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Abstract

In this doctoral work we start by exposing a synthesis of the weak Willmore immersions
formalism. To that end, we introduce conservation laws and exploit them to recover the
e-regularity theorems, as well as an innovative weak regularity result. We then present a
study of the conformal Gauss map and its links with the Willmore surface notion. From
this, we deduce an exchange law for residues as well as an original characterization of
surfaces that are conformal transforms of constant mean curvature surfaces. We then
apply these tools to sequences of Willmore immersions. We first show that they are not
compact with a first instance of concentration for Willmore surfaces. However, relying
upon an e-regularity result based on a small control on the mean curvature, we show
compactness below a given threshold.

Keywords : minimal surfaces, Willmore surfaces, conformal geometry, compactness,
blow-up analysis, Lorentz spaces, De Sitter spaces, conservation laws.

Résumé

Dans ce travail doctoral, nous commencons par présenter une synthése du formalisme
des immersions faibles de Willmore. A cet effet, nous introduisons les lois de conservation et
les exploitons pour retrouver les résultats d’e-régularité, ainsi qu’un résultat de régularité
faible inédit. Nous présentons ensuite une étude de I'application de Gauss conforme et
de ses liens avec la notion de surface de Willmore. Nous en déduisons une loi d’échange
de résidus ainsi que d’une caractérisation originale des surfaces étant transformations de
surfaces & courbure moyenne constante. Nous appliquons ensuite ces outils aux suites
d’immersions de Willmore. Nous montrons tout d’abord qu’elles ne sont pas compactes
avec un premier exemple de concentration pour les surfaces de Willmore. Cependant, en
se basant sur un résultat d’e-régularité demandant un contréle sur la courbure moyenne,
nous montrons une compacité sous un certain plafond d’énergie.

Mots clefs : surfaces minimales, surfaces de Willmore, géométrie conforme, compacité,
concentration, espaces de Lorentz, espace de De Sitter, lois de conservation.
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Introduction

Introduction (English)

In order to introduce the reader to the topics adressed in this doctoral work, we first
detail an overall chronological state of the art, before detailing its content on a chapter
by chapter basis. The original contributions of the author will be highlighted, but we will
only give the core results, in a sometimes simplified form, to avoid detailing technicalities
in what is wished as a discussion of ideas. All of them will be properly written and proven
in their specific chapters.

Mean curvature and elastic energy :

In 1680, R. Hooke, an English natural philosopher, rubbed a violin archet on a thin
metallic plate covered by a slim stratum of sand. He noticed that the sand then organized
in peculiar geometric shapes. At the onset of the XIXth century, E. Chladni systemized
this experiment and highlighted the dependance of the sand patterns on the shape of plate.
These interesting Chladni patterns entered the field of geometry.

Figure 1 — Chladni patterns

This intrigued Napoleon Bonaparte enough to organize a scientific competition in order
to explain this phenomenon. Among the competitors were S. Germain and S. Poisson. The
former won the competition with her explanation describing the plate as a vibrating elastic
surface. The sand naturally accumulates in its non-oscillating zones, leading to the Chladni
patterns. In her memoir [Ger31], S. Germain then linked the elastic behavior of a surface in
R3 at a given point to its mean curvature H at this point. Following from the study of the
elastic curves led by D. Bernoulli and L. Fuler, one can extrapolate from the 1-dimensional
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elastic energy of a given curve v, £ = f7 k2, where k is the curvature of 7, and find the
2-dimensional energy of an immersed surface % :

W:/HQ.
2

This quantity around which the present work revolves is called the Willmore energy.

Conformal invariance :

In the XXth century, G. Thomsen, see [Tho23|, and W. Blaschke, see [Bla55|, pioneered
the angle of study of the Willmore energy which we will adopt : the conformal geometry
approach. At the inception are the conformal invariance properties of W, meaning that
W remains unchanged under the action of isometries of R3, dilations, and inversions which
do not change the topology of the surface. Together, these transformations generate the
conformal group of R3, i.e. the group of ambient angle-preserving maps. Although the
Willmore energy is not invariant under all inversions (and is thus merely a contextual
conformal invariant) a closely linked quantity is. The tracefree total curvature

g_/ﬂj
%

where A is the tracefree part of the second fundamental form of the immersion, is indeed
invariant under all the diffeomorphisms generating the conformal group. Interestingly, it
only differs from W by a topological constant, hence the peculiar properties of W when
subjected to inversions.

2
P

Willmore immersions :

Given the elastic nature of the Willmore energy, it is natural to try to find minimizers.
The first examples come from minimal surfaces, for whom the mean curvature is null.
However such surfaces can never be compact, and thus do not provide satisfying answers.
In the 1960’s, T. Willmore, in [Wil65]|, gave the absolute minimum of the Willmore energy,
47, reached by the round sphere, and conjectured that for tori the minimum was 272
and reached by the Clifford torus. This conjecture took his name and stood until 2015
when F. Marques and A. Neves solved it (in [MN16]) using geometric measure theory tools
developped from F. Almgren and J. Pitts min-max theory, see [Pit81]. Broadening the
scope of the study we will consider not only minimizers, but also critical points of the
Willmore energy. They are called Willmore surfaces, or Willmore immersions depending
on whether we consider the object in R3 or its parametrization. Given the properties of
W, it is a notion invariant by conformal transformations. Inversions of minimal surfaces
then offer a broad spectrum of examples with varied properties while the Clifford torus
shows that Willmore immersions are not reduced to inversions of minimal surfaces in R3.
The corresponding Euler-Lagrange equation is the Willmore equation :

AH + H|A|? = 0.

The study of Willmore surfaces dates as far back as G. Thomsen and W. Blashcke’s works,
with significant contributions by T. Willmore (|[Wil93]), R. Bryant (|Bry84|), E. Kuwert
and R. Schétzle (who proved the first e-regularity result in [KSOla]). In the following
we will adopt T. Riviére’s formalism developed throughout several of his works. Starting
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with the minimal assumptions to define the Willmore energy, he introduced the notion
of weak immersions ([Riv08]). Even though in that context the Willmore equation does
not have a correct distributional sense, conservation laws (that Y. Bernard later showed in
|Ber16] were a consequence of the conformal invariance) allow for the introduction of weak
Willmore immersions (in [Riv08] still). Further exploitation of the conservation laws and
the Jacobian-like equations they induce leads to another e-regularity theorem, thanks to
integrability by compensation, which insures that weak Willmore immersions are smooth.

Using the same methods and an analysis on punctured disks, Y. Bernard and T. Riv-
iére then extended the domain of study to branched Willmore immersions (see [BR13|)
and fully described the behavior of branched Willmore immersions around a branch point
by two quantites called residues. The first residue is truly a residue in the mathematical
sense, as it comes from the aforementioned conservation laws. The second residue however
does not, and is merely a way to sharply describe the behavior of the mean curvature at
the branch point.

Sequences of Willmore immersions :

The framework of weak immersions is highly useful when considering sequences of uni-
formly bounded Willmore energy. The hypotheses they satisfy yield just enough regularity
to imply a weak convergence up to extraction, away from a finite number of concentra-
tion points (see [Riv16]). At these points the limit immersion may degenerate and lead
to branch points. These phenomena of concentration-compactness, as coined by W. Sacks
and K. Uhlenbeck (|[SUS81]), have been studied with success, for instance in the case of con-
stant mean curvature surfaces (see H. Brezis and J.-M. Coron’s [BC85] for the setting of the
problem, and P. Laurain’s study of concentration in [Laul2b|). For their part, sequences of
weak Willmore immersions converge smoothly away from the concentration points, thanks
to the aforementioned e-regularity. Blow-ups performed on the concentration points reveal
a bubble tree made of possibly branched, possibly non compact Willmore spheres, glued
on the concentration points thanks to neck domains. Y. Bernard and T. Riviére in [BR14],
and P. Laurain and T. Riviére with other hypotheses in [LR18al, showed that sequences
of weak Willmore immersions satisfy an energy quantization result : the Willmore energy
of the sequence tends toward the sum of the Willmore energy of the limit surface and the
Willmore energy of all the bubbles. This is equivalent to the no-neck energy principle :
the neck domains do not carry any energy at the limit. Concentration phenomena repre-
sent a loss of compactness for weak Willmore immersions since they may degenerate into
branched Willmore immersions. However these Willmore bubble trees cannot be arbitrary
and are in fact constrained. Indeed, in [LR18a] P. Laurain and T. Riviére have eliminated
enough bubbling configurations to ensure compactness of Willmore immersions with an
energy strictly below 127. The extension of this theorem is a major result of the following
memoir.

Conformal Gauss map :

Another way to approach Willmore surfaces was pioneered in [Bry84] by R. Bryant.
In it he used the notion of conformal Gauss maps to study Willmore immersions. The
conformal Gauss map may be thought of as a generalization of the osculating circles of
a curve in R? : it associates to p € ¥ the tangent sphere of radius [H(p)]_l. Seen as a
map with values in the space of spheres, represented as the de Sitter space S¥!' ¢ R,
this yields a map Y which happens to be minimal in S*! if and only if the starting
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immersion is Willmore. Several surveys and studies have been conducted on this map,
for instance J.-H. Eschenburg’s [Esc88| or B. Palmer’s [Pal91|, and many properties on
Willmore surfaces have been translated in the conformal Gauss map language. In fact in
[MR17] A. Michelat and T. Riviére have established a deep parallel between the role of
the conformal Gauss map for Willmore surfaces and the one played by the Gauss map in
the constant mean curvature case. Using loop groups methods on the conformal Gauss
map, F. Hélein even showed in [Hé198] that Willmore immersions could be described by a
non-explicit Weierstrass representation.

Conformal Gauss maps have also proven to be pivotal in determining whether a Will-
more immersion is the conformal mapping of a minimal immersion (in other words is
conformally minimal). Indeed, in [Bry84], R. Bryant introduced the Bryant’s quartic Q
defined as

Q = (0*Y,0°Y).

He then showed that a given immersion is conformally minimal if and only if @ = 0. Us-
ing more complex techniques invented by J. Dorfmeister, F. Pedit and H. Wu (the DPW
method, see [DPW98]), these results have been extended to conformal transformations of
minimal immersions in R?, S and H3, and even to conformal transformations of surfaces of
constant mean curvature. Results on this subject can be found in [Eji88|, [Ric97|, [Boh12]
and [DW19].

Outline :

The first chapter will focus on properly introducing the basic notions surrounding the
Willmore immersions. We will go through the definitions and present the computations of
the conservation laws when one considers both W and £ as Lagrangians. From this, we
will find the Willmore equations as first exposed by T. Riviére. Further, we will modify two
of them into an original and less algebraically remarkable form (we will lose the Jacobian
shape), but one that involves only mean curvature terms. This new form will prove useful
in chapter 4. We will then expose the weak Willmore immersion formalism and offer
improvements of already existing estimates. Namely, we will obtain a sharper control on the
quantity L derived from the first conservation law depending only on the mean curvature,
instead of the whole Gauss map. As an illustration of what can be expected when following
through these reasonings, we will achieve a weak regularity result for Willmore surfaces,
namely :

Theorem A. Let ® be a conformal weak Willmore immersion. Then for any r < 1 there
exists a constant C' € R such that

IHV®| 21(D,,) < CIIHV®| 2(D,),

and
IVl 21 (,,) < C IVl 2p,) -

Theorem A contrasts with the more classical e-regularity results, which we will recall.

In the second chapter, we will study the conformal Gauss map both in its relation to
Willmore surfaces, and as a tool for determining if a surface is the conformal mapping of
a constant mean curvature surface (we will call such surfaces : of conformally constant
mean curvature, or conformally CMC). We will introduce the conformal Gauss map in the
general case, highlight its properties and how its geometry sheds light on the immersion
itself. at the core will be its behavior when the immersion is Willmore or conformally
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CMC. While we will mostly reprove results found using the DPW method, the originality
will lie in using only basic differential geometry in Lorentz spaces. Concluding this chapter,
two new characterizations of conformally CMC immersions will have been achieved. First
is the following :

Theorem B. Let X be a smooth conformal immersion on D in S, and ® (respectively
Z) its representation in R? (respectively H?). We assume that X has no umbilic point.
One of the representation of X is conformally CMC' in its ambient space if and only if
its Bryant’s quartic Q is holomorphic and X is isothermic. More precisely, if W is the

2
Willmore operator, (W%(X)) —w?e *1Q is necessarily real and

— & is conformally CMC (respectively minimal) in R? if and only if

<WS3(X)>2 et —
. :

— X is conformally CMC (respectively minimal) in S? if and only if

(WS3(X)>2 e <0
- .

— 7 is conformally CMC (respectively minimal) in H? if and only if

<Ws3(X)>2 e Q >0
— .

Conformally minimal immersions satisfy Wags (X) = 0.
A slight variation on theorem B gives the equivalent :

Theorem C. Let X be a smooth conformal immersion on I in S?, and @ (respectively
Z) its representation in R? (respectively H?). We assume X has no umbilic point. One
of the representation of X is conformally CMC' in its ambient space if and only if Q is
holomorphic and w2Q € R, where w € C is the tracefree curvature of X. More precisely

— @ is conformally CMC (respectively minimal) in R3 if and only if

Wes(X)\? 5 _ang _

— X is conformally CMC (respectively minimal) in S? if and only if

(WSB(X))Q e < 0
1 .

— 7 is conformally CMC (respectively minimal) in H? if and only if

2
(WSZ(X)> e Q> 0.

Conformally minimal immersions satisfy Wags (X)) = 0.
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The originality of theorems B and C lies both in the caracterization of the ambient
space, unknown till now, and, for the latter, in replacing the isothermic condition by
w2Q € R. Tt then shows that Q has deep ties to the isothermic nature of the surface.

The third chapter will deal with the compactness of sequences of weak immersions. It
will mostly detail the state of the art and the energy quantization result, but also present
a strong correspondance between bubbles and the surface they are glued on. We will show
that the branching order of the bubble is heavily constrained by the branching order of the
concentration point it is glued on :

Theorem D. One can only glue a Willmore branch point on a Willmore branched end of
same multiplicity, and vice versa.

Moreover we will offer the first explicit example of Willmore bubbling.

Theorem E. There exists ®;, : S — R? a sequence of Willmore immersions such that
W(®y) = 16m,
and
‘bk — (I)Oo,

smoothly on S?\{0}, where ®, is the inversion of a Lépez surface. Further

lim E(®;) = BE(®s) + E(Vy),

k—o0
where U, : C — R3 is the immersion of an Enneper surface.
Theorem E highlights a lack of compactness for Willmore immersions of high energy.

Finally, the fourth chapter will study the configuration of one simple minimal bubble
glued onto a branch point, in order to extend P. Laurain and T. Riviére’s compactness
result. We will first show a new e-regularity result with only a small control on H :

Theorem F. Let ® be a conformal weak Willmore immersion. Then there exists 56 such
that if
IHV®|| 2y < €0

then for any r < 1 there exists a constant C' € R such that
|HV®] ) < CIEV®] 20,

and
IVe[lysrm,) < CIV|L2m)

for all p < oco.

Then, through successive expansions, we will prove a control of the second residue of
the limit surface.

Theorem G. Let &, be a sequence of Willmore immersions of a closed surface ¥ of
uniformly bounded Willmore energy, and whose induced conformal classes are in a compact
subset of the moduli space. Then at each concentration point p € ¥ of multiplicity 6, + 1
on which a simple minimal bubble is blown, the second residue «, of the limit immersion
® ., satisfies

ap <0, —1.
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Since, a priori the second residue only satisfies oy, < 0, this represents a real gain
of regularity. One must note that while the example offered by theorem E does satisfy
this new estimate, it will successfully eliminate several bubbling configurations. We will
notably show that inverted Enneper surfaces, and more broadly speaking, inverted Chen-
Gackstatter surfaces of any genus cannot be the recipient of simple minimal bubbling.
From these results, we deduce an improvement of compactness for Willmore immersions
of low energy :

Theorem H. Let ¥ be a closed surface of genus 1 and ®, : ¥ — R3? a sequence of
Willmore immersions such that the induced metric remains in a compact set of the moduli
space and
limsup W (®) < 127.
k—o00

Then there exists a diffeomorphism v of ¥ and a conformal transformation Oy of R3U{oc},
such that O o0 ®j 01y converges up to a subsequence toward a smooth Willmore immersion
Do 1 X = R3in O (2).

We will finally detail a stronger control under an additional assumption to highlight
how the lack of compactness of Willmore immersions evidenced by theorem E can be seen
as a consequence of the lackluster properties of the conformal group.

Theorems B and C were part of the preprint [Mar19al, theorems A and F can be found
in [Marl9c|, and theorems D, E, G and H in [Mar19b].
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Introduction (Frangais)

Pour familiariser le lecteur aux sujets abordés dans ce travail doctoral, nous présentons
un état de ’art chronologique, avant de détailler son contenu chapitre par chapitre. Les in-
novations de 'auteur y sont soulignées, mais nous ne donnerons que les résultats centraux,
et parfois dans une forme simplifiée pour ne pas avoir & s’encombrer de détails techniques
dans une partie congue avant tout comme une discussion d’idées. Toutes les notions, tous
les résultats, tous les théoréemes seront introduits, écrits et détaillés dans leurs chapitres
respectifs.

Courbure moyenne et énergie élastique :

En 1680, R. Hooke, un philosophe anglais, frotta un archet sur une fine plaque mé-
tallique couverte d’une mince couche de sable. Il remarqua que le sable s’organisait selon
d’étonnants motifs géométriques. Au début du XIXeéme siécle, E. Chladni systématisa
cette expérience et mit en évidence la dépendance du motif formé a 1’égard de la forme de
la plaque. Il 1égua son nom a ces intéressantes figures de Chladni.

Figure 2 — Figures de Chladni

Cela intrigua suffisamment Napoléon Bonaparte pour qu’il organisit un concours scien-
tifique afin d’expliquer ce phénomeéne. Parmi les concurrents étaient S. Germain et S. Pois-
son. Cette derniére gagna le concours grace & son explication décrivant la plaque comme
une surface élastique en vibration. Le sable s’accumulait alors dans les zones n’oscillant
pas, menant aux figures de Chladni. Dans son mémoire [Ger31|, S. Germain relia le com-
portement élastique d’une surface de R? en un point donné a sa courbure moyenne H en ce
point. En s’inspirant de ’étude des courbes élastiques menées par D. Bernoulli et L. Euler,
on peut extrapoler & partir de ’énergie élastique d’une courbe ~ donnée, £ = fv k2, ol K
est la courbure de 7, et trouver I’énergie élastique bidimensionnelle d’une surface immergée

>3 &
W:/HQ.
b

Cette quantité, sur laquelle est basée ce travail, est appelée I'énergie de Willmore.

Invariance conforme :

Au XXeéme siécle, G. Thomsen, dans [Tho23|, et W. Blaschke, dans [Bla55]|, dévelop-
perent 'angle d’approche de ’énergie de Willmore que nous adopterons : I’étude par la
géométrie conforme. A la base sont les propriétés d’invariance conforme de W, c’est-a-dire
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que W reste inchangée sous l’action des isométries de R3, des dilatations, et des inversions
qui ne changent pas la topologie de la surface. Ensemble, ces transformations générent le
groupe conforme de R3, i.e. le groupe des tranformations ambientes préservant les angles.
Bien que I'énergie de Willmore ne soit pas invariante sous toutes les inversions (et ne soit
donc qu’un invariant conforme contextuel) une quantité trés proche U'est. La courbure sans

5 /
b

ot A est la partie sans trace de la seconde forme fondamentale de 'immersion est, elle, bel
et bien invariante sous tous les difféomorphismes engendrant le groupe conforme. Il est
intéressant de remarquer qu’elle ne differe de W que par une constante topologique, d’ou
les propriétés remarquables de W sous I’action des inversions.

212
Al%,

Immersions de Willmore :

Etant donnée la nature élastique de I’énergie de Willmore, il est naturel d’essayer d’en
trouver les minimiseurs. Les premiers exemples viennent des surfaces minimales, pour qui
la courbure moyenne est nulle. Cependant, de telles surfaces ne peuvent étre compactes,
et donc ne répondent pas pleinement & nos interrogations. Dans les années 1960, T.
Willmore, dans [Wil65], donna le minimum absolu de 'énergie de Willmore, 47, atteint
par la sphére ronde, et conjectura que le minimum pour les tores était a 272, atteint par
le tore de Clifford. Cette conjecture garda son nom, et est restée non démontrée jusqu’en
2015 quand F. Marques et A. Neves la resolvérent (dans [MN16]) en utilisant des outils de
théorie géométrique de la mesure développés a partir de la théorie min-max de F. Almgren
et J. Pitts (|Pit81]). Nous élargirons notre champ d’étude et nous ne considérerons pas
seulement les minimiseurs, mais les points critiques de I’énergie de Willmore. Ils portent
le nom de surfaces de Willmore, ou d’immersions de Willmore, selon que nous considérons
I'objet dans R3 ou son paramétrage. Les inversions de surfaces minimales offrent alors un
large spectrum d’exemples aux propriétés variées, alors que le tore de Clifford montre que
les immersions de Willmore ne sont pas limitées aux inversions de surfaces minimales de
R3. L’équation d’Euler-Lagrange correspondante porte le nom d’équation de Willmore :

AH + H|A|? = 0.

L’étude des surfaces de Willmore date des travaux de G. Thomsen and W. Blaschke, avec
d’importantes contributions de T. Willmore (|[Wil93]), R. Bryant (|Bry84]), E. Kuwert et
R. Schétzle (qui prouva le premier résultat d’e-régularité dans [KS0la|). Dans la suite,
nous adopterons le formalisme de T. Riviére développé & travers plusieurs de ses publica-
tions. Partant des hypothéses nécessaires pour définir ’énergie de Willmore, il introduisit
la notion d’immersion faible ([Riv08]). Méme si, dans ce contexte, '’équation de Willmore
n’a pas de sens rigoureux, des lois de conservation (qui, comme Y. Bernard le montra
dans|Ber16|, sont une conséquence de I'invariance conforme) permirent d’introduire la no-
tion d’'immersions faibles de Willmore (toujours fait dans [Riv08]). Une exploitation plus
poussée des lois de conservation et des équations de type Jacobiennes qu’elles impliquent,
menérent & un autre résultat d’e-régularité, grace & l'intégrabilité par compensation, qui
assurérent la régularité des immersions faibles de Willmore.

En utilisant les mémes méthodes et une analyse sur des disques épointés, Y. Bernard
et T. Riviere étendirent le domaine d’étude aux immersions de Willmore ramifiées (voir
[BR13]) et décrirent complétement le comportement d’immersions de Willmore ramifiées
autour d’un point de ramification par deux quantités appelées résidus. Le premier résidu
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est vraiment un résidu, au sens mathématique du terme, puisqu’il vient des lois de con-
servation suscitées. Le second résidu, cependant n’en est pas un, et est simplement une
maniére de décrire précisément le comportement de la courbure moyenne au point de ram-
ification.

Suites d’immersions de Willmore :

Le cadre des immersions faibles est particuliérement utile quand on considére des suites
dont I'énergie de Willmore est uniformément bornée. Les hypothéses qu’elles satisfont
donnent juste assez de régularité et de contrdle pour impliquer une convergence faible a
extraction prés, loin d’un nombre fini de points de concentration (voir [Riv16]). En ces
points, 'immersion limite peut potentiellement dégénérer et donner un point de ramifi-
cation. Ces phénomenes de concentration-compacité, selon les termes de W. Sacks et K.
Uhlenbeck ([SUS81|), ont été étudiés avec succeés, par exemple dans le cas des surfaces a
courbure moyenne constante (voir H. Brézis et J.-M. Coron [BC85| pour le probléme en
lui-méme, et 1’étude de la concentration faite par P. Laurain dans [Laul2bl). Pour leur
part, les suites d’immersions faibles de Willmore convergent réguliérement loin des points
de concentration, grace a l'e-régularité. Des "blow-up" effectués sur les points de con-
centration révélent un arbre de bulles constitué de sphéres de Willmore, potentiellement
ramifiées, potentiellement non compactes, collées sur les points de concentration a l'aide de
domaines de type cou. Y. Bernard et T. Riviére, dans [BR14], et P. Laurain et T. Riviére
avec d’autres hypothéses dans [LR18a|, montrérent que les suites d’immersions faibles de
Willmore satisfont un résultat de quantification de [’énergie : I'énergie de Willmore de
la suite tend vers la somme de l’énergie de Willmore de la surface limite et de l'énergie
de Willmore de toutes les bulles. Ceci est équivalent avec le principe d’absence d’énergie
dans le cou : les domaines de type cou n’ont pas d’énergie a la limite. Les phénomeénes de
concentration représentent une perte de compacité pour les immersions faibles de Willmore
puisqu’elle peuvent dégénérer en immersions ramifiées. Cependant, ces arbres de bulles de
Willmore ne peuvent étre arbitraires et sont en fait contraints. En effet, dans [LR18a] P.
Laurain et T. Riviére éliminérent assez de configurations pour assurer la compacité des
immersions de Willmore avec une énergie strictement inférieure & 127. L’extension de ce
théoréme est un des résultats majeurs de ce mémoire.

Application de Gauss conforme :

Un autre moyen d’étudier les surfaces de Willmore fut introduit dans [Bry84] par R.
Bryant. Dans cet article, il utilisa la notion d’application de Gauss conforme pour étudier
les immersions de Willmore. L’application de Gauss conforme peut étre comprise comme
une généralisation des cercles osculateurs d’une courbe dans R? : & un point p € X,
elle associe la sphére tangente de rayon [H(p)]'. Vue comme une application & valeurs
dans lespace des sphéres, représenté par lespace de de Sitter S*' ¢ R*!, elle donne
une application Y qui est minimale dans S*! si et seulement si 'immersion de départ est
Willmore. Plusieurs études furent conduites sur cette application, par exemple |Esc8§]
par J.-H. Eschenburg ou [Pal91| par B. Palmer, et beaucoup des propriétés des surfaces
de Willmore transcrites dans le langage de la Gauss conforme. En fait, dans [MR17], A.
Michelat et T. Riviére établirent un paralleéle profond entre le role de la Gauss conforme
pour les surfaces de Willmore et celui joué par 'application de Gauss dans le cas des
surfaces & courbure moyenne constante. En utilisant des méthodes de groupes cycliques sur
Papplication de Gauss conforme, F. Hélein obtint méme, dans [Hél98], une représentation
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de Weierstrass, malheureusement non explicite.

Les applications de Gauss conformes se sont également révélées cruciales s’agissant de
déterminer si une immersion de Willmore est la transformation conforme d’une immersion
minimale (autrement dit, si elle conformément minimale). En effet, dans [Bry84|, R. Bryant
introduisit la quartique de Bryant Q, définie comme :

Q = (0*Y, 0%Y).

Il montra ensuite qu’une immersion donnée est conformément minimale si et seulement si
Q = 0. Grace & des techniques plus avancées inventées par J. Dorfmeister, F. Pedit et
H.Wu (la méthode DPW, voir [DPW98]), ces résultats furent étendus aux transformations
conformes d’immersions minimales de R3, S? et H?, et méme aux transformations con-
formes de surfaces & courbure moyenne constante. Des résultats & ce sujet peuvent étre
trouvés dans [Eji88|, [Ric97|, [Boh12] et [DW19].

Description du contenu :

Le premier chapitre se concentrera sur une introduction correcte des notions de base
tournant autour des immersions de Willmore. Nous parcourrons les définitions et présen-
terons les calculs des lois de conservation en considérant W et £ comme Lagrangiens. A
partir de cela, nous trouverons les équations de Willmore telles qu’elles furent exposées par
T. Riviére. De plus, nous modifierons deux d’entre elles pour leur donner une forme origi-
nale, bien que moins remarquable algébriquement (nous perdrons l’aspect Jacobien), mais
qui ne fait appel qu’a la courbure moyenne. Cette nouvelle forme sera utile au chapitre
4. Nous exposerons ensuite le formalisme des immersions faibles de Willmore, en offrant
des améliorations marginales sur des estimées déja existantes. Par exemple, nous obtien-
drons un contréle plus précis, car ne dépendant que de la courbure moyenne au lieu de
Papplication de Gauss, sur la quantité L qui dérive de la premiére loi de conservation.
Pour illustrer ce que nous pouvons attendre en suivant ces raisonnements plus précis, nous
obtiendrons un résultat de régularité faible pour les surfaces de Willmore :

Théoréme A. Soit ® une immersion conforme faible de Willmore. Alors pour tout r < 1
il existe une constante C € R telle que

[HV®| r21(p,,) < CIIHV®| 2(,),

et
IVl 21 ,,) < C IVl 2m,) -

Le théoréme A contraste avec le classique résultat d’e-régularité, que nous rappellerons
également.

Dans le deuxiéme chapitre, nous étudierons l'application de Gauss conforme, a la fois
pour son lien avec les surfaces de Willmore, et en tant qu’outil pour déterminer si une sur-
face est 'image par une application conforme d’une surface & courbure moyenne constante
(nous appellerons de telles surfaces : conformément & courbure moyenne constante ou con-
formément CMC). Nous introduirons application de Gauss conforme dans le cas général,
nous mettrons en avant ses propriétés et comment sa géométrie éclaire 'immersion. Au
coeur de ce chapitre, nous étudierons son comportement quand I'immersion est Willmore
ou conformément CMC. Si la plupart des résultats ont déja été obtenus avec la méth-
ode DPW, l'originalité de ces travaux est dans les preuves, qui ne reposent que sur de la
géométrie différentielle de base dans les espaces de Lorentz. En conclusion du chapitre, nous
obtiendrons deux caractérisations des immersions conformément CMC. Tout d’abord :
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Théoréme B. Soit X une immersion conforme sur D dans S?, et ® (respectivement Z)
sa représentation dans R® (respectivement dans H?). On suppose que X n’a pas de point
ombilic. Une des représentations de X est conformément C'MC dans son espace ambient

si et seulement si sa quartique de Bryant O est holomorphe et X est isothermique. Plus

2
précisément si W est 'opérateur de Willmore, (W%(X)) —w2e*NQ est réel et

— ® est conformément CMC (respectivement minimal) dans R? si et seulement si

Wes(X)\? 5 _angy _

— X est conformément CMC (respectivement minimal) dans S® si et seulement si

(Ws3(X)>2 et <0
1 .

— Z est conformément CMC (respectivement minimal) dans H? si et seulement si

W (X)\? 5 s

Les immersions conformément minimales vérifient Wgs(X) = 0.
Une variation du théoréme B donne le résultat équivalent :

Théoréme C. Soit X une immersion conforme sur D dans S?, et ® (respectivement Z)
sa représentation dans R® (respectivement dans H?). On suppose que X n’a pas de point
ombilic. Une des représentations de X est conformément C M C dans son espace ambient
si et seulement si @ est holomorphe et EQ € R, ou w € C est la courbure sans trace de
X. More precisely

— & est conformément CMC (respectivement minimal) dans R? si et seulement si

We (XN 5 angy

— X est conformément CMC (respectivement minimal) dans S? si et seulement si

(Ws3(X)>2 _Reihg < 0
- .

— Z est conformément CMC (respectivement minimal) dans H? si et seulement si

We(X)\? 5 _aa

Les immersions conformément minimales vérifient Wgs (X) = 0.

L’originalité des théorémes B et C repose dans la caractérisation explicite de ’espace
ambient, inconnue jusque 14, ainsi que dans la substitution de la condition isothermique par
w2Q € R. Ceci met donc en exergue un lien profond entre Q et le caractére isothermique
de la surface.

Le troisiéme chapitre traitera de la compacité des suites d’immersions faibles. 11 dé-
taillera principalement I’état de la recherche et les théorémes de quantification de I’énergie,
mais présentera également une forte correspondance entre les bulles et la surface sur laquelle
on les colle. En effet nous montrerons que ’ordre de ramification de la bulle est fortement
contraint par I’ordre de ramification du point de concentration sur laquelle on le colle :
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Théoréme D. On ne peut coller un point de ramification de Willmore que sur un bout
de Willmore de méme multiplicité, et vice versa.

De plus, nous offrirons le premier exemple explicie de concentration pour les surfaces
de Willmore.

Théoréme E. Il existe @), : S — R?, une suite d'immersions de Willmore telles que
W(®y) = 16,

et
‘I)k — (I)Oo,

réguliérement sur S?\ {0}, ott ®, est l'inversion d’une surface de Lopez. De plus

Jim E(®y) = B(®oo) + E(Veo),

ot ¥oo : C — R3 est 'immersion d’une surface d’Enneper.

Le théoréme E met en exergue la non compacité des immersions de Willmore & haute
énergie.

Enfin, le quatriéme chapitre étudiera la configuration composée d’une bulle minimale
simple collée sur un point de ramification, afin d’étendre le résultat de compacité de P.
Laurain et T. Riviére. Nous montrerons tout d’abord un nouveau résultat d’e-régularité
avec seulement un contréle sur H :

Théoréme F. Soit ® une immersion faible conforme de Willmore. Alors il existe 56 tel
que si
||HV‘I>||L2(]D>) <ep

alors pour tout r < 1 il exite une constante C € R telle que
IHV®| oo (p,) < CIHV®|| L2 )

et
IVe|lwsem,) < ClIV|lL2m)

pour tout p < oo.

Puis, grace & des développements successifs, nous prouverons un controle sur le second
résidu de la surface limite.

Théoréme G. Soit @5 une suite d’immersions de Willmore d’une surface compacte X
dont 'énergie de Willmore est uniformément bornée, et dont les classes conformes induites
sont dans un compact de ’espace de module. Alors, & chaque point de concentration p € X
de multiplicité 6, 4 1 sur lesquels une bulle minimale simple se développe, le second résidu
ap de 'immersion limite ®, vérifie

ap <6, —1.

Puisque le second résidu ne vérifie a priori que oy, < 8, ceci représente un gain réel de
régularité. Il faut également remarquer que, si 'exemple offert par le théoréme E vérifie bien
cette nouvelle estimée, elle suffit pour éliminer plusieurs configurations d’arbres de bulles.
Notamment, nous montrerons que les surfaces d’Enneper inversées, et plus généralement,
toutes les Chen-Gackstatter inversées, quel que soit le genre, ne peuvent accueillir une
bulle minimale simple. A partir de ceci, nous déduirons une amélioration de la compacité
pour les immersions de Willmore a basse énergie.
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Théoréme H. Soit ¥ une surface fermée de genre 1 et ®;, : ¥ — R3 une suite d’immersions
de Willmore telle que la métrique induite reste dans un compact de I’espace des modules
et telle que
lim sup W (@) < 127.
k—

Alors il existe une suite de difféomorphismes v, de X et une suite de transformations
conformes Oy de R U {0}, telle que O o &, o ¢ converge a extraction prés vers une
immersion de Willmore lisse ® ¥ — R3.

Nous détaillerons enfin un controle plus fort sous une hypothése additionnelle pour
mettre en évidence la maniére dont ’absence de compacité suscitée peut étre vue comme
une conséquence des propriétés du groupe conforme.

Les théorémes B et C font partie de la prépublication [Mar19a], les théorémes A et F
peuvent étre trouvés dans [Marl9c|, et les théoremes D, E, G et H dans [Mar19b].
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1.1 Introduction

This introduction is to be seen as a quick walkthrough of the present chapter in which
the original contributions of the author will be highlighted. While we will only give broad
ideas and concepts to contextualize the important results, they will be reframed more
rigorously in the core (notably all the involved quantities will be precisely defined). In
that way the introduction is to be seen as an independant and heuristic explanation of the
content of this chapter.

In it we will mostly establish notations and the state of the art. As a result some
proofs will be glossed over. However we will offer some marginal improvements over a few
of preexisting results, in which case the demonstration will be detailed. Those results are
showcased in this introduction.



26 CHAPTER 1. ANALYSIS OF WILLMORE SURFACES

Given an immersion ® of a Riemann surface (X, g) into R?, its Willmore energy is a
measure of its mean curvature over all the surface :

W(®) = /Eszvolg.

It was first introduced as a tool for the study of 2 dimensional elasticas by S. Germain
and S. Poisson. We will however consider it in the conformal setting, first conceived by W.
Blashcke and then furthered by T. Willmore. Indeed the Willmore energy is a contingent
conformal invariant, meaning that it is invariant under the conformal transformations of
R3U {00} that do not change the topology of the surface. More precisely the total tracefree
curvature, defined by

£(P) —/ | A|dvol,,
%

is the true conformal invariant. It only differs from W by a topological quantity, thanks to
Gauss-Bonnet theorem. An interesting question revolving around the Willmore energy is
the search for minimizers, first globals (found by T. Willmore), and then for a given genus.
The genus 1 case has been solved recently by F. Marques and A. Neves using geometric
measure theory tools (see [MN16]).

Broadening our scope (in section 1.2.2), we then introduce the notion of Willmore
immersion (critical points of the Willmore energy) and conformal Willmore immersion
(critical points in a conformal class). The corresponding Euler-Lagrange equation can
then be computed : it is called the Willmore equation. Since its analytical properties are
lackluster, we wish to find a set of more interesting equations. Exploiting the conformal
invariance thanks to Noether’s theorem then yields four conservation laws (section 1.2.3).

Theorem 1.1.1. Let X be a Riemann surface and ® € C* (E, R3) a Willmore immersion.
Then @ satisfies the following conservation laws :

div (Viga) = div (Vi) = div (Veoy) = div (f/mt) = div (Viny) = 0,

where

Vi = —2 (wm + HAV@)
Vdil = <(I)a %ra>

Vit = @ X Viga +2HV® x 17

%Ot:(bxmra+2(ziv‘b> X T

Viny = =[®[Vira + 2 (®, Viga) ® — 40 x (7 x AVE) .
If ® is branched, these stand away from the branch points.

The result itself is not new, the conservation laws were already found by T. Riviére
(see theorem 1.4 [Riv08]). In [Berl6], Y. Bernard showed that the first three resulted from
conservation laws, and conjectured the origin of the fourth. We will use his formalism in
section 1.2.3 to detail this. We must however point out that these were already computed
in section 3.1 of [MR17] by A. Michelat and T. Riviére. We will use a different formalism,
closer to the one in [Berl16].
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Using these conservation laws, one can introduce auxiliary quantities E, S and R which
satisfy a classical Jacobian-like system (section 1.2.4) :

AS = — <Vﬁ, vlﬁ>
AR =Vii x VLR + VSV
1 =
A® =3 (V-s.ve+ ViR x Vo).
Going into the details and the nature of the quantities introduced, this sytem can be
modified into an original form which can be exploited later.

Theorem 1.1.2. Let ® € C*° (]D),R3) satisfy the hypotheses of theorem 1.2.16. Then

AS = <Hv<1>, vié>

AR = —HV® x VIR - ViSHV®
1 R

A® =3 (VLS.V@ + VLR x vq>) .

We can then introduce the notion of weak immersion as devised by T. Riviére to enjoy
a weak framework for Willmore immersions (this will be the subject of section 1.3). First,
with weak hypotheses in local conformal charts, we can prove a Harnack inequality on the
conformal factor in domains of small energies. With an added parameter ry measuring the
number of small energy disks required to cover the domain of a conformal chart, we can
extend this result to domains of merely bounded energy. That parameter is defined as

1
rog=—inf< s
p

Corollary 1.1.1. Let ® € £(D,) conformal, 7 be its Gauss map and A its conformal
factor. We assume that

8
/ | Vi|* = —W, Vp e D, s.t. Bs(p) CD, p.
B.(p) J

IVAllz20,) + IV 22,y < Co.

Then for any r < 1 there exists ¢,, € R and C € R depending on r, Cy and 7o (defined by
(1.3.67)) such that
A= Cp,THLoo(DTp) <C.

This Harnack inequality gives meaning to the first conservation law in the weak frame-
work, and thus gives sense to the notion of weak Willmore immersion. From this, one can
prove low-regularity results for weak Willmore immersions in Lorentz spaces. First is an

=

improvement on the controls on the quantity L :

Theorem 1.1.3. Let ® € £ (D,) be a conformal weak Willmore immersion. Let 7 denote
its Gauss map, H its mean curvature and A its conformal factor.
We assume
IVAll 200,y + IVl L2p,) < Co.

Then for any r < 1 there exists a constant /jw € R? and a constant C' € R depending on
r, Cp and ro (defined in (1.3.67)) such that

o (-2

L2 (D) <C HHV@”LQ(Dp) )
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This is an improvement over theorem 7.4 of [Riv16], in that the control depends only on
the mean curvature instead of on the whole second fundamental form. Estimate (A.2.11)
ensures that one can find theorem 7.4 back from our result. With this base, one can find
an overall control in Lorentz spaces, without a small energy hypothesis. The following
regularity result is thus remarkable in that it differs from the e-regularity result.

Theorem A. Let ® € £ (D,) be a weak conformal weak Willmore immersion. We assume
IVAll 200 (p,y + IVl 2p,) < Co.

Then for any r < 1 there exists a constant C' € R depending on r, Cy and rq such that
|HV®| 21(D,,) < CIlHV®| L2(p,),

and
IVl 21 (,,) < C IVl 2m,) -

The last four results were part of the preprint [Marl9¢|. Due to the critical nature of
the equation systems for Willmore immersions, it is unreasonable to expect better controls
without further assumptions.

However, if we consider disks of small energy, then classical e-regularity results have
been found, like theorem 1.5 in [Riv08] and theorem I.1 in [BR14|. These results control
the immersion, its Gauss map and all its derivatives by || V7,2, and thus ensure the
smoothness of weak Willmore immersions.

The present chapter will then conclude in section 1.5 with a study of branched Willmore
immersions near the branch points based on Y. Bernard and T. Riviére work in [BR13| with
an emphasis on describing the behavior of what we will later study as Bryant’s quartic,
around the branch point.

1.2 Willmore surfaces

1.2.1 The Willmore energy

Consider ® an immersion from a closed Riemann surface ¥ into R3. We denote by
g = ®*¢ the pullback by ® of the euclidean metric € of R3, also called the first fundamental
form of ® or the induced metric. Let dvol, be the volume form associated with g. The
Gauss map 7 of ¢ is the normal to the surface. In local coordinates (z,y) :

7 o, X
[Py X @y

—

where ®, = 9,9, &, = 9,® and x is the usual vectorial product in R?. Denoting 75 the
orthonormal projection on the normal (meaning 7z (v) = (7, v)7), the second fundamental
form of ® at the point p € ¥ is defined as follows.

AY(X,Y) = Ay(X,Y)7t := 15 (d*® (X,Y)) for all X,Y € T,%.

The mean curvature of the immersion at p is then

while its tracefree second fundamental form is

o

AP(X7Y) = AP(X7 Y) - H(p)gP(Xa Y)
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Definition 1.2.1. The Willmore energy W of @ is defined as
W (®) = / H?dvol,.
b

This quantity, which is at the core of the present work, arose naturally in the study
of elasticity in the first third of the XIXth century in the works of S. Poisson [Poil4| and
S. Germain |Ger31|. It is indeed an elastic energy that can be thought to measure how
extrinsiquely curved an immersion of a Riemann surface is. G. Thomsen and W. Blaschke
then studied it in the framework of conformal geometry due to its conformal invariance
properties. To explore these we briefly recall basic notions.

Definition 1.2.2. Let (X, g) and (Y, h) be two Riemannian manifolds. A diffeomorphism
¢ : X — Y is conformal if and only if g and the induced metric on X by ¢ are proportional.
In other words, if and only if there exists p : X — R such that

©*h = e?tg.

The conformal group of (X, g), denoted Conf (X, g) is the set of conformal diffeomorphim
(X, 9) = (X, 9)-

Since, in this section, we will mostly work with immersions in R? with the classic
euclidean product, the corresponding conformal group Conf(R3 U {co}) will be of crucial
interest to us. We will often perform a slight abuse of notations and write Conf(R?) instead
of the more formally correct Conf(R? U {oco}). This group is fully described by Liouville
theorem (see theorem 1.1.1 of [AG96] for a proof).

Theorem 1.2.1. Any ¢ € Conf(R?) satisfies
¢ =Tz0Re oDy

if ¢ (00) = 00,
p=TpoRgoDyoroTg

otherwise. Here T and Ty denote translations, D) a dilation, Rg arotation and ¢ : z — ﬁ

the inversion at the origin. Such decompositions are unique.

Proposition 1.2.2. The Willmore energy is invariant under the action of translations,
rotations and dilations. It is not left invariant by the inversions.

Proof. Since H is an extrinsic metric invariant it is left unchanged under the action of am-
bient isometries. A straightforward computations shows that a dilation of factor f changes
H into f~'H, while dvol turns into f2dvol. Then HZ2dvol is pointwise invariant under
the action of dilations. The Willmore energy is thus as stated unchanged by translations,
rotations and dilations.

A round sphere has a Willmore energy of 47, while a plane has a Willmore energy of
0. Since inverting a round sphere at one of its point yields a plane, the Willmore energy is
not an inversion invariant. O

Proposition 1.2.2 does not allow us to consider W as a full conformal invariant due
to the action of some inversions. However the tracefree fundamental form yields a real
conformal invariant quantity.

Proposition 1.2.3. The quantity M};dvolg is a pointwise conformal invariant.
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Proof. We refer the reader to theorem 7.3.1 of [Wil93] for a detailed proof. O
The "real" conformal invariant energy is then the total tracefree curvature
£(®) = / | A|, dvoly.
s le

Besides, this quantity is deeply correlated with the Willmore energy, which will allow us
to recover conformal invariance properties for W.

Lemma 1.2.1. If we denote K := det (g_lA) the Gauss curvature of ®, we have
o 1
|A|? = Z|A|° - K = 2H? - 2K. (1.2.1)
g 27y

Proof. At a given point, we write

_ €
4= (5 )
Then i
=7
2
and .,
1 3= ¢
A= 2 M
! ( ¢ 27>
Hence )
2 _ E—7 2
g -2((5) +4)
e 9 2 2 L2
5+?+¢ (6’)/ ¢)—§‘A‘9—K
:2<“;7) —2(ey — ¢%) = 2H? — 2K
This concludes the proof. O

Using the Gauss-Bonnet formula, we can conclude that the Willmore energy and the
total tracefree curvature differ by a topological quantity :

Proposition 1.2.4. Let x (¥) denote the Euler characteristic of 3, and

E(@):/EyAygdvolg:/Eyvgﬁy?dvolg.

Then
E(P) =20 (2) —2x (%)
1 (1.2.2)
= SB(®) - X(%).

