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type de Géométrie qu’il fait: j’ai admiré son travail et ses résultas depuis les années de mâıtrise, et je rêve
un jour de travailler sur ces sujets. C’est un grand honneur pour moi qu’il soit présent à la soutenance
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constitue un grand honneur pour moi. Je regrette de ne pas avoir pu suivre ses cours sur la Théorie de
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et en particulier pour le dossier de soutenance: elle est une des personne plus aimables, gentilles et
disponibles que j’ai rencontré ici en France. Merci encore.
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accueillant et chaleureux: Sarah, Mary, Anne, Gonçalo, Mustapha, et (last but not least !) Amadeo.
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Introduction

Cohomologie du schéma de Hilbert ponctuel d’une surface à valeurs dans certaines repré-
sentations d’un fibré tautologique

Cette partie du travail est consacrée à la cohomologie du schéma de Hilbert ponctuel sur une surface
algébrique projective lisse X à valeurs dans certaines représentations d’un fibré vectoriel tautologique
E[n], associé à un fibré en droites E sur X. En particulier, on traitera en détail le cas de la cohomologie
H∗(X [n], S2E[n]) de la puissance symétrique S2E[n], et de la cohomologieH∗(X [n],Λ2E[n]) de la puissance
extérieure Λ2E[n].

Motivations. Ce travail est motivé par les problèmes rencontrés dans les phénomènes et la conjecture de
dualité étrange, que nous allons expliquer. La dualité étrange est une relation de dualité entre des espaces
de sections de fibrés déterminants sur des différents espaces de modules de faisceaux semi-stables sur une
variété algébrique lisse. Les premiers exemples des phénomènes de dualité étrange ont été découverts
sur des courbes par Beauville [3] et Beauville-Narasimhan-Ramanan [6]. Soit X une courbe projective
lisse de genre g ≥ 2, et SU(n) l’espace de modules de fibrés semi-stables de rang n et de degré 0 sur X.
Soit D le générateur ample de Pic(SU(n)), qui est un groupe abélien libre de rang 1, par le théorème de
Drezet-Narasimhan [30]: D s’appelle le fibré déterminant sur SU(n). Si Θ représente le diviseur théta
dans la Jacobienne Jg−1(X), on a une dualité étrange:

H0(Jg−1(X),O(nΘ))∗ ' H0(SU(n),D)

entre l’espace de sections du fibré déterminant D sur SU(n) et l’espace de fonctions théta de niveau n sur
Jg−1(X). Le calcul de la dimension de H0(SU(n),D) et, plus généralement, de H0(SU(n),D⊗k) a été
effectué par Beauville and Laszlo [5] en utilisant la formule de Verlinde, conjecturée par Verlinde [116],
et démontrée par plusieurs auteurs, parmis lesquels Tsuchiya-Ueno-Yamada [113], Beauville [4], Faltings
[37], Thaddeus [110], Jeffrey-Kirwan [71].

Sur une surface algébrique projective lisse simplement connexe X, Le Potier a proposé la conjecture
suivante, dite de dualité étrange. L’algèbre de Grothendieck Ktop(X) des fibrés topologiques sur X est
isomorphe, comme groupe abélien, à Z × H2(X,Z) × Z. En d’autres mots, une classe en Ktop(X) est
identifiée par son rang, sa première classe de Chern c1 et sa caractéristique d’Euler-Poincaré χ. La
caractéristique d’Euler-Poincaré définit une forme quadratique entière sur Ktop(X), en posant:

〈u, v〉 = χ(u · v) if u, v ∈ Ktop(X) .

Prenons ensuite deux classes u, v ∈ Ktop(X), orthogonales pour 〈·, ·〉 et considérons l’espace de modules
de faisceaux semi-stables Mu, Mv avec classes de Grothendieck fixées u et v, respectivement. Soit
Du,v et Dv,u les deux fibrés déterminants (voir [86], [68]) sur Mu et Mv associés aux classes v et u,
respectivement. Sous certaines hypothèses techniques, Le Potier trouve une section canonique σv,u ∈
H0(Mu ×Mv,Du,v �Dv,u), qui permet de définir le morphisme de dualité étrange:

Dv,u : H0(Mu,Du,v)∗ - H0(Mv,Dv,u) .

Le Potier a conjecturé, sous certaines hypothèses, que Dv,u est un isomorphisme, si Mv n’est pas vide.
Danila [21] a étudié la conjecture de la dualité étrange de Le Potier sur P2. En particulier, elle a résolu

la conjecture pour les classes de Grothendieck c = (2, 0, n), u = (0, 1, 0), n ≤ 19. Soit Mn := M(2,0,n).
La stratégie consiste à utiliser les espaces de modules de systèmes cohérents (voir [66], [84], [85]) Sα afin
d’établir une relation — pour l(l − 1) ≤ n ≤ (l + 1)(l + 2) —entre l’espace de sections H0(Mn,Dn,u) et
l’espace de sections H0(U, SlR ⊗ Du) d’un faisceau cohérent R sur un ouvert U du schéma de Hilbert
X [n+l2], oùR est localement libre (voir [22]). Danila construit une résolution localement libre K• - R,
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dont les termes Ki dépendent de la puissance symétrique Sr(O(k)[n+l2]) du fibré tautologique O(k)[n+l2]

associé au fibré de droites O(k) sur P2. Pour calculer la suite spectrale d’hypercohomologie, il faut
calculer des groupes de cohomologie du genre:

Hq(X [m], Sk(O(k)[m])⊗Du) ,

Du étant le déterminant de Donaldson sur X [n] associé à la classe u. Ce sont précisément les obstacles
d’ordre technique dans ces calculs qui limitent les résultats de Danila à n ≤ 19. La connaisssance de
ces groupes de cohomologie entrâınerait la preuve complète de la conjecture pour le plan projectif, au
moins pour c = (2, 0, n), u = (0, 1, 0). Danila a démontré dans [23] et [24] des formules générales pour la
cohomologie de fibrés tautologiques sur le schéma de Hilbert H∗(X [n], L[n]) associés à un fibré en droites
L sur X, et de la puissance symétrique double H∗(X [n], S2L[n]), pour n ≤ 3.

Dans ce travail, on généralise ses résultats pour S2L[n] pour tout n, et on obtient également des
formules générales pour la cohomologie de la puissance extérieure double H∗(X [n],Λ2L[n]) pour tout n.
Il s’avère que ces derniers groupes sont également impliqués dans la vérification de la conjecture de la
dualité étrange sur le plan projective pour les espaces de modules M2 et M(1,d,m) (cf. [83]).

La méthode: correspondance de McKay. La méthode qu’on utilise est différente de celle de Danila
et elle provient de développements récents dans la correspondance de McKay. Le début de la correspon-
dance de McKay date de bien avant McKay et, en effet, a commencé avec Klein vers 1870 et avec Coxeter
et Du Val vers 1930. Quand on quotiente C2 par un sous-groupe fini G de SL(2,C) et on prend la
résolution minimale Y de C2/G, alors Y est crépant et le lieu exceptionnel consiste en un ensemble de
courbes, dont le graphe dual est un diagramme de Dynkin du type An, Dn, E6, E7, E8.

McKay (voir [89], [90], [44]) a observé que les diagrammes de Dynkin issus de résolutions de sin-
gularités kleiniennes sont reliés aux représentations de G. Si ρ est une représentation de G, et ρi sont
de représentations irréductibles, le graphe de McKay est le diagramme de Dynkin associé à la matrice
aij − 2id, où aij est défini comme

ρ⊗ ρi =
∑
j

aijρj ;

le graphe de McKay ainsi défini est alors le diagramme de Dynkin donné par le graphe dual (étendu) du
lieu exceptionnel quand G opère sur C2 via la représentation ρ. De plus, McKay a suggeré qu’il y a une
bijection entre les composantes du lieu exceptionnel et les représentations irréductibles de G. Dans [53],
Gonzalez-Springer and Verdier ont démontré une version de cet énoncé en K-théorie, en montrant un
isomorphisme:

KG(C2)
'- K(Y )

entre le groupe de K-théorie G-équivariante de C2 et le groupe de K-théorie de Y , qui rend précise la
correspondance entre l’ensemble des représentations irréductibles de G et l’ensemble des composantes
irréductibles du lieu exceptionnel.

La généralisation du théorème de Gonzalez-Springer-Verdier qui nous intéresse a été publiée en 2001,
avec le résultat suivant de Bridgeland-King-Reid [16]. Soit M une variété quasi-projective lisse sur C
et G un groupe fini d’automorphismes de M tel que ωM est localement trivial comme G-faisceau. Soit
Y = HilbG(M) le G-schéma de Hilbert (selon Nakamura) des G-orbites. Alors, si la dimension de
Y ×M/G Y n’est pas trop grande, on obtient l’équivalence:

Φ : Db(Y ) - Db
G(M) ,

entre la catégorie dérivée des faisceaux cohérents sur Y et la catégorie dérivée des faisceaux G-équivariants
sur M , où Φ est la transformée de Fourier-Mukai ayant comme noyau la famille universelle Z ⊂ Y ×M .
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L’étape suivante a été menée par Haiman ([61], [62], [60]), qui a démontré que l’action du groupe
symétrique Sn sur le produit Xn d’une surface X satisfait l’hypothèse du théorème BKR, et que
HilbSn(Xn) peut être identifié avec le schéma de Hilbert X [n]. Par conséquent, on obtient l’équivalence:

Φ : Db(X [n]) - Db
Sn

(Xn)

obtenue par la transformée de Fourier-Mukai de noyau Bn, le schéma de Hilbert isospectral. Ainsi, les
calculs de cohomologie sur le schéma de Hilbert peuvent être obtenus plus simplement par des calculs de
cohomologie Sn-équivariante sur le produit Xn.

Résultats. Notre première question a été de trouver l’image d’un faisceau tautologique F [n] associé
à un faisceau cohérent F sur la surface X pour l’équivalence BKRH Φ. On rappelle que le faisceau
tautologique F [n] est le faisceau défini par le foncteur de Fourier-Mukai:

F [n] := ΦOΞ
X→X[n](F ) = RpX[n]∗(OΞ ⊗L p∗XF ) ,

où Ξ est la famille universelle sur le schéma de Hilbert. Dans le diagramme commutatif

Bn
p - Xn

X [n]

q

?
µ- SnX

π

?

Bn est le schéma de Hilbert isospectral, SnX est la variété symétrique et µ est le morphisme de Hilbert-
Chow. L’équivalence de Bridgeland-King-Reid-Haiman

Φ = Rp∗ ◦ q∗

calculée sur F [n] devient alors simplement la composition des foncteurs de Fourier-Mukai:

Φ(F [n]) = Φ ◦ ΦOΞ
X→X[n](F ) = ΦRf∗OZ

X→Xn(F ) ,

que l’on sait être un troisième foncteur de Fourier-Mukai de noyau Rf∗OZ , où Z est la famille universelle
sur le schéma de Hilbert isospectral, et f le morphisme: f : Bn × X - Xn × X. On démontre que
l’image directe dérivée Rf∗OZ est quasi isomorphe au faisceau structural OD de l’union schématique D =
∪ni=1∆i,n+1 des diagonales ∆i,n+1 de Xn ×X. Afin de pouvoir calculer la cohomologie Sn-équivariante
de Φ(F [n]) ' ΦODX→Xn(F ), il faut extraire des informations effectivement utiles à partir du noyau OD.
Cette étape a été achevée en démontrant que le faisceau OD admet une résolution K• de type Čech en
termes des diagonales ∆i,n+1 et de leurs intersections. Ceci permet de construire un complexe simple C•F
sur Xn (qui n’est autre que la projection sur Xn de la résolution de Čech K• tensorisée par p∗XF ), qui
peut être identifié, dans la catégorie dérivée équivariante Db

Sn
(Xn), avec l’image voulue Φ(F [n]). On a

alors obtenu le premier résultat nouveau de ce travail:

Theorem 0.1. Soient X une surface quasi-projective lisse et F un faisceau cohérent sur X. L’image
du faisceau tautologique F [n] sur le schéma de Hilbert X [n] par l’équivalence de Bridgeland-King-Reid-
Haiman Φ est isomorphe dans la catégorie dérivée Db

Sn
(X) au complexe C•F :

Φ(F [n]) ' C•F .

Le comportement du complexe C•F sous l’action de Sn est très simple, et permet aisément le calcul de
la cohomologie Sn-équivariante de Xn à valeurs dans C•F . Elle est isomorphe à la cohomologie du schéma
de Hilbert X [n] à valeurs dans F [n]. On obtient la généralisation suivante du résultat de Danila:
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Theorem 0.2. Soient X une surface algébrique, F un faisceau cohérent et A un fibré en droites sur X.
Soit DA le déterminant de Donaldson sur X [n] relatif à A. Alors

H∗(X [n], F [n] ⊗DA) ' H∗(X,F ⊗A)⊗ Sn−2H∗(X,A) .

On s’est proposé ensuite d’exploiter notre connaissance de l’image Φ(F [n]) d’un faisceau tautologique
F [n] en termes du complexe C•F afin de comprendre l’image de la puissance tensorielle d’un fibré tau-
tologique E[n] associé à un fibré en droites E sur X et sa cohomologie Sn-équivariante. La stratégie
décrite ci-dessus marche partiellement aussi dans ce cas. La seule différence est qu’ici le noyau de la
composition des foncteurs de Fourier-Mukai qui interviennent n’est pas du tout trivial. Ceci conduit
à utiliser un résultat profond de Haiman sur polygraphes ([61], [62]). L’image du produit tensoriel de
faisceaux tautologiques est alors donnée par:

Φ(E[n]⊗
k

) ' ΦOD(n,k)

Xk→Xn(E�k)

où D(n, k) est le polygraphe de Haiman dans Xn × Xk. Il généralise pour k ≥ 1 le schéma D décrit
précédemment. Le polygraphe D(n, k) est, en général, un schéma beaucoup plus compliqué que D et
son faisceau structural n’admet pas, à notre connaissance, une bonne résolution analogue à celle de D.

Il n’est donc pas possible de trouver un complexe simple permettant d’interpréter l’image Φ(E[n]⊗
k

).
Néanmoins nous avons démontré que le mapping-cone du morphisme naturel:

C•E ⊗L . . .⊗L C•E︸ ︷︷ ︸
k-times

- Φ(E[n]⊗
k

)

est acyclique en degré supérieur à zéro, c’est-à-dire, les images directes supérieures s’annulent:

Rqp∗q
∗(E[n]⊗

k

) = 0 si q > 0, et en degré 0 le morphisme:

p∗(q∗E[n])⊗ . . .⊗ p∗(q∗E[n]) - p∗q
∗(E[n] ⊗ . . .⊗ E[n])

est surjectif et son noyau est le sous-faisceau de torsion. Ce résultat nous permet d’identifier l’image
p∗q

∗(E[n] ⊗ . . . ⊗ E[n]) au terme E0,0
∞ de la suite spectrale hyperdérivée associée à C•E ⊗L . . . ⊗L C•E .

Le calcul de ce terme est en général techniquement difficile, mais il n’est pas vraiment nécessaire pour

comprendre la cohomologie Sn-équivariante de l’image Φ(E[n]⊗
k

). Tout ce dont on a besoin est de

connâıtre les invariants Φ(E[n]⊗
k

)Sn , qui peuvent être identifiés avec l’image directe par le morphisme

de Hilbert-Chow µ∗(E[n]⊗
k

). Vu que l’image directe Sn-invariante πSn
∗ sur la variété symétrique SnX est

un foncteur exact, ceci équivaut à connâıtre les invariants (E0,0
∞ )Sn , ou le terme E0,0

∞ de la suite spectrale
des invariants:

Ep,q1 ' (Ep,q1 )Sn .

Cette nouvelle suite spectrale de faisceaux sur SnX est beaucoup plus simple que l’originale et permet
le calcul explicite de l’image directe de la puissance tensorielle double E[n] ⊗ E[n] par le morphisme de
Hilbert-Chow µ dans le cas où E est un fibré en droites X. On a démontré la généralisation suivante de
la formule de Danila-Brion ([23]):

Theorem 0.3. Soient X une surface quasi-projective lisse, E un fibré en droites sur X. Alors, l’image
directe dérivée Rµ∗(E[n] ⊗ E[n]) de la puissance tensorielle double d’un fibré vectoriel tautologique E[n]

par le morphisme de Hilbert-Chow µ est quasi-isomorphe au complexe à deux termes:

0 - (C0
E ⊗ C0

E)Sn
d- (C0

E ⊗ C1
E)Sn - 0 ,

acyclique en degré supérieur à zéro, où le morphisme d est donné par d = id⊗ d0
C•E

.
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Il est maintenant simple d’en tirer des conclusions sur la cohomologie équivariante de Φ(E[n]⊗E[n]),
ou, en d’autres mots, de la cohomologie H∗(X [n], E[n] ⊗ E[n]). En décomposant la puissance tensorielle
en composantes symétrique et extérieure, on obtient le résultat:

Theorem 0.4. Soient X une surface quasi-projective lisse, E un fibré en droites sur X. La cohomologie
du schéma de Hilbert X [n] à valeurs dans la puissance extérieure Λ2E[n] d’un fibré tautologique E[n]

associé au fibré en droites E sur X, est donnée par l’isomorphisme de modules gradués:

H∗(X [n],Λ2E[n]) ' Λ2H∗(X,E)⊗ Sn−2H∗(X,OX) .

La cohomologie du schéma de Hilbert X [n] à valeurs dans la puissance symétrique S2E[n] est donnée par
l’isomorphisme de modules gradués:

H∗(X [n], S2E[n]) ' H∗(X,E⊗
2
)⊗ J

⊕
S2H∗(X,E)⊗ Sn−2H∗(X,OX)

où J est l’idéal dans Sn−1H∗(X,OX) des classes de cohomologie qui s’annulent dans le schéma {a} ×
Sn−2X, avec a un point fixé dans X.

Les deux énoncés du théorème peuvent être réunis dans la formule:

H∗(X [n], E[n]⊗
2

) ' H∗(X,E⊗
2
)⊗ J

⊕
H∗(X,E)⊗

2
⊗ Sn−2H∗(X,OX) .

Perturbations de la métrique dans les équations de Seiberg-Witten

A la fin des années 1980, Donaldson [28], [29] construit les premiers invariants différentiels pour des
variétés différentielles de dimension 4 compactes simplement connexes. Ces types d’invariants permettent
de faire la distinction entre variétés qui sont homéomorphes mais pas difféomorphes. Par exemple, il est
possible de démontrer que la quintique lisse dans P3

C et la variété 9P2
C]44P2

C sont homéomorphes mais pas
difféomorphes. Les invariants de Donaldson sont des invariants polynomiaux:

qd : H2(M,Z)× · · · ×H2(M,Z) - Q

construits à partir de la SU(2)-théorie de jauge des instantons, ou connexions anti-autoduales. En
d’autres mots, étant donné un fibré vectoriel hermitien E de rang 2, de déterminant trivial, considérons
l’espace S de SU(2)-connexions A satisfaisantes à la condition:

F+
A = 0 . (1)

L’espace de modules des instantons ME est le quotient:

ME = S/G

où G est le groupe d’automorphismes de E. Il est toujours possible de donner sur ME une structure
d’espace analytique complexe, mais il n’y a pas de raisons pour que ME soit lisse. Afin d’assurer que
ME est une variété lisse, il faut avoir une action libre et il faut démontrer que le morphisme A - F+

A

est transverse à 0, de sorte que S est une sous-variété (banachique) lisse de l’espace affine (de Banach) A
des connexions SU(2). Le premier point s’obtient simplement en considérant l’action d’un groupe réduit
Ḡ = G/C(G) et en éliminant les connexions réductibles par modification de la métrique. Le deuxième est
non triviale et constitue une étape fondamentale dans la construction d’espaces de modules des instantons.
Le problème a été résolu par Freed et Uhlenbeck [46] qui ont considéré des perturbations des équations
(1) de la forme:

F+,g
A = 0 (2)
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où la métrique g sur la variété M est vue comme un paramètre additionnel. Les deux auteurs ont
démontré que l’application perturbée (A, g) - F+,g

A est transverse à 0; par conséquent, l’espace des
solutions S peut être équipé d’une structure de variété lisse (de Banach). Une application standard du
théorème de Sard-Smale entrâıne alors que, pour une métrique générique Ck h dans Met(M), l’espace de
modules des instantons Mh

E , relative à la métrique h, est une variété lisse. Ce fait fondamental, combiné
avec la preuve (difficile) de l’existence d’une compactification (faite par Donaldson [29], Uhlenbeck [114],
[115]), permet la construction des invariants polynomiaux de Donaldson.

En octobre 1994, Seiberg et Witten (voir [104], [105], [119]) construisent un autre type d’invariants
différentiels, numériques, basés sur une théorie de jauge de type U(1) beaucoup plus simple, qui peut
être interprétée du point de vue de la théorie quantique de champs comme une théorie ”duale” de celle
de Donaldson. Sur la base de considérations profondes de physique théorique, Witten a prévu que les
invariants de Seiberg-Witten seraient capables de saisir la richesse et subtilité des invariants de Donaldson;
de plus, il a précisément conjecturé que les polynômes de Donaldson pourraient être exprimés en termes
d’invariants de Seiberg-Witten. La conjecture de Witten est en train d’être démontrée, sur la base d’une
idée de Pidstrigach et Tyurin, suite au travail long et technique de Okonek, Teleman [99], [108], [109] et,
surtout, de Feehan-Leness [38], [39], [40], [42], [41]. Les invariants de Seiberg-Witten sont construits à
partir des équations de Seiberg-Witten: une fois fixée une structure Spinc sur une variété riemannienne
compacte orientable (M, g) de dimension 4, de fibré de spineurs W ' W+ ⊕W− et de fibré en droites
hermitien fondamental L ' detW+, les équations sont:

DAψ = 0 (3a)

F+
A = [ψ∗ ⊗ ψ]0 (3b)

où A est une connexion unitaire sur L, ψ est un spineur positif ψ ∈ Γ(W+), et [ψ∗ ⊗ ψ]0 est la partie
de trace nulle dans isu(W+) ' iΛ2

+T
∗M de l’opérateur ψ∗ ⊗ ψ ∈ u(W+). Le groupe de jauge est ici

G = C∞(M,S1) et il opère sur les solutions via (A,ψ) - ((g2)∗A, gψ). Le groupe opère librement
sur les solutions des équations (3a), (3b) de la forme (A,ψ), avec ψ 6= 0, qui sont dites des monopoles
irréductibles. L’espace des modules des monopoles de Seiberg-Witten est le quotient:

MSW = S/G

où S est l’espace de solutions des équations de Seiberg-Witten. Afin d’assurer que l’espace de modules
est lisse, il faut garantir que l’action G est libre (ce qui peut être fait comme pour les instantons, en
changeant la métrique afin d’éliminer les monopoles réductibles) et que l’espace de solutions S est une
sous-variété (banachique) de l’espace de configurations AL × Γ(W+), obtenue comme image réciproque
de 0 par un morphisme transverse à la section nulle. Le deuxième problème est classiquement résolu par
une perturbation des équations du type:

DAψ = 0 (4a)

F+
A = [ψ∗ ⊗ ψ]0 + η (4b)

où η est une 2-forme autoduale imaginaire η ∈ iA2
+(M). On peut ainsi obtenir la transversalité désirée et

la lissité des espaces de modules MSW
η de Seiberg-Witten pour une 2-forme générique η ∈ iA2

+(M). Bien
que cette perturbation soit très simple, elle ne semble pas la plus naturelle, ni la plus géométrique; comme
on l’a vu précédemment dans la théorie de Donaldson, la transversalité des équations est obtenue par la
perturbation de la seule métrique, procédure qui permet en même temps de se débarasser des connexions
réductibles. La perturbation de la métrique dans la théorie de Donaldson a une signification géométrique
plus profonde; par contre, la 2-forme η manque de toute interprétation géométrique ou physique. En
plus, le comportement des équations de Seiberg-Witten sous des variations de la métrique est intéressant
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en soi: peu de choses sont connues sur cette question. La seule référence dans la littérature sur les
perturbations de la métrique dans les équations de Seiberg-Witten est un article de Eichhorn et Friedrich
[31], où les deux auteurs prétendent avoir démontré un résultat de transversalité pour des métriques
génériques, mais une lecture attentive de leur démonstration révèle plusieurs fautes qui ne peuvent pas
être facilement corrigées.

On s’est proposé alors de clarifier la question. La première difficulté qu’on a rencontrée est la variation
de l’opérateur de Dirac correspondant à une variation de la métrique: la question a déjà été étudiée par
Bourguignon et Gauduchon ([12], [11]). Les deux auteurs construisent des isomorphismes entre les fibrés
de spineurs associés à des métriques différentes, afin de comparer les opérateurs de Dirac qui opèrent
dans les espaces de spineurs correspondants. On a décidé d’aborder ce problème d’une autre façon, qu’on
va expliquer. Se donner une structure Spinc sur une variété riemannienne compacte (M, g) de dimension
4 est équivalent à se donner une représentation spinorielle (W,ρ), c’est-à-dire, les données d’un fibré
hermitien W sur M et un morphisme de fibrés:

ρ : TM - End(W )

tel que ρ(x)∗ = −ρ(x), ρ(x)2 = −g(x, x), pour tout x ∈ TM (cf. [81], [38], [40])). On fixe dorénavant
un fibré de spineurs W sur la variété riemannienne (M, g). A un changement de la métrique gt = ϕ∗t g,
ϕt ∈ Aut(TM) on associe la multiplication de Clifford suivant le diagramme:

(TM, g)
ρ- End(W )

(TM, gt)

ϕt

6
ρ t

-

Le couple (W,ρt), donné par le même fibré de spineur W , avec la nouvelle multiplication de Clifford ρt,
devient une nouvelle structure Spinc pour la nouvelle variété riemannienne (M, gt). Il est évident que,
de cette façon, il est inévitable de changer la multiplication de Clifford quand on change la métrique. On
se demande alors ce que signifie perturber uniquement la métrique, dès qu’on est obligé de changer la
multiplication de Clifford chaque fois qu’on veut changer la métrique. Afin de répondre à cette question,
on est induit à étudier les relations entre les multiplications de Clifford (ou structures Spinc, une fois que
le fibré de spineur est fixé) et les métriques. Si on fixe le fibré de spineurs W et on prend l’ensemble des
couples compatibles (g, ρ):

Ξ = {(g, ρ) | g ∈ Met(M) , ρ : TM - End(W ) , ρ(u)∗ = ρ(−u) , ρ(u)2 = −g(u, u)}

alors Ξ - Met(M) est une fibration C∞(M,PU(W )) sur l’espace de la métrique, sur laquelle opère
Aut(TM). Dans ce cadre, le concept de la perturbation de la seule métrique correspond, en un sens faible,
à choisir des variations de la structure Spinc transversales à la distribution verticale: en d’autre mots,
cela nécessite la notion d’une connexion sur cette fibration. Il y a maintenant une connexion naturelle,
la distribution horizontale en un point (g, ρ) étant donnée par l’espace tangent à l’image de la section
σ(g, ρ):

Sym+(TM, g)
σ(g, ρ) - Ξ

ϕ - (ϕ∗g, ρ ◦ ϕ)

transverse à la fibre Ξg, où Sym+(TM, g) désigne les automorphismes symétriques positifs du fibré tan-
gent. Cette connexion clarifie le concept de perturbation de la seule métrique dans un sens plus fort.
On définit les équations de Seiberg-Witten et, par conséquent, un espace de modules M paramétrisés
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par Ξ, dont la fibre au point (g, ρ) est l’espace de modules de Seiberg-Witten standard MSW
g,ρ associé

à la structure Spinc donnée par le couple (g, ρ). On démontre que le groupe d’automorphismes uni-
taires du fibré de spineurs opère sur la fibration Ξ (verticalement) et sur les solutions des équations de
Seiberg-Witten; dans le cas où M est simplement connexe cette action est transitive sur les fibres: par
conséquent, deux espaces de modules de Seiberg-Witten pour deux multiplications de Clifford différentes
sur la même métrique sont isomorphes:

MSW
(g,ρ) 'MSW

(g,ρ′ )
.

On utilise des variations de la structure Spinc tangentes à la distribution horizontale naturelle pour
calculer la variation des équations de Seiberg-Witten. En particulier, la variation de l’opérateur de
Dirac qu’on obtient par ce moyen est la même obtenue par Bourguignon et Gauduchon. On calcule la
différentielle DF de la fonctionnelle de Seiberg-Witten perturbée (en termes de variations de la connexion
unitaire A, du spineur ϕ et de la métrique g) et son adjoint (formel) DF∗, et on étudie les équations
du noyau DF∗u = 0. Démontrer que le noyau est nul en un point (A,ψ, g, ρ) implique la transversalité
des équations de Seiberg-Witten pour la métrique générique au voisinage de g. Dans le cas général, les
équations sont compliquées et on n’a toujours pas de réponse.

Quand M est une surface complexe de Kähler avec fibré en droites canonique KM , les équations
de Seiberg-Witten ont une interprétation en termes de couples holomorphes (∂A, α), où ∂A est une
semiconnexion holomorphe sur un fibré en droites N tel que K∗

M ⊗ N⊗2 ' L, et α est une section
holomorphe de (N, ∂A). Ce fait permet une grande simplification des équations de Seiberg-Witten et,
par conséquent, de notre question. On interprète tous les objets précédents dans le contexte de la
géométrie complexe et on utilise la décomposition des endomorphismes symétriques en hermitiens et
anti-hermitiens; les équations du noyau deviennent alors extrêmement plus simples. On obtient que
les équations de Seiberg-Witten sont transverses pour une métrique hermitienne générique suffisamment
proche de la métrique de Kähler g. On a précisément démontré:

Theorem 0.5. Soit (M, g, J) une surface de Kähler. Soit N un fibré en droites hermitien sur M tel que
2 deg(N) − deg(K) < 0. Considérons la structure Spinc canonique sur M tordue par le fibré en droites
hermitien N . Pour une métrique générique h dans un voisinage ouvert de g dans Met(M) l’espace de
modules de Seiberg-Witten MSW

h est lisse. En effet, l’énoncé est vrai pour une métrique hermitienne
générique h dans un voisinage ouvert de g.

On trouve un contre-exemple qui montre qu’il faut obligatoirement sortir de la classe des métriques
de Kähler afin d’obtenir la transversalité.

xvi



Cohomology of the Hilbert scheme of points on a surface

with values in representations of tautological bundles





Introduction

This part of our work deals with the cohomology of the Hilbert scheme of points over a smooth algebraic
projective surface X with values in some representations of a tautological vector bundle E[n], associated
to a line bundle E on X. In particular, we will treat in detail the case of the cohomology H∗(X [n], S2E[n])
of the symmetric power S2E[n], and the cohomology H∗(X [n],Λ2E[n]) of the exterior power Λ2E[n].

Motivations. The motivations of this work lie in strange duality phenomenons and conjecture, which
we will now explain. Strange duality is a duality relation between spaces of sections of determinant line
bundles on different moduli spaces of semistable sheaves on a smooth algebraic variety. The first examples
of strange duality phenomenons were discovered on curves by Beauville [3] and Beauville-Narasimhan-
Ramanan [6]. Let X be a smooth projective curve of genus g ≥ 2, and SU(n) the moduli space of
semistable vector bundles of rank n over X with degree 0. Let D be the ample generator of Pic(SU(n)),
which is free abelian of rank 1, by Drezet-Narasimhan theorem [30]: D is called the determinant line
bundle over SU(n). If Θ denotes the theta divisor on the Jacobian Jg−1(X), we have a strange duality:

H0(Jg−1(X),O(nΘ))∗ ' H0(SU(n),D)

between the space of sections of the determinant line bundle D on SU(n) and the space of theta func-
tions of level n on Jg−1(X). The computation of the dimension of H0(SU(n),D) and, more generally,
of H0(SU(n),D⊗k) has been performed by Beauville and Laszlo [5], by means of Verlinde formula, con-
jectured by Verlinde [116], and proved by several authors, among others Tsuchiya-Ueno-Yamada [113],
Beauville [4], Faltings [37], Thaddeus [110], Jeffrey-Kirwan [71].

On a smooth simply connected algebraic projective surface X Le Potier proposed the following strange
duality conjecture. Suppose X is simply connected. Then the Grothendieck algebra Ktop(X) of topolog-
ical vector bundles on X is isomorphic, as an abelian group, to Z×H2(X,Z)×Z. In other words, a class
in Ktop(X) is identified by its rank, its first Chern classe c1 and its Euler-Poincaré characteristic χ. The
Euler-Poincaré characteristic defines an integral quadratic form on Ktop(X), setting:

〈u, v〉 = χ(u · v) if u, v ∈ Ktop(X) .

Take now two classes u, v ∈ Ktop(X), orthogonal for 〈·, ·〉 and form the moduli spaces of semistable
sheaves Mu, Mv with fixed Grothendieck classes u and v, respectively. Let Du,v and Dv,u be the two
determinant line bundles (see [86], [68]) on Mu and Mv associated to the classes v and u respectively.
Under some technical hypothesis Le Potier finds a canonical section σv,u ∈ H0(Mu ×Mv,Du,v � Dv,u)
which allows to define the strange duality morphism:

Dv,u : H0(Mu,Du,v)∗ - H0(Mv,Dv,u) .

Le Potier conjectured under some hypothesis that Dv,u is an isomorphism, if Mv is not empty.
Danila [21] addressed Le Potier strange duality conjecture on P2. In particular, she solved affirmatively

the conjecture for Grothendieck classes c = (2, 0, n), u = (0, 1, 0), n ≤ 19. Let Mn := M(2,0,n). The
strategy followed is to use moduli spaces of coherent systems (see [66], [84], [85]) Sα to relate — for
l(l−1) ≤ n ≤ (l+1)(l+2) — the space of sections H0(Mn,Dn,u) to the space of sections H0(U, SlR⊗Du)
of a coherent sheaf R on an open set U of the Hilbert scheme X [n+l2], where R is locally free (see [22]).
Danila resolves R with a locally free resolution K• - R, whose terms Ki depend on the symmeric
power Sr(O(k)[n+l2]) of the tautological bundle O(k)[n+l2] associated to the line bundle O(k) on P2. To
compute the hypercohomology spectral sequence, it is then necessary to handle and compute cohomology
groups of the kind:

Hq(X [m], Sk(O(k)[m])⊗Du) ,
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Du being the Donaldson determinant on X [m] associated to the class u. It is precisely the technical
difficulties in these computations that limited Danila’s results on the conjecture to n ≤ 19. The compre-
hensive knowledge of these cohomology groups would lead to a complete proof of the conjecture for the
projective plane, at least for c = (2, 0, n), u = (0, 1, 0). Danila proved in [23] and [24] general formulas for
the cohomology of tautological bundles on the Hilbert scheme H∗(X [n], L[n]) associated to a line bundle
on X, and of the double symmetric power H∗(X [n], S2L[n]), for n ≤ 3.

In our work we generalize her results for S2L[n] for all n, and we give also general formulas for the
cohomology of the double exterior power H∗(X [n],Λ2L[n]) for all n. It turns out that the latter groups
are involved as well in the verification of strange duality conjecture on the projective plane for M2 and
M(1,d,m). (cf. [83])

The method: McKay correspondence. The method we use is quite different from Danila’s and was
provided by recent developments in McKay correspondence. The beginning of McKay correspondence
dates back long before McKay and actually started with Klein around 1870 and with Coxeter and Du Val
around 1930. When we quotient C2 by a finite subgroup G of SL(2,C), and we take a minimal resolution
Y of C2/G, then Y is crepant and the exceptional locus consists of a bunch of curves, whose dual graph
is a Dynkin diagram of the kind An, Dn, E6, E7, E8.

McKay (see [89], [90], [44]) made the observation that the Dynkin diagrams arising from resolutions
of kleinian singularities are in connection with the representations of G. If ρ is a representation of G, and
ρi are the irreducible representations, the McKay graph is the Dynkin diagram associated to the matrix
aij − 2id, where aij is defined as

ρ⊗ ρi =
∑
j

aijρj ;

it turns out that the McKay graph just defined is exactly the Dynkin diagram given by the (extended)
dual graph of the exceptional locus when G acts on C2 via the representation ρ. Moreover, McKay
suggested that there is a one-to-one correspondence between the components of the exceptional locus and
the irreducible representations of G. In [53], Gonzalez-Springer and Verdier proved a K-theoretic version
of this statement, showing an isomorphism:

KG(C2)
'- K(Y )

between the K-theory of Y and the G-equivariant K-theory of C2, making precise the correspondence
between irreducible representations of G and irreducible components of the exceptional locus.

The generalization of Gonzalez-Springer-Verdier theorem we are interested in, came out in 2001, with
the following Bridgeland-King-Reid result [16]. Let M be a smooth quasi-projective variety over C and
G a finite group of automorphisms of M such that ωM is locally trivial as G-sheaf. Let Y = HilbG(M)
the G-Hilbert scheme (according to Nakamura) of G-orbits. Then, under some smallness hypothesis on
Y ×M/G Y , we have an equivalence of derived categories:

Φ : Db(Y ) - Db
G(M)

between the derived category of coherent sheaves on Y and the derived category of G-equivariant sheaves
on M , where Φ is the Fourier-Mukai transform with kernel the universal family Z ⊂ Y ×M .

The next step was made by Haiman ([61], [62], [60]), who proved that the action of the symmetric group
Sn on the product Xn of a surface X satisfies the hypothesis of BKR-theorem, and that HilbSn(Xn)
can be identified with the Hilbert scheme X [n]. As a consequence, we have an equivalence:

Φ : Db(X [n]) - Db
Sn

(Xn)

obtained by the Fourier-Mukai transform of kernel Bn, the isospectral Hilbert scheme. Consequently, co-
homology computations on the Hilbert scheme can be obtained as simpler Sn-equivariant (hyper)cohomology
computations on the product Xn.
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Results. Our first concern was finding the image of a tautological sheaf F [n] associated to a coherent
sheaf F on the surface X for the BKRH equivalence Φ. We recall that the tautological sheaf F [n] is the
sheaf defined by means of the Fourier-Mukai functor:

F [n] := ΦOΞ
X→X[n](F ) = RpX[n]∗(OΞ ⊗LO

X[n]×X
p∗XF )

where Ξ is the universal family on the Hilbert scheme. In the commutative diagram

Bn
p - Xn

X [n]

q

?
µ- SnX

π

?

Bn is the isospectral Hilbert scheme, SnX is the symmetric variety, µ is the Hilbert-Chow morphism.
The Bridgeland-King-Reid-Haiman equivalence

Φ := Rp∗ ◦ q∗

computed on F [n] is then simply the composition of Fourier-Mukai functors:

Φ(F [n]) = Φ ◦ ΦOΞ
X→X[n](F ) = ΦRf∗OZ

X→Xn(F ) ,

which we know being a third Fourier-Mukai functor of kernel Rf∗OZ , where Z is the universal family
on the isospectral Hilbert scheme, and f is the morphism: f : Bn × X - Xn × X. We proved that
the derived direct image Rf∗OZ is quasi isomorphic to the structural sheaf OD of the scheme-theoretic
union D = ∪ni=1∆i,n+1 of diagonals ∆i,n+1 in Xn×X. In order to be able to compute the Sn-equivariant
cohomology of Φ(F [n]) ' ΦODX→Xn(F ), we needed to extract some effectively useful information from the
kernel OD. This task was achieved by showing that the sheaf OD affords a Čech-type resolution K• in
terms of the diagonals ∆i,n+1 and their intersections. As a consequence, we succeeded in defining a simple
complex C•F on Xn (which is nothing but the projection onto Xn of the Čech resolution K• twisted by
p∗XF ), which could be identified, in the equivariant derived category Db

Sn
(Xn), with the searched image

Φ(F [n]). We got the first new result of this work:

Theorem 0.6. Let X a smooth quasi-projective surface and F a coherent sheaf on X. The image of the
tautological sheaf F [n] on the Hilbert scheme X [n] for the Bridgeland-King-Reid-Haiman equivalence Φ is
isomorphic in Db

Sn
(X) to the complex C•F :

Φ(F [n]) ' C•F .

The behaviour of the complex C•F under the action of Sn is very simple, and allows, without any effort,
to compute the Sn-equivariant hypercohomology of C•F on Xn, which is isomorphic to the cohomology
of F [n] on the Hilbert scheme. We got the following generalization of a Danila-Brion result (cf. [23]):

Theorem 0.7. Let X be a smooth algebraic surface, F a coherent sheaf and A a line bundle on X. Let
DA the Donaldson determinant on X [n] relative to A. Then

H∗(X [n], F [n] ⊗DA) ' H∗(X,F ⊗A)⊗ Sn−2H∗(X,A) .

The second task we proposed ourselves was to exploit our knowledge of the image Φ(F [n]) of a tauto-
logical sheaf F [n] in terms of the complex C•F to understand the image of a tensor power of a tautological
vector bundle E[n] associated to a line bundle E on X and its Sn-equivariant hypercohomology. The
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strategy decribed above partially works in this case as well. The only difference here is that the kernel of
the resulting composition of Fourier-Mukai functors is quite nontrivial and we have to make use of a deep
result by Haiman on polygraphs ([61], [62]). The image of the tensor product of tautological sheaves is
then given by:

Φ(E[n]⊗
k

) ' ΦOD(n,k)

Xk→Xn(E�k)

where D(n, k) is Haiman’s polygraph in Xn × Xk and generalizes for k ≥ 1 the scheme D described
above. The polygraph D(n, k) is, in general, a far more complicated scheme than D and its structural
sheaf does not admit, to our knowledge, any nice resolution in the way D has. Consequently, we could

not find any ”simple” complex quasi-isomorphic to the image Φ(E[n]⊗
k

). Nonetheless, we could prove
that the mapping cone of the natural morphism:

C•E ⊗L . . .⊗L C•E︸ ︷︷ ︸
k-times

- Φ(E[n]⊗
k

)

is acyclic in degree higher than zero, that is, the higher direct images vanish: Rjp∗q∗(E[n]⊗
k

) = 0 if j > 0
and in degree 0 the morphism:

p∗(q∗E[n])⊗ . . .⊗ p∗(q∗E[n])︸ ︷︷ ︸
k-times

- p∗q
∗(E[n] ⊗ . . .⊗ E[n]︸ ︷︷ ︸

k-times

)

is surjective and its kernel is the torsion subsheaf. This result allows us to identify the image p∗q∗(E[n]⊗
. . . ⊗ E[n]) with the term E0,0

∞ of the hyperderived spectral sequence associated to C•E ⊗L . . . ⊗L C•E .
The computation of this term can be technically difficult in general, but it is not really necessary to

understand the Sn-equivariant hypercohomology of the image Φ(E[n]⊗
k

). All what is needed is the

knowledge of the invariants Φ(E[n]⊗
k

)Sn , which can be identified with the image of the Hilbert-Chow

morphism: µ∗(E[n]⊗
k

). Since the Sn-invariant push-forward πSn
∗ on the symmetric variety is an exact

functor, this amounts to knowing the invariants (E0,0
∞ )Sn , or the E0,0

∞ term of the spectral sequence of
invariants:

Ep,q1 ' (Ep,q1 )Sn .

It turns out that this new spectral sequence of sheaves on SnX is much simpler than the original one
and it allows to explicitely compute the direct image of the double tensor power E[n] ⊗ E[n] for the
Hilbert-Chow morphism µ in the case E is a line bundle on X. We proved the following generalization
of Danila-Brion formula ([23]):

Theorem 0.8. Let X a smooth quasi-projective surface, E a line bundle on X. Then the derived direct
image Rµ∗(E[n]⊗E[n]) of the double tensor power of a tautological vector bundle E[n] for the Hilbert-Chow
morphism µ is quasi-isomorphic to the two-terms complex:

0 - (C0
E ⊗ C0

E)Sn
d- (C0

E ⊗ C1
E)Sn - 0 ,

acyclic in degree higher than zero, where the morphism d is given by d = id⊗ d0
CE•

It is simple now to draw consequences about equivariant cohomology of Φ(E[n] ⊗ E[n]), or, in other
words, of the cohomology H∗(X [n], E[n] ⊗ E[n]). Splitting the tensor power into symmetric and exterior
components, we get the following :

Theorem 0.9. Let X be a smooth quasi-projective surface, E a line bundle on X. Then the cohomology
of the exterior power Λ2E[n] of a tautological vector bundle E[n] on the Hilbert scheme X [n] associated to
the line bundle E on X, is given by the isomorphism of graded modules:

H∗(X [n],Λ2E[n]) ' Λ2H∗(X,E)⊗ Sn−2H∗(X,OX) .
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The cohomology of the symmetric power S2E[n] is given by the following isomorphism of graded modules:

H∗(X [n], S2E[n]) ' H∗(X,E⊗
2
)⊗ J

⊕
S2H∗(X,E)⊗ Sn−2H∗(X,OX)

where J is the ideal of the classes in Sn−1H∗(X,OX) vanishing on the scheme {a} × Sn−2X, with a a
fixed point in X.

The two statements of the theorem can be gathered in the formula:

H∗(X [n], E[n]⊗
2

) ' H∗(X,E⊗
2
)⊗ J

⊕
H∗(X,E)⊗

2
⊗ Sn−2H∗(X,OX) .

1 Preliminaries and notations

In this part we are primarily concerned with schemes and varieties over k = C.

1.1 Hilbert schemes of points on a surface

1.1.1 Hilbert schemes of points

Let X a quasi-projective variety over the field k. Consider the functor:

HilbnX : Schk - Sets

from the category of noetherian schemes over k to the category of sets, defined by:

HilbnX(T ) = {Z ⊆ X × T | Z closed subscheme, Z flat and finite over T of relative degree n } .

Grothendieck proved the following fundamental theorem:

Theorem 1.1. The functor HilbnX is representable by a quasi-projective variety X [n]. If X is projective,
then X [n] is projective. X [n] is called the Hilbert scheme of n points on the variety X.

Actually Grothendieck proved in [55] a much more general version of the previous statement. Since
X [n] represents the functor HilbnX we have, for any noetherian k-scheme T :

MorSchk(T,X
[n]) ' HilbnX(T ) .

Setting T = X [n] and taking the identity in the last bijection we get a universal family Ξ of subschemes
Ξ ⊂ X ×X [n], flat and finite over X [n] of relative degree n such that any other family of subschemes of
X of length n parametrized by a scheme T is the pull-back of Ξ by a unique morphism: T - X.

There is another construction, close to the Hilbert scheme of points on a variety, which parametrizes
points on X as well: the symmetric variety SnX.

Definition 1.2. Let X a quasi-projective variety. The symmetric variety SnX, for n ∈ N, n ≥ 1, is the
quotient:

Xn/Sn

of the n-product of the variety X by the symmetric group Sn.

The symmetric variety SnX actually parametrizes 0-dimensional effective cycles on X of degree n.
A point on SnX can always be written as the formal sum

∑
i nixi, where xi ∈ X, ni ∈ N,

∑
i ni = n.

The general relation between the symmetric variety and the Hilbert scheme of points is given by the
Hilbert-Chow morphism (see [95], [94], [59], [56]):
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Theorem 1.3. There exists a morphism:

X
[n]
red

µ- SnX

defined by
µ(ξ) =

∑
x∈X

length(ξx)x .

1.1.2 Hilbert scheme of points on a surface

In general even if the variety X is nonsingular, the Hilbert scheme X [n] can be very singular if n ≥ 3.
Let X a nonsingular variety. The symmetric variety SnX is normal and has only rational singularities,
because a quotient of a smooth variety by a finite group (see [17], [13]). Since it is Gorenstein, this is
equivalent of having canonical singularities ([80].) The following important result gives the non-singularity
of the Hilbert scheme for a quasi-projective nonsingular surface (see [43], [95]).

Theorem 1.4. Let X a quasi-projective nonsingular surface. Then

1. The Hilbert scheme X [n] of n points on X is nonsingular.

2. The Hilbert-Chow morphism:
µ : X [n] - SnX

is a resolution of singularities.

The fact that SnX has rational singularities implies that the higher direct images of structural sheaf
of the Hilbert-Chow morphism µ vanish; furthermore, since µ∗OX[n] ' OSnX , because µ is birational
and SnX is normal, we have:

Rµ∗OX[n] = OSnX .

We are now interested to smallness properties of the Hilbert-Chow morphism. The dimension of the
fibers of µ is given by the following proposition:

Proposition 1.5. The fiber of the Hilbert-Chow morphism over a point
∑
x∈X nxx ∈ SnX is irreducible

of dimension
∑
x∈X(nx − 1).

This proposition is a consequence of results by Hartshorne [63] and Fogarty [43] on the dimension of
Hilbn(C{x, y}), by Briançon [15] on the irreducibility of Hilbn(C{x, y}). These results were proved and
generalized in a different and more geometric way by Ellingsrud and Stromme [35] and later by Ellingsrud
and Lehn [34].

Definition 1.6. Let X
f- Y a proper surjective map of algebraic varieties. Let Y df := {y ∈

Y | dim f−1(y) = d}. Then f is semismall if codimY Y
d
f ≥ 2d, for all d > 0, and small if codimY Y

d
f > 2d,

for all d > 0.

One sees immediately that a proper surjective semismall map is generically finite and hence dimX =
dimY .

Remark 1.7. Let X a smooth quasi-projective surface. Let ν = ν1 ≥ · · · ≥ νk a partition of n. We
define the stratum SnνX of SnX as:

SnνX :=

{
k∑
i=1

νixi | xi 6= xj for i 6= j

}
.

Then codimSnX S
n
νX = 2(n− k) and SnX stratifies into: SnX =

⋃
ν S

n
νX. Since dimµ−1(

∑k
i=1 νixi) =∑k

i=1 νi − 1 = n− k we get that:
(SnX)mµ =

⋃
ν

length(ν)=k

SnνX .
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An immediate consequence of the previous remark is that:

Corollary 1.8. The Hilbert-Chow morphism µ : X [n] - SnX is semismall.

1.1.3 Nested Hilbert schemes.

We will now describe briefly incidence varieties, or nested Hilbert schemes. See [18], [19], [111], [112],
[87], [36], [23].

Proposition 1.9 (Cheah-Tikhomirov). Let X a quasi-projective surface. Let n, m ∈ N \ {0}, n > m.
Let F the functor:

F : Sch/k - Sets

associating to a scheme S the set of couples (ζ, ξ) of subschemes ζ ⊆ S ×X, ξ ⊆ S ×X, both flat over S
of relative length n and m respectively, and such that ξ ⊆ ζ. The functor F is representable by a scheme
X [n,m], called the nested Hilbert scheme or incidence scheme.

X [n,m] is naturally a closed subscheme of X [n] ×X [m] and hence equipped with two projections:

X [n] �p1 X [n,m] p2- X [m] .

The nested Hilbert scheme X [n,m] parametrizes two flat families ζn ⊆ X [n,m] ×X, ξm ⊆ X [n,m] ×X of
length n and m, respectively, defined as:

ζn := (p1 × id)−1(Ξn) ; ξm := (p2 × id)−1(Ξm) .

with ξm ⊆ ζn. Their structural sheaves fit in the exact sequence:

0 - In,m - Oζn - Oξm - 0 . (5)

The sheaf In,m is a coherent sheaf on X [n,m] ×X, flat over X [n,m], fiberwise zero dimensional of relative
length n−m. Therefore it induces a morphism into the symmetric variety:

ρ : X [n,m] - Sn−mX , (6)

defined as ρ(η) =
∑
x∈X length((In,m)η,x)x.

The interesting case for us is when n = m+1. Cheah [19] and Tikhomirov [111], [112] prove that this
is the only case where the incidence scheme is smooth.

Theorem 1.10. The incidence scheme X [n+1,n] is smooth irreducible variety.

Moreover, in this case:

Proposition 1.11. Let Ξn ⊆ X [n]×X be the universal family over X [n] and IΞn its ideal sheaf. Then the
incidence variety X [n+1.n] is isomorphic to the projectivization P(IΞn) and to the blow up BlΞn(X [n]×X)
of the product X [n] ×X along the universal family Ξn:

BlΞn(X [n] ×X) ' P(IΞn) ' X [n+1,n] .

These are isomorphisms of schemes over X [n] ×X.

In this case the ideal sheaf In+1,n on X [n+1,n] gives rise to a third flat family over X [n+1,n] via
the morphism (6), of relative length 1, which will be called η. It turns out that in this case the ideal
sheaf In+1,n ' Oη(−E), (cf. [23]) where E is the exceptional divisor over BlΞn(X [n] × X), viewed on
η ⊆ X [n+1,n] ×X via the identification given by the first projection.
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The exact sequence (5) becomes (in the identification X [n+1,n] ' BlΞn(X [n] ×X)):

0 - Oη(−E) - Oζn+1
- Oξn - 0 (7)

where E denote the exceptional divisor. Danila [23] proves that we have another exact sequence:

0 - Oζn+1
- Oξn ⊕Oη - Oη

∣∣∣∣
E

- 0 (8)

Finally if g : X [n+1,n] - X [n] ×X is the blow-up projection, we have (cf. [23])

Rg∗OX[n+1,n] ' OX[n]×X ; Rg∗OE ' OΞ . (9)

1.2 Equivariant derived categories and Fourier-Mukai functors

1.2.1 Equivariant sheaves

In this section we will explain briefly some basic facts about equivariant sheaves. We will follow [16], [7].
Let X a variety and G a finite group acting (on the left) on X. Let Coh(X) the category of coherent
sheaves on X.

Definition 1.12. AG-linearization of a coherent sheaf F is a collection of isomorphisms: λFg : F - g∗F

for all g ∈ G such that g∗(λFh )◦λg = λhg, and λ1 = idF , for all g, h ∈ G. We also say that F is a coherent
G-sheaf.

Let now E, F two coherent G-sheaves with given G-linearizations {λEg }g∈G, {λFg }g∈G. The group G

acts (on the right) on the vector space HomX(E,F ) in the following way: for θ ∈ HomX(E,F )

θg := λFg−1 ◦ g∗θ ◦ λEg .

The category of G-equivariant sheaves CohG(X) is the category whose objects are G-linearized sheaves
and whose morphisms (between two objects) GHomX((E, {λEg }g), (F, {λFg }g)) are the G-invariant mor-
phisms HomX(E,F )G. In the same way we can define the category QCohG(X) of G-equivariant quasi-
coherent sheaves, or more generally G-equivariant sheaves ShG(X) on X.

For two G-sheaves E and F on a variety X, the representation HomX(E,F ) decomposes into irre-
ducible representations ρi, i = 0, . . .m, where we indicated with ρ0 the trivial representation:

HomX(E,F ) ' ⊕mi=0GHomX(E ⊗ ρi, F )⊗ ρi .

If G acts trivially on X every G-sheaf decomposes as a direct sum over the irreducible representations:

E ' ⊕mi=0Ei ⊗ ρi , (10)

where Ei are simply coherent sheaves on X. In particular, we can define the functor of fixed points

[−]G : CohG(X) - Coh(X)

which associates to a G-sheaf E the sheaf E0, appearing in the direct sum above. Since the group is
finite and we are taking fixed points of OX -modules, the functor [−]G is exact. If λFg is the linearization
of a coherent sheaf F on X, directly from the decomposition into irreducible representations, and from
the definition of the functor [−]G, we get: [

λFg
]G

= id[F ]G . (11)

Indeed it comes directly from (10) the restriction of λFg to [F ]G is the identity.
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Now let X, Y two varieties acted upon by finite groups G and H respectively. Suppose there exist a
morphism of groups ϕ : G - H. If f : X - Y is an equivariant morphism, then f∗ commutes with
the actions and then it defines a functor f∗ : CohH(Y ) - CohG(X). On the other hand, we need the
surjectivity of the morphism ϕ : G - H to define a good equivariant push-forward. Let K the kernel
of the epimorphism ϕ : G -- H. If F is a G-sheaf on X, then f∗F is naturally G-linearized via ϕ,
where G acts trivially on Y . Then (see [7]) we can define a good H-linearization of the fixed points sheaf
(f∗F )K . Consequently, the functor

fK∗ := [−]K ◦ f∗ : CohG(X) - CohH(Y )

is a well defined equivariant push forward. It turns out that f∗ is the left adjoint of fK∗ . An important
case occurs when Y is the quotient Y = X/G, H = {1} and f : X - X/G is the quotient map. Then
K = G and the functor fG∗ is the exactly the composition

fG∗ : [−]G ◦ f∗ .

Since the morphism f is finite and G is a finite group, fG∗ is an exact functor. Si F ∈ CohG(X), we will
denote also FG := fG∗ F .

1.2.2 Equivariant derived categories

Definition 1.13. Let X a variety, G a finite group acting on X. The equivariant derived category
DG(X) is defined as the derived category of the abelian category CohG(X) of G-equivariant coherent
sheaves on X:

DG(X) := D(CohG(X)) .

Remark 1.14. It is well known that the category of coherent sheaves on an algebraic variety does not
have enough injectives in general. One can pass by this difficulty and define and compute derived functors
by seeing the equivariant derived category as the full subcategory of the derived category of QCohG(X)
consisting of complexes with coherent cohomology.

Remark 1.15. If X is a smooth variety, we will work with the bounded equivariant derived category
Db
G(X) := Db(CohG(X)), since all geometric derived functors take their values there, (thanks to the

syzygy theorem). Again we can see the bounded equivariant derived category as the full subcategory of
the (unbounded) derived category Db(QCohG(X)) of quasi-coherent G-sheaves, consisting of complexes
with bounded and coherent cohomology.

The functors GExtiX(−,−) are defined as the derived functors of the functor GHomX(−,−), and
coincides with the G-invariant part of ExtiX(−,−) by the universal property of the derived functor. In
other words, taken E,F ∈ DG(X), then GExtiX(E,F ) = Homi

X(E,F )G = HomX(E,F [i])G.

1.2.3 Equivariant Fourier-Mukai functors

Let X and Y two varieties equipped with the actions of two finite groups G and H. Then G×H acts on
the product X×Y via the diagonal action. The projections πX : X×Y - X and πY : X×Y - Y

are equivariant with respect to the projections G×H - G and G×H - H. As a consequence of
general facts seen before, they define functors:

π∗X : CohG(X) - CohG×H(X × Y )

πY
G
∗ : CohG×H(X × Y ) - CohH(Y )

11



which can be derived, defining equivariant pull-back and push-forwards:

π∗X = Lπ∗X : DG(X) - DG×H(X × Y )

RπY G∗ : DG×H(X × Y ) - DH(Y ) .

The bifunctor −⊗− pass as well on the G-equivariant level, hence, deriving it, we get a bifunctor:

−⊗L − : DG×H(X × Y )×DG×H(X × Y ) - DG×H(X × Y ) .

The choice of a kernel P ∈ DG×H(X × Y ) defines a functor :

−⊗L P : DG×H(X × Y ) - DG×H(X × Y ) .

The composition of these functors defines the equivariant Fourier-Mukai functor with kernel P :

ΦPX→Y := RπY G∗ (π∗X(−)⊗L P ) : DG(X) - DH(Y ) .

Let us consider the diagram:

X × Y
πY - Y

X

πX

?
X/G× Y/H

πY/H-

u×
v

-

Y/H

v

-

X/G

πX/G

?

u

-

Taking the invariants of P by G × H, we get a kernel PG×H ∈ D(X/G × Y/H) and consequently an
associated Fourier-Mukai functor:

ΦP
G×H

X/G→Y/H : D(X/G) - D(Y/H) .

This new functor is linked with the previous by the relation:

Proposition 1.16.
ΦP

G×H

X/G→Y/H = vH∗ ◦ ΦPX→Y ◦ Lu∗ .

We first prove the following lemma:

Lemma 1.17. Let R a k-algebra, char(k) = 0 and M an R[G]-module. Let N a R-module, (that is, G
acts trivially on N). Then

(M ⊗LR N)G = MG ⊗LR N .

Proof. Resolve M with a projective resolution P • - M . Applying the fixed points functor we get
a resolution: (PG)• - MG of MG. Now the (P i)G are projective elements, because they are direct
factors of the P i, which are themselves projective, and a direct factor of a projective is projective. Hence
(PG)• - MG is a projective resolution of MG. Now the tensor product − ⊗ N commutes with the
fixed points functor, since G does not act on N : (−)G ⊗N ' (−⊗N)G. Deriving, since the fixed points
functor takes projectives to projectives, we are done.
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Proof of the proposition 1.16. If F ∈ D(X/G) we have:

vH∗ ◦ ΦPX→Y ◦ Lu∗F = vH∗ ◦RπY G∗ (π∗X(Lu∗F )⊗LOX×Y P )

= vH∗ ◦RπY G∗
(
L(u× v)∗π∗X/G(F )⊗LOX×Y P

)
= RπY/H∗(u× v)G×H∗

(
L(u× v)∗π∗X/G(F )⊗LOX×Y P

)
= RπY/H∗

[
π∗X/G(F )⊗LOX/G×Y/G (u× v)∗P

]G×H
= RπY/H∗

[
π∗X/G(F )⊗LOX/G×Y/G (u× v)G×H∗ P

]
= ΦP

G×H

X/G→Y/G(F )

where we used projection formula in the fourth equality and lemma 1.17 in the fifth equality. 2

1.2.4 Equivariant cohomology

Let G a finite group and R a (commutative) ring. Let ModR[G] the category of R[G]-modules, or G-
modules over R. Then the group cohomology Hi(G,−) is the i-th right derived functor Ri[−]G of the
fixed points functor [−]G : ModR[G]

- ModR.
When G is a finite group and R is a k-algebra with char(k) = 0 the existence of the Reynolds

operator ensures that the fixed points functor is exact: therefore, in this case, Hi(G,M) = 0, for i > 0
and M ∈ ModR[G].

