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Introduction

Cohomologie du schéma de Hilbert ponctuel d’une surface a valeurs dans certaines repré-
sentations d’un fibré tautologique

Cette partie du travail est consacrée a la cohomologie du schéma de Hilbert ponctuel sur une surface
algébrique projective lisse X a valeurs dans certaines représentations d’un fibré vectoriel tautologique
EM associé & un fibré en droites E sur X. En particulier, on traitera en détail le cas de la cohomologie
H* (X! §2E[M]) de la puissance symétrique S2El") et de la cohomologie H* (X[ A2E!) de la puissance
extérieure A2E".

Motivations. Ce travail est motivé par les problemes rencontrés dans les phénomenes et la conjecture de
dualité étrange, que nous allons expliquer. La dualité étrange est une relation de dualité entre des espaces
de sections de fibrés déterminants sur des différents espaces de modules de faisceaux semi-stables sur une
variété algébrique lisse. Les premiers exemples des phénomeénes de dualité étrange ont été découverts
sur des courbes par Beauville [3] et Beauville-Narasimhan-Ramanan [6]. Soit X une courbe projective
lisse de genre g > 2, et SU(n) espace de modules de fibrés semi-stables de rang n et de degré 0 sur X.
Soit D le générateur ample de Pic(SU(n)), qui est un groupe abélien libre de rang 1, par le théoréme de
Drezet-Narasimhan [30]: D s’appelle le fibré déterminant sur SU(n). Si © représente le diviseur théta
dans la Jacobienne J97!(X), on a une dualité étrange:

H(J971(X),0(n0©))* ~ H*(SUU(n),D)

entre 'espace de sections du fibré déterminant D sur SU(n) et espace de fonctions théta de niveau n sur
JI971(X). Le calcul de la dimension de H°(SU(n), D) et, plus généralement, de HO(SU(n),D@’k) a été
effectué par Beauville and Laszlo [5] en utilisant la formule de Verlinde, conjecturée par Verlinde [116],
et démontrée par plusieurs auteurs, parmis lesquels Tsuchiya-Ueno-Yamada [113], Beauville [4], Faltings
[37], Thaddeus [110], Jeffrey-Kirwan [71].

Sur une surface algébrique projective lisse simplement connexe X, Le Potier a proposé la conjecture
suivante, dite de dualité étrange. L’algebre de Grothendieck Kyop(X) des fibrés topologiques sur X est
isomorphe, comme groupe abélien, & Z x H?(X,Z) x Z. En d’autres mots, une classe en Ko, (X) est
identifiée par son rang, sa premiere classe de Chern c; et sa caractéristique d’Euler-Poincaré y. La
caractéristique d’Euler-Poincaré définit une forme quadratique entiére sur Kiop(X), en posant:

(u,v) = x(u-v) if u,v € Kiop(X) .

Prenons ensuite deux classes u,v € Kiop(X), orthogonales pour (-, -) et considérons l'espace de modules
de faisceaux semi-stables M,, M, avec classes de Grothendieck fixées u et v, respectivement. Soit
Dy €t Dy les deux fibrés déterminants (voir [86], [68]) sur M, et M, associés aux classes v et u,
respectivement. Sous certaines hypotheses techniques, Le Potier trouve une section canonique oy, €
H°(M, x My, Dy, XD, ,), qui permet de définir le morphisme de dualité étrange:

Dv,u . HO(MuaDu,'L))* . HO(MuaDU,u) .

Le Potier a conjecturé, sous certaines hypotheses, que D, ,, est un isomorphisme, si M, n’est pas vide.
Danila [21] a étudié la conjecture de la dualité étrange de Le Potier sur P,. En particulier, elle a résolu
la conjecture pour les classes de Grothendieck ¢ = (2,0,n), u = (0,1,0), n < 19. Soit M,, := M2,0,n)-
La stratégie consiste a utiliser les espaces de modules de systémes cohérents (voir [66], [84], [85]) S, afin
d’établir une relation — pour (I — 1) <n < (I +1)(I + 2) —entre P'espace de sections H(M,,, D, .,) et
'espace de sections H°(U, S'R ® D,) d’un faisceau cohérent R sur un ouvert U du schéma de Hilbert
X ["“2]7 olt R est localement libre (voir [22]). Danila construit une résolution localement libre K* — R,
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dont les termes K* dépendent de la puissance symétrique S T(O(k)[”+l2]) du fibré tautologique O(k)[”‘”z]
associé au fibré de droites O(k) sur Py. Pour calculer la suite spectrale d’hypercohomologie, il faut
calculer des groupes de cohomologie du genre:

HI(X™, s Ok)™) ©Dy)

D, étant le déterminant de Donaldson sur X [™ associé & la classe u. Ce sont précisément les obstacles
d’ordre technique dans ces calculs qui limitent les résultats de Danila & n < 19. La connaisssance de
ces groupes de cohomologie entrainerait la preuve complete de la conjecture pour le plan projectif, au
moins pour ¢ = (2,0,n), v = (0,1,0). Danila a démontré dans [23] et [24] des formules générales pour la
cohomologie de fibrés tautologiques sur le schéma de Hilbert H*(X (] L[”]) associés a un fibré en droites
L sur X, et de la puissance symétrique double H*(X [, S2LI"), pour n < 3.

Dans ce travail, on généralise ses résultats pour S2LM™ pour tout n, et on obtient également des
formules générales pour la cohomologie de la puissance extérieure double H* (X [”],AgL[”]) pour tout n.
Il s’avere que ces derniers groupes sont également impliqués dans la vérification de la conjecture de la
dualité étrange sur le plan projective pour les espaces de modules My et My g, (cf. [83]).

La méthode: correspondance de McKay. La méthode qu’on utilise est différente de celle de Danila
et elle provient de développements récents dans la correspondance de McKay. Le début de la correspon-
dance de McKay date de bien avant McKay et, en effet, a commencé avec Klein vers 1870 et avec Coxeter
et Du Val vers 1930. Quand on quotiente C? par un sous-groupe fini G de SL(2,C) et on prend la
résolution minimale Y de C2/G, alors Y est crépant et le lieu exceptionnel consiste en un ensemble de
courbes, dont le graphe dual est un diagramme de Dynkin du type A,,, D,, Fg, Er, Es.

McKay (voir [89], [90], [44]) a observé que les diagrammes de Dynkin issus de résolutions de sin-
gularités kleiniennes sont reliés aux représentations de G. Si p est une représentation de G, et p; sont
de représentations irréductibles, le graphe de McKay est le diagramme de Dynkin associé a la matrice
a;; — 2id, ol a;; est défini comme

P& pi :Zaijpj§
J

le graphe de McKay ainsi défini est alors le diagramme de Dynkin donné par le graphe dual (étendu) du
lieu exceptionnel quand G opere sur C? via la représentation p. De plus, McKay a suggeré qu’il y a une
bijection entre les composantes du lieu exceptionnel et les représentations irréductibles de G. Dans [53],
Gonzalez-Springer and Verdier ont démontré une version de cet énoncé en K-théorie, en montrant un
isomorphisme:

Kg(C?) — K(Y)

entre le groupe de K-théorie G-équivariante de C? et le groupe de K-théorie de Y, qui rend précise la
correspondance entre I’ensemble des représentations irréductibles de G et ’ensemble des composantes
irréductibles du lieu exceptionnel.

La généralisation du théoreme de Gonzalez-Springer-Verdier qui nous intéresse a été publiée en 2001,
avec le résultat suivant de Bridgeland-King-Reid [16]. Soit M une variété quasi-projective lisse sur C
et G un groupe fini d’automorphismes de M tel que wy; est localement trivial comme G-faisceau. Soit
Y = Hilb%(M) le G-schéma de Hilbert (selon Nakamura) des G-orbites. Alors, si la dimension de
Y Xnyc Y n'est pas trop grande, on obtient 'équivalence:

@ : D'(Y) — Dl (M)

entre la catégorie dérivée des faisceaux cohérents sur Y et la catégorie dérivée des faisceaux G-équivariants
sur M, ou ® est la transformée de Fourier-Mukai ayant comme noyau la famille universelle Z C Y x M.



L’étape suivante a été menée par Haiman ([61], [62], [60]), qui a démontré que l'action du groupe
symétrique &,, sur le produit X™ d’une surface X satisfait ’hypothese du théoreme BKR, et que
Hilb®" (X™) peut étre identifié avec le schéma de Hilbert X ("] Par conséquent, on obtient équivalence:

@ :D'(xM") — DY (X7

obtenue par la transformée de Fourier-Mukai de noyau B™, le schéma de Hilbert isospectral. Ainsi, les
calculs de cohomologie sur le schéma de Hilbert peuvent étre obtenus plus simplement par des calculs de
cohomologie &,-équivariante sur le produit X".

Résultats. Notre premitre question a été de trouver Pimage d’un faisceau tautologique FI" associé
a un faisceau cohérent F' sur la surface X pour 1’équivalence BKRH ®. On rappelle que le faisceau
tautologique F[™ est le faisceau défini par le foncteur de Fourier-Mukai:

Fir= 902 . /(F) = Rpxn, (0= @ p& F)

ou = est la famille universelle sur le schéma de Hilbert. Dans le diagramme commutatif

B" X"
q T
xtl _H  gny

B™ est le schéma de Hilbert isospectral, S™X est la variété symétrique et p est le morphisme de Hilbert-
Chow. L’équivalence de Bridgeland-King-Reid-Haiman

® =Rp.oq"
calculée sur FI" devient alors simplement la composition des foncteurs de Fourier-Mukai:

S(FIM) =@ o= (F) =" Q4(F),

que ’on sait étre un troisieme foncteur de Fourier-Mukai de noyau R f,Oz, ou Z est la famille universelle
sur le schéma de Hilbert isospectral, et f le morphisme: f: B” x X —— X" x X. On démontre que
I'image directe dérivée R f, Oz est quasi isomorphe au faisceau structural Op de 'union schématique D =
U1 A nt1 des diagonales A; 41 de X™ x X. Afin de pouvoir calculer la cohomologie &,,-équivariante
de ®(FI")) ~ Q2 . (F), il faut extraire des informations effectivement utiles & partir du noyau Op.
Cette étape a été achevée en démontrant que le faisceau Op admet une résolution K* de type Cech en
termes des diagonales A; 11 et de leurs intersections. Ceci permet de construire un complexe simple C},
sur X™ (qui n’est autre que la projection sur X" de la résolution de Cech K* tensorisée par piF), qui
peut étre identifié, dans la catégorie dérivée équivariante Db6 (X™), avec I'image voulue ®(F [”]). On a

n

alors obtenu le premier résultat nouveau de ce travail:

Theorem 0.1. Soient X une surface quasi-projective lisse et F un faisceau cohérent sur X. L’image
du faisceau tautologique F™ sur le schéma de Hilbert X" par I’équivalence de Bridgeland-King-Reid-
Haiman ® est isomorphe dans la catégorie dérivée DI’GH(X) au compleze C3.:

®(FlMhy ~ s .

Le comportement du complexe Cy, sous 'action de &,, est trés simple, et permet aisément le calcul de
la cohomologie &,,-équivariante de X™ a valeurs dans Cy.. Elle est isomorphe a la cohomologie du schéma
de Hilbert X[ & valeurs dans F[™. On obtient la généralisation suivante du résultat de Danila:
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Theorem 0.2. Soient X une surface algébrique, F' un faisceau cohérent et A un fibré en droites sur X.
Soit D4 le déterminant de Donaldson sur X™ relatif & A. Alors

H* (XM FIl @ Dy~ H* (X, F® A) @ S""2H*(X, A) .

On s’est proposé ensuite d’exploiter notre connaissance de 'image <I>(F[”]) d’un faisceau tautologique
FI" en termes du complexe C% afin de comprendre I'image de la puissance tensorielle d'un fibré tau-
tologique E" associé & un fibré en droites E sur X et sa cohomologie &,-équivariante. La stratégie
décrite ci-dessus marche partiellement aussi dans ce cas. La seule différence est qu’ici le noyau de la
composition des foncteurs de Fourier-Mukai qui interviennent n’est pas du tout trivial. Ceci conduit
a utiliser un résultat profond de Haiman sur polygraphes ([61], [62]). L’image du produit tensoriel de
faisceaux tautologiques est alors donnée par:

q)(E[n]®k) ~ DR (EIZVC)
- T XkoXn

ott D(n,k) est le polygraphe de Haiman dans X™ x X*. Il généralise pour & > 1 le schéma D décrit
précédemment. Le polygraphe D(n, k) est, en général, un schéma beaucoup plus compliqué que D et
son faisceau structural n’admet pas, & notre connaissance, une bonne résolution analogue a celle de D.
Il n’est donc pas possible de trouver un complexe simple permettant d’interpréter I’image <I>(E[”]®k).
Néanmoins nous avons démontré que le mapping-cone du morphisme naturel:

L L ®"
cp et oty — ®EMT)
N———

k-times

est acyclique en degré supérieur a zéro, c’est-a-dire, les images directes supérieures s’annulent:

k
Rip.q* (EM@ ) =0sig >0, et en degré 0 le morphisme:
p(@ B @ . @ pu(q BM) — pg" (B ® ... 0 EM)

est surjectif et son noyau est le sous-faisceau de torsion. Ce résultat nous permet d’identifier 'image
" (EM @ ... @ E") au terme E%C de la suite spectrale hyperdérivée associée a C§ @ ... @ C3,.
Le calcul de ce terme est en général techniquement difficile, mais il n’est pas vraiment nécessaire pour
comprendre la cohomologie &,,-équivariante de l'image @(E["]®k). Tout ce dont on a besoin est de

k
connaitre les invariants ®(F [n]® )S= . qui peuvent étre identifiés avec I'image directe par le morphisme

de Hilbert-Chow p. (F [n]® ). Vu que I'image directe &,,-invariante 7S sur la variété symétrique S™ X est
un foncteur exact, ceci équivaut & connaitre les invariants (E%:°)%» ou le terme £%:°de la suite spectrale

des invariants:
D4 ~, ( P9\Gn
EV ~ (BEY)Sn .

Cette nouvelle suite spectrale de faisceaux sur S™X est beaucoup plus simple que 'originale et permet
le calcul explicite de 'image directe de la puissance tensorielle double EI") @ EI" par le morphisme de
Hilbert-Chow u dans le cas ou E est un fibré en droites X. On a démontré la généralisation suivante de
la formule de Danila-Brion ([23]):

Theorem 0.3. Soient X une surface quasi-projective lisse, E un fibré en droites sur X. Alors, l’image
directe dérivée Ru*(E["] ® E["]) de la puissance tensorielle double d’un fibré vectoriel tautologique EM™
par le morphisme de Hilbert-Chow p est quasi-isomorphe au complexe o deux termes:

00— (€} ® ()% —+ (Ch®CH) — 0,

acyclique en degré supérieur a zéro, ot le morphisme d est donné par d = id ® d%. .
E
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Il est maintenant simple d’en tirer des conclusions sur la cohomologie équivariante de <I>(E[”] RF ["]),
ou, en d’autres mots, de la cohomologie H*(X " gl @ E[”]). En décomposant la puissance tensorielle

en composantes symétrique et extérieure, on obtient le résultat:

Theorem 0.4. Soient X une surface quasi-projective lisse, E un fibré en droites sur X. La cohomologie

n]

du schéma de Hilbert X" & valeurs dans la puissance extérieure A2E"™ dun fibré tautologique E™

associ€ au fibré en droites E sur X, est donnée par l'isomorphisme de modules gradués:
H*(X"M A2EM) ~ A2H* (X, E) ® S"2H*(X,0x) .

La cohomologie du schéma de Hilbert X" & valeurs dans la puissance symétrique S?E™ est donnée par

lisomorphisme de modules gradués:
HH(x, $2EM) ~ 1Y (X, E®") 0 7 @) S*H* (X, E) ® $" 2H*(X, Ox)

ot J est lidéal dans ST~ H*(X,Ox) des classes de cohomologie qui s’annulent dans le schéma {a} x

S"2X, avec a un point firé dans X.

Les deux énoncés du théoreme peuvent étre réunis dans la formule:
2
I{*(X'[n]vE[n]® ) ~ H*(X, E®2) ®j®H*(X,E)®2 ® Snsz*(X’ Ox) .

Perturbations de la métrique dans les équations de Seiberg-Witten

A la fin des années 1980, Donaldson [28], [29] construit les premiers invariants différentiels pour des
variétés différentielles de dimension 4 compactes simplement connexes. Ces types d’invariants permettent
de faire la distinction entre variétés qui sont homéomorphes mais pas difféomorphes. Par exemple, il est
possible de démontrer que la quintique lisse dans P, et la variété 9[?%1?;44[?% sont homéomorphes mais pas
difféomorphes. Les invariants de Donaldson sont des invariants polynomiaux:

qa: Hy(M,Z) x --- x Hy(M,Z) — Q

construits & partir de la SU(2)-théorie de jauge des instantons, ou connexions anti-autoduales. En
d’autres mots, étant donné un fibré vectoriel hermitien F de rang 2, de déterminant trivial, considérons
lespace S de SU(2)-connexions A satisfaisantes a la condition:

Fi=0. (1)
L’espace de modules des instantons Mg est le quotient:
Mg =8/G

ou G est le groupe d’automorphismes de E. Il est toujours possible de donner sur Mg une structure
d’espace analytique complexe, mais il n’y a pas de raisons pour que Mg soit lisse. Afin d’assurer que
M est une variété lisse, il faut avoir une action libre et il faut démontrer que le morphisme A —— Ff
est transverse a 0, de sorte que S est une sous-variété (banachique) lisse de lespace affine (de Banach) A
des connexions SU(2). Le premier point s’obtient simplement en considérant I’action d’un groupe réduit
G = G/C(G) et en éliminant les connexions réductibles par modification de la métrique. Le deuxieme est
non triviale et constitue une étape fondamentale dans la construction d’espaces de modules des instantons.
Le probléme a été résolu par Freed et Uhlenbeck [46] qui ont considéré des perturbations des équations
(1) de la forme:

Fi9=0 (2)
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ou la métrique g sur la variété M est vue comme un parametre additionnel. Les deux auteurs ont
démontré que lapplication perturbée (A, g) — X’g est transverse a 0; par conséquent, ’espace des
solutions S peut étre équipé d’une structure de variété lisse (de Banach). Une application standard du
théoréme de Sard-Smale entraine alors que, pour une métrique générique C* h dans Met(M), 'espace de
modules des instantons M g, relative a la métrique h, est une variété lisse. Ce fait fondamental, combiné
avec la preuve (difficile) de existence d’une compactification (faite par Donaldson [29], Uhlenbeck [114],
[115]), permet la construction des invariants polynomiaux de Donaldson.

En octobre 1994, Seiberg et Witten (voir [104], [105], [119]) construisent un autre type d’invariants
différentiels, numériques, basés sur une théorie de jauge de type U(1) beaucoup plus simple, qui peut
étre interprétée du point de vue de la théorie quantique de champs comme une théorie ”duale” de celle
de Donaldson. Sur la base de considérations profondes de physique théorique, Witten a prévu que les
invariants de Seiberg-Witten seraient capables de saisir la richesse et subtilité des invariants de Donaldson;
de plus, il a précisément conjecturé que les polynémes de Donaldson pourraient étre exprimés en termes
d’invariants de Seiberg-Witten. La conjecture de Witten est en train d’étre démontrée, sur la base d’une
idée de Pidstrigach et Tyurin, suite au travail long et technique de Okonek, Teleman [99], [108], [109] et,
surtout, de Feehan-Leness [38], [39], [40], [42], [41]. Les invariants de Seiberg-Witten sont construits a
partir des équations de Seiberg-Witten: une fois fixée une structure Spin® sur une variété riemannienne
compacte orientable (M, g) de dimension 4, de fibré de spineurs W ~ W, @ W_ et de fibré en droites
hermitien fondamental L ~ det W, les équations sont:

Dt =0 (3a)
Fi =" vl (3b)

ol A est une connexion unitaire sur L, 1 est un spineur positif ¢p € T'(W,), et [* ® 1] est la partie
de trace nulle dans isu(W,) ~ iA2T*M de Popérateur ¥* ® ¢ € u(W,). Le groupe de jauge est ici
G = C>°(M,S') et il opere sur les solutions via (4,9) —— ((¢%)*A, g). Le groupe opere librement
sur les solutions des équations (3a), (3b) de la forme (A1), avec ¥ # 0, qui sont dites des monopoles
irréductibles. L’espace des modules des monopoles de Seiberg-Witten est le quotient:

MSW — S/g

ou S est l'espace de solutions des équations de Seiberg-Witten. Afin d’assurer que 1’espace de modules
est lisse, il faut garantir que laction G est libre (ce qui peut étre fait comme pour les instantons, en
changeant la métrique afin d’éliminer les monopoles réductibles) et que I’espace de solutions S est une
sous-variété (banachique) de I’espace de configurations Ay, x I'(W,.), obtenue comme image réciproque
de 0 par un morphisme transverse a la section nulle. Le deuxieme probleme est classiquement résolu par
une perturbation des équations du type:

DAﬂJ =0 (4&)
Fi=[k"®@¢lo+n (4b)

ou 7 est une 2-forme autoduale imaginaire 1 € iAi (M). On peut ainsi obtenir la transversalité désirée et
la lissité des espaces de modules ./\/l;? W de Seiberg-Witten pour une 2-forme générique 7 € iAi (M). Bien
que cette perturbation soit tres simple, elle ne semble pas la plus naturelle, ni la plus géométrique; comme
on I’a vu précédemment dans la théorie de Donaldson, la transversalité des équations est obtenue par la
perturbation de la seule métrique, procédure qui permet en méme temps de se débarasser des connexions
réductibles. La perturbation de la métrique dans la théorie de Donaldson a une signification géométrique
plus profonde; par contre, la 2-forme 1 manque de toute interprétation géométrique ou physique. En
plus, le comportement des équations de Seiberg-Witten sous des variations de la métrique est intéressant
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en soi: peu de choses sont connues sur cette question. La seule référence dans la littérature sur les
perturbations de la métrique dans les équations de Seiberg-Witten est un article de Eichhorn et Friedrich
[31], ou les deux auteurs prétendent avoir démontré un résultat de transversalité pour des métriques
génériques, mais une lecture attentive de leur démonstration révele plusieurs fautes qui ne peuvent pas
étre facilement corrigées.

On s’est proposé alors de clarifier la question. La premiere difficulté qu’on a rencontrée est la variation
de opérateur de Dirac correspondant & une variation de la métrique: la question a déja été étudiée par
Bourguignon et Gauduchon ([12], [11]). Les deux auteurs construisent des isomorphismes entre les fibrés
de spineurs associés a des métriques différentes, afin de comparer les opérateurs de Dirac qui opérent
dans les espaces de spineurs correspondants. On a décidé d’aborder ce probléeme d’une autre facon, qu’on
va expliquer. Se donner une structure Spin® sur une variété riemannienne compacte (M, g) de dimension
4 est équivalent a se donner une représentation spinorielle (W, p), c’est-a-dire, les données d’un fibré
hermitien W sur M et un morphisme de fibrés:

p:TM — End(W)

tel que p(z)* = —p(z), p(z)? = —g(z,x), pour tout x € TM (cf. [81], [38], [40])). On fixe dorénavant
un fibré de spineurs W sur la variété riemannienne (M, g). A un changement de la métrique g; = ¢;g,
o1 € Aut(TM) on associe la multiplication de Clifford suivant le diagramme:

(TM,g) 2~ End(W)
Pt v

(TMv gt)

Le couple (W, p;), donné par le méme fibré de spineur W, avec la nouvelle multiplication de Clifford py,
devient une nouvelle structure Spin® pour la nouvelle variété riemannienne (M, g;). Il est évident que,
de cette fagon, il est inévitable de changer la multiplication de Clifford quand on change la métrique. On
se demande alors ce que signifie perturber uniquement la métrique, des qu’on est obligé de changer la
multiplication de Clifford chaque fois qu’on veut changer la métrique. Afin de répondre a cette question,
on est induit & étudier les relations entre les multiplications de Clifford (ou structures Spin€, une fois que
le fibré de spineur est fixé) et les métriques. Si on fixe le fibré de spineurs W et on prend ’ensemble des
couples compatibles (g, p):

E={(g:p)| g €Met(M), p: TM — End(W) , p(u)* = p(—u), p(u)® = —g(u,u)}

alors E —— Met(M) est une fibration C*°(M, PU(W)) sur lespace de la métrique, sur laquelle opere
Aut(T'M). Dans ce cadre, le concept de la perturbation de la seule métrique correspond, en un sens faible,
a choisir des variations de la structure Spin© transversales a la distribution verticale: en d’autre mots,
cela nécessite la notion d’une connexion sur cette fibration. Il y a maintenant une connexion naturelle,

la distribution horizontale en un point (g, p) étant donnée par l’espace tangent a l'image de la section

o(g, p):
Sym* (7'M, g) 920

o (¥ g,po )

—
—

transverse a la fibre =g, olt Sym™ (T M, g) désigne les automorphismes symétriques positifs du fibré tan-
gent. Cette connexion clarifie le concept de perturbation de la seule métrique dans un sens plus fort.
On définit les équations de Seiberg-Witten et, par conséquent, un espace de modules M paramétrisés
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par E, dont la fibre au point (g, p) est ’espace de modules de Seiberg-Witten standard M;‘;,V associé
a la structure Spin® donnée par le couple (g,p). On démontre que le groupe d’automorphismes uni-
taires du fibré de spineurs opere sur la fibration = (verticalement) et sur les solutions des équations de
Seiberg-Witten; dans le cas ou M est simplement connexe cette action est transitive sur les fibres: par
conséquent, deux espaces de modules de Seiberg-Witten pour deux multiplications de Clifford différentes
sur la méme métrique sont isomorphes:

MSW ~ MSW

(g:p) (g.0") "

On utilise des variations de la structure Spin® tangentes a la distribution horizontale naturelle pour
calculer la variation des équations de Seiberg-Witten. En particulier, la variation de 'opérateur de
Dirac qu’on obtient par ce moyen est la méme obtenue par Bourguignon et Gauduchon. On calcule la
différentielle DF de la fonctionnelle de Seiberg-Witten perturbée (en termes de variations de la connexion
unitaire A, du spineur ¢ et de la métrique g) et son adjoint (formel) DF* et on étudie les équations
du noyau DF*u = 0. Démontrer que le noyau est nul en un point (A,v, g, p) implique la transversalité
des équations de Seiberg-Witten pour la métrique générique au voisinage de g. Dans le cas général, les
équations sont compliquées et on n’a toujours pas de réponse.

Quand M est une surface complexe de Kéhler avec fibré en droites canonique Ky, les équations
de Seiberg-Witten ont une interprétation en termes de couples holomorphes (94,c), ol d4 est une
semiconnexion holomorphe sur un fibré en droites NV tel que K3, ® N 2% ~ L, et a est une section
holomorphe de (N,94). Ce fait permet une grande simplification des équations de Seiberg-Witten et,
par conséquent, de notre question. On interprete tous les objets précédents dans le contexte de la
géométrie complexe et on utilise la décomposition des endomorphismes symétriques en hermitiens et
anti-hermitiens; les équations du noyau deviennent alors extrémement plus simples. On obtient que
les équations de Seiberg-Witten sont transverses pour une métrique hermitienne générique suffisamment
proche de la métrique de Kéahler g. On a précisément démontré:

Theorem 0.5. Soit (M, g, J) une surface de Kdhler. Soit N un fibré en droites hermitien sur M tel que
2deg(N) — deg(K) < 0. Considérons la structure Spin® canonique sur M tordue par le fibré en droites
hermitien N. Pour une métrique générique h dans un voisinage ouwvert de g dans Met(M) l'espace de
modules de Seiberg- Witten /\/lfw est lisse. En effet, I’énoncé est vrai pour une métrique hermitienne
générique h dans un voisinage ouvert de g.

On trouve un contre-exemple qui montre qu’il faut obligatoirement sortir de la classe des métriques
de Kéahler afin d’obtenir la transversalité.
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Cohomology of the Hilbert scheme of points on a surface

with values in representations of tautological bundles






Introduction

This part of our work deals with the cohomology of the Hilbert scheme of points over a smooth algebraic
projective surface X with values in some representations of a tautological vector bundle EM associated
to a line bundle F on X. In particular, we will treat in detail the case of the cohomology H* (X (] S2E[”])
of the symmetric power S2E!™, and the cohomology H*(X [, A2E") of the exterior power A2E".

Motivations. The motivations of this work lie in strange duality phenomenons and conjecture, which
we will now explain. Strange duality is a duality relation between spaces of sections of determinant line
bundles on different moduli spaces of semistable sheaves on a smooth algebraic variety. The first examples
of strange duality phenomenons were discovered on curves by Beauville [3] and Beauville-Narasimhan-
Ramanan [6]. Let X be a smooth projective curve of genus g > 2, and SU(n) the moduli space of
semistable vector bundles of rank n over X with degree 0. Let D be the ample generator of Pic(SU(n)),
which is free abelian of rank 1, by Drezet-Narasimhan theorem [30]: D is called the determinant line
bundle over SU(n). If © denotes the theta divisor on the Jacobian J971(X), we have a strange duality:

H(J971(X),0(n©))* ~ H°(SU(n), D)

between the space of sections of the determinant line bundle D on SU(n) and the space of theta func-
tions of level n on J971(X). The computation of the dimension of H°(SU(n),D) and, more generally,
of HO(SU(n), D®k) has been performed by Beauville and Laszlo [5], by means of Verlinde formula, con-
jectured by Verlinde [116], and proved by several authors, among others Tsuchiya-Ueno-Yamada [113],
Beauville [4], Faltings [37], Thaddeus [110], Jeffrey-Kirwan [71].

On a smooth simply connected algebraic projective surface X Le Potier proposed the following strange
duality conjecture. Suppose X is simply connected. Then the Grothendieck algebra Kiop(X) of topolog-
ical vector bundles on X is isomorphic, as an abelian group, to Z x H?(X,Z) x Z. In other words, a class
in Kiop(X) is identified by its rank, its first Chern classe ¢; and its Euler-Poincaré characteristic x. The
Euler-Poincaré characteristic defines an integral quadratic form on Kiop(X), setting:

(u,v) = x(u-v) if u,v € Kiop(X) .

Take now two classes u,v € Kyop(X), orthogonal for (-,-) and form the moduli spaces of semistable
sheaves M,,, M, with fixed Grothendieck classes u and v, respectively. Let D, , and D, , be the two
determinant line bundles (see [86], [68]) on M, and M, associated to the classes v and u respectively.
Under some technical hypothesis Le Potier finds a canonical section oy, ,, € H®(M, X My, Dy ¥ Dy.)
which allows to define the strange duality morphism:

Dv,u . HO(MuaDu,v)* . HO(Mvvpv,u) .

Le Potier conjectured under some hypothesis that D, , is an isomorphism, if M, is not empty.

Danila [21] addressed Le Potier strange duality conjecture on Py. In particular, she solved affirmatively
the conjecture for Grothendieck classes ¢ = (2,0,n), v = (0,1,0), n < 19. Let M,, := M,). The
strategy followed is to use moduli spaces of coherent systems (see [66], [84], [85]) S, to relate — for
I(1—1) < n < (I4+1)(1+2) — the space of sections H°(M,,, D,, ,,) to the space of sections H’(U, S'R®D,,)
of a coherent sheaf R on an open set U of the Hilbert scheme X[™°] where R is locally free (see [22]).
Danila resolves R with a locally free resolution K* —— R, whose terms K’ depend on the symmeric
power S”(O(k‘)[”“Q]) of the tautological bundle O(k)[”+l2] associated to the line bundle O(k) on P2. To
compute the hypercohomology spectral sequence, it is then necessary to handle and compute cohomology
groups of the kind:

HI(X, S5 (O(k)™) @ D,) |



D, being the Donaldson determinant on X" associated to the class w. It is precisely the technical
difficulties in these computations that limited Danila’s results on the conjecture to n < 19. The compre-
hensive knowledge of these cohomology groups would lead to a complete proof of the conjecture for the
projective plane, at least for ¢ = (2,0,n), u = (0,1,0). Danila proved in [23] and [24] general formulas for
the cohomology of tautological bundles on the Hilbert scheme H*(X ["],L["]) associated to a line bundle
on X, and of the double symmetric power H*(X™, S2LI"), for n < 3.

In our work we generalize her results for S?L[™ for all n, and we give also general formulas for the
cohomology of the double exterior power H*(X ["],A2L["]) for all n. It turns out that the latter groups
are involved as well in the verification of strange duality conjecture on the projective plane for My and
M1, d,m)- (cf. [83])

The method: McKay correspondence. The method we use is quite different from Danila’s and was
provided by recent developments in McKay correspondence. The beginning of McKay correspondence
dates back long before McKay and actually started with Klein around 1870 and with Coxeter and Du Val
around 1930. When we quotient C? by a finite subgroup G of SL(2,C), and we take a minimal resolution
Y of C%/G, then Y is crepant and the exceptional locus consists of a bunch of curves, whose dual graph
is a Dynkin diagram of the kind A,,, D,,, Fs, E7, Es.

McKay (see [89], [90], [44]) made the observation that the Dynkin diagrams arising from resolutions
of kleinian singularities are in connection with the representations of G. If p is a representation of GG, and
p; are the irreducible representations, the McKay graph is the Dynkin diagram associated to the matrix
a;; — 2id, where a;; is defined as

P& pi ZZ%’P;‘;
J

it turns out that the McKay graph just defined is exactly the Dynkin diagram given by the (extended)
dual graph of the exceptional locus when G acts on C? via the representation p. Moreover, McKay
suggested that there is a one-to-one correspondence between the components of the exceptional locus and
the irreducible representations of G. In [53], Gonzalez-Springer and Verdier proved a K-theoretic version
of this statement, showing an isomorphism:

K(C?) — K(Y)

between the K-theory of Y and the G-equivariant K-theory of C2?, making precise the correspondence
between irreducible representations of G and irreducible components of the exceptional locus.

The generalization of Gonzalez-Springer-Verdier theorem we are interested in, came out in 2001, with
the following Bridgeland-King-Reid result [16]. Let M be a smooth quasi-projective variety over C and
G a finite group of automorphisms of M such that wy, is locally trivial as G-sheaf. Let Y = Hile(M )
the G-Hilbert scheme (according to Nakamura) of G-orbits. Then, under some smallness hypothesis on
Y Xpyq Y, we have an equivalence of derived categories:

d: DY) — D%L(M)

between the derived category of coherent sheaves on Y and the derived category of G-equivariant sheaves
on M, where ® is the Fourier-Mukai transform with kernel the universal family Z C Y x M.

The next step was made by Haiman ([61], [62], [60]), who proved that the action of the symmetric group
&, on the product X" of a surface X satisfies the hypothesis of BKR-theorem, and that Hile"(X ™)
can be identified with the Hilbert scheme X, As a consequence, we have an equivalence:

& : D°(x") — DY (XM

obtained by the Fourier-Mukai transform of kernel B™, the isospectral Hilbert scheme. Consequently, co-
homology computations on the Hilbert scheme can be obtained as simpler &,,-equivariant (hyper)cohomology
computations on the product X™.



Results. Our first concern was finding the image of a tautological sheaf FI"l associated to a coherent
sheaf F on the surface X for the BKRH equivalence ®. We recall that the tautological sheaf FI™ is the
sheaf defined by means of the Fourier-Mukai functor:

O':‘ L
FI = 27 xm (F) = Rpxin , (O= ©0 1, x px )
where Z is the universal family on the Hilbert scheme. In the commutative diagram

p

B" X"
q T
xtl _H gny

B™ is the isospectral Hilbert scheme, S™X is the symmetric variety, u is the Hilbert-Chow morphism.
The Bridgeland-King-Reid-Haiman equivalence

®:=Rp,oq"
computed on FI™ is then simply the composition of Fourier-Mukai functors:

n = R *O
S(FIM) =@ odPz (. (F) =R Q4(F),

which we know being a third Fourier-Mukai functor of kernel Rf,Oyz, where Z is the universal family
on the isospectral Hilbert scheme, and f is the morphism: f: B" x X —— X" x X. We proved that
the derived direct image R f,.Oy is quasi isomorphic to the structural sheaf Op of the scheme-theoretic
union D = U, A, 41 of diagonals A; ,,11 in X™ x X. In order to be able to compute the &,,-equivariant
cohomology of ®(FIM) ~ @?(Z n (F), we needed to extract some effectively useful information from the
kernel Op. This task was achieved by showing that the sheaf Op affords a Cech-type resolution K® in
terms of the diagonals A; ,,+1 and their intersections. As a consequence, we succeeded in defining a simple
complex C on X™ (which is nothing but the projection onto X™ of the Cech resolution K*® twisted by
% F'), which could be identified, in the equivariant derived category Dl’Gn (X™), with the searched image
®(F™). We got the first new result of this work:

Theorem 0.6. Let X a smooth quasi-projective surface and F' a coherent sheaf on X. The image of the
tautological sheaf F™ on the Hilbert scheme X™ for the Bridgeland-King-Reid-Haiman equivalence ® is
isomorphic in Db@n (X) to the complex Ch:

®(FI") ~ s .

The behaviour of the complex C, under the action of &,, is very simple, and allows, without any effort,
to compute the &,-equivariant hypercohomology of Cf on X", which is isomorphic to the cohomology
of FI"l on the Hilbert scheme. We got the following generalization of a Danila-Brion result (cf. [23]):

Theorem 0.7. Let X be a smooth algebraic surface, F' a coherent sheaf and A a line bundle on X. Let
D, the Donaldson determinant on X™ relative to A. Then

H (XM FIl @Dy~ H* (X, F® A) @ S""2H*(X, A) .

The second task we proposed ourselves was to exploit our knowledge of the image ®(F™) of a tauto-
logical sheaf FI" in terms of the complex Cy to understand the image of a tensor power of a tautological
vector bundle El associated to a line bundle E on X and its &,-equivariant hypercohomology. The



strategy decribed above partially works in this case as well. The only difference here is that the kernel of
the resulting composition of Fourier-Mukai functors is quite nontrivial and we have to make use of a deep
result by Haiman on polygraphs ([61], [62]). The image of the tensor product of tautological sheaves is
then given by:
®* Ob(n k
®EMT )~ X0 (B

where D(n, k) is Haiman’s polygraph in X" x X* and generalizes for k > 1 the scheme D described
above. The polygraph D(n,k) is, in general, a far more complicated scheme than D and its structural
sheaf does not admit, to our knowledge, any nice resolution in the way D has. Consequently, we could
not find any ”simple” complex quasi-isomorphic to the image ‘I’(E["}@)k). Nonetheless, we could prove
that the mapping cone of the natural morphism:

] ®"

)

cy el elcy, — ®F
—_————
k-times

k

is acyclic in degree higher than zero, that is, the higher direct images vanish: ij*q*(E["]@) )=0if7 >0
and in degree 0 the morphism:

p*(q*E[n]) ® ...®p*(q*E["}) — p*q*(EW ®...®E["])
—_—

k-times k-times

is surjective and its kernel is the torsion subsheaf. This result allows us to identify the image p.q¢*(E"™ @
e ® E[”]) with the term E%C of the hyperderived spectral sequence associated to C§ L ... eF Cy.
The computation of this term can be technically difficult in general, but it is not really necessary to
understand the &,-equivariant hypercohomology of the image <I>(E[”]®k). All what is needed is the
knowledge of the invariants <I’(E[”]®k)6n, which can be identified with the image of the Hilbert-Chow
morphism: . (E[”]®k). Since the &,-invariant push-forward 7€ on the symmetric variety is an exact
functor, this amounts to knowing the invariants (E%°)®=, or the £%° term of the spectral sequence of
invariants:
EP ~ (EPT)Sn

It turns out that this new spectral sequence of sheaves on S™X is much simpler than the original one
and it allows to explicitely compute the direct image of the double tensor power El" @ EM for the

Hilbert-Chow morphism g in the case E is a line bundle on X. We proved the following generalization
of Danila-Brion formula ([23]):

Theorem 0.8. Let X a smooth quasi-projective surface, E a line bundle on X. Then the derived direct
image Ry (EM@EM) of the double tensor power of a tautological vector bundle E™ for the Hilbert-Chow
morphism i is quasi-isomorphic to the two-terms complex:

00— (oS —~ (Cach)S — 0,
acyclic in degree higher than zero, where the morphism d is given by d =id ® dOE.

It is simple now to draw consequences about equivariant cohomology of <I>(E["] ® E[”]), or, in other
words, of the cohomology H*(X "l M @ B [”]). Splitting the tensor power into symmetric and exterior
components, we get the following :

Theorem 0.9. Let X be a smooth quasi-projective surface, E a line bundle on X. Then the cohomology
of the exterior power A2E™ of a tautological vector bundle E™ on the Hilbert scheme X" associated to

the line bundle E on X, is given by the isomorphism of graded modules:

H*(X" A2EM) ~ A2H* (X, E) ® S"2H*(X,Ox) .



The cohomology of the symmetric power S?EM is given by the following isomorphism of graded modules:
HY (X" $2El) ~ 0 (X, B%) © 7 @) S*H* (X, E) @ S"*H*(X, Ox)

where J is the ideal of the classes in S""1H*(X,Ox) vanishing on the scheme {a} x S"2X, with a a
fixed point in X.

The two statements of the theorem can be gathered in the formula:

2
B (X!, EMT) ~ HY(X, E¥") 0 @D H* (X, EB)® © S"2H*(X, Ox) .

1 Preliminaries and notations

In this part we are primarily concerned with schemes and varieties over k = C.

1.1 Hilbert schemes of points on a surface
1.1.1 Hilbert schemes of points

Let X a quasi-projective variety over the field k. Consider the functor:

Hilb% : Schy — Sets

from the category of noetherian schemes over k to the category of sets, defined by:
Hilb% (T) = {Z C X x T'| Z closed subscheme, Z flat and finite over T of relative degree n } .

Grothendieck proved the following fundamental theorem:

Theorem 1.1. The functor Hilb% is representable by a quasi-projective variety X If X is projective,
then X" is projective. X" is called the Hilbert scheme of n points on the variety X .

Actually Grothendieck proved in [55] a much more general version of the previous statement. Since
X[ represents the functor Hilb", we have, for any noetherian k-scheme T*:

Morgen, (T, X ™) ~ Hilb% (T) .

Setting 7' = X" and taking the identity in the last bijection we get a universal family = of subschemes
2 C X x X", flat and finite over X" of relative degree n such that any other family of subschemes of
X of length n parametrized by a scheme T is the pull-back of = by a unique morphism: T" — X.

There is another construction, close to the Hilbert scheme of points on a variety, which parametrizes
points on X as well: the symmetric variety S™X.

Definition 1.2. Let X a quasi-projective variety. The symmetric variety S™X, for n € N, n > 1, is the
quotient:
X"/6,

of the n-product of the variety X by the symmetric group &,,.

The symmetric variety S™X actually parametrizes O-dimensional effective cycles on X of degree n.
A point on S™X can always be written as the formal sum ), n;z;, where z; € X, n; € N, >~ . n; = n.
The general relation between the symmetric variety and the Hilbert scheme of points is given by the
Hilbert-Chow morphism (see [95], [94], [59], [56]):



Theorem 1.3. There exists a morphism:

X e snx

red

defined by
n(§) = Z length(&,) @ .

zeX

1.1.2 Hilbert scheme of points on a surface

In general even if the variety X is nonsingular, the Hilbert scheme X[ can be very singular if n > 3.
Let X a nonsingular variety. The symmetric variety S™X is normal and has only rational singularities,
because a quotient of a smooth variety by a finite group (see [17], [13]). Since it is Gorenstein, this is
equivalent of having canonical singularities ([80].) The following important result gives the non-singularity
of the Hilbert scheme for a quasi-projective nonsingular surface (see [43], [95]).

Theorem 1.4. Let X a quasi-projective nonsingular surface. Then

1. The Hilbert scheme X of n points on X is nonsingular.

2. The Hilbert-Chow morphism:
pe XM gnx

s a resolution of singularities.

The fact that S™X has rational singularities implies that the higher direct images of structural sheaf
of the Hilbert-Chow morphism p vanish; furthermore, since p,Oxm ~ Ognx, because p is birational
and S™X is normal, we have:

Ry Oxn) = Ognx .

We are now interested to smallness properties of the Hilbert-Chow morphism. The dimension of the

fibers of u is given by the following proposition:

Proposition 1.5. The fiber of the Hilbert-Chow morphism over a point ) .y n,x € S"X is irreducible
of dimension ) . (ng —1).

This proposition is a consequence of results by Hartshorne [63] and Fogarty [43] on the dimension of
Hilb" (C{x,y}), by Briangon [15] on the irreducibility of Hilb" (C{z,y}). These results were proved and

generalized in a different and more geometric way by Ellingsrud and Stromme [35] and later by Ellingsrud
and Lehn [34].

Definition 1.6. Let X Ty a proper surjective map of algebraic varieties. Let de = {y €
Y | dim f~!(y) = d}. Then f is semismall if codimy- de > 2d, for all d > 0, and small if codimy de > 2d,
for all d > 0.

One sees immediately that a proper surjective semismall map is generically finite and hence dim X =
dimY.

Remark 1.7. Let X a smooth quasi-projective surface. Let v = v; > --- > v, a partition of n. We
define the stratum S}; X of "X as:

k
SnX = {Zyixi | z; # x; foriyéj} .

i=1
Then codimgnx S}) X = 2(n — k) and S"X stratifies into: S"X =[], S;X. Since dim M_l(Zle vx;) =
Zle v; — 1 =n—k we get that:
s xy;=J six.

v
length(v)=k



An immediate consequence of the previous remark is that:

Corollary 1.8. The Hilbert-Chow morphism p : X" —— 8" X is semismall.

1.1.3 Nested Hilbert schemes.

We will now describe briefly incidence varieties, or nested Hilbert schemes. See [18], [19], [111], [112],
[87], 36], [23].

Proposition 1.9 (Cheah-Tikhomirov). Let X a quasi-projective surface. Let n, m € N\ {0}, n > m.
Let F' the functor:
F: Sch/k — Sets

associating to a scheme S the set of couples ((,§) of subschemes ( C S x X, £ C S x X, both flat over S
of relative length n and m respectively, and such that & C (. The functor F is representable by a scheme

X[nml - called the nested Hilbert scheme or incidence scheme.
X [mm] g naturally a closed subscheme of X x X[™ and hence equipped with two projections:
xll P xlnm] P2, x(m]

The nested Hilbert scheme X[ parametrizes two flat families G € X [nm] 5 X, En CX [nml » X of
length n and m, respectively, defined as:

Cn = (pl X ld)il(En) ;o &m = (p2 X id)il(E’m) :
with &, C (,. Their structural sheaves fit in the exact sequence:
00— Zpm — O, —> O, — 0. (5)

The sheaf 7,, ,,, is a coherent sheaf on X [nm] » X, flat over X ™™ fiberwise zero dimensional of relative
length n — m. Therefore it induces a morphism into the symmetric variety:

p: Xl . gn-mx (6)

defined as p(n) = >, ¢ x length((Zy,m)n.2 )2
The interesting case for us is when n = m + 1. Cheah [19] and Tikhomirov [111], [112] prove that this
is the only case where the incidence scheme is smooth.

Theorem 1.10. The incidence scheme X171 s smooth irreducible variety.
Moreover, in this case:

Proposition 1.11. Let Z,, € X" x X be the universal family over X and 1=, its ideal sheaf. Then the
incidence variety X" 17 s isomorphic to the projectivization P(Zz,) and to the blow up Blz, (X[ x X)

=n

of the product X" x X along the universal family =, :

Blz, (X" x X) ~P(Zz,) ~ xIF+10l

En
These are isomorphisms of schemes over X" x X

In this case the ideal sheaf 7,1, on X n+1n] gives rise to a third flat family over Xn+Lnl i
the morphism (6), of relative length 1, which will be called 5. It turns out that in this case the ideal
sheaf Z, 11, =~ O,(—E), (cf. [23]) where E is the exceptional divisor over Blz, (X[ x X), viewed on
n C X[*+1nl % X via the identification given by the first projection.



The exact sequence (5) becomes (in the identification X["+1nl ~ Blz (X" x X)):
00— Oy(—B) — O, —» O¢, — 0 ()

where E denote the exceptional divisor. Danila [23] proves that we have another exact sequence:

O - OC71+1 - Ogn @ 077 - On e 0 (8)
E

Finally if g : X[**1») — X[l x X is the blow-up projection, we have (cf. [23])

Rg*OX[7L+1,n] ~ OX[n]XX 3 Rg*OE >~ OE . (9)

1.2 Equivariant derived categories and Fourier-Mukai functors
1.2.1 Equivariant sheaves

In this section we will explain briefly some basic facts about equivariant sheaves. We will follow [16], [7].
Let X a variety and G a finite group acting (on the left) on X. Let Coh(X) the category of coherent
sheaves on X.

Definition 1.12. A G-linearization of a coherent sheaf F'is a collection of isomorphisms: /\:]D F—— g*F
for all g € G such that g*(A\} ) oAy = Ang, and A\; = idp, for all g, h € G. We also say that F is a coherent
G-sheaf.

Let now E, F two coherent G-sheaves with given G-linearizations {A\Z}gcq, {Af}geq. The group G
acts (on the right) on the vector space Homx (E, F') in the following way: for § € Homx (E, F')

fg := )\5_1 og*fo /\5 .

The category of G-equivariant sheaves Cohg(X) is the category whose objects are G-linearized sheaves
and whose morphisms (between two objects) GHomx ((E, {\}'}y), (F,{\['}4)) are the G-invariant mor-
phisms Homy (E, F)¢. In the same way we can define the category QCoh(X) of G-equivariant quasi-
coherent sheaves, or more generally G-equivariant sheaves Shg(X) on X.

For two G-sheaves E and F on a variety X, the representation Homx (F, F') decomposes into irre-
ducible representations p;, ¢ = 0,...m, where we indicated with pg the trivial representation:

Homy (E, F) ~ @& GHomx (E ® p;, F) ® p; .
If G acts trivially on X every G-sheaf decomposes as a direct sum over the irreducible representations:
E~®"\E; ®pi, (10)
where F; are simply coherent sheaves on X. In particular, we can define the functor of fixed points
[—]¢ : Cohg(X) — Coh(X)

which associates to a G-sheaf F the sheaf Fy, appearing in the direct sum above. Since the group is

finite and we are taking fixed points of O x-modules, the functor [—]¢

is exact. If )\5 is the linearization
of a coherent sheaf F' on X, directly from the decomposition into irreducible representations, and from
the definition of the functor []%, we get:

G
]

Indeed it comes directly from (10) the restriction of )\5 to [F]9 is the identity.
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Now let X, Y two varieties acted upon by finite groups G and H respectively. Suppose there exist a
morphism of groups ¢ : G — H. If f : X —— Y is an equivariant morphism, then f* commutes with
the actions and then it defines a functor f* : Cohy(Y) — Cohg(X). On the other hand, we need the
surjectivity of the morphism ¢ : G —— H to define a good equivariant push-forward. Let K the kernel
of the epimorphism ¢ : G — H. If F is a G-sheaf on X, then f,F is naturally G-linearized via ¢,
where G acts trivially on Y. Then (see [7]) we can define a good H-linearization of the fixed points sheaf
(f.F)¥. Consequently, the functor
fE .= [-]% o f, : Cohg(X) — Cohy(Y)

*

is a well defined equivariant push forward. It turns out that f* is the left adjoint of fX. An important
case occurs when Y is the quotient Y = X/G, H = {1} and f: X — X/G is the quotient map. Then
K = G and the functor f¢ is the exactly the composition

FH 0 fe

Since the morphism f is finite and G is a finite group, f& is an exact functor. Si F' € Cohg(X), we will
denote also F'¢ := fCF.

1.2.2 Equivariant derived categories

Definition 1.13. Let X a variety, G a finite group acting on X. The equivariant derived category
D¢(X) is defined as the derived category of the abelian category Cohg(X) of G-equivariant coherent
sheaves on X:

D¢g(X) := D(Cohg (X)) .

Remark 1.14. It is well known that the category of coherent sheaves on an algebraic variety does not
have enough injectives in general. One can pass by this difficulty and define and compute derived functors
by seeing the equivariant derived category as the full subcategory of the derived category of QCoh(X)
consisting of complexes with coherent cohomology.

Remark 1.15. If X is a smooth variety, we will work with the bounded equivariant derived category
D2 (X) := D*(Cohg(X)), since all geometric derived functors take their values there, (thanks to the
syzygy theorem). Again we can see the bounded equivariant derived category as the full subcategory of
the (unbounded) derived category D®(QCoh (X)) of quasi-coherent G-sheaves, consisting of complexes
with bounded and coherent cohomology.

The functors GExt’ (—, —) are defined as the derived functors of the functor GHomx (—, —), and
coincides with the G-invariant part of Extf’x(—, —) by the universal property of the derived functor. In
other words, taken F, F € Dg(X), then GExty (E, F) = Hom' (E, F)¢ = Homx (E, F[i])®.

1.2.3 Equivariant Fourier-Mukai functors

Let X and Y two varieties equipped with the actions of two finite groups G and H. Then G x H acts on
the product X x Y via the diagonal action. The projections 7x : X XY — X and 7y : X XY — Y
are equivariant with respect to the projections G x H — G and G x H — H. As a consequence of
general facts seen before, they define functors:

71');( : Cohg(X) — CohcxH(X X Y)
7y ¢ : Cohgupr (X xY) — Cohg(Y)

11



which can be derived, defining equivariant pull-back and push-forwards:

7% = Lk : Dg(X) — Doy (X xY)
Rﬂ'y* DGXH(X X Y) —_— DH(Y)

The bifunctor — ® — pass as well on the G-equivariant level, hence, deriving it, we get a bifunctor:
— @ —:Deyr(X xY) x Daxg(X XY) — Dayxg(X xY).
The choice of a kernel P € Dgyp (X X Y) defines a functor :
— @ P:Dayp(X xY) — Daun(X xY).
The composition of these functors defines the equivariant Fourier-Mukai functor with kernel P:
Oy _y =Ry d(rx () ®" P) : Dg(X) — Dp(Y).