Equalities (1.2.2) show that W (and E) are contingent invariant under the action of
ambient conformal diffeomorphisms as long as the topology is not changed (meaning as long
as you do not center an inversion on the surface). These conformal invariance properties
introduced by W. Blaschke (|Blab5]) and rediscovered by T. Willmore ([Wil93]) make the
interest of these energies in conformal geometry clear.
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It is worth mentioning that these properties are not generic for second fundamental
form based functionals. Indeed, in [MN18], A. Mondino and H. Nguyen have shown that
among all the possible curvature functionals depending on the second fundamental form,
the Willmore functional is the only conformal invariant, up to topological terms. This
property helps explain the interest the Willmore functional has garnered through the years,
and its importance in conformal geometry.

Since many prominent examples of minimal surfaces with branched ends (namely the
Enneper surface, the Chen-Gackstatter surfaces and Lopez surfaces) will be pivotal in what
follows, we extend our studies to non compact branched immersions.

Definition 1.2.3. Let ¥ be a compact Riemann surface. An application ® : ¥ — R3
is a branched immersion if and only if it is an immersion away from a finite number of
points pi, ..., pn, around which |[V®| ~,, Crli with [; € N*. The p; are branch points of
multiplicity /; + 1.

It is a non compact branched immersion if and only if it is a branched immersion away
from a finite number of points g1, ..., ¢m, around which |[V®| ~,, Cr~l with I; € N*. The
point g; is then an end (possibly branched) of multiplicity [; — 1.

There exists a phrasing of Gauss-Bonnet formula for branched (non necessarily com-
pact) immersions :

Theorem 1.2.5. Let ® : ¥ — R3 be a branched immersion. Let (pi)z‘zl,..n be its branch
points of multiplicity n;, and (qj)j:1 _, be its ends of multiplicity m;. Then
n m
/ Kdvoly =2m | x (8)+ > (ni—1) =Y (mj+1)|. (1.2.3)
2 i=1 j

Jj=1

Proof. We only give the ideas of the proof and refer the reader to theorem 2.6 of [LN15]
for details.
One can apply Gauss-Bonnet formula with boundary to

2 =2\ | UBeou Bl

i=1 j=1

Denoting k, the geodesic curvature obtain :

Kdvoly + / kgds + / kgds = 2mx (%,) .
/z ; 9B (p:) ; 9B, (g;)

Letting » — 0 yields the desired result, given the behavior of V® around the branch points
and ends. O

Equality (1.2.3) gives a very efficient way to compute the transformations of W under
the action of inversions.

Theorem 1.2.6. Let ® : ¥ — R? be a branched immersion, and © € Conf (R3). Let
¥ = 0o®. We denote p1,...p, the branch points of ® that become ends of ¥ and q1,...q
the ends of ® that become branch points of . We denote ny...n, and mq...my their
respective multiplicity. Then

a b
W(®) = W (¥) +4n Z;n - Z;mj
1= Jj=
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Proof. We denote p1,...pq,Da+1,-- - Pn the branch points and q1, ... ¢, Go+1, - - - ¢m the ends
of ® and denote n; (respectively m;) their multiplicity. Applying (1.2.3) to ® yields :

a b n m
/K<pdvolgq>:27r X(Z)%—Z(m—l ij—i—l Z (ni—1)— Z (mj +1)
b2 i=1 j=1 i=a+1 j=b+1
(1.2.4)
The branch points of ¥ are q1,...,q, Pa+ti,-- -, Pn of multiplicity mq, ..., mp, ngg1,- .-, Np.
Its ends are p1, ..., Da, @b+1, - - - @m- Of mutliplicity ni,...,nq, Mps1, ... My. Then applying
(1.2.3) to ® gives
a b n m
/K\ydvolgq,—Qw X(Z)—Z n; + 1) +Z Z(ni—l)— Z(mj—i—l)
z i=1 j=1 i=a+1 j=b+1
(1.2.5)

Integrating equality (1.2.1) applied to ® and W states, since £ is a conformal invariant :
2W () — 2/ Kgdvoly, = &E(®) =E(¥) =2 (V) — 2/ Kydvoly, .
> >

Consequently
W(®) = W(¥) —i—/K@dvolgq) —/ Kydvoly, . (1.2.6)
> 5

Injecting (1.2.4) and (1.2.5) into (1.2.6) yields

a b
W(®) =W () +4r (> ni—> my|,
i=1 j=1

which concludes the proof. O

An immediate consequence is a characterization of the conformal transformations of a
minimal surface (that we call conformally minimal) :

Corollary 1.2.1. A branched immersion ® : ¥ — R? is the conformal transform of a
branched minimal immersion in R? if and only if

W (@) = 470(p, @),
where p is the point of R3 of highest density for ®.

Trying to bound the Willmore energy from below for compact surfaces (minimal sur-
faces offer a trivial bound for non-compact ones) has proven an interesting and difficult
question. While it is not the main subject of the present work, it is worth going over, if
only briefly.

The first bound came from T. Willmore (in [Wil65], see also theorem 7.2.2 of [Wil93]) :

Theorem 1.2.7. Let ¥ be a closed orientable surface and ® : ¥ — R3 be a smooth
immersion of ¥ into R3. Then
W (®) > 4.

Moreover W (®) = 4 if and only if ®(X) is a round sphere.

T. Willmore formulated in [Wil65] its eponym conjecture, which was proved in 2015 by
F. Marques and A. Neves (see [MN16]).
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Theorem 1.2.8. The minimum of the Willmore energy among surfaces of genus 1 is 272.
It is reached by the Clifford torus.

The Clifford torus can be seen equivalently as the surface parametrized by

2

T = (1 + {cosu) COS v
2

Yy = (1 + {cosu) sin v

NO
z = —sinu,
L 2

or as the image by a stereographic projection of the natural embedding of \% X % in S3.

Figure 1.1 — The Clifford Torus

Little is known concerning the minima of the Willmore energy for higher genus beyond
the conjectured shape of the minimizer for the genus 2 (see [Kus89] by R. Kusner). The
following inequality is however worth mentioning :

Theorem 1.2.9. Let & : ¥ — R3. Then for all p € R3
W(®) > 470 (®,p), (1.2.7)
where 6 (@, p) is the density of ® at p.

This result known as Li-Yau inequality (see theorem 6 in [LY82]), combined with the
existence of examples of energy strictly below 87 for any genus (the Lawson surfaces, see
[Law70]), proves that the minimizers of the Willmore energy are embedded.

1.2.2 Willmore surfaces

Definition 1.2.4. A Willmore immersion & € C* (E,R3) is a smooth immersion which
is a critical point of W (or equivalently, given (1.2.2), of E and &).

The immersed surface ®(X) is then a Willmore surface. We will sometimes refer to
®(X) as a Willmore sphere or a Willmore torus depending on its genus.

While £ has the best invariance properties of all three energies, W is not only the
historically studied quantity, it more organically leads to exploitable equations as we will
see in subsections 1.2.3 and 1.2.4. Further since W is non-invariant by only a Lebesgue
neglectible subset of the inversions of R3 (those with center on the surface), it will have
little consequences on the analysis of Willmore immersions.

Since & is a conformal invariant, the notion of Willmore immersion (respectively of
Willmore surface) is invariant by conformal transformations.
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Proposition 1.2.10. Let ® € C* (X,R?) and © € Conf(R?). Then ® is a Willmore
immersion if and only if © o ® is a Willmore immersion.

Corollary 1.2.2. Minimal immersions are non compact Willmore immersions. Inversions
of minimal immersions are Willmore immersions. When the inversions are centered away
from the surface, they are compact Willmore immersions.

In fact, Willmore surfaces were partly conceived as a generalization of the conformal
transformations of minimal surfaces, and W. Blaschke used the terminology "conformal
minimal surfaces" in [Bla55]. From this we can build a zoology of Willmore immersions
and branched Willmore immersions having a wide specter of properties.

Example 1.2.1. The round sphere is a Willmore surface of Willmore energy
W (S?) = 4r.

Example 1.2.2. The Bryant’s surface is a four ended immersed minimal surface. An
exemple of parametrization over C is given by the following (see theorem E [Bry84| for
details or below in section 3.3 where we play with the relative position of the ends) :

‘I>=23‘E<voz— LU 112'_ v3.2)7
z—1 z—35 z—3

where j2 = 1 and vy v1, vo, v3 € C? satisfy

1
v =3 (v1 + jvg + j%vs3) -

Its inverse forms a compact immersed Willmore sphere of Willmore energy 167. Inverting
it at a point of density 1 yields a non-compact non minimal Willmore sphere of Willmore
energy 12m.

Figure 1.2 — An inverted Bryant’s surface

Example 1.2.3. The Loépez surface is a two ended minimal sphere, with one end of
multiplicity 1 and one of multiplicity 3. A parametrization is given by :

1 1 0

3 z 3

b =2 — | ¢ — | — —
Ry 5,3 (Z) +8 1 +2z 0

0 1
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Its inverse is a branched Willmore sphere, with a point of density 4, split into a branch
point of multiplicity 3 and one of multiplicity 1. They have Willmore energy 167.

Figure 1.3 — The Lopez surface and an inversion

Example 1.2.4. The Clifford torus is a Willmore torus of Willmore energy W = 272
Given corollary 1.2.1 it is thus not the conformal transform of a minimal surface in R3.

We can give a few additionnal examples of branched Willmore surfaces.
Example 1.2.5. The Enneper surface, parametrized on C by
1 1—22
E(z)=2%R /— i(1+ 2%) )
2
2z

is a minimal surface of total curvature

/ Kdvol = —4r.
C

Its inverse is a Willmore sphere of Willmore energy W (E) = 127.

Figure 1.4 — The Enneper surface and an inversion
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Example 1.2.6. The Chen-Gackstatter torus is a minimal torus of Enneper-Weierstrass
data on C?/Z2 : (f,g) = (2p(z), A%(z)) (see [CG82]|) where p is the Weierstrass elliptic

function, of elliptic invariants (see [Apo90])

oo

1
go = 60 >0,
m’nz:_oo (m + ni)
93 - 07
and
A= )" cR,
292

It has a branched end of multiplicity 3 asymptotic to the Enneper surface and is thus of
total curvature

/Kdvol = —8&.

Its inverse is a Willmore torus of Willmore energy W = 127.

Example 1.2.7. One can define Chen-Gackstatter surfaces of arbitrarily high genus g.
They have a single branched end of multiplicity 3 asymptotic to the Enneper surface and
have a total curvature of —4m (g + 1). Their inverses are branched Willmore surfaces of
genus g and of Willmore energy W = 127.

The example of the Clifford torus ensures that not all Willmore surfaces are conformal
transformations of minimal surfaces in R3. There are however classification results for
Willmore spheres :

Theorem 1.2.11. Every immersed Willmore sphere in R? is the conformal transform of
a minimal sphere in R3.

Theorem 1.2.12. Every branched Willmore sphere in R? with less than 3 branch points
is the conformal transform of a branched minimal sphere in R3.

Theorem 1.2.11 (due to R. Bryant, theorem E in [Bry84]) and theorem 1.2.12 (partly
due to T. Lamm and H. Nguyen [LN15| and A. Michelat and T. Riviére [MR17]) will be
proved below (section 2.6) with the conformal Gauss map tools.

A corollary to theorems 1.2.11 and 1.2.12 allows one to enumerate low energy Willmore
spheres :

Corollary 1.2.3. The round sphere and the catenoid are the only Willmore spheres of
energy strictly lower than 127.

One must point out that while the Clifford torus is not the conformal transform of a
minimal surface in R3, it is the stereographic projection (and thus a conformal transform )
of a minimal surface in S3. We will detail below necessary and sufficient conditions for
a surface to be conformally minimal in R3, S® or H? (see section 2.5). Beyond that, one
can conjecture that Willmore surfaces are conformal transformations of minimal surfaces
in a subset of R? imbued with a conformally flat metric, although this remains somewhat
speculative.
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1.2.3 Conservation laws

The aim of this subsection is to draw the Lagrange equation satisfied by Willmore
surfaces, and to exploit the conformal invariance of W to highlight four conservation laws,
in accordance with Noether’s theorem. Indeed the latter states in spirit

"Each infinitesimal symmetry induces a conservation law."

While we refer the reader to theorem 1.3.1 of [Hél02]| for a proper wording of the
theorem, this mere idea will satisfy our current needs. Since the Willmore energy is a
conformal invariant, one can expect a conservation law for each of the four fundamental
conformal transformations (translation, dilation, rotation, inversion). The ideas and much
of the computations are taken from Y. Bernard’s [Ber16| which thoroughly studies W. We
will however slightly extend our scope to £ and F.

We consider ¥ a Riemann surface (that may have a boundary), an (eventually branched)
immersion ¢ € C'* (2,R3), Q an open subset of ¥ (away from the possible branch points
and branched ends) and X € C° (Q2,R?). We use the notations introduced in subsection
1.2.1. We will study the following perturbation of the immersion ® :

D, =P +tX.
We will use the tensorial language in a local map and denote D the Levi-Civita connection.
Thenif V= V' 771 3;, ... 8, 07 ... 0%, onehas DV = V,V;' " "/M 8y, ... 8;, 07 ... 0%k 0P

Tyeens
We will denote ¢ := % For computational convenience we will decompose

li—o-
X :=N+T := Nit+TPV,9.
The endgame here is to compute & (H 2alvolg) and (!A‘;dvolg>, or equivalently in any
local chart § <H2|g|%> and ¢ (‘A‘§|g|%> Then

§ (Vi®;) = ViN + V,TPV,® + TPV, ®. (1.2.8)
However by definition of the Levi-Civita connection, in a local chart :
Vip® = 9;,® — T'},0,®,
where Ffp = %gkl (03gp1 + Opgit — O1gip) are the Christoffel’s symbols. Then, since g;; =

(0;®,0;®), one can compute

1
Iy = 59" (02, 012) + (8D, 0a®) + (9@, 01D) + (5i®, I ®) — (04D, 5 ®) — (0i®, I ®))

= gkl <8ip(1)a 8l(I)>

Then Ffpf)k(l) = g (0;,®,0,®)01® is exactly the tangent part of 9;,®. Consequently
Vip® = 0;)p® — Ffpakq) is the leftover part, that is the normal part. By definition of
the second fundamental form introduced in subsection 1.2.1,

Vip® = 75 (8;,®) = Ajp. (1.2.9)
Then, injecting (1.2.9) into (1.2.8) yields

§ (Vi®;) = ViN + VTPV, ® + TP A, (1.2.10)
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From this, we find

1) (gtij) = <(5 (Viq)t) ,Vj‘I’) + <(5 (Vj‘I)t) , VZ(I)>
= <VZNT_i + Aiprﬁ — AipVI“I) + ViTprcb, V]‘I>>

1.2.11
+ (V;Nii + AjpTPi — A;,VP® + VTPV ,®, V,;®) ( )
= V,Tj + V,;T; — 2N Aj;.
5 (9:7) = —g'™6 (gepg) 9% = 2NAY — V'TI — VIT", (1.2.12)
Consequently,
8 (lg:1) = 19| Tx (97 '6g) = lglg” (ViTj + V;T; — 2N Ajj) e
=2|g| (VpI? —2NH), o
and ) )
0 (\gtP) = |g|2 (VTP —2NH). (1.2.14)

Using (1.2.9), we can compute the perturbation of the second fundamental form in the
following manner (note that since the goal is to compute the norm of the relevant quantities,
only the normal terms are incidental) :

5 (Em) =5 (V;V;®,)
= Vi (Vi) + ViV, TPV, + ViTP &y + ViTP Ay + TPV, Ay,
+ tangent terms
—v, (vj 1\7) + ViV TPV, + VTP Ay + ViTP Ay + TPV A (1.2.15)
+ tangent terms
= Vi (VilV) + ViV TPV, @ + ViTP Ay + ViT? &y + TV, Aist
+ tangent terms.

To obtain this last expression, we have used the Gauss-Codazzi equation (see [Wil65],
chapter 3) :
VZ-Ajp = VjAZ'p == vaij V’i,j,p. (1216)

From (1.2.15), we deduce
6 (A1) =0 (o) Aps + g5 (A1)
= (2NA® = V'T? — VPTY) Ay + V' (V;) + VTP A, + VTP 4,
+ TprAé-ﬁ + tangent terms (1.2.17)
=V (Vi) + 2N AL 48 + VTP B, — VPT' A, + TPV, Al

+ tangent terms.

- Al 1. - -
0 (Ht) =9 ( 2”) = §A9N+ \A|3N+TprHﬁ+ tangent terms. (1.2.18)
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This yields

5 (HY) = (8N, H) +2|A2 NH + T,V, (H?)

=V, ((VIN,H)) - VINV;H — NH (V'#i, V;ii) + 2N H | A|?
S (VAT CNEAE
+ TPV, (H?)
=v: ((VIN,B) - (N, V') + NAH + NH|A[ + T'V,, (H?).
One must point out that to obtain the last equality we have computed
(Vifi, Vift) = (—APV,®, —AIV,®) = AL Al = |A]2. (1.2.20)

From (1.2.14) and (1.2.19) (and using (1.2.1) for the different formulations) we finally reach

5 (B2 10?) = lal* v, (V7N ) - (¥, VH) + 7782)
1912 N (AgH + H (JA]2 — 2H?))
(e () )

+ 912 N (AgH + 2H (H? - K))

= lgl* v, ((vR, &) ~ (¥, VA) + 17H?)

+19/% N (81 + H|AL) .

To simplify notations we denote W (®) = AjH + H’A‘f] We now compute with Gauss-
Codazzi

+2NAL AP AL + TPV, (' ’)

VNV 4 TPY, (I !) (1.2.22)

)
' ) <VjJ\7,ViAZ>+2NA1ApAJ+T”V (' o >
")) -

)

—2V;NV'H +T?V, <| 2| )

—2(N, v H>)

A 2
+2NAGH + NTx (971 4)*) + 17V, <|2|9> .
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This yields :

AL

|At’§|gt|% 1 G Tpq G wp i pAg
5(2 = g3V, | (VN A7) — 2 (N, v7H ) + 772

3 (1.2.23)
. T ((97'4)°)  jap
+2|g|2N [ AgH + 5 —H 2
Reusing the notations of the proof of lemma 1.2.1, we find
1 4\3
Tr ((9724)°) = (2 +6%) +2(c+7) 6>+ 7 (1 + 6
=8H® - 6HK.
And with (1.2.1), we conclude
1 4\3
T ((g7'4)")  jap )
- H =2H(H” - K). (1.2.24)

2 2
Injecting (1.2.24) into (1.2.23) then yields

|At|§ |gt|% 1 3 1ng ¥ 1 p|A|§
5 (2 = 1914 %, ( (VN 4P1) —2 (N, VA )+ T e n225)
+20g2NW ().

Since ‘A‘z = |A|* — 2H2, we conclude with

| A %902

2 :‘g‘%vp <<Vqﬁ,qu>_<N7vpﬁ>+TpVi|g>

2 (1.2.26)
+lglzNW (®).

We will slightly modify (1.2.21) and (1.2.26).

— — — A12
Similarly if we let y; = <qu, AP‘?> - <N, va> + 771 then

AL

2

i = (Vg (X, M), A7) — (X, )VPH + (X, VPa)
> e ~ |A]£2J
<qu, qu> + (X, Vi) AP — (X, )VPH + (X, VP@) L

. . Al2
= (7, A"V, X ) + <X, APIV i — VPHT + qu>2|9> .
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o A2
This can be simplified yet further. Let pup = APV i — VPH7 + Vp@%, and

: o A2
pe = —HAPIV & — APIA,V'® — VPHT + |—9qu>
2 (1.2.27)
i 2.
=~ (VPHA + HAMY) + ’29qu> — APAIV'D.

° ° ° P
If we notice that AjA] = <A2)l , and using once more the notations of the proof of lemma

. ey 2
#-(7 %)

e—y)\2
_ ((2)0 + ¢ (6_7)% ) ¢2> (1.2.28)
2

K
=—971d.
2

1.2.1, we compute

Injecting the latter into (1.2.27) then means :

Al _ _ (vaﬁ n H,Zipqvq@) .

API it — VPHTE + Vet

Similarly
HVPR — VPHR + H2VP® = — (vaﬁ + H/iqu@) .
Canonically, the expression VH - 37 (Vﬁ) +Vigx H=-2 (VHﬁ + H/oqu)), where

. : —0y\ . .
x is the vectorial product of R? and V+ = < Y'), is often used in local conformal charts.

Or

We can then conclude these computations

5 (HE \gt\%) = @v. (2 <VX, ﬁ> + <X, —2 (VHﬁ + Hzivq))»

2
+ gz NW (@),
o [ Aol —'9’%v.(2 (i) + (3,2 (v + AvE)) (1-2.29)
2 ) ) )
+lgl2NW (@),

where V.V = V, VP = div,V.
From this we deduce the Euler-Lagrange equation for Willmore surfaces :

Theorem 1.2.13. Let ¥ be a Riemann surface and ® € C* (E,]R3) an immersion. Then
® is a Willmore immersion if and only if it satisfies the Willmore equation

W (@) := A H + H|A|” = 0. (1.2.30)

If @ is branched, it is Willmore if and only if (1.2.30) stands away from the branch points.
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Proof. The immersion ® is Willmore if and only if it is a critical point of W (equivalently
of £), meaning if and only if, using the introduced notations, for all perturbations X :

b </ thdvolgt> = (.
b

/5(H3dvolgt):/div(...)+giNW(@):/ 9]z NW = 0.
by by b

This condition is equivalent to

Since this is true for all compactly supported N, this concludes the proof. The computa-
tions with &£ yield the same result. O

This equation was known since the works of W. Blaschke. There exists a similar
equation in higher codimension (see T. Riviére [Riv08|), but it is outside the frame of the
present work. One must notice that the divergence terms have not (classically) impacted
the Euler-Lagrange equation. They will however be pivotal in establishing conservation
laws. Let (i;) be a sequence of maps of R? leaving H? |g]% invariant, with ¢ = Id. Let ®
be a Willmore surface and ®; = ¢ 0 ® = ® +¢X + o(t). The vector X is the infinitesimal
symmetry associated to ¢, alluded to in the incipit of this subsection. Then by definition
of ¢y :

HE |gul® = H2 gl +16 (B |gil*) + oft) = H2|g]}

Then, given that ® is a Willmore surface,

5 (HE ygt|%) — ’gz’év. (2 <vx,ﬁ> n <X, VH — 375 (vﬁ) + Vi x ﬁ>> —0.

This is the conservation law associated to the infinitesimal symmetry X. We then only
have to plug in the infinitesimal symetries corresponding to the generators of the conformal
group to conclude.

Translations :

Here ¢(x) = 2 + td with @ € R3, then X = @ and the corresponding conservation law is

vieR® div((@-2(VHi+ HAV®))) =0.
Consequently one can introduce the first conserved quantity :
Vira = —2 (VHﬁ + Hflvcl)) . (1.2.31)
This quantity satisfies div (Vira) = 0.

Dilations :
Here pi(x) = (1 4 t)x, then X = & and the corresponding conservation law is

div ((®, Vira)) = 0.
The second conserved quantity is then

Vai = <<1>, 2 (VHﬁ + HAV@)> — (D, Vira) - (1.2.32)

Rotations :
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Here p(x) = M, zx where M, ; is the rotation of angle ¢ and axis @ € R3. Then X = a@x ®.
The induced conservation law is then

Vi€ R®  div ((@,® x Via + 2HV® x 7)) = 0.
The third conserved quantity is then

Viot = ® X Vira + 2HV® x i, (1.2.33)
Interestingly, working with ‘A‘Q \ g\% yields a somewhat different conservation law :
Vi e R div <<a B X Vira + 2(AV®) x ﬁ>> —0,
which yields a divergence free variation on Vi :
Vit = ® X Vira + 2 (AV@) (1.2.34)

It can be shown through (straightforward in a conformal chart) computations (see (A.2.5)
in the appendix) that .
Viot = Viot + 2V 7. (1.2.35)

Inversions :

1
As has been noticed in propositions 1.2.2 and 1.2.1, H?|g|2 is not invariant under the
action of inversions, but ‘A‘2|g|% is. We will then work with the latter. Let

ﬁ ta
pi(x) = 2
wr e

with @ € R3. Hence

B = o0 d — @-t(@ﬁ* 2 (®, a>‘1>> +o(t).
One can then inject X = |®|*@—2(®, ) ® in (1.2.29) to conclude. To that end we compute

<Avx,ﬁ> 2 ( Ave <1>> a) — 2<,Zivq>,a>(<1>,ﬁ>

2(
(
2< i, { Avo, q>>n—<<1>,ﬁ>£1vq>>
2(d,® x (it x AVa)).

Moreover
<X7 ‘/tra> = <C_i> |(I)‘2‘/tra =1 <(I)> ‘/tra> (I)> .

We deduce :
VieR3 div (<a’ 1B2Vira — 2(®, Vira) ® + 48 x <ﬁ X AV<I>)>) —0.
From this, we find the fourth conserved quantity :

Vinw = —|®[2Vira + 2 (®, Vira) & — 48 x (ﬁ X Avq>)
) (1.2.36)
= —|D|*Vira + 2V ® — 4P x (ﬁ X AV@) _

We have thus proven the following result :
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Theorem 1.2.14. Let X be a Riemann surface and ® € ' (E, R3) a Willmore immersion.
Then & satisfies the following conservation laws :

div (Vira) = div (Vi) = div (Vigt) = div (th) = div (Viny) = 0, (1.2.37)
where )
Vira = —2 (wm n HAV(I))

Vdil = <(I)a ‘/tra>
‘/rot = x ‘/tra +2HV® x 1 (1238)

‘/rot:(bx‘/vtra+2(fiv‘b> X T

Viny = =[®Vira + 2 (®, Viga) ® — 40 x (71 x AVE) .
If ® is branched, these stand away from the branch points.

These conserved quantities were first found by T. Riviére through purely computational
means (see theorem 1.4 [Riv08]). Y. Bernard then showed in [Berl6] that they stemmed
from the conformal invariance of the Willmore energy, did the computations pertaining to
the mean curvature and corresponding to the first three conserved quantities. As far as
we know the computations corresponding to f/rot and Vi, have not been done (although
Y. Bernard conjectured them) in that way (see section 3.1 in [MR17] by A. Michelat and
T. Riviere for a mildly different formalism).

Remark 1.2.1. The conservation law proceeding from the invariance by translations is
in fact the Willmore equation put in divergence form (see [Riv08] for this process). It
requires much weaker assumptions for it to have a distributional meaning, compared to
(1.2.30) and will thus be central in defining a notion of "weak Willmore immersion" (see
section 1.4).

In the following, we will often work in local conformal charts on the Riemann surface
(this can be done without losing any generality see the discussion in section 1.3) . The
immersions can then be seen as immersions ® from the unit disk I into R? that are con-
formal (when the two spaces are imbued with their canonical euclidean metric). Denoting
0,® = &, and 9y,® = @, this translates as

By, D) = (B, D) := >,
(®a, >_(<)y v i=e (1.2.39)

(D, Dy)
The function A is called the conformal factor of ®. Working in that framework simplifies

computations greatly. For instance, since V = <gr) and V+ = <_aay>, one has
y T

Vo x i = V%10, (1.2.40)

In the appendix, we give a family of similar formulas for conformal immersions, in real
(section A.2.1) and complex (section A.2.2) notations (for instance (1.2.40) is recalled as
(A.2.4) in real notations and A.2.15 in complex notations). These simplify the Willmore
equation and the conserved quantities.

Theorem 1.2.15. Let & € O (ID),R3) be a conformal immersion, let A be its conformal
factor. Then @ is Willmore if and only if

AH +2He* (H?> - K) =0. (1.2.41)
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The conserved quantities are then

Vi = =2 (VHL + HAV®) = VH — 375 (VH ) + V47t x A

Vail = (@, Vira)

Viot = ® X Viga + 2HV @ (1.2.42)
V;ot o x Vﬁ‘a + 2AVLCI)

Vinw = —|®2Vira + 2 (@, Viga) P + 40 x (Avi@) .
\

Using the conserved quantities in local conformal charts allows one to find a set of
equations satisfied by Willmore immersions with better analytical properties than the
Willmore equation. Indeed the latter has an overall Af = f3 shape which is unadapted to
a weak formulation (it is super critical for the Calderén-Zygmund theory) which we will
require to study compactness (see section 3.2.1). The conserved quantities will then prove
pivotal for what is to follow.

1.2.4 Willmore equations

Following T. Riviére’s original computations in [Riv08|, we can modify the conserved
quantities into an analytically handier form :

Theorem 1.2.16. Let & € C* (]D) R3) be a Willmore conformal immersion of conformal

factor A = In ]@ |, of Gauss map 1, of mean curvature H and of tracefree second funda-
mental form A. Then there exists L € C® (D,R?), S € C* (D,R), R e C® (D,R3) ,

Re(C™ (]D),]RS) such that :

VAL = —2 (VHﬁ n HAV@) — VH — 37, (vﬁ) FViix A
1o __ 1 r

vis=(v'er) (1.2.43)
VIR=LxV+®+2HV'®

(VIR =L x V*'® +24V+o

Proof. Since div (Viza) = 0 on D (which is simply connected), there exists L as required.
Further
Vair = (@, Vira) = (@, VL)

= vt (<¢,E>) - <VL<I>,E>.
div (Vdﬂ v (<<1>, E>)) —0,

there exists S as desired. We proceed similarly for R and R and conclude the proof. [

Since

At the inception, R and S were obtained through astute computations in arbitrary
codimensions, trying to find other divergence free quantities from L. While Noether’s
theorem clarifies the fundamental origin of the conservation laws, how to derive S and R
from them is less obvious. In our case, the applied modifications can be seen as striving

to work with invariant quantities. Indeed, while <<I>,VLE> changes under the action of

translations, moving the V- onto ® leads to a translational invariant, and thus a potentially
more interesting quantity.
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Remark 1.2.2. All four E, S ﬁ, R are defined up to a constant.
Remark 1.2.3. Identity (1.2.35) implies that VAR = VLR + 2V-+ii.

Remark 1.2.4. While S, ﬁ, R are dilation invariants, L is not. Indeed for peR, &, =ud
is a Willmore conformal immersion of the disk. It can be shown through a straightforward
computation that its quantities L,, Sy, R, and R, defined by (1.2.43) satisfy

/

- 1
L,=-L

"
S, =8
R, -
R, =R

Remark 1.2.5. In complex notations one has

-

L,=—2i (Hﬁ + HQe’”(I);)
S, = <<I>Z,E> (1.2.44)
R.=Lx®,+2H®.,

where Q = 2(®,,,7) is the tracefree curvature of ® (in essence the complex analogue of

o

A, see section A.2.2 in the appendix).
The following results, taken from theorem L4 [Riv08], link R and S.
Lemma 1.2.2. Let ® € C* (]D),Rg) satisfy the hypotheses of theorem 1.2.16. Then

VS = — <ﬁ v¢ﬁ>

(1.2.45)

VR =17 x V'R+V'isi.

Proof. We simply use (A.2.4) and compute :
<ﬁ, v¢é> - <ﬁ,£ ¥ Vo + 2Hvi¢>> - <E, Vid x ﬁ>
—_ <E, vq>> — _VS.
Similarly
i x VIR + ViS7i = it x (* X V4o + 2Hviq>) + <E, viq>> 7t

= < Z, VL<I>> 7 — <E, ﬁ> Vid + 20V

— I x (ﬁ X v%b) L 2HV® = VA.
This concludes the proof. O

From lemma 1.2.2; one deduces :
Theorem 1.2.17. Let ® € C* (D,RS) satisfy the hypotheses of theorem 1.2.16. Then
AS = — <Vﬁ, VLE>
AR = Vii x V'R + V15Vi (1.2.46)
AP = % (V-s.ve+ ViR x Vo).
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Proof. As in [Riv08], the first two equalities are obtained by taking the divergence of

(1.2.45), and the third one can be found through direct computations. We will however

frame it as a consequence of the fourth conservation laws, as was suspected in [Berl6|.
Indeed one has

Viw = —|®[2Vira + 2 (@, Viga) ® + 40 x (ZNL@)
= —|®P VL +2 <<I>, viji> O + 40 x (Av%)
I N L 7 7\ ol
—V ( D] L+2<<I>,L><I>>+2<V <I>,@>L 2<<1>,L>v ® e
_9 <viq>, E> & 4 43 x (Av%)
= Vi) 120 x (E x Vi 4 zﬁvlcp) —2vise
=V (..)+20 x VIR —2V+15.
Thanks to remark 1.2.3, one has
Viw = VE (L) 428 x VIR + 4% x Vit — 2V 5®
=V () 420 x VIR —2VSD — 4V x 7 (1.2.48)
=VE( )+ 420 x VIR — 2V 5® + 4V,

Taking the divergence of (1.2.48) yields :
lot 1 15_1lg1 -
A<I>:§V SV@—§V<I>><V R:§V SV<I>+§V R x V.
Which concludes the proof. O

Although critical for the Calderén-Zygmund theory, system (1.2.46) is remarkable in
its Jacobian-like form which allows for the use of Wente’s lemmas (see section A.3.2 for a
panel of integrability by compensation results). This algebraic structure will thus be key
in the weak framework.

Remark 1.2.6. One can simply take the divergence of (1.2.47) and find
V® x VIR — 2V+SV® = 0.

This may help explain the relative lack of interest revolving around R since while R allows
one to recover controls on A®, R does not. Further injecting the content of remark 1.2.3
into (1.2.46) shows that R, like 77, does not satisfy a remarkable enough equation.

The system (1.2.46) has been modified in [Marl9c| to only involve mean curvature
terms.

Theorem 1.2.18. Let ® € C* (]D,]RS) satisfy the hypotheses of theorem 1.2.16. Then

AS = <HV<I>, VL}§>

AR=—HV® x VIR - V'*SHV® (1.2.49)
1 =

A® =3 (vis.wb + VLR x V<I>) .
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Proof. We reproduce the proof given in [Mar19c|, which consists essentially in rephrasing
(1.2.46). We use the notations of section A.2.1.

To that end we compute
<jivq>, v¢z§> - <AV¢>,E ¥ Vid 4+ 2Hvi<1>>
— (9 4 f0, [ x®,+2HD
=—€ 9 %o + f®y, L x &y + y
<f<1> <I> L x <I>x+2H<I>x>

(1.2.50)
_ %e—% (<<1>x,E x <1>y> n <<1>y,i x <1>x>) —OHf+2Hf

—e _ - =
=" ((L.®y x @)+ (L, @, x @,))

—0.
Further
AV x VLR = AV x (E X VL ¢ 2HVL<1>)
<Av<1> vie > <AV<I> L> V5id 4 2HAVS x Vi
_ A <e;g¢x + [y, <I>y> L
+e2A <€;9<1>z + fo,, E> o,
— e ?2H <e 5 y> x @,
<fc1> 5 I"%p, @ >E

S <fq) I=¢cg, L> b, (1.2.51)

+2H (f@x + g;‘e@y) X

e —

== (®2, L) @y + [ (@), L) @,

—f<<1>x,L><I> _9=¢ <c1> E>
e—g.
+ 2H< . )
e — — €
= (29895% + 1S,y — Sy Py — 2@,%)
—V1SAV®.

We have used (1.2.43) to obtain the second to last equality. The decomposition (A.2.3)
then yields

<Vﬁ, vlﬁ> . <qu> + AV, VLﬁ> S <HV<I>, VL1§> ,
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with (1.2.50). Similarly, with (1.2.51) we compute

Vi x VIR + V1SVii= —HV® x V1R - HVOVLS — AVOVLR — AVOV-LS
= —HV® x VIR - HVOVLS + VISAVD — VIS AVS
= —HV® x VIR — HV®VLS.

Injecting these last two equalities in (1.2.46), we can conclude that ﬁ, S and @ satisfy the
desired system. O

Remark 1.2.7. We could have done the proof of theorem 1.2.18 using complex notations.
From (1.2.44), it is obvious that

(R..0.) =0,
R.x®,+8.®, =0.
From this, the complexified version of (1.2.50) and (1.2.51) stands :
<§Z,ﬁe_2A®Z> =0,
R, x (Qe20.) + 5. (Qe20,) =0,

Taking the imaginary part of the last two equalities yields precisely (1.2.50) and (1.2.51),
which concludes the complex proof.

System (1.2.49) is critical and does not have the Jacobian-like structure necessary for
Wente’s lemma. However, once criticality is broken it offers a way to bound VR and V.S by
HV®. Besides, one can deduce from (1.2.43) that thanks to the properties of the vectorial
product

12 . L2 ;
‘VR‘ = )L x V @‘ +4|HVOP.
This yields an interesting estimate :

IHV®| < % ‘Vﬁ‘. (1.2.52)

Consequently (1.2.49) and (1.2.52) offer a closed bootstraping loop which we will use in
section 4.2.1.

In fact building from remark 1.2.7, one can express R, in the frame (P, Pz,7). Indeed
from Ffz =Lx®,+ 2H®,, we can compute

R.=2(H+iV)®, —iS.ii. (1.2.53)
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1.2.5 Conformal Willmore immersions

Since the first conservation law is the Willmore equation in divergence form (see remark
1.2.1), satisfying it is tantamount to being a Willmore immersion. Since S and R are solu-
tions of a self-sufficient system, it is natural to wonder if satisfying the two corresponding
conservation laws yields the same result.

We then consider & € C° (]D),R3) a conformal immersion. We assume there exists

LeC™ (ID),R3) such that

div (<E v¢q>>) —0 o
div (E X V4o 4 2Hviq>) —0.

We do not assume anything on the nature of L. In particular we do not assume that L
satisfies the first conservation law of (1.2.43). System (1.2.54) is enough to go from (1.2.43)
to (1.2.46) and find the corresponding quantities S and R, which satisfy (1.2.46). We will
work in complex coordinates and write

S { ’q>z> (1.2.55)
I x®,+2HD,.

A

X

We decompose L,=a®d,+bb;+ cit, with a,b,c € C*°(D, C). The system (1.2.54) implies

(VL,v+te) =0,
. (1.2.56)
VL x V+® +2VHV+® = 0.
In complex coordinates, this translates as
2)
o((z09) -o(75) -0
o (1.2.57)

) (EZ X &5+ 2HZ<I>2> -3 <¢“eﬁ + (2H, — ic) <I>Z) —0.

a=0
c=—2iH,.

Hence I_;z = bd; — 2iH, 7. If we compute Ezg we find

Consequently we find

- Q _
ng = bg(I)g + 2)\5[7(1)5 + ?bﬁ — 2ZH227’_7: + QZHZH(I)g + QiHZQG_2/\(I)Z
22 . Qb .
= 2ZHZQ€ @z + (bg+2)\gb+2ZH2H) @g—l— 7 —QZHZg n.

Given that L € R3, Ezg € R3 and thus :

bs + 2X:b+ 2iH, H = —2iH;Qe ™2
b . (1.2.58)

747:HZ2 + ? 2
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We can work on the expression :
bs +20b + 2HL H + 2iH:0e™ = (b + 2iHQ) e — 2iHQze™ + 2HH,
z
= (be? +2iHQ) ™
z

To obtain the last equality we have used the Gauss-Codazzi identity in complex notations
(see (A.2.20)). We can then find a holomorphic function F' such that

b=e 2 F —2iHQe . (1.2.59)
Injecting (1.2.59) into the second equality of (1.2.58) yields :
WD) = S (Fﬁe*”) . (1.2.60)

This is a notion closely linked to Willmore immersions which will be useful later, called
conformal Willmore immersions.

Definition 1.2.5. Let ® : D — R3 be a conformal immersion. Then ® is said to

be a conformal Willmore immersion if there exists an holomorphic function F' such that
W(P) =R (FQ@‘”).

This notion is yet again linked with a behavior of the Willmore energy.

Proposition 1.2.19. Conformal Willmore immersions are critical points of the Willmore
functional in a conformal class and F acts as a Lagrange multiplier.

Remark 1.2.8. The notion of "conformal Willmore immersion" is then invariant by con-
formal mappings of the ambient space.

We do not give details for brevity and refer the reader to the subsection X.7.4 in [Riv12].
Conformal Willmore immersions can be apprehended as an extension of constant mean
curvature surfaces the same way Willmore immersions are an extension of minimal surfaces.
We will give in section 2.5 a necessary and sufficient condition for a conformal Willmore
immersion to be the conformal transform of a constant mean curvature immersion.

Interestingly enough, F' can be expressed in function of S and R. Following from

(1.2.59), we find

L= = (Loe) = (Le.)) - (Lo
= S.. -2 (L, ¢>z> % (L.7)

= S22 — 20,8, — B <Evﬁ>
= S.. — 20,8, +iQe P (L < >
= S.. = 2.8, +i0e 2 (I, 0, x @)
= 5. = 20,8 +i0e P (D x 8., ;)

(R

(B

— 5. — 208, +ie P (R, —2H®,, &, >

= 5., — 20,5, +iQe 2 (R E> _iHQ.
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Hence
F

2
We gave the definition of conformal Willmore immersion for conformal immersions of
the disk. It can of course be extended to conformal Willmore immersions of a surface.

= S,s — 20,5, + Qe <1§Z, <I>5> . (1.2.61)

Definition 1.2.6. Let ¥ be a Riemann surface. Then ® : ¥ — R3 is a conformal
Willmore immersion if for all z € ¥, (1.2.60) stands in any local conformal chart centered
at x.

Actually (1.2.60) can be given meaning on the whole surface, and not merely in con-
formal charts. To that end we can consider the Weingarten tensor hg = <82<I>, ﬁ>, which
is a (2,0) form on the Riemann surface. In a local complex chart it is written

ho = Qdz>.

Here 0 is the complex differentiation operator on the Riemann surface. In a local complex
chart : 0 = 9,dz. Then ® : ¥ — R3 is a conformal Willmore immersion if there exists a
holomorphic 2-form f such that

_ 1 _ _
(86H+ §g*1 ® ho ®h0H> g=S(ho®[).
This is clear since in local conformal charts

_ 1 _ Ik
O0H + 597" @ ho ® hoH = (H + ’2‘6_2’\H> i

= L/(Q)) dzdz,
4
g = e dzdz,
and f = Fdz%.

The formalism of differential forms may thus allow one to work globally. However,mostly
for simplicity, our proof are written locally, and we only translate the results globally when
needed.

1.3 Weak immersions with L? second fundamental form

1.3.1 Definition

Let 3 be an arbitrary closed compact two-dimensional manifold. Let gy be a smooth
"reference" metric on ¥. The Sobolev spaces Wk» (E,Rg) of measurable maps from X
into R3 is defined as

k
Wh? (3, R3) = {f measurable : ¥ — R? s.t Z/ VL, 1] dvoly, < oo}.
-0 > g0

Since ¥ is assumed to be compact this definition does not depend on gg.

We will work with the concept of weak immersions introduced by T. Riviére, which
represents the correct starting framework for studying Willmore immersions. One might
notice that the presentation of this notion has changed through the years (compare defi-
nition I.1 in [Riv08| with its equivalent in subsection 1.2 in [LR18a]). While we use the
latter, which is sufficient for our needs, one could take slightly less demanding (albeit more
complex) starting hypotheses.
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Definition 1.3.1. Let ® : ¥ — R3. Let g = ®*¢ be the first fundamental form of
® and 7 its Gauss map. Then ® is a weak immersion with locally L2-bounded second
fundamental form if @ € W1 (X)), if there exists a constant Cg such that

1
—qg0 < g < Ca 9o,
C@Qo_gcb_ @90

and if
/ |dii]?, dvolg < oo.
Y

The set of weak immersions with L2-bounded second fundamental form on ¥ will be
denoted £(X).

One of the advantages of such weak immersions is that they allow us to work with
conformal maps as shown by theorem 5.1.1 of [Hél02].

Theorem 1.3.1. Let ® be a weak immersion from ¥ into R® with L?-bounded second
fundamental form. Then for every x € 3, there exists an open disk D in ¥ containing x
and a homeomorphism ¥ : D — D such that ® o ¥ is a conformal bilipschitz immersion.
The induced metric ¢ = (® o V)" ¢ is continuous. Moreover, the Gauss map 7 of this
immersion is in W12 (ID), 82).

Further, proving estimates on the Greeen function of ¥, P. Laurain and T. Riviére
have shown in theorem 3.1 of [LR18b] that up to choosing a specific atlas, one could have
further control on the conformal factor.

Theorem 1.3.2. Let (X, g) be a closed Riemann surface of fixed genus greater than one.
Let h denote the metric with constant curvature (and volume equal to one in the torus
case) in the conformal class of g and ® € £(X) conformal, that is :

P*¢ = e?Uh.

Then there exists a finite conformal atlas (U;, ;) and a positive constant C' depending
only on the genus of 3, such that

i

IVl 2o vy < C [ Vareilaas,

2
with \; = %log W;I)‘ the conformal factor of ® o \I/i_l in V; = 9,(U;).

Thus given ® € £(X) we can choose a conformal atlas such that, in a local chart on D
of this atlas, ® yields ® € £ (D) satisfying

IVAll 2,00y < Co- (1.3.62)

One can then systematically study any ® € & (X) in such local conformal charts, as a
conformal bilipschitz map ¢ € £ (D) satisfying (1.3.62).

We can now introduce the notion of weak Willmore immersions (definition 1.2 in
[Riv08]).

Definition 1.3.2. Let ® € £ (X), ® is a weak Willmore immersion if
div (vﬁ ~ 3 (vﬁ) + Vi x ﬁ) —0 (1.3.63)

holds in a distributional sense in every conformal parametrization ¥ : D — D on every
neighborhood D of z , for all z € ¥. Here, the operators div, V and V' are to be
understood with respect to the flat metric on D.
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Of course, the weak Willmore equation (1.3.63) is merely the first conservation law
for Willmore immersions (see theorem 1.2.16), which is, as was said in remark 1.2.1, the
Willmore equation put in divergence form. A smooth weak Willmore immersion is then a
Willmore immersion, since it satisfies the Willmore equation. All the stakes then revolve
around using the system (1.2.46) (which remains valid in this weak framework since the
conservation laws have been reached through purely computational means by T. Riviére
in [Riv08|) to regain this regularity.

1.3.2 Harnack inequalities on the conformal factor

Works by F. Hélein (see [Hél02]) ensured that in disks of small energy, and that up
to a reasonable (see (1.3.62)) assumption on |[VA[ 2. ), the conformal factor could be
controlled pointwise. We here give a version from [Riv16| (theorem 5.5).

Theorem 1.3.3. Let ® € £ (D), conformal. Let i be its Gauss map and X its conformal

factor. We assume .
. T
I

D 3

IVAll 2,00y < Co- (1.3.64)

and

Then for any r < 1 there exists ¢ € R and C' € R depending on r and Cj such that
IA =l oo,y < C.

