and

(D) from (7.9) and (7.10), so that :

(β∗ω)x(v, w) (7.18)

=
(
β∗(ω1 ⊕ ω2)

)
x
(v, w) +

(
β∗(µ∗

1θ
L ∧ µ∗

2θ
R)
)
x
(v, w) (7.19)

= (A) + (B) + (C) + (D) (7.20)

= −(ω1 ⊕ ω2)x(v, w) − 1

2

((
θRg1(ζ1) | θLg2(η2)

)
−
(
θRg1(η1) | θLg2(ζ2)

))
(7.21)

But µi ◦ βi = τ− ◦ µi, so that :

(
θRg1(ζ1) | θLg2(η2)

)
=

(
θRµ1◦β1(x1)

(Tx1(µ1 ◦ β1).v1) | θLµ2◦β2(x2)
(Tx2(µ2 ◦ β2).w2)

)
(7.22)

=
(
θRτ−◦µ1(x1)

(Tx1(τ
− ◦ µ1).v1) | θLτ−◦µ2(x2)

(Tx2(τ
− ◦ µ2).w2)

)
(7.23)

and τ− = Inv ◦ τ , where Inv : u 7→ u−1 is inversion on U , so Tuτ
−.ξ = −τ−(u).(Tuτ.ξ).τ

−(u). Hence :

θRτ−(u)(Tuτ
−.ξ) = θRτ−(u)

(
− τ−(u).(Tuτ.ξ).τ

−(u)
)

= −τ−(u).(Tuτ.ξ)

= −θLτ(u)(Tuτ.ξ)

(and likewise θL changes into θR). Since in addition to that τ is a group automorphism and an isometry
for (. | .), the expression (7.23) becomes :

(7.23) =
(
θL
τ
(
µ1(x1)

)(Tµ1(x1)τ.(Tx1µ1.v1)
)
| θR
τ
(
µ2(x2)

)(Tµ2(x2)τ.(Tx2µ2.w2)
))

=
(
T1τ.

(
θLµ1(x1)

(Tx1µ1.v1)
)
|T1τ.

(
θRµ2(x2)

(Tx2µ2.w2)
))

=
(
θLµ1(x1)

(Tx1µ1.v1) | θRµ2(x2)
(Tx2µ2.w2)

)

=
(
(µ∗

1θ
L)x1(v1) | (µ∗

2θ
R)x2(w2)

)

so that we have :

(β∗ω)x(v, w) = (7.21)

= −(ω1 ⊕ ω2)x(v, w)

−1

2

((
(µ∗

1θ
L)x1(v1) | (µ∗

2θ
R)x2(w2)

)
−
(
(µ∗

1θ
L)x1(w1) | (µ∗

2θ
R)x2(v2)

))

= −(ω1 ⊕ ω2)x(v, w) − (µ∗
1θ
L ∧ µ∗

2θ
R)x(v, w)

= −ωx(v, w)

which completes the proof of lemma 7.3.3.

Let us now conclude by showing that lemma 7.3.3 indeed guarantees that (β(l))∗ ω(l) = −ω(l).

Proposition 7.3.4. The involution β = β(l) (see definition 6.5.5) reverses the 2-form ω = ω(l) defining
the quasi-Hamiltonian structure on C1 × · · · × Cl , that is : β∗ω = −ω .

Proof. We proceed by induction. For l = 1, this is just lemma 7.3.1. Consider now l ≥ 2 and assume
that β(l−1) reverses the 2-form ω(l−1) on the product C2 × · · · × Cl of (l − 1) conjugacy classes. Then we
know from lemma 7.3.2 that :

β(l) =
((
µ(l−1) ◦ β(l−1)

)
.β(1) , β(l−1)

)
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where µ(l−1)(u2, . . . , ul) = u2. . .ul. Since, by the induction hypothesis, (β(l−1))∗ ω(l−1) = −ω(l−1) on
C2 × · · · × Cl, and since, by lemma 7.3.1, (β(1))∗ ω(1) = −ω(1) on C1, lemma 7.3.3 applies (the other
conditions of the lemma were verified at the end of section 7.2, and the fact that

ω(l) = (ω(1) ⊕ ω(l−1)) +
1

2

(
(µ(1))∗θL ∧ (µ(l−1))∗θR

)

follows from proposition 4.4.1, the map µ(1) being the inclusion map µ(1) : C1 ↪→ U), which shows that
(β(l))∗ ω(l) = −ω(l).

Therefore, we have shown that the involution

β : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→

(
τ−(ul). . .τ

−(u2)τ
−(u1)τ(u2). . .τ(ul), . . . , τ

−(ul)τ
−(ul−1)τ(ul), τ

−(ul)
)

that we obtained in chapter 6 (see definition 6.5.5) is indeed an example of a map satisfying the conditions

of proposition 7.2.2. Consequently, it induces an anti-symplectic involution β̂ on the quasi-Hamiltonian
quotient M//U = µ−1({1})/U . We now wish to understand better the relation between Fix(β̂) and the
projection of Fix(β) ∩ µ−1({1}) under the map p : µ−1({1}) → µ−1({1})/U .

7.4 Projection of the fixed-point set of a form-reversing involu-

tion

The purpose of this section is to study the image, under the projection map p : µ−1({1}) → µ−1({1})/U ,
of the fixed-point set Fix(β)∩µ−1({1}) of the involution β|µ−1({1}), where β is a form-reversing involution
on the quasi-Hamiltonian space (M,ω, µ : M → U). We assume that U is endowed with an involutive
automorphism τ and that β is compatible with the action of (U, τ) and the momentum map µ of this
action, in the sense of definition 7.2.1. In this case, we have seen that β induces an anti-symplectic
involution β̂ : M//U → M//U on the quasi-Hamiltonian quotient M//U = µ−1({1}) (see proposition

7.2.2). By definition of β̂, we see that if x ∈ Fix(β) ∩ µ−1({1}), then p(x) ∈ Fix(β̂). Here, we shall give
sufficient conditions for the projection map

pβ := p|Fix(β)∩µ−1({1}) : Fix(β) ∩ µ−1({1}) −→ Fix(β̂) ⊂M//U

to be surjective (here we implicitly assume that Fix(β) ∩ µ−1({1}) is non-empty but, as we shall see in
chapter 8, this is always the case when β satisfies the assumptions proposition 7.2.1 and has a non-empty
fixed-point set, see proposition 6.5.6). To prove the surjectivity of the map pβ , we adapt the ideas of
[Fot] to the quasi-Hamiltonian setting (see also [GH04, Xu03]).

We begin with the case where the action of U on M is free, in which case we know from section 4.5
that 1 is a regular value of µ and that M//U = µ−1({1}) is a symplectic manifold (see proposition 4.5.2
and remark 4.5.10). Recall that we denote by τ− the involution τ− : u 7→ τ(u−1) on U .

Lemma 7.4.1. Assume that Fix(τ−) ⊂ U is connected. Then, if U acts freely on M , the map

pβ : Fix(β) ∩ µ−1({1}) −→ Fix(β̂)

is surjective.

Proof. Take p(x) ∈ Fix(β̂) (where x ∈ µ−1({1})). This means that β(x) = u.x for some u ∈ U . Hence,
by applying β we get :

x = β(u.x) = τ(u).β(x) =
(
τ(u)u

)
.x

Since U acts freely, this yields τ(u)u = 1 that is, τ−(u) = u. As Fix(τ−) is assumed to be connected,
proposition 3.1.2 shows that u ∈ Fix(τ−) can be written u = τ−(v)v for some v ∈ U . Therefore :

β(x) = u.x = τ−(v)v.x
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Hence τ(v).β(x) = v.x, that is :
β(v.x) = v.x

so that v.x ∈ Fix(β) ∩ µ−1({1}) and pβ(v.x) = p(v.x) = p(x), which shows that pβ is surjective.

Remark 7.4.2. We wish to make a few comments on the assumption that Fix(τ−) is connected. On
the one hand, it is not always the case, even if U is assumed to be simply connected, that Fix(τ−) is
connected, as is pointed out in [Loo69b], p.77. On the other hand, we know from proposition 5.1.3 that
the set of symmetric elements of (U(n), τ(u) = u) that is, the set W (n) = {u ∈ U(n) | ut = u}, is
connected because each of its elements is of the form exp(iB), where B is a real symmetric matrix. The
same is true for SU(n). It is because of these two examples, which were ou main motivation and source of
inspiration for this work, that we made the simplifying assumption that Fix(τ−) is connected. One may
observe that the result that we prove here (namely, proposition 7.4.5), which uses the above assumption
on τ−, is key to the proof of corollary 6.6.5.

If now the action of U on M is not free, let us recall from proposition 4.5.8 that we have :

M//U =
⊔

K⊂U
MK//LK

where the compact group LK = N (K)/K (with K closed in U) acts freely on the quasi-Hamiltonian
space MK = {x ∈ M | Ux = K}. The only closed subgroups K ⊂ U that we shall be interested in now

are those for which MK ∩ Fix(β̂) 6= ∅. For such a subgroup, we observe the following two facts :

Lemma 7.4.3. If K ⊂ U is a closed subgroup such that MK ∩ Fix(β) 6= ∅, then one has τ(K) ⊂ K.

Proof. Take x ∈ MK ∩ Fix(β). Then if k ∈ K, one has k.x = x, so that β(k.x) = β(x) = x. Hence
τ(k).β(x) = x that is, τ(k).x = x, hence τ(k) ∈ Ux = K.

Lemma 7.4.4. If K ⊂ U is a closed subgroup such that MK ∩Fix(β) 6= ∅, then one has β(MK) ⊂MK.

Proof. Take y ∈ MK and let us show that Uβ(y) = K. A given u ∈ U satisfies u.β(y) = β(y) if and
only if β(τ(u).y) = β(y) that is, by applying β, τ(u).y = y. This means that τ(u) ∈ Uy = K, hence
u ∈ τ(K) = K by lemma 7.4.3.

It is then immediate, from the definition of (MK , ωK = ω|MK
, µ̂K : MK → LK) (see subsection 4.5.2)

that the involution βK := β|MK
is compatible with the action of LK and the momentum map µ̂K of this

action, and that β∗
KωK = −ωK . Since LK acts freely on MK , lemma 7.4.1 applies and one obtains :

Fix(β̂) =
⊔

K⊂U
Fix(β̂K) =

⊔

K⊂U
pβK

(
Fix(βK) ∩ µ̂K−1

({1})
)

Summarizing, we have proved :

Proposition 7.4.5. If (M,ω, µ : M → U) is a quasi-Hamiltonian (U, τ)-space and if β : M → M is
involution on M satisfying β∗ω = −ω, β(u.x) = τ(u).β(x), and µ◦β = τ− ◦µ, then one has : if Fix(τ−)
is connected, the map

pβ : Fix(β) ∩ µ−1({1}) −→ Fix(β̂) ⊂ µ−1({1})/U
is surjective.

If Fix(τ−) is not assumed to be connected, it is possible, following [Fot], to obtain a description of Fix(β̂)
as a disjoint union of quasi-Hamiltonian quotients indexed by the connected components of Fix(τ−).
When this set is connected, one then obtains proposition 7.4.5 above.

We shall now move on to the next chapter, where we will prove that the anti-symplectic involution β̂
induced by β on the reduced space C1×· · ·×Cl//U by means of proposition 7.2.2 always has fixed points.
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Observe that, by corollary 6.6.5, this amounts to saying that there exists decomposable representations of
π = π1(S

2\{s1, . . . , sl}). But we know from chapter 6 that this is equivalent to saying that there exists
σ0-decomposable representations, which are, by theorem 6.6.2, the elements u of µ−1({1}) satisfying
β(u) = u, that is, the elements u of Fix(β) ∩ µ−1({1}). Observe that we already know that Fix(β) 6= ∅
(see proposition 6.5.6). And we have now proved that :

Fix(β̂) 6= ∅ if and only if Fix(β) ∩ µ−1({1}) 6= ∅

This can also be written, denoting by Mβ the fixed-point set Mβ := Fix(β) of β :

Fix(β̂) 6= ∅ if and only if 1 ∈ µ(Mβ)

This is why, in chapter 8, we will study the image under µ of the fixed-point set Mβ of an involution β
defined on the quasi-Hamiltonian space (M,ω, µ : M → U) and satisfying the conditions of proposition
7.2.2.
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In this chapter, we study convexity properties of group-valued momentum maps. From a general
point of view, this is motivated by the convexity properties of momentum maps in the usual Hamiltonian
setting, which we will recall in section 8.1, and of which we will prove analogues in the remainder of this
chapter. As for us though, the main motivation for this study is establishing the existence of decomposable
representations, as explained at the end of chapter 7 and upon which we will come back in subsection
8.3.3.

First, we will be interested in understanding the Alekseev-Malkin-Meinrenken convexity theorem 1

(see [AMM98]), of which we will give a detailed proof, which will help us in the following. Our approach
is based on adapting the ideas presented in [CDM88] and in [HNP94] to the quasi-Hamiltonian setting.