Let us consider the diagram:

XxY
x/Gxv/H 2 ym
&
TX/G
X/G

Taking the invariants of P by G x H, we get a kernel P¥*H ¢ D(X/G x Y/H) and consequently an
associated Fourier-Mukai functor:

PGXH

Oy /gy/m : D(X/G) — D(Y/H) .
This new functor is linked with the previous by the relation:

Proposition 1.16.

PGXH
X/G—Y/H = U o<I>X y o Lu*

We first prove the following lemma:

Lemma 1.17. Let R a k-algebra, char(k) = 0 and M an R[G]-module. Let N a R-module, (that is, G
acts trivially on N ). Then
(M @% N)¢ = M® @k N .

Proof. Resolve M with a projective resolution P* —— M. Applying the fixed points functor we get
a resolution: (P%)* —— M of M%. Now the (P?)¢ are projective elements, because they are direct
factors of the P?, which are themselves projective, and a direct factor of a projective is projective. Hence
(P%)* —— MY is a projective resolution of M“. Now the tensor product — ® N commutes with the
fixed points functor, since G does not act on N: (—)¢ ® N ~ (— ® N)€. Deriving, since the fixed points
functor takes projectives to projectives, we are done.
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Proof of the proposition 1.16. If F € D(X/G) we have:
Uf o (I))P;_‘Y oLu*F = Uf o RWY*G(W;( (LU*F) ®éx><y P)
= oo Rwa(L(u x U)*W}/G(F) ®éx><y P)

= R’]Ty/H*(U X U)*GXH<L(U X 'U)*W;(/G(F) ®éxxy P)

. I GxH
= Ry, |[76(F) 86y 0,y 0 (X 0).P]

= Ry, [76(F) @by 0 (w0 o) P
PGXH

= Px/6oy/c(F)

where we used projection formula in the fourth equality and lemma 1.17 in the fifth equality. a

1.2.4 Equivariant cohomology

Let G a finite group and R a (commutative) ring. Let Modgq) the category of R[G]-modules, or G-
modules over R. Then the group cohomology H'(G,—) is the i-th right derived functor R'[—]% of the
fixed points functor [—]¢ : Modgjg) — Modg.

When G is a finite group and R is a k-algebra with char(k) = 0 the existence of the Reynolds
operator ensures that the fixed points functor is exact: therefore, in this case, H* (G, M) = 0, for i > 0
and M € Modgg-

Definition 1.18. (cf. [55], [7]) Let X an algebraic variety, G a finite group acting on X. The equivariant
cohomology HE (X, —) (with values in a G-sheaf F € Cohg(X)) is the i-th right derived functor of the
functor of invariant sections T'§:

HL(X,-)=RTS .

As a consequence the equivariant cohomology can be computed as the limit of the spectral sequence:
'EPY = HP(G,HY(X,F)) = HLM(X,F).

Take now the quotient X Ty = X/G; the functor of invariant sections is then also: T'¢ =T'{ o f, =

I'y o f&. Therefore we have a second spectral sequence:
"BYY = HP(Y,RUCF) = HE(X,F).
Since the group G is finite, and char(k) = 0, the two spectral sequence degenerate:
HL(X,F) ~ H(X,F)¢ ~ H(Y,F°), (12)

that is, the equivariant cohomology reduces to the invariant cohomology, or the cohomology of the in-
variants. Since we will be interested in actions of finite groups on varieties over C, this will always be
the case.

Equivariant cohomology has the property of recovering the cohomology of the quotient:

Proposition 1.19. Let G a finite group. Let p : X —— Y a proper G-equivariant morphism of
algebraic varieties. Let ¢ : X —— X/G and 7 : Y —— Y/G the quotients of X and Y by G. Let
w: X/G —— Y/G the map induced by p on the quotient level. Let ® the functor:

®:Rp,oLg" : D(X/G) — D¢g(Y) .

Then:
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1. Ry, ~ Wf o®d;

2. the hypercohomology of a complex F* € D(X/QG) is the G-equivariant hypercohomology of ®(F*):

H(X/G,F*) ~Hg(Y,®(F*)) .

Proof.
nlo®(F*) = wfoRp.oLq(F)
~ [Rp. 0 g.(Lg"(F*))¢
~ Rp.qf (Lg"(F*))
because p is G-invariant, then
RCod(FY) = Ru(F b, a00y)

~ Rp.(F*)

by lemma 1.17, the projection formula and the fact that ¢¢Ox ~ Oy /G- The second statement is now

an easy consequence:

He(Y,®(F*)) = RIYo®(F*)=RIy/gonlod(F*)
~ Rl'y,coRu.(F*)
~ RIy,q(F*)=H(X/G,F*).

Remark 1.20. The Bridgeland-King-Reid situation (theorem 1.23) is a particular case of this picture.

1.3 The G-orbit Hilbert scheme

We will briefly describe the G-orbit Hilbert scheme as explained in Nakamura [96] and Reid [102]. See
also [70] and [69].

Let G a finite group and M a smooth quasi-projective variety on which the group G acts. Let M
the Hilbert scheme of n points on M and S™M the symmetric variety. Let n = |G|. The group acts
naturally on S M and M™ in such a way that the Hilbert-Chow morphism g

we M L0V
is G equivariant; therefore we have a well defined surjective map between the fixed points sets:
()G L5 (5m Ay
The quotient variety M/G can be embedded in (S"M)% with the reduced structure:

j:M/G — (S"M)°

o] —L S o

geG

Definition 1.21. The G-orbit Hilbert scheme Hilb® (M) is the irreducible component of (M) domi-
nating j(M), that is containing smooth orbits. We will refer to Hilb” (M) also as the Nakamura G-Hilbert
scheme.
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As a consequence we get a G-Hilbert-Chow morphism:
7 : Hilb%(M) — M/G . (13)

A G-cluster is a closed subscheme Z of M of length |G| such that H°(Oz) ~ C[G] as representations of
G. The G-Hilbert scheme Hilb® (M) is a fine moduli space for G-clusters on M. We will denote with Z
the universal subscheme: Z C Hilb®(M) x M. The family Z — Hilb®(M) is also called the universal
family of G-clusters on M.

Remark 1.22. In [16] the G-Hilbert scheme GHilb(M) is defined set theoretically as the set of G-
invariant subschemes of M of length |G| such that H°(Oz) ~ C[G], and it is the scheme representing
the functor GHilb(M) which takes a scheme S and associates the set { G-invariant subschemes Z of
M x S, finite over S, such that H°(Oyz,) ~ C[G] for all s € S }. Ito and Nakamura [70] proved that
Hilb®(M) C GHilb(M), but the converse is not at all obvious and probably false: GHilb(M) is not
known to be irreducible or even connected and may even be not equidimensional in general. In [16] the
authors define Y as the irreducible component of GHilb(M) containing free orbits. As a consequence
Y = Hilb%(M). Hilb% (M) is also said to be a ”dynamic” definition, GHilb(M) an ”algebraic” one. See
[20].

1.4 The BKR construction

Let M a smooth quasiprojective variety and G a finite group acting on M with the property that the
canonical sheaf wys is locally trivial as a G-sheaf. By the Drezet-Kempf-Narasimhan lemma [30] it
descends to the quotient M/G, hence M/G is Gorenstein. Let Y = Hilb®(M). In [16] the authors build
a Fourier-Mukai functor by means of the universal family Z C Y x M. In the diagram:

p

z M
q i
y — " vy

7 and ¢ are finite of degree |G|, ¢ is flat, and p and p are birational. Now G acts on M and Oz can be
seen as as a {1} x G-equivariant sheaf on Y x M. Therefore we can define an equivariant Fourier-Mukai
functor:

992, DY) —~ DL(M).

The main result proved by Bridgeland, King and Reid in [16] is the following theorem.

Theorem 1.23. Let M a smooth quasi projective variety of dimensionn, G a finite subgroup of Aut(M)
such that the canonical line bundle wyy is locally trivial as a G-sheaf. Let Y = Hilb® (M) and ZCY xM
the universal closed subscheme. Suppose that

dimY X]\/[/GY §n+1 .
Then'Y is a crepant resolution of M /G and the Fourier-Mukai functor
oY=, : DY) — Dg(M)

is an equivalence of categories.
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1.5 The isospectral Hilbert scheme

In this section we will present the construction of the isospectral Hilbert scheme as defined by Haiman
[61], and a brief description of its properties. Haiman proves everything for the affine plane A%, but all
works for a general quasi-projective surface; we sketch here how to extend some of his proofs. Let X a
smooth quasi-projective variety, n € N, n > 1, X[") the Hilbert scheme of n points over X and S™X the
symmetric variety.

Definition 1.24. The isospectral Hilbert scheme B™ is the reduced fiber product:

Pn

B" X"
q ™
xtl _H gny

that is B" := (X" xgnx X7)

red”

Remark 1.25. In the definition above it is necessary to take the reduced scheme underlying the fiber
product, since the simple fiber product X x gny X" is never reduced, if n > 2.

A first easy property of the isospectral Hilbert scheme is:

Proposition 1.26. Let X a smooth quasi-projective surface. The isospectral Hilbert scheme B™ over X™

is irreducible of dimension 2n.

The following simple lemma allows to extend several of Haiman’s results to an arbitrary quasi-
projective surface.

Lemma 1.27. Let X a quasi-projective variety. Then each point in X™ has an affine open neighbourhood
of the form U™, where U is an affine open set in X.

Proof. It suffices to prove that given a smooth quasi-projective variety X and n points x1, ..., Ty,
there exists an affine open set U such that all ; € U. To prove this, embed X in a projective space PV
and take its projective closure Y = X. Then Z = Y \ X is a closed subset of the (possibly singular)
projective variety Y. For large [, there exists sections s; € H*(Y,Zz(1)) € H°(Y, Oy (1)), vanishing on Z
but nonzero on z;. If [ is large, the subspace H; C H°(Y,Zz(l)) consisting of sections of Zz(l) vanishing
on z; form a hyperplane in H°(Y,Z(l)) for all i. Consider now a section u € H*(Y,Zz(l)) \ U, H;. The
affine open set U defined by u # 0 in Y is contained in X and contains all the points z;. Consequently,
it is the wanted affine open set.

O

The first important fact Haiman proves is that B™ can be obtained as the blow-up of X™ along the

union of pairwise diagonals in X™:

Theorem 1.28. The isospectral Hilbert scheme B™ can be identified with the blow up of X™ along the
scheme-theoretic union of all its pairwise diagonals.

Proof. The case of the affine plane is proved in Haiman [61]. For an affine surface the proof goes
exactly as in the case of AZ. Passing to a quasi-projective variety X is now simple, owing to the preceding
lemma. Consider the isospectral Hilbert scheme B™ and P a point on X™. Let U™ be the affine open set
containing P, found in the preceding lemma. The isospectral Hilbert scheme By} associated to the affine
surface U is now the blow-up Bf; —— U" of the pairwise diagonals in U". Since Bf; can be identified
with the inverse image of U™ for the projection B" —— X" and the statement is local on X", we are
done.
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The analogous of the nested Hilbert scheme for the isospectral Hilbert scheme is the isospectral nested
Hilbert scheme which we will now introduce. Let X[+1nl — X" the nested Hilbert scheme.

Definition 1.29. The nested isospectral Hilbert scheme B™T1" is the reduced fiber product:

Bn+1,n U Bn

xlntin] & )

that is, B"*L" .= (BHLm % v B™)

red’

Analogously to the usual nested Hilbert scheme, there are two projections:
B” u Bn—i—l,n v Bn+1 )
Haiman uses the nested Hilbert scheme X171 and its isospectral analougue B"+t1" as fundamental
tools to prove one of his main theorems:

Theorem 1.30. The isospectral Hilbert scheme is normal, Cohen-Macauley and Gorenstein.

Sketch of the proof. Again, the case of the affine plane has been proved in [61]. The case of an affine
surface goes exactly in the same way. To obtain the result for a quasi-projective surface X, take a point
Q@ € B", and its image P in X™. Let U™ be the affine open set containing P found in the lemma 1.27.
Then the isospectral Hilbert scheme By associated to the affine surface U has the wanted properties,
contains ) and can be identified with an open set of B™.

O

Remark 1.31. One of the technical step in the proof of the preceding theorem is proving that the
morphism: B+ Yy Bt gatisfies:

RU*OBn,+1,n >~ OBnJrl . (14)

As usual, Haiman proves this for the isospectral Hilbert scheme associated to the affine plane, and his
proof works without any change for a smooth affine surface. By lemma 1.27 it is valid on an arbitrary
smooth quasi-projective surface.

Remark 1.32. If X —/+ Yisa Cohen-Macauley scheme, with f finite and surjective over the smooth
variety Y, then X is flat over Y ([32], exercise 18.17). On the other hand if X is flat and finite over the
Cohen-Macauley scheme Y, then X is Cohen-Macauley. In this case X is Gorenstein if and only if f has
Gorenstein fibers. (cf. Bourbaki, [10], chapter 10, n.7, §2 and §3).

Remark 1.33. The preceding remark applies in particular to the isospectral Hilbert scheme B™, since
by theorem 1.30 it is Cohen-Macauley and ¢ : B* — X[ is finite and surjective with X[ smooth.
Hence the Cohen-Macauley property of B™ is equivalent to the flatness of the morphism ¢. Therefore in
the diagram:

DPn

B" X"

xinl _H  gny

q is flat of degree n!, even if 7 is not.
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Remark 1.34. The subscheme Z C B™ x X, defined as the pull-back (¢ x id)~*(Z) where Z is the
universal family over X[ is called the universal subscheme for the isospectral Hilbert scheme. We will
also call it the isospectral universal family. Since Z is flat and finite over X", Z is flat and finite over
B™ hence Cohen-Macauley. It is reduced, because generically reduced. While = is irreducible, Z has n
irreducible components Z; = (p, x id)~*(D;), where D; is the diagonal D; = A; ,41 € X" x X. It is
clear that Z; ~ B™, hence Z; are normal, Cohen-Macauley and Gorenstein.

Remark 1.35. In the diagram

Bn+1,n

- » B"

s q

xntin] Y xlnl
the nested isospectral Hilbert scheme B"t1™ coincides with the fiber product X[+1:m1 x xin) B™ and
the above diagram is cartesian. Indeed, since ¢ is flat, the fiber product X[*+%7 x ) B™ is flat and
finite of degree n! over the nested Hilbert scheme X [**1:7 which is smooth. Hence by remark 1.32 it is
Cohen-Macauley. Since it is generically reduced (where s is unramified), it has to be reduced everywhere.
Therefore it coincides with Bn+1:n,

Remark 1.36. Consider now the diagram:

Xt
Bn+1,n (’LL ) Bn % X

s q % id
@ x 1)

X[’n+1,n] ( X[n] X X

It is a flat base change. Since X["*+17] could be considered as the projectivization P(Zz), Z the universal
family over X[ by base change it is immediate to see that the isospectral nested Hilbert scheme B+
can be seen as the projectivization:

B~ P(T,)

with Z the isospectral universal family. It can furthermore be seen, with the same kind of arguments
made in [23], that
B ~ Bly(B™ x X) .

Always by flat base change applied to (9) we can prove:
R(u X t)*OB7L+1,n ~ OBn x X R(u X t)*Og ~ OZ (15)
where £ is the exceptional divisor in B ~ Blz(B™ x X).

Remark 1.37. We have just seen that the isospectral nested Hilbert scheme B"T" is obtained by the
nested Hilbert scheme X["+17 by a flat base change. Pulling back the exact sequences (7) and (8) on
Brthm X via s x idx we get the two sequences:

00— Oy (=€) —> O¢py —> Ogy — 0 (16)

and

0 OCB OEB & OﬂB OTIB 0 (17)
£
where we denoted with (g, £, np the flat families over B"T1" x X of relative length n+1, n, 1, obtained

by the pull back via s x idx of the families C,41, &n, 7 on X0l 5 X
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1.6 The Hilbert scheme X as the Hilb®"(X")-scheme.

In this section we will explain briefly why the product X™ of a smooth quasi-projective surface X with
the action of the symmetric group G, satisfies the hypothesis of the BKR theorem. In particular we will
sketch why the scheme Hilb®" (X™) can be identified with the Hilbert scheme X" of n points on X. We
will follow [61] and [60].

Theorem 1.38. The Hilbert scheme of n points over a smooth quasi-projective surface is isomorphic to
the scheme Hilb®" (X™) over the symmetric variety S™X .

Sketch of the proof. Let Z C Hile"(X”) x X™ the universal family over Hilbe"(X”). It is flat over
Hilb®" (X™) of degree n! and it has a natural &,-action, where &,, acts on the second factor. If we make
S,,—1 act on X" via the inclusion 6,,_y —— &,,, Z becomes equipped with an &,,_;-action. Consider
the quotient Z/&,_;: it can be identified with a subscheme Z/6&,,_; C Hilb®"(X") x §"~1X x X, flat
over Hilb®» (X™) of degree n. Consider now the embedding morphism:

i Hilb®" (X™) x X < Hilb®"(X") x " 71X x X
(& z) ——————— (&, 7(8) —w,2)
The pullback of Z/6,,_1 for this embedding can then be seen as a subscheme

Y:=i"Y2/6,_1) CHilb® (X") x X

flat over Hilb®"(X™) of degree n. Actually the two families } and Z/&,_; are isomorphic over
Hilb®» (X™). By definition of the Hilbert scheme X" the family ) defines a morphism:

¢ : Hilb®" (X") — X,

On the other hand, since the isospectral Hilbert scheme B™ is flat of degree n! over X[, it can be
considered a family B" C X[ x X" of subschemes of length n! of X”, flat over X[". The universal
property of (X ")["!] then gives rise to a map:

e xnl R (Xn)[n!]

whose image is clearly contained in Hilb®» (X™) C (X™)", They are clearly inverse one the other on the
generic locus, hence everywhere. In the identification ¢ the universal families Z and B™ are identified.

O

Actually Haiman proves in [60] that this theorem is equivalent to the Cohen-Macauley property of
B".

At this point, to prove that the &,,-action on X™ satisfies the hypothesis of theorem 1.23 we have to
prove that wx» is locally trivial as &,,-sheaf — which is easy, since the stabilizer of a point x € X™ acts
as a subgroup of SL(T,X™), and hence trivially on wx» — and the smallness condition

dim(XM™ xgnx XMy < 2n+1;
but this is a direct consequence of the fact that the Hilbert-Chow morphism:
pe XM s snx
is a semismall resolution (see [27]):

Proposition 1.39. Let f1 : X1 — Y and f3 : Xo — Y two proper surjective semismall maps, with
m=dimX; =dimY, i =1,2. Then dimy X1 Xy Xo =m.
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As a consequence, we get the following remarkable particular case of 1.23:

Theorem 1.40 (Haiman). Let X a smooth quasi-projective surface, X[ the Hilbert scheme of n-points
on X, B" the isospectral Hilbert scheme. Let q : B* —— X! and p : B" —— X™ the projections on
the Hilbert scheme and on the product variety, respectively. The Fourier-Mukai functor:

oQrr . :DY(XM) — DY (X7 (18)

defined by:
®:Rp.oq"

is an equivalence.

We will refer to the previous equivalence as the Bridgeland-King-Reid-Haiman (BKRH)-equivalence.
and we will indicate it with ®.

2 The Cech complex for closed subschemes

The aim of this chapter is to prove, under some reasonable transversality hypothesis, the exactness of a
Cech-like complex for a finite scheme theoretic union Z = U?_, Z; of closed subschemes Z; of a Cohen-
Macauley scheme.

Let X a noetherian scheme and Z;, i = 1,...,n closed subschemes, defined by ideal sheaves Iz,. Let
Z = U}, Z; the scheme-theoretic union, which we recall being defined by the ideal sheaf Iz = N}, Iz,.
If J is a subset of {1,...,n}, we indicate with Z; the partial intersection Z; = Njc;Z;. We define the
Cech complex C* as follows:

ve . . 50 Pyl gn—1
C*:. 00— 057 — @1:1021.—» €B|J|ZQOZJ—> ...—>Oz{1 — 0 (19)

where the differential is defined by:

(0" f)s = Zsi,JfJ\{i} |z,

ieJ
and ¢, j is the sign €; y = (—1)tiesi<i},

Remark 2.1. This complex is not exact in general. Let us take, for example, X ~ C? ~ Spec(C|z,y]),
l the z-axis, r the y-axis, s the diagonal of the first quadrant and Z =lUr Us. Let P the origin. The
complex C*® becomes:

00— 05 — 0,00,¢90, — OpO0pp0Op — Op —= 0. (20)

The first two differentials are given by +(f) = (fli, fl+, fls) and 8°(a, B,v) = (8(0) — «(0),7(0) —
a(0),7(0) — B(0)). Now 8°(«, 8,7) = 0 if and only if a(0) = B(0) = ~(0), that is, if and only if the
three functions «, 3, coincide at the origin. On the other hand, the image of ¢ is the restriction to the
three lines of a function defined on Z. Therefore, in the identification s = Spec(Clz,y]/(z —y)) ~ CJt]
via C >t — (t,t) € C2, we have, for a function f € Oz:

d

—f(t,1)(0) =

0 0
. 52 @ 00) + 5 F0.5)(0) 21)

ox

This means that if («, 8,7) € O; ® O, ® Oy are in the image of ¢, then they have to satisfy a nontrivial
relation between their derivatives at the origin P, apart from coinciding in P. Since the condition (21)

gives a one-dimensional restriction on ker 9°, we have:

HY(C*) ~C.
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The question of the exactness of the complex C® in degree 1 is in relation with the seminormality of the
local rings Oy ;. See Dayton and Roberts ([26], [25]). Orecchia ([101]) put in relation seminormality of
the union Z with the transversality of the components Z;.

We will prove, under transversality conditions, the exactness of the full complex C®, and of a more
general complex, of which the Cech complex is a particular case. The techical tool is the following
proposition. Let I C {1,...,n}. We will indicate with I’ the complementary I = {1,...,n}\ T of I in
{1,...,n}. If F;, i =1,...,n are sheaves on a scheme X and I C {1,...,n}, we will indicate with F;
the tensor product: Fr = ®;erFjer-

Proposition 2.2. Let X a noetherian scheme. Let M;, i = 1,...,n coherent sheaves on X. Consider,
for all i, the exact sequences of sheaves:

with E; locally free. Let IC? the complex (in degree 0 and 1):
K:i. :EZHMZHO

If Torg(M;,,...,M;,) =0 for k >0, and for 0 < i3 < --- < ip < n, 1 < h < n, then the complex
K =Ki*®...0K,°:

— @|I|:2MI®EI’ _— .., — ®ZL:1M,L4>O

is a right resolution of @ N;. In particular if E; = E for all i, the complex:

n—1

0— @' N — E¥ —» o7  M; @ E®" —
—— B My ®ESTT L @ M, — 0 (22)
s exact.
Proof. For all i = 1,...,n the complex of cochains
Ki*=0— E — M; — 0

is clearly a right resolution of the sheaves A;. As a consequence the p-cohomology of the complex
Ki1®* @F ... @Y K,* in the bounded derived category D?(X) is

HP(K,* @F ... @" K,*) ~ Tor_,(Ny,...,Ny) .

To compute this cohomology group we can use the hypertor spectral sequence:

"B = @ Tor_, (K, ..., Kir) = Tor_,_,(Ni,...,Ny) . (23)
i1+ +in=p
Now Tor_h_k(IC’f ,...,Kin) is in turn the limit of the spectral sequence:

"

EpF = Tor_, (K, Tor _x(Ki2,...,Ki))
and since E; = K? is acyclic (because locally free), the term EP? reduces to a sum:

/Ef’q _ @ Tor_q(M;y, ..., M;,)

d14-+in=p
iﬂéO
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which is zero by hypothesis, if p # 0. We remark that the complex /E;’O is exactly £1* ®...® K,°*. The
spectral sequence then degenerates at level "B, and hence ,if p #£0,

/ES’O ~ BP0 EP o~ HP(KC @F ... @k K,
~ Tor_p,(NM,....Ny) .

Now Tor_,(N7,...,N,) is necessarily zero if p > 0, because N; are sheaves. As a consequence, the only

nonzero term in level 2 is

"B ~ HOYK!®...®K%)
~ M®...QN, .

On the other hand,

B0~ g BY0) ~ B (K © . 0 K3) =0,

if p > 0. As a consequence,
K~ Kle... 0Kk, ~KS ol .. ol K

is a resolution of ®? ;N\, since HY(K®) ~ @™ | .
O

Remark 2.3. In the case where M, are structural sheaves Oz, of closed subschemes Z; of X, and E; is
chosen to be Ox for all i, the complex (22) is exactly the Cech complex (19).

We are now going to look for a simple criterion that allows us to decide if the hypothesis of the
proposition are satisfied. Since every statement is in fact of local nature, we can set the discussion in the
context of commutative algebra of local noetherian rings. The fundamental tool we will be using is the
following result by Peskine and Szpiro (cf. [74]).

Lemma 2.4 (Peskine-Szpiro, Kempf-Laksov). Let (A,m) a Cohen-Macauley noetherian local ring and
I C A an ideal. Let

0— K — K! — ... — K"! —+ K" —» 0

be a complex of free modules. Suppose that

Supp(K*) := | J SuppH'(K*) C V(I) .

i=1
Then HY(K®) =0 for all i < ht(I).
O

Let now (A, m) be a noetherian local ring and k := A/m its residue field. If M is a finite module over
A with finite projective dimension projdim M, the Auslander-Buchsbaum formula (see [88]) states that :

projdim M + depth M = depth A . (24)

If now (A, m) is a noetherian regular local ring, and M is a Cohen-Macauley module over A, Auslander-
Buchsbaum formula implies that the length of a minimal free resolution of M equals its codimension.
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Proposition 2.5. Let (A, m) a noetherian regular local ring, M, ..., My, finite Cohen-Macauley modules
over A of finite projective dimension. Let

k

co(Mq,...,My) = (Z codimMi> —codimM; ®...® M, .
i=1

Then
TOTi(Ml, ey Mk) =0
fori>ce(My,..., My).
Proof. The proposition is an easy consequence of Peskine-Szpiro lemma and the existence, for the

modules M;, of minimal free resolutions of length equalling the codimensions codim M;. For every module
M; let’s take its minimal free resolution R} — M; — 0, written:

0— R) — R} — ... — R4 Mi __,Ap 0.

We can then compute Tor;(Mi, ..., M) as the cohomology of the total complex: R® := R;* ®...® Ry,
Now R*® is a finite complex of free modules of length [ = Zle codim M; and, for all ¢, Tor; (M, ..., My) =
H'=%(R*) is supported in Supp(M; ® ... ® M) = V(Ann(M; ® ... ® My)). Therefore by Peskine and
Szpiro lemma, H'~%(R*) = 0 for [ —i < ht(Ann(M; ®...® My,)), that is if i > [ —ht(Ann(M; ®...® My)).
Now for a noetherian regular local ring, ht(I) = codim V(I) = dim A — dim A/I, and this implies the

result.

O

Let now (A, m) a local ring, and M, ..., My finite modules on A. We call the excess of dimension of
M; ® ... ® Mj the positive integer:

k
e(My,...,My) = (Z codimMi> —codim(M; ® ... ® My)

=1

For brevity’s sake, if My, ... M, are modules over A and H C {1,...,n}, H = {i1,...,in}, we will
indicate the integer of proposition (2.5) with ¢(Mp) := ¢(My,, ..., M;,).
Lemma 2.6. Let (A, m) a regular local ring, M1, ..., My nonzero finite modules over A. Then
1. codim(M; ® ... ® M) < >°° ; codim M;
2. For oll HC {1,...,n} we have 0 < ¢(Mp) < ¢(My,..., My).

Proof. We embed X = Spec A in the product X = Spec A®" via the diagonal immersion X <t oxn,
We have: codimxn»(M; X --- X M) = Z?:l codimy M; . Now M ® ... Q@ My = i*(M; K --- X My). As

a consequence
Supp(M; ® ... ® My) =i (Supp(M; X - - - K My)) ~ AN Supp(M; K --- K M) .

Now, since X™ is a smooth scheme, we can estimate the dimension of the intersection A N Supp(M; X
.-+ My,) in the following way:

dim A N Supp(M; X - -+ K My) > dim A + dim Supp(M; K - - - K My) — dim X"

which implies codimx (M7 ® ... ® M) < codimxn(M; K --- K M) = Zle codimyx M;.
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The second statement comes easily from the first, remarking that, if for all H C {1,...,k}

C(Ml, .. .,Mk)

(Z codim Ml> —c(My @ M)

=1

Y

(Z codim MZ> — codim(Mpy) — codim(M ;)
i=1
> o(My)+c(My) > c(My) .

O

Combining lemma 2.6 with proposition 2.5 we get the simple sufficient condition we needed for the
vanishing of the Tor-s in the hypothesis of propositon 2.2. We now give the useful result in sheaf-theoretic
terms in the following statement.

Theorem 2.7. Let X a smooth variety and M;, i = 1,...,n Cohen-Macauley coherent sheaves on X.
Consider the exact sequences:

00— N, —E, — M; — 0

with E; locally free. Therefore the complex:

0 O N; —e @0 B — 81, M;® Fpy —
—_— @|[|:2M1®E1/ _— ..., — ®?:1M1‘4>0

is exact at point © € X such that:

codimx My, ») = Z codimx M; .
where Hy = {j,1 < j <n|M,, #0}.

Example 2.8. Let X a smooth variety. Consider the product: X"*! ~ X" x X. Let p; : X"t! —» X
the projection on the i-th factor and A the diagonal in X2. Let

D; = (pi X pny1)*(A) .

Then D; ~ X", hence smooth. Moreover the intersection of all D;: Ny D; ~ Ay, p41, is the small
diagonal in X" "1, hence codimyn+1 NP_yD; = > 1 | codimyn+1 D;. Theorem 2.7 then applies to the
exact sequences

OHIDi HOanxHODi — 0.
As a consequence of the theorem and of remark 2.3 the Cech complex:
n
00— OD — @ODl — @ ODI _— ... — (QD{1
i=1 |T]=2
is exact and provides a right resolution of the sheaf Op.

Example 2.9. Let X a smooth quasi-projective surface, n € N, n > 2. Let B"™ the isospectral Hilbert
scheme and Z C B™ x X the isospectral universal family. As in the preceding example, let D the scheme
theoretic union D = U], D; of the diagonals A; ,4+1. As we saw in remark 1.34, Z is the union of
its irreducible components Z; = f~1(D;), where f = (p, x id). While, by the previous example, the
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diagonals D, are transverse in X™ x X, the components Z; are not transverse in B™ x X: indeed the
condition on the codimension does not hold any more: while codimpn« x Z; = 2, we have:

codim(Z;, N---NZ;,)=h+1.

for 1 <4y < --- <ip <n. As a consequence, Tory(Z;,,...,Z;, ) # 0 which implies that
Iz, N+NIz, 2Lz, - Iz, -
Now, by transversality, since Tor;(Op,,...,0Op,) =0,
ID:IDlﬁ"'ﬂIDn :ID1 ""‘ID,,, .
Therefore
If—l(D) = f 1(ID1 ..... ID”)
=Ty Zy-1(py)
= IZ1 ..... IZn ,C,_ IZ

As a consequence the scheme f~!(D) is non reduced and f~!(D)eq ~ Z. It is clear that f*Op ~ O.
We will refer to f~(D) as Z.

3 The image of a tautological vector bundle for the BKR equiv-

alence

In this chapter we are going to compute the image of the tautological sheaf FI" on the Hilbert scheme
X[ associated to a coherent sheaf F on the surface, for the Bridgeland-King-Reid-Haiman equivalence
(18). More precisely we will find a &,,-equivariant complex C§ in D%, (X™) such that ®(F") ~ C$.. This
result will allow us to compute the cohomology H*(X [l F ["}) of the tautological sheaf F[™ on the Hilbert
scheme, thus giving another proof of results by Danila-Brion (cf. [23]) and Ellingsrud-Goettsche-Lehn
(cf. [33]).

3.1 Preliminary results

We begin by proving a preliminary result on the vanishing of the higher direct images R'p,Opn of the
structural sheaf Og~ of the isospectral Hilbert scheme for the blow-up projection:

p:B" — X,
We first recall Yoneda’s Lemma (cf. [117], [72]):

Lemma 3.1 (Yoneda). Let C a category. Let CV the category of controvariant functors from C to the
category Sets of sets:
CY := Funct(C, Sets) .

Then the Yoneda functor:
C\/

X ——— Home(—, X)

is fully faithful.
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Remark 3.2. By applying Yoneda Lemma to C°? we have a fully faithful functor:
h':CoP (cor)Y
X ——— Homgor(—, X) = Home (X, —)

Now X ~ Y in C if and only if X ~ Y in C°P. Therefore X ~ Y if and only if Hom¢(—, X)) ~ Home(—,Y)
if and only if Home (X, —) ~ Home (Y, —).

Proposition 3.3. Let p: B" —— X" the blow-up of the union of the pairwise diagonals in X™. Then:
Rp.Opr >~ Oxn .
Proof. We recall that the BKRH functor:
$: D'(x") — D (X")
is an equivalence. Therefore, for all F*, G* € D?(X™)
Hompy, (x(®(F*), #(G*)) = Homp o) (F*, G*)
Therefore, for all G* € D?(X™):

(xm)(®(Oxim), B(G*))

12

Homp,,
&n

Homgb(x[n]) (OX[n] ) G.)

EthX[n] (Ox[n] ) G.)
~ HY(XM G*).

12

Now, by proposition 1.19
HZ(X[TL]7 G.) ~ Hi(Xn, @(G.))G”

and the last term is
H'(X", ®(G*)®" = 6,Bxta (Oxr, ®(G*)) ~ Hompy () (Oxr, B(G*)) -
Therefore for all G* € D*(X™):
Homesn(X")(q)(OX["])7 ®(G*)) ~ Hongn(xn)(OX"a ®(G*))

and since every object in D% (X™) can be written as ®(G*) for some G* € D*(X[™), because ® is an

n

equivalence, the following functors are isomorphic:
]:_IOI'H]:)ZZ:’71 (X7) (@(Ox[n] ), —) >~ HOmD?Sn (xXm) (OXn’ —) .

By Yoneda Lemma we obtain:

‘I)(OX[n]) ~ OXn ,

which is exactly:
Rp. 0 q*Oxm) = RpOpn ~ Oxn .

We now come to the definition of tautological sheaf. Consider the diagram:

xnl o x PX | x
DPxin]
xnl
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Definition 3.4. Let X a smooth algebraic surface. Let F' a coherent sheaf on X. The tautological sheaf
FI"l on X[ associated to the coherent sheaf F' on X is the element:

FI = @02 )(F) = (px)« (0= ®6 | pxF) € DY(XM).

Remark 3.5. Let F be a coherent sheaf on the surface X. The tautological sheaf FI"l is a sheaf. It
suffices to prove that
Oxin
Tor, X" X (Oz,pxF) =0 for all i > 0. (25)

For any coherent sheaf F', the sheaves Oz and p% F' are transversely supported, that is,
codim y(n)  x (0= @ pX F) = codim x5 x (O=) 4 codimym)  x (p% F)

If F is now Cohen-Macaulay, they are transverse by proposition 2.5, therefore (25) follows. Hence (25)
is true for any O-dimensional coherent sheaf, because Cohen-Macaulay. If F' is of dimension 1, it can be
written as the extension:

0O—Fy—F —F —0

with Fy of dimension 0 (hence Cohen-Macaulay) and F; of dimension 1 without immersed points (hence,
again, Cohen-Macaulay); the long exact Tor-sequence gives the transversality. If F' is of dimension 2, we
can write the exact sequence:

0O—T —F—G—0

where T is the torsion subsheaf (of dimension < 1) and G is torsion-free. Therefore Oz and T are
transverse. To see that Oz and G are transverse, write the short exact sequence:

0—G—G"—Q —0.

Now the bidual G** is locally free and @ is of dimension 0. The long exact Tor-sequence gives again the
wanted transversality.

Remark 3.6. If E is a vector bundle on X of rank 7, then Oz ® pX E is flat over . Since pxm |2 :

2 — X" is flat and finite of degree n over X[,

EM = (pxin)+ (0= @ px E) = (px1m

5)* (pX ;E)
is a vector bundle of rank nr over X",

Remark 3.7. The definition we have given is compatible with the definition of the functor
— K(X) — K(XxIM)
given, for exemple, in [87]. Actually the functor:

®%= ., :D'(X) —» D(XI])

induces the functor —" in K-theory.

Let X a smooth algebraic surface, X[ the Hilbert scheme of points over X, = the universal family
on X[, We recall that B® —» X™ is the isospectral Hilbert scheme and Z is the universal family on
B™.

Proposition 3.8. The fiber product = X xm) B™ is reduced and isomorphic to the isospectral universal
family Z C B™ x X.
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Proof. The reduced scheme (2 X xn B™)yeq underlying the fiber product coincides with Z, since Z and
(2 X xin] B")rea are two reduced schemes supported on the same points. Consider the flat base change:

Bn

= X x[n] B"

Pxinl X[n]

(1]

2 X xm B™ is flat and finite of degree n over B" (because Z is flat and finite of degree n over X)) and of
degree n! over = (because such is B™ over X [”]). Therefore, by remark 1.32, it is Cohen-Macaulay. Since
E X xm B™ is generically reduced and cannot have immersed components (because Cohen-Macaulay), it
is reduced. Therefore

EXxm B~ 2.

O

Definition 3.9. Let X —— Y a morphism of schemes, F' a coherent sheaf on Y. We say that f is
transverse to F' if
L'f*F = Tor® (F,0x) =0 fori<0 .

Lemma 3.10. Let f: X —— Y a morphism of schemes. Let F a coherent sheaf on'Y transverse to f.
IfRf.Ox ~ Oy, then
Rf*(F ROy Ox) ~ [

Proof. The proof is almost immediate, once seen that F' ®o, Ox =~ f*F. Now, since f is transverse
to F,
f*F~Lf*F .

Therefore
Rf.(F ®o, Ox) ~Rf.(Lf*F) ~ F 8%, Rf.(Ox)

by projection formula. The hypothesis Rf.(Ox) ~ Oy allows to conclude.

Proposition 3.11. Consider the morphism:
fi=(pxid):B"xX — X" x X .
Then the structural sheaf Op of the scheme D = U}_, D; is transverse to f.

Proof. We recall (cf. example 2.8) that the complex

n
K00 — @ Op, —+ @ Op, —+ o — Op,
i=1 [T]=2

is a right resolution of the sheaf Op. In other words:
OD ~ KC*.
We now compute Lf*Op ~ Lf*(K*). The hyperderived spectral sequence:

EPY = [4f*(KP) = Tor(_gjnxx((’)anXJCp)
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converges to
EP! — Lp+qf*(lC’).

Now
Oxnyx Oxnyxx
Tor 7" ** (Opnx x,KP) =~ @ Tor ;" **(Opnxx,0p,)
|I|=p+1

and Dy is the smooth intersection of |I| transverse diagonals of the kind D;. Hence codimxnyx D; =
2(p+ 1) and we can resolve Op, with a locally free resolution R® of length 2(p + 1). Therefore

Oxnyx .
TOI‘ig( X(Oanx,ODI):Hq(R ®Oxn><x Oanx).

Since R® ®0yn, x OBnxx 1s now a complex of locally free sheaves on B” x X™ of length 2(p + 1), whose
cohomology is supported in Z; = f~1(Op,), hence in codimension p + 2 by example 2.9, we deduce, by
Peskine-Szpiro lemma 2.4 that

Tor?X" X (Opnyx,0p,) =0 if —q>2(p+2)— (p+2)=p.

Therefore Ef’q = Tor(f;{"xx (Oanx, ]Cp) =0 if p+ g < 0. This implies

LPTafr(K®) = L f*(Op) =0 ifp+q<0

Now, since Op is a sheaf, we always have L' f*Op = Tor(_gfnxx (Op,O0pnxx) =0 for i > 0. Therefore

f*OD ~ Lf*OD .

Corollary 3.12. Let Z C B" x X the pullback f~Y(D) of the subscheme D of X" x X. Therefore
Rf.0O; ~0Op
Proof. By example 2.9 we know that
O;=f0p.
Therefore:
Rf.O; ~Rf.(f"Op) .
Since, by the previous proposition, the sheaf Op is transverse to f, we can conclude by lemma 3.10 and
proposition 3.3.

O

Proposition 3.13. Let M a smooth algebraic variety and Y a smooth subvariety. Let Y1 and Yy two
smooth subvarieties of Y, transverse in'Y, such that the intersection Y1 NYs is smooth. Then there is a

canonical isomorphism:

Tor;(Oy,, Oy,) ~ AiNx*//M
Y1NYs

Proof. Let us prove first the case Y = Y; = Y;. We want to prove:
TOI“i(Oy, Oy) >~ AZN;; .

To obtain the isomorphism, we can write locally Y as the scheme of zeros of a section s of a vector
bundle F', transverse to the zero section. The Koszul complex K*(s) associated to s is a resolution of
Oy . Therefore

Tor; (Oy, Oy) ~ H-/(K*(s) @ Oy) ~ A'F*
Y
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Now it is immediate to see that the exact sequence:

ds

— F

Y

0—TY —TM

— 0

Y
allows us to identify the restriction F’ |Y of the bundle F' to the normal bundle Ny, of Y in M. Hence we
get the isomorphism Tor;(Oy, Oy ) ~ AiN}*, /0 O1 the considered open affine neighbourhood. To see that

these local isomorphisms glue together, let now s’ a section of another vector bundle F/7 transverse to the
zero section. We can find on an open subset where the two vector bundles are defined an isomorphism
of vector bundles: ¢ : F —— F such that ¢s = s’. The morphism ¢ induces a morphism between the
Koszul complexes K*(s) and K*(s') and a commutative diagram of isomorphisms:

TOI‘i(Oy, Oy) — AiF/*

Q\“L

Y

A F*

—_— AiN}*/ /M
Y
This shows that the identification of Tor;(Oy, Oy ) with AiN;‘,/M is canonical.

We come now to the case one of Y7 and Y> is a proper subvarieties of Y. Let r = codimy; Y,
r+s; = codimy; Y;, ¢ = 1,2. The question is again local. Suppose that Y is defined by the scheme of
zeros of u : M — C", and Y; by the scheme of zeros of: (u,s;) : M — C"T% and all these sections are
transverse to the zero section. Suppose also that the section (u, s1, s2), whose scheme of zeros is Y1 N Ya,
is again transverse to the zero section. Then:

Tori(OYlv OYQ) = Hﬁi(K.(uasl) ® K.(U782)) .

The Koszul complex K*®(u,s;) is the tensor product: K®(u) ® K*(s;). By transversality the complex
K*(s1,s2) is a resolution of Oy,ny, in Y. Therefore:

Tor;(Oy, , Oy,) ~ Tor;(Oy, Oy) ~ NNy

YiNYs YiNYs2

We will prove now that
It will turn out that this is the techical key result in order to compute the image of a tautological vector
bundle for the BKRH equivalence. We will prove (26) by induction on n; hence we start with the simpler
case n = 2.

3.2 The case n =2

We will now study in details the case n = 2. We recall that we indicated with Z the pull back of the
scheme D = UP_ D; = U Aj,p1 in X™ x X for the map (p x id). We saw that Z is not reduced
and Zyeq ~ Z, the universal family for the isospectral Hilbert scheme. The morphism p : B2 — X?
the blow-up of the diagonal A C X2: B? is then smooth. Let F the exceptional divisor E = p~1(A).
Consider D1 = Ay 3 and Dy = Ag3 in X2 x X and Z; = f~1(D;) and Z> = f~1(Ds) in B® x X. We
already know by example 2.9 that Z; and Z, are not transverse:

3 = codimpzy x (Z1 N Z2) < 2+ 2 = codimpzy x(Z1) + codimpzy x (Z2) ;

hence we expect

Tory X (0z,,02,) £ 0 .
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Lemma 3.14. The ideal Iy of Z C B? x X in Z is isomorphic to Og(E); we have the exact sequence
on B2 x X:
0 — Opg(E) — O3 — Oz — 0. (27)

Proof. If J; and Js are two ideals of a commutative ring A, we have:
Torl(A/Jl, A/Jg) ~JiN JQ/JlJQ .

Now we know that Z; ~ 77 17,, while Iy =17 N1z,. It’s then clear that the ideal of Z in 7 identifies
with Tor(Oz,,Oz,). We will now see that it is isomorphic to Og(FE). By proposition 3.13, since B? x X
and Z; and Zs are smooth, we have:

Tor1(0z,,02z,) = Ny g2y x
Z1NZo

where Y is a smooth subvariety of B2 x X containing Z; and Zs as transverse subvarieties. To work out
what this term is we can suppose that the base X3 is affine: X ~ C2. In the product X?x X ~ (C%)2x(C?
we can now imagine that the diagonal is the second factor; as a consequence we can take coordinates
(z,y,a, B3, 2,w) in (C?)?xC? such that Za = (z,y), Za,, = (z,w), Za,, = (r—2,y—w). As a consequence,

Bla(X?) x X ~Blp(C*) x C* xC? ~ H x C* x C?,

where H ~ Bly(C?) is the total space of the Hopf line bundle on P': H ~ Op, (—1). Here the exceptional
divisor F on Bla(X?) is Py x C2. Let A € H°(O(E)) and u, v homogeneous coordinates in H°(O(—E)):
we can set x = A\u, y = Av. Then

1z, :(Z7U}), IZZZ(/\U—Z7>\U—’LU).

We can easily see that Z; and Z, are transversely immersed in the smooth variety Y, defined by the ideal
is Ty = (zv —wu). Y is a divisor in H x C? x C? and corresponds exactly to the pull-back of another
copy of the Hopf bundle H C P; x C? via the projection:

x
HXCQXCQMRXCQ

’ ’

Y ~n*H H

where 7 : H x C2 —— P; is the projection on P;. Now the normal bundle Ny mxczxcz is naturally
identified with the pull-back 7*Q) of the quotient:

0—>H — 0} —+Q—0

of OI%H by the Hopf bundle H ". Since line bundles on the projective space are classified by their degree,
(cf. [54]) we necessarily have Q ~ (H')* ~ Op, (1). Therefore:

7
~7*H
E

~ (1*Q)* ~ Op(E) .

E

*
]\/vY/H><(C2><tC2

Z1NZy

because the intersection Z; ~ Z, is isomorphic to E via the projection onto B2.
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Corollary 3.15. Let p: B> —— X? the blow-up of the diagonal and D; = A;3 C X2 x X, i = 1,2,
Z = (p xid)~YD) and Z = Zyeq the isospectral universal family. Then

R(p X ld)*OZ ~ OD .

Proof. Tt is immediate from the exact sequence (27) and the well known fact that for a smooth blow-up
f:Bly (M) — M of a smooth subvariety Y in a smooth variety M we have (cf. [2]):

Rf.Op(kE) =0 if 0 <k < codimy Y .

3.3 The general case

We now pass to the general case
f:B"xX — X"x X .

We first prove that f,Oz ~ Op and, in a second time, that the higher direct images of the sheaf Oz
vanish. We will recall a fundamental result of local cohomology (see [64], [58]). Let X a locally noetherian
scheme, Y a closed subscheme, U = X \ 'Y and j: U —— X the open immersion of U in X. We recall
that, for a coherent sheaf F' on X, the sheaf HY.(F) is defined by the exact sequence:

0 — HY(F) — F — j.j*F.

The i-th right derived functor of HY is denoted with Hi- and it is called the i-th sheaf of local cohomology
with support in Y.

Theorem 3.16. Let X a locally noetherian scheme, Y a closed subscheme. Let F' a coherent sheaf on
X. The following statements are equivalent:

1. Forallp €Y, depth F, > k.

2. HL-(F) =0 for alli < k.

If F' is Cohen-Macauley we can rephrase the first condition by requiring;:

1. Foralpey,dimo,, F, >k
Therefore, for a Cohen-Macauley coherent sheaf F' on X,
dimpy , Fy >2 forallpeY <= F~j.j'F (28)
where j: U —— X is the open immersion of the complementary of Y.
Proposition 3.17. Let f: B" x X —— X" x X and Z the isospectral universal family. Then
f:O0z ~0Op.

Proof. B™x X is a Cohen-Macauley normal variety, and Z C B" x X is a Cohen-Macauley subvariety of
codimension 2. Let now Y C X™ be the scheme-theoretic union of all diagonals of length 3: Y = Ujr=34Ar,
and let Y be its pull back on X™ x X. It’s clear that Y and Y are of codimension 4 in X™ and X™ x X.
Moreover Y N D is of codimension 4 in D. We will indicate X[ := X™\ Y. Then X" x X \Y =X xX.
We denote W := p~*(Y), B? := p~(X?) = B*\ W. Let W = f~(Y). We remark that W and W are
of codimension 2 in B™ and B™ x X respectively, and W N Z is of codimension 2 in Z. Now, since Oy is
Cohen-Macauley and for all p € W N Z the dimension

dimanX Oz’p 2 2
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we have by (28) and the facts on local cohomology that
Oz ~ jw. jw Oz

where jw : Bl x X —— B" x X is the open immersion of the complementary of W. Over B} x X we
have the short exact sequence:

0 — Oz — GBOZi — @Ozmzj —0

i=1 i<j

and the sheaves Oz,nz, are isomorphic (via the projection on BF) to O E;;» Where E;; are the irreducible
components of the exceptional divisor £ on B]'. Since B[ is a smooth blow-up of pairwise disjoint

n
* 9

diagonals in X', over B} x X we can treat the situation exactly as in the case n = 2: therefore the

statement of the proposition is true on X x X. Consider now the fiber product

B" x X / X" x X

Jw Jy

B} x X X x X
flBrxx

We have:

[0z = fjw.dwOz = jy . (flprxx)+jw Oz = jv.jyObp

It suffices to show that jy,j3Op ~ Op. Applying the functor jy,jy to the first three terms of the Cech
complex, and recalling that jy,j; is left exact we get the following morphism of short exact sequences:

D on,

[1]=2

0 - Op - éoDi
i=1

n
0 —— jv.jvOp — P iv.ivOp, — P iv.ivOp,
i=1 |T]=2
Now Op, and Op, are Cohen-Macauley coherent sheaves, because structural sheaves of smooth subvari-
eties and, since codimp, D; NY =4 and codimp, D; NY = 2 for |I| = 2, we have, by (28)
Hy (Op,) =0="Hy(Op,) ifi<2,
which means
Op, ~ jy.jyOp, and Op, ~jy.jyOp, .

Since the last two vertical arrows in the previous diagram are isomorphisms, we get that the canonical
morphism:

Op — Jjv.jyOp
is an isomorphism.
O
Before proving the next proposition, the technical heart of this chapter, we recall some facts on base

change formulas.
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Proposition 3.18. Consider the fiber product:

x Yy’
U 0O v
X ! Y

where X,Y,X/, Y' are noetherian k-schemes and f and f/ are proper morphism. Let F a coherent
Ox-module, and G a coherent Oy -module. Then:

Rf.(F@h, G) ~RfF L, G (29)
where .7:®éy G is naturally seen as an element of D(X/).

Proof. 1t is a particular case of EGA III. Etude cohomologique des faisceaux cohérents, Seconde
Partie, Proposition 6.9.8. [57].

Remark 3.19. e Suppose Y’ is flat over Y, then X is flat over X. If G = Oy, we get the known
formula for base flat change ([65]):

RS, (u*F) ~ v*Rf.F .

o If X is flat over Y and G = Oy, we get:

Rf.(Lu*F) ~ Lv* (Rf.F) .

e If Y =Y and X = X formula (29) becomes the common projection formula:
Rf.(Lf*GoF F) ~ G Rf.F.

Notation 3.20. We explain here the slight abuse of notation we will be making for all the proof of next
proposition. In the hypothesis of proposition 3.18, we will consider the sheaf G as a sheaf on Y and we
will denote with Lf*G the element Ox ®éy G. It is canonically a complex of sheaves on X /, but we
will consider it as a complex of sheaves on X. If v is flat, the complex Lf*G coincide with the complex
L(f)*G (on X" and on X); if G is flat over Y, then Lf*G is isomorphic to (f )*G. Moreover, if H is a
sheaf on X', we will consider it as a sheaf on X and we will denote with R f+«H the element R f;H, seen
as a complex of sheaves on Y. In these notations base change formula (29) becomes simply a projection
formula:

Rf.(Lf'Go5, F)~G®s, REF
and if v is flat the complex denoted with Lf*G coincides exactly with L(f )*G.
Proposition 3.21. Let p : B" —— X™ the blow-up of the pairwise diagonals. Let f := (p x id) :
B"x X — X" x X. Then
Rf*OZ ~ OD .

