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Abstract

In this doctoral work we start by exposing a synthesis of the weak Willmore immersions
formalism. To that end, we introduce conservation laws and exploit them to recover the
ε-regularity theorems, as well as an innovative weak regularity result. We then present a
study of the conformal Gauss map and its links with the Willmore surface notion. From
this, we deduce an exchange law for residues as well as an original characterization of
surfaces that are conformal transforms of constant mean curvature surfaces. We then
apply these tools to sequences of Willmore immersions. We �rst show that they are not
compact with a �rst instance of concentration for Willmore surfaces. However, relying
upon an ε-regularity result based on a small control on the mean curvature, we show
compactness below a given threshold.

Keywords : minimal surfaces, Willmore surfaces, conformal geometry, compactness,
blow-up analysis, Lorentz spaces, De Sitter spaces, conservation laws.

Résumé

Dans ce travail doctoral, nous commençons par présenter une synthèse du formalisme
des immersions faibles de Willmore. A cet e�et, nous introduisons les lois de conservation et
les exploitons pour retrouver les résultats d'ε-régularité, ainsi qu'un résultat de régularité
faible inédit. Nous présentons ensuite une étude de l'application de Gauss conforme et
de ses liens avec la notion de surface de Willmore. Nous en déduisons une loi d'échange
de résidus ainsi que d'une caractérisation originale des surfaces étant transformations de
surfaces à courbure moyenne constante. Nous appliquons ensuite ces outils aux suites
d'immersions de Willmore. Nous montrons tout d'abord qu'elles ne sont pas compactes
avec un premier exemple de concentration pour les surfaces de Willmore. Cependant, en
se basant sur un résultat d'ε-régularité demandant un contrôle sur la courbure moyenne,
nous montrons une compacité sous un certain plafond d'énergie.

Mots clefs : surfaces minimales, surfaces de Willmore, géométrie conforme, compacité,
concentration, espaces de Lorentz, espace de De Sitter, lois de conservation.
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Introduction

Introduction (English)

In order to introduce the reader to the topics adressed in this doctoral work, we �rst
detail an overall chronological state of the art, before detailing its content on a chapter
by chapter basis. The original contributions of the author will be highlighted, but we will
only give the core results, in a sometimes simpli�ed form, to avoid detailing technicalities
in what is wished as a discussion of ideas. All of them will be properly written and proven
in their speci�c chapters.

Mean curvature and elastic energy :

In 1680, R. Hooke, an English natural philosopher, rubbed a violin archet on a thin
metallic plate covered by a slim stratum of sand. He noticed that the sand then organized
in peculiar geometric shapes. At the onset of the XIXth century, E. Chladni systemized
this experiment and highlighted the dependance of the sand patterns on the shape of plate.
These interesting Chladni patterns entered the �eld of geometry.

Figure 1 � Chladni patterns

This intrigued Napoleon Bonaparte enough to organize a scienti�c competition in order
to explain this phenomenon. Among the competitors were S. Germain and S. Poisson. The
former won the competition with her explanation describing the plate as a vibrating elastic
surface. The sand naturally accumulates in its non-oscillating zones, leading to the Chladni
patterns. In her memoir [Ger31], S. Germain then linked the elastic behavior of a surface in
R3 at a given point to its mean curvature H at this point. Following from the study of the
elastic curves led by D. Bernoulli and L. Euler, one can extrapolate from the 1-dimensional
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elastic energy of a given curve γ, E =
∫
γ κ

2, where κ is the curvature of γ, and �nd the
2-dimensional energy of an immersed surface Σ :

W =

∫
Σ
H2.

This quantity around which the present work revolves is called the Willmore energy.

Conformal invariance :

In the XXth century, G. Thomsen, see [Tho23], and W. Blaschke, see [Bla55], pioneered
the angle of study of the Willmore energy which we will adopt : the conformal geometry
approach. At the inception are the conformal invariance properties of W , meaning that
W remains unchanged under the action of isometries of R3, dilations, and inversions which
do not change the topology of the surface. Together, these transformations generate the
conformal group of R3, i.e. the group of ambient angle-preserving maps. Although the
Willmore energy is not invariant under all inversions (and is thus merely a contextual
conformal invariant) a closely linked quantity is. The tracefree total curvature

E =

∫
Σ

∣∣Å∣∣2,
where Å is the tracefree part of the second fundamental form of the immersion, is indeed
invariant under all the di�eomorphisms generating the conformal group. Interestingly, it
only di�ers from W by a topological constant, hence the peculiar properties of W when
subjected to inversions.

Willmore immersions :

Given the elastic nature of the Willmore energy, it is natural to try to �nd minimizers.
The �rst examples come from minimal surfaces, for whom the mean curvature is null.
However such surfaces can never be compact, and thus do not provide satisfying answers.
In the 1960's, T. Willmore, in [Wil65], gave the absolute minimum of the Willmore energy,
4π, reached by the round sphere, and conjectured that for tori the minimum was 2π2

and reached by the Cli�ord torus. This conjecture took his name and stood until 2015
when F. Marques and A. Neves solved it (in [MN16]) using geometric measure theory tools
developped from F. Almgren and J. Pitts min-max theory, see [Pit81]. Broadening the
scope of the study we will consider not only minimizers, but also critical points of the
Willmore energy. They are called Willmore surfaces, or Willmore immersions depending
on whether we consider the object in R3 or its parametrization. Given the properties of
W , it is a notion invariant by conformal transformations. Inversions of minimal surfaces
then o�er a broad spectrum of examples with varied properties while the Cli�ord torus
shows that Willmore immersions are not reduced to inversions of minimal surfaces in R3.
The corresponding Euler-Lagrange equation is the Willmore equation :

∆H +H
∣∣Å∣∣2 = 0.

The study of Willmore surfaces dates as far back as G. Thomsen and W. Blashcke's works,
with signi�cant contributions by T. Willmore ([Wil93]), R. Bryant ([Bry84]), E. Kuwert
and R. Schätzle (who proved the �rst ε-regularity result in [KS01a]). In the following
we will adopt T. Rivière's formalism developed throughout several of his works. Starting
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with the minimal assumptions to de�ne the Willmore energy, he introduced the notion
of weak immersions ([Riv08]). Even though in that context the Willmore equation does
not have a correct distributional sense, conservation laws (that Y. Bernard later showed in
[Ber16] were a consequence of the conformal invariance) allow for the introduction of weak
Willmore immersions (in [Riv08] still). Further exploitation of the conservation laws and
the Jacobian-like equations they induce leads to another ε-regularity theorem, thanks to
integrability by compensation, which insures that weak Willmore immersions are smooth.

Using the same methods and an analysis on punctured disks, Y. Bernard and T. Riv-
ière then extended the domain of study to branched Willmore immersions (see [BR13])
and fully described the behavior of branched Willmore immersions around a branch point
by two quantites called residues. The �rst residue is truly a residue in the mathematical
sense, as it comes from the aforementioned conservation laws. The second residue however
does not, and is merely a way to sharply describe the behavior of the mean curvature at
the branch point.

Sequences of Willmore immersions :

The framework of weak immersions is highly useful when considering sequences of uni-
formly bounded Willmore energy. The hypotheses they satisfy yield just enough regularity
to imply a weak convergence up to extraction, away from a �nite number of concentra-
tion points (see [Riv16]). At these points the limit immersion may degenerate and lead
to branch points. These phenomena of concentration-compactness, as coined by W. Sacks
and K. Uhlenbeck ([SU81]), have been studied with success, for instance in the case of con-
stant mean curvature surfaces (see H. Brezis and J.-M. Coron's [BC85] for the setting of the
problem, and P. Laurain's study of concentration in [Lau12b]). For their part, sequences of
weak Willmore immersions converge smoothly away from the concentration points, thanks
to the aforementioned ε-regularity. Blow-ups performed on the concentration points reveal
a bubble tree made of possibly branched, possibly non compact Willmore spheres, glued
on the concentration points thanks to neck domains. Y. Bernard and T. Rivière in [BR14],
and P. Laurain and T. Rivière with other hypotheses in [LR18a], showed that sequences
of weak Willmore immersions satisfy an energy quantization result : the Willmore energy
of the sequence tends toward the sum of the Willmore energy of the limit surface and the
Willmore energy of all the bubbles. This is equivalent to the no-neck energy principle :
the neck domains do not carry any energy at the limit. Concentration phenomena repre-
sent a loss of compactness for weak Willmore immersions since they may degenerate into
branched Willmore immersions. However these Willmore bubble trees cannot be arbitrary
and are in fact constrained. Indeed, in [LR18a] P. Laurain and T. Rivière have eliminated
enough bubbling con�gurations to ensure compactness of Willmore immersions with an
energy strictly below 12π. The extension of this theorem is a major result of the following
memoir.

Conformal Gauss map :

Another way to approach Willmore surfaces was pioneered in [Bry84] by R. Bryant.
In it he used the notion of conformal Gauss maps to study Willmore immersions. The
conformal Gauss map may be thought of as a generalization of the osculating circles of
a curve in R2 : it associates to p ∈ Σ the tangent sphere of radius [H(p)]−1. Seen as a
map with values in the space of spheres, represented as the de Sitter space S4,1 ⊂ R4,1,
this yields a map Y which happens to be minimal in S4,1 if and only if the starting
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immersion is Willmore. Several surveys and studies have been conducted on this map,
for instance J.-H. Eschenburg's [Esc88] or B. Palmer's [Pal91], and many properties on
Willmore surfaces have been translated in the conformal Gauss map language. In fact in
[MR17] A. Michelat and T. Rivière have established a deep parallel between the role of
the conformal Gauss map for Willmore surfaces and the one played by the Gauss map in
the constant mean curvature case. Using loop groups methods on the conformal Gauss
map, F. Hélein even showed in [Hél98] that Willmore immersions could be described by a
non-explicit Weierstrass representation.

Conformal Gauss maps have also proven to be pivotal in determining whether a Will-
more immersion is the conformal mapping of a minimal immersion (in other words is
conformally minimal). Indeed, in [Bry84], R. Bryant introduced the Bryant's quartic Q
de�ned as

Q =
〈
∂2Y, ∂2Y

〉
.

He then showed that a given immersion is conformally minimal if and only if Q = 0. Us-
ing more complex techniques invented by J. Dorfmeister, F. Pedit and H. Wu (the DPW
method, see [DPW98]), these results have been extended to conformal transformations of
minimal immersions in R3, S3 and H3, and even to conformal transformations of surfaces of
constant mean curvature. Results on this subject can be found in [Eji88], [Ric97], [Boh12]
and [DW19].

Outline :

The �rst chapter will focus on properly introducing the basic notions surrounding the
Willmore immersions. We will go through the de�nitions and present the computations of
the conservation laws when one considers both W and E as Lagrangians. From this, we
will �nd the Willmore equations as �rst exposed by T. Rivière. Further, we will modify two
of them into an original and less algebraically remarkable form (we will lose the Jacobian
shape), but one that involves only mean curvature terms. This new form will prove useful
in chapter 4. We will then expose the weak Willmore immersion formalism and o�er
improvements of already existing estimates. Namely, we will obtain a sharper control on the
quantity ~L derived from the �rst conservation law depending only on the mean curvature,
instead of the whole Gauss map. As an illustration of what can be expected when following
through these reasonings, we will achieve a weak regularity result for Willmore surfaces,
namely :

Theorem A. Let Φ be a conformal weak Willmore immersion. Then for any r < 1 there
exists a constant C ∈ R such that

‖H∇Φ‖L2,1(Drρ) ≤ C‖H∇Φ‖L2(Dρ),

and
‖∇~n‖L2,1(Drρ) ≤ C ‖∇~n‖L2(Dρ) .

Theorem A contrasts with the more classical ε-regularity results, which we will recall.

In the second chapter, we will study the conformal Gauss map both in its relation to
Willmore surfaces, and as a tool for determining if a surface is the conformal mapping of
a constant mean curvature surface (we will call such surfaces : of conformally constant
mean curvature, or conformally CMC). We will introduce the conformal Gauss map in the
general case, highlight its properties and how its geometry sheds light on the immersion
itself. at the core will be its behavior when the immersion is Willmore or conformally
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CMC. While we will mostly reprove results found using the DPW method, the originality
will lie in using only basic di�erential geometry in Lorentz spaces. Concluding this chapter,
two new characterizations of conformally CMC immersions will have been achieved. First
is the following :

Theorem B. Let X be a smooth conformal immersion on D in S3, and Φ (respectively
Z) its representation in R3 (respectively H3). We assume that X has no umbilic point.
One of the representation of X is conformally CMC in its ambient space if and only if
its Bryant's quartic Q is holomorphic and X is isothermic. More precisely, if W is the

Willmore operator,
(
WS3 (X)

4

)2
− ω2e−4ΛQ is necessarily real and

� Φ is conformally CMC (respectively minimal) in R3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ = 0.

� X is conformally CMC (respectively minimal) in S3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ < 0.

� Z is conformally CMC (respectively minimal) in H3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ > 0.

Conformally minimal immersions satisfy WS3(X) = 0.

A slight variation on theorem B gives the equivalent :

Theorem C. Let X be a smooth conformal immersion on D in S3, and Φ (respectively
Z) its representation in R3 (respectively H3). We assume X has no umbilic point. One
of the representation of X is conformally CMC in its ambient space if and only if Q is
holomorphic and ω2Q ∈ R, where ω ∈ C is the tracefree curvature of X. More precisely

� Φ is conformally CMC (respectively minimal) in R3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ = 0.

� X is conformally CMC (respectively minimal) in S3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ < 0.

� Z is conformally CMC (respectively minimal) in H3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ > 0.

Conformally minimal immersions satisfy WS3(X) = 0.
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The originality of theorems B and C lies both in the caracterization of the ambient
space, unknown till now, and, for the latter, in replacing the isothermic condition by
ω2Q ∈ R. It then shows that Q has deep ties to the isothermic nature of the surface.

The third chapter will deal with the compactness of sequences of weak immersions. It
will mostly detail the state of the art and the energy quantization result, but also present
a strong correspondance between bubbles and the surface they are glued on. We will show
that the branching order of the bubble is heavily constrained by the branching order of the
concentration point it is glued on :

Theorem D. One can only glue a Willmore branch point on a Willmore branched end of
same multiplicity, and vice versa.

Moreover we will o�er the �rst explicit example of Willmore bubbling.

Theorem E. There exists Φk : S2 → R3 a sequence of Willmore immersions such that

W (Φk) = 16π,

and
Φk → Φ∞,

smoothly on S2\{0}, where Φ∞ is the inversion of a López surface. Further

lim
k→∞

E(Φk) = E(Φ∞) + E(Ψ∞),

where Ψ∞ : C→ R3 is the immersion of an Enneper surface.

Theorem E highlights a lack of compactness for Willmore immersions of high energy.

Finally, the fourth chapter will study the con�guration of one simple minimal bubble
glued onto a branch point, in order to extend P. Laurain and T. Rivière's compactness
result. We will �rst show a new ε-regularity result with only a small control on H :

Theorem F. Let Φ be a conformal weak Willmore immersion. Then there exists ε′0 such
that if

‖H∇Φ‖L2(D) ≤ ε
′
0

then for any r < 1 there exists a constant C ∈ R such that

‖H∇Φ‖L∞(Dr) ≤ C‖H∇Φ‖L2(D),

and
‖∇Φ‖W 3,p(Dr) ≤ C‖∇Φ‖L2(D)

for all p <∞.

Then, through successive expansions, we will prove a control of the second residue of
the limit surface.

Theorem G. Let Φk be a sequence of Willmore immersions of a closed surface Σ of
uniformly bounded Willmore energy, and whose induced conformal classes are in a compact
subset of the moduli space. Then at each concentration point p ∈ Σ of multiplicity θp + 1
on which a simple minimal bubble is blown, the second residue αp of the limit immersion
Φ∞ satis�es

αp ≤ θp − 1.
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Since, a priori the second residue only satis�es αp ≤ θp, this represents a real gain
of regularity. One must note that while the example o�ered by theorem E does satisfy
this new estimate, it will successfully eliminate several bubbling con�gurations. We will
notably show that inverted Enneper surfaces, and more broadly speaking, inverted Chen-
Gackstatter surfaces of any genus cannot be the recipient of simple minimal bubbling.
From these results, we deduce an improvement of compactness for Willmore immersions
of low energy :

Theorem H. Let Σ be a closed surface of genus 1 and Φk : Σ → R3 a sequence of
Willmore immersions such that the induced metric remains in a compact set of the moduli
space and

lim sup
k→∞

W (Φk) ≤ 12π.

Then there exists a di�eomorphism ψk of Σ and a conformal transformation Θk of R3∪{∞},
such that Θk ◦Φk ◦ψk converges up to a subsequence toward a smooth Willmore immersion
Φ∞ : Σ→ R3 in C∞ (Σ).

We will �nally detail a stronger control under an additional assumption to highlight
how the lack of compactness of Willmore immersions evidenced by theorem E can be seen
as a consequence of the lackluster properties of the conformal group.

Theorems B and C were part of the preprint [Mar19a], theorems A and F can be found
in [Mar19c], and theorems D, E, G and H in [Mar19b].
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Introduction (Français)

Pour familiariser le lecteur aux sujets abordés dans ce travail doctoral, nous présentons
un état de l'art chronologique, avant de détailler son contenu chapitre par chapitre. Les in-
novations de l'auteur y sont soulignées, mais nous ne donnerons que les résultats centraux,
et parfois dans une forme simpli�ée pour ne pas avoir à s'encombrer de détails techniques
dans une partie conçue avant tout comme une discussion d'idées. Toutes les notions, tous
les résultats, tous les théorèmes seront introduits, écrits et détaillés dans leurs chapitres
respectifs.

Courbure moyenne et énergie élastique :

En 1680, R. Hooke, un philosophe anglais, frotta un archet sur une �ne plaque mé-
tallique couverte d'une mince couche de sable. Il remarqua que le sable s'organisait selon
d'étonnants motifs géométriques. Au début du XIXème siècle, E. Chladni systématisa
cette expérience et mit en évidence la dépendance du motif formé à l'égard de la forme de
la plaque. Il légua son nom à ces intéressantes �gures de Chladni.

Figure 2 � Figures de Chladni

Cela intrigua su�samment Napoléon Bonaparte pour qu'il organisât un concours scien-
ti�que a�n d'expliquer ce phénomène. Parmi les concurrents étaient S. Germain et S. Pois-
son. Cette dernière gagna le concours grâce à son explication décrivant la plaque comme
une surface élastique en vibration. Le sable s'accumulait alors dans les zones n'oscillant
pas, menant aux �gures de Chladni. Dans son mémoire [Ger31], S. Germain relia le com-
portement élastique d'une surface de R3 en un point donné à sa courbure moyenne H en ce
point. En s'inspirant de l'étude des courbes élastiques menées par D. Bernoulli et L. Euler,
on peut extrapoler à partir de l'énergie élastique d'une courbe γ donnée, E =

∫
γ κ

2, où κ
est la courbure de γ, et trouver l'énergie élastique bidimensionnelle d'une surface immergée
Σ :

W =

∫
Σ
H2.

Cette quantité, sur laquelle est basée ce travail, est appelée l'énergie de Willmore.

Invariance conforme :

Au XXème siècle, G. Thomsen, dans [Tho23], et W. Blaschke, dans [Bla55], dévelop-
pèrent l'angle d'approche de l'énergie de Willmore que nous adopterons : l'étude par la
géométrie conforme. A la base sont les propriétés d'invariance conforme deW , c'est-à-dire
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que W reste inchangée sous l'action des isométries de R3, des dilatations, et des inversions
qui ne changent pas la topologie de la surface. Ensemble, ces transformations génèrent le
groupe conforme de R3, i.e. le groupe des tranformations ambientes préservant les angles.
Bien que l'énergie de Willmore ne soit pas invariante sous toutes les inversions (et ne soit
donc qu'un invariant conforme contextuel) une quantité très proche l'est. La courbure sans
trace totale

E =

∫
Σ

∣∣Å∣∣2,
où Å est la partie sans trace de la seconde forme fondamentale de l'immersion est, elle, bel
et bien invariante sous tous les di�éomorphismes engendrant le groupe conforme. Il est
intéressant de remarquer qu'elle ne di�ère de W que par une constante topologique, d'où
les propriétés remarquables de W sous l'action des inversions.

Immersions de Willmore :

Etant donnée la nature élastique de l'énergie de Willmore, il est naturel d'essayer d'en
trouver les minimiseurs. Les premiers exemples viennent des surfaces minimales, pour qui
la courbure moyenne est nulle. Cependant, de telles surfaces ne peuvent être compactes,
et donc ne répondent pas pleinement à nos interrogations. Dans les années 1960, T.
Willmore, dans [Wil65], donna le minimum absolu de l'énergie de Willmore, 4π, atteint
par la sphère ronde, et conjectura que le minimum pour les tores était à 2π2, atteint par
le tore de Cli�ord. Cette conjecture garda son nom, et est restée non démontrée jusqu'en
2015 quand F. Marques et A. Neves la resolvèrent (dans [MN16]) en utilisant des outils de
théorie géométrique de la mesure développés à partir de la théorie min-max de F. Almgren
et J. Pitts ([Pit81]). Nous élargirons notre champ d'étude et nous ne considérerons pas
seulement les minimiseurs, mais les points critiques de l'énergie de Willmore. Ils portent
le nom de surfaces de Willmore, ou d'immersions de Willmore, selon que nous considérons
l'objet dans R3 ou son paramétrage. Les inversions de surfaces minimales o�rent alors un
large spectrum d'exemples aux propriétés variées, alors que le tore de Cli�ord montre que
les immersions de Willmore ne sont pas limitées aux inversions de surfaces minimales de
R3. L'équation d'Euler-Lagrange correspondante porte le nom d'équation de Willmore :

∆H +H
∣∣Å∣∣2 = 0.

L'étude des surfaces de Willmore date des travaux de G. Thomsen and W. Blaschke, avec
d'importantes contributions de T. Willmore ([Wil93]), R. Bryant ([Bry84]), E. Kuwert et
R. Schätzle (qui prouva le premier résultat d'ε-régularité dans [KS01a]). Dans la suite,
nous adopterons le formalisme de T. Rivière développé à travers plusieurs de ses publica-
tions. Partant des hypothèses nécessaires pour dé�nir l'énergie de Willmore, il introduisit
la notion d'immersion faible ([Riv08]). Même si, dans ce contexte, l'équation de Willmore
n'a pas de sens rigoureux, des lois de conservation (qui, comme Y. Bernard le montra
dans[Ber16], sont une conséquence de l'invariance conforme) permirent d'introduire la no-
tion d'immersions faibles de Willmore (toujours fait dans [Riv08]). Une exploitation plus
poussée des lois de conservation et des équations de type Jacobiennes qu'elles impliquent,
menèrent à un autre résultat d'ε-régularité, grâce à l'intégrabilité par compensation, qui
assurèrent la régularité des immersions faibles de Willmore.

En utilisant les mêmes méthodes et une analyse sur des disques épointés, Y. Bernard
et T. Rivière étendirent le domaine d'étude aux immersions de Willmore rami�ées (voir
[BR13]) et décrirent complètement le comportement d'immersions de Willmore rami�ées
autour d'un point de rami�cation par deux quantités appelées résidus. Le premier résidu
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est vraiment un résidu, au sens mathématique du terme, puisqu'il vient des lois de con-
servation suscitées. Le second résidu, cependant n'en est pas un, et est simplement une
manière de décrire précisément le comportement de la courbure moyenne au point de ram-
i�cation.

Suites d'immersions de Willmore :

Le cadre des immersions faibles est particulièrement utile quand on considère des suites
dont l'énergie de Willmore est uniformément bornée. Les hypothèses qu'elles satisfont
donnent juste assez de régularité et de contrôle pour impliquer une convergence faible à
extraction près, loin d'un nombre �ni de points de concentration (voir [Riv16]). En ces
points, l'immersion limite peut potentiellement dégénérer et donner un point de rami�-
cation. Ces phénomènes de concentration-compacité, selon les termes de W. Sacks et K.
Uhlenbeck ([SU81]), ont été étudiés avec succès, par exemple dans le cas des surfaces à
courbure moyenne constante (voir H. Brézis et J.-M. Coron [BC85] pour le problème en
lui-même, et l'étude de la concentration faite par P. Laurain dans [Lau12b]). Pour leur
part, les suites d'immersions faibles de Willmore convergent régulièrement loin des points
de concentration, grâce à l'ε-régularité. Des "blow-up" e�ectués sur les points de con-
centration révèlent un arbre de bulles constitué de sphères de Willmore, potentiellement
rami�ées, potentiellement non compactes, collées sur les points de concentration à l'aide de
domaines de type cou. Y. Bernard et T. Rivière, dans [BR14], et P. Laurain et T. Rivière
avec d'autres hypothèses dans [LR18a], montrèrent que les suites d'immersions faibles de
Willmore satisfont un résultat de quanti�cation de l'énergie : l'énergie de Willmore de
la suite tend vers la somme de l'énergie de Willmore de la surface limite et de l'énergie
de Willmore de toutes les bulles. Ceci est équivalent avec le principe d'absence d'énergie
dans le cou : les domaines de type cou n'ont pas d'énergie à la limite. Les phénomènes de
concentration représentent une perte de compacité pour les immersions faibles de Willmore
puisqu'elle peuvent dégénérer en immersions rami�ées. Cependant, ces arbres de bulles de
Willmore ne peuvent être arbitraires et sont en fait contraints. En e�et, dans [LR18a] P.
Laurain et T. Rivière éliminèrent assez de con�gurations pour assurer la compacité des
immersions de Willmore avec une énergie strictement inférieure à 12π. L'extension de ce
théorème est un des résultats majeurs de ce mémoire.

Application de Gauss conforme :

Un autre moyen d'étudier les surfaces de Willmore fut introduit dans [Bry84] par R.
Bryant. Dans cet article, il utilisa la notion d'application de Gauss conforme pour étudier
les immersions de Willmore. L'application de Gauss conforme peut être comprise comme
une généralisation des cercles osculateurs d'une courbe dans R2 : à un point p ∈ Σ,
elle associe la sphère tangente de rayon [H(p)]−1. Vue comme une application à valeurs
dans l'espace des sphères, représenté par l'espace de de Sitter S4,1 ⊂ R4,1, elle donne
une application Y qui est minimale dans S4,1 si et seulement si l'immersion de départ est
Willmore. Plusieurs études furent conduites sur cette application, par exemple [Esc88]
par J.-H. Eschenburg ou [Pal91] par B. Palmer, et beaucoup des propriétés des surfaces
de Willmore transcrites dans le langage de la Gauss conforme. En fait, dans [MR17], A.
Michelat et T. Rivière établirent un parallèle profond entre le rôle de la Gauss conforme
pour les surfaces de Willmore et celui joué par l'application de Gauss dans le cas des
surfaces à courbure moyenne constante. En utilisant des méthodes de groupes cycliques sur
l'application de Gauss conforme, F. Hélein obtint même, dans [Hél98], une représentation
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de Weierstrass, malheureusement non explicite.
Les applications de Gauss conformes se sont également révélées cruciales s'agissant de

déterminer si une immersion de Willmore est la transformation conforme d'une immersion
minimale (autrement dit, si elle conformément minimale). En e�et, dans [Bry84], R. Bryant
introduisit la quartique de Bryant Q, dé�nie comme :

Q = 〈∂2Y, ∂2Y 〉.

Il montra ensuite qu'une immersion donnée est conformément minimale si et seulement si
Q = 0. Grace à des techniques plus avancées inventées par J. Dorfmeister, F. Pedit et
H.Wu (la méthode DPW, voir [DPW98]), ces résultats furent étendus aux transformations
conformes d'immersions minimales de R3, S3 et H3, et même aux transformations con-
formes de surfaces à courbure moyenne constante. Des résultats à ce sujet peuvent être
trouvés dans [Eji88], [Ric97], [Boh12] et [DW19].