Second, we will give a real version of this convexity theorem, that is, a convexity result for the image
µ(Mβ) under the momentum map of the fixed-point set of a form-reversing involution β defined on a

1Actually, this theorem is due to Meinrenken and Woodward (see [MW98]), as pointed out to me by Anton Alekseev,
whom I would like to thank. I apologize for this lack of care in the writing.
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quasi-Hamiltonian space (M,ω, µ : M → U). This will constitute a quasi-Hamiltonian analogue of the
O’Shea-Sjamaar convexity theorem (see [OS00]). To prove this result, we shall again follow the approach
of [HNP94], meaning that we shall not try to adapt the proof of [OS00] to the quasi-Hamiltonian setting.
As a matter of fact, as the techniques in [HNP94] only cover the case of Hamiltonian torus actions when
it comes to describing real convexity properties of momentum maps, the proof we shall give also suggests
a different proof of the O’Shea-Sjamaar theorem.

In this whole chapter, the Lie group U that we shall consider will always be assumed to be compact
connected and simply connected, unless stated otherwise explicitly. We shall explain this last topological
assumption later on (see remark 8.2.2).

8.1 Convexity results for Lie-algebra-valued momentum maps

In this section, we recall the convexity properties of momentum maps in usual Hamiltonian geometry.
The first two results we shall recall deal with Hamiltonian actions of tori. The original statements of these
theorems are due to Atiyah and Guillemin-Sternberg for the first one (see [Ati82, GS82, GS84a]) and
to Duistermaat for the second one (see [Dui83]). The Atiyah-Guillemin-Sternberg (AGS) theorem says
that whenever a compact connected symplectic manifold (M,ω) is endowed with a Hamiltonian action
of a torus T with momentum map µ : M → t∗ = (Lie(T ))∗, then µ(M) is a convex polytope, whose
vertices are the images under µ of the fixed points of the action. This polytope is sometimes called the
momentum polytope. The Duistermaat theorem then provides what is usually called a real version of this
convexity result : if β is an antisymplectic involution on M which is compatible with the action of T on
M and the momentum map µ of this action, then µ(Mβ) = µ(M), that is, the image under µ of the
fixed-point set Mβ of β (as a matter of fact, of any of its connected components) is a convex polytope,
which in this case is equal to the full momentum polytope. As an application of these symplectic geometry
results, one recovers known convexity results from linear algebra and Lie theory, namely the Schur-Horn
theorem, that says that the diagonal of a Hermitian matrix H is a convex combination of permutations
of the eigenvalues of H (see for instance [Knu00]), as well as the related Kostant convexity results for
semi-simple Lie groups (see [Kos74, LR91, FR96]). The convexity results for momentum maps that we
are about to quote are in fact improved versions of the AGS and Duistermaat theorems, in the sense that
they say that convexity of µ(M) and µ(Mβ) holds even if M is not assumed to be compact, provided
the momentum map µ is a proper map (that is, the inverse image µ−1(K) of any compact set K is itself
compact, this implies that µ is closed). These improved results have been obtained by Hilgert, Neeb and
Plank in [HNP94] following the approach of Condevaux, Dazord and Molino in [CDM88], and also by
Sjamaar in [Sja98], following an algebro-geometric approach. We refer to [HNP94] for the proofs of these
results as well as for prerequisites on proper maps and convex sets.

Theorem 8.1.1 (Momentum convexity for Hamiltonian torus actions). [HNP94] Let (M,ω) be
a connected symplectic manifold endowed with a Hamiltonian action of a torus T with proper momentum
map µ : M → t∗ = (Lie(T ))∗. Then :

(i) µ(M) is a closed locally polyhedral convex set.

(ii) µ : M → µ(M) is an open map.

(iii) the fibre µ−1({v}) of µ above any v ∈ t∗ is a connected set.

(iv) if µ(x) ∈ µ(M) is an extremal point of the convex set µ(M) then x is a fixed point of the action :
for all t ∈ T , t.x = x .

In particular, if M is compact, then µ(M) is a convex polytope and it is the convex hull of the images
under µ of the fixed points of the action.

Theorem 8.1.2 (A real convexity result for Hamiltonian torus actions). [HNP94] Suppose
additionally that β : M →M is an involution on M satisfying :
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(i) β∗ω = −ω

(ii) β(t.x) = t−1.x for all x ∈M and all t ∈ T

(iii) µ ◦ β = µ

(iv) Mβ := Fix(β) 6= ∅

Then, for every connected component Q ⊂Mβ of the fixed-point set of β, µ(Q) is a convex polytope and
one has : µ(Q) = µ(M).

Remark 8.1.3. Observe that, as T is abelian, the involution τ : t 7→ t−1 is a group automorphism of
T , whose tangent map at 1 ∈ T is −Id : t → t, so that the compatibility conditions (ii) and (iii) above
rewrite : β(t.x) = τ(t).β(x) and µ ◦ β = −(Tτ)∗ ◦ µ, as was recalled in the beginning of chapter 7.

The next two convexity results that we shall state deal with Hamiltonian actions of non-abelian compact
groups and may be obtained by reduction to the abelian case. Indeed, if U is a compact connected Lie
group acting in a Hamiltonian fashion on a compact connected symplectic manifold (M,ω), convexity
results for the momentum map µ : M → u∗ = (Lie(U))∗ of the U -action are proved by reduction to the
action, which turns out to be Hamiltonian, of a maximal torus T ⊂ U on a T -stable symplectic connected
submanifold N ⊂M satisfying U.N = M and µ(N) = µ(M)∩t∗+, where t∗+ ⊂ t∗ is a closed Weyl chamber
(see definition 2.2.2). Such a manifold N is called a symplectic cross-section. We refer to [HNP94] for
details on the proof of the following result, which was originally conjectured by Guillemin and Sternberg
in [GS82, GS84a] and proved by Kirwan in [Kir84] for compact connected symplectic manifolds, then
extended by Hilgert-Neeb-Plank and Sjamaar to the case of arbitrary connected symplectic manifolds
with proper momentum map. In the following, we assume that there is a given Ad-invariant product
(. | .) on u = Lie(U), so that we can identify u∗ and u and, for any subalgebra t ⊂ u, think of t∗ as a
subset of u∗.

Theorem 8.1.4 (Momentum convexity for Hamiltonian actions of compact groups). [HNP94]
Let (U, (. | .)) be a compact Lie group acting on a connected symplectic manifold (M,ω) in a Hamiltonian
fashion, with proper momentum map µ : M → u∗ = (Lie(U))∗. Then, for any choice of a Cartan
subalgebra t ⊂ u and any choice of a closed Weyl chamber t∗+ ⊂ t∗ ⊂ u∗, the set µ(M) ∩ t∗+ is a convex
subset of u∗.

In section 8.2, we will give a proof of a quasi-Hamiltonian analogue, due to Alekseev, Malkin and Mein-
renken (see [AMM98]), of the above result. Now, just as theorem 8.1.2 is a real version of theorem 8.1.1,
there exists a real version of theorem 8.1.4, which is due to O’Shea and Sjamaar (see [OS00]). The
setting is as follows : U is a compact Lie group acting on a connected symplectic manifold (M,ω) with
proper momentum map µ : M → u∗, and β : M → M is an involution on M satisfying β∗ω = −ω,
β(u.x) = τ(u).β(x) and µ ◦ β = −τ ◦ µ, where τ : U → U is an involutive automorphism of U and where
we still denote by τ the involution (Tτ)∗ : u∗ → u∗ that it induces on the dual of the Lie algebra of U .
Because of the compatibility relations between β and both the action of U and the momentum map µ,
one has µ(Mβ) ⊂ (u∗)τ

−

where τ− : ξ ∈ u∗ 7→ −τ(ξ), that is, µ(Mβ) consists of points which are fixed
by τ−. The result one hopes for is that µ(Mβ) ∩ t∗+ is a convex polytope, for some closed Weyl chamber

t∗+ ⊂ t∗ ⊂ u∗, and to describe it as a subpolytope of µ(M) ∩ t∗+. As explained in [OS00], this is only
possible for an appropriate choice of a Cartan subalgebra t ⊂ u. Namely, one has to choose t in a way
that t∗ ∩ (u∗)τ

−

is of maximal possible dimension. One way to obtain such a Cartan subalgebra is to
start with an abelian subalgebra a ⊂ u such that a∗ ⊂ u∗ consists of τ−-fixed vectors and of maximal
dimension with respect to this property, and then to consider a Cartan subalgebra t ⊂ u containing a.
We refer to [OS00] for a description of a in terms of roots, in particular for the notion of Weyl chamber
a∗+ for the restricted root system corresponding to a (the important thing to understand being that a∗+
is a fundamental domain for the action of the neutral component K0 of K := U τ on the vector space
(u∗)τ

−

). One then obtains the following result, for the proof of which we refer to [OS00] :
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Theorem 8.1.5 (A real convexity result for Hamiltonian actions of compact groups). [OS00]
Let (U, (. | .), τ) be a compact Lie group endowed with an involutive automorphism τ acting in a Hamil-
tonian fashion on a connected symplectic manifold (M,ω) with proper momentum map µ : M → u∗ =
(Lie(U))∗. Denote by τ− the involution τ− := (−Tτ)∗ : u∗ → u∗ and let β : M → M be an involution
on M satisfying :

(i) β∗ω = −ω
(ii) β(u.x) = τ(u).β(x) for all x ∈M and all u ∈ U

(iii) µ ◦ β = τ− ◦ µ
(iv) Mβ := Fix(β) 6= ∅

Let t ⊂ u be a Cartan subalgebra of u ' u∗ such that t∗ ∩ (u∗)τ
−

is of maximal possible dimension, and
let t∗+ ⊂ t∗ be any closed Weyl chamber. Then, the set µ(Mβ) ∩ t∗+ is convex and one has :

µ(Mβ) ∩ t∗+ =
(
µ(M) ∩ t∗+

)
∩ (u∗)τ

−

that is, µ(Mβ) ∩ t∗+ is the subpolytope of µ(M) ∩ t∗+ obtained by intersecting the latter with the vector

space (u∗)τ
− ⊂ u∗.

Observe that if a ⊂ u designates an abelian subalgebra of u ' u∗ consisting of τ−-fixed points and of
maximal dimension with respect to this property, and if t is a Cartan subalgebra of u containing a, then
t∗+ ∩ (u∗)τ

−

= a∗+, where a∗+ is the Weyl chamber defined by the restricted root system corresponding to

a (see [OS00] for details). Therefore, since µ(Mβ) ⊂ (u∗)τ
−

because of the compatibility of β and µ, one
has :

µ(Mβ) ∩ t∗+ = µ(Mβ) ∩ t∗+ ∩ (u)τ
−

= µ(Mβ) ∩ a∗+

and theorem 8.1.5 above says that :

µ(Mβ) ∩ a∗+ = µ(M) ∩ a∗+

We shall come back to this in subsection 8.3.2.

In the remainder of this chapter, we will state and prove a quasi-Hamiltonian analogue of theorem
8.1.5. The one truly remarkable feature of the proof we shall give for convexity properties of group-valued
momentum maps is that, just as in the usual Hamiltonian case, we will reduce the situation at hand to
that of a Hamiltonian torus action on a symplectic manifold N sitting inside the given quasi-Hamiltonian
space M . More precisely, we will prove the existence of a connected symplectic cross-section N ⊂M for
every connected quasi-Hamiltonian space (M,ω, µ : M → U), where U is a compact connected simply
connected Lie group (see proposition 8.2.3).

Other results and possible approaches to convexity properties of momentum maps may be found in
[Sja98, LMTW98, MW99, Wei01, Sleb, Ben02, Del88, Zun, MT03, AL92, HN98, Nee94, Nee95, Bri87,
BS00, Fot05].

8.2 A convexity theorem for momentum maps with value in a

compact connected simply connected Lie group

In this section, we give a proof of a convexity theorem for momentum maps defined on a quasi-Hamiltonian
space which is due to Alekseev, Malkin and Meinrenken (see also [AKSM02]). More precisely, we consider
a compact connected simply connected Lie group U and a quasi-Hamiltonian U -space (M,ω, µ : M → U),
and we study convexity properties of µ(M).
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8.2.1 Making convexity make sense in a Lie group

The first issue is for convexity to make sense in a Lie group that is not, as it is compact, homeomorphic
to a vector space. In the usual Hamiltonian case, a convex set µ(M) ∩ t∗+ was obtained (see theorem
8.1.4) by intersecting the image of µ with the closure of a Weyl chamber t∗+ ∈ u∗ in the dual u∗ of the Lie
algebra of U , that is, with a fundamental domain for the co-adjoint action of U on u∗ (see proposition
2.2.3, recall that a fundamental domain is by definition a subset D ⊂ X of some U -space X intersecting
each U -orbit in X in exactly one point). In the quasi-Hamiltonian case, the analogous approach consists
in intersecting µ(M) with a fundamental domain for the conjugacy action of U on itself. Convexity
then makes sense because, when the compact connected Lie group U is in addition simply connected, this
fundamental domain may be identified with a convex subset of the vector space u = Lie(U). Let us recall
how.