Proof. In proposition 3.17 we proved that f,Oz ~ Op. It remains to prove: R'f,0Oz = 0 for all
i > 0. We prove the proposition by induction on n. The case n = 2 was previously proven. Suppose the
proposition is true for n > 2. Consider the flat families (g, £g, ng on B"T1™ x X, defined in remark
1.37 as the pull-back on B"t1:™ x X of the correspondent families on X" t17 x X We will consider the
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sheaves O¢,,, O¢,, Oy, as flat sheaves over B"™1" following the abuse of notation previously explained.
More precisely, consider the morphisms:

t
BnJrl,n v Bn+1 Bn+1,n u B" Bn+1,n X

) )

Then the three families above can be defined as the pull-back of the isospectral universal families:

OCB = ’U*OZn,Jrl = OB"Jrl’" ®OB"+1 OZ"Jrl
OSB — U*OZn = OBn«}»lJL ROgn OZn
Onp =t"0a = Opn+1n ®o, Oa

where again Oz, .., Oz, , Oa are regarded as flat sheaves over B"tl, B™ X respectively. Consider the
exact sequence (17):

0— OCB - OEB @OHB - OﬂB . —0 (30)

where the sheaf O, | ¢ 1s exactly the sheal: O, ®o Og¢. The principle of the proof is simple:

Bn,n+1
consider the diagram:

Bn+1,n

Bn—i—l

Pn+1

h
X
We apply the functor
Ro. =~ Rf.oR(uxt),
= Rppi1,oRo,.
to the exact sequence (30). We get a distinguished triangle:
RLIO*OCB - R(p*OEB @ R(JD*OUB - R(JD*OTZB - R(p*OCB [1] (31)

£

We now compute the two central terms by going down B+ e X"xX clockwise, and the extremal
ones by going counterclockwise.

R.Ocp = R (' 0z,) = Rp. ((u x t)*g*0z,) .

We remark that, since O, is flat over B", and ¢ is a flat morphism, then ¢*Oyz, is flat over B"™ x X.
Then
(uxt)*'9g"Oz, ~L(uxt)"g* Oz, .

We can apply the projection formula to obtain:

1

Ry, oL(uxt)"g" Oz, Rf.oR(uxt). (L(uxt)*g"Oz,)
~ Rf* <g*OZw ®éB"><X R(U X t)*OBn«#l‘n)

Rf*g*OZn

1
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because R(u X ¢).Opn+1n >~ Opnxx by (15). Now g is a flat morphism: by flat base change we get
easily:
R(p*of)z = Rf*g*ozn =~ g*an*OZn =~ g*OD

by induction hypothesis. The sheaf g*Op, without any abuse of notation, is isomorphic to pri3*Op as a
structural sheaf of a subscheme of X™ x X x X, where prig: X” x X x X — X" x X is the projection
onto the first and third factor.

Let us now compute Ry, O,,. The computation is analogous to the previous one:

Rp.0,, = RfioR(u x t), (ux t)*h*Op) .

Remembering that h*Ox is flat over B™ x X (because O, is flat over X and h is flat) and applying the
projection formula, we get:
R0y, =~ Rf.(h*0a @ R(u x 1),0pn+1.n)
~ Rf.h*Oa

again because R(u X t),Opgn+1,n =~ Opnyx by (15). We have:
h*Oa ~ f*h*On
with h*Oa again flat over X™ x X. Therefore, projection formula yields:
R.0,, ~ RN O ~ RE(f* R Op) = h*Op L Rf.Opnyx ~ h*On ,

because Rf,Opnxx >~ Oxnyxx by proposition 3.3. The h*On sheaf can be seen, as structural sheaf of a
subscheme of X" x X x X, without any abuse of notation, as prj;Oa, where prog : X" XX xX — X xX
is the projection onto the second and the third factor and Oa is seen as a subsheaf of Ox x; in other
words, h*Op ~ Oxn K OA over X x X x X.

Let us compute the final term R, O, | . We can see the sheaf O,

£

as
&

@) ~ O Qo t*Oa ~ O ®py Oa ~ O ®éx O .

&

B Bn+1l,n

since O, is flat over X. Therefore:

Ry.0,,| ~ RfR(uxt), (L(u <) Oxwh 05)

£

12

Rf.(h*Oa ®b,, R(ux1),0¢)

by projection formula. Now R(u x t).O¢ ~ Oy, , by (15). Therefore:

Ry, O,

~ Rf.(h*Oar®p,, . Oz,)
£

12

Rf*(f*B*OA ®éanx Ozn)
~ h*Op ®0yn,x ROz,

12

]N“L*OA OO xn g x Op ~ h*Ox

D

where we used again projection formula and the induction hypothesis. The distinguished triangle (31)
becomes:

Rp.O¢y — §*Op @ h*Op — h'Op| — Rp.O¢,[1] .

D

36



Now, counterclockwise:
Rp.Oc, ~ Rppi1, Ro. (v°0y

nir)

and since Oy ., is flat over B"T!, projection formula gives:

n+1

R¢.0¢, =~ Rppy1,(0z,,, @5, ., Ru.Opniin) = Rppy1,07

n+1 n+1

because Rv.Opn+1,n >~ Opgnt1 by (14). Therefore, the distinguished triangle (31) becomes:
Rpn41,07,,, — §"Op @ h*Ox — h*Oa| — Rpny1,0z,.,[1] .
D

Now, since the second arrow is surjective, we get immediately from the long exact cohomology sequence
that:
Rzanrl*OZn+1 ~0.

In the abuse of notations we explained before, this is equivalent to R'f,Oz
f:B"lx X — X"l x X,

1 = 0 for all ¢ > 0, where

O

We have just proved the main technical point. We are now ready to compute the image @(F[”]) of a
tautological sheaf for the Bridgeland-King-Reid-Haiman equivalence:

& =0 . :D'(xM") — Db (x").

We will need the following fact on the behaviour of Fourier-Mukai functors under composition (see
[93] [67]).

Proposition 3.22. Let X, Y, Z three algebraic varieties and P* € D(X xY), Q* € D(Y x Z) given
kernels. Consider the Fourier-Mukai functors of kernels P® and Q°® respectively:

oL and 09, .
Then their composition is the Fourier-Mukai functor:
‘bg;z © (I)i.—»Y = ‘b?_*)czg.
where P® x Q°® is the kernel:

P*xQ® :=Rrxz, (tkyP* @b, ., TvzQ°) ~Rrx z (P* 05, Q°)

where mx vy, Ty,z, Tx,z are the projections:

X xY X xZ Y xZ
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The complex C;. We first introduce a complex of equivariant sheaves Cj, in Dben (X™) and some
notations. Let {1,...,n} the set of the first positive n natural numbers. For every subset J C {1,...,n},
|J| = p, p > 1, we will denote with p; : X” —— X7 the projection onto the factors X7t x --- x XJr,
if J = {j1,...,4p}. If |J| > 2, we will indicate with A the pull-back of the small diagonal in X7 via
j,)- We set the convention Aj := X™if [J| =1, and A := Ay ny-

Let now F' a coherent sheaf on X. We will denote with F; the sheaf p%(j;,F), where j; is the diagonal

the projection py: Ay = p}l(Ajl

,,,,,

immersion of X into the small diagonal of X”/. We now begin building the complex C§: Let
C% = @ FJ .
|Jl=p+1
The differentials
oy« Ch — Ch

are defined by:
5’%(%) = Z€i,JxJ\{i}|AJ

icJ

where z is a local section of F); and where ¢; ; is the sign:

€6, 1= (71)ﬂ{b€J|b<i} )

We will now endow the complex (C},0) with a &,-linearization, in such a way that it becomes a
complex of &,,-equivariant sheaves and it can be seen in Dbe,?1 (X™). Let 0 € 6,, and 0, : X" — X"
the permutation of the factors given by:

0*(1‘1, ces ,:cn) —_— (:co.fl(l), e ,:17(,71(71)) .
We have the following straightforward

Lemma 3.23.
U*(AJ) = AU(J) .

Therefore we can give Cy a natural &,,-linearization:

(O’.IE)J = Eg’.]O'*$U—1(J)

where ¢, s is the signature of the only permutation 7 € &,, such that o~!7 is strictly increasing. The
sign €, s is necessary to make the differential 0%, : Cf. — C;’fl &, -equivariant for this action. We have
C% ~ @™ | F; where F; = p}(F), with p; : X™ —— X the projection on the i-th factor. When F = Ox,
then C° ~ Ox» ®c R, where R is the natural representation of the symmetric group &, identifying R
with C", the group &,, acts permutating the basis vectors. Moreover C}}*l ~ FA ® €, where ¢, is the
alternating representation of &,, of dimension 1.

Example 3.24. For n = 3 the complex C}, is given by:
i o) o
00— @E — Far, @ Fayy ©ags —> FA®e — 0
i=1

where:

8%(:5)” =Tj |A;; —Ti ‘Aij

and

8%(33) =23 |A —T13 |A +T12 A -
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We are now ready to prove the main theorem.

Theorem 3.25. Let X a smooth algebraic surface and F a coherent sheaf on X. Let FI™ the tautological
sheaf on the Hilbert scheme X™ associated to F. Let

& =008 . :DY(xM) — DY (X")

[n] X7 n

the Bridgeland-King-Reid-Haiman equivalence. Then the image of the tautological sheaf FI™ for the
equivalence ® 1s isomorphic in DbGn(X”) to the complex (Cy, O%):

®(FI") ~ 3.

Proof. The proof is now an easy consequence of propositions 3.21, 3.22, 3.8 and of example 2.8. The
tautological sheaf F[™ has been defined as the image of the sheaf F' by the Fourier-Mukai functor:

n|l . 0=
FI = D7 i (F)

Therefore the searched image ®(F[™) is exactly the image F for the composition of functors:

n Opgn =
P(FIM) ~ Qi xn © q’?{lxm (F) .

This composition is, by proposition 3.22, the Fourier-Mukai functor

Ogn 0= " &0pn*0x
Qi xn 0P O
Consider now the kernel:
R * L *
OBn * OE = RFX”XX*(WX[H] XX”OBn ®OX["]><X”><X ﬂ-X["] XXOE) .

*

XInlxxn
Macauley, and their (derived) tensor product:

The sheaves 7 Opn and 7%, O= are transverse, because transversely supported and Cohen-

O=

n] =

* L * ~ F * o~
Tt xn OBn ®o ., Txn x x O = Ty xn OBn @0 Txmxx 9= = Opn ®o_,

[n] x x7 % X nlxxnx X

is isomorphic to the structural sheaf of the fiber product B™ X x(») =, which is, in turn, isomorphic to the
isospectral universal family Z C B™ x X by proposition 3.8. Therefore the kernel reduces to:

OBn *OE ~ RWX”’XX*(OZ) .

Now the diagram:

TXnxX
_

XM X"« X X" x X

B" x X
commutes. It means that
Rrxnyx,(0z) ~Rf,Oz ~Op

by proposition 3.21. Therefore the BKRH transform of FI" is simply:
B(FI) = 090, (F).
Let us now study the last term. By definition it is

L v (F) ~ Rrxn (Op @5, 7xF).
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We will now prove that:
Op ®éx"xx W}F ~ Op QOxn sy x W}F .

By example 2.8 we can right resolve Op by the complex K°:
OD ~ IC. .
Therefore
Op ®éxuxx Ty F ~K* ®(L9anx T F .

The hypertor spectral sequence associated to the last term is
EP? = Tor_o(KP, m%x F) = Tor_,_o(K*, 7% F) = H""(K* @§ .,  7xF) .

Now
B = @) To% N (O, 7 F) -
|I|=p+1
but

Tor(—gjl(nXX(ODnﬂ—;(F) = Hq(ODI ®(L9X"xx (OX"><X ®(%x F)) = Hq(ODI ®éx F) =0 if q<0,

because Dy is flat over X. Therefore the E level of the spectral sequence is reduced to the complex
EP? ~ K* @ m% F: in other words the spectral sequence degenerates at level Ey: EY? ~ EP:4. Since Op
and 7% F are sheaves we know a priori that

Tor_y(Op, 7% F) ~ B0 ~ EXY =0 ifg>0 .

We get:
IC. ®éxnxx ﬂ-;(F =~ IC. ®OX”><X W;(F

and the last term is acyclic in degree > 0. This yields in particular:

L * ~ o L * ~ k® * ~ *
OD ®OX"><X 7TxF = IC ®OX"><X 7TXF = ’C ®OX”><X WxF =~ OD ®OX"><X 7TxF .

Therefore:
B(FM) ~ dQ2  (F) =~ Rrxn, (Op @0 yn, x T F) .
Now
RT(X"*(OD QOxnxx W;(F) = 7T-X"*(OD @O xnx x W;(F) = 71—*(’C. ROxnxx ﬂ;(F)
because
TXn |D D — X"

is a finite morphism. The term in degree 0 is isomorphic to:
n
'/TXn*(’CO ®OX”><X '/T}‘}F) ~ @WX'IL*(ODi ®OX"><X W;(F) .
i=1
Now D; =% X™ is an isomorphism and the diagram

TX

D; X

TXn

X?’L
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commutes, hence:
* *
Txn(OD;, ®0yn, x TxF) 2 piF ~ F; .

For the other terms of the kind mxn,(Op, ®oyn, x TxF) it is sufficient to remark that:
TXn & D[ —_— A[
is an isomorphism. Therefore

®B(FIM) ~ wx0,(Op @ 7% F) = wxn (K* @ Tk F) ~ C} .

The following result gives a generalization of Danila-Brion formula (cf. [23]).

Theorem 3.26. Let X a smooth algebraic surface, F a coherent sheaf on X. Let X" the Hilbert scheme
of n points on X, S"X the symmetric variety and p : X" —— S"X the Hilbert-Chow morphism. Then

Rty (F) ~ 7En (@ Fi> )
i=1

Proof. By proposition 1.19, applied to the diagram:

p

B" X"

q T

xt _F gnx
we have:

Ry, ~ 78" 0o ® .
Therefore

Ru (FIM) ~ 787 0®0®(= . (F)

o
~ gSno q)?(ixn(F) .
Now proposition 1.16, applied to the diagram:

TX

X"x X X
%\+ 2
TXn \’éz <
X" S"TX x X —— X
P TSn X
S"X

easily yields:

. o OG"
U 0 OL vu(F) =~ (pXIi»S"X(F)

S, L *
Rrsnxs |Op" ®0gny, 7TX<F>} .

1
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Now, by definition of the &,-action on Op, it is clear that

n Sn
=1

Consequently,

(S2%
OD" @G g ox Tx(F)

12

n Sn
(69 Om> D gnxx Tx(F)
=1
n 6"
(@ O, b, W;m)

i=1

1R

where we applied lemma 1.17. Finally:

Rrsex. [05 @b,y Tk (F)]

R

n (G2
Rmrgnx, (@ ODf; ®éxn><x W}F)

i=1

12

Rrgnx, R(m x id)S (@ OD, @& ny + n§F>

i=1

n
&, L
my "Rarxn, (@ Op, @6 yn, ﬂ}F)

. =1
(@)
=1

where the third isomorphism is obtained using the commutativity of the diagram:

12

R

TXn

X" x X X"

7 x id T
S"X x X —— S"X
TSn X

and the fact that mgny o [~]®" ~ [~]®" o mgnx, because mgnx is &,,-invariant.

3.4 Applications

Thanks to the results obtained till now, we can show some applications: among others we reobtain and
generalize some results of Danila [23].

We begin by introducing the Donaldson line bundle D4 on the Hilbert scheme, associated to a line
bundle A on the surface X. Consider the bundle A¥" := AKX ... X A on the product X™. By Drezet-
Kempf-Narasimhan lemma (cf. [30]), it descends to a line bundle on the quotient X"/&,, ~ S"X.

Definition 3.27. We call Donaldson line bundle D4 on the Hilbert scheme X[ the line bundle
Dy = ,u*(Agn/Gn) ,

pull back by the Hilbert-Chow morphism of the quotient by the symmetric group &,, of the n-th exterior
tensor product A¥” on X™.
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Theorem 3.28. Let X a smooth algebraic surface, F' a coherent sheaf and A a line bundle on X. Let
D4 the Donaldson line bundle on the Hilbert scheme X" . Then:

H*(X" Fl gy Dy~ HY (X, F® A) @ S" 'H*(X,A) .

x[n]

Proof.

1

Ry (FI" @0, Da) = RsnxoRpu. (FI @0, 1*(4%"/6,))

n 677’
RI'snx (@ Fi) @0y AY /6,
=1

R

12

i=1

n
RI'r (@ F; ®0n A®”>

i=1

RIS <@(F¢ ® A) K AWI> :

i=1

RIgnx 0 78" (é Fi ®0y, T (AW /en)>

R

1

Therefore, by Kiinneth formula, and taking the invariants:

1

n Sn
H* (X1, F @0 Da) [@ H*(X.F @A) @ H*(X, A)®n1]

i=1

H*(X,F® A)® S" 'H*(X,A).

1R

O

Remark 3.29. This proof follows closely Danila [23]. The key point is in any case theorem 3.26, which
is obtained here more directly and in a more general form. Another proof is possible using theorem 3.25:
it is only necessary to remark that:

qDa = p (AY)

and then:
®(FI" @Dy) ~Ch o A" .

Now, the computation of the &,,-equivariant hypercohomology of the complex Cp® ® A¥" gives the result.
The only non-trivial part is to show that Ch @ A®" has no &,,-invariants for p > 0.

Example 3.30. If A is trivial, then Dy ~ Oy and we get the cohomology of the tautological sheaf:
H* (XM FInly ~ H*(X, F) ® S" Y H* (X, Ox) .
In the case X is affine we get:
H* (X Finly ~ HO(X, F) @ S" P HO(X, Ox)
which implies the vanishing of the higher cohomology groups:
HY(XM Fnly~0 fori>0
whereas, in the case X is projective, with p, = ¢ = 0 the formula becomes simply:

H*(XIM Py ~ g* (X, F) .
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We want now to compute the cohomology of F[™ ® det A"l with A a line bundle on X. We will
prove that the cohomology H*(X " Flnl @ det A["]) identifies to the anti-invariant hypercohomology of
the complex C} ® A¥"  Let R the natural representation of &,,, that is, C"* where &,, acts permutating
the vectors e; of the canonical basis.

Lemma 3.31. Let F' a coherent sheaf on X and A a vector bundle on X.
HY (XM Fl @ det AM) ~ HE (B™, ¢"(FI") @ det R) .

Proof. Let E the exceptional divisor in B™. On B" \p‘l(UmZgAI) we have an exact sequence of
&,,-sheaves:
O—»O?—»OB@R—»(’)E—»O.

Taking the determinant yields a morphism of &,,-line bundles:
det O —+ Op @ det R

whose scheme of zeros is the divisor E. We remark that p,'(U;>3A7) is a closed subscheme of codi-
mension 2 and B™ is a normal variety. As a consequence the &,-invariant sections of det OE;] on the
&, -invariant affine open sets V of B™ are the &,-invariant sections of Op ® R vanishing on E. The
&, -invariant sections of Op ® det R are the alternating regular functions:

9" (f) =eqf
for all g € &,,, As a consequence such functions necessarily vanish on . Therefore:
% (det Oy = ¢S (O ® det R) .
By projection formula we get:
FlI"l @ det OF) = ¢S (¢*(FI") @ det R) .

Taking the cohomology of the two members on the Hilbert scheme X[ we get the result.

Theorem 3.32. Let A a line bundle on X. We have:
H* (XM Pl @ det AM) ~ HE (X", Cp @ AR" @ det R) .
Proof. We know that det A ~ det OE?} ® D4 (see [83]). By remark 3.29, we know that
®(FM @ Dy) ~Ch o A" .
Therefore

H (XM Fl @ det AM) ~  HE (B, ¢*(F"' @ D4) @ det R)
~ HE (X",Cp o A¥ @detR).

Corollary 3.33. The cohomology H*(X[”],F[”] ® det A[”]) is the limit of a spectral sequence EY'? given
by
EP ~ (H*(X,F @ A®"") @ A" P~ H*(X, A))4

for 0 <p<mn-—1, and by EY"? = 0 otherwise.
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Proof. Consider the hypercohomology spectral sequence
EPT=HE (X",Ch® A @detR) .
To compute these terms one reduces to the computation of invariants of H*(A;, F; ® A% @ det R) for
the action of the stabilizer of the diagonal A ; which is &(.J) x &(.J), J the complementary of .J. We get
an isomorphisms of vector spaces:
HE (X™,Ch @ A" @det R) ~ H*(X,F © A% ) @ A" P~ H*(X, A)
and this yields the result.
O

We suppose that X is a smooth projective surface. We denote with H(A) and H~(A) the even and
the odd part of the cohomology of X with values in A.

Corollary 3.34. Let X be a smooth projective surface. The Euler-Poincaré characteristic of FI") ®
det A®" is given by:
XX P @ det AlM) = 3 (—1)PT I (F @ A®7) dim STH ™ (A) @ A" PTIHT(A) |

p>1
pt+g<n

In particular, if H'(A) =0 if i > 0, then:
XX P @ det Ay =3 " (—1)P7 Iy (F @ A®") @ dim A" PHO(A) .
p>1
Proof. The Euler-Poincaré characteristic x(X™, FI"l © det Al")is given by:
XXM FIM @ det Ay = " (—1)PT9 dim £
p.q

= D (~1)PFIN(F @ A®") dim(A" TP H*(A))? .

p>1
The graduated exterior algebra AH*(A) identifies to graduated tensor product algebra:
AH*(A) = AH"(A)® SH™(A) .
As a consequence:
S (-D)UAPH(A) = Y (-1)! dim S'H™(A) @ AP HT(A)
q p+H<n

which gives the statement of the corollary.

O
Remark 3.35. The dimensions dim A'! H+(A) and dim S'H~(A) can be computed thanks to the formulas:
Ztl(_l)l dim H+(A) — (1 + t)dimH*(A)
1

1

[T lrr— _

Example 3.36. Let X =Py, and let F' = Op,(—1), A = Op,(3). We take n = 5. Therefore:
5

XYL FP @ det APl = 7 (=1)77 dim HO(Op, (3p — 1) ® A> P H (O, (3))
p=1

- e ()6

p=1

= 105.
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4 Cohomology of representations of a tautological vector bundle

on the Hilbert scheme

4.1 Tensor powers of a tautological sheaf

Let X a smooth quasi-projective surface, X" the Hilbert scheme of n points on X, = the universal
family on X[™. Consider the diagram:

k-times
- > J =k Px k
EXxmnl ... Xy = - - X
k
w = Pxin)
xlle ' (xlny

where the square is cartesian, and ¢ and j denote the diagonal immersions. We remark that pl;([n] and w
are flat and finite of degree n*. Consider now vector bundles Fi, ..., Ej, on X and their exterior tensor
product F1 K --- K Ej;, on X*. It’s clear that

PPl (PR (BB RE) =B @ @ B = w.g (k) (B K- K Ey)
by flat base change. E(n, k) is the k-th fiber product:

E(TL, k/’) == X x[n] -+« Xx[n] =

k-times

Remark that it embeds naturally in
2(n, k) — XM x x*

Therefore we can express the tensor product of k-tautological vector bundles Egn} R...80 E,[Cn] as the

Fourier-Mukai functor:

n n O=(n,k
EMe.. 0B =063 (BE/R---RE). (32)

4.2 Haiman’s result

In the same fashion we did in chapter 3, we want to use the BKRH correspondence ® to carry over
X™ the tensor product of tautological bundles on the Hilbert scheme and then to compute equivariant
cohomology there. The fundamental technical point is again the computation of the kernel of the resulting
Fourier-Mukai functor. Haiman found this kernel for affine surfaces. It is very simple, using GAGA’s
principle [106] to extend this result for arbitrary smooth surfaces, thus making Haiman’s result extremely
useful in our context. We first fix some notations and definitions.

Definition 4.1. Let X a smooth quasi-projective variety. Let D C X™ x X the scheme-theoretic union of
pairwise diagonals D; = U ; A, ,,. The polygraph D(n, k) C X™ x X* is the reduced k-th fiber product

D(n,k‘) = DXXn"'XXnD

k-times red

We now explain the term polygraph. Let f a function
faAL .k —{1,...,n}.
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Consider the map

g X" X"
(ml,...,xn) — (xf(l),...,xf(k))

Let Ey its graph Ey € X™ x X*. Then D(n, k) is the scheme-theoretic union:

D(n,k) = JEy,
f

where f ranges between all maps from {1,...,k} to {1,...,n} (cf. [61], [62]).
Consider now the isospectral universal family Z on B™. By analogy with the prevous definitions we
set:
Z(n,k) : ZXBn o XpBn Z .
E-times
Z(n, k) is flat and finite over B™ of degree n*. Since Z is isomorphic to the fiber product of = and B"
over the Hilbert scheme, it is immediate to see that:

Z(n,k) =E(n,k) xxm B"

which implies that Z(n, k) is Cohen-Macauly and hence reduced, since generically reduced. Z(n,k) is
naturally a subscheme of B” x X*, and clearly isomorphic to the pull back:

Z(n, k) = (¢ xid)~ (E(n, k) ,

where (¢ x id) : B" x X* — X" x X* We now give an easy application of GAGA principle, which
we will use in the next theorem.

Lemma 4.2. Let f : X — Y a projective morphism of complex algebraic varieties and fan : Xan — San
the associated morphism of complex analytic spaces. Then:

Rfan* (OXan) ~ Rf* (OX) ®OS Osan °

Proof. Since the statement is local, we can replace Ox by an algebraic coherent sheaf F' on P :=
S xP". Furthermore, after resolving I by locally free sheaves, we can suppose F' >~ Opr, (i) ~ Og X Op- (i)
and S affine. The statement then becomes:

H*(Yan, Fan) ~ H*(Y, F) ®0(s) O(San) -
Since we supposed F' ~ Og K Opr (i), Kiinneth formula gives:
HE (Y, F) ~ O(S) & H' (B, O+ (1))
H*(Yan, Fan) = H*(P"an, Opr,, (i) ®c O(San) -
Therefore it suffices to verify:

H* (P an, Opr,, (3)) =~ H*(P", Opr (7)) ,

an

but this comes directly from GAGA principle ( [106]).

Theorem 4.3 (Haiman). Consider the map:
fr(pxid): B" x XF — X" x x*

Then the derived direct image Rf.Oz k) of the structural sheaf of Z(n, k) is the structural sheaf of the
polygraph D(n, k):
RfOzmr) =~ Opng) -
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Proof. The case of the affine plane X = A2 has been proved Haiman ([62]). To prove it for an
arbitrary smooth quasi-projective variety we use the preceding lemma, applied to the morphism:

f:Z(n,k) — D(n,k)

and the fact that, by GAGA principle, for all complex algebraic variety S, the morphism of ringed spaces
(San, Os,.,) — (5,0s)

is faithfully flat. This means that:

Rf*OZ(n,k) = OD(n,k) <~ l{f*(gz(n,k)an = OD(n,k)an .

Since the facts are local in nature, it suffices to prove the statement on a small analytic open subset V
of D(n, k). We can always choose it of the form:

V ~ H DU]. (nj, k‘j)
j=1
with U; small analytic open set of C?, n;, k; positive natural numbers such that Zj n; = n and Zj ki =k
and Dy, (nj, k;) the analytic polygraph relative to U;. Over V, the analytic space Z(n, k), is now of the
form

Z2(njskj) an

~ H ZU]. (nj, k])
Vi
and the map f is now the product map. Since the U; are now analytic open sets of C?, and since the

result is true for analytic open sets of C2, because it is true algebraically for C2, we are done.

O

We now want to find the image of a tensor product of tautological vector bundles by the BKRH
equivalence. Consider the image of a tensor product of tautological vector bundles:

®EM .. oEM".
By (32) it is:

n n n OEn.
e(E" . oB") ~ o OGN (BIR K E,)
[0}

Opn*Og(n,
Xioxn (B R RE)

12

where the kernel Opn * Oz, 1) is
Opn % Oz(n 1) ~ Rf(Opn ®éx[n] O=(n,k)) -
Since Z(n, k) is flat over X", the latter reduces to:
Opr * Oz(nk) ~ Rf(Opn @0y Oz(nk) = RE(Opnx_12mk)) -

Now, using proposition 3.8,
B" X x[n) E(n, k‘) ~ Z(n, k)

and Haiman’s theorem then yields

Opn * Oz k) =~ Rf(Ozmn,k)) = Op(nk) -
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Therefore

dEM .. oEMN) ~ oy

~ QP (By K- RE,) . (33)

The consequence of Haiman’s theorem is the following. Recall that the complex C}. defined in the previous
chapter is quasi-isomorphic to ®(F ["]), when F' is a coherent sheaf on X. We will denote with F' ][;] the
pull-back on the isospectral Hilbert scheme B™ of a tautological sheaf FI" on the Hilbert scheme X":

Fgl] =g Fln
Theorem 4.4. Let E;, i =1,...,k vector bundles on X. The mapping cone of the morphism.:
cy, @b .. ofcy, — ®(EM .. 0B (34)
is acyclic in degree higher than zero. This means that:
qu*(E%]i, ®.. E,Enj]g) =0 forq>0

and the morphism:
p(EML) @0 p(B) — pu(ElL @ .. 0 El')
is surjective, its kernel being the torsion subsheaf.

Proof. We know by the previous arguments that the searched image of the BKRH equivalence is

EMNw.. . ® E,E”]) ~ pDH)

~® O (BT R KE,) .

We now work out the information of this Fourier-Mukai functor. Consider the diagram:

J 2
D(n, k) —— DF X Xx*
W O phen

X’n. C ? (Xn)k

It is clear that

<I>OD<n,k)

Xk = Ws o L(pk 0 j)" = w. o Lj* o L(pk)" .

Now the square in the previous diagram is cartesian, but p%.. is not flat. Therefore we cannot apply any

flat base change theorem. In any case an easy application of base change formula for an arbitrary fiber
product (3.18) yields a morphism:

° ° o n,k n n
Cr, @ elcy, — O (B1 R R E,) ~ Rp. (B} © ... ® E') .

Now
Hi(Cy, ®F ... @t Ch,) = Tor_o(p(E'}), ... pu(E'E)) =0 ifg>0.

Moreover, since F; are vector bundles on X and Ez[nz]a are consequently vector bundles on B™,

Rip(E'y®...®E";)=0 forg>0,
since the higher direct images coincide with
RUp. (B[, @ ... ® B'y) = RU0L[(p 0 )" (1 B K Ey)]
which is zero for ¢ > 0, since the morphism w is finite. Moreover in degree 0 we have the epimorphism:
P(EVE) @ . @ pu(E) — By ® ... @ E'y) — 0.

Since B™ is integral, the term on the right is torsion free. As a consequence, the torsion subsheaf of
D (EHB) ®...0 p*(E,[ﬁg) is in the the kernel. Now the epimorphism above is an isomorphism out of the
big diagonal of X™; consequently, the kernel is torsion, hence it is exactly the torsion subsheaf.
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Corollary 4.5. The term p, (E£n£ ®R...® E,[cnj]g) can be identified with the term EQY of the hyperderived
spectral sequence associated to Cy @ ... @L Cy

Proof. The hyperderived spectral sequence:

EDPT = @ Tor,q(Cgl, . ,Cg“k)

i1+ +ig=p

abuts to the hypercohomology
HP*(Cy, @F @ Ch,) = Tor_pyg(pa(BL'E), 0 (EL'R)) -

The term E?’O ~Ch Q... ®C%k is torsion free, because a vector bundle on X", since each C3, is a vector
bundle. Hence E% is torsion-free, because subsheaf of E? 0 Furthermore the kernel of the epimorphism
HO(Cy, ol ... olcy ) ~ p*(ER’}]B) ... ®p*(E,[ﬂ3) — E%Y is torsion, because its support is contained
in the union of supports of E¥""? for p > 0, hence in the big diagonal of X™. Therefore the kernel is
exactly the torsion subsheaf, and E%C can be identified with p. (Eh]B ®...8 E,[cn} ).

4.3 Action of G, on a tensor power of a complex. Derived action.

Consider the category of quasi-coherent sheaves over a scheme. The aim of this section is to describe
how the group & acts on the k-th tensor power K® ® ... ® K*® of a complex K*®, and to extend this
action to the derived tensor power K® @¥ ... @% K*. It is clear that this action is fully understood
once it is understood on transpositions. For the moment we limit our study to a double tensor power
(C* ® C*,deeges) of a complex C*. We remind that the complex C* ® C* is defined by

(C* @ C*)" = Gy genC? & O
7CLW®CQ - @p.ﬁrq:n [d%. X idcq + (71)qidcz7 X d(é"] .

To define an action of G5 on C®* ® C* it is necessary not simply to exchange C? ® C'? with C? ® CP, but
to introduce a sign, in order to balance the effect of the sign (—1)P in the definition of the differential.
The right involution (which is a map of complexes) is defined by:

(u®v) = (-1)PMvQu ifueCP,veC?.

Suppose now that the complex C* is right bounded. To extend this action to the derived tensor power
C* @ C* it suffices to replace the complex C'* by a ®-acyclic or projective resolution R® of the complex
C* and to take the involution just defined on R® ® R°.

Definition 4.6. We denote with S?C*® the subcomplex of invariants of the complex R®* ® R® for the
group G, = (i) and we will call it the derived symmetric power of the complex C*®. Analogously, we
will denote A% C* and we will call it the derived exterior power of the complex C*®, the subcomplex of
anti-invariants of the complex R®* ® R®. Their classes of isomorphism in D~ (4) do not depend on the
choice of the resolution R*®.

We want now to understand how this involution acts on the hyperderived spectral sequence associated
to C* @ C*:
"EPi = @ Tor_,(C"C).
h+k=n
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To compute Tor_,(C", C*) we have to consider ®-acyclic resolutions of C%:
R — C"— 0.
The involution will then act on the factors
Tor_,(C",C*) —— Tor_,(C*,C™)
as the induced application on the cohomology of the complex: R™* @ R¥* by the map
U@ v s (—1)"FkHD) for u € R™ v € R*I |

More generally we can consider the k-th derived tensor power C* @~ ... @% C*. If R® is an ®-acyclic
resolution of C*, the group & acts on the tensor product

C*ef . @t ~R°®...9R"

by permutation of the factors, where the action of a transposition on two consecutive factors is exactly
the one described above. This action does not depend on the choice of the resolution R®. As shown
above for the case of two factors, we have a G-action on the hyperderived spectral sequence associated
to C* @b ...l C".

Definition 4.7. We define the derived symmetric power S¥C® as the subcomplex of invariants of the
complex C* @ ... ®@% C* by the action of the group &. Analogously, we define the derived exterior
power A¥ C* as the complex of anti-invariants of the complex C* ®@% ... @ C* by the action of &y.

Suppose now that X is a variety with the action of a finite group G and that C*® is a complex of
G-equivariant sheaves on X, C* € D (X). Then the &4-action on C* ®@% ... ®" C* commutes with the
diagonal action of G on C* @~ ... ®% C*, defined as the diagonal action on the complex R®* ® ... ® R®,
where R® is a locally free resolution of C'*. We then a well defined G x G action on the derived tensor
power C* @F ... @l C".

Remark 4.8. Let C*®* a complex of coherent sheaves on a variety X. Then the k-th tensor power
C*®* ®...® C* is naturally a complex of Gg-equivariant sheaves on X, where &y acts trivially on the
variety X. Analogously, if R® is a locally free resolution of C®, the k-th tensor power R*®...® R® of the
complex R® is a complex of Gg-equivariant sheaves on X. Therefore we can see the symmetric derived
power S ﬁ as the composition of the derived tensor power and the &y-fixed points functor:

@bk 16
L pg () E p(x).

St D™ (X)
Analogously the derived exterior power A’z is the composition of the derived tensor power with the
Gg-anti-invariants functor, or the composition:

()@ ~8e -1

Dék(X) — Dék(X) —

Af D (X) D~ (X),
where ¢ is the alternating representation of Sy.

In the hypothesis of theorem 4.4, with F; = F, for all = 1,...,k we have the corollary:

Corollary 4.9. Consider the image ®(S*E™) of the symmetric power of a tautological bundle E™, by
the BKRH equivalence. The mapping cone of the morphism:

skes, — ®(SFEM)
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is acyclic in degree > 0. As a consequence the higher direct images qu*(SkEgL]) vanish for ¢ > 0 and
in degree 0 we have the epimorphism:

S*pu(ER) — p.(S"ER) |
whose kernel is the torsion subsheaf. Therefore the image ®(S*E!") can be identified with the &-
invariants (E20)®* of the term E%C of the hyperderived spectral sequence associated to Cy, @% ... @ CS,.

Proof. The corollary is an immediate consequence of taking the &y-invariants in the morphism (34),
and the clear fact that the Gy-action on the tensor power commutes with the pull-back by ¢ and push
forward by p.

In the same way, taking &y-anti-invariants in (34) we get

Corollary 4.10. Consider the image ®(A*E™) of the exterior power of a tautological bundle E™, by
the BKRH equivalence. The mapping cone of the morphism:

Akcy —— d(AREM)

is acyclic in degree > 0. As a consequence the higher direct images Rip, (AQEgL]) vanish for ¢ > 0 and
in degree 0 we have the epimorphism:

A2p (ERY) — p (AERY)

whose kernel is the torsion subsheaf. Therefore the image @(AkE[n]) can be identified with the &y -anti-
invariants (B9 ®e)®* of the term EQ:0 of the hyperderived spectral sequence associated to Ca@L.. . @LCS,.

4.4 Derived Schur functors

We are now going to define general Schur functors of a complex C*® of locally free sheaves and its derived
version. Let V,, the irreducible representation of the group &y associated to the partition v : v; > g >
-+ >y of k (see Fulton-Harris [50]). We can obtain it as the left ideal of the algebra C[&}] generated
by the Young symmetrizer ¢, of v. The Young symmetrizer can be computed from the Young tableau of
v: let P, the subgroup of & that fixes the columns and @, the subgroup fixing the rows. If

al/:Zg

geP,

bu: Zggga

9gEQL

and

where ¢4 is the signature of the permutation g, then the Young symmetrizer is the element:
Cy = aVbl/

For all locally free Gy-sheaf F on an algebraic variety M, there is a decomposition of F in a direct sum
of locally free subsheaves:
B~ EBV” ® Home, (V, ® Op, E) .

Now for every locally free sheaf W on M, the k-th tensor power we" is naturally equipped with a
S-action. We denote with SYW the Schur functor

S"W := Home, (Vi © Opr, WE)
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associated with the partition v of k. The symmetric power is the Schur functor associated to the partition
k of k, and the exterior power is the one associated to the partition (1,...,1).

Consider now a complex of coherent sheaves C'* on M and R*® a locally free resolution of C*®. Let
us form the k-th tensor power K® of R®*: K®* = R®* ® ... ® R®*. We can decompose the complex K* as
follows:

K* = EBV,, ® Homg, (V, @ Opr, K*®) .
v

We denote with SYC*® € D~ (M) and we call it the derived Schur functor of the complex C*® the complex
Hom’Gk(Vy ® O, K*®). Its isomorphism class does not depend on the choice of the resolution R*®.

As we did for symmetric and exterior powers, we deduce from theorem 4.4:

Corollary 4.11. Let v a partition of n. Consider the image ®(S¥EM) of the Schur functor associated
to the partition v of a tautological bundle E™, by the BKRH equivalence. The mapping cone of the
morphism:

sves, — &(SYEM)
is acyclic in degree > 0. As a consequence the higher direct images qu*(SVE][;L]) vanish if ¢ > 0 and in

degree O we have the epimorphism:
§pe(B!) —= pu(S"Ey)
whose kernel is the torsion subsheaf. Therefore the image ‘I’(S”E["]) can be identified with the sheaf

SYE%Y = Homs, (V, ® Oxn, E%0) |

oo

in terms of EQ.0 of the hyperderived spectral sequence associated to Ch @ ... @F CS,.

4.5 The image of E" @ El" by the Hilbert-Chow morphism

In the last section we identified (corollary 4.5) the image of a tensor product of a tautological bundle
E[ for the BKRH equivalence with the term E%0 of the hyperderived spectral sequence EP? associated
to the complex C3, ®% ... ®L C%. Working out the spectral sequence in all generality is hard, due to
evident technical difficulties. Nonetheless, the knowledge of this image, although of great interest, is not
really necessary for applications to computation of equivariant cohomology; all what we really need is the
knowledge of the &,-invariants of the image @((E[”])‘@k). We recall that if F' is a coherent &,,-sheaf on
the product X™, we indicate with F'®» the &,,-invariant push forward F®» := 7S» F for the projection

.
m: X" — S™X onto the symmetric variety. By proposition 1.19 knowing the invariants ®(E [n]® )&n
amounts to knowing the derived direct image R,u*((E["])W) by the Hilbert-Chow morphism. It follows
that . ((E™)®") can be identified with the &,-invariants (E%°)®» of the term E%C of the hyperderived

S

spectral sequence associated to C% ®@F ... ®L C%, or equivalently, since the functor [—]®» is exact, with

the term €20 of the spectral sequence
& = (B

of invariants of the hyperderived spectral sequence EV*?. This new spectral sequence of coherent sheaves
(over S™X) turns out to be much simpler than the original one and effectively useful (at least for k = 2)
to compute the image Ry, (E" @ E™). The tensor power (F ["])‘3’2 splits into symmetric and exterior
components:

EMl @ B ~ §2E g A2 BN
and we have seen that taking the symmetric (or exterior) power corresponds to taking invariants (or
anti-invariants) by G5 on E ("] @ El". The &,-action on the tensor power commutes with the geometric
diagonal action of &,,, so we can further simplify the picture by looking at the spectral sequences:

/5{741 _ (Ef,q)e»zxen : ”5{7#1 = (EM @ 52)62X6n (35)
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where e5 indicates the alternating representation of G5. The terms /520’0 and ”5850 of these spectral
sequences are quasi-isomorphic to the images ®(S?E™) and ®(A2E"]), respectively.
The aim of this section is to prove:

Ry (B @ EM) ~ (Cp @ CF)©"
or equivalently the two:

Ry, (S2EM) ~ (52¢8,)Sn (36)
Ry, (A2EM) ~ (A2C3)S . (37)

when E is a line bundle on X. We will always suppose from now on that EM is the tautological vector
bundle associated to the line bundle F on X.

4.6 Preliminary results

We briefly review some basic facts about representations of G,,. Our main reference is Fulton-Harris [50].
We recall that pi denotes the standard representation of Gy: its Young diagram is the hook:

In particular, A¥~1p, ~ ¢, the alternating representation of &. Finally we recall, by Frobenius formula,
that the characters of all irreducible representations of &}, are rational. Let R = CF the natural represen-
tation of Gy: Gy acts on R by permutation of the canonical basis ey, ..., e;r. We recall, that the natural
representation R splits as R ~ pi @ 1.

Lemma 4.12. LetY a smooth subvariety of codimension r of a smooth variety X. Let Ny,x the normal
bundle of Y in X. Let py the standard representation of & . We have an isomorphism:

TOI‘q((Oy7 .. .,Oy) ~ Aq(N;;/X ®pk)
—_———

k-times

as Sy -representations.

Proof. We first verify the statement locally. Suppose Y is the scheme of zeros of a section s of a vector
bundle F' of rank r, transverse to the zero section. Consider the Koszul resolution K*® := K*(F,s) of the
structural sheaf Oy. Let R ~ CF the natural representation of &) and e; the vectors of the canonical
basis. Let 0 = Ele e; the canonical element, which is invariant for the Gg-action. The Koszul complex
K*(F ® R,s ® o) is Sp-isomorphic to the tensor product K* ® ... ® K*® and consequently its (—q)-
cohomology is S-isomorphic to Tory(Oy,...,Oy). On the other hand, consider the Koszul complex
K*(F ® pg,0); we have the isomorphism of Gy-representations:

K*(F®R,5s®0) —» K*(F,s) ® K*(F ® pg,0)
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where &y, acts trivially on K*(F,s). Consequently we obtain an isomorphism of &y-representations:
Tor,(Oy,...,0y) ~ Oy @ A (F* Q@ py) ~ Aq(N)*,/X ® pr)

because of the identification F’ ’Y ~ Ny/x. In the same fashion of proposition 3.13, we verify that this
isomorphism does not depend on the choice of the vector bundle F' and on the section s. Hence, the local
isomorphisms glue together and allow to define the above isomorphism globally.

O

We already know that if Y7 and Y5 are two smooth subvarieties of a smooth variety X, contained
transversally in a smooth subvariety Y of X we have:

Tori(OYl ) 0Y2) = AZ‘Nv;}/X

YiNYs

Lemma 4.13. Let 7 : Tor;(Oy,, Oy,) — Tor;(Oy,, Oy,) the canonical transposition. Then the dia-

gram:
TOI‘i(Oyl ) OYQ) 47_’ Tori(OYza OYl)
N (_1)i N
A NY/X}YleQ A NY/X|YmY2
commutes.

Proof. In the notations of lemma 3.13, K*(u,s;) is the Koszul complex giving the resolution of Oy,.
We have the commutative diagram of complexes:

K*(u,s1) @ K*(u,82) — K*(u) @ K*(u) ® K*(s1) @ K*(s2)

K*®(u,s2) @ K*(u,81) — K*(u) @ K*(u) ® K*(s2) ® K*(s1)

where the first vertical arrow is the transposition of factors K*(u, s;) and the second vertical arrow is the
transposition of factors (1,2) and (3,4). The lemma follows.

O

Lemma 4.14. 1. The representation N (pp @ pi) ~ A (C? ® pi), 0 < i < 2k — 2, has fized points if

and only if i is even. In this case the subspace of fized points is one dimensional.

2. Let u,v a basis of C?. Consider the &y-invariant bivector:

k
w = Zuei Ave; € /\2(((:2 ® R)

i=1

and let W' € A?(C? ® R) its I-th eaterior power. Consider the projection: © : R —— py. If
1 <1<k—1 the image wit of W'/(1+1)! in A% (C? ® py,) is nonzero.
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3. Leti€ {1,...k}, and G; = Stabg, {i}. Set R; = R/{e;) ~ CF~1. The projection
0i : C?®pr — C*® py_1

induced from the projection from R —— R;, is G;-equivariant and for 1 <1 < k — 2 the image of
wlR for the projection A*¢; is exactly wlRi.

Proof. 1. Given a finite group G, consider the following hermitian inner product on the space of

central functions:

|
(wv) = & > u(g)olg) -

geG

Given two representations p and 7 of the group G, we have

dim Hom(7, p) = (xr, Xp) -

In particular the dimension of the subspace of fixed points of a representation p is given by:

. 1

dim p% = @l > xo(9) -
geqG
Since )
3
A (pr, @ pr) ~ @ Np, @ N py,
j=1

and since the characters of the irreducible representations of &y are rational:
dlm(Az(pk D Pk-))Gk :(XAi(pkEBpk)v Xl)

%
= Z(XA-jpk(X)Ai_jpk ) Xl)
j=0

%

(XAdpr * XAi—7 s X1)

<.
sl
o

(XAfpk y XAi—ipy, )

<.
Il
o

Now if j # i—j, A py, et A'~J py, are two different irreducible representations of &, and then (XAdpr> XAi=ipy) =
0. The only possibility is then for i — j = 4, which yields i = 2j and (xai(pe@p,)> X1) = 1.
2. We can restrict ourselves to the case [ = kK — 1. We have:

1 ) ( & k—1
T = E ue; N\ vei>
k! K\ &

k

1 —

= H(lc—l)!E ue; A\ ve;
i=1

—_ . .
where ue; A ve; indicates
—_—
ue; Nve; =uep ANver A ... ANue;—1 ANve;—1 ANuejp1 ANvejp1 A... Aueg ANveg .

We now remark that the projection A%*~2(id @ 7)(ué; A ve;) is nonzero and always the same for every
i: therefore the projection of w*=1/k! on AZ*=2(C2 ® p;,) is A2*~2(id ® 7)(uéy A ver), that is, a volume
element in A?*~2(C% ® py,).
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3. This statement is evident once remarked that the commutative diagram:

A2l

A(C®R) — T A%(C @ R;)

A2l7rR AQlﬂ-Ri
A2l i
A2(C @ py) —2 AHC @ pry)

is Gy-equivariant for [ < k — 2, since the diagram:

T

C:®R

R;

7.‘.R 7.‘.Ri

C®p L Copy
is G-equivariant.
O

We recall now a lemma by Danila ([23]). We recall the context. Let G a group acting on a variety
Y, and ¢ : G —— & an epimorphism of groups. Let Fi, ..., Fi a collection of coherent sheaves on Y
such that the G action is compatible via ¢ with the permutation of the factors: this means that we have
canonical isomorphisms:

hg : Fog-n@) —= 9" Fi.
In this way the direct sum @leFi becomes a G-sheaf on Y. Let now G; = Stabg{i}: for all g € G; then

The facts just listed induce corresponding facts on the spaces of sections M; = H°(F;) and M = @leMi.
We inherit morphisms:
Ag + M; > Myg)(0)

setting A\y(s) := hgs o g~! In particular M becomes a left-G-representation.

Lemma 4.15. The projection pr, : M —— M, is G;-equivariant and induces an isomorphism:
M% — MY .
The lemmas 4.14 and 4.15 are the fundamental tools we will use to reduce the spectral sequences (35).

Remark 4.16. Suppose that the morphism ¢ : G —— & is not surjective. This is equivalent to
saying that the G action on {1,...,k} is not transitive. Taking the orbits Iy, ..., I; for the G-action on
{1,...,k} we can always reconduct us to a transitive action for which we can apply Danila’s lemma 4.15
to G-homogeneous modules My, = @ier; M;.

4.7 The G,-equivariant spectral sequence

In this section we will proceed to work out the spectral sequences (35) "€7¢ and "£P?. We begin with

recalling some notations from the preceding chapter and pointing out some basic but important facts.
Let J a subset of {1,...,n}. We denote with J the complementary of J in {1,...,n}. We indicate

with py : X® —— X the projections onto factors in .J, A; the pull-back by p; of the small diagonal in
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X7, We denote, for brevity’s sake, the normal bundle N, to the diagonal A; simply with N;. We will
denote once for all the group &,, with G, and the stabilizer in G of the subset J with G ;. Suppose |J| = m,
1 <m < n. Then the normal bundle N is isomorphic as a sheaf on X™ to: Nj >~ Na,;xm B Oxn-m.

The stabilizer G acts on Ny as &(J) x &(J), but (J) acts trivially on the normal bundle: the G ;-
action on Nj is then isomorphic over a point x € Ay, to the representation p,, ® p.,, of &,,. Therefore
the normal bundle N is locally isomorphic to the bundle:

NJ ~ O(pm @ pm) & OXn—m .
The general term of the spectral sequence EV*? becomes, due to the previouses lemmas:

EPT ~ @ Tor,q(C%,C%): @ Tor_(Er, Ey)
i+j=p i+j=p
[I|=it1
[J]=j+1

®2 q N\T*
IUJ®A NIﬂJ

1R
@D
&y

Arug

Remark 4.17. If I N J = ) the diagonal A; and A are transverse and
TOl“,q(E[,EJ) =0 if q<0.

If INJ # 0 the intersection Ay N Ay is the diagonal Ajyy. Therefore we know that the vanishing of
all the Tor_,(Er, Ey), ¢ < 0 is equivalent to the transversality of the intersection of Ay and A ;. This
happens if and only if

codim A; + codim A; = codim Ay

which reads
20 - +2(J) - 1) =2(fuJ|—-1).

Hence |I|+|J| = [IUJ|—1 which is equivalent to |INJ| = 1. The same thing can be obtained remarking
that if |[I N J| = 1, then, by definition, the normal bundle N;n; is the normal bundle of X™ to X", hence
zero. If [INJ| > 1, Niny # 0.

Remark 4.18. Even if we have just seen that the general term EV*? of the hyperderived spectral sequence
can be expressed in terms of the g-exterior power of conormal bundles of diagonals, this does not mean that
the G-action on E}"? is the one induced by the G-action on AYNj |, ;-
above takes into account only the ”geometric” action on the conormal bundle, while the G-representation

The induced action explained

of Tor_,(Ci, Cg) have to take into account as well the G-action on the sheaves Ci;, Cg considered when we
defined the G-action on the complex C}, in the previous chapter (page 38). In this way only the spectral
sequence EV'? is G-equivariant, and it makes sense to speak about invariants. The right G-action on E{*?
in then induced by the ”geometric” action on the conormal bundles of the diagonals twisted by the signs
we get by the G-action on the sheaves Oa,, as explained in section 3.3.

We now come to a closer look of the spectral sequences (35). We will denote once for all the group &,
with H. We recall that the group H acts by transposition of the factors, while the group G acts in the
way described above. The two actions commute: therefore we can define an action of the direct product
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group G x H, which we will denote P. The spectral sequences (35) are defined as the invariants:

GxH
/ef%(Ef’%GXH:( D TOf-q(E”E">>
i+j=p
|I|=i+1
[J|=5+1

GxH
EPT = (BP9 @ ep)O%H o~ ( @ Tor_4(Er, Ey) ® EH>
i+j=p
|I|=i+1
[J|=j+1
Remark 4.19. When we want to use Danila’s lemma, the first thing we remark is that the direct sums
above are indexed by the disjoint union

PP = H Pi+1 ij+1

i+j=p
where P, is the set of parts of {1,...,n} with r elements. The group G acts transitively on P;;1, for
1 =1, ..., n, and acts by diagonal action on P;1 x P;i1; however, this last action is not transitive:

the orbits are characterized by couples (I,J) € Pj41 x Pjy1 such that |[I N J| = r. We therefore have
min{i+1, j+1}+1 orbits O, of G in P11 X Pj+1. We deduce an action of G on all PP. The group H acts
on PP as well by permutations of factors. The G and H actions on PP commute, yielding an P-action
on PP: the subsets P;y1 X Pji1 [[Pjy1 X Pip1 are invariant by the P-action, with orbits HO,. Let
(I,J) € Pit1 xPjt1. Let Gp 5 the stabilizer of the couple (I, J) for the G-action and Py ; the one for the
P-action. It is clear that, if |I| # |J|, P; j ~ Gy j. If |I| = |J| then Gy, ; is a normal subgroup of index
2 of Py and the quotient Py ;/Gy,; is isomorphic (not canonically) to a subgroup of Py ; generated by
an element o7 j x 7 where 7 is the transposition of factors and oy ; is an involution of {1,...,n} fixing
all elements in I N J and such that o(I\ (INJ))=J\ (I NJ). In other words:

Pry~{(Gry,00,5 XT).
When I=J, then we can choose the identity idg,, as oy,;. Therefore:
Prr~{(Gr,7)
with Gr 1 ~ &(I) x &(I).
At this point we are ready to apply Danila’s lemma. We only have to split the direct sum:

EPY o~ EB Tor_,(Er, Ey)
i+j=p
|I|=i+1
[J]=j+1
into homogeneous components, indexed by the P orbits in PP. The sums:
Wi, = € Tor_,(ErE,)
|I|=it1
| 7|=j+1

are always G-homogeneous. Hence, if i < j
Wi Wt
r—q O Wil g

are always P-homogeneous and if i = j
Wi

m—q
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is always P-homogeneous. Therefore E7"? splits into homogeneous components in this way:

min{4,j}+2
EPY ~ @ @ (Wl oWl ) if p is odd

r=0 i+j=p

1<J
and
min{i,j}+2
B2~ @ @ (Wi owp) @ WP, otherwise .
r=0 i+j=2p

1<J

In this context Danila’s lemma reads:
Lemma 4.20. Let (i,j,r) € N3, Let I,J € Piy1 X Pjy1 and |[INJ|=r (that is (I,J) € O,). Then:
1. If i < j, we have an isomorphism:

D(X™ Wil @ WL )7 —— T(X", Tor_q(Eyr, Ej))9" .

