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à Michel qui était si amateur de Savoir
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Pierre-Alain, Silvia...
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moi, m’ont aidé d’une façon ou d’une autre. A tout ceux que
j’ai cités et ceux que je n’ai pas cités merci!

5



Résumé

Les espaces de modules de Riemann répondent au problème de
la classification des surfaces de Riemann compactes d’un genre
donné. Le sujet de cette thèse est la cohomologie de l’espace des
modules des courbes d’un genre donné avec un certain nombre
de points marqués. La description de cet anneau a été initiée
par D. Mumford puis C. Faber avait proposé une description
de l’anneau tautologique des espaces de modules sans points
marqués. Une première source de relations provient des relations
A. Pixton démontrées par A. Pixton, R. Pandharipande et D.
Zvonkine mais on ne sait pas si elles sont complètes. Une autre
source de relations utilisée dans ce travail sont les relations de A.
Buryak, S. Shadrin et D. Zvonkine. Avant cette thèse, il y avait
peu de résultats sur l’anneau tautologique d’espaces de mod-
ules de courbes avec un nombre quelconque de points marqués.
Cette thèse donne une description complète des l’anneaux tau-
tologiques des espaces de modules de courbes de genres 0, 1, 2,
3 et 4.

Un des résultats ayant demandé beaucoup de travail est le
groupe de degré 2 de l’anneau tautologique des espaces de mod-
ules de courbes lisses de genre 4. Ce groupe demande un travail
sur l’annulation de certaines classes tautologiques sur le bord de
la compactification de Deligne-Mumford de l’espace des modules
en plus d’un astucieux travail numérique.

L’espace des modules des courbes réelles de genre 0 et sa
théorie de l’intersection sont également étudiés. On peut alors
démontrer plusieurs résultats analogues à ceux obtenus dans le
cas complexe comme l’équation de la corde. On démontre une
formule donnant les nombres d’intersection.
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Summary

The problem of the moduli spaces of compact Riemann surfaces
is the problem of the classification of compact Riemann surfaces
of a certain genus. The topic of this thesis is the cohomology
of the moduli spaces of curves of a certain genus with marked
points and more precisely its subbring called tautological ring.
The description of the tautological ring has been initiated by D.
Mumford, then C. Faber conjectured a description of the moduli
space of curves without marked points. A source of tautological
relations are Pixton’s relations proven by A. Pixton, R. Pab-
ndharipande and D. Zvonkine. Another source of relations are
relations of A. Buryak, S. Shadrin and D. Zvonkine. Before this
thesis, there were only few results on the tautological ring of
curves with any number of marked points. This thesis gives a
complete description of the tautological rings of moduli curves
of genera 0, 1, 2, 3 and 4 with any number of marked points.

A result which needed a lot of work is the group of degree 2
of the tautological ring of the moudli space of smooth curves of
genus 4. We need to work on the vanishing of some tautological
classes on the boundary of the Deligne-Mumford compactifica-
tion of the moduli space of curves and a clever numerical work.

The moduli space of real curves of genus 0 and its intersection
theory are also studied. Then we can show several results which
are analogous to results in the complex case like the string equa-
tion. One result of this thesis is a formula giving intersection
numbers of products of xi classes.
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1 Introduction

1.1 Tautological rings of moduli spaces

The main topic of this PhD is the cohomology ring of the mod-
uli space Mg,n of genus g smooth curves with n marked points,
more precisely, its subring called the tautological ring and de-
noted R∗(Mg,n) ⊂ Heven(Mg,n,Q).

The study of the tautological ring has been initiated by
D. Mumford in [30]. In 1999, C. Faber computed the tauto-
logical rings of the moduli space Mg of smooth curves without
marked points for g ≤ 15 [9]. Building on this work, Faber and
Zagier conjectured a set of relations between the tautological
classes of Mg, namely the κ-classes; these were later proven to
be true relations by R. Pandharipande and A. Pixton [31] using
localization on the space of stable quotients.

A generalization of these relations to the spaceMg,n of stable
curves was proposed by A. Pixton in [33]. These conjectural
relations were proven to be true relations by R. Pandharipande,
A. Pixton, and D. Zvonkine in [32]. The proof is based on the
study of a cohomological field theory obtained from Witten’s
r-spin classes (see [36], [34], [3], [29], [10] for details about these
classes). Relations on Mg,n can be obtained by restriction of
these relations from Mg,n.

The tautological ring of Mg,n is generated by tautological
classes ψ1, . . . , ψn ∈ R1 associated with the marked points and
by the classes κm ∈ Rm for m ≥ 1 (see Sections 3.2.2, 3.2.3).
Madsen and Weiss [27] proved that there are no relations be-
tween these classes in degree d ≤ g/3. Moreover, for an integer
d satisfying 1 ≤ d ≤ g/3, we have H2d(Mg,n,Q) = Rd(Mg,n)
and H2d−1(Mg,n,Q) = 0.

Building on E. Looijenga’s work [26], E. Ionel [18] proved
the following vanishing property: Rd = 0 for d ≥ g ≥ 1. The
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rank of the group Rg−1(Mg,n) is known to be equal to n for
any g ≥ 2. Moreover, the classes ψg−1

i form a basis of this space,
and an explicit expression in this basis of all other elements is
known. Following a conjecture by D. Zvonkine this was proved
by A. Buryak, S. Shadrin, and D. Zvonkine in [2].

1.2 Main results

This thesis contains two main results:

• a complete description of the tautological ring R∗(Mg,n)
for g ≤ 4 and any n;

• a computation of intersection numbers of Stiefel-Whitney
classes on the real genus 0 moduli space M0,n(R).

The rings R∗(Mg,n) for g ≤ 4. An element of the tautological
ring can be shown to vanish by proving that it lies in the span
of Pixton’s tautological relations restricted to Mg,n. On the
other hand, since the top degree (that is, degree g − 1) part of
the tautological ring is explicitly known by [2], one can show
that an element of Rd(Mg,n) does not vanish by proving that its
product with a well chosen element of Rg−1−d(Mg,n) does not
vanish in Rg−1(Mg,n). Thus the tautological ring is in a way
“bounded” from above and from below. It turns out that for
g ≤ 4 these bounds coincide with each other; in other words,
every element that cannot be shown to vanish can be shown to
not vanish and vice versa.

Proving this eventually boils down to computing ranks of
large matrices. For instance, in the hardest case, g = 4, d = 2,
one has to compute the rank of a matrix of size(

n(n+ 1)

2
+ 1

)
× (n2 + 1).
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This involves the following steps. One needs to extract a well-
chosen square matrix out of the rectangular matrix above; find
a family of eigenvectors of this matrix (treated as the matrix of
a linear map); find a family of invariant planes of the matrix;
show that the determinant on each invariant plane does not
vanish; determine the span of the eigenvectors and invariant
planes; determine the action of the linear map in the quotient
space by this span; show that the determinant of the linear map
on the quotient space does not vanish; treat differently the cases
where, due to a numerical exception, one of the invariant planes
contains one of the eigenvectors. It would be interesting to find
a geometric interpretation of all these eigenvectors and invariant
planes, but so far we do not have any.

Denote by rdg(n) the rank of Rd(Mg,n).

Theorem 1. We have

r0
1(n) = 1,
r0

2(n) = 1, r1
2(n) = n,

r0
3(n) = 1, r1

3(n) = n+ 1, r2
3(n) = n,

r0
4(n) = 1, r1

4(n) = n+ 1, r2
4(n) = n(n+1)

2 + 1, r3
4(n) = n.

As a by-product of our computations we also show that in
genus 3 and degree 2, the relations of Buryak-Shadrin-Zvonkine
are obtained from Pixton’s relations by a change of variables
whose coefficients are polynomials in n.

Intersection numbers on M0,n(R). On the real moduli space
writtenM0,n(R) of genus 0 stable curves one defines n real line
bundles Li: they are the cotangent line bundles to the marked
points. Denote by ξi ∈ H1(M0,n,Z/2Z) the first Stiefel-Whitney
class of Li. These classes are the real analogs of ψ-classes, ex-
cept that they belong to H1 instead of H2 and are Z/2Z-valued
rather than Z-valued. The question is then to find the intersec-
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tion number
ξd11 . . . ξdnn ∈ Z/2Z

for d1 + · · ·+ dn = n− 3.
The intersection theory of the real genus 0 moduli space was

extensively studied by P. Etingof, A. Henriques, J. Kamnitzer,
and E. M. Rains [6]; however the natural question of finding the
above intersection number was not addressed.

Write every integer di in the binary system and denote by
δ

(i)
j the j-th digit of di from the end. For instance, if di = 6, we

have δ
(i)
0 = 0, δ

(i)
1 = 1, δ

(i)
2 = 1, δ

(i)
j = 0 for j ≥ 3.

Theorem 2. Let d1, . . . , dn be nonnegative integers such that∑n
i=1 di = n− 3. The intersection number

ξd11 . . . ξdnn ∈ Z/2Z

is equal to 1 if and only if we have
n∑
i=1

δ
(i)
j ≤ 1

for every j ≥ 0. Otherwise the intersection number vanishes.

An equivalent way to formulate this theorem is to say that
the intersection number is equal to 1 if there are no carryovers
in the binary addition of the integers di, and vanishes as soon
as there is at least one carryover.

The proof of this theorem is based on the string equation.
The proof of the string equation for the ξ-classes is very sim-
ilar to its proof in the classical case of ψ-classes; on the other
hand, it is easy to see that the intersection numbers are uniquely
determined by the string equation.

1.3 The organization of the thesis

In Sections 2 and 3 we introduce the moduli spaces of Riemann
surfaces with marked points and their tautological rings. The
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next two sections contain the study of the tautological rings in
low genus: g ≤ 3 in Section 4 and g = 4 in Section 5. Finally,
Section 6 contains the computations of intersection numbers of
Stiefel-Whitney classes on real genus 0 moduli spaces.
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2 Moduli spaces

2.1 Preliminaries

Definition 1. A locally small category is a class of objects C
with a set of morphisms HomC(X, Y ) or Hom(X, Y ) assigned
to every pair of objects X, Y ∈ C. For every triple of objects
X, Y, Z ∈ C, a composition map

Hom(X, Y )× Hom(Y, Z)→ Hom(X,Z)

is given. The composition is associative. For any object X, an
element idX ∈ Hom(X,X) called the identity is distinguished.
For any objects X, Y any f ∈ Hom(Y,X) and g ∈ Hom(X, Y )
we have

• idX ◦ f = f ,

• g ◦ idX = g.

All categories we consider will be locally small.

Definition 2. The opposite category Cop of a category C has the
same objects as C, but for two objects A,B we have

HomCop(X, Y ) = HomC(Y,X).

Example 1. The first example of category is the category of sets
Set whose objects are sets and for X, Y ∈ Set a homomorphism

X → Y

is a map from X to Y .

Definition 3. For C,D two categories, we call a functor from C
to D a map

F : C → D
such that an object X ∈ C is sent to an object F (X) ∈ D and
for Y ∈ C, a morphism f ∈ Hom(X, Y ) is sent to a morphism
F (f) ∈ Hom(F (X), F (Y )) such that

16



• If f = idX , F (f) = idf(X).

• For Z ∈ C and g ∈ Hom(Y, Z), F (g ◦ f) = F (g) ◦ F (f).

Definition 4. For C,D two categories and F,G : C → D two
functors we call a natural transformation η : F → G a map from
C → HomD sending X ∈ C to a morphism ηX : F (X) → G(X)
and such that, for Y ∈ C and f ∈ Hom(X, Y ),

ηY ◦ F (f) = G(f) ◦ ηX .

If, for every X ∈ C, ηX is an isomorphism, then we call η a
natural isomorphism or simply isomorphism of functors.

Definition 5. We denote by Fct(C,D) the category of functors
from C to D, the natural transformations being the morphisms
of the category.

Definition 6. An object I in a category C is an initial object if,
for every X ∈ C, Hom(I,X) has exactly one element.

Yoneda’s lemma. Let C be a category, X ∈ C and a functor
A ∈ Fct(Cop,Set). Denote by hX the functor sending an object
Y ∈ C to the object HomC(Y,X) ∈ Set. Then we have

HomFct(Cop,Set)(hX , A) ' A(X).

2.2 Fine and coarse moduli spaces

A moduli problem consists in the classification of objects
(schemes, varieties, sheaves...) and the construction of a struc-
tured set representing the equivalence classes of the objects, the
equivalence relation having to be defined. The structure of this
set should reflect the evolution of the objects. We usually define
the objects over a base topological space B as a map F → B

whose fibers are objects we want to classify and call this map a
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family of the objects of interest over B.

For example, suppose our objects are rational curves with
quadruples of pairwise distinct numbered points. We define a
family of such objects over a base scheme B as a map p : F → B
with four disjoint sections σ1, ..., σ4 such that, for b ∈ B, the
fiber p−1(b) is isomorphic to CP1. Thus (p−1(b), σ1(b), ..., σ4(b))
is a rational curve with four marked points. Two such families
F and F ′ are equivalent if there is an isomorphism φ : F → F ′
such that p′ ◦ φ = p.

The notion of pullback is crucial in the definition of equiva-
lence between families, in order to compare families over differ-
ent base spaces. The notion of equivalence we define should be
stable by pullback. In other words, if F1 and F2 are two equiv-
alent families over a scheme B and f : B′ → B is a morphism,
then f ∗F1 and f ∗F2 are equivalent families over B′.

Now the idea in the construction of a fine moduli space is
to find a universal family U → M . This means that, for any
family F → B, there exists a unique morphism f : B →M such
that F is equivalent to f ∗U .

If such a family exists the space M is called a fine moduli
space of the objects of interest. The points of M parametrize
equivalence classes of objects, that is, any equivalence class of
objects corresponds to a unique point m ∈M .

In the language of categories, a moduli problem is a problem
of representability of a functor from the category of schemes to
the category of sets.

Let S be a scheme. The functor of points of S is defined as
the functor

hS : Sch→ Set

X → Hom(X,S).

18



A functor F is said to be representable if there exists a scheme
M such that F ' hM . In this case, for any scheme X, the
set of equivalence classes of families over X is in a one-to-one
correspondence with the set of morphisms X →M .

Now, families and pull-backs of families give rise to a con-
travariant functor F : Sch → Set which takes a scheme X to
the set of equivalence classes of families over X and a morphism
of schemes f to the pull-back morphism f ∗. Suppose F is rep-
resented by a scheme M . Then, to any family F of objects over
X corresponds a unique morphism f : X → M . This is indeed
a categorical way of saying what has been previously explained.

Fine moduli spaces do not always exist. For instance, in
the case of Riemann surfaces, the existence of a fine moduli
space is prevented by the automorphisms of Riemann surfaces.
In such cases, the moduli functor is not representable, and we
look should look for a different kind of representation where the
object in question is not unique.

Definition 7. Let F be a moduli functor. A coarse moduli space
for F is a pair (M, v) where M is a scheme and v : F → hM is
a natural transformation, moreover this pair should be initial
among all such pairs.

By Yoneda’s lemma, natural transformations hM → hM ′ are
in one-to-one correspondence with morphisms M → M ′; thus
any natural transformation F → hM ′ factors through hM .

2.3 Riemann surfaces

For a topological surface X, and x ∈ X, we call chart the data
of

• a neighborhood U of x,

• a homeomorphic map φ from U to the unit disc of C.
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We say that two charts (U, φ), (U ′, φ′) are compatible if the
maps φ′ ◦ φ−1 and φ ◦ (φ′)−1 are holomorphic on their domains
of definition.

An atlas is a covering of X by compatible charts. Two atlases
are equivalent if the charts are compatible.

Definition 8. A Riemann surface is a topological surface X
endowed with an equivalence class of atlases.

A morphism between two Riemann surfaces X and X ′ is a
map f : X → X ′ such that, for every x ∈ X and two charts
(U, φ) and (V, ψ) around x and f(x), the map ψ ◦ f ◦ φ−1 is
holomorphic.

Theorem 3. Up to isomorphism there exists exactly three con-
nected and simply connected Riemann surfaces:

• the Riemann sphere,

• the complex plane

• or the unit disc in the complex plane.

Every connected Riemann surface is the quotient of one of the
above by a free proper holomorphic action of a discrete group.

From now on we will always assume that our Riemann sur-
faces are connected and compact unless specified otherwise. We
will also refer to Riemann surfaces as complex curves. The genus
of a complex curve is the genus of its underlying topological sur-
face.

Any complex curve of genus 0 is isomorphic to the complex
projective line (also called the Riemann sphere) denoted by CP1

or P1. A curve of genus 1 is called an elliptic curve.
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Definition 9. For n ∈ N, a curve with n marked points is
a complex curve C with n pairwise distinct numbered points
x1, . . . , xn ∈ C. We will write such a curve (C, x1, . . . , xn).

Definition 10. Let (C, x1, ..., xn) and (C ′, x′1, ..., x
′
n) be two

curves with n marked points. An isomorphism between these
two marked curves is an isomorphism φ : C → C ′ such that
φ(xi) = x′i for all i.

Definition 11. A smooth curve (C, x1, ..., xn) of genus g with n
marked points is said to be stable if one of the following equiv-
alent conditions is satisfied:

• 2g − 2 + n > 0,

• |Aut(C, x1, ..., xn)| <∞.

