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A semi-local study on normally
hyperbolic manifolds with applications
to diffusion

Abstract

Let (M , Ω) be a smooth symplectic manifold and f : M → M be a symplectic diffeomorphism
of class C l (l ≥ 3). Let N be a smooth compact submanifold of M which is normally hyperbolic
for f and such that the dimension of its unstable bundle is equal to that of the stable one. We
suppose that N is boundaryless, controllable and that its stable and unstable bundles are trivial.

First, we consider a C1-submanifold ∆ of M whose dimension is equal to the dimension of
a fiber of the unstable bundle of TNM . We suppose that ∆ transversely intersects the stable
manifold of N . Then, we prove the basic λ-lemma that states that for all ε > 0, and for n ∈ N
large enough, there exists xn ∈ N such that fn(∆) is ε-close, in the C1 topology, to the strongly
unstable manifold of xn. As an application of the basic λ-lemma, we prove the existence of
shadowing orbits for a finite family of invariant minimal sets (for which we do not assume any
regularity) with heteroclinic connections. As a particular case, we recover classical results on the
existence of diffusion orbits (Arnold’s example).

Then, we state and prove the fibered λ-lemma which is a generalization of the basic λ-
lemma to C2-submanifolds whose dimension is between that of the unstable leaves and that of
the unstable manifold. As an application of the fibered λ-lemma, we prove the transitivity of
transversal heteroclinic connections for systems having the strong torsion property and some
additional assumptions.

Under the same assumptions, we derive an explicit construction of correctly aligned windows
for proving the existence of shadowing orbits along a chain of invariant tori contained in a
normally hyperbolic manifold. Moreover, we prove that the diffusion time splits into three
characteristic parameters: the ergodization time associated with each torus of the chain, the
“straightening" time given by the fibered λ-lemma, and the torsion time on each torus.

Finally, we construct a simple class of a priori stable nearly integrable systems on A3 for
which we prove the existence of “asymptotically dense projected orbits", that is, orbits at fixed
energy whose projection on the energy level passes within an arbitrarily small distance from each
point of the projected energy level, when the size of the perturbation tends to 0.

Keywords

Dynamical systems, Hamiltonian systems, Nearly integrable Hamiltonian systems, Normally
hyperbolic manifolds, λ-lemmas, Arnold’s diffusion.
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Étude semi-locale des variétés normalement hyperboliques et
applications à la diffusion

Résumé

Soient (M , Ω) une variété symplectique C∞ et f :M →M un difféormorphisme symplectique de
classe C l (l ≥ 3). Soit N une sous-variété C∞ de M , compacte et sans bord, qui est normalement
hyperbolique pour f . Supposons que N est contrôlable et que ses fibrés stable et instable sont
triviaux et de même dimension.

Dans un premier temps, on considère une C1 sous-variété ∆ de M dont la dimension est égale
à celle d’une feuille instable de N . On suppose que ∆ coupe transversalement la variété stable
de N . Alors, on prouve le λ-lemme basique qui dit que pour tout ε > 0, et pour tout n entier
assez grand, il existe un point xn dans N tel que fn(∆) est ε-proche, en topologie C1 à la variété
fortement instable de xn. Nous utilisons ensuite le λ-lemme pour montrer l’existence d’orbites
qui diffusent le long d’une famille finie d’ensembles invariants, contenus dans une variété nor-
malement hyperbolique, sur lesquels la dynamique est minimale et qui possèdent des connexions
hétéroclines. Comme cas particulier, on retrouve l’exemple d’Arnold.

Dans la deuxième partie, on prouve le λ-lemme fibré qui est une généralisation du λ-lemme
basique aux sous-variétés C2 dont la dimension varie entre celle des feuilles instables et celle
de la variété instable. Nous utilisons ensuite ce λ-lemme fibré pour prouver la transitivité des
connexions hétéroclines transverses pour des systèmes vérifiant une propriété de torsion forte et
des hypothèses supplémentaires.

Sous ces mêmes conditions, on établit une construction explicite de fenêtres correctement
alignées le long d’une chaîne de tores contenus dans une variété normalement hyperbolique. On
en déduit l’existence d’orbites qui dérivent le long de la chaîne, et on prouve que le temps de
diffusion dépend de trois paramètres caractéristiques : le temps de redressement (donné par le
λ-lemme fibré), le temps d’ergodisation de chaque tore et le temps de torsion.

Enfin, on construit une classe simple de systèmes presque intégrables, a priori stables, définis
sur A3 pour lesquels on prouve l’existence d’orbites asymptotiquement denses en projection, c’est-
à-dire, d’orbites à énergie fixée dont la projection sur le niveau d’énergie passe arbitrairement
près de tout point du niveau d’énergie projeté, quand la taille de la perturbation tend vers 0.

Mots-clefs

Systèmes dynamiques, Systèmes hamiltoniens, Systèmes presque-intégrables, Variétés normale-
ment hyperboliques, λ-lemmes, Diffusion d’Arnold.
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Introduction

English version

Since the pioneering paper [Arn64] of Arnold, numerous studies were dedicated to proving the
existence of diffusion orbits along chains of partially hyperbolic tori having heteroclinic connec-
tions. It took almost 40 years to understand that this point of view does not reflect the full
structure of the problem, and that the most important object to have in mind is the common
center manifold of these tori, which turns out to be a normally hyperbolic cylinder with many
homoclinic connections. In this setting, the initial proof of existence of diffusion orbits can be
significantly simplified and many new results become available.

Maybe the simplest non trivial case occurs when the homoclinic intersection of the cylinders
contains a submanifold which is itself diffeomorphic to a cylinder. This was introduced by
Moeckel in an abstract setting and since then, studies were devoted to the implementation of
Moeckel’s idea in the proper context of the semi-local analysis of normally hyperbolic cylinders.
In this setting, under proper homoclinic assumptions, the main result is a fibered analogue to
the classical Birkhoff-Smale theorem for a fixed point and the existence of a skew-product in
which simultaneouly appear the dynamics on the cylinder and the dynamics of the so-called
scattering maps. This is under development in several published or unpublished recent studies
(Marco, Gelfreich, Nassiri, Pujals...). The main obstacle in generalizing this set of ideas is
the fact that “typical" cylinders in the problem of Arnold diffusion do not satisfy the previous
homoclinic assumptions. In this setting, the previous Birkoff-Smale result cannot be global and
should yield a polysystem (or IFS) formed by the dynamics on the manifold and the homoclinic
“correspondence", which is no longer a map. To properly prove such a result, one needs new
ingredients of λ-lemma type.

Roughly speaking, a λ-lemma (also called Inclination Lemma) for normally hyperbolic man-
ifolds asserts that, given a smooth manifold M and a diffeomorphism f : M −→ M and a
normally hyperbolic submanifold N of M , if Γ is a submanifold that transversely intersects the
stable manifold of N , then, under iteration by f , Γ “approaches" the foliation of the unstable
manifold of N in a suitable topology.

On a different note, in [PS70], the authors proved that a diffeomorphism f is conjugate, in
the vicinity of a normally hyperbolic manifold, to Df restricted to its normal bundle, where the
conjugacy is a homeomorphism. This may imply λ-lemma type results (in the C0-topology),
however, the fact that the conjugacy is a homeomorphism (and thus does not guarantee the
preservation of the transversality) deprives the result of geometrical applications.
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Introduction

In the following years, there has been various sparks of interest to generalize this result to
regularities of higher order, namely to give improved results for the famous Smooth Conjugacy
Sternberg-Chen Theorem (see [BK01] and the references therein). These conjugacies make it
easier to depict the dynamical behavior near normally hyperbolic manifolds and yield the λ-
lemmas. However, in order to get smoother conjugacies, one has to settle for rigid assumptions.
We are therefore interested in studying the problem from a different perspective to see if these
restrictions are crucial, or if, on the contrary, one can avoid them at a small fee.

In this thesis, we prove two λ-lemmas. Let f , M , N and Γ be as above. Let ns be the
dimension of the stable bundle, nu the dimension of the unstable bundle and n0 the dimension
of N . By transversality of Γ and the stable manifold of N , the dimension of Γ is nu + r where
0 ≤ r ≤ n0. When r = 0, we prove the convergence of Γ to a suitable unstable leaf, in the C1-
topology, without any of the restrictions needed for the conjugacy method. Then, we let r vary
between 1 and n0. We prove that for all r, under iteration, Γ approaches the unstable manifold
of N in the C0-topology. Moreover, we prove that, under iteration, the norm of the component
in the s-direction of its unit tangent vectors tends to zero. The C1-convergence in the central
direction is a more complex matter. If f admits a suitable normal form in the vicinity of N , we
prove that, under iteration, Γ approaches the unstable manifold of N in the C1-topology.

Then we use these λ-lemmas to get three types of diffusion results :

1. Existence of diffusion orbits along transition chains,

2. Estimate of diffusion times using the windowing method,

3. Construction of nearly integrable Hamiltonian systems on the annulus A3 having an “asymp-
totically dense projected orbit”.

These three types of results will be discussed below. Before, let us indicate that we limit
ourselves to the symplectic case and we assume that our normally hyperbolic manifolds have
trivial stable and unstable bundles having the same dimension (this will in particular give us easy
regularity conditions for the lamination of the invariant manifolds). This will be no restriction
to us since all the applications that we have in mind will fall into this category (diffusion orbits,
Easton’s windows,...). Moreover, we adopt a very basic point of view and explicitly describe
the iterates of our transverse manifolds by means of a “controlled” straightening coordinate
system instead of using methods pertaining more to functional analysis (fixed point theorems
for instance). In particular, this will enable us to directly use our various computations for the
construction of windows and for estimating the transition times.

λ-lemmas and diffusion

In his famous note [Arn64], Arnold gave the first example of a three-degree-of-freedom system
where diffusion orbits shadowing whiskered tori were constructed. More precisely, the system
admits orbits for which the action undergoes a drift of length independent of the size of the
perturbation. Arnold’s example was chosen so that the Lagrangian invariant tori in the unper-
turbed system break down under the perturbation and give rise to partially hyperbolic tori in
the perturbed system.

The diffusion mechanism is then based on the existence of a transition chain, that is, a
family of invariant dynamically minimal tori with heteroclinic connections. One gets the orbits
shadowing the extremal tori of this chain by an “obstruction argument” satisfied by each torus

2



of the chain. This obstruction argument was first proved in the paper [Mar96], as a corollary of
a partially hyperbolic λ-lemma. The proof was then improved in [FM00].

The λ-lemmas proved in this thesis turn out to be new tools for proving the obstruction
argument as well as several generalizations. These λ-lemmas deal with invariant objects contained
in a normally hyperbolic manifold. This is not a genuine restriction, since one can in general
embed partially hyperbolic tori into their central manifolds, which, as a rule, are normally
hyperbolic. In that respect, our result generalizes the results of [Mar96], [Cre00] and [FM00],
and enables us to significatively simplify the previous proofs. Moreover, our λ-lemmas can be
applied to more general systems than that of Arnold ([DDLLS06], [DH11], [GR07], [GR09],...).

We first state and prove a “basic λ-lemma” for normally hyperbolic invariant manifolds.
The basic λ-lemma will enable us to prove the existence of drifting orbits along a chain of
invariant minimal sets contained in a normally hyperbolic manifold without any assumption on
the geometrical nature of the invariant sets (in particular, they do not need to be submanifolds).
As an easy particular case, we recover Arnold’s example. This also applies to prove the existence
of shadowing orbits along chains of primary and secondary tori, which appear in the works of
Delshams, De La Llave and Seara.

Moreover, in the last chapter of the thesis, we use the basic λ-lemma to construct “simple"
examples of nearly integrable Hamiltonian systems with asymptotically dense projected orbits.

Our second result (the “fibered λ-lemma”) will generalize the basic λ-lemma to submanifolds
whose dimension is between that of the unstable leaves and that of the unstable manifold. We
will apply this result to the case of chains of invariant tori contained in a normally hyperbolic
manifold, such that two consecutive elements of the chain admit transverse heteroclinic connec-
tions. Under additional assumptions (of strong torsion and normal form) for the diffeomorphism,
we prove the transitivity of the transversality of heteroclinic connections.

Windows and diffusion times

In this thesis, we develop another geometrical technique to prove the existence of diffusion orbits
and, more importantly, to give quantitative estimates of their speed of drift. We use Easton’s
windowing method (introduced in [EM79] and [Eas81] and revisited in [GR07] and [GR09] in
a topological point of view) to detect these trajectories, and the fibered λ-lemma that provides
explicit estimates of the “straightening" time needed to compute diffusion times.

We will deal with transition chains contained in a normally hyperbolic manifold N ⊂ T× R
and where f is an integrable twist map. Moreover, we will apply a version of the fibered λ-
lemma that ensures the C1-convergence of the manifold transversely intersecting W s(N), which
requires a specific normal form near N . We will work in this specific context because we aim at
giving a simple construction where we can completely describe the parameters that come into
play when computing diffusion times on the one hand, and where the diffusion time is uniform
with respect to the chain in the sense that the estimates do not deteriorate with iterations (like
in the case of [Mar96] for example) on the other hand. We think of our construction as a first
step to computing diffusion times in a more general context.

A window in a manifold is a diffeomorphic copy of a multidimensional rectangle with “hori-
zontal" and “vertical" directions. Two windows are said to be correctly aligned if each horizontal
of one is transverse to each vertical of the other at a point that is interior to the rectangles.
Given a finite family of windows having connecting diffeomorphisms, that is, the image of each
window under the connecting diffeomorphism is correctly aligned with the next one, Easton’s
Shadowing Lemma (see Theorem 4.2.3) yields the existence of an orbit that runs through these
windows in the alignement’s order. Therefore, given a transition chain in a dynamical system,
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one can prove the existence of an orbit wandering arbitrarily close to the chain, by construct-
ing windows arbitrarily close to each torus, that correctly align under suitable powers (abused
naming for the number of iterations) of the diffeomorphism. The time needed to drift along this
chain is the sum of these powers.

Our construction of the windows is reminiscent of that in [GR07] and [GR09]. In these
papers, the authors proved the existence of shadowing orbits for transition chains alternating with
Birkhoff zones of instability. We simplify the previous constructions along the transition chain
in our context in the following ways. We will need less windows to shadow our chain: in [GR07],
two windows were constructed around each heteroclinic point, and additional two windows near
each torus. We will only need two windows near each torus. We first construct a static window
arbitrarily close to each torus. We then construct the mobile window such that the static one is
correctly aligned with the mobile one, and the image of the latter under a suitable power of the
diffeomorphism is correctly aligned with the static window of the next torus. Moreover, while
Gidea and Robinson’s approach (in [GR09]) is topological, ours is more geometrical. It relies
on the differential structure and on transversality. While in many examples, the proof of the
transversality is not straightforward, the fibered λ-lemma provides, in addition to the explicit
time estimates (the power of the diffeomorphism), the straightening of the horizontals which
yields the transversality property needed for the alignment. The fibered λ-lemma also replaces
the criteria of topological linearization of Pugh-Shub needed in [GR07] to align two of each set
of windows.

In order to prove the correct alignment of the windows, we will need to carry the mobile
windows around each torus and estimate the time needed to shift from a neighborhood of the
stable manifold of the torus to a neighborhood of the unstable manifold of the same torus. This
will be possible thanks to ergodization results due to Dumas, Bourgain, Berti, Bolle, Biasco,...
Roughly speaking, for δ small, the δ-ergodization time of a torus is the rate at which the orbit of a
point fills the torus within δ, when subjected to a nonresonant or near nonresonant rotation. We
will deal with Diophantine rotations because in this case we have “optimal" ergodization times.
This will be no restriction to us since Diophantine tori will densely fill the normally hyperbolic
manifolds in the examples that we have in mind.

As for the diffusion times, we will give quantitative estimates (in an abstract setting) of
the time needed for the orbit to drift along the chain. We will prove that the diffusion time is
governed by three characteristic parameters: the “straightening" time (given by the fibered λ-
lemma) needed to ensure the transversality criteria for the alignment in the normal directions, the
ergodization time on each torus, and the torsion time that completes the transversality property
in the central direction.

The next step (which could not be achieved here because of the lack of time) is to apply these
abstract statements to particular examples such as [LM05].

Asymptotically dense orbits

Throughout the first parts of the thesis (chapters 2, 3 and 4), we will deal with diffeomorphisms.
Here, we will deal with Hamiltonian flows.

The basic λ-lemma will enable us to prove a diffusion result which is based on a recent work
by Marco on generic properties for classical systems on T2. We will construct “simple examples"
of global diffusion involving nonintegrable averaged systems at double resonances.

In [Marc], Marco proved that classical systems on T2 with a generic potential U admit chains
of annuli. From the latter, we deduce the existence of chains of cylinders at fixed energy for
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systems on A3 of the form

Hn(θ, r) =
1

2
‖r‖2 + 1

nU(θ2, θ3), (θ, r) ∈ A3,

where ‖.‖ is the Euclidean norm.
Thanks to the properties of the annuli, we deduce that the cylinders are normally hyperbolic

manifolds and that the chains of cylinders project in the space of actions asymptotically (that
is when n tends to the infinity) close to simple resonances. Moreover, the cylinders are foliated
with invariant tori with homoclinic connections.

Note that the systems Hn are direct products of the Hamiltonian 1
2r

2
1 with the Hamiltonian

1
2(r

2
2+r

2
3)+

1
nU(θ2, θ3). Therefore, they do not admit diffusion orbits because of the preservation

of the energy in each factor. In order to get the diffusion orbits, we need to choose a perturbation
fn that creates “the splitting of the separatrices". More precisely, we construct a sequence of
functions (fn) whose support is contained in the complement of these cylinders, so that the
cylinders are also normally hyperbolic for the system Hn + fn. Moreover, the perturbation is
chosen in such a way that nearby invariant tori that foliate each cylinder admit heteroclinic
connections.

One remarkable property is that the basic λ-lemma yields the existence of orbits that shadow
the tori in each cylinder, and thus the full chains of cylinders since two successive cylinders are
heteroclinically connected. We then deduce the existence of orbits whose projection on the action
space asymptotically fill the projected energy level, when the perturbation tends to 0.

Content of the thesis

The thesis is organized as follows. Chapter 1 introduces the basic language and notation used in
the thesis. Chapter 2 and Chapter 3 are concerned with the λ-lemmas and some of their appli-
cations to diffusion. Chapter 4 is dedicated to the windowing method and the diffusion times.
In Chapter 5, we give examples of nearly integrable Hamiltonian systems with asymptotically
dense projected orbits.

Chapter 1

We start this chapter with a reminder on normally hyperbolic manifolds and we introduce the
straightening neighborhood in which almost all our theorems will be stated. Then we state some
results regarding ergodization times for the rotations on Tn. In the third section of Chapter 1, we
give a brief reminder on nearly integrable Hamiltonian systems, a notion that will only show up in
the end of Chapter 2 and in Chapter 5. We end this chapter with describing the assumptions for
chapters 2, 3 and 4. Chapter 5 will deal with specific examples and will have its own assumptions.

Chapter 2

We start this chapter with stating and proving the basic λ-lemma. Two versions will be given.
The first one, Theorem 1, is a simplified version stated in the straightening neighborhood. The-
orem 2 is the second version of the basic λ-lemma stated in a more general context. We now
give a rough statement of the basic λ-lemma.

Theorem 1 and Theorem 2. Let (M , Ω) be a smooth symplectic manifold and f :M →M be
a symplectic diffeomorphism of class C l (l ≥ 3). Let N be a smooth compact submanifold of M
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which is normally hyperbolic for f . We suppose that N has trivial stable and unstable bundles
of the same dimension. We consider a C1-submanifold ∆ of M whose dimension is equal to the
dimension of a fiber of the unstable bundle of TNM . We suppose that ∆ transversely intersects
the stable manifold of N . Then, we prove that for all ε > 0, and for n ∈ N large enough, there
exists xn ∈ N such that fn(∆) is ε-close, in the C1-topology, to the strongly unstable manifold
of xn.

We then apply the basic λ-lemma to prove a diffusion result, Corollary 2.4.2 in Section 2.4,
that gives the existence of a shadowing orbit along a finite family of invariant dynamically min-
imal sets contained in a normally hyperbolic manifold and having heteroclinic connections.

Corollary. Let f , M and N be as in Theorem 2. Let (Ak)1≤k≤n be a transition chain in N such
that, for all k = 1, . . . , n − 1, there exist ak ∈ Ak, bk+1 ∈ Ak+1 and ck ∈ W uu(ak) ∩W ss(bk+1)
such that W uu(ak) and W s(N) transversely intersect at ck. Then,

W u(An) ⊂W u(A1).

We then show that Arnold’s example is a particular case of this application.

Chapter 3

This chapter is dedicated to the fibered λ-lemma and one of its applications. We first state and
prove Theorem 3 which is a generalization of the basic λ-lemma to C2-submanifolds whose di-
mension is between that of the unstable leaves and that of the unstable manifold. In case we have
a specific normal form in the vicinity of N , we get a version of the fibered λ-lemma that ensures
the C1-convergence of the manifold transversely intersecting W s(N), that is, Corollary 3.1.3. As
an application of the fibered λ-lemma, we prove the following corollary (Corollary 3.3.2) that
gives the transitivity of transversal heteroclinic connections for systems having the strong torsion
property that we will introduce.

Corollary. We keep the assumptions of Theorem 3. Moreover, we suppose that we have the
normal form needed to apply the suitable version of the fibered λ-lemma, and that f has the
strong torsion property. Let (Tk)1≤k≤n be a finite family of tori forming a transition chain in N
such that for all k = 1, . . . , n− 1, W u(Tk) ⋔W

s(Tk+1). Then, W u(T1) ⋔W s(Tn).

Chapter 4

In this chapter, we use the windowing method and the fibered λ-lemma of Chapter 3 to estimate
the time needed for an orbit to drift along a transition chain contained in a normally hyperbolic
manifold. More precisely, we prove the following result.

Theorem 4. We consider a system that satisfies the assumptions of the fibered λ-lemma with
the required normal form. We suppose that N ⊂ T×R and that f|N is an integrable twist map.
Moreover, we suppose that N contains a transition chain of Diophantine circles. Then, for all
ε > 0, there exist an orbit (xi)1≤i≤n and a sequence of positive integers (ki)1≤i≤n−1 such that

d(xi, Ti) < ε, for all i = 1, . . . , n,
xi+1 = fki(xi), for all i = 1, . . . , n− 1,
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where ki splits into three characteristic parameters. Namely:

ki ≤ n0 +max(mi, pi) +Qi,

where n0 is a unifom integer along the chain, mi is the straightening time given by the fibered
λ-lemma, pi is the torsion time and Qi is the ergodization time of the rotation over Ti+1.

Chapter 5

In this Chapter, we use results due to Marco regarding generic properties for classical systems
on T2 along with the basic λ-lemma to give examples of nearly integrable Hamiltonian systems
which admit asymptotically dense projected orbits. More precisely, given an integer κ ≥ 2, we
introduce a class of nearly integrable systems on A3 of the form

Hn(θ, r) =
1

2
‖r‖2 + 1

nU(θ2, θ3) + fn(θ, r),

where U ∈ Cκ(T2,R) is a generic potential function and fn a Cκ additional perturbation
such that ‖fn‖Cκ(A3) ≤ 1

n , so that Hn is a perturbation of the completely integrable system
h(r) = 1

2‖r‖2. We prove the following diffusion result.

Theorem 5. Let Π : A3 → R3 be the canonical projection. Then, for each δ > 0, there exists n0
such that for n ≥ n0, the system Hn admits an orbit Γn at energy 1

2 whose projection Π(Γn) is
δ–dense in Π(H−1

n (12)), in the sense that the δ–neighborhood of Π(Γn) in R3 covers Π(H−1
n (12)).
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Introduction

Version française

Après l’article fondateur d’Arnold [Arn64], beaucoup de travaux ont été consacrés à prouver
l’existence d’orbites de diffusion le long de chaînes de tores partiellement hyperboliques possédant
des connexions hétéroclines. Il aura fallu 40 ans pour comprendre que ce point de vue ne reflète pas
la nature profonde du problème et que l’objet le plus important à étudier est la variété centrale
commune à ces tores ; cette variété se trouve être un cylindre normalement hyperbolique qui
possède beaucoup de connexions homoclines. Dès lors, la preuve initiale de l’existence d’orbites de
diffusion peut être simplifiée de manière significative et beaucoup d’autres résultats apparaissent
à portée de main.

Sans doute le cas le plus simple non trivial apparaît-il quand les connexions homoclines des
cylindres contiennent une sous-variété elle-même difféomorphe à un cylindre. Ce phénomène a
été étudié en premier par Moeckel dans un cadre abstrait et, depuis, plusieurs recherches ont été
menées pour transposer cette étude dans le cadre de l’analyse semi-locale des cylindres normale-
ment hyperboliques. Dans ce cadre, et avec des hypothèses de connexions homoclines adaptées,
le résultat principal est un analogue fibré du théorème classique de Birkhoff-Smale pour un
point fixe ainsi que l’existence d’un produit semi-direct dans lequel apparaissent simultanément
la dynamique sur le cylindre et la dynamique des scattering maps. Ces études sont encore en
développement dans de nombreux travaux récents, publiés ou non (Marco, Gelfreich, Nassiri,
Pujals...). L’obstacle principal pour généraliser l’ensemble de ces idées est le fait que les cylindres
« typiques » dans le problème de diffusion d’Arnold ne satisfont pas les hypothèses précédentes
de connexions homoclines. Alors, le résultat précédent de Birkhoff-Smale ne peut plus être global
et conduit à un polysystème (ou IFS) formé par la dynamique sur la variété et la « correspon-
dance » homocline qui n’est plus une application. Pour montrer rigoureusement un tel résultat,
on a besoin de nouveaux ingrédients du type λ-lemme.

De manière informelle, un λ-lemme (aussi appelé lemme d’inclinaison) pour une variété nor-
malement hyperbolique dit que, étant donnés une variété différentielle M , un difféomorphisme
f : M → M et une sous-variété N de M normalement hyperbolique pour f , si Γ est une sous-
variété qui coupe transversalement la variété stable de N , alors les images de Γ par les itérées
successives de f « approchent » le feuilletage de la variété instable de N dans une topologie
convenable.

Dans un autre registre, dans [PS70], les auteurs montrent qu’un difféomorphisme f est conju-
gué, au voisinage de la variété normalement hyperbolique, à sa linéarisée Df en restriction au
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fibré normal. Ici, la conjugaison est un homéomorphisme. Ceci peut impliquer des résultats de
type λ-lemme en topologie C0. Cependant, le fait que la conjugaison soit un homéomorphisme
(et donc ne garantisse pas la préservation de la transversalité) prive le résultat d’applications
géométriques.

Dans les années suivantes, des études nombreuses et variées ont été menées en vue de géné-
raliser ce résultat dans des classes de régularité plus élevées, et plus précisément d’améliorer le
célèbre théorème de conjugaison de Chen-Sternberg (voir [BK01] et les références citées). Ces
conjugaisons permettent de décrire plus facilement la dynamique au voisinage de la variété nor-
malement hyperbolique et entraînent les λ-lemmes. Cependant, pour obtenir des conjugaisons
plus lisses, il faut imposer des hypothèses plus contraignantes. Notre approche consiste à étudier
le problème sous un autre angle afin de déterminer si ces hypothèses plus contraignantes sont
effectivement cruciales ou si, au contraire, on peut les éviter à peu de frais.

Dans cette thèse, nous prouvons deux nouveaux λ-lemmes. Considérons f,M,N et Γ comme
précédemment, et notons ns la dimension du fibré stable de N , nu celle du fibré instable et n0
celle de N . Comme Γ et la variété stable de N sont transverses, il existe un entier r tel que
0 ≤ r ≤ n0 et tel que la dimension de Γ soit égale à nu + r. Quand r = 0, nous montrons que
la suite des images successives de Γ par f converge, en topologie C1, vers une feuille instable
particulière et ce sans aucune des hypothèses demandées par la méthode de conjugaison. Si
maintenant r prend sa valeur entre 1 et n0, nous montrons que la suite des images successives
de Γ par f approche la variété instable de N en topologie C0, et nous prouvons de plus que la
norme de la composante dans la direction stable des vecteurs unitaires tangents tend vers 0. La
convergence C1 dans la direction centrale est une question plus compliquée et nécessite de faire
une hypothèse supplémentaire : nous montrons que si f admet une forme normale convenable
au voisinage de N , la suite des images successives de Γ par f converge vers la variété instable de
N en topologie C1.

Nous utilisons ensuite ces λ-lemmes pour obtenir trois types de résultats de diffusion :

1. Existence d’orbites de diffusion le long de chaînes de transition,

2. Estimation de temps de diffusion par la méthode des fenêtres,

3. Construction de systèmes hamiltoniens presque intégrables sur l’anneau A3 possédant une
orbite « asymptotiquement dense en projection ».

Ces trois types de résultats seront présentés ci-après. Signalons maintenant que nous nous
limitons au cas symplectique et que nous supposons que la variété normalement hyperbolique a
des fibrés stables et instables triviaux de même dimension (cela nous permettra en particulier
d’obtenir facilement des conditions de régularité pour les laminations des variétés invariantes).
Ces hypothèses ne sont pas restrictives pour nous ; en effet, les cadres dans lesquels nous souhai-
tons appliquer ces résultats pour obtenir des résultats de diffusion sont tous dans cette catégorie.
De plus, nous adoptons un point de vue très basique et décrivons explicitement les itérées de
la sous-variété transverse Γ au moyen d’un système de coordonnées redressantes « contrôlé »
au lieu d’utiliser des méthodes plus abstraites d’analyse fonctionnelle comme des théorèmes de
points fixes. Cela nous permet en particulier d’utiliser directement nos divers calculs pour la
construction des fenêtres et l’estimation des temps de transition.
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λ-lemmes, chaînes de transition et orbites de diffusion.

Dans son célèbre article [Arn64], Arnold a construit le premier exemple d’une perturbation d’un
système hamiltonien intégrable à trois degrés de liberté dans lequel apparaissent des orbites
de diffusion. Plus précisément, le système perturbé possède des orbites dont l’action subit une
variation de taille indépendante de la taille de la perturbation. L’exemple d’Arnold a été construit
de sorte que les tores lagrangiens invariants du système initial ne résistent pas à la perturbation
et donnent naissance à des tores partiellement hyperboliques dans le système perturbé.

Le mécanisme de diffusion est basé sur l’existence d’une chaîne de transition de tores in-
variants, c’est-à-dire une famille de tores invariants minimaux, partiellement hyperboliques qui
possèdent des connexions hétéroclines entre eux. On obtient alors des orbites reliant les tores
extrémaux de cette chaîne au moyen d’un « argument d’obstruction » satisfait par chaque tore
de la chaîne. Cet argument d’obstruction a été prouvé en premier dans l’article [Mar96], comme
corollaire d’un λ-lemme partiel. La preuve a ensuite été améliorée dans [FM00].

Les λ-lemmes établis dans cette thèse permettent de retrouver l’argument d’obstruction d’Ar-
nold, mais surtout d’en donner plusieurs généralisations. Ces λ-lemmes concernent des objets
invariants contenus dans une variété normalement hyperbolique ce qui n’est pas une réelle res-
triction car les tores partiellement hyperboliques peuvent en général être plongés dans leurs
variétés centrales, qui, par définition, sont des variétés normalement hyperboliques. En ce sens,
nos résultats généralisent ceux de [Mar96], [Cre00] et [FM00] et nous permettent d’en simplifier
considérablement les preuves. Enfin, nos λ-lemmes s’appliquent à des systèmes plus généraux
que ceux d’Arnold ([DDLLS06], [DH11], [GR07], [GR09],...).

Notre premier λ-lemme, que nous appelons « λ-lemme basique » nous permet de prouver
l’existence d’orbites de diffusion le long d’une chaîne d’ensembles invariants minimaux contenus
dans une variété normalement hyperbolique, sans aucune hypothèse sur la nature géométrique
de ces ensembles invariants (en particulier, on ne demande pas qu’il s’agisse de sous-variétés).
L’exemple donné par Arnold devient un cas particulier élémentaire de notre résultat. Nous re-
trouvons ainsi aussi l’existence d’une orbite de diffusion le long des chaînes de tores primaires et
secondaires, qui apparaissent dans les travaux de Delshams, De La Llave et Seara.

Notre deuxième λ-lemme, que nous appelons « λ-lemme fibré » est une généralisation du
λ-lemme basique aux sous-variétés transverses de dimension variant entre celle des feuilles in-
stables et celle de la variété instable. On applique ensuite ce résultat au cas d’une chaîne de tores
invariants (contenus dans une variété normalement hyperbolique) tels que deux tores consécutifs
de la chaîne possèdent une intersection hétérocline transverse. Nous montrons, sous certaines
hypothèses supplémentaires sur le difféomorphisme f (une propriété de torsion forte, et l’exis-
tence d’une forme normale au voisinage de variété normalement hyperbolique), la transitivité des
connexions hétéroclines transverses.

Fenêtres et temps de diffusion.

Nous développons une autre technique géométrique permettant de prouver l’existence d’orbites
de diffusion, mais surtout de donner des estimées quantitatives de leur vitesse de diffusion. Cette
technique repose d’une part sur la méthode des fenêtres d’Easton (introduite dans [EM79] and
[Eas81] et revisitée dans [GR07] et [GR09] avec un point de vue topologique) qui permet de
détecter les trajectoires des orbites et d’autre part sur notre λ-lemme fibré qui, lui, permet
d’expliciter les estimées des temps de « redressement » nécessaires pour calculer les temps de
diffusion.

Notre but ici est de donner une construction simple dans laquelle on peut complètement
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décrire les paramètres qui entrent en jeu quand on veut calculer des temps de diffusion d’une
part, et d’autre part telle que le temps de diffusion soit uniforme par rapport à la chaîne de
transition, au sens où les estimées ne se détériorent pas avec les itérations (comme dans le cas
de [Mar96], par exemple). Nous envisageons cette construction comme une première étape pour
calculer les temps de diffusion dans un cadre plus général.

Nous travaillons donc avec une chaîne de transition contenue dans une variété normalement
hyperbolique N ⊂ T×R et avec un difféomorphisme f qui est un twist intégrable. Nous supposons
de plus l’existence d’une forme normale pour f au voisinage de N , ce qui nous permet d’appliquer
une version de notre λ-lemme fibré qui assure la convergence C1 des itérées de la variété qui coupe
transversalement la variété stable W s(N).

Expliquons brièvement la méthode des fenêtres. Une fenêtre est l’image par un difféomorphis-
me d’un rectangle multidimensionnel qui possède des directions « horizontales » et « verticales » .
On dit que deux fenêtres sont correctement alignées si chaque horizontale de l’une est transverse
à toutes les verticales de l’autre en un point intérieur aux deux fenêtres. Étant donnée une famille
finie de fenêtres reliées par des « difféomorphismes de connexion » (c’est à dire que l’image d’une
fenêtre par un tel difféomorphisme est correctement alignée avec la fenêtre suivante), le Shado-
wing Lemma d’Easton assure l’existence d’une orbite qui traverse ces fenêtres dans l’ordre de
leur alignement. Alors, si on a une une chaîne de transition de tores invariants, on peut prouver
l’existence d’une orbite passant arbitrairement près de cette chaîne en construisant des fenêtres
arbitrairement proches de chaque tore, qui s’alignent correctement grâce à une puissance conve-
nable du difféomorphisme (on utilise abusivement le terme puissance pour désigner le nombre
d’itérations). Le temps nécessaire à une orbite pour diffuser le long de cette chaîne est alors la
somme des puissances utilisées.