2. There is an isomorphism:

D(X", Wi )P =+ T(X™, Tor_(Eq, Es)7r .

We give some more notations and a final lemma, which will simplify the following discussion.

Notation 4.21. Let X a smooth quasi-projective surface. Let I, J multi-indexes, I, J C {1,...,n}, with
|J| = k. Let Gyi,. xy the stabilizer of {1,...k} in {1,...,n}. We will indicate with Ay , the sheaf of

invariants

considered as a sheaf over Ayr x S"~*X. It is clear that tk N¢i,..xy = 2k — 2 hence Ay, = 0 for
q > 2k — 2. By lemma 4.14 it is zero if ¢ is odd and it is a line bundle if ¢ is even. Moreover, if U is an
affine open subset of X, we will indicate with Ay the small diagonal in U”; it is an open set of A;. The
G-invariant sections of @ ;- AN} over U™:

Apq = HO(Un7 @|J|:kAqN;)G

are isomorphic, by Danila’s lemma, to the sections of Ay , over the quotient U™ N Ay, sy /Gy, 6 =
Ayr x S"~FU (which is an open set of the diagonal: Ayx x S"7%X). Consider the embedding, for
O0<l<n—k:

A gy X SPTEIX e Ay gy x SPTRX

(.. 2), [y]) —— ((&,..., 2), [lz +y])
——— ——
(k + 1)-times k-times

We will denote with Ay, 4 the pull-back i* Ay 4. It is identified with i.i % Ay 4. It is clear that

S
A1, ki) Xs"kl>

~ an*
~ (A N{l,...,k}
Af, kt1y

where Aqul is the quotient:

p1} X SPRIX

.....

(AqN*:{kl,...,k}



Now for k > 1, consider the G-equivariant map:
Tor,(C**,C*) — Tor,(C*,CF)
induced by the map:
ck=1 — ¢k, (38)
It induces a G-equivariant morphism:

D ® v

|I|=k+1|J|=k
JCI

taking the component for I = {1,...,k + 1} we get the G . r41}-equivariant morphism:

* B *
@ AqNJ|A{1 ,,,,, K1y AqN{l,...,k—l-l} . (39)
|J|=k
JC{1,... k+1}

Lemma 4.22. The Gy, p41)-equivariant morphism

* B *

@ AqNJ|A{1 _____ kt1} AqN{l,...,k:+1} (40)

[7]=k

JC{1,....k+1}
induces isomorphisms:
Ak,q = Ak+1,q (41)
Agr, k1)

HO(Apiss x S"FMUAING )% ——> Ay (42)

Proof. Taking the Gy, .. p41}-invariants of the morphism (39) gives exactly the morphism « in (41).
k1) ~ Grg1 X 6(k+2,...,n). The &y1 and the S(k +
2,...,n)-actions commute, and the latter acts trivially on the fibers of the vector bundles over the

Now the stabilizer is isomorphic to Gy,

,,,,,

diagonal Ay x41). Therefore we can reduce the question to the &j.1-invariant map of vector bundles
over Axis1 x SPTRTLX:

* B *
B e NNy (43
|J]=k
JC{1,... . k+1}

AXk+1 xSn—k=1Xx

It suffices then to prove that the morphism 3 (43) induces a nowhere zero morphism « between the line
bundles of G4 1-invariants:

,,,,,

over the diagonal A yr+1 x S"~*~1X . It suffices to prove the same property for the dual morphism:

AING, ey —> b awy
JCA1,... . k+1}

(44)

Axk+l XSn—k—lX

This reduces to the following easy consequence of lemma 4.14. Consider the G 1-equivariant diagram
for ¢ = 2l, where R ~ C**! is the natural representation of Gy, :

A%

A (C®R) O A (C o Ry)

A2
AQlﬂ.R o AQlﬂ-Ri

A .
NHC® pro1) —2 EHAY(C @ pi(d))



where 7; and ¢; are the obviuos projections up to a sign, in order to take into account the signs in the
definition of the map (38). The property we want to prove for the map (44) is equivalent to prove that
the morphism A%y above induces a nonzero morphism between the vector spaces of invariants:

(A214p) O

AT ® R)S+ [BEAY(C @ pi(i))] T

Let us take the Gy i-invariant element w' € A?(C ® R) considered in lemma 4.14. We know that the
images w;; = pr; o A2y)(w!) are nonzero. Therefore A%t (w!) = (w;;); is a nonzero element; since w' is
Ggy1-invariant and Azlw is Gg41-equivariant, the element A2lz/)(wl) is necessarily & 1-invariant. Since
we proved that it is nonzero, we are done.

The second statement follows from the first by taking the Gy, . x41}-invariant sections on U™ and by

recalling Danila’s lemma.

the space of sections:
..... k+1}

~ HO(AUkJrl X SnikilU, Ak,q ) ;

in this notation the second statement of the lemma then becomes:

— A1y

4.8 Examples

Before attacking the equivariant spectral sequences (35) in all generality, we will work it out by hand
for the cases n = 2,3,4,6. It will then be evident the pattern of the general case. In these examples we
will work with a trivial line bundle £ ~ Ox: the introduction of a nontrivial line bundle E presents no
difficulties at all. Let us begin with the simpler case, n = 2.

4.8.1 The case n =2

The symmetric power. Let us begin with the spectral sequence /Ef 9 the equivariant spectral se-
quence associated to (C* @ C*)7*%. We recall that for n = 2 the complex C* is simply

0—C"—C'—0,
where C? ~ Ox> ® C2, C' ~ Oa, where A is the diagonal of X2. For ¢ = 0 we clearly have the complex:
/5(1),0 ~ (SQCo)G )
For negative g the only possibly nonzero terms are:
€77~ Tor_(Ct, )M

since

"Ey? ~ Tor_,(C°,C") @ Tor_,(C",C°%) ~ 0

since CY is a locally free sheaf. Now Tor;(C',C') is invariant by transposition of factors (since the
transposition acts as (—1)~! = 1 by section 4.3). Therefore the P-invariants Tor; (C*,C*)¥ are isomorphic
to the G-invariants:

Tor, (C*,CY)? ~ Tor,(Ct,CHY .
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Now the group G acts pointwisely on Tor;(C!,C1) =~ Tor; (Oa,Oa) ~ N} twisting the goemetric repre-
sentation ps @ pa = € @ € by the signs coming from its action on the two factors Oa: the G-sheaf Oais
then better written as Oa ® . The right G-action on Tor,(Oa,Oa) is then given by the representation:

Tory(On,0n) ~ AINA ® £® ~ AN(ede)

which does not have any invariants. Therefore 55’*1 =0 for all p. At level 'EY 2 the only nonzero term
is Ef’72 ~ Tory(C',C') which has no H-invariants. Therefore the spectral sequence 'E}"? reduces to the
complex 'E ;’0 ~ (52C*)%, which has cohomology only in degree 0, by corollary 4.9. We now know by the
same theorem and by the degeneration of the spectral sequence that

&0 g0 ~ HO('EY?) ~ i, (SPEP)
As a consequence, we have proved:
Ry, (S?EP) ~ (8%¢C3)¢ .
The exterior power. The case of exterior power is even simpler, since the only nonzero term in
(EP? @ )M, apart from the complex (EY° @ ) ~ A2C*, is the term
(B2 2 @ep)™ ~ Tory(C,CY) ~ A2Ni
which is on the diagonal and is torsion; therefore, by corollary 4.10, we have again:
Ryu. (A2E) =~ (A2CH)C .
4.8.2 The case n = 3.
The symmeric power The complex C*® is in this case:
0—C" —C'—(C*—0.

0

The complex 'E7" is, as we know,

/6?0 ~ (SQCO)G i
At level ’EP ™" = (EP"M)H we have the (shifted) complex:

0— @NZM - @sz‘j

1<j i<j

— 03
A

when we take the G-invariants the same reasonment of the case n = 2 proves that everything vanishes,
because of lemma 4.14. We skip for a moment the level / 5219’_2. At level 'E?" ™% the only nonzero term is

’Eilﬁ:s ~ Torz(Op,On) ~ A3N} .

The G-action on A3N} is isomorphic to the representation:
2
A (p3 @ p3) @ ¥ =~ A>(p3 @ pa)

and has consequently no G- invariants by lemma 4.14. At level ‘&Y % we have the only term A* N} which

,—

has invariants, but they are by no way harmful, since ’ 5411 * is a torsion sheaf on the diagonal, and by

theorem 4.4, we are interested to the limit / 520 modulo torsion. The only non trivial part here occurs at
level —2. The complex ’ EI’72 reduces to the complex

Tory(C',C?) — Tory(C?,C?)
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since Tora(C!,C!) is anti-invariant for the H-action. The complex reads:

0— EA*NE, R

1<j

d3,72
—~ +~ A°Nfi — 0.

By lemma 4.22 this morphism induces an isomorphism on the line bundles of G-invariants over A:

()¢

102,—2 1 03,—2
51 ~ ./42’2 Ag,z s 51 .

A

The spectral sequence 'E}? looks then like:

3,-2 4,-2
/51 4/51

—4
/51

As a consequence ’53’72 = ’53’72 = 0. This clearly implies:

Ry, (S2EB ~ (§%2¢8)€ .

The exterior power. The case of exterior powers presents less difficulties. The 0-level of the sequence
"EY? is always isomorphic to the searched exterior power complex:

e.0 2
"B} ~ A*C®
and the odd negative levels " E{"? have no G-invariants because of lemma 4.14. We remain with levels

"EP? and "EY ™. The last one is actually 0, since the only nonzero term in Ef~* is E'~* and

~ (Tory(C?,C*H) @ eg) ~ 0

//E4,*4
1

because Tory(C2,C?) is H-invariant. The ”E} ™ complex becomes:

2,—2
1 E2,—2 dy’ 1" 3,—2
Eq — "k
because
174, —2 2 H2 H
E} "~ (Tory(C*,C°)®@en)” =0,

since Tora(C2,C?) is G-invariant. The morphism d?’72 is the restriction:

@ A2Nzij - GBAQNZM

1<j 1<j

)

A

hence surjective. As a consequence the morphism induced on the G-invariants is surjective and hence
3,—2 , .
"€57% = 0. The spectral sequence "E7'? looks like:
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2,-2 3,—2
151, /817

On the "€5%level, only €52 in nonzero, if ¢ # 0. This term contributes to the torsion of A2y, (E®!)
and does not interest us. The "£% -term is rightly isomorphic to p. (A2EB!) by corollary 4.10, and since
the complex & ;’0 is acycilic in degree greater than zero, we get:

Ry, (A2EPY ~ (A203)€ .

4.8.3 The casen =4

Before starting we proceed to a further simplification. By lemma 1.27 the open sets S*U, with U affine
open subset in X, cover the symmetric variety S*X. Since every consideration we will made is of local
nature, it is then sufficient to prove (36) on every affine open set of the form S*U. It is now equivalent
to reason about the sheaves of invariants over S*U and the modules of invariant sections over U%. The
quotient U*/G ~ S*U is naturally an open set of S*X. We will indicate with U the open set p~(S*U)
of the Hilbert scheme. We will then consider the two spectral sequences:

'EV = €D Tor_,(C', ¢ (45)
i+j=p
eVt = @ HOU*, Tor_y(C*, 7)) (46)
i+j=p

which are the hyperderived spectral sequences of the complexes:
sice ; Tg(U*, Sic).
We remark that the latter is acyclic in degree > 0. We recall that the complex C*® is in this case:

0— 0xaC" — POs, — P Oa,, —> Oa — 0.

i<j i<j<k

The complexes '£7?.  Since, by lemma 4.14, the complexes 'EY}*? have no G-invariants for ¢ odd, we
will consider only the case ¢ even.
1. ¢ = 0. By definition, the complex ’EI’O is exactly the complex I'g(U*%, S2C®).
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2. ¢ = —2. The modules ’5?’72 of P = G x H-invariant sections are:

€572 ~ HO(U*, Tory(C,C2))C ~ HO(U*, Tora(Oa,,, On,,, )¢ (121 x 123}
= HO(U4’ Tor2(OA12 ; 0A123))62

Now &, acts over each point of Torg(Aqa, Oa,,,) =~ A2N7, with the representation:

Aja3

Nede)@e® ~A2(ede) ~1
hence trivially. Therefore

€357 ~ HO(Ays x U, A2N7,

)~ Az
Aq23

Aq23
&7 ~ HO(U*, Tora(C2, %)) @ HO(U*, Tory(CF,C?))% .

Now
HO(U*, Tory(C,C%)¢ ~ HO(U*, Tory(On,,, Op)) G121 x11289)

The stabilizer is isomorphic to
Gri2yx{1234y ~ 6(1,2) x &(3,4)

and acts on Tora(Oa,,, Oa) =~ A2Nl*2|A with the representation:
A (e2R6)Rer®ey~erPey .

As a consequence Tory(Oa,,, Oa) has no Gyy9}{1234)-invariants. Since Tory(C?,C?) is completely H-

invariant, we have:

&7 ~ HO(U*, Tora(C2,C2))P ~ HO(U*, Tory(C2,C%))%

- HO(U4, @ A*N;)G EBHO(U47T0r2(OA{123}7OA{124}))G{123}X{124} .
1]=3

Now

HOU*, @ A*N})9 ~ HO(U*, A2N{ 940)
|I|=3
~ HO(Ays x U, (A’ N{155))%°)

an emma 4.14 we can consider 3 as a sublinebundle A3z 5 o over the diago-
d by 1 4.14 id A2Nf123} 6 blinebundle As > of AQmes} he diag
nal Aja3. For the second term H®(U*?, Tory(On s, 5 OA“M}))GU%}X{IM} we remark that the stabilizer
G123} x {124} is isomoprhic to &12 which acts on the fibers of

2
Tory (OA{IZS} ) OA{124}) ~ A NE{IQ}
A
over each point of the small diagonal with the representation:

A2 (g9 @ &) ®5§®2 ~1,

hence trivially. As a consequence

VT~ HY(Ays x U, As) ® HO(Aya, Aga| )
A
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since the invariants (AQNEH} A)612 are exactly the restriction of the invariants (AQNE‘H})612 ~ As 9 to

the small diagonal.

The last nonzero term of the complex /3% is :

‘€777 ~ HO(U*, Torp(C?,C%))¢
~ HO(U*, Tora(Ona,,,, On))C 123}

Now the stabilizer G123} ~ &3 acts on the fibers of Tora(Oa,,,, Oa) ~ A2N{*123} on each point of the
A

small diagonal with the representation:
2
A (ps ® p3) @5 =~ A*(p3 @ p3) -

Therefore the invariants (Aszlzs}’ )©2 can be interpreted as the restriction of the line bundle Asj o

restricted to the small diagonal. Therefore

YT HO(Apa, Aso| ).

A

The complex
0 /6?7—2 /511:)_2 /5?7_2 0

is clearly the complex of sections over U of the complex

0— AQ’Q —_— .A3’2 D A272 —_— A372 — 0. (47)
A1z A A
The differentials are induced by the differentials of the complex ’ EI’72: in particular the first component
of the first map is obtained by taking the invariants of the map:
P A*N; —— A’N{jas (48)
|7]=2, A123)
JC{123}
which is in turn induced by the map :
Tory(C',C?) —— Tory(C%,C?) . (49)

We are exactly in the situation the lemma 4.22: taking the Gs-invariants of (48) we obtain the isomor-
phism:

Q9 .AQQ —— .A372 .

Aq23
It is clear from the definition of the map (49) that the second component of the map:

A22

s

— Az2® Az

Aqz3 A

is given by the restriction v to the small diagonal. Let us consider now the second arrow in 47: it is
obtained by considering the G3-invariants of the morphism:

4
@TOI'?(OAmwOA(1234}\{¢}) — Torz(On,44:On) -

i=1
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The component on Aj o is obtained setting i = 4 and by definition of the diffrential 9 : C> —— C? this
is exactly minus the restriction. The component on .A272| A 1s clearly the restriction of as to the small
diagonal: hence the complex:

(*V;Oé2|

g,V )
0 — Ao o2y A3z 0@ Az o S Azl — 0
Aq23 A A

is exact and ’ 8;’72 is also exact.
3. q=—4.

4,—4

€070 ~ HO(U*, Tory(C?, %)Y @ HO(U*, Tory(Ch, C3))¢

~ HO(U4, TOI‘4(OA123, OA123))6123 b HO(U47 TOI'4(OA12, (QA))G{12}X{1234}
Now &3 acts on the fibers of Tors(Oa,,s, OA,,) = A4Ni*123} over every point of the diagonal Aj93 with

the representation:
A(ps ® p3) @5 =~ A (p3 @ p3)

hence by lemma 4.14
T0r4(OA1237 OA123)63 = ‘A374 .

As for the term: Tory(Oa,,, Oa)Ct2ixt1234} the stabilizer G123« {1234 ~ &(1,2) x &(3,4) acts on the

fibers of Tory(Oa,,,Oa) ~ A*N{,| over each point of the small diagonal with the representation:
A

A ey Der) ®ea ®ey ~er ®ey
and therefore has no invariants. Therefore
1 o4, —4 0
81 ~H (AUS X U, .,4374) .

€57 ~ HO(U*, Tory (C2,C%))F
~ HO(U4,TOI“4(OA123, OA))63

which is clearly the space of sections over Aya of the restriction of the line bundle of invariants As 4 to
the small diagonal:

€9 HO(Apa, Asa| )

A
Now Tory(C3,C3) is completely H-anti-invariant: therefore
et~y
The map :
154117—4 /5?_4

is induced by the restriction:

Ay — Azs| — 0
A
and hence it is surjective.
4. q=—6
e %~ 0

since Torg(C3,C?) is completely H-anti-invariant. The spectral sequence ‘07 looks like:
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0— 725 72 e 2 0

G

where we indicated with a bold character the degree where the complex ’ 5411’74 is not exact. Therefore
if ¢ #0, 5% = 0 except for p = ¢ = —4. Since we know, by corollary 4.9, that the complex S?C* is
acyclic in degree > 0, it follows that ’5’2)’0 =0, if p > 0. As a consequence:

(S, . (S EM)) ~ T(5*U, (5%C3)€) .

Since this is true for an arbitrary affine open set of $*X of the form S*U, with U affine open subset in
X, and since such affine open subsets S4U cover S*X by lemma 1.27, we get, globally on S*X

(SQE[4]) (SQCQ)
The exterior power. As we did in the symmetric case we consider the spectral sequences:

"EPT ~ @ Tor_,(C*,C) @ ep)?
i+j=p

and
//5Pq @ HO U TOI“_q(Cl C]) Rex )HXG
i+j=p
where U is a affine open subset in X. The complex ”SI’O is as usual isomorphic to the complex
I'g(U* A%C®). By lemma 4.14 all the complexes “EP? with ¢ odd vanish: as a consequence we can
//5117711

consider only the terms with ¢ even.

The complex "€} 2.

2

//51,*2 ~ HO(U4, TOI’Q(Cl, C1)®H)P

~ HO(U*, Tory(C*,C1))¢

since Tory(Ct,C1) is completely H-anti-invariant. Therefore:

2,-2
~

Né'l’ 0(U4 T0r2(0A127 OAlz))G{m}

~ HY(U? x 52U, Tory(Oa,,, On,,))®?
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and this is isomorphic to the space of sections of the sheaf of invariants (A2N7,)®2 over the diagonal
Ay x S2U. By lemma 4.14 it coincides with the line bundle det N7, ~ As 5. Then :

"EXT? n HO(Ay2 x S2U, Agp) ~ Az .
Next:

”8?’_2 ~ H°(U*, Tory(C*,C?))“
= HO(U47 TOI‘Q(OAmv OA123))62 .

Since G2 acts on the fibres of Tora(Oa,,, Oa,,s)) = A2N1*2|A123 over each point of the diagonal Ajss3
with the representation:
A (s @ eg) ® 6582 ~1

and since A2N1*2‘A123 is isomorphic to A272’A123 we get:

) ~ A272
Aiqz3

1/5?’72 = HO(AU3 x U, Az 2

Aq23

The term :
4,-2

"E1 2 = HO(U*, Tors (€%,C) @ en))” ~ 0

since Tory(C2,C?) is completely H-invariant. Now
"E7 T o HO(U*, Tory(C?,CP))¢
~ HO(U4, Tora(Oa, s, OA))G3

and , since &3 acts on the fibers of Tora(Oa,,,, Oa)) ~ A2N1"‘23‘A over the points of the diagonal with
the representation
2
A (p3 @ p3) @ =~ A (p3 @ p3) .

by lemmas 4.14 and 4.22 we get that:

€T o HO(Ays, (A2Niys| )®%) = HO(Ays, Az o
A

) ~ A372
A

A

Finally:
" n HO(U*, Tory(On, Ona) @ ex)F ~ HO(Aya, Toray(Op, Oa))°

because Tory(C3,C3) is completely H-invariant. Then :
V€YY o HO(Apa,det NA)®* ~ HO(Aps, Asz) ~ Asz |

The complex " 51’72 is then given (up to a shift) by the complex of sections of the complex:

0—> Az — Asp — 00— A3z — Ay —0.
JASPE:! A

The first map is induced by the map:
T0r2(0A1270A12) - TOI‘Q(OAH’ 0A123)

which is precisely the restriction map, hence surjective. The last map:

Aza| — Asp2

A
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is obtained by taking the Gs-invariants of
2 n7* 2 AT
A N123 —_— A NA .
A

By applying lemma 4.22 we find that it is the isomorphism «3. Consequently, the complex:
2,2 3,2 5,2 6,2
0 //(c/‘1 //51 O 1/51 l/g O

is exact in degree different from 2.
The complex "€,
ret ™ o HO(UA, Tory (C2,C%) @ epy)F ~ 0

since Tor,(C?,C?) is completely H-invariant.
et o HO(U*, Tory(C?,C%))¢

~ HO(U*, Torg (O, Oa))® = HO(Aps, (M Ny )
A

~ HO(AUzl, A372 ) ~ A372

A

A

Finally the term:

19~ HO(UA, Tory (C3,C3) @ e )P =~ HO(U*, Tory(C*,C%) @ exy)®
~ H(Ays, A*N})®s
~ HO(AU4,A4’4) ~ A474

The map:
//5?,4 //5615,4 (50)

is induced by the map:

Az gl — Aua (51)
A

which is in turn obtained by taking the Gs-invariants of:

ANy — AN} .
A

Lemma 4.22 shows that (51) is the isomorphism 3. Hence (50) is an isomorphism.
The complez "EY~°. Tt consists only of the term:

g9 ~ HO(U* det NX)®4 ~ HO(Aya, Agg) ~ Agg .

Therefore the spectral sequence ”E7? looks like:
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2,—2 3,-2 5,—2 6,—2
//81, //5‘1 0 //51) 5 //51

0 //55,—4 //56,—4
> 1=

"86’_6

where we indicated with a bold symbol the degrees where the complexes are not exact. Therefore the
terms €57 for ¢ # 0 are nonzero if and only if p+¢ = 0, p = —2, p = —4. Since, moreover, ”5’2)’0 =0if
p > 0, we get by corollary 4.10:

Ry, (A2 EW ~ (A%¢3)¢

on every affine open set S*U of the symmetric variety. Since such affine open sets cover S”X by lemma
1.27, we get the equality globally on S™X.

Although all the difficulties of the general case are already present for n = 4, the pattern of the general
spectral sequence is very clearly expressed from n = 6. Therefore we will skecth the situation for n = 6
before giving the proof for the general case.

4.8.4 The case n =06

The symmetric power. As we did in the case n = 4, we will place ourselves first over a G-invariant
affine open set U® of X%, with U affine open set in X, and consider the spectral sequence:

B = HU, @) Tory (0"

i+j=p

Here the complex C® has length 5. By lemma 4.14 it is sufficient to consider only the case ¢ even. As
usual, the complex 'E I’O is isomorphic to G-invariants of the double symmetric power of the complex C®:

ey~ (57%¢)¢
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The complex '5;’72. The computation of EPT? s analogous to the one made for n =4, if p < 4.
Therefore:
2,-2
€77 ~0

3,—2
151 ~ AQ’Q

Ag23

4,-2
/51 ~ A372 D A272

Ag1234)
For p > 5:

€572~ HO(US, Tory(C%,C3)C @ HO(US, Tors(CF,C4))C

= HO(AU4 X 52U7 TOI‘Q(OA123, OA1234))63 S5 HO(U67 TOI'Q(OAlzﬂ OAl ..... 5))G{12}X{12345}

~  Asp

A1234

‘€77~ HOUS, Tory(C1,C7)C @ HO(U®, Tora (€2, ¢4 & HO(US, Tory(C*,C%))"

= HO(U67 T0r2(OA12 ) OA))G{H}X{L”(;} D HO(Uﬁa T0r2(0A1237 OA1.,.5))G{123}X(1”'5} ~0
€077~ HOUS, Tora(C3,C4)C @ HO(US, Tory(C2,C%))C

= HO(AU5 x U, T0r2(0A1.,.4ﬂ OAI...S))64 @ HO(U67 TOYQ(OA1237 OA))G{IZS}XUMG}

~ H°(Ays x U, AN, )Ot >~ Ay

Al...S A1...5
€87~ HO(US, Tory(C*, CY)F @ HO(U®, Tory(C3, CP))C
4
= HO(AU5 X Ua TOI‘?(OAL..saOAl...s))GS@ @ HO(U67Tor2(OAKaOAK/))P@
=2 |K|=|K |=5
|IKNK' |=i
@ HO(UG’ T0r2OA1H_4; OA))G(1234}x{1m6}
= HO(AU5 x U, [\2]\721...5)65 D HO(U67 T0r2(0A12345’ OA12346))P{12345}X{12346}
~  Aso® HY(Ays, ANy | )®*
A
~  Aso @ Ayp
A

&P~ HOUS, Tory(C*,C7))C

~ HO(AUG,TOI‘Q(OAI_“S,OA))65

1

As2

)

A
€%~ HOUS, Tory(C,C%)F ~0.

In this computation we have used that:
1. for [ odd, Tory(C!,CH)T = 0, since Tory((C,C) is H-anti-invariant.
2. Tory(C?,CHHHY = 0 if | > 2, because

HO(U67 TOFZ(Cia Ci—H))G = HO(U67 TorQ(OAlA_Az‘+1 ) OAl_._i+l+1 ))G{lmi-H}X{H—Z”H—Hl}
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and the stabilizer
G iviyxfiteivisy =61, i+ 1) x 6> +2,i+1+1) x &(i +1+2,n)

acts on the space of section like &(1,...71+ 1) x &(i + 2,7+ [ + 1), because the last factor acts
trivially. The last group acts on the

~ A2nT*
Tor2(OA1...i+1 ’ OA1,.,¢+1+1) ~A Nl...i+1
At iti41

with the representation:
A (pit1 ® piv1) ® €ix1 ® Eii1

and therefore has no invariants if [ > 2.

3. For h >k +2,
HO(U6a @ TOI'Q(OAK, OAK/))P =0.

|K|=|K"|=h
KK |=k

This is because

HU®, @@  Tors(Oay,0n, )" =~ HOU®, Tory(On,, Oa,)) "

K=K |=h
|KNK' |=k
where I and J are two chosen multi-indexes such that |I| = |J| = h, |[I N J| = k and there are

transpositions in &(I \ (I NJ)) C G,y which acts trivially on Oa,, but with a sign on Oa,
preventing P-invariants. This vanishing cannot happen if h — k = 1, hence in this case:

HO(US, Tora(Oa,, Oa,)) "7 = HO(Ayrir x S F1U A2Ny 4 )OF ~ Ay o

1...k+1

Al k+1

The complex ’ SI’_2 is then isomorphic (up to a shift) to the complex:

(2.0) (aaly, )
00— Az — A32® Az Az —0—
Aq23 At A1 a
s (V7a4 )
— Ao (o) As2@ Aso }A As2| — 0
A1 A A
which is exact.
Reasoning in this way we can find that:
ro®,—4
51 ~ 0 — A3’4 —> A3,4 —_— O —_—
Aya
(vioa| )
— Ayy ) As 4 ® Asa ‘A Asa| — 0
A5 A A
) o®,—6 (cva,v) (V’a4|A)
51 ~ (— A4,6 —_— A5’6 (&) A4’4 A5’6 — 0
A5 A A
VY~ 00— Agg —> Asg| — 0
A
/517*10 ~ 0
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These complexes are exact out of the diagonal. The spectral sequence €77 looks like:

0 "EP e 2T 20 0 PR ET AT 20 0

EISYET e 0 e e et A 0

075705 er % 0

—8/09,-8
Igl, /g .

where we indicated with a bold character the degrees at which the complexes are not exact. As a

consequence, by what we just said and by corollary 4.9, we get ‘5% = 0 except

0,0 0,0
1€y ~1EL

. ’53’74 and '€5 7%, which are on the diagonal.

Therefore:

Ry (SPE1) ~ ($2¢p)“

since it is true on every affine open set of the form S™U, and these open sets cover S™X.

The exterior power. As usual, let U% a G-invariant open affine subset of X%, with U affine open set

in X. We will use here the spectral sequence:

"EN = HOUC, @) Toro(CCT) @ en)”
i+j=p
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We have 7E7° ~ (A2C*)S. We now sketch the computation of ”£3"~. For the terms €72, p < 4, the
computation is the same as that done for n = 4. We then begin with

"ETT? = HO(US, Tory(C',C4)¢ @ HO(U®, Tory(C?,C?))¢

12

0®HO(AU4 X 52U7 TOIQ(OAIM,OAL.A))SE' ~ A3’2

A4
79T~ HO(US, Tora(C?,C%) @ ey ) @ HO(US, Tora (C2, %)) @ HO(US, Tora(CY, C%))C
3
= H(Aps x STUNNT_ )P HUS, P Tors(Oar, Oa,))"
=1 |K|=|K'|=4
|KNK' |=i
= A4,2 D HO(UG, T0r2(0A1234a OA1235))P{1234}X{1235}
~ Ay @ HY(Ays x U, A2Njy, )S2
A5
~ Ayo® Az,
A5
"ePT? ~ HO(US,Tory(C?,C%))¢ @ HO(US, Tory(C?,C*))C
~ HO(AU5 X U7 A2N1*4 )64 ~ A4_’2
Al...S Al...s
rebT? ~ HO(US, Tors(C*,CY) @ ey )t @ HO(US, Tora (C3, %)) ~ 0
"EVTE = HOUS, Tory(C1,C7)Y = HO(Aye, APNY. 5| )9 = As
A A
e~ HOU®, Tory(C%,C7))F ~ HO(Ays, AN} _6)%° =~ Ag s .
Therefore the complex ” 5;’72 is isomorphic to:
v (a3,v) (_V’a3|A1 5)
Az o — Aso — 0 — A3 — Ay 2®Az2 e Ay — 00—
Aq23 Ay 4 Ay Ay
—— Asp| e Agy — 0
A

which is exact out of the diagonal. In the same way we can prove that the complexes "7 for ¢ even

are:
o, —4 (as,v) (_U’a3|A )
"ETTT >0 — Asy —— Ay D A3y =2 Ay — 0 —
A4 A5 Aq.s
as
— As4| —> Ags— 0
A
1o, —6 —v a5
& ~ 00— Ay — Aup — 00— As5| — Ass — 0
A5 A
o —8 as
"el ~ 00— Asg| — Agg — 0
A

173 0,710

(‘:1 ~ AG,lO
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All these complexes are exact out of the diagonal. The spectral sequence looks like:

1" e2,—2 11 03,—2 1 e5,—=2 11 06,—2 11 o7,—2 109,—2 11 010,—2
81’4» 5&—»0—»81% 1 —> C1 —> 0—»51 —»51

5,—4 1 06,—4 11 o7,—4 9,—4 1 £10,—4
0 //51 1 1 1 O //51 //(-(/'1

6,—6 7,—6 9,—6 10,—6
g6 ”51 0 //51 //((_:1

9,—-8 10,—8
0 //81’ //51 »

11510,—10
1

where we indicate with a bold character the degrees where the complexes are not exact. As a consequence
the terms ”E5'? vanish except for

0,0 0,0
° //52 ~ //500;

1e2,—2 y106,—6 1y 010,—10
i 52 ’ 52 ’ 52 .

The last three ones are torsion terms lying on the diagonal. As a consequence of corollary 4.10:

Ry, (A2EO]) ~ (A2C5*)C .

4.9 The general case
4.9.1 The symmetric power

Let X a smooth quasi-projective surface. Let I a line bundle over X. Consider the resolution Cg, of

the image ®(E") ~ p, (Ej[gl) we found in the previous chapter. By corollary 4.9 the term ®(S?E[M) is
.. . ;10,0

quasi-isomorphic to the term 'E " of the spectral sequence:

"BV ~ @ Tor_,(CL, 1)

i+j=p
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abutting to HP*9(S2Ck*®). Our aim is to prove (36) for all n > 0. This can be achieved by proving it on
every affine open set of S™X of the form S™U, with U affine open subset of X, since such open subsets
cover the entire symmetric variety S™X, by lemma 1.27. This amounts to considering the G-invariant
sections of 'E}'? on every G-invariant affine open set U™ C X™. In order to do this we will apply the
(exact) functor I‘gn of G-invariant sections over U™ to the spectral sequence 'E}?, and we get another
spectral sequence:
15119#1 = HO(Unv @ Tor—q(CJiEaC]jE))P
i+j=p

abutting to the G-equivariant cohomology H (U™, S2Cs,) ~ H*(U™ S2EM), where U indicates the
inverse image ! (S™U) of the quotient S"U ~ U™ /G for the Hilbert-Chow morphism.

We summarize and prove in the following lemma the properties 1), 2), 3) used to get the result for
n = 6. This lemma completes Danila’s lemma in the form of lemma 4.20.

Lemma 4.23. Suppose that JJ K C{l...,n}, |J|=j+1, |K|=k+1, j <k. Then the sheaf
TOI'q(EJ, EK)
has no Py j-invariant sections, except for:

a) q is even, j = k is nonzero even and |JNK|=j, or j+1. In these cases we have the isomorphism:
HO(U™, Tory(By, Ex)) ™% —— H(U", AN © ES,0) ™
b) qis even, k =3+ 1 and J C K. We then have the isomorphism:
HO(U™, Tory(Es, Ex))"* —» HO(U™, AING @ EE)C17

¢) ¢q=0,j=k=0.

Proof. We begin by studying the Py i action on Tory(E;, Ex) for g even. We know by remark 4.19
that if |J| # |K|, then Pjx = G k. Therefore we will concentrate on the case |J| = |K|, leaving the
treatment of the G i action afterwords. In the case |J| = |K]| the stabilizer Py g is:

Prx =(Gsk,T01K),

where 0 g is an involution of {1,...,n} fixing J N K and such that o(J\ (JNK)) =c(K\ (JNK)). If
J = K this can be taken to be the identity, but if J # K we can set o5 x = (j, k) where j € J\ (JNK),
ke K\ (JNK). Consider first the case J = K. The transposition of factors 7 acts on Tory(E;, E;) with
the sign (—1)779". Therefore there are no invariants if |.J| = j + 1 is even. In the case .J # K the element
Tor,7 acts with the sign (—1)2‘”‘]‘2 because 7 acts in any case with the sign (—1)‘1“2 by definition of the
action of the symmetric group on the tensor power of a complex, and o;x = (j, k) acts with the sign
(=1)?, by lemma 4.13. Again there are no invariants if j is odd. To resume,

G . _ .
Torq(EJ7EK)PI.J _ Torg(Ey, Ex)“n7  if |J] = |K| is odd'or |J| # | K|
0 if |[J] = |K] is even
We pass now to the G, action. Suppose first [/ N K| > 1. Then
Tory(Ey,Ex) = A'Njq; ® E?SJ )

The stabilizer G ; i is isomorphic to

Grx~6(JNK)x&(J\(JNK))x &K\ (JNK)) x STUK) .
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An element (o, 11,72, () acts on the fiber of Tor,(E, Ex) over a point z € Ay like

A(pjsnx|(0) @ C?)sgn(o)® sgn(r1) sgn(r2)

where p|;n 7| is the standard representation of the group &(I N .J). If one of the groups &(J \ (J N K)),
S(K\ (JNK)) is nontrivial, there are transpositions 7 € &(J\ (JNK)), 72 € S(K \ (JNK)) preventing
G j k-invariants. Therefore to have invariants we have to set

[J\(JNK) <1 ; IK\(JNK) <1. (52)
In this case the action is reduced to the representation:
A(p k| ® C?) ;

therefore there are invariants only if |J N K| > 2 and ¢ even by lemma 4.14 or |J N K| < 1, with the
conditions (52). The latter case forces ¢ to be zero to have invariants, because Tor,(E;, Fx) = 0 if
|J N K| <1, by remark 4.17.

The case |J N K| > 2, q even. There remain two subcases:

1. |J| = | K| nonzero odd;
2. 7] # |K].
In the case |J| = | K| nonzero odd, the conditions (52) imply:
JNNE)=[K\(JNK)[<1.
Therefore
o if | J\(JNK)|=0then J=K and |[JNK|=j+1
o if |J\(JNK)|=1then |[JNK]|=j

and we are in case a) of the statement.
In case |J| # |K|, we have |J\ (JNK)| # |K \ (JN K)| which yields:

IJNWNK)=0 ; |[K\(JNK)=1.

this means J C K, and k = j + 1 and we are in case b).
The case |JNK| =1, ¢ = 0. This case splits in the two subcases |J| = |K| and |J| # |K|. If |J]| = | K]
we can have J =K, |[J|=1or J # K, |[JNK|=1, |J| = |K| =2 (case a) ).
If |J| # | K| we have J C K, |[K| =2, |J| =1 (case b) ).
The case |J N K| =0, ¢ =0. Conditions (52) imply |J| = |K| =1 whichis j =k =0 (case ¢) ). In
this case
&0 ~ HO(U™ By @ Ey)P02 ~ H(S2U x S" 2U, ER E/S3 K Ogn-2x) .

O

We will denote the last space of sections Ag g, and the vector bundle EXE/S3XOgn-2x on S2X x S" 72X
with ./4070.

Corollary 4.24. The term 'EY ™7 is zero except in the following cases:

a) qiseven, ¢ <2n—2,p=0 mod 4 and p < q. We set p=2j. Then'E}"? is isomorphic to

 oPi—q
&7 T2 A1, A, )
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b) q is even, p is odd, p > q. We set p =25 — 1. Then'E)"? is isomorphic to

e~ A

7,4

Proof. 1t suffices to recall the preceding lemma, Danila’s lemma, and the definition of A; ,.

O

The differentials. We now pass to study the differentials of the spectral sequence '€}’ 7. We just
proved that '€)""% = 0 if ¢ is odd or if p = 2 mod 4. Therefore, for ¢ even and p = 4s, we can consider
the subcomplex K73, , of '€7"% (centered in degree 4s) given by:

0 /5?8*1,*q /5‘1151*(1 15%34’1,*‘1 O .
By the last corollary it is:

0— A2$,q - A25+1,q S A2$,q - A25+1,q — 0.

Ag1,. 2541}

,,,,, 2542} Aq1,... 2542}

As a consequence the complex ‘€77 is the direct sum:

= @ K,

q<4s<2n—2
We can prove the following proposition for g even:
Proposition 4.25. Letn € N, n > 2. Let g € 2N. Then
1) For q < 4s < 2n — 2 the complex KJ, , is acyclic.

2) For 0 < g =4s < 2n — 2, the complex K3, , is reduced to 2-term complex:

— 0.

0 — Aosy1,g — Azstig

A1, 2542}
and is exact in degree different from 4s. For 0 = q = s the complex K¢, is reduced to the 2-terms
complex:

50

00— A1 0@ Aoo — Ao

Ag,2y
and is exact in degree different from 0.

8) If n is odd and 4s = 2n — 2, the diagonal Ay, . 2541y 5 the small one A. For ¢ < 2n — 2 the

complex K3, , is reduced to the acyclic 2-terms complex:

0 —> Azsq| — Azs414—> 0.

A

For g =2n — 2, the complex K3,,_, , is reduced to the only term det NX, placed in degree 2n — 2.

Proof. 1). By Danila’s lemma, for ¢ < 4s < 2n — 2 the complex K3, , is the complex of Gy, . 25413~

invariant sections of the complex:

an* qpT* an*
0— P AN — MNf LoD D AN g
JC{1,..2s+1} Af1,..,2541} JC{1,..2s+1} Af1,...,2542)
|J|=2s |J|=2s
q *
— ANING a1y —0
A1, 2542}
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which is in turn induced by the complex of H-invariant sheaves:
0— Torq(Cgsfl,CQS) — Torq(CQS,CQS) . TOrq(CQS,CQS“) 0.

We are exactly in the situation of lemma (4.22). As a consequence the first component of the first map
on Kj . is the isomorphism azs and the second component is the restriction v (up to a sign). The second

map is easily the couple (fv, ags ). Therefore the complex is acyclic.

|A{1,2s+2}
The cases 2) and 3) can be easily obtained as limit cases of the preceding, taking into account the

vanishing terms.
O

Corollary 4.26. The spectral sequence 'EV? degenerates at level 'Eo. In particular 'E5? = 0 except for
p+qg=0,p=0 mod4, 0<p<2n—2. In particular ’5250 = ’58*0

The main consequence of the corollary is that formula (36) holds on every open affine set of the
symmetric variety S™X of the form S™U, with U affine open set in X. This yields its validity on all the
symmetric variety S™ X, for every quasi-projective surface X, by lemma 1.27. We then have proved the
following generalization of a Danila-Brion formula [23]:

Theorem 4.27. Let X a smooth quasi-projective surface and E a line bundle on X. The image
. (52 " of the double symmetric power of a tautological vector bundle E™ for the Hilbert-Chow mor-
phism p is quasi-isomorphic to the complex of G-invariants of the (non-derived) symmetric power S*CY:

Ry, (S?EM) ~ (52¢3)¢ .

Remark 4.28. The conclusions of proposition 4.25 allow us to say actually something more. It turns
out that '€7° = 0 = [(S2C%)“]2. Therefore, if we denote with 7<; the truncation functor, we get the
simplified formula:

Ry (S2EM) ~ 7 (8%¢C3)¢ . (53)

We remark that the complex
T<1(S2CE)¢ 1 0 — (S%CY)Y — (Ch ®CE)E — 0

is a 2-terms complex which is acyclic in degree # 0.

4.9.2 The exterior power.

We use the same notations of the symmetric power case. By corollary 4.10 the term ®(A2EM) is quasi-
isomorphic to the term ” Eﬂf of the spectral sequence:

"EV! = @B (Tor—(Ch,Ch) @ em)”
i+j=p
where e is the alternating representation of H. To prove (37), it suffices to show that it holds on every
affine open set of the symmetric variety of the form S™U, with U affine open set in X, by lemma 1.27.
This can be done at the sections level over S™ X, or, equivalently, considering the G-invariant sections on
an G-invariant affine open set U™ C X™. Applying the functor of invariant sections ', we get another

spectral sequence:

neht = @ Tor_,(C&,C )®5H)
i+j=p

abutting to the G-equivariant cohomology Hg (U™, A2Cs,) ~ H*(UM, A2E[). The equivalent of lemma
4.23 for the exterior power is the following:
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Lemma 4.29. Suppost that J, K C{1....,n}, |J|=7+1, |K|=k+1, j <k. Then the sheaf
Tor,(Es,Ex) @en
has no Pr j-invariant sections, except for:
a) q is even, j = k is nonzero odd and |JNK| = j, or j+ 1. In these cases we have the isomorphism:
HO(U™, Tory(E;, Ex) @ )P —=o HOU™, AN i @ ES. )75
b) q is even, k =3+ 1 and J C K. We then have the isomorphism:
HO(U", Tory(Ey, Ex) ® er)™* ——» H(U", AIN} @ EZ )51

¢) q=0,j=k=0.

Proof. The proof goes exactly as in the case of lemma 4.23, except for the fact that we are twisting by
the alternant representation ey of H. The same computations we did in that proof show that if K = J,
the transposition of factors acts on Tory(Ey, E;) with the sign: (—1)7H" 1 If K # J, but |[K| = |J],
then the element 7o ; i acts with the sign: (—1)2‘1+j2+1. Therefore if ¢ is even, we do not have invariants

for j even.
O
Let flo,o the space of invariant sections of Ey ® Ey ® eg on U™ for Py oy:
Ago~ HY U™, B, ® By @ egp)Pioy
Corollary 4.30. The term 'EY ™7 is zero except in the following cases:
a) p=q=0. Then"E%° ~ Ay,.
b) q is even, p=2 mod 4, and p > q. We set p=2j. Then
ey Ajr1,g D Ajg
Afig+2)
¢) qis even, p is odd, p > q. We set p=2j — 1. Then
TEV T = Ajy
Af1j+1)
O

The differentials. Since """ 7 = 0 if ¢ is odd and p = 2 mod 4, we can consider the following
subcomplex Kf, o, of "E77 7, centered in degree 4s + 2:

0 //54S+1,*q //54118+2ﬁq //54118+3qu 0.
By the previous corollary it is:
0 > A2s+1,q e A25+2,q 2 A2s+1,q - A25+2,q — 0.

2842} Aq1,2543} A1, 2543}
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The complex “£7 4 is, for ¢ > 0 even, the direct sum:
*—q .
//51 = @ KZIer?,q ’
q<4s+2<2n—2
for ¢ = 0 we have:
100 10,0
& =g @ Kisio0-
0<454+2<2n—2
The differentials are clearly the natural morphisms induced by the complexes of H-invariant sheaves:
2s+1 2542
C s+ ,C s+

25+2 25+2 25+2 25+3
csr=c c=sr=c

0 — Tory( ) — Torg( ) — Torg( ) — 0.
By lemma 4.22 we get the following analogue to proposition 4.25:
Proposition 4.31. Letn € N, n > 2. Let q € 2N. Then:

1. For q <4s+2 <2n —2 the complex Ki, ., , is acyclic.

2. If 0 <q=4s+2<2n—2 the complex K3, , , is reduced to the 2-terms complex:

— 0

00— A2s+2,q I A25+2,q

..... 2543}

which is exact in degree different from 4s + 2.

3. If n is even and 4s + 2 = 2n — 2 then the diagonal Ayy, o440y is the small diagonal. The complex

K3s1o , is reduced to the 2-terms complex:

00— A23+1,q —_— A25+2,q — 0

A
which is exact. If n is even and ¢ = 2n —2 the complex K3, , is reduced to the only term: det Nx
placed in degree 2n — 2.

O

Corollary 4.32. The spectral sequence "EV? degenerates at level "Ey. In particular "E5Y = 0 except for
p+qg=0,p=2 mod4, 0<p<2n—2 orforp=q=0. In particular ”5250 = ”5?’0.

Od

As in the case of the symmetric power, this corollary implies that formula (37) holds on any affine

open set of the symmetric variety of the form S™U, with U affine open set in X; hence it holds globally

on S™X, for every quasiprojective surface X, by lemma 1.27. Moreover, by the last corollary, we can
identify the direct image A2E[™ of the exterior power of the tautological bundle E[™ with the term ”& (1)’0.
We have then just proved:

Theorem 4.33. Let X a smooth quasi-projective surface and E a line bundle on X. The image
Lo (AQE["}) of the double exterior power of a tautological vector bundle EM™ for the Hilbert-Chow morphism
w is quasi-isomorphic to the sheaf of G-invariants of the exterior power A2C%:

Ry, (A2EM) ~ (A2C3)C ~ (A%CY)C .
Putting together theorems 4.27 and 4.33 we get:

Theorem 4.34. Let X a smooth quasi-projective surface and E a line bundle on X. Then the derived
direct image Ry, (E"™ @ E[M) of the double tensor power of the tautological bundle EM™ for the Hilbert-
Chow morphism 1 is quasi-isomorphic to the two terms complex:

0— (€% ®c2)C¢ 2 (€% ®CL)E — 0

acyclic in degree higher than zero, where the morphism d is given by d =id ® dO}.E.
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4.10 Cohomology

The aim of this section is the application of the theorems 4.27, 4.33 to the computation of the cohomology
of the Hilbert scheme with values in the double symmetric and exterior power of a tautological vector
bundle E™ associated to a line bundle E on the surface X. We will prove that for every quasi-projective
surface:
(X1, $?EM) ~ (X, B¥") @ 7 @) S*H* (X, E) ® §"2H*(X, Ox)

where J is the ideal of cohomology classes in S""'H*(X,Ox) vanishing on the subscheme {a} x
S"2X - S"1X. For n = 2,3 this result has already been obtained by Danila [24]. Moreover
for every quasi-projective surface:

H*(X" A2EM) ~ A2H* (X, E) ® S"2H*(X,Ox) .
As a consequence of these two formulas we will get:

Theorem 4.35. Let X be a smooth quasi-projective surface. The cohomology of the double tensor power

2
EM® of a tautological vector bundle E™ on the Hilbert scheme, associated to a line bundle E on the
surface X, is given by:

n®’

HH (X B ~ B (X, B¥) 0 T @@ H (X, B)® @ S"2H*(Ox) .

4.10.1 Cohomology of the symmetric product of a tautological vector bundle

We know from the previous section that the image of the symmetric power of a tautological bundle for
the Hilbert-Chow morphism is:

Ry (S2EM) = (5°C) % =~ 721 (S%CE)
where 7<1(S%C$,)¢ indicates the complex (S2C%)¢ truncated in degree < 1. The truncated complex is
exactly:
0 — (S%¢%)¢ — (% och)Y — 0.
As a consequence we have the short exact sequence:
0 — p(S?EM) — ($°¢)% — (Ch @ CE) — 0.

and the associated long exact cohomology sequence:

. — HY(XWM §2Ey o HL(X™, 5%C%) —

—— HL(X",CY @ CL) — HTY(XM s2plhy — . (54)
Now
5%y ~ PES o PE: ©E,
=1 1<J
ech~ P F¥| o@ESE
1<i,j<n Dij £k Ajk
i<k
Therefore:

H (X", 5%CY) ~ (éH*(X”,E?z))G o (P H (X" E ® E)))°
G NN
~ ([H*(E®2) ® H*(OX)®“]”) ® ([H*(E)®2 ® H*((’)x)n_Q](2)>
~ H*(B®") @ S" ' H*(Ox) @) S*H*(E) @ S" 2 H*(Ox)
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applying Kunneth formula and taking G-invariants, while

)

ij

HE;(X”,C%®6%E>~< P a (x" E¥

1<ij<n

@EZ-@E

75,k
i<k

since the sheaf

Ak
has no G-invariants. Therefore
HE(X™,CY ®CL) ~ ([H*(E®2)2 © H*(Ox)®" ] (2>)
~ H*(E®")® S"2H*(Ox)
The differential
d®:(82¢%)¢ — (Y @ cCL)¢

induces a morphism:

H*(E®") @ S""LH*(Ox) €D S*H*(E) ® $" 2 H*(Ox) —= H*(E®") ® S"2H*(Ox) . (55)

We will now prove that the morphism (55) is surjective; hence the long exact cohomology sequence splits.
We remark that the second component of (55) is the canonical coupling

S*H*(E) —» H*(E®")
tensorized by the identity.
Lemma 4.36. Let F' a line bundle on X. Consider, for k € N*, the embedding:
X xSF1X s X x SFX (56)
given by (z,z) — (x,x + z). The restriction morphism:
D:H*(F)® S*H*(Ox) — H*(F) ® S*"'H*(Ox)
induced by this embedding is given, for « € H*(F) and u; € H*(Ox), i = 1,...,k, homogeneous of degree

pi, by the formula:

k
a@uy...u, —> — (71)(Za‘<ipf)piaui Quy...U;... U .
i=1

Proof. The embedding (56) is induced by the embedding:
Xx X1l X x X
(T, 21,y 2k-1) > (X, 2,21, .., Zk—1)
In cohomology the induced morphism is given by:
dRQUI X ... UL —> QUL QU2 X ... D UL -
The canonical projection X* —— S¥X identifies u; ... ux € H*(S*X) ~ S* H*(Ox) with the element:
1
7 Z Eop1ynpr 0 (UL & . © ug)
: ceSy,

of H*(Oxr) ~ H* (OX)®k, where €5 p, ... p, is asign depending on the permutation o and on the respective
degrees of u; and it is characterized, in the graduated algebra Clus,...,ux] (where deg(u;) = p;), by
the relation: o(u1 ® ... ® ug) = €5p,.... ppU1 ---Uk. For the transposition 71 ; we have Err i Pyl =
(—=1)(=i<iP)Pi  The formula follows.
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Lemma 4.37. The restriction morphism D : H*(F) ® SKH*(Ox) —— H*(F) ® S*"1H*(Ox) is
surjective and has a canonical section.

