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École doctorale de sciences mathématiques de Paris centre
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Millions of thanks to my dear Carrie. I consider her like my little sister. I appreciate her
energy her sociability and all her passion for helping and loving her friends. Perhaps I was that
nerd neighbor that always studied and was not in for her extra joyful plans, but definitely, she
was the sweetest neighbor ever :) The first year of immigration is always the hardest one, but
thanks to her it was less hard for me.

Last but not least I would like to express my deepest gratitude to the most amazing family
I could have asked for:
I start with my Grandparents and I would like to thank them for building a family of love and
kindness. I would like to thank them for always being just a phone call away and for giving me
encouragement and guidance in every single aspect of my life. They are a shining part of my
life and having them is a gift I will hold forever.

I would like to thank my dearest aunt Helen, who is a best friend to me, and my wonderful
cousin Radin who always brings a smile to my face. Despite all their occupations they never
forget to contact me. Thanks for creating many wonderful memories in Paris for me, especially
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Résumé

Titre: La mesure de Mahler d’une famille de polynômes exacts

Dans cette thèse, nous étudions la suite de mesures de Mahler d’une famille de polynômes
à deux variables exacts et réguliers, que nous notons Pd := ∑

0≤i+j≤d xiyj . Elle n’est bornée
ni en volume, ni en genre de la courbe algébrique sous-jacente. Nous obtenons une expression
pour la mesure de Mahler de Pd comme somme finie de valeurs spéciales du dilogarithme de
Bloch-Wigner. Nous utilisons SageMath pour approximer m(Pd) pour 1 ≤ d ≤ 1000. En
recourant à trois méthodes différentes, nous prouvons que la limite de la suite de mesures
de Mahler de cette famille converge vers 9

2π2 ζ(3). De plus, nous calculons le développement
asymptotique de la mesure de Mahler de Pd et prouvons que sa vitesse de convergence est
de O( log d

d2 ). Nous démontrons également une généralisation du théorème de Boyd-Lawton,
affirmant que les mesures de Mahler multivariées peuvent être approximées en utilisant les
mesures de Mahler de dimension inférieure. Enfin, nous prouvons que la mesure de Mahler de Pd

pour d arbitraire peut être écrite comme une combinaison linéaire de fonctions L associées à un
caractère de Dirichlet primitif impair. Nous calculons finalement explicitement la représentation
de la mesure de Mahler de Pd en termes de fonctions L, pour 1 ≤ d ≤ 6.

Mots clés

Mesure de Mahler, polynôme, polynôme exact, polynôme régulier, dilogarithme de Bloch-
Wigner, développement asymptotique, fonctions L de Dirichlet, caractère de Dirichlet.
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Abstract

Title: The Mahler measure of a family of exact polynomials

In this thesis we investigate the sequence of Mahler measures of a family of bivariate
regular exact polynomials, called Pd := ∑

0≤i+j≤d xiyj , unbounded in both degree and the
genus of the algebraic curve. We obtain a closed formula for the Mahler measure of Pd in terms
of special values of the Bloch–Wigner dilogarithm. We approximate m(Pd), for 1 ≤ d ≤ 1000,
with arbitrary precision using SageMath. Using 3 different methods we prove that the limit
of the sequence of the Mahler measure of this family converges to 9

2π2 ζ(3). Moreover, we
compute the asymptotic expansion of the Mahler measure of Pd which implies that the rate of
the convergence is O( log d

d2 ). We also prove a generalization of the theorem of the Boyd-Lawton
which asserts that the multivariate Mahler measures can be approximated using the lower
dimensional Mahler measures. Finally, we prove that the Mahler measure of Pd, for arbitrary d
can be written as a linear combination of L-functions associated with an odd primitive Dirichlet
character. In addition, we compute explicitly the representation of the Mahler measure of Pd

in terms of L-functions, for 1 ≤ d ≤ 6.

Key words

Mahler measure, polynomial, exact polynomial, regular polynomial, Bloch–Wigner diloga-
rithm, asymptotic expansion, Dirichlet L-functions, Dirichlet characters.
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CHAPTER I

Introduction

I.1. Historical context and important results around the Mahler measure

In1 1933, Derrick Henry Lehmer [Leh33] searched for large primes among the prime factors
of Pierce numbers ∆n(P ) := ∏d

j=1(αn
j − 1), where P is a monic polynomial with integer coef-

ficients and P (x) = ∏d
j=1(x − αj) is its complex factorization. He proved that limn→∞

n
√

∆n

exists and is equal to ∏d
j=1 max{1, |αj |} (see Proposition II.1.14). Lehmer denoted the limit by

M(P ). Later, Kurt Mahler extended the definition of M(·), to arbitrary non zero univariate
polynomials as follows:

M(P ) = |ad|
d∏

j=1
max{1, |αj |},

where, P (x) = ad
∏d

j=1(x − αj) ∈ C[x]. The Mahler measure of the non zero constant poly-
nomial P (x) = a0 is |a0| and the Mahler measure of zero is defined to be 1. He successfully
extended the definition to the multivariable polynomials (see Eq. (I.1.1)) and M(P ) is named
the Mahler measure of P in honor of Kurt Mahler. Following a theorem of Kronecker and
Dedekind, one can prove that the Mahler measure of a univariate polynomial with integer co-
efficients is an algebraic integer (see Section II.1). A property of the Mahler measure, implied
directly by the definition, is that the Mahler measure of polynomials with integer coefficients is
greater than or equal to 1. Kronecker’s Theorem [Kro57] characterizes the univariate polynomi-
als with integer coefficients and Mahler measure equal to 1: those are essentially the product of
cyclotomic polynomials up to monomial factors (see Proposition II.1.16). Lehmer argued that
to obtain large primes from the factorization of ∆n(P ), it is advantageous that this sequence
increases very slowly. In other words, we want M(P ) as small as possible. Inspired by this, he
asked a question in 1933 which is still open and became known as the Lehmer conjecture:

Conjecture. [Lehmer Conjecture (1933)] There is a constant C > 1, such that for any
P ∈ Z[x] if M(P ) > 1, then M(P ) ≥ C.

The smallest Mahler measure known until now is for the degree 10 polynomial, PL(x) =
x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1, already discovered by Lehmer [Leh33]. Breusch
[Bre51] and (independently) Smyth [Smy71] proved the Lehmer conjecture for a non reciprocal
polynomial P (a polynomial P is reciprocal if P (x) = ±xdeg(P )P (1/x), see Definition II.1.19):

Proposition ([Smy71]). Let P be a non reciprocal irreducible polynomial P (x) ∈ Z[x],
then M(P ) ≥ x0 = 1.32471795 . . . , the real zero of the polynomial x3 − x − 1.

For other partial solutions to the Lehmer conjecture we refer to [BM71],[Ste78],[CS82] and
[Lou83]. This conjecture has importance in many different domains in Mathematics such as An-
alytic Number Theory, Hyperbolic Geometry, Ergodic Theory, etc. For instance, an answer to
the Lehmer conjecture would affect many different conjectures such as Boyd conjecture (Conjec-
ture II.4.23), Salem conjecture (Conjecture II.4.12), Short Geodesic Conjecture for arithmetic
1The historical part of this introduction is inspired by [BL13, BZ20, Boy81b].
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hyperbolic 2-orbifolds ([MR03, Theorem 12.3.4]), Schmidt conjecture on the periodic points of
the β-transformation, in the case that β is a Salem number ([DK02, Conjecture 28.1]), etc.
There is also the Schinzel and Zassenhaus conjecture, which was recently solved by Dimitrov
[Dim19] and if Lehmer’s conjecture is true, then it gives the universal constant for this already
solved conjecture (Theorem II.4.5).

As we mentioned, Kurt Mahler [Mah62b], in 1960, generalized the definition of the Mahler
measure to multivariate polynomials. The idea of this generalization comes from Jensen’s
equality:

Proposition ([Jen00]). For any α ∈ C we have
∫ 1

0 log |e2πit − α|dt = max{0, log |α|}.

By applying Jensen’s equality for a non zero polynomial P (x) = ad
∏d

j=1(x − αj), Mahler
proved the following equalities:

m(P ) := log(M(P )) = log |ad| +
d∑

j=1
log max{|αj |, 1} = 1

2πi

∫ 1

0
log |P (x)|dx

x
.

Mahler generalized the definition of logarithmic Mahler measure to multivariate polynomials,
using the integral formula:

Definition. For a non zero polynomial P ∈ C[x1, . . . , xn], the logarithmic Mahler measure
is defined by:

m(P ) = 1
(2πi)n

∫
· · ·
∫

|x1|=···=|xn|=1
log |P (x1, . . . , xn)|dx1

x1
∧ · · · ∧ dxn

xn
.(I.1.1)

In fact, m(P ) is the arithmetic mean of log |P | over the n-dimensional unit torus Tn.
Mahler [Mah62a] proved that for any Laurent polynomial P , the Mahler measure m(P ) exists
as an improper Riemann integral. Moreover, if P has integer coefficients, then m(P ) ≥ 0.
Furthermore, for a nonzero polynomial P he defined

M(P ) := exp(m(P )).

From the definition we conclude that the Mahler measure is a kind of height function for
polynomials. In fact, Mahler constructed this object because he was looking for inequalities
between the heights (such as length, L(P ), or height, H(P ), see Eqs. (II.1.1) and (II.1.2)) of a
product of polynomials and the heights of the factors.
The computation of the Mahler measure of a polynomial in 2 or more variables in general is a
hard question. The simplest evaluation in 2 or 3 variables are the following famous examples
due to Smyth (1981):

Example. We have:
• [Smy81a]

m(1 + x + y) = 3
√

3
4π

L(χ−3, 2),

where χ−3(n) = (−3
n ) is the odd quadratic Dirichlet character of modulus 3.

• [Smy81a, Boy81b]

m(1 + x + y + z) = 7
2π2 ζ(3),

where ζ is the Riemann Zeta function.
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The above examples illustrate an important application of Mahler measure in Analytic
Number Theory. To see more examples of computations of Mahler measures of multivariate
polynomials, we refer to Bertin [Ber08, Ber01a, Ber04b, Ber04a], Boyd [Boy98, Boy81b, Boy02],
Boyd and Rodriguez-Villegas [BRVD03, BRV02], Condon [Con03], Rodriguez-Villegas [RV99],
Smyth [Smy81b, Smy02], Bertin and Zudilin [BZ17, BZ16], Laĺın [Lal06b, Lal03, Lal06a, Lal07,
DL07]. It is not always possible to compute a closed formula for the Mahler measure of
multivariate polynomials. However, there exists a class of bivariate polynomials, called regular
exact, for which the Mahler measure can be expressed as a finite sum. A bivariate polynomial
P is called exact if the differential 1-form

η := log |y|d arg x − log |x|d arg y,

restricted to the smooth zeros of P , is exact. There is also a generalization of the notion of exact-
ness for multivariate polynomials, called k-exact, for k ∈ Z≥1 (see [Den97, Mai00, Lal16, GL21]).
It is interesting that the Mahler measure of some exact polynomials links to special values of
L-function or ζ-function. Despite the existence of a closed formula to compute the Mahler mea-
sure of regular exact polynomials, such as [GM21] or [BRV02, BRVD03, Lal07, Lal08] there is
no general algorithm to recognize the exactness of polynomials. For instance, there is a finite
number of exact bivariate polynomials of genus g ≤ 1 with Newton polygon of bounded area
(see [GM21]).

One may ask about the links between the Mahler measure of univariate and multivariate
polynomials. In other words, the question is to compute the Mahler measure of multivariate
polynomial using certain sequences of univariate polynomials. This question was answered
by Boyd and Lawton and it became one of the most important results in this area, called
the theorem of Boyd-Lawton. Historically, the idea of this theorem came to Boyd during his
research on the Lehmer conjecture. As we know, the set of the values of the Mahler measure
of polynomials with integer coefficients is a subset of [1, ∞). Following Boyd [Boy81b], we set

L := {M(P )|P ∈ Z[x]},

so if the Lehmer conjecture is proved, then 1 cannot be a limit point of L (x is a limit point
of L ⊂ [1, ∞) if every neighbourhood of x with respect to the Euclidean topology inherited
from R to [1, ∞) also contains a point of L other than x itself). One can see that if 1 is a
limit point of L, then L(k) = [1, ∞), for every k (see Proposition II.4.6). Hence, to provide
a positive answer to the Lehmer question it would suffice to show that L is nowhere dense in
[1, ∞) or only min L(k) > 1, for some k (here L(1) is the set of the limit points of L and L(k)

is the set of k-th derived set of L). The study of two remarkable subsets of L, namely the set
of Pisot numbers (i.e. a real algebraic integer α > 1, such that all of its algebraic conjugates
(except itself) have absolute value less than one), denoted by S, and Salem numbers (i.e. a real
algebraic integer α > 1 whose conjugate roots all have absolute value less than or equal to 1,
and at least one of which has absolute value exactly 1), denoted by T , and the work done by
Salem [Sal44], Siegel [Sie44] and Smyth [Smy71], inspired Boyd to continue in this direction.
We recall that the Mahler measure of an algebraic number is defined as the Mahler measure
of its minimal polynomial. Salem [Sal44] proved that S is closed 2. Hence, min S > 1, since
1 /∈ S. However, we do not have enough information about T . According to [Sal45], if a > 1 is
in T , then its minimal polynomial is reciprocal. Because of the success of S in contrast to T it
is natural to consider the following set

L0 := {M(P )|P ∈ Z[x] and P is non reciprocal }.

2In this thesis, the topology that we consider is the Euclidean topology that is inherited from R.
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Then, Smyth [Smy71] proved that:

min S = min L0 = x0,

where x0 is the real zero of x3 − x − 1. Then, as we mentioned, the Lehmer conjecture for
non reciprocal polynomials is solved. It is conjectured that the Mahler measure of Lehmer’s 10
degree polynomial, PL, is the smallest Salem number, and the answer to the Lehmer conjecture:

min L = M(PL) = min T.

By analogy with S, it could be possible that L0 or even L is a closed set. However, it seems
highly unlikely. Indeed, Boyd suggested to study some larger sets:

L♯ := {M(P )|P ∈ Z[x1, . . . , xn], n ≥ 1},

L♯
0 := {M(P )|P is non reciprocal, P ∈ Z[x1, . . . , xn], n ≥ 1}.

For the definition of multivariate reciprocal polynomials we refer to Definition II.4.14. One may
think that the two new sets L♯ and L♯

0 are much bigger than L and L0. However, Boyd noticed
that L♯ ⊆ L̄. This is due to the fact that the Mahler measure of a multivariable polynomial can
be obtained as the limit of a suitable sequence of Mahler measures of univariate polynomials
(see Section II.4.3). Some special cases of this theorem were proved in [Boy81b]. The most
general case, as we already mentioned, known as the Theorem of Boyd-Lawton, has been proved
later by Lawton in [Law83]. In other words, L♯ is bigger than L, but not much larger. As we
mentioned, the Mahler measure of a polynomial with integer coefficients is an algebraic integer.
On the other side, we have the example of Smyth m(1 + x + y + z) = 7

2π ζ(3), which is probably
transcendental. Then, since L ⊂ L♯ ⊆ L̄, L could not be closed. This further clarifies the
reason for which Boyd studied L♯ and stated the following conjectures:

Conjecture. (Boyd Conjectures)
(1) L♯ is closed.

(2) L♯
0 is closed.

We notice that Boyd Conjecture (L♯ = L♯), implies the Lehmer conjecture (see Sec-
tion II.4.2). In order to progress towards this conjecture, it is important to study more examples
of the Mahler measure of multivariate polynomials. This thesis undertakes the systematic study
of a family of such examples.

I.2. Content of the thesis

In this thesis, we study the Mahler measure of a family of exact bivariate polynomials,
Pd(x, y) := ∑

0≤i+j≤d xiyj , with d ∈ Z≥1, suggested by François Brunault. This family con-
tains infinitely many polynomials, whose (total) degree and genus (of the associated algebraic
curve) are unboundedly increasing. The study of this family allows us to illustrate the Boyd
conjecture, to generalize Boyd-Lawton theorem, and to exhibit new examples of links between
Mahler measure and special values of L-functions. Each polynomial Pd is regular exact (see
Theorem III.1.18). Thus, we can apply the following closed formula from [GM21] to express
its Mahler measure. The toric points of P are points (x, y) such that |x| = |y| = 1 and
P (x, y) = 0. Roughly speaking a polynomial P is called regular if x∂xP

y∂yP /∈ R at each toric points
(see Definition III.2.11 for the precise definition).
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Proposition ([GM21]). For a regular exact monic polynomial P ∈ C[x, y] we have:

m(P ) = 1
2π

∑
(x,y) is a toric point of P

ϵ(x, y)V (x, y).

Here, ϵ(x, y) is a sign; and V is a volume function associated to P (i.e. a primitive for the
differential form η restricted to the smooth zeros of P ). See Section III.2 for precise definitions.

Chapter III of this thesis is devoted to obtaining an explicit and effective expression for
m(Pd) for arbitrary d. In Theorem III.1.18 we prove that Pd is exact and we compute a volume
function in terms of the Bloch-Wigner dilogarithm (see Definition III.1.7):

V (x, y) = 1
(d + 1)(d + 2)[D(yd+1) − D(xd+1) − D((y/x)d+1)] + 1

(d + 2)[D(x) − D(y) − D(x/y)].

For the case d = 1 it is a classical fact that P (x, y) = x + y + 1 is exact and a volume function
is −D(−x). In Proposition III.2.9 we compute the set of the toric points of Pd. It is the union
Ud+1 ∪ Ud+2 where:

Ud+1 := {(x, y) ∈ C∗2 | xd+1 = yd+1 = 1, x ̸= 1, y ̸= 1, x ̸= y},

Ud+2 := {(x, y) ∈ C∗2 | xd+2 = yd+2 = 1, x ̸= 1, y ̸= 1, x ̸= y}.

Finally, in Proposition III.2.15 we determine ϵ(x, y) at each toric point of Pd, for every d. Thus,
we can apply the formula in [GM21] to each Pd. In Proposition III.2.18, we obtain the following
closed formula to compute m(Pd).

2πm(Pd) = 2
(d + 1)

∑
(x,y)∈Ud+2

with ϵ(x,y)>0

[D(x) − D(y) − D(x/y)]

− 2
d + 2

∑
(x,y)∈Ud+1

with ϵ(x,y)>0

[D(x) − D(y) − D(x/y)] .

We can approximate the values of m(Pd), with arbitrary precision, for 1 ≤ d ≤ 1000 using
SageMath. Fig. 1 shows the graph of m(Pd).

Figure 1. The graph of m(Pd), for 1 ≤ d ≤ 1000.

The figure indicates a limit for m(Pd). The aim of Chapter IV is to determine this limit.
In Chapter IV, we provide two different methods for computing this limit, and in Chapter V,
we also give a third method for achieving this goal. During my work, the first method that I
applied was based on Riemann sum technics and error estimations. More precisely, we simplify
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the volume function at toric points by writing it in terms of the values of a new function,
vol : R2 → R, defined by vol(θ, α) := D(eiθ) − D(ei(θ+α)) + D(eiα). In Theorem IV.2.5, using
this new function, we write another closed formula of m(Pd):

Theorem. For every d ∈ Z≥1 we have:

2πm(Pd) = 2
d + 1

∑
0<k<k′≤d+1

vol
( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
− 2

d + 2
∑

0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
.

One advantage of the new formula of m(Pd) is that we can write

m(Pd) = (d + 2)2

(d + 1) Rd+2 − (d + 1)2

(d + 2) Rd+1,

where Rd is the following Riemann sum of vol on the triangle with vertices (0, 0), (0, 2π), and
(2π, 0), denoted by T :

Rd := 4π2

d2

∑
0<k<k′≤d

vol
(2kπ

d
,

2(k′ − k)π
d

)
.

Since vol is continuous, the Riemann sums Rd+1 and Rd+2 converge to the integral of vol over
T . However, the coefficients multiplying the Riemann sums in the expression of m(Pd) depend
on d and go to infinity. Therefore, we need to estimate the errors E(d) = |

∫∫
T

vol dA − Rd| to

compute the limit. The analytical study of vol shows that it is concave and positive on T , see
Lemmas IV.3.2 and IV.3.6. Finally, in Lemma IV.4.1, by taking advantage of the concavity of
vol we prove that E(d) = o(1/d). As we can write:

2πm(Pd) = 3d2 + 8d + 7
4π3(d2 + 3d + 2)

∫∫
T

vol(θ, α)dA + (d + 1)2

2π2(d + 2)E(d + 1) − (d + 2)2

2π2(d + 1)E(d + 2),

using that E(d) = o(1/d) and
∫∫
T

vol(θ, α)dA = 6πζ(3) (see Lemma IV.2.6), we prove in Theo-

rem IV.1.1 the following:
Theorem ([Meh21, BGMP22]). We have:

lim
d→∞

m(Pd) = 9
2π2 ζ(3).

The presence of ζ(3) in the limit is striking and reminds us of the famous examples of Smyth.

After I computed the above limit, during a collaboration with Brunault, Guilloux and
Pengo, we realized that the value of the limit, 9

2π2 ζ(3), is itself a Mahler measure:
Theorem I.2.1 (D’Andrea, Laĺın [DL07]). Let P∞ := (1 − x)(1 − y) − (1 − z)(1 − w) ∈

C[x, y, z, w]. Then the following equality holds:

m(P∞) = 9
2π2 ζ(3).

That implies that limd→∞ m(Pd) = m(P∞). We wondered if this equality has links to
Boyd-Lawton theorem. We found the following expression for Pd:

Pd(x, y) = P∞(xd+2, y, x, yd+2)
(1 − x)(1 − y)(x − y) ,

and since the Mahler measure of the denominator is zero we have:
m(Pd(x, y)) = m(P∞(xd+2, y, x, yd+2)).(I.2.1)
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In fact, if the Theorem of Boyd-Lawton could be generalized to sequences of bivariate polyno-
mials (instead of univariate), this would prove directly that limd→∞ m(Pd) = m(P∞). Indeed,
we prove this generalization in our article [BGMP22] in collaboration with Brunault, Guil-
loux and Pengo. In fact, we prove that the Mahler measure of a multivariable polynomial
can be approximated by lower-dimensional Mahler measures. Let us clarify which sequences
of lower dimensional polynomials give rise to such approximations for P . Let A = (aij) be a
matrix in Zm×n, and P ∈ C[z±1

1 , . . . , z±1
n ]. We define the m-variable polynomial PA as follows:

PA(z1, . . . , zm) := P (za1,1
1 · · · z

am,1
m , . . . , z

a1,n

1 · · · z
am,n
m ). To describe that a sequence of matrices

goes to infinity, we consider the function ρ : Zm×n 7→ Z≥1, defined by:

ρ(A) := min{∥v∥∞ : v ∈ Zn×1 \ {0}, A · v = 0}.

Theorem ([BGMP22] Generalization of Boyd-Lawton’s theorem). For an n-variable non
zero Laurent polynomial P , for any sequence of matrices Ad ∈ Zmd×n such that limd→∞ ρ(Ad) =
∞, we have:

lim
d→∞

m(PAd
) = m(P ).

To prove this theorem, we note that for an n-variable polynomial P , the Mahler mea-
sure m(P ) is the integral of log |P | with respect to the probability Haar measure µ = µn :=

1
(2πi)n

dz1
z1

∧ · · · ∧ dzn
zn

on the real n-dimensional torus. Let now Ad be a matrix (aij) ∈ Zm×n.
We consider the push forward µAd

of µ along the map Tm → Tn given by (z1, . . . , zm) 7→
(za1,1

1 · · · z
am,1
m , . . . , z

a1,n

1 · · · z
am,n
m ). Then, one can see that m(PAd

) is the integral of log |P |
with respect to µAd

and we need to prove that it converges to the integral of log |P | with
respect to µ, for every non zero Laurent polynomial. In Lemma II.4.21, we recall the classic
fact that, if the condition ρ(Ad) → ∞ is satisfied, then (µAd

)d∈Z≥1 converges to µ weakly.
However, the weak convergence of the measures is not sufficient since the function log |P |
can have value ∞. We circumvent this difficulty by using uniform L2 estimates for log |PAd

|,
borrowed from [DH19, Lemma A.3] (see Proposition II.4.22 and Section II.4.4). Therefore,
proof of m(Pd) → 9

2π2 ζ(3) is a corollary of the generalization of Boyd-Lawton by considering
P∞ = (1−x)(1−y)−(1−z)(1−w) as a limit polynomial and the sequence Ad :=

(
d+2 0 1 0

0 1 0 d+2

)
(see Lemma IV.1.3). We notice that this new proof is much shorter than our first proof. How-
ever, it is a kind of reverse engineering, because the choice of the limit polynomial P∞ neces-
sitates the value of its Mahler measure. Without the exact value of the limit of m(Pd), and
without the work of D’Andrea and Laĺın, guessing a candidate as a limit polynomial a priori
is somehow impossible.

In [BGMP22] we also have a discussion about the error terms. We provide an upper bound
for the rate of the convergence of the sequence m(P (Ad)) in terms of the number of variables
of P , the number of non zero coefficients of P , the diameter of the Newton polygon of P and
ρ(A). Since the main objective of this thesis is to study the sequence Pd, we do not cover this
general discussion. However, we provide the rate of convergence of the sequence m(Pd). In
fact, in Chapter V, we are able to determine the full asymptotic expansion of m(Pd) − m(P∞).

Theorem ([BGMP22]). The asymptotic expansion of m(Pd) − m(P∞) is as follows:

m(Pd) − m(P∞) = 1
(d + 1)(d + 2)

− log(d)
2 +

2m−3∑
j=0

αj

dj

+ O( 1
d2m−1 ) for all m ≥ 2.
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where the coefficients αj ∈ R are defined as:

α0 := 6
(
ζ ′(−1) − ζ ′(−2)

)
+ log(2π)

2 − 1,

αj := 12 · (−1)j

j(j + 1)

⌊j/2⌋∑
t=0

(
j + 1

2t

)
· (2j+1−2t − 1)(2t − 1)

(2t + 1)(2t + 2) · B2t+2 · ζ(2t) (j ≥ 1).

Here, Bn denotes the n-th Bernoulli number.
To prove the above theorem, we first use another closed formula for m(Pd), as a sum of the

values of dilogarithm (see Theorem V.1.1):
Theorem. For every d ∈ Z≥1 we have:

2πm(Pd) = 1
d + 1Sd+2 − 1

d + 2Sd+1, with Sd := 3
∑

1≤k≤d−1
(d − 2k)D((e

2π
d

i)k).(I.2.2)

The above closed formula can still be interpreted as a linear combination of Riemann sums
but this time for the univariate function f(x) = (1 − 2x)D(e2πxi). Therefore, to compute
the asymptotic expansion we can use the Euler-Maclaurin formulas for univariate functions.
However, the function f has logarithmic singularities at 0 and 1 due to the dilogarithm function
(see Lemma V.1.6). Hence, we need to use the Euler-Maclaurin summation formulas for both
smooth and singular functions (see [SI88]). The details of this expansion can be found in
Proposition V.2.3 and Proposition V.3.2.
The asymptotics of this expansion is given by :

m(Pd) = 9
2π2 ζ(3) − log d

2(d + 1)(d + 2) + O

( 1
d2

)
.

The above equation gives both the limit (this is the third method to prove the limit) and the
rate of the convergence of (m(Pd))d∈Z≥1 .

In Chapter VI of this thesis we explore the links between the Mahler measure of Pd and
special values of L-functions, which is an ongoing project in collaboration with Bertin. The
reason that we suspected the existence of such links is the existence of a closed formula for both
m(Pd) and L′(χ, −1), where χ is an odd primitive Dirichlet character, as a linear combination
of dilogarithm at certain roots of unity. More precisely, from [Gra81], we have:

Proposition ([Gra81]). Let −f be a fundamental discriminant and χ−f :=
(

−f
.

)
be the

odd quadratic Dirichlet character of conductor f . Then we have:

L′(χ−f , −1) = f
3
2

4π
L(χ−f , 2) = f

4π

f∑
n=1

χ−f (n)D(ζn
f ),(I.2.3)

where ζf is a primitive f -th root of unity.

Furthermore, the example of Smyth, m(x + y + 1) = 3
√

3
4π L(χ−3, 2) = L′(χ−3, −1), gives a

striking link between P1 and L′(χ−3, −1). By computing the formula for m(P2) and the formula
for L′(χ−4, −1), we obtain a formula for m(P2) in terms of L-functions in Proposition VI.1.4:

m(P2) = L′(χ−4, −1) − L′(χ−3, −1)
2 = 2

π
L(χ−4, 2) − 3

√
3

8π
L(χ−3, 2).

After observing these links between m(P1), m(P2) and L-functions, we are interested in writing
m(Pd) explicitly in terms of L-functions, for d ≥ 2. We hope this ongoing project will shed
some light on the Chinburg conjecture:
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Conjecture (Chinburg conjecture). [Ray87, Page 697] For every odd quadratic character
χ−f :=

(
−f

.

)
, there exists a non-zero polynomial Pf (x, y) with integer coefficients, such that

m(Pf )
L′(χ−f ,−1) is a rational number.

Smyth’s formula for the Mahler measure of P1, provides an example for the case f = 3. Ray
[Ray87] was able to construct polynomials Pf (x, y), for f = 3, 4, 7, 8, 20 and 24. In Chapter VI,
we show that P1P 2

2 , verifies the Chinburg conjecture for f = 4. However, to write m(Pd) for
3 ≤ d ≤ 6 in terms of L-functions, we also need L-functions associated with complex odd
primitive Dirichlet characters. For instance, let χ−3, χ−4 be respectively the odd quadratic
characters of conductor 3 and 4, and χi and χ−i be the following odd primitive Dirichlet char-
acters of conductor 5:

m 0 1 2 3 4

χi(m) 0 1 i −i −1

χ−i(m) 0 1 −i i −1

Then, in Propositions VI.3.1 and VI.3.2 we prove the following equalities:

m(P3) = 3(3 − i)
20 L′(χi, −1) + 3(3 + i)

20 L′(χ−i, −1) − 3
5L′(χ−4, −1),

m(P4) = −3 + i

10 L′(χi, −1) + −3 − i

10 L′(χ−i, −1) + 16
5 L′(χ−3, −1).

It seems necessary to introduce χi and χ−i, as our formulas for m(P3) and m(P4) contain values
of the dilogarithm at 5-th roots of unity, while 5 is not a fundamental discriminant.
In Propositions VI.3.3 and VI.3.4, we also describe m(P5) and m(P6) in terms of L-functions.
Moreover, in Theorem VI.0.1, we prove the following result:

Theorem. Let d ∈ Z≥1. For every odd primitive Dirichlet character χ of conductor k,
such that k|d, there exists a coefficient Ck,χ ∈ Q(e

2πi
ϕ(k) ) ⊂ Q(e

2πi
ϕ(d) ) such that:

m(Pd) =
∑

k|(d+1)(d+2)

∑
χ odd primitive mod k

Ck,χL′(χ, −1).

To prove the above theorem we use Eq. (I.2.2) and 3 principal arguments: First, for any
primitive odd (non principal) Dirichlet character of conductor k, denoted by χ, we have the
following formula for L′(χ, −1), which is a generalization of Eq. (I.2.3):

L′(χ, −1) = k

4π

k−1∑
m=1

χ(m)D(ζk
m) = −ikτ(χ)

4π
L(χ̄, 2).

Here, τ(χ) = ∑
1≤a≤k χ(a)e 2πia

k is a Gauss sum (see Page 697 [Ray87]). The second argument is
that the primitive characters of modulus k|d generate the space of periodic functions of period
d. The last argument is that every imprimitive Dirichlet character of modulus d and conductor
k|d is induced by a uniquely determined primitive character of modulus k.
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CHAPTER II

Different aspect of the Mahler measure

This chapter aims to introduce the Mahler measure and some of its applications in Number
Theory. As we have already seen in the introduction, the main results of this thesis are about the
Mahler measure of a family of two variable polynomials called Pd. Before introducing the Mahler
measure of multivariable polynomials, we introduce the definition of the Mahler measure for a
univariate polynomial. We bring attention to some important computational examples done by
Smith. We see that the values of the Mahler measure of certain multivariate polynomials are
linked to special values of L-functions, which illustrates an important application of the Mahler
measure. In the last section of this chapter, we will introduce some important information about
the sequence of Mahler measures such as Boyd-Lawton’s theorem and its generalization. In
future chapters, these results will be used to compute the limit of the sequence of the Mahler
measure of Pd.

II.1. Introduction to Mahler measure

Historically, Derrick Henry Lehmer [Leh33] introduced the definition of univariate Mahler
measure (for the monic polynomials with integer coefficients) in his research for discovering large
prime numbers. However, the Mahler measure was named after Kurt Mahler who successfully
extended this definition to arbitrary univariate polynomials as well as multiple variables. Before
introducing the definition of univariate Mahler measure we recall some basic definitions and
terminology about polynomials.

II.1.1. Basic definitions about polynomials. Mahler measure is a kind of height func-
tion for polynomials. In the most general sense, the height of a polynomial is a quantity by
which we measure the complexity of the polynomial P . There are several different types of
height functions. The simplest heights take into account the size of the coefficients of a poly-
nomial. For instance for a polynomial P (x) = adxd + ad−1xd−1 + · · · + a1x + a0 the height is
defined as

H(P ) := max
0≤j≤d

|aj |,(II.1.1)

the length of P is defined as
L(P ) := |ad| + · · · + |a0|,(II.1.2)

which are examples of height functions. Another way to define the height is to consider the
absolute value of the roots of the polynomial P and define the Mahler measure.

Definition II.1.1 ([Mah60]). The Mahler measure M(P ) of a non zero polynomial P (x) =
adxd + ad−1xd−1 + · · · + a1x + a0 in C[x] is defined as:

M(P ) = |ad|
d∏

i=1
max{1, |αi|},

where P factorizes over C as P (x) = ad(x − α1)(x − α2) · · · (x − αd).
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We notice that in this definition, an empty product is assumed to be 1, so the Mahler
measure of the non zero constant polynomial P (x) = a0 is |a0|. In addition M(0) is defined to
be one.

For number theorists, the most useful height functions are the three discussed above. We
will see some relations between these height functions applied to a fixed polynomial (see Propo-
sition II.2.7). The quantity M(P ) for polynomials in one variable occurs naturally in many
problems of number theory or dynamical systems.
Definition II.1.2. A polynomial P (x) = adxd + ad−1xd−1 + · · · + a1x + a0 of degree d is called
monic if its leading coefficient is ad = 1.

According to Definition II.1.1 the Mahler measure of C ·P , for C ∈ C is proportional to the
one of P by the proportionality constant |C|. Therefore, to compute M(P ) for an arbitrary
polynomial P it suffices to compute the Mahler measure of the primitive part of the polynomial.
In what follows we recall the necessary terminology in this regard.

Let R be a unique factorization domain. The content of a polynomial P (x) with coefficients
in R is the greatest common divisor of its coefficients and, as such, is defined up to multiplication
by a unit. It is denoted by C(P ).
Definition II.1.3. The polynomial P is called primitive, if the content of P is a unit.

As we have already mentioned, for an arbitrary polynomial, we only compute the Mahler
measure of its primitive part. However, we can simplify the computation even more. According
to Definition II.1.1, for a reducible polynomial P = HG, we have M(P ) = M(H)M(G). There-
fore, it suffices to study the Mahler measure of the irreducible polynomials in the factorization
of P . An irreducible polynomial is a polynomial that cannot be factored into the product of
two non-constant polynomials. The property of irreducibility depends on the nature of the
coefficients that are accepted for the possible factors, that is, the field or ring to which the
coefficients of the polynomial and its possible factors are supposed to belong. Since we often
work with polynomials with integer coefficients, we directly define this notion for P ∈ Z[x].
Definition II.1.4. If P ∈ Z[x] is not primitive or can be represented as the product of two
polynomials in Z[x] of degree strictly less than deg(P ), then P is called reducible; otherwise
it is irreducible.

II.1.2. Kronecker’s theorem. We have introduced the Mahler measure and we can com-
pute it for a polynomial if we know the values of its roots. According to Definition II.1.1 the
Mahler measure of a monic polynomial whose roots are only roots of unity is equal to 1. More-
over, if we focus on polynomials with integer coefficients the value of their Mahler measure is
greater than or equal 1. In this section, we introduce Kronecker’s theorem, which character-
izes the irreducible monic polynomials with integer coefficients whose Mahler measure equals
1. We recall some necessary definitions about algebraic numbers which are needed to state
Kronecker’s theorem.
Definition II.1.5. An algebraic number over Q is any complex number (including real
numbers) that is a root of a non-zero univariate polynomial with rational coefficients. The set
of all algebraic numbers is denoted by Q̄.

We notice that, in the above definition, we can equivalently say a is an algebraic number
if it is the root of a polynomial with integer coefficients. All integers and rational numbers are
examples of algebraic numbers. The real and complex numbers which are not algebraic, such

28



as π and e, are called transcendental numbers. Since a number a is algebraic if it is a root of
a polynomial P (x) ∈ Z[x], one can find a polynomial P of the lowest degree, such that a is a
root of P , so we have the following definition.
Definition II.1.6. Let a be an algebraic number, an irreducible polynomial P (x) ∈ Z[x] such
that P (a) = 0, is called a minimal polynomial, associated to a.

After this definition we may ask about the uniqueness of such a polynomial. Indeed, it is
unique up to sign. In the sequel ,we may use the word “the minimal polynomial”, but it refers
to the uniqueness up to a sign. The above definition implies that the minimal polynomial is
irreducible and primitive, but not necessarily monic. If in addition the minimal polynomial of
a is monic, then it belongs to a special family of algebraic numbers, introduced in the following
definition;
Definition II.1.7. If the minimal polynomial of α is monic (up to a sign), then α is said to
be an algebraic integer.

For instance, 5 and
√

2 are algebraic integers while 5
3 is not an algebraic integer. More

generally, the only algebraic integers which are found in the set of rational numbers are the
integers. Moreover, the square root

√
n of a non negative integer n is an algebraic integer, but is

irrational unless n is a perfect square. In Example II.1.11 we will introduce an important family
of algebraic integers, which are not necessarily real. One can verify the following observations
which introduce some important properties of algebraic integers and allow us to construct new
algebraic integers. For a proof of the following observation see for instance [AM69, Corollary
5.3].
Observation II.1.8. The set of all algebraic integers is closed under addition, subtraction and
multiplication and is therefore a commutative subring of the complex numbers.

The following observation gives us a sufficient condition to have an algebraic integer; See
[BZ20] for more information about Observation II.1.9.
Observation II.1.9. Every root of a monic polynomial with integer coefficients is itself an
algebraic integer. Since, if Q(a) = 0 for some monic polynomial which is not necessarily
minimal, we consider the decomposition of Q into irreducible factors. They are polynomials
with degrees less than that of Q in Z[x] and they are monic. Therefore, any irreducible monic
polynomial in the decomposition of Q which vanishes at a gives us the minimal polynomial
of a (since all the factors in the decomposition of Q are monic with integer coefficients, so
such a minimal polynomial is unique). In particular, every root of a monic polynomial whose
coefficients are integers is itself an algebraic integer.

Observation II.1.9 and Observation II.1.8 imply that the Mahler measure of a monic poly-
nomial with integer coefficients is an algebraic integer. Moreover we have the following classical
result which dates back to Dedekind and Kronecker. See [Edw13, Part 0] or [DD04] for a proof.
Corollary II.1.10. Let P ∈ Z[x], then M(P ) is an algebraic integer.

Example II.1.11. [BZ20] The roots of unity are algebraic integers. Indeed, ζk
n = e

2πki
n with

k ∈ Z≥1 is a root of the monic polynomial xn − 1, which thanks to Observation II.1.9 we
conclude that they are algebraic integers.

We mention the last definition before Kronecker’s Theorem.
Definition II.1.12. Let P = ad

∏
1≤j≤d(x − αj), with the leading coefficient equal to ad, be

the minimal polynomial of an algebraic number α. All zeros α1 = α, α2, . . . , αd of P , are called
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algebraic conjugates of α. Furthermore, if all the roots are real, α is called a totally real
algebraic number.

We can now state and prove Kronecker’s Theorem. Here we exhibit the proof that appears
in [BZ20, Proposition 1.1].

Kronecker’s Theorem ([Kro57]). If α is a non-zero algebraic integer such that all its
conjugates, including α, are inside the unit disc, then α is a root of unity.

Proof. Let P is the minimal polynomial of α and n = deg(P ). Since α is an algebraic
integer, so P can be chosen monic. We suppose that P = ∏

1≤j≤n(x − αj) and α = α1. The
set of all monic polynomials of degree n with integer coefficients having all their roots in the
unit disc is finite. To see this, we write;

P = xn + an−1xn−1 + · · · + a0 =
n∏

j=1
(x − αj),

where an−j ∈ Z, for 1 ≤ j ≤ n. Using the fact that |αj | ≤ 1, for 1 ≤ j ≤ n we have:

|an−1| = |α1 + · · · + αn| ≤ n =
(

n

1

)
,

|an−2| = |
∑

1≤j<k≤n

αjαk| ≤
(

n

2

)
,

...

|a0| = |α1α2 · · · αn| ≤
(

n

n

)
.

Since the an−j are integers, each an−j is limited to at most 2
(n

j

)
+ 1 values and therefore the

total number of the polynomials that satisfy the hypothesis of the theorem is finite. We define;

P1 = P =
n∏

j=1
(x − αj),

and for k ≥ 2,

Pk =
n∏

j=1
(x − αk

j ).

We claim that Pk(x) has integer coefficients;
To see this, let P (y) = ∏n

j=1(y − αj) and Qk(y) = x − yk and P, Qk ∈ Z[x][y]. Therefore,
Eq. (VII.1.1) in Appendix implies that:

Res(P, Q) = (1)deg(Q)
n∏

j=1
Q(αj) =

n∏
j=1

(x − αk
j ) = Pk(x).

On the other hand the coefficient of the resultant are polynomial functions of the coefficients of
P and Qd. Since P and Qk have coefficients in Z[x], so does Pk = Res(P, Qk). It is also clear
that all the roots of Pk are in the unit disc. Therefore, the number of such Pk is finite. Thus,
we must have Pt = Pk for some t ≤ k. Since the set of the roots of Pt is {αt

1, . . . , αt
n} and for

Pk is {αk
1 , . . . , αk

n}, then the two sets must be equal up to a permutation:

αt
r = αk

σ(r),
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for r = 1, 2, . . . , n. Let m be the order of σ in Sn (i.e. the order m is the smallest non zero
(positive) integer such that σ(m)(r) = r, for all r such that 1 ≤ r ≤ n ). Thus, for an arbitrary
root of P (x), denoted by αr we have;

αtm

r = αttm−1
r = αktm−1

σ(r) = αtktm−2

σ(r) = αk2tm−2

σ(σ(r)) = · · · = αkmtm−m

σ(m)(r) = αkm

r .