Notre construction de fenêtres est inspirée de celles de [GR07] et [GR09]. Dans ces deux
articles, les auteurs prouvent l’existence d’orbites de diffusion qui longent alternativement des
chaînes de transition et des zones d’instabilité de Birkhoff. Notre approche simplifie les construc-
tions précédentes le long de nos chaînes de transition au sens où nous avons besoin de construire
moins de fenêtres pour longer notre chaîne. En effet, dans [GR07], deux premières fenêtres sont
construites autour de chaque point hétérocline, et deux autres près de chaque tore invariant, tan-
dis que notre méthode ne fait intervenir que deux fenêtres près de chaque tore. Nous construisons
premièrement une fenêtre statique arbitrairement proche de chaque tore. Ensuite nous construi-
sons une fenêtre mobile de sorte que la fenêtre statique soit correctement alignée avec la fenêtre
mobile et que l’image de cette dernière par une puissance convenable du difféomorphisme soit
correctement alignée avec la fenêtre statique du tore suivant. D’autre part, alors que l’approche
de Gidea et Robinson est topologique, la notre est plus géométrique au sens où elle est basée sur la
structure différentielle et la transversalité. En particulier, alors que dans beaucoup d’exemples, la
preuve de la transversalité n’est pas immédiate, notre λ-lemme fibré donne (en plus des estimées
explicites de temps de redressement) le redressement des horizontales qui conduit immédiate-
ment à la propriété de transversalité souhaitée. Enfin, le λ-lemme fibré permet de s’affranchir du
critère de linéarisation topologique de Pugh et Shub nécessaire dans l’approche de [GR07] pour
aligner deux de chaque set de fenêtres.

Afin de prouver l’alignement correct des fenêtres, nous avons besoin de transporter les fenêtres
mobiles autour de chaque tore et d’estimer le temps nécessaire pour passer d’un voisinage de la
variété stable du tore à un voisinage de la variété instable du même tore. Ceci est possible grâce à
des résultats d’ergodisation dûs à Dumas, Bourgain, Berti, Bolle, Biasco... De manière informelle,
pour δ assez petit, le temps de δ-ergodisation d’un tore soumis à une rotation résonnante ou
« presque résonnante » est le nombre d’itérées nécessaires pour qu’une orbite soit δ-dense dans
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le tore. Nous travaillerons avec des rotations diophantiennes, car dans ce cas nous obtenons des
temps d’ergodisation « optimaux » ; celà ne sera pas une réelle restriction pour notre étude car,
dans tous les exemples que nous avons à l’esprit, les tores diophantiens remplissent densément
la variété normalement hyperbolique.

Enfin, notre méthode permet de donner des estimées quantitatives (dans un cadre abstrait)
des temps nécessaires à une orbite pour diffuser le long d’une chaîne de transition. Nous prou-
verons que le temps de diffusion dépend de trois paramètres caractéristiques : le « temps de
redressement » (donné par le λ-lemme fibré) qui est le temps nécessaire pour assurer le critère
de transversalité pour l’alignement des fenêtres dans les directions normales, le temps d’ergodi-
sation de chaque tore et le temps de torsion qui complète la propriété de transversalité dans la
direction centrale.

L’étape suivante (qui n’a pas pu être achevée par manque de temps) est d’appliquer ces
résultats abstraits à des exemples particuliers comme ceux de [LM05].

Orbites asymptotiquement denses

Alors que dans les problèmes précédents que nous avons étudiés (et qui correspondent aux cha-
pitres 2, 3 et 4) nous avons travaillé avec des difféomorphismes, ici nous travaillons avec des flots
hamiltoniens.

Le λ-lemme basique va nous permettre de démontrer un résultat de diffusion basé sur un
travail récent de Marco sur les propriétés génériques des systèmes classiques sur T2. On va
construire des exemples simples de diffusion globale impliquant des systèmes non intégrables
moyennés aux résonnances doubles.

Dans [Marc], Marco a démontré que les systèmes classiques sur T2 avec un potentiel générique
U possède des chaînes d’anneaux. De ces derniers, on déduit l’existence de chaînes de cylindres
à énergie fixée pour des systèmes sur A3 de la forme

Hn(θ, r) =
1

2
‖r‖2 + 1

nU(θ2, θ3), (θ, r) ∈ A3,

où ‖.‖ est la norme euclidienne.
Grâce aux propriétés des anneaux, on déduit que les cylindres sont des variétés normalement

hyperboliques et que les chaînes de cylindres se projettent sur l’espace des actions asymptoti-
quement (c’est-à-dire quand n tend vers l’infini) proche des résonnances simples. De plus, les
cylindres sont feuilletés en tores invariants avec des connexions homoclines.

Notons que les systèmes Hn sont des produits directs du hamiltonian 1
2r

2
1 avec le hamiltonien

1
2(r

2
2+r

2
3)+

1
nU(θ2, θ3). Alors, ils n’admettent pas d’orbite de diffusion à cause de la conservation

de l’énergie dans chaque terme. Pour obtenir des orbites de diffusion, on choisit une perturbation
fn qui crée le « splitting des séparatrices » . Plus précisément, on construit une suite de fonctions
(fn) à supports dans le complémentaire des cylindres, de sorte que les cylindres soient également
normalement hyperboliques pour le système Hn+fn. De plus, la perturbation est choisie de sorte
que deux tores voisins admettent des connexions hétéroclines.

Une propriété remarquable est que le λ-lemme basique entraîne l’existence d’orbites qui
longent les tores dans chaque cylindre, et donc qui longent les chaînes de cylindres vu que deux
cylindres consécutifs admettent des connexions hétéroclines. On déduit alors l’existence d’orbites
dont la projection sur l’espace d’actions remplit asymptotiquement le niveau d’énergie projetté,
quand la perturbation tend vers 0.
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Introduction

Plan de la thèse

La thèse est organisée comme suit. Le chapitre 1 introduit le langage basique et les notations
de la thèse. Dans les chapitres 2 et 3, nous énonçons et démontrons nos deux λ-lemmes pour les
variétés normalement hyperboliques ainsi que leurs applications à la diffusion. Le chapitre 4 est
consacré à la méthode des fenêtres et au calcul de temps de diffusion. Dans le chapitre 5, nous
construisons des exemples de systèmes hamiltoniens presque intégrables sur A3 qui admettent
des orbites asymptotiquement denses en projection.

Chapitre 1

Nous commençons ce chapitre par un rappel sur les variétés normalement hyperboliques et nous
introduisons un « voisinage de redressement » dans lequel nous énoncerons plusieurs de nos
théorèmes. Ensuite nous énonçons des résultats sur les temps d’ergodisation pour les rotations
sur le tore Tn. Dans la troisième section du chapitre 1, nous rappelons brièvement la notion de
système hamiltonien presque intégrable qui n’interviendra qu’à la fin du chapitre 2 et dans le
chapitre 5. Nous terminons ce chapitre en décrivant les hypothèses sous lesquelles nous travaillons
dans les chapitres 2, 3 et 4. Le chapitre 5 concerne des exemples spécifiques et possède ses propres
hypothèses.

Chapitre 2

Nous commençons ce chapitre en énonçant et démontrant le λ-lemme basique dont nous don-
nerons deux versions. La première, le Théorème 1, est une version plus simple établie dans le
voisinage de redressement de la variété normalement hyperbolique. La deuxième version, le Théo-
rème 2, est plus générale. De manière informelle, le λ-lemme s’énonce comme suit.

Théorème 1 et Théorème 2. Soit (M , Ω) une variété symplectique C∞ et f : M → M un
difféormorphisme symplectique de classe C l (l ≥ 3). Soit N une sous-variété compacte C∞ de
M qui est normalement hyperbolique pour f . Supposons que les fibrés stable et instable de N
sont de même dimension. Considérons une C1 sous-variété ∆ de M dont la dimension est égale
à celle d’une feuille instable de N . On suppose enfin que ∆ coupe transversalement la variété
stable de N . Alors, on prouve que pour tout ε > 0, et pour tout n entier assez grand, il existe un
point xn dans N tel que fn(∆) est ε-proche, en topologie C1 à la variété fortement instable de xn.

Nous utilisons ensuite le λ-lemme pour prouver un premier résultat de diffusion, le corol-
laire 2.4.2 de la section 2.4, qui donne l’existence d’une orbite de diffusion ; cette orbite longe
une famille finie d’ensembles invariants, contenus dans la variété normalement hyperbolique, sur
lesquels la dynamique est minimale et qui possèdent des connexions hétéroclines.

Corollaire Soient f , M et N comme dans le Théorème 2 et soient (Ak)1≤k≤n une chaîne de
transition dans N telle que, pour tout k = 1, . . . , n − 1, il existe ak ∈ Ak, bk+1 ∈ Ak+1 et
ck ∈W uu(ak)∩W ss(bk+1) tels que W uu(ak) et W s(N) se coupent transversalement en ck. Alors,

W u(An) ⊂W u(A1).

Nous montrons enfin que l’exemple d’Arnold est un cas particulier de ce corollaire.

14



Chapitre 3

Ce chapitre est consacré au λ-lemme fibré et à une de ses applications. Nous commençons par
énoncer et prouver le Théorème 3 qui est une généralisation du λ-lemme basique aux sous-variétés
C2 dont la dimension varie entre celle des feuilles instables et celle de la variété instable. Dans
le cas où on a une forme normale spécifique au voisinage de N , nous parvenons à augmenter
partiellement la régularité de la convergence, c’est le corollaire 3.1.3. Nous utilisons ensuite ce
λ-lemme fibré pour prouver la transitivité des connexions hétéroclines transverses pour des sys-
tèmes vérifiant une propriété de torsion forte (que nous introduisons), c’est le corollaire 3.3.2.

Corollaire. On se place dans le cas où on a une forme normale spécifique au voisinage de N
permettant d’augmenter partiellement la régularité de la convergence et où f possède la propriété
de torsion forte. Soit (Tk)1≤k≤n une famille finie de tores formant une chaîne de transition dans
N tels que pour k = 1, . . . , n− 1, W u(Tk) ⋔W s(Tk+1). Alors, W u(T1) ⋔W s(Tn).

Chapitre 4

Dans ce chapitre, nous utilisons la méthode des fenêtres et le λ-lemme fibré du chapitre 3 pour
estimer le temps nécessaire à une orbite pour diffuser le long d’une chaîne de transition contenue
dans une variété normalement hyperbolique. Plus précisément, nous prouvons le résultat suivant.

Théorème 4. Considérons un système satisfaisant les hypothèses du λ-lemme fibré obtenu avec
l’existence d’une forme normale spécifique au voisinage de N (corollaire 3.1.3). Supposons que
N ⊂ T×R et que f|N est un twist intégrable. On suppose de plus que N contient une chaîne de
transition de cercles diophantiens. Alors pour tout ε > 0, il existe une orbite (xi)1≤i≤n et une
suite d’entiers positifs (ki)1≤i≤n−1 tels que

d(xi, Ti) < ε, pour tout i = 1, . . . , n,
xi+1 = fki(xi), pour tout i = 1, . . . , n− 1.

On a de plus la majoration suivante

ki ≤ n0 +max(mi, qi) +Qi,

où n0 est un entier indépendant de i, mi le temps de redressement donné par le λ-lemme fibré,
pi le temps de torsion et Qi le temps d’ergodisation de la rotation sur Ti+1.

Chapitre 5

Dans ce chapitre, on utilise les résultats récents de Marco concernant les propriétés génériques
des systèmes classiques sur le tore T2 ainsi que le λ-lemme basique pour donner des exemples de
systèmes hamiltoniens presque intégrables qui admettent des orbites asymptotiquement denses
en projection. Plus précisément, étant donné un entier κ ≥ 2, on considère la classe de systèmes
presque intégrables sur l’anneau A3 de la forme suivante

Hn(θ, r) =
1

2
‖r‖2 + 1

nU(θ2, θ3) + fn(θ, r),

où U ∈ Cκ(T2,R) est un potentiel générique et fn une perturbation ajoutée Cκ satisfaisant
‖fn‖Cκ(A3) ≤ 1

n ; ainsi Hn est une pertubation du système complètement intégrable h(r) = 1
2‖r‖2.
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On prouve le résultat de diffusion suivant.

Theorem 5. Soit Π : A3 → R3 la projection canonique. Alors pour tout δ > 0, il existe un entier
n0 tel que pour n ≥ n0, le système Hn admet une orbite Γn d’énergie 1

2 dont la projection Π(Γn)
est δ–dense dans Π(H−1

n (12)), au sens où le δ–voisinage de Π(Γn) dans R3 recouvre Π(H−1
n (12)).
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Chapter 1

Framework: reminders, definitions and
notation

1.1 Normally hyperbolic invariant manifolds

We begin with a reminder on normally hyperbolic manifolds in a general context, and then
specialize to the symplectic case where we can use a “controlled” straightening neighborhood
in which it is easy to depict the geometry of the invariant foliations induced by the normal
hyperbolicity.

The normally hyperbolic invariant manifolds we consider will be compact for technical sim-
plicity, but the non-compactness could easily be replaced with uniform lower bounds for the
first and second derivatives of our diffeomorphisms, and the constants of hyperbolicity (see (1.1)
below). Moreover, let us point out that eventhough we state our definitions and results for dif-
feomorphisms, analogous results hold for continuous time Hamiltonian systems (using the usual
suspension way).

1.1.1 General definitions

Let M be a smooth n-dimensional manifold (n ≥ 3) and f : M → M be a C l-diffeomorphism
(l ≥ 1) which leaves a smooth boundaryless compact submanifold N of M invariant. Given a
Riemannian metric ‖ . ‖ on M and a subbundle E of TNM invariant under Df , we set:

norm (Df|E) = sup{‖Df(a)|Ea
‖; a ∈ N}, conorm (Df|E) = (norm (Df−1

|E
))−1.

Definition 1.1.1. Let q ≤ l (q ∈ N∗). The manifold N is q-normally hyperbolic for f if the
tangent bundle of M restricted to N splits into three continuous subbundles TNM = TN⊕Es⊕Eu
invariant under Df , such that

norm (Df|Es ) < (conorm (Df|TN
))q ≤ 1 ≤ (norm (Df|TN

))q < conorm (Df|Eu ). (1.1)

This says that the behavior of f normal to N dominates the tangent behavior of f q and is
hyperbolic.

Now we state the local stable/unstable manifolds theorem. We do not mean to give the most
general possible results, we rather limit ourselves to those which are strictly necessary for our
purposes. For a more elaborate study on invariant manifolds, we refer to [HPS77], [Cha04] and
[BB].
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1. Framework: reminders, definitions and notation

Theorem [HPS77]. Let f , M and N be as above. We suppose that N is q-normally hyperbolic
for f . Then if d is the distance associated with the Riemannian metric on M , the following
properties hold true:

1. Existence, characterization and smoothness. There exists a neighborhood O of N in
M such that the sets:

W s
loc(N) =

{
y ∈ O ; fn(y) ∈ O, ∀n ∈ N

}
and W u

loc(N) =
{
y ∈ O ; f−n(y) ∈ O, ∀n ∈ N

}

are Cq-manifolds that satisfy

• ∀ y ∈ W s
loc(N),∀ ρ ∈

]
norm (Df|Es ); conorm (Df|TN

)
[
, lim
n→∞

ρ−nd(fn(y), N) = 0,

• ∀ y ∈ W u
loc(N),∀ ρ ∈

]
norm (Df|TN

); conorm (Df|Eu )
[
, lim
n→∞

ρ−nd(f−n(y), N) = 0.

Moreover, W u
loc(N) and W s

loc(N) are tangent to TN⊕Eu and TN⊕Es respectively at each point
of N .

2. Lamination. There exist two f -invariant laminations of W u
loc(N) and W s

loc(N), the leaves of
which are unstable and stable leaves W uu

loc (x) and W ss
loc(x) associated with the points of N , defined

as follows:

W ss
loc(x) =

{
y ∈ O ; lim

n→∞
d (fn(y), fn(x)) = 0

}
and

W uu
loc (x) =

{
y ∈ O ; lim

n→∞
d
(
f−n(y), f−n(x)

)
= 0

}
.

These leaves are Cq and tangent to the fibers Eux and Esx at each point x of N .

Note that one gets the global stable (resp. unstable) manifolds by taking the union of the
inverse (resp. direct) images of the local ones as follows:

W s(N) =
⋃

n∈N

f−n (W s
loc (N)) and W u(N) =

⋃

n∈N

fn (W u
loc (N)) .

The same holds for the leaves:

W ss(x) =
⋃

n∈N

f−n (W ss
loc (f

n(x))) and W uu(x) =
⋃

n∈N

fn
(
W uu
loc

(
f−n(x)

))
.

These are immersed Cq-submanifolds ofM . In the rest of the thesis, we will drop the subscript
loc from the notation. The local and the global invariant manifolds will be denoted by W s,u(N)
since the context will always be clear. The same holds for the global and local leaves.

Definition 1.1.2. Let N be a q-normally hyperbolic manifold for f (q ≤ l). We say that N is
controllable if the following inequalities hold true

norm (Df|Es ).norm (Df|TN
) < 1, and conorm (Df|TN

).conorm (Df|Eu ) > 1. (1.2)

This will be no restriction to us, since all the invariant manifolds that we will get in the
perturbative setting will be controllable.

We set ns :=dim(Es), nu :=dim(Eu) and n0 :=dim(N), so that n0 + ns + nu = n.
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1.1. Normally hyperbolic invariant manifolds

1.1.2 Symplectic Geometry and normal hyperbolicity

Under symplecticity assumptions, the stable and unstable leaves are regular with respect to the
points in N . More precisely, we have the following proposition which will enable us in the next
section to introduce a straightening coordinate system in the vicinity of normally hyperbolic
manifolds.

Proposition A. [Marco]. Let (M , Ω) be a smooth symplectic manifold and let f be a C l sym-
plectic diffeomorphism of M (l ≥ 2). We suppose that N is a controllable q-normally hyperbolic
manifold for f (q ≤ l) and that ns = nu. Then

- N is symplectic,

- W u(N) and W s(N) are coisotropic,

- for all x ∈ N , W uu(x) and W ss(x) are isotropic and they coincide with the leaves of the
characteristic foliations of W u(N) and W s(N).

The proof of this proposition can be found in [Mara]. Since the leaves of the characteristic
foliations coincide with the leaves W uu(x) and W ss(x), the latter are Cq−1 with respect to x.
We get then the regularity we need for Proposition B below.

1.1.3 Straightening neighborhood

Under the assumptions of Proposition A, one can find in the vicinity of a normally hyperbolic
manifold a neighborhood in which the invariant manifolds and the leaves are straightened, making
it easier to depict the behavior of f . More precisely, we have the following proposition.

Proposition B. [Tubular neighborhood and straightening]. Let M , N and f be as in
Proposition A with l ≥ 3. Let p := ns = nu. We suppose that N is 3-normally hyperbolic for f
and that its stable and unstable bundles are trivial. Then, there exist a neighborhood U of N in
M and a C2-diffeomorphism ϕ : U → V := N × Bp × Bp, where Bp is an open ball centered at
0 in Rp, such that for all x ∈ N :

1. ϕ(x) = (x, 0, 0),

2. W̃ s(N) := ϕ(W s(N) ∩ U) = {(x, s, u) ∈ V ; u = 0},

3. W̃ u(N) := ϕ(W u(N) ∩ U) = {(x, s, u) ∈ V ; s = 0},

4. W̃ ss(x) := ϕ(W ss(x) ∩ U) = {(x, s, 0) ; s ∈ Bp},

5. W̃ uu(x) := ϕ(W uu(x) ∩ U) = {(x, 0, u) ; u ∈ Bp}.

The proof is straightforward once Proposition A is known. We will not prove Proposition B,
we will content ourselves with the following few remarks. Near N , one can always find a tubular
neighborhood. The straightening of the invariant manifolds is an immediate consequence of the
graph property. We refer to [LMS03] and [HPS77] for details. When f is symplectic, the strongly
stable/unstable leaves are straightened the same way.

The first Bp and the second Bp in N×Bp×Bp do not play the same role since the first one is
the stable direction while the second one is the unstable direction. In order to distinguish them
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1. Framework: reminders, definitions and notation

N

W u(N)

N

ϕ

W s(N)

U

V

W̃ s(N)

W̃ u(N)

Figure 1.1: The straightening neighborhood

from one another when we want to use them separately, we will add u and s in the notation as
follows

N ×Bp
s ×Bp

u. (1.3)

We use the same convention for N ×Rps×Rpu. In the rest of the thesis, for notational symplicity,
we will identify N with ϕ(N) = N ×{0}×{0}. This will not lead to confusion since the context
will always be clear enough.

1.1.4 Partially hyperbolic tori

Let M be a smooth 2m-dimensional symplectic manifold endowed with a Riemannian metric
with associated distance d. Let k be an integer, 1 ≤ k ≤ m − 1. Let f : M → M be a C l

symplectic diffeomorphism (l ≥ 1) which leaves a smooth k-dimensional torus T invariant. We
say that T is hyperbolic when there exist a neighborhood U of T and a constant α > 0 such that
the sets

W s
loc(T ) =

{
y ∈ U ;∃C > 0, d(fn(y),T ) ≤ Ce−αn,∀n ∈ N

}

W u
loc(T ) =

{
y ∈ U ;∃C > 0, d(f−n(y),T ) ≤ Ce−αn,∀n ∈ N

}

are two Lagrangian submanifolds of U . The set W s(T ) = ∪n∈Nf−n (W s
loc (T )) and the set

W u(T ) = ∪n∈Nfn (W u
loc (T )) are the stable and unstable manifolds of T . They arem-dimensional

immersed Lagrangian submanifolds of M .
The only case we will deal with is when T is located inside a normally hyperbolic submanifold

N of M . For more details on hyperbolic tori, we refer to [LMS03].

1.2 Ergodization times for the rotations of Tn

In this section, we state some results regarding the ergodization times for rotations (possibly
resonant but only at a “high order") of the torus Tn (n ≥ 1).
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1.2. Ergodization times for the rotations of Tn

Let n ≥ 1 and let Tn := Rn/Zn. For 0 < α ≤ 1
2 , we define the open ball centered on θ in Tn

and of radius α by B(θ, α) := {ϕ ∈ Tn ; d(θ, ϕ) < α}.
Let r ∈ Rn and let Fr : Tn −→ Tn be the map given by Fr(θ) = θ + r mod Zn. The

orbit of θ under Fr is the sequence (F kr (θ))k∈N, where F 0
r is the identity map. When it exists,

for 0 < α ≤ 1
2 , we define the “α-ergodization" time of Tn for r, as the smallest natural number

q = qr(α) such that, for any initial condition θ in Tn, the finite piece of orbit {θ, Fr(θ), . . . , F qr (θ)}
is a α-dense subset of Tn. More precisely, we have the following definition.

Definition 1.2.1. [Ergodization time.] Let α ∈ ]0; 12 ] and r ∈ Rn. The α-ergodization time
of Tn for r, when it exists, is the smallest natural number q = qr(α) such that, for any initial
condition θ in Tn, ⋃

0≤k≤q

B
(
F kr (θ), α

)
= Tn.

Note that the property of α-ergodizing Tn after time q is independent of the initial condi-
tion θ in Tn. More precisely, if r α-ergodizes Tn after time q with initial condition θ, then⋃

0≤k≤q B
(
F kr (θ), α

)
= Tn. Let ϕ ∈ Tn. Thanks to the particular form of Fr, it is easy to see

that ⋃
0≤k≤q

B
(
F kr (ϕ), α

)
=

⋃
0≤k≤q

B
(
F kr (θ), α

)
+ θ − ϕ mod Zn

= Tn.

Let r ∈ Rn. If r is nonresonant, that is, if for all p ∈ Zn \ {0} and for all l ∈ Z, p.r − l 6= 0,
the orbits are dense in Tn and therefore, for any 0 < α ≤ 1

2 , the α-ergodization time for r exists.
When r is resonant at a “sufficiently high order", namely if p.r− l 6= 0 for all l ∈ Z and for all p
∈ Zn with 0 < |p| ≤ K(α) for some large enough K(α), the α-ergodization time for r exists too.
For more details, we refer to [Dum91], [BGW98] and [BBB03] and the references therein.

Let | . |Z be the distance to Z, that is, |x|Z = inf{|x − s|; s ∈ Z}. For r ∈ Rn and K ∈
]1;+∞[, we set

Ψr(K) := max
{
|p.r|−1

Z ; p ∈ Zn \ {0} , |p| ≤ K
}
.

We now state a theorem due to Berti, Biasco and Bolle ([BBB03]).

Theorem 1.2.2. [Berti-Biasco-Bolle.] There exist two positive constants C and M = M(n)
such that, for all r ∈ Rn, for all α ∈ ]0; 12 ],

qr (α) ≤ CΨr

(
Mα−1

)
.

This is, in fact, a consequence of Theorem 4.2 in [BBB03], where the result was proved for the
continuous case. The constant C appears when adapting this result to the discrete case. The
authors in [BBB03] give an explicit value of the constant M which will satisfy M ≥ 1. However,
both constants will be of no importance to us.

In Chapter 4 (Lemma 4.3.1), we prove this result for the case n = 1. The proof we give
significatively simplifies the previous proofs on ergodization times for the rotations of T since we
do not use the continued fractions. Instead, we apply Dirichlet’s box principle and get a short
and simple proof of the result.

If r is nonresonant, with no additional information, the ergodization time is of course highly
dependent on r, and may, in general, be arbitrarily long. In practice, we require r to be not only
nonresonant, but also “far from" low-order resonances by means of Diophantine condition, which
ensures a fast ergodization of the torus.
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1. Framework: reminders, definitions and notation

Definition 1.2.3. [Diophantine vectors.] Let τ ≥ n be a real number and let r ∈ Rn. We
say that r is Diophantine with exponent τ if there exists c > 0 such that for all p ∈ Zn \ {0},
|p.r|Z ≥ c|p|−τ .

We also use the language (c, τ)-Diophantine. The Diophantine vectors of exponent τ ≥ n are
nonresonant and dense in Rn. We have the following easy corollary that gives the ergodization
time for Diophantine vectors.

Corollary 1.2.4. Let τ ≥ n and c > 0, and let r be a (c, τ)-Diophantine vector in Rn. Then
there exist two positive constants C and M =M(n) such that

qr (α) ≤ Cc−1M τα−τ .

The proof follows from Theorem 1.2.2. Note that this estimate was first proved in Theorem D
of [BGW98]. In Section 4.5, we recover this estimate in the case n = 1.

1.3 Nearly integrable Hamiltonian systems

Given an integer n ≥ 1, we denote by An = Tn × Rn the cotangent bundle of the torus Tn,
that we endow with its usual angle-action coordinates (θ, r) and its Liouville symplectic form
Ω =

∑n
i=1 dri ∧ dθi. Let H be a C2 function defined on An. The Hamiltonian vector field XH

associated with H is defined by {
θ̇ = ∂rH(θ, r)
ṙ = −∂θH(θ, r),

and the Hamiltonian flow ΦHt is the flow generated by XH . Observe that for each t, ΦHt is a
diffeomorphism on An. One says that H is a Hamiltonian on An.

We say that H is completely integrable if H depends only on the action variable r, that
is, H(θ, r) = h(r) where h : Rn −→ R. In this case, the action variables of the solutions are
trivially constant for all times, and each Lagrangian torus Tn × {r0} is invariant under the
Hamiltonian flow. Moreover, the dynamics on such a torus is quasi-periodic, that is, for all t,
ΦHt (θ, r0) = (θ + tω(r0) [Z

n], r0), where ω(r0) = ∂rh(r0).
Nearly integrable Hamiltonian systems are small perturbations of completely integrable Hamil-

tonian systems. More precisely, they are Hamiltonian systems of the following form:

H(θ, r) = h(r) + εf(θ, r) (1.4)

where ε > 0 is a small parameter and h, f are C2 functions.
When ε > 0, the action variables are no longer constants of motion and it is very inter-

esting to investigate their evolution with time. Under suitable nondegeneracy and regularity
conditions, the KAM (Kolmogorov-Arnold-Moser) theory asserts that, for each r0 such that
ω(r0) is Diophantine, there exist ε0(r0) > 0 and a family of Lagrangian tori (T (ε))0≤ε≤ε0 with
T (0) = Tn × {r0} such that the flow generated by H leaves T (ε) invariant and is conjugate
on T (ε) to a quasi-periodic flow with frequency ω(r0). In this case, the action variables of the
solutions are almost constant and their variation is a O(

√
ε) for any t. For more details, we

refer to [Kol54], [Bos86] and [Pös01]. The theory gives no information on the complement of
the set of KAM tori, except that it has a relative measure of order

√
ε and that when n = 2,

the 2-dimensional invariant tori disconnect the 3-dimensional energy level leaving all solutions
stable for all time.
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1.4. Standing assumptions and convention

When n ≥ 3, it is possible to find solutions for which the variation of the actions is of order
independent of the size of the perturbation. In [Arn64], Arnold gave the first example of a
three-degree-of-freedom system where such a drift occurs no matter how small the perturbation
is. This phenomenon is usually referred to as Arnold diffusion.

By Nekhoroshev’s theorem, the instability of action variables is an exponentially slow phe-
nomenon, or equivalently, the action variables are stable for an exponentially large time. More
precisely, under assumptions of regularity of the system and (quantitative) non-degeneracy of
h, for any perturbation and any solution, the variation of the actions is a O(εb) for |t| ≤ T (ε),
where T (ε) is a O (exp (ε−a)) with constants 0 < a, b ≤ 1/2. In [BM11], the authors proved
that, under convexity assumptions, a can be chosen such that a = 1

2(n−1) − δ, with δ as small as
desired.

In this thesis, we are mainly concerned with diffusion orbits and diffusion times.

1.4 Standing assumptions and convention

Here we state the assumptions needed for chapters 2, 3 and 4. Chapter 5 will deal with Hamil-
tonian flows (instead of diffeomorphisms) and will have its own assumptions.

Standing assumptions for chapters 2, 3 and 4. We assume that

• (M , Ω) is a smooth symplectic Riemannian manifold,

• f :M →M is a symplectic diffeomorphism of class C l (l ≥ 3),

• N is a smooth compact submanifold of M and that it is boundaryless,

• N is a controllable 3-normally hyperbolic manifold for f ,

• ns = nu = p,

• N has trivial stable and unstable bundles.

Convention. Let d be the distance associated with the Riemannian metric on M . We will
equip the neighborhood V defined in Proposition B with the distance given by the sup of d|N
and the Euclidian distance on R2p. It is equivalent to the image under ϕ of d since V is relatively
compact.

We will use the usual operator norms for the linear applications defined on Banach spaces
that we will deal with throughout the thesis. We will equip the product spaces with the sup
norm and the subsets with the induced norm. For notational simplicity, we will denote all our
norms by the same symbol ‖.‖; the context will always be clear enough to avoid ambiguities.

To prove our results, we will use compositions of linear applications defined on the tangent
spaces of some suitable manifolds. They will be normed algebras for the induced norm.
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1. Framework: reminders, definitions and notation
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Chapter 2

A “basic" λ-lemma and an application
to diffusion

In this Chapter, we prove a “basic" λ-lemma for normally hyperbolic manifolds. Given a normally
hyperbolic invariant manifold N for a diffeomorphism f satisfying the assumptions in Section 1.4,
we consider a submanifold ∆ that transversely intersects the stable manifold of N and whose
dimension is equal to the dimension of a fiber of the unstable bundle. We prove that under
iteration by f , this submanifold is as close as desired (in the C1 compact open topology) to
a suitable unstable leaf. In Section 2.1.1, we will use the straightening neighborhood given in
Section 1.1.3 to set out a simplified version of the basic λ-lemma (Theorem 1) and to properly
define the notion of C1-convergence. Then we state the λ-lemma in a more general context
(Theorem 2). We devote Sections 2.2 and 2.3 to the proofs of these theorems.

The basic λ-lemma will enable us to prove a diffusion result in Section 2.4. More precisely, we
apply the λ-lemma to prove the existence of drifting orbits along a transition chain of invariant
minimal sets contained in a normally hyperbolic manifold, without any assumption on the nature
of the invariant sets (in particular, they do not need to be submanifolds). As an easy particular
case, we recover Arnold’s example.

In the sequel, we consider f , M and N as in Section 1.4.

2.1 A basic λ-lemma for normally hyperbolic manifolds

Let ∆ be a C1-submanifold of M of dimension p which transversely intersects W s(N) at some
point a. We will state two versions of the basic λ-lemma.

2.1.1 Theorem 1: in the straightening neighborhood

In this section, we state the basic λ-lemma in the straightening neighborhood. Let us start with
fixing the notation. We keep the notation of Proposition B. We will restrict our diffeomorphism
ϕ to the open set U := U ∩ f−1(U), so that F = ϕ ◦ f ◦ ϕ−1 is well defined on V := ϕ(U) ⊂ V ,
with values in V . A point in V will be written as a triple (x, s, u) and F as (Fx, Fs, Fu), according
to the splitting V = N ×Bp

s × Bp
u. Up to iterating ∆ if necessary (and resetting the counters),

we can suppose that a ∈ U without loss of generality, since we are interested in the behavior of
∆ after a large number of iterations.

We introduce the projection ΠN : W̃ s(N) −→ N that sends each (x, s, 0) to (x, 0, 0). Let
P := ϕ(a) = (x, s, 0) be the intersection point of ϕ(∆ ∩ U) and W̃ s(N). We set P0 := ΠN (P ).

27



2. A “basic" λ-lemma and an application to diffusion

For n ≥ 1, we denote by Pn = Fn(P ), and Pn0 := ΠN (P
n) = Fn|N (P0), which is the point in N

such that Pn ∈ W̃ ss(Pn0 ) (see Figure 2.2). We denote by ∆̃ the connected component of ϕ(∆∩U)
in V containing P . For all n ∈ N, we denote by ∆̃n+1 the connected component of F (∆̃n) ∩ V
containing Pn (where ∆̃0 = ∆̃).

Definition 2.1.1. [The graph property]. Let Λ be a C1-submanifold of N × Rps × Rpu. Let B
be an open ball in Rpu. We say that Λ has the graph property over B, or equivalently that Λ is a
graph over B, if there exists a C1-map ̟ : B → N × Rps, such that Λ = {(̟(u), u);u ∈ B}.

For δ small enough, we set Bδ := {u ∈ Bp
u ; ‖u‖ < δ} and Dδ := {(x, s, u) ∈ V ; u ∈ Bδ}. For

n ∈ N, we introduce the constant map

ℓn : Bδ −→ N ×Bp
s

u 7−→ (Pn0 , 0)

so that clearly W̃ uu(Pn0 ) ∩Dδ is the graph of ℓn, for all n ∈ N.

N

Bδ

W̃ uu(Pn0 )

∆̂n

Pn0

R
p
u

R
p
s

Figure 2.1: Graphs

The basic λ-lemma in V takes the following form.

Theorem 1. For all n ∈ N, let ∆̃n and ℓn be as above. Then, there exists δ > 0 such that for
all n ∈ N, there exists a C1-map ξn : Bδ → N × Bp

s , such that ∆̂n := ∆̃n ∩Dδ is the graph of
ξn. Moreover,

lim
n→∞

dC1(ξn, ℓn) = 0,

where dC1(ξn, ℓn) = sup
u∈Bδ

(
d(ξn(u), ℓn(u)) + ‖ξ′n(u)− ℓ′n(u)‖

)
.

We will need 4 steps to prove Theorem 1 in Section 2.2. We will first show how, under itera-
tion, arbitrary tangent vectors in TP0∆̃ are straightened. We will then use the transversality of
∆̃ to W̃ s(N) to prove that some suitable part of ∆̃ (close to P ) is a graph over a ball in Rpu. In
the third step, we will show how this graph property is preserved under iteration over the same
domain in Rpu. We will finally prove that tangent vectors along these graphs are straightened
and a simple application of the Mean Value Theorem ends the proof of Theorem 1.

We end this section of the chapter with the definition of a notion of “closeness" for graphs
which will be useful in the sequel.
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PP0

P 1

Pn
Pn0

P 1
0

∆̃

∆̃1

∆̃n

W̃ u(N)

W̃ s(N)

N

Figure 2.2: Straightening of ∆̃

Definition 2.1.2. We keep the notation of Theorem 1. Let ε > 0 and n ∈ N. We say that ∆̂n

and W̃ uu(Pn0 ) ∩Dδ are C1 ε-close if dC1(ξn, ℓn) < ε.

2.1.2 Theorem 2: in an arbitrary compact subset of M

In this section, we introduce a new notion of graphs and convergence in the C1 compact open
topology (in a fixed relatively compact set in M).