We will prove the equivalence between the two conditions in
Section 2.4.

Definition 12. A smooth curve (C, x1, ..., xn) of genus g with
n marked points is said to be semi-stable if

2g − 2 + n ≥ 0.

From the equivalence between the stability conditions, the
definition of semi-stable curve allow such a curve to have an
infinite automorphism group.

Now we define the moduli space of smooth stable curves with
marked points as a set.
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Definition 13. Let g, n ∈ N such that 2g − 2 + n > 0. We
call the moduli space of smooth curves of genus g with n marked
points the set

Mg,n := {curves of genus g with n marked points}/ ∼,

where ∼ is the relation of “being isomorphic”.

Note that the stability condition excludes the pairs
(g, n) = (0, 0), (0, 1), (0, 2) and (1, 0).

Example 2.
M0,3 Let (C, x1, x2, x3) be a stable curve of genus 0 with three
marked points. We can always find an isomorphism

(C, x1, x2, x3) ' (CP1, 0, 1,∞).

Thus all curves of genus 0 with 3 marked points are isomorphic,
so

M0,3 = {pt}.
M0,4 Let (C, x1, x2, x3, x4) be a curve of genus 0 with 4 marked
points. There exists a unique isomorphism from C to CP1 send-
ing x1 to 0, x3 to 1 and x3 to ∞. The image of x4 is sent
to a λ ∈ CP1 which is unique for each isomorphism class and
cannot be equal to 0, 1 or ∞.

Thus we get
M0,4 = CP1\{0, 1,∞}.
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M1,1 An elliptic curve can be written C/L, where L is a lattice,
that is, a descrete additive subgroup of C isomorphic to Z2. Two
elliptic curves C/L1 and C/L2 are isomorphic if and only if there
exists a complex number z 6= 0 such that L1 = zL2.

Let us choose a direct basis (z1, z2) of L and denote
τ = z2/z1 ∈ H. The group SL(2,Z) of direct basis changes
acts on H via

τ 7→ aτ + b

cτ + d
.

The moduli space M1,1 is the quotient H/SL(2,Z).

The examples above indicate that each moduli space has a
natural topology and that moduli spaces are not necessarily
compact. Later we will describe their compatification Mg,n us-
ing nodal stable curves.

2.4 The stability condition

We will prove the following theorem

Theorem 4. For a compact Riemann surface of genus g, if we
fix n points such that

2g − 2 + n > 0

then the number of automphisms of the surface is finite.

2.4.1 The genus zero case

If we don’t fix any point The group of automorphisms of the
surface is the group of the Möbius transformations and is then
infinite.
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If we fix one point Suppose that a Möbius transformation
az + b

cz + d
fixes z1. Then

az1 + b

cz1 + d
=z1

az1 + b =cz2
1 + dz1

cz2
1 + (d− a)z1 − b =0

We can chose d and a in infinitely many ways to get the same
quantity d−a. Thus the number of automorphisms of CP1 fixing
z1 is infinite.

If we fix two points Let z1 and z2 be two distinct points of CP1

that we want to be fixed. We suppose that z1 = ∞, otherwise
we get this situation applying the automorphism of CP1 defined

by z → 1

z − z1
. Then we consider the homographies z → az+ b,

thus we are looking for a and b in C such that az2 + b = z2,

this is equivalent to
b

1− a
= z2. There is an infinite number of

solutions, then the number of automorphism of CP1 fixing two
points z1 and z2 is infinite.

If we fix three points We know that there is a unique automor-
phism fixing these three points.

2.4.2 The genus 1 case

If we don’t mark any points. An elliptic curve is given by the
quotient of C by a lattice L. The translations of C induce iso-
morphisms of the elliptic curve. Thus the automorphism group
is infinite.

If one point is marked.
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Proposition 1. Let L and M be two lattices in C and let’s
write X = C/L and Y = C/M the corresponding elliptic curves.
Let f : X → Y be a holomorphic nonconstant map. Then f is
unramified.

Proof. An elliptic curve has genus 1, applying the Riemann-
Hurwitz formula we get

degf × 0 +
∑
p∈X

[multp(f)− 1] = 0.

Thus
∑

p∈X [multp(f)− 1] = 0, that is, for any point p ∈ X, we
have multp(f) = 1. Therefore f is unramified.

Proposition 2. Let L and M be two lattices in C. Denote by
(X, x) = C/L and (Y, y) = C/M the quotient elliptic curves
with one marked point each, the marked point being the image
of the lattice. Let f : X → Y be a nonconstant map such that
f(x) = y. Then f is induced by a map g : C → C sending z to
γz for some γ ∈ C∗ such that γ(L) ⊂M .

Proof. We will denote πX : C→ X and πY : C→ Y the natural
projections. By Proposition 1, f is a nonramified covering, so
f ◦ πY is also a nonramified covering and therefore can be lifted
to a map g to the universal covering of Y . Since f(x) = y we
can choose g in such a way that g(0) = 0.

Since f is holomorphic and unramified, so is g. For any l ∈ L,
we have πY ◦ g(l) = f ◦ πX(l) = 0, so g(l) ∈ M and, for any
z ∈ C, f ◦πX(z+ l) = f ◦πX(z) = πY ◦g(z+ l), so πY ◦g(z+ l) =
πY ◦ g(z). Thus g(z+ l) = g(z) modulo M , we can write this as
g(z + l)− g(z) ∈M .

Now, for l ∈ L, define the function ωl(z) = g(z + l) − g(z).
Since g is holomorphic, ωl is homolorphic, hence it is continuous.
Since M is discrete, ωl is constant. Thus, for any z ∈ C, we have
ω′l(z) = g′(z+ l)− g′(z) = 0. So g′ is invariant under translation
by lattice points. We write P a fundamental domain of L. P is
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compact so g′(P ) = g′(C) is bounded. By Liouville’s theorem,
g′ is constant. We obtain that, for any z ∈ C, g(z) = γz+ δ, for
some complex numbers γ and δ. Since g(0) = 0, we have δ = 0,
so g(z) = γz.

Proposition 3. Defining f as before and denoting by g the func-
tion inducing f for a certain γ ∈ C, f is an isomorphism if and
only if γL = M .

Proof. Let’s first suppose that f is an isomorphism. There exist
a map p : Y → X such that f ◦ p = idY and p ◦ f = idX . That
map is induced by a map q : C → C such that, for any z ∈ C,
q(z) = δz for some complex number δ such that δM ⊂ L. We
have δ = γ−1, because f and p are inverse to each other. So we
have γδM ⊂ γL ⊂M which gives M ⊂ L ⊂M , so γL = M .
Let’s suppose now that γL = M . Let’s write q the function
z 7→ γ−1z, q induces a map p : Y → X. We have

f ◦ p ◦ πY = f ◦ πX ◦ q = πY ◦ g ◦ q = πY ,

so f ◦ p = idY . In the same way we obtain that p ◦ f = idX .
Then f is an isomorphism.

To study the automorphism group of an elliptic curve we will
need the two next results.

Lemma 1. For an elliptic curve defined by a lattice L, an auto-
morphism is given by a complex number γ. Then ||γ|| = 1 and
γ is a root of unity.

Proof. Let l ∈ L, we write R := ||l|| and B(0, R) the closed disc
centered at the origin of radius R. l ∈ B(0, R) so L∩B(0, R) 6= ∅
and B(0, R) is a compact subset of C, so L∩B(0, R) is finite. Let
ω′ be an element of L of minimal length α. From the previous
proposition, γL = L, then there exist ω ∈ L sucht that γω = ω′.
Since ω′ 6= 0, ω 6= 0 and ||γω|| = α ⇔ ||γ|| = α

||ω|| . α is the

minimum length of the nonzeroes elements of L so ||γ|| ≤ 1.
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On the other hand, γω′ ∈ L\{0}, so ||γω′|| ≥ α. Thus we get
||γ|| ≥ α

||ω′|| = 1. Finally ||γ|| = 1.

Let’s consider ω ∈ L\{0} and let’s write R := ||ω|| and C(0, R)
the circle centered at the origin of radius R. For any k ∈ Z,
||γk|| = 1, then γkω ∈ C(0, R). T := {γkω, k ∈ Z}. We have
T ⊂ L ∩ C(0, R). L is discrete and C(0, R) is compact
then L∩C(0, R) is finite, then T is also finite. Thus there exist
m,n ∈ Z different such that γmω = γnω. Let’s suppose that
n < m and write k := m− n. We have γk = 1. Then γ is a kth
root of unity.

Lemma 2. If γ is a root of unity satisfying the equation

z2 −mz − n

then γ is a kth root of unity for k = 3, 4, or 6.

Proof. We suppose that γ is a primitive kth root of unity. Then
Q(γ) is an extension of Q of degree [Q(γ) : Q] = φ(k), where
φ is the Euler function. Since γ satisfies a quadratic equation
with coefficients in Q, [Q(γ) : Q] ≤ 2. k > 2 so φ(k) > 1, we
obtain φ(k) = 2). Hence k = 3, 4 or 6.

Proposition 4. L = ω1Z + ω2Z, X = C/L, f ∈ Aut0(X), γ
inducing f , we chose an element ω ∈ L of minimal length. Then
γ is of minimal length and L is generated by ω and γω.

Proof. For ω of minimal length and γ of length 1, ||γkω|| has
minimal length. It is now also clear that ωZ + γωZ ⊂ L. Si
there exists m1,m2, n1, n2 ∈ Z such that{

ω = m1ω1 +m2ω2

γω = n1ω1 + n2ω2

Let’s write v := (ω, γω) ∈ C2 and w := (ω1, ω2) ∈ C2.
If v and w are not linearly independent,there exist z0 ∈ C such
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that v = z0ω, this is equivalent to{
ω = z0ω1

γω = z0ω2

Because ω1 and ω2 are linearly independent, these relations
give m1 = n2 = z0 and n1 = m2 = 0, and we obtain

||ω|| = |n1|||ω1|| and ||γω|| = |n2|||ω2||.
By minimality of the lengths of ω and γω, m1 = ±1 and
n2 = ±1, so ω = ±ω and ω2 = ±γω.
If v and w are linearly independent, there is a matrix A such
that detA 6= 0 and v = Aw. We write

M :=

(
m1 m2

n1 n2

)
.

We have | detA| ≥ 1. If | detA| > 1, then ||w|| < ||v|| =
√

2||ω||.
This is in contradiction with the fact that the length of ω is
minimal, hence | detA| = 1, so detA = ±1 and the coefficients
of A−1 are integers. Thus ω1, ω2 ∈ ωZ + γωZ.

In all cases, L ⊂ ωZ + γωZ so L = ωZ + γωZ hence ω and
γω generate L.

2.4.3 The genus 2 case

A theorem due to Hurwitz can be formulated as follows

Theorem 5. X a Riemann surface of genus ≥ 2, then

|Aut(X)| ≤ 84(g − 1)

Proof. We have a projection π : X → X
Aut(X) . We are inter-

ested in the number of sheets of that covering, that number
is the number of automorphisms. Let q ∈ X

Aut(X) and p ∈
π−1(q). For any p′π−1(q) there is a g ∈ Aut(X) such that
g(p′) = p. Now consider h ∈ Stab(p), then g−1hg(p′) = p′,
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hence gStab(p)g−1 ⊂ Stab(p′). Conversely, for f ∈ Stab(p′), the
equality gfg−1(p) = p shows that Stab(p′) ⊂ gStab(p)g−1 and
thus Stab(p′) = gStab(p)g−1. Due to this equality, all elements
of the fiber of q has the same number of stabilizators, we write
that number nq and we are interested in |Aut(X) = nq|π−1(q)|.
Applying Riemann-Hurwitz formula to π we obtain the following
equality

χ(X) = |Aut(X)| · χ
(

X

Aut(X)

)
−
∑
p∈X

(ep − 1).

Here ep denotes the ramification number of the point p ∈ X. If
we denote by g the genus of X and g′ the genus of X

Aut(X) the
previous equality can be rewritten as

2− 2g = |Aut(X)| · (2− 2g′)−
∑

q∈X/Aut(X)

|π−1(q)|(nq − 1),

which is equivalent to

2g − 2 = |Aut(X)| ·

2g′ − 2 +
∑

q∈X/Aut(X)

(
1− 1

nq

) .
Denote by C = 2g′ − 2 +

∑
q∈X/Aut(X)

(
1− 1

nq

)
the factor in

the right-hand side. Since g ≥ 2, it follows that C is positive. We
claim that the smallest possible value for this positive rational
number is 1

42 . Indeed, if g′ ≥ 2 then C ≥ 2. If g′ = 1 then
C ≥ 1

2 , since every summand in the sum is at least 1
2 . Finally, if

g′ = 0, we need to find a collection of positive integers nq such

that
∑(

1− 1
nq

)
exceeds 2 by the smallest possible amount. It

is easy to see that the optimal collection is (2, 3, 7). In this case
we have

C = 2 · 0− 2 +

(
1− 1

2

)
+

(
1− 1

3

)
+

(
1− 1

7

)
=

1

42
.
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Thus we have 2g − 2 ≥ 42 · |Aut(X)|, or

|Aut(X)| ≤ 84(g − 1).

Remark 1. The automorphism groups of curves up to genus 3
are described in [25]. In particular, the so-called Klein quartic
is shown to be the unique genus 3 curve whose automorphism
group has a cardinal equal to the Hurwitz bound 84(g − 1) =
168. The automorphism groups of curves of genus 4 have been
described by the same authors in [23] and [24]. Later work based
on these two articles is presented in [19].

2.5 Nodal curves

Definition 14. A node of a complex algebraic curve is a point
which has a neighborhood which is isomorphic to a neighbor-
hood of the origin in the analytic space given by the equation
xy = 0 in C2.

We have the following picture of a node

Definition 15. A nodal curve is a complex algebraic curve
whose only singularities are nodes.

Now the term curve can refer to a smooth curve or a nodal
curve. The definition of the genus remains the same, however,
we need to change a little bit the definitions of marked pointed
curve and the stability condition.
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Definition 16. For n ∈ N a curve with n marked points is a
curve C with n of its smooth points x1, ..., xn pairwise distinct.

Definition 17. For g, n ∈ N, an n-pointed curve of genus g
(C, x1, ..., xn) is said to be stable if its automorphism group is
finite. The equivalent condition has to be changed. Let’s write
C1, ..., Cr, where r ∈ N, the irreducible components of the curve.
For any i ∈ N such that 1 ≤ i ≤ r, let’s write gi the genus of Ci
and

ni = #{the number of marked points}
+#{the number of nodes on Ci}.

The curve (C, x1, ..., xn) is stable if, for any i ∈ N such that
1 ≤ i ≤ r, we have 2gi − 2 + ni > 0.

Example 3. The following curve is not stable

while this one is

We have a new way of calculating the genus of a curve.

Definition 18. With the same notations as the previous defi-
nition and denoting δ the number of nodes of (C, x1, ..., xn), the
genus of the curve is

g =
r∑
i=1

gi − r + δ + 1.
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We have now a new moduli space

Definition 19. For g, n ∈ N such that 2g − 2 + n > 0, we
define the moduli space of stable nodal curves of genus g with
n marked points the set

Mg,n := {stable nodal curves of genus

g with n marked points}/ ∼ .

When n = 0, we often write Mg. It is possible to simply
talk about curve without precising whether the curve is stable,
smooth or nodal; we will always deal with stable curve unless
otherwise stated and hopefully the context makes clear whether
the curve is smooth or can have nodes.

Example 4.M0,3: We saw that M0,3 = {pt}, then

M0,3 = {pt}.

M0,4: The problem here was that the marked points are not
allowed to coincide. Let’s see what happens while two marked
points tend to each other. Let (C, x1, x2, x3, x4) be a 4-pointed
curve of genus 0. There is an isomorphism

(C, x1, x2, x3, x4) ' (CP1, 0, 1,∞, λ).

While λ → 0, we obtain (C, x1, x2, x3, x4 = x1), a 4-pointed
curve of genus 0 where the first and the fourth points coincide.
Now, if we make the change of coordinates z 7→ z

t , we have an
isomorphism

(C, x1, x2, x3, x4) ' (CP1, 0,
1

λ
,∞, 1).

When λ→ 0, we obtain (C, x1, x2, x3 = x2, x4), so a curve with
the second and the third points which coincide. The best way
to consider these two cases at the same time is to chose the
following curve as limit when x1 → x4:
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M1,1: The problem was that we couldn’t have τ = ∞, we
solve this problem by adding to M1,1 the class of the following
curve.

We can think of the moduli space of curves of genus g as a
space whose points represent curves which are representants of
their isomorphism classes and that space contains loci represent-
ing curves with nodes, these loci can intersect other kind of loci
of curves with nodes or intersect themselves and, in this case,
presenting twice the same kind of nodes. The following image
is a good representation for g = 2.
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The universal curve is the set of all curves above the moduli
space glued together.

