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Résumé

Résumé
Cette thèse est consacrée aux objets m-amas basculants dans les catégories m-amassées

généralisées et aux frises tropicales associées aux diagrammes de Dynkin. La catégorie
amassée généralisée qui provient d’une algèbre différentielle graduée 3-Calabi-Yau conve-
nable a été introduite par C. Amiot. Elle est Hom-finie, 2-Calabi-Yau et admet un objet
amas-basculant canonique. Dans cette thèse, nous étendons ces résultats au cas où l’al-
gèbre différentielle graduée initiale est (m+2)-Calabi-Yau pour un entier positif arbitraire
m. Nous montrons que la catégorie m-amassée généralisée associée est Hom-finie, (m+1)-
Calabi-Yau et admet un objet m-amas basculant canonique. Dans cette catégorie trian-
gulée, nous obtenons une classe d’objets m-amas basculants grâce aux mutations d’objets
pré-basculants et aux équivalences dérivées. Pour les catégories m-amassées généralisées
qui proviennent des algèbres différentielles graduées fortement (m + 2)-Calabi-Yau, nous
prouvons que chaque P -objet amas-basculant presque complet admet exactement m + 1
compléments avec la propriété de péridicité. Finalement, inspiré par le travail de Ringel
sur les fonctions amas-additives sur des carquois à translation stables, nous introduisons
les frises tropicales sur des catégories 2-Calabi-Yau munies d’objet amas-basculant. Nous
montrons que chaque frise tropicale sur la catégorie amassée d’un carquois de Dynkin est
d’une forme spéciale et donnons une preuve d’une conjecture de Ringel sur la forme des
fonctions amas-additives.

Mots-clefs

Catégories m-amassées généralisées, Objets m-amas basculants, Compléments, Frises
tropicales.
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On generalized higher cluster categories
and tropical friezes

Abstract
This thesis is concerned with higher cluster tilting objects in generalized higher cluster
categories and tropical friezes associated with Dynkin diagrams. The generalized cluster
category arising from a suitable 3-Calabi-Yau differential graded algebra was introduced
by C. Amiot. It is Hom-finite, 2-Calabi-Yau and admits a canonical cluster-tilting object.
In this thesis, we extend these results to the case where the initial differential graded
algebra is (m + 2)-Calabi-Yau for an arbitrary positive integer m. We show that its
associated generalized m-cluster category is Hom-finite, (m + 1)-Calabi-Yau and admits
a canonical m-cluster tilting object. In this triangulated category, we obtain a class of
m-cluster tilting objects by taking advantage of silting mutation and derived equivalence.
For generalized m-cluster categories arising from strongly (m + 2)-Calabi-Yau differential
graded algebras, we prove that each almost complete m-cluster tilting P -object admits
exactly m + 1 complements with periodicity property. Finally, inspired by Ringel’s work
on cluster-additive functions on stable translation quivers, we introduce tropical friezes on
2-Calabi-Yau categories with cluster-tilting object. We show that any tropical frieze on
the cluster category of a Dynkin quiver is of a special form and give a proof of a conjecture
of Ringel on the form of cluster-additive functions.

Keywords
Generalized m-cluster categories, m-cluster tilting objects, Complements, Tropical friezes.
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Chapitre 1

Preliminaries

1.1 Triangulated categories
In this section, we recall some basic definitions and properties of triangulated catego-

ries, and recall the facts on t-structure which we will use in Chapters 3 and 4.
Our main references for this section are [11], [44], [62] and [77].

1.1.1 Foundations
Let T be an additive category endowed with an automorphism Σ, which is usually cal-

led the suspension functor. The inverse of Σ is denoted by Σ−1. A sextuple (X, Y, Z, u, v, w)
is given by three objects X, Y, Z ∈ T and three morphisms u : X → Y, v : Y → Z, w :
Z → ΣX. A more customary notation of sextuples is

X
u→ Y

v→ Z
w→ ΣX.

Amorphism of sextuples from (X, Y, Z, u, v, w) to (X ′, Y ′, Z ′, u′, v′, w′) is a tuple (f, g, h)
of morphisms such that the following diagram commutes :

X
u //

f
²²

Y
v //

g

²²

Z
w //

h
²²

ΣX

Σf
²²

X ′ u′ // Y ′ v′ // Z ′
w′ // ΣX ′.

Moreover, if f, g and h are isomorphisms in T , then (f, g, h) is called an isomorphism of
sextuples.

Definition 1.1.1. An additive category T with suspension functor Σ is called a triangu-
lated category if it is endowed with a class U of sextuples (called triangles) which satisfies
the following axioms (TR1) to (TR4) :

(TR1) Every sextuple isomorphic to a triangle is a triangle. Every morphism u : X →
Y in T can be embedded into a triangle X

u→ Y
v→ Z

w→ ΣX. For every object X of
T , the sextuple X

idX→ X → 0 → ΣX is a triangle.
(TR2) If X

u→ Y
v→ Z

w→ ΣX is a triangle, then Y
v→ Z

w→ ΣX
−Σu→ ΣY is a triangle.

(TR3) Given two triangles (X, Y, Z, u, v, w) and (X ′, Y ′, Z ′, u′, v′, w′), and morphisms
f and g satisfying u′f = gu, there exists a morphism (f, g, h) of triangles.

(TR4) Let
X

u→ Y
i→ Z ′ j→ ΣX
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Y
v→ Z

i′→ X ′ j′→ ΣY

X
vu→ Z

i′′→ Y ′ j′′→ ΣX

be three triangles. There exist two morphisms f : Z ′ → Y ′ and g : Y ′ → X ′ such
that the following diagram commutes :

Σ−1X ′

−Σ−1j′

²²

Σ−1X ′

²²
X

u // Y
i //

v

²²

Z ′
j //

f

²²

ΣX

X
vu // Z

i′′ //

i′
²²

Y ′ j′′ //

g

²²

ΣX

Σu
²²

X ′ X ′ j′ // ΣY

where the two middle rows and the two middle columns are triangles.

Remark 1.1.2. A different way of displaying the axiom (TR4) is given by an octahedron.
Therefore, axiom (TR4) is also called the octahedral axiom.

Let (T ,Σ,U) and (T ′,Σ′,U ′) be two triangulated categories. An additive functor F :
T → T ′ is called a triangle functor or an exact functor if there exists an invertible natural
transformation α : FΣ → Σ′F such that (FX, FY, FZ, Fu, Fv, Fw) is a triangle in U ′
whenever (X, Y, Z, u, v, w) is a triangle in U .
Proposition 1.1.3 ([77]). Let T be a triangulated category. Let (X, Y, Z, u, v, w) be a
triangle and M an object of T . Then

a) vu = wv = 0.
b) The following long exact sequences are exact :

· · · → T (M, ΣiX) → T (M, ΣiY ) → T (M, ΣiZ) → T (M, Σi+1X) → . . .

. . . → T (Σi+1X, M) → T (ΣiZ, M) → T (ΣiY, M) → T (ΣiX, M) → . . .

c) Let (f, g, h) be a morphism of triangles. If two of the three morphisms are isomor-
phisms, then so is the third.

Proposition 1.1.4 ([44]). Let (X, Y, Z, u, v, w) and (X ′, Y ′, Z ′, u′, v′, w′) be two triangles
in a triangulated category T . Let g : Y → Y ′ be a morphism. Then the following are
equivalent :

a) v′gu = 0.
b) There exists a morphism (f, g, h) from the first triangle to the second.

1.1.2 t-structure
Let T be a triangulated category. A t-structure on T is given by two strictly (i. e.

stable under isomorphisms) full subcategories T ≤0 and T ≥0 which satisfy the following
three conditions :

a) for X ∈ T ≤0 and Y ∈ T ≥1, we have that HomT (X, Y ) = 0,
b) T ≤0 ⊂ T ≤1 and T ≥1 ⊂ T ≥0,
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c) for any object X ∈ T , there exists a triangle X ′ → X → X ′′ → ΣX ′ such that
X ′ ∈ T ≤0 and X ′′ ∈ T ≥1,

where T ≤n denotes Σ−n(T ≤0) and T ≥n denotes Σ−n(T ≥0) for any n ∈ Z.
Denote byH the full subcategory T ≤0∩T ≥0 of T . It is called the heart of the t-structure

(T ≤0, T ≥0). The heart H of a t-structure is an abelian category [11].
Now we recall the work on aisles of Keller-Vossieck, who gave an alternative description

of t-structures. In Chapters 3 and 4, we use this work to obtain the existence of a canonical
t-structure as in Section 2 of [2].

A strictly full subcategory A of T is called an aisle if it is stable under shifts Σl (l ∈ N)
and extensions, and the inclusion A → T admits a right adjoint.

For a full subcategory U of T we denote by U⊥ (resp. ⊥U) the full subcategory consis-
ting of the objects Y ∈ T such that Hom(X, Y ) = 0 (resp. Hom(Y, X) = 0) for all X ∈ U .
Proposition 1.1.5 ([62]). A strictly full subcategory A is an aisle if and only if (A, (ΣA)⊥)
is a t-structure.

1.2 Derived categories and derived functors
An important class of triangulated categories is the one of the derived categories of

differential graded algebras. Besides, we also use the theory of derived functors between
derived categories.

Our main references for this section are [50] and [52].

1.2.1 Derived categories
Let k be a commutative ring.

Definition 1.2.1. A differential graded k-algebra (for simplicity, dg k-algebra) is a graded
k-algebra A = ⊕n∈ZAn equipped with a k-linear homogeneous map dA : A → A of degree
1 such that d2

A = 0 and the graded Leibniz rule dA(ab) = dA(a)b + (−1)nadA(b) holds,
where a ∈ An and b ∈ A. The map dA is called a differential on A.

An ordinary k-algebra can be viewed as a dg k-algebra concentrated in degree 0 whose
differential is trivial. A graded k-algebra can be viewed as a dg k-algebra with the zero
differential.

Definition 1.2.2. A (right) differential graded A-module (for simplicity, dg A-module)
is a (right) graded A-module M = ⊕n∈ZMn equipped with a k-linear homogeneous map
dM : M → M of degree 1 such that d2

M = 0 and the graded Leibniz rule dM (ma) =
dM (m)a + (−1)nmdA(a) holds for all m ∈ Mn and a ∈ A. The map dM is called a
differential on M .

The homology of a dg algebra A is defined on each degree by

HnA = Kerdn
A/Imdn−1

A .

In a similar way, the homology of a dg A-module M is defined on each degree by

HnM = Kerdn
M/Imdn−1

M .

Let M and N be two dg A-modules. The dg k-module Hom•
A(M, N) is defined as

follows :
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a) for each integer n, the nth-component Homn
A(M, N) of Hom•

A(M, N) is the subset
of

∏
j∈ZHomk(M j , N j+n) whose elements f = (fj)j satisfy that

fj(m)a = fj+l(ma), m ∈ M j , a ∈ Al;

b) the differential of Hom•
A(M, N) is defined by

dn(f) = dN ◦ f − (−1)nf ◦ dM ,

where f is in Homn
A(M, N).

The kernel of d0 (denoted by Z0Hom•
A(M, N)) consists of the elements f in the zeroth

component Hom0
A(M, N) which commute with the differentials, that is, dN ◦ f = f ◦ dM .

The zeroth homology H0Hom•
A(M, N) is just the quotient of Z0Hom•

A(M, N) by the
homotopy relation :

f ∼ g ⇐⇒ ∃ s ∈ Hom−1
A (M, N) such that f − g = dN ◦ s + s ◦ dM .

The category of dg A-modules C(A) is the category whose objects are dg A-modules
and morphism spaces are given by

HomC(A)(M, N) = Z0Hom•
A(M, N)

for all dg A-modules M and N . The category C(A) is an abelian category. The homotopy
category H(A) of A has the same objects as C(A), and its morphism spaces are given by

HomH(A)(M, N) = H0Hom•
A(M, N)

for all dg A-modules M and N . The category H(A) is a triangulated category. A quasi-
isomorphism from M to N is a morphism in H(A) which induces an isomorphism H iM '
H iN for each i.

Let N be the full subcategory of H(A) whose objects are those N such that there is a
triangle

X
s→ Y → N → ΣX

with s a quasi-isomorphism. Then N is a thick subcategory (definition see 1.3.1) of H(A).

Definition 1.2.3. The derived category D(A) of A is defined as the triangulated quotient
category (definition see section 1.3)

D(A) := H(A)/N .

The derived category D(A) is triangulated, has arbitrary coproducts and products.

1.2.2 Derived functors

Let k be a commutative ring. Let A and B be two dg k-algebras.

Definition 1.2.4. A differential graded left A right B bimodule (for simplicity, dg A-B-
bimodule) is a graded A-B-bimodule M = ⊕n∈ZMn equipped with a differential dM :
M → M such that M is a left dg A-module and a right dg B-module.
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Let L be a right dg A-module and N a right dg B-module. Then L ⊗A M admits
a natural right B-module structure and Hom•

B(M, N) admits a natural right A-module
structure. The dg A-B-module M gives rise to an adjoint pair (− ⊗A M, Hom•

B(M,−))
between the categories of dg modules :

C(A)
−⊗AM // C(B)

Hom•B(M,−)
oo

This adjoint pair induces an adjoint pair between the homotopy categories :

H(A)
−⊗AM // H(B)

Hom•B(M,−)
oo

However, in general these two functors are not well-defined triangle functors between the
derived categories.

Definition 1.2.5. a) A dg A-module P is cofibrant if

HomC(A)(P, L) s∗→ HomC(A)(P, N)

is surjective for each quasi-isomorphism s : L → N which is surjective in each
component.

b) A dg A-module I is fibrant if

HomC(A)(N, I) i∗→ HomC(A)(L, I)

is surjective for each quasi-isomorphism i : L → N which is injective in each com-
ponent.

A dg A-module is cofibrant if and only if it is a direct summand of a dg A-module P
which admits a filtration

0 = F−1 ⊂ F0 ⊂ F1 ⊂ . . . ⊂ Fp ⊂ Fp+1 ⊂ . . . ⊂ P, p ∈ N
in C(A) such that

a) P is the union of the Fp, p ∈ N ;
b) as graded A-modules, for each p, Fp is a direct summand of Fp+1 ;
c) for each p, the subquotient Fp+1/Fp is isomorphic in C(A) to a direct summand of

a direct sum of modules of the form ΣnA, n ∈ Z.
Proposition 1.2.6 ([50]). The canonical triangle functor π : H(A) → D(A) admits a left
adjoint p and a right adjoint i such that for each object X of D(A),

a) the object pX is cofibrant and the object iX is fibrant, and
b) there exist quasi-isomorphisms pX → X and X → iX.

We call pX a cofibrant resolution of X and iX a fibrant resolution of X.
Now we have the following diagram of triangle functors :

H(A)

πA

²²

−⊗AM // H(B)

πB

²²

Hom•B(M,−)
oo

D(A)

p

OO

D(B)

i

OO
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Definition 1.2.7. Let M be a dg A-B-bimodule. The left derived functor − L⊗A M :
D(A) → D(B) is defined as the composition πB ◦ (−⊗A M) ◦p. The right derived functor
RHomB(M,−) : D(B) → D(A) is defined as the composition πA ◦Hom•

B(M,−) ◦ i.

There is a canonical isomorphism

HomD(B)(L
L⊗A M, N) ' HomD(A)(L,RHomB(M, N))

for each dg A-module L and dg B-module N . The left derived functor − L⊗A M and the
right derived functor RHomB(M,−) form an adjoint pair.

1.3 Triangulated quotients

In this thesis, we study triangulated quotients of subcategories (namely, perfect derived
categories) of the derived categories of suitable dg algebras. Our main references for this
section are [2] and [77].

Let T be a triangulated category.

Definition 1.3.1. An additive subcategory N of T is a thick subcategory if N is a
full triangulated subcategory (i. e. Σ is an automorphism of N and N is closed under
extensions) of T and satisfies that : for all triangles

X
f→ Y → N → ΣX

where N ∈ N and f factors through an object of N , the objects X and Y belong to N .

Theorem 1.3.2 (J. Rickard). Let N be a full triangulated subcategory of T . Then N is
thick if and only if N is closed under taking direct summands.

Given a thick subcategory N of T , the triangulated quotient (denoted as T /N ) is the
category constructed as follows :

• The objects of T /N are the objects of T .
• The morphisms in HomT /N (X, Y ) are the equivalence classes s−1f of diagrams of