Definition 2.1.3. Let U and U be two neighborhoods of N in M such that U ⊂ U . We suppose
that there exists a C2-diffeomorphism ϕ : U −→ N × Rps × Rpu. Let m ∈ N be fixed. We set
ψ(m,U) := fm ◦ ϕ−1

|ϕ(U)
. Let Q1 be a C1-submanifold of M contained in W u(N) ∩ fm(U) and

Q2 be a C1-submanifold of M contained in fm(U ). We say that Q2 is a (m,U)-graph over Q1 if

ψ−1
(m,U)

(Q2) is a graph over Π3

(
ψ−1
(m,U)

(Q1)
)

in the sense of Definition 2.1.1, where Π3 denotes

the projection on the third variable.
If ψ−1

(m,U)
(Q2) = graph ξ = graph (X,S) = {(X(u), S(u), u);u ∈ Π3(ψ

−1
1 (Q1))}, we define the

following distance

d(C1,m,U)

(
Q1, Q2

)
:= sup

u∈Π3

(
ψ−1

(m,U)
(Q1)

) d
(
ψ(m,U) (X(u), S(u), u) , ψ(m,U )(X(0), 0, u)

)
+

sup
u∈Π3(ψ

−1

(m,U)
(Q1))

v1∈BR
p
u

∥∥∥Dψ(m,U) (X(u), S(u), u) .
(
X ′(u).v1, S

′(u).v1, v1
)
−Dψ(m,U) (X(0), 0, u) . (0, v1)

∥∥∥

where BRp
u

is the unit ball in Rpu.

We now state the global version of the λ-lemma.

Theorem 2. [Basic λ-lemma]. Let f , M and N be as in Section 1.4. Let ∆ be a p-dimensional
C1-submanifold transversely intersecting W s(N) at some point a, and let ∆k = fk(∆), for k ≥ 1.
Let a0 be the point in N such that a ∈W ss(a0) and set ak0 := fk(a0).

Then, there exist two neighborhoods U and U of N in M satisfying U ⊂ U , and a C2-
diffeomorphism ϕ : U −→ N×Rps×Rpu, such that ∀m ∈ N, ∀ε > 0,∃k0 ∈ N; ∀k ≥ k0, there exists
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U

fm(U)

fm
N

W u(N)

Q2Q1

N

ϕ(U )ϕ

Π3

(
ψ−1
(m,U)

(Q1)
)

ψ−1
(m,U )

(Q2)

ψ(m,U )

Figure 2.3: The (m,U )-graph property

a C1-submanifold ∆
k

in fk(∆)∩ fm(U) such that ∆
k

is a (m,U )-graph over W uu(ak0)∩ fm(U).
Moreover,

d(C1,m,U)

(
∆
k
,W uu(ak0) ∩ fm(U)

)
< ε.

We devote Section 2.3 to the proof of Theorem 2. It will be a direct consequence of the proof
of Theorem 1.

Comments. Theorem 2 actually states the straightening property in any relatively compact set
K (with a non-empty interior) in M intersecting all the unstable leaves of the submanifold N .
More precisely, let K be such a set. The sequence (fm(U)∩W u(N))m∈N is clearly an exhaustion
of W u(N) by relatively compact sets. By definition of the unstable manifold, there exists an
integer m0 such that W u(N)∩K ⊂ fm0(U). Then, one can easily prove that for all ε > 0, there
exists k0 ∈ N such that for all k ≥ k0, there exists a submanifold ∆k in fk(∆)∩K such that ∆k

is a (m0, U )-graph over W uu(ak0) ∩K. Moreover,

d(C1,m0,U)

(
∆k,W uu(ak0) ∩K

)
< ε.

Note that the convergence given by the basic λ-lemma is stronger than the Hausdorff one,
for ∆ and for its tangent space as well.

2.2 Proof of Theorem 1

In this section, we prove the basic λ-lemma. The largest part is dedicated to the proof of
Theorem 1. Theorem 2 is a simple corollary which uses the notion of the C1-distance introduced
in Section 2.1.2.

2.2.1 General assumptions for Theorem 1

Here we keep the notation of Proposition B and of Section 2.1.1 and we limit ourselves to the
behavior of F in V. Recall that V ⊂ V = N × Bp

s × Bp
u, where Bp

s,u is an open ball centered at
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2.2. Proof of Theorem 1

0 in Rp. Let Bp
s,u be of radius ς.

Since W̃ s,u(N) are invariant under F , then

∀ x ∈ N,∀ s ∈ Bp
s , Fu(x, s, 0) = 0, (2.1)

∀ x ∈ N,∀ u ∈ Bp
u, Fs(x, 0, u) = 0. (2.2)

In addition, ∀ x ∈ N , F (x, 0, 0) = (Fx(x, 0, 0), 0, 0). Since the strongly stable and unstable
foliations are invariant, then for all (x, s, u) ∈ V,

Fx(x, 0, u) = Fx(x, s, 0) = Fx(x, 0, 0). (2.3)

Therefore, for X = (x, 0, 0) ∈ N × {(0, 0)}, the derivative DF (X) at X can be represented as a
diagonal matrix:

DF (X) =




∂xFx(X) 0 0
0 ∂sFs(X) 0
0 0 ∂uFu(X)


 . (2.4)

The manifold N ×{(0, 0)} being normally hyperbolic for F , one can find a real number λ ∈ ]0; 1[
such that ∀ x ∈ N ,

‖∂sFs(x, 0, 0)‖ < λ, ‖(∂uFu)−1(x, 0, 0)‖ < λ, ‖∂sFs(x, 0, 0)‖.‖(∂xFx(x, 0, 0))−1‖ < λ

and ‖∂xFx(x, 0, 0)‖.‖(∂uFu(x, 0, 0))−1‖ < λ.

Let Y = (x, s, 0) be in W̃ s(N). Using Equations (2.1) and (2.3), one easily sees that DF (Y )
takes the following form:

DF (Y ) =




∂xFx(Y ) 0 ∂uFx(Y )
∂xFs(Y ) ∂sFs(Y ) ∂uFs(Y )

0 0 ∂uFu(Y )


 . (2.5)

One has an analogous property for the points of W̃ u(N).
We need to shrink V in order to have some estimates useful later on. Note first that V can

be chosen so that ∂xFx(Z) and ∂uFu(Z) are invertible for all Z ∈ V.

Let λ be in ]λ; 1[. For simplicity, we choose λ = 1+λ
2 . However, all the calculations in this

proof can be adjusted so that they are compatible with any value of λ ∈ ]λ; 1[. Recall that Bp
s,u

is of radius ς.

Proposition 2.2.1. For ς small enough, there exist real positive constants C1 and C2 such that
for all Z = (x, s, u) ∈ V, the following inequalities hold true

1. ‖s‖ < 5−5λ
2C2(11+λ)

,

2. ‖DF (Z)‖ ≤ C1 and ‖D2F (Z)‖ ≤ C2,

3. ‖∂sFs(Z)‖ < λ and ‖[∂uFu(Z)]−1‖ < λ,
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2. A “basic" λ-lemma and an application to diffusion

4. ‖∂xFx(Z)‖.‖[∂uFu(Z)]−1‖ < λ,

5. max
(
‖∂sFx(Z)‖, ‖∂xFs(Z)‖

)
< 5−5λ

2(11+λ) .

Proof. The proof is immediate because F is at least C2 and V is relatively compact. Note that
the last item is immediate thanks to the form of DF in (2.4).

2.2.2 Linear straightening of TPm∆̃m

The following proposition states the straightening of the tangent space of ∆̃ at its base point,
under iteration by F .

Proposition 2.2.2. For all m ∈ N, the tangent space TPm∆̃m is the graph of a linear map
Lm = (Bm, Cm) : R

p
u −→ TPm

0
N × Rps, whose norm satisfies:

lim
m→∞

‖Lm‖ = 0.

Proof. We start with a quick study of the dynamics in W̃ s(N). Recall that P = (x, s, 0) is
the intersection point of ∆̃ and W̃ s(N). Note first that by Proposition 2.2.1, ‖∂sFs(P i)‖ < λ,
for all i ≥ 0. For i ≥ 1, we set si := Fs(P

i−1). Then by the Mean Value Theorem, one gets

‖si‖ ≤ λ‖si−1‖, and thus under iteration ‖si‖ ≤ λ
i‖s‖, that tends to 0 with an exponential speed.

• We will see now where the graph property appears. By transversality of ∆̃ and W̃ s(N), and
since dim ∆̃ = p, TP ∆̃ is the graph of a linear map defined on Rpu, with values in TP0N × Rps.
More precisely, recall that Π3 : N ×Bp

s ×Bp
u −→ Bp

u is the projection over the third variable. By
transversality, DΠ3|

∆̃
(P ) is an isomorphism between TP ∆̃ and Rpu. Therefore, there exist two

linear maps B and C on Rpu, such that TP ∆̃ is the image of the map

(B,C, I) : Rpu −→ TP0N ×Rps × Rpu,

where I : Rpu → R
p
u is the identity map.

• Let us now see how the property of TP ∆̃ being a graph of a linear map persists under iteration.
We will proceed by induction. However, since the calculations are similar for all the iterates, we
will content ourselves with detailing the proof for the first iteration.

The image of TP ∆̃ under DF (P ) is TF (P )F (∆̃). For notational convenience, we will identify
our linear maps with the matrices below (in the suitable algebras of linear applications) and the
partial derivatives with the blocks in the matrices. For instance, TF (P )F (∆̃) is identified with
the image of the linear map

DF (P ).




B
C
I


 : Rpu −→ TP 1

0
N × Rps × Rpu.

Since P lies in W̃ s(N), this is nothing but the image of the following map




∂xFx(P ) 0 ∂uFx(P )
∂xFs(P ) ∂sFs(P ) ∂uFs(P )

0 0 ∂uFu(P )







B
C
I


 =




∂xFx(P ).B + ∂uFx(P )
∂xFs(P ).B + ∂sFs(P ).C + ∂uFs(P )

∂uFu(P )


 .
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Since ∂uFu(P ) : R
p
u −→ R

p
u is invertible, TF (P )F (∆̃), that is, TP 1∆̃1 coincides with the image of




∂xFx(P ).B + ∂uFx(P )
∂xFs(P ).B + ∂sFs(P ).C + ∂uFs(P )

∂uFu(P )


 .(∂uFu(P ))

−1 =




∂xFx(P ).B.(∂uFu(P ))
−1 + ∂uFx(P ).(∂uFu(P ))

−1

∂xFs(P ).B.(∂uFu(P ))
−1 + ∂sFs(P ).C.(∂uFu(P ))

−1 + ∂uFs(P ).(∂uFu(P ))
−1

I


 .

This shows that TP 1∆̃1 is also a graph. It is the image of the linear map

(B1, C1, I) : R
p
u −→ TP 1

0
N × Rps × Rpu,

where we have set

B1 = ∂xFx(P ).B.(∂uFu(P ))
−1 + ∂uFx(P ).(∂uFu(P ))

−1,

and

C1 = ∂xFs(P ).B.(∂uFu(P ))
−1 + ∂sFs(P ).C.(∂uFu(P ))

−1 + ∂uFs(P ).(∂uFu(P ))
−1.

Pursuing the induction, one gets Bi and Ci (i > 1), by applying DF (P i−1) to TP i−1∆̃i−1 (which
is the image of (Bi−1, Ci−1, I)), and then normalizing by (∂uFu(P

i−1))−1. We set bi = ‖Bi‖ and
ci = ‖Ci‖, for i ∈ N, where B0 = B and C0 = C.

• To end the proof, it is enough now to prove that (bi) and (ci) converge to 0. We begin with
(bi). We fix an arbitrary ε > 0. Proposition 2.2.1 yields, for all i ∈ N,

‖∂xFx(P i)‖.‖(∂uFu(P i))−1‖ < λ,

so that, since ‖(∂uFu(P i))−1‖ < 1,

bi+1 ≤ ‖∂xFx(P i)‖.bi.‖(∂uFu(P i))−1‖+ ‖∂uFx(P i))‖.‖(∂uFu(P i))−1‖ ≤ λbi + βi,

where we have set βi := ‖∂uFx(P i))‖. Therefore, for n ∈ N∗,

bn ≤ λ
n
b0 +

n−1∑

i=0

λ
i
βn−1−i.

Note that we are not interested in giving the optimal expression for the convergence. Since λ < 1,
then for n large enough, λ

n
b0 ≤ ε

2 . On the other hand, by the Mean Value Theorem, βi satisfies:

βi ≤ C2λ
i‖s‖

since ‖∂uFx(P i0))‖ = 0. As a consequence of Proposition 2.2.1, it is easy to see that C2‖s‖ ≤ 1.
Therefore

n−1∑

i=0

λ
i
βn−1−i ≤

n−1∑

i=0

λ
i
λ
n−1−i ≤

n−1∑

i=0

λ
n−1

= n.λ
n−1

.
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2. A “basic" λ-lemma and an application to diffusion

Since λ < 1, then for n large enough, n.λ
n−1 ≤ ε

2 . Then, for n large enough, bn ≤ ε.

Note that one can also prove that the series
∑
bi is convergent. This will be needed for the

convergence of (ci).

Let us now study the convergence of the sequence (ci). For i ≥ 0,

ci+1 ≤ ‖∂xFs(P i)‖.bi.‖(∂uFu(P i))−1‖+ ‖∂sFs(P i)‖.ci.‖(∂uFu(P i))−1‖
+‖∂uFs(P i)‖.‖(∂uFu(P i))−1‖.

It is easy to see, using the Mean Value Theorem, that ‖∂xFs(P i)‖ < C2‖si‖ < 1, for all i. As

we did for (bi), we define γi := ‖∂uFs(P i)‖ and get γi ≤ λ
i
, following the same steps as for βi.

Therefore,

ci+1 ≤ bi + λci + λ
i
,

and, for n ≥ 1,

cn ≤
n−1∑

i=0

λ
(n−1−i)

bi + λ
n
c0 +

n−1∑

i=0

λ
(n−1−i)

λ
i
.

Since λ < 1, for n large enough, one gets λ
n
c0 ≤ ε

3 . On the other hand, for n large enough,
∑n−1

i=0 λ
(n−1−i)

.λ
i
= nλ

n−1 ≤ ε
3 . Finally, let sn−1 :=

∑n−1
i=0 λ

(n−1−i)
bi. Observe that sn is the

general term of the Cauchy product of the series of general terms bi and λ
i
respectively. These

series are both convergent, so is their Cauchy product. Then (sn) converges to 0. More precisely,
for n large enough, one has sn−1 ≤ ε

3 . This ends the proof of Proposition 2.2.2.

2.2.3 The graph property for ∆̃

We have seen above that, because of the transversality, DΠ3(P ) restricted to TP ∆̃ is an isomor-
phism between TP ∆̃ and Rpu. Then, by the Inverse Function Theorem, there exist a neighborhood
O1 of P in ∆̃ and a neighborhood O2 of 0 in Rpu such that Π3|

∆̃
is a diffeomorphism from O1 onto

O2. More precisely, there exists a real number δ̃ > 0 such that, if we set B
δ̃
:= {u ∈ Bp

u; ‖u‖ < δ̃}
and D

δ̃
:= {(x, s, u) ∈ V;u ∈ B

δ̃
}, then there exists a C1-map ξ : B

δ̃
→ N×Bp

s , such that ∆̃∩D
δ̃

is the graph of ξ (in the sense of Definition 2.1.1). We set ξ = (X,S).

2.2.4 The graph property for the iterates ∆̃n over a fixed strip

We set ν̃ := ‖ξ′‖ = max(‖X ′‖, ‖S′‖) = supu∈Bδ
(‖ξ′(u)‖) and ν := max(1, ν̃). We will see later

on why we choose ν (and not just ν̃) to bound the norm of all the derivatives of the graph maps.
Let us set

εν =
1− λ

12ν(1 + λ)
=

1− λ

12νλ
. (2.6)

The reason behind this choice will be clarified later on. By uniform continuity, and due to the
form of DF on W̃ s(N) (Equation (2.5)), there exists η > 0, such that for all (x, s, u) ∈ V, if
‖u‖ < η, then

‖∂xFu(x, s, u)‖ < εν and ‖∂sFu(x, s, u)‖ < εν . (2.7)

34



2.2. Proof of Theorem 1

We then set

δ := min

(
1, δ̃, η,

1− λ

3C2(2ν + 1)2

)
. (2.8)

Proposition 2.2.3. Let δ and ν be as above. Then, for all n ∈ N, there exists a C1-map
ξn : Bδ → N × Bp

s such that ∆̂n := ∆̃n ∩ Dδ is the graph of ξn. Moreover, if for all n ∈ N,
ξn = (Xn, Sn), then ‖ξ′n‖ := max(‖X ′

n‖, ‖S′
n‖) = supu∈Bδ

(‖ξ′n(u)‖) satisfies ‖ξ′n‖ ≤ ν.

The rest of this subsection is devoted to the proof of Proposition 2.2.3. We will proceed by
induction. We first prove these statements for the first iteration, by using intermediate lemmas
which will be very useful for the estimates later on. All the computations will be independent
of n, which will easily yield the proof of the inductive step.

Note that when n = 0, the statement follows from Section 2.2.3 and the definition of ν.
Therefore, we have to prove that if for n ∈ N, ∆̂n = graph ξn = {(Xn(u), Sn(u), u);u ∈ Bδ} with
‖ξ′n‖ ≤ ν, then F (∆̂n) is also the graph of a map ξn+1 over an open set in Rpu strictly containing
Bδ. We then set

∆̂n+1 = F (∆̂n) ∩Dδ = ∆̃n+1 ∩Dδ = graph ξn+1 = {(Xn+1(u), Sn+1(u), u);u ∈ Bδ}.

Note that we will keep the same notation for ξn+1 and its restriction to Bδ. We also have to
prove that ‖ξ′n+1‖ < ν.

To simplify this step and to keep our formulas legible, we will actually prove that Proposi-
tion 2.2.3 holds true when n = 1. Since all the computations will be independent of n, one can
easily see that the statements are valid for an arbitrary n.

By applying F to ∆̂ = {(X(u), S(u), u);u ∈ Bδ}, one gets

F (∆̂) =
{(
Fx(X(u), S(u), u), Fs(X(u), S(u), u), Fu(X(u), S(u), u)

)
;u ∈ Bδ

}
.

Let G(u) := Fu(X(u), S(u), u) = h. We will prove that G is a homeomorphism onto its image
B′
δ and that the latter strictly contains Bδ. Then, it is easy to see that F (∆̂) restricted to

D′
δ := {(x, s, u) ∈ V;u ∈ B′

δ} is the graph of (X1, S1), where

X1(h) = Fx
(
X(G−1(h)), S(G−1(h)), G−1(h)

)
,

and
S1(h) = Fs

(
X(G−1(h)), S(G−1(h)), G−1(h)

)
,

for h ∈ B′
δ. We will need the following lemmas.

Lemma 2.2.4. For all u ∈ Bδ, G
′(u) is an isomorphism on Rpu. Moreover,

[G′(u)]−1 =
( ∑

m≥0

(−H(u))m
)
.[∂uFu(X(u), S(u), u)]−1 ,

where H(u) := [∂uFu(X(u), S(u), u)]−1 .[∂xFu(X(u), S(u), u).X ′(u)+∂sFu(X(u), S(u), u).S′(u)].

Proof. G(u) = Fu(X(u), S(u), u) gives by derivation

G′(u) = ∂xFu(X(u), S(u), u).X ′(u) + ∂sFu(X(u), S(u), u).S′(u) + ∂uFu(X(u), S(u), u).

Recall that the linear map ∂uFu(x, s, u) is invertible for all (x, s, u) ∈ V, and satisfies:

‖[∂uFu(x, s, u)]−1‖ < λ < 1.
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2. A “basic" λ-lemma and an application to diffusion

Then one can write
G′(u) = [∂uFu(X(u), S(u), u)].[I +H(u)],

where H(u) := [∂uFu(X(u), S(u), u)]−1 .[∂xFu(X(u), S(u), u).X ′(u)+∂sFu(X(u), S(u), u).S′(u)].
Since ∂uFu(X(u), S(u), u) is invertible, it is enough to prove that I +H(u) is invertible too. It
is the case if ‖H(u)‖ < 1 because it is an endomorphism of Rpu. So now we will prove that
‖H(u)‖ < 1. It is easy to see that, by definition of εν (equation (2.6)), for all u ∈ Bδ,

‖H(u)‖ < 2λνεν =
1− λ

6
< 1.

Therefore I+H(u) is invertible on Rpu and [I+H(u)]−1 =
∑

m≥0(−H(u))m. This ends the proof
of Lemma 2.2.4.

Lemma 2.2.5. For all u ∈ Bδ, ‖[G′(u)]−1‖ < 1.

Proof. This easily follows from the previous lemma. In fact,

‖[G′(u)]−1‖ ≤ ‖ ∑
m≥0

(−H(u))m ‖.‖[∂uFu(X(u), S(u), u)]−1‖

≤ 1
1−‖H(u)‖ .‖[∂uFu(X(u), S(u), u)]−1‖

< 1
1−2λνεν

.‖[∂uFu(X(u), S(u), u)]−1‖

< 6
5+λ

.‖[∂uFu(X(u), S(u), u)]−1‖ < 6λ
5+λ

< 1.

We will now prove that G is invertible.

Proposition 2.2.6. There exists an open set B′
δ in Rpu strictly containing Bδ, such that G is a

homeomorphism from Bδ onto B′
δ.

Proof. Without loss of generality, we can assume that ξ is defined on Bδ. We introduce an
auxiliary map defined on Bδ,

χ(u) = [∂uFu(X(0), S(0), 0)]−1 .G(u) = [∂uFu(P )]
−1.G(u).

We will first study the invertibility of χ, from which that of G easily follows. Let y be in a
subset of Rpu to be specified later on. We are looking for the conditions under which there exists
a unique x ∈ Bδ, such that y = χ(x). We let ψ(x) := x − χ(x) + y, so that the point y has a
unique preimage under χ if and only if ψ has a unique fixed point. To prove this last property,
we will need the next lemma.

Lemma 2.2.7. For all u ∈ Bδ, ‖I − χ′(u)‖ < 1−λ
2 .

Proof. By derivating χ(u) = [∂uFu(P )]
−1.G(u), one gets

χ′(u) = [∂uFu(P )]
−1.[∂uFu(X(u), S(u), u)].[I +H(u)].
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2.2. Proof of Theorem 1

We set W := [∂uFu(P )]
−1.[∂uFu(X(u), S(u), u)] and T := W − I so that W = T + I and

χ′(u)−I = W.(I+H(u))−I. Recall that ‖H(u)‖ < 2λνεν = 1−λ
6 (see the proof of Lemma 2.2.4).

Therefore,

‖T ‖ = ‖[∂uFu(P )]−1.[∂uFu(X(u), S(u), u)] − I‖
= ‖[∂uFu(P )]−1.[∂uFu(X(u), S(u), u) − ∂uFu(P )]‖
≤ ‖[∂uFu(P )]−1‖.‖[∂uFu(X(u), S(u), u) − ∂uFu(X(0), S(0), 0)‖
≤ λ(2C2ν + C2)‖u‖,

by the Mean Value Theorem. Writing χ′(u)− I = (T + I).(I+H(u))− I = H(u)+T .(I+H(u))
gives

‖χ′(u)− I‖ ≤ ‖H(u)‖ + ‖T ‖.(1 + ‖H(u)‖)
< 2λνεν + λ(2C2ν +C2)‖u‖(1 + 2ενλν)

< 1−λ
6 + C2(2ν + 1)2‖u‖,

because λ < 1 and λεν < 1 using equation (2.6).

Recall that ‖u‖ < 1−λ
3C2(2ν+1)2

by equation (2.8), which yields

‖χ′(u)− I‖ < 1−λ
6 + 1−λ

3

< 1−λ
2 .

This ends the proof of Lemma 2.2.7.

• We now go back to proving the invertibility of χ. Let κ := 1−λ
2 . Clearly κ < 1. The last lemma

shows that ψ = IBδ
− χ + y is a contracting map. In order for it to have a unique fixed point,

one needs to have ψ(Bδ) ⊂ Bδ. And this condition is satisfied if ‖y‖ ≤ δ(1 − κ). Therefore
χ : Bδ −→ Imχ is bijective and satisfies Bδ(1−κ) ⊂ Imχ.

• The invertibility of G easily follows from that of χ. Recall that χ = [∂uFu(P )]
−1.G. Therefore,

G : Bδ −→ ImG is an homeomorphism and satisfies B′
δ := ImG ⊃ B δ(1−κ)

λ

.

Recall that κ = 1−λ
2 which gives (1 − κ) > λ and thus B′

δ, which contains B δ(1−κ)

λ

, strictly

contains Bδ. This ends the proof of the proposition.

Therefore, the proof of the graph property in Proposition 2.2.3 for the case n = 1 is complete.
Let ∆̂1 = F (∆̂) ∩ Dδ = graph ξ1 = {(X1(u), S1(u), u);u ∈ Bδ}. The next proposition will not
only end the proof of the case n = 1, but will also be a preliminary step to estimating lim

n→∞
‖ξ′n‖

in Section 2.2.5.

Proposition 2.2.8. If we set ‖ξ′1‖ := supu∈Bδ
(‖ξ′1(u)‖) = max(‖X ′

1‖, ‖S′
1‖), then ‖ξ′1‖ < ν.

Proof. We recall that for h ∈ B′
δ,

X1(h) = Fx
(
X(G−1(h)), S(G−1(h)), G−1(h)

)
,

and
S1(h) = Fs

(
X(G−1(h)), S(G−1(h)), G−1(h)

)
.
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2. A “basic" λ-lemma and an application to diffusion

Since we are only interested in uniform norms over Bδ, we consider h to belong to Bδ from now
on. We let u := G−1(h). Then u ∈ G−1(Bδ)  Bδ. We write

X1(G(u)) = Fx(X(u), S(u), u),

and
S1(G(u)) = Fs(X(u), S(u), u).

By derivating the two sides with respect to u and inverting G′(u), one gets for all u ∈ Bδ

X ′
1(G(u)) = ∂xFx(X(u), S(u), u).X ′(u).[G′(u)]−1 + ∂sFx(X(u), S(u), u).S′(u).[G′(u)]−1

+ ∂uFx(X(u), S(u), u).[G′(u)]−1,

and

S′
1(G(u)) = ∂xFs(X(u), S(u), u).X ′(u).[G′(u)]−1 + ∂sFs(X(u), S(u), u).S′(u).[G′(u)]−1

+ ∂uFs(X(u), S(u), u).[G′(u)]−1.

Let us begin by studying T := ‖∂xFx(X(u), S(u), u)‖.‖[G′(u)]−1‖. Using the estimates in
Lemma 2.2.5, one gets

T ≤ ‖∂xFx(X(u), S(u), u)‖.‖[I +H(u)]−1‖.‖[∂uFu(X(u), S(u), u)]−1‖

< λ.‖[I +H(u)]−1‖ < 6λ
5+λ

:= α̃,

where we can easily see that 0 < λ < α̃ < 1. Recall that by Proposition 2.2.1, for all u ∈ Bδ,

max
(
‖∂sFx(X(u), S(u), u)‖, ‖∂xFs(X(u), S(u), u)‖

)
<

5− 5λ

2(11 + λ)
,

which yields

‖ξ′1‖ <
(
α̃+

5− 5λ

2(11 + λ)

)
‖ξ′‖+ sup

u∈Bδ

max
(
‖∂uFx(X(u), S(u), u)‖, ‖∂uFs(X(u), S(u), u)‖

)
.

On the one hand, α̃ = 6λ
5+λ

= 6+6λ
11+λ , and thus α̃+ 5−5λ

2(11+λ) = 1+α̃
2 := β, with 0 < α̃ < β < 1. On

the other hand, using the particular form of F on the unstable manifold (Equations (2.2) and
(2.3)), for X ∈ W̃ u(N), the derivative DF (X) at X has the following form

DF (X) =




∂xFx(X) ∂sFx(X) 0
0 ∂sFs(X) 0

∂xFu(X) ∂sFu(X) ∂uFu(X)


 . (2.9)

Therefore, using this particular form and the Mean Value Theorem, one gets

sup
u∈Bδ

max
(
‖∂uFx(X(u), S(u), u)‖, ‖∂uFs(X(u), S(u), u)‖

)
≤ C2 sup

u∈Bδ

‖S(u)‖,

and so
‖ξ′1‖ < β‖ξ′‖+ C2 sup

u∈Bδ

‖S(u)‖. (2.10)

Using item 1 of Proposition 2.2.1, and the fact that ν ≥ 1, one gets

‖ξ′1‖ <
(
β +

5− 5λ

2(11 + λ)

)
ν = ν.

This ends the proof of the lemma.
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Observe that the fact that ν is larger than 1 is crucial to show that ‖ξ′1‖ < ν which explains
our initial choice in the beginning of Section 2.2.4. Since all the computations in the previous
lemmas are independent of n, the proof of the inductive step easily follows.

We then set ∆̂n = ∆̃n ∩ Dδ = graph ξn = {(Xn(u), Sn(u), u);u ∈ Bδ} for all n ∈ N. This
ends the proof of Proposition 2.2.3.

2.2.5 Linear straightening along the graphs

We will now see how tangent vectors along the graphs are straightened. We will use the estimates
of the previous section to prove the following proposition.

Recall that ∆̂n = graph ξn = graph (Xn, Sn) = {(Xn(u), Sn(u), u);u ∈ Bδ} for all n ∈ N.

Proposition 2.2.9. For all ε > 0, there exists n0 ∈ N, such that for all n ≥ n0, ‖ξ′n‖ < ε.

Proof. Generalizing to all the iterates Inequality (2.10), since the estimates are uniform with
respect to the order of the iteration, one gets

‖ξ′n+1‖ < β‖ξ′n‖+ C2 sup
u∈Bδ

‖Sn(u)‖. (2.11)

By the Mean Value Theorem, one can prove by induction that sup
u∈Bδ

‖Sn(u)‖ ≤ λ
n
sup
u∈Bδ

‖S(u)‖.

More precisely, for all u ∈ Bδ and for all n ∈ N∗, there exists Z = (Z1, Z2, Z3) ∈ ∆̂n−1 such that
Sn(u) = Fs(Z) = Fs(Z) − Fs(Z1, 0, Z3). Therefore ‖Sn(u)‖ ≤ λ‖Z2‖ ≤ λ supu∈Bδ

‖Sn−1(u)‖,
since ∆̂n−1 = graph (Xn−1, Sn−1), which proves our claim. Since C2 sup

u∈Bδ

‖S(u)‖ < 1, then by

Inequality (2.11),

‖ξ′n+1‖ < β‖ξ′n‖+ λ
n
.

The proof of the convergence follows the same lines as that of (bn) in Section 2.2.2, since β <
1.

2.2.6 Nonlinear straightening and proof of Theorem 1

We can now end the proof of Theorem 1 by a simple application of the Mean Value Theorem.
We get for n ≥ n0,

sup
u∈Bδ

d
(
ξn(u), (P

n
0 , 0)

)
≤ sup

u∈Bδ

d
(
ξn(u), ξn(0)

)
+ d

(
ξn(0), (P

n
0 , 0)

)

< ε+ ‖Sn(0)‖
< ε+ λ

n‖S(0)‖,

where we have used that ‖u‖ < 1. The convergence easily follows. This completes the proof of
Theorem 1.

2.3 Proof of Theorem 2

We will now prove Theorem 2 which will be a consequence of Theorem 1. Let ϕ be the dif-
feomorphism given by Proposition B and U be as in Section 2.1.1. Let δ be given by Theo-
rem 1. We set U := ϕ−1(Dδ). Let m ∈ N be fixed, then ψ(m,U) = fm ◦ ϕ−1

|Dδ
. Let (∆̂n)
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Dδ

N

∆̂k−mBδ

U

fm(U)

fm

W u(N)

N

ϕ

W uu(ak0) ∆
k

ψ(m,U )

Figure 2.4: In fm(U)

be as in Theorem 1. For all k ≥ m, let ∆
k

:= ψ(m,U )(∆̂
k−m). The (m,U )-graph prop-

erty of ∆
k

is an immediate consequence of Theorem 1. As for the convergence, the C0 part
of the convergence is obvious by uniform continuity of ψ(m,U ). It is now enough to prove

the convergence of the second term of the (C1,m,U)-distance. There exist two positive real

numbers C and C, such that for all u ∈ Bδ, for all v1 ∈ BRp
u
, for all n ∈ N, if we set

T := ‖Dψ(m,U )(ξn(u), u).(ξn
′(u).v1, v1)−Dψ(m,U )(Xn(0), 0, u).(0, v1)‖, then

T ≤ ‖Dψ(m,U )(ξn(u), u).(ξn
′(u).v1, v1)−Dψ(m,U)(ξn(u), u).(0, v1)‖

+‖Dψ(m,U )(ξn(u), u).(0, v1)−Dψ(m,U)(Xn(0), 0, u).(0, v1)‖
≤ ‖Dψ(m,U )(ξn(u), u)‖.‖ξn ′(u)‖ + ‖Dψ(m,U)(ξn(u), u) −Dψ(m,U)(Xn(0), 0, u)‖
≤ C.‖ξn′(u)‖ + Cd ((ξn(u), u), (Xn(0), 0, u))

by the Mean Value Theorem. The convergence follows from Theorem 1. By setting n := k −m,
the proof of Theorem 2 is now complete.

2.4 Application to diffusion

We will now use the basic λ-lemma to prove a diffusion result. We will prove the existence
of a shadowing orbit for a finite family of invariant dynamically minimal sets, contained in a
normally hyperbolic manifold, and having successive heteroclinic connections. We will see that
the existence of Arnold’s diffusion orbit easily follows from this application.

Note that, in Chapter 5, we will prove a slightly more general result (Proposition 5.5.4) which
will be adapted to the setting there, but can easily be adapted to the setting here as well.

2.4.1 Shadowing orbits for a finite family of invariant minimal sets

In this section, we prove a corollary of the basic λ-lemma that gives the existence of a shadowing
orbit for a transition chain. Let f , M and N be as in Section 1.4. If A is an invariant dynamically

40



2.4. Application to diffusion

W u(N)

N
Ak

Ak+1

W s(N)
ak
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W uu(ak)

∆

ck

W uu(ak+1)

W ss(bk+1)
bk+1

ak+1

Figure 2.5: Heteroclinic connections

minimal set contained in N , that is, a set in which the orbit of each point is dense, we set

W u(A) :=
⋃

a∈A

W uu(a).

Definition 2.4.1. [Transition chain]. Let n ∈ N, (n > 1). If (Ak)1≤k≤n is a finite family of
invariant dynamically minimal sets contained in N , we say that (Ak) is a transition chain if, for
all k = 1, . . . , n− 1, W u(Ak) ∩W s(Ak+1) 6= ∅.

Note that we do not require any regularity for the sets. In the Hamiltonian nearly integrable
case, they can be general Aubry-Mather sets for instance.

We will only need the convergence in the C0 topology stated in the basic λ-lemma to prove the
following result. In Figure 2.5, we illustrate the assumptions of Corollary 2.4.2, in the particular
case n0 = 2 and p = 1. Of course, since the invariant manifolds are 3-dimensional, this is only a
rough representation of the situation.

Corollary 2.4.2. Let f , M and N be as in Section 1.4. Let (Ak)1≤k≤n be a transition chain in N
such that, for all k = 1, . . . , n−1, there exist ak ∈ Ak, bk+1 ∈ Ak+1 and ck ∈W uu(ak)∩W ss(bk+1)
such that W uu(ak) and W s(N) transversely intersect at ck. Then,

W u(An) ⊂W u(A1).

Proof. We first prove that W u(Ak+1) ⊂W u(Ak) for all k = 1, . . . , n− 1. Let z be in W u(Ak+1)
and let η > 0 be an arbitrary real number. Let B be the ball in M of radius η and centered at
z. We will prove that B ∩W u(Ak) 6= ∅.