The moduli spaceMg,n was first defined as a Deligne-Mumford
stack as a compactification of Mg,n [4]. This notion will not be
treated here, stacks are shortly presented in [22] Chapter 2 and
the paper [11] tries to make the notion of Deligne-Mumford stack
accessible. In [5], Mg,n is defined as a Deligne-Mumford stack.
Mg,n also has a structure of analytic space [17].
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We can also see Mg,n as an orbifold of dimension 3g − 3 + n
such that the stabilizer of a point [(C, x1, ..., xn)] is the group of
automorphisms of (C, x1, ..., xn), see [16] Section 2.D. The uni-
versal curve Cg,n is also a smooth compact orbifold, its dimension
is 3g − 2 + n.

Example 5. Let’s return to the case of the moduli space of
curves of genus 1 with one marked point. Such a curve is defined
by a lattice L of C and the stabilizer of a lattice is the group of
rotations of C that preserve L.

• For a generic L, the stabilizer is Z/2Z.

• For the lattice represented by (1, i), the stabilizer is Z/4Z.

• For the lattice represented by (1, 1+i
√

3
2 ), the stabilizer is

Z/4Z.

At a point [(C, x1, ..., xn)] corresponding to a curve with-
out nontrivial automorphism, Mg,n is smooth. Around such
a point [(C, x1, ..., xn)], Mg,n is isomorphic to an open sub-
set of C3g−3+n quotiented by the group of automorphisms of
(C, x1, ..., xn) which is trivial... The singularities are the loci
corresponding to curves with at least one nontrivial automor-
phism.

Proposition 5. There is an orbifold morphism

p : Cg,n →Mg,n

such that any stable curve (C, x1, ..., xn) is isomorphic to exactly
one fiber of p, the stabilizer at a point [(C, x1, ..., xn)] ∈Mg,n is
isomorphic to the automorphism group of (C, x1, ..., xn) Aut(C)
and Mg,n is an open dense suborbifold of Mg,n whose preimage
is Cg,n.
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The previous proposition defines Cg,n and Cg,n which are the
universal family for the classifications of, respectively, smooth
curves and nodal curves. We then call them universal curves,
which explains the notations.

We will see it as a projective algebraic variety, the following
theorem allows us to do so.

Proposition 6. (Deligne-Mumford-Knudsen [20],[21]) There ex-
ists a coarse moduli space Mg,n of n-pointed stable curves and
these spaces are projective varieties.

We have
dimCMg,n = 3g − 3 + n.

Riemann knew that number [35].

To each nodal curve we can associate its dual graph.

Definition 20. The dual graph associated to a curve is the graph
such that

• its vertices correspond to the irreducible components of the
curve;

• to each vertex one assigns the genus of the corresponding
component;

• an edge between two vertices corresponds to a node between
the components corresponding to the vertices, in particular,
a loop corresponds to a self-intersection of a component;

• the graph has special half-edges called legs corresponding
to the markings and attached to the vertices whose compo-
nents contain the markings.

The graph is stable if the condition 2g(v) − 2 + n(v) > 0 is
satisfied for every vertex v. Here g(v) is the genus assigned to v
and n(v) is the degree of v.
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Example 6. The following graph

encodes the (topological type of the) following curve

For a given graph Γ, if V (Γ) denotes the set of vertices of Γ,
if gv is the integer attached to the vertex v ∈ V (Γ) and δ is the
number of edges, we have the same formula as previous giving
the genus of the corresponding curve

g =
∑

v∈V (Γ)

gv −#V (Γ) + δ + 1.

Dual graphs are of great use in the study of the moduli spaces
of stable curves. They are an essential tool in the proof of Pix-
ton’s relations[32] which is a crucial result for the work presented
here. A graph Γ corresponds to a stratum of the moduli space
of curves, we define

MΓ :=
∏

v∈V (Γ)

Mg(v);n(v).
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and we have a morphism

ξΓ :MΓ →Mg,n.

2.6 Morphisms of moduli spaces Mg,n

Three types of morphisms between stable curves are interesting
for us. An important operation on curves is the stabilization.
Considering a semi-stable curve, the components keeping the
curve from being stable are spheres with two special points, at
least one of them being a node. If there are component with two
nodes and no other special point, the stabilization contracts all
these components to the nodes connecting them to a stable com-
ponent. We are left with a curve with only the other possibility,
the case where only one semistable component has a special
point being a node and the other being a marked point. The
contraction of the component to the node, which is no longer a
node, becoming the marked point of the component, yields to a
stable curve. That operation can be performed on families [1].

Forgetful map:p :Mg,n+1 →Mg,n.

The forgetful map is the map which forgets the last marked
point and makes the new curve stable by contracting the un-
stable components to the nodes attaching them to the other
components.

becomes
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Attaching maps:
The attaching map of non separating kind is the map which
glues two of the marked points, creating then a new handle to
the curve. Starting from a curve of genus g with n marked
points, we get a curve of genus g + 1 with n− 2 marked points
by identifying the (n−1)th and the nth marked points together.

Example 7. For g = 0 and n = 2

becomes

The attaching map of separating kind glues the last marked
points of two curves. Starting from a pair of curves, one of
genus g1 with n1 marked points and a second one of genus g2

with n2 marked points, we get a curve of genus g1 + g2 with
n1 +n2 relabeled marked points by identifying the n1th point of
the first curve with the n2th marked point of the second curve.
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is sent to

These operations can be performed on families of curves and
thus we have two morphism between moduli spaces

q :Mg,n →Mg+1,n−2

r :Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2.

More details about these properties are explained in [1], Chap
X.
We have the following result about the forgetful map

Proposition 7. The universal curve π : Cg,n+1 →Mg,n and the
forgetful map p : Mg,n+1 → Mg,n are isomorphic as families
over Mg,n.
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3 The tautological ring

3.1 Line bundles over Mg,n

The intersection theory of the moduli space of curves starts with
the definitions of some vector bundles defined over it.

3.1.1 The relative dualizing sheaf

Over Cg,n we can define the line bundle K cotangent to the fibers
of Cg,n →Mg,n. We can extend K to Cg,n. In the local picture
(x, y)→ xy, the sections of K are generated by dx

x and dy
y modulo

the relation
d(xy)

xy
=
dx

x
+
dy

y
= 0.

The line bundle thus obtained is the relative cotangent line bun-
dle over Cg,n.

3.1.2 Line bundles Li

Let i be an integer in {1, ..., n}, we have a section si of
π : Cg,n → Mg,n, sending [(C, x1, ..., xn)] ∈ Mg,n to xi. We de-
fine n line bundles L1, ...,Ln over Mg,n such that Li := s∗i (K).
Then the fiber over [(C, x1, ..., xn)] ∈Mg,n is the cotangent space
of C at the point xi.

3.1.3 The Hodge bundle

Definition 21. We call abelian differential on a stable curve a
meromorphic 1-form such that

• the only poles are at the nodes

• the poles are at most simple

• the residues of the poles on two branches of a node are
opposite to each other.
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Definition 22. The Hodge bundle overMg,n is the vector bun-
dle Λg such that the fiber over a point [(C, x1, ..., xn)] ∈Mg,n is
the vector space of abelian differentials on the curve parametrized
by [(C, x1, ..., xn)].

These are also the sections of K [16] and we have

Λg := π∗(K).

3.2 The tautological classes

We will study a subring of the cohomology ring of Mg,n which
is called the tautological ring. For large g and n, this subring is
smaller than the cohomology ring [15]. However, most of natural
classes lie in the tautological ring and it is not easy to construct
classes lying outside the tautological ring. Methods to find non-
tautological classes can be found in [8] and [14].

We give now a first definition of the tautological ring.

Definition 23. We denote by R∗(Mg,n) the smallest family of
subrings of H∗(Mg,n,Q) stable by pullbacks and pushforwards
along the forgetful and attaching maps. We call R∗(Mg,n) the
tautological ring of the moduli space of curves.

3.2.1 The boundary classes

We present these classes of H∗(Mg,n) at first because we use
them in the next paragraph, they are the classes of the strata
corresponding to curves with nodes. In the Chow ring of Mg,n,
the codimension of a stratum is given by the number of nodes
of the curves it represents. Thus, in cohomology, a stratum
representing curves with one node will lie in H2(Mg,n) and the
stratum of curves whose components have all genus 0 and three
special points has codimension 0 .
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These classes lie in the tautological ring since they are ob-
tained by pushforward of the fundamental class along gluing
maps. There are particular type of boundary classes which are
useful in properties of the tautological ring.

Example 8. • In M0,n, let 1 ≤ i, j, k ≤ n be distinct inte-
gers and let δi|j,k be the locus parametrizing curves of genus
zero with node separating the ith marked point from the
jth and the kth marked point:

We denote [δi|j,k] ∈ H2(M0,n) the Poincaré dual cohomol-
ogy class of δi|j,k.

• In Mg,n, for 1 ≤ i ≤ n − 1, we write δ(i,n) the locus
parametrizing nodal curves of genus g with a genus zero
component with the marked points i and n only:

3.2.2 ψ-classes

For i ∈ {1, ..., n}, we define

ψi := c1(Li) ∈ H2(Mg,n)

and present several properties of these classes.
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Proposition 8. Let π : Mg,n+1 → Mg,n be the forgetful map.
Then we have

π∗(ψi) = ψi − [δ(i,n+1)].

In [36] we have the following proof of this result.

Proof. Let’s write Kn+1 the cotangent bundle along the fibers of
Cg,n+1 →Mg,n+1 and Kn the cotangent bundle along the fibers
of Cg,n → Mg,n. We also write x1, ..., xn+1 disjoint sections of
Cg,n+1 →Mg,n+1 and Ln+1,(i) = x∗i (Kn+1) and Ln,(i) = x∗i (Kn).

Let ψ : Σ′ → Σ be a map between curves and s be a local
holomorphic differential on Σ. ψ∗(s) vanishes on any component
of Σ′ which is mapped to a point in Σ.
Since a nonzero local section s of Kn determines a nonzero local
section x∗i (s) of Ln+1,(i). The section x∗iψ

∗(s) vanishes on δ(i,n+1).
We have x∗iψ

∗ = π∗σ∗i , hence π∗σ∗i (s) vanishes on δ(i,n+1).
We obtain

Ln+1,(i) = π∗Ln,(i) ⊗O(δ(i,n+1)).

from that equality, we have

c1(Ln+1,(i)) = c1(π
∗(Ln+1,(i))) + [δ(i,n+1)].

Proposition 9.

ψiδ(i,n+1) = ψ(i,n+1)δ(i,n+1) = 0.

Proof. The line bundles Li and Ln+1 are trivial on δ(i,n+1).

Proposition 10. For i 6= j,

δ(i,n+1)δ(j,n+1) = 0.

Proof. The intersection of these divisors is empty.
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3.2.3 κ-classes

These classes were introduced and studied in Mumford’s article
[30]. They keep playing an essential role in the description of
the tautological ring. They are defined as follows.
Let p :Mg,n+1 →Mg,n be the forgetful map. Then

κi := p∗(ψ
i+1
n+1) ∈ H2i(Mg,n).

This definition can be generalized as follows.
Let p :Mg,n+l →Mg,n be the forgetful map. For non-negative
integers e1, . . . , el we define

κe1,...,el = p∗
(
ψe1+1
n+1 · · ·ψ

el+1
n+l

)
.

The κ-classes with multiple indices can be expressed as polyno-
mials in the classes κi as follows:

κe1,...,el :=
∑
τ∈Sl

∏
c cycle in τ

κec,

where ec is the sum of the ej appearing in the cycle c.

Computations with κ-classes. Here we will perform several com-
putations with κ-classes that we will use later. First, let us cal-
culate κa,b. In order to stick with the previous notation, we write
e1 := a ans e2 := b and we consider S2, the symmetric group of
order 2 whose elements are (e1 e2) and the identity id.

• (e1 e2) has only one cycle and the sum of the terms of this
cycle is e1 + e2 = a + b. Thus the contribution of this
permutation is κa+b.

• The identity has two cycles of size one, id = (e1)(e2). For
each of these cycles the sum of the terms is equal to its only
element, e1 = a for the first cycle and e2 = b for the second
one, hence the contribution of the identity is κaκb.
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Finally, summing all contributions we obtain

κa,b = κaκb + κa+b.

From this, if a = b = 1, we deduce

κ1,1 = κ2
1 + κ2.

When one of the indices is zero, let’s say b = 0. we have

κa,0 = κaκ0 + κa = (1 + κ0)κa.

This formula will be of great use.
As another example, let’s decompose κ1,1,1. The formula gives

κ1,1,1 =
∑
τ∈S3

∏
c cycle in τ

κec

The elements of S3 are (e1 e2 e3), (e1 e3 e2), (e1 e2), (e1 e3),
(e2 e3), id, where id denotes the identity.

• (e1 e2 e3) has one cycle and the sum of its elements is
e1 + e2 + e3 = 1 + 1 + 1 = 3. Hence this permutation
gives κ3.

• (e1 e3 e2) also gives κ3.

• (e1 e2) has two cycle, (e1 e2) and (e3). The former one gives
κ2 since the sum of its elements is e1 +e2 = 2 and the latter
one gives κ1 since there is only one element corresponding
to e3 = 1. Finally, we make the product of the contributions
of the cycles and we see that this permutation gives κ1κ2.

• (e1 e3) gives κ1κ2 by the same argument.

• (e2 e3) also gives κ1κ2.

• The identity is a composition of three cycles of size 1, the
element of each of these cycles correspond to 1 then each
of them gives κ1. Hence the product gives κ3

1.
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Finally, we have to sum all these contributions and we obtain

κ1,1,1 = 2κ3 + κ3
1 + 3κ1κ2.

In the case of three indices we can calculate that, for a a
natural number, we have

κ0,0,a = (1 + κ0)(2 + κ0)κa.

The case of three indices gives a first example of partial de-
composition. While decomposing κ0,1,1 we get

κ0,1,1 = κ0κ
2
1 + 2κ2

1 + κ0κ2 + 2κ2

we remark that this last expression is equal to (2 + κ0)(κ
2
1 + κ2)

and, having calculated κ1,1 = κ2
1 + κ2, we have

κ0,1,1 = (2 + κ0)κ1,1.

This expression is useful in the study of the tautological rela-
tions. Instead of the completely decomposed expression, we will
also prefer to write

κ0,0,1,1 = (3 + κ0)(2 + κ0)κ1,1.

It can be useful later to rewrite products of κ’s with simple
terms. For example, we take a look at the product κ1κ1,1. Since
we have κ1,1 = κ2

1 + κ2 then κ1κ1,1 = κ1(κ
2
1 + κ2) and, from

κ1,1,1 = 2κ3 +κ3
1 +3κ1κ2, we have κ3

1 = κ1,1,1−2κ3−3κ1κ2. Now
we get easily that κ1,2 = κ3 + κ1κ2, thus κ1κ2 = κ1,2 − κ3 so we
get

κ1κ1,1 = κ3
1 + κ1κ2

= κ1,1,1 − 2κ3 − 3κ1κ2 + κ1κ2

= κ1,1,1 − 2κ3 − 2κ1κ2

= κ1,1,1 − 2κ3 − 2(κ1,2 − κ3)

= κ1,1,1 − 2κ1,2.

These examples are not chosen innocently, we will refer to
them in some calculations, while studying the tautological ring
of the moduli spaces of curves of genus 3 and 4.
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3.2.4 λ-classes

We define the λ-classes as

λi = ci(Λg) ∈ H2i(Mg,n).

Since the Hodge bundle has rank g, for i > g, we have λi = 0.
We have few properties on λ-classes which will be useful later
in the study of R2(M4,n).

Proposition 11. The class λg vanishes on the stratum of Mg,n

parametrizing curves with a nonseparating node.

Proof. Consider the gluing map q :Mg−1,n+2 →Mg,n. The pull-
back q∗(Λg) is a vector bundle whose fibers are meromorphic 1-
forms on genus g−1 curves with at most simple poles at marked
points xn+1 and xn+2 and no other poles. The residue of the 1-
form at xn+1 is then a surjective map from q∗(Λg) to the trivial
line bundle. Thus the top Chern class of q∗(Λg) vanishes.

Proposition 12. The class λλg−1 vanishes on the strata ofMg,n

parametrizing curves with a separating node whose two compo-
nents have genus at least 1.

Proof. For i an integer such that 1 ≤ i ≤ [g2 ], let’s write ∆i the
closure of the locus of irreducible singular curves consisting of
one component of genus i and one of genus g − i. The Hodge
bundle over ∆i is the direct sum of the Hodge bundle over the
moduli space of curves of genus i and the Hodge bundle over the
moduli space of curves of genus g − i, this sum will be written
Λi ⊕ Λg−i. We have

λgλg−1 = cg(Λg)cg−1(Λg)

= cg(Λi ⊕ Λg−i)cg−1(Λi ⊕ Λg−i)

= cg(Λi)cg(Λg−i)cg−1(Λi)cg−1(Λg−i)
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From

c(Λ) = c(Λi ⊕ Λg−i) = c(Λi)c(Λg−i)

=
(
1 + c1(Λi) + ...+ ci(Λi)

)(
1 + c1(Λg−i) + ...+ cg−i(Λg−i)

)
we deduce

cg−1(Λ) =
∑

k+l=g−1

ck(Λi)cl(Λg−i)

=

g−1∑
k=0

ck(Λi)cg−1−k(Λg−i)

=
i∑

k=0

ck(Λi)cg−1−k(Λg−i)

= ci−1(Λi)cg−i(Λg−i) + ci(Λi)cg−i−1(Λg−i)

and

cg(Λ) =
∑
p+q=g

cp(Λi)cq(Λg−i)

=
i∑

p=0

cp(Λi)cq(Λg−i)

= ci(Λi)cg−i(Λg−i).