the form
Z

s

~~~~
~~

~~
~ f

ÂÂ@
@@

@@
@@

X Y

where s and f are morphisms in T , and s is contained in a triangle

Z
s→ X → N → ΣZ

with N an object of N , while the equivalence relation is given by :

Z
s

ÄÄ~~
~~

~~
~~ f

ÂÂ?
??

??
??

? Z ′
s′

~~}}
}}

}}
}} f ′

ÃÃA
AA

AA
AA

X Y and X Y
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are equivalent if there exist another such diagram

Z ′′
s′′

~~||
||

||
|| f ′′

ÃÃA
AA

AA
AA

A

X Y

and a commutative diagram

Z
s

~~||
||

||
|| f

ÃÃA
AA

AA
AA

A

X Z ′′
s′′oo f ′′ //

t

OO

t′
²²

Y

Z ′
s′

``AAAAAAAA f ′

>>}}}}}}}}

Let s−1f be in HomT /N (X, Y ) and t−1g in HomT /N (Y, Z). Suppose that f is in
HomT (X ′, Y ) and t is in HomT (Y ′, Y ), and the morphism t is contained in a triangle

Y ′ t→ Y
q→ N → ΣY ′

with N ∈ N . The morphism qf ∈ HomT (X ′, N) can be embedded into a triangle

W → X ′ qf→ N → ΣW.

The commutative diagram

X ′ qf //

f

²²

N

Y
q // N

can be completed to the following commutative diagram

W
r //

h
²²

X ′ qf //

f

²²

N // ΣW

Σh
²²

Y ′
t

// Y q
// N // ΣY ′ .

Then there is a new diagram

W
r

}}||
||

||
|| h

ÃÃB
BB

BB
BB

B

X ′
s

~~||
||

||
|| f

!!B
BB

BB
BB

B Y ′
t

~~||
||

||
|| g

ÃÃA
AA

AA
AA

X Y Z

with fr = th. The octahedral axiom (TR4) ensures that (sr)−1(gh) lies in HomT /N (X, Z).
The composition of s−1f and t−1g is defined as the morphism (sr)−1(gh). It is well-defined.

For each morphism s ∈ HomT (X, Y ) which is contained in a triangle

X
s→ Y → N → ΣX
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with N ∈ N , the morphism (idX)−1s is an isomorphism in HomT /N (X, Y ) whose inverse
is s−1(idX).

The canonical functor Q : T → T /N sends each object to itself and sends each
morphism f ∈ HomT (X, Y ) to the morphism (idX)−1f ∈ HomT /N (X, Y ). The image of
the objects in N under Q are zero objects in T /N . The functor Q induces a triangulated
structure on T /N .

Proposition 1.3.3 ([77]). For any triangle functor F : T → T ′ which sends the objects
of a thick subcategory N of T to zero objects of T ′, there exists a unique triangle functor
F ′ : T /N → T ′ such that F ′ ◦Q = F :

T

Q !!DD
DD

DD
DD

F // T ′

T /N
F ′

<<

Let k be a field and T a k-linear triangulated category. Assume that there is an
automorphism ν on T such that ν(N ) ⊂ N and a non-degenerate bilinear form

βN,X : T (N, X)× T (X, ν(N)) −→ k

which is bifunctorial both in N ∈ N and in X ∈ T . In Section 1 of [2], Amiot constructed
a related form on the triangulated quotient :

β′X,Y : T /N (X, Y )× T /N (Y, Σ−1ν(X)) −→ k

The form β′ is well-defined, bilinear and bifunctorial.

Definition 1.3.4. Let X and Y be two objects in T .
a) A morphism p : N → X is called a local N -cover of X relative to Y if N is in N

and p induces an exact sequence

0 → T (X, Y )
p∗→ T (N, Y ).

b) A morphism i : X → N is called a local N -envelope of X relative to Y if N is in
N and i induces an exact sequence

0 → T (Y, X) i∗→ T (Y, N).

Theorem 1.3.5 ([2]). Let X and Y be two objects of T . If there exists a local N -cover of
X relative to Y and a local N -envelope of νX relative to Y , then the bilinear form β′X,Y

is non-degenerate.

1.4 2-Calabi-Yau categories
Cluster algebras were invented by S. Fomin and A. Zelevinsky [34] in order to develop

a combinatorial approach to the total positivity in algebraic groups [66] and the canonical
bases in quantum groups [49] [65]. The categorification of cluster algebras has attracted a
lot of attention. In this section, we list three classes of triangulated categories whose most
important property is to be Calabi-Yau of dimension 2. Each of them gives rise to some
additive categorification of cluster algebras.

Our main references for this section are [2], [17], [20], [37] and [70].
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1.4.1 Cluster categories

Let k be an algebraically closed field. Let Q be a connected finite acyclic quiver with
vertex set {1, . . . , n}. We denote the finite-dimensional derived category of the module
category of finite-dimensional right kQ-modules by Dfd(modkQ), the Auslander-Reiten
translation in Dfd(modkQ) by τ and the suspension functor by Σ.

Definition 1.4.1. The cluster category CQ of Q is the orbit category Dfd(modkQ)/τ−1Σ :
• The objects are the objects of Dfd(modkQ).
• For any X, Y ∈ CQ, the morphism space is

HomCQ
(X, Y ) =

∐

n∈Z
HomDfd(modkQ)((τ

−1Σ)nX, Y ).

Proposition 1.4.2 ([53]). The cluster category CQ is triangulated and the canonical func-
tor π : Dfd(modkQ) → CQ is a triangle functor.

Several important properties of the cluster category CQ were proved in [17] :
a) It is a Krull-Schmidt category.
b) It is 2-Calabi-Yau, that is, there are bifunctorial isomorphisms

DHomCQ
(X, Y ) ' HomCQ

(Y, Σ2X), X, Y ∈ CQ.

c) The set ind(kQ)
∐{ΣPi|i ∈ Q0} is a complete set of representatives for indecompo-

sable objects of CQ, where ind(kQ) is a complete set of representatives for indecom-
posable right kQ-modules and Pi are indecomposable projective right kQ-modules.

An object T of CQ is called a cluster-tilting object if T is rigid, i. e. Ext1CQ
(T, T ) = 0 and

if for each object L satisfying Ext1CQ
(T,L) = 0, we have that L belongs to the subcategory

addT of direct summands of finite direct sums of copies of T . The image of kQ in CQ is
a cluster-tilting object. Each rigid indecomposable object of CQ is contained in a cluster-
tilting object. Let T be a basic cluster-tilting object of CQ with T = T1 ⊕ . . . ⊕ Tn a
decomposition of T into indecomposables. The quiver QT of the endomorphism algebra of
T is defined by :

• the vertex set is {1, . . . , n} ;
• the number of arrows from i to j equals the dimension of the vector space irrT (Ti, Tj)
(by definition, this is radT (Ti, Tj)/rad2

T (Ti, Tj), where radT (Ti, Tj) denotes the vector
space of non isomorphisms from Ti to Tj).

Proposition 1.4.3 ([20]). The quiver QT does not have loops or 2-cycles.

A basic rigid object T in CQ is called an almost complete cluster-tilting object if there
exists an indecomposable object M (not in addT ) such that T ⊕ M is a cluster-tilting
object. The object M is called a complement of T .

Theorem 1.4.4 ([17]). Each almost complete cluster-tilting object in CQ admits exactly
two complements.

More precisely, given one complement M to an almost complete cluster-tilting object
T , the other can be constructed using approximation theory. Indeed, there is a triangle

M∗ → B
f→ M → ΣM∗
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in CQ, where f is a minimal right (addT )-approximation of M in CQ and M∗ is the other
complement of T . Dually, there is another triangle

M
g→ B′ → M∗ → ΣM

in CQ with g a minimal left (addT )-approximation of M in CQ. It was shown also in [17]
that two indecomposable objects M and M∗ form such an exchange pair if and only if

dimExt1CQ
(M, M∗) = 1 = dimExt1CQ

(M∗,M).

Let T ∗ denote T ⊕M∗. It is called the mutation of T at M .

Proposition 1.4.5 ([17]). Any two basic cluster-tilting objects are linked by a finite se-
quence of mutations.

Let Q be a finite quiver without loops or 2-cycles and i a vertex of Q. The mutation
of Q at i is the quiver µi(Q) obtained from Q as follows :

i) for each subquiver j
b→ i

a→ l, add a new arrow j
[ab]→ l ;

ii) reverse all arrows α incident with i, denote the new ones as α∗ ;
iii) remove all the arrows in a maximal set of pairwise disjoint 2-cycles.

Theorem 1.4.6 ([20]). The quiver QT ∗ of the endomorphism algebra of T ∗ over CQ is
the mutation of QT at its vertex corresponding to M .

1.4.2 Preprojective algebras
Let k be an algebraically closed field and Q a connected finite acyclic quiver. Its double

quiver Q is obtained from Q by adding an arrow a∗ in the opposite direction for each
arrow a of Q. The preprojective algebra ΛQ is the quotient of the path algebra kQ by the
ideal generated by the element

∑
a∈Q1

(aa∗−a∗a). It is a selfinjective algebra. Let modΛQ

denote the category of finite-dimensional right ΛQ-modules and nilΛQ the subcategory
of modΛQ consisting of the objects which admit composition series given by the simple
modules associated with the vertices. The algebra ΛQ is finite-dimensional if and only if
Q is of Dynkin type A,D or E if and only if modΛQ = nilΛQ.

Definitions 1.4.7. An object T in nilΛQ is
• rigid if Ext1ΛQ

(T, T ) = 0 ;
• maximal rigid if T is rigid and X lies in addT whenever T ⊕X is rigid ;
• cluster-tilting if T is rigid and X lies in addT whenever Ext1ΛQ

(T,X) = 0.

An easy fact is that each indecomposable projective-injective ΛQ-module is a direct
summand of any maximal rigid ΛQ-module.

From now on, assume that Q is a Dynkin quiver. Let T = T1 ⊕ . . . ⊕ Tr be a basic
maximal rigid ΛQ-module with Ti indecomposable for all i. Without loss of generality,
assume that Tr−n+1, . . . , Tr are projective-injective. The quiver QT of the endomorphism
algebra of T over ΛQ is defined as in subsection 1.4.1. The ice quiver Q0

T of the endomor-
phism algebra of T over ΛQ is the subquiver of QT such that there are no arrows between
any vertices i, j ∈ {r − n + 1, . . . , r}. The vertices r − n + 1, . . . , r are often called frozen
vertices. The mutation of an ice quiver is defined as the mutation of a quiver but only
mutation with respect to non frozen vertices are allowed and no arrows are drawn between
the frozen vertices.

The following results all come from the work of Geiss, Leclerc and Schröer.
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Theorem 1.4.8 ([37]). Let Q be a Dynkin quiver and T a ΛQ-module. Then T is maximal
rigid if and only if T is cluster-tilting. Moreover, the quiver QT of the endomorphism
algebra of T over ΛQ does not have loops or 2-cycles.

Theorem 1.4.9 ([37]). Let T be a basic maximal rigid object in modΛQ with Q a Dynkin
quiver. Suppose that T = T ⊕X with X indecomposable non projective-injective and that
f : X → T ′ is a minimal left (addT )-approximation of X. Then f is a monomorphism
and there is a short exact sequence

0 → X
f→ T ′ g→ Y → 0.

Moreover, the object Y is indecomposable and not isomorphic to X such that T ⊕ Y is a
new maximal rigid object.

Let µX(T ) denote T ⊕ Y . We call it the mutation of T at X.

Theorem 1.4.10 ([37]). Keep the above notation. Then

dimExt1ΛQ
(X, Y ) = 1 = dimExt1ΛQ

(Y, X),

and Q0
µX(T ) = µX(Q0

T ),

where Q0
µX(T ) is the ice quiver of the endomorphism algebra of µX(T ) and µX(Q0

T ) is the
mutation of the ice quiver Q0

T at the vertex corresponding to X.

1.4.3 Generalized cluster categories
Let k be a field. Let Q be a finite quiver and kQ its path algebra. Let [kQ, kQ]

denote the subspace of kQ generated by all commutators [a, b] = ab − ba. The quotient
kQ/[kQ, kQ] admits a basis formed by the cycles of Q. For each arrow a of Q, the cyclic
derivative with respect to a is the unique linear map

∂a : kQ/[kQ, kQ] → kQ

which takes the class of a path p to the sum
∑

p=uav vu taken over all decompositions
of the path p as a concatenation of paths u, a, v. A potential on Q is an element W of
kQ/[kQ, kQ] which is a linear combination of cycles of length ≥ 1 in Q.

Definitions 1.4.11. Let Q be a finite quiver and W a potential on Q. Let Q̃ be the
graded quiver with the same vertices as Q and whose arrows are

• the arrows of Q (they all have degree 0),
• the arrows a∗ : j → i of degree −1 for each arrow a : i → j of Q,
• the loops ti of degree −2 associated with each vertex i of Q.
a) The Ginzburg dg algebra Γ(Q,W ) is the dg k-algebra whose underlying graded

algebra is the graded path algebra kQ̃ and whose endowed differential is the unique
linear endomorphism homogeneous of degree 1 such that on the generators
• d(a) = 0 for each arrow a of Q,
• d(a∗) = ∂aW for each arrow a of Q,
• d(ti) = ei(

∑
a[a, a∗])ei for each vertex i of Q, where ei is the idempotent associated

with i and the sum runs over the set of arrows of Q.
b) The Jacobian algebra J(Q,W ) is the zeroth homology of the Ginzburg dg algebra

Γ(Q,W ) defined as
J(Q,W ) = kQ/〈∂aW |a ∈ Q1〉.
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Let Γ denote Γ(Q,W ). Let D(Γ) be the derived category of Γ, perΓ the perfect derived
category of Γ, i.e. the smallest triangulated subcategory of D(Γ) which is the closure
under shifts, extensions and passage to direct summands of the free right Γ-module ΓΓ,
Dfd(Γ) the finite-dimensional derived category of Γ consisting of objects of D(Γ) with
finite-dimensional total homology.

Lemma 1.4.12 ([54]). The finite-dimensional derived category Dfd(Γ) is contained in the
perfect derived category perΓ.

The generalized cluster category of (Q,W ) is defined to be the triangulated quotient

C(Q,W ) = perΓ/Dfd(Γ).

The quiver with potential (Q,W ) is called Jacobi-finite if the Jacobian algebra J(Q,W )
is finite-dimensional.

Theorem 1.4.13 ([2]). Let (Q,W ) be a Jacobi-finite quiver with potential. Then the
generalized cluster category C(Q,W ) is Hom-finite and 2-Calabi-Yau. Moreover, the image
of the free module Γ in C(Q,W ) is a cluster-tilting object and its endomorphism algebra is
isomorphic to the Jacobian algebra J(Q,W ).

When (Q,W ) is not Jacobi-finite, the generalized cluster category C(Q,W ) has infinite-
dimensional morphism spaces and is not 2-Calabi-Yau. In [70], Plamondon gives an ap-
proach to study the Jacobi-infinite case.

Let T be an object of C = C(Q,W ). Let prCT denote the full subcategory of C whose
objects are those X such that there exists a triangle

T1 → T0 → X → ΣT1

with T0, T1 in addT . We refer to [70] for the definition of the mutation of suitable objects
in C.
Proposition 1.4.14 ([70]). The category prCΓ is a Krull-Schmidt category and depends
only on the mutation class of the object Γ in C.
Definition 1.4.15. The subcategory D of C(Q,W ) is the full subcategory of prCΣ−1Γ∩prCΓ
whose objects are those X such that Ext1C(Γ, X) is finite-dimensional.

These subcategories still have the good properties which hold in the Jacobi-finite case.

Proposition 1.4.16 ([70]). Let X be an object in prCΣ−1Γ ∪ prCΓ and Y an object of
prCΓ. Then there exists a canonical bifunctorial bilinear form

βX,Y : HomC(X, Y )×HomC(Y, Σ2X) → k

which is non-degenerate.



Chapter 2

Summary of results

In this chapter, we give a short summary of the main results in this thesis.
This thesis is concerned with

• higher cluster tilting objects in generalized higher cluster categories, and

• tropical friezes associated with Dynkin diagrams.

The thesis is organized as follows. In Chapter 3, we show that the generalized m-cluster
category arising from a suitable (m + 2)-Calabi-Yau dg algebra is Hom-finite, (m + 1)-
Calabi-Yau and admits a canonical m-cluster tilting object. In Chapter 4, we study the
complements of an almost complete m-cluster tilting object in a generalized m-cluster
category. In Chapter 5, we turn to a relatively independent subject, namely, tropical
friezes associated with Dynkin diagrams. We prove that each such frieze is obtained by
composing a linear form with the index with respect to a cluster-tilting object.

The results of Chapter 3 were published in [40]. These of Chapters 4 and 5 are
contained in the preprints [41] and [42], which were submitted for publication.

2.1 Existence of m-cluster tilting objects
Let k be a field and A a (pseudo-compact) dg k-algebra. Denote by D(A) the derived
category of A, perA the perfect derived category of A, Dfd(A) the finite-dimensional
derived category of A, Ae the dg algebra Aop ⊗k A. Let m be a positive integer. Suppose
that A has the following four properties:

a) A is (topologically) homologically smooth;

b) the p-th homology HpA vanishes for each positive integer p ;

c) the 0-th homology H0A is finite-dimensional;

d) A is (m + 2)-Calabi-Yau as a bimodule.

Thanks to the property b), the derived category D(A) carries a standard t-structure
(D(A)≤0, D(A)≥0). The property a), namely, (topological) homological smoothness im-
plies (Lemma 4.1, [54]) that Dfd(A) is Hom-finite and is contained in perA. The properties
a), b) and c) together imply the following proposition:

Proposition (3.2.5). The category perA is Hom-finite.
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The property d) implies (Lemma 4.1, [54]) that for all objects L of D(A) and M of
Dfd(A), there is a canonical isomorphism

DHomD(A)(M, L) ' HomD(A)(L,Σm+2M),

where D is the duality functor Homk(−, k). Let CA denote the triangulated quotient
perA/Dfd(A) and π : perA → CA the canonical projection functor. The category CA is
called the generalized m-cluster category of A. We have the following proposition:

Proposition (3.2.7). The category CA is (m + 1)-Calabi-Yau.

Let F be the full subcategory D(A)≤0 ∩ ⊥D(A)≤−m−1 ∩ perA of perA. We call F the
fundamental domain. For each object X of F , we can construct m triangles as in Lemma
3.2.8, using which we can deduce the following proposition:

Proposition (3.2.15). The projection functor π : perA −→ CA induces a k-linear equiva-
lence between F and CA.

Thanks to this proposition, we can show that the image πA is an m-cluster tilting object
in CA, that is, the spaces HomCA

(πA, ΣrL) = 0 vanish for all integers 1 ≤ r ≤ m if and
only if L belongs to addπA the full subcategory of CA consisting of the direct summands
of finite direct sums of copies of πA.

In conclusion, we generalize Amiot’s work (Theorem 2.1 for m = 1 case, [2]) to the
following theorem:

Theorem (3.2.2). Let A be a (pseudo-compact) dg k-algebra with the four properties stated
at the beginning of this section. Then

1) The category CA is Hom-finite and (m + 1)-Calabi-Yau;

2) The object πA is an m-cluster tilting object in CA;

3) The endomorphism algebra of πA over CA is isomorphic to H0A.

2.2 Two classes of generalized m-cluster categories
Let (Q,W ) be a graded quiver with superpotential in the sense of [56], where the author
defined its Ginzburg dg category Γn(Q,W ). It is proved also in [56] that Γn(Q,W ) is
homologically smooth and n-Calabi-Yau. For simplicity, we write Γ(n) for Γn(Q,W ). Let
NQ denote the minimal degree of the arrows in Q. Suppose that the arrows of Q are
concentrated in nonpositive degrees and that m is a positive integer satisfying m ≥ −NQ.
As a direct application of Theorem 3.2.2, we get the following theorem:

Theorem (3.3.3). Suppose that the zeroth homology of the Ginzburg dg category Γ(m+2)

is finite-dimensional. Then the generalized m-cluster category

C(Q,W ) = perΓ(m+2)/Dfd(Γ(m+2))

associated to (Q,W ) is Hom-finite and (m + 1)-Calabi-Yau. Moreover, the image of the
free module Γ(m+2) in C(Q,W ) is an m-cluster tilting object whose endomorphism algebra
is isomorphic to the zeroth homology of Γ(m+2).
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Let Q be an acyclic quiver and W the zero potential. Then its generalized m-cluster
category C(Q,0) recovers the (classical) m-cluster category C(m)

Q = Dfd(modkQ)/τ−1Σm,
which was first mentioned in [53].

Corollary (3.3.4). Let k be an algebraically closed field and m a positive integer. Suppose
that Q is an acyclic quiver. Then the generalized m-cluster category C(Q,0) is triangle
equivalent to the (classical) m-cluster category C(m)

Q .

Now we turn to another class of generalized m-cluster categories which arise from
finite-dimensional algebras A of global dimension ≤ m + 1. Let B be the trivial extension
A ⊕ Σ−m−2DA. Then perB is contained in Dfd(B). Denote by p : B → A the canonical
projection and p∗ : Dfd(A) → Dfd(B) the induced triangulated functor. Let 〈A〉B be the
thick subcategory of Dfd(B) generated by the image of p∗. We call the triangulated hull
CA = 〈A〉B/perB the m-cluster category of A.

We give a complete proof for the following well-known lemma.

Lemma (3.4.6). Let A be a dg k-algebra. Then for all dg A-modules L,M , the objects
RHomA(L,M) and RHomAe(A, Homk(L,M)) are isomorphic in the derived category of
dg A-A-bimodules.

We specialize L to DA and M to A in the above lemma and we deduce that the derived
(m + 2)-preprojective algebra Πm+2(A) defined in [56] is quasi-isomorphic to the tensor
algebra TA(Σm+1RHomA(DA, A)). As an application of Theorem 3.2.2, if TorA

m+1(−, DA)
is nilpotent, the generalized m-cluster category C = perΠm+2(A)/Dfd(Πm+2(A)) is Hom-
finite, (m + 1)-Calabi-Yau and the image of Πm+2(A) in C is an m-cluster tilting object.

Then we construct a triangle equivalence between the m-cluster category CA and the
above generalized m-cluster category C. As a consequence, we have the following theorem:

Theorem (3.4.9). Let A be a finite-dimensional k-algebra of global dimension ≤ m + 1.
If the functor TorA

m+1(−, DA) is nilpotent, then the m-cluster category CA of A is Hom-
finite,(m + 1)-Calabi-Yau and the image of AB is an m-cluster tilting object in CA.

2.3 Complements of almost complete m-cluster tilting
P -objects

Let k be an algebraically closed field of characteristic zero. Let A be a (pseudo-compact)
dg k-algebra which satisfies the four properties at the beginning of Section 2.1. Then the
category perA is k-linear Hom-finite and has split idempotents. It follows that perA is a
Krull-Schmidt triangulated category. Denote by CA the generalized m-cluster category.

Definition (4.2.5). An object X ∈ perA is silting (resp. tilting) if perA = thickX the
smallest thick subcategory of perA containing X, and the spaces HomD(A)(X, ΣiX) are
zero for all integers i > 0 (resp. i 6= 0).

Theorem (4.3.3). The image of any silting object under the projection functor π : perA →
CA is an m-cluster tilting object in CA.

The dg algebra A itself is a silting object. Notice that under the assumptions we
made on A, tilting objects do not exist. Assume that H0A is a basic algebra. Let e be
a primitive idempotent of H0A. We call eA a P -indecomposable. Let M be (1− e)A. In
Section4.2, we inductively construct the right mutations RAt and the left mutations LAt

with respect to the dg module M for all positive integers t, where RA0 = LA0 = P .
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Theorem (4.2.7, [1]). For each nonnegative integer t, the objects M ⊕RAt and M ⊕LAt

are silting objects in perA. Moreover, any basic silting object containing M as a direct
summand is either of the form M ⊕RAt or of the form M ⊕ LAt.

Using the standard t-structure on D = D(A), we obtain that RAt belongs to D≤t ∩
⊥D≤−1 ∩ perA and LAt belongs to D≤0 ∩ ⊥D≤−t−1 ∩ perA. Thus, the objects LAt (0 ≤
t ≤ m) lie in the fundamental domain F .

Definition (4.3.4). An object X in CA is called an almost complete m-cluster tilting object
if there exists some indecomposable object X ′ in CA\ (addX) such that X ⊕X ′ is an m-
cluster tilting object. Here X ′ is called a complement of X. In particular, we call π(M)
an almost complete m-cluster tilting P -object.

Theorem (4.3.6). The almost complete m-cluster tilting P -object π(M) has at least m+1
complements in CA.

Let l be a finite-dimensional separable k-algebra. We use the same notation PCAlgc(l)
as in [76] to denote the category of pseudo-compact augmented dg l-algebras whose aug-
mentation ideal equals their radical. We mainly consider the strongly (m+2)-Calabi-Yau
(see [76]) case in Chapter 4.

Theorem (4.4.7, [76]). Let A be a strongly (m+2)-Calabi-Yau dg algebra with components
concentrated in degrees ≤ 0. Suppose that A lies in PCAlgc(l) for some finite-dimensional
separable commutative k-algebra l. Then A is quasi-isomorphic to some good completed
deformed preprojective dg algebra Π̂(Q,m + 2,W ).

We study the truncations of minimal cofibrant resolutions of simple modules of strongly
(m + 2)-Calabi-Yau algebras (or good completed deformed preprojective dg algebras) in
Proposition 4.4.10. Then we prove the following theorems:

Theorem (4.4.11). Let Π be a good completed deformed preprojective dg algebra Π̂(Q,m+
2,W ) and i a vertex of Q. Assume that there are no loops of Q at vertex i and H0Π is
finite-dimensional. Then the image of RAt is isomorphic to the image of LAm+1−t in the
generalized m-cluster category CΠ for each integer 0 ≤ t ≤ m + 1.

Theorem (4.5.2). Under the assumptions of Theorem 4.4.11, for each positive integer t,

1) the image of RAt is isomorphic to the image of RAt(mod m+1) in CΠ,

2) the image of LAt is isomorphic to the image of LAt(mod m+1) in CΠ.

For the category CΠ, we use the higher AR theory of [48] to give a more explicit
criterion than the general Theorem 5.8 of [48] for determining the number of complements
of an almost complete m-cluster tilting P -object. The associated AR (m + 3)-angle is
constructed in the proof of the following theorem:

Theorem (4.6.3). Let Π be a good completed deformed preprojective dg algebra Π̂(Q,m+
2,W ) and i a vertex of Q. Assume that the zeroth homology H0Π is finite-dimensional and
there are no loops of Q at vertex i. Then the almost complete m-cluster tilting P -object
Π/eiΠ has exactly m + 1 complements in the generalized m-cluster category CΠ.
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2.4 Liftable almost complete m-cluster tilting objects
In this section, we summarize some results concerning the complements of liftable almost
complete m-cluster tilting objects. Let k be an algebraically closed field of characteristic
zero. Let A be a (pseudo-compact) dg k-algebra which satisfies the four properties at the
beginning of Section 2.1. Let CA denote its generalized m-cluster category.

Definition (4.3.4). An almost complete m-cluster tilting object Y is said to be liftable if
there exists a basic silting object Z in perA such the π(Z/Z ′) is isomorphic to Y for some
indecomposable direct summand Z ′ of Z.

The following two propositions state that if the initial dg algebra A is 3-Calabi-Yau
or A is the completed Ginzburg dg algebra Γ̂m+2(Q, 0) of an acyclic quiver Q, then all
almost complete m-cluster tilting object in CA are liftable.

Proposition (4.3.5). Let A be a 3-Calabi-Yau dg algebra satisfying the assumptions at
the beginning of Section 2.1. Then any (1−)cluster tilting object in CA is induced by a
silting object in F under the canonical projection π.

Proposition (4.8.6). Let Q be an acyclic quiver and B its path algebra. Let Γ be the
completed Ginzburg dg category Γ̂m+2(Q, 0) and CΓ the generalized m-cluster category.
Then any m-cluster tilting object in CΓ is induced by a silting object in F under the
canonical projection π : perΓ → CΓ.

Using our method, we obtain the following theorem (which can also be deduced from
[48]).

Theorem (4.3.7). Each liftable almost complete m-cluster tilting object has at least m+1
complements in CA.

Let Π be a good completed deformed preprojective dg algebra Π̂(Q,m + 2,W ) whose
zeroth homology H0Π is finite-dimensional. Let Z be a basic silting object in perΠ which
is minimal perfect and cofibrant. Denote by E the dg algebra τ≤0(Hom•

Π(Z, Z)). We
study the properties of E. The dg algebra E is strongly (m + 2)-Calabi-Yau and lies
in PCAlgc(l), where l =

∏
|Q0| k. We give a theoretical criterion for an liftable almost

complete m-cluster tilting object in CΠ to admit exactly m + 1 complements.

Theorem (4.7.4). Keep the above notation. Then

1) the dg algebra E is quasi-isomorphic to some good completed deformed preprojective
dg algebra Π′ = Π̂(Q′,m + 2,W ′), where the quiver Q′ has the same number of
vertices as Q and H0Π′ is finite-dimensional;

2) let Y be a liftable almost complete m-cluster tilting object of the form π(Z/Z ′) in CΠ

for some indecomposable direct summand Z ′ of Z. If we further assume that there
are no loops at the vertex j of Q′, where ejΠ′

L⊗Π′ Z = Z ′, then Y has exactly m + 1
complements in CΠ.

It is not easy to check the ‘non-loop’ assumption on Q′ in the second statement of the
above theorem. This leads us to consider a class of dg algebras which satisfy m-rigidity.

Definition (4.7.5). Let r be a positive integer. An algebra A ∈ PCAlgc(l) is said to be
r-rigid if

HH0(A) ' l, and HHp(A) = 0 (1 ≤ p ≤ r − 1),

where HH∗(A) is the pseudo-compact version of the Hochschild homology of A.
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The completed Ginzburg dg algebras Γ̂m+2(Q, 0) of acyclic quivers Q are m-rigid. The
definition of 1-rigidity coincides with the definition of rigidity in [31]. In this case, the
quiver Q′ never contains loops.

However, we do not obtain too much progress on determining the number of com-
plements of liftable almost complete m-cluster tilting objects even under the m-rigidity
condition. A conjecture is as follows:

Conjecture (4.7.10). Let Π = Π̂(Q,m + 2,W ) be an m-rigid good completed deformed
preprojective dg algebra whose zeroth homology H0Π is finite-dimensional. Then any
liftable almost complete m-cluster tilting object has exactly m + 1 complements in CΠ.

2.5 Tropical friezes associated with Dynkin diagrams
Inspired by a conjecture of Ringel on cluster-additive functions on stable translation quiv-
ers and by the tropicalized version of Coxeter-Conway’s frieze patterns of integers, we
introduce tropical friezes on 2-Calabi-Yau categories C with cluster-tilting object in Chap-
ter 5.

Definition (5.2.2). A tropical frieze on C with values in Z is a map

f : obj(C) → Z

such that

d1) f(X) = f(Y ) if X and Y are isomorphic,

d2) f(X ⊕ Y ) = f(X) + f(Y ) for all objects X and Y ,

d3) for all objects L and M such that dimExt1C(L,M) = 1, the equality

f(L) + f(M) = max{f(E), f(E′)}

holds, where E and E′ are the middle terms of the non-split triangles

L → E → M → ΣL and M → E′ → L → ΣM

with end terms L and M .

If we specialize the 2-Calabi-Yau category C to the cluster category CQ of a Dynkin
quiver, we obtain the following proposition:

Proposition (5.3.4). Let CQ be the cluster category of a Dynkin quiver Q and T = T1 ⊕
. . .⊕ Tn a basic cluster-tilting object of CQ. Then the map

ΦT : {tropical friezes on CQ} −→ Zn

given by ΦT (f) = (f(T1), . . . , f(Tn)) is a bĳection.

Let X be an object of a 2-Calabi-Yau category C and T a basic cluster-tilting object
of C. The index of X with respect to T is defined by indT (X) = [TX

0 ] − [TX
1 ], where TX

0

and TX
1 belong to addT such that there exists a triangle

TX
1 → TX

0 → X → ΣTX
1 .
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Let T = T1 ⊕ . . . ⊕ Tn be a decomposition of T into indecomposables. We denote
the endomorphism algebra EndC(T ) by B, the indecomposable right projective B-module
C(T, Ti) by Pi, the simple top of Pi by Si.

Let Ksp
0 (modB) denote the split Grothendieck group of the abelian category modB.

Define a bilinear form

〈 , 〉 : Ksp
0 (modB)×Ksp

0 (modB) → Z

by setting
〈X, Y 〉 = dim HomB(X, Y )− dimExt1B(X, Y )

for all finite-dimensional B-modules X and Y . In particular, if X is a projective B-module,
then

〈X, Y 〉 = dim HomB(X, Y ),

in this case, the linear form 〈X, ?〉 on Ksp
0 (modB) induces a well-defined form

〈X, ?〉 : K0(modB) → Z,

where K0(modB) is the Grothendieck group of modB. Define an antisymmetric bilinear
form on Ksp

0 (modB) by setting

〈X, Y 〉a = 〈X, Y 〉 − 〈Y, X〉

for all finite-dimensional B-modules X and Y . In [69] Palu has proved that the antisym-
metric bilinear form 〈 , 〉a descends to the Grothendieck group K0(modB).

Let F denote the functor C(T, ?). Let m be an element in K0(modB). The function
fT,m : obj(C) → Z which sends an object X to the integer 〈F (indT (X)),m〉, is a well-
defined function.

Theorem (5.3.1). Assume that 〈Si,m〉a ≥ 0 for each simple B-module Si (1 ≤ i ≤ n).
Then the function fT,m is a tropical frieze on C.

The main theorem of Chapter 5 is as follows:

Theorem (5.5.1). Let CQ be the cluster category of a Dynkin quiver Q. Then all tropical
friezes on CQ are of the form fT,m, where T is a cluster-tilting object of CQ and m an
element in the Grothendieck group K0(modEndCQ

(T )).

As an application of Theorem 5.5.1, we show the following sign-coherence property:

Theorem (5.5.7). Let CQ be the cluster category of a Dynkin quiver Q and f a tropical
frieze on CQ. Then there exists a cluster-tilting object T such that

f(Ti) ≥ 0 (resp. f(Ti) ≤ 0)

for all indecomposable direct summands Ti of T .

Using similar techniques, in section 5.6, we give a proof of a conjecture of Ringel
(Section 6 of [74]) on cluster-additive functions on stable translation quivers.





Chapter 3

Generalized m-cluster categories

We prove the existence of an m-cluster tilting object in a generalized m-cluster category