Proof. Let u; € H*(Ox) of degree p;, i =1,...,k, « € H*(F). Then by lemma (4.36) the morphism
D is given by:

k
Da®uy...u) = Z(—l)(zi<ipf)piaui Quy...U;. ..U .
i=1

1
k
Let A; be the morphism:

N HY(F)® S"H*(Ox) — H*(F) ® S*'H*(Ox)

a@Uuy... Ui ——a® 1...1 uj...u;
1 ] < , 1 J

k — j — 1-fois
We have A\p_1 =id, A\g = 0. Let W; the image of \;. We have the filtration:
(0} =WoCW1 C--CWi s CWy_1 = H(F)®@ S*1H*(Ox) .
Let now o be the morphism:
H*(F)® S*"'H*(Ox) — H*(F)® S*H*(Ox)
aARQU| .. . Up 1 ——— a @ Luy ... up_1

We have the following relation:

De(N\j(a®@ui...uj))) = D@® 1...1 .uj...u )
k — j-fois
k—j L
= Ta@ 1...1 .ul...uj—i—ZCfLauh@ 1...1 wp...up...uj
k — j — 1-fois h=1 k — j — 1-fois
k—j

= —=N(a®Qui...uj)+v

where v € W,_,, for some rational constants C’,{. This means that, indicated with ¥ the endomorphism
Doo of H*(F)® S*'H*(Ox) we have:

(‘1’ - kk_J) (W) CW;q

which implies:

In other words there exist ay,...a; € Q, with ax # 0 such that:
TP 4 U Ut a = (U U g ) Fap =0,
that is, ¥ is invertible. Therefore D is surjective and has a canonical section.
O

A consequence of this lemma is that the kernel of D is isomorphic to a direct factor of the image of o.
The next lemma allows us to characterize such a direct factor.
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Lemma 4.38. Let a € X a point of X. Consider the morphism:
idev: H (F)® S*H*(Ox) — H*(F)® S* " 1H*(Ox)

where v is the morphism induced in cohomology by the inclusion S*¥~1X —— S*X given by 2 — a+ 2.
Therefore id @ v is surjective and its kernel is isomorphic to the kernel of D.

Proof. The morphism id ® v is given by:

k
1
idevia®uy...u %Z 1)< PP (a) @ uy .. s .. g, -

We know that uy(a) = 0 if deg u, > 0. Therefore, if we denote with ¥ the endomorphism id ® v o ¢ of
H*(F)® S*1H*(Ox), we have:

\I/()\j(a &® uy .. uj))

(dev)(a® 1...1 .ui...u;)
k — j-fois

ki
= Tj)\j(a(@ul...uj)—i-v

where v € W;_;. Therefore <\if — k%) (W) € W;_; and we have again for ¥ the relation:

1:[ (\I/ — ) =0
which implies that U is invertible, that id ® v is surjective and that Im o is a direct factor of ker(id ® v).
O
Lemma 4.39. Let V, W, Z three vector spaces, not necessarily of finite dimension, over a field k. Let
=(f,9): VoW —Z
a linear map such that the component f is surjective. Then ker F' >~ ker f & W.

Proof. Let K = ker f and V a supplementary of K in V. In the decomposition:
KoeVoW — Z

F' can be written as (0, a, ), with a invertible. Therefore F'(z,y,w) = 0 if and only if ay + bw = 0, that
is, if and only if, y = —a~!bw. Therefore ker F ~ K & W.

Applying the lemmas to the morphism (55) we get:

Theorem 4.40. Let X a smooth quasi-projective surface. Let a a point in X. Let J the kernel of the
morphism:
S"UHY(Ox) ~ H*(S" ' X) — H*({a} x S"72X) ~ S"2H*(Ox)

induced by the morphism:
Sn—QX Sn—IX
T———>a+zx

We have the isomorphism of graded modules:

HY (X, S2E)y ~ H*(X, B ) @ J P s*H (X, E)® " *H*(X,0x) .
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4.10.2 Cohomology of the exterior power of a tautological vector bundle

Let X a smooth quasi projective surface and F a line bundle on X. The cohomology of the double
exterior power A2E" of the tautological vector bundle E™ is much simpler, since we know that:

Ry, (A2EMY ~ (A% .

Now
A CY ~ (Ch @ Ch @en)?
We have B
C%@C%@EH 2@(E?2 ®€H)@EZ®EJ ey
i=1 ij
and

Hg (X" A°Ch) ~ H (X", D E® @ep)drH Pr X" PE @E; @en)
i=1 i.j 0,J
~ H*(Xn,El ® E2 ® €H)P{12}
~ AN’H*(E)® S"2H*(Ox)

Therefore we get:

Theorem 4.41. The cohomology of the double exterior power A2E™ of a tautological vector bundle EM
on the Hilbert scheme XM associated to the line bundle E on the smooth quasi-projective surface X, is
given by the isomorphism of graded modules:

H*(X" A2EIM) ~ A2H*(E) @ S"2H*(Ox) .
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Perturbations of the metric in Seiberg-Witten equations






Introduction

In the late ’80’s Donaldson [28], [29] built the first differential invariants for compact simply connected
4-manifolds. These kinds of invariants allow to make the distinction between manifolds which are home-
omorphic but not diffeomorphic. For example, one can prove that the smooth quintic in ]P’g?; and the
manifold 91?%1144@% are homeomorphic but not diffeomorphic. Donaldson invariants are polynomial in-
variants:

qqa : Ho(M,Z) x -+ x Hy(M,Z) — Q

built by means of the SU(2)-gauge theory of instantons, or anti-self-dual connections. In other words,
fixed a C*°-hermitian vector bundle E of rank 2, with trivial determinant, consider the space S of SU(2)-
connections A satisfying the anti-self-dual (ASD) condition:

Ff=0. (1)
The moduli space of instantons Mg is the quotient:
Mg =S8/G

where G is the group of automorphism of E. It is always possible to give Mg a structure of complex
analytic space, but there are no reasons why Mg should be smooth. To ensure that Mpg is a smooth
manifold, one needs to prove that the G-action is free, and that the space of solutions S is cut out
transversally by the equations (1), hence being a smooth Banach submanifold of the (Banach) affine
space of all the SU(2)-connections .A. While the first task is simple to solve (considering the action of
a reduced group G = G/C(G) and gettind rid of the reducible connections by a change of metric) the
second is highly non-trivial and constitutes one of the fundamental steps in the construction of instantons
moduli spaces. The problem was solved by Freed and Uhlenbeck [46] who considered perturbations of
the equations (1) of the form:

Fi9=0 (2)
where the metric ¢ on the manifold M is seen as an additional parameter. The two authors prove that
0 is a regular value for the application (4, g) — Fj’g ; consequently, the space of solutions & can
be given the structure of smooth Banach manifold. A standard application of the Sard-Smale theorem
then yields that for a generic C*-metric h in Met(M) the moduli space of instantons M 37 relative to
the metric h, is a smooth manifold. This fundamental fact, together with the (difficult) existence of a
compactification (done by Donaldson [29], Uhlenbeck [114], [115]), allows the construction of Donaldson
polynomial invariants.

In october 1994, Seiberg and Witten (see [104], [105], [119]) built another kind of differential invariants,
numerical invariants, based on a much simpler U(1)-gauge theory, which can interpreted from the point
of view of quantum field theory as a ”dual” of Donaldson theory. Omn the ground of deep physical
considerations, Witten predicted that Seiberg-Witten invariants would be able to seize all the richness and
subtility of Donaldson’s invariants; furthermore he precisely conjectured that Donaldson’s polynomials
could actually be expressed in terms of Seiberg-Witten invariants. Witten conjecture is on the way of
being proved, along ideas of Pidstrigach and Tyurin, after a long and technical work by Okonek, Teleman
[99], [100], [108] and most of all by Feehan-Leness [38], [39], [40], [42], [41]. Seiberg-Witten invariants are
built from Seiberg-Witten equations: once fixed a Spin®-structure on the compact orientable riemannian
4-manifold (M, g) of spinor bundle W ~ W, @ W_ and of fundamental unitary line bundle L ~ det W,
the equations read:

Dath =0 (3a)
Fi=[" @l (3b)
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where A is a unitary connection on L, v is a positive spinor ¢ € T'(W,.), and [¢* ® 1]y is the traceless
part of the operator ¢* ® 1) € u(W,), hence [¢)* ® 9] € isu(Wy) ~ iA2T*M. The gauge group is here
G = C*(M, S!) and it acts on the solutions via (A4,%) —— ((g?)* A4, gv). The group acts freely on the
solutions of equations (3a), (3b) of the form (A,), with ¢ # 0, which are said irreducible monopoles.
The moduli space of Seiberg-Witten monopoles is the quotient:

MSW :S/g

where S is the space of solutions to the Seiberg-Witten equations. To guarantee that the moduli space is
smooth we have to ensure that the G-action is free (which can be done as for instantons, by a change the
metric preventing reducible monopoles) and that the space of solutions S is a Banach submanifold of all
the configuartion space Ap x T'(W,), that is, cut out transversally by equations (3a), (3b). The second
problem is commonly solved by a perturbation of the equations of the kind:

Dah =0 (4a)
Fi=[*®¢lo+n (4b)

where 7) is an arbitrary imaginary self dual 2-form 7 € zAi(M ). In this way we can get the wanted
transversality and the smoothness of the moduli spaces ./\/l,S,W of solutions to equations (4a), (4b) for a
generic 2-form 1 € iA% (M). Even though this perturbation is very simple, it does not seem the most
natural, nor the most geometric; as we saw previously, in Donaldson theory the transversality of equations
is achieved by the perturbation just of the metric, procedure which allows at the same time to get rid of
the reducible connections. The perturbation of the metric in Donaldson theory has a deeper geometric
meaning; on the other hand the 2-form 7 lacks any geometric or physical interpretation. Moreover, the
behaviour of Seiberg-Witten equations under variations of the metric is interesting in its own, although
not so much is known. The only reference about perturbations of the metric in Seiberg-Witten the
literature in an article by Eichhorn and Friedrich [31], where the two authors claim that they proved a
transversality result for generic metrics, but a careful reading of the proof reveals several mistakes which
cannot be straightforwardly corrected.

We proposed ourselves to clarify the question. The first difficulty we meet is the variation of the Dirac
operator corresponding to a variation of the metric: the question has already been studied by Bourguignon
and Gauduchon ([12], [11]). The two authors build isomorphisms (identifications) between different spinor
bundles associated with different metrics, thus succeeding in comparing different Dirac operators living
in different spinor bundles. We decided to take another approach, which we now explain. Giving a Spin®-
structure on a compact riemannian 4-manifold M is equivalent to giving a spin representation (W, p),
that is, the data of an hermitian vector bundle W on M and a bundle map:

p:TM — End(W)

such that p(z)* = —p(z), p(z)? = —g(z,x), for all z € TM (cf. [81], [38], [40])). We definitely fix a
spinor bundle W on the riemannian 4-manifold (M, g) and in correspondence to a change of the metric
(9t = g, o1 € Aut(TM)) we change, in an obvious way, the Clifford multiplication by means of the
diagram:

(TM, g) 2> End(w)
Pt v
(TM7 gt)
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The couple (W, p;) given by the same spinor bundle W, with the new Clifford multiplication p; becomes
a new Spinc-structure for the new riemannian manifold (M,g;). It is evident that, in this way, it is
inevitable to change the Clifford multiplication in order to change the metric. So, what does it mean to
perturb the metric only, if we are obliged to change Clifford multiplication any time we want to change the
metric? To answer this question we are induced to study the relations between Clifford multiplications
(or Spin®-structures, since the spinor bundle is fixed) and metrics. It turns out that if we fix the spinor
bundle W and we take the set of all the compatible couples (g, p):

E={(g9.p) | g€ Met(M), p: TM —> End(W) , p(u)* = p(—u), p(u)* = —g(u,u)}

then 2 is a C*° (M, PU(W))-fibration = — Met(M) on the space of metrics on which Aut(T'M) acts. In
this setting the concept of perturbing the metric alone corresponds, in a weak way, to choosing variations
of the Spin¢ structure transversal to the vertical distribution, that is, we need the notion of a connection
over this fibration. Now there is a natural connection, the horizontal distribution in a point (g, p) being
given by the tangent space to the image of the section o (g, p), transversal to the fiber Z,:

a(g,p)

—_
—
—

Sym™ (T M, g)

o " (©"g,po )

where Sym™ (T'M, g) denotes the positive symmetric automorphisms of the tangent bundle with respect to
the metric g. In other words Hy, ,y = T(4,,)Ima(g, p). This connection clarifies the concept of perturbation
of the metric alone in a stronger sense. We define Seiberg-Witten equations and consequently a Seiberg-
Witten moduli space M parametrized by =, whose fiber over a point £ = (g, p) is the standard Seiberg-
Witten moduli space M;SX,V associated to the Spin®-structure given by the couple (g, p). We prove that
the group of unitary automorphisms of the spinor bundle acts on the fibration E (in a vertical way), on
the solutions of the parametrized Seiberg-Witten equations and hence on the moduli space M; in the
case M is simply connected this action is transitive on the fibres: as a consequence two Seiberg-Witten
moduli spaces for two different Clifford multiplications over the same metric are isomorphic:

Mfg%) ~ M‘(SZI;/) .
We use variations of the Spin® structure tangent to the natural horizontal distribution to compute the
variation of the Seiberg-Witten equations. In particular, the variation of the Dirac operator we obtain in
this way is the same of Bourguignon and Gauduchon. We compute the differential DF to the perturbed
Seiberg-Witten functional (in terms of variations of the unitary connection A, the spinor ¢ and the metric
g) and its (formal) adjoint DF*, and we study the kernel equations DF*u = 0. Proving a vanishing
theorem for the solutions of the kernel equations is equivalent to proving transversality of Seiberg-Witten
equations for generic metrics. In the general case the equations are intricate and we still do not have the
answer.

When M is a Kéhler complex surface with canonical line bundle Kj;, Seiberg-Witten equations
have an interpretations in terms of holomorphic couples (94, ), where 94 is a holomorphic (0, 1)-
semiconnection on a line bundle NV such that K3, ® N ® ~ L, and « is a holomorphic section of (N, 04).
This facts allows a drastic simplification of the Seiberg-Witten equations and consequently of our question.
After interpreting all the preceding objects in the context of complex geometry, and thanks to a splitting
of the symmetric endomorphisms with respect to the metric into hermitian and anti-hermitian ones, the
kernel equations become extremely simpler and we get that Seiberg-Witten equations are transversal for
a generic hermitian metric sufficiently close to the Kéhler metric g. We precisely proved:

Theorem 0.42. Let (M, g,J) a Kéhler surface. Let N a hermitian line bundle on M such that 2 deg(N)—
deg(K) < 0. Consider the canonical Spinc-structure on M twisted by the hermitian line bundle N. For
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a generic metric h in a small open neighbourhood of g € Met(M) the Seiberg- Witten moduli space Mﬁw
is smooth. Actually, the statement holds for a generic hermitian metric h in a small open neighbourhood

of g.

We find a counterexample which clarifies that it is necessary to go out of the Kéahler class of metrics
to obtain transversality.

1 Preliminaries and notations

In this introductory section we will recall briefly the framework of Seiberg-Witten equations, the defini-
tions of a Spin®-structure, of a spin bundle and how the spinorial connection, the Dirac operator and
finally the Seiberg-Witten equations are constructed. Moreover we will fix the notations we will be using
throughout this part.

1.1 Connections over principal fibre bundles

Let m: P —— M a principal fibre bundle of structural group G over a manifold M. A connection over
the bundle P is a G-equivariant subbundle H of the tangent bundle T'P, complementary to the vertical
tangent space V = kerm,: in other words, T,P =V, & H),, and H,; = (Ry)«Hp, where R, : P —— P
is the automorphism of P given by the action of the element g € G. Such notion of connection is
equivalent to the data of an equivariant g-valued 1-form w € A'(P,g) (equivariant because it must satisfy:
Riw = adg~'w, where ad : G — g is the adjoint representation) such that, when we identify the tangent
space to the fibre V}, with the Lie algebra g by the isomorphism g € A —— A* € V}, associating to an
element A of the Lie algebra the fundamental vertical vector field A*, we have w(A*) = A, for all A € g.
A connection on a principal bundle P induces a splitting TP ~V & H ~ V & #*T M. We denote again
with H : TP —— H the projection on the horizontal space. For a good treatment of connections on
principal bundles see [76], [92].

Let us recall briefly how to pass from a connection on a principal bundle P to a connection on an
associated vector bundle E. Let V a fixed vector space and p : G — GL(V) a representation of G in
GL(V). It is well known that the quotient of P x V for the action of G given by (p,v)g := (pg, p(g~*)v)
is isomorphic to a vector bundle, which we indicate with £/ ~ P x, V. We have a commutative diagram:

PxV P

b

E M

We remark that the pull back 7*E of the bundle E on P is canonically isomorphic to the trivial
bundle P x V. We recall that if o € A"(M,FE) is an E-valued r-form on M the pull back 7*o €
A"(P,m*E) ~ A"(P,V) is an horizontal and G-equivariant r-form: in other words n*c = H*r*o, and
Rim*o = p(g~")n*o; we call such a form tensorial of type (p,V'). There is a bijection (cf [76]) between
r-tensorial forms of type (p,V) and E-valued r forms in A" (M, E). Once this is explained, let o be a
connection 1-form on the bundle P, and ¢ a section in I'(E). It is easy to see (cf [76], [103]) that the 1
form dn*¢ + o(7*¢) coincides exactly with the horizontal part H*dn*¢ of the differential dn*¢ and it is
tensorial of type (p, V), then there exists a unique 1-form V¢ € A'(M, E) such that:

(V) = dn*d +o(n*¢) . (5)
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The form V¢ is called the covariant derivative of the section ¢ on E, and proves the existence of a vector
bundle connection V : T'(E) — AY(M, E). With this characterization of vector bundle connections

induced from connections on principal bundles, it is easy to prove the following properties:

Lemma 1.1 (General principle). (cf [92], [98], [8]). Let P a principal G-bundle and V' a G-vector space.
If v € V is fized by the G-action, there is a naturally induced section v of E = P xg 'V, such that for any
covariant derivative V, on E induced by a G connection o on P, V.0 = 0.

Lemma 1.2. (¢f [92]) Let P and Q two principal fibre bundles over a manifold M with structural group
G, and let f : P —— Q an isomorphism. Let o a connection 1 form on Q. Then f*o is a connection
1-form on P. Let now V a G-vector space and E =P xqgV, FF = Q xXgV the associated vector bundles,
and let again f : E —— F the isomorphism of vector bundles induced by the isomorphism f: P — Q.
Then the covariant derivative V y=, on E is exactly [V, f, where V4 is the covariant derivative induced
on F by o.

1.2 The group Spin®, Clifford algebras and spin representations

Our main references for material about Spin Geometry are Lawson-Michelsohn [82], Morgan [91], Nico-
laescu [98]. We recall that the group Spin(n) is the universal covering of the group SO(n). Let
Ad : Spin(n) — SO(n) the double covering map. The group Spin®(n) is then defined as the quotient:
Spin¢(n) := Spin(n) x41 U(1). The group Spinc(n) is a double covering of the product SO(n) x U(1):
we indicate with p the covering map:

w: Spin(n) 2—1> SO(n) x U(1)
[, \] ——— (Ad(a), \?)
and p1, pe the two components. More precisely we have the following diagram:
Spin(n) x U(1)

201 L (6)

Spin(n) x.1 U(1) 2—”1» SO(n) x U(1)

We now recall the definition of Clifford algebra of an euclidian vector space (E, g) that is a vector space
FE with a given scalar product g.

Definition 1.3. The Clifford algebra CI(E) of the euclidian vector space (F,g) is the quotient of the
tensor algebra T'(F) by the nonhomogeneous two-sided ideal generated by the elements of the form
r®x+g(z,x), v e k.

The Clifford algebra CI(FE) is an associative algebra with a natural injection £ —— CI(E); it is
characterized by the following universal property:

Proposition 1.4. For every unitary algebra A and for every linear map f : E —— A such that
f(x)? = —g(x,x) there exists a unique homomorphism of unitary algebras ¢ : CI(E) — A such that
the diagram

E

CUE)
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commutes.

If z,y € E, then, in the Clifford algebra zy + yr = —2g(x,y). This rule allows us to find a basis for
the Clifford algebra in the following way: if e;, 1 <14 < n is an orthonormal basis of (E, g), then CI(E) is
generated by the e; with the rule e;e; +eje; = —29;;; therefore an orthonormal basis for the vector space
underlying CI(E) is given by e;, - -+ -¢e;, 1 <i; < --- < i, < n. As a consequence dimgCI(E) = 2"
and CI(E) splits in a direct sum of vector spaces: CI(E) = &} ,Cl;(E). Despite this splitting, the
Clifford algebra is not Z-graded, but only Z/2Z-graded: indeed the position: Cl;(E) = @, evenClim (E),
Cl_(E) = ®m 0aaClin(E) defines a consistent Zs-grading: CI(E) = Cl(E) & Cl_(FE). The even part
Cl.(F) is a subalgebra of CI(E) and CI_(FE) is a Cly(F)-module. We define now the complexified
Clifford algebra as Cl°(E) := CI(E) ®gr C: as well as the real Clifford algebra, the complexified one is Zs
graded.

We can identify Spin(n) as the subgroup of Cl; (E)* generated by elements z € E, g(z,2) = 1. In
this identification the Lie algebra spin(n) of Spin(n) coincides with Cly(FE). In the same way we can
identify the group Spin®(E) as the subgroup of ClS (E)* generated by elements x € E, g(z,z) = 1. In
the identification the Lie algebra spin®(n) is isomorphic to iR @ Cly(E). Going back to diagram (6), and
taking the differentials at the unity, we obtain the following diagram of Lie algebras:

spin(n) @ iR ~ Cly(T) & iR

- Z (7)

spin(n)

a so(n) @R
where the morphism dv : iR @ Cly(E) — iR @ so(n) is given by: dv(e;e;, A) = (2E;;,2)) and where
E,; denotes the skew-symmetric matrix with —1 in the (¢, j)-place and 1 in the (j,4) place.

1.3 Spin® and Clifford representations

Definition 1.5. A complex spin representation of the euclidian vector space (E,g) is the data of a
hermitian vector space S and of a linear map f : E —— End(.S) such that:

(1) f(z) = —g(z,z)

(2) flx)" = f(—=) .

On End(S) we fix the hermitian metric given by (a, b) = 1/dimS-tr(ab*) so that any spin representation
(S, f) is an isometry. Two spin representations (S, f) and (S’, f’) are isomorphic if there is an hermitian
isometry 3 : S — S’ such that f/(x) = Bf(z)37 1.

Proposition 1.6. If E is an even dimensional euclidian vector space, there exists a unique (up to isomor-
phism) irreducible spin representation (S, f). Any such representation has dimension 2™, if dimg E' = 2m.

If E is a 2m-dimensional euclidian vector space, an irreducible complex spin representation is obtained
(cf. [82]) by identifying E with C™ (by means of an orthogonal complex structure J) and considering

the R-linear map:
p:C™ — End(A*C™,A*C™)
rhH—— x A () —za()

(8)

If (S, f) is an irreducible spin representation, by the universal property and dimension counting we have
an isomorphism of algebras Cl°(FE) ~ End¢(S), which is compatible with the hermitian structures of
the two members. An irreducible spin representation (S, f) gives rise to a representation of the group
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Spin©(E), by composition: Spin®(E) —— CI¢(E) — End¢(S). Suppose now that E is oriented
and eq,...,e, is an oriented orthonormal basis. Let w¢ the complex volume element, defined by we :=
int12e) e, € Spin®(E) N OIS (E). Tt is easy to see that w? = 1 and that wc is independent of the
chosen orthonormal basis. Let f(wc) the induced map f(we) : S — S and let S, and S_ the +1
eigenspaces.

Proposition 1.7. Let E an oriented even dimensional euclidian vector space. The Spin® representation
induced by an irreducible spin representation (S, f) of E splits in the direct sum of two irreducible Spin®-
representations S, and S_ of dimension 271,

Given an irreducible spin representation (S, f) of an oriented even dimensional vector space E we
have an induced isomorphism:
f: EF®C — Hom¢(S4+,5-) ,

or analogously, f : EQC —» Home(S_, S.). Moreover we have an embedding: Spin®(E) — U(S) %
U(S_), which, for dimg F' > 4 induces an embedding: Spin®(E) — SU(S;)x SU(S_). For dimgFE = 4
the preceding is an isomorphism. Taking Lie algebras, for dimension 4 we have an isomorphism:

v: A’E ~ spin(E) — su(Sy) G su(S_) . (9)
It is easy to see that ) .
Y Aw) = 5p(v), plw)] = 5 (p(v)p(w) = p(w)p(v))

and therefore v(e; Ae;) = p(e;e;). In other words v is induced by p via the identification Cly(E) ~ A2E.
For this reason, if there is no risk of confusion, we will indicate the map (9) with p instead of v. Let x
the Hodge star on AE. The Hodge star action on A2E commutes with the action of f(wc) on Endc(S),
so that f(x0) = f(wc)f(o), for all o € A2E. This implies that (9) splits as follows v = v, @ 7_,
v+ 1 ALE —» su(S4), 7— : A2 : —» su(S_). We remark that given an irreducible spin representation
(S, f) of E, the group Autgpine(S, f), defined as:

Autsyine (S, f) = {0 € SO(g),¢ € U(S) | f(8(v)) = (f(v)¢T'}
is isomorphic to Spin®(E), via the map:

Spin®(E) — Autgpine(S, f)
(11(o), (o))

g

1.4 Spin®-structures

Let M a manifold and (E, g) an euclidian vector bundle of even rank (rk(E) = 2m). Let L a hermitian
line bundle on M. Let Pgo(g) s M and Py —+ M the principal bundles of orthonormal and
hermitian frames for E and L, respectively. Consider the fibered product of Pso(y) and Ppp) over
M: Psog) xm Py = 7 Pya) = m5Psog)- It is a principal fibre bundle over M of structural group
SO(2m) x U(1). We recall the covering map p = (u1, u2) : Spin©(2m) — SO(2m) x U(1).

Definition 1.8. A Spin®-structure on the euclidian vector bundle (F, g) of determinant line bundle L
is a principal fibre bundle Pgp;nc of structural group Spin®(2m), which is an equivariant double covering
§ ¢ Pspine — Pso(g) XM Py(1) over the fibered product Pso(g) Xar Py(1), in the sense that £(pg) =
£(p)u(g), for all p € Pspine, g € Spin®(2m).

Actually, to give a Spint-structure on the bundle F it is sufficient to give a Spin®-principal fibre
bundle Pspine, and a pi-equivariant map : a : Pspine —> Psog), satisying a(pg) = a(p)pi(g). We
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will automatically have a Spin® structure of determinant line bundle L ~ Pgpjne X, C. Summarizing we
have a diagram:

PSpin”(2m,)

Pso@m) Xm Pu)y — Pso(am)

N\

N\

\
Py1y ——=— Pso(2m)
in which the two projections a and 8 can be considered as quotient projections with respect to U(1) and
SO(2m) respectively.
From the central exact sequence of groups:

0 — Zy — Spin®(2m) — SO(2m) x U(1) — 1
we get a long exact sequence of pointed sets in nonabelian cohomology:

HY(M,Zy) —~ H“(M, Spin°(2m)) — H (M, SO(2m)) x H'(M,U(1)) —— H*(M,Zs)

where the Bockstein morphism 6 is given by 6(E, L) = ¢1(L) + we(E). Therefore we have:

Theorem 1.9. Let (E,g) an oriented euclidian vector bundle on M. There exists a Spin®-structure on
the vector bundle (E, g) if and only if the second Stiefel-Whitney class wao(E) € H?(M,Zs) lifts to a class
of integral cohomology in H*(M,Z). If M is simply connected there is at most one such lifting.

Classes in H?(M,Zs) admitting a lifting to an integral class in H?(M,Z) can be characterized as
being orthogonal to the torsion subgroup T of Hy(M,Z) with respect to the coupling: H?(M,Zs) x
Hy(M,7Z) — Zy. Now, for the tangent bundle of a compact oriented 4-manifold, a theorem by Wu
states that wo(TM)z = z’mod 2 in Zs (cf. [29]) for every class & € Hao(M,Zs); then wo(TM) is
orthogonal to the torsion subgroup and hence can be lifted to an integral class. As a consequence there
always exists a Spin® structure on the tangent bundle of a compact oriented 4-manifold.

1.5 Spinors

Let E —— M be an even rank (rk(E) = 2m) oriented euclidian vector bundle on the manifold M
admitting a Spin®-structure Pgp;ne of determinant line bundle L. Let us consider an irreducible spin
representation (S, f) of R?™, splitting in two irreducible Spin¢(2m) representations (S, f) = (S4, f1+) ®
(S—, f-). We will call the vector bundle W := Pgpine x5S the bundle of spinors. It splits in the direct
sum W = W, _®W_, where W, := Pspine X ¢, S1, W_ = Pgpine Xy S_ are called bundles of half spinors.
Let CI(E) := Pso(2m) Xs0(2m) CI1(R?™) the bundle of Clifford algebras associated to E. The projection
a : Pspine — Pso(g) induces a well defined isomorphism:

E

PS ine X R2m
P p1 (11)
[p, v] —— a(p)v
and hence a Clifford multiplication

~

p: E — Pspinc Xy R —» Pgpine X gpine End(S)

a(p)v - Ipol - Ip, £(0) ()
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The map p induces isomorphisms:
py: E®C — Hom(W,,W_) (13)
or, analogously p_ : E® C = Hom(W_, W, ). Moreover it extends to an isomorphism:
p: Cl°(E) — End¢(W)
called the Clifford multiplication. Moreover, we have an isomorphism:

y=74 ®7- : AE®AE — su(W,) @ su(W_)

om—2 -1

Since det f4(z) = p1(x) CATTIW ~ L®2"k27 and det W ~ L&

1.6 The Spin® connection

Let (E, g) be an even rank (rkE = 2m) oriented euclidian vector bundle on a manifold M, and let VZ be
a given SO(g)-connection on E: and let wy € A'(Pso(g),50(2m)) the corresponding equivariant so(2m)-
valued 1-form on the SO(2m)- principal bundle of orthonormal frames Pso (g of (£, g). Suppose that £

has a Spin®-structure Pspine =, Pso(g) of determinant line bundle L, and suppose given an hermitian
connection A on L. We indicate again with A € A'(Py(),u(1)) the connection 1-form on the principal
bundle of orthonormal hermitian frames Py (1) of L. Then we can lift the connection wy on Pgo(y) and
the connection A on Py () to a connection on the Spin®(2m)-bundle Pgype(2m) in the following way:
consider the two projections a : Pspineam) — Pso(g) and 8 : Pspineam) — Py(1). We recall the
morphism of Lie algebras (7) : du : spin®(2m) — s0(2m) @ i{R. We define the Spin®- connection form
Qq,a as:

Qa,a = (dp) Ha*w, + B*A) € Al(Pspmc(gm),spinC@m)) . (14)

It is easy to see that Q4 a is a Spin®(2m)-equivariant form on Pgpipne(2m), hence it defines a Spin®
connection on Pgpine(2m). It follows that (2, 4 induces a connection VZV on the bundle of spinors, called
the spinorial connection. It follows from the general principle 1.1 and by the definition of the Clifford
multiplication (12) that p is parallel with respect to the Levi-Civita connection on CI(E) and to the
spinorial connection on W. Therefore:

VW p(@)) = p(VEa)p + p(a) Vo

for each x € CI(E), Y € W.

1.7 The Dirac operator

Let (M, g) a 2m-dimensional oriented riemannian manifold with as Spinc-structure (such that its tan-
gent bundle has a Spin‘-structure) of determinant line bundle L. Let Pgo(g) the principal bundle of
orthonormal frames of (T'M,g). On Pgo(g) we consider the Levi-Civita connection, that is the unique
torsion-free SO(2m)-connection. Consider a U(1) connection A on L. Let W the bundle of spinors for
the tangent bundle, associated to the Spin®-structure. The Clifford multiplication establishes an isomor-
phism: p: Cl°(TM) — Endc(W). We remark that the metric g provides an isomorphism between T'M
and T*M; under this isomorphism, a Spin¢-structure for TM will also be a Spin°-structure for T*M,
whose associated Clifford multiplication is po g=* : CI¢(T* M) RN Cl(TM) —2 End(W).

We now lift the Levi-Civita connection on (7'M, g) and the unitary connection A on L to the Spin®(2m)
connection Q4 4 on Pspine(2m) which induces the spinorial connection VW on W. Let p: T"M ®
W —— W the evaluation map induced by the Clifford multiplication on T* M.
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Definition 1.10. The Dirac operator is the first order differential operator: D, : I'(W) —— T'(W)
given by the composition

Da:i=poVW :T(W) YA I(T*M ® W) —2o (W) .

The Dirac operator splits according to the splitting of the spinorial connection: Dy = Dj ® Dy :
r(Wy)eT(W.) — I'(W_)@®I'(W,). The Dirac operator is an elliptic, formally self-adjoint differential
operator; in the previous splitting ng and D are formal adjoints of one another. The symbol of the
Dirac operator is the Clifford multiplication: o(DA)(&, %) = p(§)y for all E € T*M, ¢ € W.

1.8 The Seiberg-Witten equations

From now on M will always denote a compact oriented 4-manifold. We will suppose M equipped with
a given metric g. Such a riemannian manifold always admits a Spin® structure. Let us fix one of
determinant line bundle L. Let W the bundle of spinors for the tangent bundle (T'M,g) and let p :
Cl¢(TM) — End(WW) the Clifford multiplication. We recall that, as in (9), we have an isomorphism
v o A*T*M —— su(W,) @ su(W_) carrying A2T*M on su(Wy) and A% on su(W_). Now, for each
o € Wy, it is easy to see, taking an orthonormal basis for W, that the traceless part [0* ®c]g of 0*®0 is
in isu(W,). We are ready to write the Seiberg-Witten equations for a couple of unknowns (A, ), where
A is a hermitian connection on L and ) is a section of W,:

D 41p =0 (15a)
p(F3) =[¥" @ ¢lo (15b)

In the equations D4 is the Dirac operator associated to the Levi-Civita connection on T'M and the
hermitian connection A on L. F4 € A?(M,iR) is the imaginary curvature 2-form of the connection A
and F;{ denotes its self-dual part. If we indicate with F' (or with F'9* when we want to emphasize the
metric and the Clifford multiplication) the map:

For s AVD S T(Wy) —— T(W_) x A% (M, iR)
(A,9)) ———— (Dav, p(F}) = [v* @ ¢]o)

the Seiberg-Witten equation can be written simply as F'9°(A,v¢) = 0. We will call F9? the Seiberg- Witten
functional and C = Ag(l) x T'(W) the configuration space. The space of solutions to Seiberg-Witten
equations is the zero set Z(F9?) of the functional F9°. A solution to Seiberg-Witten equations (15)
is called a monopole. A monopole (A,) is said irreducible if ¢ # 0, reducible otherwise. Until now
we have worked in the smooth category. To be able to give a manifold structure to the solutions it is
better to work with Hilbert or Banach spaces (where the Implicit Function Theorem can be applied).
Therefore we will complete the space of configurations C in the Sobolev norm || ||2,x. We will indicate
with C? = (Ag(l))i x I'2(W,.) the Sobolev completion. We will consider the Seiberg-Witten functional
as a map of Hilbert manifolds:

(F90)2 2 (ATM)2 x T2(W,) — T2_ (W_) x A2(M,iR)?_, .

Actually it is not so important what k& to use, provided that it is sufficiently large; in any case the moduli
space is made of smooth objects (cf. [91]).

The space of configurations and the space of solutions possess a natural C>°(M, S*) action. To define
the Seiberg-Witten moduli space we have to cut out the space of solution by the action of the gauge
group G := C>®(M, S'). The C>(M, S')-action is given by:

AT e rwy) x e (M, 81 — AYD xT(wy)
(Avd)v >‘) R ((A2)*Av Ailw)
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As usual to be able to make differential considerations we will take the Sobolev completion of this action.
Therefore we will use the group GZ,, = L3 ,(M,S") instead of C*°(M,S'). The zero set of F9* is
preserved by this action and hence we can define the Seiberg-Witten moduli space as the quotient

MEW = Z(F9?) /G

or as Z((F9r)2)/Gi, 1, if we put Sobolev indices. We will also indicate with B the quotient C/G of all
the configuration space by the action of G.

1.9 Kahler surfaces

In this subsection we will briefly recall the particular form of Seiberg-Witten equations on a Kahler
manifold and their properties.

Definition 1.11. (cf. [103]) A manifold of even dimension 2m is said to be almost hermitian if the
principal bundle Pgr 2m k) of linear frames admits a reduction Py () > Pgr2m,r) of the structural
group to U(m). An almost hermitian manifold is said to be a Kdhler manifold if there exists a torsion
free connection on Py (,,). Equivalently, the manifold M is Kébhler if its holonomy group is contained in
U(m).

As a consequence an almost hermitian manifold is a Riemannian manifold (because of the injection
U(m) —— SO(2m)), an almost complex manifold (because U(m) —— GL(m,C)), and an almost
symplectic manifold (because U(m) —— Sp(2m,R)) and all the structures are compatible. In other
words, the almost hermitian structure induces a metric g, an almost complex structure J, a non degenerate
2-form w intertwined by the relations: g(X,JY) = w(X,Y), g(JX,JY) = ¢(X,Y). If M is Kahler the
torsion free connection on Pp(,,) induces clearly the Levi-Civita connection on Pso(2,,) and it descends
from the relation (cf. [77]), valid for an arbitrary almost hermitian manifold

49(VECY, Z) = 6dw (X, JY, JZ) — 6dw(X,Y, Z) + g(N;(Y, Z),JZ) = 0 (16)

that the Nijenhuis tensor N; vanishes, since by the general principle 1.1, V*¢w = 0 (and dw = 0) and
VL€ ] =0. By Newlander-Nirenberg theorem [97], the almost complex structure J is integrable.

We will now sketch how an almost hermitian structure on M induces a canonical Spin€ structure on
the manifold M. We recall that for an even dimensional vector space E a complex spin representation
can be obtained by the R-linear map : p: C* —— End(A*C™, A*C"), defined by p(z) = x A (-) — za(-),
identifying £/ with C" and then by extending p to £ ®r C by C-linearity. We have S, = AZ*"E and
S_ = A24E. We now have the following representation of U(m) (cf. [91]):

Lemma 1.12. The monomorphism of Lie groups U(m) —— SO(2m) x S given by f —— (f,det f)
lifts to a monomorphism: U(m) —— Spin°(2m) such that the diagram:

Spin®(2m)

u

U(m) — SO(2m) x S*
18 commutative.

Therefore we have a diagram
U(m) < Spin(2m)

101



As a consequence an almost hermitian structure on a manifold M induces a Spin® structure on its tangent
bundle T'M, called the canonical Spin® structure in the following way:

Pspinc2m) = Pu(m) Xuv(m) Spin®(2m) .

The following diagram summarizes the situation:

Psoam)
Consider now the complexified tangent bundle TM & C of the almost hermitian manifold M and the
complex tangent bundle TH°M. We have the following: (cf. [91])

Proposition 1.13. Let M an almost hermitian manifold M with almost complex structure J. The
canonical Spin®-structure on M has K3, as determinant line bundle. The spinor bundle is isomorphic
to the eaterior power W ~ A*TVOM, and the Clifford multiplication is given by:

TM —— End(A*T M, A*THOM)
z —— V220N () — 2804(1)
Moreover the spinor bundle can be identified with the exterior algebra of all (0, %)-forms: W ~ A%*T*M.
The Clifford multiplication is then given by:
T*M —— End(A*T M, A*T"O M)
& — V22" A () — 2% ()
An easy consequence of the preceding proposition is that, when we complexify the Clifford multipli-
cation we get the map:
T*M ® C — End(A*T*°M, A*T O M)
z2 —— V220N A () — 2804(1)

We now pass to recall the Dirac operator on an almost hermitian manifold as done is [51] or in [98].

(17)

Definition 1.14. Let (M, g, J) an almost hermitian manifold and let w the fundamental form. The Lee
form 6 is the real 1-form defined as :
0 :=Adw .

where A denotes the contraction with the fundamental form w.

Remark 1.15. On an almost complex manifold (M, g, J) the Cauchy-Riemann operator on AP*2T*M is
defined as On = (dn)P7+1.

Let now M an almost hermitian 4-manifold.

Lemma 1.16. Let (M,g,J) an almost hermitian 4-manifold. The Dirac operator for the canonical Spin®
structure on M is the operator: D : T(A%*T*M) —— T(A%*T*M) given by:

D:V3(d+ 07+ %p(ﬁ)

where the sign is negative for positive spinors and positive for negative ones.
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The the complex bilinear form g¢ obtained by extending g by C bilinearity provides a C-linear iso-
morphism between T1OM and T*M%! and between T%'M and T*M'0. The metric ¢ induce also an
hermitian metric on TM ® C by the position h(Z, W) = gc(Z, W), for Z, W € T*M ® C. The real hodge
star * on M is again compatible with g¢:

o Ax1 = (0,7)c®

where (-,-)c is the coupling on forms induced by gc and @ is the volume form on M. On an almost
hermitian manifold we dispose also of the complex Hodge star f, defined by means of the hermitian
metric (-, ), induced by h:

o ANMT = (o, 7).

By the relations above we immediately get:
o AMNMT = (o, T)® = (0,T)c =0 A*T

which implies § = *. On an almost hermitian manifold the complex self dual 2-forms for the real Hodge
star x decompose as follows:

ANT*M ®C ~ A*'T*M @ A*°T*M & Cw . (18)
The real self-dual 2-forms A% T* M are identified with the real part of the bundle (18) via the isomorphism:
AP T*M & Rw — A3 T*M
(s A) ——— p+ o+ M.
We interpret now the morphism p : A2T*M — su(W,) on an almost hermitian manifold (cf. [91]):

Lemma 1.17. The isomorphism: p : A2 T*M — su(W..) induced by the canonical Spin® structure on
an almost hermitian 4-manifold M is given by :

A%?T*M @ Rw — su(C @ A%?T* M)

—ix —a() (19)
(o, \w) 2(@/\(.) o >

It extends to a real isomorphism:

A?T*M @ A*°T*M @ Cw — Endo(C @ A%?T*M)
—iA =B
A 2
(v, B, Aw) (M O A )

The canonical Spin® structure on an almost hermitian manifold has fundamental class ¢ = cl(KA_/Il) =

— K. Let now change Spinc-structure. Any other Spin® structure is obtained by twisting the canonical
spinor bundle with an hermitian line bundle N. The corresponding spinor bundle will be W ~ A%*T* M ®
N; the bundles of half spinors: W, ~ A®V*T*M @ N and W_ ~ A°dT*M ® N. The determinant line
bundle is L ~ K];[l ® N®2, so that the fundamental class of this new Spin®-structure is ¢ = ¢; (K;[1 ®
N®*) =2¢,(N) — 3 (K ). For such a Spin® structure the Clifford multiplication:

pn :T*M @ C — End((A>°T*M @ A"?*T*M) @ N,A>'T*M @ N)
is given by py := p ® idy and the corresponding isomorphism:

v 2 AY2T*M @ Rw — su((C @ A?T*M) ® N)
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is again obtained by twisting v with the identity of N: vy := v ® idy. The choice of an hermitian
connection A on L by lemma 2.2 is equivalent to the choice of an hermitian connection Ay on the
line bundle N, since L = N ® ® KJ\_;, and this is then sufficient to define a spinorial connection on
A%*T*M ® N: the resulting spinorial connection VY is actually the tensor product of the connections

VT"M and the connection Ag on N. As a consequence the corresponding Dirac operator becomes:

- - 1
Da = V2(da, + 04, £ 1P~ (0)

and is obtained by coupling the 94 9* operator on A%*T™* M with the connection Ay on the N-component
(cf. [51], [9], [98], [91]).

2 Parametrized Seiberg-Witten equations

2.1 Vector bundle characterization of Spin‘-structures and connections

Let us begin with the following characterization of Spin®-structure, which will be useful in the sequel.
This point of view is close to that of Kronheimer-Mrowka (cf. [81]) or Feehan-Leness (cf. [38], [40]).

Proposition 2.1. Let (E,g) an even rank oriented euclidian vector bundle on a manifold M. A Spinc-
structure on E is equivalent to an irreducible spin representation (W, p), that is, the data of an hermitian
bundle W and a bundle map : p: E —— End(W) such that for all u € E,

(1) p(u)* = p(—u)

(2) p(u)* = —g(u, u)idw

Proof. We recall that given a Spin‘-structure Pspiye 2. Pso(p,q) we can form the bundle of
spinors by means of an irreducible spin representation (S, f) for R*™ : f : R?” —— End(S) which
induces a representation of the group Spin¢(2m) —— U(S). The p; invariance of the map « implies
that the map (11) ([p,v] — a(p)v) gives an isomorphism Pgpine(am) X, R*™ ~ E. Now taking the
map (12), p : E =~ Pspineam) Xy R —— Pgpine(2m) X Spinc(2m) End(S), defined by a(p)v ——>
[p, f(v)], we get an irreducible spin representation for the bundle (E, g): p: E — End(W). The bundle
properties (1) and (2) come directly from the corresponding properties for f. Indeed, if u = a(p)v, then
p(u)® = [p, f(v)?] = [p, —[v[*ids] = —g(u, w)idw and p(u)* = [p, f(v)*] = [p, = f(v)] = —p(w).

Conversely, let f : R*™ — End(S) a fixed irreducible spin representation for R?™. and let

p:(E,g) — End(W)

an irreducible spin representation for the euclidian vector bundle (E, g). The set of couples (6,,¢;), such
that 6, : (R*™,(-,-)) — (E,g:) is an orientation preserving isometry and ¢, : (S, hg) — (W, hy)
is an isometry and p, (0, (v)) = (. f(v)¢; !, forms a principal fibre bundle of structural group Spin®(2m)
because of the isomorphism (10). The projection

PSpinC(Zm) e PSO(E»Q)

0,0) ——— 0

is p1 equivariant and defines the Spin‘-structure. The morphism: Pspine(am) X, R?™ — E carrying
[(0s,Cs),v] —> 0,(v) is an isomorphism. Analogously we have an isomorphism: Pgpine X spine S — W
carrying [(0z, C2), w] —— o (w).

We want to show now that the two procedures are the inverse of one another. Suppose we start from
a Spin® structure o : Pspine — Pso(g) and we build a Clifford multiplication p : £ —— End(W)
by means of an irreducible spin representation (S, f), as we have explained above. We then form the
Spin® principal bundle Pspmc of couples (0,,(;), where 6, is an orientation preserving isometry 6, :
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R?*" —— FE,, and (, : S — W, is an isometry such that p(0,(v)) = (. f(v)(;t. Now, if p € Pspin,,
then the position w —— [p, w] well defines an hermitian isometry from S —— W,,, which we will call

B(p). We can see that p(a(p)v)[p,w] = [p, f(v)w] = B(p)f(v)B(p)~t[p,w] for all w € S. That is, for
all p € Pgpine the couple (a(p), B(p)) is in ngmc. Therefore, we have an injective morphism of Spin°-

bundles :
pSpinC
p —— (a(p), B(p))

PSpinC

which is obviously an isomorphism, being injective and equivariant.

For the converse let us start with a Clifford representation p : E —— End (W), satisfying (1) and
(2), and form the Ps;,e bundle of couples (8,,(,) satistying p(6,(v)) = ¢ f(v)¢; ! as above. Then, by
the procedure explained in the beginning, we get a Clifford multiplication

E — "+ Popine %y R —> Pspine X spime End(S) — End(W)

ew(v) S [(917@5),’1}] — [(azagz)vf(v)] — Cmf(’l))g;l = p(eaz(v))

Therefore the Clifford multiplication associated to the structure ]Sspmc is exactly p.

An isomorphism of irreducible spin representation (W, p), (W', p') of (E,g) is a couple (0,¢), 6 €
SO(E,g), ( : W — W’ an isometry such that p'(0(v)) = (p(v)(*.

We see now how to characterize the spinorial connection in vector bundle terms. We will need the
following lemma, in order to compare connections on the line bundle L and on det W ~ L%, We
indicate with A®” the connection on L®” naturally induced by A, sometimes indicated with A, 42, that
is A®idp +idr ® A. See Teleman [109] for a more general argument.

Lemma 2.2. Let L a hermitian line bundle on a manifold M. Let .AU(l) the affine space of hermitian con-

U( ) ® L U(1)

nections on L, and A the affine space of hermitian connections on L®° . The map Ag(l) — AL®2

carrying a unitary connectzon A on its tensor square A®” s an isomorphisms of affine spaces, modelled
on the isomorphism of vector spaces: AY(M,iR) — AY(M,iR) carrying a form w on 2w. Moreover,
if A is a unitary connection on L and Fj is its curvature 2-form, Fa € A%(M,iR), then FLg2 = 2Fy,
where F g2 is the curvature 2-form of the connection A®® on L%,

Proof. Let us fix an origin Ay on the affine space Ag(l). Then A6®2 will be the corresponding origin
in AU( ) Letnow A= Ag+we AU( ). We have A®” — Ag92 = 2w € AY(M,iR), indeed, fixing a unitary

frameeon L,and e® e on L, we get:
(A®2—A892)e®e = A®2(e®e)—A§>2(e®e)
= Ae®Re+e®Ae— Ape®@e—e® Age
(A—Ap)eRke+e®(A—Ay)e=weRe+eQue =2w(e® e)

From the definition of A%” = A ® idy +id; ® A we see immediately that F g2 = Fq ®idy +idg ® Fa.
On the unitary frame e ® e we have F g2 (e ® e) = Fpe®@e+e® Fae =2F (e ®e).

An analogous result is valid for L®".

Proposition 2.3. Let (E,g) an even rank oriented euclidian vector bundle on a manifold M with a
Spin¢ structure of determinant line bundle L and let W the spinor bundle for the bundle E associated
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to the Spin-structure. Let p the Clifford multiplication. Let V¥ an orthogonal connection on E. The
spinorial connection VYW is a hermitian connection on W satisfying:

(1) VY, p(a)] = p(VE2) for all = € T(E)

(2) VW' induces the connection A®2m71
If tk(E) = 4 then the conditions (1) and (2) completely characterize VY .

om—1

Proof. Let pg : R?™ —— End(S) the irreducible spin representation used to build the spinor bundle
W. We recall that the Clifford multiplication p is obtained by “bundlelizing pq:

p: E ~ Psyineam) Xy R*™ — Pspine(2m) X spine(zm) End(S) ~ End(W) .

In other words, p € E* @ End(W) =~ Pspine(2m) X i1 @Spine (2m) (R?™)* @ End(S). From this point of view,
p is the bundle version of pg € (R?*™)* @ End(S). Now py is p1 @ Spin®(2m)- invariant: it follows from the
general principle 1.1 that the corresponding tensor field p is parallel for any connection on E* @ End(W)
induced by a Spin®(2m)-connection on Pgpine(2m). Now the Spin® connection we have fixed on Pspine
induces the connection V§*®End(w). As a consequence, V§*®End(W)p = 0. Recalling the definition of
connection on a tensor product we get (1). It is clear that the connection induced on L is A, so (2) is
immediate.

For the uniqueness, suppose first that we have two hermitian connections V" and v satisfying (1)
and (2). If rk(E) = 4 a unitary connection on W satifying condition (1) determines an orthogonal connec-
tion on su(W), induced by the connection on A?FE via the parallel isomorphism 7y : A2E — su(W), and
a unitary connection on det W. A choice of an orthogonal connection on su(W) and a unitary connection
on det W uniquely determines a unitary connection on W (cf. Feehan and Leness [38],[40]). Since the
connections they induce on det W coincide by (2) and the connections induced on su(W) are forced to
coincide by (1) and by the parallel isomorphism +, the two unitary connections VW and VW verifying
(1) and (2) must coincide.

2.2 Changes of metric

Let (M, g) an oriented compact riemannian 4-manifold. Let « : Pspine — Pso(g) a Spin®-structure
for the tangent bundle (TM,g). Let h another metric on TM and let ¢ = " € Aut(TM) such that
h = ¢*g. Therefore ¢ induces an isometry ¢ : (TM,p*g) — (TM,g). The inverse isometry p=!
induces an isomorphism of orthonormal frames ¢~! : Pso(g) — Pso(n)- From the point of view of

vector bundles let p : (T'M, g) — End(WW) the Clifford representation associated to the Spinc-structure.

We recall that it satisfies: p(u)* = —p(u), p(u)? = —g(u,u)idy . The composition:

(TM, g) —L» End(W)

-9
(TM, ¢"g)
is again a Clifford representation, this time for the metric h. Indeed

(e p)(w)* = ple(u) = —ple(u) = —(¢"p)(u)
(*p)(w)? = ple(u)? = —gle(u), p(u)) = —h(u,u)

This new Clifford representation is isomorphic to the old one associated to the metric g by the isomor-

phism (,idw ), so that the Spin‘-principal bundle Pg;[;c associated to the Clifford representation *p
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is isomorphic to the Spin® principal bundle ng by the map:

nc

—1
d ©*p
PSpinC

PI)

Spinc
(0,¢) —— (¥710,¢)

This map is clearly fibered over ¢~ 1:

P? pee

Spin® Spin®

-1
Pso(g) — Psom)

so that Pg;fnc = ¢*P§ e It is clear that ng’;i‘;c is a Spin® structure for the tangent bundle (7'M, h)

with the metric h. Actually the map ¢~ ' o« : Pf

Spine — Pso(n) is already a Spin® structure for the
bundle (T'M, k), indeed:

(e~ oa)(pg) = ¢ (alpg) = ¢ (alp)pi(g)) = ¢~ (a(p))ui(g)

because a, being a Spin® structure for Pso (), is 11 equivariant, and ¢~ 1is SO(4) equivariant. Moreover

1

the map ¢~ o « induces the Clifford representation ¢*p. Indeed, the Clifford representation associated

to the Spin® -structure p~ ! o« : P

Spine — Pso(n) 1s given by

~

™™

14 2m 14
PSpinC Xp—loa R PSp'mC

" X spine End(S) ~ End(W)

o~ a(p)v) ——> [p,v] | ~ [p, f(v)]

which is exactly ¢*p = p o ¢, indeed, p o (o~ (a(p)v)) = p(a(p)v) = [p, f(v)]. As a consequence, when
changing the metric we do not need to change nor the bundle of spinors, nor the principal Spin®-bundle,
but only the covering map:

a Xy B

Pso(g) % Puq)

ot o idw

or, in other words, the Clifford multiplication, to obtain another Spin®-structure for the new metric

h = p*g.