Description du contenu :

Le premier chapitre se concentrera sur une introduction correcte des notions de base
tournant autour des immersions de Willmore. Nous parcourrons les dé�nitions et présen-
terons les calculs des lois de conservation en considérant W et E comme Lagrangiens. A
partir de cela, nous trouverons les équations de Willmore telles qu'elles furent exposées par
T. Rivière. De plus, nous modi�erons deux d'entre elles pour leur donner une forme origi-
nale, bien que moins remarquable algébriquement (nous perdrons l'aspect Jacobien), mais
qui ne fait appel qu'à la courbure moyenne. Cette nouvelle forme sera utile au chapitre
4. Nous exposerons ensuite le formalisme des immersions faibles de Willmore, en o�rant
des améliorations marginales sur des estimées déjà existantes. Par exemple, nous obtien-
drons un contrôle plus précis, car ne dépendant que de la courbure moyenne au lieu de
l'application de Gauss, sur la quantité ~L qui dérive de la première loi de conservation.
Pour illustrer ce que nous pouvons attendre en suivant ces raisonnements plus précis, nous
obtiendrons un résultat de régularité faible pour les surfaces de Willmore :

Théorème A. Soit Φ une immersion conforme faible de Willmore. Alors pour tout r < 1
il existe une constante C ∈ R telle que

‖H∇Φ‖L2,1(Drρ) ≤ C‖H∇Φ‖L2(Dρ),

et
‖∇~n‖L2,1(Drρ) ≤ C ‖∇~n‖L2(Dρ) .

Le théorème A contraste avec le classique résultat d'ε-régularité, que nous rappellerons
également.

Dans le deuxième chapitre, nous étudierons l'application de Gauss conforme, à la fois
pour son lien avec les surfaces de Willmore, et en tant qu'outil pour déterminer si une sur-
face est l'image par une application conforme d'une surface à courbure moyenne constante
(nous appellerons de telles surfaces : conformément à courbure moyenne constante ou con-
formément CMC). Nous introduirons l'application de Gauss conforme dans le cas général,
nous mettrons en avant ses propriétés et comment sa géométrie éclaire l'immersion. Au
coeur de ce chapitre, nous étudierons son comportement quand l'immersion est Willmore
ou conformément CMC. Si la plupart des résultats ont déjà été obtenus avec la méth-
ode DPW, l'originalité de ces travaux est dans les preuves, qui ne reposent que sur de la
géométrie di�érentielle de base dans les espaces de Lorentz. En conclusion du chapitre, nous
obtiendrons deux caractérisations des immersions conformément CMC. Tout d'abord :
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Théorème B. Soit X une immersion conforme sur D dans S3, et Φ (respectivement Z)
sa représentation dans R3 (respectivement dans H3). On suppose que X n'a pas de point
ombilic. Une des représentations de X est conformément CMC dans son espace ambient
si et seulement si sa quartique de Bryant Q est holomorphe et X est isothermique. Plus

précisément si W est l'opérateur de Willmore,
(
WS3 (X)

4

)2
− ω2e−4ΛQ est réel et

� Φ est conformément CMC (respectivement minimal) dans R3 si et seulement si(
WS3(X)

4

)2

− ω2e−4ΛQ = 0.

� X est conformément CMC (respectivement minimal) dans S3 si et seulement si(
WS3(X)

4

)2

− ω2e−4ΛQ < 0.

� Z est conformément CMC (respectivement minimal) dans H3 si et seulement si(
WS3(X)

4

)2

− ω2e−4ΛQ > 0.

Les immersions conformément minimales véri�ent WS3(X) = 0.

Une variation du théorème B donne le résultat équivalent :

Théorème C. Soit X une immersion conforme sur D dans S3, et Φ (respectivement Z)
sa représentation dans R3 (respectivement dans H3). On suppose que X n'a pas de point
ombilic. Une des représentations de X est conformément CMC dans son espace ambient
si et seulement si Q est holomorphe et ω2Q ∈ R, où ω ∈ C est la courbure sans trace de
X. More precisely
� Φ est conformément CMC (respectivement minimal) dans R3 si et seulement si(

WS3(X)

4

)2

− ω2e−4ΛQ = 0.

� X est conformément CMC (respectivement minimal) dans S3 si et seulement si(
WS3(X)

4

)2

− ω2e−4ΛQ < 0.

� Z est conformément CMC (respectivement minimal) dans H3 si et seulement si(
WS3(X)

4

)2

− ω2e−4ΛQ > 0.

Les immersions conformément minimales véri�ent WS3(X) = 0.

L'originalité des théorèmes B et C repose dans la caractérisation explicite de l'espace
ambient, inconnue jusque là, ainsi que dans la substitution de la condition isothermique par
ω2Q ∈ R. Ceci met donc en exergue un lien profond entre Q et le caractère isothermique
de la surface.

Le troisième chapitre traitera de la compacité des suites d'immersions faibles. Il dé-
taillera principalement l'état de la recherche et les théorèmes de quanti�cation de l'énergie,
mais présentera également une forte correspondance entre les bulles et la surface sur laquelle
on les colle. En e�et nous montrerons que l'ordre de rami�cation de la bulle est fortement
contraint par l'ordre de rami�cation du point de concentration sur laquelle on le colle :
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Théorème D. On ne peut coller un point de rami�cation de Willmore que sur un bout
de Willmore de même multiplicité, et vice versa.

De plus, nous o�rirons le premier exemple explicie de concentration pour les surfaces
de Willmore.

Théorème E. Il existe Φk : S2 → R3, une suite d'immersions de Willmore telles que

W (Φk) = 16π,

et
Φk → Φ∞,

régulièrement sur S2\{0}, où Φ∞ est l'inversion d'une surface de López. De plus

lim
k→∞

E(Φk) = E(Φ∞) + E(Ψ∞),

où Ψ∞ : C→ R3 est l'immersion d'une surface d'Enneper.

Le théorème E met en exergue la non compacité des immersions de Willmore à haute
énergie.

En�n, le quatrième chapitre étudiera la con�guration composée d'une bulle minimale
simple collée sur un point de rami�cation, a�n d'étendre le résultat de compacité de P.
Laurain et T. Rivière. Nous montrerons tout d'abord un nouveau résultat d'ε-régularité
avec seulement un contrôle sur H :

Théorème F. Soit Φ une immersion faible conforme de Willmore. Alors il existe ε′0 tel
que si

‖H∇Φ‖L2(D) ≤ ε
′
0

alors pour tout r < 1 il exite une constante C ∈ R telle que

‖H∇Φ‖L∞(Dr) ≤ C‖H∇Φ‖L2(D),

et
‖∇Φ‖W 3,p(Dr) ≤ C‖∇Φ‖L2(D)

pour tout p <∞.

Puis, grâce à des développements successifs, nous prouverons un contrôle sur le second
résidu de la surface limite.

Théorème G. Soit Φk une suite d'immersions de Willmore d'une surface compacte Σ
dont l'énergie de Willmore est uniformément bornée, et dont les classes conformes induites
sont dans un compact de l'espace de module. Alors, à chaque point de concentration p ∈ Σ
de multiplicité θp + 1 sur lesquels une bulle minimale simple se développe, le second résidu
αp de l'immersion limite Φ∞ véri�e

αp ≤ θp − 1.

Puisque le second résidu ne véri�e à priori que αp ≤ θp, ceci représente un gain réel de
régularité. Il faut également remarquer que, si l'exemple o�ert par le théorème E véri�e bien
cette nouvelle estimée, elle su�t pour éliminer plusieurs con�gurations d'arbres de bulles.
Notamment, nous montrerons que les surfaces d'Enneper inversées, et plus généralement,
toutes les Chen-Gackstatter inversées, quel que soit le genre, ne peuvent accueillir une
bulle minimale simple. A partir de ceci, nous déduirons une amélioration de la compacité
pour les immersions de Willmore à basse énergie.
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Théorème H. Soit Σ une surface fermée de genre 1 et Φk : Σ→ R3 une suite d'immersions
de Willmore telle que la métrique induite reste dans un compact de l'espace des modules
et telle que

lim sup
k→

W (Φk) ≤ 12π.

Alors il existe une suite de di�éomorphismes ψk de Σ et une suite de transformations
conformes Θk de R3 ∪ {∞}, telle que Θk ◦ Φk ◦ ψk converge à extraction près vers une
immersion de Willmore lisse Φ∞Σ→ R3.

Nous détaillerons en�n un contrôle plus fort sous une hypothèse additionnelle pour
mettre en évidence la manière dont l'absence de compacité suscitée peut être vue comme
une conséquence des propriétés du groupe conforme.

Les théorèmes B et C font partie de la prépublication [Mar19a], les théorèmes A et F
peuvent être trouvés dans [Mar19c], et les théorèmes D, E, G et H dans [Mar19b].
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1.1 Introduction

This introduction is to be seen as a quick walkthrough of the present chapter in which
the original contributions of the author will be highlighted. While we will only give broad
ideas and concepts to contextualize the important results, they will be reframed more
rigorously in the core (notably all the involved quantities will be precisely de�ned). In
that way the introduction is to be seen as an independant and heuristic explanation of the
content of this chapter.

In it we will mostly establish notations and the state of the art. As a result some
proofs will be glossed over. However we will o�er some marginal improvements over a few
of preexisting results, in which case the demonstration will be detailed. Those results are
showcased in this introduction.
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Given an immersion Φ of a Riemann surface (Σ, g) into R3, its Willmore energy is a
measure of its mean curvature over all the surface :

W (Φ) =

∫
Σ
H2dvolg.

It was �rst introduced as a tool for the study of 2 dimensional elasticas by S. Germain
and S. Poisson. We will however consider it in the conformal setting, �rst conceived by W.
Blashcke and then furthered by T. Willmore. Indeed the Willmore energy is a contingent
conformal invariant, meaning that it is invariant under the conformal transformations of
R3∪{∞} that do not change the topology of the surface. More precisely the total tracefree
curvature, de�ned by

E(Φ) =

∫
Σ

∣∣Å∣∣2dvolg,

is the true conformal invariant. It only di�ers from W by a topological quantity, thanks to
Gauss-Bonnet theorem. An interesting question revolving around the Willmore energy is
the search for minimizers, �rst globals (found by T. Willmore), and then for a given genus.
The genus 1 case has been solved recently by F. Marques and A. Neves using geometric
measure theory tools (see [MN16]).

Broadening our scope (in section 1.2.2), we then introduce the notion of Willmore
immersion (critical points of the Willmore energy) and conformal Willmore immersion
(critical points in a conformal class). The corresponding Euler-Lagrange equation can
then be computed : it is called the Willmore equation. Since its analytical properties are
lackluster, we wish to �nd a set of more interesting equations. Exploiting the conformal
invariance thanks to Noether's theorem then yields four conservation laws (section 1.2.3).

Theorem 1.1.1. Let Σ be a Riemann surface and Φ ∈ C∞
(
Σ,R3

)
a Willmore immersion.

Then Φ satis�es the following conservation laws :

div (Vtra) = div (Vdil) = div (Vrot) = div
(
Ṽrot

)
= div (Vinv) = 0,

where 

Vtra = −2
(
∇H~n+HÅ∇Φ

)
Vdil = 〈Φ, Vtra〉
Vrot = Φ× Vtra + 2H∇Φ× ~n

Ṽrot = Φ× Vtra + 2
(
Å∇Φ

)
× ~n

Vinv = −|Φ|2Vtra + 2 〈Φ, Vtra〉Φ− 4Φ×
(
~n× Å∇Φ

)
.

If Φ is branched, these stand away from the branch points.

The result itself is not new, the conservation laws were already found by T. Rivière
(see theorem I.4 [Riv08]). In [Ber16], Y. Bernard showed that the �rst three resulted from
conservation laws, and conjectured the origin of the fourth. We will use his formalism in
section 1.2.3 to detail this. We must however point out that these were already computed
in section 3.1 of [MR17] by A. Michelat and T. Rivière. We will use a di�erent formalism,
closer to the one in [Ber16].
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Using these conservation laws, one can introduce auxiliary quantities ~L, S and ~R which
satisfy a classical Jacobian-like system (section 1.2.4) :

∆S = −
〈
∇~n,∇⊥ ~R

〉
∆~R = ∇~n×∇⊥ ~R+∇⊥S∇~n

∆Φ =
1

2

(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
.

Going into the details and the nature of the quantities introduced, this sytem can be
modi�ed into an original form which can be exploited later.

Theorem 1.1.2. Let Φ ∈ C∞
(
D,R3

)
satisfy the hypotheses of theorem 1.2.16. Then

∆S =
〈
H∇Φ,∇⊥ ~R

〉
∆~R = −H∇Φ×∇⊥ ~R−∇⊥SH∇Φ

∆Φ =
1

2

(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
.

We can then introduce the notion of weak immersion as devised by T. Rivière to enjoy
a weak framework for Willmore immersions (this will be the subject of section 1.3). First,
with weak hypotheses in local conformal charts, we can prove a Harnack inequality on the
conformal factor in domains of small energies. With an added parameter r0 measuring the
number of small energy disks required to cover the domain of a conformal chart, we can
extend this result to domains of merely bounded energy. That parameter is de�ned as

r0 =
1

ρ
inf

{
s

∣∣∣∣∣
∫
Bs(p)

| ∇~n|2 =
8π

6
, ∀p ∈ Dρ s.t. Bs(p) ⊂ Dρ

}
.

Corollary 1.1.1. Let Φ ∈ E (Dρ) conformal, ~n be its Gauss map and λ its conformal
factor. We assume that

‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) ≤ C0.

Then for any r < 1 there exists cρ,r ∈ R and C ∈ R depending on r, C0 and r0 (de�ned by
(1.3.67)) such that

‖λ− cρ,r‖L∞(Drρ) ≤ C.

This Harnack inequality gives meaning to the �rst conservation law in the weak frame-
work, and thus gives sense to the notion of weak Willmore immersion. From this, one can
prove low-regularity results for weak Willmore immersions in Lorentz spaces. First is an
improvement on the controls on the quantity ~L :

Theorem 1.1.3. Let Φ ∈ E (Dρ) be a conformal weak Willmore immersion. Let ~n denote
its Gauss map, H its mean curvature and λ its conformal factor.

We assume
‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) ≤ C0.

Then for any r < 1 there exists a constant ~Lρ,r ∈ R3 and a constant C ∈ R depending on
r, C0 and r0 (de�ned in (1.3.67)) such that∥∥∥eλ (~L− ~Lρ,r

)∥∥∥
L2,∞(Drρ)

≤ C ‖H∇Φ‖L2(Dρ) .
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This is an improvement over theorem 7.4 of [Riv16], in that the control depends only on
the mean curvature instead of on the whole second fundamental form. Estimate (A.2.11)
ensures that one can �nd theorem 7.4 back from our result. With this base, one can �nd
an overall control in Lorentz spaces, without a small energy hypothesis. The following
regularity result is thus remarkable in that it di�ers from the ε-regularity result.

Theorem A. Let Φ ∈ E (Dρ) be a weak conformal weak Willmore immersion. We assume

‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) ≤ C0.

Then for any r < 1 there exists a constant C ∈ R depending on r, C0 and r0 such that

‖H∇Φ‖L2,1(Drρ) ≤ C‖H∇Φ‖L2(Dρ),

and
‖∇~n‖L2,1(Drρ) ≤ C ‖∇~n‖L2(Dρ) .

The last four results were part of the preprint [Mar19c]. Due to the critical nature of
the equation systems for Willmore immersions, it is unreasonable to expect better controls
without further assumptions.

However, if we consider disks of small energy, then classical ε-regularity results have
been found, like theorem I.5 in [Riv08] and theorem I.1 in [BR14]. These results control
the immersion, its Gauss map and all its derivatives by ‖∇~n‖L2 , and thus ensure the
smoothness of weak Willmore immersions.

The present chapter will then conclude in section 1.5 with a study of branched Willmore
immersions near the branch points based on Y. Bernard and T. Rivière work in [BR13] with
an emphasis on describing the behavior of what we will later study as Bryant's quartic,
around the branch point.

1.2 Willmore surfaces

1.2.1 The Willmore energy

Consider Φ an immersion from a closed Riemann surface Σ into R3. We denote by
g := Φ∗ξ the pullback by Φ of the euclidean metric ξ of R3, also called the �rst fundamental
form of Φ or the induced metric. Let dvolg be the volume form associated with g. The
Gauss map ~n of Φ is the normal to the surface. In local coordinates (x, y) :

~n :=
Φx × Φy

|Φx × Φy|
,

where Φx = ∂xΦ, Φy = ∂yΦ and × is the usual vectorial product in R3. Denoting π~n the
orthonormal projection on the normal (meaning π~n(v) = 〈~n, v〉~n), the second fundamental
form of Φ at the point p ∈ Σ is de�ned as follows.

~Ap(X,Y ) := Ap(X,Y )~n := π~n
(
d2Φ (X,Y )

)
for all X,Y ∈ TpΣ.

The mean curvature of the immersion at p is then

~H(p) = H(p)~n =
1

2
Trg (A)~n,

while its tracefree second fundamental form is

Åp(X,Y ) = Ap(X,Y )−H(p)gp(X,Y ).
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De�nition 1.2.1. The Willmore energy W of Φ is de�ned as

W (Φ) :=

∫
Σ
H2dvolg.

This quantity, which is at the core of the present work, arose naturally in the study
of elasticity in the �rst third of the XIXth century in the works of S. Poisson [Poi14] and
S. Germain [Ger31]. It is indeed an elastic energy that can be thought to measure how
extrinsiquely curved an immersion of a Riemann surface is. G. Thomsen and W. Blaschke
then studied it in the framework of conformal geometry due to its conformal invariance
properties. To explore these we brie�y recall basic notions.

De�nition 1.2.2. Let (X, g) and (Y, h) be two Riemannian manifolds. A di�eomorphism
ϕ : X → Y is conformal if and only if g and the induced metric onX by ϕ are proportional.
In other words, if and only if there exists µ : X → R such that

ϕ∗h = e2µg.

The conformal group of (X, g), denoted Conf(X, g) is the set of conformal di�eomorphim
(X, g)→ (X, g).

Since, in this section, we will mostly work with immersions in R3 with the classic
euclidean product, the corresponding conformal group Conf(R3 ∪ {∞}) will be of crucial
interest to us. We will often perform a slight abuse of notations and write Conf(R3) instead
of the more formally correct Conf(R3 ∪ {∞}). This group is fully described by Liouville
theorem (see theorem 1.1.1 of [AG96] for a proof).

Theorem 1.2.1. Any ϕ ∈ Conf(R3) satis�es

ϕ = T~a ◦RΘ ◦Dλ

if ϕ (∞) =∞,
ϕ = T~b ◦RΘ ◦Dλ ◦ ι ◦ T~a

otherwise. Here T~a and T~b denote translations,Dλ a dilation, RΘ a rotation and ι : x 7→ x
|x|2

the inversion at the origin. Such decompositions are unique.

Proposition 1.2.2. The Willmore energy is invariant under the action of translations,
rotations and dilations. It is not left invariant by the inversions.

Proof. Since H is an extrinsic metric invariant it is left unchanged under the action of am-
bient isometries. A straightforward computations shows that a dilation of factor f changes
H into f−1H, while dvol turns into f2dvol. Then H2dvol is pointwise invariant under
the action of dilations. The Willmore energy is thus as stated unchanged by translations,
rotations and dilations.

A round sphere has a Willmore energy of 4π, while a plane has a Willmore energy of
0. Since inverting a round sphere at one of its point yields a plane, the Willmore energy is
not an inversion invariant.

Proposition 1.2.2 does not allow us to consider W as a full conformal invariant due
to the action of some inversions. However the tracefree fundamental form yields a real
conformal invariant quantity.

Proposition 1.2.3. The quantity
∣∣Å∣∣2

g
dvolg is a pointwise conformal invariant.
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Proof. We refer the reader to theorem 7.3.1 of [Wil93] for a detailed proof.

The "real" conformal invariant energy is then the total tracefree curvature

E (Φ) =

∫
Σ

∣∣Å∣∣
g
dvolg.

Besides, this quantity is deeply correlated with the Willmore energy, which will allow us
to recover conformal invariance properties for W .

Lemma 1.2.1. If we denote K := det
(
g−1A

)
the Gauss curvature of Φ, we have

∣∣Å∣∣2
g

=
1

2

∣∣A∣∣2
g
−K = 2H2 − 2K. (1.2.1)

Proof. At a given point, we write

g−1A =

(
ε φ
φ γ

)
.

Then
H =

ε+ γ

2

and

g−1Å =

( ε−γ
2 φ

φ − ε−γ
2

)
.

Hence ∣∣Å∣∣2
g

= 2

((
ε− γ

2

)2

+ φ2

)

=
ε2

2
+
γ2

2
+ φ2 −

(
εγ − φ2

)
=

1

2

∣∣A∣∣2
g
−K

= 2

(
ε+ γ

2

)2

− 2
(
εγ − φ2

)
= 2H2 − 2K.

This concludes the proof.

Using the Gauss-Bonnet formula, we can conclude that the Willmore energy and the
total tracefree curvature di�er by a topological quantity :

Proposition 1.2.4. Let χ (Σ) denote the Euler characteristic of Σ, and

E (Φ) =

∫
Σ
|A|2g dvolg =

∫
Σ
|∇g~n|2 dvolg.

Then
E (Φ) = 2W (Φ)− 2χ (Σ)

=
1

2
E(Φ)− χ (Σ) .

(1.2.2)

Equalities (1.2.2) show that W (and E) are contingent invariant under the action of
ambient conformal di�eomorphisms as long as the topology is not changed (meaning as long
as you do not center an inversion on the surface). These conformal invariance properties
introduced by W. Blaschke ([Bla55]) and rediscovered by T. Willmore ([Wil93]) make the
interest of these energies in conformal geometry clear.
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It is worth mentioning that these properties are not generic for second fundamental
form based functionals. Indeed, in [MN18], A. Mondino and H. Nguyen have shown that
among all the possible curvature functionals depending on the second fundamental form,
the Willmore functional is the only conformal invariant, up to topological terms. This
property helps explain the interest the Willmore functional has garnered through the years,
and its importance in conformal geometry.

Since many prominent examples of minimal surfaces with branched ends (namely the
Enneper surface, the Chen-Gackstatter surfaces and López surfaces) will be pivotal in what
follows, we extend our studies to non compact branched immersions.

De�nition 1.2.3. Let Σ be a compact Riemann surface. An application Φ : Σ → R3

is a branched immersion if and only if it is an immersion away from a �nite number of
points p1, . . . , pn, around which |∇Φ| ∼pi Crli with li ∈ N∗. The pi are branch points of
multiplicity li + 1.
It is a non compact branched immersion if and only if it is a branched immersion away
from a �nite number of points q1, . . . , qm, around which |∇Φ| ∼qi Cr−li with li ∈ N∗. The
point qi is then an end (possibly branched) of multiplicity li − 1.

There exists a phrasing of Gauss-Bonnet formula for branched (non necessarily com-
pact) immersions :

Theorem 1.2.5. Let Φ : Σ→ R3 be a branched immersion. Let (pi)i=1,..n be its branch
points of multiplicity ni, and (qj)j=1,..m be its ends of multiplicity mj . Then∫

Σ
Kdvolg = 2π

χ (Σ) +

n∑
i=1

(ni − 1)−
m∑
j=1

(mj + 1)

 . (1.2.3)

Proof. We only give the ideas of the proof and refer the reader to theorem 2.6 of [LN15]
for details.

One can apply Gauss-Bonnet formula with boundary to

Σr = Σ\

 n⋃
i=1

Br(pi) ∪
m⋃
j=1

Br(qj)

 .

Denoting kg the geodesic curvature obtain :∫
Σr

Kdvolg +
n∑
i=1

∫
∂Br(pi)

kgds+

m∑
j=1

∫
∂Br(qj)

kgds = 2πχ (Σr) .

Letting r → 0 yields the desired result, given the behavior of ∇Φ around the branch points
and ends.

Equality (1.2.3) gives a very e�cient way to compute the transformations of W under
the action of inversions.

Theorem 1.2.6. Let Φ : Σ → R3 be a branched immersion, and Θ ∈ Conf
(
R3
)
. Let

Ψ = Θ◦Φ. We denote p1, . . . pa the branch points of Φ that become ends of Ψ and q1, . . . qb
the ends of Φ that become branch points of Ψ. We denote n1 . . . na and m1 . . .mb their
respective multiplicity. Then

W (Φ) = W (Ψ) + 4π

 a∑
i=1

ni −
b∑

j=1

mj

 .
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Proof. We denote p1, . . . pa, pa+1, . . . pn the branch points and q1, . . . qb, qb+1, . . . qm the ends
of Φ and denote ni (respectively mj) their multiplicity. Applying (1.2.3) to Φ yields :

∫
Σ
KΦdvolgΦ = 2π

χ (Σ) +

a∑
i=1

(ni − 1)−
b∑

j=1

(mj + 1) +

n∑
i=a+1

(ni − 1)−
m∑

j=b+1

(mj + 1)

 .

(1.2.4)
The branch points of Ψ are q1, . . . , qb, pa+1, . . . , pn of multiplicity m1, . . . ,mb, na+1, . . . , nn.
Its ends are p1, . . . , pa, qb+1, . . . qm. of mutliplicity n1, . . . , na,mb+1, . . .mm. Then applying
(1.2.3) to Φ gives

∫
Σ
KΨdvolgΨ = 2π

χ (Σ)−
a∑
i=1

(ni + 1) +
b∑

j=1

(mj − 1) +
n∑

i=a+1

(ni − 1)−
m∑

j=b+1

(mj + 1)

 .

(1.2.5)
Integrating equality (1.2.1) applied to Φ and Ψ states, since E is a conformal invariant :

2W (Φ)− 2

∫
Σ
KΦdvolgΦ = E(Φ) = E(Ψ) = 2W (Ψ)− 2

∫
Σ
KΨdvolgΨ .

Consequently

W (Φ) = W (Ψ) +

∫
Σ
KΦdvolgΦ −

∫
Σ
KΨdvolgΨ . (1.2.6)

Injecting (1.2.4) and (1.2.5) into (1.2.6) yields

W (Φ) = W (Ψ) + 4π

 a∑
i=1

ni −
b∑

j=1

mj

 ,

which concludes the proof.

An immediate consequence is a characterization of the conformal transformations of a
minimal surface (that we call conformally minimal) :

Corollary 1.2.1. A branched immersion Φ : Σ → R3 is the conformal transform of a
branched minimal immersion in R3 if and only if

W (Φ) = 4πθ(p,Φ),

where p is the point of R3 of highest density for Φ.

Trying to bound the Willmore energy from below for compact surfaces (minimal sur-
faces o�er a trivial bound for non-compact ones) has proven an interesting and di�cult
question. While it is not the main subject of the present work, it is worth going over, if
only brie�y.

The �rst bound came from T. Willmore (in [Wil65], see also theorem 7.2.2 of [Wil93]) :

Theorem 1.2.7. Let Σ be a closed orientable surface and Φ : Σ → R3 be a smooth
immersion of Σ into R3. Then

W (Φ) ≥ 4π.

Moreover W (Φ) = 4π if and only if Φ(Σ) is a round sphere.

T. Willmore formulated in [Wil65] its eponym conjecture, which was proved in 2015 by
F. Marques and A. Neves (see [MN16]).
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Theorem 1.2.8. The minimum of the Willmore energy among surfaces of genus 1 is 2π2.
It is reached by the Cli�ord torus.

The Cli�ord torus can be seen equivalently as the surface parametrized by

x =

(
1 +

√
2

2
cosu

)
cos v

y =

(
1 +

√
2

2
cosu

)
sin v

z =

√
2

2
sinu,

or as the image by a stereographic projection of the natural embedding of S1
√

2
× S1
√

2
in S3.