which is (m + 1)-Calabi-Yau and Hom-finite, arising from an (m + 2)-Calabi-Yau dg al-
gebra. This is a generalization of the result for the m = 1 case in Amiot’s Ph. D. thesis.
Our results apply in particular to higher cluster categories associated with Ginzburg dg
categories coming from suitable graded quivers with superpotential, and higher cluster
categories associated with suitable finite-dimensional algebras of finite global dimension.

3.1 Introduction

In recent years, the categorification of cluster algebras has attracted a lot of attention.
Notice that there are two quite different notions of categorification: additive categorifica-
tion, studied in many articles, and monoidal categorification as introduced in [46]. One
important class of categories arising in additive categorification is that of the cluster cat-
egories associated with finite-dimensional hereditary algebras. These were introduced in
[17] (for quivers of type A in [24]), and investigated in many subsequent articles, e.g. [18]
[21] [23] [25] [26] . . . , cf. [73] for a survey. The cluster category CQ associated with the
path algebra of a finite acyclic quiver Q is constructed as the orbit category of the finite-
dimensional derived category Dfd(modkQ) under the action of the autoequivalence τ−1Σ,
where Σ is the suspension functor and τ the Auslander-Reiten translation. This category
is Hom-finite, triangulated and 2-Calabi-Yau. Analogously, for a positive integer m, the
m-cluster category C(m)

Q is constructed as the orbit category of Dfd(modkQ) under the
action of the autoequivalence τ−1Σm. This higher cluster category is Hom-finite, triangu-
lated, and (m+1)-Calabi-Yau. It was first mentioned in [53], and has been studied in more
detail in several articles [3] [59] [60] [75] . . . . Many results about cluster categories can
be generalized to m-cluster categories. In particular, combinatorial descriptions of higher
cluster categories of type An and Dn are studied in [8] [9], the existence of exchange tri-
angles in m-cluster categories was shown in [48], both [78] and [79] proved that there are
exactly m + 1 non isomorphic complements to an almost complete tilting object, and so
on.

C. Amiot [2] generalized the construction of the cluster categories to finite-dimensional
algebras A of global dimension ≤ 2. In order to show that there is a triangle equiv-
alence between CA, constructed as a triangulated hull [53], and the quotient category
perΠ3(A)/DfdΠ3(A), where Π3(A) is the 3-derived preprojective algebra [56] of A, she
first studied the category CA =perA/Dfd(A) associated with a dg algebra A with the
following four properties:
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1) A is homologically smooth;

2) A has vanishing homology in positive degrees;

3) A has finite-dimensional homology in degree 0 and

4) A is 3-Calabi-Yau as a bimodule.

She proved that the category CA is Hom-finite and 2-Calabi-Yau. Moreover, the image
of the free dg module A is a cluster tilting object in CA whose endomorphism algebra
is the zeroth homology of A. She applied these results in particular to the Ginzburg dg
algebras Γ = Γ(Q,W ) associated [38] with Jacobi-finite quivers with potential (Q,W ),
and then introduced generalized cluster categories C(Q,W ) = perΓ/DfdΓ, which specialize
to the cluster categories CQ in the case where Q is acyclic and W is the zero potential.

The motivation of this article is to investigate the existence of cluster tilting objects
in generalized higher cluster categories. We change the above fourth property of the dg
algebra A to:

4’) A is (m + 2)-Calabi-Yau as a bimodule.

Similarly as in [2], using the inherited t-structure on perA we prove in Section 2 that the
quotient category CA =perA/Dfd(A) is Hom-finite and (m+1)-Calabi-Yau. We call it the
generalized m-cluster category. The image of the free dg module A is an m-cluster tilting
object in CA whose endomorphism algebra is the zeroth homology of A.

We apply these main results in Section 3 to higher cluster categories C(Q,W ) associated
with Ginzburg dg categories [56] arising from suitable graded quivers with superpoten-
tial (Q,W ). In order for the Ginzburg dg categories to satisfy the four properties, we
assume that their zeroth homologies are finite-dimensional, that the graded quivers are
concentrated in nonpositive degrees, and that the degrees of the arrows of Q are greater
than or equal to −m. This generalized higher cluster category C(Q,W ) specializes to the
higher cluster category C(m)

Q when Q is an acyclic ordinary quiver and W is the zero
superpotential.

In the last section, we work with finite-dimensional algebras A of global dimension
≤ n. If the functor TorA

n (−, DA) is nilpotent, then the (n−1)-cluster category CA defined
as in Section 4 of A is Hom-finite, n-Calabi-Yau and the image of A is an (n− 1)-cluster
tilting object in CA. This section is a straightforward generalization of Section 4 in [2], so
we only list the main steps of the proof.

3.2 Existence of higher cluster tilting objects
Let k be a field and A a differential graded (dg) k-algebra. We write perA for the perfect
derived category of A, i.e. the smallest triangulated subcategory of the derived category
D(A) containing A and stable under passage to direct summands. We denote by Dfd(A)
the finite-dimensional derived category of A whose objects are those of D(A) with finite-
dimensional total homology, and denote by Ae the dg algebra Aop⊗k A. Usually, we write
[1] in this chapter for the suspension functors Σ in triangulated categories. Let D denote
the duality functor Homk(−, k).

Lemma 3.2.1 ([54], Lemma 4.1). Suppose that A is homologically smooth. Define

Ω = RHomAe(A,Ae)
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and view it as an object in D(Ae). Then for all objects L of D(A) and M of Dfd(A), we
have a canonical isomorphism

DHomD(A)(M, L) ' HomD(A)(L
L⊗A Ω,M).

If we have an isomorphism Ω ' A[−d] in D(Ae) for some positive integer d, then Dfd(A)
is d-Calabi-Yau, i.e. we have

DHomD(A)(M, L) ' HomD(A)(L,M [d]).

From the proof given in [54] of Lemma 3.2.1, we can see that Dfd(A) is Hom-finite
and is a thick triangulated subcategory in perA. We denote by π the canonical projection
functor from perA to CA = perA/Dfd(A).

Let m ≥ 1 be a positive integer. Suppose that A has the following properties (?):

a) A is homologically smooth, i.e. A belongs to per(Ae) when considered as a bimodule
over itself;

b) the p-th homology HpA vanishes for each positive integer p ;

c) the 0-th homology H0A is finite-dimensional;

d) A is (m + 2)-Calabi-Yau as a bimodule, i.e. there is an isomorphism in D(Ae)

RHomAe(A,Ae) ' A[−m− 2].

The main generalized result is the following theorem:

Theorem 3.2.2. Let A be a dg k-algebra with the four properties (?). Then

1) the category CA = perA/Dfd(A) is Hom-finite and (m + 1)-Calabi-Yau;

2) the object T = πA is an m-cluster tilting object in CA, i.e. we have

HomCA
(T, T [r]) = 0, r = 1, . . . , m,

and for each object L in CA, if HomCA
(T, L[r]) vanishes for each r = 1, . . . , m, then

L belongs to addT the full subcategory of CA consisting of direct summands of finite
direct sums of copies of πA;

3) the endomorphism algebra of T over CA is isomorphic to H0A.

We call CA the generalized m-cluster category associated with A.
From now on, we simply denote D(A) by D, and denote CA by C.
Let D≤0 (resp. D≥0) be the full subcategory of D whose objects are the dg modules X

such that HpX vanishes for all p > 0 (resp. p < 0). Similar as in [2], the proof of Theorem
3.2.2 also depends on the existence of a canonical t-structure (D≤0,D≥0) in perA. For
a complex of k-modules X, we denote by τ≤0X the subcomplex with (τ≤0X)i = Xi for
i < 0 , (τ≤0X)0 = Kerd0 and zero otherwise. Set τ≥1X = X/τ≤0X. By the assumptions
on A, the canonical inclusion τ≤0A→A is a quasi-isomorphism of dg algebras. Thus, we
can assume that Ap is zero for all p > 0.

Proposition 3.2.3 ([2]). Let H be the heart of the t-structure, i.e. H is the intersection
D≤0 ∩ D≥0. Then
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1) the functor H0 induces an equivalence from H onto the category ModH0A of right
H0A-modules;

2) for all X and Y in H, we have an isomorphism

Ext1H0A(X, Y ) ' HomD(X, Y [1]).

Lemma 3.2.4. For each integer n, the space HnA is finite-dimensional.

Proof. By our assumptions, the space HmA is zero for every positive integer m and H0A
is finite-dimensional. We use induction on n to show that

a) for all M ∈ modH0A, the space HomD(τ≤−nA,M [p]) is finite-dimensional for p≥n
and

b) the homology H−nA is finite-dimensional.
It is easy to check a) and b) for n = 0. Assume that a) and b) hold for some n ≥ 0.
Let p ≥ n + 1. Applying the functor HomD(−,M [p]) to the triangle

(H−nA)[n− 1]−→τ≤−n−1A−→τ≤−nA−→(H−nA)[n],

we can get the long exact sequence

. . .→(τ≤−nA,M [p])→(τ≤−n−1A,M [p])→((H−nA)[n− 1],M [p])→. . . ,

where we write (, ) for HomD(, ). By part a) of the induction hypothesis, the space
HomD(τ≤−nA,M [p]) is finite-dimensional, and by part b) of the induction hypothesis,
the space H−nA is finite-dimensional. Moreover, the homological smoothness of A implies
that Dfd(A) is Hom-finite, so the space HomD((H−nA)[n−1],M [p]) is finite-dimensional.
This implies a) for the ‘n + 1’ case.

Now we show b) for the ‘n + 1’ case. Apply the functor HomD(−,M [n + 1]) to the
triangle

(H−n−1A)[n]−→τ≤−n−2A−→τ≤−n−1A−→(H−n−1A)[n + 1].

Since the object τ≤−n−2A is in D≤−n−2, there holds an isomorphism

HomD(H−n−1A,M) ' HomD(τ≤−n−1A,M [n + 1]),

whose right-hand side is finite-dimensional. Let M be the duality DH0A. Then the
following isomorphism

DH−n−1A ' HomH0A(H−n−1A,DH0A)

implies that the space H−n−1A is finite-dimensional. This finishes the proof.

The subcategory of (perA)op× perA whose objects are the pairs (X, Y ) such that, the
space HomD(X, Y ) is finite-dimensional, is stable under extensions and passage to direct
factors. By Lemma 3.2.4, the space HnA(' HomD(A,A[n])) is finite-dimensional. As a
result, the following proposition holds.

Proposition 3.2.5. The category perA is Hom-finite.

Lemma 3.2.6 ([2]). For each X in perA, there exist integers N and M such that X
belongs to D≤N ∩ ⊥D≤M . Moreover, the t-structure on D canonically restricts to perA.
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An obvious remark here is that the first statement in Lemma 3.2.6 has the following
equivalent saying: there exists a positive integer N0 such that X belongs to D≤n ∩ ⊥D≤−n

for any n ≥ N0.

Proposition 3.2.7. The category C is (m + 1)-Calabi-Yau.

Proof. Let T denote the category perA. Let N denote Dfd(A), which is a thick subcate-
gory of T . Because of the Calabi-Yau property, that is,

DHomD(N, X) ' HomD(X, N [m + 2]) for each N ∈ Dfd(A) and X ∈ D,
there is a bifunctorial non-degenerate bilinear form :

βN,X : HomD(N, X)×HomD(X, N [m + 2]) −→ k

Therefore, by Section 1 in [2], there exists a bifunctorial form :

β′X,Y : HomC(X, Y )×HomC(Y, X[m + 1]) −→ k for X, Y ∈ C.

By Lemma 3.2.6, the object X belongs to ⊥D≤r for some integer r. Thus, we obtain an
injection

0 −→ HomD(X, Y ) −→ HomD(X, τ>rY ),

and the object τ>rY is in Dfd(A). Since perA is Hom-finite by Proposition 3.2.5, still
using Section 1 in [2], we can get that β′X,Y is non-degenerate. Therefore, we have

DHomC(X, Y ) ' HomC(Y, X[m + 1]) for X, Y ∈ C.

Thus, the category C is (m + 1)-Calabi-Yau.

Let F be the full subcategory D≤0 ∩ ⊥D≤−m−1 ∩ perA of perA.

Lemma 3.2.8. For each object X of F , there exist m triangles ( which are not unique in
general )

P1−→Q0−→X−→P1[1],

P2−→Q1−→P1−→P2[1],

. . . . . .

Pm−→Qm−1−→Pm−1−→Pm[1],

where Q0, Q1, . . . , Qm−1 and Pm are in addA.

Proof. For each object X in perA, the following isomorphisms

HomD(A,X) ' H0X ' HomH0A(H0A,H0X)

hold. Therefore, we can find a morphism Q0−→X with Q0 a free dg A-module, which
induces an epimorphism H0Q0³H0X. Take X in F and form a triangle

P1−→Q0−→X−→P1[1].

Step 1. The object P1 is in D≤0 ∩ ⊥D≤−m ∩ perA.
Since the objects Q0 and X are in D≤0, P1 is in D≤1. Moreover, we have a long exact

sequence
. . . →H0Q0³H0X→H1P1→H1Q0 = 0.
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It follows that H1P1 = 0. Thus, the object P1 belongs to D≤0.
Let Y be in D≤−m. Consider the long exact sequence

. . . −→ HomD(Q0, Y ) −→ HomD(P1, Y ) −→ HomD(X[−1], Y ) −→ . . . .

Since X belongs to ⊥D≤−m−1 and Y is in D≤−m, the space HomD(X[−1], Y ) vanishes.
The object Q0 is free and H0Y is zero, so the space HomD(Q0, Y ) also vanishes. Thus P1

belongs to ⊥D≤−m.
Moreover, since perA is closed under extensions in D, the object P1 belongs to perA.

Thus, the object P1 belongs to D≤0 ∩ ⊥D≤−m ∩ perA. Similarly as above, we can find
a morphism Q1 −→ P1 with Q1 a free dg A-module, which induces an epimorphism
H0Q1³H0P1. Then we form a triangle

P2−→Q1−→P1−→P2[1].

Step 2. For 1 ≤ r ≤ m, the object Pt is in D≤0 ∩ ⊥D≤t−m−1 ∩ perA.
By the same argument as in step 1, we obtain that the object P2 is in D≤0∩ ⊥D≤1−m∩

perA.
In this way, we inductively construct m triangles

P1−→Q0−→X−→P1[1],

P2−→Q1−→P1−→P2[1],

. . . . . .

Pm−→Qm−1−→Pm−1−→Pm[1],

where Q0, Q1, . . . , Qm−1 are free dg A-modules and Pt belongs to D≤0 ∩ ⊥D≤t−m−1 ∩
perA, for each 1≤t≤m.

The following two steps are quite similar to the proof of Lemma 2.10 in [2]. However,
for the convenience of the reader, we give a complete proof.

Step 3. H0Pm is a projective H0A-module.
Since Pm belongs to D≤0, there exists a triangle

τ≤−1Pm −→ Pm −→ H0Pm −→ (τ≤−1Pm)[1].

Take an object M in the heart H, and consider the long exact sequence

. . .−→((τ≤−1Pm)[1],M [1])−→(H0Pm,M [1])−→(Pm,M [1])−→. . .,

where we write ( , ) for HomD( , ). The space HomD((τ≤−1Pm)[1],M [1]) vanishes because
HomD(D≤−2,D≥−1) is zero. Since Pm belongs to ⊥D≤−1, the space HomD(Pm,M [1]) also
vanishes. As a result, the space

Ext1H(H0Pm,M) ' HomD(H0Pm,M [1])

is zero. Thus, H0Pm is a projective H0A-module.
Step 4. Pm is isomorphic to an object in addA.
From step 3, we deduce that it is possible to find an object P in addA and a morphism

P −→ Pm such that H0P and H0Pm are isomorphic. Then we form a new triangle

E −→ P −→ Pm −→ E[1].
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Since P and Pm are in D≤0, the object E is in D≤1. Moreover, there is a long exact
sequence

. . . −→ H0E −→ H0P ' H0Pm −→ H1E −→ H1P = 0.

So E is in D≤0. Since Pm belongs to ⊥D≤−1, the space HomD(Pm, E[1]) vanishes. There-
fore, the object P is isomorphic to the direct sum of Pm and E. Then we have an
isomorphism

H0P ' H0Pm ⊕H0E.

We obtain that H0E is zero. As a consequence, there is no nonzero morphism from P to
E, since P is a free A-module. Therefore, E is the zero object and Pm is isomorphic to P
which is an object in addA.

Let X be an object of F . By Lemma 3.2.8, there are m triangles related to the object
X. Denote by ν the Nakayama functor on mod H0A. Clearly, νH0Pm and νH0Qm−1 are
injective H0A-modules. Let M be the kernel of the morphism νH0Pm −→ νH0Qm−1. It
lies in the heart H. Let N = X[1].

Lemma 3.2.9. 1) There are isomorphisms of functors:

HomD(−, X[2])|H ' HomD(−, P1[3])|H ' . . .

. . . ' HomD(−, Pm−1[m + 1])|H ' HomH(−,M).

2) There is a monomorphism of functors:

Ext1H(−,M) ↪→ HomD(−, Pm−1[m + 2])|H.

Proof. Let L be in H. Let us prove part 1).
Step 1. There is an isomorphism of functors:

HomD(−, Pm−1[m + 1])|H ' HomH(−,M).

Applying HomD(L,−) to the m-th triangle

Pm −→ Qm−1 −→ Pm−1 −→ Pm[1],

we obtain a long exact sequence

. . . −→ HomD(L,Qm−1[m + 1]) −→ HomD(L,Pm−1[m + 1]) −→

−→ HomD(L,Pm[m + 2]) −→ HomD(L,Qm−1[m + 2]) −→ . . . .

Since L belongs to Dfd(A), by the Calabi-Yau property one can easily see the following
isomorphism

HomD(L,Qm−1[m + 1]) ' DHomD(Qm−1, L[1]).

The space vanishes since the object Qm−1 is a free dg A-module and H1L is zero. Consider
the triangle

τ≤−1Pm −→ Pm −→ H0Pm −→ (τ≤−1Pm)[1].

We can get a long exact sequence

. . .−→((τ≤−1Pm)[1], L)−→(H0Pm, L)−→(Pm, L)−→(τ≤−1Pm, L) −→ . . . ,
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where we write (, ) for HomD(, ). Since the space HomD(D≤−1−i,D≥0) is zero, the space
HomD((τ≤−1Pm)[i], L) vanishes for i = 0, 1. Thus, we have

HomD(Pm, L) ' HomD(H0Pm, L) ' HomH(H0Pm, L).

Combining with the Calabi-Yau property, we get the following isomorphisms

HomD(L,Pm[m + 2]) ' DHomD(Pm, L)

' DHomH(H0Pm, L) ' HomH(L, νH0Pm).

Similarly, we can see that

HomD(L,Qm−1[m + 2]) ' HomH(L, νH0Qm−1).

Therefore, the functor HomD(−, Pm−1[m+1])|H is isomorphic to the functor HomH(−,M),
which is the kernel of the morphism

HomH(−, νH0Pm) −→ HomH(−, νH0Qm−1).

Step 2. There are isomorphisms of functors:

HomD(−, X[2])|H ' HomD(−, P1[3])|H ' . . . ' HomD(−, Pm−1[m + 1])|H.

Applying the functor HomD(L,−) to the (m− 1)-th triangle

Pm−1 −→ Qm−2 −→ Pm−2
hm−2−→ Pm−1[1],

we obtain a long exact sequence

. . . −→ HomD(L,Qm−2[m]) −→ HomD(L,Pm−2[m]) −→

−→ HomD(L,Pm−1[m + 1]) −→ HomD(L,Qm−2[m + 1]) −→ . . . .

Since Qm−2 is a free A-module and L is in H, the space HomD(Qm−2, L[r]) vanishes
for each positive integer r. As a result, by the Calabi-Yau property, the following two
isomorphisms hold

HomD(L,Qm−2[m]) ' DHomD(Qm−2, L[2]) = 0,

HomD(L,Qm−2[m + 1]) ' DHomD(Qm−2, L[1]) = 0.

Therefore, we have

HomD(−, Pm−2[m])|H ' HomD(−, Pm−1[m + 1])|H,

where the isomorphism is induced by the left multiplication by hm−2[m].
We inductively work with each triangle and get a corresponding isomorphism induced

by the left multiplication by hm−r[m− r + 2],

HomD(−, Pm−r[m− r + 2])|H ' HomD(−, Pm−r+1[m− r + 3])|H, 2 ≤ r ≤ m− 1,

while the isomorphism

HomD(−, X[2])|H ' HomD(−, P1[3])|H



3.2. Existence of higher cluster tilting objects 39

is induced by the left multiplication by h0[2]. Therefore, the first assertion in this lemma
holds.

Let us prove part 2).
Consider the following long exact sequence

. . . −→ HomD(L,Pm[m + 2]) −→ HomD(L,Qm−1[m + 2]) −→

−→ HomD(L,Pm−1[m + 2]) −→ HomD(L,Pm[m + 3]) −→ . . . .

By the Calabi-Yau property, the space HomD(L,Pm[m+3]) is isomorphic to the zero space
DHomD(Pm[1], L).

Hence, the functor HomD(−, Pm−1[m+2])|H is isomorphic to the cokernel of the mor-
phism

HomH(−, νH0Pm) −→ HomH(−, νH0Qm−1).

As an H0A-module, M admits an injective resolution of the following form

0 −→ νH0Pm −→ νH0Qm−1 −→ I −→ . . . ,

where I is an injective H0A-module. Then Ext1H(−,M) is the first homology of the
following complex

0 −→ HomH(−, νH0Pm) −→ HomH(−, νH0Qm−1) −→ HomH(−, I) −→ . . . .

Therefore, we get a monomorphism of functors

Ext1H(−,M) ↪→ HomD(−, Pm−1[m + 2])|H.

Following Step 1 in the proof of Lemma 3.2.9, there is an isomorphism of functors:

HomD(−, Pm−1[m + 1])|H ' HomH(−,M).

We denote it by ϕ1, and when ϕ1 is applied to an object V inH, we denote the isomorphism
by ϕ1,V . Let ρ be the preimage of the identity map on M under the isomorphism

ϕ1,M : HomD(M, Pm−1[m + 1]) ' HomH(M, M).

Now we can form a triangle

Pm−1[m] −→ Y ′ −→ M
ρ−→ Pm−1[m + 1].

Lemma 3.2.10. The object Y ′ is in F .

Proof. Since M belongs to H and Pm−1[m + 1] belongs to perA, it follows that Y ′ is also
in perA. Moreover, Y ′ is in D≤0, since the objects M and Pm−1 are in D≤0. Let Z be an
object in D≤−m−1. Then there is a long exact sequence

. . . −→ HomD(Pm−1[m + 1], Z) −→ HomD(M, Z) −→

−→ HomD(Y ′, Z) −→ HomD(Pm−1[m], Z) −→ HomD(M [−1], Z) −→ . . . .

Since Z belongs to D≤−m−1, we have the following triangle

τ≤−m−2Z −→ Z −→ (H−m−1Z)[m + 1] −→ (τ≤−m−2Z)[1].
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By the Calabi-Yau property, the space

HomD(M [−1], (τ≤−m−2Z)[i]) ' DHomD(τ≤−m−2Z, M [m + 1− i])

is zero for i = 0, 1. As a result, we have that

HomD(M [−1], Z) ' HomD(M [−1], (H−m−1Z)[m + 1])

' DHomD(H−m−1Z,M).

From Step 2 in the proof of Lemma 3.2.8, we know that the object Pm−1 is in ⊥D≤−2.
So the m-th shift Pm−1[m] is in ⊥D≤−m−2. Combining with the Calabi-Yau property, the
following isomorphisms

HomD(Pm−1[m], Z) ' HomD(Pm−1[m], (H−m−1Z)[m + 1])

' DHomD(H−m−1Z, Pm−1[m + 1])

hold. Now by Lemma 3.2.9, we obtain an isomorphism

HomD(Pm−1[m], Z) ' HomD(M [−1], Z).

Consider the following commutative diagram

(P ′, Z ′) //

a

²²

(P ′, Z) //

b
²²

(P ′, (H−m−1Z)[m + 1]) //

c

²²

(P ′, Z ′[1])

d
²²

(M, Z ′) // (M, Z) // (M, (H−m−1Z)[m + 1]) // (M, Z ′[1]),

where we write (, ) for HomD(, ), P ′ for Pm−1[m+1], and Z ′ for τ≤−m−2Z. Since the object
Pm−1[m + 1] is in ⊥D≤−m−3, we have that the space HomD(Pm−1[m + 1], (τ≤−m−2Z)[1])
vanishes, and then the rightmost morphism d is a zero map. By the Calabi-Yau property
and Proposition 3.2.3, one can easily get the following isomorphisms

HomD(Pm−1[m + 1], (H−m−1Z)[m + 1]) ' DHomD(H−m−1Z, Pm−1[m + 2]),

HomD(M, (H−m−1Z)[m + 1]) ' DHomD(H−m−1Z, M [1])

' DExt1H(H−m−1Z,M).

Then by Lemma 3.2.9, the morphism c is surjective. Consider the triangle

τ≤−m−3Z −→ τ≤−m−2Z −→ (H−m−2Z)[m + 2] −→ (τ≤−m−3Z)[1].

Applying the functor HomD(−,M [m+2]) to this triangle and by the Calabi-Yau property,
we can obtain isomorphisms as follows:

HomD(M, τ≤−m−2Z) ' DHomD(τ≤−m−2Z,M [m + 2])

' DHomD((H−m−2Z)[m + 2],M [m + 2]) ' DHomD(H−m−2Z, M).

Applying the functor HomD(Pm−1[m + 1],−) to the same triangle and by the Calabi-Yau
property, we can get isomorphisms as follows:

HomD(Pm−1[m + 1], τ≤−m−2Z) ' HomD(Pm−1[m + 1], (H−m−2Z)[m + 2])

' DHomD(H−m−2Z, Pm−1[m + 1]).

Therefore, following Lemma 3.2.9, the leftmost morphism a is an isomorphism. Then by
Five-Lemma, the morphism b is surjective. From the long exact sequence at the beginning
of the proof, we can see that the space HomD(Y ′, Z) vanishes for any Z ∈ D≤−m−1. Hence,
the object Y ′ is in F .
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Let ϕr (2 ≤ r ≤ m− 1) denote the isomorphism

HomD(−, Pm−r[m− r + 2])|H ' HomD(−, Pm−r+1[m− r + 3])|H
in Lemma 3.2.8, and let ϕm denote the isomorphism

HomD(−, X[2])|H ' HomD(−, P1[3])|H.

We write f for the composition hm−2[m] . . . h0[2], and θ for the composition ϕ1 . . . ϕm.
Let ε be the preimage of the identity map on M under the isomorphism

θM : HomD(M, X[2]) ' HomH(M, M).

As a result, we have that
θM (ε) = idM = ϕ1M (ρ).

Thus, the following equalities hold,

fε = ϕ2,M . . . ϕm,M (ε) = ρ.

Now we form a new triangle

N −→ Y −→ M
ε−→ N [1].

Lemma 3.2.11. The object Y is in F and τ≤−1Y is isomorphic to N .

Proof. Since M belongs to H and N belongs to D≤0 ∩ perA, the object Y is also in
D≤0 ∩ perA. Our aim is to show that Y is in ⊥D≤−m−1. Let Z be an object in D≤−m−1.
There is a long exact sequence

. . . −→ HomD(N [1], Z) −→ HomD(M, Z) −→

−→ HomD(Y, Z) −→ HomD(N, Z) −→ HomD(M [−1], Z) −→ . . . .

Since N is in ⊥D≤−m−2 and the functors HomD(−, N [1])|H and HomH(−,M) are isomor-
phic, by the same argument as in Lemma 3.2.10, we can obtain an isomorphism

HomD(N, Z) ' HomD(M [−1], Z).

Since ρ is the composition fε, there exists a morphism g : Y −→ Y ′ such that the following
diagram is commutative

N //

f [−1]
²²

Y //

g

²²

M
ε // N [1]

f
²²

Pm−1[m] // Y ′ // M
ρ // Pm−1[m + 1].

Applying the functor HomD(−, Z) to this diagram, then we get the following commu-
tative diagram

(M, Z) // (Y ′, Z) //

HomD(g,−)|Z
²²

(Pm−1[m], Z) //

HomD(f [−1],−)|Z
²²

(M [−1], Z)

(M, Z) // (Y, Z) // (N, Z) // (M [−1], Z),



42 Chapter 3. Generalized m-cluster categories

where we write (, ) for HomD(, ). The morphism

HomD(f [−1],−)|Z : HomD(Pm−1[m], Z) −→ HomD(N, Z)

is an isomorphism. We can see this as follows:
applying the functor HomD(−, Z) to triangles

P1[1] −→ Q0[1] −→ N
h0[1]−→ P1[2], and

Pr[r] −→ Qr−1[r] −→ Pr−1[r]
hr−1[r]−→ Pr[r + 1], 2 ≤ r ≤ m− 1,

we can get long exact sequences (here we denote N by P0[1], i.e. X by P0)

. . . −→ HomD(Qr−1[r + 1], Z) −→ HomD(Pr[r + 1], Z) −→
−→ HomD(Pr−1[r], Z) −→ HomD(Qr−1[r], Z) −→ . . . , 1 ≤ r ≤ m− 1.

The objects Z[−r−i] (i = 0, 1) are inD≤r+i−m−1 (⊂ D≤−1). Since Qr−1 is a free A-module,
the space HomD(Qr−1[r + i], Z) vanishes for i = 0, 1. Thus, the morphism

HomD(hr−1[r],−)|Z : HomD(Pr[r + 1], Z) −→ HomD(Pr−1[r], Z)

is an isomorphism for each 1 ≤ r ≤ m− 1. As a consequence, the functor HomD(f [−1],−)|Z
is an isomorphism. By Five-Lemma, we can obtain that HomD(g,−)|Z is an epimorphism.
From Lemma 3.2.10, we know that the object Y ′ is in F , and the space HomD(Y ′, Z) van-
ishes. It follows that the space HomD(Y, Z) is also zero, hence Y is in F .

Since N is in F [1], the spaces H0N and H1N are zero. Thus, the object H0Y is
isomorphic to M . Moreover, the space HomD(N, H0Y ) is zero. Hence, we can obtain a
commutative diagram of triangles

τ≤−1Y // Y
pY // H0Y // (τ≤−1Y )[1]

N //

δ2

OO

Y // M //

δ1

OO

N [1],

OO

where δ1 : M −→ H0Y is an epimorphism between isomorphic terms. Therefore, δ1 is an
isomorphism. Thus, τ≤−1Y is isomorphic to N .

Lemma 3.2.12. The image of the functor τ≤−i restricted to F is in F [i] and the functor
τ≤−i : F −→ F [i] is fully faithful for each positive integer i.

Proof. Let X be an object in F . Then τ≤−iX is in D≤−i, and there is a triangle in D
τ≤−iX −→ X −→ τ>−iX −→ (τ≤−iX)[1].

Following Lemma 3.2.6, the object τ≤−iX belongs to D≤−i ∩ perA. Let Y be an object
in D≤−m−i−1. Applying the functor HomD(−, Y ) to this triangle, then we can get a long
exact sequence

. . . → HomD(X, Y ) → HomD(τ≤−iX, Y ) → HomD((τ>−iX)[−1], Y ) → . . . .

The space HomD(X, Y ) vanishes because X is in ⊥D≤−m−1 and i is a positive integer.
Since τ>−iX is in Dfd(A), by the Calabi-Yau property, we have the isomorphism

HomD((τ>−iX)[−1], Y ) ' DHomD(Y, (τ>−iX)[m + 1]) = 0.
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Hence the space HomD(τ≤−iX, Y ) is also zero. It follows that τ≤−iX belongs to F [i].
Let X, Y be two objects in F and f : τ≤−iX −→ τ≤−iY a morphism. Consider the

following diagram

(τ>−iX)[−1] // τ≤−iX
si
X //

f

²²

X //

²²

τ>−iX

(τ>−iY )[−1] // τ≤−iY
si
Y // Y // τ>−iY.

For j = 0, 1, by the Calabi-Yau property, the isomorphism holds

HomD((τ>−iX)[−j], Y ) ' DHomD(Y, (τ>−iX)[m + 2− j]) = 0,

since Y is an object in ⊥D≤−m−1.
Since the space HomD((τ>−iX)[−1], Y ) vanishes, the composition si

Y f factors through
si
X . Thus, the functor τ≤−i is full.

Let g : X −→ Y be a morphism in F satisfying τ≤−ig is zero. Then it induces the
following commutative diagram

τ≤−iX
si
X //

τ≤−ig

²²

X
pi

X //

g

²²

τ>−iX //

g1
||

(τ≤−iX)[1]

τ≤−iY
si
Y // Y

pi
Y // τ>−iY // (τ≤−iX)[1]

such that the morphism gsi
X is zero. So the morphism g factors through pi

X . That is,
there exists a morphism g1 : τ>−iX −→ Y such that g = g1p

i
X . The morphism g1 is zero,

since the space HomD(τ>−iX, Y ) vanishes. Thus, the morphism g is zero. It follows that
the functor τ≤−i is faithful. Now this lemma holds.

Together by Lemma 3.2.11 and Lemma 3.2.12, we know that the functor τ≤−1 : F −→
F [1] is an equivalence.

By the same arguments as Step 1 and Step 2 in the proof of Proposition 2.9 in [2], we
can get the following two lemmas. However, for the convenience of our later Proposition
3.2.15, we would like to write down the proof of the second lemma, which presents a
procedure of constructing the needed object.

Lemma 3.2.13. The functor π (restricted to F): F −→ C is fully faithful.

Lemma 3.2.14. For any object X in perA, there exists an integer r and an object Z in
F [−r] such that πX and πZ are isomorphic objects in the category C.

Proof. Let X be an object in perA. By Lemma 3.2.6, there exists an integer r such that
X is in D≤m+1−r ∩ ⊥D≤r−m−1. Consider the triangle

τ≤rX −→ X −→ τ>rX −→ (τ≤rX)[1].

Let Y be an object in D≤r−m−1. Applying the functor HomD(−, Y ), we can get a long
exact sequence

. . . → HomD(X, Y ) −→ HomD(τ≤rX, Y ) −→ HomD((τ>rX)[−1], Y ) → . . . .
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Clearly, the space HomD(X, Y ) is zero. By the Calabi-Yau property, we have the isomor-
phism

HomD((τ>rX)[−1], Y ) ' DHomD(Y, (τ>rX)[m + 1]) = 0.

Therefore, the object τ≤rX is in ⊥D≤r−m−1. Thus, we have that τ≤rX is in F [−r]. Let Z
denote τ≤rX. Since τ>rX is in Dfd(A), the objects πX and πZ are isomorphic in C.

Proposition 3.2.15. The projection functor π : perA −→ C induces a k-linear equivalence
between F and C.

Proof. We only need to show that π restricted to F is dense. Let X be an object in perA.
Then there exists an integer r such that, the object X is in D≤m+1−r ∩ ⊥D≤r−m−1, the
object τ≤rX is in F [−r], and πX is isomorphic to π(τ≤rX) in C. Now we do induction on
the number r. From the remark right after Lemma 3.2.6, we can suppose that r ≤ 0.

If r = 0, the object τ≤0X is in F , and π(τ≤0X) is isomorphic to the image πXof X in
C.

Suppose when r = r0 ≤ 0, one can find an object Y in F such that πY is isomorphic
to πX in C.

Consider the case r = r0 − 1. Then τ≤r0−1X is in F [1− r0]. Set Z = (τ≤r0−1X)[−1].
Thus, the object Z is in F [−r0]. By hypothesis, there exists an object Y in F such that
πY is isomorphic to πZ in C. Therefore, we have following isomorphisms in C

πY ' πZ = π((τ≤r0−1X)[−1]) ' (π(τ≤r0−1X))[−1] ' (πX)[−1].

Since Y [1] is in F [1] and τ≤−1 : F −→ F [1] is an equivalence, there exists an object N in
F such that τ≤−1N is isomorphic to Y [1]. As a consequence, the following isomorphisms
hold in C

πN ' π(τ≤−1N) ' π(Y [1]) ' (πY )[1] ' πX.

Hence we can deduce that for each object T in C, there exists an object T ′ in F such that
πT ′ is isomorphic to T in C.

We call F the fundamental domain.
Proof of themainTheorem3.2.2.

Proof. Proposition 3.2.5 and Proposition 3.2.7 have shown that the category C is Hom-
finite and (m + 1)-Calabi-Yau, respectively.

Now we only need to show that the object πA is an m-cluster tilting object whose
endomorphism algebra is isomorphic to the zeroth homology H0A of A.

Since A is in the subcategory D≤0∩ ⊥D≤−1, its shift A[i] is in D≤−i∩ ⊥D≤−i−1. Thus,
the objects A[i] (1 ≤ i ≤ m) are in the fundamental domain F . Following Proposition
3.2.15, the functor π : perA −→ C induces an equivalence between F and C, so we have
that

HomC(πA, π(A[i])) ' HomF (A,A[i]) = HomD(A,A[i])

' H iA =
{

H0A, i = 0;
0, 1 ≤ i ≤ m.

Therefore, the endomorphism algebra of πA is isomorphic to the zeroth homology H0A of
A, and

HomC(πA, (πA)[r]) = 0, r = 1, . . . , m.
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Let X be an object in F . According to Lemma 3.2.8, there exist m triangles where
Q0, Q1, . . . , Qm−1 are free A-modules and Pm is in addA.

Now we will show the following isomorphisms

Ext1D(Pm−1, Y ) ' Ext2D(Pm−2, Y ) ' . . . ' Extm
D (X, Y ), Y ∈ D≤0. (1)

Applying HomD(−, Y [j]) to the triangle (here we write P0 instead of X)

Pm−j+1−→Qm−j−→Pm−j−→Pm−j+1[1], j = 2, . . . m,

we can get a long exact sequence

. . . −→ HomD(Qm−j [1], Y [j]) −→ HomD(Pm−j+1[1], Y [j]) −→
−→ HomD(Pm−j , Y [j]) −→ HomD(Qm−j , Y [j]) −→ . . . .

Since Qm−j are free A-modules, the spaces HomD(Qm−j [i], Y [j]) are zero for i = 0, 1.
Therefore, we have the following isomorphisms

Extj
D(Pm−j , Y ) ' HomD(Pm−j , Y [j]) ' HomD(Pm−j+1[1], Y [j])

' Extj−1
D (Pm−j+1, Y ), j = 2, . . . m.

It follows that (1) is true.
Next applying HomD(−, Y [j]) to the triangle

Pm−j−→Qm−j−1−→Pm−j−1−→Pm−j [1], j = 2, . . . m− 1,

similarly we can obtain the following isomorphisms

Ext1D(Pm−2, Y ) ' Ext2D(Pm−3, Y ) ' . . . ' Extm−1
D (X, Y ), Y ∈ D≤0.

Thus, we can get a list of isomorphisms

Ext1D(Pm−i, Y ) ' Extm+1−i
D (X, Y ), 1 ≤ i ≤ m, Y ∈ D≤0.

Suppose that Z is an object in C such that the space HomC(Z, (πA)[i]) vanishes for
each 1 ≤ i ≤ m. Since the functor π : perA −→ C induces an equivalence between F and
C, there exists an object X in F such that πX is isomorphic to Z in C. Therefore, we
have the following isomorphisms

HomC(Z, (πA)[i]) ' HomC(πX, (πA)[i]) ' HomD(X, A[i])

' Exti
D(X, A), 1 ≤ i ≤ m.

Hence, we have

Ext1D(Pm−i, A) ' Extm+1−i
D (X, A) = 0, 1 ≤ i ≤ m.

As a consequence, the triangle

Pm−→Qm−1−→Pm−1−→Pm[1]

splits, then the object Pm−1 is in addA. Next the triangle

Pm−1−→Qm−2−→Pm−2−→Pm−1[1]

also splits, then the object Pm−2 is also in addA. By iterated arguments, we can get that
Pi (1 ≤ i ≤ m) and X are all in addA. Thus, the object Z, which is isomorphic to πX in
C, is in the subcategory addπA. Hence, the object πA is an m-cluster tilting object in the
category C.
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3.3 The cluster categories of Ginzburg dg categories
In [38], V. Ginzburg defined the Ginzburg dg algebra Γ(Q,W ) associated with a quiver