While we will make use of this result throughout this work, the proof itself is outside
its scope. The idea is to rely on the Liouville equation (see (A.2.8)) and to write it in a
Jacobian form thanks to a moving Coulomb frame. The details are in the referenced texts.

This theorem can be adapted to disks of arbitrary radii without losing control on the
constant.

Corollary 1.3.1. Let ® € £(D,), conformal. Let 7 be its Gauss map and X its conformal

factor. We assume .
T
/ i < 3T

D 3

p
and
IVAll 200D,y < Co-

Then for any r < 1 there exists ¢, € R and C' € R depending on r and Cy such that
A= Cp,THLoo(DTp) <C.

Proof. Let ®, = ® (p.), let 11, be its Gauss map and ), its conformal factor. Straightfor-
ward computations yield
e* = pe* (p.) (1.3.65)

and
My, =1 (p.) . (1.3.66)

/|Vﬁp|2dz:/ |Vit|* dz < sm
D D, 3

Then
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and, thanks to (1.3.65),
VAol 2oy = IV (A(p.) +1np) | 200y = VAl p2.00m,) < Co

owing to the scaling-invariance properties of the L? and L?* norms. Applying theorem
1.3.3, one finds there exists ¢ € R and C' € R depending on r and Cj such that

||)‘p - Cr‘llLoo(]D),‘) <C.
However, using (1.3.65),
A= cpﬂ"llLOO(]D),,p) <cC
with ¢, = ¢, — Inp and the same C'. [l

We can extend the control to domains with merely po |Vii|* < oo up to adding an
additionnal parameter rg to the constant :

1
ro=—inf < s
P

This parameter marks how relatively small a ball has to be to ensure that it does not contain
too much energy, and its inverse will bound the number of balls with small energy covering
the disk. Alternatively, anticipating on the vocabulary of concentration-compactness (see
section 3.2), it measures how concentrated V7i is on a disk.

/ | Vit|* = %” Vp € D, s.t. Bs(p) C Dp} . (1.3.67)
s(p)

Corollary 1.3.2. Let ® € £(D,) conformal, @i be its Gauss map and A its conformal
factor. We assume that

IVAll 2,00 (p,) + IVl L2,y < Co.

Then for any r < 1 there exists ¢,, € R and C € R depending on r, Cy and 7o (defined by
(1.3.67)) such that
A= cprllLoo(]D) ) <C.

Proof. We reproduce the proof given in [Mar19c| and prove the result on D. Then working
as in the proof of corollary 1.3.1 we can extend the result to ID,.
If [p IVii)? < 82 then one can simply apply theorem 1.3.3. Else let r < 1, and

. 1—r
ry =min [ —— .
1 9 »T0

We cover D, with a finite number of open disks (B 1 (pz)> . Using Vitali’s covering
i€

,_\

theorem (see for instance theorem 1.24 p 36 of [EG15]) one can extract N disjoint disks
(B% (pij)>j=1..N of this covering such that

N
UB%(p’L L_J 71 p'LJ

i€l

As a consequence
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which implies

N<—. (1.3.68)

For simplicity’s sake we will renumber the (p;) such that (p;;) = (ps)i=..~-
One can then apply corollary 1.3.1 on each By, (p;) and find ¢; € R such that

A—¢ < C. 1.3.69
| I (Bﬂ(pi» ( )
2
Here C is a constant depending only on Cy. Let 4,5 € I such that B% (pi) N B% (pj) # 0.
Then
|ci — ¢ < lei = A@)| + ¢ — Az)]
<|[[A—¢ + A —¢j
| I (B%(pi)) 1A =ell (B%(pj)) (1.3.70)

< 2C.
Taking any ¢,j € I, let ;; be a straight line linking any fixed z; € B ol (pi) to any fixed

xj € Br1 (pj). vij goes through the disks (BQ (PqJ) , ordered such that
2 2 qEeJCI

B% (le) N B% (qul) # 0.

Then, thanks to (1.3.70),
i — ¢ < Z ‘Ctﬂ - CQZ+1|
l

gch
l

< 2NC,
since 7;; goes through at most IV disks.
Setting c,, = c1, one deduces
lcor —ci| L2NC Viel (1.3.71)

Then given any x € D, we find a ¢ € I such that z € B% (pi) and have, using (1.3.69) and

(1.3.71),
[A(z) = cor| < M) — i + |epr — il < (2N +1)C.

Taking the supremum over x we conclude with
1A = corll e,y < 2N +1)C
which is as announced given that N depends only on r and rg. O

This control ensures that (1.3.63) has a distributional meaning in conformal charts. In-
deed if we consider ® € £ (D) satisfying hypothesis (1.3.64), Vii € L?(D) and its respective
tracefull and tracefree part HV® and AV® are properly defined as L?(ID) functions (see
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(A.2.6) for details). Then corollary 1.3.2 ensures that for any r < 1, there exists A € R
such that on D, we have the following Harnack inequality :

oA
— <t < et (1.3.72)
C
Hence, since |H| = %e_’\ |HV®| we have on D,
IH | 2,y < e ACIHV®||12(m)

o (1.3.73)
< e OVl L2 m) < +oo.

As aresult (1.3.63) is well-defined in the distributional sense, which allows us to introduce &
and S, and thus the regularizing system (1.2.46). The following definition and proposition
sum up these considerations.

Definition 1.3.3. Let ® € £ (D) be a weak Willmore immersion. Then there exists
L € D' (D) such that

VAL = VH - 3r; (vﬁ) + Vi x A (1.3.74)
Proposition 1.3.4. Let ® € £ (D) be a weak Willmore immersion. Then for any L €
D' (D) satistying (1.3.74) we have
div (<E, VL<I>>) ~0
div (L x V*® + 2HV*®) = 0.
Consequently, there exists S and R € D’ (D) such that
VLS = (L, V)

L 1.3.75
VIR=LxV+d+2HV'®. ( )

1.4 Regularity for weak Willmore immersions

1.4.1 Controls on I,

This section is devoted to the following result which is an improvement (given estimate
(A.2.11)) over theorem 7.4 of [Riv16], with a control by HV® replacing one by Vii. We
will however follow mutatis mutandis the previous proof. This theorem appeared in the
prepublication [Marl9c|.

Theorem 1.4.1. Let ® € £ (D,) be a conformal weak Willmore immersion. Let 7 denote
its Gauss map, H its mean curvature and X its conformal factor.
We assume
IVAll 200,y + IVl 2D,y < Co.

Then, for any r < 1, there exists a constant Ep,r € R3 and a constant C' € R depending
on 7, Cp and rg (defined in (1.3.67)) such that

o (2220

where L is given by (1.3.74).

<C||HV®
proepy S CHVliap,)
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Proof. As before, we will prove the theorem on ID. The proof on D, follows as in corollary
1.3.1. Let ® € £(D) be a conformal weak Willmore immersion, 7 its Gauss map, H its
mean curvature and A its conformal factor. We assume that

HV)\”Lzoo(D) + ”VﬁHLZ(D) < Co.

Let 7 < 1 and L € D' (D) satisfying (1.3.74).
Step 1 : Control of the conformal factor
Applying corollary 1.3.2 we find A € R and C depending on r, Cy and 7o such that

A=Al (D%Q <C.

Consequently A satisfies (1.3.72),

el

Vo €Dy — < @ < Ceh,
2 C

Step 2 : Control on vL
Estimates (1.3.73) then stands :

1=, (oest) < Ce‘AHHV@IILQ(D#).

We can exploit it to control the right-hand side of (1.3.74). First, using the fact that
the tangent part of VH, mr (Vﬁ), satisfies 7p (Vﬁ) = HV1ii, we recast (1.3.74) as

VLI = VH - 3r; (vﬁ) FViax B
= Vil - 3VH +3mp (VH) + Vi x (1.4.76)
= —2VH +3HVii+ Vi x H.
Then we control each term of the right-hand side as follows. With theorem 1, section 5.9.1

in [EG15] we find ) B
940, o) <o

S CE_A‘|HV¢‘|L2(D).

Moreover N o .

v ﬁxHHLl(D )s IV 2( )\HH 2( )
rt1 L2 Dy LA\ Drsa
= =z gt

< Ce ™ ||Viil| 2y 1 HV®| 2wy
while

HVi# <|va H
I ||L1 (Dr%) | !L2(DT_51) I ||L2 (D%l)
< Ce ™ |Vl oy IHV® L2 m)-

The last three estimates combined give

Ve H! (D%) ® L} (DTTH) .
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Step 3 : Conclusion
Thanks to Step 2 and theorem A.3.2 (in the appendix)

1L, € R3 HL— < Ce™ M HVD| 120

L2, oo(]D) )

with C a real constant that depends on r, Cy and ro. Hence, with (1.3.72) :
L2 oo Dr)

|(E-2)<
< CIlHV®||r2(p)

with C' as desired. This concludes the proof on D. O

L2 [e’e) (]D)'r)

1.4.2 Low regularity controls : proof of theorem A

Without any small control on H or 72, some results can be achieved in term of Lorentz
spaces estimates as shown by the following.

Theorem A. Let ® € £(D,) be a conformal weak Willmore immersion satisfying the
hypotheses of theorem 1.4.1. Then, for any r < 1, there exists a constant C' € R depending
on 7, Cp and ro (defined in (1.3.67)) such that

|HV®| 21(D,,) < CllHV®| 2(m,),

and
IVl 21 ,,) < C IVl 2p,) -

We first prove a more flexible result than theorem A (in that it does not reference 7o)
controlling the L*! norm of Vi under L?* assumptions on L.

Theorem 1.4.2. Let ® € £(D,) be a conformal weak Willmore immersion, 7 its Gauss
map, H its mean curvature, A its conformal factor and L its first Willmore quantity. We
assume

IVAll 200,y + IVl L2p,) < Co,

and that there exists v’ < 1 and and C; > 0 such that

LeA‘

L2:(D,/,) < CLEVE 12,

Then for any r < r’ there exists a constant C' depending on r, 1/, Cy and C; such that
[HV®| 20(p,,) < CIlHV®| 2(p,),

and
IVl 2 p,,) < C IVl 2,

Furthermore the associated second and third Willmore quantities also satisfy
IVSlz21,,) + IVEl 22 @,,) < CIHV®|| 2,

Proof. As before it is enough to work on the unit disk and conclude with a dilation to
obtain the result on disks of arbitrari radii.
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Step 1 : L2! control of VS and VR
Let 7' < 1 and L (defined in (1.2.43)) such that

|2

; < CLHV®| 2y -

L2:°(D

Then S and R defined as .
VLS = (L, Vo)

VIR=LxV+®+2HV®,

satisfy :

195 z20,0) + IV Bl 2o,y < || Ze?|

L2°°(D,) TIEVElee,,)

<S(CL+ D) IIHVE| 2y -

(1.4.77)

Noticing that .S and R are defined up to an additive constant, we can choose S and R to
be of null average value on D,.

The classic Poincarée-Wirtinger’s inequality (see theorem 2, section 5.8.1 in [Eval0])
yields for any 1 < p < oo and any u such that Vu € LP (D,/) :

lu — @l o,y < Cpa [Vl oo

with Cp, ,» € Ry and % the mean value of u on ID,». These inequalities can be extended using
Marcinkiewitz interpolation theorem (see for example theorem 3.3.3 of [Hél02], recalled
as theorem A.1.2 in the appendix) to L»* : there exists C,» such that for any u with
Vu € L (D)

lu = Ul 2o,y < Cr ||Vl L2200,y

Applied to S and R (which are of null mean value), this yields :
I1Slwreeow,) + |1 Blwiep,) < CIHVE| 2m),
where C depends on /. Since, thanks to (1.2.46)
AS = (VR,V*i),
one can decompose S = o + s where s is harmonic and o is a solution of

Ao = VRV iiin D,
o =0 on 0D,.

Using Wente’s lemma (theorem A.3.5, in appendix), one finds :

Vol ) < C”VﬁHLQW(DT/)||Vﬁ||L2(]D>,\/)

(1.4.78)
< CHV®| L2(m),
where C' depends on Cy and C. Meanwhile Poisson’s formula yields for s :
1955, < OV luran, (1479)
2

where C' depends on r, and 7.
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Using Marcinkiewitz interpolation theorem on trace operators yields
1512 o,y < ClUIVSL2eom,,) (1.4.80)
with C depending on 7’. Combining (1.4.77), (1.4.79) and (1.4.80) yields :

1951 (5,,,.) < OVl (L4.81)

where C depends on r, r/, C; and Cy. Together (1.4.78) and (1.4.81) yield :

A <D+7) < C|HV®| 2(m).-

Working similarly on ﬁ, one finds

VS R < C|HV® . 1.4.82
I IILQ(DW) + |V HLQ(DH,«/) < | L2(m) ( )
-2 -2

This estimate can still be improved : let S = ¢’ + s’ with s’ harmonic and o’
Ao’ =VRV 7 in D,
2
o =0o0n oD, .
2

Using theorem A.3.6 (in appendix) and (1.4.82) ensures

R O R O R )

(1.4.83)
< C|HV®| r2m)-
Using Poisson’s formula allows one to control s':
Nl <8 : (1.4.84)
£ (Danger ) 2 (o2
As before, Marcinkiewitz interpolation on trace theorems yields
Vs’ < C|HV® . 1.4.85
Vs HLQJ(DBHT) <C| | 22(m) ( )
4
Together (1.4.83) and (1.4.85) ensure
vSs < C||HV® .
19501, (s,,,,.) < CIHVHlez
Working analogously on ﬁ, one finds
VS| +|IVR| < C||HV®|| 12 (my- (1.4.86)
L2t (Dyf/) 121 (DSTIW) )

Once more, C depends on r, 7/, Cy and Cy which concludes Step 1.
Step 2 : L?>! control of HV®
We simply use inequality (1.2.52) :

1) =
IHV®| < i‘wz‘.



62 CHAPTER 1. ANALYSIS OF WILLMORE SURFACES

Combining it with (1.4.86), we find

HHWHLQJ( ) < CIlHV®||2(p), (1.4.87)
BEE

which gives us the desired control on HV®.
Step 3 : L?>! control of Vii
To expand these estimates to V7i, we will use equation (A.2.23) (see section A.2.2 in the
appendix)
AT + Vit x Vi 4 2div (HV®) = 0.

Using corollary A.3.2 and (1.4.87) there exists o € wi(2.1) (]D)37+T/> such that

4

Aa = div (HV®) (1.4.88)

and
ol s < |HV|
Wi, (D3T.+,./) L271(D3,.+T.,>
4 4

< CI|HV®| r2m)-

(1.4.89)

Setting v = 77 — 2a and using (1.4.89) yields

!VVHLQ(D ) < |V (7 = 2a)| 2( )
3r4r! L ]D)3r+7‘/
4 4

< ||Vl +2|[Ve
L2 (]D) st ) L2 (]D) g )

< |IViill 2y + 2C ”va”m,l(m ) (1.4.90)
3r+4r/

< Vil 2y + CIHV @l 22 m)

Besides, v satisfies
Av + Vit x Vi = 0.

We split v = 11 + 19, with v harmonic and v solution of
Avy 4+ Vit x Vi =0 in Dy,
4

V1 = 0 on 8D3T+T/ 5
4

Using theorem A.3.6, we bound
V| < C||Vii)? : (1.4.91)
L&t (DSTTW> L? (D3r+r/)

Using the same method as for the estimates on s’ (see (1.4.84) and (1.4.85)), and
applying (1.4.90) we find

IVealission < €IV, ) < €IVl (1.4.92)

3r4r/
Brer!
Combining (1.4.91) and (1.4.92) yields

VUl 2@,y < ClIVEll 2y - (1.4.93)
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Since 71 = v + 2a, (1.4.89) and (1.4.93) ensure that
Vil L2am,) < VY2, + 2(IValr21m,)
< OVl L2

which concludes the proof. O

Theorem A follows from combining theorems 1.4.1 and 1.4.2.

1.4.3 e-regularity results

In this section, we briefly recall T. Riviére’s e-regularity results. We will not detail
the proofs (since we do not improve on them) but give the overall ideas to contextualize
them. Further, the proof of theorem 4.2.1 will flow in a very similar way and offer enough
illustration for these methods.

Following is a combination of theorem 1.5 in [Riv08| and theorem I.1 in [BR14].

Theorem 1.4.3. Let ® € £ (D) be a conformal weak Willmore immersion. Let 7i denote

2
its Gauss map, H its mean curvature and A = %log (@) its conformal factor. We

assume

IVAll 200y < Co-

Then there exists €9 > 0 such that if
Agvm2<am (1.4.94)
then for any r < 1 and for any k € N
IVl < © [ (9.
VA @l < € ( [ 9 +1)),

with C' a real constant depending on r, Cy and k.

Proof. The original result by T. Riviére was in fact formulated in any codimension. The
idea behind the proof is to apply theorem A.3.4 to system (1.2.46) on balls B;(p) to find
the following Morrey-type inequalities for g small enough :

. 3 _
VS| + | VRE|? <= (VS| + VR .
19515 (5, )+ ||L2<Bé(p)>_4(|| Zomon + IVEI 2mon) - (1.4.95)

Through classical estimates on Riesz potentials, see for instance theorem 3.1 in [Ada75] ,
it entails

3¢ > 2 s.t. |[VS]|
oo

)*HVEHM(D ) <G| 19800, )+HV§\

L2 (]D) ! )
2
(1.4.96)
Since ¢ > 2, the criticality of (1.2.46) is broken. Its third equation, as well as (A.2.23)
allows one to pass the regularity and the controls on to 77 and V®. Bootstrapping yields
the desired result. O

3r+r/ 3r4r/ r4r!
4 4 2
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One of the consequences of this e-regularity is to vindicate the weak immersion for-
malism. Indeed as defined weak Willmore immersions are smooth, and thus Willmore
immersions in the sense of definition 1.2.4. Besides the controls displayed can be readily
obtained uniformly away from concentration points and thus exploited for the compactness
results.

Theorem 1.4.3 in fact followed a preexisting result by E. Kuwert and R. Schatzle (the-
orem 2.10 of [KSO01h],) :

Theorem 1.4.4. There exists €g > 0 such that if ® : ¥ — R? is an immersed surface,
¥ = & (By(w0)) CC X such that

/ AP du < eo,
b}

then

1
2
415 ) 5 © (7@ + 3 1413y ) Vllacey -
2

While similar in appearance they differ fundamentally. Indeed theorem 1.4.4 does not
start with a weak immersion and considers extrinsic balls (meaning balls of the ambient
space), while theorem 1.4.3 deals with intrinsic ones. Thus while these two results intersect
they do not a priori overlap. We refer the reader to the discussion in [BWV18] (between

estimate (I.11) and the end of the introduction) for more details.

1.5 Branched Willmore immersions

1.5.1 Behavior around the branch point

So far we have either considered Willmore immersions, or branched Willmore immer-
sions away from the branch point. Studying the behavior around a branch point requires
a specific analysis. Carried out by Y. Bernard and T. Riviére (below is theorem 1.8 of
[BR13]) it lead to a description through an expansion aroung the point.

Theorem 1.5.1. Let ® € C> (D\{0}) N (W22N W) (D) be a Willmore conformal
branched immersion whose Gauss map 7 lies in W12 (D) and with a branch point at 0 of
multiplicity 8 + 1. Let A be its conformal factor, vy the first residue defined as

1
_47T oD

—

o 7, (vﬁ _ 3n; (vﬁ) + Vi x ﬁ) .
Then there exists o € Z such that o < 6 and locally around the origin, ® has the following
asymptotic expansion :

0+1—a
B(z) = R [ AL + Z §j29+1+j + Co|z/0H )~ | — 9, (ln || 2m+1) — 4) +£(2),
7=1
(1.5.97)
where Bj, C, € C3 are constant vectors, A € C\{0}, and C € R. Furthermore ¢ satisfies
the estimates

Vig(z) = O (|z|2(9+1)_0‘_j+1_“> for all v >0 and j < 6 +2 — o,

2|7 V0= +3¢ € LP for all p < .
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In particular :
Hz) =% (Eagfa) — Foln|z| + n(2), (1.5.98)

where E, € C*\{0}. The function 7 satisfies

Vin(z) = O (|2[*77*7") forallv > 0 and j < 0 — a,
|2)P V01— e LP for all p < oco.

Once more we will not detail the proof and merely explain the relevant ideas. Here
the difficulty is that the Willmore equation and the conservation laws are only true on
D\{0}. To extend them to the whole disk requires to introduce a term ~;0p where ~; is the
corresponding residue and dp a Dirac at 0. More explicitely around the branch point, the
conservation laws induce the following five residues :

To = i . (VH _ 37, (vﬁ) + v x Er)

47
Y1 1 < VH - <Vﬁ) + Vit x ﬁ>
5 = 1 7 (q» ( 3ms (vﬁ) + Vi x ﬁ) + QHVch) 500
Fo = 1 7 (q) (VH 37 (vﬁ) + Vit x ﬁ) _ 22ivic1>)
T = i (—@F (VH—STrﬁ (vﬁ) +viﬁxﬁ)

+2 <<1>, VH - 37, (vﬁ) Vi x ﬁ> O + 4D x (AVL@)) .

These diracs reverberate throughout the process and in the expansions, creating the log-
arithmic terms. However only the residue corresponding to the invariance by translations
has an impact on the expansion of ® and H. It is called the first residue. The quan-
tity a € Z is called the second residue (see definition 1.7 in [BR13|), although it is not
actually a residue. It describes precisely how H behaves at the branch point. Together
7o and « control the regularity of ® across the branch point. The expansions themselves
are obtained by going through the Willmore equations using weighted Calderén-Zygmund
theorems (detailed in the appendix, section A.3.4).

A particularly noteworthy case occurs when all the residues 7y, . . ., 73 cancel out. This
configuration which occurs naturally when considering sequences of Willmore immersions
(see section 3.2 for context) offers greater regularity and fairer expansions. A Willmore
surface whose residues are all null will be called a true Willmore surface (this terminology
stems from [MR17]).

It is worth mentioning that, using the formalism and the methods introduced in
[KSO01b|, E. Kuwert and R. Schatzle have found corresponding results for branched Will-
more surfaces (see [KS07]).

1.5.2 Expansions for True Willmore surfaces

Following is a work in preparation for the analysis of the Bryant’s quartic (section
2.6 below), centered around finding expansions for more terms than just ® and H in
continuation of Y. Bernard and T. Riviére works in [BR13] (some of the expansions below
were actually already found in this paper).
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We then consider ® : D — R3 a true Willmore conformal branched immersion with a
single branch point at 0, of multiplicity # 4+ 1. Then applying theorem 1.5.1 we can expand
® around 0 in the following way :

1 1 0+1—a g
b(z) =2 L R Y e N A B
=2z ()7 & g
(1.5.100)
O 0+1—az0+1 | G,0+1 50+1—a 0
+( ) o] | +e,
@+1-a)@+1) X

where £ satisfies
Vie=0 <|z|2(9+1)_°‘_j+1_”> forallv >0and j <042 —a.

Further if we do the conformal change of variables Z0*1 = 2041 4+ 42942 (1.5.100) becomes

1 ! A 1
S(Z) =R | | =i | 2P [ 2 A =] | 202
(2) 20+1) o™ 0

G+i—a@+1) o) | +o(12).

<CZ9+1QZG+1+C’Z"“Z9+1_O‘> 0
1

Thus up to doing a conformal change of charts we can assume that A} has no component

1
along | —¢ |, meaning :
0
(M,
Ai=—1i|+V | 0]. (1.5.101)
2 0 1

20+1

Using ® conformal, we can expand (®,,®,) to the order z and conclude that

1
U:<A1, & >:0.
0

We deduce the following expansion for @, :

1 1 0+1—a '
(I)Z = 5 —1 2’0 + Z Aj20+]
0 j=2
(1.5.102)
C C 0
v 0+1 0—a -0+1 6-6+1—a 0 '
+(Z R R e p ! +e
Then, wishing to expand the Gauss map 7 we compute :
F20
18,12 = — +¢, (1.5.103)
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with N ‘
ViE=0 (|z[29+2ﬁ) for allv > 0 and j < 0+ 3 — a.
1 1 0 1 1 0
O x @z= (5| =i+ V20| + 06002 | x K +VZ* o | + 0602
0 1 0 1
.20 (0 0150 (1 050+ [ 1
- % 0] - % i| - % —i | + 0(?t2).
1 0 0
Hence we can write
0 1 1
i=(0] -Vz|i|-Vz|—i]|+v (1.5.104)
1 0
Here -
@ Mg
T T

Vv eIP Vp< .

Since we are studying a fourth order problem on ® (or second order on H) it is natural
to desire expansions valid for the fourth derivatives of ® and the second of H. With
theorem 1.5.1 this only seems possible for a < 8 — 1. However using the same techniques
as in [BR13], fourth order expansions can be drawn even when o = 6.

Proposition 1.5.2. Let ® satisfy the hypothesis of theorem 1.5.1. We further assume
that @ is a true Willmore immersion. Then in the expansion (1.5.97) & satisfies :

|z|oH1=2v4e ¢ LP(D) Vp e N.
Similarly 7 in the expansion (1.5.98) satisfies
|2|1*T1V?%n € LP(D) Vp € N.

Proof. Since this theorem is a slight extension of the previous result, since it corresponds
to theorem 2.3 in |[LN15| (although with a different formalism) and since we will do this
procedure in details and in a more general case (section 4.4), we will only give the outline
of the proof.
Starting with the expansions (1.5.97) and (1.5.98), and injecting them into (1.2.43) one
finds : ~
Le* € L™,
VS, VR e L™, (1.5.105)
HV® e L™.

These estimates in fact correspond to (2.30) in [BR13]. Now since @ is assumed to be a
true Willmore immersion, system (1.2.46) (which is a priori only defined on the punctured
disk) extends on the whole disk. One can then inject (1.5.105) into the first two equations
of (1.2.46) and apply theorem A.3.9 to find expansions on V.S and VR, which are valid
for V2S and V2R. Since in fact, thanks to (1.5.98), we can expand HV®, and have a
control on its first order derivatives, we can apply once more theorem A.3.9 to the first
two equations of (1.2.46), and extend the expansions to the third derivatives of S and R.
Theorem A.3.9 applied to the third equation of system (1.2.46) extend (1.5.97) to the fourth
order derivatives in the desired way. Similarly, one can extend (1.5.98) as wanted. O
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Proposition 1.5.2 propagates to the subsequent expansions, for instance in (1.5.104)
rV3v € LP for all p < co. One can differentiate (1.5.102) into :

9 1 O0+1—«a .
oo= 5 | i 274 N (6+) AP
0 j=1
N (0 —a)C o106+ H oC L0-150+1-a 8 n:
0+1 0+1—« 1 =
Taking the scalar product with (1.5.104) we find :
Q T T
e (¢9+1)V29—9Vz9+5 :Vzg—|—§. (1.5.106)
On the other hand
0
D,; = (Czefo‘ +52929’a) 0] +&.5.
1
Taking the scalar product with (1.5.104) we find :
H 2 -
; = 0225 + T2~ 4 1.
Combined with (1.5.103) we find :
H=2C>"%+2Cz%+n. (1.5.107)
If we compare (1.5.98) and (1.5.107) we can deduce E, = 2C.
From (1.5.106) we find
Q=o0("
01 (1.5.108)
Q,=0(""").

Thanks to Gauss-Codazzi equation (A.2.20) we can evaluate 2z through the derivatives of
H. Then with (1.5.107), one finds

Q; = H,e?* = —2002°7 12 + O (TQG_O‘> = O(r¥—o-h
Quz = Hooe® + H (2|9.°) = —20(0 — a = )02 1+ O(r¥~271) = O(r¥—272).

(1.5.109)
As a conclusion, combining (1.5.103), (1.5.108) and (1.5.109) ensures that :

z

e (2.0 — Q.Q5) = 2a(a+ 1)CVz0_a—2 +0 (Tﬂ—a—1>

(1.5.110)
=0 (") =0 ().

This term will be pivotal in section 2.4.2 since it is the leading order term of the Bryant’s
quartic (see (2.4.38)), which will thus have at most a pole of order 2 at branch points of
the immersion.
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2.1 Introduction

Once more, this introduction will give a quick and stand-alone look at the notions
developed in this chapter, with an emphasis on the author’s contributions.

Following we mostly study concepts and ideas revolving around the conformal Gauss
map and its deep link with the notion of Willmore surfaces. While most of the results pre-
sented here were already known and obtained through the Dorfmeister-Pedit-Wu (DPW)
method (see for instance [DPW98|, [DW19], [Eji88] or [Ric9T7]), the originality of the present
work lies in our approach. Indeed, we will merely employ basic differential geometry. Con-
sequently, most of our result will present clear geometric interpretations, often absent when
obtained through DPW methods. Most of this chapter was part of the preprint [Mar19a].

We will work with three models : the euclidean space R3, the 3-dimensional round
sphere S? and the hyperbolic space H?. Relying on the local conformal equivalences induced
by the stereographic projections, we can jointly describe the space of spheres of the three
models as the de Sitter space S*! of R%!. From the characterization of conformal maps as
those who preserve the set of spheres, we can then find explicit correspondances between
the conformal groups and SO(4, 1), described in the following result.
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Corollary 2.1.1. SO(4,1) acts transitively through conformal diffeomorphisms on
— X e83:

Vs
MX =—
Vs
where
X Vs
v=a(¥)=(¥)
— reR3:
M.x = Yo
Ys — Y4
where
|z\:§71 Yo
|z\22+1 U5

While the fact that Conf(S?) and SO(4, 1) are isomorphic is well-known, the explicit
correspondance is rather uncommon.

From this, in section 2.3, we will consider the Conformal Gauss map of an immersion.
This notion will be to Willmore surfaces what the Gauss map is to CMC surfaces. It can
be apprehended as the map that, to a point x on the surface associates the tangent sphere
of radius the inverse of the mean curvature. It is thus an application ¥ : ¥ — R
Studying its geometry allows one to build a natural normal frame based on the immersion.
Computing the corresponding mean and trace free curvatures then highlights that Y is the
conformal Gauss map of a Willmore immersion if and only if it is a minimal immersion
in S%!, with the minimal equation for the conformal Gauss map being equivalent to the
Willmore equation for the immersion. This will be detailed in section 2.4.

Further the conservation laws of the Willmore surfaces can be read thanks to the
conformal Gauss map.

Theorem 2.1.1. Let & : D — R3 be a Willmore immersion, conformal, of conformal
Gauss map Y. Let

p=(VYY; -Y;VY;) =vYYy? —yvy”.
Then divy(p) = 0, and

U _ V:cra_‘/inv ‘/tra“l“/inv
T 2 2
Vira—V;
Q/,L _ ( tra2 mv) O Vdil
Vi +Vira | ©
_ ( mv2 tra) _‘/dll O
and ~ N
5 0 — Vrot3 ‘/Eot 2
U= Viot 3 ~ 0 —Viot1
— Vrot2 V}ot 1 0

with Vira, Vail, Viot, \zot and Vi, defined in theorem 1.2.14.

This observation, coupled with the behavior of the conformal Gauss map under the
action of the conformal group tells us how the conserved quantities change under the
action of the conformal tranforms. Considering the specific case of the inversions yields an
elementary proof of theorem 3.9 of [MR17].
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Corollary 2.1.2. Let ® : D — R? be a Willmore immersion, conformal, of conformal
Gauss map Y. Let ¢ : x — ﬁ be the inversion at the origin. Let V., be the conserved
quantity corresponding to the transformation * for t o ®. Then

‘/tra, L= Vinv
V;nv, L= V;:ra
Vai,. = —Van
‘Z‘ot, L= ‘Z‘ot-

The usefullness of the conformal Gauss map will also be seen in the study of branched
Willmore surfaces, where its behavior at a branch point will allow us to compute the second
residue. Applied to inversions of minimal immersions, it will make computing both residues
at branch points obtained easier.

We will finally study another relevant quantity : Bryant’s quartic. This object, which
can be seen as the product of the tracefree curvatures of the conformal Gauss map takes
center stage in the problem of conformally CMC surfaces, subject of the section 2.4.3. This
issue revolves around finding equivalent conditions for a conformal Willmore surface to be
the conformal transform of a CMC surface. We say that ® (respectively X, Z) is confor-
mally CMC (respectively minimal) if and only if there exists a conformal diffeomorphism
¢ of R3U{oo} (respectively S?, H3) such that @ o® (respectively po X, poZ) has constant
mean curvature (respectively is minimal) in R3 (respectively S, H?). One such geometric
condition on the conformal Gauss map arises naturally.

Theorem 2.1.2. Let ® : D — R? be a smooth conformal immersion, and X (respectively
Z) its representation in S3 (respectively H?) through 7 (respectively 7). Let Y be its
conformal Gauss map. We assume the set of umbilic points of ® (or equivalently, see
(A.2.29) and (A.2.42), X or Z) to be nowhere dense.

Then

— & is conformally CMC (respectively minimal) in R? if and only if Y lies in an affine
(respectively linear) hyperplane of R*! with lightlike normal.

— X is conformally CMC (respectively minimal) in S? if and only if Y lies in an affine
(respectively linear) hyperplane of R*! with timelike normal.

— Z is conformally CMC (respectively minimal) in H? if and only if Y lies in an affine
(respectively linear) hyperplane of R*! with spacelike normal.

From this, with a careful study of the geometry of conformal Gauss maps, two similar
characterizations follow. The first one is based on the notion of isothermic immersion,
which we will briefly go over in section 2.4.2. It can easily be compared to theorem 4.4
from [Boh12], reached with other means.

Theorem B. Let X be a smooth conformal immersion on I in S?, and ® (respectively

7) its representation in R? (respectively H3) through 7 (respectively 7). We assume

that X (or equivalently, see (A.2.29) and (A.2.42), ® or Z) has no umbilic point. One

of the representation of X is conformally CMC' in its ambient space if and only if Q is
2

holomorphic and X is isothermic. More precisely (W%(X)) —w2e~*1Q is then necessarily

real and

— & is conformally CMC (respectively minimal) in R? if and only if

(2 <X>)2 et
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— X is conformally CMC (respectively minimal) in S? if and only if

(WSB(X)>2 et < 0
— .

— Z is conformally CMC (respectively minimal) in H? if and only if

) 2
(ngl(X)> e s 0.

Conformally minimal immersions satisfy Wss (X) = 0.

This last theorem is in accordance with previous results obtained through DPW meth-
ods in the previously mentioned works. Its originality lies in the numeric determination of
the space in which an immersion is potentially CMC. The same analysis that led to this
theorem can be extended to give it a more outstanding shape.

Theorem C. Let X be a smooth conformal immersion on I in S?, and @ (respectively
Z) its representation in R3 (respectively H?) through 7 (respectively 7). We assume
X (or equivalently, see (A.2.29) and (A.2.42), ® or Z) has no umbilic point. One of
the representation of X is conformally CMC' in its ambient space if and only if Q is
holomorphic and w2Q € R. More precisely

— @ is conformally CMC (respectively minimal) in R3 if and only if

<WS3(X)>2 _Pethg -
. .

— X is conformally CMC (respectively minimal) in S? if and only if

(ngi(X)>2 et <0
— .

— Z is conformally CMC (respectively minimal) in H? if and only if

‘ 2
(VVSZ(X)> —we Mg > 0.

Conformally minimal immersions satisfy Wss (X) = 0.

While theorem C is a modification of theorem B, it is one we think fruitful. Indeed
the replacing of "X isothermic" by "w2Q € R seems to suggest that Q could be seen as
a measure of isothermicity, and at least when it is holomorphic, v/Q is necessarily the
isothermic 1-form.

These type of theorems can be applied to classify Willmore immersions of a sphere, in
the fashion of theorem E of [Bry84], or even to some branched immersions of the sphere
(following from theorem F in [MR17]), which we will prove in section 2.6 using analytical
methods.

We will conclude this section by an exposition of a study by A. Michelat and T. Riviére
in section 4 of [MR17] of the case when the second residue is better than expected. This
study will prove highly relevant when framed with theorem G.
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2.2 Conformal Geometry in three model spaces

2.2.1 Local conformal equivalences

In the following (., .) will denote the standard product on the relevant contextual space.
For instance if u,v € R™ with m € N, (u,v) denotes the euclidean product of u and v in

m
R™. If u and v are stated to be in R™! then (u,v) = Zuivi — Um+1Um+1 denotes the
i=1
(m, 1) Lorentzian product of v and v in R™*1,
We will focus on immersions into the Euclidean space R3, into the round sphere S and
into the hyperbolic space H3.
These three spaces are locally conformally equivalent and thus their respective con-
formal geometry can be linked. Namely the stereographic projection from the north pole
N

S\{N} = R?

I ; 1 z

(ZE,y, 2 ) e 17—75 Yy

z

is a conformal diffeomorphism whose inverse is
R? — S}\{N}
. 2x
T 1 2y
(@,9,2) = 7 | 2
r2—1

which extends to a conformal diffeomorphism R? U {co} — S?. Consequently one can link
Conf (R3) and Conf (83).

Figure 2.1 — Stereographic projection.

Proposition 2.2.1. 7 realises an isomorphism between Conf (]R3) and Conf (83), with
Conf(X) being the group of conformal diffeomorphisms of X. We remind the reader that
we make a slight abuse of notations and use Conf (R3) for the conformal group of R3U{oc}.

Combining both Liouville theorem (see theorem 1.2.1) and proposition 2.2.1 ensures a
description of conformal diffeomorphisms of S3.

Corollary 2.2.1. Any conformal mapping ¢ € Conf(S?) satisfies either

gp:’]‘r_lOTBOR@OD)\OTJOT(
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if (N) =N,
(p:ﬂ'_lOTgOR@OD}\OLOTEL‘OT{'

otherwise.

Using the Poincaré disk model of the hyperbolic space one finds an isometry
TNI'[) 5 H3 — (31(0), W
unit ball of R3. It will be convenient in the following to consider H? as the upper part of
the quadric {v € R |(v,v) = -1} in R®! :

) and thus a conformal diffeomorphism between H? and the

B = {(z,y,2t)|2® + 4> +22 — >+ 1=0and ¢ > 0} C R>L.

Then, the following projection yields an explicit conformal diffeomorphism

H? — B1(0)
T . 1 z
H [
(z,y,2,t) T | Y
z
of inverse
B1<O) — H3

. 2z

T 1 2y
r24+1
H3

0

0

0
-1

Figure 2.2 — Hyperbolic projection.

In conclusion, our three model spaces are locally conformally equivalent, and their
conformal geometries will be intertwined.
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2.2.2 Spaces of spheres

In the present subsection, we wish to properly represent the geometry of geodesic
spheres of S?. Our motivation comes from the following result, drawn from chapter 1 in
[AGI6].

Theorem 2.2.2. Let (M, g) and (N, h) be two Riemann manifolds and ¢ : M — N. ¢ is
conformal if and only if it sends a geodesic sphere of M into a geodesic sphere of N.

Thanks to theorem 2.2.2, one would then expect to be able to detail conformal diffeo-
morphisms of S3. Moreover since H? < R3 < S? conformally, we would subsequently be
able to represent geodesic spheres in H? and R3.

The stereographic projection ensures that R3U{co} ~ S? conformally, and thus geodesic
spheres in S? are images by 7! of euclidean spheres and planes ("spheres" going through
o) of R3. They will be called spheres in S3. More precisely :

Definition 2.2.1. A sphere in S? is equivalently defined as follows :

— The inverse of the stereographic projection of a sphere or a plane in R3.

— {x €S d(q,x) =r} for a given ¢ in S3. ¢ is then the center of the sphere, of radius
r<Z.
=)

An equator of S? is a sphere of maximum radius r = 2

One can easily check that spheres in S? are orientable.

Definition 2.2.2. Let

M = {non-oriented spheres in S*},

Eq = {non-oriented equatorial spheres in S3},

and

M = {oriented spheres in S*},
E = {oriented spheres in S$3}.

Let o be a non-oriented sphere of radius r < 5. Let X, € o be any point on the sphere

and N, the inward pointing (relative to o) normal to o at X,. Then p, = X, + tan rN,
is the summit of the tangent cone to S* along o. Since a sphere in S? has constant mean
curvature b = - (see (A.2.36) in the appendix A.2.4 ), p, = X, + +N,. This gives us
a representation of My\Eg :

{MO\EU — R*\ B, (0)
P() .
g }—> pO’a

as shown in figure 1.
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Figure 2.3 — Construction of p,.

Conversely given any p € R*\ By (0) there exists a unit cone of summit p tangent to S3,
along a sphere of S®. P, is then a bijection. As o becomes equatorial, h — 0, meaning
p — oo and N, — 7 with 7 € R* independant on the chosen X,. To properly represent

all of M we define p, = <p 1” > Then

as o tends toward an equatorial sphere of constant normal 7. Then one can represent M

—

V)] typed directions (where [d] denotes

in RP*, with equatorial spheres being sent to [( 0

the direction of d € R?).
My — RP*
"o [po].
Since any equatorial sphere is fully determined by its normal, P; remains injective. However

for non equatorial spheres p, is necessarily outside Bj(0), and thus P} cannot be surjective.
Going further will require some basic notions in semi-Riemannian geometry.

Definition 2.2.3. Let m € N and v € R™!. Then v is said to be
— spacelike if (v,v) >0,

— lightlike if (v,v) =0,

— timelike if (v,v) < 0.

Accordingly a direction d € RP™! is called

— spacelike if there exists v € R"™! such that (v,v) > 0 and [v] = d,
— lightlike if there exists v € R™! such that (v,v) =0 and [v] = d,
— timelike if there exists v € R"™! such that (v,v) < 0 and [v] = d
We also define

— the De Sitter space of R™! as the set of unit spacelike vectors.
It will be denoted S™! := {v eR™! (v,v) = 1},
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C4’1

P(S?) = {(X,1) e c*'}

Figure 2.4 — De Sitter and the isotropic cone.

— the isotropic cone of R™! as the set of lightlike vectors.
It will be denoted C™! := {v € R™! (v,v) =0}.

One can realize that the image of Py is the set of all the space-like directions of R*!
which is isomorphic to S*!/{£Id}. We finally obtain our representation of non-oriented
spheres :

Mo — S¥1/{£Id}

p
o T
Ipll
where HQH = \/(Po;Ps). P is easily extended to M by taking the natural two covering of

S4’1/{:|:Id}. Two opposite points in the De Sitter space then represent the same sphere
with opposite orientations.

M — S*!
P I I <)(1'U) N (N(,.) (2.2.1)
Ipll g

for any X, € 0.

As h — oo (that is the radius of the sphere goes to 0 and thus the sphere collapses
on a point X € S§?), @ — (X,1), meaning that P(o) tends to oco in an isotropic
direction of R*! bijectively and smoothly linked with the point of collapse X. One can

then continuously extend P

MUS? - s+t uctt

p.loeMm H;‘ =h <)i”> + (%’) e st! (2.22)

XeS— <)1(> e cht,
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Since the stereographic projection is a conformal diffeomorphism, the set of non-
oriented (respectively oriented) spheres and planes or R? is in bijection with Mg (respec-
tively M) and can be represented using P. Using formula (A.2.30) (see appendix A.2.3)
one finds

(((R*U {oo}) UM — S¥Tuct?
<I>g iy

ceM— H, WT_I + | (fig, ®y) | for any &, € o

oPst |\ (i, )
P (2.2.3)

0]

®cR3 s [ 12221 | ot

P11

2

oo~ (0,1,1) e ct.

Similarly consider Mys the set of oriented geodesic spheres in H?. The function 7~ o#
sends H? injectively into S? and thus maps Mps injectively into M. Mps can then be

represented using P (see formula (A.2.43) in appendix A.2.5) one finds
H? UMys — S uch?

7 =7
ho Mo 7
c€Mys —HZ| -1 |+ 0 | forany <Zh0> €o
P: Zso iZ 1o (2.2.4)

zZ Zh
Z:( h>€H3r—> —1| ect

Zy

Zy

2.2.3  Conf(S?) ~ S0(4,1)

As foreshadowed in subsection 2.2.2, we can use P to study conformal diffeomorphisms
of S3.

Theorem 2.2.3. P realises an isomorphism between Conf(S3) and SO(4, 1).

Proof. According to proposition 2.2.1, showing Conf (]R3) ~ SO(4,1) is enough. We pro-
ceed in three steps : we define the correspondance, show that it represents a morphism
and conclude by proving it is bijective.
Step 1 : Defining the correspondance M — p)y
The core idea here is that isotropic directions in R*! are in bijection with R3 U {co},
and that any M € SO(4,1) shuffles them. Thus M yields a transformation of R3 U {oco}.
Its conformality is all one needs to prove.
x
Let p(x) := W%
|z[°+1
2

(x). One easily shows that for all 4,7 :

‘R3u{oo}

0
thatis p: R3 — P (R3 U {oo}) is an isometry. As x — oo, % — | 1 ]. Noticing that
1

P (R3 U {oo}) = {p cChlst. ps—ps = 1} U{(0,0,0,1,1)}, one can conversely associate

(P1,P2,P3) c R3

e U {oo} depending only on the direction of p.

to any p € C*! a point = =
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Yo
Given M € SO(4,1) let y = Mp(x) = | ya4 |. Then
Y5

(Yos Yo) = Y2 — Y3

(Do, Yo) = Diysys — Oiyaya
(O0i¥o, 0jYo) = 0ij + O3y50;y5 — O;y40;y4.

Yo Mp(z)

Renormalizing as suggested, let ¢p(x) = =i p 1 <(Mp(z))5_(Mp(x))4). oM is a

transformation of R3 U {oc}. Let us show it is conformal :

Oyo  (Oiys —Owya)yo  Ojy (0545 — O;ya) y<>>
Ys — Ya (5 —ya)® Y5 — v (Y5 — ya)’

— % (0iYo, 0jYo) + (Giys — Oiya) (ajy:f =L
(y5 - y4)

(y5 — ya)
1

- m(@i% - 3z‘y4) <3jy<>,y<>> - (ajy5 - ajy4) <6iy<>7y<>>)

5 — Y4
_ 0 H 0iy50;y5 — 0;ya0;ya
(y5 — ya)? (ys — ya)?