Since B can be transported into U by means of the backwards iterates of f , then without
loss of generality, we can restrict the problem to the straightening neighborhood V ⊂ V (see
Proposition B and Proposition 2.2.1).
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2. A “basic" λ-lemma and an application to diffusion

Since z is in W u(Ak+1), there exists a unique ak+1 ∈ Ak+1 such that z ∈ W uu(ak+1). Let
us set ∆ := W uu(ak), then ∆ is an immersed p-dimensional C3-submanifold of M , transversely
intersecting W s(N). We let bmk+1 := fm(bk+1) and ∆m be the connected component of fm(∆)∩V
containing cmk := fm(ck).

• By the basic λ-lemma, for all ε > 0, there exists N1 ∈ N such that for all m ≥ N1, ∆m is
ε-close to W uu(bmk+1) (in the sense of Definition 2.1.2).

• Since Ak+1 is invariant, the sequence (bmk+1)m∈N lies in Ak+1. Since this set is also minimal,
we can extract a subsequence (b

mj

k+1)j∈N such that lim
j→∞

b
mj

k+1 = ak+1. More precisely,

∀ ε > 0,∃ N2 ∈ N; j ≥ N2 ⇒ d(b
mj

k+1, ak+1) < ε.

• The foliations being straightened, for j large enough, W uu(b
mj

k+1) is ε-close to W uu(ak+1).
• Recall that ∆ ⊂ W u(Ak) which is invariant. There exists then N0 ∈ N such that ∆mN0

intersects B. Therefore, W u(Ak+1) ⊂W u(Ak), for k = 1, . . . , n − 1.
By induction, W u(An) ⊂W u(A1). This ends the proof of the corollary.

Comments. In particular, this corollary proves the existence of an orbit that wanders arbitrarily
close to both A1 and An. More precisely, given two arbitrary neighborhoods U1 and Un of A1

and An respectively, there exists then an orbit intersecting both U1 and Un (take the orbit of
any point in Un ∩W u(A1) for instance). In Chapter 5, we will see that we can actually prove
the existence of an orbit that wanders arbitrarily close to each Ai (Proposition 5.5.4).

2.4.2 Particular case: Arnold’s example

We will see in this section that Arnold’s system ([Arn64]) satisfies all the assumptions of Corol-
lary 2.4.2 and thus, one easily deduces the existence of drifting orbits. In Arnold’s example,
the stable manifold of a torus transversely intersects the unstable manifold of the next torus.
These manifolds are Lagrangian and the Lagrangian/Lagrangian intersections will easily yield
the isotropic/coisotropic intersections needed in Corollary 2.4.2 (W uu(ak) and W s(N) trans-
versely intersecting at ck). We start with a reminder on Arnold’s example and define the objects
(F , M , N , the transition chain,...) needed to set up the context of Corollary 2.4.2.

The autonomous version of the Hamiltonian used by Arnold is defined on T3 × R3 and is
given by

Hε,µ(θ, r) =
1

2
(r21 + r22) + r3 + ε(cos θ1 − 1) + εµ(cos θ1 − 1)(cos θ2 + sin θ3),

where θ = (θ1, θ2, θ3) ∈ T3, r = (r1, r2, r3) ∈ R3 and 0 < |µ| << |ε| << 1.

Theorem 2.4.3. [Arnold] Given A < B, there exists ε0 > 0 such that for all ε ∈ ]0; ε0[ there
exists µ0 such that for all µ ∈ ]0;µ0[, the system Hε,µ admits an orbit whose projection on the
action space R3 intersects the open sets r2 < A and r2 > B.

The Hamiltonian Hε,µ is a perturbation of H0,0 =
1
2(r

2
1 + r22) + r3, and the parameters ε and

µ play asymmetric roles: ε preserves the integrability and creates hyperbolicity, and µ breaks
down the integrability and causes instability. More precisely, when ε = 0, T3 ×R3 is foliated by
invariant lagrangian tori, and when ε > 0 and µ = 0, the system is equivalent to the uncoupled
product of a pendulum (Hp(θ1, r1) =

1
2r

2
1 + ε(cos θ1 − 1)) with the completely integrable system

Hr(θ2, θ3, r2, r3) = 1
2r

2
2 + r3. The resonant surface given by the equation r1 = 0, which is

invariant and foliated by invariant tori when ε = 0, is destroyed. It gives rise to a one-parameter
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family of 2-dimensional invariant tori which are partially hyperbolic, whose union is the normally
hyperbolic invariant manifold N ′ := {0, 0} × T2 × R2. The invariant manifolds of N ′ are the
product of those of the hyperbolic point (θ1 = 0, r1 = 0) with the annulus T2×R2. When |µ| > 0,
we lose the integrability and the invariant manifolds of the tori do not coincide anymore. The
Poincaré-Melnikov integrals show that there exists ε0 > 0 such that for all ε ∈ ]0; ε0[ there exists
µ0 such that for all µ ∈ ]0;µ0[, the invariant manifolds transversely intersect along a homoclinic
orbit. Note that Arnold chose the last term of the perturbation in such a way that it vanishes on
the invariant tori (because θ1 = 0), and thus the previous partially hyperbolic tori are preserved
when µ > 0, as well as the normally hyperbolic manifold.

It is possible to choose a section S (see [Mar96]) contained in an energy level H and transverse
(in H) to the Hamiltonian flow. The Poincaré map associated to S and defined in a neighborhood
of N := N ′ ∩ S (which is also normally hyperbolic) in S will play the role of F (this of course is
immediate with the nonautonomous form of the system). Note that S can be chosen so that the
invariant manifolds of N are the intersections of those of N ′ with S.

Let ω be irrational and let Tω be the torus in N given by the equation r2 = ω. It is invariant
and minimal (because ω is irrational). Arnold proved the existence of a finite family (Tωi

)i∈I
of those tori that have in addition Lagrangian invariant manifolds with transverse heteroclinic
connections: W u(Tωi

) ⋔W s(Tωi+1).
To get Arnold’s orbits, it suffices now to apply Corollary 2.4.2 to the family (Tωi

), since this
family is contained in a normally hyperbolic manifold. The Lagrangian/Lagrangian intersection
implies the isotropic/coisotropic intersection needed in the corollary. More precisely, for all i ∈ I,
let ci ∈ W u(Tωi

) ⋔ W s(Tωi+1). We set ai the point in Tωi
such that ci ∈ W uu(ai). It is easy

to see that W uu(ai) transversely intersects W s(N) at ci. One gets then a transition chain as in
Corollary 2.4.2.

Comments. The existence of the drifting orbits is therefore a simple application of the λ-lemma
while in [Arn64], the author used an obstruction argument for each torus. The obstruction
argument is a geometrical way to say that W u(Tωi+1) ⊂ W u(Tωi

). This argument was not
completely proved in Arnold’s paper. The first proof was given in ([Mar96]) by means of a
partially hyperbolic λ-lemma, which yields the straightening property for arcs lying in some
suitable “vertical cone”. The proof was improved later on in [FM00]. Our λ-lemma holds for
normally hyperbolic manifolds instead of partially hyperbolic tori and does not require any
“verticality" assumption for the transversal arcs, which enables us to significatively simplify the
previous proofs for transition chains of tori contained in a normally hyperbolic manifold, and
apply to more general situations as well.
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Chapter 3

A “fibered" λ-lemma and an application
to diffusion

In this chapter, we state and prove a “fibered" λ-lemma for normally hyperbolic controllable
manifolds, which is a generalization of the basic λ-lemma to higher dimensional transverse sub-
manifolds. We consider f , M and N as in Section 1.4. The basic λ-lemma is valid for submani-
folds ∆ of dimension p (the dimension of the unstable leaves) transverse to the stable manifold
of N . We generalize this result to submanifolds of dimension p+ r, with 0 ≤ r ≤ n0 (recall that
p+ n0 is the dimension of the unstable manifold of N).

To prove the basic λ-lemma in Chapter 2, we used that ∆ and W s(N) transversely intersect
at a point and we introduced the graph property (Definition 2.1.1). The notion of C1-convergence
was based on the persistence under iteration of this property over a fixed strip. Here, because
of dimensional reasons, we are not able to adapt the same method to the general context.
Therefore, new techniques are needed. We will define a new notion of C1-convergence by means
of diffeomorphisms and tangent vectors (Theorem 3 below).

In Section 3.3, we apply the fibered λ-lemma to prove the transitivity of transversal hetero-
clinic connections for systems under additional assumptions.

3.1 A fibered λ-lemma for normally hyperbolic manifolds

Since we are only interested in the behavior of the manifolds (transversely intersecting W s(N))
after a large number of iterations, we will restrict our study to the straightening neighborhood
defined in Proposition B (Section 1.1.3), but it would be possible to give abstract definitions as
well.

Let us start with fixing some general assumptions on the neighborhood in which the fibered
λ-lemma (Theorem 3) will be stated. We keep the notation of Sections 2.1.1 and 2.2.1. Let V
be as in Section 2.1.1 and Proposition 2.2.1. We set

C := max(C1, sup
Z∈V

‖[∂xFx(Z)]−1‖). (3.1)

We need additional assumptions in the neighborhood of N to state Theorem 3.

Proposition 3.1.1. There exists a neighborhood V̂ of N in V of the form N × Bps × Bpu (where
Bps,u are open balls in Rps,u centered at 0) such for all (x, s, u) ∈ V̂ , ‖s‖ < smax, where
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smax = −2λ
2
+3λ−1

2CC2(1+λ)
. Moreover,

for all (Z,Z)′ ∈ V̂ 2, ‖∂sFs(Z)‖.‖[∂xFx(Z ′)]−1‖ < λ.

Proof. The proof of the last estimate is immediate by uniform continuity.

Note that one gets −2λ
2
+ 3λ− 1 = −(2λ− 1)(λ− 1) > 0 by definition of λ.

As we did in Chapter 2, for ̺ small enough, we set

B̺ := {u ∈ Bp
u ; ‖u‖ < ̺} and D̺ := {(x, s, u) ∈ V̂ ; u ∈ B̺}.

We now state an easy lemma that will give the existence of an extension of Γ to a suitably
fibered submanifold Γ0, which will enable us to state and prove Theorem 3.

Lemma 3.1.2. Let Γ be a C2-submanifold in V̂ ⊂ N × Rps × Rpu of dimension p + r, with
0 ≤ r ≤ n0, which transversely intersects W̃ s(N) along γ′. When r > 0, we suppose that γ′

is a relatively compact submanifold and that there exist a submanifold γ̂′ of N and a C1-map
T ′ : γ̂′ → Bps such that γ′ = {(x, T ′(x), 0);x ∈ γ̂′}. Then, there exist ̺′ > 0 and a relatively
compact submanifold γ ⊇ γ′ in V̂ such that:

1. there exist a submanifold γ̂ ⊇ γ̂′ of N and a C1-map T : γ̂ → Bps such that T|γ̂′ = T ′ and

γ = {(x, T (x), 0);x ∈ γ̂},

2. there exists a C2-extension Γ0 of the connected component of Γ ∩ D̺′ containing γ′ such

that Γ0 ⋔ W̃ s(N) along γ and Γ ∩ D̺′ ⊂ Γ0 ⊂ γ̂ × Rps × B̺′ . In addition, there exists a

C2-map Ŝ defined on γ̂ × B̺′ with values in Bps such that Γ0 is the image of the following
map:

ψ0 : γ̂ ×B̺′ −→ D̺′

(x, u) 7−→ (x, Ŝ(x, u), u),

that is, Γ0 is the graph of Ŝ.

We prove Lemma 3.1.2 in Section 3.2.1. Let Γ0 be as in Lemma 3.1.2. For all n ∈ N, we denote
by Γn+1 the connected component of F (Γn) ∩ V̂ that contains γn+1 := Fn+1(γ), and we set
γ̂n+1 := Fn+1

|N (γ̂). In the sequel, we identify γ0 with γ and γ̂0 with γ̂. The fibered λ-lemma
states the following.

Theorem 3. [Fibered λ-lemma]. Let Γ be a C2-submanifold in V̂ ⊂ N×Rps×Rpu of dimension

p+ r, with 0 ≤ r ≤ n0, which transversely intersects W̃ s(N) along γ′. When r > 0, we suppose
that γ′ is a relatively compact submanifold and that there exist a submanifold γ̂′ of N and a
C1-map T ′ : γ̂′ → Bps such that γ′ = {(x, T ′(x), 0);x ∈ γ̂′}. Then, there exist ̺ > 0 and two
extended submanifolds Γ0 ⊇ Γ ∩D̺ and γ̂ ⊇ γ̂′ such that:

1. C0-convergence. For all n ∈ N, there exists a C2-diffeomorphism ψn from γ̂n × B̺ onto
Γn ∩D̺. Moreover, if we keep the notation above and denote by Υn, for all n ∈ N, the following
diffeomorphism:

Υn : γ̂n ×B̺ −→ W̃ u (γ̂n) ∩D̺

(x, u) 7−→ (x, 0, u)

where we have set W̃ u (γ̂n) :=
⋃

x∈γ̂n
W̃ uu(x), we have the following convergence

lim
n→∞

dC0(ψn,Υn) = 0,
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F (X)

∆x

x

Γ1

γ1

N

F (∆x)

F|N (x)

γ

X = (x, T (x), 0)

Γ0

Figure 3.1: Iteration of Γ0 and its intersection

where dC0(ψn,Υn) = sup
(x,u)∈γ̂n×B̺

d
(
ψn (x, u) ,Υn (x, u)

)
,

2. C1-convergence. ∀ ε > 0, ∃n0 ∈ N such that ∀n ≥ n0, ∀ q ∈ Γn ∩D̺, for all unit vector
Z = (Zx, Zs, Zu) tangent to Γn ∩D̺ at q, ‖Zs‖ < ε,

3. Fibration. When r > 0, Γ0 is fibered with p-dimensional submanifolds transverse to W̃ s(N)
that are straightened in the sense of the basic λ-lemma.

Note that ψ0 in Theorem 3 will coincide with that defined in Lemma 3.1.2. We prove Theorem 3
in Section 3.2.3.

When F satisfies additional assumptions, we get a version of the fibered λ-lemma that gives
“complete" C1-convergence.

Corollary 3.1.3. For all n ∈ N, let Γn, ψn and Υn be as in Theorem 3. We suppose that F
satisfies the additional assumption

∀ (x, s, u) ∈ V̂ , Fx(x, s, u) = g(x),

where g = F|N . Then,
lim
n→∞

dC1(ψn,Υn) = 0,

where dC1(ψn,Υn) = dC0(ψn,Υn) + sup
(x,u)∈γ̂n×B̺

‖Dψn(x, u)−DΥn(x, u)‖. More precisely, there

exists ̺ > 0 such that for all n ∈ N, there exits a C2-map Ŝn defined on γ̂n ×B̺ with values in
Bps such that Γn ∩D̺ is the image of the following diffeomorphism:

ψn : γ̂n ×B̺ −→ D̺

(x, u) 7−→ (x, Ŝn(x, u), u),

that is, Γn ∩D̺ is the graph of Ŝn and moreover

lim
n→∞

‖Ŝn‖C1(γ̂n×B̺) = 0.
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3. A “fibered" λ-lemma and an application to diffusion

This means that for n large enough, and in the strip D̺, Γn is as close as desired in the C1-

topology to W̃ u (γ̂n). We prove Corollary 3.1.3 in Section 3.2.4. We end this section with a few
remarks.

Remark 3.1.4. 1. Recall that in Chapter 2 we set λ = 1+λ
2 . For the proof of the basic λ-lemma,

we could have chosen any other value of λ in ]λ; 1[ without altering the result. It is not
the case here. To prove the fibered λ-lemma, we need λ to be larger than 1

2 . Therefore, the
computations in this chapter can be adjusted to go with any value of λ in ]max(12 , λ); 1[.

2. In Theorem 3, we supposed that Γ transversely intersects W̃ s(N) along γ′ which is a graph
over a submanifold in N . The assumption γ′ ⊂ V̂ is no restriction to us since the persis-
tence of the graph property in W̃ s(N) depends only on the straightening of the leaves as we
will prove in Section 3.2.2.

3. In Section 3.3 and in Chapter 4, we will need a weaker version of Theorem 3. More
precisely, we will apply the fibered λ-lemma to the unstable manifolds of suitable tori in
a transition chain. We will need to “straighten" submanifolds contained in the unstable
manifolds. Therefore, we will not need to extend Γ ∩ D̺′ to Γ0, instead it will suffice to
take Γ0 ⊂ Γ with the same properties. The existence of such inclusion is immediate for the
same reasons.

3.2 Proof of the fibered λ-lemma

This section is devoted to the proof of the fibered λ-lemma. We first start with the proof of
Lemma 3.1.2. Then, we briefly study the dynamics on W̃ s(N). The biggest part of Section 3.2
is dedicated to the proof of Theorem 3. We end this section with the proof of Corollary 3.1.3.
Note that since Γ transversely intersects W̃ s(N) along γ′, then the dimension of γ′ is r.

3.2.1 Proof of Lemma 3.1.2

Here, we prove Lemma 3.1.2. The extension of γ′ to γ, of γ̂′ to γ̂ and of Γ in the vicinity of γ′

to a submanifold in γ̂×Rps ×Rpu is a consequence of the Whitney continuation theorem. We will
not detail this technical (and elementary) construction here. Moreover, one needs to take a real
number ρ small enough so that for all x ∈ γ̂, the submanifold {x} × Rps × Rpu is transverse to
the extended manifold intersected with Dρ in γ̂ × Rps × Rpu. The existence of ρ is a consequence
of the transversality in W̃ s(N). More precisely, since γ is a graph over γ̂, then, for all x ∈ γ̂,
{x} × Rps × Rpu is transverse to γ. Therefore, the result easily follows since transversality is an
open property. We denote by Γ0

ρ the extension of the connected component of Γ∩Dρ containing
γ′.

For x ∈ γ̂, we let ∆x := Γ0
ρ ∩ ({x} ×Rps ×Rpu) so that Γ0

ρ = ∪x∈γ̂∆x. This is a disjoint union
and it follows from above that each ∆x is a C2-submanifold of N ×Rps ×Rpu of dimension p and
transverse to W̃ s(N). Applying the same reasoning as in Section 2.2.3 to each ∆x, one gets that
for all x ∈ γ̂, there exists αx ∈ ]0; ρ] and a C2-map ξx = (Xx, Sx) : Bαx → N × Bps such that
∆x ∩Dαx = {(Xx(u), Sx(u), u);u ∈ Bαx}, that is, ∆x ∩Dαx is the graph of ξx. The submanifold
γ̂ being relatively compact, there exists ̺′ > 0 such that for all x ∈ γ̂,

∆x ∩D̺′ = graph (ξx) = {(Xx(u), Sx(u), u);u ∈ B̺′},
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where we kept the notation ξx for ξx|B
̺′

. On the other hand, ∆x ⊂ ({x} × Rps × Rpu) and thus

∆x ∩D̺′ = graph(ξx) = {(Xx(u), Sx(u), u);u ∈ B̺′} = {(x, Sx(u), u);u ∈ B̺′}.

We set Ŝ the map defined on γ̂×B̺′ such that, for all (x, u) ∈ γ̂×B̺′ , Ŝ(x, u) = Sx(u). We set
Γ0 := Γ0

ρ ∩D̺′ . It follows then that Γ0 is the graph of Ŝ, since Γ0 = ∪x∈γ̂∆x ∩D̺′ . This ends
the proof of Lemma 3.1.2.

3.2.2 Straightening inside W̃
s(N)

Let γ̂ be given by Lemma 3.1.2. Recall that g := F|N and that for all n ∈ N, we set γ̂n := gn(γ̂).

The dynamics on W̃ s(N) are described in the following proposition.

Proposition 3.2.1. For all n ∈ N, there exists a C1-map Tn defined on γ̂n such that γn is the
graph of Tn, in the sense that γn = {(x, Tn(x), 0);x ∈ γ̂n}. Moreover,

lim
n→∞

‖Tn‖C1(γ̂n) = 0.

Proof. We start with proving the existence of (Tn). Then we show the convergence in the C0-
topology. We end this proof with the C0-convergence of the derivatives.

• The persistence of the graph property is an immediate consequence of the straightening of the
stable manifold and the stable leaves. We proceed by induction. The case n = 0 is given by
Lemma 3.1.2. We suppose now that for a fixed n ∈ N∗, γn−1 = {(x, Tn−1(x), 0);x ∈ γ̂n−1}.
Then

γn = F (γn−1)
=

{(
Fx(x, Tn−1(x), 0), Fs(x, Tn−1(x), 0), Fu(x, Tn−1(x), 0)

)
; x ∈ γ̂n−1

}

=
{(
Fx(x, 0, 0), Fs(x, Tn−1(x), 0), 0

)
; x ∈ γ̂n−1

}
,

thanks to equations (2.1) and (2.3). Since g is a diffeomorphism on N , one gets

γn =
{(
y, Fs(g

−1(y), Tn−1(g
−1(y)), 0), 0

)
; y ∈ g(γ̂n−1)

}

=
{(
y, Tn(y), 0

)
; y ∈ γ̂n

}
,

where Tn(y) = Fs(g
−1(y), Tn−1(g

−1(y), 0). This yields that γn is a graph of a C1-map Tn over γ̂n.

• We now prove the C0-convergence. We show that ‖Tn‖C0 < λ‖Tn−1‖C0 for all n ∈ N∗. Let
y ∈ γ̂n, then if x = g−1(y), Tn(y) = Fs(x, Tn−1(x), 0). Therefore,

‖Tn(y)‖ = ‖Fs(x, Tn−1(x), 0)‖
= ‖Fs(x, Tn−1(x), 0) − Fs(x, 0, 0)‖
≤ λ‖Tn−1(x)‖
≤ λ‖Tn−1‖C0 ,

using the Mean Value Theorem. Therefore, one gets ‖Tn‖C0 < λ‖Tn−1‖C0 which yields

‖Tn‖C0 < λ
n‖T‖C0

and the convergence easily follows.
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• We now check the convergence of the derivatives. Let y be in γ̂n. By derivating the equality
Tn(y) = Fs(g

−1(y), Tn−1(g
−1(y)), 0), one gets

T ′
n(y) = ∂xFs

(
g−1(y), Tn−1(g

−1(y)), 0
)
.(g−1)′(y)

+∂sFs
(
g−1(y), Tn−1(g

−1(y)), 0
)
.T ′
n−1(g

−1(y)).(g−1)′(y).

On the one hand, using the Mean Value Theorem,

‖∂xFs(g−1(y), Tn−1(g
−1(y)), 0)‖ = ‖∂xFs(g−1(y), Tn−1(g

−1(y)), 0) − ∂xFs(g
−1(y), 0, 0)‖

≤ C2‖Tn−1(g
−1(y))‖

≤ C2‖Tn−1‖C0

≤ C2λ
n−1‖T‖C0 .

On the other hand, thanks to Proposition 3.1.1, ‖∂sFs(g−1(y), Tn−1(g
−1(y)), 0)‖.‖(g−1)′(y)‖ < λ,

for all y ∈ γ̂n. Therefore, for all y ∈ γ̂n, ‖T ′
n(y)‖ < CC2‖T‖C0 .λ

n−1
+λ‖T ′

n−1‖, where C is given
by equation (3.1). Proposition 3.1.1 also implies that CC2‖T‖C0 < 1 since ‖T‖C0 < smax, which
yields

‖T ′
n‖ < λ

n−1
+ λ‖T ′

n−1‖.
The proof of the convergence follows the same lines as that of the sequence (bn) in the basic
λ-lemma (Section 2.2.2).

3.2.3 Proof of Theorem 3

This section is devoted to the proof of Theorem 3. When r = 0, the proof is immediate because
one recovers a weaker version of the basic λ-lemma (Theorem 1). In the sequel, we suppose that
r > 0.

To prove Theorem 3, we will start with stating and proving an auxiliary proposition (Propo-
sition 3.2.2 below). Theorem 3 will easily follow from the proof of Proposition 3.2.2. Let Γ0, γ,
γ̂ and ̺′ be as in Lemma 3.1.2. Recall that, for all n ∈ N, we denote by Γn+1 the connected
component of F (Γn) ∩ V̂ that contains γn+1 := Fn+1(γ), and that γ̂n+1 := gn+1(γ̂), where
g = F|N .

3.2.3.1 Auxiliary proposition

In this section, we state Proposition 3.2.2 where we claim the existence of the sequence of
parametrization diffeomorphisms (ψn). In addition, Proposition 3.2.2 will yield intermediate
convergence results needed to prove the convergences stated in Theorem 3. We will prove Propo-
sition 3.2.2 in Section 3.2.3.2.

Proposition 3.2.2. There exists ̺ > 0 such that for all n ∈ N, there exist two C2-maps X̂n

and Ŝn defined on γ̂n ×B̺ with values in N and Rps respectively, such that

i) ∀ (x, u) ∈ γ̂n ×B̺, ∂xX̂
n(x, u) is injective on Txγ̂

n,

ii) ψn := (X̂n, Ŝn, I) is a C2-diffeomorphism from γ̂n ×B̺ onto Γn ∩D̺.

Moreover,
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iii) ∃ ν ≥ 1; ∀ n ∈ N, sup
(x,u)∈γ̂n×B̺

‖∂uX̂n(x, u)‖ ≤ ν,

iv) lim
n→∞

sup
(x,u)∈γ̂n×B̺

∥∥∂uŜn(x, u)‖ = 0,

v) lim
n→∞

sup
(x,u)∈γ̂n×B̺

∥∥∂xŜn(x, u).
[
∂xX̂

n(x, u)
]−1∥∥ = 0.

3.2.3.2 Proof of the auxiliary proposition (Proposition 3.2.2)

To prove Proposition 3.2.2, we use Theorem 1. We start with proving the existence of the
parametrization maps (ψn) and the main idea is the following: we construct a fibration of Γ0

with submanifolds of dimension p transverse to W̃ s(N) (mimicking our ∆ in the basic λ-lemma).
Then, we fiber Γn, for all n ∈ N, with the images under Fn of the initial fibers. Before defining
̺, we will introduce a real number σ > 0 such that in Dσ := {(x, s, u) ∈ V̂ ; ‖u‖ < σ}, all the
fibers and all their iterates are graphs over Bσ := {u ∈ Rpu; ‖u‖ < σ}. Using these graphs, we
introduce a parametrization of Γn, for all n ∈ N, by a “vertical" parameter and a “horizontal"
one. Theorem 1 will ensure the uniform convergence of the C1-norms of the graph maps and
thus the straightening in the “vertical" direction. Then we define ̺ ∈ ]0;σ] and (ψn). We prove
that (ψn) is a sequence of diffeomorphisms and that in D̺ we have the convergence of item v).

3.2.3.2.1 Fibering Γ and its iterates. In this Section, we construct a fibration of Γn, for
all n ∈ N, with submanifolds of dimension p transverse to W̃ s(N). When n = 0, the fibration of
Γ0 was constructed in the proof of Lemma 3.1.2 in Section 3.2.1, where we defined ̺′ and wrote
Γ0 = ∪x∈γ̂∆x ∩ D̺′ . We then consider the fibration of Γn, for all n ∈ N∗, by the connected

components of the images under F of the fibers of Γn−1 intersected with V̂ containing the
corresponding points in γn. These fibrations have the same properties as that of Γ0 and will help
us parameterize Γn, in order to highlight the graph property and thus the straightening in the
“vertical" direction.

3.2.3.2.2 Definition of σ and proof of item iii). Recall that γ = {(x, T (x), 0);x ∈ γ̂}.
For all x ∈ γ̂, ∆x passes through (x, T (x), 0). We index the fibers of Γ0 with the variable x
in γ̂, and the fibers of the iterates with gn(x). More precisely, for σ > 0 small enough, we
set ∆0

x,σ := ∆x ∩ Dσ. For all n ∈ N, we denote by ∆n+1
gn+1(x),σ

the connected component of

F (∆n
gn(x),σ) ∩ Dσ containing Fn+1(x, T (x), 0). We have the following proposition that states

that all the fibers of all the iterates are graphs over a fixed domain.

Proposition 3.2.3. There exists a real number σ > 0 such that for all x ∈ γ̂, for all n ∈ N,
∆n
gn(x),σ is the graph over Bσ of a C2-map, that we will denote by ξngn(x). Moreover, there exists

ν ≥ 1 such that ∀ n ∈ N,

sup
(x,u)∈γ̂×Bσ

‖(ξngn(x))′(u)‖ ≤ ν.

Proof. We keep the notation of Section 3.2.1, where we wrote

∆x ∩D̺′ = graph(ξx) = {(Xx(u), Sx(u), u);u ∈ B̺′} = {(x, Sx(u), u);u ∈ B̺′}.

Let us examine the other iterates. We will apply the same method as in Section 2.2.4 to prove
the persistence of the graph property for (∆̂n). Since the fibers of Γ0 depend on the variable x
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3. A “fibered" λ-lemma and an application to diffusion

in γ̂, we need to slightly change ν and εν (given by Equation (2.6)) in order for these constants
to be independent of x.

Let ν := max(1, sup{‖ξ′x(u)‖;x ∈ γ̂, u ∈ B̺′}). Because of the particular form of ξx, one

gets ν = max(1, sup{‖S′
x(u)‖;x ∈ γ̂, u ∈ B̺′}). Let εν := 1−λ

2νλ
. We introduce η as we did in

Section 2.2.4. Let σ := min(1, ̺′, η, 1−λ
3C2(2ν+1)2 ) which will play the role of δ given by Theorem 1.

The proof in Section 2.2.4 shows that ∀ x ∈ γ̂, ∀ n ∈ N, ∆n
gn(x),σ is a graph over Bσ of ξngn(x)

and sup{‖(ξngn(x))′(u)‖;x ∈ γ̂, u ∈ Bσ} ≤ ν.

Remark 3.2.4. It is clear that the first set of fibers, that of Γ0, has a particular form: Xx(u) = x,
for all x ∈ γ̂, for all u ∈ Bσ. It is not the case for the set of fibers of Γn for n > 0, that is why
we will stick to the first parametrization (∆x ∩ Dσ = graph ξx = {(Xx(u), Sx(u), u);u ∈ Bσ})
whenever we want to generalize a certain statement to other iterates, and we will keep in mind
that the first parametrization is a particular one.

3.2.3.2.3 Parametrization in Dσ and proof of item iv). The persistence of the graph
property will enable us to parameterize Γn, for all n ∈ N. We will write

Γn ∩Dσ =
⋃

x∈γ̂n

graph ξnx =
⋃

x∈γ̂n

graph (Xn
x , S

n
x ) = {(Xn

x (u), S
n
x (u), u);x ∈ γ̂n, u ∈ Bσ}.

So n will indicate the number of iterations, x will determine in a unique way the fiber, and u
represents the “height" on the fiber. Note that this parametrization uses the preservation of the
graph property for the fibers and for the sequence (γ̂n): x being in γ̂n, there exists a unique
point (x, Tn(x), 0) in γn and a unique fiber ∆n

x,σ passing through this point. The variable x will
be called the “horizontal" parameter and the variable u the “vertical" parameter.

The next proposition states the straightening of the fibers in the “vertical" direction. More-
over, it will yield item iv) of Proposition 3.2.2 and item 3 of Theorem 3.

Proposition 3.2.5. We have the following uniform convergence

lim
n→∞

sup{‖(ξnx )′(u)‖;x ∈ γ̂n, u ∈ Bσ} = 0.

Proof. The proof is deduced from that of Proposition 3.2.3. In the latter, ν and εν are chosen
to be uniform with respect to the variable x. One can follow the same lines as in Sections 2.2.4
and 2.2.5 to prove the convergence.

Item iv) of Proposition 3.2.2 follows from Proposition 3.2.5.

Remark 3.2.6. The tangent space to Γ at any point of γ is “straightened". More precisely, for all
x ∈ γ, one has the following direct sum: TxΓ = Txγ⊕Tx∆x0 where x := (x0, T (x0), 0). It is also
the case for all the iterates: ∀ n ∈ N, ∀ y ∈ γn, TyΓ

n = Tyγ
n ⊕ Ty∆

n
y0,σ. Section 3.2.2 states

that Tyγ
n is straightened and Proposition 3.2.5 states that Ty∆

n
y0,σ is also straightened.

For all n ∈ N, we set X̂n and Ŝn the maps defined on γ̂n ×Bσ such that for all x ∈ γ̂n and
u ∈ Bσ,

X̂n(x, u) := Xn
x (u) and Ŝn(x, u) := Snx (u), (3.2)
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to stress out on the fact that they are functions of two variables. In the sequel, both notations
will be used for different purposes. We will use the notation Xn

x (u) when we want to highlight
the fibered structure of Γn and we will use the notation X̂n(x, u) when we want to differentiate
this map with respect to one (or two) of its variables.

3.2.3.2.4 Definition of ̺ and of the parametrization maps ψn. We will now define ̺.
First, let

A := max
(
1, sup

{∥∥∥∂xŜ(x, u)
∥∥∥ ;x ∈ γ̂, u ∈ Bσ

})
(3.3)

and

εA,ν :=
1− λ

2(1 + λ)Cν(1 +A)
. (3.4)

By uniform continuity and thanks to Equations (2.1) and (2.3), there exists ηA > 0 such that
for all (x, s, u) ∈ Dσ, if ‖u‖ < ηA then

max
(
‖∂xFu(x, s, u)‖, ‖∂sFu(x, s, u)‖, ‖∂sFx(x, s, u)‖

)
< εA,ν . (3.5)

We set
̺ := min(σ, ηA). (3.6)

From now on, we will restrict our work to D̺. We will keep the notation X̂n, Ŝn, Xn
x and Snx

for the restriction of these maps to γ̂n ×B̺.
We now define a sequence of maps using the parametrization of Γn. For n ∈ N, let

ψn : γ̂n ×B̺ −→ Γn ∩D̺

(x, u) 7−→ (Xn
x (u), S

n
x (u), u) = (X̂n(x, u), Ŝn(x, u), u).

For all n ∈ N, ψn is a C2 bijection from γ̂n ×B̺ onto Γn ∩D̺ by definition of the fibration and
thanks to the graph property.. We will prove later on that it is a diffeormorphism.

3.2.3.2.5 Proof of item i). We devote Section 3.2.3.2.5 to prove Proposition 3.2.8 below
and thus item i) of Proposition 3.2.2. We start with an easy lemma that will be needed in the
proof of Proposition 3.2.8.

Lemma 3.2.7. Let E be a normed vector space and let E1 and E2 be two subspaces of E equipped
with the induced norm. Let H : E1 → E2 be a linear map such that ‖H‖ < 1. We denote by IE1

the identity map on E1. Then IE1 −H is injective.

Proof. Let w1 and w2 be two arbitrary vectors in E1. Then,

‖(IE1 −H)(w1)− (IE1 −H)(w2)‖ = ‖(w1 − w2)− (H(w1)−H(w2))‖
= ‖(w1 − w2)−H(w1 − w2)‖
≥ ‖w1 − w2‖(1 − ‖H‖),

and the injectivity easily follows.

The following Proposition will not only imply item i) of Proposition 3.2.2, but it will also
yield Corollary 3.2.9 and will give the preliminary estimates to prove item v).
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Proposition 3.2.8. Let A be as in Equation (3.3) and let X̂n and Ŝn be as in Equation (3.2).
Then, for all n ∈ N, for all (x, u) ∈ γ̂n ×B̺, ∂xX̂

n(x, u) : Txγ̂
n −→ T

X̂n(x,u)
N is injective and

satisfies

∥∥∂xŜn(x, u).
[
∂xX̂

n(x, u)
]−1∥∥ ≤ A.

Proof. We will proceed by induction. For n = 0, the statement is true since for all (x, u) ∈ γ̂ × B̺,
∂xX̂(x, u) is the identity map on Txγ̂ (Remark 3.2.4), and because of the definition of A (Equa-
tion (3.3)). Since the first iteration is special, we will prove that the statement is true for n = 1
before the induction step.

• The case n = 1
We will need to write ∂xX̂

1 and ∂xŜ
1 in terms of ∂xX̂ and ∂xŜ. Recall that we have the

C2-bijections

ψ : γ̂ ×B̺ −→ Γ ∩D̺

(x, u) 7−→ (Xx(u), Sx(u), u) = (X̂(x, u), Ŝ(x, u), u),

and

ψ1 : γ̂1 ×B̺ −→ Γ1 ∩D̺

(y, t) 7−→ (X1
y (t), S

1
y (t), t) = (X̂1(y, t), Ŝ1(y, t), t).