Definition 1.18. (cf. [55], [7]) Let X an algebraic variety, G a finite group acting on X. The equivariant
cohomology Hi

G(X,−) (with values in a G-sheaf F ∈ CohG(X)) is the i-th right derived functor of the
functor of invariant sections ΓGX :

Hi
G(X,−) = RiΓGX .

As a consequence the equivariant cohomology can be computed as the limit of the spectral sequence:

′
Ep,q2 = Hp(G,Hq(X,F)) =⇒ Hp+q

G (X,F) .

Take now the quotient X
f- Y = X/G; the functor of invariant sections is then also: ΓGX = ΓGY ◦ f∗ =

ΓY ◦ fG∗ . Therefore we have a second spectral sequence:

′′
Ep,q2 = Hp(Y,RqfG∗ F) =⇒ Hp+q

G (X,F) .

Since the group G is finite, and char(k) = 0, the two spectral sequence degenerate:

Hi
G(X,F) ' Hi(X,F)G ' Hi(Y,FG) , (12)

that is, the equivariant cohomology reduces to the invariant cohomology, or the cohomology of the in-
variants. Since we will be interested in actions of finite groups on varieties over C, this will always be
the case.

Equivariant cohomology has the property of recovering the cohomology of the quotient:

Proposition 1.19. Let G a finite group. Let p : X - Y a proper G-equivariant morphism of
algebraic varieties. Let q : X - X/G and π : Y - Y/G the quotients of X and Y by G. Let
µ : X/G - Y/G the map induced by p on the quotient level. Let Φ the functor:

Φ : Rp∗ ◦ Lq∗ : D(X/G) - DG(Y ) .

Then:
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1. Rµ∗ ' πG∗ ◦ Φ;

2. the hypercohomology of a complex F• ∈ D(X/G) is the G-equivariant hypercohomology of Φ(F•):

H(X/G,F•) ' HG(Y,Φ(F•)) .

Proof.

πG∗ ◦ Φ(F•) = πG∗ ◦Rp∗ ◦ Lq∗(F•)
' [Rµ∗ ◦ q∗(Lq∗(F•))]G

' Rµ∗qG∗ (Lq∗(F•))

because µ is G-invariant, then

πG∗ ◦ Φ(F•) ' Rµ∗(F• ⊗LOX/G q
G
∗ OX)

' Rµ∗(F•)

by lemma 1.17, the projection formula and the fact that qG∗ OX ' OX/G. The second statement is now
an easy consequence:

HG(Y,Φ(F•)) = RΓGY ◦ Φ(F•) = RΓY/G ◦ πG∗ ◦ Φ(F•)
' RΓY/G ◦Rµ∗(F•)
' RΓX/G(F•) = H(X/G,F•) .

Remark 1.20. The Bridgeland-King-Reid situation (theorem 1.23) is a particular case of this picture.

1.3 The G-orbit Hilbert scheme

We will briefly describe the G-orbit Hilbert scheme as explained in Nakamura [96] and Reid [102]. See
also [70] and [69].

Let G a finite group and M a smooth quasi-projective variety on which the group G acts. Let M [n]

the Hilbert scheme of n points on M and SnM the symmetric variety. Let n = |G|. The group acts
naturally on SnM and M [n] in such a way that the Hilbert-Chow morphism µ:

µ : M [n] - SnM

is G equivariant; therefore we have a well defined surjective map between the fixed points sets:

(M [n])G
µG- (SnM)G .

The quotient variety M/G can be embedded in (SnM)G with the reduced structure:

j : M/G ⊂- (SnM)G

[x]
j-

∑
g∈G

gx

Definition 1.21. The G-orbit Hilbert scheme HilbG(M) is the irreducible component of (M [n])G domi-
nating j(M), that is containing smooth orbits. We will refer to HilbG(M) also as the Nakamura G-Hilbert
scheme.
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As a consequence we get a G-Hilbert-Chow morphism:

τ : HilbG(M) - M/G . (13)

A G-cluster is a closed subscheme Z of M of length |G| such that H0(OZ) ' C[G] as representations of
G. The G-Hilbert scheme HilbG(M) is a fine moduli space for G-clusters on M . We will denote with Z
the universal subscheme: Z ⊆ HilbG(M)×M . The family Z - HilbG(M) is also called the universal
family of G-clusters on M .

Remark 1.22. In [16] the G-Hilbert scheme GHilb(M) is defined set theoretically as the set of G-
invariant subschemes of M of length |G| such that H0(OZ) ' C[G], and it is the scheme representing
the functor GHilb(M) which takes a scheme S and associates the set { G-invariant subschemes Z of
M × S, finite over S, such that H0(OZs) ' C[G] for all s ∈ S }. Ito and Nakamura [70] proved that
HilbG(M) ⊆ GHilb(M), but the converse is not at all obvious and probably false: GHilb(M) is not
known to be irreducible or even connected and may even be not equidimensional in general. In [16] the
authors define Y as the irreducible component of GHilb(M) containing free orbits. As a consequence
Y = HilbG(M). HilbG(M) is also said to be a ”dynamic” definition, GHilb(M) an ”algebraic” one. See
[20].

1.4 The BKR construction

Let M a smooth quasiprojective variety and G a finite group acting on M with the property that the
canonical sheaf ωM is locally trivial as a G-sheaf. By the Drezet-Kempf-Narasimhan lemma [30] it
descends to the quotient M/G, hence M/G is Gorenstein. Let Y = HilbG(M). In [16] the authors build
a Fourier-Mukai functor by means of the universal family Z ⊆ Y ×M . In the diagram:

Z
p - M

Y

q

? µ- M/G

π

?

π and q are finite of degree |G|, q is flat, and p and µ are birational. Now G acts on M and OZ can be
seen as as a {1} ×G-equivariant sheaf on Y ×M . Therefore we can define an equivariant Fourier-Mukai
functor:

ΦOZY→M : Db(Y ) - Db
G(M) .

The main result proved by Bridgeland, King and Reid in [16] is the following theorem.

Theorem 1.23. Let M a smooth quasi projective variety of dimension n, G a finite subgroup of Aut(M)
such that the canonical line bundle ωM is locally trivial as a G-sheaf. Let Y = HilbG(M) and Z ⊆ Y ×M
the universal closed subscheme. Suppose that

dimY ×M/G Y ≤ n+ 1 .

Then Y is a crepant resolution of M/G and the Fourier-Mukai functor

ΦOZY→M : Db(Y ) - Db
G(M)

is an equivalence of categories.
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1.5 The isospectral Hilbert scheme

In this section we will present the construction of the isospectral Hilbert scheme as defined by Haiman
[61], and a brief description of its properties. Haiman proves everything for the affine plane A2

C, but all
works for a general quasi-projective surface; we sketch here how to extend some of his proofs. Let X a
smooth quasi-projective variety, n ∈ N, n ≥ 1, X [n] the Hilbert scheme of n points over X and SnX the
symmetric variety.

Definition 1.24. The isospectral Hilbert scheme Bn is the reduced fiber product:

Bn
pn - Xn

X [n]

q

?
µ- SnX

π

?

that is Bn :=
(
X [n] ×SnX Xn

)
red

.

Remark 1.25. In the definition above it is necessary to take the reduced scheme underlying the fiber
product, since the simple fiber product X [n] ×SnX Xn is never reduced, if n ≥ 2.

A first easy property of the isospectral Hilbert scheme is:

Proposition 1.26. Let X a smooth quasi-projective surface. The isospectral Hilbert scheme Bn over Xn

is irreducible of dimension 2n.

The following simple lemma allows to extend several of Haiman’s results to an arbitrary quasi-
projective surface.

Lemma 1.27. Let X a quasi-projective variety. Then each point in Xn has an affine open neighbourhood
of the form Un, where U is an affine open set in X.

Proof. It suffices to prove that given a smooth quasi-projective variety X and n points x1, . . . , xn,
there exists an affine open set U such that all xi ∈ U . To prove this, embed X in a projective space PN

and take its projective closure Y = X̄. Then Z = Y \ X is a closed subset of the (possibly singular)
projective variety Y . For large l, there exists sections si ∈ H0(Y, IZ(l)) ⊆ H0(Y,OY (l)), vanishing on Z
but nonzero on xi. If l is large, the subspace Hi ⊆ H0(Y, IZ(l)) consisting of sections of IZ(l) vanishing
on xi form a hyperplane in H0(Y, IZ(l)) for all i. Consider now a section u ∈ H0(Y, IZ(l))\∪ni=1Hi. The
affine open set U defined by u 6= 0 in Y is contained in X and contains all the points xi. Consequently,
it is the wanted affine open set.

2

The first important fact Haiman proves is that Bn can be obtained as the blow-up of Xn along the
union of pairwise diagonals in Xn:

Theorem 1.28. The isospectral Hilbert scheme Bn can be identified with the blow up of Xn along the
scheme-theoretic union of all its pairwise diagonals.

Proof. The case of the affine plane is proved in Haiman [61]. For an affine surface the proof goes
exactly as in the case of A2

C. Passing to a quasi-projective variety X is now simple, owing to the preceding
lemma. Consider the isospectral Hilbert scheme Bn and P a point on Xn. Let Un be the affine open set
containing P , found in the preceding lemma. The isospectral Hilbert scheme BnU associated to the affine
surface U is now the blow-up BnU

- Un of the pairwise diagonals in Un. Since BnU can be identified
with the inverse image of Un for the projection Bn - Xn and the statement is local on Xn, we are
done.
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2

The analogous of the nested Hilbert scheme for the isospectral Hilbert scheme is the isospectral nested
Hilbert scheme which we will now introduce. Let X [n+1,n] - X [n] the nested Hilbert scheme.

Definition 1.29. The nested isospectral Hilbert scheme Bn+1,n is the reduced fiber product:

Bn+1,n u - Bn

X [n+1,n]

s

?
ũ - X [n]

q

?

that is, Bn+1,n :=
(
Bn+1,n ×X[n] Bn

)
red

.

Analogously to the usual nested Hilbert scheme, there are two projections:

Bn �u
Bn+1,n v- Bn+1 .

Haiman uses the nested Hilbert scheme X [n+1,n] and its isospectral analougue Bn+1,n as fundamental
tools to prove one of his main theorems:

Theorem 1.30. The isospectral Hilbert scheme is normal, Cohen-Macauley and Gorenstein.

Sketch of the proof. Again, the case of the affine plane has been proved in [61]. The case of an affine
surface goes exactly in the same way. To obtain the result for a quasi-projective surface X, take a point
Q ∈ Bn, and its image P in Xn. Let Un be the affine open set containing P found in the lemma 1.27.
Then the isospectral Hilbert scheme BnU associated to the affine surface U has the wanted properties,
contains Q and can be identified with an open set of Bn.

2

Remark 1.31. One of the technical step in the proof of the preceding theorem is proving that the
morphism: Bn+1,n v- Bn+1 satisfies:

Rv∗OBn+1,n ' OBn+1 . (14)

As usual, Haiman proves this for the isospectral Hilbert scheme associated to the affine plane, and his
proof works without any change for a smooth affine surface. By lemma 1.27 it is valid on an arbitrary
smooth quasi-projective surface.

Remark 1.32. If X
f- Y is a Cohen-Macauley scheme, with f finite and surjective over the smooth

variety Y , then X is flat over Y ([32], exercise 18.17). On the other hand if X is flat and finite over the
Cohen-Macauley scheme Y , then X is Cohen-Macauley. In this case X is Gorenstein if and only if f has
Gorenstein fibers. (cf. Bourbaki, [10], chapter 10, n.7, §2 and §3).

Remark 1.33. The preceding remark applies in particular to the isospectral Hilbert scheme Bn, since
by theorem 1.30 it is Cohen-Macauley and q : Bn - X [n] is finite and surjective with X [n] smooth.
Hence the Cohen-Macauley property of Bn is equivalent to the flatness of the morphism q. Therefore in
the diagram:

Bn
pn - Xn

X [n]

q

?
µ- SnX

π

?

q is flat of degree n!, even if π is not.
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Remark 1.34. The subscheme Z ⊆ Bn × X, defined as the pull-back (q × id)−1(Ξ) where Ξ is the
universal family over X [n], is called the universal subscheme for the isospectral Hilbert scheme. We will
also call it the isospectral universal family. Since Ξ is flat and finite over X [n], Z is flat and finite over
Bn, hence Cohen-Macauley. It is reduced, because generically reduced. While Ξ is irreducible, Z has n
irreducible components Zi = (pn × id)−1(Di), where Di is the diagonal Di = ∆i,n+1 ⊆ Xn × X. It is
clear that Zi ' Bn, hence Zi are normal, Cohen-Macauley and Gorenstein.

Remark 1.35. In the diagram

Bn+1,n u - Bn

X [n+1,n]

s

?
ũ - X [n]

q

?

the nested isospectral Hilbert scheme Bn+1,n coincides with the fiber product X [n+1,n] ×X[n] Bn and
the above diagram is cartesian. Indeed, since q is flat, the fiber product X [n+1,n] ×X[n] Bn is flat and
finite of degree n! over the nested Hilbert scheme X [n+1,n] which is smooth. Hence by remark 1.32 it is
Cohen-Macauley. Since it is generically reduced (where s is unramified), it has to be reduced everywhere.
Therefore it coincides with Bn+1,n.

Remark 1.36. Consider now the diagram:

Bn+1,n (u× t)- Bn ×X

X [n+1,n]

s

?
(ũ× t̃)- X [n] ×X

q × id

?

It is a flat base change. Since X [n+1,n] could be considered as the projectivization P(IΞ), Ξ the universal
family over X [n], by base change it is immediate to see that the isospectral nested Hilbert scheme Bn+1,n

can be seen as the projectivization:
Bn+1,n ' P(IZ) ,

with Z the isospectral universal family. It can furthermore be seen, with the same kind of arguments
made in [23], that

Bn+1,n ' BlZ(Bn ×X) .

Always by flat base change applied to (9) we can prove:

R(u× t)∗OBn+1,n ' OBn×X R(u× t)∗OE ' OZ (15)

where E is the exceptional divisor in Bn+1,n ' BlZ(Bn ×X).

Remark 1.37. We have just seen that the isospectral nested Hilbert scheme Bn+1,n is obtained by the
nested Hilbert scheme X [n+1,n] by a flat base change. Pulling back the exact sequences (7) and (8) on
Bn+1,n ×X via s× idX we get the two sequences:

0 - OηB (−E) - OζB - OξB - 0 (16)

and

0 - OζB - OξB ⊕OηB - OηB
∣∣∣∣
E

- 0 (17)

where we denoted with ζB , ξB , ηB the flat families over Bn+1,n×X of relative length n+1, n, 1, obtained
by the pull back via s× idX of the families ζn+1, ξn, η on X [n+1,n] ×X.
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1.6 The Hilbert scheme X [n] as the HilbSn(Xn)-scheme.

In this section we will explain briefly why the product Xn of a smooth quasi-projective surface X with
the action of the symmetric group Sn satisfies the hypothesis of the BKR theorem. In particular we will
sketch why the scheme HilbSn(Xn) can be identified with the Hilbert scheme X [n] of n points on X. We
will follow [61] and [60].

Theorem 1.38. The Hilbert scheme of n points over a smooth quasi-projective surface is isomorphic to
the scheme HilbSn(Xn) over the symmetric variety SnX.

Sketch of the proof. Let Z ⊆ HilbSn(Xn)×Xn the universal family over HilbSn(Xn). It is flat over
HilbSn(Xn) of degree n! and it has a natural Sn-action, where Sn acts on the second factor. If we make
Sn−1 act on Xn via the inclusion Sn−1

⊂ - Sn, Z becomes equipped with an Sn−1-action. Consider
the quotient Z/Sn−1: it can be identified with a subscheme Z/Sn−1 ⊆ HilbSn(Xn)× Sn−1X ×X, flat
over HilbSn(Xn) of degree n. Consider now the embedding morphism:

i : HilbSn(Xn)×X ⊂- HilbSn(Xn)× Sn−1X ×X

(ξ, x) - (ξ, τ(ξ)− x, x)

The pullback of Z/Sn−1 for this embedding can then be seen as a subscheme

Y := i−1(Z/Sn−1) ⊆ HilbSn(Xn)×X

flat over HilbSn(Xn) of degree n. Actually the two families Y and Z/Sn−1 are isomorphic over
HilbSn(Xn). By definition of the Hilbert scheme X [n] the family Y defines a morphism:

φ : HilbSn(Xn) - X [n] .

On the other hand, since the isospectral Hilbert scheme Bn is flat of degree n! over X [n], it can be
considered a family Bn ⊆ X [n] × Xn of subschemes of length n! of Xn, flat over X [n]. The universal
property of (Xn)[n!] then gives rise to a map:

ψ : X [n] - (Xn)[n!]

whose image is clearly contained in HilbSn(Xn) ⊆ (Xn)[n!]. They are clearly inverse one the other on the
generic locus, hence everywhere. In the identification φ the universal families Z and Bn are identified.

2

Actually Haiman proves in [60] that this theorem is equivalent to the Cohen-Macauley property of
Bn.

At this point, to prove that the Sn-action on Xn satisfies the hypothesis of theorem 1.23 we have to
prove that ωXn is locally trivial as Sn-sheaf — which is easy, since the stabilizer of a point x ∈ Xn acts
as a subgroup of SL(TxXn), and hence trivially on ωXn — and the smallness condition

dim(X [n] ×SnX X [n]) ≤ 2n+ 1 ;

but this is a direct consequence of the fact that the Hilbert-Chow morphism:

µ : X [n] - SnX

is a semismall resolution (see [27]):

Proposition 1.39. Let f1 : X1
- Y and f2 : X2

- Y two proper surjective semismall maps, with
m = dimXi = dimY , i = 1, 2. Then dimYX1 ×Y X2 = m.
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As a consequence, we get the following remarkable particular case of 1.23:

Theorem 1.40 (Haiman). Let X a smooth quasi-projective surface, X [n] the Hilbert scheme of n-points
on X, Bn the isospectral Hilbert scheme. Let q : Bn - X [n] and p : Bn - Xn the projections on
the Hilbert scheme and on the product variety, respectively. The Fourier-Mukai functor:

ΦOBn
X[n]→Xn : Db(X [n]) - Db

Sn
(Xn) (18)

defined by:
Φ : Rp∗ ◦ q∗

is an equivalence.

We will refer to the previous equivalence as the Bridgeland-King-Reid-Haiman (BKRH)-equivalence.
and we will indicate it with Φ.

2 The Čech complex for closed subschemes

The aim of this chapter is to prove, under some reasonable transversality hypothesis, the exactness of a
Čech-like complex for a finite scheme theoretic union Z = ∪ni=1Zi of closed subschemes Zi of a Cohen-
Macauley scheme.

Let X a noetherian scheme and Zi, i = 1, . . . , n closed subschemes, defined by ideal sheaves IZi . Let
Z = ∪ni=1Zi the scheme-theoretic union, which we recall being defined by the ideal sheaf IZ = ∩ni=1IZi .
If J is a subset of {1, . . . , n}, we indicate with ZJ the partial intersection ZJ = ∩j∈JZj . We define the
Čech complex Č• as follows:

Č• : 0 - OZ
ı- ⊕ni=1 OZi

∂0
- ⊕|J|=2 OZJ

∂1
- . . .

∂n−1
- OZ{1,...,n} - 0 (19)

where the differential is defined by:

(∂pf)J =
∑
i∈J

εi,JfJ\{i} |ZJ

and εi,J is the sign εi,J = (−1)]{l∈J,l<i}.

Remark 2.1. This complex is not exact in general. Let us take, for example, X ' C2 ' Spec(C[x, y]),
l the x-axis, r the y-axis, s the diagonal of the first quadrant and Z = l ∪ r ∪ s. Let P the origin. The
complex Č• becomes:

0 - OZ - Ol ⊕Or ⊕Os - OP ⊕OP ⊕OP - OP - 0 . (20)

The first two differentials are given by ı(f) = (f |l, f |r, f |s) and ∂0(α, β, γ) = (β(0) − α(0), γ(0) −
α(0), γ(0) − β(0)). Now ∂0(α, β, γ) = 0 if and only if α(0) = β(0) = γ(0), that is, if and only if the
three functions α, β, γ coincide at the origin. On the other hand, the image of ı is the restriction to the
three lines of a function defined on Z. Therefore, in the identification s = Spec(C[x, y]/(x − y)) ' C[t]
via C 3 t - (t, t) ∈ C2, we have, for a function f ∈ OZ :

d

dt
f(t, t)(0) =

∂

∂x
f(x, 0)(0) +

∂

∂y
f(0, y)(0) . (21)

This means that if (α, β, γ) ∈ Ol ⊕Or ⊕Os are in the image of ı, then they have to satisfy a nontrivial
relation between their derivatives at the origin P , apart from coinciding in P . Since the condition (21)
gives a one-dimensional restriction on ker ∂0, we have:

H1(Č•) ' C .
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The question of the exactness of the complex Č• in degree 1 is in relation with the seminormality of the
local rings OZ,x. See Dayton and Roberts ([26], [25]). Orecchia ([101]) put in relation seminormality of
the union Z with the transversality of the components Zi.

We will prove, under transversality conditions, the exactness of the full complex Č•, and of a more
general complex, of which the Čech complex is a particular case. The techical tool is the following
proposition. Let I ⊆ {1, . . . , n}. We will indicate with I ′ the complementary I

′
= {1, . . . , n} \ I of I in

{1, . . . , n}. If Fi, i = 1, . . . , n are sheaves on a scheme X and I ⊆ {1, . . . , n}, we will indicate with FI
the tensor product: FI = ⊗j∈IFj∈I .

Proposition 2.2. Let X a noetherian scheme. Let Mi, i = 1, . . . , n coherent sheaves on X. Consider,
for all i, the exact sequences of sheaves:

0 - Ni - Ei - Mi
- 0

with Ei locally free. Let K•i the complex (in degree 0 and 1):

Ki• := Ei - Mi
- 0 .

If Tork(Mi1 , . . . ,Mih) = 0 for k > 0, and for 0 ≤ i1 < · · · < ih ≤ n, 1 ≤ h ≤ n, then the complex
K• := K1

• ⊗ . . .⊗Kn•:

0 - ⊗ni=1 Ei - ⊕ni=1 Mi ⊗ E{i}′
-

- ⊕|I|=2 MI ⊗ EI′
- . . . - ⊗ni=1 Mi

- 0

is a right resolution of ⊗ni=1Ni. In particular if Ei = E for all i, the complex:

0 - ⊗ni=1 Ni - E⊗
n - ⊕ni=1 Mi ⊗ E⊗

n−1 -

- ⊕|I|=2 MI ⊗ E⊗
n−2 - . . . - ⊗ni=1 Mi

- 0 (22)

is exact.

Proof. For all i = 1, . . . , n the complex of cochains

Ki• := 0 - Ei - Mi
- 0

is clearly a right resolution of the sheaves Ni. As a consequence the p-cohomology of the complex
K1

• ⊗L . . .⊗L Kn• in the bounded derived category Db(X) is

Hp(K1
• ⊗L . . .⊗L Kn•) ' Tor−p(N1, . . . ,Nn) .

To compute this cohomology group we can use the hypertor spectral sequence:

′
Ep,q1 =

⊕
i1+···+in=p

Tor−q(Ki11 , . . . ,Kinn ) =⇒ Tor−p−q(N1, . . . ,Nn) . (23)

Now Tor−h−k(Ki11 , . . . ,Kinn ) is in turn the limit of the spectral sequence:

′′
Eh,k2 = Tor−h(Ki11 ,Tor−k(Ki22 , . . . ,Kinn ))

and since Ei = K0
i is acyclic (because locally free), the term

′
Ep,q1 reduces to a sum:

′
Ep,q1 =

⊕
i1+···+ih=p

ij 6=0

Tor−q(Mi1 , . . . ,Mih)
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which is zero by hypothesis, if p 6= 0. We remark that the complex
′
E•,01 is exactly K1

•⊗ . . .⊗Kn•. The
spectral sequence then degenerates at level

′
E2 and hence , if p 6= 0,

′
Ep,02 '

′
Ep,0∞ '

′
Ep ' Hp(K1

• ⊗L . . .⊗L Kn•)
' Tor−p(N1, . . . ,Nn) .

Now Tor−p(N1, . . . ,Nn) is necessarily zero if p > 0, because Ni are sheaves. As a consequence, the only
nonzero term in level 2 is

′′
E0,0

2 ' H0(K•1 ⊗ . . .⊗K•n)
' N1 ⊗ . . .⊗Nn .

On the other hand,
′
Ep,02 ' Hp(

′
E•,01 ) ' Hp(K•1 ⊗ . . .⊗K•n) = 0 ,

if p > 0. As a consequence,
K• ' K•1 ⊗ . . .⊗K•n ' K•1 ⊗L . . .⊗L K•n

is a resolution of ⊗ni=1Ni, since H0(K•) ' ⊗ni=1Ni.

2

Remark 2.3. In the case where Mi are structural sheaves OZi of closed subschemes Zi of X, and Ei is
chosen to be OX for all i, the complex (22) is exactly the Čech complex (19).

We are now going to look for a simple criterion that allows us to decide if the hypothesis of the
proposition are satisfied. Since every statement is in fact of local nature, we can set the discussion in the
context of commutative algebra of local noetherian rings. The fundamental tool we will be using is the
following result by Peskine and Szpiro (cf. [74]).

Lemma 2.4 (Peskine-Szpiro, Kempf-Laksov). Let (A,m) a Cohen-Macauley noetherian local ring and
I ⊆ A an ideal. Let

0 - K0 - K1 - . . . - Kn−1 - Kn - 0

be a complex of free modules. Suppose that

Supp(K•) :=
n⋃
i=1

SuppHi(K•) ⊆ V (I) .

Then Hi(K•) = 0 for all i < ht(I).

2

Let now (A,m) be a noetherian local ring and k := A/m its residue field. If M is a finite module over
A with finite projective dimension projdimM , the Auslander-Buchsbaum formula (see [88]) states that :

projdimM + depthM = depthA . (24)

If now (A,m) is a noetherian regular local ring, and M is a Cohen-Macauley module over A, Auslander-
Buchsbaum formula implies that the length of a minimal free resolution of M equals its codimension.
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Proposition 2.5. Let (A,m) a noetherian regular local ring, M1, . . . ,Mk finite Cohen-Macauley modules
over A of finite projective dimension. Let

c(M1, . . . ,Mk) =

(
k∑
i=1

codimMi

)
− codimM1 ⊗ . . .⊗Mk .

Then
Tori(M1, . . . ,Mk) = 0

for i  c(M1, . . . ,Mk).

Proof. The proposition is an easy consequence of Peskine-Szpiro lemma and the existence, for the
modules Mi, of minimal free resolutions of length equalling the codimensions codimMi. For every module
Mi let’s take its minimal free resolution R•i - Mi

- 0, written:

0 - R0
i

- R1
i

- . . . - RcodimMi
i

- Mi
- 0 .

We can then compute Tori(M1, . . . ,Mk) as the cohomology of the total complex: R• := R1
• ⊗ . . .⊗R•k.

Now R• is a finite complex of free modules of length l =
∑k
i=1 codimMi and, for all i, Tori(M1, . . . ,Mk) =

H l−i(R•) is supported in Supp(M1 ⊗ . . . ⊗Mk) = V (Ann(M1 ⊗ . . . ⊗Mk)). Therefore by Peskine and
Szpiro lemma, H l−i(R•) = 0 for l−i < ht(Ann(M1⊗ . . .⊗Mk)), that is if i > l−ht(Ann(M1⊗ . . .⊗Mk)).
Now for a noetherian regular local ring, ht(I) = codimV (I) = dimA − dimA/I, and this implies the
result.

2

Let now (A,m) a local ring, and M1, . . . ,Mk finite modules on A. We call the excess of dimension of
M1 ⊗ . . .⊗Mk the positive integer:

c(M1, . . . ,Mk) =

(
k∑
i=1

codimMi

)
− codim(M1 ⊗ . . .⊗Mk)

For brevity’s sake, if M1, . . .Mn are modules over A and H ⊆ {1, . . . , n}, H = {i1, . . . , ih}, we will
indicate the integer of proposition (2.5) with c(MH) := c(Mi1 , . . . ,Mih).

Lemma 2.6. Let (A,m) a regular local ring, M1, . . . , Mk nonzero finite modules over A. Then

1. codim(M1 ⊗ . . .⊗Mk) ≤
∑n
i=1 codimMi

2. For all H ⊆ {1, . . . , n} we have 0 ≤ c(MH) ≤ c(M1, . . . ,Mk).

Proof. We embed X = SpecA in the product Xn = SpecA⊗
n

via the diagonal immersion X ⊂
i- Xn.

We have: codimXn(M1 � · · ·�Mk) =
∑n
i=1 codimXMi . Now M1 ⊗ . . .⊗Mk = i∗(M1 � · · ·�Mk). As

a consequence

Supp(M1 ⊗ . . .⊗Mk) = i−1(Supp(M1 � · · ·�Mk)) ' ∆ ∩ Supp(M1 � · · ·�Mk) .

Now, since Xn is a smooth scheme, we can estimate the dimension of the intersection ∆ ∩ Supp(M1 �

· · ·�Mk) in the following way:

dim ∆ ∩ Supp(M1 � · · ·�Mk) ≥ dim ∆ + dim Supp(M1 � · · ·�Mk)− dimXn

which implies codimX(M1 ⊗ . . .⊗Mk) ≤ codimXn(M1 � · · ·�Mk) =
∑k
i=1 codimXMi.
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The second statement comes easily from the first, remarking that, if for all H ⊆ {1, . . . , k}

c(M1, . . . ,Mk) =

(
n∑
i=1

codimMi

)
− c(MH ⊗MH′ )

≥

(
n∑
i=1

codimMi

)
− codim(MH)− codim(MH′ )

≥ c(MH) + c(MH′ ) ≥ c(MH) .

2

Combining lemma 2.6 with proposition 2.5 we get the simple sufficient condition we needed for the
vanishing of the Tor-s in the hypothesis of propositon 2.2. We now give the useful result in sheaf-theoretic
terms in the following statement.

Theorem 2.7. Let X a smooth variety and Mi, i = 1, . . . , n Cohen-Macauley coherent sheaves on X.
Consider the exact sequences:

0 - Ni - Ei - Mi
- 0

with Ei locally free. Therefore the complex:

0 - ⊗ni=1 Ni - ⊗ni=1 Ei - ⊕ni=1 Mi ⊗ E{i}′
-

- ⊕|I|=2 MI ⊗ EI′
- . . . - ⊗ni=1 Mi

- 0

is exact at point x ∈ X such that:

codimX(MHx,x) =
∑
j∈Hx

codimXMj .

where Hx = {j, 1 ≤ j ≤ n | Mj,x 6= 0}.

Example 2.8. Let X a smooth variety. Consider the product: Xn+1 ' Xn ×X. Let pi : Xn+1 - X

the projection on the i-th factor and ∆ the diagonal in X2. Let

Di := (pi × pn+1)∗(∆) .

Then Di ' Xn, hence smooth. Moreover the intersection of all Di: ∩ni=1Di ' ∆1,...,n+1, is the small
diagonal in Xn+1, hence codimXn+1 ∩ni=1Di =

∑n
i=1 codimXn+1 Di. Theorem 2.7 then applies to the

exact sequences
0 - IDi - OXn×X - ODi - 0 .

As a consequence of the theorem and of remark 2.3 the Čech complex:

0 - OD -
n⊕
i=1

ODi -
⊕
|I|=2

ODI - . . . - OD{1,...,n} - 0

is exact and provides a right resolution of the sheaf OD.

Example 2.9. Let X a smooth quasi-projective surface, n ∈ N, n ≥ 2. Let Bn the isospectral Hilbert
scheme and Z ⊆ Bn×X the isospectral universal family. As in the preceding example, let D the scheme
theoretic union D = ∪ni=1Di of the diagonals ∆i,n+1. As we saw in remark 1.34, Z is the union of
its irreducible components Zi = f−1(Di), where f = (pn × id). While, by the previous example, the
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diagonals Di are transverse in Xn × X, the components Zi are not transverse in Bn × X: indeed the
condition on the codimension does not hold any more: while codimBn×X Zi = 2, we have:

codim(Zi1 ∩ · · · ∩ Zih) = h+ 1 .

for 1 ≤ i1 < · · · < ih ≤ n. As a consequence, Tor1(Zi1 , . . . , Zih) 6= 0 which implies that

IZi1 ∩ · · · ∩ IZih ) IZi1 · · · · · IZih .

Now, by transversality, since Tori(OD1 , . . . ,ODn) = 0,

ID = ID1 ∩ · · · ∩ IDn = ID1 · · · · · IDn .

Therefore

If−1(D) = f−1(ID1 · · · · · IDn)

= If−1(D1) · · · · · If−1(Dn)

= IZ1 · · · · · IZn ( IZ .

As a consequence the scheme f−1(D) is non reduced and f−1(D)red ' Z. It is clear that f∗OD ' OZ̃ .
We will refer to f−1(D) as Z̃.

3 The image of a tautological vector bundle for the BKR equiv-

alence

In this chapter we are going to compute the image of the tautological sheaf F [n] on the Hilbert scheme
X [n], associated to a coherent sheaf F on the surface, for the Bridgeland-King-Reid-Haiman equivalence
(18). More precisely we will find a Sn-equivariant complex C•F in Db

Sn(X
n) such that Φ(F [n]) ' C•F . This

result will allow us to compute the cohomology H∗(X [n], F [n]) of the tautological sheaf F [n] on the Hilbert
scheme, thus giving another proof of results by Danila-Brion (cf. [23]) and Ellingsrud-Goettsche-Lehn
(cf. [33]).

3.1 Preliminary results

We begin by proving a preliminary result on the vanishing of the higher direct images Rip∗OBn of the
structural sheaf OBn of the isospectral Hilbert scheme for the blow-up projection:

p : Bn - Xn .

We first recall Yoneda’s Lemma (cf. [117], [72]):

Lemma 3.1 (Yoneda). Let C a category. Let C∨ the category of controvariant functors from C to the
category Sets of sets:

C∨ := Funct(Cop,Sets) .

Then the Yoneda functor:

h : C - C∨

X - HomC(−, X)

is fully faithful.
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Remark 3.2. By applying Yoneda Lemma to Cop we have a fully faithful functor:

h
′
: Cop - (Cop)∨

X - HomCop(−, X) = HomC(X,−)

Now X ' Y in C if and only if X ' Y in Cop. Therefore X ' Y if and only if HomC(−, X) ' HomC(−, Y )
if and only if HomC(X,−) ' HomC(Y,−).

Proposition 3.3. Let p : Bn - Xn the blow-up of the union of the pairwise diagonals in Xn. Then:

Rp∗OBn ' OXn .

Proof. We recall that the BKRH functor:

Φ : Db(X [n]) - Db
Sn

(Xn)

is an equivalence. Therefore, for all F •, G• ∈ Db(X [n])

HomDb
Sn

(Xn)(Φ(F •),Φ(G•)) ' HomDb(X[n])(F
•, G•) .

Therefore, for all G• ∈ Db(X [n]):

Homi
Db

Sn
(Xn)(Φ(OX[n]),Φ(G•)) ' Homi

Db(X[n])(OX[n] , G•)

' ExtiX[n](OX[n] , G•)

' Hi(X [n], G•) .

Now, by proposition 1.19
Hi(X [n], G•) ' Hi(Xn,Φ(G•))Sn

and the last term is

Hi(Xn,Φ(G•))Sn ' SnExtiXn(OXn ,Φ(G•)) ' Homi
Db

Sn
(Xn)(OXn ,Φ(G•)) .

Therefore for all G• ∈ Db(Xn):

HomDb
Sn

(Xn)(Φ(OX[n]),Φ(G•)) ' HomDb
Sn

(Xn)(OXn ,Φ(G•))

and since every object in Db
Sn

(Xn) can be written as Φ(G•) for some G• ∈ Db(X [n]), because Φ is an
equivalence, the following functors are isomorphic:

HomDb
Sn

(Xn)(Φ(OX[n]),−) ' HomDb
Sn

(Xn)(OXn ,−) .

By Yoneda Lemma we obtain:
Φ(OX[n]) ' OXn ,

which is exactly:
Rp∗ ◦ q∗OX[n] ' Rp∗OBn ' OXn .

2

We now come to the definition of tautological sheaf. Consider the diagram:

X [n] ×X
pX - X

X [n]

pX[n]

?
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Definition 3.4. Let X a smooth algebraic surface. Let F a coherent sheaf on X. The tautological sheaf
F [n] on X [n] associated to the coherent sheaf F on X is the element:

F [n] := ΦOΞ
X→X[n](F ) = (pX[n])∗(OΞ ⊗LO

X[n]×X
p∗XF ) ∈ Db(X [n]) .

Remark 3.5. Let F be a coherent sheaf on the surface X. The tautological sheaf F [n] is a sheaf. It
suffices to prove that

Tor
O
X[n]×X

i (OΞ, p
∗
XF ) = 0 for all i > 0. (25)

For any coherent sheaf F , the sheaves OΞ and p∗XF are transversely supported, that is,

codimX[n]×X(OΞ ⊗ p∗XF ) = codimX[n]×X(OΞ) + codimX[n]×X(p∗XF ) .

If F is now Cohen-Macaulay, they are transverse by proposition 2.5, therefore (25) follows. Hence (25)
is true for any 0-dimensional coherent sheaf, because Cohen-Macaulay. If F is of dimension 1, it can be
written as the extension:

0 - F0
- F - F1

- 0

with F0 of dimension 0 (hence Cohen-Macaulay) and F1 of dimension 1 without immersed points (hence,
again, Cohen-Macaulay); the long exact Tor-sequence gives the transversality. If F is of dimension 2, we
can write the exact sequence:

0 - T - F - G - 0

where T is the torsion subsheaf (of dimension ≤ 1) and G is torsion-free. Therefore OΞ and T are
transverse. To see that OΞ and G are transverse, write the short exact sequence:

0 - G - G∗∗ - Q - 0 .

Now the bidual G∗∗ is locally free and Q is of dimension 0. The long exact Tor-sequence gives again the
wanted transversality.

Remark 3.6. If E is a vector bundle on X of rank r, then OΞ ⊗ p∗XE is flat over Ξ. Since pX[n]

∣∣
Ξ

:
Ξ - X [n] is flat and finite of degree n over X [n],

E[n] := (pX[n])∗(OΞ ⊗ p∗XE) = (pX[n]

∣∣
Ξ
)∗(pX

∣∣∗
Ξ
E)

is a vector bundle of rank nr over X [n].

Remark 3.7. The definition we have given is compatible with the definition of the functor

−[n] : K(X) - K(X [n])

given, for exemple, in [87]. Actually the functor:

ΦOΞ
X→X[n] : Db(X) - Db(X [n])

induces the functor −[n] in K-theory.

Let X a smooth algebraic surface, X [n] the Hilbert scheme of points over X, Ξ the universal family
on X [n]. We recall that Bn

p- Xn is the isospectral Hilbert scheme and Z is the universal family on
Bn.

Proposition 3.8. The fiber product Ξ ×X[n] Bn is reduced and isomorphic to the isospectral universal
family Z ⊆ Bn ×X.
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Proof. The reduced scheme (Ξ×X[n]Bn)red underlying the fiber product coincides with Z, since Z and
(Ξ×X[n] Bn)red are two reduced schemes supported on the same points. Consider the flat base change:

Ξ×X[n] Bn - Bn

Ξ
? pX[n]- X [n]

q

?

Ξ×X[n] Bn is flat and finite of degree n over Bn (because Ξ is flat and finite of degree n over X [n]) and of
degree n! over Ξ (because such is Bn over X [n]). Therefore, by remark 1.32, it is Cohen-Macaulay. Since
Ξ×X[n] Bn is generically reduced and cannot have immersed components (because Cohen-Macaulay), it
is reduced. Therefore

Ξ×X[n] Bn ' Z .

2

Definition 3.9. Let X - Y a morphism of schemes, F a coherent sheaf on Y . We say that f is
transverse to F if

Lif∗F = TorOY−i (F,OX) = 0 for i < 0 .

Lemma 3.10. Let f : X - Y a morphism of schemes. Let F a coherent sheaf on Y transverse to f .
If Rf∗OX ' OY , then

Rf∗(F ⊗OY OX) ' F .

Proof. The proof is almost immediate, once seen that F ⊗OY OX ' f∗F . Now, since f is transverse
to F ,

f∗F ' Lf∗F .

Therefore
Rf∗(F ⊗OY OX) ' Rf∗(Lf∗F ) ' F ⊗LOY Rf∗(OX)

by projection formula. The hypothesis Rf∗(OX) ' OY allows to conclude.

2

Proposition 3.11. Consider the morphism:

f := (p× id) : Bn ×X - Xn ×X .

Then the structural sheaf OD of the scheme D = ∪ni=1Di is transverse to f .

Proof. We recall (cf. example 2.8) that the complex

K• : 0 -
n⊕
i=1

ODi -
⊕
|I|=2

ODI - . . . - OD{1,...,n} - 0

is a right resolution of the sheaf OD. In other words:

OD ' K• .

We now compute Lf∗OD ' Lf∗(K•). The hyperderived spectral sequence:

Ep,q1 = Lqf∗(Kp) = TorOXn×X−q (OBn×X ,Kp)
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converges to
Ep,q1 =⇒ Lp+qf∗(K•) .

Now
TorOXn×X−q (OBn×X ,Kp) '

⊕
|I|=p+1

TorOXn×X−q (OBn×X ,ODI )

and DI is the smooth intersection of |I| transverse diagonals of the kind Dj . Hence codimXn×X DI =
2(p+ 1) and we can resolve ODI with a locally free resolution R• of length 2(p+ 1). Therefore

TorOXn×X−q (OBn×X ,ODI ) = Hq(R• ⊗OXn×X OBn×X) .

Since R• ⊗OXn×X OBn×X is now a complex of locally free sheaves on Bn ×Xn of length 2(p+ 1), whose
cohomology is supported in ZI = f−1(ODI ), hence in codimension p+ 2 by example 2.9, we deduce, by
Peskine-Szpiro lemma 2.4 that

TorOXn×X−q (OBn×X ,ODI ) = 0 if −q > 2(p+ 2)− (p+ 2) = p .

Therefore Ep,q1 = TorOXn×X−q (OBn×X ,Kp) = 0 if p+ q < 0. This implies

Lp+qf∗(K•) = Lp+qf∗(OD) = 0 if p+ q < 0

Now, since OD is a sheaf, we always have Lif∗OD = TorOXn×X−i (OD,OBn×X) = 0 for i > 0. Therefore

f∗OD ' Lf∗OD .

2

Corollary 3.12. Let Z̃ ⊆ Bn ×X the pullback f−1(D) of the subscheme D of Xn ×X. Therefore

Rf∗OZ̃ ' OD

Proof. By example 2.9 we know that
OZ̃ = f∗OD .

Therefore:
Rf∗OZ̃ ' Rf∗(f∗OD) .

Since, by the previous proposition, the sheaf OD is transverse to f , we can conclude by lemma 3.10 and
proposition 3.3.

2

Proposition 3.13. Let M a smooth algebraic variety and Y a smooth subvariety. Let Y1 and Y2 two
smooth subvarieties of Y , transverse in Y , such that the intersection Y1 ∩ Y2 is smooth. Then there is a
canonical isomorphism:

Tori(OY1 ,OY2) ' ΛiN∗
Y/M

∣∣∣∣
Y1∩Y2

.

Proof. Let us prove first the case Y = Y1 = Y2. We want to prove:

Tori(OY ,OY ) ' ΛiN∗
Y .

To obtain the isomorphism, we can write locally Y as the scheme of zeros of a section s of a vector
bundle F , transverse to the zero section. The Koszul complex K•(s) associated to s is a resolution of
OY . Therefore

Tori(OY ,OY ) ' H−i(K•(s)⊗OY ) ' ΛiF ∗
∣∣∣∣
Y

.
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Now it is immediate to see that the exact sequence:

0 - TY - TM

∣∣∣∣
Y

ds- F

∣∣∣∣
Y

- 0

allows us to identify the restriction F
∣∣
Y

of the bundle F to the normal bundle NY/M of Y in M . Hence we
get the isomorphism Tori(OY ,OY ) ' ΛiN∗

Y/M on the considered open affine neighbourhood. To see that

these local isomorphisms glue together, let now s′ a section of another vector bundle F
′
, transverse to the

zero section. We can find on an open subset where the two vector bundles are defined an isomorphism
of vector bundles: ϕ : F - F

′
such that ϕs = s′. The morphism ϕ induces a morphism between the

Koszul complexes K•(s) and K•(s′) and a commutative diagram of isomorphisms:

Tori(OY ,OY ) - ΛiF
′∗
∣∣∣∣
Y

ΛiF ∗
∣∣∣∣
Y

?

-

�

ϕ
∣ ∣ Y

ΛiN∗
Y/M

?

This shows that the identification of Tori(OY ,OY ) with ΛiN∗
Y/M is canonical.

We come now to the case one of Y1 and Y2 is a proper subvarieties of Y . Let r = codimM Y ,
r + si = codimM Yi, i = 1, 2. The question is again local. Suppose that Y is defined by the scheme of
zeros of u : M - Cr, and Yi by the scheme of zeros of: (u, si) : M - Cr+si and all these sections are
transverse to the zero section. Suppose also that the section (u, s1, s2), whose scheme of zeros is Y1 ∩ Y2,
is again transverse to the zero section. Then:

Tori(OY1 ,OY2) ' H−i(K•(u, s1)⊗K•(u, s2)) .

The Koszul complex K•(u, si) is the tensor product: K•(u) ⊗ K•(si). By transversality the complex
K•(s1, s2) is a resolution of OY1∩Y2 in Y . Therefore:

Tori(OY1 ,OY2) ' Tori(OY ,OY )
∣∣∣∣
Y1∩Y2

' ΛiN∗
Y/M

∣∣∣∣
Y1∩Y2

2

We will prove now that
Rf∗OZ ' OD . (26)

It will turn out that this is the techical key result in order to compute the image of a tautological vector
bundle for the BKRH equivalence. We will prove (26) by induction on n; hence we start with the simpler
case n = 2.

3.2 The case n = 2

We will now study in details the case n = 2. We recall that we indicated with Z̃ the pull back of the
scheme D = ∪ni=1Di = ∪ni=1∆i,n+1 in Xn × X for the map (p × id). We saw that Z̃ is not reduced
and Z̃red ' Z, the universal family for the isospectral Hilbert scheme. The morphism p : B2 - X2

the blow-up of the diagonal ∆ ⊆ X2: B2 is then smooth. Let E the exceptional divisor E = p−1(∆).
Consider D1 = ∆1,3 and D2 = ∆2,3 in X2 ×X and Z1 = f−1(D1) and Z2 = f−1(D2) in B2 ×X. We
already know by example 2.9 that Z1 and Z2 are not transverse:

3 = codimB2×X(Z1 ∩ Z2) < 2 + 2 = codimB2×X(Z1) + codimB2×X(Z2) ;

hence we expect
Tor

OB2×X
1 (OZ1 ,OZ2) 6= 0 .
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Lemma 3.14. The ideal IZ of Z ⊆ B2 ×X in Z̃ is isomorphic to OE(E); we have the exact sequence
on B2 ×X:

0 - OE(E) - OZ̃ - OZ - 0 . (27)

Proof. If J1 and J2 are two ideals of a commutative ring A, we have:

Tor1(A/J1, A/J2) ' J1 ∩ J2/J1J2 .

Now we know that IZ̃ ' IZ1IZ2 , while IZ = IZ1 ∩ IZ2 . It’s then clear that the ideal of Z in Z̃ identifies
with Tor1(OZ1 ,OZ2). We will now see that it is isomorphic to OE(E). By proposition 3.13, since B2×X
and Z1 and Z2 are smooth, we have:

Tor1(OZ1 ,OZ2) ' N∗
Y/B2×X

∣∣∣∣
Z1∩Z2

where Y is a smooth subvariety of B2 ×X containing Z1 and Z2 as transverse subvarieties. To work out
what this term is we can suppose that the base X3 is affine: X ' C2. In the product X2×X ' (C2)2×C2

we can now imagine that the diagonal is the second factor; as a consequence we can take coordinates
(x, y, α, β, z, w) in (C2)2×C2 such that I∆ = (x, y), I∆13 = (z, w), I∆23 = (x−z, y−w). As a consequence,

Bl∆(X2)×X ' Bl0(C2)× C2 × C2 ' H × C2 × C2 ,

where H ' Bl0(C2) is the total space of the Hopf line bundle on P1: H ' OP1(−1). Here the exceptional
divisor E on Bl∆(X2) is P1 ×C2. Let λ ∈ H0(O(E)) and u, v homogeneous coordinates in H0(O(−E)):
we can set x = λu, y = λv. Then

IZ1 = (z, w) , IZ2 = (λu− z, λv − w) .

We can easily see that Z1 and Z2 are transversely immersed in the smooth variety Y , defined by the ideal
is IY = (zv − wu). Y is a divisor in H × C2 × C2 and corresponds exactly to the pull-back of another
copy of the Hopf bundle H

′ ⊆ P1 × C2 via the projection:

H × C2 × C2 πH × pr3- P1 × C2

Y ' π∗H
′

∪

6

- H
′
∪

6

where πH : H × C2 - P1 is the projection on P1. Now the normal bundle NY/H×C2×C2 is naturally
identified with the pull-back π∗Q of the quotient:

0 - H
′ - O2

P1
- Q - 0

of O2
P1

by the Hopf bundle H
′
. Since line bundles on the projective space are classified by their degree,

(cf. [54]) we necessarily have Q ' (H
′
)∗ ' OP1(1). Therefore:

N∗
Y/H×C2×C2

∣∣∣∣
Z1∩Z2

' (π∗Q)∗
∣∣∣∣
E

' π∗H
′
∣∣∣∣
E

' OE(E) .

because the intersection Z1 ' Z2 is isomorphic to E via the projection onto B2.

2
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Corollary 3.15. Let p : B2 - X2 the blow-up of the diagonal and Di = ∆i,3 ⊆ X2 × X, i = 1, 2,
Z̃ = (p× id)−1(D) and Z = Z̃red the isospectral universal family. Then

R(p× id)∗OZ ' OD .

Proof. It is immediate from the exact sequence (27) and the well known fact that for a smooth blow-up
f : BlY (M) - M of a smooth subvariety Y in a smooth variety M we have (cf. [2]):

Rf∗OE(kE) = 0 if 0 < k < codimM Y .

2

3.3 The general case

We now pass to the general case
f : Bn ×X - Xn ×X .

We first prove that f∗OZ ' OD and, in a second time, that the higher direct images of the sheaf OZ
vanish. We will recall a fundamental result of local cohomology (see [64], [58]). Let X a locally noetherian
scheme, Y a closed subscheme, U = X \ Y and j : U ⊂ - X the open immersion of U in X. We recall
that, for a coherent sheaf F on X, the sheaf H0

Y (F ) is defined by the exact sequence:

0 - H0
Y (F ) - F - j∗j

∗F .

The i-th right derived functor of H0
Y is denoted with Hi

Y and it is called the i-th sheaf of local cohomology
with support in Y .

Theorem 3.16. Let X a locally noetherian scheme, Y a closed subscheme. Let F a coherent sheaf on
X. The following statements are equivalent:

1. For all p ∈ Y , depthFp ≥ k.

2. Hi
Y (F ) = 0 for all i < k.

If F is Cohen-Macauley we can rephrase the first condition by requiring:

1
′
. For all p ∈ Y , dimOX,p Fp ≥ k .

Therefore, for a Cohen-Macauley coherent sheaf F on X,

dimOX,p Fp ≥ 2 for all p ∈ Y ⇐⇒ F ' j∗j
∗F (28)

where j : U - X is the open immersion of the complementary of Y .

Proposition 3.17. Let f : Bn ×X - Xn ×X and Z the isospectral universal family. Then

f∗OZ ' OD .

Proof. Bn×X is a Cohen-Macauley normal variety, and Z ⊆ Bn×X is a Cohen-Macauley subvariety of
codimension 2. Let now Ỹ ⊆ Xn be the scheme-theoretic union of all diagonals of length 3: Ỹ = ∪|I|=3∆I ,
and let Y be its pull back on Xn ×X. It’s clear that Ỹ and Y are of codimension 4 in Xn and Xn ×X.
Moreover Y ∩D is of codimension 4 in D. We will indicate Xn

∗ := Xn \ Ỹ . Then Xn×X \Y = Xn
∗ ×X.

We denote W̃ := p−1(Ỹ ), Bn∗ := p−1(Xn
∗ ) = Bn \ W̃ . Let W = f−1(Y ). We remark that W̃ and W are

of codimension 2 in Bn and Bn ×X respectively, and W ∩Z is of codimension 2 in Z. Now, since OZ is
Cohen-Macauley and for all p ∈W ∩ Z the dimension

dimBn×X OZ,p ≥ 2
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we have by (28) and the facts on local cohomology that

OZ ' jW ∗jW
∗OZ

where jW : Bn∗ ×X ⊂ - Bn ×X is the open immersion of the complementary of W . Over Bn∗ ×X we
have the short exact sequence:

0 - OZ -
n⊕
i=1

OZi -
⊕
i<j

OZi∩Zj - 0

and the sheaves OZi∩Zj are isomorphic (via the projection on Bn∗ ) to OEij , where Eij are the irreducible
components of the exceptional divisor E on Bn∗ . Since Bn∗ is a smooth blow-up of pairwise disjoint
diagonals in Xn

∗ , over Bn∗ × X we can treat the situation exactly as in the case n = 2: therefore the
statement of the proposition is true on Xn

∗ ×X. Consider now the fiber product

Bn ×X
f - Xn ×X

Bn∗ ×X

jW

∪

6

f |Bn∗×X
- Xn

∗ ×X

jY

∪

6

We have:
f∗OZ ' f∗jW ∗j

∗
WOZ ' jY ∗(f |Bn∗×X)∗j∗WOZ = jY ∗j

∗
YOD

It suffices to show that jY ∗j∗YOD ' OD. Applying the functor jY ∗j∗Y to the first three terms of the Čech
complex, and recalling that jY ∗j∗Y is left exact we get the following morphism of short exact sequences:

0 - OD -
n⊕
i=1

ODi -
⊕
|I|=2

ODI

0 - jY ∗j
∗
YOD
?

-
n⊕
i=1

jY ∗j
∗
YODi

?

-
⊕
|I|=2

jY ∗j
∗
YODI

?

Now ODi and ODI are Cohen-Macauley coherent sheaves, because structural sheaves of smooth subvari-
eties and, since codimDi Di ∩ Y = 4 and codimDI DI ∩ Y = 2 for |I| = 2, we have, by (28)

Hi
Y (ODi) = 0 = Hi

Y (ODI ) if i < 2 ,

which means
ODi ' jY ∗j

∗
YODi and ODI ' jY ∗j

∗
YODI .

Since the last two vertical arrows in the previous diagram are isomorphisms, we get that the canonical
morphism:

OD - jY ∗j
∗
YOD

is an isomorphism.

2

Before proving the next proposition, the technical heart of this chapter, we recall some facts on base
change formulas.
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Proposition 3.18. Consider the fiber product:

X
′ f

′

- Y
′

2

X

u

? f - Y

v

?

where X,Y ,X
′
, Y

′
are noetherian k-schemes and f and f

′
are proper morphism. Let F a coherent

OX-module, and G a coherent OY ′ -module. Then:

Rf
′

∗
(
F ⊗LOY G

)
' Rf∗F ⊗LOY G (29)

where F ⊗LOY G is naturally seen as an element of D(X
′
).

Proof. It is a particular case of EGA III. Étude cohomologique des faisceaux cohérents, Seconde
Partie, Proposition 6.9.8. [57].

Remark 3.19. • Suppose Y
′

is flat over Y , then X
′

is flat over X. If G = OY ′ , we get the known
formula for base flat change ([65]):

Rf
′

∗(u
∗F) ' v∗Rf∗F .

• If X is flat over Y and G = OY ′ , we get:

Rf
′

∗(Lu
∗F) ' Lv∗(Rf∗F) .

• If Y = Y
′
and X = X

′
formula (29) becomes the common projection formula:

Rf∗(Lf∗G ⊗L F) ' G ⊗L Rf∗F .

Notation 3.20. We explain here the slight abuse of notation we will be making for all the proof of next
proposition. In the hypothesis of proposition 3.18, we will consider the sheaf G as a sheaf on Y and we
will denote with Lf∗G the element OX ⊗LOY G. It is canonically a complex of sheaves on X

′
, but we

will consider it as a complex of sheaves on X. If v is flat, the complex Lf∗G coincide with the complex
L(f

′
)∗G (on X

′
and on X); if G is flat over Y , then Lf∗G is isomorphic to (f

′
)∗G. Moreover, if H is a

sheaf on X
′
, we will consider it as a sheaf on X and we will denote with Rf∗H the element Rf

′

∗H, seen
as a complex of sheaves on Y . In these notations base change formula (29) becomes simply a projection
formula:

Rf∗(Lf∗G ⊗LOX F) ' G ⊗LOY Rf∗F

and if v is flat the complex denoted with Lf∗G coincides exactly with L(f
′
)∗G.

Proposition 3.21. Let p : Bn - Xn the blow-up of the pairwise diagonals. Let f := (p × id) :
Bn ×X - Xn ×X. Then

Rf∗OZ ' OD .

Proof. In proposition 3.17 we proved that f∗OZ ' OD. It remains to prove: Rif∗OZ = 0 for all
i > 0. We prove the proposition by induction on n. The case n = 2 was previously proven. Suppose the
proposition is true for n ≥ 2. Consider the flat families ζB , ξB , ηB on Bn+1,n × X, defined in remark
1.37 as the pull-back on Bn+1,n×X of the correspondent families on X [n+1,n]×X. We will consider the
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sheaves OζB , OξB , OηB as flat sheaves over Bn+1,n, following the abuse of notation previously explained.
More precisely, consider the morphisms:

Bn+1,n v- Bn+1 ; Bn+1,n u- Bn ; Bn+1,n t- X

Then the three families above can be defined as the pull-back of the isospectral universal families:

OζB = v∗OZn+1 = OBn+1,n ⊗OBn+1 OZn+1

OξB = u∗OZn = OBn+1,n ⊗OBn OZn
OηB = t∗O∆ = OBn+1,n ⊗OX O∆

where again OZn+1 , OZn , O∆ are regarded as flat sheaves over Bn+1, Bn, X respectively. Consider the
exact sequence (17):

0 - OζB - OξB ⊕OηB - OηB
∣∣∣∣
E

- 0 (30)

where the sheaf OηB
∣∣
E is exactly the sheaf: OηB ⊗OBn,n+1 OE . The principle of the proof is simple:

consider the diagram:

Bn+1,n v //

ϕ

%%KKKKKKKKKKKKKKKKKKKKK

u×t

��
t

��

u





Bn+1

pn+1

��
Bn ×X

f //

h

��6
66

66
66

66
66

66
66

6

g
zzuuuuuuuuu

Xn ×X

h̃

��6
66

66
66

66
66

66
66

6

g̃zzuuuuuuuuu

Bn
pn // Xn

X
id // X

We apply the functor

Rϕ∗ ' Rf∗ ◦R(u× t)∗

= Rpn+1∗ ◦Rv∗ .

to the exact sequence (30). We get a distinguished triangle:

Rϕ∗OζB - Rϕ∗OξB ⊕Rϕ∗OηB - Rϕ∗OηB
∣∣∣∣
E

- Rϕ∗OζB [1] (31)

We now compute the two central terms by going down Bn+1,n ϕ- Xn×X clockwise, and the extremal
ones by going counterclockwise.

Rϕ∗OξB = Rϕ∗(u∗OZn) = Rϕ∗
(
(u× t)∗g∗OZn

)
.

We remark that, since OZn is flat over Bn, and g is a flat morphism, then g∗OZn is flat over Bn ×X.
Then

(u× t)∗g∗OZn ' L(u× t)∗g∗OZn .

We can apply the projection formula to obtain:

Rϕ∗ ◦ L(u× t)∗g∗OZn ' Rf∗ ◦R(u× t)∗ (L(u× t)∗g∗OZn)

' Rf∗
(
g∗OZn ⊗LOBn×X R(u× t)∗OBn+1,n

)
' Rf∗g∗OZn
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because R(u × t)∗OBn+1,n ' OBn×X by (15). Now g is a flat morphism: by flat base change we get
easily:

Rϕ∗OξB ' Rf∗g∗OZn ' g̃∗Rpn∗OZn ' g̃∗OD

by induction hypothesis. The sheaf g̃∗OD, without any abuse of notation, is isomorphic to pr13∗OD as a
structural sheaf of a subscheme of Xn×X ×X, where pr13 : Xn×X ×X - Xn×X is the projection
onto the first and third factor.