1

+ m (Oiys — 0iya) (955 — Ojya) (0iy5ys — Oiyays)

5 — Y4
_ (0iys — Oiya) (95y5y5 — Ojyays)
(y5 — ya)®
(0jys5 — 0jya) (Oiysys — Oiyays)
(95 - 3/4)3

(Bonts o) = <

(Yo, Yo)

Then ¢y € Conf(R3).
Step 2 : M — @) is a morphism
Given M; and Ms € SO(4,1), we compute

M1 MZP(Z)
° (z) = p—l (M2p(z))5—(M2p(x)),
PM; © PMs (M Mop(2) ) - (M Mop(z) )
L (M2p(@)); —(Mzp(@)), 5 L (Ma2p(@)); —(Map(@)), 4
:p—l o ( My Map(z) )
(M1 Map(z))5 — (MiMap(z)),

= YMi1 M, (;U)

Thus M + ¢y is a morphism between SO(4,1) and Conf (R® U {oo}).
Step 3 : M — ¢ is an isomorphism
Bijectivity is the only property left to show. According to theorem 1.2.1, exhibiting
M € SO(4,1) for dilations, translations, rotations and the inversion is enough to ensure
surjectivity. Computing we find
Dilations :
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For Dy(z) = ez,

Id 0 0
Mp, =10 chXx shx| € SO(4,1). (2.2.5)
0 shA ch\

Rotations :
For Re(x) = Ox, with © € O(3),

© 00
Mpe =10 1 0] € SO(4,1). (2.2.6)
0 01
Inversion :
For «(x) = xi\%
—Id 0 0
M, = 0 1 0 ]eSO4,1). (2.2.7)
0 0 -1
Translations :
For Ty(z) = = + @, with @ € R3,
Id —a a
My, = | & 1 —J‘li @42 € SO(4,1). (2.2.8)
a

M — s is then surjective. With injectivity stemming from the uniqueness of the
decomposition in theorem 1.2.1, M — )y is bijective, which concludes the proof. O

A direct consequence of the proof is the explicit formula for the conformal actions of
SO(4,1) on S? and R3.

Corollary 2.2.2. SO(4,1) acts transitively through conformal diffeomorphisms on
— B

Vo
MX = —
Vs
where
X Vs
v=ar ()= (5):
— R3:
M.x = Yo
Ys — Y4
where
gj‘ 1 y<>
y=M |x‘g_ = | Y4

While Conf(S?) ~ SO(4,1) is well known, the explicit action of SO(4,1) on elements
of S? is less commonly found.

We will work in the three models and frequently switch from one to the other. For
simplicity, we define notations once and for all. Given ¥ a Riemman surface and & :
Y — R3 we refer to X = 77! o ® as the representation of ® in S* and Z = 771 o ®
as the representation of ® in H?® (whenever ®(X) C B1(0)). We will often decompose
Z = (Zh,Z4) with Zh = (Zl,ZQ,Zg).



2.3. THE CONFORMAL GAUSS MAP 81

2.3 The Conformal Gauss map

The previous considerations on the representation of spheres in the de Sitter space can
be applied to the study of the geometry of immersed surface through the conformal Gauss
map. To lighten notations, we will denote

)

p(®) = % for ® € R?,
|®[2+1
2

p(X) = (f) for X € S?,

Zp

p(2)=|-1] for Z = (Zh> e H3.
Zy
Zy

2.3.1 Enveloping spherical congruences

We first introduce the notion of enveloping spherical congruences.

Definition 2.3.1. Let ¥ be a Riemann surface. A spherical congruence on ¥ is a smooth
application Y : ¥ — S*!, that is, a family of oriented spheres parametrized on 3. Given
® : ¥ — R3, or equivalently X its representation in S, or Z = (Z,, Z4) in H?, Y envelopes
®, or equivalently X or Z, if and only if

(Y,p(®)) =0 (2.3.9)
and
(Y, Vp(®)) =0, (2.3.10)
or equivalently
(Y,p(X)) =0 (2.3.11)
and
(Y,p(2)) =0 (2.3.13)
and
(Y, Vp(2)) = 0. (2.3.14)

Geometrically speaking Y envelopes ® at the point p € 3 if the generalized sphere Y (p) is
tangent to ®(X) at the point ®(p).

Proof. We here show the equivalence of the three definitions. Since p(®), p(X) and p(2)
are pairwise colinear, one finds (2.3.9), (2.3.11) and (2.3.13) to be equivalent.
Moreover, assuming (2.3.9), (2.3.11), and (2.3.13), one deduces

(Y, Vp(®)) = V(Y p(®))) = (VY,p(®)) = — (VY,p(®)),

(Y, Vp(X)) =V ((Y,p(X))) — (VY,p(X)) = = (VY,p(X))

and
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(Y, Vp(2)) = V({Y,p(2))) = (VY,p(2)) = = (VY,p(Z)),
which ensures that (2.3.10), (2.3.12) and (2.3.14) are equivalent. O

Example 2.3.1. The conformal Gauss map :
Let ¥ be a Riemann surface and ® : ¥ — R3. The conformal Gauss map Y, which to a
point z € ¥ associates the tangent sphere to the surface at ®(z) of center ®(z) + % if
H(z) # 0, and the tangent plane if H(z) = 0, is a spherical congruence enveloping ®.

Y can be written as :

—

n

o)
o)

(2.3.15)

)
I

One can notice :

and in local coordinates

&
o

|
—

+HV | B2 4y

VY =VH 5 (
|®|24-1 <
2

BN

El
+
—

B

Vo Vit
+H|(VD,®) | + | (Vii,®) (2.3.16)
(VO, D) (Vii, ®)

El
M
0

=VH

El
LS ]
+
=

Ko

[ Vo
—A|(ve,)
(Ve, )

kol
©

|
—

=VH

BIND

El
+
—

Hence : i i
(0Y,0;Y) = <Af8p<I>,A?8q<I>>

= WAy = B Agy = (AT Ag) (2.3.17)

v

1
= 5\A\2gz‘j

since A is symetric tracefree (see (1.2.28)). We then deduce that ¥V : (,g) — S*!is
conformal. One may notice that the umbilic points of ® are critical points of Y.

As an enveloping spherical congruence, the conformal Gauss map carries many infor-
mations on the geometry of the immersion. Its key role is further emphasized by the fact
it is the only conformal enveloping spherical congruence, up to orientation.

Theorem 2.3.1. Let ¥ be a Riemann surface and ® : ¥ — R? an immersion. We denote
g its first fundamental form and Y its conformal Gauss map. If the set of umbilic points of
® is nowhere dense then Y and —Y are the only smooth conformal (X, g) — R3 spherical
congruences enveloping ®.
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Proof. As stated when we introduced it, the conformal Gauss map is a spherical congruence
enveloping ® which happens to be conformal.
Conversely we consider a spherical congruence G enveloping ®.
Let E = Vect (p(®), 0,p(®P), 0yp(P)). Equations (2.3.9) and (2.3.10) force G to lie in (E)*.
Since ® is an immersion, E is of dimension 3, and its orthogonal is then of dimension 2. Y
envelopes ® and p(®)is isotropic, hence (Y, p(®)) is a basis of (E)*. G can then be written
as
G = pY + Ap(®)

with p, A € R.
Since (G,G) = p? = 1 one finds u = +1 and deduce Vyu = 0. We then only need to
compute the first fundamental form of G :

8;® 0,
<(9,G,8jG>:<u8iY+8i>\p(<I>)+/\ (00,0 |, ud;Y + 9 p(®) + A | (9,0, ®) >
(0;®, @) (0;0, D)
8;® N 0,® N
:</\ (0:0,0) | — A7 | (9,2,®) | , A | (9;0,®) | — A [ (8,0, ) >
(9,0, D) (Do, D) (0,0, D) (D, D)

using expression (2.3.16) of VY and the fact that p(®) € E+. Then
(0,G,0,G) = (A\9;® — AP0, D, 00;® — A%0,®)
= /\291‘]‘ + /if/ipj — 2)\/01”

AP :
= ()\2 + T 9ij — 2)\AZ]

where we have used (1.2.28). By hypothesis the set of umbilic points is nowhere dense,
G is then conformal if and only if A = 0. We then have G = £Y which concludes the
proof. O

Taking —Y instead of Y is tantamount to changing the orientation of the surface (taking
—1 instead of 7i as a Gauss map).

Geometrically speaking Y can be seen as the 2-dimensional generalization of the os-
culating circles for curves in euclidian spaces, and it will be of major importance in the
study of Willmore surfaces, playing much of the same role as the Gauss map in the case
of constant mean curvature surfaces.

Since Y conserves the conformal structure on X, it is convenient, and will not induce any
loss of generality, to work in complex coordinates in local conformal charts (see subsection
A.2.2 in the appendix for more details). In the following we will then consider ® : D — R3

a smooth conformal immersion, that is satisfying (®,, ®,) = 0. Let 77 = ‘IZF(;% denote its

Gauss map with x the classic vectorial product in R3, \ = %log (2 |<I>Z|2> its conformal

factor and H = < QZTQ , ﬁ> its mean curvature. Its tracefree curvature is defined as follows

|®-
Q:=2(D,,,1).
Its representation in S, X = 77lod = —L 2;1) is conformal. Let A :=
’ 4@ \ |7 —1

%log (2 ]XZIQ) be its conformal factor, N such that <X, e_AXx,e_AXy,N) is a direct
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Xzi
|Xz‘2 9

orthonormal basis of R? its Gauss map , h = < N > its mean curvature and w :=

2 <X ok N > its tracefree curvature. Similarly its representation in H3, Z = 7~ 'o® is confor-

mal. Let \? := 1 log (2(Z., Z3)) be its conformal factor,iiZ such that (Z, e Zy e Z,,i%)

Zzg —7
3,1
‘Zz|2 )

and Q7 := 2 <Zzz, ﬁZ> its tracefree curvature. One can then express Y as the conformal
Gauss map of an immersion in S? or in H3.

is a direct orthonormal basis of R%! its Gauss map , HZ = < > its mean curvature

Proposition 2.3.2. Let ® be a smooth conformal immersion on D, and X (respectively
Z) its representation in S (respectively H?) through 7 (respectively 7). Let Y be its

conformal Gauss map. Then
X N
v=r(1)+ ()

Zn, itZ
=HZ|-1]+1]0
Zy i
Zn _, (77 . 7 :
where Z = 7 and 7° = ﬁ% , while h and H“ are the respective mean curvatures.
4 4

Proof. The computations are done in the appendix, respectively in subsections A.2.1, A.2.3
and A.2.5. O

It is interesting to study how Y changes under the action of conformal diffeomorphisms.

Proposition 2.3.3. Let ¢ € Conf(S?) corresponding to M € SO(4,1). Let X : ¥ — S3
be a smooth conformal immersion of conformal Gauss map Y. We assume the set of umbilic
points of X to be nowhere dense. Let Y, be the conformal Gauss map of ¢ o X. Then

Y, = MY.

Proof. We work in a conformal chart on a disk. Thanks to theorem 2.3.1 one just needs
to prove that MY is conformal, envelopes ¢ o X and has the same orientation as Y.
We first show that MY is conformal. Since (MY), = MY, and M € SO(4,1),

(MY),,(MY),) = (Y2, Yz).

Given that Y is conformal, one finds (MY),,(MY),) = 0, that is MY is conformal.
We then justify that MY envelopes ¢ o X. To that aim, let V = M <X> = (VO> In

1 Vs
accordance with corollary 2.2.2, p(X) = %;, which translates to
1
MMXDZWQMMX) (2.3.18)
Then 1
WAGACAR NS B 6l 20 ),
1 2.3.1
= o (¥,p(X)) (2:3.19)
5



2.3. THE CONFORMAL GAUSS MAP 85

which proves (2.3.11), and

(MY, Vp(p(X))) = V (MY, p(e(X)))) — (MVY,p(p(X)))
1
Vs
1
=~y (V¥p(X))

=0,

(MVY, Mp(X))

which shows (2.3.12) and that MY envelopes p(X).
Finally one need only adress the orientation of ¢(X) to conclude. Let N, be the Gauss

map of poX induced by the Gauss map N of X, namely N, = %. Given the expression

(A.2.44) of the conformal Gauss map, MY = Y, if and only if <MY, (A(;@>> =1,

MY = —Y, otherwise. Let W = M <N> = <W°> With a straightforward computation

0 W
one finds
W, Ws
do(N) = - —Vs,
which yields
W
N, =W, - —V,.
2 Vs

Then

<=

(v (7)) = (e (™ 75))
= (. () - (50))

thanks to the definition of W. Then since <MY, M <N>> = <Y, <N>> =1, one finds

0 0
(o (5)) - (o 2)
=1- ‘:25 (MY, p(X)),

by definition of V. The equality (2.3.19) gives the expected result.
Then MY =Y, which is the desired result.

One has similar results in the R? and H? settings.

Proposition 2.3.4. Let ¢ € Conf(R?) corresponding to M € SO(4,1). Let ® € C°(%,R?)
be a smooth immersion and Y its conformal Gauss map. We assume the set of umbilic
points of ® to be nowhere dense. Let Y, be the conformal Gauss map of ¢ o ®. Then

Y, = MY.
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Proposition 2.3.5. Let ¢ € Conf(H?) corresponding to M € SO(4,1). Let Z €
C>®(%,H3) be a smooth conformal immersion and Y its conformal Gauss map. We assume
the set of umbilic points of Z to be nowhere dense. Let Y, be the conformal Gauss map
of oo Z. Then

Y, = MY.

2.3.2 Geometry of Conformal Gauss maps

Enveloping conditions (2.3.9) and (2.3.10) (or equivalently (2.3.11) and (2.3.12) or
(2.3.13) and (2.3.14)) ensure that p(®) (or equivalently p(X) or p(Z)) is an isotropic
vector field normal to Y in R*®1,

We wish to complete (Y, Y, Yz, p(®)) into a moving frame of R*! compatible with the
decomposition R*! = TY @ NV, in order to introduce the mean and tracefree curvatures
of Y as an immersion in R*!. As we pointed out prior, finding another immersion enveloped
by Y is enough to complete the moving frame. We will use the notations introduced in
subsection A.2.7 in the appendix.

Theorem 2.3.6. Let ® : D — R? be a smooth conformal immersion with no umbilic
points. Then there exists

4AH, Qe 2 AH Qe 2 2H [Qf? e2 |

o= — o
(@) -

@) - T(®)
where T(®) = |[VH|* + H? |Q|* e=2*, such that
(Y, p(®*)) = 0 (2.3.20)

and
(VY,p(®*)) = 0. (2.3.21)

Proof. We search for ®* under the form
O =& + ud, +uds + vn.
Applying first (2.3.20) then (2.3.21) yields

_ |u’2€2)\+v2
N 2
Qu=—H, <|u|262’\ + 02) .

H

Solving the resulting system gives us the desired values for u and v. O

One can work similarly with immersions in S3.

Theorem 2.3.7. Let X : D — S? be a smooth conformal immersion with no umbilic
points. Then there exists

h2|w|® +4|h, |2 2 — |w|? 4h,@ 4hzw 2wl A
X* = X - X, — X N
T(X) TX) T T
where T(X) = |w/|? (1+h?) +4 |h.|? €} such that
(Y, p(X*)) =0 (2.3.22)

and
(VY, p(X*)) = 0. (2.3.23)
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Proof. We search for X™* under the form
X*=aX + BX, + Xz +N.
Applying first (2.3.22), then (2.3.23) yields

Y= (1 - Oé)h,
2h, (@ —1) =wp.

Further (X*, X*) = 1 ensures
O£2—|—|ﬂ|2€2A+"}/2 - 1.

Solving the resulting system gives the desired result. O

Let eq = (Y,Y,, Yz, p(®),p(®*)) and ex = (Y,Y,, Yz, p(X),p(X")) denote our two
frames. Since p(®) and p(X) are colinear, necessarily p(®*) and p(X™*) are too, meaning
X* =710 ®* thatis X* is the representation of ®* in S3.

Since Y is conformal, (2.3.20) and (2.3.21) (respectively (2.3.22) and (2.3.23)), (2.3.9)
and (2.3.10) (respectively (2.3.11) and (2.3.12)) ensure e (respectively ex) is orthogonal.
For convenience’s sake, we will mainly work with ex. Indeed while ® is not necessarily
contained in a compact, and thus neither is p(®), X € S? makes for easier computations.
Each result has its counterpart in R3.

Let
I (f) , (2.3.24)
—2|w|?
| = X , ) = ,
and
* 1 *
A= —YP(X )
U ES S,
- 2 w? P (2.3.25)
h2—1 | |Vh|*e*} 2h. 2hs
(B A )X - Zex, —Zax, 4 hN
- h241 | |Vh|%e2?
2 2|wl|?
By design, we have (v,v*) = —1. Thus defined |v*| < co away from umbilic points.

One computes easily, with Gauss-Codazzi (see (A.2.35) in appendix) to obtain the

second equality,

_,2A —
(v, V") = i (2.3.26)

w w

Using computations done for conformal immersions in R*! in a nice frame, (see (A.2.51)
in the appendix), one finds

2 _92A 2 —2A
Yzz:WL(X) X\ _ ey, WelX) W™, (2.3.27)
4 1 2 4 2
where 2 _on
x _
We(X) _, | lele™ o

4 2
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as defined in (A.2.52). With the notations of section A.2.7, see (A.2.61), this yields

H, =0, (2.3.28)
e = |wffe A, (2.3.29)
and s ()
H.=_5\"7/ 2.3.30
2 ]w\g e—2A ( )

Similarly, applying (A.2.56) to (A.2.48) we find

Q, =2(,,,v) =w, (2.3.31)
and

QV* =2 <Yzz’ V*>

(o ()0 (5) . () ()2 2))

2 _ 2 2A _ 2
2 (hzz + ﬁ) (h ! + [Val"e ) + he (we_zA) e — hilz e — wh”
2 w

2 2 |w/? w e 2
. h?+1 N |Vh|? e2A
zZz 2 2 ‘w|2
2 —2A _ —2A . _9A
RS +2\wz\f ’ 4 9Y” (we™h), _ gWaae g — 2 (wse™2)
2 w w w Z
Rl ws (we) N
= —w 5 +2 - Z—Z(wge )Z
: h?+1
_ (UJZUJz . wzg) 6_2A —w + :
w 2
where we have used (A.2.35) for the fourth equality. This yields
: h*+1
Q= —2we A <<wz> + +€2A>
W/ z 4
(2.3.32)

= —2we™ A <&> + LQ i 1e2A
w/z 4 ’

A consequence of these computations is that the conformal Gauss map of an immersion
X is necessarily of vanishing mean curvature in the direction p(X). This is in fact an
equivalence.

Theorem 2.3.8. Let Y : D — S*! be a spacelike (that is (Y;,Yz) > 0) conformal
immersion. Then Y is the conformal Gauss map of X : D — S? if and only if there exists
an isotropic normal direction v such that H, = 0, where H, is the mean curvature in the
v direction defined in (A.2.56). Moreover, v is parallel to p(X).

Proof. We have shown in (2.3.28) that if Y is the conformal Gauss map of X then Y is of
null mean curvature in the isotropic p(X) direction.

Reciprocally consider Y of null mean curvature in the isotropic direction v Let us build
X : D — S3such that Y is the conformal Gauss map of X. Since (v,v) = 0 and v # 0, the
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last coordinate v5 of v is necessarily non null. One can then renormalize v to = = p(X).

vs
There then exists X : D — S such that

(Y,p(X)) =0,
(Y2, p(X)) =0,
<Yz2,p(X)> =0.

One checks that hypotheses (2.3.11) and (2.3.12) are satisfied and that Y envelopes X.
We now just have to prove that X is conformal, and apply 2.3.1 to conclude.

Since (X, X;) = (p(X)., p(X).) and according to (A.2.72)

<p(X)Z>p(X)Z> = Hp(X)Qp(X) =0,
X is shown to be conformal, which concludes the proof. O

We must draw the reader’s attention to the fact that Y is not a priori the conformal
Gauss map of X*. Indeed, while Y envelopes X*, X* is not necessarily conformal :

since (A.2.70) stands and v* is isotropic. Then using (A.2.72)

(X2, X2y =1PH, Qe

I 241 50\ Wes(X)
= [“we (( )—i— e 2|w\26—2/\7

w/z 4

with (2.3.32) and (2.3.30).
Then

* *\ _ O.)|(,<)|2 Wz h2 +1 2A
. <|w!2 (h2 +1) + [VA|? ezA)QWSS(X) <(w>z T ) (2.3.33)

One can notice that a simple condition to ensure that X* is conformal is Wg3(X) = 0,
that is X is a Willmore immersion. The computations for an immersion ® in R? (see
(A.2.45)-(A.2.49)) bring to the forefront the quantity

W(®) = 4H.; +2|Q* e 2 H € R.
We refer the reader to (A.2.53) for the proof that

ePP+1

Wes (X) .

W().

Given how the left-hand term of the Willmore equation appears organically as a geometric
term for the conformal Gauss map it becomes natural and interesting to consider the
conformal Gauss map of Willmore immersions.
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2.4 Conformal Gauss map of Willmore immersions

2.4.1 Another look at the conservation laws

Equality (A.2.46) (or equivalently (A.2.51)) yields the following well known theorem
(found in |[BR14] for instance).

Theorem 2.4.1. Let ® : D — R3 be a conformal immersion of representation X in S3
and Z in H3. Then ® is Willmore if and only if its conformal Gauss map Y is minimal,
that is if it is conformal and satisfies

YzE + <Y27)/2> Y =0
which in real notations is tantamount to
AY +(VY.VY)Y =0. (2.4.34)

Remark 2.4.1. One could then define a notion of Willmore immersion in S* of H? by using
their representation in R3. Actually, the whole process of defining Willmore immersions can
be followed through in a general Riemannian setting. Any smooth immersion of a surface
into a Riemannian manifold defines a mean curvature, which allows us to introduce a
Willmore energy, whose critical points are Willmore immersions. This notion is invariant
under conformal diffeomorphisms from one Riemannian setting into the other. The two
ways to define Willmore immersions on S* or H? naturally coincide.

Assuming (2.4.34), for all 7,5 € {1...5} one has

div (VYiY; - ¥;VYj) = AY}Y; — AY;Y; = 0.

Y then satisfies the following conservation laws (that can actually be thought to follow
from the invariance group SO(4,1) of the energy E(Y) = [ (VY.VY)dz) :

div (VYY" —YvyT) =o0. (2.4.35)

These conservation laws stem from the seminal works of F. Hélein on harmonic maps in
the euclidean spheres (see [Hel02] for an extensive study) and the generalization of M. Zhu
to harmonic maps in de Sitter spaces in |Zhul3|.

Theorem 2.4.2. Let ® : D — R3 be a Willmore immersion, conformal, of conformal
Gauss map Y. Let
p=(VYY; - Y;VY;) =vYyT —yvy”

Then div(p) = 0 and

_ ‘/tra_‘/inv ‘/tra‘i"/inv
U T 2 2
Vra_Vth
2u = <%> 0 Vail
Vinv+V4 T
_ ( inv 7 trd) 7Vd11 O
and - -
B 0 _V;“ot 3 Vv{ot 2
U= V{Otz 3 ~ 0 —Vrot1

—Vrot2 ‘/rot 1 0

with Vira, Vail, Viot, f/rot and Vi,, defined in theorem 1.2.14.
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Proof. We decompose p in blocks :

P a b
p=|-a" 0 wl,

T —w 0
1 00 0 O
01 00 O

with P € M3(R) antisymetric, a,b € R and w € R. Let e = |0 0 1 0 0 |. Then

0001 0
0000 -1

given any a,b € R®,
aleb = (a,b),

where (.,.) is the Lorentzian product in R*!,

For any w € R3,

w w w
pel 0 :<Y, 0 >VY—<VY, 0 >Y
0 0 0
E Vo
— (H® +i,w) |VH | 22| — A [ (ve, @)
Ll (VD, d)
o 2 ’r_i
—<VHq>—Avq>,w> |24 @) ||,
|®|241 <ﬁ’q>>
2
while
w Pw
pe | 0| = [ —(a,w)
0 — (b, w)

Focusing on the first three coordinates yields

Pw = (H® + i, w) [wm - ,Zivﬂ - <VH<I> — AVe,w) [HO + 7
—wx [0 x (VH + HAV®) + 7 x AV

1 . 1 -
= —5w [@ X Viea + 2AV® x ﬁ] = —5w X Voo,

With this valid for all w € R?, we deduce

1 B 0 - ~1r0t 3 Viot 2
P = 5 V110t3 0 _Vrot 1

—Vrot2 ‘/rot 1 0
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Similarly :
0 0 0
pue | 1] = <Y, 1 >VY—<VY, 1 >Y
1 1 1
[ ; Vo ; i
= _H |VH "I"g‘l —A((ve,®) || +VH |H "I"g‘l + | (7, )
241 (VO, D) 2251 (11, ®)
i Vo
=VH | (7,®) | + HA| (VD, D) |,
(1, @) (Vo,®)
while
0 a—2b
pell]l = —w
1 —w
Hence
Vira
_h=—
a 5
Vail
w= .
2
0
In a similar fashion, computing in two ways ue | 1 | yields
-1
‘/EDV
b= :
a+ 5
Hence
_ ‘/tra - Vinv
4
b — Vinv + ‘/tra
—

To conclude, we assemble all the previous results and reach

V:cra_‘/inv ‘/tra“l“/inv
U T - 2 2
Vr _Vinv
2 = (%) 0 Vail
Vi +Vira | ©
_ ( mv2 trd) _‘/dll O
which is the desired result. O

One of the advantages of this formulation is that it describes conveniently how these
conserved quantities change under the action of diffeomorphisms.

Theorem 2.4.3. Let ® : D — R3? be a Willmore immersion, conformal, of conformal
Gauss map Y. Let p be as in theorem 2.4.2. Let ¢ € Conf (R*) and M € SO(4,1)
associated. Let Y, be its conformal Gauss map and p, be as in theorem 2.4.2. Then

Mo = MuMT.



2.4. CONFORMAL GAUSS MAP OF WILLMORE IMMERSIONS 93

Proof. Using proposition 2.3.3 one has Y, = MY and thus
fp =Yy (VYY) = VY, (V)" =M (YVYT —vYYT) MT = MuMT.
O

As an example theorem 2.4.3 yields an alternative proof of a result by A. Michelat
and T. Riviére (theorem 3.9 in [MR17]) that describes the exchange laws of conserved
quantities under the action of the inversions.

Corollary 2.4.1. Let ® : D — R? be a Willmore immersion, conformal, of conformal
Gauss map Y. Let ¢ : x — # be the inversion at the origin. Let V., be the conserved
quantity corresponding to the transformation * for ¢ o ®. Then

Wra,L = Vinv
Vinv,L = ‘/tra
Vai,. = —Van
‘71‘013,1, - ~rot-
—Id 0 0
Proof. One need only apply theorem 2.4.3 with ¢ = ¢ and M = M, = 0 1 0
0 0 -1

(see (2.2.7)), and interpret the result with theorem 2.4.2.
O

On non simply-connected domains, each conserved quantity yields a corresponding
residue (as in (1.5.99)) which follows the exchange law presented in corollary 2.4.1. The
exchange law of residues was in fact a result obtained by A. Michelat and T. Riviére in
[MR17] through computations (theorem 3.9).

As was pointed out in conclusion of subsection 2.3.2, a sufficient condition for X* to
be conformal is X Willmore. In that case Y is the conformal Gauss map of X*.

Theorem 2.4.4. Let X : D — S3 be a Willmore immersion, conformal, of conformal
Gauss map Y. Then there exists a branched conformal Willmore immersion X* : D — S?
such that Y is the conformal Gauss map of X*. Then X* is called the conformal dual
immersion of X.

Proof. Taking X* as in theorem 2.3.7, and recalling (2.3.33) with X Willmore, one finds
X* conformal and enveloped by Y. Theorem 2.3.1 concludes.
O

Another way to see this is to understand that Y minimal means there are two isotropic
directions in which Y has zero mean curvature, meaning Y is the conformal Gauss map of
two immersions, according to theorem 2.3.8. One is X, the other is its conformal dual.

2.4.2 Bryant’s quartic

R. Bryant introduced in his seminal paper |[Bry84] a holomorphic quartic with far-
reaching properties.

Definition 2.4.1. Let ¥ be a Riemann surface and X : ¥ — S? be an immersion of
representation ® in R? and Z in H? and of conformal Gauss map Y. The Bryant quartic
of X (respectively ®, Z) is defined as
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Q= (0°Y,0%Y).
In a local complex chart one has Q = Qdz?, with Q = (Y., Y2.).

The results in this subsection are framed for conformal immersions of the unit disk
for convenience. Indeed it means that we can work with the more familiar function, Q)
instead of the quartic Q. They are generalizable to immersions of a Riemman surface by
the same process that took us from definition 1.2.5 to 1.2.6 : systematically working in
local conformal charts.

One can draw a parallel between constant mean curvature immersions and Willmore
immersions. Indeed while for a CMC immersion, the Gauss map is harmonic, for a Willmore
immersion the conformal Gauss map is. The Bryant’s quartic allows us to further this
comparison, as it is analogous to the Hopf differential. While the Hopf differential of a CMC
immersion is holomorphic, the Bryant’s quartic of a Willmore immersion is holomorphic.

Proposition 2.4.5. If X is Willmore then Q is holomorphic.
Proof. If X is Willmore then necessarily Y.z = —(Y,,Y3)Y, and then

Yoz = (Yzi)z = _(<YZvY2>)zY —(Y3,Y3)Y,

and since Y is conformal

1
<Y227}/Z> = 5 (<}/Z7YZ>)Z = 07
and
<Yzzay> = (<}/Zvy>)z - <Y27}/Z> =0.
Then
QZ =2 <}/;z2)yzz> = 0.
Hence 0Q = 0. O

Using expression (A.2.60) in any orthonormal isotropic frame (v,v*) (that is satisfying
(v,v*) = —1) of the normal bundle of YV :

QV * QV*
Yzz:2£zytz_?y - 2 v,
where L is the conformal factor of Y, one finds
Q0+
Q=— s A0y (2.4.36)

Taking v and v* as in susection 2.3.2 and using (2.3.31) and (2.3.32) further yields

Q = w2 ((Wz) n h2+162A>

S - (2.4.37)
1
= (Wypzw — Wows) e~ 4 w2T+.
Remark 2.4.2. The computations in R3 lead to a similar expression :
H2
Q=(0:0—-0.0:) e P+ Q2. (2.4.38)

4

The converse of proposition 2.4.5 is not true.
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Proposition 2.4.6. Q is holomorphic if and only if there exists a holomorphic function f
on D such that

Wes (X) = wfe 27 (2.4.39)

Proof. We once again use the notations of subsection A.2.7 with v and v* defined in (2.3.24)
and (2.3.25). Then, as before,

QZ = <)/Zzia }/ZZ> )
and using (2.3.28) (2.3.30) and (A.2.61) :

o Ws ]wPe_m

= WL()() <V27 Yzz> + (VVSB;)())Z <V7 YZZ> :

2
: X\ .
Using (A.2.54) and v = (1> yields

(v,,Y,,) = —% (we_QA)ZeM.

Further by (2.3.31) (v, Y.) = 5. Hence

0: = Wea (X)), w  Wes(X) (we™?h) e
z 4 4

L o2h,2 <WS3 (X)>

4ue—2A

W§3 (X)

To conclude @ holomorphic implies ( PRy ) = 0, which means there exists f holo-

morphic such that

W (X) _ ?

we—2A

This concludes the proof. O

This result follows from the work of C. Bohle (see theorem 4.4 in [Boh12|). A. Michelat
found an equivalent condition in [Miced].

Proposition 2.4.6 bears striking resemblance to the definition 1.2.5 of conformal Will-
more immersions, with the added condition that fw € R. This might be better understood
with the notion of isothermic immersions, which we study in the fashion of T. Riviere ((1.4)
in [Riv13]).

Definition 2.4.2. A conformal immersion ® of the disk D into R? (or equivalently X
into S?) is said to be isothermic if around each point of D there exists a local conformal
reparametrization such that Q € R (equivalently w € R). Such a parametrization will be
called isothermic, or in isothermic coordinates.

Isothermic immersions can be conveniently caracterized (as explained by proposition
[.1 in [Riv13]).

Proposition 2.4.7. A conformal immersion ® of the disk D into R? (or equivalently X
into S?) is isothermic if and only if there exists a non zero holomorphic function F on D,
such that

3 (FQ) = 0.
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Equivalently X is isothermic if and only if there exists a non zero holomorphic function f
on D, such that
% (Fuw) = 0.

In fact away from its zeros, v/f yields the conformal reparametrization into isothermic
coordinates.

Of course when & is defined on any Riemann surface on ¥, it can be said to be isothermic
if proposition 2.4.7 stands in any local conformal chart. There exists, however, a way to
formulate it using tensors on the surface (following is definition I.1 from [Riv13]).

Definition 2.4.3. Let ® : ¥ — R3. One says that ® is global isothermic if there exists
an holomorphic quadratic form ¢ such that :

(10}, =0

where (u,v)wp =g ! ® g7 ® u®7 is the Weil-Peterson product.

Then (2.4.39) not only yields that X is conformal Willmore, but either f is null and
then X is Willmore, or there exists a non null holomorphic f such that fw € R, that is
& (fw) =0 i.e. X is isothermic.

Corollary 2.4.2. If Q is holomorphic then either X is Willmore, or X is conformal
Willmore and isothermic.

2.4.3 The residues through the conformal Gauss map

This subsection aims at finding easy ways to compute the two relevant residues in
theorem 1.5.1 when the surface is conformally minimal. Let us then consider ® a branched
Willmore immersion of ¥ with a branch point at b € ¥, and ¥ a minimal immersion with
a branched end at b. We assume there exists an inversion ¢ such that & = (o U.

Applying corollary 2.4.1 one finds that y9'e = v3'w. Further since ¥ is assumed to be
minimal, one can inject H = 0 into (1.2.42) and find

2 3
iy = /<I> x (ﬁx AV(P) .

™

Further, thanks to (1.2.42) and (A.2.5) we conclude :

<I>><(ﬁxjivq>>:—@x(ﬁxvm:—@xﬁv%:—qmv%
= -V (® x @)+ Ve x i = VH® x ) — V.

Thus 70/ is proportional to the flux of ¥ through its branched end at b. Further given
that ¥ is minimal all the other residues are null. We then deduce the following result,
already present in [MR17] :

Corollary 2.4.3. Inversions of vanishing flux minimal surfaces are ¢rue branched Willmore
surfaces : all their residues vanish.

Example 2.4.1. The Enneper surface, the Chen-Gackstatter torus, the Bryant surface,
the Lopez surface are all of vanishing flux. Its inverses are true Willmore surfaces.

The Catenoid is a minimal surface with flux, hence the inverted catenoid offers an example
of singular Willmore surface.
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It is also interesting to notice that the second residue of ¢ around b can be read on its
conformal Gauss map Y. Indeed, since Y is defined as :

v\ (e
Yo = He | BL22 | 4 | (g, @) |
et (o, D)

and since ® and 7l are bounded around the branch point, necessarily
Yo ~p Coz™ .

This is true whether ® is conformally minimal or not.

However, in the particular case where ® is the conformal transform of the minimal
branched immersion W, it has been shown by proposition 2.3.4 that there exists a fized
matrix M € SO(4,1) such that Yy = MYs. This yields that necessarily Yy ~p, Cgz™%.
Hence, considering that ¥ is minimal, we deduce that

ny
Yo = | (g, V)
<ﬁ‘117 \Ij>
Since 7y is bounded,
<ﬁ\y, \I/> ~p Cz™%. (2.4.40)

We can apply this to compute rather easily the second residue, from the Enneper-Weierstrass
representation. Following is a non trivial example : the Chen-Gackstatter torus.

Proposition 2.4.8. The inverted Chen-Gackstatter torus has a second residue o« = 2 at
its branch point.

Proof. Let U : (C\Z?)/Z? — R3 be a parametrization of the Chen-Gackstatter torus,
p € R? such that d(p, ¥) > 1, and ® = 1o (U — p), the studied inverse.

We will now use the Enneper-Weierstrass parametrization of ¥ and (2.4.40) to compute
the second residue of W at its branch point. Chen-Gackstatter is a minimal surface of genus

1 and of Enneper-Weierstrass data centered on the branch point : (f,g) = ( p(2), Apz (z ))

(see |[CG82|) where p is the Weierstrass elliptic function, of elliptic invariants

g2 = 60 Z 4>0

m,n=—o0 m + TLZ
g3 =0,
and
3
A= T ¢ R;.
292

Then, ¢ has the following expansion around 0 (see [Apo90]) :

b(z) = = +0()

po(2) = ;732 +0(2).



98 CHAPTER 2. CONFORMAL GAUSS MAP APPROACHES

Hence we can state that

1 1 0
1 4A? 44
0 0 1
1 1 0
4A? 1 24
0 0 1
1 1 0
442 1 44?2 1
S 2 = 24 [ =
(323 z) é * <3,z3 Z) Ol + (22 * 22> 0]+0(r)
Similarly :
1 1 0 1 1
1 442 4A 1 4A? 44
(I)Z X(bg: ) /) - 1 —1 3 0 +O(]_) X = 1 1 /) —3
z 0 z 0 z 1 Z z 0 z
4Ai 1 32i4% (9 16 A3 1, 4Ai 1643; (1
=——— 17|+ 0 — —1 - - 1| +0
2273 0 78 1 2473 2372 2374 0
. 1 1 0
32i A4 z 22z z 72z , 4
= —(ZA 8A3> V- <2A+8A3) PR R
and
324* 1642
|<I>Z|2 = 8 + 6 + O(T_4)
T T
3244 2 p
=3 <1+2A2+O(T)),

which yields
0 _ 1 _ N 1
. r2 z 22z , z 22> , 4
1 0 0
Combining (2.4.41) and (2.4.42) ensures :

<ﬁ¢,q>>:2A<1+l>—4A 4A+0<1):2A+2A+0<i). (2.4.43)

22 72 322 372 r 322 372

Considering (2.4.43) in light of (2.4.40) yields oo = 2. O

2.5 Conformally CMC immersions : proof of theorems B and
C

A quick study of proposition 2.3.2 and (2.3.15) reveals that the mean curvature in the
three models can be written as a function of Y, with interesting geometric interpretations.
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Corollary 2.5.1. Let ® be a smooth conformal immersion on D, and X (respectively
Z) its representation in S (respectively H?) through 7 (respectively 7). Let Y be its
conformal Gauss map. Then

H =Y5— Yy,
h=Y5, (2.5.44)
H? = -Y;.
We denote
0 0 0
0 0 0
vs=|0|,ve=1]10],vy=1]0
1 0 1
0 1 1

One deduces immediately from this that ® is minimal (respectively of constant mean
curvature) if and only if Yy = Y5 (respectively if there exists a constant Hy € R such
that Y5 — Yy — Hp = 0), X is minimal (respectively of constant mean curvature) if and
only Y5 = 0 (respectively if there exists a constant hyg € R such that Y5 — hg = 0), Z is
minimal (respectively of constant mean curvature) if and only if Yy = 0 (respectively if
there exists a constant HZ € R such that Yy + HZ = 0). This can be reframed as : ® is
minimal (respectively CMC) if and only if Y is in a linear (respectively affine) hyperplane
of lightlike normal v;, X is minimal (respectively CMC) if and only if Y is in a linear
(respectively affine) hyperplane of timelike normal v, Z is minimal (respectively CMC) if
and only if Y is in a linear (respectively affine) hyperplane of spacelike normal vj.

Then, given proposition 2.3.3 and its analogues, and since any M € SO(4, 1) conserves
hyperplanes in R*! and the type of vectors, we deduce the following theorem.

Theorem 2.5.1. Let ® : D — R? be a smooth conformal immersion, and X (respectively
Z) its representation in S (respectively H®) through 7 (respectively 7). Let Y be its
conformal Gauss map. We assume the set of umbilic points of ® (or equivalently, see
(A.2.29) and (A.2.42), X or Z) to be nowhere dense.

We say that ® (respectively X, Z) is conformally CMC (respectively minimal) if and
only if there exists a conformal diffeomorphism ¢ of R? U {oo} (respectively S3, H?) such
that po® (respectively po X, poZ) has constant mean curvature (respectively is minimal)
in R3 (respectively S?, H3).

Then

— & is conformally CMC (respectively minimal) in R? if and only if Y lies in an affine
(respectively linear) hyperplane of R*! with lightlike normal.

— X is conformally CMC (respectively minimal) in S? if and only if Y lies in an affine
(respectively linear) hyperplane of R*! with timelike normal.

— Z is conformally CMC (respectively minimal) in H? if and only if Y lies in an affine
(respectively linear) hyperplane of R*! with spacelike normal.

R. Bryant showed that its eponym quartic is highly relevant when considering this
problem. We paraphrase below theorem C of [Bry84| below :

Theorem 2.5.2. Let ® : ¥ — R3 be a Willmore immersion of a compact connected
surface . Assume that @ is not all umbilic but that @ = 0. Then ¢ is conformally
minimal in R3.

This result is also presented in J-H. Eschenburg’s and B. Palmer’s surveys (respectively
|[Esc88] and[Pal91]). Many theorems describing conformally CMC immersions (even in
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higher codimensions ) have been obtained using DPW (also called loop groups) methods
by, among others N. Ejiri (see [Eji88]), S. Montiel (see [Mon00]), J. Richter ([Ric97]) or J.
Dorfmeister and P. Wang (see [DW19]). We will however present a result reached through
classical differential geometry.

We work with immersions of the disk for convenience of exposition. Let X : D — S? of
representation ® in R, Z in H? without umbilic points and of conformal Gauss map Y. Our
aim is to find a necessary and sufficient condition to have one of the three representations
be conformally CMC in its immersion space.

Let us first focus on finding a set of necessary conditions. Thanks to theorem 2.5.1, we
know it is equivalent to the fact that Y lies in a hyperplane of R*!. That is, there exists
constants v € R¥1\{0} and n € R such that

(Y,v) =m. (2.5.45)
Since v and 7 are constants, differentiating (2.5.45) yields
(Y,v) =0 (2.5.46)

and
(Yz,v) = 0. (2.5.47)

One can write v in the moving frame (Y, Y, Yz, v, v*) with v and v* defined in (2.3.24) and
(2.3.25) :
v=1Y +mY, +nY; +av + bv*.

Applying (2.5.45), (2.5.46) and (2.5.47) yields

l=n
n=20
And thus
v=nY +av+ b’ (2.5.48)

v can be taken such that

1 if v is spacelike
(v,v) = k = 0if v is lightlike

— 1 if v is timelike.

From this decomposition we will deduce characterizations of a and b. Since v is constant
one can differentiate (2.5.48) and put formulas (A.2.66) and (A.2.71) to effect :

(CLQV -+ bQV*)

0:(n_aHV_bHV*)YZ+(aZ_a<VZ7V*>)V+(bz—b<V:7V>)V*_W}%
bWss (X) . * * (aQu + bQV*)
= <”+W Y.+ (a: —a(vz,v)) v+ (b, —b(vi,v))v *WYE

with (2.3.28) and (2.3.30). Further since (v},v) = ((v,v*)), — (v, v*) = 2=, using (2.3.26),
we find

bWss (X) W, W, (afdy + b2y)
= ST o | Yz zta— by —b— | V' — — Y5
0 <77 * 2|w|2e—2A pel\Gaate % )" * 5 )" |w|2e—2A
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Besides
(v,v) = n* — 2ab,

and since Y, v and v* are bounded in R® away from umbilic points, a,b < co. Then a,b
are real functions and 7 a real constant such that

a, +aZ =0, (2.5.49)

w
b, — b2 =0, (2.5.50)

w

X

bV\/SZ() + plwl?e A =0, (2.5.51)
aly, 4+ by =0, (2.5.52)

.2
ab = —W real constant. (2.5.53)

One can recast (2.5.49) as a,w + aw, = 0, or rather since a € R
azwW + awz = 0.

This yields
(aw); =0,

i.e. there exists f : D — C holomorphic (since aw < oo) such that
aw = f. (2.5.54)

One then has fw = aww = alw|?> € R since a € R. Then according to proposition 2.4.7,
unless f =0 on D, X is isothermic. Working similarly on (2.5.50) one finds there exists g
holomorphic (since b < oo and w # 0 by hypothesis) on D such that

b= gw. (2.5.55)

Then, if g is not null on D, working away from its zeros yields

since b € R. Then according to proposition 2.4.7 X is isothermic. So unless f = g =0 on
D, X is isothermic. If f = g = 0, then (2.5.51) ensures n = 0 which in turn yields v = 0, a
case excluded from the start of this reasoning. As a consequence we get our first necessary
condition :

X is isothermic.

To go further one can reframe (2.5.51) in terms of f and g. Indeed

X X
bWSi;( )+n|w‘26—2A:w<gWSS2( )Jrnwe—zA)
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with w # 0 ensuring that (2.5.51) is equivalent to

X
gWSZ( ) + nwe_QA =0.

This implies that if g(z9) = 0 for any given zg in D, then n = 0, and with (2.5.52) f(z9) = 0.
So v(zp) = 0 and since v is a constant v = 0, which is a contradiction. Then g has no zero

on D. Letting ¢ = % be a holomorphic function on D, one finds (2.5.51) to be equivalent
to

Wes (X) = —2npwe 2 = (—2np)we™2A, (2.5.56)

Consequently, proposition 2.4.6 implies our second necessary condition

Q@ is holomorphic.

Similarly
0,
afly, + b€« = aw— + éouQ,,*
w o w

=aw + éQI,Q,,* using (2.3.31)
w

b
= aw — QEQ using (2.4.36).
This yields that (2.5.52) is equivalent to

2 2
aw” f _fg 1. 5 10T —K
= —_— = — = - b = . 2.5-57
Q=55 =395 =22~ 2% 1z 7 (2:5.57)
Summing up our analysis has given us two necessary conditions :

— X is isothermic, with pw € R

— @ is holomorphic, with Q = ’ﬂ%(pz.

Let us show they are sufficient.

Let X be an isothermic immersion such that Q is holomorphic. Our aim is to write Q
and Wegs (X)) in the forms respectively of (2.5.57) and (2.5.56).
Since X is isothermic there exists a non null holomorphic function g such that

R :=pow € R.

Claim 1 : there exists a constant m € R such that Q = m3.

Proof. We will write @ as a function of ¢, using (2.4.37) :

h?+1
Q = (wasw — wows) e + wQTJr
g _ R
Since w = Ze
R,
W, = —
%0
o R aZSOOR
Wz = — — —
®o v
. R.: 0.p0R,
Wyz = —— — =
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Thus

|| =
&
D
S
&
~
&
R
&
2
S
=
~

(2.5.58)

As announced () can be expressed :

_ 2
(R.sR— R,Rz) e ?A 4 5HLR2

Q= . 2. (2.5.59)
ol

R.:R—R.R:)e~2A 4 M2+l g2
o] *

- 2
((RzzR—Rsz>e 2A+"4“R2> 4 _(Q) Y
a4 -(9) -
_ Yo/ z

Since R € R, ( is real. Further

4
|0

since @ (equivalently Q) and g are holomorphic. As a real holomorphic function A is
necessarily a constant that we will denote m. This proves claim 1. O

Claim 2 : There exists n € R such that Wgs(X) = nwgge 2.