with potential (Q,W ), where the arrows of the quiver Q are concentrated in degree 0.
Generally, let Q be a graded k-quiver such that the set Q0 of objects is finite and Q(x, y)
is a finite-dimensional k-module for all objects x and y. Let R be the discrete k-category
on the set Q0 of vertices. Denote by A the tensor category TR(Q). Let Q∨ be the dual
of the R-bimodule Q over Re endowed with the canonical involution (see Section 3.1 in
[56]). Fixing an integer n and a superpotential W in the cyclic homology HCn−3(A),
i.e. a linear combination of cycles of degree 3 − n considered up to cyclic permutation
‘with signs’, the Ginzburg dg category Γn(Q,W ) is defined in [56] as the tensor category
over R of the bimodule

Q̃ = Q⊕Q∨[n− 2]⊕R[n− 1]

endowed with the unique differential which

a) vanishes on Q;

b) takes the element a∗ of Q∨[n − 2] to the cyclic derivative ∂aW for each arrow a in
Q1, where the map ∂a takes a path p to the sum (−1)deg(a)

∑
p=uav ±vu (here deg(a)

denotes the degree of an arrow a and the sign ± is computed by Koszul sign rule);

c) takes the element tx of R[n− 1] to (−1)n idx(
∑

v∈Q1
[v, v∗]) idx for each object x in

Q0, where [,] denotes the supercommutator.

Remark 3.3.1. The R-bimodule (or graded quiver) Q̃ has an intuitional expression (as
the graded quivers in the ordinary Ginzburg dg algebras) as follows

• the same vertices as Q,

• the arrows are

i) the arrows of Q of the same degree,
ii) an arrow a∗ : j → i of degree ‘2− n− deg(a)’ for each arrow a : i → j of Q,
iii) a loop tx : x → x of degree 1− n for each vertex x of Q.

Theorem 3.3.2 ([56]). The Ginzburg dg category Γn(Q,W ) is homologically smooth and
n-Calabi-Yau.

For simplicity, set Γ(n) as the Ginzburg dg category Γn(Q,W ) associated with a graded
quiver with superpotential (Q,W ). Moreover, we assume that the arrows of Q are con-
centrated in nonpositive degrees. We denote the minimal degree by NQ.

Theorem 3.3.3. Let m be a positive integer satisfying m ≥ −NQ. Suppose that the zeroth
homology of the Ginzburg dg category Γ(m+2) is finite-dimensional. Then the generalized
m-cluster category

C(Q,W ) = perΓ(m+2)/Dfd(Γ(m+2))

associated with (Q,W ) is Hom-finite and (m+1)-Calabi-Yau. Moreover, the image of the
free module Γ(m+2) in C(Q,W ) is an m-cluster tilting object whose endomorphism algebra
is isomorphic to the zeroth homology of Γ(m+2).
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Proof. Since the nonpositive integer NQ ≥ −m, the elements of Q∨[m] are concentrated
in nonpositive degrees. Then the Ginzburg dg category Γ(m+2) has its homology concen-
trated in nonpositive degrees. We have that the p-th homology HpΓ(m+2) is zero for each
integer p > 0. By assumption, the space H0Γ(m+2) is finite-dimensional. Combining with
Theorem 3.3.2, the dg algebra Γ(m+2) satisfies the four properties (?). We apply the main
Theorem 3.2.2 in particular to Γ(m+2). Then the result clearly holds.

The following corollary considers acyclic quivers with zero superpotential. In this case,
the generalized m-cluster category C(Q,0) recovers the (classical) m-cluster category C(m)

Q .

Corollary 3.3.4. Let k be an algebraically closed field and m a positive integer. Sup-
pose that Q is an acyclic ordinary quiver. Then the generalized m-cluster category C(Q,0)

is triangle equivalent to the orbit category C(m)
Q of the finite-dimensional derived category

Dfd(modkQ) under the action of the automorphism τ−1Σm(= ν−1Σm+1), where Σ (resp.
ν) is the suspension functor (resp. Serre functor) and τ is the Auslander-Reiten transla-
tion.

Proof. Since Q is an acyclic ordinary quiver, the degrees of the arrows of Q̃ concentrate
in 0,−m,−m− 1 and the homology H−iΓ(m+2) vanishes for each 1 ≤ i ≤ m− 1.

Since W is zero (in fact, if m ≥ 2, the only superpotential is the zero one, otherwise,
the degrees of the homogeneous summands of superpotentials are 1−m(≤ −1), while the
degrees of the arrows are zero), the zeroth homology of Γ(m+2) is the finite-dimensional
path algebra kQ.

Following Theorem 3.3.3, the generalized m-cluster category C(Q,0) is (m + 1)-Calabi-
Yau, and the image of Γ(m+2) (denoted by T ) is an m-cluster tilting object whose endo-
morphism algebra is isomorphic to the finite-dimensional hereditary algebra kQ.

Moreover, from the proof of the main Theorem 3.2.2, we know that the objects
ΣiΓ(m+2)(0 ≤ i ≤ m) are in the fundamental domain F . Therefore, the following iso-
morphisms hold

HomC(T, Σ−iT ) ' HomC(ΣiT, T ) ' HomD(ΣiΓ(m+2),Γ(m+2))

' H−iΓ(m+2) = 0, for each 1 ≤ i ≤ m− 1,

where C denotes the generalized m-cluster category C(Q,0). Hence, following Theorem 4.2
in [60], there is a triangle equivalence from C(Q,0) to C(m)

Q .

Example 3.3.5. Suppose m is 2. Let us consider the graded quiver Q

2
c

ÂÂ>
>>

>>
>>

1

a

@@¢¢¢¢¢¢¢¢
3,

b
oo

where deg(a) = −1, deg(b) = deg(c) = 0, with superpotential W = abc.
The Ginzburg dg category Γ(4) = Γ4(Q,W ) is the tensor category whose underlying
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graded quiver is Q̃

2

t2

»»

a∗

§§°°
°°
°°
°°
°°

c

»»1
11

11
11

11
1

1t1 99

a

FF°°°°°°°°°°
b∗ //

3 t3ee
b

oo

c∗

XX1111111111

where deg(a∗) = −1, deg(b∗) = deg(c∗) = −2 and deg(ti) = −3 for 1 ≤ i ≤ 3. Its
differential takes the following values on the arrows of Q̃:

d(a∗) = −bc, d(b∗) = ca, d(c∗) = ab,
d(t1) = bb∗ + a∗a, d(t2) = aa∗ − c∗c, d(t3) = cc∗ − b∗b.

The zeroth homology H0Γ(4) equals to the path algebra with relation kQ(0)/(bc), whose
k-basis is {e1, e2, e3, b, c}. Therefore, the dimension of H0Γ(4) is 5.

Following Theorem 3.3.3, the image of Γ(4) in the generalized 2-cluster category C(Q,W )

is a 2-cluster tilting object, whose endomorphism algebra is given by the following quiver
with the relation

2 c // 3 b // 1 , bc = 0.

In the following, we will show that the generalized 2-cluster category C(Q,W ) and the
orbit category C(2)

A3
are triangle equivalent.

Let Q′ be the quiver
2

α

¡¡¢¢
¢¢

¢¢
¢¢

1
β // 3,

with deg(α) = deg(β) = 0. We denote the indecomposable module eikQ′ by P ′
i , and its

corresponding simple module by S′i for 1 ≤ i ≤ 3. Notice that we consider right modules
so that, for example, the support of P ′

1 is {1, 2}. Let T be the almost complete tilting
module P ′

2 ⊕ P ′
3. Its two complements are P ′

1 and S′3. We write T as the direct sum
S′3 ⊕ P ′

2 ⊕ P ′
3. Then we have the derived equivalence

DEnd(T ) ' D(modkQ′).

Following Proposition 4.2 in [56], the derived 4-preprojective dg algebras Π4(End(T ), 0)
and Π4(kQ′, 0) are Morita equivalent. Moreover, by Theorem 6.3 in [56], the derived
4-preprojective dg algebra Π4(kQ′, 0) is quasi-isomorphic to the Ginzburg dg category
Γ4(Q′, 0).

The underlying graded quiver of the algebra End(T ) is

Q′′ 2
γ

ÁÁ=
==

==
==

=

1 3,
δ

oo
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with the relation δγ = 0, where deg(γ) = deg(δ) = 0. Thus, the algebra End(T ) is
quasi-isomorphic to the path algebra of the following graded quiver Q′′′

2
η

¡¡¢¢
¢¢

¢¢
¢¢ γ

ÂÂ>
>>

>>
>>

1 3,
δ

oo

with the differential d(η) = −δγ, where deg(η) = −1. Following Proposition 6.6 in [56],
the derived 4-preprojective dg algebra Π4(End(T ), 0) is quasi-isomorphic to the tensor
category TR(Q̃′′′), endowed with the unique differential such that

d(η) = ∂η∗W
′ = −δγ, d(δ∗) = ∂δW

′ = γη∗, d(γ∗) = ∂γW ′ = η∗δ,
d(t1) = δδ∗ + ηη∗, d(t2) = η∗η − γ∗γ, d(t3) = γγ∗ − δ∗δ,

where W ′ = η∗δγ, and Q̃′′′ = Q′′′ ⊕ (Q′′′)∨[2]⊕R[3].
It is easy to check that the tensor category TR(Q̃′′′) endowed with the differential

equals the Ginzburg dg category Γ4(Q,W ′), where Q is the graded quiver

2
γ

ÂÂ>
>>

>>
>>

1

η∗
@@¢¢¢¢¢¢¢¢

3,
δ

oo

obtained from Q′′′ by replacing η by η∗, and W ′ is still the superpotential η∗δγ. Obvi-
ously, the graded quivers Q and Q are isomorphic, while the superpotentials W ′ and W
correspond to each other. Hence, the derived 4-preprojective dg algebra Π4(End(T ), 0) is
quasi-isomorphic to the Ginzburg dg category Γ4(Q,W ).

As a consequence, the Ginzburg dg categories Γ4(Q,W ) and Γ4(Q′, 0) are Morita
equivalent. Therefore, the generalized 2-cluster categories C(Q,W ) and C(Q′,0) are triangle
equivalent. By Corollary 3.3.4, we can conclude that the generalized 2-cluster category
C(Q,W ) and the orbit category C(2)

A3
are triangle equivalent.

3.4 For algebras of finite global dimension
Let A be a finite-dimensional k-algebra of finite global dimension. Let n be a positive
integer. The finite-dimensional derived category Dfd(A) admits a right Serre functor

νA = − L⊗A DA.

Unfortunately, the orbit category OA of Dfd(A) under the autoequivalence νA[−n] is not
triangulated in general, then we take advantage of the triangulated hull of OA which was
constructed in [53]. Let B be the trivial extension A⊕DA[−n−1] with A in degree 0 and
DA in degree n + 1. The dg B-bimodule DB is isomorphic to B[n + 1], and the perfect
derived category perB is contained in Dfd(B) under this construction. It is not hard to
check that for each object X in perB and Y in Dfd(B), there is a functorial isomorphism

DHomD(B)(X, Y ) ' HomD(B)(Y, X[n + 1]).
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Denote by p : B → A the canonical projection and p∗ : Dfd(A) → Dfd(B) the induced
triangulated functor. Let 〈A〉B be the thick subcategory of Dfd(B) generated by the image
of p∗. We call the triangulated hull

CA = 〈A〉B/perB

of OA the (n− 1)-cluster category of A. Here we would like to point out that the authors
of [68] make use of the d-Calabi-Yau generalized cluster categories, whereas they do not
give any explicit proof for their construction. In general, this category CA has infinite-
dimensional morphism spaces. In [2] C. Amiot dealt with the case n ≤ 2. By Π3A we
denote the derived 3-preprojective algebra of A as introduced in [56].

Theorem 3.4.1 ([2]). Let A be a finite-dimensional k-algebra of global dimension ≤ 2.
If the functor TorA2 (−, DA) is nilpotent, then the cluster category CA is Hom-finite, 2-
Calabi-Yau and the object A is a cluster tilting object. Moreover, there exists a triangle
equivalence from CA to the generalized cluster category C = perΠ3A/Dfd(Π3A) sending
the object A to the image of the derived 3-preprojective algebra Π3A in C.

In this section, we will investigate the generalization of the above theorem to the case
that A is a finite-dimensional k-algebra of global dimension ≤ n (instead of ≤ 2). Since
the generalization is straightforward, we only list the main steps here, and leave the proofs
to the interested reader.

Let T be a triangulated category and N a thick subcategory of T .
Definition 3.4.2 ([2]). Let X and Y be objects in T . A morphism p : N → X is called
a local N -cover of X relative to Y if N is in N and if it induces an exact sequence:

0 −→ T (X, Y )
p∗−→ T (N, Y ).

A morphism i : X → N is called a local N -envelope of X relative to Y if N is in N and if
it induces an exact sequence:

0 −→ T (Y, X) i∗−→ T (Y, N).

We can read the following lemma from the proof of Theorem 4.2 in [2].

Lemma 3.4.3 ([2]). Let X and Y be objects of Dfd(B) such that the space HomD(B)(X, Y )
is finite-dimensional. Then there exists a local perB-cover of X relative to Y .

Under the assumption of the above lemma, both HomD(B)(N, X) and HomD(B)(X, N)
are finite-dimensional for N in perB and X in Dfd(B). Therefore, there exists a local
perB-envelope of X[n + 1] relative to Y . Hence the bilinear form

β′X,Y : HomCA
(X, Y )×HomCA

(Y, X[n]) −→ k, X, Y ∈ CA

constructed in the first section of [2] is non-degenerate. Therefore, if CA is Hom-finite,
then it is n-Calabi-Yau as a triangulated category.

We denote by D the derived category D(A) of the algebra A. Let us recall the following
important properties of the Serre functor νA:

• νA(D≥0) ⊂ D≥−n;

• HomD(U, V ) vanishes for all U ∈ D≥0 and V ∈ D≤−n−1;
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• νA admits an inverse
ν−1

A = − L⊗A RHomA(DA, A),

where the homology of the complex RHomA(DA, A) is given by

H iRHomA(DA, A) ' HomD(DA, A[i])

'




HomD(DA, A), i = 0,
Exti

A(DA, A), i = 1, . . . , n,
0, otherwise;

• ν−1
A (D≤0) ⊂ D≤n.

Using these properties we obtain the following generalization of Proposition 4.7 of [2].

Proposition 3.4.4. Let A be a finite-dimensional k-algebra of global dimension ≤ n and
X the A-A-bimodule Extn

A(DA, A). Then the endomorphism algebra Ã = EndCA
(A) is

isomorphic to the tensor algebra TAX of X over A. As a consequence, if the category CA

is Hom-finite, then the functor −⊗AExtn
A(DA, A) is nilpotent.

In fact, the converse statement of the consequence in Proposition 3.4.4 is also true.
Taking advantage of the above properties of the Serre functor νA, we also have the following
variant of Proposition 4.9 of [2].

Proposition 3.4.5. Let A be a finite-dimensional k-algebra of global dimension ≤ n. The
following properties are equivalent:

1) the category CA is Hom-finite,

2) the functor −⊗AExtn
A(DA, A) is nilpotent,

3) the functor TorAn (−, DA) is nilpotent.

Now we give a complete proof for the following well-known lemma.

Lemma 3.4.6. Let A be a dg k-algebra. Then for all dg A-modules L,M , the objects
RHomA(L,M) and RHomAe(A, Homk(L,M)) are isomorphic in the derived category of
dg A-A-bimodules.

Proof. Let N be an A-A-bimodule. We construct two maps Φ and Ψ as follows

Φ : HomA(L⊗A N, M) −→ HomAe(N, Homk(L,M))
f 7−→ (Φ(f)(n) : l 7→ (−1)|l||n|f(l ⊗ n)),

Ψ : HomAe(N, Homk(L,M)) −→ HomA(L⊗A N, M)
g 7−→ Ψ(g)(l ⊗ n) = (−1)|l||n|g(n)(l).

It is not hard to check that Φ and Ψ are A-A-bihomomorphisms homogeneous of degree
0 and satisfy

ΦΨ = 1, ΨΦ = 1.

Moreover, the morphisms Φ and Ψ commute with the differentials. Thus, they induce
inverse isomorphisms

HomC(A)(L⊗A N, M) ' HomC(Ae)(N, Homk(L,M)),
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where C(E) denotes the category of dg E-modules for a dg algebra E. The morphisms Φ
and Ψ also induce inverse isomorphisms

HomH(A)(L⊗A N, M) ' HomH(Ae)(N, Homk(L,M)),

where H(E) denotes the category up to homotopy of dg E-modules for a dg algebra E. If
we specialize N to A, then we have

HomH(A)(pL, iM) ' HomH(Ae)(A, Homk(pL, iM)),

where pL is a cofibrant resolution of L, and iM is a fibrant resolution of M .
Now we show that the complex Homk(pL, iM) is a fibrant resolution of Homk(L,M)

in C(Ae). Let ι : U → V be a quasi-isomorphism in C(Ae) which is injective in each
component. We have the isomorphisms

HomC(Ae)(U,Homk(pL, iM))) ' HomC(A)(pL⊗A U, iM),
HomC(Ae)(V, Homk(pL, iM))) ' HomC(A)(pL⊗A V, iM).

Since pL is cofibrant, the morphism pL⊗ ι : pL⊗ U → pL⊗ V is a quasi-isomorphism
in C(A) which is injective in each component. Since iM is fibrant, it follows that the
morphism

HomC(A)(pL⊗A V, iM) −→ HomC(A)(pL⊗A U, iM)

is surjective. Thus, the complex Homk(pL, iM) is fibrant. Therefore, we have the following
isomorphisms in the derived category of dg A-A-bimodules

RHomA(L,M) ' HomH(A)(pL, iM) ' HomH(Ae)(A,Homk(pL, iM))

' RHomAe(A, Homk(L,M)).

Lemma 3.4.7. Assume that A is a proper (i.e. dimkH
∗A < ∞) dg algebra. Then the

objects RHomA(DA, A) and RHomAe(A,Ae) are isomorphic in the derived category of dg
A-A-bimodules.

Proof. If we particularly choose L as DA and M as A in Lemma 3.4.6, then we have the
isomorphism in the derived category of dg A-A-bimodules

RHomA(DA, A) ' RHomAe(A,Homk(DA, A)).

Since A is proper, the object Ae (= Aop⊗kA) is quasi-isomorphic to Aop⊗kD(DA) and
DA is perfect over k. Therefore, we have the quasi-isomorphisms

Ae ' Aop⊗kD(DA) ' Homk(DA, A).

As a result, we have the following isomorphisms in the derived category of dg A-A-
bimodules

RHomAe(A,Ae) ' RHomAe(A, Homk(DA, A)) ' RHomA(DA, A).
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Let Θ be a cofibrant resolution of the dg A-bimodule RHomA(DA, A). Therefore,
following [56], the derived (n + 1)-preprojective algebra is defined as

Πn+1(A) = TA(Θ[n]).

It is homologically smooth and (n + 1)-Calabi-Yau as a bimodule. Moreover, the complex
RHomA(DA, A)[n] has its homology concentrated in nonpositive degrees −n, . . . ,−1, 0,
and

H0(Θ[n]) ' H0(RHomA(DA, A)[n]) ' Hn(RHomA(DA,A)) ' Extn
A(DA, A).

Thus, the homology of the dg algebra Πn+1(A) vanishes in positive degrees, and we have
the following isomorphisms

H0(Πn+1(A)) ' TA(H0(Θ[n])) ' TA(Extn
A(DA, A)) ' Ã.

In order for the derived (n + 1)-preprojective algebra Πn+1(A) to satisfy the four
properties in Section 2, we would like to have that H0(Πn+1(A)) is finite-dimensional.
Corollary 3.4.8. Let A be a finite-dimensional k-algebra of global dimension ≤ n. If the
functor TorA

n (−, DA) is nilpotent, then the generalized (n− 1)-cluster category

C = perΠn+1(A)/Dfd(Πn+1(A))

is Hom-finite, n-Calabi-Yau and the image of the free dg module Πn+1(A) is an (n − 1)-
cluster tilting object in C.
Proof. If the functor TorA

n (−, DA) is nilpotent, then the functor −⊗AExtn
A(DA, A) is

nilpotent by Proposition 3.4.5. Thus, the zeroth homology of Πn+1(A) is finite-dimensional.
Now we apply Theorem 3.2.2 in particular to the derived (n + 1)-preprojective algebra
Πn+1(A), then this corollary holds.

Theorem 3.4.9. Let A be a finite-dimensional k-algebra of global dimension ≤ n. If the
functor TorA

n (−, DA) is nilpotent, then the (n− 1)-cluster category CA of A is Hom-finite,
n-Calabi-Yau and the image of AB is an (n− 1)-cluster tilting object in CA.
Proof. Similarly as [2], we will construct a triangle equivalence between the (n−1)-cluster
category CA of A and the generalized (n − 1)-cluster category C of Πn+1(A). Then the
statement will follow from Corollary 3.4.8.

Recall that 〈A〉B denotes the thick subcategory generated by AB in the derived cat-
egory Dfd(B). First we will construct a triangle equivalence from 〈A〉B to perΠn+1(A).
Consider the functor RHomB(AB,−). By Section 8 in [50], it induces a triangle equiva-
lence between 〈A〉B and perC, where C is the dg algebra RHomB(AB, AB). The following
lemma is an easy extension of Lemma 4.13 of [2].
Lemma 3.4.10. The dg algebras Πn+1(A) and RHomB(AB, AB) are isomorphic objects
in the homotopy category of dg algebras.

As a result, the functor RHomB(AB,−) induces a triangle equivalence between 〈A〉B
and perΠn+1(A), which sends the object AB to the free module Πn+1(A) and sends the free
B-module B to the object AΠn+1(A). So the functor also induces an equivalence between
the category perB and the thick subcategory 〈A〉Πn+1(A) of D(Πn+1(A)) generated by A.
Moreover, as in Lemma 4.15 of [2], we still have that the category 〈A〉Πn+1(A) is the finite-
dimensional derived category Dfd(Πn+1(A)). Hence, the categories CA and C are triangle
equivalent and Theorem 3.4.9 holds for an arbitrary positive integer n.





Chapter 4

Complements of almost complete
m-cluster tilting objects

We study higher cluster tilting objects in generalized higher cluster categories arising
from dg algebras of higher Calabi-Yau dimension. Taking advantage of silting mutations
of Aihara-Iyama, we obtain a class of m-cluster tilting objects in generalized m-cluster
categories. For generalized m-cluster categories arising from strongly (m + 2)-Calabi-Yau
dg algebras, by using truncations of minimal cofibrant resolutions of simple modules, we
prove that each almost complete m-cluster tilting P -object has exactly m + 1 comple-
ments with periodicity property. This leads us to the conjecture that each liftable almost
complete m-cluster tilting object has exactly m + 1 complements in generalized m-cluster
categories arising from m-rigid good completed deformed preprojective dg algebras.

4.1 Introduction

Cluster categories associated with acyclic quivers were introduced in [17], where the au-
thors gave an additive categorification of the finite type cluster algebras introduced by
Fomin and Zelevinsky [34] [35]. The cluster category of an acyclic quiver Q is defined
as the orbit category of the finite-dimensional derived category of the category of finite-
dimensional representations of Q under the action of τ−1Σ, where τ is the AR-translation
and Σ the suspension functor. If we replace the autoequivalence τ−1Σ with τ−1Σm for an
integer m ≥ 2, we obtain the m-cluster category, which was first mentioned and proved
to be triangulated in [53], cf. also [75]. In the cluster category, the exchange relations of
the corresponding cluster algebra are modeled by exchange triangles. It was shown in [17]
that every almost complete cluster tilting object admits exactly two complements. In the
higher cluster category, exchange triangles are replaced by AR-angles, whose existence (in
the more general set up of Krull-Schmidt Hom-finite triangulated categories with Serre
functors) was shown in [48]. Both [78] and [79] proved that each almost complete m-cluster
tilting object has exactly m + 1 complements in an m-cluster category. In this paper, we
study the analogous statements for almost complete m-cluster tilting objects in certain
(m + 1)-Calabi-Yau triangulated categories.

Amiot [2] constructed generalized cluster categories using 3-Calabi-Yau dg algebras
which satisfy some suitable assumptions. A special class is formed by the generalized
cluster categories associated with Ginzburg algebras [38] coming from suitable quivers with
potentials. If the quiver is acyclic, the generalized cluster category is triangle equivalent to
the classical cluster category. Amiot’s results were extended by the author to generalized
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m-cluster categories in [40] by changing the Calabi-Yau dimension from 3 to m + 2 for
an arbitrary positive integer m. As one of the applications, she particularly considered
generalized higher cluster categories associated with Ginzburg dg categories [56] coming
from suitable graded quivers with superpotentials.

In the representation theory of algebras, mutation plays an important role. Here we
recall several kinds of mutation. Cluster algebras associated with finite quivers without
loops or 2-cycles are defined using mutation of quivers. As an extension of quiver mu-
tation, the mutation of quivers with potentials was introduced in [31]. Moreover, the
mutation of decorated representations of quivers with potentials, which can be viewed as
a generalization of the BGP construction, was also studied in [31]. Tilting modules over
finite-dimensional algebras are very nice objects, although some of their direct summands
can not be mutated. In the cluster category associated with an acyclic quiver, mutation
of cluster tilting objects is always possible [17]. It is determined by exchange triangles
and corresponds to mutation of clusters in the corresponding cluster algebra via a certain
cluster character [25]. In the derived categories of finite-dimensional hereditary algebras,
a mutation operation was given in [22] on silting objects, which were first studied in [62].
Silting mutation of silting objects in triangulated categories, which is always possible, was
investigated recently by Aihara and Iyama in [1].

The aim of this paper is to study higher cluster tilting objects in generalized higher
cluster categories arising from dg algebras of higher Calabi-Yau dimension. Under certain
assumptions on the dg algebras (Assumptions 4.2.1), tilting objects do not exist in the
derived categories (Remark 4.2.6). Thus, we consider silting objects, e.g., the dg algebras
themselves. The author was motivated by the construction of tilting complexes in Section
4 of [47].

This article is organized as follows: In Section 2, we list our assumptions on dg alge-
bras and use the standard t-structure to situate the silting objects which are iteratively
obtained from P -indecomposables with respect to the fundamental domain. In Section 3,
using silting objects we construct higher cluster tilting objects in generalized higher clus-
ter categories. We show that in such a category each liftable almost complete m-cluster
tilting object has at least m+1 complements. In Section 4, we specialize to strongly higher
Calabi-Yau dg algebras. By studying minimal cofibrant resolutions of simple modules of
good completed deformed preprojective dg algebras, we obtain isomorphisms in general-
ized higher cluster categories between images of some left mutations and images of some
right mutations of the same P -indecomposable. Using this, we derive the periodicity prop-
erty of the images of iterated silting mutations of P -indecomposables in Section 5, where
we also construct (m + 1)-Calabi-Yau triangulated categories containing infinitely many
indecomposable m-cluster tilting objects. We obtain an explicit description of the terms
of Iyama-Yoshino’s AR angles in this situation, and we deduce that each almost complete
m-cluster tilting P -object in the generalized m-cluster category associated with a suitable
completed deformed preprojective dg algebra has exactly m+1 complements in Section 6.
We show that the truncated dg subalgebra at degree zero of the dg endomorphism algebra
of a silting object in the derived category of a good completed deformed preprojective dg
algebra is also strongly Calabi-Yau in Section 7. Then we conjecture a class (namely m-
rigid) of good completed deformed preprojective dg algebras such that each liftable almost
complete m-cluster tilting object should have exactly m+1 complements in the associated
generalized m-cluster category. In Section 8, we give a long exact sequence to show the
relations between extension spaces in generalized higher cluster categories and extension
spaces in derived categories. This sequence generalizes the short exact sequence obtained
by Amiot [2] in the 2-Calabi-Yau case. At the end, we show that any almost complete
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m-cluster tilting object in CΠ is liftable if Π is the completed deformed preprojective dg
algebra arising from an acyclic quiver.

Notation
For a collection X of objects in an additive category T , we denote by addX the smallest
full subcategory of T which contains X and is closed under finite direct sums, summands
and isomorphisms. Let k be an algebraically closed field of characteristic zero.

4.2 Silting objects in derived categories
Let A be a differential graded (for simplicity, write ‘dg’) k-algebra. We write perA for
the perfect derived category of A, i.e. the smallest triangulated subcategory of the derived
category D(A) containing A and stable under passage to direct summands. We denote by
Dfd(A) the finite-dimensional derived category of A whose objects are those of D(A) with
finite-dimensional total homology.

A dg k-algebra A is pseudo-compact if it is endowed with a complete separated topology
which is generated by two-sided dg ideals of finite codimension. A (pseudo-compact)
dg algebra A is (topologically) homologically smooth if A lies in perAe, where Ae is the
(completed) tensor product of Aop and A over k. For example, suppose that A is of the
form (k̂Q, d), where k̂Q is the completed path algebra of a finite graded quiver Q with
respect to the two-sided ideal m of k̂Q generated by the arrows of Q, and the differential d
takes each arrow of Q to an element of m; it was stated in [63] that A is pseudo-compact
and topologically homologically smooth.

Assumptions 4.2.1. Let m be a positive integer. Suppose that A is a (pseudo-compact)
dg k-algebra and has the following four additional properties:

a) A is (topologically) homologically smooth;

b) the pth homology HpA vanishes for each positive integer p;

c) the zeroth homology H0A is finite-dimensional;

d) A is (m + 2)-Calabi-Yau as a bimodule, i.e., there is an isomorphism in D(Ae)

RHomAe(A,Ae) ' Σ−m−2A.

Theorem 4.2.2 ([56]). (Completed) Ginzburg dg categories Γm+2(Q,W ) associated with
graded quivers with superpotentials (Q,W ) are (topologically) homologically smooth and
(m + 2)-Calabi-Yau.

Lemma 4.2.3 ([54]). Suppose that A is (topologically) homologically smooth. Then the
category Dfd(A) is contained in perA. If moreover A is (m + 2)-Calabi-Yau for some
positive integer m, then for all objects L of D(A) and M of Dfd(A), we have a canonical
isomorphism

DHomD(A)(M, L) ' HomD(A)(L,Σm+2M).

Throughout this paper, we always consider the dg algebras satisfying Assumptions
4.2.1.
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Proposition 4.2.4 ([40]). Under Assumptions 4.2.1, the triangulated category perA is
Hom-finite.

Let (DA)c denote the full subcategory of D(A) consisting of compact objects. Since
each idempotent in D(A) is split and (DA)c is closed under direct summands, each idem-
potent in (DA)c is also split. Therefore, the category perA which is equal to (DA)c by
[52] is a k-linear Hom-finite category with split idempotents. It follows that perA is a
Krull-Schmidt triangulated category.

Definitions 4.2.5. Let A be a dg algebra satisfying Assumptions 4.2.1.

a) An object X ∈ perA is silting (resp. tilting) if perA = thickX the smallest thick
subcategory of perA containing X, and the spaces HomD(A)(X, ΣiX) are zero for all
integers i > 0 (resp. i 6= 0).

b) An object Y ∈ perA is almost complete silting if there is some indecomposable
object Y ′ in (perA)\(addY ) such that Y ⊕ Y ′ is a silting object. Here Y ′ is called a
complement of Y .

Clearly the dg algebra A itself is a silting object since HomD(A)(A, ΣiA) is isomorphic
to H iA which is zero for each positive integer.

Remark 4.2.6. Under Assumptions 4.2.1, tilting objects do not exist in perA. Oth-
erwise, let T be a tilting object in perA. By definition, the object T generates perA.
Then for any object M in D(A), it belongs to the subcategory Dfd(A) if and only if∑

p∈ZdimHomD(A)(T, ΣpM) is finite. Since the space HomD(A)(T, T ) is finite-dimensional
by Proposition 4.2.4 and the space HomD(A)(T, ΣpT ) vanishes for any nonzero integer p,
the object T belongs to Dfd(A). Note that Dfd(A) is (m+2)-Calabi-Yau as a triangulated
category by Lemma 4.2.3. Thus, we have the following isomorphism

(0 =)HomD(A)(T, Σm+2T ) ' DHomD(A)(T, T )(6= 0).

Here we obtain a contradiction. Therefore, tilting objects do not exist.

Assume that H0A is a basic algebra. Let e be a primitive idempotent element of H0A.
We denote by P the indecomposable direct summand eA (in the derived category D(A))
of A and call it a P -indecomposable. We denote by M the dg module (1− e)A. It follows
from Proposition 4.2.4 that the subcategory addM is functorially finite [7] in addA. Let
us write RA0 for P (later we will also write LA0 for P ).

By induction on t ≥ 1, we define RAt as follows: take a minimal right (addM)-
approximation f (t) : A(t) → RAt−1 of RAt−1 in D(A) and form a triangle in D(A)

RAt
α(t)

// A(t)
f (t)

// RAt−1
// ΣRAt.

Dually, for each integer t ≥ 1, we take a minimal left (addM)-approximation g(t) :
LAt−1 → B(t) of LAt−1 in D(A), and form a triangle in D(A)

LAt−1
g(t)

// B(t)
β(t)

// LAt
// ΣLAt−1.

The object RAt is called the right mutation of RAt−1 (with respect to M), and LAt is
called the left mutation of LAt−1 (with respect to M).
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Theorem 4.2.7 ([1]). For each nonnegative integer t, the objects M ⊕RAt and M ⊕LAt

are silting objects in perA. Moreover, any basic silting object containing M as a direct
summand is either of the form M ⊕RAt or of the form M ⊕ LAt.

From the construction and the above theorem, we know that the morphisms α(t) (resp.
β(t)) are minimal left (resp. minimal right) (addM)-approximations in D(A) and that the
objects RAt and LAt are indecomposable objects in D(A) which do not belong to addM .

We simply denote D(A) by D. Let D≤0 (resp. D≥1) be the full subcategory of D
whose objects are the dg modules X such that HpX vanishes for each positive (resp.
nonpositive) integer p. For a complex X of k-modules, we denote by τ≤0X the subcomplex
with (τ≤0X)0 = Kerd0, and (τ≤0X)i = Xi for negative integers i, otherwise zero. Set
τ≥1X = X/τ≤0X.

Proposition 4.2.8. For each integer t ≥ 0, the object RAt belongs to the subcategory
D≤t∩ ⊥D≤−1∩ perA, and the object LAt belongs to the subcategory D≤0∩ ⊥D≤−t−1∩ perA.

Proof. We consider the triangles appearing in the constructions of RAt, and similarly for
LAt.

The object RA0(= P ) belongs to D≤0 ∩ ⊥D≤−1 ∩ perA since the dg algebra A has
its homology concentrated in nonpositive degrees. The object RAt is an extension of A(t)

