
THÈSE de DOCTORAT de l’UNIVERSITÉ
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l’énergie qu’elle m’a consacrés. Ses travaux ont été une source d’inspiration
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de s’être déplacé pour faire partie du jury.

Je remercie également Yujiro Kawamata pour avoir accepté d’être rap-
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Résumé en français

Cette thèse, rédigée en anglais, est composée de deux parties distinctes.
Dans la première partie j’étudie la géométrie des sous-variétés de genre

géométrique zéro d’une hypersurface projective générique. Je prouve que les
seules sous-variétés k-dimensionnelles d’une hypersurface générique Xd ⊂
Pn, de degré d = 2n − 2 − k, où k est un entier tel que 1 ≤ k ≤ n − 5,
sont les composantes irréductibles du lieu de X couvert par les droites. On
en déduit que, pour tout n ≥ 6, l’hypersurface générique X2n−3 ⊂ Pn ne
contient pas de courbes rationnelles de degré supérieur ou égal à 2.

Dans la deuxième partie, j’étudie le cône des diviseurs numériquement
effectifs dans le produit symétrique d’une courbe générique C. Le cône nef
de C(k) est facilement déterminé si k est au moins égal à la gonalité de la
courbe. Je décris ensuite le cône nef pour k = gon(C)−1, quand le genre de
la courbe est pair. Dans ce cas, le bord du cône nef est à pente rationnelle,
et est déterminé en utilisant des courbes dans C(k) associées aux pinceaux
de degré minimal sur C.
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Introduction to Part I

Let X be a smooth complex projective variety of dimension dim X ≥ 3. The
investigation of the existence and of the geometry of “special” subvarieties
of X has certainly been one of the major tools in the study of higher dimen-
sional complex geometry. Let Ω1

X be the holomorphic cotangent bundle of
X and KX = det Ω1

X its canonical line bundle. The results that have been
obtained by several authors in the last two decades or so, or that one might
reasonably hope for can be roughly divided into three groups, according to
the negativity, triviality or positivity ofKX . The main result of the first part
of this thesis is concerned with the geometry of subvarieties with geometric
genus zero of general projective hypersurfaces having ample canonical bun-
dle. In this introduction we will briefly recall some of the most significant
known results obtained under the hypothesis of the negativity, or triviality
of KX , before shifting our attention to the case when KX is positive, that
will be treated in more detail.

0.1 The case KX negative

In many explicit examples when KX is negative it was already classically
known that there are “many” rational curves on X. The families of rational
curves have then been used in several cases in order to explore the geometry
of hypersurfaces of low degree or of certain classes of higher dimensional
varieties. The most famous example of such a use is the study of the family
of lines on a cubic threefold X ⊂ P4, which led independently Mumford,
Clemens and Griffiths (see [CG], [C2]) to prove the non-rationality of X.

A systematic way to find rational curves on X when KX is negative,
nowadays referred to as “bend-and-break” technique, was finally settled by
Mori in his celebrated proof of Hartshorne’s conjecture ([Mo]), where he
proves:

11
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Theorem ([Mo]). If −KX is ample, then through every point x ∈ X there
is a rational curve x ∈ Cx ⊂ X such that −KX .Cx ≤ dimX + 1.

Later Campana and, independently, Kollár, Miyaoka and Mori proved
that varieties with ample anticanonical divisor have, moreover, the stronger
property of being rationally connected:

Theorem ([Ca], [KMM]). If −KX is ample, then any two general points
x1, x2 ∈ X can be joined by a rational curve Cx1,x2 ⊂ X.

The details of these developments are described in the monographs [CKM]
and [K].

0.2 The case KX trivial

The situation changes when the canonical bundle is trivial. There are not as
many rational curves as in the caseKX negative, but still, rational curves can
be used in interesting ways. The best-known case is provided by the general
quintic threefold X5 ⊂ P4. Here the word general means that the polyno-
mial defining X5 belongs to the intersection of countably many Zariski open
subsets of the space of homogeneous degree 5 polynomials in six variables.
In this case, Clemens [C1] constructs a finite number of rational curves of
degree δ on X for infinitely many δ, and proves moreover that these rational
curves are infinitesimally rigid, i.e. for any such a curve C ⊂ X we have

NC/X = OC(−1) ⊕OC(−1).

Hence they do not move in X, not even infinitesimally. Finally, he makes
use of these infinitely many rational curves to establish that the abelian
group quotient Gh(X)/Ga(X) is not finitely generated, where Gh(X) is the
group of 1-cycles on X which are homologous to zero modulo those which are
rationally equivalent to zero, and Ga(X) is the subgroup of Gh(X) generated
by cycles algebraically equivalent to zero.

An easy parameter count predicts that X5 should contain only a finite
number of rational curves of each degree. Clemens proposed then the fol-
lowing

Conjecture (Clemens). The general quintic threefold X5 ⊂ P4 contains
only isolated rational curves.



0.3. The case KX positive 13

Mark Green proposed the following stronger conjecture:

Conjecture (Green). The general quintic threefold X5 ⊂ P4 does not con-
tain a surface S which admits a desingularization S̃ having effective canon-
ical bundle.

Clemens’ conjecture has proved very elusive, and has been checked only
for low degrees δ up to 9 (see [JK]). In the direction of Green’s conjecture
the only general result is provided by a theorem of Chang and Ran:

Theorem ([CR]). The general quintic threefold X5 ⊂ P4 does not contain
a surface S which admits a desingularization S̃ having numerically effective
anticanonical bundle.

We cannot conclude this section without mentioning the recent extraor-
dinary interaction between algebraic geometry and nuclear physics that pro-
vided a new interest in the enumerative geometry of rational curves on
Calabi-Yau varieties, and then, as a consequence, in Clemens’ conjecture
(for an introduction to these fascinating developments see for instance [V4]).

0.3 The case KX positive

Suppose C is a smooth genus g curve contained in X. By standard defor-
mation theory, the expected dimension of the Hilbert scheme of subschemes
of X having the same Hilbert polynomial as C is given by

expdim = χ(NC/X). (1)

By Riemann-Roch and the adjunction formula we have

χ(NC/X) = −deg(KX |C) + (1 − g)(rk(NC/X ) − 2), (2)

so that one does not expect to find rational curves on X when KX is positive
enough. More explicitly, for a general projective hypersurface Xd ⊂ Pn, the
above predicts that there should be no rational curves at all on X, for
d ≥ 2n− 2, n ≥ 4, and only lines, for d = 2n− 3, n ≥ 5.

In this section we will review the various approaches adopted by different
authors to detect curves or, more generally, subvarieties on X having low
geometric genus, and finally present our results.
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0.3.1 Surfaces in P3

We start with the case of surfaces in P3. It was known that a degree four
surface S4 ⊂ P3 contains a rational curve and a family of elliptic curves.
Harris conjectured that this was not the case for higher degrees, i.e. a generic
surface of degree d ≥ 5 in P3 does not contain any rational or elliptic curve.
Harris’ conjecture has been proved by G. Xu in [X], where he proves the
following, more general result:

Theorem ([X]). On the general surface Sd ⊂ P3 of degree d ≥ 5 there is
no curve C with geometric genus pg(C) ≤ 1

2d(d − 3) − 3, and the bound is
sharp.

Xu’s proof goes as follows. By the Noether-Lefschetz theorem any curve
on a generic surface of degree d ≥ 4 is a complete intersection with another
surface of degree k. This allows to compute by the adjunction formula the
arithmetic genus of C. Now, let p01, . . . , p0n0 be the singular points of C.
Define the points infinitely near to p0j to the first order to be the points in
the intersection E0j ∩ C∗, where E0j is the exceptional divisor of the blow
up of S at p0j , and C∗ is the strict transform of C. In an analogous way
define the points pi1, . . . , pini infinitely near to p0j to the i-th order. Let μij
be their multiplicities. Xu proves that

pg(C) = pa(C) − 1
2

∑
i,j

μij(μij − 1)

=
1
2
dk(d + k − 4) + 1 − 1

2

∑
i,j

μij(μij − 1).

One has then to show that the singularities of C cannot be “too bad”. This
is done by Xu by means of a careful local study of the deformations of C at
its singular points.

Xu’s local approach has been interpreted in terms of a global property
of the focal locus of a family of curves by Chiantini and Lopez in [CL].
They reprove in this way Xu’s result and apply successfully their methods
to bound from below the genus of curves on a general projectively Cohen-
Macaulay surface in P4.
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0.3.2 Hypersurfaces in Pn, n ≥ 3

The first result concerning the genus of a curve of a hypersurface of high
degree in a projective space of arbitrary dimension goes back to Clemens
[C3]. He proves

Theorem ([C3]). There is no rational curve on the general hypersurface
Xd ⊂ Pn of degree d ≥ 2n − 1.

Suppose C is a smooth curve on Xd. By adjunction its canonical sheaf
is KC = OC(d− n− 1)⊗ detNC/X , where NC/X is the normal sheaf of C in
X. Then it is clear that if one is able to bound from below the negativity
of NC/X , when the degree d increases, there is no hope to find curves on X
with low genus. This is what Clemens does in [C3], via a delicate comparison
between the normal bundles NC/X and NX/V ⊗ OC , where V is a general
hypersurface of degree d in Pn+d such that X is cut out in V by a generic
linear space of dimension n. Clemens’ technique, although ingenious, does
not seem to apply easily to the study of higher dimensional subvarieties of
projective hypersufaces.

A more powerful variational approach has been proposed by Ein in his
two papers [E1], [E2], where he succeeds in extending Clemens’ result to
complete intersections in an arbitrary projective ambient variety. In the case
of hypersurfaces, this method, as streamlined by Voisin in [V2], is described
in detail in §1.2 of Part I, and can be briefly summarized as follows. Consider
the family of hypersurfaces of fixed degree

X ⊂ H0(Pn,OPn(d)) × Pn,

and, after an étale base change U → H0(Pn,OPn(d)), a subfamily Y ⊂ XU
of relative dimension k, so that the fiber Yt identifies to a k-dimensional sub-
variety of the hypersurface Xt. Let Ỹ → Y be a desingularization inducing
a desingularization on the fibers Ỹt → Yt, and N the dimension of the base.
To avoid the difficult task of controlling the normal bundle of Yt in Xt one
can apply the adjunction formula to Ỹt ⊂ Ỹ (notice that the normal bundle
of the fiber in the family is trivial!) and use the morphism of restriction of
differentials induced by the map from Ỹ to X :

ΩN+k
XU |Xt

→ ΩN+k
Ỹ |Ỹt

∼= KỸt
. (3)
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If d0 is a degree starting from which the bundle ΩN+k
XU |Xt

is generated by its
global sections, by taking the map induced in cohomology by (3)

H0(Xt,ΩN+k
XU |Xt

) → H0(Ỹt,ΩN+k
Ỹ |Ỹt

) ∼= H0(Ỹt,KỸt
), (4)

we automatically have that the general hypersurface of degree d ≥ d0 in Pn

does not contain any k-dimensional subvariety with geometric genus zero.
Ein’s theorem says exactly that the degree d0 = 2n − k fits, and thus he
re-obtains Clemens’ result.

Voisin, in her two papers [V2] and [V3], is then able to sharpen Clemens’s
result by one, obtaining the following

Theorem ([V2] and [V3]). Let Xd ⊂ Pn be a general hypersurface of
degree d ≥ 2n− 1− k, where k is an integer such that 1 ≤ k ≤ n− 3. Then
any k-dimensional subvariety Y of X has desingularization Ỹ with effective
canonical bundle.

We would like to draw the reader’s attention to two essential aspects of
Voisin’s contribution to the problem. First, she points out that, already for
d = 2n − 1 − k, the sheaf ΩN+k

XU |Xt
is no longer globally generated (for the

details, see again §1.2), so that in order to apply the ideas sketched above,
one is forced to study the base locus of this sheaf. The second new idea is
that one can analyse the cohomological information given by the vanishing
of the map (4), concluding that a Ỹ for which this occurs has to be the
solution of a certain distribution on the total space. She then describes
these solutions explicitly, showing that they do not give subvarieties Y ⊂ X

with geometric genus zero.
As a concluding remark to this section, we observe that Voisin’s tech-

nique applies unfortunately only to the study of subvarieties having at least
codimension two in the hypersurface. The case of divisors in the general
quintic threefold is therefore out of reach: new ideas and techniques are
certainly needed in order to attack Clemens’ and Green’s conjectures.

0.3.3 Results of Part I

Voisin’s result is sharp. The general projective hypersurface Xd ⊂ Pn of
degree d = 2n − 2 − k contains indeed a subvariety of dimension k which
is covered by lines, that has, as a consequence, geometric genus zero. The
motivation for the first part of this thesis is then provided by the following
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Question. Is the variety covered by the lines the only subvariety of dimen-
sion k with geometric genus zero on the general hypersurface X2n−2−k ⊂
Pn, 1 ≤ k ≤ n− 4?

In studying this question, we adopt the variational approach that has
been successfully used by Ein and Voisin. As Voisin in [V3], we are able to
deduce a geometrical consequence from the vanishing of the map defined in
(4), and prove

Proposition A. Let XF ⊂ Pn be a general hypersurface of degree d =
2n − 2 − k, where k is an integer such that 1 ≤ k ≤ n − 5. Let YF ⊂ XF

be a subvariety of dimension k such that H0(ỸF ,KỸF
) = 0, where ỸF is a

desingularization of YF . Then YF has to be contained in

Δd,F = {x ∈ XF : there exists a line � s.t. � ∩XF = d·x},
a subvariety of XF of dimension 2n− 2 − (d− 1) = k + 1.

Then, studying the geometry of a desingularization of the locus Δd,F ,
we obtain

Proposition B. Let F be a general polynomial of degree d = 2n−2−k with
1 ≤ k ≤ n − 5. Let YF ⊂ Δd,F be a subvariety of codimension 1 such that
H0(ỸF ,KỸF

) = 0, where ỸF is a desingularization of YF . Then YF has to
be a component of the k-dimensional subvariety of Δd,F covered by the lines
lying on XF .