Proof. Proposition 2.4.6 yields f holomorphic on D such that

Wes(X) = wfe 2A,

Using w = % one deduces

f Was (X
(&) - er

Since % is holomorphic, there exists n € R such that f = nyg, which proves claim 2. O

Claim 3 : There exists A € R, k € {—1,0,1} and 7 € R such that
2k
Wss (X) = —2nwgge 22 and Q = 2 1 A2p3.

n

Proof. If n> —m # 0, let A = 2 (%)z—m), K = sg((%)2 —m) and n = —g5. Then

e () + )

n = —2\n and

A2k n?
SRR "
4 4
)\27’2 — kK
N 4

If n? = 16m, let kK = 0, A = 1, n = —2n, which concludes the proof of claim 3. O
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In the following we set ¢ = Apyp.

2— . .
Claim 4 : v =Y + =2y 4 “v* is a constant vector in R4L,

Proof. Since n € R,

2 2 2
p T ore ol g
2 w 2 wp
and .
== g
¢ el
Then v does belong in R%!. Further
wz 772 — K —Wz wz\
atas="5vlmtz)=0
and i
bg—b&:*(u& wz):O,
w 2

meaning that a and b satisfy (2.5.49) and (2.5.50). Besides

Was (X _ _ _opWw _
b 832( )+77|w\26 2A:—2gwcpe 2A——|—n\w|26 20 _
P
since by design, see claim 3, Wes(X) = —2nwpe 2N = —2nwpe 22, v must then satisfy

(2.5.51). Once more, by construction, @ satisfies (2.5.57), which was shown to be equivalent
to (2.5.52). v then satisfies : v, = 0, and v is a constant in R*!, which proves claim 4. [

Y is then hyperplanar and, according to theorem 2.5.1, X is conformally CMC in a
space depending entirely on (v,v) = k. k can be expressed explicitely from Q et Was(X).
Indeed

Wes (X 2 2 2 _
<Sg()> —wle Q= nzw%?e—“ ~ T2 2524 using Claim 3

4 4
gowe*m 2
=K .
2
2
> € R% and necessarily :

K = sg <<W>2 = w26_4AQ> . (2.5.60)

e 24

Since ¢w € R*, (

4

We deduce the following theorem.

Theorem B. Let X be a smooth conformal immersion on D in S, and ® (respectively

7) its representation in R® (respectively H3) through 7 (respectively 7). We assume

that X (or equivalently, see (A.2.29) and (A.2.42), ® or Z) has no umbilic point. One

of the representation of X is conformally CMC' in its ambient space if and only if Q is
‘ 2

holomorphic and X is isothermic. More precisely (W%(X)) —w2e 4 Q is then necessarily

real and
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— @ is conformally CMC (respectively minimal) in R3 if and only if

<WS34(X)>2 _Reihg — .

— X is conformally CMC (respectively minimal) in S? if and only if

2
<W§34(X)> —528_4AQ<0.

— Z is conformally CMC (respectively minimal) in H? if and only if

We(X)\? 5 _aa

Conformally minimal immersions satisfy Wss (X) = 0.

Notice especially that according to our analysis X isothermic and @ holomorphic heav-

ily determines Q. As a matter of fact it ensures that w2Q € R. Accordingly one can slightly
change the hypotheses of theorem B.
Theorem C. Let X be a smooth conformal immersion on I in S?, and @ (respectively
Z) its representation in R3 (respectively H?) through 7 (respectively 7). We assume
X (or equivalently, see (A.2.29) and (A.2.42), ® or Z) has no umbilic point. One of
the representation of X is conformally CMC' in its ambient space if and only if Q is
holomorphic and w?2Q € R. More precisely

— @ is conformally CMC (respectively minimal) in R3 if and only if

Wss(X)\* 5 _ang _

— X is conformally CMC (respectively minimal) in S? if and only if

ng(X) ? —2 —4A

— Z is conformally CMC (respectively minimal) in H? if and only if

ng(X) ? —2 —4A

Conformally minimal immersions satisfy Wg3 (X) = 0.

Proof. 1f X is conformally CMC, then Q is holomorphic and (Wss(X))* —@2e A Q is real
according to theorem B. Then since Wss(X) € R, w2Q € R.

Conversely assume that Q is holomorphic and w2Q € R. Then using corollary 2.4.2,
X 1is isothermic and conformal Willmore or Willmore. If X is isothermic, the theorem is
proved with theorem B. Let us then assume that X is Willmore. Let us first assume that
Q is non null. Away from the zeros of Q, EQ does not cancel and is then of fixed sign,
and /@ is holomorphic. Then

2
(w\@) € R*,
and thus
W/ O € R or iR.

There exists then a non null holomorphic function (¢ = /Q or ¢ = i\/Q) such that
wy € R. The theorem is then proved with theorem B. The case X Willmore and Q = 0
is now the only one left. Using theorem2.5.2 yields ® conformally minimal in R3. This
concludes the proof. O
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2.6 Classification of Willmore spheres

Let us consider ® a branched Willmore immersion of a sphere in R?. Proposition 2.4.5
ensures that Q is a meromorphic quartic on the sphere. A glance at expression (2.4.38)
ensure that poles of @ may only occur at branch points of the immersion. In the immersed
case Q is then a holomorphic quartic on the sphere. Bagic complex analysis then states
that Q is null. From theorem 2.5.2 the following theorem by R. Bryant (theorem E in
[Bry84]) follows.

Theorem 2.6.1. Let ® : S? — R3 be a Willmore immersion. Then ® (SQ) is conformally
minimal in R3.

The branched case can be partially treated through the expansions of the quartic at
the branch points offered by theorem 1.5.1. Following is a concatenation of a result by T.
Lamm and H. Nguyen (theorem 3.1 from [LN15]) and A. Michelat and T. Riviére (theorem
G from [MR17]).

Proposition 2.6.2. Let ® : D — R? be a branched #rue Willmore immersion with a
single branch point at 0 of multiplicity 8 + 1. Then Q is meromorphic on D with a single
pole at the branch point of order at most 2.

Proof. Using (2.4.38), since H2Q? is bounded across concentration points (this can be seen
by combining (1.5.107) and (1.5.106)), the only possibly singular term is then

e (.20 - Q.0;).
Estimate (1.5.110) concludes the proof. O

From this we extend somewhat the classification of Willmore spheres to branched Will-
more spheres. It has been partially found by T. Lamm and H. Nguyen (theorem 1.2 in
[LN15]) and extended to this form by A. Michelat and T. Riviére (theorem F in [MR17]).
Where they used mostly Riemann-Roch type theorems, we will give a proof using only
Liouville theorem.

Theorem 2.6.3. Let ® : S? — R? be a branched true Willmore immersion, with at most
3 branch points. Then ® (SQ) is conformally minimal in R3.

Proof. We choose a two chart atlas on S?, z = % In the z-chart, Q@ = Q(z)dz* with,
according to proposition 2.6.2 at most three poles of order at most 2, let us say at a, b and
c € C. Then (2 — a)?(z — b)%(z — ¢)2Q is a holomorphic function on C. Further changing

charts, one finds
o=q(Y)a(t)
N h h

= 5 dn’.
1
Since Q has no pole at oo, Q,Sg) is holomorphic around h = 0. Then

<}1L —a>2 <}1L —b)2 <;—C>2Q (i) :h2Q}58*1L)(1—ah)2(1—bh)2(1—ch)2.

Then (z —a)?(z — b)?(z — ¢)?Q is a holomorphic function on C which tends toward 0 at co.
By Liouville theorem (2 — a)?(z — b)%(z — ¢)?Q = 0, which means @ = 0. This concludes
the proof. O
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2.7 Bryant’s quartic at branch point of residue o <6 — 1

This subsection will study how the Bryant’s quartic of a true Willmore immersion
behaves around a branch point of multiplicity # + 1 when the immersion is better than
expected, namely when the second residue satisfies & < 6 — 1 (compared to the native
control o < #).Most of the computations, the theorems concluding them and the ideas are
originally found in section 4 of [MR17|. We will only expose the broad strokes to give an
idea of the phenomena, and sometimes rephrase and reframe their results. The main one
is the following :

Theorem 2.7.1. Let ® : D — R3 be a branched true Willmore conformal immersion with
a single branch point of multiplicity 8 + 1 at the origin such that the second residue « at
the branch point satisfies o < 6 — 1.

Then the Bryant’s quartic @ of ® is holomorphic on D. In addition either o < 6 —2 or 0
is an umbilic point.

Proof. We will use the formalism of section 1.5.2. Using estimate (1.5.110), the singular
term of the Bryant’s quartic at the origin has at most a pole of order 1. For o < 6 — 1
the origin is a regular point for @ which is then holomorphic on the disk. We will thus
consider only the a =6 — 1 case.

From the expressions (1.5.106) and (1.5.107) we deduce that this singular term has the
overall 271CV where C and V are the two complex constants in the expansion (1.5.102)
(given below when a =60 — 1) :

1

B} c c y
B, == | —i| 2+ A012 4+ (Vz"“ + —— 270t ¢ 2922> 0
0+1 2 (2.7.61)
0 1
+ 527

where £ satisfies
Vig=0 (|z\9+4—j—”) for all v > 0 and j < 3,

|z|°Vi€ € IP(D) VpeN.

Doing the same variable change as in section 1.5.2, we can assume that /_fg has no compo-

1
nent along | —i |. Using the conformal equality, namely (®,, ®,) = 0, we can give a more
0
accurate version of (2.7.61) :
1 1
1 2
1 2 — %29“ i
0 0
(2.7.62)
0+1 0+2 c 0+1 6 02 v
+ (VAT W2 =t L 02 0 +¢..
0+1 2 1

One can notice that terms of the shape C'V appear as the first polynomial terms in
both z and z when computing (®,,®,). Since ® is conformal it would mean that this
quantity cancels out. We however need to do an expansion up to O(r+*) to make sure no
higher order term can compensate it.
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With that goal in mind we use the first equation from (1.2.44) and write :
L. = 2 (H.7i + HQe 20;) = ~2ifl, + 2iH7, — 2iHQe 0.
Hence, using (1.5.106), (1.5.107) and (2.7.62) :
(ﬁ + ;E) = H?®, + 2HQe >0
) 1

=2 (6222_9 +C%072 Y L o|C? 221_9> —i

0 (2.7.63)

1
10 s1-0 . 3—0—v
+2(C’z +Cz )V é —I—O<r )

To make the computations more palatable we have stopped giving the leftover terms names,
and used the O formalism. While we cannot traditionnally differentiate these O, all the
formalism developed by Y. Bernard and T. Riviére ensures that we can (see section 1.5.2
for examples, or [BR13| for the original). All our leftover estimated terms are then differ-
entiable enough for our purposes.

When 6 >4 :

Multiplying (2.7.63) by z? and applying 0: to the end result yields:

NGO

_2§9< C Z3—9+ C 2’9+1§2_29+C|22221_9> e

3-0 1+6

—27% (2 (j 922*9 + szle> Ve) = O(r*™"),

1
where e = | —i |. Using theorem A.3.9 and integrating once, we deduce that there exists
0
P e C[X] such that
) =2 1
- o C Cc?
%L Y H=P(2)+2 (3—923_0 i m29+122_2e H |02z221‘9> BZ
c 1
+2(——22f+cz'? )V |i|+0 (7‘4_9_”) .
2-0 0

Since L is real we can take the real part of the previous equality and obtain an expansion
of H. Throwing away the superfluous terms it gives :

— 1

Ve
H =4R <p1z2 O +qz2% + 5 922_9 + VC’zzl_e) )
B 0

(2.7.64)

~.1-0 ~1-6 2—60 7 =2—0 3—6
+2<CZ F O £ b2 Lz ) (3 +o(r )
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Here p1,q1, hi come from the decomposition of P in our working base of C3.
From (2.7.62) we get the following expansion for the conformal factor :

62)\ 72

0
|(I>z|2 =5 T3 + ]V|2T29+2 + O (r29+3_”) .

Injecting it into (2.7.64) yields :

. . 1
He* Ve
AT p1222 + P22+ —— 2% vtz i
9 2—40 0
2.7.65
3 B . ( )
+ (Cz29 +C2% + %2 + h12922> 0| +0 <r9+3) .
1
When we inject (2.7.65) into the conformal equation
ﬁew\
(I)ZE = 92 )
and apply theorem A.3.9, we end up with an expansion of ®,. Namely
1 1 0
o, =A |i]| + 4| —i|+as|o]+o0 (r"+4) , (2.7.66)
0 0 1
where
VI 4o 0 P12 g Qg vC _ |48 _
Ay = — +2 | 7. ,0+3 2.60+41 , N 6.3 2.0+1 , YU o+1.2
! p & tE ATt Tt arege—et T2 &
22 1 7 Ve Ve
Ao = 2 L Wast¥3 L P16z 2_0+1 0-3 20+2
2 2—1— 32 —|—3zz+9+1zz +3<2_9)zz+9+2zz ,

- C h h
As = VI L W02 Wb+ 4 2052 4 PPty L 2gfr Tl o653
2 0+1 0+1 3

We can then compute (®,, ) and find :

2 cv
(®,,®,) = 22213 (U3 + VIV) 4 222011220V + 5229 73 (pl + 29)

2 9i0.641 Cv o+2.0+1 VC 2 10127 2044
_— _ 2 _— CV+0 .
tor1? ¢ \ it g) T A g g1t + (r )
(2.7.67)

Since @ is conformal, (®,, ®.) = 0 which implies that CV = 0.

When 6 <3 : The computations are actually very similar, with logarithmic terms
added. Since those cannot be compensated by mere power functions, it only adds terms
to (2.7.67), and thus the conclusion will remain the same.

The consequences are twofold. First is that Q is actually holomorphic across the branch
point, since the singular term is CV z~!. Second is that either C = 0 or V = 0. In the first
case the second residue satisfies & < § — 2. In the second case one has (Qe_)‘) (0) =0, and
then 0 is an umbilic point. This concludes the proof. O

Combining theorem 2.6.3 and theorem 2.7.1, we can state

Theorem 2.7.2. True branched Willmore spheres with at most three branch points of
maximal second residues are conformally minimal.

A. Michelat’s and T. Riviére’s work then allows one to extend Bryant’s classification
result to some branched Willmore spheres.
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ABSTRACT.
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3.2 Compactness results . . . . . . .. L Lo 115
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dialectic . . . . . . . . . e 115

3.2.2 Energy quantization results for sequences of Willmore immersions . . 117
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3.3 An explicit example of Willmore bubbling : non compactness above 167 . . 122

3.1 Introduction

A major part of this chapter is dedicated to recalling the state of the art concerning
the compactness of weak immersions, and more specifically of weak Willmore immersions.
Once more, since most of the theorems are already known, we will not detail the proofs
but give the underlying ideas.

First subsection 3.2.1 will recall theorem 5.3 of T. Riviére’s [Riv16|, which offers a
concentration-compactness result for weak immersions. In essence, when one manages to
find charts of uniformly small energy, the local Harnack controls on the conformal factor
obtained by corollary 1.3.2 ensure uniform bounds, and thus weak convergence. When-
ever this cannot be done, it reveals a concentration point, around which the convergence
is weaker. Whenever the immersions are assumed to be Willmore, the e-regularity the-
orem (theorem 1.4.3) gives smooth controls and ensures the smooth convergence toward
a smooth Willmore immersion, away from the concentration points. However at those
points, the limit immersion may degenerate and become branched, which represents a loss
of compactness for Willmore immersions. Studying the behavior of the immersions at the
concentration points with a blow-up procedure sheds light on bubbling phenomena and the
appearance of a tree of Willmore spherical bubbles. Due to the concentration, the Harnack
inequality on the conformal factor is lost, and thus branch points might appear on the limit
surface. Bubbles are glued to the surface on these concentration points thanks to neck do-
mains which crucially will have no energy at the limit : this is the no-neck energy, which
in turn yields an energy quantization. Subsection 3.2.2 will then give different versions of
those results for weak Willmore immersions, either under hypotheses of compactness for
the induced metric (from theorems 1.2 and 1.3 of [BR14]), or under a control of residues
(theorem 1.2 in [LR18al).
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Figure 3.1 - A bubbling configuration : using a Bryant’s minimal surface to glue a Clifford
torus and 3 spheres.

The goal for what remains of the present work is to show a convergence result across
the concentration points when the bubble is minimal, or in other words to eliminate as
many bubbling configurations as possible. From the work of P. Laurain and T. Riviére
in [LR18a| comes a first restriction on the surfaces involved in bubbling. Both the limit
surfaces and the bubbles are true Willmore surfaces, which eliminates all possibility of
catenoid-like bubbles. From this they deduced a low energy compactness result. Similarly
we will show a highly constraining result, linking the branched behavior of the bubbles and
the surfaces around their linking points.

Theorem D. A Willmore bubble with a branched end of multiplicity 6 + 1 at infinity can
only appear on a branch point of multiplicity 6 + 1.

A Willmore bubble with a branch point of multiplicity 6 — 1 at infinity can only appear
on a branched end of multiplicity 6 — 1.

In essence this result is a consequence of the no-neck energy. The branched order of the
bubble or the surface can be seen as a winding number of the immersion. Since the neck
has no energy, it can neither wind up or unwind the immersion, and can only transmit the
branched behavior from one to the other.

We will conclude this chapter by detailing, to our knowledge, the first explicit example
of Willmore bubbling. It will consist in fusing three of the four ends of a Bryant’s minimal
surface. This can be done if we carefully respect a kind of equilibrium formula, and yields
a Lopez surface. Considering the process on the inversed surfaces, we fuse three sheets at
their intersection to obtain, at the limit, a branch point of multiplicity 3. The appearance
of such a branch point is symptomatic of concentration phenomena. Indeed, on this branch
point, an Enneper bubble is glued on the concentration point in accordance with theorem
D. With this example, we not only prove that high energy Willmore immersions may
degenerate into branched Willmore immersions, and are thus not compact, we offer the
first explicit instance of Willmore bubbling when its mere possibility seemed dubious at
the beginning of my doctoral studies. Further section 4.4.4 will offer insight on why this
example stems from the lack of compactness and commutativity of the conformal group.
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Theorem E. There exists ®, : S — R? a sequence of Willmore immersions such that
W(®y) = 16m,
and
CI)k — (1300,

smoothly on S?\{0}, where ®, is the inversion of a Lopez surface. Further

lim E(®;) = BE(®s) + E(Vy),

k—o0

where U, : C — R3 is the immersion of an Enneper surface.

The goal is then to find where the compactness threshold lies. In the torus case, P.
Laurain and T. Riviére introduced an a priori possible bubbling configuration, consisting
in an Enneper bubble, glued on the branch point of an inverted Chen-Gackstatter torus.
Eliminating this will be the goal of the final chapter of the present work.

triple branch point

>

Figure 3.2 — Desingularizing the inversion of a Chen-Gackstatter surface with a piece of
Enneper.

3.2 Compactness results

3.2.1 Compactness for weak immersions : the concentration-compactness
dialectic

In this subsection we will briefly go over the main ideas of section 5 of [Riv16], dealing
with the compactness of sequences of weak immersions of bounded energy E, and the
introduction of concentration-compactness phenomena.
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Since the energy E is a conformal invariant, any sequence of bounded E can only
converge up to applying external conformal diffeomorphisms. Indeed, considering ® an
immersion of a Riemann surface remaining in a compact of R3, the sequences ®; = k®
d, = ® + ka respectively blow and drift to infinity, and thus cannot be expected to
converge. In fact one needs to apply conformal diffeomorphisms to these examples (a
dilation in the first case and a translation in the second) to ensure convergence. In that
way any convergence result will have to take into consideration the lack of compactness of
Conf(R?).

In a similar manner, taking ® a likewise bounded immersion of a Riemann surface, and
¥;. a non compact sequence of diffeomorphisms of X, &, = ® o U} cannot be expected to
converge as immersions. One must then compensate the possible loss of compactness of
the parametrization, even though the image surface converges. To that aim, if the induced
conformal class of the metrics is assumed to be in a compact subset of the moduli space
My, up to extraction the conformal classes converge. Then, up to applying Riemann’s
uniformization theorem the induced metric themselves converge which allows one to deal
with this loss of compactness.

Taking these considerations into account we define a notion of weak convergence.
Definition 3.2.1. Let &, € &x. Let g; be the induced metric, and hy the uniformized
metric of constant scalar curvature. We assume that the induced conformal classes [(X, hy)]
are contained in a compact subset of My, the moduli space of ¥. Then up to extraction
there exists a constant scalar curvature metric ho such that hy — he. The sequence
D, is called weakly convergent if there exist Lipschitz diffeomorphisms ¥y, of ¥, conformal
transformations ©j, € Conf(R3) with

;. (X) N {center of inversion of O} = ()
and finitely many points a1,...,an € 3, called concentration points such that
£p =00 ®Lo Ty : (X, hy) — R3

is conformal, and there exists a map & : ¥ — R? such that
— €00 ¢ (B, hoo) — R3 is conformal,
— & — € weakly in w22 (X\{a1,...,an}),

loc
— In|d&|* — In|dé|? weakly in (L)% (Z\{a1,...,an})
— & — &oo weakly in W20 (12°)* (X0).
We can then state the weak almost-closure theorem (theorem 5.3 of T'. Riviere’s [Riv16]).
Theorem 3.2.1. Let &, € & such that

sup/ Vi < .
k Jx

Let g be the induced metric, and hj the uniformized metric of constant scalar curvature.
We assume that the induced conformal classes [(X, hy)] are contained in a compact subset

of My, the moduli space of ¥. Then, up to extraction, ®; converges in the sense of
definition 3.2.1.

Proof. Since the proof is extensively detailed in section 5 of [Riv16]|, we will only present
its outline, which will be sufficient for understanding the involved ideas.

The diffeomorphisms Wy, are the conformal transformations given by the uniformization
theorem. The convergence of the metrics then ensures the convergence of the harmonic
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atlas, and allows us to work in local conformal charts. Further considering any point x € ¥,
the question is whether one can find a disk centered on z such that the energy of Vi
is uniformly low, in fact lower than the ¢p in theorem 1.3.3. The points around which it
is not possible are the concentration points. Since around each one a precise quantum of
energy concentrates, and since, by hypothesis, fz ‘Vﬁk}z < 00, they are in finite number.
Away from these points one can apply theorem 1.3.3 and control the conformal factor up
to a constant, which is in turn managed using conformal diffeomorphisms O of R3U {oo}.
The sequence @y, is then uniformly bounded away from the concentration points, which
yields the convergence in the sense of definition 3.2.1 thanks to classical Riesz compactness

theorems. O

In the specific case of sequences of weak Willmore immersions, the low energy condition
of theorem 1.3.3 combines fairly well with the e-regularity condition of theorem 1.4.3, as
we will see in the following.

3.2.2 Energy quantization results for sequences of Willmore immersions

In the context of Willmore immersions, theorem 1.4.3 will ensure the smoothness of the
convergence away from the concentration points, while bubbling extraction procedures (for
two slightly different examples see [BR14] or [LR18a|) allows one to extract bubble trees
of possibly branched, possibly non compact Willmore spheres. A key result is the energy
quantization, which ensures that no energy is lost in the necks. Following is a combination
of theorem 1.2 and 1.3 in [BR14]. Once more, we will not detail the proof, but give some
of the overall ideas.

Theorem 3.2.2. Let ®; be a sequence of Willmore immersions of a closed surface X.
Assume that
lim sup W(®) < oo,

k—o00
and that the conformal class of ®;.{ remains within a compact subdomain of the moduli

space of ¥. Then modulo extraction of a subsequence, the following energy identity holds

lim W(®r) = W(Poo) + > W(ns) + Y [W(G) — 4by],

k—o0
s=1 t=1

where @, (respectively ns, (;) is a possibly branched smooth immersion of ¥ (respectively
S?) and 6; € N. Further there exists a'...a" € X such that

O — P in Cp, (Z\{al, .. ,an})

up to conformal diffeomorphisms of R3 U {co}. Moreover there exists a sequence of radii
pi, points x7 € C converging to one of the a’ such that up to conformal diffeomorphisms
of R3

Oy (piy +25) = ns o L(y) in C2, (C\{finite set}).

Finally there exists a sequence of radii pf, points 2} € C converging to one of the a’ such
that up to conformal diffeomorphisms of R3

Dy, (ply + xh) = 1y, 0 Gom (y) in CR% (C\{finite set}).

Here 1,, is an inversion at p € (;(S?). The integer 6; is the density of ¢ at py.
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While theorem 3.2.2 states an energy quantization for W, equality VIIL.8 in [BR14|
offers in fact a stronger energy quantization for E (and one for £ follows). The a’ are the
aforementioned concentration points and the 7y and ¢,, o (; are the bubbles blown on those
concentration points. More precisely, the 7, are the compact bubbles, while the ¢,, o (; are
the non compact ones. Non-compact bubbles stand out as a consequence of the conformal
invariance of the problem (see |Laul2a] to compare with the bubble tree extraction in the
constant mean curvature framework). One might notice that W (cp, o ;) = W ((;) — 46y,
and deduce that if W ((;) = 4mf;, then the bubble ¢p, o (; is minimal. This case, which we
will refer to as minimal bubbling will be of special interest to us in this memoir. Further
if there is only one bubble at a given concentration point we will call the bubbling simple.
For simplicity’s sake we will mostly consider simple bubbling.

The non-degeneracy hypothesis from theorem 3.2.2 makes sure that no compactness is
lost on the source domain, as explained in the previous subsection. It can be left out, but
at the price of another condition on the convergence of residues which ensure that the neck
domain do not degenerate too violently, as explained in theorem 1.1 in [LR18a|. We quote
it for completeness’ sake.

Theorem 3.2.3. Let (X, hx) be a sequence of closed surfaces with fixed genus, constant
curvature and normalized volume if needed. We assume that this sequence converges to a

nodal surface (3, fz) and we denote (03) the finite number of pinching geodesics of length

li. Then let ®; : (X,hy) — R3 be a sequence of conformal Willmore immersions with
bounded energy :
lim sup W (@) < oo

k—o0

such that around every degenerating geodesic

Then the conclusion of theorem 3.2.2 stands.

Since the proofs are both quite long and quite technical, we will not give them here
and instead refer the reader to the original papers (theorems 1.2 and 1.3 in [BR14], and
theorem 1.1 in [LR18a] respectively). We however wish to explain one key point : the
control of the conformal factor.

Broadly speaking, the proof is in two parts. First is an extraction scheme designed to
find all the bubbles and to decompose ¥ into a limit surface, bubbles and neck domains
(essentially annuli of degenerating conformal classes). Then comes the no-neck energy.
The aim is to exploit the Willmore equations in order to have vanishing controls of the L?
norm of V7 in the neck domains. The first step is controlling the conformal factor. It is
clear that since the energy concentrates, theorem 1.3.3 and thus estimate (1.3.72) are no
longer valid. The absence of (1.3.72) is in fact precisely what makes the developping of
branch points possible. However, the extraction schemes presented in [BR14| and [LR18a|
naturally yields HVﬁkam — 0. Modifying the proof of theorem 1.3.3 to work on annuli
of degenerating conformal classes with an input small control of L** is one of the major
advances in [BR14]. To that aim they introduced L?> Coulomb frames in neck domains.
Resulting is the following lemma.

Lemma 3.2.1. There exists a constant n > 0 with the following property. Let 0 < 4r <
R < o0o. If @ is any (weak) conformal immersion of  := Dg\D, into R? with L2bounded
second fundamental form and satisfying

IVl 2,00 ) < V75
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then there exist % <a<1and A € R depending on R, r, m and ® such that

||)\((E) - leg |I” — AHLOO <DQR\D£) < C <HV)\HL2,00(Q) + /Q !Vﬁ\de2> s (321)

where d satisfies

2nd — 87./\dl' <C
oD,

/ \Vi|? dz?
DQT‘\DT

1 2 ;9

Here the classical Harnack control around a constant given by (1.3.72) is replaced by
a control around a power function. Indeed compare (1.3.72)

(3.2.2)

This lemma is, in the author’s opinion, the centerpiece in the energy quantization. While
the proof is far from over, one can now work with E, S and R in a similar way as what
has been done for the e-regularity, but on annuli. One must also notice that to prove
theorem 3.2.3 it is necessary to control the residues, which is an added difficulty to the
proof. However, for brevity’s sake, we will stop our look at the idea behind the proof there.
Remark 3.2.1. As has been noticed by P. Laurain and T. Riviére in [LR18a|, when in
the context of [BR14], while the immersions may degenerate around concentration points
into branched immersions, the residues 7g,...,73 around the branch points are obtained
as limit of residues defined on disks (and not punctured disks) 7oF, ..., 74F, and thus are
necessarily null. Consequently all the surfaces involved in bubbling phenomena are true
Willmore surfaces.

This excludes some bubbling configurations. For instance no catenoid bubble can
appear. In fact enough configurations have been eliminated for a compactness result for
small energies (theorem 1.2 in [LR18a|).

Theorem 3.2.4. Let ¥ be a closed surface of genus ¢ > 1, and let ®, : ¥ — R3 be a
sequence of conformal Willmore immersions such that the conformal class of the induced
metric remains in a compact set of the moduli space and :
lim sup W (®y) < 127.
k—o0
Then up to extraction and conformal diffeomorphisms of R? U {oo} and ¥, ®; converges
to a smooth Willmore immersion @, : ¥ — R? in C* ().

In their aforementioned paper, P. Laurain and T. Riviére also put forth a bubbling
configuration of energy 127 where compactness might fail, namely an inverted Chen-
Gackstatter torus whose branch point is desingularized by an Enneper surface. Finding
additional constraints which one may exploit to eliminate this configuration is the prime
motivator for what is to follow.

As we have throughout this thesis, we will favor working in local conformal charts (and
in complex notations when convenient). We then present a standardized working version
of simple bubbling on a disk.
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Lemma 3.2.2. Let & be a sequence of Willmore immersions of a closed surface X satisfying
the hypotheses of theorem 3.2.2. Then, in proper conformal charts around a concentration
point on which a simple bubble is blown up &* yields a sequence of Willmore conformal

£12
immersions ®° : D — R3, of conformal factor \* = %ln Wq; | ), Gauss map 7°, mean
curvature H® and tracefree curvature Q° := 2(®%,,7°), satisfying the following set of
hypotheses :

1. There exists Cy > 0 such that
2% ooy + IVl L2y + IVA* || 200y + IV || L2y < Co

2. ®¢ — ¢ Cf° (D\{0}), where ®° is a true branched Willmore conformal immersion,

with a unique branch point of multiplicity 8y 4+ 1 at 0, meaning that
3%~y A% (3.2.3)

We denote \° its conformal factor, 7 its Gauss map, HY its mean curvature and Q°
its tracefree curvature.

3. There exists a sequence of real numbers C¢ > 0 such that

T° (c.) — B°(0)

d° = e

— ®!
>0 (C), where ®! is assumed to be a conformal Willmore immersion of C, possibly non
compact, with a branched behavior at infinity : meaning that there exists ¢, € Z\{—1}.

1 1.0
D, ~oo A7

We denote A\ its conformal factor, 7! its Gauss map, H' its mean curvature and Q!
its tracefree curvature.

lim lim/ |Vis|2dz | =o.
R—o00 |\ e—0 D \D.r
R
Proof. Such assumptions are natural if we consider ¥ satisfying the hypotheses of theorem
3.2.2. Thanks to theorems 1.2 and 1.3 of [BR14] such a sequence &* converges smoothly away
from concentration points. In a conformal chart centered on a concentration point, £* yields
a sequence of conformal, weak Willmore immersions ®* : D — R3 converging smoothly
away from the origin toward a true Willmore surface (i.e. hypothesis 2). Hypothesis
1 stands if we choose proper conformal charts (see theorem 3.1 of P. Laurain and T.
Riviére’s [LR18b], recalled here in theorem 1.3.2, for a detailed explanation). Hypothesis
3 then specifies that we consider the case where there is only one simple bubble which
concentrates on 0 in the aforementioned chart. We do not presume on the behavior of ®!
at infinity. It may have a branched end (if #; > —1) in which case it is of multiplicity
6 + 1, or a branch point (if § < —1) in which case it is of multiplicity —6 — 1. Since
0 = —1 would induce some residues, remark 3.2.1 excludes this case. Hypothesis 4 is just
the energy quantization once the whole bubble tree is extracted and corresponds to
inequality VIIL.8 in [BR14|. Further, by definition of a concentration point

HVﬁk .

’LOO(]DJ)
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We then define the concentration speed as
1

€k = Toor
IV7EF]| oo ()

— 0,

and we assume it is reached at the origin. For simplicity’s sake we reparametrize this
sequence by the concentration speed which we denote €. OJ

3.2.3 Branch point-branched end correspondance, proof of theorem D

The goal of this subsection is to show that in lemma 3.2.2, ®! has an end at infinity,
and that is multiplicity equals the multiplicity of the branch point of the surface ®°.

Lemma 3.2.3. Let ®° : D — R3 satisfying 1-4. Then 6y = 6; = 6.
Proof. Since ®¢ is conformal, the Liouville equation states

AN = K2V, (3.2.4)

where K¢ is the Gauss curvature of ®°. Then given R € Ry

/ KN dz = / AXNdz
D1 \Der D1 \D:r
R R
e / OpNodo — / O Nodo
8]]])% 0D r

:/ &)fda—/ €0, A (e.)do (3.2.5)
BD% 8DR

_ / odo— | 8, [\(e)]do
on ) oDx

_ / oxdo— | 8.3¢do.
8]]])% oDg

Besides, hypotheses 2 and 3 ensure that A> — A\° on 0]])% and A* — Al on ODg. Further,
since ®° has a branch point of multiplicity g + 1 at 0,
lim I Ndo — 276,. (3.2.6)
R—o0 D,
b
Similarly, the behavior of ®! at infinity (without assuming that it is an end or a branch
point) implies :

lim INdo — 2m6;. (3.2.7)

R—o0 DR

Injecting (3.2.6) and (3.2.7) in (3.2.5) yields

e—0

2110p — 61] < lim | lim / Oy \do — ardea
R—o0 oD 1 DR

Kee? ‘ dz

< lim | lim K¢ dz| | < lim | lim
R—o0 e—0 D, \DER R—o0 e—0 D, \DER
= "

< lim | lim \ViE|>dz | =0,
R—o0 e—0 D \DER
R
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using hypothesis 1. As a conclusion 0y = 61 = 6. O

While we wrote the proof in the simple bubbling case, it remains valid for any behavior
of ®° and ®! (branched points or ends) and relies solely on the energy quantization result.
In a broader frame it yields a construction rule for Willmore bubble trees.

Theorem D. A Willmore bubble with a branched end of multiplicity 6 + 1 at infinity can
only appear on a branch point of multiplicity 6 + 1.

A Willmore bubble with a branch point of multiplicity 8 — 1 at infinity can only appear
on a branched end of multiplicity 6 — 1.

3.3 An explicit example of Willmore bubbling : non com-
pactness above 167

Before considering genus one sequences in order to remove the obstruction to compact-
ness put forth by P. Laurain and T. Riviére, a study of the spherical case offers interesting
perspectives. Indeed in his seminal work [Bry84], partly recalled in section 2.6, R. Bryant
offered a classification of Willmore immersions of a sphere in R3, showed they were con-
formal transformations of minimal immersions (see theorem 2.6.1), and thus that their
Willmore energy was 4m-quantized. Moreover while giving a complete description of the
Willmore immersions of energy 167 (part 5), R. Bryant remarked :

"Surprisingly, this space [of Willmore immersions of energy 167| is not compact."

It is then interesting to consider whether one can degenerate a sequence of 167 immersions
into a bubble blown on a Willmore sphere. A quick study direct our search toward the most
likely case : a sequence of four ended Bryant’s surfaces (see example 1.2.2) degenerating
into an Enneper immersion glued on the branch point of the inverse of a Lopez minimal
surface.

Theorem E. There exists ®;, : S? — R? a sequence of Willmore immersions such that
W(®y) = 16m,

and
‘I)k — (I>oo>

smoothly on S?\{0}, where ®, is the inversion of a Lopez surface. Further

klglolo E((I)k) = E((I)oo) + E(\I[oo)y

where U, : C — R3 is the immersion of an Enneper surface.

Theorem E proves that minimal bubbles can appear and thus that Willmore immersions
are not compact. It might also indicate the possibility of gluing an Enneper bubble on an
inverted Chen-Gackstatter torus. However R. Bryant’s classification result proves that
one cannot glue an Enneper bubble on an inverted Enneper surface (the resulting surface
would be of energy 127, and thus limit of Willmore immersions of equal energy, which R.
Bryant showed did not exist). The local behavior of the limit surface around its branch
point needs then to be constrained in order to forbid this case. Since the Chen-Gackstatter
torus and the Enneper surface are asymptotic near their branched end there is hope yet to
eliminate this configuration.
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Proof. We will build a sequence of Willmore immersions whose energy E concentrates on a
point where an Enneper bubble blows up. Working from section 5 of R. Bryant’s [Bry84],
we study a family of four ended minimal immersions ¥,, : C\{a1,as, a2} — R? :

W, = 2R (f,)

3.3.8
fam = b =2 D gy, (3:3.8)
a—p z—pj z—p

with a1, as, az, ag € C3, j3 = 1, and p a real parameter that will go toward 0. As explained
in [Bry84| the (a;) must be constrained for ¥, to be a conformal immersion. Indeed :

<(‘I’u)z ) (‘I’u)z> = <(fu)z ) (fu)z>

O Gt G
2<a1,a2> 2<a1,a3> 2<a2,a3)

i (z—w?(z—p)?  (2—w?(z—ui®?  (2- i)’ (z — ps?)?
2(ay,a4)  2{ag,ay4) 2 (a3, aq)

(z—pw?® (-’ (2—p2)?

Further since given u,v € C :

1 1 1 1 1 2 1 2 1

(z —u)? (z —v)? - (u_fu)Q(z—u)2+(u_U)Q(z—v)Q (u—vPBz—u (u—v)3z—2v’

we deduce that ((¥,)_,(¥,),) = 0if and only if

(a1,a1) = (a2, a2) = (a3, a3) = (a4,a4) =0,

(a1,a2) = (a1, a3) = (az,as) , (3.3.9)

1
and a4y = —— (a ja 2a3) .
4 3M2(1+] 2+ ja3)
One can check that under the conditions (3.3.9), (a1, a2, a3) is a linearly independant family
of C? and thus that V¥, is an immersion.
Here we take, with b € C a parameter to be adjusted later,

(1

a1 = —5 1 y
2u? 0

b

ar =25 i | -5 (=i ] +02 0],
217 \ g 2 \o |
5 /1 1 0
2 2b2

ag=25 || B[ =i) —bji|o0
217 \ g 2 \o 1

One can check that these (a;) satisfy (3.3.9). Computing, we find :

1 1

3 1/ 224+ z\ 1 ) . z+u
335 |°? —52( 227 ) —i |+ -
20— p° 2 z 2 0 ze+pz+p

Ju= +puz+p? 3

1
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To simplify this expression, we set b = % with a € C to be fixed at the end of the
reasoning, and reach :
1 1 0
3 1. a? 2z + 1"} 3 =z+
Ju=—=Z—351|" +<3 272 a : ) |t 53— a 510
23 — 3 2 0 4 z4+pz 4 2 0 2 254+ puz+p 1
(3.3.10)

Then ¥, : S? — R3 is a sequence of minimal immersions with four simple planar ends.
Applying theorem 1.2.5 and proposition 1.2.4 we find :

[, Kv,dvoly,,, = —12m, (3.3.11)

/82 |A]5, dvolg,, = 24r. (3.3.12)

Letting p — 0 in (3.3.10) we find that, away from 0,
3 . ,
fu=fo=sz i+ |- +52(0]
2z 0

and deduce that ¥, — ¥, := 2R(fy) smoothly away from 0, where ¥, is a branched
minimal immersion of the sphere with one simple planar end and one planar end of mul-
tiplicity 3. This immersion is in fact the Loépez minimal surface mentioned in theorem E,
and described in example 1.2.3. Then

/ Ky,dvoly, = —8, (3.3.13)
s2 0
£ 12
. | Ay, dvolg,, = 16m. (3.3.14)
Let p be a point in R? such that d(p, U,) > 1. We now introduced ®, := 1, o ¥, and
D) := 1,0y, with t(z) = ﬁ the inversion in R? centered at p. Then ®,, is a sequence of

closed Willmore conformal immersions of the sphere converging toward ®g smoothly away
from 0, and ®q is a closed Willmore conformal branched immersion of the sphere with a
single branch point of multiplicity 3 at 0. Thus

; Ko, dvolg, = 4m, (3.3.15)

/S2 Kg,dvolg, = 8. (3.3.16)

Since ‘fifdvolg is a conformal invariant, we deduce from (3.3.12) and (3.3.14) :

/SQ ‘/Dl‘i#dvolgq,# = 24, (3.3.17)

: | A5, dvolgs, = 167 (3.3.18)
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With proposition 1.2.4 we conclude with (3.3.15) and (3.3.17) :

1 o9
2 _ _
[ 3, dvolys, = /S2 |AJ5 dvoly,, + /S2 K, dvoly, = 16, (3.3.19)
and with (3.3.16) and (3.3.18) :

. Hg,dvolg, = % /S ] }Ayfbodvolg% - /S Kaydvoly, = 167. (3.3.20)
Comparing (3.3.17)-(3.3.20) reveals that while : W (®,) — W (®q), there is an energy gap
of 8 in & (or equivalently in E). From this, and the energy quantization theorem (theorem
3.2.2, written above), we deduce that a simple minimal bubble of energy E = 8 is blown.
The only possible bubble is then an Enneper surface (see for instance [Oss86] or example
1.2.5), given by :

z 1 Z2 0 23 1
E)=2R (o |i]|+5 (0] -% (-] (3.3.21)
0 1 0

This is enough to ensure that the immersions ®, offer an exemple of an Enneper bubble
appearing on a sequence of Willmore immersions, which proves theorem E. O

We however wish to make the appearance of the Enneper bubble explicit in the compu-
tations. To do that we will perform a blow-up at the origin at scale ®. This concentration
scale has been determined the classical way (see the bubble tree extraction procedure
in [LR18a] or [BR14]) by computing ||Viiy, Loo(82)" Since these computations do not,
by themselves, further the understanding of the bubbling phenomena, they are omitted.
Considering (3.3.10) we find

1 1
3 a’u 222 + 1
3 . 2 .
= ¥ _
Fu (172) 213 (1623 — 1) é T3 < 1+ 22 + 222 Tuz OZ
3a_ 1+u%
2u 1 + pu2z + ptz?
o 1 1
3 3’2 9 : a® (3p 3 5 :
Sy 0 = 40 -
< 213 5 T (#7) (Z) +5 | T~ +0W) OZ

1 /32 3 1
U, (u32) = 5 ( I 3 +u? (@2 — 32%) + O(;f’)) i
0
1/3a% 3 1
- v 3 2, 933 5 s
+2( 1 M3+M (a®z 3z)+0(,u)) i

- 0
+ (3 (at+a) % (az2 + 622) + O(/f’)) 0
1
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1 1 0
With p = %1 —i | + % i | +p3 | 0], defined previously, we conclude :
0 0 1

1 5 3alt gy 3 8 :
o (3 wP A — (a®z —32°) + O(1®) | | —i (3.3.22)
0
0
1

2 1 _
W, (1P2) —p|” = s <9+3M3(p1 +p1) + pt

3uS(a+a _ _9__ N
_opaTa) (2 )(p3 +73) — 3ub(a®2 + @227 323 — 323 + |1 |* + |ps|?)
+0(u")) -
(3.3.23)
We can combine (3.3.22) and (3.3.23) :
V,—p
P (u?’z) —
8 A -l
1
1 1 8 a2yt
32 _+ B~ Poo(=2- 3 7
=u 2< SR ek (@z —32°) + O(u") é
O N T 3 7 '
3 <‘3 Pty g (e o3 + 0l )> o
a+ap® P - 7 0 L 3 —
——p3——(az"4+az*)+0u")) |0 1= Zp’(pr+D1)
6 9 6 1 3
a? + a2 a+a)? pilata
YR BYCE . LY R P
4 4 6
1 1
+§,u6(a2,z +a%z-322 -3+ |pl\2 + |pg\2 + 3 (; +]71)2) + O(M7)> .

Since the constant terms are irrelevant, we can gather them into ®,(0) and simplify some-
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what the expression into :

1
1 1
D, (1Pz) = ©,(0) + 4’ 5 (@2 - 382" —a®z — @'z 432" +32%) 5 | d
1, , ) ) (1 az’ + az?
+f(a2—323—az—62+323+323)7 | ———10
9 2 0 6 1
+0(u'")

®, (1P2) = @,(0) — p’E(z) + O (u'?). (3.3.24)

Hence we do have :

smoothly on every compact of C, which does illustrate theorem E.

Remark 3.3.1. Chosing another value for a would have led to another Enneper surface,
with Enneper-Weierstrass data (f, g) = (1, 2z) instead of simply (f,g) = (1, 2).

Remark 3.3.2. One must notice the fundamentally asymetric role of ®q (the surface) and
E (the bubble). Indeed while we have compactly glued E on ®y we cannot compactly glue
Wy = 1o®P( on an inverted Enneper using the same construction, since ¥y has an end which
is not on the concentration point. Doing so would require to glue a closed bubble tree on
said planar end (and would necessarily add Willmore energy to the concentration point).
Further theorem G ensures that no construction will ever enable us to do so, given that
the second residue of the inverted Enneper surface is v = 2 (see example 1.C of [BR13]).