Let Y be in Γ1 ∩ D̺. There exist then y ∈ γ̂1 and t ∈ B̺ such that Y = (X1
y (t), S

1
y (t), t).

Moreover, Γ1 ∩ D̺ ⊂ F (Γ) ∩ D̺ ⊂ F (Γ ∩ D̺). There exist then x ∈ γ̂ and u ∈ B̺ such that
Y = F (Xx(u), Sx(u), u), and y = F|N (x) = g(x) by definition of the fibers of Γ1. This yields the
following equalities:

X1
g(x)(t) = Fx(Xx(u), Sx(u), u),

S1
g(x)(t) = Fs(Xx(u), Sx(u), u),

t = Fu(Xx(u), Sx(u), u).

Therefore,

X1
g(x)(Fu(Xx(u), Sx(u), u)) = Fx(Xx(u), Sx(u), u), (3.7)

S1
g(x)(Fu(Xx(u), Sx(u), u)) = Fs(Xx(u), Sx(u), u). (3.8)

For the readability of our formulas, we set J := (Xx(u), Sx(u), u) = ψ(x, u). By derivating
Equations (3.7) and (3.8) with respect to x, and using the notation given by Equation (3.2), one
gets

∂xX̂
1
(
g(x), Fu(J)

)
.g′(x) + ∂uX̂

1
(
g(x), Fu(J)

)
.
[
∂xFu(J).∂xX̂(x, u) + ∂sFu(J).∂xŜ(x, u)

]
=

∂xFx(J).∂xX̂(x, u) + ∂sFx(J).∂xŜ(x, u), (3.9)

∂xŜ
1
(
g(x), Fu(J)

)
.g′(x) + ∂uŜ

1
(
g(x), Fu(J)

)
.
[
∂xFu(J).∂xX̂(x, u) + ∂sFu(J).∂xŜ(x, u)

]
=

∂xFs(J).∂xX̂(x, u) + ∂sFs(J).∂xŜ(x, u). (3.10)
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If (y, t) ∈ γ̂1 × B̺ is chosen, then (x, u) ∈ γ̂ × B̺ is uniquely determined. To prove the
injectivity of ∂xX̂1(y, t), for all (y, t) ∈ γ̂1×B̺, since g′(x) is invertible, it is enough to prove the
injectivity of ∂xX̂1(y, t).g′(x). Since ∂xFx(J) = ∂xFx(Xx(u), Sx(u), u) is invertible for all (x, u)
∈ γ̂ ×B̺ (see Section 2.2.1), Equation (3.9) yields

∂xX̂
1(y, t).g′(x) = ∂xFx(J).

[
ITxγ̂ − (∂xFx(J))

−1.∂uX̂
1(y, t).

[
∂xFu(J) + ∂sFu(J).∂xŜ(x, u).

(∂xX̂(x, u))−1
]
+ (∂xFx(J))

−1.∂sFx(J).∂xŜ(x, u).(∂xX̂(x, u))−1
]
∂xX̂(x, u).

It is enough to prove the injectivity of ITxγ̂ −H(x, u) where

H(x, u) := (∂xFx(J))
−1.∂uX̂

1(y, t).[∂xFu(J) + ∂sFu(J).∂xŜ(x, u).(∂xX̂(x, u))−1]

+(∂xFx(J))
−1.∂sFx(J).∂xŜ(x, u).(∂xX̂(x, u))−1.

To do so, we will use Lemma 3.2.7 so that it is enough to prove that ‖H(x, u)‖ < 1, for all
(x, u) ∈ γ̂×B̺. Since (∂xX̂(x, u))−1 = ITxγ̂ and ‖∂xŜ(x, u).(∂xX̂(x, u))−1‖ = ‖∂xŜ(x, u)‖ ≤ A,
one gets the following by using that for all n ∈ N, sup{‖(ξnx )′(u)‖;x ∈ γ̂n, u ∈ Bσ} ≤ ν and
Equation (3.6):

‖H(x, u)‖ ≤ Cν(εA,ν +AεA,ν) + CεA,νA
≤ εA,ν (Cν(1 +A) + CA)
≤ εA,ν (Cν(1 +A) + Cν(1 +A)) ,

because ν ≥ 1. This yields ‖H(x, u)‖ ≤ 2εA,νCν(1 + A) = 1−λ
1+λ

< 1 for all (x, u) ∈ γ̂ × B̺ by

definition of εA,ν (Equation (3.4)). Thus ‖H(x, u)‖ < 1 and I −H(x, u) is injective for all (x, u)
in γ̂ ×B̺.

This way, the injectivity of ∂xX̂1(y, t) is immediate for all (y, t) ∈ γ̂1 × B̺. Moreover
∂xX̂

1(y, t) is a bijection from Ty γ̂
1 onto Im (∂xX̂

1(y, t)) for all (y, t) ∈ γ̂1 ×B̺ and satisfies

[
∂xX̂

1(y, t).g′(x)
]−1

=
(
∂xX̂(x, u)

)−1
.
∑

m≥0

(−H(x, u))m .[∂xFx(J)]
−1

defined on Im (∂xX̂
1(y, t)), where y = g(x), J = (Xx(u), Sx(u), u) and t = Fu(J). We finish the

proof of the case n = 1 by bounding T1 := ‖∂xŜ1(y, t).[∂xX̂
1(y, t)]−1‖. Using Equation (3.10),

one gets

T1 =
∥∥∂xŜ1(y, t).g′(x).

[
∂xX̂

1(y, t).g′(x)
]−1∥∥

=
∥∥[− ∂uŜ

1
(
g(x), (Fu(J)

)
.[∂xFu(J) + ∂sFu(J).∂xŜ(x, u).(∂xX̂(x, u))−1] + ∂xFs(J)+

∂sFs(J).∂xŜ(x, u).(∂xX̂(x, u))−1
]
.
∑
m≥0

(−H(x, u))m.[∂xFx(J)]
−1

∥∥.

Now recall that for all (x, u) ∈ γ̂ ×B̺, the following inequalities hold true

- ‖∂xŜ(x, u).(∂xX̂(x, u))−1‖ ≤ A,

- ‖∂uŜ1
(
g(x), Fu(J)

)
‖ ≤ ν,

- ‖∂sFs(J)‖.‖[∂xFx(J)]−1‖ < λ,
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-
∥∥ ∑
m≥0

(−H(x, u))m
∥∥ ≤ 1

1−‖H(x,u)‖ ≤ 1+λ
2λ

.

On the other hand, using the Mean Value Theorem, Proposition 3.1.1 and Equation (2.2) imply,

‖∂xFs(J)‖ = ‖∂xFs(Xx(u), Sx(u), u) − ∂xFs(Xx(u), 0, u)‖
≤ C2‖Sx(u)‖
≤ C2.

−2λ
2
+3λ−1

2CC2(1+λ)

≤ −2λ
2
+3λ−1

2C(1+λ)
,

which yields

∥∥∂xŜ1(y, t).[∂xX̂
1(y, t)]−1

∥∥ ≤
(
νεA,ν(1 +A) + −2λ

2
+3λ−1

2C(1+λ)

)
.C.1+λ

2λ
+ λ.A.1+λ

2λ

≤
(

1−λ
2(1+λ)

+ −2λ
2
+3λ−1

2(1+λ)

)
.1+λ
2λ

+A.1+λ2

≤ 1−λ
2 .1 + 1+λ

2 .A

≤ 1−λ
2 .A+ 1+λ

2 .A
≤ A

where we used that A ≥ 1 and the definition of εA,ν (Equation (3.4)). This ends the proof of the
statement for n = 1.

• The inductive step

We assume now that ∂xX̂n(x, u) is injective for all (x, u) ∈ γ̂n ×B̺ and satisfies:

∥∥∂xŜn(x, u).
[
∂xX̂

n(x, u)
]−1∥∥ ≤ A.

We want to prove that the statements are true for n + 1. As we did for the first iterate,
we write ∂xX̂n+1 and ∂xŜ

n+1 in terms of ∂xX̂n and ∂xŜ
n. For all (y, t) ∈ γ̂n+1 × B̺ there

exists a unique (x, u) ∈ γ̂n × B̺ such that y = g(x) and t = Fu(X
n
x (u), S

n
x (u), u). By setting

R := (Xn
x (u), S

n
x (u), u), the same calculations as those in the step n = 1 yield the following

equalities

∂xX̂
n+1

(
g(x), (Fu(R)

)
.g′(x)+∂uX̂

n+1
(
g(x), (Fu(R)

)
.[∂xFu(R).∂xX̂

n(x, u)+∂sFu(R).∂xŜ
n(x, u)]

= ∂xFx(R).∂xX̂
n(x, u) + ∂sFx(R).∂xŜ

n(x, u), (3.11)

∂xŜ
n+1

(
g(x), (Fu(R)

)
.g′(x)+∂uŜ

n+1
(
g(x), (Fu(R)

)
.[∂xFu(R).∂xX̂

n(x, u)+∂sFu(R).∂xŜ
n(x, u)]

= ∂xFs(R).∂xX̂
n(x, u) + ∂sFs(R).∂xŜ

n(x, u). (3.12)

By writing ITxγ̂n =
[
∂xX̂

n(x, u)
]−1

.∂xX̂
n(x, u) and using Equation (3.11), one gets

∂xX̂
n+1(y, t).g′(x) = ∂xFx(R).

[
IA − (∂xFx(R))

−1.∂uX̂
n+1(y, t).

[
∂xFu(R) + ∂sFu(R).∂xŜ

n(x, u).

(∂xX̂
n(x, u))−1

]
+ (∂xFx(R))

−1.∂sFx(R).∂xŜ
n(x, u).(∂xX̂

n(x, u))−1
]
.∂xX̂

n(x, u),
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where A = Im (∂xX̂
n(x, u)).

Since ∂xX̂n(x, u) and ∂xFx(R) are injective for all (x, u) ∈ γ̂n × B̺, it is enough to prove that
I
Im (∂xX̂n(x,u))

−Hn(x, u) is injective where

Hn(x, u) := (∂xFx(R))
−1.∂uX̂

n+1(y, t).[∂xFu(R) + ∂sFu(R).∂xŜ
n(x, u).(∂xX̂

n(x, u))−1]

+(∂xFx(R))
−1.∂sFx(R).∂xŜ

n(x, u).(∂xX̂
n(x, u))−1.

The proof follows the same lines as that of ITxγ̂ − H(x, u) (for (x, u) ∈ γ̂ × B̺) because∥∥∥∂xŜn(x, u).[∂xX̂n(x, u)]−1
∥∥∥ ≤ A, and all the other estimates are independent of n. The same

computations give that ‖Hn(x, u)‖ ≤ 1−λ
1+λ

< 1, for all (x, u) ∈ γ̂n ×B̺.

We get then that ∂xX̂n+1(y, t) is injective for all (y, t) in γ̂n+1×B̺ (by applying Lemma 3.2.7)
and thus bijective onto Im (∂xX̂

n+1(y, t)). Moreover,
[
∂xX̂

n+1(y, t).g′(x)
]−1

=
(
∂xX̂

n(x, u)
)−1

.
∑

m≥0

(−Hn(x, u))m.[∂xFx(R)]
−1.

We use the same method as before and set T2 := ∂xŜ
n+1(y, t).[∂xX̂

n+1(y, t)]−1. Then, by using
Equation (3.12),

T2 = ∂xŜ
n+1(y, t).g′(x).[∂xX̂

n+1(y, t).g′(x)]−1

=
[
∂uŜ

n+1
(
g(x), Fu(R)

)
.[∂xFu(R) + ∂sFu(R).∂xŜ

n(x, u).(∂xX̂
n(x, u))−1]

+∂xFs(R) + ∂sFs(R).∂xŜ
n(x, u).(∂xX̂

n(x, u))−1
]
.
∑
m≥0

(−Hn(x, u))m.[∂xFx(R)]
−1,

to prove that ∥∥∂xŜn+1(y, t).
[
∂xX̂

n+1(y, t)
]−1∥∥ ≤ A

because ‖∂xŜn(x, u).[∂xX̂n(x, u)]−1‖ ≤ A and all the other estimates are uniform with respect
to n. This ends the proof of the induction and thus the proposition.

3.2.3.2.6 Proof of item ii). We will now prove item ii) of Proposition 3.2.2. It will be a
direct consequence of Proposition 3.2.8.

Corollary 3.2.9. For all n ∈ N, ψn is a C2-diffeomorphism from γ̂n ×B̺ onto Γn ∩D̺.

Proof. Since ψn is a C2-bijection onto Γn∩D̺, it is enough to prove that for all (x, u) ∈ γ̂n × B̺,
Dψn(x, u) is injective. By differentiating ψn : γ̂n ×B̺ −→ Γn ∩D̺

(x, u) 7−→ (X̂n(x, u), Ŝn(x, u), u)

one

gets, for all n ∈ N, for all (x, u) ∈ γ̂n × B̺,

Dψn(x, u) : Txγ̂
n ×Rpu −→ Tψn(x,u)(Γ

n ∩D̺)

(v1, v2) 7−→




∂xX̂
n(x, u).v1 + ∂uX̂

n(x, u).v2
∂xŜ

n(x, u).v1 + ∂uŜ
n(x, u).v2

v2


 .

Let (v1, v2) ∈ Txγ̂
n × R

p
u such that Dψn(x, u).(v1, v2) = (0, 0, 0). Therefore, v2 = 0 and

∂xX̂
n(x, u).v1 = 0, which yields v1 = 0 since ∂xX̂n(x, u) is injective thanks to Proposition 3.2.8.

Therefore Dψn(x, u) is injective for all n ∈ N, for all (x, u) ∈ γ̂n×B̺. This completes the proof
of Corollary 3.2.9.
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3.2.3.2.7 Proof of item v), end of the proof of Proposition 3.2.2. We now prove
item v) of Proposition 3.2.2.

Proposition 3.2.10. For all ε > 0, there exists n0 ∈ N such that for all n ≥ n0,

sup
(x,u)∈γ̂n×B̺

∥∥∂xŜn(x, u).
[
∂xX̂

n(x, u)
]−1∥∥ ≤ ε.

Proof. At the end of the proof of Proposition 3.2.8, we showed that for all n ∈ N, for all
(y, t) ∈ γ̂n+1 × B̺, there exists a unique (x, u) ∈ γ̂n × B̺ such that y = g(x) and t = Fu(R),
where R := (Xn

x (u), S
n
x (u), u). Moreover, on Im (∂xX̂

n+1(y, t))

T2 = ∂xŜ
n+1(y, t).[∂xX̂

n+1(y, t)]−1

= ∂xŜ
n+1(y, t).g′(x).[∂xX̂

n+1(y, t).g′(x)]−1

=
[
− ∂uŜ

n+1
(
g(x), Fu(R)

)
.[∂xFu(R) + ∂sFu(R).∂xŜ

n(x, u).(∂xX̂
n(x, u))−1]

+∂xFs(R) + ∂sFs(R).∂xŜ
n(x, u).(∂xX̂

n(x, u))−1
]
.
∑
m≥0

(−Hn(x, u))m.[∂xFx(R)]
−1,

We will improve the estimates in Proposition 3.2.8. Recall that the following inequalities hold
true for all n ∈ N, and for all (x, u) ∈ γ̂n ×B̺:

- max
(
‖∂xFu(R)‖, ‖∂sFu(R)‖

)
< εA,ν , where εA,ν = 1−λ

2(1+λ)Cν(1+A)
,

- ‖∂xŜn(x, u).[∂xX̂n(x, u)]−1‖ ≤ A,

- ‖ ∑
m≥0

(−H(x, u))m‖ ≤ 1+λ
2λ

,

- ‖[∂xFx(R)]−1‖ ≤ C,

- ‖∂sFs(R)‖.‖[∂xFx(R)]−1‖ < λ.

On the other hand, using the Mean Value Theorem and Proposition 3.1.1

‖∂xFs(R)‖ = ‖∂xFs(Xn
x (u), S

n
x (u), u)− ∂xFs(X

n
x (u), 0, u)‖

≤ C2‖Snx (u)‖
≤ C2.λ

n
(sup{‖Sx(u)‖; (x, u) ∈ γ̂ ×B̺})

≤ λ
n
.−2λ

2
+3λ−1

2C(1+λ)
.

Then, for all (y, t) ∈ γ̂n+1 ×B̺

∥∥∂xŜn+1(y, t).
[
∂xX̂

n+1(y, t)
]−1∥∥ ≤ sup

y,t

∥∥(ξn+1
y )′(t)

∥∥.εA,ν .(1 +A).C.1+λ
2λ

+

λ
n−2λ

2
+3λ−1

2(1+λ)
.1+λ
2λ

+ sup
x,u

∥∥∂xŜn(x, u).
[
∂xX̂

n(x, u)
]−1∥∥λ1+λ

2λ
.

Note that

εA,ν .(1 +A).C.
1 + λ

2λ
≤ 1− λ

4λν
< 1,

because ν ≥ 1 and λ = 1+λ
2 > 1

5 and that
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−2λ
2
+ 3λ− 1

2(1 + λ)
.
1 + λ

2λ
< 1,

If we set λ̃ := 1+λ
2 , then

sup
y,t

∥∥∂xŜn+1(y, t).
[
∂xX̂

n+1(y, t)
]−1∥∥ ≤ sup

y,t

∥∥(ξn+1
y )′(t)

∥∥+λn+λ̃ sup
x,u

∥∥∂xŜn(x, u).
[
∂xX̂

n(x, u)
]−1∥∥

which yields

sup
y,t

∥∥∂xŜn+1(y, t).
[
∂xX̂

n+1(y, t)
]−1∥∥ ≤ sup

y,t

∥∥(ξn+1
y )′(t)

∥∥+λ̃n+λ̃ sup
x,u

∥∥∂xŜn(x, u).
[
∂xX̂

n(x, u)
]−1∥∥

because λ < λ̃. The convergence follows the same lines as that of (cn) in Section 2.2.2, because
λ̃ < 1 and the convergence of (supy,t ‖(ξn+1

y )′(t)‖) is given in Proposition 3.2.5.

This ends the proof of Proposition 3.2.2.

3.2.3.3 Proof of Theorem 3

We now prove Theorem 3.

3.2.3.3.1 Proof of item 1. Let ̺ be as in Proposition 3.2.2. In Corollary 3.2.9, we proved
that, for all n ∈ N, ψn is a C2-diffeomorphism from γ̂n ×B̺ onto Γn ∩D̺. The C0-convergence
will follow from Proposition 3.2.5 (and the Mean Value Theorem) and Proposition 3.2.1. We will
apply the same method as in Section 2.2.6. First recall that, for all n ∈ N,

Υn : γ̂n ×B̺ −→ W̃ u (γ̂n) ∩D̺

(x, u) 7−→ (x, 0, u)

and
ψn : γ̂n ×B̺ −→ Γn ∩D̺

(x, u) 7−→ (Xn
x (u), S

n
x (u), u) = (ξnx(u), u)

so that dC0(ψn,Υn) = sup
(x,u)∈γ̂n×B̺

d
(
ξnx (u) , (x, 0)

)
.

We fix n ∈ N. For all x ∈ γ̂n,

sup
u∈B̺

d (ξnx (u), (x, 0)) ≤ sup
u∈B̺

d (ξnx (u), ξ
n
x (0)) + d (ξnx (0), (x, 0))

≤ sup
u∈B̺

‖(ξnx )′(u)‖+ ‖Tn‖

≤ sup
(x,u)∈γ̂n×B̺

‖(ξnx )′(u)‖+ ‖Tn‖,

by the Mean Value Theorem and since ̺ ≤ 1, where (Tn) is given by Proposition 3.2.1. Therefore,

sup
(x,u)∈γ̂n×B̺

d (ξnx (u), (x, 0)) ≤ sup
(x,u)∈γ̂n×B̺

‖(ξnx )′(u)‖ + ‖Tn‖.

The convergence follows from Proposition 3.2.5 and Proposition 3.2.1.
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3. A “fibered" λ-lemma and an application to diffusion

3.2.3.3.2 Proof of item 2. Item 2 of Theorem 3 is an immediate consequence of Propo-
sition 3.2.2. Thanks to the latter, we are able to rewrite the s-component of any unit tangent
vector to Γn ∩D̺ and prove the C1-convergence by using the convergences in Proposition 3.2.2.

Corollary 3.2.11. Let ̺ be as in Proposition 3.2.2. For all ε > 0, there exists n0 ∈ N such that
∀n ≥ n0, ∀ q ∈ Γn ∩D̺, for all unit vector Z = (Zx, Zs, Zu) tangent to Γn ∩D̺ at q, ‖Zs‖ < ε.

Proof. Let n ∈ N be fixed. Let q be in Γn∩ D̺ and let Z = (Zx, Zs, Zu) be a unit vector tangent
to Γn ∩ D̺ at q. There exist then x ∈ γ̂n and u ∈ B̺ such that Z ∈ Tψn(x,u)(Γ

n∩ D̺), that
is, Im (Dψn(x, u)) since ψn is a diffeomorphism. Therefore, there exists a unique (v1, v2) in
Txγ̂

n× R
p
u such that

Zx = ∂xX̂
n(x, u).v1 + ∂uX̂

n(x, u).v2,

Zs = ∂xŜ
n(x, u).v1 + ∂uŜ

n(x, u).v2,

Zu = v2.

Z being of norm 1, then, in particular,

‖v2‖ ≤ 1 (3.13)

and ∥∥∂xX̂n(x, u).v1 + ∂uX̂
n(x, u).v2

∥∥ ≤ 1. (3.14)

As for ‖Zs‖, one has the more refined estimates using Inequalities (3.13) and (3.14)

‖Zs‖ = ‖∂xŜn(x, u).v1 + ∂uŜ
n(x, u).v2‖

≤ ‖∂xŜn(x, u).v1‖+ ‖∂uŜn(x, u).v2‖

≤ ‖∂xŜn(x, u).v1‖+ ‖∂uŜn(x, u)‖

≤ ‖∂xŜn(x, u).[∂xX̂n(x, u)]−1.∂xX̂
n(x, u).v1‖+ ‖∂uŜn(x, u)‖

≤ ‖∂xŜn(x, u).[∂xX̂n(x, u)]−1‖.‖∂xX̂n(x, u).v1‖+ ‖∂uŜn(x, u)‖

≤ ‖∂xŜn(x, u).[∂xX̂n(x, u)]−1‖.(‖∂xX̂n(x, u).v1 + ∂uX̂
n(x, u).v2‖+ ‖∂uX̂n(x, u).v2‖)

+‖∂uŜn(x, u)‖

≤ ‖∂xŜn(x, u).[∂xX̂n(x, u)]−1‖.(1 + ‖∂uX̂n(x, u)‖.‖v2‖) + ‖∂uŜn(x, u)‖

≤ ‖∂xŜn(x, u).[∂xX̂n(x, u)]−1‖.(1 + ν) + ‖∂uŜn(x, u)‖,

by item iii) of Proposition 3.2.2. The convergence follows from Proposition 3.2.2 items iv) and
v).

This ends the proof of Theorem 3 item 2.
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3.2.3.3.3 Proof of item 3. Item 3 of Theorem 3 is an immediate consequence of Sec-
tions 3.2.3.2.1, 3.2.3.2.2 and 3.2.3.2.3. Proposition 3.2.5 yields the convergence of the fibers
in the sense of the basic λ-lemma.

3.2.4 Proof of Corollary 3.1.3

We now prove Corollary 3.1.3. We keep the same notation as above.

Proof. In the particular case Fx(x, s, u) = g(x) for all (x, s, u) ∈ V̂ , it is easy to see that for all
n ∈ N, for all (x, u) ∈ γ̂n ×B̺,

Xn
x (u) = X̂n(x, u) = x.

Therefore, for all n ∈ N, ψn takes the following form:

ψn : γ̂n ×B̺ −→ Γn ∩D̺

(x, u) 7−→
(
x, Ŝn (x, u) , u

)
.

To prove the convergence of

dC1(ψn,Υn) = dC0(ψn,Υn) + sup
(x,u)∈γ̂n×B̺

‖Dψn(x, u) −DΥn(x, u)‖,

it is enough to prove the convergence of sup
(x,u)∈γ̂n×B̺

‖DŜn (x, u) ‖, thanks to item 1 of Theorem 3

and the particular form of ψn.
The convergence of sup

(x,u)∈γ̂n×B̺

∥∥∂uŜn(x, u)‖ is given by Proposition 3.2.2 item iv), and that

of sup
(x,u)∈γ̂n×B̺

∥∥∂xŜn(x, u)‖ follows from Proposition 3.2.2 item v) since
[
∂xX̂

n(x, u)
]−1

= ITxγ̂n

in this particular case. This ends the proof of Corollary 3.1.3.

3.3 Applications

Here we state and prove an application of the fibered λ-lemma. Given a finite family of invariant
minimal tori with successive transversal heteroclinic connections, we give necessary conditions
that ensure the existence of a transversal heteroclinic connection between the extremal tori of
this chain.

3.3.1 Transitivity of transversal heteroclinic connections

We begin this section with defining the strong torsion property, a property that is stronger than
the simple torsion (twist) in the sense that it requires the notion of C1-convergence of graph
maps. Then we state and prove a corollary of the fibered λ-lemma that gives the transitivity
of transversal heteroclinic connections for systems having the strong torsion property and the
normal form needed for Corollary 3.1.3.

Let us first introduce the notation for the next definition. In the sequel, we consider F , M
and N as in Sections 1.4 and 2.1.1. Moreover, we suppose that N ⊂ Tn × Rn (n ≥ 1) endowed
with its angle-action coordinate system (θ, r) and we denote by Πθ the projection over the angle
variable θ. Recall that g := F|N . Let T be an invariant torus in N and let b be a point in T .

61



3. A “fibered" λ-lemma and an application to diffusion

For m ∈ N and α ∈ ]0; 12 [, we denote by Dα
m the strip in the θ-variable centered at gm(b) and of

radius α. More precisely, we set

Dα
m := {(θ, r) ∈ N ; d (θ,Πθ (g

m(b))) < α} .

Definition 3.3.1. [The strong torsion property]. Let F , g, M and N be as above. Let T be
an invariant torus in N . We suppose that T is the graph of a C1-map R : Tn −→ Rn over the
angle variable. We say that F has the strong torsion property over T if for any C1-submanifold
γ̂ of N transverse to T in N at a point b, one has the following property:

∃ m0 ∈ N, ∃ α ∈ ]0; 12 [ such that ∀ m ≥ m0, the connected component of gm(γ̂)∩Dα
m containing

gm(b) is a graph over Πθ(D
α
m) of a C1-map Hm that satisfies:

lim
m→∞

‖Hm −R‖
C1
(
Πθ(Dα

m)
) = 0.

Note that, for notational simplicity, we kept the notation R for the restriction ofR to Πθ (D
α
m).

In the rest of the chapter and in Chapter 4, if Hm is also defined on a domain containing Πθ (D
α
m),

we also keep the same notation for the restricted map.
Roughly speaking, having the strong torsion property over T means that for any γ̂ transverse

to T , there exists a strip in the angle variable with a fixed width, such that (in this strip) gm(γ̂)
is close to T in the C1-topology for m large enough.

If F has the strong torsion property over each torus of a finite family of invariant minimal
tori with transversal heteroclinic connections (and some additional assumptions), one can expect
the transitivity of the transversal heteroclinic connections. More precisely, we have the following
corollary resulting from the fibered λ-lemma (Corollary 3.1.3).

Corollary 3.3.2. Let F , M , N and g be as above and let V̂ be as in Proposition 3.1.1. We
suppose that for all (x, s, u) ∈ V̂ , Fx(x, s, u) = g(x). Moreover, we suppose that there exists a
transition chain (Tk)1≤k≤n of tori in N (see Definition 2.4.1) such that for all k = 1, . . . , n− 1,
W u(Tk) ⋔W s(Tk+1). In addition, we suppose that for all k = 2, . . . , n, the torus Tk is the graph
of a C1-map Rk over the angle variable. We suppose that F has the strong torsion property over
Tk, for all k = 2, . . . , n. Then, W u(T1) ⋔W s(Tn).

Proof. For all k = 1, . . . , n − 1, we fix ck ∈ W u(Tk) ∩W s(Tk+1). Let ak (respectively bk+1) be
the point in Tk (respectively Tk+1) such that ck ∈ W uu(ak) (respectively ck ∈ W ss(bk+1)). Let
γk be the submanifold containing ck such that W u(Tk) transversely intersects W s(N) along γk,
for all k = 1, . . . , n − 1. Since W u(Tk) ⋔ W s(Tk+1) at ck, it is easy to see that γk is transverse
to W s(Tk+1) in the neighborhood of ck and thus “transverse" to the stable foliation. Therefore,
it is a graph over its γ̂k := P s(γk) in the neighborhood of ck, where

P s : W s(N) −→ N
x 7−→ xs

such that x ∈ W ss(xs). For all m ∈ N, for all k = 1, . . . , n − 1, we set bmk+1 := gm(bk+1) and
γ̂mk := gm(γ̂k).

Note that for all k = 1, . . . , n − 1, γ̂k is transverse to Tk+1 in N by the transversality of γk
and W s(Tk+1) in W s(N).

To prove the transitivity of transversal heteroclinic connections, it is enough to investigate the
case of three tori having successive heteroclinic connections, the result will follow by induction.
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c1

c2

c3

T1

T2

T3

T4

N

a1

a2

a3

b2

b3

b4

γ1

Figure 3.2: Transitivity of heteroclinic connections

More precisely, we suppose that W u(T1) ⋔ W s(T2) and W u(T2) ⋔ W s(T3). We will prove that
W u(T1) ⋔ W s(T3). Let ε > 0 be fixed. Without any loss of generality, we can assume γ1 ⊂ V̂
and that it is a graph over γ̂1. If this is not the case, we iterate (and shrink if necessary) γ1 and
reset the counters.

- Let Γ :=W u(T1). The fibered λ-lemma applied to Γ implies that for q large enough, Γq is
ε
2 -close to W u(γ̂q1) in the C1-topology (in the sense of Corollary 3.1.3).

- On the other hand, F has the strong torsion property over T2, and γ̂1 is transverse to T2.
Then ∃ α ∈ ]0; 12 [ such that for all δ > 0, for m large enough, γ̂m1 ∩Dα

m is δ-close to T2∩Dα
m

in the C1-topology (in the sense of Definition 3.3.1).

- By the C1-regularity of the foliation of the unstable manifold, for m large enough, one has
that W u(γ̂m1 ∩Dα

m) is ε
2 -close to W u(T2 ∩Dα

m) in the C1-topology.

- The sequence (bm2 ) lies in T2. This latter being minimal, then for j large enough, Dα
mj

contains a2. Therefore, for j large enough, W u(T2 ∩Dα
mj

) transversely intersects W s(T3).

Then the result easily follows since transversality is an open property.

Comments. • The transitivity of the transversal heteroclinic connections we proved in Corol-
lary 3.3.2 provides another tool to prove the existence of the drifting orbits for systems satisfying
the assumptions of the corollary.

• In order to prove the transitivity of transversal heteroclinic connections, we need the fibered
λ-lemma that ensures the C1-convergence of Γ, which requires a suitable normal form. If one
is able to prove the C1-convergence with an assumption weaker than the normal form, then the
transitivity follows too. The next step will be to find a suitable fibered λ-lemma with weaker
assumptions.

3.3.2 A system having the strong torsion property

We now investigate the case of a particular system useful for the next chapter and prove that
this system has the strong torsion property. We consider the case where N ⊂ T×R and F|N = g
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3. A “fibered" λ-lemma and an application to diffusion

is the following rotation g : N −→ T× R
(θ, r) 7−→ (θ + r, r).

Proposition 3.3.3. Let F be as above. Let r0 ∈ R. Then F has the strong torsion property
over T := T× {r0}.

Proof. Let γ̂ be a C1-submanifold that transversely intersects T in N at a point b := (θ0, r0).
Given a neighborhood Ir of r0 in R, we set

Dr := {(θ, r) ∈ T× R ; r ∈ Ir}

For all m ∈ N, we set bm := gm(b) and γ̂m := gm(γ̂).
By the transversality of γ̂ and T in T × R, following the same method as in Section 2.2.3,

there exist a neighborhood Ir of r0 in R and a C1-map k : Ir −→ T such that

γ̂ ∩Dr = {(k(r), r); r ∈ Ir}

and k(r0) = θ0. Note that for all m ∈ N,

gm(γ̂ ∩Dr) = γ̂m ∩Dr = {(k(r) +mr, r); r ∈ Ir}.

Let m0 ∈ N such that, for all r ∈ Ir, k′(r) +m0 > 0, that is, such that km0 := k +mId|Ir ,
when seen as a map with values in R, is increasing on Ir. Up to shrinking Ir if necessary, we can
suppose that km0(Ir) is centered at θ0 +m0r0 and of radius α ∈ ]0; 12 [. We set

Iθ := km0(Ir).

Therefore, km0 is a diffeomorphism from Ir onto Iθ ⊂ T. Let hm0 := (km0)
−1. Then,

γ̂m0 ∩Dr = {(km0(r), r); r ∈ Ir} = {(θ, hm0(θ)); θ ∈ Iθ} . (3.15)

Therefore, for all m ≥ m0, γ̂m ∩Dr = {(θ + (m−m0)hm0(θ), hm0(θ)); θ ∈ Iθ}. Let

hm := Id|Iθ
+ (m−m0)hm0 .

When seen as a map with values in R, hm is increasing on Iθ, for all m ≥ m0, since hm0 is
increasing, hence it is a diffeomorphism from Iθ onto its image hm(Iθ). Moreover, it is easy to
see that for all m ≥ m0, hm(Iθ) strictly contains a segment Im centered at θ0+mr0 and of radius
α ∈ ]0; 12 [. Now, let us look at hm as having its values in T. It follows from above that for all
m ≥ m0, if we set

Dα
m := {(θ, r) ∈ N ; d (θ, θ0 +mr0) < α} = {(θ, r) ∈ N ; θ ∈ Im} ,

then the connected component of γ̂m ∩Dα
m containing bm is the graph of

Hm := hm0 ◦ h−1
m

(defined on Im). Now let us investigate the C1-convergence of (Hm−r0). Since hm0 is increasing,
there exist two real numbers C+

1 and C+
2 such that for all θ ∈ Iθ,

0 < C+
1 ≤ h′m0

(θ) ≤ C+
2 . (3.16)
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Therefore, for all m ≥ m0,

‖Hm − r0‖C1(Im) = ‖Hm − r0‖C0 + ‖H ′
m‖

= sup
ϕ∈Im

∥∥hm0 ◦ h−1
m (ϕ)− hm0 ◦ h−1

m (θ0 +mr0)
∥∥+

∥∥(hm0 ◦ h−1
m )′

∥∥

≤ (1 + α)
∥∥(hm0 ◦ h−1

m )′
∥∥ ,

by the mean value theorem. On the other hand, ‖(hm0 ◦h−1
m )′‖ ≤ ‖h′m0

‖.‖(h−1
m )′‖ ≤ C+

2

1+(m−m0)C
+
1

.

The convergence easily follows. This ends the proof of Proposition 3.3.3.
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Chapter 4

Windows and estimates of diffusion
times

In this chapter, we investigate another application of the fibered λ-lemma. We construct correctly
aligned windows along a transition chain and using Easton’s shadowing method, we deduce the
existence of diffusion orbits and we estimate the diffusion time.

We will work in a particular setting. We consider f , M and N as in Section 1.4. More-
over, we suppose that N ⊂ T × R and that f|N is an integrable twist map. In addition, we
suppose that f admits a specific normal form near N , which will enable us to use the version of
the fibered λ-lemma that ensures the C1-convergence of any manifold transversely intersecting
W s(N) (Corollary 3.1.3). We also suppose that N contains a transition chain of Diophantine cir-
cles. We will deal with this specific context, because our goal is to set out a simple construction
where we highlight the different quantities that are involved when computing diffusion times.
More precisely, we prove that the time needed to drift along our transition chain splits into three
characteristic parameters: the ergodization time associated with each circle of the chain, the
straightening time given by the estimates in the fibered λ-lemma, and the torsion time on each
circle.