Let us now compute Rϕ∗OηB . The computation is analogous to the previous one:

Rϕ∗OηB = Rf∗ ◦R(u× t)∗ ((u× t)∗h∗O∆) .

Remembering that h∗O∆ is flat over Bn ×X (because O∆ is flat over X and h is flat) and applying the
projection formula, we get:

Rϕ∗OηB ' Rf∗
(
h∗O∆ ⊗L R(u× t)∗OBn+1,n

)
' Rf∗h∗O∆

again because R(u× t)∗OBn+1,n ' OBn×X by (15). We have:

h∗O∆ ' f∗h̃∗O∆

with h̃∗O∆ again flat over Xn ×X. Therefore, projection formula yields:

Rϕ∗OηB ' Rf∗h∗O∆ ' Rf∗(f∗h̃∗O∆) ' h̃∗O∆ ⊗L Rf∗OBn×X ' h̃∗O∆ ,

because Rf∗OBn×X ' OXn×X by proposition 3.3. The h̃∗O∆ sheaf can be seen, as structural sheaf of a
subscheme ofXn×X×X, without any abuse of notation, as pr∗23O∆, where pr23 : Xn×X×X - X×X
is the projection onto the second and the third factor and O∆ is seen as a subsheaf of OX×X ; in other
words, h̃∗O∆ ' OXn �O∆ over Xn ×X ×X.

Let us compute the final term Rϕ∗OηB
∣∣∣∣
E
. We can see the sheaf OηB

∣∣∣∣
E

as

OηB
∣∣∣∣
E
' OE ⊗OBn+1,n t

∗O∆ ' OE ⊗OX O∆ ' OE ⊗LOX O∆ .

since O∆ is flat over X. Therefore:

Rϕ∗OηB
∣∣∣∣
E

' Rf∗R(u× t)∗
(
L(u× t)∗h∗O∆ ⊗LOBn+1,n

OE
)

' Rf∗(h∗O∆ ⊗LOBn×X R(u× t)∗OE)

by projection formula. Now R(u× t)∗OE ' OZn , by (15). Therefore:

Rϕ∗OηB
∣∣∣∣
E

' Rf∗(h∗O∆ ⊗LOBn×X OZn)

' Rf∗(f∗h̃∗O∆ ⊗LOBn×X OZn)

' h̃∗O∆ ⊗OXn×X Rf∗OZn

' h̃∗O∆ ⊗OXn×X OD ' h̃∗O∆

∣∣∣∣
D

where we used again projection formula and the induction hypothesis. The distinguished triangle (31)
becomes:

Rϕ∗OζB - g̃∗OD ⊕ h̃∗O∆
- h̃∗O∆

∣∣∣∣
D

- Rϕ∗OζB [1] .
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Now, counterclockwise:
Rϕ∗OζB ' Rpn+1∗Rv∗(v

∗OZn+1)

and since OZn+1 is flat over Bn+1, projection formula gives:

Rϕ∗OζB ' Rpn+1∗(OZn+1 ⊗LOBn+1
Rv∗OBn+1,n) ' Rpn+1∗OZn+1

because Rv∗OBn+1,n ' OBn+1 by (14). Therefore, the distinguished triangle (31) becomes:

Rpn+1∗OZn+1
- g̃∗OD ⊕ h̃∗O∆

- h̃∗O∆

∣∣∣∣
D

- Rpn+1∗OZn+1 [1] .

Now, since the second arrow is surjective, we get immediately from the long exact cohomology sequence
that:

Ripn+1∗OZn+1 ' 0 .

In the abuse of notations we explained before, this is equivalent to Rif∗OZn+1 = 0 for all i > 0, where
f : Bn+1 ×X - Xn+1 ×X.

2

We have just proved the main technical point. We are now ready to compute the image Φ(F [n]) of a
tautological sheaf for the Bridgeland-King-Reid-Haiman equivalence:

Φ = ΦOBn
X[n]→Xn : Db(X [n]) - Db

Sn
(Xn) .

We will need the following fact on the behaviour of Fourier-Mukai functors under composition (see
[93] [67]).

Proposition 3.22. Let X, Y , Z three algebraic varieties and P • ∈ D(X × Y ), Q• ∈ D(Y × Z) given
kernels. Consider the Fourier-Mukai functors of kernels P • and Q• respectively:

ΦP
•

X→Y and ΦQ
•

Y→Z .

Then their composition is the Fourier-Mukai functor:

ΦQ
•

Y→Z ◦ ΦP
•

X→Y ' ΦP
•∗Q•

X→Z

where P • ∗Q• is the kernel:

P • ∗Q• := RπX,Z∗(π
∗
X,Y P

• ⊗LOX×Y×Z π
∗
Y,ZQ

•) ' RπX,Z∗(P
• ⊗LOY Q

•)

where πX,Y , πY,Z , πX,Z are the projections:

X × Y × Z

X × Y
�

πX
,Y

X × Z

πX,Z

?
Y × Z

π
Y
,Z

-

2
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The complex C•F . We first introduce a complex of equivariant sheaves C•F in Db
Sn

(Xn) and some
notations. Let {1, . . . , n} the set of the first positive n natural numbers. For every subset J ⊆ {1, . . . , n},
|J | = p, p ≥ 1, we will denote with pJ : Xn - XJ the projection onto the factors Xj1 × · · · × Xjp ,
if J = {j1, . . . , jp}. If |J | ≥ 2, we will indicate with ∆J the pull-back of the small diagonal in XJ via
the projection pJ : ∆J = p−1

J (∆j1,...,jp). We set the convention ∆J := Xn if |J | = 1, and ∆ := ∆{1,...,n}.
Let now F a coherent sheaf on X. We will denote with FJ the sheaf p∗J(jJ∗F ), where jJ is the diagonal
immersion of X into the small diagonal of XJ . We now begin building the complex C•F : Let

CpF :=
⊕

|J|=p+1

FJ .

The differentials
∂pF : CpF - Cp+1

F

are defined by:
∂pF (x) :=

∑
i∈J

εi,JxJ\{i}|∆J

where x is a local section of FJ and where εi,J is the sign:

εi,J := (−1)]{b∈J|b<i} .

We will now endow the complex (C•F , ∂•F ) with a Sn-linearization, in such a way that it becomes a
complex of Sn-equivariant sheaves and it can be seen in Db

Sn
(Xn). Let σ ∈ Sn and σ∗ : Xn - Xn

the permutation of the factors given by:

σ∗(x1, . . . , xn) - (xσ−1(1), . . . , xσ−1(n)) .

We have the following straightforward

Lemma 3.23.
σ∗(∆J) ' ∆σ(J) .

2

Therefore we can give C•F a natural Sn-linearization:

(σ.x)J := εσ,Jσ∗xσ−1(J)

where εσ,J is the signature of the only permutation τ ∈ Sn such that σ−1τ is strictly increasing. The
sign εσ,J is necessary to make the differential ∂pF : CpF - Cp+1

F Sn-equivariant for this action. We have
C0
F ' ⊕ni=1Fi where Fi = p∗i (F ), with pi : Xn - X the projection on the i-th factor. When F = OX ,

then C0 ' OXn ⊗C R, where R is the natural representation of the symmetric group Sn: identifying R
with Cn, the group Sn acts permutating the basis vectors. Moreover Cn−1

F ' F∆ ⊗ εn, where εn is the
alternating representation of Sn of dimension 1.

Example 3.24. For n = 3 the complex C•F is given by:

0 -
n⊕
i=1

Fi
∂0
F- F∆12 ⊕ F∆13 ⊕∆23

∂1
F- F∆ ⊗ ε - 0

where:
∂0
F (x)ij = xj |∆ij

−xi |∆ij

and
∂1
F (x) = x23 |∆ −x13 |∆ +x12 |∆ .
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We are now ready to prove the main theorem.

Theorem 3.25. Let X a smooth algebraic surface and F a coherent sheaf on X. Let F [n] the tautological
sheaf on the Hilbert scheme X [n] associated to F . Let

Φ = ΦOBn
X[n]→Xn : Db(X [n]) - Db

Sn
(Xn)

the Bridgeland-King-Reid-Haiman equivalence. Then the image of the tautological sheaf F [n] for the
equivalence Φ is isomorphic in Db

Sn
(Xn) to the complex (C•F , ∂•F ):

Φ(F [n]) ' C•F .

Proof. The proof is now an easy consequence of propositions 3.21, 3.22, 3.8 and of example 2.8. The
tautological sheaf F [n] has been defined as the image of the sheaf F by the Fourier-Mukai functor:

F [n] := ΦOΞ
X→X[n](F ) .

Therefore the searched image Φ(F [n]) is exactly the image F for the composition of functors:

Φ(F [n]) ' ΦOBn
X[n]→Xn ◦ ΦOΞ

X→X[n](F ) .

This composition is, by proposition 3.22, the Fourier-Mukai functor

ΦOBn
X[n]→Xn ◦ ΦOΞ

X→X[n] ' ΦOBn∗OΞ
X→Xn .

Consider now the kernel:

OBn ∗ OΞ := RπXn×X∗(π
∗
X[n]×XnOBn ⊗

L
O
X[n]×Xn×X

π∗X[n]×XOΞ) .

The sheaves π∗
X[n]×XnOBn and π∗

X[n]×XOΞ are transverse, because transversely supported and Cohen-
Macauley, and their (derived) tensor product:

π∗X[n]×XnOBn ⊗
L
O
X[n]×Xn×X

π∗X[n]×XOΞ ' π∗X[n]×XnOBn ⊗OX[n]×Xn×X
π∗X[n]×XOΞ ' OBn ⊗O

X[n] OΞ

is isomorphic to the structural sheaf of the fiber product Bn×X[n] Ξ, which is, in turn, isomorphic to the
isospectral universal family Z ⊆ Bn ×X by proposition 3.8. Therefore the kernel reduces to:

OBn ∗ OΞ ' RπXn×X∗(OZ) .

Now the diagram:

X [n] ×Xn ×X
πXn×X- Xn ×X

Bn ×X
∪

6
f

-

commutes. It means that
RπXn×X∗(OZ) ' Rf∗OZ ' OD

by proposition 3.21. Therefore the BKRH transform of F [n] is simply:

Φ(F [n]) ' ΦODX→Xn(F ) .

Let us now study the last term. By definition it is

ΦODX→Xn(F ) ' RπXn∗(OD ⊗LOXn×X π
∗
XF ) .
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We will now prove that:
OD ⊗LOXn×X π

∗
XF ' OD ⊗OXn×X π

∗
XF .

By example 2.8 we can right resolve OD by the complex K•:

OD ' K• .

Therefore
OD ⊗LOXn×X π

∗
XF ' K• ⊗LOXn×X π

∗
XF .

The hypertor spectral sequence associated to the last term is

Ep,q1 = Tor−q(Kp, π∗XF ) =⇒ Tor−p−q(K•, π∗XF ) = Hp+q(K• ⊗LOXn×X π
∗
XF ) .

Now
Ep,q1 =

⊕
|I|=p+1

TorOXn×X−q (ODI , π∗XF ) :

but

TorOXn×X−q (ODI , π∗XF ) = Hq(ODI ⊗LOXn×X (OXn×X ⊗LOX F )) = Hq(ODI ⊗LOX F ) = 0 if q < 0 ,

because DI is flat over X. Therefore the E1 level of the spectral sequence is reduced to the complex
E•,01 ' K• ⊗ π∗XF : in other words the spectral sequence degenerates at level E2: E

p,q
2 ' Ep,q∞ . Since OD

and π∗XF are sheaves we know a priori that

Tor−q(OD, π∗XF ) ' Eq,0∞ ' Eq,02 = 0 if q > 0 .

We get:
K• ⊗LOXn×X π

∗
XF ' K• ⊗OXn×X π

∗
XF

and the last term is acyclic in degree > 0. This yields in particular:

OD ⊗LOXn×X π
∗
XF ' K• ⊗LOXn×X π

∗
XF ' K• ⊗OXn×X π

∗
XF ' OD ⊗OXn×X π

∗
XF .

Therefore:
Φ(F [n]) ' ΦODX→Xn(F ) ' RπXn∗(OD ⊗OXn×X π

∗
XF ) .

Now
RπXn∗(OD ⊗OXn×X π

∗
XF ) ' πXn∗(OD ⊗OXn×X π

∗
XF ) ' π∗(K• ⊗OXn×X π

∗
XF )

because
πXn

∣∣
D

: D - Xn

is a finite morphism. The term in degree 0 is isomorphic to:

πXn∗(K0 ⊗OXn×X π
∗
XF ) '

n⊕
i=1

πXn∗(ODi ⊗OXn×X π
∗
XF ) .

Now Di
πXn- Xn is an isomorphism and the diagram

Di
πX - X

Xn

πXn

?

p i

-

40



commutes, hence:
πXn∗(ODi ⊗OXn×X π

∗
XF ) ' p∗iF ' Fi .

For the other terms of the kind πXn∗(ODI ⊗OXn×X π∗XF ) it is sufficient to remark that:

πXn : DI
- ∆I

is an isomorphism. Therefore

Φ(F [n]) ' πXn∗(OD ⊗ π∗XF ) ' πXn∗(K• ⊗ π∗XF ) ' C•F .

2

The following result gives a generalization of Danila-Brion formula (cf. [23]).

Theorem 3.26. Let X a smooth algebraic surface, F a coherent sheaf on X. Let X [n] the Hilbert scheme
of n points on X, SnX the symmetric variety and µ : X [n] - SnX the Hilbert-Chow morphism. Then

Rµ∗(F [n]) ' πSn
∗

(
n⊕
i=1

Fi

)
.

Proof. By proposition 1.19, applied to the diagram:

Bn
p - Xn

X [n]

q

?
µ- SnX

π

?

we have:
Rµ∗ ' πSn

∗ ◦Φ .

Therefore

Rµ∗(F [n]) ' πSn
∗ ◦Φ ◦ ΦOΞ

X→X[n](F )

' πSn
∗ ◦ ΦODX→Xn(F ) .

Now proposition 1.16, applied to the diagram:

Xn ×X
πX - X

Xn

πXn

?
SnX ×X -

π ×
id

-

X

id

-

SnX

πSnX

?

π
-

easily yields:

πSn
∗ ◦ ΦODX→Xn(F ) ' ΦO

Sn
D

X→SnX(F )

' RπSnX∗
[
OSn

D ⊗LOSnX×X π
∗
X(F )

]
.
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Now, by definition of the Sn-action on OD, it is clear that

OSn

D '

(
n⊕
i=1

ODi

)Sn

.

Consequently,

OSn

D ⊗LOSnX×X π
∗
X(F ) '

(
n⊕
i=1

ODi

)Sn

⊗LOSnX×X π
∗
X(F )

'

(
n⊕
i=1

ODi ⊗LOXn×X π
∗
X(F )

)Sn

where we applied lemma 1.17. Finally:

RπSnX∗
[
OSn

D ⊗LOSnX×X π
∗
X(F )

]
' RπSnX∗

(
n⊕
i=1

ODi ⊗LOXn×X π
∗
XF

)Sn

' RπSnX∗R(π × id)Sn
∗

(
n⊕
i=1

ODi ⊗LOXn×X π
∗
XF

)

' πSn
∗ RπXn∗

(
n⊕
i=1

ODi ⊗LOXn×X π
∗
XF

)

' πSn
∗

(
n⊕
i=1

Fi

)

where the third isomorphism is obtained using the commutativity of the diagram:

Xn ×X
πXn- Xn

SnX ×X

π × id

?

πSnX
- SnX

π

?

and the fact that πSnX ◦ [−]Sn ' [−]Sn ◦ πSnX , because πSnX is Sn-invariant.

2

3.4 Applications

Thanks to the results obtained till now, we can show some applications: among others we reobtain and
generalize some results of Danila [23].

We begin by introducing the Donaldson line bundle DA on the Hilbert scheme, associated to a line
bundle A on the surface X. Consider the bundle A�n := A � · · · � A on the product Xn. By Drezet-
Kempf-Narasimhan lemma (cf. [30]), it descends to a line bundle on the quotient Xn/Sn ' SnX.

Definition 3.27. We call Donaldson line bundle DA on the Hilbert scheme X [n] the line bundle

DA := µ∗(A�n/Sn) ,

pull back by the Hilbert-Chow morphism of the quotient by the symmetric group Sn of the n-th exterior
tensor product A�n on Xn.
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Theorem 3.28. Let X a smooth algebraic surface, F a coherent sheaf and A a line bundle on X. Let
DA the Donaldson line bundle on the Hilbert scheme X [n]. Then:

H∗(X [n], F [n] ⊗O
X[n] DA) ' H∗(X,F ⊗A)⊗ Sn−1H∗(X,A) .

Proof.

RΓX[n]

(
F [n] ⊗O

X[n] DA
)

' RΓSnX ◦Rµ∗
(
F [n] ⊗O

X[n] µ
∗(A�n/Sn)

)
' RΓSnX

( n⊕
i=1

Fi

)Sn

⊗OSnX A
�n/Sn


' RΓSnX ◦ πSn

∗

(
n⊕
i=1

Fi ⊗OXn π
∗
(
A�n/Sn

))

' RΓSn

Xn

(
n⊕
i=1

Fi ⊗OXn A
�n

)

' RΓSn

Xn

(
n⊕
i=1

(Fi ⊗A) �A�n−1

)
.

Therefore, by Künneth formula, and taking the invariants:

H∗(X [n], F [n] ⊗O
X[n] DA) '

[
n⊕
i=1

H∗(X,F ⊗A)⊗H∗(X,A)⊗
n−1

]Sn

' H∗(X,F ⊗A)⊗ Sn−1H∗(X,A) .

2

Remark 3.29. This proof follows closely Danila [23]. The key point is in any case theorem 3.26, which
is obtained here more directly and in a more general form. Another proof is possible using theorem 3.25:
it is only necessary to remark that:

q∗DA ' p∗(A�n)

and then:
Φ(F [n] ⊗DA) ' C•F ⊗A�n .

Now, the computation of the Sn-equivariant hypercohomology of the complex CF •⊗A�n gives the result.
The only non-trivial part is to show that CpF ⊗A�n has no Sn-invariants for p > 0.

Example 3.30. If A is trivial, then DA ' OX[n] and we get the cohomology of the tautological sheaf:

H∗(X [n], F [n]) ' H∗(X,F )⊗ Sn−1H∗(X,OX) .

In the case X is affine we get:

H∗(X [n], F [n]) ' H0(X,F )⊗ Sn−1H0(X,OX)

which implies the vanishing of the higher cohomology groups:

Hi(X [n], F [n]) ' 0 for i > 0

whereas, in the case X is projective, with pg = q = 0 the formula becomes simply:

H∗(X [n], F [n]) ' H∗(X,F ) .
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We want now to compute the cohomology of F [n] ⊗ detA[n] with A a line bundle on X. We will
prove that the cohomology H∗(X [n], F [n] ⊗ detA[n]) identifies to the anti-invariant hypercohomology of
the complex C•F ⊗A�n . Let R the natural representation of Sn, that is, Cn where Sn acts permutating
the vectors ei of the canonical basis.

Lemma 3.31. Let F a coherent sheaf on X and A a vector bundle on X.

H∗(X [n], F [n] ⊗ detA[n]) ' H∗
Sn

(Bn, q∗(F [n])⊗ detR) .

Proof. Let E the exceptional divisor in Bn. On Bn \ p−1(∪|I|≥3∆I) we have an exact sequence of
Sn-sheaves:

0 - O[n]
B

- OB ⊗R - OE - 0 .

Taking the determinant yields a morphism of Sn-line bundles:

detO[n]
B

- OB ⊗ detR

whose scheme of zeros is the divisor E. We remark that p−1
n (∪|I|≥3∆I) is a closed subscheme of codi-

mension 2 and Bn is a normal variety. As a consequence the Sn-invariant sections of detO[n]
B on the

Sn-invariant affine open sets V of Bn are the Sn-invariant sections of OB ⊗ R vanishing on E. The
Sn-invariant sections of OB ⊗ detR are the alternating regular functions:

g∗(f) = εgf

for all g ∈ Sn, As a consequence such functions necessarily vanish on E. Therefore:

qSn
∗ (detO[n]

B ) = qSn
∗ (OB ⊗ detR) .

By projection formula we get:

F [n] ⊗ detO[n]
X = qSn

∗ (q∗(F [n])⊗ detR) .

Taking the cohomology of the two members on the Hilbert scheme X [n] we get the result.

2

Theorem 3.32. Let A a line bundle on X. We have:

H∗(X [n], F [n] ⊗ detA[n]) ' H∗
Sn

(Xn, C•F ⊗A�n ⊗ detR) .

Proof. We know that detA[n] ' detO[n]
X ⊗DA (see [83]). By remark 3.29, we know that

Φ(F [n] ⊗DA) ' C•F ⊗A�n .

Therefore

H∗(X [n], F [n] ⊗ detA[n]) ' H∗
Sn

(Bn, q∗(F [n] ⊗DA)⊗ detR)

' H∗
Sn

(Xn, C•F ⊗A�n ⊗ detR) .

Corollary 3.33. The cohomology H∗(X [n], F [n] ⊗ detA[n]) is the limit of a spectral sequence Ep,q1 given
by

Ep,q1 ' (H∗(X,F ⊗A⊗
p+1

)⊗ Λn−p−1H∗(X,A))q

for 0 ≤ p ≤ n− 1, and by Ep,q1 = 0 otherwise.
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Proof. Consider the hypercohomology spectral sequence

Ep,q1 = Hq
Sn

(Xn, CpF ⊗A�n ⊗ detR) .

To compute these terms one reduces to the computation of invariants of H∗(∆J , FJ ⊗ A�n ⊗ detR) for
the action of the stabilizer of the diagonal ∆J which is S(J)×S(J̄), J̄ the complementary of J . We get
an isomorphisms of vector spaces:

H∗
Sn

(Xn, CpF ⊗A�n ⊗ detR) ' H∗(X,F ⊗A⊗
p+1

)⊗ Λn−p−1H∗(X,A)

and this yields the result.

2

We suppose that X is a smooth projective surface. We denote with H+(A) and H−(A) the even and
the odd part of the cohomology of X with values in A.

Corollary 3.34. Let X be a smooth projective surface. The Euler-Poincaré characteristic of F [n] ⊗
detA�n is given by:

χ(X [n], F [n] ⊗ detA[n]) =
∑
p≥1

p+q≤n

(−1)p+q−1χ(F ⊗A⊗
p

) dimSqH−(A)⊗ Λn−p−qH+(A) .

In particular, if Hi(A) = 0 if i > 0, then:

χ(X [n], F [n] ⊗ detA[n]) =
∑
p≥1

(−1)p−1χ(F ⊗A⊗
p

)⊗ dim Λn−pH0(A) .

Proof. The Euler-Poincaré characteristic χ(X [n], F [n] ⊗ detA[n])is given by:

χ(X [n], F [n] ⊗ detA[n]) =
∑
p,q

(−1)p+q dimEp,q1

=
∑
p≥1

(−1)p+q−1χ(F ⊗A⊗
p

) dim(Λn−pH∗(A))q .

The graduated exterior algebra ΛH∗(A) identifies to graduated tensor product algebra:

ΛH∗(A) = ΛH+(A)⊗ SH−(A) .

As a consequence:∑
q

(−1)q(Λn−pH∗(A))q =
∑
p+l≤n

(−1)l dimSlH−(A)⊗ Λn−p−lH+(A) .

which gives the statement of the corollary.

2

Remark 3.35. The dimensions dim ΛlH+(A) and dimSlH−(A) can be computed thanks to the formulas:∑
l

tl(−1)l dimH+(A) = (1 + t)dimH+(A)

∑
l

tl dimSlH−(A) =
1

(1− t)dimH−(A)
.

Example 3.36. Let X = P2, and let F = OP2(−1), A = OP2(3). We take n = 5. Therefore:

χ(P[5]
2 , F [5] ⊗ detA[5]) =

5∑
p=1

(−1)p−1 dimH0(OP2(3p− 1))⊗ Λ5−pH0(OP2(3))

=
5∑
p=1

(−1)p−1

(
3p− 1

2

)(
10

5− p

)
= 105 .
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4 Cohomology of representations of a tautological vector bundle

on the Hilbert scheme

4.1 Tensor powers of a tautological sheaf

Let X a smooth quasi-projective surface, X [n] the Hilbert scheme of n points on X, Ξ the universal
family on X [n]. Consider the diagram:

k-times︷ ︸︸ ︷
Ξ×X[n] . . .×X[n] Ξ ⊂

j - Ξk
pkX - Xk

2

X [n]

w

?
⊂

i- (X [n])k

pk
X[n]

?

where the square is cartesian, and i and j denote the diagonal immersions. We remark that pk
X[n] and w

are flat and finite of degree nk. Consider now vector bundles E1, . . . , Ek on X and their exterior tensor
product E1 � · · ·� Ek on Xk. It’s clear that

i∗pkX[n]∗(p
k
X)∗(E1 � · · ·� Ek) = E

[n]
1 ⊗ . . .⊗ E

[n]
k = w∗j

∗(pkX)∗(E1 � · · ·� Ek)

by flat base change. Ξ(n, k) is the k-th fiber product:

Ξ(n, k) := Ξ×X[n] . . .×X[n] Ξ︸ ︷︷ ︸
k-times

.

Remark that it embeds naturally in

Ξ(n, k) ⊂ - X [n] ×Xk .

Therefore we can express the tensor product of k-tautological vector bundles E[n]
1 ⊗ . . . ⊗ E

[n]
k as the

Fourier-Mukai functor:
E

[n]
1 ⊗ . . .⊗ E

[n]
k = ΦOΞ(n,k)

Xk→X[n](E1 � · · ·� Ek) . (32)

4.2 Haiman’s result

In the same fashion we did in chapter 3, we want to use the BKRH correspondence Φ to carry over
Xn the tensor product of tautological bundles on the Hilbert scheme and then to compute equivariant
cohomology there. The fundamental technical point is again the computation of the kernel of the resulting
Fourier-Mukai functor. Haiman found this kernel for affine surfaces. It is very simple, using GAGA’s
principle [106] to extend this result for arbitrary smooth surfaces, thus making Haiman’s result extremely
useful in our context. We first fix some notations and definitions.

Definition 4.1. Let X a smooth quasi-projective variety. Let D ⊆ Xn×X the scheme-theoretic union of
pairwise diagonals Di = ∪ni=1∆i,n. The polygraph D(n, k) ⊆ Xn ×Xk is the reduced k-th fiber product

D(n, k) :=

D ×Xn · · · ×Xn D︸ ︷︷ ︸
k-times


red

.

We now explain the term polygraph. Let f a function

f : {1, . . . , k} - {1, . . . , n} .
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Consider the map

πf : Xn - Xk

(x1, . . . , xn) - (xf(1), . . . , xf(k))

Let Ef its graph Ef ⊆ Xn ×Xk. Then D(n, k) is the scheme-theoretic union:

D(n, k) =
⋃
f

Ef ,

where f ranges between all maps from {1, . . . , k} to {1, . . . , n} (cf. [61], [62]).
Consider now the isospectral universal family Z on Bn. By analogy with the prevous definitions we

set:
Z(n, k) : Z ×Bn · · · ×Bn Z︸ ︷︷ ︸

k-times

.

Z(n, k) is flat and finite over Bn of degree nk. Since Z is isomorphic to the fiber product of Ξ and Bn

over the Hilbert scheme, it is immediate to see that:

Z(n, k) = Ξ(n, k)×X[n] Bn

which implies that Z(n, k) is Cohen-Macauly and hence reduced, since generically reduced. Z(n, k) is
naturally a subscheme of Bn ×Xk, and clearly isomorphic to the pull back:

Z(n, k) = (q × id)−1(Ξ(n, k)) ,

where (q × id) : Bn ×Xk - X [n] ×Xk. We now give an easy application of GAGA principle, which
we will use in the next theorem.

Lemma 4.2. Let f : X - Y a projective morphism of complex algebraic varieties and fan : Xan
- San

the associated morphism of complex analytic spaces. Then:

Rfan∗(OXan) ' Rf∗(OX)⊗OS OSan .

Proof. Since the statement is local, we can replace OX by an algebraic coherent sheaf F on PrS :=
S×Pr. Furthermore, after resolving F by locally free sheaves, we can suppose F ' OPrS (i) ' OS�OPr (i)
and S affine. The statement then becomes:

H∗(Yan, Fan) ' H∗(Y, F )⊗O(S) O(San) .

Since we supposed F ' OS �OPr (i), Künneth formula gives:

H∗(Y, F ) ' O(S)⊗C H
∗(Pr,OPr (i))

H∗(Yan, Fan) ' H∗(Pran,OPran(i))⊗C O(San) .

Therefore it suffices to verify:

H∗(Pran,OPran(i)) ' H∗(Pr,OPr (i)) ,

but this comes directly from GAGA principle ( [106]).

2

Theorem 4.3 (Haiman). Consider the map:

f : (p× id) : Bn ×Xk - Xn ×Xk .

Then the derived direct image Rf∗OZ(n,k) of the structural sheaf of Z(n, k) is the structural sheaf of the
polygraph D(n, k):

Rf∗OZ(n,k) ' OD(n,k) .
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Proof. The case of the affine plane X = A2
C has been proved Haiman ([62]). To prove it for an

arbitrary smooth quasi-projective variety we use the preceding lemma, applied to the morphism:

f : Z(n, k) - D(n, k)

and the fact that, by GAGA principle, for all complex algebraic variety S, the morphism of ringed spaces

(San,OSan) - (S,OS)

is faithfully flat. This means that:

Rf∗OZ(n,k) ' OD(n,k) ⇐⇒ Rf∗OZ(n,k)an
' OD(n,k)an

.

Since the facts are local in nature, it suffices to prove the statement on a small analytic open subset V
of D(n, k). We can always choose it of the form:

V '
s∏
j=1

DUj (nj , kj)

with Uj small analytic open set of C2, nj , kj positive natural numbers such that
∑
j nj = n and

∑
j kj = k

and DUj (nj , kj) the analytic polygraph relative to Uj . Over V , the analytic space Z(n, k)an is now of the
form

Z(nj , kj)an

∣∣∣∣
V

'
∏
j

ZUj (nj , kj)

and the map f is now the product map. Since the Uj are now analytic open sets of C2, and since the
result is true for analytic open sets of C2, because it is true algebraically for C2, we are done.

2

We now want to find the image of a tensor product of tautological vector bundles by the BKRH
equivalence. Consider the image of a tensor product of tautological vector bundles:

Φ(E[n]
1 ⊗ . . .⊗ E

[n]
k ) .

By (32) it is:

Φ(E[n]
1 ⊗ . . .⊗ E

[n]
k ) ' ΦOBn

X[n]→XkΦ
OΞ(n,k)

Xk→X[n](E1 � · · ·� En)

' ΦOB
n∗OΞ(n,k)

Xk→Xn (E1 � · · ·� En)

where the kernel OBn ∗ OΞ(n,k) is

OBn ∗ OΞ(n,k) ' Rf∗(OBn ⊗LO
X[n]

OΞ(n,k)) .

Since Ξ(n, k) is flat over X [n], the latter reduces to:

OBn ∗ OΞ(n,k) ' Rf∗(OBn ⊗O
X[n] OΞ(n,k)) ' Rf∗(OBn×

X[n]Ξ(n,k)) .

Now, using proposition 3.8,
Bn ×X[n] Ξ(n, k) ' Z(n, k)

and Haiman’s theorem then yields

OBn ∗ OΞ(n,k) ' Rf∗(OZ(n,k)) ' OD(n,k) .
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Therefore
Φ(E[n]

1 ⊗ . . .⊗ E
[n]
k ) ' ΦOD(n,k)

Xk→Xn(E1 � · · ·� En) . (33)

The consequence of Haiman’s theorem is the following. Recall that the complex C•F defined in the previous
chapter is quasi-isomorphic to Φ(F [n]), when F is a coherent sheaf on X. We will denote with F

[n]
B the

pull-back on the isospectral Hilbert scheme Bn of a tautological sheaf F [n] on the Hilbert scheme X [n]:

F
[n]
B := q∗F [n] .

Theorem 4.4. Let Ei, i = 1, . . . , k vector bundles on X. The mapping cone of the morphism:

C•E1
⊗L . . .⊗L C•Ek - Φ(E[n]

1 ⊗ . . .⊗ E
[n]
k ) (34)

is acyclic in degree higher than zero. This means that:

Rqp∗(E
[n]
1,B ⊗ . . . E

[n]
k,B) = 0 for q > 0

and the morphism:
p∗(E

[n]
1,B)⊗ . . .⊗ p∗(E

[n]
k,B) - p∗(E

[n]
1,B ⊗ . . .⊗ E

[n]
k,B)

is surjective, its kernel being the torsion subsheaf.

Proof. We know by the previous arguments that the searched image of the BKRH equivalence is

Φ(E[n]
1 ⊗ . . .⊗ E

[n]
k ) ' ΦOD(n,k)

Xk→Xn(E1 � · · ·� En) .

We now work out the information of this Fourier-Mukai functor. Consider the diagram:

D(n, k) ⊂
j - Dk pkX - Xk

2

Xn

w̃

?
⊂

i- (Xn)k

pkXn

?

It is clear that
ΦOD(n,k)

Xk→Xn ' w̃∗ ◦ L(pkX ◦ j)∗ ' w̃∗ ◦ Lj∗ ◦ L(pkX)∗ .

Now the square in the previous diagram is cartesian, but pkXn is not flat. Therefore we cannot apply any
flat base change theorem. In any case an easy application of base change formula for an arbitrary fiber
product (3.18) yields a morphism:

C•E1
⊗L . . .⊗L C•Ek - ΦOD(n,k)

Xk→Xn(E1 � · · ·� En) ' Rp∗(E
[n]
1,B ⊗ . . .⊗ E

[n]
k,B) .

Now
Hq(C•E1

⊗L . . .⊗L C•Ek) = Tor−q(p∗(E
[n]
1,B), . . . , p∗(E

[n]
k,B)) = 0 if q > 0 .

Moreover, since Ei are vector bundles on X and E[n]
i,B are consequently vector bundles on Bn,

Rqp∗(E
[n]
1,B ⊗ . . .⊗ E

[n]
k,B) = 0 for q > 0 ,

since the higher direct images coincide with

Rqp∗(E
[n]
1,B ⊗ . . .⊗ E

[n]
k,B) = Rqw̃∗[(pkX ◦ j)∗(E1 � · · ·� Ek)]

which is zero for q > 0, since the morphism w̃ is finite. Moreover in degree 0 we have the epimorphism:

p∗(E
[n]
1,B)⊗ . . .⊗ p∗(E

[n]
k,B) - p∗(E

[n]
1,B ⊗ . . .⊗ E

[n]
k,B) - 0 .

Since Bn is integral, the term on the right is torsion free. As a consequence, the torsion subsheaf of
p∗(E

[n]
1,B)⊗ . . .⊗ p∗(E[n]

k,B) is in the the kernel. Now the epimorphism above is an isomorphism out of the
big diagonal of Xn; consequently, the kernel is torsion, hence it is exactly the torsion subsheaf.
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2

Corollary 4.5. The term p∗(E
[n]
1,B ⊗ . . .⊗E

[n]
k,B) can be identified with the term E0,0

∞ of the hyperderived
spectral sequence associated to C•E1

⊗L . . .⊗L C•Ek

Proof. The hyperderived spectral sequence:

Ep,q1 :=
⊕

i1+···+ik=p
Tor−q(Ci1E1

, . . . , CikEk)

abuts to the hypercohomology

Hp+q(C•E1
⊗L . . .⊗L C•Ek) ' Tor−p−q(p∗(E

[n]
1,B), . . . , p∗(E

[n]
k,B)) .

The term E0,0
1 ' C0

E1
⊗ . . .⊗C0

Ek
is torsion free, because a vector bundle on Xn, since each C0

Ei
is a vector

bundle. Hence E0,0
∞ is torsion-free, because subsheaf of E0,0

1 . Furthermore the kernel of the epimorphism
H0(C•E1

⊗L . . .⊗L C•Ek) ' p∗(E
[n]
1,B)⊗ . . .⊗ p∗(E[n]

k,B) -- E0,0
∞ is torsion, because its support is contained

in the union of supports of Ep,−p1 for p > 0, hence in the big diagonal of Xn. Therefore the kernel is
exactly the torsion subsheaf, and E0,0

∞ can be identified with p∗(E
[n]
1,B ⊗ . . .⊗ E

[n]
k,B).

2

4.3 Action of Sk on a tensor power of a complex. Derived action.

Consider the category of quasi-coherent sheaves over a scheme. The aim of this section is to describe
how the group Sk acts on the k-th tensor power K• ⊗ . . . ⊗ K• of a complex K•, and to extend this
action to the derived tensor power K• ⊗L . . . ⊗L K•. It is clear that this action is fully understood
once it is understood on transpositions. For the moment we limit our study to a double tensor power
(C• ⊗ C•, dC•⊗C•) of a complex C•. We remind that the complex C• ⊗ C• is defined by

(C• ⊗ C•)n = ⊕p+q=nCp ⊗ Cq

dnC•⊗C• = ⊕p+q=n [dpC• ⊗ idCq + (−1)qidCp ⊗ dqC• ] .

To define an action of S2 on C• ⊗C• it is necessary not simply to exchange Cp ⊗Cq with Cq ⊗Cp, but
to introduce a sign, in order to balance the effect of the sign (−1)p in the definition of the differential.
The right involution (which is a map of complexes) is defined by:

i(u⊗ v) := (−1)pqv ⊗ u if u ∈ Cp, v ∈ Cq .

Suppose now that the complex C• is right bounded. To extend this action to the derived tensor power
C•⊗L C• it suffices to replace the complex C• by a ⊗-acyclic or projective resolution R• of the complex
C• and to take the involution just defined on R• ⊗R•.

Definition 4.6. We denote with S2
LC

• the subcomplex of invariants of the complex R• ⊗ R• for the
group S2 = 〈i〉 and we will call it the derived symmetric power of the complex C•. Analogously, we
will denote Λ2

LC
• and we will call it the derived exterior power of the complex C•, the subcomplex of

anti-invariants of the complex R• ⊗ R•. Their classes of isomorphism in D−(A) do not depend on the
choice of the resolution R•.

We want now to understand how this involution acts on the hyperderived spectral sequence associated
to C• ⊗L C•:

′′
Ep,q1 =

⊕
h+k=n

Tor−q(Ch, Ck) .
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To compute Tor−q(Ch, Ck) we have to consider ⊗-acyclic resolutions of Ci:

Ri,• - Ci - 0 .

The involution will then act on the factors

Tor−q(Ch, Ck) - Tor−q(Ck, Ch)

as the induced application on the cohomology of the complex: Rh,• ⊗Rk,• by the map

u⊗ v - (−1)(h+i)(k+j) for u ∈ Rh,i, v ∈ Rk,j .

More generally we can consider the k-th derived tensor power C• ⊗L . . . ⊗L C•. If R• is an ⊗-acyclic
resolution of C•, the group Sk acts on the tensor product

C• ⊗L . . .⊗L C• ' R• ⊗ . . .⊗R•

by permutation of the factors, where the action of a transposition on two consecutive factors is exactly
the one described above. This action does not depend on the choice of the resolution R•. As shown
above for the case of two factors, we have a Sk-action on the hyperderived spectral sequence associated
to C• ⊗L . . .⊗L C•.

Definition 4.7. We define the derived symmetric power SkLC
• as the subcomplex of invariants of the

complex C• ⊗L . . . ⊗L C• by the action of the group Sk. Analogously, we define the derived exterior
power ΛkLC

• as the complex of anti-invariants of the complex C• ⊗L . . .⊗L C• by the action of Sk.

Suppose now that X is a variety with the action of a finite group G and that C• is a complex of
G-equivariant sheaves on X, C• ∈ D−

G(X). Then the Sk-action on C• ⊗L . . .⊗L C• commutes with the
diagonal action of G on C• ⊗L . . .⊗L C•, defined as the diagonal action on the complex R• ⊗ . . .⊗ R•,
where R• is a locally free resolution of C•. We then a well defined Sk ×G action on the derived tensor
power C• ⊗L . . .⊗L C•.

Remark 4.8. Let C• a complex of coherent sheaves on a variety X. Then the k-th tensor power
C• ⊗ . . . ⊗ C• is naturally a complex of Sk-equivariant sheaves on X, where Sk acts trivially on the
variety X. Analogously, if R• is a locally free resolution of C•, the k-th tensor power R•⊗ . . .⊗R• of the
complex R• is a complex of Sk-equivariant sheaves on X. Therefore we can see the symmetric derived
power SkL as the composition of the derived tensor power and the Sk-fixed points functor:

SkL : D−(X)
(−)(⊗

L)k

- D−
Sk

(X)
[−]Sk- D−(X) .

Analogously the derived exterior power ΛkL is the composition of the derived tensor power with the
Sk-anti-invariants functor, or the composition:

ΛkL : D−(X)
(−)(⊗

L)k

- D−
Sk

(X)
−⊗ε- D−

Sk
(X)

[−]Sk- D−(X) ,

where ε is the alternating representation of Sk.

In the hypothesis of theorem 4.4, with Ei = E, for all i = 1, . . . , k we have the corollary:

Corollary 4.9. Consider the image Φ(SkE[n]) of the symmetric power of a tautological bundle E[n], by
the BKRH equivalence. The mapping cone of the morphism:

SkLC•E - Φ(SkE[n])
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is acyclic in degree > 0. As a consequence the higher direct images Rqp∗(SkE
[n]
B ) vanish for q > 0 and

in degree 0 we have the epimorphism:

Skp∗(E
[n]
B ) -- p∗(SkE

[n]
B ) ,

whose kernel is the torsion subsheaf. Therefore the image Φ(SkE[n]) can be identified with the Sk-
invariants (E0,0

∞ )Sk of the term E0,0
∞ of the hyperderived spectral sequence associated to C•E ⊗L . . .⊗L C•E.

Proof. The corollary is an immediate consequence of taking the Sk-invariants in the morphism (34),
and the clear fact that the Sk-action on the tensor power commutes with the pull-back by q and push
forward by p.

2

In the same way, taking Sk-anti-invariants in (34) we get

Corollary 4.10. Consider the image Φ(ΛkE[n]) of the exterior power of a tautological bundle E[n], by
the BKRH equivalence. The mapping cone of the morphism:

ΛkLC•E - Φ(ΛkE[n])

is acyclic in degree > 0. As a consequence the higher direct images Rqp∗(Λ2E
[n]
B ) vanish for q > 0 and

in degree 0 we have the epimorphism:

Λ2p∗(E
[n]
B ) -- p∗(Λ2E

[n]
B ) ,

whose kernel is the torsion subsheaf. Therefore the image Φ(ΛkE[n]) can be identified with the Sk-anti-
invariants (E0,0

∞ ⊗ε)Sk of the term E0,0
∞ of the hyperderived spectral sequence associated to C•E⊗L . . .⊗LC•E.

4.4 Derived Schur functors

We are now going to define general Schur functors of a complex C• of locally free sheaves and its derived
version. Let Vν the irreducible representation of the group Sk associated to the partition ν : ν1 ≥ ν2 ≥
· · · ≥ νl of k (see Fulton-Harris [50]). We can obtain it as the left ideal of the algebra C[Sk] generated
by the Young symmetrizer cν of ν. The Young symmetrizer can be computed from the Young tableau of
ν: let Pν the subgroup of Sk that fixes the columns and Qν the subgroup fixing the rows. If

aν =
∑
g∈Pν

g

and
bν =

∑
g∈Qν

εgg ,

where εg is the signature of the permutation g, then the Young symmetrizer is the element:

cν = aνbν .

For all locally free Sk-sheaf E on an algebraic variety M , there is a decomposition of E in a direct sum
of locally free subsheaves:

E '
⊕
ν

Vν ⊗HomSk
(Vν ⊗OM , E) .

Now for every locally free sheaf W on M , the k-th tensor power W⊗k is naturally equipped with a
Sk-action. We denote with SνW the Schur functor

SνW := HomSk
(Vν ⊗OM ,W⊗k)
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associated with the partition ν of k. The symmetric power is the Schur functor associated to the partition
k of k, and the exterior power is the one associated to the partition (1, . . . , 1).

Consider now a complex of coherent sheaves C• on M and R• a locally free resolution of C•. Let
us form the k-th tensor power K• of R•: K• = R• ⊗ . . . ⊗ R•. We can decompose the complex K• as
follows:

K• =
⊕
ν

Vν ⊗Hom•
Sk

(Vν ⊗OM ,K•) .

We denote with SνLC
• ∈ D−(M) and we call it the derived Schur functor of the complex C• the complex

Hom•
Sk

(Vν ⊗OM ,K•). Its isomorphism class does not depend on the choice of the resolution R•.
As we did for symmetric and exterior powers, we deduce from theorem 4.4:

Corollary 4.11. Let ν a partition of n. Consider the image Φ(SνE[n]) of the Schur functor associated
to the partition ν of a tautological bundle E[n], by the BKRH equivalence. The mapping cone of the
morphism:

SνLC•E - Φ(SνE[n])

is acyclic in degree > 0. As a consequence the higher direct images Rqp∗(SνE
[n]
B ) vanish if q > 0 and in

degree 0 we have the epimorphism:

Sνp∗(E
[n]
B ) -- p∗(SνE

[n]
B )

whose kernel is the torsion subsheaf. Therefore the image Φ(SνE[n]) can be identified with the sheaf

SνE0,0
∞ = HomSk

(Vν ⊗OXn , E0,0
∞ ) ,

in terms of E0,0
∞ of the hyperderived spectral sequence associated to C•E ⊗L . . .⊗L C•E.

4.5 The image of E[n] ⊗ E[n] by the Hilbert-Chow morphism

In the last section we identified (corollary 4.5) the image of a tensor product of a tautological bundle
E[n] for the BKRH equivalence with the term E0,0

∞ of the hyperderived spectral sequence Ep,qr associated
to the complex C•E ⊗L . . . ⊗L C•E . Working out the spectral sequence in all generality is hard, due to
evident technical difficulties. Nonetheless, the knowledge of this image, although of great interest, is not
really necessary for applications to computation of equivariant cohomology; all what we really need is the
knowledge of the Sn-invariants of the image Φ((E[n])⊗

k

). We recall that if F is a coherent Sn-sheaf on
the product Xn, we indicate with FSn the Sn-invariant push forward FSn := πSn

∗ F for the projection

π : Xn - SnX onto the symmetric variety. By proposition 1.19 knowing the invariants Φ(E[n]⊗
k

)Sn

amounts to knowing the derived direct image Rµ∗((E[n])⊗
k

) by the Hilbert-Chow morphism. It follows
that µ∗((E[n])⊗

k

) can be identified with the Sn-invariants (E0,0
∞ )Sn of the term E0,0

∞ of the hyperderived
spectral sequence associated to C•E ⊗L . . . ⊗L C•E , or equivalently, since the functor [−]Sn is exact, with
the term E0,0

∞ of the spectral sequence
Ep,q1 = (Ep,q1 )Sn

of invariants of the hyperderived spectral sequence Ep,q1 . This new spectral sequence of coherent sheaves
(over SnX) turns out to be much simpler than the original one and effectively useful (at least for k = 2)
to compute the image Rµ∗(E[n] ⊗ E[n]). The tensor power (E[n])⊗

2
splits into symmetric and exterior

components:
E[n] ⊗ E[n] ' S2E[n] ⊕ Λ2E[n]

and we have seen that taking the symmetric (or exterior) power corresponds to taking invariants (or
anti-invariants) by S2 on E[n] ⊗E[n]. The S2-action on the tensor power commutes with the geometric
diagonal action of Sn, so we can further simplify the picture by looking at the spectral sequences:

′
Ep,q1 = (Ep,q1 )S2×Sn ;

′′
Ep,q1 = (Ep,q1 ⊗ ε2)S2×Sn (35)
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where ε2 indicates the alternating representation of S2. The terms
′E0,0
∞ and

′′E0,0
∞ of these spectral

sequences are quasi-isomorphic to the images Φ(S2E[n]) and Φ(Λ2E[n]), respectively.
The aim of this section is to prove:

Rµ∗(E[n] ⊗ E[n]) ' (C•E ⊗ C•E)Sn

or equivalently the two:

Rµ∗(S2E[n]) ' (S2C•E)Sn (36)

Rµ∗(Λ2E[n]) ' (Λ2C•E)Sn . (37)

when E is a line bundle on X. We will always suppose from now on that E[n] is the tautological vector
bundle associated to the line bundle E on X.

4.6 Preliminary results

We briefly review some basic facts about representations of Sn. Our main reference is Fulton-Harris [50].
We recall that ρk denotes the standard representation of Sk: its Young diagram is the hook:

k−1︷ ︸︸ ︷

Moreover, for all 0 ≤ i ≤ k − 1, Λiρk is the irreducible representation associated to the Young diagram:

k−i︷ ︸︸ ︷

In particular, Λk−1ρk ' ε, the alternating representation of Sk. Finally we recall, by Frobenius formula,
that the characters of all irreducible representations of Sk are rational. Let R = Ck the natural represen-
tation of Sk: Sk acts on R by permutation of the canonical basis e1, . . . , ek. We recall, that the natural
representation R splits as R ' ρk ⊕ 1.

Lemma 4.12. Let Y a smooth subvariety of codimension r of a smooth variety X. Let NY/X the normal
bundle of Y in X. Let ρk the standard representation of Sk. We have an isomorphism:

Torq(OY , . . . ,OY︸ ︷︷ ︸
k-times

) ' Λq(N∗
Y/X ⊗ ρk)

as Sk-representations.

Proof. We first verify the statement locally. Suppose Y is the scheme of zeros of a section s of a vector
bundle F of rank r, transverse to the zero section. Consider the Koszul resolution K• := K•(F, s) of the
structural sheaf OY . Let R ' Ck the natural representation of Sk and ei the vectors of the canonical
basis. Let σ =

∑k
i=1 ei the canonical element, which is invariant for the Sk-action. The Koszul complex

K•(F ⊗ R, s ⊗ σ) is Sk-isomorphic to the tensor product K• ⊗ . . . ⊗ K• and consequently its (−q)-
cohomology is Sk-isomorphic to Torq(OY , . . . ,OY ). On the other hand, consider the Koszul complex
K•(F ⊗ ρk, 0); we have the isomorphism of Sk-representations:

K•(F ⊗R, s⊗ σ)
'- K•(F, s)⊗K•(F ⊗ ρk, 0)
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where Sk acts trivially on K•(F, s). Consequently we obtain an isomorphism of Sk-representations:

Torq(OY , . . . ,OY ) ' OY ⊗ Λq(F ∗ ⊗ ρk) ' Λq(N∗
Y/X ⊗ ρk)

because of the identification F
∣∣
Y
' NY/X . In the same fashion of proposition 3.13, we verify that this

isomorphism does not depend on the choice of the vector bundle F and on the section s. Hence, the local
isomorphisms glue together and allow to define the above isomorphism globally.

2

We already know that if Y1 and Y2 are two smooth subvarieties of a smooth variety X, contained
transversally in a smooth subvariety Y of X we have:

Tori(OY1 ,OY2) ' ΛiN∗
Y/X

∣∣∣∣
Y1∩Y2

.

Lemma 4.13. Let τ : Tori(OY1 ,OY2) - Tori(OY2 ,OY1) the canonical transposition. Then the dia-
gram:

Tori(OY1 ,OY2)
τ- Tori(OY2 ,OY1)

ΛiN∗
Y/X

∣∣
Y1∩Y2

? (−1)i- ΛiN∗
Y/X

∣∣
Y1∩Y2

?

commutes.

Proof. In the notations of lemma 3.13, K•(u, si) is the Koszul complex giving the resolution of OYi .
We have the commutative diagram of complexes:

K•(u, s1)⊗K•(u, s2) - K•(u)⊗K•(u)⊗K•(s1)⊗K•(s2)

K•(u, s2)⊗K•(u, s1)
?

- K•(u)⊗K•(u)⊗K•(s2)⊗K•(s1)
?

where the first vertical arrow is the transposition of factors K•(u, si) and the second vertical arrow is the
transposition of factors (1, 2) and (3, 4). The lemma follows.

2

Lemma 4.14. 1. The representation Λi(ρk ⊕ ρk) ' Λi(C2 ⊗ ρk), 0 ≤ i ≤ 2k − 2, has fixed points if
and only if i is even. In this case the subspace of fixed points is one dimensional.

2. Let u, v a basis of C2. Consider the Sk-invariant bivector:

ω =
k∑
i=1

uei ∧ vei ∈ Λ2(C2 ⊗R)

and let ωl ∈ Λ2l(C2 ⊗ R) its l-th exterior power. Consider the projection: π : R - ρk. If
1 ≤ l ≤ k − 1 the image ωRl of ωl/(l + 1)! in Λ2l(C2 ⊗ ρk) is nonzero.
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3. Let i ∈ {1, . . . k}, and Gi = StabSk{i}. Set Ri = R/〈ei〉 ' Ck−1. The projection

ϕi : C2 ⊗ ρk - C2 ⊗ ρk−1

induced from the projection from R - Ri, is Gi-equivariant and for 1 ≤ l ≤ k − 2 the image of
ωRl for the projection Λ2lϕi is exactly ωRil .

Proof. 1. Given a finite group G, consider the following hermitian inner product on the space of
central functions:

〈u, v〉 =
1
|G|

∑
g∈G

u(g)v̄(g) .

Given two representations ρ and τ of the group G, we have

dim Hom(τ, ρ) = 〈χτ , χρ〉 .

In particular the dimension of the subspace of fixed points of a representation ρ is given by:

dim ρG =
1
|G|

∑
g∈G

χρ(g) .

Since

Λi(ρk ⊕ ρk) '
i⊕

j=1

Λjρk ⊗ Λi−jρk

and since the characters of the irreducible representations of Sk are rational:

dim(Λi(ρk ⊕ ρk))Sk =(χΛi(ρk⊕ρk), χ1)

=
i∑

j=0

(χΛjρk⊗Λi−jρk , χ1)

=
i∑

j=0

(χΛjρk · χΛi−jρk , χ1)

=
i∑

j=0

(χΛjρk , χΛi−jρk)

Now if j 6= i−j, Λjρk et Λi−jρk are two different irreducible representations of Sk, and then (χΛjρk , χΛi−jρk) =
0. The only possibility is then for i− j = i, which yields i = 2j and (χΛi(ρk⊕ρk), χ1) = 1.

2. We can restrict ourselves to the case l = k − 1. We have:

ωk−1

k!
=

1
k!

(
k∑
i=1

uei ∧ vei

)k−1

=
1
k!

(k − 1)!
k∑
i=1

̂uei ∧ vei

where ̂uei ∧ vei indicates

̂uei ∧ vei = ue1 ∧ ve1 ∧ . . . ∧ uei−1 ∧ vei−1 ∧ uei+1 ∧ vei+1 ∧ . . . ∧ uek ∧ vek .

We now remark that the projection Λ2k−2(id ⊗ π)( ̂uei ∧ vei) is nonzero and always the same for every
i: therefore the projection of ωk−1/k! on Λ2k−2(C2 ⊗ ρk) is Λ2k−2(id ⊗ π)( ̂ue1 ∧ ve1), that is, a volume
element in Λ2k−2(C2 ⊗ ρk).
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3. This statement is evident once remarked that the commutative diagram:

Λ2l(C⊗R)
Λ2lπi- Λ2l(C⊗Ri)

Λ2l(C⊗ ρk)

Λ2lπR

? Λ2lϕi- Λ2l(C⊗ ρk−1)

Λ2lπRi

?

is Gi-equivariant for l ≤ k − 2, since the diagram:

C2 ⊗R
πi - Ri

C⊗ ρk

πR

? ϕi- C⊗ ρk

πRi

?

is G-equivariant.

2

We recall now a lemma by Danila ([23]). We recall the context. Let G a group acting on a variety
Y , and ϕ : G - Sk an epimorphism of groups. Let F1, . . . , Fk a collection of coherent sheaves on Y

such that the G action is compatible via ϕ with the permutation of the factors: this means that we have
canonical isomorphisms:

hg : Fϕ(g−1)(i)
'- g∗Fi .

In this way the direct sum ⊕ki=1Fi becomes a G-sheaf on Y . Let now Gi = StabG{i}: for all g ∈ Gi then

Fi ' g∗Fi .

The facts just listed induce corresponding facts on the spaces of sections Mi = H0(Fi) and M = ⊕ki=1Mi.
We inherit morphisms:

λg : Mi
- Mϕ(g)(i)

setting λg(s) := hgs ◦ g−1 In particular M becomes a left-G-representation.

Lemma 4.15. The projection pri : M - Mi is Gi-equivariant and induces an isomorphism:

MG - MGi
i .

The lemmas 4.14 and 4.15 are the fundamental tools we will use to reduce the spectral sequences (35).

Remark 4.16. Suppose that the morphism ϕ : G - Sk is not surjective. This is equivalent to
saying that the G action on {1, . . . , k} is not transitive. Taking the orbits I1, . . . , Il for the G-action on
{1, . . . , k} we can always reconduct us to a transitive action for which we can apply Danila’s lemma 4.15
to G-homogeneous modules MIj = ⊕i∈IjMi.

4.7 The Sn-equivariant spectral sequence

In this section we will proceed to work out the spectral sequences (35)
′Ep,q1 and

′′Ep,q1 . We begin with
recalling some notations from the preceding chapter and pointing out some basic but important facts.

Let J a subset of {1, . . . , n}. We denote with J̄ the complementary of J in {1, . . . , n}. We indicate
with pJ : Xn - XJ the projections onto factors in J , ∆J the pull-back by pJ of the small diagonal in
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XJ . We denote, for brevity’s sake, the normal bundle N∆J
to the diagonal ∆J simply with NJ . We will

denote once for all the group Sn with G, and the stabilizer inG of the subset J with GJ . Suppose |J | = m,
1 < m ≤ n. Then the normal bundle NJ is isomorphic as a sheaf on Xn to: NJ ' N∆/Xm �OXn−m .

The stabilizer GJ acts on NJ as S(J)×S(J̄), but σ(J̄) acts trivially on the normal bundle: the GJ -
action on NJ is then isomorphic over a point x ∈ ∆J , to the representation ρm ⊕ ρm of Sm. Therefore
the normal bundle NJ is locally isomorphic to the bundle:

NJ ' O(ρm ⊕ ρm) �OXn−m .

The general term of the spectral sequence Ep,q1 becomes, due to the previouses lemmas:

Ep,q1 '
⊕
i+j=p

Tor−q(CiE , C
j
E) '

⊕
i+j=p
|I|=i+1
|J|=j+1

Tor−q(EI , EJ)

'
⊕
i+j=p
|I|=i+1
|J|=j+1

E⊗
2

I∪J ⊗ ΛqN∗
I∩J

∣∣∣∣
∆I∪J

Remark 4.17. If I ∩ J = ∅ the diagonal ∆J and ∆I are transverse and

Tor−q(EI , EJ) = 0 if q < 0 .

If I ∩ J 6= ∅ the intersection ∆I ∩ ∆J is the diagonal ∆I∪J . Therefore we know that the vanishing of
all the Tor−q(EI , EJ), q < 0 is equivalent to the transversality of the intersection of ∆I and ∆J . This
happens if and only if

codim ∆I + codim ∆J = codim ∆I∪J

which reads
2(|I| − 1) + 2(|J | − 1) = 2(|I ∪ J | − 1) .

Hence |I|+ |J | = |I ∪J |−1 which is equivalent to |I ∩J | = 1. The same thing can be obtained remarking
that if |I ∩J | = 1, then, by definition, the normal bundle NI∩J is the normal bundle of Xn to Xn, hence
zero. If |I ∩ J | > 1, NI∩J 6= 0.

Remark 4.18. Even if we have just seen that the general term Ep,q1 of the hyperderived spectral sequence
can be expressed in terms of the q-exterior power of conormal bundles of diagonals, this does not mean that
the G-action on Ep,q1 is the one induced by the G-action on ΛqN∗

I∩J
∣∣
I∪J . The induced action explained

above takes into account only the ”geometric” action on the conormal bundle, while the G-representation
of Tor−q(CiE , C

j
E) have to take into account as well the G-action on the sheaves CiE , CjE considered when we

defined the G-action on the complex C•E in the previous chapter (page 38). In this way only the spectral
sequence Ep,q1 is G-equivariant, and it makes sense to speak about invariants. The right G-action on Ep,q1

in then induced by the ”geometric” action on the conormal bundles of the diagonals twisted by the signs
we get by the G-action on the sheaves O∆I

, as explained in section 3.3.