by Σ−1RAt−1, which both belong to the subcategory D≤t ∩ perA. Thus, the object RAt

belongs to D≤t ∩ perA. We do induction on t to show that RAt belongs to ⊥D≤−1. Let
Y be an object in D≤−1. By applying the functor HomD(−, Y ) to the triangle

RAt
// A(t) // RAt−1

// ΣRAt,

we obtain the long exact sequence

. . . → HomD(A(t), Y ) → HomD(RAt, Y ) → HomD(Σ−1RAt−1, Y ) → . . . .

Since ΣY belongs to D≤−2, by hypothesis, the space HomD(Σ−1RAt−1, Y ) is zero. Thus,
the object RAt belongs to ⊥D≤−1.

Assume that {e1, · · · , en} is a collection of primitive idempotent elements of H0A. We
denote by Si the simple module corresponding to eiA. For any object X in perA, we
define the support of X as follows:

Definition 4.2.9. The support of X is defined as the set

supp (X) := {j ∈ Z |HomD(X, ΣjSi) 6= 0 for some simple moduleSi}.

Proposition 4.2.10. For any nonnegative integer t, we have the following inclusions:

1) {−t} ⊆ supp (RAt) ⊆ [−t, 0],

2) {t} ⊆ supp (LAt) ⊆ [0, t].

Proof. We only show the first statement, since the second one can be deduced in a similar
way.

By Proposition 4.2.8, the object RAt belongs to D≤t ∩ ⊥D≤−1 ∩ perA. Therefore, the
space HomD(RAt,ΣrSi) vanishes for each integer r ≥ 1 since ΣrSi lies in D≤−1, and the
space HomD(RAt,Σr′Si) vanishes for each integer r′ ≤ −t − 1 since Σr′Si lies in D≥t+1.
Thus, we have the inclusion supp (RAt) ⊆ [−t, 0].
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Let SP be the simple module corresponding to the P -indecomposable P from which
RAt and LAt are obtained by mutation. We will show that HomD(RAt,Σ−tSP ) is nonzero.
Clearly, the space HomD(P, SP ) is nonzero. We do induction on the integer t. Assume
that HomD(RAt−1,Σ1−tSP ) is nonzero. Applying the functor HomD(−,Σ1−tSP ) to the
triangle

RAt → A(t) → RAt−1 → ΣRAt,

where A(t) belongs to (addA)\(addP ), we get the long exact sequence

HomD(ΣA(t),Σ1−tSP ) → HomD(ΣRAt,Σ1−tSP ) →

HomD(RAt−1,Σ1−tSP ) → HomD(A(t),Σ1−tSP ),

where both the leftmost term and the rightmost term are zero. Therefore, we obtain that
HomD(RAt,Σ−tSP ) is nonzero. This completes the proof.

Now we deduce the following corollary, which can also be deduced from Theorem 2.43
in [1].

Corollary 4.2.11. 1) For any two nonnegative integers r 6= t, the object RAr is not
isomorphic to RAt, and the object LAr is not isomorphic to LAt.

2) For any two positive integers r and t, the objects RAr and LAt are not isomorphic.

Proof. Assume that r > t ≥ 0. Following Proposition 4.2.10, we have that

HomD(RAr,Σ−rSP ) 6= 0, while HomD(RAt,Σ−rSP ) = 0.

Thus, the objects RAr and RAt are not isomorphic. Similarly for LAr and LAt. Also in
a similar way, we can obtain the second statement.

Combining Theorem 4.2.7 with Proposition 4.2.10, we can deduce the following corol-
lary, which is analogous to Corollary 4.2 of [47]:

Corollary 4.2.12. For any positive integer l, up to isomorphism, the object M admits
exactly 2l−1 complements whose supports are contained in [1− l, l−1]. These give rise to
basic silting objects and they are the indecomposable objects RAt and LAt for 0 ≤ t < l.

4.3 From silting objects to m-cluster tilting objects
Let F be the full subcategory D≤0 ∩ ⊥D≤−m−1 ∩ perA of D. It is called the fundamental
domain in [40]. Following Lemma 4.2.3, the category Dfd(A) is a thick subcategory of
perA. The triangulated quotient category CA = perA/Dfd(A) is called the generalized
m-cluster category [40]. We denote by π the canonical projection functor from perA to
CA.

Proposition 4.3.1 ([40]). Under Assumptions 4.2.1, the projection functor π : perA −→
CA induces a k-linear equivalence between F and CA.

Theorem 4.3.2 ([40] Theorem 2.2, [63] Theorem 7.21). If A satisfies Assumptions 4.2.1,
then

1) the generalized m-cluster category CA is Hom-finite and (m + 1)-Calabi-Yau;
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2) the object T = π(A) is an m-cluster tilting object in CA, i.e.,

addT = {L ∈ CA|HomCA
(T, ΣrL) = 0, r = 1, . . . , m}.

Theorem 4.3.3. The image of any silting object under the projection functor π : perA →
CA is an m-cluster tilting object in CA.

Proof. Assume that Z is an arbitrary silting object in perA. Without loss of generality, we
can assume that Z is a cofibrant dg A-module [50]. We denote by Γ the dg endomorphism
algebra Hom•

A(Z,Z). Since the spaces HomD(Z, ΣiZ) are zero for all positive integers i, the
dg algebra Γ has its homology concentrated in nonpositive degrees. The zeroth homology
of Γ is isomorphic to the space HomD(Z, Z) which is finite-dimensional by Proposition
4.2.4.

Since Z is a compact generator of D, the left derived functor F = − L⊗Γ Z is a Morita
equivalence [50] from D(Γ) to D which sends Γ to Z. Therefore, the dg algebra Γ is also
(topologically) homologically smooth and (m + 2)-Calabi-Yau. Thus, the generalized m-
cluster category CΓ is well-defined. The equivalence F also induces a triangle equivalence
from CΓ to CA which sends π(Γ) to π(Z). By Theorem 4.3.2, the image π(Γ) is an m-cluster
tilting object in CΓ. Hence, the image of Z is an m-cluster tilting object in CA.

We use the same notation LAt, RAt and M as in subsection 4.2. A direct corollary of
Theorem 4.3.3 is that for each nonnegative integer t, the images of LAt⊕M and RAt⊕M
in the generalized m-cluster category CA are m-cluster tilting objects.

Definitions 4.3.4. Let A be a dg algebra satisfying Assumptions 4.2.1 and CA its gener-
alized m-cluster category.

a) An object X in CA is called an almost complete m-cluster tilting object if there exists
some indecomposable object X ′ in CA\ (addX) such that X ⊕ X ′ is an m-cluster
tilting object. Here X ′ is called a complement of X. In particular, we call π(M) an
almost complete m-cluster tilting P -object.

b) An almost complete m-cluster tilting object Y is said to be liftable if there exists
a basic silting object Z in perA such the π(Z/Z ′) is isomorphic to Y for some
indecomposable direct summand Z ′ of Z.

Here the functor π : perA → CA and the dg A-module M are the same as before.

Proposition 4.3.5. Let A be a 3-Calabi-Yau dg algebra satisfying Assumptions 4.2.1.
Then any (1−)cluster tilting object in CA is induced by a silting object in F under the
canonical projection π.

Proof. Let T be a cluster tilting object in CA. By Proposition 4.3.1, we know that there
exists an object Z in the fundamental domain F such that π(Z) = T .

First we will claim that Z is a partial silting object, that is, the spaces HomD(Z, ΣiZ)
are zero for all positive integers i. Since Z belongs to F , clearly these spaces vanish for
all integers i ≥ 2. Consider the case i = 1. The following short exact sequence

0 → Ext1D(X, Y ) → Ext1CA
(X, Y ) → DExt1D(Y, X) → 0

was shown to exist in [2] for any objects X, Y in F . We specialize both X and Y to the
object Z. The middle term in the short exact sequence is zero since T is a cluster tilting
object. Thus, the object Z is partial silting.
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Second we will show that Z generates perA. Consider the following triangle

A
f→ Z0 → Y → ΣA

in D, where f is a minimal left (addZ)-approximation in D. It is easy to see that Y also
belongs to F . Therefore, the above triangle can be viewed as a triangle in CA with f
a minimal left (addZ)-approximation in CA. Applying the functor HomCA

(−, Z) to the
triangle, we get the exact sequence

HomCA
(Z0, Z) → HomCA

(A,Z) → HomCA
(Σ−1Y, Z) → HomCA

(Σ−1Z0, Z).

Therefore, the space HomCA
(Y, ΣZ) becomes zero. As a consequence, Y belongs to addZ

in CA. Since both Y and Z are in F , the object Y also belongs to addZ in D. Therefore,
the dg algebra A belongs to the subcategory thickZ of perA. It follows that Z generates
perA.

Theorem 4.3.6. The almost complete m-cluster tilting P -object π(M) has at least m+1
complements in CA.

Proof. By Proposition 4.2.8 and Corollary 4.2.11, the pairwise non isomorphic indecompos-
able objects LAt (0 ≤ t ≤ m) belong to the fundamental domain F . Then by Proposition
4.3.1, the m + 1 objects π(P ), π(LA1), . . . , π(LAm) are indecomposable and pairwise non
isomorphic in CA. It follows that π(M) has at least m + 1 complements in CA.

Let us generalize the above theorem:

Theorem 4.3.7. Each liftable almost complete m-cluster tilting object has at least m + 1
complements in CA.

Proof. Let Y be a liftable almost complete m-cluster tilting object. By definition there
exists a basic silting object Z (assume that Z is cofibrant) in perA such that π(Z/Z ′)
is isomorphic to Y for some indecomposable direct summand Z ′ of Z. Let Γ be the dg
endomorphism algebra Hom•

A(Z, Z). Then H0Γ is a basic algebra.
Similarly as in the proof of Theorem 4.3.3, the dg algebra Γ satisfies Assumptions

4.2.1, and the left derived functor F := − L⊗Γ Z induces a triangle equivalence from CΓ to
CA which sends π(Γ) to π(Z). Let Γ′ be the object Hom•

A(Z, Z/Z ′) in perΓ. Then π(Γ′)
is the almost complete m-cluster tilting P -object in CΓ which corresponds to Y under the
functor F . It follows from Theorem 4.3.6 that π(Γ′) has at least m + 1 complements in
CΓ. So does the liftable almost complete m-cluster tilting object Y in CA.

Remark 4.3.8. Let T be a Krull-Schmidt Hom-finite triangulated category with a Serre
functor. In fact, following [48], one can get that any almost complete m-cluster tilting
object Y in T has at least m+1 complements. Note that the notation in [40] and [48] has
some differences with each other, for example, m-cluster tilting objects in [40] correspond
to (m+1)-cluster tilting subcategories (or objects) in [48]. Here we use the same notation
as [40]. Set Y = addY , Z = ∩m

i=1
⊥(ΣiY) and U = Z/Y. Let X be an m-cluster tilting

object in T which contains Y as a direct summand. Set X = addX. Then by Theorem 4.9
in [48], the subcategory L := X/Y is m-cluster tilting in the triangulated category U . The
subcategories L, L〈1〉, . . . , L〈m〉 are distinct m-cluster tilting subcategories of U , where
〈1〉 is the shift functor in the triangulated category U . Also by the same theorem, the one-
one correspondence implies that the number of m-cluster tilting objects of T containing
Y as a direct summand is at least m + 1.
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4.4 Minimal cofibrant resolutions of simple modules
for strongly (m + 2)-Calabi-Yau case

The well-known Connes long exact sequence (SBI-sequence) for cyclic homology [64] as-
sociated with a dg algebra A is as follows

. . . → HHm+3(A) I→ HCm+3(A) S→ HCm+1(A) B→ HHm+2(A) I→ . . . ,

where HH∗(A) denotes the Hochschild homology of A and HC∗(A) denotes the cyclic
homology.

Let M and N be two dg A-modules with M in perAe. Then in D(k) we have the
isomorphism

RHomAe(RHomAe(M, Ae), N) ' M
L⊗Ae N.

An element ξ =
∑s

i=1 ξ1i⊗ξ2i ∈ Hr(M
L⊗Ae N) is non-degenerate if the corresponding map

ξ+ : RHomAe(M, Ae) → ΣrN

given by ξ+(φ) =
∑s

i=1(−1)|φ||ξ|φ(ξ1i)2ξ2iφ(ξ1i)1 is an isomorphism. Throughout this
chapter, we write | · | to denote the degrees.

Let l be a finite-dimensional separable k-algebra. We fix a trace Tr : l → k and let
σ′⊗σ′′ be the corresponding Casimir element (i.e., σ′⊗σ′′ =

∑
σ′i⊗σ′′i and Tr(σ′iσ

′′
j ) = δij).

An augmented dg l-algebra is a dg algebra A equipped with dg k-algebra homomorphisms
l

ς→ A
ε→ l such that ες is the identity. Following [76] we write PCAlgc(l) for the

category of pseudo-compact augmented dg l-algebras satisfying Ker(ε) = Coker(ς) = radA.
When forgetting the grading, radA is just the Jacobson radical of the underlying ungraded
algebra Au :=

∏
r Ar of the dg algebra A = (Ar)r.

The SBI-sequence can be extended to the case that A ∈ PCAlgc(l), where HH∗(A)(=

H∗(A
L⊗Ae A)) is computed by the pseudo-compact Hochschild complex. For more details,

see Section 8 and Appendix B in [76].

Definition 4.4.1 ([76]). An algebra A ∈ PCAlgc(l) is strongly (m + 2)-Calabi-Yau if A
is topologically homologically smooth and HCm+1(A) contains an element η such that Bη
is non-degenerate in HHm+2(A).

Theorem 4.4.2 ([76]). Let A ∈ PCAlgc(l). Assume that A = (Ar)r≤0 is concentrated
in nonpositive degrees. Then A is strongly (m + 2)-Calabi-Yau if and only if there is a
quasi-isomorphism (T̂lV , d) → A as augmented dg l-algebras with V having the following
properties

a) d(V ) ∩ V = 0;

b) V = Vc⊕ lz with z an l-central element of degree −m− 1, Vc finite-dimensional and
concentrated in degrees [−m, 0];

c) dz = σ′ησ′′ with η ∈ Vc⊗leVc non-degenerate and antisymmetric under the map
F : v1 ⊗ v2 → (−1)|v1||v2|v2 ⊗ v1 for any v1, v2 in Vc.

We would like to present the explicit construction of Ginzburg dg categories in the
following straightforward proposition.
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Proposition 4.4.3. The completed Ginzburg dg category Γ̂m+2(Q,W ) associated with a
finite graded quiver Q concentrated in degrees [−m, 0] and with a reduced superpotential
W being a linear combination of paths of Q of degree 1 − m and of length at least 3, is
strongly (m + 2)-Calabi-Yau.

Proof. We check that Γ̂m+2(Q,W ) satisfies the assumptions and the conditions in Theorem
4.4.2.

Let l be the separable k-algebra
∏

i∈Q0
kei. Let Q

G be the double quiver obtained from
Q by adjoining an opposite arrow a∗ of degree −m − |a| for each arrow a ∈ Q1. Let Q̃G

be obtained from Q
G by adjoining a loop ti of degree −m − 1 for each vertex i. Then

the completed Ginzburg dg category Γ̂m+2(Q,W ) is the completed path category T̂l(Q̃G)
with the following differential

d(a) = 0, a ∈ Q1;
d(ti) = ei(

∑
a∈Q1

[a, a∗])ei, i ∈ Q0;
d(a∗) = (−1)|a| ∂W

∂a = (−1)|a|
∑

p=uav(−1)(|a|+|v|)|u|vu, a ∈ Q1;

where the sum in the third formula runs over all homogeneous summands p = uav of W .
Thus, the components of Γ̂m+2(Q,W ) are concentrated in nonpositive degrees and

Γ̂m+2(Q,W ) (= l ⊕∏
s≥1(Q̃

G)⊗ls) lies in PCAlgc(l).
The differential above which is induced by the reduced superpotential W satisfies that

d(Q̃G) ∩ Q̃G = 0. Set z =
∑

i∈Q0
ti. Then z is an l-central element of degree −m − 1.

Clearly, Q̃G = Q
G⊕ lz, the double quiver Q

G is finite and concentrated in degrees [−m, 0],
and the element d(z) =

∑
a∈Q1

(aa∗ − (−1)|a||a∗|a∗a) is antisymmetric under the flip F .
The last step is to show that η :=

∑
a∈Q1

[a, a∗] is non-degenerate, that is, the corre-
sponding map

η+ : Homle(Q
G
, le) −→ Q

G
, φ → (−1)|φ||η|φ(η1)2η2φ(η1)1

is an isomorphism. Define morphisms φγ(γ ∈ Q
G) : Q

G → le as follows

φγ(α) = δαγet(α) ⊗ es(α).

Then {φγ |γ ∈ Q
G} is a basis of the space Homle(Q

G
, le). Applying the map η+, we obtain

the images η+(φa) = (−1)m|a|a∗ and η+(φa∗) = (−1)1+|a∗|2a for arrows a ∈ Q1. Thus,
{η+(φγ)|γ ∈ Q

G} is a basis of Q
G. Therefore, the element η is non-degenerate.

Now we write down the explicit construction of deformed preprojective dg algebras as
described in [76]. Let Q be a finite graded quiver and L the subset of Q1 consisting of
all loops a of odd degree such that |a| = −m/2. Let Q

V be the double quiver obtained
from Q by adjoining an opposite arrow a∗ of degree −m − |a| for each a ∈ Q1 \ L and
putting a∗ = a without adjoining an extra arrow for each a ∈ L. Let N be the Lie algebra
kQ

V
/[kQ

V
, kQ

V ] endowed with the necklace bracket {−,−} (cf. [13], [39]). Let W be
a superpotential which is a linear combination of homogeneous elements of degree 1−m
in N and satisfies {W,W} = 0 (in order to make the differential well-defined). Let Q̃V

be obtained from Q
V by adjoining a loop ti of degree −m − 1 for each vertex i. Then

the deformed preprojective dg algebra Π(Q,m + 2,W ) is the dg algebra (kQ̃V , d) with the
differential
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da = {W,a} = (−1)(|a|+1)|a∗| ∂W
∂a∗ = (−1)(|a|+1)|a∗|∑

p=ua∗v(−1)(|a∗|+|v|)|u|vu;
da∗ = {W,a∗} = (−1)|a|+1 ∂W

∂a = (−1)|a|+1
∑

p=uav(−1)(|a|+|v|)|u|vu;
dti = ei(

∑
a∈Q1

[a, a∗])ei;

where a ∈ Q1 and i ∈ Q0. Later we will denote the homogeneous elements rvu (r ∈ k)
appearing in dα (α ∈ Q

V ) by y(α, v, u).

Remark 4.4.4. As in Proposition 4.4.3, we see that the completed deformed preprojective
dg algebra Π̂(Q,m+2,W ) associated with a finite graded quiver Q concentrated in degrees
[−m, 0] and with a reduced superpotential W being a linear combination of paths of Q

V

of length at least 3, is also strongly (m + 2)-Calabi-Yau.

Suppose that −1 is a square in the field k and denote by
√−1 a chosen square root.

Then the class of deformed preprojective dg algebras is strictly greater than the class
of Ginzburg dg categories. Suppose that Q does not contain special loops (i.e., loops
of odd degree which is equal to −m/2). Then we can easily see that Γm+2(Q,W ) =
Π(Q,m + 2,−W ). Otherwise, let Q0 be the subquiver of Q obtained by removing the
special loops. For each special loop a in Q1, we add a pair of loops a′ and a′′ to Q0

which are also special at the same vertex of Q0. Denote the new quiver by Q′. Let W ′ be
the superpotential obtained from W by replacing each special loop by the corresponding
element a′ + a′′

√−1. Now we define a map ι : Γm+2(Q,W ) → Π(Q′,m + 2,−W ′), it
sends each special loop a of Q1 to the element a′ + a′′

√−1 and its dual a∗ to the element
a′ − a′′

√−1 in Π(Q′,m + 2,−W ′), and it keeps the other arrows of Q̃G. Then it is not
hard to check that ι is a dg algebra isomorphism. It follows that Ginzburg dg categories
are deformed preprojective dg algebras. For the strictness, see the following example.

Example 4.4.5. Suppose that m is 2. Let Q be the quiver consisting of only one vertex
‘•’ and one loop a of degree −1. Then the Ginzburg dg category Γ4(Q, 0) and the deformed
preprojective dg algebra Π(Q, 4, 0) respectively have the the following underlying graded
quivers

Q̃G : •

a

½½
a∗eet 99 , Q̃V : •

a=a∗

½½
t 99

where |a| = |a∗| = −1 and |t| = −3. The differential takes the following values

d(a) = 0 = d(a∗), dΓ4(Q,0)(t) = aa∗ + a∗a, dΠ(Q,4,0)(t) = 2a2.

Then dimH−1(Γ4(Q, 0)) = 2 while dimH−1(Π(Q, 4, 0)) = 1. Hence, these two dg algebras
are not quasi-isomorphic. Moreover, it is obvious that the dg algebra Π(Q, 4, 0) can not
be realized as a Ginzburg dg category.

Lemma 4.4.6. Let Π = Π̂(Q,m+2,W ) be a completed deformed preprojective dg algebra.
Let x (resp. y) denote the minimal (resp. maximal) degree of the arrows of Q

V . Then
there exist a canonical completed deformed preprojective dg algebra Π′ = Π̂(Q′,m + 2,W ′)
isomorphic to Π as a dg algebra, where the quiver Q′ is concentrated in degrees [−m/2, y].

Proof. We can construct directly a quiver Q′ and a superpotential W ′.
We claim first that x+y = −m. Let x1 (resp. y1) denote the minimal (resp. maximal)

degree of the arrows of Q. Then Q
V \ Q is concentrated in degrees [−m − y1,−m − x1].

If x1 ≤ −m− y1, then x = x1 and y1 ≤ −m− x1. Hence, x + y = x1 + (−m− x1) = −m.
Similarly for the case ‘−m− y1 ≤ x1’.
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Let Q0 be the subquiver of Q which has the same vertices as Q and whose arrows
are those of Q with degree belonging to [−m/2, y] (= [(x + y)/2, y]). In this case |a∗| =
−m− |a| ∈ [−m− y,−m/2] = [x,−m/2]. For each arrow b of Q whose dual b∗ has degree
in (−m/2, y], we add a corresponding arrow b′ to Q0 with the same degree as b∗. Denote
the new quiver by Q′. Therefore, the quiver Q′ has arrow set

{a ∈ Q1| |a| ∈ [−m/2, y]} ∪ {b′ | |b′| = |b∗|, b ∈ Q1 and |b∗| ∈ (−m/2, y]}.

We define a map ι : Q̃V → Q̃′V by setting

ι(a) = a, ι(a∗) = a∗; ι(ti) = ti; ι(b) = (−1)|b||b
∗|+1b′∗, ι(b∗) = b′.

Let W ′ be the superpotential obtained from W by replacing each arrow α in W by ι(α).
Then it is not hard to check that the map ι can be extended to a dg algebra isomorphism
from Π to Π′.

In particular, if Q is concentrated in degrees [−m, 0], then by the above lemma, the
new quiver Q′ is concentrated in degrees [−m/2, 0]. If the following two conditions

V1) Q a finite graded quiver concentrated in degrees [−m/2, 0],

V2) W a reduced superpotential being a linear combination of paths of Q
V of degree

1−m and of length ≥ 3,

hold, then we will say that the completed deformed preprojective dg algebra Π̂(Q,m+2,W )
is good.

Theorem 4.4.7 ([76]). Let A be a strongly (m+2)-Calabi-Yau dg algebra with components
concentrated in degrees ≤ 0. Suppose that A lies in PCAlgc(l) for some finite-dimensional
separable commutative k-algebra l. Then A is quasi-isomorphic to some completed de-
formed preprojective dg algebra.

We consider the strongly (m + 2)-Calabi-Yau case in this section, by Theorem 4.4.7,
it suffices to consider good completed deformed preprojective dg algebras Π = Π̂(Q,m +
2,W ). The simple Π-module Si (attached to a vertex i of Q) belongs to the finite-
dimensional derived category Dfd(Π), hence it also belongs to perΠ. We will give a
precise description of the objects RAt and LAt obtained from iterated mutations of a
P -indecomposable eiΠ, where ei is the primitive idempotent element associated with a
vertex i of Q.

Definition 4.4.8 ([70]). Let A = (k̂Q, d) be a dg algebra, where Q is a finite graded
quiver and d is a differential sending each arrow to a (possibly infinite) linear combination
of paths of length ≥ 1. A dg A-module M is minimal perfect if

a) its underlying graded module is of the form ⊕N
j=1Rj , where Rj is a finite direct sum

of shifted copies of direct summands of A, and

b) its differential is of the form dint + δ, where dint is the direct sum of the differentials
of these Rj (1 ≤ j ≤ N), and δ, as a degree 1 map from ⊕N

j=1Rj to itself, is a
strictly upper triangular matrix whose entries are in the ideal m of A generated by
the arrows of Q.

Lemma 4.4.9 ([70]). Let M be a dg A(= (k̂Q, d))-module such that M lies in perA. Then
M is quasi-isomorphic to a minimal perfect dg A-module.
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In the second part of this section, we illustrate how to obtain minimal perfect dg
modules which are quasi-isomorphic to simple Π-modules from cofibrant resolutions [63].
If a cofibrant resolution pX of a dg module X is minimal perfect, then we say pX a
minimal cofibrant resolution of X.

Let i be a vertex of Q and Pi = eiΠ. Consider the short exact sequence in the category
C(Π) of dg modules

0 → Ker(p) ι−→ Pi
p−→ Si → 0,

where in the category Grmod(Π) of graded modules Ker(p) is the direct sum of ρPs(ρ)

over all arrows ρ ∈ Q̃V
1 with t(ρ) = i. Here ρPs(ρ) denotes the image in Pi of the map

Ps(ρ) → Pi given by the left multiplication by ρ. The simple module Si is quasi-isomorphic
to cone(Ker(p) ι→ Pi), i.e., the dg module

X = (X = Pi ⊕ ΣX ′
0 ⊕ . . .⊕ ΣX ′

m+1, dX =
(

dPi ι
0 −dKer(p)

)
),

where for each integer 0 ≤ j ≤ m + 1, the object X ′
j is the direct sum of ρPs(ρ) ranging

over all arrows ρ ∈ Q̃V
1 with t(ρ) = i and |ρ| = −j. By Section 2.14 in [63], the dg module

X is a cofibrant resolution of the simple module Si.
Now let P ′

j (0 ≤ j ≤ m + 1) be the direct sum of Ps(ρ) where ρ ranges over all arrows
in Q̃V

1 satisfying t(ρ) = i and |ρ| = −j. Clearly, P ′
m+1 = Pi. We require that the

ordering of direct summands Ps(ρ) in P ′
j is the same as the ordering of direct summands

ρPs(ρ) in X ′
j for each integer 0 ≤ j ≤ m + 1. Let Y be an object whose underlying

graded module is Y = Pi ⊕ ΣP ′
0 ⊕ Σ2P ′

1 ⊕ . . . ⊕ Σm+2P ′
m+1. We endow Y with a degree

1 graded endomorphism dint + δY , where dint is the same notation as in Definition 4.4.8.
The columns of δY have the following two types: (α, 0, . . . ,−yred(α, v, u), . . . , 0)t, and
(ti, . . . ,−a∗, . . . , (−1)|b||b∗|b, . . . , 0)t for the last column. Here α is an arrow in Q

V , while
a is an arrow in Q and b is an arrow in Q

V \ Q. Here yred(α, v, u) is obtained from the
path y(α, v, u) = βs . . . β1 (this notation is defined just before Remark 4.4.4) by removing
the factor βs. The ordering of the elements in each column is determined by the ordering
of Y .

Let f : Y → X be a map constructed as the diagonal matrix whose elements are
all arrows in Q̃V

1 with target at i, together with ei as the first element. Moreover, we
require that the ordering of these arrows is determined by Y (hence also by X), that is,
the components of f are of the form

fρ : Σ|ρ|+1Ps(ρ) −→ ΣρPs(ρ), u 7→ ρu.

It is not hard to check the identity f(dint + δY ) = dXf. Hence, the morphism f is an
isomorphism in C(Π), and the map dint + δY makes the object Y to be a dg module which
is minimal perfect. Therefore, the dg module Y is a minimal cofibrant resolution of the
simple module Si.

In the third part of this section, we show that when there are no loops of Q at vertex i,
the truncations of the minimal cofibrant resolution Y of the simple module Si produce RAt

and LAt (0 ≤ t ≤ m + 1) obtained from the P -indecomposable Pi by iterated mutations.
If we write M for the dg module Π/Pi, then the dg modules P ′

j (0 ≤ j ≤ m) appearing
in Y lie in addM . Let ε≤tY be the submodule of Y with the inherited differential whose
underlying graded module is the direct sum of those summands of Y with copies of shift
≤ t. Let ε≥t+1Y be the quotient module Y/(ε≤tY ). Notice that ε≤tY is a truncation of
Y for the canonical weight structure on perΠ, cf. Bondarko [15], Keller-Nicolás [58].
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Proposition 4.4.10. Let Π be a good completed deformed preprojective dg algebra Π̂(Q,m+
2,W ) and i a vertex of Q. Assume that there are no loops of Q at vertex i. Then the
following two isomorphisms

Σ−tε≤tY ' RAt and Σ−t−1ε≥t+1Y ' LAm+1−t

hold in the derived category D := D(Π) for each integer 0 ≤ t ≤ m + 1.

Proof. We only consider the first isomorphism. Then the second one can be obtained
dually. For arrows of Q

V of degree −j ending at vertex i, we write αj ; for the symbols
−yred(α, v, u) of degree −j, we simply write −yj

red, and for morphisms f of degree −j, we
write fj , where 0 ≤ j ≤ m. Moreover, we use the notation [x] to denote a matrix whose
entries x have the same ‘type’ (in some obvious sense).

Clearly, when t = 0, we have that ε≤0Y = Pi = RA0.
When t = 1, we have the following isomorphisms

Σ−1ε≤1Y ' (Σ−1Pi ⊕ P ′
0,

(
dΣ−1Pi

−[α0]
0 dP ′0

)
) ' Σ−1cone(P ′

0
h(1)−→ Pi),

where each component of h(1)(= [α0]) is the left multiplication by some α0. Since W is
reduced, the left multiplication by α0 is nonzero in the space HomD(P ′

0, Pi). Moreover,
only the trivial paths ei have zero degree, and there are no loops of Q

V of degree zero
at vertex i. It follows that h(1) is a minimal right (addM)-approximation of Pi. Then
Σ−1ε≤1Y and RA1 are isomorphic in D.

In general, assume that Σ−tε≤tY ' RAt (1 ≤ t ≤ m). We will show that

Σ−t−1ε≤t+1Y ' RAt+1.

First we have the following isomorphism

Σ−t−1ε≤t+1Y ' (Σ−t−1Pi ⊕ Σ−tP ′
0 ⊕ . . .⊕ P ′

t ,




dΣ−t−1Pi
(−1)t+1[α0] . . . (−1)t+1[αt−1] (−1)t+1[αt]

0 dΣ−tP ′0 . . . (−1)t[yt−2
red ] (−1)t[yt−1

red ]
. . . . . .

0 0 . . . dΣ−1P ′t−1
(−1)t[y0

red]
0 0 . . . 0 dP ′t




)

' Σ−1cone(P ′
t

h(t+1)−→ RAt),

where h(t+1) = ((−1)t[αt], (−1)t−1[yt−1
red ], . . . , (−1)t−1[y0

red])
t. Each column of h(t+1) is

a nonzero morphism in HomD(P ′
t , RAt), since the superpotential W is reduced. Oth-

erwise, the arrow αt will be a linear combination of paths of length ≥ 2. It follows
that h(t+1) is right minimal. Let L be an arbitrary indecomposable object in addA and
f = (ft, [ft−1], . . . , [f1], [f0])t an arbitrary morphism in HomD(L,RAt). Then the vanish-
ing of d(f) implies that d(ft) = −[α0][ft−1]− . . .− [αt−2][f1]− [αt−1][f0]. Since there are
no loops of Q

V of degree −t at vertex i, the map ft which is homogeneous of degree −t is
a linear combination of the following forms:

(i) ft = αtg0, where |g0| = 0. In this case, the differential

d(ft) = d(αtg0) = d(αt)g0 = [α0][yt−1
red ]g0 + . . . + [αt−1][y0

red]g0,
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which implies that [fr] is equal to −[yr
red]g0 (0 ≤ r ≤ t− 1). Then the equalities

f =




ft

[ft−1]
. . .
[f1]
[f0]




=




αtg0

−[yt−1
red ]g0

. . .
−[y1

red]g0

−[y0
red]g0




=




(−1)tαt

(−1)t−1[yt−1
red ]

. . .
(−1)t−1[y1

red]
(−1)t−1[y0

red]




(−1)tg0.

hold. Thus, the morphism f factors through h(t+1).
(ii) ft = αrgt−r, where |gt−r| = r − t (0 ≤ r ≤ t− 1). In these cases, the differentials

d(ft) = d(αr)gt−r + (−1)rαrd(gt−r) =
[α0][yr−1

red ]gt−r + . . . + [αr−1][y0
red]gt−r + (−1)rαrd(gt−r),

which implies that

[ft−1] = −[yr−1
red ]gt−r , . . . , [ft−r] = −[y0

red]gt−r and

[ft−r−1] = (−1)r+1d(gt−r).

Then we have that




ft

[ft−1]
. . .
[f1]
[f0]




=




αrgt−r

−[yr−1
red ]gt−r

. . .
−[y0

red]gt−r

(−1)r+1d(gt−r)
0

. . .
0




= dRAt




0
0

. . .
0

(−1)tgt−r

0
. . .
0




+




0
0

. . .
0

(−1)tgt−r

0
. . .
0




dL

is a zero element in HomD(L,RAt). Therefore, the morphism h(t+1) is a minimal right
(addA)-approximation of RAt (1 ≤ t ≤ m). Hence, the isomorphism Σ−t−1ε≤t+1Y '
RAt+1 holds.

We further assume that the zeroth homology H0Π is finite-dimensional. Then the dg
algebra Π satisfies Assumptions 4.2.1 and moreover it is strongly (m + 2)-Calabi-Yau.

The simple module Si is zero in the generalized m-cluster category CΠ = perΠ/Dfd(Π),
so its corresponding minimal cofibrant resolution Y also becomes zero in CΠ. Taking
truncations of Y , we obtain m + 2 triangles in CΠ

π(ε≤tY ) −→ 0 −→ π(ε≥t+1Y ) −→ Σπ(ε≤tY ), 0 ≤ t ≤ m + 1,

where π : perΠ → CΠ is the canonical projection functor. Therefore, the following theorem
holds:

Theorem 4.4.11. Under the assumptions in Proposition 4.4.10 and the assumption that
H0Π is finite-dimensional, the image of RAt is isomorphic to the image of LAm+1−t in
the generalized m-cluster category CΠ for each integer 0 ≤ t ≤ m + 1.

Proof. The following isomorphisms

π(RAt) ' π(Σ−tε≤tY ) ' π(Σ−t−1ε≥t+1Y ) ' π(LAm+1−t)

are true in CΠ for all integers 0 ≤ t ≤ m + 1.
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In the presence of loops, the objects RAt and LAr do not always satisfy the relations
in Theorem 4.4.11. See the following example.

Example 4.4.12. Suppose that m is 2. Let Q be the quiver whose vertex set Q0 has
only one vertex ‘•’ and whose arrow set Q1 has two loops α and β of degree −1. Then the
completed deformed preprojective dg algebra Π = Π̂(Q, 4, 0) has the underlying graded
quiver as follows

Q̃V : •

α

½½
βeet 99

with |α| = |β| = −1 and |t| = −3. The differential takes the following values

d(α) = 0 = d(β), d(t) = 2α2 + 2β2.

The algebra Π is an indecomposable object in the derived category D(Π). Let P = Π.
Then we have the equality Π = P ⊕M , where M = 0. Then LAr is isomorphic to ΣrP
and RAr is isomorphic to Σ−rP for all r ≥ 0.

The zeroth homology H0Π is one-dimensional and generated by the trivial path e•.
Let CΠ be the generalized 2-cluster category. We claim that the image of RA1 in CΠ is
not isomorphic to the image of LA2. Otherwise, assume that π(RA1) is isomorphic to
π(LA2). Then the following isomorphisms hold

HomCΠ(π(LA2),Σπ(LA2)) ' HomCΠ(π(LA2),Σπ(RA1))

' HomCΠ(Σ2P, Σπ(Σ−1P )) ' HomCΠ(Σ2P, P )

' HomD(Π)(Σ
2P, P ) ' H−2Π.

The left end term of these isomorphisms vanishes since π(LA2) is a 2-cluster tilting object,
while the right end term is a 3-dimensional space whose basis is {α2, αβ, βα}. Therefore,
we obtain a contradiction.

4.5 Periodicity property
Lemma 4.5.1. Let A be a dg algebra satisfying Assumptions 4.2.1. Let x and y be two
integers satisfying x ≤ y + m + 1. Suppose that the object X lies in D≤x ∩ perA and
the object Y lies in ⊥D≤y ∩ perA. Then the quotient functor π : perA → CA induces an
isomorphism

HomD(X, Y ) ' HomCA
(π(X), π(Y )).

Proof. This proof is quite similar to the proof of Lemma 2.9 given in [70].
First, we show the injectivity.
Assume that f : X → Y is a morphism in D whose image in CA is zero. It follows that

f factors through some N in Dfd(A). Let f = hg. Consider the following diagram

X

||

g

ÂÂ@
@@

@@
@@

@
f // Y

τ≤xN // N //

h
??ÄÄÄÄÄÄÄÄ

τ≥x+1N // Σ(τ≤xN).
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We have that g factors through τ≤xN because X ∈ D≤x and the space HomD(D≤x, τ≥x+1N)
vanishes.

Now since τ≤xN is still in Dfd(A), by the Calabi-Yau property, the following isomor-
phism

DHomD(τ≤xN, Y ) ' HomD(Y, Σm+2(τ≤xN))

holds. Since Σm+2(τ≤xN) belongs to D≤x−m−2(⊆ D≤y−1), the right hand side of the above
isomorphism is zero. Therefore, the morphism f is zero in the derived category D.

Second, we show the surjectivity.
Consider an arbitrary fraction s−1f in CA

X
f

ÃÃA
AA

AA
AA

Y
s