Thus we have

λgλg−1 = ci(Λi)cg−i(Λg−i)
[
ci−1(Λi)cg−i(Λg−i) + ci(Λi)cg−i(Λg−i)

]
= ci(Λi)cg−i(Λg−i)ci−1(Λi)cg−i(Λg−i)

+ ci(Λi)cg−i(Λg−i)ci(Λi)cg−i−1(Λg−i)

= ci−1(Λi)ci(Λi)cg−i(Λg−i)
2

+ ci(Λi)
2cg−i−1(Λg−i)cg−i(Λg−i)

= 0

because λ2
g = 0, for any genus g.
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Further results on these classes and their products with κ-
classes and ψ-classes can be found in [7] where the following
proposition is proven.

Proposition 13. If a1, ..., an are non-negative integers such that∑n
i=1 ai = 3g − 3 + n, we have∫

Mg,n

ψa11 ...ψ
an
n λg =

(
2g + n− 3

a1, ..., an

)∫
Mg,1

ψ2g−2
1 λg.

3.3 The tautological ring of Mg,n

Definition 24. The tautological ring R∗(Mg,n) is the subring of
H∗(Mg,n,Q) generated by the classes ψ1, . . . , ψn and κ1, κ2, . . . .

The study of this ring boils down to describing the relations
between the ψ- and κ-classes. In this section we describe the
following results.

• Pixton’s relations (more precisely, their restrictions from
Mg,n to Mg,n): this is a family of relations among the ψ-
and κ-classes that is conjectured to be complete.

• The vanishing, socle, and top intersection properties of the
tautological rings: these properties completely describe the
tautological ring in degrees d ≥ g − 1.

• Mumford’s stability: this is a claim that the tautological
ring stabilizes to a free ring as g →∞.

• Mumford’s formula for the λ-classes: this formula expresses
the λ-classes in terms of ψ- and κ-classes.

3.3.1 Pixton’s relations

In [33], A. Pixton conjectured a set of relations for the tauto-
logical ring of moduli spaces of stable nodal curves with marked
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points generalizing Faber’s relations. These relations are proven
to be true relations in [32] and they play a crucial role in the
work presented here. We present the restriction of these rela-
tions to the moduli space of smooth stable curves with marked
points.

We have the series

A :=
∑
n≥0

(6n)!

(2n)!(3n)!
T n = 1 + 60T + 27720T 2...

and

B :=
∑
n≥0

6n+ 1

6n− 1

(6n)!

(2n)!(3n)!
T n = −1 + 84T + 32760T 2...

For any natural number i not congruent to 2 modulo 3, we
write

C3i = T iA

C3i+1 = T iB.

For a power series S, [S]Tn denotes the nth coefficient. We
transform the power series S variables T n into a power series
denoted {S} in the variables KnT

n, so we have

{S} :=
∑
n≥0

[S]TnKnT
n.

Let l and e1, . . . , el be a nonnegative integer and let κ denote
the linear operator defined by

κ(Ke1...Kel) = κe1,...,el =
∑
τ∈Sl

∏
c cycle in τ

κec,

with ec the sum of the ej appearing in the cycle c.
Let σ be a partition with no part congruent to 2 modulo 3

and a1, ..., an positive integers not congruent to 2 modulo 3.
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If {
3d ≥ g + 1 +

∑
σi +

∑
ai

3d ≡ g + 1 +
∑
σi +

∑
ai mod 2

,

then

[κ(exp({1− A}){Cσ1}...{Cσl})
∏

Cai(ψiT )]T 2 = 0.

3.3.2 Vanishing, socle, and top intersection for R∗(Mg)

These properties were conjectured by C. Faber [9] and later
proved by E. Looijenga [26], E. Getzler and R. Pandharipande [12].
Here we assume that g ≥ 2.

Vanishing. We have Rd(Mg) = 0 for d ≥ g − 1.

Socle. The rank of Rg−2(Mg) is equal to 1 and Rg−2(Mg) is
spanned by κg−2.

Top intersection. For positive integers k1, . . . , km such that∑m
i=1 ki = g − 2, we have

κk1,...,km =
(2g − 3 +m)!(2g − 1)!!

(2g − 1)!
∏m

i=1(2ki + 1)!!
κg−2 ∈ Rg−2(Mg−2).

3.3.3 Vanishing, socle, and top intersection for R∗(Mg,n),
Buryak-Shadrin-Zvonkine Relations

These properties were proved by E. Ionel [18], A. Buryak,
S. Shadrin, and D. Zvonkine [2]. The tautological ring of M1,n

is isomorphic to Q; thus we can assume that g ≥ 2.

Vanishing. We have Rd(Mg,n) = 0 for d ≥ g.

Socle. The rank of Rg−1(Mg,n) is equal to n and Rg−1(Mg,n)
is spanned by ψg−1

1 , . . . , ψg−1
n .
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Top intersection. For nonnegative integers d1, . . . , dn and posi-
tive integers k1, . . . , km such that

∑n
i=1 ψi +

∑m
i=1 ki = g− 1, we

have
n∏
i=1

ψdii κk1,...,km =
(2g − 1)!!∏

(2di + 1)!!
∏

(2kj + 1)!!

(2g − 3 + n+m)!

(2g − 2 + n)!

×
n∑
i=1

(2g − 2 + n)di +
∑
kj

g − 1
ψg−1
i .

Example 9. For g = 3 we have

κ2 =
n∑
i=1

ψ2
i ,

κ1,1 =
5

3
(n+ 5)

n∑
i=1

ψ2
i ,

κ1ψi =
5

6
(n+ 5)ψ2

i +
5

6

∑
j 6=i

ψ2
j ,

ψiψj =
5

6
(ψ2

i + ψ2
j ).

3.3.4 Stability

The stability property was first conjectured by D. Mumford and
proved by Madsen and Weiss [27].

Denote by Q[ψ, κ] the graded ring of polynomials in variables
ψ1, . . . , ψn and κ1, κ2, . . . . The grading is given by assigning
degree 1 to each ψi and degree m to each κm. Denote by Qd[ψ, κ]
the degree d part of the ring.

Theorem 6. For an integer d satisfying 1 ≤ d ≤ g/3, we have

H2d(Mg,n,Q) = Rd(Mg,n) = Qd[ψ, κ]

and
H2d−1(Mg,n,Q) = 0.
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3.3.5 Mumford’s formula for the λ-classes

The formula expressing the λ-classes in terms of ψ-, κ-, and
boundary classes inMg,n was obtained D. Mumford in [30] using
the Grothendieck-Riemann-Roch formula. Here we present the
restriction of Mumford’s formula to Mg,n.

Lemma 3. Let E → B be a vector bundle. Denote by
chj = chj(E) its jth Chern character and by c(E) its full Chern
class. Then we have

c(E) = exp

(∑
j≥1

(−1)j−1(j − 1)!chj

)
.

Proof. Denote by r1, . . . , rk the Chern roots of E. Then we have

c(E) =
k∏
i=1

(1 + ri).

Hence

c(E) =
k∑
i=1

ln(1 + ri) =
k∑
i=1

∑
j≥1

(−1)j−1r
j
i

j
.

On the other hand, for each integer j, we have

chj =
k∑
i=1

rji
j!
.

Comparing the two formulas we deduce the statement of the
lemma.

Example 10. We have

c1(E) = ch1,

c2(E) =
1

2
ch1(Λ)2 − ch2(Λ),

c3(E) = 2ch3(Λ)− 1

2
ch1(Λ)ch2(Λ) +

1

6
ch1(Λ)3.
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Definition 25. The Bernouilli numbers denoted Bk, for some
nonnegative integer k, are defined by the following formula

1

1− e−x
= 1 +

x

2
+
∑
n≥1

B2n

(2n)!
x2n.

Then the Bernoulli numbers are zero for all odd indices greater
than 1 and we have

B0 = 1, B1 = −1

2
, B2 =

1

6
, B = − 1

30
, B6 =

1

42
, B8 = − 1

30
...

Theorem 7 (Mumford’s formula). Denote by Λ → Mg,n the
Hodge bundle. Then the following equalities hold in the coho-
mology of Mg,n:

ch0(Λ) =g,

ch2k(Λ) =0,

ch2k−1(Λ) =
B2k

(2k)!

[
κ2k−1 −

n∑
i=1

ψ2k−1
i

]
.

A detailed proof of this theorem together with an introduc-
tion to the Grothendieck-Riemann-Roch formula can be found
in [37].

Example 11. In R∗(Mg,n), we have

ch1(Λ) =
1

12

[
κ1 −

n∑
i=1

ψi
]

ch3(Λ) =
−1

720

[
κ3 −

n∑
i=1

ψ3
i

]
.

Combining the theorem and the lemma we obtain expressions
of each λi in terms of the ψ- and κ-classes.
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Example 12.

λ1 =
1

12

[
κ1 −

n∑
i=1

ψi
]

λ2 =
1

2

[
κ1 −

n∑
i=1

ψi
]2

λ3 = − 1

360

[
κ3 −

n∑
i=1

ψ3
i

]
+

1

72

[
κ1 −

n∑
i=1

ψi
]3
.

3.3.6 The tautological ring of Mg,n

The tautological rings ofMg,n form the smallest system of sub-
rings of H∗(Mg,n,Q) stable under push-forwards by the gluing
and forgetful maps. There is, however, a more explicit descrip-
tion of these rings.

Let Γ be a stable graph (see Definition 20). A basic class in
MΓ is monomial

γ :=
∏
v

∏
i>0

κi[v]ki[v] ·
∏
h

ψdhh ∈ H
∗(MΓ,Q).

Here the first product goes over the vertices v of the graph and
the class κi[v] = κi ∈ H∗(Mg(v),n(v),Q). The second product
goes over the half-edges h of the graph, including the legs.

Of course, if for some vertex v the total degree of the ψ-
classes

∑
dh over the half-edges attached to v together with

the total degree
∑
iki[v] of the κ-classes exceeds the dimension

3g(v)− 3 + n(v), then the basic class vanishes.
The product of two basic classes can be described solely in

terms of these dual graphs, see the appendix of [14].
The algebra thus obtained in denoted by Sg,n. We have the

natural morphism

q : Sg,n → H∗(Mg,n,Q)

56



defined by
γ 7→ ξΓ∗(γ).

The tautological ring ofMg,n is the image of this morphism; the
tautological relations form its kernel.

3.4 Structure of the tautological ring

D. Mumford conjectured the structure of the cohomology ring
of Mg with coefficients in Q, when g tends to infinity [30]. It
later have been proven by I. Madsen and M. Weiss [27] that
Mumford’s conjecture was true. The main description ofMg for
a given g is due to C. Faber [9]. The study of the tautological
ring lies in the search of dimensions of the tautological groups
and in the search of relations between tautological class.

3.4.1 Elimination of the λ-classes

In his paper, D. Mumford started this work by expressing the λ-
classes in terms of the κ-classes and boundary classes inR∗(Mg).
To do this, he uses the Grothendieck-Riemann-Roch formula.
In R∗(Mg,n), we get expressions of the λ-classes in terms of κ-
classes, boundary classes and ψ-classes and the restrictions of
these expressions give expressions without boundary classes.

Definition 26. Let V → B be a vector bundle of rank k over
a complex manifold B. We say thatV can be exhausted by line
bundles if there is a line bundle L1 of V , a line subbundle L2 of
V1 := V/L1, a line subbundle L3 of V2 := V1/L2 and so on until
the quotient Vk−1/Lk is a line bundle for a certain k. In this case,
the first Chern classes ri := c1(Li) are called Chern roots of V
and we define its total Chern class of V by c(V ) :=

∏k
i=1(1 + ri)

and its Chern character by ch(V ) :=
∑k

i=1 e
ri.
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Proposition 14. We have the following identity

λ = exp
(∑
j≥1

(−1)j+1(j − 1)!chj(Λ)
)
.

Proof. This result is true for any vector bundle of rank k over a
d-dimensional variety.
Since we have

λ := 1 + λ1 + ...+ λg = 1 + c1(Λ) + c2(Λ) + ...+ cg(Λ) = c(Λ)

we can write

ln(λ) =
k∑
i=1

ln(1 + ri) =
k∑
i=1

∞∑
j=0

(−1)j
rj+1
i

j + 1
.

On the other hand, since, for each integer j, chj(Λ) =
∑k

i=1
rji
j! ,

we have∑
j≥1

(−1)j+1(j − 1)!chj(Λ) =
∑
j≥1

(−1)j+1(j − 1)!
k∑
i=1

rji
j!

=
∑
j≥1

k∑
i=1

(−1)j+1r
j
i

j
.

Example 13.

λ1 = ch1(Λ)

λ2 =
1

2
ch1(Λ)2 − ch2(Λ)

λ3 = 2ch3(Λ)− 1

2
ch1(Λ)ch2(Λ) +

1

6
ch1(Λ)3.

In [37], we can find details on the Grothendieck-Riemann-
Roch theorem and how we can apply it to get the following
result. Applying the Grothendieck-Riemann-Roch formula to
the dualizing sheaf. Before let’s define the Bernoulli numebers
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Definition 27. The Bernouilli numbers denoted Bk, for some
nonnegative integer k, are defined by the following formula

1

1− e−x
= 1 +

x

2
+
∑
n≥1

B2n

(2n)!
x2n.

Then the Bernoulli numbers are zero for all odd indices greater
than 1 and we have

B0 = 1, B1 = −1

2
, B2 =

1

6
, B = − 1

30
, B6 =

1

42
, B8 = − 1

30
...

Proposition 15.

ch0(Λ)− 1 =g − 1,

ch2k(Λ) =0,

ch2k−1(Λ) =
B2k

(2k)!

[
κ2k−1 −

n∑
i=1

ψ2k−1
i + δΛ

2k−1

]
.

where δΛ
2k−1 is push forward along π of the Poincaré dual coho-

mology class of the subvariety of Cg,n consisting in the nodes of
the singular fibers multiplied by a certain coefficient.

Example 14. In R∗(Mg,n), we have

ch1(Λ) =
1

12

[
κ1 −

n∑
i=1

ψi
]
,

ch3(Λ) =
−1

720

[
κ3 −

n∑
i=1

ψ3
i

]
Combining these two results we obtain expressions of each λi

in terms of the other tautological classes.
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Example 15.

λ1 =
1

12

[
κ1 −

n∑
i=1

ψi
]

λ2 =
1

2

[
κ1 −

n∑
i=1

ψi
]2

λ3 =
−1

360

[
κ3 −

n∑
i=1

ψ3
i

]
+

1

72

[
κ1 −

n∑
i=1

ψi
]3
.

Hence, from now on, the λ-classes are not considered as gen-
erators of the tautological ring and we think of the tautological
ring as the follows.

Definition 28. Let g, n be non-negative integers satisfying the
stability condition. Then we right R∗(Mg,n) and call tautologi-
cal ring ofMg,n the ring generated by the κ-classes, the ψ-classes
and the boundary classes.
In the same way, we write R∗(Mg,n) and call tautological ring
of Mg,n the ring generated by the κ-classes and the ψ-classes.

Then from here, the work on the tautologcial ring lies in finding
relations between κ-classes, ψ-classes and boundary classes when
we deal with the moduli space of nodal curves.

3.4.2 Faber’s description of the tautological ring

In [9], C. Faber formulated two conjectures on the structure of
the tautological ring of the moduli space of smooth curves of
genus g.

Conjecture 1
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• R∗(Mg) is Gorenstein with socle in degree g − 2 and the
pairing

Ri(Mg)×Rg−2−i(Mg)→ Rg−2(Mg)

is perfect.

• The classes κ1, ..., κ[g/3] generate R∗(Mg) and there is no
relation in degree ≤ [g3 ].

• We have the two following formulas in degree Rg−2(Mg)

– In Rg−2(Mg), for k1, ..., km non-negative integers such
that

∑m
i=1 ki = g − 2, we have

κk1,...,km =
(2g − 3 +m)!(2g − 1)!!

(2g − 1)!
∏m

i=1(2ki + 1)!!
κg−2.

– If Sk denotes the symmetric group of degree k and if, for
σ ∈ Sk is composed by ν(σ) disjoint cycles α1, ..., αν(σ),
|αi| denotes the sum of the elements in αi of we write
κσ = κ|α1|κ|α2|...κ|αν(σ)| and we have

< τd1+1τd2+1 . . . τdk+1 >=
∑
σ∈Sk

κσ

Faber checked that this conjecture is true for g ≤ 15. In
the second conjecture, Faber proposed a set of relations
between the tautological classes.

Conjecture 2 For j ≥ g and M a monomial in Ki and Dij,
we define Ig as the ideal of relations of the form

π∗(M · (F2g−1 − E)).

The conjecture is that Q[κ1, ..., κg−2]/Ig is Gorenstein with
socle in degree g − 2, and then

R∗(Mg) ' Q[κ1, ..., κg−2]/Ig.
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A generalization of Conjecture 1 to the moduli space of curves
with marked points is presented in [2]. In this paper, the fol-
lowing results are proven.