Combining these two propositions we obtain our main result which gives
a positive answer to the question above for 1 ≤ k ≤ n− 5:

Theorem I. Let Xd ⊂ Pn be a general hypersurface of degree d = 2n−2−k,
where k is an integer such that 1 ≤ k ≤ n−5. Then any subvariety Y ⊂ X of
dimension k, whose desingularization Ỹ has h0(Ỹ ,KỸ ) = 0, is a component
of the (k-dimensional) subvariety covered by the lines lying on X.

Taking k = 1 we get, for n ≥ 6, a corollary for rational curves on the
general projective hypersurface of degree d = 2n−3, that, somehow surpris-
ingly, confirms the heuristic prediction:

Corollary. There is no rational curve of degree δ ≥ 2 on the general hyper-
surface X2n−3 ⊂ Pn, n ≥ 6.
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Rational curves on general

projective hypersurfaces

1.1 Introduction

It was shown by H. Clemens [C] that the general (in the countable Zariski
topology) hypersurface of degree d in Pn does not contain any rational curve,
if d is sufficiently large. More precisely, he proved the following:

Theorem (Clemens). There is no rational curve on the general hypersur-
face Xd ⊂ Pn of degree d ≥ 2n− 1, n ≥ 3.

L. Ein studied more generally (see [E1] and [E2]) the geometric genus
of subvarieties contained in complete intersections X(d1,...,dr) ⊂ M , where
M is an arbitrary smooth and projective ambient variety. He proved that
if d1 + . . . + dr ≥ 2n − r − k + 1, any k-dimensional subvariety Y ⊂ X

has desingularization with effective canonical bundle. However, in the case
of a hypersurface Xd ⊂ Pn, he obtained the lower bound d ≥ 2n − k on
the degree of X, which was the same as Clemens’ for k = 1, and was not
optimal. Indeed, it was classically known that the lines lying on the general
hypersurface Xd ⊂ Pn of degree d = 2n − 2 − k cover a k-dimensional
subvariety, which then has geometric genus zero. Thus nothing was known
yet about the canonical bundle of subvarieties of dimension k on the general
X2n−1−k ⊂ Pn. Voisin ([V2], [V3]) showed then that it was possible to
sharpen Ein’s bound by one, as conjectured by Clemens himself, by proving:

Theorem (Voisin). Let Xd ⊂ Pn be a general hypersurface of degree
d ≥ 2n − 1 − k, where k is an integer such that 1 ≤ k ≤ n − 3. Then

19
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any k-dimensional subvariety Y of X has desingularization Ỹ with effective
canonical bundle.

For k = 1 we immediately obtain that the general X2n−2 ⊂ Pn, n ≥ 4,
contains no rational curves. Taking k = 2 we get another very interesting
corollary whose analogue in the case n = 4 would solve Clemens’ conjecture
on the finiteness of rational curves of fixed degree on the general quintic
threefold in P4:

Corollary (Voisin). For each integer δ ≥ 1, the general hypersurface
X2n−3 ⊂ Pn, n ≥ 5, contains at most a finite number of rational curves of
degree δ.

The goal of our work is to investigate, for the general X2n−2−k ⊂ Pn,
1 ≤ k ≤ n−4, the geometry of its k-dimensional subvarieties having geomet-
ric genus zero. Since the locus covered by the lines of X is the only known
example of such a subvariety, it seems natural to start with the following:

Question. Is the variety covered by the lines the only subvariety of dimen-
sion k with geometric genus zero on the general hypersurface X2n−2−k ⊂
Pn, 1 ≤ k ≤ n− 4?

Remark that the numerical hypothesis 1 ≤ k ≤ n − 4 implies the posi-
tivity of the canonical bundle of X2n−2−k ⊂ Pn, and gives meaning to the
question in contrast to the case of the Calabi-Yau hypersurface Xn+1 ⊂ Pn.
The main result of this paper gives actually a positive answer to the previous
question for 1 ≤ k ≤ n− 5:

Theorem. Let Xd ⊂ Pn be a general hypersurface of degree d = 2n− 2− k,
where k is an integer such that 1 ≤ k ≤ n− 5. Then any subvariety Y ⊂ X

of dimension k, whose desingularization Ỹ has h0(Ỹ ,KỸ ) = 0, is a com-
ponent of the (k-dimensional) subvariety covered by the lines lying on X.

Taking k = 1 we get, for n ≥ 6, a corollary on rational curves on the gen-
eral projective hypersurface of degree d = 2n− 3. Voisin’s corollary already
implies that, for each fixed integer δ ≥ 1, there are only a finite number of
such curves of degree δ. Here we prove that there are only lines - whose
number is easily computed as the top Chern class of a certain vector bundle
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on the Grassmannian of lines in Pn:

Corollary. There is no rational curve of degree δ ≥ 2 on the general hyper-
surface X2n−3 ⊂ Pn, n ≥ 6.

Throughout this paper we work on the field of complex number C.

Acknowledgements. This paper, which is a part of my Ph.D. thesis, has greatly

benefited from the generous help and guidance of my advisor, Prof. Claire Voisin.
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his/hers to sharpen the results presented here.

1.2 Preliminaries and sketch of the proof

To motivate our approach and render our proof more transparent, we will
briefly sketch the key ideas contained in [E1], [V2] and [V3]. We start with
some

Notation.

Sd := H0(Pn,OPn(d));
Sdx := H0(Pn,Ix ⊗OPn(d));
N := h0(Pn,OPn(d)) = dim Sd;
X ⊂ Pn × Sd will denote the universal hypersurface of degree d;
XF ⊂ Pn the fiber of the family X over F ∈ Sd, i.e. the hypersurface
defined by F .

Let U → Sd be an étale map and Y ⊂ XU a universal, reduced and
irreducible subscheme of relative dimension k (in the following, by abuse
of notation, we will often omit the étale base change). We may obviously
assume Y invariant under some lift of the natural action of GL(n + 1) on
Pn × Sd: g(x, F ) = (g(x), (g−1)∗F )), g ∈ GL(n + 1). Let Ỹ → Y be a
desingularization and Ỹ j−→XU the natural induced map. Let π : X → Pn

be the projection on the first component and T vertX (resp. T vertY ) the vertical
part of TX (resp. TY) w.r.t. π, i.e. T vertX (resp. T vertY ) is the sheaf defined
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by

0 → T vertX → TX π∗−→TPn → 0

(resp. 0 → T vertY → TY π∗−→TPn).

The hypothesis of GL(n+ 1)-invariance for Y has two easy but very impor-
tant consequences that will be frequently used in the rest of the paper:

Lemma 1.2.1. Let Y be a subvariety of X ×Pn of relative dimension k and
invariant under the action of GL(n+ 1). Then:

(i) codim T vert
X ,(y,F )

T vertY ,(y,F ) = codimXY = n − k − 1; in particular, since
we are assuming 1 ≤ k ≤ n− 5, we have that

codim X Y ≥ 4.

(ii) T vertY ,(y,F ) ⊃ < S1
y · Jd−1

F , F >, where Jd−1
F is the Jacobian ideal of F .

Proof. (i) Use the surjectivity of the map TY π∗−→TPn.

(ii) It follows from the fact that, by GL(n+ 1)-invariance, T vertY ,(y,F ) contains
the vertical part of the tangent space to the orbit of (y, F ) under the action
of GL(n + 1).

Assume d ≥ 2n− k and let YF ⊂ XF be a general fiber of the subfamily
Y ⊂ XU . Then to prove Clemens’ result (which corresponds to the case
k = 1) we have to show that h0(ỸF ,KỸF

) 
= 0, where ỸF → YF is the
desingularization.

Ein’s idea is to produce, by adjunction, a non-zero section inH0(ỸF ,KỸF
)

by restricting to Ỹ holomorphic forms on XU defined along XF . The main
technical difficulty consists in controlling the positivity of the twisted “verti-
cal” tangent bundle to the universal hypersurfaces. We start then recording,
in the first subsection, the needed positivity result, and an equivalent one
for a bundle on the Grassmannian of lines in Pn that will be used later.

1.2.1 Positivity results

Let d be a positive integer. Consider the bundle Md
Pn defined by the exact

sequence

0 →Md
Pn → Sd ⊗OPn

ev−→OPn(d) → 0, (1.5)
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whose fiber at a point x identifies by definition with Sdx. From the inclusion
X ↪→ Pn × Sd we get the exact sequence

0 → TX|XF
→ TPn|XF

⊕ (Sd ⊗OXF
) → OXF

(d) → 0,

which combined with (1.5) gives us

0 →Md
Pn |XF

→ TX|XF
→ TPn|XF

→ 0.

In other words Md
Pn |XF

identifies to the vertical part of TX ⊗ OXF
with

respect to the projection to Pn.
Let G := Grass(1, n) be the Grassmannian of lines in Pn, OG(1) the line

bundle on G giving its Plücker polarization, and Ed be the dth-symmetric
power of the dual of the tautological subbundle on G. Recall that the fibre
of Ed at a point [�] is, by definition, given by H0(�,O�(d)).

Let Md
G be the vector bundle on G defined as the kernel of the evaluation

map:
0 →Md

G → Sd ⊗OG → Ed → 0.

Notice that the fiber of Md
G at a point [�] is equal to I�(d) := H0(I�(d)).

Then we have the following

Proposition 1.2.2. 1 (i) Md
Pn ⊗OPn(1) is generated be its global sections;

(ii) Md
G ⊗OG(1) is generated be its global sections.

Proof. (i) Any P ∈ Sdx can be written as follows: P =
∑n

i=1 LiQi, where
the Li’s are linear forms vanishing at x. If L0 is a linear form non zero at x,
then P ⊗ L0 −

∑n
i=1 L0Qi ⊗ Li is a global section of Md

Pn ⊗OPn(1) whose
value at x is proportional to P .

(ii) First, recall that the space of global sectios of Md
G⊗OG(1) identifies

to the kernel of the contraction SdV ⊗ Λ2S1 → Sd+1 ⊗ S1. Again, remark
that any degree d homogenious polynomial P vanishing along a line � can be
written as follows: P =

∑n
i=2 LiQi where the Li’s are linear forms vanishing

along �. If L0, L1 are linear forms which are independent after restriction to
�, then

P ⊗ L0 ∧ L1 +
n∑
i=2

L0Qi ⊗ L1 ∧ Li −
n∑
i=2

L1Qi ⊗ L0 ∧ Li

is a global section of Md
G⊗OG(1) whose value at x is proportional to P .

1There are many ways to prove this Proposition, beside the one we proposed in a

preliminary version of this work. The proof we reproduce here, which is undoubtably the

simplest possible, is due to Laurent Manivel.
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1.2.2 Proof of Ein’s and Voisin’s results

Following Ein [E1], [E2], one can use the positivity result (1.2.2), (i), to
produce holomorphic forms on the (vertical) tangent space to the family
XU . Then, by pulling them back to ỸF and using the adjunction formula,
it will be possible to provide a non zero section of H0(ỸF ,KỸF

). To make
this more precise, first recall the following elementary facts:

(i) ΩN+k
Ỹ |ỸF

∼= KỸF
;

(ii) (∧n−1−kTXU |XF
) ⊗KXF

∼= ΩN+k
XU |XF

.

Therefore, from the natural morphism Ω1
XU

→ Ω1
Ỹ , we get a map

(∧n−1−kTXU |XF
) ⊗KXF

∼= ΩN+k
XU |XF

→ ΩN+k
Ỹ |ỸF

∼= KỸF
. (1.6)

Since KXF
= OXF

(d− n− 1) = OXF
((n− k − 1) + (d− 2n+ k)) and

∧n−1−kTXU |XF
(n− k − 1) = ∧n−1−k(TXU |XF

(1)),

we have

(∧n−1−kTXU |XF
)⊗KXF

= ∧n−1−k(TXU |XF
(1)) ⊗OXF

(d− 2n+ k). (1.7)

Now, since we are supposing d ≥ 2n − k, Proposition (1.2.2) (i) implies
that the vertical part of

∧n−1−k(TXU |XF
(1)) ⊗OXF

(d− 2n+ k) ∼= ΩN+k
XU |XF

,

namely, the subsheaf

∧n−1−k(Md
Pn |XF

) ⊗KXF
= ∧n−1−k(Md

Pn |XF
(1)) ⊗OXF

(d− 2n + k),

is globally generated. Composing the inclusion

∧n−1−k(Md
Pn |XF

) ⊗KXF
↪→ ∧n−1−k(TXU |XF

) ⊗KXF

with the restriction map defined in (1.6), we have a natural morphism

∧n−1−k(Md
Pn |XF

) ⊗KXF
→ KỸF

. (1.8)

Ein’s result is then given by the following

Lemma 1.2.3. Let F be a general polynomial of degree 2n − k. The map

H0(∧n−1−k(Md
Pn |XF

) ⊗KXF
) → H0(KỸF

),

induced in cohomology by (1.72), is non zero.
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Proof. By Lemma (1.2.1), (i), we have

codim T vert
X ,(y,F )

T vertY ,(y,F ) = codimXY.

Let (y, F ) be a smooth point of Y. Since the bundle ∧n−1−k(Md
Pn |XF

)⊗KXF

is generated by its global sections, there exists a section

s ∈ H0(∧n−1−k(Md
Pn |XF

) ⊗KXF
)

such that
< s(y), T vertY ,(y,F ) > 
= 0. (1.9)

Since j : Ỹ → XU is generically an immersion, we obtain from the above a
non zero element in H0(KỸF

) coming from H0(∧n−1−k(Md
Pn |XF

) ⊗ KXF
).