We now come to a closer look of the spectral sequences (35). We will denote once for all the group S2

with H. We recall that the group H acts by transposition of the factors, while the group G acts in the
way described above. The two actions commute: therefore we can define an action of the direct product
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group G×H, which we will denote P . The spectral sequences (35) are defined as the invariants:

′
Ep,q1 = (Ep,q1 )G×H '

( ⊕
i+j=p
|I|=i+1
|J|=j+1

Tor−q(EI , EJ)

)G×H

′′
Ep,q1 = (Ep,q1 ⊗ εH)G×H '

( ⊕
i+j=p
|I|=i+1
|J|=j+1

Tor−q(EI , EJ)⊗ εH

)G×H

Remark 4.19. When we want to use Danila’s lemma, the first thing we remark is that the direct sums
above are indexed by the disjoint union

Pp :=
∐
i+j=p

Pi+1 × Pj+1

where Pr is the set of parts of {1, . . . , n} with r elements. The group G acts transitively on Pi+1, for
i = 1, . . . , n, and acts by diagonal action on Pi+1 × Pj+1; however, this last action is not transitive:
the orbits are characterized by couples (I, J) ∈ Pi+1 × Pj+1 such that |I ∩ J | = r. We therefore have
min{i+1, j+1}+1 orbits Or of G in Pi+1×Pj+1. We deduce an action of G on all Pp. The group H acts
on Pp as well by permutations of factors. The G and H actions on Pp commute, yielding an P -action
on Pp: the subsets Pi+1 × Pj+1

∐
Pj+1 × Pi+1 are invariant by the P -action, with orbits HOr. Let

(I, J) ∈ Pi+1×Pj+1. Let GI,J the stabilizer of the couple (I, J) for the G-action and PI,J the one for the
P -action. It is clear that, if |I| 6= |J |, PI,J ' GI,J . If |I| = |J | then GI,J is a normal subgroup of index
2 of PI,J and the quotient PI,J/GI,J is isomorphic (not canonically) to a subgroup of PI,J generated by
an element σI,J × τ where τ is the transposition of factors and σI,J is an involution of {1, . . . , n} fixing
all elements in I ∩ J and such that σ(I \ (I ∩ J)) = J \ (I ∩ J). In other words:

PI,J ' 〈GI,J , σI,J × τ〉 .

When I=J , then we can choose the identity idSm as σI,J . Therefore:

PI,I ' 〈GI,I , τ〉

with GI,I ' S(I)×S(Ī).

At this point we are ready to apply Danila’s lemma. We only have to split the direct sum:

Ep,q1 '
⊕
i+j=p
|I|=i+1
|J|=j+1

Tor−q(EI , EJ)

into homogeneous components, indexed by the P orbits in Pp. The sums:

W i,j
r,−q =

⊕
|I|=i+1
|J|=j+1

Tor−q(EI , EJ)

are always G-homogeneous. Hence, if i < j

W i,j
r,−q ⊕W j,i

r,−q

are always P -homogeneous and if i = j

W i,i
r,−q
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is always P -homogeneous. Therefore Ep.q1 splits into homogeneous components in this way:

Ep,q1 '
min{i,j}+2⊕

r=0

⊕
i+j=p
i<j

(W i,j
r,−q ⊕W j,i

r,−q) if p is odd

and

E2p,q
1 '

min{i,j}+2⊕
r=0

 ⊕
i+j=2p
i<j

(W i,j
r,−q ⊕W i,j

r,−q)
⊕

W p,p
r,−q

 otherwise .

In this context Danila’s lemma reads:

Lemma 4.20. Let (i, j, r) ∈ N3. Let I, J ∈ Pi+1 × Pj+1 and |I ∩ J | = r (that is (I, J) ∈ Or). Then:

1. If i < j, we have an isomorphism:

Γ(Xn,W i,j
r,−q ⊕W i,j

r,−q)
P '- Γ(Xn,Tor−q(EI , EJ))GI,J .

2. There is an isomorphism:

Γ(Xn,W i,i
r,−q)

P '- Γ(Xn,Tor−q(EI , EJ))PI,J .

We give some more notations and a final lemma, which will simplify the following discussion.

Notation 4.21. Let X a smooth quasi-projective surface. Let I, J multi-indexes, I, J ⊆ {1, . . . , n}, with
|J | = k. Let G{1,...,k} the stabilizer of {1, . . . k} in {1, . . . , n}. We will indicate with Ak,q the sheaf of
invariants

Ak,q :=
(
ΛqN∗

{1,...,k}

)G{1,...,k}
considered as a sheaf over ∆Xk × Sn−kX. It is clear that rkN{1,...,k} = 2k − 2 hence Ak,q = 0 for
q > 2k − 2. By lemma 4.14 it is zero if q is odd and it is a line bundle if q is even. Moreover, if U is an
affine open subset of X, we will indicate with ∆UI the small diagonal in U I ; it is an open set of ∆I . The
G-invariant sections of ⊕|J|=kΛqN∗

J over Un:

Ak,q := H0(Un,⊕|J|=kΛqN∗
J )G

are isomorphic, by Danila’s lemma, to the sections of Ak,q over the quotient Un ∩∆{1,...k}/G{1,...,k} '
∆Uk × Sn−kU (which is an open set of the diagonal: ∆Xk × Sn−kX). Consider the embedding, for
0 < l < n− k:

∆{1,...,k+l} × Sn−k−lX ⊂
i- ∆{1,...,k} × Sn−kX

( (x, . . . , x)︸ ︷︷ ︸
(k + l)-times

, [y]) - ((x, . . . , x)︸ ︷︷ ︸
k-times

, [lx+ y])

We will denote with Ak,q
∣∣∣∣
∆{1,...,k+l}

the pull-back i∗Ak,q. It is identified with i∗i ∗ Ak,q. It is clear that

Ak,q
∣∣∣∣
∆{1,...,k+l}

'

(
ΛqN∗

{1,...,k}

∣∣∣∣
∆{1,...,k+l}×Sn−k−l

)Sk

where ΛqN∗
{1,...,k}

∣∣∣∣
∆{1,...,k+l}×Sn−k−lX

is the quotient:

(
ΛqN∗

{1,...,k}

∣∣∣∣
∆{1,...,k+l}×Xn−k−l

)S(k+l+1,...,n)

.
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Now for k ≥ 1, consider the G-equivariant map:

Torq(Ck−1, Ck) - Torq(Ck, Ck)

induced by the map:
Ck−1 - Ck . (38)

It induces a G-equivariant morphism:⊕
|I|=k+1

⊕
|J|=k
J⊆I

ΛqN∗
J

∣∣∣∣
∆I

-
⊕

|I|=k+1

ΛqN∗
I ;

taking the component for I = {1, . . . , k + 1} we get the G{1,...,k+1}-equivariant morphism:⊕
|J|=k

J⊆{1,...,k+1}

ΛqN∗
J |∆{1,...,k+1}

β- ΛqN∗
{1,...,k+1} . (39)

Lemma 4.22. The G{1,...,k+1}-equivariant morphism⊕
|J|=k

J⊆{1,...,k+1}

ΛqN∗
J |∆{1,...,k+1}

β- ΛqN∗
{1,...,k+1} (40)

induces isomorphisms:

Ak,q
∣∣∣∣
∆{1,...,k+1}

α- Ak+1,q (41)

H0(∆Uk+1 × Sn−k−1U,ΛqN∗
{1,...,k})

Sk
'- Ak+1,q . (42)

Proof. Taking the G{1,...,k+1}-invariants of the morphism (39) gives exactly the morphism α in (41).
Now the stabilizer is isomorphic to G{1,...,k+1} ' Sk+1 × S(k + 2, . . . , n). The Sk+1 and the S(k +
2, . . . , n)-actions commute, and the latter acts trivially on the fibers of the vector bundles over the
diagonal ∆{1,...,k+1}. Therefore we can reduce the question to the Sk+1-invariant map of vector bundles
over ∆Xk+1 × Sn−k−1X: ⊕

|J|=k
J⊆{1,...,k+1}

ΛqN∗
J

∣∣∣∣
∆
Xk+1×Sn−k−1X

β- ΛqN∗
{1,...,k+1} . (43)

It suffices then to prove that the morphism β (43) induces a nowhere zero morphism α between the line
bundles of Sk+1-invariants:

Ak,q|∆{1,...,k+1}

α- Ak+1,q

over the diagonal ∆Xk+1 × Sn−k−1X. It suffices to prove the same property for the dual morphism:

ΛqN{1,...,k+1} -
⊕

J⊆{1,...,k+1}

ΛqNJ

∣∣∣∣
∆
Xk+1×Sn−k−1X

. (44)

This reduces to the following easy consequence of lemma 4.14. Consider the Sk+1-equivariant diagram
for q = 2l, where R ' Ck+1 is the natural representation of Sk+1:

Λ2l(C⊗R)
Λ2lπ̃i- ⊕k+1

i=1 Λ2l(C⊗Ri)

Λ2l(C⊗ ρk+1)

Λ2lπR

? Λ2lϕ̃i- ⊕k+1
i=1 Λ2l(C⊗ ρk(i))

Λ2lπRi

?

Λ 2lψ

-
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where π̃i and ϕi are the obviuos projections up to a sign, in order to take into account the signs in the
definition of the map (38). The property we want to prove for the map (44) is equivalent to prove that
the morphism Λ2lψ above induces a nonzero morphism between the vector spaces of invariants:

Λ2l(C⊗R)Sk+1
(Λ2lψ)Sk+1

-
[
⊕k+1
i=1 Λ2l(C⊗ ρk(i))

]Sk+1
.

Let us take the Sk+1-invariant element ωl ∈ Λ2l(C ⊗ R) considered in lemma 4.14. We know that the
images ωi,l = pri ◦ Λ2lψ(ωl) are nonzero. Therefore Λ2lψ(ωl) = (ωi,l)i is a nonzero element; since ωl is
Sk+1-invariant and Λ2lψ is Sk+1-equivariant, the element Λ2lψ(ωl) is necessarily Sk+1-invariant. Since
we proved that it is nonzero, we are done.

The second statement follows from the first by taking the G{1,...k+1}-invariant sections on Un and by
recalling Danila’s lemma.

2

We will denote with Ak,q
∣∣
∆{1,...,k+1}

the space of sections:

Ak,q

∣∣∣∣
∆{1,...,k+1}

' H0(∆Uk+1 × Sn−k−1U,Ak,q
∣∣∣∣
∆{1,...,k+1}

) ;

in this notation the second statement of the lemma then becomes:

Ak,q

∣∣∣∣
∆{1,...,k+1}

'- Ak+1,q .

4.8 Examples

Before attacking the equivariant spectral sequences (35) in all generality, we will work it out by hand
for the cases n = 2, 3, 4, 6. It will then be evident the pattern of the general case. In these examples we
will work with a trivial line bundle E ' OX : the introduction of a nontrivial line bundle E presents no
difficulties at all. Let us begin with the simpler case, n = 2.

4.8.1 The case n = 2

The symmetric power. Let us begin with the spectral sequence
′Ep,q1 , the equivariant spectral se-

quence associated to (C• ⊗L C•)H×G. We recall that for n = 2 the complex C• is simply

0 - C0 - C1 - 0 ,

where C0 ' OX2 ⊗C2, C1 ' O∆, where ∆ is the diagonal of X2. For q = 0 we clearly have the complex:

′E0,•
1 ' (S2C•)G .

For negative q the only possibly nonzero terms are:

′E2,q
1 ' Tor−q(C1, C1)G×H ,

since
′E

1,q
1 ' Tor−q(C0, C1)⊕ Tor−q(C1, C0) ' 0

since C0 is a locally free sheaf. Now Tor1(C1, C1) is invariant by transposition of factors (since the
transposition acts as (−1)−1 = 1 by section 4.3). Therefore the P -invariants Tor1(C1, C1)P are isomorphic
to the G-invariants:

Tor1(C1, C1)P ' Tor1(C1, C1)G .
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Now the group G acts pointwisely on Tor1(C1, C1) ' Tor1(O∆,O∆) ' N∗
∆ twisting the goemetric repre-

sentation ρ2 ⊕ ρ2 = ε ⊕ ε by the signs coming from its action on the two factors O∆: the G-sheaf O∆is
then better written as O∆⊗ ε. The right G-action on Torq(O∆,O∆) is then given by the representation:

Torq(O∆,O∆) ' ΛqN∗
∆ ⊗ ε⊗

2
' Λq(ε⊕ ε)

which does not have any invariants. Therefore ′Ep,−1
2 = 0 for all p. At level ′Ep,−2

1 the only nonzero term
is E2,−2

1 ' Tor2(C1, C1) which has no H-invariants. Therefore the spectral sequence ′Ep,q1 reduces to the
complex ′E•,01 ' (S2C•)G, which has cohomology only in degree 0, by corollary 4.9. We now know by the
same theorem and by the degeneration of the spectral sequence that

′E0,0
∞ ' ′E0,0

2 ' H0(′E•,01 ) ' µ∗(S2E[2]) .

As a consequence, we have proved:

Rµ∗(S2E[2]) ' (S2C•E)G .

The exterior power. The case of exterior power is even simpler, since the only nonzero term in
(Ep,q1 ⊗ εH)H , apart from the complex (E•,01 ⊗ εH)H ' Λ2C•, is the term

(E2,−2
1 ⊗ εH)H ' Tor2(C1, C1) ' Λ2N∗

∆

which is on the diagonal and is torsion; therefore, by corollary 4.10, we have again:

Rµ∗(Λ2E[2]) ' (Λ2C•E)G .

4.8.2 The case n = 3.

The symmeric power The complex C• is in this case:

0 - C0 - C1 - C2 - 0 .

The complex ′E•,01 is, as we know,
′E•,01 ' (S2C•)G .

At level ′Ep,−1
1 = (Ep,−1

1 )H we have the (shifted) complex:

0 -
⊕
i<j

N∗
∆ij

-
⊕
i<j

N∗
∆ij

∣∣∣∣
∆

- 0 ;

when we take the G-invariants the same reasonment of the case n = 2 proves that everything vanishes,
because of lemma 4.14. We skip for a moment the level ′Ep,−2

1 . At level ′Ep,−3
1 the only nonzero term is

′E
4,−3
1 ' Tor3(O∆,O∆) ' Λ3N∗

∆ .

The G-action on Λ3N∗
∆ is isomorphic to the representation:

Λ3(ρ3 ⊕ ρ3)⊗ ε⊗
2
' Λ3(ρ3 ⊕ ρ3)

and has consequently no G- invariants by lemma 4.14. At level ′Ep,−4
1 we have the only term Λ4N∗

∆ which
has invariants, but they are by no way harmful, since ′E4,−4

1 is a torsion sheaf on the diagonal, and by
theorem 4.4, we are interested to the limit ′E0

∞ modulo torsion. The only non trivial part here occurs at
level −2. The complex ′E

•,−2
1 reduces to the complex

Tor2(C1, C2) - Tor2(C2, C2)
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since Tor2(C1, C1) is anti-invariant for the H-action. The complex reads:

0 -
⊕
i<j

Λ2N∗
∆ij

∣∣∣∣
∆

d3,−2
1 - Λ2N∗

∆
- 0 .

By lemma 4.22 this morphism induces an isomorphism on the line bundles of G-invariants over ∆:

′E2,−2
1 ' A2,2

∣∣∣∣
∆

(d3,−2
1 )G- A3,2 ' ′E3,−2

1 .

The spectral sequence ′Ep,q1 looks then like:

6
-• • • • •

′E3,−2
1 '

- ′E4,−2
1

′E4,−4
1

. . . .

.

. .

As a consequence ′E3,−2
2 = ′E4,−2

2 = 0 . This clearly implies:

Rµ∗(S2E[3]) ' (S2C•E)G .

The exterior power. The case of exterior powers presents less difficulties. The 0-level of the sequence
′′E

p.q
1 is always isomorphic to the searched exterior power complex:

′′E
•,0
1 ' Λ2C•

and the odd negative levels ′′E
p,q
1 have no G-invariants because of lemma 4.14. We remain with levels

′′E
p,−2
1 and ′′E

p,−4
1 . The last one is actually 0, since the only nonzero term in E•,−4

1 is E4,−4
1 and

′′E
4,−4
1 ' (Tor4(C2, C2)⊗ εH)H ' 0

because Tor4(C2, C2) is H-invariant. The ′′E
•,−2
1 complex becomes:

′′E
2,−2
1

d2,−2
1 - ′′E

3,−2
1

because
′′E

4,−2
1 ' (Tor2(C2, C2)⊗ εH)H = 0 ,

since Tor2(C2, C2) is G-invariant. The morphism d2,−2
1 is the restriction:⊕

i<j

Λ2N∗
∆ij

-
⊕
i<j

Λ2N∗
∆ij

∣∣∣∣
∆

,

hence surjective. As a consequence the morphism induced on the G-invariants is surjective and hence
′′E3,−2

2 = 0. The spectral sequence ′′Ep,q1 looks like:
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6
-• • • • •

′E2,−2
1

-- ′E3,−2
1

. . . .

.

. .

.

On the ′′Ep,q2 -level, only ′′E2,−2
2 in nonzero, if q 6= 0. This term contributes to the torsion of Λ2µ∗(E[3])

and does not interest us. The ′′E0.0
∞ -term is rightly isomorphic to µ∗(Λ2E[3]) by corollary 4.10, and since

the complex ′′E•,01 is acycilic in degree greater than zero, we get:

Rµ∗(Λ2E[3]) ' (Λ2C•E)G .

4.8.3 The case n = 4

Before starting we proceed to a further simplification. By lemma 1.27 the open sets S4U , with U affine
open subset in X, cover the symmetric variety S4X. Since every consideration we will made is of local
nature, it is then sufficient to prove (36) on every affine open set of the form S4U . It is now equivalent
to reason about the sheaves of invariants over S4U and the modules of invariant sections over U4. The
quotient U4/G ' S4U is naturally an open set of S4X. We will indicate with U [4] the open set µ−1(S4U)
of the Hilbert scheme. We will then consider the two spectral sequences:

′E
p,q
1 =

⊕
i+j=p

Tor−q(Ci, Cj)H (45)

′Ep,q1 =
⊕
i+j=p

H0(U4,Tor−q(Ci, Cj))G×H (46)

which are the hyperderived spectral sequences of the complexes:

S2
LC• ; ΓG(U4, S2

LC•) .

We remark that the latter is acyclic in degree > 0. We recall that the complex C• is in this case:

0 - OX ⊗ C4 -
⊕
i<j

O∆ij
-

⊕
i<j<k

O∆ijk
- O∆

- 0 .

The complexes ′E•,q1 . Since, by lemma 4.14, the complexes ′Ep,q1 have no G-invariants for q odd, we
will consider only the case q even.

1. q = 0. By definition, the complex ′E•,01 is exactly the complex ΓG(U4, S2C•).
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2. q = −2. The modules ′Ep,−2
1 of P = G×H-invariant sections are:

′E3,−2
1 ' H0(U4,Tor2(C1, C2))G ' H0(U4,Tor2(O∆12 ,O∆123))

G{12}×{123}

' H0(U4,Tor2(O∆12 ,O∆123))
S2

Now S2 acts over each point of Tor2(∆12,O∆123) ' Λ2N∗
12

∣∣∣∣
∆123

with the representation:

Λ2(ε⊕ ε)⊗ ε⊗
2
' Λ2(ε⊕ ε) ' 1

hence trivially. Therefore

′E3,−2
1 ' H0(∆U3 × U,Λ2N∗

12

∣∣∣∣
∆123

) ' A2,2

∣∣∣∣
∆123

.

′E4,−2
1 ' H0(U4,Tor2(C2, C2))P ⊕H0(U4,Tor2(C1, C3))G .

Now
H0(U4,Tor2(C1, C3))G ' H0(U4,Tor2(O∆12 ,O∆))G{12}×{1234}

The stabilizer is isomorphic to
G{12}×{1234} ' S(1, 2)×S(3, 4)

and acts on Tor2(O∆12 ,O∆) ' Λ2N∗
12

∣∣
∆

with the representation:

Λ2(ε2 ⊗ ε2)⊗ ε2 ⊗ ε4 ' ε2 ⊗ ε4 .

As a consequence Tor2(O∆12 ,O∆) has no G{12}×{1234}-invariants. Since Tor2(C2, C2) is completely H-
invariant, we have:

′E4,−2
1 ' H0(U4,Tor2(C2, C2))P ' H0(U4,Tor2(C2, C2))G

' H0(U4,
⊕
|I|=3

Λ∗N∗
I )G ⊕H0(U4,Tor2(O∆{123} ,O∆{124}))

G{123}×{124} .

Now

H0(U4,
⊕
|I|=3

Λ∗N∗
I )G ' H0(U4,Λ2N∗

{123})
S3

' H0(∆U3 × U, (Λ2N∗
{123})

S3)

and by lemma 4.14 we can consider (Λ2N∗
{123})

S3 as a sublinebundle A3,2 of (Λ2N∗
{123}) over the diago-

nal ∆123. For the second term H0(U4,Tor2(O∆{123} ,O∆{124}))
G{123}×{124} we remark that the stabilizer

G{123}×{124} is isomoprhic to S12 which acts on the fibers of

Tor2(O∆{123} ,O∆{124}) ' Λ2N∗
{12}

∣∣∣∣
∆

over each point of the small diagonal with the representation:

Λ2(ε2 ⊕ ε2)⊗ ε⊗
2

2 ' 1 ,

hence trivially. As a consequence

′E4,−2
1 ' H0(∆U3 × U,A3,2)⊕H0(∆U4 ,A2,2

∣∣∣∣
∆

)
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since the invariants (Λ2N∗
{12}

∣∣∣∣
∆

)S12 are exactly the restriction of the invariants (Λ2N∗
{12})

S12 ' A2,2 to

the small diagonal.
The last nonzero term of the complex ′E•,−2

1 is :

′E5,−2
1 ' H0(U4,Tor2(C2, C3))G

' H0(U4,Tor2(O∆123 ,O∆))G{123}

Now the stabilizer G{123} ' S3 acts on the fibers of Tor2(O∆123 ,O∆) ' Λ2N∗
{123}

∣∣∣∣
∆

on each point of the

small diagonal with the representation:

Λ2(ρ3 ⊕ ρ3)⊗ ε⊗
2

3 ' Λ2(ρ3 ⊕ ρ3) .

Therefore the invariants (Λ2N∗
{123}

∣∣∣∣
∆

)S3 can be interpreted as the restriction of the line bundle A3,2

restricted to the small diagonal. Therefore

′E5,−2
1 ' H0(∆U4 ,A3,2

∣∣∣∣
∆

) .

The complex
0 - ′E3,−2

1
- ′E4,−2

1
- ′E5,−2

1
- 0

is clearly the complex of sections over U of the complex

0 - A2,2

∣∣∣∣
∆123

- A3,2 ⊕A2,2

∣∣∣∣
∆

- A3,2

∣∣∣∣
∆

- 0 . (47)

The differentials are induced by the differentials of the complex ′E
•,−2
1 : in particular the first component

of the first map is obtained by taking the invariants of the map:⊕
|J|=2,
J⊆{123}

Λ2N∗
J

∣∣∣∣
∆{123}

- Λ2N∗
{123} (48)

which is in turn induced by the map :

Tor2(C1, C2) - Tor2(C2, C2) . (49)

We are exactly in the situation the lemma 4.22: taking the S3-invariants of (48) we obtain the isomor-
phism:

α2 : A2,2

∣∣∣∣
∆123

- A3,2 .

It is clear from the definition of the map (49) that the second component of the map:

A2,2

∣∣∣∣
∆123

- A3,2 ⊕A2,2

∣∣∣∣
∆

is given by the restriction ν to the small diagonal. Let us consider now the second arrow in 47: it is
obtained by considering the S3-invariants of the morphism:

4⊕
i=1

Tor2(O∆123 ,O∆{1234}\{i}) - Tor2(O∆123 ,O∆) .
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The component on A3,2 is obtained setting i = 4 and by definition of the diffrential ∂2 : C2 - C3 this
is exactly minus the restriction. The component on A2,2

∣∣
∆

is clearly the restriction of α2 to the small
diagonal: hence the complex:

0 - A2,2

∣∣∣∣
∆123

(α2,ν)- A3,2 ⊕A2,2

∣∣∣∣
∆

(−ν,α2

∣∣
∆

)
- A3,2

∣∣∣∣
∆

- 0

is exact and ′E•,−2
1 is also exact.

3. q = −4.

′E4,−4
1 ' H0(U4,Tor4(C2, C2))P ⊕H0(U4,Tor4(C1, C3))G

' H0(U4,Tor4(O∆123 ,O∆123))
S123 ⊕H0(U4,Tor4(O∆12 ,O∆))G{12}×{1234}

Now S3 acts on the fibers of Tor4(O∆123 ,O∆123) ' Λ4N∗
{123} over every point of the diagonal ∆123 with

the representation:
Λ4(ρ3 ⊕ ρ3)⊗ ε⊗

2

3 ' Λ4(ρ3 ⊕ ρ3)

hence by lemma 4.14
Tor4(O∆123 ,O∆123)

S3 ' A3,4 .

As for the term: Tor4(O∆12 ,O∆)G{12}×{1234} the stabilizer G{12}×{1234} ' S(1, 2) × S(3, 4) acts on the

fibers of Tor4(O∆12 ,O∆) ' Λ4N∗
12

∣∣∣∣
∆

over each point of the small diagonal with the representation:

Λ4(ε2 ⊕ ε2)⊗ ε2 ⊗ ε4 ' ε2 ⊗ ε4

and therefore has no invariants. Therefore

′E4,−4
1 ' H0(∆U3 × U,A3,4) .

′E5,−4
1 ' H0(U4,Tor4(C2, C3))P

' H0(U4,Tor4(O∆123 ,O∆))S3

which is clearly the space of sections over ∆U4 of the restriction of the line bundle of invariants A3,4 to
the small diagonal:

′E5,−4
1 ' H0(∆U4 ,A3,4

∣∣∣∣
∆

) .

Now Tor4(C3, C3) is completely H-anti-invariant: therefore

′E6,−4
1 ' 0 .

The map :
′E4,−4

1
- ′E5,−4

1
-

is induced by the restriction:

A3,4
- A3,4

∣∣∣∣
∆

- 0

and hence it is surjective.
4. q = −6

′E6,−6
1 ' 0

since Tor6(C3, C3) is completely H-anti-invariant. The spectral sequence ′Ep,q1 looks like:

68



6
-• • • • •

. . . .

. .

. .

0 - ′E3,−2
1

- ′E4,−2
1

- ′E5,−2
1

- 0

. . . .

′E4,−4
1

-- ′E5,−4
1

- 0

. .

0

where we indicated with a bold character the degree where the complex ′E4,−4
1 is not exact. Therefore

if q 6= 0, ′Ep,q2 = 0 except for p = q = −4. Since we know, by corollary 4.9, that the complex S2
LC• is

acyclic in degree > 0, it follows that ′Ep,02 = 0, if p > 0. As a consequence:

Γ(S4U, µ∗(S2E[4])) ' Γ(S4U, (S2C•E)G) .

Since this is true for an arbitrary affine open set of S4X of the form S4U , with U affine open subset in
X, and since such affine open subsets S4U cover S4X by lemma 1.27, we get, globally on S4X:

Rµ∗(S2E[4]) ' (S2C•E)G .

The exterior power. As we did in the symmetric case we consider the spectral sequences:

′′E
p,q
1 ' (

⊕
i+j=p

Tor−q(Ci, Cj)⊗ εH)H

and
′′Ep,q1 '

⊕
i+j=p

H0(U4,Tor−q(Ci, Cj)⊗ εH)H×G ,

where U is a affine open subset in X. The complex ′′E•,01 is as usual isomorphic to the complex
ΓG(U4,Λ2C•). By lemma 4.14 all the complexes ′′Ep,q1 with q odd vanish: as a consequence we can
consider only the terms ′′Ep,q1 with q even.

The complex ′′E•,−2
1 .

′′E2,−2
1 ' H0(U4,Tor2(C1, C1)⊗H)P

'H0(U4,Tor2(C1, C1))G

since Tor2(C1, C1) is completely H-anti-invariant. Therefore:

′′E2,−2
1 ' H0(U4,Tor2(O∆12 ,O∆12))

G{12}

' H0(U2 × S2U,Tor2(O∆12 ,O∆12))
S2
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and this is isomorphic to the space of sections of the sheaf of invariants (Λ2N∗
12)

S2 over the diagonal
∆U2 × S2U . By lemma 4.14 it coincides with the line bundle detN∗

12 ' A2,2. Then :

′′E2,−2
1 ' H0(∆U2 × S2U,A2,2) ' A2,2 .

Next:

′′E3,−2
1 ' H0(U4,Tor2(C1, C2))G

'H0(U4,Tor2(O∆12 ,O∆123))
S2 .

Since S2 acts on the fibres of Tor2(O∆12 ,O∆123)) ' Λ2N∗
12

∣∣
∆123

over each point of the diagonal ∆123

with the representation:
Λ2(ε2 ⊕ ε2)⊗ ε⊗

2

2 ' 1

and since Λ2N∗
12

∣∣
∆123

is isomorphic to A2,2

∣∣
∆123

we get:

′′E3,−2
1 ' H0(∆U3 × U,A2,2

∣∣∣∣
∆123

) ' A2,2

∣∣∣∣
∆123

.

The term :
′′E4,−2

1 ' H0(U4,Tor2(C2, C2)⊗ εH))P ' 0

since Tor2(C2, C2) is completely H-invariant. Now

′′E5,−2
1 ' H0(U4,Tor2(C2, C3))G

' H0(U4,Tor2(O∆123 ,O∆))S3

and , since S3 acts on the fibers of Tor2(O∆123 ,O∆)) ' Λ2N∗
123

∣∣
∆

over the points of the diagonal with
the representation

Λ2(ρ3 ⊕ ρ3)⊗ ε⊗
2

3 ' Λ2(ρ3 ⊕ ρ3) ,

by lemmas 4.14 and 4.22 we get that:

′′E5,−2
1 ' H0(∆U4 , (Λ2N∗

123

∣∣∣∣
∆

)S3) ' H0(∆U4 ,A3,2

∣∣∣∣
∆

) ' A3,2

∣∣∣∣
∆

.

Finally:
′′E6,−2

1 ' H0(U4,Tor2(O∆,O∆)⊗ εH)P ' H0(∆U4 ,Tor2(O∆,O∆))G

because Tor2(C3, C3) is completely H-invariant. Then :

′′E6,−2
1 ' H0(∆U4 ,detN∗

∆)S4 ' H0(∆U4 ,A4,2) ' A4,2 .

The complex ′′E•,−2
1 is then given (up to a shift) by the complex of sections of the complex:

0 - A2,2
- A2,2

∣∣∣∣
∆123

- 0 - A3,2

∣∣∣∣
∆

- A4,2
- 0 .

The first map is induced by the map:

Tor2(O∆12 ,O∆12) - Tor2(O∆12 ,O∆123)

which is precisely the restriction map, hence surjective. The last map:

A3,2

∣∣∣∣
∆

- A4,2
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is obtained by taking the S3-invariants of

Λ2N∗
123

∣∣∣∣
∆

- Λ2N∗
∆ .

By applying lemma 4.22 we find that it is the isomorphism α3. Consequently, the complex:

0 - ′′E2,2
1

- ′′E3,2
1

- 0 - ′′E5,2
1

- ′′E6,2 - 0

is exact in degree different from 2.
The complex ′′E•,−4

1 .
′′E4,−4

1 ' H0(U4,Tor4(C2, C2)⊗ εH)P ' 0

since Tor4(C2, C2) is completely H-invariant.

′′E5,−4
1 ' H0(U4,Tor4(C2, C3))G

' H0(U4,Tor4(O∆123 ,O∆))S3 ' H0(∆U4 ,
(
Λ4N∗

123

∣∣∣∣
∆

)S3)

' H0(∆U4 ,A3,2

∣∣∣∣
∆

) ' A3,2

∣∣∣∣
∆

.

Finally the term:

′′E6,−4
1 ' H0(U4,Tor4(C3, C3)⊗ εH)P ' H0(U4,Tor4(C3, C3)⊗ εH)G

' H0(∆U4 ,Λ4N∗
∆)S4

' H0(∆U4 ,A4,4) ' A4,4

The map:
′′E5,4

1
- ′′E6,4

1 (50)

is induced by the map:

A3,4

∣∣∣∣
∆

- A4,4 (51)

which is in turn obtained by taking the S3-invariants of:

Λ4N∗
123

∣∣∣∣
∆

- Λ4N∗
∆ .

Lemma 4.22 shows that (51) is the isomorphism α3. Hence (50) is an isomorphism.
The complex ′′E•,−6

1 . It consists only of the term:

′′E6,−6
1 ' H0(U4,detN∗

∆)S4 ' H0(∆U4 ,A4,6) ' A4,6 .

Therefore the spectral sequence ′′Ep,q1 looks like:
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6
-• • • • • •

. . . .

. .

. .

′′E2,−2
1

-- ′′E3,−2
1

- 0 - ′′E5,−2
1 '

- ′′E6,−2
1

. . . .

0 - ′′E5,−4
1 '

- ′′E6,−4

. .

′′E6,−6

where we indicated with a bold symbol the degrees where the complexes are not exact. Therefore the
terms ′′Ep,q2 , for q 6= 0 are nonzero if and only if p+ q = 0, p = −2, p = −4. Since, moreover, ′′Ep,02 = 0 if
p > 0, we get by corollary 4.10:

Rµ∗(Λ2E[4]) ' (Λ2C•E)G

on every affine open set S4U of the symmetric variety. Since such affine open sets cover SnX by lemma
1.27, we get the equality globally on SnX.

Although all the difficulties of the general case are already present for n = 4, the pattern of the general
spectral sequence is very clearly expressed from n = 6. Therefore we will skecth the situation for n = 6
before giving the proof for the general case.

4.8.4 The case n = 6

The symmetric power. As we did in the case n = 4, we will place ourselves first over a G-invariant
affine open set U6 of X6, with U affine open set in X, and consider the spectral sequence:

′Ep,q1 = H0(U6,
⊕
i+j=p

Tor−q(Ci, Cj))P .

Here the complex C• has length 5. By lemma 4.14 it is sufficient to consider only the case q even. As
usual, the complex ′E•,01 is isomorphic to G-invariants of the double symmetric power of the complex C•:

′E•,01 ' (S2C•)G .
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The complex ′E•,−2
1 . The computation of ′Ep,−2 − 1 is analogous to the one made for n = 4, if p ≤ 4.

Therefore:

′E2,−2
1 ' 0

′E3,−2
1 ' A2,2

∣∣∣∣
∆123

′E4,−2
1 ' A3,2 ⊕A2,2

∣∣∣∣
∆{1234}

For p ≥ 5:

′E5,−2
1 ' H0(U6,Tor2(C2, C3))G ⊕H0(U6,Tor2(C1, C4))G

' H0(∆U4 × S2U,Tor2(O∆123 ,O∆1234))
S3 ⊕H0(U6,Tor2(O∆12 ,O∆1,...,5))

G{12}×{12345}

' A3,2

∣∣∣∣
∆1234

′E6,−2
1 ' H0(U6,Tor2(C1, C5))G ⊕H0(U6,Tor2(C2, C4)G ⊕H0(U6,Tor2(C3, C3))P

' H0(U6,Tor2(O∆12 ,O∆))G{12}×{1...6} ⊕H0(U6,Tor2(O∆123 ,O∆1...5))
G{123}×{1...5} ' 0

′E7,−2
1 ' H0(U6,Tor2(C3, C4))G ⊕H0(U6,Tor2(C2, C5))G

' H0(∆U5 × U,Tor2(O∆1...4 ,O∆1...5))
S4 ⊕H0(U6,Tor2(O∆123 ,O∆))G{123}×{1...6}

' H0(∆U5 × U,Λ2N∗
1...4

∣∣∣∣
∆1...5

)S4 ' A4,2

∣∣∣∣
∆1...5

′E8,−2
1 ' H0(U6,Tor2(C4, C4))P ⊕H0(U6,Tor2(C3, C5))G

' H0(∆U5 × U,Tor2(O∆1...5 ,O∆1...5))
S5

4⊕
i=2

⊕
|K|=|K

′
|=5

|K∩K
′
|=i

H0(U6,Tor2(O∆K
,O∆

K
′ ))P

⊕
⊕

H0(U6,Tor2O∆1...4 ,O∆))G{1234}×{1...6}

' H0(∆U5 × U,Λ2N∗
∆1...5)

S5 ⊕H0(U6,Tor2(O∆12345 ,O∆12346))
P{12345}×{12346}

' A5,2 ⊕H0(∆U6 ,Λ2N∗
1...4

∣∣∣∣
∆

)S4

' A5,2 ⊕A4,2

∣∣∣∣
∆

′E9,−2
1 ' H0(U6,Tor2(C4, C5))G

' H0(∆U6 ,Tor2(O∆1...5 ,O∆))S5

' A5,2

∣∣∣∣
∆

′E10,−2
1 ' H0(U6,Tor2(C5, C5))P ' 0 .

In this computation we have used that:

1. for l odd, Tor2(Cl, Cl)P = 0, since Tor2((Cl, Cl) is H-anti-invariant.

2. Tor2(Ci, Ci+l)G = 0 if l ≥ 2, because

H0(U6,Tor2(Ci, Ci+l))G ' H0(U6,Tor2(O∆1...i+1 ,O∆1...i+l+1))
G{1...i+1}×{i+2...i+l+1}
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and the stabilizer

G{1...i+1}×{i+2...i+l+1} ' S(1, . . . i+ 1)×S(i+ 2, i+ l + 1)×S(i+ l + 2, n)

acts on the space of section like S(1, . . . i + 1) × S(i + 2, i + l + 1), because the last factor acts
trivially. The last group acts on the

Tor2(O∆1...i+1 ,O∆1...i+l+1) ' Λ2N∗
1...i+1

∣∣∣∣
∆1...i+l+1

with the representation:
Λ2(ρi+1 ⊕ ρi+1)⊗ εi+1 ⊗ εi+l+1

and therefore has no invariants if l ≥ 2.

3. For h ≥ k + 2,
H0(U6,

⊕
|K|=|K

′
|=h

|K∩K
′
|=k

Tor2(O∆K
,O∆

K
′ ))P = 0 .

This is because

H0(U6,
⊕

|K|=|K
′
|=h

|K∩K
′
|=k

Tor2(O∆K
,O∆

K
′ ))P ' H0(U6,Tor2(O∆I

,O∆J
))PI,J

where I and J are two chosen multi-indexes such that |I| = |J | = h, |I ∩ J | = k and there are
transpositions in S(I \ (I ∩ J)) ⊆ GI,J which acts trivially on O∆J

, but with a sign on O∆I

preventing P -invariants. This vanishing cannot happen if h− k = 1, hence in this case:

H0(U6,Tor2(O∆I
,O∆J

))PI,J ' H0(∆Uk+1 × Sn−k−1U,Λ2N1...,k

∣∣∣∣
1...k+1

)Sk ' Ak,2

∣∣∣∣
∆1...k+1

.

The complex ′E•,−2
1 is then isomorphic (up to a shift) to the complex:

0 - A2,2

∣∣∣∣
∆123

(α2,ν)- A3,2 ⊕A2,2

∣∣∣∣
∆1...4

(ν,α2

∣∣
∆1...4

)
- A3,2

∣∣∣∣
∆1...4

- 0 -

- A4,2

∣∣∣∣
∆1...5

(α4,ν)- A5,2 ⊕A4,2

∣∣∣∣
∆

(ν,α4

∣∣
∆

)
- A5,2

∣∣∣∣
∆

- 0

which is exact.

Reasoning in this way we can find that:

′E•,−4
1 ' 0 - A3,4

-- A3,4

∣∣∣∣
∆1...4

- 0 -

- A4,4

∣∣∣∣
∆1...5

(α4,ν)- A5,4 ⊕A4,4

∣∣∣∣
∆

(ν,α4

∣∣
∆

)
- A5,4

∣∣∣∣
∆

- 0

′E•,−6
1 ' 0 - A4,6

∣∣∣∣
∆1...5

(α4,ν)- A5,6 ⊕A4,4

∣∣∣∣
∆

(ν,α4

∣∣
∆

)
- A5,6

∣∣∣∣
∆

- 0

′E•,−8
1 ' 0 - A5,8

-- A5,8

∣∣∣∣
∆

- 0

′E•,−10
1 ' 0
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These complexes are exact out of the diagonal. The spectral sequence ′Ep,q1 looks like:

6 -• • • • • • • •

. . . .

. .

. . . . .

0 - ′E3,−2
1

-′E4,−2
1

-′E5,−2
1

- 0 - ′E7,−2
1

-′E8,−2
1

-′E9,−2
1

- 0

. . . . . . . .

′E4,−4
1
-- ′E5,−4

1
- 0 - ′E7,−4

1
-′E8,−4

1
-′E9,−4

1
- 0

. . . . . .

0 - ′E7,−6
1

-′E8,−6
1

-′E9,−6
1

- 0

. . . .

′E8,−8
1
-- ′E9,−8

1
- 0

. .

0

where we indicated with a bold character the degrees at which the complexes are not exact. As a
consequence, by what we just said and by corollary 4.9, we get ′Ep,q2 = 0 except

• ′E0,0
2 ' ′E0,0

∞

• ′E4,−4
2 and ′E8,−8

2 , which are on the diagonal.

Therefore:
Rµ∗(S2E[6]) ' (S2C•E)G ,

since it is true on every affine open set of the form SnU , and these open sets cover SnX.

The exterior power. As usual, let U6 a G-invariant open affine subset of X6, with U affine open set
in X. We will use here the spectral sequence:

′′Ep,q1 ' H0(U6,
⊕
i+j=p

Tor−q(Ci, Cj)⊗ εH)P .

75



We have ′′E•,01 ' (Λ2C•)G. We now sketch the computation of ′′E•,−2
1 . For the terms ′′Ep,−2

1 , p ≤ 4, the
computation is the same as that done for n = 4. We then begin with

′′E5,−2
1 ' H0(U6,Tor2(C1, C4))G ⊕H0(U6,Tor2(C2, C3))G

' 0⊕H0(∆U4 × S2U,Tor2(O∆123 ,O∆1...4))
S3 ' A3,2

∣∣∣∣
∆1...4

′′E6,−2
1 ' H0(U6,Tor2(C3, C3)⊗ εH)P ⊕H0(U6,Tor2(C2, C4))G ⊕H0(U6,Tor2(C1, C5))G

' H0(∆U4 × S2U,Λ2N∗
1...4)

S4

3⊕
i=1

H0(U6,
⊕

|K|=|K
′
|=4

|K∩K
′
|=i

Tor2(O∆K
,O∆

K
′ ))P

' A4,2 ⊕H0(U6,Tor2(O∆1234 ,O∆1235))
P{1234}×{1235}

' A4,2 ⊕H0(∆U5 × U,Λ2N∗
123

∣∣∣∣
∆1...5

)S3

' A4,2 ⊕A3,2

∣∣∣∣
∆1...5

′′E7,−2
1 ' H0(U6,Tor2(C2, C5))G ⊕H0(U6,Tor2(C3, C4))G

' H0(∆U5 × U,Λ2N∗
1...4

∣∣∣∣
∆1...5

)S4 ' A4,2

∣∣∣∣
∆1...5

′′E8,−2
1 ' H0(U6,Tor2(C4, C4)⊗ εH)P ⊕H0(U6,Tor2(C3, C5))G ' 0

′′E9,−2
1 ' H0(U6,Tor2(C4, C5))G ' H0(∆U6 ,Λ2N∗

1...5

∣∣∣∣
∆

)S5 ' A5,2

∣∣∣∣
∆

′′E10,−2
1 ' H0(U6,Tor2(C5, C5))P ' H0(∆U6 ,Λ2N∗

1...6)
S6 ' A6,−2 .

Therefore the complex ′′E•,−2
1 is isomorphic to:

A2,2
ν-- A2,2

∣∣∣∣
∆123

- 0 - A3,2

∣∣∣∣
∆1...4

(α3,ν)- A4,2⊕A3,2

∣∣∣∣
∆1...5

(−ν,α3

∣∣
∆1...5

)
- A4,2

∣∣∣∣
∆1...5

- 0 -

- A5,2

∣∣∣∣
∆

α5- A6,2
- 0

which is exact out of the diagonal. In the same way we can prove that the complexes ′′E•,q1 for q even
are:

′′E•,−4
1 ' 0 - A3,4

∣∣∣∣
∆1...4

(α3,ν)- A4,4 ⊕A3,4

∣∣∣∣
∆1...5

(−ν,α3

∣∣
∆1...5

)
- A4,4

∣∣∣∣
∆1...5

- 0 -

- A5,4

∣∣∣∣
∆

α5- A6,4
- 0

′′E•,−6
1 ' 0 - A4,6

−ν-- A4,6

∣∣∣∣
∆1...5

- 0 - A5,6

∣∣∣∣
∆

α5- A6,6
- 0

′′E•,−8
1 ' 0 - A5,8

∣∣∣∣
∆

α5- A6,8
- 0

′′E•,−10
1 ' A6,10
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All these complexes are exact out of the diagonal. The spectral sequence looks like:

6 -• • • • • • • • •

. . . .

. .

. . . . .

′′E2,−2
1

--′′E3,−2
1

- 0 -′′E5,−2
1

-′′E6,−2
1

-′′E7,−2
1

- 0 -′E9,−2
1

-′′E10,−2
1

. . . . . . . .

0 -′′E5,−4
1

-′′E6,−4-′′E7,−4
1

- 0 -′′E9,−4
1

-′′E10,−4
1

. . . . . .

′′E6,−6--′′E7,−6
1

- 0 -′′E9,−6
1

-′′E10,−6
1

. . . .

0 -′′E9,−8
1

-′′E10,−8
1

. .

′′E10,−10
1

where we indicate with a bold character the degrees where the complexes are not exact. As a consequence
the terms ′′Ep,q2 vanish except for

• ′′E0,0
2 ' ′′E0,0

∞ ;

• ′′E2,−2
2 , ′′E6,−6

2 , ′′E10,−10
2 .

The last three ones are torsion terms lying on the diagonal. As a consequence of corollary 4.10:

Rµ∗(Λ2E[6]) ' (Λ2CE•)G .

4.9 The general case

4.9.1 The symmetric power

Let X a smooth quasi-projective surface. Let E a line bundle over X. Consider the resolution C•E of
the image Φ(E[n]) ' p∗(E

[n]
B ) we found in the previous chapter. By corollary 4.9 the term Φ(S2E[n]) is

quasi-isomorphic to the term ′E
0,0
∞ of the spectral sequence:

′E
p,q
1 '

⊕
i+j=p

Tor−q(CiE , C
j
E)H
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abutting to Hp+q(S2
LCE

•). Our aim is to prove (36) for all n ≥ 0. This can be achieved by proving it on
every affine open set of SnX of the form SnU , with U affine open subset of X, since such open subsets
cover the entire symmetric variety SnX, by lemma 1.27. This amounts to considering the G-invariant
sections of ′Ep,q1 on every G-invariant affine open set Un ⊆ Xn. In order to do this we will apply the
(exact) functor ΓGUn of G-invariant sections over Un to the spectral sequence ′E

p,q
1 , and we get another

spectral sequence:
′Ep,q1 = H0(Un,

⊕
i+j=p

Tor−q(CiE , C
j
E))P

abutting to the G-equivariant cohomology H∗
G(Un, S2

LC•E) ' H∗(U [n], S2E[n]), where U [n] indicates the
inverse image µ−1(SnU) of the quotient SnU ' Un/G for the Hilbert-Chow morphism.

We summarize and prove in the following lemma the properties 1), 2), 3) used to get the result for
n = 6. This lemma completes Danila’s lemma in the form of lemma 4.20.

Lemma 4.23. Suppose that J,K ⊆ {1 . . . , n}, |J | = j + 1, |K| = k + 1, j ≤ k. Then the sheaf

Torq(EJ , EK)

has no PI,J -invariant sections, except for:

a) q is even, j = k is nonzero even and |J ∩K| = j, or j+1. In these cases we have the isomorphism:

H0(Un,Torq(EJ , EK))PJ,K
'- H0(Un,ΛqN∗

J∩K ⊗ E⊗
2

J∪K)PJ,K ;

b) q is even, k = j + 1 and J ⊆ K. We then have the isomorphism:

H0(Un,Torq(EJ , EK))PJ,K
'- H0(Un,ΛqN∗

J ⊗ E⊗
2

K )GI,J ;

c) q = 0, j = k = 0.

Proof. We begin by studying the PJ,K action on Torq(EJ , EK) for q even. We know by remark 4.19
that if |J | 6= |K|, then PJ,K = GJ,K . Therefore we will concentrate on the case |J | = |K|, leaving the
treatment of the GJ,K action afterwords. In the case |J | = |K| the stabilizer PJ,K is:

PJ,K = 〈GJ,K , τσJ,K〉,

where σJ,K is an involution of {1, . . . , n} fixing J ∩K and such that σ(J \ (J ∩K)) = σ(K \ (J ∩K)). If
J = K this can be taken to be the identity, but if J 6= K we can set σJ,K = (j, k) where j ∈ J \ (J ∩K),
k ∈ K \ (J ∩K). Consider first the case J = K. The transposition of factors τ acts on Torq(EJ , EJ) with
the sign (−1)q+j

2
. Therefore there are no invariants if |J | = j+1 is even. In the case J 6= K the element

τσI,J acts with the sign (−1)2q+j
2

because τ acts in any case with the sign (−1)q+j
2

by definition of the
action of the symmetric group on the tensor power of a complex, and σJ,K = (j, k) acts with the sign
(−1)q, by lemma 4.13. Again there are no invariants if j is odd. To resume,

Torq(EJ , EK)PI,J =

{
Torq(EJ , EK)GI,J if |J | = |K| is odd or |J | 6= |K|
0 if |J | = |K| is even

We pass now to the GI,J action. Suppose first |J ∩K| ≥ 1. Then

Torq(EJ , EK) = ΛqN∗
I∩J ⊗ E⊗

2

I∪J .

The stabilizer GJ,K is isomorphic to

GJ,K ' S(J ∩K)×S(J \ (J ∩K))×S(K \ (J ∩K))×S(J ∪K) .
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An element (σ, τ1, τ2, ζ) acts on the fiber of Torq(EJ , EK) over a point x ∈ ∆I∪J like

Λq(ρ|J∩K|(σ)⊗ C2) sgn(σ)2 sgn(τ1) sgn(τ2)

where ρ|I∩J| is the standard representation of the group S(I ∩ J). If one of the groups S(J \ (J ∩K)),
S(K \ (J ∩K)) is nontrivial, there are transpositions τ1 ∈ S(J \ (J ∩K)), τ2 ∈ S(K \ (J ∩K)) preventing
GJ,K-invariants. Therefore to have invariants we have to set

|J \ (J ∩K)| ≤ 1 ; |K \ (J ∩K)| ≤ 1 . (52)

In this case the action is reduced to the representation:

Λq(ρ|J∩K| ⊗ C2) ;

therefore there are invariants only if |J ∩ K| ≥ 2 and q even by lemma 4.14 or |J ∩ K| ≤ 1, with the
conditions (52). The latter case forces q to be zero to have invariants, because Torq(EJ , EK) = 0 if
|J ∩K| ≤ 1, by remark 4.17.

The case |J ∩K| ≥ 2, q even. There remain two subcases:

1. |J | = |K| nonzero odd;

2. |J | 6= |K|.

In the case |J | = |K| nonzero odd, the conditions (52) imply:

|J \ (J ∩K)| = |K \ (J ∩K)| ≤ 1 .

Therefore

• if |J \ (J ∩K)| = 0 then J = K and |J ∩K| = j + 1

• if |J \ (J ∩K)| = 1 then |J ∩K| = j

and we are in case a) of the statement.
In case |J | 6= |K|, we have |J \ (J ∩K)| 6= |K \ (J ∩K)| which yields:

|J \ (J ∩K)| = 0 ; |K \ (J ∩K)| = 1 .

this means J ⊆ K, and k = j + 1 and we are in case b).
The case |J ∩K| = 1, q = 0. This case splits in the two subcases |J | = |K| and |J | 6= |K|. If |J | = |K|

we can have J = K, |J | = 1 or J 6= K, |J ∩K| = 1, |J | = |K| = 2 (case a) ).
If |J | 6= |K| we have J ⊆ K, |K| = 2, |J | = 1 (case b) ).

The case |J ∩K| = 0, q = 0. Conditions (52) imply |J | = |K| = 1 which is j = k = 0 (case c) ). In
this case

′E0,0
1 ' H0(Un, E1 ⊗ E2)P{12} ' H0(S2U × Sn−2U,E � E/S2 �OSn−2X) .

2

We will denote the last space of sections A0,0, and the vector bundle E�E/S2�OSn−2X on S2X×Sn−2X

with A0,0.

Corollary 4.24. The term ′Ep,−q1 is zero except in the following cases:

a) q is even, q ≤ 2n− 2, p ≡ 0 mod 4 and p ≤ q. We set p = 2j. Then ′Ep,−q1 is isomorphic to

′Ep,−q1 ' Aj+1,q ⊕Aj,q

∣∣∣∣
∆{1,...,j+2}

;
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b) q is even, p is odd, p ≥ q. We set p = 2j − 1. Then ′Ep,−q1 is isomorphic to

′Ep,−q1 ' Aj,q

∣∣∣∣
∆{1,...,j+1}

.

Proof. It suffices to recall the preceding lemma, Danila’s lemma, and the definition of Aj,q.

2

The differentials. We now pass to study the differentials of the spectral sequence ′Ep,−q1 . We just
proved that ′Ep,−q1 = 0 if q is odd or if p ≡ 2 mod 4. Therefore, for q even and p = 4s, we can consider
the subcomplex K•

4s,q of ′E•,−q1 (centered in degree 4s) given by:

0 - ′E4s−1,−q
1

- ′E4s,−q
1

- ′E4s+1,−q
1

- 0 .

By the last corollary it is:

0 - A2s,q

∣∣∣∣
∆{1,...,2s+1}

- A2s+1,q ⊕A2s,q

∣∣∣∣
∆{1,...,2s+2}

- A2s+1,q

∣∣∣∣
∆{1,...,2s+2}

- 0 .

As a consequence the complex ′E•,−q1 is the direct sum:

′E•,−q1 =
⊕

q≤4s≤2n−2

K•
4s,q .

We can prove the following proposition for q even:

Proposition 4.25. Let n ∈ N, n ≥ 2. Let q ∈ 2N. Then

1) For q < 4s ≤ 2n− 2 the complex K•
4s,q is acyclic.

2) For 0 < q = 4s ≤ 2n− 2, the complex K•
4s,q is reduced to 2-term complex:

0 - A2s+1,q
- A2s+1,q

∣∣∣∣
∆{1,...,2s+2}

- 0 .

and is exact in degree different from 4s. For 0 = q = s the complex K•
0,0 is reduced to the 2-terms

complex:

0 - A1,0 ⊕A0,0
- A1,0

∣∣∣∣
∆{1,2}

- 0

and is exact in degree different from 0.

3) If n is odd and 4s = 2n − 2, the diagonal ∆{1,...,2s+1} is the small one ∆. For q < 2n − 2 the
complex K•

4s,q is reduced to the acyclic 2-terms complex:

0 - A2s,q

∣∣∣∣
∆

- A2s+1,q
- 0 .

For q = 2n− 2, the complex K•
2n−2,q is reduced to the only term detN∗

∆, placed in degree 2n− 2.

Proof. 1). By Danila’s lemma, for q < 4s ≤ 2n− 2 the complex K•
4s,q is the complex of G{1,...,2s+1}-

invariant sections of the complex:

0 -
⊕

J⊆{1,...2s+1}
|J|=2s

ΛqN∗
J

∣∣∣∣
∆{1,...,2s+1}

- ΛqN∗
{1,...,2s+1}

⊕ ⊕
J⊆{1,...2s+1}

|J|=2s

ΛqN∗
J

∣∣∣∣
∆{1,...,2s+2}

-

- ΛqN∗
{1,...,2s+1}

∣∣∣∣
∆{1,...,2s+2}

- 0
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which is in turn induced by the complex of H-invariant sheaves:

0 - Torq(C2s−1, C2s) - Torq(C2s, C2s) - Torq(C2s, C2s+1) - 0 .

We are exactly in the situation of lemma (4.22). As a consequence the first component of the first map
on K•

4s,q is the isomorphism α2s and the second component is the restriction ν (up to a sign). The second
map is easily the couple (±ν, α2s

∣∣
∆{1,2s+2}

). Therefore the complex is acyclic.
The cases 2) and 3) can be easily obtained as limit cases of the preceding, taking into account the

vanishing terms.

2

Corollary 4.26. The spectral sequence ′Ep,q1 degenerates at level ′E2. In particular ′Ep,q2 = 0 except for
p+ q = 0, p ≡ 0 mod 4, 0 ≤ p ≤ 2n− 2. In particular ′E0,0

∞ = ′E0,0
2 .

The main consequence of the corollary is that formula (36) holds on every open affine set of the
symmetric variety SnX of the form SnU , with U affine open set in X. This yields its validity on all the
symmetric variety SnX, for every quasi-projective surface X, by lemma 1.27. We then have proved the
following generalization of a Danila-Brion formula [23]:

Theorem 4.27. Let X a smooth quasi-projective surface and E a line bundle on X. The image
µ∗(S2E[n]) of the double symmetric power of a tautological vector bundle E[n] for the Hilbert-Chow mor-
phism µ is quasi-isomorphic to the complex of G-invariants of the (non-derived) symmetric power S2C•E:

Rµ∗(S2E[n]) ' (S2C•E)G .

Remark 4.28. The conclusions of proposition 4.25 allow us to say actually something more. It turns
out that ′E2,0

1 = 0 = [(S2C•E)G]2. Therefore, if we denote with τ≤l the truncation functor, we get the
simplified formula:

Rµ∗(S2E[n]) ' τ≤1(S2C•E)G . (53)

We remark that the complex

τ≤1(S2C•E)G : 0 - (S2C0
E)G - (C0

E ⊗ C1
E)G - 0

is a 2-terms complex which is acyclic in degree 6= 0.

4.9.2 The exterior power.

We use the same notations of the symmetric power case. By corollary 4.10 the term Φ(Λ2E[n]) is quasi-
isomorphic to the term ′′E

0,0
∞ of the spectral sequence:

′′E
p,q
1 =

⊕
i+j=p

(Tor−q(CiE , C
j
E)⊗ εH)H

where εH is the alternating representation of H. To prove (37), it suffices to show that it holds on every
affine open set of the symmetric variety of the form SnU , with U affine open set in X, by lemma 1.27.
This can be done at the sections level over SnX, or, equivalently, considering the G-invariant sections on
an G-invariant affine open set Un ⊂ Xn. Applying the functor of invariant sections ΓGUn we get another
spectral sequence:

′′Ep,q1 = H0(Un,
⊕
i+j=p

Tor−q(CiE , C
j
E)⊗ εH)P

abutting to the G-equivariant cohomology H∗
G(Un,Λ2

LC•E) ' H∗(U [n],Λ2E[n]). The equivalent of lemma
4.23 for the exterior power is the following:
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Lemma 4.29. Suppost that J,K ⊆ {1 . . . , n}, |J | = j + 1, |K| = k + 1, j ≤ k. Then the sheaf

Torq(EJ , EK)⊗ εH

has no PI,J -invariant sections, except for:

a) q is even, j = k is nonzero odd and |J ∩K| = j, or j + 1. In these cases we have the isomorphism:

H0(Un,Torq(EJ , EK)⊗ εH)PJ,K
'- H0(Un,ΛqN∗

J∩K ⊗ E⊗
2

J∪K)PJ,K ;

b) q is even, k = j + 1 and J ⊆ K. We then have the isomorphism:

H0(Un,Torq(EJ , EK)⊗ εH)PJ,K
'- H0(Un,ΛqN∗

J ⊗ E⊗
2

K )GI,J ;

c) q = 0, j = k = 0.

Proof. The proof goes exactly as in the case of lemma 4.23, except for the fact that we are twisting by
the alternant representation εH of H. The same computations we did in that proof show that if K = J ,
the transposition of factors acts on Torq(EJ , EJ) with the sign: (−1)q+j

2+1. If K 6= J , but |K| = |J |,
then the element τσJ,K acts with the sign: (−1)2q+j

2+1. Therefore if q is even, we do not have invariants
for j even.

2

Let Ã0,0 the space of invariant sections of E1 ⊗ E2 ⊗ εH on Un for P{1,2}:

Ã0,0 ' H0(Un, E1 ⊗ E2 ⊗ εH)P{1,2} .

Corollary 4.30. The term ′Ep,−q1 is zero except in the following cases:

a) p = q = 0. Then ′′E0,0
∞ ' Ã0,0.

b) q is even, p ≡ 2 mod 4, and p ≥ q. We set p = 2j. Then

′′Ep,−q1 ' Aj+1,q ⊕Aj,q

∣∣∣∣
∆{1,...,j+2}

.

c) qis even, p is odd, p ≥ q. We set p = 2j − 1. Then

′′Ep,−q1 ' Aj,q

∣∣∣∣
∆{1,j+1}

.

2

The differentials. Since ′′Ep,−q1 = 0 if q is odd and p ≡ 2 mod 4, we can consider the following
subcomplex K•

4s+2,q of ′′E•,−q1 , centered in degree 4s+ 2:

0 - ′′E4s+1,−q - ′′E4s+2,−q
1

- ′′E4s+3,−q
1

- 0 .