Therefore, we have,
αtm−km

r = 1,

which implies that αr is a root of unity, for each 1 ≤ r ≤ n.
□

According to Definition II.1.1 we know that the Mahler measure of a polynomial with
integer coefficients whose roots are roots of unity is equal to 1. In the following section by
using Kronecker’s Theorem we prove that if P ∈ Z[x] and M(P ) = 1 then P is monic and its
nonzero roots are only roots of unity. More precisely the polynomials with integer coefficients
and Mahler measure equal to 1 are the product of monomials and cyclotomic polynomials,
introduced as follows:

Definition II.1.13. For any positive integer n the n-th cyclotomic polynomial, ϕn(x) is
given by:

ϕn(x) =
n∏

k=1
gcd(n,k)=1

(x − ζk
n),

where ζk
n = e

2kπi
n .

One can observe that if gcd(n, k) = 1 the minimal polynomial of ζk
n = e

2kπi
n is the n-th

cyclotomic polynomial.

II.1.3. Mahler measure of univariate polynomials and Lehmer Conjecture. In
this section we come back to the definition of the Mahler measure (univariate case) to introduce
some of its important properties. In the end of this section we state the well known conjecture
of Lehmer which still remains open. Moreover, we give information about some particular cases
of polynomials for which the conjecture is answered.

As we have already mentioned the Mahler measure of monic univariate polynomials with
integer coefficients was first defined by Lehmer during his research for discovering large primes.
Let us briefly explain about his research and the history behind this definition.

As we know the Mersenne primes are the prime numbers of the form 2p − 1 for some prime
p. However, the primality of n does not guarantee 2n − 1 to be prime. Many fundamental
questions about Mersenne primes remain unresolved. It is not even known whether the set of
Mersenne primes is finite or infinite. The largest known prime number, is 282,589,933 − 1, which
is also a Mersenne prime. This is not a coincidence, in fact, there are special primality tests
allowing to verify the primality of numbers arising as values of cyclotomic polynomials. For
instance, Pierce [Pie16] constructed the sequence ∆n(P ), associated with a monic polynomial
P ∈ Z[x] with P (x) = ∏d

j=1(x − αj) as its complex factorization, and defined:

∆n(P ) :=
d∏

j=1
(αn

j − 1).

Then, he looked for primes among the factorization of ∆n(P ). Equivalently we can define
∆n(P ) := Res(P, Qn), where Qn(x) = xn − 1. Since αj are algebraic integers it is easy to
see as before that ∆n(P ) ∈ Z. Note that if P (x) = x − 2, we get the Mersenne sequence
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∆n(P ) = 2n − 1, which if n is prime may give a Mersenne prime. For an arbitrary polynomial
P , Pierce observed that if p ∈ Z≥1 is a prime number then ∆p is often a prime. In 1933, Lehmer
[Leh33] studied the growth of {∆n(P )}∞

n=1 and proved the following concerning the growth of
this sequence as n → ∞:

Proposition II.1.14 ([Leh33]). Let P ∈ Z[x] be the monic polynomial with complex factoriza-
tion P (x) = ∏d

j=1(x − αj) and P (0)P (1) ̸= 0 then:

lim sup
n→∞

n

√
|∆n(P )| =

d∏
j=1

max{1, |αj |}.

Moreover, if the sequence ∆n(P ), n = 1, 2, . . . is not periodic, then the absolute value of ∆n(P )
unboundedly increases with n.

Proof. Since P (0)P (1) ̸= 0, in particular P (1) ̸= 0, then the proof of the limit follows
from the fact that lim supn→∞ |αn − 1|

1
n = max{1, |α|}, for α ̸= 1. For the second part of the

proposition, we first suppose that P is irreducible, then it is the minimal polynomial of all its
roots, so for the sequel of the proof we use the proof of Kronecker’s Theorem. As we have seen
in the proof of Kronecker’s Theorem, for a monic polynomial P (x) = ∏d

j=1(x − αj) ∈ Z[x] we
defined the polynomial Pn(x) = ∏d

j=1(x − αn
j ) and we proved that Pn ∈ Z[x], so Pn(1) ∈ Z.

We notice that |∆n(P )| = |Pn(1)|, for every n ∈ Z≥1. Then, (|∆n(P )|)n∈Z≥1 is a sequence
of integers. Thus, if the sequence is bounded, then the limit superior is 1, and from the first
part of the theorem, for every 1 ≤ j ≤ d we have |αj | ≤ 1. Using Kronecker’s Theorem
all the roots of P are roots of unity, so the polynomial P (x) is a cyclotomic polynomial and
|∆n(P )| = |Pn(1)| is periodic. Finally, if P is not irreducible, we decompose it to the irreducible
factors. Then, the mentioned proof is applicable to each irreducible factor, and by using the
property that ∆n(P1P2) = ∆n(P1)∆n(P2), for every P1, P2 monic with integer coefficients, the
proof is complete. □

We come back to the definition of the Mahler measure for an arbitrary univariate polynomial
P (x) = an(x − α1)(x − α2) · · · (x − αn), proposed by Mahler, Definition II.1.1, which is:

M(P ) = |an|
∏

|αi|≥1
|αi| = |an|

n∏
i=1

max{1, |αi|},(II.1.3)

In the above definition if P is monic, then the value of M(P ) and the limit of the sequence
|∆n(P )|1/n coincide. In fact, Lehmer called the above limit a measure of P denoted by M(P ).
Later, Mahler generalized the definition to arbitrary polynomials, and this is the reason that
M(P ) is called Mahler measure. At the end of this section, in order to give the intuition
behind the Lehmer conjecture we come back to Lehmer’s research for large primes, but let us
first mention some important properties of the Mahler measure which are needed for the sequel.

Fact II.1.15. For the Mahler measure of a univariate polynomial we have the following:
(1) For P ∈ C[x], where P ̸= 0 we have M(P ) > 0.
(2) For P ∈ Z[x], we have M(P ) ≥ 1, since the leading coefficient of P belongs to Z.
(3) For P, Q ∈ C[x], we have M(P.Q) = M(P )M(Q), in particular for C ∈ C, we have

M(CP ) = |C|M(P ).
(4) We can even extend the definition from polynomials to rational functions (if M(Q) ̸=

0) by setting M(P
Q) = M(P )

M(Q) .

(5) Let P be a cyclotomic polynomial. It is monic and all its roots are the roots of unity,
which implies M(P ) = 1.
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(6) Let P be the product of cyclotomic polynomials and ±xn, for some n ∈ Z≥1, then we
have M(P ) = 1.

(7) Let P ∈ Z[x], then M(P ) is an algebraic integer (see Corollary II.1.10).

We justified most of the above properties in the previous section. The following proposition
together with the sixth property in Fact II.1.15 characterize the non zero polynomials with
integer coefficients and the Mahler measure equal to 1.

Proposition II.1.16. If Q ∈ Z[x] \ {0}, and M(Q) = 1, then Q = ±xnP (x), where P (x) is a
product of cyclotomic polynomials and n ∈ N (in this thesis we consider 0 ∈ N).

Proof. The key tool to prove the proposition is Kronecker’s Theorem:
Since, M(Q) = 1 and Q ∈ Z[x], we conclude that Q is monic and all its roots must have
modulus less than or equal to 1. If Q vanishes at 0 with multiplicity n ≥ 0, then we can
decompose Q as Q = ±xnP (x), where P ∈ Z[x] is monic and n ∈ N. Therefore, an arbitrary
root of P , named a, is non zero with |a| ≤ 1 and according to Observation II.1.9, a is an
algebraic integer. Thus, according to Kronecker’s Theorem, all the algebraic conjugates of a,
which contains a as well are roots of unity and they all have modulus equal to 1. Hence, P is
the product of cyclotomic polynomials. □

We come back to Lehmer’s research to produce large prime numbers. In Proposition II.1.14
we discussed the growth of |∆n(P )|. One can show that if m|n then ∆m(P )|∆n(P ). Thus,
we may look at |∆n(P )

∆1(P ) |, for any n or |∆n(P )
∆2(P ) |, for n even. To obtain large primes from the

factorization of ∆n(P ), Lehmer [Leh33] suggested to have the increase of the sequence very
slowly. In other words, to have M(P ) as small as possible. According to Proposition II.1.16,
M(P ) > 1, for P ∈ Z[x] \ {0} monic, irreducible and non-cyclotomic. Then, Lehmer asked for
the greatest bound for M(P ) from below (greater than one). This question is yet open and
called the Lehmer conjecture:

Conjecture II.1.17. [Lehmer Conjecture (1933)] There is a constant C > 1, such that for
any P ∈ Z[x] if M(P ) > 1, then M(P ) ≥ C.

According to Proposition II.1.16, the condition M(P ) > 1 in the above conjecture is equiv-
alent to the property that P is not a product of cyclotomic polynomials (up to a monomial
factor). There is a stronger version of this conjecture which proposes that the constant C in
the above conjecture is itself the Mahler measure of a polynomial with integer coefficients. The
best guess until now is Lehmer’s guess [Leh33], which is the Mahler measure of the following
polynomial;

M(x10 + x9 − x7 − x6 − x5 − x4 − x3 + x + 1) = 1.17628 . . . .

Since 1933, this value is still the smallest value of M(P ) > 1 and it is widely believed to be
the least possible value. Of course, the Lehmer Conjecture is known to be true for polynomials
with bounded degree.

Proposition II.1.18. For every d ∈ Z>0 there exists µd > 1 such that if P ∈ Z[x] is a monic,
irreducible and non-cyclotomic polynomial of degree d, then M(P ) ≥ µd.

Proof. [BZ20] Since M(xd − 2) = 2, it is sufficient to show that there are finitely many
monic polynomials P ∈ Z[x] of degree d for which M(P ) < 2, then µd is the minimum
of M(P ) over the finite set. For a polynomial P = ∏d

j=1(x − αj), the bound M(P ) =∏
1≤j≤d max{1, |αj |} < 2 implies |αj | ≤ 2, for j = 1, . . . , d. As the coefficients of P are integers,

the same idea as the proof of Kronecker’s theorem proves that the set of such polynomials is
finite. □
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Lehmer’s conjecture for polynomials with bounded degree has been intensely studied. One
can find some of the lower bounds in [Dob79, BM71, Ste78, CS82, Lou83].

There is a family of polynomials called non reciprocal polynomials, for which the Lehmer
Conjecture was solved by Breusch [Bre51] and (independently) by Smyth [Smy71]:

Definition II.1.19. Let P ∈ C[x] is a polynomial of degree d, write its reciprocal (reflected)
polynomial P ∗ as follows;

P ∗(x) := xdP

(1
x

)
.

The polynomial P is called reciprocal if P ∗ = ±P , and non reciprocal otherwise.

Proposition II.1.20 (Smyth[Smy71], Breusch [Bre51]). If the Mahler measure of an irre-
ducible polynomial P (x) ∈ Z[x] satisfies M(P ) < x0 = 1.32471795 . . . , the real zero of the
polynomial x3 − x − 1, then P (x) is reciprocal.
Furthermore if M(P ) ≤ c = x0 + 10−4, then either P (x) has a zero x

1
m
0 for some m ∈ Z≥1 or

P (x) is reciprocal.

For more information about Smyth’s theorem see [Smy71, Pages 170-175] or [BZ20, Theo-
rem 2.1]. In fact the constant c = x0 + 10−4 in the statement of Proposition II.1.20 was later
improved to c = 1.32497826 . . . , the largest real zero of 4x8 − 5x6 − 2x4 − 5x2 + 4 in [DD04]. In
Section II.4.2 we come back to this theorem after introducing Boyd’s conjecture and we give
more information about the Lehmer conjecture and the links between these two statements.

II.1.4. Jensen’s formula and logarithmic the Mahler measure. In this section, us-
ing Jensen’s equality we state another definition of the Mahler measure of a univariate polyno-
mial by computing an integral over the unit circle. This integral representation of the univariate
Mahler measure formula gives us the opportunity to generalize the definition to multivariate
polynomials.
Let us fix the following notation, which will be used in the sequel;

Notation II.1.21. For any α ∈ C we define:

log+ |α| = log max{1, |α|}.

Jensen’s formula ([Jen00]). For any α ∈ C we have:∫ 1

0
log |e2πit − α|dt = log+ |α|.

Proof. [BZ20] Jensen’s formula is trivially true for α = 0 (the two sides of the equality
are equal to 0), so we suppose that |α| > 0. Let us replace the real integral

∫ 1
0 log |α − e2πit|dt

with the complex integral using the change of variables x = e2πit. Therefore 2πie2πitdt = dx
and we have:∫ 1

0
log |α − e2πit|dt = 1

2πi

∮
|x|=1

log |x − α|dx

x
= ℜ

(
1

2πi

∮
|x|=1

log(x − α)dx

x

)
.

The proof is divided into three cases;
• First case : |α| > 1 ) In this case the function f(x) = log(x − α) is analytic inside the

unit disc |x| < 1 and on its boundary, hence Cauchy’s theorem implies that the latter
integral evaluates to f(0) = ℜ(log α) = log |α|.
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• Second case : |α| = 1 ) In this case we have an improper integral. We replace the
integration path around x = α with an arc C of radius ϵ, where 0 < η < 1

2 , centered
at this point lying entirely inside the disc |x| ≤ 1, and use Cauchy’s theorem for the
newer contour as well as the estimate∣∣∣∣ 1

2πi

∫
C

log(x − α)dx

x

∣∣∣∣ ≤ ϵ max
x:|x−α|=ϵ

| log(x − α)|
|x|

≤ 2ϵ| log ϵ| → 0 as ϵ → 0 .

• Third case : |α| < 1 ) In this case log |x − α| = log |1 − α/x| on the contour of
integration |x| = 1, so that∫ 1

0
log |e2πit − α|dt = ℜ

(
1

2πi

∮
|x|=1

log
(

1 − α

x

)
dx

x

)

= ℜ
(

1
2πi

∮
|y|=1

log (1 − αy) dy

y

)
= 0

Notice that, by changing variables we reverse the orientation which flips the sign of
the result also dx

x = −dy
y . To see the last equality, we notice that y−1 log(1 − αy) has

a removable singularity at y = 0 and no other singularities within the disc |y| ≤ 1.
Therefore the integral is zero.

□

In [Mah60], Mahler replaced the polynomial (x − α) in Jensen’s formula with an arbitrary
polynomial P (x) = ad

∏d
j=1(x − αj) ∈ C[x] and got the following result;∫ 1

0
log |P (e2πit)|dt = 1

2πi

∮
|x|=1

log |ad|dx

x
+

d∑
j=1

1
2πi

∮
|x|=1

log |x − αj |dx

x

= log |ad| +
d∑

j=1
log+ |αj |.

Comparing this result with the Definition II.1.1 which sets M(P ) = |ad|
∏n

i=1 max{1, |αi|}, we
conclude: log M(P ) =

∫ 1
0 log |P (e2πit)|dt. In other words we have:

M(P ) = exp
(∫ 1

0
log |P (e2πit)|dt

)
.(II.1.4)

The previous equation leads to the definition of the logarithmic Mahler measure of P , intro-
duced by Kurt Mahler:
Definition II.1.22. Let P (x) ∈ C[x] is a non zero polynomial. The logarithmic Mahler
measure of P , denoted by m(P ) is defined as:

m(P ) = log M(P ) =
∫ 1

0
log |P (e2πit)|dt.(II.1.5)

In some references, the definition is extended to all polynomials by setting m(0) = ∞. We
recall that for the zero polynomial it is defined that M(0) = 1. Moreover, there is no harm in
allowing P to be a Laurent polynomial, since these can be converted to ordinary polynomials
by multiplication by a monomial in x and the logarithmic Mahler measure of a monomial is 0.
Some of the important properties of logarithmic Mahler measure are stated in the following
fact:
Fact II.1.23. For the logarithmic Mahler measure of a univariate polynomial we have:

(1) For P ∈ Z[x], a non zero polynomial, we have seen M(P ) ≥ 1 which implies m(P ) ≥ 0.
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(2) For P, Q ∈ C[x], we have m(P.Q) = m(P ) + m(Q), in particular for c ∈ C \ {0}, we
have m(cP ) = log |c| + m(P ).

(3) For a cyclotomic polynomial denoted by P , since M(P ) = 1, we have m(P ) = 0.
(4) Let P be the product of cyclotomic polynomials, then, we have m(P ) = 0, and in

addition, for any n ∈ N we have m(±xnP ) = 0 .

Thanks to Proposition II.1.16, we conclude the following:

Corollary II.1.24 (Theorem 1.33 [EW99]). If Q ∈ Z[x] and m(Q) = 0, then Q = ±xnP (x),
where P is a product of cyclotomic polynomials.

The fourth property of m(P ), mentioned in Fact II.1.23 together with Corollary II.1.24
characterize the univariate polynomial with integer coefficients and the logarithmic Mahler
measure equal to zero. This gives an analogue for Proposition II.1.16, for the logarithmic
Mahler measure to be equal to 0. One may ask about the characterization of m(P ) = 0 for
P (x) ∈ C[x]. We can not answer this question in general, but there is a family for which we
can answer this question, called unit-monic. A non zero polynomial P ∈ C[x] is said to be
unit-monic if P (x) = adxd + · · · + a0 has |ad| = |a0| = 1.

Proposition II.1.25 ([EW99], Lemma 3.12). If P ∈ C[x] is unit-monic then m(P ) = 0 if and
only if all zeros of P lie on the unit circle.

Proof. To prove this proposition, we only need to use the complex analogue of Kronecker’s
theorem for unit-monic polynomials which asserts: If all the roots of P are inside the closed
unit disc, then they all have modulus of 1.
The proof of this version of Kronecker’s theorem is simple. Let P (x) = adxd + · · · + a0, the
product of the roots of P is equal to a0

ad
= 1. Since all the roots of P have modulus less than

or equal to 1, we conclude that all the roots of P have the modulus equal to 1.
To prove the proposition, we notice that if all zeros of P lie on the unit circle then clearly
m(P ) = 0 and on the other side the analogue of Kronecker’s theorem completes the proof.

□

We can translate the Lehmer Conjecture in the setting of the logarithmic Mahler measure
as well. It states that there exists a constant C > 0, such that for every polynomial P ∈ Z[x]
with m(P ) > 0 we have m(P ) ≥ C.

Remark II.1.26. In the cases that we work with m(·) rather than M(·), the adjective “loga-
rithmic” is often dropped since it is clear from the context that which one is used.

II.2. Multivariate Mahler measures

The aim of this section is to introduce the generalization proposed by Mahler of the defini-
tion of univariate Mahler measures to multivariate. We will see some examples of the evaluation
of Mahler measure of multivariate polynomials by Smyth which their Mahler measure link to
the special values of L-function. This is an important application of the Mahler measure in
Number Theory.

II.2.1. Mahler measure, multivariate polynomials. Mahler generalized the definition
of the logarithmic Mahler measure to non zero polynomial in several variables by using the
integral representation of the logarithmic Mahler measure introduced in Eq. (II.1.5) as follows;
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Definition II.2.1 ([Mah62b]). For a non zero polynomial P ∈ C[x1, . . . , xn] define:

m(P ) =
∫

· · ·
∫

[0,1]n
log |P (e2πit1 , . . . , e2πitn)|dt1 · · · dtn(II.2.1)

= 1
(2πi)n

∫
· · ·
∫

|x1|=···=|xn|=1
log |P (x1, . . . , xn)|dx1

x1
· · · dxn

xn
.(II.2.2)

If in the integral in Eq. (II.2.1) we do the change of variables, e2πitj = xj , for 1 ≤ j ≤ n
we have the complex integral in Eq. (II.2.2). In fact m(P ) is the arithmetic mean of log |P |
over the n-dimensional complex torus Tn. Moreover, based on the relation between M(P ) and
m(P ) in the univariate case, Mahler defined the Mahler measure of multivariate polynomials;

Definition II.2.2. For a non zero Laurent polynomial P ∈ C[x±1
1 , . . . , x±1

n ] define:

M(P ) = exp(m(P )),

and the Mahler measure of the zero polynomial is set to be one.

Some of the important properties of the Mahler measure of a multivariate polynomial are
listed in the following fact:

Fact II.2.3. For the Mahler measure of a multivariate polynomial we have the following:
(1) For P ∈ C[x±1

1 , . . . , x±1
n ], we have M(P ) ≥ 0.

(2) For P, Q ∈ C[x±1
1 , . . . , x±1

n ], we have M(PQ) = M(P )M(Q) and m(PQ) = m(P ) +
m(Q). By using this property one can extend the definition of the Mahler measure to
rational functions (i.e. If M(Q) ̸= 0 then M(P

Q) = M(P )
M(Q) and m(P

Q) = m(P ) − m(Q)).

In Eq. (II.2.1) if the polynomial P vanishes on the torus Tn, the integrand can have singular-
ities. Mahler [Mah62a] proved the existence of m(P ) for any Laurent polynomial P (x1, . . . , xn).
We provide a proof using the method in [EW99]:

Proposition II.2.4 ([Mah62a]). The expression m(P ) in Eq. (II.2.1) always exists as an
improper Riemann integral. Moreover, if P has integer coefficients, then m(P ) ≥ 0.

Proof. [EW99, Lemma 3.7] Let us first prove the existence of m(P ) by induction over the
number of the variables of P . For the one variable case (n = 1), since M(P ) > 0 for P ̸= 0, so
M(P ) exists. For proving the existence of m(P ) for P an arbitrary polynomial in n variables,
we write m(P ) as a limit of an increasing sequence which is bounded above, so it converges
and the limit is m(P ). To do so let l(P ) be the logarithm of the sum of the absolute values of
the coefficients of P . According to the definition of m(P ) and the triangle inequality we have,
m(P ) ≤ l(P ). We write P as a polynomial in x1 with coefficients in C[x2, . . . , xn]

P (x1, . . . , xn) = ad(x2, . . . , xn)xd
1 + · · · + a0(x2, . . . , xn).

By choosing some suitable algebraic functions g1, . . . , gj , we factorize P as follows:

P (x1, . . . , xn) = ad(x2, . . . , xn)
d∏

j=1
(x1 − gj(x2, . . . , xn)).

If we prove that m(ad(x2, . . . , xn)) and ∑d
j=1 m(x1 − gj(x2, . . . , xn)) exist then, by using the

properties of Mahler measure, m(P ) = m(ad(x2, . . . , xn)) +∑d
j=1 m(x1 − gj(x2, . . . , xn)) exists
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as well. By the inductive hypothesis, m(ad(x2, . . . , xn)) exists. Moreover we have:

m(P ) = m(ad(x2, . . . , xn)) +
d∑

j=1
m(x1 − gj(x2, . . . , xn))

= m(ad(x2, . . . , xn)) +
d∑

j=1

∫
[0,1]n−1

∫ 1

0
(log |e2πiθ1 − gj(e2πiθ2 , . . . , e2πiθn)|dθ1︸ ︷︷ ︸

†

dθ2 · · · dθn.

By applying Jensen’s formula to the indicated integral we have † = log+ |gj(e2πiθ2 , . . . , e2πiθn)|.
For each N ∈ Z≥1, define

aN = m(ad(x2, . . . , xn)) +
d∑

j=1

∫
[0,1]n−1

∫
XN

log+ |gj(e2πiθ2 , . . . , e2πiθn)|dθ2 · · · dθn,

where XN := {(θ2, . . . , θn) ∈ [0, 1]n−1 | |gj(θ2, . . . , θn)| ≤ N}. Then for each N , aN exists since
the integrand is continuous. Moreover, aN is an increasing sequence verifying aN ≤ m(P ) <
l(P ), so it is bounded above by l(P ). Therefore aN converges to m(P ).

In this second step we prove m(P ) ≥ 0 if P has integer coefficients. We again argue
by induction, and for n = 1, it is already proved. Thus, we suppose that the proposition
is true for all polynomial in n − 1 variables. For an n variable polynomial P with integer
coefficients aN ≥ 0, since the integrand is non negative, also by the inductive hypothesis
m(ad(x2, . . . , xn)) ≥ 0, so the proof is complete.

□

The computation of the Mahler measure of multivariate polynomials is complicated since we
do not have the analogue of Jensen’s formula. In this section, we state some important examples
of the Mahler measure of multivariable polynomials without providing the computation. The
examples are due to Smyth and the values of their Mahler measures are related to special values
of L-functions. Hence, we first introduce Dirichlet characters and Dirichlet L-functions and we
then provide the computation of their Mahler measure in Section II.3.4.

Proposition II.2.5 ([Smy81a]). For the polynomial 2 + x + y we have:
m(2 + x + y) = log 2.

[EW99].

m(2 + x + y) =
∫ 1

0

∫ 1

0
log |e2πit + e2πis + 2|dtds

[1]
=
∫ 1

0
log+ |e2πis + 2|ds

[2]
=
∫ 1

0
log |e2πis + 2|ds

[3]
= log 2.

In [1] we used the Jensen’s formula for
∫ 1

0 log |e2πit +e2πis +2|dt and in [3] for
∫ 1

0 log |e2πis +2|ds.
In [2] we used the fact that, for any s ∈ [0, 1] we have |e2πis + 2| ≥ 1. □

The following evaluations, due Smyth, illustrate the link between the Mahler measure of
certain multivariate polynomials and special values of L-functions.

m(1 + x + y) = 3
√

3
4π

L(χ−3, 2),(II.2.3)

m(1 + x + y + z) = 7
2π2 ζ(3).(II.2.4)
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We refer to Section II.3.4 for the proofs of the above equalities.

There are some properties of the Mahler measure which are true in the univariate case
as well as multivariate one. For instance, there is an analogous to Corollary II.1.24 in the
multivariate setting. The following proposition is due to Smyth; see [Smy81a] for the proof.
Proposition II.2.6 ([Smy81a],Theorem 1). For any primitive polynomial P ∈ Z[x±1

1 , . . . , x±1
n ],

m(P ) is zero if and only if P is a monomial times a product of cyclotomic polynomials evaluated
on monomials. (i.e. P (x) = xa1

1 · · · xan
n ϕ(xb1

1 · · · xbn
n ), where ai, bi ∈ Z, for 1 ≤ i ≤ n and ϕ is

univariate cyclotomic polynomial.)
We have mentioned that there is a relation between the Mahler measure and the other

height functions, introduced in Section II.1.1. Using the integral definition of the Mahler
measure mentioned above we conclude the following proposition and for more information see
[BZ20].
Proposition II.2.7 ([EW99, BZ20]). For a polynomial P (x) = adxd + · · · + a0 ∈ C[x], of
degree d we have:

M(P ) ≤ L(P ) ≤ 2dM(P ).
Moreover we have :

H(P ) ≤
(

d

⌊d
2⌋

)
M(P ), M(P ) ≤

√
d + 1 H(P ).

There is also the analogous of Proposition II.2.7 for the multivariate setting:
Proposition II.2.8 ([Mah62a]). For a polynomial P ∈ C[x1, . . . , xk], we have

M(P ) ≤ L(P ) ≤ 2d1+···+dkM(P ),
where d1, . . . dk are degrees of P with respect to the corresponding variables x1, . . . , xk.

One can find the analogous of the above proposition for the link between M(P ) and H(P )
in [Mah62a, Exercise 3.2].

On the other side there are some properties of the univariate Mahler measure which can
not be generalized to the multivariate one. For instance, in Corollary II.1.10, we have seen
that the Mahler measure M(P ) of a univariate polynomial P ∈ Z[x] is an algebraic integer.
However, for a multivariate polynomial P (x1, . . . , xn) even with integer coefficients it seems
unlikely that M(P ) is an algebraic number. For example in the example of Smyth (II.2.4) we
have m(1 + x + y + z) = 7

2π2 ζ(3), and it is most probably transcendental.

II.2.2. Affine transformation and invariance of the Mahler measure. In the previ-
ous sections we have seen some important properties and definitions about the Mahler measure.
Here, we introduce one more property, namely, its invariance under bijective affine transfor-
mations. This property is needed for our future computations. Its relevance is that if m(P ) is
hard to compute, there might be a bijective affine transformation which sends the polynomial
P to Q, for which computing m(Q) is easier. In this section, first, we explain the action of
affine transformations on polynomials and then, we prove the theorem of invariance.
Definition II.2.9. In the finite-dimensional case, an affine transformation from Rm to Rn

is the composition of two functions: a translation and a linear map. In other words an affine
transformation f acting on a vector x ∈ Rm can be represented as f(x) = Ax + b, where
A ∈ Rm×n is the matrix that represents the linear map and the vector b ∈ Rn represents the
translation.
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Let us first fix the following notation;

Notation II.2.10. Given a k-tuple j = (j1, . . . , jk) ∈ Zk, the monomial xj1
1 · · · xjk

k ∈ C[x1, . . . , xk]
is denoted by xj.

In the following, we define the action of the group of bijective affine transformations of Zk

over the set of the Laurent polynomials.

Definition II.2.11. Let P = ∑
j∈Zk ajxj be a Laurent polynomial and g : Zk → Zk is a

bijective affine transformation, define gP := ∑
j∈Zk ajxgj.

The goal of this section is to prove that m(gP ) = m(P ), for any bijective affine transfor-
mation g : Zk 7→ Zk.

Definition II.2.12 ([BZ20]). The group GLk(Z) naturally acts on Tk by coordinate transfor-
mation as follows:

g = (gjl)1≤j,l≤k ∈ GLk(Z),


x1

...

xk


∈ Tk 7→


xg11

1 xg12
2 · · · xg1k

k

...

xgk1
1 xgk2

2 · · · xgkk
k


∈ Tk.

In fact g defines an automorphism of Tk to itself, since it is inversible. To see that, we show
that g−1 ◦ gx = x, where g−1 = (ajl)1≤j,l≤k ∈ GLk(Z):

x1

...

xk


g−→


xg11

1 xg12
2 · · · xg1k

k

...

xgk1
1 xgk2

2 · · · xgkk
k


g−1
−−→


(xg11

1 xg12
2 · · · xg1k

k )a11 · · · (xgk1
1 xgk2

2 · · · xgkk
k )a1k

...

(xg11
1 xg12

2 · · · xg1k
k )ak1 · · · (xg11

1 xg12
2 · · · xg1k

k )akk


.

which will be : 
xg11a11+···+gk1a1k

1 · · · xg1ka11···+gkka1k
k

...

xg11ak1+···+g11akk
1 · · · xg1kak1+···+g1kakk

k


[1]
=


x1

...

xk


.

In [1] we use that the powers of the coefficients are exactly the coefficients of the matrix
g−1g = Idk.

We have seen the action of the group GLk(Z) on two sets. First, the set of a Laurent
polynomials belongs to C[x±1

1 , . . . , x±1
k ] and second, on Tk. In the following easily verified

lemma, we see the link between these two actions. For more information see page [BZ20,
Section 3.2].

Lemma II.2.13 ([BZ20]). Let g ∈ GLk(Z), and P ∈ C[x±1
1 , . . . , x±1

k ] a Laurent polynomial, the
two actions, defined in Definition II.2.12 and Definition II.2.11 are compatible in the following
sense;

(gP )(x) = P (tgx),
for all x = (x1, . . . , xk) ∈ Tk.
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We notice that in the above lemma tg is the transpose of the matrix g. We are now able to
prove the theorem of invariance of the Mahler measure under a bijective affine transformations.

Proposition II.2.14. Let g ∈ GLk(Z) and P a Laurent polynomial in C[x±1
1 , . . . , x±1

k ]. We
have the following equality:

m(gP ) = m(P ).

Proof. The proof is an application of change of variable formula for integrals. Indeed, we
have:

m(gP ) = 1
(2πi)k

∫
· · ·
∫

|x1|=···=|xn|=1
log |gP (x1, . . . , xk)|dx1

x1
· · · dxk

xk

[1]
=

1
(2πi)k

∫
· · ·
∫

|x1|=···=|xn|=1
log |P (tg(x1, . . . , xk))|dx1

x1
· · · dxk

xk

[2]
=

|J | 1
(2πi)k

∫
· · ·
∫

|y1|=···=|yn|=1
log |P (y1, . . . , yk)|dy1

y1
· · · dyk

yk
= m(P )

In [1], we used Lemma II.2.13 and in [2] we applied the changes of variable (y1, . . . , yk) =
(tg(x1, . . . , xk)). Moreover, the region of the new integral in the third line is the action of the
invertible matrix g on the torus Tk, which is |y1| = · · · = |yk| = 1 (since g is an automorphism
of the torus). We notice that in the last integral, the absolute value of the Jacobian is one :

|J | =

∣∣∣∣∣∣∣∣∣∣∣∣∣


∂x1
∂y1

· · · ∂x1
∂yk

...

∂xk
∂y1

· · · ∂xk
∂yk



∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣


g11

y1
x1

· · · g1k
y1
xk

...

gk1
yk
x1

· · · gkk
yk
xk



∣∣∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
k∏

i=1

1
xi

k∏
j=1

yj det(g)

∣∣∣∣∣∣ = 1.

The last equality follows from the fact that g ∈ GLK(Z), so | det(g)| = 1, and all the xi and yj

have modulus equal to one. □

We finish this part by mentioning an special and important case of the previous proposition:

Corollary II.2.15. For any Laurent polynomial P (x1, . . . , xn) ∈ C[x±1
1 , . . . , x±1

n ], we have
m(P (x1, . . . , xn)) = m(P (x−1

1 , . . . , x−1
n )).

II.3. Special values of L-function and Mahler measure

In the previous section, we have seen examples of Smyth relating the Mahler measure to
special values of L-functions. In this section we will prove these evaluations. Before stating
the proofs, we need to introduce some prerequisites about Dirichlet characters and Dirichlet
L-functions.

II.3.1. Dirichlet characters. Dirichlet characters are an important notion in analytic
Number Theory and related branches of mathematics. By Fourier theory for finite abelian
groups, any function on Z

nZ can be written as a linear combination of characters. Moreover,
Dirichlet L-functions are defined by using Dirichlet characters. Thanks to the completely
multiplicative property of Dirichlet characters, Dirichlet L-series admit Euler products. In
this section, we introduce necessary information about Dirichlet characters in order to intro-
duce Dirichlet L-functions in the following section. There are two points of view for defining
Dirichlet characters. The first one is that they are homomorphisms of certain groups (see Defi-
nition II.3.1). The second one which we will use, is that Dirichlet characters are multiplicative
arithmetic functions (see Definition II.3.2).
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Definition II.3.1. A Dirichlet character modulo k ∈ Z≥1 is a multiplicative homomorphism
χ from the group of units in the ring of integers modulo k (i.e.

(
Z

kZ

)∗
) to the group of non-zero

complex numbers (i.e. C∗).

However, we prefer to consider the extended Dirichlet character from Z to C by defining
χ(a) = 0, if a is not coprime to k and taking advantage of the periodicity of χ. A motivation
of this extension is to write down the formula for the Dirichlet L-series associated to χ in the
way that we do not have to specifically restrict to integers that are coprime with k. Let us
introduce the second point of view on the definition of Dirichlet characters.

Definition II.3.2. A function χ from Z to the set of complex numbers C is a Dirichlet character
if :

• There exists a positive integer k called modulus such that:
(1) For all n, if gcd(n, k) > 1, then χ(n) = 0 ; if gcd(n, k) = 1 then χ(n) ̸= 0.
(2) χ(n) = χ(n + k) for all integers n.

• χ is completely multiplicative (i.e. χ(mn) = χ(m)χ(n) for all integers m and n).

Several properties can be deduced from this definition. For instance for any Dirichlet char-
acter χ, we have χ(0) = 0 and χ(1) = 1. Moreover, let χ be a character of modulus k and a

be any integer with gcd(a, k) = 1. Euler’s theorem asserts that aϕ(k) ≡ 1 (mod k) (where ϕ(k)
is the totient function). Therefore (χ(a))ϕ(k) = χ(aϕ(k)) = χ(1) = 1. In other words, for all a
relatively prime to k, χ(a) is a ϕ(k)-th complex root of unity.

We notice that a character can be considered with different modulus. For instance a char-
acter with modulus 9 can be seen as a character with modulus 27 as well. In fact there is
a notion of induced characters which further clarifies this situation. We will explain it in
Definition II.3.13. In the following, we see some simple examples of characters:

Example II.3.3. The unique character of modulus 1, called the trivial character. It has the
value 1 everywhere except at zero.

Example II.3.4. A character that assumes the value 1 for arguments coprime to its modulus
and otherwise 0 is called principal.

As we have seen the values of Dirichlet characters are roots of unity, so they can be real or
complex numbers.

Definition II.3.5. A character is real if all its values are real.

According to the multiplicative property of Dirichlet characters we have 1 = χ(1) =
χ(−1)χ(−1). Thus, for a Dirichlet character χ the value χ(−1) can be either 1 or −1 and
based on this evaluation it is called odd or even. Odd Dirichlet characters are important for
our future computations for the link between the Mahler measure and L-functions.

Definition II.3.6. A Dirichlet character χ is said to be odd if χ(−1) = −1 and even if
χ(−1) = 1.

In the following, we introduce quasi periods of a Dirichlet character and its conductor which
leads to the definition of primitive character.

Definition II.3.7. Let χ be a character of modulus k and q a positive number smaller than
k. Then, q is called a quasi period for χ, if χ(m) = χ(n) whenever m ≡ n (mod q) and
gcd(mn, k) = 1.
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Let χ be a Dirichlet character of modulus k, and q an arbitrary quasi period of χ. It is not
necessarily true that q|k. However, we will prove that if q is the smallest quasi period of χ,
then it is a divisor of k.

Definition II.3.8. The smallest quasi period is called the conductor of the character.

To prove that the conductor divides the modulus of a character we prove the following
lemma:

Lemma II.3.9. Let χ be a character of modulus k and g = gcd(k, q) where q is a quasi period
of χ. Then, g is a quasi period of χ.

Proof. To prove that g is a quasi period of χ, we show that for every m, n ∈ Z such
that m ≡ n mod g and gcd(mn, k) = 1, we have χ(m) = χ(n). Since g = gcd(k, q), Euclid’s
algorithm implies that there exist x1, y1 ∈ Z such that g = kx1 + qy1. Moreover, m ≡ n mod g
so we have m − n = gt, for some t ∈ Z. Thus, we conclude that there exist x, y ∈ Z such that
m − n = kx + qy (let x = tx1 and y = ty1). Then, we have:

χ(m) = χ(m − kx) = χ(n + qy) = χ(n).
The last equity follows from the fact that q is a quasi period of χ. Thus, g is also a quasi period
for χ. □

A direct result of the previous lemma is that for a non principal Dirichlet character of
modulus k we have gcd(k, q) > 1, for every quasi period q of χ. Since, otherwise, according
to Lemma II.3.9, 1 would be a quasi period of χ. In other words χ(m) = χ(n) = χ(1) = 1,
for every m, n ∈ Z with gcd(mn, k) = 1, which means that χ is the principal character which
is a contradiction. For more information about the proof of the following lemma see [Ove14,
Section 3.7].

Lemma II.3.10. The conductor of a Dirichlet character divides the modulus of the character.

Proof. Let χ be a Dirichlet character of modulus k and conductor c then according to
Lemma II.3.9 we have q = gcd(c, k) is a quasi period of χ dividing c. Thus, it is smaller than
or equal to c, but the conductor c is the smallest quasi period of χ, so we have c = gcd(c, k).
In other words we have c|k. □

To clarify the difference between the modulus, the quasi periods, and the conductor of a
Dirichlet character we consider the following example;

Example II.3.11. Let χ be the following character of modulus 9:

m 0 1 2 3 4 5 6 7 8

χ(m) 0 1 −1 0 1 −1 0 1 −1

We consider χ as a character with modulus 9. However, it can be considered as a character
with modulus 3n for n ≥ 1. Then, 3 and 6 are quasi periods for this character. Since 3 is the
smallest quasi period, it is the conductor.

As we have seen in the previous example the modulus and the conductor are not equal and
here we define a special family of characters for which conductor and the modulus are equal.

Definition II.3.12. A Dirichlet character whose modulus is its conductor is called primitive.
Those who are not primitive are called imprimitive.
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We explain more about “primitive” and “imprimitive” Dirichlet characters after introducing
induced characters.
Definition II.3.13. Let χ∗ be a Dirichlet character modulus q and k such that q|k. Define a
Dirichlet character χ as follows:

χ(n) =
{

χ∗(n) if gcd(n, k) = 1,

0 otherwise.
Then, χ of modulus q ∈ Z≥1 is called induced character from χ∗.

Using the above definition a Dirichlet character is primitive if it is not induced by any
character other than itself; for instance, the Dirichlet character introduced in Example II.3.11 is
not primitive and it is induced by the following primitive character with modulus (= conductor)
3:

m 0 1 2

χ(m) 0 1 −1

In Section VI.4, we come back to the notion of induced character and we will see that every
Dirichlet character is induced by a uniquely determined primitive Dirichlet character.

In the sequel of this section we recall the necessary information for defining an important
family of real primitive characters, called quadratic. These characters are important to in-
troduce the evaluation of the Mahler measure of the examples of Smyth. To define quadratic
characters, we need to define Jacobi, Legendre and Kronecker symbols.
Definition II.3.14. The Legendre symbol modulo an odd prime number p is denoted by
(p) and is a multiplicative function with values 1, −1, 0. The value of the Legendre symbol at
a is denoted by (a

p ) and is defined by:

(
a

p

)
=



0 if a ≡ 0 (mod p),

1 if a ̸≡ 0 (mod p) and there exists an x ∈ Z , a ≡ x2 (mod p),

−1 if a ̸≡ 0 (mod p) and there is no x ∈ Z with, a ≡ x2 (mod p).

Note from the above that
(

a
p

)
≡ a(p−1)/2 (mod p).

By construction, the Legendre symbol ( .
p) is a Dirichlet character of modulus p.

The generalization of this definition for an arbitrary odd integer n instead of a prime number
p is the following:
Definition II.3.15. For any positive odd integer n, the Jacobi symbol ( .

n) is defined as the
product of the Legendre symbols corresponding to the prime factors of n and its value at any
integer a is computed by: (

a

n

)
=
(

a

p1

)α1 ( a

p2

)α2

· · ·
(

a

pk

)αk

.

Where, n = pα1
1 pα2

2 · · · pαk
k . Moreover, following the normal convention for the empty products

we set,
(

a
1
)

= 1.
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The Jacobi symbol is multiplicative by construction. One can verify that the Jacobi symbol(
.
n

)
is a Dirichlet character of modulus |n| whose value at a is

(
a
n

)
. Another question is whether(

m
.

)
is a Dirichlet character as well. It is completely multiplicative by the definition. An

immediate difficulty is that the Jacobi symbol does not admit even values for the denominator.
We can formally circumvent this problem by defining the values of

(
m
0
)

and
(

m
2
)

and then
extending to all integers by multiplicativity. Obviously, to have a Dirichlet character for the
symbol

(
m
.

)
we need to define

(
m
0
)

= 0. However, defining
(

m
2
)

is more subtle. The following is
the most complete generalization of the Legendre symbol for the case where n is an arbitrary
integer.

Definition II.3.16. Let a be an integer and n = upe1
1 · · · pek

k , where u = ±1. The Kronecker
symbol

(
a
n

)
is defined by: (

a

n

)
=
(

a

u

) k∏
i=1

(
a

pi

)ei

.