(For other proofs of Clemens’ theorem see, of course, [C] and also [CLR]).
In order to try and improve the bound on the degree by one, we observe

that, if d = 2n− 1− k, then KXF
= OXF

(n− 2− k), so we have, as in (1.6),
a map

∧n−1−kTXU |XF
(n− k − 2) ∼= ΩN+k

XU |XF
→ ΩN+k

Ỹ |ỸF

∼= KỸF
. (1.10)

As we saw in Lemma 2.1, (i), by the hypothesis of GL(n+ 1)-invariance on
Y, the relevant part of the tangent space to look at is the vertical one, hence
we focus our attention on the map

∧n−1−kMd
Pn |XF

(n− k − 2) → ΩN+k
Ỹ |ỸF

∼= KỸF
. (1.11)

Now, because of the shift between the exterior power and the degree of
the canonical bundle we are tensoring with on the lefthand side of (1.11), the
global generation of the sheaf ∧n−1−kMd

Pn |XF
(n−k−2) will not follow from

the global generation of Md
Pn(1). Voisin’s idea is then to study the positivity

of H0(∧2Md
Pn(1)), to produce holomorphic forms on the (vertical) tangent

space to the universal hypersurface, and use the commutative diagram below
to produce sections in H0(KỸF

):

H0(∧n−1−kMd
Pn |XF

(n− 2 − k)) −→ H0(KỸF
)

↑ ↗
H0(∧n−3−kMd

Pn |XF
(n− 3 − k)) ⊗H0(∧2Md

Pn |XF
(1)) (1.12)
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(the vertical map in (1.12) is simply obtained by wedging the sections of the
sheaves ∧n−3−kMd

Pn |XF
(n − 3 − k) and ∧2Md

Pn |XF
(1)). Unfortunately the

following fact holds:

Fact (Amerik-Voisin). ∧2Md
Pn(1) is not generated by its global sections.

Indeed, in [V3] the following counterexample to the global generation of
∧2Md

Pn(1) is given. Consider the subvariety

Δd,F := {x ∈ XF : there exists a line � s.t. � ∩XF = d · x}. (1.13)

An elementary dimension count shows that, for generic F ,

dim Δd,F = 2n− 2 − (d− 1) = 2n− 2 − (2n − 1 − k − 1) = k

(these subvarieties are generically empty for d ≥ 2n− 1, which is the reason
they don’t come into play in Clemens’ and Ein’s case). Let Δd be the
family of the Δd,F ’s, let Δ̃d → Δd be a desingularization, and j : Δ̃d → X
the natural morphism. Notice that Δd,F parametrizes 0-cycles of XF which
are all rationally equivalent since, by definition, d · x ≡ Hn−1.XF , ∀x ∈
Δd,F , where H is the hyperplane divisor in Pn. Thus, the variational (and
higher dimensional) version of Mumford’s fundamental result on 0-cycles
on surfaces applies (see [M2], and [V1] for the variational generalization in
dimension 2), so we have

j∗s = 0 in H0(ΩN+k
Ỹ |ỸF

), ∀s ∈ H0(ΩN+k
X |XF

),

i.e. the map

H0(∧n−1−kTX|XF
(n−2−k)) ∼= H0(ΩN+k

X |XF
) → H0(ΩN+k

Ỹ |ỸF

) ∼= H0(KỸF
)

is identically zero and then so is

H0(∧n−1−kMd
Pn |XF

(n− 2 − k)) → H0(KỸF
).

In particular, by (1.12) and Proposition 1.2.2, (i), we have that, at a smooth
point (y, F ) ∈ Y, all the global sections of the bundle ∧2Md

Pn(1)|XF
, seen as

a line bundle on the Grassmannian of codimension two subspaces of TX vert
|XF

,
vanish on the codimension two subspaces of T vertX ,(y,F ) containing T vertY ,(y,F ).

Voisin’s alternative approach to the problem, as developed in [V3], con-
sists then in studying the base locus of H0(∧2Md

Pn(1)|XF
), to investigate the

geometry of the subvarieties for which the composite map in (1.12) fails to
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provide non-zero sections of their canonical bundle. She shows in [V3] that,
in the case d = 2n− 1− k, the subvariety Δd,F defined in (1.13) is the only
one for which this phenomenon occurs. Then, she completes her proof by
verifying that each component of Δd,F has positive geometric genus.

1.2.3 The strategy of our proof

Our purpose is to study, for d = 2n− 2 − k, the geometry of k-dimensional
subvarieties of XF ⊂ Pn, having geometric genus equal to zero. Recall that,
since d = 2n − 2 − k, we have KXF

= OXF
(n − 3 − k), and note that the

composite map

H0(∧n−1−kMd
Pn |XF

(n− 3 − k)) −→ H0(KỸF
)

↑ ↗
H0(∧n−5−kMd

Pn |XF
(n− 5 − k)) ⊗H0(∧4Md

Pn |XF
(2)) (1.14)

is obviously zero, since we are supposing h0(KỸF
) = 0. Then the proof of

our theorem will naturally be divided into two steps. In section 3, analysing
the base locus of H0(∧4Md

Pn |XF
(2)), considered as the space of sections of a

line bundle on the Grassmannian of codimension four subspaces of TX vert
|XF

,
we will prove

Proposition A. Let XF ⊂ Pn be a general hypersurface of degree d = 2n−
2−k, and YF ⊂ XF a subvariety of dimension k such that H0(ỸF ,KỸF

) = 0,
where ỸF is a desingularization of YF . Then YF has to be contained in

Δd,F = {x ∈ XF : there exists a line � s.t. � ∩XF = d·x},

a subvariety of XF of dimension 2n− 2 − (d− 1) = k + 1.

In § 4, we will study an explicit desingularization Δ̃d,F of Δd,F , given
by the zeroes of a section of a bundle on the incidence variety in Pn ×
Grass(1, n). Denote by Δ̃d the family (Δd,F )F∈Sd , and recall the isomor-
phism

T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

∼= ΩN+k
Δ̃d |S̃F

.

The positivity result (1.2.2), (ii), for the bundleMd
G⊗OG(1) on Grass(1, n),

will allow us to construct a subbundle of T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

generated by its



28 Part I : Rational curves on general projective hypersurfaces

global sections. Using this fact, together with the vanishing of the natural
restriction map

H0(T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

) = H0(ΩN+k
Δ̃d |S̃F

) → H0(KỸF
), (1.15)

we will prove

Proposition B. Let F be a general polynomial of degree d = 2n − 2 − k.
Let YF ⊂ Δd,F be a subvariety of codimension 1 such that H0(ỸF ,KỸF

) = 0,
where ỸF is a desingularization of YF . Then YF has to be a component of
the k-dimensional subvariety of Δd,F covered by the lines lying on XF .

These propositions will combine to prove our main theorem.

1.3 Base locus of ∧4Md
Pn(2) and osculating lines

Let X ⊂ Pn × Sd be the universal hypersurface of degree d = 2n − 2 − k,
U → Sd an étale map and Y ⊂ XU a universal, reduced and irreducible
subscheme of relative dimension k (to simplify the notation, in what follows
we will occasionally omit the étale base change). Assume Y invariant under
some lift of the action of GL(n + 1), denote by Ỹ → Y a desingularization,
and suppose that the fibres of Ỹ verify h0(ỸF ,KỸF

) = 0.
Consider the bundle Md

Pn defined by the exact sequence

0 →Md
Pn → Sd ⊗OPn

ev−→OPn(d) → 0,

whose fiber at a point x identifies by definition with Sdx. Recall from §2.1
that

Md
Pn |XF

= T vertX ⊗OXF
, (1.16)

where T vertX is the sheaf defined by

0 → T vertX → TX π∗−→TPn → 0.

From the vanishing of the composite map

H0(∧n−1−kTXU |XF
(n− 3 − k)) −→ H0(KỸF

)

↑ ↗
H0(∧n−5−kTXU |XF

(n− 5 − k)) ⊗H0(∧4TXU |XF
(2)) (1.17)
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and (1.16) we deduce that the composite map

H0(∧n−1−kMd
Pn |XF

(n− 3 − k)) −→ H0(KỸF
)

↑ ↗
H0(∧n−5−kMd

Pn |XF
(n− 5 − k)) ⊗H0(∧4Md

Pn |XF
(2)) (1.18)

is also zero. Since, by Lemma 1.2.2, (i), ∧n−5−kMd
Pn |XF

(n− 5− k) is gener-
ated by its global sections, the vanishing of the composite map in (1.18) and
the GL(n + 1) invariance of Y implies that, at a smooth point (y, F ) ∈ Y,
any codimension four subspace of T vertXU ,(y,F ) = Sdy containing T vertY ,(y,F ) is in the
base locus of H0(∧4Md

Pn |XF
(2)), considered as a space of sections of a line

bundle over the Grassmannian of codimension four subspaces of T vertX|XF
.

Studying this base locus we will see how, at each point y of a subvariety
YF ⊂ XF with zero geometric genus, the ideal of a line through y naturally
comes into play. More precisely, we will prove

Proposition 1.3.1. Let Y ⊂ XU be such that the composite map in (1.18)
is zero. Then, at a smooth point (y, F ), the vertical tangent space T vertY ,(y,F ),
which is a subspace of T vertXU ,(y,F ) = Sdy , has to contain (at least) a hyperplane
H�(y,F )

⊂ I�(y,F )
(d), where �(y,F ) is a line passing through y.

We will then study the distribution H ⊂ T vertY , pointwise defined by
H�(y,F )

, and prove its integrability. The description of the corresponding
foliation and the GL(n + 1)-invariance of Y will allow us to conclude that
the line �(y,F ) is such that �(y,F ) ∩XF = d · y, thus proving Proposition A.

1.3.1 Proof of Proposition 3.1

We start with the following

Lemma 1.3.2. Let T be a codimension four subspace of Sdx = (TX ,(x,F ))vert

which is in the base locus of H0(
∧4Md

Pn(2)). Then T has to contain (at
least) a hyperplane of I�(d), where � is a line passing through x.

Proof. Recall thatH0(
∧2Md

Pn(1)) can be naturally interpreted as the kernel
of the Koszul map

∧2 Sd ⊗ S1 → Sd ⊗ Sd+1. Hence one easily verifies that
Im (H0(

∧2Md
Pn(1)) → ∧2Md

Pn ,x) contains PA1 ∧ PA2, for all P ∈ Sd−1

and Ai ∈ S1
x. Then

Im (H0(
4∧
Md

Pn(2)) →
4∧
Md

Pn ,x)
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contains elements of the form

PA1 ∧ PA2 ∧QB1 ∧QB2,

for all P,Q ∈ Sd−1 and Ai, Bi ∈ S1
x, coming from the wedge product of

elements in Im (H0(
∧2Md

Pn(1)) → ∧2Md
Pn ,x). Since we are supposing

that T is in the base locus of H0(
∧4Md

Pn(2)), the previous fact implies in
particular that the dimension of the subspace {AP : A ∈ S1

x} modulo T is
at most 3, i.e. the multiplication map

mP : S1
x → Sdx/T

A �→ A · P mod T

cannot be surjective, for any P ∈ Sd−1.
Recall that if V and W are vector spaces, and Zk := {φ ∈ Hom(V,W ) :
rank φ ≤ k}, then

TZk,φ = {ψ ∈ Hom(V,W ) : ψ(kerφ) ⊂ Imφ}. (1.19)

If, for generic P , the map mP has rank one, from (1.19) we obtain that
Q ·Ker mP mod T ⊂ Im mP , for any Q ∈ Sd−1, i.e. I�P (d) ⊂ P · S1

x + T ,
where �P is the line determined by Ker mP . Then T contains a hyperplane
of I�P (d) and the lemma is proved.

Thus, we can assume that, for generic P . the map mP has rank at least
two. Let A1, A2 ∈ S1

x such that T ′ :=< A1P,A2P, T > is of codimension 2
in Sdx. For generic Q ∈ Sd−1

x , consider the map

mQ : S1
x → Sdx/T

′,

whose rank is then equal to 0 or 1. In the former case T ′ would then contain
Sd−1 ·Ker mQ = Sd−1 · S1

x = Sdx, which is absurd since T ′ has codimension
2. Hence we can suppose rk mQ = 1. Then by [V2], Lemma 2.3, T ′ contains
the degree d part of the ideal of a line �Q passing through x, and hence T
contains at least a codimension two subspace of I�Q(d). Assume first that
the line does not vary with Q, and denote it by �. If

codimI�(d) T ∩ I�(d) = 2,

then the image T of T in H0(O�(d)) has codimension 2 in H0(O�(d)(−x)).
On the other hand, since T ′ contains I�(d), its reduction T ′ modulo I�(d)
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has also codimension 2 in H0(O�(d)(−x)). Hence T = T ′. By the genericity
of the choice P in Sdx, this fact would imply that

T = H0(O�(d)(−x)),

thus leading to a contradiction.
Assume now that �Q 
= �Q′ , for generic Q,Q′ ∈ Sd−1. Since T contains

a codimension two subspace of I�Q(d), from the exact sequence

0 → I�Q(d) ∩ I�Q′ (d) → I�Q(d) ⊕ I�Q′ (d) → Sdx → 0,

and the fact that T ⊂ Sdx has codimension 4, it follows that T ⊃ I�Q(d) ∩
I�Q′ (d). Let P2

Q,Q′ be the span of �Q and �Q′ : we study the variation of
this plane with Q′. If for generic Q′

1 
= Q′ the intersection P2
Q,Q′ ∩ P2

Q,Q′
1

is equal to the line �Q, then T ⊃ I�Q(d) and we are done. If otherwise
P2
Q,Q′ = P2

Q,Q′
1

= P2, then it is immediate to see that T contains

{F ∈ Sdx : F|P2 is singular at the point x},

because �Q and �Q′ will vary in this plane. But this is absurd since T ⊂ Sdx
is of codimension 4.

From the previous lemma and the vanishing of the composite map

H0(∧n−5−kTXU |XF
(n− 5 − k)) ⊗H0(∧4TXU |XF

(2)) → H0(KỸF
)

we have that any codimension four subspace T ⊂ T vertXU ,(y,F ) containing
T vertY ,(y,F ) contains a hyperplane H�(y,F )

of I�(y,F )
(d), where �(y,F ) is a line

through y. Note that a priori the hyperplane H�(y,F )
could vary with T . We

have then to verify that TY ,(y,F ) is forced to contain one of those H�(y,F )
.

