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DOCTEUR de L’UNIVERSITÉ PARIS 7
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1 Introduction (en français)

Après l’introduction de K0 par Grothendieck [BS], la K-théorie algébrique
s’est développée d’abord pour la catégorie des modules projectifs de type fini
sur un anneau A. (Tous nos anneaux sont associatifs et unitaires, et tous
nos modules sont des modules à droite.) Ceci est une catégorie additive.
Une catégorie additive peut être considérée ou comme catégorie monöıdale
symétrique (parfois on appelle une telle catégorie une ACU-catégorie ten-
sorielle) ou comme catégorie exacte (où la structure exacte est donnée par
les suites exactes courtes scindées). Quillen [Q1, Q2] a défini la K-théorie
pour ces deux classes de catégories via les constructions S−1S et Q. Il a
démontré que les deux définitions cöıncident pour les catégories additives et
qu’elles généralisent la construction Plus [Lo1]. La construction Q permet
de démontrer des théorèmes importants, par exemple les théorèmes de local-
ization et de résolution.

Supposons maintenant que nos modules projectifs sur l’anneau A sont
munis d’une forme bilinéaire symétrique (ou de manière plus générale d’une
forme ε-hermitienne). Notre objectif est de décrire la K-théorie de cette
catégorie que nous baptiserons la “K-théorie hermitienne”. La K-théorie
hermitienne devrait également exister dans des situations plus générales, par
exemple pour la catégorie des fibrés vectoriels sur un schéma munis d’une
forme bilinéaire symétrique.
En comparant la K-théorie classique avec la K-théorie hermitienne, on con-
state des différences assez importantes: Ainsi, les théorèmes cités ci-dessus
n’ont pas d’analogue en K-théorie hermitienne. Pour une catégorie exacte, la
K-théorie hermitienne n’est même pas definie. Il y a une définition seulement
pour les catégories additives ainsi que quelques résultats dans le cas parti-
culier des modules projectifs munis d’une forme hermitienne. Dans cette
thèse, nous allons définir la K-théorie hermitienne pour une catégorie exacte
C comme étant les groupes d’homotopie de l’espace classifiant d’une certaine
catégorie L(Ch) (Définition 5.10). Nous allons également définir la U -théorie
de Ch comme étant les groupes d’homotopie de l’espace des lacets de l’espace
classifiant d’une catégorieW(Ch). Ensuite nous pouvons établir une fibration
homotopique induite par le foncteur hyperbolique H

ΩBQ(C) H∗→ BL(Ch)→ BW(Ch)

qui généralise le cas additif (Théorème 5.7). Comme application principale,
nous démontrons un Théorème de Localisation pour la K-théorie hermiti-
enne d’un anneau de Dedekind A, par rapport à un systeme multiplicatif S
(Théorème 8.7). Plus précisement, nous démontrons l’existence d’une fibra-
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tion homotopique

BL(P (A)h)→ BL(P (S−1A)h)→ BW((TS)h),
où TS est la catégorie des A-modules de S-torsion. Par conséquent, nous
avons une suite exacte longue

...→ Un((TS)h)→ Kn(P (A)h)→ Kn(P (S−1A)h)→ ...

En plus, nous démontrons un Théorème de Dévissage (Théorème 9.5) qui
nous permet de remplacer Un((TS)h) par ⊕Un(P (A/℘)h) où on prend la
somme sur tous les ideaux maximaux.
Pour A l’anneau des entiers dans un corps de nombres F , nous pouvons cal-
culer la U -théorie de ses corps residuels (Corollaire 9.9) en utilisant les calculs
de Quillen et Friedlander, et nous en déduisons (Théorème 9.11) par exemple

1K
h
n(A)

∼=→ 1K
h
n(F ) ∀n ≡ 3, 4mod 8;

−1K
h
n(A)

∼=→ −1K
h
n(F ) ∀n ≡ 0, 7mod 8.

Ce texte est structuré de la manière suivante:
Dans la section 3, nous rappelons quelques faits sur la K-théorie hermitienne
des modules, tout en prenant un point de vue qui nous permet aisément de
généraliser aux catégories avec dualité. En suivant [CL2],[Sch3], nous intro-
duisons une catégorie W( εP (A)h) qui donne un délaçage de la fibre homo-
topique du foncteur hyperbolique de la K-théorie classique vers la K-théorie
hermitienne (Théorème 3.15) du moins si 2 est une unité dans notre anneau.
La section 4 traite de la K-théorie hermitienne des catégories additives avec
dualité. La philosophie est que la plupart des choses qui sont vraies pour la
K-théorie hermitienne des anneaux est encore vraie pour la K-théorie hermi-
tienne des catégories additives.
La K-théorie hermitienne d’une catégorie exacte avec dualité et ses propriétés
fondamentales mentionnées ci-dessus sont décrites dans la section 5.
Dans la section 6, nous établissons un Théorème de Localisation pour la K-
théorie hermitienne des catégories additives (Corollaire 6.7) qui nous permet
de définir leur K-théorie hermitienne négative.
Dans la section 7, nous construisons une catégorie additive simpliciale avec
dualité qui donne un modèle à la Waldhausen |iRh

∗C| pour la U -théorie d’une
catégorie exacte C avec dualité.
La section 8 contient le Théorème de Localisation pour la K-théorie her-
mitienne des anneaux de Dedekind (et de manière plus générale pour les
anneaux héréditaires, en particulier pour un anneau de groupe AG avec G
un groupe fini et A un anneau de Dedekind dans lequel l’ordre du groupe
est une unité). Plusieurs stratégies et difficultés pour le démontrer sont es-
quissées. La démonstration sera donnée dans la section 11.
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Dans la section 9, nous démontrons un Théorème de Dévissage qui nous per-
met de simplifier la fibration homotopique ci-dessus en remplaçantW((TS)h)
par⊕W(P (A/℘)h) (Théorème 9.5). Comme nous pouvons calculer les groupes
d’homotopie de cette catégorie si A/℘ est fini (prenons les entiers dans un
corps de nombres, par exemple), notre résultat de localisation plutôt abstrait
devient très concret et nous permet de voir dans quels degrés l’inclusion
A→ Quot(A) induit un isomorphisme en K-théorie hermitienne (Théorème
9.11).
Dans la section 10 nous évoquons d’autres problèmes, en particulier ceux qui
apparaissent si nous remplaçons notre catégorie exacte C par la catégorie des
complexes de chaines Chb(C).
La section 11 contient la démonstration du Théorème de Localisation 8.7.

Les résultats principaux de la section 5 ont été annoncés dans [Ho]. Les
sections 6,7 et 11 sont un travail en commun avec Marco Schlichting, bien
que je sois entièrement responsable de la présentation et de tous ses défauts.
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2 Introduction

After K0 was introduced by Grothendieck [BS], algebraic K-theory first de-
veloped for the category of finitely generated projective modules over a ring
A. (All rings we are dealing with are supposed to be associative and with a
unit, and all modules are right modules.) This is an additive category. An
additive category can be regarded as a symmetric monoidal category (also
called a ACU-tensor category) or as an exact category (where the exact struc-
ture is given by the split exact sequences). Quillen [Q1, Q2] defined K-theory
for both kinds of categories via the constructions S−1S and Q. He proved
that the two definitions coincide for additive categories and that they gen-
eralize the Plus construction [Lo1]. The Q-construction allows us to prove
important theorems such as those linked to localization and resolution etc.

Assume now that our projective modules over a given ring A are equipped
with a symmetric bilinear (or more generally with an ε-hermitian) form. We
want to describe the K-theory of this category which we will call “hermitian
K-theory”. Hermitian K-theory should also cover more general situations,
for example the category of vector bundles over a scheme equipped with a
bilinear symmetric form.
Comparing classical K-theory and hermitian K-theory, the situation is quite
different. We have no hermitian analogues of the theorems in classical K-
theory cited above. For an exact category in general, the hermitian K-theory
was not even defined. We only had a definition for additive categories and
very few results in the special case of projective modules equipped with
a hermitian form. In this thesis, we will give a general definition of the
hermitian K-theory of an exact category C as the homotopy groups of the
classifying space of a certain category L(Ch) (see Definition 5.10). We can
also define the U -theory of Ch as the homotopy groups of the loop space of the
classifying space of the category W(Ch). Then we can establish a homotopy
fibration induced by the hyperbolic functor H

ΩBQ(C) H∗→ BL(Ch)→ BW(Ch)
which generalizes the additive case (see Theorem 5.7). As an important
application, we prove a Localization Theorem for the hermitian K-theory of
a Dedekind ring A and a multiplicative subset S (see Theorem 8.7). We
prove the existence of a homotopy fibration

BL(P (A)h)→ BL(P (S−1A)h)→ BW((TS)h)
where TS is the category of S-torsion modules. Consequently, we get a long
exact sequence

...→ Un((TS)h)→ Kn(P (A)h)→ Kn(P (S−1A)h)→ ... .
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Moreover, we can prove a Dévissage theorem (Theorem 9.5) which allows us
to replace Un((TS)h) by ⊕Un(P (A/℘)h) where the sum is taken over all prime
ideals ℘ different from (0).
If A is the ring of integers in a number field F , we can compute the U -theory
of these finite residue fields (Corollary 9.9) using calculations of Quillen and
Friedlander, and we obtain among other things

1K
h
n(A)

∼=→ 1K
h
n(F ) ∀n ≡ 3, 4mod 8

−1K
h
n(A)

∼=→ −1K
h
n(F ) ∀n ≡ 0, 7mod 8

(see Theorem 9.11).

This text is organized as follows:
In section 3, we recall some facts about the K-theory of hermitian mod-
ules, taking a point of view which allows us to immediately generalize to a
categorical viewpoint. In particular, following [CL2],[Sch3], we introduce a
category W( εP (A)h) which gives a delooping of the homotopy fiber of the
hyperbolic functor from classical K-theory to hermitian K-theory (Theorem
3.15) at least if 2 is a unit in our ring.
Section 4 deals with the hermitian K-theory of additive categories with du-
ality. The philosophy is that most what is true for the hermitian K-theory
of rings is still true for the hermitian K-theory of additive categories with
duality.
The hermitian K-theory of an exact category with duality and its basic prop-
erties as mentioned above are described in section 5.
In section 6, we state the localization theorem for the K-theory of hermitian
additive categories (Corollary 6.7) which allows us to define their negative
K-theory.
In section 7, we construct a simplicial additive category with duality which
yields a Waldhausen-like model |iRh

∗C| for the U -theory of an exact category
C with duality.
Section 8 contains the Localization Theorem for the hermitian K-theory of
Dedekind rings (and more generally for hereditary rings, in particular for
group rings AG where G is a finite group and A is a Dedekind ring in which
the order of the group is a unit). Some strategies and difficulties of possible
proofs are sketched. The proof will be the subject of section 11.
In section 9, we prove a Dévissage theorem which allows to simplify the
above homotopy fibration replacing W((TS)h) by ⊕W(P (A/℘)h) (Theorem
9.5). As we can calculate the homotopy groups of this category if A/℘ is
finite (consider the integers in a number field, for example), our somewhat
abstract localization result becomes very concrete and allows us to see in
which degrees the inclusion A→ Quot(A) induces an isomorphism in hermi-
tian K-theory (Theorem 9.11).
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In section 10 we sketch some further questions, in particular those arising
when we replace an exact category C by the category of chain complexes
Chb(C).
Section 11 contains the proof of the Localization Theoerem 8.7.

The main results of section 5 have been announced in [Ho]. Sections 6,7
and 11 are joint work with Marco Schlichting, but I am entirely responsible
for the presentation and all the defects it has.
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3 The hermitian K-theory of rings

Before we start with the K-theory of hermitian modules, we recall some
basic facts (without proofs) about simplicial sets and classifying spaces. A
topologist might skip this part.

A simplicial set is by definition a functor F : ∆op → Set. Recall that
∆ is the category whose objects are the non-negative integers n, considered
as an ordered set n = {0 < 1 < ... < n}, and a morphism f : m → n is a
monotonic map, i.e. i ≤ j implies f(i) ≤ f(j). In particular, we have the
face maps δi : n → n + 1 (the i tells us which element is not in the image)
and the degeneracy maps σj : n→ n− 1 (where the j indicates the element
onto which two elements are mapped). In fact, up to permutation any map
is a unique composition of these maps. We write ∆opSet for the category of
simplicial sets. Then we have a pair of adjoint functors

| | : ∆opSet
←→ Top : Sing.

Here | | is the so-called geometric realization functor and Sing =
HomTop(∆

∗
top, ) where ∆n

top is the topological standard n-simplex. Moreover,
both categories can be equipped with the structure of a closed model category,
and the above pair of adjoint functors respects enough of this structure that
by a theorem of Quillen it becomes an equivalence of the homotopy categories.
Next, we have the nerve functor

N : small cat→ ∆opSet .

For a small category C, the set NCm contains all the diagrams of compositions
of m composable morphism of C. The face maps correspond to the composi-
tion of maps and the degeneracy maps are given by inserting identity maps.
The classifying space BC of a small category C is defined by BC := |NC|.
Observe that this generalizes the classical definition of the classifying space
of a discrete group when we consider it as a category with a single object.
From now on, when we talk about realizations, we assume that the categories
we are dealing with are small. To simplify our notations, we will use the same
symbol for a category, its nerve and its classifying space.

Let A be a ring equipped with an anti-involution, i.e., a morphism of rings
¯ : A → Aop such that ¯̄a = a ∀ a ∈ A. Furthermore, choose ε ∈ center(A)
with εε̄ = 1. Consider a finitely generated projective A-module M .

Definition 3.1 If M is equipped with a sesquilinear non-degenerate form Φ
(anti-linear in the first component) such that Φ(m,n) = Φ(n,m)ε ∀ m,n ∈
M , we say that (M,Φ) is an ε-hermitian module. The dual of M is defined
by tM = HomA,anti(M,A), i.e., f ∈ tM ⇔ f(ma) = āf(m). This is an
A-module via fa(m) = f(m)a.
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With Φ is associated φ : M → tM via φ(m) = Φ( ,m). One observes
that φ is an isomorphism and that tφ = ε̄φ; more precisely, the triangle

M

ε̄φ !!CC
CC

CC
CC

ev // t2M

tφ||xxxxxxxx
(∗)

tM

commutes (with the canonical isomorphism ev(m)(f) = f(m) ∀ m ∈M, f ∈
tM). It follows that the category of ε-hermitian modules over A and the
unitary morphisms (i.e. those respecting the form - it would be better to call
them metric) is canonically isomorphic to the following category εP (A)h:

Definition 3.2 Let εP (A)h be the category of hermitian modules relative

to (A, t ,̄ , ε). An object is an isomorphism φ : M
∼=→ tM such that

(*) commutes. A morphism α : (M,φ) → (N,ψ) is a commutative square

M
α //

∼=φ
²²

N

∼=ψ
²²

tM tNtα
oo

Remark: We can also drop the condition that the morphisms φ and ψ are
isomorphisms. Then we obtain the category P (A)hd of all hermitian objects,
including the degenerate ones. Of course, P (A)hd contains P (A)h as a full
subcategory.

Examples: For A commutative, ¯ = Id and ε =1 (resp.-1) we obtain the
theory of (anti-)symmetric forms. When A = C is the complex numbers, the
complex conjugation is an anti-involution. If A is a commutative ring and
G is a group, then the group ring AG is equipped with an anti-involution
sending ag to ag−1.
( εP (A)h,⊕) is a symmetric monoidal category via (M,φ)⊕ (N,ψ) = (M ⊕
N, φ⊕ψ), so its K-theory is defined by Quillen’s S−1S-construction (see [Q2]
or p.16):

Definition 3.3

Kn( εP (A)h) := πn(Iso( εP (A)h)
−1 Iso( εP (A)h)) ∀n ≥ 0

One often writes εK
h
n(P (A)) or even εK

h
n(A) instead of Kn( εP (A)h). If the

ε is understood, it is sometimes dropped. Many people write (M,φ)⊥(N,ψ)
instead of (M,φ)⊕ (N,ψ).
Let us recall some facts from the classical K-theory of finitely generated
projective modules P (A). Any projective module is a direct summand of a
free module; in other words, the subcategory F (A) of the objects An, n ≥ 0
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is cofinal in P (A). This cofinality implies, among other things, that:
•K1(P (A)) ∼= H1(colim Aut(An),Z) (in the classical notation, one writes
GL(A) instead of colim Aut(An) )
•K2(P (A)) ∼= H2([GL(A), GL(A)],Z)
•Kn(P (A)) ∼= πn(BGL(A)+ × K0(P (A))) (in the classical notation, one
writes Kn(A) instead of Kn(P (A)) )
•BGL(A)+ × K0(A) ' Ω(BGL(ΣA)+ × K0(ΣA)) (see [Wag], ΣA is the
algebraic suspension of the ring A: Its elements are the infinite matrices
over A having only a finite number of non-zero elements in any row and any
column, divided by those matrices having only a finite number of non-zero
elements. ).
It also implies the existence of a “Volodin model” [Su]. Furthermore, the
description using the Plus construction can be used to calculate the K-theory
of a finite field [Q3] and the free part of the K-theory of an algebraic number
field [Bo].

In the category εP (A)h, we would like to have a cofinal subcategory which
behaves like the free modules in P (A) and enables us to prove similar results.
For this, it is necessary to introduce hyperbolic and metabolic modules:

Definition 3.4 A module (P, λ) is hyperbolic if there is a module M and an
isomorphism (P, λ) ∼= (M ⊕ tM,

(
0 1
ε 0

)
) =: (H(M), µM). It is metabolic if

there is a (possibly degenerate) hermitian module (M,φ) and an isomorphism
(P, λ) ∼= (M ⊕ tM,

(
φ 1
ε 0

)
)

Lemma 3.5 a) Any hermitian module (M,φ) is a direct summand of a
metabolic module: (M,φ)⊕ (M,−φ) ∼= (M ⊕ tM,

(
φ 1
ε 0

)
)

b) If there exists λ ∈ center(A) such that λ + λ̄ = 1 , then any hermitian
module is a direct summand of a hyperbolic module: (M,φ) ⊕ (M,−φ) ∼=
(H(M), µM)

Proof: a)

M ⊕M
“

1 −1
0 φ

”

//
“

φ 0
0 −φ

”

²²

M ⊕ tM
“

φ 1
ε 0

”

²²
tM ⊕ tM tM ⊕M

“
1 0

−1 tφ

”

oo

commutes.
b)

M ⊕ tM

“
1 0

λφ 1

”

//
“

φ 1
ε 0

”

²²

M ⊕ tM
“

0 1
ε 0

”

²²
tM ⊕M tM ⊕M

“
1 ελφ
0 1

”

oo

commutes.
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We will always say “if 2 is invertible” even if weaker conditions (i.e. the
existence of a λ such that λ + λ̄ = 1 or the fact that the hyperbolic mod-
ules form a cofinal subcategory of εP (A)h) are sufficient in many proofs.
In this case, we can conclude, as for classical K-theory (replacing An by
(H(An), µAn)), that:
•K1( εP (A)h) ∼= H1(colim Aut(H(An), µAn),Z) (one often writes εO(A)
instead of colim Aut(H(An), µAn) )
•K2( εP (A)h) ∼= H2([ εO(A), εO(A)],Z)
•Kn( εP (A)h) ∼= πn(B εO(A)+ ×K0( εP (A)h)) In the notation of [Ka2], one
sets εLn(A) := πn(B εO(A)+ ×K0( εP (A)h) independent of the fact whether
2 is invertible or not. This should not be confused with the L-theory of Wall,
Ranicki and Mischenko, see the first remark below.
•B εO(A)+ ×K0( εP (A)h) ' Ω(B εO(ΣA)+ ×K0( εP (ΣA)h))
and that a “Volodin model” can be constructed [So]. Furthermore, it is pos-
sible to calculate the K-theory of a finite field [Fr] and the free part of the
K-theory of an algebraic number field [Bo].