Moreover, our construction is well chosen so that the estimates do not deteriorate with each
iteration: the time needed to wander ε-close from one circle to the next is uniform with respect
to the chain and depends on parameters originating from our assumptions. We think of our
construction as a first step to compute diffusion times in a more complex context.

The chapter is organized as follows. In the first section, we describe the assumptions for our
results and we state Theorem 4 that gives one proof for the existence of orbits drifting along our
transition chain (another proof can be deduced from Corollary 2.4.2, up to a slight generalization
like we will do in Proposition 5.5.4 to prove the existence of an orbit passing arbitrarily close
to each torus of the chain). The method is based on the construction of correctly aligned
windows. We give a brief reminder on this method in Section 4.2. In Section 4.3, we compute
the ergodization times for the rotation on the Diophantine circles T × {ri}. We prove our first
result in Section 4.4. In Section 4.5, we state and prove our second result Corollary 4.5.1 which
gives estimates of the time needed for the orbit (whose existence was proved in Theorem 4) to
drift.
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4. Windows and estimates of diffusion times

4.1 Assumptions and first result

Let us first describe the assumptions for the results of this chapter (Theorem 4 below and Corol-
lary 4.5.1 in Section 4.5).

• A(1) We consider f , M and N as in Section 1.4 and F as in Section 2.1.1. We suppose that
N = T× I ⊂ T×R and that it is equipped with the angle-action variables (θ, r). Moreover, we
suppose that F|N : (θ, r) 7−→ (θ + r, r), for all (θ, r) ∈ N , so that N is foliated with invariant
circles T× {r}, r ∈ I.

• A(2) Let V̂ be as in Proposition 3.1.1. We suppose that for all (x, s, u) ∈ V̂ , Fx(x, s, u) = g(x),
where g = F|N .

• A(3) We suppose that N contains a transition chain of Diophantine circles. More precisely, we
suppose that there exists a finite family of invariant circles (Ti)1≤i≤n in N such that Ti = T×{ri}
for all i = 1, . . . , n, where ri is (Ci, τ)-Diophantine with Ci > 0 and τ ≥ 1 (see Definition 1.2.3).
Moreover, for all i = 1, . . . , n − 1, we suppose that the unstable manifold of Ti transversely
intersects the stable manifold of Ti+1.

An example of a dynamical system that satisfies the assumptions A(1), A(2) and A(3) can
be found in [LM05]. One only needs to note that the Diophantine circles with exponent τ ≥ 1
are dense in T× R.

We now state Theorem 4 which yields the existence of a diffusion orbit along the transition
chain.

Theorem 4. We consider a system that satisfies A(1), A(2) and A(3). Then, for all ε > 0,
there exist an orbit (xi)1≤i≤n and a sequence of positive integers (ki)1≤i≤n−1 such that:

d(xi, Ti) < ε, for all i = 1, . . . , n,
xi+1 = fki(xi), for all i = 1, . . . , n− 1,

where ki splits into three characteristic parameters and will be made explicit in Corollary 4.5.1.

We will prove Theorem 4 in Section 4.4 by means of windows that properly lign up, as we
will see in the next section. In Section 4.5, we will give explicit estimates of the diffusion time
n−1∑
i=1

ki.

4.2 Correctly aligned windows

To prove the results of this chapter, we will use Easton’s method of correctly aligned windows.
In this section, we give a brief reminder on this method. For a more elaborate study, we refer to
[Eas81] and to [GR07] and [GR09] for a topological version of Easton’s method. We first recall
the definition of Easton’s correctly aligned windows.

Definition 4.2.1. [Windows.] Let M be a d-dimensional manifold and let dh and dv be two
positive integers such that dh + dv = d. A (dh, dv)-window R in M is the image of the rectangle
[−1, 1]dh × [−1, 1]dv under a C1-diffeomorphism BR with values in M . The horizontals are the
images of [−1, 1]dh under BR(., yv) for all yv ∈ [−1, 1]dv , and the verticals are the images of
[−1, 1]dv under BR(yh, .) for all yh ∈ [−1, 1]dh . The exit set is BR

(
∂[−1, 1]dh × [−1, 1]dv

)
.
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4.3. Ergodization times for the rotations of Ti

Definition 4.2.2. [Correctly aligned windows.] Let M be a manifold and let R1, R2 be two
(dh, dv)-windows in M . We say that R1 is correctly aligned with R2 if :
- each horizontal BR1

(
[−1, 1]dh , yv

)
of R1 transversely intersects each vertical BR2

(
yh, [−1, 1]dv

)

of R2,
- the intersection of BR1

(
[−1, 1]dh , yv

)
and BR2

(
yh, [−1, 1]dv

)
is a unique point a such that

a = BR1(xh, yv) = BR2(yh, xv) where (xh, xv) ∈ ]− 1, 1[d.

R2

R1

Figure 4.1: Correctly aligned windows

The next Theorem (see [Eas81]) states that, given a family of correctly aligned windows,
there exists an orbit that crosses each window.

Theorem 4.2.3. [Easton.] Let (Ri)1≤i≤n be a sequence of (dh, dv)-windows in M and let
(Fi)1≤i≤n−1 be a sequence of diffeomorphisms on M such that Fi (Ri) is correctly aligned with
Ri+1 for all i = 1, . . . , n− 1. Then, there exists a point z in R1 such that for all i = 1, . . . , n− 1

Fi ◦ . . . ◦ F1(z) ∈ Ri+1.

In our construction, the maps Fi will represent different powers of the diffeomorphism f that
is given by the assumptions of Theorem 4. The sum of these powers is the drifting time.

4.3 Ergodization times for the rotations of Ti

Here, we keep the notation of Section 1.2. In order to compute diffusion times in Section 4.5,
we need to compute the ergodization time for the rotation Fri on each circle Ti. In Section 1.2,
we stated results on ergodization times in a general context (dimension n ≥ 1, nonresonant and
resonant at a high level vectors). These results follow from the works of Dumas, Bourgain, Golse,
Wennberg, Berti, Bolle, Biasco,...

In this section, we adapt these results to our context, that is, when n = 1 and (further in
this section) when ri is Diophantine of exponent τ ≥ 1. Moreover, we give a new (and simple)
proof of Theorem 1.2.2 in the case n = 1 by means of Dirichlet’s box principle, instead of the
common continued fractions method.

Let r ∈ R. Recall that Fr : T→ T maps θ to Fr(θ) = θ+ r mod 1 and that qr(α) is the time,
when it exists, needed for r to α-ergodize T.

When r /∈ Q, the rotation is minimal and qr(α) exists for any 0 < α ≤ 1
2 . When r = s

p ∈ Q∗

(p ∈ N∗), it is easy to see that qs/p(α) exists if and only if α ≥ p−1, in which case qs/p(α) ≤ p−1.
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4. Windows and estimates of diffusion times

From now on, we suppose that r /∈ Q. Recall that | . |Z is the distance to Z, that is,

|x|Z = inf {|x− s| ; s ∈ Z}

and that for K > 1, we set

Ψr(K) := max
{
|pr|−1

Z ; p ∈ Z, 1 ≤ |p| ≤ K
}

= max
{
|pr|−1

Z ; p ∈ Z, 1 ≤ p ≤ K
}

which is always finite. Ψr is a non decreasing unbounded and piecewise constant function defined
on ]1,+∞[.

Let us describe some additional properties satisfied by Ψr. By Dirichlet’s box principle, for
any K > 1, one can always find (p, s) ∈ N∗ × Z such that

1 ≤ p < K and |pr − s| ≤ K−1.

Therefore, for any K > 1,
Ψr(K) ≥ K, (4.1)

that is, the function Ψr grows at least linearly for any r /∈ Q.
In the Diophantine case, we can moreover characterize an upper bound for the growth. More

precisely, let c > 0 and τ ≥ 1, and r be (c, τ)-Diophantine. Then |pα|Z ≥ cp−τ for any p ∈ N∗.
This yields that, for any K > 1,

Ψr(K) ≤ c−1Kτ , (4.2)

that is, Ψr grows at most polynomially for r Diophantine.
The next lemma gives the ergodization time for any irrational r.

Lemma 4.3.1. Let r ∈ R \Q and α ∈ ]0; 12 ]. Then

qr(α) ≤ Ψr(2α
−1).

Proof. It follows from Property (4.1) that Ψr(2α
−1) ≥ 2α−1 > 1. Therefore, one can apply

Dirichlet’s box principle to Ψr(2α
−1). More precisely, there exists (p, s) ∈ N∗ × Z such that

|pr − s| ≤
(
Ψr(2α

−1)
)−1

(4.3)

and
1 ≤ p < Ψr(2α

−1). (4.4)

Thanks to Inequality (4.4), it is enough to prove that qr(α) ≤ p − 1. Inequality (4.3) and the
definition of Ψr yield that Ψr(p) ≥ Ψr(2α

−1), which implies that p ≥ 2α−1 (since Ψr is non
decreasing) and thus that α/2 ≥ p−1. Therefore,

qs/p(α/2) ≤ p− 1. (4.5)

Using Inequality (4.3) again and the fact that
(
Ψr(2α

−1)
)−1 ≤ α/2 (which follows from Prop-

erty (4.1)), it is easy to see that the distance between the two sets {θ, Fr(θ), . . . , F p−1
r (θ)} and

{θ, Fs/p(θ), . . . , F p−1
s/p (θ)} for θ ∈ T, is at most α/2. Since the latter set is α/2-dense by In-

equality (4.5), then the former set is α-dense. Therefore, qr(α) ≤ p − 1. This ends the proof of
Lemma 4.3.1.
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In the Diophantine case, one recovers Corollary 1.2.3. More precisely, we have the following
corollary.

Corollary 4.3.2. Let α ∈ ]0; 12 ] and let r be (c, τ)-Diophantine, where c > 0 and τ ≥ 1. Then

qr(α) ≤ c−12τα−τ .

Proof. The proof is immediate using Lemma 4.3.1 and Property (4.2).

Let (Ti)1≤i≤n be as in Assumption A(3). Since for all i = 1, . . . , n, ri is (Ci, τ)-Diophantine
(Ci > 0 ,τ ≥ 1), then, for all α ∈ ]0; 12 ],

qri(α) ≤ C−1
i 2τα−τ . (4.6)

4.4 Proof of Theorem 4

In this section, we prove Theorem 4. We construct correctly aligned windows arbitrarily close
to the transition chain. Theorem 4.2.3 yields the existence of an orbit which intersects these
windows. Moreover, we give preliminary estimates of the diffusion time that will be computed
in Section 4.5.

The mechanism consists of three stages due to the features of our system: assumption A(1)
and Proposition 3.3.3 yield that F has the stong torsion property over each circle of the chain. The
alignment of our windows in the central direction will follow from this property. Assumption A(2)
and assumption A(3) set the context to apply the fibered λ-lemma (Corollary 3.1.3) in order to
prove the straightening of our horizontals and thus align our windows in the stable direction. In
addition, the control of the ergodization follows from assumption A(3), which will enable us to
carry our windows around the circles.

4.4.1 Set-up and notation

Let us start by fixing the notation. For all i = 1, . . . , n − 1, we fix ci in W u(Ti) ∩W s(Ti+1).
We call ai the point in Ti and bi+1 the point in Ti+1 such that ci ∈ W uu(ai) ∩W ss(bi+1) for all
i = 1, . . . , n − 1. We call γi the 1-dimensional (relatively compact) submanifold containing ci
such that W u(Ti) transversely intersects W s(N) along γi.
We introduce the following maps

P u : W u(N) −→ N
x 7−→ xu

such that x ∈W uu(xu) and

P s : W s(N) −→ N
x 7−→ xs

such that x ∈W ss(xs). For all i = 1, . . . , n− 1, let

γ̂i := P s(γi).

As we mentioned in the proof of Corollary 3.3.2, since W u(Ti) is transverse to W s(Ti+1) for
all i = 1, . . . , n− 1, then γi is transverse to W s(Ti+1) in the neighborhood of ci and thus “trans-
verse" to the stable foliation. Therefore, it is a graph over γ̂i in the neighborhood of ci in the
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4. Windows and estimates of diffusion times

N

Ti
Ti+1

ai

W ss(bi+1)

W uu(ai)

ci

bi+1

γi

Figure 4.2: Transition chain

sense that it intersects each stable leaf of the points in γ̂i once at most. Therefore, without any
loss of generality, we can suppose that γi is a graph over γ̂i (one only needs to take the restriction
to the appropriate neighborhood and keep the notation) or equivalently, that the restriction of
P s to γi is a diffeomorphism.

• We give here a brief reminder on the notion of the scattering maps. We do not mean to give
the most general definition, we rather limit ourselves to that needed for our context. For more
details on scattering maps, we refer to [DDLLS06] and the references therein.

Definition 4.4.1. [Scattering map.] Let N be a normally hyperbolic manifold, and let P s and
P u be as above. Let γ be a submanifold in the homoclinic intersection W u(N)∩W s(N). We set
γ̂ := P s(γ). We suppose that P s|γ : γ 7−→ γ̂ is invertible. The scattering map Sγ associated with

γ is the map defined on γ̂ with values in N such that Sγ = P u ◦
(
P s|γ

)−1
.

Note that the definition of the scattering map depends on the homoclinic manifold γ. In
the sequel, we will drop the subscript γ from the notation Sγ since it will not lead to confusion
depending on the context. It is then easy to see that for all i = 1, . . . , n− 1, S(γ̂i) ⊂ Ti.

In order to define the “size" of the windows that we will construct in the following sections,
we need first to introduce two parameters α and ̺, parameters whose existence follows from the
assumptions and that will be uniform with respect to the chain. The size of the windows in the
horizontal directions will depend on α and ̺ (as we will see in Equations (4.9) and (4.10)). The
existence of the parameter α will follow from the strong torsion property of F over the circles of
the chain, and that of the parameter ̺ from the fibered λ-lemma applied to (W u(Ti)).

• Definition of α. Note that for all i = 1, . . . , n − 1, γ̂i is transverse to Ti+1 in N by the
transversality of γi andW s(Ti+1) inW s(N). Therefore, one can apply the strong torsion property
to (γ̂i). More precisely, thanks to Proposition 3.3.3, for all i = 1, . . . , n−1, there exist ji ∈ N and
αi ∈ ]0; 12 [ such that ∀ m ≥ ji, the connected component of gm(γ̂i) ∩Dαi

m containing gm(bi+1) is
a graph over Πθ(D

αi
m ) of a C1-map hi,m that satisfies:
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4.4. Proof of Theorem 4

lim
m→∞

‖hi,m − ri+1‖C1
(
Πθ(D

αi
m )

) = 0.

Let
j := max

1≤i≤n−1
ji and α = min

1≤i≤n−1
αi. (4.7)

Since we are looking for orbits wandering arbitrarily close to N , the windows will be defined
in the coordinate system given by Proposition B (Section 1.1.3), where the stable and unstable

manifolds and leaves are straightened. Let V̂ be as in Proposition 3.1.1 and let Û := ϕ−1
(
V̂
)
.

Without any loss of generality, we can suppose that the homoclinic points (ci) are chosen so that
j = 0 and for all i = 1, . . . , n− 1,

γi ∈ Û .
For notational simplicity, we keep the same notation for (γi), (γ̂i), (ai) and (bi), and their

identifications in V̂ by ϕ. For all i = 1, . . . , n − 1 and for all m ∈ N, we set ami := gm(ai). The
same holds for the iterates of bi and γ̂i by g, and the iterates of γi and ci by F . In the sequel,
we will identify f with F since we will be mainly interested in their powers.

• Definition of ̺. Since for all i = 1, . . . , n − 1, W u(Ti) transversely intersects W s(N) along
γi, using the same reasoning as in Section 3.2.1 and by reducing γi (and resetting α) if necessary
(and keeping the same notation), there exist a real number ̺′i > 0, a submanifold Γi ⊂ W u(Ti)

containing γi and a C2-map Ŝi defined on γ̂i × B̺′i with values in Bps such that Γi is the image
of the following diffeomorphism:

ψi : γ̂i ×B̺′i −→ D̺′i

(x, u) 7−→ (x, Ŝi(x, u), u),

that is, Γi is the graph of Ŝi. Thanks to Assumption A(2), we can apply the fibered λ-lemma
(Corollary 3.1.3) to Γi for all i = 1, . . . , n − 1, which yields that, for all i = 1, . . . , n − 1, there
exists ̺i > 0 such that, for all m ∈ N, there exits a C2-map Ŝi,m defined on γ̂mi ×B̺i with values
in Bps such that Γmi ∩D̺i is the image of the following diffeomorphism:

ψi,m : γ̂mi ×B̺i −→ D̺i

(x, u) 7−→ (x, Ŝi,m(x, u), u),

that is, Γmi ∩D̺i is the graph of Ŝi,m. Moreover,

lim
m→∞

‖Ŝi,m‖C1(γ̂mi ×B̺i
) = 0.

Note that we identified Ŝi with Ŝi,0. We set

̺ := min
1≤i≤n−1

̺i. (4.8)

4.4.2 The static/mobile windows

We will use Theorem 4.2.3 to prove Theorem 4. We will construct a sequence of windows
(Ri)1≤i≤n (the static windows) such that Ri is arbitrarily close to Ti, for all i = 1, . . . , n. We
will also construct another sequence of windows (R̃i)1≤i≤n−1 (the mobile windows) such that
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4. Windows and estimates of diffusion times

for all i = 1, . . . , n − 1, Ri is correctly aligned with R̃i, and fki
(
R̃i

)
is correctly aligned with

Ri+1, where ki is a suitable integer that will be computed. We will use Theorem 4.2.3 to deduce
the existence of an orbit that intersects each Ri and thus is arbitrarily close to each Ti, for
i = 1, . . . , n.

4.4.2.1 The static windows

We will now construct the sequence of static windows (Ri)1≤i≤n. Let ε > 0 be fixed. The
static windows (Ri)1≤i≤n will be defined in the coordinate system given by Proposition B (Sec-
tion 1.1.3). Let V̂ be as in Proposition 3.1.1. The window Ri (which is in T×R×Rps ×Rpu) will
take the following form:

Ri = a−n0
i + [−εθ, εθ]×

[
−εr

2
,
εr
2

]
×

[
−εs

2
,
εs
2

]p
× [−εu, εu]p,

where n0 is an integer, εθ, εr, εs and εu are positive real numbers, all to be defined in the sequel.
The horizontal directions will be (θ, u) and the vertical ones (r, s).

Let εr, εs and εu be positive real numbers small enough so that, for all i = 1, . . . , n,

Vi := T× [ri − εr, ri + εr]× [−εs, εs]p × [−εu, εu]p ⊂ V̂

and
∀ z ∈ Vi, d(z, Ti) < ε.

• Definition of εθ and εu. Up to reducing εu if necessary, we suppose that there exists ε′u > εu
such that

[−εu, εu]p ( [−ε′u, ε′u]p ⊂ B ̺
2
, (4.9)

where ̺ was given in Equation (4.8) and B ̺
2
= {u ∈ R

p
u; ‖u‖ < ̺

2}. We choose εθ > 0 such that

εθ <
α

4
, (4.10)

where α was given in Equation (4.7).

• Definition of n0. For all i = 1, . . . , n − 1, let

Hi
0,0 = T× {ri} × {0} ×

[
−εu

2
,
εu
2

]p
,

which is in the straightened unstable manifold of Ti. For all i = 1, . . . , n − 1, let Γi be as in
Section 4.4.1. Let n0 be in N such that, for all i = 1, . . . , n− 1,

F−n0(Γi) ⊂ Hi
0,0. (4.11)

Such an integer exists by the definition of the global unstable manifold of Ti. Note that we
identified Û with V̂ and f with F outside Û (see Section 4.4.1).

• Definition of εr and εs. We now introduce some notation useful to state the following
lemma. For εr > 0 and εs > 0 small enough, and for (xr, xs) ∈ [−εr, εr]× [−εs, εs]p, we set, for
all i = 1, . . . , n− 1,

Hi
xr,xs = T× {ri + xr} × {xs} ×

[
−εu

2
,
εu
2

]p
. (4.12)
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We will think of
{
Hi
xr ,xs ; (xr, xs) ∈ [−εr, εr]× [−εs, εs]p

}
as a “thickening" of Hi

0,0 in the di-
rections r and s. The next lemma gives the existence of a “thickening" of Γi with similar
submanifolds, on which we have full control of the strong torsion, and the straightening by the
fibered λ-lemma.

Lemma 4.4.2. Let n0 be as in Equation (4.11). There exist εr > 0 and εs > 0 small enough
such that, for all i = 1, . . . , n−1, for all (xr, xs) ∈ [−εr, εr]×[−εs, εs]p, there exists a submanifold
Γixr,xs ⊂ Fn0

(
Hi
xr,xs

)
such that

1. Γixr,xs transversely intersects W̃ s(N) along a relatively compact submanifold γixr,xs such
that γixr ,xs is a graph over γ̂ixr,xs := P s(γixr ,xs),

2. the fibered λ-lemma can be applied to Γixr ,xs with ̺ixr ,xs >
̺
2 and the correspondent C2-maps

Ŝi,mxr,xs such that

lim
m→∞

∥∥∥Ŝi,mxr,xs
∥∥∥
C1

(
(γ̂ixr,xs)

m
×B

̺ixr,xs

) = 0.

3. γ̂ixr,xs is transverse to Ti+1 at a point bixr,xs such that d(bixr ,xs , bi+1) <
α
8 ,

4. there exists αixr,xs >
α
2 such that the strong torsion property applies to γ̂ixr,xs with αixr,xs

and the correspondent C1 graph maps
(
hi,mxr,xs

)
m≥0

and strips in the θ-variable D
αi
xr,xs
m

xr ,xs

centered on bixr ,xs.

where we identified Γi0,0 with Γi, γ
i
0,0 with γi, γ̂

i
0,0 with γ̂i, ̺

i
0,0 with ̺i, Ŝ

i,m
0,0 with Ŝi,m, bi0,0 with

bi+1, α
i
0,0 with αi and hi,m0,0 with hi,m.

Proof. The proof is immediate because transversality is an open property, and because of the
definition of α (see the proof of Proposition 3.3.3) and the definition of ̺ (see Equation (3.6)).

In the sequel, for notational simplicity, we will drop the subsubscript xr, xs from D
α
2
m

xr,xs

since we will only use the latter in the context: graph (hi,mxr ,xs) ∩ D
α
2
m

xr ,xs
, so whenever we write

graph (hi,mxr ,xs)∩D
α
2
m, we mean the intersection with the strip in the θ-variable of radius α

2 centered
at (bixr ,xs)

m.

Let εu be as in Equation (4.9), εθ as in Equation (4.10), and εr and εs as in Lemma 4.4.2.
For all i = 1, . . . , n, we define the static window (with a slight abuse of notation) as follows

Ri = a−n0
i + [−εθ, εθ]×

[
−εr

2
,
εr
2

]
×

[
−εs

2
,
εs
2

]p
× [−εu, εu]p, (4.13)

where n0 is given by Estimate (4.11). Namely, for all i = 1, . . . , n, the window Ri is centered at
a−n0
i . The horizontal directions are (θ, u) and the vertical ones are (r, s). The horizontals are

H i
xr,xs = a−n0

i + [−εθ, εθ]× {xr} × {xs} × [−εu, εu]p

for (xr, xs) ∈
[
− εr

2 ,
εr
2

]
×

[
− εs

2 ,
εs
2

]p
, which will also form a thickening of H i

0,0 (which lies in

W̃ u(Ti), that is, the straightened unstable manifold of Ti) in the directions r and s.
Note that for all i = 1, . . . , n, the window Ri has the same “size", which is a feature of

our construction: the size of the windows are uniform with respect to the chain and does not
deteriorate with each iteration. The same will hold for the mobile windows.
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4. Windows and estimates of diffusion times

4.4.2.2 The mobile windows

We now state and prove the main result of this section which yields the existence of the mobile
windows and the correct alignements needed to prove Theorem 4. Moreover, the proof of the
following proposition gives the preliminary estimates of the diffusion time.

Proposition 4.4.3. Let (Ri)1≤i≤n be as in Equality (4.13). Then, for all i = 1, . . . , n− 1, there

exist a window R̃i and an integer ki such that

Ri is correctly aligned with R̃i and

fki
(
R̃i

)
is correctly aligned with Ri+1.

Ti

Ti+1

Ri

W ss(bi+1)

W uu(ai)

Ri+1

fki
(
R̃i

)

R̃i

Figure 4.3: Static windows (Ri) and mobile windows (R̃i)

Proof. Let εu be as in Equation (4.9), εθ as in Equation (4.10), and εr and εs as in Lemma 4.4.2.
Let n0 be as in Estimate (4.11). Recall the definition of the following “auxiliary horizontals".
For i = 1, . . . , n− 1 and (xr, xs) ∈ [−εr, εr]× [−εs, εs]p,

Hi
xr,xs = T× {ri + xr} × {xs} ×

[
−εu

2
,
εu
2

]p
.

Fix i = 1, . . . , n− 1. For all (xr, xs) ∈ [−εr, εr]× [−εs, εs]p, let Γixr ,xs be as in Lemma 4.4.2. The

mobile window R̃i will be constructed in such a way that each horizontal H̃ i
xr,xs of R̃i will satisfy

fn0

(
H̃ i
xr,xs

)
⊂ Γixr,xs

(which yields in particular that H̃ i
xr,xs is contained in Hi

xr,xs). Therefore, we start with investi-
gating the behavior of Γixr,xs under iteration.

The key-feature of our approach to prove the alignments is that both the fibered λ-lemma
and the strong torsion give rise to graph properties, the first over the u-variable, and the second
over the θ-variable. This will yield the transversality of the horizontals of Ri (resp. fki(R̃i))
with the verticals of R̃i (resp. Ri+1). The alignments will be due to three phenomena that arise
when iterating ∪xr,xsΓixr,xs .

1. Straightening. In order to align R̃i with Ri+1 under a certain iterate of f in the s-direction,
we will need to iterate Γixr,xs until the s-component of any point in the iterated manifold is of
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norm smaller than εs
2 , which is the “size" of Ri+1 in the s-direction. More precisely, we apply

the fibered λ-lemma to Γixr,xs which yields the existence, for all i = 1, . . . , n − 1, of an integer
mi such that, for all (xr, xs) ∈ [−εr, εr]× [−εs, εs]p,

∀m ≥ mi,
∥∥∥Ŝi,mxr,xs

∥∥∥
C0

<
εs
2
. (4.14)

Later on, this will ensure the correct alignment of fki(R̃i) with Ri+1 in the s-direction (see Fig-
ure (4.4) which roughly illustrates the case p = 1).

u

s

εu

̺
2

εs
2

(
Γixr,xs

)m
Γmi

(
Γix′r,x′s

)m

Figure 4.4: Alignment in the normal directions

2. Torsion. For all i = 1, . . . , n − 1, for all (xr, xs) ∈ [−εr, εr] × [−εs, εs]p, let γ̂ixr,xs be as in
Lemma 4.4.2. The projections over N of the iterates of Γixr,xs are the iterates of γ̂ixr,xs (thanks
to the normal form given by Assumption A(2)). Let us investigate the behavior of γ̂ixr ,xs under
iteration. We will limit ourselves to the strips in the θ-variable of radius α

2 , over which the
suitable connected components of the iterates of γ̂ixr,xs are graphs.

Since F has the strong torsion property over Ti+1 (see Proposition 3.3.3), and by Lemma 4.4.2,
for all i = 1, . . . , n− 1, there exists pi such that for all (xr, xs) ∈ [−εr, εr]× [−εs, εs]p,

∀ p ≥ pi,
∥∥hi,pxr ,xs − ri+1

∥∥
C0

(
Πθ

(
D

α
2
p

)) <
εr
2

and

Πθ ◦ F−(p+n0)
((

Γixr,xs
)p ∩D

α
2
p,xr,xs

)
( Πθ(a

−n0
i ) + [−εθ, εθ], (4.15)

where D
α
2
p,xr,xs :=

{
X = (θ, r, s, u) ∈ V̂ ; (θ, r) ∈ graph (hi,pxr ,xs ∩D

α
2
p )

}
and Πθ is the projec-

tion over the θ-variable. The second inclusion implies in particular that, when xr = xs = 0,

S
(
graphhi,p ∩D

α
2
p

)
( api + [−εθ, εθ]× {0} where S is the scattering map (see Definition 4.4.1)

and where we identified N with N × {0} × {0}. The first estimate will ensure, later on, the
correct alignment in the central direction. The second estimate will ensure the alignment of Ri
with R̃i in the θ-direction.

3. Ergodization. Since for i = 1, . . . , n, ri is (Ci, τ)-Diophantine (Ci > 0 and τ ≥ 1), then,
the α

8 -ergodization time for the rotation on Ti+1 exists for all i = 1, . . . , n − 1 (see Section 4.3).
More precisely, there exists Qi ∈ N such that
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Figure 4.5: Alignment in the central directions

⋃

0≤k≤Qi

B
(
F kri+1

(Πθ (bi+1)) ,
α

8

)
× {ri+1} = Ti+1, (4.16)

where we kept the notation of Definition 1.2.1. In particular, there exists qi ≤ Qi such that

d
(
bqii+1, a

−n0
i+1

)
<
α

8
. (4.17)

These three phenomena happen simultaneously. More precisely, under iteration by F , (Γixr ,xs)
will be subject to straightening (in the sense of the fibered λ-lemma) and to torsion in the central
direction while the intersection of its projection over N with Ti+1 undergoes ergodization on Ti+1

and approaches the center of Ri+1.

• Definition of the diffusion time ki. We now define the diffusion time ki for i = 1, . . . , n−1,
which depends on the “slowest" phenomenon. We set

ki =

{
n0 + qi, if qi ≥ max(mi, pi)
n0 +max(mi, pi) + q′i if qi < max(mi, pi),

(4.18)

where q′i ≤ Qi and such that

d
(
b
max(mi,pi)+q

′

i

i+1 , a−n0
i+1

)
<
α

8
. (4.19)

• Construction of R̃i. First, for i = 1, . . . , n− 1, let

Λi :=
⋃

(xr ,xs)∈[−εr,εr]×[−εs,εs]p

(
Γixr,xs

)ki−n0
.

We are only interested in the parts of
(
Γixr,xs

)ki−n0 which are graphs over the u-variable and the
θ-variable, which is necessary to ensure the alignment. We set
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Dθ

(
a−n0
i+1 ,

α

4

)
:=

{
(θ, r, s, u) ∈ V̂ ; (θ, r) ∈

⋃

xr,xs

graph (hi,ki−n0
xr ,xs ∩D

α
2
ki−n0

), d
(
θ,Πθ(a

−n0
i+1 )

)
≤ α

4

}
.

Intersecting Λi with Dθ

(
a−n0
i+1 ,

α
4

)
will ensure that the projection over the central variable of

each
(
Γixr,xs

)ki−n0 , when restricted to the projected strip, is a graph over a domain that con-
tains Πθ(a

−n0
i+1 ) + [−εθ, εθ] (which is the projection of Ri+1 over the θ-variable), since εθ <

α
4

(Inequality (4.10)). Let us now consider a convenient strip in the u-direction. Let ε′u be as in
Estimate (4.9) and set

Dε′u :=
{
(θ, r, s, u) ∈ V̂ ; u ∈ [−ε′u, ε′u]p

}
.

Intersecting Λi with Dε′u will ensure that each
(
Γixr ,xs

)ki−n0 , when intersected with the strip, is a
graph over the u-variable over a domain that contains [−εu, εu]p which is the projection of Ri+1

over the u-variable. For i = 1, . . . , n− 1, let

Λ̃i := Λi ∩Dθ

(
a−n0
i+1 ,

α

4

)
∩Dε′u .

We can think of Λ̃i as a window with horizontals
{(

Γixr,xs
)ki−n0 ∩Dθ

(
a−n0
i+1 ,

α

4

)
∩Dε′u ; (xr, xs) ∈ [−εr, εr]× [−εs, εs]p

}

and verticals

{
Λ̃i ∩

(
a−n0
i+1 + {xθ} ×

[
−εr

2
,
εr
2

]
×

[
−εs

2
,
εs
2

]p
× {xu}

)
; (xθ, xu) ∈

[
−α
4
,
α

4

]
× [−ε′u, ε′u]p

}

which means that we consider Λ̃i as having the same vertical directions as Ri+1, that is, in the
(r, s) direction. This is possible because of the graph properties over the (θ, u)-variables.

• Construction of R̃i. We set R̃i := f−ki
(
Λ̃i

)
. Note that R̃i ⊂ ⋃

xr ,xs

Hi
xr ,xs and that in-

tersecting each
(
Γixr,xs

)ki−n0 with Dθ

(
a−n0
i+1 ,

α
4

)
and Dε′u , then applying f−ki , means that each

f−ki
((
Γixr ,xs

))ki−n0 ⊂ Hi
xr ,xs was intersected in the (θ, u)-direction. We just defined the exit set

of R̃i (see Definition 4.2.1). The horizontals and the verticals of R̃i are the images under f−ki

of those of Λ̃i. Let us now prove the correct alignments.

1. fki
(
R̃i

)
is correctly aligned with Ri+1. More precisely, since each horizontal of fki

(
R̃i

)
is,

by construction, contained in a
(
Γixr ,xs

)ki−n0 and since the verticals of Ri+1 are in the (r, s)-
direction, then

• the transversality of the horizontals of fki
(
R̃i

)
and the verticals of Ri+1 follows from the

following:

–
(
Γixr ,xs

)ki−n0 ∩Dε′u , by definition, is a graph over the u-variable (a property given by
the fibered λ-lemma),
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Figure 4.6: Alignment of Ri with R̃i

– the projection of
(
Γixr ,xs

)ki−n0∩Dθ

(
a−n0
i+1 ,

α
4

)
over the central direction is a graph over

the θ-variable (a property given by the strong torsion),

• each intersection point lies inside fki
(
R̃i

)
∩Ri+1:

– in the u-direction thanks to Inclusion (4.9),

– in the s-direction thanks to the choice of mi in Inequality (4.14),

– in the central direction thanks to the first inequality in (4.15), Inequality (4.10),

Inequalities (4.17) or (4.19) which yield that d
(
bki−n0
i+1 , a−n0

i+1

)
< α

8 , and the fact that,

for all (xr, xs) ∈ [−εr, εr] × [−εs, εs]p, d(bixr ,xs , bi+1) <
α
8 (see Lemma 4.4.2) which

yield, thanks to the form of F , that d
(
(bixr ,xs)

ki−n0 , bki−n0
i+1

)
< α

8 .

2. Ri is correctly aligned with R̃i. More precisely,

• the horizontals of Ri are in the same directions as those of R̃i which are transverse to the
verticals of R̃i by construction of the verticals and horizontals of R̃i and since f−ki is a
diffeomorphism,

• the intersection points are inside Ri ∩ R̃i:

– in the θ-direction because of Estimate (4.15),

– in the rest of the directions because of the definitions of Ri (Estimate (4.13)) and
Hi
xr,xs (Estimate (4.12)).

This ends the proof of Proposition 4.4.3.

Theorem 4 follows from Proposition 4.4.3 and Theorem 4.2.3.
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4.5 Diffusion Times

In the proof of Proposition 4.4.3, we described, for all i = 1, . . . , n−1, the diffusion time ki. The
next corollary gives an upper bound for the diffusion time.

Corollary 4.5.1. We keep the assumptions of Theorem 4 and the notation of the proof of Propo-
sition 4.4.3. The diffusion time of the orbit (xi)1≤i≤n is

n−1∑

i=1

ki ≤
n−1∑

i=1

(
n0 +max(mi, pi) + C−1

i+116
τα−τ

)
,

where

• α ∈ ]0; 12 [ and is given in Equation (4.7),

• n0 is a unifom integer along the chain given by Equation (4.11) which translates the hete-
roclinic transition,

• mi is the straightening time given by Equation (4.14),

• pi is the torsion time given by Equation (4.15).