Figure 1.1 � The Cli�ord Torus

Little is known concerning the minima of the Willmore energy for higher genus beyond
the conjectured shape of the minimizer for the genus 2 (see [Kus89] by R. Kusner). The
following inequality is however worth mentioning :

Theorem 1.2.9. Let Φ : Σ→ R3. Then for all p ∈ R3

W (Φ) ≥ 4πθ (Φ, p) , (1.2.7)

where θ (Φ, p) is the density of Φ at p.

This result known as Li-Yau inequality (see theorem 6 in [LY82]), combined with the
existence of examples of energy strictly below 8π for any genus (the Lawson surfaces, see
[Law70]), proves that the minimizers of the Willmore energy are embedded.

1.2.2 Willmore surfaces

De�nition 1.2.4. A Willmore immersion Φ ∈ C∞
(
Σ,R3

)
is a smooth immersion which

is a critical point of W (or equivalently, given (1.2.2), of E and E).
The immersed surface Φ(Σ) is then a Willmore surface. We will sometimes refer to

Φ(Σ) as a Willmore sphere or a Willmore torus depending on its genus.

While E has the best invariance properties of all three energies, W is not only the
historically studied quantity, it more organically leads to exploitable equations as we will
see in subsections 1.2.3 and 1.2.4. Further since W is non-invariant by only a Lebesgue
neglectible subset of the inversions of R3 (those with center on the surface), it will have
little consequences on the analysis of Willmore immersions.

Since E is a conformal invariant, the notion of Willmore immersion (respectively of
Willmore surface) is invariant by conformal transformations.
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Proposition 1.2.10. Let Φ ∈ C∞
(
Σ,R3

)
and Θ ∈ Conf(R3). Then Φ is a Willmore

immersion if and only if Θ ◦ Φ is a Willmore immersion.

Corollary 1.2.2. Minimal immersions are non compact Willmore immersions. Inversions
of minimal immersions are Willmore immersions. When the inversions are centered away
from the surface, they are compact Willmore immersions.

In fact, Willmore surfaces were partly conceived as a generalization of the conformal
transformations of minimal surfaces, and W. Blaschke used the terminology "conformal
minimal surfaces" in [Bla55]. From this we can build a zoology of Willmore immersions
and branched Willmore immersions having a wide specter of properties.

Example 1.2.1. The round sphere is a Willmore surface of Willmore energy

W
(
S2
)

= 4π.

Example 1.2.2. The Bryant's surface is a four ended immersed minimal surface. An
exemple of parametrization over C is given by the following (see theorem E [Bry84] for
details or below in section 3.3 where we play with the relative position of the ends) :

Φ = 2<
(
v0z −

v1

z − 1
− v2

z − j
− v3

z − j2

)
,

where j3 = 1 and v0 v1, v2, v3 ∈ C3 satisfy

〈vi, vj〉 = λ 6= 0, 1 ≤ i < j ≤ 3

〈vi, vi〉 = 0, 1 ≤ i ≤ 3,

v0 =
1

3

(
v1 + jv2 + j2v3

)
.

Its inverse forms a compact immersed Willmore sphere of Willmore energy 16π. Inverting
it at a point of density 1 yields a non-compact non minimal Willmore sphere of Willmore
energy 12π.

Figure 1.2 � An inverted Bryant's surface

Example 1.2.3. The López surface is a two ended minimal sphere, with one end of
multiplicity 1 and one of multiplicity 3. A parametrization is given by :

Φ = 2<

 3

2z3

1
i
0

+
z

8

 1
−i
0

+
3

2z

0
0
1

 .
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Its inverse is a branched Willmore sphere, with a point of density 4, split into a branch
point of multiplicity 3 and one of multiplicity 1. They have Willmore energy 16π.

Figure 1.3 � The López surface and an inversion

Example 1.2.4. The Cli�ord torus is a Willmore torus of Willmore energy W = 2π2.
Given corollary 1.2.1 it is thus not the conformal transform of a minimal surface in R3.

We can give a few additionnal examples of branched Willmore surfaces.

Example 1.2.5. The Enneper surface, parametrized on C by

E(z) = 2<

∫ 1

2

 1− z2

i(1 + z2)
2z

 ,

is a minimal surface of total curvature∫
C
Kdvol = −4π.

Its inverse is a Willmore sphere of Willmore energy W (E) = 12π.

Figure 1.4 � The Enneper surface and an inversion
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Example 1.2.6. The Chen-Gackstatter torus is a minimal torus of Enneper-Weierstrass
data on C2/Z2 : (f, g) =

(
2p(z), Apz

p (z)
)
(see [CG82]) where p is the Weierstrass elliptic

function, of elliptic invariants (see [Apo90])

g2 = 60

∞∑
m,n=−∞

1

(m+ ni)4 > 0,

g3 = 0,

and

A =

√
3π

2g2
∈ R+.

It has a branched end of multiplicity 3 asymptotic to the Enneper surface and is thus of
total curvature ∫

Kdvol = −8π.

Its inverse is a Willmore torus of Willmore energy W = 12π.

Example 1.2.7. One can de�ne Chen-Gackstatter surfaces of arbitrarily high genus g.
They have a single branched end of multiplicity 3 asymptotic to the Enneper surface and
have a total curvature of −4π (g + 1). Their inverses are branched Willmore surfaces of
genus g and of Willmore energy W = 12π.

The example of the Cli�ord torus ensures that not all Willmore surfaces are conformal
transformations of minimal surfaces in R3. There are however classi�cation results for
Willmore spheres :

Theorem 1.2.11. Every immersed Willmore sphere in R3 is the conformal transform of
a minimal sphere in R3.

Theorem 1.2.12. Every branched Willmore sphere in R3 with less than 3 branch points
is the conformal transform of a branched minimal sphere in R3.

Theorem 1.2.11 (due to R. Bryant, theorem E in [Bry84]) and theorem 1.2.12 (partly
due to T. Lamm and H. Nguyen [LN15] and A. Michelat and T. Rivière [MR17]) will be
proved below (section 2.6) with the conformal Gauss map tools.

A corollary to theorems 1.2.11 and 1.2.12 allows one to enumerate low energy Willmore
spheres :

Corollary 1.2.3. The round sphere and the catenoïd are the only Willmore spheres of
energy strictly lower than 12π.

One must point out that while the Cli�ord torus is not the conformal transform of a
minimal surface in R3, it is the stereographic projection (and thus a conformal transform)
of a minimal surface in S3. We will detail below necessary and su�cient conditions for
a surface to be conformally minimal in R3, S3 or H3 (see section 2.5). Beyond that, one
can conjecture that Willmore surfaces are conformal transformations of minimal surfaces
in a subset of R3 imbued with a conformally �at metric, although this remains somewhat
speculative.
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1.2.3 Conservation laws

The aim of this subsection is to draw the Lagrange equation satis�ed by Willmore
surfaces, and to exploit the conformal invariance of W to highlight four conservation laws,
in accordance with Noether's theorem. Indeed the latter states in spirit

"Each in�nitesimal symmetry induces a conservation law."

While we refer the reader to theorem 1.3.1 of [Hél02] for a proper wording of the
theorem, this mere idea will satisfy our current needs. Since the Willmore energy is a
conformal invariant, one can expect a conservation law for each of the four fundamental
conformal transformations (translation, dilation, rotation, inversion). The ideas and much
of the computations are taken from Y. Bernard's [Ber16] which thoroughly studies W . We
will however slightly extend our scope to E and E.

We consider Σ a Riemann surface (that may have a boundary), an (eventually branched)
immersion Φ ∈ C∞

(
Σ,R3

)
, Ω an open subset of Σ (away from the possible branch points

and branched ends) and X ∈ C∞c
(
Ω,R3

)
. We use the notations introduced in subsection

1.2.1. We will study the following perturbation of the immersion Φ :

Φt := Φ + tX.

We will use the tensorial language in a local map and denote D the Levi-Civita connection.
Then if V = V

i1,...,ik1
j1,...,jk2

∂i1 . . . ∂ik1
∂j1 . . . ∂jk2 , one hasDV = ∇pV

i1,...,ik1
j1,...,jk2

∂i1 . . . ∂ik1
∂j1 . . . ∂jk2∂p.

We will denote δ := d
dt

∣∣
t=0

. For computational convenience we will decompose

X := ~N + ~T := N~n+ T p∇pΦ.

The endgame here is to compute δ
(
H2dvolg

)
and δ

(∣∣Å∣∣2
g
dvolg

)
, or equivalently in any

local chart δ
(
H2|g|

1
2

)
and δ

(∣∣Å∣∣2
g
|g|

1
2

)
. Then

δ (∇iΦt) = ∇i ~N +∇iT p∇pΦ + T p∇ipΦ. (1.2.8)

However by de�nition of the Levi-Civita connection, in a local chart :

∇ipΦ = ∂ipΦ− Γkip∂kΦ,

where Γkip := 1
2g
kl (∂igpl + ∂pgil − ∂lgip) are the Christo�el's symbols. Then, since gij =

〈∂iΦ, ∂jΦ〉, one can compute

Γkip =
1

2
gkl (〈∂ipΦ, ∂lΦ〉+ 〈∂pΦ, ∂ilΦ〉+ 〈∂ipΦ, ∂lΦ〉+ 〈∂iΦ, ∂plΦ〉 − 〈∂ilΦ, ∂pΦ〉 − 〈∂iΦ, ∂plΦ〉)

= gkl〈∂ipΦ, ∂lΦ〉.

Then Γkip∂kΦ = gkl〈∂ipΦ, ∂lΦ〉∂kΦ is exactly the tangent part of ∂ipΦ. Consequently
∇ipΦ = ∂ipΦ − Γkip∂kΦ is the leftover part, that is the normal part. By de�nition of
the second fundamental form introduced in subsection 1.2.1,

∇ipΦ = π~n (∂ipΦ) = ~Aip. (1.2.9)

Then, injecting (1.2.9) into (1.2.8) yields

δ (∇iΦt) = ∇i ~N +∇iT p∇pΦ + T p ~Aip. (1.2.10)
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From this, we �nd

δ
(
gtij
)

= 〈δ (∇iΦt) ,∇jΦ〉+ 〈δ (∇jΦt) ,∇iΦ〉
= 〈∇iN~n+AipT

p~n−Aip∇pΦ +∇iT p∇pΦ,∇jΦ〉
+ 〈∇jN~n+AjpT

p~n−Ajp∇pΦ +∇jT p∇pΦ,∇iΦ〉
= ∇iTj +∇jTi − 2NAij .

(1.2.11)

Then
δ
(
gt
ij
)

= −gipδ
(
gtpq

)
gqj = 2NAij −∇iT j −∇jT i. (1.2.12)

Consequently,

δ (|gt|) = |g|Tr
(
g−1δg

)
= |g|gij (∇iTj +∇jTi − 2NAij)

= 2|g| (∇pT p − 2NH) ,
(1.2.13)

and
δ
(
|gt|

1
2

)
= |g|

1
2 (∇pT p − 2NH) . (1.2.14)

Using (1.2.9), we can compute the perturbation of the second fundamental form in the
following manner (note that since the goal is to compute the norm of the relevant quantities,
only the normal terms are incidental) :

δ
(
~At ij

)
= δ (∇i∇jΦt)

= ∇i
(
∇j ~N

)
+∇i∇jT p∇pΦ +∇jT p ~Aip +∇iT p ~Ajp + T p∇i ~Ajp

+ tangent terms

= ∇i
(
∇j ~N

)
+∇i∇jT p∇pΦ +∇jT p ~Aip +∇iT p ~Ajp + T p∇iAjp~n

+ tangent terms

= ∇i
(
∇j ~N

)
+∇i∇jT p∇pΦ +∇jT p ~Aip +∇iT p ~Ajp + T p∇pAij~n

+ tangent terms.

(1.2.15)

To obtain this last expression, we have used the Gauss-Codazzi equation (see [Wil65],
chapter 3) :

∇iAjp = ∇jAip = ∇pAij ∀i, j, p. (1.2.16)

From (1.2.15), we deduce

δ
(
~Ait j

)
= δ

(
gipt

)
~Apj + gipδ

(
~At pj

)
=
(
2NAip −∇iT p −∇pT i

)
~Apj +∇i

(
∇j ~N

)
+∇jT p ~Aip +∇iT p ~Ajp

+ T p∇pAij~n+ tangent terms

= ∇i
(
∇j ~N

)
+ 2 ~NAipA

p
j +∇jT p ~Aip −∇pT i ~Apj + T p∇pAij~n

+ tangent terms.

(1.2.17)

Hence,

δ
(
~Ht

)
= δ

(
~Ait i
2

)
=

1

2
∆g

~N + |A|2g ~N + T p∇pH~n+ tangent terms. (1.2.18)
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This yields

δ
(
H2
t

)
=
〈

∆g
~N, ~H

〉
+ 2 |A|2gNH + Tp∇p

(
H2
)

= ∇i
(〈
∇i ~N, ~H

〉)
−∇iN∇iH −NH

〈
∇i~n,∇i~n

〉
+ 2NH |A|2

+ T p∇p
(
H2
)

= ∇i
(〈
∇i ~N, ~H

〉
−
〈
~N,∇i ~H

〉)
+N∆gH +NH |A|2g + T p∇p

(
H2
)
.

(1.2.19)

One must point out that to obtain the last equality we have computed

〈
∇i~n,∇i~n

〉
=
〈
−Aip∇pΦ,−Aqi∇qΦ

〉
= AiqA

q
i = |A|2g . (1.2.20)

From (1.2.14) and (1.2.19) (and using (1.2.1) for the di�erent formulations) we �nally reach

δ
(
H2
t |gt|

1
2

)
= |g|

1
2 ∇p

(〈
∇p ~N, ~H

〉
−
〈
~N,∇ ~H

〉
+ T pH2

)
+ |g|

1
2 N

(
∆gH +H

(
|A|2g − 2H2

))
= |g|

1
2 ∇p

(〈
∇p ~N, ~H

〉
−
〈
~N,∇ ~H

〉
+ T pH2

)
+ |g|

1
2 N

(
∆gH + 2H

(
H2 −K

))
= |g|

1
2 ∇p

(〈
∇p ~N, ~H

〉
−
〈
~N,∇ ~H

〉
+ T pH2

)
+ |g|

1
2 N

(
∆gH +H

∣∣Å∣∣2
g

)
.

(1.2.21)

To simplify notations we denote W (Φ) = ∆gH + H
∣∣Å∣∣2

g
. We now compute with Gauss-

Codazzi

δ

(
|At|2g

2

)
=
〈
δ
(
~Ait j

)
, ~Aij

〉
=
〈
∇i
(
∇j ~N

)
, ~Aji

〉
+ 2NAipA

p
jA

j
i + T p∇p

(
|A|2g

2

)

= ∇i
(〈
∇j ~N, ~Aji

〉)
−
〈
∇j ~N,∇i ~Aji

〉
+ 2NAipA

p
jA

j
i + T p∇p

(
|A|2g

2

)

= ∇i
(〈
∇j ~N, ~Aji

〉)
−∇jN∇iAji + T p∇p

(
|A|2g

2

)

= ∇i
(〈
∇j ~N, ~Aji

〉)
− 2∇jN∇jH + T p∇p

(
|A|2g

2

)
= ∇i

(〈
∇j ~N, ~Aji

〉
− 2

〈
~N,∇i ~H

〉)
+ 2N∆gH +NTr

((
g−1A

)3)
+ T p∇p

(
|A|2g

2

)
.

(1.2.22)
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This yields :

δ

(
|At|2g |gt|

1
2

2

)
= |g|

1
2∇p

(〈
∇q ~N, ~Apq

〉
− 2

〈
~N,∇p ~H

〉
+ T p

|A|2g
2

)

+ 2|g|
1
2N

∆gH +
Tr
((
g−1A

)3)
2

−H
|A|2g

2

 .

(1.2.23)

Reusing the notations of the proof of lemma 1.2.1, we �nd

Tr
((
g−1A

)3)
= ε

(
ε2 + φ2

)
+ 2 (ε+ γ)φ2 + γ

(
γ2 + φ2

)
= 8H3 − 6HK.

And with (1.2.1), we conclude

Tr
((
g−1A

)3)
2

−H
|A|2g

2
= 2H(H2 −K). (1.2.24)

Injecting (1.2.24) into (1.2.23) then yields

δ

(
|At|2g |gt|

1
2

2

)
= |g|

1
2∇p

(〈
∇q ~N, ~Apq

〉
− 2

〈
~N,∇p ~H

〉
+ T p

|A|2g
2

)
+ 2|g|

1
2NW (Φ) .

(1.2.25)

Since
∣∣Å∣∣2

g
= |A|2 − 2H2, we conclude with

δ

∣∣Åt∣∣2g|gt| 12
2

 = |g|
1
2∇p

(〈
∇q ~N, ~̊Apq

〉
−
〈
~N,∇p ~H

〉
+ T p

|Å|2g
2

)

+ |g|
1
2NW (Φ) .

(1.2.26)

We will slightly modify (1.2.21) and (1.2.26).〈
∇p ~N, ~H

〉
−
〈
~N,∇p ~H

〉
+ T pH2 =

〈
∇p (〈X,~n〉~n) , ~H

〉
− 〈X,∇pH~n〉+H2 〈X,∇pΦ〉

=
〈
∇pX, ~H

〉
+ 〈X,H∇p~n〉 − 〈X,∇pH~n〉+H2 〈X,∇pΦ〉

=
〈
∇pX, ~H

〉
+
〈
X,H∇p~n−∇pH~n+H2∇pΦ

〉
.

Similarly if we let µ1 =
〈
∇q ~N, ~̊Apq

〉
−
〈
~N,∇p ~H

〉
+ T p

|Å|2g
2 , then

µ1 =
〈
∇q (〈X,~n〉~n) ,

~̊
Apq
〉
− 〈X,~n〉∇pH + 〈X,∇pΦ〉

|Å|2g
2

=
〈
∇qX, ~̊Apq

〉
+ 〈X,∇q~n〉 Åpq − 〈X,~n〉∇pH + 〈X,∇pΦ〉

|Å|2g
2

=
〈
~n, Åpq∇qX

〉
+

〈
X, Åpq∇q~n−∇pH~n+∇pΦ

|Å|2g
2

〉
.



1.2. Willmore surfaces 41

This can be simpli�ed yet further. Let µ2 = Åpq∇q~n−∇pH~n+∇pΦ |Å|
2
g

2 , and

µ2 = −HÅpq∇qΦ− ÅpqÅql∇lΦ−∇pH~n+
|Å|2g

2
∇pΦ

= −
(
∇pH~n+HÅpq∇Φ

)
+
|Å|2g

2
∇pΦ− ÅpqÅ

q
l∇

lΦ.

(1.2.27)

If we notice that ÅpqÅ
q
l =

(
Å2
)p
l
, and using once more the notations of the proof of lemma

1.2.1, we compute

Å2 =

( ε−γ
2 φ

φ − ε−γ
2

)2

=

(( ε−γ
2

)2
+ φ2 0

0
( ε−γ

2

)2
+ φ2

)

=

∣∣Å∣∣2
g

2
Id.

(1.2.28)

Injecting the latter into (1.2.27) then means :

Åpq∇q~n−∇pH~n+∇pΦ
|Å|2g

2
= −

(
∇pH~n+HÅpq∇qΦ

)
.

Similarly

H∇p~n−∇pH~n+H2∇pΦ = −
(
∇pH~n+HÅpq∇qΦ

)
.

Canonically, the expression ∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H = −2

(
∇H~n+HÅ∇Φ

)
, where

× is the vectorial product of R3 and ∇⊥ =

(
−∂y
∂x

)
, is often used in local conformal charts.

We can then conclude these computations

δ
(
H2
t |gt|

1
2

)
=
|g|

1
2

2
∇.
(

2
〈
∇X, ~H

〉
+
〈
X,−2

(
∇H~n+HÅ∇Φ

)〉)
+ |g|

1
2 NW (Φ) ,

δ

∣∣Åt∣∣2g|gt| 12
2

 =
|g|

1
2

2
∇.
(

2
〈
Å∇X,~n

〉
+
〈
X,−2

(
∇H~n+HÅ∇Φ

)〉)
+ |g|

1
2NW (Φ) ,

(1.2.29)

where ∇.V = ∇pV p = divgV .
From this we deduce the Euler-Lagrange equation for Willmore surfaces :

Theorem 1.2.13. Let Σ be a Riemann surface and Φ ∈ C∞
(
Σ,R3

)
an immersion. Then

Φ is a Willmore immersion if and only if it satis�es the Willmore equation

W (Φ) := ∆gH +H
∣∣Å∣∣2

g
= 0. (1.2.30)

If Φ is branched, it is Willmore if and only if (1.2.30) stands away from the branch points.
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Proof. The immersion Φ is Willmore if and only if it is a critical point of W (equivalently
of E), meaning if and only if, using the introduced notations, for all perturbations X :

δ

(∫
Σ
H2
t dvolgt

)
= 0.

This condition is equivalent to∫
Σ
δ
(
H2
t dvolgt

)
=

∫
Σ

div (. . . ) + |g|
1
2 NW (Φ) =

∫
Σ
|g|

1
2 NW = 0.

Since this is true for all compactly supported N , this concludes the proof. The computa-
tions with E yield the same result.

This equation was known since the works of W. Blaschke. There exists a similar
equation in higher codimension (see T. Rivière [Riv08]), but it is outside the frame of the
present work. One must notice that the divergence terms have not (classically) impacted
the Euler-Lagrange equation. They will however be pivotal in establishing conservation
laws. Let (ϕt) be a sequence of maps of R3 leaving H2 |g|

1
2 invariant, with ϕ0 = Id. Let Φ

be a Willmore surface and Φt = ϕt ◦Φ = Φ + tX + o(t). The vector X is the in�nitesimal
symmetry associated to ϕt alluded to in the incipit of this subsection. Then by de�nition
of ϕt :

H2
t |gt|

1
2 = H2 |g|

1
2 + tδ

(
H2
t |gt|

1
2

)
+ o(t) = H2 |g|

1
2 .

Then, given that Φ is a Willmore surface,

δ
(
H2
t |gt|

1
2

)
=
|g|

1
2

2
∇.
(

2
〈
∇X, ~H

〉
+
〈
X,∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

〉)
= 0.

This is the conservation law associated to the in�nitesimal symmetry X. We then only
have to plug in the in�nitesimal symetries corresponding to the generators of the conformal
group to conclude.
Translations :

Here ϕt(x) = x+ t~a with ~a ∈ R3, then X = ~a and the corresponding conservation law is

∀~a ∈ R3 div
(〈
~a,−2

(
∇H~n+HÅ∇Φ

)〉)
= 0.

Consequently one can introduce the �rst conserved quantity :

Vtra = −2
(
∇H~n+HÅ∇Φ

)
. (1.2.31)

This quantity satis�es div (Vtra) = 0.
Dilations :

Here ϕt(x) = (1 + t)x, then X = Φ and the corresponding conservation law is

div (〈Φ, Vtra〉) = 0.

The second conserved quantity is then

Vdil =
〈

Φ,−2
(
∇H~n+HÅ∇Φ

)〉
= 〈Φ, Vtra〉 . (1.2.32)

Rotations :
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Here ϕt(x) = Mt,~ax whereMt,~a is the rotation of angle t and axis ~a ∈ R3. Then X = ~a×Φ.
The induced conservation law is then

∀~a ∈ R3 div (〈~a,Φ× Vtra + 2H∇Φ× ~n〉) = 0.

The third conserved quantity is then

Vrot = Φ× Vtra + 2H∇Φ× ~n. (1.2.33)

Interestingly, working with
∣∣Å∣∣2 |g| 12 yields a somewhat di�erent conservation law :

∀~a ∈ R3 div
(〈
~a,Φ× Vtra + 2(Å∇Φ)× ~n

〉)
= 0,

which yields a divergence free variation on Vrot :

Ṽrot = Φ× Vtra + 2
(
Å∇Φ

)
× ~n. (1.2.34)

It can be shown through (straightforward in a conformal chart) computations (see (A.2.5)
in the appendix) that

Ṽrot = Vrot + 2∇⊥~n. (1.2.35)

Inversions :

As has been noticed in propositions 1.2.2 and 1.2.1, H2|g|
1
2 is not invariant under the

action of inversions, but
∣∣Å∣∣2|g| 12 is. We will then work with the latter. Let

ϕt(x) =

x
|x|2 − t~a∣∣∣ x
|x|2 − t~a

∣∣∣2 ,
with ~a ∈ R3. Hence

Φt := ϕt ◦ Φ = Φ− t
(
|Φ|2~a− 2 〈Φ,~a〉Φ

)
+ o(t).

One can then inject X = |Φ|2~a−2 〈Φ,~a〉Φ in (1.2.29) to conclude. To that end we compute〈
Å∇X,~n

〉
= 2

〈
Å∇Φ,Φ

〉
〈~n,~a〉 − 2

〈
Å∇Φ,~a

〉
〈Φ, ~n〉

= 2
〈
~a,
〈
Å∇Φ,Φ

〉
~n− 〈Φ, ~n〉 Å∇Φ

〉
= 2

〈
~a,Φ×

(
~n× Å∇Φ

)〉
.

Moreover
〈X,Vtra〉 =

〈
~a, |Φ|2Vtra − 2 〈Φ, Vtra〉Φ

〉
.

We deduce :

∀~a ∈ R3 div
(〈
~a, |Φ|2Vtra − 2 〈Φ, Vtra〉Φ + 4Φ×

(
~n× Å∇Φ

)〉)
= 0.

From this, we �nd the fourth conserved quantity :

Vinv = −|Φ|2Vtra + 2 〈Φ, Vtra〉Φ− 4Φ×
(
~n× Å∇Φ

)
= −|Φ|2Vtra + 2VdilΦ− 4Φ×

(
~n× Å∇Φ

)
.

(1.2.36)

We have thus proven the following result :
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Theorem 1.2.14. Let Σ be a Riemann surface and Φ ∈ C∞
(
Σ,R3

)
aWillmore immersion.

Then Φ satis�es the following conservation laws :

div (Vtra) = div (Vdil) = div (Vrot) = div
(
Ṽrot

)
= div (Vinv) = 0, (1.2.37)

where 

Vtra = −2
(
∇H~n+HÅ∇Φ

)
Vdil = 〈Φ, Vtra〉
Vrot = Φ× Vtra + 2H∇Φ× ~n

Ṽrot = Φ× Vtra + 2
(
Å∇Φ

)
× ~n

Vinv = −|Φ|2Vtra + 2 〈Φ, Vtra〉Φ− 4Φ×
(
~n× Å∇Φ

)
.

(1.2.38)

If Φ is branched, these stand away from the branch points.

These conserved quantities were �rst found by T. Rivière through purely computational
means (see theorem I.4 [Riv08]). Y. Bernard then showed in [Ber16] that they stemmed
from the conformal invariance of the Willmore energy, did the computations pertaining to
the mean curvature and corresponding to the �rst three conserved quantities. As far as
we know the computations corresponding to Ṽrot and Vinv have not been done (although
Y. Bernard conjectured them) in that way (see section 3.1 in [MR17] by A. Michelat and
T. Rivière for a mildly di�erent formalism).

Remark 1.2.1. The conservation law proceeding from the invariance by translations is
in fact the Willmore equation put in divergence form (see [Riv08] for this process). It
requires much weaker assumptions for it to have a distributional meaning, compared to
(1.2.30) and will thus be central in de�ning a notion of "weak Willmore immersion" (see
section 1.4).