Remark: The idea of defining the L-theory (a good reference is [Ra2]) of a
ring A is as follows: Consider the abelian monoid of n-dimensional “Poincaré
complexes” of projective modules of finite type over A together with an n-
cycle playing the role of the ε-hermitian form. Then we divide out by a certain
“cobordism” relation to get the group Ln(A, ε). The geometric interest in
these L-groups is that they contain obstruction classes in the surgery theory
of a Poincaré space X when A = Zπ1(X). We have periodicity in L-theory
[Ra1], i.e Ln(A, ε) ∼= Ln+2(A,−ε). This should be compared with the higher
Witt groups (see Definition 3.13) where the same is true up to 2-torsion
[Ka6], i.e. εWn(P (A))⊗ Z[1/2] ∼= −εWn+2(P (A))⊗ Z[1/2]. Moreover, these
two theories coincide up to 2-torsion [Lo2]: Ln(A, ε)⊗Z[1/2] ∼= εWn(P (A))⊗
Z[1/2].

Remark: Instead of looking at hermitian modules, we can deal with the
(symmetric monoidal) category of quadratic forms over a given ring: consider
the sesquilinear non-degenerate forms Sesq(M) on a finitely generated pro-
jective module M . We have a morphism Tε : Sesq(M) → Sesq(M) induced
by Tε(Φ)(m,n) = Φ(n,m)ε. Then the quadratic forms on M (more precisely,
the classes of their associated bilinear forms) are equal to coker(Tε−1) while
the ε-hermitian forms are equal to ker(1 − Tε). The bilinearization Tε + 1
induces a morphism coker(1 − Tε) → ker(1 − Tε) which is an isomorphism
if 2 is invertible [Wall]. In the category of quadratic forms, the hyperbolic
objects always form a cofinal subcategory. Therefore the Plus construction
always gives a model for its K-theory. To study the differences between the
categories of hermitian modules and that of quadratic modules and their
K-theories, one introduces form parameters [Bak].

The category εP (A)h and the underlying category P (A) are related by
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the forgetful functor and the hyperbolic functor

F : εP (A)h → P (A) and

H : Iso(P (A))→ Iso( εP (A)h)

given by H(M) = (H(M), µM) on the objects and H(f) = (
(

f 0

o tf−1

)
)

on the morphisms. These functors induce functors F∗ and H∗ between the
classifying spaces for the K-theories.

Definition 3.6
U( εP (A)h) := hofib(H∗, 0)

V( εP (A)h) := hofib(F∗, 0)

εUn(A) := πn(U( εP (A)h))

Here, hofib(f, y) is the homotopy fiber of f : X → Y over a point y ∈ Y , i.e.,

the homotopy limit of the diagram {y} → Y
f← X . Consequently, these four

spaces form a homotopy cartesian square, i.e., hofib(f, y) ' {y}×Y Y I×Y X.
It follows that we get a long exact homotopy sequence. In general, hofib(f, y)
depends on y, but any path connecting y and y′ in Y gives a homotopy
equivalence of the homotopy fibers over these two points. That’s why we
often suppress y in hofib(f, y) if Y is connected or if f is a morphism of
H-groups.
Recall that a homotopy cartesian square remains homotopy cartesian if we
replace one of the four spaces by a space having the same homotopy type.

We say that F
g→ X

f→ Y is a homotopy fibration if it fits in a homotopy
cartesian square where the fourth space is contractible. This is equivalent to
saying that f ◦ g is homotopic to a constant map ỹ for some y ∈ Y and the
induced map (depending on the choice of the contraction) F → hofib(f, y)
is a homotopy equivalence.

Theorem 3.7 (“Fundamental Theorem”)
There is a homotopy equivalence

V( εP (A)h) ' Ω(U( −εP (A)h))

if 2 is invertible.

Proof: See [Ka7]. The main idea is that the homotopy groups of both
spaces are equipped with a K0( 1(P (Z[1/2])h))-module structure and the
isomorphism between the homotopy groups is given by the multiplication
with an element of this ring.

Karoubi and Giffen [CL2] proposed a category W( εP (A)h) whose loop
space is a model for U( εP (A)h) if 2 is invertible:
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Definition 3.8 Let W( εP (A)h) be the category whose objects are the same
as those of εP (A)h. For the morphisms, we setW( εP (A)h)((P, λ), (M,ψ)) =
{equivalence classes of (q, (L, φ), i)}, where a representative is given by a com-
mutative diagram (in P (A))

P

∼=λ
²²

L
qoooo // i //

φ
²²

M

ψ∼=
²²

tP //
tq // tL tM

tioooo

with q a split epimorphism and i a split monomorphism. We also demand
that the inclusion of L⊥M := ker( ti ◦ ψ) in M factors over L; in other words
we have a commutative triangle

L⊥M||

||y
y

y
y ""

""EE
EE

EE
EE

L // i // M
Consequently, L0 := ker φ ∼= ker q ∼= L⊥M . We say that L is a “sur-
lagrangian” (and we often write L⊥ instead of L⊥M). (q, (L, φ), i) and
(q′, (L′, φ′), i′) are equivalent if there is an isomorphism in P (A) α : L→ L′

such that q = q′ ◦α and i = i′ ◦α. The composition of morphism is explained
in the following lemma.

In fact, the condition that L⊥ is included in L is equivalent to saying that
the outer rectangle is a bicartesian square, and this will be used in the proof
of the following lemma:

Lemma 3.9 W( εP (A)h) is a category with the composition law specified
below.

Proof: Given two morphisms [v, (L1, φ1), i] ∈ W( εP (A)h)((M,ψ), (N,χ))
and [u, (L2, φ2), j] ∈ W( εP (A)h)((N,χ), (P, λ)), we set L := L1×N L2. Then
their composition is [(v ◦ ũ), (L, tĩ ◦ φ2 ◦ ĩ), (j ◦ ĩ)] defined by the diagram

L // ĩ //

ũ
²²²²

cart

L2
// j //

u
²²²²

P

L1

v
²²²²

// i // N (+)

M
and one checks that this is well-defined. It remains to show that L⊥P factors
over L. Consider the following commutative diagram (in which we have sup-
pressed the isomorphims ψ, χ and λ):
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L // ĩ //

ũ
²²²²

(1)

L2
// j //

u
²²²²

(2)

P

tj
²²²²

L1
// i //

v
²²²²

(3)

N //
tu //

ti
²²²²

(4)

tL2

t ĩ
²²²²

M //
tv // tL1

//
tũ // tL

The square (1) is not only cartesian, but also cocartesian (see the appendix
of [Ke1]), so the square (4) is bicartesian. Similary, one can show that the
squares (2) and (3) are also bicartesian. It follows that the big square com-
posed of four bicartesian squares is bicartesian. This implies that ker( tĩ◦ tj)
factors over L.

Instead of looking at the morphisms induced by “sur-lagrangians”, we
can consider “sub-lagrangians” (also called “totally isotropic” modules):

Definition 3.10 LetW ′( εP (A)h) be the category whose objects are the same
as those of εP (A)h. For the morphisms, we set
W ′( εP (A)h)((P, λ), (M,ψ)) = {equivalence classes of (p, (T⊥, χ), j)} where
T⊥ is the orthogonal of some object T and a representative is given by a
commutative diagram (in P (A))

P

∼=λ
²²

T⊥
poooo

χ

²²

// j // M

ψ∼=
²²

tP //
tp // tT⊥ tM

tjoooo

with p a split epimorphism and j a split monomorphism. We also demand
that T is an isotropic sub-module of M ; in other words we have a commuta-
tive triangle:

T||

||z
z

z
z !!

!!B
BB

BB
BB

B

T⊥M // j // M

Lemma 3.11 We have an isomorphism of categories F : W( εP (A)h)
∼=→

W ′( εP (A)h) given by F ([q, (L, φ), i]) = [q ◦ γ, ((L⊥)⊥, γ ◦ φ ◦ γ), i ◦ γ] with

γ : (L⊥)⊥
∼=→ L.

Proof: Because L⊥
ι// // M

ti◦ψ
// // tL is exact, L

i// // M
tι◦ψ

// //

tL⊥ is also exact. It follows that there is an isomorphism γ : (L⊥)⊥
∼=→ L over

M and that F ([q, (L, φ), i]) is a morphism in W ′( εP (A)h). We can define
G : W ′( εP (A)h) → W( εP (A)h) in a dual way setting G([p, (T⊥, χ), j]) :=
[p, (T⊥, χ), j]. One easily checks that F are G are well-defined and inverses
to each other.
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Remark: The proofs of Lemma 3.9 and Lemma 3.11 show thatW( εP (A)h)
is isomorphic to the category εWP (A) in [Ur].

Proposition 3.12 a) Suppose we have a K such that (P, λ)⊕(H(K), µK) ∼=
(M,ψ). Then there is a morphism from (P, λ) to (M,ψ) in W( εP (A)h).
b) If 2 is invertible and there is a morphism in W( εP (A)h) from (P, λ) to
(M,ψ). Then there exists a K such that (P, λ)⊕ (H(K), µK) ∼= (M,ψ) .

Proof: a) The class of (π, (P ⊕K,λ⊕ 0), ι) is such a morphism.
b) Let [(q, (L, φ), i)] be a morphism. Choose a section s of q. Then P is a
direct summand of M as a hermitian module (see [Kn, II.2.5.2] where it is
shown that if we have a non-degenerate hermitian object with a subobject
on which the form is non-degenerate, then this is a direct summand as a
hermitian subobject. Here we use the fact that 2 is invertible, which implies
that any hermitian module can be considered as the equivalence class of a
module equipped with a bilinear form). So the problem reduces to showing
that the hermitian modules which are connected with 0 by a morphism are
precisely the metabolic modules (which are hyperbolic if 2 is invertible).
In this case, (M,ψ) ∼= (L⊥ ⊕ tL⊥,

„
a b

ε tb d

«
). As a = 0 and b is an

isomorphism (because L⊕ tL
[0 b]

// // tL is a split epimorphism with kernel
L), conjugation with

„
b−1 0
0 1

«
gives the desired module.

We therefore see that W( εP (A)h) is isomorphic to the category εŴ (A)
in [CL2]. Following [Ka2], we define the higher Witt groups:

Definition 3.13

Wn( εP (A)h) := coker (Kn(P (A))
H∗→ Kn( εP (A)h)).

We will often write W ( εP (A)h) instead of W0( εP (A)h) for the classical Witt
group.
Let εP (A)H be the full subcategory of objects in εP (A)h isomorphic to a
hyperbolic object. Because H∗ factors via the epimorphism K0(P (A)) →
K0( εP (A)H), we have W ( εP (A)h) ∼= coker (K0( εP (A)H)→ K0( εP (A)h))

Lemma 3.14
π0(W( εP (A)h)) ∼= W ( εP (A)h)

Proof: Any element of W ( εP (A)h) can be represented by a difference
(P, λ)−(M,µ) where (M,µ) is metabolic (Lemma 3.5 a)). One can show [QSS,
Lemma 5.4] that the metabolic modules are zero in W ( εP (A)h) even if 2 is
not invertible. This implies the following:
(P, φ) and (Q,ψ) are in the same connected component of W( εP (A)h)
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⇐⇒ There exist metabolic modules (M,µ) and (N, ν) such that
(P, φ)⊕ (M,µ) ∼= (Q,ψ)⊕ (N, ν) (”⇒” is a consequence of [QSS, 5.3] which
says the following: If (L, λ) is a totally isotropic submodule of (M,ψ), then
(M,ψ)⊕ (L⊥/L,−λ|L⊥) is metabolic.)
⇐⇒ The classes of (P, φ) and (Q,ψ) in W ( εP (A)h) are equal.

LetW( εP (A)H) be the full subcategory ofW( εP (A)h) of objects isomor-
phic to a hyperbolic object. We let S = Iso(P (A)), SH = Iso( εP (A)H) ∼=
Iso(W( εP (A)H)) and Sh = Iso( εP (A)h) ∼= Iso(W( εP (A)h)).
We have θ = ψ ◦ S−1τ : Sh −→ W( εP (A)h) where the action of S on Sh is
given by the hyperbolic functor. Here τ is the inclusion of Sh in W( εP (A)h)

and ψ : S−1W( εP (A)h)
'→ W( εP (A)h) exist because the action of S on

W( εP (A)h) is trivial (hence ψ is a homotopy equivalence given by the pro-
jection on the level of objects). Then hermitian K-theory, the underlying
classical K-theory and theW-construction are related by the following result
of M. Schlichting.

Theorem 3.15 If 2 is invertible, then there is a homotopy fibration

S−1S S−1H−→ S−1
h Sh θ−→W( εP (A)h)

where the action of S on Sh is given by the hyperbolic functor.

Proof: The proof can be found in [Sch3]; it uses the Waldhausen-like model
of section 6 and Karoubi’s Fundamental Theorem (Theorem 3.7) and estab-
lishes an additivity theorem for hermitian K-theory.

Remark: In [CL2, 3.1-3.4] R.Charney and R.Lee believed that they had a
proof for Theorem 3.15. They wanted to show that all base changes of the
functor S−1τ are H∗( ,Z)-isomorphisms and then show by a rather explicit
calculation that we have a homotopy equivalence S−1S → S−1(0 ↓ τ). To
prove that all base changes are isomorphisms in homology (and hence homo-
topy equivalences as they are morphisms of H-groups), they finally needed to
show that the action induced by the switch σ∗ : (P ⊕ P ↓ τ)→ (P ⊕ P ↓ τ)
is the identity in homology. They claimed that σ∗ acts as an inner automor-
phism, which is not true.

Remark: The interest of Charney and Lee in the category W( εP (A)H)
comes from geometry: Let Σn = {τ εM(n,C)| tτ = τ, Im(τ) > 0} the
Siegel space of dimension n. The symplectic group Sp2n(Z) = −1On,n(R) =
Aut(H(Rn), µRn) acts on Σn transitively. The action of Γn = −1On,n(Z)
even extends to the Satake compactification of this space. We can construct
full subcategoriesWn ofW( −1P (Z)) withHi(Wn,Q) ∼= Hi(Wn+1,Q) for n >

i and we can establish an isomorphismH∗(Wn,Q)
∼=→ H∗(Σ∗n/Γn,Q)(see [CL1,

CL2] for more details).
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4 The hermitian K-theory of additive cate-

gories

First, let us recall the definition of a symmetric monoidal category and its
K-theory as defined by Quillen [Q2].

Definition 4.1 A symmetric monoidal category (C,⊗, 1C) is a category C
together with a functor ⊗ : C × C → C and an object 1C such that we have
natural isomorphisms 1C ⊗ A ∼= A ∼= A ⊗ 1C, (A ⊗ B) ⊗ C ∼= A ⊗ (B ⊗ C)
and A⊗B ∼= B ⊗A for any objects A,B,C of C such that certain diagrams
[Q2, p.218] commute.

Any additive category is a symmetric monoidal category, of course (take
⊗ = ⊕), but there are other important examples as we will see below.
Given two symmetric monoidal categories C and D, we define an action of
C on D to be a functor F : C × D → D fulfilling some obvious conditions.
We then define the category <C,D>. Its objects are the objects of D. A
morphism from D to D′ is an equivalence class of a pair (C, f) with f :
F (C,D)→ D′. For example, we have the diagonal action of C on C ×C, and
we set C−1C := <C, C × C>.

Definition 4.2 Let (C,⊗, 1C) be a symmetric monoidal category and S =
Iso(C) be the subcategory of C with the same objects, and whose morphisms
are the isomorphisms of C. Then we define the K-theory of C by

Kn(C) = πn(S−1S) ∀n ≥ 0.

Let C be a category equipped with a duality functor t : C → Cop and
a natural isomorphism η : IdC → t◦t satisfying tηM ◦ η tM = Id tM for all
objects M of C. We “choose” ¯ and ε as in the case of modules; in general,
the choice will often be ¯ = Id and ε = 1 (or ε = -1 if C is additive).
More precisely, one should consider the category of additive categories with
duality and ask that functors in this category commute with the identification
isomorphisms up to natural isomorphism; see [Sch2] for the details. As before,
we will suppress the isomorphism η. This is justified by the fact that any
category with duality (C, t, η) is equivalent to a category with duality where
the isomorphism between the identity functor and the bidual is given by the
identity, see [Sch2] for the details. We can then define:

Definition 4.3 Let Ch be the category of hermitian objects relative to

(C, t ,̄ , ε). An object is an isomorphism φ : M
∼=→ tM such that tφ◦ηM = ε̄φ.

A morphism α : (M,φ)→ (N,ψ) is a commutative square

M
α //

∼=φ
²²

N

∼=ψ
²²

tM tN
tαoo
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Remark: As before (see Definition 3.4) we have the notion of a hyperbolic
object and we write CH for the full subcategory of hyperbolic objects in Ch.
We can also drop the condition that the morphisms φ and ψ are isomor-
phisms. Then we obtain the category Chd of all hermitian objects, including
the degenerate ones. Of course, Chd contains Ch as a full subcategory.

If C is additive (resp. symmetric monoidal) and t respects this struc-
ture, we call Ch the hermitian category associated to C. This category Ch
is still symmetric monoidal, so its K-theory is defined by the above S−1S-
construction. A hermitian exact category is no longer exact.

Examples: 1) C = εP (A)h is an additive category with duality HomA( , A).
2) The category of finite abelian groups together with t = HomZ( ,Q/Z)
gives a hermitian exact category. This example will be extended to torsion
modules over Dedeking rings in section 9.
3) Let (X,OX) be a scheme. Then the locally free OX-sheaves of finite rank
V ect(X) form an exact category with HomOX

( ,OX) as duality functor.

4) C×Cop admits a duality functor sending (A,B)
(f,gop)−→ (C,D) to (B,A)

(gop,f)−→
(D,C) in (C × Cop)op ∼= Cop × C. If C is exact, C × Cop is also exact: (f, gop)
is an admissible monomorphism if f is an admissible monomorphism and g
is an admissible epimorphism in C etc.

For the rest of this chapter, let us fix a hermitian additive category Ch
and its full subcategory of hyperbolic objects CH .
Obviously, all of parts 3.4-3.14 (except 3.7) remains true for hermi-
tian additive categories, replacing “module” by “object”, P (A) by C and

εP (A)h by Ch. (In 3.5 b), “If there exists λ ∈ center(A) such that λ+ λ̄ = 1”
has to be replaced by “If for any object E, there exists λ : tM → tM

such that t(λ ◦ φ) + λ ◦ φ = 1 ∀φ = tφ : M
∼=→ tM”). We still write

SH = Iso(CH) ∼= Iso(W(CH)) and Sh = Iso(Ch) ∼= Iso(W(Ch)).
Schlichting’s proves Theorem 3.15 for additive categories as well using that
we have the Fundamental Theorem 3.7 also for additive categories. This is
the case, as there is a way to generalize certain isomorphisms from the her-
mitian K-theory of rings to additive pseudo-abelian categories (also called
“karoubian”, “idempotent complete” or “saturated”). Recall that after [Ka5],
a category is called pseudo-abelian if for any object E and any projection
p2 = p ∈ End(E), ker p exists. Moreover, for any additive category there is

a pseudo-abelian category C̃ whose objects are couples (E, p) where E is an

object of C and p2 = p ∈ End(E). Then we have a full inclusion C // // C̃
induced by E 7→ (E, 1E). M. Schlichting drew my attention to the idea
of the following proposition which also applies to more general situations
such as homotopy cartesian squares. We write add cat for the category of
(small) additive categories and F (R) for the category of finitely generated
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free R-modules.