• For i > g − 1, Ri(Mg,n) = 0 and Rg−1(Mg,n) = Qn and is
generated by the monomials ψg−1

i for 1 ≤ i ≤ n.

• For d1, ..., dn, k1, ..., km non-negative integers such that∑n
j=1 kj +

∑m
i=1 di = g − 1, we have

n∏
i=1

ψdii · κk1,k2,...,km =
(2g − 3 + n+m)!

(2g − 2 + n)!

· (2g − 1)!!∏n
i=1(2di + 1)!!

∏m
j=1(2kj + 1)!!

·
n∑
i=1

(2g − 2 + n)di +
∑m

j=1 kj

g − 1
ψg−1
i

which is proven later for g = 3.
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4 The tautological rings of M1,n, M2,n, and

M3,n

We study here the tautological rings of moduli spaces of smooth
Riemann surfaces of genus g ≤ 3 with n marked points.

Proposition 16.
Genus 1. We have

R0(M1,n) = Q,
Rd(M1,n) = 0 for d ≥ 1.

Genus 2. We have

R0(M2,n) = Q,
R1(M2,n) = Q〈ψ1, . . . , ψn〉,
Rd(M2,n) = 0 for d ≥ 2.

The only relation of in degree 1 is κ1 =
∑n

i=1 ψi.
Genus 3. We have

R0(M3,n) = Q,
R1(M3,n) = Q〈κ1, ψ1, . . . , ψn〉,
R2(M3,n) = Q〈ψ2

1, . . . , ψ
2
n〉,

Rd(M3,n) = 0 for d ≥ 3.

The relations in degree 2 are listed in Example 9.

Proof. The vanishing for d ≥ g is known by [18]. The rank and
the relations in Rg−1(Mg,n) are known by [2]. The group R0 is
always equal to Q. The only remaining case is R1(M3,n) where,
by Mumford’s stability [27] there are no relations.

4.1 The top tautological group of M3,n

There are two famous families of relations in R2(M3,n). One
is due to Buryak-Shadrin-Zvonkine [2] (see Section 3.3.2). This
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family is known to be complete and is used to determine the
rank of R2(M3,n). The other family is that of Pixton’s relations
[33](see Section 3.3.1). The completeness of this family is, in
general, not known. We prove it here for g = 3, degree 2 and
any n.

Theorem 8. Pixton’s relations give a complete system of rela-
tions in R2(M3,n) for all n. Buryak-Shadrin-Zvonkine’s rela-
tions are linear combinations of Pixton’s relations whose coeffi-
cients are polynomials in n.

Proof. Pixton’s relations are labeled by n-tuples a1, · · · , an and
a partition σ satisfying the conditions 3d ≥ g+ 1 +

∑n
i=1 ai+ |σ|

and g + 1 +
∑n

i=1 ai +
∑
σi ≡ 0 (mod 2) (see Section 3.3.1). In

our case, these conditions become{ ∑n
i=1 ai +

∑
σi ≤ 2∑n

i=1 ai +
∑
σi ≡ 0 mod 2

This imply that there are 5 possibilities listed below.

1. all the ai are zero and σ = ∅;

2. ak = 2 for some k, the others ai are zero and σ = ∅;

3. all the ai are zero and σ = {2};

4. ak = 1 for some k, the other ai are zero and σ = {1};

5. ak = al = 1 for some k and some l, the others ai are zero
and σ = ∅.

The corresponding Pixton’s relations for these cases are:
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(1) 35
n∑
i=1

ψ2
i + 6

∑
i<j

ψiψj − 6
n∑
i=1

κ1ψi − 35κ2 + 3κ1,1 = 0,

(2)k 35
n∑
i=1

ψ2
i − 45ψ2

k − 10
n∑

i=1,i 6=k

ψkψi + 6
∑
i<j

ψiψj + 10κ1ψk

−6
n∑

i=1,i6=k

κ1ψi − 35κ2 + 3κ1,1 = 0,

(3) 35κ0

n∑
i=1

ψ2
i + 6κ0

∑
i<j

ψiψj − 10
n∑
i=1

κ1ψi − 6
n∑
i=1

κ0,1ψi

−45κ2 − 35κ0,2 + 10κ1,1 + 3κ0,1,1 = 0,

(4)k 35κ0

n∑
i=1,i 6=k

ψ2
i + 6κ0

∑
i,j 6=k

ψiψj − 6
n∑

i=1,6=k

κ0,1ψi

−35κ0,2 + 3κ0,1,1 = 0,

(5)k,l 35
n∑

i=1,i 6=k,l

ψ2
i + 6

∑
i,j 6=k,l

ψiψj − 6
n∑

i=1,i 6=k,l

κ1ψi

−35κ2 + 3κ1,1 = 0.
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Eliminating the zeroes in the indices of the κ-classes we get

(1) 35
n∑
i=1

ψ2
i + 6

∑
i<j

ψiψj − 6
n∑
i=1

κ1ψi − 35κ2 + 3κ1,1 = 0,

(2)k 35
n∑

i=1,i 6=k

ψ2
i − 45ψ2

k − 10
n∑

i=1,i 6=k

ψkψi + 6
∑

i<j,i,j 6=k

ψiψj

+10κ1ψk − 6
n∑

i=1,i 6=k

κ1ψi − 35κ2 + 3κ1,1 = 0,

(3) 35κ0

n∑
i=1

ψ2
i + 6κ0

∑
i<j

ψiψj − (16 + 6κ0)
n∑
i=1

κ1ψi

−(80 + 35κ0)κ2 + (16 + 3κ0)κ1,1 = 0,

(4)k 35κ0

n∑
i=1,i 6=k

ψ2
i + 6κ0

∑
i,j 6=k

ψiψj − 6(1 + κ0)
n∑

i=1,i 6=k

κ1ψi

−35(1 + κ0)κ2 + 3(2 + κ0)κ1,1 = 0,

(5)k,l 35
n∑

i=1,i 6=k,l

ψ2
i + 6

∑
i,j 6=k,l

ψiψj − 6
n∑

i=1,i6=k,l

κ1ψi

−35κ2 + 3κ1,1 = 0,
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or, taking into account that κ0 = 2g − 2 + n = n+ 4,

(1) 35
n∑
i=1

ψ2
i + 6

∑
i<j

ψiψj − 6
n∑
i=1

κ1ψi − 35κ2 + 3κ1,1 = 0,

(2)k 35
n∑

i=1,i 6=k

ψ2
i − 45ψ2

k − 10
n∑

i=1,i6=k

ψkψi + 6
∑

i<j,i,j 6=k

ψiψj

+10κ1ψk − 6
n∑

i=1,i6=k

κ1ψi − 35κ2 + 3κ1,1 = 0,

(3) 35(n+ 4)
n∑
i=1

ψ2
i + 6(n+ 4)

∑
i<j

ψiψj − (6n+ 40)
n∑
i=1

κ1ψi

−(35n+ 220)κ2 + (3n+ 28)κ1,1 = 0,

(4)k 35(n+ 4)
n∑

i=1,i6=k

ψ2
i + 6(n+ 4)

∑
i,j 6=k

ψiψj

−6(n+ 5)
∑n

i=1,i 6=k κ1ψi − 35(n+ 5)κ2 + 3(n+ 6)κ1,1 = 0,

(5)k,l 35
n∑

i=1,i6=k,l

ψ2
i + 6

∑
i,j 6=k,l

ψiψj − 6
n∑

i=1,i 6=k,l

κ1ψi

−35κ2 + 3κ1,1 = 0.

We keep the same definitions of the indices k and l, for g =
3, there are four different types of Buryak-Shadrin-Zvonkine’s
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relations (see Example 9):

(a)k,l ψkψl =
5

6
(ψ2

k + ψ2
l ),

(b)l κ1ψl =
5

6
(n+ 5)ψ2

l +
5

6

n∑
i=1,i 6=l

ψ2
i ,

(c) κ2 =
∑

ψ2
i ,

(d) κ1,1 =
5

3
(n+ 5)

∑
ψ2
i .

We have the following operations giving them from Pixton’s
relations

(a)k,l = (1) +
3

2
· (2)k +

3

2
· (2)l − 4 · (5),

(b)l = −2n+ 1

3
· (1)− (n− 2) · (2)l −

n∑
i=1,i 6=l

(2)i +
8

3

n∑
i=1,i 6=l

(5)l,i,

(c) =
7

4
· (1)− 3

16
· (3) +

3

16

n∑
i=1

(2)i,

(d) = −2n2 + 4n+ 33

3
· (1)− 8n− 9

4

n∑
i=1

(2)i +
7

4
· (3)

+
16

3

∑
i<j

(5)i,j.

Thus we obtained BSZ’s relations as linear combinations of
Pixton’s relations with polynomial coefficients. In particular,
this proves that Pixton’s relations form a complete family in
genus 3.
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5 The tautological ring of M4,n

Proposition 17. We have

R0(M4,n) = Q,
R1(M4,n) = Q〈κ1, ψ1, . . . , ψn〉,
R3(M4,n) = Q〈ψ3

1, . . . , ψ
3
n〉,

Rd(M4,n) = 0 for d ≥ 3.

The Buryak-Shadrin-Zvonkine relations listed below form a com-
plete family of relations is degree 3:

κ3 =
n∑
i=1

ψ3
i ,

κ2,1 =
7

3
(n+ 7)

n∑
i=1

ψ3
i ,

κ1,1,1 =
35

9
(n+ 7)(n+ 8)

n∑
i=1

ψ3
i ,

κ2ψk =
7

9
(n+ 8)ψ3

k +
14

9

n∑
i6=k

ψ3
i ,

κ1,1ψk =
35

27
(n+ 7)(n+ 8)ψ3

k +
70

27
(n+ 7)

∑
i6=k

ψ3
i ,

κ1ψ
2
k =

7

9
(2n+ 13)ψ3

k +
7

9

n∑
i6=k

ψ3
i ,

κ1ψkψl =
35

27
(n+ 7)(ψ3

k + ψ3
l ) +

35

27

n∑
i6=k,l

ψ3
i ,

ψ2
kψl =

14

9
ψ3
k +

7

9
ψ3
l ,

ψkψlψp =
35

27
(ψ3

k + ψ3
l + ψ3

p).
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Proof. The vanishing for d ≥ g is known by [18]. The rank and
the relations in Rg−1(Mg,n) are known by [2]. By Mumford’s
stability [27] there are no relations in R1(M4,n).

It remains to study the groupR2(M4,n). This group is spanned
by the tautological classes κ2, κ1,1, ψiκ1, ψ

2
i , ψiψj, where i and j

are integers from 1 to n.

Theorem 9. The classes ψiψj, 1 ≤ i < j ≤ n, ψ2
i , 1 ≤ i ≤ n,

and κ1,1 form a basis of R2(M4,n).

The proof of this theorem is the goal of this section.

5.1 Pixton’s relations in genus 4

Pixton’s relations between these classes are determined by inte-
gers a1, . . . , an and a partition σ such that

3d ≥ g + 1 +
n∑
i=1

ai + |σ|

and the left-hand side has the same parity as the right-hand
side. In our case these conditions boil down to

n∑
i=1

ai + |σ| = 1.

Thus we have the following possibilities

• σ = {1} and ai = 0 for all i.

• σ = ∅, ak = 1 for some 1 ≤ k ≤ n and ai = 0 for i 6= k.

In the first case, the relation is[
κ(exp({−60T − 27720T 2}) · {−1 + 84T + 32760T 2})

·
n∏
i=1

(1 + 60ψiT + 27720ψ2
i T

2)
]
T 2
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which gives[
κ(exp(1− 60K1T − 27720K2T

2 + 1800K2
1T

2)

· (−K0 + 84K1T + 32760K2T
2)) ·

n∏
i=1

(1 + 60ψiT + 27720ψ2
i T

2)
]
T 2
.

From this we obtain[
(−κ0 + (84 + 60(1 + κ0))κ1T + (32760 + 27720(1 + κ0))κ2T

2

− (5040 + 1800(2 + κ0))κ1,1T
2) ·

n∏
i=1

(1 + 60ψiT + 27720ψ2
i T

2)
]
T 2
.

Extracting the coefficient of degree 2 and dividing it by 360 we
get

(630− 77κ0)κ2 − (24 + 5κ0)κ1,1 − 77κ0

n∑
i=1

ψ2
i

+ (24 + 10κ0)
n∑
i=1

κ1ψi − 10κ0

∑
i<j

ψiψj.

We see that the coefficients depend on n since κ0 = 2g − 2 + n

= 6 + n.

In the second case, if σ is empty, one of the ai’s is 1 and the
others are zero we get the following relation[

κ(exp({−60T − 27720T 2})) · (−1 + 84ψkT + 32760ψ2
kT

2)

·
n∏

i=1,i6=k

(1 + 60ψiT + 27720ψ2
i T

2)
]
T 2

which gives[
(1− 60κ1T − 27720κ2T

2 + 1800κ1,1T
2)

· (−1 + 84ψkT + 32760ψ2
kT

2) ·
n∏

i=1,i 6=k

(1 + 60ψiT + 27720ψ2
i T

2)
]
T 2
.
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Extracting the coefficient of T 2 and dividing by 360, we get

77κ2 − 5κ1,1 + 91ψ2
k − 77

n∑
i=1,i 6=k

ψ2
i − 14κ1ψk + 10

n∑
i=1,i 6=k

κ1ψi

+14
n∑

i=1,i 6=k

ψkψi − 10
∑

i<j,i,j 6=k

ψiψj.

5.2 Upper bound for the dimension

Let’s write the matrix whose lines are composed by the coeffi-
cients of the classes κ2, κ1ψ1, ..., κ1ψn in that order in the rela-
tions in the same order as previous. We see that, in the first line
of this matrix, the coefficient of κ2 can be written 1092 + 77n
and that the coefficients κ1ψi can be written 84 + 10n. For a
fixed integer n the matrix will look like

1092 + 77n 84 + 10n · · · · · · 84 + 10n
77 −14 10 · · · 10
... 10 . . . . . . ...
...

... . . . . . . 10
77 10 . . . 10 −14


We can divide the first column by 7 to obtain the following

matrix 
156 + 11n 84 + 10n · · · · · · 84 + 10n

11 −14 10 · · · 10
... 10 . . . . . . ...
...

... . . . . . . 10
11 10 . . . 10 −14


Adding the first column multiplied by −10

11
to all the other
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columns we obtain
156 + 11n −636

11 · · · · · · −636
11

11 −24 0 · · · 0
... 0 . . . . . . ...
...

... . . . . . . 0
11 0 . . . 0 −24


Now we add all lines but the fisrt multiplied by −53

22
to the

first line we get the following matrix
156− 31

22n 0 · · · · · · 0

11 −24 . . . ...
... 0 . . . . . . ...
...

... . . . . . . 0
11 0 . . . 0 −24


The determinant of this matrix, (−24)n · (156− 31

22
n), which

only vanishes for n =
31 · 156

22
/∈ N, hence can not vanish for

any integer n, this matrix is then invertible for all n and in the
system of n+1 relations thus the classes κ2, κ1ψ1, ..., κ1ψn can be
expressed in terms of the classes κ1,1 and ψiψj, for 1 ≤ i, j ≤ n.

5.3 The matrix M

We want to show that the classes κ1,1, ψ
2
i , ψiψj don’t have any re-

lation between them. We consider now the classes λ4λ3

∏n
i=1 ψi,

λ4λ3κ1

∏n
i=1,i6=k ψi, for integers k such that 1 ≤ k ≤ n , and

λ4λ3ψ
2
k

∏n
i=1,i 6=k,l ψi, where 1 ≤ k < l ≤ n.

Proposition 18. These classes are defined on M4,n and vanish
on its boundary.
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Proof. The part λ4λ3 makes these classes vanish on the whole
boundary except on the curves having a separating node whith a
branch of genus 0. The vanishing on these strata comes from the
vanishing of

∏n
i=1 ψi, κ1

∏n
i=1,i6=k ψi and ψk

∏n
i=1,i6=l ψi onM0,n+1.

In the following, we will use the following notations

• Ψ∅ :=
∏n

i=1 ψi.

• For k a positive integer such that 1 ≤ k ≤ n, we write
Ψk :=

∏n
i=1,i 6=k ψi.

• For k, l distinct positive integers such that 1 ≤ k < l ≤ n,
we write Ψ{k,l} := ψ2

k

∏
i=1,i 6=k,l ψi.

We build now the matrix M composed by the intersection
numbers given by the products classes of the two lists.

λ4λ3Ψ∅ λ4λ3κ1Ψ1 · · · λ4λ3κ1Ψn λ4λ3Ψ{1,2} · · · λ4λ3Ψ{n−1,n}



Mαβ



κ1,1

ψ2
1

...
ψ2
n

ψ1ψ2
...
ψn−1ψn

where Mαβ =

∫
M4,n

α · β. We are able to calculate these

integrals using the following result.
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Proposition 19. Let π : Mrt
g,n → Mg be the forgetful map

forgetting all marked points and let d1, ..., dn, k1, ..., km be non-
negative integers. Then in Rg−2(Mg), we have

π∗(κk1,...,km

n∏
i=1

ψdi+1
i ) =

(2g − 3 + n+m)!(2g − 3)!!

(2g − 2)!
∏n

i=1(2di + 1)!!
∏m

i=1(2ki + 1)!!
κg−2.