Proof of Proposition 1.3.1. Remark that a codimension four subspace T ⊂
T vertXU ,(y,F ) containing T vertY ,(y,F ) cannot contain two hyperplanes H and H ′ in
the ideals I�(d) and I�′(d) of different lines � 
= �′. Indeed, if this were the
case, by the surjectivity of

I�(d) ⊕ I�′(d) � Sdy ,

then T would contain at least a codimension 2 subspace of Sdy , thus violat-
ing the hypothesis on its codimension. Set V := Sdy , and V0 := T vertY ,(y,F ).
Denote by �T the unique line such that T contains a hyperplane in its ideal.



32 Part I : Rational curves on general projective hypersurfaces

Then, by the above, we have a morphism from G′ := Grass(V/V0, 4), the
Grassmannian of codimension 4 subspaces of V/V0, to G := Grass(1,Pn),
the Grassmannian of lines in Pn:

ϕ : G′ → G; T �−→ �T .

Suppose that ϕ is a not constant map. Let � be in its image, and T ∈ ϕ−1(�).
Then it is easy to construct from such a T a positive dimensional family of
codimension 4 subspaces containing V0 and a hyperplane in I�(d). Thus ϕ
has positive dimensional fibers and we are done, since in this case the ample
line bundle ϕ∗OG(1) = O′

G(s), s > 0, would have zero intersection with the
curves in the fiber, which is absurd. Now, let � be the unique line in the
image of ϕ. A dimension count shows that if V0∩I�(d) had codimension ≥ 2,
then there would exist a T ∈ Grass(V/V0, 4) with codimI�(d)T ∩ I�(d) ≥ 2,
thus contradicting Lemma 1.3.2.

�

1.3.2 The vertical contact distribution

We now want to use Proposition 3.1 to construct a (well defined) distribution
in T vertY , and show its integrability.

From (1.3.1) we know that TY ,(y,F ) contains at least a hyperplane H :=
H�(y,F )

in I := I�(y,F )
(d). Remark that TY ,(y,F ) cannot contain two different

hyperplanes H 
= H ′ in different ideals I 
= I ′, otherwise it would contain a
codimension two subspace of Sdy . But this is absurd, since by Lemma 1.2.1

codim T vert
X ,(y,F )

T vertY ,(y,F ) = codimXY ≥ 4.

Hence the line �(y,F ) is unique and we have a well defined map

φ : Y −→ G(1, n) (1.20)

(y, F ) �−→ �(y,F )

If, at a generic point (y, F ), TY ,(y,F ) contains the hyperplane H�(y,F )
, but

not the whole ideal I�(y,F )
(d), we get a well defined distribution H ⊂ T vertY ,

whose fiber at a point (y, F ) is given by H�(y,F )
. We will call H the vertical

contact distribution.
If at a generic point TY ,(y,F ) contains I�(y,F )

(d), then one can consider
the distribution I ⊂ T vertY fiberwise defined by I�(y,F )

(d). This case is easier
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and is actually the case considered in [V3]. It will be briefly treated at the
end of this section.

In the former case, as in [V3] and by simply adapting the arguments
given there to our situation, we now want to show the following natural
fact: if we move infinitesimally in the directions parametrized by H�(y,F )

⊂
I�(y,F )

(d), then the line �(y,F ) remains fixed. The integrability of H will then
immediately follow.

Lemma 1.3.3. (i) The differential φ∗ at the point (y, F ) vanishes on H�(y,F )
.

(ii) The vertical contact distribution H ⊂ T vertY is integrable.

Proof. Since the distribution T vertY ,(y,F ) = ker p∗ is integrable, the brackets
induce a map

Ψ :
2∧
H → T vertY /H ⊂ T vertX |Y/H,

which is given at the point (y, F ) by

ψ : ∧2H�(y,F )
→ T vertY ,(y,F ) mod H�(y,F )

⊂ Sdy mod H�(y,F )
.

Since we are supposing that T vertY ,(y,F ) contains H(y,F ) but not the whole ideal
I�(y,F )

(d), there is a canonical isomorphism

T vertY ,(y,F ) mod H�(y,F )
∼= T vertY ,(y,F ) mod I�(y,F )

(d),

and hence ψ identifies with a map

∧2H�(y,F )
→ H0(O�(d)(−y))

which we also denote by ψ. To prove the integrability of H, by Frobenius’
theorem it will suffice to show that Ψ is zero. In what follows we will de-
note �(y,F ) and H(y,F ) respectively by � and H. Now, choose coordinates
on Pn such that � = {X2 = . . . = Xn = 0} and y = [1, 0, . . . , 0]. Recall
that H0(N�/Pn(−1)) identifies naturally with the set of (−1)-graded homo-
morphisms from

⊕
d I�(d)/I

2
� (d) to

⊕
d S

d/I�(d). Hence there is a natural
bilinear map, denoted by (a, b) �→ a · b :

I�(d) ⊗H0(N�/Pn(−y)) → H0(O�(d)(−y)),

which is explicitly given by

P · (X1

n∑
i=2

bi
∂

∂Xi
) =

n∑
i=2

biX1(
∂P

∂Xi
)|� ∈ H0(O�(d)(−y)).
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Remark that, since y ∈ � and T vertY ,(y,F ) ⊂ Sdy , any deformation of � belonging
to φ∗(T vertY ,(y,F )) passes through y, i.e. φ∗(T vertY ,(y,F )) ⊂ H0(N�/Pn(−y)). A
verification in local coordinates shows that

ψ(A ∧B) = A · φ∗(B) −B · φ∗(A), A,B ∈ H. (1.21)

Note that

(QXiXj) · (
n∑
2

bl
∂

∂Xl
) =

n∑
2

bl(
∂QXiXj

∂Xl
)|� = 0,

for every Q ∈ Sd−2 and i, j ≥ 2, and therefore φ∗(A) · B = 0, for every
A ∈ H ∩ I2

� (d), B ∈ H. We first show that φ∗ vanishes on I2
� (d): if we

had φ∗(A) 
= 0 with A ∈ H ∩ I2
� (d), then T vertY ,(y,F )mod I�(d) would contain

the elements B · φ∗(A) for any B ∈ H, hence at least a hyperplane of
H0(O�(d)(−y)). Thus φ∗ vanishes on H∩I2

� (d), giving a mapH/H∩I2
� (d) →

H0(N�/Pn(−y)), which we still call φ∗.
Identify H0(O�(d)(−y)) with H0(O�(d − 1)), and recall again the natural
isomorphism

I�(d)/I2
� (d) ∼= H0(O�(d− 1)) ⊗H0(N�/Pn(−y))∗.

Then H/H ∩ I2
� (d) corresponds to a subspace

H ⊂ H0(O�(d− 1)) ⊗H0(N�/Pn(−y))∗,
with codim H ≤ 1, and the dot map is simply given by the contraction

< ·, · > : H ⊗H0(N�/Pn(−y)) → H0(O�(d)(−y))
Hence, by (1.21) the map ψ :

∧2H/H ∩ I2
� (d) → H0(O�(d)(−y)) identifies

with
2∧
H −→ H0(O�(d)(−y)) (1.22)

A ∧B �→<A,φ∗(B)> − <B,φ∗(A)> .

To conclude we need the following linear algebra result:

Lemma 1.3.4. Let W and K be two vector spaces, H a codimension 1
subspace of in W ⊗K∗ and φ∗ : H → K a linear map. If φ∗ 
= 0, then the
image of the map

ψ :
2∧
H −→ W

A ∧B �→< A,φ∗(B) > − < B,φ∗(A) >

contains at least a codimension 2 subspace of W .
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Proof. Let J = ψ(∧2H). Pick a complementary subspace J⊥ to J in W and
a basis {wj} for W which is compatible with the decomposition

W = J ⊕ J⊥.

Let {ki} be a basis of K and {k∗i } the dual one. Pick a complementary space
H

⊥ to H in W ⊗K∗ which will be generated by a monomial wj0 ⊗ k∗i0 , and
extend φ∗ to the whole W ⊗K∗ by setting

φ∗(wj0 ⊗ k∗i0) = 0.

The map ψ extends naturally to ∧2(W ⊗K∗). Since

dim
(
ψ

(
H

⊥ ⊗ (W ⊗K∗)
))

≤ 1,

we are reduced to proving that if the extended map φ∗ : W → K is not zero,
then the codimension of the image of

ψ :
2∧
W ⊗K∗ →W

is at least 1. This has already been checked in [V3], Lemma 3, and so we
are done.

TakeW := H0(O�(d)(−y)) andK := H0(N�/Pn(−y)), and apply Lemma
1.3.4 to our situation. If we had φ∗ 
= 0, then the image of the map ψ would
contain at least a codimension 2 subspace of H0(O�(d)(−y)). But the image
of ψ is contained in T vertY ,(y,F ) mod I�(d), and T vertY ,(y,F ) contains a hyperplane
in I�(d). Hence the codimension of T vertY in T vertX would be at most 3, which
is in contradiction with Lemma 1.2.2. Thus φ∗ = 0, hence ψ is zero and so
is Ψ. By Frobenius’ theorem the distribution H is integrable.

1.3.3 Proof of Proposition A

We can now prove Proposition A, i.e. we show that the line �(y,F ) defined
by the ideal I�(y,F )

(d) is such that

XF ∩ �(y,F ) = d · y.

From (1.3.3) we know that H is integrable and φ is constant along the
leaves of the corresponding foliation. Therefore the line �(y,F ) is fixed along
the leaf, and because its tangent space is contained at each point in I�(y,F )

(d),
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it follows that the restriction G|�(y,F )
is constant, for any polynomial G

belonging to the leaf through (y, F ). This means that the leaf is locally of
the form y × F +W(y,F ), where W(y,F ) ⊂ I�(y,F )

(d) is a germ of a complex
hypersurface. Then consider the following diagram

0

��

0

��
0 �� H�(y,F )

��

�� I�(y,F )
(d)

��

0 �� T vertY ,(y,F )

��

�� T vertX ,(y,F ) = Sdy

��
H0(O�(d)(−y)) H0(O�(d)(−y))

��
0

(1.23)

By Lemma 1.2.1,

codim T vert
X ,(y,F )

T vertY ,(y,F ) = codim X Y = n− k − 1.

Then, by (1.23) the image

Im := Im (T vertY ,(y,F ) → H0(O�(d)(−y)))

has codimension (n−k−1)−1 = n−k−2, and therefore, since d = 2n−2−k

dim Im = (2n− 2 − k) − (n− k − 2) = n. (1.24)

At the same time, again by Lemma 1.2.1, T vertY ,(y,F ) contains S1
y · Jd−1

F and F
itself. Take coordinates X0, . . . ,Xn on Pn such that y = [1, 0, . . . , 0], and
� := �(y,F ) = {X2 = . . . = Xn = 0}. Since φ is constant along the leaves
of the foliation, we can generically choose a polynomial G in F + W(y,F ),
so that the (n − 1)-elements X1

∂G
∂Xi

, i ≥ 2, are generic in a hypersurface.
Consider the subspace

K :=< G|�,X1(
∂G

∂X0
)|�,X1(

∂G

∂X1
)|� > ⊂ H0(�,O�(d) ⊗ Iy),

which is uniquely determined by F|� and hence is constant along the leaf. Its
codimension in H0(�,O�(d)⊗Iy) is at least d− 3 ≥ n (since, by hypothesis,
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k ≤ n − 5 so that d = 2n − 2 − k ≥ n + 3). Since we know that along the
leaf, G moves freely in the complex hypersurface W(y,F ), the polynomials
X1( ∂G∂Xi

)|� are generic in a codimension 1 subspace of H0(�,O�(d)⊗Iy), and
it then follows that they will be generically independent modulo K. From
(1.24) we thus get that

dim K ≤ 1 (1.25)

and so Proposition A is proved, since by (1.25) F|� has to be of the form
αXd

1 .
If, for generic (y, F ), T vertY ,(y,F ) contains the whole ideal I�(y,F )

(d), then
consider the distribution I ⊂ T vertX pointwise defined by I�(y,F )

(d). Arguing
as we did before, we get

dim Im (T vertY ,(y,F ) → H0(O�(d)(−y))) = n− 1,

thus deducing

dim K = 0.

Then the polynomial F belongs to I�(y,F )
(d), and the theorem is true in this

case, i.e. YF is a component of the subvariety of XF covered by lines. �

1.4 The geometry of Δd,F

Let XF ⊂ Pn be a general hypersurface of degree d = 2n− 2 − k, 1 ≤ k ≤
n − 5, and YF ⊂ XF a k-dimensional subvariety whose desingularization
Ỹ has h0(Ỹ ,KỸ ) = 0. Then, by Proposition A, we know that YF has to
be contained in Δd,F ⊂ XF , the (k + 1)-dimensional subvariety of points
in XF through which there is a d-osculating line. To prove Proposition B
and hence our theorem, we have then to show that the only subvariety of
dimension k of Δd,F with geometric genus zero is the subvariety covered by
the lines in XF .

1.4.1 A desingularization of Δd,F

We start by giving an explicit description of a desingularization Δ̃d,F of Δd,F

in terms of the zero locus of a section of a vector bundle. This fact will allow
us to calculate, by adjunction, the canonical bundle of Δ̃d,F and see that it
is very ample.
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Let G := Gr(1, n) be the Grassmannian of lines in Pn. Let OG(1) be
the line bundle on G which gives the Plücker embedding, so that we have
H0(OG(1)) =

∧2 S1. Let P ⊂ Pn × G be the incidence variety {(x, [�]) :
x ∈ �} with projections

P p ��

q

��

Pn

G

(1.26)

and H := p∗OPn(1), L := q∗OG(1) the line bundles generating the Picard
group of P.

Define

Δ̃r := {(x, [�], F ) : � ·XF ≥ r · x} ⊂ P × Sr ⊂ Pn ×G× Sr,

(by � ·XF ≥ r ·x we mean that the line has a contact of order at least r with
XF at x) and consider the various projections as illustrated in the following
commutative diagram:

Δ̃r

ρr ��

π

��

X
t

��

s �� Sr

P p ��

q

��

Pn

G

(1.27)

Since the tangency of order at least r imposes r conditions, the fibres of
the projection π : Δ̃r → P are punctured vector spaces of dimension N − r.
Hence Δ̃r is smooth and irreducible of dimension

N − r + 2(n− 1) + 1.