Instead of intersecting µ(M) with a fundamental domain for the conjugacy action of U , we could as
well consider the projection of µ(M) ⊂ U to the orbit space U/Int(U) for this action. This is indeed
equivalent because µ(M) is a union of U -orbits (as µ is an equivariant map) : if D ⊂ X is a fundamental
domain for the action of U on some space X and Y ⊂ X is a U -stable subset of X , then the projection
p : X → X/U from X to the orbit space X/U induces a bijection from Y ∩ D to p(Y ) = Y/U . In other
words, Y ∩ D is a fundamental domain for the action of U on Y . Recall now that we have assumed the
compact connected Lie group U to be simply connected. In this case, the space U/Int(U) of conjugacy
classes of U is homeomorphic to the closure W of a Weyl alcove W ⊂ t = Lie(T ) for any fixed maximal
torus T ⊂ U (see proposition 2.2.5). More precisely, exp(W) is a fundamental domain for the conjugacy
action of U on itself and the homeomorphism between W and U/Int(U) is induced by the exponential
map in the sense that we have :

W '−→
exp

exp(W)
'−→
p
U/Int(U)

This means that, for a simply connected U , the space U/Int(U) may be identified, topologically, to a
convex polyhedron W ⊂ t of a (finite-dimensional) vector space, so that it makes sense to speak of a
convex subset of U/Int(U) :

Definition 8.2.1 (Convex subsets of U/Int(U)). A subset C ⊂ U/Int(U) is called convex if it is
mapped, under the identification U/Int(U) ' W ⊂ t, to a convex subset of t ⊂ u.

Observe that if we use the same approach for a usual Lie-algebra valued momentum map µ : M →
u∗, we are led to considering subsets of the orbit space u∗/Ad(U) for the co-adjoint action, which is
homeomorphic to the closure t∗+ ⊂ t∗ of a Weyl chamber t∗+, which is also a convex subset of a finite-
dimensional vector space.

Remark 8.2.2. When the compact connected Lie group U is not simply connected, the identification
U/Int(U) ' W does not hold and has to be replaced by an identification U/Int(U) ' W/π1(U) (see
for instance [Loo69b] for an explanation of the action of π1(U) on W). In particular, U/Int(U) is not
necessarily simply connected anymore, and therefore cannot be homeomorphic to a convex subset of a
vector space. We refer to [Zun] for additional comments on this situation.

8.2.2 Constructing a symplectic cross-section in a quasi-Hamiltonian space

The purpose of this subsection is to prove the following result :

Proposition 8.2.3 (Existence of a connected symplectic cross-section). Let U be a compact
connected simply connected Lie group and let (M,ω, µ : M → U) be a connected quasi-Hamiltonian U -
space. We assume the momentum map µ to be proper.
Let T ⊂ U be a maximal torus in U , let W ⊂ t = Lie(T ) be the closure of a Weyl alcove, and let
p : U → U/Int(U) be the projection from U to the set of its conjugacy classes. Recall that the exponential

map exp : t → T induces a homeomorphism W '−→ U/Int(U).
Then, there exists a submanifold N ⊂M such that :
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(i) N is connected.

(ii) N is T -stable.

(iii) ω|N is a symplectic form.

(iv) the action of T on N is Hamiltonian with momentum map the map

µ̃ := p ◦ µ|N : N −→ U/Int(U) ' W ⊂ t

(v) The set U.N := {u.x : x ∈ N, u ∈ U} is dense in M , and the set µ̃(N) is dense in µ̃(M).

The manifold N ⊂ M whose existence is guaranteed by proposition 8.2.3 is called a symplectic cross-
section because it is a symplectic manifold satisfying U.N = M (see [GS84c]).

Remark 8.2.4 (On the assumption of properness of the momentum map). The assumption
that µ is proper is satisfied in the examples of quasi-Hamiltonian spaces that we are interested in. As
a matter of fact, when U is a compact Lie group, all the examples of quasi-Hamiltonian spaces that are
of interest to us (a conjugacy class of U , the double of U , and products of those, see chapter 4) are all
compact, so that µ : M → U is automatically proper. The point of not assuming M to be compact in
proposition 8.2.3 is to hopefully be able to consider quasi-Hamiltonian spaces associated to non-compact
Lie groups G in the future, for this should be done by reducing the action of G to that of a maximal
compact subgroup U ⊂ G, as does Weinstein in [Wei01] for usual Hamiltonian spaces, in which case we
should be in the exact situation of proposition 8.2.3.

To prove proposition 8.2.3, we will in fact construct a submanifoldN ⊂M such that µ(N) ⊂ exp(W) ⊂ U ,
so that the map µ̃ : N → W is no other than µ̃ = exp−1 ◦µ|N : N → t (recall that exp |W is a
homeomorphism from W to exp(W)) and we will show that it is a smooth map from N to t.

We begin by describing points of µ(M) whose conjugacy class in U is of maximal possible dimension
among points of µ(M). This is a natural thing to do, as the set of such points is dense in µ(M) (see
proposition 2.1.6). Define q to be the maximal dimension of a conjugacy class of a point of µ(M) and Σq
to be the set of points of U whose conjugacy class is of dimension q :

q := max {dim U.µ(x) : x ∈M}

Σq := {u ∈ U | dim U.u = q}
Recall that Σq is a submanifold of U (see proposition 2.2.10). Define then Mq to be the set of points of
M whose image under µ lies in Σq :

Mq := {x ∈M | dim U.µ(x) = q} = µ−1(Σq)

so that µ(Mq) is exactly the set of points of µ(M) whose conjugacy class in U is of maximal possible
dimension.

The first thing to observe is that Mq is an open, connected, and dense subset of M . Let us first show
that it is open. For any x ∈ Mq, there exists an open neighbourhood V of µ(x) in U such that for all
u ∈ V , dim U.u ≥ dim U.µ(x) (see corollary 2.1.5). Since µ is continuous, we have µ(y) ∈ V for all y in
some open set U of M containing x. Since dim U.µ(x) is maximal, we necessarily have dim U.µ(y) = q
for all y ∈ U , so that U ⊂ Mq. We now want to prove that Mq is dense and connected. To that end, we
introduce the set Mreg of points of M whose orbit under U is of maximal possible dimension :

r := max {dim U.x : x ∈M}

Mreg = {x ∈M | dim U.x = r}
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Then it follows from proposition 2.1.6 that Mreg is an open, connected, and dense subset of M . As Mq

is open, the intersection Mreg,q := Mreg ∩Mq is a non-empty open set of M . In addition to that, since
(M,ω, µ : M → U) is a quasi-Hamiltonian space, Mreg enjoys the following remarkable property :

Mreg = {x ∈M | rk Txµ is maximal}

Indeed, it follows from point (iii) of proposition 4.3.1 that :

max
x∈M

{dim Im Txµ} = max
x∈M

{dim u⊥x }

= dim u − min
x∈M

{dim ux}

= dim U − min
x∈M

{dim Ux}

= max
x∈M

{dim U.x}
= r

In particular, µ is of constant rank on Mreg. Now, to show that Mq is dense and connected in M , since
we have Mreg,q ⊂ Mq ⊂ M , it is enough to prove that Mreg,q is dense and connected in M . First, we
observe that this is locally true in the following sense :

Lemma 8.2.5. For all x ∈Mreg, there exists an open neighbourhood Vx of x ∈Mreg such that Mreg,q∩Vx
is a dense and connected subset of Vx.

Proof. Since µ is of constant rank on Mreg, there exists an open connected neighbourhood Vx of x
in Mreg such that µ(Vx) is a (connected) submanifold of U (of dimension equal to rk Txµ) and such
that µ|Vx

: Vx → µ(Vx) is a locally trivial submersion onto a connected manifold with connected fibres
(the constant rank theorem says that µ is locally equivalent to the linear projection (x1, . . . , xn) 7→
(x1, . . . , xr, 0, . . . , 0), see for instance [Ave83], p.86). Since µ is equivariant and continuous, we have
u.µ(y) ∈ µ(Vx) for y ∈ Vx and u sufficiently close to 1 in U . Therefore, µ(Vx) is a union of connected
open pieces of conjugacy classes of U . Since in addition to that µ(Vx) is connected, we have, if we set

qx := max {dim U.z : z ∈ µ(Vx)}

(observe that qx has no reason to be equal to dim U.µ(x)) and

Ωx := {µ(y) ∈ µ(Vx) | dim U.µ(y) = qx}

that Ωx is an open, connected, and dense subset of µ(Vx) (see proposition 2.1.6). Now, since Ωx is an
open dense and connected subset of µ(Vx) and since µ|Vx

: Vx → µ(Vx) is a locally trivial submersion with
connected fibres over the connected manifold µ(Vx), we have that (µ|Vx

)−1(Ωx) = µ−1(Ωx) ∩ Vx is an
open dense and connected subset of Vx (recall that the submersion µ|Vx

is equivalent to (x1, . . . , xn) 7→
(x1, . . . , xr, 0, . . . , 0)). Moreover, if x, y ∈ Mreg, we can join them by a path c : [0, 1] → Mreg. Denote
by ĉ the compact connected set ĉ := c([0, 1]). For every z ∈ ĉ, there exists an open neighbourhood Vz of
z in Mreg such that the set

Rz :=
{
w ∈ Vz | dim U.µ(z) = qz := max

u∈µ(Vz)
{dim U.x}

}

is open, connected, and dense in Vz . By compactness, we can cover ĉ by a finite number of such Vz :

ĉ = Vz1 ∪ . . . ∪ Vzp

with z1 = x and zp = y. If Vzi
∩ Vzj

6= ∅, then by density and openness, Rzi
∩ Rzj

6= ∅. Therefore, for
w ∈ Rzi

∩ Rzj
, the conjugacy class of µ(w) has dimension qzi

= qzj
, whence we get qx = qy, so that qx

is the same for all x ∈ Mreg. As Mreg ∩Mq 6= ∅, one necessarily has qx = q for all x ∈ Mreg. Therefore
µ−1(Ωx) ∩ Vx = Mreg,q ∩ Vx, which proves the lemma.
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We now go back to our global study :

Lemma 8.2.6. The subset Mreg,q := Mreg ∩Mq is an open, connected, and dense subset of M . Conse-
quently, so is Mq.

Proof. Mreg,q is open as it is the intersection of two open sets. Since Mreg is dense in M , it suffices, in
order to prove that Mreg,q is dense in M , to show that Mreg ⊂ Mreg,q. For any x ∈ Mreg, there exists,
by lemma 8.2.5, an open neighbourhood Vx of x in Mreg such that Mreg,q ∩ Vx is dense in Vx, so that x
is the limit of a sequence of points of Mreg,q, which proves that Mreg ⊂Mreg,q.
Let us now prove that Mreg,q is connected. Take x, y ∈Mreg,q. As Mreg is connected, there exists a path
c : [0, 1] → Mreg joining x to y in Mreg, and we set ĉ := c([0, 1]). Then, as in the proof of lemma 8.2.5,
there exists a finite open cover

ĉ = Vz1 ∪ . . . ∪ Vzp

with z1 = x and zp = y. Then Vz1∩Vzi
6= ∅ for some i ≥ 2 and by density one has Mreg,q∩(Vz1 ∩Vzi

) 6= ∅.
By connectedness of Vz1 ∩Mreg,q, any z′i ∈Mreg,q ∩ (Vz1 ∩ Vzi

) can be joined to z1 by a path in Mreg,q.
Repeating this, we obtain a path from z1 = x to zp = y in Mreg,q.
Finally, we have proved that Mreg,q is connected and dense in M , and we have Mreg,q ⊂ Mq ⊂ M =
Mreg,q, which proves that Mq is connected and dense in M .

Instead of describing all of µ(Mq), what we are really interested in is describing µ(Mq) ∩ exp(W) ⊂
Σq ∩ exp(W). Recall that W is a convex polyhedron of t, which can de described entirely in terms of
roots of (U, T ) (see section 2.2). Moreover, we know from proposition 2.2.10 that the intersection of Σj
with exp(W) is a finite disjoint union of submanifolds of U :

Σq ∩ exp(W) =
⊔

S | dim U−dim US=j

exp(WS)

= exp(WS(1)) t . . . t exp(WS(m))

(where US is the stabilizer of any element in exp(WS), see definition 2.2.9), so that we have :

µ(Mq) ∩ exp(W) ⊂ exp(WS(1)) t . . . t exp(WS(m))

and we now want to study points in each exp(WS(i)) which lie in the image of µ. To that end, we set,
for all i ∈ {1, . . . ,m} :

MS(i) := µ−1
(
exp(WS(i))

)

By definition we have MS(i) ⊂Mq, and since Mq is U -stable, we have u.x ∈Mq for all x ∈MS(i) and all
u ∈ U .