Remark 3.3.3. It must also be pointed out that this counter-example explicitely illustrates
the difference between the e-regularity of E. Kuwert and R. Schatzle (theorem 2.10 of
|[KS01b]) and those obtained with the T. Riviére formalism (theorems L5 in [Riv08] and
I.1 in [BR14|) as was explained in [BWVI18|. Indeed consider the end of the Bryant
surfaces placed at infinity, sent to the origin after the inversion. This point is regular, that
is, without concentration, and one can always find intrinsic neighborhoods of uniformly
small energy. However when one takes an estrinsic neighborhood of the image point
after inversion, one cannot help intersecting the image of the Enneper bubble, and thus
containing a given quantum of energy. This point is thus singular for theorem 2.10 of
[KS01b]. The two approaches are thus different not only in philosophy, but also in the
results they yield.
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n=1 11=0.897% 1w=0.79592 1=069388 n=039184 1=0.48980

1u=0.040816 =
1=038776 1=0.28571 1=0.18367 1=0.081633 1=0.020408

b @

Figure 3.3 — The transformation of the Bryant’s surfaces into a Lopez surface

n=1 11=090306 1=0.70918 1=0.67041 1=063163 L 061224

9 9

1=0.59286 L=057347

11=0.55408 u=051531
1=041837 11=0.069388

-— o~ M

Figure 3.4 — The blow-up into an Enneper surface
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4.1 Introduction

This final chapter studies the case where only one bubble, which is minimal, concen-
trates on a given concentration point. We call it simple minimal bubbling. The aim is to
show that it is then more regular than expected.

We start by modifying the e-regularity theorem 1.4.3, making a relevant use of system
(1.2.49), to replace the small |V7i|| ;2 control by a smaller, less demanding (since (A.2.11)
stands) control on [|[HV®| ;.. The following theorem was one of the foci of [Mar19c].

Theorem F. Let ® € £(D). We assume
IVAll 200 (p,y + IVl L2p,) < Co.
Then there exists e, depending only on Cj such that if
HHV(I)HLQ(]D)) <ep

then for any r < 1 there exists a constant C' € R depending on r, Cy, p and

1
rog = —inf< s
p

8
/ | Vi|* = %, Vp e D, s.t. Bs(p) CD, ¢,
Bs(p)
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such that
[HV®|| oo,y < CIHV®| 12y
and
IVellws»rp,) < ClIVelL2(m)
for all p < co.

Theorem F, thanks to the added regularity it provides, can then serve as a jumping
point for successive expansions of increasing accuracy, whose end result is a control of the
second residue of the limit surface at its branch points receiving simple minimal bubbling.

Theorem G. Let ®; be a sequence of Willmore immersions of a closed surface 3. Assume
that
lim sup W (®) < oo,
k—o00
and that the conformal class of ®;.{ remains within a compact subdomain of the moduli
space of XJ. Then at each concentration point p € ¥ of multiplicity ¢, +1 on which a simple
minimal bubble is blown, the second residue «, of the limit immersion ®., satisfies

ap <6, — 1.

Since the inverted Chen-Gackstatter torus has second residue 2, it cannot be the re-
cipient of simple minimal bubbling, which will give compactness below 127, as follows.

Theorem H. Let ¥ be a closed surface of genus 1 and ®;, : ¥ — R? a sequence of
Willmore immersions such that the induced metric remains in a compact set of the moduli
space and
limsup W (&) < 127.
k—o0

Then there exists a diffeomorphism v, of X and a conformal transformation Oy of R3U{cc},
such that O o0 ®j 01y converges up to a subsequence toward a smooth Willmore immersion
P 1 X = R3in O (2).

In fact theorem G eliminates all Chen-Gackstatter surfaces as recipient of simple min-
imal bubbling, and even further, all inversions of minimal surfaces with ends asymptotic
to an Enneper surface. Should someone prove the expected classification result ensuring
that minimal immersions of critical total curvature are asymptotic to Enneper, theorem H
could be extended to surfaces of higher genus.

We would now like to highlight the difficulties we will encounter in our path towards
these three key theorems. Indeed theorem F by itself cannot yield control across a con-
centration point, precisely because those are the ones where rg — 0, and thus where the
resulting estimates degenerate. This is why, we will in fact first prove a more flexible result
with a starting hypothesis on L.

Theorem 4.1.1. Let ® € £ (D) satisfy the hypotheses of theorem 1.4.1. We assume there
exists ' < 1 and C; > 0 such that

|2

<C1||HV®
Lreo) = L HV®| 2

where L is given by (1.2.43). Then there exists g( depending only on Cj such that if

IHV®|| 12 (py < €0,
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then, for any r < 7', there exists a constant C' € R depending on r, Cy, p and C such that
[HV®|| oo (p,y < CIHV®| L2 ),

and
IV@llysrp,) < ClIVE| L)

for all p < 0.

The proof will rely on a joint exploitation of systems (1.2.46) and (1.2.49), and an
analytical ropewalking, where the regularity lost with (1.2.49) is exactly compensated by
sharper estimates for (1.2.46). Further, the controls obtained on L are flexible enough to
apply on the neck domains. Indeed, we will slightly modify inequality (VI.23) in [BR14]
(in the fashion of theorem 1.4.1) to better suit our needs.

Theorem 4.1.2. Let R > 0 and ® € £ (Dg) be a conformal weak Willmore immersion.
Let 7 denote its Gauss map, H its mean curvature and A its conformal factor. We assume

HVﬁHLQ(DR) + HVAHLQ*OO(DR) < Co.

Then there exists g > 0 (independant of ®) such that if 0 < 8 < R and

w [ e
r<s<f J/D2s\Ds

then there exists £ € R? and C' € R depending on Cp but not on the conformal class of
Dg\D, such that
| (2-2)]

where L is given by (1.2.43).

< C|HV®
L%oo(Dg\DzT.)— IVl 20,

One can then combine theorems 1.4.1 and 4.1.2 to enjoy estimates on L both on the
neck-domain, and on the bubbles, which thanks to the flexibility of theorem 4.1.1 yields
the true control on H across the concentration point.

To simplify the proceedings we will introduce a local formalism that we will show is
equivalent to the simple minimal bubbling.

Theorem 4.1.3. Let ®° : D — R? a sequence of conformal, weak, Willmore immersions,
of Gauss map 7°, mean curvature H® and conformal factor \*, of parameter ¢ > 0. We
assume

1. / \ViE|* dz < M < oo,
D
2. IV ooy < M,

R—oo \ e—=0

3. lim lim/ V|2 dz | =0,
]D)%\]D)ER

4. ¢ — dY in O™

loc

(D\{0}), with ®° a branched Willmore immersion on D,

5. There exists C* > 0 such that w — Win Cp (C), with ¥ a minimal immersion

(that is of mean curvature Hy = 0).
Then ®° — ®° C%2 (D) for all o < 1.
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With these notations, the first notable expansion on our way to theorem G is a precise
description of the conformal factor.

Theorem 4.1.4. Let ®° be a sequence of Willmore conformal immersions. We assumne
there is only one concentration point on which a simple minimal bubble is blown, at scale
e. Then there exists I* € L* (D) such that :

X =1In (59 n Tﬁ) T,
1%l oo my < C(Co).

As a result if we denote x = V&2 + r2, the immersion satisfies the following Harnack

inequality :
Xe < A& < C(C ) 6
C(Cy) = =7

Building on this expansion, we can find others on the immersion, the mean curvature,
and even VS and VR. All these can be injected into the Willmore equations. Since those
are non linear, each and every one will yield a linearized version and thus a constraint on
the terms of the expansions. These constraints will add up, until enough regularity in the
convergence is gained to prove theorem G.

While all the preceding results were prepublished in [Marl9c| and [Marl9b], the con-
cluding section of the present chapter will present an unpublished analysis of the lack of
compactness of Willmore immersions, explained by the properties of the conformal group.
In a reasonable attempt to exploit the whole conformal group to control to control the
mean curvature, we will prove that, because the conformal group is neither compact nor
commutative, one can only tamper with inversions under a pointwise hypothesis at the
concentration point. Under this assumption, the bubbling regularity jumps significantly.
Namely we will show the following

Theorem 4.1.5. Let ¥ be a compact Riemann surface of genus less than 1, and ®* :
¥ — R? a sequence of Willmore immersions of uniformly bounded total curvature and
such that the conformal class of the induced metric is in a compact of the moduli space.
We further assume that ®* has only a single concentration point p on which a simple
Enneper bubble is blown, and that ®* converges smoothly away from p toward a branched
immersion ®° : ¥ — R3. Then either

Hk
) )
IVTE| oo s
or ®Y is the inversion of a branched minimal immersion, with second residue o < —2.

The hypothesis (4.1.1) is the aforementioned pointwise control necessary to use in-
versions to control the mean curvature at the concentration point. It is significant that
the example displayed in theorem E does not satisfy (4.1.1), and can then be seen as a
consequence of the lack of commutativity and compactness of the conformal group.

4.2 H e-regularity : proof of theorem F

4.2.1 Results starting with a control on L

This subsection will focus on proving an e-regularity result with control on H starting
with a control on L. Namely
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Theorem 4.2.1. Let ® € £ (D) satisfy the hypotheses of theorem 1.4.1. We assume there
exists ' < 1 and C; > 0 such that

HE@A‘ S Cl ||HV(I)||L2(D)

L2>(D,)
where L is given by (1.2.43). Then there exists e(, depending only on Cj such that if
|Vl < <
then for any r < 7’ there exists a constant C' € R depending on 7, Cy, p and C; such that
|HV®] 1, < CIHY®] 13(0),

and
IVe[lysrm,) < CIV| L2

for all p < oco.

Proof. Let r <1’ < 1, we follow the outline given in the introduction.
Step 1 : W12 control on the Willmore quantities

Let L satisfy our hypothesis. Theorem 1.4.2 gives :

VS HVJ%H < CL|HV® . 42.2
H HL?J(DH_T/) . Lzal(DH-w) - 1” ||L2(D) ( )
-2 -2

Step 2 : W' control on the Willmore quantities, for ¢ > 2
Thanks to (1.2.46) and (1.2.49) we can decompose in any B:(p), with p € D,,,» and ¢
2

sufficiently small, S = ¢ + s and R = g+ 7, with

Ao =AS = (HV®,VIR) = —(Vi, VL R) in By(p) (42.3)
o =0 on 0B(p), o
Af=AR=—HV® x V*R - V+*SHV®
= Vit x VLR + V1SVii in By(p) (4.2.4)
g =0 on 0B(p)
As=0in B
s=0in Bi(p) (4.2.5)
s =S5 on 0B;(p),
A7=01in B
 in 5ilp) (4.2.6)
7= R on 0B:(p).

Since s and 7 are harmonic functions, [ — l%fBl(p) |Vs|? and | — 5 fBz(p) IVi? are
classically non-decreasing (see lemma IV.1 in [Riv07]). It follows that

1Vs1? < 21Vl 7
L2 (B% (p)) L2 (Bt(p))

427
IV e
L2(Bu(p)"

N N

V2 <
I ”sz(Bt(p)

[
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Furthermore thanks to (4.2.3) and theorem A.3.6 we have
IVoll21 (5w < CIVElL25.6) IVl 125, () (4.2.8)
Thanks to (4.2.3) and theorem A.3.3 we find

190205,y < € | (HV@, T4 B)|

L'(Bt(p))

) (4.2.9)
<C||VA|, .00 VYRl 205
Exploiting the duality of L?! and L%, (4.2.8) and (4.2.9) yield
IVollEes,my) < NVl 200 (8, (o) VOl 23 () (4.2.10)

< € (I9ll 2@ ) 1V E N5, 1 HV @l oy -
Working similarly with g we find

191228, < C (19l 2m)) (IV B2, + 195128, ) 1H V@ 2y - (42.11)

We remind the reader that the constant from theorems A.3.6 and A.3.3 are universal due
to the scale invariance properties of the L2, L?>* and L*! norms. The constants in (4.2.10)
and (4.2.11) then do depend solely on |[V7il| ;2.
We can combine (4.2.7), (4.2.10) and (4.2.11) to get
Ivs|?
L2 (B

o 1
+||IVR]|? < = (Ivs]? + || V7|?
o) IV (p)>_2(1 sli32qe. o + 1971356,

[
N+

+20 (I19l52)) (19 Rl 2m.0 + IV S 3208 1H V@125

1 -
< (5 + 190120, ) (19513, + IV R
(4.2.12)

where C' depends solely on [ V7| 2 (py. Should [[HV®|| 2 be small enough then (4.2.12)
would yield

_ 3 .
VS| + | VR|? <= (Ivsl + | VR|} .
1950, ) 1705y 00) < (198 aimn + IV m0n) - (42.13)

Since the chosen e(, depends only of || V7| (p)» (4.2.13) is uniformly true for all B;(p) C
Dy, and yields a Morrey-type estimate on Dy, ,». Through usual estimates on Riesz

3 3
potentials, see for instance theorem 3.1 in [AdaT75] , it entails

3g>2st. ||VS)
Lq(

Vo, ) <G (19S0ap, )+ 9

L2 (]D) rr! )
2

(4.2.14)

3r4r! 3r4r! r4r/
4 4 2

Step 3 : L* control on HV®
Thanks to Step 2 and (1.2.52) we deduce

Vel (r30) < Ivs) () ||véuL2(DH;,)
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The criticality of system (1.2.49) is thus broken : AS, AR are in L? with 2> 1. One can
apply classic Calderon-Zygmund theory (see for instance theorem 9.9 and 9.11 of [GT01])

to start a bootstrap of limiting regularity L™ on HV®. In fine one has with estimate
(4.2.2)

VS| + HvR’H + | HVD| < C|HVD| 2 (4.2.15)

wtp <D4r+'r’)
5

for all p < co. Here C is a real constant which depends on r, v/, Cy and C.
Step 4 : W?3? control on &
The control on V@ is obtained by a similar Calderén-Zygmund bootstrap on equation

2AD = V+SVD + VIR x VO,
which achieves the proof. O
One only needs to combine theorems 1.4.1 and 4.2.1 to prove :

Theorem F. Let ® € £ (D) satisfy the hypotheses of theorem 1.4.1. Then there exists &,
depending only on Cj such that if

V| 2y < €0,

then for any r < 1 there exists a constant C' € R depending on r, Cp, p and ro (defined in
(1.3.67)) such that
|HYD] e,y < CIHYD 120,

and
IVe[lysrm,) < CIV| L2

for all p < oco.

The dependance in rg is actually problematic for our blow-up analys purposes. Indeed
as the energy concentrates, rg goes to 0, and the estimates in theorem F degenerate.
However applied to a ball of radius € (using the notations of lemma 3.2.2), theorem 1.4.1
will yield uniform estimates on L. One then only has to control L on the so-called "neck
area" : D\D,.

4.2.2 Results on a "neck-type" domain

In this section we focus on a control of L on annuli of small energy, independantly of
its conformal class. We modify a preexisting result ((VI.23) in [BR14]) into the following
theorem.

Theorem 4.2.2. Let R > 0 and ® € £(Dg) be a conformal weak Willmore immersion.
Let 7 denote its Gauss map, H its mean curvature and A its conformal factor. We assume

HvﬁHLQ(DR) + HV/\HLQ,OO(DR) < Cp.

Then there exists ¢g > 0 (independant of ®) such that if 0 < 87 < R and

-2
w [ e
T‘<S<% DQS\DS
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then there exists £ € R? and C' € R depending on Cp but not on the conformal class of
Dg\D, such that
| (2-2)

where L is given by (1.2.43).

< C||HV®
L2v°°<JD>§\]D>2T>_ IHV || L2(py,),

Once more, we will follow Y. Bernard and T. Riviére’s proof, with a few tweaks in order
to obtain a control of Le* by HV® instead of V7. It is important for ® to be well-defined,
and the bound on its conformal factor and Gauss map to stand, on the whole disk and not
merely on the annulus. We refer the reader to [LR18a| for a study of what can happen
otherwise. In the context of theorem 3.2.2, theorem 4.2.2 gives controls on the neck regions
around the concentration points.

Proof. Step 1: Pointwise estimates on H and VH

We set ourselves in the setting of theorem 4.2.2 and consider ® € £ (Dg) a conformal weak
Willmore immersions of Gauss map 7, mean curvature H, conformal factor A and tracefree
second fundamental form A. We assume that

IVl 2@y + VAl L200(g) < Co < 00,

and that
sup / |V#i|? < eo. (4.2.16)
D25\Ds

r<s<§
Consider z € Dr\Day, then B (7) C Dyj5\D)s and thus (4.2.16) implies
2 T

2

/ |Vi#i|% < eo. (4.2.17)
By (z)

4

On B|. (z) one can then apply either theorem 1.4.3, or theorem F (with ro = 1 since
4

(4.2.17) stands) to deduce

C
V]| < = |Ivi| : (4.2.18)
Lo <B%(1)> |z| L2 (B@ (x))
and c
IHV | < — |HV®|| . (4.2.19)
Lee (Blml (9”)> |z| L2 (Bm (33))
8 1

(z),

meaning there exists A € R and C' depending only on Cj such that for all p € By (;:) we

8

Here C depends on Cy. Corollary 1.3.1 then ensures a Harnack inequality on By

have

< P < Cet, (4.2.20)

x)) . (4.2.21)
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Since ® is Willmore, it satisfies (1.2.30) :
AH +|A)*H = 0.
Combining (4.2.18), (4.2.21) and (A.2.10) yields

: Ce~
H\AFHH < ||Hv<1>|| .
Lee( B x)) ER T
(@) = T 2(p)
Then
|AH] <& ymve|
S x = |z T ’
L (3%( )) || (B%( ))
Classic Calderén-Zygmund results (see for instance theorem 9.9 and 9.11 of [GT01]) ensure

that
Ce A
IVH|| < ——= [[HV| , . (4.2.22)
L= (Bm(x)) |z| L (Bm(x)>
4

Combining first (4.2.19) and (4.2.20), and then (4.2.22) and (4.2.20) yields when evaluated
at x

@) |H(z)| < C8(|=)), (4.2.23)
A@) c
e |VH(z)| < mfmx\), (4.2.24)
where .
(5(8) = g HHV(I)HL2<]D>25\]D)%) .

Since VH = VHii + HVi, we can extend (4.2.23) and (4.2.24) to H and VH thanks to
(4.2.18), which yields the desired estimates.

Step 2 : Controls on §
We have

s0(s) < [|[HV|| (4.2.25)

12 (o)

Further for any function positive function f :

/ " ftydtds < / / "1 dsdt
/ (1) log <2t) it (4.2.26)
< logd / £()

Applying (4.2.26) with f(t) faJD |HV®|? dogp, we find

R

2
/ 562(s)ds < log4 ||HV<I>||L2 (IDJR\IDJ ) (4.2.27)
while with f(t) = fom, \Vii|? dogp,, it yields (V1.9) in [BR14] :
3 )
/ 56 (s)ds < log 4 ”V”HH(D \DT) (4.2.28)
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where

- 1 o
5(3) = ; anHLQ (DZS\D%> :

Step 3 : Exploitation and control of L

Let L be a first Willmore quantity of ® on Dg, i.e. satisfying (1.3.74). From (1.3.74),
(4.2.18), (4.2.23) and (4.2.24) we deduce for all z € Dr\Dy,
2

R -(z)
]w] (x) < C‘fm 5(z)). (4.2.29)
We consider for any » <t < R
A Ld
= ToDy -
" |oDy] Jon,

Then given 2 € Dg\Da,
2

‘E(JU) — Ly

< / ‘VE‘ daa]])‘z‘

Ce_)‘('r)
< / (|} doa,. (4.2.30)
OD)q|

]

2T .
< C5(Ja)) / e=Male) gg.
0

Further, in our case lemma 3.2.1 implies the following Harnack inequality for all x €
Dz \Dy,
2

eA’x‘d

o < A < ez, (4.2.31)
with d, A in R, and C a constant depending on Cj. Then (4.2.30) yields
’I_:(x) — | < Co(j2)e@, (4.2.32)

with C' depending on Cy. We can then estimate L — Em with (4.2.27) and (4.2.32) :

/ 62)‘ ‘L - L|I|
D%\DQT

We will control similarly dd—L;i = 5 fo% %—?(t,@)d@. We use expression (1.4.76) of VL
and deduce

R
2 2
dr < 82(r)dr < C |HV®|? . 4.2.
x_C/ZT rd“(r)dr < C|| HL2(DR\D%) (4.2.33)

1 2 al_: 3 27 1 27 R
— —(t,0)d0 = — HOoyndd + — 0,1 x Hdb.
2 0 875 ( ’ ) 2 0 A . 27 0 X

Using (4.2.18), (4.2.23) and (4.2.31) we deduce from this

< Ce—A‘S(t)S(t). (4.2.34)
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which, combined with (4.2.31) and (4.2.34) ensures

Defining a(t) = ‘Et‘ yields %‘ < ‘dd—ét

da _A0(1)8(1)
—l< . 2.
7| < Ce " (4.2.35)
Then
% da % ~
/ 14 | 941 3 gs < oA / 55(5)5(s)
2r ds 2r

We can then apply (4.2.27) and (4.2.28) and conclude
a

R
/2 14d | @
S
2r ds

An integration by parts gives for any r < 7 < T < R,

15 da ’
/ 511 (s)ds = T a(T) — 7'+ a(r) — (1 +d) / s"a(s)ds.
T & T

—A —

< CCoe™ M IHV®| 2 p\p,) -

Hence, since a > 0, we have
— ifd< -1, forall 2r <t < &,

(1) < (2r)+a(2r) + / 7 gled
2r

da

dS (S)ds7

— ifd>—1, forall 2r <t < &,
R

1+d R
tHda(t) < <R) o (R> +/2 gl+d
2 2 2r

Then, if d < —1, we take [ - L =0, whereas if d > —1, we take faJD)R L=0.
2

da

I (s)ds.

In both cases, for all 2r < |z| < g, thanks to (4.2.36), we have

j21eX@ | Ly | < 2l e4a(lz)
R
< €A/2 81+d @ (s)ds (4.2.37)
2r dt
S CIHVE| 2 \p,) >
where C depends only on Cj. Since ﬁ is in L»*°, we conclude with
(4.2.38)

oL, < CIHY 12,10,

L2050 (]D)R \D2T>
2

Combined with (4.2.33), this yields the desired result :

HeAE < CIHV®| 2p,p,)

L2,00 (DE\DQT-)
2

The constant appearing in the theorem corresponds to the choice of f D, L=0or
O

IBDR L = 0 depending on d.
2
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This result combines fairly well with theorem 4.2.1. Indeed thinking in the context
of simple minimal bubbling, one can slice the domain of study into a bubble domain, on
which L is bounded with theorem 1.4.1, and a neck domain where one estimates L thanks
to theorem 4.2.2. Then L will bounded on the whole set, which allows for better controls
and increasingly regular convergences.

4.3 Constraints on minimal bubbling

4.3.1 Consequences of the s-regularity
The following result, which was the core of the prepublication [Marl9c]|, stands.

Theorem 4.3.1. Let ®° : D — R? a sequence of conformal, weak, Willmore immersions,
of Gauss map 7%, mean curvature H® and conformal factor \®, of parameter £ > 0. We
assume

1. / Vit dz < M < oo,
D

2. IVXl| ey < M,

R—oo |\ e—0

3. lim lim/ Vg2 dz | =0,
D%\DER

4. ¢ — 0% in C7, (D\{0}), with ®° a branched Willmore immersion on D,

5. There exists C* > 0 such that w — Uin Cp2 (C), with ¥ a minimal immersion
(that is of mean curvature Hy = 0).

Then ®° — ®° C%2 (D) for all o < 1.

The assumptions of the theorem are natural. They correspond to the conclusions of
lemma 3.2.2, and thus to the compactness theorem 3.2.2 in a good conformal chart. The
only added assumption is that the bubble is minimal. We are considering simple minimal
bubbling.

Proof. In the following e = w : D1 — R and 7© , H¢ 2¢ will denote respec-
tively its Gauss map, its mean curvature and its conformal factor. We can check :

7= (), (4.3.39)

HEV®® = cHVI® (). (4.3.40)
Then for all 1 > R >0

~ 12
/ |vrf|2dz=/ Viie| dz, (4.3.41)
Der Dgr
and )
/ |HV®®|? dz = / HeV®®| dz. (4.3.42)
Der Dr
Hypothesis 5 implies
lim |Vﬁ5|2dz:/ \Vitg|? dz, (4.3.43)
e—0 DsR DR
lim |H5V<I>5\2dz:/ |HyVO|* dz = 0. (4.3.44)
e—0 DER DR
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Besides combining (A.2.11) and hypothesis 3 yields

lim | lim |HeV®®|*dz | < lim [ lim / \Vig|*dz | =0.  (4.3.45)
D%\DER

R—oo |\ e—0 D%\DER R—oo \ e—0

Together (4.3.44) and (4.3.45) ensure that for R sufficiently big and ¢ sufficiently small

|Hevee| (]DM) <eh (M), (4.3.46)
R

with e((M) given by theorem 4.2.1. Up to a rescaling, and thus without loss of generality,

we can assume that (4.3.46) stands on . We will find a uniform L?* bound on a first

Willmore quantity, theorem 4.2.1 then gives the uniform controls proving theorem 4.3.1.
Recalling (4.3.41) yields

lim Ve > dz = / \Vity|* dz.
e—0 DER DR
Then either ¥ parametrizes a plane, and classical e-regularity results yield smooth conver-
gence (and there is de facto no real bubbling) or for R big enough,
87

lim Vs> dz > —.
e—0 DSR 3

Then

inf {s

This means that the estimates given by theorem 1.4.1 degenerates as € goes to 0. Finding
a uniform control on Le* will require a "bubble-neck" decomposition. The bubble region
will be D4.p while the neck region will be D L \D.r, with a R that we determine in what

8
/ | VitE|? = %, Vp € D s.t. By(p) C ]DD} 0.
Bs(p)

follows. We consider L¢ a first Willmore quantity of ®° on D.
Step 1 : Neck estimates
By hypothesis 3, there exists Ry > 0 such that for € small enough,

/ IVﬁ5| S €0,
DL\DERO
Ro

where ¢ is given by theorem 4.2.2. In turn, this ensures that

sup Vi€ |? < &.
8R0<S<ﬁ ]D)QS\DS

We can then apply theorem 4.2.2 and find a sequence E_’i € R3 such that

(2 -45)e]
L2 (Dﬁ\DQER(])

where C depends solely on M defined in 1 and 2.
Step 2 : Bubble estimates
Let p* = ex® € Dyp,. and r°® = es° such that Bye(p®) C Dyp, and

/ N s
< (p°) 6

T

< CH V| oy » (4.3.47)
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Then z° € Dypr, and s° < 4Ry, meaning that there exists x € Dy, and s < 4Ry such that
(up to a subsequence)
¢ — x,
¢ — s,
BS (ZC) C D4R0-
Adapting slightly (4.3.41) we find

8

~ 12
AT dz:/ |Vitg|?dz = —
Bi(z) 6

lim |V#iE | dz = lim
e—0 B,e (p9) e—0 Bie (2)

Necessarily

s v 1 .
—_— > = ——inf <t
ARy =0 T 4R, {

Thus if we set

8
/ |Vﬁq;’2 = I, Vp € Dyp, s.t. Bs(t) C Dyg, ¢ > 0.
Bi(p) 6

1 81
ré .= inflr / Vﬁ€2:f, Vp € Dyer, s.t. Br(t) C Dycp ,
0 4€R0 { iy | | 6 4eRo 7’( ) 4eRo

we deduce that for € small enough rf is uniformly bounded from below :

r§ > —ry. (4.3.48)

1
10
Inequality (4.3.48) translates the simple bubbling of ®¢. While ®° concentrates at 0 at
the scale e, ®° does not concentrate any further, everything happens at the same scale
for ®. For instance corollary 1.3.2 ensures that the conformal factor satisfies a Harnack
inequality. Namely we find A® € R such that

Va € Dacg, £ < M@ < ceh. (4.3.49)

Here C depends on M and TE)I’ . Theorem 1.4.1 then allows us to control the first Willmore
quantity ; i.e. there exists £5 € R3 such that

| (2~ 25) ] < C(M, 1) | HEV | 12 - (4.3.50)

LZ’DO(D3€RO)

Step 3 : Estimates across the concentration point

We first wish to estimate |£5 — £5|. Using (4.3.47) and (4.3.50) we find
ﬁ—ﬁ)e)‘s §‘<_'5—I_;5)6)‘5
H< 1 2 L27°°(]D)3305\]D)2305) ) L2’O°(D3R06\D2ROE)
+]|(Ze - 5) ]
2 L% (Dsrge\Darye )
<e-2)er

LQ’OO(DL\D2R05)
2Ry

+

R E_E) e
H ( 2 L2 (Dapye )

< C(M,rg) |HVE| L2p) -
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Thus

< C(M,rg’)

L5 - 05| <
He ||L2*°°(D3R05\D2Ro€)

IV 12 - (4.3.51)

We can now assemble our estimates on the neck and the bubble. Using successively (4.3.47),
(4.3.50) and (4.3.51) we find

e Y. A€ e Y. A&
| (2~ £5)e \W(D I)SH(L L)

L2 (D$ \DQERO)
2R,

3Ry
+|[(Z° - Ea) e
! LQ’OO(D3€RO)
< C(M) |HEVE® || 2y
+ _’6 . L_:c:) A
2 LQ’OO<D3ERO)

LQ’OO(D?’ERO)

< O(M, ) | HV | ) + | £5 - 55

‘ A

(&
leX

€
]

L2:o0 (DBERO)

>

L2 (D -
< O(M, ) |HEVE | oy [ 1+ (Bser)

”LQ’OQ(D?)ROE\DZROE)
With (4.3.49), we can simplify the last right-hand term in the inequality.

le* le?

€

LQ’OO(D3€R0)

1eX N 2,00
L2:°°(D3pye\D2rge )

< O, ) e et

AE
||6 ||L2,00(D3R05\D2R05)

111l 2,00 (m,
S C(Mvrgj) ( JER())

H 1 HLZOO (DgRoa\D2R0€)
< C(M,ry)

since A® is a constant. Accordingly there exists C(M,ry) > 0 such that the following
estimate across the concentration point stands.

(2= 45) e

Lm(D ) < O(M,r5) | HV || 2y - (4.3.52)
’ _1
2Rg

Step 4 : Conclusion

We have then found a first Willmore quantity, L — E_%, with uniform L% control on a

disk of fixed radius p = ﬁ. Since (4.3.46) stands we can apply theorem 4.2.1 on D, and
find
\lHqu)EllLoo(D%) < CIH V| 2,y (4.3.53)
||V<DEHW37P<D£) < OV 2p,), (4.3.54)
2

while the second and third Willmore quantities satisfy

V5] +|IVE| ) < CIE V|20, (4.3.55)

leP(ID)§> Wl»p(m)g

2

for all p < oo.
Theorem 4.3.1 then follows from classical compactness results. O
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4.3.2 Drawing a local framework

We will slightly change the conclusions of lemma 3.2.2 to draw a framework that better
fits simple minimal bubbling.

Lemma 4.3.1. Let & be a sequence of Willmore immersions of a closed surface X satisfying
the hypotheses of theorem 3.2.2. Then, in proper conformal charts around a concentration
point on which a simple minimal bubble is blown, £* yields a sequence of Willmore con-
%ln |v<12> |
mean curvature H¢ and tracefree curvature Q° := 2 (9%, 7i%), satisfying the following set
of hypotheses :

1. There exists Cy > 0 such that

formal immersions ®° : D — R3, of conformal factor \* = ), Gauss map 7%,

19| ooy + IVl L2y + IVA* || L2000 0y + [IVA® || L2y < Co.

2. ©° — 00 C° (D\{0}), where @ is a true branched Willmore conformal immersion, with
a unique branch point of multiplicity  + 1 at 0, meaning that

B9 ~o A2 (4.3.56)

We denote A0 its conformal factor, 710 its Gauss map, H? its mean curvature and Q0 its
tracefree curvature.

3. There exists a sequence of real numbers C* > 0 such that

o° (c.) — °(0)

d° = e

— o!

>0 (C), where ®! is assumed to be a minimal conformal immersion of C with a branched

end of multiplicity 8 4+ 1, meaning that :
oL~ A

We denote ! its conformal factor, 71! its Gauss map, H! its mean curvature and Q! its
tracefree curvature.

R—oo |\ e—=0

lim hm/ |V dz | = o0.
DL\DSR
R
5. ‘Qse*)‘g‘ reaches its maximum at 0 and

=2

_ )€
‘Qse 2 )
€

Proof. Hypotheses 1, 2 and 4 were already obtained in lemma 3.2.2. Hypothesis 3 then
specifies that we consider the case where there is only one simple minimal bubble which
concentrates on 0 in the aforementioned chart. The equality of the multiplicity of the end
of the bubble and the branch point of the surface is merely a consequence of theorem 3.2.3.
Further, by definition of a concentration point

— OQ.

Hv#

‘L”(]D))
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On the other hand, theorem 4.3.1 states that

HH’“V@’“" < C(Co)

Loo(D

2

Since ‘Vﬁkf = ‘HkVCDk‘Q + )le*/\k , necessarily

HQk(f)‘kH — 00.
Loo(D)

We then redefine the concentration speed as

. 2
o Hkae—Ak

€k

HLOO(]D))

and we assume it is reached at the origin. For simplicity’s sake we reparametrize this
sequence by the concentration speed which we denote €. Hypothesis 5 is then a consequence
of this slight adjustment. O

This modification is done in order to more subtly detect the phenomena. Indeed for
minimal simple bubbling, the mean curvature terms remain bounded, and thus concentra-
tion will happen entirely on the tracefree parts. Further, controls on €2 will be more easily
reverberated onto ® than controls on V1.

We can expand on hypotheses 1-5 up to, first macroscopic, then microscopic, adjust-
ments.

Lemma 4.3.2. Let ® : D — R3 be a sequence of Willmore conformal immersions
satisfying hypotheses 1-5. Then 6 is even, and up to macroscopic adjustments we can
assume that :

6. ) )
11 -Q2_P2
®, =3 i (Q*+ P?) |,
2PQ
where P,Q € Cy[X], PAQ =1, and
2
P(0) =0,

Q(0) = P'(0) =1,
P"(0) = 2Q'(0).

The end of multiplicity #41 of ®! can be highlighted as follows : there exists A € C3\{0}
and V' € Cy_1[X] such that N
ol = A0 +v.

Proof. Adjusting with homothetic transformations of R :
Since ®' has no branch point on C, up to a fixed rotation and a dilation in R? one can
assume :

ry==14]. (4.3.57)

Adjusting the parametrization :

cosf) —sinf 0
Taking M_g = | sinf cosf 0|, we set U := M_gd! (ew.). We denote respectively
0 0 1
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Aw, Hy, Qg and 7y its conformal factor, its mean curvature, its tracefree curvature and
its Gauss map. Then ¥, = e’eM,gfbi (ew.) which implies g = M_g7i and e’ = M
Consequently using (4.3.57)

i0 o (e " 1 (!
v,(0) = %Me il = % ie? | =2 | (4.3.58)
0 0 0
Further we can compute ¥,, = ezieM,g@iz (ew) and deduce
Q‘l/ — 62i091,
which in turn implies
[wa] (0) = 20 [Qle”\l} 0).
According to (4.3.78), one can choose @ such that €2 = [Qle%fl}(o). In that case Qy (0)e v (©) =
—2, which yields thanks to (4.3.58)
Qg (0) = 2. (4.3.59)

The sequence ¥& = Myd* (ew.) satisfies hypotheses 1, 4 and 5, while
v Mpa° () Cix (D\{0}),
U T O (C).

We will not change notations for simplicity’s sake, and will merely assume, without loss of
generality, that

Q') = -2. (4.3.60)
Summing up :
1
al=14),
2 0
(4.3.61)
Q'0) = -2,

(I2'fe") (o) =o.

z

Consequences on the Enneper-Weierstrass representation :
Since ®! is a minimal immersion, we can use the Enneper-Weierstrass representation :

pf 19
ol (1149
2 2

where f is a holomorphic function on C and g a meromorphic one. Since (according to
(4.3.74)) ®! has finite total curvature, g is a meromorphic function of finite degree on C.
Thus, there exists two polynomials P, @ € C[X] such that PAQ =1 and g = g. Since
®! has no end on C, f has a zero of order 2k at each pole of order k of g. Consequently
there exists a holomorphic function fsuch that f = QQJ‘N'. Further, ®' has no branch point



4.3. CONSTRAINTS ON MINIMAL BUBBLING 147

on C and one finite end at oo, thus fis a holomorphic function without zeros and of finite
order at infinity, i.e. a constant. We can then write

. Q2 o PQ
P! = s li@+P?) . (4.3.62)
2PQ

Further since ®! is assumed to have an end of multiplicity # + 1 one can expand (4.3.62)
as
ol=A010 (ze_l) : (4.3.63)

where A € C3\{0}. Comparing (4.3.62) and (4.3.63) notably implies that 6 is even and
P, Q € Co[X]. From (4.3.62), we then successively deduce
2

1 PQ + PQ
1 Yo A
n=———-—11 (PQ — PQ) ) (4.3.64)
P 2 + 2
‘ ’ ‘Q| |P|2—|Q‘2
2
e = (IP]? +1Q%)7, (4.3.65)
Q P
ol =@ |Qi| -P | -iP], (4.3.66)
P -Q
which implies
Q'=2(PQ - PQ), (4.3.67)
and in turn PO/ — PO
Qle™ =g % —— < 4.3.68
PP+ 1P 13059
) 2112 /12 2 ppIN' _ PPN
ot < lPEQE 4 PRI - PPQQ-PQPT 5,
(IP2+1QI2)
Conditions (4.3.61) then translate on P and @ as
P(0) =0,
Q0) = P'(0) =1, (4.3.70)
P"(0) =2Q'(0)
This concludes the proof. O

Below, we write and prove the infinitesimal counterpart of theorem 4.3.2.

Lemma 4.3.3. Let ®* : D — R3 be a sequence of Willmore conformal immersions
satisfying hypotheses 1-6.
Up to infinitesimal adjustments we can assume that :

7.
e e (1
00 = Selo =g ().
[07e ] (0) = é [21e] (0 = —;
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Proof. Using homothetic transformations of R3 :

By hypothesis 3, ®(0) — ®1(0), thus there exists a sequence of homothetic transforma-
tions 0 — Id such that 6°®(0) = ®1(0). Since o° tends toward the identity, hypotheses
1-3 are still satisfied, and hypothesis 5 still stands due to the conformal invariance proper-
ties of the tracefree curvature. We will then apply this sequence of transformations without
changing the notations for simplicity’s sake and assume ®<(0) = ®1(0). Considering

e = &

o = C’E(I)i’
we deduce with (4.3.61),
1
£
a0)= (i) (4.3.71)
2e 0

Adjusting the parametrization :
Using (4.3.78) and (4.3.76), we can set

e [T]O e )

- ~ Qe (0)

[Qle*)\l] ) — 1.

We consider W& = My ° (eies.). Since €” — 1, W€ satisfies 1-6 (5 is still satisfied due to
the invariance properties of the tracefree curvature). As detailed in the previous section
we have N

Qg e N = —2,

which implies
2

{Qﬁ,e"\i} 0)=-:.

For simplicity’s sake we will not change the notations and assume that ®¢ satisfies

[Qse*ﬂ 0)=-=. (4.3.72)

This gives us the desired result. O

An immediate consequence of hypotheses 2-4 is the following energy quantization result

/|Vﬁ€|2dz—>/ |Vﬁ0|2dz+/ Vii'|? da. (4.3.73)
D D C
while hypothesis 1 ensures

IV oy + V7 < C(C). (4.3.74)

1HL2((C)

Further if we denote 55 the conformal factor of ®¢ , HF its mean curvature, QF its
tracefree curvature and 7 its Gauss map, we have

X =X(e)—In <C;> : (4.3.75)

and L
Qe =¢ [Qse_’\e] (e.). (4.3.76)



4.3. CONSTRAINTS ON MINIMAL BUBBLING 149

Using hypothesis 5, one may conclude that

~ _~£
‘Qae A

(0) = 2. (4.3.77)

Hypothesis 3 then yields
‘Qle*) (0) = 2. (4.3.78)

Similarly we know, thanks to hypotheses 3 and 5,

(‘ﬁse* ) (0) =0, (4.3.79)
z
and :
(‘Qle_’\l ) (0) = 0. (4.3.80)
z
Finally, hypothesis 4 allows us to apply theorem 1.5.1 to ®° : there exists o < 6y,
A e c3\{o}, (Bj) e 3, G, e C*\{0} and ¢ : D — R3 such that
j=l..60+1—a
Oo+1—a é CT
0_ 7.0 5 _0o+j @ _fp—a=bo+1 o 0-00+1—
o) = A0 + ]z::l B;z”° ]+00+120 @z’ +7HU+1—C¥2020 Y+E,, (4.3.81)

where £ satisfies :
vjé -0 (T200+37a7j7’u> 7

for all v > 0 and j < 0y + 2 — a. The second residue « is in fact defined as follows (see
theorem 1.8 in [BR13]) :
HO ~ Cyl2|@. (4.3.82)

Our proofs will use the quantities E, S and ]:f, stemming from the Willmore conservation
laws (see for instance theorem 1.4 in [Riv08|), which at the core, are a consequence of the
conformal invariance of W (see [Ber16|). More precisely L, S and R are defined as follows :

VLI = VH - 3n; (vﬁ) +viax |,
VLS = (L, V1), (4.3.83)
VIR=LxV+®+2HV" .

Exploiting these was key in T. Riviére’s proof of the e-regularity for Willmore surfaces.
Under hypotheses 1-5, the conclusion of [Marl9c| stands and yields (see (96)-(98) in
the aforementioned paper) :

VO |lws.0my < C(Co), (4.3.85)

while the second and third Willmore quantities satisfy
195wy + VB lwan(oy < C(Co) (4.3.86)

for all p < co. Up to an inconsequential translation one can further assume ®°(0) = 0.
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4.3.3 Local expansion on the conformal factor

This section will prove the following expansion on the conformal factor, which will serve
as a stepping point in the proof of theorem G.

Theorem 4.3.2. Let ®° be a sequence of Willmore conformal immersions satisfying 1-7.
Then there exists (¢ € L*™ (D) such that :

A* =1In (59 + 7'9> + 15,
1] ooy < C(Ch).

As a result if we denote x = V&2 + r2, the immersion satisfies the following Harnack
inequality :
0

C(Co)

< e < C(Co)’.

Proof. Step 1 : Controls on the neck area
Given hypothesis 4, for any g > 0 arbitrarily small there exists R big enough such that

e—0

lim / |ViE|>dz | < eo. (4.3.87)
D%\DSR

We first recall lemma V.3 of [BR14].

Lemma 4.3.4. There exists a constant n > 0 with the following property. Let 0 < 4r <
R < 0o. If @ is any (weak) conformal immersion of 2 := Dg\D, into R? with L?bounded
second fundamental form and satisfying

IVl 2,00 ) < v/,
then there exist % < a<1and A € R depending on R, r, m and ® such that
M)~ dinel = Al 1.) < € (\wrmm) + /Q |Vﬁ|2) , (4.3.88)

where d satisfies

2nd — | O:Adlop,
oD,

<C

/ |Vi|? dz
DZ’I‘\DT

1 9

Thus, according to (4.3.87), there exists Ry such that for all R > Ry and ¢ small
enough, we can apply lemma 4.3.4 on D L \D.r and conclude that there exists d and

A% € R such that

(4.3.89)

1A (x) —dzInr — ) < Cy, (4.3.90)

13
RHL” (DL \D2cr
7R

Co

<C / Villdz + ——
DQSR\DaR | | - 1H (€R2)

BN dlop,,

e 1 4.3.91
R r Jon (4.3.91)
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Here Cj is the uniform bound given by hypothesis 1 (up to a multiplicative uniform con-
stant). We saw in (3.2.7) that

. 1 5
i, (1 [ oocdima) =0

while hypothesis 4 ensures that

lim lim/ \Vii|*dz | = 0.
R—oo \ e—=0 D25R\D5R
Hence we can fix Ry > 0 such that for € small enough :

1
R < —
[di — 0] < 155 (4.3.92)

Since Rj is fixed, we will get rid of the subscript on d° and A%. Then for any & small
enough :

1A () —dslnr—AEHLm( ) < C(Cy, Ry). (4.3.93)

D 1 \Docr,
2Ry

Step 2 : Estimates on the exterior boundary :
Hypothesis 2 ensures that on 0D _1 , A°* — AV smoothly, and that Y is a bounded function
2

Ry

away from 0, which implies

A° < C(Cy, Ry). 4.3.94
| HLOO(&D 1 ) < C(Co, B1) ( )

2R
On the other hand, (4.3.92) ensures
|[d°In R;| < C(Co, Ry). (4.3.95)

As a result, combining (4.3.93) on 8}]])%, (4.3.94), and (4.3.95) yields
2

1

|A%] < C(Co, Ra),
which we can inject in (4.3.93) to obtain

1A () — d€ In 7| > < O(Cy, Ry). (4.3.96)

Lo (DL \D2c Ry
2Ry

Step 3 : Estimates on the interior boundary :
Estimate (4.3.96) implies

I0@) = 17 e (o, ) < C(Co, Ra). (43.97)

Further (4.3.75) yields

X (@) = & ]

~ Ce
AN(z)—d°Inr+In| — ) —d°Ine
€

oD - :
ey ’ Lo° (D3, )

Hypothesis 3 then ensures that

’)\vz-:

< C(Co, Ry), 4.3.98
Loo(Dan,) = (Co, R1) ( )
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and (4.3.92) that
”d6 1nr||LOO(D2R1) < C(Co,Rl). (4399)

Together (4.3.97), (4.3.98) and (4.3.99) yield

CE

A direct consequence of (4.3.92) and (4.3.100) is the following estimate :

_10-3
€9+1 10 6d5+1

< < C° < C(Co, R1)e® L < C(Cy, Ry )efH1H107°, 43.101
CRLCo) < ClCo ) S S OG0 R)e™ ™ < CCo, ) (4.3.101)

Step 4 : Expanding the conformal factor on the whole disk :
We forcefully write A\* = In (EdE + rda) + [°. We aim to show that

HFHLOO(D) < C(Cy, Ry).