2.3 Compatible Clifford multiplications

Let Met(M) the space of riemannian metrics over the manifold M: it is an open cone in the space of
sections C*°(M, S?T* M) and once we fix a metric g it is parametrized by the space of positive symmetric
automorphisms Sym™ (T'M, g) of the tangent bundle with respect to g. For more informations about
the structure of the space of Riemannian metrics on a manifold M see Freed and Groisser [45], Gil-
Medrano and Michor [52]. What we will do is to fix a metric g € Met(M) and consider the isomorphism
Sym™ (T M, g) ~ Met(M). Now Sym™ (T'M, g) (or better its space of sections, but, by abuse of notation,
we will not write them differently) can always be completed in Sobolev norms to Sym™ (T'M, g)2, with k
sufficiently large. Therefore we will speak of the tangent space T, Met (M), meaning the tangent space to
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the identity TigSym™ (T'M, g) ~ sym(T M, g), that is the space of sections of symmetric endomorphisms
of T'M with respect to g, completed in Sobolev norms if necessary.

Let W —— M a fixed hermitian rk = 4 vector bundle on the manifold M. Let R the set of
representations p : TM —— End(W) such that p(u)* = —p(u) for all w € TM. Such a representation is
said compatible with a metric g if, moreover, it satisfies the other condition p(u)? = —g(u, u)idy, for all
u € TM. Let now be = the set of compatible couples (g, p):

E:={(9,0)lg € Met(M) ,p € R, p(u)* = —g(u,u) Yu € TM } .

The next proposition gives the structure of Z. We recall that the group PU(V), for an hermitian vector
space V, is defined as the quotient PU (V) :=U(V)/U(1) ~ SU(V)/=£1.

Proposition 2.4. The projection p : & — Met(M) gives on 2 the structure of a principal fibration of
structural group C*° (M, PU(W)).

Proof. Let g € Met(M) and let p, p' € E, := p~!(g) two representations compatible with the metric
g. On every point © € M p, and p/, are two irreducible spin representations of the euclidian vector space
(T: M, g.):

(TuM, ;) 2% End(W,,)

End(W,)

But by proposition 1.6 every two such representations are isomorphic: it follows that there exists f €
U(W,) such that

Pp(ve) = fpu(ve) f7
Now fupu(ve)frt = pu(vy) for all v, if and only if f, € U(1). Therefore over each point x € M there is
a PU(W,)-bundle of possible representations with the metric g,. This implies that the representations
p, p' differ globally by a section f € C>(M, PU(W)), where PU(W) denotes the bundle of groups
Haens PUWL).

Proposition 2.5. The position:
Aw(TM) x & ——

(1]

(¢, (9,p0) == (¥"g,po )

defines a free action of Aut(T'M) on =. The restriction of this action to SO(T'M,g) for a fixred metric
g € Met(M) acts vertically on the fiber Z.

Proof. The proof is almost evident. The fact that if (g,p) € Z4 then (¢*g,¢*p) is in Z,-4 has
actually already been proven in subsection 2.2. It remains to prove that the action is free. Suppose that
(p*g,0*p) = (g9,p). Then p*p(x) = p(x) for all x € TM. Then p(¢(z)) = p(x), which is equivalent to
plo(z) —x) = 0 for all x € TM. But then 0 = p(¢(z) — 2)? = —g(p(z) — 2, 0(z) — 2) = |p(z) — z|?
which implies p(z) = « for all x € TM, that is ¢ = idpu.
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Remark 2.6. We have just seen that changes of the Spin® structure in the fibre =, do not change the
metric and correspond to changes in the Clifford multiplication. Changing the metric means, in a weak
way, changing the Spin® structure associated to (g, p) according to directions transversal to the fibre =,
and varying as many parameters as the space of metrics. In other words, we need a distribution H of
T= such that: T(y )2~ Ty Eg ® Hg,p) and Hy ,) ~ T,Met(M) ~ C>(M,S*T*M). It means that we
need to fix an isomorphism :

E~V @ p"TMet(M)

where V is the vertical distribution. In particular a connection on = is sufficient for this purpose.

Proposition 2.7. For each (g,p) € E, the section:

Sym+(TM, g) O-(ga p)

o —— (¢%g,po )

—_
=
—

is transversal to the fibre 4 and the tangent space to its image in the point (g, p):

Hig,p) :=Tig,p)Imo(g, p)
defines naturally an equivariant horizontal distribution of T2 and hence a connection on =.

Proof. The fact that the section o(g, p) is transversal to the fibre and that T{y )E ~ T(y ) Eg © H(g,,)
is evident. To show that the distribution H actually defines a connection it remains to prove that
it is C*°(M, PU(W))-equivariant. But it follows immediately that the C>°(M, PU(W))-action and the
Aut(TM)-action commute. Indeed let f, € PU(W,) and let f, a lifting to U(W,). Now p, is the
punctual Clifford multiplication p,, : T,M — End(W,). Let ¢, € Aut(T,M). Let us denote with [ 7
the inner automorphism /7 : End(W) —— End(W) associated to f: it is clear that /7 depends only on
the PU(W,)-class of f, that is f. We have the following diagram:

(TwMa gw) If(Px)

\
End(W,
%1 \
End(W,

(T M, (Pzgaﬂ

aly(pa)=1s(¢%Pa)

The fact that it commutes means exactly that ¢XI(p,) = Ir(pkps); this proves the commutation of the
global actions. Differentiating the the commutation formula for ¢ € Sym™ (T'M, g), we immediately get
the C*° (M, PU(W))-invariance of the distribution H.

O

Since the choice of a metric g € Met(M) allows us to identify Sym™ (T'M, g) ~ Met(M) with the map:
p — *g, we have:

Lemma 2.8. The choice of an element £ € 2 determines a trivialisation:

(1]

Met(M) x C=(M, PU(W)) =~ Sym™ (T M, g) x C*(M, PU(W)) —
(0. f) 1

v
~
*

©
*
I

109



It is evident that we have a C*°(M,U(W))-action on =, because of the map
C®(M,UW)) — C>®(M,PUW)) ;
in general this induced action is not transitive on the fibers because of the obstruction :
C®(M,U(W)) — C=(M, PUW)) —~ HY(M,S') . (20)

The following lemma gives some more information on the Bockstein operator §, which allows us to prove
the transitivity of the C>° (M, U(W))-action when the manifold M is simply connected.

Lemma 2.9. The Bockstein operator § : C*°(M, PU(W)) — H(M, S') takes its values in the torsion
subgroup of H*(M,S*) given by the image of H*(M, uq) in H'(M,S'), where uy indicates the subgroup
of S of 4-roots of unity.

Proof. A section f € C°(M, PU(W)) can be lifted locally to U(W); therefore let {U; }ier a covering
of M such that for each i € I there exists a local lifting f; € C>°(U;, U(W)) of the section f. On the
intersection U;; := U; N U; two liftings f; and f; differ by an element \;; € C™(Ui;, SY): fi = \ijf.
The cocycle {);;}i; constitutes the image of the section f by the Bockstein operator 4(f), that is, the
obstruction to a global lifting of the section f. Now both f;, fj are in C=°(U;;, U(W)). As a consequence
det f; = )\?j det f;, which implies {)\?j}ij = {det f; det fj_l}ij = 0. It means that the cocycle {\;;};; takes
its values in the kernel of the map H'(M,S*) —— H'(M,S') induced by the short exact sequence:

24
0>y —> 8" 251 g

which is precisely the image of H(M, uy) in HY(M, S?).
O

Corollary 2.10. If M is simply connected any section f of C°(M,PU(W)) lifts to a section f €
C®(M,UW)).

Proof. If the manifold M is simply connected, H;(M,Z) = 0, then the exact sequence of the universal
coefficient theorem

0 — BExt},(Ho(M,Z),Z4) — H'(M,Zs) — Hom(H,(M,Z),Z4) — 0

implies the isomorphism: Ext},(Ho(M,7Z),Z4) ~ H'(M,Z,). But Ho(M,Z) ~ Z and Ext};(Z,Z,) = 0.
This implies that in the sequence (20) the Bockstein operator is the zero map, and the projection

C*(M,UW)) — C*(M, PUW)) — 0
is surjective.
O

Corollary 2.11. If the manifold M is simply connected the group C>°(M,U(W)) acts transitively on the
fibers of E with stabilizer C>°(M, S1).

Corollary 2.12. If M is simply connected then Aut(TM) x C*°(M,U(W)) acts transitively on E with
stabilizer {1} x C>°(M, S1).
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2.4 Parametrized Seiberg-Witten equations

In this subsection we will define Seiberg-Witten equations parametrized by the space E. The first thing to
do is to fix a suitable space of configurations for the equations we are going to write. Let £ = (g, p) € E.
p: TM —— End(W) is a Clifford representation compatible with the metric g. Let w, the volume
element on the manifold M for the metric g. The involution p(w,) allows to define the bundles of half-
spinors W_f and W as the eigenbundles of p(w,) for 1, respectively. We have: W ~ W_f ®WE. We
have to pay attention to the fact that varying £ € Z, the involution p(w,) may vary and Wfr and W
may change. The determinant line bundle L¢ is always a square root of det W, (Lf)®2 ~ det W and it
is isomorphic to L& ~ det Wf ~ det W¢. The main problem here is to define a suitable space of U(1)
connections on L¢, the difficulty being due to the fact that L¢ varies with ¢ € Z. To overcome this
obstacle, we will use lemma 2.2 to perform actually a change of variables. Indeed for all £ the affine
space of U(1) connections on L¢ is isomorphic, via the tensor square, to the space of U(1) connections on
det W. By this lemma and by proposition 2.3 the spinorial connection is determined by an g-orthogonal
connection on T'M, and by a unitary connection on det W. So it is the same (up to taking the square,
or square root to pass from one to the other) to fix the unknown connections in Ags(l) or in .AdUétll),V, but
the latter has the advantage that it does not change when we vary &; hence it is natural to take AdUétll)/V
as the space of unknown U(1) connections. To avoid cumbersome notations, we will adopt a different
notation for the spinorial connection and the Dirac operator: once we fix an unitary connection A on
det W, VZV’p 9 will indicate the spinorial connection on W, that is, the only hermitian connection on W
for which p is parallel (always with respect to the Levi-Civita connection on TM) and which coincides
with A on det W (and not with A®’ ). D% is the Dirac operator built using this spinorial connection
VE‘V’p 9. As a consequence, Fu is the curvature 2-form of the connection A on det W, thus being twice
the curvature 2-form of its square root /A on L¢, Fy = 2F /4 this explains the factor 1 /2 in the second
equation below. Now we are ready to define parametrized Seiberg-Witten equations. Let £ = (g,p) € 2
and let 773 : End(W) —— 5u(W§r) the orthogonal projection on the (real) bundle of traceless anti-
hermitian endomorphisms of W_f, and, if ¢ € W, let us denote with 94 ¢ the positive part of the spinor
P Yy e = —1/2(p(wg)y — ). The space of configurations € is given by € := AdU(ftl‘),V x I'(W) x 2. The
parametrized Seiberg- Witten equations for the unknowns (A, v, (g, p)) € € are:

pwg)h = — (212)
DY e =0 (211)
+.9

AT _ ity @y (21¢)

We recall that we do not fix the decomposition W = W, @& W_, and that in general Wﬁ and W& may
vary with £. The first equation is therefore necessary to guarantee that, for each (g,p) € Z, a spinor
solution %) is in Wf_ We call parametrized Seiberg Witten functional the map:

F: AL x T (W) x 2

T(W) x T(W) x isu(W)

+,9
(A0 (9.0)) ——> (ol + 16, D5 g, A7) 2 )

Consider the trivial bundle over Z: E x I'(W) x T'(W) x isu(W). The functional F take its values in
the subbundle whose fiber over ¢ is T(W*) x T(W*%) x isu(W*), that is the kernel of the bundle map:
ExT(W)xT(W) xisu(W) — ZE x T(W) x T'(W) x isu(W) given by: (§,0,x,h) — (&, p(w)o —
g, p(wg)X — X, *gh — h). We denote with Z(F) the zero set of F, or the space of solutions to (21).

Let us consider the projection p : Z(F) — Z. It is clear that the fiber of p over (g,p), p~1(g,p) ~
Z(F9°) is the space of solutions of standard Seiberg-Witten equations with metric g and Clifford rep-
resentation p. Our aim is to define a big moduli space M for the equations (21) parametrized by Z,

111



that is, with projection 7 : M —— = such that each fiber of w, 771(g, p) is isomorphic to the standard
Seiberg-Witten moduli space /\/lilg/ for fixed metric g and fixed Clifford representation p. To do this
we need a C>°(M, S') action on €, inducing the standard action on each fibre. Let us define the right
C>®(M, St)-action in the obvious way:

AL X T(W) x 2 x ¢2(M, §') — ALY, x T(W) x =
(A’ w’ <g’ p)’ A) e (()‘4)*147 Ailwv (gv P))

The projection
AV X T(W) xE — 2 (22)

is clearly invariant for the C°°(M, S')-action, so the action is fiberwise. We note that if we take a
connection A®” on det W, the connection (A*)*A®” = ((A2)*A)®’, so that on every fiber the action
coincides with the standard action for Seiberg-Witten equations. As the action is fiberwise and in each
fiber the zero set Z(F9*) of Seiberg-Witten equations is preserved by the action, we have an induced
action on the zero set Z(F):

Z(F) x C>®(M,S") — Z(F) .

We can therefore pass to the quotient Z(F)/C>(M, S1).

Definition 2.13. The parametrized Seiberg-Witten moduli space M is the quotient of the space of
solutions of the parametrized Seiberg-Witten equations (21) by the gauge group C>(M, S1).

The C*°(M,S') invariance of the map (22) together with the fact that C>°(M,S') preserves Z(F)
implies that the map Z(F) — = is C>°(M, S*)-invariant and hence, taking the quotient, it descends to
a projection:

7 Z(F)/)C®(M,S") 2 M — =

The situation is summarized by the diagram :

Z(F9P) < - Z(F)
p
SW
p M5 - M
&« «
Y Y
(9.p) - =

where the horizontal maps are embeddings of topological spaces. In particular, the fiber of the projection
m: M —— = over a point (g, p) is the standard Seiberg-Witten moduli space Mgf:,v for a fixed metric
g and a Clifford multiplication p.

We will show now that we have a C*°(M,U(W))-action on the space of configuration € that pre-
serves the space of solutions Z(F). Moreover the restriction of this C°°(M,U(W)) action to C*(M, St)
coincides with the C>°(M, S') action defined above; since C*°(M, St) is the center of C*°(M,U(W)), the
C>®(M,U(W))-action we will define commutes with the C>° (M, S*')-action defined above, thus descending
to a nontrivial C*°(M,U(W)) action on the moduli space M. We define the right C>° (M, U(W))-action
on the space of configurations € by the following position:

AV S T(W) x 2 x (M, UW)) — AV« T(W) x 2
(Aa’l/)a (gvp)v f) EEad ((dCt f)*Av f71¢7 (ga f*p))
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We can define again a natural right C>°(M,U(W)) action on the space isu(W) x I'(W) x T'(W) as follows:
isu(W) x T(W) x T(W) x C*(M,U(W)) — isu(W) x T'(W) x (W)
(h, ¥, 0, f) 1 = (f*h, [, f )

If £ = (g,p) we will write f*¢ for (g, f*p) = (g9, f 'pf). The next proposition includes all the remarks
made here above:

Proposition 2.14. The parametrized Seiberg- Witten functional F : € —— isu(W) x (W) x T(W) is
C®(M,U(W))-equivariant:

IF((A) 1)1); (ga ,0)) ' f) = ]F(det f*Av fﬁl'l/}a (ga f*p)) = F(Aa’ll)a (gvp)) : f

Proof. First of all we prove that f~! (¢4 ¢) = (f ')y f+¢. Indeed (f7 1) 4 poe = —1/2((f*p)(wg) f~ -
F7R) = 172(f o) ff~ 1 — f1) = =1/2f Y (p(wg)y — ) = [~ (¢4 ¢) We consider now the con-
nection VEX’;’J{;&: by proposition 2.3 it is characterized by the property that f*p : TM —— End(W)
is parallel, that is [vaei}c P fp(@)] = f*p(VEC2), and by the property that vagt}c P, induces the
connection (det f)*A on det W. We will show that f~ 1VW9 " f verifies these properties, thus proving

that it coincides with V}/Zi Jf) P, For the first property:

IV @] = TV @) ) = £V p)f
= [T (V) f = (Vi)

For the second it is evident to see that the connection f _1VZ‘V’9 ** f induces the connection det f ' Adet f =
(det f)*A on det W. Once this is done, the Dirac operator

; * W.g,f" - -1oW.g,
D(gdetf) a = f pov(dez;){)*pA =[Tpfo fTIV00F
— fﬁlpvz/’g’pf — flefZ{pf

We pass now to the second equation. The curvature 2-form is Fget £y« 4 = (det f)"toFaodet f, but Fa is
a tensor, that is, C*°(M, C)-linear, so Fget )4 = F4. We remark that 7T§_ [V* @] = ng@w—s—,é]O- Now,
for any spinor v, we remark that (f~1¢)* ® f~14 is the composition: f~(v* ®@1)(f~1)*, but, since f €
C®(M,U(W)), then ff* =1, so that (f~1)* = f, and then (f~1¢)*® f~1¢ = f~1(y* @ ¢)f. Moreover
e f 1 (" @) f = trg* @, hence [(F19)* @ f 1)y = 1y @lof. Finally =] S[(f~1p) @ (f19)] =
[(FR0)8 e @ (F M 0) 4 pelo = [(F T 04.6)* @ (F 1oy 6)]o = fHUL e @Yy e)lof = fAn W @) f. As

a consequence :

F((A 9, (g,p)) - f) =F(det f*A, f "4, (g, f*p))

_ Fo(FRS 5y a)
(D?d’ét?) AT g g, A7

-1 F"r,g
=(TIDES T (W), W — AT @ Ul T pwg) fF T+ )

+,9
(5D ST e o)) 1, 5 o+ 00)
p(F;‘hg) £ [w* ®w] F=TF(A .
9 T3 vP(%}W""W f ( 7¢7(97P)) f

=(D%" Y4 ¢,

as required.
O
Corollary 2.15. The space of solutions to the parametrized Seiberg- Witten equations is invariant under

the action of C=°(M,U(W)).
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Remark 2.16. It is evident that the C>° (M, U(W)) action, restricted to C>(M, S'), coincides with the
C>®(M, S') action defined in the beginning of the subsection. It is clear that the two actions commute
because C*°(M, S1) is the center on C*°(M,U(W)).

Proposition 2.17. There is a C>°(M,U(W)) action on the moduli space M.

Proof. Let f € C®°(M,U(W)) and let f : Z(F) — Z(F) the automorphism associated to f. The
fact that the C°°(M,U(W)) action commutes with the C°°(M, S!) action means exactly that for each
such f the automorphism f is C>°(M, S') equivariant, and then it descends to a map f: M — M. It
is clear that the identity induces the identity of the quotients. Now, if f, f € C*(M,U(W)), we have a
commutative diagram:

Z(IF)
r'f
Passing to the quotient, we have a commutative diagram:

Mo L
\—....../

f'f

that proves the associativity for the action on the moduli space.

Corollary 2.18. Let f € C>°(M,U(W)). We have M;‘}Kp ~ MJW

(1]

Proof. Tt is clear that the map f : Z(F) — Z(F) is fibered over the map f: =2 —

(1]

and all the maps are C*°(M, S*)-equivariant. Passing to the quotient we get a commutative diagram:

m—L o m

m

that is, the map f: M —— M is fibered over f : = —

of the projection 7 and induces an isomorphism 7~*(g, p) M?‘;)V A M‘gg"}v*p ~ 71 g, f*p)

. As a consequence, it exchanges the fibers

12

Corollary 2.19. If M is simply connected and p, p' are two Clifford multiplications
p,p": (T'M,g) — End(W)
compatible with the same metric g, then M?//)V I~ Mgfgf.

Proof. In the case M is simply connected, the group C* (M, U(W)) acts transitively on each fibre Z,
of 2, that is, any two Clifford representations p,p’ : (TM,g) — End(W) compatible with the same
metric g differ by the action of an element f € C*®(M,U(W)), p’ = f*p. Then we conclude by the
preceding corollary.
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2.5 Compatible Clifford representations with fixed decomposition

Let (M, g) a riemannian 4-manifold with a given Clifford representation p : TM — End(W') compatible
with the metric. We have seen in the preceding subsections that a change in the metric g —— ¢*g along
the horizontal distribution (that is, by means of a positive symmetric automorphism ¢ € Sym™ (T'M))
corresponds to a change in the Clifford representation p —— po . Consider now the diagram of Clifford
representations induced by the isometry ¢ : (T'M,p*g) — (T'M, g):

Cl(TM,g) — End(W)

o 8
CUTM,¢*g)

The volume element for the new metric w,»4 is exactly the image of the volume element w, for the map
071, or p(werg) = wy. As a consequence (p*p)(wy+g) = p(wy): the image of the volume elements w, and
W+ g remains the same: this means also that the decomposition of the bundle of spinors W in the direct
sum of bundles of half spinors W = W, @& W_ does not change. Conversely, if for two representations
p, p' compatible with the metrics g,h, respectively, the decomposition of W in half spinors is fixed
W =W, @ W_, then the images of the volume elements are the same: p(wy) = p’(wy). For this reason
when changing the metric in a horizontal way, we can restrict our attention to the space of Clifford
representations with fixed decomposition in half spinors, or, equivalently, with a fixed compatible unitary
involution in End(W) playing the role of all volume elements. More precisely we can restrict us to bundle
maps:

p+ : TM —— Hom(W,,W_)
such that py (z)*p4(x) = g(z,z)idw, for all x € TM. We can then build a map

p:TM — Hom(W,W_) @ Hom(W_, W)

& (py(2),p(2)

where p_(z) = —p4(x)*. Such a map p satisfies the properties: p(r)? = —g(z,x)idw and p(z)* = —p(x),
in other words p € 2. Let R the space of bundle maps py : TM — Hom(W.,,W_), and let =, the
set of compatible couples Z4 = {(g,p4) | g € Met(M) , py € Ry | pii(x)p+(x) = g(z,x)idw }. It is easy
to see that R is a subspace of R via the injection: p; —— p, and =, is naturally a subfibration of =,
via the embedding (g, p+) — (g, p).

Proposition 2.20. (1) The projection =4 — Met(M) is naturally a principal C>°(M, P(U(Wy) x
U(W_))) subfibration of =.

(2) There is a natural connection on =4 compatible with the natural connection on Z.

(3) The Aut(TM) action on E preserves the subfibration = .

(4) There is a fiberwise C*°(M,U (W) x U(W_)) action on =4, which is transitive on the fibres if M is
simply connected.

Proof. The proof of this proposition is analogous to the proof of correspondent propositions for =.
The injection =, —— = carrying p4 to p = p4 @ p_ is clearly equivariant and fibered over the identity
of Met(M). If I is the unitary involution in U(W) image in End(W) of all the elements p(w,) coming
from a (g, py) in 21, 24 is identified to the space Z! of all compatible representation (g, p) € Z such that
p(wg) = I. As we have remarked in the discussion at the beginning of this subsection the group Aut(T'M)
acts on = without altering the volume element, that is, it induces an action on =;. The horizontal
distribution H on Z; is again given in a point £ = (g, p) by the tangent space to the section o(g,p) :
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Sym*(TM, g) — Z; sending ¢ — ¢*¢, that is, He = Telmo(g, p). If (fy, f-) € C°(M,U(W4) x
U(W-)), the C=(M,U(W,) x U(W-)) action on Z, is given by ((f1, f-), (g,p+)) — (g, f="p+f+)
The fourth statement is a consequence of the fact that, analogously to proposition 2.9, the Bockstein
operator

Co(M,UWy) x UW-)) == C(M, P(U(Ws) x U(W_))) —— H'(M,S")
takes its values in a torsion subgroup of H*(M, S'), which is zero if M is simply connected.
O

Let W = W4 @ W_ a decomposition given by a fixed volume element I = p(wy), (g,p) € E. The

restriction of equations (21) to AdUc(tli),V x T(Wy) x 2! gives rise to a system of Seiberg-Witten equations

parametrized by Z,, when we identify =/ with = :

D% =0 (23a)
+.,9
AL iy o 4l (280)

for unknowns (A4,,§) € .AdUe(tll)/V x T'(W,) x Z4. In the same way the restriction of the functional F to
Age(tll)/V x D(W,) x E! gives a T'(W,) x isu(W, )-valued functional F. This functional is equivariant for
the action of the group C*°(M,U (W) x U(W_)) induced by the restriction of the corresponding action
of the group C*°(M,U(W)). We can consider the moduli space M of solutions to equations (23) defined
as My ~ Z(Fy)/C>®(M,S"). 1t is clearly fibered over Z;. The fibres M, 4 ,, are clearly isomorphic
to the fibres Mg,I;V’ for p = py @ p—, and therefore to standard Seiberg-Witten moduli spaces for a
fixed metric g and Clifford representation p. The following proposition summarizes the properties of M

corresponding to the analogous properties of M.

Proposition 2.21. There is a nontrivial C>*(M,U (W) x U(W_)) action on the moduli space M, such
that the projection My — Z is equivariant. If f € C°(M,U(W,)xU(W_)), then M“jr’f Pr e M
If M is simply connected, and py, p, are two Clifford representations compatible with the same metric

and with the same decomposition in half spinors, then /\/li’p+ ~ Mim.

3 Variation of the Seiberg-Witten equations

In the previous section we have built the setting of parametrized Seiberg-Witten equations which gives
sense to the study of perturbations of the metric alone. We have seen that the perturbations we are
interested in correspond to horizontal variations of Seiberg-Witten equations for a natural connection on
the space of parameters. In this section we perform the computation of the variation of Seiberg-Witten
equations corresponding to such directions. The more interesting part of this computation is the variation
of the Dirac operator. Our method allows to consider different Dirac operators D%” and D% ¢ * for
two different metrics as acting on the space of sections of the same bundle of spinors, fixed once for all.
Our result coincides with that obtained by Bourguignon and Gauduchon in [12] and in [11].

Let (M, g) a riemannian 4-manifold and Pso(g4) the principal SO(4) bundle of oriented g-orthonormal
frames. Let us fix on the riemannian 4-manifold (M, g) a Spin-structure o : Pgpipe —> Pso(g)- Let W
be the bundle of spinors for (T'M, g) associated to the Spin® structure « and let p : TM —— End(W)
the Clifford representation associated to . Let W = W, & W_ be the decomposition in bundles of
half-spinors given by the volume element p(wy). Let Met(M) be the space of metrics on M. Consider
now the fibration Z; —— Met(M) of representations py : TM —— Hom(W,,W_) compatible with
some metric h € Met(M), that is p1 (x)*py(x) = h(z, z)idw for some h € Met(M). The Spin-structure
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a corresponds to the point & = (g, p) in the fibration = C =. Consider the parametrized Seiberg Witten
equations (23) for unknowns (4,1,¢) € Agétl‘),v x D(W3) x 24, €= (g,p):

DY =0 (24)

+,9
p(F
AL _ ol - (25)
Let H < TZ, the horizontal distribution on 2 defining the natural connection: He = TeImo(g, p). The
purpose of this section is to compute the variation of the parametrized Seiberg-Witten equations (24)
in correspondence of a horizontal variation of the parameter &: this variation corresponds to a ”pure”
perturbation of the metric, by our discussion on remark 2.6.

3.1 Variation of the Dirac operator
3.1.1 Variation of the spinorial connection

The purpose of this subsection is to study how the Spin® connection on the bundle of spinors W varies
when changing the metric. Let « : Pgspine — Pso(g) our Spin¢ structure on the manifold M, as
discussed above. Let h € Met(M) another metric and ¢ € Sym(TM, g) the only symmetric automorphism
of TM with respect to g such that h = p*g. Let Pso(s) the principal fibre bundle of h-orthonormal frames
of TM. The isometry ¢ : (T'M,*g) — (T'M, g) lifts to an isomorphism of principal SO(4)-bundles :
¢ : Pso(ny — Pso(g) which can be further lifted to an automorphism of the G'L, (4)-bundle of oriented
frames of TM, Pgr, (4)- As discussed in subsection 2.2, when changing the metric we do not need to
change the principal bundle Pgp;yc, nor the bundle of spinors W: we can take as Spin® structure for the

euclidian vector bundle (7'M, h) the composition map: ¢! o a:

PSpinC

@
Pso(g) — Psom)

which corresponds to the following change in the Clifford representation:
(T,g) —~ End(W)

{

o

P Q

(T, h)

Let Py (qy the fundamental U(1) bundle associated to the Spin® structure, and let Pspipe o, Pyqy the
projection. The following diagram summarizes the situation:

Py1y ~— Pspinc(a)

@
Par,a) — PaL,

117



Let now wy € A'(Pso4)(g),50(4)) the Levi-Civita connection 1-form on Pgo,), that is the only tor-
sion free SO(4) connection. Let A € A'(Py(1),u(1)) a unitary connection 1-form on Py(jy. The
spinorial connection 1-form €, 4 on Pgpine is obtained by pulling back to Pgpine the forms w, and
A: Qo4 = (dp) Ha*wy + B*A) € A'(Pspine,spin®(4)). When we change the metric using the sym-
metric automorphism ¢, we have to lift the Levi-Civita connection wy by means of the new projection

¢~ ! oa; as a consequence the new spinorial connection 1 form is

Qp-toa,a = (dp) " ((¢7 0 a) wp + 47 A)
= (dp)"H((@" o (™) wy + 57 4)
Let now g; a differentiable path of metrics in Met(M) of the form: g, = g(1 + ts) = g + tk, where s is
a symmetric endomorphism with respect to g, and k € S?T*M, k = gs. Let ¢; the positive symmetric
automorphism of the tangent bundle (with respect to g) such that g: = ¢;g; we will indicate ¢, 1

with ¢;. We can write ¢ = (1 + ts)_%. Let wy the Levi Civita connection 1 forms for the metric g,
wy € Al(PSO(gt),so(él)). We obtain a differentiable path of spinorial connections on Pgpipe:

Q4 = Q00,4 = (i)™ ((dr 0 a) wy + 7 A) = (dp) 7 (o 0 $fwy + B7 A) € A (Pspine, 5pin(4)) .

Let us compute now the derivative of this connection form in the vector space A'(Pgpinc,spin®(4)):

4
dt

d
:(d/‘)il(a*aﬁwt lt=0)

=(dp) (@ [rwg +w])

d
Q' = O lio=—(dp) ™ (@ gfwr + B A) Lo

We remark that r*wg + w’ belongs to the vector space A (Pso(ay(g),s0(4)), and therefore Q' can be
identified with an element of A'(Pgpine(a),50(4)). We remark furthermore that w’ does not take its
values in so(4), because the different connection forms w; live on different principal bundles Pgo(g,)-
However, we can think the w; as connection 1- forms on Py, (4), hence as elements in Al(PGL+(4), gl(4)).
Therefore w’ makes sense as an element in A'(Pgy, (4),9l(4)). It is thanks to the corrective term r*w,
that we can lift the derivative to Pgpine and obtain a spin®(4)-valued 1 form.

We are going to prove that the form r*w, +w is a tensorial form of type (ad,so0(4)): as a consequence
it is the pull back of a vector bundle valued 1 form wys € A'(M, End(W)) on the manifold M. We begin

with the following lemma;:

Lemma 3.1. Let Q a principal fibre bundle on a manifold M of structural group G. Let g its Lie algebra.
Let (—e,€) 5t —— wy a differentiable path of connection 1-forms. Then the derivative:
, d

W = %wt |t:0

is a tensorial 1-form on Q of type (ad, g).

Proof. To prove that the derivative w’ is a tensorial form of type (ad, g) we have to show that
(1) o' is ad-equivariant, that is R}w' = ad(g™")w’
(2) ' is horizontal, that is, w’ vanishes on the vertical distribution (w’(V)) = 0 if V' is a vertical vector
field).

For the first:
* * d d * d — _ d
Ry == Rg%“’t = %ngt = aad(g Dw; = ad(g 1)%%
For the second, let A € g and let A* the fundamental vector field on @ associated to A (cf [76]). The
value of an arbitrary connection form on a fundamental vector field A* is exactly A, therefore, for all

=ad(g™" o'
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t, wi(A*) = A. Taking the derivative at the point t = 0 we get w'(A*) = 0 for all fundamental vector
fields A*, A € g. Now it is simple to conclude, remembering that any vertical vector field is generated by
fundamental vector fields A*.

O

Corollary 3.2. The forms ' and W' are tensorial of type (ad,spin®) and (ad, gl(4)) respectively. ' can
be identified with a tensorial form of type (ad,so0(4)).

We remark that ¢jw,; are connection 1-forms on Al(Pso(g),so(él)) for all ¢, therefore we get:
Corollary 3.3. The 1-form r*w, +w' € AY(M,s0(4)) is a tensorial form.

Let us now indicate with wp = d/dt(¢fw)|t=0. We have seen by lemma 3.1 that @wp is a tensorial

I-form of type (ad,s0(4)) on Pso(g). As a consequence there is a unique 1-form wys € AY(M,s0(T))

9)°
realizing wp: 7 (wps) = wp. Let us now compute the variation of the spinorial connection form on the

vector bundle level. Let V}V the spinorial connection induced by €; 4 on W. As seen in subsection 1.1,
it is characterized by the formula:

(Vi ¢) = dr* ¢+ (dp) " (Q,a) (77 0)
Differentiating both terms in ¢t = 0 we get:
(VW) = (dp) " () (n* )
Now we know that Q = a*wp, where wp € Al(PSO(g),50(4)) so, actually:
(VW) = (dpun) " (a*wp)(n" )

We remark that (dui)~! : s0(4) ~ A’R* —— spin(4) ~ su(S;) x su(S_) coincides with (1/2)pp :
A’R* —— su(S,) x su(S_). Moreover wp = T*wyy, so that

(dpa) M (awp) = 500(04 W) = o plwnr)
where we have used the diagram:

P x End(S) —> End(W)

P M

Therefore

(VW) = %(W*P(@M))(ﬂ-*gb) = (p(zM)(b)

and this implies
plwnm)
5 ?

We now want to find out what wy; is in vector bundle terms. By lemma 1.2 we know that the

vWe¢ =

connection form w; is associated to the connection ¢; 'VFC¢, on the tangent bundle TM, where VF¢
is the Levi-Civita connection form the metric g;. Therefore the derivative wp is the tensorial 1 form
on Pgp(y) which is associated to the derivative of the path of connections ¢, 1VtLC¢t on T'M, which is
VEC 4 VICr where r = —d¢, /dt|—o = d;/dt|—o. We have indicated with VZC the variation of the
Levi-Civita connection V¢ on TM, for the path of metrics g;. As a consequence we can establish:

Wy = VEC -G (26)
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3.1.2 Variation of the Levi-Civita connection

We are now going to compute the variation VLC of the Levi-Civita connection correspondent to a variation
of the metric. Let g; a path of metrics g; = g+ tk = g(1 +ts), with s a symmetric endomorphism of T M
with respect to the metric g. Let V! the Levi-Civita connection for the metric g;. It is characterized by
the property of being compatible with the metric:

dg:(&,m) = g:(V'&,m) + g:(&, V')

and the property of being torsion-free:

Vin-vie=leal . (27)

We rewrite the first condition:

dg((1+ts)&,n) = g((1+ts)V'E ) + g((1 + ts)€, Vin)

Taking the derivative with respect to t we get:

dg(s€,n) = g(sVE,n) + g(V &) + g(s&, V) + g(£,V 1)

therefore we can write:

9(V(s8),m) + g(s& V) = g(sVEm) + (V'€ m) + g(s€, V) + g(&, V'n)
which gives:
9((Vs)&,m) = g(V & m) +9(6, V') . (28)
Now differentiating in ¢ the torsion-free condition (27) we get:
Ven=V,¢
We evaluate the condition (28) on a vector field 6:

9((Ves)&,n) = g(Ve&,n) + g(€, Vn)

Finally we obtain:

29(Vo&m) = 9(Vy&sn) + (€, Vgn) — g(V,,€,6)
—9(&,V,0) + g(Ven, 0) + g(n, V0) = g((Ves)&,n) — g((Vs)E,0) + g((Ves)n, 0)

which implies that the variation of the Levi-Civita connection is:

9(Vo&,n) = % [9((Ves)E,n) — g((Vys)€,0) + g((Ves)n, 0)] . (29)

Fix now a local orthonormal frame in TM, e;,...,es and let e!,..., e* the dual orthonormal frame on
T*M. We will indicate with Tikj the components of the tensor V with respect to the frame e;, and with
cfj the component of the tensor Vs, that is:

Til; = g(veiej7 ek) ) ij = g((v&:s)ejv ek)

We remark that the tensor ci—“j is symmetric in j and k, since the Levi-Civita connection preserves the

bundle of symmetric automorphisms. Therefore from (29) we get:
_ Lk i i
Tij = i[cij — Chy +Cl -

We remark that Ti];- is symmetric in ¢ and j. It is now simple to compute the tensor wy; = V-Vr=

V- 1/2Vs: if we indicate its components with wfj, we have:
1 . .
-k
Wij = i[c;k - Czj]

where we remark that «;; is skew-symmetric in j and k, and hence belongs to A'(M,s0(T)) as expected.
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3.1.3 Variation of the Dirac operator

We pass now to study the variation of the Dirac operator. We recall that for each metric g; we chose as
Clifford multiplication the map:

pi:=pow;t: (TM,g;) — End(W) . (30)

Let now V}f’t the spinorial connection on the spinor bundle W with respect to the Levi-Civita connection
V! for the metric g; and the unitary connection A. The Dirac operator Di{ = DY"* for the Spin-
structure & = (g¢, pt) given by (30) is:

DY = D% = j, oV T(W) —= T(W)

We remark that the different Dirac operators D% ”* act on the same space of sections I'(W): it is now
easy to compute the derivative in ¢t = 0:

d d. . d . L e
aD%\t:o = %[Pt ° Vzv’t] = @Pth:o ° quv’t +pov?W

Now d/dt pli=0 = —por = —1/2 pos. We need now the definition of the trace and divergence of a
symmetric tensor.

Definition 3.4. Let g a riemannian metric on the tangent bundle TM. Let o a 2-tensor. We define the
metric trace tr 4(o) as the trace of o when it is identified with an element of T*M ® TM, by means of
the identification between the tangent and the contangent bundles provided by the metric g.

The divergence of o is the differential 1-form defined by:

(div o) (V) :=tr o[X — (Vxo)(Y*,-)] ifoeTMeTM

or
(divo)(Y) :=tr 4[X —— (Vxo)(Y,—)] ifoceT"MTM,orc e T"MT*M .

If 0 € S>T*M ~ sym (T'M, g), e; is a local orthonormal frame for TM then divo = Y,(V.,0)e;.

Let us now compute (5o VW )¢ for a spinor ¢. From (26) we know

: plwir
We know that
WM = Z(wMﬁjel ®e'®er =3 Z[C;‘k —cpile’ ®el ey
ijk ijk
1 i P10 j 1 i P70
= 5 Z[cjk —cpjle' @ (e Neg) = 1 Z[Cjk —cpjle' ® Ejk
ijk ijk

Therefore o) .

' PAWM i i1

VW = 5 o= §Z[Cﬂ‘k fckj]e ® plejer)o

ijk

When we apply once more the Clifford multiplication we get
g 1 i i i 1 i i
(VY ) = ] Z[cjk - Ckﬂp(e )p(ejer)p = 3 Z[Cjk - ij]ﬂ(eiejek)¢
ijk ijk
and recalling that (@war)f; = 7/ — 1/2 ¢f; we get:

(VY e) = 3 > l2rf = cllpleieser)d = 1 > rhples)d — 3 > chipler)d

ijk
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Now 77, = 1/2[0{1 — ¢l + ], and recalling that ¢f; = g((Ve,s)ej, ex), we have Z” I =divs —1/2dtr s
and } -, ¢j; = dtr s. Finally we have:

W ..

(VY o) = Zp(dlv s —dtr s)¢
As a consequence we get the theorem:

Theorem 3.5. The variation of the Dirac operator Dg : (W) —— T'(W) associated to the spin repre-
sentation £ = (g, p), corresponding to the variation of the metric g along the direction s € sym(TM,g),
is given by
d 1. w1 .
s A|t —0= —§posoV +1p(dlvs—dtrs) (31)
This variation coincides with the one found by Gauduchon and Bourguignon in [12], and Bourguignon
n [11].

3.2 Variation of the Seiberg-Witten equations

We come now back to equations (24):

DS =0
+,9¢
% =[¥" ®@lo

in the unknowns (A,¢,&) € detl‘)/[, x T(W4) x 24 with € = (ge,pe). Let Fy : Age(tll)/v x T(W,) x
=y — (W) xisu(W,) the parametrized Seiberg-Witten functional. The purpose of this subsection
is to compute the variation of equations (24) for a variation of the parameter ¢ along the horizontal
direction, or in an equivalent manner, the partial differential OF ; /O¢ (f) for a variation f of the parameter
& in the horizontal distribution H. Since the horizontal distribution H is isomorphic to the pull back
7*TMet(M), and therefore He ~ T, Met(M) and since, the choice of the point ¢ allows to identify
the space of positive symmetric automorphisms Sym™ (7'M, g) to the space of metrics Met(M) via the
map ¢ —— @*g, it is the same to take the partial differential OF /O¢ at the identity of the composed
functional :

Fyo: AV < T(W,) x Sym™ (T M, g) — T(W_) x isu(W,)

defined by F (A, 1), @) = F (A, 1, p*€). The partial differential dF . /Dy is then a map:
aSym ™ (TM, g) — T(W_) @ isu(W,)

The first component of this differential has actually already been computed in subsection 3.1.3. Indeed
it s=¢ esym(TM,g),

%(A,w,id)(s) =—posoVWy + %p(div s —dtr s)y
P

We will now compute the partial derivative (‘3I~F+72 /O¢ of the second component, that is the variation of
the second equation in ( 24). We begin by writing the second equation in another form. The self-dual
part of the curvature F4 can be written:

(xg+1)

F
D) A

FX,g _ P*’gFA —
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Let now h = ¢*g another metric, for ¢ € Sym(TM, g), and ¢ orientation preserving. The fact that ¢
is an orientation-preserving isometry between (T'M,h) and (T'M, g) implies the following commutative
diagram of morphisms of vector bundles:

k
(A°T*, g) —— (A°T", g)
A2(p* AQQD*

X %
(A*T*,p*g) —4 (AT, ¢g)

We deduce that #,-, = A2p* 0 x4 0 (A%2p*)~! and therefore

2, % 2, %\—1
FZ"O*g _ P+’“"*9FA:<*¢*9+1>FA=(A¢ 0 %4 0 (A%p*) +1)FA

2 2
2 & *prg +1 2 wy—1 2 + 2 y—1

= Ap*o e o (A%p") T Fa =A@ o P90 (A°@")" " Fy
Now the Clifford representation for the metric ¢*g is given by p o ¢, which acts on 2-forms A2T*M as
po (A2p*)~1, therefore

PPEEDTE) = po (A7) oA%p o PTYo (M%) T Fy

p(PT9 0 (A2p") ™ Fa)

The second equation then becomes:

SPLPT0 0 (AT ) = [u7 @ o

Suppose now given a path of metrics g; = ¢ig, ¢; € Sym™ (T'M, g), and let s = dy; /dt|,—o. The variation
of the second equation in correspondence of the variation s € sym (T'M, g) is

OF 5
dp

(A,1,1d)(s) = — 5 p(Pi(s")Fa)

where i(s*) is the derivation of degree 0 on the exterior algebra AT*M that coincides with s* on T*; in
other words i(s*) acts on the wedge product of two 1-forms 7,0 € T'(T*) as i(sx)(7t Ao) = (s*7) Ao +
T A (s*0).

3.3 The perturbed Seiberg-Witten operator

We will call perturbed Seiberg- Witten operator in the point (A, ) the full differential of the map ]I:’+:
DiagiaFy s TaAAL )y x TOWy) x TiaSym™ (TM, g) —= T(W_) x isu(WV)

To simplify the notations we will indicate the variation (A, ), @) with (7,¢,s) € TAAg(ftl‘),V x D(W4) x
TiWaSym™ (T M, g) ~ AY(M,iR) x T(W,) x sym (T'M, g). In the sequel we will identify by means of the
metric g the space of sections sym (T'M, g) of symmetric endomorphisms of 7'M with respect to the metric
and the space of sections of symmetric covariant 2-tensors I'(S?T*M). We review now how to compute
the rest of the differential D(A7w7id)]1~3‘+ (cf [91]).

Let 7 € A'(M,iR). If we change the connection A by A+, the spinorial connection 1-form on Psyipe
will change as follows:

1 1
Qaarr = Qaat 5(duz)*1<ﬁ*7> =Qaa+ 77
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It means that the corresponding connection on W is VZVH.(;S =VWe¢+(1/4) T ® ¢: as a consequence the
corresponding Dirac operator is

1
D,E4+T = Dil ZPg(T)
It follows that

oF
LA, id)(r) = {(r)u

We clarify that the factor 1/4 instead of the more usual 1/2 is due to the fact that we have fixed the
unknown U(1) connections on det W ~ L®” instead of on L. The curvature F ‘A+r is easily Fg + drT,

therefore FXJ’FQT = F:{’g + d*7 and hence

OF 2
0A

p(d*)
2

(A, ¢,id)(7) =

The derivative OF ;1 /91(A,v,id)(¢) is immediately computed as being:

OF 4.
N

The derivative of the quadratic term ¥* ® 1) with respect to a variation ¢ is ¢* ® ¥ + ¥* ® ¢: hence

(A,,id)(¢) = D5¢

OF 4 5
F

In the sequel we will definitely identify the space iI'(su(WW,)) of traceless hermitian endomorphisms of

(4,9,id)(¢) = ~[¢" @ ¢ +¢* @ dlo

W, with the space of imaginary self-dual 2-forms A%(M,iR).
We are now ready to write down the full differential of the Seiberg-Witten functional. We have proved
the

Proposition 3.6. The perturbed Seiberg-Witten operator on the point (A,,id):
Da iy 1 AHM,iR) x T(W4) x sym (TM, g) — T(W_) x A% (M,iR)

is given by :

1 w 1o
= [ 3P+ Dag—poso V¥ + 5p(divs — dtrs)y
DiawiaF+(7,6:5) = ( Latr — [¢" @ + 4 ® dlo — LPH9i(s%) Fy

We want now to understand better the term P™9i(s*)F4. The traceless 2 symmetric tensors S3T* M
are identified with the traceless symmetric endomorphisms of T'M with respect to g, sym o(TM, g).

Lemma 3.7. The bundle sym o(TM, g) of traceless symmetric endomorphisms of T M with respect to the
metric g, is isomorphic to the bundle Hom(A2T* M, A%rT*M) of homomorphisms between the antiself-
dual 2-forms A2T*M and the self-dual 2-forms Aﬁ_T*M by means of the map:

§: S3T*M ~symo(TM,g) — Hom(A2T*M,A>T*M)

S0 - PTi(sh) p2

Proof. Tt is sufficient to prove the lemma for vector spaces. Let (F,g) an oriented euclidian vector
space of dimension 4. Let Sym™(E,g) the orientation preserving automorphisms of E, symmetric with
respect to the metric g. Let Gr(3, A’E) the grassmannian of subspaces of dimension 3 in A?E and let
wg a volume element in A*E. Consider the map:

£:SymT(E,g) Gr(3,A’E)

80 A%,Lp*g = (A2¢_1)(A27,g)
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2
where A*#P*Q

remark that this map is constant on the orbits of the group R, and induces an open embedding of the

is the vector subspace of bivectors in A2E which are anti self-dual with respect to ¢*g. We

quotient Sym™*(E, g)/R, onto the open set of Gr(3, A2FE) where the quadratic form
A ANE x A°E — AE ~Ruwg
is negative defined. The tangent map to the identity gives an isomorphism:
6 :sym (E,g)/R — Hom(A2E, A2 E)

Since the map ¢ in the local chart Hom(A% E, A2 E) of the grassmannian is given by ¢ — PT9AZp™ 12
the image (s) of a traceless symmetric endomorphism is easily seen as being the morphism s — —
P*9i(s)[x2 . We now equip A?E with the standard metric and Hom(A% E, A2 F)) with the metric (u,v) =
1/2 tr (uv*). The tangent space to the quotient at id, sym (F, g)/R, is then naturally equipped with the
metric (@,?) = 2tr (uwv) — 1/2(tr u)(tr v). We can identify the quotient sym (F, g)/R with sym(F, g),
which comes equipped with the metric induced from sym (F, g), that is (u,v) = 2tr (uv).

It is now easy to see that 0 is an isometry. Let s € symo(E,g) and let e; an orthonormal basis of
E for the metric g for which s is diagonal: s(e;) = \;e;. Since s is traceless, >, A; = 0. Let e; A e; the
corresponding basis for AE. On the basis element e; A e; i(s) acts in the following way:

i(s)(ei Aeg) = Nilei Aej) + Aj(ei Aeg) = (N + Aj)(ei Aej)
Let now w; , w, , wy the basis of A2 E given by:

w; =egrNex—egNey, wy =erNezt+eaNes, wy =egNeg—exNes

We have
’L(S)UJ; = ()\1 + )\2)61 N ey — ()\3 + )\4)63 N ey
z(s)wz_ = ()\1 + )\3)61 Nesz+ (/\2 + /\4)62 VA
i(S)w; = ()\1 + )\4)61 Neyg — ()\2 + )\3)62 N es3

i(Shwy = A1+ —A3— )\4)w1"
i(s)w; = ()\1 + )\3 — )\2 — )\4)ng
i(s)ws = (A4 —A— 3wy

and with respect to the norms taken on sym(E, g) and on Hom(A% E, A% FE), we get that the norm of
§(f) is exactly the norm of s € symo(E,g): ||6(s)||? =2, A2 = 2tr s* = ||s||?. This proves that § is an
isometry, with the chosen norms.

With an analogue computation we can establish:

Lemma 3.8. The map f — i(f) from sym (T M, g) —— End(A2TM) induces an embedding of the
bundle of homotheties of TM into the bundle of homotheties of A2 T* M.

Proof. The bundle of diagonal endomorphism of T'M is isomorphic to C*(M,R). If A € C>°(M,R)
then i(\d)wE = 4 0.
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As a consequence an element s € sym (T'M, g) acts on the form F4 in the following way:

i(s)Fa = i(s)Ff +i(s)Fy
trs

= (so)Fi+ i(thSid)Fj +6(s0)Fy + Z(Tid)Fg
§(so)Fi + (tr s)Fi +6(so)Fy + (trs)Fy

Therefore
PH95(s)Fa = (tr s)Ff +6(s0)Fjy -

We can now rewrite the Seiberg-Witten operator splitting the space sym (T'M,g) in sym (T'M,g) ~
C®(M,R) ®symo(TM,g) and using the isomorphism § defined above:

Dy ia)Fi(r, 6, f,50) = < 1p(T) + Dad — fDath + 3p(df )i — po sgo VIV + $p(div so)¢) )

%d‘*T— (0" @Y +¢* @ Blo — AfFf — 8(s0)Fy

If (A,4,id) is a zero of F,, ]FJF(A,z/},id) = 0, then, in particular D4® = 0 and the Seiberg-Witten
operator simplifies to:

- ( 10(r)% + Dag + 2p(df ) — poso o VW + L p(div so)y ) |

D i F s P = N 32
(aiaF+(7, 6, f, 50) AP = [0F @Y+ 9T @ glo —AfFL — d(s0)Fy .

The operator we have just computed takes into account the most general perturbation of the metric. It
is interesting to restrict us to more special perturbation, like, for example, conformal perturbations. A
conformal change of metric is always given by g —— e2/g for f € C*(M,R). Let now g; = e*/g a
conformal deformation of the metric. We have e?/ g = ¢¥g, with ¢, = (14 €2/)~1/2. Then dip, /dt|;—o =
—f. Therefore the Seiberg-Witten operator for a conformal perturbation of the metric becomes:

$0()e + Dad + Sp(df v ) _

1At —[¢p* @Y+t @lo —AfFL (33)

D(A,w,id)fF-‘r(Ta b, f) = <

4 The question of transversality

In this section we will take up the discussion of the transversality of the Seiberg-Witten functional F
with perturbations of the metric or, said another way, the transversality of the perturbed Seiberg-Witten
functional ]F+ introduced in the previous chapter. Proving that the functional F+ is transversal, that
is, proving that its differential DIF‘+ is surjective, guarantees by the implicit function theorem that the
space of solutions forms a smooth Hilbert manifold and it is the first step in order to obtain a smooth
Seiberg-Witten moduli space.