That result is proved in [2].

5.3.1 Coefficients

Let’s number the lines of M in the following way: ∅ designates
the first line, the n following lines will be denoted by an integer
i from 1 to n and the other lines by {i, j}, where i and j are
integers such that 1 ≤ i < j ≤ n. We denote the columns of M
in the same way. It might be useful to define the set of these
coordinates, E := {∅, 1, ..., n, {1, 2}, ..., {n−1, n}}. Logically, for

a column vector u of dimension n(n+1)
2 + 1, for k ∈ E designating

a line we denote uk the entry of the vector u at the line k. In the
case k = {i, j}, we may allow ourselves to write ui,j, we simply
never do this abuse for coefficients of matrices since something
like M1,2,3 would yield to a lot of confusion.

In the following, the letters k, l, p, q will always denote posi-
tive integers such that

1 ≤ k < l ≤ n

1 ≤ p < q ≤ n

and α, β ∈ E , α standing for the lines and β for the columns.
The last proposition enables us to calculate the coefficients

of M .

First line
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• α = β = ∅

M∅∅ =

∫
M4,n

λ4λ3 ·
n∏
i=1

ψi · κ1,1

=
(n+ 7)! · 5!!

6! ·
∏n

i=1 1!! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 7)! · 5

6! · 3
·
∫
M4

λ4λ3κ2

=
(n+ 7)!

24 · 33
·
∫
M4

λ4λ3κ2.

• α = ∅ and β = p

M∅,p =

∫
M4,n

λ4λ3κ1 ·
n∏

i=1,i6=p

ψi · κ1,1

=

∫
M4,n

λ4λ3(κ1,1,1 − 2κ1,2) ·
n∏

i=1,i 6=p

ψi

because κ1κ1,1 = κ1,1,1 − 2κ1,2, this intersection number is
then the sum of two terms which we calculate separately∫
M4,n

λ4λ3κ1,1,1 ·
n∏

i=1,i 6=p

ψi =
(n+ 8)! · 5!!

6! · 3!! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 8)!

24 · 34
·
∫
M4

λ4λ3κ2.

The second term is

−2 ·
∫
M4,n

λ4λ3κ1,2 ·
n∏

i=1,i6=p

ψi = −2 · (n+ 7)! · 5!!

6! · 3!! · 5!!
·
∫
M4

λ4λ3κ2

= −2 · (n+ 7)!

24 · 33 · 5
·
∫
M4

λ4λ3κ2.

76



Hence we have

M∅,p =
(n+ 8)!

24 · 34
·
∫
M4

λ4λ3κ2 − 2 · (n+ 7)!

3 · 6!
·
∫
M4

λ4λ3κ2

=
(5n+ 34) · (n+ 7)!

24 · 34 · 5
·
∫
M4

λ4λ3κ2.

• α = ∅ and β = {p, q}

M∅,{p,q} =

∫
M4,n

λ4λ3ψ
2
p ·

n∏
i=1,i 6=p,q

ψi · κ1,1

=
(n+ 7)! · 5!!

6! · 3!! ·
∏n

i=1,i6=k,l 1!! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 7)! · 3 · 5

6! · 3 · 3 · 3
·
∫
M4

λ4λ3κ2

=
(n+ 7)!

24 · 34
·
∫
M4

λ4λ3κ2.

Lines of type α = k
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• α = k and β = ∅

Mk,∅ =

∫
M4,n

λ4λ3 ·
n∏
i=1

ψi · ψ2
k

=

∫
M4,n

λ4λ3 ·
n∏

i=1,i6=k

ψi · ψ3
k

=
(n+ 5)! · 5!!

6! ·
∏n

i=1,i 6=k 1!! · 5!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)! · 5!!

6! · 5!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)!

24 · 32 · 5
·
∫
M4

λ4λ3κ2.

• α = k and β = p

– When k 6= p

Mk,p =

∫
M4,n

λ4λ3κ1 ·
n∏

i=1,i 6=p

ψi · ψ2
k

=

∫
M4,n

λ4λ3κ1 ·
n∏

i=1,i 6=p,k

ψi · ψ3
k

=
(n+ 6)! · 5!!

6! ·
∏n

i=1,i 6=p,k 1!! · 3!! · 5!!
·
∫
M4

λ4λ3κ2

=
(n+ 6)!

24 · 33 · 5
·
∫
M4

λ4λ3κ2.
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– When k = p

Mk,k =

∫
M4,n

λ4λ3κ1 ·
n∏

i=1,i 6=k

ψi · ψ2
k

=
(n+ 6)! · 5!!

6!
∏n

i=1,i6=k 1!! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 6)! · 5

6! · 3
·
∫
M4

λ4λ3κ2

=
(n+ 6)!

24 · 33
·
∫
M4

λ4λ3κ2.

• α = k and β = {p, q}

– When k 6= p, q

Mk,{p,q} =

∫
M4,n

λ4λ3ψ
2
p ·

n∏
i=1,i 6=p,q

ψi · ψ2
k

=

∫
M4,n

λ4λ3ψ
2
pψ

3
k ·

n∏
i=1,i6=k,p,q

ψi

=
(n+ 5)! · 5!!

6! · 5!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)!

24 · 33 · 5
·
∫
M4

λ4λ3κ2.
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– When k = p

Mk,{k,q} =

∫
M4,n

λ4λ3ψ
2
p ·

n∏
i=1,i 6=p,q

ψi · ψ2
p

=

∫
M4,n

λ4,nλ3ψ
4
p ·

n∏
i=1,i 6=p,q

ψi

=
(n+ 5)! · 5!!

6! · 7!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)!

24 · 32 · 5 · 7
·
∫
M4

λ4λ3κ2.

– When k = q

Mk,{p,k} =

∫
M4,n

λ4λ3ψ
2
p ·

n∏
i=1,i6=p,q

ψi · ψ2
q

=
(n+ 5)! · 5!!

6! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)!

24 · 33
·
∫
M4

λ4λ3κ2.

Lines of type α = {k, l}

• α = {k, l} and β = ∅

M{k,l},∅ =

∫
M4,n

λ4λ3 ·
n∏
i=1

ψi · ψkψl

=

∫
M4,n

λ4λ3 ·
n∏

i=1,i6=k,l

ψi · ψ2
kψ

2
l

=
(n+ 5)! · 5!!

6! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)!

24 · 33
·
∫
M4

λ4λ3κ2.
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• α = {k, l} and β = p

– When p 6= k, l

M{k,l},p =

∫
M4,n

λ4λ3κ1 ·
n∏

i=1,i6=p

ψi · ψkψl

=

∫
M4,n

λ4λ3κ1 ·
n∏

i=1,i6=p,k,l

ψi · ψ2
kψ

2
l

=
(n+ 6)! · 5!!

6! · 3!! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 6)!

24 · 34
·
∫
M4

λ4λ3κ2.

– When p = k or p = l

M{k,l},k = M{k,l},l =

∫
M4,n

λ4λ3κ1 ·
n∏

i=1,i 6=k

ψi · ψkψl

=

∫
M4,n

λ4λ3κ1 ·
n∏

i=1,i 6=l

ψiψ
2
l

=
(n+ 6)! · 5!!

6! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 6)!

24 · 33
·
∫
M4

λ4λ3κ2.

• α = {k, l} and β = {p, q}
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– When {k, l} ∩ {p, q} is empty

M{k,l},{p,q} =

∫
M4,n

λ4λ3ψ
2
p ·

n∏
i=1,i 6=p,q

ψi · ψpψq

=

∫
M4,n

λ4λ3ψ
2
p ·

n∏
i=1,i 6=k,l,p,q

ψi · ψ2
kψ

2
l

=
(n+ 5)! · 5!!

6! · 3!! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)!

24 · 34
·
∫
M4

λ4λ3κ2.

– When {k, l} ∩ {p, q} = {p}

M{p,l},{p,q} =

∫
M4,n

λ4λ3ψ
2
p ·

n∏
i=1,i6=p,q

ψi · ψpψl

=

∫
M4,n

λ4λ3ψ
3
p ·

n∏
i=1,i6=k,l,p,q

ψi · ψ2
l

=
(n+ 5)! · 5!!

6! · 3!! · 5!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)!

24 · 33 · 5
·
∫
M4

λ4λ3κ2

and

M{k,l},{p,k} =
(n+ 5)!

24 · 33 · 5
·
∫
M4

λ4λ3κ2.
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– When {k, l} ∩ {p, q} = {q}

M{q,l},{p,q} =

∫
M4,n

λ4λ3ψ
2
p ·

n∏
i=1,i 6=p,q

ψi · ψqψl

=

∫
M4,n

λ4λ3ψ
2
pψ

2
l ·

n∏
i=1,i 6=q,p,l

ψi

=
(n+ 5)! · 5!!

6! · 3!! · 3!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)!

24 · 33
·
∫
M4

λ4λ3κ2

and

M{k,q},{p,q} =
(n+ 5)!

24 · 33
·
∫
M4

λ4λ3κ2.

– When {k, l} ∩ {p, q} = {p, q}

M{p,q},{p,q} =

∫
M4,n

λ4λ3ψ
2
p ·

n∏
i=1,i 6=p,q

ψi · ψpψq

=

∫
M4,n

λ4λ3ψ
3
p ·

n∏
i=1,i 6=p

ψi

=
(n+ 5)! · 5!!

6! · 5!!
·
∫
M4

λ4λ3κ2

=
(n+ 5)!

24 · 32 · 5
·
∫
M4

λ4λ3κ2.

5.3.2 Simplification of M , the matrix M̂

The integral

∫
M4

λ4λ3κ2 is non zero since, for any genus g, we

have from [2]∫
Mg

λgλg−1κg−2 =
(−1)g−1B2g(g − 1)!

2g(2g)!
.
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Recalling that B2g are the Bernouilli numbers given by

1

1− e−x
= 1 +

x

2
+
∑
n≥1

B2n

(2n)!
x2n.

We have B8 = −1
30 , so we can even calculate∫

M4

λ4λ3κ2 =
−1

211 · 32 · 52 · 7
,

in R9(M4) ' Q. In order to simplify the calculations, we define

a matrix M̂ by dividing M by
(n+ 5)!

24 · 3
·
∫
M4

λ4λ3κ2 and by the

following operations on the columns and raws of M

• The line α = ∅ is divided by n+ 7.

• The lines α = i, for 1 ≤ i ≤ n, are divided by 3
7 .

• The column β = ∅ is divided by 3.

• The column β = i, for 1 ≤ i ≤ n, are divided by n+ 6.

Here are the coefficients of M̂ .

First line

• α = β = ∅

M̂∅,∅ = 5(n+ 6).

• α = ∅ and β = p

M̂∅,k = 5n+ 34.

• α = ∅ and β = {k, l}

M̂∅,k{k,l} = 5(n+ 6).
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Lines of type α = k

• α = k and β = ∅
M̂k,∅ = 7.

• α = k and β = p

– When k 6= p
M̂k,p = 7.

– When k = p

M̂k,k = 35.

• α = k and β = {p, q}

– When k 6= p, q

M̂k,{p,q} = 7.

– When k = p

M̂k,{k,q} = 3.

– When k = q

M̂k,{p,k} = 35.

Lines of type α = {k, l}

• α = {k, l} and β = ∅

M̂{k,l},∅ = 5.

• α = {k, l} and β = p

– When p 6= k, l
M̂{k,l},p = 5.

– When p = k (or p = l)

M̂{k,l},k = 15.
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• α = {k, l} and β = {p, q}

– When {k, l} ∩ {p, q} is empty

M̂{k,l},{p,q} = 5.

– When {k, l} ∩ {p, q} = {p}

M̂{p,l},{p,q} = 3,

M̂{k,p},{p,q} = 3.

– When {k, l} ∩ {p, q} = {q}

M̂{q,l},{p,q} = 15,

M̂{k,q},{p,q} = 15.

– When {k, l} ∩ {p, q} = {p, q}

M̂{p,q},{p,q} = 9.

5.4 Rank of M

We look at M as the matrix of an endomorphism of a Q-vector
space E of dimension N = 1 + n + n(n − 1)/2. A vector of E
has coordinates α, βi for 1 ≤ i ≤ n, and γij with 1 ≤ i < j ≤ n.

Calculations via Maple shows that, for n ≤ 18, the charac-
teristic polynomial of M̂ is the product of degree 2 polynomials
of multiplicity 1, a degree 3 polynomial of multiplicity 1 also
(sometimes this ones splits into a two polynomials of degrees 1
and 2) and a polynomial of degree 1 with a multiplicity which
is a function of n. The decomposition via Maple is made only
if it leads to polynomials in Z[X]. This justifies the strategy for
the calculation of the rank.

The polynomials of degree 2 are associated to stable planes
which we describe at first. Next we will look for the eigenvectors
associated to the polynomial of degree 1 and we will finish by
the study of the stable 3-dimensional space of M̂ .
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5.4.1 Basis of stable planes

For 1 ≤ i ≤ n − 1 introduce two vectors ui and vi in E. These
vectors have the following nonzero coordinates:

ui : (βi = 1, βi+1 = −1)

vi : (γik = 1, γi+1,k = −1) for , k 6= i, i+ 1.

All the coordinates that are not listed are equal to 0.

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 1 1

1

1

1

1

−1−1

−1

−1

−1

−1

αγ β αγ β

−1

ui vi
n = 8, i = 3

Proposition 20. The plane spanned by ui and vi is invariant
under the action of M for every i. Specifically, we have

M(ui) = 28ui + 10vi

M(vi) = (32i− 24− 4n)ui + (12i− 12− 2n)vi

Proof. We will calculate the products M · ui and M · vi to show
that they are linear combinations of ui and vi.

Coordinate ∅ We have(
M̂ · ui

)
∅ = M̂∅,i − M̂∅,i+1

= (5n+ 34)− (5n+ 34)

= 0.
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Coordinates k

• If k < i, we have(
M̂ · ui

)
k

= M̂k,i − M̂k,i+1

= 7− 7

= 0.

• Similarly when i+ 1 < k, we have(
M̂ · ui

)
k

= M̂i,k − M̂i+1,k

= 7− 7

= 0.

• The cases k = i and k = i+ 1, we have(
M̂ · ui

)
i

= M̂i,i − M̂i+1,i

= 35− 7

= 28

and (
M̂ · ui)

)
i+1

= M̂i,i+1 − M̂i+1,i+1 = 7− 35

= −28.

Coordinates {k, l} Now let’s calculate the coordinates of type
{k, l} of

(
M · ui

)
.

• For k and l distinct integers such that 1 ≤ k < l ≤ n, none
of them being equal to i or i+ 1, we have(

M̂ · ui)
)
{k,l} = M̂{k,l},i − M̂{k,l},i+1

= 15− 15

= 0
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• We also get(
M · ui

)
{i,i+1} = M̂{i,i+1},i − M̂{i,i+1},i+1 = 15− 15 = 0.

• For k < i,

(
M · ui

)
{k,i} = M̂{k,i},i − M̂{k,i},i+1 = 15− 5 = 10(

M · ui
)
{k,i+1} = M̂{k,i},i+1 − M̂{k,i},i = 5− 15 = −10.

• For l > i+ 1,

(
M · ui

)
{i,l} = M̂{i,l},a − M̂{i,l},i+1 = 15− 5 = 10(

M · ui
)
{i+1,l} = M̂{i,l},i+1 − M̂{i,l},i = 5− 15 = −10.

In conclusion, we see that

M̂ · ui = 28ui + 10vi.

We calculate the coordinates of M · vi in the same way and
we get

89



Coordinate ∅ We have

(
M̂ · vi

)
∅ =

i−1∑
p=1

M̂∅,{p,i} +
n∑

p=i+2

M̂∅,{i,p}

−
i−1∑
p=1

M̂∅,{p,i+1} −
n∑

p=i+2

M̂∅,{i+1,p}

=
i−1∑
p=1

5(n+ 6) +
n∑

p=i+2

5(n+ 6)

−
i−1∑
p=1

5(n+ 6)−
n∑

p=i+2

5(n+ 6)

= 0.

Coordinates k

• For k a positive integer such that k < i, We have

(
M · vi

)
k

=
i−1∑
p=1

M̂k,{p,i} +
n∑

p=i+2

M̂k,{i,p} −
i−1∑
p=1

M̂k,{p,i+1}

−
n∑

p=i+2

M̂k,{i+1,p}

=
i−1∑

p=1,p 6=k

M̂k,{p,i} + M̂k{k,i} +
n∑

p=i+2

M̂k,{i,p}

−
i−1∑

p=1,p 6=k

M̂k,{p,i+1} − M̂k,{k,i+1 −
n∑

p=i+2

M̂k,{i+1,p}

=
i−1∑

p=1,p 6=k

7 + 3 +
n∑

p=i+2

7−
i−1∑

p=1,p 6=k

7− 3−
n∑

p=i+2

7

= 0.
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• Similarly, for k such that i+ 1 < k, we have(
M · vi

)
k

= 0.