OnD\D . :
4R
Using hypothesis 2,
A° < C(Cy, Ry). 4.3.102
| HLOO(D\Dl)_ (Co, R1) ( )
IR

One might also notice that, thanks to (4.3.92), on D\D _1_

1
e e 1 ™+ 150
In (% + %) | < C(Co, Rr) In () . 4.3.103
‘ ( ) (Co, Fa) 2R, ( )
Then using (4.3.102) and (4.3.103) :
1] < ¥ + ([l (¥ + 7T
o0 ) <Moo ) T e ow ) s
< C(Cy, Ry).
On Dyep, :
Using hypothesis 3
P < C(Co, Ry), 4.3.105
3], = €0 R (4:3.105)
while thanks to (4.3.100)
€ €
In <5d€ + rd6> ~In <C> < I (edf + (Er)dg) ~In <C>
€ /L= (Dycr,) /oo (Dar, )
e ce
< |ln (14 ¢ + ln<s>
H ( )HLOO(D4R1) Ed +1 LOO(D4R1)

< C(Co, Ry). ( ;
4.3.106



4.3. CONSTRAINTS ON MINIMAL BUBBLING 153
To conclude, we deduce thanks to (4.3.105) and (4.3.106) :
5 5 ce ce
Ell, o <A —In (¥ + ¢ In(—)—In(=
10w e, < n(e o )+ n< £ > n< £ > L (Dacr, )
3 15
< |IA* =1n <C> + ||In (zeds + rds> —1In (C)
c e (D4ER1) c o (D4ER1)
~ e = €
< [|N® + ln<5d +Td)—ln <C>
L (Dar, ) € L (Dycr, )
< C(Co, R1). : )
4.3.107

On DL\DZsRl &
2Ry
Thanks to (4.3.96) :

2Ry

) <||A® —df lnrHLoo(

1] +
L°°<1D> 1 \D2cr, D \D25R1>
2Ry

S C(C()a Rl)
Combining (4.3.104), (4.3.107) and (4.3.108) yields
151 oo (my < C(Clo, Ry),

(=1
n —
gd® 4 pd°

Le (DL \D2e R, )
2Ry

(4.3.108)

(4.3.109)

which is as desired. We now wish to refine this first expansion by showing that d° converges

toward 6 fast enough to be replaced in (4.3.96).
Step 5 : Refinement :

A consequence of estimate (4.3.109) is the following Harnack inequality on the conformal

(4.3.110)

factor : - -
8 + r AE dE dE
£ T ¥ < C(Co, Ry (s —i—r)
C(Co. ) (o)
which, using the notation y = v/&2 + r2, we will rewrite in the more convenient form
X" A€ de
_ X < < C(Co, RN
O(CO, Rl) ( )X

Injecting (4.3.92) into (4.3.110) yields
X < C(Co, Ry)x? 7107,

Since ®° is conformal,

ADF = 2H%eN 7° = 010 2N . 7"
X@—IO
Noticing that (4.3.84) and(4.3.111) imply
e €>‘E
HQH%* 0 < O(Co, Ry),
X Lo (D)

we can apply theorem A.3.9 to equation (4.3.112) and find :

o7 = P7(2) + #p,

(4.3.111)

(4.3.112)

(4.3.113)

(4.3.114)
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0
where P° = Zpézq € Cy [X] with |p;| < C(Co,Ry) for all ¢ < 0 and ¢§ : D — R3

satisfies .
%0
Yu > 0 HW LoD ng(C07R1)>
(D) (4.3.115)
Vp < 00 H o= 10 3 SCP(CQ,Rl).
L?(D)

By convergence of ®° away from zero (hypothesis 2), p; — py € C as ¢ goes to 0. Further
(4.3.115) yields p§ — o WP (D), with g satisfying

%0
Yo >0 Hm Loo(D) SCU (CO7R1)7
i (4.3.116)
Vp < 00 ’7“910_3 gcp(c()aRl)a
Lr(D)
since x — r as ¢ — 0. Then (4.3.114) ensures that
0
o5 — quzq + ¥o. (4.3.117)
q=0

Since we assumed that ®° — ®° away from 0, comparing (4.3.81) and (4.3.117) yields

Vg<8 p;—0

R (4.3.118)
pp — AF#0.
Further, (4.3.114) gives the following
5qul 5%0 )
qu o ch . (4.3.119)
One might also notice using (4.3.115)
1
51 (£2) < C(Co, R1)X"*2 (e2)
1 oil (4.3.120)
<e2C(Co, R)V1+12 2
This, along with (4.3.100), implies
£ 0+1+3% o+1
6 E)) S 2 (G, RV
Cce Cce
6+% 1
SC(Co,Rl)\/l—FTz g2,
Consequently
epg (ez o
OCE) -0 L (C). (4.3.121)

Since ®° is assumed to converge smoothly towards ®! on compacts of C, we deduce from
(4.3.63), (4.3.119) and (4.3.121)

g g+l =~
> o ol = A% + 0(%). (4.3.122)
q=0
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Hence
0+1 ~
e Py —> A#D0.
Further, given that pj — A # 0, there exists C(Cy, R1) > 0 such that
CE
In (50H> ‘ < C(Cy, Ry). (4.3.123)

Combining (4.3.100) and (4.3.123) yields

€d6
ln ((€9> ' S C(CO,Rl),

which ensures

|(d° —0)Ine| < C(Co, Ry). (4.3.124)
Then, (4.3.96) and (4.3.124) combine and yield

H/\E—HlnrHLoo( ) < H)\S—GIHMLOC< ) +’(9—ds)1nTHLw<

D 3 \D2cg, D 3 \Dacg, DL\D25R1>
Py ey Py

< C(Co, Ry).
(4.3.125)
Since inequality (4.3.125) is analogous to (4.3.96), we can do all the reasonings from (4.3.96)
to (4.3.122) with d® = 6. The conformal factor then satisfies :

A =In (59 v r9> e (4.3.126)

with {¢ such that
11| ooy < C(Clo, Ra).

0
X AS 0
— < < C(Cy, R . 4.3.127
C(C[],Rl) SSEES ( 0 1)X ( )
This concludes the proof of the desired result since R; is fixed. O

Further for simplicity’s sake we can, up to an inconsequential (thanks to (4.3.123))
adjustment, assume C° = *1. Then, exploiting (4.3.122) yields :

~ —

A=A (4.3.128)

0
Zpgeqfezq — ol
q=0
Pt =90l (Z) +e9Q° (g) ,

€
with Q¢ € Cy[X] such that Q¢ — 0.
®¢ then satisfies the following decomposition :

We can then decompose

e _ 051 (% 0 (Z €
o2 = 'l <€> +e°Q (6) + 0, (4.3.129)
where
(pE
Yo >0 H 9+(1)_U . < Gy (Co, Ry),
_ (4.3.130)
Vp < 00 H 00 < Cp(Co, Ry) .
X7 llze(m)
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Remark 4.3.1. One can compare the idea behind theorem 4.3.2 to the one in [MS95] :
the Liouville equation ensures that the conformal factor behaves as some, z¢ with d € R,
and the fact that it comes form a conformal immersion, forces d to become an integer.

Remark 4.3.2. Equality (4.3.128) can be seen as prolonging theorem 3.2.3 : not only
must the multiplicity of the end and the multiplicity of the branch point correspond, but
so must the parametrization of the limit planes in both cases.

Remark 4.3.3. A. Michelat and T. Riviére have presented the author with another proof
of the expansion which works in the more general framework of any simple bubble (in
[MR19]).

4.4 Conditions on the limit surface :

4.4.1 First control of the second residue, proof of theorem G
The aim of this section is to prove :

Theorem G. Let @ be a sequence of Willmore immersions of a closed surface ¥ satisfying
the hypotheses of theorem 3.2.2. Then at each concentration point p € ¥ of multiplicity
0, + 1 on which a simple minimal bubble is blown, the second residue «; of the limit
immersion ®, satisfies

ap <6, —1.

As detailed in lemmas 3.2.2, 4.3.2 and 4.3.3 we can equivalently work in conformal
parametrizations under hypotheses 1-7. We will then instead prove :

Theorem 4.4.1. Let ®° : D — R3 be a sequence of Willmore conformal immersions
satisfying hypotheses 1-7. Then the second residue of ®° at 0 satisfies

a<f-—1.

Proof. Step 1 : Expansion of &%, :
We consider ®¢ satisfying hypotheses 1-7, and thus (4.3.126)-(4.3.130). The system (7) of
[Mar19c| states

AS® = (HVe*, V- )
AR® = —H°V®® x V' R* — V'S H V®® (4.4.131)
AP = % (VLS?V@E + VLR x V<1>€) .

Then (4.3.84), (4.3.86) and (4.4.131) yield :

< O(Cy). (4.4.132)

1887 gy + A,

Applying theorem A.3.9 gives the following decomposition on S¢ and Re .
SS = 55(0) 4+ 0§
5 = 52(0) + o5 (4.4.133)
R = RZ(0) + o,
with of and pj satistying

Yo >0 |og](2) +|p5| () < Co(Co)x' ™,

(4.4.134)
Vp < oo [IVagllLemy + VAl ey < Cp(Co).
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Injecting (4.3.129) and (4.4.133) into the third equation of (4.4.131) yields

AD® =23 <R’§(o> x |01 (2) +e00= (2)] + 50 [e72 (2) + % (E)D + U,
(4.4.135)
where
§:=29 (pg X B + o5 BE + RS x Jgjtsggpfg)
satisfies
Vo>0 |05 (z) < Co(Co)x?+1,
Vp < 0 qu;g < C)(Co). (4.4.136)
X" e (D)
One may notice that
he =29 (Eg(()) x [f01 (2) + 2007 ()] + 520 [e*at (2) + <0 (E)D

is the sum of a polynomial of degree 6 in z and a polynomial of degree 6 in Z, whose
coefficients are uniformly bounded by a constant depending on Cy. Additionnally it is a
O(x?) thanks to theorem 4.3.2. We can then find a polynomial h° in z and Z of total degree

6 + 2 such that
h=(0) = hZ(0) = hz(0) =0,

AR = I,
pe =0 (x"*2).
Then
A (®° — hF) = TS, (4.4.137)

Applying theorem A.3.3 to (4.4.137), with a = 6 + 1 — v for v arbitrarily small yields
O = P*(2) + hS + ¢f, (4.4.138)

where P¢ is a polynomial of degree 6 + 1 that we can split P = Pj + P29t with
P§ € Cy[X], and ¢ satisfies :

|5 V]
Yo >0 Yo2—v + YOFI—v < Cu(Co),
2 & (4.4.139)
Vi
Vp < oo ‘ 0 1 < Cp(Co).
X Lp(D)
Comparing (4.3.129) and (4.4.138) as in the proof of lemma A.3.2 yields :
g
e _ 0 [pl E) € (f }
P 5[@(6 +Q 5),
@5 = P72+ RS+ .
Consequently ¢f satisfies :
06l VRl
X9$1 + Xeo < C(Co)
9 (4.4.140)
Vo5
Vp < oo o= < Cp(Co).
X L (D)
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)

Estimates (4.4.140) applied to (4.3.129) allow for a pointwise expansion of ®%, :
o; = [0l (2) + @ (2)] + 5,
- 15 , = (4.4.141)
22, = ol (2) + Q2 (3)] + 5.

Step 2 : Initial conditions
The relations (4.4.141) yield when evaluated at 0

$5(0) = °®L(0) +e™Q°(0) + O (e™*)

4.4.142
®2,(0) =1L (0) + " 1QZ(0) + O (€M) . ( )
There, hypothesis 7 stands as :
o°(0) = 0,
o 1
®5(0) =@}(0) = - | ¢ |,
2
0
c 1 2
0 —A} 0) = —0°(0) = —=.
[ 0 = 50°(0) = =
0
This implies 7i€(0) = | 0 |, and since % = (i, D,),
—1
1
0
o0 =3 i
2 \o
(4.4.143)

Comparing (4.4.142) and (4.4.143) yields

Q°(0) = O(e),

0
<Q§(0)7 0 >=O(€)-
1

However as we pointed out in remark A.3.3, Q¢ is loosely defined. We can then evacuate
the coefficients of order € into ¢f (which we will do without changing the notations) to
obtain :

< - 8 >:0' (4.4.144)
1

To conclude we write Q° € C? as

Q=A|i|l+B|-i|+c|o],
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then (4.4.144) yields

A®(0) = B°(0) = C*(0) =0,
(©) (©) ©) (4.4.145)
C5(0) =
When taken at 0, (1.2.53) yields
1 0
Fe(0) = & (He(0) +iVe(0)) | i | +iS5(0) | 0] . (4.4.146)
0 1

Estimate (4.3.86) then ensures that v° := &% (H#(0) 4+ iV¢(0)) is uniformly bounded :
] < C(Ch)-

Step 3 : ®¢ is conformal
We will linearize the conformality condition :

(@, @7) =0.

Injecting (4.3.129) in the former yields

IS5 2
Q*B° — P?A° 4+ PQC* + A°B° + (02) =0. (4.4.147)
Applying hypothesis 6 and (4.4.145) then yields :
22 divides B®. (4.4.148)

Conformality also implies
(AP, D) = 0.

Injecting (4.4.135) and (4.4.141) into the former then yields
(Fe” [21+Q7) (2)) = (A 6) + (80°,05) =: ¥, (4.4.149)
with W9 satisfying, thanks to (4.4.136) and (4.4.140),
Yo >0 |5 < Cpx¥tie. (4.4.150)

Considering that <7LE,€0 [q)i + Q‘E] (§)> is a polynomial of degree at most 20 in z and %,

g
we can state :

<E5,59 [CIJl: + Q‘S] (§)> = ie: h;qz-:%_p_qufq.

p+q=0
Together (4.4.149) and (4.4.150) yield :
20
W0 3 a0 ()
p+q=0

Applying lemma A.3.4 then yields :

Vp,g Yu>0 hi, =0 (7). (4.4.151)
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Step 4 : Computing he
We compute

z

a1 (2) 4 o0 (2) =< <_Pz(> i @) ( ) fo <Qz(> +ae (;)) (;)
w2 (Fe@e ) 1)

z

5 1
S50 [21 + Q7] () = S: (0’ {_Z - Be} (5) <Z

and | (
|

Then

e _ og ((Si(o)ge[pz +2B¢] (g) +iv°e [PQ + C] (i)) (

0
+ <S§(0)59[PQ + ] (f) — el Q2 + 24¢] (Z)) (0) ) .

1

From this we deduce

(ke [ol+ 7] (2)) = <S§<0>59[_p2 +287 (2) + i e0[PQ + O] @) e [P+ 287 (2)

&)

+ (5;(0)59 [PQ + C<] (3) — w5 [Q2 + 24¢] (j)) e’ [PQ + C°] (g)

€

= S(0) ||PI? (1P + |QI?) + 2% (PQTF — 2P°B7) + 4|87 + |c*] (£)

+iv°e® [-PQ (|P* + |Q|*) — P?CF + 2B°PQ — 2PQA®

—C°Q? + 2B°C" — QCEE] (5) .

€
(4.4.152)

Studying (4.4.152) with (4.4.145), (4.4.148), (4.4.149), (4.4.150) and hypothesis 6 in mind,
we can write

z

(i [l + Q7] (2)) = —ive® 12 + 0(r?), (4.4.153)

&)
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which implies h ; = —iv%, and in turn thanks to (4.4.151) :
Vs>0 v°=0(e'7%). (4.4.154)
Then, (4.4.149), (4.4.150) and (4.4.152) give us :
(Fe,ef [0+ Q] (§)> = SE(0)e® [P (1P +1QP%) + 2% (PQTF — 2P?BF) + 4|B°)” + |C*’] (g)

L0 (X29+17v> _

(4.4.155)
A similar process on the remaining polynomial allows us to state
Yo >0 Si(0)=0 (¢'7Y). (4.4.156)
Step 5 : Conclusion
From (4.4.133), (4.4.154) and (4.4.155) we deduce :
vo >0 |BE|+1s5 < o,
5 i (4.4.157)
p<oo ||[VE|| IV <G
Inequality (1.2.52) then yields :
Yo > 0 ‘Hse”’ < Oy, (4.4.158)

Letting (4.4.158) converge away from 0 gives, thanks to hypothesis 2, the following :
Yu > 0 ‘Hoe)‘O’ < Curi™v.

However since ®° is assumed to have a branch point of order # + 1 at 0, by definition,
N~ Cr?, which means
Vo>0 |H° <G (4.4.159)

By definition of o (see (4.3.82)), H® ~ r~%. Since a € Z, (4.4.159) ensures :
a<6-1. (4.4.160)
This concludes the proof of the desired result. O

In the continuity of the previous proof we can improve on the convergence obtained in
theorem 4.3.1 :

Theorem 4.4.2. Let ®* : ¥ — R3 be a sequence of Willmore immersions satisfying the
hypotheses of theorem 3.2.2. Assume further that at each concentration point a simple
minimal bubble is blown. Then ®* — ®° C37 for all n < 1.

Proof. As before we can reason locally, under hypotheses 1-7, and will continue from
(4.4.160). Injecting (4.4.157) into (4.4.135) ensures :

Yo >0 |ADE| < COpx?tiY
H V (A®9)
X

4.4.161
Vp < o0 ( )
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We can then compute

HEPE = q)if X q)i
Tl
v(@gi)x(be égixv(@g) @E*XQE
V (HEPE) = zZ z zZ z) V(I)a,q)* + (D, VP zZ z
(rras) = YL LS P S
(4.4.162)
Combining (4.3.127), (4.4.141) and (4.4.161) yields :
He S
Yo >0 ‘ 17UZ < CU?
X Lo (D) (4.4.163)

Vp <oo  [|V(H ®)| L) < Cp.
Consequently, injecting (4.4.163) into (4.4.131) and applying Calderon-Zygmund yields

Vp < 0o HVSEHWQ,;;(D) + HVEE

W2.p(D) + ||V(I)E”W37P(]D)) < C(CO) (44164)

Which proves theorem 4.4.2 thanks to classical embeddings. O

Remark 4.4.1. We can further our expansions to the next order. Indeed injecting
(4.4.163) and (4.4.157) into (4.4.131) yields

AS? AR®
V’U > 0 ' 2‘?1) Q}Ev S va
X L (D) X Loo(D)
AVSE AV Ee
Vp < 00 H Vs Vi < Cy.
Lr(D) X Lp(D)

Applying corollary A.3.3 then yields

S = S5(0) + 552 4 5522 + of,

. . S . (4.4.165)
R = FE(0) + iz + 152 + 4,
where the s5 and the 7 are uniformly bounded constants and of, pj satisfy :
e € Z E
Yo>0 |—i|+ vzc_rl il VQT <Cy,
XPTULAIXTTL x| (X
T2y o2 (4.4.166)
Vp < o0 H o1 XA < Cp.
X llLr(D) X Lp(D)
Setting 0§ = s52 + 5522 + 0§ and 5 = r_‘%z + 7‘%22 + p] yields
O_E =3
)+ Vol + |22 + V5| < €,
(4.4.167)
W< oo || V2oi Loy + V255l ooy < Co
We can then do all the reasonings from (4.4.135) to (4.4.163) for better controls :
Ho®:| |S:| | | RS
‘ 4+ =+ |2 < C (4.4.168)
X X
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Injecting this added regularity into the third equation of (4.4.131) ensures :

(3
’A@ ’AV@ <c
X3 X2
) (4.4.169)
AV2d
Vp < 0o H < Cp.
X llLe(m)

With another application of corollary A.3.3 we can expand ®% in the following manner :

e _ 0 1 E 15 E &
O = ¢ [@Z(g) +Q (E)} + g, (4.4.170)
with ‘ ) ‘
(> v > v ()05
g+ B D8 < o)
X X X 44171
_ (@4.171)
Vp < o0 HQ_QO < Cp(Co).
X5 " i)

Remark 4.4.2. With subsection 2.7, theorem G implies that the Bryant’s quartic of the
limit immersion is holomorphic across concentration points where a simple minimal bubble
is blown. Consequently it seems to suggest that surfaces involved in minimal bubbling,
tend themselves to be inversions of minimal surfaces.

4.4.2 An exploration of consequences : proof of theorem H

First we will put aside the first bubbling case imagined by P. Laurain and T. Riviére
in [LR18a] :

Corollary 4.4.1. The convergence of Willmore immersions cannot lead to a minimal
bubble and an inverted Chen-Gackstatter torus.

Proof. Applying theorem G in light of proposition 2.4.8 concludes the proof. O
We conclude with a slight improvement of the threshold for compactness :

Theorem H. Let ¥ be a closed surface of genus 1 and ®;, : ¥ — R? a sequence of
Willmore immersions such that the induced metric remains in a compact set of the moduli
space and
limsup W (®) < 127
k—o0

Then there exists a diffeomorphism v of ¥ and a conformal transformation Oy of R3U{oc},
such that O o0 ®j 01y converges up to a subsequence toward a smooth Willmore immersion
Py @ ¥ — R3in C™ (D).

Proof. We only have to exclude the case

limsup W (&) = 127. (4.4.172)

k—o00

Consider then @y, satisfying (4.4.172) and converging toward @, away from a finite number
of concentration points. We consider a concentration point and reason on its multiplicity
0o+ 1. If g > 1, using theorem D, the bubble glued on its concentration point is branched,
with the same multiplicity. Using proposition C.1 in [LR18a] ensures that the multiplicity
is odd, and then 6y > 2. Given P. Li and S. Yau’s inequality (see [LY82]) and (4.4.172),
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@, has a Willmore energy of exactly 127 meaning that the branch point is of multiplicity
exactly 3, that the bubbles have no Willmore energy (i.e. they are minimal and more
accurately Enneper). Using formulas from theorem 1.2.6, ®, is the inverse of a minimal
torus of total curvature —8m. The main result of [L92] ensures that this minimal torus is
a Chen-Gackstatter immersion. We are then in the case excluded by corollary 4.4.1.

If the concentration point is not branched, we refer the reader to the concluding remark
of P. Laurain and T. Riviére’s [LR18a] (found just before the appendix) which states that
the energy is then at least 272 + 127, which concludes the proof. O

There are different prospects to improve on this result. First is to extend it to surfaces
of arbitrary geni. For any genus g, the 127 configuration is going to be a Willmore surface
with a branch point of multiplicity 3 and an Enneper bubble. Applying theorem 1.2.6 we
know the limit surface is the inversion of a minimal surface with a single end of multiplicity
3, and thus, thanks to theorem 1.2.3, of critical total curvature :

/ Kdvoly = -4 (1+g).
DN

Since [L92] states that the Chen-Gackstatter surface is the only torus of critical total
curvature, we have the theorem. No such result is known for higher genus, even though
it seems reasonable, and is conjectured, that Chen-Gackstatter surfaces of higher genus
are the only examples, or that at least minimal surfaces of critical total curvature have an
Enneper end (which is actually the first step in [L.92]). Extension to higher genus is thus
a classification of minimal surfaces issue.

The other way to deepen our result is to find the exact threshold for tori. Here we
see two possibilities : either all the involved surfaces are conformally minimal, and in that
case the threshold is immediately pushed back at 167 or higher, or they are not and in
which case some degeneracies are possible. One could then imagine a torus of Willmore
energy 12w + 0 and a branch point of multiplicity 3 with low second residue on which a
simple Enneper bubble is blown. Given the current state of knowledge, it however seems
somewhat unlikely. In both cases one should first try to classify Willmore tori in Bryant’s
fashion. The best available tool would then be F. Hélein’s Weierstrass representation for
Willmore surfaces presented in [Hé198|. However this representation was reached thanks
to DPW methods, and is in not very explicit, limiting the interpretation possibilities.
Understanding this representation, or finding an explicit equivalent, seems key to us, in
finding exactly where the compactness threshold lies for sequences of immersed Willmore
tori.

4.4.3 Adjustments on the conformal Gauss map

To obtain hypotheses 1-7, we have used translations, rotations and dilations to adjust
the immersions. There remains one family of conformal transformations we can use for
adjustments : the inversions. In fact, with inversions, we can act on the mean curvature,
which may allow us to eliminate the problematic terms in the expansion (4.4.165). However
as we we will see this is only possible if the mean curvature at the point does not degenerate
too much. This section thus focuses on the proof of the following result.

Theorem 4.4.3. Let ®° be a sequence of Willmore conformal immersions satisfying hy-
potheses 1-7. If
H7(0) = O(1),

CHE(0) = O(L) (4.4.173)
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then up to infinitesimal conformal adjustments we can assume that ®° satisfies

8.
HE(0) =0,

H:(0) =0.
We will write the proof using the Conformal Gauss map formalism.

Proof. We focus on the conformal Gauss map Y€ at 0 of ®°. Hypotheses 3 and 6 ensure

e n
oy =~ He 2 =€ T
Y£(0) = H*(0) "I"% )+ | (7+2°) | (0)
@21 =
2 7(1)6
0 0 (4.4.174)
0 0 0
=C°H(0)| 0 |[+]|-1|—=Y'0)=| 0],
_% 0 1
1
i 0
¢ _5(0)
YE(0) = HE(0) | 221 | — G(0)e= 22O | ( 85(0), 2°(0)
e 32 (0), %(0)
0 1 1 (4.4.175)
0 —1 —i
=eC*H:(0)| 0 |+] 0| =Y0)=]|o0],
~1 0 0
1
2 0 0
- 1
¥ i
eze(0) = | =L [ = | 0 (4.4.176)
|Pe 21 0
0
fe % Y, Y, 1
Then if we denote f* = [ V¢, - Y% e Jand = (v!,— X v}
en if we denote f ( 7\/<171,}7z>’\/<17y,17y>’6‘1’5> and f ( S Yéng})’\/(Yyl,Yz}yeq’l ,

we have B

f2(0) = £1(0).
Further since f5(0) and f1(0) are two orthonormal families for the Minkowski product,
there exists M¢ € SO(4,1) such that

Ma re _ 17
i ! (4.4.177)
M*® — Id.
Quick computations ensure that
1d —vF —F
we=| @7 1-ZE R (4.4.178)

2
~s‘2 ‘55‘2

~e\T |
- (%) S
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1
7eCEVHE(0 e
with v® = (48_08 HEQ(O() )> Thanks to proposition 2.3.4, M?Y* is the conformal Gauss
map of e = @t o Pc , where ¢ is a conformal diffeomorphism of R? U co corresponding

to M¢ given by :

¢ (@)= Mz = 2
Y5 — Y4
where
N f Yo
y = ]\4’E |£B‘271 = y4
|22 +1
1 Y5
Hence we have an explicit formula for |
~ ~ 2
B Pe — |Pe| pF
U (z) = = — : (4.4.179)
1-2 <as, q>e> 1| B2 |2
which implies that
~ ~ 1 1
2(0) = @5(0) = 3 i]. (4.4.180)
0

Further since eg. (0) = Mez.(0) = ¢!(0), ¥*(0) = °(0). Similarly Y;.(0) = MY*(0) =
1

Y1(0) and (Y3.), (0) = M°YZ(0) = Y,}(0) implies

0
(Hg.), (0) =0, (4.4.181)

We introduce
We — CECI;E (i) _ CEME' (1(1)5:‘) _ ME.(I)E,
€ Ce

with M¢ = Dg- MeD 1, where
le3

Id 0 0
_ A 1 A 1
S GO B
0 5—2x 5Tax

is the matrix of the dilation of factor A in SO(4,1) (see (2.2.5)). V¢ is a sequence of
immersions satisfying hypotheses 4, 3, 5, 6, 7 and

Hye(0) =0,
el )_ . (4.4.182)

(Hy:), (0)

If M*¢ converges in SO(4, 1) toward a matrix which is not the representation of the inversion
at the origin, W€ can be proven to satisfy hypothesis 1 and 2. To that end we can compute :

1d —v® —°
me=| o)t 1B P (4.4.183)
£|2 €2
e B kg



4.4. CONDITIONS ON THE LIMIT SURFACE : 167

with

1 €
Ve = <4_E§}I; ((00))> . (4.4.184)

Since v* = O(1), then up to extracting a subsequence v* — v € R3. Since
PE |q>5|2 e
1—2(ve, &%) + || o]

€ _

then ¥® converges toward
o0 — [0y
1—2 (v, %) + |2 |v|*

U0 =

2

% is a conformal transform bounded away from %z # 0
which is sent to co. Up to restricting the domain of study we can then assume that W*
satisfies 1 and 2.

On the other hand, if v* — oo, the conformal transform given by M¢ degenerates and

ve — 0.

The application x —

These considerations conclude the proof of the theorem, given expression (4.4.184) of v°.
O

Remark 4.4.3. Requiring (4.4.173) to properly adjust the mean curvature stems from the
lack of compactness and commutativity of the invariance group in our problem. Indeed that
may allow Dge M®D Cl to degenerate even though Me converges toward the identity. In
other words, while it is possible to adjust the mean curvature of the blown-up immersions,
carrying this back to the immersion it is not automatic due to the non-compact rescaling
between the two.

Following is an analysis of the gluing of an Enneper bubble when the mean curvature
has been adjusted that way. It is meant as an illustration of how the lackluster properties of
the conformal group (non-commutativity, non-compactness) allow for the bubbling example
presented in subsection 3.3.

4.4.4 Specific case of an Enneper bubble

In this section we show how under a small control on the concentration point, one finds
higher regularity for the surface receiving the minimal bubbling. While the computations
necessary for the proof may be obscure and difficult to follow, drawing a parallel with the
CMC case may clarify the phenomena. In [Laul2b| P. Laurain treated the case of CMC
bubbling for spheres, by using the invariance group to erase all the solutions of the linearized
equation. This is possible because of the properties of the CMC invariance group (the
isometries). In the Willmore case, and more specifically in the Enneper simple bubbling
configuration, in order to eliminate the solutions of the linearized equation, one must draw
upon all of the conformal group, which is non-compact and non-commutative, meaning that
we need additional pointwise controls to do these adjustments both at the microscopic (on
the bubble) and macroscopic (on the surface) scale. If we enjoy these pointwise controls we
experience a regularity jump corresponding to the main result of [Laul2b] (we do not, even
in this case, eliminate Enneper bubbling due to the much greater flexibility of Willmore
surfaces compared to CMC surfaces). The bubbling example given in section 3.3 lies just
before this regularity jump, and makes clear that the lackluster topological properties of
Conf(R?) do engender some non-compactness for Willmore immersions.
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Theorem 4.4.4. Let ¥ be a compact Riemann surface of genus less than 1, and ®* :
Y — R3 a sequence of Willmore immersions of uniformly bounded total curvature and
such that the conformal class of the induced metric is in a compact of the moduli space.
We further assume that ®* has only a single concentration point p on which a simple
Enneper bubble is blown, and that ®* converges smoothly away from p toward a branched
immersion ®° : ¥ — R3. Then either

VH"(p)

£ . (4.4.185)
IVTF| oo (s)

or ®0 is the inversion of a branched minimal immersion, with second residue o < —2.

Proof. As has been readily explained, looking at ®* in good conformal charts, and up to
minor adjustments allows us to consider ®° : D — R3 satisfying hypotheses 1-7. Further,
if (4.4.185) does not stand, we can apply theorem 4.4.3 and find a converging sequence
of conformal transformations of R? U {oo}, ©%, such that, while ¥;, := ©% o ®* may have
ends, it is a uniformly bounded smooth immersion around the concentration point p, which
satisfies hypothesis 8. Additionally, U* converges smoothly toward a branched Willmore
immersion WY with a single branch point at p and possibly a finite number of simple planar
ends. When considering the immersion in local charts we will still denote it ®¢, to avoid
multiplying notations. It then satisfies 1- 8. We follow from the proof of theorem 4.4.1,
start with its conclusions and use the same formalism. . )
—z
We are thus considering case where ®! = F = /; 2'(1 + z2) , t.e. in the
2z
language of lemma 4.3.1 : Q =1, P = z. Then m = 2, and (4.3.126), (4.3.127), (4.4.170),
(4.4.171) (4.4.145) and (4.4.147) yield the following :

— The conformal factor satisfies
A =In(e*+7r?) + 15, (4.4.186)

with (¢ such that
151l ooy < C(Cl, Ry).

Consequently
2
X A€ 2
—= < < C(Co, R . 4.4.187
C(Co, R1) <et <C(Co, Ra)x ( )
— The immersion is expanded as
o= B (2)+@° (3)] + w5, (4.4.188)
€ €
with )
£ v £ v &
il 198l 7298 < e,
X X X (4.4.189)
Vp < 0o HVSL,OEHLP(D) < Cp(Co),
and
1 1 0
Q =A|i|+B°|—-i|+C°|0], (4.4.190)

0 1
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where
A® = a5z + a52?

B® = b5z + b522
C¢ = CEZQ
which also satisfy

5 (2) et (2) wetace (D) wetar (2) B () et (C*(2))”

&

cc=0:
A direct consequence of (4.4.192) is

B =0,

AEZE
cz+ 5

(4.4.191)

=0. (44.192)

(4.4.193)

The immediate aim here is to use the only initial condition that we have yet to exploit

(s.e. (1] e*)‘g)z (0) =0) and find ¢¢ = 0. We compute
<|Qa|2 e—2>\5) — Qiﬁe—%\s + QE@e_QAS _ 2)\2 |Qs|2 6_2>\6-

Since Q° = 2(®%,,7i%),

QF = 2(@%,., %) — 2 (0, 0% 0%
=2(D%,,,1°) — 2A30°.
Similarly
QF = 2(0%,, 717) — 2(0%,, H®3)
= <q)§zz7 I > - 2)‘2H862/\E‘
Hence

(’Q&‘Q —2)\5) <(I)izzv >§e—2>\5 <‘I’E > 956_2/\6 4)\5 ’Qa’2 —2)°

ZZZ’

From (4.4.188) we find

2 2\2 S
B2 = (e J;r) +2§R<<Q5,82Ez (i)>)+ws

:@2272)2+23%(4A€( )+ez05(€))+w€

2 .2 £\2
€
:(—';)—1-2?]% <5 2% + €222 + €22 (62) )—i-wg,

where ¢ satisfies
A B el
X° x* X

V31/J€

E

< C(Co),

Vp < o0

< Cp(Co).
Lr(D)

— 2AZHE.
(4.4.194)

(4.4.195)

(4.4.196)
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. 2 2)¢
Since |®5|° = “5—, we deduce :

2(0)e 0 =3¢ + 0 (4.

By hypothesis 7, e*” (0) = €2, which yields

€

X5(0) = % +0(1). (4.4.197)

Then, thanks once more to our hypothesis 7

e 16¢° 1
€102 ,—2A — _
(4)\Z 072 e ) (0)=—=+0 (82) . (4.4.198)
Thanks to (4.4.168),
1
Ha(O) == O <€>
This implies
1
(2N H®)(0) =0 <5> . (4.4.199)
Further, thanks to (4.4.169), AV®<(0) = O (¢?), and hence
(2@, ) 07 ) (0) = 0 (i) . (4.4.200)

To conclude

ct 1
Hence
=0(e), (4.4.201)

which allows us to take ¢¢ = 0 (see remark A.3.3). Henceforth we will use the following
expansion for ®° :

0% =B, (2) + ¢, (4.4.202)
£
where ¢ satisfies (4.4.189). The expansion (4.4.202) ensures
2 4 .22
PG +27“ ) e (4.4.203)
with
el |V | VREE|
5 T 1 T 5 =G,
X X X
ooy (4.4.204)
Vp < oo H 5 < Cp.
X" lizr()
Similarly
A = w (3) e (4.4.205)
€
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z2+Zz
where w (2) = ﬁ i(zZ — z) | is the Gauss map of F, and v° satisfies :
r? —1
€3
M + x| V| + X2 ‘Vanl <C,
X (4.4.206)
Vp < 00 HX3V3V€HLP(D) < Cp.
Expansion of H® :
Starting from (4.4.165) we expand
S = 55(0) + sz + o35, (4.4.207)
R = R;(0) + 152+ 5, -
with
0§ = 552" + o,
ps =152" + PPy,
which consequently satisfy
e € Z Z
Y P | Y B A ]
X X X X (4.4.208)
2 2 2
Wp<oo [[V203| ) + || V30 oy S O
Given (4.4.207),
5. =1+ 05,
REZ = 7’% + pg:zﬂ
and thus, thanks to (4.4.208),
52:(0) =51+ 0(e),
RZ,(0)=r{+0O(e).
We can then, up to modifying o and p5 without impacting (4.4.208) assume :
57 = 52(0) + 52.(0)z + 3, (4.4.209)
R, = R;(0) + EZ,(0)z + p3.
From (1.2.53), we find
RS, = 2((HS +4VE) 4 2X5 (HE +iVE)) & + (H® +iV®) OFie ey
— i8S, 4+ iSEH®E 4 iS50 e PN BE. o
Further, since
i =2 (Hjﬁs + HEQ%_Q’\ECDE) , (4.4.211)
we can compute
- - Q
15 _ LE (b€> LE 2 8@5 -4
Szz < 2y £z + < ) Az z + 9 n > (44212)

= —iHOF + 2X5S5 + Q°VE.
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Similarly,

1 /- HE OE —2)\¢
Vi=g{Bm) - S
) (4.4.213)
HE Qse—2>\

Injecting (4.4.212) and (4.4.213) into (4.4.210) yields

R, = (4H§ — i0°e 2N S 4 4XE [HE + in]) DS 4550 2N DE + —2NSEAT. (4.4.214)
The expansion (4.4.203) ensures
Aee? =27 (2 +r?) + TE,

which yields

XE(0) = O(1). (4.4.215)
With hypothesis 5, hypothesis 7, (4.4.168) and (4.4.215), (4.4.210) implies :
_ sz (1) asz(o) [ 1
RZ.(0) = <2€2H§(0) S > i ——= —i | +0(e). (4.4.216)
€ €
0 0
Similarly,
S2.(0) = 2ie (HE(0) + iV=(0)) + O(e). (4.4.217)

Denoting v® = ¢ (H®(0) +iV¢(0)), the following expansions stand :

SE = S5(0) + 2iv°z + &5,

1 0 . 1 . 1
= S<(0 S2(0
B =co [ i|+i5:0)|0] + (25235(0) + Z()> PN B | AP
0 1 ¢ 0 ¢ 0
(4.4.218)
We can then exploit the relation S5 =1 <ﬁ5, R“Z>, using (4.4.205) and (4.4.218) :
. 1 0
SE(0) + 200z = g <w (7) et i | +45500) [0
(3
0 1
> iss 0 (1) _iszo) :
+ (25 H§(0)+2) i - —2 —i||z)+0(X°)
c 0 c 0

. qe
- (62 <eu€ - <252H§ (0) + ZSZ(O)) z)
e +r €

i 215;(0)) + 0.

rT—e

—2zi55(0) + 5

This implies

e255(0) + 2ie?20° + 2255(0) + 2i2°2v° = i (—£%S5(0) + 2620z + (4e®HE(0) + i255(0)) 22
—2zi5%(0)) + O (x*)

which, in turn, ensures :

(4e*HE(0) + 2iS5(0)) 2° — 22°20° = O (x*) . (4.4.219)
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Applying lemma A.3.4 to (4.4.219) yields

v® = O(e),
, ‘ (4.4.220)
2e°HZ(0) +iS5(0) = O(e).
A consequence of (4.4.220) is that
HE(0) = O(1). (4.4.221)
We can then modify (4.4.218) into
SE = —2ie’H(0) + o3,
LY .- AT (4.4.222)
R, =2eHZ(0) | 0| —2e°HZ(0)z | —i | + p5,
1 0
with 0§ and p§ satisfying (4.4.208). We can then compute with (4.4.202) and (4.4.222) :
1 1 0
RS x @+ S50% = ie”HE(0) [2e2® | i | +2e22 [ —i | —2[?2—22°] | O] | +&°
0 0 1
= 2ie?HE(0)2 (2 + r?) w (i) + K%,
£
where x° satisfies
K® VK®
S — | <C,
XA T
) . (4.4.223)
VK
Vp < oo ‘ 2 < .
Lp(D)
The third equation of (4.4.131) then yields
ADF = 262 (HE(0)z + HE(0)2) (€2 + %) of (f) + 3 (k) (4.4.224)
€

We can conclude using A®® = 2¢?*" H7i° and expansions (4.4.203) and (4.4.205), finally
reaching

_ e2H:(0)z + e2HE(0)z
- e2 + 12

H® + (4.4.225)

where (¢ satisfies
¢°1 + IXVEE < G, (4.4.226)
Vp < oo HXQVQCEHLP(D) < Gp. -

Let us notice that the expression obtained for H corresponds to a solution of the linearized
Willmore equation for an Enneper bubble. Indeed the Willmore equation AH + ’A‘QH =0

linearizes as
2
2¢e
e“+r

Rescaling at scale ¢, this is exactly the Jacobi equation on the sphere, and the first term
on the expansion of H(e.) is a solution. In the following we write all the possible solutions
of the equation.

Solutions of the linearized equation :
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Proposition 4.4.5. Let h® such that

262 e
5 e __ degPc—3
hes + 7(52 n r2)2h =0 (X ) . (4.4.227)

with (52 + 7“2)2 h® € Cgegpe42[2,Z]. This means

degPs+2 _
egl” + h;’quzq

he= >

-

pramo (E2+T%)
Then
degP®—2
he = egz VeEze (q - 1)T2 + (q + 1)82
= q 62 + 7'2
. ( 2 o2 (4.4.228)
e,qld—1r"+(g+1)e degPs—1
" ; W €2 4 r2 O
Proof. We can compute
degPc+2
Be. — egz+ Re (pq — 2p — 2q + 4) 2PT129%1 + 262(pg — p — g — 1)2PZ9 + etpgzP~ 12971
pram0 P (€2 +r2)*
This yields :
2¢2
LE=h+———h°
deg P44
B egz+ So1g-1(P = 3)(a = 3) + 2%, (pg — P — @) + P+ Dla+ 1)
p+q=0 (2 +r2)°* '
Consequently
degP5+4

> (Brg1 (0 = 3)(a = 3) + 28Ry (pg — p = @) + By g (p+ 1)(a + 1)) 2757 = O (3279
p+q=0

Applying lemma A.3.4 then yields for all p+ ¢ < degP® + 4 :

he 1 q1(p—3)(a—3) +2e%h5,(pg—p— q@) +€*h5 1 g1 (p+ 1) (g + 1) = O(e8P H57Pa),

(4.4.229)
A quick induction ensures that for all p, ¢ > 3,
h’Zq _ O<€degP5+3—p—q>.
Given ¢ > 2, considering (4.4.229) with p = 2, ¢, yields :
23(q = 25, = (g — Bhag1 +O (47 +371), (4.4.230)

while with p =1, ¢ — 1, it ensures :

264qh§7q = 2e%hyq-1 +2(q — 4)h§ 4o + O (edegPEJrs_q) : (4.4.231)
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Combining (4.4.230) and (4.4.231) yields :

2e2(q — 2 .
hiq—1 _ (CJ_ . ) S,q L0 (sdegP +3—q) ’
) 1 (4.4.232)
e = € (q - 1) € +0 (EdegPE-l-S—q) )
0,9— q—3 2,9
This gives
h§ 272
$ 22 RS 122 RS 7 = (1"1_73 ((g—3)2%2% + 2e%(q — 2)22 + €*(¢ — 1))
L0 ( deng+3>
h§ 272 2, 9 2 2
_(1"1_73(5 +7r ) ((q—3)r + (g — 1) )
+0 (XdegPerS) )
(4.4.233)

Working similarly with the h 5 yields :

hga? 2% + ho_y 1297 2+ hy_p0277% = (zfg ((q—3)2*2% + 2e%(q — 2)22 + e (¢ — 1))

+0 (XdegPerS) ’

he 202
- ‘;’j (52 + r2) ((q = 3)7“2 + (g — 1)52)

L0 (XdegP5+3> '

(4.4.234)

Hence we finally can write :

degP* . degP® _
Be = Zg: 202" (=3 4 (- D | Xg: Mot T3l V2, (r2e=r 1)

qg—3 €2 412 — €2 412 ’

q=2 q=2
which we reframe as :

degP®—2 degP®—2 2 2

=1’ +(g+1)e —Dr*+(g+1)e degP*—1
€ _ €3q € q cg

"o qZ:O K= g2 4 r2 + Z Wqz g2 4 r2 +O(X )
This is the desired result which concludes the proof. O

This is in accordance with the expansion (4.4.225) obtained for H¢. Without adding
any hypothesis on the mean curvature at 0, there is no hope for any better controls.
However, with the assumption (4.4.173), there will be a jump in regularity.

Under good initial conditions :
Let ®° : D — R? be a sequence of Willmore conformal immersions satisfying hypotheses
1 - 8. Then (4.4.223), (4.4.224), (4.4.225) and (4.4.226) imply :

SE = GE,
R =75, (4.4.235)
HE®S = ¢°,
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where 6° satisfies the same estimates as 65 and pf§, detailed in (4.4.208). Proceeding as in
(4.4.165) -(4.4.209) allows us to decompose :

§2 = P+ 0

= (4.4.236)
R, = Py + 5,
where P§, P5 € Cy [X], and
LRI
XdegP1+1 XdegP1 XdegP1_1 =)
|75 VA5l V2]
XdegP25+1 XdegPQ8 + Xdegp2€,1 < C) (44237)
Y <0 H3 +H3 <G,
P2 || o (P2 P

Here we have written (4.4.237) depending on degP? as it will be more convenient for later
applications. For the first pass in this loop degP; = 2. The third equation of (4.4.131)
yields

ADE =S <Pfe2E (g) + PS x 2 (z)) + 5,

and )
5] Vsl Vsl _
XdegPQSJrS XdegP2E+2 XdegPQEJrl S
Vs (4.4.238)
Vp < 00 S < Cp.
XdegP2 Lr(D)
Then since H® = <‘AV¢;T;>, we find
H =h+0 (Xdegpf —1) : (4.4.239)
where
(P PE. () - (F.2E. (2))
he = 2i - = (4.4.240)

(€2 +12)?
and h® is a solution of (4.4.227), with degP® = degP;. The conclusion of proposition 4.4.5
then stands. According to 8, h*(0) = h5(0) =0

Consequently, as long as degPs < 3, h* =0 (X

degP3=1) | which implies thanks to

H =0 (Xdegpff—l) . (4.4.241)
Injecting (4.4.236) and (4.4.241) into (4.4.131) ensure

ASE = O (XdegP5+3> 7
(4.4.242)
ARE =0 <XdegP§+3) .

We can thus go through the process from (4.4.235) to (4.4.227) once more until we reach
degP5 = 4. The final estimate is then :

HszO(x2),

VE = 00). (4.4.243)
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Local consequences on the limit surface :

Letting ¢ — 0 away from 0 in (4.4.243) yields the following estimates on the mean curvature
HO of @0 :

H® = O(r?)
. (4.4.244)
VH” =0O(r)
Going back to (4.3.81) and (4.3.82), (4.4.244) is tantamount to
a< -2 (4.4.245)
Injecting (4.4.245) into (2.4.38) then ensures that
Q’=0 (r?). (4.4.246)

Then (4.4.246) implies that p is in fact a zero of order 2. The Bryant’s functional of ®°
and WY is then a holomorphic function on a compact Riemann surface, with at least a zero.
Hence

Q' =0.
This concludes the proof. O

Remark 4.4.4. In the proof of theorem 4.4.4, nothing prevents U° from being minimal,
in which case © is simply the limit of the ©*, and is not centered on ®%(p).