The question of transversality with perturbations of the metric alone for Seiberg-Witten equations
has already been taken up by Eichhorn and Friedrich in [31] and by Friedrich in [49], but, to our point of
view, with not convincing arguments. The authors claim that they prove a generic metrics transversality
theorem for Seiberg-Witten equations, but, as we will see, their proof is based on some false statements.

After setting up the functional machinery, we will compute the adjoint of the perturbed Seiberg-
Witten operator and we will find equations for its kernel. A non trivial solution to these kernel equations
represents an obstruction to transversality. Therefore proving the generic metrics transversality theorem
amounts to proving a vanishing theorem for the solutions of these kernel equations.

4.1 Elliptic differential operators

In this subsection we will recall some facts about elliptic differential operators. Our main references for
this material are [118], [8] and [79].
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Definition 4.1. Let E and F two euclidian vector bundles on a compact manifold M and let (-,-)p,
(-, ) the metrics on E and F' respectively. Let L : T'(E) — T'(F) a linear differential operator of order
k € N. A differential operator L* : T'(F') —— T'(F) is said to be the formal adjoint of L if

/ <LU,U>F :/ <uvL*U>E
M M
for every uw € T'(E), v € T'(F).

It is well known (cf [118], [8]) that the formal adjoint of a differential operator is unique, that any
differential operator admits a formal adjoint, and that the symbol of the formal adjoint L* is the adjoint
of the symbol of the operator L : o(L*)(z,&) = (—=1)*a(L)(z,£)* for x € M, £ € T*M — {0}, k the order
of L. Let w: T*M \ {0} — M the projection.

Definition 4.2. Let Ey,..., E, vector bundles on a manifold M. A complex of differential operators
Li : ].—‘(El) —_— F(Ei+1)2

0 — D(Ep) -2 (B 2 .. [(E,_1) 224 D(B,) — 0
is called elliptic if it induces an exact sequence of vector bundles:
0 —» 7* By 20 o, 2E) B ORI Gy B

at the symbol level. A differential operator L : T'(E) — T'(F) is called elliptic if the complex
0—T(E) — I(F) — 0
induced by L is elliptic.

Proposition 4.3. Let E, F and G three euclidian vector bundles on a compact oriented manifold M
and L : T'(E) — I'(F), A : T'(F) — T'(G) two differential operators of the same order, such that
Ao L =0. Then :

(1) the operator LL* + A*A is elliptic if and only if the symbol sequence

o(L) o(A)

" E o F G (34)
1S exact;

(2) the operator L* ® A : T'(F) — I'(E) ® I'(G) is elliptic if and only if the sequence

0— B " rr a0 (35)

s exact.

Proof. The symbol of the operator P = LL* + A*A is, up to a sign, o(P) = o(L)o(L)* + o(A)*o(A).
We easily see that ker o(P) = ker 0(A) Nker o(L)*. Now the hypothesis implies that Im o (L) C ker o(A),
so the cohomology H, on the symbol level on a point z € M:

o(L)s o(A)g

is given by H, = kero(P),. Now P is elliptic if and only if ker 0(P), = 0 and this happens if and only
if H, =0, that is, if and only if the sequence (34) is exact.

For the second statement, the symbol of the differential operator @ = L* ® A is o(L)* ® o(A): the
operator @ is elliptic if and only if ¢(Q) is an isomorphism. Since the hypothesis always implies that
Im o (L) C kero(A), the condition that ¢(Q) is an isomorphism is easily equivalent to the fact that the
symbol sequence (35) is exact.
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The proposition motivates the next definition:

Definition 4.4. A linear differential operator L : I'(E) — I'(F') between two euclidian vector bundles
is called underdetermined elliptic if LL* is elliptic, overdetermined elliptic if L* L is elliptic. Equivalently,
L is underdetermined elliptic if its symbol o (L) is surjective, overdetermined if its symbol is injective.

Let E an euclidian vector bundle on a compact oriented manifold M and let I'(E) its space of C*>
sections. Let V be a metric connection on E. If f € I'(E) we define the Sobolev norm as: ||f||2p =
(D I |Vif\2dvolg)1/2. We denote with I'2(E) the completion of I'(E) in the norm || [|2,,. Let now
P :T(E) — T'(F) a linear differential operator of order k. For all p > k it induces a bounded operator
of Hilbert spaces :

P, :T2(E) — I _(F)
The fundamental result we will use is the following (it is nothing but one of the many versions of elliptic
regularity theorem):

Theorem 4.5. Let P :T'(E) — I'(F) a linear differential operator of order k and let

P, :TH(E) — T2 4(F)

be its extension to Sobolev completions, for p > k. Then :

(1) If P is underdetermined elliptic, then for all p > k, ker(P*), is finite dimensional and ker(P*), =
ker P C T(F). Moreover T(F) = PT(E) @ ker P* and T;(F) = P,I'; . (E) @ ker P* and the direct sums
are L?-orthogonal. In particular an underdetermined elliptic operator has closed range.

(2) If P is overdetermined elliptic, then for all p ker P, is finite dimensional and ker P, = ker P C I'(E).
For the proof see [118] or [8].

Remark 4.6. By the preceding proposition proving the surjectivity of the Sobolev extension of an

underdetermined elliptic operator P, : I'2(E) — ka x(F) is equivalent to proving that if u € T'(F)
satisfies the equation P*u = 0 then u = 0, that is a vanishing statement for a smooth solution u of the

equation P*u = 0.

Another fundamental result we will use is the following Unique Continuation Principle (see [46]) for
solutions of elliptic differential equations of second order.

Theorem 4.7 (Unique Continuation Principle). Let M be a differential manifold and E a vector bundle
on M. Let P:T(E) — T'(E) a linear elliptic differential operator of second order with scalar symbol.
Then, if v € T'(E) is a solution of the second order differential equation Pu = 0 that vanishes on a
nonempty open set of M, then v vanishes everywhere on M.

For the proof see [1].

Corollary 4.8. Let M be a differential manifold, E a vector bundle on M. Letw : T*M\{0} — M the
projection. Let P : T'(E) —— T'(E) a linear elliptic differential operator of second order with principal
symbol of the form:

o(P) = fr*(A)
where A € Aut(E) is an automorphism of E and f € C°(T*M \ {0}) is a pointwisely nonzero function.
Then the Unique Continuation Principle applies to the operator P.

Proof. Consider the operator A~'P. This is a linear elliptic differential operator of the second order
with scalar symbol, and it has the same solutions of P. The Unique Continuation Principle applies then
to solutions of A~1P, hence of those of P.
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4.2 The adjoint of the perturbed Seiberg-Witten operator

Let us consider the perturbed Seiberg-Witten functional IF‘+ and its extension to Sobolev completions in
the norm || ||2 p:

(F)2: (AL0)2 X T2(Wy) x Sym™ (T M, g)2 — A% (M,iR)2_; x T2_ (W) . (36)

p—1

Our aim is to prove that its differential at a solution (A, ,id)

(DF4)2 : AY(M,iR)2 x T2(W,) x sym (T'M, g)2 — A% (M,iR)2_; x I2_,(W_)

p—1

is surjective. By the implicit function theorem this guarantees that the zero set of the map (]F+)§ is
a smooth Hilbert manifold. Then we could use the Sard-Smale theorem (cf [107]) to prove that for
generic metrics the space of solutions Z (F“”*g""*”)f7 is a smooth Hilbert manifold. Now the fact that the
C>(M, S') action preserves the solutions of Seiberg-Witten equations (or in other words preserves the
zeros of the Seiberg-Witten functional F') implies that at a tangential level (that is differentiating) we
have the following complex of deformations:

0 — D(iR) — D(A'T*M @ iR) & D(W,) 2495 DA2T*M @ iR) & T(W_) — 0

where the first arrow is the differential of the C°°(M, S*) action. This complex of differential operators
happens to be elliptic (cf [91]). In particular the operator D(4 ) F is underdetermined elliptic. This means
that D4 4)F and all its Sobolev extensions D A,w)Fg have closed range and finite dimensional cokernel
by the elliptic regularity theorem 4.5. Moreover for all p > 1, coker (D(Aﬂ/,)F)f) = coker Dy g F' =
ker D4 y)F™*. Now the perturbed Seiberg-Witten operator D4,y iq)F+ is the sum

Dy in)Fs = Diay) F7 + 88& )

¥

and hence its symbol o(DF. ) is the sum of symbols: o(DF,) = o(DF)+ o(dF /dp): therefore o(DF, )
is surjective and the perturbed Seiberg-Witten operator D( A,w,id)FJr is underdetermined elliptic. As a
consequence of remark 4.6 and of theorem 4.5 proving the surjectivity of (D A,w7id)]1~3‘+)§ is equivalent to
proving that ker(D(4 4 iq)F+)* = 0.

4.2.1 Computation of the adjoint operator

In this subsection we are going to compute the adjoint differential operator:
(D(a,piaFi)* + A3 (M,iR) @ T(W_) — AY(M,iR) & T(W,) & T(S*T* M)

In the sequel, when it will not cause confusion, we will drop the indication of the point (A4,1,id) and we
will simply write DI~F+ for Dy A,,w’id)ﬁq_. We begin by recalling the L2 norms with respect to which we are
going to compute the adjoint differential operator.

On the bundles 7*M ® iR the norm is the standard norm induced by the metric g. We recall that on
T*M®" the metric g induces the metric (1 ® ... Ty, Y1 ® ... Yp) = m! Hﬁo(mi, yi). With respect
to this metric the decomposition T*M @ T*M ~ S?T*M @& A?T*M is an orthogonal direct sum. We
will take on S?T*M and on A?T*M the metrics induced by the metric on T*M ® T*M. In this way
e; e =ee; e Nejand |le; @ ejl| =2, [lesej|| =1 = ||e; Aejl|. In other words the metric induced by
T*M @ T*M on sym (TM, g) is (s,t) = 2tr (st).

By lemma 3.7 we can identify S§7*M with Hom(A%T*M, A3 T*M) by means of the isomorphism 4,
defined by d(s) = P9i(s*)s2 7+ ns. We recall that ¢ is an isometry if we take on Hom(A2T*M,AXT*M)
the metric (u,v) = 1/2tr uv*.
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On I'(W,) and on I'(W_) we take the real part of the hermitian metric and on Hom (W, , W_) we will
take the scalar product (u,v) = 1/2tr (uv*). In this way the Clifford multiplication p will be an isometry.

Finally the real part of the hermitian metric on End(W) given by (A, B) = 1/4tr (AB*) induces an
orthogonal sum u(W) ~ iR @ su(W). We will take on isu(W) the real inner product induced by the
real inner product just defined on End(W). In this way the isomorphism p : A2T*M — isu(W) is an
isometry. In the sequel we will indicate with (-,-) the real inner products and with (-,-) the hermitian
ones.

We begin with the following lemma:

Lemma 4.9. Let (M,g) a compact oriented riemannian manifold . When we identify tangent and

cotangent bundle by means of the metric g, the formal adjoint of the first order differential operator
div : T(S*T*M) — T(TM)
is the differential operator X —— (—1/2)Lxg.

Proof. Let X € T'(TM) a vector field. Let k € S>T*M. We will first prove that pointwisely:
(Lxg, k) +2(X,div k) = 2div k(X) . (37)

The two members are first order differential operators in the variable k. We will prove first that their
symbols coincide. The symbol of a differential operator P of order j, as defined in [§], is

o (P, )2 (€) = %P(fja)(xo)

where f is a real function f € C*°(M,R) such that f(zo) =0, df(wo) = € T M. Now take such a
function f. Since div (fk) = k(df*) + fdiv k, we have

2(X, div (fk))(z0) = 2(X, k(¢")(x0) = 2k(€F, X) (o)

Now
2iv (FR(X))(w0) = 296 k(X)) = 2K(¢, X)

Hence the two symbols coincide. Therefore the difference Fx (k) := 2div k(X) — 2(X,div k) is a 0
order differential operator in k, that is, a tensor, or C*°(M,R)-linear. It suffices then to verify that
Fx(k) = (Lxg,k) in a point p. Taking normal coordinates x1,...,z, (see [76], section III.8) centered
in the point p, it suffices to take k = dx;dzx; = 1/2(dzy ® dxg + dze ® doy). We immediately see that
(div k)(p) = 0 so

0 0 oX'  0XJ
Fx(k =div [ X'— + X7 — = ; , .
) =div (X5 X070 = (G5 + 5 ) o)
Let us now compute (Lxg, k). We have:
Lxg(p) = Z(Lxgij)(p)dﬂ%dﬂﬂj + Zgij (p)(Lxdx;)dz; + Z 9ij(p)dz;(Lxdxy) .
ij ij ij
Since we chose normal coordinates centered in p, (Lxgi;)(p) = X (g:5)(p) = 0 and g;;(p) = di;,

Lxg(p) = > (Lxdx;)dz; + Y _ dui(Lxd;) .

7

By the Lie-Cartan formula Lx = dix + ixd we immediately see that Lxdr; = dX*. As a consequence:

1 oxXt oxJ
Lxg(p) = 3 Z ((%j + Bt ) dx;dx

ij
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and its scalar product with k = dx;dx; is

(Lngk) = <8$] + o'

Xt oXx’J )

which is exactly Fx (k). We have then established 37. Integrating on the manifold and recalling that, by
Green theorem (see [76]), the integral of the divergence of a vector field on a compact oriented riemannian
manifold vanishes, we get:

(Lxg, k)2 = / (Lxg, k)w, = —2/ (X, div k)w, = —2(X, div k) 12
M M

which establishes the lemma.

O

The isomorphism p : TM ® C —— Hom(W,,W_) allows us to define a complex conjugation in
Hom(W,,W_) in an obvious way, and hence a real and imaginary part for elements of Hom(W, W_).
We will set: p(o) := p(d) and hence Re p(0) = p(Re o), Imp(c) = p(Imo), for c € T*M & C.

We are now ready to compute the operator (DF,)* = DF* + (9F . /0p)*. Let us begin with (DF)*.

Lemma 4.10. The adjoint of the map: jy : AY(M,C) — T(W_) defined by jy, (o) = p(o)y is given
by the map: jj, : D(W_) — AY(M,C) defined by Ju(x) =2¢* ®@ x.

Proof. Tt is always true that, for an hermitian map A between two vector spaces one has: (Az,y) =
tr (Aoy* ® x), where y* = (—,y). Therefore :

(p(@),x) = tr(plo)ox* @) =tr(p(c)o (¥* @x)") =2(p(0),¥" & X)Hom(w, W_)

because of the choice of the hermitian metric in Hom(W,.,W_). Since p is an isometry with respect to
the taken norms, identifying Hom(W.,, W_) with T ® C we get :

(p(o), x) = 2(0,¢" @ X)1*0C

Lemma 4.11. The adjoint of the operator d* : A*(M,iR) — A2 (M,iR) is the operator
d* : A2 (M,iR) — AY(M,iR) .

Proof. (d*r, Q)Ai(M,i]R) = (d*7,0) a2(nir) because A2T*M ~ AZT*M & A>T*M is an orthogonal
direct sum. Then

(d+779)A§r(M,iR) = (d7,0) a2(r,im) = (7,d"0) a1 (ar,iw)

O

Since the Dirac operator splits in D4 = D} @ D} and D} and D, are the adjoint of one another we
immediately get:

Lemma 4.12. The adjoint of the operator Dy : T'(W,) —— T'(W_) is the operator
Da:T(W_) —= D(W,).
We now compute the adjoint of the term gy (¢) = [¢* @ ¢¥ + ¥* ® ¢lo:

Lemma 4.13. The adjoint of the map: qy : D(W,) — A% (M, iR) defined by qy(¢) = [¢* @¢p+1* @0
is the operator gy : A2 (M,iR) — T'(W,) given by: q,,(0) = —1/2 p(0)1).
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Proof. We begin by proving that if f € isu(W,), that is, if f is a traceless hermitian endomorphism
of W, then for all ¢ € W, we have pointwisely:

(fi (@ ®@p)) = i<fsﬁ, @) - (38)

Indeed, we can always suppose |p| = 1; so we can consider an orthonormal basis 1, ¥ of W, with
11 = . We can express f in this basis as

Then fp = a and
Yo
7Ev=olo

Then, recalling that the metric on isu(W,) is given by 1/2tr uv*, we get (38). Now differentiating (38)
with respect to ¢ and taking the real part we get:

TRe [(£6,4) + (f9, )]
SRe (f1,6)

Re (f,[¢" @ ¢+ 9" @ ¢lo)

because (f¢, 1) = (¢, f*¢) = (¢, f). Taking now f = p(f) and identifying isu(W) with AZT*M we
get the lemma.

O

We now compute the adjoint (8F+ /0p)* of the partial differential that gives the contribution of the
metric.

Lemma 4.14. The adjoint of the operator s — P9i(s*)|y2 : T(S*T*) — A3 (M,iR) is the linear
map: A% (M,iR) — T(S*T*) given by § — 1/4(F},0)g +2(F;)* @ 0 where the term (F;)* ® 0 is
seen in Hom(A2T*M,A2T*M) ~ SZT*M.

Proof. By lemmas 3.7 and 3.8 we have: PT9i(s*)Fa = (tr s)F + 0(s§)F, . Now
§:SeT*M — Hom(A%T*M,A%T*M)
is an isometry, with the chosen metrics. Then

(PT9(s")Fa,0) = ((trs)Fy,0) + (3(s5)Fq,0)

tr ) (7, 0) + 2(5(s3), (F)* © 6)
(F.0)(s,9) +2(s5, (F3)" ©6)

(
(
1
>
S(F1.0)(5,0)+ 205, (F3)" ©0)

O

Finally the following three lemmas allow us to compute the adjoint (OF, /dp)*. We denote with
(Vy)* the linear map TM —— W defined by X —— (—, V), with Re (V¢* ® x) the 2-tensor
(X,Y) —— (Re (Vx9¥* ® x),Y)rar and with SymRe (V¢* ® x) the symmetric part of Re (V¢* ® x).

Lemma 4.15. Th adjoint of the map: sym (T M, g) — T'(W_) defined by s —— — pos* o Vi)* is the
map: T(W_) — D(sym (T'M, g)) defined by: x —— — SymRe Vi* ® .
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Proof. Taking a local orthormal frame e!,. .., e* of T*M it is easy to see that po s* o V) is given by

Yoip(s* @id)(e" @ Veip) = 3, p(s*€')V itp. In the same way we can see that SymRe Vi)* ® x is given
by 3, e’ @ Re V.i¢p* ® x. Therefore

Re(pos o VY™ ,x) = > Relp(s'e")Vath,x) =2 (s’ Re Vit @ X)7o1

= Z(S*v e; ® Re Vei w* ® X>T* T — (S*a Sym(z e; @ Re vei ¢* ® X))sym (T*M,g)
i i
= (57 SymRe V¢* Y X)sym (T'M,qg)
O

Lemma 4.16. The adjoint of the differential operator T'(S?*T* M) — T'(W_) defined as s — p(dtrs)i
is given by the differential operator x — 1/4d*Re (¥* ® x)g.

Proof. The operator s — p(dtr s)1 is the composition jy o ig o d o tr, where g is the injection
ig : AY(M,R) — AY(M,C) .
As a consequence its adjoint is tr * o d* o i o Jip- Then

d*R *
tr*od" oifoi(x) = 2tr* od*Re (" ® x) = M

since the adjoint of ir is exactly the real part Re.

O

Lemma 4.17. The adjoint of the differential operator T'(S*T* M) — T'(W_) defined as s — p(divs)y
is the differential operator: X —— 1/2 Lye (y+@x)9-

Proof. The differential operator s —— p(div s)¢ is the composition: jy o ig o div. Therefore its
adjoint is

. . . 1
X — div " oigoj(x) = ~5LRre @ @09

We are finally ready to write down the adjoint of the perturbed Seiberg-Witten operator:

Proposition 4.18. The adjoint (D]F’Jr)* of the perturbed Seiberg- Witten operator in the point (A,,id),
DF ., is given by the differential operator: T(W_) @ A2 (M,iR) — AY(M,iR) @ T(Wy) & T(S?*T*M)
given by:

d*0 + 2iIm(¢* @ x)

(DF4)*(x,0) = Dax — 5p(0)¢

d"Re (" © x)

1 —\*
5 Q—Z(FX79)9—(FA) @0

1
—symRe (V* ® x) — §LRC (rex)9 —

4.3 The kernel equations (DF,)*(y,0) =0

We have seen in subsection 4.1 that the cokernel of the operator (DIF‘JF)IQ, coincides with the kernel of the
formal adjoint (DF)*. From now on we will always consider the differential DF, and its formal adjoint
over a point (A,1,g) solution to the parametrized Seiberg-Witten equations (23) and we will always
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suppose that the monopole (A,%) is irreducible, that is ¢ # 0. In particular this means that we will
always suppose that D 419 = 0 ; moreover, by the unique continuation principle we can argue that 1 never
vanishes on an open subset; therefore M — Z(¢)) = {x € M|(x) # 0} is dense in M. From what we have
said a solution u to the equation (DfF +)*u = 0 represents an obstruction to the transversality of the map
(INFJF)ZQ, on the point (4,,id). In this subsection we begin the study of the equation (DF,)*(x,6) = 0
and we will prove some properties of the possible solutions. Unluckily in the general case we do not get
to prove a general vanishing theorem for these solutions.
Let us write down the equations for the kernel of (DF,)*:

d* 0+ 2iIm(¢* ® x) =0 (39a)
1
Dax = 5p(0)y =0 (39b)
. 1 d*Re (Y* ® 1 s
—symRe (Vi" @ x) — §LRC (W*@x)9 — #g - i(FXﬁ)g —(Fy) ©8=0 (39¢)

where (A, 1),1d) satisfies : F, (A,1,id) = 0 and ¥ # 0, that is (A4, ) is an irreducible monopole. We will
first analyse equations (39a) and (39b).

Lemma 4.19. Let ¢ € T(W,) a positive spinor and ¢ € T(W_) a negative spinor. Then

2 2
Re(¢*®<)s&=% ; Im(¢*®<)¢=%é

Proof. 1t is clear that it is sufficient to prove the lemma in each point. Now, for all x € M, p, :
T,M ®@C — Hom(W, ,, W_ ,) induces an irreducible spin representation and we know by proposition
1.6 that all irreducible spin representations are isomorphic, so it is sufficient to prove the result of the
lemma for a two dimensional complex hermitian vector space E equipped with the irreducible spin
representation (8), £ — End(ALE,ALE) given by x —— z A (-) — z3(+). We have W, ~ C @ AZE
and W_ ~ FE. Let us take an hermitian basis ey, e on E. Then eq,ier,es,ies will be an oriented
orthonormal basis for the underlying real euclidien space Egr. An orthonormal basis for W, is 1,e1 A eg
and an orthonormal basis for W_ is obviously e;, e5. Then we have :

1 0 . 1 0
pler) = <O _1> plier) = (0 Z)

0 1 ) 0 —i
plez) = <1 0) pliez) = (Z 0 )

Extending now p to Eg ®r C by C linearity, we easily get for a,b,c,d € C,

a+ib c—1id

. - a+ib c—id
a b(e C d(e = - -
c+id a+ib> - plaestblien)+ ce+ dliea)) <E+id a+ib>

plae; +b(ier) +cea+d(ies)) = (

which means that if

for «, 3,7,6 € C then

therefore

1 1 —
Rep<2>=2p<Z+Z>=2(j 3



Let now ¢ = 1 + p2e1 Aes, ( = (161 + (2e2. Then

v [G) _ [e1G 92 « 1 (o160 —waGe 920+ 91Go
Prec=ione) (Cz) B <<P1C2 902C2> » Relpeo)= 2 <<P1C2 + 261 P2Ca —901C1> '

As a consequence

X el el G el
Re (¢ ®<)¢*f (<2> *TC

Now, since ¢* ® ( = Re (¢p* @ () + ilm(p* ® ¢) from the evaluation of p* ® ¢ and Re (¢p* ® () on ¢ we
immediately get
_ el

Im(p* ® Q)¢ 5

O

Lemma 4.20. The bundle map: jy, : A*°T*M ® iR — W, defined by j,(0) = p(0)¢ is injective if
Y #0.

Proof. We know that A2T* M ® iR ~ isu(W,). We place ourselves in a neighbourhood U of a point p
such that ¢ (z) # 0 for all € U. Shrinking U if necessary we can always find a local orthonormal frame
Y1, Yo on W, such that ¢¥; = ¥/|)|. An element p(f) can be written, with respect to the basis 11, 12,
as:

p(e)@‘ _ba> a€R,BeC.

Now p(6)y = |¢|(a, —b), which is zero if and only if o = 0 = b.
0O

Since the operator DI~F+ is underdetermined elliptic, by proposition 4.3 its adjoint (DIE_)* is overde-
termined elliptic and ker(DF,)* = ker DF, (DF,)*. Now, always by proposition 4.3, DF,(DF,)* is
elliptic.

Lemma 4.21. The Unique Continuation Principle applies to the operator DF o DF*, where F is the
Seiberg- Witten functional.

Proof. By lemma 4.8 it suffices to show that the operator DF o DF* has scalar symbol, up to an
automorphism of z'AiT*M @ W_. We recall that F' is the functional:

F:Ap xT(Wy) —— iAT (M) x T(W_)
(A,4) (Fi = [W" ®¢lo, Day)

The differential DF is of the form:

dtt —qu(9)

DF, =
wn(nd) (;mw +Daé

) T eid (M), ¢ € D(Wy) ,

where the terms out of the diagonal are of order zero. The operator DF has then the same symbol of

+
p._ d 0
0 Da

the operator:

whose adjoint is
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The symbol of the operator DF o DF™* is then the same of the operator

+ q* 1
PP — drd 0 _ sA 0
0 D% 0 D}

because d*d* = 1/2A on self-dual 2-forms. Now, by Weitzenbéck formula, D? has the same symbol of
the operator Vy o Vj;,, which is a laplacian, and then has scalar symbol

a(Vw o Viy)(€)(») = —IEle .
We deduce that the principal symbol of the operator DF o DF™* is

a(DFoDF*)(e,w:—wP( : ) < ’ ) .

Proposition 4.22. Let (x,0) a solution to (39a), (39b) and suppose that x =0 on a nonempty open set

O

U. Then (x,0) vanish identically on M. The same statement holds if 6 =0 on a nonempty open set.
Proof. If x =0 on U then equations (39a), (39b) on U become:
dao=0
p(0)y =0
By a preceding lemma, the operator § —— p(0)% is injective if ¢ # 0. Therefore § = 0 on U — Z(v)
which is a nonempty open set because M — Z(v)) is dense. We then conclude by the unique continuation
principle, since (x, ) = 0 on the nonempty open subset U — Z(1)).
If # = 0 on U then equations (39a), (39b) on U become:
Im(¢* ® x) =0
DAX =0
Then lemma 4.19 implies x = 0 on U — Z(¢) and we conclude again by the unique continuation principle.

O
Now we pass to analyse the third equation (39c¢).
Lemma 4.23. Let ¢ € T(W,) a positive spinor and ¢ € T(W_) a negative spinor. Then
2div (¢* ® ¢) = —(Da¢, ) + (¢, Day) -
In particular for a monopole (A,v) we get :
divRe (* ® x) = —1/2Re (¢, Dax) , divIm(p* @ x) = —1/2Im(s), DaX) .

Proof. We begin by remarking that the two sides are first order differential operators in the variable
¢ with the same symbol, since —(p(§)¢, ¢) = 2(¢p* ® ¢, p(&€)) because p(&)* = —p(§). There difference is
therefore C*° linear. We will now see that they coincide in every point p. Taking an adapted frame e; for
T*M centered in the point p (that is a frame e; that (Ve;)(p) = 0) we can write:

—(DaC, @) + (¢, Daw) (0) = D [{p(e)Ve,Co) = (. plei) Ve, )] (p)

_ Zdi<p(e¢)c,<ﬂ>(p)

= 2, ZW ® ¢ ei)(p) = 2div (¢* @ ()

where we indicated with d; f = (df)(e;), for a complex function f on M.
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We will now apply the trace operator to the third equation (39c).
Lemma 4.24. Let (A,1)) a monopole. Then tr SymRe (V)* @ x) = 0, tr Lye (y+gy)9 = 2divRe (¥* @ x).

Proof. Let us prove the first. Taking a local orthonormal frame e; in TM and its dual €’ in T*M we
obtain:

tr SymRe (Vy* @ x) trRe (V¥* ® x) = Z tre’ @ Re (V0" @ )

Z Re (¢!, Re (V" @ x)) = Z Re (¢', ViY* @ x)

7

= Y Re (Vi x) = Re (Dasi,x)

because (A,v) is a monopole. For the second identity, it is easy to see (in normal coordinates) that
Lxg = 2SymV X", where X’ is the 1 form X° = g(—, X). Therefore tr Lxg = 2tr SymVX® = 2tr VX’ =
2div X.

O
Proposition 4.25. If (x,0) is a solution of the equations (39) (DF,)*(x, ) = 0, then
(0,F1) =0=(Dax,¥) = 0=div (¥" ® x)
Proof. Applying the trace operator to the equation (39¢) we get, by lemma 4.24:
3divRe (v* @ x) + (F1,0)=0. (40)

Applying the operator d* to the first equation we immediately get d*Im(¢* ® x) = —divIm(y* ® x) =0
which means that, by lemma 4.23, Im (1), D 4x) = 0. Now taking the scalar product with x in the second
equation we get:

(¥, Dax) = 5 (¥, p(0)¢) = 0

1
2
which becomes

but (¢* @, p(0)) = ([¥* @Yo, p(9)) and [* ® ¥]o = F{ /2, because (A,)) is a monopole, then we can

write:

(w, Dax) = 5{F1,0) =0, (a)

Since (¢, Dax) is real, we have div Re (¢* ® x) = —1/2(¢), Dax) by lemma 4.23, therefore equation 40
becomes:

3
—5(¥, Dax) + (Fa,0) =0
which coupled with (41) gives the result.

O

Remark 4.26. We could have remarked that the trace of equation (39¢c) carries the contribution of
conformal perturbation of the metric. The kernel of the adjoint to the Seiberg-Witten operator with
conformal perturbations (33) corresponds to equation (39a), (39b) and the trace of (39c¢).

We can now simplify equations (39).
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Corollary 4.27. The equations (39), (DF)*(x,0) = 0 on the monopole (A, 1) are equivalent to:

d*0 + 2ilm(¢* @ x) =0 (42a)
Dax — 500w =0 (42b)
1
—symRe (V" @ x) — §LRe (wend — (Fy) ®0=0 (42c)
(0.F}) =0 (420)
div (1" @ x) =0 (42¢)

4.4 Eichhorn and Friedrich’s argument

We now explain why we find Eichhorn and Friedrich’s treatment of the question of generic metrics
transversality for Seiberg-Witten equations unsatisfactory, and finally incorrect. The two authors in [31]
and Friedrich alone in [49] have a direct approach of the problem, that is, they try to prove directly that
the differential DF of the perturbed Seiberg-Witten functional is surjective. A first source of unclearness
is that they never give a precise expression of the variation of the Dirac operator, which we have seen
as being a fundamental difficulty in the question. No mention is made about the term poso V. In
[49], Friedrich deals with the variation of the Dirac equation with respect to conformal perturbations (€
C*(M,R)) independently from the variation of the curvature equation with respect to volume preserving
perturbations (€ sym (7'M, g)), but this is not allowed, since the differential

OF .

D C®(M,R) @ symo(TM,g) — T(W_) ® A% (M,iR)

is not in diagonal form, nor in (lower or upper) triangular form, as we have seen. Thanks to this uncorrect
argument, which is explained only in [49], in both publications the authors get to the two independent
conditions:

<d%;(*g)(80)FA’9> =0 Vso € symo(TM, g)
(pldf)h,x) =0  VfeC*(M,R)

which are to be satisfied by an element (x, 8) in the cokernel of DF. They claim that these two conditions
are sufficient to determine the vanishing of x and 6. This is not true, as we shall see. Indeed, if it is true
that the first condition is equivalent to the equation (F;)* ® 6 = 0, and this implies the vanishing of 8
if F; # 0, on the other hand the second condition is equivalent to d*Re (¢* ® x) = 0, which means only
that the vector field Re (¢* ® x) has zero divergence. Therefore for every zero divergence nontrivial real
vector field X on the manifold M, if we take xy = p(X)v, then x # 0, but y verifies the condition above.
Actually the two authors restrict theirselves to perturbations of the metric s with div s = 0, in order to
get rid of the term p(div s)t in the variation of the Dirac operator. But, if we want a zero-divergence
tensor of the form fidr, this implies df = 0 and the second condition is not significative, that is, all x
verify it.

5 Transversality over Kahler monopoles

In this section we will specialize our study of the perturbed Seiberg-Witten functional in the simpler
case of Kahler surfaces. It is well known that on a Kéhler surface Seiberg-Witten equations simplify
dramatically: as a consequence our study of equations (42) will be greatly simplified in the Kéhler
context as well. The main motivation for this simplification is that the solutions of Seiberg-Witten
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equations on a K#hler surface define holomorphic pairs (04, ), where the 04 is a holomorphic structure
on a line bundle N and « is a holomorphic section of (N,d,). This fact allows the algebro-geometric
interpretation of the Seiberg-Witten moduli space as the moduli space of holomorphic pairs (94, ), or
with the Hilbert scheme of effective divisors D on M with fixed fundamental class ¢;(D)=c;(N) (see
[119], [99], [91], [47], [48]).

Another main simplification is due to the fact that, thanks to the presence of an (almost) complex
structure J on the manifold M, we can split the space of symmetric 2-tensors sym (7'M, g) in J-linear and
J-antilinear. As a consequence we will be able to split the third of the kernel equations (42¢) in simpler
equations, thus succeeding in extracting significant information from (42c¢), and in proving the main
theorem of this work: the transversality of the Seiberg-Witten functional over an irreducible monopole
with hermitian perturbations. This means that for a generic hermitian metric h sufficiently close to the
Kahler metric g of the manifold the Seiberg-Witten moduli space will be smooth. We can show with a
counterexample that we cannot hope to get transversality remaining in the K&hler class of g.

5.1 Kahler monopoles

In this subsection we will write Seiberg-Witten equations on a Ké&hler surface and we will prove that
a Kihler monopole can always be identified with a holomorphic pair (94, ), where 04 represents a
holomorphic structure on the line bundle N and « is a holomorphic section of (N,d4). We will sketch
the proof that the Seiberg-Witten moduli space is isomorphic to the moduli space My of holomorphic
pairs. We obtain two important consequences: the first is the structure of Seiberg-Witten moduli space as
a fibration over the moduli space of holomorphic structures on N, with fibre |N4| ~ P(H°(M, N4)), the
complete linear system of divisors linearly equivalent to N4; on the other hand the deformation complex
for My allows us to identify the cohomology group H'(D, N4|p) as the obstruction to the transversality
of the Seiberg-Witten functional in the point (A, @), where D = Z(«). In the end of this subsection
we use this fact to provide a counterexample which shows that we cannot hope to obtain transversality
deforming the Kéhler metric remaining in the Kahler class, and that it is necessary to change the metric
with perturbations more general than Kahler ones.

Let us begin by writing the Seiberg-Witten equations on a Ké&hler surface. A spinor v € W, ~
AYO(N)@® A%2(N) can be written as a couple ¥ = (a, 3), a € A%°(N), 3 € A%2(N). The element ¥* ®1)
is the element of End(W. ) of the form :

(P a8
ver= <a6 Iﬂl2> |

-8 -
B
[ ® 9] =< 2 f‘a2> .
0 afB 18] 2\ |

comes from the element (@3/2 + iw(|a|? — |B]?)/4) in the isomorphism (19). We will denote with A the
unitary connection on N and with Ag the unitary connection on L = N ® K;f. We remark that

Therefore

the curvature Flq, on L is 2F4 — F4 Ky o SIDCE A is the connection A% @ A Kb hence we can express
everything in terms of the unitary connection A on N. We remark also that the hermitian connection
on Ky is holomorphic, then Fg’f = 2F2’2. We will denote with A the contraction with the Kéhler form.
We are now ready to write Seiberg-Witten equations on a Kéhler surface:

daa+ 058 =0 (43a)
Fy? = % (43b)
2 1312
T L (430)
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We will denote the Seiberg-Witten functional for these equations with Fyy and with Cy = AYM(N) x
A%O(N) x A%2(N) the configuration space for Seiberg-Witten equations on a Kéhler surface with Spin®
structure given by the spinor bundle A®*T* M ®@N. We have immediately the following involution between
the configuration space Cn and Cn+gKy,:

Proposition 5.1. The conjugation (A, «, ) — (A* ® Ak,,, 10, ta) given by the complex hodge star §
induces an isomorphism between the configuration space Cn and the configuration space Cn+gi,, -

Proof. The proof of the proposition is immediate. The only thing to verify is that (A* ® Ak,,)* ®
Ax,, = A, but this is evident.

O

Definition 5.2. Let L a line bundle on a Kéahler surface and let w its Kéhler form. The degree of the
bundle L is the real number:

J(L) = /Mcl(L)/\w = i MFA Aw = ci(L).Jw] .

We will now sketch the proof that a solution to Seiberg-Witten equations (43) determines a holo-
morphic couple (94, ), where d4 is a holomorphic structure on N and « is a holomorphic section of
NA = (N, 8,4)

Proposition 5.3. Let N a line bundle on the Kdhler surface M. Let (A, a, 3) a solution of the Seiberg-
Witten equations (43), that is a zero of the functional Fy. Then

(1) If 2J(N) — J(Ku) < 0 then = 0. As a consequence the semiconnection 84 is integrable (Fy° =0)
and defines a holomorphic structure on N ; moreover « is a holomorphic section of Na;

(2) If 2J(N)—J(Kpr) > 0 then a = 0 and the semiconnection 5A*®AKM defines an holomorphic structure
on N* @ Kypr; moreover 3 is a holomorphic section of Nj @ Ky ;

(3) If 2J(N) = J(K) then o = 0 = 8 and A is an anti self-dual connection (or an abelian istanton) on
N.

Proof. Let us prove the first statement. This is readily done by applying the d4-operator to the Dirac
equation obtaining
FYla+25, =0
and by plugging in the second equation,
of*8
4
which yields, after taking the scalar product with 8 and integrating on the manifold:

AgAﬂ—l— =0

- 1
1926113 + 1l lallBl1Iz =0

This implies the overdetermined elliptic equations 0%8 = 0 and daa = 0, and |a||3| = 0. By lemma
4.5 and theorem 4.7 we get that a = 0 identically or 8 = 0 identically. Now we can express the degree
J(N®* @ Ky) = 2J(N)— J(K) as a function of the integral of |o|2 — 3|2 by means of the third equation,
and the hypothesis of the negativity of J(IN P RK ) allows us to conclude stating that 3 have to vanish.
As a consequence Jy4 is a holomorphic structure on N and « is a holomorphic section.

Suppose now 2J(N) — J(K) > 0. Then 2J(N* ® K) — J(K) < 0 and we use statement (1) and
proposition 5.1 to prove that fa = 0 and 0 A, defines a holomorphic connection on N* @ Kp;. We
only need to remark that da«ga,, induces on N* ® K the holomorphic structure (04)* ® Ok,,, that
is (N*® KM)A*®AKM is exactly N ® K.
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5.1.1 Holomorphic pairs
We will now describe briefly the moduli space of holomorphic pairs M.

Definition 5.4. (cf. [75]) A semiconnection da of type (0, 1) on a vector bundle E on a complex manifold
M is said a holomorphic structure if 9% = 0.

We will denote with H(E) the set of holomorphic structures on E and with E4 the holomorphic
vector bundle induced on E by the holomorphic structure 4. Two holomorphic structures 94 and Op
are gauge equivalent if there exists g € Aut(E) such that g~'dsg = Op, or equivalently if there exists
g € Aut(FE) such that g : Ex —— Ep is an isomorphism of holomorphic vector bundles. If L is a line
bundle the set H(L) is simple to describe. Indeed let 94 € H(L). Then any other semiconnection d + 7,
T € A% (M,C) is holomorphic if and only if 7 = 0. Therefore H(L) is an affine space with underlying
vector space the space of O-closed (0, 1)-forms Z%!(M,C). The moduli space of holomorphic structures
on L is then the quotient M(L) ~ H(L)/C>(M,C*), since Aut(L) ~ C*(M,C*). It easy to see that
for a line bundle L the moduli space M(L) is always smooth (cf. Kobayashi [75]) and its tangent space
T5,M(L) ~ H*(M,C). If M is simply connected M(L) is then a point, or equivalently there is only one
holomorphic structure up to gauge equivalence.

We pass now to talk about holomorphic pairs (94, ), where 94 € H(L), o € H°(M,Ly4). Two
holomorphic pairs (04, ), (05, 3) are said gauge equivalent if there exists g € Aut(L) such that g =
g 1049 and B = ga. The space of holomorphic pairs is clearly the zero set of the map

F:AL) x T(L) — A% (M) x A% (L)
(94, 0) (—0%,0a0)
and the moduli space of holomorphic pairs My, is the quotient My ~ Z(F)/C>(M,C*). Let us study the
deformation complex for this moduli space, and its Zariski tangent space. Consider first the morphism

G of trivial bundles given by

Z(F) x A% (M) x A>L(L) G, Z(F) x A%(L)

((5,4,04),0’, 8) —— ((5,4,0&)70'05 + gAﬁ)

It is clear that F takes its values in the kernel of G. Therefore (04, «) will be a regular point if D, F is
onto ker G. The differential of F in the point (9, @) is D5, o F = (—0w,wa+034/3) and the deformation
complex KC® is given by:

0 —> C®(M,C) — A (M) B T(L) 25 A%2(M) @ A% (L) S A2(L) —~ 0

where the first arrow is given by the linearization of the C*° (M, C*)-action : f — (—0f, fa). We recall
that given two complexes

Ky:=... — Kl — KPP L gPF2

and
K5 :=... —»Kg—»Kg—H—vKéH_Q—»

and given a morphism of complexes f® : K} —— K3, the mapping cone of f, denoted with M(f)® is
defined by M(f) = Ki*! @ K with differential

1+1
M(f)® fitl dzk. :
2

By definition we have an exact sequence

0 — K3 — M(f)* — K{[1]] — 0
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where K[1]" = K|T'. Now if we set Ky = A%*(L) and K} = A%*(M) the deformation complex K*® can
naturally be identified with the mapping cone of the map: o : A%*(M) —— A%*(L). As a consequence
we have an exact sequence of complexes:

0 — A" (L) — K* — A" (M)[1]] — 0
which induces a long exact sequence in cohomology:
. — HY(K3) — H'(K*) — HY(K{[1]) — .... (44)

By Dolbeault theorem the i-th cohomology group H® of the complex A%®(M) is exactly the sheaf coho-
mology H*(M,O);) and the cohomology of the complex A%®(L) is H*(M, L). Therefore the long exact
sequence (44) becomes:

. — H (M, L) — H'(K*) — H™*Y(M,0y) -2+ H*YM,L) — ...

We remark that the multiplication by a : Opy —— L gives rise to an exact sequence of sheaves:

0—> Oy —+L—Lp—>0 (45)
where D = Z(«) is the divisor defined by the section «. The sequence (45) induces a long exact
cohomology sequence:

. — HY(M,0On) — H'(M,L) — HY(D,Lp) — H""Y(M,0) — ... (46)

and comparing (44) and (46) we get:
HY(K®)~ HY(D,Lp) . (47)

This implies H°(K*) ~ H°(D, Lp), HY(K®*) ~ H'(D, Lp) and x(Lp) ~ h°(Lp) — h*(Lp). The Zariski
tangent space of the moduli space of holomorphic pairs is isomorphic to H°(K*®) ~ H(D, Lp) and the
expected dimension of the moduli space is x(Lp). Finally the differential D (5,,a)F is surjective and the
moduli space is smooth at (94, a) of the expected dimension if and only if H'(D,Lp) = 0. By means
of the Riemann-Roch formula (cf. Kobayashi [75]) for curves we can compute the expected dimension

X(Lp):

x(Lp) = x(L)—x(Om)
= X(Ou) + 51 (L) ~ er(D)er (Kn)) = x(On)
1

= (@)’ —a(l)e(Kn)) .
Consider now the projection

Z(F) H(L)

(5,4, a) f— 6,4

By construction of the C*° (M, C*)-action on the two spaces it is immediate to see that the projection is

equivariant, thus inducing a projection:
m: My — M(L).

It is easy to see that the fiber 771(04) can be identified with the complete linear system P(H®(M, L))
of divisors linearly equivalent to L4. If the manifold is simply connected M (L) is a point and the moduli
space of holomorphic pairs is isomorphic to the projective space P(H?(M, L A)).
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We will now sketch the proof that the Seiberg-Witten moduli space of Kihlerian monopoles M3V
is isomorphic to the moduli space of holomorphic pairs M. We first remark that we chose the couples
(A,4) as unknowns for the Seiberg-Witten functional Fp, where A is a connection on N (and not
on L = N® ® K]\j[l as it is usually done). The induced action of the gauge group C*°(M,C*) on
A%(l) is simply given by: g.A = gAg~'. Indeed the action on the connection A®® @ AK;; on L is
g.(A®" ® AK;;) =A% ® A1 — 2(dg)g~! = (A — (dg)g~")®" ® A1 by lemma 2.2. This means that
the induced action on .AJ[{,(I) is g.A = gAg~L.

Proposition 5.5. Let N a holomorphic line bundle on the Kahler surface M. Let M%W the Seiberg-
Witten moduli space of Kdhlerian monopoles. If J(N®2 ® K]\_/Il) < 0 then M}%W is isomorphic to the
moduli space of holomorphic pairs My .

Proof. Consider the map:
j:Z(Fn) — Z(F)
(4,0) F—— (9a,0)

that associates to a Kihler monopole (A, a) the holomorphic pair (04,«). This injection is clearly
equivariant for the C>°(M, S')-action. Indeed let g € C>°(M, S'). Then

g9.(A, ) = (A — (dg)g ™", ga) ;

the (0,1) part of A — (dg)g™! is 94 — (9g)g~! and hence J;. 4 = gdag~' = g.04 which implies that the
map j is equivariant. To prove that j induces an isomorphism between the quotients one proves that
the C°°(M,C*) orbit of an element (J4,a) intersects Z(Fy) along exactly one C*(M, S*)-orbit. The
proof consists in expressing an element g € C>° (M, C*) as a product g = uf, where u € C>°(M,R") and
6 € C°°(M, S'). With a classical argument by Bradlow and Kazdan-Warner (cf. [14], [73], [47]) one can
see that the C> (M, R*) orbit of the element (94, ) meets Z(Fy) in exactly one point if and only if the
hypothesis on the negative degree J(N®* ® K,;;') is satisfied. Acting with C°°(M, S*) will then produce
C>®(M, S') equivalent points, that is, the searched C>°(M, S*) orbit in Z(Fy).

O

The interrelation between Seiberg-Witten theory and complex geometry is extremely rich. Some years
before the coming out of Seiberg-Witten equations, Bradlow ([14]) proved the isomorphism between the
moduli space of holomorphic pairs on a line bundle M(L) and the moduli space of vortex equations,
which were precursors of Seiberg-Witten equations on Kahler surfaces. His point of view has been
taken up by Okonek and Teleman in [99], who show the links between vortex equations, moduli spaces
of stable pairs and coupled Seiberg-Witten equations, thus extending Bradlow’s work to non abelian
monopoles. Friedman and Morgan in [48] prove the isomorphism of real analytic spaces between the
Seiberg-Witten moduli space and the Hilbert scheme DivY (M) of effective divisors D of fundamental
class ¢1(D) = ¢1(N) = w.

Corollary 5.6. Let N a line bundle on a Kdhler surface M, with ¢1(N) =w. Let ¢ = 2w — k the Chern
class of the line bundle L = N® g K&l, Let W ~ A®*T*M ® N the spinor bundle associated to the
Spin® structure of determinant line bundle L and let k = ¢1(K).
(1) If ck < 0O the moduli space of Seiberg-Witten monopoles MW is isomorphic to the Hilbert scheme
DivY (M) of effective divisors of fundamental class w. It is a fibration over the moduli space of holomor-
phic structures M(N) on N with fibre Mgﬁv ~ P(H°(M, Ny)), the complete linear system of divisors
linearly equivalent to N 4.

Ifck > 0, MSNZV@OK is isomorphic to the Hilbert scheme Divi_w(M) of effective divisors of fundamental
class k —w. It is a fibration over the moduli space of holomorphic structures of N* ® Ky with fibre over
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Oa-oK,, the complete linear system P(HO(M, N} ® Kar)) of divisors linearly equivalent to N% @ K.
(2) The expected dimension in the point D of MW is

X(Np) = (¢ — ) = (& — (2x +37)

(3) M%W is smooth of the expected dimension in the point D if and only if H* (M, Np) =0, or if D = 0.

Proof. By the preceding proposition we only need to prove the dimension formula. By what we have
said about the moduli space of holomorphic couples

X(Np) = (N = e (N)K)
= S~ k)

but w = (¢ + k)/2; then

X(Np) = ;(<C+4k>2_<c+2k>k>
- ;<024k2)=;(62—(2x+37)).

The last equality follows from Noether formula (cf. [54])

c1(M)? + co(M)

X(On) = 12

and recalling that y(Oy) = —k?/2.

5.1.2 A counterexample

In this subsection we will use our knowledge of the obstruction to transversality of Seiberg-Witten func-
tional Fyy in cohomological terms (i.e. the group H'(M, Np)) to prove that Kihler perturbations of the
metric do not suffice to obtain transversality. Let M be a smooth projective surface of degree 7 in the
projective space P3. We then have (cf. Hartshorne [65] or Griffiths-Harris [54] ): Ky = Opn(3). M is
simply connected. Let us take N = Op(1).

J(N® @ K™') = J(Oy(2) ® Opr(—3)) = J(Op(~1)) = —1 < 0.

We have just proved that the moduli space of Seiberg-Witten monopoles associated to the Spin®
structure A®*T*M @ Opr(1) is isomorphic to P(H?(M,Opr(1))), that is the complete linear system
of divisors linearly equivalent to Oy (1), or, said another way, the hyperplane sections. We have
dim P(H°(M,Op(1))) = 3, dim H°(D,Np) = dim H°(D,0Op(1)) = 3 and the expected dimension
X(Np) = (1/8)(7 — 63) = —7. Therefore dim H'(D, Np) = 10: the Seiberg-Witten moduli space is
not smooth of the expected dimension. We now try to obtain transversality by changing the metric in
the following way. The metric g, the complex structure J and the symplectic form w are linked by the
relation:

9g(X,Y)=w(JX,Y).

We then can change the metric by fixing w in the preceding relation and varying the complex structure
J —— J; (among the tame complex structures with respect to w, that is w(J; X, X) > 0), but we
impose that the complex structure J; remains integrable. A new metric g; will be defined as ¢:(X,Y) =
w(J; X,Y). Since w is fixed, and the triple (g, J¢,w) is again an hermitian triple, then the relation (16)

144



implies that the metric g; is again Kéhler. Moreover (M, J;) is a clearly a deformation of the complex
manifold (M, J) (cf. Kodaira-Morrow [78]). Now we can take the versal deformation (M, .J;) of (M, J).
We know that a versal deformation exists and that a deformation of a Kahler manifold is again Kéahler
(for small t). Moreover the versal deformation contains all possible deformations of (M, J). In other
words, with a versal deformation we will realize all possible Kéhler metrics ¢g; in the way described
above. Let now X —— S the versal deformation of the surface M: it is a family of complex surfaces
parametrized by a complex manifold S. Let so € S. We will assume that M ~ X, . Let w € H*(X,Z)
and w, = jiw € H?*(X,,Z), with j, the embedding of the fiber over the point s: j, : X, —— X. Let
H = Div*(X/S) — S the relative Hilbert scheme of couples (s, D), where s € S and D € Div*s(Xjy)
is a divisor of fundamental class ws. We have the exact sequence of locally free sheaves over D:

0 — Np;x, — Np;x —> Nxs/x — 0

where in general Ny, indicates the normal sheaf of Y in Z. Now Nx:,x ~ Op(TS). Therefore we get
a Bockstein morphism:
T.,S — H'(D,Np/x.) -

On the other hand we have an exact sequence on Xj:
X
from which we get another Bockstein morphism:
1,8 — H'(X,,TXj)
which is nothing but the morphism of infinitesimal deformation of Kodaira-Spencer. We get a commuta-
tive diagram:

T, —— HY(X,,TX,)

Hl(DaND/XS)

where the vertical arrow is induced by the differential da : TX | p — Np and a is a section of N
such that Z(a) = D. Since we are going to deal with the versal deformation the horizontal arrow in the

diagram above (the Kodaira-Spencer map) is an isomorphism. The map
HY(M,TM) — H(D, Np) (48)

is the algebraic-geometric interpretation of the contribution of the variation of the metric (in terms of

variation of complex structures) to the surjectivity of the Seiberg-Witten functional and corresponds to

the map induced by the partial differential BIF; /0 restricted to Kéhler variations of the metric followed

by the projection onto the cokernel coker DF of the Seiberg-Witten operator DF. In other words we

have transversality with K&hler perturbations of the metric if and only if the map (48) is surjective.
The map (48) is surjective if and only if the transposed map:

HY'(D,Np)* — HY(M,TM)*

is injective. By Serre duality and by the adjunction formula N}, ~ Ky, | p ® K7, this is equivalent to the
injectivity of the map:
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Consider now the restriction map:
HO(M, Ky) — HY(D, K| ) 5 (50)
by the long cohomology sequence associated to the short exact sequence:
0 —> Ky(—D) — Ky — Ku|, — 0
it is surjective if and only if h'(M, Ky (—D)) = h' (M, Op (D)) = 0. Now the short exact sequence:
0 —» Opr — O(D) —= Op(D) —= 0

and the fact that H'(M,Op;) = 0 (by Hodge decomposition and by Lefschetz theorem) induce the
following exact sequence:

0 — H'(M,0p (D)) —> HY(D,0p(D)) — H*(M,0pr) — H*(M,0p (D)) — 0. (51)
We have:
h*(Opr) =h°(Kpr) = h°(Op(3)) = h°(Ops(3)) = (3 ; 3) =20
B2(On (D)) =h2(Oar(1)) = KO (2)) = KO(Os(2)) = (3 ' 2) _10.