~~~~
~~

~~
~

U
r

~~~~
~~

~~
~~

N

where the cone N of s is in Dfd(A). Now look at the following diagram

X

f $$HH
HH

HH
HH

HH
w // Y

s

²²

v

%%JJJJJJJJJJJ

U g
//

r

²²

Z

²²
τ≤xN // N

πx+1 //

u

²²

τ≥x+1N //

hzz

Σ(τ≤xN)

ΣY.

By the Calabi-Yau property, the space HomD(τ≤xN, ΣY ) is isomorphic to the space
DHomD(Y, Σm+1(τ≤xN)), which is zero since x−m−1 ≤ y. Thus, there exists a morphism
h such that u = h ◦ πx+1. Now we embed h into a triangle in D as follows

Y
v−→ Z −→ τ≥x+1N

h−→ ΣY.

It follows that the morphism v factors through s by some morphism g. Then we can get
a new fraction

X

g◦f ÃÃ@
@@

@@
@@

Y
v

ÄÄ~~
~~

~~
~

Z

where the cone of v is τ≥x+1N(∈ Dfd(A)). This fraction is equal to the one we start with
because

v−1(g ◦ f) = (g ◦ s)−1(g ◦ f) ∼ s−1f.

Moreover, since the space HomD(X, τ≥x+1N) vanishes, there exists a morphism w : X → Y
such that g ◦ f = v ◦ w. Therefore, the fraction above is exactly the image of w in
HomD(X, Y ) under the quotient functor π.
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Note that in the assumptions of the above lemma, we do not necessarily suppose that
the objects X and Y lie in some shifts of the fundamental domain.

A special case of Lemma 4.5.1 is that, if X lies in D≤m ∩ perA, then the quotient
functor π : perA → CA induces an isomorphism

HomD(X, RAt) ' HomCA
(π(X), π(RAt))

for any nonnegative integer t, where RAt belongs to ⊥D≤−1.

Theorem 4.5.2. Under the assumptions of Theorem 4.4.11, for each positive integer t,
1) the image of RAt is isomorphic to the image of RAt(mod m+1) in CΠ,
2) the image of LAt is isomorphic to the image of LAt(mod m+1) in CΠ.

Proof. We only show the first statement. Then the second one can be obtained similarly.
Following Theorem 4.4.11, the image of RAm+1 in CΠ is isomorphic to P , which is RA0

by definition. Let us denote ‘t (mod m + 1)’ by t. We prove the statement by induction.
Assume that the image of RAt is isomorphic to the image of RAt in CΠ. Consider the

following two triangles in D(Π)

RAt+1 −→ A(t+1) f (t+1)

−→ RAt −→ ΣRAt+1,

RAt+1 −→ A(t+1) f (t+1)

−→ RAt −→ ΣRAt+1,

and also consider their images in CΠ. By Lemma 4.5.1, the isomorphism

HomD(Π)(L,RAt) ' HomCΠ(L, π(RAt))

holds for any object L ∈ addM and any nonnegative integer t. Hence, the images π(f (t+1))
and π(f (t+1)) are minimal right (addM)-approximations of π(RAt) and π(RAt) in CΠ,
respectively. By hypothesis, π(RAt) is isomorphic to π(RAt). Therefore, the objects
A(t+1) and A(t+1) are isomorphic, and π(RAt+1) is isomorphic to π(RAt+1) in CΠ. This
completes the statement.

Remark 4.5.3. Section 10 in [48] gave a class of (2n + 1)-Calabi-Yau (only for even
integers 2n, not for all integers m ≥ 2) triangulated categories (arising from certain Cohen-
Macaulay rings) which contain infinitely many indecomposable 2n-cluster tilting objects.

In the following, for every integer m ≥ 2, we construct an (m + 1)-Calabi-Yau trian-
gulated category which contains infinitely many indecomposable m-cluster tilting objects.

When m = 2, we use the same quiver Q as in Example 4.4.12.
When m > 2, let Q be the quiver consisting of one vertex • and one loop α of degree

−1.
Let Π = Π̂(Q,m+2, 0) be the associated completed deformed preprojective dg algebra.

Clearly, Π is an indecomposable object in the derived category D(Π), the zeroth homology
H0Π is one-dimensional and the path αs is a nonzero element in the homology H−sΠ
(s ∈ N∗). Let CΠ be the generalized m-cluster category and π : perΠ → CΠ the canonical
projection functor. Set P = Π. Then Π = P ⊕ 0. For each integer t ≥ 0, the object LAt

is isomorphic to ΣtP and the object RAt is isomorphic to Σ−tP . Now we claim that

1) For any two integers r > t ≥ 0, the object π(RAr) is not isomorphic to π(RAt) in
CΠ, and the object π(LAr) is not isomorphic to π(LAt) in CΠ.
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2) For any two integers r1, r2 > 0, the objects π(RAr1) and π(LAr2) are not isomorphic
in CΠ.

Otherwise, similarly as in Example 4.4.12, the following contradictions will appear

(0 =) HomCΠ(π(RAt),Σπ(RAt)) = HomCΠ(π(RAt),Σπ(RAr))

' HomCΠ(Σ−tP, Σ1−rP ) ' HomCΠ(P, Σt−r+1P )

' HomD(Π)(P, Σt−r+1P ) ' Ht−r+1Π( 6= 0);

(0 =) HomCΠ(π(LAr),Σπ(LAr)) = HomCΠ(π(LAr),Σπ(LAt))

' HomCΠ(ΣrP, Σt+1P ) ' HomCΠ(P, Σt−r+1P )

' HomD(Π)(P, Σt−r+1P ) ' Ht−r+1Π( 6= 0);

(0 =) HomCΠ(π(LAr2),Σπ(LAr2)) = HomCΠ(π(LAr2),Σπ(RAr1))

' HomCΠ(Σr2P, Σ1−r1P ) ' HomCΠ(P, Σ1−r1−r2P )

' HomD(Π)(P, Σ1−r1−r2P ) ' H1−r1−r2Π( 6= 0);

where the left end terms become zero, the right end terms are nonzero since t− r + 1 ≤ 0
and 1− r1 − r2 < 0, and the isomorphism

HomCΠ(P, Σ−sP ) ' HomD(Π)(P, Σ−sP )

holds for any s ∈ N following Lemma 4.5.1.
Therefore, the (m + 1)-Calabi-Yau triangulated category CΠ contains infinitely many

m-cluster tilting objects, and in the presence of loops, the objects π(RAt) and π(LAr) do
not satisfy the relations in Theorem 4.4.11 and Theorem 4.5.2.

4.6 AR (m + 3)-angles related to P -indecomposables
Let T be an additive Krull-Schmidt category. We denote by JT the Jacobson radical [6]
of T . Let f ∈ T (X, Y ) be a morphism. Then f is called (in [48]) a sink map of Y ∈ T if
f is right minimal, f ∈ JT , and

T (−, X)
f ·−→ JT (−, Y ) −→ 0

is exact as functors on T . The definition of source maps is given dually.
Let n be a positive integer. Given n triangles in a triangulated category,

Xi+1
bi+1→ Bi

ai→ Xi → ΣXi+1, 0 ≤ i < n,

the complex
Xn

bn→ Bn−1
bn−1an−1−→ Bn−2 → . . . → B1

b1a1−→ B0
a0→ X0

is called (in [48]) an (n + 2)-angle.

Definition 4.6.1 ([48]). Let H be an m-cluster tilting object in a Krull-Schmidt triangu-
lated category. We call an (m + 3)-angle with X0, Xm+1 and all Bi (0 ≤ i ≤ m) in addH
an AR (m + 3)-angle if the following conditions are satisfied
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a) a0 is a sink map of X0 in addH and bm+1 is a source map of Xm+1 in addH, and

b) ai (resp. bi) is a minimal right (resp. left) (addH)-approximation of Xi for each
integer 1 ≤ i ≤ m.

Remark 4.6.2. An AR (m+3)-angle with right term X0 (resp. left term Xm+1) depends
only on X0 (resp. Xm+1) and is unique up to isomorphism as a complex.

We will use the higher AR theory to show the following theorem, which gives a more
explicit criterion than the general Theorem 5.8 in [48] for the category CΠ.

Theorem 4.6.3. Let Π be a good completed deformed preprojective dg algebra Π̂(Q,m +
2,W ) and i a vertex of Q. Assume that the zeroth homology H0Π is finite-dimensional and
there are no loops of Q at vertex i. Then the almost complete m-cluster tilting P -object
Π/eiΠ has exactly m + 1 complements in the generalized m-cluster category CΠ.

Proof. Set RA0 = Pi = eiΠ and M = Π/eiΠ. Section 4 gives us a construction of iterated
mutations RAt of Pi in the derived category D(Π), that is, the morphism h(1) : P ′

0 → Pi is a
minimal right (addM)-approximation of Pi, and morphisms h(t+1) : P ′

t → RAt (1 ≤ t ≤ m)
are minimal right (addA)-approximations of RAt with P ′

t in addM . Let A (resp. M)
denote the subcategory addπ(Π) (resp. addπ(M)) in the generalized m-cluster category
CΠ.

Step 1. Since P ′
0, Pi and M are in the fundamental domain, the morphism h(1) can be

viewed as a minimal right M-approximation in CΠ, that is, the sequence

A(−, P ′
0)|M

h
(1)
∗−→ A(−, Pi)|M = JA(−, Pi)|M → 0,

is exact as functors on M. Since there are no loops of Q
V of degree zero at vertex i,

the Jacobson radical of EndA(Pi) (' EndD(Π)(Pi)) consists of combinations of cyclic paths
p = a1 . . . ar (r ≥ 2) of Q

V of degree zero. The path p factors though es(a1)Π and factors
through h(1). Therefore, we have an exact sequence

A(Pi, P
′
0)

h
(1)
∗−→ radEndA(Pi) −→ 0.

Thus, the morphism h(1) is a sink map in the subcategory A.
Step 2. The morphisms h(t+1) (1 ≤ t ≤ m) are minimal right (addA)-approximations

of RAt with P ′
t in addM . Since the objects RAt(1 ≤ t ≤ m) and P ′

t lie in the shift Σ−mF
of the fundamental domain by Proposition 4.2.8, the images of h(t+1) are minimal right
A-approximations in CΠ.

Step 3. Consider the morphisms α(t) in the triangles of constructing RAt in D(Π)

Σ−1RAt−1 −→ RAt
α(t)−→ P ′

t−1
h(t)−→ RAt−1, 1 ≤ t ≤ m.

We already know that the maps α(t) are minimal left (addM)-approximations in D(Π).
Now applying the functor HomD(Π)(−, Pi) to the above triangles, we obtain long exact
sequences

. . . → (P ′
t−1, Pi)

α(t)∗−→ (RAt, Pi) −→ (Σ−1RAt−1, Pi) → . . . ,

where (, ) denotes HomD(Π)(, ). The terms HomD(Π)(Σ−1RAt−1, Pi) are zero since all
RAt−1 lie in ⊥D(Π)≤−1. Hence, the morphisms α(t) are minimal left (addA)-approximations
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in D(Π). Since the objects RAt(1 ≤ t ≤ m) and P ′
t lie in the shift Σ−mF , the images of

α(t) are minimal left A-approximations in CΠ.
Step 4. Consider the following two triangles in D(Π)

RAm+1
α(m+1)−→ P ′

m
h(m+1)−→ RAm −→ ΣRAm+1,

Pi
g(1)

−→ P ′
m

β(1)

−→ LA1 −→ ΣPi.

Since the objects Pi, P ′
m and LA1 are in the fundamental domain F , the second triangle

can also be viewed as a triangle in CΠ and the morphism β(1) is a minimal right M-
approximation of LA1. Note that the objects RAm and P ′

m belong to Σ−mF . Hence, the
image of the first triangle

π(RAm+1)
π(α(m+1))−→ P ′

m
π(h(m+1))−→ π(RAm) −→ Σπ(RAm+1)

is a triangle in CΠ with π(h(m+1)) a minimal right M-approximation of π(RAm). By
Theorem 4.4.11, the image of RAm is isomorphic to the image of LA1 in CΠ. Thus, the
images of these two triangles in CΠ are isomorphic. We can also check that g(1) is a source
map in A as Step 1. Therefore, the image π(α(m+1)) is also a source map in A with
π(RAm+1) isomorphic to Pi in CΠ.

Step 5. Now we form the following (m + 3)-angle in CΠ

Pi = π(RAm+1)
ϕm+1 // P ′

m

ϕm // P ′
m−1

// . . . // P ′
1

ϕ1 // P ′
0

ϕ0 // Pi,

where ϕ0 is equal to π(h(1)), the morphism ϕt (1 ≤ t ≤ m) is the composition π(α(t))π(h(t+1)),
and ϕm+1 is equal to π(α(m+1)). From the above four steps, we know that ϕ0 is a sink
map in A, and ϕm+1 is a source map in A. As a consequence, this (m + 3)-angle is the
AR (m + 3)-angle determined by Pi. Since the indecomposable object Pi does not belong
to add(⊕m

t=0P
′
t), following Theorem 5.8 in [48], the almost complete m-cluster tilting P -

object Π/eiΠ has exactly m + 1 complements eiΠ, π(RA1), . . . , π(RAm) in CΠ. The proof
is completed.

4.7 Liftable almost complete m-cluster tilting objects
for strongly (m + 2)-Calabi-Yau case

Keep the assumptions as in Theorem 4.6.3. Let Π = Π̂(Q,m + 2,W ). Let Y be a liftable
almost complete m-cluster tilting object in the generalized m-cluster category CΠ. Assume
that Z is a basic cofibrant silting object in perΠ such that π(Z/Z ′) is isomorphic to Y ,
where π : perΠ → CΠ is the canonical projection and Z ′ is an indecomposable direct
summand of Z. Let A be the dg endomorphism algebra Hom•

Π(Z, Z) and F the left derived
functor − L⊗A Z. From the proof of Theorem 4.3.3, we know that F is a Morita equivalence
from D(A) to D(Π) and A satisfies Assumptions 4.2.1. We denote the truncated dg
subalgebra τ≤0A by E. Since A has its homology concentrated in nonpositive degrees, the
canonical inclusion E ↪→ A is a quasi-isomorphism. Then the left derived functor − L⊗E A
is a Morita equivalence from D(E) to D(A).
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Theorem 4.7.1 ([51]). Let l be a commutative ring. Let B and B′ be two dg l-algebras
and X a dg B-B′-bimodule which is cofibrant over B. Assume that B and B′ are flat as
dg l-modules and

− L⊗B′ X : D(B′) → D(B)

is an equivalence. Then the dg algebras B and B′ have isomorphic cyclic homology and
isomorphic Hochschild homology.

A corollary of Theorem 4.7.1 is that B′ is strongly (m + 2)-Calabi-Yau if and only if
so is B.

The object Z is canonically an k-module, and the dg algebras A and E are k-algebras.
Thus, the derived equivalent dg algebras Π, A and E are flat as dg k-modules. Following
Remark 4.4.4 and Theorem 4.7.1, the dg algebras A and E are also strongly (m + 2)-
Calabi-Yau.

We will show that the dg algebra E satisfies the assumption in Theorem 4.4.7, that
is E lies in PCAlgc(l′) for some finite-dimensional separable commutative k-algebra l′.
In fact, l′ =

∏
|Z|k, where |Z| is the number of indecomposable direct summands of Z in

perΠ. Furthermore, from the following lemma, we can deduce that l′ = l.

Lemma 4.7.2. Suppose that B is a dg algebra with positive homologies being zero. Then
all basic cofibrant silting objects have the same number of indecomposable direct summands
in perB.

Proof. The triangulated category perB contains an additive subcategory B := addB. Since
the dg algebra B has its homology concentrated in nonpositive degrees, it follows that

HomperB(B,ΣpB) = 0, p > 0.

Since the category perB, which consists of the compact objects in D(B), and the category
addB are both idempotent split, by Proposition 5.3.3 of [15], the isomorphism

K0(perB) ' K0(addB)

holds, where K0(−) denotes the Grothendieck group.
Let Z be any basic cofibrant silting object in perB and B′ its dg endomorphism

algebra Hom•
B(Z, Z). Then B′ has its homology concentrated in nonpositive degrees and

perB′ is triangle equivalent to perB. Therefore, we have K0(perB′) ' K0(addB′) and
K0(perB′) ' K0(perB). As a consequence, the following isomorphisms hold

K0(addB) ' K0(addB′) ' K0(addZ).

Thus, any basic cofibrant silting object in perB has the same number of indecomposable
direct summands as that of the dg algebra B itself.

When forgetting the grading, the dg algebra E becomes to be Eu := Z0A⊕ (
∏

r<0A
r),

where Z0A(= HomC(Π)(Z, Z)) consists of the zeroth cycles of A. For any x ∈ ∏
r<0A

r,
the element 1 + x clearly has an inverse element. It follows that

∏
r<0A

r is contained in
rad(Eu). We have the following canonical short exact sequence

0 → B0A → Z0A
p→ H0A → 0,

where B0A is the two-sided ideal of the algebra Z0A consisting of the zeroth boundaries
of A.

Following from Lemma 4.4.9, without loss of generality, we can assume that the basic
silting object Z is a minimal perfect dg Π-module.
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Lemma 4.7.3. Keep the above notation and suppose that Z is a minimal perfect dg Π-
module. Then B0A lies in the radical of Z0A.

Proof. Let f be an element in B0A. Then f is of the form dZh + hdZ for some degree
−1 morphism h : Z → Z. Since Z is minimal perfect, the entries of f lie in the ideal m

generated by the arrows of Q̃V . Then for any morphism g : Z → Z, the morphism 1Z−gf
admits an inverse 1Z + gf + (gf)2 + . . .. Similarly for the morphism 1Z − fg. It follows
that f lies in the radical of the algebra Z0A. This completes the proof.

The epimorphism p in the above short exact sequence induces an epimorphism

p : Z0A/rad(Z0A) → H0A/rad(H0A).

Since B0A lies in the radical of Z0A, the epimorphism p is an isomorphism. Therefore,
the following isomorphisms

Eu/rad(Eu) ' Z0A/rad(Z0A) ' H0A/rad(H0A)

are true. Note that perΠ is Krull-Schmidt and Hom-finite. Since the algebra Ei :=
EndperΠ(Zi) is local and k is algebraically closed, the quotient Ei/rad(Ei) is isomorphic
to k. Then we have that

H0A/rad(H0A) ' EndperΠ(Z)/rad(EndperΠ(Z))

'
∏

|Z|Ei/rad(Ei) '
∏

|Z|k (= l).

Hence, the dg algebra E lies in PCAlgc(l). Therefore, E is quasi-isomorphic to some good
completed deformed preprojective dg algebra Π̂(Q′,m+2,W ′) (denoted by Π′). Moreover,
H0Π′ is equal to H0A which is finite-dimensional.

The following diagram

perΠ′
−L⊗Π′E//

²²

perE
−L⊗EA//

²²

perA
−L⊗AZ//

²²

perΠ

²²
CΠ′ // CE

// CA
// CΠ

is commutative, where each functor in the rows is an equivalence and the functor in each
column is the canonical projection. The preimage of Z in perΠ′, under the equivalence
F given by the composition of the functors in the top row, is Π′. Let Π′0 = ejΠ′ be the
P -indecomposable dg Π′-module such that F (Π′0) = Z ′ in perΠ, where j is a vertex of Q′.
Assume that there are no loops of Q′ at vertex j. It follows from Theorem 4.6.3 that the
almost complete m-cluster tilting P -object Π′/Π′0 has exactly m + 1 complements in CΠ′ .
Note that the image of Π′/Π′0 in CΠ, under the equivalence given by the composition of
the functors in the bottom row, is Y . Therefore, the liftable almost complete m-cluster
tilting object Y has exactly m + 1 complements in CΠ.

As a conclusion, we write down the following theorem.

Theorem 4.7.4. Let Π be a good completed deformed preprojective dg algebra Π̂(Q,m +
2,W ) whose zeroth homology H0Π is finite-dimensional. Let Z be a basic silting object in
perΠ which is minimal perfect and cofibrant. Denote by E the dg algebra τ≤0(Hom•

Π(Z,Z)).
Then
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1) E is quasi-isomorphic to some good completed deformed preprojective dg algebra
Π′ = Π̂(Q′,m + 2,W ′), where the quiver Q′ has the same number of vertices as Q
and H0Π′ is finite-dimensional;

2) let Y be a liftable almost complete m-cluster tilting object of the form π(Z/Z ′) in CΠ

for some indecomposable direct summand Z ′ of Z. If we further assume that there
are no loops at the vertex j of Q′, where ejΠ′

L⊗Π′ Z = Z ′, then Y has exactly m + 1
complements in CΠ.

Here we would like to point out a special case of the above theorem, namely m = 1 and
Z = LA

(k)
1 ⊕Π/ekΠ with respect to some vertex k of Q. Let (Q?,W ?) denote the (reduced)

mutation µk(Q,W ) defined in [31] of the quiver with potential (Q,W ) at vertex k. Let
A be the dg endomorphism algebra Hom•

Π(Z, Z) and Π? the good completed deformed
preprojective dg algebra Π̂(Q?,m + 2,W ?). By [63], there is a canonical morphism from
Π? to A. Define three functors as follows:

F = − L⊗Π? Z, F1 = − L⊗Π? A, F2 = − L⊗A Z.

Clearly, we have that F = F2F1 and F2 is a quasi-inverse equivalence. It was shown in
[63] that F is a quasi-inverse equivalence. The following isomorphisms

Hn(Π?) ' HomD(Π?)(Π
?,ΣnΠ?) ' HomD(A)(A,ΣnA) ' HnA

become true, which implies that Π? and A are quasi-isomorphic. Therefore, the quiver
with potential (Q′,W ′) appearing in Theorem 4.7.4 1) for this special case can be chosen
as µk(Q,W ).

As the end part of this section, we state a ‘reasonable’ conjecture about the non-loop
assumption in the above theorem for completed deformed preprojective dg algebras.

Definition 4.7.5. Let r be a positive integer. An algebra A ∈ PCAlgc(l) is said to be
r-rigid if

HH0(A) ' l, and HHp(A) = 0 (1 ≤ p ≤ r − 1),

where HH∗(A) is the pseudo-compact version of the Hochschild homology of the dg algebra
A.

Remark 4.7.6. For completed Ginzburg algebras associated with quivers with potentials,
our definition of 1-rigidity coincides with the definition of rigidity in [31]. Proposition 8.1
in [31] states that any rigid reduced quiver with potential is 2-acyclic. Then no loops will
be produced following their mutation rule. Although we do not know whether the quiver
Q′ related to such a silting object as in Theorem 4.7.4 can be obtained from mutation
of quivers with potentials, we can still obtain that the quiver Q′ always does not contain
loops in the condition of 1-rigidity (see Corollary 4.7.9).

Proposition 4.7.7. The completed deformed preprojective dg algebras Π = Π̂(Q,m + 2, 0)
associated with acyclic quivers Q are m-rigid.

Proof. It is clear that the zeroth component Π0 of Π is just the finite-dimensional path
algebra kQ (denoted by B) and the (−p)th component of Π is zero for 1 ≤ p ≤ m − 1.
Thus, the Hochschild homology of Π is given by

HH0(Π) = B/[B,B] =
∏
|Q0|k,

HHp(Π) = HHp(B) = Ker(∂0
p)/Im(∂0

p+1) (1 ≤ p ≤ m− 1),
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where ∂0
p : B⊗k(p+1) → B⊗kp is the pth row differential of the uppermost row in the

Hochschild complex X := Π
L⊗Πe Π.

Since the path algebra kQ is of finite dimension and of finite global dimension and k
is algebraically closed, we have HHp(B) = 0 for all integers p > 0, cf. Proposition 2.5 of
[51]. It follows that the dg algebra Π̂(Q,m + 2, 0) is m-rigid.

Proposition 4.7.8. Let Π = Π̂(Q,m + 2,W ) be a good completed deformed preprojective
dg algebra and p a fixed integer in the segment [0,m]. Suppose the p-th Hochschild homology
of Π satisfies the isomorphism

HHp(Π) '
{ ∏

|Q0|k if p = 0,

0 if p 6= 0.

Then Q
V does not contain loops with zero differential and of degree −p.

Proof. Let a be a loop of Q
V at some vertex i with zero differential and of degree −p. The

element a lies in the rightmost column of the Hochschild complex X of Π. By assumption
the differential d(a) is zero, so a is an element in HHp(Π). Now we claim that a is a
nonzero element in HHp(Π).

First, the superpotential W is a linear combination of paths of length at least 3, so
d(Q̃V

1 ) ⊆ m2, where m is the two-sided ideal of Π generated by the arrows of Q̃V . Second,
it is obvious that the relation Im∂1 ∩ {loops of Q̃V } = ∅ holds. Therefore, the loop a can
not be written in the form

∑
d(γ) +

∑
∂1(u ⊗ v) for paths γ ∈ eimei and u, v paths of

Q̃V , which means that a is a nonzero element in HHp(Π).
Note that the trivial paths associated with the vertices of Q are nonzero elements in

HH0(Π). Hence, we get a contradiction to the isomorphism in the assumption. As a
result, the quiver Q

V does not contain loops with zero differential and of degree −p.

Corollary 4.7.9. Keep the notation as in Theorem 4.7.4 and let m = 1. Suppose that Π
is 1-rigid. Then the new quiver Q′ does not contain loops.

Proof. It follows from statement 1) in Theorem 4.7.4 that E is quasi-isomorphic to some
good completed deformed preprojective dg algebra Π′ = Π̂(Q′, 3,W ′). Then following
Theorem 4.7.1 and the analysis before Theorem 4.7.4, we can obtain that the dg algebras
Π and Π′ have isomorphic Hochschild homology. Therefore, the new dg algebra Π′ is also
1-rigid. Note that every arrow of Q′ has zero degree and thus has zero differential. Hence,
by Proposition 4.7.8 the quiver Q′ does not contain loops.

Conjecture 4.7.10. Let Π = Π̂(Q,m + 2,W ) be an m-rigid good completed deformed pre-
projective dg algebra whose zeroth homology H0Π is finite-dimensional. Then any liftable
almost complete m-cluster tilting object has exactly m + 1 complements in CΠ.

By the same procedure as in the proof of Corollary 4.7.9, we know that the good
completed deformed preprojective dg algebra Π′ = Π̂(Q′,m + 2,W ′) in Theorem 4.7.4 is
also m-rigid, and the new quiver Q′ does not contain loops of degree zero. It seems that
we would like to get a stronger result than Proposition 4.7.8, that is, m-rigidity implies
that Q′V does not contain loops (not only loops with zero differential). If this is true, then
it follows from statement 2) in Theorem 4.7.4 that any liftable almost complete m-cluster
tilting object has exactly m + 1 complements in CΠ.

If Conjecture 4.7.10 holds, then the m-rigidity property shown in Proposition 4.7.7
of the dg algebra Π = Π̂(Q,m + 2, 0) with Q an acyclic quiver implies that any liftable
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almost complete m-cluster tilting object in CΠ has exactly m + 1 complements. Later
Proposition 4.8.6 shows that any almost complete m-cluster tilting object in CΠ is liftable
in the ‘acyclic quiver’ case. Thus, on one hand, if Conjecture 4.7.10 holds, we can deduce a
common result both in [78] and [79], namely, any almost complete m-cluster tilting object
in the classical m-cluster category C(m)

Q has exactly m + 1 complements. On the other
hand, it follows from this common result for the classical m-cluster category C(m)

Q , which
is triangle equivalent to the corresponding generalized m-cluster category CΠ, that any
almost complete m-cluster tilting object in CΠ should have exactly m + 1 complements.

4.8 A long exact sequence and the acyclic case
Let A be a dg algebra satisfying Assumptions 4.2.1. In the first part of this section, we
give a long exact sequence to see the relations between extension spaces in generalized
m-cluster categories CA and extension spaces in derived categories D(= D(A)). If the
extension spaces between two objects of CA are zero, in some cases, we can deduce that
the extension spaces between these two objects are also zero in the derived category D.
Proposition 4.8.1. Suppose that X and Y are two objects in the fundamental domain
F . Then there is a long exact sequence

0 → Ext1D(X, Y ) → Ext1CA
(X, Y ) → DExtm

D (Y, X)

→ Ext2D(X, Y ) → Ext2CA
(X, Y ) → DExtm−1

D (Y, X)

→ · · · · · · →
Extm

D (X, Y ) → Extm
CA

(X, Y ) → DExt1D(Y, X) → 0.

Proof. We have the canonical triangle

τ≤−mX → X → τ≥1−mX → Σ(τ≤−mX),

which yields the long exact sequence

· · · → (Σ−t(τ≥1−mX), Y ) → (Σ−tX, Y ) → (Σ−t(τ≤−mX), Y ) → · · · , t ∈ Z,

where (, ) denotes HomD(, ).
Step 1. The isomorphism

HomD(Σ−t(τ≥1−mX), Y ) ' DHomD(Y, Σm+2−tX)

holds when t ≤ m + 1.
By the Calabi-Yau property, there holds the isomorphism

HomD(Σ−t(τ≥1−mX), Y ) ' DHomD(Y, Σm+2−t(τ≥1−mX)), t ∈ Z. (8.1).

Applying the functor HomD(Y,−) to the triangle which we start with, we obtain the exact
sequence

HomD(Y, Σm+2−t(τ≤−mX)) → HomD(Y, Σm+2−tX) →

HomD(Y, Σm+2−t(τ≥1−mX)) → HomD(Y, Σm+3−t(τ≤−mX)).
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When t ≤ m + 1, we have that (−m) − (m + 2 − t) ≤ −m − 1. Then the objects
Σm+2−t(τ≤−mX) and Σm+3−t(τ≤−mX) belong to D≤−m−1. Note that Y is in ⊥D≤−m−1.
Therefore, the following isomorphism holds

HomD(Y, Σm+2−t(τ≥1−mX)) ' HomD(Y, Σm+2−tX). (8.2).

As a consequence, when t ≤ m + 1, together by (8.1) and (8.2), we have the isomorphism

HomD(Σ−t(τ≥1−mX), Y ) ' DHomD(Y,Σm+2−tX).

Moreover, if t ≤ 1, the object Σm+2−tX belongs toD≤−m−1, so the space HomD(Y, Σm+2−tX)
vanishes, and so does the space HomD(Σ−t(τ≥1−mX), Y ).

Step 2. When t ≤ m, we have the following isomorphism

HomD(Σ−t(τ≤−mX), Y ) ' HomCA
(πX, Σt(πY )).

Consider the triangles

τ≤s−1X → τ≤sX → Σ−s(HsX) → Σ(τ≤s−1X), s ∈ Z.

Applying the functor HomD(−, Y ) to these triangles, we can obtain the following long
exact sequences

· · · → (Σ−s−t(HsX), Y ) → (Σ−t(τ≤sX), Y ) →

(Σ−t(τ≤s−1X), Y ) → (Σ−s−t−1(HsX), Y ) → · · · ,

where (, ) denotes HomD(, ). Using the Calabi-Yau property, we have that

HomD(Σ−s−t(HsX), Y ) ' DHomD(Y, Σm+2−s−t(HsX)), t ∈ Z.

When t ≤ −s, the inequality m + 2 − s − t − 1 ≥ m + 1 holds. So the two objects
Σm+2−s−t(HsX) and Σm+2−s−t−1(HsX) belong to D≤−m−1. Therefore, we obtain that
the spaces HomD(Σ−s−t(HsX), Y ) and HomD(Σ−s−t−1(HsX), Y ) are zero, and the fol-
lowing isomorphism

HomD(Σ−t(τ≤sX), Y ) ' HomD(Σ−t(τ≤s−1X), Y )

holds. As a consequence, we can get the following isomorphisms

HomD(Σ−t(τ≤−tX), Y ) ' HomD(Σ−t(τ≤−t−1X), Y ) ' · · ·

' HomD(Σ−t(τ≤−mX), Y ), t ≤ m. (8.3).

Since the functor π : perA → CA induces an equivalence from ΣtF to C (Proposition 4.3.1
applies to shifted t-structure), the following bĳections

HomCA
(πX, Σt(πY )) ' HomCA

(π(τ≤−tX), π(ΣtY )) ' HomD(τ≤−tX, ΣtY ) (8.4)

hold. Hence, when t ≤ m, together by (8.3) and (8.4), we have the isomorphism

HomD(Σ−t(τ≤−mX), Y ) ' HomCA
(πX, Σt(πY )).
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Therefore, the long exact sequence at the beginning becomes

0 = HomD(Σ−1(τ≥1−mX), Y ) → Ext1D(X, Y ) → Ext1CA
(X, Y ) → DExtm

D (Y, X)

→ Ext2D(X, Y ) → Ext2CA
(X, Y ) → DExtm−1

D (Y, X)

→ · · · · · · →
Extm

D (X, Y ) → Extm
CA

(X, Y ) → DExt1D(Y, X) → HomD(Σ−m−1X, Y ) = 0.

This concludes the proof.

Remarks 4.8.2. 1) When m = 1, the long exact sequence in Proposition 4.8.1 becomes
the following short exact sequence (already appearing in the proof of Proposition 4.3.5)

0 → Ext1D(X, Y ) → Ext1CA
(X, Y ) → DExt1D(Y, X) → 0 (8.5),

which was presented in [2] for the Hom-finite 2-Calabi-Yau case, and also was presented
in [70] for the Jacobi-infinite 2-Calabi-Yau case.

2) If T is an object in the fundamental domain F satisfying

Exti
D(T, T ) = 0, i = 1, . . . , m,

then the long exact sequence in Proposition 4.8.1 implies that the spaces Exti
CA

(T, T ) also
vanish for integers 1 ≤ i ≤ m.

Suppose that X and Y are two objects in the fundamental domain. It is clear that
Exti

D(X, Y ) vanishes when i > m, since X belongs to F and ΣiY lies in D≤−m−1. Now
we assume that the spaces Exti

CA
(X, Y ) are zero for integers 1 ≤ i ≤ m. What about the

extension spaces Exti
D(X, Y ) in the derived category? Do they always vanish?

When m = 1, the short exact sequence (8.5) implies that the space Ext1D(X, Y ) van-
ishes.

When m > 1, we will give the answer for completed Ginzburg dg categories (the same
as completed deformed preprojective dg algebras in this case) arising from acyclic quivers.

Proposition 4.8.3. Let Q be an acyclic quiver. Let Γ be the completed Ginzburg dg
category Γ̂m+2(Q, 0) and CΓ the generalized m-cluster category. Suppose that X and Y are
two objects in the fundamental domain F which satisfy

Exti
CΓ(X, Y ) = 0, i = 1, . . . , m.

Then the extension spaces Exti
D(Γ)(X, Y ) vanish for all positive integers i.

Proof. Let B be the path algebra kQ and Ω the inverse dualizing complex RHomBe(B,Be).
Set Θ = Σm+1Ω. Then the (m + 2)-Calabi-Yau completion [56] of B is the tensor dg
category

Πm+2(B) = TB(Θ) = B ⊕Θ⊕ (Θ⊗B Θ)⊕ . . . .

Theorem 6.3 in [56] shows that Πm+2(B) is quasi-isomorphic to the completed Ginzburg
dg category Γ. Thus, we can write Γ as

Γ = B ⊕Θ⊕ (Θ
L⊗B Θ)⊕ . . . = ⊕p≥0Θ

L⊗Bp.

Let X ′, Y ′ be two objects in Dfd(B). The following isomorphisms hold
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HomD(Γ)(X ′ L⊗B Γ, Y ′ L⊗B Γ) ' HomD(B)(X ′, Y ′ L⊗B Γ|B)

' HomD(B)(X ′, Y ′ L⊗B (⊕p≥0Θ
L⊗Bp)) ' HomD(B)(X ′,⊕p≥0(Y ′ L⊗B Θ

L⊗Bp))

' ⊕p≥0HomD(B)(X ′, Y ′ L⊗B Θ
L⊗Bp).

By the proof in [54] of Lemma 4.2.3, the category Dfd(B) admits a Serre functor S whose

inverse is − L⊗B Ω. Therefore, the functor − L⊗B Θ is equal to the functor S−1Σm+1('
τ−1Σm), where τ is the Auslander-Reiten translation. As a consequence, we have that

HomD(Γ)(X
′ L⊗B Γ, Y ′ L⊗B Γ) ' ⊕p≥0HomDfd(B)(X

′, (τ−1Σm)pY ′).

Let C(m)
Q be the classical m-cluster category Dfd(B)/(τ−1Σm)Z. Consider the following

commutative diagram

Dfd(B)

πB

²²

−L⊗BΓ // perΓ

πΓ

²²
C(m)

Q
'

−L⊗BΓ // CΓ.

Under the equivalence, let X = X ′ L⊗B Γ and Y = Y ′ L⊗B Γ, so the vanishing of spaces
Exti

CΓ(X, Y ) implies that Exti

C(m)
Q

(X ′, Y ′) also vanish for integers 1 ≤ i ≤ m. Note that

Exti

C(m)
Q

(X ′, Y ′) ' ⊕p∈ZExti
Dfd(B)(X

′, (τ−1Σm)pY ′).

Hence, we obtain that

Exti
D(Γ)(X, Y ) ' ⊕p≥0Exti

Dfd(B)(X
′, (τ−1Σm)pY ′) = 0, 1 ≤ i≤m.

Let Q be an ordinary acyclic quiver and B the path algebra kQ. Let Γ be its completed
Ginzburg dg category Γ̂m+2(Q, 0). Let T be an m-cluster tilting object in C(m)

Q . Then T
is induced from an object T ′ (that is, T = π(T ′)) in the fundamental domain

Sm := S0
m ∨ ΣmB, where S0

m := modB ∨ Σ(modB) . . . ∨ Σm−1(modB).

Lemma 4.8.4 ([22]). The object T ′ is a partial silting object, that is,

HomDfd(B)(T
′,ΣiT ′) = 0, i > 0;

and T ′ is maximal with this property.

An object in Dfd(B) which satisfies the ‘maximal partial silting’ property as in Lemma
4.8.4 is called a ‘silting’ object in [22]. Next we will show that our definition for silting
object in perB coincides with their definition.

Lemma 4.8.5. Let U be a basic partial silting object in Dfd(B). Then U is maximal
partial silting if and only if U generates perB.



84 Chapter 4. Complements of almost complete m-cluster tilting objects