For odd pi,
(

a
pi

)
is the Legendre symbol and for pi = 2:

(
a

2

)
=


0 if a is even,
1 if a ≡ ±1 (mod 8),
−1 if a ≡ ±3 (mod 8).

Moreover; (
a

−1

)
=
{

1 if a ≥ 0,

−1 if a < 0.

A fundamental property of the Kronecker symbol is the quadratic reciprocity law, explained
in the following proposition. We refer to [Vek19] for a minimalist proof.

Proposition II.3.17. For any nonzero integers m and n we have:(
m

n

)
= σ(m, n)(−1)

m1−1
2

n1−1
2

(
n

m

)
,(II.3.1)

where m = ±2v2(m)p
vp1 (m)
1 · · · p

vpn (m)
n and n = ±2v2(n)p

vp1 (n)
1 · · · p

vpn (n)
n and m1 and n1 are

respectively the largest odd factors of m and n (i.e. m1 = m
2v2(m) and n1 = n

2v2(n) ) and

σ(m, n) =
{

−1 if both m, n < 0,

1 otherwise.

The Kronecker symbol as well as the Jacobi symbol and the Legendre symbol are multi-
plicative. Indeed, by construction

(
.
n

)
is a Dirichlet character of modulus n. To answer the

question that when the Kronecker symbol
(

m
.

)
is a Dirichlet character, we first define qua-

dratic characters. After introducing quadratic characters and necessary prerequisites about
fundamental discriminants, we will see that the Kronecker symbol

(
m
.

)
is a Dirichlet character

if m is a fundamental discriminant. However, if m is not a fundamental discriminant, we do
not have any certain answer.

II.3.2. Quadratic characters. The quadratic characters are an important family of real
Dirichlet characters, since any real primitive character is either the principal or a quadratic
character. Moreover, the Mahler measures of the famous examples of Smyth are linked to
special values of Dirichlet character associated with quadratic characters. The information and
discussions around quadratic characters in this section comes from [Gol].
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Definition II.3.18. [MV06] A character of modulus k is quadratic if it has order 2 in the
group of characters of modulus k (i.e. χ2 = 1 and χ is not principal).

From the above definition we realize that a quadratic character takes only the values ±1
and −1 at least once. Thus, a quadratic character is a real and non-principal character. To
answer the question of when the Kronecker symbol is a Dirichlet character we need to introduce
the fundamental discriminant of a quadratic number field. To do so we first introduce quadratic
number fields.

Definition II.3.19. A quadratic number field is a field F (inside C) such that F has
dimension 2 as a vector space over Q.

[LZ21, Proposition 6.46] proves that for a field extension F of Q of degree 2 there is a
unique squarefree n such that F takes the form:

F = Q(
√

n) = {a + b
√

n : a, b ∈ Q}, n ∈ Z \ {0, 1} squarefree.
If n is positive then F is a real quadratic number field, and if n is negative then F is an
imaginary quadratic number field. The discriminant of a number field is one of the most
basic invariants of a number field. It is proportional to the squared volume of the fundamental
domain of the ring of integers and it regulates which primes are ramified. This definition of the
discriminant of a field involves many new definitions which are not necessary for the sequel of
this thesis. Thus, we explain a method to compute the discriminant of a quadratic field, which
[Coh10, Definition 5.1.2] considered as a definition.

Definition II.3.20. The discriminant of a quadratic field F = Q(
√

n) denoted by DF is
computed by:

DF =
{

n if n = 1 (mod 4),
4n if n = 2, 3 (mod 4).

From the above definition we conclude that not every integer can be a discriminant of a
quadratic field.

Definition II.3.21. A fundamental discriminant is any integer which is the discriminant
of some quadratic extensions of Q.

The set of all fundamental discriminants of magnitude smaller than 16 is as follows:
{−15, −11, −8, −7, −4, −3, 5, 8, 12, 13}.

The following theorem characterizes the quadratic characters. Moreover, it answers the question
of when the Kronecker symbol

(
m
.

)
defines a Dirichlet character. To see the proof of the theorem

see section 2.2.4 of [Coh07] or [MV06, Theorem 9.13].

Theorem II.3.22. For any fundamental discriminant D,
(

D
.

)
is a primitive quadratic

character and in this case it is denoted by χD. Conversely, given any primitive quadratic
character χ, there exists a unique fundamental discriminant D such that χ = χD.

Moreover, quadratic characters corresponding to real quadratic fields (i.e. D > 0) are even
and those correspond to imaginary quadratic fields (i.e. D < 0) are odd. Indeed, one can
observe that:

χD(−1) =
(

D

−1

)
=
{

1 if D > 0,

−1 if D < 0.

A simple example of quadratic characters is as follows:
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Example II.3.23. Since −3 is a fundamental discriminant, χ−3 is a quadratic character and
its values are as follows:

χ−3(n) =
(−3

n

)
=


1 if n ≡ 1 mod 3,

-1 if n ≡ 2 mod 3,

0 if n ≡ 0 mod 3.

Remark II.3.24. We notice that the theorem says nothing about (m
. ) where m is not a funda-

mental discriminant. Such (m
. ) might be primitive Dirichlet characters (e.g. (2

. )), imprimitive
characters (e.g. (4

. )), or even not a character at all (e.g. (3
. )).

Example II.3.25. It is easy to check that both of (±2
. ) are primitive characters (mod 8):

( 2
n

)
=


0 if n ≡ 0, ±2, 4 (mod 8),
1 if n ≡ ±1 (mod 8),
−1 if n ≡ ±3 (mod 8).

(−2
n

)
=


0 if n ≡ 0, ±2, 4 (mod 8),
−1 if n ≡ 1, 3 (mod 8),
1 if n ≡ −1, −3 (mod 8).

This does not contradict the classification of primitive real characters, since each of these
characters can be written in terms of a fundamental discriminant: χ±2 = χ±8.

As a simple example consider the real principle Dirichlet character mod 1 introduced in
Example II.3.4. It can be defined by the Kronecker symbol as χ1. We do not consider 1 as a
fundamental discriminant, since it is the discriminant of Q which is a trivial extension of Q (of
degree 1). Thus, by our definition it is not a quadratic extension, but some references consider
it as degenerate extension of Q. Then we should consider Theorem II.3.22 for fundamental
discriminants not equal to 1, otherwise χ1 is not a quadratic character. However, it is the
unique primitive principal character, as it induces all other principal characters.

Example II.3.26. Since −4 is a fundamental discriminant, then according to Theorem II.3.22
χ−4 is a real non principal primitive character mod 4 as follows:

χ−4(n) =
(−4

n

)
=


0 if n ≡ 0, 2 (mod 4),
1 if n ≡ 1 (mod 4),
−1 if n ≡ 3 (mod 4).

Thus, it is an odd Dirichlet character. On the other side (4
. ) is computed as follows:

( 4
n

)
=


0 if n ≡ 0, 2 (mod 4),
1 if n ≡ 1, 3 (mod 4),
0 if n ≡ 0, 2 (mod 4).

From the above computation we realize that (4
. ) is the Dirichlet character which has value one

everywhere, so it is the principal one. In this case although 4 is not a fundamental discriminant,
still (4

. ) defines a character (but it is not quadratic).

Example II.3.27. The Kronecker symbol (3
. ) does not define a Dirichlet character, since it is

not a 3-periodic function. To see that we compute ( 3
n) for 1 ≤ n ≤ 7;
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n 1 2 3 4 5 6 7

( 3
n) 1 −1 0 1 −1 0 −1

Therefore, it is not 3-periodic.

II.3.3. Dirichlet L-functions. In this section, we introduce some important functions
in analytic Number Theory such as the Gamma function, the Riemann Zeta function, and
Dirichlet L-functions. Moreover, thanks to the Gamma function we prove some important
functional equations for L-functions. These equations are not only needed for introducing
Smyth’s examples, (see Section II.3.4) but also in Chapter VI of this thesis, where we will use
them to relate the Mahler measure of Pd to values of L-functions.

II.3.3.1. The Gamma function. The Gamma function is the extension of the factorial func-
tion to complex numbers.

Definition II.3.28. For a complex number with real part strictly positive the following integral
converges absolutely and defines Γ(z):

Γ(z) =
∫ ∞

0
xz−1e−x dx.

In the following we see some properties of Γ(z), for the proofs see Section VII.2 in Appendix.
• For every z with real part strictly positive we have Γ(1+z) = zΓ(z) (see Lemma VII.2.1

in Appendix).
• For n ∈ Z≥2, we have Γ(n) = (n − 1)! (see Lemma VII.2.2 in Appendix).
• We have the following equation called Legendre duplication formula : Γ(z) Γ

(
z + 1

2

)
=

21−2z √
π Γ(2z) (see Lemma VII.2.3 in Appendix).

II.3.3.2. The L-function. Dirichlet L-functions are important in additive Number Theory.
For instance, they were used to prove Dirichlet’s theorem and have a close connection with
modular forms. A special type of Dirichlet L-function is the Riemann Zeta function which
will be introduced in the next section. There are interesting conjectures around L-functions
such as the generalized Riemann hypothesis which is one of the most important conjectures
in mathematics. It conjectures that neither the Riemann Zeta function nor any Dirichlet L-
function has a zero with real part larger than 1

2 . Computing special values of L-functions is one
of the interesting research work in analytic Number Theory. The examples of Smyth which will
be introduced in Section II.3.4 illustrate the link between Mahler measures of some particular
polynomials and special values of L-functions. Thus, one of the applications of computing
Mahler measures is to further explore this link. The aim of this section is to introduce L-
functions and their functional equations, which will be useful for our future computations in
Chapter VI.

Definition II.3.29. A Dirichlet L-series is a function of the form

L(χ, s) =
∞∑

n=1

χ(n)
ns

.

Here, χ is a Dirichlet character and s a complex variable with real part greater than 1. By
analytic continuation, this function can be extended to a meromorphic function on the whole
complex plane, still called a Dirichlet L-function and also denoted by L(χ, s).

As we have already mentioned, we are searching for some crucial functional equations for
primitive Dirichlet L-functions. In fact these equations relate L(χ, s) and L(χ̄, 1 − s) (where
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χ̄ is the complex conjugate of χ). These equations involve a factor of a Gauss sum which we
introduce as follows:

Definition II.3.30. Let χ be a primitive character of modulus k and n ∈ Z. The Gauss sums
associated to χ is defined as follows;

τn(χ) :=
∑

1≤a≤k

χ(a)e
2πina

k .

Moreover, when n = 1, we generally abbreviate it as τ(χ);

τ(χ) =
∑

1≤a≤k

χ(a)e
2πia

k .

If the Dirichlet character χ is primitive, then we have the following correspondence between
τ(χ) and τn(χ), proved in [Elk, Equation 5]:

Lemma II.3.31. Let χ be a primitive character of modulus k and n ∈ Z. Then

τn(χ) = χ̄(n)τ(χ).

As we have seen in Section II.3.2, the real primitive characters are either principal or
quadratic, and the quadratic ones are those which correspond to a quadratic number field. In
other words, for a quadratic character χ there exist a quadratic number field with discriminant
D and for n ∈ Z≥1 we have χ(n) = (D

n ). In this case, we may denote χ by χD. The Gauss
sum τ(χ) associated to the quadratic Dirichlet character can be simply determined without
any computation, only by using the discriminant of the associated number field. The following
lemma clarifies this point;

Lemma II.3.32 ([Apo76], Theorem 9.13). The Gauss sum associated to the quadratic Dirichlet
character χD is:

τ(χD) :=
{

i
√

|D| if D < 0,√
D if D > 0.

The last step before stating the functional equation for the L-function associated to a
primitive Dirichlet character is to introduce the function ξ(χ, s).

Definition II.3.33. Let χ is a primitive Dirichlet character of modulus k. The function ξ(χ, s)
is defined by :

ξ(χ, s) := (π

k
)

−(s+a)
2 Γ(s + a

2 )L(χ, s),

where a is an integer depending on the parity of χ, defined as follows:

a :=
{

0 if χ(−1) = 1,

1 if χ(−1) = −1.

From the above definition we can find ξ(χ, s) in terms of ξ(χ̄, 1 − s) for every primitive
Dirichlet character. For the proof and further information corresponding to the following
proposition see [Elk, Equation 12].

Proposition II.3.34. Let χ is a primitive Dirichlet character of modulus k, then we have the
following equation:

ξ(χ, s) = τ(χ)
ia

√
k

ξ(χ̄, 1 − s).(II.3.2)
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We have all the necessary prerequisites to find a functional equation relating L(χ, s) and
L′(χ̄, 1 − s). We assume s = 2, since this is the version that we will use in Section II.3.4 and
later in Chapter VI. We notice that following proposition concerns all the primitive Dirichlet
characters, needed for the computations of Chapter VI, but in Corollary II.3.36 we have a
particular case of this proposition for quadratic characters, needed for the computations in
Section II.3.4. For more information about the following proposition see [Ray87, Page 697].

Proposition II.3.35. Let χ be an odd primitive Dirichlet character of conductor k, we have:

L(χ, 2) = 4π

ik2 τ(χ)L′(χ̄, −1).(II.3.3)

Proof. Since χ is odd we let a = 1 in Eq. (II.3.2) and by applying Proposition II.3.34 we
have:

ξ(χ, s) =
(

π

k

)−(s+1)/2
Γ((s + 1)/2)L(χ, s) = τ(χ)

i
√

k
ξ(χ̄, 1 − s)

In the previous equation again we use II.3.2 for ξ(χ̄, 1 − s) and we have:(
π

k

)−(s+1)/2
Γ((s + 1)/2)L(χ, s) = τ(χ)

i
√

k
(π

k
)−(1−s+1)/2Γ((1 − s + 1)/2)L(χ̄, 1 − s)

= τ(χ)
i
√

k
(π

k
)−(2−s)/2 2 − s

2
Γ((2 − s)/2)L(χ̄, 1 − s)

2 − s
2.

In the R.H.S of the last equation we use the properties of the Gamma function explained in
Appendix (see Lemmas VII.2.1, VII.2.2 and VII.2.3 in Section VII.2 in Appendix) and we have:(

π

k

)−(s+1)/2
Γ((s + 1)/2)L(χ, s) = τ(χ)

i
√

k
(π

k
)−(2−s)/2Γ(1 + (2 − s)

2 )L(χ̄, −1 + 2 − s)
2 − s

2.

By letting s → 2 we have the following equation:

L(χ, 2) = 4π

ik2 τ(χ)L′(χ̄, −1).

□

We notice that for real characters, χ = χ̄. In particular by using Lemma II.3.32 for quadratic
characters we conclude:

Corollary II.3.36. Let χD(n) =
(

D
n

)
be the odd quadratic character of modulus |D| = −D,

then we have:

L(χD, 2) = 4π

|D|
3
2

L′(χD, −1).

Proof. The proof is the conclusion from Proposition II.3.35 and Lemma II.3.32 since we
have :

L(χD, 2) = 4π

iD2 i
√

|D|L′(χD, −1) = 4π

|D|
3
2

L′(χD, −1).

□
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II.3.3.3. The Zeta function. As we already mentioned in the previous section, a special type
of Dirichlet L-functions is the Riemann Zeta function. In fact if in the definition of L(χ, s) we
fix the Dirichlet character to be the trivial character, then we have the Riemann Zeta function.

Definition II.3.37. The Riemann Zeta function ζ(s) is a function of a complex variable
s = σ + it. When ℜ(s) = σ > 1, the function can be written as a converging summation or
integral:

ζ(s) =
∞∑

n=1

1
ns

= 1
Γ(s)

∫ ∞

0

xs−1

ex − 1 dx,

where Γ is the gamma function. The Riemann Zeta function is defined for other complex values
via analytic continuation of the function defined for σ > 1.

Euler considered the above series for positive integer values of s, and later Chebyshev
extended the definition to ℜ(s) > 1. The above series is a prototypical Dirichlet series that
converges absolutely to an analytic function for s such that σ > 1 and diverges for all other
values of s. Riemann showed that the function defined by the series on the half-plane of
convergence can be continued analytically to all complex values s ̸= 1. For s = 1, the series is
the harmonic series which diverges to ∞, and

lim
s→1

(s − 1)ζ(s) = 1.

Thus, the Riemann Zeta function is a meromorphic function on the whole complex plane, which
is holomorphic everywhere except for a simple pole at s = 1 with residue 1.
Concerning special values of the Zeta function, Euler proved that ζ(2) = π2

6 (see [Der03, Page
64]), which can be generalized to all the positive even ζ-values (see [Ayo74]), using Bernoulli
numbers as follows:

ζ(2k) = (−1)k+1B2k(2π)2k

2(2k)! .(II.3.4)

In particular, all even ζ-values are transcendental (see Fact VII.7.6). For non positive integers,
one has:

ζ(−n) = (−1)n Bn+1
n + 1 ,

for n ≥ 0 (using the convention that B1 = −1
2 see Section VII.7.1 and Remark VII.7.4). In

particular, ζ vanishes at the negative even integers because Bm = 0 for all odd m other than
1 (see Fact VII.7.3). These are the so-called “trivial zeros” of the Zeta function. Bernhard
Riemann (1859) conjectured that the Riemann Zeta function has its zeros only at the negative
even integers and complex numbers with the real part 1

2 . This is called the Riemann hypothesis
and is still unsolved. Many consider it to be the most important open problem in pure mathe-
matics, and it is one of the Millennium Prize Problems. It is of great interest in number theory
because it implies results about the distribution of prime numbers (see for instance [MS16]).
For odd positive integers, no simple expression is known, and the nature of the odd ζ-values
remains mysterious. It is known that ζ(3) /∈ Q ([VdPA79]), and that at least one of the four
numbers ζ(5), ζ(7), ζ(9) and ζ(11) is irrational [Zud04]. In fact, infinitely many odd zeta values
are irrational [Riv00, FSZ19], but yet it is not proved that a single odd ζ-value is transcendental.

The derivative of the zeta function at the negative even integers is given by [Apo85]:

ζ ′(−2n) = (−1)n (2n)!
2(2π)2n

ζ(2n + 1).(II.3.5)
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The first few values of which are ζ ′(−2) = − ζ(3)
4π2 , ζ ′(−4) = 3

4π4 ζ(5), . . . .

II.3.4. The Mahler measure, some examples linked to L-functions. As promised,
in this section we introduce some famous examples of the computation of the Mahler measure
for multivariable polynomials. The first computation of the Mahler measure of multivariate
polynomial is due to Smyth (1981).

Proposition II.3.38 ( [Smy81a]). We have

m(1 + x + y) = 3
√

3
4π

L(χ−3, 2),

where χ−3(n) = (−3
n ) is the odd quadratic Dirichlet character of modulus 3, defined in Exam-

ple II.3.23.

Proof. We have:

m(1 + x + y) =
∫ 1

0

∫ 1

0
log |1 + e2πit + e2πis|dtds

[1]
=
∫ 1

0
log+ |1 + e2πis|ds

=
∫ 1

0
log max{1, |1 + e2πis|}ds =

∫ 1
3

−1
3

log |1 + e2πis|ds

=
∫ 1

3

−1
3

ℜ
(
log(1 + e2πis)

)
ds = ℜ

∫ 1
3

−1
3

log(1 + e2πis)ds

= ℜ
∫ 1

3

−1
3

∞∑
n=1

(−1)n−1e2πint

n
dt = ℜ

∞∑
n=1

(−1)n−1e2πint

2πin2
∣∣t= 1

3
t= −1

3

= 1
π

∞∑
n=1

(−1)n−1 sin(2πn
3 )

n2 .

In [1], we used Jensen’s formula. Then we used the fact that |1+e2πis| = 2 cos(πs) for s ∈ [−1
3 , 1

3 ]
we have |1 + e2πis| ≥ 1. In the last line we used the Taylor’s series of log(1 + e2πis), which
converges uniformly on [−1

3 , 1
3 ] so we can change the order of the sum and the integral. Now

the last step of the proof needs the equality sin(2πn
3 ) =

√
3

2 χ−3(n), and certain properties of
Dirichlet characters (see [EW99, Lemma 3.6]);

√
3

2π

∞∑
n=1

(−1)n−1

n2 χ−3(n) =
√

3
2π

( ∞∑
n=1

χ−3(2n − 1)
(2n − 1)2 −

∞∑
n=1

χ−3(2n)
(2n)2

)
√

3
2π

( ∞∑
n=1

χ−3(n)
n2 − 2

∞∑
n=1

χ−3(2n)
(2n)2

)
[2]
=

√
3

2π

( ∞∑
n=1

χ−3(n)
n2 − 1

2χ−3(2)
∞∑

n=1

χ−3(n)
n2

)

=
√

3
2π

3
2

∞∑
n=1

χ−3(n)
n2 = 3

√
3

4π
L(χ−3, 2).

In [2] we use the multiplicativity of the Dirichlet character. □

One may compute the above evaluation in terms of the special values L′(χ−3, −1), so by
using Corollary II.3.36 we have the following corollary:

Corollary II.3.39. We have the following equalities:

m(1 + x + y) = 3
√

3
4π

L(χ−3, 2) = L′(χ−3, −1).
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Before stating the second example let us recall an important property of the Mahler measure
which is needed for future computations.

Lemma II.3.40. For P (x) = ax + b we have M(ax + b) = |a| max
{∣∣∣ b

a

∣∣∣ , 1
}

= max{|a|, |b|},

then by using Jensen’s formula we have:

m(ax + b) = log max{|a|, |b|} =
∫ 1

0
log |ae2πiθ + b|dθ.

Proposition II.3.41 ([Smy81a], [Boy81b]). We have

m(1 + x + y + z) = 7
2π2 ζ(3),

where ζ is the Riemann Zeta function.

Proof. In order to simplify the question we use the monomial transformation (x, y, z) 7→
(x, yz, z), then according to Proposition II.2.14 we have m(1 + x + y + z) = m(1 + x + (1 + y)z);

m(1 + x + (1 + y)z) =
∫ 1

0

∫ 1

0

∫ 1

0
log |1 + e2πiθ1 + (1 + e2πiθ2)e2πiθ3 |dθ1dθ2dθ3

=
∫ 1

0

∫ 1

0

∫ 1

0
log |1 + e2πiθ1 + (1 + e2πiθ2)e2πiθ3 |dθ3dθ1dθ2.

Now that we changed the order of the integral we can use Lemma II.3.40;

m(1 + x + (1 + y)z) =
∫ 1

0

∫ 1

0
log max{|1 + e2πiθ1 |, |1 + e2πiθ2 |}dθ1dθ2.

We notice that |1 + e2πiθ| = |2 cos(πθ)| and, for 0 ≤ θ ≤ 1
2 the function cos(πθ) is increasing.

But when 1
2 ≤ θ ≤ 1 it is decreasing so by using the change of variables t = 2πθ1 and s = 2πθ2

we have an increasing function in the region of integral:

m(P (x, y, z)) =
∫ 1

0

∫ 1

0
log max{|1 + e2πiθ1 |, |1 + e2πiθ2 |}dθ1dθ2

= 1
4π2

∫ 2π

0

∫ 2π

0
log max{|1 + eit|, |1 + eis|}dtds

= 1
π2

∫ π

0

∫ π

0
max{log |1 + eit|, log |1 + eis|}dtds.

The last equality is based on the fact that log |x| is a decreasing function. Now let F (t, s) :=
|1 + eit| = 2 cos( t

2), and 0 ≤ t, s ≤ π. The function F (t, s) is a symmetric function, so instead
of computing the integral over the square [0, π] × [0, π], we can compute the integral over the
triangle as following:

m(P (x, y, z)) = 1
π2

∫ π

0

∫ π

0
max{log |1 + eit|, log |1 + eis|}dtds

= 2
π2

∫ π

0

∫ π

s
max{log |1 + eit|, log |1 + eis|}dtds

[3]
= 2

π2

∫ π

0

∫ π

s
log |1 + eis|dtds = 2

π2

∫ π

0
(π − s) log |1 + eis|ds

=2π

π2

∫ π

0
log |1 + eis|ds + −2

π2

∫ π

0
s log |1 + eis|ds

=m(1 + z) + −2
π2

∫ π

0
s log |1 + eis|ds = −2

π2

∫ π

0
s log |1 + eis|ds.
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In [3] we use the fact that cos(t/2) is decreasing in the interval [0, π]. Moreover thanks to
Jensen’s formula we can replace the integral with m(1 + z) which is equal to zero. We again
use the Taylor’s series of log |1 + eis|:

log |1 + eis| = ℜ
∞∑

n=1

(−1)n−1eisn

n
=

∞∑
n=1

(−1)n−1 cos(sn)
n

=
∞∑

n=1

(−1)n−1

n

(
eisn + e−isn

2

)
.

We continue the computation of the integral;

m(P (x, y, z)) =−2
π2

∫ π

0
s log |1 + eis|ds = −2

π2

∫ π

0
s

∞∑
n=1

(−1)n−1

n

(
eisn + e−isn

2

)
ds

= −1
π2

∞∑
n=1

(−1)n−1

n

∫ π

0
s(eisn + e−isn)ds.

We compute each of the integrals of
∫ π

0 seisnds and
∫ π

0 se−isnds by integrating by parts.∫ π

0
seisnds = seisn

in

∣∣π
0 − eisn

n2
∣∣π
0 = π(−1)n

in
+ (−1)n

n2 − 1
n2 ,∫ π

0
se−isnds = −se−isn

in

∣∣π
0 + e−isn

n2
∣∣π
0 = −π(−1)n

in
+ (−1)n

n2 − 1
n2 .

Then we have:

m(P (x, y, z)) =−1
π2

∞∑
n=1

(−1)n−1

n

∫ π

0
s(eisn + e−isn)ds

=−1
π2

∞∑
n=1

(−1)n−1

n

(2(−1)n

n2 − 2
n2

)
.

For n = 2k we have 2(−1)n

n2 − 2
n2 = 0 and for n = 2k + 1 we have2(−1)n

n2 − 2
n2 = −4

n2 :

m(P (x, y, z)) = −1
π2

∞∑
k=0

4
(2k + 1)3 .

Now by using the formula for special values of Riemann Zeta function ζ(3) = 8
7
∑∞

k=0
1

(2k+1)3

we have:

m(P (x, y, z)) = −1
π2

∞∑
k=0

4
(2k + 1)3 = 7

2π2 ζ(3).

□

II.4. Topology on the set of Mahler measure values

As we have seen in Fact II.1.15 the set of the values of the Mahler measure of univariate
polynomials with integer coefficients is a subset of [1, ∞). Let us denote this set by L. Boyd
[Boy81b] was interested to know that if 1 is the limit point of L. In fact, this question is
equivalent to the Lehmer conjecture. To answer this question, he attempted to characterize
the limit points of L. There exists a notion of the Mahler measure of algebraic number. He
studied the set of Mahler measures of Salem and Pisot numbers (see Section II.4.2) which are
remarkable subsets of L to have more information about L and its limit points. However,
later he suggested to study a larger set, namely the set of Mahler measures of multivariate
polynomials with integer coefficients. He was interested in knowing if this set is closed in order
to answer Lehmer’s conjecture. However, answering this question seems also impossible and
became a new conjecture, called Boyd’s conjecture. His efforts in this direction together with
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the work of Lawton led to one of the most important theorems in this area, called the Theorem
of Boyd-Lawton, which will be announced in this section. Moreover, in the end of this section
we state a generalization of the Theorem of Boyd-Lawton.

II.4.1. The Mahler measure of algebraic numbers, Schinzel and Zassenhaus
question. One of the interesting topic in Number Theory is studying the solutions of Dio-
phantine equations. A Diophantine equation is a polynomial equation over Z in n variables
in which we look for integer solutions. Thus, the solutions of Diophantine equations are alge-
braic integers. For studying the solutions it is natural to associate to such solutions a “size”,
a “complexity” or a “measure”. An algebraic number a is described uniquely (up to sign) by
its minimal polynomial, Pa ∈ Z[x]. It is logical to establish several notions of “size” on Pa.
For instance we can compute M(Pa), which does not depend on the sign of the polynomial.
In Section II.3.4, we have seen examples that connect the Mahler measure and special values.
One of the interesting research topics in this area is investigating Diophantine properties for
special values of L-functions (for instance one can see [PP20, PTW20]).
In this section, we introduce the definition of the Mahler measure for algebraic numbers. We
present an important, recently solved conjecture which is due to Schinzel and Zassenhaus and
its link to the Lehmer conjecture.

Definition II.4.1. The Mahler measure and the logarithmic Mahler measure of an algebraic
number a are defined as the corresponding quantities for a minimal polynomial Pa(x) ∈ Z[x]
of a.

We again notice that the minimal polynomial in Z[x] is unique up to sign, but the above
objects are well defined, since M(Pa) = M(−Pa). In the sequel, we use the word “the minimal
polynomial” of a since the goal is to compute the Mahler measure and considering Pa or −Pa

does not change the result.

Let us introduce some important properties of the Mahler measure of algebraic numbers in
the following fact:

Fact II.4.2. For the Mahler measure of algebraic numbers we have the following:
• For an algebraic number a, M(a) ≥ 1, since according to the definition, the minimal

polynomial of a has integer coefficients.
• M(0) = 1, since the Mahler measure of P (x) = 0 is equal to 1.
• For a ̸= 0 if M(a) = 1 then a is a root of unity (see Proposition II.1.16).

In Conjecture II.1.17 we introduced the Lehmer conjecture. Suppose now that P ∈ Z[x]
is reducible and its factorization to irreducible polynomials on Z[x] is P = ∏

1≤i≤n Pi where
Pi ∈ Z[x] are irreducible for 1 ≤ i ≤ n. Thus, thanks to the multiplicativity of the Mahler
measure and the fact that the Mahler measure of a polynomial with integer coefficients is greater
than or equal to one, we have M(P ) ≥ M(Pi) for 1 ≤ i ≤ n. Therefore, stating the Lehmer
conjecture for irreducible polynomials on Z[x] is equivalent to the actual form of the conjecture.
Then, according to the definition of minimal polynomial, any irreducible polynomial in Z[x] is
the minimal polynomial of all its roots. Thus, in the statement of Lehmer conjecture instead
of considering the Mahler measure of irreducible (non cyclotomic) polynomials with integer
coefficients we consider the Mahler of algebraic integers (which are neither roots of unity nor
zero), so we have the following point of view of the Lehmer conjecture:

Conjecture (Lehmer conjecture). Does there exist a constant C such that M(a) ≥ C > 1
for any a ∈ Q which is not 0 and not a root of unity?
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By considering the above point of view for the Lehmer conjecture, we can ask the same
question for the Mahler measure of Pisot or Salem numbers, which will be introduced in Sec-
tion II.4.2. We will see that the restriction of the Lehmer conjecture to Pisot numbers is
already solved, by Salem [Sal44]. However, the restriction to Salem numbers is itself a conjec-
ture, known as the Salem conjecture. Consider the other point of view of the Lehmer conjecture
introduced in Conjecture II.1.17. The conjecture can be restricted to reciprocal or non recipro-
cal polynomials. For the non reciprocals the conjecture was already solved by Breusch [Bre51]
and (independently) Smyth Proposition II.1.20.

Definition II.4.3. Let α be a nonzero algebraic integer of degree d, with conjugates α1 =
α, . . . , αd and minimal polynomial Pa. The house of α is defined as the maximum modulus of
its conjugates (including α itself) and denoted by α .

Suppose that the minimal polynomial of α has degree d, with r > 0 roots of modulus greater
than 1. Obviously, we have the following inequality:

M(α)
1
d ≤ M(α)

1
r ≤ α ≤ M(α).(II.4.1)

It is clear that α ≥ 1 and from the Kronecker’s theorem α = 1 if and only if α is a root
of unity.
As we have already mentioned, the set of all algebraic integers is a commutative subring of
the complex numbers. The invertible elements of this subring are called algebraic units. In
other words an algebraic number α is called an algebraic unit (or simply a unit) if α and α−1

are algebraic integers. Let Pa(x) be the monic minimal polynomial of degree n associated
to a. Then, its reciprocal P ∗

a (x) = xnPa(1/x) (see Definition II.1.19) is the monic minimal
polynomial associated to a−1. According Corollary II.2.15, for Pa we have M(P ∗

a ) = M(Pa),
which implies M(α) = M(α−1). According to the inequality II.4.1, for the algebraic unit
a we have α ≤ M(a). On the other side, for a−1 we have α−1 ≤ M(a−1), and since
M(α) = M(α−1) we conclude that max{ α−1 , α } ≤ M(a).

In 1965 Schinzel and Zassenhaus [SZ65] proved the following proposition:

Proposition II.4.4 ([SZ65]). Let α ̸= 0 be an algebraic integer that is not a root of unity. If
2s of its conjugates are nonreal, then

α ≥ 1 + 4−s−2.

See [SZ65] for the proof of the above proposition. For any a that satisfies the condition
in the above proposition by applying Eq. (II.4.1) we have the same lower bound for M(a) in
the Lehmer problem. Later, Schinzel-Zassenhaus-Dimitrov conjectured that a much stronger
bound should hold (see [SZ65, Equation (3)]). Recently, the conjecture was shown to be true
and the value of the constant c is given by Dimitrov according to the preprint [Dim19]. Thus,
we call it the Schinzel-Zassenhaus-Dimitrov Theorem:

Theorem II.4.5 (Schinzel-Zassenhaus-Dimitrov Theorem). Let α ̸= 0 be an algebraic inte-
ger that is not a root of unity and its minimal polynomial is of degree d, then for some absolute
constant c > 0 we have;

α ≥ 1 + c

d
.

We notice that a positive answer to Lehmer’s conjecture would imply the above proposition.
To see this, suppose that the constant C > 1 is the answer to Lehmer’s question. Thus, for
any algebraic integer α which is not a root of unity we have M(α) ≥ C > 1. According to
inequality II.4.1 we have α ≥ M(α) 1

d , which implies log α ≥ log(M(α))
d . Since α is not a root
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of unity, then α > 1 and we have α ≥ log α + 1 ≥ 1 + log(M(α))
d ≥ 1 + log(C)

d . Thus, the
universal constant in Schinzel and Zassenhaus Theorem would be log C.

II.4.2. Towards Boyd conjecture. In this section we follow Boyd’s steps [Boy81b] for
solving the Lehmer conjecture and introduce his intuition to state Boyd conjecture.
As we mentioned, we consider

L := {M(P )|P (x) ∈ Z[x]},

and a negative answer to the Lehmer conjecture (the constant C > 1 does not exists) is
equivalent to the property that 1 is a limit point of L (x is a limit point of L ⊂ [1, ∞) if
every neighbourhood of x with respect to the Euclidean topology inherited from R to [1, ∞)
also contains a point of L other than x itself). We notice that since the Mahler measure is
multiplicative, if 1 is a limit point of L, then L(1) of L (i.e. the set of all limits points of L)
and all the successive derived sets L(k) will be the set [1, ∞) (see Proposition II.4.6). Before
proving Proposition II.4.6 we announce the following easily verified result in topology:
Let Y is a metric space and X ⊂ Y . Suppose that for any arbitrary ϵ > 0, X is ϵ-dense in Y ,
then X is dense in Y . We remind that for the metric spaces Y and X ⊂ Y , the set X is called
ϵ-dense in Y (for a given ϵ > 0) if for any y ∈ Y , there exists x ∈ X such that the distance
between x and y is smaller than ϵ.

Proposition II.4.6 ([Boy81b]). If 1 is a limit point of L, then for any k ∈ Z≥1 we have
L(k) = [1, ∞).

Proof. Using the multiplicativity of the Mahler measure, M(P · Q) = M(P ) · M(Q), the
set L is a semigroup. This implies that if a ∈ L then for all n > 1 we have an ∈ L. Suppose
that 1 is a limit point of L, then we prove that L is dense in [1, ∞). To prove that, we prove
that L is ϵ-dense in [1, ∞) for any ϵ > 0. Let us choose an arbitrary ϵ > 0. Our goal is to prove
that L is ϵ-dense in [1, ∞) for the fixed ϵ. We fix an arbitrary N > 0, it suffices to prove that
L∩ [1, N ] is ϵ-dense in [1, N ]. We suppose that 1 is a limit point of L, then for any 0 < η < ϵ/N
there exists a polynomial with Mahler measure equal to 1 + η, (i.e. 1 + η ∈ L ∩ [1, N ]). Since L
is a semigroup, {(1 + η)k|k ≥ 0} ⊆ L, which implies that {(1 + η)k|k ≥ 0} ∩ [1, N ] ⊆ L ∩ [1, N ].
Thus, for any k such that (1 + η)k ≤ N we have:∣∣∣(1 + η)k+1 − (1 + η)k

∣∣∣ = (1 + η)kη < ϵ.

Let us now explain how the above property implies that L ∩ [1, N ] is ϵ-dense in [1, N ]. For an
arbitrary point y ∈ [1, N ], we consider the maximum value of k ∈ Z≥1 such that (1 + η)k ≤ y,
then (1+η)k+1 > y and according to the above explanation y−ϵ < (1+η)k+1−ϵ < (1+η)k ≤ y.
We consider x = (1 + η)k ∈ L ∩ [1, N ]. Then, according to the previous inequalities we have
x ∈ (y − ϵ, y). Therefore, L ∩ [1, N ] is ϵ-dense in [1, N ] and, as we already mentioned, since
N > 0 is arbitrary, L is ϵ-dense in [1, ∞). Also since ϵ is arbitrary, L is dense in [1, ∞). In
other words L(1) = [1, ∞), therefore for any k ∈ Z≥1 we also have L(k) = [1, ∞).

□

According to the above proposition if 1 is a limit point of L then L is not closed. This
is simply because the polynomials in the definition of L have integer coefficients, so L is a
countable set. However, from Proposition II.4.6 we have L(1) = [1, ∞), which implies that
L ⊂ L, so L is not closed. Therefore, to provide a positive answer to the Lehmer conjecture
(i.e. there is a polynomial with the smallest Mahler measure greater than one), it would suffice
to show that L is nowhere dense or only that there exist a k ∈ Z≥1, for which min L(k) > 1. In
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the following, by introducing two remarkable subsets of L, the set of Pisot and Salem numbers,
we extract more information about L.

Pisot and Salem numbers. The set of Pisot numbers is a remarkable subset of algebraic
integers which were discovered by A. Thue in 1912 and rediscovered by G. H. Hardy in 1919
within the context of Diophantine approximation. However, they became widely known after
the publication of Charles Pisot’s dissertation in 1938.
Definition II.4.7. A Pisot-Vijayaraghavan or simply Pisot number is a real algebraic integer
a > 1, such that all of its algebraic conjugates (except itself) have absolute value less than one.

Let us fix the following notation for the set of Pisot-Vijayaraghavan numbers.
Notation II.4.8. The set of all Pisot numbers is denoted by S.

Let α be a Pisot number and let Pα = zd + · · · + a0 ∈ Z[x] be its minimal polynomial. We
have M(α) = M(Pα) = α by definition. Hence, α ∈ L, which proves that S ⊂ L. Therefore, Pα

has one root with absolute value greater than 1 and d−1 roots with absolute value smaller than
1. Let P ∗

α(z) = zdPα(z−1) be the reciprocal polynomial of Pα, defined in Definition II.1.19 whose
roots are the reciprocal roots of Pα. Hence, P ∗

α(z) has one root with absolute value smaller
than 1 and d − 1 roots with absolute value greater than 1. Thus, Pα ̸= ±P ∗

α unless possibly
for the case d = 2. Thus, apart from a few easily handled exceptions, the (monic) minimal
polynomials satisfied by the elements of S are non-reciprocal. Salem proved that S is closed
[Sal44]. Thus, S̄ = S and since S is countable, therefore it is nowhere dense in [1, ∞). More-
over, since S is closed, min S ∈ S which implies min S > 1 (since 1 /∈ S). Let us denote min S
by α0. Siegel [Sie44] proved that α0 is 1.32471 . . . which is the real zero of z3 − z − 1. Thus, as
we mentioned, the restriction of the Lehmer conjecture to Pisot numbers is solved. Dufresnoy
and Pisot [DP55] proved that min S′ =

√
5+1
2 = 1.61803 · · · , and Grandet and Hugot [GH65]

proved that min S(2) = 2. Moreover, for an arbitrary k according to [Sal44, DP53, Boy79]
we have S(k) ̸= ∅ for all finite k and in fact min S(k) >

√
k, but S(ω) := ∩k∈Z≥1S(k) = ∅.

These properties indicate that S is a remarkable subset of L, so perhaps L may have a similar
structure.

There is another important subset of L, called the set of Salem numbers.
Definition II.4.9. A Salem number is a real algebraic integer α > 1 whose conjugate roots
all have absolute value less than or equal to 1, and at least one of which has absolute value
exactly 1.

We notice that, similar to the case of Pisot numbers for α a Salem number with minimal
polynomial Pα, we have M(α) = M(Pα) = α. We fix the following notation for the set of Salem
numbers.
Notation II.4.10. The set of Salem numbers1 is denoted by T .

The condition of having at least one algebraic conjugate of absolute value 1 in the definition
of Salem numbers, forces Pα to be reciprocal (see [Sal45]). As a connection between the set of
Salem numbers and Pisot numbers we mention that S ⊂ T (1) (see [Sal45]). In contrast with S,
it is not known whether T is dense in [1, ∞). Because of the success with S as opposed to T it
is natural to focus on the following set:
1We notice that the notations for the set of Pisot numbers, S, and the set of Salem numbers, T , are chosen
following Boyd [Boy81b]. Even if this choice of notation is unfortunate we preferred to conserve it because it
has become standard in the literature.
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Notation II.4.11. We set the following notation:
L0 = {M(P )|P ∈ Z[x] is non reciprocal}.

Then, as we mentioned in Proposition II.1.20, Smyth and independently Breusch [Bre51]
proved the Lehmer conjecture for non reciprocal polynomials:

min L0 = α0 = min S.

However, as we mentioned, the Lehmer conjecture restricted to Salem numbers is itself a
conjecture, called Salem conjecture. One can find more information in this regard, for instance
in [Sal63, Ber86] or [MR03, Page 378]:

Conjecture II.4.12 (Salem Conjecture [Sal63]). There exists a constant Cs > 1 such that if
α is a Salem number, then α ≥ Cs.

We notice that if the constant C in Lehmer conjecture exists, then it verifies the Salem
conjecture as well. The Salem conjecture asserts that Salem numbers cannot be too close to
1. Moreover, if the constant in Salem conjecture, Cs, exists it may not be necessarily a Salem
number, but one can ask if the smallest Salem number exists. The best guess until now is the
largest real root of Lehmer’s 10 degree polynomial, denoted by PL, introduced in Section II.1.3
(i.e. α1 = 1.17628 . . .). It is conjectured that the smallest Salem number and the answer to the
Lehmer conjecture is α1. In other words, it is conjectured that:

min L = α1 = min T.

Later, Boyd suggested to study some larger sets L♯ and L♯
0 which respectively contain L and

L0. In the next section, we clarify more the reasons for studying these larger sets.