By the previous corollary it is:

0 - A2s+1,q

∣∣∣∣
∆{1,...,2s+2}

- A2s+2,q ⊕A2s+1,q

∣∣∣∣
∆{1,2s+3}

- A2s+2,q

∣∣∣∣
∆{1,...,2s+3}

- 0 .

82



The complex ′′E•,−q1 is, for q > 0 even, the direct sum:

′′E•,−q1 '
⊕

q≤4s+2≤2n−2

K•
4s+2,q ;

for q = 0 we have:
′′E•,01 ' ′′E0,0

1

⊕
0≤4s+2≤2n−2

K•
4s+2,0 .

The differentials are clearly the natural morphisms induced by the complexes of H-invariant sheaves:

0 - Torq(C2s+1, C2s+2) - Torq(C2s+2, C2s+2) - Torq(C2s+2, C2s+3) - 0 .

By lemma 4.22 we get the following analogue to proposition 4.25:

Proposition 4.31. Let n ∈ N, n ≥ 2. Let q ∈ 2N. Then:

1. For q < 4s+ 2 < 2n− 2 the complex K•
4s+2,q is acyclic.

2. If 0 < q = 4s+ 2 ≤ 2n− 2 the complex K•
4s+2,q is reduced to the 2-terms complex:

0 - A2s+2,q
- A2s+2,q

∣∣∣∣
∆{1,...,2s+3}

- 0

which is exact in degree different from 4s+ 2.

3. If n is even and 4s+ 2 = 2n− 2 then the diagonal ∆{1,...,2s+2} is the small diagonal. The complex
K•

4s+2,q is reduced to the 2-terms complex:

0 - A2s+1,q

∣∣∣∣
∆

- A2s+2,q
- 0

which is exact. If n is even and q = 2n−2 the complex K•
4s+2,q is reduced to the only term: detN∗

∆

placed in degree 2n− 2.

2

Corollary 4.32. The spectral sequence ′′Ep,q1 degenerates at level ′′E2. In particular ′′Ep,q2 = 0 except for
p+ q = 0, p ≡ 2 mod 4, 0 ≤ p ≤ 2n− 2 or for p = q = 0. In particular ′′E0,0

∞ = ′′E0,0
1 .

2

As in the case of the symmetric power, this corollary implies that formula (37) holds on any affine
open set of the symmetric variety of the form SnU , with U affine open set in X; hence it holds globally
on SnX, for every quasiprojective surface X, by lemma 1.27. Moreover, by the last corollary, we can
identify the direct image Λ2E[n] of the exterior power of the tautological bundle E[n] with the term ′′E0,0

1 .
We have then just proved:

Theorem 4.33. Let X a smooth quasi-projective surface and E a line bundle on X. The image
µ∗(Λ2E[n]) of the double exterior power of a tautological vector bundle E[n] for the Hilbert-Chow morphism
µ is quasi-isomorphic to the sheaf of G-invariants of the exterior power Λ2C0

E:

Rµ∗(Λ2E[n]) ' (Λ2C•E)G ' (Λ2C0
E)G .

Putting together theorems 4.27 and 4.33 we get:

Theorem 4.34. Let X a smooth quasi-projective surface and E a line bundle on X. Then the derived
direct image Rµ∗(E[n] ⊗ E[n]) of the double tensor power of the tautological bundle E[n] for the Hilbert-
Chow morphism µ is quasi-isomorphic to the two terms complex:

0 - (C0
E ⊗ C0

E)G
d- (C0

E ⊗ C1
E)G - 0

acyclic in degree higher than zero, where the morphism d is given by d = id⊗ d0
C•E

.
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4.10 Cohomology

The aim of this section is the application of the theorems 4.27, 4.33 to the computation of the cohomology
of the Hilbert scheme with values in the double symmetric and exterior power of a tautological vector
bundle E[n] associated to a line bundle E on the surface X. We will prove that for every quasi-projective
surface:

H∗(X [n], S2E[n]) ' H∗(X,E⊗
2
)⊗ J

⊕
S2H∗(X,E)⊗ Sn−2H∗(X,OX)

where J is the ideal of cohomology classes in Sn−1H∗(X,OX) vanishing on the subscheme {a} ×
Sn−2X ⊂ - Sn−1X. For n = 2, 3 this result has already been obtained by Danila [24]. Moreover
for every quasi-projective surface:

H∗(X [n],Λ2E[n]) ' Λ2H∗(X,E)⊗ Sn−2H∗(X,OX) .

As a consequence of these two formulas we will get:

Theorem 4.35. Let X be a smooth quasi-projective surface. The cohomology of the double tensor power

E[n]⊗
2

of a tautological vector bundle E[n] on the Hilbert scheme, associated to a line bundle E on the
surface X, is given by:

H∗(X [n], E[n]⊗
2

) ' H∗(X,E⊗
2
)⊗ J

⊕
H∗(X,E)⊗

2
⊗ Sn−2H∗(OX) .

4.10.1 Cohomology of the symmetric product of a tautological vector bundle

We know from the previous section that the image of the symmetric power of a tautological bundle for
the Hilbert-Chow morphism is:

Rµ∗(S2E[n]) ' (S2C•E)G ' τ≤1(S2C•E)G

where τ≤1(S2C•E)G indicates the complex (S2C•E)G truncated in degree ≤ 1. The truncated complex is
exactly:

0 - (S2C0
E)G - (C0

E ⊗ C1
E)G - 0 .

As a consequence we have the short exact sequence:

0 - µ∗(S2E[n]) - (S2C0
E)G - (C0

E ⊗ C1
E)G - 0 .

and the associated long exact cohomology sequence:

. . . - Hi(X [n], S2E[n]) - Hi
G(Xn, S2C0

E) -

- Hi
G(Xn, C0

E ⊗ C1
E) - Hi+1(X [n], S2E[n]) - . . . (54)

Now

S2C0
E '

n⊕
i=1

E⊗
2

i ⊕
⊕
i<j

Ei ⊗ Ej

C0
E ⊗ C1

E '
⊕

1≤i,j≤n

E⊗
2
∣∣∣∣
∆ij

⊕
⊕
i 6=j,k
j<k

Ei ⊗ E

∣∣∣∣
∆jk

Therefore:

H∗
G(Xn, S2C0

E) '
( n⊕
i=1

H∗(Xn, E⊗
2

i )
)G ⊕ (⊕

i<j

H∗(Xn, Ei ⊗ Ej)
)G

'
([
H∗(E⊗

2
)⊗H∗(OX)⊗

n−1]n)G ⊕ ([H∗(E)⊗
2
⊗H∗(OX)n−2

](n2))G
' H∗(E⊗

2
)⊗ Sn−1H∗(OX)

⊕
S2H∗(E)⊗ Sn−2H∗(OX)
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applying Kunneth formula and taking G-invariants, while

H∗
G(Xn, C0

E ⊗ C1
E) '

( ⊕
1≤i,j≤n

H∗(Xn, E⊗
2
∣∣∣∣
∆ij

)
)G

since the sheaf ⊕
i 6=j,k
j<k

Ei ⊗ E

∣∣∣∣
∆jk

has no G-invariants. Therefore

H∗
G(Xn, C0

E ⊗ C1
E) '

([
H∗(E⊗

2
)2 ⊗H∗(OX)⊗

n−2](n2))G
' H∗(E⊗

2
)⊗ Sn−2H∗(OX)

The differential
d0 : (S2C0

E)G - (C0
E ⊗ C1

E)G

induces a morphism:

H∗(E⊗
2
)⊗ Sn−1H∗(OX)

⊕
S2H∗(E)⊗ Sn−2H∗(OX) - H∗(E⊗

2
)⊗ Sn−2H∗(OX) . (55)

We will now prove that the morphism (55) is surjective; hence the long exact cohomology sequence splits.
We remark that the second component of (55) is the canonical coupling

S2H∗(E) - H∗(E⊗
2
)

tensorized by the identity.

Lemma 4.36. Let F a line bundle on X. Consider, for k ∈ N∗, the embedding:

X × Sk−1X ⊂ - X × SkX (56)

given by (x, z) - (x, x+ z). The restriction morphism:

D : H∗(F )⊗ SkH∗(OX) - H∗(F )⊗ Sk−1H∗(OX)

induced by this embedding is given, for α ∈ H∗(F ) and ui ∈ H∗(OX), i = 1, . . . , k, homogeneous of degree
pi, by the formula:

α⊗ u1 . . . uk - 1
k

k∑
i=1

(−1)(
P
j<i pj)piαui ⊗ u1 . . . ûi . . . uk .

Proof. The embedding (56) is induced by the embedding:

X ×Xk−1 ⊂ - X ×Xk .

(x, z1, . . . , zk−1) - (x, x, z1, . . . , zk−1)

In cohomology the induced morphism is given by:

α⊗ u1 ⊗ . . .⊗ uk - αu1 ⊗ u2 ⊗ . . .⊗ uk .

The canonical projection Xk - SkX identifies u1 . . . uk ∈ H∗(SkX) ' SkH∗(OX) with the element:

1
k!

∑
σ∈Sk

εσ,p1,...,pkσ(u1 ⊗ . . .⊗ uk)

ofH∗(OXk) ' H∗(OX)⊗
k

, where εσ,p1,...,pk is a sign depending on the permutation σ and on the respective
degrees of ui and it is characterized, in the graduated algebra C[u1, . . . , uk] (where deg(ui) = pi), by
the relation: σ(u1 ⊗ . . . ⊗ uk) = εσ,p1,...,pku1 . . . uk. For the transposition τ1,i we have ετ1,i,p1,...,pk =
(−1)(

P
j<i pj)pi . The formula follows.
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2

Lemma 4.37. The restriction morphism D : H∗(F ) ⊗ SkH∗(OX) - H∗(F ) ⊗ Sk−1H∗(OX) is
surjective and has a canonical section.

Proof. Let ui ∈ H∗(OX) of degree pi, i = 1, . . . , k, α ∈ H∗(F ). Then by lemma (4.36) the morphism
D is given by:

D(α⊗ u1 . . . uk) =
1
k

k∑
i=1

(−1)(
P
j<i pj)piαui ⊗ u1 . . . ûi . . . uk .

Let λj be the morphism:

λj : H∗(F )⊗ SjH∗(OX) - H∗(F )⊗ Sk−1H∗(OX)

α⊗ u1 . . . uj - α⊗ 1 . . . 1︸ ︷︷ ︸
k − j − 1-fois

.u1 . . . uj

We have λk−1 = id, λ0 = 0. Let Wi the image of λi. We have the filtration:

{0} = W0 ( W1 ( · · · ( Wk−2 ( Wk−1 = H∗(F )⊗ Sk−1H∗(OX) .

Let now σ be the morphism:

H∗(F )⊗ Sk−1H∗(OX) - H∗(F )⊗ SkH∗(OX)

α⊗ u1 . . . uk−1
- α⊗ 1.u1 . . . uk−1

We have the following relation:

D(σ(λj(α⊗ u1 . . . uj))) = D(α⊗ 1 . . . 1︸ ︷︷ ︸
k − j-fois

.u1 . . . uj)

=
k − j

k
α⊗ 1 . . . 1︸ ︷︷ ︸

k − j − 1-fois

.u1 . . . uj +
j∑

h=1

Cjhαuh ⊗ 1 . . . 1︸ ︷︷ ︸
k − j − 1-fois

.u1 . . . ûh . . . uj

=
k − j

k
λj(α⊗ u1 . . . uj) + v

where v ∈ Wj−1, for some rational constants Cjh. This means that, indicated with Ψ the endomorphism
D ◦ σ of H∗(F )⊗ Sk−1H∗(OX) we have:(

Ψ− k − j

k

)
(Wj) ⊆Wj−1

which implies:
k−1∏
j=0

(
Ψ− k − j

k

)
= 0 .

In other words there exist a1, . . . ak ∈ Q, with ak 6= 0 such that:

Ψk + a1Ψk−1 + · · ·+ ak−1Ψ + ak = Ψ(Ψk−1 + a1Ψk−2 + · · ·+ ak−1) + ak = 0 ,

that is, Ψ is invertible. Therefore D is surjective and has a canonical section.

2

A consequence of this lemma is that the kernel of D is isomorphic to a direct factor of the image of σ.
The next lemma allows us to characterize such a direct factor.
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Lemma 4.38. Let a ∈ X a point of X. Consider the morphism:

id⊗ ν : H∗(F )⊗ SkH∗(OX) - H∗(F )⊗ Sk−1H∗(OX)

where ν is the morphism induced in cohomology by the inclusion Sk−1X ⊂ - SkX given by z - a+z.
Therefore id⊗ ν is surjective and its kernel is isomorphic to the kernel of D.

Proof. The morphism id⊗ ν is given by:

id⊗ ν(α⊗ u1 . . . uk) =
1
k

k∑
i=1

(−1)(
P
j<i pj)piαui(a)⊗ u1 . . . ûi . . . uk .

We know that uh(a) = 0 if deg uh > 0. Therefore, if we denote with Ψ̃ the endomorphism id ⊗ ν ◦ σ of
H∗(F )⊗ Sk−1H∗(OX), we have:

Ψ̃(λj(α⊗ u1 . . . uj)) = (id⊗ ν)(α⊗ 1 . . . 1︸ ︷︷ ︸
k − j-fois

.u1 . . . uj)

=
k − j

k
λj(α⊗ u1 . . . uj) + v

where v ∈Wj−1. Therefore
(
Ψ̃− k−j

k

)
(Wj) ⊆Wj−1 and we have again for Ψ̃ the relation:

k−1∏
j=0

(
Ψ̃− k − j

k

)
= 0

which implies that Ψ̃ is invertible, that id⊗ ν is surjective and that Imσ is a direct factor of ker(id⊗ ν).

2

Lemma 4.39. Let V , W , Z three vector spaces, not necessarily of finite dimension, over a field k. Let

F = (f, g) : V ⊕W - Z

a linear map such that the component f is surjective. Then kerF ' ker f ⊕W .

Proof. Let K = ker f and Ṽ a supplementary of K in V . In the decomposition:

K ⊕ Ṽ ⊕W - Z

F can be written as (0, a, b), with a invertible. Therefore F (x, y, w) = 0 if and only if ay + bw = 0, that
is, if and only if, y = −a−1bw. Therefore kerF ' K ⊕W .

2

Applying the lemmas to the morphism (55) we get:

Theorem 4.40. Let X a smooth quasi-projective surface. Let a a point in X. Let J the kernel of the
morphism:

Sn−1H∗(OX) ' H∗(Sn−1X) - H∗({a} × Sn−2X) ' Sn−2H∗(OX)

induced by the morphism:

Sn−2X - Sn−1X

x - a+ x

We have the isomorphism of graded modules:

H∗(X [n], S2E[n]) ' H∗(X,E⊗
2
)⊗ J

⊕
S2H∗(X,E)⊗ Sn−2H∗(X,OX) .
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4.10.2 Cohomology of the exterior power of a tautological vector bundle

Let X a smooth quasi projective surface and E a line bundle on X. The cohomology of the double
exterior power Λ2E[n] of the tautological vector bundle E[n] is much simpler, since we know that:

Rµ∗(Λ2E[n]) ' (Λ0C0
E)G .

Now
Λ2C0

E ' (C0
E ⊗ C0

E ⊗ εH)H

We have

C0
E ⊗ C0

E ⊗ εH '
n⊕
i=1

(
E⊗

2

i ⊗ εH
)⊕
i,j

Ei ⊗ Ej ⊗ εH

and

H∗
G(Xn,Λ2C0

E) ' H∗(Xn,
n⊕
i=1

E⊗
2

i ⊗ εH)G×H
⊕
i,j

H∗(Xn,
⊕
i,j

Ei ⊗ Ej ⊗ εH)G×H

' H∗(Xn, E1 ⊗ E2 ⊗ εH)P{12}

' Λ2H∗(E)⊗ Sn−2H∗(OX)

Therefore we get:

Theorem 4.41. The cohomology of the double exterior power Λ2E[n] of a tautological vector bundle E[n]

on the Hilbert scheme X [n], associated to the line bundle E on the smooth quasi-projective surface X, is
given by the isomorphism of graded modules:

H∗(X [n],Λ2E[n]) ' Λ2H∗(E)⊗ Sn−2H∗(OX) .

2

88



Perturbations of the metric in Seiberg-Witten equations





Introduction

In the late ’80’s Donaldson [28], [29] built the first differential invariants for compact simply connected
4-manifolds. These kinds of invariants allow to make the distinction between manifolds which are home-
omorphic but not diffeomorphic. For example, one can prove that the smooth quintic in P3

C and the
manifold 9P2

C]44P2
C are homeomorphic but not diffeomorphic. Donaldson invariants are polynomial in-

variants:
qd : H2(M,Z)× · · · ×H2(M,Z) - Q

built by means of the SU(2)-gauge theory of instantons, or anti-self-dual connections. In other words,
fixed a C∞-hermitian vector bundle E of rank 2, with trivial determinant, consider the space S of SU(2)-
connections A satisfying the anti-self-dual (ASD) condition:

F+
A = 0 . (1)

The moduli space of instantons ME is the quotient:

ME = S/G

where G is the group of automorphism of E. It is always possible to give ME a structure of complex
analytic space, but there are no reasons why ME should be smooth. To ensure that ME is a smooth
manifold, one needs to prove that the G-action is free, and that the space of solutions S is cut out
transversally by the equations (1), hence being a smooth Banach submanifold of the (Banach) affine
space of all the SU(2)-connections A. While the first task is simple to solve (considering the action of
a reduced group Ḡ = G/C(G) and gettind rid of the reducible connections by a change of metric) the
second is highly non-trivial and constitutes one of the fundamental steps in the construction of instantons
moduli spaces. The problem was solved by Freed and Uhlenbeck [46] who considered perturbations of
the equations (1) of the form:

F+,g
A = 0 (2)

where the metric g on the manifold M is seen as an additional parameter. The two authors prove that
0 is a regular value for the application (A, g) - F+,g

A ; consequently, the space of solutions S can
be given the structure of smooth Banach manifold. A standard application of the Sard-Smale theorem
then yields that for a generic Ck-metric h in Met(M) the moduli space of instantons Mh

E , relative to
the metric h, is a smooth manifold. This fundamental fact, together with the (difficult) existence of a
compactification (done by Donaldson [29], Uhlenbeck [114], [115]), allows the construction of Donaldson
polynomial invariants.

In october 1994, Seiberg and Witten (see [104], [105], [119]) built another kind of differential invariants,
numerical invariants, based on a much simpler U(1)-gauge theory, which can interpreted from the point
of view of quantum field theory as a ”dual” of Donaldson theory. On the ground of deep physical
considerations, Witten predicted that Seiberg-Witten invariants would be able to seize all the richness and
subtility of Donaldson’s invariants; furthermore he precisely conjectured that Donaldson’s polynomials
could actually be expressed in terms of Seiberg-Witten invariants. Witten conjecture is on the way of
being proved, along ideas of Pidstrigach and Tyurin, after a long and technical work by Okonek, Teleman
[99], [100], [108] and most of all by Feehan-Leness [38], [39], [40], [42], [41]. Seiberg-Witten invariants are
built from Seiberg-Witten equations: once fixed a Spinc-structure on the compact orientable riemannian
4-manifold (M, g) of spinor bundle W 'W+ ⊕W− and of fundamental unitary line bundle L ' detW+,
the equations read:

DAψ = 0 (3a)

F+
A = [ψ∗ ⊗ ψ]0 (3b)
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where A is a unitary connection on L, ψ is a positive spinor ψ ∈ Γ(W+), and [ψ∗ ⊗ ψ]0 is the traceless
part of the operator ψ∗ ⊗ ψ ∈ u(W+), hence [ψ∗ ⊗ ψ]0 ∈ isu(W+) ' iΛ2

+T
∗M . The gauge group is here

G = C∞(M,S1) and it acts on the solutions via (A,ψ) - ((g2)∗A, gψ). The group acts freely on the
solutions of equations (3a), (3b) of the form (A,ψ), with ψ 6= 0, which are said irreducible monopoles.
The moduli space of Seiberg-Witten monopoles is the quotient:

MSW = S/G

where S is the space of solutions to the Seiberg-Witten equations. To guarantee that the moduli space is
smooth we have to ensure that the G-action is free (which can be done as for instantons, by a change the
metric preventing reducible monopoles) and that the space of solutions S is a Banach submanifold of all
the configuartion space AL × Γ(W+), that is, cut out transversally by equations (3a), (3b). The second
problem is commonly solved by a perturbation of the equations of the kind:

DAψ = 0 (4a)

F+
A = [ψ∗ ⊗ ψ]0 + η (4b)

where η is an arbitrary imaginary self dual 2-form η ∈ iA2
+(M). In this way we can get the wanted

transversality and the smoothness of the moduli spaces MSW
η of solutions to equations (4a), (4b) for a

generic 2-form η ∈ iA2
+(M). Even though this perturbation is very simple, it does not seem the most

natural, nor the most geometric; as we saw previously, in Donaldson theory the transversality of equations
is achieved by the perturbation just of the metric, procedure which allows at the same time to get rid of
the reducible connections. The perturbation of the metric in Donaldson theory has a deeper geometric
meaning; on the other hand the 2-form η lacks any geometric or physical interpretation. Moreover, the
behaviour of Seiberg-Witten equations under variations of the metric is interesting in its own, although
not so much is known. The only reference about perturbations of the metric in Seiberg-Witten the
literature in an article by Eichhorn and Friedrich [31], where the two authors claim that they proved a
transversality result for generic metrics, but a careful reading of the proof reveals several mistakes which
cannot be straightforwardly corrected.

We proposed ourselves to clarify the question. The first difficulty we meet is the variation of the Dirac
operator corresponding to a variation of the metric: the question has already been studied by Bourguignon
and Gauduchon ([12], [11]). The two authors build isomorphisms (identifications) between different spinor
bundles associated with different metrics, thus succeeding in comparing different Dirac operators living
in different spinor bundles. We decided to take another approach, which we now explain. Giving a Spinc-
structure on a compact riemannian 4-manifold M is equivalent to giving a spin representation (W,ρ),
that is, the data of an hermitian vector bundle W on M and a bundle map:

ρ : TM - End(W )

such that ρ(x)∗ = −ρ(x), ρ(x)2 = −g(x, x), for all x ∈ TM (cf. [81], [38], [40])). We definitely fix a
spinor bundle W on the riemannian 4-manifold (M, g) and in correspondence to a change of the metric
(gt = ϕ∗t g, ϕt ∈ Aut(TM)) we change, in an obvious way, the Clifford multiplication by means of the
diagram:

(TM, g)
ρ- End(W )

(TM, gt)

ϕt

6
ρ t

-
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The couple (W,ρt) given by the same spinor bundle W , with the new Clifford multiplication ρt becomes
a new Spinc-structure for the new riemannian manifold (M, gt). It is evident that, in this way, it is
inevitable to change the Clifford multiplication in order to change the metric. So, what does it mean to
perturb the metric only, if we are obliged to change Clifford multiplication any time we want to change the
metric? To answer this question we are induced to study the relations between Clifford multiplications
(or Spinc-structures, since the spinor bundle is fixed) and metrics. It turns out that if we fix the spinor
bundle W and we take the set of all the compatible couples (g, ρ):

Ξ = {(g, ρ) | g ∈ Met(M) , ρ : TM - End(W ) , ρ(u)∗ = ρ(−u) , ρ(u)2 = −g(u, u)}

then Ξ is a C∞(M,PU(W ))-fibration Ξ - Met(M) on the space of metrics on which Aut(TM) acts. In
this setting the concept of perturbing the metric alone corresponds, in a weak way, to choosing variations
of the Spinc structure transversal to the vertical distribution, that is, we need the notion of a connection
over this fibration. Now there is a natural connection, the horizontal distribution in a point (g, ρ) being
given by the tangent space to the image of the section σ(g, ρ), transversal to the fiber Ξg:

Sym+(TM, g)
σ(g, ρ) - Ξ

ϕ - (ϕ∗g, ρ ◦ ϕ)

where Sym+(TM, g) denotes the positive symmetric automorphisms of the tangent bundle with respect to
the metric g. In other wordsH(g,ρ) = T(g,ρ)Imσ(g, ρ). This connection clarifies the concept of perturbation
of the metric alone in a stronger sense. We define Seiberg-Witten equations and consequently a Seiberg-
Witten moduli space M parametrized by Ξ, whose fiber over a point ξ = (g, ρ) is the standard Seiberg-
Witten moduli space MSW

g,ρ associated to the Spinc-structure given by the couple (g, ρ). We prove that
the group of unitary automorphisms of the spinor bundle acts on the fibration Ξ (in a vertical way), on
the solutions of the parametrized Seiberg-Witten equations and hence on the moduli space M; in the
case M is simply connected this action is transitive on the fibres: as a consequence two Seiberg-Witten
moduli spaces for two different Clifford multiplications over the same metric are isomorphic:

MSW
(g,ρ) 'MSW

(g,ρ′ )
.

We use variations of the Spinc structure tangent to the natural horizontal distribution to compute the
variation of the Seiberg-Witten equations. In particular, the variation of the Dirac operator we obtain in
this way is the same of Bourguignon and Gauduchon. We compute the differential DF to the perturbed
Seiberg-Witten functional (in terms of variations of the unitary connection A, the spinor ϕ and the metric
g) and its (formal) adjoint DF∗, and we study the kernel equations DF∗u = 0. Proving a vanishing
theorem for the solutions of the kernel equations is equivalent to proving transversality of Seiberg-Witten
equations for generic metrics. In the general case the equations are intricate and we still do not have the
answer.

When M is a Kähler complex surface with canonical line bundle KM , Seiberg-Witten equations
have an interpretations in terms of holomorphic couples (∂A, α), where ∂A is a holomorphic (0, 1)-
semiconnection on a line bundle N such that K∗

M ⊗N⊗2 ' L, and α is a holomorphic section of (N, ∂A).
This facts allows a drastic simplification of the Seiberg-Witten equations and consequently of our question.
After interpreting all the preceding objects in the context of complex geometry, and thanks to a splitting
of the symmetric endomorphisms with respect to the metric into hermitian and anti-hermitian ones, the
kernel equations become extremely simpler and we get that Seiberg-Witten equations are transversal for
a generic hermitian metric sufficiently close to the Kähler metric g. We precisely proved:

Theorem 0.42. Let (M, g, J) a Kähler surface. Let N a hermitian line bundle on M such that 2 deg(N)−
deg(K) < 0. Consider the canonical Spinc-structure on M twisted by the hermitian line bundle N . For

93



a generic metric h in a small open neighbourhood of g ∈ Met(M) the Seiberg-Witten moduli space MSW
h

is smooth. Actually, the statement holds for a generic hermitian metric h in a small open neighbourhood
of g.

We find a counterexample which clarifies that it is necessary to go out of the Kähler class of metrics
to obtain transversality.

1 Preliminaries and notations

In this introductory section we will recall briefly the framework of Seiberg-Witten equations, the defini-
tions of a Spinc-structure, of a spin bundle and how the spinorial connection, the Dirac operator and
finally the Seiberg-Witten equations are constructed. Moreover we will fix the notations we will be using
throughout this part.

1.1 Connections over principal fibre bundles

Let π : P - M a principal fibre bundle of structural group G over a manifold M . A connection over
the bundle P is a G-equivariant subbundle H of the tangent bundle TP , complementary to the vertical
tangent space V = kerπ∗: in other words, TpP = Vp ⊕Hp, and Hpg = (Rg)∗Hp, where Rg : P - P

is the automorphism of P given by the action of the element g ∈ G. Such notion of connection is
equivalent to the data of an equivariant g-valued 1-form ω ∈ A1(P, g) (equivariant because it must satisfy:
R∗gω = adg−1ω, where ad : G - g is the adjoint representation) such that, when we identify the tangent
space to the fibre Vp with the Lie algebra g by the isomorphism g ∈ A - A∗ ∈ Vp associating to an
element A of the Lie algebra the fundamental vertical vector field A∗, we have ω(A∗) = A, for all A ∈ g.
A connection on a principal bundle P induces a splitting TP ' V ⊕H ' V ⊕ π∗TM . We denote again
with H : TP - H the projection on the horizontal space. For a good treatment of connections on
principal bundles see [76], [92].

Let us recall briefly how to pass from a connection on a principal bundle P to a connection on an
associated vector bundle E. Let V a fixed vector space and ρ : G - GL(V ) a representation of G in
GL(V ). It is well known that the quotient of P × V for the action of G given by (p, v)g := (pg, ρ(g−1)v)
is isomorphic to a vector bundle, which we indicate with E ' P ×ρ V . We have a commutative diagram:

P × V - P

E

π

? p - M

π

?

We remark that the pull back π∗E of the bundle E on P is canonically isomorphic to the trivial
bundle P × V . We recall that if σ ∈ Ar(M,E) is an E-valued r-form on M the pull back π∗σ ∈
Ar(P, π∗E) ' Ar(P, V ) is an horizontal and G-equivariant r-form: in other words π∗σ = H∗π∗σ, and
R∗gπ

∗σ = ρ(g−1)π∗σ; we call such a form tensorial of type (ρ, V ). There is a bijection (cf [76]) between
r-tensorial forms of type (ρ, V ) and E-valued r forms in Ar(M,E). Once this is explained, let σ be a
connection 1-form on the bundle P , and φ a section in Γ(E). It is easy to see (cf [76], [103]) that the 1
form dπ∗φ+ σ(π∗φ) coincides exactly with the horizontal part H∗dπ∗φ of the differential dπ∗φ and it is
tensorial of type (ρ, V ), then there exists a unique 1-form ∇φ ∈ A1(M,E) such that:

π∗(∇φ) = dπ∗φ+ σ(π∗φ) . (5)
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The form ∇φ is called the covariant derivative of the section φ on E, and proves the existence of a vector
bundle connection ∇ : Γ(E) - A1(M,E). With this characterization of vector bundle connections
induced from connections on principal bundles, it is easy to prove the following properties:

Lemma 1.1 (General principle). (cf [92], [98], [8]). Let P a principal G-bundle and V a G-vector space.
If v ∈ V is fixed by the G-action, there is a naturally induced section ṽ of E = P ×G V , such that for any
covariant derivative ∇σ on E induced by a G connection σ on P , ∇σ ṽ = 0.

Lemma 1.2. (cf [92]) Let P and Q two principal fibre bundles over a manifold M with structural group
G, and let f : P - Q an isomorphism. Let σ a connection 1 form on Q. Then f∗σ is a connection
1-form on P . Let now V a G-vector space and E = P ×G V , F = Q×G V the associated vector bundles,
and let again f : E - F the isomorphism of vector bundles induced by the isomorphism f : P - Q.
Then the covariant derivative ∇f∗σ on E is exactly f−1∇σf , where ∇σ is the covariant derivative induced
on F by σ.

1.2 The group Spinc, Clifford algebras and spin representations

Our main references for material about Spin Geometry are Lawson-Michelsohn [82], Morgan [91], Nico-
laescu [98]. We recall that the group Spin(n) is the universal covering of the group SO(n). Let
Ad : Spin(n) - SO(n) the double covering map. The group Spinc(n) is then defined as the quotient:
Spinc(n) := Spin(n)×±1 U(1). The group Spinc(n) is a double covering of the product SO(n)× U(1):
we indicate with µ the covering map:

µ : Spinc(n)
2 : 1- SO(n)× U(1)

[α, λ] - (Ad(α), λ2)

and µ1, µ2 the two components. More precisely we have the following diagram:

Spin(n)× U(1)

Spin(n)×±1 U(1)

2 : 1

? µ

2 : 1
- SO(n)× U(1)

4 : 1
ν

-

(6)

We now recall the definition of Clifford algebra of an euclidian vector space (E, g) that is a vector space
E with a given scalar product g.

Definition 1.3. The Clifford algebra Cl(E) of the euclidian vector space (E, g) is the quotient of the
tensor algebra T (E) by the nonhomogeneous two-sided ideal generated by the elements of the form
x⊗ x+ g(x, x) , x ∈ E.

The Clifford algebra Cl(E) is an associative algebra with a natural injection E ⊂ - Cl(E); it is
characterized by the following universal property:

Proposition 1.4. For every unitary algebra A and for every linear map f : E - A such that
f(x)2 = −g(x, x) there exists a unique homomorphism of unitary algebras ϕ : Cl(E) - A such that
the diagram

E

Cl(E)
?

∩

ϕ
- A

f

-
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commutes.

If x, y ∈ E, then, in the Clifford algebra xy + yx = −2g(x, y). This rule allows us to find a basis for
the Clifford algebra in the following way: if ei, 1 ≤ i ≤ n is an orthonormal basis of (E, g), then Cl(E) is
generated by the ei with the rule eiej + ejei = −2δij ; therefore an orthonormal basis for the vector space
underlying Cl(E) is given by ei1 · · · · · eip , 1 ≤ i1 < · · · < ip ≤ n. As a consequence dimRCl(E) = 2n

and Cl(E) splits in a direct sum of vector spaces: Cl(E) = ⊕ni=0Cli(E). Despite this splitting, the
Clifford algebra is not Z-graded, but only Z/2Z-graded: indeed the position: Cl+(E) = ⊕m evenClm(E),
Cl−(E) = ⊕m oddClm(E) defines a consistent Z2-grading: Cl(E) = Cl+(E) ⊕ Cl−(E). The even part
Cl+(E) is a subalgebra of Cl(E) and Cl−(E) is a Cl+(E)-module. We define now the complexified
Clifford algebra as Clc(E) := Cl(E)⊗R C: as well as the real Clifford algebra, the complexified one is Z2

graded.
We can identify Spin(n) as the subgroup of Cl+(E)∗ generated by elements x ∈ E, g(x, x) = 1. In

this identification the Lie algebra spin(n) of Spin(n) coincides with Cl2(E). In the same way we can
identify the group Spinc(E) as the subgroup of Clc+(E)∗ generated by elements x ∈ E, g(x, x) = 1. In
the identification the Lie algebra spinc(n) is isomorphic to iR⊕Cl2(E). Going back to diagram (6), and
taking the differentials at the unity, we obtain the following diagram of Lie algebras:

spin(n)⊕ iR ' Cl2(T )⊕ iR

spinc(n)

=

?

dµ
- so(n)⊕ iR

dν
'

-

(7)

where the morphism dν : iR ⊕ Cl2(E) - iR ⊕ so(n) is given by: dν(eiej , λ) = (2Eij , 2λ) and where
Eij denotes the skew-symmetric matrix with −1 in the (i, j)-place and 1 in the (j, i) place.

1.3 Spinc and Clifford representations

Definition 1.5. A complex spin representation of the euclidian vector space (E, g) is the data of a
hermitian vector space S and of a linear map f : E - End(S) such that:
(1) f(x) = −g(x, x)
(2) f(x)∗ = f(−x) .

On End(S) we fix the hermitian metric given by (a, b) = 1/dimS·tr(ab∗) so that any spin representation
(S, f) is an isometry. Two spin representations (S, f) and (S′, f ′) are isomorphic if there is an hermitian
isometry β : S - S′ such that f ′(x) = βf(x)β−1.

Proposition 1.6. If E is an even dimensional euclidian vector space, there exists a unique (up to isomor-
phism) irreducible spin representation (S, f). Any such representation has dimension 2m, if dimRE = 2m.

If E is a 2m-dimensional euclidian vector space, an irreducible complex spin representation is obtained
(cf. [82]) by identifying E with Cm (by means of an orthogonal complex structure J) and considering
the R-linear map:

ρ : Cm - End(Λ∗Cm,Λ∗Cm)

x - x ∧ (·)− xy(·)
(8)

If (S, f) is an irreducible spin representation, by the universal property and dimension counting we have
an isomorphism of algebras Clc(E) ' EndC(S), which is compatible with the hermitian structures of
the two members. An irreducible spin representation (S, f) gives rise to a representation of the group
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Spinc(E), by composition: Spinc(E) ⊂ - Clc(E) - EndC(S). Suppose now that E is oriented
and e1, . . . , en is an oriented orthonormal basis. Let ωC the complex volume element, defined by ωC :=
i[n+1/2]e1 . . . en ∈ Spinc(E) ∩ Clcn(E). It is easy to see that ω2

C = 1 and that ωC is independent of the
chosen orthonormal basis. Let f(ωC) the induced map f(ωC) : S - S and let S+ and S− the ±1
eigenspaces.

Proposition 1.7. Let E an oriented even dimensional euclidian vector space. The Spinc representation
induced by an irreducible spin representation (S, f) of E splits in the direct sum of two irreducible Spinc-
representations S+ and S− of dimension 2m−1.

Given an irreducible spin representation (S, f) of an oriented even dimensional vector space E we
have an induced isomorphism:

f : E ⊗ C '- HomC(S+, S−) ,

or analogously, f : E⊗C '- HomC(S−, S+). Moreover we have an embedding: Spinc(E) - U(S+)×
U(S−), which, for dimRE ≥ 4 induces an embedding: Spinc(E) - SU(S+)×SU(S−). For dimRE = 4
the preceding is an isomorphism. Taking Lie algebras, for dimension 4 we have an isomorphism:

γ : Λ2E ' spin(E)
'- su(S+)⊕ su(S−) . (9)

It is easy to see that

γ(v ∧ w) =
1
2
[ρ(v), ρ(w)] =

1
2
(ρ(v)ρ(w)− ρ(w)ρ(v))

and therefore γ(ei ∧ ej) = ρ(eiej). In other words γ is induced by ρ via the identification Cl2(E) ' Λ2E.
For this reason, if there is no risk of confusion, we will indicate the map (9) with ρ instead of γ. Let ∗
the Hodge star on ΛE. The Hodge star action on Λ2E commutes with the action of f(ωC) on EndC(S),
so that f(∗σ) = f(ωC)f(σ), for all σ ∈ Λ2E. This implies that (9) splits as follows γ = γ+ ⊕ γ−,
γ+ : Λ2

+E
'- su(S+), γ− : Λ2

− :
'- su(S−). We remark that given an irreducible spin representation

(S, f) of E, the group AutSpinc(S, f), defined as:

AutSpinc(S, f) = {θ ∈ SO(g), ζ ∈ U(S) | f(θ(v)) = ζf(v)ζ−1}

is isomorphic to Spinc(E), via the map:

Spinc(E) - AutSpinc(S, f)

σ - (µ1(σ), f(σ))
(10)

1.4 Spinc-structures

Let M a manifold and (E, g) an euclidian vector bundle of even rank (rk(E) = 2m). Let L a hermitian
line bundle on M . Let PSO(g)

π1- M and PU(1)
π2- M the principal bundles of orthonormal and

hermitian frames for E and L, respectively. Consider the fibered product of PSO(g) and PU(1) over
M : PSO(g) ×M PU(1) ' π∗1PU(1) ' π∗2PSO(g). It is a principal fibre bundle over M of structural group
SO(2m)× U(1). We recall the covering map µ = (µ1, µ2) : Spinc(2m) - SO(2m)× U(1).

Definition 1.8. A Spinc-structure on the euclidian vector bundle (E, g) of determinant line bundle L
is a principal fibre bundle PSpinc of structural group Spinc(2m), which is an equivariant double covering
ξ : PSpinc - PSO(g) ×M PU(1) over the fibered product PSO(g) ×M PU(1), in the sense that ξ(pg) =
ξ(p)µ(g), for all p ∈ PSpinc , g ∈ Spinc(2m).

Actually, to give a Spinc-structure on the bundle E it is sufficient to give a Spinc-principal fibre
bundle PSpinc , and a µ1-equivariant map : α : PSpinc - PSO(g), satisying α(pg) = α(p)µ1(g). We
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will automatically have a Spinc structure of determinant line bundle L ' PSpinc ×µ2 C. Summarizing we
have a diagram:

PSpinc(2m)

β

��

α

''

ξ

##GGGGGGGGGGGGGGGGGG

PSO(2m) ×M PU(1)

��

// PSO(2m)

π1

��
PU(1)

π2 // PSO(2m)

in which the two projections α and β can be considered as quotient projections with respect to U(1) and
SO(2m) respectively.

From the central exact sequence of groups:

0 - Z2
- Spinc(2m) - SO(2m)× U(1) - 1

we get a long exact sequence of pointed sets in nonabelian cohomology:

H1(M,Z2) - H1(M,Spinc(2m)) - H1(M,SO(2m))×H1(M,U(1))
δ- H2(M,Z2)

where the Bockstein morphism δ is given by δ(E,L) = c1(L) + w2(E). Therefore we have:

Theorem 1.9. Let (E, g) an oriented euclidian vector bundle on M . There exists a Spinc-structure on
the vector bundle (E, g) if and only if the second Stiefel-Whitney class w2(E) ∈ H2(M,Z2) lifts to a class
of integral cohomology in H2(M,Z). If M is simply connected there is at most one such lifting.

Classes in H2(M,Z2) admitting a lifting to an integral class in H2(M,Z) can be characterized as
being orthogonal to the torsion subgroup T of H2(M,Z) with respect to the coupling: H2(M,Z2) ×
H2(M,Z) - Z2. Now, for the tangent bundle of a compact oriented 4-manifold, a theorem by Wu
states that w2(TM)x = x2mod 2 in Z2 (cf. [29]) for every class x ∈ H2(M,Z2); then w2(TM) is
orthogonal to the torsion subgroup and hence can be lifted to an integral class. As a consequence there
always exists a Spinc structure on the tangent bundle of a compact oriented 4-manifold.

1.5 Spinors

Let E - M be an even rank (rk(E) = 2m) oriented euclidian vector bundle on the manifold M

admitting a Spinc-structure PSpinc of determinant line bundle L. Let us consider an irreducible spin
representation (S, f) of R2m, splitting in two irreducible Spinc(2m) representations (S, f) = (S+, f+) ⊕
(S−, f−). We will call the vector bundle W := PSpinc ×f S the bundle of spinors. It splits in the direct
sum W = W+⊕W−, where W+ := PSpinc×f+ S+, W− = PSpinc×f− S− are called bundles of half spinors.
Let Cl(E) := PSO(2m) ×SO(2m) Cl(R2m) the bundle of Clifford algebras associated to E. The projection
α : PSpinc - PSO(g) induces a well defined isomorphism:

PSpinc ×µ1 R2m - E

[p, v] - α(p)v
(11)

and hence a Clifford multiplication

ρ : E
'- PSpinc ×µ1 R2m - PSpinc ×Spinc End(S)

α(p)v - [p, v] - [p, f(v)]
(12)

98



The map ρ induces isomorphisms:

ρ+ : E ⊗ C '- Hom(W+,W−) (13)

or, analogously ρ− : E ⊗ C '- Hom(W−,W+). Moreover it extends to an isomorphism:

ρ : Clc(E) - EndC(W )

called the Clifford multiplication. Moreover, we have an isomorphism:

γ = γ+ ⊕ γ− : Λ2
+E ⊕ Λ2

−E - su(W+)⊕ su(W−) .

Since det f±(x) = µ1(x)2
m−2

, Λ2m−1
W± ' L⊗

2m−2

, and detW ' L⊗
2m−1

.

1.6 The Spinc connection

Let (E, g) be an even rank (rkE = 2m) oriented euclidian vector bundle on a manifold M , and let ∇E be
a given SO(g)-connection on E: and let ωg ∈ A1(PSO(g), so(2m)) the corresponding equivariant so(2m)-
valued 1-form on the SO(2m)- principal bundle of orthonormal frames PSO(g) of (E, g). Suppose that E

has a Spinc-structure PSpinc
α- PSO(g) of determinant line bundle L, and suppose given an hermitian

connection A on L. We indicate again with A ∈ A1(PU(1), u(1)) the connection 1-form on the principal
bundle of orthonormal hermitian frames PU(1) of L. Then we can lift the connection ωg on PSO(g) and
the connection A on PU(1) to a connection on the Spinc(2m)-bundle PSpinc(2m) in the following way:
consider the two projections α : PSpinc(2m)

- PSO(g) and β : PSpinc(2m)
- PU(1). We recall the

morphism of Lie algebras (7) : dµ : spinc(2m) - so(2m)⊕ iR. We define the Spinc- connection form
Ωα,A as:

Ωα,A := (dµ)−1(α∗ωg + β∗A) ∈ A1(PSpinc(2m), spinc(2m)) . (14)

It is easy to see that Ωα,A is a Spinc(2m)-equivariant form on PSpinc(2m), hence it defines a Spinc

connection on PSpinc(2m). It follows that Ωα,A induces a connection ∇W
A on the bundle of spinors, called

the spinorial connection. It follows from the general principle 1.1 and by the definition of the Clifford
multiplication (12) that ρ is parallel with respect to the Levi-Civita connection on Cl(E) and to the
spinorial connection on W . Therefore:

∇W (ρ(x)ψ) = ρ(∇LCx)ψ + ρ(x)∇Wψ

for each x ∈ Cl(E), ψ ∈W .

1.7 The Dirac operator

Let (M, g) a 2m-dimensional oriented riemannian manifold with as Spinc-structure (such that its tan-
gent bundle has a Spinc-structure) of determinant line bundle L. Let PSO(g) the principal bundle of
orthonormal frames of (TM, g). On PSO(g) we consider the Levi-Civita connection, that is the unique
torsion-free SO(2m)-connection. Consider a U(1) connection A on L. Let W the bundle of spinors for
the tangent bundle, associated to the Spinc-structure. The Clifford multiplication establishes an isomor-
phism: ρ : Clc(TM) - EndC(W ). We remark that the metric g provides an isomorphism between TM
and T ∗M ; under this isomorphism, a Spinc-structure for TM will also be a Spinc-structure for T ∗M ,

whose associated Clifford multiplication is ρ ◦ g−1 : Clc(T ∗M)
g−1
- Clc(TM)

ρ- End(W ).
We now lift the Levi-Civita connection on (TM, g) and the unitary connectionA on L to the Spinc(2m)

connection Ωα,A on PSpinc(2m) which induces the spinorial connection ∇W
A on W . Let ρ̃ : T ∗M ⊗

W - W the evaluation map induced by the Clifford multiplication on T ∗M .
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Definition 1.10. The Dirac operator is the first order differential operator: DA : Γ(W ) - Γ(W )
given by the composition

DA := ρ̃ ◦ ∇W
A : Γ(W )

∇WA- Γ(T ∗M ⊗W )
ρ̃- Γ(W ) .

The Dirac operator splits according to the splitting of the spinorial connection: DA = D+
A ⊕ D−

A :
Γ(W+)⊕Γ(W−) - Γ(W−)⊕Γ(W+). The Dirac operator is an elliptic, formally self-adjoint differential
operator; in the previous splitting D+

A and D−
A are formal adjoints of one another. The symbol of the

Dirac operator is the Clifford multiplication: σ(DA)(ξ, ψ) = ρ(ξ)ψ for all ξ ∈ T ∗M , ψ ∈W .

1.8 The Seiberg-Witten equations

From now on M will always denote a compact oriented 4-manifold. We will suppose M equipped with
a given metric g. Such a riemannian manifold always admits a Spinc structure. Let us fix one of
determinant line bundle L. Let W the bundle of spinors for the tangent bundle (TM, g) and let ρ :
Clc(TM) - End(W ) the Clifford multiplication. We recall that, as in (9), we have an isomorphism
γ : Λ2T ∗M - su(W+) ⊕ su(W−) carrying Λ2

+T
∗M on su(W+) and Λ2

− on su(W−). Now, for each
σ ∈W+, it is easy to see, taking an orthonormal basis for W+, that the traceless part [σ∗⊗σ]0 of σ∗⊗σ is
in isu(W+). We are ready to write the Seiberg-Witten equations for a couple of unknowns (A,ψ), where
A is a hermitian connection on L and ψ is a section of W+:

DAψ =0 (15a)

ρ(F+
A ) =[ψ∗ ⊗ ψ]0 (15b)

In the equations DA is the Dirac operator associated to the Levi-Civita connection on TM and the
hermitian connection A on L. FA ∈ A2(M, iR) is the imaginary curvature 2-form of the connection A

and F+
A denotes its self-dual part. If we indicate with F (or with F g,ρ when we want to emphasize the

metric and the Clifford multiplication) the map:

F g,ρ : AU(1)
L × Γ(W+) - Γ(W−)×A2

+(M, iR)

(A,ψ) - (DAψ, ρ(F+
A )− [ψ∗ ⊗ ψ]0)

the Seiberg-Witten equation can be written simply as F g,ρ(A,ψ) = 0. We will call F g,ρ the Seiberg-Witten
functional and C = AU(1)

L × Γ(W+) the configuration space. The space of solutions to Seiberg-Witten
equations is the zero set Z(F g,ρ) of the functional F g,ρ. A solution to Seiberg-Witten equations (15)
is called a monopole. A monopole (A,ψ) is said irreducible if ψ 6= 0, reducible otherwise. Until now
we have worked in the smooth category. To be able to give a manifold structure to the solutions it is
better to work with Hilbert or Banach spaces (where the Implicit Function Theorem can be applied).
Therefore we will complete the space of configurations C in the Sobolev norm || ||2,k. We will indicate
with C2

k = (AU(1)
L )2k × Γ2

k(W+) the Sobolev completion. We will consider the Seiberg-Witten functional
as a map of Hilbert manifolds:

(F g,ρ)2k : (AU(1)
L )2k × Γ2

k(W+) - Γ2
k−1(W−)×A2

+(M, iR)2k−1 .

Actually it is not so important what k to use, provided that it is sufficiently large; in any case the moduli
space is made of smooth objects (cf. [91]).

The space of configurations and the space of solutions possess a natural C∞(M,S1) action. To define
the Seiberg-Witten moduli space we have to cut out the space of solution by the action of the gauge
group G := C∞(M,S1). The C∞(M,S1)-action is given by:

AU(1)
L × Γ(W+)× C∞(M,S1) - AU(1)

L × Γ(W+)

(A,ψ, λ) - ((λ2)∗A, λ−1ψ)
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As usual to be able to make differential considerations we will take the Sobolev completion of this action.
Therefore we will use the group G2

k+1 = L2
k+1(M,S1) instead of C∞(M,S1). The zero set of F g,ρ is

preserved by this action and hence we can define the Seiberg-Witten moduli space as the quotient

MSW
g := Z(F g,ρ)/G

or as Z((F g,ρ)2k)/G2
k+1, if we put Sobolev indices. We will also indicate with B the quotient C/G of all

the configuration space by the action of G.

1.9 Kähler surfaces

In this subsection we will briefly recall the particular form of Seiberg-Witten equations on a Kähler
manifold and their properties.

Definition 1.11. (cf. [103]) A manifold of even dimension 2m is said to be almost hermitian if the
principal bundle PGL(2m,R) of linear frames admits a reduction PU(m)

⊂ - PGL(2m,R) of the structural
group to U(m). An almost hermitian manifold is said to be a Kähler manifold if there exists a torsion
free connection on PU(m). Equivalently, the manifold M is Kähler if its holonomy group is contained in
U(m).

As a consequence an almost hermitian manifold is a Riemannian manifold (because of the injection
U(m) ⊂ - SO(2m)), an almost complex manifold (because U(m) ⊂ - GL(m,C)), and an almost
symplectic manifold (because U(m) ⊂ - Sp(2m,R)) and all the structures are compatible. In other
words, the almost hermitian structure induces a metric g, an almost complex structure J , a non degenerate
2-form ω intertwined by the relations: g(X, JY ) = ω(X,Y ), g(JX, JY ) = g(X,Y ). If M is Kähler the
torsion free connection on PU(m) induces clearly the Levi-Civita connection on PSO(2m) and it descends
from the relation (cf. [77]), valid for an arbitrary almost hermitian manifold

4g(∇LC
X Y, Z) = 6dω(X, JY, JZ)− 6dω(X,Y, Z) + g(NJ(Y,Z), JZ) = 0 (16)

that the Nijenhuis tensor NJ vanishes, since by the general principle 1.1, ∇LCω = 0 (and dω = 0) and
∇LCJ =0. By Newlander-Nirenberg theorem [97], the almost complex structure J is integrable.

We will now sketch how an almost hermitian structure on M induces a canonical Spinc structure on
the manifold M . We recall that for an even dimensional vector space E a complex spin representation
can be obtained by the R-linear map : ρ : Cn - End(Λ∗Cn,Λ∗Cn), defined by ρ(x) = x ∧ (·)− xy(·),
identifying E with Cn and then by extending ρ to E ⊗R C by C-linearity. We have S+ = Λeven

C E and
S− = Λodd

C E. We now have the following representation of U(m) (cf. [91]):

Lemma 1.12. The monomorphism of Lie groups U(m) ⊂ - SO(2m) × S1 given by f - (f,det f)
lifts to a monomorphism: U(m) ⊂ - Spinc(2m) such that the diagram:

Spinc(2m)

U(m) ⊂ -

-

SO(2m)× S1

µ

?

is commutative.

Therefore we have a diagram

U(m) ⊂ - Spinc(2m)

S1

µ2

?

det
-
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As a consequence an almost hermitian structure on a manifold M induces a Spinc structure on its tangent
bundle TM , called the canonical Spinc structure in the following way:

PSpinc(2m) := PU(m) ×U(m) Spin
c(2m) .

The following diagram summarizes the situation:

PU(1)

PU(m)
⊂ -

de
t

-

PSpinc(2m)

β

6

PSO(2m)

α

?
-

Consider now the complexified tangent bundle TM ⊗ C of the almost hermitian manifold M and the
complex tangent bundle T 1,0M . We have the following: (cf. [91])

Proposition 1.13. Let M an almost hermitian manifold M with almost complex structure J . The
canonical Spinc-structure on M has K∗

M as determinant line bundle. The spinor bundle is isomorphic
to the exterior power W ' Λ∗T 1,0M , and the Clifford multiplication is given by:

TM - End(Λ∗T 1,0M,Λ∗T 1,0M)

x -
√

2(x1,0 ∧ (·)− x1,0y(·))

Moreover the spinor bundle can be identified with the exterior algebra of all (0, ∗)-forms: W ' Λ0,∗T ∗M .
The Clifford multiplication is then given by:

T ∗M - End(Λ∗T 1,0M,Λ∗T 1,0M)

x -
√

2(x0,1 ∧ (·)− x0,1y(·))

An easy consequence of the preceding proposition is that, when we complexify the Clifford multipli-
cation we get the map:

T ∗M ⊗ C - End(Λ∗T 1,0M,Λ∗T 1,0M)

z -
√

2(z0,1 ∧ (·)− z1,0y(·))
(17)

We now pass to recall the Dirac operator on an almost hermitian manifold as done is [51] or in [98].

Definition 1.14. Let (M, g, J) an almost hermitian manifold and let ω the fundamental form. The Lee
form θ is the real 1-form defined as :

θ := Λdω .

where Λ denotes the contraction with the fundamental form ω.

Remark 1.15. On an almost complex manifold (M, g, J) the Cauchy-Riemann operator on Λp,qT ∗M is
defined as ∂̄η = (dη)p,q+1.

Let now M an almost hermitian 4-manifold.

Lemma 1.16. Let (M, g, J) an almost hermitian 4-manifold. The Dirac operator for the canonical Spinc

structure on M is the operator: D : Γ(Λ0,∗T ∗M) - Γ(Λ0,∗T ∗M) given by:

D :
√

2(∂̄ + ∂̄∗)± 1
4
ρ(θ)

where the sign is negative for positive spinors and positive for negative ones.
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The the complex bilinear form gC obtained by extending g by C bilinearity provides a C-linear iso-
morphism between T 1,0M and T ∗M0,1 and between T 0,1M and T ∗M1,0. The metric g induce also an
hermitian metric on TM ⊗C by the position h(Z,W ) = gC(Z, W̄ ), for Z,W ∈ T ∗M ⊗C. The real hodge
star ∗ on M is again compatible with gC:

σ ∧ ∗τ = (σ, τ)CΦ

where (·, ·)C is the coupling on forms induced by gC and Φ is the volume form on M . On an almost
hermitian manifold we dispose also of the complex Hodge star ], defined by means of the hermitian
metric 〈·, ·〉h induced by h:

σ ∧ ]τ = 〈σ, τ〉hΦ .

By the relations above we immediately get:

σ ∧ ]τ = 〈σ, τ〉hΦ = (σ, τ̄)C = σ ∧ ∗τ̄

which implies ] = ∗̄. On an almost hermitian manifold the complex self dual 2-forms for the real Hodge
star ∗ decompose as follows:

Λ2
+T

∗M ⊗ C ' Λ2,0T ∗M ⊕ Λ2,0T ∗M ⊕ Cω . (18)

The real self-dual 2-forms Λ2
+T

∗M are identified with the real part of the bundle (18) via the isomorphism:

Λ0,2T ∗M ⊕ Rω - Λ2
+T

∗M

(µ, λ) - µ+ µ̄+ λ .

We interpret now the morphism ρ : Λ2
+T

∗M - su(W+) on an almost hermitian manifold (cf. [91]):

Lemma 1.17. The isomorphism: ρ : Λ2
+T

∗M - su(W+) induced by the canonical Spinc structure on
an almost hermitian 4-manifold M is given by :

Λ0,2T ∗M ⊕ Rω - su(C⊕ Λ0,2T ∗M)

(α, λω) - 2

(
−iλ −αy(·)
α ∧ (·) iλ

)
(19)

It extends to a real isomorphism:

Λ0,2T ∗M ⊕ Λ2,0T ∗M ⊕ Cω - End0(C⊕ Λ0,2T ∗M)

(α, β, λω) - 2

(
−iλ −β̄y(·)
α ∧ (·) iλ

)

The canonical Spinc structure on an almost hermitian manifold has fundamental class c = c1(K−1
M ) =

−KM . Let now change Spinc-structure. Any other Spinc structure is obtained by twisting the canonical
spinor bundle with an hermitian line bundle N . The corresponding spinor bundle will be W ' Λ0,∗T ∗M⊗
N ; the bundles of half spinors: W+ ' ΛevenT ∗M ⊗N and W− ' ΛoddT ∗M ⊗N . The determinant line
bundle is L ' K−1

M ⊗ N⊗2
, so that the fundamental class of this new Spinc-structure is c = c1(K−1

M ⊗
N⊗2

) = 2c1(N)− c1(KM ). For such a Spinc structure the Clifford multiplication:

ρN : T ∗M ⊗ C - End((Λ0,0T ∗M ⊕ Λ0,2T ∗M)⊗N,Λ0,1T ∗M ⊗N)

is given by ρN := ρ⊗ idN and the corresponding isomorphism:

γN : Λ0,2T ∗M ⊕ Rω - su((C⊕ Λ0,2T ∗M)⊗N)
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is again obtained by twisting γ with the identity of N : γN := γ ⊗ idN . The choice of an hermitian
connection A on L by lemma 2.2 is equivalent to the choice of an hermitian connection A0 on the
line bundle N , since L = N⊗2 ⊗ K−1

M , and this is then sufficient to define a spinorial connection on
Λ0,∗T ∗M ⊗N : the resulting spinorial connection ∇W

A is actually the tensor product of the connections
∇T∗M and the connection A0 on N . As a consequence the corresponding Dirac operator becomes:

DA =
√

2(∂̄A0 + ∂̄∗A0
)± 1

4
ρN (θ)

and is obtained by coupling the ∂̄+ ∂̄∗ operator on Λ0,∗T ∗M with the connection A0 on the N -component
(cf. [51], [9], [98], [91]).

2 Parametrized Seiberg-Witten equations

2.1 Vector bundle characterization of Spinc-structures and connections

Let us begin with the following characterization of Spinc-structure, which will be useful in the sequel.
This point of view is close to that of Kronheimer-Mrowka (cf. [81]) or Feehan-Leness (cf. [38], [40]).

Proposition 2.1. Let (E, g) an even rank oriented euclidian vector bundle on a manifold M . A Spinc-
structure on E is equivalent to an irreducible spin representation (W,ρ), that is, the data of an hermitian
bundle W and a bundle map : ρ : E - End(W ) such that for all u ∈ E,
(1) ρ(u)∗ = ρ(−u)
(2) ρ(u)2 = −g(u, u)idW

Proof. We recall that given a Spinc-structure PSpinc
α- PSO(E,g) we can form the bundle of

spinors by means of an irreducible spin representation (S, f) for R2m : f : R2m - End(S) which
induces a representation of the group Spinc(2m) ⊂ - U(S). The µ1 invariance of the map α implies
that the map (11) ([p, v] - α(p)v) gives an isomorphism PSpinc(2m) ×µ1 R2m ' E. Now taking the
map (12), ρ : E ' PSpinc(2m) ×µ1 R2m - PSpinc(2m) ×Spinc(2m) End(S), defined by α(p)v -

[p, f(v)], we get an irreducible spin representation for the bundle (E, g): ρ : E - End(W ). The bundle
properties (1) and (2) come directly from the corresponding properties for f . Indeed, if u = α(p)v, then
ρ(u)2 = [p, f(v)2] = [p,−|v|2idS ] = −g(u, u)idW and ρ(u)∗ = [p, f(v)∗] = [p,−f(v)] = −ρ(u).