Proof. On one hand, assume that U is a basic partial silting object and generates perB.
By Lemma 4.7.2, the object U has the same number of indecomposable direct summands
as that of the dg algebra B itself. That is, U is a basic partial silting object with |Q0|
indecomposable direct summands. Following from Lemma 2.2 in [22], we obtain that U is
a maximal partial silting object.

On the other hand, assume that U is a maximal partial silting object in Dfd(B). We
decompose U into a direct sum Σk1U1 ⊕ . . .⊕ ΣkrUr such that each Ui lies in modB and
k1 < . . . < kr. Set U ′ = ⊕r

i=1Ui. It follows from Lemma 2.2 in [22] that the object U ′ can
be ordered to a complete exceptional sequence. Let C(U ′) be the smallest full subcategory
of modB which contains U ′ and is closed under extensions, kernels of epimorphisms, and
cokernels of monomorphisms. By Lemma 3 in [14], the subcategory C(U ′) is equal to
modB. As a consequence, the object U generates Dfd(B) which is equal to perB.

Since B is finite-dimensional and hereditary, the subcategory S0
m is contained in

⊥D(B)≤−m−1. The isomorphism

HomD(B)(Σ
mB,M) ' H−mM (M ∈ D(B))

implies that ΣmB is in ⊥D(B)≤−m−1. So Sm is contained in D(B)≤0 ∩⊥ D(B)≤−m−1 ∩
Dfd(B).

Set Z = T ′
L⊗B Γ. For any object N in D(Γ), we have the following canonical isomor-

phism
HomD(Γ)(T

′ L⊗B Γ, N) ' HomD(B)(T
′, RHomΓ(Γ, N)).

When N lies in D(Γ)≤−m−1, the right hand side of the above isomorphism becomes zero.
Thus, the object Z is in the fundamental domain of D(Γ). The spaces Exti

C(m)
Q

(T, T ) vanish

for integers 1 ≤ i ≤ m, following the proof of Proposition 4.8.3, the space HomD(Γ)(Z, ΣiZ)
is zero for each positive integer i. In addition, Lemma 4.8.4 and Lemma 4.8.5 together
imply that T ′ generates Dfd(B). Hence, the object Z generates perΓ. So Z is a basic

silting object whose image in CΓ is T
L⊗B Γ.

Now we conclude the above analysis to get the following proposition.

Proposition 4.8.6. Let Q be an acyclic quiver and B its path algebra. Let Γ be the
completed Ginzburg dg category Γ̂m+2(Q, 0) and CΓ the generalized m-cluster category.
Then any m-cluster tilting object in CΓ is induced by a silting object in F under the
canonical projection π : perΓ → CΓ.

Proof. Let T be an m-cluster tilting object in CΓ. Then T can be written as T
L⊗B Γ for

some m-cluster tilting object T in C(m)
Q , where T is induced by some silting object T ′ in

Sm. The object T ′
L⊗B Γ (denoted by Z) is a silting object in the fundamental domain F

whose image under the canonical projection π : perΓ → CΓ is equal to T . This completes
the proof.



Chapter 5

Tropical friezes associated with
Dynkin diagrams

Tropical friezes are the tropical analogues of Coxeter-Conway’s frieze patterns. In this
note, we study them using triangulated categories. A tropical frieze on a 2-Calabi-Yau
triangulated category C is a function satisfying a certain addition formula. We show that
when C is the cluster category of a Dynkin quiver, the tropical friezes on C are in bĳection
with the n-tuples in Zn, any tropical frieze f on C is of a special form, and there exists a
cluster-tilting object such that f simultaneously takes non-negative values or non-positive
values on all its indecomposable direct summands. Using similar techniques, we give a
proof of a conjecture of Ringel for cluster-additive functions on stable translation quivers.

5.1 Introduction

Cluster algebras introduced by S. Fomin and A. Zelevinsky [34], are subrings of the field
Q(x1, . . . , xn) of rational functions in n indeterminates endowed with a distinguished set
of generators called cluster variables, which are constructed recursively via an operation
called mutation. A cluster algebra is said to be of finite type if the number of cluster
variables is finite. The classification of finite type cluster algebras was achieved [35] in
terms of Dynkin diagrams.

Motivated by close relations between tilting theory of finite-dimensional hereditary
algebras and the combinatorics of mutation in cluster algebras, the cluster category CQ of
a finite acyclic quiver Q was introduced in [24] for type An and in [17] for the general case.
The cluster category provides a natural model for the combinatorics of its corresponding
cluster algebra. It is triangulated [53], Krull-Schmidt and 2-Calabi-Yau [17] in the sense
that there are bifunctorial isomorphisms

Ext1(X, Y ) ' DExt1(Y, X), X, Y ∈ CQ.

There are also many other 2-Calabi-Yau triangulated categories, for example, the sta-
ble module categories of preprojective algebras of Dynkin type studied by Geiss-Leclerc-
Schröer in their series of papers, the generalized cluster categories of Jacobi-finite quivers
with potential [31] and of finite-dimensional algebras of global dimension ≤ 2, which were
investigated in [2] by C. Amiot.

Starting from a 2-Calabi-Yau Hom-finite triangulated category C with a cluster-tilting
object T , Palu [69] introduced the notion of a cluster character χ from C to a commutative
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ring which satisfies the multiplication formula

χ(L)χ(M) = χ(E) + χ(E′)

for all objects L and M such that Ext1C(L,M) is one-dimensional, where E and E′ are the
middle terms of the non-split triangles with end terms L and M . He explicitly constructed
cluster characters from cluster-tilting objects.

In this article, we introduce tropical friezes f on C mainly by replacing the above
multiplication formula with an addition formula

f(L) + f(M) = max{f(E), f(E′)}.

Our inspiration comes from the definition of cluster-additive functions [74] on stable trans-
lation quivers and from the tropicalized version of Coxeter-Conway’s frieze patterns. To
the best of our knowledge, such tropical frieze patterns first appeared implicitly in Fock-
Goncharov’s preprint [32] and explicitly in Section 4 of J. Propp’s preprint [72].

The paper is organized as follows.
In Section 2, after recalling some facts on frieze patterns and stating the assumptions on

the categories C we consider (namely, 2-Calabi-Yau categories with cluster-tilting object),
we introduce the notion of tropical friezes. Then we study their first properties and some
links to cluster characters, using which we give an example and a counter-example of
tropical friezes.

In Section 3, taking advantage of the indices [59] of objects of C, for each cluster-tilting
object T and each element m in the Grothendieck group K0(modEndC(T )), we define a
function fT,m on C. A criterion for fT,m to be a tropical frieze is given in Theorem 5.3.1,
which is also a necessary condition when C is the cluster category CQ of a Dynkin quiver
Q. We also show that the tropical friezes on CQ with Q Dynkin are in bĳection with the
n-tuples in Zn by composing Palu’s cluster character with a morphism of semifields. Then
we investigate the cluster-hammock functions introduced by Ringel [74], which always give
rise to tropical friezes while their sums do not.

Section 4 just consists of simple illustrations for the cases A1 and A2, in order to give
the reader an intuitive impression.

In Section 5, for a cluster-tilting object T and a tropical frieze f on C, we define an
element g(T ) in the Grothendieck group K0(addT ), which transforms in the same way as
the index with respect to cluster-tilting objects. The main result (Theorem 5.5.1) states
that each tropical frieze on CQ with Q a Dynkin quiver is of the form fT,m. A different
approach of this fact is given in Section 5 of [33]. As an application, we show that for
any tropical frieze f on CQ, there exists a cluster-tilting object T ′ (resp. T ′′) such that
f simultaneously takes non-negative (resp. non-positive) values on all its indecomposable
direct summands.

Section 6 gives a proof of a conjecture of Ringel which concerns the universal form of
cluster-additive functions f on the stable translation quiver Z∆ with ∆ a simply laced
Dynkin diagram, namely, f is a non-negative linear combination of pairwise ‘compatible’
(in the sense of Ringel) cluster-hammock functions.

5.2 First properties of tropical friezes
In this section, we recall Coxeter-Conway’s frieze patterns at the beginning, then inspired
by a tropicalized version of Coxeter-Conway’s frieze patterns of integers, we introduce
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tropical friezes on 2-Calabi-Yau triangulated categories. Apart from studying their first
properties, we also investigate some links between tropical friezes and cluster characters.

5.2.1 Frieze patterns
In early 1970s, Coxeter and Conway studied frieze patterns and triangulated polygons
in [27, 28, 29]. A frieze pattern Fn of order n consists of n − 1 infinite rows of positive
numbers, whose first and last rows are filled with 1. Besides, the essential point is the
unimodular rule, that is, for every four adjacent numbers in Fn forming a diamond shape

b

a d
c

the relation ad = bc+1 is satisfied. For example, the following diagram is a frieze pattern
of order 6:

. . . 1 1 1 1 1 1 1 1 . . .
. . . 2 2 2 1 4 1 2 2 . . .

. . . 3 3 1 3 3 1 3 3 . . .
. . . 4 1 2 2 2 1 4 1 . . .

. . . 1 1 1 1 1 1 1 1 . . .

A notable property of Fn is its periodicity with period a divisor of n. More precisely, it
is invariant under a glide reflection σ which is [n

2 ] times horizontal translation composed
with a horizontal reflection.

A frieze pattern Fn is determined by the elements in one of its diagonals (say b1 = 1,
b2, . . . , bn−2, bn−1 = 1), and it consists of integers if and only if bs divides bs−1 + bs+1 for
s = 2, . . . , n− 2. Let a0 = b2 and a1, a2, . . . be the numbers lying to the right of a0 in the
second row. Then we have

as =
bs + bs+2

bs+1
, 1 ≤ s ≤ n− 3.

A frieze pattern Fn can also be derived from a0, . . . , an−4, since an−3 satisfies the linear
equation ∣∣∣∣∣∣∣∣∣∣

a0 1 0 . . . 0 0
1 a1 1 . . . 0 0
0 1 a2 . . . 0 0

. . . . . .
0 0 0 . . . 1 an−3

∣∣∣∣∣∣∣∣∣∣

= bn−1 = 1

and Fn is symmetrical by the glide reflection σ. Moreover, Fn consists of integers if and
only if a0, . . . , an−4, an−3 are integers.

Let Pn be a regular n-gon with vertices 0, . . . , n − 1. A triangulation T of Pn is a
maximal set of non-crossing diagonals of Pn, whose cardinality is always equal to n − 3.
Such a pair (Pn, T ) is called a triangulated n-gon. Let ar denote the number of triangles
at vertex r with respect to some triangulation T . Then

. . . a0 a1 . . . an−1 a0 . . .

is the second row of a frieze pattern of integers. Furthermore, the frieze patterns of positive
integers of order n are in bĳection with triangulated n-polygons.
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Associated with an acyclic quiver Q, the authors observed in [23] a generalized version
of Coxeter-Conway’s frieze patterns. The elements of the generalized frieze pattern FQ

associated with Q are cluster variables in the cluster algebra AQ. Moreover, the sequences
in FQ satisfy linear recurrence relations if and only if Q is of Dynkin or affine type (see
[35, 5, 61]). Of course, there are more connections between frieze patterns and cluster
algebras (see for instance [36, 4, 10]).

The tropical semifield (Z,¯,⊕) is the set Z of integers with multiplication and addition
given by

a¯ b = a + b, a⊕ b = max{a, b}.
Notice that the unit in the tropical semifield with respect to the given multiplication is
the number 0.

If we view the unimodular rule as an equation in the tropical semifield, then it becomes

a + d = max{b + c, 0},

which is deduced from

a¯ d = a + d and (b¯ c)⊕ 1 = max{b + c, 0}.

Example 5.2.1. One can easily check that for every adjacent numbers a, b, c, d forming
a diamond shape with a left and d right in the following diagram

. . . 0 0 0 0 0 0 0 0 . . .
. . . 2 1 1 −1 4 −2 2 1 . . .

. . . 3 2 −2 3 2 −2 3 2 . . .
. . . 4 −2 2 1 1 −1 4 −2 . . .

. . . 0 0 0 0 0 0 0 0 . . .

the relation a + d = max{b + c, 0} is satisfied. Notice that if we omit the first and last
rows which are filled with 0, nothing will change. We call such a diagram a tropicalized
frieze pattern of order 6. This diagram is also periodic with period a divisor of 6, it is also
invariant under the same glide reflection σ (as frieze patterns). In fact, this is a general
phenomenon: every tropicalized frieze pattern of order n is periodic. We will explain this
fact right after Proposition 5.3.4.

In the following, we will study tropical friezes on 2-Calabi-Yau triangulated categories,
especially on the cluster categories associated with Dynkin diagrams. As we will see after
Proposition 5.3.4, this generalizes the above tropicalization of frieze patterns of integers.

5.2.2 Definitions and first properties
Let k be an algebraically closed field. Let C be a k-linear triangulated category with
suspension functor Σ where all idempotents split. We further assume that the category C

a) is Hom-finite, i.e. the morphism space C(X, Y ) is finite-dimensional for any two
objects X, Y in C (which implies that C is Krull-Schmidt);

b) is 2-Calabi-Yau, i.e. there exist bifunctorial isomorphisms

DC(X, Y ) ' C(Y, Σ2X), X, Y ∈ C,

where D denotes the duality functor Homk(?, k);
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c) admits a cluster-tilting object T , i.e.

i) T is rigid (that is, C(T, ΣT ) = 0), and T is basic (that is, its indecomposable
direct summands are pairwise non-isomorphic),

ii) for each object X of C, if C(T, ΣX) vanishes, then X belongs to the subcategory
addT of direct summands of finite direct sums of copies of T .

If a category C satisfies all these assumptions, we say that C is a 2-Calabi-Yau category
with cluster-tilting object. A typical class of such categories is the class of cluster categories
[17] of connected finite acyclic quivers. Throughout this article, our category C is always
a 2-Calabi-Yau category with cluster-tilting object.

Definition 5.2.2. A tropical frieze on C with values in the integer ring Z is a map

f : obj(C) → Z

such that

d1) f(X) = f(Y ) if X and Y are isomorphic,

d2) f(X ⊕ Y ) = f(X) + f(Y ) for all objects X and Y ,

d3) for all objects L and M such that dimExt1C(L,M) = 1, the equality

f(L) + f(M) = max{f(E), f(E′)}
holds, where E and E′ are the middle terms of the non-split triangles

L → E → M → ΣL and M → E′ → L → ΣM

with end terms L and M .

Let f and g be two tropical friezes on the same category C. The sum f + g clearly
satisfies items d1) and d2). For item d3), we have that

(f + g)(L) + (f + g)(M) = (f(L) + f(M)) + (g(L) + g(M))
= max{f(E), f(E′)}+ max{g(E), g(E′)}.

Then f + g is a tropical frieze if and only if for all pairs (E, E′) as in item d3) the equality

max{f(E), f(E′)}+ max{g(E), g(E′)} = max{(f + g)(E), (f + g)(E′)}
holds. Notice that for two integers a, b, the number

max{a, b} =
a + b + |a− b|

2
.

Thus, the sum f + g is a tropical frieze if and only if for all pairs (E, E′) as in item d3)
the equality

|f(E)− f(E′)|+ |g(E)− g(E′)| = |(f(E)− f(E′)) + (g(E)− g(E′))|
holds, if and only if the inequality

(f(E)− f(E′))(g(E)− g(E′)) ≥ 0

holds. If two tropical friezes satisfy such a property, then we say that they are compatible.
Now we state a simple property of tropical friezes.
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Proposition 5.2.3. Let f1, . . . , fn be tropical friezes on the same category C. Then the
sum

∑
ifi is a tropical frieze if and only if the functions fi are pairwise compatible.

Proof. This statement is a trivial generalization of the above analysis:
the sum

∑
ifi is a tropical frieze if and only if for all pairs (E, E′) as in item d3) the

equality ∑
i
|fi(E)− fi(E′)| = |

∑
i
(fi(E)− fi(E′))|

holds, if and only if fi(E) − fi(E′) are simultaneously non-negative or simultaneously
non-positive for all integers 1 ≤ i ≤ n, if and only if the tropical friezes fi are pairwise
compatible.

Similarly, one can obtain that the difference f − g is a tropical frieze if and only if for
all pairs (E, E′) as in item d3) the equality

|f(E)− f(E′)| − |g(E)− g(E′)| = |(f(E)− f(E′))− (g(E)− g(E′))|

holds, if and only of the inequalities

|f(E)− f(E′)| ≥ |g(E)− g(E′)| and (f(E)− f(E′))(g(E)− g(E′)) ≥ 0

hold. If two tropical friezes satisfy such a property, then we say that they are strongly
compatible.

Let CQ be the cluster category of a Dynkin quiver Q. For any indecomposable object X
of CQ, the space HomCQ

(X, X) is one-dimensional, so we have that dimExt1CQ
(ΣX, X) = 1.

The associated non-split triangles are of the following form

ΣX → E
g→ X → Σ2X and X → 0

g′→ ΣX → ΣX, (∗)

where g′ denotes the zero morphism in CQ from the object 0 to the object ΣX.
The following proposition is quite similar to the statements for cluster-additive func-

tions on stable translation quivers given in Section 1 of [74].

Proposition 5.2.4. Let Q be a Dynkin quiver. Then any tropical frieze on CQ which
takes only non-positive values or only non-negative values is the zero function.

Proof. Let f be a non-zero tropical frieze on CQ with non-positive values and X an inde-
composable object such that f(X) < 0. From the non-split triangles (∗) above, we have
that

f(ΣX) = max{f(E), 0} − f(X) ≥ 0− f(X) > 0,

which is a contradiction. Therefore, any tropical frieze with only non-positive values is
the zero function.

Let f be a tropical frieze on CQ with non-negative values. We lift f in the natural
way to a function f ′ which is (τ−1Σ)-invariant on the bounded derived category DQ of
the category modkQ. Here τ is the Auslander-Reiten translation on DQ. Denote by φ the
canonical equivalence [43] from the mesh category of the translation quiver ZQ to the full
subcategory ind(DQ) of indecomposables of DQ. We define a function f ′′ on ZQ by setting
f ′′ = f ′φ. Let z be any vertex of ZQ. In DQ we have the Auslander-Reiten triangle [44]
as follows

φ(τz) →
⊕
y→z

φ(y) → φ(z) → Σφ(τz),
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where ‘y → z’ in the middle term are arrows in ZQ. Its image (still use the same notation)
in CQ is a non-split triangle. The other non-split triangle with end terms φ(z) and φ(τz)
in CQ is

φ(z) → 0 → φ(τz) '−→ Σφ(z).

Hence, we can deduce that

f ′′(τz) + f ′′(z) = f ′(φ(τz)) + f ′(φ(z)) = max{
∑
y→z

f ′(φ(y)), 0}

=
∑
y→z

f ′(φ(y)) =
∑
y→z

f ′′(y).

As a consequence, the function f ′′ is an additive function on ZQ with non-negative values,
which implies that f ′′ is the zero function [45]. Therefore, the function f is the zero
function on CQ.

5.2.3 Cluster characters and tropical friezes
In this subsection, we will see some links between cluster characters and tropical friezes.

Let d2′) denote the item obtained from item d2) in Definition 5.2.2 in which the equality
becomes f(X ⊕ Y ) = f(X)f(Y ), and d3′) the item obtained from item d3) in Definition
5.2.2 in which the equality becomes f(L)f(M) = f(E) + f(E′). A map χ : obj(C) → A,
where A is a commutative ring, is called a cluster character in [69] if it satisfies items d1),
d2′) and d3′).

Remark 5.2.5. Let χ be a cluster character mapping from C to the tropical semifield
(Z,¯,⊕). Then we obtain the following equalities

χ(X ⊕ Y ) = χ(X)¯ χ(Y ) = χ(X) + χ(Y ),

χ(L) + χ(M) = χ(L)¯ χ(M) = χ(E)⊕ χ(E′) = max{χ(E), χ(E′)}.
As a result, the map χ is a tropical frieze mapping to the integer ring Z.

Let Q be a connected finite acyclic quiver with vertex set {1, . . . , n} and CQ its asso-
ciated cluster category. It was proved, in [26] for Dynkin quivers and in [25] for acyclic
quivers, that the Caldero-Chapoton map

CC : obj(CQ) −→ Q(x1, . . . , xn)

defined in [23] is a cluster character.

Example 5.2.6. Let X be an object of CQ. Then the image CC(X) can be written
uniquely as

CC(X) =
h(x1, . . . , xn)
∏n

i=1 x
di(X)
i

,

where the polynomial h(x1, . . . , xn) is not divisible by any xi, 1 ≤ i ≤ n. Look at the
function

di : obj(CQ) → Z

with di(X) given as in the above expression for each object X of CQ.
We use elementary properties of polynomials. From the equality

CC(X ⊕ Y ) = CC(X)CC(Y )
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in item d2′), one clearly sees that di(X ⊕ Y ) = di(X) + di(Y ). It is also not hard to
calculate the denominators of the two hand sides of the equality

CC(L)CC(M) = CC(E) + CC(E′)

in item d3′), which gives us the equality di(L) + di(M) = max{di(E), di(E′)}. Therefore,
each function di is a tropical frieze on CQ.

However, the sum di + dj is not always a tropical frieze on CQ. We choose the linear
orientation of A3. The Auslander-Reiten quiver of the cluster category C ~A3

is

P3
ÃÃA

A ΣP1
$$JJJ

P2

=={{

!!CC
I2

<<xxx

""FFF
ΣP2

$$JJJ

P1

=={{
S2

>>}}
S3

::ttt
ΣP3

where Pi (resp. Ii, Si) is the right projective (resp. injective, simple) k ~A3-module associ-
ated with vertex i. By definition CC(ΣP2) = x2 and one can calculate that

CC(P1) =
1 + x2

x1
, CC(S3) =

1 + x2

x3
, CC(P3) =

x1 + x1x2 + x3 + x2x3

x1x2x3
.

The space Ext1C ~A3

(ΣP2, P3) is 1-dimensional and the non-split triangles are

ΣP2 → P1 → P3 → I2 and P3 → S3 → ΣP2 → ΣP3.

Consider the function d1 + d3. We have that

(d1 + d3)(ΣP2) + (d1 + d3)(P3) = (0 + 0) + (1 + 1) = 2
max{(d1 + d3)(P1), (d1 + d3)(S3)} = max{1 + 0, 0 + 1} = 1.

Thus, the sum d1 + d3 is not a tropical frieze. In another way, since

(d1(P1)− d1(S3))(d3(P1)− d3(S3)) = (1− 0)(0− 1) = −1 < 0,

the tropical friezes d1 and d3 are not compatible. As a consequence, the difference d1− d3

is not a tropical frieze on C ~A3
either.

Let T be a cluster-tilting object of C and T1 an indecomposable direct summand
of T . Iyama and Yoshino proved in [48] that, up to isomorphism, there is a unique
indecomposable object T ∗1 not isomorphic to T1 such that the object µ1(T ) obtained from
T by replacing the indecomposable direct summand T1 with T ∗1 is cluster-tilting. We call
µ1(T ) the mutation of T at T1. There are non-split triangles (namely, exchange triangles),
unique up to isomorphism,

T ∗1 → E
f→ T1 → ΣT ∗1 and T1

g→ E′ → T ∗1 → ΣT1

such that f is a minimal right add(T/T1)-approximation and g a minimal left add(T/T1)-
approximation.

Lemma 5.2.7 ([55]). The quiver of the endomorphism algebra of T does not have a loop
at the vertex corresponding to T1 if and only if we have dimExt1C(T1, T

∗
1 ) = 1 if and only

if Ext1C(T1, T
∗
1 ) is a simple module over C(T1, T1). In this case, in the exchange triangles,

we have
E =

⊕

i→1

Ti and E′ =
⊕

1→j

Tj .
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We say that the mutation of T at T1 is simple if the conditions of the above lemma
hold. A category C is said to be cluster-transitive if any two basic cluster-tilting objects
of C can be obtained from each other by a finite sequence of simple mutations.

The following property of tropical friezes on a cluster-transitive category C is quite
similar to that [69] of cluster characters on C.
Proposition 5.2.8. Let C be a cluster-transitive category and T = T1 ⊕ . . .⊕ Tn a basic
cluster-tilting object of C with Ti indecomposable. Suppose that f and g are two tropical
friezes on C such that f(Ti) = g(Ti), 1 ≤ i ≤ n. Then f and g coincide on all subcategories
addT ′, where T ′ is any cluster-tilting object of C.
Proof. By assumption we know that f and g coincide on all indecomposable direct sum-
mands of T . We will prove this proposition by recursion on the minimal number of
mutations linking a basic cluster-tilting object to T .

Now let T ′ = T ′1 ⊕ . . . ⊕ T ′n be a basic cluster-tilting object with T ′i indecomposable
satisfying that f(T ′i ) = g(T ′i ) for all integers 1 ≤ i ≤ n. Assume that T ′′ = µ1(T ′) =
T
′′
1 ⊕ T ′2 ⊕ . . . ⊕ T ′n is the mutation of T ′ in direction 1. Then we have the non-split

triangles
T
′′
1 → E → T ′1 → ΣT

′′
1 and T ′1 → E′ → T

′′
1 → ΣT ′1

with middle terms E and E′ both belonging to add(T ′/T ′1). Hence, the following equlities

f(T
′′
1 ) = max{f(E), f(E′)} − f(T ′1) = max{g(E), g(E′)} − g(T ′1) = g(T

′′
1 )

hold. This completes the proof.

Let CQ be the cluster category of a connected finite acyclic quiver Q. It was shown
in [17] that CQ is cluster-transitive and any rigid indecomposable object of CQ is a direct
summand of a cluster-tilting object. If f and g are two tropical friezes on CQ which coincide
on all indecomposable direct summands of some cluster-tilting object, by Proposition 5.2.8,
they coincide on all rigid objects. In particular, when Q is Dynkin, the two tropical friezes
f and g are equal.

5.3 Tropical friezes from indices
5.3.1 Reminder on indices
Let X be an object of C and T a cluster-tilting object of C. Following [59], we have
triangles

TX
1 → TX

0 → X → ΣTX
1 and X → Σ2T 0

X → Σ2T 1
X → ΣX,

where TX
1 , TX

0 , T 0
X and T 1

X belong to addT . Recall that the index and coindex of X with
respect to T are defined to be the classes in the split Grothendieck group K0(addT ) of the
additive category addT as follows

indT (X) = [TX
0 ]− [TX

1 ] and coindT (X) = [T 0
X ]− [T 1

X ] ,

which do not depend on the choices of the above triangles.
Assume that T is the direct sum of n pairwise non-isomorphic indecomposable objects

T1, . . . , Tn. Let B be the endomorphism algebra of T over C. We denote the indecompos-
able right projective B-module C(T, Ti) by Pi and denote its simple top by Si.
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Let Ksp
0 (modB) denote the split Grothendieck group of the abelian category modB of

finite-dimensional right B-modules, that is, the quotient of the free abelian group on the
set of isomorphism classes of finite-dimensional right B-modules, modulo the subgroup
generated by all elements

[X ⊕ Y ]− [X]− [Y ].

Define a bilinear form

〈 , 〉 : Ksp
0 (modB)×Ksp

0 (modB) → Z

by setting
〈X, Y 〉 = dim HomB(X, Y )− dimExt1B(X, Y )

for all finite-dimensional B-modules X and Y . In particular, if X is a projective B-module,
then

〈X, Y 〉 = dim HomB(X, Y ),

in this case, the linear form 〈X, ?〉 on Ksp
0 (modB) induces a well-defined form

〈X, ?〉 : K0(modB) → Z,

where K0(modB) is the Grothendieck group of modB. Define an antisymmetric bilinear
form on Ksp

0 (modB) by setting

〈X, Y 〉a = 〈X, Y 〉 − 〈Y, X〉

for all finite-dimensional B-modules X and Y . In [69] Palu has proved that the antisym-
metric bilinear form 〈 , 〉a descends to the Grothendieck group K0(modB).

Let F denote the functor C(T, ?). It was shown in [59] that F induces an equivalence
of categories

C/add(ΣT ) '−→ modB.

Moreover, this functor F sends the objects in addT to finite-dimensional projective B-
modules.

Let m be a class in K0(modB). We define a function fT,m from C to Z as

fT,m(X) = 〈F (indT (X)),m〉, X ∈ C.

When it does not cause confusion, we simply write ind(X) instead of indT (X).

5.3.2 Tropical friezes
In this subsection, we will give a sufficient condition for the function fT,m to be a tropical
frieze on C. Moreover, when C = CQ the cluster category of a Dynkin quiver Q, we will
see that this sufficient condition is also a necessary condition.

Theorem 5.3.1. Assume that 〈Si,m〉a ≥ 0 for each simple B-module Si (1 ≤ i ≤ n).
Then the function fT,m is a tropical frieze.

Proof. The function fT,m clearly satisfies the terms d1) and d2) in Definition 5.2.2. Now
Let L and M be objects of C such that dimExt1C(L,M) = 1. Let

L
h→ E

g→ M → ΣL and M
h′→ E′ g′→ L → ΣM
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be the associated non-split triangles.
First, let C ∈ C be any lift of Coker(Fg). We know from [69] that

ind(E) = ind(L) + ind(M)− ind(C)− ind(Σ−1C) and
〈FC, m〉a = 〈F (ind(C)),m〉+ 〈F (ind(Σ−1C)),m〉.

By assumption 〈Si,m〉a ≥ 0 for each simple B-module Si (1 ≤ i ≤ n). So we have that
〈FC, m〉a ≥ 0. Thus,

〈F (ind(E)),m〉 = 〈F (ind(L)),m〉+ 〈F (ind(M)),m〉 − 〈FC, m〉a
≤ 〈F (ind(L)),m〉+ 〈F (ind(M)),m〉.

Similarly, we obtain another inequality

〈F (ind(E′)),m〉 ≤ 〈F (ind(L)),m〉+ 〈F (ind(M)),m〉.

It follows that
max{fT,m(E), fT,m(E′)} ≤ fT,m(L) + fT,m(M).

Second, we consider the identity maps idM : M → M and idL : L → L. Thanks to
the dichotomy phenomenon shown in [69], exactly one of the conditions FM = (Fg)(FE)
and FL = (Fg′)(FE′) is true. Assume that the first condition holds, then Fg is an
epimorphism and FC vanishes. Therefore, we have that

fT,m(E) = 〈F (ind(E)),m〉 = 〈F (ind(L)),m〉+ 〈F (ind(M)),m〉
= fT,m(L) + fT,m(M).

As a consequence, the equality

fT,m(L) + fT,m(M) = max{fT,m(E), fT,m(E′)}

holds and fT,m is a tropical frieze.

5.3.3 Another proof
For L ∈ C and e ∈ Nn, we denote by Gre(Ext1C(T,L)) the quiver Grassmannian of B-
submodules of the B-module Ext1C(T, L) whose dimension vector is e and we denote by
χ(Gre(Ext1C(T,L))) its Euler-Poincaré characteristic for étale cohomology with proper
support.

For 1 ≤ i ≤ n, we define the integer gi(L) to be the multiplicity of [Ti] in the index
ind(L) and define the element X ′

L of the field Q(x1, . . . , xn) by

X ′
L =

n∏

i=1

x
gi(L)
i

∑
e

χ(Gre(Ext1C(T, L)))
n∏

i=1

x
〈Si,e〉a
i ,

where the sum ranges over all tuples e ∈ Nn. This is a vastly generalized form of the
CC map. It was proved in [69] that the function X ′

? is a cluster character from C to
Q(x1, . . . , xn). If we define functions di on C as in Example 5.2.6 by replacing CC map
with X ′

?, then each function di is also a tropical frieze.
We will use the tropical semifield (Z,¯,⊕) to give another proof of Theorem 5.3.1 for

C = CQ where Q is a Dynkin quiver with n vertices. Let T be a cluster-tilting object of C
and B its endomorphism algebra. Notice that any indecomposable object of C is a direct
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summand of some cluster-tilting object which is obtained from T by a finite sequence of
mutations. Since X ′

Ti
= xi and X ′

? is a cluster character, the image X ′
L lies in the universal

semifield Qsf (x1, . . . , xn) (Section 2.1 in [12]). For an element m ∈ K0(modB), we define
the map

ϕm : Qsf (x1, . . . , xn) −→ (Z,¯,⊕)

as the unique homomorphism between semifields which takes xi = X ′
Ti

to the integer
〈F (ind(Ti)),m〉. Then the composition ϕmX ′

? is a cluster character from C to (Z,¯,⊕)
and thus a tropical frieze from C to the integer ring Z by Remark 5.2.5. When C = CQ

with Q a Dynkin quiver, Nakajima [67] showed that χ(Gre(Ext1C(T, L))) is a non-negative
integer. Now we write down explicitly the function

ϕmX ′
L = max

e
{

n∑

i=1

(gi(L) + 〈Si, e〉a)〈F (ind(Ti)),m〉}

= max
e
{〈F (ind(L)),m〉+

n∑

i=1

〈Si, e〉a〈F (ind(Ti)),m〉}

= max
e
{〈F (ind(L)),m〉 −

n∑

i=1

〈(gi(Σ−1Y ) + gi(Y ))〈F (ind(Ti)),m〉}

= max
e
{〈F (ind(L)),m〉 − 〈F (ind(Σ−1Y ) + ind(Y )),m〉}

= max
e
{〈F (ind(L)),m〉 − 〈FY, m〉a}

= max
e
{〈F (ind(L)),m〉 −

n∑

i=1

ei〈Si,m〉a}

where e ranges over all elements in K0(modB) such that χ(Gre(Ext1C(T,L))) is non zero
and Y is an object of C satisfying FY = e = (ei)i ∈ K0(modB). If 〈Si,m〉a ≥ 0 for each
simple B-module Si, then we have that

ϕmX ′
L = 〈F (ind(L)),m〉 = fT,m(L).

Thus, the function fT,m is equal to ϕmX ′
? and is a tropical frieze.

Remark 5.3.2. Let CQ be the cluster category associated with a Dynkin quiver Q. Let
T be a cluster-tilting object of CQ and B its endomorphism algebra. Let F be the functor
HomCQ

(T, ?). In fact, the sufficient condition for a function fT,m to be a tropical frieze in
Theorem 5.3.1 is also a necessary condition in this situation.

For any indecomposable object X of CQ, look at the second triangle associated with
X in (∗) before Proposition 5.2.4, whose image under F is

FX → 0
Fg′−→ F (ΣX) '−→ F (ΣX).