Definition II.4.13. We consider the following sets:
L♯ = {M(P )|P (x1, . . . , xn) ∈ Z[x1, . . . , xn], n ≥ 1},

L♯
0 := {M(P )|P is non reciprocal and P ∈ Z[x1, . . . , xn], n ≥ 1}.

The definition of reciprocal polynomial in the multivariable case is explained as follows:

Definition II.4.14. An n variable polynomial P , is called reciprocal if the following equation
holds for some positive integer exponents d1, . . . , dn:

xd1
1 xd2

2 · · · xdn
n P (1/x1, 1/x2, . . . , 1/xn) = ±P (x1, x2, . . . , xn),

and otherwise it is called, non reciprocal.

In the following section, we will see that L♯ is contained in the closure of L [Boy81b,
Theorem 1]).

II.4.3. Theorem of Boyd-Lawton. Boyd observed that for a two-variable polynomial
P ∈ C[z1, z2] the following equality holds:

lim
n→∞

M(P (z1, zn
1 )) = M(P (z1, z2)).

However, the proof he proposed in [Boy81b, Appendix 3] is only valid for polynomials that
have no root on the torus. Similarly, for a multivariate polynomial P (z1, . . . , zn) with complex
coefficients that has no root on the torus in [Boy81b, Appendix 4] he proved the following:

lim
r1→∞

· · · lim
rn→∞

M(P (zr1
1 , zr2

1 , . . . , zrn
1 )) = M(P (z1, . . . , zn)),

where the limit is taken with all the exponents going to infinity independently. The fact that the
above equalities are valid for arbitrary polynomials was conjectured by Boyd and was proved
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by Lawton [Law83]. To state the full theorem we need to introduce an additional notation.
Given a vector of integers r = (r1, . . . , rn), we denote by µ(r) the following:

µ(r) := min{||m||∞ : m ∈ Zn, m ̸= 0 and m.r = 0},

where, for a vector m = (m1, . . . , mn), we have ||m||∞ = max{|mj | : 1 ≤ j ≤ n}. The statement
reads:

Theorem II.4.15 (Theorem of Boyd-Lawton[Boy81b, Law83]). Let P (z1, . . . , zn) be a mul-
tivariate polynomial with complex coefficients. Then, the following limit is valid:

lim
µ(r)→∞

M(P (zr1
1 , . . . , zrn

1 )) = M(P (z1, . . . , zn)).

For the proof of this Theorem one can see [Law83]. Moreover, in the following section we
will state a generalization of this theorem and its proof. This theorem points out the advan-
tage of studying the larger sets, L♯ and L♯

0. More precisely, according to Corollary II.1.10, the
Mahler measure of a polynomial with integer coefficients is an algebraic integer. However, in
the example of Smyth we have m(1 + x + y + z) = 7

2π ζ(3), which is probably transcendental.
In this case, the fact that L ⊆ L♯ ⊆ L̄, hints that L may not be closed. Thus, the set L♯ is a
natural object to study.
We notice that, although Boyd’s method did not solve Lehmer’s conjecture, we have the impor-
tant theorem of Boyd-Lawton, and thanks to this theorem this conjecture in the several-variable
case reduces to the one-variable case.

II.4.4. Generalization of the theorem of Boyd-Lawton. This section is part of the
common article in collaboration with Brunault, Guilloux and Pengo [BGMP22] about the gen-
eralization of the theorem of Boyd-Lawton. We begin with some definitions and customary
notation before stating the theorem. For all the necessary prerequisites regarding measure
theory see Section VII.3 in Appendix.

First of all we notice that in all over this thesis Tn := (S1)n is the n-dimensional real-
analytic torus.

Notation II.4.16. Let n ∈ Z≥1, then a point (z1, . . . , zn) ∈ Tn is denoted by zn.

Let B be a Borel set of Tn and define the following measure on Tn :

µn(B) = 1
(2πi)n

∫
B

dz1
z1

∧ · · · ∧ dzn

zn
.(II.4.2)

It is easy to see that µn(Tn) = 1, so µn is a probability measure on Tn. Moreover, one can verify
that µn is regular and invariant under the action of Tn (translation). Thus, it is the probability
Haar measure on Tn (see Definition VII.3.5 for more information about Haar measure). In
order to define a probability measure associated with an arbitrary matrix A = (ai,j) ∈ Zm×n

we need the following definition:

Definition II.4.17. Let A = (ai,j) ∈ Zm×n be an arbitrary matrix and define the following
map:

ϕ : Tm → Tn

(z1, . . . , zm) 7→ (za1,1
1 · · · z

am,1
m , . . . , z

a1,n

1 · · · zam,n
m )

The above map is indeed a group homomorphism, and in the sequel for convenience ϕ(zm) is
denoted by zA

m.
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We have introduced the notation zA
m for an arbitrary Matrix. In particular, we consider

vectors v = (v1, . . . , vn) ∈ Zn as column matrices, so that zv
n = zv1

1 . . . zvn
n is a monomial. For

every n ∈ Z≥1, we define the probability Haar measure on Tn, associated with the matrix Idn to
be µn. It can be denoted by µIdn . More generally, for every matrix A = (ai,j) ∈ Zm×n we define
the probability measure µA on Tn, as the push-forward of µm along the group homomorphism
ϕ : Tm → Tn. In other words, for B a Borel set of Tn we have

µA(B) := µm(ϕ−1(B)).
Before continuing, let us introduce the last notation we need in this section.

Notation II.4.18. For every Laurent polynomial P ∈ C[z±1
1 , . . . , z±1

n ] and every A ∈ Zm×n

we write PA(zm) := P (zA
m) .

In this setting the logarithmic Mahler measure of the n-variable Laurent polynomial P (zn)
is the integration of log |P | over Tn with respect to the probability Haar measure µn (i.e.
m(P ) :=

∫
· · ·
∫
Tn log|P (zn)|dµn(zn) ). In fact the generalization of the theorem of Boyd-

Lawton explains that m(P ) can be approximated by lower-dimensional Mahler measures m(PA)
for some matrices A ∈ Zm×n. To explain which sequences of matrices give rise to such approx-
imations, we need the following definition.

Definition II.4.19. Fix two integers m, n ∈ Z≥1. We define the function ρ : Zm×n → Z≥1 by:
ρ(A) := min{∥v∥∞ : v ∈ Zn×1 \ {0}, A · v = 0}.

We are now ready to state the generalization of the theorem of Boyd-Lawton.

Theorem II.4.20 (Generalization of Boyd-Lawton’s theorem [BGMP22]). Let n ∈ Z≥1 be an
integer, and P (zn) ∈ C[z±1

1 , . . . , z±1
n ] \ {0} be a non-zero Laurent polynomial. Then, for every

sequence of matrices Ad ∈ Zmd×n such that limd→+∞ ρ(Ad) = +∞, we have that
lim

d→+∞
m(PAd

) = m(P ).

The idea of the proof of Theorem II.4.20 is to relate the growth of ρ(Ad) to the weak con-
vergence of the push-forward measures µAd

, which is done in [BGMP22] and we explain again
here. Let us define the following function which we will need later.

For every integrable function f : Tn → C, and every vector v ∈ Zn, viewed as a row matrix,
we denote by:

cf (v) :=
∫
Tn

f(zn)
zv

n

dµn(zn)

the corresponding Fourier coefficient. In particular, if P ∈ C[z±1
1 , . . . , z±1

n ] is a Laurent poly-
nomial, then P (zn) = ∑

v∈Zn cP (v) · zv
n.

We recall some terminology concerning the Newton polytope of a polynomial. For more
information in this regard see Section VII.5 in the Appendix. Fix a Laurent polynomial P ∈
C[z±1

1 , . . . , z±1
n ]. We denote by NP ⊆ Rn its Newton polytope, which is the convex hull in

Rn of the (support set) supp(P ) := {v ∈ Zn : cP (v) ̸= 0}. The number of non-zero monomials
appearing in P is denoted by k(P ) := |supp(P )|. Moreover, the diameter of P , denoted by
diam(P ), is the smallest d ∈ N such that NP is contained inside a translate of [0, d]n.

Lemma II.4.21. Fix n ∈ Z≥1, and let Ad ∈ Zmd×n be a sequence of integral matrices with
fixed number of columns, such that ρ(Ad) → +∞ as d → +∞. Then the sequence of measures
µAd

on Tn converges weakly to the measure µIdn.
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Proof. This result is classic. We follow the lines of [Boy81a, Lemma 1], which treats the
case when md = 1 for every d. By the definition of weak convergence and push-forward of
measures, and by Stone–Weierstrass theorem (see Appendix Section VII.3.1), it is sufficient to
prove that

(II.4.3) lim
d→+∞

(∫
Tmd

Q(zAd
md

) dµmd
(zmd

)
)

=
∫
Tn

Q(zn) dµn(zn),

for every Laurent polynomial Q(zn) ∈ C[z±1
1 , . . . , z±1

n ]. For a matrix A ∈ Zm×n and v ∈ Zn, a
direct computation proves that we have P (zA

m) = ∑
v∈zn cP (v)zA.vt

m . We see now immediately
that for every d∫

Tmd

Q(zAd
md

) dµmd
(zmd

) =
∑

v∈Zn

cQ(v) ·
∫
Tmd

zAd·vt

md
dµmd

(zmd
) =

∑
v∈Zn

Ad·v=0

cQ(v).

Now, the function cQ has a finite support in Zn. Let R be the maximum of ∥v∥∞ for v in this
support. If ρ(Ad) > R, then the only vector v of ker(Ad) ∩ Zn which may verify cQ(v) ̸= 0 is
the null vector 0. In this case, we have that∑

v∈Zn

Ad·v=0

cQ(v) = cQ(0) =
∫
Tn

Q(zn) dµIdn(zn),

which shows (II.4.3) (in fact, the sequence on the left is eventually constant) under the assump-
tion that limd→+∞ ρ(Ad) = +∞. □

Our goal is to prove that m(PAj ) =
∫
Tn log |P |dµAj converges to m(P ) =

∫
Tn log |P |dµn.

The weak convergence of measures is defined as the convergence of integrals of any continuous
function. But, here the integrand is log |P |, which is singular. In fact, log |P | is continuous
and accepts the values +∞. For the continuous functions which may accept the value +∞ (see
Lemma VII.3.8 in Appendix) the uniform estimates on L2-norms are enough to guarantee that
the weak-convergence of measures implies the convergence of integrals. The following estimate
is essentially obtained by Dimitrov and Habegger in [DH19, Appendix A], where they deal with
Lawton’s theorem and improves the rate of convergence, see also [Hab17].

Proposition II.4.22. Let n, k ∈ Z≥1 be two integers. Then, there exists a constant C > 0 such
that for all P (zn) ∈ C[z±1

1 , . . . , z±1
n ] a Laurent polynomial, with k non vanishing coefficients

whose maximum modulus of coefficient is one, the following holds:
For every m ≤ n and every matrix A = (ai,j) ∈ Zm×n with ρ(A) > diam(P ),

|| log |P |||22,µA
:=
∫
Tm

| log |P (zA
m)||2dµA ≤ C and || log |P |||22,µn

≤ C.

Proof. As we mentioned, for P (zn) = ∑
v∈Zn cP (v) · zv

n and v ∈ Zn, we have P (zA
m) =∑

v∈zn cP (v)zA.vt

m . Two vectors v and w contribute non trivially to the same monomial in the
above sum if and only if cP (v) ̸= 0, cP (w) ̸= 0 and A.vt = A.wt or equivalently v − w ∈
ker(A) ∩ Zn. By definition of diam(P ), in this case, we have ∥v − w∥∞ ≤ diam(P ). We see
that if ρ(A) > diam(P ) the only possibility is v − w = 0. In other terms, each monomial of PA

comes from a single monomial of P (zA
m) with the same coefficient and no compensations.

So, for any A with ρ(A) > diam(P ), the polynomial PA = P (zA
m) has m ≤ n variables,

k non vanishing coefficients and the max of the coefficients is 1. The same is true as well for
P itself. Our proposition comes then directly from the estimates of Dimitrov and Habegger.
They show in [DH19, Lemma A.3] that there exist numbers Cl,k > 0, for l, k positive integers
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such that for any polynomial Q over C in l variables, with k non vanishing coefficients and the
maximum of the coefficients equal to 1, we have:∫

Tl
(log |Q|)2dµl ≤ Cl,k.

Thanks to the above explanation this bound applies to both Q = PA and to Q = P . Thus, we
can take C equal to the maximum on m ≤ n of the Cm,k. □

Theorem II.4.20 is now an easy consequence:
Proof of Theorem II.4.20. Let n ∈ Z≥1 be an integer, and P (zn) ∈ C[z±1

1 , . . . , z±1
n ] be

a Laurent polynomial. Fix a sequence of matrices Ad ∈ Zmd×n such that limd→+∞ ρ(Ad) = +∞.
We first make an easy reduction: up to multiplying P by a constant a, we may assume that

the maximum of the coefficients is 1. Indeed, we have, for all a ∈ C∗, m(aP ) = log |a| + m(P )
and m(aP (zAd

md
)) = log |a| + m(P (zAd

md
)). So the problem of convergence is equivalently solved

for P or aP . Then, for any j, we have

m(P (zAd
md

)) =
∫
Tmd

log |P (zAd
md

)|dµmd
=
∫
Tn

log |P |dµAd
.

Let d0 ∈ Z≥1 be such that for d ≥ d0 we have ρ(Ad) ≥ diam(P ). From Proposition II.4.22,
we know that the function log |P | is uniformly L2 for the family {µAd

, d ≥ d0} ∪ {µn}. From
Lemma II.4.21, we know the weak-convergence of µAd

to µn. We conclude with Lemma VII.3.8:

lim
d→+∞

m(P (zAd
md

)) = lim
d→+∞

∫
Tn

log |P |dµAd
=
∫
Tn

log |P |dµn = m(P ).

□

In Chapter III we will introduce a family of polynomial called Pd, for which we compute
the Mahler measure. Moreover, in Chapter IV we compute the limit of (m(Pd))d∈Z≥1 using
three methods. We will see that the easiest method is applying Theorem II.4.20 to this family,
following [BGMP22].

In [BGMP22], we also provide an upper bound for the rate of the convergence of the se-
quence m(P (zAd

md
)) in terms of the number of variables of P , the number of non zero coefficients

of P , diam(P ) and ρ(A). We will not cover this result in this thesis. Indeed, we focus on the
family of Mahler measures m(Pd) and this rate of convergence holds no meaningful information
about this sequence. We will obtain in Chapter V the actual rate of convergence for m(Pd)
which is much better than the general upper bound.

II.4.5. Boyd conjecture. As we mentioned, the fact that L♯ is contained in the closure
of L and the existence of the examples such as Proposition II.3.41, convinced Boyd that L may
not be closed. This is the reason for which Boyd conjectured the following statements which
are still open:

Conjecture II.4.23 ([Boy81b]). L♯ is a closed set.

Conjecture II.4.24 ([Boy81b]). L♯
0 is a closed set.

The first conjecture is often called Boyd conjecture. If the Boyd conjecture is proved, then
the answer to the Lehmer question is positive. To clarify this, we first recall that Lehmer’s
question is equivalent to the fact that 1 is not a limit point of L. Let us now work with the
contrapositive proposition. Suppose that 1 is a limit point of L, then according to Proposi-
tion II.4.6, L is dense in [1, ∞). Since L ⊂ L♯, so L♯ is dense as well. Thus, L♯ can not be
closed, since otherwise [1, ∞) = L♯ = L♯, while L♯ is countable which is a contradiction.
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CHAPTER III

The family Pd of Polynomials

In this chapter we introduce the class of exact regular bivariate polynomials. The main
interest of studying exact regular polynomials is the existence of a closed formula [GM21] to
compute their Mahler measure. The advantage of the formula is that instead of computing
a double integral we compute a finite sum. As examples of regular exact polynomials, we
introduce a family of polynomials, denoted by Pd, which was introduced to us by Brunault.
We compute each term in the formula of Mahler measure for Pd. At the end of this chapter,
we can compute m(Pd) for any d, with arbitrary precision and it gives us an idea about the
behavior of m(Pd) when d goes to infinity.

III.1. Exactness of the polynomials Pd

In this section, we introduce the polynomials Pd and we prove that they are exact. We
notice that despite the existence of a closed formula to compute the Mahler measure of regular
exact polynomials, recognizing the exactness of a polynomial (with genus greater than zero) is
not always possible either. For instance, there is a finite number of exact bivariate polynomials
of genus g ≤ 1 with Newton polygon of bounded area (see [GM21]). Before starting this section
let us fix the following conventions:

Convention III.1.1. In this thesis an algebraic variety refers to the general definition of quasi
affine varieties. Also an algebraic curve is a 1-dimensional quasi affine algebraic variety (see
Section VII.4 in the Appendix for the necessary definitions in this regard).

Convention III.1.2. We assume that log z is loge z or ln z, unless we mention the base of the
logarithm.

Convention III.1.3. The argument arg x is a multi-valued function on C∗. The restriction of
arg x to the principle branch (−π, π] is denoted by Arg x.

In order to define exact polynomials we need to introduce the following differential form:

Definition III.1.4. The real differential 1-form η on C∗2 is defined by
η = log |y| d arg(x) − log |x| d arg(y).

We note that the real differential 1-form d arg x is actually the imaginary part of the complex
differential 1-form d log x = dx

x . Consider the multi-valued function arg x. We restrict it to the
principal branch to have the function Arg x. However, we still need to remove the negative part
of the real axis from (−π, π] to have a continuous function. On the contrary d arg x is defined
in C∗, since arg x = Arg x + 2kπ, with k ∈ Z, so the constant 2kπ disappears in d arg x.

Proposition III.1.5. Let P ∈ C[x, y] and C be the algebraic curve defined by

C = {(x, y) ∈ C∗2|P (x, y) = 0, dP (x, y) ̸= 0}.

Then, η restricted to C is a closed 1-form.
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Proof. The algebraic curve C has complex dimension one, so the complex differential 2-
form

(
dx
x ∧ dy

y

)
on C is zero. Therefore, the imaginary part of this form is zero. We prove

dη = −Im
(

dx
x ∧ dy

y

)
= 0 by computing the both sides of the equality:

dη = d log |y| ∧ d arg(x) + log |y| ∧ d(d arg(x)) − d log |x| ∧ d arg(y) − log |x| ∧ d(d arg(x))
= d log |y| ∧ d arg(x) − d log |x| ∧ d arg(y).

For computing the imaginary part of dx
x ∧ dy

y , we use dx
x = d log x and log x = log |x| + i arg x,

so we have:

Im(dx

x
∧ dy

y
) = Im ((d log |x| + id arg(x)) ∧ (d log |y| + id arg(y)))

= d log |x| ∧ d arg(y) + d arg(x) ∧ d log |y|
= d log |x| ∧ d arg(y) − d log |y| ∧ d arg(x)
= −(d log |y| ∧ d arg(x) − d log |x| ∧ d arg(y)).

So dη = −Im
(

dx
x ∧ dy

y

)
= 0, consequently η is closed. □

We notice that in the previous proposition, P is a polynomial which is a holomorphic
function and the condition dP (x, y) ̸= 0, in the definition of the algebraic curve C, is translated
as follows:

dP = ∂P

∂x
dx + ∂P

∂y
dy ̸= 0 ⇔ ∂P

∂y
̸= 0 or

∂P

∂x
̸= 0.

Following Proposition III.1.5 one may ask about the exactness of η|C . In general, the answer
is that η|C is not always exact, but this question leads to the definition of exact polynomials.

Definition III.1.6. A polynomial P ∈ C[x, y] is called exact if the form η restricted to the
algebraic curve C (which depends on P ) is exact. In this case, any primitive for η|C is called
a Volume function associated with the exact polynomial P .

To see a simple example of an exact polynomial we need to define the following classic
function.

Definition III.1.7. The Bloch-Wigner dilogarithm function D(z) is defined by:

D(z) = Im(Li2(z)) + Arg(1 − z) log |z|,

where Li2(z) is the following function:

Li2(z) = −
∫ z

0
log(1 − u)du

u
for z ∈ C \ [1, ∞).

We briefly summarize some important properties of this function. For more information
see [Zag07].

Fact III.1.8. The function D(z) is real analytic on C except at the two points 0 and 1, where
it is continuous but not differentiable. Moreover, we have:

(1) D(z̄) = −D(z).

(2) If |z| = 1, D(z) = D(eiθ) = ∑∞
n=1

sin(nθ)
n2 , in particular D(ekπi) = 0.
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(3) Let n ∈ Z≥1 and ζn a primitive n-th root of unity, then

D(zn) = n
n−1∑
j=0

D(ζj
nz).

The last property above is called the distribution relation for dilogarithm and is mentioned in
[BRV02].

The link between the differential of D and η is well known, see [BL13] or [BZ20, Theorem
7.2] for more information;

Fact III.1.9. −D(z) is a primitive for η restricted to
{(z, 1 − z) ∈ C∗2}, i.e.,

−dD(z) = η(z, 1 − z).

Proof. The proof is simply a computation as follows.
dD(z) = d(Im(Li2(z)) + arg(1 − z) log |z|)

= Im(d(Li2(z))) + d arg(1 − z) log |z| + arg(1 − z)d log |z|

= −Im

(
log(1 − z)dz

z

)
+ d arg(1 − z) log |z| + arg(1 − z)d log |z|

= −Im(log(1 − z)d log z) + d arg(1 − z) log |z| + arg(1 − z)d log |z|
= −Im(log(1 − z)(d log |z| + id arg(z))) + d arg(1 − z) log |z| + arg(1 − z)d log |z|
= −Im((log |1 − z| + i arg(1 − z))(d log |z| + id arg(z)))
+ d arg(1 − z) log |z| + arg(1 − z)d log |z|
= log |z|d arg(1 − z) − log |1 − z|d arg(z)
= −η(z, 1 − z).

□

In the following we introduce a simple example of an exact polynomial:

Example III.1.10. The polynomial P1(x, y) = x + y + 1 is exact and a volume function is
−D(−x); (To see the proof see [Lal07] or Example III.1.17 in the following.)

We generalize the first example P1 to a family of exact polynomials, called Pd :

Notation III.1.11. For d ≥ 1 the polynomial
Pd(x, y) :=

∑
0≤i+j≤d

xiyj ,

is denoted by Pd.

The best way to prove the exactness of η restricted to the curve C associated with Pd is by
an abstract algebraization of η. We refer to [BZ20, Section 7.2] for more information in this
regard). Consider the multiplicative group Kd

∗ of the field Kd = Frac Q̄[x,y]
<Pd> as a Z-module. The

second exterior product of Kd
∗ is Kd

∗ ∧ Kd
∗. Note that the associated group operation in Kd

∗

and Kd
∗ ∧ Kd

∗ are respectively multiplication and addition. We recall some basic properties of
the wedge product, which will be used in our computations:

(1) ∀f ∈ Kd
∗ : f ∧ f = 0.

(2) ∀f, g ∈ Kd
∗ : f ∧ g = −(g ∧ f).

(3) ∀f, g, h ∈ Kd
∗ : (fg) ∧ h = f ∧ h + g ∧ h.
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(4) ∀f, g, h ∈ Kd
∗ : f ∧ (gh) = f ∧ g + f ∧ h.

(5) ∀f, g ∈ Kd
∗, n ∈ Z : n(f ∧ g) = fn ∧ g = f ∧ gn.

Consider the alternating bi-linear map ı : Kd
∗ × Kd

∗ → Ω1
C defined by:

ı : Kd
∗ × Kd

∗ → Ω1
C

(f, g) 7→ log |g|d arg f − log |f |d arg g,

where C is the curve of Pd minus the set of zeros and poles of f and g. Moreover, Ω1
C is the

C-vector space of smooth differential one-forms on C. According to the universal property of
the exterior product, there is a unique morphism of Z-modules ı̄ : Kd

∗ ∧ Kd
∗ → Ω1

C such that
the following diagram commutes.

Kd
∗ ∧ Kd

∗

Kd
∗ × Kd

∗ Ω1
C

ı̄

ı

∧

where ∧ is defined by: ∧
: Kd

∗ × Kd
∗ → Kd

∗ ∧ Kd
∗

(f, g) 7→ f ∧ g

Note that according to the definitions of ı(f, g) and η we have η(f,g) = ı(f, g).

By using the the universal property of the wedge product we verify in the next lemma
that torsion elements of Kd

∗ ∧ Kd
∗ belong to the kernel of ı̄. The proof of Lemmas III.1.12

and III.1.16, Example III.1.13, and Proposition III.1.14 are according to the properties of the
wedge product and the definition of η.

Lemma III.1.12. If f ∧ g = f ′ ∧ g′, then ı(f, g) = ı(f ′, g′). Moreover, if a finite sum with
integer coefficients

∑n
i=1 ϵifi ∧ gi = 0, then

∑n
i=1 ϵiı(fi, gi) = 0. In particular, the torsion

elements of Kd
∗ ∧ Kd

∗ are sent to zero by ı̄.

Proof. The first part is clear by the universal property. For the second part, ı̄ is a
morphism of Z-module, so ∑n

i=1 ϵiı(fi, gi) = ∑n
i=1 ϵiı̄(fi ∧ gi) = ı̄(∑n

i=1 ϵifi ∧ gi) = 0. Fi-
nally, if ∑n

i=1 ϵifi ∧ gi is a torsion element in Kd
∗ ∧ Kd

∗, there is an integer n such that
n (∑n

i=1 ϵifi ∧ gi) = 0. Thus, ı̄ (n(∑n
i=1 ϵifi ∧ gi)) = n (̄ı(∑n

i=1 ϵifi ∧ gi)) = 0. Hence, the differ-
ential form ı̄ (∑n

i=1 ϵifi ∧ gi) is a torsion element in the C-vector space Ω1
C , so ı̄ (∑n

i=1 ϵifi ∧ gi) =
0. □

Example III.1.13. For all g ∈ K∗
d , g ∧ −1 is a torsion element in Kd

∗ ∧ Kd
∗.

Proof. We have g ∧ 1 = g ∧ (1 · 1) = g ∧ 1 + g ∧ 1, so g ∧ 1 = 0. Also we have 0 = g ∧ 1 =
(g ∧ (−1)(−1)) = (g ∧ −1) + (g ∧ −1) = 2.(g ∧ −1), so g ∧ −1 is a torsion element. □

The following theorem gives us an algorithm to compute a volume function for an exact
polynomial. We refer to [BZ20, Chapter 7] or [BRVD03, Page 6] for a similar proof of the
following theorem.

Proposition III.1.14. If x, y ∈ Kd
∗ and x ∧ y = ∑n

i=1 zi ∧ (1 − zi) modulo some torsion
elements in Kd

∗ ∧ Kd
∗, then (−∑n

i=1 D(zi)) is a primitive form for η restricted to the curve C
associated with Pd(x, y).
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Proof. We have:

ı̄(x ∧ y) = ı̄

(
n∑

i=1
zi ∧ (1 − zi) +

n∑
i=1

fi ∧ gi

)
, where fi ∧ gi are torsion elements.

Since ı̄ is a morphism of abelian groups, and ∑n
i=1 fi∧gi is a torsion element, by Lemma III.1.12

and Example III.1.10, we have:

η(x, y) = ı(x, y) = ı̄(x ∧ y) = ı̄

(
n∑

i=1
(zi ∧ (1 − zi)) +

n∑
i=1

fi ∧ gi

)

=
n∑

i=1
ı̄ (zi ∧ (1 − zi)) =

n∑
i=1

ı(zi, 1 − zi) = −(
n∑

i=1
dD(zi)) = d(−

n∑
i=1

D(zi)).

□

Remark III.1.15. Since the ∧ computation for finding a volume function does not depend on
the torsion elements, in the sequel of this section we use the notation .= to denote equality up to
torsion elements. For example, according to Example III.1.13, for all f, g we have (−f)∧(−g) .=
f ∧ (−g) .= (−f) ∧ g

.= f ∧ g.

In the following lemma, we state two equalities needed for proving the exactness of Pd.

Lemma III.1.16. We have the following equalities:

(III.1.1) x ∧ (1 − x/y) − y ∧ (1 − y/x) .= x/y ∧ (1 − x/y) − x ∧ y,

(III.1.2) y ∧ (1 − (y/x)d+1) − x ∧ (1 − (x/y)d+1) .= (y/x) ∧ (1 − (y/x)d+1)) + (d + 1)x ∧ y.

Proof. We just prove the first equality, the proof for the second one is similar. By replacing
x with x

y .y we have:

x ∧ (1 − x/y) − y ∧ (1 − y/x) = x/y ∧ (1 − x/y) + y ∧ (1 − x/y) − y ∧ (1 − y/x)

= x/y ∧ (1 − x/y) + y ∧ 1 − x/y

1 − y/x
= x/y ∧ (1 − x/y) + y ∧

y−x
y

x−y
x

= x/y ∧ (1 − x/y) + y ∧ −x

y

= x/y ∧ (1 − x/y) + y ∧ −1 + y ∧ x − y ∧ y
.= x/y ∧ (1 − x/y) − x ∧ y.

□

We recover:

Example III.1.17. The polynomial P1 is exact and a volume function is −D(−x).

Proof. In [Lal07, Section 3] or [BZ20, Chapter 7], there are similar methods to prove the
exactness and to compute the Mahler measure of P1. We prove it as well. We notice that in
K1 := Frac Q̄[x,y]

<P1> we have 1 + x = −y. It yields:

x ∧ y
.= (−x) ∧ (−y) = (−x) ∧ (1 − (−x)).

Then according to Proposition III.1.14, −D(−x) is a volume function and P1 is exact. □

The previous example generalizes to the whole family. The following proof was suggested
by Brunault, and appeared in [Meh21, Theorem 2.1]:

69



Theorem III.1.18. For all d ≥ 1, Pd is an exact polynomial, and for d ≥ 2 a volume function,
denoted by V , is defined as follows:

V (x, y) = 1
(d + 1)(d + 2)[D(yd+1) − D(xd+1) − D((y/x)d+1)] + 1

(d + 2)[D(x) − D(y) − D(x/y)].

Proof. In Example III.1.17, we proved that P1 is exact with volume function −D(−x).
For d ≥ 2 we have the following equations:

Pd(x, y) = Pd−1(x, y) + yd(1 − (x/y)d+1

1 − (x/y) ) and Pd(x, y) = yPd−1(x, y) + (1 − xd+1

1 − x
).

Therefore, at smooth zeros of Pd, we have:

0 = Pd(x, y) = Pd−1(x, y) + yd(1 − (x/y)d+1

1 − (x/y) ) = yPd−1(x, y) + (1 − xd+1

1 − x
).

In other words, we have:

(III.1.3) Pd−1(x, y) = −yd(1 − (x/y)d+1

1 − (x/y) ) = −1/y(1 − xd+1

1 − x
),

hence,

(III.1.4) yd+1 = 1 − xd+1

1 − x

1 − (x/y)
1 − (x/y)d+1 .

Instead of x ∧ y, we compute 1
d+1x ∧ yd+1. Moreover, we substitute Eq. (III.1.4) in 1

d+1x ∧ yd+1

and we have :

(III.1.5) x ∧ y = 1
d + 1

(
x ∧ (1 − xd+1) − x ∧ (1 − x) + x ∧ (1 − x/y) − x ∧ (1 − (x/y)d+1)

)
.

Since Pd for d ≥ 1 is a symmetric polynomial, we can switch x and y in Eq. (III.1.5) and we
have:

(III.1.6) y ∧ x = 1
d + 1

(
y ∧ (1 − yd+1) − y ∧ (1 − y) + y ∧ (1 − y/x) − y ∧ (1 − (y/x)d+1)

)
.

By subtracting Eq. (III.1.6) from Eq. (III.1.5), we have:
2(d + 1)(x ∧ y) = x ∧ (1 − xd+1) − y ∧ (1 − yd+1) − x ∧ (1 − x) + y ∧ (1 − y)(III.1.7)

+x ∧ (1 − x/y) − y ∧ (1 − y/x) − x ∧ (1 − (x/y)d+1) + y ∧ (1 − (y/x)d+1).
By replacing Eq. (III.1.2) and Eq. (III.1.1) in Eq. (III.1.7) and simplifying (based on Lemma III.1.16),
we have :

(d + 2)(x ∧ y) .= 1/(d + 1)xd+1 ∧ (1 − xd+1) − 1/(d + 1)yd+1 ∧ (1 − yd+1) − x ∧ (1 − x)+
y ∧ (1 − y) + x/y ∧ (1 − x/y) + 1/(d + 1)(y/x)d+1 ∧ (1 − (y/x)d+1)).

In other words, we have:

(x ∧ y) .= 1
(d + 1)(d + 2)

(
xd+1 ∧ (1 − xd+1) − yd+1 ∧ (1 − yd+1) + (y/x)d+1 ∧ (1 − (y/x)d+1)

)
+ 1

d + 2 (y ∧ (1 − y) − x ∧ (1 − x) + x/y ∧ (1 − x/y)) .

Based on Proposition III.1.14 the volume function is:

V (x, y) = 1
(d + 1)(d + 2)[D(yd+1) − D(xd+1) − D((y/x)d+1)] + 1

(d + 2)[D(x) − D(y) − D(x/y)];

which proves the exactness of Pd. □
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III.2. A closed formula to express the Mahler measure of Pd as a finite sum

The sequel of Chapter III explains the work done in [Meh21] in detail. As we have already
mentioned, there is a closed formula in [GM21] to compute the Mahler measure of a family of
exact polynomials as follows:

m(P ) = 1
2π

∑
ϵ(x, y)V (x, y).(III.2.1)

The summation is on the set of toric points of the monic polynomial P (see Definition III.2.1);
ϵ(x, y) is the opposite of the sign of the imaginary part of x∂xP

y∂yP at a toric point (x, y); and V

is a volume function.

There is a slight assumption on the polynomial necessary to apply the formula. We assume
that x∂xP

y∂yP is not real at each toric point. We will explain more about this assumption, called
regularity of the polynomial in the next section. Since Pd is exact and regular we may apply
the formula to compute m(Pd). To do so, we need to compute the toric points of Pd and ϵ at
each toric point.

III.2.1. Toric points of Pd. The aim of this section is to compute the set of the toric
points of Pd. Let us start with the definition of toric points.

Definition III.2.1. The set of toric points of P ∈ C[x, y] is defined by:
{(x, y) ∈ C∗2|P (x, y) = 0, |x| = |y| = 1}.

Let P (x, y) ∈ C[x, y]. Here we introduce P ∗(x, y) = P (1/x, 1/y) which is a bivariate
Laurent polynomial. We prove that the set of toric points of P ∈ R[x, y] and P ∗ are equal.
This property helps us find the set of the toric points of Pd.

Proposition III.2.2 ([BZ20], Exercise 3.1.b). If P (x, y) ∈ R[x, y] the set of toric points of
P (x, y) and P ∗(x, y) are equal.

Proof. For polynomials with real coefficients we have P (x, y) = P (x, y). Let |x| = 1 then
x = 1

x , so we have:
(x, y) is a toric point of P (x, y) ⇔ P (x, y) = 0, |x| = |y| = 1

⇔ P (x, y) = 0, |x| = |y| = 1
⇔ P (x, y) = 0, |x| = |y| = 1

⇔ P ( 1
x

,
1
y

) = 0, |x| = |y| = 1

⇔ P ∗(x, y) = 0, |x| = |y| = 1
⇔ (x, y) is a toric point of P ∗(x, y).

□

According to the previous proposition if (x, y) is a toric point of P then we have P (x, y) =
P ∗(x, y) = 0. Therefore, if (x, y) is a toric point of Pd we have Pd(x, y)+P ∗

d (x, y) = 0. Similarly
for any (i, j) ∈ N2 we have:
(III.2.2) Pd(x, y) + xiyjP ∗

d (x, y) = 0.

We are searching for i, j such that xiyjP ∗
d (x, y) does not have any denominator, also Pd(x, y) +

xiyjP ∗
d (x, y) factorizes as the product of two univariate polynomials. Let the univariate poly-

nomials in the factorization be denoted by H(x) and Q(y). We want to find (i, j) such that we
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have:
(III.2.3) Pd(x, y) + xiyjP ∗

d (x, y) = H(x)Q(y).
The advantage of having such a equation is that if (x, y) is a toric point of Pd, then the

L.H.S is zero which implies that either x is a root of H or y is a root of Q. Therefore, to
find toric points of the bivariate polynomial Pd, we simply find the roots of two univariate
polynomials H and Q and we choose the roots x and y for which (x, y) is a toric point. One
can easily see that for an arbitrary d, a good candidate to have such a factorization might be
i = d + 1, j = d.

Lemma III.2.3. We have the following equality:

(III.2.4) Pd(x, y) + xd+1ydP ∗
d (x, y) = xd+2 − 1

x − 1
yd+1 − 1

y − 1 .

Proof.
Pd(x, y) =
(1 + x + · · · + xd) + y(1 + x + · · · + xd−1) + · · · + yd−1(1 + x) + yd =
xd+1 − 1

x − 1 + xd − 1
x − 1 y + · · · + x2 − 1

x − 1 yd−1 + x − 1
x − 1yd =

(xd+1 + yxd + · · · + yd−1x2 + ydx) − (1 + y + · · · + yd)
x − 1 .

Since Pd
∗(x, y) = Pd(1/x, 1/y),

Pd
∗(x, y) = (1/xd+1 + 1/yxd + · · · + 1/yd−1x2 + 1/ydx) − (1 + 1/y + · · · + 1/yd)

1/x − 1 ,

and:

xd+1ydP ∗
d (x, y) = (xd+2 + xd+2y + · · · + xd+2yd) − (xd+1 + yxd + · · · + yd−1x2 + ydx)

x − 1 .

So we have:

Pd(x, y) + xd+1ydP ∗
d (x, y) = (xd+2 + xd+2y + · · · + xd+2yd) − (1 + y + · · · + yd)

x − 1 .

Therefore:

Pd(x, y) + xd+1ydP ∗
d (x, y) = xd+2 − 1

x − 1
yd+1 − 1

y − 1 .

□

The previous lemma gives us more information about the set of the toric points of Pd;

Lemma III.2.4. The toric points of Pd(x, y) are contained in:

{(x, y) ∈ C∗2 | xd+1 = yd+1 = 1, x ̸= 1, y ̸= 1}∪

{(x, y) ∈ C∗2 | xd+2 = yd+2 = 1, x ̸= 1, y ̸= 1}

Proof. If (x, y) is a toric point of Pd, then Eq. (III.2.2) and Eq. (III.2.4) leads to:

(III.2.5) xd+2 − 1
x − 1 = 0 or yd+1 − 1

y − 1 = 0.
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The polynomial Pd(x, y) is a symmetric polynomial, so Pd(x, y) = Pd(y, x). Thus, we switch x
and y, so (y, x) is a toric point as well as (x, y). Hence,

(III.2.6) yd+2 − 1
y − 1 = 0 or xd+1 − 1

x − 1 = 0,

Therefore, according to Eq. (III.2.5) and Eq. (III.2.6) there are 4 possibilities:
(1) xd+2 = 1, x ̸= 1, yd+2 = 1, y ̸= 1.
(2) xd+2 = 1, xd+1 = 1, x ̸= 1, which is not compatible.
(3) yd+1 = 1, yd+2 = 1, y ̸= 1, which is not compatible.
(4) yd+1 = 1, y ̸= 1, xd+1 = 1, x ̸= 1.

□

The set of the toric points of Pd(x, y) is subset of the set introduced in Lemma III.2.4.
However, by computing the toric points of Pd(x, y) for some small values of d, we realize that
these two sets are not equal. In the following we search for a suitable subset of the set in
Lemma III.2.4 which is equal to the set of toric points of Pd. The following example introduce
the set of the toric points of P1 and P2.

Example III.2.5. We have the toric points of P1(x, y) and P2(x, y) computed by Maple:
• The toric points of P1 are the following third roots of unity:

{(e
2π
3 i, e

4π
3 i), (e

4π
3 i, e

2π
3 i)}.

• The toric points of P2 are the following third and fourth roots of unity:

{(e
2π
3 i, e

4π
3 i), (e

4π
3 i, e

2π
3 i), (−1, e

6π
4 i), (e

6π
4 i, −1), (e

2π
4 i, −1), (−1, e

2π
4 i), (e

2π
4 i, e

6π
4 i), (e

6π
4 i, e

2π
4 i)}.

We should remark that the values of the coordinates of toric points of P1 and P2 have been
first computed approximately by Maple. Then, since they are d + 1 or d + 2 roots of unity we
concluded the associated exact values.
In Example III.2.5 we observed that there is no symmetric pairs among the toric points (i.e.
(x, x)), for the both examples P1(x, y) and P2(x, y). This motivated us prove the following
lemma.

Lemma III.2.6. If (x, y) is a toric point of Pd(x, y), then x ̸= y:

Proof. Let x be a (d+1) or (d+2) root of unity. We prove by contradiction that Pd(x, x)
is not equal to zero. Thus, suppose we have:

0 = Pd(x, x) =
∑

0≤i+j≤d

xi+j =
∑

0≤k≤d

(k + 1)xk =
(

d

dx

d∑
k=0

xk+1
)

.

Therefore, x is a root of d
dx

(∑d
k=0 xk+1

)
. The Gauss-Lucas theorem asserts that the zeroes

of the derivative of a polynomial have to lie in the convex hull of the zeros of the polynomial
itself. On the other side,

d∑
k=0

xk+1 = xd+2 − 1
x − 1 .

Since the two polynomials∑d
k=0 xk+1 and Pd(x, x) are coprime to each other (see Remark III.2.7),

x is strictly inside the convex hull of (d+2)-roots of unity. Therefore, |x| < 1, which contradicts
the fact that x is a root of unity. Hence, there is no symmetric pair (x, x) in the set of toric
points of Pd. □
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Remark III.2.7. In the proof of the previous lemma we claim that the two polynomials∑d
k=0 xk+1 = xd+2−1

x−1 and Pd(x, x) = d
dx

(∑d
k=0 xk+1

)
= d

dx

(
xd+2−1

x−1

)
are coprime to each other,

but we need to clarify this fact. To do so instead of considering the quotient xd+2−1
x−1 it is

sufficient to show xd+2 − 1 and d
dx(xd+2 − 1) are coprime. It follows from the Bezout relation:

1
d + 2

(
d

dx
(xd+2 − 1)

)
x − (xd+2 − 1) = x

d + 2(d + 2)xd+1 − xd+2 + 1 = 1.

Thus, they are coprime and they do not have any common roots.

Finally we are able to introduce the set of the toric points of Pd(x, y). For the convenience,
we fix the following notations:

Notation III.2.8. Let Ud+1 and Ud+2 are the following set:
Ud+1 := {(x, y) ∈ C∗2 | xd+1 = yd+1 = 1, x ̸= 1, y ̸= 1 , x ̸= y},

Ud+2 := {(x, y) ∈ C∗2 | xd+2 = yd+2 = 1, x ̸= 1, y ̸= 1, x ̸= y}.

Proposition III.2.9. [Meh21, Proposition 3.1] The set of toric pints of Pd(x, y) is:
Ud+1 ∪ Ud+2.