Lemma 1.4.1. (i) The projection ρr : Δ̃r → X is surjective for r ≤ n, and
generically injective for r > n.

(ii) The composite projection s ◦ ρr : Δ̃r → Sr is surjective if r ≤
2(n − 1). In particular, in that case, its fiber Δ̃r,F := s ◦ ρ−1

r (F ) is smooth
for generic F ∈ Sr, and the composite projection t ◦ ρr : Δ̃r,F → Pn, gives
a desingularization of

Δr,F := {x ∈ XF : ∃� s.t. � ·XF ≥ r · x}
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Proof. (i) Assume x = [1, 0, . . . , 0] ∈ Proj (C [X0, . . . ,Xn]) . Then the asser-
tion follows from the fact that the contact condition � ·XF ≥ r for a line �
through x with respect to

F =
∑n

j=1
Xd−j

0 Fj (X1, . . . ,Xn)

becomes

{F1 = . . . = Fr−1 = 0} ⊆ Proj (C [X1, . . . ,Xn]) .

(ii) A dimension count shows that all hypersurfaces XF in Pn of degree
d ≤ 2n − 2 admit a point through which passes a line having contact with
XF of maximal order.

In what follows, by abuse of notation, we will identify Δ̃r,F to its image,
π(Δ̃r,F ), in P. We will show that Δ̃r,F can be seen as the zero locus of a
global section of a vector bundle over P. This will enable us to compute its
canonical bundle.

Let Ed be the dth-symmetric power of the dual of the tautological sub-
bundle on G, and recall that, by definition, its fibre at a point [�] is then
given by H0(�,O�(d)), and its first Chern class is

c1(Ed) = OG(
d(d + 1)

2
).

Let Ld := dL − dH be the rank 1 subbundle of q∗Ed. Note that its fibre
Ld,(x,[�]) is equal to the space of degree d homogeneous polynomials on �

vanishing to the order d at x. Finally, let Fd be the quotient

0 → Ld → q∗Ed → Fd → 0. (1.28)

It is possible to associate to every F ∈ Sd a section σF ∈ H0(G, Ed), whose
value at a point [�] is exactly the polynomial F|�. We will denote by σF the
induced section in H0(P,Fd). Then V (σF ) is equal to Δ̃r,F , and, as checked
in Lemma 1.4.1, for generic F , Δ̃r,F = V (σF )

p−→Δr,F is a desingularization.
It is computed in [V3] that

KP = −2H − nL, (1.29)

and then

det Fd = det q∗Ed − dL+ dH =
d(d− 1)

2
L+ dH. (1.30)
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Hence, by adjunction,

KΔ̃d,F
= (KP ⊗ det Fd)|Δ̃d,F

= [(d− 2)H + (
d(d− 1)

2
− n)L]|Δ̃d,F

, (1.31)

so KΔ̃d,F
is very ample under our numerical hypothesis d = 2n− 2− k, 1 ≤

k ≤ n− 5.

1.4.2 Proof of Proposition B

Let Δd ⊂ Pn × Sd be the family of the Δd,F ’s, and Δ̃d ⊂ P × Sd the family
of the desingularizations. Let Y ⊂ Δ̃d be a subscheme of relative dimension
k, invariant under the action of GL(n+ 1), and Ỹ → Y a desingularization.
Assume h0(ỸF ,KỸF

) = 0. Recall the isomorphisms

T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

∼= ΩN+k
Δ̃d |Δ̃d,F

(1.32)

ΩN+k
Ỹ |ỸF

∼= KỸF
(1.33)

and consider the natural map

T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

∼= ΩN+k
Δ̃d |Δ̃d,F

→ ΩN+k
Ỹ |ỸF

∼= KỸF
. (1.34)

Then, by assumption, the induced map in cohomology

H0(T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

) → H0(KỸF
) (1.35)

is zero. Let T vert
Δ̃d

be the sheaf defined by

0 → T vert
Δ̃d

→ T Δ̃d
π∗−→ TP → 0.

Using the positivity result proved in Lemma 1.2.2, (ii), we will construct
a subbundle of (T vert

Δ̃d
)|Δ̃d,F

⊗KΔ̃d,F
, generated by its global sections. This

will allow us to show that any point (y, [�], F ) ∈ Y is such that y ∈ � ⊂ XF .
Comparing the dimension, we will thus obtain that YF has to be a component
of the subvariety of lines in XF .

From (1.35) we see that, at a smooth point (y, [�], F ) ∈ Y ⊂ P × Sd,
the tangent space TY ,(y,[�],F ) is in the base locus of H0(T Δ̃d|Δ̃d,F

⊗KΔ̃d,F
),

considered as the space of sections of a line bundle on the Grassmannian of
hyperplanes in T Δ̃d|Δ̃d,F

. Consider the vector bundle Md
G on G := Gr(1, n)

defined by the short exact sequence:

0 →Md
G → Sd ⊗OG → Ed → 0.
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Notice that the fiber of Md
G at a point [�] is equal to I�(d), and recall that,

by Proposition 1.2.2, (ii), Md
G ⊗OG(1) is generated by its global sections.

Then it follows that the vector bundle q∗Md
G ⊗ detFd ⊗ KP , that, by

(1.29), (1.30) and (1.73) can be written as

q∗Md
G ⊗ detFd ⊗KP = q∗(Md

G) ⊗OP((d− 2)H + (
d(d− 1)

2
− n)L)

= q∗(Md
G(1)) ⊗OP((d− 2)H + (

d(d − 1)
2

− n− 1)L),

is generated by its global sections, and so is its restriction to Δ̃d,F , i.e. the
sheaf

q∗Md
G|Δ̃d,F

⊗KΔ̃d,F

is generated by its global sections.
Let Nd be the vector bundle over P defined by the exact sequence

0 → Nd → Sd ⊗OP → Fd → 0. (1.36)

We have
0 → Nd|Δ̃d,F

→ T Δ̃d|Δ̃d,F

π∗−→ TP|Δ̃d,F
→ 0,

where S ⊂ P×Sd π→ P is the projection on the first component, i.e. Nd|Δ̃d,F

is the vertical component of T Δ̃d|Δ̃d,F
w.r.t. π. Now consider the vector

bundle Md
G defined by the exact sequence

0 → Md
G → Sd ⊗OP

ev−→q∗Ed → 0,

whose fiber at a point (y, F, [�]) is equal to I�(d). From (1.28) and the
definition of Nd we also obtain that

0 → Md
G → Nd → Ld → 0.

So, Md
G⊗KΔ̃d,F

is a subbundle of T Δ̃d
vert
|Δ̃d,F

. Finally note that Md
G = q∗Md

G,
hence

Md
G ⊗KΔ̃d,F

is generated by its global sections. Using this property of the bundle Md
G⊗

KΔ̃d,F
⊂ T Δ̃d

vert
|Δ̃d,F

⊗KΔ̃d,F
we are now able to conclude our proof.

Proof of Proposition B. LetH ⊂ TΔ̃d ,(x,Δ,F )
be a hyperplane contained in the

base locus of H0(T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

), considered as the space of sections of
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a line bundle on the Grassmannian of codimension 1 subspaces of T Δ̃d|Δ̃d,F
.

Then we must have

Hvert := H ∩ Nd,(x,[�]) = Md
G,(x,�). (1.37)

Indeed, if H̄ := H ∩ Md
G,(x,[�]) were strictly contained in Md

G,(x,[�]), then
consider the following, well defined, commutative diagram:

H0(Md
G ⊗KΔ̃d,F

) ev ��
� �

��

(Md
G ⊗KΔ̃d,F

)(x,[�])
<·,H̄> ��

� �

� �

C

H0(T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

) ev �� (T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

)(x,[�])
<·,H>�� C

(1.38)

(ev is the evaluation of the sections at the point (x, [�]), and < ·,H > is the
contraction defined by the hyperplaneH). Since H belongs to the base locus
of H0(T Δ̃d|Δ̃d,F

⊗ KΔ̃d,F
), then the composite map < ·,H > ◦ ev is zero,

and so would be < ·, H̄ > ◦ ev. But this is absurd, because Md
G ⊗KΔ̃d,F

is
generated by its global sections.

Let then Y ⊂ Δd be a subvariety, which is stable under the action
of GL(n + 1) and of relative codimension 1. Assume moreover that the
restriction map (1.35)

H0(T Δ̃d|Δ̃d,F
⊗KΔ̃d,F

) → H0(KỸF
)

is zero. By (1.37), T vertY ,(y,[�],F ) is equal to

Md,(y,[�]) = {G ∈ Sd : G|� = 0}. (1.39)

On the other hand, by Lemma 1.2.1, (ii), T vertY ,(y,[�],F ) contains F itself. So
by (1.39) we have that F|� = 0 for every point (y, [�]) ∈ YF , i.e. YF is a
component of the subvariety covered by the lines contained in XF . �

Remark 1.4.2. If k > 1, the k-dimensional subvariety covered by the lines
of the general hypersurface of degree d = 2n−2−k is irreducible (see [DM]),
so in this case YF has to coincide with it.
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Mathématique de France, Paris, 1996.

[X] G. Xu, Subvarieties of general hypersurfaces in projective space, J.
of Differential Geom. 39 (1994), no. 1, 139–172.



46 Bibliography of Part I



Part II

On the nef cone of symmetric

products of a generic curve

47





Introduction to Part II

Let C be a smooth irreducible algebraic curve of genus g. For any integer
k ≥ 2, one can consider C(k), the symmetric product of C, defined as the
quotient of the k-th cartesian product of C under the natural action of
the symmetric group Sk. This smooth, irreducible, k-dimensional variety,
naturally associated to C, parametrizes effective divisors E = x1 +x2+ . . .+
xk of degree k on C, and plays a central role in curve theory. Its geometry
has been extensively investigated, although the problem of determining the
nef and the effective cone of C(k) has only recently found more attention,
thanks to two papers by Kouvidakis [K] and Ciliberto-Kouvidakis [CK].
This interesting question lies on the borderline between higher dimensional
algebraic geometry and curve theory. Indeed, on one hand, for g(C) ≥ 2, one
can be motivated by the possibility of providing the description of the nef
and effective cones for a new class of higher dimensional varieties of general
type. On the other hand, the study of curves on C(k), seen as continuous
families of linear systems on C, can be considered as a natural generalization
of the classical Brill-Noether theory, and have some import in the theory of
algebraic curves. In this introduction, after having recalled some well known
facts about C(k), we review Ciliberto and Kouvidakis’ work on the effective
cone of C(2). Then, we present our result which gives a complete description
of the nef and the effective cone of the k-th symmetric product of a generic
curve C, for k = gon(C) − 1, in the even genus case.

0.1 Classical results on C(k)

The generators of the integer cohomology of C(k) and the relations among
them are exhibited by Macdonald in [Mac], where he also computes the
Chern classes of C(k), while Mattuck [Mat] and Collino [Co] determine the
structure of the Chow ring A(C(k)). The principle asserting that the geom-
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etry of C(k) reflects that of C is well testified by a famous result by Kempf
[Ke], subsequently sharpened by Fantechi [F], saying that the deformation
functors for C, with g(C) ≥ 3, and for any symmetric product C(k) are
isomorphic if and only if C is not hyperelliptic.

A key role in understanding the relation of the symmetric product with
the extrinsic geometry of the curve C is played by Abel’s map

uk : C(k) → Pick(C), E = x1 + . . .+ xk �→ OC(E).

By Riemann’s theorem, ug−1(C(g−1)) identifies to a translate of the theta
divisor, while, for k ≥ 2g − 1, the map uk endows, by Riemann-Roch, the
symmetric product C(k) with the structure of a projective bundle. Recall
the definition of the subvariety of C(k) (respectively Pick(C)):

Crk := {E ∈ C(k) : dim|E| ≥ r}
(resp. W r

k := {L ∈ Pick(C) : h0(L) ≥ r + 1}).
Then u(Crk) = W r

k , and Brill-Noether theory (see [ACGH]) says that, for a
generic curve, these varieties are non-empty if and only if ρ ≥ 0, and

dim Crk = ρ+ r, dim W r
k = ρ,

where ρ = ρ(g, r, k) := g − (r + 1)(g − k + r) is the Brill-Noether number.
Recall the definition of the gonality of a curve C

gon(C) := min{d : ∃ a covering C d:1−→ P1}.
Hence, if g(C) = 2k then gon(C) = k + 1.

More recently other properties of the symmetric product have been inves-
tigated. Bertram and Thaddeus explore in [BT] the (little) quantum coho-
mology of C(k) for most k. Shiffmann and Zaidenberg ([SZ]) prove that the
k-th symmetric product of a generic curve is hyperbolic for k ≤ gon(C)− 1.
They use this fact, plus Kouvidakis’ result on the nef cone of C(2) that
will be discussed in the next section, to provide new examples of hyperbolic
surfaces of low degree in P3.

0.2 Known results on the nef and the effective

cone of C(2)

For any variety X one defines N1(X) (resp. N1(X)) to be the set of R-
linear combinations of 1-cycles (resp. divisors) on X modulo numerical
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equivalence. N1(X) is called the Néron-Severi group of X and denoted
NS(X). N1(X) and N1(X) are finite dimensional vector spaces, and the
bilinear form given by the intersection pairing is non-degenerate. The convex
cone of N1(X) given by the classes of effective 1-cycles is denoted by NE(X)
and called the cone of curves. Dually, one can consider, inside N1(X), the
nef cone Nef (X) of X, i.e. the closure of the convex cone of classes of ample
divisors. By Kleiman’s criterion of ampleness ([Kl]), Nef(X) = NE(X)∗.