Lemma 8.2.7. If MS(i) 6= ∅, it is a submanifold of M , and for every open set O of MS(i) , the set

U.O := {u.x : u ∈ U, x ∈ O}

is open in Mq.

Proof. Recall that exp(WS(i)) is a submanifold of Σq and that for all u ∈ exp(WS(i)), one has (see
proposition 2.2.10) :

TuΣq = Tu
(
U.u
)
⊕ Tu

(
exp(WS(i))

)

Moreover, MS(i) = µ−1(exp(WS(i))), where µ is seen as a map µ : Mq → Σq. Hence for all x ∈MS(i) :

Tµ(x)Σq = Tµ(x)

(
U.µ(x)

)
⊕ Tµ(x)

(
exp(WS(i))

)

But :
Tµ(x)

(
U.µ(x)

)
= Txµ.

(
Tx(U.x)

)
⊂ Im Txµ
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(where the equality follows from the equivariance of µ), so that, for all x ∈MS(i) :

Im Txµ+ Tµ(x)

(
exp(WS(i))

)
= Tµ(x)Σq

which means that the map µ is transverse to the submanifold exp(WS(i)). By the transversality theorem
(see for instance [GP74], p.28), MS(i) = µ−1(exp(WS(i))) is therefore a submanifold of Mq, hence of M ,
and one has, for all x ∈MS(i) :

TxMS(i) =
(
Txµ

)−1
(
Tµ(x)

(
exp(WS(i))

))
(8.1)

Moreover, since µ(Mq) ⊂ Σq, one has, for such an x ∈MS(i) ⊂Mq :

Im Txµ ⊂ Tµ(x)Σq = Tµ(x)

(
U.µ(x)

)
⊕ Tµ(x)

(
exp(WS(i))

)

Consequently, for all v ∈ TxM = TxMq, one has :

Txµ.v = ξ1 + ξ2

where :
ξ1 ∈ Tµ(x)

(
U.µ(x)

)
= Txµ

(
Tx(U.x)

)
and ξ2 ∈ Tµ(x)

(
exp(WS(i))

)

Hence ξ2 = Txµ.(v− v1) for some v1 ∈ Tx(U.x). Set v2 := v− v1. Then Txµ.v2 = ξ2 ∈ Tµ(x)(exp(WS(i))),
therefore :

v2 ∈
(
Txµ

)−1
(
Tµ(x)

(
exp(WS(i))

))
= TxMS(i)

hence :
v = v1 + v2 ∈ Tx(U.x) + TxMS(i)

and therefore :

TxM = Tx(U.x) + TxMS(i) (8.2)

One may observe that this sum is generally not a direct sum, since if X ∈ u satisfies X†
µ(x) = 0, then

X#
x ∈ kerTxµ ⊂ TxMS(i) , and X#

x may be non-zero in Tx(U.x). The equality 8.2 shows that if O is an
open subset of MS(i) containing x, then U.O contains an open subset Vx of M containing x. Then for all
u ∈ U , u.Vx is an open subset of M containing u.x and contained in U.O, which shows that U.O is open
in M .

In particular, U.MS(i) is open in M . And we have :

Lemma 8.2.8. Mq =
⊔m
i=1 U.MS(i)

Proof. Let us prove that Mq ⊂ tmi=1U.MS(i) , the other inclusion following from the facts that MS(i) ⊂
Mq and that Mq is U -invariant. Consider an element x ∈ Mq. Then µ(x) ∈ Σq. But there exists
u ∈ U such that u.µ(x) ∈ exp(W), so that µ(u.x) = u.µ(x) ∈ Σq ∩ exp(W) = tmi=1 exp(WS(i)) hence
x ∈ tmi=1U.MS(i) .

Lemmas 8.2.7 and 8.2.8 have the following remarkable consequence :

Lemma 8.2.9. Exactly one of the MS(i) is non-empty.

Proof. Mq = tmi=1U.MS(i) by lemma 8.2.8, and U.MS(i) is open in Mq by lemma 8.2.7. But Mq is
connected by lemma 8.2.6, so that only one of the U.MS(i) , and consequently only one of the MS(i) , can
be non-empty.

Corollary 8.2.10. It follows from lemmas 8.2.8 and 8.2.9 that Mq = U.MS(i0) for a unique i0 ∈
{1, . . . ,m}. It then follows from lemma 8.2.6 that U.MS(i0) is an open, connected, and dense subset of
M .
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From now on, we simply denote S(i0) by S. The submanifold MS := µ−1(exp(WS)) will end up being
our symplectic cross-section. We first prove the following result :

Lemma 8.2.11. If x ∈MS and u ∈ U are such that u.x ∈MS, then u ∈ US (where US is the stabilizer
of any element in exp(WS), see definition 2.2.9).

Proof. If x ∈MS and u ∈ U are such that u.x ∈MS , then µ(x) and u.µ(x) = µ(u.x) are both elements of
exp(WS) ⊂ exp(W), hence µ(x) = u.µ(x) that is, u stabilizes some element of exp(WS). Consequently,
u ∈ US .

Together with the fact that US is connected, being the centralizer of an element of a compact con-
nected simply connected Lie group (see proposition 2.2.7), lemma 8.2.11 has the following important
consequence :

Lemma 8.2.12. The manifold MS is connected.

Proof. Assume that MS = M
(1)
S tM (2)

S is the disjoint union of two open subsets of MS . Then, by lemma

8.2.7, U.M
(i)
S is open in M . If (U.M

(1)
S )∩ (U.M

(2)
S ) 6= ∅, there exist x1 ∈M

(1)
S , x2 ∈M

(2)
S and u1, u2 ∈ U

such that u1.x1 = u2.x2, hence u−1
2 u1.x1 = x2. But then, by lemma 8.2.11, u−1

2 u1 ∈ US, which is
connected by proposition 2.2.7. Therefore, there is a path (ut) joining 1 to u−1

2 u1 in US, hence ut.x1 is
a path joining x1 to x2 in MS , which contradicts the fact that x1 and x2 lie in disjoint open subsets of

MS . Therefore, (U.M
(1)
S ) ∩ (U.M

(2)
S ) = ∅ and :

U.MS = (U.M
(1)
S ) t (U.M

(2)
S )

with U.M
(i)
S open in M . But U.MS is open in M and connected by corollary 8.2.10, so that U.M

(i)
S = ∅

for i = 1 or i = 2. Therefore, one of the M
(i)
S is empty, which proves the lemma.

We now want to study precisely the relation between µ(MS) and µ(M) ∩ exp(W), which was our initial
motivation. Recall that µ(MS) ⊂ exp(WS) ⊂ exp(W), the latter being closed in U .

Lemma 8.2.13. If µ is a closed map (in particular, if µ is proper), one has :

µ(M) ∩ exp(W) = µ(MS)

Proof. Take µ(x) ∈ µ(M) ∩ exp(W). Since Mq = U.MS is dense in M by corollary 8.2.10, there exist
a sequence (xj)j∈N of elements of Mq and a sequence (uj)j∈N of elements of U such that x = lim xj
and uj.xj ∈ MS. Since U is compact, we may assume that (uj) is convergent and denote its limit by
u := lim uj . Then :

u.µ(x) = µ(u.x) = µ
(
lim (uj .xj)

)
= lim µ(uj .xj) ∈ µ(MS)

In particular, u.µ(x) ∈ exp(W), so that u.µ(x) = µ(x), since exp(W) is a fundamental domain. Hence
µ(x) ∈ µ(MS), so that µ(M) ∩ exp(W) ⊂ µ(MS).
Conversely, since µ is a closed map, µ(M) is closed in U and so is µ(M) ∩ exp(W). But µ(MS) ⊂
µ(M) ∩ exp(W), hence µ(MS) ⊂ µ(M) ∩ exp(W).

Observe that lemma 8.2.13 is a consequence of corollary 8.2.10 and of the fact that µ(MS) ⊂ exp(W).
This last point also means that under the identification U/Int(U) ' W , the map

µ̃ := p ◦ µ|MS
: MS −→ U/Int(U) ' W ⊂ t = Lie(T )

is simply µ̃ = exp−1 ◦µ|MS
. As a matter of fact, it follows from the definition of MS that µ(MS) actually

lies in the submanifold exp(WS) of U , which is diffeomorphic to WS under exp−1, so that µ̃ = exp−1 ◦µ|MS

is a smooth map from MS to t :
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WS

exp '
��

MS
µ|MS

//

eµ
::

u
u

u
u

u
u

u
u

u

exp(WS)

We now compute the differential of µ̃, which is defined to be the composed map dµ̃ := pr ◦ T µ̃ of the
tangent map T µ̃ : TMS → T t ' t × t and the projection pr : T t ' t × t → t onto the second factor.

Lemma 8.2.14. The differential dµ̃ of µ̃ is equal to the t-valued 1-form µ∗θ on MS, where θ is the Maurer-
Cartan 1-form on T , that is, the t-valued 1-form defined for t ∈ T and ξ ∈ TtT by θt(ξ) = t−1.ξ = ξ.t−1 :

dµ̃ = µ∗θ

Proof. Recall that the tangent map to the exponential map exp : u → U is given, for all X ∈ u and all
ξ ∈ TXu = X + u, by :

TX exp .ξ = exp(X).
(1 − e−adX

adX
· (ξ −X)

)

(see for instance [Hel01], p.105), where 1−e−ad X

adX
is the endomorphism of u given, for all ζ ∈ u, by :

1 − e−adX

adX
· ζ =

+∞∑

k=1

(−adX)k−1

k!
· ζ

and where exp(X).ζ denotes the effect on tangent vectors ζ ∈ u = T1U of the left translation of element
exp(X) in U . In the present case, we have to consider exp : t → T with T abelian, since for x ∈MS , we
have µ(x) ∈ exp(WS) ⊂ T , so that :

1 − e−adX

adX
.ζ = ζ

as (adX)k−1.ζ = 0 as soon as k − 1 ≥ 1 . Therefore, for all X ∈ t and all ξ ∈ TXt = X + t :

TX exp .ξ = exp(X).(ξ −X)

Therefore, for all x ∈MS and all v ∈ TxMS, we have :

Tx(exp ◦µ̃︸ ︷︷ ︸
=µ

).v = Teµ(x) exp ◦Txµ̃.v

= exp
(
µ̃(x)

)
.
(
Txµ̃.v − µ̃(x)︸ ︷︷ ︸

=(deµ)x.v

)

so that :
Txµ.v = exp

(
µ̃(x)

)
.
(
(dµ̃)x.v

)

hence :

(dµ̃)x.v =
(

exp
(
µ̃(x)

))−1

.(Txµ.v)

= θexp ◦eµ(x)(Txµ.v)

= θµ(x)(Txµ.v)

= (µ∗θ)x.v

We may now prove proposition 8.2.3 :
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Proof of proposition 8.2.3 (Existence of a connected symplectic cross-section). Set N := MS , where MS

= µ−1(exp(WS)) is the submanifold of M constructed above.

(i) Lemma 8.2.12 shows that N is connected.

(ii) SinceN = MS = µ−1(exp(WS)) with µ equivariant, and since the conjugacy action of T on exp(WS)
is trivial (as T is abelian), we have that N is T -stable.

(iii) Let us show that ω|MS
is a symplectic form. We denote by i the inclusion map i : MS ↪→ M , so

that i∗ω = ω|MS
. First, we have :

d(i∗ω) = i∗(dω) = i∗(−µ∗χ) = −(µ ◦ i)∗χ

But µ ◦ i = µ|MS
is T -valued and χ|T = 0 as T is abelian. Therefore, d(i∗ω) = 0. Second, let

us show that i∗ω is non-degenerate. Take x ∈ MS and v ∈ TxMS such that for all w ∈ TxMS,
ωx(v, w) = 0. In particular, v ∈ (TxMS)⊥ω ⊂ TxM . But we know from lemma 8.2.7 that :

TxMS =
(
Txµ

)−1(
Tµ(x) exp(WS)

)

(see (8.1)) hence :

kerTxµ = Txµ
−1({0}) ⊂ TxMS

and therefore :

(TxMS)⊥ω ⊂ (kerTxµ)⊥ω

And we then know from proposition 4.3.1 that :

(kerTxµ)⊥ω = {X#
x : X ∈ u} = Tx(U.x)

Take now X ∈ u such that v = X#
x . Then, by the equivariance of µ :

Txµ.v = Txµ.X
#.x = X†

µ(x) ∈ Tµ(x)

(
exp(WS)

)
∩ Tµ(x)

(
U.µ(x)

)
= {0}

(where X† denotes the fundamental vector field associated to X ∈ u by the conjugacy action of U
on itself, and where the last equality follows from proposition 2.2.10). Hence v ∈ kerTxµ. But by
proposition 4.3.1, one has kerTxµ ⊂ (Tx(U.x))

⊥ω , therefore :

v ∈
(
Tx(U.x)

)⊥ω ∩
(
TxMS)⊥ω

And we know from proposition 8.2.7 that :

TxMS + Tx(U.x) = TxM

(see (8.2)). Therefore v ∈ (TxM)⊥ω = kerωx. Then v ∈ kerTxµ ∩ kerωx, which is equal to {0} by
proposition 4.3.1.