Conversely, let f : R2m - End(S) a fixed irreducible spin representation for R2m. and let

ρ : (E, g) - End(W )

an irreducible spin representation for the euclidian vector bundle (E, g). The set of couples (θx, ζx), such
that θx : (R2m, (·, ·)) - (Ex, gx) is an orientation preserving isometry and ζx : (S, hS) - (Wx, hx)
is an isometry and ρx(θx(v)) = ζxf(v)ζ−1

x , forms a principal fibre bundle of structural group Spinc(2m)
because of the isomorphism (10). The projection

PSpinc(2m)
- PSO(E,g)

(θ, ζ) - θ

is µ1 equivariant and defines the Spinc-structure. The morphism: PSpinc(2m) ×µ1 R2m - E carrying
[(θx, ζx), v] - θx(v) is an isomorphism. Analogously we have an isomorphism: PSpinc×Spinc S - W

carrying [(θx, ζx), w] - ζx(w).
We want to show now that the two procedures are the inverse of one another. Suppose we start from

a Spinc structure α : PSpinc - PSO(g) and we build a Clifford multiplication ρ : E - End(W )
by means of an irreducible spin representation (S, f), as we have explained above. We then form the
Spinc principal bundle P̃Spinc of couples (θx, ζx), where θx is an orientation preserving isometry θx :
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R2m - Ex, and ζx : S - Wx is an isometry such that ρ(θx(v)) = ζxf(v)ζ−1
x . Now, if p ∈ PSpinc ,

then the position w - [p, w] well defines an hermitian isometry from S - Wx, which we will call
β(p). We can see that ρ(α(p)v)[p, w] = [p, f(v)w] = β(p)f(v)β(p)−1[p, w] for all w ∈ S. That is, for
all p ∈ PSpinc the couple (α(p), β(p)) is in P̃Spinc . Therefore, we have an injective morphism of Spinc-
bundles :

PSpinc - P̃Spinc

p - (α(p), β(p))

which is obviously an isomorphism, being injective and equivariant.
For the converse let us start with a Clifford representation ρ : E - End(W ), satisfying (1) and

(2), and form the P̃Spinc bundle of couples (θx, ζx) satisfying ρ(θx(v)) = ζxf(v)ζ−1
x as above. Then, by

the procedure explained in the beginning, we get a Clifford multiplication

E
'- P̃Spinc ×µ1 Rn - PSpinc ×Spinc End(S)

' - End(W )

θx(v) - [(θx, ζx), v] - [(θx, ζx), f(v)] - ζxf(v)ζ−1
x = ρ(θx(v))

Therefore the Clifford multiplication associated to the structure P̃Spinc is exactly ρ.

2

An isomorphism of irreducible spin representation (W,ρ), (W ′, ρ′) of (E, g) is a couple (θ, ζ), θ ∈
SO(E, g), ζ : W - W ′ an isometry such that ρ′(θ(v)) = ζρ(v)ζ−1.

We see now how to characterize the spinorial connection in vector bundle terms. We will need the
following lemma, in order to compare connections on the line bundle L and on detW ' L⊗

2
. We

indicate with A⊗
2

the connection on L⊗
2

naturally induced by A, sometimes indicated with AL⊗2 , that
is A⊗ idL + idL ⊗A. See Teleman [109] for a more general argument.

Lemma 2.2. Let L a hermitian line bundle on a manifold M . Let AU(1)
L the affine space of hermitian con-

nections on L, and AU(1)

L⊗2 the affine space of hermitian connections on L⊗
2
. The map AU(1)

L

⊗2
- AU(1)

L⊗2

carrying a unitary connection A on its tensor square A⊗
2

is an isomorphisms of affine spaces, modelled
on the isomorphism of vector spaces: A1(M, iR) - A1(M, iR) carrying a form ω on 2ω. Moreover,
if A is a unitary connection on L and FA is its curvature 2-form, FA ∈ A2(M, iR), then FA⊗2 = 2FA,
where FA⊗2 is the curvature 2-form of the connection A⊗

2
on L⊗

2
.

Proof. Let us fix an origin A0 on the affine space AU(1)
L . Then A⊗

2

0 will be the corresponding origin
in AU(1)

L⊗2 . Let now A = A0 + ω ∈ AU(1)
L . We have A⊗

2 −A⊗
2

0 = 2ω ∈ A1(M, iR), indeed, fixing a unitary

frame e on L, and e⊗ e on L⊗
2
, we get:

(A⊗
2
−A⊗

2

0 )e⊗ e = A⊗
2
(e⊗ e)−A⊗

2

0 (e⊗ e)

= Ae⊗ e+ e⊗Ae−A0e⊗ e− e⊗A0e

= (A−A0)e⊗ e+ e⊗ (A−A0)e = ωe⊗ e+ e⊗ ωe = 2ω(e⊗ e)

From the definition of A⊗
2

= A⊗ idL + idL ⊗ A we see immediately that FA⊗2 = FA ⊗ idL + idL ⊗ FA.
On the unitary frame e⊗ e we have FA⊗2 (e⊗ e) = FAe⊗ e+ e⊗ FAe = 2FA(e⊗ e).

2

An analogous result is valid for L⊗
n

.

Proposition 2.3. Let (E, g) an even rank oriented euclidian vector bundle on a manifold M with a
Spinc structure of determinant line bundle L and let W the spinor bundle for the bundle E associated
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to the Spinc-structure. Let ρ the Clifford multiplication. Let ∇E an orthogonal connection on E. The
spinorial connection ∇W

A is a hermitian connection on W satisfying:
(1) [∇W

A , ρ(x)] = ρ(∇Ex) for all x ∈ Γ(E)

(2) ∇W induces the connection A⊗
2m−1

on L⊗
2m−1

.
If rk(E) = 4 then the conditions (1) and (2) completely characterize ∇W

A .

Proof. Let ρ0 : R2m - End(S) the irreducible spin representation used to build the spinor bundle
W . We recall that the Clifford multiplication ρ is obtained by “bundlelizing“ ρ0:

ρ : E ' PSpinc(2m) ×µ1 R2m - PSpinc(2m) ×Spinc(2m) End(S) ' End(W ) .

In other words, ρ ∈ E∗⊗End(W ) ' PSpinc(2m)×µ1⊗Spinc(2m) (R2m)∗⊗End(S). From this point of view,
ρ is the bundle version of ρ0 ∈ (R2m)∗⊗End(S). Now ρ0 is µ1⊗Spinc(2m)- invariant: it follows from the
general principle 1.1 that the corresponding tensor field ρ is parallel for any connection on E∗⊗End(W )
induced by a Spinc(2m)-connection on PSpinc(2m). Now the Spinc connection we have fixed on PSpinc

induces the connection ∇E∗⊗End(W )
A . As a consequence, ∇E∗⊗End(W )

A ρ = 0. Recalling the definition of
connection on a tensor product we get (1). It is clear that the connection induced on L is A, so (2) is
immediate.

For the uniqueness, suppose first that we have two hermitian connections ∇W and ∇̃W satisfying (1)
and (2). If rk(E) = 4 a unitary connection on W satifying condition (1) determines an orthogonal connec-
tion on su(W ), induced by the connection on Λ2E via the parallel isomorphism γ : Λ2E - su(W ), and
a unitary connection on detW . A choice of an orthogonal connection on su(W ) and a unitary connection
on detW uniquely determines a unitary connection on W (cf. Feehan and Leness [38],[40]). Since the
connections they induce on detW coincide by (2) and the connections induced on su(W ) are forced to
coincide by (1) and by the parallel isomorphism γ, the two unitary connections ∇W and ∇̃W verifying
(1) and (2) must coincide.

2.2 Changes of metric

Let (M, g) an oriented compact riemannian 4-manifold. Let α : PSpinc - PSO(g) a Spinc-structure
for the tangent bundle (TM, g). Let h another metric on TM and let ϕ = ϕhg ∈ Aut(TM) such that
h = ϕ∗g. Therefore ϕ induces an isometry ϕ : (TM,ϕ∗g) - (TM, g). The inverse isometry ϕ−1

induces an isomorphism of orthonormal frames ϕ−1 : PSO(g)
- PSO(h). From the point of view of

vector bundles let ρ : (TM, g) - End(W ) the Clifford representation associated to the Spinc-structure.
We recall that it satisfies: ρ(u)∗ = −ρ(u), ρ(u)2 = −g(u, u)idW . The composition:

(TM, g)
ρ- End(W )

(TM,ϕ∗g)

ϕ

6

ρ
◦ ϕ

=
ϕ
∗ ρ
-

is again a Clifford representation, this time for the metric h. Indeed

(ϕ∗ρ)(u)∗ = ρ(ϕ(u))∗ = −ρ(ϕ(u)) = −(ϕ∗ρ)(u)

(ϕ∗ρ)(u)2 = ρ(ϕ(u))2 = −g(ϕ(u), ϕ(u)) = −h(u, u)

This new Clifford representation is isomorphic to the old one associated to the metric g by the isomor-
phism (ϕ, idW ), so that the Spinc-principal bundle Pϕ

∗ρ
Spinc associated to the Clifford representation ϕ∗ρ
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is isomorphic to the Spinc principal bundle P ρSpinc by the map:

P ρSpinc
ϕ−1

- Pϕ
∗ρ

Spinc

(θ, ζ) - (ϕ−1θ, ζ)

This map is clearly fibered over ϕ−1:

P ρSpinc
ϕ−1

- Pϕ
∗ρ

Spinc

PSO(g)

α

? ϕ−1
- PSO(h)

α

?

so that Pϕ
∗ρ

Spinc = ϕ∗P ρSpinc . It is clear that Pϕ
∗ρ

Spinc is a Spinc structure for the tangent bundle (TM, h)
with the metric h. Actually the map ϕ−1 ◦ α : P ρSpinc - PSO(h) is already a Spinc structure for the
bundle (TM, h), indeed:

(ϕ−1 ◦ α)(pg) = ϕ−1(α(pg)) = ϕ−1(α(p)µ1(g)) = ϕ−1(α(p))µ1(g)

because α, being a Spinc structure for PSO(g), is µ1 equivariant, and ϕ−1 is SO(4) equivariant. Moreover
the map ϕ−1 ◦ α induces the Clifford representation ϕ∗ρ. Indeed, the Clifford representation associated
to the Spinc -structure ϕ−1 ◦ α : P ρSpinc - PSO(h) is given by

TM
'- P ρSpinc ×ϕ−1◦α R2m - P ρSpinc ×Spinc End(S) ' End(W )

ϕ−1(α(p)v) - [p, v] - [p, f(v)]

which is exactly ϕ∗ρ = ρ ◦ ϕ, indeed, ρ ◦ ϕ(ϕ−1(α(p)v)) = ρ(α(p)v) = [p, f(v)]. As a consequence, when
changing the metric we do not need to change nor the bundle of spinors, nor the principal Spinc-bundle,
but only the covering map:

P ρSpinc
α×M β- PSO(g) × PU(1)

PSO(h) × PU(1)

ϕ−1 ×M idW

?

(ϕ −1◦ α)×
M β

-

or, in other words, the Clifford multiplication, to obtain another Spinc-structure for the new metric
h = ϕ∗g.

2.3 Compatible Clifford multiplications

Let Met(M) the space of riemannian metrics over the manifold M : it is an open cone in the space of
sections C∞(M,S2T ∗M) and once we fix a metric g it is parametrized by the space of positive symmetric
automorphisms Sym+(TM, g) of the tangent bundle with respect to g. For more informations about
the structure of the space of Riemannian metrics on a manifold M see Freed and Groisser [45], Gil-
Medrano and Michor [52]. What we will do is to fix a metric g ∈ Met(M) and consider the isomorphism
Sym+(TM, g) ' Met(M). Now Sym+(TM, g) (or better its space of sections, but, by abuse of notation,
we will not write them differently) can always be completed in Sobolev norms to Sym+(TM, g)2k, with k
sufficiently large. Therefore we will speak of the tangent space TgMet(M), meaning the tangent space to
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the identity TidSym+(TM, g) ' sym(TM, g), that is the space of sections of symmetric endomorphisms
of TM with respect to g, completed in Sobolev norms if necessary.

Let W - M a fixed hermitian rk = 4 vector bundle on the manifold M . Let R the set of
representations ρ : TM - End(W ) such that ρ(u)∗ = −ρ(u) for all u ∈ TM . Such a representation is
said compatible with a metric g if, moreover, it satisfies the other condition ρ(u)2 = −g(u, u)idW , for all
u ∈ TM . Let now be Ξ the set of compatible couples (g, ρ):

Ξ := {(g, ρ)|g ∈ Met(M) , ρ ∈ R , ρ(u)2 = −g(u, u) ∀u ∈ TM } .

The next proposition gives the structure of Ξ. We recall that the group PU(V ), for an hermitian vector
space V , is defined as the quotient PU(V ) := U(V )/U(1) ' SU(V )/±1.

Proposition 2.4. The projection p : Ξ - Met(M) gives on Ξ the structure of a principal fibration of
structural group C∞(M,PU(W )).

Proof. Let g ∈ Met(M) and let ρ, ρ′ ∈ Ξg := p−1(g) two representations compatible with the metric
g. On every point x ∈M ρx and ρ′x are two irreducible spin representations of the euclidian vector space
(TxM, gx):

(TxM, gx)
ρx- End(Wx)

End(Wx)

ρ ′
x

-

But by proposition 1.6 every two such representations are isomorphic: it follows that there exists f ∈
U(Wx) such that

ρ′x(vx) = fρx(vx)f−1 .

Now fxρx(vx)f−1
x = ρx(vx) for all vx if and only if fx ∈ U(1). Therefore over each point x ∈M there is

a PU(Wx)-bundle of possible representations with the metric gx. This implies that the representations
ρ, ρ′ differ globally by a section f ∈ C∞(M,PU(W )), where PU(W ) denotes the bundle of groups∐
x∈M PU(Wx).

2

Proposition 2.5. The position:

Aut(TM)× Ξ - Ξ

(ϕ, (g, ρ)) - (ϕ∗g, ρ ◦ ϕ)

defines a free action of Aut(TM) on Ξ. The restriction of this action to SO(TM, g) for a fixed metric
g ∈ Met(M) acts vertically on the fiber Ξg.

Proof. The proof is almost evident. The fact that if (g, ρ) ∈ Ξg then (ϕ∗g, ϕ∗ρ) is in Ξϕ∗g has
actually already been proven in subsection 2.2. It remains to prove that the action is free. Suppose that
(ϕ∗g, ϕ∗ρ) = (g, ρ). Then ϕ∗ρ(x) = ρ(x) for all x ∈ TM . Then ρ(ϕ(x)) = ρ(x), which is equivalent to
ρ(ϕ(x) − x) = 0 for all x ∈ TM . But then 0 = ρ(ϕ(x) − x)2 = −g(ϕ(x) − x, ϕ(x) − x) = |ϕ(x) − x|2

which implies ϕ(x) = x for all x ∈ TM , that is ϕ = idTM .

2
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Remark 2.6. We have just seen that changes of the Spinc structure in the fibre Ξg do not change the
metric and correspond to changes in the Clifford multiplication. Changing the metric means, in a weak
way, changing the Spinc structure associated to (g, ρ) according to directions transversal to the fibre Ξg
and varying as many parameters as the space of metrics. In other words, we need a distribution H of
TΞ such that: T(g,ρ)Ξ ' T(g,ρ)Ξg ⊕H(g,ρ) and H(g,ρ) ' TgMet(M) ' C∞(M,S2T ∗M). It means that we
need to fix an isomorphism :

TΞ ' V ⊕ p∗TMet(M)

where V is the vertical distribution. In particular a connection on Ξ is sufficient for this purpose.

Proposition 2.7. For each (g, ρ) ∈ Ξ, the section:

Sym+(TM, g)
σ(g, ρ) - Ξ

ϕ - (ϕ∗g, ρ ◦ ϕ)

is transversal to the fibre Ξg and the tangent space to its image in the point (g, ρ):

H(g,ρ) := T(g,ρ)Imσ(g, ρ)

defines naturally an equivariant horizontal distribution of TΞ and hence a connection on Ξ.

Proof. The fact that the section σ(g, ρ) is transversal to the fibre and that T(g,ρ)Ξ ' T(g,ρ)Ξg ⊕H(g,ρ)

is evident. To show that the distribution H actually defines a connection it remains to prove that
it is C∞(M,PU(W ))-equivariant. But it follows immediately that the C∞(M,PU(W ))-action and the
Aut(TM)-action commute. Indeed let fx ∈ PU(Wx) and let f̃x a lifting to U(Wx). Now ρx is the
punctual Clifford multiplication ρx : TxM - End(Wx). Let ϕx ∈ Aut(TxM). Let us denote with If̃
the inner automorphism If̃ : End(W ) - End(W ) associated to f̃ : it is clear that If̃ depends only on
the PU(Wx)-class of f̃ , that is f . We have the following diagram:

(TxM, gx)
ρx

''NNNNNNNNNNN If (ρx)

��

End(Wx)

If &&MMMMMMMMMM

(TxM,ϕ∗xgx)

ϕx

OO

ϕ∗xρx

77ppppppppppp

ϕ∗xIf (ρx)=If (ϕ
∗
xρx)

// End(Wx)

The fact that it commutes means exactly that ϕ∗xIf (ρx) = If (ϕ∗xρx); this proves the commutation of the
global actions. Differentiating the the commutation formula for ϕ ∈ Sym+(TM, g), we immediately get
the C∞(M,PU(W ))-invariance of the distribution H.

2

Since the choice of a metric g ∈ Met(M) allows us to identify Sym+(TM, g) ' Met(M) with the map:
ϕ - ϕ∗g, we have:

Lemma 2.8. The choice of an element ξ ∈ Ξ determines a trivialisation:

Met(M)× C∞(M,PU(W )) ' Sym+(TM, g)× C∞(M,PU(W )) - Ξ

(ϕ, f) - f∗ϕ∗ξ
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It is evident that we have a C∞(M,U(W ))-action on Ξ, because of the map

C∞(M,U(W )) - C∞(M,PU(W )) ;

in general this induced action is not transitive on the fibers because of the obstruction :

C∞(M,U(W )) - C∞(M,PU(W ))
δ- H1(M,S1) . (20)

The following lemma gives some more information on the Bockstein operator δ, which allows us to prove
the transitivity of the C∞(M,U(W ))-action when the manifold M is simply connected.

Lemma 2.9. The Bockstein operator δ : C∞(M,PU(W )) - H1(M,S1) takes its values in the torsion
subgroup of H1(M,S1) given by the image of H1(M,µ4) in H1(M,S1), where µ4 indicates the subgroup
of S1 of 4-roots of unity.

Proof. A section f ∈ C∞(M,PU(W )) can be lifted locally to U(W ); therefore let {Ui}i∈I a covering
of M such that for each i ∈ I there exists a local lifting f̃i ∈ C∞(Ui, U(W )) of the section f . On the
intersection Uij := Ui ∩ Uj two liftings f̃i and f̃j differ by an element λij ∈ C∞(Uij , S1): f̃i = λij f̃j .
The cocycle {λij}ij constitutes the image of the section f by the Bockstein operator δ(f), that is, the
obstruction to a global lifting of the section f . Now both f̃i, f̃j are in C∞(Uij , U(W )). As a consequence
det f̃i = λ4

ij det f̃j , which implies {λ4
ij}ij = {det f̃i det f̃j

−1
}ij = 0. It means that the cocycle {λij}ij takes

its values in the kernel of the map H1(M,S1) - H1(M,S1) induced by the short exact sequence:

0 - µ4
- S1 z4- S1 - 0

which is precisely the image of H1(M,µ4) in H1(M,S1).

2

Corollary 2.10. If M is simply connected any section f of C∞(M,PU(W )) lifts to a section f̃ ∈
C∞(M,U(W )).

Proof. If the manifold M is simply connected, H1(M,Z) = 0, then the exact sequence of the universal
coefficient theorem

0 - Ext1M (H0(M,Z),Z4) - H1(M,Z4) - Hom(H1(M,Z),Z4) - 0

implies the isomorphism: Ext1M (H0(M,Z),Z4) ' H1(M,Z4). But H0(M,Z) ' Z and Ext1M (Z,Z4) = 0.
This implies that in the sequence (20) the Bockstein operator is the zero map, and the projection

C∞(M,U(W )) - C∞(M,PU(W )) - 0

is surjective.

2

Corollary 2.11. If the manifold M is simply connected the group C∞(M,U(W )) acts transitively on the
fibers of Ξ with stabilizer C∞(M,S1).

Corollary 2.12. If M is simply connected then Aut(TM) × C∞(M,U(W )) acts transitively on Ξ with
stabilizer {1} × C∞(M,S1).
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2.4 Parametrized Seiberg-Witten equations

In this subsection we will define Seiberg-Witten equations parametrized by the space Ξ. The first thing to
do is to fix a suitable space of configurations for the equations we are going to write. Let ξ = (g, ρ) ∈ Ξ.
ρ : TM - End(W ) is a Clifford representation compatible with the metric g. Let ωg the volume
element on the manifold M for the metric g. The involution ρ(ωg) allows to define the bundles of half-
spinors W ξ

+ and W ξ
− as the eigenbundles of ρ(ωg) for ±1, respectively. We have: W ' W ξ

+ ⊕W ξ
−. We

have to pay attention to the fact that varying ξ ∈ Ξ, the involution ρ(ωg) may vary and W ξ
+ and W ξ

−
may change. The determinant line bundle Lξ is always a square root of detW , (Lξ)⊗

2 ' detW and it
is isomorphic to Lξ ' detW ξ

+ ' detW ξ
−. The main problem here is to define a suitable space of U(1)

connections on Lξ, the difficulty being due to the fact that Lξ varies with ξ ∈ Ξ. To overcome this
obstacle, we will use lemma 2.2 to perform actually a change of variables. Indeed for all ξ the affine
space of U(1) connections on Lξ is isomorphic, via the tensor square, to the space of U(1) connections on
detW . By this lemma and by proposition 2.3 the spinorial connection is determined by an g-orthogonal
connection on TM , and by a unitary connection on detW . So it is the same (up to taking the square,
or square root to pass from one to the other) to fix the unknown connections in AU(1)

Lξ
or in AU(1)

detW , but
the latter has the advantage that it does not change when we vary ξ; hence it is natural to take AU(1)

detW

as the space of unknown U(1) connections. To avoid cumbersome notations, we will adopt a different
notation for the spinorial connection and the Dirac operator: once we fix an unitary connection A on
detW , ∇W,ρ,g

A will indicate the spinorial connection on W , that is, the only hermitian connection on W
for which ρ is parallel (always with respect to the Levi-Civita connection on TM) and which coincides
with A on detW (and not with A⊗

2
!). Dρ,g

A is the Dirac operator built using this spinorial connection
∇W,ρ,g
A . As a consequence, FA is the curvature 2-form of the connection A on detW , thus being twice

the curvature 2-form of its square root
√
A on Lξ, FA = 2F√A; this explains the factor 1/2 in the second

equation below. Now we are ready to define parametrized Seiberg-Witten equations. Let ξ = (g, ρ) ∈ Ξ
and let πξ+ : End(W ) - su(W ξ

+) the orthogonal projection on the (real) bundle of traceless anti-
hermitian endomorphisms of W ξ

+, and, if ψ ∈ W , let us denote with ψ+,ξ the positive part of the spinor
ψ: ψ+,ξ = −1/2(ρ(ωg)ψ − ψ). The space of configurations C is given by C := AU(1)

detW × Γ(W ) × Ξ. The
parametrized Seiberg-Witten equations for the unknowns (A,ψ, (g, ρ)) ∈ C are:

ρ(ωg)ψ = −ψ (21a)

Dg,ρ
A ψ+,ξ = 0 (21b)

ρ(F+,g
A )
2

= πξ+[ψ∗ ⊗ ψ] (21c)

We recall that we do not fix the decomposition W = W+ ⊕W−, and that in general W ξ
+ and W ξ

− may
vary with ξ. The first equation is therefore necessary to guarantee that, for each (g, ρ) ∈ Ξ, a spinor
solution ψ is in W ξ

+. We call parametrized Seiberg Witten functional the map:

F : AU(1)
detW × Γ(W )× Ξ - Γ(W )× Γ(W )× isu(W )

(A,ψ, (g, ρ)) - (ρ(ωg)ψ + ψ,Dg,ρ
A ψ+,ξ,

ρ(F+,g
A )
2

− πξ+[ψ∗ ⊗ ψ])

Consider the trivial bundle over Ξ: Ξ × Γ(W ) × Γ(W ) × isu(W ). The functional F take its values in
the subbundle whose fiber over ξ is Γ(W ξ

−) × Γ(W ξ
−) × isu(W ξ

−), that is the kernel of the bundle map:
Ξ × Γ(W ) × Γ(W ) × isu(W ) - Ξ × Γ(W ) × Γ(W ) × isu(W ) given by: (ξ, σ, χ, h) - (ξ, ρ(ω)σ −
σ, ρ(ωg)χ− χ, ∗gh− h). We denote with Z(F) the zero set of F, or the space of solutions to (21).

Let us consider the projection p : Z(F) - Ξ. It is clear that the fiber of p over (g, ρ), p−1(g, ρ) '
Z(F g,ρ) is the space of solutions of standard Seiberg-Witten equations with metric g and Clifford rep-
resentation ρ. Our aim is to define a big moduli space M for the equations (21) parametrized by Ξ,
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that is, with projection π : M - Ξ such that each fiber of π, π−1(g, ρ) is isomorphic to the standard
Seiberg-Witten moduli space MSW

g,ρ for fixed metric g and fixed Clifford representation ρ. To do this
we need a C∞(M,S1) action on C, inducing the standard action on each fibre. Let us define the right
C∞(M,S1)-action in the obvious way:

AU(1)
detW × Γ(W )× Ξ× C∞(M,S1) - AU(1)

detW × Γ(W )× Ξ

(A,ψ, (g, ρ), λ) - ((λ4)∗A, λ−1ψ, (g, ρ))

The projection
AU(1)

detW × Γ(W )× Ξ - Ξ (22)

is clearly invariant for the C∞(M,S1)-action, so the action is fiberwise. We note that if we take a
connection A⊗

2
on detW , the connection (λ4)∗A⊗

2
= ((λ2)∗A)⊗

2
, so that on every fiber the action

coincides with the standard action for Seiberg-Witten equations. As the action is fiberwise and in each
fiber the zero set Z(F g,ρ) of Seiberg-Witten equations is preserved by the action, we have an induced
action on the zero set Z(F):

Z(F)× C∞(M,S1) - Z(F) .

We can therefore pass to the quotient Z(F)/C∞(M,S1).

Definition 2.13. The parametrized Seiberg-Witten moduli space M is the quotient of the space of
solutions of the parametrized Seiberg-Witten equations (21) by the gauge group C∞(M,S1).

The C∞(M,S1) invariance of the map (22) together with the fact that C∞(M,S1) preserves Z(F)
implies that the map Z(F) - Ξ is C∞(M,S1)-invariant and hence, taking the quotient, it descends to
a projection:

π : Z(F)/C∞(M,S1) 'M - Ξ .

The situation is summarized by the diagram :

Z(F g,ρ) ⊂ - Z(F)

MSW
g,ρ

⊂ -

-
p

M
-

(g, ρ)

p

?
⊂ -

�

π

Ξ
?�

π

where the horizontal maps are embeddings of topological spaces. In particular, the fiber of the projection
π : M - Ξ over a point (g, ρ) is the standard Seiberg-Witten moduli space MSW

g,ρ for a fixed metric
g and a Clifford multiplication ρ.

We will show now that we have a C∞(M,U(W ))-action on the space of configuration C that pre-
serves the space of solutions Z(F). Moreover the restriction of this C∞(M,U(W )) action to C∞(M,S1)
coincides with the C∞(M,S1) action defined above; since C∞(M,S1) is the center of C∞(M,U(W )), the
C∞(M,U(W ))-action we will define commutes with the C∞(M,S1)-action defined above, thus descending
to a nontrivial C∞(M,U(W )) action on the moduli space M. We define the right C∞(M,U(W ))-action
on the space of configurations C by the following position:

AU(1)
detW × Γ(W )× Ξ× C∞(M,U(W )) - AU(1)

detW × Γ(W )× Ξ

(A,ψ, (g, ρ), f) - ((det f)∗A, f−1ψ, (g, f∗ρ))
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We can define again a natural right C∞(M,U(W )) action on the space isu(W )×Γ(W )×Γ(W ) as follows:

isu(W )× Γ(W )× Γ(W )× C∞(M,U(W )) - isu(W )× Γ(W )× Γ(W )

(h, ψ, ϕ, f) - (f∗h, f−1ψ, f−1ϕ)

If ξ = (g, ρ) we will write f∗ξ for (g, f∗ρ) = (g, f−1ρf). The next proposition includes all the remarks
made here above:

Proposition 2.14. The parametrized Seiberg-Witten functional F : C - isu(W ) × Γ(W ) × Γ(W ) is
C∞(M,U(W ))-equivariant:

F((A,ψ, (g, ρ)) · f) = F(det f∗A, f−1ψ, (g, f∗ρ)) = F(A,ψ, (g, ρ)) · f

Proof. First of all we prove that f−1(ψ+,ξ) = (f−1ψ)+,f∗ξ. Indeed (f−1ψ)+,f∗ξ = −1/2((f∗ρ)(ωg)f−1ψ−
f−1ψ) = 1/2(f−1ρ(ω)ff−1ψ − f−1ψ) = −1/2f−1(ρ(ωg)ψ − ψ) = f−1(ψ+,ξ) We consider now the con-
nection ∇W,g,f∗ρ

(det f)∗A: by proposition 2.3 it is characterized by the property that f∗ρ : TM - End(W )

is parallel, that is [∇W,g,f∗ρ
(det f)∗A, f

∗ρ(x)] = f∗ρ(∇LCx), and by the property that ∇W,g,f∗ρ
(det f)∗A induces the

connection (det f)∗A on detW . We will show that f−1∇W,g,ρ
A f verifies these properties, thus proving

that it coincides with ∇W,g,f∗ρ
(det f)∗A. For the first property:

[f−1∇W,g,ρ
A f, (f∗ρ)(x)] = [f−1∇W,g,ρ

A f, f−1ρ(x)f ] = f−1[∇W,g,ρ
A , ρ(x)]f

= f−1ρ(∇LCx)f = f∗ρ(∇LCx) .

For the second it is evident to see that the connection f−1∇W,g,ρ
A f induces the connection det f−1Adet f =

(det f)∗A on detW . Once this is done, the Dirac operator

Dg,f∗ρ
(det f)∗A = f∗ρ ◦ ∇W,g,f∗ρ

(det f)∗A = f−1ρf ◦ f−1∇W,g,ρ
A f

= f−1ρ∇W,g,ρ
A f = f−1Dg,ρ

A f .

We pass now to the second equation. The curvature 2-form is F(det f)∗A = (det f)−1◦FA◦det f , but FA is
a tensor, that is, C∞(M,C)-linear, so F(det f)∗A = FA. We remark that πξ+[ψ∗⊗ψ] = [ψ∗+,ξ⊗ψ+,ξ]0. Now,
for any spinor ψ, we remark that (f−1ψ)∗⊗ f−1ψ is the composition: f−1(ψ∗⊗ψ)(f−1)∗, but, since f ∈
C∞(M,U(W )), then ff∗ = 1, so that (f−1)∗ = f , and then (f−1ψ)∗ ⊗ f−1ψ = f−1(ψ∗ ⊗ψ)f . Moreover
trf−1(ψ∗⊗ψ)f = trψ∗⊗ψ, hence [(f−1ψ)∗⊗f−1ψ]0 = f−1[ψ∗⊗ψ]0f . Finally πf

∗ξ
+ [(f−1ψ)∗⊗(f−1ψ)] =

[(f−1ψ)∗+,f∗ξ⊗ (f−1ψ)+,f∗ξ]0 = [(f−1ψ+,ξ)∗⊗ (f−1ψ+,ξ)]0 = f−1[ψ∗+,ξ⊗ψ+,ξ)]0f = f−1πξ+[ψ∗⊗ψ]f . As
a consequence :

F((A,ψ, (g, ρ)) · f) =F(det f∗A, f−1ψ, (g, f∗ρ))

=(Dg,f∗ρ
(det f)∗A(f−1ψ)+,f∗ξ,

f∗ρ(F+,g
(det f)∗A)

2
− πf

∗ξ
+ [(f−1ψ)∗ ⊗ (f−1ψ)], f∗ρ(ωg)f−1ψ + f−1ψ)

=(f−1Dg,ρ
A ff−1(ψ+,ξ),

f−1ρ(F+,g
A )f

2
− f−1πξ+[ψ∗ ⊗ ψ]f, f−1ρ(ωg)ff−1ψ + f−1ψ)

=(f−1Dg,ρ
A ψ+,ξ, f

−1(
(ρ(F+,g

A )f
2

− πξ+[ψ∗ ⊗ ψ])f, f−1(ρ(ωg)ψ + ψ)f)

=(Dg,ρ
A ψ+,ξ,

ρ(F+,g
A )
2

− πξ+[ψ∗ ⊗ ψ], ρ(ωg)ψ + ψ) · f = F(A,ψ, (g, ρ)) · f

as required.

2

Corollary 2.15. The space of solutions to the parametrized Seiberg-Witten equations is invariant under
the action of C∞(M,U(W )).
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Remark 2.16. It is evident that the C∞(M,U(W )) action, restricted to C∞(M,S1), coincides with the
C∞(M,S1) action defined in the beginning of the subsection. It is clear that the two actions commute
because C∞(M,S1) is the center on C∞(M,U(W )).

Proposition 2.17. There is a C∞(M,U(W )) action on the moduli space M.

Proof. Let f ∈ C∞(M,U(W )) and let f : Z(F) - Z(F) the automorphism associated to f . The
fact that the C∞(M,U(W )) action commutes with the C∞(M,S1) action means exactly that for each
such f the automorphism f is C∞(M,S1) equivariant, and then it descends to a map f : M - M. It
is clear that the identity induces the identity of the quotients. Now, if f , f ′ ∈ C∞(M,U(W )), we have a
commutative diagram:

Z(F)
f //

f ′f

55Z(F)
f ′ // Z(F) .

Passing to the quotient, we have a commutative diagram:

M
f //

f ′f

66M
f ′ // M

that proves the associativity for the action on the moduli space.

2

Corollary 2.18. Let f ∈ C∞(M,U(W )). We have MSW
g,f∗ρ 'MSW

g,ρ

Proof. It is clear that the map f : Z(F) - Z(F) is fibered over the map f : Ξ - Ξ :

Z(F)
f - Z(F)

Ξ

p

? f - Ξ

p

?

and all the maps are C∞(M,S1)-equivariant. Passing to the quotient we get a commutative diagram:

M
f - M

Ξ

π

? f - Ξ

π

?

that is, the map f : M - M is fibered over f : Ξ - Ξ. As a consequence, it exchanges the fibers
of the projection π and induces an isomorphism π−1(g, ρ) 'MSW

g,ρ

f- MSW
g,f∗ρ ' π−1(g, f∗ρ)

2

Corollary 2.19. If M is simply connected and ρ, ρ′ are two Clifford multiplications

ρ, ρ′ : (TM, g) - End(W )

compatible with the same metric g, then MSW
g,ρ 'MSW

g,ρ′ .

Proof. In the case M is simply connected, the group C∞(M,U(W )) acts transitively on each fibre Ξg
of Ξ, that is, any two Clifford representations ρ, ρ′ : (TM, g) - End(W ) compatible with the same
metric g differ by the action of an element f ∈ C∞(M,U(W )), ρ′ = f∗ρ. Then we conclude by the
preceding corollary.

2
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2.5 Compatible Clifford representations with fixed decomposition

Let (M, g) a riemannian 4-manifold with a given Clifford representation ρ : TM - End(W ) compatible
with the metric. We have seen in the preceding subsections that a change in the metric g - ϕ∗g along
the horizontal distribution (that is, by means of a positive symmetric automorphism ϕ ∈ Sym+(TM))
corresponds to a change in the Clifford representation ρ - ρ◦ϕ. Consider now the diagram of Clifford
representations induced by the isometry ϕ : (TM,ϕ∗g) - (TM, g):

Cl(TM, g) - End(W )

Cl(TM,ϕ∗g)

ϕ

6

ϕ
∗ ρ

-

The volume element for the new metric ωϕ∗g is exactly the image of the volume element ωg for the map
ϕ−1, or ϕ(ωϕ∗g) = ωg. As a consequence (ϕ∗ρ)(ωϕ∗g) = ρ(ωg): the image of the volume elements ωg and
ωϕ∗g remains the same: this means also that the decomposition of the bundle of spinors W in the direct
sum of bundles of half spinors W = W+ ⊕W− does not change. Conversely, if for two representations
ρ, ρ′ compatible with the metrics g,h, respectively, the decomposition of W in half spinors is fixed
W = W+ ⊕W−, then the images of the volume elements are the same: ρ(ωg) = ρ′(ωh). For this reason
when changing the metric in a horizontal way, we can restrict our attention to the space of Clifford
representations with fixed decomposition in half spinors, or, equivalently, with a fixed compatible unitary
involution in End(W ) playing the role of all volume elements. More precisely we can restrict us to bundle
maps:

ρ+ : TM - Hom(W+,W−)

such that ρ+(x)∗ρ+(x) = g(x, x)idW+ for all x ∈ TM . We can then build a map

ρ : TM - Hom(W+W−)⊕Hom(W−,W+)

x - (ρ+(x), ρ−(x))

where ρ−(x) = −ρ+(x)∗. Such a map ρ satisfies the properties: ρ(x)2 = −g(x, x)idW and ρ(x)∗ = −ρ(x),
in other words ρ ∈ Ξg. Let R+ the space of bundle maps ρ+ : TM - Hom(W+,W−), and let Ξ+ the
set of compatible couples Ξ+ = {(g, ρ+) | g ∈ Met(M) , ρ+ ∈ R+ | ρ∗+(x)ρ+(x) = g(x, x)idW }. It is easy
to see that R+ is a subspace of R via the injection: ρ+

- ρ, and Ξ+ is naturally a subfibration of Ξ,
via the embedding (g, ρ+) - (g, ρ).

Proposition 2.20. (1) The projection Ξ+
- Met(M) is naturally a principal C∞(M,P (U(W+) ×

U(W−))) subfibration of Ξ.
(2) There is a natural connection on Ξ+ compatible with the natural connection on Ξ.
(3) The Aut(TM) action on Ξ preserves the subfibration Ξ+.
(4) There is a fiberwise C∞(M,U(W+)×U(W−)) action on Ξ+, which is transitive on the fibres if M is
simply connected.

Proof. The proof of this proposition is analogous to the proof of correspondent propositions for Ξ.
The injection Ξ+

⊂ - Ξ carrying ρ+ to ρ = ρ+ ⊕ ρ− is clearly equivariant and fibered over the identity
of Met(M). If I is the unitary involution in U(W ) image in End(W ) of all the elements ρ(ωg) coming
from a (g, ρ+) in Ξ+, Ξ+ is identified to the space ΞI of all compatible representation (g, ρ) ∈ Ξ such that
ρ(ωg) = I. As we have remarked in the discussion at the beginning of this subsection the group Aut(TM)
acts on Ξ without altering the volume element, that is, it induces an action on Ξ+. The horizontal
distribution H on Ξ+ is again given in a point ξ = (g, ρ) by the tangent space to the section σ(g, ρ) :
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Sym+(TM, g) - Ξ+ sending ϕ - ϕ∗ξ, that is, Hξ = TξImσ(g, ρ). If (f+, f−) ∈ C∞(M,U(W+) ×
U(W−)), the C∞(M,U(W+) × U(W−)) action on Ξ+ is given by ((f+, f−), (g, ρ+)) - (g, f−1

− ρ+f+)
The fourth statement is a consequence of the fact that, analogously to proposition 2.9, the Bockstein
operator

C∞(M,U(W+)× U(W−))
δ- C∞(M,P (U(W+)× U(W−)))

δ- H1(M,S1)

takes its values in a torsion subgroup of H1(M,S1), which is zero if M is simply connected.

2

Let W = W+ ⊕W− a decomposition given by a fixed volume element I = ρ(ωg), (g, ρ) ∈ Ξ. The
restriction of equations (21) to AU(1)

detW × Γ(W+)× ΞI gives rise to a system of Seiberg-Witten equations
parametrized by Ξ+, when we identify ΞI with Ξ+:

Dg,ρ
A ψ =0 (23a)

ρ(F+,g
A )
2

=[ψ∗ ⊗ ψ]0 (23b)

for unknowns (A,ψ, ξ) ∈ AU(1)
detW × Γ(W+) × Ξ+. In the same way the restriction of the functional F to

AU(1)
detW × Γ(W+)× ΞI gives a Γ(W+)× isu(W+)-valued functional F+. This functional is equivariant for

the action of the group C∞(M,U(W+)× U(W−)) induced by the restriction of the corresponding action
of the group C∞(M,U(W )). We can consider the moduli space M+ of solutions to equations (23) defined
as M+ ' Z(F+)/C∞(M,S1). It is clearly fibered over Ξ+. The fibres M+,g,ρ+ are clearly isomorphic
to the fibres MSW

g,ρ , for ρ = ρ+ ⊕ ρ−, and therefore to standard Seiberg-Witten moduli spaces for a
fixed metric g and Clifford representation ρ. The following proposition summarizes the properties of M+

corresponding to the analogous properties of M.

Proposition 2.21. There is a nontrivial C∞(M,U(W+)×U(W−)) action on the moduli space M+, such
that the projection M+

- Ξ+ is equivariant. If f ∈ C∞(M,U(W+)×U(W−)), then Mg,f∗ρ+
+ 'Mg,ρ+

+ .
If M is simply connected, and ρ+, ρ′+ are two Clifford representations compatible with the same metric

and with the same decomposition in half spinors, then Mg,ρ+
+ 'Mg,ρ′+

+ .

3 Variation of the Seiberg-Witten equations

In the previous section we have built the setting of parametrized Seiberg-Witten equations which gives
sense to the study of perturbations of the metric alone. We have seen that the perturbations we are
interested in correspond to horizontal variations of Seiberg-Witten equations for a natural connection on
the space of parameters. In this section we perform the computation of the variation of Seiberg-Witten
equations corresponding to such directions. The more interesting part of this computation is the variation
of the Dirac operator. Our method allows to consider different Dirac operators Dg,ρ

A and Dϕ∗g,ϕ∗ρ
A for

two different metrics as acting on the space of sections of the same bundle of spinors, fixed once for all.
Our result coincides with that obtained by Bourguignon and Gauduchon in [12] and in [11].

Let (M, g) a riemannian 4-manifold and PSO(g) the principal SO(4) bundle of oriented g-orthonormal
frames. Let us fix on the riemannian 4-manifold (M, g) a Spinc-structure α : PSpinc - PSO(g). Let W
be the bundle of spinors for (TM, g) associated to the Spinc structure α and let ρ : TM - End(W )
the Clifford representation associated to α. Let W = W+ ⊕ W− be the decomposition in bundles of
half-spinors given by the volume element ρ(ωg). Let Met(M) be the space of metrics on M . Consider
now the fibration Ξ+

- Met(M) of representations ρ+ : TM - Hom(W+,W−) compatible with
some metric h ∈ Met(M), that is ρ+(x)∗ρ+(x) = h(x, x)idW for some h ∈ Met(M). The Spinc-structure
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α corresponds to the point ξ = (g, ρ) in the fibration Ξ+ ⊆ Ξ. Consider the parametrized Seiberg Witten
equations (23) for unknowns (A,ψ, ξ) ∈ AU(1)

detW × Γ(W+)× Ξ+, ξ = (g, ρ):

Dg,ρ
A ψ = 0 (24)

ρ(F+,g
A )
2

= [ψ∗ ⊗ ψ]0 . (25)

Let H 6 TΞ+ the horizontal distribution on Ξ+ defining the natural connection: Hξ = TξImσ(g, ρ). The
purpose of this section is to compute the variation of the parametrized Seiberg-Witten equations (24)
in correspondence of a horizontal variation of the parameter ξ: this variation corresponds to a ”pure”
perturbation of the metric, by our discussion on remark 2.6.

3.1 Variation of the Dirac operator

3.1.1 Variation of the spinorial connection

The purpose of this subsection is to study how the Spinc connection on the bundle of spinors W varies
when changing the metric. Let α : PSpinc - PSO(g) our Spinc structure on the manifold M , as
discussed above. Let h ∈ Met(M) another metric and ϕ ∈ Sym(TM, g) the only symmetric automorphism
of TM with respect to g such that h = ϕ∗g. Let PSO(h) the principal fibre bundle of h-orthonormal frames
of TM . The isometry ϕ : (TM,ϕ∗g) - (TM, g) lifts to an isomorphism of principal SO(4)-bundles :
ϕ : PSO(h)

- PSO(g) which can be further lifted to an automorphism of the GL+(4)-bundle of oriented
frames of TM , PGL+(4). As discussed in subsection 2.2, when changing the metric we do not need to
change the principal bundle PSpinc , nor the bundle of spinors W : we can take as Spinc structure for the
euclidian vector bundle (TM, h) the composition map: ϕ−1 ◦ α:

PSpinc

PSO(g)

α

? ϕ−1
- PSO(h)

ϕ −
1
◦
α
-

which corresponds to the following change in the Clifford representation:

(T, g)
ρ- End(W )

(T, h)

ϕ

6

ρ
◦ ϕ

-

Let PU(1) the fundamental U(1) bundle associated to the Spinc structure, and let PSpinc
β- PU(1) the

projection. The following diagram summarizes the situation:

PU(1)
�β

PSpinc(4)

PSO(4)(g)

α

? ϕ−1
- PSO(4)(h)

ϕ −
1
◦ α

-

PGL+(4)

?

∩

ϕ−1
- PGL+(4)

?

∩
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Let now ωg ∈ A1(PSO(4)(g), so(4)) the Levi-Civita connection 1-form on PSO(g), that is the only tor-
sion free SO(4) connection. Let A ∈ A1(PU (1), u(1)) a unitary connection 1-form on PU(1). The
spinorial connection 1-form Ωα,A on PSpinc is obtained by pulling back to PSpinc the forms ωg and
A: Ωα,A := (dµ)−1(α∗ωg + β∗A) ∈ A1(PSpinc , spinc(4)). When we change the metric using the sym-
metric automorphism ϕ, we have to lift the Levi-Civita connection ωh by means of the new projection
ϕ−1 ◦ α; as a consequence the new spinorial connection 1 form is

Ωϕ−1◦α,A = (dµ)−1((ϕ−1 ◦ α)∗ωh + β∗A)

= (dµ)−1((α∗ ◦ (ϕ−1)∗ωh + β∗A) .

Let now gt a differentiable path of metrics in Met(M) of the form: gt = g(1 + ts) = g + tk, where s is
a symmetric endomorphism with respect to g, and k ∈ S2T ∗M , k = gs. Let ϕt the positive symmetric
automorphism of the tangent bundle (with respect to g) such that gt = ϕ∗t g; we will indicate ϕ−1

t

with φt. We can write φt = (1 + ts)−
1
2 . Let ωt the Levi Civita connection 1 forms for the metric gt,

ωt ∈ A1(PSO(gt), so(4)). We obtain a differentiable path of spinorial connections on PSpinc :

Ωt,A = Ωφt◦α,A = (dµ)−1((φt ◦ α)∗ωt + β∗A) = (dµ)−1((α∗ ◦ φ∗tωt + β∗A) ∈ A1(PSpinc , spinc(4)) .

Let us compute now the derivative of this connection form in the vector space A1(PSpinc , spinc(4)):

Ω′ =
d

dt
Ωt |t=0=

d

dt
(dµ)−1(α∗φ∗tωt + β∗A) |t=0

=(dµ)−1(α∗
d

dt
φ∗tωt |t=0)

=(dµ)−1(α∗[r∗ωg + ω
′
]) .

We remark that r∗ωg + ω
′

belongs to the vector space A1(PSO(4)(g), so(4)), and therefore Ω
′

can be
identified with an element of A1(PSpinc(4), so(4)). We remark furthermore that ω′ does not take its
values in so(4), because the different connection forms ωt live on different principal bundles PSO(gt).
However, we can think the ωt as connection 1- forms on PGL+(4), hence as elements in A1(PGL+(4), gl(4)).
Therefore ω′ makes sense as an element in A1(PGL+(4), gl(4)). It is thanks to the corrective term r∗ωg

that we can lift the derivative to PSpinc and obtain a spinc(4)-valued 1 form.
We are going to prove that the form r∗ωg+ω

′
is a tensorial form of type (ad, so(4)): as a consequence

it is the pull back of a vector bundle valued 1 form ω̇M ∈ A1(M,End(W )) on the manifold M . We begin
with the following lemma:

Lemma 3.1. Let Q a principal fibre bundle on a manifold M of structural group G. Let g its Lie algebra.
Let (−ε, ε) 3 t - ωt a differentiable path of connection 1-forms. Then the derivative:

ω′ :=
d

dt
ωt |t=0

is a tensorial 1-form on Q of type (ad, g).

Proof. To prove that the derivative ω′ is a tensorial form of type (ad, g) we have to show that
(1) ω′ is ad-equivariant, that is R∗gω

′ = ad(g−1)ω′

(2) ω′ is horizontal, that is, ω′ vanishes on the vertical distribution (ω′(V ) = 0 if V is a vertical vector
field).
For the first:

R∗gω
′ == R∗g

d

dt
ωt =

d

dt
R∗gωt =

d

dt
ad(g−1)ωt = ad(g−1)

d

dt
ωt = ad(g−1)ω′ .

For the second, let A ∈ g and let A∗ the fundamental vector field on Q associated to A (cf [76]). The
value of an arbitrary connection form on a fundamental vector field A∗ is exactly A, therefore, for all
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t, ωt(A∗) = A. Taking the derivative at the point t = 0 we get ω′(A∗) = 0 for all fundamental vector
fields A∗, A ∈ g. Now it is simple to conclude, remembering that any vertical vector field is generated by
fundamental vector fields A∗.

2

Corollary 3.2. The forms Ω′ and ω′ are tensorial of type (ad, spinc) and (ad, gl(4)) respectively. Ω′ can
be identified with a tensorial form of type (ad, so(4)).

We remark that φ∗tωt are connection 1-forms on A1(PSO(g), so(4)) for all t, therefore we get:

Corollary 3.3. The 1-form r∗ωg + ω′ ∈ A1(M, so(4)) is a tensorial form.

Let us now indicate with ω̇P = d/dt(φ∗tωt)|t=0. We have seen by lemma 3.1 that ω̇P is a tensorial
1-form of type (ad, so(4)) on PSO(g). As a consequence there is a unique 1-form ω̇M ∈ A1(M, so(T ))
realizing ω̇P : π∗(ω̇M ) = ω̇P . Let us now compute the variation of the spinorial connection form on the
vector bundle level. Let ∇W

t the spinorial connection induced by Ωt,A on W . As seen in subsection 1.1,
it is characterized by the formula:

π∗(∇W
t φ) = dπ∗φ+ (dµ)−1(Ωt,A)(π∗φ) .

Differentiating both terms in t = 0 we get:

π∗(∇̇Wφ) = (dµ)−1(Ω̇)(π∗φ) .

Now we know that Ω̇ = α∗ω̇P , where ω̇P ∈ A1(PSO(g), so(4)) so, actually:

π∗(∇̇Wφ) = (dµ1)−1(α∗ω̇P )(π∗φ) .

We remark that (dµ1)−1 : so(4) ' Λ2R4 - spin(4) ' su(S+) × su(S−) coincides with (1/2)ρ0 :
Λ2R4 - su(S+)× su(S−). Moreover ω̇P = π∗ω̇M , so that

(dµ1)−1(α∗ω̇P ) =
1
2
ρ0(α∗π∗ω̇M ) =

1
2
π∗ρ(ω̇M )

where we have used the diagram:

P × End(S)
π- End(W )

P
? π - M

?

Therefore

π∗(∇̇Wφ) =
1
2
(π∗ρ(ω̇M ))(π∗φ) = π∗

(
ρ(ω̇M )

2
φ

)
and this implies

∇̇Wφ =
ρ(ω̇M )

2
φ .

We now want to find out what ω̇M is in vector bundle terms. By lemma 1.2 we know that the
connection form ωt is associated to the connection φ−1

t ∇LC
t φt on the tangent bundle TM , where ∇LC

t

is the Levi-Civita connection form the metric gt. Therefore the derivative ω̇P is the tensorial 1 form
on PSO(g) which is associated to the derivative of the path of connections φ−1

t ∇LC
t φt on TM , which is

∇̇LC + ∇LCr, where r = −dφt/dt|t=0 = dϕt/dt|t=0. We have indicated with ∇̇LC the variation of the
Levi-Civita connection ∇LC

t on TM , for the path of metrics gt. As a consequence we can establish:

ω̇M = ∇̇LC −∇LCr . (26)
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3.1.2 Variation of the Levi-Civita connection

We are now going to compute the variation ∇̇LC of the Levi-Civita connection correspondent to a variation
of the metric. Let gt a path of metrics gt = g+ tk = g(1+ ts), with s a symmetric endomorphism of TM
with respect to the metric g. Let ∇t the Levi-Civita connection for the metric gt. It is characterized by
the property of being compatible with the metric:

dgt(ξ, η) = gt(∇tξ, η) + gt(ξ,∇tη)

and the property of being torsion-free:

∇t
ξη −∇t

ηξ = [ξ, η] . (27)

We rewrite the first condition:

dg((1 + ts)ξ, η) = g((1 + ts)∇tξ, η) + g((1 + ts)ξ,∇tη) .

Taking the derivative with respect to t we get:

dg(sξ, η) = g(s∇ξ, η) + g(∇
′
ξ, η) + g(sξ,∇η) + g(ξ,∇

′
η)

therefore we can write:

g(∇(sξ), η) + g(sξ,∇η) = g(s∇ξ, η) + g(∇
′
ξ, η) + g(sξ,∇η) + g(ξ,∇

′
η)

which gives:
g((∇s)ξ, η) = g(∇

′
ξ, η) + g(ξ,∇

′
η) . (28)

Now differentiating in t the torsion-free condition (27) we get:

∇
′

ξη = ∇
′

ηξ .

We evaluate the condition (28) on a vector field θ:

g((∇θs)ξ, η) = g(∇
′

θξ, η) + g(ξ,∇
′

θη) .

Finally we obtain:

2g(∇
′

θξ, η) = g(∇′

θξ, η) + g(ξ,∇′

θη)− g(∇′

ηξ, θ)

−g(ξ,∇′

ηθ) + g(∇′

ξη, θ) + g(η,∇′

ξθ) = g((∇θs)ξ, η)− g((∇ηs)ξ, θ) + g((∇ξs)η, θ) .

which implies that the variation of the Levi-Civita connection is:

g(∇
′

θξ, η) =
1
2

[g((∇θs)ξ, η)− g((∇ηs)ξ, θ) + g((∇ξs)η, θ)] . (29)

Fix now a local orthonormal frame in TM , e1, . . . , e4 and let e1, . . . , e4 the dual orthonormal frame on
T ∗M . We will indicate with τkij the components of the tensor ∇̇ with respect to the frame ei, and with
ckij the component of the tensor ∇s, that is:

τkij = g(∇̇eiej , ek) , ckij = g((∇eis)ej , ek) .

We remark that the tensor ckij is symmetric in j and k, since the Levi-Civita connection preserves the
bundle of symmetric automorphisms. Therefore from (29) we get:

τkij =
1
2
[ckij − cikj + cijk] .

We remark that τkij is symmetric in i and j. It is now simple to compute the tensor ω̇M = ∇̇ − ∇r =
∇̇ − 1/2∇s: if we indicate its components with ω̇kij , we have:

ω̇kij =
1
2
[cijk − cikj ]

where we remark that ω̇ij is skew-symmetric in j and k, and hence belongs to A1(M, so(T )) as expected.
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3.1.3 Variation of the Dirac operator

We pass now to study the variation of the Dirac operator. We recall that for each metric gt we chose as
Clifford multiplication the map:

ρt := ρ ◦ ϕ−1
t : (TM, gt) - End(W ) . (30)

Let now ∇W,t
A the spinorial connection on the spinor bundle W with respect to the Levi-Civita connection

∇t for the metric gt and the unitary connection A. The Dirac operator Dξt
A = Dgt,ρt

A for the Spinc-
structure ξt = (gt, ρt) given by (30) is:

Dξt
A = Dgt,ρt

A = ρ̃t ◦ ∇W,t
A : Γ(W ) - Γ(W ) .

We remark that the different Dirac operators Dgt,ρt
A act on the same space of sections Γ(W ): it is now

easy to compute the derivative in t = 0:

d

dt
Dξt
A |t=0 =

d

dt
[ρ̃t ◦ ∇W,t

A ] =
d

dt
ρ̃t|t=0 ◦ ∇W,t

A + ρ̃ ◦ ∇̇W .

Now d/dt ρt|t=0 = −ρ̃ ◦ r = −1/2 ρ̃ ◦ s. We need now the definition of the trace and divergence of a
symmetric tensor.

Definition 3.4. Let g a riemannian metric on the tangent bundle TM . Let σ a 2-tensor. We define the
metric trace tr g(σ) as the trace of σ when it is identified with an element of T ∗M ⊗ TM , by means of
the identification between the tangent and the contangent bundles provided by the metric g.
The divergence of σ is the differential 1-form defined by:

(div σ)(Y ) := tr g[X - (∇Xσ)(Y [,−)] if σ ∈ TM ⊗ TM

or
(div σ)(Y ) := tr g[X - (∇Xσ)(Y,−)] if σ ∈ T ∗M ⊗ TM , or σ ∈ T ∗M ⊗ T ∗M .

If σ ∈ S2T ∗M ' sym (TM, g), ei is a local orthonormal frame for TM then div σ =
∑
i(∇eiσ)ei.

Let us now compute (ρ̃ ◦ ∇̇W )φ for a spinor φ. From (26) we know

∇̇Wφ =
ρ(ω̇M )

2
φ .

We know that

ω̇M =
∑
ijk

(ω̇M )kije
i ⊗ ej ⊗ ek =

1
2

∑
ijk

[cijk − cikj ]e
i ⊗ ej ⊗ ek

=
1
2

∑
ijk

[cijk − cikj ]e
i ⊗ (ej ∧ ek) =

1
4

∑
ijk

[cijk − cikj ]e
i ⊗ Ekj .

Therefore

∇̇Wφ =
ρ(ω̇M )

2
φ =

1
8

∑
ijk

[cijk − cikj ]e
i ⊗ ρ(ejek)φ

When we apply once more the Clifford multiplication we get

ρ̃(∇̇Wφ) =
1
8

∑
ijk

[cijk − cikj ]ρ(e
i)ρ(ejek)φ =

1
8

∑
ijk

[cijk − cikj ]ρ(eiejek)φ

and recalling that (ω̇M )kij = τkij − 1/2 ckij we get:

ρ̃(∇̇Wφ) =
1
8

∑
ijk

[2τkij − ckij ]ρ(eiejek)φ =
1
4

∑
ij

τ jiiρ(ej)φ−
1
8

∑
ij

cijiρ(ek)φ .

121



Now τ jii = 1/2[cjii − ciji + ciij ], and recalling that ckij = g((∇eis)ej , ek), we have
∑
ij τ

j
ii = div s− 1/2dtr s

and
∑
ij c

i
ji = dtr s. Finally we have:

ρ̃(∇̇Wφ) =
1
4
ρ(div s− dtr s)φ

As a consequence we get the theorem:

Theorem 3.5. The variation of the Dirac operator Dξ
A : Γ(W ) - Γ(W ) associated to the spin repre-

sentation ξ = (g, ρ), corresponding to the variation of the metric g along the direction s ∈ sym(TM, g),
is given by

d

dt
Dξt
A |t=0 = −1

2
ρ̃ ◦ s ◦ ∇W +

1
4
ρ(div s− dtr s) (31)

This variation coincides with the one found by Gauduchon and Bourguignon in [12], and Bourguignon
in [11].

3.2 Variation of the Seiberg-Witten equations

We come now back to equations (24):

Dξ
Aψ =0

ρ(F+,gξ
A )
2

=[ψ∗ ⊗ ψ]0 .

in the unknowns (A,ψ, ξ) ∈ AU(1)
detW × Γ(W+) × Ξ+ with ξ = (gξ, ρξ). Let F+ : AU(1)

detW × Γ(W+) ×
Ξ+

- Γ(W+)× isu(W+) the parametrized Seiberg-Witten functional. The purpose of this subsection
is to compute the variation of equations (24) for a variation of the parameter ξ along the horizontal
direction, or in an equivalent manner, the partial differential ∂F+/∂ξ(ξ̇) for a variation ξ̇ of the parameter
ξ in the horizontal distribution Hξ. Since the horizontal distribution H is isomorphic to the pull back
π∗TMet(M), and therefore Hξ ' TgξMet(M) and since, the choice of the point ξ allows to identify
the space of positive symmetric automorphisms Sym+(TM, g) to the space of metrics Met(M) via the
map ϕ - ϕ∗g, it is the same to take the partial differential ∂F̃+/∂ϕ at the identity of the composed
functional :

F̃+ : AU(1)
detW × Γ(W+)× Sym+(TM, g) - Γ(W−)× isu(W+)

defined by F̃+(A,ψ, ϕ) = F+(A,ψ, ϕ∗ξ). The partial differential ∂F̃+/∂ϕ is then a map:

∂F̃+

∂ϕ
: TidSym+(TM, g) - Γ(W−)⊕ isu(W+) .