Proof. The proof is immediate thanks to the estimates in the proof of Proposition 4.4.3. One
only needs to note that the ergodization time Qi given by Equation (4.16) is Qi = qri+1(

α
8 ) if we

follow the notation of Section 4.5, that is, Qi ≤ C−1
i+116

τα−τ by Corollary 4.3.2.

We end this chapter with some comments.

• Given an explicit example satisfying the assumptions of Theorem 4 (like the system in [LM05]
for instance), one can compute the characteristic quantities in the diffusion time, since n0 de-
pends on the straightened neighborhood, mi highly depends on the splitting of the heteroclinic
connection (W u(Ti) ⋔ W s(Ti+1)) as can be seen in Chapters 2 and 3, and pi depends on the
splitting γ̂i ∩ Ti+1. If these quantities can be computed for the central horizontal Γi, and if
one provides upper and lower bounds of the splitting in the neighborhood of the heteroclinic
connections (like in [LM05]), one can give explicit estimates for mi and pi. The next step will be
to estimate the diffusion time in this particular example, and in more general cases. This could
not be accomplished here because of the lack of time.

• The dominant quantity in Equation (4.18) determines the diffusion time. More precisely, the
torsion time pi is linear in ε−1 as can be seen in Corollary 3.3.3 and the ergodization time
is polynomial in α−1 by Corollary 4.3.2. As for the straightening time, the situation is more
complicated because of the splitting. Since the straightening in the fibered λ-lemma follows
from the uniform straightening of the leaves, we will illustrate the situation for the leaves for
simplicity. By the estimates in Chapter 2 (keeping the same notation) the time needed to
straighten ∆ within ε is mainly the integer m such that

βm‖ξ′‖+mβm−1 ≤ ε.

Therefore, roughly speaking, if the splitting is large (‖ξ′‖ small), then the time needed to
straighten the horizontals is Logarithmic in ε−1 and therefore, the ergodization time controls
the diffusion time. However, if the splitting is small, then the time needed to straighten the
horizontal is large and thus dominates the ergodization.
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Chapter 5

Asymptotically dense projected orbits

The aim of this chapter is to construct a simple class of a priori stable nearly integrable systems
on A3, for which the dynamical behavior caused by a double resonance plays the central role
and yields the existence of “asymptotically dense projected orbits", that is, orbits at fixed energy
whose projection on the energy level passes within an arbitrarily small distance from each point
of the projected energy level, when the size of the perturbation tends to 0.

5.1 Introduction and main result

Given an integer m ≥ 1, we denote by Am = Tm × Rm the cotangent bundle of the torus Tm,
that we endow with its usual angle-action coordinates (θ, r) and its Liouville symplectic form
Ω =

∑m
i=1 dri ∧ dθi. We denote by Π the projection Am → Rm and by d the Hausdorff distance

for compact subsets of Rm. When H is a Cκ function on an open set of Am, κ ≥ 2, we denote by
XH its Hamiltonian vector field and by ΦHt its local flow. Given a function H and an element a
in its range, we write H−1(a) instead of H−1({a}), even if H is not a bijection.

Our systems will be defined on A3 and have the following form

Hn(θ, r) =
1
2‖r‖2 + 1

nU(θ2, θ3) + fn(θ, r),

where ‖ · ‖ stands for the Euclidean norm, U ∈ Cκ(T2) is a generic potential function and
fn ∈ Cκ(A3) is an additional perturbation such that ‖fn‖Cκ(A3) ≤ 1

n . For the sake of simplicity,
we limit ourselves to the case where κ is an integer ≥ 2, but the construction could easily be
extended to the C∞ or Gevrey cases as well.

The system Hn is a perturbation of the integrable system h(r) = 1
2‖r‖2. We will focus on the

energy level H−1
n (12) but any other positive energy level would have the same properties. The

frequency map associated with h is
ω(r) = r,

and the double resonance under concern is the set of actions r such that ω2(r) = ω3(r) = 0, that
is, the line r2 = r3 = 0. This line intersects the unperturbed level S = h−1(12 ) (the unit sphere)
at the points D± = (±1, 0, 0), and the “principal part” of the averaged system at these points
coincides and reads

Hn(θ2, θ3, r2, r3) =
1
2

(
r22 + r23) +

1
nU(θ2, θ3)

(the full averaged systems also contain the average of fn, but this will be insignificant thanks to a
proper choice of this additional perturbation). This averaged system is of “classical form”, the sum
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5. Asymptotically dense projected orbits

of a kinetic part and a potential part. The potential will be arbitrarily chosen in a residual subset
of Cκ(T2); in particular, the system Hn will be nonintegrable. This property is in contrast with
the previous studies on double resonances, where the averaged system was usually assumed to be
integrable or nearly integrable (see [Bes97]). However, this nonintegrability and the associated
“chaotic behavior” are essential features of generic nearly integrable systems, as proved in recent
studies on Arnold diffusion ([Che12, Marc, Mar12, Kal12]). On the contrary, the last term fn of
the perturbation will be a “very nongeneric” bump function, especially designed to easily create
and control the so-called “splitting of separatrices”, in the spirit of [Dou88, MS02].

The truncated system

Hn(θ, r) =
1
2‖r‖2 + 1

nU(θ2, θ3), (θ, r) ∈ A3, (5.1)

does not admit diffusion orbits. Indeed, it appears as the direct product of the one-degree-of-
freedom Hamiltonian 1

2r
2
1 with the previous averaged system, and the conservation of the energy

in both factors prevents from any diffusion phenomenon. It is only when the perturbation fn is
added that the splitting of separatrices appears and makes the diffusion possible. The structure
of our system is therefore in some sense analogous to that of Arnold’s initial model for diffusion
along a simple resonance ([Arn64]). But while in Arnold’s model the diffusion phenomenon
occurs only along a single resonance, in our model the diffusion takes place along a very large
family of simple resonances, namely the great circles of S orthogonal to the vectors k = (0, k2, k3),
where k2, k3 are coprime integers. The previous double resonant points D± are the places where
exchanges of resonances are made possible by the structure of the averaged systems in their
neighborhood.

Let us now state our main result. For 2 ≤ κ < +∞, we endow the spaces Cκ(T2) of Cκ

functions on T2 with their usual Cκ norms

‖U‖Cκ(T2) = Max
|α|≤κ

Max
θ∈T2

|∂αU(θ)| ,

which make them Banach spaces. Throughout this chapter, the triples x = (x1, x2, x3) in T3 or
R3 will also be denoted by

x = (x1, x), x = (x2, x3).

We also introduce a formal definition for the notion of “approximative density". Given a metric
space (E, d) and δ > 0, we say that a subset S of E is δ-dense in a subset F ⊂ E when F is
contained in the union of the family of all open δ-balls centered at points of S. We will prove
the following diffusion result.

Theorem 5. Let κ ≥ 2 be a fixed integer. Then there exists a residual subset U in Cκ(T2) such
that for each U ∈ U , there is a sequence (fn)n≥1 of Cκ functions on A3, with ‖fn‖Cκ(A3) ≤ 1

n ,
such that for any δ > 0, there exists n0 such that for n ≥ n0, the system

Hn(θ, r) =
1
2‖r‖2 + 1

nU(θ) + fn(θ, r), (θ, r) ∈ A3, (5.2)

admits an orbit Γn with energy 1
2 such that Π(Γn) is δ–dense in Π(H−1

n (12)).

Since we only aim at producing examples, the fact that U is nonempty would be enough.
However the residual character of U makes it plausible –eventhough we do not try to prove
this– that the wild behavior of orbits described in our examples is in fact generic for a priori
stable perturbations of integrable systems. We could also work in the class of diffeomorphisms, in
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which case an analogous construction yields examples of nearly-integrable diffeomorphisms with
a large class of orbits biasymptotic to infinity. However, we will limit here to the Hamiltonian
case, which is indeed richer and sligthly more difficult, due to the additional geometrical difficulty
induced by the preservation of energy. The chapter is organized as follows.

• Section 2 is devoted to the description of those properties of classical systems which we
will need to construct our examples, namely the existence of suitable chains of annuli. Here we
summarize [Marc]. However, our present construction is to a large extent independent of this
latter work (apart from the necessary definitions), the concern of which is the genericity of the
potential U for which the associated classical system possesses suitable chains of annuli.

• In Section 3, we deduce from the previous properties of classical systems the existence
of chains of cylinders in our systems Hn, and we prove that these chains project in the space
of actions asymptotically close to a dense family of great circles in the unit sphere (the simple
resonance lines). These cylinders are normally hyperbolic invariant manifolds diffeomorphic to
T2 × [0, 1] and admit a foliation by invariant tori diffeomorphic to T2.

• In Section 4, we construct the sequence (fn), in such a way that each invariant torus in the
previous family admits a homoclinic orbit along which its stable and unstable manifolds intersect
transversely in a weak sense. This in particular yields the existence of heteroclinic connections
between nearby enough tori contained in the same cylinders. Other transversality properties for
heteroclinic orbits between tori in different cylinders of the chains are also proved.

• Finally in Section 5, we prove the existence of the diffusion orbits. The key lemma there
is the basic λ–lemma proved in Chapter 2 which is especially designed for normally hyperbolic
manifolds and which enables us to prove very easily the necessary shadowing results.

5.2 Classical systems

This section is devoted to the description of the generic hyperbolic properties of classical systems
on the torus T2 which will be needed in the construction of our examples. Given a potential
function U ∈ Cκ(T2), we define here the associated classical system as the Hamiltonian on A2

CU (x, y) =
1
2‖y‖2 + U(x), (5.3)

where x ∈ T2 and y ∈ R2. We will always require the potential U to admit a single maximum
at some x0, which is nondegenerate in the sense that the Hessian of U is negative definite. This
is of course true for a U in a residual subset U0 ⊂ Cκ(T2). It is then easy to check that the lift
of x0 to the zero section of A2 is a hyperbolic fixed point for XC .

1. We denote by π : A2 → T2 the canonical projection and we fix U ∈ U0 together with the
associated classical system C := CU .

Definition 5.2.1. Let c ∈ H1(T
2,Z) and let I ⊂ R be an interval. An annulus for XC realizing

c and defined over I is a submanifold A, contained in C−1(I) ⊂ A2, such that

• for each e ∈ I, A ∩C−1(e) is the orbit of a periodic solution γe of XC , which is hyperbolic
in C−1(e), with orientable stable and unstable bundles, and such that the projection π ◦ γe
on T2 realizes c,

• the frequency ω(e) of the solution γe is an increasing function of e and, in the case where
I = ]ê, em[, ω(e) → 0 and ω′(e) → +∞ when e→ ê,
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5. Asymptotically dense projected orbits

• there exists a covering I = ∪1≤i≤i∗I
∗
i of I by open subintervals of I such that for 1 ≤ i ≤ i∗

and for e ∈ I∗i , the solution γe admits a homoclinic solution ωe along which the stable and
unstable manifolds of γe intersect transversely inside C−1(e).

Since the solutions γe are hyperbolic and vary continuously with e (since A is assumed to be
a submanifold), the annulus A is a Cκ−1 submanifold of A2, with boundary ∂A ∼ T × ∂I. It
is clearly normally hyperbolic (the boundary causes no trouble is this simple setting), and its
stable and unstable manifolds are the unions of those of the periodic solutions γe. Note that
when I has a boundary point, the family γe can be continued over a slightly larger open interval,
but it will be interesting to allow the intervals to be compact in our subsequent constructions.

It is not difficult to prove that an annulus A is a Cκ−1 symplectic submanifold of A2 and,
using Moser’s isotopy method, that there exists a symplectic embedding φ : T × I → A2 whose
image is A and which satisfies

C ◦ φ(ϕ, e) = e,

where of course T × I is equipped with its usual symplectic structure. Note that obviously
φ(T× {e}) = A ∩ C−1(e).

2. Due to the reversibility of C, the solutions of the vector field XC occur in opposite pairs
(pairs of symmetric solutions whose time parametrizations are exchanged by the symmetry t 7→
−t). This is in particular the case for the solutions homoclinic to the hyperbolic fixed point O
associated with the maximum x0 of U . We set

ê = Max U = U(x0).

Definition 5.2.2. Let c ∈ H1(T
2,Z) \ {0}. A singular annulus for XC realizing ±c, with pa-

rameters ẽ > ê and e0 < ê, is a C1 invariant manifold A
• with boundary , diffeomorphic to the

sphere S2 minus three disjoint open discs, such that, setting I = ]ê, ẽ [ and I0 = ]e0, ê[:

• A
• ∩ C−1(ê) is the union of the hyperbolic fixed point O and a pair of opposite homoclinic

orbits,

• A
• ∩ C−1(I) admits two connected components A

•
+ and A

•
−, which are annuli defined over

I and realizing c and −c respectively,

• A
•
0 = A

• ∩ C−1(I0) is an annulus defined over I0 and realizing the null class 0,

• A
• admits a C1 stable (resp. unstable) manifold, in which the union of the stable (resp.

unstable) manifolds of A•
+, A•

− and A
•
0 is dense.

• both homoclinic orbits admit homoclinic connections along which the stable and unstable
manifolds of A• intersect transversely in C−1(ê).

Note that a singular annulus A• is “almost everywhere Cκ−1”, since the connected components
of A• ∩C−1(I) and A

• ∩C−1(I0) are annuli, so Cκ−1 submanifolds of A2. Note also that A• is a
center manifold for both homoclinic orbits in A

• ∩C−1(ê), with hyperbolic transverse spectrum.
One can in fact prove that a singular annulus is slightly more regular than C1 (depending on
the Lyapunov exponents of the fixed point O), but this is useless here.

A singular annulus is depicted in Figure 5.1: it is essentially the part of the phase space of
a simple pendulum limited by two essential invariant curves at the same energy, from which a
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neighborhood of the elliptic fixed point has been removed. More precisely, on the annulus A
equipped with the coordinates (ϕ, I), for λ > 0 we define the pendulum Hamiltonian

Pê,λ(ϕ, I) =
1
2I

2 + λ(cos 2πϕ− 1) + ê

and for a < ê < b we introduce the subset A•(a, b) defined by a ≤ Pλ(ϕ, I) ≤ b. So A•(a, b)
is the zone bounded by the two invariant curves of equation Pλ = b, together with an invariant
curve surrounding the elliptic point. We call A•(ê, λ, a, b) the standard singular annulus with pa-
rameters (ê, λ, a, b). One easily proves that a singular annulus is C1 symplectically diffeomorphic
to some standard annulus, by a diffeomorphism φ• : A• → A

• such that C|A• ◦ φ• = Pê,λ.

O

cc(C−1(I) ∩ A
•)cc(C−1(I) ∩ A

•) C−1(I0) ∩ A
•

C−1(ê) ∩ A
•

Figure 5.1: A singular annulus

Note finally that there exist embeddings φ± : T× ]ê, ẽ ] → A
•
± and φ0 : T× ]e0, ê] → A

•
0 for

the 3 subannuli of a singular annulus.

3. Let us now turn to the definition of chains of annuli for the classical system C. We say that a
family (Ii)1≤i≤m of nontrivial closed subintervals of ]ê,+∞[ is ordered when Max Ii = Min Ii+1

for 1 ≤ i ≤ m− 1.

Definition 5.2.3. Let c, c′ ∈ H1(T
2,Z) \ {0}.

• A chain of annuli realizing c is a family (Ai)0≤i≤m of annuli realizing c, defined over an
ordered family (Ii) of closed subintervals of ]ê,+∞[, with the additional property that for
0 ≤ i ≤ m− 1

W u(Ai) ∩W s(Ai+1) 6= ∅, W s(Ai) ∩W u(Ai+1) 6= ∅,
the intersection being transverse in A2.

• A generalized chain of annuli realizing c and c′ is the union of two chains (Ai)0≤i≤m and
(A′

i)0≤i≤m′ realizing c and c′ respectively, together with a singular annulus A
•, such that

W u(A0) ∩W s(A•) 6= ∅, W s(A0) ∩W u(A•) 6= ∅,
W u(A′

0) ∩W s(A•) 6= ∅, W s(A′
0) ∩W u(A•) 6= ∅,

the intersections being transverse in A2.

Note that we do not specify the homology of the singular annulus A
•, this latter turns out

to be fixed independently of the classes c and c′ in our subsequent construction.

4. We now state a genericity result due to Marco which was proved in [Marc]. We say that a
nonzero class c ∈ H1(T

2,Z) \ {0} is primitive (or is a primary class) when the equality c = mc′

with m ∈ Z implies m = ±1. We denote by H1(T
2,Z) the set of primitive homology classes.

Here d is the Hausdorff distance for compact subsets of R2 and Π : A2 → R2 is the canonical
projection.
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Theorem 5.2.4. [Marco.] Let 2 ≤ κ ≤ +∞. Then there exists a residual subset U ⊂ U0 in
Cκ(T2) such that for U ∈ U , the associated classical system CU defined in (5.3) satisfies the
following properties.

1. For each c ∈ H1(T
2,Z) there exists a chain A(c) = (A0, . . . ,Am) of annuli realizing c,

defined over ordered intervals I0, . . . , Im, such that the first and last intervals are of the
form

I0 = ]Max U, em] and Im = [eP ,+∞[,

for suitable constants em and eP .

2. Let c = (c1, c2) in the canonical identification of H1(T
2,Z) with Z2 and for e > 0, set

Yc(e) =

√
e c

‖c‖

Setting Γe = Am ∩ C−1
U (e) for e ∈ [eP ,+∞[, then

lim
e→+∞

d
(
Π(Γe), {Yc(e)}

)
= 0

3. Given two primitive classes c 6= c′, there exists σ ∈ {−1,+1} such that the two chains
A(c) = (Ai)0≤i≤m and A(σc′) = (A′

i)0≤i≤m′ satisfy

W u(A0) ∩W s(A′
0) 6= ∅ and W u(A′

0) ∩W s(A0) 6= ∅,

both heteroclinic intersections being transverse in A2.

4. There exists a singular annulus A
• which admits transverse heteroclinic connections with

every first annulus in the previous chains.

The existence of the “high energy annuli” Am is proved by a simple argument due to Poincaré,
on the creation of hyperbolic orbits near perturbations of resonant tori, so we call eP the Poincaré
energy for the class c. The other annuli are proved to exist by minimization arguments of Morse
and Hedlund.

There exist in general several singular annuli with the previous intersection property, but one
will be enough for our future needs. We say that a chain with I0 and Im as in the first item
above is biasymptotic to ê := Max U and +∞. It may be useful to rephrase Theorem 5.2.4 in a
more concise way.

Corollary 5.2.5. For U ∈ U and for each pair of classes c, c′ ∈ H1(T
2,Z), there exists a

generalized chain of annuli, union of (Ai)0≤i≤m, (A′
i)0≤i≤m′ and A

•, such that (Ai)0≤i≤m and
(A′

i)0≤i≤m′ are biasymptotic to ê and +∞ and realize c and c′ respectively.

In the y–plane, one therefore gets the following picture for the projection of generalized
chains of annuli, along some lines of rational slope (which obviously correspond to homology
classes when the energy tends to +∞, by Theorem 5.2.4, see [Marc]).
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5.3. Chains of cylinders for Hn

Singular annulus

Figure 5.2: Projected generalized chains of annuli in a classical system

5.3 Chains of cylinders for Hn

Here we call cylinder for a vector field defined on the cylinder A3 a normally hyperbolic invariant
manifold with boundary, diffeomorphic to T2 × [0, 1]. In particular, the stable and unstable
manifolds of a cylinder are well-defined and the definition of chains of cylinders can be properly
stated. In this section, we prove the existence of a family of chains of cylinders for Hn in the
energy level H−1

n (12 ), whose projection by Π forms an asymptotically dense subset of the unit
sphere.

5.3.1 Cylinders and chains

1. Let us set out a first definition.

Definition 5.3.1. Let X be a vector field on A3.

• We say that C ⊂ A3 is a Cp invariant cylinder with boundary for X if C is a submanifold
of A3, Cp–diffeomorphic to T2 × [0, 1], such that X is everywhere tangent to C and is
moreover tangent to ∂C at each point of ∂C .

• Given an invariant cylinder with boundary C , we say that it is normally hyperbolic when
there exist a neighborhood N of C and a complete vector field X◦ on A3 such that X ≡ X◦ in
N and such that X◦ admits a normally hyperbolic invariant submanifold C◦, diffeomorphic
to T2 × R, which contains C .

Note first that C is invariant under the flow, thanks to the tangency hypothesis on the
boundary. In particular, both connected components of ∂C are invariant 2-dimensional tori. In
the following, when the context is clear, normally hyperbolic cylinders with boundary will be
called compact invariant cylinders for short.

The main interest of the previous definition is that it is possible to properly define the
stable and unstable manifolds of compact invariant cylinders. Indeed, one checks that the stable
manifold W ss(x) of a point x ∈ C is well-defined and independent of the choice of (X◦,C◦) (recall
that W ss(x) is the set of all initial conditions y such that dist(ΦtX(x),ΦtX (y)) tends to 0 at an
exponential rate e−ct, where c dominates the contraction exponent on C◦). The stable manifold
of C is then well-defined, as the union of the stable manifolds W ss(x) for x ∈ C , which turns
out to have the same regularity as C . The same remark obviously also holds for the unstable
manifolds.
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5. Asymptotically dense projected orbits

2. In addition to our previous invariant cylinders, it will be necessary to introduce slightly more
complicated objects which we call singular cylinders. Recall that A• is the standard singular
annulus defined in the previous section.

Definition 5.3.2. Let X be a vector field on A3.

• We say that C • ⊂ A3 is an invariant singular cylinder for X if C • is a C1 submanifold
with boundary of A3, diffeomorphic to T × A•, such that X is everywhere tangent to C •

(and is moreover tangent to ∂C • at each point of ∂C •).

• Given an invariant singular cylinder C •, we say that it is normally hyperbolic when there
exist a neighborhood N of C • and a complete vector field X◦ on A3 such that X ≡ X◦

on N and which admits a normally hyperbolic invariant submanifold C◦, diffeomorphic to
T2 × R, which contains C •.

As above, we simply say compact singular cylinders instead of normally hyperbolic compact
invariant singular cylinders. Again, the stable and unstable manifolds of a point x ∈ C • are
well-defined and independent of the choice of (X◦,C◦), and this is also the case for the stable
and unstable manifolds of C •.

3. Let H be a Hamiltonian on A3 and let e be a regular value of H.

Definition 5.3.3. A chain of cylinders for H at energy e is a finite family (Ci)1≤i≤i∗ of com-
pact invariant cylinders or singular cylinders, contained in H−1(e), such that W u(Ci) intersects
W s(Ci+1) for 1 ≤ i ≤ i∗ − 1.

Note in particular that, for the sake of simplicity, we do not make any distinction between
“regular” cylinders and singular cylinders in a chain. Note also that the definition here slitghly
differs from that of chains of annuli above. In the following we will have to add suitable transver-
sality conditions for the various homoclinic and heteroclinic intersections in a chain of cylinders,
which could be stated in a general context but will be easier to make explicit in the case of our
Hamiltonians Hn, this will be done in Section 5.4.

5.3.2 Cylinders for Hn

1. We now go back to the truncated Hamiltonian Hn defined in (5.1). Let k = (k2, k3) ∈ Z2 be
a primary integer vector and let Sk be the half great circle of the unit sphere S formed by the
actions r = (r1, r) = (r1, r2, r3) such that

r · k = 0, (−r3, r2) · k ≥ 0, r ∈ S.
The main result of this section is the following.

Proposition 5.3.4. Let U ∈ U and set, for (θ, r) ∈ A3

Hn(θ, r) =
1
2‖r‖2 + 1

nU(θ2, θ3).

Fix k as above and fix δ > 0. Then:

• there is n0(k) > 0 such that for n ≥ n0(k), there are regular cylinders C−m, . . . ,C−1, C0,
C1, . . . ,Cm, where the integer m depends on k, which satisfy

d
(
∪j Π(Cj),Sk

)
< δ, (5.4)

and such that both ordered families C−m, . . . ,C−1, C0, C1, . . . ,Cm and Cm, . . . ,C1, C0,
C−1, . . . ,C−m are chains.
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5.3. Chains of cylinders for Hn

• there exist two singular cylinders C •
− and C •

+, independent of k, such that the extremal
cylinders C−m and Cm admit transverse heteroclinic connections with C •

− and C •
+ respec-

tively,

• each cylinder Cj admits a foliation by isotropic tori, such that the union of the subfamily of
dynamically minimal tori is a dense subset of Cj, and each singular cylinder C •

± admits a
foliation by isotropic tori on an open and dense subset, such that the union of the subfamily
of dynamically minimal tori is a dense subset of C •

±.

We will moreover prove that the cylinders Cj and C−j are exchanged with one another by a
natural symmetry.

Proof. We can assume without loss of generality that ê = Max U = 0. We first perform a
standard rescaling to get rid of the parameter n, namely, setting

σn(θ, r) = (θ, nr), (5.5)

one immediately checks the conjugacy relation

ΦHn
nt = σ−1

n ◦ ΦH
t ◦ σn, (5.6)

where H := H1, while σn sends the energy level H−1
n (12) onto the level H−1(n2 ). We can therefore

examine the behavior of the system H at high energy e and get our results by inverse rescaling.
We will fix two coprime integers (k2, k3) and concentrate on the neighborhood of the half great
circle

√
2e Sk on the sphere of radius

√
2e.

• We will apply Theorem 5.2.4 to c ∼ (−k3, k2). Reversing the ordering of the intervals
for compatibility reasons, there is an ordered family Im, . . . , I0, with Im = ]0, bm] and I0 =
[eP ,+∞[ such that the system CU admits a chain of annuli Am, . . . ,A0 realizing c and defined
over Im, . . . , I0. For 0 ≤ j ≤ m, we denote by φj : T × Ij → A2 the embedding of Aj defined
in the previous section and for e ∈ Ij , we denote by Γj(e) = φj(T × {e}) the periodic orbit at
energy e in Aj.

• Let us fix an energy e > eP . The level H−1(e) contains the union

⋃

0≤e1≤e

{
θ1 ∈ T, 1

2r
2
1 = e1

}
× C−1

U (e− e1).

which will serve as a guide to construct embeddings for our cylinders.

• Consider first an annulus Aj with 1 ≤ j ≤ m and set Ij = [aj, bj ] for 1 ≤ j ≤ m − 1 and
Im =]0, bm], so that Ij is contained in ]0, eP [. We set

Jj =
[√

2(e− bj),
√

2(e− aj)
]

and introduce the map
F+
j : T2 × Jj −→ H−1(e) ⊂ A× A2

defined componentwise by

F+
j (ϕ1, ϕ2, r1) =

(
(ϕ1, r1), φj

(
ϕ2, e− 1

2r
2
1

))
.
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5. Asymptotically dense projected orbits

One immediately checks that F+
j is an embedding. Let Cj ⊂ H−1(e) be its image. Then Cj

admits a regular foliation whose leaves are the tori

Tr1 = F+
j (T2 × {r1}).

The torus Tr1 is the direct product of the circle T×{r1} in the first factor of the product A×A2

with the hyperbolic periodic orbit Γj(e− 1
2r

2
1) in the second factor. For each z = (z1, z2) ∈ Cj,

there is a single hyperbolic orbit in the annulus Aj which contains z2. This yields a decomposition
of the tangent space TzH−1(e) as a sum TzCj ⊕E+(z)⊕E−(z), where E±(z) are the stable and
unstable directions of that orbit at the point z2. All these considerations also make sense for
any small enough hyperbolic continuation of Aj , which immediately proves that Cj is a compact
invariant cylinder in the sense of Definition 5.3.1.

• One gets a parallel construction using the embedding

F−
j : T2 ×

(
− Jj

)
−→ H−1(e) ⊂ A× A2

defined by
F−
j (ϕ1, ϕ2, r1) = F+

j (ϕ1, ϕ2,−r1).
whose image will be denoted by C−j and is a compact invariant cylinder as well. Moreover, Cj

and C−j are obviously symmetric.

• As for A0, we introduce the interval J0 =
[
−

√
2(e− eP ),

√
2(e− eP )

]
and the map

F 0 : T2 × J0 −→ H−1(e) ⊂ A× A2

defined by

F 0(ϕ1, ϕ2, r1) =
(
(ϕ1, r1), φj

(
ϕ2, e− 1

2r
2
1

))
.

One easily checks that F0 is again an embedding and that its image C0 is a compact invariant
cylinder (note that now C0 is a two sheeted ramified covering of the corresponding part of A0).
This completes the construction of the family C−m, . . . ,Cm.

• Fix now an integer j ∈ {0, . . . ,m − 1} and let e := ej = ej+1 be the intersection point of
the intervals Ij and Ij+1. So there exists a heteroclinic connection

Ωj+1
j ⊂W u(Γj(e)) ∩W s(Γj+1(e))

between the extremal periodic orbits of Aj and Aj+1, which gives rise to a manifold of heteroclinic
orbits between Cj and Cj+1, namely

(
T×{

√
2(e− e)}

)
×Ωj+1

j , which is therefore diffeomorphic
to A. Again, a parallel construction using now the heteroclinic connection

Ωjj+1 ⊂W s(Γj(e)) ∩W u(Γj+1(e))

proves the existence of an annulus of heteroclinic orbits W−j
−(j+1) between C−(j+1) and C−j. This

proves that the family C−m, . . . ,Cm is a chain of cylinders. The proof for the opposite ordering
is similar.

• Finally, to exhibit the singular cylinders, one uses the embedding φ• : A• → A2 whose
image is the singular annulus A

• of the system CU depicted in Theorem 5.2.4. This enables one
to introduce the two maps F •

± : T×A• −→ H−1(e) defined by

F •
±(ϕ1, ϕ2, r2) =

((
ϕ1,±

√
2(e− CU

(
φ•

(
ϕ2, r2)

))
, φ•(ϕ2, r2)

)
.
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5.3. Chains of cylinders for Hn

Again, one easily checks that these are embeddings. We set C •
± = F •

±(T× A
•). The existence of

manifolds W •
± of heteroclinic connections between C±m and C •

± follows from exactly the same
considerations as above.

• The cylinders Cj, 1 ≤ j ≤ m, are foliated by the invariant tori Tr1 for r1 ∈ Jj . Let us
prove that, when e is large enough, they are dynamically minimal for r1 in a dense subset of Jj .
First, observe that, by Definition 5.2.1, the frequency map ωj = 1/Tj : Ij → R of the annulus
Aj satisfies

ω′
j(e) ≥ µ > 0

for e ∈ Ij and 1 ≤ j ≤ m. Fix the integer j. Reparametrizing by the first action r1 yields a
frequency Ω2(r1) := ωj(e− 1

2r
2
1) on the second factor, so that Ω2(

√
2e) = 0 and

Ω′
2(r1) = −r1ω′

2(e− 1
2r

2
1) ≤ −µ

√
2(e− b1).

Now the frequency on the first factor A is Ω1(r1) = r1, so Ω′
1(r1) = 1. Since e > 0, this proves

that the frequency curve (Ω1,Ω2) ⊂ R2 of Cj satisfies Ω1 ≥ 0, Ω2 ≥ 0 and is transverse to each
vector line in R2, so that the ratio Ω2/Ω1 is irrational for r1 in a dense subset of Jj . This proves
that the corresponding torus Tr1 is dynamically minimal. Similar arguments show the same
property for the cylinders Cj, −m ≤ j ≤ −1, as well as for the singular cylinders C •

±, using the
embeddings φ•± and φ•0 of their associated subannuli.

• It remains to examine the torsion properties of C0. One could use an argument similar to
but a little more involved than the previous one, but one can also observe that up to a standard
linear change of variables (see [Marc]), one can assume that c = (1, 0). In the new variables, that
we still denote by (θ, r), the kinetic part of the Hamiltonian H takes the form

T (r) = r21 +Q(r2, r3),

and for e large enough XT is the dominant term of XH since XU is bounded. Moreover, by the
asymptotic property of the projection of the Poincaré annulus A0 (∼ Am in Theorem 5.2.4), its
frequency map is a O(1) pertubation of

ω : e := 1
2Q(r2, r3) 7−→ ∂r2Q(r2, r3).

Therefore ω′(e) → 0 when e → ∞. Since the frequency map on the first factor still has a
derivative equal to 1, the same argument as above proves now the same torsion property for the
part of C0 associated with the subannulus of A0 defined over [e∗,+∞[, when e∗ is large enough
(note that this requires e > e∗ for being consistent). The case of the remaining part of C0,
associated with the subannulus defined over [eP , e

∗[, is analogous to that of the cylinders Cj

above, by compactness. As a consequence, Tr1 is dynamically minimal for r1 in a dense subset
of J0.

• It only remains to prove (5.4), but this is an immediate consequence of Theorem 5.2.4,
taking into account the reparametrization (5.5). This concludes the proof.

We will say that the cylinder Cj exhibited in Proposition 5.3.4 is associated with the annulus
Aj, for 1 ≤ 0 ≤ m, and that C •

± is associated with A
•
±.

In the following we will apply the previous proposition to an increasing family of simple
resonances ∪1≤ℓ≤nSkℓ , and we need to exhibit a single chain of cylinders for Hn whose projection
follows each line in this family. To this aim, we order the subset Ẑ2 ⊂ Z2 formed by the vectors
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Π(C0) Π(C1)

Π(C−1)

Figure 5.3: Projected cylinders

k = (k2, k3) with coprime components, in such a way that the resulting sequence (kℓ)ℓ≥1 satisfies
‖kℓ‖ ≤ ‖kℓ+1‖. For each k ∼ c ∈ Ẑ2, we denote by Cylk(Hn) the set of cylinders associated with
the annuli A0(c), . . . ,Am(c) of Theorem 5.2.4, together with the singular cylinders C •

±, so that
#Cylk(Hn) = 2m+ 3. Finally we set

Cyl(Hn) =
⋃

1≤ℓ≤n

Cylkℓ(Hn).

Recall that for each k ∈ Ẑ2, the cylinders in Cylk(Hn) form two chains, depending on the way
they are ordered: a chain from C •

− to C •
+ and a chain from C •

+ to C •
−. The first one will be

denoted by Chain+k (Hn) while the second one will be denoted by Chain−k (Hn).

Definition 5.3.5. Let n ≥ 1 be fixed. We denote by Chain(Hn) the chain formed by the concate-

nation of the chains Chain
(−1)ℓ

kℓ
(Hn), 1 ≤ ℓ ≤ n.

Finally, we denote by Tori(Hn) the set of all isotropic tori of the form Tr1 contained in the
cylinders and singular cylinders of Cyl(Hn). The rest of the chapter is devoted to the construction
of a perturbation which will create shadowing orbits along Chain(Hn), passing close to a δ-dense
family of dynamically minimal tori in Tori(Hn).

5.4 Construction of the perturbation

This section is devoted to the construction of a perturbation fn ∈ Cκ(A3) such that the system
Hn = Hn + fn admits the same family of cylinders as Hn, with additional splitting properties
for their invariant manifolds.

5.4.1 The transversality conditions

We first set out some definitions for the splitting of separatrices. In this section fn denotes a
function in C∞(A3) whose support is contained in the complement of the union of the cylinders
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of Cyl(Hn). As a consequence, each C ∈ Cyl(Hn) is also invariant under the flow generated by
Hn = Hn + fn, and contained in H−1

n (12). We can therefore set

Cyl(Hn) := Cyl(Hn), Chain(Hn) := Chain(Hn), Tori(Hn) := Tori(Hn).

Given a point x in a cylinder of Cyl(Hn), note that its stable and unstable manifolds W s,u(x)
are well-defined, and that this is also the case for the stable and unstable manifolds of any
T ∈ Tori(Hn), that we denote by W s,u(T ). Let us now introduce our conditions.

Definition 5.4.1. Let T ∈ C and T ′ ∈ C ′ be two elements of Tori(Hn) (recall that C and C ′

can be singular cylinders). We say that the pair (T ,T ′) satisfies Condition (W) if there exists
a ∈ T whose unstable manifold W uu(a) intersects W s(C ′) transversely in H−1

n (12 ) at some point
of W s(T ′).

Definition 5.4.2. Fix a cylinder C ∈ Cyl(Hn) with associated embedding F : T2 × J → H−1
n (12 )

(C regular) and for r1 ∈ J , set T (r1) = F (T2 × {r1}). We say that C satisfies Condition
(T) when there is ρ > 0 such that for each pair (r1, r

′
1) ∈ J2 with |r1 − r′1| < ρ, the pair

(T (r1),T (r′1)) satisfies Condition (W).