Proof. From Lemma III.2.4 and Lemma III.2.6, we know that the set of toric points of
Pd is included in Ud+1 ∪ Ud+2. To prove the reverse, we notice that for (x, y) ∈ Ud+1 ∪ Ud+2 we
have |x| = |y| = 1, so we just prove Pd(x, y) = 0. To do so, we consider two cases:

• Case 1) (x, y) ∈ Ud+1 = {(x, y) ∈ C∗2 | xd+1 = yd+1 = 1, x ̸= 1, y ̸= 1 , x ̸= y}:
Pd(x, y) = (1 + x + · · · + xd) + y(1 + x + · · · + xd−1) + · · · + yd−1(1 + x) + yd

= (xd+1 + yxd + · · · + yd−1x2 + ydx) − (1 + y + · · · + yd)
x − 1 .

Since, y is a d + 1 root of unity, (1 + y + · · · + yd) is equal to zero. Also, 0 = 1 − 1 =
xd+1 − yd+1 = (x − y)(xd + xdy + · · · + yd), but y ̸= x, so (xd + xdy + · · · + yd) = 0.
Hence, Pd(x, y) = 0.

• Case 2) (x, y) ∈ Ud+2 = {(x, y) ∈ C∗2 | xd+2 = yd+2 = 1, x ̸= 1, y ̸= 1, x ̸= y}:
Pd(x, y), for d ≥ 1, is symmetric so we have:

xPd(x, y) + 1 + y + · · · + yd+1 = Pd+1(x, y) = Pd+1(y, x) = yPd(x, y) + 1 + x + · · · + xd+1.

By subtracting Pd+1(y, x) from Pd+1(x, y), the following equation holds for any (x, y):

(III.2.7) (x − y)Pd(x, y) + yd+2 − 1
y − 1 − xd+2 − 1

x − 1 = 0.

Since for any point in Ud+2 we have yd+2 − 1 = xd+2 − 1 = 0 and x ̸= y, we
conclude that Pd(x, y) = 0.

□

We also find some information about the number of toric points of each Pd, since the toric
points are the (x, y) where x, y are roots of unity. The number of toric points is |Ud+1|+|Ud+2| =
d(d − 1) + (d + 1)d = 2d2.

More generally the set of toric points of a polynomial is finite. This can be proved using the
information in [GM21]. Thus, using Eq. (III.2.1) instead of computing an integral for m(Pd),
we compute a finite sum.
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III.2.2. Computing ϵ at toric points. In the previous sections we found a volume
function associated to Pd and the set of toric points of Pd. In this section, to complete our
information for applying [GM21] to Pd, we compute ϵ(x, y) at toric points of Pd. Let us rewrite
the formula again:

m(P ) = 1
2π

∑
ϵ(x, y)V (x, y).(III.2.8)

We recall that the summation is on the set of toric points of P , ϵ(x, y) is the opposite of the
sign of the imaginary part of x∂xP

y∂yP at toric point (x, y), and V is a volume function.
The necessary condition on P to apply this formula is that, for each toric point of P , the
fraction x∂xP

y∂yP , should not be real. This property leads to the definition of regular polynomials.
To introduce regular polynomials we need the following definition (for more information see
[GM21]).

Definition III.2.10. The logarithmic Gauss map γ : C → P1(C) is defined by γ(x, y) =
[x∂xP, y∂yP ].

Using the logarithmic Gauss map we define a regular polynomial.

Definition III.2.11. An exact polynomial P (x, y) is called regular if for each toric point
(x, y) we have γ(x, y) /∈ P1(R).

From the previous definition, we conclude that γ(x, y) is a point in projective plane. Thus,
for a regular polynomial P we have y∂yP |(x,y) ̸= 0 if and only if x∂xP |(x,y) ̸= 0, since otherwise
if for example y∂yP |(x,y)= 0 and x∂xP |(x,y) ̸= 0, then:

[x∂xP, y∂yP ] = [1,
y∂yP

x∂xP
] = [1, 0] /∈ P1(C) \ P1(R),

which is a contradiction. Thus, for a regular polynomial P without loss of generality one
can assume that one of the following conditions holds: y∂yP |(x,y) ̸= 0 or y∂yP

x∂xP ̸= 0. We
assume y∂yP |(x,y) ̸= 0, so the property γ(x, y) = [x∂xP, y∂yP ] = [x∂xP

y∂yP , 1] ∈ P1(C) \ P1(R), is
equivalent to x∂xP

y∂yP /∈ R.

Example III.2.12. The following table shows Sgn(Im(x∂xP
y∂yP )) at the toric points of P1 and P2.

• Sgn(Im(x∂xP
y∂yP )) at the toric points of P1:

(x, y) ∈ U3 Sgn(Im(x∂xP
y∂yP )) ϵ(x, y)

(e 2π
3 i, e

4π
3 i) − +

(e 4π
3 i, e

2π
3 i) + −

• Sgn(Im(x∂xP
y∂yP )) at toric points of P2:
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(x, y) ∈ U3 Sgn(Im(x∂xP
y∂yP )) ϵ(x, y) (x, y) ∈ U4 Sgn(Im(x∂xP

y∂yP )) ϵ(x, y)

(e 4π
4 i, e

6π
4 i) − +

(e 2π
3 i, e

4π
3 i) + − (e 6π

4 i, e
4π
4 i) + −

(e 2π
4 i, e

4π
4 i) − +

(e 4π
4 i, e

2π
4 i) + −

(e 4π
3 i, e

2π
3 i) − + (e 2π

4 i, e
6π
4 i) − +

(e 6π
4 i, e

2π
4 i) + −

To find Sgn(Im(x∂xP
y∂yP )) for arbitrary Pd we define the following map which associates each

toric point of Pd with a point in R2;

Definition III.2.13. The map Ω is defined over ⋃d≥1 Ud as follows: if (x, y) = (e 2πli
d , e

2πki
d ) ∈

Ud, then Ω((x, y)) = (l, k).
According to the definition of Ud, if Ω((x, y)) = (l, k), then l ̸= k. Thus, we have the

following convention:
Convention III.2.14. We say that Ω((x, y)) = (l, k) is above the diagonal if l < k and below
the diagonal if k < l.

As before, to find ϵ at each toric point of Pd, for arbitrary d, we start with computing it
for the small values of d. Figs. 1 to 3 show the image of Ω over the set of the toric points of
P1 and P2. The points in red are associated with the toric points with positive Sgn(Im(x∂xP

y∂yP ))
and the points in blue are associated with the toric points with negative sign.

Figure 1. The points in U3 and the associated Sgn(Im(x∂xP1
y∂yP1

)).

This explanation leads us to the following proposition:
Proposition III.2.15. [Meh21, Proposition 3.2] Let d ≥ 1, for the polynomial Pd(x, y), ϵ at
each toric point is determined as follows;
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Figure 2. The points in U3 and the associated Sgn(Im(x∂xP2
y∂yP2

)).

Figure 3. The points in U4 and the associated Sgn(Im(x∂xP2
y∂yP2

)).

• For (x, y) ∈ Ud+1:
– If Ω((x, y)) is above the diagonal, then ϵ(x, y) < 0.
– If Ω((x, y)) is below the diagonal, then ϵ(x, y) > 0.

• For (x, y) ∈ Ud+2:
– If Ω((x, y)) is above the diagonal, then ϵ(x, y) > 0.
– If Ω((x, y)) is below the diagonal, then ϵ(x, y) < 0.

Proof. We find Sgn(Im(x∂xP
y∂yP )). Recall that ϵ(x, y) is its opposite! As we saw in the proof

of Proposition III.2.9, at any point (x, y) Eq. (III.2.7) is satisfied:

0 = (x − y)Pd(x, y) + yd+2 − 1
y − 1 − xd+2 − 1

x − 1 .

Let Q(x, y) = (x − 1)(y − 1)(x − y). For all (x, y) ∈ C2 we have this equality of polynomials:
Pd(x, y)Q(x, y) = (xd+2 − 1)(y − 1) − (yd+2 − 1)(x − 1).

We apply ∂x and ∂y to both sides:

(III.2.9) ∂xPd(x, y)Q(x, y) + ∂xQ(x, y)Pd(x, y) = (d + 2)(y − 1)xd+1 − (yd+2 − 1),

(III.2.10) ∂yPd(x, y)Q(x, y) + ∂yQ(x, y)Pd(x, y) = (xd+2 − 1) − (d + 2)(x − 1)yd+1.

We divide Eq. (III.2.9) by Eq. (III.2.10), so for all the (x, y) ∈ C2 we have:

(III.2.11) ∂xPd(x, y)Q(x, y) + ∂xQ(x, y)Pd(x, y)
∂yPd(x, y)Q(x, y) + ∂yQ(x, y)Pd(x, y) = (d + 2)(y − 1)xd+1 − (yd+2 − 1)

(xd+2 − 1) − (d + 2)(x − 1)yd+1 .

We evaluate the previous equation at toric points and we consider two cases:
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• Case 1) (x, y) ∈ Ud+1:
∂xPd(x, y)
∂yPd(x, y) = −y − 1

x − 1 , so x∂xPd(x, y)
y∂yPd(x, y) = −x(1 − y)

y(1 − x) .

• Case 2) (x, y) ∈ Ud+2:
∂xPd(x, y)
∂yPd(x, y) = −xd+1(y − 1)

yd+1(x − 1) , so x∂xPd(x, y)
y∂yPd(x, y) = −1 − y

1 − x
.

We now discuss each case with respect to Ω((x, y)):

Figure 4
Figure 5

• Case 1) (x, y) ∈ Ud+1: We have two possible cases for Ω((x, y)) = (a, b):
(1) If Ω((x, y)) is above the diagonal, or equivalently b > a (see Fig. 4), we have:

(III.2.12) x∂xPd(x, y)
y∂yPd(x, y) = −x

y

1 − y

1 − x
= −e−iϕreiθ.

In the last equality in Eq. (III.2.12), we used the suitable polar representations
according to Fig. 4, where x

y = e−iϕ, with 0 < ϕ < 2π and 1−y
1−x = reiθ, with r > 0,

0 < θ < π. We notice that ϕ and θ are respectively central and inscribed angles
with the same intercepted arc in the circle, so ϕ = 2θ. Therefore, we have:

Sgn(Im(x∂xPd(x, y)
y∂yPd(x, y) )) = − Sgn(Im(re−iϕ/2)) = Sgn(sin(ϕ

2 )),

since 0 < ϕ < 2π, the sign is positive.
(2) If Ω((x, y)) is below the diagonal, or equivalently a > b (see Fig. 5), we have:

Sgn(Im(x∂xPd(x, y)
y∂yPd(x, y) )) = − Sgn(Im(eiϕ/2)) = Sgn(− sin(ϕ

2 )),

so, the sign is negative.

• Case 2) (x, y) ∈ Ud+2: Let ω((x, y)) = (a, b).

(1) If Ω((x, y)) is above the diagonal, or equivalently b > a (see Fig. 4), we have:

Sgn(Im(x∂xPd(x, y)
y∂yPd(x, y) )) = Sgn(Im(−1 − y

1 − x
)) = Sgn(Im(−reiθ)) = Sgn(− sin(θ)) = Sgn(sin(ϕ

2 )),

since 0 < ϕ < 2π, the sign is negative.
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(2) If Ω((x, y)) is below the diagonal, or equivalently a > b (see Fig. 5), we have:

Sgn(Im(x∂xPd(x, y)
y∂yPd(x, y) )) = Sgn(Im(−1 − y

1 − x
)) = Sgn(Im(−re−iθ)) = Sgn(− sin(−θ)) = Sgn(sin(ϕ

2 )),

since 0 < ϕ < 2π, the sign is positive.
□

An immediate result from the previous proposition is:
Corollary III.2.16. The family Pd(x, y) is regular for each d.
Remark III.2.17. In Proposition III.2.15, we write x, y as suitable powers of the first primitive
root of unity. We can not chose any other primitive root of unity and conclude the same results.
The reason is clear by looking at the figures. Consider z′ as another primitive root of unity
which is not the first one, so if x = z′a, y = z′b and a < b. Then even by restricting the
argument in [0, 2π] we can not necessarily conclude that y is located after x on the unit circle
(with counterclockwise orientation).

III.2.3. A closed formula for the Mahler measure of Pd. In the previous sections
we found a volume function associated to Pd, the set of toric points of Pd, and ϵ evaluated at
toric points. In this section, using this information we present a closed formula for m(Pd) in
terms of the values of dilogarithm. In Theorem IV.2.5 and Theorem V.1.1 we see other closed
formulas for m(Pd).
Proposition III.2.18. [Meh21, Proposition 4.3] Let d ∈ Z≥2, so the closed formula for the
Mahler measure of Pd is as follows:

2πm(Pd) =
2

(d + 1)
∑

(x,y)∈Ud+2
with ϵ(x,y)>0

[D(x) − D(y) − D(x/y)] − 2
d + 2

∑
(x,y)∈Ud+1

with ϵ(x,y)>0

[D(x) − D(y) − D(x/y)] ,

where Ud+1 or Ud+2 are the set of the d + 1 and d + 2 toric points of Pd, computed in Proposi-
tion III.2.9.

Proof. We have computed the volume function in Theorem III.1.18 and it is

V (x, y) = 1
(d + 1)(d + 2)[D(yd+1) − D(xd+1) − D((y/x)d+1)] + 1

(d + 2)[D(x) − D(y) − D(x/y)].

The toric points and ϵ evaluated at toric points are computed respectively in Proposition III.2.9
and Proposition III.2.15. Then, thanks to the properties of the dilogarithm D(z) = −D(z̄) and
D(1) = 0, at (x, y) ∈ Ud+1 we have

V (x, y) = 1
(d + 2)[D(x) − D(y) − D(x/y)],

also at (x, y) ∈ Ud+2 we have

V (x, y) = 1
(d + 1)[D(x) − D(y) − D(x/y)].

Moreover, for a point (x, y) ∈ Ud+1 with ϵ(x, y) > 0 we have (y, x) ∈ Ud+1 with ϵ(y, x) < 0 and
thanks to the properties of the dilogarithm, V (x, y) = −V (y, x). The same is true for a toric
point in Ud+2 and this completes the proof. □

The case of m(P1) is not covered in the above proposition so let us do it separately. This
case was first computed by Smyth [Smy81a]. Here, we give another method to do so.
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Example III.2.19. We have m(P1) = 1
π D(e π

3 i), which is approximately 0.32.

Proof. [Lal07] According to Example III.1.17, V (x, y) = −D(−x) is a volume function
for P1. By using Proposition III.2.9 the set of the toric points of P1 is U2 ∪ U3 = U3 (note that
U2 = ∅). Proposition III.2.15 gives the values for ϵ(x, y). Then, we have the following table:

(x, y) ∈ U3 ϵ(x, y) V (x, y)

(e 2π
3 i, e

4π
3 i) + −D(−e

2π
3 i)

(e 4π
3 i, e

2π
3 i) − −D(−e

4π
3 i)

We notice that for ω on the unite circle we have D(ω̄) = −D(ω), so we have:

2πm(P1) =
∑

(x,y)∈U3

ϵ(x, y)V (x, y) = (−D(−ei 2π
3 )) − (−D(−ei 4π

3 )) = D(ei π
3 ) − D(e−i π

3 ) = 2D(ei π
3 ).

Therefore, m(P1) = 1
π D(ei π

3 ). □

We apply Proposition III.2.18 to m(P2) and we write it as a sum of the values of dilogarithm
at specific roots of unity.

Example III.2.20. We have m(P2) = 1
2π

(3
2D(ei 4π

3 ) + 4D(ei π
2 )
)
, which is approximately 0.42.

According to Proposition III.2.9 the set of toric points of P2 is U3 ∪ U4. We have ϵ at each
toric point by looking at the table in Example III.2.12. According to Proposition III.2.18 we
have:
2πm(P2)

= 2
3

∑
(x,y)∈U3

with ϵ(x,y)>0

ϵ(x, y)(D(x) − D(y) − D(x/y)) + 1
2

∑
(x,y)∈U4

with ϵ(x,y)>0

ϵ(x, y)(D(x) − D(y) − D(x/y)).

After a computation and using the properties of Dilogarithm we have:

m(P2) = 1
2π

(3
2D(ei 4π

3 ) + 4D(ei π
2 )
)
.

Thanks to Proposition III.2.18 we can compute the Mahler measure of Pd, for every d ≥ 1 using
SageMath or Maple with arbitrary precision in a very efficient way. We did it using SageMath
for 1 ≤ d ≤ 1000 and the graph of m(Pd) is represented in Fig. 6.

The figure hints to the existence of a limit for m(Pd). In order to find the limit, in the next
chapter we study more about the volume function associated with Pd.
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Figure 6. The graph of m(Pd), for 1 ≤ d ≤ 1000.
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CHAPTER IV

The convergence of (m(Pd))d∈Z≥1

In the previous chapter, we found an explicit formula for m(Pd) and using SageMath we
computed it for 1 ≤ d ≤ 1000. Fig. 6 hinted to an asymptotic behavior for m(Pd). In
this section, using two different methods we prove that limd→∞ m(Pd) = 9ζ(3)

2π2 . The first
method that we explain in Section IV.1 is an application of the generalization of the theorem
of Boyd-Lawton, introduced in Theorem II.4.20. However, to apply Theorem II.4.20 we need
a candidate for the limit polynomial, called P∞. In sections IV.2 to IV.4 of this thesis, we
explain a computational method to represent a P∞. This method is based on Riemann sum of
a bivariate function and an error estimation. Historically, this computational method was the
first method that we used to prove limd→∞ m(Pd) = 9ζ(3)

2π2 . Later, during a collaboration with
Brunault, Guilloux and Pengo we proved Theorem II.4.20. Furthermore, thanks to the work of
D’Andrea and Laĺın [DL07], we concluded that for P∞(x, y, z, w) := (x−1)(y−1)−(z−1)(w−1),
we have m(P∞) = limd→∞ m(Pd). This gave us the opportunity to have a short proof for the
limit, using the generalization of the theorem of Boyd-Lawton. We explain the computational
method precisely to cover all the work done during this thesis. However, we will explain a
third and computationally easier method in Chapter V. It is based on Riemann sums of a
univariate function. Moreover, by applying Euler-Maclaurin formula we have simultaneously
an asymptotic expansion for m(Pd).

IV.1. A proof using the generalization of Boyd-Lawton

In this section we use the generalized Boyd-Lawton theorem to prove Theorem IV.1.1. In
this section we use some of the notation, introduced in Section II.4.4, in particular in II.4.16
and II.4.18.
Theorem IV.1.1 ([BGMP22][Meh21]). For every d ∈ Z≥1, let Pd(z2) := ∑

0≤i+j≤d zi
1zj

2 ∈
C[z2]. Then the following equality

(IV.1.1) lim
d→+∞

m(Pd) = 9
2π2 ζ(3),

holds, where ζ(s) denotes Riemann’s Zeta function.
The fist step of the proof using the generalization of Boyd-Lawton is to interpret the right

hand side of (IV.1.1) as a Mahler measure of a polynomial. To do so, we use a theorem of
D’Andrea and Laĺın (see [DL07, Theorem 7]).

Theorem IV.1.2 (D’Andrea, Laĺın [DL07]). Let P∞(z4) := (1−z1)(1−z2)−(1−z3)(1−z4) ∈
C[z4]. Then the following equality

m(P∞) = 9
2π2 ζ(3)

holds.
To apply Theorem II.4.20, we need to present a suitable sequence of matrices Ad that relates

the polynomials Pd appearing in Theorem IV.1.1 to P∞ featured in Theorem IV.1.2.
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Lemma IV.1.3 ([BGMP22]). For every d ∈ Z≥1, set Ad :=

 d + 2 0 1 0

0 1 0 d + 2

 ∈ Z2×4.

Then the following equality: Pd(z2) (1−z1) (1−z2) (z1 −z2) = P∞(zAd
2 ) holds in the polynomial

ring C[z2].

Proof. With a simple computation we have zAd
2 = (zd+2

1 , z2, z1, zd+2
2 ), and P∞(zAd

2 ) =
(1 − zd+2

1 )(1 − z2) − (1 − z1)(1 − zd+2
2 ). Moreover, we have the following simplification:

P∞(zAd
2 ) = (1 − zd+2

1 )(1 − z2) − (1 − z1)(1 − zd+2
2 )

= zd+2
1 (z2 − 1) + zd+2

2 (1 − z1) + (1 − z2) − (1 − z1)
= zd+2

1 (z2 − 1) + zd+2
2 (1 − z1) + (z1 − z2).

Since Pd(z1, z2), for d ≥ 1, is symmetric, we have:
z1Pd(z1, z2)+1+z2 + · · ·+zd+1

2 = Pd+1(z1, z2) = Pd+1(z2, z1) = z2Pd(z1, z2)+1+z1 + · · ·+zd+1
1 .

By subtracting Pd+1(z2, z1) from Pd+1(z1, z2), and using the properties of geometric series we
have:

Pd(z2) = Pd(z1, z2) = zd+2
1 − 1

(z1 − 1)(z1 − z2) − zd+2
2 − 1

(z2 − 1)(z1 − z2)

= zd+2
1 (z2 − 1) + zd+2

2 (1 − z1) + (z1 − z2)
(1 − z1)(1 − z2)(z1 − z2) ,

which concludes the proof.
□

Theorem IV.1.1 follows easily:

Proof of Theorem IV.1.1. [BGMP22] First of all, Lemma IV.1.3 shows that m(Pd) =
m(P∞(zAd

2 )) for every d ∈ Z≥1. Moreover, the rank of Ad is 2 (two linearly independent
columns) and it has 4 rows. According to the rank theorem, the kernel of Ad is of dimension
2. It is easy to observe that the two vectors [−1, 0, d + 2, 0]t and [0, d + 2, 0, −1]t belong to the
kernel of Ad and they have integer coefficients, so we have:

{v ∈ Z4×1 | Ad · v = 0} =
〈(

−1
0

d+2
0

)
,

(
0

d+2
0

−1

)〉
Z

.

Let us show that we have ρ(Ad) = d + 2. Consider any vector in the Z-module generated by
[−1, 0, d + 2, 0]t and [0, d + 2, 0, −1]t. It is of the form c1[−1, 0, d + 2, 0]t + c2[0, d + 2, 0, −1]t =
[−c1, c2(d+2), c1(d+2), −c2]t with c1, c2 ∈ Z. Since c1, c2 are integers ||[−c1, c2(d+2), 0, c1(d+
2), −c2]t||∞ ≥ (d + 2) as soon as (c1, c2) ̸= (0, 0). This implies that ρ(Ad) = d + 2 for every
d ∈ Z≥1. In particular limd→+∞ ρ(Ad) = +∞. Thus, Theorem II.4.20 implies that

lim
d→+∞

m(Pd) = lim
d→+∞

m(P∞(zAd
2 )) = m(P∞),

and we can conclude that (IV.1.1) holds by using Theorem IV.1.2. □

We note, once more, that the above proof of Theorem IV.1.1 is short, and is started by
interpreting the limit value, announced in the R.H.S of (IV.1.1) as a Mahler measure. However,
we did not provide any clues as to why 9

2π2 ζ(3) was set as the limit beforehand. To clarify more,
we mention that we took advantage of the direct proof, explained in the next sections. In fact,
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it seems impossible to guess the limit and a limit polynomial only by considering the sequence
m(Pd). Thus, the proof using the generalization of the Boyd-Lawton is possible thanks to the
information that comes from the direct method.

IV.2. Towards a direct proof of the limit using Riemann sum techniques

In the sequel of this chapter we are going to prove Theorem IV.1.1 using a direct computa-
tional method. This section explains the work done in [Meh21] in detail. We introduce a new
concave function, called vol. The values of the volume function at toric points of Pd can be
written in terms of the values of vol. Then, we recompute m(Pd) in terms of the values of vol.
These computations lead to writing m(Pd) as a difference of two expressions, each of them being
proportional to a Riemann sum of vol over a triangle. We replace the volume function by vol
because vol is concave. As we recalled in Section VII.6 in the Appendix, we have certain under
estimators and upper estimators for concave functions. This property of concave functions is
the key point to find the limit.

IV.2.1. Replacing Volume function by vol. The aim of this section is to introduce
vol and prove its important properties. Let us start with reformulating the volume function
at toric points. After a computation, the volume function at (x, y) ∈ Ud+1 can be rewritten as
follows:

V (x, y) = 1
(d + 1)(d + 2)[D(yd+1) − D(xd+1) − D((y/x)d+1)] + 1

(d + 2)[D(x) − D(y) − D(x/y)]

= 1
(d + 2)[D(x) − D(y) − D(x/y)].

(IV.2.1)

Likewise, at a point (x, y) ∈ Ud+2 we have:

V (x, y) = 1
(d + 1)[D(x) − D(y) − D(x/y)].(IV.2.2)

Following the above computation we introduce vol:

Definition IV.2.1. The function vol : [0, 2π] × [0, 2π] 7→ R is defined by;

vol(θ, α) := D(eiθ) − D(ei(θ+α)) + D(eiα).

According to the computation of the volume function at toric point and the definition of
vol one can conclude the following relations:

(1) For (x, y) ∈ Ud+1, we have x = e
2kπi
d+1 , y = e

2k′πi
d+1 , where 0 < k < k′ < d + 1 and by

replacing in Eq. (IV.2.1) we have:

V (e
2kπi
d+1 , e

2k′πi
d+1 ) = 1

d + 2 vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
= −V (e

2k′πi
d+1 , e

2kπi
d+1 ).

(2) For (x, y) ∈ Ud+2, we have x = e
2kπi
d+2 and y = e

2k′πi
d+2 , where 0 < k < k′ < d + 2 and by

replacing in Eq. (IV.2.2) we have:

V (e
2kπi
d+2 , e

2k′πi
d+2 ) = 1

d + 1 vol
( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
= −V (e

2k′πi
d+2 , e

2kπi
d+2 ).

This new function vol has many important properties which we can use to find the limit
of m(Pd). For instance it is concave and it has positive values on the triangle with vertices
{(0, 0), (0, 2π), (2π, 0)}. On the contrary it is convex and has negative values on the triangle
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with vertices {(2π, 2π), (0, 2π), (2π, 0)}. Before proving these properties, let us fix the following
notation:

Notation IV.2.2. The triangles with vertices {(0, 0), (0, 2π), (2π, 0)}, and
{(2π, 2π), (0, 2π), (2π, 0)} are respectively denoted by T and T ∗.

In the first step, we prove the positivity of vol on T .

Lemma IV.2.3 ([Meh21]). The function vol(θ, α) is positive on T .

Proof. According to the properties of dilogarithm (see Fact III.1.8) vol is real analytic
everywhere except at (θ, α) where eiθ = 1, eiα = 1 or ei(θ+α) = 1. We notice that at each
boundary point of T , one of the following conditions is satisfied:

(1) The point (θ, α) is on θ = 0. Hence, vol(0, α) = D(ei0) − D(ei(0+α)) + D(eiα) =
D(1) + D(eiα) − D(eiα) = 0.

(2) The point (θ, α) is on α = 0, so again vol(θ, α) = 0.
(3) The point (θ, α) is on θ+α = 2π. Hence, vol(θ, α) = D(eiθ)−D(ei(2π))+D(ei(2π−θ)) =

D(eiθ) − D(eiθ) = 0. Notice that D(z̄) = −D(z).
Therefore, vol vanishes on the boundary of T . Thus, we check the sign of vol, at inner points
of T , where the function is differentiable. To do so, first, we find the critical points of vol. In
other words we search for (θ0, α0) which satisfies the following:

∂ vol
∂θ

|(θ0,α0) = ∂ vol
∂α

|(θ0,α0) = 0.

To solve the above differential system of equations, first, we compute ∂ vol
∂θ :

∂ vol
∂θ

= ∂D(eiθ)
∂θ

− ∂D(ei(θ+α))
∂θ

.

We compute ∂D(eiθ)
∂θ , using the fact that −dD(z) = η(z, 1 − z) or equivalently dD(z) = η(1 − z, z).

Let Z(θ) = eiθ and z0 = Z(θ0) = eiθ0 :
∂D(eiθ)

∂θ
|(θ0,α0) = dD|z0( d

dθ
eiθ|θ0) = η(1 − z0, z0)( d

dθ
eiθ|θ0) = − log |1 − eiθ0 |

(
d argz0( d

dθ
eiθ|θ0)

)
.

− log |1 − eiθ0 |
( d

dθ
arg(eiθ)|θ0

)
= − log |1 − eiθ0 |

( d

dθ
θ|θ0

)
= − log |1 − eiθ0 |

(
1|θ0

)
= − log |1 − eiθ0 |.

In the same way, we compute the other partial derivatives, and have:
∂D(eiα)

∂α
= − log |1 − eiα| ,

∂D(ei(θ+α))
∂α

= ∂D(ei(θ+α))
∂θ

= − log |1 − ei(θ+α)|.

Thus, the critical points are obtained by solving the following:
∂ vol
∂θ

= log |1 − ei(θ+α)| − log |1 − eiθ| = ∂ vol
∂α

= log |1 − ei(θ+α)| − log |1 − eiα| = 0.

Therefore, we have:
log |1 − ei(θ+α)| − log |1 − eiα| = log |1 − ei(θ+α)| − log |1 − eiθ| = 0.

Since only the solutions of the system inside T are considered, we have that 0 < θ < 2π ,
0 < α < 2π and 0 < α + θ < 2π. Hence, the unique critical point corresponds to θ = α = 2π/3.
Note that vol(2π/3, 2π/3) = 3D(e 2π

3 i) is approximately 2.03. Thus we continue the proof by
contradiction.
Suppose there exists (θ0, α0) ∈ T ◦, with vol (θ0, α0) < 0. Therefore, there exists a minimum,
denoted by (θ1, α1) where vol(θ1, α1) < 0. Note that vol is differentiable inside T , so the
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minimum is another critical point inside T , which obviously is different from (2π/3, 2π/3), but
this is a contradiction. Hence, vol is positive inside T . □

In fact, one can easily prove that (2π/3, 2π/3) is the unique maximum of vol over T . In
the following proposition, we prove the concavity of vol.

Proposition IV.2.4 ([Meh21]). The function vol(θ, α) is concave on T .

Proof. According to Lemma VII.6.4, we only need to compute the Hessian matrix of vol,
and prove that is negative definite. We compute all the partial derivatives in the Hessian matrix
of vol, using the computations in Lemma IV.2.3 and we have:

∂ vol
∂θ

= log |1 − ei(θ+α)| − log |1 − eiθ|,

∂ vol
∂α

= log |1 − ei(θ+α)| − log |1 − eiα|,

∂2 vol
∂θ2 = ∂ log |1 − ei(θ+α)|

∂θ
− ∂ log |1 − eiθ|

∂θ
.

Since 0 ≤ θ ≤ 2π, so we have |1 − eiθ| = 2 sin(θ/2). Therefore, we have ∂ log |1−eiθ|
∂θ =

∂ log(2 sin(θ/2))
∂θ = 1

2 cot( θ
2). Then, the Hessian matrix of vol is:

H =


∂2 vol
∂θ2

∂2 vol
∂θ∂α

∂2 vol
∂α∂θ

∂2 vol
∂α2


=


1
2 cot( θ+α

2 ) − 1
2 cot( θ

2) 1
2 cot( θ+α

2 )

1
2 cot( θ+α

2 ) 1
2 cot( θ+α

2 ) − 1
2 cot(α

2 )


.

The symmetric (2 × 2) Hessian matrix is negative definite if and only if D1 < 0 and D2 > 0,
where Di, (i = 1, 2) are leading principal minors. Then we compute the minors (inside T ).

• Computation of D1: D1 = 1
2 cot( θ+α

2 ) − 1
2 cot( θ

2).

Figure 1. The graph of the cot(x).

Since cot(x) is decreasing between [0, π] and α > 0, we have θ
2 , θ+α

2 ∈ [0, π]. Hence,
cot( θ+α

2 ) < cot( θ
2), and D1 < 0.
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• Computation of D2:
D2 = Det(H)

= 1
4

(
cot2(θ + α

2 ) − cot(θ

2) cot(θ + α

2 ) − cot(θ + α

2 ) cot(α

2 ) + cot(θ

2) cot(α

2 ) − cot2(θ + α

2 )
)

= 1
4

(
cot(θ

2) cot(α

2 ) − cot(θ + α

2 )(cot(θ

2) + cot(α

2 ))
)

[1]
= 1

4

(
cot(θ

2) cot(α

2 ) −
cot( θ

2) cot(α
2 ) − 1

(cot( θ
2) + cot(α

2 ))
(cot(θ

2) + cot(α

2 ))
)

= 1
4 .

In [1] we used the trigonometric equality cot(α + β) = cot(α) cot(β)−1
cot(α)+cot(β) . Therefore, we

have D2 = 1
4 > 0 and consequently vol(θ, α) is concave inside T .

□

By looking at Fig. 2 we realize that vol is convex and has negative values in T ∗. The proof
is easy. It is sufficient to associate to each (θ′, α′) ∈ T ∗ another point (θ, α) inside T , where
θ = 2π − θ′ and α = 2π − α′. Since − vol(θ′, α′) = vol(θ, α), vol is convex and has negative
values in T ∗.

IV.2.2. Recomputing m(Pd) in terms of vol. In this section, using the relation between
the values of the volume function at toric points and vol, we recompute m(Pd) in terms of vol.
It leads to writing m(Pd) as a difference of two Riemann sums of vol over T , with certain
coefficients.

Theorem IV.2.5 ([Meh21]). We have:

2πm(Pd) = −2
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
+ 2

d + 1
∑

0<k<k′≤d+1
vol

( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
.

Proof. We use the closed formula for computing the Mahler measure [GM21];

m(Pd) = 1
2π

∑
(x,y)∈Ud+1∪ Ud+2

ϵ(x, y)V (x, y).

We break the sum into the two summations over d+1, and d+2 toric points. Proposition III.2.15
gives the value of ϵ(x, y) at each toric point. Using Definition IV.2.1 we have:

2πm(Pd) = −1
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
− 1

d + 2
∑

0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)(IV.2.3)

+ 1
d + 1

∑
0<k<k′≤d+1

vol
( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
+ 1

d + 1
∑

0<k<k′≤d+1
vol

( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)(IV.2.4)

[1]
= −2

d + 2
∑

0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
+ 2

d + 1
∑

0<k<k′≤d+1
vol

( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
.

(IV.2.5)

□
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Figure 2. The graph of vol(θ, α), implemented by Maple.

In [1] we use the property that vol inherits from volume function: vol(θ, α) = − vol(α, θ).
In Eq. (IV.2.5), each summation is proportional to a Riemann sum of vol over T . We thus need
to compute

∫∫
T

vol(θ, α)dA, with dA the euclidean measure on T for our future computations.

Lemma IV.2.6 ([Meh21]). We have:

∫∫
T

vol(θ, α)dA = 6πζ(3),

where ζ is the Riemann Zeta function.
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Proof. In this proof, we use the formula, D(eiθ) = ∑∞
n=1

sin(nθ)
n2 (see Definition III.1.7).

∫∫
T

vol(θ, α)dA =
∫ 2π

0

∫ 2π−α

0
vol(θ, α)dθdα

=
∫ 2π

0

∫ 2π−α

0
D(eiθ) − D(ei(θ+α)) + D(eiα)dθdα

=
∫ 2π

0

∫ 2π−α

0

( ∞∑
n=1

sin(nθ)
n2 +

∞∑
n=1

sin(nα)
n2 −

∞∑
n=1

sin(n(θ + α))
n2

)
dθdα

[1]
=

∞∑
n=1

∫ 2π

0

∫ 2π−α

0

sin(nθ) + sin(nα) − sin(n(θ + α))
n2 dθdα

=
∞∑

n=1

∫ 2π

0

[cos(n(θ + α)) − cos(nθ) + nθ sin(nα)
n3

]2π−α

0 dα

=
∞∑

n=1

∫ 2π

0

2 − 2 cos(nα) + n(2π − α) sin(nα)
n3 dα

=
∞∑

n=1

[2nα − 2 sin(nα)
n4

]2π

0 +
∞∑

n=1

∫ 2π

0

(2π − α) sin(nα)
n2 dα

= 4π
∞∑

n=1

1
n3 +

∞∑
n=1

[−2π cos(nα)
n3

]2π

0 +
∞∑

n=1

∫ 2π

0

−α sin(nα)
n2 dα

= 4π
∞∑

n=1

1
n3 +

∞∑
n=1

[
α cos(nα)

n3

]2π

0

−
∫ 2π

0

cos(nα)
n3 dα

= 4π
∞∑

n=1

1
n3 +

∞∑
n=1

2π

n3 = 6π
∞∑

n=1

1
n3 = 6πζ(3).

where [1] is because∑∞
n=1

sin(x)
n2 is uniformly convergent, and the summation and the integration

commute. □

We have already mentioned that the Mahler measure of exact polynomials may be related
to special values of L-function. The appearance of Riemann Zeta function in the above compu-
tation comes from exactness of P and the fact that the volume function is a linear combination
of dilogarithm function. By proving Theorem IV.1.1, we exhibit an example of the existence of
the Riemann Zeta function in the limit of a sequence of Mahler measures which is an interesting
phenomenon.

IV.3. Estimation of the error terms for the Riemann sums

In Theorem IV.2.5 we computed m(Pd) as a difference of Riemann sums. To explain more
about the Riemann sums, let us rewrite the formula in Theorem IV.2.5 here again:

2πm(Pd) = −2
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
+ 2

d + 1
∑

0<k<k′≤d+1
vol

( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
.
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Then, we define the Riemann sum 1 of the two variable function vol over the triangle T as:

Rd := 4π2

d2

∑
0<k<k′≤d

vol
(2kπ

d
,

2(k′ − k)π
d

)
.(IV.3.1)

Thus, the series appear on the R.H.S of the above equation for m(Pd) are respectively (d+1)2

(d+2) Rd+1

and (d+2)2

(d+1) Rd+2. Since vol is continuous, the Riemann sums Rd+1 and Rd+2 converge to the
integral of vol over T . The sequence of the errors between the value of the integral and the
Riemann sums (i.e. E(d) = |

∫
T vol −Rd|) goes to zero when d goes to infinity. However, the

coefficients of the Riemann sums in the equation of m(Pd) depend on d and by moving d to
infinity the error terms multiplying these coefficients (i.e. (d+1)2

(d+2) E(d + 1) and (d+2)2

(d+1) E(d + 2))
may not converge to zero anymore. In this section, we are going to find a lower and an upper
bound for the Riemann sums. In the next section using the properties proved in this section
and studying the error terms we will prove that by sending d to infinity, E(d) goes to zero
faster than 1/d. The computation of the limit of the sequence m(Pd) will follow.

IV.3.1. A lower bound for the Riemann sum. In this section, first, we introduce a
subpartition of T , and we define a Riemann sum of vol(θ, α) over this subpartition. Then, using
concavity of vol, we exhibit a lower bound for the Riemann sum. We notice that all we need is
about the d + 1 and d + 2 Riemann sums of vol. Thus, in the rest we do all the computations
for the d + 1-Riemann sums, then with a change of variable we conclude the same results for
d + 2-Riemann sums.

Observation IV.3.1. Square subpartition:
Consider the set of the points ( 2kπ

d+1 , 2(k′−k)π
d+1 ) with 0 < k < k′ < d + 1 inside T . For (x, y) in

the defined set, consider the square with side 2π
d+1 such that (x, y) is at the center of the square.

The union of the squares is called (d+1)-square subpartition of T which does not cover all
T . The number of such squares is

∑
i=1,...,d−1 i = d(d−1)

2 and the area of each square is 4π2

(d+1)2 .
The set difference of T and the (d+1)-square subpartition is called Blue part. The area of the
Blue part part is:

2π2 −
( 4π2

(d + 1)2
d(d − 1)

2
)

= 2π2 3d + 1
(d + 1)2 .

The 8-square subpartition of T is shown in Fig. 3. Then, we consider the d + 1- Riemann
sum of vol, introduced in Eq. (IV.3.1), denoted by Rd+1. Let us fix the notation E(d) for
the difference between the value of the integral and Rd for a fixed d. For instance, for the
d + 1-square subpartition we have:

E(d + 1) =

∣∣∣∣∣∣
∫∫
T

vol(θ, α)dA − 4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)∣∣∣∣∣∣ .
We also introduce another notation:

E(d + 1) :=
∫∫

Blue part

vol(θ, α)dA.

In the following lemma, we compute a lower bound for the Riemann sum.

1The notation of d- Riemann sum of vol, used in [Meh21] is Sd, but here for the coherence with the rest of the
thesis, we changed to Rd.
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Figure 3. The 8-square subpartition of T .

Lemma IV.3.2 ([Meh21]). We have E(d + 1) ≤ E(d + 1). Moreover,

∫∫
T

vol(θ, α)dA ≤ E(d + 1) + 4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
.(IV.3.2)

Proof. According to Observation IV.3.1, for a fixed d, T is partitioned into (d−1)(d−2)
2

squares and the blue part. The central points of the squares are denoted by (θ∗, α∗). The
function vol is concave and differentiable inside T , so in particular it is concave on each square.
According to Proposition VII.6.5 and Notation VII.6.6 in the Appendix, for an arbitrary, fixed
square, the tangent plane to the graph of vol at (θ∗, α∗), denoted by Tangvol(θ∗, α∗), is above
the graph for all (θ, α) in the square, so we have:

vol(θ, α) ≤ Tangvol(θ∗, α∗).

The above inequality leads to a lower bound for the Riemann sums over the square. To see
that consider the rectangular cuboid with the square as its base and bounded above by the
tangent plane of vol(θ, α), at (θ∗, α∗). Let us denote the integral of vol over the square with∫∫
□

vol(θ, α)dA. Then, the volume of this rectangular cuboid is greater than
∫∫
□

vol(θ, α)dA.

Hence, we have:∫∫
□

vol(θ, α)dA ≤
∫∫
□

Tangvol(θ∗, α∗)dA = 4π2

(d + 1)2 vol(θ∗, α∗).

Therefore, we have:

∑
all squares inside T

∫∫
□

vol(θ, α)dA ≤
∑

0<k<k′≤d

4π2

(d + 1)2 vol( 2kπ

d + 1 ,
2(k′ − k)π

d + 1 ),
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which is equivalent to the following:∫∫
T

vol(θ, α)dA −
∑

all squares inside T

∫∫
□

vol(θ, α)dA ≥

∫∫
T

vol(θ, α)dA −
∑

0<k<k′≤d

4π2

(d + 1)2 vol( 2kπ

d + 1 ,
2(k′ − k)π

d + 1 ).

Thus, E(d + 1) ≤ E(d + 1). Moreover, we have:∫∫
T

vol(θ, α)dA ≤ E(d + 1) + 4π2

(d + 1)2

∑
0<k<k′≤d

vol( 2kπ

d + 1 ,
2(k′ − k)π

d + 1 ).

□

IV.3.2. An upper bound for the Riemann sum. In this section, we define a partition
of T that helps us find an upper bound for the Riemann sum of vol introduced in the previous
section. To do so, we need to introduce a triangular partition of T .