• For k = i and k = i+ 1, we calculate

(
M · vi

)
i

=
i−1∑
p=1

M̂i,{p,i} +
n∑

p=i+2

M̂i,{i,p}

−
i−1∑
p=1

M̂i,{p,i+1} −
n∑

p=i+2

M̂i,{i+1,p}

=
i−1∑
p=1

35 +
n∑

p=i+2

3−
i−1∑
p=1

7−
n∑

p=i+2

7

= 35(i− 1) + 3(n− i− 1)

− 7(i− 1)− 7(n− i− 1)

= 32i− 24− 4n

and

(
M · vi

)
i+1

=
i−1∑
p=1

M̂i+1,{p,i} +
n∑

p=i+2

M̂i+1,{i,p}

−
i−1∑
p=1

M̂i+1,{p,i+1} −
n∑

p=i+2

M̂i+1,{i+1,p}

=
i−1∑
p=1

7 +
n∑

p=i+2

7−
i−1∑
p=1

35−
n∑

p=i+2

3

= 7(i− 1) + 7(n− i− 1)

− 35(i− 1)− 3(n− i− 1)

= −32i+ 24 + 4n.

Coordinates {k, l}
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• For k and l distinct integers such that 1 ≤ k < l ≤< i, then

(
M · vi

)
{k,l} =

i−1∑
p=1

M̂{k,l},{p,i} +
n∑

p=i+2

M̂{k,l},{i+1,p}

−
i−1∑
p=1

M̂{k,l},{p,i+1} −
n∑

p=i+2

M̂{k,l},{i+1,p}

=
i−1∑

p=1,p 6=k,l

M̂{k,l},{p,i} + M̂{k,l},{k,i} + M̂{k,l},{l,i}

+
n∑

p=i+2,p 6=k,l

M̂{k,l},{i+1,p} −
i−1∑

p=1,p6=k,l

M̂{k,l},{p,i+1}

− M̂{k,l},{k,i+1} − M̂{k,l},{l,i+1}

−
n∑

p=i+2,p 6=k,l

M̂{k,l},{i+1,p}

=
i−1∑

p=1,p 6=k,l

5 + 3 + 3 +
n∑

p=i+2,p 6=k,l

5

−
i−1∑

p=1,p6=k,l

5− 3− 3−
n∑

p=i+2,p 6=k,l

5

= 0.

• In the same way, in all cases with k, l 6= i, i+ 1, we have(
M · vi

)
{k,l} = 0.

• We have
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(
M · vi

)
{i,i+1} =

i−1∑
p=1

M̂{i,i+1},{p,i} +
n∑

p=i+2

M̂{i,i+1},{i+1,p}

−
i−1∑
p=1

M̂{i,i+1},{p,i+1} −
n∑

p=i+2

M̂{i,i+1},{i+1,p}

=
i−1∑
p=1

15 +
n∑

p=i+2

15−
i−1∑
p=1

15−
n∑

p=i+2

15

= 0.

• For k < i, we have

(
M · vi

)
{k,i} =

i−1∑
p=1

M̂{k,i},{p,i} +
n∑

p=i+2

M̂{k,i},{i,p}

−
i−1∑
p=1

M̂{k,i},{p,i+1} −
n∑

p=i+2

M̂{k,i},{i+1,p}

=
i−1∑

p=1,p 6=k

15 + 9 +
n∑

p=i+2

3

−
i−1∑

p=1,p6=k

5− 3−
n∑

p=i+2

5

=15(i− 2) + 9 + 3(n− i− 1)

− 5(i− 2)− 3− 5(n− i− 1)

=12i− 12− 2n.

Similarly, for k < i and l > i+ 1, we have
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(
M̂ · vi

)
{k,i+1} = −12i+ 12 + 2n(

M̂ · vi
)
{i,l} = 12i− 12− 2n(

M̂ · vi
)
{i+1,l} = −12i+ 12 + 2n.

Gathering these results together we have

M · vi = (32i− 24− 4n)ui + (12i− 12− 2n)vi.

Thus the vectors ui and vi form a stable plane for M

We can form a base of E containing the pairs (ui, vi) for
1 ≤ i ≤ n− 1, the matrix M in this this base contains blocks as(

28 32i− 24− 4n
10 12i− 12− 2n

)
corresponding to the ith stable plane. The determinant of such
a matrix is

−16(n− i+ 6).

This determinant vanishes for i = n+6, which never happens
since i < n.

5.4.2 Eigenvectors of M̂

Further, for 1 ≤ i < j < k < l ≤ n, introduce two vectors
wijkl and tijkl in E. These vectors have the following nonzero
coordinates:

wijkl : (γik = 1, γjl = 1, γil = −1, γjk = −1),

tijkl : (βj = 2, βk = −2, γij = −3, γik = 3, γjl = −5, γkl = 5).

All the coordinates that are not listed are equal to 0.
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1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

αγ β αγ β

1

1−1

−1

wijkl tijkl

n = 8, i = 1, j = 3, k = 4, l = 7

3

−3

5 −5

2

−2

Proposition 21. The vectors wijkl and tijkl are eigenvectors
of M with eigenvalue −4 for any i, j, k, l.

Proof. Let’s calculate the products M · wijkl and M · tijkl.

• The first coordinate of M · wijkl is(
M̂ · wijkl

)
∅ = M̂∅,{i,k} − M̂∅,{i,l} − M̂∅,{j,k} + M̂∅,{j,l}

= 5(n+ 6)− 5(n+ 6)− 5(n+ 6) + 5(n+ 6)

= 0.

• For p 6= i, j, k, l, we have(
M̂ · wijkl

)
p

= M̂p,{i,k} − M̂p,{i,l} − M̂p,{j,k} + M̂p,{j,l}

= 7− 7− 7 + 7

= 0.

• If p = i or p = j, we have(
M̂ · wijkl

)
i

= M̂i,{i,k} − M̂i,{i,l} − M̂i,{j,k} + M̂i,{j,l}

= 3− 3− 7 + 7

= 0
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and (
M̂ · wijkl

)
j

= M̂j,{i,k} − M̂j,{i,l} − M̂j,{j,k} + M̂j,{j,l}

= 7− 7− 3 + 3

= 0.

• If p = k or p = l, we have(
M̂ · wijkl

)
j

= M̂k,{i,k} − M̂k,{i,l} − M̂k,{j,k} + M̂k,{j,l}

= 35− 7− 35 + 7

= 0

and (
M̂ · wijkl

)
l
= M̂l,{i,k} − M̂l,{i,l} − M̂l,{j,k} + M̂l,{j,l}

= 7− 35− 7 + 35

= 0.

• The coordinates {p, q} with p, q 6= i, j, k, l are(
M̂ · wijkl

)
j

= M̂{p,q},{i,k} − M̂{p,q},{i,l}
− M̂{p,q},{j,k} + M̂{p,q},{j,l}

= 5− 5− 5 + 5

= 0.

• The coordinates {i, q} whith q 6= j, k, l and {j, q} with
q 6= k, l are(

M̂ · wijkl
)
j

= M̂{i,q},{i,k} − M̂{i,q},{i,l}
− M̂{i,q},{j,k} + M̂{i,q},{j,l}

= 3− 3− 5 + 5

= 0
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and (
M̂ · wijkl

)
j

= M̂{j,q},{i,k} − M̂{j,q},{i,l}
− M̂{j,q},{j,k} + M̂{j,q},{j,l}

= 5− 5− 3 + 3

= 0.

• We have (
M̂ · wijkl

)
{i,j} = M̂{i,j},{i,k} − M̂{i,j},{i,l}

− M̂{i,j},{j,k} + M̂{i,j},{j,l}

= 3− 3− 15 + 15

= 0,

and (
M̂ · wijkl

)
{k,l} = M̂{k,l},{i,k} − M̂{k,l},{i,l}

− M̂{k,l},{j,k} + M̂{k,l},{j,l}

= 3− 15− 3 + 15

= 0.

• We have(
M̂ · wijkl

)
{i,k} = M̂{i,k},{i,k} − M̂{i,k},{i,l}

− M̂{i,k},{j,k} + M̂{i,k},{j,l}

= 9− 3− 15 + 5

= −4.

Similarly we calculate

(
M̂ · wijkl

)
{i,l} = 4(

M̂ · wijkl
)
{j,k} = 4(

M̂ · wijkl
)
{j,l} = −4
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Hence wijkl is an eigenvector of M̂ for the eigenvalue −4.

Let’s calculate M̂.tijkl. The following coordinates are easy to
calculate

• For p 6= j, k,
(
M̂.t

)
p

= 0.

• For p, q 6= i, j, k, l,(
M̂.tijkl

)
{p,q} =

(
M̂ · tijkl

)
{i,q} =

(
M̂ · tijkl

)
{p,i}

=
(
M̂ · tijkl

)
{k,q} =

(
M̂ · tijkl

)
{p,k}

=
(
M̂ · tijkl

)
{j,k} =

(
M̂ · tijkl

)
{i,l}

=
(
M̂ · tijkl

)
{p,j} =

(
M̂ · tijkl

)
{j,q}

=
(
M̂ · tijkl

)
{p,k} =

(
M̂ · tijkl

)
{k,q}

= 0

We have(
M̂ · tijkl

)
j

=−
(
M̂ · tijkl

)
k

=2M̂j,j − 2M̂j,k − 3M̂j,{i,j} + 3M̂j,{i,k}

− 5M̂j,{j,l} + 5M̂j,{k,l}

=2 · 35− 2 · 7− 3 · 35 + 3 · 7− 5 · 3 + 5 · 7
=− 8,

(
M̂ · tijkl

)
{i,j} =−

(
M̂ · tijkl

)
{i,k}

=2M̂{i,j},j − 2M̂{i,j},k − 3M̂{i,j},{i,j} + 3M̂{i,j},{i,k}

− 5M̂{i,j},{j,l} + 5M̂{i,j},{k,l}

=2 · 15− 2 · 5− 3 · 9 + 3 · 3− 5 · 3 + 5 · 5
=12

and
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(
M̂ · tijkl

)
{j,l} =−

(
M̂ · tijkl

)
{k,l}

=2M̂{j,l},j − 2M̂{j,l},k − 3M̂{j,l},{i,j} + 3M̂{j,l},{i,k}

− 5M̂{j,l},{j,l} + 5M̂{j,l},{k,l}

=2 · 15− 2 · 5− 3 · 15 + 3 · 5− 5 · 9 + 5 · 15

=20

Thus we have
(
M̂ · tijkl

)
= −4tijkl.

5.4.3 The exceptional case

When n is congruent to 2 modulo 8, one of the stable planes
contains an eigenvector for the eigenvalue −4. In this cases,
that we called exceptional, we need to find a new vector in order
to determine the rank of M̂ . In this purpose, we introduce the
following vector

z : (γ3m+1,n = 1, γ3m+2,n = −1).

The other coordinates of z vanish.

Proposition 22. If n = 8p + 2, the invariant plane spanned
by u3p+1 and v3p+1 contains an eigenvector with eigenvalue −4.

Moreover, the vector z +
m

5m+ 7
u3m+1 is annihilated by (M +

4)2, but not by M + 4.

Proof. When n is congruent to 2 modulo 8, in other terms, when
there existsm ∈ N such that n = 8m+2, the stable plan spanned
by u3m+1 and v3m+1 is associated to the matrix(

28 32(3m+ 1)− 24− 4(8m+ 2)
10 12(3m+ 1)− 12− 2(8m+ 2)

)
=

(
28 64m
10 20m− 4

)
.

Its characteristic polynomial is

λ2 − (20m+ 24)λ− 80m− 112
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which factorizes into

(λ+ 4)(λ− 20m− 28).

Hence we have two eigenvectors.

For the eigenvalue −4 The system{
28x− 64my = −4x

10x(20m− 4)y = −4y
⇔ x+ 2my = 0

shows that U := 2mu3m+1 − v3m+1 is an eigenvector for the
eigenvalue −4.

If we write V an eigenvector for the eigenvalue 20m + 28, in
the base (U ,V), the block corresponding to the (3m+1)st stable
plan is written (

−4 0
0 20m+ 28

)
Vector of Ker(M+4)2\Ker(M+4) Now we consider the vector
z.
We have

• (
M̂ · z

)
3m+1

= −
(
M̂.z

)
3m+2

= M̂3m+1,{3m+1,n} − M̂3m+1,{3m+2,n}

= 3− 7 = −4.

• (
M̂ · z

)
{p,3m+1} = M̂{p,3m+1},{3m+1,n} − M̂{p,3m+1},{3m+2,n}

= 3− 5 = −2.
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• (
M̂ · z

)
{3m+1,p} = M̂{3m+1,p},{3m+1,n} − M̂{3m+1,p},{3m+2,n}

= 3− 5 = −2.

• (
M̂ · z

)
{3m+1,m+2} = M̂{3m+1,3m+2},{3m+1,n}

− M̂{3m+1,m+2},{3m+2,n}

= 3− 3 = 0.

• (
M̂ · z

)
{3m+1,n} = M̂{3m+1,n},{3m+1,n} − M̂{3m+1,n},{3m+2,n}

= 9− 15 = −6.

Then (M̂ + 4) · z = −4u3m+1 − 2v3m+1.

Now let’s write δ :=
m

5m+ 7
and Z := z + δu3m+1. We have

(M̂ + 4) · Z = (M̂ + 4) · z + δ(M̂ + 4) · u3m+1

= −4u− 3m+ 1− 2v3m+1 + δ(28u3m+1 + 10v3m+1) + 4u3m+1

= 28δu3m+1 + (10δ − 2)v3m+1

=
−14

5m+ 7
U .

Since U is an eigenvector associated to the eigenvalue −4, we
have

(M̂ + 4)2 · Z = 0.
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5.4.4 The span of vectors u, v, w, t,Z.

Proposition 23. The vectors ui, vi, wijkl, tijkl, together with z
in the case n = 8p + 2, span the codimension 3 subspace of E
given by the equations

α = 0,
n∑
i=1

βi = 0,
∑
i<j

γij = 0.

Proof. First of all, it is easy to see that all vectors u, v, w, t, z
satisfy the three linear equations given above.

Now consider a vector s in E satisfying the three equations.
We will show that we can make it vanish by adding an appro-
priate linear combination of vectors ui, vi, wijkl, tijkl, and z if
n = 8p+ 2.

For 1 ≤ i ≤ n− 2 let

ṽi = vi −
1

3
(t1,i,i+1,n + t2,i,i+1,n + · · ·+ ti−1,i,i+1,n) .

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
82

3
_2

3
_

2
3
_

2
3
_

10_
3

10_
3

-

-

_
3

_
3

αγ β αγ β

n = 8
ṽ2 ṽ6

1

1

1

1

−1
−1
−1
−1

-

-22 22

This vector has the property that its only nonzero γ-coordinates
have the form γij or γi+1,j. Moreover, the coordinates with first
index i add up to (n− 1− i)− 5

3(i− 1) = 3n+2−8i
3 . Similary, its

102



coordinates with first index i+1 add up to the opposite number
−3n+2−8i

3 .
Now we perform the first step that consists in annihilating

the γ-coordinates of s. This is done using the following sequence
of operations.

As a preparation we add to s a multiple of vn−1 so as to
annihilate the sum

∑n−1
i=1 γin. We will not use the vector vn−1

again in the following operations, and one can easily check that
in all other vectors u, v, w, t, z the sum of coordinates γin is equal
to 0. Thus none of the following operations will change this sum,
and it will remain equal to 0 all the time. Now we can start
killing the coordinates in earnest.

First we add a multiple of t1234 to annihilate γ12. Then we
add a multiple of v1 = ṽ1 so as to annihilate the sum

∑
j γ1j.

Note that this does not change γ12. Now we use the vectors
w12kl to annihilate all the coordinates γ1j. Note that this does
not change either γ12 or

∑
j γ1j.

We have now achieved the vanishing of all coordinates γ1j

. The next step is to kill the coordinates γ2j, and then we
continue to increase the first index of the γ-coordinates one by
one. Assume that we have already achieved the vanishing of
all γ-coordinates with first index less than i and let us do the
coordinates γij for j from i+ 1 to n. We assume that i ≤ n− 3.

First we use the vector ti,i+1,i+2,i+3 to kill the coordinate γi,i+1.
Second, we use the vector ṽi to annihilate the sum

∑n
j=i+1 γij.

This is always possible unless 3n + 2 − 8i = 0. In this case we
have n = 8p+ 2, i = 3p+ 1, so we can use the vector z instead.
Third, we use the vectors wi,i+1,k,l to kill all coordinates γij for
our given value of i. Note that all these operations do not change
the coordinates γi′,j with i′ < i.

Once we are finished with i = n−3 we are left with only three
possibly nonzero γ-coordinates: γn−2,n−1, γn−2,n, and γn−1,n. Re-
call that as a preliminary step we have achieved the vanishing
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∑
γin = 0; now this condition reads γn−2,n = −γn−1,n. Thus

we can use the vector ṽn−2 to kill both γn−2,n and γn−1,n. Now
the remaining coordinate γn−2,n−1 is automatically equal to 0,
because the sum of all γ-coordinates of s was 0 from the start.

After getting rid of the γ-coordinates, the second step con-
sists in eliminating the β-coordinates without changing the γ-
coordinates. This step is much simpler: we just use the vectors
ui.

5.4.5 Complement subspace

We write F the span of u, v, w, t,Z. If we write

α

β1
...
βn
γ1,2

...
γn−1,n


any vector of E, F corresponds to the subspace of vectors sat-
isfying the equations

α = 0
n∑
i=1

βi = 0∑
i<j

γi,j = 0.