In the following, we will often work in local conformal charts on the Riemann surface
(this can be done without losing any generality see the discussion in section 1.3) . The
immersions can then be seen as immersions Φ from the unit disk D into R3 that are con-
formal (when the two spaces are imbued with their canonical euclidean metric). Denoting
∂xΦ = Φx and ∂yΦ = Φy this translates as

〈Φx,Φx〉 = 〈Φy,Φy〉 := e2λ,

〈Φx,Φy〉 = 0.
(1.2.39)

The function λ is called the conformal factor of Φ. Working in that framework simpli�es

computations greatly. For instance, since ∇ =

(
∂x
∂y

)
and ∇⊥ =

(
−∂y
∂x

)
, one has

∇Φ× ~n = ∇⊥Φ. (1.2.40)

In the appendix, we give a family of similar formulas for conformal immersions, in real
(section A.2.1) and complex (section A.2.2) notations (for instance (1.2.40) is recalled as
(A.2.4) in real notations and A.2.15 in complex notations). These simplify the Willmore
equation and the conserved quantities.

Theorem 1.2.15. Let Φ ∈ C∞
(
D,R3

)
be a conformal immersion, let λ be its conformal

factor. Then Φ is Willmore if and only if

∆H + 2He2λ
(
H2 −K

)
= 0. (1.2.41)
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The conserved quantities are then

Vtra = −2
(
∇H~n+HÅ∇Φ

)
= ∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

Vdil = 〈Φ, Vtra〉
Vrot = Φ× Vtra + 2H∇⊥Φ

Ṽrot = Φ× Vtra + 2Å∇⊥Φ

Vinv = −|Φ|2Vtra + 2 〈Φ, Vtra〉Φ + 4Φ×
(
Å∇⊥Φ

)
.

(1.2.42)

Using the conserved quantities in local conformal charts allows one to �nd a set of
equations satis�ed by Willmore immersions with better analytical properties than the
Willmore equation. Indeed the latter has an overall ∆f = f3 shape which is unadapted to
a weak formulation (it is super critical for the Calderón-Zygmund theory) which we will
require to study compactness (see section 3.2.1). The conserved quantities will then prove
pivotal for what is to follow.

1.2.4 Willmore equations

Following T. Rivière's original computations in [Riv08], we can modify the conserved
quantities into an analytically handier form :

Theorem 1.2.16. Let Φ ∈ C∞
(
D,R3

)
be a Willmore conformal immersion of conformal

factor λ = ln |Φx|, of Gauss map ~n, of mean curvature H and of tracefree second funda-
mental form Å. Then there exists ~L ∈ C∞

(
D,R3

)
, S ∈ C∞ (D,R), ~R ∈ C∞

(
D,R3

)
,

R̃ ∈ C∞
(
D,R3

)
such that :

∇⊥~L = −2
(
∇H~n+HÅ∇Φ

)
= ∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

∇⊥S =
〈
∇⊥Φ, ~L

〉
∇⊥ ~R = ~L×∇⊥Φ + 2H∇⊥Φ

∇⊥R̃ = ~L×∇⊥Φ + 2Å∇⊥Φ

(1.2.43)

Proof. Since div (Vtra) = 0 on D (which is simply connected), there exists ~L as required.
Further

Vdil = 〈Φ, Vtra〉 =
〈

Φ,∇⊥~L
〉

= ∇⊥
(〈

Φ, ~L
〉)
−
〈
∇⊥Φ, ~L

〉
.

Since
div
(
Vdil −∇⊥

(〈
Φ, ~L

〉))
= 0,

there exists S as desired. We proceed similarly for ~R and R̃ and conclude the proof.

At the inception, ~R and S were obtained through astute computations in arbitrary
codimensions, trying to �nd other divergence free quantities from ~L. While Noether's
theorem clari�es the fundamental origin of the conservation laws, how to derive S and ~R
from them is less obvious. In our case, the applied modi�cations can be seen as striving
to work with invariant quantities. Indeed, while

〈
Φ,∇⊥~L

〉
changes under the action of

translations, moving the∇⊥ onto Φ leads to a translational invariant, and thus a potentially
more interesting quantity.
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Remark 1.2.2. All four ~L, S, ~R, R̃ are de�ned up to a constant.

Remark 1.2.3. Identity (1.2.35) implies that ∇⊥R̃ = ∇⊥ ~R+ 2∇⊥~n.

Remark 1.2.4. While S, ~R, R̃ are dilation invariants, ~L is not. Indeed for µ ∈ R, Φµ = µΦ
is a Willmore conformal immersion of the disk. It can be shown through a straightforward
computation that its quantities ~Lµ, Sµ, ~Rµ and R̃µ de�ned by (1.2.43) satisfy

~Lµ =
1

µ
~L

Sµ = S

~Rµ = ~R

R̃µ = R̃.

Remark 1.2.5. In complex notations one has
~Lz = −2i

(
Hz~n+HΩe−2λΦz̄

)
Sz =

〈
Φz, ~L

〉
~Rz = ~L× Φz + 2HΦz,

(1.2.44)

where Ω = 2 〈Φzz, ~n〉 is the tracefree curvature of Φ (in essence the complex analogue of
Å, see section A.2.2 in the appendix).

The following results, taken from theorem I.4 [Riv08], link ~R and S.

Lemma 1.2.2. Let Φ ∈ C∞
(
D,R3

)
satisfy the hypotheses of theorem 1.2.16. Then∇S = −

〈
~n,∇⊥ ~R

〉
∇~R = ~n×∇⊥ ~R+∇⊥S~n.

(1.2.45)

Proof. We simply use (A.2.4) and compute :〈
~n,∇⊥ ~R

〉
=
〈
~n, ~L×∇⊥Φ + 2H∇⊥Φ

〉
=
〈
~L,∇⊥Φ× ~n

〉
= −

〈
~L,∇Φ

〉
= −∇S.

Similarly

~n×∇⊥ ~R+∇⊥S~n = ~n×
(
~L×∇⊥Φ + 2H∇⊥Φ

)
+
〈
~L,∇⊥Φ

〉
~n

=
〈
~L,∇⊥Φ

〉
~n−

〈
~L,~n

〉
∇⊥Φ + 2H∇Φ

= ~L×
(
~n×∇⊥Φ

)
+ 2H∇Φ = ∇~R.

This concludes the proof.

From lemma 1.2.2, one deduces :

Theorem 1.2.17. Let Φ ∈ C∞
(
D,R3

)
satisfy the hypotheses of theorem 1.2.16. Then

∆S = −
〈
∇~n,∇⊥ ~R

〉
∆~R = ∇~n×∇⊥ ~R+∇⊥S∇~n

∆Φ =
1

2

(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
.

(1.2.46)
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Proof. As in [Riv08], the �rst two equalities are obtained by taking the divergence of
(1.2.45), and the third one can be found through direct computations. We will however
frame it as a consequence of the fourth conservation laws, as was suspected in [Ber16].

Indeed one has

Vinv = −|Φ|2Vtra + 2 〈Φ, Vtra〉Φ + 4Φ×
(
Å∇⊥Φ

)
= − |Φ|2∇⊥~L+ 2

〈
Φ,∇⊥~L

〉
Φ + 4Φ×

(
Å∇⊥Φ

)
= ∇⊥

(
− |Φ|2 ~L+ 2

〈
Φ, ~L

〉
Φ
)

+ 2
〈
∇⊥Φ,Φ

〉
~L− 2

〈
Φ, ~L

〉
∇⊥Φ

− 2
〈
∇⊥Φ, ~L

〉
Φ + 4Φ×

(
Å∇⊥Φ

)
= ∇⊥ (. . . ) + 2Φ×

(
~L×∇⊥Φ + 2Å∇⊥Φ

)
− 2∇⊥SΦ

= ∇⊥ (. . . ) + 2Φ×∇⊥R̃− 2∇⊥SΦ.

(1.2.47)

Thanks to remark 1.2.3, one has

Vinv = ∇⊥ (. . . ) + 2Φ×∇⊥ ~R+ 4Φ×∇⊥~n− 2∇⊥SΦ

= ∇⊥ (. . . ) + 2Φ×∇⊥ ~R− 2∇⊥SΦ− 4∇⊥Φ× ~n
= ∇⊥ (. . . ) + +2Φ×∇⊥ ~R− 2∇⊥SΦ + 4∇Φ.

(1.2.48)

Taking the divergence of (1.2.48) yields :

∆Φ =
1

2
∇⊥S∇Φ− 1

2
∇Φ×∇⊥ ~R =

1

2
∇⊥S∇Φ +

1

2
∇⊥ ~R×∇Φ.

Which concludes the proof.

Although critical for the Calderón-Zygmund theory, system (1.2.46) is remarkable in
its Jacobian-like form which allows for the use of Wente's lemmas (see section A.3.2 for a
panel of integrability by compensation results). This algebraic structure will thus be key
in the weak framework.

Remark 1.2.6. One can simply take the divergence of (1.2.47) and �nd

∇Φ×∇⊥R̃− 2∇⊥S∇Φ = 0.

This may help explain the relative lack of interest revolving around R̃ since while ~R allows
one to recover controls on ∆Φ, R̃ does not. Further injecting the content of remark 1.2.3
into (1.2.46) shows that R̃, like ~n, does not satisfy a remarkable enough equation.

The system (1.2.46) has been modi�ed in [Mar19c] to only involve mean curvature
terms.

Theorem 1.2.18. Let Φ ∈ C∞
(
D,R3

)
satisfy the hypotheses of theorem 1.2.16. Then

∆S =
〈
H∇Φ,∇⊥ ~R

〉
∆~R = −H∇Φ×∇⊥ ~R−∇⊥SH∇Φ

∆Φ =
1

2

(
∇⊥S.∇Φ +∇⊥ ~R×∇Φ

)
.

(1.2.49)
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Proof. We reproduce the proof given in [Mar19c], which consists essentially in rephrasing
(1.2.46). We use the notations of section A.2.1.

To that end we compute〈
Å∇Φ,∇⊥ ~R

〉
=
〈
Å∇Φ, ~L×∇⊥Φ + 2H∇⊥Φ

〉
= −e−2λ

〈
e− g

2
Φx + fΦy, ~L× Φy + 2HΦy

〉
+ e−2λ

〈
fΦx +

g − e
2

Φy, ~L× Φx + 2HΦx

〉
=
g − e

2
e−2λ

(〈
Φx, ~L× Φy

〉
+
〈

Φy, ~L× Φx

〉)
− 2Hf + 2Hf

=
g − e

2
e−2λ

(〈
~L,Φy × Φx

〉
+
〈
~L,Φx × Φy

〉)
= 0.

(1.2.50)

Further

Å∇Φ×∇⊥ ~R = Å∇Φ×
(
~L×∇⊥Φ + 2H∇⊥Φ

)
=
〈
Å∇Φ.∇⊥Φ

〉
~L−

〈
Å∇Φ, ~L

〉
∇⊥Φ + 2HÅ∇Φ×∇⊥Φ

= −e−2λ

〈
e− g

2
Φx + fΦy,Φy

〉
~L

+ e−2λ

〈
e− g

2
Φx + fΦy, ~L

〉
Φy

− e−2λ2H

(
e− g

2
Φx + fΦy

)
× Φy

+ e−2λ

〈
fΦx +

g − e
2

Φy,Φx

〉
~L

− e−2λ

〈
fΦx +

g − e
2

Φy, ~L

〉
Φx

+ 2H

(
fΦx +

g − e
2

Φy

)
× Φx

=
e− g

2

〈
Φx, ~L

〉
Φy + f

〈
Φy, ~L

〉
Φy

− f
〈

Φx, ~L
〉

Φx −
g − e

2

〈
Φy, ~L

〉
Φx

+ 2H

(
−e− g

2
~n+

g − e
2

(−~n)

)
=

(
e− g

2
SxΦy + fSyΦy − fSxΦx −

g − e
2

SyΦx

)
= −∇⊥SÅ∇Φ.

(1.2.51)

We have used (1.2.43) to obtain the second to last equality. The decomposition (A.2.3)
then yields 〈

∇~n,∇⊥ ~R
〉

= −
〈
H∇Φ + Å∇Φ,∇⊥ ~R

〉
= −

〈
H∇Φ,∇⊥ ~R

〉
,
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with (1.2.50). Similarly, with (1.2.51) we compute

∇~n×∇⊥ ~R+∇⊥S∇~n = −H∇Φ×∇⊥ ~R−H∇Φ∇⊥S − Å∇Φ∇⊥ ~R− Å∇Φ∇⊥S
= −H∇Φ×∇⊥ ~R−H∇Φ∇⊥S +∇⊥SÅ∇Φ−∇⊥SÅ∇Φ

= −H∇Φ×∇⊥ ~R−H∇Φ∇⊥S.

Injecting these last two equalities in (1.2.46), we can conclude that ~R, S and Φ satisfy the
desired system.

Remark 1.2.7. We could have done the proof of theorem 1.2.18 using complex notations.
From (1.2.44), it is obvious that 〈

~Rz,Φz

〉
= 0,

~Rz × Φz + SzΦz = 0.

From this, the complexi�ed version of (1.2.50) and (1.2.51) stands :〈
~Rz,Ωe

−2λΦz

〉
= 0,

~Rz ×
(

Ωe−2λΦz

)
+ Sz

(
Ωe−2λΦz

)
= 0.

Taking the imaginary part of the last two equalities yields precisely (1.2.50) and (1.2.51),
which concludes the complex proof.

System (1.2.49) is critical and does not have the Jacobian-like structure necessary for
Wente's lemma. However, once criticality is broken it o�ers a way to bound ∇~R and ∇S by
H∇Φ. Besides, one can deduce from (1.2.43) that thanks to the properties of the vectorial
product ∣∣∣∇~R∣∣∣2 =

∣∣∣~L×∇⊥Φ
∣∣∣2 + 4 |H∇Φ|2 .

This yields an interesting estimate :

|H∇Φ| ≤ 1

2

∣∣∣∇~R∣∣∣ . (1.2.52)

Consequently (1.2.49) and (1.2.52) o�er a closed bootstraping loop which we will use in
section 4.2.1.

In fact building from remark 1.2.7, one can express ~Rz in the frame (Φz,Φz̄, ~n). Indeed
from ~Rz = ~L× Φz + 2HΦz, we can compute

〈
~Rz,Φz̄

〉
= He2λ + i

e2λ

2

〈
~L,~n

〉
〈
~Rz, ~n

〉
=
〈
~L,Φz × ~n

〉
= −i

〈
~L,Φz

〉
= −iSz.

Hence if we denote V = i
2

〈
~L,~n

〉
,

~Rz = 2 (H + iV ) Φz − iSz~n. (1.2.53)
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1.2.5 Conformal Willmore immersions

Since the �rst conservation law is the Willmore equation in divergence form (see remark
1.2.1), satisfying it is tantamount to being a Willmore immersion. Since S and ~R are solu-
tions of a self-su�cient system, it is natural to wonder if satisfying the two corresponding
conservation laws yields the same result.

We then consider Φ ∈ C∞
(
D,R3

)
a conformal immersion. We assume there exists

~L ∈ C∞
(
D,R3

)
such that div

(〈
~L,∇⊥Φ

〉)
= 0

div
(
~L×∇⊥Φ + 2H∇⊥Φ

)
= 0.

(1.2.54)

We do not assume anything on the nature of ~L. In particular we do not assume that ~L
satis�es the �rst conservation law of (1.2.43). System (1.2.54) is enough to go from (1.2.43)
to (1.2.46) and �nd the corresponding quantities S and ~R, which satisfy (1.2.46). We will
work in complex coordinates and writeSz =

〈
~L,Φz

〉
~Rz = ~L× Φz + 2HΦz.

(1.2.55)

We decompose ~Lz = aΦz + bΦz̄ + c~n, with a, b, c ∈ C∞(D,C). The system (1.2.54) implies
〈
∇~L,∇⊥Φ

〉
= 0,

∇~L×∇⊥Φ + 2∇H∇⊥Φ = 0.
(1.2.56)

In complex coordinates, this translates as
=
(〈
~Lz,Φz̄

〉)
= =

(
ae2λ

2

)
= 0,

=
(
~Lz × Φz̄ + 2HzΦz̄

)
= =

(
i
ae2λ

2
~n+ (2Hz − ic) Φz̄

)
= 0.

(1.2.57)

Consequently we �nd {
a = 0

c = −2iHz.

Hence ~Lz = bΦz̄ − 2iHz~n. If we compute ~Lzz̄ we �nd

~Lzz̄ = bz̄Φz̄ + 2λz̄bΦz̄ +
Ωb

2
~n− 2iHzz̄~n+ 2iHzHΦz̄ + 2iHzΩe

−2λΦz

= 2iHzΩe
−2λΦz + (bz̄ + 2λz̄b+ 2iHzH) Φz̄ +

(
Ωb

2
− 2iHzz̄

)
~n.

Given that ~L ∈ R3, ~Lzz̄ ∈ R3 and thus :
bz̄ + 2λz̄b+ 2iHzH = −2iHz̄Ωe

−2λ

− 4iHzz̄ +
Ωb

2
− Ωb

2
= 0.

(1.2.58)
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We can work on the expression :

bz̄ + 2λz̄b+ 2iHzH + 2iHz̄Ωe
−2λ =

(
be2λ + 2iHΩ

)
z̄
e−2λ − 2iHΩz̄e

−2λ + 2iHHz

=
(
be2λ + 2iHΩ

)
z̄
e−2λ.

To obtain the last equality we have used the Gauss-Codazzi identity in complex notations
(see (A.2.20)). We can then �nd a holomorphic function F such that

b = e−2λF − 2iHΩe−2λ. (1.2.59)

Injecting (1.2.59) into the second equality of (1.2.58) yields :

W(Φ) = =
(
FΩe−2λ

)
. (1.2.60)

This is a notion closely linked to Willmore immersions which will be useful later, called
conformal Willmore immersions.

De�nition 1.2.5. Let Φ : D → R3 be a conformal immersion. Then Φ is said to
be a conformal Willmore immersion if there exists an holomorphic function F such that
W (Φ) = <

(
FΩe−2λ

)
.

This notion is yet again linked with a behavior of the Willmore energy.

Proposition 1.2.19. Conformal Willmore immersions are critical points of the Willmore
functional in a conformal class and F acts as a Lagrange multiplier.

Remark 1.2.8. The notion of "conformal Willmore immersion" is then invariant by con-
formal mappings of the ambient space.

We do not give details for brevity and refer the reader to the subsection X.7.4 in [Riv12].
Conformal Willmore immersions can be apprehended as an extension of constant mean
curvature surfaces the same way Willmore immersions are an extension of minimal surfaces.
We will give in section 2.5 a necessary and su�cient condition for a conformal Willmore
immersion to be the conformal transform of a constant mean curvature immersion.

Interestingly enough, F can be expressed in function of S and ~R. Following from
(1.2.59), we �nd

F

2
− iHΩ =

e2λb

2
=
〈
~Lz,Φz

〉
=
(〈
~L,Φz

〉)
z
−
〈
~L,Φzz

〉
= Szz − 2λz

〈
~L,Φz

〉
− Ω

2

〈
~L,~n

〉
= Szz − 2λzSz −

Ω

2

〈
~L,~n

〉
= Szz − 2λzSz + iΩe−2λ

〈
~L,Φz × Φz̄

〉
= Szz − 2λzSz + iΩe−2λ

〈
~L,Φz × Φz̄

〉
= Szz − 2λzSz + iΩe−2λ

〈
~L× Φz,Φz̄

〉
= Szz − 2λzSz + iΩe−2λ

〈
~Rz − 2HΦz,Φz̄

〉
= Szz − 2λzSz + iΩe−2λ

〈
~Rz,Φz̄

〉
− iHΩ.
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Hence
F

2
= Szz − 2λzSz + iΩe−2λ

〈
~Rz,Φz̄

〉
. (1.2.61)

We gave the de�nition of conformal Willmore immersion for conformal immersions of
the disk. It can of course be extended to conformal Willmore immersions of a surface.

De�nition 1.2.6. Let Σ be a Riemann surface. Then Φ : Σ → R3 is a conformal
Willmore immersion if for all x ∈ Σ, (1.2.60) stands in any local conformal chart centered
at x.

Actually (1.2.60) can be given meaning on the whole surface, and not merely in con-
formal charts. To that end we can consider the Weingarten tensor h0 =

〈
∂2Φ, ~n

〉
, which

is a (2, 0) form on the Riemann surface. In a local complex chart it is written

h0 = Ωdz2.

Here ∂ is the complex di�erentiation operator on the Riemann surface. In a local complex
chart : ∂ = ∂zdz. Then Φ : Σ → R3 is a conformal Willmore immersion if there exists a
holomorphic 2-form f such that(

∂∂H +
1

2
g−1 ⊗ h0 ⊗ h0H

)
g = =

(
h0 ⊗ f

)
.

This is clear since in local conformal charts

∂∂H +
1

2
g−1 ⊗ h0 ⊗ h0H =

(
Hzz̄ +

|Ω|2

2
e−2λH

)
dzdz

=
W(Φ)

4
dzdz,

g = e2λdzdz,

and f = Fdz2.

The formalism of di�erential forms may thus allow one to work globally. However,mostly
for simplicity, our proof are written locally, and we only translate the results globally when
needed.

1.3 Weak immersions with L2 second fundamental form

1.3.1 De�nition

Let Σ be an arbitrary closed compact two-dimensional manifold. Let g0 be a smooth
"reference" metric on Σ. The Sobolev spaces W k,p

(
Σ,R3

)
of measurable maps from Σ

into R3 is de�ned as

W k,p
(
Σ,R3

)
:=

{
f measurable : Σ→ R3 s.t

k∑
l=0

∫
Σ

∣∣∣∇lg0
f
∣∣∣p
g0

dvolg0 <∞

}
.

Since Σ is assumed to be compact this de�nition does not depend on g0.
We will work with the concept of weak immersions introduced by T. Rivière, which

represents the correct starting framework for studying Willmore immersions. One might
notice that the presentation of this notion has changed through the years (compare de�-
nition I.1 in [Riv08] with its equivalent in subsection 1.2 in [LR18a]). While we use the
latter, which is su�cient for our needs, one could take slightly less demanding (albeit more
complex) starting hypotheses.
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De�nition 1.3.1. Let Φ : Σ → R3. Let gΦ = Φ∗ξ be the �rst fundamental form of
Φ and ~n its Gauss map. Then Φ is a weak immersion with locally L2-bounded second
fundamental form if Φ ∈W 1,∞ (Σ), if there exists a constant CΦ such that

1

CΦ
g0 ≤ gΦ ≤ CΦg0,

and if ∫
Σ
|d~n|2gΦ

dvolΦ <∞.

The set of weak immersions with L2-bounded second fundamental form on Σ will be
denoted E(Σ).

One of the advantages of such weak immersions is that they allow us to work with
conformal maps as shown by theorem 5.1.1 of [Hél02].

Theorem 1.3.1. Let Φ be a weak immersion from Σ into R3 with L2-bounded second
fundamental form. Then for every x ∈ Σ, there exists an open disk D in Σ containing x
and a homeomorphism Ψ : D→ D such that Φ ◦Ψ is a conformal bilipschitz immersion.
The induced metric g = (Φ ◦Ψ)∗ ξ is continuous. Moreover, the Gauss map ~n of this
immersion is in W 1,2

(
D,S2

)
.

Further, proving estimates on the Greeen function of Σ, P. Laurain and T. Rivière
have shown in theorem 3.1 of [LR18b] that up to choosing a speci�c atlas, one could have
further control on the conformal factor.

Theorem 1.3.2. Let (Σ, g) be a closed Riemann surface of �xed genus greater than one.
Let h denote the metric with constant curvature (and volume equal to one in the torus
case) in the conformal class of g and Φ ∈ E(Σ) conformal, that is :

Φ∗ξ = e2uh.

Then there exists a �nite conformal atlas (Ui,Ψi) and a positive constant C depending
only on the genus of Σ, such that

‖∇λi‖L2,∞(Vi)
≤ C ‖∇Φ∗ξ~n‖2L2(Σ) ,

with λi = 1
2 log |∇Φ|2

2 the conformal factor of Φ ◦Ψ−1
i in Vi = Ψi(Ui).

Thus given Φ̃ ∈ E (Σ) we can choose a conformal atlas such that, in a local chart on D
of this atlas, Φ̃ yields Φ ∈ E (D) satisfying

‖∇λ‖L2,∞(D) ≤ C0. (1.3.62)

One can then systematically study any Φ̃ ∈ E (Σ) in such local conformal charts, as a
conformal bilipschitz map Φ ∈ E (D) satisfying (1.3.62).

We can now introduce the notion of weak Willmore immersions (de�nition I.2 in
[Riv08]).

De�nition 1.3.2. Let Φ ∈ E (Σ), Φ is a weak Willmore immersion if

div
(
∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

)
= 0 (1.3.63)

holds in a distributional sense in every conformal parametrization Ψ : D → D on every
neighborhood D of x , for all x ∈ Σ. Here, the operators div, ∇ and ∇⊥ are to be
understood with respect to the �at metric on D.
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Of course, the weak Willmore equation (1.3.63) is merely the �rst conservation law
for Willmore immersions (see theorem 1.2.16), which is, as was said in remark 1.2.1, the
Willmore equation put in divergence form. A smooth weak Willmore immersion is then a
Willmore immersion, since it satis�es the Willmore equation. All the stakes then revolve
around using the system (1.2.46) (which remains valid in this weak framework since the
conservation laws have been reached through purely computational means by T. Rivière
in [Riv08]) to regain this regularity.

1.3.2 Harnack inequalities on the conformal factor

Works by F. Hélein (see [Hél02]) ensured that in disks of small energy, and that up
to a reasonable (see (1.3.62)) assumption on ‖∇λ‖L2,∞(D), the conformal factor could be
controlled pointwise. We here give a version from [Riv16] (theorem 5.5).

Theorem 1.3.3. Let Φ ∈ E (D), conformal. Let ~n be its Gauss map and λ its conformal
factor. We assume ∫

D
|∇~n|2 < 8π

3
,

and
‖∇λ‖L2,∞(D) ≤ C0. (1.3.64)

Then for any r < 1 there exists c ∈ R and C ∈ R depending on r and C0 such that

‖λ− c‖L∞(Dr) ≤ C.

While we will make use of this result throughout this work, the proof itself is outside
its scope. The idea is to rely on the Liouville equation (see (A.2.8)) and to write it in a
Jacobian form thanks to a moving Coulomb frame. The details are in the referenced texts.

This theorem can be adapted to disks of arbitrary radii without losing control on the
constant.

Corollary 1.3.1. Let Φ ∈ E (Dρ), conformal. Let ~n be its Gauss map and λ its conformal
factor. We assume ∫

Dρ
|∇~n|2 < 8π

3

and
‖∇λ‖L2,∞(Dρ) ≤ C0.

Then for any r < 1 there exists cρ,r ∈ R and C ∈ R depending on r and C0 such that

‖λ− cρ,r‖L∞(Drρ) ≤ C.

Proof. Let Φρ = Φ (ρ.), let ~nρ be its Gauss map and λρ its conformal factor. Straightfor-
ward computations yield

eλρ = ρeλ (ρ.) (1.3.65)

and
~nρ = ~n (ρ.) . (1.3.66)

Then ∫
D
|∇~nρ|2 dz =

∫
Dρ
|∇~n|2 dz < 8π

3
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and, thanks to (1.3.65),

‖∇λρ‖L2,∞(D) = ‖∇ (λ(ρ.) + ln ρ) ‖L2,∞(D) = ‖∇λ‖L2,∞(Dρ) ≤ C0

owing to the scaling-invariance properties of the L2 and L2,∞ norms. Applying theorem
1.3.3, one �nds there exists c ∈ R and C ∈ R depending on r and C0 such that

‖λρ − cr‖L∞(Dr) ≤ C.

However, using (1.3.65),
‖λ− cρ,r‖L∞(Drρ) ≤ C

with cρ,r = cr − ln ρ and the same C.