Observation IV.3.3. Triangular partition:
The triangle T is partitioned into the smaller triangles belonging to T1 ∪ T2, where T1 and T2
are the following collection of triangles:

T1 :=
d+1⋃
i=0

d+1−i⋃
j=0

{[(
i

2π

d + 1 , j
2π

d + 1

)
,

(
i

2π

d + 1 , (j + 1) 2π

d + 1

)
,

(
(i + 1) 2π

d + 1 , j
2π

d + 1

)]}
,

T2 :=
d⋃

i=1

d+1−i⋃
j=1

{[(
(i − 1) 2π

d + 1 , j
2π

d + 1

)
,

(
i

2π

d + 1 , j
2π

d + 1

)
,

(
i

2π

d + 1 , (j − 1) 2π

d + 1

)]}
.

In the above definitions [(i1, j1), (i2, j2), (i3, j3)] denotes the triangle with vertices (i1, j1), (i2, j2)
and (i3, j3). The figure for the 2-triangular partition is shown in Fig. 4; indeed, the pink and
green triangles respectively belong to T1 and T2.

Figure 4. The 2-triangular partitions of T .

Definition IV.3.4. The vertices of small triangles, defined in Observation IV.3.3 that are not
located on the boundary of T are called inner vertices. The set of all these inner vertices in
d-th triangular partition is denoted by Ind(T ).

The following fact leads to an important correspondence between the triangular partition,
and the square subpartition. The proof is elementary.

Fact IV.3.5. Each inner vertex of a small triangle, in the d-triangular partition, is a central
point of a unique square in the d-square subpartition.

93



Figure 5. The yellow inner vertex is shared between the six triangles marked in blue.

We have seen that vol is a concave function, so when it is restricted to the triangle [a, b, c]
according to Proposition VII.6.8 in the Appendix, there exists a unique affine function called
χ, such that vol(a) = χ(a), vol(b) = χ(b), and vol(c) = χ(c). Moreover, for any point (θ, α) ∈
[a, b, c] we have χ(θ, α) ≤ vol(θ, α). Hence, we have:∫∫

[a,b,c]

χ(θ, α)dA ≤
∫∫

[a,b,c]

vol(θ, α)dA.

It is time to compute an upper bound for the Riemann sums.

Lemma IV.3.6 ([Meh21]). We have the following upper bound for the Riemann sum:

4π2

(d + 1)2

∑
0<k<k′<d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
≤
∫∫
T

vol(θ, α)dA.(IV.3.3)

Proof. We know that:∑
[b,c,d]∈T2

∫∫
[b,c,d]

vol(θ, α)dA +
∑

[a,b,c]∈T1

∫∫
[a,b,c]

vol(θ, α)dA =
∫∫
T

vol(θ, α)dA.

Let us denote an arbitrary triangle in T1 by [a, b, c] and an arbitrary triangle in T2 by [b, c, d].
By applying Lemma VII.6.9 in Appendix to each of the triangle in the last equality we have:

∑
[b,c,d]∈T2

area[b, c, d]
(1

3 vol(d) + 1
3 vol(b) + 1

3 vol(c)
)

+

∑
[a,b,c]∈T1

area[a, b, c]
(1

3 vol(a) + 1
3 vol(b) + 1

3 vol(c)
)

≤
∫∫
T

vol(θ, α)dA.

The triangles all have the same area, 2π
(d+1)2 , so we factor it in the above summations. Notice

that for each vertex a the number of times that vol(a) appears in the summation depends on
its location. As we already mentioned, vol is zero on the boundary of T , so, we just consider
inner vertices. Let a be an inner vertex. It appears in exactly 6 triangles, marked in blue in
Fig. 5. Hence, we have:
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∑
[b,c,d] ∈T2

area[b, c, d]
(1

3 vol(d) + 1
3 vol(b) + 1

3 vol(c)
)

+

∑
[a,b,c] ∈T1

area[a, b, c]
(1

3 vol(a) + 1
3 vol(b) + 1

3 vol(c)
)

=

4π2

(d + 1)2

∑
a∈Ind+1(T )

6
3 vol(a) = 4π2

(d + 1)2

∑
0<k<k′<d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
.

In the last equality we used Fact IV.3.5, that any inner vertex corresponds to a central point.
Finally, we have the upper bound:

4π2

(d + 1)2

∑
0<k<k′<d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
≤
∫∫
T

vol(θ, α)dA.

□

IV.4. Direct proof of convergence

In this section, using Lemmas IV.3.2 and IV.3.6 we prove that E(d) goes to zero faster than
1/d. This result leads to the limit of (m(Pd))d∈Z≥1 , which is the objective of this chapter.

Lemma IV.4.1 ([Meh21]). We have the following equality:

E(d) = o(1
d

).

Proof. We use the lower and upper bounds IV.3.2 and IV.3.3, found respectively in
Lemma IV.3.2 and Lemma IV.3.6 and we have:

4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
≤
∫∫
T

vol(θ, α)dA

≤ 4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
+ E(d + 1).

Therefore, we conclude;

0 ≤
∫∫
T

vol(θ, α)dA − 4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
≤ E(d + 1) ≤ Max . area(Blue part),

where Max is the maximum of vol on the Blue part of the triangle. The area of the blue part
is 2π2 3d+1

(d+1)2 , so by the definition of E(d + 1) we have:

E(d + 1) =
∫∫
T

vol(θ, α)dA − 4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
≤ 2π2 3d + 1

(d + 1)2 Max .

If d goes to infinity the points inside the blue part are approaching the boundary of T ,
where the values of vol are zero. Hence, the Maximum of vol in the blue part goes to zero as
well. Therefore, we have dE(d + 1) d→∞−−−→ 0. In other words E(d) = o(1

d). □

We may now prove Theorem IV.1.1:
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Proof. [Meh21] By using Theorem IV.2.5 we have:

2πm(Pd) = −2
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
+ 2

d + 1
∑

0<k<k′≤d+1
vol

( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
.

In order to find limd→∞ m(Pd), we compute the limit of the R.H.S. We have, by definition,∫∫
T

vol(θ, α)dA = 4π2

(d + 1)2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
+ E(d + 1).

Hence, we have:
−2

d + 2
∑

0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
= −(d + 1)2

2π2(d + 2)

∫∫
T

vol(θ, α)dA + (d + 1)2

2π2(d + 2)E(d + 1).

Similarly:
2

d + 1
∑

0<k<k′≤d+1
vol

( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
= (d + 2)2

2π2(d + 1)

∫∫
T

vol(θ, α)dA − (d + 2)2

2π2(d + 1)E(d + 2).

This gives:

2πm(Pd) = (d + 2)2

2π2(d + 1)

∫∫
T

vol(θ, α)dA − (d + 1)2

2π2(d + 2)

∫∫
T

vol(θ, α)dA

+ (d + 1)2

2π2(d + 2)E(d + 1) − (d + 2)2

2π2(d + 1)E(d + 2)

= 3d2 + 8d + 7
4π3(d2 + 3d + 2)

∫∫
T

vol(θ, α)dA + (d + 1)2

2π2(d + 2)E(d + 1) − (d + 2)2

2π2(d + 1)E(d + 2).

According to Lemma IV.4.1, E(d) = o(1
d). Hence, limd→∞

(d+1)2

2π2(d+2)E(d+1) = limd→∞
(d+2)2

2π2(d+1)E(d+
2) = 0. Therefore, based on Lemma IV.2.6 we have:

lim
d→∞

m(Pd) = 3
4π3

∫∫
T

vol(θ, α)dA = 9
2π2

∞∑
n=1

1
n3 = 9

2π2 ζ(3).

□

As we mentioned in the introduction of this chapter, the computational method that we
explained uses Riemann sums of two variable functions. It has difficult computations, but in
Chapter V, we will present a third and easier method using one variable Riemann sums which
also gives a rate of the convergence simultaneously.
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CHAPTER V

Asymptotic expansion and rate of the convergence of m(Pd)

This chapter is part of the common article in collaboration with Brunault, Guilloux and
Pengo [BGMP22]. Theorem II.4.20 is a generalization of the theorem of Boyd-Lawton to
multivariate case. According to this theorem, the Mahler measure of a multivariate polynomial
can be computed as a limit of the Mahler measure of certain sequence of lower dimensional
Mahler measures. One may ask about the possible rates of convergence of these sequences. In
other words, if we denote the limit polynomial by P∞ and the sequence of polynomial by PAd

,
we are searching for an estimate for |m(PAd

) − m(P∞)| (the notation used in this chapter is
from Chapter II ). In Section IV.1, we can see that the rate of the convergence depends on P∞.
For instance, in [BGMP22], there are examples of P∞ where any sequence m(PAd

) converges
exponentially fast to the limit m(P∞); and other examples for which m(PAd

) − m(P∞) ≡
c(d)/d

3
2 , where c is a real valued function of d. There is also the sequence PAd

:= Pd, for which
we will prove |m(Pd) − m(P∞)| = O( log d

d2 ). It is interesting that until now we have 3 different
types rates of convergence. In this chapter, we study the asymptotic expansion of |m(Pd) −
m(P∞)| which gives us the rate of convergence of this sequence towards P∞. A direct conclusion
from the asymptotic expansion is that for d big enough the sequence m(Pd) is increasing. We
notice that the computation of the asymptotic expansion gives us another method to prove
limd→∞ m(Pd) = 9ζ(3)

2π2 . To write the asymptotic expansion of m(Pd), we first recompute it in
terms of the values of dilogarithm at roots of unity. This step simplifies the computation with
respect to the previous chapter. Indeed we will be able to use Euler–Maclaurin summation
formula, which provides expressions for the error for Riemann sums of a one variable function
in terms of the higher derivatives of the function. The existence of the Euler–Maclaurin formula
for certain types of singular functions is the key tool for our computations.
We notice that the work exposed in this chapter covers [BGMP22, Theorem 5.1]. However, we
provide a more complete and detailed proof of this theorem for the reader.

V.1. Rewriting m(Pd) in terms of dilogarithm

In Theorem IV.2.5 in Section IV.2.2 we recompute m(Pd) in terms of vol as follows:

2πm(Pd) = −2
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
+ 2

d + 1
∑

0<k<k′≤d+1
vol

( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
,

(V.1.1)

where vol(θ, α) = D(eiθ) − D(ei(θ+α)) + D(eiα). The above formula helped us to find the limit
of m(Pd). However, working with this formula has it own difficulties. Since the analysis of a
bivariate function is less precise than that of a univariate function. For this reason we rewrite
this formula.
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Theorem V.1.1 ([BGMP22]). Let d ∈ Z≥1, the closed formula for m(Pd) in terms of diloga-
rithm evaluated at certain roots of unity is as follows:

2πm(Pd) = 1
d + 1

∑
1≤k≤d+2

(3d − 6k + 6)D(e
2kπ
d+2 i) − 1

d + 2
∑

1≤k≤d+1
(3d − 6k + 3)D(e

2kπ
d+1 i).

Proof. We replace the function vol(θ, α) = D(eiθ) − D(ei(θ+α)) + D(eiα) in the equation
Eq. (V.1.1) and let ζ1 = e

2πi
d+1 and ζ2 = e

2πi
d+2 , so we have;

−2
d + 2

∑
0<k<k′≤d

vol
( 2kπ

d + 1 ,
2(k′ − k)π

d + 1

)
+ 2

d + 1
∑

0<k<k′≤d+1
vol

( 2kπ

d + 2 ,
2(k′ − k)π

d + 2

)
=

−2
d + 2

∑
0<k<k′≤d

(
D(ζk

1 ) − D(ζk′
1 ) + D(ζk′−k

1 )
)

+ 2
d + 1

∑
0<k<k′≤d+1

(
D(ζk

2 ) − D(ζk′
2 ) + D(ζk′−k

2 )
)

.

The rest of the proof consists of counting the coefficients of D(ζi
1) and D(ζj

2) for any 1 ≤ i ≤ d+1
and 1 ≤ j ≤ d + 2. We notice that in the computation we used the property of dilogarithm
that D(z̄) = −D(z).

□

We simplify the formula for m(Pd), using the following notation:

Notation V.1.2.
Sd := 3

∑
1≤k≤d−1

(d − 2k)D((e
2π
d

i)k).

Therefore, the formula in Theorem V.1.1 can be written as follows:

2πm(Pd) = 1
d + 1Sd+2 − 1

d + 2Sd+1.

Using this new formula, we write m(Pd) as a linear combination of 1-dimensional Riemann sums
of certain univariable functions. Then, to find the asymptotic expansion of |m(Pd) − m(P∞)|,
we apply the Euler–Maclaurin summation formula for each of the univariate functions.

V.1.1. Computing m(Pd) in terms of 1-dimensional Riemann sums. In this section,
by leveraging the one variable closed formula of m(Pd), introduced in Theorem V.1.1, m(Pd)
can be written as a linear combination of Riemann sums of a one variable function, called f(x).
We define f , such that Sd is proportional to a Riemann sum of f .

Notation V.1.3. Let f : [0, 1] → R be defined by f(x) = (1 − 2x)D(e2πxi). We denote by ST
d

the Riemann sum
ST

d (f) :=
∑

1≤k≤d−1

1
d

(1 − 2k

d
)D(e

2kπ
d

i).

Since f(0) = f(1) = 0, (see Fig. 1), ST
d (f) is the Riemann sum associated with the Trapezoid

method over [0, 1]. Let us compute the integral of f , which is needed for the rest of our
computation:

Lemma V.1.4. We have the following evaluation:∫ 1

0
f(x)dx = ζ(3)

π
.
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Figure 1. The plot of f(x) = (1 − 2x)D(e2πxi).

Proof. To compute the above integral we use that D(eiθ) = ∑∞
n=1

sin(nθ)
n2 . The series is

uniformly convergent and we can change the order of integration and summation.∫ 1

0
(1 − 2x)D(e2πix)dx =

∫ 1

0

∞∑
n=1

sin(2πnx)
n2 dx − 2

∫ 1

0
x

∞∑
n=1

sin(2πnx)
n2 dx

[1]
= −2

∞∑
n=1

∫ 1

0

x sin(2πnx)
n2 dx

[2]
=

∞∑
n=1

1
n3π

= ζ(3)
π

.

In [1] we used that
∫ 1

0
∑∞

n=1
sin(2πnx)

n2 dx = 0 and in [2] we compute the integral by integration
by parts. □

We have Sd = 3d2ST
d (f). Thus, in the formula of m(Pd), we replace the sums Sd with ST

d
and we have:

m(Pd) = 3
2π

(
(d + 2)2

d + 1 ST
d+2(f) − (d + 1)2

d + 2 ST
d+1(f)

)
.(V.1.2)

The situation is similar to the previous chapter, but for the univariate function f . We use the
Euler–Maclaurin summation formula to approximate the error between the value of the integral
of f and its Riemann sums in terms of the higher derivatives f (k)(x) evaluated at the endpoints
of the interval of integration. For the necessary information about the Euler–Maclaurin sum-
mation formula, see Section VII.7 of the Appendix. To simplify the calculation, we fix the
following notation for the error terms:

Notation V.1.5. For an arbitrary function k(x), with k(0) = k(1) = 0, the error between the
trapezoid Riemann sum of k and the value of the integral of k is denoted by:

Ed(k) :=
∫ 1

0
k(x)dx − ST

d (k) =
∫ 1

0
k(x)dx −

d−1∑
i=1

1
d

k( i

d
).

Using Eq. (V.1.2) and the previous notation we can rewrite the formula of m(Pd) in terms
of the value of the integral of f(x) and Ed+1(f) and Ed+2(f);

m(Pd) = 3
2π

(
(d + 2)2

d + 1 ST
d+2(f) − (d + 1)2

d + 2 ST
d+1(f)

)

= 3
2π

(
(d + 1)2

d + 2 Ed+1(f) − (d + 2)2

d + 1 Ed+2(f)
)

+ 3
2π

(3d2 + 9d + 7
d2 + 3d + 2 )

∫ 1

0
f(x)dx).
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In the above computation by using Lemma V.1.4 we replace the value of the integral, namely
ζ(3)

π , and we have:

m(Pd) − 9ζ(3)
2π2 = 3

2π

(
(d + 1)2

d + 2 Ed+1(f) − (d + 2)2

d + 1 Ed+2(f)
)

+ 3ζ(3)
2π2(d + 1)(d + 2) .(V.1.3)

Thanks to the above equality we can compute the asymptotic expansion of |m(Pd)−m(P∞)|,
from the asymptotic expansion of R.H.S by applying Euler-Maclaurin formula to f . But, f(x)
has singularities, so we can not apply the normal Euler-Maclaurin formula to estimate the error
Ed(f). There is an extension of the Euler-Maclaurin formula to a function with logarithmic
singularities at one of the end points of their domain. So to compute the asymptotic expansion
of f , first, we should find the type of the singularities of f(x). The singularities of f(x) come
from those of the dilogarithm, so we find the singularities of the dilogarithm on [0, 1].

Lemma V.1.6. The function x 7→ D(e2πxi) has logarithmic singularities at 0 and 1 on the
interval [0, 1]:

Proof. This lemma is classic. It comes from [BL13] or [BZ20, Theorem 7.2]:
∂

∂x
D(e2πxi) = −η(e2πxi,1−e2πxi) = −2π log |1 − e2πxi| = −2π log |1 −

∞∑
n=0

(2πxi)n

n! |

= −2π log(2πx) − 2π log |
∞∑

n=0

(2πxi)n

(n + 1)! |.

When x → 0+ the differential of dilogarithm function is equivalent to the function −2π log(2πx).
In addition, one can verify that f(x) has logarithmic singularity at 1. □

Thus, f(x) has logarithmic singularities at the both end points of the interval. In the second
step, we write f(x) as a summation of its smooth and its singular parts then we study each part
separately. To find the smooth part of f(x) we remove the singularities from D(e2πix). The
function x 7→ D(e2πix) + 2πx log(2πx) − 2π(1 − x) log(2π(1 − x)) is smooth on [0, 1]. Let the
singular part of f(x) be denoted by F (x) := (1 − 2x) (−2πx log(x) + 2π(1 − x) log(1 − x)), so
f(x) − F (x) is a smooth function on [0, 1], which is denoted by G(x), and is defined as follows:

G(x) = (1 − 2x)
[
D(e2πix) + 2πx log x − 2π(1 − x) log(1 − x)

]
.

Since f(x) = F (x) + G(x), by using the linearity of integrals and their corresponding Riemann
sums, the following equation holds for the errors:

Ed(f) = Ed(F ) + Ed(G).(V.1.4)
In the following we separate the computation into 2 parts, smooth and singular parts,

and we use the associated Euler-Maclaurin summation formula. We notice that in the future
computation for Ed(G) and Ed(F ), Bernoulli numbers will appear. To see the definition of
Bernoulli numbers, based on the convention in this thesis, B1 = 1

2 , see Section VII.7.1 and
Remark VII.7.4.

V.2. Applying the Euler-Maclaurin formula to a smooth function

In this section, we study Ed(G) =
∫ 1

0 G(x) − ST
d (G), where G is the smooth part of f

defined as G(x) = (1 − 2x)
[
D(e2πix) + 2πx log x − 2π(1 − x) log(1 − x)

]
. One can easily check

that G(x) = G(1 − x), thus we have: G(n)(x) = (−1)nG(n)(1 − x), in particular G(n)(0) =
(−1)nG(n)(1). By considering this relation and by applying the Euler-Maclaurin formula (see
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the formula VII.7.1 in Proposition VII.7.1 in Appendix) to G(x) we have the following formula
for Ed(G):

Ed(G) =
∫ 1

0
G(x)dx − 1

d

d∑
j=0

G( j

d
) = 2

m−1∑
µ=1

B2µ

(2µ)!G
(2µ−1)(0)

(1
d

)2µ

+ O( 1
d2m

).(V.2.1)

To estimate Ed(G) we need to compute G(µ)(0), which itself depends on the values of the
successive derivatives of another function, called L, defined by L(y) := log∑∞

n=0 | (yi)n

(n+1)! |. Thus,
we state the following lemma which will help us in our future computation:

Lemma V.2.1. Let µ ∈ Z≥1. The successive derivatives of L(y) at zero are as follows:

L(µ)(0) =

0 if 2 ∤ µ,

(−1)
µ
2 Bµ

µ if 2 | µ,
(V.2.2)

where Bµ is the µ-th Bernoulli number.

Proof. According to Lemma V.1.6 we have:

L(y) = log
∞∑

n=0
| (yi)n

(n + 1)! | = log |e
iy − 1
iy

| = 1
2 log |eiy − 1|2

y2 = 1
2 log

(
sin(y

2 )
y
2

)2

= log
sin(y

2 )
y
2

.

So first we compute the asymptotic expansion of log( sin x
x ) and then, with a change of variables,

we have the one of L(y);

log(sin x

x
)

[1]
= log

∞∏
n=1

(
1 − x2

n2π2

)
=

∞∑
n=1

log
(

1 − x2

n2π2

)
[2]
= −

∞∑
n=1

∞∑
k=1

1
k

(
x

nπ

)2k [3]
= −

∞∑
k=1

∞∑
n=1

1
k

(
x

nπ

)2k

= −
∞∑

k=1

ζ(2k)
kπ2k

x2k.

We notice that in [1] we used the Weierstrass factorization of ( sin x
x ). In [2] the power series

converges when |x| < π. In [3], it is legal to change the order of summation since all terms
have the same sign. Thus, using a change of variables, we have:

L(y) = log
(sin(y/2)

y/2

)
= −

∞∑
k=1

ζ(2k)
kπ2k

(y

2)2k.(V.2.3)

Thus, by replacing the following equation, mentioned in Eq. (II.3.4):

ζ(2k) = (−1)k+1B2k(2π)2k

2(2k)!
the lemma is proved. □

In the following lemma we deduce the values of higher derivatives of G:

Lemma V.2.2. We have G′(0) = 4π + 6π log 2π and the following equality holds for every
µ ≥ 2:

G(µ)(0) = 2µ(2π)µ−1L(µ−2)(0) + 4µπ(µ − 3)! − (2π)µL(µ−1)(0) − 2π(µ − 2)!
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Proof. To simplify the computation let, I(x) := D(e2πix)+2πx log x−2π(1−x) log(1−x),
so G(x) = (1 − 2x)I(x). We have:

G(µ) = (−2µ)I(µ−1) + (1 − 2x)I(µ), and G(µ)(0) = (−2µ)I(µ−1)(0) + I(µ)(0).

Therefore, to compute G(µ)(0) we compute the successive derivatives of I at zero and we notice
that I(0) = 0. According to Lemma V.1.6 we have:

I ′(x) = 4π − 2π log 2π − 2π log
∞∑

n=0
| (2πxi)n

(n + 1)! | + 2π log(1 − x).

Thus, I ′(0) = 4π − 2π log(2π). Moreover, according to the definition of L we have:

I ′(x) = 4π − 2π log 2π − 2πL(2πx) + 2π log(1 − x),

and

I(2)(x) = −(2π)2L′(2πx) − 2π

(1 − x) .

Consequently, for µ ≥ 2 we have:

I(µ)(x) = −(2π)µL(µ−1)(2πx) − 2π(µ − 2)!
(1 − x)µ−1 , I(µ)(0) = −(2π)µL(µ−1)(0) − 2π(µ − 2)!.

Hence, G′(0) = −2I(0) + I ′(0) = 4π − 2π log 2π and for µ ≥ 2 we have:

G(µ)(0) = 2µ(2π)µ−1L(µ−2)(0) + 4µπ(µ − 3)! − (2π)µL(µ−1)(0) − 2π(µ − 2)!

□

We know that Ed(G) = 2∑m−1
µ=1

B2µ

(2µ)!G
(2µ−1)(0)

(
1
d

)2µ
+ O( 1

d2m ). Using the previous lemma
we are able to estimate Ed(G).

Proposition V.2.3. Let rµ be as follows:

rµ := 2πB2µ(2µ − 4)!
(2µ)! (2µ + 1 + 2(2µ − 3)ζ(2µ − 2)),(V.2.4)

then we have:

Ed(G) = 4π − 2π log(2π)
6d2 + 2

m−1∑
µ=2

rµ

(1
d

)2µ

+ O( 1
d2m

).

Proof. To estimate Ed(G), we need the values of G2µ−1(0), for µ ≥ 1. Lemma V.2.2 shows
that G2µ−1(0) is a linear combination of the values of L2µ−3(0) and L2µ−2(0). According to
Eq. (V.2.2), for all µ ≥ 2 we have L2µ−3(0) = 0, and L2µ−2(0) = (−1)µ−1B2µ−2

2µ−2 . After computing
the values of G2µ−1(0) and doing all the simplifications, we have :

Ed(G) = 4π − 2π log(2π)
6d2 + 2

m−1∑
µ=2

2πB2µ(2µ − 4)!
(2µ)! (2µ + 1 + 2(2µ − 3)ζ(2µ − 2))

(1
d

)2µ

(V.2.5)

+ O( 1
d2m

).
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We notice that all the coefficients of
(

1
d

)2µ
in the summation in V.2.5 are rational numbers

multiplying to some powers of 2π. This coefficient is denoted by rµ (see Eq. (V.2.4)). We have:

Ed(G) = 4π − 2π log(2π)
6d2 + 2

m−1∑
µ=2

rµ

(1
d

)2µ

+ O( 1
d2m

).

□

According to Eq. (V.1.2), m(Pd) = 3
2π ( (d+2)2

d+1 ST
d+2(f)− (d+1)2

d+2 ST
d+1(f)) and Ed(f) = Ed(G)+

Ed(F ). We compute the contribution of G to m(Pd):

Lemma V.2.4. We have the following equation;

3
2π

(
(d + 1)2

d + 2 Ed+1(G) − (d + 2)2

d + 1 Ed+2(G)
)

= log(2π) − 2
2(d + 1)(d + 2) + 3

(d + 1)(d + 2)

m−1∑
µ=2

rµ

π

( 1
(d + 1)2µ−3 − 1

(d + 2)2µ−3

)
(V.2.6)

+ O( 1
d2m−1 ).

Here rµ is a rational combination of certain powers of 2π, defined in Eq. (V.2.4).

Proof. The proof is only a computation using the previous proposition:

3
2π

(
(d + 1)2

d + 2 Ed+1(G) − (d + 2)2

d + 1 Ed+2(G)
)

= log(2π) − 2
2(d + 1)(d + 2)

+ 3
2π

(d + 1)2

d + 2

2
m−1∑
µ=2

rµ

( 1
d + 1

)2µ

+ O( 1
(d + 1)2m

)


− 3

2π

(d + 2)2

d + 1

2
m−1∑
µ=2

rµ

( 1
d + 2

)2µ

+ O( 1
(d + 2)2m

)


= log(2π) − 2

2(d + 1)(d + 2) + 3
(d + 1)(d + 2)

m−1∑
µ=2

rµ

π

( 1
(d + 1)2µ−3 − 1

(d + 2)2µ−3

)
+ O( 1

d2m−1 ).

□

V.3. Applying the extended Euler-Maclaurin formula to a function with
singularities

In this section, we focus on the singular part of f which is F (x) = −2πx log x+4πx2 log x−
2π(1−x) log(1−x)+4π(1−x)2 log(1−x). To simplify the computation, let K(x) := −2πx log x+
4πx2 log x, thus F (x) = K(x)+K(1−x). We notice that to compute Ed(F (x)), we only need to
compute Ed(K(x)). This is because Ed(K(x)) = Ed(K(1 − x)), so Ed(F (x)) = 2Ed(K(x)) (do
the change of variable y = 1−x, so we have

∫ 1
0 K(1−x)dx =

∫ 1
0 K(y)dy also 1

d

∑d
j=0 K(1− j

d) =
1
d

∑d
j=0 K( j

d)). Therefore, we apply the extended Euler-Maclaurin formula (see the formula
in Proposition VII.7.7 in the Appendix) to the function K(x) with logarithmic singularity.
According to the terminology used in Proposition VII.7.7, the smooth part of K(x) is −2πx +
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4πx2. Here, this smooth part is denoted by h(x) : −2πx + 4πx2, and we have h(j) = 0, for
j > 2. Then, according to formula VII.7.1 in the Appendix, for d ∈ Z≥1 we have:

Ed(K) = −
m−1∑
µ=1

B2µ

(2µ)!K
2µ−1(1)

( 1
d2µ

)

+
2m−1∑
µ=0

[ζ ′(−µ) + ζ(−µ) log(d)]h
µ(0)
µ!

( 1
dµ+1

)
+ O( 1

d2m
),

Notice that for µ > 2 we have h(µ)(0) = 0. We replace the following information: h(0) = 0,
h′(0) = −2π, h′′(0) = 8π, ζ(−2) = 0, ζ(−1) = −1

12 , and we get:

Ed(K) = −
m−1∑
µ=1

B2µ

(2µ)!K
(2µ−1)(1)

( 1
d2µ

)
+ π

6
log d

d2 + −2πζ ′(−1)
d2 + 4πζ ′(−2)

d3 + O( 1
d2m

).

(V.3.1)

In the following lemma we compute the K(2µ−1) in order to estimate Ed(K).
Lemma V.3.1. We have for every µ ≥ 3:

K(µ)(1) = 2π(−1)µ−3(µ − 3)!(µ + 2), for µ ≥ 3.

Proof. The proof is just a simple computation of the derivatives of K(x);
K(x) = (−2πx + 4πx2) log x, K(1) = 0,

K ′(x) = (−2π + 8πx) log x + (−2π + 4πx), K ′(1) = 2π,

K(2)(x) = 8π log x − 2π

x
+ 12π,

...

K(µ)(x) = 8π
(−1)µ−3(µ − 3)!

xµ−2 − 2π
(−1)µ−2(µ − 2)!

xµ−1 , for µ ≥ 3.

Thus, we have:
K(µ)(1) = 8π(−1)µ−3(µ − 3)! − 2π(−1)µ−2(µ − 2)! = 2π(−1)µ−3(µ − 3)!(µ + 2), for µ ≥ 3.

□

Proposition V.3.2. Let tµ be defined as follows:

tµ := 2πB2µ(2µ − 4)!(2µ + 1)
(2µ)! ,(V.3.2)

then we have:

Ed(F ) = −2
m−1∑
µ=2

tµ

( 1
d2µ

)
+ π

3
log d

d2 − π + 12πζ ′(−1)
3d2 + 8πζ ′(−2)

d3 + O( 1
d2m

).(V.3.3)

Proof. To prove the above equality, it is sufficient to replace the values of K(2µ−1)(1) in
Eq. (V.3.1) from Lemma V.3.1. Since B2 = 1/6, we have:

Ed(K) = −
m−1∑
µ=2

B2µ

(2µ)!2π(2µ − 4)!(2µ + 1)
( 1

d2µ

)

+ π

6
log d

d2 + −π − 12πζ ′(−1)
6d2 + 4πζ ′(−2)

d3 + O( 1
d2m

).
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We also replace Ed(F ) = 2Ed(K) and the notation tµ, introduced in Eq. (V.3.2) in the formula
of Ed(F ) and the proposition is proved. □

The contribution of F to m(Pd) is given by the following lemma:

Lemma V.3.3. We have the following equality:

3
2π

(
(d + 1)2

d + 2 Ed+1(F ) − (d + 2)2

d + 1 Ed+2(F )
)

= − log d

2(d + 1)(d + 2) + 12ζ ′(−1)
2(d + 1)(d + 2) − 1

2(d + 1)(d + 2)

2m−3∑
j=1

1
dj

(−1)j+1(2j+1 − 1)
j(j + 1)

+ 3
(d + 1)(d + 2)

m−1∑
µ=2

tµ

π

( 1
(d + 2)2µ−3 − 1

(d + 1)2µ−3

)
+ O( 1

d2m−1 ).

Proof. The proof is only a computation:

3
2π

(
(d + 1)2

d + 2 Ed+1(F ) − (d + 2)2

d + 1 Ed+2(F )
)

=

1
2

(d + 1) log(d + 1) − (d + 2) log(d + 2)
(d + 2)(d + 1) + 1 + 12ζ ′(−1)

2(d + 1)(d + 2)

+ 3
(d + 1)(d + 2)

m−1∑
µ=2

tµ

π

( 1
(d + 2)2µ−3 − 1

(d + 1)2µ−3

)
+ O( 1

d2m−1 ).

After doing the computation and replacing the power series of log(1 + x) = ∑
j≥1

(−1)j+1xj

j

(for x in the neighborhood of zero) in the logarithmic terms in the R.H.S of the above equality,
we have:

(d + 1) log(d + 1) − (d + 2) log(d + 2)
2(d + 2)(d + 1) = −

log d + 1 +∑
j≥1(1

d)j (−1)j+1(2j+1−1)
j(j+1)

2(d + 1)(d + 2) .

We replace the above equality in the previous one and after a computation the lemma is
proved.

□

V.4. The rate of the convergence and the asymptotic behavior of m(Pd)

In this section we compute the asymptotic expansion of |m(Pd) − m(P∞)| using the results
obtained in the previous sections. This asymptotic expansion indeed gives the rate of conver-
gence of (m(Pd))d∈Z≥1 .

According to Eq. (V.1.3), Lemma V.2.4 and Lemma V.3.3 we conclude:

Theorem V.4.1 ([BGMP22], Theorem 5.1). The asymptotic expansion of m(Pd) − m(P∞) is
as follows:

(V.4.1) m(Pd)−m(P∞) = 1
(d + 1)(d + 2)

− log(d)
2 +

2m−3∑
j=0

αj

dj

+O( 1
d2m−1 ) for all m ≥ 2.
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where the coefficients αj ∈ R are defined as:

α0 := 6
(
ζ ′(−1) − ζ ′(−2)

)
+ log(2π)

2 − 1

αj := 12 · (−1)j

j(j + 1)

⌊j/2⌋∑
t=0

(
j + 1

2t

)
· (2j+1−2t − 1)(2t − 1)

(2t + 1)(2t + 2) · B2t+2 · ζ(2t) (j ≥ 1).

Here, Bn denotes the n-th Bernoulli number.

Proof. According to Eq. (V.1.3) and the equations, obtained in Lemmas V.2.4 and V.3.3,
and the equation ζ ′(−2) = −ζ(3)

4π2 (see Eq. (II.3.5)) we have the following equality:

m(Pd) = 9ζ(3)
2π2 − log d

2(d + 1)(d + 2) + log(2π) − 2 + 12ζ ′(−1) − 12ζ ′(−2)
2(d + 1)(d + 2)

+ 1
2(d + 1)(d + 2)

2m−3∑
j=1

(−1)j(2j+1 − 1)
j(j + 1)

1
dj

+ 3
(d + 1)(d + 2)

m−1∑
µ=2

(rµ − tµ)
π

( 1
(d + 1)2µ−3 − 1

(d + 2)2µ−3

)
+ O( 1

d2m−1 ),

where according to Eq. (V.2.4) and Eq. (V.3.2) we have:
rµ − tµ

π
= 2B2µζ(2µ − 2)

µ(2µ − 1)(2µ − 2) .

In the sequel of the computation the goal is to find the coefficient of (1
d)j . In the above formula

for m(Pd) we have two power series on 1
d . For j ∈ Z≥1, sum of the coefficient of (1

d)j in the two
series gives the coefficient of (1

d)j in m(Pd). We start by simplifying the second series. One can
verify that the following equality holds:
m−1∑
µ=2

( 1
(d + 1)2µ−3 − 1

(d + 2)2µ−3

)
=

m−1∑
µ=2

(2µ−3)

 ∑
1≤k≤2m−2µ

(k+2µ−4
2µ−3

)
(−1)k+1(2k − 1)

kdk+2µ−3

+O( 1
d2m−1 ).

Let a2µ := B2µζ(2µ−2)
2µ(2µ−1)(2µ−2) . We have:

m(Pd) − 9ζ(3)
2π2 = − log d

2(d + 1)(d + 2) + log(2π) − 2 + 12ζ ′(−1) − 12ζ ′(−2)
2(d + 1)(d + 2)

+ 1
2(d + 1)(d + 2)

2m−3∑
j=1

(−1)j(2j+1 − 1)
j(j + 1)

1
dj

+ 12
(d + 1)(d + 2)

m−1∑
µ=2

2m−2µ∑
k=1

a2µ(2µ − 3)
(k+2µ−4

2µ−3
)
(−1)k+1(2k − 1)

kdk+2µ−3 + O( 1
d2m−1 ),

Let j := k + 2µ − 3, so we have:

m−1∑
µ=2

2m−2µ∑
k=1

a2µ(2µ − 3)
(k+2µ−4

2µ−3
)
(−1)k+1(2k − 1)

kdk+2µ−3 =
2m−3∑
j=2

j−1∑
k=1

aj−k+3(j − k)
(j−1

j−k

)
(−1)k+1(2k − 1)

kdj

(V.4.2)

We notice that the number of indexes of the two series in the left and right hand sides of the
above equation are not equal, but this is not actually a problem, since according to Fact VII.7.3
in the Appendix the odd Bernoulli numbers (except B1) are equal to zero. For instance consider
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the index (j, k) = (3, 1) in the series in the R.H.S. There is no index (µ, k) on the L.H.S which
under the change of variables j = k + 2µ − 3 maps to (3, 1). However, the coefficient associated
with this index in the R.H.S is multiplied by B5, which is zero and this resolves the problem.
Note that applying the change of variables j = k +2µ−3 gives (−1)k+1 = (−1)j−2µ+4 = (−1)j .
Then, we replace (−1)k+1 by (−1)j in Eq. (V.4.2) and since the index of the first series is k,
(−1)j can be written outside of the first series. Then, after simplifying the R.H.S of the above
equality we have:

m(Pd) − 9ζ(3)
2π2 = − log d

2(d + 1)(d + 2) + log(2π) − 2 + 12ζ ′(−1) − 12ζ ′(−2)
2(d + 1)(d + 2)

+ 1
2(d + 1)(d + 2)

2m−3∑
j=1

(−1)j(2j+1 − 1)
j(j + 1)

1
dj

+ 12
(d + 1)(d + 2)

2m−3∑
j=2

(−1)j
j−1∑
k=1

aj−k+3

(
j − 1
j − k

)
(2k − 1)(j − k)

k
(1
d

)j + O( 1
d2m−1 ).

In the series in the third line of the above equality we can start the index of j from 1 since, for
j = 1 the index k of the interior summation will be 1 ≤ k ≤ 0 which means the summation is
empty and equals zero. Let us fix the value of j and using the second and third summations
in the above formula, which have both index j between 1 to 2m − 3. We replace the value of
aj−k+3 in the above equation and compute the coefficient of 1

(d+1)(d+2)
1
dj :

(−1)j(2j+1 − 1)
2j(j + 1) + 12(−1)j

j−1∑
k=1

Bj−k+3ζ(j − k + 1)
(j − k + 3)(j − k + 2)(j − k + 1)

(
j − 1
j − k

)
(2k − 1)(j − k)

k︸ ︷︷ ︸
†

.

(V.4.3)

In the second summation above, the Bernoulli numbers with odd index are equal to zero. Thus,
we do another change of variables 2t := j − k + 1 and we have:

† = 12(−1)j
[j/2]∑
t=1

B2t+2ζ(2t)
(2t + 2)(2t + 1)(2t)

(
j − 1
2t − 1

)
(2j−2t+1 − 1)(2t − 1)

(j − 2t + 1)

= 12(−1)j

j(j + 1)

[j/2]∑
t=1

B2t+2ζ(2t)
(2t + 2)(2t + 1)(2t)

(
j + 1

2t

)
(2j−2t+1 − 1)(2t − 1)(2t)(j + 1 − 2t)

(j − 2t + 1)

= 12(−1)j

j(j + 1)

[j/2]∑
t=1

B2t+2ζ(2t)
(2t + 2)(2t + 1)

(
j + 1

2t

)
(2j−2t+1 − 1)(2t − 1).

In the above summation, the index t starts from 1, but let us put t = 0 in that summation,
then according to the fact that ζ(0) = −1

2 and B2 = 1
6 we have (−1)j(2j+1−1)

2j(j+1) , which is exactly
the first term in the summation V.4.3. Therefore to simplify the computation, instead of the
summation V.4.3 we can write:

12(−1)j

j(j + 1)

[j/2]∑
t=0

B2t+2ζ(2t)
(2t + 2)(2t + 1)

(
j + 1

2t

)
(2j−2t+1 − 1)(2t − 1).

Therefore, for the asymptotic expansion, we have:
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m(Pd) − 9ζ(3)
2π2 = − log d

2(d + 1)(d + 2) + log(2π) − 2 + 12ζ ′(−1) − 12ζ ′(−2)
2(d + 1)(d + 2)

+ 1
(d + 1)(d + 2)

2m−3∑
j=1

12(−1)j

j(j + 1)

[j/2]∑
t=0

B2t+2ζ(2t)
(2t + 2)(2t + 1)

(
j + 1

2t

)
(2j−2t+1 − 1)(2t − 1) 1

dj

+ O( 1
d2m−1 ).

In the above equation, let the coefficient of 1
dj be denoted by αj . Consider the coefficient

log(2π)−2+12ζ′(−1)−12ζ′(−2)
2(d+1)(d+2) as α0. Then, by factoring 1

(d+1)(d+2) from the coefficients we have
Eq. (V.4.1). □

Remark V.4.2. The asymptotic expansion Eq. (V.4.1) has been checked numerically using
the PARI/GP program Asympraw available at [BC21]. Moreover, in Fig. 2 we present the
graph of (m(P∞) − m(Pd)) d2

log d , for 1 ≤ d ≤ 1000, implemented by SageMath.

Figure 2. The graph of (m(P∞) − m(Pd)) d2

log d , for 1 ≤ d ≤ 1000.

A direct result of the previous theorem is as follows:

Corollary V.4.3.
m(Pd) − m(P∞) = − log(d)

2(d + 1)(d + 2) + O( 1
d2 ).

Of course, one can considerably simplify the computation if we are only interested in the
rate of the convergence.

In the last section of Chapter II we noticed that in [BGMP22, Theorem 4.1] we provide
an upper bound for the error terms in the generalization of the theorem of Boyd-Lawton.
The error bound in certain cases is optimal, but for Pd our direct computation implies that
|m(Pd) − m(P∞)| is of O( log d

d2 ), which is a better error bound.
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CHAPTER VI

Mahler measure of Pd and L-functions

This chapter is an ongoing project in collaboration with Marie-José Bertin. In Chapter II
we have seen some important examples of computations of the Mahler measure connected to
special values of L-function. For instance, in Corollary II.3.39 we have seen the evaluation of
the Mahler measure of P (x, y) = x + y + 1 by Smyth:

m(x + y + 1) = 3
√

3
4π

L(χ−3, 2) = L′(χ−3, −1).(VI.0.1)

Here χ−3 is the odd quadratic character of modulus 3 (for more information about χ−3 see
Example II.3.23). In fact P (x, y) = x + y + 1 is the polynomial P1 in the Pd family. We are
interested in finding some links between special values of L-functions and the Mahler measure
of other polynomials in the Pd family. As we have already mentioned, understanding the link
between the values of the Mahler measure of polynomials and special values of L-functions
is one of the applications of the Mahler measure in Number Theory. Moreover, it may help
progress towards Chinburg’s conjecture:

Conjecture. (Chinburg’s conjecture [Ray87, Page 697]) For every odd quadratic character
χ−f :=

(
−f

.