Given one of the two singular cylinders C • associated with the singular annulus A•, we denote
by F •

± and F •
0 the embeddings associated with the corresponding embeddings φ•± and φ•0 as in

the proof of Proposition 5.3.4. Given an invariant circle S at energy e of the pendulum system on
the standard singular annulus A• (with suitable parameters), we set T±(e) = F •

±(T × S) when
e > ê and T0(e) = F •

0 (T × S) when e < ê.

Definition 5.4.3. We say that C • satisfies Condition (T) when there is ρ > 0 such that:

• given σ ∈ {−1, 0,+1}, each pair (Tσ(e),Tσ(e
′)) such that |e− e′| < ρ satisfies Condition

(W),

• the same condition holds true for each pair (Tσ(e),Tσ′(e
′)) when one sign σ or σ′ is zero

and the other one is in {−1, 1}.
As for chains, we have to add a transversality condition for tori contained in distinct cylinders.

Definition 5.4.4. We say that a chain of cylinders (Ck)1≤k≤k∗ satisfies Condition (S) when each
cylinder Ck satifies Condition (T) and when moreover, for 1 ≤ k ≤ k∗−1, there are open subsets
Ok ⊂ Ck and Ok+1 ⊂ Ck+1, union of elements of Tori(Hn), such that for each T ⊂ Ok and
T ′ ∈ Ok+1, the pair (T ,T ′) satisfies Condition (W).

Note that Condition (S) is obviously open in the following sense.

Lemma 5.4.5. Assume that Chain(Hn) satisfies Condition (S). Given a small enough function
f in the C2 topology, with support contained in the complement of the union of the cylinders of
Cyl(Hn), then Chain(Hn + f) := Chain(Hn) is a chain at energy 1

2 for Hn + f and satisfies
Condition (S).

Our purpose in this section is to prove the following result.

Proposition 5.4.6. Fix κ ≥ 2. Then for each n ≥ 1, there exists a function fn ∈ C∞(A3),
whose support is contained in the complement of the union of the cylinders of Cyl(Hn), and which
satisfies ‖fn‖Cκ(A3) ≤ 1

n , such that Chain(Hn + fn) satisfies Condition (S).

The rest of the section is devoted to the proof, which will requires two steps: we will first
exhibit a perturbation which creates the heteroclinic connections for the pairs of tori contained
in the same cylinder, and we will then use the previous openness property to add a second
perturbation adapted to the heteroclinic conditions for extremal tori of the chain.
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5.4.2 Flow boxes near homoclinic intersections of cylinders

In order to properly define the various pertubations, we first need “flow boxes” centered on
suitable parts of the homoclinic manifolds of the cylinders of Hn, and located “far from these
cylinders”. Given U ∈ U , we fix an annulus A of the system CU defined over I. We denote by
Γ(e) the periodic orbit A∩C−1

U (e) and we fix an open subinterval I∗ ⊂ I over which W s,u(Γ(e))
intersect transversely along a homoclinic orbit Ω(e) (see Definition 5.2.1). Therefore, there exists
a 3–dimensional section Σ in A2, transverse to XCU , such that the union ∪e∈I∗Ω(e) intersects Σ
along a Cκ−1 curve σ.

1. Since Σ is transverse to XCU , for e ∈ I∗ the intersection Σ∩C−1
U (e) is symplectic. Reducing

Σ if necessary, one easily proves the existence of a ball B ⊂ R2 centered at 0 and a Cκ−1

diffeomorphism χ0 : I
∗ ×B → Σ, such that

• CU ◦ χ0(e, s, u) = e,

• the connected component of W u(A) ∩ Σ containing σ admits the equation s = 0,

• the connected component of W s(A) ∩ Σ containing σ admits the equation u = 0,

• for each e ∈ I∗, χ0(e, ·) is symplectic for the usual structure on B and the induced structure
on Σ ∩ C−1

U (e).

2. For τ0 > 0 small enough, the Hamiltonian flow ΦCU : ]− τ0, τ0[×Σ → A2 is a diffeomorphism
onto its image O. This enables one to construct a symplectic diffeomorphism

χ : ]− τ0, τ0[× I∗ ×B −→ O

by setting
χ(τ, e, s, u) = ΦCU

τ

(
χ0(e, s, u)

)
.

One immediately checks that these coordinates are symplectic. By construction, the Hamiltonian
CU takes the simple expression

CU ◦ χ(τ, e, s, u) = e.

This in turn yields a symplectic diffeomorphism χ̂ : D −→ A × O ⊂ A3, where D is the subset
of all (τ, e, s, u, θ1, r1) ∈ ] − τ0, τ0[×R × B × A such that e− 1

2r
2
1 ∈ I∗ (note that now e stands

for the total energy of the system), defined by

χ̂(τ, e, s, u, θ1, r1) = ΦH
τ

(
(θ1, r1), χ

(
0, e− 1

2r
2
1, s, u

))
,

which clearly satisfies
H ◦ χ̂(τ, e, s, u, θ1, r1) = e.

3. The effect of the rescaling (5.5) is immediately computed in the previous straightening
coordinates. Setting

χn = σ−1
n ◦ χ

one gets
χ−1
n ◦ΦHn

t ◦ χn(τ, e, s, u, θ1, r1) = (τ + 1
n t, e, s, u, θ1, r1). (5.7)
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5.4.3 Perturbation and Condition (T) for cylinders

We now construct a first perturbation f
(1)
n which produces heteroclinic connections between

nearby elements of Tori(Hn + f
(1)
n ) contained in the same cylinder and yields Condition (T) for

each cylinder.

To begin with, let us fix a regular cylinder C ∈ Cyl(Hn), associated with some annulus A of
CU defined over an interval I, and let I∗ be a subinterval of I as in the previous section. Let
F : T2×J → H−1

n (12 ) be the embedding of C introduced in Section 5.3.2, where J is the interval
associated with I in the r1–line. We denote by J∗ the subset of J associated with I∗ by the same
process. As above, we set Tr1 = F (T2 × {r1}).

Beginning with expressions in the straightening coordinates and with the assumptions and
notation of the previous section, we set, for (τ, e, s, u, θ1, r1) ∈ D :

f ◦ χ̂n(τ, e, s, u, θ1, r1) = µη(τ)η(θ1)
θ21
2
, (5.8)

where µ > 0 is a small enough constant and η is a bump function, all these data being suitably
chosen in the following lemma.

Lemma 5.4.7. With the notation of the previous section, given an arbitrary neighborhood of
the homoclinic curve σ, given n ≥ 1 and ν > 0, there exist µ > 0, η ∈ C∞(R) and ρ > 0 such
that the pair (Tr1 ,Tr′1

) satisfy Condition (W) for r1, r
′
1 ∈ J∗ with |r1 − r′1| < ρ, and such that

moreover

‖f‖Cκ(A3) ≤ ν.

Proof. We have fixed the energy e = 1
2 , so the coordinates (τ, s, u, θ1, r1) form a chart in the

neighborhood of Σ. In this chart, the vector field generated by Hn ◦ χ̂n reads:

∣∣∣∣∣∣∣∣∣∣

τ̇ = 1
ṡ = 0
u̇ = 0

θ̇1 = 0
ṙ1 = µη(τ)η(θ1)θ1

(5.9)

We require the function η to have its support localized in a small enough neighborhood of 0 in
order for fn to satisfy the condition on its support, and to take only nonnegative values. This
way, the variation of the variable r1 when passing through the support of the function fn is easily
computed:

∆r1 = µ‖η‖21θ1,
where ‖η‖1 is the L1 norm. The conclusion for the existence of weak transverse intersections
then easily follows. Finally, the statement on the upper bound for the norm of fn comes from
the possibility of chosing µ > 0 arbitrarily small, to control the growth on the various derivatives
in the composition

f = (f ◦ χ̂n) ◦ χ̂−1
n

when n→ ∞.

It remains to examine the case of the singular cylinders. In fact exactly the same considera-
tions as above apply, since we assumed for the system CU the existence of transverse homoclinic
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orbits for the two homoclinic orbits attached to the fixed point O (see Definition 5.2.2). This en-
ables one to find a finite family of sections Σ and homoclinic curves enjoying the same properties
as in the regular case. This yields the following intermediate result.

Corollary 5.4.8. Given n ≥ 1, there exists f
(1)
n ∈ C∞(A3) such that each C ∈ Cyl(Hn + f

(1)
n )

satifies Condition (T), with ‖f (1)n ‖Cκ(A3) ≤ 1
2n .

Proof. We apply the previous lemma inductively, after a preliminary ordering of all subintervals
(I∗(k))1≤k≤k∗ attached with all regular cylinders in Cyl(Hn) and a choice of pairwise disjoint
attached sections Σ and homoclinic curves σ (which is obviously possible thanks to the structure
of the set of annuli of CU ). Using the possibility to choose the support of the function f in
Lemma 5.4.7 inside an arbitrary neighborhood of σ, we can therefore obtain a finite family of
perturbations fk, 1 ≤ k ≤ k∗, with pairwise disjoint supports, such that the sum f

(1)
n =

∑
k f

k

satisfies the two claims of our statement since its norm is just the supremum of the individual
norms.

5.4.4 Perturbation and Condition (S) for chains

So far we have constructed a perturbed Hamiltonian Hn + f
(1)
n such that each cylinder of the

family Cyl(Hn + f
(1)
n ) satisfies Condition (T). It remains now to add a new (and smaller) per-

turbation term to ensure that the pairs of tori located in consecutive cylinders of the associated
chain satisfy Condition (W). We begin with a classical lemma on the existence of heteroclinic
intersections for tori with the same homology.

Lemma 5.4.9. Let (Ck)1≤k≤k∗ = Chain(Hn+f
(1)
n ) be the chain of cylinders for the Hamiltonian.

Then for 1 ≤ k ≤ k∗−1, there are tori Tk ⊂ Ck and Tk+1 ⊂ Ck+1 (of the family Tori(Hn+f
(1)
n ))

which admit a heteroclinic connection.

Proof. Let us begin with the unperturbed situation generated by Hn. Fix two consecutive
(regular or singular) cylinders Ck and Ck+1, associated with annuli Ak and Ak+1. Then there
exists an energy e for which the periodic orbits Ak∩C−1

U (e) and Ak+1∩C−1
U (e) admit a transverse

heteroclinic orbit, and this situation persists in a neighborhood of e (using if necessary small
hyperbolic continuations for the annuli). As a consequence, as above, there exists a transverse
section Σ ⊂ H−1

n (12 ), endowed with symplectic coordinates (s, u, θ1, r1), such that W u(Ck) ∩ Σ
and W s(Ck+1)∩Σ read {u = 0} and {s = 0}. The subset {u = s = 0} is the (local) intersection
with Σ of a manifold of heteroclinic orbits between Ck and Ck+1. This manifold A is symplectic
and diffeomorphic to T × I, where I is some (small) open interval. The invariant manifolds
W u(Tk(r

0
1)) and W s(Tk+1(r

0
1)) intersect A along one and the same essential circle {r1 = r01}.

Now for n large enough the perturbed situation for Hn+f
(1)
n is only slightly distorted. One can

still find a section Σ with coordinates (s, u, θ1, r1) in whichW u(Ck)∩Σ andW s(Ck+1)∩Σ have the
same equations and so intersect along the slightly perturbed annulus A ′ with equation u = s = 0
in the new coordinates (all this being deduced from the various transversality properties). Again,
by transversality, W u(Tk(r

0
1)) ∩ A and W s(Tk+1(r

0
1)) ∩ A are embedded essential circles but

they do not coincide any longer (in general).

However, it is easy to see that they still intersect each other, using the fact that the coordi-
nates (θ1, r1) are exact symplectic on A together with the Lagrangian character of the invariant
manifolds W u(Tk(r

0
1)) and W s(Tk+1(r

0
1)) (see [LMS03] for more details). Indeed, since the
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tori Tk(r
0
1) and Tk+1(r

0
1) are left unchanged when the perturbation is added, the intersections

Ck =W u(Tk(r
0
1))∩A and Ck+1 =W s(Tk+1(r

0
1))∩A have the same homology in A ′, meaning

that the symplectic area between them vanishes. This comes from the fact that this assertion is
trivially true in the unperturbed situation along with the Lagrangian character of W u(Tk(r

0
1))

and W s(Tk+1(r
0
1)). This proves our claim.

Our next lemma will enable us to complete the proof of Proposition 5.4.6

Lemma 5.4.10. For n ≥ n0 large enough, there exists a function fn ∈ C∞(A3) with support
constained in the complement of ∪1≤k≤k∗Ck, with ‖fn‖Cκ(A3) ≤ 1

n , such that the chain (Ck)1≤k≤k∗

for the system Hn := Hn + fn satisfies Condition (S).

Proof. The proof is similar and even simpler than that of Lemma 5.4.7. With the notation of
Lemma 5.4.9, if the circles Ck and Ck+1 intersect transversely in A , there is obviously nothing
to do. Now if they intersect tangentially, one constructs a flow-box as in Section 5.4.2 and again
use a perturbation of the form

ℓn ◦ χ̂n(τ, e, s, u, θ1, r1) = µη(τ)η(θ1)
θ21
2
.

The support of ℓn can be chosen arbitrarilly small, and its norm is controlled by means of the
constant µ. In particular, it can be chosen small enough to preserve the Condition (T) for all
cylinders. One can therefore proceed by induction as above, using now the natural ordering of
the heteroclinically connected pairs of tori inside consecutive cylinders of the chain. This proves
the existence of a finite family of functions ℓjn, with controlled supports and norms, such that
fn = f

(1)
n +

∑
j ℓ
j
n fulfills our claims.

5.5 Diffusion orbits

We first recall the basic λ-lemma (Theorem 1 in Chapter 2) in a version adapted to our present
setting and state an abstract shadowing result for chains of cylinders that is slightly more general
than Corollary 2.4.2. We then apply this result to prove Theorem 5.

5.5.1 Shadowing orbits along chains of minimal sets

Theorem 1 requires the existence of the straightening neighborhood (Proposition B in Sec-
tion 1.1.3) for the cylinders. In the case of general normally hyperbolic manifolds (like in the
previous chapters) such results need abstract additional assumptions given by Section 1.4, but
here we will take advantage of the very simple geometric structure of the problem.

1. Let us begin with a straightening result in the neighborhood of the annuli. Let U ∈ U be
fixed.

Lemma 5.5.1. Let A be an annulus defined over I for CU . Then there exist a neighborhood O

of A, an interval Î containing I and a symplectic diffeomorphism Ψ : T × Î × B → O, where
B = [−α,α]2 is a ball in R2, such that A = Ψ(T× I × {0}) and

CU ◦Ψ(ϕ, ρ, s, u) = CU ◦Ψ(ϕ, ρ, 0, 0) +O2(s, u).

In particular, the stable and unstable manifolds W s,u(A), together with the stable and unstable
manifolds W ss,uu(x) for x ∈ A, are straightened in these coordinates and read:

Ψ−1
(
W s(A)

)
= {u = 0}, Ψ−1

(
W u(A)

)
= {s = 0},
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Ψ−1
(
W ss(x)

)
= {(ϕ, ρ, s, 0) | s ∈ [−α,α]}, Ψ−1

(
W uu(x)

)
= {(ϕ, ρ, 0, u) | u ∈ [−α,α]},

where (ϕ, ρ) is defined by Ψ(x) = (ϕ, ρ, 0, 0).

The proof is a simple application of the Moser isotopy lemma. One proves indeed the straight-
ening result first and deduces the normal form from the structure of the Hamiltonian system in
such a neighborhood. The previous lemma immediately yields the following straightening result
in the neighborhood of the cylinders of Cyl(Hn).

Lemma 5.5.2. Let C be a cylinder of the family Cyl(Hn) and let A be the associated annulus,
defined over I. Let O and Ψ be defined as in the previous lemma. Then, up to shrinking B if
necessary, the product diffeomorphism

Ψ̂ = IdA ×Ψ : A× T× Î ×B −→ A× O

is symplectic and satisfies

Hn ◦ Ψ̂(θ1, r1, ϕ, ρ, s, u) =
1
2r

2
1 + CU ◦Ψ(ϕ, ρ, 0, 0) +O2(s, u).

Proof. This is an immediate consequence of the fact that if B is small enough, the neighborhood
A×O and the support of fn are disjoint, so that (Hn)|O = (Hn)|O . The claim then immediately
follows from the previous lemma.

Note that C is then the set of all Ψ̂(θ1, r1, ϕ, ρ, 0, 0) such that

1
2r

2
1 + CU ◦Ψ(ϕ, ρ, 0, 0) = 1

2 .

The basic λ-lemma proved in Chapter 2 was stated in the framework of symplectic diffeomor-
phisms and normally hyperbolic invariant submanifolds in a symplectic manifold. We therefore
need to adapt it to the present context, since the cylinders C are not normally hyperbolic in
A3, but rather in H−1

n (12 ). The simplest way to overcome this (easy) problem is to apply the

lemma to the full normally hyperbolic manifold N = Ψ̂(A× T× Î × {0}) (with the notation of
the previous lemma) and the symplectic diffeomorphism ΦHn (the time-one map). This is made
possible by the previous straightening result (see Chapter 2 for a proof, the lack of compact-
ness obviously causes no trouble here, due to the preservation of energy and the fact that C is
relatively compact). We set Φ := ΦHn .

The λ-lemma. Let C ∈ Cyl(Hn) be a cylinder at energy 1
2 for the Hamiltonian system Hn

and let N be the normally hyperbolic manifold of A3 defined above. Let ∆ be a 1–dimensional
submanifold of A3 which transversely intersects W s(N ) at some point a. Then Φn(∆) converges
to the unstable leaf W uu

(
Φn(ℓ(a))

)
in the C0 compact open topology, where ℓ(a) is the unique

element of C such that a belongs to the stable leaf W ss(ℓ(a)).

Let us make clear the notion of convergence used here (see Chapter 2 for details). The
simplest way to define it is to use Lemma 5.5.2. In the neighborhood A × O and relatively to
the previous coordinates, if x ∼ (θ1, r1, ϕ, ρ, 0, 0) ∈ C , the unstable leaf W uu(x) reads

W uu(x) = {(θ1, r1, ϕ, ρ, 0, u) | u ∈ [−α,α]}.

The first result in the basic λ-lemma (Theorem 1) is that for n large enough, the connected
component ∆n of Φn(a) in Φn(∆) ∩ (A × O) is a graph over the unstable direction, that is, it
admits the equation

∆n =
{(
θn1 (u), r

n
1 (u), ϕ

n(u), ρn(u), sn(u), u
)
| u ∈ ]− u, u[

}
.
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The convergence statement then just says that

‖(θn1 (u), rn1 (u), ϕn(u), ρn(u), sn(u))− (θn1 (0), r
n
1 (0), ϕ

n(0), ρn(0), 0)‖ → 0

uniformly in u when n tends to +∞. Of course one then gets more global formulation by using
the definion of W u(C ) as the union of the images by Φ of the local unstable manifold. Note that
this is only a C0-convergence while a stronger C1-convergence result was proved in Chapter 2.
The same definitions apply to the following case.

Corollary 5.5.3. Let C ∈ Cyl(Hn). Let ∆ be a 1–dimensional submanifold of H−1
n (12 ) which

transversely intersects W s(C ) in H−1
n (12 ) at some point a. Then Φn(∆) converges to the unstable

leaf W uu
(
Φn(ℓ(a))

)
in the C0 compact open topology.

Proof. Observe that the fact that ∆ intersects W s(C ) transversely in H−1
n (12 ) implies that ∆

transversely intersects W s(N ). Then apply the λ-lemma and use the invariance of energy.

2. We can now state our shadowing result, which is slightly more general than the analogous
result in Corollary 2.4.2.

Proposition 5.5.4. [Shadowing lemma.] Set (C i)1≤i≤i∗ := Chain(Hn) and for 1 ≤ i ≤ i∗,
let (T i

j )1≤j≤j∗i be a family of dynamically minimal invariant tori contained in C i, such that

• for 1 ≤ j ≤ j∗i − 1, there exists aij ∈ T i
j such that W uu(aij) intersects W s(C i) transversely

in H−1
n (12), at some point contained in W s(T i

j+1),

• for 1 ≤ i ≤ i∗ − 1, there exists aij∗i
∈ T i

j∗i
such that W uu(aij∗i

) intersects W s(C i+1) trans-

versely in H−1
n (12 ), at some point contained in W s(T i+1

1 ).

Then, for each ρ > 0, there exists an orbit Γ at energy 1
2 of Hn which intersects each ρ–

neighborhood Vρ(T
i
j ), for 1 ≤ i ≤ i∗ and 1 ≤ j ≤ j∗i .

Proof. The argument is a refinement of that introduced in Corollary 2.4.2. Fix i and forget
about the corresponding superscript. Fix a ball Bj+1 centered at some point of W u(Tj+1)
and contained in Vρ(Tj+1). Then the previous λ-lemma and the minimality of the torus Tj+1

immediately yield the existence of a positive integer p such that Φp(W uu(aj)) intersects Bj+1, so
that there is z ∈ W uu(Φp(aj)) ∩ Bj+1 (see the proof of Corollary 2.4.2 for more details). Then,
for q large enough, Φ−q(z) ∈ Vρ(Tj). Therefore there exists a ball Bj centered at Φ−q(z) and
contained in Vρ(Tj) such that

Φq(Bj) ⊂ Bj+1.

Therefore, we proved the existence of a ball Bj centered on W u
j (Tj) and a positive q such that

Φq(Bj) ⊂ Bj+1.

One obviously has a similar result for the “extremal” tori T i
j∗i

and T
i+1
1 .

Therefore, given a ball B∗ centered on W u(T i∗

j∗i
) and contained in Vρ(T

i∗

j∗i
), an immediate

induction proves the existence of an integer q∗ and a ball B centered on W u(T 1
1 ) and contained in

Vρ(T
1
1 ), whose sequence of iterates intersects each Vρ(T

i
j ) and which moreover satisfies Φq

∗

(B) ⊂
B∗. This proves our claim.
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5.5.2 Asymptotic density: proof of Theorem 5

It only remains now to gather the results of the previous sections and apply the shadowing lemma
(Proposition 5.5.4) to the chain of cylinders Chain(Hn) and a suitable family of minimal tori
inside. Fix δ > 0. Given n ≥ 1, we set

(C i)1≤i≤i∗(n) := Chain(Hn).

• There exists n0 such that for n ≥ n0, the union of the lines (Skℓ)1≤ℓ≤n is δ/4–dense in S.

• There exists n1 ≥ n0 such that for n ≥ n1, the sphere S is δ/4–dense in H−1
n (12), and

therefore the union of the lines (Skℓ)1≤ℓ≤n is δ/2–dense in H−1
n (12 ).

• By construction, there exists n2 ≥ n1 such that for n ≥ n2,

d

( ⋃

1≤i≤i∗(n)

Π(C i),
⋃

1≤ℓ≤n

Skℓ

)
≤ δ/6.

• By density of the minimal tori in the cylinders (see Proposition 5.3.4), and since the chains
satisfy Condition (S), for each n ≥ n2, one can exhibit a family of minimal tori (T i

j ) satisfying
the assumptions of the shadowing lemma and such that the union ∪i,jΠ(T i

j ) is δ/6–dense in
∪1≤i≤i∗(n)Π(C

i).

• Proposition 5.5.4, applied with ρ = δ/6, shows the existence of an orbit of Hn whose
projection is δ/6–dense in ∪i,jΠ(T i

j ) and therefore δ/2–dense in
⋃

1≤ℓ≤n Skℓ, so also δ–dense in
H−1
n (12). This concludes the proof of Theorem 5.

102



Bibliography

[AM78] Ralph Abraham and Jerrold E. Marsden, Foundations of mechanics, Ben-
jamin/Cummings Publishing Co. Inc. Advanced Book Program, Reading, Mass.,
1978, Second edition, revised and enlarged, With the assistance of Tudor Raţiu and
Richard Cushman.

[Arn64] V.I. Arnold, Instability of dynamical systems with several degrees of freedom, Sov.
Math. Doklady 5 (1964), 581–585.

[Arn99] V. I. Arnold, From Hilbert’s superposition problem to dynamical systems, The
Arnoldfest (Toronto, ON, 1997), Fields Inst. Commun., vol. 24, Amer. Math. Soc.,
Providence, RI, 1999, pp. 1–18.

[BB] P. Berger and A. Bounemoura, A geometrical proof of the persistence of normally
hyperbolic submanifolds, Submitted.

[BBB03] M. Berti, L. Biasco, and P. Bolle, Drift in phase space: a new variational mecha-
nism with optimal diffusion time, Journal de Mathématiques Pures et Appliquées
82 (2003), no. 6, 613 – 664.

[Bes97] Ugo Bessi, Arnold’s diffusion with two resonances, J. Differential Equations 137
(1997), no. 2, 211–239.

[BGW98] J. Bourgain, F. Golse, and B. Wennberg, On the distribution of free path lengths for
the periodic lorentz gas, Comm. Math. Phys. 190 (1998), no. 3, 491–508.

[BK01] G.R. Belitskii and A.Ya. Kopanskii, Sternberg-Chen theorem for equivariant Hamil-
tonian vector fields., Bambusi, Dario (ed.) et al., Symmetry and perturbation theory.
Proceedings of the 3rd international conference (SPT 2001), Cala Gonone, Sardinia,
Italy, May 6–13, 2001. Singapore: World Scientific. 19-28 (2001)., 2001.

[BM11] A. Bounemoura and J.-P. Marco, Improved exponential stability for quasi-convex
Hamiltonians, Nonlinearity 24 (2011), no. 1, 97–112.

[BN] Abed Bounemoura and Laurent Niederman, Generic Nekhoroshev theory without
small divisors.

[Bos86] J.-B. Bost, Tores invariants des systèmes dynamiques Hamiltoniens (d’après Kol-
mogorov, Arnol’d, Moser, Rüssmann, Zehnder, Herman, Pöschel,. . . ). (Invariant
tori of Hamiltonian dynamical systems)., Sémin. Bourbaki, 37e année, Vol. 1984/85,
Exp. No.639, Astérisque 133/134, 113-157 (1986)., 1986.

103



BIBLIOGRAPHY

[BP12] A. Bounemoura and E. Pennamen, Instability for a priori unstable Hamiltonian
systems: a dynamical approach, Discrete Contin. Dyn. Syst. Ser. A 32 (2012), no. 3,
753–793.

[Cha04] M. Chaperon, Stable manifolds and the perron-irwin method, Ergodic Theory dynam.
systems 24 (2004), no. 5, 1359–1394.

[Che12] C-Q. Cheng, Arnold diffusion in nearly integrable hamiltonian systems,
arXiv:1207.4016v1 (2012).

[Cre00] J. Cresson, Un λ-lemme pour des tores partiellement hyperboliques, C. R. Acad. Sci.
Paris Sér. I Math. 331 (2000), no. 1, 65–70.

[Cre01] , Temps d’instabilité des systèmes hamiltoniens initialement hyperboliques,
C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 9, 831–834.

[CW05] J. Cresson and S. Wiggins, A λ-lemma for normally hyperbolic invariant manifold,
unpublished (2005).

[DDLLS06] A. Delshams, R. De La Llave, and T. M. Seara, A geometric mechanism for diffusion
in hamiltonian systems overcoming the large gap problem: heuristics and rigorous
verification on a model, Memoirs of the American Mathematical Society 179 (2006),
no. 844, viii+141 pp.

[DH11] A. Delshams and G. Huguet, A geometric mechanism of diffusion: Rigorous verifica-
tion in a priori unstable Hamiltonian systems, J. Differential equations 250 (2011),
2601–2623.

[Dou88] Raphaël Douady, Stabilité ou instabilité des points fixes elliptiques, Ann. Sci. École
Norm. Sup. (4) 21 (1988), no. 1, 1–46.

[Dum91] H. S. Dumas, Ergodization rates for linear flow on the torus, J. Dynam. Differential
Equations 3 (1991), no. 4, 593–610.

[Eas81] Robert W. Easton, Orbit structure near trajectories biasymptotic to invariant tori,
Classical mechanics and dynamical systems (Medford, Mass., 1979), Lecture Notes
in Pure and Appl. Math., vol. 70, Dekker, New York, 1981, pp. 55–67.

[EM79] Robert W. Easton and Richard McGehee, Homoclinic phenomena for orbits doubly
asymptotic to an invariant three-sphere, Indiana Univ. Math. J. 28 (1979), no. 2,
211–240.

[ES] L. El Sabbagh, Inclination lemmas for normally hyperbolic invariant manifolds with
applications to diffusion, Preprint.

[FGK] J. Féjoz, M. Guardià, and V. Kaloshin, Diffusion along mean motion resonance in
the restricted planar three-body problem, Preprint.

[FM00] E. Fontich and P. Martìn, Differentiable invariant manifolds for partially hyperbolic
tori and a lambda lemma, Nonlinearity 13 (2000), no. 5, 1561–1593.

104



BIBLIOGRAPHY

[Féj04] Jacques Féjoz, Proof of ‘Arnold’s theorem’ on the stability of a planetary system
(following Herman). (Démonstration du ‘théorème d’Arnold’ sur la stabilité du sys-
tème planétaire (d’après Herman).), Ergodic Theory Dyn. Syst. 24 (2004), no. 5,
1521–1582.

[GG11] J.-P. Gaivao and V. Gelfreich, Splitting of separatrices for the Hamiltonian-Hopf bi-
furcation with the Swift-Hohenberg equation as an example., Nonlinearity 24 (2011),
no. 3, 677–698.

[GR07] M. Gidea and C. Robinson, Shadowing orbits for transition chains of invariant tori
alternating with Birkhoff zones of instability, Nonlinearity 20 (2007), no. 5, 1115–
1143.

[GR09] , Obstruction argument for transition chains of tori interspersed with gaps,
Discrete Contin. Dyn. Syst. Ser. S 2 (2009), no. 2, 393–416.

[HK95] B. Hasselblatt and A. Katok, Introduction to the modern theory of dynamical sys-
tems, Encyclopedia of Mathematics and Its Applications. 54. Cambridge: Cambridge
University Press. xviii, 802 p. , 1995.

[HPS77] M.W Hirsch, C.C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Math-
ematics, vol. 583, Springer Verlag, 1977.

[Kal12] Zhang K. Kaloshin, V. and, Normally hyperbolic invariant manifolds near strong
double resonance, arXiv:1202.1032v1 (2012).

[Kol54] A.N. Kolmogorov, On the preservation of conditionally periodic motions under small
variations of the Hamilton function., Dokl. Akad. Nauk SSSR, n. Ser. 98 (1954),
527–530 (Russian).

[LM05] P Lochak and J.P. Marco, Diffusion times and stability exponents for nearly inte-
grable analytic systems, Central European Journal of Mathematics 3 (2005), no. 3,
342–397.

[LMS03] P. Lochak, J.-P. Marco, and D. Sauzin, On the splitting of invariant manifolds
in multidimensional near-integrable hamiltonian systems, Memoirs of the American
Mathematical Society 163 (2003), no. 775.

[Loc99] Pierre Lochak, Arnold diffusion ; a compendium of remarks and questions, Simó,
Carles (ed.), Hamiltonian systems with three or more degrees of freedom. Proceed-
ings of the NATO Advanced Study Institute, 1995. Dordrecht: Kluwer Academic
Publishers., 1999.

[Mara] J.-P. Marco, - Lecture 9 - Homoclinic and heteroclinic connections, Preprint.

[Marb] , Uniform lower bounds of the splitting for analytic near-integrable systems,
Preprint.

[Marc] Jean-Pierre Marco, Generic properties of nearly integrable systems on A3.

[Mar96] J.-P. Marco, Transition le long de chaînes de tores invariants pour les systèmes
Hamiltoniens analytiques, Ann. Inst. H. Poincaré 64 (1996), no. 2, 205–252.

105



BIBLIOGRAPHY

[Mar12] Jean-Pierre Marco, Generic hyperbolic properties of classical systems on the torus
θ2.

[Mat03] J. N. Mather, Arnol′d diffusion. I. Announcement of results, Sovrem. Mat. Fundam.
Napravl. 2 (2003), 116–130.

[MS02] J.-P. Marco and D. Sauzin, Stability and instability for Gevrey quasi-convex near-
integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci. 96 (2002),
199–275.

[MS04] , Wandering domains and random walks in Gevrey near-integrable systems,
Erg. Th. Dyn. Sys. 5 (2004), 1619–1666.

[Nie04] Laurent Niederman, Exponential stability for small perturbations of steep integrable
Hamiltonian systems., Ergodic Theory Dyn. Syst. 24 (2004), no. 2, 593–608 (En-
glish).

[Nie07] , Prevalence of exponential stability among nearly integrable Hamiltonian sys-
tems., Ergodic Theory Dyn. Syst. 27 (2007), no. 3, 905–928.

[NP] M. Nassiri and E. Pujals, Robust transitivity in Hamiltonian dynamics, submitted.

[PS70] C. Pugh and M. Shub, Linearization of normally hyperbolic diffeomorphisms and
flows., Invent. Math. 10 (1970), 187–198.

[Pös01] J. Pöschel, A lecture on the classical KAM theorem., Katok, Anatole (ed.) et al.,
Smooth ergodic theory and its applications. Proceedings of the AMS summer re-
search institute, Seattle, WA, USA, July 26-August 13, 1999. Providence, RI: Amer-
ican Mathematical Society (AMS). Proc. Symp. Pure Math. 69, 707-732 (2001).,
2001.

[Wig94] S. Wiggins, Normally hyperbolic invariant manifolds in dynamical systems, Springer
Verlag, 1994.

[Zha11] Ke Zhang, Speed of arnold diffusion for analytic hamiltonian systems, Inventiones
Mathematicae 186 (2011), 255–290.

106


	Page de garde
	Remerciements
	Abstract
	Table des matières
	Introduction
	Framework: reminders, definitions and notation
	Normally hyperbolic invariant manifolds
	General definitions
	Symplectic Geometry and normal hyperbolicity
	Straightening neighborhood
	Partially hyperbolic tori

	Ergodization times for the rotations of Tn
	Nearly integrable Hamiltonian systems
	Standing assumptions and convention

	 A ``basic" -lemma and an application to diffusion
	A basic -lemma for normally hyperbolic manifolds
	Theorem 1: in the straightening neighborhood
	Theorem 2: in an arbitrary compact subset of M

	Proof of Theorem 1
	General assumptions for Theorem 1
	Linear straightening of TPm"0365m
	The graph property for "0365
	The graph property for the iterates "0365n over a fixed strip
	Linear straightening along the graphs
	Nonlinear straightening and proof of Theorem 1

	Proof of Theorem 2
	Application to diffusion
	Shadowing orbits for a finite family of invariant minimal sets
	Particular case: Arnold's example


	A ``fibered" -lemma and an application to diffusion
	A fibered -lemma for normally hyperbolic manifolds
	Proof of the fibered -lemma
	Proof of Lemma 3.1.2
	Straightening inside W"0365Ws(N)
	Proof of Theorem 3
	Auxiliary proposition
	Proof of the auxiliary proposition (Proposition 3.2.2)
	Proof of Theorem 3

	Proof of Corollary 3.1.3

	Applications
	Transitivity of transversal heteroclinic connections
	A system having the strong torsion property


	Windows and estimates of diffusion times
	Assumptions and first result
	Correctly aligned windows
	Ergodization times for the rotations of Ti
	Proof of Theorem 4
	Set-up and notation
	The static/mobile windows
	The static windows
	The mobile windows


	Diffusion Times

	Asymptotically dense projected orbits
	Introduction and main result
	Classical systems
	Chains of cylinders for Hn
	Cylinders and chains
	Cylinders for Hn

	Construction of the perturbation
	The transversality conditions
	Flow boxes near homoclinic intersections of cylinders
	Perturbation and Condition (T) for cylinders
	Perturbation and Condition (S) for chains

	Diffusion orbits
	Shadowing orbits along chains of minimal sets
	Asymptotic density: proof of Theorem 5


	Bibliography