The first component of this differential has actually already been computed in subsection 3.1.3. Indeed
if s = ϕ̇ ∈ sym (TM, g),

∂F̃+,1

∂ϕ
(A,ψ, id)(s) = −ρ̃ ◦ s ◦ ∇Wψ +

1
2
ρ(div s− dtr s)ψ .

We will now compute the partial derivative ∂F̃+,2/∂ϕ of the second component, that is the variation of
the second equation in ( 24). We begin by writing the second equation in another form. The self-dual
part of the curvature FA can be written:

F+,g
A = P+,gFA =

(∗g + 1)
2

FA .
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Let now h = ϕ∗g another metric, for ϕ ∈ Sym(TM, g), and ϕ orientation preserving. The fact that ϕ
is an orientation-preserving isometry between (TM, h) and (TM, g) implies the following commutative
diagram of morphisms of vector bundles:

(Λ2T ∗, g)
∗g- (Λ2T ∗, g)

(Λ2T ∗, ϕ∗g)

Λ2ϕ∗

? ∗ϕ∗g- (Λ2T ∗, ϕ∗g)

Λ2ϕ∗

?

We deduce that ∗ϕ∗g = Λ2ϕ∗ ◦ ∗g ◦ (Λ2ϕ∗)−1 and therefore

F+,ϕ∗g
A = P+,ϕ∗gFA =

(
∗ϕ∗g + 1

2

)
FA =

(
Λ2ϕ∗ ◦ ∗g ◦ (Λ2ϕ∗)−1

2
+ 1
)
FA

= Λ2ϕ∗ ◦
(
∗ϕ∗g + 1

2

)
◦ (Λ2ϕ∗)−1FA = Λ2ϕ∗ ◦ P+,g ◦ (Λ2ϕ∗)−1FA .

Now the Clifford representation for the metric ϕ∗g is given by ρ ◦ ϕ, which acts on 2-forms Λ2T ∗M as
ρ ◦ (Λ2ϕ∗)−1, therefore

ρϕ
∗ξ(F+,ϕ∗ξ

A ) = ρ ◦ (Λ2ϕ∗)−1 ◦ Λ2ϕ∗ ◦ P+,g ◦ (Λ2ϕ∗)−1FA

= ρ(P+,g ◦ (Λ2ϕ∗)−1FA) .

The second equation then becomes:

1
2
ρ(P+,g ◦ (Λ2ϕ∗)−1FA) = [ψ∗ ⊗ ψ]0 .

Suppose now given a path of metrics gt = ϕ∗t g, ϕt ∈ Sym+(TM, g), and let s = dϕt/dt|t=0. The variation
of the second equation in correspondence of the variation s ∈ sym (TM, g) is

∂F̃+,2

∂ϕ
(A,ψ, id)(s) = −1

2
ρ(P+,gi(s∗)FA)

where i(s∗) is the derivation of degree 0 on the exterior algebra ΛT ∗M that coincides with s∗ on T ∗; in
other words i(s∗) acts on the wedge product of two 1-forms τ, σ ∈ Γ(T ∗) as i(s∗)(τ ∧ σ) = (s∗τ) ∧ σ +
τ ∧ (s∗σ).

3.3 The perturbed Seiberg-Witten operator

We will call perturbed Seiberg-Witten operator in the point (A,ψ) the full differential of the map F̃+:

D(A,ψ,id)F̃+ : TAAU(1)
detW × Γ(W+)× TidSym+(TM, g) - Γ(W−)× isu(W+)

To simplify the notations we will indicate the variation (Ȧ, ψ̇, ϕ̇) with (τ, φ, s) ∈ TAAU(1)
detW × Γ(W+) ×

TidSym+(TM, g) ' A1(M, iR) × Γ(W+) × sym (TM, g). In the sequel we will identify by means of the
metric g the space of sections sym (TM, g) of symmetric endomorphisms of TM with respect to the metric
and the space of sections of symmetric covariant 2-tensors Γ(S2T ∗M). We review now how to compute
the rest of the differential D(A,ψ,id)F̃+ (cf [91]).

Let τ ∈ A1(M, iR). If we change the connection A by A+τ , the spinorial connection 1-form on PSpinc
will change as follows:

Ωα,A+τ = Ωα,A +
1
2
(dµ2)−1(β∗τ) = Ωα,A +

1
4
π∗τ .
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It means that the corresponding connection on W is ∇W
A+τφ = ∇Wφ+ (1/4) τ ⊗ φ: as a consequence the

corresponding Dirac operator is

Dξ
A+τ = Dξ

A +
1
4
ρξ(τ) .

It follows that
∂F̃+,1

∂A
(A,ψ, id)(τ) =

1
4
ρ(τ)ψ .

We clarify that the factor 1/4 instead of the more usual 1/2 is due to the fact that we have fixed the
unknown U(1) connections on detW ' L⊗

2
instead of on L. The curvature FA+τ is easily FA + dτ ,

therefore F+,g
A+τ = F+,g

A + d+τ and hence

∂F̃+,2

∂A
(A,ψ, id)(τ) =

ρ(d+τ)
2

.

The derivative ∂F̃+,1/∂ψ(A,ψ, id)(φ) is immediately computed as being:

∂F̃+,1

∂ψ
(A,ψ, id)(φ) = Dξ

Aφ .

The derivative of the quadratic term ψ∗ ⊗ ψ with respect to a variation φ is φ∗ ⊗ ψ + ψ∗ ⊗ φ: hence

∂F̃+,2

∂ψ
(A,ψ, id)(φ) = −[φ∗ ⊗ ψ + ψ∗ ⊗ φ]0 .

In the sequel we will definitely identify the space iΓ(su(W+)) of traceless hermitian endomorphisms of
W+ with the space of imaginary self-dual 2-forms A2(M, iR).

We are now ready to write down the full differential of the Seiberg-Witten functional. We have proved
the

Proposition 3.6. The perturbed Seiberg-Witten operator on the point (A,ψ, id):

D(A,ψ,id)F̃+ : A1(M, iR)× Γ(W+)× sym (TM, g) - Γ(W−)×A2
+(M, iR)

is given by :

D(A,ψ,id)F̃+(τ, φ, s) =

(
1
4ρ(τ)ψ +DAφ− ρ ◦ s ◦ ∇Wψ + 1

2ρ(div s− dtr s)ψ
1
2d

+τ − [φ∗ ⊗ ψ + ψ∗ ⊗ φ]0 − 1
2P

+,gi(s∗)FA

)

We want now to understand better the term P+,gi(s∗)FA. The traceless 2 symmetric tensors S2
0T

∗M

are identified with the traceless symmetric endomorphisms of TM with respect to g, sym 0(TM, g).

Lemma 3.7. The bundle sym 0(TM, g) of traceless symmetric endomorphisms of TM with respect to the
metric g, is isomorphic to the bundle Hom(Λ2

−T
∗M,Λ2

+T
∗M) of homomorphisms between the antiself-

dual 2-forms Λ2
−T

∗M and the self-dual 2-forms Λ2
+T

∗M by means of the map:

δ : S2
0T

∗M ' sym 0(TM, g) - Hom(Λ2
−T

∗M,Λ2
+T

∗M)

s0 - P+,gi(s∗0)|Λ2
−

Proof. It is sufficient to prove the lemma for vector spaces. Let (E, g) an oriented euclidian vector
space of dimension 4. Let Sym+(E, g) the orientation preserving automorphisms of E, symmetric with
respect to the metric g. Let Gr(3,Λ2E) the grassmannian of subspaces of dimension 3 in Λ2E and let
ωE a volume element in Λ4E. Consider the map:

ξ : Sym+(E, g) - Gr(3,Λ2E)

ϕ - Λ2
−,ϕ∗g = (Λ2ϕ−1)(Λ2

−,g)
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where Λ2
−,ϕ∗g is the vector subspace of bivectors in Λ2E which are anti self-dual with respect to ϕ∗g. We

remark that this map is constant on the orbits of the group R+ and induces an open embedding of the
quotient Sym+(E, g)/R+ onto the open set of Gr(3,Λ2E) where the quadratic form

∧ : Λ2E × Λ2E - Λ4E ' RωE

is negative defined. The tangent map to the identity gives an isomorphism:

δ : sym (E, g)/R - Hom(Λ2
−E,Λ

2
+E) .

Since the map ξ in the local chart Hom(Λ2
−E,Λ

2
+E) of the grassmannian is given by ϕ - P+,gΛ2ϕ−1|Λ2

−

the image δ(s) of a traceless symmetric endomorphism is easily seen as being the morphism s - −
P+,gi(s)|Λ2

+
. We now equip Λ2E with the standard metric and Hom(Λ2

−E,Λ
2
+E) with the metric (u, v) =

1/2 tr (uv∗). The tangent space to the quotient at id, sym (E, g)/R, is then naturally equipped with the
metric (ū, v̄) = 2tr (uv) − 1/2(tr u)(tr v). We can identify the quotient sym (E, g)/R with sym 0(E, g),
which comes equipped with the metric induced from sym (E, g), that is (u, v) = 2tr (uv).

It is now easy to see that δ is an isometry. Let s ∈ sym 0(E, g) and let ei an orthonormal basis of
E for the metric g for which s is diagonal: s(ei) = λiei. Since s is traceless,

∑
i λi = 0. Let ei ∧ ej the

corresponding basis for Λ2E. On the basis element ei ∧ ej i(s) acts in the following way:

i(s)(ei ∧ ej) = λi(ei ∧ ej) + λj(ei ∧ ej) = (λi + λj)(ei ∧ ej) .

Let now ω−1 , ω−2 , ω−3 the basis of Λ2
−E given by:

ω−1 = e1 ∧ e2 − e3 ∧ e4 , ω−2 = e1 ∧ e3 + e2 ∧ e4 , ω−3 = e1 ∧ e4 − e2 ∧ e3

We have

i(s)ω−1 = (λ1 + λ2)e1 ∧ e2 − (λ3 + λ4)e3 ∧ e4
i(s)ω−2 = (λ1 + λ3)e1 ∧ e3 + (λ2 + λ4)e2 ∧ e4
i(s)ω−3 = (λ1 + λ4)e1 ∧ e4 − (λ2 + λ3)e2 ∧ e3

and expressing ei ∧ ej in terms of ω−i we get:

i(s)ω−1 = (λ1 + λ2 − λ3 − λ4)ω+
1

i(s)ω−2 = (λ1 + λ3 − λ2 − λ4)ω+
2

i(s)ω−3 = (λ1 + λ4 − λ2 − λ3)ω+
3

and with respect to the norms taken on sym 0(E, g) and on Hom(Λ2
−E,Λ

2
+E), we get that the norm of

δ(f) is exactly the norm of s ∈ sym 0(E, g): ||δ(s)||2 = 2
∑
i λ

2
i = 2tr s2 = ||s||2. This proves that δ is an

isometry, with the chosen norms.

2

With an analogue computation we can establish:

Lemma 3.8. The map f - i(f) from sym (TM, g) - End(Λ2TM) induces an embedding of the
bundle of homotheties of TM into the bundle of homotheties of Λ2

±T
∗M .

Proof. The bundle of diagonal endomorphism of TM is isomorphic to C∞(M,R). If λ ∈ C∞(M,R)
then i(λid)ω±i = 4λω±i .

2
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As a consequence an element s ∈ sym (TM, g) acts on the form FA in the following way:

i(s)FA = i(s)F+
A + i(s)F−A

= δ(s0)F+
A + i(

tr s
4

id)F+
A + δ(s0)F−A + i(

tr s
4

id)F−A

= δ(s0)F+
A + (tr s)F+

A + δ(s0)F−A + (tr s)F−A .

Therefore
P+,gi(s)FA = (tr s)F+

A + δ(s0)F−A .

We can now rewrite the Seiberg-Witten operator splitting the space sym (TM, g) in sym (TM, g) '
C∞(M,R)⊕ sym 0(TM, g) and using the isomorphism δ defined above:

D(A,ψ,id)F̃+(τ, φ, f, s0) =

(
1
4ρ(τ)ψ +DAφ− fDAψ + 3

2ρ(df)ψ − ρ ◦ s0 ◦ ∇Wψ + 1
2ρ(div s0)ψ

1
2d

+τ − [φ∗ ⊗ ψ + ψ∗ ⊗ φ]0 − 4fF+
A − δ(s0)F−A

)

If (A,ψ, id) is a zero of F̃+, F̃+(A,ψ, id) = 0, then, in particular DAψ = 0 and the Seiberg-Witten
operator simplifies to:

D(A,ψ,id)F̃+(τ, φ, f, s0) =

(
1
4ρ(τ)ψ +DAφ+ 3

2ρ(df)ψ − ρ ◦ s0 ◦ ∇Wψ + 1
2ρ(div s0)ψ

1
2d

+τ − [φ∗ ⊗ ψ + ψ∗ ⊗ φ]0 − 4fF+
A − δ(s0)F−A

)
. (32)

The operator we have just computed takes into account the most general perturbation of the metric. It
is interesting to restrict us to more special perturbation, like, for example, conformal perturbations. A
conformal change of metric is always given by g - e2fg for f ∈ C∞(M,R). Let now gt = e2tfg a
conformal deformation of the metric. We have e2tfg = ϕ∗t g, with ϕt = (1+ e2tf )−1/2. Then dϕt/dt|t=0 =
−f . Therefore the Seiberg-Witten operator for a conformal perturbation of the metric becomes:

D(A,ψ,id)F̃+(τ, φ, f) =

(
1
4ρ(τ)ψ +DAφ+ 3

2ρ(df)ψ
1
2d

+τ − [φ∗ ⊗ ψ + ψ∗ ⊗ φ]0 − 4fF+
A

)
. (33)

4 The question of transversality

In this section we will take up the discussion of the transversality of the Seiberg-Witten functional F
with perturbations of the metric or, said another way, the transversality of the perturbed Seiberg-Witten
functional F̃+ introduced in the previous chapter. Proving that the functional F̃+ is transversal, that
is, proving that its differential DF̃+ is surjective, guarantees by the implicit function theorem that the
space of solutions forms a smooth Hilbert manifold and it is the first step in order to obtain a smooth
Seiberg-Witten moduli space.

The question of transversality with perturbations of the metric alone for Seiberg-Witten equations
has already been taken up by Eichhorn and Friedrich in [31] and by Friedrich in [49], but, to our point of
view, with not convincing arguments. The authors claim that they prove a generic metrics transversality
theorem for Seiberg-Witten equations, but, as we will see, their proof is based on some false statements.

After setting up the functional machinery, we will compute the adjoint of the perturbed Seiberg-
Witten operator and we will find equations for its kernel. A non trivial solution to these kernel equations
represents an obstruction to transversality. Therefore proving the generic metrics transversality theorem
amounts to proving a vanishing theorem for the solutions of these kernel equations.

4.1 Elliptic differential operators

In this subsection we will recall some facts about elliptic differential operators. Our main references for
this material are [118], [8] and [79].
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Definition 4.1. Let E and F two euclidian vector bundles on a compact manifold M and let 〈·, ·〉E ,
〈·, ·〉F the metrics on E and F respectively. Let L : Γ(E) - Γ(F ) a linear differential operator of order
k ∈ N. A differential operator L∗ : Γ(F ) - Γ(E) is said to be the formal adjoint of L if∫

M

〈Lu, v〉F =
∫
M

〈u, L∗v〉E

for every u ∈ Γ(E), v ∈ Γ(F ).

It is well known (cf [118], [8]) that the formal adjoint of a differential operator is unique, that any
differential operator admits a formal adjoint, and that the symbol of the formal adjoint L∗ is the adjoint
of the symbol of the operator L : σ(L∗)(x, ξ) = (−1)kσ(L)(x, ξ)∗ for x ∈M , ξ ∈ T ∗M − {0}, k the order
of L. Let π : T ∗M \ {0} - M the projection.

Definition 4.2. Let E1, . . . , Er vector bundles on a manifold M . A complex of differential operators
Li : Γ(Ei) - Γ(Ei+1):

0 - Γ(E0)
L0- Γ(E1)

L1- . . . . . .Γ(Er−1)
Lr−1- Γ(Er) - 0

is called elliptic if it induces an exact sequence of vector bundles:

0 - π∗E0
σ(L0)- π∗E1

σ(L1)- . . . . . . π∗Er−1
σ(Lr−1)- π∗Er - 0

at the symbol level. A differential operator L : Γ(E) - Γ(F ) is called elliptic if the complex

0 - Γ(E) - Γ(F ) - 0

induced by L is elliptic.

Proposition 4.3. Let E, F and G three euclidian vector bundles on a compact oriented manifold M

and L : Γ(E) - Γ(F ), Λ : Γ(F ) - Γ(G) two differential operators of the same order, such that
Λ ◦ L = 0. Then :
(1) the operator LL∗ + Λ∗Λ is elliptic if and only if the symbol sequence

π∗E
σ(L)- π∗F

σ(Λ)- π∗G (34)

is exact;
(2) the operator L∗ ⊕ Λ : Γ(F ) - Γ(E)⊕ Γ(G) is elliptic if and only if the sequence

0 - π∗E
σ(L)- π∗F

σΛ- π∗G - 0 (35)

is exact.

Proof. The symbol of the operator P = LL∗ + Λ∗Λ is, up to a sign, σ(P ) = σ(L)σ(L)∗ + σ(Λ)∗σ(Λ).
We easily see that kerσ(P ) = kerσ(Λ)∩ kerσ(L)∗. Now the hypothesis implies that Im σ(L) ⊆ kerσ(Λ),
so the cohomology Hx on the symbol level on a point x ∈M :

Ex
σ(L)x- Fx

σ(Λ)x- Gx

is given by Hx = kerσ(P )x. Now P is elliptic if and only if kerσ(P )x = 0 and this happens if and only
if Hx = 0, that is, if and only if the sequence (34) is exact.

For the second statement, the symbol of the differential operator Q = L∗ ⊕ Λ is σ(L)∗ ⊕ σ(Λ): the
operator Q is elliptic if and only if σ(Q) is an isomorphism. Since the hypothesis always implies that
Im σ(L) ⊆ kerσ(Λ), the condition that σ(Q) is an isomorphism is easily equivalent to the fact that the
symbol sequence (35) is exact.
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2

The proposition motivates the next definition:

Definition 4.4. A linear differential operator L : Γ(E) - Γ(F ) between two euclidian vector bundles
is called underdetermined elliptic if LL∗ is elliptic, overdetermined elliptic if L∗L is elliptic. Equivalently,
L is underdetermined elliptic if its symbol σ(L) is surjective, overdetermined if its symbol is injective.

Let E an euclidian vector bundle on a compact oriented manifold M and let Γ(E) its space of C∞

sections. Let ∇ be a metric connection on E. If f ∈ Γ(E) we define the Sobolev norm as: ||f ||2,p =(∑p
i=0

∫
M
|∇if |2dvolg

)1/2. We denote with Γ2
p(E) the completion of Γ(E) in the norm || ||2,p. Let now

P : Γ(E) - Γ(F ) a linear differential operator of order k. For all p ≥ k it induces a bounded operator
of Hilbert spaces :

Pp : Γ2
p(E) - Γ2

p−k(F ) .

The fundamental result we will use is the following (it is nothing but one of the many versions of elliptic
regularity theorem):

Theorem 4.5. Let P : Γ(E) - Γ(F ) a linear differential operator of order k and let

Pp : Γ2
p(E) - Γ2

p−k(F )

be its extension to Sobolev completions, for p ≥ k. Then :
(1) If P is underdetermined elliptic, then for all p ≥ k, ker(P ∗)p is finite dimensional and ker(P ∗)p =
kerP ⊆ Γ(F ). Moreover Γ(F ) = PΓ(E)⊕ kerP ∗ and Γ2

p(F ) = PpΓ2
p+k(E)⊕ kerP ∗ and the direct sums

are L2-orthogonal. In particular an underdetermined elliptic operator has closed range.
(2) If P is overdetermined elliptic, then for all p kerPp is finite dimensional and kerPp = kerP ⊂ Γ(E).

For the proof see [118] or [8].

Remark 4.6. By the preceding proposition proving the surjectivity of the Sobolev extension of an
underdetermined elliptic operator Pp : Γ2

p(E) - Γ2
p−k(F ) is equivalent to proving that if u ∈ Γ(F )

satisfies the equation P ∗u = 0 then u = 0, that is a vanishing statement for a smooth solution u of the
equation P ∗u = 0.

Another fundamental result we will use is the following Unique Continuation Principle (see [46]) for
solutions of elliptic differential equations of second order.

Theorem 4.7 (Unique Continuation Principle). Let M be a differential manifold and E a vector bundle
on M . Let P : Γ(E) - Γ(E) a linear elliptic differential operator of second order with scalar symbol.
Then, if v ∈ Γ(E) is a solution of the second order differential equation Pu = 0 that vanishes on a
nonempty open set of M , then v vanishes everywhere on M .

For the proof see [1].

Corollary 4.8. Let M be a differential manifold, E a vector bundle on M . Let π : T ∗M \{0} - M the
projection. Let P : Γ(E) - Γ(E) a linear elliptic differential operator of second order with principal
symbol of the form:

σ(P ) = fπ∗(A)

where A ∈ Aut(E) is an automorphism of E and f ∈ C∞(T ∗M \ {0}) is a pointwisely nonzero function.
Then the Unique Continuation Principle applies to the operator P .

Proof. Consider the operator A−1P . This is a linear elliptic differential operator of the second order
with scalar symbol, and it has the same solutions of P . The Unique Continuation Principle applies then
to solutions of A−1P , hence of those of P .

2
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4.2 The adjoint of the perturbed Seiberg-Witten operator

Let us consider the perturbed Seiberg-Witten functional F̃+ and its extension to Sobolev completions in
the norm || ||2,p:

(F̃+)2p : (AU(1)
detW )2p × Γ2

p(W+)× Sym+(TM, g)2p - A2
+(M, iR)2p−1 × Γ2

p−1(W−) . (36)

Our aim is to prove that its differential at a solution (A,ψ, id)

(DF̃+)2p : A1(M, iR)2p × Γ2
p(W+)× sym (TM, g)2p - A2

+(M, iR)2p−1 × Γ2
p−1(W−)

is surjective. By the implicit function theorem this guarantees that the zero set of the map (F̃+)2p is
a smooth Hilbert manifold. Then we could use the Sard-Smale theorem (cf [107]) to prove that for
generic metrics the space of solutions Z(Fϕ

∗g,ϕ∗ρ)2p is a smooth Hilbert manifold. Now the fact that the
C∞(M,S1) action preserves the solutions of Seiberg-Witten equations (or in other words preserves the
zeros of the Seiberg-Witten functional F ) implies that at a tangential level (that is differentiating) we
have the following complex of deformations:

0 - Γ(iR) - Γ(Λ1T ∗M ⊗ iR)⊕ Γ(W+)
D(A,ψ)F- Γ(Λ2

+T
∗M ⊗ iR)⊕ Γ(W−) - 0

where the first arrow is the differential of the C∞(M,S1) action. This complex of differential operators
happens to be elliptic (cf [91]). In particular the operatorD(A,ψ)F is underdetermined elliptic. This means
that D(A,ψ)F and all its Sobolev extensions D(A,ψ)F

2
p have closed range and finite dimensional cokernel

by the elliptic regularity theorem 4.5. Moreover for all p ≥ 1, coker (D(A,ψ)F )2p = cokerD(A,ψ)F =
kerD(A,ψ)F

∗. Now the perturbed Seiberg-Witten operator D(A,ψ,id)F̃+ is the sum

D(A,ψ,id)F̃+ = D(A,ψ)F
g,ρ +

∂F̃+

∂ϕ
,

and hence its symbol σ(DF̃+) is the sum of symbols: σ(DF̃+) = σ(DF )+σ(∂F̃+/∂ϕ): therefore σ(DF̃+)
is surjective and the perturbed Seiberg-Witten operator D(A,ψ,id)F̃+ is underdetermined elliptic. As a
consequence of remark 4.6 and of theorem 4.5 proving the surjectivity of (D(A,ψ,id)F̃+)2p is equivalent to
proving that ker(D(A,ψ,id)F̃+)∗ = 0.

4.2.1 Computation of the adjoint operator

In this subsection we are going to compute the adjoint differential operator:

(D(A,ψ,id)F̃+)∗ : A2
+(M, iR)⊕ Γ(W−) - A1(M, iR)⊕ Γ(W+)⊕ Γ(S2T ∗M) .

In the sequel, when it will not cause confusion, we will drop the indication of the point (A,ψ, id) and we
will simply write DF̃+ for D(A,ψ,id)F̃+. We begin by recalling the L2

0 norms with respect to which we are
going to compute the adjoint differential operator.

On the bundles T ∗M ⊗ iR the norm is the standard norm induced by the metric g. We recall that on
T ∗M⊗m the metric g induces the metric 〈x1 ⊗ . . .⊗ xm, y1 ⊗ . . .⊗ ym〉 = m!

∏m
i=0(xi, yi). With respect

to this metric the decomposition T ∗M ⊗ T ∗M ' S2T ∗M ⊕ Λ2T ∗M is an orthogonal direct sum. We
will take on S2T ∗M and on Λ2T ∗M the metrics induced by the metric on T ∗M ⊗ T ∗M . In this way
ei ⊗ ej = eiej ⊕ ei ∧ ej and ||ei ⊗ ej || = 2, ||eiej || = 1 = ||ei ∧ ej ||. In other words the metric induced by
T ∗M ⊗ T ∗M on sym (TM, g) is (s, t) = 2tr (st).

By lemma 3.7 we can identify S2
0T

∗M with Hom(Λ2
−T

∗M,Λ2
+T

∗M) by means of the isomorphism δ,
defined by δ(s) = P+,gi(s∗)|Λ2

+T
∗M . We recall that δ is an isometry if we take on Hom(Λ2

−T
∗M,Λ2

+T
∗M)

the metric (u, v) = 1/2tr uv∗.
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On Γ(W+) and on Γ(W−) we take the real part of the hermitian metric and on Hom(W+,W−) we will
take the scalar product (u, v) = 1/2tr (uv∗). In this way the Clifford multiplication ρ will be an isometry.

Finally the real part of the hermitian metric on End(W ) given by (A,B) = 1/4tr (AB∗) induces an
orthogonal sum u(W ) ' iR ⊕ su(W ). We will take on isu(W ) the real inner product induced by the
real inner product just defined on End(W ). In this way the isomorphism ρ : Λ2T ∗M - isu(W ) is an
isometry. In the sequel we will indicate with (·, ·) the real inner products and with 〈·, ·〉 the hermitian
ones.

We begin with the following lemma:

Lemma 4.9. Let (M, g) a compact oriented riemannian manifold . When we identify tangent and
cotangent bundle by means of the metric g, the formal adjoint of the first order differential operator

div : Γ(S2T ∗M) - Γ(TM)

is the differential operator X - (−1/2)LXg.

Proof. Let X ∈ Γ(TM) a vector field. Let k ∈ S2T ∗M . We will first prove that pointwisely:

(LXg, k) + 2(X,div k) = 2div k(X) . (37)

The two members are first order differential operators in the variable k. We will prove first that their
symbols coincide. The symbol of a differential operator P of order j, as defined in [8], is

σ(P, σ)x0(ξ) =
ij

j!
P (f jσ)(x0)

where f is a real function f ∈ C∞(M,R) such that f(x0) = 0 , df(x0) = ξ ∈ T ∗ξ0M . Now take such a
function f . Since div (fk) = k(df ]) + fdiv k, we have

2(X,div (fk))(x0) = 2(X, k(ξ])(x0) = 2k(ξ], X)(x0) .

Now
2div (fk(X))(x0) = 2g(ξ, k(X)) = 2k(ξ], X) .

Hence the two symbols coincide. Therefore the difference FX(k) := 2div k(X) − 2(X,div k) is a 0
order differential operator in k, that is, a tensor, or C∞(M,R)-linear. It suffices then to verify that
FX(k) = (LXg, k) in a point p. Taking normal coordinates x1, . . . , xn (see [76], section III.8) centered
in the point p, it suffices to take k = dxidxj = 1/2(dx1 ⊗ dx2 + dx2 ⊗ dx1). We immediately see that
(div k)(p) = 0 so

FX(k)(p) = div
(
Xi ∂

∂xj
+Xj ∂

∂xi

)
(p) =

(
∂Xi

∂xj
+
∂Xj

∂xi

)
(p) .

Let us now compute (LXg, k). We have:

LXg(p) =
∑
ij

(LXgij)(p)dxidxj +
∑
ij

gij(p)(LXdxi)dxj +
∑
ij

gij(p)dxi(LXdxj) .

Since we chose normal coordinates centered in p, (LXgij)(p) = X(gij)(p) = 0 and gij(p) = δij ,

LXg(p) =
∑
i

(LXdxi)dxi +
∑
i

dxi(LXdxi) .

By the Lie-Cartan formula LX = diX + iXd we immediately see that LXdxi = dXi. As a consequence:

LXg(p) =
1
2

∑
ij

(
∂Xi

∂xj
+
∂Xj

∂xi

)
dxidxj
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and its scalar product with k = dxidxj is

(LXg, k) =
(
∂Xi

∂xj
+
∂Xj

∂xi

)
which is exactly FX(k). We have then established 37. Integrating on the manifold and recalling that, by
Green theorem (see [76]), the integral of the divergence of a vector field on a compact oriented riemannian
manifold vanishes, we get:

(LXg, k)L2 =
∫
M

(LXg, k)ωg = −2
∫
M

(X,div k)ωg = −2(X,div k)L2

which establishes the lemma.

2

The isomorphism ρ : TM ⊗ C - Hom(W+,W−) allows us to define a complex conjugation in
Hom(W+,W−) in an obvious way, and hence a real and imaginary part for elements of Hom(W+,W−).
We will set: ρ(σ) := ρ(σ̄) and hence Re ρ(σ) = ρ(Re σ), Imρ(σ) = ρ(Imσ), for σ ∈ T ∗M ⊗ C.

We are now ready to compute the operator (DF̃+)∗ = DF ∗ + (∂F̃+/∂ϕ)∗. Let us begin with (DF )∗.

Lemma 4.10. The adjoint of the map: jψ : A1(M,C) - Γ(W−) defined by jψ(σ) = ρ(σ)ψ is given
by the map: j∗ψ : Γ(W−) - A1(M,C) defined by j∗ψ(χ) = 2ψ∗ ⊗ χ.

Proof. It is always true that, for an hermitian map A between two vector spaces one has: 〈Ax, y〉 =
tr (A ◦ y∗ ⊗ x), where y∗ = 〈−, y〉. Therefore :

〈ρ(σ)ψ, χ〉 = tr (ρ(σ) ◦ χ∗ ⊗ ψ) = tr (ρ(σ) ◦ (ψ∗ ⊗ χ)∗) = 2〈ρ(σ), ψ∗ ⊗ χ〉Hom(W+,W−)

because of the choice of the hermitian metric in Hom(W+,W−). Since ρ is an isometry with respect to
the taken norms, identifying Hom(W+,W−) with T ⊗ C we get :

〈ρ(σ)ψ, χ〉 = 2〈σ, ψ∗ ⊗ χ〉T∗⊗C

2

Lemma 4.11. The adjoint of the operator d+ : A1(M, iR) - A2
+(M, iR) is the operator

d∗ : A2
+(M, iR) - A1(M, iR) .

Proof. (d+τ, θ)A2
+(M,iR) = (d+τ, θ)A2(M,iR) because Λ2T ∗M ' Λ2

+T
∗M ⊕ Λ2

−T
∗M is an orthogonal

direct sum. Then
(d+τ, θ)A2

+(M,iR) = (dτ, θ)A2(M,iR) = (τ, d∗θ)A1(M,iR)

2

Since the Dirac operator splits in DA = D+
A ⊕D

−
A and D+

A and D−
A are the adjoint of one another we

immediately get:

Lemma 4.12. The adjoint of the operator DA : Γ(W+) - Γ(W−) is the operator

DA : Γ(W−) - Γ(W+) .

We now compute the adjoint of the term qψ(φ) = [φ∗ ⊗ ψ + ψ∗ ⊗ φ]0:

Lemma 4.13. The adjoint of the map: qψ : Γ(W+) - A2
+(M, iR) defined by qψ(φ) = [φ∗⊗ψ+ψ∗⊗φ]0

is the operator q∗ψ : A2
+(M, iR) - Γ(W+) given by: q∗ψ(θ) = −1/2 ρ(θ)ψ.

131



Proof. We begin by proving that if f ∈ isu(W+), that is, if f is a traceless hermitian endomorphism
of W+, then for all ϕ ∈W+ we have pointwisely:

〈f, (ϕ∗ ⊗ ϕ)0〉 =
1
4
〈fϕ, ϕ〉 . (38)

Indeed, we can always suppose |ϕ| = 1; so we can consider an orthonormal basis ψ1, ψ2 of W+ with
ψ1 = ϕ. We can express f in this basis as

f =

(
a b

b̄ −a

)
.

Then fϕ = a and

(ϕ∗ ⊗ ϕ)0 =
1
2

(
1 0
0 −1

)
.

Then, recalling that the metric on isu(W+) is given by 1/2tr uv∗, we get (38). Now differentiating (38)
with respect to ϕ and taking the real part we get:

Re 〈f, [φ∗ ⊗ ψ + ψ∗ ⊗ ϕ]0〉 =
1
4
Re [〈fφ, ψ〉+ 〈fψ, φ〉]

=
1
2
Re 〈fψ, φ〉

because 〈fφ, ψ〉 = 〈φ, f∗ψ〉 = 〈φ, fψ〉. Taking now f = ρ(θ) and identifying isu(W+) with Λ2
+T

∗M we
get the lemma.

2

We now compute the adjoint (∂F̃+/∂ϕ)∗ of the partial differential that gives the contribution of the
metric.

Lemma 4.14. The adjoint of the operator s - P+,gi(s∗)|Λ2
−

: Γ(S2T ∗) - A2
+(M, iR) is the linear

map: A2
+(M, iR) - Γ(S2T ∗) given by θ - 1/4(F+

A , θ)g + 2(F−A )∗ ⊗ θ where the term (F−A )∗ ⊗ θ is
seen in Hom(Λ2

−T
∗M,Λ2

+T
∗M) ' S2

0T
∗M .

Proof. By lemmas 3.7 and 3.8 we have: P+,gi(s∗)FA = (tr s)F+
A + δ(s∗0)F

−
A . Now

δ : S2
0T

∗M - Hom(Λ2
−T

∗M,Λ2
+T

∗M)

is an isometry, with the chosen metrics. Then

(P+,gi(s∗)FA, θ) = ((tr s)F+
A , θ) + (δ(s∗0)F

−
A , θ)

= (tr s)(F+
A , θ) + 2(δ(s∗0), (F

−
A )∗ ⊗ θ)

=
1
2
(F+
A , θ)(s, g) + 2(s∗0, (F

−
A )∗ ⊗ θ)

=
1
2
(F+
A , θ)(s, g) + 2(s, (F−A )∗ ⊗ θ)

2

Finally the following three lemmas allow us to compute the adjoint (∂F̃+/∂ϕ)∗. We denote with
(∇ψ)∗ the linear map TM - W ∗

+ defined by X - 〈−,∇ψ〉, with Re (∇ψ∗ ⊗ χ) the 2-tensor
(X,Y ) - (Re (∇Xψ

∗ ⊗ χ), Y )TM and with SymRe (∇ψ∗ ⊗ χ) the symmetric part of Re (∇ψ∗ ⊗ χ).

Lemma 4.15. Th adjoint of the map: sym (TM, g) - Γ(W−) defined by s - − ρ ◦ s∗ ◦∇ψ∗ is the
map: Γ(W−) - Γ(sym (TM, g)) defined by: χ - − SymRe∇ψ∗ ⊗ χ.
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Proof. Taking a local orthormal frame e1, . . . , e4 of T ∗M it is easy to see that ρ ◦ s∗ ◦ ∇ψ is given by∑
i ρ(s

∗ ⊗ id)(ei ⊗∇eiψ) =
∑
i ρ(s

∗ei)∇eiψ. In the same way we can see that SymRe∇ψ∗ ⊗ χ is given
by
∑
i e
i ⊗ Re∇eiψ

∗ ⊗ χ. Therefore

Re 〈ρ ◦ s∗ ◦ ∇ψ∗, χ〉 =
∑
i

Re 〈ρ(s∗ei)∇eiψ, χ〉 = 2
∑
i

(s∗ei,Re∇eiψ
∗ ⊗ χ)T∗M

=
∑
i

(s∗, ei ⊗ Re∇eiψ
∗ ⊗ χ〉T∗⊗T = (s∗,Sym(

∑
i

ei ⊗ Re∇eiψ
∗ ⊗ χ))sym (T∗M,g)

= (s,SymRe∇ψ∗ ⊗ χ)sym (TM,g)

2

Lemma 4.16. The adjoint of the differential operator Γ(S2T ∗M) - Γ(W−) defined as s - ρ(dtrs)ψ
is given by the differential operator χ - 1/4 d∗Re (ψ∗ ⊗ χ)g.

Proof. The operator s - ρ(dtr s)ψ is the composition jψ ◦ iR ◦ d ◦ tr , where iR is the injection

iR : A1(M,R) - A1(M,C) .

As a consequence its adjoint is tr ∗ ◦ d∗ ◦ i∗R ◦ j∗ψ. Then

tr ∗ ◦ d∗ ◦ i∗R ◦ j∗ψ(χ) = 2tr ∗ ◦ d∗Re (ψ∗ ⊗ χ) =
d∗Re (ψ∗ ⊗ χ)

2
g

since the adjoint of iR is exactly the real part Re .

2

Lemma 4.17. The adjoint of the differential operator Γ(S2T ∗M) - Γ(W−) defined as s - ρ(divs)ψ
is the differential operator: χ - 1/2LRe (ψ∗⊗χ)g.

Proof. The differential operator s - ρ(div s)ψ is the composition: jψ ◦ iR ◦ div . Therefore its
adjoint is

χ - div ∗ ◦ i∗R ◦ j∗ψ(χ) = −1
2
LRe (ψ∗⊗χ)g .

2

We are finally ready to write down the adjoint of the perturbed Seiberg-Witten operator:

Proposition 4.18. The adjoint (DF̃+)∗ of the perturbed Seiberg-Witten operator in the point (A,ψ, id),
DF̃+, is given by the differential operator: Γ(W−)⊕ A2

+(M, iR) - A1(M, iR)⊕ Γ(W+)⊕ Γ(S2T ∗M)
given by:

(DF̃+)∗(χ, θ) =



d∗θ + 2iIm(ψ∗ ⊗ χ)

DAχ− 1
2ρ(θ)ψ

−sym Re (∇ψ∗ ⊗ χ)− 1
2
LRe (ψ∗⊗χ)g −

d∗Re (ψ∗ ⊗ χ)
2

g − 1
4
(F+
A , θ)g − (F−A )∗ ⊗ θ


4.3 The kernel equations (DF̃+)∗(χ, θ) = 0

We have seen in subsection 4.1 that the cokernel of the operator (DF̃+)2p coincides with the kernel of the
formal adjoint (DF̃+)∗. From now on we will always consider the differential DF̃+ and its formal adjoint
over a point (A,ψ, g) solution to the parametrized Seiberg-Witten equations (23) and we will always
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suppose that the monopole (A,ψ) is irreducible, that is ψ 6= 0. In particular this means that we will
always suppose that DAψ = 0 ; moreover, by the unique continuation principle we can argue that ψ never
vanishes on an open subset; therefore M −Z(ψ) = {x ∈M |ψ(x) 6= 0} is dense in M . From what we have
said a solution u to the equation (DF̃+)∗u = 0 represents an obstruction to the transversality of the map
(F̃+)2p on the point (A,ψ, id). In this subsection we begin the study of the equation (DF̃+)∗(χ, θ) = 0
and we will prove some properties of the possible solutions. Unluckily in the general case we do not get
to prove a general vanishing theorem for these solutions.

Let us write down the equations for the kernel of (DF̃+)∗:

d∗θ + 2iIm(ψ∗ ⊗ χ) = 0 (39a)

DAχ−
1
2
ρ(θ)ψ = 0 (39b)

−sym Re (∇ψ∗ ⊗ χ)− 1
2
LRe (ψ∗⊗χ)g −

d∗Re (ψ∗ ⊗ χ)
2

g − 1
4
(F+
A , θ)g − (F−A )∗ ⊗ θ = 0 (39c)

where (A,ψ, id) satisfies : F̃+(A,ψ, id) = 0 and ψ 6= 0, that is (A,ψ) is an irreducible monopole. We will
first analyse equations (39a) and (39b).

Lemma 4.19. Let ϕ ∈ Γ(W+) a positive spinor and ζ ∈ Γ(W−) a negative spinor. Then

Re (ϕ∗ ⊗ ζ)ϕ =
|ϕ|2

2
ζ , Im(ϕ∗ ⊗ ζ)ϕ =

|ϕ|2

2i
ζ .

Proof. It is clear that it is sufficient to prove the lemma in each point. Now, for all x ∈ M , ρx :
TxM ⊗C - Hom(W+,x,W−,x) induces an irreducible spin representation and we know by proposition
1.6 that all irreducible spin representations are isomorphic, so it is sufficient to prove the result of the
lemma for a two dimensional complex hermitian vector space E equipped with the irreducible spin
representation (8), E - End(Λ∗CE,Λ

∗
CE) given by x - x ∧ (·) − xy(·). We have W+ ' C ⊕ Λ2

CE

and W− ' E. Let us take an hermitian basis e1, e2 on E. Then e1, ie1, e2, ie2 will be an oriented
orthonormal basis for the underlying real euclidien space ER. An orthonormal basis for W+ is 1, e1 ∧ e2
and an orthonormal basis for W− is obviously e1, e2. Then we have :

ρ(e1) =

(
1 0
0 −1

)
ρ(ie1) =

(
i 0
0 i

)

ρ(e2) =

(
0 1
1 0

)
ρ(ie2) =

(
0 −i
i 0

)

Extending now ρ to ER ⊗R C by C linearity, we easily get for a, b, c, d ∈ C,

ρ(ae1 +b(ie1)+ce2 +d(ie2)) =

(
a+ ib c− id

c+ id −a+ ib

)
, ρ(āe1 + b̄(ie1)+ c̄e2 + d̄(ie2)) =

(
ā+ ib̄ c̄− id̄

c̄+ id̄ −ā+ ib̄

)

which means that if

ρ(Z) =

(
α β

γ δ

)
for α, β, γ, δ ∈ C then

ρ(Z) := ρ(Z̄) =

(
−δ̄ γ̄

β̄ −ᾱ

)
;

therefore

Re ρ(Z) =
1
2
ρ(Z + Z̄) =

1
2

(
α− δ̄ β + γ̄

γ + β̄ δ − ᾱ

)
, Imρ(Z) =

1
2i
ρ(Z − Z̄) =

1
2i

(
α+ δ̄ β − γ̄

γ − β̄ δ + ᾱ

)
.
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Let now ϕ = ϕ1 + ϕ2e1 ∧ e2, ζ = ζ1e1 + ζ2e2. Then

ϕ∗ ⊗ ζ = (ϕ̄1, ϕ̄2)

(
ζ1

ζ2

)
=

(
ϕ̄1ζ1 ϕ̄2ζ1

ϕ̄1ζ2 ϕ̄2ζ2

)
, Re (ϕ∗ ⊗ ζ) =

1
2

(
ϕ̄1ζ1 − ϕ2ζ̄2 ϕ̄2ζ1 + ϕ1ζ̄2

ϕ̄1ζ2 + ϕ2ζ̄1 ϕ̄2ζ2 − ϕ1ζ̄1

)
.

As a consequence

Re (ϕ∗ ⊗ ζ)ϕ =
|ϕ1|2 + |ϕ2|2

2

(
ζ1

ζ2

)
=
|ϕ|2

2
ζ .

Now, since ϕ∗ ⊗ ζ = Re (ϕ∗ ⊗ ζ) + iIm(ϕ∗ ⊗ ζ) from the evaluation of ϕ∗ ⊗ ζ and Re (ϕ∗ ⊗ ζ) on ϕ we
immediately get

Im(ϕ∗ ⊗ ζ)ϕ =
|ϕ|2

2i
ζ .

2

Lemma 4.20. The bundle map: jψ : Λ2T ∗M ⊗ iR - W+ defined by jψ(θ) = ρ(θ)ψ is injective if
ψ 6= 0.

Proof. We know that Λ2T ∗M ⊗ iR ' isu(W+). We place ourselves in a neighbourhood U of a point p
such that ψ(x) 6= 0 for all x ∈ U . Shrinking U if necessary we can always find a local orthonormal frame
ψ1, ψ2 on W+ such that ψ1 = ψ/|ψ|. An element ρ(θ) can be written, with respect to the basis ψ1, ψ2,
as:

ρ(θ) =

(
α b

b̄ −α

)
α ∈ R , β ∈ C .

Now ρ(θ)ψ = |ψ|(α,−b̄), which is zero if and only if α = 0 = b.

2

Since the operator DF̃+ is underdetermined elliptic, by proposition 4.3 its adjoint (DF̃+)∗ is overde-
termined elliptic and ker(DF̃+)∗ = kerDF̃+(DF̃+)∗. Now, always by proposition 4.3, DF̃+(DF̃+)∗ is
elliptic.

Lemma 4.21. The Unique Continuation Principle applies to the operator DF ◦ DF ∗, where F is the
Seiberg-Witten functional.

Proof. By lemma 4.8 it suffices to show that the operator DF ◦ DF ∗ has scalar symbol, up to an
automorphism of iΛ2

+T
∗M ⊕W−. We recall that F is the functional:

F : AL × Γ(W+) - iA+
2 (M)× Γ(W−)

(A,ψ) - (F+
A − [ψ∗ ⊗ ψ]0, DAψ)

The differential DF is of the form:

DF(A,ψ)(τ, φ) =

(
d+τ −qψ(φ)

1
2ρ(τ)ψ +DAφ

)
τ ∈ iA1(M), φ ∈ Γ(W+) ,

where the terms out of the diagonal are of order zero. The operator DF has then the same symbol of
the operator:

P :=

(
d+ 0
0 DA

)
whose adjoint is

P ∗ =

(
d∗ 0
0 DA

)
.
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The symbol of the operator DF ◦DF ∗ is then the same of the operator

PP ∗ =

(
d+d∗ 0

0 D2
A

)
=

(
1
2∆ 0
0 D2

A

)
because d+d∗ = 1/2∆ on self-dual 2-forms. Now, by Weitzenböck formula, D2

A has the same symbol of
the operator ∇W ◦ ∇∗W , which is a laplacian, and then has scalar symbol

σ(∇W ◦ ∇∗W )(ξ)(ϕ) = −|ξ|2ϕ .

We deduce that the principal symbol of the operator DF ◦DF ∗ is

σ(DF ◦DF ∗)(θ, ϕ) = −|ξ|2
(

1
2 0
0 1

)(
θ

ϕ

)
.

2

Proposition 4.22. Let (χ, θ) a solution to (39a), (39b) and suppose that χ = 0 on a nonempty open set
U . Then (χ, θ) vanish identically on M . The same statement holds if θ = 0 on a nonempty open set.

Proof. If χ = 0 on U then equations (39a), (39b) on U become:

d∗θ = 0

ρ(θ)ψ = 0

By a preceding lemma, the operator θ - ρ(θ)ψ is injective if ψ 6= 0. Therefore θ = 0 on U − Z(ψ)
which is a nonempty open set because M −Z(ψ) is dense. We then conclude by the unique continuation
principle, since (χ, θ) = 0 on the nonempty open subset U − Z(ψ).

If θ = 0 on U then equations (39a), (39b) on U become:

Im(ψ∗ ⊗ χ) = 0

DAχ = 0

Then lemma 4.19 implies χ = 0 on U−Z(ψ) and we conclude again by the unique continuation principle.

2

Now we pass to analyse the third equation (39c).

Lemma 4.23. Let ϕ ∈ Γ(W+) a positive spinor and ζ ∈ Γ(W−) a negative spinor. Then

2div (ϕ∗ ⊗ ζ) = −〈DAζ, ϕ〉+ 〈ζ,DAϕ〉 .

In particular for a monopole (A,ψ) we get :

div Re (ψ∗ ⊗ χ) = −1/2 Re 〈ψ,DAχ〉 , div Im(ϕ∗ ⊗ χ) = −1/2 Im〈ψ,DAχ〉 .

Proof. We begin by remarking that the two sides are first order differential operators in the variable
ζ with the same symbol, since −〈ρ(ξ)ζ, ϕ〉 = 2〈ϕ∗ ⊗ ζ, ρ(ξ)〉 because ρ(ξ)∗ = −ρ(ξ). There difference is
therefore C∞ linear. We will now see that they coincide in every point p. Taking an adapted frame ei for
T ∗M centered in the point p (that is a frame ei that (∇ei)(p) = 0) we can write:

−〈DAζ, ϕ〉+ 〈ζ,DAϕ〉 (p) =
∑
i

[〈ρ(ei)∇eiζ, ϕ〉 − 〈ζ, ρ(ei)∇eiϕ〉] (p)

= −
∑
i

di〈ρ(ei)ζ, ϕ〉(p)

= 2di
∑
i

〈ϕ∗ ⊗ ζ, ei〉(p) = 2div (ϕ∗ ⊗ ζ)

where we indicated with dif = (df)(ei), for a complex function f on M .
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2

We will now apply the trace operator to the third equation (39c).

Lemma 4.24. Let (A,ψ) a monopole. Then tr SymRe (∇ψ∗⊗χ) = 0, trLRe (ψ∗⊗χ)g = 2divRe (ψ∗⊗χ).

Proof. Let us prove the first. Taking a local orthonormal frame ei in TM and its dual ei in T ∗M we
obtain:

tr SymRe (∇ψ∗ ⊗ χ) = tr Re (∇ψ∗ ⊗ χ) =
∑
i

tr ei ⊗ Re (∇iψ
∗ ⊗ χ)

=
∑
i

Re 〈ei,Re (∇iψ
∗ ⊗ χ)〉 =

∑
i

Re 〈ei,∇iψ
∗ ⊗ χ〉

=
1
2

∑
i

Re 〈ei∇iψ
∗, χ〉 = Re 〈DAψ, χ〉

because (A,ψ) is a monopole. For the second identity, it is easy to see (in normal coordinates) that
LXg = 2Sym∇X[, where X[ is the 1 form X[ = g(−, X). Therefore trLXg = 2tr Sym∇X[ = 2tr∇X[ =
2divX.

2

Proposition 4.25. If (χ, θ) is a solution of the equations (39) (DF̃+)∗(χ, θ) = 0, then

(θ, F+
A ) = 0 = 〈DAχ, ψ〉 = 0 = div (ψ∗ ⊗ χ)

Proof. Applying the trace operator to the equation (39c) we get, by lemma 4.24:

3div Re (ψ∗ ⊗ χ) + (F+
A , θ) = 0 . (40)

Applying the operator d∗ to the first equation we immediately get d∗Im(ψ∗ ⊗ χ) = −div Im(ψ∗ ⊗ χ) = 0
which means that, by lemma 4.23, Im〈ψ,DAχ〉 = 0. Now taking the scalar product with χ in the second
equation we get:

〈ψ,DAχ〉 −
1
2
〈ψ, ρ(θ)ψ〉 = 0

which becomes
〈ψ,DAχ〉 − 〈ψ∗ ⊗ ψ, ρ(θ)〉 = 0

but 〈ψ∗ ⊗ ψ, ρ(θ)〉 = 〈[ψ∗ ⊗ ψ]0, ρ(θ)〉 and [ψ∗ ⊗ ψ]0 = F+
A /2, because (A,ψ) is a monopole, then we can

write:
〈ψ,DAχ〉 −

1
2
〈F+
A , θ〉 = 0 . (41)

Since 〈ψ,DAχ〉 is real, we have div Re (ψ∗ ⊗ χ) = −1/2 〈ψ,DAχ〉 by lemma 4.23, therefore equation 40
becomes:

−3
2
〈ψ,DAχ〉+ (FA, θ) = 0

which coupled with (41) gives the result.

2

Remark 4.26. We could have remarked that the trace of equation (39c) carries the contribution of
conformal perturbation of the metric. The kernel of the adjoint to the Seiberg-Witten operator with
conformal perturbations (33) corresponds to equation (39a), (39b) and the trace of (39c).

We can now simplify equations (39).
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Corollary 4.27. The equations (39), (DF̃+)∗(χ, θ) = 0 on the monopole (A,ψ) are equivalent to:

d∗θ + 2iIm(ψ∗ ⊗ χ) = 0 (42a)

DAχ−
1
2
ρ(θ)ψ = 0 (42b)

−sym Re (∇ψ∗ ⊗ χ)− 1
2
LRe (ψ∗⊗χ)g − (F−A )∗ ⊗ θ = 0 (42c)

(θ, F+
A ) = 0 (42d)

div (ψ∗ ⊗ χ) = 0 (42e)

4.4 Eichhorn and Friedrich’s argument

We now explain why we find Eichhorn and Friedrich’s treatment of the question of generic metrics
transversality for Seiberg-Witten equations unsatisfactory, and finally incorrect. The two authors in [31]
and Friedrich alone in [49] have a direct approach of the problem, that is, they try to prove directly that
the differential DF of the perturbed Seiberg-Witten functional is surjective. A first source of unclearness
is that they never give a precise expression of the variation of the Dirac operator, which we have seen
as being a fundamental difficulty in the question. No mention is made about the term ρ ◦ s ◦ ∇ψ. In
[49], Friedrich deals with the variation of the Dirac equation with respect to conformal perturbations (∈
C∞(M,R)) independently from the variation of the curvature equation with respect to volume preserving
perturbations (∈ sym 0(TM, g)), but this is not allowed, since the differential

∂F̃+

∂ϕ
: C∞(M,R)⊕ sym 0(TM, g) - Γ(W−)⊕A2

+(M, iR)

is not in diagonal form, nor in (lower or upper) triangular form, as we have seen. Thanks to this uncorrect
argument, which is explained only in [49], in both publications the authors get to the two independent
conditions:

〈 d
dg

(∗g)(s0)FA, θ〉 = 0 ∀s0 ∈ sym 0(TM, g)

〈ρ(df)ψ, χ〉 = 0 ∀f ∈ C∞(M,R)

which are to be satisfied by an element (χ, θ) in the cokernel of DF̃. They claim that these two conditions
are sufficient to determine the vanishing of χ and θ. This is not true, as we shall see. Indeed, if it is true
that the first condition is equivalent to the equation (F−A )∗ ⊗ θ = 0, and this implies the vanishing of θ
if F−A 6= 0, on the other hand the second condition is equivalent to d∗Re (ψ∗ ⊗ χ) = 0, which means only
that the vector field Re (ψ∗ ⊗ χ) has zero divergence. Therefore for every zero divergence nontrivial real
vector field X on the manifold M , if we take χ = ρ(X)ψ, then χ 6= 0, but χ verifies the condition above.
Actually the two authors restrict theirselves to perturbations of the metric s with div s = 0, in order to
get rid of the term ρ(div s)ψ in the variation of the Dirac operator. But, if we want a zero-divergence
tensor of the form f idT , this implies df = 0 and the second condition is not significative, that is, all χ
verify it.

5 Transversality over Kähler monopoles

In this section we will specialize our study of the perturbed Seiberg-Witten functional in the simpler
case of Kähler surfaces. It is well known that on a Kähler surface Seiberg-Witten equations simplify
dramatically: as a consequence our study of equations (42) will be greatly simplified in the Kähler
context as well. The main motivation for this simplification is that the solutions of Seiberg-Witten
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equations on a Kähler surface define holomorphic pairs (∂̄A, α), where the ∂̄A is a holomorphic structure
on a line bundle N and α is a holomorphic section of (N, ∂̄A). This fact allows the algebro-geometric
interpretation of the Seiberg-Witten moduli space as the moduli space of holomorphic pairs (∂̄A, α), or
with the Hilbert scheme of effective divisors D on M with fixed fundamental class c1(D)=c1(N) (see
[119], [99], [91], [47], [48]).

Another main simplification is due to the fact that, thanks to the presence of an (almost) complex
structure J on the manifold M , we can split the space of symmetric 2-tensors sym (TM, g) in J-linear and
J-antilinear. As a consequence we will be able to split the third of the kernel equations (42c) in simpler
equations, thus succeeding in extracting significant information from (42c), and in proving the main
theorem of this work: the transversality of the Seiberg-Witten functional over an irreducible monopole
with hermitian perturbations. This means that for a generic hermitian metric h sufficiently close to the
Kahler metric g of the manifold the Seiberg-Witten moduli space will be smooth. We can show with a
counterexample that we cannot hope to get transversality remaining in the Kähler class of g.

5.1 Kähler monopoles

In this subsection we will write Seiberg-Witten equations on a Kähler surface and we will prove that
a Kähler monopole can always be identified with a holomorphic pair (∂̄A, α), where ∂̄A represents a
holomorphic structure on the line bundle N and α is a holomorphic section of (N, ∂̄A). We will sketch
the proof that the Seiberg-Witten moduli space is isomorphic to the moduli space MN of holomorphic
pairs. We obtain two important consequences: the first is the structure of Seiberg-Witten moduli space as
a fibration over the moduli space of holomorphic structures on N , with fibre |NA| ' P(H0(M,NA)), the
complete linear system of divisors linearly equivalent to NA; on the other hand the deformation complex
for MN allows us to identify the cohomology group H1(D,NA|D) as the obstruction to the transversality
of the Seiberg-Witten functional in the point (A,α), where D = Z(α). In the end of this subsection
we use this fact to provide a counterexample which shows that we cannot hope to obtain transversality
deforming the Kähler metric remaining in the Kähler class, and that it is necessary to change the metric
with perturbations more general than Kähler ones.

Let us begin by writing the Seiberg-Witten equations on a Kähler surface. A spinor ψ ∈ W+ '
A0,0(N)⊕A0,2(N) can be written as a couple ψ = (α, β), α ∈ A0,0(N), β ∈ A0,2(N). The element ψ∗⊗ψ
is the element of End(W+) of the form :

ψ∗ ⊗ ψ =

(
|α|2 ᾱβ

αβ̄ |β|2

)
.

Therefore

[ψ∗ ⊗ ψ]0 =

(
|α|2−|β|2

2 ᾱβ

αβ̄ |β|2−|α|2
2

)
.

comes from the element (ᾱβ/2 + iω(|α|2 − |β|2)/4) in the isomorphism (19). We will denote with A the
unitary connection on N and with A0 the unitary connection on L = N⊗2 ⊗ K−1

M . We remark that
the curvature FA0 on L is 2FA − FAKM , since A0 is the connection A2 ⊗ AK−1

M
, hence we can express

everything in terms of the unitary connection A on N . We remark also that the hermitian connection
on KM is holomorphic, then F 0,2

A0
= 2F 0,2

A . We will denote with Λ the contraction with the Kähler form.
We are now ready to write Seiberg-Witten equations on a Kähler surface:

∂̄Aα+ ∂̄∗Aβ = 0 (43a)

F 0,2
A =

ᾱβ

2
(43b)

2ΛF 1,1
A − F 1,1

KM
= i

|α|2 − |β|2

4
(43c)
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We will denote the Seiberg-Witten functional for these equations with FN and with CN = AU(1)(N) ×
A0,0(N)×A0,2(N) the configuration space for Seiberg-Witten equations on a Kähler surface with Spinc

structure given by the spinor bundle Λ0,∗T ∗M⊗N . We have immediately the following involution between
the configuration space CN and CN∗⊗KM :

Proposition 5.1. The conjugation (A,α, β) - (A∗ ⊗AKM , ]β, ]α) given by the complex hodge star ]
induces an isomorphism between the configuration space CN and the configuration space CN∗⊗KM .

Proof. The proof of the proposition is immediate. The only thing to verify is that (A∗ ⊗ AKM )∗ ⊗
AKM = A, but this is evident.

2

Definition 5.2. Let L a line bundle on a Kähler surface and let ω its Kähler form. The degree of the
bundle L is the real number:

J(L) =
∫
M

c1(L) ∧ ω =
i

2π

∫
M

FA ∧ ω = c1(L).[ω] .

We will now sketch the proof that a solution to Seiberg-Witten equations (43) determines a holo-
morphic couple (∂̄A, α), where ∂̄A is a holomorphic structure on N and α is a holomorphic section of
NA := (N, ∂̄A).

Proposition 5.3. Let N a line bundle on the Kähler surface M . Let (A,α, β) a solution of the Seiberg-
Witten equations (43), that is a zero of the functional FN . Then
(1) If 2J(N)− J(KM ) < 0 then β = 0. As a consequence the semiconnection ∂̄A is integrable (F 0,2

A = 0)
and defines a holomorphic structure on N ; moreover α is a holomorphic section of NA;
(2) If 2J(N)−J(KM ) > 0 then α = 0 and the semiconnection ∂̄A∗⊗AKM defines an holomorphic structure
on N∗ ⊗KM ; moreover β is a holomorphic section of N∗

A ⊗KM ;
(3) If 2J(N) = J(K) then α = 0 = β and A is an anti self-dual connection (or an abelian istanton) on
N .