)
, there exists a non-zero polynomial Pf (x, y) with integer coefficients, for which

m(Pf )
L′(χ−f ,−1) is a rational number.

Smyth’s example VI.0.1 satisfies the case f = 3. Ray [Ray87] was able to construct polyno-
mials Pf (x, y), for f = 3, 4, 7, 8, 20 and 24. Boyd and Rodriguez-Villegas [BRVD03] constructed
examples for f = 3, 4, 7, 8, 11, 15, 20, 24, 35, 39, 55 and 84. Recently in [HL19] examples for the
conductors f = 23, 303, 755 is provided. The list of the results that we mentioned above of
course does not cover all the result around this conjecture and there are many other mathe-
maticians who have worked and have results on the Chinburg conjecture. In this chapter, using
P1 and P2 we introduce another polynomial for the case f = 4. We believe that the systematic
study of m(Pd) can lead to other new results in this direction.
Moreover, we prove that m(Pd), for every d, can be written as a linear combination of L-
functions with coefficients in number fields.

Theorem VI.0.1. Let d ∈ Z≥1, for every odd primitive Dirichlet character χ of conductor k,
such that k|(d+1)(d+2), there exists a coefficient Ck,χ ∈ Q(e

2πi
ϕ(k) ) ⊂ Q(e

2πi
ϕ((d+1)(d+2)) ) such that:

m(Pd) =
∑

k|(d+1)(d+2)

∑
χ odd primitive mod k

Ck,χL′(χ, −1).

We present here the explicit representation for 1 ≤ d ≤ 6. In our future work, we will write
an algorithm to compute m(Pd) in terms of L-functions, for every d. Because of the properties
of the dilogarithm this representation is not necessarily unique. We will discuss this in the last
section of this chapter.
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We notice that in all this chapter the information related to Dirichlet characters such as
parity, conductor, or being primitive or imprimitive is determined using [LMF22].

VI.1. L-functions of quadratic characters and the Mahler measure of Pd

In Section II.3.1, we saw the definition and some important properties of Dirichlet charac-
ters, specially the quadratic characters. According to Corollary II.3.36, if −f < 0 is a funda-
mental discriminant, then for the odd quadratic Dirichlet character of conductor f , denoted by
χ−f (n) =

(
−f
n

)
we have;

L′(χ−f , −1) = f
3
2

4π
L(χ−f , 2).

Notation VI.1.1. Boyd [Boy98] used the following notation:

df := L′(χ−f , −1) = f
3
2

4π
L(χ−f , 2).

Grayson [Gra81] in his computations (suggested by Bloch) proved that we can express
L′(χ−f , −1) or equivalently L(χ−f , 2) directly in terms of dilogarithm at certain roots of unity:

Proposition VI.1.2 ([Gra81]). Let −f be a fundamental discriminant and χ−f :=
(

−f
.

)
be

the odd quadratic Dirichlet character of conductor f . Then we have:

f
3
2

4π
L(χ−f , 2) = L′(χ−f , −1) = f

4π

f∑
n=1

χ−f (n)D(ζn
f ),

where ζf is a primitive f -th root of unity.

On the other side in Notation V.1.2, we expressed m(Pd) as sum of the values of dilogarithm
at certain roots of unity, which we recall here:

2πm(Pd) = 1
d + 1Sd+2 − 1

d + 2Sd+1, with Sd := 3
∑

1≤k≤d−1
(d − 2k)D((e

2π
d

i)k).

Therefore, one may ask about the possibility of writing m(Pd) as sum of L′(−1, χ−f ) for some f .
We have seen the computation of Smyth [Smy81b]. The next proposition recovers the example
of Smyth, mentioned in Corollary II.3.39, using the closed formula for m(P1).

Proposition VI.1.3. We have the following equality:

m(P1) = L′(χ−3, −1) = 3
√

3
4π

L(χ−3, 2).

Proof. By applying the formula of m(Pd) introduced in Notation V.1.2, for d = 1 we have
m(P1) = 1

π D(e π
3 i). Let us recall about χ−3 introduced in Example II.3.23.

m 0 1 2

χ−3(m) 0 1 −1

Then, according to Proposition VI.1.2 for χ−3 we have:

L′(χ−3, −1) = 3
4π

(χ−3(1)D(e
2π
3 i) + χ−3(2)D(e

4π
3 i)) = 3

4π
(D(e

2π
3 i) − D(e

4π
3 i)) = 3

4π
(2D(e

2π
3 i))

= 3
2π

(D(e
2π
3 i)).
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In order to complete the proof, we use the distribution relation for dilogarithm (see Fact III.1.8),
which is D(zn) = n

∑n−1
j=0 D((e 2πi

n )jz). We get:

D(e
2π
3 i) = D((e

π
3 i)2) = 2(D(−e

π
3 i) + D(e

π
3 i))

[1]
= 2(D(e

4π
3 i) + D(e

π
3 i)).

In [1] we use −e
π
3 i = eiπe

π
3 i = e

4π
3 i. As e

4π
3 i = e

2π
3 i, we have D(e 2π

3 i) = 2(−D(e 2π
3 i) + D(e π

3 i)),
which implies:

D(e
2π
3 i) = 2

3D(e
π
3 i).(VI.1.1)

This completes the proof. □

We can proceed our analysis with P2:

Proposition VI.1.4. We have the following equalities:

m(P2) = L′(χ−4, −1) − L′(χ−3, −1)
2 = 2

π
L(χ−4, 2) − 3

√
3

8π
L(χ−3, 2).

Proof. By applying the formula for m(Pd) for d = 2 we have m(P2) = 1
2π

(
1
3S4 − 1

4S3
)

=
1

2π (3D(e
4π
3 i)

2 + 4D(e π
2 i)). According to the computation done in Proposition VI.1.3 we have

1
2π (3D(e

4π
3 i)

2 ) = −L′(χ−3,2)
2 . Consider the character χ−4, introduced in Example II.3.26:

m 0 1 2 3

χ−4(m) 0 1 0 −1

Then, we compute L′(χ−4, −1) as follows:

L′(χ−4, −1) = 4
4π

(
χ−4(1)D(e

2π
4 i) + χ−4(2)D(e

4π
4 i) + χ−4(3)D(e

6π
4 i)
)

= 1
π

(
D(e

2π
4 i) − D(e

6π
4 i)
)

= 2
π

D(i).

Therefore, we have:

m(P2) = L′(χ−4, −1) − L′(χ−3, −1)
2 .

Then, by applying Corollary II.3.36 one can prove the second equality announced in the propo-
sition. □

Grayson in [Gra81, Page 699] gives a method for producing a polynomial associated to f
answering Chinburg conjecture, for f = 3, 4, 7, 8, 20 and 24. By applying his method for f = 4,
the polynomial that we get is y2x2 + 2yx2 + y2 + x2 − 2y + 1. Here, using the link between the
Mahler measure of Pd polynomials and L-functions, we give another candidate for f = 4.

Proposition VI.1.5. Let f = 4, then the polynomial P 2
2 P1 ∈ Z[x, y] verifies:

m(P 2
2 P1)

L′(χ−4, −1) = 2.

Proof. Propositions VI.1.3 and VI.1.4 imply that m(P2) = L′(χ−4, −1) − m(P1)
2 . Hence,

we have m(P 2
2 P1) = 2m(P2) + m(P1) = 2L′(χ−4, −1).

□
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VI.2. Connections between L-functions with non-real primitive characters and
the dilogarithm

We tried to write m(P3) in terms of L-functions associated with real quadratic Dirichlet
character and failed. Indeed we have m(P3) = 1

2π

(
1
2

(
9D(ei 2π

5 ) + 3D(ei 4π
5 )
))

+ −6
5π D(i), written

as the combination of dilogarithm at 4-th and 5-th roots of unity, but −5 is not a fundamen-
tal discriminant. In order to solve the problem we are going to write m(P3) in terms of any
possible primitive odd (non principal) Dirichlet characters, not necessarily real. In order to
write m(Pd) in terms of values of L or L′ we search for an analogue of Proposition VI.1.2 for an
arbitrary primitive odd (non principal) Dirichlet character. We notice that, contrary to the real
(quadratic) case, we may have more than 1 primitive non principal odd Dirichlet character of
conductor f . We recall Proposition II.3.35 which is a classical result on the connection between
L and L′:

For χ an odd primitive Dirichlet character of conductor k we have:

L(χ, 2) = 4π

ik2 τ(χ)L′(χ̄, −1).

Here, τ(χ) = ∑
1≤a≤k χ(a)e 2πia

k .

The first step for obtaining the analogue of Proposition VI.1.2 is the following result, an-
nounced in [BRV02, Equation 11]: 1

Proposition VI.2.1. Let χ be a complex odd primitive Dirichlet character of conductor k. We
have:

L(χ, 2) = iτ(χ̄)−1 ∑
1≤a≤k

χ(a)D(e
2πia

k ).(VI.2.1)

Proof. The general relation between the polylogarithm Lim(z) and L(χ, m) [ZG00, Page
9], is given by:

For χ a primitive Dirichlet character of conductor k, L(χ, m) = τ(χ̄)−1 ∑
1≤a≤k

χ(a)Lim(e
2πia

k ).

Using the definition of the Bloch Wigner dilogarithm, D(z) = Im(Li2(z)) + arg(1 − z) log |z|
and since log |e

2πia
k | = 0 we have:

D(e
2πia

k ) = Im(Li2(e
2πia

k )) = Li2(e 2πia
k ) − Li2(e 2πia

k )
2i

.

1There is a typographical error in [BRV02, Equation 11]: since the character is odd, there should be a coefficient
i.
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We can now compute the R.H.S of Eq. (VI.2.1) for m = 2 and χ a primitive odd Dirichlet
character of conductor k:

iτ(χ̄)−1 ∑
1≤a≤k

χ(a)D(e
2πia

k ) = iτ(χ̄)−1 ∑
1≤a≤k

χ(a)

Li2(e 2πia
k ) − Li2(e 2πia

k )
2i


= 1

2

τ(χ̄)−1 ∑
1≤a≤k

χ(a)Li2(e
2πia

k ) − τ(χ̄)−1 ∑
1≤a≤k

χ(a)Li2(e 2πia
k )


[1]
= 1

2

τ(χ̄)−1 ∑
1≤a≤k

χ(a)Li2(e
2πia

k ) + τ(χ)−1
∑

1≤a≤k

χ(a)Li2(e 2πia
k )


= 1

2
(
L(χ, 2) + L(χ, 2)

) [2]
= L(χ, 2).

In [1] we used the fact that τ(χ̄) = χ(−1)τ(χ), which can be verified as follows;

τ(χ̄) =
∑

a mod k

χ̄(a)e
2πia

k =
∑

a mod k

χ(a)e −2πia
k

[3]
= τ(χ)χ(−1).

In [3], we used Lemma II.3.31, for n = −1, and since χ is an odd Dirichlet character, so we
have χ(−1) = −1. For [2] we used that L(χ, s) = L(χ̄, s), since s is real. □

Recall now from Proposition II.3.35 that L(χ, 2) = 4π
ik2 τ(χ)L′(χ̄, −1). Hence, we have

L(χ, 2) = 4π
ik2 τ(χ)L′(χ̄, −1) = iτ(χ̄)−1∑

1≤a≤k χ(a)D(e 2πia
k ), or equivalently:

L(χ̄, 2) = 4π

ik2 τ(χ̄)L′(χ, −1) = iτ(χ)−1 ∑
1≤a≤k

χ(a)D(e
2πia

k ).

The following lemma is a generalization of Lemma II.3.32 to every primitive character:

Lemma VI.2.2 ([Lan13], Page 84). If χ is a primitive Dirichlet character of conductor k,
then

|τ(χ)|2 = k.

This leads to the following:

Corollary VI.2.3 ([Ray87], Page 697). For a primitive odd (non principal) Dirichlet character
of conductor k, we have:

L′(χ, −1) = k

4π

k−1∑
m=1

χ(m)D(ζk
m) = −ikτ(χ)

4π
L(χ̄, 2).

We notice that if χ is an odd quadratic character χ−f , then the above equation yields the
equation mentioned in Proposition VI.1.2 (see Corollary II.3.36 for more information).

We extend Boyd’s notation to:

Notation VI.2.4. Let χ be an odd Dirichlet character of modulus k, then:

dχ := k

4π

k−1∑
m=1

χ(m)D(ζk
m).
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According to Corollary VI.2.3, if χ is an odd primitive character dχ is L′(χ, −1). Indeed, if
k = f , where −f is a fundamental discriminant, then χ(m) = χ−f (m) =

(−f
m

)
is the quadratic

Dirichlet character of conductor f . In this case df and dχ are the same number.
We have the following classical proposition about induced Dirichlet characters that will be useful
for the proof of Theorem VI.0.1. For the definition of induced character, see Definition II.3.7.

Proposition VI.2.5 ([Ove14], Page 91). Let χ be a Dirichlet character modulus k with conduc-
tor c. Then there exists a unique primitive character χ∗ modulus c that induces χ. Moreover,
χ is odd if and only if χ∗ is odd.

Proof. Since c is the conductor of χ, Lemma II.3.10 implies that c|k. Let n ∈ Z. If
gcd(n, k) = 1, then gcd(n, c) = 1, and we define χ∗(n) to be χ(n). If gcd(n, k) > 1, but
gcd(c, k) = 1, then we chose any t ∈ Z for which gcd(n + tc, k) = 1 and we define χ∗(n) =
χ(n + tc). Note that such an integer exists, for it suffices to have gcd(n + tc, r) = 1, where
r := ∏

pa|k
p∤c

pa. Moreover, we note that although there are many possible choices of t, there is

only one value of χ(n+ tc), when gcd(n+ tc, k) = 1. We extend this definition of χ∗ by defining
χ∗(n) = 0, when gcd(n, c) > 1. Then χ∗ is a Dirichlet character modulus c. If χ0 denotes
the principal character modulus k, then for every n ∈ Z≥1 we have χ(n) = χ0(n)χ∗(n), so χ∗

induces χ. It is clear that χ∗ has no quasi period less than c, since otherwise so would χ, which
contradicts minimality. Moreover, according to the equation χ(n) = χ0(n)χ∗(n) we have χ is
odd if and only if χ∗ is odd. □

An important remark is that dχ = dχ∗ :

Lemma VI.2.6. Let χ be a character of modulus k and conductor c, which is induced by the
primitive Dirichlet character χ∗ (of conductor c). Then, we have:

dχ∗ = dχ.

Proof. Since the conductor of χ is c, and c|k, we suppose that k = qc, so we have:

dχ = k

4π

k−1∑
j=1

χ(j)D(ζk
j)

[1]
= k

4π

∑
0≤l<c

∑
0≤m<q

χ(l + mc)D((e
2πi

k )l+mc)

[2]
= k

4π

∑
0≤l<c

χ∗(l)
∑

0≤m<q

D(e
2πli

k e
2πmi

q ).

In [1], we used that [0, k − 1] = ⋃
0≤l<c{l + mc | 0 ≤ m < q}. In [2], we used the equality

χ(l + mc) = χ∗(l). The distribution relation for the dilogarithm (see Fact III.1.8) gives that:∑
0≤m<q D(e 2πli

k e
2πmi

q ) = 1
q D(e 2πli

c ). We conclude :

dχ = k

4π

∑
0≤l<c

χ∗(l)1
q

D(e
2πli

c ) = dχ∗ .

Using Lemma VI.2.6 and Corollary VI.2.3 we can proceed with our study of m(Pd). □

VI.3. L-functions with primitive odd characters and Mahler measure of Pd

Corollary VI.2.3 gives us the opportunity to write m(Pd) for d ≥ 3 in terms of L-functions.
Since 2πm(Pd) = 1

d+1Sd+2 − 1
d+2Sd+1, where Sd := 3∑1≤k≤d−1(d − 2k)D((e 2π

d
i)k), for every

d ∈ Z≥1 we have a coefficient of Sd+2 in two successive Mahler measures m(Pd) and m(Pd+1).
In the following computations, we compute Sd+2 in terms of L-functions only for m(Pd) and
we reuse this information for m(Pd+1).
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Let us begin with P3:

Proposition VI.3.1. We have the following equality:

m(P3) = 3(3 − i)
20 L′(χi, −1) + 3(3 + i)

20 L′(χ−i, −1) − 3
5L′(χ−4, −1),

where χi and χ−i are both primitive (non principal) odd complex Dirichlet characters of con-
ductor 5 defined as follows:

m 0 1 2 3 4

χi(m) 0 1 i −i −1

χ−i(m) 0 1 −i i −1

Proof. According to Notation V.1.2 we have:

m(P3) = 1
2π

(1
4S5 − 1

5S4

)
= 1

2π

(1
2
(
9D(ei 2π

5 ) + 3D(ei 4π
5 )
))

+ −6
5π

D(i).

Using the computation of L′(χ−4, −1), in Proposition VI.1.4, we have −3
5 L′(χ−4, −1) = −6

5π D(i).
The only odd primitive non principal characters of conductor 5 are χi and χ−i. Thus, we
compute dχi and dχ−i as follows:

dχi = 5
4π

(
χi(1)D(e

2π
5 i) + χi(2)D(e

4π
5 i) + χi(3)D(e

6π
5 i) + χi(4)D(e

8π
5 i)
)

= 5
2π

(
D(e

2π
5 i) + iD(e

4π
5 i)
)

,

dχ−i = 5
4π

(
χ−i(1)D(e

2π
5 i) + χ−i(2)D(e

4π
5 i) + χ−i(3)D(e

6π
5 i) + χ−i(4)D(e

8π
5 i)
)

= 5
2π

(
D(e

2π
5 i) − iD(e

4π
5 i)
)

.

We are searching for the suitable combination of dχ−i and dχi which leads to
1

2π

(
1
2

(
9D(ei 2π

5 ) + 3D(ei 4π
5 )
))

in the formula of m(P3). In other words we are searching for C1

and C2, where C1dχi + C2dχ−i = 1
4π

(
9D(ei 2π

5 ) + 3D(ei 4π
5 )
)
. Then we have:

5
2π

(
C1D(e

2π
5 i) + iC1D(e

4π
5 i)
)

+ 5
2π

(
C2D(e

2π
5 i) − iC2D(e

4π
5 i)
)

= 1
4π

(
9D(ei 2π

5 ) + 3D(ei 4π
5 )
)

.

We solve the following system of equations:
5C1 + 5C2 = 9

2 ,

5iC1 − 5iC2 = 3
2 .

The unique solution to the system is C1 = 9−3i
20 and C2 = 9+3i

20 . Therefore, by applying
Corollary VI.2.3 we have

S5
2π

= 3(3 − i)
5 L′(χi, −1) + 3(3 + i)

5 L′(χ−i, −1).(VI.3.1)

Then, we conclude:

m(P3) = 3(3 − i)
20 L′(χi, −1) + 3(3 + i)

20 L′(χ−i − 1) − 3
5L′(χ−4, −1).
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□

We notice that for a primitive odd Dirichlet character of conductor k, thanks to the func-
tional equation Corollary VI.2.3 and the facts that L(χ̄, 2) = L(χ, 2), and τ(χ̄) = −τ(χ), we
can conclude the following relation:

L′(χ, −1) = L′(χ̄, −1).

Thus, according to Proposition VI.3.1 we have m(P3) = 3
10ℜ

(
(3 + i)L′(χ−i, −1)

)
−3

5L′(χ−4, −1).
Then, thanks to Proposition VI.1.5 we have:

m(P3) = 3
10ℜ

(
(3 + i)L′(χ−i, −1)

)
− 3

10m(P 2
2 P1).

This implies the following equality, reminiscent of Chinburg conjecture:

3ℜ
(
(3 + i)L′(χ−i, −1)

)
= m(P 3

1 P 6
2 P 10

3 ).

By following the same process, we compute m(Pd), for 4 ≤ d ≤ 6 in terms of L-functions.

Proposition VI.3.2. We begin as usual:

m(P4) = −3 + i

10 L′(χi, −1) + −3 − i

10 L′(χ−i, −1) + 16
5 L′(χ−3, −1),

where χi and χ−i are the primitive odd Dirichlet character of conductor 5 introduced in Propo-
sition VI.3.1.

Proof. According to Notation V.1.2 we have :

m(P4) = 1
2π

(1
5S6 − 1

6S5

)
= 1

2π

(
−3D(e

2πi
5 ) − D(e

4πi
5 ) + 2

5
(
12D(e

i2π
6 ) + 6D(e

i4π
6 )
))

.

We already computed the representation of S5 in terms of L-function in Eq. (VI.3.1). Thus,
we only need to compute the representation of S6 = 24D(e πi

3 ) + 12D(e 2πi
3 ). According to

Proposition VI.1.3 we have L′(χ−3, −1) = 3
2π D(e 2π

3 i). Moreover, using Eq. (VI.1.1) in Propo-
sition VI.1.3, we have 12

5π D(e π
3 i) = 18

5π D(e 2π
3 i) = 12

5 L′(χ−3, −1). Therefore, by applying Corol-
lary VI.2.3, we have:

m(P4) = −3 + i

10 L′(χi, −1) + −3 − i

10 L′(χ−i, −1) + 16
5 L′(χ−3, −1).

□

Note that we got the equation
S6
2π

= 16L′(χ−3, −1)(VI.3.2)

for our future computation. We notice that there is only one odd Dirichlet character of modulus
6, which is not primitive. It is induced by χ−3. This explains the appearance of dχ−3 and
L′(χ−3, −1).

As before, we can also write:

m(P 5
4 /P 16

1 ) = ℜ((−3 + i)L′(χi, −1))).

However, P 5
4 /P 16

1 is a rational function and not a polynomial. In the following we do the same
process for m(P5), though the computations become more and more complicated:
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Proposition VI.3.3. We have the following equality:

m(P5) = −16
7 L′(χ−3, −1) + 1

3L′(χ1, −1) + 4 − 2
√

3i

21 L′(χ2, −1) + 4 + 2
√

3i

21 L′(χ3, −1).

Where, χi for 1 ≤ i ≤ 3 are the odd primitive Dirichlet characters mod 7 introduced in the
following table (with ω = e

iπ
3 );

m 0 1 2 3 4 5 6

χ1(m) 0 1 1 −1 1 −1 −1

χ2(m) 0 1 ω2 ω −ω −ω2 −1

χ3(m) 0 1 −ω −ω2 ω2 ω −1

Proof. By considering Notation V.1.2, for d = 5 we have:

m(P5) = 1
2π

(1
6S7 − 1

7S6

)
= 1

2π

(2
7
(
−12D(e

2πi
6 ) − 6D(e

4πi
6 )
)

+ 5D(e
i2π

7 ) + 3D(e
i4π

7 ) + D(e
i6π

7 )
)

.

We use Eq. (VI.3.2), so we only compute S7 in terms of L-functions. We compute dχi , for
1 ≤ i ≤ 3.

dχ1 = 7
4π

(
D(e

2π
7 i) + D(e

4π
7 i) − D(e

6π
7 i) + D(e

8π
7 i) − D(e

10π
7 i) − D(e

12π
7 i)

)
= 7

2π

(
D(e

2π
7 i) + D(e

4π
7 i) − D(e

6π
7 i)
)

,

dχ2 = 7
4π

(
D(e

2π
7 i) + ω2D(e

4π
7 i) + ωD(e

6π
7 i) − ωD(e

8π
7 i) − ω2D(e

10π
7 i) − D(e

12π
7 i)

)
= 7

2π

(
D(e

2π
7 i) + ω2D(e

4π
7 i) + ωD(e

6π
7 i)
)

,

dχ3 = 7
4π

(
D(e

2π
7 i) − ωD(e

4π
7 i) − ω2D(e

6π
7 i) + ω2D(e

8π
7 i) + ωD(e

10π
7 i) − D(e

12π
7 i)

)
= 7

2π

(
D(e

2π
7 i) − ωD(2e

4π
7 i) − ω2D(e

6π
7 i)
)

.

We need to compute Ci, for 1 ≤ i ≤ 3 such that C1dχ1 + C2dχ2 + C3dχ3 = 1
2π (5D(e 2π

7 i) +
3D(e 4π

7 i) + D(e 6π
7 i)). We solve the following system of equations:

7C1 + 7C2 + 7C3 = 5,

7C1 + 7ω2C2 − 7C3ω = 3,

− 7C1 + 7ωC2 − 7C3ω2 = 1.

and the system has a unique solution. Then, we have m(P5) = −16
7 L′(χ−3, −1)+ 1

3L′(χ1, −1)+
4−2

√
3i

21 L′(χ2, −1) + 4+2
√

3i
21 L′(χ3, −1). We notice that the last computation indeed gives:

S7
2π

= 2L′(χ1, −1) + 8 − 4
√

3i

7 L′(χ2, −1) + 8 + 4
√

3i

7 L′(χ3, −1).(VI.3.3)

□

The last computation that we present here is for m(P6).
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Proposition VI.3.4. Let χi, for 1 ≤ i ≤ 3 are the primitive odd Dirichlet characters of
modulus 7, introduced in Proposition VI.3.3. We have the following equality:

m(P6) =−1
4 L′(χ1, −1) + −2 +

√
3i

14 L′(χ2, −1) + −2 −
√

3i

14 L′(χ3, −1)

+ 15
14L′(χ−4, −1) + L′(χ−8, −1).

Proof. We have:

m(P6) = 1
2π

(1
7S8 − 1

8S7

)
= 1

2π

(1
4
(
−15D(e

2πi
7 ) − 9D(e

4πi
7 ) − 3D(e

6πi
7 ))

))
+ 1

2π

(2
7
(
18D(e

i2π
8 ) + 12D(e

i4π
8 ) + 6D(e

i6π
8 )
))

.

Thanks to Eq. (VI.3.3), we focus on S8. Let us consider the table associated to the Dirichlet
character of modulus 8 :

n 1 3 5 7

χ1(n) 1 1 1 1

χ2(n) 1 −1 1 −1

χ3(n) 1 −1 −1 1

χ−8(n) 1 1 −1 −1

Between all the characters of modulus 8, only χ2(n) and χ−8(n) are odd, but the conductor
of χ2(n) is 4. Therefore, there are no additional primitive Dirichlet characters apart from the
quadratic one (see Example II.3.25 for more information about χ−8). We compute L′(χ−8, 2):

L′(χ−8, 2) = 8
4π

(
D(e

2π
8 i) + D(e

6π
8 i) − D(e

10π
8 i) − D(e

14π
8 i)

)
= 4

π

(
D(e

2π
8 i) + D(e

6π
8 i)
)

.

In L′(χ−8, 2), we only have the coefficients of D(e 2π
8 i) and D(e 6π

8 i), but for m(P6) we need the
coefficients of D(e 4π

8 i) = D(e π
2 i) = D(i) as well. Thus, we use L′(χ−4, 2) = 2

π D(i). We notice
that the coefficient of D(e 2π

8 i) and D(e 6π
8 i) in d8 are the same, but their coefficients in m(P6)

are not equal. Thus, to write 2
7

(
18D(e i2π

8 ) + 12D(e i4π
8 ) + 6D(e i6π

8 )
)

in the formula of m(P6) in
terms of L′(χ−8, 2) and L′(χ−4, 2), we recompute L′(χ−8, 2) only in terms of D(i) and D(e 6π

8 i),
which gives us the possibility to choose the coefficient of L′(χ−8, 2) and L′(χ−4, 2). To do so,
we use the properties of the dilogarithm such as D(z) = −D(z̄) and the distribution formula
of the dilogarithm:

D(i) = D((e
π
4 i)2) = 2(D(e

π
4 i) + D(−e

π
4 i)) = 2(D(e

π
4 i) + D(e

5π
4 i))

= 2(D(e
π
4 i) − D(e

3π
4 i)) = 2(D(e

2π
8 i) − D(e

6π
8 i)).
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Equivalently we have D(i)
2 + D(e 6π

8 i) = D(e 2π
8 i). Therefore, we have:

L′(χ−8, −1) = 4
π

(
D(e

2π
8 i) + D(e

6π
8 i)
)

= 4
π

(
D(i)

2 + D(e
6π
8 i) + D(e

6π
8 i)
)

= 4
π

(
D(i)

2 + 2D(e
6π
8 i)
)

.

Moreover, in the formula for m(P6), we may write:

1
7π

(
18(D(i)

2 + D(e
6π
8 i)) + 12D(i) + 6D(e

i6π
8 )
)

= 1
7π

(
21D(i) + 24D(e

i6π
8 )
)

.

We search for a1, a2 such that we have a1L′(χ−4, 2) + a2L′(χ−8, 2) = 1
7π

(
21D(i) + 24D(e i6π

8 )
)
,

or in explicit terms:

a1
2
π

D(i) + a2
4
π

(
D(i)

2 + 2D(e
6π
8 i)
)

= 1
7π

(
21D(i) + 24D(e

i6π
8 )
)

.

Again by solving a linear system, we have the unique solution a2 = 3
7 , and a1 = 15

14 which
completes the proof of the proposition. □

We notice that in the above proposition we had only χ−8 as an odd primitive Dirichlet
character of conductor 8. On the other hand χ2 is induced by χ−4 and this is the reason that
we have L′(χ−4, −1) in the representation of m(P6).

Remark VI.3.5. The values of m(Pd), for 1 ≤ d ≤ 6 in terms of L-functions may be numeri-
cally verified using SageMath.

To visualize some of the interesting values of the Mahler measures of certain polynomials
generated by Pd’s, we provide a table in Observation VI.3.6. The second column of the table
provides information in terms of linear combinations of L-functions. As we mentioned in
Notation VI.1.1, Boyd [Boy98] uses the notation df in his computations. Following Boyd, in
the third column of the table, we have information in terms of linear combinations of df ’s.

Observation VI.3.6. Let χ−f be an odd quadratic Dirichlet character, and df = L′(χ−f , −1).
Using the computation done in this chapter we conclude the following table:

m(P1) L′(χ−3, −1) d3

m(P2) L′(χ−4, −1) − L′(χ−3,−1)
2 d4 − d3

2

m(P1P 2
2 ) 2L′(χ−4, −1) 2d4

m(P 2
3 P 3

4 ) 6
5(8L′(χ−3, −1) − L′(χ−4, −1)) 6

5(8d3 − d4)

m(P 3
5 P 4

6 ) 6
7(−8L′(χ−3, −1) + 5L′(χ−4, −1) + 2L′(χ−8, −1)) 6

7(−8d3 + 5d4 + 2d8)
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VI.4. Writing m(Pd) in terms of L-functions and some perspective

In the previous sections, we have seen a representation of m(Pd) in terms of L-functions, for
1 ≤ d ≤ 6. In this section, we prove that m(Pd), for all d can be written as a linear combination
of L-functions. To do so, instead of considering Dirichlet characters of modulus d as a function
over over Z

dZ , we consider them as functions over the set of d-th roots of unity. In the following,
we explain this process more precisely.

Let d ∈ Z≥1, then we set Ud := Z
dZ and U∗

d =
(

Z
dZ

)∗
, the group of invertible elements

of the ring Ud. It is known [Kou19, Chapter 10] that Dirichlet characters form a basis for
the C-vector space CU∗

d (the space of the functions from U∗
d to C). Consequently, the odd

Dirichlet characters mod d generate the odd d-periodic functions (i.e. f is a d-periodic function
and f(d − x) = −f(x) for every x ∈ U∗

d ). As we have already mentioned, for a Dirichlet
character modulo d we can consider this function over Ud, by defining its value on Ud \ U∗

d to
be zero. Let Ûd denotes the set of the d-th roots of unity. Then, Ûd and Ud are in bijection,
so we can consider the Dirichlet character over this set. In other words, for k ∈ Z≥1 and a
Dirichlet character modulo d we define χ((e 2πi

d )k) := χ(k). We notice that U∗
d is mapped to

the set of primitive d-th roots of unity, denoted by Vd. In other words, for z ∈ Ûd, we have
χ(z) ̸= 0 if and only if z ∈ Vd. Moreover, the property of being odd d-periodic on Ûd is simply
χ(e 2kπi

d ) = −χ(e− 2kπi
d ). The following lemmas are needed for the future.

Lemma VI.4.1. Let f : Ûd → Z be an odd d-periodic function, k be an integer such that k|d,
Vk be the set of k-th roots of unity, and 1Vk

be the characteristic function. Then fk : Ûd → Z,
defined by fk := 1Vk

f is an odd function.

Proof. According to the definition, fk is non zero on Vk. Thus, we only prove that for
every z ∈ Vk we have fk(z̄) = −f(z). We notice that if gcd(l, k) = 1, then gcd(k, l − k) = 1.
Hence, if z ∈ Vk, then z̄ ∈ Vk. In other words, 1Vk

(z̄) = 1Vk
(z).

fk(z) = 1Vk
(z̄)f(z̄)

[1]
= 1Vk

(z)(−f(z)) = −fk(z).
In [1] we used that f is odd and 1Vk

(z̄) = 1Vk
(z). □

Lemma VI.4.2. Let f : Ûd → Z be an odd d-periodic function, k be an integer such that k|d.
Moreover, let f̂k : Ûk → Z be defined as follows:

f̂k(z) =
{

0 if Ûk \ Vk

f(z) if z ∈ Vk.

Then, f̂k is an odd k-periodic function and can be written uniquely in terms of odd Dirichlet
character of modulus k.

Proof. Since f̂k is zero on Ûk \ Vk, we only need to prove that it is odd on Vk. We notice
that f̂k|Vk

= fk According to Lemma VI.4.1, fk is odd. Thus, f̂k is an odd function and since
it is defined over Ûk it is k-periodic and vanishes outside Vk. Thus, due to the fact that odd
Dirichlet characters form a basis for odd k-periodic function, it can be uniquely written as a
linear combination of odd Dirichlet character modulus k. □

We now come back to our problem of writing m(Pd) in terms of L-functions. According
to Notation V.1.2 we have 2πm(Pd) = 1

d+1Sd+2 − 1
d+2Sd+1, where Sd := 3∑1≤k≤d−1(d −

2k)D((e 2π
d

i)k). Let us prove the following proposition concerning Sd:
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Proposition VI.4.3. Let d ∈ Z≥1, and Sd = 3∑1≤k≤d−1(d − 2k)D((e 2π
d

i)k). Then, for every
odd primitive Dirichlet character χ of conductor k, such that k|d, there exists a coefficient
Ck,χ ∈ Q(e

2πi
ϕ(k) ) ⊂ Q(e

2πi
ϕ(d) ) such that:

Sd =
∑
k|d

∑
χodd primitive mod k

Ck,χL′(χ, −1).

Proof. We consider Sd as an inner product of two vectors in Cd−1 as follows:

Sd = 3
〈

[(d − 2), . . . , (2 − d)] ,

[
D(e

2πi
d ), . . . , D(e

2πi(d−1)
d )

]〉
.

In Corollary VI.2.3 we have seen the link between dχ and L-functions for the odd primitive
characters. Thus, writing Sd in terms of dχ with odd primitive characters leads to the rep-
resentation in terms of L-functions. We can similarly consider dχ as an inner product of two
vectors in Cd−1 as follows:

dχ = d

4π

〈[
χ(e

2πi
d ), . . . , χ(e

2πi(d−1)
d )

]
,

[
D(e

2πi
d ), . . . , D(e

2πi(d−1)
d )

]〉
.

Due to the linearity of the inner product, it suffices to write the function f : Ûd → Z, defined by
f(e 2πki

d ) := d−2k, for 0 ≤ k ≤ d−1 as a linear combination of odd primitive characters. Indeed,
f is an odd periodic function over Ûd, since f(e

2π(d−k)i
d ) = d − 2(d − k) = 2k − d = −f(e 2πki

d ).
However, we have f(z) ̸= 0 even for z who are not d-th primitive root of unity. Thus we
can not write f as a linear combination of odd Dirichlet characters modulus d. To solve this
problem, we write f = ∑

k|d fk, with fk := 1Vk
f . We notice that Ûd = ⋃

k|d Vk and it is
indeed a disjoint union. Let us extend each fk to f̂k : Ûk → Z in the same way as we did in
Lemma VI.4.2. Therefore, thanks to Lemma VI.4.2 for each k|d, f̂k can be represented uniquely
as a linear combination of odd Dirichlet characters modulus k. The same representation can
be considered for fk, since they have the same support. This implies that Sd can be written as
a linear combination ∑k|d

∑
χodd of mod k Ck,χdχ. Concerning the number field containing the

coefficients Ck,χ we recall that [d − 2, . . . , 2 − d] is a vector with integer coefficients and it is
written as a linear combination of Dirichlet characters modulus k, with k|d. On the other side,
the values of Dirichlet characters modulus k belong to the cyclotomic field Q[e

2πi
ϕ(k) ] (see the

discussion after Definition II.3.2). Due to the multiplicativity of Euler’s function (see [Dez21,
Page 13]), for any k where k|d we have ϕ(k)|ϕ(d), so Q[e

2πi
ϕ(k) ] ⊆ Q[e

2πi
ϕ(d) ]. Using a simple

argument of linear algebra we conclude that [d − 2, . . . , 2 − d] is written as a linear combination
of Dirichlet characters with coefficients belonging to Q[e

2πi
ϕ(d) ]. Finally, in the representation

of Sd in terms of dχ we replace each induced character χ with the odd associated primitive
Dirichlet character χ∗, and according to Lemma VI.2.6, we have dχ = dχ∗ . Thus, Sd can be
written as a linear combination of dχ associated with odd primitive Dirichlet character. Using
Corollary VI.2.3 we have a representation in terms of Dirichlet L-functions. □

The above proposition is the key to prove Theorem VI.0.1.

Proof. Proof of Theorem VI.0.1: We have 2πm(Pd) = 1
d+1Sd+2 − 1

d+2Sd+1, and according
to Proposition VI.4.3 we can write Sd+1 and Sd+2 in terms of L-functions associated with odd
primitive characters of conductor k where respectively k|d + 1 or k|d + 2. This completes the
proof. □

For any d ∈ Z≥1, m(Pd) can be written as a linear combination of Dirichlet L-functions
associated with odd primitive Dirichlet characters of conductor k, where k|d + 1, or k|d + 2.
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We notice that such representation is not unique. In fact, one can write f = [d−2, . . . , 2−d]
as a linear combination of odd primitive Dirichlet characters uniquely. However, in the formula
of Sd we compute the inner product of f with VD :=

[
D(e 2πi

d ), . . . , D(e
2πi(d−1)

d )
]
, which changes

the situation. More precisely, for any VD⊥ perpendicular to VD, we have Sd = 3⟨f +VD⊥ , VD⟩ =
3⟨f, VD⟩.

VI.4.1. Future projects. One of our future goals is to inspect the orthogonal complement
of the subspace generated by VD, using the properties of the dilogarithm. We hope in this way
to simplify the representation of m(Pd) in terms of L-functions. We will continue to explore and
improve the formulas giving m(Pd) in terms of L-functions, both experimentally (by computing
explicit representations for higher values of d) and theoretically (by understanding VD⊥ and
a possible choice of a better vector in f + VD⊥). Moreover, as we know for every d ∈ Z≥1,
Sd+2 appears in the two successive Mahler measures m(Pd) and m(Pd+1). In our examples we
have computed Sd, for 3 ≤ d ≤ 8 in terms of L-functions. We are interested in knowing more
about the coefficients of the L-functions appearing in each Sd and how can we interpret these
numbers. Answering this question may help us obtain a general formula for the coefficients in
the representation of m(Pd) in terms of L-functions. Moreover, a general formula for m(Pd)
leads to extension of the table in Observation VI.3.6. Thus, we discover more connections
between the df ’s, and Mahler measures of polynomials generated by Pd’s that shed light on
Chinburg’s Conjecture. Lately, we mention that Chinburge in [Chi84] announced a weaker
version of Chinburg’s conjecture, in which Pf ∈ Q(x, y). We believe that Pd-family provides
infinitely many partial solutions for the weak version of Chinburg’s conjecture. However, a
proof is not immediate and is part of the future projects.
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CHAPTER VII

Appendix

This chapter contains the preliminary information, such as basic definitions, customary
terminologies, theorems, proofs, etc. , that we need to complete the information given in the
initial chapters of this thesis. For the convenience of the reader, the Appendix is divided into
6 sections, and each section is devoted entirely to a certain topic.

VII.1. Resultant

The aim of this section is to recall some tools that we use for the proof of Kronecker’s
theorem. In mathematics, the resultant of two polynomials is a polynomial expression of their
coefficients, which is equal to zero if and only if the polynomials have a common root (possibly
in a field extension), or, equivalently, a common factor (over their field of coefficients).

Definition VII.1.1. Let A and B be two univariate polynomials over a field or over a commu-
tative ring defined as follows: A(x) = a0xd+a1xd−1+· · ·+ad and B(x) = b0xe+b1xe−1+· · ·+be

such that a0 ̸= 0 and b0 ̸= 0 . The resultant of A and B is the determinant of the following
Matrix:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 · · · 0 b0 0 · · · 0

a1 a0 · · · 0 b1 b0 · · · 0

a2 a1
. . . 0 b2 b1

. . . 0
...

... . . . a0
...

... . . . b0

ad ad−1 · · ·
... be be−1 · · ·

...

0 ad
. . . ... 0 be

. . . ...
...

... . . . ad−1
...

... . . . be−1

0 0 · · · ad 0 0 · · · be

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
which has e columns of ai and d columns of bj (the fact that the first column of a’s and the
first column of b’s have the same length, that is d = e, is here only for simplifying the display
of the determinant).

If the coefficients of the polynomials belong to an integral domain, then
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res(A, B) = ae
0bd

0
∏

1 ≤ i ≤ d

1 ≤ j ≤ e

(λi − µj) = ae
0

d∏
i=1

B(λi) = (−1)debd
0

e∏
j=1

A(µj),(VII.1.1)

where λ1, . . . , λd and µ1, . . . , µe are respectively the roots, counted with their multiplicities, of
A and B in any algebraically closed field containing the integral domain.

Notation VII.1.2. In many applications of the resultant, the polynomials depend on several
variables and may be considered as univariate polynomials in one of their variables, with poly-
nomials in the other variables as coefficients. For instance, we used such argument in the proof
of Kronecker’s theorem.

VII.2. Gamma function

The aim of this section is to recall some properties of the Gamma function given in Defi-
nition II.3.28, which are needed for Proposition II.3.35. In fact the following lemma was used
for proving the functional equation of the L-function. The proofs are computational and easily
verified, and can be found in many references (for instance see [Bon17, Chapter 1]). For the
convenience of the reader we recall some short proofs here.

Lemma VII.2.1. For every z with real part strictly positive we have Γ(1 + z) = zΓ(z).

Proof. Using integration by parts, we have:

Γ(z + 1) =
∫ ∞

0
xze−x dx =

[
−xze−x

]∞
0

+
∫ ∞

0
zxz−1e−x dx

= lim
x→∞

(
−xze−x)−

(
−0ze−0

)
+ z

∫ ∞

0
xz−1e−x dx.