Proposition 4.4 Let D and E be two functors add cat→ ∆opSet commut-
ing with filtered colimits and sending equivalences of categories to homotopy
equivalences of simplicial sets. Suppose that there is a natural transformation

φ : D −→ E such that DP (R)
φP (R)−→ E P (R) is a homotopy equivalence for

any ring R. Then DA φA→ EA is a homotopy equivalence for any pseudo-
abelian category A.

Proof: We say that an additive category Θ is finitely generated if there is an
object AΘ such that any object of Θ is a direct summand of (AΘ)n for some
n. Define R := End(AΘ). We have inclusions F (R) // // Θ // // P (R).
(given by the isomorphism of the subcategory of P (R) consisting of the single
object R and the subcategory of P (AΘ) consisting of the single object AΘ.)

The pseudo-abelianization ˜ gives P (R) ' F̃ (R) // // Θ̃ // // P̃ (R) '
P (R) and we therefore get an equivalence of categories P (R) ' Θ̃. It fol-
lows that φ is a homotopy equivalence for any finitely generated pseudo-
abelian category. Let fgA be the category of finitely generated subcate-

gories of A. Then this implies hocolimfgAD(Θ̃) ' hocolimfgAE(Θ̃) and

consequently colimfgAD(Θ̃) ' colimfgAE(Θ̃) because our colimits are fil-
tered [BK, XII,3.5]. Finally, colim and ˜ commute and any additive category
is the filtered (see the following remark) colimit of its finitely generated sub-
categories.

Replacing End(AΘ) by End(AΘ ⊕ tAΘ) in the above argument, we can
also prove that any duality functor on any finitely generated additive pseudo-
abelian category is isomorphic to HomR( , R) on P (R).

Remark: We say that a category (and in particular a partially ordered set)
is “cofiltered” (or “right filtered”) if i) it is non-empty, ii) for any two ob-
jects, there is a “bigger” object and iii) for any pair of morphisms between
two objects there is a morphism which coequalizes them (Quillen [Q1] calls
such a category “filtering”). We also have the dual notion of “filtered” (or
“left filtered”). Nevertheless, we say “filtered colimits” as in [BK] instead of
“cofiltered colimits”.
Of course, we want to have our results not only for pseudo-abelian categories,
but for additive categories in general. For an arbitrary additive category C we
observe that the inclusion C // // C̃ is cofinal (because (A, p)⊕ (A, 1−p) ∼=
(A, 1) ). This implies that the inclusion (S−1S)0 → (S̃−1S̃)0 induces a ho-
motopy equivalence where D0 always stands for the connected component of
0 of a category D[Q2, p.221 and 224].
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In fact, two years ago I was not aware of the mistake in the proof of
[CL2]. I generalized their result (which was only valid for rings) to additive
categories [Ho] using essentially Proposition 4.4, cofinality and the following:

Lemma 4.5 The inclusion W(CH)→W(Ch)0 is a homotopy equivalence.

Proof: Let WN be the full subcategory of W(Ch)0 of objects (P, λ) such
that (P, λ) ⊕ (H(N), µN) is hyperbolic. Then we have that ∀M,N objects
of C, the inclusion ι : WM → WM⊕N is a homotopy equivalence. To see
this, let θ : WM⊕N → WM be given by θ(P, λ) = (P ⊕ H(N), λ ⊕ µN) and
θ(f) = f ⊕ idH(N). We then have a natural transformation φ : IdWM

⇒ θ ◦ ι
defined by φ(P,λ) = [(p, (P⊕N, λ⊕0), i)] and a similair natural transformation
IdWM⊕N

⇒ ι ◦ θ. Let symmon cat be the category of (small) symmetric

monoidal categories. For any abelian monoid A, we write Â for the category
whose objects are the elements of A and Â(a, b) = {C|a+ c = b}. Then this
implies that the natural transformation ∆0 ⇒W is a homotopy equivalence

for any object of ̂π0(S) where ∆0 : ̂π0(S) → symmon cat is the constant
functor ∆0(M) = W(CH). The second functor is given by W(N) = WN

on objects and on morphisms it is the inclusion of categories. With [BK,
XII,3.5] and Lemma 3.14 we can conclude that W(CH) ' hocolim dπ0(S)

∆0 '
hocolim dπ0(S)

W ' colim dπ0(S)
W 'W(Ch)0.

Remark: The category <S,Sh> (see [Q2]) and the double mapping cone of
Thomason [Th2] give two other models for the homotopy type ofW(Ch); and
the latter one fits the above homotopy fibration even if 2 is not invertible.
The advantage of our category is that it generalizes well to exact categories,
as we will see in the next section.

Another model forW(Ch) in the additive case can be constructed in terms
of “pseudo-simplicial symmetric monoidal categories” using [Ja2, Corollary
4.8]. In the same article (p.192), Jardine suggests a definition of étale hermi-
tian K-theory with finite coefficients for schemes, using a globally fibrant re-
placement (with respect to the closed model structure of [Ja1]) of the presheaf
of hermitian K-theory as defined in this section. We could replace the étale
topology by the Zariski or the Nisnevish topology and work with integral
coefficients as well, compare with the last paragraph of section 10.



SUR LA K-THÉORIE DES CATÉGORIES HERMITIENNES 22

5 The hermitian K-theory of exact categories

Recall the definition of an exact category due to [Q1] [Ke1]:

Definition 5.1 An exact category C is an additive category, together with a
class of sequences {A // // B // // C}, called “exact sequences”. We say
that A // // B is an “admissible monomorphism” and that
B // // C is an “admissible epimorphism”. They fulfill the following ax-
ioms:
i) The class of admissible monomorphisms is closed under composition and
under cobase-change.
ii) The class of admissible epimorphisms is closed under composition and
under base-change.
iii) Any sequence isomorphic to an exact sequence is exact. Any sequence of
the form

A
ι1// // A⊕B π2 // // B

is exact.
iv) In any exact sequence A // // B // // C, A is a kernel for B // // C
and C is a cokernel for A // // B.

In fact, the definition we give here is due to Keller who simplified the original
definition of Quillen, showing that the following axiom (and its dual) is a con-
sequence of the other axioms: If an admissible monomorphism i : C // // D
can be factored as i = v ◦ u such that u has a cokernel in C, then u is an
admissible monomorphism.

Any additive category can be considered as an exact category, taking
the split monomorphisms and epimorphisms to be the admissible ones. Of
course, in general there are other choices for families of admissible short exact
sequences. We will frequently use “additive” as a synonym for an exact
category in which every exact sequence splits. Another example for exact
categories is to take a convenient subcategory of an abelian category and
taking all monomorphisms and epimorphisms to be admissible. Following
Quillen, we then associate to any exact category C a category QC which has
the same objects as C. A morphism from C to D in QC is given by the
equivalence class of a diagramm C oooo E // // D.

Definition 5.2 Let C be an exact category. Then its K-theory is defined by

Kn(C) = πn(ΩQC) .

It is this Q-construction which allows Quillen to prove his theorems on reso-
lution, localization and dévissage. His proof that the S−1S-construction and
the Q-construction coincide for additive categories and that they generalize
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the Plus construction for projective modules of finite type over a given ring
can be found in [Q2].

Let us fix an exact category C with duality. Obviously, all of parts 3.5-
3.12 a) (except 3.7) remains true for hermitian exact categories, re-
placing “module” by “object”, “split monomorphism” by “admissible mono-
morphism”, “split epimorphism” by “admissible epimorphism”, P (A) by C
and εP (A)h par Ch.
The associated hermitian category to an exact category with duality is no
longer exact or Waldhausen; it does not even have a final object. Therefore,
its K-theory is not defined in general. If all short exact sequences split, we
can define the K-theory as (the homotopy groups of) S−1

h Sh. But in all other
cases, this definition would be as bad as taking S−1S to define classical K-
theory of an exact category in which not all short exact sequences split.
The aim of this chapter is to define for any exact category C with duality
a category L(Ch) such that there is a homotopy fibration containing ΩQ(C)
and L(Ch) and which coincides with the one induced by the hyperbolic func-
tor as given in corollary 4.8 if the exact structure is given by the additive
structure (i.e. any short exact sequence splits). In particular, we would have
a homotopy equivalence L(Ch) ' S−1

h Sh in this case. Furthermore, we would
like to have (as it is known for modules, see [Ka7]) L((C × Cop)h) ' ΩQ(C)
. If such a category L(Ch) exists, it seems to be justified to call it “the her-
mitian K-theory of the hermitian exact category Ch”. By the way, we should
mention that up to now, everything we have called “hermitian K-theory” was
a special case of classical K-theory for symmetric monoidal categories.

For any exact category C with duality, we define its Witt group by
W (Ch) := π0(W(Ch)). As we now consider short exact sequences which
do not split in general, the fact that (M,φ) contains a “lagrangian” L =
L⊥ // // M no longer implies an isomorphism (M,φ) ∼= (L⊥⊕ tL⊥,

„
0 1
ε d

«

). We therefore have to distinguish these two classes of objects and call them
metabolic and split metabolic, respectively. Lemma 5.3 of [QSS] implies that
given a morphism from (P, λ) to (M,φ) inW(Ch), the object (M,φ)⊕(P,−λ)
is metabolic. It follows that W (Ch) still is the monoid of isomorphism classes
of hermitian objects, divided by the equivalence relation generated by iden-
tifying the metabolic objects with 0.

Lemma 5.3 The functor H defined below is an equivalence of categories

H : Q(C)→W((C × Cop)h)

Proof: We set H(A) = ((A,A), (1, 1op)) and H[A
p

oooo B
i// // C] =

the class of
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(A,A)

(1,1op)
²²

(B,C tB A)
(p,̃iop)oooo

²²

//(i,p̃
op) // (C,C)

(1,1op)
²²

(A,A) //(̃i,p
op) // (C tB A,B) (C,C)

(p̃,iop)oooo

where ĩ and p̃ are defined by the bicartesian square

B // i //

p
²²²²

C

p̃
²²²²

A // ĩ // C tB A
As the objects of (C × Cop)h are necessarily of the form (E,F )

(f,fop)−→ (F,E),
the isomorphism [((1, 1op), ((E,F ), (f, f op)), (f, 1op)] ∈
W((C×Cop)h)(((E,F ), (f, f op)),H(F )) shows that H is essentially surjective.
It is clearly faithful. Finally, H is full because any morphism inW((C×Cop)h)
is given by a cartesian square.

Definition 5.4 Let F(Ch) be the homotopy fiber of the forgetful functor

W(Ch) F−→ Q(C).

This is only a topological space, not a category. It enables us to give a model
for the K-theory of an exact category:

Proposition 5.5 There is a homotopy equivalence

ΩQ(C) ' F((C × Cop)h)

Proof: We have the following diagram

F((C × Cop)h) f //W((C × Cop)h) F // Q(C × Cop)
∼=φ

²²
Q(C)×Q(Cop)

∼=τ

²²
Q(C) ∆ //______

H '

OO

Q(C)×Q(C)
which is commutative: τ ◦ φ ◦ F ◦ H(P

q
oooo L

j
// // M) =

τ ◦ φ((P, P )
(q,j̃op)
oooo (L,M tL P )

(j,q̃op)
// // (M,M)) =

(P, P )
(q,q)
oooo (L,L)

(j,j)
// // (M,M) = ∆(P

q
oooo L

j
// // M) where

∆ is the diagonal map, φ is the canonical isomorphism and τ is the equiva-
lence of categories defined in [Q1]. The existence of the homotopy fibration

F((C × Cop)h)→ Q(C) ∆→ Q(C)×Q(C) implies F((C × Cop)h) ' hofib(∆) '
ΩQ(C)
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To find a category whose classifying space is homotopy equivalent to
F(Ch) (which will be finally given in Definition 5.10) we remark first of all
that a cartesian square in the category of categories is still cartesian in the
category of simplicial sets because nerve : cat → ∆opSet has a left ad-
joint [Th1] and therefore respects limits.
Recall [Q1, p.93] that a functor g : B → C is called “prefibered” in the sense
of Quillen if for any object c of C the inclusion g−1(c)→ (c ↓ g) has a right
adjoint, g−1(c) being the subcategory of morphisms of B mapping to idC .

Proposition 5.6 Given a diagram in the category of categories

F

²²
A×C B //

g∗

²²

B

g

²²
A // C

where the square is cartesian, (realizations of) A and C are connected or

H-groups and F → B
g→ C is a homotopy fibration such that g is fibered in

the sense of Quillen [Q1] and g fullfills the conditions of Quillen’s theorem
B (i.e., all base changes are homotopy equivalences). Then g∗ is also fibered

and F → A×C B g∗→ A is a homotopy fibration.

Moreover, if B is contractible, then A ×C B g∗→ A → C is also a homotopy
fibration.

Proof: Following [SGA1, VI,6.9], if g is fibered, then g∗ is also fibered. A
trivial calculation shows that if g fullfills the conditions of theorem B, then so
does g∗. It follows that F ' hofib(g) ' g−1(c) ∼= g∗−1(a) ' hofib(g∗) ∀a ∈ A
such that f(a) = c.

For the second assertion, replace B
g→ C by a (Serre) fibration p:

B
' //

g
ÂÂ?

??
??

??
? B ×C CI

p
zzuuuuuuuuu

C
Then we have to check that A ×C B → A ×C CI ×C B is a homotopy
equivalence. This is a consequence of the five lemma applied to the long
exact homotopy sequences of the homotopy fibrations F → A ×C B → A
and F → A×C CI ×C B → A

Of course, we want to apply this proposition when A→ C is the forgetful
functor F :W(Ch)→ Q(C). Let E = E(C) be the category in [Q2]. Its objects
are the short exact sequences in C, and a morphism fromA // // B // // C
to A′ // // B′ // // C ′ is given by the isomorphism class of a commutative
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diagram

A // // B // // C

A′
OO

OO

// // B
²²

²²

// // C0

OOOO

²²

²²
A′ // // B′ // // C ′
where stands for a bicartesian square. Observe that saying that this square
is bicartesian is not an extra condition but a consequence of the diagram.
S = Iso C acts on E by D + (A // // B // // C) = D ⊕ A // // D ⊕
B // // C. Following [Q2], we know that the projection on the third com-
ponent g : S−1E → Q(C) fullfills all the conditions required in Proposition
5.5 if all short exact sequences in C split. It follows that we have a homotopy
fibration

S−1E0 ι→ S−1E ×Q(C)W(Ch) g∗→W(Ch)
where S−1E0 := g−1(0). The somewhat surprising fact now is that this
homotopy fibration induced by the forgetful functor F : W(Ch) → Q(C)
coincides with the homotopy fibration of the previous chapter induced by
the hyperbolic functor. More precisely, we have the following theorem:

Theorem 5.7 Let Ch be a hermitian exact category in which all short exact
sequences split and 2 is invertible. Then we have a diagram of categories and
functors

S−1S S−1H //

j

²²

S−1Sh θ //

J
²²

W(Ch)

S−1E0 ι // S−1E ×Q(C)W(Ch) g∗ //W(Ch)
where the vertical morphisms are homotopy equivalences, the rows are ho-
motopy fibrations, the right-hand square commutes and the left-hand square
commutes up to homotopy.

Proof: Observe first of all that we have a homotopy equivalence S−1Sh '→
S−1
h Sh if 2 is invertible by cofinality. We let j be the trivial equivalence

of categories given by (A,B) → (A,B
1// // B // // 0). The func-

tor J is defined on the objects by J(A, (M,φ)) := (A, 0 // // M
1 // //

M, (M,φ)). A morphism from (A, (M,φ)) to (A′, (M ′, φ′) given by (C,C ⊕
A
∼=→ A′, (H(C), µC) ⊕ (M,φ)

∼=→ (M ′, φ′)) is mapped by J to (C,C ⊕ A ∼=→
A, γ, δ)
where γ is given by
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C // // C ⊕M // // M

0
OO

OO

// // C ⊕M // //
²²

²²

C ⊕M
²²

²²

OOOO

0 // // M ′ // // M ′
and δ is given by

M

φ

²²

C ⊕Moooo

0⊕φ
²²

// // M ′

φ′

²²
tM // // tC ⊕ tM tM ′oooo

It is obvious that the right-hand square commutes. For the left-hand side, it
is straightforward to check that there is a natural transformation τ : ι ◦ j ⇒
J ◦ S−1H defined by τ(A,B) = (0, A

1→ A,α, β)
where α is given by

B // // B // // 0

0
OO

OO

// // B
²²

²²

// // B

OOOO

²²

²²
0 // // H(B) // // H(B)

and β is given by

0

²²

Boooo

0

²²

// // H(B)

µB

²²
0 // // tB H(B)oooo

The upper row is a homotopy fibration by Theorem 3.15 and the lower one by
Proposition 5.6. Finally, the five lemma applied to the long exact homotopy
sequences implies that J is also a homotopy equivalence.

Remark: In the appendix of [CL1], Charney and Lee give an alternative
description of the category E ×Q(C)W(Ch) which they called Esp. Moreover,
they prove that π∗(S−1Esp)⊗Q ∼= π∗(S−1Sh)⊗Q for Ch = −1P (Z)h.
Karoubi [unpublished] introduced the following category: An object is a

morphism M
φ→ tM with tφ ◦ ηM = ε̄φ such that M0 // // M is an

admissible monomorphism. A morphism from from (M,φ) to (N,ψ)) is a
commutative diagram
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M⊥
N||

||y
y

y
y ""

""DD
DD

DD
DD

M // i //

φ
²²

N

ψ
²²

tM tN
tioooo

The interested reader can check that E ×Q(C) W(Ch) is equivalent to this
category where the equivalence is induced by sending

(A // // B
p

// // C, (C, λ)) to (B, tp ◦ λ ◦ p). Hence the “localization”
by S of these categories yields alternative models for the hermitian K-theory
of an additive category (but not for an exact category in general).

We now give the definition of the hermitian K-theory of an exact category
which generalizes the hermitian K-theory of an additive category:

Definition 5.8 For any hermitian exact category Ch in which 2 is invertible,
we define its hermitian K-theory by

Kh
n(Ch) := πn(F(Ch)) ∀n ≥ 0

and its U-theory by
U(Ch) := ΩW(Ch)

Un(Ch) := πn+1(W(Ch)) ∀n ≥ 0

Looking at the long exact sequence of homotopy groups for a fibration, we
immediatly get a long exact sequence

...→ Un(Ch)→ Kn(C) H∗→ Kh
n(Ch)→ Un−1(Ch)→ Kn−1(C) H∗→ Kh

n−1(Ch)→ ...

where the morphism H is defined by topology, but we stick to this notation
as it coincides with the hyperbolic functor in the additive case. Proposition
5.5 allows us to construct categories whose classifying spaces are homotopy
equivalent to F(Ch). For this, we need contractible categories which are
fibered over Q(C) such that all base changes are homotopy equivalences.
Giffen [Gif] constructs two such categories. As I am not quite convinced by
the proof of his “big K-construction”, I will restrict my attention to his “small
K-construction”. Giffen first defines the category πC := (QC × QC) ×QC EC
where the morphisms to QC are given by the direct sum and the projection q
to the third component, respectively. He then defines EπC by the cartesian
square of fibered functors

EπC //

q∗

²²

EC
q

²²
πC v // QC
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where v is defined by the projection to the second factor QC × QC → QC.
More explicitly, an object of EπC is given by U oooo M // // V oooo N
such that the induced morphism M // // U ⊕ V is also an admissible epi-
morphism. Using Quillen’s Theorem A, Giffen concludes that EπC is con-
tractible. Let u : πC → QC be induced by the projection to the first factor
QC ×QC → QC. Let uπ := u ◦ q∗ and kC := u−1

π (0).

Proposition 5.9 [Gif, 3.4] For any exact category C, there is a homotopy
fibration

kC → EπC uπ→ QC
with contractible total space EπC.

Proof: We want to apply Quillen’s Theorem B. As uπ is fibered, we have
to show that all the base changes are homotopy equivalences which is done
in [Gif, 3.3].