We look now for a complement of F in E. Hence we introduce
the vectors a, b and c of E with the following nonzero coordinates

a : (α = 1),

b : (β1 = 1),

c : (γ1,2 = 1).
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We calculate the image of a. We have(
M̂ · a

)
∅ = M̂∅,∅ = 5(n+ 6).

For 1 ≤ i ≤ n, we have(
M̂ · a

)
i

= M̂i,∅ = 7

and for 1 ≤ i < j ≤ n, we have(
M̂ · a

)
{i,j} = M̂{i,j},∅ = 5.

Now we calculate the image of b. We have(
M̂ · b

)
∅ = M̂∅,1 = 5n+ 34

and (
M̂ · b

)
1

= M̂1,1 = 35

For 2 ≤ i ≤ n, we have(
M̂ · b

)
i

= M̂i,1 = 7

and (
M̂ · b

)
{1,i} = M̂{1,i},1 = 15.

For 2 ≤ i, j ≤ n, we have(
M̂ · b

)
{i,j} = M̂{i,j},1 = 5.

Let’s calculate the image of c. For the first coordinate we
have (

M̂ · c
)
{1,2} = M̂∅,{1,2} = 5(n+ 6),(
M̂ · c

)
1

= M̂1,{1,2} = 3

and (
M̂ · c

)
2

= M̂2,{1,2} = 35.

For 3 ≤ i ≤ n, we have(
M̂ · c

)
i

= M̂i,{1,2} = 7.
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We have (
M̂ · c

)
{1,2} = M̂{1,2},{1,2} = 9.

For 2 ≤ i ≤ n, we have(
M̂ · c

)
{1,i} = M̂{1,i},{1,2} = 3

and for 3 ≤ i ≤ n, we have(
M̂ · c

)
{2,i} = M̂{2,i},{1,2} = 15.

For 3 ≤ i < j ≤ n, we have(
M̂ · c

)
{i,j} = M̂{i,j},{1,2} = 5.

Modulo the subspace F , the images of these vectors only
depend on the first coordinate, the sum of the n following co-
ordinates and the sum of the others coordinates, hence on 3
numbers. We can write that, modulo F ,

(
M̂ ·a

)
∼



(
M̂ · a

)
∅∑n

i=1

(
M̂ · a

)
i

0
...
0∑

i<j

(
M̂ · a

)
{i,j}

...
0


,
(
M̂ ·b

)
∼



(
M̂ · b

)
∅∑n

i=1

(
M̂ · b

)
i

0
...
0∑

i<j

(
M̂ · b

)
{i,j}

0
...
0



106



and
(
M̂ · c

)
∼



(
M̂ · c

)
∅∑n

i=1

(
M̂ · c

)
i

0
...
0∑

i<j

(
M̂ · c

)
{i,j}

0
...
0


.

Let’s calculate these coordinates, we have

(
M̂ · a

)
= M̂∅,∅a+

n∑
i=1

M̂i,∅b+
∑
i<j

M̂{i,j},∅c

= 5(n+ 6)a+ 7nb+ 5

(
n

2

)
c.

(
M̂ · b

)
= M̂∅,1a+

n∑
i=1

M̂i,1b+
n∑
i<j

M̂{i,j},1c

= (5n+ 34)a+
(
35 + 7(n− 1)

)
b

+
(
15(n− 1) + 5((

(
n

2

)
− (n− 1))

)
c

= (5n+ 34)a+ (7n+ 28)b+
5

2
(n− 1)(n+ 4)c.
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(
M̂ · c

)
=M̂∅,{1,2}a+

n∑
i=1

M̂i,{1,2}b+
∑
i<j

M̂{i,j},{1,2}c

=5(n+ 6)a+
(
3 + 35 + 7(n− 2)

)
b

+
(

9 + 3(n− 2) + 15(n− 2)

+ 5
((n

2

)
− (n− 1)− (n− 2)

))
c

=5(n+ 6)a+ (7n+ 24)b+
(5

2
n2 +

11

2
n− 12

)
c.

Hence we have the following block 5(n+ 6) 5n+ 34 5(n+ 6)
7n 7n+ 28 7n+ 24

5
2n(n− 1) 5

2(n− 1)(n+ 4) 5
2n

2 + 11
2 n− 12

 .

Its determinant is −32(n+ 6)(2n+ 15) which never vanishes for
n ∈ N.

5.5 Conclusion

We have rewritten M̂ as a block upper triangular matrix whose
block have been described in the previous sections. The deter-
minant of M̂ is now easy to calculate through this new matrix.
This last matrix is composed by n − 1 blocks of size 2, a block
of size 3 and blocks of size −4. The latter type of block appears
n(n−1)

2 + n+ 1−
[
2(n− 1) + 3

]
= n(n−3)

2 times. Then we have

det M̂ =
n−1∏
i=1

(−16(n− i+ 6)) · (−4)
n(n−3)

2 · (−32)(n+ 6)(2n+ 15)

which is better written

det M̂ = (−1)
n(n−1)

2 2n
2+n+1(2n+ 15)

(n+ 6)!

6!
.
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In this form we see clearly that det M̂ never vanishes, proving
that the classes κ1,1, ψ

2
i , ψiψj are independent. Since we know

that the other classes lie in the span of these classes, they gen-
erate the degree 2 group of R∗(M4,n). Hence we have

R2(M4,n) '< ψ2
1, ..., ψ

2
n, κ1,1 > .
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6 The moduli space of real curves of genus

zero

6.1 The moduli space of real curves

The complex conjugation acts on the moduli space M0,n(C) of
stable complex curves of genus zero with n ≥ 3 marked points.
The locus of fixed points under this action is the moduli space
M0,n(R) of stable real curves. It is a compact connected smooth
real manifold [13]. As in the complex case, we have

C0,n(R) 'M0,n+1(R).

6.2 Stiefel-Whitney classes

6.2.1 The axiomatic approach

Definition 29. Let B be a CW-complex. To every real vector
bundle E over B one assigns its Stiefel-Whitney class
w(E) ∈ H∗(B,Z/2Z). The degree k part of w(E) is called the
kth Stiefel-Whitney class and denoted by wk(E). The Stiefel-
Whitney class is defined via the following axioms.

• The degree 0 part w0(E) equals 1.

• The first Stiefel-Whitney class of the tautological line bun-
dle over the real projective line is nonzero.

• For k > rank(E) we have wk(E) = 0.

• For any short exact sequence of vector bundles

0→ E1 → E2 → E3 → 0

we have
w(E2) = w(E1) ^ w(E3),

where ^ denotes the cup product.
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• For a continuous map f : B′ → B we have

w(f ∗(E)) = f ∗w(E).

The existence and uniqueness of the Stiefel-Whitney class is
proved in [28] Section 8.

To illustrate how these axioms work we prove two basic prop-
erties of the Stiefel-Whitney classes.

Proposition 24. The Stiefel-Whitney class of a trivial vector
bundle is equal to 1.

Proof. If the base of the vector E bundle is a point, we have
w0(E) = 1 by Axiom 1 and wk(E) = 0 for k ≥ 1. Now it suffices
to note that a trivial line bundle is always a pull-back from a
point.

Proposition 25. If wrank(E) 6= 0, then every section of the bun-
dle vanishes at some point.

Proof. A non-vanishing section spans a trivial line subbundle L
of E. Thus we obtain a short exact sequence

0→ L→ E → E1 → 0

with rank(E1) = rank(E) − 1. Since w(L) = 1, we see that
wrank(E) = wrank(E1) = 0.

Proposition 26. Let B be a smooth compact real manifold,
L → B a line bundles, and s a smooth section of L that in-
tersects the zero section transversally. Denote by Z ∈ B the
zero locus of s. Then w1(L) is Poincaré dual to Z.

Proof. It suffices to check that any 1-homology class represented
by a smooth closed loop S in B has the same intersection index
with w1(L) and with Z. By axiom 4, the intersection of w1(L)
with S equals 0 if L|S is orientable and 1 if it is not. The

111



intersection of S with Z is the number of (simple) zeros of the
section s restricted to S. Now it suffices to note that on a circle
any section of an orientable line bundle has an even number of
zeros, while a section of a nonorientable line bundle has an odd
number of zeros.

Proposition 27. Let X be a smooth real algebraic manifold,
L→ X a real analytic line bundle and D ⊂ X a divisor. Then
we have

w1(L(D)) = w1(L) + [D].

Proof. Consider a smooth section s of L that intersects the zero
section transversally and does not indentically vanish on D.
Denote by Z its vanishing locus. Then s also represents a
smooth section of L(D) with vanishing locus Z ∪D. Therefore
w1(L(D)) = [Z] + [D] = c1(L) + [D].

6.2.2 A construction of the first Stiefel-Whitney class of a line
bundle

Since we are mostly interested in the first Stiefel-Whitney classes
of line bundles let us sketch a construction here.

Denote by S∞ the space of real sequences x1, x2, . . . such that∑
x2
i = 1. This space inherits a topology from the space L2(Z+).

Lemma 4. The space S∞ is contractible.

Proof. Consider, for t ∈ [0, 1], the map ft : S∞ → L2(Z+) de-
fined by ft(x1, x2, . . . ) 7→ (1 − t)(x1, x2, . . . ) + t(0, x1, x2, . . . ).
Since ft never vanishes, we can define the map

ft
|ft|

: S∞ → S∞.

This is a homotopy of S∞ to its equator {x1 = 0}. Now let
gt(0, x1, x2, . . . ) = (1 − t)(0, x1, x2, . . . ) + t(1, 0, 0, . . . ). Once
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again, gt never vanishes, so we can define the map
gt
|gt|

, which is

a homotopy of the equator to the constant map. Composing f
and g we get a homotopy between the identity map from S∞ to
itself and the constant map.

Denote by P∞(R) the quotient of S∞ by the central symme-
try. Denote by ξ the generator of H1(P∞(R),Z/2Z).

Proposition 28. P∞(R) is an Eilenberg-MacLane space.

Proof. S∞ is a double cover of P∞(R).
S∞ is contractible hence π1(P∞(R)) = Z/2Z and

πi(P∞(R)) = Z/2Z = πi(S
∞) = 0,

for i > 1.

It follows that any line bundle L→ B is the pull-back of the
tautological line bundle on P∞(R) under an appropriate map
f : B → P∞(R). The first Stiefel-Whitney class is then equal to
f ∗(ξ).

6.3 The ξ-classes on M0,n(R)

Let Li → Mg,n(R) be the cotangent line bundle to the ith
marked point. We define ξi := w1(Li).

Denote by δ(i,n+1) ⊂ Mg,n(R) the divisor of stable curves
containing a rational irreducible component with one node and
two marked points with numbers i and n+1. Adapting a similar
result on the space of complex curves [36], we can obtain the
following proposition.

Proposition 29. We have

π∗(ξi) = ξi − [δ(i,n+1)].
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Proof. Let’s temporarily denote by (C, x′1, . . . , x
′
n) stable curves

with n marked points and by (C, x1, . . . , xn+ 1) stable curves
with n + 1 marked points. We also denote by L′i the cotangent
line bundle to x′i and by Li the cotangent line bundle to xi.

There is a natural isomorphism between the line bundles Li
and L′i outside of the divisor δ(i,n+1). In order to understand their
relashionship in the neighbordhood of the divisor, introduce lo-
cal coordinates t1, . . . , tn−3 onM0,n in the neighborhood of some
point p ∈ M0,n. Let Cp be the corresponding stable genus 0
curve and z the local coordinate on Cp at the neighborhood of
the marking x′i. The 1-form dz determines a nonzero section
of L′i in the neighborhood of p. Let (t1, . . . , tn−3, t) is a family
of local coordinates on M0,n+1, where t is the z-coordinate of
the (n + 1)st marked point. The divisor δ(i,n+1) in these local
coordiantes is given by t = 0. The local coordinate on the stable
curve at the neighborhood of the point xi is given by w = z/t.
Thus dz = tdw is a section of Li with a simple vanishing along
δ(i,n+1). In other words, we have Li = L′i(δ(i,n+1)). By Proposi-
tion 27 it follows that

w1(Li) = w1(π
∗(L′i)) + [δ(i,n+1)].

Denote by ξi the class ξi on M0,n+1(R) and by ξ′i the pull-
back from the class ξi on M0,n(R). Since the bundles Li and
Ln+1 are trivial over δ(i,n+1), we have

ξiδ(i,n+1) = ξn+1δ(i,n+1) = 0.

From this we get

ξdi − (ξ′i)
d = (ξi − ξ′i)(ξd−1

i + · · ·+ (ξ′i)
d−1)

= δ(i,n+1)(ξ
′
i)
d−1.
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We will use this equality later in the form

ξdi = (ξ′i)
d + δ(i,n+1)(ξ

′
i)
d−1.

Further, since the intersection between δ(i,n+1) and δ(j,n+1) is
empty for i 6= j, we have

δ(i,n+1)δ(j,n+1) = 0.

6.4 String equation

Now we can calculate

∫
M0,n+1

ξd11 . . . ξdnn . We have∫
M0,n+1

ξd11 . . . ξdnn

=

∫
M0,n+1

(
(ξ′1)

d1 + δ(i,n+1).(ξ
′
1)
d1−1

)
. . .
(
(ξ′n)

dn + δ(n,n+1).(ξ
′
n)
d1
)

=

∫
M0,n+1

(ξ′1)
d1 . . . (ξ′n)

dn

+
n∑
i=1

∫
M0,n+1

(ξ′1)
d1 . . . δ(i,n+1)(ξ

′
i)
di−1 . . . (ξ′n)

dn.

Let see the terms of this sum of integrals one by one. We have∫
M0,n+1

(ξ′1)
d1 . . . (ξ′n)

dn = 0 because (ξ′1)
d1 . . . (ξ′n)

dn is a pullback

from M0,n. For any i,∫
M0,n+1

(ξ′1)
d1 . . . δ(i,n+1)(ξ

′
i)
di−1 . . . (ξ′n)

dn

=

∫
δ(i,n+1)

(ξ′1)
d1 . . . (ξ′i)

di−1 . . . (ξ′n)
dn

=

∫
π∗(δ(i,n+1))

π∗((ξ′1)
d1 . . . (ξ′i)

dn . . . (ξ′n)
dn)

=

∫
M0,n

(ξ′1)
d1 . . . (ξ′i)

di−1 . . . (ξ′n)
dn.
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We thus have shown that the string equation is true for ξ
classes. Explicitly we have∫

M0,n+1

ξd11 . . . ξdnn =
n∑
i=1

∫
M0,n

(ξ′1)
d1 . . . (ξ′i)

di−1 . . . (ξ′n)
dn.

The string equation is sufficient to calculate all intersection
numbers

∫
M0,n(R) ξ

d1
1 . . . ξdnn using the initial value∫

M0,3(R)

1 = 1.

Indeed, it follows from the dimension constraint
∑n

i=1 di =
dimM0,n = n− 3 that at least one of the integers di vanishes.

6.5 Computing the intersection number

Write every integer di in the binary system and denote by δ
(i)
j

the j-th digit of di from the end. For instance, if di = 6, we have
δ

(i)
0 = 0, δ

(i)
1 = 1, δ

(i)
2 = 1, δ

(i)
j = 0 for j ≥ 3.

Theorem 10. Let d1, . . . , dn be nonnegative integers such that∑
di = n− 3. The intersection number

ξd11 . . . ξdnn ∈ Z/2Z

is equal to 1 if and only if we have

n∑
i=1

δ
(i)
j ≤ 1

for every j ≥ 0. Otherwise the intersection number vanishes.

An equivalent way to formulate this theorem is to say that
the intersection number is equal to 1 if there are no carryovers
in the binary addition of the integers di, and vanishes as soon
as there is at least one carryover.
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Proof. The string equation has the same form for the intersec-
tion numbers as for the multinomial coefficients(

n− 3

d1, . . . , dn

)
,

except that the addition takes place modulo 2. Moreover, the
initial value ∫

M0,3(R)

1 = 1

coincides with (
0

0, 0, 0

)
= 1.

It follows that∫
M0,n+1

ξd11 . . . ξdnn =
(n− 3)!

d1! . . . dn!
mod 2.

In order to determine the parity of this multinomial coefficient
we first prove the following statement. Write a positive integer
d in binary system and denote its digits by δj. Then we have

val2(d!) =
∑
j≥0

(2j − 1)δj,

where val2(d!) is the largest power of two that divides d!. This
formula can be easily deduced from

val2(d!) =

⌊
d

2

⌋
+

⌊
d

4

⌋
+

⌊
d

8

⌋
+ . . . .

First suppose that the binary addition d1 + · · · + dn has no
carryovers. In this case the binary valuation of d1! · · · dn! is given
by the same sum of terms of the form 2j − 1 and the binary
valuation of (d1 + · · ·+ dn)!. Thus their quotient is odd.

Now note that 2j+1−1 exceeds 2 ·(2j−1) exactly by 1. Thus,
every time there is a carryover in the binary addition d1+· · ·+dn,
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the binary valuation of (d1+· · ·+dn)! gains an extra 1 compared
to the binary valuation of d1! · · · dn!. Therefore, as soon as there
is at least one carryover, the multinomial coefficient is even.
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