If x → ∞, then xze−x → 0, so we have Γ(z + 1) = z
∫∞

0 xz−1e−x dx = zΓ(z).
□

As we have already mentioned, the Gamma function is the extension of the factorial function
to complex numbers. To visualize this fact, in the following lemma we prove that Γ(n) = (n−1)!
for every positive integer n ≥ 2.

Lemma VII.2.2. Let n ∈ Z≥2, we have Γ(n) = (n − 1)!

Proof. We prove this by induction. For n = 2 we have Γ(1) =
∫∞

0 x1−1e−x dx =
[

−

e−x
]∞

0
= limx→∞ (−e−x) −

(
−e−0) = 1. Suppose that for every k < n we have Γ(k) = (k − 1)!,

so by using Lemma VII.2.1 we have Γ(n) = nΓ(n − 1), so Γ(n) = (n − 1)!. □

Lemma VII.2.3. We have the following equation called Legendre duplication formula :

Γ(z) Γ
(

z + 1
2

)
= 21−2z √

π Γ(2z).

Proof. Suppose that ℜ(z1), ℜ(z2) > 0 and let B(z1, z2) := Γ(z1)Γ(z2)
Γ(z1+z2) be the Beta function.

One can check that B(z1, z2) =
∫ 1

0 uz1−1(1 − u)z2−1du. Let z1 = z2 = z and we have B(z, z) =
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Γ(z)Γ(z)
Γ(2z) =

∫ 1
0 uz−1(1 − u)z−1du. Applying the change of variables u = 1+x

2 we have: Γ(z)Γ(z)
Γ(2z) =

1
22z−1

∫ 1
−1(1 − x2)z−1dx. Using the property of the definite integral of even functions we have :

22z−1Γ(z)Γ(z) = 2Γ(2z)
∫ 1

0
(1 − x2)z−1dx.(VII.2.1)

In the integral definition of B(z1, z2) we use the change of variable u = x2, so after a compu-
tation we have B(z1, z2) =

∫ 1
0 x2z1−2(1 − x2)z2−12xdx. We replace z1 = 1

2 and z2 = z in this
equality and we have:

B(1
2 , z) = 2

∫ 1

0
(1 − x2)z−1dx.(VII.2.2)

Combining results Eq. (VII.2.1) and Eq. (VII.2.2) we have 22z−1Γ(z)Γ(z) = Γ(2z)B(1
2 , z) =

Γ(2z)Γ(1/2)Γ(z)
Γ( 1

2 +z) . Therefore, Γ(1
2 + z)Γ(z) = 21−2zΓ(1

2)Γ(2z). Using the integral definition of the
Gamma function we have Γ(1

2) =
√

π, and we conclude:

Γ(z) Γ
(

z + 1
2

)
= 21−2z √

π Γ(2z).

□

VII.3. Probability Haar Measure and convergence of measures

In this section, we introduce the necessary prerequisites to work with measure and specially
probability Haar measures. These notations are necessary in order to assert Generalized Boyd-
Lawton’s theorem.
A Measure is a kind of function that is defined over a set with certain properties called σ-
algebra. A σ-algebra on a set X is a collection Σ of subsets of X that includes the empty
subset, is closed under complement, and is closed under countable unions and countable in-
tersections. Measures are generalizations of length, area, and volume, but are useful for much
more abstract and irregular sets than intervals in R or balls in Rn. One might expect to define
a generalized measuring function µ∗ on R+ ∪ {∞} that fulfills some requirements that already
length, area, volume or other sort of measures respect. For instance, translation invariance,
countable additivity etc. However, by this kind of generalization we can not apply µ∗ to any
arbitrary set. In other words, there are some sets who are non-measurable. That is where the
definition of an outer measure arises.

Definition VII.3.1. Given a set X, let P (X) denote the collection of all subsets of X, including
the empty set. An outer measure on X is a set function: µ∗ : P (X) → [0, ∞] such that
µ∗(∅) = 0, and it is countably sub additive (i.e. for arbitrary subsets A, B1, B2, . . . of X, if
A ⊆

⋃∞
j=1 Bj then µ∗(A) ≤

∑∞
j=1 µ∗(Bj)).

The purpose of constructing an outer measure on all subsets of X is to extract a class of
subsets (to be called measurable) that satisfy the countable additivity property. Let us recall
the mathematical definition of measure.

Definition VII.3.2. Let X be a set and Σ a σ-algebra over X. A function µ from Σ to the
extended real number line is called a measure if it satisfies the following properties:

• Non-negativity: For all E in Σ, we have µ(E) ≥ 0.
• Null empty set: µ(∅) = 0.
• Countable additivity (or σ-additivity): For all countable collections {Ek}∞

k=1 of pair-
wise disjoint sets in Σ, we have µ (⊔∞

k=1 Ek) = ∑∞
k=1 µ(Ek).
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The pair (X, Σ) is called a measurable space and the members of Σ are called measur-
able sets. If (X, ΣX) and (Y, ΣY )are two measurable spaces, then a function f : X → Y is
called measurable if for every Y -measurable set B ∈ ΣY , the inverse image is X-measurable
(i.e.:f (−1)(B) ∈ ΣX).
There are some types of measures which are used in this thesis such as probability measure,
Lebesgue measure and Haar measure. Let us start with the definition of probability measure.

Definition VII.3.3. A probability measure is a measure with total measure one (i.e. µ(X) =
1).

After defining probability measures we define the Lebesgue measure. The Lebesgue mea-
sure, named after the French mathematician Henri Lebesgue, is the standard way of assigning
a measure to subsets of n-dimensional Euclidean space. For n = 1, 2, or 3, it coincides with the
standard measure of length, area, or volume. Before defining Lebesgue measure we define the
following: For any interval I = [a, b] (or I = (a, b)) in R, let ℓ(I) = b − a denotes its length.

Definition VII.3.4. For any subset E ⊆ R, the Lebesgue outer measure µ∗(E) is defined as
an infimum:

µ∗(E) = inf
{ ∞∑

k=1
ℓ(Ik) : (Ik)k∈N is a sequence of open intervals with E ⊂

∞⋃
k=1

Ik

}
.

Some sets E satisfy the Carathéodory criterion, which requires that for every A ⊆ R,

µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec).
The set of all such E forms a σ-algebra. For any such E, its Lebesgue measure is defined to be
its Lebesgue outer measure: µ(E) = µ∗(E).

A set E that does not satisfy the Carathéodory criterion is not Lebesgue-measurable. Non-
measurable sets do exist; an example is the Vitali sets. A closed interval [a, b] of real numbers
is Lebesgue-measurable, and its Lebesgue measure is the length b − a. The open interval (a, b)
has the same measure, since the difference between the two sets consists only of the end points
a and b and has measure zero.

The last type of measure that we need to introduce is the Haar measure, introduced by
Alfréd Haar in 1933. It assigns an “invariant measure” to subsets of locally compact topological
groups, consequently defining an integral for functions on those groups. To define this measure,
we first define the Borel algebra of a locally compact Hausdorff topological group. Let G be a
locally compact Hausdorff topological group. The σ-algebra generated by all the open subsets
of G is called the Borel algebra. An element of the Borel algebra is called a Borel set. If g is
an element of G and S is a subset of G, then we define the left and right translates of S by g
as follows:

• Left translate: gS = {g · s : s ∈ S}.
• Right translate: Sg = {s · g : s ∈ S}.

We can now define a left Haar measure (for more information see [Coh80, Section 9.2]):

Definition VII.3.5. Let µ be a measure with the following properties:
• The measure µ is invariant by left-translation: µ(gS) = µ(S), for every g ∈ G and all

Borel sets S ⊆ G.
• The measure µ is finite on every compact set: µ(K) < ∞, for all compact K ⊆ G.
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• The measure µ is outer regular on Borel sets S ⊆ G:
µ(S) = inf{µ(U) : S ⊆ U, U open}.

• The measure µ is inner regular on open sets U ⊆ G:
µ(U) = sup{µ(K) : K ⊆ U, K compact}.

Then, µ is called a left Haar measure on G.

There is, up to a positive multiplicative constant, a unique nontrivial left Haar measure µ
on the Borel subsets of G. Moreover, it can be shown as a consequence of the above properties
that µ(U) > 0 for every non-empty open subset U ⊆ G. In particular, if G is compact
then µ(G) is finite and positive, so we can uniquely specify a left Haar measure on G by
adding the normalization condition µ(G) = 1. In complete analogy, one can also prove the
existence and uniqueness of a right Haar measure on G. The two measures need not coincide.
However, according to definition of the measure, introduced in Eq. (II.4.2) the left and right
Haar measures for Tn are equal, so is called Haar measure.

VII.3.1. Weakly convergence of Measures. There are different concepts of conver-
gence for the measures. The one that we need in this thesis is weakly convergence of the
measures.

Definition VII.3.6. Let X be a metric space with Borel σ-algebra Σ . A bounded sequence
of positive probability measures (µn)n∈Z≥1 on (X, Σ) is said to converge weakly to the finite
positive measure µ (denoted µn ⇒ µ) if for all bounded, continuous functions f we have:∫

fdµn →
∫

fdµ.

The Weierstrass approximation Theorem (see Proposition VII.3.7) states that every contin-
uous function defined on a compact Hausdorff space can be uniformly approximated as closely
as desired by a polynomial function. This implies that if X is a compact Hausdorff space, to
verify µn ⇒ µ, we only need to verify

∫
fdµn →

∫
fdµ, where f is a polynomial.

Let us explain more about the Stone–Weierstrass theorem and its application in recognizing
the weakly convergence of a sequence of measures. To do so, first, we need to know about
separating subsets and unital∗-algebra: A set S containing functions from a set D to a set C is
called a separating set for D or said to separate the points of D if for any two distinct elements
x and y of D, there exists a function f in S, such that f(x) ̸= f(y). The complex unital∗-
algebra generated by S consists of all those functions that can be obtained from the elements
of S by throwing in the constant function 1 and adding them, multiplying them, conjugating
them, or multiplying them with complex scalars, and repeating finitely many times. Let X
be a compact Hausdorff space, the set of continuous complex-valued functions on X together
with the supremum norm ||f || = supx∈X |f(x)|, is a Banach algebra, (that is, an associative
algebra and a Banach space such that ||fg|| ≤ ||f ||.||g|| for all f, g) and is denoted by C(X,C).
We recall that a Banach space is a normed space that is complete in the metric induced by
the norm. The following is a classical theorem of analysis that can be found in most analysis
textbooks.

Proposition VII.3.7. Stone–Weierstrass Theorem Let X be a compact Hausdorff space and
let S be a separating subset of C(X,C). Then, the complex unital∗-algebra generated by S is
dense in C(X,C).

It is a classical fact that the set of all polynomial functions forms a subalgebra of C(X,C)
that is dense in C(X,C). Thus, in a compact Hausdorff metric space X to verify µn ⇒ µ we only
need to verify

∫
fdµn →

∫
fdµ, where f is a polynomial. The aim of this section is to provide
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the prerequisites for the proof of a higher dimensional analogue of Boyd-Lawton theorem. In
fact, in Theorem II.4.20 we prove that the sequence of integrals of | log(PAd

)| converges to the
integral of | log(P )| (under some hypothesis). We know that weakly convergence of measure
means the convergence of integral of continuous functions, but | log(PAd

)| is not necessarily a
continuous function. This is a function which continues every where except at the points which
are the roots of PAd

. In these points the value of | log(PAd
)| is +∞. One can see for instance

[Rud87, Chapter 1] as a reference.

Lemma VII.3.8. Let µk be a sequence of probability measure on Tn weak-converging to some
probability measure µ∞. Let f : Tn → R ∪ {+∞} be a continuous function. Suppose moreover,
that it is uniformly L2 for µk and µ∞ (i.e. there exists C > 0 such that all these L2 norms are
less than C). Then, we have the convergence

∫
Tn fdµk →

∫
Tn fdµ.

Proof. Fix ε > 0 and let λ = C
ε . Define the set Sλ = {t ∈ Tn||f(t)| > λ}. The L2 bounds

yields, for any µ = µ1, . . . , µk, . . . , µ∞:

(VII.3.1)
∣∣∣∣∫

Sλ

(f − λ)dµ

∣∣∣∣ ≤ 2
∫

Sλ

|f |dµ ≤ 2
∫

Sλ

|f | |f |
λ

dµ ≤ 2
λ

∫
|f |2dµ ≤ 2C

λ
= 2ε.

Now, let f̃ be the function min(f, λ). This function is bounded from above by λ and is
continuous. Moreover, we have f = f̃ + (f − λ) × 1Sλ

. We can write, for all k:∣∣∣∣∫ fdµk −
∫

fdµ∞

∣∣∣∣ ≤
∣∣∣∣∫ f̃dµk −

∫
f̃dµ∞

∣∣∣∣+ ∣∣∣∣∫
Sλ

(f − λ)dµk

∣∣∣∣+ ∣∣∣∣∫
Sλ

(f − λ)dµ∞

∣∣∣∣
The last two terms are boubded by 2ε by (VII.3.1). For k big enough, by the convergence

µk ⇒ µ∞, the first one is less than ε. Hence, we have proven that for k big enough, we have:∣∣∣∣∫ fdµk −
∫

fdµ∞

∣∣∣∣ ≤ 5ε.

This gives the convergence of integrals. □

VII.4. Quasi affine varieties and algebraic curves

In this section we recall some classical definitions in algebraic geometry which provide a
complementary information for Convention III.1.1 in Chapter III. The main reference of this
section is [CLO15]. Algebraic varieties are the central objects of study in algebraic geometry. In
classical algebraic geometry (that is, the part of algebraic geometry in which one does not use
schemes, which were introduced by Grothendieck around 1960) an algebraic variety is defined
as the set of solutions of a system of polynomial equations over the real or complex numbers.
In this section we assume that K is an algebraic closed field, in particular in this thesis we
assume K = C. To introduce affine varieties we need the following definition:

Definition VII.4.1. Given a field K and a positive integer n, we define the n-dimensional
affine space over K to be the set

Kn = {(a1, . . . , an)|a1, . . . , an ∈ K}.

We can now define affine varieties.

Definition VII.4.2. Let K be a field, and let f1, . . . , fs be polynomials in K[x1, . . . , xn]. Then
we set

V (f1, . . . , fs) = {(a1, . . . , an) ∈ Kn|fi(a1, . . . , an) = 0, for 1 ≤ i ≤ s}.

We call V (f1, . . . , fs) the affine variety defined by f1, . . . , fs.
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Conventions regarding the definition of an affine algebraic variety differ slightly. For ex-
ample, some references consider the above as the definition of algebraic set. Furthermore, a
nonempty affine algebraic set is called irreducible if it cannot be written as the union of two
proper algebraic subsets. Then in some references, an affine algebraic variety require to be
irreducible. However, in this thesis we only work with Definition VII.4.2. Using affine vari-
eties we can define a natural topology on Kn. This topology is called the Zariski topology,
introduced by Oscar Zariski. The Zariski topology is primarily defined by its closed sets. It
is very different from topologies which are commonly used in the real or complex analysis. In
particular, it is not Hausdorff.

Definition VII.4.3. Given a field K and a positive integer n, the Zariski topology of Kn

is the topology whose closed sets are the affine algebraic varieties.

We again recall that in the above definition we consider Definition VII.4.2 for affine algebraic
varieties. Moreover, any algebraic variety is equipped with a topology induced from the Zariski
topology of Kn. Finally we are able to introduce quasi affine varieties.

Definition VII.4.4. A quasi affine variety is a Zariski open subset of an affine algebraic
variety.

The final goal of this section is to introduce algebraic curves. To achieve this goal, we first
explain about the dimension of an affine variety. The dimension of an affine algebraic variety
may be defined in various equivalent ways. Here, we provide one which is valid simultaneously
for both affine and quasi affine variety:

Definition VII.4.5. Let V ∈ Kn be an affine (or quasi affine) variety, the dimension of V is
the maximal length d of the chains V0 ⊂ V1 ⊂ · · · ⊂ Vd of distinct nonempty irreducible closed
subsets of V .

As we mentioned in Convention III.1.1 in Chapter III, in this thesis varieties refer to quasi
affine varieties. Moreover, an algebraic curve is a 1-dimensional quasi affine variety.

VII.5. Newton polytopes

In this section we define the Newton polytope, one of the important tools in studying the
Mahler measure theory. Using the properties of the Newton polytope of a polynomial we obtain
information about the topology of the algebraic curve associated to the polynomial (e.g genus
of the algebraic curve). In Chapter III we studied the Mahler measure of a family of bivariate
polynomials called Pd(x, y). We use the notion of Newton polygon there to find the toric points
of Pd. Moreover, to compute the genus of the algebraic curve associated with Pd we take
advantage of the properties of its Newton polygon. Before starting we recall Notation II.2.10,
where a monomial xj1

1 · · · xjk
k is denoted by xJ for J = (j1, . . . , jk) ∈ Zk. Thus, according to

this notation a Laurent polynomial P ∈ C[x±1
1 , . . . , x±1

k ] can be written as P = ∑
J∈Zk cJxJ ,

with cJ ∈ C.

Definition VII.5.1. Let P = ∑
J∈Zk cJxJ ∈ C[x±1

1 , . . . , x±1
k ] with CJ ∈ C be a Laurent

polynomial. The Newton polytope NP of P is the convex hull of the exponents of the
monomials appearing in P .

The NP of a polynomial P ∈ C[x±1
1 , . . . , x±1

k ] is a convex polytope in Rk whose vertices lie
in the lattice Zk. If k = 2 it is called Newton polygon.

Example VII.5.2. The Newton polygon of P (x, y) = 1 + x + y is the following triangle;
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Figure 1. Newton polygon of P (x, y) = x + y + 1.

In Section II.2.2 we defined the action of the group of the bijective affine transformation
over the set of the Laurent polynomials. From the definition, one can easily prove that if
P (x1, . . . , xn) is a Laurent polynomial and g : Zk → Zk is a bijective affine map, then NgP =
g(NP ), where g(NP ) = {g(x)|x ∈ NP }. In [Bak94] Baker’s theorem gives an upper-bound for
the genus of a plane curve. Let us fix the following notation for the sequel:

Notation VII.5.3. Let P (x, y) be a Laurent polynomial, so the number of interior lattice
points of NP in Z2 is denoted by h and the genus of the algebraic curve associated with
P (x, y) = 0 is denoted by g.

According to [Bak94] the genus of the curve P (x, y) = 0 does not exceed h.

Definition VII.5.4 ([RV99]). Let P (x, y) = ∑
(m,n)∈Z2 c(m,n)x

myn ∈ C[x±1, y±1], so a side
of NP is denoted by τ and to emphasize on the fact that τ belongs to NP we may write
τ < NP . We parameterize a side clockwise around NP and in such a way that τ(0), τ(1), . . . are
the consecutive lattice points in τ . To every side we associate a one-variable polynomial, called
side polynomial, denoted by Pτ (t), defined as follows;

Pτ (t) :=
∞∑

k=0
cτ(k)t

k ∈ C[t], τ < Np,

and the above sum is naturally finite.

We notice that all roots of Pτ (t) are nonzero. Using the properties of Side polynomials
associated to NP one may extract information about the genus of the algebraic curve associated
to P . The following lemma is a classical result going back to Baker [Bak94] in 1893.

Lemma VII.5.5 ([Bak94]). For a polynomial P (x, y) under a generic condition that every
side polynomial of P has distinct roots, we have g = h.

For example all curves whose polygons are represented in Fig. 2 (from [BZ20]) have genus 1
for a generic set of coefficients a, b, c. Another important example is the Pd(x, y) = ∑

0≤i+j≤d xiyj

family. We have already found the Newton polygon of P1 = x + y + 1 in Example VII.5.2. We
do the same for arbitrary Pd;

Example VII.5.6. For an arbitrary d, the Newton polygon of Pd is the triangle with vertices
{(0, 0), (0, d), (d, 0)}, shown in Fig. 3 (the figure is T4);
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Figure 2. [BZ20] Newton polygons for the polynomials P (x, y) = a + bx4 +
cy2, a + bx3 + cy2, a + bx2 + cxy2, a + bx3 + cy3 and ax + by + cx2y2.
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Figure 3. Newton polygon of P4.

Notation VII.5.7. A triangle with vertices {(0, 0), (0, d), (d, 0)}, denoted by Td.

The two following examples of Newton polygons can be easily verified by the reader and
are needed for the computation of the toric points of Pd in Chapter III.

Example VII.5.8. The Newton polytope of a polynomial in one variable is a line. However,
the multiplication of two univariate polynomials H(x) and Q(y) is a polynomial in two variables
whose Newton polygon is a rectangle. Here we explain its construction by the following figure
(see Fig. 4). Suppose that the red and blue points are respectively the non zero coefficients of
H and Q in Fig. 4 then the Newton polygon is the black rectangle.
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Figure 4. Newton polygon of H(x)Q(y).
Let P (x, y) be a polynomial in two variables. In Proposition III.2.2 we have already seen the
definition of P ∗(x, y) which is P (1/x, 1/y). We found the Newton polygon of Pd in Exam-
ple VII.5.6, which according to Notation VII.5.7 is denoted by Td. In the following we find the
Newton polygon of P ∗

d .

Example VII.5.9. The Newton polygon of P ∗
d (x, y) is the triangle with vertices

{(0, 0), (−d, 0), (0, −d)}, denoted by T ∗
d . (The Fig. 5 is T ∗

4 )

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

•

• •

Figure 5. Newton polygon of P ∗
4 .

Example VII.5.10. The Newton polygon of the product of xiyj and P ∗
d (x, y) is the triangle

T ∗
d which is translated respectively by i steps in the horizontal axis, and j steps in the vertical

axis.

In Eq. (III.2.3) we searched for a good candidate for i and j such that Pd(x, y)+xiyjP ∗
d (x, y)

factorizes into two univariate polynomials H and Q. The lemmas and examples mentioned in
this Appendix helped us to compare the Newton polygons of the two sides of the equality and
guess a good candidate. Since the Newton polygon of the R.H.S is a rectangle, to provide
the same situation for the L.H.S we searched for i, j such that xiyjP ∗

d (x, y) does not have any
denominator. Finally, in Lemma III.2.3, we proved that if i = d + 1 and j = d, the desired
properties are verified.

We have seen many different examples of Newton polygones, especially related to Pd(x, y).
According to Lemma VII.5.5, in some generic cases the genus of the algebraic curve can be
computed using the interior lattice point of the Newton polygon. One may ask the natural
question about the genus of Pd.

Proposition VII.5.11. The genus of Pd is (d−1)(d−2)
2 .
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Proof. The number of lattice points inside NPd
is (d−1)(d−2)

2 . To see that let d > 3 and
count all the integer points (i, j) inside NPd

(for d = 1, 2 is clear). They are the points (i, j)
for which i + j = k, 2 ≤ k ≤ d − 1 with i > 0, j > 0. Thus, the number of the solutions is(k−2+(2−1)

2−1
)

= k − 1, so we have ∑d−1
k=1(k − 1) = (d−1)(d−2)

2 .
The polynomial associated with each face of NPd

is in fact 1 + t + t2 + · · · + td, which is equal
to td+1−1

t−1 and all its roots are roots of unity and they are distinct. Therefore according to
Lemma VII.5.5, the genus of Pd is equal to the number of the interior lattice points which is
(d−1)(d−2)

2 . □

An important remark from the previous observation is that when d goes to infinity the
genus of Pd goes to infinity as well. A polynomial whose Newton polytope has all the side
polynomials with only roots of unity is called tempered, so Pd is a tempered polynomial.

VII.6. A local estimator of the Concave and Convex functions

One of the main results of this thesis is the computation of the limit of m(Pd), which is
done in Chapter III. The computation of the limit is done in Chapter IV (also it is a partial
result of Chapter V). In Chapter IV, we represented two different methods to do so. A direct
computational method and a short method based on the generalization of the theorem of Boyd-
Lawton. To follow the computations done in the direct method we need some prerequisites
about concave and convex functions. This section is devoted to introducing these prerequisites.
The domain of a convex or a concave function is a convex set. Thus, to begin this section
we introduce the concept of a convex combination of a set of finite points which let us define
convex sets.

Definition VII.6.1. A convex combination of the points X1, . . . , Xn ∈ X is a point of the
form α1X1 + α2X2 + · · · + αnXn where αi ≥ 0 and α1 + α2 + · · · + αn = 1.

The adjective convex is used in the above definition and is also used to describe a set or
even a function. Using the previous definition, a set C of a vector space S is convex if the
affine combination (1 − t)x + ty belongs to C, for all x and y in C, and t in the interval [0, 1].
Since the affine combination of two points is the line segment connecting them, one can define
a convex set equivalently as follows:

Definition VII.6.2. Let S be a vector space or an affine space over the real numbers. A
subset C of S is convex if, for all x and y in C, the line segment connecting x and y is included
in C.

According to the above definition the empty set and the whole space are convex. A Singleton
is convex. Obviously the set which contains x, y and the line segment connecting x and y is
convex. Triangles and squares are important example of convex sets which we used the most.
In fact the concave functions (or even affine see Proposition VII.6.8) that were studied in
Chapter IV are defined over squares or triangles. Let us recall the definition of convex and
concave functions as well.

Definition VII.6.3. Let f : X → R be a multivariate function where X ⊆ Rn is a convex set:
• f is called convex if:

∀x1, x2 ∈ X, ∀t ∈ [0, 1] : f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2).
• f is called strictly convex if:

∀x1 ̸= x2 ∈ X, ∀t ∈ (0, 1) : f(tx1 + (1 − t)x2) < tf(x1) + (1 − t)f(x2).
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• A function f is said to be (strictly) concave function if −f is (strictly) convex.

In fact, the above inequalities can be easily generalized to any convex combinations of
points. For twice differentiable functions we have a criterion to check their concavity, which is
explained in the following lemma. For a proof a see [QHA13].

Lemma VII.6.4 ([QHA13]). Let X ⊆ Rn is an open convex set and f : X → R is a twice
differentiable function. Then, f is concave if the Hessian matrix of f is negative semi-definite
for all values of x1, x2, . . . , xn ∈ X.

As a simple example of a concave function consider f(x, y) = y − x2. The Fig. 6 shows
the graph of f . As we can see in Fig. 6 the tangent plane at a point is above the graph of f .

Figure 6. The tangent plane of the concave function f(x, y) = y − x2 is above
the graph of f .

This is not surprising and even if we change the point again the tangent plane of f is above
the graph. This is an important property of concave functions.

Proposition VII.6.5. [BA13, Page 81 Theorem 1] Let f be a differentiable concave function,
so the tangent plane to the graph of f at (x0, y0) is above its graph.

Proof. Since f(x0, y0)+ ∂f
∂x |(x0,y0)(x−x0)+ ∂f

∂y |(x0,y0)(y −y0) is the equation of the tangent
plane of f at (x0, y0), we prove that for any (x, y) in the domain of f we have:

f(x, y) ≤ f(x0, y0) + ∂f

∂x
|(x0,y0)(x − x0) + ∂f

∂y
|(x0,y0)(y − y0).

To prove that we define a new function g(λ) as follows:
g(λ) := f((1 − λ)(x0, y0) + λ(x, y)).

Since f is concave, g is as well, and we have g(λ) ≥ (1 − λ)f(x0, y0) + λf(x, y), which implies:
g(λ) ≥ f(x0, y0) + λ(f(x, y) − f(x0, y0)).
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As we can see g(0) = f(x0, y0), therefore:

g(λ) − g(0) ≥ λ(f(x, y) − f(x0, y0)).

In other words for all λ ∈ (0, 1] we have:
g(λ) − g(0)

λ − 0 ≥ f(x, y) − f(x0, y0).

Thus when λ → 0 we have:

g′(0) = lim
λ→0

g(λ) − g(0)
λ − 0 ≥ f(x, y) − f(x0, y0).

Let X(λ) = x0 + λ(x − x0) and Y (λ) = y0 + λ(y − y0), so X(0) = x0 and Y (0) = y0. Then by
using the chain rule for computing g′(λ), we have:

g(λ) = f((x0 + λ(x − x0), y0 + λ(y − y0)),

g′(λ) = ∂f

∂x
|(X(λ),Y (λ))(x − x0) + ∂f

∂y
|(X(λ),Y (λ))(y − y0),

g′(0) = ∂f

∂x
|(x0,y0)(x − x0) + ∂f

∂y
|(x0,y0)(y − y0).

then we have:

f(x, y) ≤ f(x0, y0) + ∂f

∂x
|(x0,y0)(x − x0) + ∂f

∂y
|(x0,y0)(y − y0).

□

We took advantage of this property of concave functions in Chapter IV to introduce an
upper estimator for vol which is a concave differentiable function inside T . For convenience,
let us fix the following notation for the equation of the tangent plane.

Notation VII.6.6. Let f(x, y) be a differentiable function, so the equation of the tangent
plane of f at (x0, y0) is denoted by Tangf (x0, y0).

In Definition II.2.9 affine transformations were introduced. In the following lemma we
characterize them using the concave and convex functions.

Lemma VII.6.7. [HW11, Theorem 10.2.1] The transformation f is affine if and only if it is
both convex and concave.

Proof. In order to show that a convex and concave function f is an affine function, it
is sufficient to show that g(X) := f(X) − f(0) (which is also both convex and concave, and
satisfies g(0) = 0) is a linear transformation. For t > 0 we can write X = 1

t .(tX) + (1 − 1
t )0, so

we have:

g(X) = g(1
t
(tX) + (1 − 1

t
)0)

[1]
= 1

t
g(tX) + (1 − 1

t
)g(0) = 1

t
g(tX).

In [1] we used the fact that g is concave so it should satisfy the inequality in Definition VII.6.3.
It is also convex hence it satisfies the reverse inequality as well so we have:

tg(X) = g(tX).

The last equality, tg(X) = g(tX), shows that g is linear, hence f is affine.
For the reverse we consider an affine function A(x) = Mx + B, where M and B are matrices.

135



Since the multiplication of matrices is distributive with respect to addition, we have:

A(
n∑

i=1
λiXi) = M

n∑
i=1

λiXi + B =
n∑

i=1
MλiXi + B =

n∑
i=1

λiMXi + B
[2]
=

n∑
i=1

λiMXi +
n∑

i=1
λiB =

n∑
i=1

λi(MXi + B) =
n∑

i=1
λiA(Xi).

In [2] we used that ∑n
i=1 λi = 1. The last equality shows that A is a concave and a convex

function. □

In Proposition VII.6.5, we introduced an upper estimator for a concave function at certain
point, namely the tangent plane at that point. In Proposition VII.6.8 we introduce a local
under estimator for a concave function by using affine functions. To visualize the following
proposition see Fig. 7. We can find the graph of an affine function (the pink triangle) which is
an under estimator for the concave function f(x, y) = y − x2. For more information about this
regard see [Mur10, Theorem 2.1].

Figure 7. The affine under estimator of f(x, y) = y − x2.

Proposition VII.6.8. Let f : R2 → R be concave, and such that the triangle with vertices a, b
and c is contained in the domain of f . There exists a unique affine function A : R2 → R, such
that A(a) = f(a), A(b) = f(b), A(c) = f(c) and for any point p in the triangle with vertices
a, b, c we have :

A(p) ≤ f(p).

Proof. For the moment suppose that the affine function A with A(a) = f(a), A(b) =
f(b), A(c) = f(c) exists. Since a triangle is a convex set, for any point p inside the triangle abc,
there exists λ1, λ2, λ3 ∈ R+ such that λ1+λ2+λ3 = 1 and p = λ1a+λ2b+λ3c. According to the
concavity of f we have f(p) = f(λ1a+λ2b+λ3c) ≥ λ1f(a)+λ2f(b)+λ3f(c). Moreover, A is affine
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and according to Lemma VII.6.7 we have A(p) = A(λ1a+λ2b+λ3c) = λ1A(a)+λ2A(b)+λ3A(c).
Since A(a) = f(a), A(b) = f(b) and A(c) = f(c) we have:

A(p) ≤ f(p).
To prove the existence and the uniqueness of the affine function A : R2 → R we introduce the
matrix M := [m11m12] and the constant C such that:

A(x, y) = [m11m12]


x

y


+ C = m11x + m12y + C.

Therefore A(x, y) is the equation of a plane in R3. The conditions A(a) = f(a), A(b) = f(b)
and A(c) = f(c) are equivalent to the fact that the plane is passing through the points
(a, f(a)), (b, f(b)) and (c, f(c)), and a, b, c are not collinear. Therefore we can uniquely de-
termine this plane. □

In Definition IV.2.1 we introduced the function vol, which is concave over T = T1 ∪ T2. For
the definition of T1 and T2 we refer to Lemma IV.3.6. We finish this appendix by proving the
following lemma which is needed for the computation done in Observation IV.3.3. The proof
is just a computation and can be basically deduced from Proposition VII.6.8 and properties of
affine function.

Lemma VII.6.9. Let χ be the affine under estimator of the concave function vol(θ, α)|T1∪T2
on the triangle [a, b, c] ∈ T1 ∪ T2, explained in Proposition VII.6.8, then we have:∫∫

[a,b,c]

χ(θ, α)dA = area[a, b, c]
(1

3 vol(a) + 1
3 vol(b) + 1

3 vol(c)
)

.

Proof. We assume that [a, b, c] belongs to T1 and prove the above lemma (the other case
is similar). The vertices a, b, c are the points in R2 with the following coordinates:

• a = (θ0, α0) and χ(θ0, α0) = vol(a),
• b = (θ0, α0 + 2π

d+1) and χ(θ0, α0 + 2π
d+1) = vol(b),

• c = (θ0 + 2π
d+1 , α0) and χ(θ0 + 2π

d+1 , α0) = vol(c).
Then we have:

∫∫
[a,b,c]

χ(θ, α)dA =
α0+ 2π

d+1∫
α0

θ0+α0+ 2π
d+1 −α∫

θ0

χ(θ, α)dθdα.(VII.6.1)

We use a change of variables in order to simplify the computation of the integral. To do
so, consider the following transformation;

• θ = f1(s, t) = θ0 + 2π
d+1s,

• α = f2(s, t) = α0 + 2π
d+1 t.

The Jacobian of the transformation is as follows:

∂(θ, α)
∂(s, t) =

 ∂θ
∂s

∂θ
∂t

∂α
s

∂α
∂t

 =

 2π
d+1 0

0 2π
d+1

 = 4π2

(d + 1)2 .
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Notice that with this transformation the triangle with vertices {(0, 0), (0, 1), (1, 0)} denoted by
△ in the st-plane is sent to the triangle (a, b, c) in the θα-plane. Therefore, we have:

α0+ 2π
d+1∫

α0

θ0+α0+ 2π
d+1 −α∫

θ0

χ(θ, α)dθdα =
∫∫

[a,b,c]

χ(θ, α)dA
[1]
=
∫∫
△

χ(f1(s, t), f2(s, t)) |∂(θ, α)
∂(s, t) | dĀ

= 4π2

(d + 1)2

1∫
0

1−t∫
0

χ(θ0 + 2π

d + 1s, α0 + 2π

d + 1 t)dsdt.

Here, we used dĀ in st-integral above after [1] to denote that it will be in terms of ds and
dt once we convert to two single integrals rather than dθ and dα, which we used for dA. We
notice that the point (θ0 + 2π

d+1s, α0 + 2π
d+1 t) can be written as the following affine combination

of the points in R2 : (1 − t − s)(θ0, α0) + t(θ0 + 2π
d+1 , α0) + s(θ0, α0 + 2π

d+1). Then, by using the
property of affine function from Lemma VII.6.7, we have:

χ(θ0 + 2π

d + 1s, α0 + 2π

d + 1 t) = χ
(
(1 − t − s)(θ0, α0) + t(θ0 + 2π

d + 1 , α0) + s(θ0, α0 + 2π

d + 1)
)

= (1 − t − s)χ(θ0, α0) + tχ(θ0 + 2π

d + 1 , α0) + sχ(θ0, α0 + 2π

d + 1)

= (1 − s − t) vol(a) + t vol(b) + s vol(c).
We compute the double integral:

4π2

(d + 1)2

1∫
0

1−t∫
0

χ(θ0 + 2π

d + 1s, α0 + 2π

d + 1 t)dsdt

= 4π2

(d + 1)2

1∫
0

1−t∫
0

(
(1 − s − t) vol(a) + t vol(b) + s vol(c)

)
dsdt

= 4π2

(d + 1)2

1∫
0

1−t∫
0

(
(1 − t) vol(a) + t vol(b)

)
dsdt + 4π2

(d + 1)2

1∫
0

1−t∫
0

s(vol(c) − vol(a))dsdt

= 4π2

(d + 1)2

1∫
0

[s
(
(1 − t) vol(a) + t vol(b)

)
]1−t
0 dt + 4π2

(d + 1)2

1∫
0

[s
2

2 (vol(c) − vol(a))]1−t
0 dt

= 4π2

(d + 1)2

1∫
0

(
(1 − t)2 vol(a) + (1 − t)t vol(b)

)
dt + 4π2

(d + 1)2

1∫
0

(1 − t)2

2 (vol(c) − vol(a))dt

= 4π2

(d + 1)2

1∫
0

((1 − t)2

2 vol(a) + (1 − t)2

2 vol(c) + t(1 − t) vol(b)
)
dt

= 4π2

(d + 1)2 [12(t − t2 + t3

3 ) vol(a) + 1
2(t − t2 + t3

3 ) vol(c) + ( t2

2 − t3

3 ) vol(b)]10

= 4π2

(d + 1)2
(1
6 vol(a) + 1

6 vol(b) + 1
6 vol(c)

)
= area[a, b, c]

(1
3 vol(a) + 1

3 vol(b) + 1
3 vol(c)

)
.
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Finally we have: ∫∫
[a,b,c]

χ(θ, α)dA = area[a, b, c]
(1
3 vol(a) + 1

3 vol(b) + 1
3 vol(c)

)
.

□

VII.7. Extended Euler– Maclaurin formula

The aim of the last section of the Appendix is to introduce the basic definitions for present-
ing the Euler-Maclaurin summation formula for smooth and certain types of singular functions.
In Chapter V we computed the asymptotic expansion of m(Pd) using the Euler–Maclaurin
method for functions with a singularity. In mathematics, the Euler-Maclaurin formula is a for-
mula for the difference between an integral and a closely related sum. As we know a Riemann
sum for a function is a certain kind of approximation of the integral of the function by a finite
sum. Therefore, for a definite integral we can define a Riemann sum to approximate it and then
by using the Euler–Maclaurin formula we can measure the error between the exact value of
the integral and the value of Riemann sum. The Euler–Maclaurin summation formula is
a method for generating an asymptotic expansion for a function. An asymptotic expansion
of a given function f in a fixed neighborhood is a finite sum of functions which gives a good
approximation of the behavior of f in the considered neighborhood. Since the sum is finite, the
question of convergence does not arise. However, we sometimes speak of “asymptotic series”
for a sum of an infinity of terms. This infinite sum is most often formal, because the series is
generally divergent.

In Chapter V, using the Euler–Maclaurin summation formula we computed the asymptotic
expansion of m(Pd) − m(P∞). We basically refer to the article of Sidi and Israeli [SI88] for
Euler–Maclaurin formulas. However their article is based on the work done by Navot in [Nav62]
and [Nav61]. We notice that we introduce the formulas mentioned in [SI88] only for functions
defined on [0, 1], with f(0) = f(1) = 0, since the function we work with in Chapter V has this
property.

Proposition VII.7.1 ([SI88]). Let f(x) be 2m times differentiable on [0, 1] with f(0) = f(1) =
0, then ∫ 1

0
f(x)dx − 1

d

d∑
j=0

f( j

d
) =

m−1∑
µ=1

B2µ

(2µ)! [f
(2µ−1)(0) − f (2µ−1)(1)] 1

d2µ
+ O( 1

d2m
),(VII.7.1)

where Bk is the kth Bernoulli number which will be introduced in Definition VII.7.2.

We do not need the explicit formula of the error terms in our computation, but for more
information see [SI88, Theorem 1]. In the following, we introduce Bernoulli numbers and then
we are able to introduce the Euler–Maclaurin formula for some special type of singular functions
as well.

VII.7.1. Bernoulli numbers. Many characterizations of the Bernoulli numbers have
been found in the last 300 years, and any could be used to introduce these numbers. Here
we introduce only the recursive definition and some explicit formulas.

Recursive definition: Here we give a recursive definition for Bernoulli numbers.
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Definition VII.7.2 ([Lar19]). Bernoulli numbers obey the sum formula:

B0 = 0 and
n∑

k=0

(
n + 1

k

)
Bk = n + 1 for n ≥ 1.(VII.7.2)

See [Lar19, Proposition 4.1] for more information. One of the most important facts about
Bernoulli numbers is the following property that we use in our computations in Chapter V.

Fact VII.7.3. [Mol12, Proposition 13.3.4] For every odd n > 1, Bn = 0.

Moreover, for every even n > 0, Bn is negative if n is divisible by 4 and positive otherwise.
The first few Bernoulli numbers used frequently in our computations are:

B1 = 1
2 , B2 = 1

6 , B3 = 0, B4 = − 1
30 .

Eq. (VII.7.2) is a valuable recurrence relation which proves one of the key properties of the
Bernoulli numbers that they are rational.

Remark VII.7.4. Notice that there are two conventions for Bernoulli numbers used in the
literature, denoted by B−

n and B+
n ; they differ only for n = 1, where B−

1 = −1/2 and B+
1 =

+1/2. In this thesis, we work with B+
n and denoted by Bn, unless mention that the preference

convention is changed.

Explicit formulas: Here we give an explicit definition of Bernoulli numbers:

Fact VII.7.5 ( [Hig70]). An explicit formula for the Bernoulli numbers is as follows:

B−
n =

n∑
k=1

k∑
v=1

(−1)v

(
k

v

)
vn

k + 1 .

The Bernoulli numbers can be expressed in terms of the Riemann Zeta function. By means
of the functional equation and the Gamma reflection formula the following relation can be
obtained [Arf85]:

B2n = (−1)n+12(2n)!
(2π)2n

ζ(2n) for n ≥ 1.

Fact VII.7.6. From the above equation, we conclude that the values of the Zeta function
for positive even numbers are irrational, since Bernoulli numbers are rational and they are
multiplied by powers of π and some non-zero rational numbers.

VII.7.2. Euler– Maclaurin formula for the function with singularities.

Proposition VII.7.7 ([SI88]). Let f(x) be 2m times differentiable on [0, 1] and let F (x) =
log(x)f(x) with F (0) = F (1) = 0, then∫ 1

0
F (x) dx − 1

d

d∑
j=0

F ( j

d
) =

−
m−1∑
µ=1

B2µ

(2µ)!F
(2µ−1)(1)

( 1
d2µ

)
+

2m−1∑
µ=0

[ζ ′(−u) + ζ(−µ) log(d)]f
(µ)(0)
µ!

( 1
dµ+1

)
+ O( 1

d2m
),

where ζ ′(t) = dζ(t)/dt.

For more information about the reminder see [SI88, Theorem 3]. With the notation used
in the article of Sidi and Israeli, we only stated the theorem for the case S = 0.
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