Definition 5.10 Let L(Ch) be the category defined by

L(Ch) := EπC ×QC W(Ch)

Corollary 5.11 There is a homotopy equivalence

L(Ch) ' F(Ch)

Proof: As uπ is fibered, we can apply proposition 5.6.

Of course, the interested reader can try to give a more beautiful descrip-
tion of this category; one might also look out for categories other than EπC
fullfilling the conditions of Proposition 5.6.

It should also be pointed out that there is a Waldhausen model in U -
theory εs

eC (see [SY]) together with a forgetful functor to the classical Wald-
hausen model seC (see [Wald]) which coincides with our forgetful functor
W(Ch)→ QC. This implies a homotopy equivalence

L(Ch) ' πn(hofib( εs
eC forget−→ seC)).
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6 Localization I: Negative hermitian K-theory

of additive categories

The following section is joint work with Marco Schlichting. Recall the fol-
lowing localization theorem of Pedersen and Weibel for additive categories
([PW], see also [Ka1]):

Theorem 6.1 Let B be an additive category and A a pseudo-abelian full
subcategory such that B is A-filtered in the sense of Karoubi. Then there is
a homotopy fibration

Iso(A)−1 Iso(A)→ Iso(B)−1 Iso(B)→ Iso(B/A)−1 Iso(B/A).

Here B/A is the category with the same objects as B. The morphisms from
U to V in B/A are those in B modulo the ones factoring through an object
of A. As we want to prove a hermitian analogue of this theorem, we give a
sketch of the proof:

Proof: One can show that B/A is the localization of B with respect to those
morphisms which are a composition of split monomorphisms with cokernel
in A and split epimorphisms with kernel in A. We even have left and right
calculus of fractions (see [GZ] for the definitions). The proof of Pedersen and
Weibel uses Thomason’s double mapping cone (see [Th2, 5.1] and Definition
6.2 below) and the following two properties which are a consequence of the
assumptions (see [Sch1, Lemma 3.16,i)-iv)]):

(P1) Any isomorphism U
∼→ V in B/A is represented by a fraction U

∼ oooo

W
∼// // V where

∼// // denotes a split monomorphism whose cokernel
lies in A.
(P2) Given two morphisms f : U

∼// // V and g : U
∼// // V in B such

that f = g in B/A, then there is a h : W
∼// // U such that f ◦ h = g ◦ h

in B.
Observe that the

∼// // in (P2) are not morphisms in < IsoA, IsoB> as we

did not choose a splitting. We denote by (i, p) : U
∼Â // V a “direct mor-

phism” from U to V . This means by definition that i : U
∼// // V as above

and p is a retraction of i. Hence (i, p) is a morphism in < IsoA, IsoB>. As
the dual statement of (P2) for split epimorphisms is also true, (P2) remains

true when we replace the
∼// // by

∼Â // .

We will always note the objects of B by T, U, V... and those of A by
A,B,C.... We will use the double mapping cone of Thomason [Th2, 5.1]
only in the special case of a symmetric monoidal functor A → B and call it
the “mapping cone” in this case:

Definition 6.2 Let
F : IsoA → IsoB
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be a symmetric monoidal functor. Then the mapping cone T = T (F ) is the
symmetric monoidal category with the same objects as A× B. A morphism
(A,U)→ (B, V ) is given by the equivalence class of (C,D, α : A→ C⊕B, β :
F (D)⊕ U → V ) (see [Th2] for the equivalence relation).

In fact, this mapping cone is a special case of Thomason’s double mapping
cone. Schlichting [Sch1, Remarque 14.15] gave an easier proof of Theorem
6.1 which also needs the mapping cone and the above two properties. Instead
of giving a hermitian version of the original proof of Pedersen and Weibel -
which is possible as well - we will work with this simplified version. It is the
following:
We first observe that the mapping cone T of IsoA → IsoB is homotopy
equivalent to < IsoA, IsoB>. In fact, one can check that the fibers (U ↓ p)
of the evident projection p : T → < IsoA, IsoB> are all contractible be-
cause the functor < IsoA, IsoA>op → (U ↓ p) given by A 7→ ((A,U), 1U)
has a right adjoint and < IsoA, IsoA>op is contractible because it has a
final object. Thus p is a homotopy equivalence by Quillen’s theorem A
[Q1]. Applying [Th2, Lemma 2.3], it remains to show that the morphism
σ : < IsoA, IsoB> → Iso(B/A) induced by the identity on the objects is a
homotopy equivalence. But applying (P1), (P2) and the statement dual to
(P2) yields that the fibers (U ↓ σ) are cofiltered (in the sense of [Q1]) and
hence contractible.

Pedersen and Weibel then define for every additive category A an additive
category CA whose classifying space for its K-theory is contractible and such
that CA is A-filtered. In fact, they work with a slightly modified version
of Karoubi’s CA (which they call C+A). An object of CA is given by a
sequence A = (A0, A1, ...) of objects of A, and a morphism f : A → B is
given by a matrix of morphisms fji : Ai → Bj in A such that there exists
an n with fji = 0 whenever |j − i| > n, and the compositon is just defined
by matrix multiplication. Define SA=CA/A to be the “suspension” of A,
the quotient CA/A defined as in Theorem 6.1.. Then Iso(SA)−1 Iso(SA) is
a delooping of Iso(A)−1 Iso(A) by their localization theorem if A is pseudo-
abelian. Iterating this process allows to define the negative K-theory of an
additive category A, following Karoubi [Ka1].

Definition 6.3 The negative K-theory of an additive category A is defined
by

K−n(A) := K1(Sn+1A) ∀ n ≥ 0.

The hermitian analogue of Theorem 6.1 will allow us to define the negative
K-theory of a hermitian additive category.

Compared with ordinary K-theory, the situation in hermitian K-theory
is slightly more complicated. Roughly speaking, we have to decide whether
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to replace B by BH or by Bh (the category of hyperbolic resp. all hermitian
objects in B, see Definition 4.3). Roughly spoken, the category BH is too
small, as the induced form on the cokernel of a monomorphism between
hyperbolic objects is not necessarily hyperbolic. The category Bh is too big,
as we do not know how to find aW as in (P1) and (P2) which is equipped with
a non-degenerate form. We therefore introduce an intermediate category:

Definition 6.4 Let B̃H
Ah

be the full subcategory of Bh of those objects (U, λ)
such that there is an (A,α) in Ah with (U, λ)⊕ (A,α) an object of BH .

We will need the following, which is trivial if B = CA:

Lemma 6.5 For any direct morphism Y
∼// // H(X), there is a direct

morphism H(Z)
∼// // Y such that the composition H(Z)

∼// // H(X)
is induced by the hyperbolic functor.

Proof: The section Y ⊕ A
∼=→ X ⊕ tX and the filtration on X (as B is

A-filtered) yields a diagram

A
α //

“
0
bα
”

²²

X
tβ

²²

∼=
vvnnnnnnnnnnnnnn

Z ⊕B
( 0 t bβ )

// tA

where
(

α
β

)
: A→ Y ⊕ A ∼=→ X ⊕ tX. Then one checks that the monomor-

phism Z ⊕ tZ → Z ⊕ tZ ⊕ B ⊕ tB
∼=→ X ⊕ tX factors over Y such that

everything commutes.

Theorem 6.6 Let B be an additive category with duality functor in which 2
is invertible. Let A be a pseudo-abelian subcategory closed under the duality
functor such that B is A-filtered. Then we have a homotopy fibration

Iso(Ah)−1 Iso(Ah)→ Iso(B̃H
Ah

)−1 Iso(B̃H
Ah

)→ Iso((B/A)H)−1 Iso((B/A)H)

Proof: As above in the additive case, we will show that the fibers of

σ : < Iso(Ah), Iso(B̃H
Ah

)> → Iso((B/A)H) are cofiltered. Let H(X) be an
object of (B/A)H .

i) As H(X) is also an object of B̃H
Ah

, (σ ↓ H(X)) is non-empty.

ii) Given two objects (U, φ) and (V, ψ) of B̃H
Ah

equipped with an isomorphism
in (B/A)H to H(X), we can apply (P1) and (P2) to get a common subobject
(without form) W of U and V . Applying (P2) again, we can assume that
φ|W = ψ|W . By Lemma 6.5, we can choose W = H(Z). Applying (P2)
and the lemma again, we find a commun hermitian subobject (H(T ), µT ) of
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(U, φ) and (V, ψ). Finally, observe that the induced form on the complement
in A is also non-degenerate as 2 is invertible [Kn, II,2.5.2].

iii) Given again two objects (U, φ) and (V, ψ) of B̃H
Ah

equipped with an
isomorphism in (B/A)H to H(X), together with two split monomorphisms

g1, g2 : (U, φ)
∼// // (V, ψ) respecting the forms. Then we first equalize g1

and g2 without forms and then proceed as in ii), using both Lemma 6.5 and
the dual statement of Lemma 6.5.

Corollary 6.7 Under the hypotheses of Theorem 6.6, we have a homotopy
fibration

Iso(Ah)−1 Iso(Ah)→ Iso(Bh)−1 Iso(Bh)→ Iso((B/A)h)
−1 Iso((B/A)h)

Proof: We will write K(C) instead of Iso(C)−1 Iso(C). Assume that we have
full inclusions of symmetric monoidal categories C ⊂ D ⊂ E where C ⊂ E
is cofinal (which implies that πi(K(C)) → πi(K(E)) is an isomorphism for
i ≥ 1 and a monomorphism for i = 0). Then D ⊂ E is also cofinal and hence
πi(K(C))→ πi(K(D)) is an isomorphism for i ≥ 1 and a monomorphism for
i = 0. This implies in particular that ΩK(SA)H ' K(Ah) when we apply

Theorem 6.6 to A ⊂ CA, consider the inclusions CAH ⊂ C̃AH
Ah ⊂ CAh and

recall that K(CAH) ' K(CAh) ' {pt}. We write B̂A for the full subcategory

of those objects X of the pseudo-abelianization B̂ for which there exists an
object A of Â with A⊕X an object of B. As B is A-filtered, SB is SA- fil-

tered [Ka1, p.152] and ŜBSA is ŜA-filtered [Sch1, Lemma 3.8]. Our Theorem

gives a homotopy fibration K(ŜAh) → K(
˜

(ŜBSA)H

dSAh

) → K(S(B/A)H).

Here we use the equivalences ŜBSA/ŜA ' SB/SA ' S(B/A), the first
equivalence is trivial and the second is shown in [Ka1, p.154]. Applying the
loop space functor Ω to this homotopy fibration, we are reduced to estab-
lish two homotopy equivalences ΩK(ŜAh) ' ΩK(SAH) and ΩK(SBH) '

ΩK(
˜

(ŜBSA)H

dSAh

). The first homotopy equivalence follows from the cofinal

inclusions SAH ⊂ ŜAH ⊂ ŜAh. For the second, consider the inclusions

SBH ⊂ (ŜBSA)H ⊂ ŜBH and (ŜBSA)H ⊂
˜

(ŜBSA)H

dSAh

⊂ (ŜBSA)h and use
the cofinality arguments given at the beginning of the proof.

Using the suspension functor S, we see that this is in fact a homotopy
fibration of non-connective spectra. The following definition is implicitly in
[KV], although they only consider the case P (A).

Definition 6.8 Let A be a pseudo-abelian category with duality functor.
Then we define

K−n(Ah) := K1((Sn+1A)h) ∀n ≥ 0
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The resulting long exact sequence extends the 5-term exact sequence of
Karoubi and Villamayor [KV, Théorème 3.4].
Of course, we can now also define negative U -theory.
Recently, Schlichting [Sch1] gave a non-connective delooping of the K-theory
of an exact category in general. Imitating his construction, the corresponding
theorems in the hermitian setting remain to be proved.
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7 A Waldhausen-like model for U-theory

The following section is joint work with M. Schlichting.
As before, we assume that the identification between the identity and the
bidual is given by the identity, and we often suppress the duality functors in
our notations when we write down a functor between categories with duality.
Recall [Wald] that for any exact category (and more generally for any “Wald-
hausen category”) E , Waldhausen constructs a simplicial category iS∗E whose
classifying space is homotopy equivalent to QE . We will now do something
similar for exact categories with dualitiy. (A main advantage of Waldhausen’s
construction is that iterating it yields deloopings and hence a spectrum, but
as this feature will not carry over to the following hermitian setting, we won’t
discuss it.)
Let (E , t) be an exact category with duality. We will construct an as-
sociated simplicial category with duality R∗E . Consequently, we obtain
an associated hermitian simplicial category Rh

∗E . Consider the category
n = {n′ < (n − 1)′ < ... < 0′ < 0 < ... < (n − 1) < n} and the cate-
gory I(n) of arrows of n, i.e. its objects are couples (p, q) ∈ n × n with
p ≤ q. There is one morphisms from m to n in I(n) if m ≤ n and no
morphism otherwise.

Definition 7.1 Let (E , t) be an exact category with duality. (R∗E ,d ) is the
following simplicial additive category with duality: Its objects are functors
A : I(n)→ E where all the sequences Apq // // Apr // // Aqr are amissi-
ble short exact sequences ∀ p, q, r ∈ n and morphisms are natural transfor-
mations. The dual of an object is given dy Adp,q := tAq′,p′ where by definition
p′′ = p, and the dual of a morphism is also given by taking the pointwise dual
and reindexing. Finally, the face maps δp are given by eliminating all objects
Aqr where q = p or q = p′ or r = p or r = p′, and the degeneracies are given
by adding identities at the convenient places. We further set

Rh
∗E := (R∗E)h

and
iRh
∗E := Iso(Rh

∗E).
It is straightforward to check that (R∗E ,d ) is a simplicial category with du-
ality. Observe also that in particular App = 0.
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An object A∗∗ of RnE is given by a diagramm
An′,n′ // // An′,(n−1)′ // //

²²²²

... An′,0′ // //

²²²²

An′,0 // //

²²²²

... An′,n

²²²²
A(n−1)′,(n−1)′ // // ... A(n−1)′,0′ // //

²²²²

A(n−1)′,0 // //

²²²²

... A(n−1)′,n

²²²²

... ... ... ... ...

A0′,0′ // // A0′,0 // //

²²²²

... A0′,n

²²²²
A0,0

// // ... A0,n

²²²²
A1,n

... ...

... An−1,n

²²²²
An,n

From this point of view, a morphism f from A∗∗ to B∗∗ is nothing else
but a collection of pointwise morphisms making everything commutative.

We discover an alternative description for the U -theory of an exact cate-
gory with duality:

Proposition 7.2 For any hermitian exact category Eh, we have a homotopy
equivalence of simplicial sets

W(Eh) ' iRh
∗E

where on the right hand side we take the diagonal of the bisimplicial set.

Proof: Forgetting the choice of the cokernels, we easily see that our simpli-
cial category iRh

∗E is equivalent to the simplicial category i εS
e
∗E of Shapiro

and Yao [SY]. They show that this category is degreewise equivalent to the
simplicial category associated to W(Eh). In fact, this is just the classical
argument of Waldhausen [Wald].
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We note that RnE is an additive category with duality. This means that
although the associated hermitian simplicial category iRh

∗E we obtain in the
end is equivalent to the simplicial category given by Shapiro and Yao, we
exhibit an underlying stronger and more conceptional structure. This will
become very important in the sequel.

Remark: Recently, Weiss and Williams [WW] defined L-theory (compare
with our remark preceding Definition 3.6) for Waldhausen categories with a
“Spanier-Whitehead-product” which plays more or less the role of a duality
functor. To see if this equals up to 2-torsion our higher Witt groups (see
Definition 9.10) as is known for P (R) remains an open problem.
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8 Localization II: Hermitian K-theory of hered-

itary rings

Let A be a hereditary ring in which 2 is invertible, equipped with the trivial
involution (i.e. the identity) and fix a central multiplicative subset S ⊂
A − {0} containing no zero divisors. Recall that a ring A is called (right)
hereditary if any sub-A-module of a projective (right) module is projective
(equivalently, if any module of finite type has a projective resolution of length
at most one). An integral domain is hereditary if and only if it is a Dedekind
ring. See Proposition 8.8. for other interestin hereditary rings.

Let TS denote the category of S-torsion A-modules of finite type (those
M such that S−1M = 0 or equivalently such that M ⊗AS−1A = 0). Karoubi
[Ka3] observed that this category is equipped with the duality functor
HomA( , S−1A/A) = Ext1A( , A) and made the following definition:

Definition 8.1 Let C be an additive category with duality or the exact cat-
egory TS. We define U(C) to be the free group generated by isomorphism
classes of triples (M,L1, L2) where M is an object of Ch, and L1 and L2 are
Lagrangians (i.e., equal to their orthogonal in M) of M , divided by the fol-
lowing relations:
i) (M,L1, L2) + (M ′, L′1, L

′
2) ∼ (M ⊕M ′, L1 ⊕ L′1, L2 ⊕ L′2)

ii) (M,L1, L2) + (M,L2, L3) ∼ (M,L1, L3)
iii) (M,L1, L2) ∼ (L⊥/L, L1/L, L2/L) where L is an isotropic submodule
contained in L1 and L2.

Lemma 8.2 Let C be an exact category with duality in which all admissible
short exact sequences split or the exact category TS with duality Ext1A( , A)
with 2 invertible in both cases. Then we have an isomorphism

f : U(C) ∼=→ π1(W(Ch)) = U0(Ch).

Proof: Let (M,L1, L2) ∈ U(C). Then L1 and L2 define morphisms α1 and
α2 in W(Ch) from 0 to M . We define f by sending (M,L1, L2) to the loop
α−1

2 ◦ α1. One checks that f is well-defined. To construct an inverse of f ,
we have to show that the group π1(W(Ch)) is generated by loops of the form
α−1

2 ◦ α1. For C = TS, this is a consequence of the fact that any stably
metabolic object is metabolic [BLLV, Corollary A.14], hence any object has
a morphism from the zero object. For an additive category C, consider a
loop of the form α−1

2 ◦β2 ◦β−1
1 ◦α1 (the argument for bigger loops is similar).

Here αi is a morphism from 0 to Ti, i = 1, 2. As we are in the additive
case, β1 and β2 are induced by adding hyperbolic objects H1 and H2. Then
we define γ1 by adding H2 to T1 and γ2 by adding H1 to T2. We have an
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isomorphism T1⊕H2
∼= T2⊕H1 and the loop (γ2◦α2)

−1◦(γ1◦α1) is equivalent
to α−1

2 ◦ β2 ◦ β−1
1 ◦ α1.

Then we can reformulate Karoubi’s exact localization sequence:

Theorem 8.3 Let A be a Dedekind ring in which 2 is invertible, equipped
with the trivial involution (i.e. the idendity) and fix a multiplicative subset
S ⊂ A − {0}. Let TS denote the category of S-torsion A-modules of finite
type equipped with the duality functor HomA( , S−1A/A). Then there exists
an exact sequence

K1( εP (A)h)→ K1( εP (S−1A)h)→ εU0(TS)

→ K0( εP (A)h)→ K0( εP (S−1A)h)→ εW ((TS)h)

Proof: Karoubi ([Ka3] and [Ka4]) established the two exact sequences
K1( εP (A)h)→ K1( εP (S−1A)h)→ εU(TS)→ K0( εP (A)h)
→ K0( εP (S−1A)h) and W ( εP (A)h)→ W ( εP (S−1A)h)→ W ( ε(TS)h).
Lemma 8.2 and some easy diagram-chasing give the desired result.

We will prove that this exact sequence is part of a long exact sequence
induced by a homotopy fibration

Iso( εP (A)h)
−1 Iso( εP (A)h)→ Iso( εP (S−1A)h)

−1 Iso( εP (S−1A)h)

→W( ε(TS)h) .
Our theorem answers the localization conjecture of Karoubi [Ka3, 3.2].
Of course, we would like to have a more general localization for an abelian
category and a Serre subcategory. Looking at Quillen’s localization theorem
[Q1, Theorem 5], we know this generalized conjecture to be true if our exact
category is C × Cop.