Proof. Let us prove the first statement. This is readily done by applying the ∂̄A-operator to the Dirac
equation obtaining

F 0,2
A α+ ∆∂̄Aβ = 0

and by plugging in the second equation,

∆∂̄Aβ +
|α|2β

4
= 0

which yields, after taking the scalar product with β and integrating on the manifold:

||∂̄∗Aβ||22 +
1
4
|| |α||β| ||22 = 0 .

This implies the overdetermined elliptic equations ∂̄∗Aβ = 0 and ∂̄Aα = 0, and |α||β| = 0. By lemma
4.5 and theorem 4.7 we get that α = 0 identically or β = 0 identically. Now we can express the degree
J(N⊗2⊗KM ) = 2J(N)−J(K) as a function of the integral of |α|2−|β|2 by means of the third equation,
and the hypothesis of the negativity of J(N⊗2⊗KM ) allows us to conclude stating that β have to vanish.
As a consequence ∂̄A is a holomorphic structure on N and α is a holomorphic section.

Suppose now 2J(N) − J(K) > 0. Then 2J(N∗ ⊗ K) − J(K) < 0 and we use statement (1) and
proposition 5.1 to prove that ]α = 0 and ∂̄A∗⊗AKM defines a holomorphic connection on N∗ ⊗KM . We
only need to remark that ∂̄A∗⊗AKM induces on N∗ ⊗KM the holomorphic structure (∂̄A)∗ ⊗ ∂̄KM , that
is (N∗ ⊗KM )A∗⊗AKM is exactly N∗

A ⊗KM .

2
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5.1.1 Holomorphic pairs

We will now describe briefly the moduli space of holomorphic pairs MN .

Definition 5.4. (cf. [75]) A semiconnection ∂̄A of type (0, 1) on a vector bundle E on a complex manifold
M is said a holomorphic structure if ∂̄2

A = 0.

We will denote with H(E) the set of holomorphic structures on E and with EA the holomorphic
vector bundle induced on E by the holomorphic structure ∂̄A. Two holomorphic structures ∂̄A and ∂̄B

are gauge equivalent if there exists g ∈ Aut(E) such that g−1∂̄Ag = ∂̄B , or equivalently if there exists
g ∈ Aut(E) such that g : EA - EB is an isomorphism of holomorphic vector bundles. If L is a line
bundle the set H(L) is simple to describe. Indeed let ∂̄A ∈ H(L). Then any other semiconnection ∂̄A+ τ ,
τ ∈ A0,1(M,C) is holomorphic if and only if ∂̄τ = 0. Therefore H(L) is an affine space with underlying
vector space the space of ∂̄-closed (0, 1)-forms Z0,1(M,C). The moduli space of holomorphic structures
on L is then the quotient M(L) ' H(L)/C∞(M,C∗), since Aut(L) ' C∞(M,C∗). It easy to see that
for a line bundle L the moduli space M(L) is always smooth (cf. Kobayashi [75]) and its tangent space
T∂̄AM(L) ' H1(M,C). If M is simply connected M(L) is then a point, or equivalently there is only one
holomorphic structure up to gauge equivalence.

We pass now to talk about holomorphic pairs (∂̄A, α), where ∂̄A ∈ H(L), α ∈ H0(M,LA). Two
holomorphic pairs (∂̄A, α), (∂̄B , β) are said gauge equivalent if there exists g ∈ Aut(L) such that ∂̄B =
g−1∂̄Ag and β = gα. The space of holomorphic pairs is clearly the zero set of the map

F : Ā(L)× Γ(L) - A0,2(M)×A0,1(L)

(∂̄A, α) - (−∂̄2
A, ∂̄Aα)

and the moduli space of holomorphic pairs ML is the quotient ML ' Z(F)/C∞(M,C∗). Let us study the
deformation complex for this moduli space, and its Zariski tangent space. Consider first the morphism
G of trivial bundles given by

Z(F)×A0,2(M)×A0,1(L)
G- Z(F)×A0,2(L)

((∂̄A, α), σ, β) - ((∂̄A, α), σα+ ∂̄Aβ)

It is clear that F takes its values in the kernel of G. Therefore (∂̄A, α) will be a regular point if D(∂̄A,α)F is
onto kerG. The differential of F in the point (∂̄A, α) is D(∂̄A,α)F = (−∂̄ω, ωα+ ∂̄Aβ) and the deformation
complex K• is given by:

0 - C∞(M,C) - A0,1(M)⊕ Γ(L)
DF- A0,2(M)⊕A0,1(L)

G- A0,2(L) - 0

where the first arrow is given by the linearization of the C∞(M,C∗)-action : f - (−∂̄f, fα). We recall
that given two complexes

K•
1 := . . . - Kp

1
- Kp+1

1
- Kp+2

1
- . . .

and
K•

2 := . . . - Kp
2

- Kp+1
2

- Kp+2
2

- . . .

and given a morphism of complexes f• : K•
1

- K•
2 , the mapping cone of f , denoted with M(f)• is

defined by M(f)i = Ki+1
1 ⊕Ki

2 with differential

diM(f)• =

(
−di+1

K•
1

0
f i+1 diK•

2

)
.

By definition we have an exact sequence

0 - K•
2

- M(f)• - K•
1 [1] - 0
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where K•
1 [1]i = Ki+1

1 . Now if we set K2 = A0,•(L) and K•
1 = A0,•(M) the deformation complex K• can

naturally be identified with the mapping cone of the map: α : A0,•(M) - A0,•(L). As a consequence
we have an exact sequence of complexes:

0 - A0,•(L) - K• - A0,•(M)[1] - 0

which induces a long exact sequence in cohomology:

. . . - Hi(K•
2 ) - Hi(K•) - Hi(K•

1 [1]) - . . . . (44)

By Dolbeault theorem the i-th cohomology group Hi of the complex A0,•(M) is exactly the sheaf coho-
mology Hi(M,OM ) and the cohomology of the complex A0,•(L) is Hi(M,L). Therefore the long exact
sequence (44) becomes:

. . . - Hi(M,L) - Hi(K•) - Hi+1(M,OM )
α- Hi+1(M,L) - . . .

We remark that the multiplication by α : OM - L gives rise to an exact sequence of sheaves:

0 - OM
α- L - LD - 0 (45)

where D = Z(α) is the divisor defined by the section α. The sequence (45) induces a long exact
cohomology sequence:

. . . - Hi(M,OM ) - Hi(M,L) - Hi(D,LD) - Hi+1(M,O) - . . . (46)

and comparing (44) and (46) we get:

Hi(K•) ' Hi(D,LD) . (47)

This implies H0(K•) ' H0(D,LD), H1(K•) ' H1(D,LD) and χ(LD) ' h0(LD)− h1(LD). The Zariski
tangent space of the moduli space of holomorphic pairs is isomorphic to H0(K•) ' H0(D,LD) and the
expected dimension of the moduli space is χ(LD). Finally the differential D(∂̄A,α)F is surjective and the
moduli space is smooth at (∂̄A, α) of the expected dimension if and only if H1(D,LD) = 0. By means
of the Riemann-Roch formula (cf. Kobayashi [75]) for curves we can compute the expected dimension
χ(LD):

χ(LD) = χ(L)− χ(OM )

= χ(OM ) +
1
2
(c1(L)2 − c1(L)c1(KM ))− χ(OM )

=
1
2
(c1(L)2 − c1(L)c1(KM )) .

Consider now the projection

Z(F) - H(L)

(∂̄A, α) - ∂̄A

By construction of the C∞(M,C∗)-action on the two spaces it is immediate to see that the projection is
equivariant, thus inducing a projection:

π : ML
- M(L) .

It is easy to see that the fiber π−1(∂̄A) can be identified with the complete linear system P(H0(M,LA))
of divisors linearly equivalent to LA. If the manifold is simply connected M(L) is a point and the moduli
space of holomorphic pairs is isomorphic to the projective space P(H0(M,LA)).
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We will now sketch the proof that the Seiberg-Witten moduli space of Kählerian monopoles MSW
N

is isomorphic to the moduli space of holomorphic pairs MN . We first remark that we chose the couples
(A,ψ) as unknowns for the Seiberg-Witten functional FN , where A is a connection on N (and not
on L = N⊗2 ⊗ K−1

M as it is usually done). The induced action of the gauge group C∞(M,C∗) on
AU(1)
N is simply given by: g.A = gAg−1. Indeed the action on the connection A⊗

2 ⊗ AK−1
M

on L is

g.(A⊗
2 ⊗ AK−1

M
) = A⊗

2 ⊗ AK−1
M
− 2(dg)g−1 = (A− (dg)g−1)⊗

2 ⊗ AK−1
M

by lemma 2.2. This means that

the induced action on AU(1)
N is g.A = gAg−1.

Proposition 5.5. Let N a holomorphic line bundle on the Kähler surface M . Let MSW
N the Seiberg-

Witten moduli space of Kählerian monopoles. If J(N⊗2 ⊗ K−1
M ) < 0 then MSW

N is isomorphic to the
moduli space of holomorphic pairs MN .

Proof. Consider the map:

j : Z(FN ) ⊂ - Z(F)

(A,α) - (∂̄A, α)

that associates to a Kähler monopole (A,α) the holomorphic pair (∂̄A, α). This injection is clearly
equivariant for the C∞(M,S1)-action. Indeed let g ∈ C∞(M,S1). Then

g.(A,α) = (A− (dg)g−1, gα) ;

the (0, 1) part of A − (dg)g−1 is ∂̄A − (∂̄g)g−1 and hence ∂̄g.A = g∂̄Ag
−1 = g.∂̄A which implies that the

map j is equivariant. To prove that j induces an isomorphism between the quotients one proves that
the C∞(M,C∗) orbit of an element (∂̄A, α) intersects Z(FN ) along exactly one C∞(M,S1)-orbit. The
proof consists in expressing an element g ∈ C∞(M,C∗) as a product g = uθ, where u ∈ C∞(M,R+) and
θ ∈ C∞(M,S1). With a classical argument by Bradlow and Kazdan-Warner (cf. [14], [73], [47]) one can
see that the C∞(M,R+) orbit of the element (∂̄A, α) meets Z(FN ) in exactly one point if and only if the
hypothesis on the negative degree J(N⊗2 ⊗K−1

M ) is satisfied. Acting with C∞(M,S1) will then produce
C∞(M,S1) equivalent points, that is, the searched C∞(M,S1) orbit in Z(FN ).

2

The interrelation between Seiberg-Witten theory and complex geometry is extremely rich. Some years
before the coming out of Seiberg-Witten equations, Bradlow ([14]) proved the isomorphism between the
moduli space of holomorphic pairs on a line bundle M(L) and the moduli space of vortex equations,
which were precursors of Seiberg-Witten equations on Kähler surfaces. His point of view has been
taken up by Okonek and Teleman in [99], who show the links between vortex equations, moduli spaces
of stable pairs and coupled Seiberg-Witten equations, thus extending Bradlow’s work to non abelian
monopoles. Friedman and Morgan in [48] prove the isomorphism of real analytic spaces between the
Seiberg-Witten moduli space and the Hilbert scheme Divw+(M) of effective divisors D of fundamental
class c1(D) = c1(N) = w.

Corollary 5.6. Let N a line bundle on a Kähler surface M , with c1(N) = w. Let c = 2w− k the Chern
class of the line bundle L = N⊗2 ⊗ K−1

M . Let W ' Λ0,∗T ∗M ⊗ N the spinor bundle associated to the
Spinc structure of determinant line bundle L and let k = c1(K).
(1) If ck < 0 the moduli space of Seiberg-Witten monopoles MSW

N is isomorphic to the Hilbert scheme
Divw+(M) of effective divisors of fundamental class w. It is a fibration over the moduli space of holomor-
phic structures M(N) on N with fibre MSW

∂̄A
' P(H0(M,NA)), the complete linear system of divisors

linearly equivalent to NA.
If ck > 0, MSW

N∗⊗K is isomorphic to the Hilbert scheme Divk−w+ (M) of effective divisors of fundamental
class k−w. It is a fibration over the moduli space of holomorphic structures of N∗⊗KM with fibre over
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∂̄A∗⊗KM the complete linear system P(H0(M,N∗
A ⊗KM )) of divisors linearly equivalent to N∗

A ⊗KM .
(2) The expected dimension in the point D of MSW

N is

χ(ND) =
1
8
(c2 − k2) =

1
8
(c2 − (2χ+ 3τ)) .

(3) MSW
N is smooth of the expected dimension in the point D if and only if H1(M,ND) = 0, or if D = 0.

Proof. By the preceding proposition we only need to prove the dimension formula. By what we have
said about the moduli space of holomorphic couples

χ(ND) =
1
2
(c1(N)2 − c1(N)k)

=
1
2
(w2 − wk)

but w = (c+ k)/2; then

χ(ND) =
1
2

(
(c+ k)2

4
− (c+ k)k

2

)
=

1
2

(
c2 − k2

4

)
=

1
8
(c2 − (2χ+ 3τ)) .

The last equality follows from Noether formula (cf. [54])

χ(OM ) =
c1(M)2 + c2(M)

12

and recalling that χ(OM ) = −k2/2.

2

5.1.2 A counterexample

In this subsection we will use our knowledge of the obstruction to transversality of Seiberg-Witten func-
tional FN in cohomological terms (i.e. the group H1(M,ND)) to prove that Kähler perturbations of the
metric do not suffice to obtain transversality. Let M be a smooth projective surface of degree 7 in the
projective space P3

C. We then have (cf. Hartshorne [65] or Griffiths-Harris [54] ): KM = OM (3). M is
simply connected. Let us take N = OM (1).

J(N⊗2
⊗K−1) = J(OM (2)⊗OM (−3)) = J(OM (−1)) = −1 < 0 .

We have just proved that the moduli space of Seiberg-Witten monopoles associated to the Spinc

structure Λ0,∗T ∗M ⊗ OM (1) is isomorphic to P(H0(M,OM (1))), that is the complete linear system
of divisors linearly equivalent to OM (1), or, said another way, the hyperplane sections. We have
dim P(H0(M,OM (1))) = 3, dim H0(D,ND) = dim H0(D,OD(1)) = 3 and the expected dimension
χ(ND) = (1/8)(7 − 63) = −7. Therefore dim H1(D,ND) = 10: the Seiberg-Witten moduli space is
not smooth of the expected dimension. We now try to obtain transversality by changing the metric in
the following way. The metric g, the complex structure J and the symplectic form ω are linked by the
relation:

g(X,Y ) = ω(JX, Y ) .

We then can change the metric by fixing ω in the preceding relation and varying the complex structure
J - Jt (among the tame complex structures with respect to ω, that is ω(JtX,X)  0), but we
impose that the complex structure Jt remains integrable. A new metric gt will be defined as gt(X,Y ) =
ω(JtX,Y ). Since ω is fixed, and the triple (gt, Jt, ω) is again an hermitian triple, then the relation (16)
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implies that the metric gt is again Kähler. Moreover (M,Jt) is a clearly a deformation of the complex
manifold (M,J) (cf. Kodaira-Morrow [78]). Now we can take the versal deformation (M,Jt) of (M,J).
We know that a versal deformation exists and that a deformation of a Kähler manifold is again Kähler
(for small t). Moreover the versal deformation contains all possible deformations of (M,J). In other
words, with a versal deformation we will realize all possible Kähler metrics gt in the way described
above. Let now X - S the versal deformation of the surface M : it is a family of complex surfaces
parametrized by a complex manifold S. Let s0 ∈ S. We will assume that M ' Xs0 . Let w ∈ H2(X,Z)
and ws = j∗sw ∈ H2(Xs,Z), with js the embedding of the fiber over the point s: js : Xs

⊂ - X. Let
H = Divw(X/S) - S the relative Hilbert scheme of couples (s,D), where s ∈ S and D ∈ Divws(Xs)
is a divisor of fundamental class ws. We have the exact sequence of locally free sheaves over D:

0 - ND/Xs
- ND/X - NXs/X - 0

where in general NY/Z indicates the normal sheaf of Y in Z. Now NXs/X ' OD(TsS). Therefore we get
a Bockstein morphism:

TsS - H1(D,ND/Xs) .

On the other hand we have an exact sequence on Xs:

0 - TXs
- TX

∣∣∣∣
Xs

- NXs/X - 0

from which we get another Bockstein morphism:

TsS - H1(Xs, TXs)

which is nothing but the morphism of infinitesimal deformation of Kodaira-Spencer. We get a commuta-
tive diagram:

TsS - H1(Xs, TXs)

H1(D,ND/Xs)
?

-

where the vertical arrow is induced by the differential dα : TX
∣∣
D

- ND and α is a section of N
such that Z(α) = D. Since we are going to deal with the versal deformation the horizontal arrow in the
diagram above (the Kodaira-Spencer map) is an isomorphism. The map

H1(M,TM) - H1(D,ND) (48)

is the algebraic-geometric interpretation of the contribution of the variation of the metric (in terms of
variation of complex structures) to the surjectivity of the Seiberg-Witten functional and corresponds to
the map induced by the partial differential ∂F̃+/∂ϕ restricted to Kähler variations of the metric followed
by the projection onto the cokernel cokerDF of the Seiberg-Witten operator DF . In other words we
have transversality with Kähler perturbations of the metric if and only if the map (48) is surjective.

The map (48) is surjective if and only if the transposed map:

H1(D,ND)∗ - H1(M,TM)∗

is injective. By Serre duality and by the adjunction formula N∗
D ' KM

∣∣
D
⊗K∗

D this is equivalent to the
injectivity of the map:

H0(D,KM

∣∣
D

) - H1(M,Ω1
M (KM )) . (49)
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Consider now the restriction map:

H0(M,KM ) - H0(D,KM

∣∣
D

) ; (50)

by the long cohomology sequence associated to the short exact sequence:

0 - KM (−D) - KM
- KM

∣∣
D

- 0

it is surjective if and only if h1(M,KM (−D)) = h1(M,OM (D)) = 0. Now the short exact sequence:

0 - OM - OM (D) - OD(D) - 0

and the fact that H1(M,OM ) = 0 (by Hodge decomposition and by Lefschetz theorem) induce the
following exact sequence:

0 - H1(M,OM (D)) - H1(D,OD(D)) - H2(M,OM ) - H2(M,OM (D)) - 0 . (51)

We have:

h2(OM ) =h0(KM ) = h0(OM (3)) = h0(OP3(3)) =
(

3 + 3
3

)
= 20

h2(OM (D)) =h2(OM (1)) = h0(OM (2)) = h0(OP3(2)) =
(

3 + 2
3

)
= 10 .

Knowing that, by Riemann-Roch and by Bertini theorem,

χ(OD(D)) =1− g(D) + degOD(D) = 1− (7− 1)(7− 2)
2

+ 7 = −7

h0(OD(D)) =h0(OD(1)) = h0(OP2(1)) =
(

2 + 1
2

)
= 3

which implies h1(OD(D)) = 10, we get from (51)

h1(OM (D)) = h1(OD(D))− h2(OM ) + h2(O(D)) = 10− 20 + 10 = 0 .

This means that the restriction map (50) is surjective. Therefore the composed linear map:

H0(M,KM ) - H1(M,Ω1
M (KM ))

is given by the cup product with the Chern class c1(D). Since KM = 3D we see that the multiplication
by the Chern class is zero in cohomology. As a consequence the map (49) is zero and therefore (48) is
the zero map, which is not surjective(!).

5.2 Transversality over a Kähler monopole

In this subsection we will prove the main theorem of this part, the transversality of the perturbed Seiberg-
Witten functional on Kähler monopoles. Actually we will obtain the result varying the Kähler metric with
hermitian perturbations, that is, perturbations that preserve the complex structure. As a consequence,
when we consider the Seiberg-Witten moduli space on a Kähler manifold, this result implies that the
moduli space is a smooth compact manifold for a generic hermitian metric sufficiently close to the given
Kähler metric.

The key of the proof is the decomposition of 2-symmetric tensors S2T ∗M in J-hermitian and J-
antihermitian. This allows to isolate the contribution coming from hermitian perturbations and to split
the third equation (42c) in two simpler equations, the first of which gives the result.
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Remark 5.7. We will deal with the case J(N2 ⊗K−1
M ) < 0 since by proposition 5.1 the conjugation ]

exchanges the solutions of FN and of FN∗⊗KM , and J(N∗⊗KM ) < 0 if and only if J((N∗⊗KM )2⊗K−1
M ) =

J(N−2 ⊗KM ) > 0. The case J(N2 ⊗K−1
M ) > 0 can be treated as the first after setting Ñ = N∗ ⊗KM .

Let M a Kähler surface, Λ0,∗T ∗M ⊗ N the spinor bundle on M with J(N2 ⊗ K−1
M ) < 0. Let

(A,α, 0) ∈ AU(1)(N) × A0,0(N) a monopole, that is a solution of Seiberg-Witten equations (43). We
proved in proposition 5.3 that such a monopole satisfies :

∂̄Aα = 0 (52a)

F 0,2
A = 0 (52b)

2ΛF 1,1
A − ΛF 1,1

KM
=
i

4
|α|2 (52c)

Let now interpret the kernel equations (42) in the Kähler context. We will identify 1-forms in A1(M, iR)
with (0, 1)-forms in A0,1(M) via the isomorphism σ - σ − σ̄. We have:

Lemma 5.8. Let χ ∈ A0,1(N) a negative spinor. Then the differential form ξ = ᾱ ⊗ χ is given by:
ξ = 1√

2
ᾱχ.

Proof. The differential form ξ is characterized by the fact that ρ(ξ)α = |α|2χ and ρ(ξ)β = 0 for all
β ∈ A0,2(N). Now

ρ(ξ) =
√

2(ξ0,1 ∧ · − ξ1,0y·) .

It follows that
√

2ξ0,1α = |α|2χ and ξ1,0yβ = 0 for all β ∈ A0,2(N). Therefore ξ1,0 = 0 and ξ0,1 =
1/
√

2ᾱχ.

2

Let now consider an imaginary self dual form θ ∈ A2
+(M, iR). We know that such a form can be

written as θ = iλω + µ + µ̄, with λ ∈ R, µ ∈ A0,2(M,C). We recall that ρ(θ) is the endomorphism in
isu(W+) ' R⊕ Λ0,2 given by

(µ, λ) - 2

(
λ µy ·

µ ∧ · −λ

)
.

The first equation (42), d∗θ + 2iIm(α∗ ⊗ χ) = 0 becomes:

∂̄∗µ+ i∂̄∗(λω)− ∂∗µ̄+ i∂∗(λω) +
1√
2
(ᾱχ− αχ̄) = 0

and with the identification with A0,1:

∂̄∗µ+ i∂̄∗(λω) +
1√
2
ᾱχ = 0 . (53)

The second equation easily gives the two equations in A0,0(N)⊕A0,2(N):
√

2∂̄∗χ− λα = 0
√

2∂̄χ− µα = 0

Equation (42d), (θ, F+
A ) = 0 gives immediately λ|α|2 = 0 and knowing that M − Z(α) is a dense open

set, we get λ = 0. Moreover equation (42e) becomes: ∂̄∗(ᾱχ) = 0; we remark that this condition can
be obtained applying the operator ∂̄∗ in (53), and thus it is not independent from the others. Therefore
equations (42a) (42b) (42d) (42e) are equivalent to:

∂̄∗µ+
1√
2
ᾱχ = 0 (54a)

√
2∂̄Aχ− µα = 0 (54b)

∂̄∗Aχ = 0 (54c)

λ = 0 (54d)
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Consider now the mapping cone M((1/
√

2)α)• of the morphism (1/
√

2)α : A0,•(M,C) - A0,•(M,N).
As we saw in subsection 5.1.1 it is the elliptic complex:

0 - A0,0(M) - A0,1(M)⊕ Γ(L)
DF- A0,2(M)⊕A0,1(L)

G- A0,2(L) - 0 (55)

where DF (ω, σ) = (−∂̄ω, (1/
√

2)ωα+ ∂̄Aσ) and G(µ, χ) = ((1/
√

2)µα+ ∂̄Aχ). If we form the laplacian

P = DF ∗ ⊕G : A0,2(M)⊕A0,1(L) - A0,1(M)⊕ Γ(L)⊕A0,2(L)

the equations Pu = 0 are exactly equations (54). Now by Hodge theorem for elliptic complexes, the
space of harmonic solutions kerP is isomorphic to the first cohomology group of the complex (55) :
kerP ' H1(M((1/

√
2)α)•) which, in turn, is isomorphic to H1(D,ND), where D = Z(α) and ND is

the restriction of N to D and is identified with the normal bundle of D in M . Now equations (54) are
exactly the equations of the kernel of the perturbed Seiberg-Witten operator restrained to conformal
perturbations. When we apply this reasonment to a Kähler surface M with a line bundle N such that
for some section α of N , H1(D,ND) 6= 0 (for example a smooth algebraic surface of degree 7 in the
complex projective 3 space), we get a counterexample of the fact that conformal perturbations help in
obtaining transversality. In such an example conformal perturbations reduce by no means the obstruction
H1(D,ND). Therefore we have to proceed in analysing the equation (42c).

5.2.1 A decomposition for the symmetric 2-tensors

In order to extract significant and useful information from equation (42c) we will decompose the bundle
of symmetric 2-tensors S2T ∗M in hermitian (or compatible with the complex structure J) and antiher-
mitian. This decomposition corresponds to the decomposition of symmetric endomorphisms sym (TM, g)
of TM with respect to the metric g in J-linear and J-antilinear.

We begin by taking an euclidian 2n-vector space (E, g) with a complex structure J compatible with
the metric. We extend J to E ⊗ C as usual by C-linearity: we obtain again an antiinvolution J :
E ⊗ C - E ⊗ C. We denote with E1,0 and with E0,1 the eigenspaces of i and −i, respectively.
Therefore E1,0 = {X − iJX, x ∈ E}; E0,1 = {X + iJX, x ∈ E}. We will take Λ1,0E = (E0,1)⊥ in
E∗ ⊗ C and Λ0,1E = (E1,0)⊥. Let f ∈ End(E). We will say that f is J-linear if Jf = fJ and that f is
antilinear if fJ = −Jf . We will denote with End(E, J) the space of J-linear endomorphisms of E, and
End(E, J) the space of J-antilinear ones. It is clear that we have an isomorphism:

End(E) - End(E, J)⊕ End(E, J)
f - (f + JfJ, f − JfJ) .

From another point of view an endomorphism f ∈ End(E) extends by C-linearity to a unique endomor-
phism in EndC(E ⊗ C) such that f(z̄) = f(z). With respect to the decomposition E ⊗ C = E1,0 ⊕ E0,1

the endomorphism f writes:

f =

(
a b̄

b ā

)
.

We have immediately that f is J-linear if and only if b = 0, and f is J-antilinear if and only if a = 0.
Now let us take the symmetric 2-tensors S2E∗ and define the space of hermitian 2-tensors S1,1E∗ as

S1,1E∗ := {s ∈ S2E∗| s(JX, JY ) = s(X,Y ) ,∀X,Y ∈ E} ,

and the space of antihermitian 2-tensors

AH(E) = {s ∈ S2E∗| s(JX, JY ) = −s(X,Y ) ,∀X,Y ∈ E} .

It is clear that we have an isomorphism S2E∗ ' S1,1E∗ ⊕ AH(E) sending s - (sJ , sJ̄), where
sJ = s(J ·, J ·) + s(·, ·) and sJ̄ = s(·, ·)− s(J ·, J ·). We have the following lemma:
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Lemma 5.9. Let s ∈ S2E∗. Then
(1) s can be extended uniquely (by C-bilinearity) to a complex symmetric bilinear form in S2(E⊗C) such
that s(Z̄, W̄ ) = s(Z,W ) for all Z,W ∈ E ⊗ C;
(2) s ∈ S1,1E∗ if and only if s(Z,W ) = 0 for all Z,W ∈ E1,0. In this case the position (Z,W ) - s(Z, W̄ )
defines an hermitian form on E1,0. Therefore S1,1E∗ ' Herm(E1,0);
(3) s ∈ AH(E) if and only if s(Z, W̄ ) = 0 for all Z,W ∈ E1,0. Such an s defines naturally a quadratic
form ∈ S2(E1,0) = S2,0E. Therefore AH(E) ' S2,0E.

Proof. The first statement is clear: when we extend a symmetric tensor to the complexified it is clearly
invariant by conjugation. We remark that a 2-tensor in S2(E⊗C) invariant by conjugation is determined
by its restriction to E1,0 × E1,0 and to E1,0 × E0,1. The restriction to E1,0 × E1,0 will clearly be a
complex symmetric bilinear form and the position (Z,W ) - s(Z, W̄ ) will clearly define an hermitian
form in Herm(E1,0). Conversely a 2-symmetric tensor invariant by conjugation is completely determined
by the values it takes on the real vectors and thus comes from an element of S2E∗. We have then proved
that the symmetric 2-tensors S2E∗ are isomorphic to S2E∗ ' Herm(E1,0) ⊕ Quad(E1,0). To prove the
lemma it remains to show that, in this identification, S1,1E∗ ⊆ Herm(E1,0) and AH(E) ⊆ Quad(E1,0).
But it is clear that the extension by C-bilinearity of an element in S1,1E∗ will satisfy s(Z,W ) = 0 for all
Z,W ∈ E1,0, since:

s(X − iJX, Y − iJY ) = s(X,Y )− is(JX, Y )− is(X, JY )− s(JX, JY ) = 0

because s(JX, Y ) = −s(X, JY ). Therefore S1,1E∗ ⊆ Herm(E1,0). Analogously we can prove that
AH(E) ⊆ Quad(E1,0) and therefore S1,1E∗ ' Herm(E1,0); AH(E) ' Quad(E1,0).

2

Let us consider now the symmetric endomorphisms sym (E, g) of E with respect to the metric g. We
define the space of hermitian endomorphisms of (E, g, J) as u(E, J) := sym (E, g) ∩ End(E, J) and the
space of antihermitian endomorphisms as su(E, J) := sym (E, J) ∩ End(E, J). Now it is clear that in
the identification S2E∗ ' sym (E, g) provided by the metric, u(E, J) ' S1,1E∗, su(E, J) ' AH(E). The
following lemma is the analogous to the preceding for symmetric endomorphisms:

Lemma 5.10. Let f ∈ End(E) and let

f =

(
a b̄

b ā

)
its C-linear extension to an endomorphism of E ⊗ C. Then:
(1) f is symmetric with respect to g if and only if the form (Z,W ) - g(a(Z), W̄ ) is an hermitian form
in Herm(E1,0) and the form (Z,W ) - g(b(Z),W ) is a complex quadratic form in Quad(E1,0).
(2) f ∈ u(E, J) if and only if b = 0; f ∈ su(E, J) if and only if a = 0.

Proof. f is symmetric with respect to g if and only if g(f(X), Y ) = g(X, f(Y )), for all X,Y ∈ E:
the real bilinear form (X,Y ) - g(f(X), Y ) is therefore symmetric, and lemma 5.9 implies the first
statement.

Let now f in u(E, J). By definition, f preserves E1,0 and E0,1 and therefore b = 0. The real
bilinear form g(f(·), ·) is in S1,1E∗ since for all X,Y ∈ E g(f(JX), JY ) = g(Jf(X), JY ) = g(f(X), Y )
and then by lemma 5.9 the position (Z,W ) - g(f(Z), W̄ ) defines an hermitian form in Herm(E1,0).
Analogously, if f ∈ su(E, J) then it is clear that a = 0 and the bilinear form g(f(·), ·) is in AH(E). Then
by lemma 5.9, the position (Z,W ) - g(f(Z),W ) defines a complex quadratic form on E1,0.

2

Lemma 5.11. The space of the real hermitian tensors S1,1E∗ is isomorphic to the real (1, 1)-forms Λ1,1
R .
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Proof. We associate to s ∈ S1,1E∗ the 2-form ϕ ∈ Λ2E∗ defined as: ϕ(X,Y ) := s(X, JY ). It is clear
that ϕ is skew-symmetric, since ϕ(X,Y ) = s(X, JY ) = −s(JX, Y ) = −s(Y, JX) = −ϕ(Y,X), and that
it is a (1, 1)-form: if Z, W ∈ E1,0 then ϕ(Z,W ) = s(Z, JW ) = is(Z,W ) = 0 by lemma 5.9. That this
correspondence defines an isomorphism is trivial.

2

Remark 5.12. If ϕ is the real (1, 1) form associated to a real hermitian endomorphism s ∈ S1,1E∗, then,
taken a complex basis Z1, . . . , Zn of E1,0 and a dual basis ξ1, . . . , ξn in Λ1,0E and setting si,j̄ = s(Zi, Z̄j),
we have
(1) si,j̄ = sj,̄i
(2) ϕ = −2i

∑
jk sj,k̄ξ

j ∧ ξ̄k

See [77] for details.
We consider now the real tangent bundle TM of an almost hermitian manifold M with its almost

complex structure J and we define the bundles End(TM, J) and End(TM, J) of J-linear and J-antilinear
endomorphisms of TM , respectively; the bundles u(TM, J) and su(TM, J) of real hermitian and an-
tihermitian endomorphisms of TM , and finally the bundles S1,1T ∗M and AH(TM) of hermitian and
antihermitian 2 tensors on TM . Global versions of lemmas 5.9, 5.10 and 5.11 are valid on TM . Let us
now take M an hermitian manifold ( we assume now that the complex structure J is integrable), and let
z1, . . . , zn local complex coordinates in M . The extension of f to TM ⊗ C decomposes in

f =

(
a b̄

b ā

)
.

We can write a =
∑
ij aijdzi ⊗ ∂/∂zj and b =

∑
ij bijdzi ⊗ ∂/∂z̄j . We can use the complex bilinear form

gC to identify TM ⊗C and T ∗M ⊗C (remembering that the complex bilinear form gC exchanges TM1,0

with Λ0,1T ∗M and TM0,1 with Λ1,0T ∗M . The J-linear endomorphism a is then identified with a section
ã of Λ1,0T ∗M ⊗Λ0,1T ∗M and writes as: ã =

∑
ij ãij̄dzi ⊗ dz̄j . The J-antilinear endomorphism b can be

identified with a section b̃ ∈ S2,0T ∗M = S2(Λ1,0T ∗M), b̃ =
∑
ij b̃ijdzi ⊗ dzj . By the preceding lemmas

5.9 and 5.10 and we have ãi,j̄ = ãj,̄i, and b̃ij = b̃ji. Moreover the remark 5.12 implies that the real (1, 1)
form associated to ã is −2i

∑
ij ãi,j̄dzi ∧ dz̄j .

We can now make the identification 3.7, sym 0(TM, g) ' Hom(Λ2
−T

∗M,Λ2
+T

∗M) more precise. We
identify Λ2

−T
∗M with Λ1,1

ω⊥,R, that is with the real (1, 1)-forms othogonal to the Kahler form ω, and
Λ2

+T
∗M with Λ0,2T ∗M⊕Rω. If f ∈ sym (TM, g) let a(f) ∈ End(TM1,0) and b(f) ∈ Hom(TM1,0, TM0,1)

the components of the extension of f to TM ⊗ C as seen in lemma 5.10. With this notations we have:

Lemma 5.13. For all f ∈ u0(T, J) then

δ(f)Λ1,1
ω⊥

⊆ Rω .

Therefore the isometry δ : sym 0(TM, g) - Hom(Λ2
−T

∗M,Λ2
+T

∗M) splits as :

sym 0(TM, g) ' u0(TM, J)⊕ su(TM, J) - Hom(Λ1,1
ω⊥,R,Λ

0,2T ∗M)⊕Hom(Λ1,1
ω⊥,R,Rω)

(s, t) - ( δ(b̄(t)∗) , δ(s∗) )

Proof. It is clear that the derivation i(s∗) induced by an element s ∈ u0(TM, J) preserves the spaces
Λ1,1T ∗M , Λ2,0T ∗M and Λ0,2T ∗M since s is J-linear. Therefore for such s, δ(s∗)Λ1,1

ω⊥
⊆ Λ1,1 but we

know by lemma 3.7 that δ(s∗)Λ2
−T

∗M ⊆ Λ2
+T

∗M ; as a result δ(s∗)Λ1,1
ω⊥

⊆ Λ0,2T ∗M ⊕ Rω and hence
δ(s∗)Λ1,1

ω⊥
⊆ Rω. If t ∈ su(TM, J), t is J antilinear, as a consequence its extension to TM ⊗C exchanges

TM1,0 and TM0,1, and hence i(t∗)Λ1,1 ⊆ Λ0,2TM ⊕ Λ2,0TM . We can write t∗ = b(t)∗ + b̄(t)∗, b(t)∗ :
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Λ0,1T ∗M - Λ1,0T ∗M , and b̄(t)∗ : Λ1,0T ∗M - Λ0,1T ∗M . Therefore i(b(t)∗)Λ1,1T ∗M ⊆ Λ2,0T ∗M

and i(b̄(t)∗)Λ1,1T ∗M ⊆ Λ0,2T ∗M . Therefore in the splitting

Hom(Λ2
−T

∗M,Λ2
+T

∗M) ' Hom(Λ1,1
ω⊥,R,Λ

0,2T ∗M)⊕Hom(Λ1,1
ω⊥,R,Rω)

an element f = s+ t acts as δ(b̄(t)∗)⊕ δ(s∗).

2

5.2.2 The main theorem

In this subsection we continue the computation of kernel equations (42) in the Kähler context. We are go-
ing to interpret the contribution of the metric (equation (42c), (∂F̃+/∂ϕ)∗(χ, θ) = 0) for a Kähler surface
on an irreducible monopole (A,α, 0). We recall that in general the partial differential ∂F̃+/∂ϕ(A,ψ, id)(s)
is

∂F̃+

∂ϕ
(A,ψ, id)(s) =

(
− 1

2ρ(div s)− ρ ◦ s ◦ ∇ψ
δ(s)F−A

)
where we have taken s ∈ sym 0(TM, g). Now ∇α = ∂α + ∂̄α= ∂α since by (52) α is holomorphic.
Moreover if s ∈ u0(TM, J), s leaves TM1,0 invariant; hence by definition of the Clifford multiplication ρ
on an hermitian surface:

ρ ◦ s ◦ ∂α =
∑
i

ρ(a(s)∗(dzi)⊗ ∂A,iα)

=
√

2
∑
i

[(a(s)∗(dzi))0,1 ∧ ∂A,iα+ (a(s)∗(dzi))1,0y∂A,iα] = 0

because a(s)∗(dzi) ∈ Λ1,0T ∗M and because of (17). Therefore ρ ◦ (s + t) ◦ ∂α = ρ ◦ b̄∗(t) ◦ ∂α. Seeing
b̄∗ in A0,1(TM1,0) we can further interpret ρ ◦ b̄∗ ◦ ∂α as

√
2b̄∗y∂α, where the last expression means the

duality contraction between TM1,0 and Λ1,0T ∗M , followed by multiplication by the form component in
Λ0,1T ∗M . From what has been said until now the operator ∂F̃+/∂ϕ (A,ψ, id) can be written on Kähler
surface as:

∂F̃+/∂ϕ(A,α, 0, id) : u0(TM, J)⊕ su(TM, J) - A0,1(N)⊕A0,2(M)⊕ Γ(R)ω

(s, t) -

−
1√
2
(div (s+ t))0,1α− ρ ◦ b̄∗(t) ◦ ∂α

δ(b̄(t)∗)F−A
δ(s∗)F−A


We will now better interpret the term (div (s+ t))0,1α.

Lemma 5.14. Let s ∈ sym (TM, g) a symmetric endomorphism. In the identification TM ' T ∗M

provided by the metric we have
div s = −∇∗s .

Proof. We compute the symbol of the two differential operators in order to verify that the two symbols
are equal in a point p. We use an adapted orthonormal frame ei in the point p. Let ei the dual frame,
sij the symmetric endomorphism ei ⊗ ej + ej ⊗ ei and f a function such that f(p) = 0 and df(p) = ξ.
Then

div f(sij) = ξje
i + ξie

j

and
∇∗(fsij) = −(ξ, ei)ej +−(ξ, ej)ei ,

which proves that the two operators have the same symbol. Now, it is clear that they coincide in p,
because they are both zero on all the elements of the form sij .
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2

Let now s + t in sym (TM, g), s ∈ u(TM, J), t ∈ su(TM, J). In the decomposition TM1,0 ⊕ TM0,1

(s+ t) can be written as:

s+ t =

(
a b̄

b ā

)
.

Therefore div (s+ t) = div (a+ ā+ b+ b̄). Now a belongs to Λ1,0T ∗M ⊗ TM1,0. Identifying tangent and
cotangent bundle by means of the complex bilinear form gC, a can be regarded as an element of Λ1,0T ∗M⊗
Λ0,1T ∗M . Analogously b can be seen as an element of Λ1,0T ∗M ⊗ Λ1,0T ∗M , ā ∈ Λ0,1T ∗M ⊗ Λ1,0T ∗M ,
b̄ ∈ Λ0,1T ∗M ⊗ Λ0,1T ∗M . The Levi-Civita connection ∇ is compatible with the complex structure
(∇J = 0) and therefore preserves the type decomposition TM1,0⊕ TM0,1 and Λ1,0T ∗M ⊕Λ0,1T ∗M . As
a consequence the connection ∇ induces differential operators (connections):

∇ : Γ(Λ1,0T ∗M) - Γ(T ∗M ⊗ Λ1,0T ∗M) , ∇ : Γ(Λ0,1T ∗M) - Γ(T ∗M ⊗ Λ0,1T ∗M) .

Moreover we can split the connection ∇ according to types: ∇ = ∇1,0 + ∇0,1. For brevity’s sake we
indicate ∇1,0 with D and ∇0,1 with D̄. As a consequence:

div (s+ t) = −∇∗(s+ t)

= −(D + D̄)∗(a+ ā+ b+ b̄)

= −D∗a− D̄∗ā−D∗b− D̄∗b̄ .

When we take the (0, 1)-component of div (s+ t) we get

div (s+ t)0,1 = −D∗a− D̄∗b̄

We can finally write the partial differential ∂F̃+/∂ϕ(A,α, 0, id)(s, t) for s ∈ u(TM, J), t ∈ su(TM, J):

∂F̃+

∂ϕ
(A,α, 0, id)(s, t) =


1√
2
(D∗a(s))α+ 1√

2
(D̄∗b̄(t))−

√
2b̄(t)∗y∂α

δ(b̄(t)∗)F−A
δ(s∗)F−A

 (56)

We are now ready to prove the main theorem. Let U+(TM, J) = Sym+(TM, g) ∩ End(TM, J).

Theorem 5.15. Let M a Kähler surface, g its Kähler metric. Let N a complex line bundle on M

such that 2 deg(N) − deg(K) < 0. Consider the Spinc-structure on M whose spinor bundle is W =
Λ0,∗T ∗M ⊗N . Consider the perturbed Seiberg-Witten functional (36):

(F̃+)2p : (AU(1)
detW )2p × Γ2

p(W+)× Sym+(TM, g)2p - Γ2
p−1(W−)× isu(W+)2p−1

(A,ψ, ϕ) - (Dϕ∗g,ϕ∗ρ
A ψ,

(ϕ∗ρ)
2

(F+,ϕ∗g
A )− [ψ∗ ⊗ ψ]0)

Any zero of F̃+ of the form (A,ψ, id) is a regular point for F̃+.

Proof. To prove that a zero of F̃+ of the form (A,ψ, id) is a regular point for F̃+ it is sufficient to
prove that the differential at the point (A,ψ, id)

(D(A,ψ,id)F̃+)2p : A1(M, iR)2p × Γ2
p(W+)× sym (TM, g)2p - Γ2

p−1(W−)× isu(W+)2p−1

is surjective. By what we have said in remark 4.6 and by theorem 4.5 proving the surjectivity of
(D(A,ψ,id)F̃+)2p at a point (A,ψ, id) is equivalent to proving the surjectivity of

D(A,ψ,id)F̃+ : A1(M, iR)× Γ(W+)× sym (TM, g) - Γ(W−)× isu(W+)
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Now by the discussion in subsection 4.2, proving the surjectivity of D(A,ψ,id)F̃+ is equivalent to proving
that ker(D(A,ψ,id)F̃+)∗ = 0. In subsection 4.3 we have proved that an element (χ, θ) ∈ Γ(W−)×A2

+(M, iR)
satisfies (D(A,ψ,id)F̃+)∗(χ, θ) = 0 if and only if it is a solution of equations (42). In the previous subsections
of this section we have proved that equations (42a), (42b), (42d), (42e) on a Kähler manifold are equivalent
to the system:

∂̄∗µ+
1√
2
ᾱχ = 0

√
2∂̄Aχ− µα = 0

∂̄∗Aχ = 0

λ = 0

for χ ∈ A0,1(N) and θ = iλω + µ − µ̄ ∈ Rω ⊕ A0,2(M) ⊕ A2,0(M) and where the spinor ψ = (α, 0) ∈
A0,0(N) ⊕ A0,2(N). We remark that the equations above take already into account the contribution of
conformal perturbations of the metric. Let us now interpret equation (42c) in the context of Kähler
geometry. It corresponds to (

∂F̃+

∂ϕ
|sym 0(TM,g)

)∗
(χ, θ) = 0 .

Thanks to the splitting S2
0T

∗M ' u0(TM, J)⊕ su(TM, J) we can define the two differential operators

P1 :=
∂F̃+

∂ϕ
|u0(TM,J) , P2 :=

∂F̃+

∂ϕ
|su(TM,J) .

Therefore equation (42c) is equivalent to the two equations

P ∗1 (χ, θ) = 0

P ∗2 (χ, θ) = 0 .

By the computation made in this subsection we can express the operator P1 as:

P1(s) =

 1
2 (D∗a(s))α

0
δ(s)F−A

 .

Therefore its adjoint is easily

P ∗1 (χ, θ) = herm[D(ᾱχ)]− Re trD(ᾱχ) + (F−A )∗ ⊗ λω .

Now herm[D(ᾱχ)] = D(ᾱχ) + D̄(αχ̄) and Re tr D(ᾱχ) = i(∂∗(ᾱχ) − ∂̄∗(αχ̄)). Therefore the equation
P ∗1 (χ, θ) = 0 becomes:

D(ᾱχ) + D̄(αχ̄)− i(∂∗(ᾱχ)− ∂̄∗(αχ̄)) + (F−A )∗ ⊗ λω = 0 ,

and identifying the first terms with real (1, 1)-forms by lemma 5.11 it becomes:

∂(ᾱχ) + ∂̄(αχ̄)− i(∂∗(ᾱχ)− ∂̄∗(αχ̄)) + (F−A )∗ ⊗ λω = 0 .

It is now easy to see that equations (42a), (42b), (42d), (42e) coupled with P ∗1 (χ, θ) = 0 admit no
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nontrivial solutions. Indeed suppose that (χ, θ) is a solution of

∂̄∗µ+
1√
2
ᾱχ = 0 (58a)

√
2∂̄Aχ− µα = 0 (58b)

∂̄∗Aχ = 0 (58c)

λ = 0 (58d)

∂(ᾱχ) + ∂̄(αχ̄)− i(∂∗(ᾱχ)− ∂̄∗(αχ̄)) = 0 (58e)

where we did not write the term (F−A )∗ ⊗ λω in the last equation because λ = 0. The first equation
implies that ∂̄∗(ᾱχ) = 0 and therefore ∂∗(αχ̄) = 0. As a consequence the system (58) becomes equivalent
to

∂̄∗µ+
1√
2
ᾱχ = 0

√
2∂̄Aχ− µα = 0

∂̄∗Aχ = 0

λ = 0

∂(ᾱχ) + ∂̄(αχ̄) = 0

We now apply the operator ∂∗ to the last equation, obtaining

∆∂(ᾱχ) + ∂∗∂̄(αχ̄) = 0 .

On a Kähler surface one has the Kähler identity ∂∗∂̄ + ∂̄∂∗ = 0, hence ∂∗∂̄(αχ̄) = −∂̄∂∗(αχ̄) = 0. As
a consequence ∆∂(ᾱχ) = 0, which means that ᾱχ is ∆∂-harmonic. But, again, on a Kähler manifold
∆∂ = ∆∂̄ and hence ᾱχ is ∆∂̄-harmonic. This implies ∂̄(ᾱχ) = 0. Applying the operator ∂̄ to the first
equation we get ∆∂̄µ = 0, which implies ∂̄∗µ = 0. As a consequence ᾱχ = 0 and χ = 0. From the second
equation (or from lemma 4.22) we get µ = 0. Therefore if there is a solution to 58, it must be necessarily
zero.

2

Remark 5.16. We can reobtain theorem 5.15 by means of Gauduchon result (cf. [51], Corollaire 3)
on the form of the Dirac operator on an almost hermitian 4-manifold for the canonical Spinc-structure
twisted by a line bundle N , which we recalled in subsection 1.9:

DA =
√

2(∂̄A + ∂̄∗A)− 1
4
ρ(θ)

where θ is the Lee form. We place ourselves on a Kähler surface (M, g, J) and we perturb the metric
gt = g + tk imposing that the new metric gt remains hermitian with respect to the complex structure J ,
that is:

gt(JX, JY ) = gt(X,Y ) (60)

for all X,Y ∈ TM . In this way we obtain a family (M, gt, J) of hermitian structures on M . Taking the
derivative of (60) in t = 0 we get k(JX, JY ) = k(X,Y ), which means that the variation k is in S1,1T ∗M .
We remark that the bundle of spinors remains the same, since J is fixed, but the Clifford multiplication
changes. In any case the Dirac operator for the canonical Spinc-structure on (M, gt, J) is given by:

Dt
A =

√
2(∂̄A + ∂̄∗A)− 1

4
ρ(θt)
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where now θt = Λtωt is the Lee form of the non closed fundamental form ωt. We remark that ω0 = ω

is the original Kähler form of (M, g, J), which is closed, and that the Dolbeault operator ∂̄A is fixed.
We now take the initial Dirac equation ∂̄Aα = 0 on the Kähler surface and we perturb the metric with
hermitian variations. As a result we obtain a family of Dirac equations:

√
2(∂̄Aα)− 1

4
ρ(θt)α = 0

and taking the derivative in t = 0 we get the variation of the Dirac operator applied to the spinor (α, 0)
with respect to hemitian perturbations:

d

dt
Dt
Aα|t=0 = −1

4
ρ(θ̇)α .

We have:

θ̇ =
d

dt
Λtdωt|t=0 = Λ̇dω0 + Λdω̇

= Λdk

where we indicated again with k the real (1, 1)-form associated to the hermitian tensor k ∈ S1,1T ∗M .
Therefore the variation of the Dirac operator applied to the spinor (α, 0) is −1/4 (Λk)0,1α. But

(Λdk)0,1 = Λ∂̄k

= [Λ, ∂̄]k + ∂̄〈k, ω〉
= −i∂∗k + ∂̄tr k .

Now, when we take the adjoint to this operator we get the contribution

∂(ᾱχ) + ∂̄(αχ̄)− i[∂̄∗(ᾱχ)− ∂∗(αχ̄)]ω = 0

for the kernel equations. We can then proceed as in the preceding argument.

We now come to the geometric meaning of theorem 5.15. We need to recall the slice theorem for
standard Seiberg-Witten moduli spaces (cf [91]). Let C = AU(1)

detW × Γ(W+) be the standard Seiberg-
Witten configuration space, G = C∞(M,S1) the gauge group, and let C2

p and G2
p+1 be their Sobolev

completions.

Proposition 5.17. There are local slices for the action of G2
p+1 on C2

p , that is, for each point x ∈ C2
p

there is an open neighbourhood of the point x and a smooth Hilbert submanifold Sx of this neighbourhood
invariant under the stabilizer Stab(x) of x such that the natural map:

Sx ×Stab(x) G2
p+1

- C2
p

is a diffeomorphism onto a neighbourhood of the orbit through x.

The slice S for the action of G2
p+1, through a point (A,ψ) solution to the Seiberg-Witten equa-

tions, such that ψ 6= 0, is easily given by means of the map Υ(A,ψ) : C2
p

- C∞(M, iR) defined as
Υ(A,ψ)(A′, ϕ) = (DγA,ψ)∗(A′ − A,ϕ) where γA,ψ denotes the G2

p+1-action through (A,ψ): γA,ψ(g) =
(g−2Ag2, gψ), and thus (DγA,ψ)∗ is then the adjoint of the differential of the action. We clearly have
DΥ(A,ψ) = (DγA,ψ)∗ which is underdetermined elliptic and surjective if ψ 6= 0 because kerDγA,ψ =
Stab(x) = {0}; therefore (DγA,ψ)∗ is surjective by theorem 4.5. Therefore by Implicit Function Theo-
rem there is an open neighbourhood UA,ψ of (A,ψ) in C2

p such that Z(Υ) ∩ UA,ψ is a smooth Hilbert
manifold SA,ψ. A direct application of the slice theorem gives a corresponding slice theorem for the
action of G2

p+1 on C2
p = C2

p × Sym+(TM, g)2p or for C̃2
p := C2

p × U+(TM, J)2p. In particular the slice for
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the G2
p+1-action on C2

p (or C̃2
p) on a point (A,ψ, ϕ) can be given (since G2

p+1 acts trivially on the second
factor) by SA,ψ × B(ϕ, ε)2p, where B(ϕ, ε)2p is the open ball of ray ε centered in ϕ in Sym+(TM, g)2p (or
in U+(TM, J)2p). We know now from proposition 2.14 and 2.20 that the map:

F̃+ : C2
p = C2

p × Sym+(TM, g)2p - A2
+(M, iR)2p−1 × Γ(W−)2p−1

is G2
p+1 equivariant. This means that if we consider the Hilbert vector bundle:

E := C2
p ×G2

p+1
(A2

+(M, iR)2p−1 ⊕ Γ(W−)2p−1) - B2
p = C2

p/G2
p+1 = B2

p × Sym+(TM, g)2p

the map F̃+ defines, by passing to the quotient, a section:

Ψ : B2
p

- E

of the Hilbert vector bundle E on B2
p whose zero set is exactly the moduli space M+ considered in

subsection 2.5. We can say the same for the restriction of F̃+ to C̃2
p = C2

p × U+(TM, J)2p. We are now
ready to prove:

Theorem 5.18. Let (M, g, J) a Kähler surface. Let N a hermitian line bundle on M such that 2 deg(N)−
deg(K) < 0. Consider the canonical Spinc-structure on M twisted by the hermitian line bundle N . There
exists ε ∈ R, ε > 0 such that for a generic C∞ metric h = ϕ∗g, ϕ ∈ B(id, ε) ⊆ Sym+(TM, J), the Seiberg-
Witten moduli space MSW

h is smooth. Actually, the statement holds for a generic C∞ hermitian metric
h = ϕ∗g, ϕ ∈ B(id, ε) ⊆ U+(TM, J).

Proof. The proof consists in finding the suitable smooth Hilbert manifold to which apply the Sard-
Smale theorem. The existence of the slice for B2

p provides a local model for B2
p: if x ∈ C2

p is a point with
Stab(x) = {1}, then the map:

SA,ψ ×B(ϕ, ε)2p - B2
p × Sym+(TM, g)2p

(s, φ) - ([s], φ)
(61)

is a diffeomorphism onto an open neighbourhood of ([A,ψ], ϕ). The vector bundle section Ψ can be seen
locally as

SA,ψ ×B(ϕ, ε)2p - A2
+(M, iR)2p−1 × Γ(W−)2p−1

(A′, ψ′, ϕ′) - F̃+(A′, ψ′, ϕ′) .
(62)

Let now place ourselves on a Kähler monopole (A,ψ, id). Remembering how the slice SA,ψ has been
built we immediately get TA,ψSA,ψ = ker(DγA,ψ)∗ = (ImDA,ψγ)⊥. Now ImDA,ψγ ⊆ kerDF̃+. Therefore
theorem 5.15 tells that for a zero of F̃+ of the form (A,ψ, id) the differential DA,ψ,idΨ of the section Ψ
is surjective. By the Implicit Function Theorem this means that there exists a neighbourhood WA,ψ,id

of (A,ψ, id) in SA,ψ × B(id, ε)2p such that Z(Ψ) ∩ WA,ψ,id is a smooth Hilbert manifold and for all
x ∈ WA,ψ,id ∩ Z(Ψ) the differential DxΨ is surjective. We can always suppose that the neighbourhood
WA,ψ,id is of the form VA,ψ × B(id, ε(A,ψ, id))2p, where VA,ψ is an open neighbourhood of (A,ψ) in
SA,ψ. Such neighbourhood defines by the diffeomorphism (62) an open neighborhood WA,ψ,id of the
point ([A,ψ], id) ∈ B2

p. In particular this proves firstly that every point ([A,ψ], id) ∈ MSW
g = π−1(id)

is smooth as a point of M+; secondly that the moduli space MSW
g viewed as the fiber π−1(id) of the

projection π : M+
- Met(M)2p can be covered by the open set

U = ∪([A,ψ],id)∈MSW
g
WA,ψ,id .

Now it is a fundamental result of standard Seiberg-Witten theory that the moduli space MSW
g is compact

(cf [91]). As a consequence a finite number of neighborhoods WA,ψ,id suffices to cover MSW
g . This implies
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in particular that there exists an ε such that π−1(B(id, ε)2p) ⊆ U . By construction of the neighbourhoods
WA,ψ,id we have that Wε

id := Z(Ψ) ∩ π−1(B(id, ε)2p) is a smooth Hilbert manifold and for each x ∈ Wε
id

DxΨ is surjective. This is the smooth Hilbert manifold we will use to apply Sard-Smale theorem. The
rest of the proof is now standard matter. In each point of Wε

id the tangent space is given by:

T(A,ψ,ϕ)Wε
id = kerD(A,ψ,ϕ) = kerD(A,ψ,ϕ)F̃+|kerD(A,ψ,ϕ)γ∗

= {(X,Y ) ∈ ker(D(A,ψ,ϕ)γ)∗ ⊕ sym (TM, g)2p |DA,ψF
ϕ∗g(X) + ∂F̃+/∂ϕ(Y ) = 0} .

Let now consider the projection

π : Wε
id

- B(id, ε)2p
(X,Y ) - Y

Since by construction D(A,ψ,ϕ)F̃+|kerD(A,ψ,ϕ)γ∗ is surjective for all (A,ψ, ϕ) ∈ Wε
id it is immediate to

see that Dπ is surjective at a point (A,ψ, ϕ) if and only if D(A,ψ)F
ϕ∗g is surjective. Therefore if ϕ

is a regular value for π, the fiber π−1(ϕ) = MSW
ϕ∗g will be a smooth manifold. Moreover one can see

that cokerD(A,ψ,ϕ)π = cokerD(A,ψ)F
ϕ∗g and kerD(A,ψ,ϕ)π = kerD(A,ψ)F

ϕ∗g. Therefore the kernel
and cokernel of Dπ have finite dimension, hence π is a smooth Fredholm map of paracompact Hilbert
manifolds. In particular Sard-Smale theorem applies and we get that the regular values of π form
a second category (Gδ) set in B(id, ε)2p. Actually, shrinking the ball B(id, ε)2p if necessary, since π

has compact fibers, the regular values are a dense open set Ω2
p in B(id, ε)2p. Therefore for a dense

open set of metrics g′ in B(id, ε)2p the moduli space MSW
g′ is smooth. Since Ω2

p ∩ Sym+(TM, J) is
dense in B(id, ε) := B(id, ε)2p ∩ Sym+(TM, J), we can deduce that for a generic C∞ metric h = ϕ∗g,
ϕ ∈ B(id, ε) ⊆ Sym+(TM, g), the moduli space MSW

h is smooth.
We carried out our discussion assuming the surjectivity of

D(A,ψ,ϕ)F̃+ : T(A,ψ)C2
p × sym (TM, g)2p - A2

+(M, iR)2p−1 × Γ(W−)2p−1 .

Theorem 5.15 actually states something stronger: the surjectivity of

D(A,ψ,ϕ)F̃+ : T(A,ψ)C2
p × u(TM, J)2p - A2

+(M, iR)2p−1 × Γ(W−)2p−1 .

Carrying out the discussion with this stronger hypothesis we can choose U+(TM, J)2p as parameter space
and the ball B(id, ε)2p ∈ U+(TM, J)2p. With exactly the same proof we get the stronger result that for a
generic C∞ hermitian metric h = ϕ∗g, ϕ ∈ B(id, ε) ⊆ U+(TM, J) the moduli space MSW

h is smooth.

2
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[15] Joël Briançon, Description de HilbnC{x, y}, Invent. Math. 41 (1977), no. 1, 45–89.

[16] Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of
derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535–554 (electronic).

[17] D. Burns, On rational singularities in dimensions > 2, Math. Ann. 211 (1974), 237–244.

159



[18] Jan Cheah, The cohomology of smooth nested hilbert schemes of points, Ph.D. thesis, University of
Chicago.

[19] , Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998),
no. 1, 39–90.

[20] Alastair Craw and Miles Reid, How to calculate A-Hilb C3, Geometry of toric varieties, Sémin.
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