(iv) Let us now show that the action of T on MS is Hamiltonian with momentum map µ̃ = exp−1 ◦µ :
MS → t. Take X ∈ t. Since M is a quasi-Hamiltonian space, we have :

ιX#ω =
1

2
µ∗(θL + θR |X)

Therefore, for all x ∈MS and all v ∈ TxMS = (Txµ)−1(Tµ(x) exp(WS)) :

(ιX#ω)x.v =
1

2

(
θLµ(x)(Txµ.v) + θRµ(x)(Txµ.v) |X

)
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But Txµ.v ∈ Tµ(x) exp(WS) with exp(WS) ⊂ T , so that, since T is abelian :

θLµ(x)(Txµ.v) = θRµ(x)(Txµ.v) = θµ(x)(Txµ.v) = (µ∗θ)x.v

where θ is the Maurer-Cartan 1-form of T . Hence :

(ιX#ω)x.v =
(
(µ∗θ)x.v |X

)
=
(
(dµ̃)x.v |X

)

where the last equality follows from lemma 8.2.14. Denote by (µ̃ |X) the function :

(µ̃ |X) : MS −→ R

x 7−→ (µ̃(x) |X)

(where µ̃ = exp−1 ◦µ|MS
: MS → t). We then have :

(
d(µ̃ |X)

)
x
.v =

(
(dµ̃)x.v |X

)

Therefore, for all X ∈ t :
ιX#ω = d(µ̃ |X)

that is : the Hamiltonian vector field associated to the function (µ̃ | X) is the fundamental vector
field X#, which shows that the action of T on MS is Hamiltonian.

(v) Corollary 8.2.10 shows that U.N = M . Since µ is a proper map, lemma 8.2.13 shows that µ(N) =
µ(M) ∩ exp(W), or equivalently : µ̃(N) = µ̃(M).

8.2.3 The convexity statement

We can now state and prove the following convexity result :

Theorem 8.2.15 (Momentum convexity for group-valued momentum maps). [AMM98] Let
(U, (. | .)) be a compact connected simply connected Lie group and let (M,ω, µ : M → U) be a connected
quasi-Hamiltonian space with proper momentum map µ. Then, for any choice of a maximal torus T ⊂ U
and any choice of a closed Weyl alcove W ⊂ t = Lie(T ), the set µ(M) ∩ exp(W) ⊂ exp(W) is a convex
subpolytope of exp(W) ' W, called the momentum polytope.

To prove this result, we will use the symplectic cross-section N ⊂ M whose existence is guaranteed by
proposition 8.2.3 and follow the strategy of [HNP94]. To that end, we recall the following results from
[HNP94].

Theorem 8.2.16 (Local convexity results for Hamiltonian torus actions). [HNP94] Let (N,ω) be
a symplectic manifold endowed with a Hamiltonian action of a torus T with momentum map µ : N → t∗.
Then for every x ∈ N , there exist an open neighbourhood Vx of x ∈ N and a polyhedral cone Cµ(x) ⊂ t∗

with vertex µ(x) such that :

(i) µ : Vx → Cµ(x) is an open map. In particular, µ(Vx) is an open neighbourhood of µ(x) in Cµ(x).

(ii) µ−1({µ(y)}) is connected for all y ∈ Vx.

If in addition β is an antisymplectic involution on N satisfying β(t.x) = t−1.β(x) and µ ◦ β = µ, then
assertion (i) above remains true for the manifold Nβ := Fix(β) and the same cones Cµ(x), x ∈ Nβ, that
is :

(iii) µ : Vx ∩Nβ → Cµ(x) is an open map. In particular, µ(Vx ∩Nβ) is an open neighbourhood of µ(x)
in Cµ(x).
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For additional local properties, including a description of the cones Cµ(x) using the local normal form
of the action, we refer to [HNP94]. Conditions (ii) and (iii) above play a special role when it comes to
convexity considerations insofar as they make it possible to obtain a global result from a local one (see
theorem 8.2.18), which justifies the following definition :

Definition 8.2.17 (Local convexity data). Let X be a connected Hausdorff space, and let V be a
finite dimensional vector space. Consider a continuous map ψ : X → V . We will say that ψ gives rise
to local convexity data (Vx, Cψ(x))x∈X if for any x ∈ X there exist an open neighbourhood Vx of x in X
and a convex cone Cψ(x) ⊂ V with vertex ψ(x) such that :

(O) ψ : Vx → Cψ(x) is an open map.

(LC) ψ−1({ψ(y)}) ∩ Vx is connected for all y ∈ Vx.

A map ψ : X → V satisying condition (LC) alone is said to be locally fibre-connected.

We then have :

Theorem 8.2.18 (Local-global principle). [HNP94] Let ψ : X → V be a map giving rise to local
convexity data (Vx, Cµ(x))x∈X and assume that ψ is a proper map. Then ψ(X) is a closed locally polyhedral
convex subset of V , the fibres ψ−1({v}) are connected for all v ∈ V , ψ : X → ψ(X) is an open map and
Cµ(x) = ψ(x) + R+.(ψ(X)\{ψ(x)}).

In particular, we see that theorem 8.1.1 follows immediately from theorems 8.2.16 and 8.2.18. We also
state the following corollary of the local-global principle, which we will use in the proof of proposition
8.3.5.

Corollary 8.2.19. [HNP94] Let V be a finite dimensional vector space and let P ⊂ V be a closed
connected subset of V such that for all x ∈ P , there exists a neighbourhood Ov of v in V and a cone
Cv ⊂ V with vertex v such that Ov ∩ P = Ov ∩ Cv. Then P is a convex subset of V and for all v ∈ V ,
Cv = v + R+.(P\{v}).

Going back to our case, we see that we have a symplectic cross-section (N,ω|N ) ⊂ (M,ω) endowed with
a Hamiltonian torus action, and that µ(N) = µ(M) ∩ exp(W) (see proposition 8.2.3). In particular,
by theorem 8.2.16, the momentum map µ|N gives rise to local convexity data. But we cannot conclude
immediately that µ(N) is convex because µ|N has no reason to be proper, as N = µ−1(exp(WS)) is in
general not closed in M . But we can use another result from [HNP94] :

Proposition 8.2.20. [HNP94] Let ψ : X → V be a map giving rise to local convexity data (Vx, Cψ(x))x∈X .
Consider any closed locally polyhedral convex subset D ⊂ V and set Y := ψ−1(D) ⊂ X. Then ψ|Y : Y →
V gives rise to local convexity data (Vy, Cψ(y) ∩ R+.(D\{ψ(y)}))y∈Y .

We then have :

Lemma 8.2.21. Let MS := µ−1(exp(WS)) be a connected symplectic cross-section for the connected
quasi-Hamiltonian space (M,ω, µ : M → U). Then the set µ(MS) ⊂ exp(W) ' W is a convex polytope.

Proof. By proposition 8.2.16, the map µ|MS
gives rise to local convexity data (Vx, Cµ(x))x∈MS

. Write the
convex set WS as an increasing sequence of closed locally polyhedral convex subsets (Dn)n∈N. Then :

exp(WS) =
⋃

n∈N

exp(Dn)

Therefore, proposition 8.2.20 applies to the closed sets Yn := µ−1(exp(Dn)) and µ|Yn
gives rise to local

convexity data (Vx, Cµ(x) ∩ R+.(exp(Dn)\{µ(x)}))x∈Yn
. Additionally, since Yn is closed in MS , µ|Yn

is a
proper map. Since MS is connected and is an increasing union of closed subsets MS = ∪n∈NYn, we can
find an ascending sequence (Zn)n∈N of connected components of the (Yn)n∈N such that MS = ∪n∈NZn.
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Each Zn is closed in Yn, so that µ|Zn
is a proper map which gives rise to local convexity data (Vx, Cµ(x)∩

R+.(exp(Dn)\{µ(x)}))x∈Zn
. Therefore, by theorem 8.2.18, µ(Zn) is a convex polytope. We then have

that µ(MS) is an increasing union µ(MS) = ∪n∈Nµ(Zn) of convex subpolytopes of exp(W) ' W, which
implies that it is a convex polytope.

We can now prove theorem 8.2.15 :

Proof of the convexity theorem 8.2.15. We have µ(M)∩exp(W) = µ(MS) by proposition 8.2.3 and µ(MS)
is a convex polytope by lemma 8.2.21, hence so is µ(MS).

Remark 8.2.22 (Addendum to theorem 8.2.15). As a matter of fact, a more complete statement
of convexity theorem 8.2.15 would be to say that, in addition to the conclusion that µ̃(M) is a convex
polytope, one also has :

- the map µ̃ : M → µ̃(M) is an open map.

- the fibres of µ̃ are connected. In particular, µ−1({1}) = µ̃−1({1}) is a connected subset of M .

To prove this, observe that these results are true for the symplectic cross-section MS in virtue of theorem
8.1.1, whence one can deduce that they are also true for M = U.MS. We refer for instance [Ben02] for a
proof of this in the usual Hamiltonian setting. As we will not need these results in the following, we do
not reproduce the proof here.

A slightly different strategy may be applied to prove the convexity of µ(MS), for which we refer to
[Ben02]. We now move on to establishing a real version of this convexity result.

8.3 A real convexity theorem for momentum maps with value

in a compact connected simply connected Lie group

In this section, we study the image, under the momentum map µ, of the fixed-point set Mβ of a form-
reversing involution β defined on the quasi-Hamiltonian space (M,ω, µ : M → U) and compatible with the
action of (U, τ) and the momentum map µ of this action in the sense of definition 7.2.1. More precisely, we
will study the convexity properties of µ(Mβ)∩ exp(W) (or equivalently µ̃(Mβ)) and show that when the
symmetric pair (U, τ) is of maximal rank (see definition 3.2.1) then the set µ(Mβ)∩exp(W) ' µ̃(Mβ) ⊂ W
is a convex polytope, which turns to be equal to the full polytope µ(M)∩exp(W) ' µ̃(M). As this result
is sufficient to prove the existence of decomposable representations (see subsection 8.3.3), we will not
prove any convexity result for µ(Mβ)∩ exp(W) in the case where (U, τ) is not of maximal rank. We shall
nonetheless say a few words on this situation in subsection 8.3.2.

8.3.1 The case where (U, τ) is of maximal rank

Recall that the symmetric pair (U, τ) is said to be of maximal rank if dim U/U τ = 1
2 (dim U + rk U),

where U τ is the subgroup of U consisting of elements of U fixed by τ . In this case, there exists a maximal
torus T ⊂ U which is fixed pointwise by the involution τ− : u 7→ τ(u−1) (see proposition 3.2.3). If
we choose such a maximal torus T ⊂ Fix(τ−) ⊂ U (in particular τ(t) = t−1 for all t ∈ T ), then the
construction of the symplectic cross-section N ⊂ M of proposition 8.2.3 immediately implies that N is
β-stable. Indeed, recall that N = MS := µ−1(exp(WS)) with exp(WS) ⊂ T so that, if x ∈MS, then :

µ ◦ β(x) = τ− ◦ µ(x) = µ(x) ∈ exp(WS)

hence β(x) ∈MS. Therefore, β induces an involution βS := β|MS
on the symplectic manifold (MS , ωS :=

ω|MS
), and this involution is antisymplectic since β∗ω = −ω. Further, βS is compatible with the action

of (T, τ) on MS and with the momentum map µ̃. More precicely, β(t.x) = τ(t).β(x) = t−1.β(x) for all
x ∈MS and all t ∈ T , and µ̃◦β = µ̃, whence we see that we are almost in the situation of the Duistermaat
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theorem (theorem 8.1.2). We shall now refine this analysis, and in particular relate the fixed-point sets

MβS

S and Mβ , as was done for MS and M in statement (v) of proposition 8.2.3.

Lemma 8.3.1. The involution β leaves the set Mq = {x ∈M | dim U.µ(x) = q} ⊂M invariant.

Proof. For any x ∈ Mq, consider the element µ ◦ β(x) = τ− ◦ µ(x) ∈ U . There exists an element u ∈ U
such that t := u(τ− ◦ µ(x))u−1 is an element of the maximal torus T . Consequently, τ−(t) = t, which
means that τ(u)µ(x)τ−(u) = u(τ− ◦ µ(x))u−1, therefore that µ(x) is conjugate to τ− ◦ µ(x) = µ ◦ β(x).
In particular, dim U.µ(β(x)) = dim U.µ(x) = q, which proves the lemma.

Observe then that the group K = U τ = Fix(τ) ⊂ U acts on Mβ since β(k.x) = τ(k).β(x) = k.x for all
x ∈Mβ and all k ∈ K. We then have :

Lemma 8.3.2. Assume that Mβ 6= ∅. Then the set Mβ
q = {x ∈ Fix(β) | dim U.µ(x) = q} is non-empty,

open, and dense in Mβ.