We can extend the control to domains with merely
∫
Dρ |∇~n|

2 < ∞ up to adding an
additionnal parameter r0 to the constant :

r0 =
1

ρ
inf

{
s

∣∣∣∣∣
∫
Bs(p)

| ∇~n|2 =
8π

6
, ∀p ∈ Dρ s.t. Bs(p) ⊂ Dρ

}
. (1.3.67)

This parameter marks how relatively small a ball has to be to ensure that it does not contain
too much energy, and its inverse will bound the number of balls with small energy covering
the disk. Alternatively, anticipating on the vocabulary of concentration-compactness (see
section 3.2), it measures how concentrated ∇~n is on a disk.

Corollary 1.3.2. Let Φ ∈ E (Dρ) conformal, ~n be its Gauss map and λ its conformal
factor. We assume that

‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) ≤ C0.

Then for any r < 1 there exists cρ,r ∈ R and C ∈ R depending on r, C0 and r0 (de�ned by
(1.3.67)) such that

‖λ− cρ,r‖L∞(Drρ) ≤ C.

Proof. We reproduce the proof given in [Mar19c] and prove the result on D. Then working
as in the proof of corollary 1.3.1 we can extend the result to Dρ.

If
∫
D |∇~n|

2 < 8π
6 , then one can simply apply theorem 1.3.3. Else let r < 1, and

r1 = min

(
1− r

2
, r0

)
.

We cover Dr with a �nite number of open disks
(
B r1

10
(pi)

)
i∈I

. Using Vitali's covering

theorem (see for instance theorem 1.24 p 36 of [EG15]) one can extract N disjoint disks(
B r1

10
(pij )

)
j=1..N

of this covering such that

⋃
i∈I

B r1
10

(pi) ⊂
N⋃
j=1

B r1
2

(pij ).

As a consequence
N⊔
j=1

B r1
10

(pij ) ⊂
N⋃
j=1

B r1
2

(pij ) ⊂ D
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which implies
N∑
j=1

λ
(
B r1

10
(pij )

)
≤ λ (D) ,

with λ the Lebesgue measure. Thus

N ≤ 100

r2
1

. (1.3.68)

For simplicity's sake we will renumber the (pi) such that (pij ) = (pi)i=..N .
One can then apply corollary 1.3.1 on each Br1 (pi) and �nd ci ∈ R such that

‖λ− ci‖
L∞

(
B r1

2
(pi)

) ≤ C. (1.3.69)

Here C is a constant depending only on C0. Let i, j ∈ I such that B r1
2

(pi)∩B r1
2

(pj) 6= ∅.
Then

|ci − cj | ≤ |ci − λ(x)|+ |cj − λ(x)|
≤ ‖λ− ci‖

L∞
(
B r1

2
(pi)

) + ‖λ− cj‖
L∞

(
B r1

2
(pj)

)
≤ 2C.

(1.3.70)

Taking any i, j ∈ I, let γij be a straight line linking any �xed xi ∈ B r1
2

(pi) to any �xed

xj ∈ B r1
2

(pj). γij goes through the disks
(
B r1

2
(pql)

)
ql∈J⊂I

, ordered such that

B r1
2

(pql) ∩B r1
2

(
pql+1

)
6= ∅.

Then, thanks to (1.3.70),
|ci − cj | ≤

∑
l

∣∣cql − cql+1

∣∣
≤
∑
l

2C

≤ 2NC,

since γij goes through at most N disks.
Setting cρ,r = c1, one deduces

|cρ,r − ci| ≤ 2NC ∀i ∈ I. (1.3.71)

Then given any x ∈ Dr we �nd a i ∈ I such that x ∈ B r1
2

(pi) and have, using (1.3.69) and
(1.3.71),

|λ(x)− cρ,r| ≤ |λ(x)− ci|+ |cρ,r − ci| ≤ (2N + 1)C.

Taking the supremum over x we conclude with

‖λ− cρ,r‖L∞(Dr) ≤ (2N + 1)C

which is as announced given that N depends only on r and r0.

This control ensures that (1.3.63) has a distributional meaning in conformal charts. In-
deed if we consider Φ ∈ E (D) satisfying hypothesis (1.3.64), ∇~n ∈ L2(D) and its respective
tracefull and tracefree part H∇Φ and Å∇Φ are properly de�ned as L2(D) functions (see
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(A.2.6) for details). Then corollary 1.3.2 ensures that for any r < 1, there exists Λ ∈ R
such that on Dr we have the following Harnack inequality :

eΛ

C
≤ eλ ≤ CeΛ. (1.3.72)

Hence, since |H| = 1√
2
e−λ |H∇Φ| we have on Dr

‖H‖L2(Dr) ≤ e
−ΛC‖H∇Φ‖L2(D)

≤ e−ΛC‖∇~n‖L2(D) < +∞.
(1.3.73)

As a result (1.3.63) is well-de�ned in the distributional sense, which allows us to introduce ~R
and S, and thus the regularizing system (1.2.46). The following de�nition and proposition
sum up these considerations.

De�nition 1.3.3. Let Φ ∈ E (D) be a weak Willmore immersion. Then there exists
~L ∈ D′ (D) such that

∇⊥~L = ∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H. (1.3.74)

Proposition 1.3.4. Let Φ ∈ E (D) be a weak Willmore immersion. Then for any ~L ∈
D′ (D) satisfying (1.3.74) we have

div
(
〈~L,∇⊥Φ〉

)
= 0

div
(
~L×∇⊥Φ + 2H∇⊥Φ

)
= 0.

Consequently, there exists S and ~R ∈ D′ (D) such that

∇⊥S = 〈~L,∇⊥Φ〉
∇⊥ ~R = ~L×∇⊥Φ + 2H∇⊥Φ.

(1.3.75)

1.4 Regularity for weak Willmore immersions

1.4.1 Controls on ~L

This section is devoted to the following result which is an improvement (given estimate
(A.2.11)) over theorem 7.4 of [Riv16], with a control by H∇Φ replacing one by ∇~n. We
will however follow mutatis mutandis the previous proof. This theorem appeared in the
prepublication [Mar19c].

Theorem 1.4.1. Let Φ ∈ E (Dρ) be a conformal weak Willmore immersion. Let ~n denote
its Gauss map, H its mean curvature and λ its conformal factor.

We assume
‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) ≤ C0.

Then, for any r < 1, there exists a constant ~Lρ,r ∈ R3 and a constant C ∈ R depending
on r, C0 and r0 (de�ned in (1.3.67)) such that∥∥∥eλ (~L− ~Lρ,r

)∥∥∥
L2,∞(Drρ)

≤ C ‖H∇Φ‖L2(Dρ) ,

where ~L is given by (1.3.74).
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Proof. As before, we will prove the theorem on D. The proof on Dρ follows as in corollary
1.3.1. Let Φ ∈ E (D) be a conformal weak Willmore immersion, ~n its Gauss map, H its
mean curvature and λ its conformal factor. We assume that

‖∇λ‖L2,∞(D) + ‖∇~n‖L2(D) ≤ C0.

Let r < 1 and ~L ∈ D′ (D) satisfying (1.3.74).
Step 1 : Control of the conformal factor

Applying corollary 1.3.2 we �nd Λ ∈ R and C depending on r, C0 and r0 such that

‖λ− Λ‖
L∞

(
D r+1

2

) ≤ C.
Consequently λ satis�es (1.3.72),

∀x ∈ D r+1
2

eΛ

C
≤ eλ(x) ≤ CeΛ.

Step 2 : Control on ∇~L
Estimates (1.3.73) then stands :

‖H‖
L2

(
D r+1

2

) ≤ Ce−Λ‖H∇Φ‖
L2

(
D r+1

2

).
We can exploit it to control the right-hand side of (1.3.74). First, using the fact that

the tangent part of ∇ ~H, πT
(
∇ ~H

)
, satis�es πT

(
∇ ~H

)
= H∇~n, we recast (1.3.74) as

∇⊥~L = ∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

= ∇ ~H − 3∇ ~H + 3πT

(
∇ ~H

)
+∇⊥~n× ~H

= −2∇ ~H + 3H∇~n+∇⊥~n× ~H.

(1.4.76)

Then we control each term of the right-hand side as follows. With theorem 1, section 5.9.1
in [EG15] we �nd ∥∥∥∇ ~H∥∥∥

H−1

(
D r+1

2

) ≤ ∥∥∥ ~H∥∥∥
L2

(
D r+1

2

)
≤ Ce−Λ‖H∇Φ‖L2(D).

Moreover
‖∇⊥~n× ~H‖

L1

(
D r+1

2

) ≤ ‖∇~n‖
L2

(
D r+1

2

) ‖ ~H‖
L2

(
D r+1

2

)
≤ Ce−Λ ‖∇~n‖L2(D) ‖H∇Φ‖L2(D),

while
‖H∇~n‖

L1

(
D r+1

2

) ≤ ‖∇~n‖
L2

(
D r+1

2

) ‖ ~H‖
L2

(
D r+1

2

)
≤ Ce−Λ ‖∇~n‖L2(D) ‖H∇Φ‖L2(D).

The last three estimates combined give

∇~L ∈ H−1
(
D r+1

2

)
⊕ L1

(
D r+1

2

)
.
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Step 3 : Conclusion

Thanks to Step 2 and theorem A.3.2 (in the appendix)

∃ ~Lr ∈ R3
∥∥∥~L− ~Lr

∥∥∥
L2,∞(Dr)

≤ Ce−Λ‖H∇Φ‖L2(D)

with C a real constant that depends on r, C0 and r0. Hence, with (1.3.72) :∥∥∥(~L− ~Lr
)
eλ
∥∥∥
L2,∞(Dr)

≤ eΛ
∥∥∥~L− ~Lr

∥∥∥
L2,∞(Dr)

≤ C‖H∇Φ‖L2(D),

with C as desired. This concludes the proof on D.

1.4.2 Low regularity controls : proof of theorem A

Without any small control on H or ~n, some results can be achieved in term of Lorentz
spaces estimates as shown by the following.

Theorem A. Let Φ ∈ E (Dρ) be a conformal weak Willmore immersion satisfying the
hypotheses of theorem 1.4.1. Then, for any r < 1, there exists a constant C ∈ R depending
on r, C0 and r0 (de�ned in (1.3.67)) such that

‖H∇Φ‖L2,1(Drρ) ≤ C‖H∇Φ‖L2(Dρ),

and
‖∇~n‖L2,1(Drρ) ≤ C ‖∇~n‖L2(Dρ) .

We �rst prove a more �exible result than theorem A (in that it does not reference r0)
controlling the L2,1 norm of ∇~n under L2,∞ assumptions on ~L.

Theorem 1.4.2. Let Φ ∈ E (Dρ) be a conformal weak Willmore immersion, ~n its Gauss
map, H its mean curvature, λ its conformal factor and ~L its �rst Willmore quantity. We
assume

‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) ≤ C0,

and that there exists r′ < 1 and and C1 > 0 such that∥∥∥~Leλ∥∥∥
L2,∞(Dr′ρ)

≤ C1 ‖H∇Φ‖L2(Dρ) .

Then for any r < r′ there exists a constant C depending on r, r′, C0 and C1 such that

‖H∇Φ‖L2,1(Drρ) ≤ C‖H∇Φ‖L2(Dρ),

and
‖∇~n‖L2,1(Drρ) ≤ C ‖∇~n‖L2(Dρ) .

Furthermore the associated second and third Willmore quantities also satisfy

‖∇S‖L2,1(Drρ) + ‖∇~R‖L2,1(Drρ) ≤ C‖H∇Φ‖L2(Dρ).

Proof. As before it is enough to work on the unit disk and conclude with a dilation to
obtain the result on disks of arbitrari radii.
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Step 1 : L2,1 control of ∇S and ∇~R
Let r′ < 1 and ~L (de�ned in (1.2.43)) such that∥∥∥~Leλ∥∥∥

L2,∞(Dr′ )
≤ C1 ‖H∇Φ‖L2(D) .

Then S and ~R de�ned as
∇⊥S = 〈~L,∇Φ〉
∇⊥ ~R = ~L×∇⊥Φ + 2H∇⊥Φ,

satisfy :

‖∇S‖L2,∞(Dr′ ) + ‖∇~R‖L2,∞(Dr′ ) ≤
∥∥∥~Leλ∥∥∥

L2,∞(Dr′ )
+ ‖H∇Φ‖L2(Dr′ )

≤ (C1 + 1) ‖H∇Φ‖L2(D) .
(1.4.77)

Noticing that S and ~R are de�ned up to an additive constant, we can choose S and ~R to
be of null average value on Dr′ .

The classic Poincaré�Wirtinger's inequality (see theorem 2, section 5.8.1 in [Eva10])
yields for any 1 < p <∞ and any u such that ∇u ∈ Lp (Dr′) :

‖u− ū‖Lp(Dr′ )
≤ Cp,r′ ‖∇u‖Lp(Dr′ )

with Cp,r′ ∈ R+ and ū the mean value of u on Dr′ . These inequalities can be extended using
Marcinkiewitz interpolation theorem (see for example theorem 3.3.3 of [Hél02], recalled
as theorem A.1.2 in the appendix) to L2,∞ : there exists Cr′ such that for any u with
∇u ∈ L2,∞ (D)

‖u− ū‖L2,∞(Dr′ ) ≤ Cr′‖∇u‖L2,∞(Dr′ ).

Applied to S and ~R (which are of null mean value), this yields :

‖S‖W 1,(2,∞)(Dr′ )
+ ‖~R‖W 1,(2,∞)(Dr′ )

≤ C‖H∇Φ‖L2(D),

where C depends on r′. Since, thanks to (1.2.46)

∆S = 〈∇~R,∇⊥~n〉,

one can decompose S = σ + s where s is harmonic and σ is a solution of{
∆σ = ∇~R.∇⊥~n in Dr′
σ = 0 on ∂Dr′ .

Using Wente's lemma (theorem A.3.5, in appendix), one �nds :

‖∇σ‖L2(Dr′ )
≤ C‖∇~R‖L2,∞(Dr′ )‖∇~n‖L2(Dr′ )

≤ C‖H∇Φ‖L2(D),
(1.4.78)

where C depends on C0 and C1. Meanwhile Poisson's formula yields for s :

‖∇s‖
L2

(
D r+r′

2

) ≤ C‖S‖L1(∂Dr′ ) (1.4.79)

where C depends on r, and r′.
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Using Marcinkiewitz interpolation theorem on trace operators yields

‖S‖L1(∂Dr′ ) ≤ C ‖∇S‖L2,∞(Dr′ )
(1.4.80)

with C depending on r′. Combining (1.4.77), (1.4.79) and (1.4.80) yields :

‖∇s‖
L2

(
D r+r′

2

) ≤ C‖H∇Φ‖L2(D), (1.4.81)

where C depends on r, r′, C1 and C0. Together (1.4.78) and (1.4.81) yield :

‖∇S‖
L2

(
D r+r′

2

) ≤ C‖H∇Φ‖L2(D).

Working similarly on ~R, one �nds

‖∇S‖
L2

(
D r+r′

2

) + ‖∇~R‖
L2

(
D r+r′

2

) ≤ C‖H∇Φ‖L2(D). (1.4.82)

This estimate can still be improved : let S = σ′ + s′ with s′ harmonic and σ′∆σ′ = ∇~R.∇⊥~n in D r+r′
2

σ′ = 0 on ∂D r+r′
2

.

Using theorem A.3.6 (in appendix) and (1.4.82) ensures∥∥∇σ′∥∥
L2,1

(
D r+r′

2

) ≤ C‖∇~R‖
L2

(
D r+r′

2

)‖∇~n‖
L2

(
D r+r′

2

)
≤ C‖H∇Φ‖L2(D).

(1.4.83)

Using Poisson's formula allows one to control s′:∥∥∇s′∥∥
L2,1

(
D 3r+r′

4

) ≤ C‖S‖
L1

(
∂D r+r′

2

). (1.4.84)

As before, Marcinkiewitz interpolation on trace theorems yields∥∥∇s′∥∥
L2,1

(
D 3r+r′

4

) ≤ C‖H∇Φ‖L2(D). (1.4.85)

Together (1.4.83) and (1.4.85) ensure

‖∇S‖
L2,1

(
D 3r+r′

4

) ≤ C‖H∇Φ‖L2(D).

Working analogously on ~R, one �nds

‖∇S‖
L2,1

(
D 3r+r′

4

) + ‖∇~R‖
L2,1

(
D 3r+r′

4

) ≤ C‖H∇Φ‖L2(D). (1.4.86)

Once more, C depends on r, r′, C0 and C1 which concludes Step 1.
Step 2 : L2,1 control of H∇Φ

We simply use inequality (1.2.52) :

|H∇Φ| ≤ 1

2

∣∣∣∇~R∣∣∣ .
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Combining it with (1.4.86), we �nd

‖H∇Φ‖
L2,1

(
D 3r+r′

4

) ≤ C‖H∇Φ‖L2(D), (1.4.87)

which gives us the desired control on H∇Φ.
Step 3 : L2,1 control of ∇~n

To expand these estimates to ∇~n, we will use equation (A.2.23) (see section A.2.2 in the
appendix)

∆~n+∇~n×∇⊥~n+ 2div (H∇Φ) = 0.

Using corollary A.3.2 and (1.4.87) there exists α ∈W 1,(2,1)
(
D 3r+r′

4

)
such that

∆α = div (H∇Φ) (1.4.88)

and
‖α‖

W 1,(2,1)

(
D 3r+r′

4

) ≤ ‖H∇Φ‖
L2,1

(
D 3r+r′

4

)
≤ C‖H∇Φ‖L2(D).

(1.4.89)

Setting ν = ~n− 2α and using (1.4.89) yields

‖∇ν‖
L2

(
D 3r+r′

4

) ≤ ‖∇ (~n− 2α)‖
L2

(
D 3r+r′

4

)
≤ ‖∇~n‖

L2

(
D 3r+r′

4

) + 2 ‖∇α‖
L2

(
D 3r+r′

4

)
≤ ‖∇~n‖L2(D) + 2C ‖∇α‖

L2,1

(
D 3r+r′

4

)
≤ ‖∇~n‖L2(D) + C‖H∇Φ‖L2(D)

≤ C ‖∇~n‖L2(D) .

(1.4.90)

Besides, ν satis�es
∆ν +∇~n×∇⊥~n = 0.

We split ν = ν1 + ν2, with ν2 harmonic and ν1 solution of∆ν1 +∇~n×∇⊥~n = 0 in D 3r+r′
4

ν1 = 0 on ∂D 3r+r′
4

.

Using theorem A.3.6, we bound

‖∇ν1‖
L2,1

(
D 3r+r′

4

) ≤ C‖∇~n‖2
L2

(
D 3r+r′

4

). (1.4.91)

Using the same method as for the estimates on s′ (see (1.4.84) and (1.4.85)), and
applying (1.4.90) we �nd

‖∇ν2‖L2,1(Dr) ≤ C‖∇ν‖
L2

(
D 3r+r′

4

) ≤ C ‖∇~n‖L2(D) . (1.4.92)

Combining (1.4.91) and (1.4.92) yields

‖∇ν‖L2,1(Dr) ≤ C ‖∇~n‖L2(D) . (1.4.93)
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Since ~n = ν + 2α, (1.4.89) and (1.4.93) ensure that

‖∇~n‖L2,1(Dr) ≤ ‖∇ν‖L2,1(Dr) + 2‖∇α‖L2,1(Dr)

≤ C ‖∇~n‖L2(D) ,

which concludes the proof.

Theorem A follows from combining theorems 1.4.1 and 1.4.2.

1.4.3 ε-regularity results

In this section, we brie�y recall T. Rivière's ε-regularity results. We will not detail
the proofs (since we do not improve on them) but give the overall ideas to contextualize
them. Further, the proof of theorem 4.2.1 will �ow in a very similar way and o�er enough
illustration for these methods.

Following is a combination of theorem I.5 in [Riv08] and theorem I.1 in [BR14].

Theorem 1.4.3. Let Φ ∈ E (D) be a conformal weak Willmore immersion. Let ~n denote

its Gauss map, H its mean curvature and λ = 1
2 log

(
|∇Φ|2

2

)
its conformal factor. We

assume
‖∇λ‖L2,∞(D) ≤ C0.

Then there exists ε0 > 0 such that if ∫
D
|∇~n|2 < ε0, (1.4.94)

then for any r < 1 and for any k ∈ N

‖∇k~n‖2L∞(Dr) ≤ C
∫
D
|∇~n|2 ,

‖e−λ∇kΦ‖2L∞(Dr) ≤ C
(∫

D
|∇~n|2 + 1

)
,

with C a real constant depending on r, C0 and k.

Proof. The original result by T. Rivière was in fact formulated in any codimension. The
idea behind the proof is to apply theorem A.3.4 to system (1.2.46) on balls Bt(p) to �nd
the following Morrey-type inequalities for ε0 small enough :

‖∇S‖2
L2

(
B t

2
(p)

) + ‖∇~R‖2
L2

(
B t

2
(p)

) ≤ 3

4

(
‖∇S‖2L2(Bt(p))

+ ‖∇~R‖2L2(Bt(p))

)
. (1.4.95)

Through classical estimates on Riesz potentials, see for instance theorem 3.1 in [Ada75] ,
it entails

∃q > 2 s.t. ‖∇S‖
Lq
(
D 3r+r′

4

)+
∥∥∥∇~R∥∥∥

Lq
(
D 3r+r′

4

) ≤ Cq
‖∇S‖

L2

(
D r+r′

2

) +
∥∥∥∇~R∥∥∥

L2

(
D r+r′

2

)
 .

(1.4.96)
Since q > 2, the criticality of (1.2.46) is broken. Its third equation, as well as (A.2.23)
allows one to pass the regularity and the controls on to ~n and ∇Φ. Bootstrapping yields
the desired result.
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One of the consequences of this ε-regularity is to vindicate the weak immersion for-
malism. Indeed as de�ned weak Willmore immersions are smooth, and thus Willmore
immersions in the sense of de�nition 1.2.4. Besides the controls displayed can be readily
obtained uniformly away from concentration points and thus exploited for the compactness
results.

Theorem 1.4.3 in fact followed a preexisting result by E. Kuwert and R. Schatzle (the-
orem 2.10 of [KS01b],) :

Theorem 1.4.4. There exists ε0 > 0 such that if Φ : Σ → R3 is an immersed surface,
Σl = Φ−1 (Bl(x0)) ⊂⊂ Σ such that ∫

Σl

|A|2 dµ < ε0,

then

‖A‖2
L∞

(
Σ l

2

) ≤ C
(
W (Φ) +

1

l2
‖A‖L2(Σl)

)
‖A‖L2(Σl)

.

While similar in appearance they di�er fundamentally. Indeed theorem 1.4.4 does not
start with a weak immersion and considers extrinsic balls (meaning balls of the ambient
space), while theorem 1.4.3 deals with intrinsic ones. Thus while these two results intersect
they do not a priori overlap. We refer the reader to the discussion in [BWV18] (between
estimate (I.11) and the end of the introduction) for more details.

1.5 Branched Willmore immersions

1.5.1 Behavior around the branch point

So far we have either considered Willmore immersions, or branched Willmore immer-
sions away from the branch point. Studying the behavior around a branch point requires
a speci�c analysis. Carried out by Y. Bernard and T. Rivière (below is theorem 1.8 of
[BR13]) it lead to a description through an expansion aroung the point.

Theorem 1.5.1. Let Φ ∈ C∞ (D\{0}) ∩
(
W 2,2 ∩W 1,∞) (D) be a Willmore conformal

branched immersion whose Gauss map ~n lies in W 1,2 (D) and with a branch point at 0 of
multiplicity θ + 1. Let λ be its conformal factor, ~γ0 the �rst residue de�ned as

~γ0 :=
1

4π

∫
∂D
~ν.
(
∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

)
.

Then there exists α ∈ Z such that α ≤ θ and locally around the origin, Φ has the following
asymptotic expansion :

Φ(z) = <

 ~Azθ+1 +
θ+1−α∑
j=1

~Bjz
θ+1+j + ~Cα|z|2(θ+1)z−α

− C~γ0

(
ln |z|2(m+1) − 4

)
+ ξ (z) ,

(1.5.97)
where ~Bj , ~Cα ∈ C3 are constant vectors, ~A ∈ C\{0}, and C ∈ R. Furthermore ξ satis�es
the estimates

∇jξ(z) = O
(
|z|2(θ+1)−α−j+1−υ

)
for all υ > 0 and j ≤ θ + 2− α,

|z|−θ∇θ−α+3ξ ∈ Lp for all p <∞.
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In particular :
~H(z) = <

(
~Eαz̄

−α
)
− ~γ0 ln |z|+ η(z), (1.5.98)

where ~Eα ∈ C3\{0}. The function η satis�es

∇jη(z) = O
(
|z|1−j−α−υ

)
for all υ > 0 and j ≤ θ − α,

|z|θ∇θ+1−αη ∈ Lp for all p <∞.

Once more we will not detail the proof and merely explain the relevant ideas. Here
the di�culty is that the Willmore equation and the conservation laws are only true on
D\{0}. To extend them to the whole disk requires to introduce a term γiδ0 where γi is the
corresponding residue and δ0 a Dirac at 0. More explicitely around the branch point, the
conservation laws induce the following �ve residues :

~γ0 :=
1

4π

∫
∂D
~ν.
(
∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

)
γ1 =

1

4π

∫
∂D
~ν.
〈

Φ,∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

〉
~γ2 =

1

4π

∫
∂D
~ν.
(

Φ×
(
∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

)
+ 2H∇⊥Φ

)
γ̃2 =

1

4π

∫
∂D
~ν.
(

Φ×
(
∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

)
− 2Å∇⊥Φ

)
~γ3 =

1

4π

∫
∂D
~ν.
(
−|Φ|2

(
∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

)
+2
〈

Φ,∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H

〉
Φ + 4Φ×

(
Å∇⊥Φ

))
.

(1.5.99)

These diracs reverberate throughout the process and in the expansions, creating the log-
arithmic terms. However only the residue corresponding to the invariance by translations
has an impact on the expansion of Φ and H. It is called the �rst residue. The quan-
tity α ∈ Z is called the second residue (see de�nition 1.7 in [BR13]), although it is not
actually a residue. It describes precisely how H behaves at the branch point. Together
~γ0 and α control the regularity of Φ across the branch point. The expansions themselves
are obtained by going through the Willmore equations using weighted Calderón-Zygmund
theorems (detailed in the appendix, section A.3.4).

A particularly noteworthy case occurs when all the residues ~γ0, . . . , ~γ3 cancel out. This
con�guration which occurs naturally when considering sequences of Willmore immersions
(see section 3.2 for context) o�ers greater regularity and fairer expansions. A Willmore
surface whose residues are all null will be called a true Willmore surface (this terminology
stems from [MR17]).

It is worth mentioning that, using the formalism and the methods introduced in
[KS01b], E. Kuwert and R. Schatzle have found corresponding results for branched Will-
more surfaces (see [KS07]).

1.5.2 Expansions for True Willmore surfaces

Following is a work in preparation for the analysis of the Bryant's quartic (section
2.6 below), centered around �nding expansions for more terms than just Φ and H in
continuation of Y. Bernard and T. Rivière works in [BR13] (some of the expansions below
were actually already found in this paper).
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We then consider Φ : D→ R3 a true Willmore conformal branched immersion with a
single branch point at 0, of multiplicity θ+ 1. Then applying theorem 1.5.1 we can expand
Φ around 0 in the following way :

Φ(z) = 2<

 1

2(θ + 1)

 1
−i
0

 zθ+1 +

θ+1−α∑
j=1

~Aj
θ + 1 + j

zθ+1+j

+

(
Czθ+1−αz̄θ+1 + Czθ+1z̄θ+1−α

(θ + 1− α)(θ + 1)

)0
0
1

+ ξ,

(1.5.100)

where ξ satis�es

∇jξ = O
(
|z|2(θ+1)−α−j+1−ν

)
for all υ > 0 and j ≤ θ + 2− α.