To define a functor Iso( εP (S−1A)h)→W( ε(TS)h) , we have to thicken up
Iso( εP (S−1A)h). Before we do this, let us recall something about “lattices”
(see also [MH]). Let (E, φ) be an object of P (S−1A)h. A lattice L for E is a
finitely generated A-submodule of E such that the inclusion L→ E induces
an isomorphism of S−1A-modules S−1L→ E. Furthermore, if L is equipped
with a bilinear form Φ, we define the dual lattice of L by L] := {x ∈ E |
Φ(x, l) ∈ A∀ l ∈ L}.

Definition 8.4 Let ˜Iso( εP (S−1A)h) be the category where an object is a
couple ((E, φ), L). Here (E, φ) is an object of Iso( εP (S−1A)h) and L is a
lattice for E contained in its dual lattice L]. A morphism from ((E, φ), L) to
((F, ψ),M) is given by a morphism g : (E, φ) → (F, ψ) in Iso( εP (S−1A)h)
such that g−1(M) is contained in L.
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To simplify our notations, we will write from now on εP := Iso( εP (A)h) and
˜
εPS := ˜Iso( εP (S−1A)h).

Lemma 8.5 The forgetful functor

f : ˜
εPS → Iso( εP (S−1A)h)

is a homotopy equivalence. The induced functor

εP−1f : εP−1 ˜
εPS → εP−1 Iso( εP (S−1A)h)

is a homotopy equivalence.

Proof: One first checks that f is prefibered in the sense of Quillen. By
Theorem A it is therefore sufficient to show that f−1(E, φ) is contractible
for any object (E, φ) of Iso( εP (S−1A)h). But this category is nonempty
(there is always a lattice contained in its dual lattice: take any lattice and
intersect it with its dual), and it is cofiltered because the intersection of
two lattices is a lattice (observe that over a Dedekind ring any module
without torsion is projective). The second homotopy equivalence follows
from H∗( εP−1 ˜

εPS) ∼= π0( εP)−1H∗( ˜
εPS) ∼= π0( εP)−1H∗(Iso( εP (S−1A)h)) ∼=

H∗( εP−1 Iso( εP (S−1A)h))

For the rest of this section, // // and // // stand for monomor-
phisms and epimorphisms in the abelian category of A-modules of finite
type. Monomorphisms are therefore not split in general even if source and
target are objects of P (A).
Using some calculations in the appendix of [BLLV], we can make the follow-
ing:

Definition 8.6 Let θ : < εP , ˜
εPS> → W( ε(TS)h) be the functor sending

((E, φ), L) to (L]/L, φ|L]). The morphism ((E, φ), L)→ ((F, ψ),M) in

< εP , ˜
εPS> represented by [(P, λ), g : (S−1P ⊕ E, S−1λ ⊕ φ)

∼=→ (F, ψ)] such
that g−1(M) ⊂ P ⊕ L is sent to

L]/L

∼=φ
²²

(P ⊕ L)]/M

²²

// ḡ //oooo M ]/M

ψ∼=
²²

t(L]/L) // // t((P ⊕ L)])/M) t(M ]/M)
tḡoooo

using the canonical isomorphism L]/L ∼= (P ⊕ L)]/(P ⊕ L).

Assume that the functor above induces a homotopy equivalence on the zero
components θ : < εP , ˜

εPS>0
'→ W( ε(TS)h)0. All morphisms in ˜

εPS are
monomorphisms and the functor ⊕((E, φ), L) : εP → ˜

εPS is faithful. Fol-
lowing Grayson [Q2], this gives us a homotopy fibration

εP−1
εP → εP−1 ˜

εPS → < εP , ˜
εPS>
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Then we could apply Lemma 8.5 and would have the desired homotopy fi-
bration. The first idea to prove that θ is a homotopy equivalence is to apply
Quillen’s Theorem A. Hence we are reduced to show that (P ↓ θ) is con-
tractible ∀P ∈ ˜

εPS. This is obvious in the case P = 0 because 0 is an
initial object in this category. This is a consequence of the following useful
construction in the special case T = 0: We can form the pull-back of lattices
along morphisms of W( ε(TS)h). More precisely, consider the following dia-
gram

L
²²

²²

L
²²

²²
P

²²²²

P

²²²²

// // L]

²²²²

T

τ ∼=
²²

X // //oooo L]/L

φ∼=
²²

tT // // tX t(L]/L)oooo

We set U := ker(P // // T ). Fitting together this short exact sequence
and the two bicartesian squares, we get a short exact sequence U // // L]

// // tX. But L // // P // // X is also exact, and therefore
P ] // // L] // // tX is exact, too (see [Ka3, p.362]). It follows that
P = U ].
Now we consider a morphism β of W( ε(TS)h) given by (0, 0) oooo (X,χ)

// // (T, τ). Following Karoubi (see [Ka4, appendix 3], here we need that
2 is invertible), we can choose a lattice (K,κ) with K ⊂ K] such that
(K]/K, κ) = (T, τ). Let U = X ×T K] be the induced self-dual lattice ob-
tained by the above construction. Then [U, idS−1K ] maps under θ to β. Now
fix a morphism β of W( ε(TS)h) given by (0, 0) oooo (X,χ) // // (T, τ).
The above construction for T = 0 shows that P is a self-dual lattice for (E, φ).
In other words, (P, φ|P ) is an object of P (A)h such that (S−1P, S−1φ|P ) =
(E, φ). Hence there is a morphism from 0 to ((E, φ), L) given by

[(P, φ), (S−1P, φ)⊕ (0, 0)
id→ (E, φ)] such that id−1(L) ⊂ P . This is the only

morphism because the pull-back P is unique up to unique isomorphism.
But there is no reason why the other categories (P ↓ θ) should be con-
tractible. We might try to prove that all the base changes induce homotopy
equivalences. But then we have the same problem as in section 3, see the re-
mark following Theorem 3.15: we have to show that the endofunctor induced
by the switch σ∗ : (P ⊕ P ↓ θ) → (P ⊕ P ↓ θ) is homotopic to the iden-
tity. Forgetting about the forms, this is essentially how Gersten [Ge] tried to
prove a localization theorem for ordinary K-theory. But his proof contains
a mistake, as he claims the existence of a certain ”natural transformation”
which does not exist. Then Grayson [Gr] filled the gap, introducing an H-
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space structure on < P ↓ θ > and exploiting this to show contractibility.
Unfortunately, it is not possible to introduce a similar product structure in
our case with forms.
Quillen’s proofs [Q1],[Q2] do not carry over either.
Another idea would be to prove Karoubi’s Fundamental Theorem (Theorem
3.7), and then proceed by induction as we will do in the next section to prove
devissage (Theorem 9.5). In fact, using essentially Theorem 8.3 we can show
that θ is a monomorphism for π0 and an isomorphism for π1 which is enough
to start the induction. But we do not have the Fundamental Theorem for
exact categories in general. To generalize Karoubi’s proof of it, we would
need a generalization of Corollary 6.7 which we do not have. Another idea of
proving the Fundamental Theorem would be to use our Waldhausen model
of section 7 which is degreewise additive. Roughly speaking, we hence have
the Fundamental Theorem degreewise and then have to show that after re-
alization (i.e. applying the diagonal functor) we still have it. We can work
either in the category of topological spaces or in the category of spectra.
In Top, the Bousfield-Friedlander Theorem [BF, Theorem B.4] gives us two
conditions which implies that a degreewise homotopy fibration of simplicial
spaces remains a homotopy fibration after realization. The first condition is
always true in the case of H-groups. But the second says that we need to
have degreewise π0-surjectivity of the second morphism which is not true in
our case.
In the category of spectra, the realization of a degreewise homotopy fibra-
tion always remains a homotopy fibration. But we have to work with non-
connective spectra because this is where we can apply the Fundamental The-
orem. Hence we have degreewise negative homotopy groups which might
change the positive homotopy groups after realization.

The proof of the localization theorem we finally give uses much heavier
tools.

Theorem 8.7 For any hereditary ring A in which 2 is invertible and for any
central multiplicative subset S ⊂ A containing no zero divisors, we have a
homotopy fibration

Iso( εP (A)h)
−1 Iso( εP (A)h)→ Iso( εP (S−1A)h)

−1 Iso( εP (S−1A)h)

→W( ε(TS)h)
Consequently, we have a long exact sequence

... Kn( εP (A)h)→ Kn( εP (S−1A)h)→ Un−1( ε(TS)h)

→ Kn−1( εP (A)h)→ Kn−1( εP (S−1A)h)...
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...K0( εP (A)h)→ K0( εP (S−1A)h)→ W ( ε(TS)h)
Note that the morphism K0( εP (S−1A)h)→ W ( ε(TS)h) will not be surjective
in general.

For the proof of Theorem 8.7, see section 11.

Remark: In the next section, we will prove a Dévissage Theorem (Theorem
9.5) which gives us a more concrete description of the U -theory of the cate-
gory of torsion modules.
The most interesting example of non-commutative hereditary rings is prob-
ably the following:

Proposition 8.8 Let G be a finite group and A be a Dedekind ring in which
|G| is a unit. Then the group ring AG is hereditary.
Hence we have a homotopy fibration

Iso( εP (AG)h)
−1 Iso( εP (AG)h)→ Iso( εP (S−1AG)h)

−1 Iso( εP (S−1AG)h)

→W( ε(T GS )h)

where the anti-involution on AG is given by ag = ag−1L and S ⊂ center(A)
containing no zero divisors.

Proof: We need some facts about orders and group rings that can be found
in [CR]. Let F = Quot(A). Recall that an A-order Λ in a finite-dimensional
F -algebra B is by definition a subring of B such that Λ is a projective A-
module of finite type and F · Λ = B. Maschke’s theorem [CR, 3.14] tells us
that FG is semi-simple. As |G| is a unit in A, AG is a maximal A-order
in FG [CR, 27.1]. As FG is semi-simple and finite-dimensional over F , this
implies that AG is (left and right) hereditary [CR, 26.12].

If we do not assume that |G| is a unit in A, then AG is not hereditary.
In fact, the theorem of Stallings and Swan [St] [Sw] tells us that the trivial
ZG-module Z admits a projective resolution of length one if and only if G is
a free group.

Recall that the category L(Ch) (see Definition 5.10) yields a model for
the hermitian K-theory of C.
Corollary 8.9 For any hereditary ring A in which 2 is invertible and for
any central multiplicative subset S ⊂ A containing no zero-divisors, there is
a homotopy fibration

L( ε(TS)h)→ U( −εP (A)h)→ U( −εP (S−1A)h)

Consequently, we have a long exact sequence

... −εUn(A)→ −εUn(S−1A)→ Kh
n−1( ε(TS)h)→ −εUn−1(A)→ −εUn−1(S

−1A)
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...→ Kh
0 ( ε(TS)h)→ −εU0(A)→ −εU0(S

−1A)

Note that the morphism −εU0(A) → −εU0(S
−1A) will not be surjective in

general.

Proof: We define P̃S to be the category where an object is given by (E,K ⊂
L) where E is an object of P (S−1A) and K ⊂ L is an inclusion of lattices
for E. A morphism from (E,K ⊂ L) to (E ′, K ′ ⊂ L′) is an isomorphism g :

E
∼=→ E ′ such that we have a chain of inclusions g−1(K ′) ⊂ K ⊂ L ⊂ g−1(L′).

We set P := Iso(P (A)). As in Lemma 8.5, we can show that the forgetful
functor f : P̃S → Iso(P (S−1A)) is a homotopy equivalence. We have the
following commutative diagram including five homotopy fibrations

V( εP (A)h)

²²

V( εP (S−1A)h)

²²

L( ε(TS)h)

²²

εP−1
εP

(fA)h //

F∗
²²

εP−1 ˜
εPS
F∗

²²

θ //W( ε(TS)h)
F

²²

P−1P // P−1P̃S
η // Q(TS)

Here η is given by θ and forgetting the hermitian forms which coincides
with θ applied to the hermitian category (P (S−1A) × P (S−1A)op)h via the
equivalence of Lemma 5.3. Applying the previous Theorem 8.7 and Theorem
3.7 yields a homotopy fibration Ω(U( −εP (A)h)) → Ω(U( −εP (S−1A)h)) →
L( ε(TS)h). The left-hand square is a square of infinite loop spaces, therefore
a delooping gives the desired result. More precisely, we can replace in the
above diagram the ring A by its algebraic suspension ΣA. Setting X :=
hofib((fΣA)h

), we have εW(TS)0 ' BΩ εW(TS)0 ' BΩX0 ' X0. LetKh
0 (fΣA)

be the K0 of the symmetric monoidal functor (fΣA)h as defined by Bass [Bass,
chapter 7]. As we have π0(X) ∼= Kh

0 (fΣA), it remains to show that there

exists an isomorphism π0( εW(TS))
∼=→ Kh

0 (fΣA). This is a consequence of
Bass localization sequence, Karoubi’s localization sequence for Witt groups
[Ka4, Théorème 2.8] and the fact that K0(ΣA) = 0 for any regular ring A
[Bass, p.685].
(Observe that the category P̃S and the functor η are quite similar to the
category U and the functor δ used by Gersten [Ge] when he tries to to prove
his localization theorem for the K-theory of rings.)

Observe that localization hence implies an analogue for exact categories of
Karoubi’s Fondamental Theorem Ω εU(TS) ' −εV(TS) for the exact category
TS of torsion modules over a hereditary ring; see the proof of Theorem 9.5
for a more detailed statement.
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9 Dévissage and calculations

The idea of dévissage is that under some conditions, instead of dealing with
a huge abelian category it might be sufficient to consider the subcategory of
semi-simple objects. Recall Quillen’s Dévissage Theorem in K-theory [Q1]:

Theorem 9.1 Let A be an abelian category and B be a subcategory closed
under subobjects, quotients and finite products. Suppose that any object M
of A has a finite filtration 0 = M0 ⊂M1... ⊂Mn = M such that Mj/Mj−1 is
in B for each j. Then the inclusion functor induces a homotopy equivalence
Q(B)

'→ Q(A).

Let A be a Dedekind ring, S = A−{0} and F = S−1A = Quot(A). Then
applying this theorem to the category TS of A-modules of finite type of S-
torsion yields a homotopy fibration ⊕(0)6=℘∈Spec(A)Q(P (A/℘))→ Q(P (A))→
Q(P (F )) where the direct sum means that all morphisms between the differ-
ent subcategories are 0. If A is such that F is a number field, then Quillen’s
calculation of the K-theory of finite fields gives rise to exact sequences (n ≥ 2)

0→ K2n(A)→ K2n(F )→ ⊕K2n−1(A/℘)
ι→ K2n−1(A)→ K2n−1(F )→ 0 .

Moreover, a theorem of Soulé [Sou] (whose proof uses calculations in étale
cohomology) tells us that ι = 0, hence the above sequence splits into two
shorter pieces.
We want to proceed in a similar manner for hermitian K-theory. That is,
we will prove a dévissage theorem for hermitian K-theory and U -theory of
the category of torsion modules over a hereditary ring and then try to make
some more precise statements for the hermititian K-theory of the integers in
a number field, using the calculations of the hermitian K-theory of the finite
residue fields [Q3],[Fr].

For the rest of this section, we consider the following situation: G is a
finite group, A is a Dedekind ring in which 2 and |G| are invertible (hence
the group ring AG is hereditary, cf. Theorem 8.8) and F = Quot(A). Let
TS and T GS be the abelian categories of A- resp. AG-modules of finite type
and of S-torsion, where S = A− {0} ⊂ A<1> ⊂ center(AG). We have the
obvious forgetful functors P (AG)→ P (A) and T GS → TS. Finally, ℘ denotes
a prime ideal in A different from (0).

Definition 9.2 An object M of TS is called a ℘-torsion module if there exists
a positive integer n such that m℘n = 0 ∀m ∈M . We denote the subcategory
of ℘-torsion modules by T℘.
Lemma 9.3 We have a decomposition of hermitian categories

(T GS )h ∼= ⊕(0)6=℘∈Spec(A)(T G℘ )h.
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By this, again we mean that any object decomposes as a direct sum of ob-
jects lying in these subcategories, and all the morphisms between objects from
different subcategories are 0.

Proof: This is well known for the underlying abelian categories if G is the
trivial group [Bass, p.509]. The decomposition is closed under the duality
functor and clearly respects the G-module structure.

Remark: When we are interested in taking a smaller S, then we have to
take the sum over all prime ideals containing at least one element of S.

We remark that P ((A/℘)G) is precisely the full subcategory of the semisim-
ple objects of T G℘ (projectivity is automatic since our ring is semisimple). In
order to avoid too many parentheses, we write A/℘G instead of (A/℘)G
from now on. On this subcategory P (A/℘G) we have two duality functors
HomAG( , S−1AG/AG) and HomA/℘G( , A/℘G) which fortunately coincide:

Lemma 9.4 For any object V of P (A/℘G), there is a canonical isomor-
phism

HomAG(V, S−1AG/AG)
∼=→ HomA/℘G(V,A/℘G).

Proof: We only do the case G = {1}, the general case is analogous. As
both duality functors are additive, it is enough to consider the case V =
A/℘. Following Karoubi [Ka3, Théorème 1.1 et Remarque 1], we know that
HomA(A/℘, S−1A/A) = HomA/℘(A/℘,A/pA) for any element p ∈ ℘ with
p(A/℘) = 0. Choose p ∈ ℘− ℘2. As we have unique decomposition of prime
ideals and the chinese remainder theorem, the decomposition of the previous
lemma implies HomA/℘(A/℘,A/pA) = HomA/℘(A/℘,A/℘).

The main result of this section will be the following:

Theorem 9.5 (“Dévissage”) The inclusion of hermitian categories

P (A/℘G)h
f→ (T G℘ )h

induces isomorphisms ∀n ≥ 0

εUn(P (A/℘G)h)
εUn(f)−→ εUn((T G℘ )h)

εK
h
n(P (A/℘G)h)

εKh
n(f)−→ εK

h
n((T G℘ )h)

The idea of the proof is the following: Prove it in low degrees, recall that
it is true for ordinary K-theory and then make an induction. In fact, this
strategy is inspired by [Ka8].



SUR LA K-THÉORIE DES CATÉGORIES HERMITIENNES 47

Proposition 9.6 The inclusion of hermitian abelian categories

P (A/℘G)h
f→ (T G℘ )h

induces isomorphisms

εW (P (A/℘G)h)
εW (f)−→ εW ((T G℘ )h)

εU0(P (A/℘G)h)
εU0(f)−→ εU0((T G℘ )h)

εK
h
0 (P (A/℘G)h)

εKh
0 (f)−→ εK

h
0 ((T G℘ )h)

Proof: As AG is noetherian, any object of T G℘ is of finite length [Ei, p.76].
Then one can show [QSS, Theorem 6.12] that for any object (T, τ) of (T G℘ )h
there is a totally isotropic subobject U such that U⊥/U is semisimple, hence
(U⊥/U, τ) is in P (A/℘G)h. We then can apply [QSS, Theorem 6.9] to show
that εW (f) is an isomorphism.
Next, consider the commutative square

K0(A/℘G)
gA/℘G //

∼=K0(f)
²²

εU0(A/℘G)

εU0(f)
²²

K0(T G℘ )
gTG

℘ //
εU0(T G℘ )

as established in [Ka3, p.392]. Then it is shown that gT G
℘

is an epimorphism
(Karoubi’s argument carries over to group rings as he only needs heredity).
It follows that εU0(f) is an epimorphism. Moreover, essentially the same
argument (observe that A/℘G is semisimple) shows that gA/℘G is an epi-
morphism. Now consider the following diagrams of short exact sequences,
induced by the hyperbolic functor and the forgetful functor, respectively:

εU0(A/℘G)

εU0(f)
²²²²

// K0(A/℘G)

K0(f)∼=
²²

//
εK

h
0 (A/℘G)

εKh
0 (f)

²²

//
εW (A/℘G)

εW (f)∼=
²²

// 0

εU0(T G℘ ) // K0(T G℘ ) //
εK

h
0 (T G℘ ) //

εW (T G℘ ) // 0

and

−εKh
0 (A/℘G)

−εKh
0 (f)

²²

// K0(A/℘G)

K0(f)∼=
²²

//
εU0(A/℘G)

εU0(f)
²²²²

// 0

−εKh
0 (T G℘ ) // K0(T G℘ ) //

εU0(T G℘ ) // 0

The five lemma shows that εK
h
0 (f) and hence εU0(f) are isomorphims.