Proof. Set :

q′ := max {dim K.µ(x) : x ∈Mβ}

and :

Mβ
K,q′ := {x ∈ Fix(β) | dim K.µ(x) = q′}

Then Mβ
K,q′ non-empty by definition and it is an open and dense subset of Mβ (apply proposition

2.1.6 to every connected component of Mβ). Take now x ∈ Mβ
K,q′ . Then µ(x) ∈ Fix(τ−) (since

τ−(µ(x)) = µ(β(x)) = µ(x)), so that there exists, by corollary 3.2.6, an element k ∈ K such that
kµ(x)k−1 ∈ exp(W) ⊂ T . But if w ∈ Fix(τ−), then dim K.w is maximal if and only if dim U.w
is maximal. Indeed, dim K.w = dim K − dim (US′)τ where S′ is the uniquely defined set such that
K.w ∩ exp(WS′) 6= ∅, and then dim U.w = dim U − dim US′ for the same S′ since U.w ⊃ K.w .
Therefore, here :

dim K.µ(x) = q′ if and only if dim U.µ(x) = q

Hence Mβ
K,q′ = Fix(β) ∩Mq = Mβ

q , which proves the lemma.

Consequently :

Lemma 8.3.3. If Mβ 6= ∅ then MβS

S 6= ∅, and one has : Mβ
q = U τ .MβS

S .

Proof. Since Mβ 6= ∅ by assumption, lemma 8.3.2 shows that Mβ
q 6= ∅. Take now x ∈ Mβ

q . Then
µ(x) ∈ Fix(τ−) and therefore there exists, by corollary 3.2.6, some k ∈ Fix(τ) = U τ such that :

kµ(x)k−1 ∈ exp(W) ∩ µ(Mq) ⊂ exp(WS)

where the last inclusion follows from lemma 8.2.9. Hence :

k.x ∈ µ−1(exp(WS)) = MS

. Moreover, β(k.x) = τ(k).β(x) = k.x, hence k.x ∈ MβS

S , which is therefore non-empty, and we have

indeed Mβ
q = U τ .MβS

S .

We can now prove an analogue of statement (v) of proposition 8.2.3 (or equivalently, of lemma 8.2.13) :

Lemma 8.3.4. If µ is a closed map (in particular, if µ is proper), then the set µ(MβS

S ) is dense in
µ(Mβ) ∩ exp(W).
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Proof. Assume that Mβ 6= ∅ (otherwise there is nothing to prove) and take µ(x) ∈ µ(Mβ) ∩ exp(W).
Then, by lemma 8.3.2, x = lim xj with xj ∈Mβ

q and, by lemma 8.3.3, there exists, for all j, an element

kj ∈ U τ such that kj .xj ∈MβS

S . Since U τ is compact, we may assume that the sequence (kj) converges
to a certain k ∈ U τ . Then :

k.µ(x) = µ(k.x) = lim µ(kj .xj) ∈ µ(MβS

S )

In particular, k.µ(x) ∈ exp(W), so that k.µ(x) = µ(x). Hence µ(x) ∈ µ(MβS

S ), so that µ(Mβ)∩exp(W) ⊂
µ(MβS

S ).

Conversely, since µ is a closed map, µ(Mβ) is closed in U and so is µ(Mβ) ∩ exp(W). But µ(MβS

S ) ⊂
µ(Mβ) ∩ exp(W), so that µ(MβS

S ) ⊂ µ(Mβ) ∩ exp(W).

Thus, µ(MβS

S ) is almost the whole of µ(Mβ) ∩ exp(W). This is interesting because we may now relate

µ(MβS

S ) to µ(MS) (which is almost µ(M) ∩ exp(W), by lemma 8.2.13) in the following way :

Proposition 8.3.5. Assume that Mβ 6= ∅ and that µ : M → U is a proper map (in particular, it is a
closed map). Then, in the above notations :

µ(MβS

S ) = µ(MS)

Recall that MS ⊂ M is the symplectic cross-section from proposition 8.2.3, so that the above result
is very similar to Duistermaat’s theorem 8.1.2. However, as in the proof of lemma 8.2.21, we cannot
apply theorem 8.1.2 directly to MS, since µ|MS

is in general not proper. But we may work with the
ascending sequence (Zn)n∈N introduced in the proof of lemma 8.2.21 : WS is an acending union of closed
convex subsets W = ∪n∈NDn, and MS := µ−1(exp(WS)) is an ascending union MS = ∪n∈NZn of closed
connected sets Zn ⊂ µ−1(exp(Dn)). The map µ̃|Zn

is a proper map which gives rise to local convexity
data (Vx, Ceµ(x))x∈Zn

and, by proposition 8.2.20 and theorem 8.2.18, the set µ̃(Zn) ⊂ t is convex. We
then observe the following fact :

Lemma 8.3.6. Consider n ∈ N such that Zn ∩ Mβ 6= ∅. Then for any connected component Q ⊂
(Zn ∩Mβ), the set µ̃(Q) is convex.

Proof. First, observe that Q is closed in M , and since µ : M → U is a closed map, µ̃(Q) is a closed
connected subset of t. Second, take x ∈ Q. It follows from point (iii) of the local convexity theorem
theorem 8.2.16 that there exists a neighbourhood Vx of x in M and a neighbourhood Oeµ(x) of µ̃(x) in t

such that µ̃(Vx ∩Q) = Ceµ(x) ∩ Oeµ(x). Further, µ̃(Q) lies in the convex set µ̃(Zn), hence is contained in

µ̃(x) + R+.
(
µ̃(Zn)\{µ̃(x)}

)
= Ceµ(x) (8.3)

where the equality follows from theorem 8.2.18. Hence :

Ceµ(x) ∩ Oeµ(x) = µ̃(Q) ∩ Oeµ(x)

so that µ̃(Q) is convex by corollary 8.2.19.

Remark 8.3.7. In fact, if we apply the full of corollary 8.2.19, we also obtain :

for all x ∈ Q, Ceµ(x) = µ̃(x) + R+.
(
µ̃(Q)\{µ̃(x)}

)
(8.4)

We then recall the following result from [HNP94] :

Lemma 8.3.8. [HNP94] If P1 ⊂ P2 is an inclusion between two convex subsets of a finite-dimensional
vector space satisfying, for all v ∈ P1 the condition v + R+.(P1\{v}) = v + R+.(P2\{v}), then P1 = P2.
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Proof. A convex set is the intersection of cones containing it, so that :

P1 =
⋂

v∈P1

(
v + R+.(P1\{v})

)
=
⋂

v∈P1

(
v + R+.(P2\{v})

)
⊃
⋂

v∈P2

(
v + R+.(P2\{v})

)
= P2

hence P1 = P2.

And we may now prove proposition 8.3.5 :

Proof of proposition 8.3.5. Consider an n such that Zn ∩Mβ 6= ∅ and let Q be a connected component
of Zn ∩Mβ. Then we know from lemma 8.3.6 that µ̃(Q) ⊂ µ̃(Zn) is an inclusion between two convex
sets of a finite-dimensional vector space. Additionally, by comparing (8.3) and (8.4), we obtain :

µ̃(x) + R+.
(
µ̃(Q)\{µ̃(x)}

)
= µ̃(x) + R+.

(
µ̃(Zn)\{µ̃(x)}

)

Therefore, lemma 8.3.8 applies and µ̃(Q) = µ̃(Zn), hence µ̃(Zn ∩Mβ) = µ̃(Zn). Since MS = ∪n∈NZn,

one has MβS

S = ∪n∈N(Zn ∩Mβ) and therefore :

µ̃(MS) =
⋃

n∈N

µ̃(Zn) =
⋃

n∈N

µ̃(Zn ∩Mβ) = µ̃(Mβ)

Since µ(MS) is contained in exp(WS) and µ̃ = exp−1 ◦µ|MS
, the above equality is equivalent to µ(MS) =

µ(MβS

S ).

We can now state our real convexity result in the case where the symmetric pair (U, τ) is of maximal
rank :

Theorem 8.3.9 (A real convexity result for group-valued momentum maps). Let (U, (. | .), τ)
be a compact connected simply connected Lie group endowed with an involutive automorphism τ such that
the involution τ− : u 7→ τ(u−1) leaves a maximal torus T of U pointwise fixed and let W ⊂ t = Lie(T )
be a closed Weyl alcove. Let (M,ω, µ : M → U) be a connected quasi-Hamiltonian U -space with proper
momentum map µ : M → U and let β : M →M be an involution on M such that :

(i) β∗ω = −ω

(ii) β(u.x) = τ(u).β(x) for all x ∈M and all u ∈ U

(iii) µ ◦ β = τ− ◦ µ

(iv) Mβ := Fix(β) 6= ∅
Then :

µ(Mβ) ∩ exp(W) = µ(M) ∩ exp(W)

In particular, µ(Mβ)∩exp(W) is a convex subpolytope of exp(W) ' W ⊂ t, equal to the whole momentum
polytope µ(M) ∩ exp(W).

Proof. Since µ is a proper map, lemmas 8.2.13 and 8.3.4 apply, as well as proposition 8.3.5. Therefore :

µ(M) ∩ exp(W) = µ(MS) = µ(MβS

S ) = µ(Mβ) ∩ exp(W)

Corollary 8.3.10. For all t ∈ exp(W), one has :

µ−1({t}) 6= ∅ if and only if µ−1({t}) ∩Mβ 6= ∅

Proof. Assume that µ−1({t}) 6= ∅. Then t ∈ µ(M) ∩ exp(W) = µ(Mβ) ∩ exp(W), so that there exists
y ∈Mβ satisfying µ(y) = t. The converse implication is obvious.
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In particular, 1 ∈ µ(M) if and only if 1 ∈ µ(Mβ), which we shall later relate to the existence of
decomposable representations (see subsection 8.3.3). We also point out the following consequence of
theorem 8.3.9 :

Corollary 8.3.11. If β̂ denotes the involution induced by β : M →M on the quasi-Hamiltonian quotient
M//U := µ−1({1})/U (assumed to be non-empty), and if Fix(β) 6= ∅, then Fix(β̂) 6= ∅ .

Proof. The assumption M//U 6= ∅ means that µ−1({1}) 6= ∅. As noted in corollary 8.3.10, we then

have µ−1({1}) ∩ Fix(β) 6= ∅, which is equivalent to Fix(β̂) 6= ∅, as seen in chapter 7 (see in particular
proposition 7.4.5).

These last results will be enough for us to prove the existence of decomposable representations in sub-
section 8.3.3. Before going into this, we would like to say a few words on what should happen if one does
not assume the symmetric pair (U, τ) to be of maximal rank. The next subsection may be skipped if one
wants to go straight to the proof of existence of decomposable representations.

8.3.2 The case where (U, τ) is not of maximal rank

In this subsection we conjecture, based on the work of O’Shea and Sjamaar in [OS00], a description
of the set µ(Mβ) ∩ exp(W) as a subpolytope of µ(M) ∩ exp(W) in the case where the symmetric pair
(U, τ) is not assumed to be of maximal rank. We hope to return to this question in a future work. For
now, we would just like to stress the fact that the convexity result that we have obtained in subsection
8.3.1 (namely, theorem 8.3.9) is sufficient to guarantee the existence of decomposable representations
of π1(S

2\{s1, . . . , sl}), as we shall see in theorem 8.3.14. This is so because the proof of existence of
decomposable representations (as a matter of fact, of σ0-decomposable representations) relies on the fact
that they have been characterized as the elements of the fixed-point set of an involution, and that this
characterization was obtained under the assumption that (U, τ) was of maximal rank (that is, that there
existed a maximal torus T of U which was fixed pointwise by τ−). See remark 8.3.17 for additional
comments on this.

Recall that (U, τ) is a compact connected simply connected Lie group endowed with an involutive
automorphism τ , and that we denote by τ− the involution τ−(u) := τ(u−1) on U . In the previous
subsection, we assumed that τ− left a maximal torus T of U pointwise fixed, which is not always true.
Nonetheless, there always exists a torus T ′ ⊂ U such that T ′ ⊂ Fix(τ−), and any maximal torus T
containing T ′ is τ -stable (see for instance [Loo69b], pp.72-73). Consider such a torus T ′ of maximal
possible dimension with respect to the property that τ−|T ′ = Id, and a maximal torus T of U containing
T ′. Then there is a corresponding Weyl alcove W ′ ⊂ W ⊂ t = Lie(T ) (and W ′ ⊂ t′ = Lie(T ′)), such

that exp(W ′
) is a fundamental domain for the action of U τ on Fix(τ−). Following [Loo69b] and [OS00],

it should be possible to give a description of W ′
in terms of the roots of (U, τ). We then expect the

following result to hold, in analogy to theorem 8.1.5 :

Conjecture 8.3.12. Let (U, (. | .), τ) be a compact connected simply connected Lie group endowed with an
involutive automorphism τ . Let T be a maximal torus of U such that T ∩Fix(τ−) is of maximal possible
dimension, and let W ⊂ t = Lie(T ) be a closed Weyl alcove. Let (M,ω, µ : M → U) be a connected
quasi-Hamiltonian U -space with proper momentum map µ : M → U and let β : M →M be an involution
on M such that :

(i) β∗ω = −ω

(ii) β(u.x) = τ(u).β(x) for all x ∈M and all u ∈ U

(iii) µ ◦ β = τ− ◦ µ

(iv) Mβ := Fix(β) 6= ∅
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Then :

µ(Mβ) ∩ exp(W) =
(
µ(M) ∩ exp(W)

)
∩ Fix(τ−)

In particular, µ(Mβ) ∩ exp(W) is a convex subpolytope of exp(W) ' W ⊂ t obtained by intersecting the
momentum polytope µ(M) ∩ exp(W) with the vector space Fix(τ−|t).