Further if we do the conformal change of variables Zθ+1 = zθ+1 +Azθ+2, (1.5.100) becomes

Φ(Z) = 2<

 1

2(θ + 1)

 1
−i
0

Zθ+1 +

 ~A1

θ + 2
+A

 1
−i
0

Zθ+2

+

(
CZθ+1−αZ

θ+1
+ CZθ+1Z

θ+1−α

(θ + 1− α)(θ + 1)

)0
0
1

+O
(
|Z|θ+3

)
.

Thus up to doing a conformal change of charts we can assume that ~A1 has no component

along

 1
−i
0

, meaning :

~A1 =
U

2

1
i
0

+ V

0
0
1

 . (1.5.101)

Using Φ conformal, we can expand 〈Φz,Φz〉 to the order z2θ+1 and conclude that

U =

〈
~A1,

 1
−i
0

〉 = 0.

We deduce the following expansion for Φz :

Φz =
1

2

 1
−i
0

 zθ +
θ+1−α∑
j=2

~Ajz
θ+j

+

(
V zθ+1 +

C

θ + 1
zθ−αz̄θ+1 +

C

θ + 1− α
zθz̄θ+1−α

)0
0
1

+ ξz.

(1.5.102)

Then, wishing to expand the Gauss map ~n we compute :

|Φz|2 =
r2θ

2
+ ξ̃, (1.5.103)
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with
∇j ξ̃ = O

(
|z|2θ+2−j

)
for all υ > 0 and j ≤ θ + 3− α.

Φz × Φz̄ =

1

2

 1
−i
0

+ V zθ+1

0
0
1

+O(rθ+2)

×
1

2

1
i
0

+ V z̄θ+1

0
0
1

+O(rθ+2)


=
ir2θ

2

0
0
1

− iV zθ+1z̄θ

2

1
i
0

− iV zθz̄θ+1

2

 1
−i
0

+O(r2θ+2).

Hence we can write

~n =

0
0
1

− V z
1
i
0

− V z̄
 1
−i
0

+ ν. (1.5.104)

Here
|ν|
r2

+
|∇ν|
r
≤ C,

∇2ν ∈ Lp ∀p <∞.

Since we are studying a fourth order problem on Φ (or second order on H) it is natural
to desire expansions valid for the fourth derivatives of Φ and the second of H. With
theorem 1.5.1 this only seems possible for α ≤ θ − 1. However using the same techniques
as in [BR13], fourth order expansions can be drawn even when α = θ.

Proposition 1.5.2. Let Φ satisfy the hypothesis of theorem 1.5.1. We further assume
that Φ is a true Willmore immersion. Then in the expansion (1.5.97) ξ satis�es :

|z|α+1−2θ∇4ξ ∈ Lp(D) ∀p ∈ N.

Similarly η in the expansion (1.5.98) satis�es

|z|α+1∇2η ∈ Lp(D) ∀p ∈ N.

Proof. Since this theorem is a slight extension of the previous result, since it corresponds
to theorem 2.3 in [LN15] (although with a di�erent formalism) and since we will do this
procedure in details and in a more general case (section 4.4), we will only give the outline
of the proof.

Starting with the expansions (1.5.97) and (1.5.98), and injecting them into (1.2.43) one
�nds :

~Leλ ∈ L∞,
∇S,∇~R ∈ L∞,
H∇Φ ∈ L∞.

(1.5.105)

These estimates in fact correspond to (2.30) in [BR13]. Now since Φ is assumed to be a
true Willmore immersion, system (1.2.46) (which is a priori only de�ned on the punctured
disk) extends on the whole disk. One can then inject (1.5.105) into the �rst two equations
of (1.2.46) and apply theorem A.3.9 to �nd expansions on ∇S and ∇~R, which are valid
for ∇2S and ∇2 ~R. Since in fact, thanks to (1.5.98), we can expand H∇Φ, and have a
control on its �rst order derivatives, we can apply once more theorem A.3.9 to the �rst
two equations of (1.2.46), and extend the expansions to the third derivatives of S and ~R.
Theorem A.3.9 applied to the third equation of system (1.2.46) extend (1.5.97) to the fourth
order derivatives in the desired way. Similarly, one can extend (1.5.98) as wanted.
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Proposition 1.5.2 propagates to the subsequent expansions, for instance in (1.5.104)
r∇3ν ∈ Lp for all p <∞. One can di�erentiate (1.5.102) into :

Φzz =
θ

2

 1
−i
0

 zθ−1 +
θ+1−α∑
j=1

(θ + j) ~Ajz
θ−1+j

+

(
(θ − α)C

θ + 1
zθ−1−αz̄θ+1 +

θC

θ + 1− α
zθ−1z̄θ+1−α

)0
0
1

+ ξzz.

Taking the scalar product with (1.5.104) we �nd :

Ω

2
= (θ + 1)V zθ − θV zθ +

T

2
= V zθ +

T

2
. (1.5.106)

On the other hand

Φzz̄ =
(
Czθ−α + Czθz̄θ−α

)0
0
1

+ ξzz̄.

Taking the scalar product with (1.5.104) we �nd :

He2λ

2
= Czθ−αz̄θ + Czθz̄θ−α + η0.

Combined with (1.5.103) we �nd :

H = 2Cz−α + 2Cz̄−α + η1. (1.5.107)

If we compare (1.5.98) and (1.5.107) we can deduce ~Eα = 2C.
From (1.5.106) we �nd

Ω = O(rθ)

Ωz = O(rθ−1).
(1.5.108)

Thanks to Gauss-Codazzi equation (A.2.20) we can evaluate Ωz̄ through the derivatives of
H. Then with (1.5.107), one �nds

Ωz̄ = Hze
2λ = −2αCzθ−α−1z̄θ +O

(
r2θ−α

)
= O(r2θ−α−1)

Ωzz̄ = Hzze
2λ +H

(
2 |Φz|2

)
z

= −2α(θ − α− 1)Czθ−α−2z̄θ +O(r2θ−α−1) = O(r2θ−α−2).

(1.5.109)
As a conclusion, combining (1.5.103), (1.5.108) and (1.5.109) ensures that :

e−2λ (Ωzz̄Ω− ΩzΩz̄) = 2α(α+ 1)CV zθ−α−2 +O
(
rθ−α−1

)
= O

(
rθ−α−2

)
= O

(
r−2
)
.

(1.5.110)

This term will be pivotal in section 2.4.2 since it is the leading order term of the Bryant's
quartic (see (2.4.38)), which will thus have at most a pole of order 2 at branch points of
the immersion.
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2.1 Introduction

Once more, this introduction will give a quick and stand-alone look at the notions
developed in this chapter, with an emphasis on the author's contributions.

Following we mostly study concepts and ideas revolving around the conformal Gauss
map and its deep link with the notion of Willmore surfaces. While most of the results pre-
sented here were already known and obtained through the Dorfmeister-Pedit-Wu (DPW)
method (see for instance [DPW98], [DW19], [Eji88] or [Ric97]), the originality of the present
work lies in our approach. Indeed, we will merely employ basic di�erential geometry. Con-
sequently, most of our result will present clear geometric interpretations, often absent when
obtained through DPW methods. Most of this chapter was part of the preprint [Mar19a].

We will work with three models : the euclidean space R3, the 3-dimensional round
sphere S3 and the hyperbolic spaceH3. Relying on the local conformal equivalences induced
by the stereographic projections, we can jointly describe the space of spheres of the three
models as the de Sitter space S4,1 of R4,1. From the characterization of conformal maps as
those who preserve the set of spheres, we can then �nd explicit correspondances between
the conformal groups and SO(4, 1), described in the following result.



70 Chapter 2. Conformal Gauss map approaches

Corollary 2.1.1. SO(4, 1) acts transitively through conformal di�eomorphisms on

� X ∈ S3 :

M.X =
V◦
V5

where

V = M

(
X
1

)
=

(
V◦
V5

)
.

� x ∈ R3 :
M.x =

y�
y5 − y4

where

y = M

 x
|x|2−1

2
|x|2+1

2

 =

y�y4

y5

 .

While the fact that Conf(S3) and SO(4, 1) are isomorphic is well-known, the explicit
correspondance is rather uncommon.

From this, in section 2.3, we will consider the Conformal Gauss map of an immersion.
This notion will be to Willmore surfaces what the Gauss map is to CMC surfaces. It can
be apprehended as the map that, to a point x on the surface associates the tangent sphere
of radius the inverse of the mean curvature. It is thus an application Y : Σ → R4,1.
Studying its geometry allows one to build a natural normal frame based on the immersion.
Computing the corresponding mean and trace free curvatures then highlights that Y is the
conformal Gauss map of a Willmore immersion if and only if it is a minimal immersion
in S4,1, with the minimal equation for the conformal Gauss map being equivalent to the
Willmore equation for the immersion. This will be detailed in section 2.4.

Further the conservation laws of the Willmore surfaces can be read thanks to the
conformal Gauss map.

Theorem 2.1.1. Let Φ : D → R3 be a Willmore immersion, conformal, of conformal
Gauss map Y . Let

µ =
(
∇YiYj − Yi∇Yj

)
= ∇Y Y T − Y∇Y T .

Then divg(µ) = 0, and

2µ =


U −Vtra−Vinv

2
Vtra+Vinv

2(
Vtra−Vinv

2

)T
0 Vdil

−
(
Vinv+Vtra

2

)T
−Vdil 0


and

U =

 0 −Ṽrot 3 Ṽrot 2

Ṽrot 3 0 −Ṽrot 1

−Ṽrot 2 Ṽrot 1 0


with Vtra, Vdil, Vrot, Ṽrot and Vinv de�ned in theorem 1.2.14.

This observation, coupled with the behavior of the conformal Gauss map under the
action of the conformal group tells us how the conserved quantities change under the
action of the conformal tranforms. Considering the speci�c case of the inversions yields an
elementary proof of theorem 3.9 of [MR17].



2.1. Introduction 71

Corollary 2.1.2. Let Φ : D → R3 be a Willmore immersion, conformal, of conformal
Gauss map Y . Let ι : x 7→ x

|x|2 be the inversion at the origin. Let V∗,ι be the conserved
quantity corresponding to the transformation ∗ for ι ◦ Φ. Then

Vtra, ι = Vinv

Vinv, ι = Vtra

Vdil, ι = −Vdil

Ṽrot, ι = Ṽrot.

The usefullness of the conformal Gauss map will also be seen in the study of branched
Willmore surfaces, where its behavior at a branch point will allow us to compute the second
residue. Applied to inversions of minimal immersions, it will make computing both residues
at branch points obtained easier.

We will �nally study another relevant quantity : Bryant's quartic. This object, which
can be seen as the product of the tracefree curvatures of the conformal Gauss map takes
center stage in the problem of conformally CMC surfaces, subject of the section 2.4.3. This
issue revolves around �nding equivalent conditions for a conformal Willmore surface to be
the conformal transform of a CMC surface. We say that Φ (respectively X, Z) is confor-
mally CMC (respectively minimal) if and only if there exists a conformal di�eomorphism
ϕ of R3∪{∞} (respectively S3, H3) such that ϕ◦Φ (respectively ϕ◦X, ϕ◦Z) has constant
mean curvature (respectively is minimal) in R3 (respectively S3, H3). One such geometric
condition on the conformal Gauss map arises naturally.

Theorem 2.1.2. Let Φ : D→ R3 be a smooth conformal immersion, and X (respectively
Z) its representation in S3 (respectively H3) through π (respectively π̃). Let Y be its
conformal Gauss map. We assume the set of umbilic points of Φ (or equivalently, see
(A.2.29) and (A.2.42), X or Z) to be nowhere dense.

Then

� Φ is conformally CMC (respectively minimal) in R3 if and only if Y lies in an a�ne
(respectively linear) hyperplane of R4,1 with lightlike normal.

� X is conformally CMC (respectively minimal) in S3 if and only if Y lies in an a�ne
(respectively linear) hyperplane of R4,1 with timelike normal.

� Z is conformally CMC (respectively minimal) in H3 if and only if Y lies in an a�ne
(respectively linear) hyperplane of R4,1 with spacelike normal.

From this, with a careful study of the geometry of conformal Gauss maps, two similar
characterizations follow. The �rst one is based on the notion of isothermic immersion,
which we will brie�y go over in section 2.4.2. It can easily be compared to theorem 4.4
from [Boh12], reached with other means.

Theorem B. Let X be a smooth conformal immersion on D in S3, and Φ (respectively
Z) its representation in R3 (respectively H3) through π (respectively π̃). We assume
that X (or equivalently, see (A.2.29) and (A.2.42), Φ or Z) has no umbilic point. One
of the representation of X is conformally CMC in its ambient space if and only if Q is

holomorphic and X is isothermic. More precisely
(
WS3 (X)

4

)2
−ω2e−4ΛQ is then necessarily

real and

� Φ is conformally CMC (respectively minimal) in R3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ = 0.
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� X is conformally CMC (respectively minimal) in S3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ < 0.

� Z is conformally CMC (respectively minimal) in H3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ > 0.

Conformally minimal immersions satisfy WS3(X) = 0.

This last theorem is in accordance with previous results obtained through DPW meth-
ods in the previously mentioned works. Its originality lies in the numeric determination of
the space in which an immersion is potentially CMC. The same analysis that led to this
theorem can be extended to give it a more outstanding shape.

Theorem C. Let X be a smooth conformal immersion on D in S3, and Φ (respectively
Z) its representation in R3 (respectively H3) through π (respectively π̃). We assume
X (or equivalently, see (A.2.29) and (A.2.42), Φ or Z) has no umbilic point. One of
the representation of X is conformally CMC in its ambient space if and only if Q is
holomorphic and ω2Q ∈ R. More precisely

� Φ is conformally CMC (respectively minimal) in R3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ = 0.

� X is conformally CMC (respectively minimal) in S3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ < 0.

� Z is conformally CMC (respectively minimal) in H3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ > 0.

Conformally minimal immersions satisfy WS3(X) = 0.

While theorem C is a modi�cation of theorem B, it is one we think fruitful. Indeed
the replacing of "X isothermic" by "ω2Q ∈ R seems to suggest that Q could be seen as
a measure of isothermicity, and at least when it is holomorphic,

√
Q is necessarily the

isothermic 1-form.
These type of theorems can be applied to classify Willmore immersions of a sphere, in

the fashion of theorem E of [Bry84], or even to some branched immersions of the sphere
(following from theorem F in [MR17]), which we will prove in section 2.6 using analytical
methods.

We will conclude this section by an exposition of a study by A. Michelat and T. Rivière
in section 4 of [MR17] of the case when the second residue is better than expected. This
study will prove highly relevant when framed with theorem G.
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2.2 Conformal Geometry in three model spaces

2.2.1 Local conformal equivalences

In the following 〈., .〉 will denote the standard product on the relevant contextual space.
For instance if u, v ∈ Rm with m ∈ N, 〈u, v〉 denotes the euclidean product of u and v in

Rm. If u and v are stated to be in Rm,1 then 〈u, v〉 =
m∑
i=1

uivi − um+1vm+1 denotes the

(m, 1) Lorentzian product of u and v in Rm+1.
We will focus on immersions into the Euclidean space R3, into the round sphere S3 and

into the hyperbolic space H3.
These three spaces are locally conformally equivalent and thus their respective con-

formal geometry can be linked. Namely the stereographic projection from the north pole
N

π :


S3\{N} → R3

(x, y, z, t) 7→ 1

1− t

xy
z


is a conformal di�eomorphism whose inverse is

π−1 :



R3 → S3\{N}

(x, y, z) 7→ 1

1 + r2


2x
2y
2z

r2 − 1


which extends to a conformal di�eomorphism R3 ∪ {∞} → S3. Consequently one can link
Conf

(
R3
)
and Conf

(
S3
)
.

•N

•
p

• π(p)
S3

Figure 2.1 � Stereographic projection.

Proposition 2.2.1. π realises an isomorphism between Conf
(
R3
)
and Conf

(
S3
)
, with

Conf(X) being the group of conformal di�eomorphisms of X. We remind the reader that
we make a slight abuse of notations and use Conf

(
R3
)
for the conformal group of R3∪{∞}.

Combining both Liouville theorem (see theorem 1.2.1) and proposition 2.2.1 ensures a
description of conformal di�eomorphisms of S3.

Corollary 2.2.1. Any conformal mapping ϕ ∈ Conf(S3) satis�es either

ϕ = π−1 ◦ T~b ◦RΘ ◦Dλ ◦ T~a ◦ π
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if ϕ (N) = N ,

ϕ = π−1 ◦ T~b ◦RΘ ◦Dλ ◦ ι ◦ T~a ◦ π

otherwise.

Using the Poincaré disk model of the hyperbolic space one �nds an isometry
π̃0 : H3 →

(
B1(0), 〈.,.〉

(1−|p|2)2

)
and thus a conformal di�eomorphism between H3 and the

unit ball of R3. It will be convenient in the following to consider H3 as the upper part of
the quadric

{
v ∈ R3,1 |〈v, v〉 = −1

}
in R3,1 :

H3 =
{

(x, y, z, t)
∣∣x2 + y2 + z2 − t2 + 1 = 0 and t ≥ 0

}
⊂ R3,1.

Then, the following projection yields an explicit conformal di�eomorphism

π̃ :


H3 → B1(0)

(x, y, z, t) 7→ 1

1 + t

xy
z


of inverse

π̃−1 :



B1(0)→ H3

(x, y, z) 7→ 1

1− r2


2x
2y
2z

r2 + 1

 .

• P =


0
0
0
−1



• p

π̃(p)
•

H3

Figure 2.2 � Hyperbolic projection.

In conclusion, our three model spaces are locally conformally equivalent, and their
conformal geometries will be intertwined.
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2.2.2 Spaces of spheres

In the present subsection, we wish to properly represent the geometry of geodesic
spheres of S3. Our motivation comes from the following result, drawn from chapter 1 in
[AG96].

Theorem 2.2.2. Let (M, g) and (N,h) be two Riemann manifolds and ϕ : M → N . ϕ is
conformal if and only if it sends a geodesic sphere of M into a geodesic sphere of N .

Thanks to theorem 2.2.2, one would then expect to be able to detail conformal di�eo-
morphisms of S3. Moreover since H3 ↪→ R3 ↪→ S3 conformally, we would subsequently be
able to represent geodesic spheres in H3 and R3.

The stereographic projection ensures that R3∪{∞} ' S3 conformally, and thus geodesic
spheres in S3 are images by π−1 of euclidean spheres and planes ("spheres" going through
∞) of R3. They will be called spheres in S3. More precisely :

De�nition 2.2.1. A sphere in S3 is equivalently de�ned as follows :

� The inverse of the stereographic projection of a sphere or a plane in R3.

� {x ∈ S3 d(q, x) = r} for a given q in S3. q is then the center of the sphere, of radius
r ≤ π

2 .

An equator of S3 is a sphere of maximum radius r = π
2 .

One can easily check that spheres in S3 are orientable.

De�nition 2.2.2. Let

M0 = {non-oriented spheres in S3},
E0 = {non-oriented equatorial spheres in S3},

and

M = {oriented spheres in S3},
E = {oriented spheres in S3}.

Let σ be a non-oriented sphere of radius r < π
2 . Let Xσ ∈ σ be any point on the sphere

and ~Nσ the inward pointing (relative to σ) normal to σ at Xσ. Then pσ = Xσ + tan r ~Nσ

is the summit of the tangent cone to S3 along σ. Since a sphere in S3 has constant mean
curvature h = 1

tan r (see (A.2.36) in the appendix A.2.4 ), pσ = Xσ + 1
h
~Nσ. This gives us

a representation of M0\E0 :

P0 :

{
M0\E0 → R4\B1(0)

σ 7→ pσ,

as shown in �gure 1.
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•Xσ ~Nσ

•
pσ

S3

Figure 2.3 � Construction of pσ.

Conversely given any p ∈ R4\B1(0) there exists a unit cone of summit p tangent to S3,
along a sphere of S3. P0 is then a bijection. As σ becomes equatorial, h → 0, meaning
p → ∞ and ~Nσ → ~ν with ~ν ∈ R4 independant on the chosen Xσ. To properly represent

all of M0 we de�ne pσ =

(
pσ
1

)
. Then

pσ

|pσ|
=

(
pσ
|pσ |

1
|pσ |

)
→
(
~ν
0

)
as σ tends toward an equatorial sphere of constant normal ~ν. Then one can represent M0

in RP4, with equatorial spheres being sent to
[(
~ν
0

)]
typed directions (where [d] denotes

the direction of d ∈ R5).

P1 :

{
M0 → RP4

σ 7→
[
pσ
]
.

Since any equatorial sphere is fully determined by its normal, P1 remains injective. However
for non equatorial spheres pσ is necessarily outside B1(0), and thus P1 cannot be surjective.
Going further will require some basic notions in semi-Riemannian geometry.

De�nition 2.2.3. Let m ∈ N and v ∈ Rm,1. Then v is said to be

� spacelike if 〈v, v〉 > 0,

� lightlike if 〈v, v〉 = 0,

� timelike if 〈v, v〉 < 0.

Accordingly a direction d ∈ RPm+1 is called

� spacelike if there exists v ∈ Rm,1 such that 〈v, v〉 > 0 and [v] = d,

� lightlike if there exists v ∈ Rm,1 such that 〈v, v〉 = 0 and [v] = d,

� timelike if there exists v ∈ Rm,1 such that 〈v, v〉 < 0 and [v] = d.

We also de�ne

� the De Sitter space of Rm,1 as the set of unit spacelike vectors.
It will be denoted Sm,1 :=

{
v ∈ Rm,1 〈v, v〉 = 1

}
,
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S4,1 = P (M)

C4,1

P (S3) = {(X, 1) ∈ C4,1}

Figure 2.4 � De Sitter and the isotropic cone.

� the isotropic cone of Rm,1 as the set of lightlike vectors.
It will be denoted Cm,1 :=

{
v ∈ Rm,1 〈v, v〉 = 0

}
.

One can realize that the image of P1 is the set of all the space-like directions of R4,1

which is isomorphic to S4,1/{±Id}. We �nally obtain our representation of non-oriented
spheres :

P :


M0 → S4,1/{±Id}

σ 7→
p∥∥p∥∥

where
∥∥p∥∥ =

√
〈pσ, pσ〉. P is easily extended to M by taking the natural two covering of

S4,1/{±Id}. Two opposite points in the De Sitter space then represent the same sphere
with opposite orientations.

P :


M→ S4,1

σ 7→
p∥∥p∥∥ = h

(
Xσ

1

)
+

(
~Nσ

0

)
(2.2.1)

for any Xσ ∈ σ.
As h → ∞ (that is the radius of the sphere goes to 0 and thus the sphere collapses

on a point X ∈ S3), P (σ)
h → (X, 1), meaning that P (σ) tends to ∞ in an isotropic

direction of R4,1 bijectively and smoothly linked with the point of collapse X. One can
then continuously extend P

P :



M ∪ S3 → S4,1 ∪ C4,1

σ ∈M 7→
p∥∥p∥∥ = h

(
Xσ

1

)
+

(
~Nσ

0

)
∈ S4,1

X ∈ S3 7→
(
X
1

)
∈ C4,1.

(2.2.2)
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Since the stereographic projection is a conformal di�eomorphism, the set of non-
oriented (respectively oriented) spheres and planes or R3 is in bijection with M0 (respec-
tively M) and can be represented using P . Using formula (A.2.30) (see appendix A.2.3)
one �nds

P :



(
R3 ∪ {∞}

)
∪M→ S4,1 ∪ C4,1

σ ∈M 7→ Hσ

 Φσ
|Φσ |2−1

2
|Φσ |2+1

2

+

 ~nσ
〈~nσ,Φσ〉
〈~nσ,Φσ〉

 for any Φσ ∈ σ

Φ ∈ R3 7→

 Φ
|Φ|2−1

2
|Φ|2+1

2

 ∈ C4,1

∞ 7→
(
0, 1, 1

)
∈ C4,1.

(2.2.3)

Similarly consider MH3 the set of oriented geodesic spheres in H3. The function π−1 ◦ π̃
sends H3 injectively into S3 and thus maps MH3 injectively into M. MH3 can then be
represented using P (see formula (A.2.43) in appendix A.2.5) one �nds

P :



H3 ∪MH3 → S4,1 ∪ C4,1

σ ∈MH3 7→ HZ
σ

Zhσ−1
Z4σ

+

~nZhσ0
~nZ4σ

 for any
(
Zhσ
Z4σ

)
∈ σ

Z =

(
Zh
Z4

)
∈ H3 7→

Zh−1
Z4

 ∈ C4,1.

(2.2.4)

2.2.3 Conf(S3) ' SO(4, 1)

As foreshadowed in subsection 2.2.2, we can use P to study conformal di�eomorphisms
of S3.

Theorem 2.2.3. P realises an isomorphism between Conf(S3) and SO(4, 1).

Proof. According to proposition 2.2.1, showing Conf
(
R3
)
' SO(4, 1) is enough. We pro-

ceed in three steps : we de�ne the correspondance, show that it represents a morphism
and conclude by proving it is bijective.
Step 1 : De�ning the correspondance M → ϕM
The core idea here is that isotropic directions in R4,1 are in bijection with R3 ∪ {∞},

and that any M ∈ SO(4, 1) shu�es them. Thus M yields a transformation of R3 ∪ {∞}.
Its conformality is all one needs to prove.

Let p(x) :=

 x
|x|2−1

2
|x|2+1

2

 = P|R3∪{∞}
(x). One easily shows that for all i, j :

〈∂ip, ∂jp〉 = δij ,

that is p : R3 → P
(
R3 ∪ {∞}

)
is an isometry. As x → ∞, p(x)

|p(x)| →

0
1
1

. Noticing that

P
(
R3 ∪ {∞}

)
=
{
p ∈ C4,1 s.t. p5 − p4 = 1

}
∪ {(0, 0, 0, 1, 1)}, one can conversely associate

to any p ∈ C4,1 a point x = (p1,p2,p3)
p5−p4

∈ R3 ∪ {∞} depending only on the direction of p.
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Given M ∈ SO(4, 1) let y = Mp(x) =

y�y4

y5

. Then

〈y�, y�〉 = y2
5 − y2

4

〈∂iy�, y�〉 = ∂iy5y5 − ∂iy4y4

〈∂iy�, ∂jy�〉 = δij + ∂iy5∂jy5 − ∂iy4∂jy4.

Renormalizing as suggested, let ϕM (x) = y�
y5−y4

= p−1
(

Mp(x)
(Mp(x))5−(Mp(x))4

)
. ϕM is a

transformation of R3 ∪ {∞}. Let us show it is conformal :

〈∂iϕM , ∂jϕM 〉 =

〈
∂iy�

y5 − y4
− (∂iy5 − ∂iy4) y�

(y5 − y4)2 ,
∂jy�
y5 − y4

− (∂jy5 − ∂jy4) y�

(y5 − y4)2

〉
=

1

(y5 − y4)2 〈∂iy�, ∂jy�〉+
(∂iy5 − ∂iy4) (∂jy5 − ∂jy4)

(y5 − y4)3 〈y�, y�〉

− 1

(y5 − y4)3 ((∂iy5 − ∂iy4) 〈∂jy�, y�〉 − (∂jy5 − ∂jy4) 〈∂iy�, y�〉)

=
δij

(y5 − y4)2 +
∂iy5∂jy5 − ∂iy4∂jy4

(y5 − y4)2

+
1

(y5 − y4)3 (∂iy5 − ∂iy4) (∂jy5 − ∂jy4) (∂iy5y5 − ∂iy4y4)

− (∂iy5 − ∂iy4) (∂jy5y5 − ∂jy4y4)

(y5 − y4)3

+
(∂jy5 − ∂jy4) (∂iy5y5 − ∂iy4y4)

(y5 − y4)3

=
δij

(y5 − y4)2 .