Appendix







Appendix

A.1 A brief reminder on Lorentz spaces

The following will recall basic notions concerning Lorentz spaces and is mostly extracted
from chapter 3 of [Hél02]. It will contain no proof.

Definition A.1.1. Let O be an open subset of R™, |O| be the lebesgue measure of O,
and f : O — R be a measurable function. The non-increasing rearrangement of |f| on
[0,]0]) is the unique function, denoted by f*, from [0,]|O]|) to R which is non-increasing
and such that

measure{z € O||f(z)| > s} = measure{t € (0,|0|)| f*(¢t) > s}.

Definition A.1.2. Let O be an open subset in R™, 1 < p < 00,1 < g < oco. The Lorentz
space LP9(O,R) is the set of measurable functions f : O — R such that

= [ (37 0)" 2] <0, g <

or
1
| flp,oco = suptr f*(t) < oo, if ¢ = ooc.
t>0

While the quantities | f] p,q &r€ not norms (they do not satisfy the triangular inequality,
if we define

0= [ s

the quantities

If

1
1 o oN\adt|a |
|p,q=[/0 (1 0) J ,if g < oo,

1
1f1lp,00 = sUpt? f**(¢),
t>0

are space norms.

Theorem A.1.1. The Lorentz space LP9(O,R) is a Banach space.
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While the definition itself is complex and rather obscure, the Lorentz spaces can be
understood as generalizations of the Lebesgue spaces. In fact one has for any 1 < g <p <
¢ < oo and any p > 1

Pl [P PP =[P [P [P,

Actually one can interpolate the Lebesgue space in between Lorentz spaces thanks to
Marcinkiewitz interpolation theorem (see theorem 3.3.3 from [Hél02]).

Theorem A.1.2. Let O be an open subset of R™ and U an open subset of R". Let rg,
r1, Po, p1 be real numbers such that

1 <rg<r <oo,

and
1 < po # p1 < o0
Let T be a linear operator whose domain D contains

U z70),

ro<r<ri
and which maps continuously L™(O) to LP°(U), and L™ (O) to LP*(U) with the norms
Vi e L), ITflrow) < kollfllzroo)s
Ve L™(0), Tfllre@) < kollfllzro)-
Then, for each 1 < ¢ < oo, and for every pair (p,r) such that 30 € (0, 1),

1 1-6 0 1 1-6 0
- = + — and — = + —,
b DPo b1 r To 1

f maps continuously L™?(O) to LP4(U), and moreover,

Vf e L"(0), ITfllaw) < Bollfllzrao) s
1
By = (T)qmi( BN >
Ale) = \r=ro =y
N e T
T\ p)\n I VAV

In the present work we will only use L*»*®, L? = L?2 and L?>*. In accordance with
theorem A.1.2, L*! is a slightly more restrictive space than L?, whose elements are a
bit smoother, while L2 is a bigger space which allows for more singular behaviors. For
instance :

where

and

Example A.1.1. In dimension 2, 2 € L2*°(D), but ¢ L?(D).

Additionnally, theorems 3.3.4 and 3.3.5 of [Hél02] offer a perspective on L2 and L?!
as some kind of closure of the L? space regarding Calderén-Zygmund theorems or Sobolev
injections. Indeed while WP — C% for all p > 2, W2 only injects into L4 for ¢ < oo.
Closing this gap is the Lorentz space L',
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Theorem A.1.3. Let O be an open compact subset of R? with smooth boundary. Let
f € WH2(0) and suppose that V£ € L>1(0). Then f is continuous and uniformly bounded
in O.

Besides while the Calderén-Zygmund theory works for LP with p > 1, it classically fails
for L'. Closing this boundary is the L% space.

Theorem A.1.4. Let O be an open subset of R2, with smooth boundary. Let f € L'(O),
and ¢ be a solution of

A¢ = fin O
¢ =0 on 00.

Then V¢ € L2°°(0) and
Vol L2000y < CliflILr(0) -

To sum up, the Lorentz spaces are a refinement of Lebesgue spaces, that can be seen
as closure for the Sobolev embeddings, or the Calderén-Zygmund inequalities.
A.2 Formulas for a conformal immersion

In this section we show several formulas useful for the core of the thesis. Most are well
known, but their proof is included for self-containedness, and to display the interplays that
we will make use of throughout our reasonings.

A.2.1 Conformal immersions of a disk in R?

Let ® : D — R3 be a conformal immersion, that is such that
‘(I):v’2 - "I’y’2 = <(I)a:v(I)y> = 0.

Its Gauss map is defined as 77 = ;“'Xq)” (with x the usual vectorial product in R?) and

o X Oy
its conformal factor as A = In|®,| = In|®,|. Its second fundamental form is then

A= (V2®,7) =: <;’; f).

One can check

S o _ o (€D + [Py
Vit =—e “"AVD = —e¢ <f<1>g;+g‘1>y , (A.2.1)
and deduce immediately
Lo o[~ fPs— gDy,
V=it =—e <€‘I)x+f<1>y>' (A.2.2)

Defining the mean curvature as

_e+g

92\

and the tracefree second fundamental form as

e—g
e (7 L),
fo5e
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one finds i
Vii=—-HV® - AV®, (A2.3)
Vi = —HVi® + AVie. o
By definition of 7
nx O, =y,
nx ®, =0,
which implies
Ax VP =—-V'd,
n (A.2.4)
nx V-® =Vo.
Combining (A.2.3) and (A.2.4) yields
i x Vit = HV'® + AV'®,
i . (A.2.5)
nixV-n=—-HV®+ AVO.
As a result, HV® and AV® can be deduced solely from Vi :
— 1 = —
VD — XV n+Vn’
- ¥ o (A.2.6)
fvg o X Vi - Vi
2
It is well known that since ® is conformal
A® = H |VP|?, (A.2.7)
where H = H7, and
AN = Ke?A (A.2.8)

where K = e * det A = e~ (eg — f2) is the Gauss curvature. Equation (A.2.8) is known
as the Liouville equation.
With (A.2.3), one can compute

o 2
\Vit? = ‘HV@ + AVCI)’

R (A.2.9)
= |HV|? + ’AV@ ,
since A is tracefree. From (A.2.9) we deduce
Al < |vi, (A.2.10)
and
|[HV®| < |Vii]. (A.2.11)

A.2.2 Conformal immersions of a disk in R® : complex notations

In this context, it is most convenient to use complex notations. Let

1 o 11 i1 ol
8 = 5 (0, —i8,) = <_Z> V=3 <_Z> AvaS (A.2.12)
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Then, ® conformal translates as

(®.,®.) =0,
0. = o2\ (A.2.13)
z - 2 O
The Gauss map can be written in coplex notations in the following way
D, x O3
A=t 2 (A.2.14)
i|®|
which gives the complex counterpart to (A.2.4) :
nxd, =id
¢ - (A.2.15)

nxX®;=—iD,.
If we define the tracefree curvature as Q = 52 —if = 2(®,,, 1), (A.2.3) becomes
iy =—H®, — Qe &, (A.2.16)
while (A.2.9) turns into
| HZ 4 [ e

7% = 5 : (A.2.17)

Similarly, (A.2.7) translates to

7. (A.2.18)

<(I)zz> (I)’> = <(I)z> (I)2>)z - <<I>Za (I)zi>
=\
Subsequently,
Q
D, =209, + 57?. (A.2.19)
We can then compute
22\ 02 e—2)
ﬁzg = *HZ(I)Z — 26 m— (QEG_ZA — 2)\296_2)\) (Dg — 2)\2 (QG_QA) (I)g — ||2€ﬁ
262X 1 Q)2 e—2)
= _HZ(I)Z - 92672)\(1)5 - c +2| ’ ¢ 7.
However, 7> € R3 since i € R3. Then necessarily Qze 2 = H; i.e.
H, = Qe 2 (A.2.20)
Equation (A.2.20) is the Gauss-Codazzi equation in complex notations.
Using (A.2.20) and (A.2.17), we find
Tz + |72 7 + 2R (H.®;) = 0. (A.2.21)

While the complex notations are most convenient for computations, the resulting equations
are not always telling. We will then translate (A.2.21) back to its classic real form :

1
oz + | 7+ 20 (H.95) = <Aﬁ + VAP 7+ 2 (He®y + qu>y)) .
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The Gauss map 7 then satisfies
Afi + |Vil* i + 2VHV® = 0. (A.2.22)
This can be slightly changed to better suit our needs
AR+ |VA* 7+ 2VHV® = AR + |Vii|* 7 + 2div (HV®) — 2HAD
= Afi+ (VAP - 2|[HV®[?) 7 + 2div (HV D)

A 2
— A7+ (‘AV(I)‘ - |qu>|2> 7 + 2div (HV®) .

The second equality is obtained with (A.2.7), and the third with (A.2.9). Now we compute

Vit x VI = —fiy X fly + iy X iy = —2it, X i,
= —2¢7 " (e®y + fPy) X (fPs + gPy)
= —2e” (egn 2 )

2
= —2¢72 <<e—|2—g> - <e;g> —f2> i
2
— _9H2P M 49 ((6_29> +f2> 25

o 2
_|HVOL 7 + ‘AV(I)‘ i

We then find
Al + Vi x Vit 4 2div (HV®) = 0. (A.2.23)

A.2.3 Formulas in S°

Let ® : D — R? be a smooth conformal immersion and X = 71 o® : D — S3.
Let A := %log (2 \lez) be its conformal factor, N such that (X, e_AXx,e_AXy,N) is

XZZ
‘Xz|2 )

a direct orthonormal basis of R* its Gauss map, h = < N > its mean curvature and

w = 2(X,,, 1) its tracefree curvature. Then

1 29
- = <‘¢’2 3 1> , (A.2.24)
which yields
_ 2 ) 4D, P)5 [
X, = YWe)=——— | 7)) - ——2—1L= . 2.
R 1+|‘1>2<0> (1+|®2)% \-1 (4.2.25)
Since 7 is conformal, (dr~!(®.),dr ! (7)) = (®.,7) = 0. Then N = % and
thus 2 (7, )
= s , o
7o (7)- 288 (o), a2
Using the corresponding definitions we successively deduce
4
2A N x9N
et =2(X,, Xz) = T ](I)P)ze , (A.2.27)
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XzZ "> ‘@’2 + 1 -
h= NY="T gy (67, A.2.28
(= i) (4.229)
- 2Q
—9 <X ,N> S L A22
Then one can compute
2?{))\2 - 2(t, P o
X N\ _ (|9 +1 . P el
h(1)+<0)_< g A+ @9 ) G | T e
1 0
2(1, @) S 2d,®)
iy TR ~ e ?
_ - - - 2,
= | HEL 2+ (7, ®>W + 1-<:\L<I>|% (A.2.30)
241 | o
Hl ‘2+ +< ,<I)> 0
P il
2_
=H @él + | (7, ®)
oo |\ ()

Which shows that
Y —h <)1(> 4 (g) . (A.2.31)

are

N, =—hX, —we 22 X, (A.2.32)
Q2h | p2A
w =
Xor=20:X. + 5N, (A.2.34)

and Gauss-Codazzi can be written
wse N = h,. (A.2.35)

A.2.4 Application : mean curvature of a sphere in S?

Let o be a sphere in S3. Up to an isometry of S* o can be assumed to be a sphere

centered on the south pole S of radius r < g Then 7 o o is a sphere of R? centered
on the origin of radius R < 1. It can be conformally parametrized over R? U co by
2x
O(x,y) = ﬁ 2y , of constant mean curvature H = %. Then o is confor-
z2+y2 -1
mally parametrized by
2z
2R
_ 1 | 2y
1+ R? 2 +yt -1

R2 -1
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One can easily compute using basic trigonometry the tangent of r and find

2R

tan (7’) = ﬁ

2R

Figure A.1 — 2D illustration

Computing h at any point (x,y) using (A.2.28) yields with H = %, n= —%
R?+1 1
h = _R=—
2R tan(r)

for any (x,y).
Since neither h nor r change under the action of isometries, any sphere o of S® of radius
r has constant mean curvature

h = cotan(r). (A.2.36)

A.2.5 Formulas in H3

Let ® : D — R3 be a smooth conformal immersion and Z = 7o ® : D — H? (see
section 2.2.1 for the definition of the projection 7). Then

1 29
g <|<1>2+ 1) (4237
which yields
B 2 D, 4P, ) [
Since 7 is conformal, (d7 1 (1), Z.) = (®,,7) = 0. Then 77 = % and thus
Lz (7 2(i, @) (&
ne = (0) + e \1) (A.2.39)
Using the corresponding definition we successively deduce
207 _ 4 2\
e = - \<I>|2)26 , (A.2.40)
1—|®[?
HZ = 2] H — (i, ®), (A.2.41)

2
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2Q
z _
T (A.2.42)
Then, one can compute
~ 2% = 27,P)
AWGANET A K =
HZ[-1]+1]0 :( 5 H—(ﬁ,@)) -1 |+ 0
=7 |®[2+1 2(7,P)
a) \ = =
_ 2n,®) S 2(d,®)
H® . 1—\c1>|2(I’ n+ 1—7@\2(1)
=| - hime |+ 0 (A.2.43)
B2+1 = B|2+1 2(i1, )
HH% — (71, ®) |1,||£_|2 1—[®]?
® i
2_ —
= Lé L S (11, D)
|®[#+1 !
ot |\ (@, @)
Which shows that
Zn it
Y=H?[-1]+|0]. (A.2.44)
Zy iZ

A.2.6 Computations for the conformal Gauss map

Let ® : D — R3 be a smooth conformal immersion of representation X in S® and of
conformal Gauss map Y.
Let us first use the expression (2.3.15). Then

? D, i,
V.=H | B2+ Hv ([ (@, | + [ (., ®)
2 —
941 (®,,®.) (., ®)
and using (A.2.16)
® i
Y, = H, ‘q)';* — Qe | (@5, 0) | (A.2.45)
\¢>| +1 <(p27 (p>
2
Using (A.2.20) and (A.2.19) we compute
o l
Yoz = Hy; | BE22 | - L (7, ®)
LY (7, )
2 (A.2.46)
W(® c Q2 e~ 22
_W(®) [ jepa | 97 v
4 @41 2
2
where )
) 0 —2X
Wi) — H.. ||2€H cR. (A.2.47)
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On the other hand,

L D, D
?2-1 -
}/zz = sz | |2 + Hz <¢)27 (I)> <Q€ 2)\> <(I)Z7 (I)>
|22 +1 (D, ) “\(®z, D)
2 (A.2.48)
i 0
1
—-Q g (1i, @) s 1
(71, @) 1
using (A.2.18). Then, if we define Bryant’s functional as Q = (Y..,Y,,) we find
H
Q= H.Q—H, (Qe™?) P +0-
2
= <Qg€_2>\> Q- Q3 (Qe_%) + Q usmg (A.2.20)
? e (A.2.49)
= (20— Q0.Q:) e + Q-
Q H? Q; H?
_ O2,-2A ( 42 H7 2,2 (22 2
=% <Q>§+Q4 2% <Q>Z—|—Q4.
We will now compute using expression (A.2.44). Then
X X, N,
vo=n () +n (5) + (%)
and using (A.2.32)
Y, =h, <X> — we™2A (X'f) : (A.2.50)
1 0
Using (A.2.35) and (A.2.34), we compute
X\ |wl* _on (N
YZZ = hzé - 7672
1 2 0
) (A.2.51)
Wss(X) (X |w|? e~ 20
= B e 7
4 1 2
where
3 (X 2 _—2A
WerlX) _y  p ™™y g (A.2.52)
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Notice that using (A.2.27), (A.2.28) and (A.2.29)

X D2 +1 B2 +1 Q[2e=22
Wes >:<‘ ’; H+<ﬁ,<b>> +<‘ ’; H+<ﬁ,<1>>>’ i

4 2
d12+1 DIZ+1__|Q2e 22
_<\  + LB+, (0P

. 2 2
9) 2 _—2A\
+ (A, q)>‘|§

D2+ 1 D2 +1 |02
:<| "+ HZ—Qe”‘@Z,@) T W R
2 e 2 2 (A.2.53)

z

H,+ (®,,®)H + <ﬁz,q>>>

O 2 —2\
+ (A, q)>||§

e +1wW(D)
- 2 4

QO 2 —2\
+ (A, q)>||2e

[P+ 1W(D)
) 4

using (A.2.16) to obtain the third equality and (A.2.35) to conclude. On the other hand

e () () e ()G ) 2 (D)

using (A.2.18). Then if we define Q = (Y., Y..) we find, once more by applying (A.2.35),

|Q|26—2)\

+ (O, DV H, — Qze 2 (D5, D) — 5

(i1, @)

h? +1
Q="hyw—h, (we_zA)z e2h 4 w2T+
h? +1
= (wze_QA)z W — Wz (we_zA)Z + w? Z_
W21 (A.2.55)
= (Wasw — waws) e A + WQT
= we A (&) + a)QL2 1 = w?e 20 <%> + w? ik 1.
z 4 z 4

A.2.7 Formulas in S*!

This section is devoted to computations for spacelike immersions in S*! without relying
on their being the conformal Gauss map of a given immersion.
Let Y : D — S*%! be a smooth-spacelike conformal immersion, that is Y satisfies

<§/;7 Yz> =0

and
2L

(Y,,Ys) = 67 > 0.
Let v, v* € C*! such that e = (Y,Y,, Yz, v, %) is an orthogonal frame of R*!, that is
(Y,v) =(Y,,v) = (Yz,v) = (v,v) =0

and
(Y,v*) = (Y,,v") = (Yz,v") = (v, ") = 0.
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We define successively the tracefree curvature in the direction v
Q, =2(Y.,,v), (A.2.56)
the tracefree curvature in the direction v*
Qe =2(Y,,, "), (A.2.57)
the mean curvature in the direction v
H, =2 2 (Y., v), (A.2.58)

and the mean curvature in the direction v*

H,» =2e725(Y,,,1%). (A.2.59)
Then 5 -
Y,, = 2L,Y, vy vy, A2.
EY 2 (4260
s 2L 2L 2L
H,e H, e e
Y, = * -y A.2.61
2<1/,1/*>V + 2(v, 1/*>V 2 (4.2.61)
Further
(2 YY) = (7)), — (1, V3) =0, (4.2.62)
and with (A.2.60),
(v, Y2) = (1 Y2)), — (v, Yz2)
Q, Q
= z 7Ytz - ) ) — - )
L: (v, 1) 2<V7V*><V V) 2(y,y*><y V) (A.2.63)
__
=5

while with (A.2.61),

H, e~
= 20 (A.2.64)
H, et
=
and
(Vs v) = (1, 1), = W, v2),
meaning

(vs,v) = 0. (A.2.65)
Combining (A.2.62), (A.2.63), (A.2.64) and (A.2.65) vields

v: = — (v, V) v — HY, — Qe Y. (A.2.66)

Similarly
(v1,Y)=(("Y)), - (v, Y;) =0, (A.2.67)
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and with (A.2.60),

<V:’}/Z> = ((V*ﬂYZ»z - <V*ﬂYZZ>

* QV* * QV * %
=Y o M T g (4.2.68)
__QV*
S

while with (A.2.61)

= T 2(u, %) {v,v7) (A.2.69)
HV*€2L
= — 2 5
y: = — <y:, 1/> v — H, Y, — Qy*e_2ﬁ}/g. (A271)

Then
<V27 Vz) - HVQV

<I/>|< l/*> = HV*QV*.

z)'"z

(A.2.72)

A.3 Analytic lemmas

A.3.1 Low-regularity estimates
Following is a sequence of low regularity auxiliary theorems needed in our proofs.

Theorem A.3.1 (Theorem 3.5 in [Riv16]). Let X € L' (D,R?), if f is the W, solution

in a distributional sense of
{Af = divX in D,

f =0 on oD,
then f € L% (D) with
£l 2.0y < ClIX || L1 (my)-
Theorem A.3.2. Let V € D' (R?) such that VV = V'a + B with Ve € H~! (D, R?)

and B € L' (D,R?). Then for any r < 1 there exists ¢ € R a constant and C(r) > 0 such
that

IV —ell oo,y < C) 1Az @) + 1Bl @) -
Proof. We write VV = Vb+ H with

Ab=divB in D
b =0 on OD.

Since

div(H) = AV — Ab = div (via + B) —div(B) =0

and
curl(H) = curl (VV = Vb) =0
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in D’ (D), one finds div(H) = curl(H) = 0, that is H is harmonic. We will write it H = Vh
with A harmonic.Using theorem A.3.1, we find

10l 2.0y < C|Bll L1 (m)- (A.3.73)
Besides, given ¢ € C° (D) :
(H,¢)| = |(Va+ B - Vb,¢)

<|(v*a,0)| +1(B,9)| + 16, V4)]

< IV*allg-1 o)z + 1Bl 21y 18]l oo (o)
+ (1Bl L2.00 () I VBl L2.1 (D)

since L>! = (L2’°°)*. Now using (A.3.73) and the continuous injection L*! < L? we find
(H,9)| < C (IV*all a1y + 1Bl (18l + 1V6ll21m)) -
This yields
(Vh, &) < C (IV4alla-1@) + 1Bl) (Bl + IVelp) . (A374)
Since h is harmonic, we write h, = Z hp2P, and we apply (A.3.74) with ¢, = rn(r)e??,

PEZL
1

where 7 is a smooth positive cut-off function on D with support in [0, 4] n=1on [0, 5].

thn(r)TpHd""d@' <C (HVLQHH*(D) + HBHLl(D)> (1opllzoe @) + 1V Ppll 21 (m))
€L
< Clnllorwy (IV*allz-1) + 1Bl ) p-

However, sincen >0 and n=1on D1 :
2

This means that for p > —2
byl < Cllallery (IV*all-1@) + 1 Bllis)) oo +3) (A.3.75)
and for p < —2
|hp| = 0.

Thus hy, grows at most quadratically and as a consequence Z hpzP converges on I, with

PEZ
r < 1. Then there exists ¢; € R such that A can be written

- h—2 +1
h(z) —cp =28 ——i——l +Z +1zp

p>0
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which converges smoothly on D, for any » < 1. Then

A —cillpz0m,) < C | [h—2] +[hoa| log 7| p2.co ) + D
L2:0(DD,.) >0 P+ 1 )
<C||h- h_ iy s
= |h—2| + | 1|+Z 1) (2p 1 9)

p>0

n p(P+3) ot
< ¢ (IV*allz-1) + 1Bl ) 1+Z ek

using (A.3.75). This yields
Ik~ erllz2eeqo,) < C) (19 all -0 + 1Bll o)) (A.3.76)

Here C(r) < oo as soon as r < 1. Since by definition VV' = Vb + Vh, there exists a
constant ¢ € R such that
V—-c=b+h—c.

Using (A.3.73) and (A.3.76) we then deduce
IV = ellzzs,) < € (IVallz-1) + 1Bl )

with C' depending only on r, which concludes the proof. O

We conclude this subsection by recalling an extension of Calderon-Zygmund with
Lorentz spaces (theorem 3.3.6 in [Hel02]).

Theorem A.3.3. Let Q be an open subset of R? with C! boundary. Let f € L' (Q) and
© solution of

Ap = fin Q
@ =0 on 0N.

then there exists a constant C (£2) such that
ol L2.00 () < C () 1 fll L1 (e -

A.3.2 Integrability by compensation

Following are a few variations on Wente’s theorem, which will prove useful in the core
of the article. First is Wente’s inequality, originally presented in [Wen71|, we here follow
see also 3.1.2 in [Hél02]

Theorem A.3.4. Let a,b € W12 (D,R) and u a solution of

Au=Va.V+thin D
u = 0 on OD.

Then u € C°(D,R) N W12 (D, R), and there exists C' > 0

[l Loy + VUl 2y < ClIVall g2y VOl L2y -
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Following are two refinements for Lorentz spaces, first theorem 3.4.5 then 3.4.1 of
[Hel02]

Theorem A.3.5. Let Q be a bounded domain of R?, with C? boundary. Suppose a and
b such that Va € L?* () and Vb € L? (). Let ¢ be the solution of

Ap =Va.V+tbin Q
@ =0 on 0N.

Then ¢ € W12 (), and there exists C(Q2) > 0 such that
IVoll 2y < C()|IVal p2.000) VOl L2(q).-

Theorem A.3.6. Let Q be a bounded domain of R?, with C? boundary. Suppose a and
b such that a € W12 (Q) and b € W12 (Q). Let ¢ be the solution of

Ap =Va.V+bin Q
@ =0 on 0.

Then ¢ € WHZD (Q), and there exists C(€2) > 0 such that
1962y < CE@IVall 2oy IVl 220,

Remark A.3.1. One must notice that, since L>>* and L>! are scale-invariant, but not
conformal invariant, the constant C'(2) in theorems A.3.5 and A.3.6 depends on the shape
of Q, but not its size. The same constant C' then works for all disks ID,. Since L? is a
conformal invariant the constant in theorem A.3.4 does not depend on . We refer the
reader to [BG93] for more details.

A.3.3 Hodge decomposition

In this subsection we briefly recall results on the Hodge decomposition and recast them
in our framework.

Theorem A.3.7 (LP decomposition, theorem 10.5.1 in [IMO1]). Let © be a smoothly
bounded domain in R™ and 1 < p < oco. Then for any [-differential form w € LP there
exists a [ — 1 differential form «, a [ 4 1-differential form S and a [-differential form h such
that :

w=da+d'B+h

with dh = d*h =0 and

lallwra) + 18lwrr@) < Co (D) [@llLo(q) -

Theorem 10.5.1 in [IMO01] is in fact more accurate and actually goes into much more
details about the boundary conditions. However quoting it in a comprehensive manner
would require to introduce new notations. We thus restrict ourselves to this partial result,

which will satisfy our current needs. Taking X = <§1> € LP (D,,R xR), and w =
2

Xidx + Xody, one can apply theorem A.3.7 and find a function «, a volume form g and a
harmonic 1-form h on D, such that :

w=doa+dB+h,

HO‘HWLP(ID)T) + ||ﬁ||W17P(ID)T) < Cp (Dr) ”wHLP(DT < Cp () HXHLP(]D)T) :
Since div(X) = d*w = Aa we deduce
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Corollary A.3.1. Let r > 0 and 1 < p < oo. For any X € LP (D,,R x R) there exists
a € WP (D,) such that
div(X) = A«

and
lellyin.y < Cp () Xl oo -

Using Marcinkiewitz interpolation theorem (see for example theorem 3.3.3 of [Hél02])
enables us to write

Corollary A.3.2. Let » > 0, for any X € L*! (ID)T,RQ) there exists a € W21 (D, such
that
Aa = div(X)

and

Il < C @) 1K 2o, -

A.3.4 Weighted Calderon-Zygmund

Theorems A.3.8 and A.3.9 are taken from Y. Bernard and T. Riviére’s [BR13] (Propo-
sition C.2 and C.3).

Theorem A.3.8. Let u € C? (D\{0}) solve
Au(z) = u(2) f(2) in D,
with f € LP (D) for 2 < p < oo and the weight u satisfying for some a € N
u(2)] = O (|2").

Then
uy(2) = P(2) + |2|*T(2)

with P € C, [X] and T = O(\z|1_%_v) for all v > 0. More precisely one has

o
Lo (D)

Additionally if u € C! (D\{0}), a # 0 and

T

‘Z 1—%—1_)

"

2]

I £l oy + HMCl(@D)) :
Lo (D)

Vi(z) = O (|21*7)

Then :
Uz (2) = P, + |2]°Q

with Q € LV (D) for all p/ < p and

p Vi
Q / SC/ + — f =+ {lu 5
1900 < Cor { ||y Ny ) 100+ o
In fact QQ = 7“2'7;['22))?

Remark A.3.2. Theorem A.3.8 works with a = 0, it is the classic Calderon-Zygmund
theorem.
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Proof. We will write the proof for p = co to paint a picture of the involved reasonings and
refer the reader to the original results for the general case (p < 00). Such an estimate can
be written freely away from 0. Then one can assume |z| < 1. Using Green’s formula for
the Laplacian and denoting v the outer normal unit vector to JD, one writes explicitely
u

) =g ([ (Fpdate) ~uo =2 ) o) - [ = Euo)fe)in)

=: Jo(2) + J1(2).
(A.3.77)
We first point out that for |x| > |z] one term can be expanded :

o =22~ m>0

Then we find :

/.

=8, u(z) — u(x)d, (zmxf(mﬂ))) do(x)

LELC
Z / (m + Du(e?) — (8,u) <ei9)) M1 dp
5

I
|\/M M"_‘ M‘ -

where the C,, are complex valued constants depending only on the C' norm of u along
OD. Since u is by hypothesis bounded C' on the boundary of the unit disk by hypothesis,
027r u(e?)elm 1049 and fOQﬂ dyu (e) e+ are bounded by the C' norm of u and

thus the C,, are growing at most linearly. Thus there exists a § > 0 such that for |z| <4,

and aC >0
Z Crz™ + Z Crz™
m=a+1
Z Cpz™| < Clz|oF.

m=a-+1
Then, one writes

J()(z) = Z Cnz™ + ‘Z|a+1T0(Z) in Dg,

m=0

s A.3.78
with ‘Z|a+1TOZ Z szma ( )

m=a+1
|To| < CHu”Cl(BJD)) < oo in Dy.
Now we notice Jo is uniformly bounded, with bounds depending only on [[ul|c1(apy), on
. We can then extend (A.3.78) to the whole of H])1 up to a constant adjustment.
One must now control J;. We start by writing :

W) =5 [ Eoame@)f@de+ 5 T @) ()
Dy

2 2 ]D)\]D)ﬂ [ ‘Z_xP
1 Z—T 1 > el

= — ——u(x)f(x)dx + — 2"y (2) f(z)d.
27 Jo Tz — aP (z)f(z) o D\n»gm;) (z)f(x)
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Now, since on D\Dy,, ,

m=0
we deduce,
1 Z—T
W =g [ @@ > o [ e ) (o),
27 DQ‘ | |Z - $|2 Z D\D2\2|
We then introduce the following decomposition :
Ji( ) + Z ITM(z) + I (2 Z Iz + > I'2), (A.3.79)
m=a+1
where : ] o
Z—Z%
Li(z) = — ———u(z) f(x)dx,
O =g [, ot
1
()= o [ 22D p(e) f(o)da,
2T ]D)Z\z|
1
I'(z) .= — 2" y(2) f (@) da.
2 D\Dy|
We notice "
I m —(m+1
S peeme =35 [ ) (@)

m=0

and for m < a

—(m M a—m—
Lo | < | 2| Wy [ fate e
D ] Lo (D) D
,u
<ol 1o
|| Lo°(D)
which yields
Z IM(z) + I (= Z Apz™ (A.3.80)
with Ay, = &= [p @ Sy )f(ac)dx a sequence of finite coefficients. Besides :

e

/ jzl* .
Loo(D) J Dy |z — |

1 1
@<y [ = @I @l < 5l

a 2 1
< Col2|* | fll oo () W / mdl“
(D) /Dyjz)
< Cl2|* M| 1l Lo (my Tl | .
Loo(D
(A.3.81)
and for m < a,
1 m —(m
[17"(2)] < 2/ 2™z~ ()| | ()| dee
212]
ILL m a—(m
< Cllf I 2 [ el e < Clal e | L
Lo (D) Dy |z| Loo(D)

(A.3.82)
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Finally, for a + 2 < m we write

()] < Clel™ | ]l ) /

Da|z|

[~ () | da

s / o=+ g
D) D\Dy|

1
HfHLoo(]D))/ r¢ " dr
D) 2|z|

2Z’a+17m _

<Cl2" |t
|| Lo
< Cl™ || 2
|z Loo(
7
< Clz™ o £l oo ()
x| Lo (D)
1
<C a+1
- 2m—a—1(m—a—1)|z|

while IS‘H is controlled in the following way

I8(2)] < O™ | f o) /

SC’Z’a+1 L
||
< Clz|*n 2| -
|| Lo (D
SCU|Z|(L+17U La
|| Loo(
Consequently
o0
S B2 < Gl | A
m=a+1 ’.CIZ" Loo(
SCU|Z’(1+17U La
|| Loo(D

Injecting (A.3.80)-(A.3.85) into (A.3.79) shows J; satisfies

M

||

—a —

) | £1l oo ()

1

L (D)

)Hf||L°°(]D>)~

1

| £l Lo ()

|+ () da

2|z|
1l o) / 2| 2da
L>(D) D\Dy

[ fllzeem) Yo > 0.
D)

1
||f||L°°(]D>) Z om—a—1
D)

Ji(z) = Z Ap 2™ + |2/ VT (2) in D

|T1’ S CU

m=0

I

||

Loo(

I £l oo (my-
D)

(A.3.83)

(A.3.84)

(A.3.85)

(A.3.86)

To conclude, (A.3.78) and (A.3.86) yield the desired result on u, when applied to (A.3.77).
To prove the next part of the theorem one need only notice that necessarily

21°Q(2) = (|2|*T(2)).

= Z Crz™

m>a+1
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Now, since we have shown that the C,, have a mere linear growth, <Zm>a+1 szm) =
- z

Zmz atl mC,, 2™~ has the same strictly positive convergence radius. The same argument
as before applies and yields the wanted control on the first term of (A.3.87). The other
terms are estimated as before. Indeed :

m 1 m— —m— m —m—
). @< |5z [ mer e @y p@s+ 55 [ e ) s
2|z| 2|z|
m— M a—m— a
e e IO L I A R e N T P
|| L (D) Dy 2| L (D)
< Cal2|*|| fl| Lo ()
(A.3.88)

as long as m < a. Similarly :

1 1 z
/ mzm_lx_m_lu(m)f(m)dx—l—z/ 2T (x) f(x)da
27 Jo\Dy,, 27 || D\Dy.,

U K a—m— c H
<Cmlam B Wl [ el e el 1712 @)
’33| L> (D) ID)\]D)QM Lo (D)
- 2m | ) ”fHLOO(]D))
D
(A.3.89)
for m > a + 2; while
. 1 _
| (I57), (2)] < Cal = 1512 o) (/ || 2d:n~|—1>
i) Pz (A.3.90)
I
< G4 : | £1| ooy I |2]-

2| || Loo ()

3 (L(2) + K (2))

™

The I estimate is slightly more difficult to obtain. Differentiating we find I, =
with B o
z Z—T

K(z) = () f(z)de

2| Joby, ) |2 — I

and

L(z) = (2 frixpap,, ) (2)
where Q(y) = —2%. One clearly finds :

1

, (A.3.91)
L (D)

K (2)| < C||f | s=o) /d 1(2)] < L)1l s o)
2|

2|

and
L(z) - p(z) (25 fxpy ) (2) = /D Q= — o) f(w) (u(x) — u(2)) da.
2|z|

Given z in D, let S, be the cone with apex 5 such that it contains D.|. For x € S,, we
2

have 2|z — z| > |z|. Hence :

1
Fyny 2= HE 0 = e da 2.0 ( o @iars i [ ’f(x)HM(x)!dx)

[f1l £oe @y |2]*-

> (D)
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Since u € C1 (D\{0}), u € C' (SS). Thus for all x € S¢ one can write :

Vi a—
u(2) — )| < || —2= |2*7 |z — 2.
|| L>(D)
Accordingly :
\% e f(z
[ aG-0@ e -peya| <o | T e [ g,
Sfcngp‘ |x| LOO(ID)) Dg‘z| |Z - $|
Vu a— 1
<ol N e [ da
|x’ LOO(]D)) DQ‘Z‘ ‘Z - .Z"
Vi a— 1
<ol Il [ do
|| | oo () By (2) |2 — 7l
Vi a
<C\i77 |21 £l oo () -
|z| Lo (D)
(A.3.92)
Combining (A.3.87), (A.3.88), (A.3.89), (A.3.91) and (A.3.92) yields the desired result and
concludes the proof. O

In the core we will use weights with non integer exponents. The same proof allows for
this slight adaptation, already presented in [BR13].

Theorem A.3.9. Let u € C? (D\{0}) solve
Au(z) = u(2)f(z) im D,
with f € LP (D) for 2 < p < oo and the weight p satisfying for some a € R
u(2)] = O (|2]*).-

Then
ux(z) = P(z) + [2|°T(2)

with P € Cp,p [X] and T = O(|z|1_%_q‘)) for all v > 0. Here [a] is the upper integral part
of a. More precisely one has

<, H =
. ED
®)

Additionally if u € C* (D\{0}), a # 0 and

T

‘Z 1—%—’1}

£l ey + HMCl(@D)) :
Lo (D)

Viu(z) =0 (|=*™)

Then :
uzz(2) = P, + |2|°Q
with Q € L¥ (D) for all p < p and

||Q||Lp’(]n)) < Cp’ <<

In fact @ = (EPTE),

ER

Vi

+
L (D) H |z[e—1

Ll
2]

) 11l oy + HUHCl(aD)) :

L> (D)
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Proof. The proof is the same as in theorem A.3.8, if ¢ is not an integer we simply split the
terms in the sums at [a], and we do not have to treat the a + 1 term separately in that
case (as we did in (A.3.84)). O

Given the nature of the bubbling phenomena, we will need a version of such theorems
with sliding weights : x = v/&2 + r2. The parameter ¢ will represent the concentration
speed.

Theorem A.3.10. Let (uf).~0 € C? (D\{0}) solve
Au(z) = X*f*() in D,

with f¢ € LP (D) for 2 < p < 00, a € R and x := V&2 + r2. Then

ul(z) = P*(2) + x*T¢(2)

z

with P € Cpq) [X] and T° = O(Xk%ﬂ)) for all v > 0. Here [a] is the upper integral part
of a. More precisely one has

TE

< Co (1l o) + el (omy) -
L (D)

Additionally :

U (2) = P+ x°QF
with Q¢ € L¥' (D) for all p’ < p and
1€y < G (17 o) + 1l omy) -

In fact Q° = G (),

X(l
Proof. We first state that for all @ € Ry, there exists C, € R’ such that
1 et +r?
— < < C,. A.3.93
Co™ xo ~—°° ( )

Here C, depends solely on a, and not on € or 7.
We then write

a

AU = (% 4 1%) =X = (" + %) fF,

g? 4+ rae
where f~"5 — aa)fra /¢ satisfies, thanks to (A.3.93),
17,00 < o170y (A.3.91)

We can then use Green’s formula to write
1 zZ—T zZ—T
w(e) = 5 /8 ) <|Zx’28,,u€(:z) - ug(x)3> do(x)
1 zZ—x ~

(e + 1) ff(x)dx

o p |2 — 2l

_ 1 ETT g i (a) — wf(2)9 2 (A.3.95)
= | (\z — xP&,u (z) —u (:c)(?‘z — xP) do(x)
1 [ -3 - 1 [ -3 .-
S e?f¢(x)dx S r®fe(x)dz

2 Jp |z —af? 2 Jp |z —af?

= I5(2) + Ii(2) + I3(2).
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We can then successively estimate the three terms as in the proof of theorem A.3.9 and
write

IE(2) = PS(2) + 2911, (A.3.96)
where F§ is a polynomial of degree at most [a] and whose coefficients are bounded by
|41 (opy> and

HT(?HLOO(D) <C HuEHCl(D) .
Working as for (A.3.86) we write

I£(2) = C° + &T5 (2)

A.3.97
I5(z) = P; +rT5(2) ( )

where C°¢ is a constant and P5 a polynomial of degree at most [a], both bounded by

i

1-2 o
P

f%

IN

C, + ||u® )
L>(D) (‘ po ¥ lo)

C, + ||u® )
L=(D) (‘ way T e

In the end, combining (A.3.96) and (A.3.97) yields

r
€
15
1-2o
r-r

IN

j%

u, = P + T + r?T3, (A.3.98)

where P¢ is a polynomial of degree at most [a], T} is as previously stated and T still

satisfies
I <G (7], 5, + Il
_— v .
7“1_%_“ L>(D) Lr (D) ¢ (D)
Proceeding similarly then ensures that
uz, = P, +e"Qf +r'Q5, (A.3.99)
where Q5 = T¢ _ and Q5 = (r f;f‘)z satisfy for all p’ < p

fé

f€

1950 < O (70 + 10 eriom )

Lp(D)

193y < & +llerom) )

Lp(D)

Let us notice that the estimate on Q) is not stricto sensu derived from the proof of theorem
A.3.9, but from similar classical Calderon-Zygmund estimates.
From (A.3.98), we write u§ = P® + x“T*° with

ga ,,,.(1



A.3. ANALYTIC LEMMAS 205

which then satisfies

TE Ea Ta 7,.(1 TE
—2_4 A va 1—2—1) + va 1_§_U
X P ey XL I TP lpeey T L@ 1P || ooy
T
< ? 1-2_y 1-2—yp
Loe(D) Il » L) || X * L (D) (A.3.100)
i r¢ T3 rl_%_v
a 2 2
X ooy 117172 7V Nl Loy || ' 7777 L (D)
re €
<Gy (’ f L2(D) + Ju HCl(]D))) ;
using lemma A.3.1.
From (A.3.99) we write u5, = P + x“Q° with
6(1 ,’,.a (XaTé)
@ = 0T+ Loy =
which then satisfies
€ ga € T‘a’ 1>
1Q°N 1w oy < || =2 1Q1l Loy + || =2 1951l Lo (my
Lo (D) L>(D)
(A.3.101)
re €
< Cy <‘ f Lo(D) + [lu HCl(]D))> )
using lemma A.3.1. O

Remark A.3.3. We must point out that the expansion offered by theorem A.3.10 is by
no means unique. Indeed if for instance u, = P 4+ x""1T*, then one could readily write

. 5m—i—l
u, = P 4™t 4™ <T€+ - )
Em

with T + - still satisfying (A.3.100).

We give here a small lemma which can help one to understand the essence of x :

Lemma A.3.1. For all a,b € R, there exists a constant C,; such that

gorb

X‘H‘b S Ca,b-

Theorem A.3.10 can be applied several times to prove an increased regularity on the
higher order terms :

Lemma A.3.2. Let u® € C%(D\{0}) such that
AUE — Xaf€7
with f¢ € L and
A (V) = X1,

with g* € LP. Then
uy = P*+ 5,
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where P¢ is a complex polynomial of degree at most [a], and u® such that

|| |V
s+ s < O (1) + 161 + I lonom)) -
X P

a

v2ua
Xafl

< Cy (IFll oy + 6% oy + Il I caamy ) -
L?' (D)

Proof. We apply theorem A.3.10 twice and decompose u, and (u;),

:PE+ 1>
_ L (A.3.102)
(uz)z = P2 +:U27
where
|1l |13
B < (1 ey + 1 o) + 1l 2gom) )
X X
Vg H Vi
N < Cpp i, (17 ey + 191 2oy + Iz omy )
H X imy I Hme — 2 O oo o

(A.3.103)
for all p} < oo and pf, < p. We then enjoy two expressions for u,, :

Consequently,
Pla,z_P;:MS_Mim
which in turn, combined with (A.3.103), implies that

J

for all s < co. We decompose

3 € |8
Pl,z_P2

Xa

a2 < Cs (I o) + 19 o) + 16l 2(om) )

la]

5 e __ £ _q
Pl,z_P2— E g2,
q=0

and can state for a given Rg > 0

/ Zq Opq dz</ ZLaJopZ q
De g, ~Jp X

° < Gy (Il ey + 1% o) + 1l c2om)) -
Changing variables yields

i,
— =t e < Oy (Il ey + 19 ooy + 1 o))

And since on Dg,, H% > ﬁ, we deduce

la) . s

p
/D > —2152 d2 < Cypg, (HfEHLOO(IDJ) + 19" ooy + ”Ua||c2(am>)> - (A3.104)

a—aq—
Ry q:()is 1 P
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It is now important to notice that the left-hand term in (A.3.104) is in fact a polynomial
in Ry, which is uniformly bounded in € on compacts of C. All its coefficients are thus
uniformly bounded in €, and straightforward computations then yield :

Vs<oo Vj<l|a] Ve>0

pE
a_:j_g ' < Cs <||f€HLoo(D) + 19°l ooy + ||UE||C2(31D>))
£ s

which thanks to lemma A.3.1 translates on Pi , — Ps5 as

& 3

v P8 (15 g e A.3.105
5 <00 | =G 175N oo oy + 119° | Loy + 1wl 2oy ) 5 (A.3.105)
and
(Plavz B Pf)z C € e € A
Vs<oo || <0 <Hf ooy + 9%l ooy + llu Hc2(aﬂ)>)) - (A.3.106)
X s

Now since pf , = p§ — (Pf, — P5) we can combine (A.3.103) and (A.3.105) to find for all
v>0

G

a—2—v
X P
Further since pf ,, = p5, — (Pf, — P5)_, (A.3.103) and (A.3.106) yield for all p’ < p :

<Cy <||f6||Loo(1D>) +119°M oy + HU5”02(6D)) : (A.3.107)

€
H K 2z
Xa—l e

D) S CP' (HfEHLOO(]D)) + ||96HLP(]D)) + HUEHCQ({)D)) . (A3108)
D

Applying similarly theorem A.3.10 to u$ yields controls akin to (A.3.107) and (A.3.108)
on the missing terms in the gradient and the Hessian, which concludes the proof. O

A cautious reader might have noticed that we have additionnaly shown the following
lemma :

Lemma A.3.3. Let u € N,v >wand P* =377 pjzj € Cy[X] such that

I3

P
Vp<oo — €LP.
XU

Then B
Pj
ev—Jj—v

Yv>0 Vj<u < (.

We will also use a corresponding result for polynomials in z and z :

Lemma A.3.4. Let u € N, v > uw and P* = Z;ﬁrj:opijziij such that

13

P
Vp < o0 —UgC’.
X

Then
Vv>0 Vi+j<u

Applying lemma A.3.2 several times yields :
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Corollary A.3.3. Let u® € C? (D\{0}) such that, for a >t
Au® = x*[5,
AV = 1 ff
AVHE = ot fe
with f£ € L% (D) for j <t — 1 and ff € LP (D). Then
ul = P+ pif,

where P¢ is a complex polynomial of degree at most [a], and u® such that

| Ve Ve :
e oy T M <Gy ; 1£5]] poo 0y + 16 lloe+1omy | -
and

vt-{—l'ua
Xa—t

t
.= Cy Z Hfg”LOO(ID)) + [[u®llge+1.om)
Lr'(D) q=0

Proof. The proof is a recurrence whose initialization is theorem A.3.10 and whose heredity
is obtained by applying lemma is A.3.2 to the Vou®. O
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