Remark: We observe that the epimorphism gA/℘G together with the fact
thatK−1(R) = K0(ΣR) = 0 for any regular ringR implies that εK

h
−1(A/℘G) =
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εW−1(A/℘G) = 0. Instead of using the five lemma, one can make some con-
crete calculations (inspired by [Ka3, p.392]) if G is the trivial group. Consider
the following two exact sequences

K1(A/℘)
H1 //

εK
h
1 (A/℘) //

εU0(A/℘) // K0(A/℘)
H0 //

εK
h
0 (A/℘)

and

εK
h
1 (A℘) //

εK
h
1 (F ) //

εU0(T℘) //
εK

h
0 (A℘) //

εK
h
0 (F )

As A/℘ is a field, H0 is a monomorphism and the first exact sequence decom-
poses (i.e. one morphism is 0). If ε = −1, it is classical that εK

h
1 (A/℘) = 0,

hence εU0(A/℘) = εU0(T℘) = 0. If ε = 1, we know that εW (A℘) → εW (F )
is a monomorphism [MH], and we have monomorphisms K0(A℘)→ εK

h
0 (A℘)

and K0(F ) → εK
h
0 (F ) so εK

h
0 (A℘) → εK

h
0 (F ) is a monomorphism by the

five lemma and the second exact sequence also decomposes. The following
generalities can be found in detail in [Kn, chapter IV]. For any commutative
ring R, we have a morphism εK

h
1 (R)→ Disc(R)×Z/2. Here Disc(R) is the

abelian group of discriminant modules over R. Then this morphism is given
by the spinor norm SN on the first component and by the determinant on the
second. If R is principal, Disc(R) ∼= R∗/(R∗)2. Recall that there is also the
determinant morphism det : K1(R) → R∗. The following square commutes
for any projective R-module P of finite type [Kn, p.236]

Aut(P ) H //

det

²²

Aut(H(P ), µP )

SN
²²

R∗
π // R∗/(R∗)2

It follows that for ε = 1 we have εU0(A/℘) ∼= εU0(T℘) ∼= Z/2.
Now we are ready to prove the Dévissage Theorem:

Proof of Theorem 9.5 Consider the following two diagrams of long exact
sequences

εUn+1(A/℘G)

εUn+1(f)
²²

// Kn+1(A/℘G)

Kn+1(f)∼=
²²

H∗ //
εK

h
n+1(A/℘G)

εKh
n+1(f)

²²

εUn+1(T G℘ ) // Kn+1(T G℘ )
H∗ //

εK
h
n+1(T G℘ )

//
εUn(A/℘G)

εUn(f)∼=
²²

// Kn(A/℘G)

Kn(f)∼=
²²

//
εUn(T G℘ ) // Kn(T G℘ )

and
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−εKh
n+1(A/℘G)

−εKh
n+1(f)

²²

F∗ // Kn+1(A/℘G)

Kn+1(f)∼=
²²

//
εUn+1(A/℘G)

εUn+1(f)
²²

−εKh
n+1(T G℘ )

F∗ // Kn+1(T G℘ ) //
εUn+1(T G℘ )

// −εKh
n(A/℘G)

−εKh
n(f)∼=

²²

F∗ // Kn(A/℘G)

Kn(f)∼=
²²

// −εKh
n(T G℘ )

F∗ // Kn(T G℘ )

In the first diagram, both long exact sequences are induced by the homo-
topy fibration associated to the hyperbolic functor, therefore everything com-
mutes. The upper line in the second diagram is given by the forgetful functor
and Theorem 3.7. For the lower line, consider the homotopy fibration induced

by the hyperbolic funtor εU(A)
f→ K(A)

H→ εL(A). Then we use the local-
ization Theorems 8.7, 8.9 and the localization theorem in ordinary K-theory
(which is a consequence of either 8.7 or 8.9 when applied to C × Cop). Then
link these three homotopy fibrations together by the hyperbolic functor as
described above.Theorem 5.7 tells us that f is nothing else than ΩF where
F : εW(P (A)h) → Q(P (A)) is the forgetful functor. Looking at Karoubi’s
proof of Theorem 3.7 [Ka7, Paragraphe III] we see that the morphism in the
upper row Kn(A/℘G) → εUn(A/℘G) is given by the “hyperbolic functor”,
i.e., K(P (A/℘G)) ' U( εP (A/℘G × A/℘Gop)h) → U( εP (M2(A/℘G))h) '
U( εP (A/℘G)h). Hence the second diagram commutes as well.
Now we proceed by induction. Recall that we have dévissage for n = 0 by
Proposition 9.6. Assume now that we have dévissage for n as marked in the
diagrams above. It remains to apply the five lemma a couple of times simul-
taneously for ε and −ε: By the first diagram, Kh

n+1(f) is an epimorphism.
Hence the second diagram shows that Un+1 is an isomorphism, and looking
again at the first diagram, it follows that Kh

n+1 is also an isomorphism.

This allows us to state the following simplification of the localization
Theorems of the previous chapter (we still write K(C) for Iso(C)−1 Iso(C)):
Corollary 9.7 Let G be a finite group and A a Dedekind ring in which 2
and |G| are units. Then we have two homotopy fibrations

K( εP (AG)h)→ K( εP (S−1AG)h)→ ⊕W( εP (A/℘G)h)

and
⊕L( εP (A/℘G)h)→ U( −εP (AG)h)→ U( −εP (S−1AG)h)

Consequently, we get two long exact sequences

... Kn( εP (AG)h)→ Kn( εP (S−1AG)h)→ ⊕Un−1( ε(P (A/℘G)h))
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→ Kn−1( εP (AG)h)→ Kn−1( εP (S−1AG)h)...

...K0( εP (AG)h)→ K0( εP (S−1AG)h)→ ⊕W ( ε(P (A/℘G)h))

and

... −εUn(AG)→ −εUn(S−1AG)→ ⊕Kh
n−1( ε(P (A/℘G)h))→ −εUn−1(AG)

→ −εUn−1(S
−1AG)...→ Kh

0 ( ε(P (A/℘G)h))→ −εU0(AG)→ −εU0(S
−1AG)

Note that the morphisms −εU0(AG)→ −εU0(S
−1AG) and K0( εP (S−1AG)h)

→ ⊕W ( ε(P (A/℘G)h)) will not be surjective in general.

Proof: Use Theorem 8.7, Corollary 8.9 and Theorem 9.5.

Remark: Using dévissage for Balmer’s Witt groups (which will be intro-
duced in the next section) and the results of section 11, in particular Lemma
11.2, one easily sees that this long exact localization sequence extends to
negative U - and Kh-groups.

We also obtain this way higher degree Gysin morphisms generalizing the
Gysin morphism εU0(A/℘) → εK

h
0 (A) as given in [Ka3, Appendice 4]. Of

course, we would like to have such morphisms in more general situations.

For the rest of this section, assume that G is the trivial group and all
the residue fields A/℘ have only a finite number of elements. This is the
case when F is an algebraic number field. The K-theory and the hermitian
K-theory of finite fields have been computed by Quillen and Friedlander.

Theorem 9.8 Let n > 0 be an integer and Fq the finite field with q elements,
q odd. Then the K-theory of Fq is given by

K2n(Fq) = 0 K2n−1(Fq) ∼= Z/(qn − 1).

The hermitian K-theory Kh
n behaves in a periodic way of period 8. It is given

by

1K
h
8n(Fq)

∼= Z/2 1K
h
8n+1(Fq)

∼= Z/2⊕ Z/2 1K
h
8n+2(Fq)

∼= Z/2

1K
h
8n+33(Fq) ∼= Z/(q((8n+3)+1)/2 − 1) 1K

h
8n+4(Fq)

∼= 0 1K
h
8n+5(Fq)

∼= 0

1K
h
8n+6(Fq)

∼= 0 1K
h
8n+7(Fq)

∼= Z/(q((8n+7)+1)/2 − 1)

−1K
h
8n(Fq)

∼= 0 −1K
h
8n+1(Fq)

∼= 0 −1K
h
8n+2(Fq)

∼= 0

−1K
h
8n+3(Fq)

∼= Z/(q((8n+3)+1)/2−1) −1K
h
8n+4(Fq)

∼= Z/2 −1K
h
8n+5(Fq)

∼= Z/2⊕Z/2

−1K
h
8n+6(Fq)

∼= Z/2 −1K
h
8n+7(Fq)

∼= Z/(q((8n+7)+1)/2 − 1)
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Proof: [Q3] and [Fr].

This allows us to calculate the U -theory of a finite field:

Corollary 9.9 The U-theory Un of a finite field Fq (q odd) can be described
in a periodic way of period 8, it is given by

1U8n(Fq) ∼= Z/2 1U8n+1(Fq) ∼= Z/(q((8n+1)+1)/2 − 1) 1U8n+2(Fq) ∼= 0

1U8n+3(Fq) ∼= 0 1U8n+4(Fq) ∼= 0 1U8n+5(Fq) ∼= Z/(q((8n+5)+1)/2 − 1)

1U8n+6(Fq) ∼= Z/2 1U8n+7(Fq) ∼= Gr4

−1U8n(Fq) ∼= 0 −1U8n+1(Fq) ∼= Z/(q((8n+1)+1)/2 − 1) −1U8n+2(Fq) ∼= Z/2

−1U8n+3(Fq) ∼= Gr4 −1U8n+4(Fq) ∼= Z/2 −1U8n+5(Fq) ∼= Z/(q((8n+5)+1)/2−1)

−1U8n+6(Fq) ∼= 0 −1U8n+7(Fq) ∼= 0

where Gr4 equals Z/4 or Z/2⊕ Z/2.

Proof: Let ε = 1. Consider the long exact sequences (HS) and (FS) asso-
ciated to the hyperbolic functor and the forgetful functor where we use the
calculations of the above theorem

0→ Z/2→ 1U8n+7(Fq)→ Z/(q((8n+7)+1)/2 − 1)→ Z/(q((8n+7)+1)/2 − 1)

→ 1U8n+6(Fq)→ 0→ 0→ 1U8n+5(Fq)→ Z/(q((8n+5)+1)/2 − 1)→ 0

→ 1U8n+4(Fq)→ 0

and

0→ Z/(q((8(n+1)+1)+1)/2 − 1)→ 1U8(n+1)+1(Fq)→ 0→ 0→ 1U8(n+1)(Fq)

→ Z/(q((8n+7)+1)/2 − 1)→ Z/(q((8n+7)+1)/2 − 1)→ 1U8n+7(Fq)→ Z/2→ 0

→ 1U8n+6(Fq)→ Z/2⊕ Z/2→ Z/(q((8n+5)+1)/2 − 1)

→ 1U8n+5(Fq)→ Z/2→ 0→ 1U8n+4(Fq)→ Z/(q((8n+3)+1)/2 − 1)

→ Z/(q((8n+3)+1)/2 − 1)→ 1U8n+3(Fq)→ 0→ 0→ 1U8n+2(Fq)→ 0

We have 1U8n+5(Fq) ∼= Z/(q((8n+5)+1)/2 − 1) and 1U8n+4(Fq) ∼= 0 by (HS),

1U8n+6(Fq) ∼= Z/2, 1U8n+3(Fq) ∼= 0, 1U8n+2(Fq) ∼= 0 and 1U8n+1(Fq) ∼=
Z/(q((8n+1)+1)/2 − 1) by (FS) (still true for n = 0 because 1U0(Fq) ∼= Z/2
and K0(Fq)→ Kh

0 (Fq) is a monomorphism), 1U8n+7(Fq) ∼= Gr4 by (HS) and

1U8n(Fq) ∼= Z/2 by (FS) (still true for n = 0).
Let ε = −1. Consider the long exact sequences (HS) and (FS) associated to
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the hyperbolic functor and the forgetful functor where we use the calculations
of the above theorem

0→ −1U8(n+1)(Fq)→ 0→ 0→ −1U8n+7(Fq)→ Z/(q((8n+7)+1)/2 − 1)

→ Z/(q((8n+7)+1)/2 − 1)→ −1U8n+6(Fq)→ 0→ Z/2→ −1U8n+5(Fq)

→ Z/(q((8n+5)+1)/2 − 1)→ Z/2⊕ Z/2→ −1U8n+4(Fq)→ 0→ Z/2

→ −1U8n+3(Fq)→ Z/(q((8n+3)+1)/2 − 1)→ Z/(q((8n+3)+1)/2 − 1)

→ −1U8n+2(Fq)→ 0→ 0→ −1U8n+1(Fq)→ Z/(q((8n+1)+1)/2 − 1)→ 0

and

0→ −1U8(n+1)(Fq)→ Z/(q((8n+7)+1)/2 − 1)→ Z/(q((8n+7)+1)/2 − 1)

→ −1U8n+7(Fq)→ 0→ 0→ −1U8n+6(Fq)→ 0

→ Z/(q((8n+5)+1)/2 − 1)→ −1U8n+5(Fq)→ 0

→ 0→ −1U8n+4(Fq)→ Z/(q((8n+3)+1)/2 − 1)

→ Z/(q((8n+3)+1)/2 − 1)→ −1U8n+3(Fq)→ Z/2→ 0

We have −1U8n+1
∼= Z/(q((8n+1)+1)/2 − 1) and −1U8n

∼= 0 by (HS) (still true
for n = 0), −1U8n+7

∼= 0, −1U8n+6
∼= 0 and −1U8n+5

∼= Z/(q((8n+5)+1)/2 − 1) by
(FS), −1U8n+4

∼= Z/2 by (HS), −1U8n+3
∼= Gr4 by (FS) and −1U8n+2

∼= Z/2
by (HS).

These calculations allow us to compare the hermitian K-theory, the U -
theory and the higher Witt groups of A and F . Our definition of higher
Witt groups for an hermitian exact category is the obvious generalization of
Definition 3.13:

Definition 9.10 The higher Witt groups of a hermitian exact category Ch
are defined by

εWn(Ch) := coker(Kn(C) Hn−→ εK
h
n(Ch)) ∀ n ∈ N

and even ∀ n ∈ Z if C is split exact.

It follows immediately that our Dévissage Theorem 9.5 also applies to higher
Witt groups. Observe that εW0(Ch) equals εW (Ch) as defined at the begin-
ning of section 5.

In the following theorem, we only state the isomorphisms which are imme-
diate from the above results. The reader can easily verify that we have many
other monomorphisms and epimorphisms and we have information about the
kernel and the cokernel. Moreover, other known results as known calcula-
tions in low degrees, Soulé’s theorem mentioned above, etc., might allow us
to give stronger results.
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Theorem 9.11 Let A be a Dedekind ring in which 2 is a unit such that
F = Quot(A) is an algebraic number field. Then we have isomorphisms

1K
h
n(A)

∼=→ 1K
h
n(F ) ∀n ≡ 3, 4mod 8

1Un(A)
∼=→ 1Un(F ) ∀n ≡ 1, 2mod 8

1Wn(A)
∼=→ 1Wn(F ) ∀n ≡ 3mod 8

−1K
h
n(A)

∼=→ −1K
h
n(F ) ∀n ≡ 0, 7mod 8

−1Un(A)
∼=→ −1Un(F ) ∀n ≡ 5, 6mod 8

−1Wn(A)
∼=→ −1Wn(F ) ∀n ≡ 7mod 8

Proof: Use Corollary 9.7, Theorem 9.8 and Corollary 9.9. For the −1K
h
0 -

isomorphism, recall that −1U0(A/℘) = 0 (see the remark following Propo-
sition 11.6) and that −1K

h
0 (F ) = Z [Ka2, p.306], thus everything is stably

hyperbolic and −1K
h
0 (A) = Z as well.

Recall that the K-theory of the integers A in an algebraic number field
is a finitely generated abelian group [Q4], and we know the free part of
Kn(A) [Bo]. Calculating the odd torsion means proving the Quillen-Lich-
tenbaum Conjectures [Li]. Concerning the 2-torsion, we know [HS] that if
A is not exceptional, then there are infinitely many ℘ such that Ki(A) ⊗
Z(2) → Ki(A/℘) ⊗ Z(2) is a split epimorphism for i > 0. In hermitian K-
theory, we still know the free part of εK

h
n(A) [Bo]. Recently it has been

proved that if A is exceptional, then there are infinitely many ℘ such that

1K
h
i (A)⊗ Z(2) → 1K

h
i (A/℘)⊗ Z(2) is a split epimorphism for i > 0 [Ham].
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10 Some further remarks and open problems

In the last three sections, we established deloopings, localization and dévissage
for hermitian K-theory, which were all known in ordinary K-theory. Any time
we look at a construction or a theorem in ordinary K-theory, we may ask the
question: Does it still hold in hermitian K-theory? In general, the lack of
a reasonable duality functor might prevent us from even defining the her-
mitian K-theory of an exact category. But in the case of P (A) we have a
duality functor, and many techniques and results of ordinary K-theory carry
over to hermitian K-theory. We already mentioned some of them on page
8, moreover we have still a multiplicative structure [Lo1] which we did not
investigate at all in this thesis.

The next step is to consider those results that are not covered by the
plus construction, the category of vector bundles over a scheme being the
most interesting example. Here we really need the techniques developped in
our thesis. The proof of the localization sequence (Theorem 8.7) also needed
the general definition of the hermitian K-theory of an exact category with
duality as given in section 5.
When we want to prove a theorem in hermitian K-theory that we know to
be true in ordinary K-theory, we can of course try to translate the proof to
the hermitian setting. But we can also use Karoubi’s strategy (prove it for
ordinary K-theory and for hermitian K-theory in low degrees, then proceed
by induction), as we did to prove the Dévissage Theorem. But this strategy
heavily relies on his Fundamental theorem ([Ka7] and Theorem 3.7) which
we only have for rings. To prove a homotopy equivalence Ω εU(Ch) ' −εV(Ch)
for an exact category C in general would hence allow us to apply this strategy
in many other cases. But the proof would require explicit deloopings of the
hermitian K-theory (as established in Corollary 6.5 for additive categories)
for exact categories in general.
Schlichting [Sch1] recently defined the negative K-theory of an exact category
and proved that some classical theorems (additivity, resolution, localization)
remain true for negative K-theory. It is natural to ask wether all this can be
done for negative hermitian K-theory as well.

Let us consider the category of all modules of finite type M(A) over a
given ring A or more generally the category of all coherent sheaves Coh(X)
on a scheme X. It is not clear how to define a duality functor and hence the
associated hermitian category. On the full subcategory of S-torsion modules
TS ⊂ M(A), we have HomA( , S−1A/A) = Ext1A( , A) as a duality func-
tor if A is hereditary, and on the subcategory P (A) we have HomA( , A).
To define a duality on M(A) (and more general for quasi-coherent sheaves
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instead of vector bundles) might be easier when we replace our category by
its bounded derived category and using the duality suggested in [Har, chap-
ter 5]. More precisely, he considers the derived category (bounded below)
of OX-modules D+(OX −mod) over a given noetherian scheme X and the
full subcategory of complexes with coherent cohomology and finite injective
dimension D+

c,fid(OX −mod). He then introduces the notion of a “dualizing
complex”:

Definition 10.1 Fixing a complex R∗ ∈ D+(OX −mod), we say that F ∗ ∈
D(OX − mod) is reflexive with respect to R∗ if the natural map η : F ∗ →
RHom∗(RHom∗(F ∗, R∗), R∗) is an isomorphism in D(OX −mod).
If there exist an R∗ ∈ D+(OX −mod) such that any F ∗ ∈ D+

c,fid(OX −mod)
is reflexive with respect to R∗, then we call R∗ a “dualizing complex”.