Then ϕM ∈ Conf(R3).
Step 2 : M → ϕM is a morphism

Given M1 and M2 ∈ SO(4, 1), we compute

ϕM1 ◦ ϕM2(x) = p−1

 M1
M2p(x)

(M2p(x))5−(M2p(x))4(
M1

M2p(x)
(M2p(x))5−(M2p(x))4

)
5
−
(
M1

M2p(x)
(M2p(x))5−(M2p(x))4

)
4


= p−1 ◦

(
M1M2p(x)

(M1M2p(x))5 − (M1M2p(x))4

)
= ϕM1M2(x).

Thus M 7→ ϕM is a morphism between SO(4, 1) and Conf
(
R3 ∪ {∞}

)
.

Step 3 : M → ϕM is an isomorphism

Bijectivity is the only property left to show. According to theorem 1.2.1, exhibiting
M ∈ SO(4, 1) for dilations, translations, rotations and the inversion is enough to ensure
surjectivity. Computing we �nd
Dilations :
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For Dλ(x) = eλx,

MDλ =

Id 0 0
0 chλ shλ
0 shλ chλ

 ∈ SO(4, 1). (2.2.5)

Rotations :

For RΘ(x) = Θx, with Θ ∈ O(3),

MRΘ
=

Θ 0 0
0 1 0
0 0 1

 ∈ SO(4, 1). (2.2.6)

Inversion :

For ι(x) = x
|x|2 ,

Mι =

−Id 0 0
0 1 0
0 0 −1

 ∈ SO(4, 1). (2.2.7)

Translations :

For T~a(x) = x+ ~a, with ~a ∈ R3,

MT~a =

Id −~a ~a

~aT 1− |~a|
2

2
|~a|2
2

~aT − |~a|
2

2 1 + |~a|2
2

 ∈ SO(4, 1). (2.2.8)

M → ϕM is then surjective. With injectivity stemming from the uniqueness of the
decomposition in theorem 1.2.1, M → ϕM is bijective, which concludes the proof.

A direct consequence of the proof is the explicit formula for the conformal actions of
SO(4, 1) on S3 and R3.

Corollary 2.2.2. SO(4, 1) acts transitively through conformal di�eomorphisms on

� S3 :
M.X =

V◦
V5

where

V = M

(
X
1

)
=

(
V◦
V5

)
.

� R3 :
M.x =

y�
y5 − y4

where

y = M

 x
|x|2−1

2
|x|2+1

2

 =

y�y4

y5

 .

While Conf(S3) ' SO(4, 1) is well known, the explicit action of SO(4, 1) on elements
of S3 is less commonly found.

We will work in the three models and frequently switch from one to the other. For
simplicity, we de�ne notations once and for all. Given Σ a Riemman surface and Φ :
Σ → R3, we refer to X = π−1 ◦ Φ as the representation of Φ in S3 and Z = π̃−1 ◦ Φ
as the representation of Φ in H3 (whenever Φ(Σ) ⊂ B1(0)). We will often decompose
Z = (Zh, Z4) with Zh = (Z1, Z2, Z3).
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2.3 The Conformal Gauss map

The previous considerations on the representation of spheres in the de Sitter space can
be applied to the study of the geometry of immersed surface through the conformal Gauss
map. To lighten notations, we will denote

p(Φ) =

 Φ
|Φ|2−1

2
|Φ|2+1

2

 for Φ ∈ R3,

p(X) =

(
X
1

)
for X ∈ S3,

p(Z) =

Zh−1
Z4

 for Z =

(
Zh
Z4

)
∈ H3.

2.3.1 Enveloping spherical congruences

We �rst introduce the notion of enveloping spherical congruences.

De�nition 2.3.1. Let Σ be a Riemann surface. A spherical congruence on Σ is a smooth
application Y : Σ→ S4,1, that is, a family of oriented spheres parametrized on Σ. Given
Φ : Σ→ R3, or equivalently X its representation in S3, or Z = (Zh, Z4) in H3, Y envelopes
Φ, or equivalently X or Z, if and only if

〈Y, p(Φ)〉 = 0 (2.3.9)

and
〈Y,∇p(Φ)〉 = 0, (2.3.10)

or equivalently
〈Y, p(X)〉 = 0 (2.3.11)

and
〈Y,∇p(X)〉 = 0, (2.3.12)

or
〈Y, p(Z)〉 = 0 (2.3.13)

and
〈Y,∇p(Z)〉 = 0. (2.3.14)

Geometrically speaking Y envelopes Φ at the point p ∈ Σ if the generalized sphere Y (p) is
tangent to Φ(Σ) at the point Φ(p).

Proof. We here show the equivalence of the three de�nitions. Since p(Φ), p(X) and p(Z)
are pairwise colinear, one �nds (2.3.9), (2.3.11) and (2.3.13) to be equivalent.

Moreover, assuming (2.3.9), (2.3.11), and (2.3.13), one deduces

〈Y,∇p(Φ)〉 = ∇ (〈Y, p(Φ)〉)− 〈∇Y, p(Φ)〉 = −〈∇Y, p(Φ)〉 ,

〈Y,∇p(X)〉 = ∇ (〈Y, p(X)〉)− 〈∇Y, p(X)〉 = −〈∇Y, p(X)〉

and
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〈Y,∇p(Z)〉 = ∇ (〈Y, p(Z)〉)− 〈∇Y, p(Z)〉 = −〈∇Y, p(Z)〉 ,

which ensures that (2.3.10), (2.3.12) and (2.3.14) are equivalent.

Example 2.3.1. The conformal Gauss map :

Let Σ be a Riemann surface and Φ : Σ → R3. The conformal Gauss map Y , which to a
point z ∈ Σ associates the tangent sphere to the surface at Φ(z) of center Φ(z) + ~n(z)

|H(z)| if
H(z) 6= 0, and the tangent plane if H(z) = 0, is a spherical congruence enveloping Φ.

Y can be written as :

Y = H

 Φ
|Φ|2−1

2
|Φ|2+1

2

+

 ~n
〈~n,Φ〉
〈~n,Φ〉

 . (2.3.15)

One can notice :
〈p(Φ), p(Φ)〉 = 0

〈p(Φ),∇p(Φ)〉 = 0〈
p(Φ),

 ~n
〈~n,Φ〉
〈~n,Φ〉

〉 = 0

and in local coordinates

∇Y = ∇H

 Φ
|Φ|2−1

2
|Φ|2+1

2

+H∇

 Φ
|Φ|2−1

2
|Φ|2+1

2

+∇

 ~n
〈~n,Φ〉
〈~n,Φ〉



= ∇H

 Φ
|Φ|2−1

2
|Φ|2+1

2

+H

 ∇Φ
〈∇Φ,Φ〉
〈∇Φ,Φ〉

+

 ∇~n
〈∇~n,Φ〉
〈∇~n,Φ〉



= ∇H

 Φ
|Φ|2−1

2
|Φ|2+1

2

− Å
 ∇Φ
〈∇Φ,Φ〉
〈∇Φ,Φ〉

 .

(2.3.16)

Hence :
〈∂iY, ∂jY 〉 = 〈Åpi ∂pΦ, Å

q
j∂qΦ〉

= Åpi Åpj = Åpi Å
l
pgjl =

(
ÅT Åg

)
ij

=
1

2
|Å|2gij

(2.3.17)

since Å is symetric tracefree (see (1.2.28)). We then deduce that Y : (Σ, g) → S4,1 is
conformal. One may notice that the umbilic points of Φ are critical points of Y .

As an enveloping spherical congruence, the conformal Gauss map carries many infor-
mations on the geometry of the immersion. Its key role is further emphasized by the fact
it is the only conformal enveloping spherical congruence, up to orientation.

Theorem 2.3.1. Let Σ be a Riemann surface and Φ : Σ→ R3 an immersion. We denote
g its �rst fundamental form and Y its conformal Gauss map. If the set of umbilic points of
Φ is nowhere dense then Y and −Y are the only smooth conformal (Σ, g)→ R3 spherical
congruences enveloping Φ.
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Proof. As stated when we introduced it, the conformal Gauss map is a spherical congruence
enveloping Φ which happens to be conformal.

Conversely we consider a spherical congruence G enveloping Φ.
Let E = Vect (p(Φ), ∂xp(Φ), ∂yp(Φ)). Equations (2.3.9) and (2.3.10) force G to lie in (E)⊥.
Since Φ is an immersion, E is of dimension 3, and its orthogonal is then of dimension 2. Y
envelopes Φ and p(Φ)is isotropic, hence (Y, p(Φ)) is a basis of (E)⊥. G can then be written
as

G = µY + λp(Φ)

with µ, λ ∈ R.
Since 〈G,G〉 = µ2 = 1 one �nds µ = ±1 and deduce ∇µ = 0. We then only need to

compute the �rst fundamental form of G :

〈∂iG, ∂jG〉 =

〈
µ∂iY + ∂iλp(Φ) + λ

 ∂iΦ
〈∂iΦ,Φ〉
〈∂iΦ,Φ〉

 , µ∂jY + ∂jλp(Φ) + λ

 ∂jΦ
〈∂jΦ,Φ〉
〈∂jΦ,Φ〉

〉

=

〈
λ

 ∂iΦ
〈∂iΦ,Φ〉
〈∂iΦ,Φ〉

− Åpi
 ∂pΦ
〈∂pΦ,Φ〉
〈∂Φ,Φ〉

 , λ

 ∂jΦ
〈∂jΦ,Φ〉
〈∂jΦ,Φ〉

− Åpj
 ∂pΦ
〈∂pΦ,Φ〉
〈∂Φ,Φ〉

〉

using expression (2.3.16) of ∇Y and the fact that p(Φ) ∈ E⊥. Then

〈∂iG, ∂jG〉 = 〈λ∂iΦ− Åpi ∂pΦ, λ∂jΦ− Å
q
j∂qΦ〉

= λ2gij + Åpi Åpj − 2λÅij

=

(
λ2 +

|Å|2

2

)
gij − 2λÅij

where we have used (1.2.28). By hypothesis the set of umbilic points is nowhere dense,
G is then conformal if and only if λ = 0. We then have G = ±Y which concludes the
proof.

Taking−Y instead of Y is tantamount to changing the orientation of the surface (taking
−~n instead of ~n as a Gauss map).

Geometrically speaking Y can be seen as the 2-dimensional generalization of the os-
culating circles for curves in euclidian spaces, and it will be of major importance in the
study of Willmore surfaces, playing much of the same role as the Gauss map in the case
of constant mean curvature surfaces.

Since Y conserves the conformal structure on Σ, it is convenient, and will not induce any
loss of generality, to work in complex coordinates in local conformal charts (see subsection
A.2.2 in the appendix for more details). In the following we will then consider Φ : D→ R3

a smooth conformal immersion, that is satisfying 〈Φz,Φz〉 = 0. Let ~n = Φz×Φz̄
i|Φz |2

denote its

Gauss map with × the classic vectorial product in R3, λ = 1
2 log

(
2 |Φz|2

)
its conformal

factor and H =
〈

Φzz̄
|Φz |2

, ~n
〉
its mean curvature. Its tracefree curvature is de�ned as follows

Ω := 2 〈Φzz, ~n〉 .

Its representation in S3, X = π−1 ◦ Φ = 1
1+|Φ|2

(
2Φ

|Φ|2 − 1

)
is conformal. Let Λ :=

1
2 log

(
2 |Xz|2

)
be its conformal factor, ~N such that

(
X, e−ΛXx, e

−ΛXy, ~N
)
is a direct
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orthonormal basis of R4 its Gauss map , h =
〈
Xzz̄
|Xz |2

, ~N
〉
its mean curvature and ω :=

2
〈
Xzz, ~N

〉
its tracefree curvature. Similarly its representation in H3, Z = π̃−1◦Φ is confor-

mal. Let λZ := 1
2 log (2〈Zz, Zz̄〉) be its conformal factor,~nZ such that (Z, e−λ

Z
Zx, e

−λZZy, ~n
Z)

is a direct orthonormal basis of R3,1 its Gauss map , HZ =
〈
Zzz̄
|Zz |2

, ~nZ
〉
its mean curvature

and ΩZ := 2
〈
Zzz, ~n

Z
〉
its tracefree curvature. One can then express Y as the conformal

Gauss map of an immersion in S3 or in H3.

Proposition 2.3.2. Let Φ be a smooth conformal immersion on D, and X (respectively
Z) its representation in S3 (respectively H3) through π (respectively π̃). Let Y be its
conformal Gauss map. Then

Y = h

(
X
1

)
+

(
~N
0

)

= HZ

Zh−1
Z4

+

~nZh0
~nZ4


where Z =

(
Zh
Z4

)
and ~nZ =

(
~nZh
~nZ4

)
, while h and HZ are the respective mean curvatures.

Proof. The computations are done in the appendix, respectively in subsections A.2.1, A.2.3
and A.2.5.

It is interesting to study how Y changes under the action of conformal di�eomorphisms.

Proposition 2.3.3. Let ϕ ∈ Conf(S3) corresponding to M ∈ SO(4, 1). Let X : Σ → S3

be a smooth conformal immersion of conformal Gauss map Y . We assume the set of umbilic
points of X to be nowhere dense. Let Yϕ be the conformal Gauss map of ϕ ◦X. Then

Yϕ = MY.

Proof. We work in a conformal chart on a disk. Thanks to theorem 2.3.1 one just needs
to prove that MY is conformal, envelopes ϕ ◦X and has the same orientation as Yϕ.

We �rst show that MY is conformal. Since (MY )z = MYz and M ∈ SO(4, 1),

〈(MY )z , (MY )z〉 = 〈Yz, Yz〉.

Given that Y is conformal, one �nds 〈(MY )z , (MY )z〉 = 0, that is MY is conformal.

We then justify that MY envelopes ϕ ◦ X. To that aim, let V = M

(
X
1

)
=

(
V◦
V5

)
. In

accordance with corollary 2.2.2, ϕ(X) = V◦
V5
, which translates to

p(ϕ(X)) =
1

V5
Mp(X). (2.3.18)

Then
〈MY, p(ϕ(X))〉 =

1

V5
〈MY,Mp(X)〉

=
1

V5
〈Y, p(X)〉

= 0,

(2.3.19)
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which proves (2.3.11), and

〈MY,∇p(ϕ(X))〉 = ∇ (〈MY, p(ϕ(X))〉)− 〈M∇Y, p(ϕ(X))〉

= − 1

V5
〈M∇Y,Mp(X)〉

= − 1

V5
〈∇Y, p(X)〉

= 0,

which shows (2.3.12) and that MY envelopes ϕ(X).
Finally one need only adress the orientation of ϕ(X) to conclude. Let Nϕ be the Gauss

map of ϕ◦X induced by the Gauss mapN ofX, namelyNϕ = dϕ(N)
|dϕ(N)| . Given the expression

(A.2.44) of the conformal Gauss map, MY = Yϕ if and only if
〈
MY,

(
Nϕ

0

)〉
= 1,

MY = −Yϕ otherwise. Let W = M

(
N
0

)
=

(
W◦
W5

)
. With a straightforward computation

one �nds

dϕ(N) =
W◦
V5
− W5

V 2
5

V◦,

which yields

Nϕ = W◦ −
W5

V5
V◦.

Then 〈
MY,

(
Nϕ

0

)〉
=

〈
MY,

(
W◦ − W5

V5
V◦

0

)〉
=

〈
MY,

(
W◦
W5

)
−
(W5
V5
V◦

W5

)〉
=

〈
MY,M

(
N
0

)
− W5

V5

(
V◦
V5

)〉

thanks to the de�nition of W . Then since
〈
MY,M

(
N
0

)〉
=

〈
Y,

(
N
0

)〉
= 1, one �nds〈

MY,

(
Nϕ

0

)〉
= 1−

〈
MY,

W5

V5

(
V◦
V5

)〉
= 1− W5

V5
〈MY, p(X)〉 ,

by de�nition of V . The equality (2.3.19) gives the expected result.
Then MY = Yϕ which is the desired result.

One has similar results in the R3 and H3 settings.

Proposition 2.3.4. Let ϕ ∈ Conf(R3) corresponding toM ∈ SO(4, 1). Let Φ ∈ C∞(Σ,R3)
be a smooth immersion and Y its conformal Gauss map. We assume the set of umbilic
points of Φ to be nowhere dense. Let Yϕ be the conformal Gauss map of ϕ ◦ Φ. Then

Yϕ = MY.
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Proposition 2.3.5. Let ϕ ∈ Conf(H3) corresponding to M ∈ SO(4, 1). Let Z ∈
C∞(Σ,H3) be a smooth conformal immersion and Y its conformal Gauss map. We assume
the set of umbilic points of Z to be nowhere dense. Let Yϕ be the conformal Gauss map
of ϕ ◦ Z. Then

Yϕ = MY.

2.3.2 Geometry of Conformal Gauss maps

Enveloping conditions (2.3.9) and (2.3.10) (or equivalently (2.3.11) and (2.3.12) or
(2.3.13) and (2.3.14)) ensure that p(Φ) (or equivalently p(X) or p(Z)) is an isotropic
vector �eld normal to Y in R4,1.

We wish to complete (Y, Yz, Yz̄, p(Φ)) into a moving frame of R4,1 compatible with the
decomposition R4,1 = TY

⊕
NY , in order to introduce the mean and tracefree curvatures

of Y as an immersion in R4,1. As we pointed out prior, �nding another immersion enveloped
by Y is enough to complete the moving frame. We will use the notations introduced in
subsection A.2.7 in the appendix.

Theorem 2.3.6. Let Φ : D → R3 be a smooth conformal immersion with no umbilic
points. Then there exists

Φ∗ = Φ− 4HzΩe
−2λ

T (Φ)
Φz −

4Hz̄Ωe
−2λ

T (Φ)
Φz̄ +

2H |Ω|2 e−2λ

T (Φ)
~n

where T (Φ) = |∇H|2 +H2 |Ω|2 e−2λ, such that

〈Y, p(Φ∗)〉 = 0 (2.3.20)

and
〈∇Y, p(Φ∗)〉 = 0. (2.3.21)

Proof. We search for Φ∗ under the form

Φ∗ = Φ + uΦz + uΦz̄ + v~n.

Applying �rst (2.3.20) then (2.3.21) yields

v =
|u|2e2λ + v2

2
H

Ωu = −Hz

(
|u|2e2λ + v2

)
.

Solving the resulting system gives us the desired values for u and v.

One can work similarly with immersions in S3.

Theorem 2.3.7. Let X : D → S3 be a smooth conformal immersion with no umbilic
points. Then there exists

X∗ =
h2 |ω|2 + 4 |hz|2 e2Λ − |ω|2

T (X)
X − 4hzω

T (X)
Xz −

4hz̄ω

T (X)
Xz̄ +

2 |ω|2 h
T (X)

N

where T (X) = |ω|2
(
1 + h2

)
+ 4 |hz|2 e2Λ, such that

〈Y, p(X∗)〉 = 0 (2.3.22)

and
〈∇Y, p(X∗)〉 = 0. (2.3.23)



2.3. The Conformal Gauss map 87

Proof. We search for X∗ under the form

X∗ = αX + βXz + βXz̄ + γN.

Applying �rst (2.3.22), then (2.3.23) yields

γ = (1− α)h,

2hz (α− 1) = ωβ.

Further 〈X∗, X∗〉 = 1 ensures

α2 + |β|2 e2Λ + γ2 = 1.

Solving the resulting system gives the desired result.

Let eΦ := (Y, Yz, Yz̄, p(Φ), p(Φ∗)) and eX := (Y, Yz, Yz̄, p(X), p(X∗)) denote our two
frames. Since p(Φ) and p(X) are colinear, necessarily p(Φ∗) and p(X∗) are too, meaning
X∗ = π−1 ◦ Φ∗, that is X∗ is the representation of Φ∗ in S3.

Since Y is conformal, (2.3.20) and (2.3.21) (respectively (2.3.22) and (2.3.23)), (2.3.9)
and (2.3.10) (respectively (2.3.11) and (2.3.12)) ensure eΦ (respectively eX) is orthogonal.
For convenience's sake, we will mainly work with eX . Indeed while Φ is not necessarily
contained in a compact, and thus neither is p(Φ), X ∈ S3 makes for easier computations.
Each result has its counterpart in R3.

Let

ν = p(X) =

(
X
1

)
, (2.3.24)

l = 〈p(X), p(X∗)〉 =
−2|ω|2

|ω|2(h2 + 1) + |∇h|2 e2Λ
,

and
ν∗ = −1

l
p(X∗)

=
|ω|2

(
h2 + 1

)
+ |∇h|2 e2Λ

2 |ω|2
p(X∗)

=

(h2−1
2 + |∇h|2e2Λ

2|ω|2

)
X − 2hz

ω Xz − 2hz̄
ω Xz̄ + hN

h2+1
2 + |∇h|2e2Λ

2|ω|2

 .

(2.3.25)

By design, we have 〈ν, ν∗〉 = −1. Thus de�ned |ν∗| <∞ away from umbilic points.
One computes easily, with Gauss-Codazzi (see (A.2.35) in appendix) to obtain the

second equality,

〈νz, ν∗〉 = −hz̄e
2Λ

ω
= −ωz

ω
. (2.3.26)

Using computations done for conformal immersions in R4,1 in a nice frame, (see (A.2.51)
in the appendix), one �nds

Yzz̄ =
WS3(X)

4

(
X
1

)
− |ω|

2 e−2Λ

2
Y =

WS3(X)

4
ν − |ω|

2 e−2Λ

2
Y (2.3.27)

where
WS3(X)

4
= hzz̄ +

|ω|2 e−2Λ

2
h ∈ R
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as de�ned in (A.2.52). With the notations of section A.2.7, see (A.2.61), this yields

Hν = 0, (2.3.28)

e2L = |ω|2 e−2Λ, (2.3.29)

and

Hν∗ =
−WS3(X)

2 |ω|2 e−2Λ
. (2.3.30)

Similarly, applying (A.2.56) to (A.2.48) we �nd

Ων = 2 〈Yzz, ν〉 = ω, (2.3.31)

and

Ων∗ = 2 〈Yzz, ν∗〉

= 2

〈
hzz

(
X
1

)
+ hz

(
Xz

0

)
−
(
ωe−2Λ

)
z

(
Xz̄

0

)
− ω

(
h

2

(
~N
0

)
− 1

2

(
X
0

))
, ν∗
〉

= 2
(
hzz +

ω

2

)(h2 − 1

2
+
|∇h|2 e2Λ

2 |ω|2

)
+
hz
ω

(
ωe−2Λ

)
z
e2Λ − hzhz̄

ω
e2Λ − ωh2

2

− hzz

(
h2 + 1

2
+
|∇h|2 e2Λ

2 |ω|2

)

= −ωh
2 + 1

2
+ 2
|ωz̄|2 e−2Λ

ω
+ 2

ωz̄
(
ωe−2Λ

)
z

ω
− 2

ωz̄ωze
−2Λ

ω
− 2

(
ωz̄e
−2Λ
)
z

= −ωh
2 + 1

2
+ 2

ωz̄
(
ωe−2Λ

)
z

ω
− 2

(
ωz̄e
−2Λ
)
z

= 2
(ωz̄ωz

ω
− ωzz̄

)
e−2Λ − ωh

2 + 1

2
,

where we have used (A.2.35) for the fourth equality. This yields

Ων∗ = −2ωe−2Λ

((ωz̄
ω

)
z

+
h2 + 1

4
e2Λ

)
= −2ωe−2Λ

((ωz
ω

)
z̄

+
h2 + 1

4
e2Λ

)
.

(2.3.32)

A consequence of these computations is that the conformal Gauss map of an immersion
X is necessarily of vanishing mean curvature in the direction p(X). This is in fact an
equivalence.

Theorem 2.3.8. Let Y : D → S4,1 be a spacelike (that is 〈Yz, Yz̄〉 > 0) conformal
immersion. Then Y is the conformal Gauss map of X : D→ S3 if and only if there exists
an isotropic normal direction ν such that Hν = 0, where Hν is the mean curvature in the
ν direction de�ned in (A.2.56). Moreover, ν is parallel to p(X).

Proof. We have shown in (2.3.28) that if Y is the conformal Gauss map of X then Y is of
null mean curvature in the isotropic p(X) direction.

Reciprocally consider Y of null mean curvature in the isotropic direction ν Let us build
X : D→ S3 such that Y is the conformal Gauss map of X. Since 〈ν, ν〉 = 0 and ν 6= 0, the
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last coordinate ν5 of ν is necessarily non null. One can then renormalize ν to ν
ν5

= p(X).
There then exists X : D→ S3 such that

〈Y, p(X)〉 = 0,

〈Yz, p(X)〉 = 0,

〈Yzz̄, p(X)〉 = 0.

One checks that hypotheses (2.3.11) and (2.3.12) are satis�ed and that Y envelopes X.
We now just have to prove that X is conformal, and apply 2.3.1 to conclude.

Since 〈Xz, Xz〉 = 〈p(X)z, p(X)z〉 and according to (A.2.72)

〈p(X)z, p(X)z〉 = Hp(X)Ωp(X) = 0,

X is shown to be conformal, which concludes the proof.

We must draw the reader's attention to the fact that Y is not a priori the conformal
Gauss map of X∗. Indeed, while Y envelopes X∗, X∗ is not necessarily conformal :

〈X∗z , X∗z 〉 = 〈p(X∗)z, p(X∗)z〉
= 〈(lν∗)z , (lν

∗)z〉
= l2 〈ν∗z , ν∗z 〉

since (A.2.70) stands and ν∗ is isotropic. Then using (A.2.72)

〈X∗z , X∗z 〉 = l2Hν∗Ων∗

= l2ωe−2Λ

((ωz
ω

)
z̄

+
h2 + 1

4
e2Λ

)
WS3(X)

2 |ω|2 e−2Λ
,

with (2.3.32) and (2.3.30).
Then

〈X∗z , X∗z 〉 =
ω|ω|2(

|ω|2 (h2 + 1) + |∇h|2 e2Λ
)2WS3(X)

((ωz
ω

)
z̄

+
h2 + 1

4
e2Λ

)
. (2.3.33)

One can notice that a simple condition to ensure that X∗ is conformal is WS3(X) = 0,
that is X is a Willmore immersion. The computations for an immersion Φ in R3 (see
(A.2.45)-(A.2.49)) bring to the forefront the quantity

W(Φ) = 4Hzz̄ + 2 |Ω|2 e−2λH ∈ R.

We refer the reader to (A.2.53) for the proof that

WS3(X) =
|Φ|2 + 1

2
W(Φ).

Given how the left-hand term of the Willmore equation appears organically as a geometric
term for the conformal Gauss map it becomes natural and interesting to consider the
conformal Gauss map of Willmore immersions.
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2.4 Conformal Gauss map of Willmore immersions

2.4.1 Another look at the conservation laws

Equality (A.2.46) (or equivalently (A.2.51)) yields the following well known theorem
(found in [BR14] for instance).

Theorem 2.4.1. Let Φ : D → R3 be a conformal immersion of representation X in S3

and Z in H3. Then Φ is Willmore if and only if its conformal Gauss map Y is minimal,
that is if it is conformal and satis�es

Yzz̄ + 〈Yz, Yz̄〉Y = 0

which in real notations is tantamount to

∆Y + 〈∇Y.∇Y 〉Y = 0. (2.4.34)

Remark 2.4.1. One could then de�ne a notion of Willmore immersion in S3 of H3 by using
their representation in R3. Actually, the whole process of de�ning Willmore immersions can
be followed through in a general Riemannian setting. Any smooth immersion of a surface
into a Riemannian manifold de�nes a mean curvature, which allows us to introduce a
Willmore energy, whose critical points are Willmore immersions. This notion is invariant
under conformal di�eomorphisms from one Riemannian setting into the other. The two
ways to de�ne Willmore immersions on S3 or H3 naturally coincide.