When the curve has general moduli, for any k the Néron-Severi group
of C(k) has rank two (see [GH], Ch. 2, §5). If x is a point of C, by abuse of
notation, we will still denote by x the divisor

{x+ Z : Z ∈ C(k−1)} ⊂ C(k).

Let Δ the class of the diagonal {2x1 + x2 + . . . + xk−1}. Notice that Δ is
divisible by 2. To see this, consider Ck∗ ⊂ Ck the open subset of k-tuples
with at most two equal entries, and denote by U its image in C(k). Let Ak

be the alternating subgroup of Sk. Then

Ck∗ /Ak → Ck∗ /Sk = U

is a double cover ramified exactly over Δ ∩ U . Since codim(C(k)\U) = 2,
this proves that Δ is divisible by 2.

The classes of x and Δ/2 provide a basis for the Néron-Severi group,
and we will denote by Dn,γ the divisors (n+ γ) · x− γ · Δ/2.

Coming back to C(2), recall the intersection numbers

x2 = 1, x · Δ = 2, Δ2 = 2 · degTC = 4 − 4g.

Then Dn,γ ·Dn′,γ′ = nn′ − gγγ′ and so

D2
n,γ = n2 − gγ2. (40)

One can consider in the x, Δ
2 -plane the positive cone of C(2), i.e. the cone

of divisors D ⊂ C(2) with positive self-intersection D2 > 0 (and such that
D.x ≥ 0). By (40) the positive cone is delimited by the rays R+ and
R−, given respectively by the equations n = γ

√
g and n = −γ√g. By

Riemann-Roch, any rational ray in the positive cone is contained in the
interior of the effective cone. Moreover, if D is an irreducible curve in
C(2) such that D2 ≤ 0, then NE(X) is spanned by the class of D and
NE(X) ∩ {D′ : D′.D ≥ 0} and D belongs to the boundary of NE(X) (see,
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for instance, [CKM], Lemma (4.5), p. 23). One side of the effective cone
of C(2) is then given by the diagonal, since its self-intersection is equal to
4 − 4g, which is non-positive for g ≥ 1. Hence, in order to complete the
description of the effective cone either one provides an irreducible curve D,
different from the diagonal, with negative or zero self-intersection, in which
case NE(X) is closed on both sides and bounded by the classes of Δ

2 and
D, or one proves that such a curve doesn’t exist and then the effective
cone has a closed boundary generated by Δ

2 , and is open on the other side.
Then, by the non-existence of a curve with non-positive self-intersection, its
open boundary coincides with the boundary R− of the positive cone, that
has slope equal to − 1√

g+1 . Dually, the description of the nef cone goes as

follows: either there exists an irreducible curve D ⊂ C(2), with D2 ≤ 0, and
such that its numerical equivalence class cD differs from that of the diagonal,
in which case

Nef (C(2)) = {α ∈ NS(C(2)) : α · Δ
2

≥ 0 and α · cD ≥ 0},

or such a curve does not exist and

Nef (C(2)) = {α ∈ NS(C(2)) : α · Δ
2

≥ 0 and α2 ≥ 0}.

If g(C) ≤ 4, it is easy to check (see [K]) that there are curves with non-
positive self-intersection, but this does not seem to be the case for higher
genera. Indeed, Kouvidakis proved in [K] that, if g(C) = m2 and m ≥ 3, the
diagonal is the unique irreducible curve with non-positive self-intersection,
i.e. the effective cone of C(2) has an open boundary given by R−. This
phenomenon has been interpreted by Ciliberto and Kouvidakis ([CK]) in
terms of certain linear systems of plane curves which are expected to be
empty. To see this, they let the curve C degenerate to a rational g-nodal
curve C0. The normalization P1 → C0 induces a birational morphism

ρ : P2 ∼= Sym2P1 → Sym2C0.

A careful analysis of the degeneration and of the map above together with
the study of the limits of line bundles under this degeneration enable them
to deduce the following: if there exists an irreducible curve Dn,γ ⊂ C(2),
different from the diagonal, with non-positive self-intersection, then the in-
verse image Γ0 := ρ−1(D0) of its limit D0 ⊂ Sym2C0 is a plane curve of
degree n, passing through g points in general positions with multiplicity γ.
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Recall now the

Nagata conjecture. Let g be an integer ≥ 10. There exists no plane
curve of degree n passing through g points in general position in P2 with
multiplicity γ at each point, with n ≤ γ · √g.

Since the Nagata conjecture has been proved for a quadratic number of
points (see [N]), they obtain that the effective cone of a curve of quadratic
genus at least 16, in contrast to the case of curves of low genus, is closed on
one side, and open on the other one. They also verify, using a supplementary
argument, that the same holds for the generic curve of genus 9.

Remark that, by the above, the complete description of the effective cone
of C(2), for a genus g(C) ≥ 10 which is not a perfect square, would then
furnish either a counterexample to Nagata’s conjecture or an example of a
cone that is bounded by a ray with irrational slope − 1√

g+1 .

0.3 Results of Part II

The geometry of symmetric products of an elliptic curve E has been studied
by Catanese and Ciliberto in [CC]. They prove in particular that the cone
of effective divisors in E(r), for any r ≥ 3, has rational slope and is open
on one side and closed on the other. The nef cone of the r-th symmetric
product is easy to describe for elliptic curves and curves of genus 2, since
they possess a g1

2 , as well as for the generic curve of genus 3 or 4, since it has
a g1

3 : in these cases we can in fact apply Lemma 1.2.1 (see §1.2 below). As
in the case of the second symmetric product, divisors in C(r) are much more
difficult to study for higher genera, and there are only some bounds, due to
Kouvidakis [K], for the slope of the effective cone of C(r) for any r ≥ 3 and
g(C) ≥ 2.

Let δ be the small diagonal in C(k) defined by {x1 = . . . = xk}, and
cδ its numerical equivalence class. It is not difficult to check that, on one
side, the nef cone of C(k) is given by the condition of having non-negative
intersection with the class cδ. Moreover, if k ≥ gon(C), one can define a
rational curve P1 ⊂ C(k), whose class cP1 ∈ N1(C(k)) differs from the class
cδ of the small diagonal. We first establish the following easy

Proposition. Let C be a curve with general moduli. For any k ≥ gon(C)
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the nef cone of C(k) is given by

Nef (C(k)) = {α ∈ NS(C(k)) : α · cδ ≥ 0 and α · cP1 ≥ 0}.

Hence, we turn our attention to the case k = gon(C) − 1. If the genus
g(C) = 2k, then, by the Brill-Noether theory, we have gon(C) = k + 1. If
L′ is a pencil on C giving the gonality of the curve, then one can consider
the curve

D := {E ∈ C(k) : ∃ x ∈ C s.t. x+ E ∈ |L′|},
whose class cD in the Néron-Severi group differs from cδ. Our main result
is the following

Theorem II. Let C be a curve with general moduli of genus 2k. The nef
cone of C(k) is given by

Nef (C(k)) = {α ∈ NS(C(k)) : α · cδ ≥ 0 and α · cD ≥ 0}.

Our approach to the problem is quite different from that adopted by
Ciliberto and Kouvidakis. First, we establish a criterion for certain line
bundles on C(k), namely the Göttsche line bundles GL associated to any
L ∈ Pic(C), to be nef. This criterion can be seen as a finer version of a
criterion due to Göttsche himself, and is based essentially on the obvious
fact that two line bundles L1, L2 ∈ Pic(C) having k-global sections and the
same degree have associated Göttsche line bundles on C(k) that are numer-
ically equivalent (see Lemma 1.3.3). Then, for k = gon(C) − 1, we want to
check this criterion for a certain numerical equivalence class of line bundles,
which have zero intersection with the curve D ⊂ C(k) defined above. In
order to do that, instead of using a degeneration argument, we specialize
to the case of a curve on a K3 surface, as it is natural to do when dealing
with linear systems on a curve. Indeed, such a curve, as shown by Lazars-
feld [L1], behaves generically from the viewpoint of Brill-Noether theory,
and, even more strikingly, verifies Green’s syzygy conjecture in its canonical
embedding, as recently proved by Voisin [V]. We then make use of many
techniques and results borrowed from these two remarkable references and
conclude the proof of our theorem.



On the nef cone of symmetric

products of a generic curve

1.1 Introduction

Let C be a smooth irreducible curve of genus g ≥ 1. For any k ≥ 2, denote
by C(k) its k-th symmetric product that parametrizes effective degree k

divisors E = x1 + x2 + . . . + xk on C. Let N1(C(k)) (resp. N1(C(k)))
be the set of R-linear combinations of 1-cycles (resp. divisors) on C(k)

modulo numerical equivalence. N1(C(k)) is called the Néron-Severi group of
C(k) and denoted NS(C(k)). N1(C(k)) and N1(C(k)) are finite dimensional
vector spaces, and the bilinear form given by the intersection pairing is non-
degenerate. If C has general moduli, N1(C(k)) and N1(C(k)) have rank two.
An interesting problem is to try to determine, inside N1(C(k)), the convex
cone of classes of effective 1-cycles, denoted by NE(C(k)) and called the cone
of curves. Dually, one can study, inside N1(C(k)), the nef cone Nef (C(k)),
i.e. the closure of the convex cone of classes of ample divisors. By Kleiman’s
criterion of ampleness ([Kl]), Nef(C(k)) = NE(C(k))∗.

If k is at least equal to the gonality gon(C) of C (recall that gon(C) :=
min{d : ∃ a covering C d:1−→ P1}), then NE(C(k)) is easily determined (see
§2 for the details). The first two interesting cases to look at are then provided
by the second symmetric product C(2), and by C(k), with k = gon(C) − 1.

The former has been studied by Kouvidakis and Ciliberto ([K],[CK]).
In [CK], they degenerate C(2) to the symmetric product of a rational g-
nodal curve, and reduce the problem of determining NE(C(2)) to the Nagata
conjecture, concerning the existence of plane curves of fixed degree passing
through given points in general position with prescribed multiplicities (see
[N] for the precise statement). In such a way, they succeed in describing
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NE(C(2)), when the genus of C is a perfect square ≥ 9. In this case, the
cone of curves turns out to have rational slope, and to be closed on one side,
and open on the other one.

In this work, we focus our attention on C(k), for k = gon(C)−1. If C is a
curve with general moduli and that has even genus g = 2k, by Brill-Noether
theory (see [ACGH]) its gonality is equal to k + 1, i.e. k = gon(C)− 1. Let
δ be the small diagonal in C(k) defined by {x1 = . . . = xk}. Let L′ → C be
a g1

k+1 on C, and consider the curve D ⊂ C(k) defined as follows:

D := {E ∈ C(k) : ∃ x ∈ C s.t. x+ E ∈ |L′|}.

The class cD ∈ N1(C(k)) of the curve D is independent from the g1
k+1 chosen,

can be explicitly computed and is not proportional to the class cδ ∈ N1(C(k))
of the small diagonal. These two classes will enable us to give a description
of the nef cone of C(k). More precisely, we will prove the following

Theorem 1.1.1. Let C be a curve with general moduli, of genus g = 2k.
Then the nef cone of C(k)

Nef(C(k)) := {α ∈ N1(C(k)) : α is numerically effective}

has rational slope and is determined by the conditions

(i) α · cδ ≥ 0, (ii) α · cD ≥ 0.

The first step in the proof of the theorem will be to refine a criterion, due
to Göttsche ([BS]), for certain line bundles on the punctual Hilbert scheme
(in our case C(k)) to be nef (see Lemma 1.3.3). The second key ingredient will
be to specialize C to a curve on a K3 surface S. By [L], if C ⊂ S generates
Pic(S), then C is generic in the sense of Brill-Noether theory. In the spirit
of Voisin [V], we will then make use of the rich geometrical constructions
introduced by Lazarsfeld [L] to check the criterion in this case.

The paper is organized as follows: we start recalling in §2 the basic defini-
tions and proving some preliminary results; in section 3 we recall Göttsche’s
criterion for nefness, and give a refinement of it. Then, we put the stress
on two sufficient conditions (A) and (B) for the class of a set of numer-
ically equivalent divisors on C(k) to be on the boundary of the nef cone.
We exhibit in §4 a set of “natural candidates” to satisfy (A) and (B), when
k = gon(C)−1, and check they verify condition (B). In section 5, after hav-
ing recalled Lazarsfeld’s construction, we see, following [V], how condition
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(A) can be expressed, for curves on a K3 surface, in terms of the cohomology
of a certain sheaf on a Grassmannian. Finally, we prove the last technical
lemma and conclude our proof.

Throughout this paper we work on the field of complex numbers C.

Acknowledgements. I would like to thank my Ph.D. advisor, Prof. Claire Voisin, who

brought the problem to my attention, and helped me throughout the preparation

of this work.

1.2 Preliminaries

Let π be the projection from the cartesian product Ck to C(k), pi the pro-
jection of Ck to the i-th factor, and J(C) the Jacobian of C. Recall that,
fixing a point p ∈ C, there are two maps defined as follows:

νk : C(k) −→ J(C), E �−→ alb(E − kp),

and

ik−1 : C(k−1) −→ C(k), E �−→ E + p.

On C(k), associated to these maps, there are three natural divisors:

- the diagonal Δ, that can be thought of as the branch locus of the finite
k! : 1 map π, and can be shown to be divisible by 2;

- the divisor Θk := ν∗kΘ, where Θ ⊂ J(X) is the ample theta divisor;

- the image ik−1(C(k−1)).

If C has general moduli, its Néron-Severi group is of rank two, and any two
of the above divisors provide a basis for NS(C(k)).

For any line bundle L on C, consider the line bundle

L�k := p∗1L⊗ . . .⊗ p∗kL

on the k-th cartesian product of C. By abuse of notation, when no confusion
is possible, we will still denote by L�k the unique line bundle on C(k) such
that its pull-back via π : Ck → C(k) is equal to p∗1L ⊗ . . . ⊗ p∗kL. Then
ik−1(C(k)) is equal to OC(p)�k.
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One side of the nef cone can be described as follows. Consider the map
from the cartesian product of C to the cartesian product of order

(
k
2

)
of its

Jacobian:

ϕ : Ck −→ J(C)(
k
2)

(x1, . . . , xk) �→ (xi − xj)i<j .