Remark 8.3.13. Observe that on the one hand µ(Mβ) ⊂ Fix(τ−) because of the compatibility of β

with µ, and on the other hand exp(W) ∩ Fix(τ−) = exp(W ′
), so that the above result rewrites :

µ(Mβ) ∩ exp(W ′
) = µ(M) ∩ exp(W ′

)

8.3.3 Relation to the existence of decomposable representations

In this subsection, we write down in detail why there always exist decomposable representations of the
fundamental group π := π1(S

2\{s1, . . . , sl}) into an arbitrary compact connected simply connected Lie
group (U, τ) endowed with an involutive automorphism τ such that the involution τ− : u 7→ τ(u−1) leaves
a maximal torus of U pointwise fixed (such an involution always exists, see proposition 3.2.2). Recall
from chapter 5 that decomposable representations can be defined only in terms of τ (see definition 5.2.1)
and we saw in chapter 6 that decomposable representations are the elements u ∈ HomC(π, U) = µ−1({1})
satisfying β(u) ∼ u as representations of π, where β is a form-reversing involution defined on the quasi-
Hamiltonian space C1×· · ·×Cl (each Cj being a conjugacy class in U), compatible with the diagonal action
of U on C1 × · · · × Cl and the momentum map µ(u1, . . . , ul) = u1. . .ul of this action. As we announced
in chapter 7, this is enough to guarantee that Fix(β) ∩ µ−1({1}) 6= ∅ (provided µ−1({1}) 6= ∅). The fact
that Fix(β)∩µ−1({1}) 6= ∅ means that there exist σ0-decomposable representations, which is equivalent,
by lemma 6.6.1, to the fact that there exist decomposable representations. And we then have :

Theorem 8.3.14 (Existence of decomposable representations of π1(S
2\{s1, . . . , sl})). Let C1,

. . . , Cl be l conjugacy classes in a compact connected simply connected Lie group (U, τ) satisfying :

HomC(π1(S
2\{s1, . . . , sl}), U) :=

{
(u1, . . . , ul) ∈ C1 × · · · × Cl | u1. . .ul = 1

}
6= ∅

then there exist w1, . . ., wl ∈ U such that τ−(wj) = wj for all j ∈ {1, . . . , l} and such that wjτ(wj+1) ∈ Cj.

Proof. The assumption of the theorem says that µ−1({1}) 6= ∅, where µ is the momentum map

µ : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→ u1 . . . ul

Furthermore, saying that there exist w1, . . . , wl satisfying the prescribed conditions amounts to saying
that there exist decomposable representations of π1(S

2\{s1, . . . , sl}), in which case there also exist σ0-
decomposable representations (see lemma 6.6.1). In turn, this is equivalent, by theorem 6.6.2, to saying
that there exist representations u0 ∈ HomC(π, U) satisfying β(u0) = u0, which is exactly saying that
Fix(β) ∩ µ−1({1}) 6= ∅. But this is guaranteed by corollary 8.3.10 once µ−1({1}) 6= ∅.

Observe that to be able to apply theorem 6.6.2 and corollary 8.3.10 in the above proof we have to
assume that the symmetric pair (U, τ) is of maximal rank and that Fix(τ−) is connected.

Remark 8.3.15 (The case where U=U(n)). As a matter of fact, theorem 8.3.14 remains true even
when the group U at hand is the unitary group U = U(n), as was shown by Falbel and Wentworth in [FW].
The strategy that we have adopted in this work to prove the existence of decomposable representations
does not apply to U(n) because the convexity result 8.3.9 does not hold, as U(n) is not simply connected.
Nonetheless, the fact that we still have Fix(β) ∩ µ−1({1}) 6= ∅ when U = U(n) pleads for a local result
that would be enough to ensure this (as opposed to studying the whole of µ(Mβ)).

148



8.3 CHAPTER 8

We also point out the following consequence of corollary 8.3.10 which, in terms of the notation introduced
in sections 6.4 and 6.5, says that Mα

eD 6= ∅ if and only if MC 6= ∅. The result as we formulate it may
seem a bit odd at first sight, but it is merely a reformulation of what we have obtained so far for the case
where U = U(n). It is a type of result analogous to that of proposition 6.3.1.

Proposition 8.3.16 (An application to a matrix problem). Consider λ1, . . . , λl ∈ Rn. Then the
following statements are equivalent :

(i) There exist l unitary matrices u1, . . . , ul ∈ U(n) such that :

Spec uj = exp(iλj) and u1. . .ul = 1

(ii) There exist l unitary matrices A1, . . . Al ∈ U(n) such that :

Spec (AtjAj) = exp(iλj) and A1 . . . Al = 1

Proof. We refer to chapter 6 for notation. Condition (ii) says that Mα
eD 6= ∅. By proposition 6.5.7,

Mα
eD ' Mβ

C , so that Mα
eD 6= ∅ if and only if Mβ

C 6= ∅, which is by definition equivalent to saying that

µ−1({1}) ∩ Fix(β) 6= ∅. By corollary 8.3.10, this last point is equivalent to saying that µ−1({1}) 6= ∅,
which is equivalent to saying that MC 6= ∅, which proves the result.

Observe that we already knew from sections 6.4 and 6.5 that the condition Mα
eD 6= ∅ implied MC 6= ∅,

as we had a map η(l) : Mα
eD ⊂ M eD

'→ MC (see proposition 6.4.3). The above result then says that the

centered Lagrangian problem (which was, in our terminology, a real problem) has a solution if and only if
the unitary problem has a solution, the non-trivial implication being (the unitary problem has a solution)
=⇒ (the centered Lagrangian problem has a solution). Pictorially :

Complex centered Lagrangian problem (section 6.3)
proposition 6.4.3⇐⇒ Unitary problem

⇑proposition 6.5.3 mtheorem 8.3.14

Centered Lagrangian problem (section 6.2)
proposition 6.5.7⇐⇒ Lagrangian problem

Remark 8.3.17. Observe that the definition of decomposable representations, as well as the character-
ization that we obtained in chapter 6 depended on the facts that the involution τ− : u 7→ τ(u−1) had a
connected fixed-point set and left a maximal torus of U pointwise fixed. We used these assumptions to
guarantee that every symmetric element w ∈ U (that is, an element w ∈ U satisfying τ−(w) = w) could
be written τ−(u)u for some u ∈ U , that β indeed sent a conjugacy class C of U into itself, and that the

map Fix(β)∩µ−1({1}) → Fix(β̂) was surjective. All these facts were used to prove the characterization
of decomposable representations obtained in corollary 6.6.5.
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Chapter 9

The Lagrangian nature of

decomposable representations
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9.3 Directions for future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

This chapter concludes this thesis work. We will carefully review the results announced in chapter 1
and see how the theorems that we have proved in the course of this work provide an answer to the problem
of finding a Lagrangian submanifold of the moduli space MC = HomC(π1(S

2\{s1, . . . , sl}), U)/U . We
shall also come back upon the infinitesimal formulation of our problem and see how the approach that
we adopted in section 6.1 is justified a posteriori. Finally, we shall try and give directions for future work
on these questions.

9.1 Decomposable representations in the moduli space

As announced in the introduction, the purpose of this thesis was to give an example of a Lagrangian
submanifold in the moduli space

MC = HomC(π1(S
2\{s1, . . . , sl}), U)

/
U

where U is an arbitrary compact connected Lie group. To do so, the path we followed consisted in :

1. introducing a notion of decomposable representation.

2. characterizing these representations as the elements of the fixed-point set of an involution defined
on MC .

3. showing that this involution is anti-symplectic and that its fixed-point set is non-empty (being
therefore a Lagrangian submanifold of MC).

The definition of a decomposable representation we chose to work with was the following one :

Definition (Decomposable representations of π1(S
2\{s1, . . . , sl})). Let (U, τ) be a Lie group en-

dowed with an involutive automorphism τ . A representation (u1, . . . , ul) of π = π1(S
2\{s1, . . . , sl})

into U is called decomposable if there exist l elements w1, . . . , wl ∈ U satisfying :
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(i) τ(wj) = w−1
j for all j (each wj is a symmetric element of U with respect to τ).

(ii) u1 = w1w
−1
2 , u2 = w2w

−1
3 , . . . , ul = wlw

−1
1 .

A representation will be called σ0-decomposable if it is decomposable with w1 = 1.

We refer to chapter 5 to see how this definition was obtained. For this definition to make sense, we had
to endow the compact connected Lie group U with an involutive automorphism τ . It is a consequence
of the existence of real forms of UC that such an automorphism always exists. For the sake of simplicity,
we assumed that the fixed-point set of the involution τ− (defined by τ−(u) := τ(u−1) for any u ∈ U)
was connected. This assumption is for instance satisfied by the involution τ(u) = u on U = U(n) or
U = SU(n). If we drop this assumption, the correct definition of a decomposable representation should
be to ask that the wj lie in the set {τ−(u)u : u ∈ U} ⊂ Fix(τ−), which coincides with Fix(τ−) when
the latter is connected (see proposition 3.1.2).

From then on, the idea that such decomposable representations should be characterized as elements of
the fixed-point set of an anti-symplectic involution was suggested by the infinitesimal formulation of our
problem, as explained in section 6.1. Chapter 6 was devoted to obtaining this involution. The choice
of the space we worked with for that matter was dictated by the description of the representation space
MC = HomC(π1(S

2\{s1, . . . , sl}), U)/U as a quasi-Hamiltonian quotient :

MC = µ−1({1})/U
where µ is the momentum map

µ : C1 × · · · × Cl −→ U
(u1, . . . , ul) 7−→ u1. . .ul

defining the quasi-Hamiltonian structure on the product C1 × · · · × Cl of l conjugacy classes of U . We
then defined the following involution on C1 × · · · × Cl :

β : C1 × · · · × Cl −→ C1 × · · · × Cl
(u1, . . . , ul) 7−→

(
τ−(ul). . .τ

−(u2)τ
−(u1)τ(u2). . .τ(ul), . . . , τ

−(ul)τ
−(ul−1)τ(ul), τ

−(ul)
)

and we proved the following result (theorem 6.6.2 and corollary 6.6.5) :

Theorem 1 (Characterization of decomposable representations). A representation u = (u1, . . . ,
ul) ∈ µ−1({1}) is σ0-decomposable if and only if β(u) = u. It is decomposable if and only if β(u) ∼ u as
representations of π.

To prove this result, we had to make an additional assumption on the involution τ , namely that the
associated involution τ− left a maximal torus of the compact connected Lie group U pointwise fixed.
This assumption is in particular satisfied by the involution τ(u) = u on U = U(n) and U = SU(n), and
we saw in proposition 3.2.2 that such an involution always exists if U is a compact connected simply
connected Lie group (as a matter of fact, such an involution exists on any compact connected semisimple
Lie group, not just those which are simply connected, as explained in [Loo69b] pp. 78-81, but the
assumption of simple connectedness will be used again shortly, this time in a crucial way, so we make it
right away).

At this point, we are still working on the quasi-Hamiltonian space C1 × · · · × Cl, upon which β is defined,
and not on the quasi-Hamiltonian quotient

MC = C1 × · · · × Cl//U := µ−1({1})/U
But we saw in chapter 7 that the involution β was compatible with the diagonal action of U on C1×· · ·×Cl
and with the momentum map µ in the sense of definition 7.2.1, which proved that it induced an involution
β̂ on MC defined by :

β̂ : C1 × · · · × Cl//U −→ C1 × · · · × Cl//U[
(u1, . . . , ul)

]
7−→

[
β(u1, . . . , ul)

]
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Furthermore, we observed in proposition 5.2.2 that a representation (u1, . . . , ul) of π1(S
2\{s1, . . . , sl})

is decomposable if and only if the representation ϕ.(u1, . . . , ul) is decomposable for any ϕ ∈ U , so that
we may call an equivalence class [u] = [(u1, . . . , ul)] ∈ MC decomposable if any of its representatives is
decomposable. We then obtain the following result as a corollary of theorem 1 :

Corollary 2. [u] ∈ MC is decomposable if and only if β̂([u]) = [u].

Proof. Assume first that [u] ∈ MC = µ−1({1}) is decomposable. Then by proposition 5.2.2, u ∈ µ−1({1})
is decomposable, so that by theorem 1, one has β(u) ∼ u, hence by definition of β̂ : β̂([u]) = [u]. The
argument reverses to prove the converse.