Then it is shown that OX , considered as a complex concentrated in degree 0,
is a dualizing complex when our noetherian scheme X is regular. The idea
is that it suffices to show that OX is OX-reflexive, as any coherent sheaf is
locally a quotient of a free sheaf.
We can therefore “generalize” our duality from vector bundles to coherent
sheaves. As an illustration, consider the category of finitely generated abelian
groupes M(Z). The complex Q → Q/Z is an injective resolution of Z, and
given a finite abelian group, all morphisms to Q are 0, of course. Hartshorne
also proved that OX is still a dualizing complex when our noetherian scheme
X is Gorenstein which means that all its local rings have a finite injective
resolution. In the case of a non-commutative ring, the Gorenstein condition
and the existence of a dualizing complex is less clear.

As Thomason did for ordinary K-theory [TT], one might hope to define
the hermitian K-theory of the category of bounded chain complexes and to
prove that this coincides with our definition. Recall that Gillet [Gil] and
Thomason defined for any exact category C a Waldhausen structure on the
category of bounded complexes Chb(C), and Gillet (generalizing a proof of
Waldhausen) proved that the inclusion in degree 0 induces a homotopy equiv-

alence K(C) '→ K(Chb(C)). Here K stands for Waldhausen K-theory resp.
Thomason’s variant of the K-theory of a complicial biWaldhausen category
[TT, 1.2.11,1.11.7]. He also proved that the following important result:

Theorem 10.2 Let F : C → D be an exact functor of exact categories such
that the induced functor on the bounded derived categories Db(F ) : Db(C)→
Db(D) is an equivalence of categories. Then Q(F ) : Q(C) → Q(D) is a
homotopy equivalence.

Proof: [TT, theorem 1.9.8]
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Although the η defined above is not an isomorphism but only a quasi-
isomorphism in Chbc,fid(OX − mod), we can still define an associated “her-
mitian Waldhausen category”. If we want to imitate Thomason’s proofs,
we will need an additivity theorem and a localization theorem. It might
therefore be useful to consider a Waldhausen-like model of the hermitian
K-theory (see [SY] for such a model in U -theory). Restricting to the case
of a noetherian regular scheme, we then should have homotopy equivalences
L(V ect(X)h)

'→ L(Coh(OX)h)
'→ L(Chbc,fid(OX − mod). It will probably

be easier to attack these questions before in U -theory and then deduce the

statement on L(Ch) ' hofib(W(Ch) F→ Q(C)).

Trying to give a direct definition of the hermitian K-theory of a triangu-
lated category without using the fact that it is the derived category of an
exact category is as complicated as in ordinary K-theory. There is a defini-
tion suggested by Neeman for the K-theory of a triangulated category. But
recently Schlichting [Sch5] proved that it is impossible to give a definition
of the K-theory of a triangulated category that simultaneously generalizes
Quillen’s definition for exact categories and has the property that a short
exact sequence of triangulated categories yields a long exact sequence of K-
groups.
When we are only interested in Witt groups, such a definition is possible due
to the work of Balmer. In fact in the case of triangulated categories with
duality functor, both Balmer [Bal2] and Youssin [Yo] suggest a definition
for the Witt group of a triangulated category T with a duality functor t.
Balmer’s definition of the Witt group WB(Th) is to take the monoid of her-
mitian objets and then to divide by the “metabolic objects” in the sense of
triangulated categories. By definition L is a lagrangian of (P, φ) if we have a
commutative diagram (∗) below with Q = 0 such that the rows and columns
are exact triangles. This implies more generally that whenever we have a
commutative diagram where the rows and columns are exact triangles

T−1( tM)

T−1( tη0)
²²

ν0 // L

η0

²²

ν1 // P

φ∼=
²²

ν2 // tM

tη0

²²
T−1( tL)

tη2
²²

T−1( tν0)
// M

η1

²²

tν2

// tP tν1

// tL (∗)

tQ

tη1
²²

Q∼=
ψoo

η2
²²

tM
T (ν0)

// T (L)

such that ν2 ◦φ−1 ◦ tν2 = − tη1 ◦ψ ◦η1, then (P, φ) = (Q,−ψ) in WB(Th). In
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this situation, we say that L is a sub-lagrangian of (P, φ); compare this with
the Definitions 3.8 and 3.10. Balmer also introduced “shifted” Witt groups,
observing that if t is a duality on a triangulated category T with translation
functor T , then T n ◦ t is also a duality functor.

Definition 10.3 Let T be a triangulated category with translation functor
T and duality t. Then W n

B(Th) is by definition the monoid of isomorphism
classes of objects of Th relative to the duality functor T n ◦ t, divided by the
metabolic objects.

We writeWB(Th) forW 0
B(Th). Balmer proves that this Witt group generalizes

the Witt group of a hermitian exact category we defined at the beginning
of section 5 (and hence in Definition 9.10) if C is semi-saturated. (Recall
that “semi-saturated” means that any morphism having a right inverse is
an admissible epimorphism. In particular, any pseudo-abelian category is
semi-saturated.)

Theorem 10.4 Let C be an exact category in which 2 is invertible together
with a duality functor and let Db(C) be the derived category with the induced
duality functor, i.e. ( t(C∗))n = tC−n and similar for the face maps and
morphisms. Then the inclusion in degree 0 induces a morphism

W (Ch)→ WB(Db(C)h)

which is an isomorphism if C is semi-saturated.

Proof: See [Bal2, 4.3].

Observe that the “duality functor” of Hartshorne (RHom∗( ,OX)) for
noetherian regular separated schemes becomes the duality functor of Balmer
when we restrict to the category of vector bundles and invert the quasi-
isomorphisms, hence pass to the derived category.
Recall that we can also defineK0 of a triangulated category (take the Grothen-
dieck group of the abelian monoid of objects and divide out by the triangles)
such that this “generalizes” the definition for exact categories when we con-
sider the bounded derived category. This suggest a definition of K0 for a
hermitian triangulated category:

Definition 10.5 For any triangulated category T with a duality functor
t, we define Kh

0 (Th) to be the Grothendieck group of the abelian monoid
of isomorphism classes of objects of Th, divided by the relation (P, φ) ∼
(Q,−ψ)⊕ (H(L), µL) whenever we have a diagram (*).

Proposition 10.6 Let C be an exact category in which 2 is invertible to-
gether with a duality functor and let Db(C) be the derived category with the
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induced duality functor, i.e. ( t(C∗))n = tC−n and similar for the face maps
and morphisms. Then the inclusion in degree 0 induces a morphism

ι : Kh
0 (Ch)→ Kh

0 (Db(C)h)

which is an epimorphism if C is semi-saturated.

Proof: We claim that there is a commutative diagram of exact sequences

K0(C)
∼=

²²

// Kh
0 (Ch)

ι

²²

// W (Ch)
∼=

²²

// 0

K0(D
d(C)) H // Kh

0 (Db(C)h) // WB(Db(C)h) // 0

By Theorem 5.7 K0(Ch) is nothing else but the Grothendieck group of the
underlying hermitian additive category divided by the relation (P, φ) ∼
(L⊥/L, φ) ⊕ (H(L), µL) whenever L is a sublagrangian of (P, φ) (in [QSS],
this group is denoted by GHε

0(C)). This shows that ι is well-defined. Next,

we show that H is well-defined. Assume that A
i→ B

p→ C
s→ T (A) is an

exact triangle. Then we have the following commutative diagram with exact
rows and columns

T−1(C)⊕ tT (A)

id
²²

T−1(s)⊕ ts// A⊕ tC

id

²²

i⊕ tp // H(B)

µB

²²

p⊕ ti// C ⊕ tA

id

²²
T−1(C)⊕ tT (A)

0

²²

T−1(s)⊕ ts// A⊕ tC

0

²²

i⊕ tp // H(B)
p⊕ ti// C ⊕ tA

0

0
²²

0
0

oo

0
²²

C ⊕ tA
s⊕T ( tc)

// T (A)⊕ T ( tC)

such that both morphisms from A⊕ tC to tA⊕C are 0, hence (H(B), µB) =
(H(A ⊕ tC), µA⊕ tC) ∼= (H(A), µA) ⊕ (H(C), µC) in Kh

0 (Db(C)h) by defini-
tion.
The upper row of the diagram is exact by definition, and the lower row is
exact because any object in Kh

0 (Db(C)h) which is stably metabolic is already
metabolic [Bal1, Theorem 3] and therefore equivalent to an object in the
image of H. Finally, the five lemma shows that ι is an epimorphism.

I conjecture that ι is in fact an isomorphism.

Balmer uses his definition to prove a 12-term localization exact sequence
for Witt groups [Bal1] which we will use in the next section. In this localiza-
tion sequence there do also appear the “shifted Witt groups” defined above
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which are of period four. He explained to me the idea of the proof that for
additive categories these equal the higher L-groups of Ranicki et al. (see
our remark in section 3) and hence - up to 2-torsion - Karoubi’s higher Witt
groups. But there is still no written proof. There seems to be a generalization
of L-theory to exact categories due to C. Walter which should still coincide
with Balmer’s Witt groups. This should also be compared with the work of
[WW], see our remark at the end of section 7.

One might conjecture that for exact categories our higher Witt groups
(see Definition 9.10) coincide with Balmer’s shifted Witt groups when we
tensorize with Z[1/2]. Nevertheless, there are interesting elements in the 2-
torsion of our higher Witt groups which do not exist in the periodic shifted
Witt groups of Balmer. For example, the element of order 2 in W1(F ) for F
a field corresponding to the determinant is 0 in W−1

B (F ). See also Lemma
11.2 for a comparison of his shifted Witt groups with our negative ones.

Another open problem is to investigate when the “isomorphism conjec-
ture” for the assembly maps in hermitian K-theory of group rings holds. In
fact, one observes that our non-connective spectrum for the hermitian K-
theory of section 6 fits well in the framework of [DL].

Finally, let us say that it is a very tempting problem to construct a
spectrum representing hermitian K-theory of a (regular) scheme in the A1-
homotopy category of Morel and Voevodsky, as can be done for ordinary al-
gebraic K-theory [MV]. The key geometric properties of hermitian K-theory
needed to establish its representability can be proved for regular affine vari-
eties using the tools of the next section. To prove them for regular varieties
in general, we will probably need again an analogon of the techniques of
[TT]. In particular, we do not know yet wether replacing the presheaf Kh
by a fibrant sheaf with respect to the closed model structure of [MV] yields
the same definition for the hermitian K-theory of regular varieties as our
definition of section 5.
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11 The proof of the Localization Theorem

This section is joint work with M. Schlichting. We will prove the Localization
Theorem 8.7 which we repeat for the reader’s convenience:

Theorem 11.1 Let A be a hereditary ring and assume that 2 is invertible.
Then for any central multiplicative subset S ⊂ A containing no zero divisors,
we have a homotopy fibration

i( εP (A)h)
+ → i( εP (S−1A)h)

+ →W( ε(TS)h)

Consequently, we have a long exact sequence

... Kn( εP (A)h)→ Kn( εP (S−1A)h)→ Un−1( ε(TS)h)

→ Kn−1( εP (A)h)→ Kn−1( εP (S−1A)h)...

...K0( εP (A)h)→ K0( εP (S−1A)h)→ W ( ε(TS)h)
Note that the morphism K0( εP (S−1A)h)→ W ( ε(TS)h) will not be surjective
in general.

To simplify notations, we write iC+ instead of Iso C−1 Iso C for any symmetric
monoidal category C.

The idea of the proof is the following: Consider the following diagram
induced by a diagram of simplicial additive categories with duality (the first
one being constant)

(iP (A))+
h

ι∗→ |(iG∗)+
h | π∗→ |(iR∗TS)+

h |

where G∗ is a simplicial version of the category of lattices (see Definition
11.3). Recall (Theorem 7.2) that Ω|(iR∗TS)h| ' U(TS). Now Gk and RkTS
are additive categories whose K−1 will vanish, so by Lemma 11.2 the de-
greewise localization sequence for hermitian K-theory reduces at n = −1
to the localization sequence for Balmer’s Witt groups whose hypotheses we
can actually prove to be fullfilled (Proposition 11.4). Further calculations
and Karoubi induction will show that we have in fact for k fixed a localiza-
tion homotopy fibration in hermitian K-theory. To see that we still have a
homotopy fibration after realization, we need a π0-surjectivity condition (cf
[BF] and section 8). This difficulty will be solved by Lemma 11.7. Finally,
we have to identify the realization of the degreewise hermitian K-theory of
the “simplicial lattices” G∗ with the hermitian K-theory of the localized ring
S−1A (see Proposition 11.8).
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Definition 3.13 for additive categories with duality allows us also to define
Karoubi’s negative higher Witt groups (Definition 9.10) thanks to the results
of section 6. The following result identifies Balmer’s shifted triangulated Witt
groups (Definition 10.3) and Karoubi’s negative Witt groups of regular rings
(not only up to 2-torsion):

Lemma 11.2 Let A be an additive pseudo-abelian category with duality with
Kn(A) = 0 ∀N ≤ n < 0. Then Wn(A) = W−n

B (A)∀N ≤ n ≤ 0.

Proof: For n = 0 this is [Bal2]. Let CA and SA be the cone and sus-
pension of A as in section 6. By [CP],[Sch1], we always have a sequence of
triangulated categories which is exact up to direct factors (i.e. after pseudo-
abelianization, see p. 19)

(∗) Db(A) −→ Db(CA) −→ Db(SA)

Since A is pseudo-abelian, Db(A) is pseudo-abelian (see [BSch], we have

Db(Ẽ) ' D̃b(E) for any exact category E). In particular, Db(A) is the ker-
nel of Db(CA) −→ Db(SA). Since K−1(A) = 0 by hypothesis, Db(SA) →
Db(S̃A) is an equivalence of triangulated categories. This is a consequence
of the following fact: if V ⊂ W is a triangulated full cofinal subcategory
of a triangulated category W and if the inclusion induces an isomorphism
K0(V) → K0(W) then V ⊂ W is an equivalence of triangulated cate-
gories, see for instance [Th3, theorem 2.1]. In our situation 0 = K−1(A) =

K0(S̃A) = K0(D
b(S̃A)). Hence the claimed equivalence of triangulated cat-

egories. Therefore, Db(SA) is pseudo-abelian, and (∗) is an exact sequence
of triangulated categories. Applying Balmer’s 12-term exact localization se-
quence [Bal1, Theorem 6.2] and using the fact that W i

B(CA) = 0 for all
i ∈ N (because CA is flasque), we see that W i

B(SA) = W i+1
B (A). For

Karoubi’s Wittgroups we have W−i(SA) = W−i−1(A). For i = 0 we find
W−1(A) = W0(SA) = W 0

B(SA) = W 1
B(A). The result then follows by induc-

tion.

Definition 11.3 Let G∗ be the following simplicial additive category with
duality:
Its objects are triples (P∗, T∗∗, φ∗) where P∗ is a functor P∗ : n → (P (A))
(recall that n is the category n = n′ < ... < 0′ < 0 < ... < n), T∗∗ is
an object of R∗TS and φ∗ is a natural transformation φ∗ : P∗ → Tn′∗ such
that Pk // // Pl // // Tkl is a short exact sequence ∀k ≤ l. Morphisms
are natural transformations. The simplicial structure and the duality are
induced by those of R∗TS (recall that if Pk // // Pl // // Tkl is a short
exact sequence, then HomA(Pl, A) // // HomA(Pk, A) // // Ext1A(Tkl, A)
is also a short exact sequence).
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We have simplicial functors of simplicial additive categories with duality

P (A)
ι∗→ G∗

π∗→ R∗TS
where P (A) is the constant simplicial category. The functor ιk is given by
the constant inclusion mapping P to (P∗, 0∗∗, 0∗) and πk is the projection
mapping (P∗, T∗∗, φ∗) to T∗∗.

Proposition 11.4 The simplicial functors constructed above induce ∀k ≥ 0
a short exact sequence of triangulated categories

Db(P (A))
Db(ιk)→ Db(Gk)

Db(πk)→ Db(RkTS).

Proof: We have to show that a) Db(P (A)) is equivalent to the full subcat-
egory of objects of Db(Gk) whose image in Db(RkTS) is isomorphic to 0 and
b) that we have an equivalence of categories Db(Gk)/D

b(P (A)) ' Db(RkTS).
First observe that for any additive category A, the bounded derived category
Db(A) is just the bounded homotopy category (i.e., Chb(A) modulo chain ho-
motopies). To prove a), we first consider the case k = 0. An object of Db(G0)
is just a bounded complex of short exact sequences M∗ // // N∗ // // T∗.
with Mk and Nk projective and Tk a S−torsion module ∀k. Assume that T∗
is contractible. We pretend that this object is then homotopy equivalent to
M∗ // // M∗ // // 0∗, i.e., is in the image of Db(P (A)). Consider the cone
of (M∗ // // M∗ // // 0∗) → (M∗ // // N∗ // // T∗). We have to con-
struct a null-homotopy of this chain complex in G0 which is nothing else but
a compatible choice (all squares commute) of null homotopies of the three
chain complexes. This can be done applying Lemma 11.5 below which was
shown to me by P. Balmer.
For k > 0, we first use the lemma to construct a null homotopy for Pk using
the one given on Tk′k. The others are then again a consequence of functori-
ality, and they are compatible because the null homotopies of the Tij are.
To prove b), check that the functor F : Chb(Gk) → Chb(RkTS) is full and
essentially surjective, hence F : Db(Gk)/D

b(P (A))→ Db(RkTS) given by the
universal property is also full and essentially surjective.
To prove that F is faithful, fix a morphism a : A∗ → A′∗ in Chb(Gk) map-
ping to 0 in Db(RkTS). Hence F (a) factors through a contractible object
in Chb(RkTS). Choose a preimage B∗ in Chb(Gk) of this contractible ob-
ject. Following Lemma 11.5., B∗ is homotopy equivalent to an element in

Chb(P (A)). Choosing arbitrary liftings of the morphisms A∗
b→ B∗

c→ A′∗, we

do not have a = c◦b in general. But the composition of A∗
(1,b)−→ A∗⊕B∗ (a,−c)−→

A′∗ maps to 0 in Chb(RkTS). It therefore suffices to consider maps a with
F (a) = 0 already in Chb(RkTS), and those obviously factor through objects
of Chb(P (A)).
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Lemma 11.5 Any bounded complex of short exact sequences
(P∗ // // Q∗ // // T∗) with P∗ and T∗ contractible and Pk and Qk projec-
tive ∀k is itself contractible.