We have that Fg′ = 0 and Coker(Fg′) = F (ΣX). If X does not belong to addT , then
Coker(Fg′) is not zero which implies that Coker(Fg) vanishes by the dichotomy phe-
nomenon. Let m be a class in K0(modB). From the proof of Theorem 5.3.1, we know
that

fT,m(E) = fT,m(ΣX) + fT,m(X) = 〈F (ΣX),m〉a.
Assume that fT,m is a tropical frieze. Then it follows that

fT,m(ΣX) + fT,m(X) = max{fT,m(E), 0} ≥ 0.
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Thus, for every indecomposable object X /∈ addT , the value 〈F (ΣX),m〉a is non-negative,
particularly when F (ΣX) is a simple B-module Si.

Example 5.3.3. Let Q be an acyclic quiver and j a sink of Q (that is, no arrows of Q
starting at j). Let T be the image of kQ in CQ under the canonical inclusion and B its
endomorphism algebra EndCQ

(T ). For each simple B-module Si, we have that

〈Si, Sj〉a = −dimExt1B(Si, Sj) + dimExt1B(Sj , Si) = dimExt1B(Sj , Si)

= the number of arrows from i to j in Q (≥ 0).

As an application of Theorem 5.3.1, the function fT,Sj is a tropical frieze.
Similarly, if j is a source of an acyclic quiver Q (that is, no arrows of Q ending at j),

then fT,−Sj is a tropical frieze.

Using a similar method as in the second proof of Theorem 5.3.1, it is not hard to get
the following proposition:

Proposition 5.3.4. Let CQ be the cluster category of a Dynkin quiver Q and T = T1 ⊕
. . .⊕ Tn a basic cluster-tilting object of CQ with Ti indecomposable. Then the map

ΦT : {tropical friezes on CQ} −→ Zn

given by ΦT (f) = (f(T1), . . . , f(Tn)) is a bĳection.

Proof. For any fixed n-tuple a = (a1, . . . , an) in Zn, there is a unique homomorphism of
semifields

φa : Qsf (x1, . . . , xn) −→ (Z,¯,⊕)

such that φa(xi) = ai. We denote the composition φaX
′
? by fa. Then fa is a tropical

frieze on CQ satisfying fa(Ti) = ai. Therefore, the map ΦT is a surjection. The injectivity
follows from Proposition 5.2.8. Hence, the map ΦT is bĳective.

Now we give an explanation of the periodicity phenomenon which is stated at the end
of subsection 2.1. Let F t

n be a tropicalized frieze pattern of order n(> 3). Let Q be a
quiver of type An−3. Then F t

n gives a function (denoted by f) on the Auslander-Reiten
quiver Γ of DQ. Each subquiver (y or z may not appear)

y

ÂÂ?
??

?

τx

=={{{{{

""DD
DD

x

z

>>}}}}

in Γ induces an Auslander-Reiten triangle in DQ

τx → y ⊕ z → x → Στx.

Since F t
n is a tropicalized frieze pattern, the function f satisfies that

f(τx) + f(x) = max{f(y) + f(z), 0}.

Let S be any slice in Γ. Set T =
⊕

y∈S y. Then the image of T is a basic cluster-tilting
object of CQ. By Proposition 5.3.4, there exists a unique tropical frieze g : CQ → Z such
that g(y) = f(y) for all y ∈ S. We extend g in a natural way to a (τ−1Σ)-invariant function
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on DQ (still denote as g). Then g also satisfies the above equation as f . Therefore, the
two functions f and g are equal. Moreover, for each integer i, we have that

f((τ−1Σ)ix) = g((τ−1Σ)ix) = g(x) = f(x) and

f((τ−n)ix) = g((τ−n)ix) = g((τ−2τ2−n)ix) = g((τ−1Σ)2ix) = g(x).

In conclusion, F t
n is periodic with period a divisor of n, and it is invariant under the glide

reflection σ.

5.3.4 Cluster-hammock functions and tropical friezes
In this subsection, we will see that the cluster-hammock functions defined by Ringel [74]
always give rise to tropical friezes, while their sums do not, even for pairwise ‘compatible’
(in the sense of Ringel) cluster-hammock functions.

Let Γ = ZQ be the translation quiver of a Dynkin quiver Q. For any vertex x of Γ,
Ringel [74] defined the cluster-hammock function hx : Γ0 → Z by the following properties

a) hx(x) = −1;

b) hx(y) = 0 for y 6= x ∈ S, where S is any slice containing x;

c) hx(z) + hx(τz) =
∑

y→z max{hx(y), 0} for all z ∈ Γ0.

As shown in [74], the cluster-hammock function hx is (τ−1Σ)-invariant and takes the value
−1 on the (τ−1Σ)-orbit of x while it takes non-negative values on the other vertices. Thus,
hx naturally induces a well-defined function on ind(CQ), which we still denote as hx on
ind(CQ). We extend hx to a function defined on CQ by requiring that hx(X ⊕ Y ) =
hx(X)+hx(Y ) for all objects X, Y of CQ. Let S ′x be the slice in ZQ with x its unique sink
and S ′′x the slice in ZQ with x its unique source.

Let Z be an indecomposable object of CQ. If there is an arrow from x to Z in the
Auslander-Reiten quiver of CQ, then Z and τZ both lie in the (τ−1Σ)-orbit of the convex
hull of S ′x and S ′′x . Thus, both hx(Z) and hx(τZ) are zero, which implies that all hx(y)
appearing in the right hand side of item c) are non-positive. Hence, we have that

hx(Z) + hx(τZ) =
∑

y→Z

max{hx(y), 0} = 0 = max{
∑

y→Z

hx(y), 0},

where ‘y → Z’ are arrows in Γ. If there is no arrow from x to Z in the Auslander-Reiten
quiver of CQ, then we have the following equalities

hx(Z) + hx(τZ) =
∑

y→Z

max{hx(y), 0}

=
∑

y→Z

hx(y) = max{
∑

y→Z

hx(y), 0},

where ‘y → Z’ are arrows in Γ. Therefore, for all non-split triangles as the triangles (∗)
before Proposition 5.2.4, the function hx satisfies item d3) in Definition 5.2.2. Besides, by
Proposition 5.3.4, there is a unique tropical frieze g : CQ → Z such that g(Y ) = hx(Y ) for
all indecomposables Y which come from the same slice containing x. Thus, we have that
hx = g and hx is a tropical frieze on CQ.

Let Sx be any slice in ZQ with x a source. Set T = ⊕Y ∈SxY . It is a basic cluster-
tilting object of CQ. Let B be the endomorphism algebra of T and Sx the simple B-module
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corresponding to x. Clearly Sx is the quiver of B. Set m = −Sx. Then fT,−Sx is a tropical
frieze and takes the same values as hx on all indecomposable direct summands of T . As a
result, the function hx is equal to fT,−Sx .

However, the sum
∑

x hx of cluster-hammock functions with all x coming from the
same slice S in ZQ is not always a tropical frieze, which is quite different to the Corollary
in Section 6 of [74]. Here we also use the same counter-example on C ~A3

as in Subsection
5.2.3. We already know that the functions d1 and hΣP1 are tropical friezes. Let T =
ΣP1 ⊕ΣP2 ⊕ΣP3. Then d1 and hΣP1 coincide on all ΣPi (1 ≤ i ≤ 3). Thus, hΣP1 is equal
to d1. Similarly, the tropical frieze hΣP3 is equal to d3. But the sum hΣP1 +hΣP3 = d1 +d3

is not a tropical frieze.

5.4 Simple illustrations for the cases A1 and A2

Let us first look at the cluster category C = CQ of the quiver Q of type A1. Let X and
ΣX be the two indecomposable objects of CQ. Assume f is a tropical frieze on CQ. Then
we have that

f(X) + f(ΣX) = 0.

Set T = X and m = f(X)SX , where SX is the unique simple (EndCQ
(X))-module. Since

〈SX ,m〉a is zero, by Theorem 5.3.1 the function fT,m is a tropical frieze. The following
equalities

fT,m(X) = 〈F (ind(X)), f(X)SX〉 = f(X) and
fT,m(ΣX) = 〈F (ind(ΣX)), f(X)SX〉 = −f(X) = f(ΣX)

clearly hold. Therefore, the tropical frieze f is equal to fT,m.
Now let us look at the cluster category C = CQ of a quiver Q of type A2. Assume that

f is a non-zero tropical frieze on CQ. Following Proposition 5.2.4, we know that there exist
an indecomposable object X such that f(X) < 0. Let Y and Y ′ be the two non-isomorphic
indecomposables such that X ⊕ Y and X ⊕ Y ′ are cluster-tilting objects of CQ. Then we
have that

f(Y ) + f(Y ′) = max{f(X), 0} = 0.

Therefore, there must exist a cluster-tilting object T = T1 ⊕ T2 with Ti indecomposable
such that

f(T1) ≥ 0 and f(T2) < 0.

Let QT be the quiver of the endomorphism algebra B = EndCQ
(T ). The quiver QT is also

of type A2. Let Pi be the indecomposable projective B-module and Si its corresponding
simple top, i = 1, 2.

If S1 attaches to the sink in QT , set m = f(T1)S1 + f(T2)S2, then

〈S1,m〉a = −f(T2)dimExt1B(S1, S2) = −f(T2) > 0 and
〈S2,m〉a = f(T1)dimExt1B(S1, S2) = f(T1) ≥ 0,

which implies that fT,m is a tropical frieze by Theorem 5.3.1. Moreover, the tropical friezes
f and fT,m coincide on Ti. Therefore, the tropical frieze f is equal to fT,m.

If S1 attaches to the source in QT , set T ′ = µ2µ1(T ) = T ′1⊕T ′2, where T ′1 and T ′2 come
from the following non-split triangles in CQ

T1 → T2 → T ′1 → ΣT1, T ′1 → 0 → T1 → ΣT ′1;
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T2 → T ′1 → T ′2 → ΣT2, T ′2 → 0 → T2 → ΣT ′2.

We can calculate that

f(T ′1) = −f(T1) ≤ 0 and f(T ′2) = −f(T2) > 0.

Notice that the quiver QT ′ of the endomorphism algebra B′ = EndCQ
(T ′) is T ′1 → T ′2. Let

S′i be the simple B′-module corresponding to T ′i . Now we go back to the above case. Set
m′ = f(T ′1)S

′
1 + f(T ′2)S

′
2. Then we have that fT ′,m′ is a tropical frieze and takes the same

values as f on T ′i . Thus, the tropical frieze f is equal to fT ′,m′ .
In fact, such a phenomenon for the cases A1 and A2 is a common phenomenon for the

Dynkin case, which we will state in Theorem 5.5.1 in the next section.
Let fT,m be a tropical frieze on CQ with Q a quiver of type A2. Suppose that the quiver

QT of the endomorphism algebra B = EndCQ
(T ) is (T1 → T2) and m = m1S1 + m2S2.

From Remark 5.3.2 we know that 〈Si,m〉a ≥ 0 for i = 1, 2, that is,

〈S1,m〉a = m2dimExt1B(S2, S1) = m2 ≥ 0, and
〈S2,m〉a = −m1dimExt1B(S2, S1) = −m1 ≥ 0.

Notice that fT,m(Ti) = 〈FTi,m〉 = mi for i = 1, 2. Set T ′ = µ1(T ) = T ′1 ⊕ T2 and
T ′′ = µ2(T ) = T1 ⊕ T ′′2 . Then the following expressions hold

fT,m(T ′1) = max{fT,m(T2), 0} − fT,m(T1) ≥ −fT,m(T1) ≥ 0,

fT,m(T ′′2 ) = max{fT,m(T1), 0} − fT,m(T2) = −fT,m(T2) ≤ 0.

Therefore, in the A2 case, there exist cluster-tilting objects T ′ and T ′′ such that fT,m takes
non-negative values on direct summands of T ′ and non-positive values on direct summands
of T ′′.

5.5 The main theorem (Dynkin case)
As a generalization of the phenomenon illustrated in Section 5.4, the aim of this section
is to show the following theorem:

Theorem 5.5.1. Let CQ be the cluster category of a Dynkin quiver Q. Then each tropical
frieze on CQ is of the form fT,m, where T is a cluster-tilting object of CQ and m an element
in the Grothendieck group K0(modEndCQ

(T )).

We will prove this theorem in Subsections 5.5.1 and 5.5.2. First, we need to introduce
some notation:

Let C be a 2-Calabi-Yau category with cluster-tilting object. Let f be a tropical frieze
on the category C and T = T1 ⊕ . . .⊕ Tn a basic cluster-tilting object of C. Suppose that
the quiver Q of the endomorphism algebra EndC(T ) does not have loops nor 2-cycles. Let
bij denote the number of arrows i → j minus the number of arrows j → i in Q (notice
that at least one of these two numbers is zero). For each integer 1 ≤ i ≤ n, let gi(T ) be
the integer

gi(T ) =
∑

r

[bri]+f(Tr)−
∑

s

[bis]+f(Ts),

where [bkl]+ = max{bkl, 0} is equal to the number of arrows k → l in Q. Denote by g(T )
the class

∑n
i=1 gi(T )[Ti] in the Grothendieck group K0(addT ).
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5.5.1 Transformations of the class g(T ) under mutations
Since the quiver Q does not have loops, for each Tk, there is a unique indecomposable
object T ′k such that the space Ext1C(T

′
k, Tk) is one-dimensional and the non split triangles

are given [57] by

T ′k → E → Tk → ΣT ′k and Tk → E′ → T ′k → ΣTk,

where
E =

⊕
r

[brk]+Tr and E′ =
⊕

s

[bks]+Ts.

Let T ′ = µk(T ) = T ′k⊕(
⊕

i6=k Ti). Define linear transformations φ+ and φ− from K0(addT )
to K0(addT ′) as in [30] by

φ+(Ti) = φ−(Ti) = [Ti] for i 6= k, and

φ+(Tk) = [E]− [T ′k] = −[T ′k] +
∑

r

[brk]+[Tr]

φ−(Tk) = [E′]− [T ′k] = −[T ′k] +
∑

s

[bks]+[Ts].

It was shown in [30] that if X is a rigid object of C, then the index of X with respect to
cluster-tilting objects transforms as follows:

indT ′(X) =
{

φ+(indT (X)) if [indT (X) : Tk] ≥ 0,
φ−(indT (X)) if [indT (X) : Tk] ≤ 0,

where [indT (X) : Tk] denotes the coefficient of Tk in the decomposition of indT (X) in the
category K0(addT ).

Proposition 5.5.2. Suppose that the quivers Q and Q′ of the endomorphism algebras
EndC(T ) and EndC(T ′) do not have loops nor 2-cycles. Then the element g(T ) transforms
in the same way as above, i.e.

g(T ′) =
{

φ+(g(T )) if gk(T ) ≥ 0,
φ−(g(T )) if gk(T ) ≤ 0.

Proof. We first assume that gk(T ) ≥ 0, that is,

f(E) =
∑

r

[brk]+f(Tr) ≥
∑

s

[bks]+f(Ts) = f(E′).

Since f is a tropical frieze, we have that f(Tk) + f(T ′k) = f(E) =
∑

r[brk]+f(Tr). We
compute φ+(g(T )):

φ+(g(T )) = φ+(
n∑

i=1

gi(T )[Ti]) =
∑

i6=k

gi(T )[Ti] + gk(T )φ+(Tk)

=
∑

i6=k

gi(T )[Ti]− gk(T )[T ′k] +
∑

r

gk(T )[brk]+[Tr]

=
∑

i6=k

(gi(T ) + [bik]+gk(T ))[Ti]− gk(T )[T ′k].
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By assumption, the quivers Q and Q′ do not have loops nor 2-cycles. Following [16],
we know that Q′ = µk(Q) is the mutation of the quiver Q at vertex k. Let b′ij be the
number of arrows i → j minus the number of arrows j → i in Q′. Then it is known from
[34] that

b′ij =

{
bji if i = k or j = k,

bij + |bik|bkj+bik|bkj |
2 otherwise.

It is obvious that

gk(T ′) =
∑

r

[b′rk]+f(Tr) −
∑

s

[b′ks]+f(Ts)

=
∑

r

[bkr]+f(Tr) −
∑

s

[bsk]+f(Ts) = −gk(T ).

For vertices i 6= k, we distinguish three cases to compute gi(T ′).
If bik = bki = 0, then b′ij = bij and b′ji = bji for all vertices j. In this case, we have that

gi(T ′) =
∑

r

[b′ri]+f(Tr)−
∑

s

[b′is]+f(Ts)

=
∑

r

[bri]+f(Tr)−
∑

s

[bis]+f(Ts) = gi(T ).

If bik > 0, then

gi(T ′) =
∑

r

[b′ri]+f(Tr)−
∑

s

[b′is]+f(Ts) = (
∑

r

[bri]+f(Tr) + bikf(T ′k))

− (
∑

s

[bis]+f(Ts)− bikf(Tk) +
∑

s′
bik[bks′ ]+f(Ts′))

= gi(T ) + bik(f(T ′k) + f(Tk)−
∑

s′
[bks′ ]+f(Ts′))

= gi(T ) + bik(
∑

r

[brk]+f(Tr)−
∑

s

[bks]+f(Ts))

= gi(T ) + bikgk(T ).

If bik < 0, then bki = −bik > 0, and

gi(T ′) =
∑

r

[b′ri]+f(Tr)−
∑

s

[b′is]+f(Ts)

= (
∑

r

[bri]+f(Tr)− bkif(Tk) +
∑

r′
[br′k]+bkif(Tr′))

− (
∑

s

[bis]+f(Ts) + bkif(T ′k))

= gi(T )− bki(f(Tk) + f(T ′k)−
∑

r′
[br′k]+f(Tr′))

= gi(T )− bki(
∑

r

[brk]+f(Tr)−
∑

r′
[br′k]+f(Tr′)) = gi(T ).

Therefore, we obtain that g(T ′) = φ+(g(T )) when gk(T ) ≥ 0. In a similar way we can
also obtain that g(T ′) = φ−(g(T )) when gk(T ) ≤ 0.
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5.5.2 Proof of the main theorem
Let T0 and T1 be two objects in addT which do not have a direct summand in common.
Let η be a morphism in C(T1, T0). Denote by C(η) the cone of η. Then we have the
following triangle in C

T1
η→ T0 → C(η) → ΣT1. (∗∗)

The algebraic group Aut(T0)×Aut(T1) acts on C(T1, T0) via

(g0, g1)η′ = g0η
′g−1

1 .

Let Oη denote the orbit of η in the space X := C(T1, T0) under the above action of
Aut(T0)×Aut(T1).

It is not hard to obtain the following lemma. For the convenience of the reader we
include a proof.

Lemma 5.5.3. Let η and η′ be two morphisms in X . Then Oη = Oη′ if and only if
C(η) ' C(η′).

Proof. First we assume that Oη = Oη′ . Then there exists an element (g0, g1) ∈ Aut(T0)×
Aut(T1) such that η′ = g0ηg−1

1 . The commutative square g0η = η′g1 can be completed to
a commutative diagram of triangles as follows

T1
η //

g1

²²

T0
ι //

g0

²²

C(η)
p //

h
²²

ΣT1

Σg1

²²
T1

η′ // T0
ι′ // C(η′)

p′ // ΣT1.

Here the morphism h is an isomorphism from C(η) to C(η′).
Second we assume that C(η) ' C(η′). Let h be an isomorphism from C(η) to C(η′) and

h−1 its inverse. Since the space C(T0,ΣT1) vanishes, we have that (keeping the notation
as in the above commutative diagram)

p′hι = 0 and ph−1ι′ = 0.

Thus, there exist two morphisms g0 and g′0 in C(T0, T0) such that

ι′g0 = hι and ιg′0 = h−1ι′.

As a consequence, the equalities

ιg′0g0 = h−1ι′g0 = h−1hι = ι and ι′g0g
′
0 = hιg′0 = hh−1ι′ = ι′

hold. Thus, we have that g0g
′
0 = 1 = g′0g0. The morphism g0 is an element in Aut(T0). The

commutative square hι = ι′g0 can be completed to a commutative diagram of triangles as
above. Thus, there exists an element g1 ∈ Aut(T1) such that g0η = η′g1. Therefore, the
two orbits Oη and Oη′ are the same.

Lemma 5.5.4. Keep the above notation. We have the equality

codimXOη = 1/2 dimExt1C(C(η), C(η)).
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Proof. Let F be the functor C(T, ?) and B the endomorphism algebra FT . We denote the
space HomB(FT1, FT0) by FX . Since F induces a category equivalence from C/add(ΣT )
to modB, we have that

codimXOη = codimFXOFη.

The algebra B is a finite-dimensional algebra, both FT1 and FT0 are finitely generated
B-modules. As in [71], we view Fη as a complex in Kb(projB) and define the space E(Fη)
as

E(Fη) = HomKb(projB)(Σ
−1Fη, Fη).

Following Lemma 2.16 in [71], we have the equality

codimFXOFη = dimE(Fη).

The exact sequence
FT1

Fη→ FT0 → F (C(η)) → 0

is a minimal projective presentation of F (C(η)). Still following from [71], the equality

dimE(Fη) = dimHomB(F (C(η)), τF (C(η)))

holds, where τ is the Auslander-Reiten translation. Moreover, by Section 3.5 in [59], we
have that F (ΣC(η)) ' τF (C(η)).

For two objects X and Y of C, let (ΣT )(X, Y ) be the subspace of C(X, Y ) consisting of
morphisms from X to Y factoring through an object in add(ΣT ), let C/(ΣT )(X, Y ) denote
the space C(X, Y )/(ΣT )(X, Y ). Lemma 3.3 in [69] shows that there is a bifunctorial
isomorphism

C/(ΣT )(X, ΣY ) ' D(ΣT )(Y, ΣX).

If we choose Y = X, then we can deduce that

dim C/(ΣT )(X, ΣX) = dim(ΣT )(X, ΣX) = 1/2 dim C(X, ΣX).

Notice that the equivalence F gives the following equality

dimHomB(F (C(η)), τF (C(η))) = dim C/(ΣT )(C(η),ΣC(η)).

Finally, if we combine all the equalities about dimensions together, then we can obtain
that

codimXOη = 1/2 dimExt1C(C(η), C(η)).

If we do not assume that T0 and T1 do not have a common direct summand, then the
equality in Lemma 5.5.4 becomes

codimXOη ≥ 1/2 dimExt1C(C(η), C(η)).

This is because the third equality in the proof becomes

dimE(Fη) ≥ dimHomB(F (C(η)), τF (C(η)))

for arbitrary projective presentations.
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Lemma 5.5.5. Suppose that C has only finitely many isomorphism classes of indecom-
posable objects. Then the set {[C(η)]|η ∈ C(T1, T0)} is finite, where [C(η)] denotes the
isomorphism class of C(η) in C.

Proof. We use the same exact sequence

FT1
Fη→ FT0 → F (C(η)) → 0

as in the proof of Lemma 5.5.4, which is a projective presentation of F (C(η)). By as-
sumption C has only finitely many isomorphism classes of indecomposable objects. So
the number of isomorphism classes of indecomposable B-modules is also finite. Notice
that the dimension of F (C(η)) is bounded by the dimension of FT0. Hence, the set
of {[F (C(η))]|η ∈ C(T1, T0)} is finite, where [F (C(η))] denotes the isomorphism class of
F (C(η)) in modB.

Now we decompose C(η) as Xη ⊕ ΣTη, where Xη does not contain a direct summand
in add(ΣT ). We have that F (C(η)) = F (Xη). Since C(T0,ΣTη) vanishes, we can rewrite
the triangle (∗∗) before Lemma 5.5.3 as

T1

0
@ η

0

1
A

−→ T0 ⊕ 0

0
@ ιη 0

0 0

1
A

−→ Xη ⊕ ΣTη → ΣT1,

which is the direct sum of the following two triangles

Σ−1C(ιη) → T0
ιη→ Xη → C(ιη), and

Tη → 0 → ΣTη → ΣTη.

Here C(ιη) denotes the cone of the morphism ιη. Therefore, the object Tη is a direct
summand of T1, and there are only finitely many choices. In conclusion, there are only
finitely many isomorphism classes of C(η) when η runs over the space C(T1, T0).

Under the assumption that C has only finitely many isomorphism classes of indecom-
posable objects, by combining Lemma 5.5.3 and Lemma 5.5.5 we can obtain that there
are only finitely many orbits Oη in the affine space X . Therefore, there must exist some
morphism η such that

codimXOη = 0,

which implies that C(η) is a rigid object by Lemma 5.5.4. We say a morphism η generic
if its cone C(η) is rigid. We deduce the following proposition

Proposition 5.5.6. Suppose that C has only finitely many isomorphism classes of inde-
composable objects. Then there exists a generic morphism η ∈ C(T1, T0) with the cone
C(η) rigid.

Now we are ready to prove our main theorem.
Proof of Theorem 5.5.1. Let T = T1 ⊕ . . . ⊕ Tn be any basic cluster-tilting object in

CQ. Keeping the notation at the beginning of this section, we define two objects

L =
⊕

gi(T )<0

T
−gi(T )
i and R =

⊕

gi(T )>0

T
gi(T )
i .
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By Proposition 5.5.6, there exists a morphism η ∈ HomCQ
(L,R) such that the cone C(η)

is rigid. The triangle
L

η→ R → C(η) → ΣL

implies that the index
indT (C(η)) = [R]− [L] = g(T ).

Since C(η) is rigid, there exists a cluster-tilting object T ′ of CQ such that C(η) ∈ addT ′.
The triangle

Σ−1C(η) → 0 → C(η) → C(η)

gives us that
indΣ−1T ′(C(η)) ∈ Zn

≤0.

Set T ′′ = Σ−1T ′. It was shown in [20] that the quiver of the endomorphism algebra of
a cluster-tilting object of CQ does not have loops nor 2-cycles. Therefore, it follows from
Proposition 5.5.2 that

g(T ′′) = indT ′′(C(η)) ∈ Zn
≤0,

that is, gi(T ′′) ≤ 0.
Let B′′ denote the endomorphism algebra EndCQ

(T ′′) and Q′′ its associated quiver. Let
S
′′
i be the simple top of the indecomposable projective B′′-module P ′′

i = HomCQ
(T ′′, T ′′i ).

Set

m′′ =
n∑

j=1

f(T ′′j )S′′j (∈ K0(modB′′)).

Then for each simple B′′-module S′′i , we have that

〈S′′i ,m′′〉a =
n∑

j=1

f(T ′′j )〈S′′i , S′′j 〉a

=
n∑

j=1

f(T ′′j )(−dimExt1B′′(S
′′
i , S′′j )) +

n∑

j=1

f(T ′′j )dimExt1B′′(S
′′
j , S′′i )

= −
n∑

j=1

[b′′ji]+f(T ′′j ) +
n∑

j=1

[b′′ij ]+f(T ′′j ) = −gi(T ′′) ≥ 0,

where b′′kl denotes the number of arrows k → l minus the number of arrows l → k in Q′′.
Therefore, by Theorem 5.3.1 the function fT ′′,m′′ is a tropical frieze. Since we have

fT ′′,m′′(T ′′i ) = 〈P ′′
i ,m′′〉 = 〈P ′′

i , f(T ′′i )S′′i 〉 = f(T ′′i ),

the tropical friezes f and fT ′′,m′′ coincide on all T ′′i . Now it follows from Proposition 5.2.8
that f is equal to fT ′′,m′′ .

5.5.3 Sign-coherence property

For any tropical frieze f on CQ with Q a Dynkin quiver, we will see in this subsection
the existence of cluster-tilting objects whose indecomposable direct summands have sign-
coherent values under f .
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Theorem 5.5.7. Let CQ be the cluster category of a Dynkin quiver Q and f a tropical
frieze on CQ. Then there exists a cluster-tilting object T such that

f(Ti) ≥ 0 (resp. f(Ti) ≤ 0)

for all indecomposable direct summands Ti of T .
Proof. Since f is a tropical frieze on CQ, it follows from Theorem 5.5.1 that f is equal to
some fT,m with T a cluster-tilting object and m an element in K0(modEndCQ

(T )). We
divide the proof into three steps.

Step 1. For any cluster-tilting object S of CQ, we define its associated positive cone as

C(S) = {indT (U)|U ∈ addS} (⊂ K0(addT )).

Each element X ∈ K0(addT ) can be written uniquely as

X = [T0]− [T1],

where T0, T1 ∈ addT without common indecomposable direct summands. By Proposition
5.5.6, there exists some morphism η ∈ HomCQ

(T1, T0) such that the cone C(η) is rigid.
Moreover, we have that

indT (C(η)) = [T0]− [T1] = X.

Since C(η) is rigid, it belongs to addS for some cluster-tilting object S of CQ, which implies
that the element X belongs to the positive cone C(S). As a consequence, we can obtain
that

K0(addT ) =
⋃

S

C(S),

where S ranges over all (finitely many) cluster-tilting objects of CQ.
Step 2. Let T1, . . . , Tn be the pairwise non-isomorphic indecomposable direct sum-

mands of T . Suppose that m =
∑n

i=1 miSi with Si the simple EndCQ
(T )-module corre-

sponding to Ti. Let F be the functor HomCQ
(T, ?). Set

H≥0
m = {X ∈ K0(addT ) | 〈FX, m〉 ≥ 0}.

It is clear that
〈sgn(mi)FTi,m〉 = |mi| ≥ 0,

where
sgn(mi) =

{
1 ifmi ≥ 0,
−1 ifmi < 0.

Let H be the hyperquadrant of K0(addT ) consisting of the non-negative linear combina-
tions of the sgn(mi)[Ti], 1 ≤ i ≤ n. Then we have that

H ⊂ H≥0
m .

Step 3. It was shown in Section 2.4 of [30] that each positive cone C(S) is contained
in a hyperquadrant of K0(addT ) with respect to the given basis [Ti], 1 ≤ i ≤ n. Thus,
each hyperquadrant of K0(addT ) is a union of positive cones. Let T ′ be a cluster-tilting
object satisfying

C(T ′) ⊂ H ⊂ H≥0
m .

We obtain that
f(T ′i ) = fT,m(T ′i ) = 〈F (indT (T ′i )),m〉 ≥ 0

for all indecomposable direct summands T ′i of T ′.
Similarly, there exists some cluster-tilting object T ′′ such that f(T ′′i ) ≤ 0 for all inde-

composable direct summands T ′′i of T ′′.
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5.5.4 Another approach to the main theorem

Let CQ be the cluster category of a Dynkin quiver Q. In this subsection, we will see
another approach to Theorem 5.5.1 by using the work of V. Fock and A. Goncharov [33].
For simplicity, we write Ztr for the tropical semifield (Z,¯,⊕).

Let AQop(Ztr) and XQop(Ztr) be the set of tropical Z-points of A-variety and X -variety
[33] associated with the opposite quiver Qop, respectively. For a vertex k of Q, the mutation
µk : AQop(Ztr) → Aµk(Qop)(Ztr) is given by the tropicalization of formula (14) in [33]:

Ak + (µkA)k = max{
∑

j

[bjk]+Aj ,
∑

j

[bkj ]+Aj},

where [brs]+ is the number of arrows from r to s in Q (or from s to r in Qop). Let T be the
image of kQ in CQ. Then for each tropical Z-point A inAQop(Ztr), there is a unique tropical
frieze h on CQ such that h(Tj) = Aj for each 1 ≤ j ≤ n. Moreover, this correspondence
commutes with mutation. Besides, we know from [71] that the isomorphism XQop(Ztr) '
K0(addT ) commutes with mutation. Given a seed i, in [33] V. Fock and A. Goncharov
considered the function Pi =

∑n
i=1 aixi on A(Ztr) × X (Ztr). Now we can transform the

function Pi in our case as

PS =
n∑

i=1

h(Si)[indS(Y ) : Si]

where S is the cluster-tilting object of CQ corresponding to the seed i, the elements ai

correspond to h(Si) and xi correspond to [indS(Y ) : Si] for some object Y of CQ.
Let f be a tropical frieze on CQ. Let L and R be the same objects as in the proof of

Theorem 5.5.1. Assume X is an object of CQ with

indT (X) = [R]− [L] (= g(T )).

For example, the cone C(η) as in the proof of Theorem 5.5.1. For the pair N = (f, indT (X))
in A(Ztr) × X (Ztr), by Theorem 5.2 in [33], there exists a cluster-tilting object T ′ such
that all coordinates [indT ′(X) : T ′i ] are non-negative. It follows that there exists some
rigid object X0 ∈ addT ′ with the same index as X. Set T ′′ = Σ−1T ′, as in the proof of
Theorem 5.5.1, we can also obtain that

g(T ′′) = indT ′′(X) = indT ′′(X0) ∈ Zn
≤0.

This gives another approach to the main theorem.
Moreover, our definition for positive cones in Step 1 in the proof of Theorem 5.5.7

coincides with Fock-Goncharov’s. From the equality

K0(addT ) =
⋃

S

C(S),

where S ranges over all (finitely many) cluster-tilting objects of CQ, we can also obtain
that a finite type cluster X -variety is of definite type (see Corollary 5.5 and Conjecture
5.7 in [33]).
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5.6 Proof of a conjecture of Ringel
Definition 5.6.1 (Ringel [74]). Let Γ = Z∆ with ∆ one of the Dynkin diagrams An, Dn,
E6, E7, E8 and Γ0 the vertex set of Γ. A function f : Γ0 → Z is said to be cluster-additive
on Γ if

f(z) + f(τz) =
∑

y→z
max{f(y), 0}, for all z ∈ Γ0,

where the sum runs over all arrows y → z ending at z in Γ.

The following theorem confirms a conjecture by Ringel [74].

Theorem 5.6.2. Each cluster-additive function on Γ = Z∆ with ∆ one of the Dynkin
diagrams An, Dn, E6, E7, E8 is a non-negative linear combination of cluster-hammock
functions (and therefore of the form

∑
x∈Unxhx

for a tilting set U and integers nx ∈ N0, for all x ∈ U).
Proof. Let Q be an orientation of the Dynkin diagram ∆. Then Γ can be viewed as the
Auslander-Reiten quiver of the bounded derived category DQ of the category modkQ.
Let Ii be the i-th indecomposable right injective kQ-module. Define a dimension vector
d = (di)i∈Q0

di =
{

f(Ii) if f(Ii) > 0,
0 otherwise.

Let rep(Q, d) be the affine variety of representations of the opposite quiver Qop with
dimension vector d. Choose a right kQ-module M whose associated point in rep(Q, d) is
generic, so that M is rigid.

Define an object T of the cluster category CQ as M ⊕ (
⊕

f(Ii)<0(ΣPi)−f(Ii)). For each
i satisfying f(Ii) < 0, we have the following isomorphisms

Ext1CQ
(ΣPi,M) ' HomCQ

(Pi,M) ' HomkQ(Pi,M),

where the second isomorphism follows from Proposition 1.7 (d) in [17]. Notice that the
space HomkQ(Pi,M) vanishes since M does not contain Si as a composition factor. Thus,
the object T is rigid.

Let M = Ma1
1 ⊕. . .⊕Mar

r be a decomposition of M with Mj (1 ≤ j ≤ r) indecomposable
and pairwise non-isomorphic. Let T be the set

{Mj |1 ≤ j ≤ r} ∪ {ΣPi|i ∈ Q0 such that f(Ii) < 0}.

Then T is a partial tilting set [74]. Denote by ΣT the set {ΣY |Y ∈ T }(= {ΣMj |1 ≤ j ≤
r} ∪ {Ii|i ∈ Q0 such that f(Ii) < 0}). Let T+ be a basic cluster-tilting object of CQ which
contains every element in T as a direct summand. For an indecomposable object X, we
use the notation [N : X] to denote the multiplicity of X appearing as a direct summand
in CQ of an object N .

Define a new function f ′ as
∑

X∈ΣT [ΣT : X]hX , where hX is the cluster-hammock
function on Γ associated with X. Then f ′ is a cluster-additive function by the Corollary
in Section 6 of [74]. Notice that

[ΣT : Ii] = [T : ΣPi] = −f(Ii) and [ΣT : ΣMj ] = aj (1 ≤ j ≤ r).
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Now we rewrite f ′ as

∑

Ii∈ΣT
[ΣT : Ii]hIi +

∑

ΣMj∈ΣT
[ΣT : ΣMj ]hΣMj =

∑

Ii∈ΣT
(−f(Ii))hIi +

r∑

j=1

ajhΣMj .

In the following we will show that f and f ′ coincide on all indecomposable injective
kQ-modules. Notice that for any pair X 6= X ′ in a partial tilting set, the value hX(X ′) is
zero (Section 5, [74]).

Step 1. Look at the indecomposable injective kQ-modules Il satisfying f(Il) < 0.
It is easy to see that

f ′(Il) = −f(Il)hIl
(Il) = f(Il).

Step 2. Look at the indecomposable injective kQ-modules Il satisfying f(Il) = 0.
We have the following isomorphisms

Ext1CQ
(T, Σ−1Il) ' HomCQ

(T, Il) ' HomCQ
(T, Σ2Pl) ' DHomCQ

(Pl, T )

' DHomkQ(Pl,M)⊕DExt1CQ
(Pl,

⊕

f(Ii)<0

(−f(Ii))Pi) = 0.

Hence, the set ΣT ∪ {Il|f(Il) = 0} is also a partial tilting set, which implies that

hX(Il) = 0, X ∈ ΣT .

As a result, we obtain that
f ′(Il) = 0 = f(Il).

Step 3. Look at the indecomposable injective kQ-modules Il satisfying f(Il) > 0.
We compute the dimension of HomCQ

(T, Il). As in step 2, we obtain the following
isomorphisms

HomCQ
(T, Il) ' DHomkQ(Pl,M) ' HomkQ(M, Il).

It follows that
dimHomCQ

(T, Il) = dimHomCQ
(M, Il) = dl = f(Il).

Let B denote the endomorphism algebra EndCQ
(T+) and SMj the simple B-module which

corresponds to the indecomposable projective B-module HomCQ
(T+,Mj). For each object

Mj , since Il does not lie in add(ΣT+), we have that

dimHomCQ
(Mj , Il) = dimHomB(HomCQ

(T+,Mj),HomCQ
(T+, Il))

= the multiplicity of SMj as a composition factor of HomCQ
(T+, Il)

= hΣMj (Il),

where the last equality appears in the end of the proof of the Lemma in Section 10 of [74].
Since hIi(Il) = 0 for all Ii ∈ ΣT , the following equalities

f(Il) = dimHomCQ
(M, Il) =

r∑

j=1

ajdimHomCQ
(Mj , Il)

=
r∑

j=1

ajhΣMj (Il) = f ′(Il)

hold.
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Therefore, the cluster-additive functions f and f ′ coincide on all indecomposable injec-
tive kQ-modules, which implies that f is equal to f ′. Set U = {ΣZ |Z is an indecomposable
direct summand of T+}, which is a tilting set. Then we obtain that

f = f ′ =
∑

X∈ΣT [ΣT : X]hX

=
∑

X∈ΣT [ΣT : X]hX +
∑

X′∈U\ΣT 0 · h′X
=

∑
x∈Unxhx,

where
nx =

{
[ΣT : x] ifx ∈ ΣT ,
0 ifx ∈ U\ΣT .

This completes the proof.
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