We then notice the one truly remarkable feature of the involution β :

Proposition 3. β∗ω = −ω on C1 × · · · × Cl, so that β̂ is anti-symplectic on MC.

Although this was expected from the infinitesimal formulation, the analysis drawn in chapter 7 shows
that the fact that β∗ω = −ω is not obvious (see section 7.3 and proposition 7.3.4). The fact that it implies

that β̂ is anti-symplectic on MC is then a consequence of the construction of the symplectic structure of
MC (see proposition 7.2.2).

We are now almost in a position to apply lemma 7.1.1. To do so, we still have to prove that Fix(β̂) 6= ∅,
or equivalently that Fix(β) ∩ µ−1({1}) 6= ∅. To prove this, we chose to study the whole of µ(Fix(β)).
This choice was motivated by the existence of convexity results for fixed-point sets of anti-symplectic
involutions defined on usual Hamiltonian spaces, and by the use of such convexity results to prove a
result similar to ours in [AMW01]. For convexity to make sense in a Lie group, we had to assume that
the compact connected Lie group U was in addition simply connected (see subsection 8.2.1). We then
obtained the following result (theorem 8.3.9) :

Theorem 4 (A real convexity theorem for group-valued momentum maps). Let (U, (. | .), τ) be
a compact connected simply connected Lie group endowed with an involutive automorphism τ such that
the involution τ− : u 7→ τ(u−1) leaves a maximal torus T of U pointwise fixed and let W ⊂ t = Lie(T )
be a closed Weyl alcove. Let (M,ω, µ : M → U) be a connected quasi-Hamiltonian U -space with proper
momentum map µ : M → U and let β : M →M be an involution on M such that :

(i) β∗ω = −ω
(ii) β(u.x) = τ(u).β(x) for all x ∈M and all u ∈ U

(iii) µ ◦ β = τ− ◦ µ
(iv) Mβ := Fix(β) 6= ∅

Then :
µ(Mβ) ∩ exp(W) = µ(M) ∩ exp(W)

In particular, µ(Mβ)∩exp(W) is a convex subpolytope of exp(W) ' W ⊂ t, equal to the whole momentum
polytope µ(M) ∩ exp(W).

Observe that the assumption that τ− leaves a maximal torus of U pointwise fixed is one we already made
to obtain theorem 1. We then have the following corollary :

Corollary 5 (Existence of fixed points for β̂). If µ−1({1}) 6= ∅ then µ−1({1}) ∩ Fix(β) 6= ∅.
As explained earlier (see theorem 8.3.14 for details), this proves the existence of decomposable represen-
tations for any compact connected simply connected Lie group U and any choice of l conjugacy classes
C1, . . . , Cl satisfying the assumption :

{
(u1, . . . , ul) ∈ C1 × · · · × Cl | u1. . .ul = 1

}
6= ∅

We are now in a position to prove the following result :
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Theorem 6. Let U be a compact connected simply connected Lie group endowed with an involutive
automorphism τ satisfying :

(i) there exists a maximal torus of U fixed pointwise by the involution τ−(u) := τ(u−1).

(ii) the fixed-point set Fix(τ−) of the involution τ− is connected.

Then the set of equivalence classes of decomposable representations of the group π := π1(S
2\{s1, . . . , sl})

into U is a Lagrangian submanifold of the stratified symplectic space MC := HomC(π, U)/U (in particular

it is non-empty), equal to the fixed-point set of an anti-symplectic involution β̂ defined on MC.

Proof. Corollary 2 shows that the set of equivalence classes of decomposable representations of π into
U is exactly Fix(β̂), and we know from proposition 3 that β̂ is anti-symplectic. Corollary 5 then shows

that Fix(β̂) 6= ∅. Consequently, lemma 7.1.1 applies, showing that the set of equivalence classes of
decomposable representations of π into U is a Lagrangian submanifold of the moduli space MC .

Therefore, we have obtained a Lagrangian submanifold of the moduli space MC for a certain class of
compact connected Lie groups, keeping in mind the example of the Lie group U = SU(n) troughout
this work. As we mentioned a few times earlier, theorem 6 remains true for the compact connected non
simply connected Lie group U = U(n) endowed with the involution τ(u) = u.

Remark 9.1.1 (The case where U = U(n)). As a matter of fact, theorem 1 is true for U = U(n),
as we have seen in chapter 6, and the only thing we cannot pove with our methods is the existence of
decomposable representations of π into U(n). But this was proved by Falbel and Wentworth in [FW], so
that theorem 6 is indeed true for U = U(n).

9.2 Back to the infinitesimal picture

In this section, we briefly indicate a way to see why the infinitesimal formulation of the Lagrangian
problem that we gave in section 6.1 was indeed a good one, in the sense that for sufficiently small initial
data (λj)1≤j≤l the Lagrangian problem admits a solution if and only if its infinitesimal counterpart has
a solution. Recall that we started off with l elements λj ∈ Rn, 1 ≤ j ≤ l. For such initial data (λj), we
formulated the following two problems :

- the Lagrangian problem : do there exist l Lagrangian subspaces L1, . . . , Ll of Cn satisfying the
condition Spec (σLj

σLj+1) = exp(iλj) for all j, where σLj
is the Lagrangian involution associated

to Lj and where Ll+1 = L1 ?

- the symmetric problem, which we reached heuristically by trying to find an infinitesimal version of
the Lagrangian problem : do there exist l real symmetric matrices S1, . . . , Sl satisfying SpecSj = λj
and S1 + · · · + Sl = 0 ?

We will now show that for sufficiently small λj the Lagrangian problem has a solution if and only if
the symmetric problem has a solution. This result is already mentioned in [Kly00], but our symplectic
approach rests on the following result proved by Jeffrey in [Jef94] (theorem 6.6) :

Theorem 9.2.1. [Jef94] For any λ ∈ Rn, denote by Cλ the conjugacy class of the unitary matrix exp(iλ) ∈
U(n), and denote by Hλ the (co-adjoint) orbit of the Hermitian matrix diag(λ) ∈ H(n) under U(n). Then
there exists an open neighbourhood V of 0 in Rn such that if λ1, . . . , λl ∈ V then the moduli spaces

MC :=
{
(u1, . . . , ul) ∈ C1 × · · · × Cl | u1. . .ul = 1

}/
U(n)

and
MH :=

{
(H1, . . . , Hl) ∈ Hλ1 × · · · × Hλl

| H1 + · · · +Hl = 0
}/
U(n)

are symplectomorphic. In particular, one of them is non-empty if and only if the other one is.
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Corollary 9.2.2. If λ1, . . . , λl ∈ V then the following two conditions are equivalent :

(i) there exist l Lagrangian subspaces L1, . . . , Ll of Cn satisfying the condition σLj
σLj+1 ∈ Cj for all j

(that is, Spec (σLj
σLj+1 ) = exp(iλj)).

(ii) there exist l real symmetric matrices S1, . . . , Sl such that Sj ∈ Hλj
(that is, SpecSj = λj) and

S1 + · · · + Sl = 0.

Proof of the corollary. Condition (i) is by definition equivalent to saying that there exist decomposable
representations of π1(S

2\{s1, . . . , sl}) into U(n), which is equivalent, by theorem 8.3.14, to saying that
the moduli space

MC =
{
(u1, . . . , ul) ∈ C1 × · · · × Cl | u1. . .ul =

}/
U(n)

is non-empty (see remark 8.3.15). In turn, by theorem 9.2.1, this is equivalent, as the λj are assumed to
lie in V , to saying that the moduli space

MH =
{
(H1, . . . , Hl) ∈ Hλ1 × · · · × Hλl

| H1 + · · · +Hl = 0
}/
U(n)

is non-empty. Then by proposition 6.3.1, this is equivalent to saying that there exist l real symmetric
matrices S1, . . . , Sl such that SpecSj = λj and S1 + · · · + Sl = 0, which proves the corollary.

This result can be made more precise by showing that the symplectomorphism between the above two
moduli spaces actually carries the Lagrangian submanifold

{
equivalence classes of decomposable representations of π1(S

2\{s1, . . . , sl}) into U(n)
}
⊂ MC

onto the Lagrangian submanifold
{
(S1, . . . , Sl) ∈ Sλ1 × · · · × Sλl

| S1 + · · · + Sl = 0
}/
O(n) ⊂ MH

9.3 Directions for future work

We would like to conclude this thesis by an attempt at giving some possible directions for future work
on the matters we have been dealing with here. We begin with questions for which obtaining an answer
should simply be a matter of time and care, and then move on to questions that we deem to be a bit
harder :

- what happens if one drops the assumption that Fix(τ−) is connected ? Then we already mentioned
in remark 5.2.3 that the definition of a decomposable representation should be slightly modified.
As a matter of fact, following [Fot], we see that there is an involution τs of U associated to each
connected component of Fix(τ−), hence a notion of decomposable representations for each of these
connected components, and a corresponding involution βs characterizing these representations. The
rest needs further investigation (particularly what happens when one descends to the moduli space,

where all the βs should induce the same involution β̂).

- how can one interpret the results contained in this thesis in terms of the various equivalent formu-
lations of the unitary problem ? For instance, what does the notion of decomposable representation
become when one considers polygons on S3 ? This corresponds to the case where U = SU(2) and it
was suggested to us by Philip Foth that polygons fixed by β should be those lying in an equatorial
S2 ⊂ S3 (see [FH]). Or again, how does the notion of decomposable representation carry over to
the vector bundle setting ? etc.

- is it possible to adapt the proof of our real convexity result 8.3.9 to prove conjecture 8.3.12 ? In
the case where the symmetric pair (U, τ) is not of maximal rank, we think (in analogy with the
O’Shea-Sjamaar theorem in the usual Hamiltonian setting, see [OS00]) that one has :

µ(Mβ) ∩ exp(W) =
(
µ(M) ∩ exp(W)

)
∩ U τ−
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but we were unable to prove this result following our approach of reducing the action of U on M
to that of a torus T ⊂ U on a symplectic cross-section N ⊂M .

- what can one say about the notion of decomposable representation of π1(S
2\{s1, . . . , sl}) if we

consider non-compact groups like U = SL(2,R) or U = SU(2, 1) ? Limiting ourselves to semisimple
groups, we still have quasi-Hamiltonian structures on conjugacy classes of such groups (see chapter
4). For U = SU(n, 1) (n ≥ 1), the notion of decomposable representation carries over immediately,
and so should the characterization in terms of β, even though one should pay attention to the
fact that not all elements in SU(n, 1) are diagonalizable. A much more serious problem is proving
the existence of decomposable representations in this case since, if we want to follow the approach
adopted in this thesis, we need a (real) convexity result for certain non-compact group actions,
along the lines of [Wei01].

- finally, what would be an appropriate notion of decomposable representation for instance for the
fundamental group of the punctured torus ? What about other surfaces ? Work in this direction
can be found in [Wil], where representations of < a, b, c | [a, b]c = 1 > into SU(2, 1) are discussed.

We hope to come back to these questions in a not-so-distant future. Merci d’avoir lu ce travail.
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Birkhäuser, 2001.

[Hum78] J.E. Humphreys. Introduction to Lie algebras and representation theory. Number 9 in Grad-
uate Texts in Mathematics. Springer-Verlag, 2nd edition, 1978.

[Jef94] L. Jeffrey. Extended moduli spaces of flat connections on Riemann surfaces. Math. Ann.,
298(4):667–692, 1994.

[Jef95] L. Jeffrey. Group cohomology construction of the cohomology of moduli spaces of flat con-
nections on 2-manifolds. Duke Math. J., 77(2):407–429, 1995.

[JW92] L. Jeffrey and J. Weitsman. Bohr-Sommerfeld orbits in the moduli space of flat connections
and the Verlinde dimension formula. Comm. Math. Phys., 150(3):593–630, 1992.

[Kar92] Y. Karshon. An algebraic proof for the symplectic structure of moduli space. Proc. Amer.
Math. Soc., 116(3):591–605, 1992.

[Kir84] F. Kirwan. Convexity properties of the moment mapping iii. Invent. Math., 77(3):547–552,
1984.

[Kli82] W. Klingenberg. Riemannian geometry. Number 1 in de Gruyter Studies in Mathematics.
Walter de Gruyter, 1982.

160



[Kly98] A.A. Klyachko. Stable bundles, representation theory and Hermitian operators. Selecta
Math., 4(3):419–445, 1998.

[Kly00] A.A. Klyachko. Random walks on symmetric spaces and inequalities for matrix spectra.
Linear Algebra Appl., 319(1-3):37–59, 2000.

[KM99] M. Kapovich and J. Millson. On the moduli space of a spherical polygonal linkage. Canad.
Math. Bull., 42:307–320, 1999.

[Kna02] A.W. Knapp. Lie groups beyond an introduction. Number 140 in Prog. Math. Birkhäuser,
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de Glanon, 2001. Université de Bourgogne, 2003.
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