Proof: Consider the following diagram

Pn+1
// fn+1 //

an+1

²²

Qn+1
gn+1 // //

bn+1

²²

Tn+1

cn+1

²²
Pn // fn //

an

²²

Qn
gn // //

bn
²²

Tn

cn
²²

tn+1

II

Pn−1
// fn−1 //

rn

II

Qn−1
gn−1 // //

sn

II

Tn−1

tn

II

where rj, sj and tj are the null-homotopies (idPj
= aj+1 ◦ rj+1 + rj ◦ aj

etc) which are compatible for j ≤ n by induction. Given tn+1, we then
have to construct a morphism sn+1 such that gn+1 ◦ sn+1 = tn+1 ◦ gn and
that bn+1 ◦ sn+1 + sn ◦ bn = 1Qn . As Qn is projective, there is a morphism
v : Qn → Qn+1 such that tn+1◦gn = gn+1◦v. Define e = 1Qn−sn◦bn−bn+1◦v.
Then check that bn ◦ e = 0 and gn ◦ e = 0. As fn = ker(gn), there exists a
m : Qn → Pn such that e = fn ◦m. Let lj : Pj−1 → Pj be a null homotopy
defined on the whole complex P∗ (which is not assumed to be compatible with
anything else). We have idPn−rn◦an = (an+1◦ln+1+ln◦an)◦(idPn−rn◦an) =
an+1 ◦ ln+1 ◦ (idPn − rn ◦ an) using an ◦ rn = idPn−1 − rn−1 ◦ an−1. Setting
k := ln+1 ◦ (idPn − rn ◦ an) and sn+1 := v + fn+1 ◦ k ◦m we are done (check
that idPn = rn ◦ an + an+1 ◦ k and thus e = bn+1 ◦ fn+1 ◦ k ◦m). Then we
obtain a contraction of P∗ compatible with the others by functoriality of the
kernel.

We will now construct an additive category C(ιk) := GkqP (A)CP (A) asso-
ciated to the additive functor ιk : P (A)→ Gk where C is the cone of section
6. This will be a kind of K-theoretic cofiber of ιk. Recall that a preadditive
category is a category whose Hom-sets are abelian groups and composition
is bilinear. In contrast to the more restrictive definition of an additive cat-
egory, we do not demand the existence of finite sums. We let pr add cat be
the category of small preadditive categories. The construction above will be
carried out in two steps. First, we work on the level of preadditive categories.
Second we define a functor L : pr add cat→ add cat.

Assume that we have a functor F : D → pr add cat where D might be
any small category. We define the colimit of this functor by Obj(colimD F ) =
colimd∈D Obj(F (d)). For two objects [A] and [B] of colimD F represented by
A ∈ Fa and B in Fb, a, b ∈ D, we have

colimD F (A,B) =
⊕
J

Fd1(X1, Y1)⊗ ...⊗ Fdn(Xn, Yn)/ ∼
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with J = {n ≥ 1, dj ∈ Obj(D), Xj, Yj objects of Fdj
, 1 ≤ j ≤ n, [X1] =

[A], [Yi] = [Xi+1], 1 ≤ i ≤ n, [Yn] = [B] in Obj(colimD F )} and the equiva-
lence relation is generated by f ⊗g ∼ f ◦g when the source of f is the target
of g and f ∼ F (γ)(f) for γ a morphism in D.

In our case D = {∗ ← ∗ → ∗} and the functor P (A) → CP (A) is a full
inclusion. Hence Obj(C(ιk)) = (Obj(CP (A)) − Obj(P (A)))qObj(Gk). We
obtain a commutative diagram of additive categories with duality

P (A)

j

²²

ιk //

cocart

Gk

j̄
²²

CP (A)
ῑk //

π

²²

C(ιk)

π̄
²²

SP (A) SP (A)

where π̄ is induced by the zero map Gk → SP (A) and the universal prop-
erty of C(ιk). As j is a full inclusion, we do not need to consider morphisms
in FP (A) (see our definition of the morphisms in colimD F ). Thus any mor-
phism in C(ιk) from j̄(B) to ῑk(U) (with B an object in Gk and U in Gk) can

be represented as Σiui ⊗ bi with B
bi→ ιk(Pi) a morphism in Gk, j(Pi)

ui→ U
a morphism in CP (A) and Pi an object in P (A). Moreover, CP (A) is a full
subcategory of C(ιk).

Now comes the second step. We define the functor L : pr add cat →
add cat as follows: an object of LA is given by an l ∈ N and an object Ai in
A for all 0 ≤ i ≤ l. We write (A1, ..., Al) for this object. A morphism from
(A1, ..., Al) to (B1, ..., Bj) is given by a collection of morphisms φj,i : Ai → Bj

for all pair (0, 0) ≤ (i, j) ≤ (l,m). The composition is defined as usual for
matrices. We also allow the 0-tuple 0 = (). (For example, the category of
free R-modules of finite type is equivalent to L(R).) We have an inclusion
A → LA given by A 7→ 0(A). For any small category D and any functor
F : D → pr add cat we have canonical functors

colimD F
i→ colimD LF

j→ L colimD F

Thew composition j ◦ i is fully faithful and injective on the objects. Hence i
is faithful and injective on objects as well. Calculations similar to the above
ones show that i is also full. Any object of LFd is a direct sum of objects of
Fd. As additive functors preserve direct sums, any obect of colimD LF is a
direct sum of objects in the image of i. Putting all this together, we obtain
an equivalence of categories colimD LF

'→ L colimD F . Hence, we assume
from now on that C(ιk) is additive.

Both columns of our diagram fulfill the conditions of Corollary 6.7. To
see this for the second column, observe that any object in the image of j̄ is
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filtered by itself. Now fix ῑk(U) and a P (A)-filtration of U given by {(pi, si) :
Pi

Â // U, i ∈ I}. We claim that its image under ῑk is a Gk-filtration
of ῑk(U). The image of a filtered category is a filtered category. Consider a
morphism from B to ιk(U) represented by φ = Σn

j=1fj⊗gj ∈ C(ιk)(ῑk(U), B).
The fj have sources in P (A) and target U . As U is P (A)-filtered, we have
fj = s ◦ f ′j where (p, s) : P Â // U and hence

φ = Σn
j=1s ◦ f ′j ⊗ gj = s⊗ (Σn

j=1ιk(f
′
j) ◦ gj) = ῑk(s) ◦ g

where g = Σn
j=1ιk(f

′
j) ◦ gj a morphism in Gk. The case of the other factor-

ization into an admissible epimorphism and a morphism in Gk is similar.
Hence by Corollary 6.7 we obtain a homotopy fibration

iP (A)+
h → i(Gk)

+
h → iC̃(ιk)

+

h

where as before C̃(ιk) stands for the pseudo-abelianization of C(ιk).

Lemma 11.6 The functor C̃(ιk) → RkTS given by the universal property

induces a homotopy equivalence iC̃(ιk)
+

h ' iRh
kT +

S .

Proof: Consider the functor C(ιk) → RkTS defined by the universal prop-
erty of the pushout. As RkTS is pseudo-abelian, we have an induced functor

φ : C̃(ιk)→ RkTS. Applying the Fundamental Theorem for additive pseudo-
abelian categories, we have two commutative diagrams with exact rows

εU0(C̃(ιk))

εU0(φ)

²²

// K0(C̃(ιk))

K0(φ)

²²

H∗ //
εK

h
0 (C̃(ιk))

εKh
0 (φ)

²²

//
εW0(C̃(ιk))

εW0(φ)

²²

// 0

εU0(RkTS) // K0(RkTS) H∗ //
εK

h
0 (RkTS) //

εW0(RkTS) // 0
and

εK
h
0 (C̃(ιk))

εKh
0 (φ)

²²

F∗ // K0(C̃(ιk))

K0(φ)

²²

// −εU0(C̃(ιk))

−εU0(φ)

²²

//
εK

h
−1(C̃(ιk))

εKh
−1(φ)

²²

F∗ // K−1(C̃(ιk))

εKh
−1(φ)

²²

εK
h
0 (RkTS) F∗ // K0(RkTS) // −εU0(RkTS) //

εK
h
−1(RkTS) F∗ // K−1(RkTS)

We want to show that Kn(φ) ∀ n ≥ −1,W0(φ) and Kh
−1(φ) are isomorphisms.

This would imply that Kh
0 (φ) is also an isomorphism, and the Karoubi in-

duction we already used in the proof of Theorem 9.5 would yield that Kh
n(φ)

is an isomorphism for any n ≥ −1. That Kn(φ) is an isomorphism for n ≥ 0
follows from comparing the two long exact sequences of K-groups we get from

[PW],[TT, 1.8.2, 1.11.7] and observing that both K0(Gk) → K0(C̃(ιk)) and
K0(Gk) → K0(RkTS) are surjective because K−1(P (A)) = 0 for A a regular
ring [Bass, p.685].
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As RkTS is the underlying additive category of an exact category with ad-

missible kernels, we have K−1(RkTS) = 0 (see [Sch4]). But K−1 of C̃(ιk) also
vanishes because it is part of a long exact sequence of K-groups in positive
and negative degrees [PW],[Sch1, Theorem 7.12] with K−1(Gk) = 0 (again

this is a consequence of [Sch4]) and K−1( ˜SP (A)) ∼= K−2(P (A)) = 0. Ap-
plying Lemma 11.2, we are reduced to show that W 0

B(φ) and W 1
B(φ) are

isomorphisms. Using [Sch1, Theorem 10.1] and Proposition 11.4, we get two
exact sequences of triangulated categories

Db(Gk)→ Db(C̃(ιk))→ Db( ˜SP (A))

and
Db(P (A))→ Db(Gk)→ Db(RkTS)

and hence by the localization exact sequence [Bal1, Theorem 6.2] we have
long exact sequences for WB. Again we want to conclude by the five lemma.
As WB only depends on the bounded derived category and Db commutes
with the pseudo-abelianization [BSch] it is sufficient to prove that Db(C(ιk))
is pseudo-abelian. For this, consider the commutative diagram with exact
rows
K1(SP (A))

α
²²

// K0(D
b(Gk))

β
²²

// K0(D
b(Cιk))

γ

²²

// K0(D
b(SP (A)))

K1( ˜SP (A)) // K0( ˜Db(Gk))
// K0( ˜Db(Cιk))

// K0( ˜Db(SP (A))).

By cofinality, α is an isomorphism, and β is an isomorphism again by [BSch]
because Gk is pseudo-abelian. As CP (A)→ SP (A) is surjective on objects,

K0(D
b(SP (A))) = 0, and K0( ˜Db(SP (A))) = 0 because K0( ˜Db(SP (A))) ∼=

K0( ˜SP (A)) ∼= K−1(P (A)) = 0 as A is regular. Hence γ is an isomorphism,
and by [Th3, theorem 2.1] we know that Db(C(ιk)) is already pseudo-abelian.

Summing up, we have a homotopy fibration

(iP (A))+
h

ιk→ (iGk)
+
h

πk→ (iRh
kTS)+ ∀k.

Now we would like to apply the Bousfield-Friedlander Theorem [BF, Theorem
B.4] to conclude that the realization

(iP (A))+
h

ι∗→ |(iG∗)+
h | π∗→ |(iR∗TS)+

h |
is still a homotopy fibration. For this we have to check the two conditions of
[BF]. The “π∗-Kan-condition” holds because we are dealing with simplicial

H-groups. But the morphism π0((iGk)
+
h )

πk→ π0((iRkTS)+
h ) might not be sur-

jective in general. But if we write T̂k for the full subcategory of i(Rk(TS)h)+

consisting of those components lying in the image of i(Gk)
+
h → i(Rk(TS)h)+,

then we can prove the following:
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Lemma 11.7 There is a homotopy fibration

|T̂∗| → |i(R∗(TS)h)+| → |L∗|

where L∗ is a constant simplicial group.

Proof: We define Lk := coker(π0(T̂k)→ π0(i(Rk(TS)h)+). By the Bousfield-
Friedlander Theorem, we have a homotopy fibration |T̂∗| → |i(R∗(TS)h)+| →
|L∗|. Denote by LWk the cokernel of W0(Gk) → W0(Rk(TS)). The in-
duced map on the cokernels Lk → LWk is an isomorphism since K0(Gk) →
K0(Rk(TS)) is an epimorphism. Consider the following (up to sign) commu-
tative diagram

W0(Gk) // W0(Rk(TS))
α

²²

δk // W 1
B(P (A))

W0(P (S−1A)) // W0(TS) δ // W 1
B(P (A))

where the TS in the bottom row is equipped with the non-split exact struc-
ture. Both rows are exact by Balmer’s localization theorem [Bal1] because
we have exact sequences of bounded derived categories (Proposition 11.4
and [Ke2, Example p.17], beware of the degree shift depending on the dif-
ferent dualities on TS). The map α is nothing else but the projection on
the T0′0-entry and its hermitian form, hence is surjective. It follows that
Lk ∼= LWk = im(δk) = im(δ) does not depend on k. Considering L0 as a con-
stant simplicial group, this implies morover that L0 → L∗ is an isomorphism
of simplicial groups.

Hence πn(|T̂∗|) → πn(|i(R∗(TS))+
h |) is an isomorphism ∀n ≥ 1 and a

monomorphism whose cokernel is the image of δ if n = 0. Observe that
the isomorphism (by the five lemma) W0(C(ιk)) ∼= W0(Rk(TS)) shows that
the same argument yields a homotopy fibration |Ĉ∗| → |i(C(ι∗))+

h | → |L∗|
where Ĉk is the full subcategory of the components lying in the image of
i(Gk)

+
h → i(C(ιk))

+
h .

We also observe [Sch3] that in our case realization commutes with group
completion. More precisely, we have |(iG∗)+

h | ' |(iG∗)h|+ and |(iR∗TS)+
h | '

|(iR∗TS)h|+ ' |(iR∗TS)h| as the latter one is already an H-group.

So the last step of the proof is the following

Proposition 11.8 There is a homotopy equivalence

iP (S−1A)h ' |i(G∗)h|.
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Proof: For any category with duality C, we denote by n∗C its nerve (a sim-
plicial set), and by N∗C the simplicial category whose objects in degree k
are chains of morphisms of length k and morphisms are commutative dia-
grams. Further, N iso

∗ C is the full simplicial subcategory of N∗C whose ob-
jects are those diagrams containing only isomorphisms. We write De∗ for the
edgewise subdivision of a simplicial category D∗. Finally, recall that for a
category C with duality, Chd denotes the category of all hermitian objects

including the degenerate ones. Writing { ∼// // }P (A) for the subcategory
of P (A) whose morphisms are monomorphisms with S-torsion as cokernel,

we have i(G∗)h = (i(N e
∗{

∼// // }P (A)))hd and n∗(({
∼// // }P (A))hd) '

diag ◦ n∗N iso
] (({ ∼// // }P (A))hd) = diag ◦ n]iN∗[({

∼// // }P (A))hd].

Now we have the following functor of simplicial categories F : (i(N e
k{

∼// //

}P (A)))hd = iNk[({ ∼// // }P (A))hd] which is defined on objects by mapping

Pk′

∼=ψk′=ψ
∗
k

²²

// ∼
βk′

// P(k−1)′

∼= ψ(k−1)′=ψ
∗
k−1

²²

... P0′

∼=ψ0′=ψ
∗
0

²²

// ∼
β0′

// P0

∼= ψ0=ψ∗
0′

²²

... Pk−1

∼=ψk−1=ψ∗
(k−1)′

²²

// ∼
βk−1

// Pk

∼=ψk=ψ∗
k′

²²
P ∗k // ∼

β(k−1)∗
// P ∗k−1

... P ∗0 // ∼
β∗
0′

// P ∗0′ ... P ∗(k−1)′ // ∼
β∗

k′
// P ∗k′

to
Pk′

²²
∼ψkβk−1...βk′

²²

// ∼
βk′

// P(k−1)′
²²

∼ ψk−1βk−2...β(k−1)′
²²

... P1′
²²
∼ψ1β0...β1′

²²

// ∼
β1′

// P0′
²²

∼ ψ0β0′
²²

P ∗k′ P ∗(k−1)′oo∼
β∗

k′
oo ... P ∗1′ P ∗0′oo∼

β∗
1′

oo

and this forces the definition of F on morphisms (i.e., (fj : Pj → Qj)k′≤j≤k
is sent to (fj : Pj → Qj)k′≤j≤0) . One checks that this is fully faithful and
essentially surjective.

Finally, we see that the localization functor ({ ∼// // }P (A))hd →
(iP (S−1A))hd = iP (S−1A)h is a homotopy equivalence. This follows from
Quillen’s Theorem A and the argument of Lemma 8.5
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12 Conclusion (en français)

Dans les sections 6,7 et 8 nous avons établi le délaçage pour une catégorie
additive hermitienne ainsi qu’un théorème de localisation et un théorème de
dévissage pour la K-théorie hermitienne des anneaux héréditaires. Les ana-
logues de ces résultats en K-théorie ordinaire sont connus depuis longtemps.
Chaque fois que nous avons une construction ou un théorème en K-théorie
ordinaire, la question de l’existence d’un résultat similaire en K-théorie her-
mitienne se pose. Bien sûr ceci nécessite d’abord l’existence d’un foncteur
de dualité qui existe pour la catégorie des modules projectifs de type fini ou
encore pour les fibrés vectoriels sur un schéma, mais qui n’existe pas pour la
catégorie des modules de type fini ou des faisceaux cohérents en général.

Deux résultats essentiels de ma thèse sont la “bonne” définition de la
K-théorie hermitienne d’une catégorie exacte avec dualité - en utilisant le
Théorème 5.7 - et la description de la U -théorie avec un modèle à la Wald-
hausen (Proposition 7.2). Le Théorème de Localisation après Dévissage
(Theorem 9.7) nous donne une suite exacte longue dont tous les objects sont
définis depuis longtemps (Karoubi avait conjecturé l’exactitude de cette suite
déjà dans [Ka3]). Mais pour la démonstration (qui passe par la catégorie des
modules de torsion) nous avons eu besoin de la théorie pour des catégories
exactes avec dualité en toute généralité comme nous l’avons développée dans
les paragraphe 5 et 7. Il s’agit d’un très joli exemple où la généralisation et
les considérations plutôt abstraites impliquent finalement des résultats très
concrets comme l’isomorphisme (cf Théorème 9.11)

1K
h
n(A)

∼=→ 1K
h
n(F ) ∀n ≡ 3, 4mod 8

où A est l’anneau des entiers dans un corps de nombres F .

Pour conclure, nous allons indiquer quelques problèmes ouverts qui nous
semblent intéressants. Au lieu de donner une liste des théorèmes en K-théorie
ordinaire qu’on souhaiterait établir en K-théorie hermitienne, je voudrais dire
quelques mots sur les stratégies différentes pour les démontrer. D’abord, il
serait bien de démontrer le Théorème 3.7 pour des catégories exactes avec du-
alité en général ce qui nous permettrait d’appliquer la stratégie de Karoubi,
comme nous l’avons fait pour démontrer le Théorème 9.5. Le problème prin-
cipal pour le démontrer semble l’absence des délaçages explicites de la K-
théorie hermitienne pour les catégories exactes avec dualité. Ensuite, il sera
souvent plus commode de travailler avec notre description à la Waldhausen
qui nous permet de reduire beaucoup de choses des catégories exactes aux
catégories additives dont la K-théorie hermitienne est beaucoup mieux com-
prise (Théorème Fondamental, délaçage etc).
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Enfin, on pourrait passer d’une catégorie exacte avec dualité (C, t) à sa
catégorie dérivée bornée Db(C) (qui est muni d’une structure triangulée et
d’une dualité induite). Parfois, on a un foncteur de dualité sur Db(C) même
si un tel n’existait pas pour la catégorie exacte de départ (cf Définition 10.1
et [Har]). On aimerait alors exploiter la machinerie de Thomason [TT] pour
les “catégories (bicompliciales) de Waldhausen avec dualité”.

Balmer [Bal1][Bal2] a défini des groupes de Witt pour une catégorie tri-
angulée avec dualité tels que son groupe de Witt WB(Db(C)h) cöıncide avec
notre groupe de Witt W (Ch) (cf [Bal2] et Théorème 10.3). Il est naturel de
se demander si ses groupes de Witt translatés cöıncident avec nos groupes de
Witt supérieurs (Définition 9.10) à la 2-torsion près. Notre démonstration a
d’ailleurs utilisé certains résultats sur ces groupes de Witt triangulaires.
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