This map contracts exactly the small diagonal δ := {x1 = . . . = xk}. Let π
be the projection Ck → C(k), and

pi : J(C)(
k
2) → J(C)

the projection on the i-th factor. Then the unique divisor E on C(k) such
that

π∗E = ϕ∗(⊗ip
∗
iΘ) (1.41)

is nef, and E.δ = 0, since ϕ contracts δ. Hence the class of E belongs to
the boundary of the nef cone of Ck. In other words, the existence of the
contraction ϕ implies that one slope of the nef cone of C(k) is determined
by the inequality

α · cδ ≥ 0. (1.42)

A standard way to produce curves in symmetric products of a curve is
to consider, for a given g1

h on C, h ≥ k, the curve

Γk(g1
h) := {Z ∈ C(k) : E − Z ≥ 0 for some E ∈ g1

h}. (1.43)

Using these curves we check

Lemma 1.2.1. If a curve C possesses a g1
h then Θk is a nef but not ample

divisor on C(k), for any k ≥ h.

Proof. Fix a point p ∈ C. Consider the rational curve

Γh(g1
h) + (k − h) · p ⊂ C(k).

This P1 is contracted by the morphism νk : C(k) → J(C), since there are
no holomorphic non constant maps from P1 to J(C). Hence Θk ⊂ C(k) is
numerically effective but not ample.

The rational curve Γh(g1
h) + (k − h) · p ⊂ C(k) does not depend on the

choice of the g1
h and its class cP1 ∈ N1(C(k)) is not proportional to the class

of the small diagonal. Hence, putting together (1.42) and Lemma 1.2.1 with
h = gon(C), we immediately obtain the following
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Proposition 1.2.2. Let C be a curve with general moduli. For any k ≥
gon(C) the nef cone of C(k) is determined by the conditions

(i) α · cδ ≥ 0, (ii) α · cP1 ≥ 0,

and its boundary rays are generated by the class of Θk, and the class of the
divisor E defined by (1.41).

From the above, the first two interesting cases to look at are then
provided by the second symmetric product C(2), and by C(k), with k =
gon(C) − 1.

In this work we focus our attention on the case of C(k), for k = gon(C)−1.
If C has general moduli and g(C) = 2k then, by the classical Brill-Noether
theory, the gonality of C is equal to k + 1, and there are a finite number of
g1
k+1’s, say L′

1, . . . , L
′
s, where s is the Castelnuovo number

s =
g!

(g − k)!(g − k + 1)!
,

(see [ACGH] for the computation of s). We will consider the curves Di in
C(k) associated to the L′

i:

Di := Γk(L′
i) = {Z ∈ C(k) : L′

i − Z ≥ 0}, (1.44)

and the numerically equivalent line bundles on C(k)

L�k
i − Δ

2
, (1.45)

where Li are the line bundles on C defined as Li := KC − L′
i. Our goal is

to prove that

L�k
i − Δ

2
is nef (1.46)

and that, moreover,

c1(L�k
i − Δ

2
).Dj = 0 (1.47)

for any i 
= j. This will automatically provide the description given in
Theorem 1.1.1 of the nef cone of C(k), and dually, of the effective cone of
curves in C(k).
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1.3 The nef cone of C(k): a first reduction

In the beginning of this section, following Göttsche (see his appendix to
[BS]), we associate to any L ∈ Pic(C) a line bundle Gk,L on C(k).

Let X be a complete algebraic variety defined over an algebraically
closed field. Let Z ⊂ X be a zero dimensional subscheme of length k :=
dim H0(OZ), defined by an ideal sheaf IZ ↪→ OX .

Let L be an invertible sheaf over X and, for any zero dimensional sub-
scheme Z ⊂ X, consider the restriction map

rZ : H0(X,L) → H0(L⊗OZ).

Definition 1.3.1. L is said to be k-very ample if the restriction map rZ is
surjective, for any zero dimensional subscheme Z ⊂ X of length less than
or equal to k + 1.

The classical notions of global generation and very ampleness correspond
in this way to, respectively, 0-very ampleness and 1-very ampleness.

For any (k − 1)-very ample line bundle L one can then define a mor-
phism from X [k], the Hilbert scheme of 0-dimensional subschemes of length
k of X, to the Grassmannian G(k,H0(X,L)) of codimension k subspaces of
H0(X,L):

ϕk,L : X [k] → G(k,H0(X,L)). (1.48)

This morphism associates to Z ∈ X [k] the kernel H0(X,L ⊗ IZ) of the
surjective map

H0(X,L) rZ−→H0(X,L ⊗OZ) → 0.

In order to simplify the notation, we will now focus our attention on the
case when X = C is a curve: this is the one we need in the rest of the paper.
Recall that the Hilbert scheme of points of length k on a curve C is given
by the symmetric product C(k).

Consider the incidence variety in C × C(k)

Σk
q ��

p

��

C

C(k)

(1.49)

and p and q its natural projections. Let L be a line bundle on C. Consider
the rank k vector bundle Ek,L over C(k) defined as

Ek,L := p∗q∗L. (1.50)
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We give the following

Definition 1.3.2. The line bundle

Gk,L := det Ek,L → C(k), (1.51)

will be called the Göttsche line bundle on C(k) associated to L.

Let OG(1) be the line bundle on the Grassmannian G := G(k,H0(X,L))
giving its Plücker polarization. Let S be the universal subbundle over G, so
that det S∗ = OG(1). By definition, whenever L is (k − 1)-very ample, we
have

Ek,L = ϕ∗
k,LS∗, (1.52)

and then the Göttsche line bundle associated to L is given by

Gk,L = ϕ∗
k,LOG(1). (1.53)

Göttsche, in his appendix to [BS], proved the following

Theorem (Göttsche). For any L ∈ Pic(C) we have

L�k ⊗OC(k)(−Δ
2

) = Gk,L.

This theorem together with (1.53) gives immediately a sufficient condi-
tion for L�k ⊗OC(k)(−Δ

2 ) to be nef:

(Göttsche’s criterion for nefness): For any L ∈ Pic(C), the line bundle
L�k ⊗OC(k)(−Δ

2 ) over C(k) is nef whenever L is (k − 1)-very ample.

Let L be a line bundle over C, and suppose h0(C,L) = k. The hypothesis
h0(C,L) = k implies that Ek,L is generically globally generated. Hence the
Göttsche line bundle Gk,L → C(k) is effective, since k global sections of
L generating H0(C,L) will be independent at the generic set of k points
x1, . . . , xk of C and then their wedge product gives a non zero global section
of Gk,L.

The k-th exterior power of the evaluation map H0(C,L) ⊗ OC → L

induces a morphism (which is actually an isomorphism)

k∧
H0(C,L) → H0(C(k),Gk,L), (1.54)
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and we will denote by σL a non zero global section of Gk,L generating the
image of this morphism. Notice that, by construction

V (σL) = {Z ∈ C(k) : H0(L) rZ−→H0(L|Z) is not surjective}, (1.55)

i.e.

the zeroes of σL are given by the k-tuples of points of C which
fail to be separated by the sections of L.

Now, we have the following

Lemma 1.3.3. Let L1, . . . , Ls be a finite number of line bundles of fixed
degree d on C, with h0(C,Li) = k. If they verify the property

(A)
⋂
i V (σLi) = ∅,

then the class in NS(C(k)) of the numerically equivalent line bundles Gk,Li

is nef.

Proof. For any curve X ⊂ Ck, by (A) we can find an index i such that
σLi |X 
= 0. Then (det ELi)|X is effective, i.e.

c1(Gk,Li
).X ≥ 0,

and the lemma is proved.

Remark 1.3.4. From (1.55) it follows immediately that condition (A) is
satisfied if and only if for any (possibly coinciding) k points x1, . . . , xk ∈ C,
there is one of the Li’s separating them.

Notice that if, moreover, there existed an irreducible curve D ⊂ C(k)

such that

(B) c1(Gk,Li
).D = 0,

the class of Gk,Li
in NS(C(k)) would belong to the boundary of the nef cone.

We summarize the above in the following

Proposition 1.3.5. Let L1, . . . , Ls be a finite number of line bundles of
fixed degree d on C, with h0(C,Li) = k, and D ⊂ C(k) an irreducible curve
whose class cD ∈ N1(C(k)) is not proportional to the class cδ of the small
diagonal. If the following properties are verified

(A)
⋂
i V (σLi) = ∅,
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(B) c1(Gk,Li
).cD = 0,

then

Nef (C(k)) = {α ∈ NS(C(k)) : α · cδ ≥ 0 and α · cD ≥ 0},
and the boundary rays of the nef cone are generated by the class of Gk,Li

and
the class of the divisor E defined by (1.41).

1.4 The case of C(k), for k = gon(C) − 1

From now on C will be a generic curve of genus g(C) = 2k. According to
the notation introduced in §2, we denote by L′

i the g1
k+1’s on C, and by Li

the line bundles

Li := KC − L′
i. (1.56)

By Riemann-Roch, we have h0(C,Li) = k. Thus, as we saw in the
previous section, we have an effective line bundle on C(k), given by Gk,Li

=
L�k
i − Δ

2 . Notice that the line bundles Gk,Li
are numerically equivalent since

the Li’s all have the same degree.
For any L′

i, consider the irreducible curve

Di := Γk(L′
i) ⊂ C(k)

defined by (1.44), which is actually a copy of C in its symmetric product
C(k). The curves Di all give the same class in N1(C(k)), which we call cD.
A computation shows that cD is not proportional to cδ.

Our purpose is to prove the following

Theorem 1.4.1. Let C be a curve with general moduli, of genus g = 2k.
Then the line bundles L1, . . . , Ls defined in (1.56), and the class cD ∈
N1(C(k)) of the curves Di ⊂ C(k) verify the properties:

(A)
⋂
i V (σLi) = ∅;

(B) c1(Gk,Li
).cD = 0.

By Proposition 1.3.5, the previous theorem immediately implies Theo-
rem 1.1.1. The proof of (A) will occupy the rest of the paper, while in the
remainder of this section we will verify (B).

Proposition B. The section σLi ∈ H0(C(k),Gk,Li
) is everywhere non zero

along the curve Di. In particular this implies
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(B) c1(Gk,Li
).cD = 0.

Proof. Recall first that, by the base point free pencil trick, the space of
sections H0(KC − 2L′

i) identifies to the kernel of the multiplication map

μ0 : H0(L′
i) ⊗H0(KC − L′

i) → H0(KC). (1.57)

By Gieseker [G] (or Lazarsfeld [L1]) we know that μ0 is injective for generic
C and hence we have

H0(KC − 2L′
i) = 0. (1.58)

Now, we check

Lemma 1.4.2. For any x ∈ C such that L′
i − x ≥ 0,

H0(Li − (L′
i − x)) = H0(KC − 2L′

i + x) = H0(KC − 2L′
i).

Proof. By Riemann-Roch, the equality

H0(KC − 2L′
i + x) = H0(KC − 2L′

i).

is equivalent to
h0(2L′

i − x) = h0(2L′
i) − 1. (1.59)

But |L′
i| is base point free, hence |2L′

i| is base point free and (1.59) immedi-
ately follows.

We conclude the proof of the Proposition B. By Lemma 1.4.2, and re-
calling that

Z ∈ Di ⇔ ∃x : Z ∼ L′
i − x,

we see that, for any Z ∈ Di,

H0(C,Li − Z) = 0.

By (1.55), this implies that σLi ∈ H0(C(k),Gk,Li
) is everywhere non zero

along Di. �

1.5 Proof of condition (A)

In this section we will state a result (see Proposition 1.5.1 below) and prove
that it implies condition (A) holds for the line bundles Li = KC −L′

i. Then
we turn to the case of a curve on a K3 surface, recall some constructions
due to Lazarsfeld [L1] and Voisin [V], and some results from [V] that will
enable us to prove Proposition 1.5.1 for such a curve.
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1.5.1 A second reduction

Let L′
i be a g1

k+1 on C. The choice of a section τ ∈ H0(C,L′
i) furnishes an

inclusion

H0(KC − L′
i) = H0(Li)

×τ
↪→H0(KC), (1.60)

which induces a C-linear inclusion

H0(C(k),Gk,Li
) =

k∧
H0(C,Li)↪→H0(C(k),Gk,KC

) =
k∧
H0(C,KC). (1.61)

Fix a base s1, ..., sk ofH0(C,Li), so that s1∧...∧sk = σLi ∈ H0(C(k),Gk,Li
).

For any i, consider more generally the map

φk,i : SkH0(C,L′
i)→H0(C(k),Gk,KC

), (1.62)

which sends τk to the image of s1 ∧ ...∧ sk via the inclusion (1.61). We will
denote this image by τk · σLi . Dually, the map

φ∗k,i :
k∧
H0(OC(C))∗ ∼=

k∧
H0(OC(C)) → SkH0(C,L′

i)
∗

sends w ∈ ∧kH0(OC(C))∗ to the polynomial Qw ∈ SkH0(C,L′
i)
∗ defined as

follows

Qw(t) :=< tk · σLi , w > .

We want to prove

Proposition 1.5.1. The elements τk · σLi, ∀i, τ ∈ H0(C,L′
i) generate the

whole space of sections H0(C(k),Gk,KC
) = ∧kH0(C,KC ), i.e. the map

φk :
⊕
i

SkH0(C,L′
i)−→

k∧
H0(C,KC ), (1.63)

described above is surjective.

Assuming Proposition 1.5.1 for the moment, we see how it implies

Proposition A. Let C be a curve with general moduli, of genus g =
2k. Consider the line bundles Li = KC − L′

i. Then the sections σLi ∈
H0(C(k),Gk,Li

) verify the property:

(A)
⋂
i V (σLi) = ∅.
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Proof. The space of global sections H0(C(k),Gk,KC
) has no base points.

Indeed, for any Z ∈ C(k), we have a surjection

H0(KC) � H0(KC |Z).