Knowing that, by Riemann-Roch and by Bertini theorem,

X(Op(D)) =1~ g(D) + deg0p(D) =1 - T=NT=2 7 7
1(0(D) =2(Op (1) = 1°0e(1) = (* 1) =

which implies h'(Op(D)) = 10, we get from (51)
R (O (D)) = K (Op (D)) — h*(Opr) + h*(O(D)) =10 —20+10 =0 .
This means that the restriction map (50) is surjective. Therefore the composed linear map:
H(M, Knr) — H' (M, Q3(Kar))

is given by the cup product with the Chern class ¢1 (D). Since Ky = 3D we see that the multiplication
by the Chern class is zero in cohomology. As a consequence the map (49) is zero and therefore (48) is
the zero map, which is not surjective(!).

5.2 Transversality over a Kahler monopole

In this subsection we will prove the main theorem of this part, the transversality of the perturbed Seiberg-
Witten functional on Kéhler monopoles. Actually we will obtain the result varying the Kéhler metric with
hermitian perturbations, that is, perturbations that preserve the complex structure. As a consequence,
when we consider the Seiberg-Witten moduli space on a Kéhler manifold, this result implies that the
moduli space is a smooth compact manifold for a generic hermitian metric sufficiently close to the given
Kahler metric.

The key of the proof is the decomposition of 2-symmetric tensors S2T*M in J-hermitian and J-
antihermitian. This allows to isolate the contribution coming from hermitian perturbations and to split
the third equation (42c¢) in two simpler equations, the first of which gives the result.
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Remark 5.7. We will deal with the case J(N? ® K]\j[l) < 0 since by proposition 5.1 the conjugation §
exchanges the solutions of Fiy and of Fy«g,,, and J(N*®Ky;) < 0if and only if J(N*®@ Ky )20 K ;') =
J(N=2® Kjr) > 0. The case J(N? ® K;;') > 0 can be treated as the first after setting N = N* @ K.

Let M a Kihler surface, A>*T*M @ N the spinor bundle on M with J(N? ® K;;') < 0. Let
(A, ,0) € AVW(N) x A%O(N) a monopole, that is a solution of Seiberg-Witten equations (43). We
proved in proposition 5.3 that such a monopole satisfies :

daa=0 (52a)
F02 _ g (52b)
1, 1, i
mmf—m%izjq2 (52c)
Let now interpret the kernel equations (42) in the Kéhler context. We will identify 1-forms in A(M, iR)

with (0, 1)-forms in A%!(M) via the isomorphism o —— o — 5. We have:
Lemma 5.8. Let x € A%Y(N) a negative spinor. Then the differential form & = a ® x is given by:
&= %@X-

Proof. The differential form ¢ is characterized by the fact that p(£)a = |a|?x and p(€)B = 0 for all
B € A%2(N). Now

p(&) = VA" A~ E10)
It follows that v/2¢%'ar = |af?y and 10,3 = 0 for all § € A%2(N). Therefore £19 = 0 and &' =
1/\/550(.
O

Let now consider an imaginary self dual form § € A2 (M,iR). We know that such a form can be
written as 0 = i\w + u + fi, with A € R, u € A%2(M,C). We recall that p(6) is the endomorphism in

isu(Wy) ~ R @ A%2 given by
A po-
) 2 .
(1, A) <M- _A>

The first equation (42), d*0 4+ 2iIm(a* ® x) = 0 becomes:

_ _ 1
O+ 10" (M\w) — 0"+ 10" Mw) + —=(ax — ay) =
p (w) = 0" (Aw) \/5( X = ax)
and with the identification with A%*:
= = 1
O*u+1i0* (M) + —ax=0. 53
1 (Aw) 750X (53)
The second equation easily gives the two equations in A%9(N) @& A%2(N):
V20* x —da =0
V20x — po =0

Equation (42d), (6, F'{) = 0 gives immediately A|a|? = 0 and knowing that M — Z(«) is a dense open
set, we get A = 0. Moreover equation (42e) becomes: 9*(ay) = 0; we remark that this condition can
be obtained applying the operator 0* in (53), and thus it is not independent from the others. Therefore
equations (42a) (42b) (42d) (42e) are equivalent to:

o+ %ax =0 (54a)
V20ux — pa =0 (54b)
hx =0 (54c)
A=0 (54d)
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Consider now the mapping cone M ((1/+v/2)a)® of the morphism (1/v/2)a : A%*(M,C) — A%*(M, N).
As we saw in subsection 5.1.1 it is the elliptic complex:

0 — A®O(M) — A%Y (M) @ T(L) 25 A% (M) @ A%N (L) -S> A%%(L) —> 0 (55)
where DF(w,0) = (—0w, (1/V2)wa + dac) and G(u, x) = ((1/v2)pa + dax). If we form the laplacian
P=DF*aG:A"*(M)® A* (L) — A (M) e T(L) e A%*(L)

the equations Pu = 0 are exactly equations (54). Now by Hodge theorem for elliptic complexes, the
space of harmonic solutions ker P is isomorphic to the first cohomology group of the complex (55) :
ker P ~ H'(M((1/v/2)a)®) which, in turn, is isomorphic to H'(D, Np), where D = Z(a) and Np is
the restriction of N to D and is identified with the normal bundle of D in M. Now equations (54) are
exactly the equations of the kernel of the perturbed Seiberg-Witten operator restrained to conformal
perturbations. When we apply this reasonment to a Kahler surface M with a line bundle N such that
for some section a of N, HY(D,Np) # 0 (for example a smooth algebraic surface of degree 7 in the
complex projective 3 space), we get a counterexample of the fact that conformal perturbations help in
obtaining transversality. In such an example conformal perturbations reduce by no means the obstruction
HY(D, Np). Therefore we have to proceed in analysing the equation (42c).

5.2.1 A decomposition for the symmetric 2-tensors

In order to extract significant and useful information from equation (42¢) we will decompose the bundle
of symmetric 2-tensors S?T*M in hermitian (or compatible with the complex structure J) and antiher-
mitian. This decomposition corresponds to the decomposition of symmetric endomorphisms sym (T'M, g)
of T'M with respect to the metric g in J-linear and J-antilinear.

We begin by taking an euclidian 2n-vector space (E,g) with a complex structure J compatible with
the metric. We extend J to F ® C as usual by C-linearity: we obtain again an antiinvolution J :
E®C—— E®C. We denote with E'° and with E%! the eigenspaces of i and —i, respectively.
Therefore B = {X —iJX, z € E}; E%! = {X +iJX, z € E}. We will take AY’E = (E®!)L in
E*®C and A>1E = (EY9)L. Let f € End(FE). We will say that f is J-linear if Jf = fJ and that f is
antilinear if fJ = —Jf. We will denote with End(F, J) the space of J-linear endomorphisms of E, and
End(E, J) the space of J-antilinear ones. It is clear that we have an isomorphism:

End(F) — End(E,J) ® End(E, J)
fr——"U+JfLf=JfT).

From another point of view an endomorphism f € End(F) extends by C-linearity to a unique endomor-

phism in End¢(E @ C) such that f(2) = f(z). With respect to the decomposition £ ® C = E*Y ¢ E%!
the endomorphism f writes:
a b

We have immediately that f is J-linear if and only if b = 0, and f is J-antilinear if and only if a = 0.
Now let us take the symmetric 2-tensors S? E* and define the space of hermitian 2-tensors ST E* as

SUE* .= {sc S?E*| s(JX,JY)=5(X,Y),VX,Y € E},
and the space of antihermitian 2-tensors
AH(E) = {s € S’E*| s(JX,JY) = —s(X,Y),VX,Y € E}.
It is clear that we have an isomorphism S?E* ~ SVIE* @ AH(E) sending s — (s7,s;), where

syg=8(J,J)+s(-)and s5j = s(-,-) — s(J-,J-). We have the following lemma:
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Lemma 5.9. Let s € S?E*. Then

(1) s can be extended uniquely (by C-bilinearity) to a complex symmetric bilinear form in S?(E®C) such
that s(Z,W) = s(Z,W) for all ZW € E® C;

(2) s € SYYE* if and only if s(Z,W) = 0 for all Z,W € EYO. In this case the position (Z, W) —» s(Z, W)
defines an hermitian form on E*C. Therefore SV E* ~ Herm(E'?);

(3) s € AH(E) if and only if s(Z,W) = 0 for all Z,W € E*°. Such an s defines naturally a quadratic
form € S?(EY?) = S20F. Therefore AH(E) ~ S*VE.

Proof. The first statement is clear: when we extend a symmetric tensor to the complexified it is clearly
invariant by conjugation. We remark that a 2-tensor in S?(E ® C) invariant by conjugation is determined
by its restriction to E° x E'0 and to E'? x E%!. The restriction to E'° x E10 will clearly be a
complex symmetric bilinear form and the position (Z, W) —— s(Z, W) will clearly define an hermitian
form in Herm(E'?). Conversely a 2-symmetric tensor invariant by conjugation is completely determined
by the values it takes on the real vectors and thus comes from an element of S?E*. We have then proved
that the symmetric 2-tensors S2E* are isomorphic to S?E* ~ Herm(E'?) @ Quad(E"°). To prove the
lemma it remains to show that, in this identification, ST E* C Herm(E?) and AH(E) C Quad(E"?).
But it is clear that the extension by C-bilinearity of an element in S1! E* will satisfy s(Z, W) = 0 for all
ZW € EY0 since:

S(X —iJX,Y —iJY) = s(X,Y) —is(JX,Y) —is(X,JY) — s(JX,JY) =0

because s(JX,Y) = —s(X,JY). Therefore SV1E* C Herm(E'?). Analogously we can prove that
AH(E) C Quad(E™?) and therefore SUE* ~ Herm(E'°); AH(E) ~ Quad(EY).

O

Let us consider now the symmetric endomorphisms sym (£, g) of E with respect to the metric g. We

define the space of hermitian endomorphisms of (E,g,J) as u(E,J) := sym (E, g) N End(E, J) and the

space of antihermitian endomorphisms as su(F,J) := sym (E,J) N End(F, J). Now it is clear that in

the identification S? E* ~ sym (FE, g) provided by the metric, u(E, J) ~ SY1E* su(E,J) ~ AH(E). The
following lemma is the analogous to the preceding for symmetric endomorphisms:

(i)

its C-linear extension to an endomorphism of E ® C. Then:

Lemma 5.10. Let f € End(FE) and let

(1) f is symmetric with respect to g if and only if the form (Z,W) —— g(a(Z), W) is an hermitian form
in Herm(EY) and the form (Z,W) —— g(b(Z),W) is a complex quadratic form in Quad(E'?).
(2) feu(E,J) if and only if b=0; f € su(E,J) if and only if a = 0.

Proof. f is symmetric with respect to g if and only if g(f(X),Y) = g(X, f(Y)), for all X, Y € E:
the real bilinear form (X,Y) —— ¢(f(X),Y) is therefore symmetric, and lemma 5.9 implies the first
statement.

Let now f in u(E,J). By definition, f preserves EY and E%! and therefore b = 0. The real
bilinear form g(f(-),-) is in SH1E* since for all XY € E g(f(JX),JY) = g(Jf(X),JY) = g(f(X),Y)
and then by lemma 5.9 the position (Z, W) —— g(f(Z), W) defines an hermitian form in Herm(E*?).
Analogously, if f € su(E, J) then it is clear that ¢ = 0 and the bilinear form g(f(-),-) isin AH(E). Then
by lemma 5.9, the position (Z, W) — g(f(Z), W) defines a complex quadratic form on E*°.

O

Lemma 5.11. The space of the real hermitian tensors S“'E* is isomorphic to the real (1,1)-forms Aﬂlgl.
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Proof. We associate to s € SU1E* the 2-form ¢ € A?E* defined as: ¢(X,Y) := s(X, JY). It is clear
that ¢ is skew-symmetric, since p(X,Y) = s(X,JY) = —s(JX,Y) = —s(Y,JX) = —¢(Y, X), and that
it is a (1,1)-form: if Z, W € EYY then o(Z,W) = s(Z, JW) = is(Z,W) = 0 by lemma 5.9. That this

correspondence defines an isomorphism is trivial.
O

Remark 5.12. If ¢ is the real (1, 1) form associated to a real hermitian endomorphism s € St E*| then,
taken a complex basis Z1, ..., Z, of E'? and a dual basis £',...,£" in AMYE and setting 8,5 = s(Zi, Zj),
we have

(1) sij =3

(2) =203, 5; 58" NEF

See [77] for details.

We consider now the real tangent bundle TM of an almost hermitian manifold M with its almost
complex structure J and we define the bundles End(T'M, J) and End(T'M, J) of J-linear and J-antilinear
endomorphisms of T'M, respectively; the bundles u(T'M, J) and su(T'M, J) of real hermitian and an-
tihermitian endomorphisms of TM, and finally the bundles S“'T*M and AH(TM) of hermitian and
antihermitian 2 tensors on T'M. Global versions of lemmas 5.9, 5.10 and 5.11 are valid on TM. Let us
now take M an hermitian manifold ( we assume now that the complex structure J is integrable), and let
Z1,...,%2n local complex coordinates in M. The extension of f to TM & C decomposes in

()

We can write a = >, a;jdz; ® 9/0zj and b =3, bijdz; ® 9/0z;. We can use the complex bilinear form
gc to identify TM @ C and T*M ® C (remembering that the complex bilinear form g¢ exchanges 7'M *°
with A®1T*M and TM%! with AL9T*M. The J-linear endomorphism a is then identified with a section
a of AVOT*M ® A%1T*M and writes as: a = >ij @ijdz; ® dzj. The J-antilinear endomorphism b can be
identified with a section b € S>9T*M = S*(A"0T*M), b = 3, bijdz; @ dz;. By the preceding lemmas
5.9 and 5.10 and we have @, ; = a; ;, and b;; = b;;. Moreover the remark 5.12 implies that the real (1,1)
form associated to @ is —2¢ Zij a; 5dz; N\ dz;.

We can now make the identification 3.7, symo(T'M, g) ~ Hom(A2T*M, A3 T*M) more precise. We
identify A2T*M with Ai’LR, that is with the real (1,1)-forms othogonal to the Kahler form w, and

A2 T*M with A>?T*M®Rw. If f € sym (T'M, g) let a(f) € End(TM'°) and b(f) € Hom(TM*°, TM!)
the components of the extension of f to TM ® C as seen in lemma 5.10. With this notations we have:

Lemma 5.13. For all f € ug(T, J) then

S(HAL CRw.

Therefore the isometry § : symo(TM,g) — Hom(A2T*M,AZT*M) splits as :

sym o(TM, g) ~ ug(TM, J) ® su(TM,J) — Hom(A

wl R?
(s,t) 1 > (0(b(t)") , 6(s%) )

Proof. Tt is clear that the derivation i(s*) induced by an element s € ug(T M, J) preserves the spaces

AVYT*M, A20T*M and A%?T*M since s is J-linear. Therefore for such s, 6(5*)Aii C AL but we

know by lemma 3.7 that 6(s*)A2T*M C A%2T*M; as a result 5(3*)Ai}’i C A%2T*M @ Rw and hence

5(3*)Aﬁ CRw. If t € su(TM,J), t is J antilinear, as a consequence its extension to TM & C exchanges
TMY and TM®!, and hence i(t*)AYt € A®2TM @ A20TM. We can write t* = b(t)* + b(t)*, b(t)* :

A%2T*M) @ Hom(A"! _ Rw)

1
wl R?
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AT M —— AMOT* M, and b(t)* : AYOT*M —— A®YT*M. Therefore i(b(t)*)AV1T*M C A20T* M
and (b(t)*) AV T*M C A%2T*M. Therefore in the splitting
Hom(A2T*M,A3T*M) ~ Hom(A"!

w R

A%2T* M) @ Hom(A"!

w R

Rw)

an element f = s+t acts as §(b(t)*) @ 6(s*).

5.2.2 The main theorem

In this subsection we continue the computation of kernel equations (42) in the Kéahler context. We are go-
ing to interpret the contribution of the metric (equation (42¢), (9F 1 /9p)*(x, #) = 0) for a Kéhler surface
on an irreducible monopole (A, a, 0). We recall that in general the partial differential OF JOw(A, ,id)(s)
is

OF

S (A id) () = (

—1p(divs) —posoVy
6(s)Fy

where we have taken s € symo(TM,g). Now Va = da + da= Oa since by (52) « is holomorphic.
Moreover if s € ug(TM, J), s leaves TM'¥ invariant; hence by definition of the Clifford multiplication p

on an hermitian surface:
posoda = Z pla(s)*(dz) ® 0a,i)

= V2Y l(a(s)* (d=))"" A D s+ (als) (@) P-D00] = 0
i
because a(s)*(dz;) € AYOT* M and because of (17). Therefore p o (s +t) o da = p o b*(t) o Ja. Seeing
b* in A% (T M) we can further interpret p o b* o dar as v/2b* 10a, where the last expression means the
duality contraction between TM'? and AMOT*M, followed by multiplication by the form component in
A%1T*M. From what has been said until now the operator dF, /9 (A, 1,id) can be written on Kéhler
surface as:

OF . /8p(A, a,0,id) : ug(TM, J) & su(TM, J)

AO,I(N) o AO,Q(M) D F(R)w
— L (div (s +)"a — po b+ (t) 0 da
(s,t) ——— S(b(t)*)Fy

S(s*)Fy
We will now better interpret the term (div (s +¢))%1a.

Lemma 5.14. Let s € sym (T'M,g) a symmetric endomorphism. In the identification TM ~ T*M

provided by the metric we have
divs =—-V*s.

Proof. We compute the symbol of the two differential operators in order to verify that the two symbols
are equal in a point p. We use an adapted orthonormal frame e; in the point p. Let e? the dual frame,
s;j the symmetric endomorphism e’ ® e; + ¢/ ® e; and f a function such that f(p) = 0 and df (p) = &.
Then

div f(sij) = &e’ + &ie!

and

V*(fsl]) = 7(53 ei)ej + 7(57 ej)ei )
which proves that the two operators have the same symbol. Now, it is clear that they coincide in p,
because they are both zero on all the elements of the form s;;.
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Let now s+t in sym (T'M, g), s € w(TM, J), t € su(TM,J). In the decomposition TM10 & TMO!

(s +t) can be written as:
o0
S =
b a

Therefore div (s +t) = div (a +a+ b+ b). Now a belongs to ALOT* M @ TM'C. Identifying tangent and
cotangent bundle by means of the complex bilinear form gc, a can be regarded as an element of AVT* M ®
AYIT*M. Analogously b can be seen as an element of AVOT*M @ AYOT*M, a € A% T*M @ AVOT* M,
b € A%'T*M ® A%'T*M. The Levi-Civita connection V is compatible with the complex structure
(VJ = 0) and therefore preserves the type decomposition TM*0 @ TM%! and AMOT*M & A*T*M. As
a consequence the connection V induces differential operators (connections):

V:TAYT*M) — T(T*M @ AY°T*M), V:T(A"'T*M) — T(T*M @ A“'T*M) .

Moreover we can split the connection V according to types: V = V10 + VOl For brevity’s sake we
indicate V1:? with D and V%! with D. As a consequence:

div(s+t) = —V*(s+1t)
= —(D+D)*(a+a+b+b)
= —D*a—D*a— D*b— D*b.
When we take the (0, 1)-component of div (s + t) we get
div (s +t)%! = —D*a — D*b
We can finally write the partial differential OF, /d¢(A, a,0,id)(s, t) for s € w(TM,J), t € su(TM,J):

oF Z5(D*a(s))a+ 5 (D*b(t) — V2b(t)* 20
7(A,Oz,07id)(8,t) = 5(b(t)*)FZ (56)

)
v 5(s*)F;

We are now ready to prove the main theorem. Let Ut (T M, J) = Sym™* (T M, g) N End(T M, J).

Theorem 5.15. Let M a Kdihler surface, g its Kdhler metric. Let N a complex line bundle on M
such that 2deg(N) — deg(K) < 0. Consider the Spin®-structure on M whose spinor bundle is W =

A>*T*M @ N. Consider the perturbed Seiberg- Witten functional (36):
. U ,
(F4)2 : (Agih )2 x T2(W,) x Sym ™ (T'M, g)? T2 (W_) x isu(Wy)2

(Av.0) - (0F 0 0y, D (pre0) (o )

Any zero of B of the form (A,1,id) is a regular point for F,.

Proof. To prove that a zero of IF‘+ of the form (A,,id) is a regular point for ]FJF it is sufficient to
prove that the differential at the point (A4, 1, id)

(D(A,w,id)]FJr)i c AN (M, iR)i X F;%(WJr) x sym (T'M, 9);2) - F12771(W—) x i5u(W+);2771

is surjective. By what we have said in remark 4.6 and by theorem 4.5 proving the surjectivity of
(D(A)w)id)fFJr)g at a point (A, 1),id) is equivalent to proving the surjectivity of

Da iy : AHM,iR) x T(W4) x sym (T'M, g) — T(W_) x isu(W,)
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Now by the discussion in subsection 4.2, proving the surjectivity of D A,w,id)fF+ is equivalent to proving
that ker(D(A7¢7id)F+)* = 0. In subsection 4.3 we have proved that an element (x,§) € I'(W_)x A3 (M, iR)
satisfies (D A,u;,id)F—i-)* (x,0) = 0if and only if it is a solution of equations (42). In the previous subsections
of this section we have proved that equations (42a), (42b), (42d), (42e) on a Kahler manifold are equivalent
to the system:

6*M+L@X:0
V2
\/iéAx—ua:O
x =0
A=0

for y € AL (N) and 0 = idw +p — i € Rw @ A%3(M) ® A2°(M) and where the spinor ¢ = (,0) €
AYO(N) @ A%2(N). We remark that the equations above take already into account the contribution of
conformal perturbations of the metric. Let us now interpret equation (42c¢) in the context of Kéahler

O, "
<330|Sym0(TM’g)) (Xa 0) =0.

Thanks to the splitting S3T*M ~ uo(TM, J) & su(TM, J) we can define the two differential operators

geometry. It corresponds to

6IF‘+ 61~F+
P = Who(TM,J) y Pi= %\su(TMJ) :

Therefore equation (42c) is equivalent to the two equations

Pi(x,0) =0
Py (x,0) =0.

By the computation made in this subsection we can express the operator P, as:

3(D*a(s))a
Pi(s) = 0
d(s)Fy

Therefore its adjoint is easily
P (x,0) = herm[D(ax)] — Re tr D(ax) + (F;)* ® \w .

Now herm[D(ay)] = D(ax) + D(ay) and Re tr D(ay) = i(9*(ax) — 0*(ay)). Therefore the equation
P (x,0) = 0 becomes:

D(ax) + D(ax) —i(9"(ax) — 0" (ax)) + (F;)* @ w =0,
and identifying the first terms with real (1, 1)-forms by lemma 5.11 it becomes:
d(ax) + O(ay) — i(0* (ax) — 0*(ax)) + (F1) @ Aw =0

It is now easy to see that equations (42a), (42b), (42d), (42e) coupled with P;(x,0) = 0 admit no
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nontrivial solutions. Indeed suppose that (x,#) is a solution of

o u+ %ax =0 (58a)

V204X — pac =0 (58b)

x=0 (58¢)

A=0 (58d)

d(ax) + d(ax) —i(9"(ax) — 9" (ax)) = 0 (58e)

where we did not write the term (F, )* ® Aw in the last equation because A = 0. The first equation
implies that 9*(ax) = 0 and therefore 9*(ay) = 0. As a consequence the system (58) becomes equivalent
to

_ 1
O*u+ —ax =20
50X

V20, x — por =0
hx =0
A=0
d(ax) + 0(ax) =0

We now apply the operator 9* to the last equation, obtaining
Ap(ax) + 0 0(ay) = 0.

On a Kihler surface one has the Kihler identity 9*0 + 99* = 0, hence 0*0(ay) = —09*(ay) = 0. As
a consequence Ap(ay) = 0, which means that ay is Ap-harmonic. But, again, on a Kéhler manifold
Ay = Ay and hence ay is Ag-harmonic. This implies d(ax) = 0. Applying the operator 9 to the first
equation we get Agu = 0, which implies 9* ;1 = 0. As a consequence ay = 0 and x = 0. From the second
equation (or from lemma 4.22) we get u = 0. Therefore if there is a solution to 58, it must be necessarily
Zero.

O

Remark 5.16. We can reobtain theorem 5.15 by means of Gauduchon result (cf. [51], Corollaire 3)
on the form of the Dirac operator on an almost hermitian 4-manifold for the canonical Spin-structure
twisted by a line bundle N, which we recalled in subsection 1.9:

DA =204 +3) ~ 1p(6)

where 0 is the Lee form. We place ourselves on a Kéhler surface (M, g,J) and we perturb the metric
g+ = g + tk imposing that the new metric g; remains hermitian with respect to the complex structure J,
that is:

9t(JX,JY) = g(X,Y) (60)

for all XY € TM. In this way we obtain a family (M, g, J) of hermitian structures on M. Taking the
derivative of (60) in t = 0 we get k(JX, JY) = k(X,Y), which means that the variation k is in S T* M.
We remark that the bundle of spinors remains the same, since J is fixed, but the Clifford multiplication
changes. In any case the Dirac operator for the canonical Spin¢-structure on (M, g;, J) is given by:

= = 1
DYy = V(04 +33) ~ 10(01)
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where now 6; = A;w; is the Lee form of the non closed fundamental form w;. We remark that wg = w
is the original Kéhler form of (M,g,J), which is closed, and that the Dolbeault operator 94 is fixed.
We now take the initial Dirac equation d4c = 0 on the Kéhler surface and we perturb the metric with
hermitian variations. As a result we obtain a family of Dirac equations:

VE(Ba0) — ip(@t)a —0

and taking the derivative in ¢ = 0 we get the variation of the Dirac operator applied to the spinor («, 0)
with respect to hemitian perturbations:

d 1 .
%Di‘ah:o = —10(9)04 .
We have:
. d . )
0= %Atdwth:() = Adwo + Adw

= Adk

where we indicated again with k the real (1,1)-form associated to the hermitian tensor k € SY'T*M.
Therefore the variation of the Dirac operator applied to the spinor («,0) is —1/4 (Ak)>!a. But

AOk
[A, Ok + O(k,w)
—i0*k 4+ Otrk .

(Adk)%1

Now, when we take the adjoint to this operator we get the contribution

9(ax) + 9(ax) —i[0" (ax) — 0" (ax)|w = 0
for the kernel equations. We can then proceed as in the preceding argument.

We now come to the geometric meaning of theorem 5.15. We need to recall the slice theorem for
standard Seiberg-Witten moduli spaces (cf [91]). Let C = A(Iijeftll)/(/ x I'(W,) be the standard Seiberg-
Witten configuration space, G = C*°(M, S') the gauge group, and let C2 and G2, be their Sobolev

completions.

Proposition 5.17. There are local slices for the action of g12)+1 on Cﬁ, that is, for each point x € CZQ)
there is an open neighbourhood of the point x and a smooth Hilbert submanifold S, of this neighbourhood
invariant under the stabilizer Stab(x) of x such that the natural map:

Sav xStab(z) g;-l—l - C;%
is a diffeomorphism onto a neighbourhood of the orbit through x.

The slice S for the action of gﬁ 1, through a point (A, ) solution to the Seiberg-Witten equa-
tions, such that ¢ # 0, is easily given by means of the map T4 ) : Cg — C®°(M,iR) defined as
Taw) (A 0) = (Dyay) (A" — A, @) where 74,4 denotes the G2, -action through (A,v): yau(g) =
(g72Ag?, g7b), and thus (Dva )" is then the adjoint of the differential of the action. We clearly have
DY 4,4y = (Dva,y)* which is underdetermined elliptic and surjective if ) # 0 because ker Dy, =
Stab(x) = {0}; therefore (Dvya,)* is surjective by theorem 4.5. Therefore by Implicit Function Theo-
rem there is an open neighbourhood Uy y of (A,v) in C2 such that Z(Y) N Uy, is a smooth Hilbert
manifold S4 . A direct application of the slice theorem gives a corresponding slice theorem for the
action of G2,; on €2 = C2 x Sym™(T'M, 9)3 or for éi = C2 x UT(TM, J)?2. In particular the slice for
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the G2, ;-action on € (or éi) on a point (4,1, @) can be given (since G2, acts trivially on the second
factor) by Sa 4 x B(go,s)g, where B(go,s)?) is the open ball of ray ¢ centered in ¢ in Sym™ (7'M, g)f, (or
in UT(TM, J)g). We know now from proposition 2.14 and 2.20 that the map:

Fy: @2 =C2 xSym*(TM,g)2 — A% (M,iR)2_, x D(W_)2_,
is G2, equivariant. This means that if we consider the Hilbert vector bundle:

£=¢ gz | (A7 (M,iR),_, ®@D(W_)2_|) — B2 =¢€2/G> | =B, x Sym™ (T'M, g),

the map fF+ defines, by passing to the quotient, a section:
. 2
v:B — &

of the Hilbert vector bundle £ on ‘Bz whose zero set is exactly the moduli space M, considered in
subsection 2.5. We can say the same for the restriction of F to 5:12, = C2 x Ut (T'M,J);. We are now

ready to prove:

Theorem 5.18. Let (M, g,J) a Kdhler surface. Let N a hermitian line bundle on M such that 2 deg(N)—
deg(K) < 0. Consider the canonical Spin®-structure on M twisted by the hermitian line bundle N. There
exists € € R, € > 0 such that for a generic C* metric h = p*g, ¢ € B(id, ) C Sym™ (T'M, .J), the Seiberg-
Witten moduli space MEW is smooth. Actually, the statement holds for a generic C*° hermitian metric
h=¢*g, p € B(id,e) CUT(TM,J).

Proof. The proof consists in finding the suitable smooth Hilbert manifold to which apply the Sard-
Smale theorem. The existence of the slice for Bg provides a local model for ‘Bf,: ifx e Cg is a point with
Stab(z) = {1}, then the map:

Saw x B(p,e)2 — B2 x Sym™* (T M, g)2

(5:0) — (sl ¢) (61

is a diffeomorphism onto an open neighbourhood of ([4, ], ¢). The vector bundle section ¥ can be seen
locally as

S x Blg.e)2 — AL(MR), x D(W_)2, .

(A, @) ————— F (A9, ¢) .
Let now place ourselves on a Kéhler monopole (A,%,id). Remembering how the slice S4 ., has been
built we immediately get T4 S4,4 = ker(Dya,y)* = (ImDAway)J-. Now ImD 4 47y C ker DIF+. Therefore
theorem 5.15 tells that for a zero of F of the form (A,4,id) the differential D4, 3q¥ of the section ¥
is surjective. By the Implicit Function Theorem this means that there exists a neighbourhood W4 y iq
of (A,%,id) in Say x B(id,e)2 such that Z(¥) N Wy is a smooth Hilbert manifold and for all
x € Waypia N Z(V) the differential D, ¥ is surjective. We can always suppose that the neighbourhood
Wapia is of the form Vy, x B(id,e(A,,id))2, where V4 4 is an open neighbourhood of (4,4) in
Sap. Such neighbourhood defines by the diffeomorphism (62) an open neighborhood W4 454 of the
point ([A,¢],id) € ‘BZ. In particular this proves firstly that every point ([A,],id) € M?W = 7 1(id)
is smooth as a point of M ; secondly that the moduli space MEW viewed as the fiber 7=1(id) of the
projection 7 : My —— Met(M)?2 can be covered by the open set

U= U([A,wlﬂd)e/\/lfWWAﬂde .

Now it is a fundamental result of standard Seiberg-Witten theory that the moduli space ./\/lg W' is compact
(cf[91]). As a consequence a finite number of neighborhoods W 4 4 iq suffices to cover Mgw. This implies
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in particular that there exists an e such that 7~'(B(id, )?) € U. By construction of the neighbourhoods
Wapia we have that WE := Z(¥) N7~ !(B(id,€)?) is a smooth Hilbert manifold and for each z € W
D,V is surjective. This is the smooth Hilbert manifold we will use to apply Sard-Smale theorem. The
rest of the proof is now standard matter. In each point of Wi, the tangent space is given by:

TawoWia = ker Diayg) = ker Dia o)y ler Deay e
= {(X,Y) €ker(Dapp)7)" ®sym (TM,g)2 [DayF? 9(X) + OF 4 /0p(Y) =0} .

Let now consider the projection

m: Wiy — B(id,e)
(X,Y) —— Y

Since by construction D(A,,/,W)F+|kerD(A7¢,¢).y* is surjective for all (4,1, ) € W5 it is immediate to
see that D7 is surjective at a point (4,4, ) if and only if D(A’w)Fﬂp*g is surjective. Therefore if ¢
is a regular value for , the fiber 7= 1(p) = Mi% will be a smooth manifold. Moreover one can see
that coker D4 4 o)™ = cokerD(Aw)ng and ker D,y T = kerD(A,w)F*D*g. Therefore the kernel
and cokernel of D7 have finite dimension, hence 7 is a smooth Fredholm map of paracompact Hilbert

manifolds. In particular Sard-Smale theorem applies and we get that the regular values of 7 form
2
-
has compact fibers, the regular values are a dense open set Qf, in B(id,s)i. Therefore for a dense

a second category (Gs) set in B(id,e)2. Actually, shrinking the ball B(id,e)? if necessary, since m

open set of metrics ¢’ in B(id,e)? the moduli space M3 is smooth. Since Q2 N Sym™(T'M,J) is
dense in B(id,e) := B(id,e)2 N Sym™ (T'M, J), we can deduce that for a generic C> metric h = ¢*g,
¢ € B(id,e) C Sym™ (T M, g), the moduli space M5" is smooth.

We carried out our discussion assuming the surjectivity of

Dia o Fr : Toap)Co x sym (TM, )2 — A2 (M,iR)2_; x T(W_)2

p—1-
Theorem 5.15 actually states something stronger: the surjectivity of

Dap ) Byt TiapCo x w(TM,J)2 — AL (M,iR)2_; x T(W_)2_, .

Carrying out the discussion with this stronger hypothesis we can choose Ut (T M, J )12, as parameter space
and the ball B(id, 5)12, e U (TM, J)]Qj. With exactly the same proof we get the stronger result that for a
generic C* hermitian metric h = ¢*g, ¢ € B(id,e) C U+ (T M, J) the moduli space M3"W is smooth.

157






References

[

2]

[10]

[11]

[15]

[16]

[17]

N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations
or inequalities of second order, J. Math. Pures Appl. (9) 36 (1957), 235-249.

Wolf P. Barth, Klaus Hulek, Chris A. M. Peters, and Antonius Van de Ven, Compact complex
surfaces, second ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of
Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series
of Modern Surveys in Mathematics], vol. 4, Springer-Verlag, Berlin, 2004.

Arnaud Beauville, Fibrés de rang 2 sur une courbe, fibré déterminant et fonctions théta, Bull. Soc.
Math. France 116 (1988), no. 4, 431-448 (1989).

, Conformal blocks, fusion rules and the Verlinde formula, Proceedings of the Hirzebruch
65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Ramat Gan), Israel Math. Conf. Proc.,
vol. 9, Bar-Ilan Univ., 1996, pp. 75-96.

Arnaud Beauville and Yves Laszlo, Conformal blocks and generalized theta functions, Comm. Math.
Phys. 164 (1994), no. 2, 385-419.

Arnaud Beauville, M. S. Narasimhan, and S. Ramanan, Spectral curves and the generalised theta
divisor, J. Reine Angew. Math. 398 (1989), 169-179.

Joseph Bernstein and Valery Lunts, Equivariant sheaves and functors, Lecture Notes in Mathemat-
ics, vol. 1578, Springer-Verlag, Berlin, 1994.

Arthur L. Besse, Finstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results
in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987.

Olivier Biquard, Les équations de Seiberg- Witten sur une surface compleze non kahlérienne, Comm.
Anal. Geom. 6 (1998), no. 1, 173-197.

Nicolas Bourbaki, Eléments de Mathématiques, Algebre Commutative, Chapitre 10, Masson, Paris,
1998.

Jean-Pierre Bourguignon, Spinors, Dirac operators, and changes of metrics, Differential geometry:
geometry in mathematical physics and related topics (Los Angeles, CA, 1990), Proc. Sympos. Pure
Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 41-44.

Jean-Pierre Bourguignon and Paul Gauduchon, Spineurs, opérateurs de Dirac et variations de
métriques, Comm. Math. Phys. 144 (1992), no. 3, 581-599.

Jean-Francois Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math.
88 (1987), no. 1, 65—68.

Steven B. Bradlow, Vortices in holomorphic line bundles over closed Kdhler manifolds, Comm.
Math. Phys. 135 (1990), no. 1, 1-17.

Joél Briancon, Description de Hilb"C{z,y}, Invent. Math. 41 (1977), no. 1, 45-89.

Tom Bridgeland, Alastair King, and Miles Reid, The McKay correspondence as an equivalence of
derived categories, J. Amer. Math. Soc. 14 (2001), no. 3, 535-554 (electronic).

D. Burns, On rational singularities in dimensions > 2, Math. Ann. 211 (1974), 237-244.

159



[18]

[22]

[23]

[24]

[26]

[27]

[28]

[29]

[32]

[33]

[34]

Jan Cheah, The cohomology of smooth nested hilbert schemes of points, Ph.D. thesis, University of
Chicago.

_, Cellular decompositions for nested Hilbert schemes of points, Pacific J. Math. 183 (1998),
no. 1, 39-90.

Alastair Craw and Miles Reid, How to calculate A-Hilb C3, Geometry of toric varieties, Sémin.
Congr., vol. 6, Soc. Math. France, Paris, 2002, pp. 129-154.

Gentiana Danila, Formule de verlinde et dualité étrange sur le plan projectif, Ph.D. thesis, Université
Paris 7, 1999.

, Sections du fibré déterminant sur l’espace de modules des faisceaux semi-stables de rang 2
sur le plan projectif, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 5, 1323-1374.

, Sur la cohomologie d’un fibré tautologique sur le schéma de Hilbert d’une surface, J. Alge-
braic Geom. 10 (2001), no. 2, 247-280.

, Sur la cohomologie de la puissance symétrique du fibré tautologique sur le schéma de Hilbert
ponctuel d’une surface, J. Algebraic Geom. 13 (2004), no. 1, 81-113.

Barry H. Dayton, Seminormality implies the Chinese remainder theorem, Algebraic K-theory,
Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math.,
vol. 854, Springer, Berlin, 1981, pp. 124-126.

Barry H. Dayton and Leslie G. Roberts, Seminormality of unions of planes, Algebraic K-theory,
Evanston 1980 (Proc. Conf., Northwestern Univ., Evanston, Ill., 1980), Lecture Notes in Math.,
vol. 854, Springer, Berlin, 1981, pp. 93-123.

Mark Andrea A. de Cataldo and Luca Migliorini, The Chow motive of semismall resolutions, Math.
Res. Lett. 11 (2004), no. 2-3, 151-170.

S. K. Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990), no. 3,
257-315.

S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds, Oxford Mathematical
Monographs, The Clarendon Press Oxford University Press, New York, 1990, Oxford Science Pub-

lications.

J.-M. Drezet and M. S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semi-stables
sur les courbes algébriques, Invent. Math. 97 (1989), no. 1, 53-94.

Jirgen Eichhorn and Thomas Friedrich, Seiberg- Witten theory, Symplectic singularities and geom-
etry of gauge fields (Warsaw, 1995), Banach Center Publ., vol. 39, Polish Acad. Sci., Warsaw, 1997,
pp- 231-267.

David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag,
New York, 1995, With a view toward algebraic geometry.

Geir Ellingsrud, Lothar Gottsche, and Manfred Lehn, On the cobordism class of the Hilbert scheme
of a surface, J. Algebraic Geom. 10 (2001), no. 1, 81-100.

Geir Ellingsrud and Manfred Lehn, Irreducibility of the punctual quotient scheme of a surface, Ark.
Mat. 37 (1999), no. 2, 245-254.

160



[35]

[46]

[47]

[48]

[49]

[50]

[51]

Geir Ellingsrud and Stein Arild Strgmme, On the homology of the Hilbert scheme of points in the
plane, Invent. Math. 87 (1987), no. 2, 343-352.

, An intersection number for the punctual Hilbert scheme of a surface, Trans. Amer. Math.
Soc. 350 (1998), no. 6, 2547-2552.

Gerd Faltings, A proof for the Verlinde formula, J. Algebraic Geom. 3 (1994), no. 2, 347-374.

Paul M. N. Feehan and Thomas G. Leness, PU(2) monopoles. I. Regularity, Uhlenbeck compactness,
and transversality, J. Differential Geom. 49 (1998), no. 2, 265-410.

, PU(2) monopoles and links of top-level Seiberg-Witten moduli spaces, J. Reine Angew.
Math. 538 (2001), 57-133.

, PU(2) monopoles. II. Top-level Seiberg- Witten moduli spaces and Witten’s conjecture in
low degrees, J. Reine Angew. Math. 538 (2001), 135-212.

Paul M. N. Feehan and Thomas G. Leness, A general so(3)-monopole cobordism formula relating
Donaldson and Seiberg- Witten invariants, http://arxiv.org/math/0203047, 2002.

Paul M. N. Feechan and Thomas G. Leness, SO(3) monopoles, level-one Seiberg- Witten moduli
spaces, and Witten’s conjecture in low degrees, Proceedings of the 1999 Georgia Topology Conference
(Athens, GA), vol. 124, 2002, pp. 221-326.

John Fogarty, Algebraic families on an algebraic surface, Amer. J. Math 90 (1968), 511-521.

David Ford and John McKay, Representations and Coxeter graphs, The geometric vein, Springer,
New York, 1981, pp. 549-554.

Daniel S. Freed and David Groisser, The basic geometry of the manifold of Riemannian metrics
and of its quotient by the diffeomorphism group, Michigan Math. J. 36 (1989), no. 3, 323-344.

Daniel S. Freed and Karen K. Uhlenbeck, Instantons and four-manifolds, second ed., Mathematical

Sciences Research Institute Publications, vol. 1, Springer-Verlag, New York, 1991.

Robert Friedman and John W. Morgan, Algebraic surfaces and Seiberg- Witten invariants, J. Alge-
braic Geom. 6 (1997), no. 3, 445-479.

, Obstruction bundles, semireqularity, and Seiberg-Witten invariants, Comm. Anal. Geom.
7 (1999), no. 3, 451-495.

Thomas Friedrich, Dirac operators in Riemannian geometry, Graduate Studies in Mathematics,
vol. 25, American Mathematical Society, Providence, RI, 2000, Translated from the 1997 German
original by Andreas Nestke.

William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129,
Springer-Verlag, New York, 1991, A first course, Readings in Mathematics.

Paul Gauduchon, Hermitian connections and Dirac operators, Boll. Un. Mat. Ttal. B (7) 11 (1997),
no. 2, suppl., 257-288.

Olga Gil-Medrano and Peter W. Michor, The Riemannian manifold of all Riemannian metrics,
Quart. J. Math. Oxford Ser. (2) 42 (1991), no. 166, 183-202.

G. Gongzalez-Sprinberg and J.-L. Verdier, Construction géométrique de la correspondance de McKay,
Ann. Sci. Ecole Norm. Sup. (4) 16 (1983), no. 3, 409-449 (1984).

161



[54]

[55]

[61]

[62]

[70]

[71]

Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Wiley Classics Library, John
Wiley & Sons Inc., New York, 1994, Reprint of the 1978 original.

Alexander Grothendieck, Sur quelques points d’algébre homologique, T6hoku Math. J. (2) 9 (1957),
119-221.

, Techniques de construction et théorémes d’existence en géométrie algébrique. IV. Les
schémas de Hilbert, Séminaire Bourbaki, exposé 221, 1960-1961.

, Eléments de géométrie algébrique. III. Etude cohomologique des faisceaux cohérents. II,
Inst. Hautes Etudes Sci. Publ. Math. (1963), no. 17, 91.

, Cohomologie locale des faisceauzr cohérents et théorémes de Lefschetz locaux et globaux
(SGA 2), North-Holland Publishing Co., Amsterdam, 1968, Augmenté d’un exposé par Michele
Raynaud, Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure
Mathematics, Vol. 2.

, Techniques de construction et théorémes d’existence en géométrie algébrique. IV. Les
schémas de Hilbert, Séminaire Bourbaki, Vol. 6, Soc. Math. France, Paris, 1995, pp. Exp. No.
221, 249-276.

Mark Haiman, Macdonald polynomials and geometry, New perspectives in algebraic combinatorics
(Berkeley, CA, 1996-97), Math. Sci. Res. Inst. Publ., vol. 38, Cambridge Univ. Press, Cambridge,
1999, pp. 207-254.

, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc.
14 (2001), no. 4, 941-1006 (electronic).

, Vanishing theorems and character formulas for the Hilbert scheme of points in the plane,
Invent. Math. 149 (2002), no. 2, 371-407.

Robin Hartshorne, Connectedness of the Hilbert scheme, Inst. Hautes Etudes Sci. Publ. Math.
(1966), no. 29, 5-48.

, Local cohomology, A seminar given by A. Grothendieck, Harvard University, Fall, vol. 1961,

Springer-Verlag, Berlin, 1967.

_, Algebraic geometry, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics,
No. 52.

Min He, FEspaces de modules de systémes cohérents, Internat. J. Math. 9 (1998), no. 5, 545-598.
Daniel Huybrechts, Fourier-Mukai transforms in Algebraic Geometry, cours de D.E.A, 2004.

Daniel Huybrechts and Manfred Lehn, The geometry of moduli spaces of sheaves, Aspects of Math-
ematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997.

Y. Ito and I. Nakamura, Hilbert schemes and simple singularities, New trends in algebraic geom-
etry (Warwick, 1996), London Math. Soc. Lecture Note Ser., vol. 264, Cambridge Univ. Press,
Cambridge, 1999, pp. 151-233.

Yukari Ito and Iku Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser.
A Math. Sci. 72 (1996), no. 7, 135-138.

Lisa C. Jeffrey and Frances C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles
of arbitrary rank on a Riemann surface, Ann. of Math. (2) 148 (1998), no. 1, 109-196.

162



[72]

[73]

[74]

[87]

[88]

Masaki Kashiwara and Pierre Schapira, Sheaves on manifolds, Grundlehren der Mathematischen
Wissenschaften, vol. 292, Springer-Verlag, Berlin, 1994.

Jerry L. Kazdan and F. W. Warner, Curvature functions for compact 2-manifolds, Ann. of Math.
(2) 99 (1974), 14-47.

G. Kempf and D. Laksov, The determinantal formula of Schubert calculus, Acta Math. 132 (1974),
153-162.

Shoshichi Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathe-
matical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ, 1987, Kano Memorial
Lectures, 5.

Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol. I, Wiley
Classics Library, John Wiley & Sons Inc., New York, 1996, Reprint of the 1963 original, A
Wiley-Interscience Publication.

, Foundations of differential geometry. Vol. 11, Wiley Classics Library, John Wiley & Sons
Inc., New York, 1996, Reprint of the 1969 original, A Wiley-Interscience Publication.

Kunihiko Kodaira and James Morrow, Complex manifolds, Holt, Rinehart and Winston, Inc., New
York, 1971.

Joseph J. Kohn, Differential complexes, Les Presses de I’Université de Montréal, Montreal, Que.,
1972, Séminaire de Mathématiques Supérieures (Eté, 1969), No. 37.

Janos Kollar and Shigefumi Mori, Birational geometry of algebraic varieties, Cambridge Tracts in
Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of
C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.

P. B. Kronheimer and T. S. Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997),
no. 2, 209-255.

H. Blaine Lawson, Jr. and Marie-Louise Michelsohn, Spin geometry, Princeton Mathematical Series,
vol. 38, Princeton University Press, Princeton, NJ, 1989.

Joseph Le Potier, Dualité étrange sur les surfaces, unpublished.
__, Systémes cohérents et structures de niveau, Astérisque (1993), no. 214, 143.

, Systémes cohérents et polynomes de Donaldson, Moduli of vector bundles (Sanda, 1994;
Kyoto, 1994), Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 103~
128.

, Lectures on wvector bundles, Cambridge Studies in Advanced Mathematics, vol. 54, Cam-

bridge University Press, Cambridge, 1997, Translated by A. Maciocia.

Manfred Lehn, Chern classes of tautological sheaves on Hilbert schemes of points on surfaces, Invent.
Math. 136 (1999), no. 1, 157-207.

Hideyuki Matsumura, Commutative ring theory, second ed., Cambridge Studies in Advanced Math-
ematics, vol. 8, Cambridge University Press, Cambridge, 1989, Translated from the Japanese by
M. Reid.

163



[89]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

John McKay, Graphs, singularities, and finite groups, The Santa Cruz Conference on Finite Groups
(Univ. California, Santa Cruz, Calif., 1979), Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc.,
Providence, R.I., 1980, pp. 183-186.

, Cartan matrices, finite groups of quaternions, and Kleinian singularities, Proc. Amer.
Math. Soc. 81 (1981), no. 1, 153-154.

John W. Morgan, The Seiberg- Witten equations and applications to the topology of smooth four-
manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996.

, An introduction to gauge theory, Gauge theory and the topology of four-manifolds (Park
City, UT, 1994), IAS/Park City Math. Ser., vol. 4, Amer. Math. Soc., Providence, RI, 1998, pp. 51—
143.

Shigeru Mukai, Moduli of vector bundles on K3 surfaces and symplectic manifolds, Stugaku 39
(1987), no. 3, 216-235, Sugaku Expositions 1 (1988), no. 2, 139-174.

D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, third ed., Ergebnisse der
Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34,
Springer-Verlag, Berlin, 1994.

Hiraku Nakajima, Lectures on Hilbert schemes of points on surfaces, University Lecture Series,
vol. 18, American Mathematical Society, Providence, RI, 1999.

Tku Nakamura, Hilbert schemes of abelian group orbits, J. Algebraic Geom. 10 (2001), no. 4, 757—
779.

A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann.
of Math. (2) 65 (1957), 391-404.

Liviu I. Nicolaescu, Notes on Seiberg- Witten theory, Graduate Studies in Mathematics, vol. 28,
American Mathematical Society, Providence, RI, 2000.

Christian Okonek and Andrei Teleman, The coupled Seiberg- Witten equations, vortices, and moduli
spaces of stable pairs, Internat. J. Math. 6 (1995), no. 6, 893-910.

, Master spaces and the coupling principle: from geometric invariant theory to gauge theory,
Comm. Math. Phys. 205 (1999), no. 2, 437-458.

Ferruccio Orecchia, Sulla seminormalita di certe varieta affini riducibili, Boll. Un. Mat. Ital. B (5)
13 (1976), no. 2, 588-600.

Miles Reid, La correspondance de McKay, Astérisque (2002), no. 276, 53-72, Séminaire Bourbaki,
Vol. 1999/2000.

Simon Salamon, Riemannian geometry and holonomy groups, Pitman Research Notes in Mathe-
matics Series, vol. 201, Longman Scientific & Technical, Harlow, 1989.

N. Seiberg and E. Witten, FElectric-magnetic duality, monopole condensation, and confinement in
N = 2 supersymmetric Yang-Mills theory, Nuclear Phys. B 426 (1994), no. 1, 19-52.

, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QQCD, Nuclear
Phys. B 431 (1994), no. 3, 484-550.

Jean-Pierre Serre, Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, Grenoble 6
(1955-1956), 1-42.

164



[107] S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861-866.

[108] Andrei Teleman, Moduli spaces of PU(2)-monopoles, Asian J. Math. 4 (2000), no. 2, 391-435.

[109] , Introduction a la théorie de Jauge, cours de D.E.A.,

http://www.cmi.univ-mrs.fr/teleman/documents/cours-sw.pdf (2005).

[110] Michael Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994),
no. 2, 317-353.

[111] A.S. Tikhomirov, On Hilbert schemes and flag varieties of points on algebraic surfaces, unpublished.

[112] , The variety of complete pairs of zero-dimensional subschemes of an algebraic surface, Izv.

Ross. Akad. Nauk Ser. Mat. 61 (1997), no. 6, 153-180.

[113] Akihiro Tsuchiya, Kenji Ueno, and Yasuhiko Yamada, Conformal field theory on universal family
of stable curves with gauge symmetries, Integrable systems in quantum field theory and statistical
mechanics, Adv. Stud. Pure Math., vol. 19, Academic Press, Boston, MA, 1989, pp. 459-566.

[114] Karen K. Uhlenbeck, Connections with LP bounds on curvature, Comm. Math. Phys. 83 (1982),
no. 1, 31-42.

[115] , Removable singularities in Yang-Mills fields, Comm. Math. Phys. 83 (1982), no. 1, 11-29.

[116] Erik Verlinde, Fusion rules and modular transformations in 2D conformal field theory, Nuclear
Phys. B 300 (1988), no. 3, 360-376.

[117] Charles A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math-
ematics, vol. 38, Cambridge University Press, Cambridge, 1994.

[118] R. O. Wells, Jr., Differential analysis on complex manifolds, second ed., Graduate Texts in Mathe-
matics, vol. 65, Springer-Verlag, New York, 1980.

[119] E. Witten, Monopoles and four manifolds, Math. Res. Lett. 3 (1994), no. 7, 654-675.

165