Otherwise, by Riemann-Roch, h0(OC(Z)) = h1(OC(KC(−Z))) ≥ 2, contra-
dicting the fact that gon(C) = k + 1. This, in turn, implies the surjectivity
of the evaluation map

H0(C(k),Gk,KC
) =

k∧
H0(C,KC) �

k∧
H0(KC |Z) = (Gk,KC

)|Z . (1.64)

If Z ∈ C(k) belongs to
⋂
i V (σLi), with σLi ∈ H0(C(k),Gk,Li

), then, a for-
tiori, Z ∈ ⋂

τ∈H0(L′
i), i∈I V (τk · σLi). But this is absurd, since by Proposi-

tion 1.5.1 the elements τk ·σLi generate the base point-free space of sections
H0(C(k),Gk,KC

). �

1.5.2 Curves on a K3 surface

Let C be a curve of genus g(C) = 2k contained in a K3 surface S, such that
C generates the Picard group of S. By Lazarsfeld [L1], the curve C ⊂ S is
Brill-Noether-Petri generic, and hence in particular its gonality is equal to
k + 1, and the number of g1

k+1’s on C is finite. Let L′ be a g1
k+1 on C. In

what follows we will recall a classical construction due to Lazarsfeld, which
associates to the data (C,L′) a vector bundle E on S. This, along the lines
of Voisin [V], will allow us to put a structure of complete intersection on the
set of g1

k+1’s over C, seen as points of a certain Grassmannian.
The line bundle L′ is obviously base point free. Then we can consider

the sheaf F defined by the exact sequence

0 → F → H0(L′) ⊗OS
ev−→L′ → 0, (1.65)

where, by abuse of notation, we still denote by L′ the sheaf on S obtained
by extending L′ to zero away from C. F is a vector bundle of rank 2 and
we define E := F ∗. The rank 2 vector bundle E on S sits inside the short
exact sequence

0 → H0(L′)∗ ⊗OS → E → KC − L′ → 0, (1.66)

obtained by dualizing (1.65). We record now a series of facts about the
bundle E:
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(i) c1(E) = C, c2(E) = deg L′ = k + 1, h0(E) = k + 2;
(ii) E is stable;
(iii) E is independent from the choice of C in its linear system, and from

the g1
k+1 considered on C.

The numerical conditions in (i) follow easily from (1.66). The stability
of E, as remarked in [M], follows from the fact that detE = L generates the
Picard group of S and from the vanishing H0(S,E(−L)) = H0(S,F ) = 0
(this second fact follows from (1.65)). Finally, (iii) is a consequence of
(i) and (ii). Indeed, if there were another stable rank two bundle F on
S satisfying (i), then, as computed in [L1], χ(E,F ) = 2, and hence, by
Riemann-Roch, either Hom(E,F ) 
= 0 or Hom(F,E) 
= 0. But such a non
trivial homomorphism would furnish a destabilizing subbundle of either E
or F , or would be an isomorphism.

The exact sequence (1.66) realizes H0(C,L′)∗ ∼= H0(C,L′) as a rank 2
subspace of H0(S,E). Let s1 and s2 be two generators of H0(C,L′). Then,
by (1.66) restricted to C, we have that C is the zero locus of s1 ∧ s2 ∈
H0(S, detE), and the image of the morphism

H0(C,L′) ⊗OC → E|C

identifies to L′.
Consider now the Grassmannian G2 := Grass(2,H0(S,E)) of dimension

two subspaces of H0(S,E), which has dimension equal to 2k, and let OG2(1)
be the line bundle on G2 giving its Plücker embedding. Notice that the
determinant

det : H0(OG2(1))
∗ =

2∧
H0(S,E) → H0(S, det E)

is not zero on any rank two element W of H0(OG2(1))
∗. Indeed, if this

were the case, then the subspace W ⊂ H0(S,E) would generate a rank one
subsheaf of E with at least two sections.

By the above we can then define a map

d : G2 → PH0(S,OS(C)) = PH0(S, det(E)),

sending a point w ∈ G2, that corresponds to a subspace W ⊂ H0(S,E),
to the element in |C| defined by the zeroes of

∧2W . The target space has
dimension 2k (since g(C) = 2k) and the map d is finite. Its fibre over C,
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which we will denote ZC , is in 1-1 correspondence with the set of the g1
k+1’s

over C. Finally, by construction, we have the commutativity of the following
diagram

G2

d

���������������
� � � � PN = PH0(OG2(1))

π

���
�
�

PH0(OS(C))

(1.67)

Hence the set of the g1
k+1’s over C, seen as a finite subset of G2, is

endowed, by this projection, with a scheme-theoretic structure of complete
intersection of elements of |OG2(1)|.

1.5.3 Proof of Proposition 1.5.1

Let C be a curve of genus 2k on a K3 surface S, generating the Picard group
of S, and L′

1, . . . L
′
s the g1

k+1’s on C, parametrized by the finite complete
intersection ZC ⊂ G2. Consider the bundle E → S. By the exact sequence
(1.66) defining E, there is a natural map from H0(C,L′

i)
∗ ∼= H0(C,L′

i) to
H0(S,E). Denote by ψl the induced map

ψl :
⊕
L′

i∈ZC

SlH0(C,L′
i) → SlH0(S,E). (1.68)

The maps ψl have been considered by Voisin in [V], where she proves

Proposition [V]. The maps ψl are surjective for any l ≤ k − 1.

We will prove in the next section the following

Proposition 1.5.2. The image of

ψk :
⊕
L′

i∈ZC

SkH0(C,L′
i) → SkH0(S,E),

has dimension ≥ dim ∧k H0(C,KC ).

Now, recall that h0(S,E) = k+2, and detE = OS(C). Let γ be a global
section of E and e1, . . . , ek+1 ∈ H0(E) such that γ, e1, . . . , ek+1 form a basis
of H0(E). For any i = 1, . . . , k+1, the element γ∧ei gives a global section of
OS(C), and then (γ∧e1)∧ . . .∧(γ∧ek+1) divided by γ∧e1∧e2∧ . . .∧ek+1 ∈
∧k+2H0(S,E) ∼= C gives a well defined element in ∧k+1H0(OS(C)). By



1.5. Proof of condition (A) 69

abuse of notation we will call this element det(γ ∧H0(E)). Notice that, for
any 0 
= λ ∈ C, we have

det(λ ·γ∧H0(E)) =
λk+1

λ
· (γ ∧ e1) ∧ . . . ∧ (γ ∧ ek+1)
γ ∧ e1 ∧ e2 ∧ . . . ∧ ek+1

= λk ·det(γ∧H0(E)).

Recall that h0(S,OS(C)) = 2k + 1, and hence we have the isomorphism:

k+1∧
H0(OS(C))∗ ∼=

k∧
H0(OS(C)).

We define a morphism

νk : SkH0(E) →
k+1∧

H0(OS(C)), (1.69)

by describing its dual

ν∗k :
k+1∧

H0(OS(C))∗ → SkH0(E)∗.

The map ν∗k sends u ∈ ∧k+1H0(OS(C))∗ to the polynomial Pu ∈ SkH0(E)∗

defined as follows:

Pu(γ) :=< det(γ ∧H0(E)), u > .

We have

Theorem (Voisin, [V] 3.9). The map νk is an isomorphism.

This result, together with Proposition 1.5.2 yields the

Proof of Proposition 1.5.1. Consider the short exact sequence definingC ⊂ S

0 → OS(−C) ·σC−→OS → OC → 0,

where σC is the section defining C. By tensoring it with OS(C), recalling
that KS = OS and h1(OS) = 0, and using the adjunction formula, we obtain

0 → H0(OS) ·σC−→H0(OS(C)) → H0(KC) → 0.

We then have an injective morphism

ι :
k∧
H0(KC)

∧σC
↪→

k+1∧
H0(OS(C)). (1.70)
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The maps defined in (1.63), (1.68), (1.69) and (1.70) sit inside the following
diagram:

SkH0(S,E)
νk∼ �� ∧k+1H0(S,OS(C))

⊕
L′

i∈ZC
SkH0(C,L′

i)
φk ��

ψk

��

∧kH0(C,KC ).
��

ι

��
(1.71)

We check the following

Lemma 1.5.3. Im(νk · ψk) = Im(ι · φk).

Proof of Lemma 1.5.3. It is of course sufficient to verify that

Im(νk · ψk,i) = Im(ι · φk,i)

holds for any i. By duality, we have to prove that, for any w ∈ ∧kH0(OC(C))∗

and for any t ∈ H0(C,L′
i), up to a scalar we have

φ∗k,i(w)(t) := Qw(t) = Pu(t) =: ν∗k(u)(t),

with u = w ∧ σ∗C ∈ ∧k+1H0(OS(C))∗.
Let τ ∈ H0(C,L′

i) and s1, . . . , sk ∈ H0(C,Li) be such that < t, τ >=
H0(C,L′

i) and < s1, . . . , sk >= H0(C,Li). Then t ∧ τ ∈ H0(S, detE) is
such that V (t ∧ τ) = C ⊂ S and t, τ, s1, . . . , sk regarded as elements of
H0(S,E) = H0(C,L′

i) ⊕ H0(C,Li) give a basis for this space of sections.
Moreover we have

< t · s1, . . . , t · sk, τ · s1, . . . , τ · sk >= H0(C,OC(C)),

and

< t ∧ s1, . . . , t ∧ sk, τ ∧ s1, . . . , τ ∧ sk > ⊕ < t ∧ τ >= H0(C,OS(C)).

Then

ν∗k(u)(t) = Pw∧(t∧τ)∗(t) = α < (t∧ s1)∧ . . .∧ (t∧ sk)∧ (t∧ τ), w ∧ (t∧ τ)∗ >,

with α−1 = s1 ∧ . . . ∧ sk ∈ ∧kH0(C,Li) ∼= C. But

< (t∧ s1)∧ . . .∧ (t∧ sk)∧ (t∧ τ), w∧ (t∧ τ)∗ >=< (t · s1)∧ . . .∧ (t · sk), w >,

and the term on the right is exactly φ∗k,i(w)(t) = Qw(t). �
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By the previous lemma, Proposition 1.5.2 immediately implies Proposi-
tion 1.5.1. �

What is left to be done in order to complete the proof of Theorem 1.4.1
is to prove Proposition 1.5.2, which we will do in the next subsection.

1.5.4 Proof of Proposition 1.5.2

Let ZC ⊂ G2 be the finite complete intersection of hyperplane sections
parametrizing the g1

k+1’s over C. Let E → G2 = Grass(2,H0(E)) be the
dual of the universal subbundle. In order to prove Proposition 1.5.2 we study
the cohomology group H0(G2,IZC

⊗ SymkE) via the Koszul resolution of
the ideal sheaf of the complete intersection ZC ⊂ G2.

Let K := H0(C,OC (C))∗ = H0(KC)∗. Recall the injection

H0(C,OC(C))∗ ⊂ H0(S,OS(C))∗
d∗
↪→

2∧
H0(S,E)∗ = H0(G2,OG2(1)).

The Koszul resolution of IZC
is then given by

0 →
2k∧
K ⊗OG2(−2k) → . . .→ K ⊗OG2(−1) → IZC

→ 0. (1.72)

By tensoring it with SkE we get the exact complex

K• : 0 →
2k∧
K ⊗OG2(−2k) ⊗ SkE → . . . → IZC

⊗ SkE → 0, (1.73)

where the term SkE is put in degree zero. We have

Lemma 1.5.4. Let C be a curve of genus 2k on a K3 surface S, with
< OS(C) >= Pic(S). Let {L′

i}i be the finite set of g1
k+1’s on C, which

are parametrized by the finite complete intersection ZC ⊂ G2. Then the
following inequality holds:

h0(G2,IZC
⊗ SkE) ≤

(
2k
k + 1

)
.

Proof. The proof goes as in [V], Lemma 2. The hypercohomology H
0(G2,K•)

vanishes. Now we have the spectral sequence

Ep,q1 = Hq(G2,Kp) ⇒ H
p+q(G2,K•).
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Using the following facts
- all the differentials dr starting from E0,0

r vanish;
- Hq(G2,OG2(−q − 1) ⊗ SkE) = 0 for all q 
= k (see [V], Proposition 9);
- Hk(G2,OG2(−k − 1) ⊗ SkE) ∼= C (see again [V], Proposition 9);

one constructs a surjective map from a subquotient of E−k−1,k
1 = ∧k+1K to

H0(G2,IZC
⊗ SkE), and this proves the lemma.

We can finally give the

Proof of Proposition 1.5.2. Recall that, by (1.66), H0(C,L′
i) identifies to a

rank two subspace of H0(S,E). Consider E → G2 = Grass(2,H0(E)). The
fiber of E at a point W ∈ G2 is equal to W ∗, and the space of its global
sections H0(G2, E) is given by H0(S,E)∗. Thus, for reduced ZC (which is
always the case for C generic), the dual of the map

ψk :
⊕
L′

i∈ZC

SkH0(C,L′
i) → SkH0(S,E),

identifies to the evaluation map

SkH0(G2, E) = H0(G2, S
kE)

evZC−→ SkE|ZC
,

whose kernel is exactly H0(IZC
⊗ SkE). Notice that

dim SkH0(S,E) − dim
k∧
H0(C,KC ) =

(
2k + 1
k

)
−

(
2k
k

)
. (1.74)

Then from Lemma 1.5.4 and (1.74) it immediately follows that the dimension
of the image of ψk is greater than or equal to the dimension of

∧kH0(C,KC ).
�
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Göttsche, Sympos. Math., XXXII, Problems in the theory of sur-
faces and their classification (Cortona, 1988), 33-48, Academic
Press, London, 1991.

[BT] A. Bertram, M. Thaddeus, On the quantum cohomology of a sym-
metric product of an algebraic curve, Duke Math. J. 108 (2001),
no. 2, 329–362.

[CC] F. Catanese, C. Ciliberto, Symmetric products of elliptic curves and
surfaces of general type with pg = q = 1, J. of Algebraic Geom. 2
(1993), 389–411.
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