Assuming (2.4.34), for all i, j ∈ {1 . . . 5} one has

div (∇YiYj − Yi∇Yj) = ∆YiYj −∆YjYi = 0.

Y then satis�es the following conservation laws (that can actually be thought to follow
from the invariance group SO(4, 1) of the energy E(Y ) =

∫
D 〈∇Y.∇Y 〉 dz) :

div
(
∇Y Y T − Y∇Y T

)
= 0. (2.4.35)

These conservation laws stem from the seminal works of F. Hélein on harmonic maps in
the euclidean spheres (see [Hél02] for an extensive study) and the generalization of M. Zhu
to harmonic maps in de Sitter spaces in [Zhu13].

Theorem 2.4.2. Let Φ : D → R3 be a Willmore immersion, conformal, of conformal
Gauss map Y . Let

µ =
(
∇YiYj − Yi∇Yj

)
= ∇Y Y T − Y∇Y T .

Then div(µ) = 0 and

2µ =


U −Vtra−Vinv

2
Vtra+Vinv

2(
Vtra−Vinv

2

)T
0 Vdil

−
(
Vinv+Vtra

2

)T
−Vdil 0


and

U =

 0 −Ṽrot 3 Ṽrot 2

Ṽrot 3 0 −Ṽrot 1

−Ṽrot 2 Ṽrot 1 0


with Vtra, Vdil, Vrot, Ṽrot and Vinv de�ned in theorem 1.2.14.
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Proof. We decompose µ in blocks :

µ =

 P a b
−aT 0 ω
−bT −ω 0

 ,

with P ∈ M3(R) antisymetric, a, b ∈ R3 and ω ∈ R. Let ε =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −1

. Then

given any a, b ∈ R5,

aT εb = 〈a, b〉,

where 〈., .〉 is the Lorentzian product in R4,1.
For any w ∈ R3,

µε

w0
0

 =

〈
Y,

w0
0

〉∇Y −〈∇Y,
w0

0

〉Y
= 〈HΦ + ~n,w〉

∇H
 Φ
|Φ|2−1

2
|Φ|2+1

2

− Å
 ∇Φ
〈∇Φ,Φ〉
〈∇Φ,Φ〉




−
〈
∇HΦ− Å∇Φ, w

〉H
 Φ
|Φ|2−1

2
|Φ|2+1

2

+

 ~n
〈~n,Φ〉
〈~n,Φ〉


 ,

while

µε

w0
0

 =

 Pw
−〈a,w〉
−〈b, w〉

 .

Focusing on the �rst three coordinates yields

Pw = 〈HΦ + ~n,w〉
[
∇HΦ− Å∇Φ

]
−
〈
∇HΦ− Å∇Φ, w

〉
[HΦ + ~n]

= w ×
[
Φ×

(
∇H~n+HÅ∇Φ

)
+ ~n× Å∇Φ

]
= −1

2
w ×

[
Φ× Vtra + 2Å∇Φ× ~n

]
= −1

2
w × Ṽrot.

With this valid for all w ∈ R3, we deduce

P =
1

2

 0 −Ṽrot 3 Ṽrot 2

Ṽrot 3 0 −Ṽrot 1

−Ṽrot 2 Ṽrot 1 0

 .
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Similarly :

µε

0
1
1

 =

〈
Y,

0
1
1

〉∇Y −〈∇Y,
0

1
1

〉Y
= −H

∇H
 Φ
|Φ|2−1

2
|Φ|2+1

2

− Å
 ∇Φ
〈∇Φ,Φ〉
〈∇Φ,Φ〉


+∇H

H
 Φ
|Φ|2−1

2
|Φ|2+1

2

+

 ~n
〈~n,Φ〉
〈~n,Φ〉




= ∇H

 ~n
〈~n,Φ〉
〈~n,Φ〉

+HÅ

 ∇Φ
〈∇Φ,Φ〉
〈∇Φ,Φ〉

 ,

while

µε

0
1
1

 =

a− b−ω
−ω

 .

Hence

a− b = −Vtra

2
,

ω =
Vdil

2
.

In a similar fashion, computing in two ways µε

 0
1
−1

 yields

a+ b =
Vinv

2
.

Hence

a = −Vtra − Vinv

4

b =
Vinv + Vtra

4
.

To conclude, we assemble all the previous results and reach

2µ =


U −Vtra−Vinv

2
Vtra+Vinv

2(
Vtra−Vinv

2

)T
0 Vdil

−
(
Vinv+Vtra

2

)T
−Vdil 0


which is the desired result.

One of the advantages of this formulation is that it describes conveniently how these
conserved quantities change under the action of di�eomorphisms.

Theorem 2.4.3. Let Φ : D → R3 be a Willmore immersion, conformal, of conformal
Gauss map Y . Let µ be as in theorem 2.4.2. Let ϕ ∈ Conf

(
R3
)
and M ∈ SO(4, 1)

associated. Let Yϕ be its conformal Gauss map and µϕ be as in theorem 2.4.2. Then

µϕ = MµMT .
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Proof. Using proposition 2.3.3 one has Yϕ = MY and thus

µϕ = Yϕ (∇Yϕ)T −∇Yϕ (Yϕ)T = M
(
Y∇Y T −∇Y Y T

)
MT = MµMT .

As an example theorem 2.4.3 yields an alternative proof of a result by A. Michelat
and T. Rivière (theorem 3.9 in [MR17]) that describes the exchange laws of conserved
quantities under the action of the inversions.

Corollary 2.4.1. Let Φ : D → R3 be a Willmore immersion, conformal, of conformal
Gauss map Y . Let ι : x 7→ x

|x|2 be the inversion at the origin. Let V∗,ι be the conserved
quantity corresponding to the transformation ∗ for ι ◦ Φ. Then

Vtra, ι = Vinv

Vinv, ι = Vtra

Vdil, ι = −Vdil

Ṽrot, ι = Ṽrot.

Proof. One need only apply theorem 2.4.3 with ϕ = ι and M = Mι =

−Id 0 0
0 1 0
0 0 −1


(see (2.2.7)), and interpret the result with theorem 2.4.2.

On non simply-connected domains, each conserved quantity yields a corresponding
residue (as in (1.5.99)) which follows the exchange law presented in corollary 2.4.1. The
exchange law of residues was in fact a result obtained by A. Michelat and T. Rivière in
[MR17] through computations (theorem 3.9).

As was pointed out in conclusion of subsection 2.3.2, a su�cient condition for X∗ to
be conformal is X Willmore. In that case Y is the conformal Gauss map of X∗.

Theorem 2.4.4. Let X : D → S3 be a Willmore immersion, conformal, of conformal
Gauss map Y . Then there exists a branched conformal Willmore immersion X∗ : D → S3

such that Y is the conformal Gauss map of X∗. Then X∗ is called the conformal dual
immersion of X.

Proof. Taking X∗ as in theorem 2.3.7, and recalling (2.3.33) with X Willmore, one �nds
X∗ conformal and enveloped by Y . Theorem 2.3.1 concludes.

Another way to see this is to understand that Y minimal means there are two isotropic
directions in which Y has zero mean curvature, meaning Y is the conformal Gauss map of
two immersions, according to theorem 2.3.8. One is X, the other is its conformal dual.

2.4.2 Bryant's quartic

R. Bryant introduced in his seminal paper [Bry84] a holomorphic quartic with far-
reaching properties.

De�nition 2.4.1. Let Σ be a Riemann surface and X : Σ → S3 be an immersion of
representation Φ in R3 and Z in H3 and of conformal Gauss map Y . The Bryant quartic
of X (respectively Φ, Z) is de�ned as
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Q :=
〈
∂2Y, ∂2Y

〉
.

In a local complex chart one has Q = Qdz4, with Q = 〈Yzz, Yzz〉.
The results in this subsection are framed for conformal immersions of the unit disk

for convenience. Indeed it means that we can work with the more familiar function, Q
instead of the quartic Q. They are generalizable to immersions of a Riemman surface by
the same process that took us from de�nition 1.2.5 to 1.2.6 : systematically working in
local conformal charts.

One can draw a parallel between constant mean curvature immersions and Willmore
immersions. Indeed while for a CMC immersion, the Gauss map is harmonic, for a Willmore
immersion the conformal Gauss map is. The Bryant's quartic allows us to further this
comparison, as it is analogous to the Hopf di�erential. While the Hopf di�erential of a CMC
immersion is holomorphic, the Bryant's quartic of a Willmore immersion is holomorphic.

Proposition 2.4.5. If X is Willmore then Q is holomorphic.

Proof. If X is Willmore then necessarily Yzz̄ = −〈Yz, Yz̄〉Y , and then

Yzzz̄ = (Yzz̄)z = −(〈Yz, Yz̄〉)zY − 〈Yz, Yz̄〉Yz
and since Y is conformal

〈Yzz, Yz〉 =
1

2
(〈Yz, Yz〉)z = 0,

and
〈Yzz, Y 〉 = (〈Yz, Y 〉)z − 〈Yz, Yz〉 = 0.

Then
Qz̄ = 2 〈Yzzz̄, Yzz〉 = 0.

Hence ∂Q = 0.

Using expression (A.2.60) in any orthonormal isotropic frame (ν, ν∗) (that is satisfying
〈ν, ν∗〉 = −1) of the normal bundle of Y :

Yzz = 2LzYz −
Ων

2
ν∗ − Ων∗

2
ν,

where L is the conformal factor of Y , one �nds

Q = −ΩνΩν∗

2
. (2.4.36)

Taking ν and ν∗ as in susection 2.3.2 and using (2.3.31) and (2.3.32) further yields

Q = ω2e−2Λ

((ωz
ω

)
z̄

+
h2 + 1

4
e2Λ

)
= (ωzz̄ω − ωzωz̄) e−2Λ + ω2h

2 + 1

4
.

(2.4.37)

Remark 2.4.2. The computations in R3 lead to a similar expression :

Q = (Ωzz̄Ω− ΩzΩz̄) e
−2λ + Ω2H

2

4
. (2.4.38)

The converse of proposition 2.4.5 is not true.
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Proposition 2.4.6. Q is holomorphic if and only if there exists a holomorphic function f
on D such that

WS3 (X) = ωfe−2Λ. (2.4.39)

Proof. We once again use the notations of subsection A.2.7 with ν and ν∗ de�ned in (2.3.24)
and (2.3.25). Then, as before,

Qz̄ = 2 〈Yzzz̄, Yzz〉 ,

and using (2.3.28) (2.3.30) and (A.2.61) :

Qz̄ = 2

〈(
WS3

4
(X)ν − |ω|

2e−2Λ

2
Y

)
z

, Yzz

〉
=
WS3(X)

2
〈νz, Yzz〉+

(WS3(X))z
2

〈ν, Yzz〉 .

Using (A.2.54) and ν =

(
X
1

)
yields

〈νz, Yzz〉 = −1

2

(
ωe−2Λ

)
z
e2Λ.

Further by (2.3.31) 〈ν, Yzz〉 = ω
2 . Hence

Qz̄ =
(WS3(X))z ω

4
−
WS3(X)

(
ωe−2Λ

)
z
e2Λ

4

= e−2Λω2

(
WS3(X)

4ωe−2Λ

)
z

.

To conclude Q holomorphic implies
(
WS3 (X)

ωe−2Λ

)
z

= 0, which means there exists f holo-
morphic such that

WS3(X)

ωe−2Λ
= f.

This concludes the proof.

This result follows from the work of C. Bohle (see theorem 4.4 in [Boh12]). A. Michelat
found an equivalent condition in [Miced].

Proposition 2.4.6 bears striking resemblance to the de�nition 1.2.5 of conformal Will-
more immersions, with the added condition that fω ∈ R. This might be better understood
with the notion of isothermic immersions, which we study in the fashion of T. Rivière ((I.4)
in [Riv13]).

De�nition 2.4.2. A conformal immersion Φ of the disk D into R3 (or equivalently X
into S3) is said to be isothermic if around each point of D there exists a local conformal
reparametrization such that Ω ∈ R (equivalently ω ∈ R). Such a parametrization will be
called isothermic, or in isothermic coordinates.

Isothermic immersions can be conveniently caracterized (as explained by proposition
I.1 in [Riv13]).

Proposition 2.4.7. A conformal immersion Φ of the disk D into R3 (or equivalently X
into S3) is isothermic if and only if there exists a non zero holomorphic function F on D,
such that

=
(
FΩ
)

= 0.



96 Chapter 2. Conformal Gauss map approaches

Equivalently X is isothermic if and only if there exists a non zero holomorphic function f
on D, such that

=
(
fω
)

= 0.

In fact away from its zeros,
√
f yields the conformal reparametrization into isothermic

coordinates.

Of course when Φ is de�ned on any Riemann surface on Σ, it can be said to be isothermic
if proposition 2.4.7 stands in any local conformal chart. There exists, however, a way to
formulate it using tensors on the surface (following is de�nition I.1 from [Riv13]).

De�nition 2.4.3. Let Φ : Σ→ R3. One says that Φ is global isothermic if there exists
an holomorphic quadratic form q such that :

=
(〈
q,~h0

〉
WP

)
= 0,

where 〈u, v〉WP = g−1 ⊗ g−1 ⊗ u⊗ v is the Weil-Peterson product.

Then (2.4.39) not only yields that X is conformal Willmore, but either f is null and
then X is Willmore, or there exists a non null holomorphic f such that fω ∈ R, that is
=
(
fω
)

= 0 i.e. X is isothermic.

Corollary 2.4.2. If Q is holomorphic then either X is Willmore, or X is conformal
Willmore and isothermic.

2.4.3 The residues through the conformal Gauss map

This subsection aims at �nding easy ways to compute the two relevant residues in
theorem 1.5.1 when the surface is conformally minimal. Let us then consider Φ a branched
Willmore immersion of Σ with a branch point at b ∈ Σ, and Ψ a minimal immersion with
a branched end at b. We assume there exists an inversion ι such that Φ = ι ◦Ψ.

Applying corollary 2.4.1 one �nds that ~γ0 Φ = ~γ3,Ψ. Further since Ψ is assumed to be
minimal, one can inject H = 0 into (1.2.42) and �nd

~γ3,Ψ =
2

π

∫
Φ×

(
~n× Å∇Φ

)
.ν.

Further, thanks to (1.2.42) and (A.2.5) we conclude :

Φ×
(
~n× Å∇Φ

)
= −Φ× (~n×∇~n) = −Φ× Å∇⊥Φ = −Φ×∇⊥~n

= −∇⊥ (Φ× ~n) +∇⊥Φ× ~n = ∇⊥(Φ× ~n)−∇Φ.

Thus ~γ0,Φ is proportional to the �ux of Ψ through its branched end at b. Further given
that Ψ is minimal all the other residues are null. We then deduce the following result,
already present in [MR17] :

Corollary 2.4.3. Inversions of vanishing �ux minimal surfaces are true branched Willmore
surfaces : all their residues vanish.

Example 2.4.1. The Enneper surface, the Chen-Gackstatter torus, the Bryant surface,
the López surface are all of vanishing �ux. Its inverses are true Willmore surfaces.
The Catenoïd is a minimal surface with �ux, hence the inverted catenoïd o�ers an example
of singular Willmore surface.
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It is also interesting to notice that the second residue of Φ around b can be read on its
conformal Gauss map Y . Indeed, since Y is de�ned as :

YΦ = HΦ

 Φ
|Φ|2−1

2
|Φ|2+1

2

+

 ~nΦ

〈~nΦ,Φ〉
〈~nΦ,Φ〉

 ,

and since Φ and ~nΦ are bounded around the branch point, necessarily

YΦ ∼b CΦz
−α.

This is true whether Φ is conformally minimal or not.
However, in the particular case where Φ is the conformal transform of the minimal

branched immersion Ψ, it has been shown by proposition 2.3.4 that there exists a �xed
matrix M ∈ SO(4, 1) such that YΨ = MYΦ. This yields that necessarily YΨ ∼b CΨz

−α.
Hence, considering that Ψ is minimal, we deduce that

YΨ =

 ~nΨ

〈~nΨ,Ψ〉
〈~nΨ,Ψ〉

 .

Since ~nΨ is bounded,
〈~nΨ,Ψ〉 ∼b Cz−α. (2.4.40)

We can apply this to compute rather easily the second residue, from the Enneper-Weierstrass
representation. Following is a non trivial example : the Chen-Gackstatter torus.

Proposition 2.4.8. The inverted Chen-Gackstatter torus has a second residue α = 2 at
its branch point.

Proof. Let Ψ : (C\Z2)/Z2 → R3 be a parametrization of the Chen-Gackstatter torus,
p ∈ R3 such that d(p,Ψ) > 1, and Φ = ι ◦ (Ψ− p), the studied inverse.

We will now use the Enneper-Weierstrass parametrization of Ψ and (2.4.40) to compute
the second residue of Ψ at its branch point. Chen-Gackstatter is a minimal surface of genus
1 and of Enneper-Weierstrass data centered on the branch point : (f, g) =

(
2p(z), Apz

p (z)
)

(see [CG82]) where p is the Weierstrass elliptic function, of elliptic invariants

g2 = 60

∞∑
m,n=−∞

1

(m+ ni)4 > 0,

g3 = 0,

and

A =

√
3π

2g2
∈ R+.

Then, ϕ has the following expansion around 0 (see [Apo90]) :

p(z) =
1

z2
+O(z2)

pz(z) =
−2

z3
+O(z).
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Hence we can state that

Φ = 2<

∫ 1

z2

1
i
0

− 4A2

z4

 1
−i
0

− 4A

z3

0
0
1

+O(1)dz


= 2<

4A2

3z3

 1
−i
0

− 1

z

1
i
0

+
2A

z2

0
0
1

+O(z)


=

(
4A2

3z̄3
− 1

z

)1
i
0

+

(
4A2

3z3
− 1

z̄

) 1
−i
0

+ 2A

(
1

z2
+

1

z̄2

)0
0
1

+O(r).

(2.4.41)

Similarly :

Φz × Φz̄ =

 1

z2

1
i
0

− 4A2

z4

 1
−i
0

− 4A

z3

0
0
1

+O(1)

×
 1

z̄2

 1
−i
0

− 4A2

z̄4

1
i
0

− 4A

z̄3

0
0
1

+O(1)


= − 4Ai

z2z̄3

1
i
0

+
32iA4

r8

0
0
1

− 16A3i

z4z̄3

 1
−i
0

− 4Ai

z3z̄2

 1
−i
0

− 16A3i

z3z̄4

1
i
0

+O

(
1

r4

)

=
32iA4

r8

−( z

2A
+
z2z̄

8A3

)1
i
0

− ( z̄

2A
+
z̄2z

8A3

) 1
−i
0

+

0
0
1

+O(r4)

 ,

and

|Φz|2 =
32A4

r8
+

16A2

r6
+O(r−4)

=
32A4

r8

(
1 +

r2

2A2
+O(r4)

)
,

which yields

~nΦ =

(
1− r2

2A2

)0
0
1

− ( z

2A
− z2z̄

8A3

)1
i
0

− ( z̄

2A
− zz̄2

8A3

) 1
−i
0

+O(r4). (2.4.42)

Combining (2.4.41) and (2.4.42) ensures :

〈~nΦ,Φ〉 = 2A

(
1

z2
+

1

z̄2

)
− 4A

3z2
− 4A

3z̄2
+O

(
1

r

)
=

2A

3z2
+

2A

3z̄2
+O

(
1

r

)
. (2.4.43)

Considering (2.4.43) in light of (2.4.40) yields α = 2.

2.5 Conformally CMC immersions : proof of theorems B and
C

A quick study of proposition 2.3.2 and (2.3.15) reveals that the mean curvature in the
three models can be written as a function of Y , with interesting geometric interpretations.
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Corollary 2.5.1. Let Φ be a smooth conformal immersion on D, and X (respectively
Z) its representation in S3 (respectively H3) through π (respectively π̃). Let Y be its
conformal Gauss map. Then

H = Y5 − Y4,

h = Y5,

HZ = −Y4.

(2.5.44)

We denote

vs =


0
0
0
1
0

 , vt =


0
0
0
0
1

 , vl =


0
0
0
1
1

 .

One deduces immediately from this that Φ is minimal (respectively of constant mean
curvature) if and only if Y4 = Y5 (respectively if there exists a constant H0 ∈ R such
that Y5 − Y4 − H0 = 0), X is minimal (respectively of constant mean curvature) if and
only Y5 = 0 (respectively if there exists a constant h0 ∈ R such that Y5 − h0 = 0), Z is
minimal (respectively of constant mean curvature) if and only if Y4 = 0 (respectively if
there exists a constant HZ

0 ∈ R such that Y4 + HZ
0 = 0). This can be reframed as : Φ is

minimal (respectively CMC) if and only if Y is in a linear (respectively a�ne) hyperplane
of lightlike normal vl, X is minimal (respectively CMC) if and only if Y is in a linear
(respectively a�ne) hyperplane of timelike normal vt, Z is minimal (respectively CMC) if
and only if Y is in a linear (respectively a�ne) hyperplane of spacelike normal vs.

Then, given proposition 2.3.3 and its analogues, and since any M ∈ SO(4, 1) conserves
hyperplanes in R4,1 and the type of vectors, we deduce the following theorem.

Theorem 2.5.1. Let Φ : D→ R3 be a smooth conformal immersion, and X (respectively
Z) its representation in S3 (respectively H3) through π (respectively π̃). Let Y be its
conformal Gauss map. We assume the set of umbilic points of Φ (or equivalently, see
(A.2.29) and (A.2.42), X or Z) to be nowhere dense.

We say that Φ (respectively X, Z) is conformally CMC (respectively minimal) if and
only if there exists a conformal di�eomorphism ϕ of R3 ∪ {∞} (respectively S3, H3) such
that ϕ◦Φ (respectively ϕ◦X, ϕ◦Z) has constant mean curvature (respectively is minimal)
in R3 (respectively S3, H3).

Then

� Φ is conformally CMC (respectively minimal) in R3 if and only if Y lies in an a�ne
(respectively linear) hyperplane of R4,1 with lightlike normal.

� X is conformally CMC (respectively minimal) in S3 if and only if Y lies in an a�ne
(respectively linear) hyperplane of R4,1 with timelike normal.

� Z is conformally CMC (respectively minimal) in H3 if and only if Y lies in an a�ne
(respectively linear) hyperplane of R4,1 with spacelike normal.

R. Bryant showed that its eponym quartic is highly relevant when considering this
problem. We paraphrase below theorem C of [Bry84] below :

Theorem 2.5.2. Let Φ : Σ → R3 be a Willmore immersion of a compact connected
surface Σ. Assume that Φ is not all umbilic but that Q = 0. Then Φ is conformally
minimal in R3.

This result is also presented in J-H. Eschenburg's and B. Palmer's surveys (respectively
[Esc88] and[Pal91]). Many theorems describing conformally CMC immersions (even in
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higher codimensions ) have been obtained using DPW (also called loop groups) methods
by, among others N. Ejiri (see [Eji88]), S. Montiel (see [Mon00]), J. Richter ([Ric97]) or J.
Dorfmeister and P. Wang (see [DW19]). We will however present a result reached through
classical di�erential geometry.

We work with immersions of the disk for convenience of exposition. Let X : D→ S3 of
representation Φ in R3, Z inH3 without umbilic points and of conformal Gauss map Y . Our
aim is to �nd a necessary and su�cient condition to have one of the three representations
be conformally CMC in its immersion space.

Let us �rst focus on �nding a set of necessary conditions. Thanks to theorem 2.5.1, we
know it is equivalent to the fact that Y lies in a hyperplane of R4,1. That is, there exists
constants v ∈ R4,1\{0} and η ∈ R such that

〈Y, v〉 = η. (2.5.45)

Since v and η are constants, di�erentiating (2.5.45) yields

〈Yz, v〉 = 0 (2.5.46)

and
〈Yz̄, v〉 = 0. (2.5.47)

One can write v in the moving frame (Y, Yz, Yz̄, ν, ν
∗) with ν and ν∗ de�ned in (2.3.24) and

(2.3.25) :
v = lY +mYz + nYz̄ + aν + bν∗.

Applying (2.5.45), (2.5.46) and (2.5.47) yields

l = η

m = 0

n = 0

And thus
v = ηY + aν + bν∗. (2.5.48)

v can be taken such that

〈v, v〉 = κ =


1 if v is spacelike

0 if v is lightlike

− 1 if v is timelike.

From this decomposition we will deduce characterizations of a and b. Since v is constant
one can di�erentiate (2.5.48) and put formulas (A.2.66) and (A.2.71) to e�ect :

0 = (η − aHν − bHν∗)Yz + (az − a 〈νz, ν∗〉) ν + (bz − b 〈ν∗z , ν〉) ν∗ −
(aΩν + bΩν∗)

|ω|2e−2Λ
Yz̄

=

(
η +

bWS3 (X)

2|ω|2e−2Λ

)
Yz + (az − a 〈νz, ν∗〉) ν + (bz − b 〈ν∗z , ν〉) ν∗ −

(aΩν + bΩν∗)

|ω|2e−2Λ
Yz̄

with (2.3.28) and (2.3.30). Further since 〈ν∗z , ν〉 = (〈ν, ν∗〉)z−〈νz, ν∗〉 = ωz
ω , using (2.3.26),

we �nd

0 =

(
η +

bWS3 (X)

2|ω|2e−2Λ

)
Yz +

(
az + a

ωz
ω

)
ν +

(
bz − b

ωz
ω

)
ν∗ − (aΩν + bΩν∗)

|ω|2e−2Λ
Yz̄.
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Besides
〈v, v〉 = η2 − 2ab,

and since Y , ν and ν∗ are bounded in R5 away from umbilic points, a, b < ∞. Then a, b
are real functions and η a real constant such that

az + a
ωz
ω

= 0, (2.5.49)

bz − b
ωz
ω

= 0, (2.5.50)

b
WS3(X)

2
+ η|ω|2e−2Λ = 0, (2.5.51)

aΩν + bΩν∗ = 0, (2.5.52)

ab = −〈v, v〉 − η
2

2
real constant. (2.5.53)

One can recast (2.5.49) as azω + aωz = 0, or rather since a ∈ R

az̄ω + aωz̄ = 0.

This yields
(aω)z̄ = 0,

i.e. there exists f : D→ C holomorphic (since aω <∞) such that

aω = f. (2.5.54)

One then has fω = aωω = a|ω|2 ∈ R since a ∈ R. Then according to proposition 2.4.7,
unless f = 0 on D, X is isothermic. Working similarly on (2.5.50) one �nds there exists g
holomorphic (since b <∞ and ω 6= 0 by hypothesis) on D such that

b = gω. (2.5.55)

Then, if g is not null on D, working away from its zeros yields

1

g
ω =

|ω|2

b
∈ R

since b ∈ R. Then according to proposition 2.4.7 X is isothermic. So unless f = g = 0 on
D, X is isothermic. If f = g = 0, then (2.5.51) ensures η = 0 which in turn yields v = 0, a
case excluded from the start of this reasoning. As a consequence we get our �rst necessary
condition :

X is isothermic.

To go further one can reframe (2.5.51) in terms of f and g. Indeed

b
WS3(X)

2
+ η|ω|2e−2Λ = ω

(
g
WS3(X)

2
+ ηωe−2Λ

)
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with ω 6= 0 ensuring that (2.5.51) is equivalent to

g
WS3(X)

2
+ ηωe−2Λ = 0.

This implies that if g(z0) = 0 for any given z0 in D, then η = 0, and with (2.5.52) f(z0) = 0.
So v(z0) = 0 and since v is a constant v = 0, which is a contradiction. Then g has no zero
on D. Letting ϕ = 1

g be a holomorphic function on D, one �nds (2.5.51) to be equivalent
to

WS3(X) = −2ηϕωe−2Λ = (−2ηϕ)ωe−2Λ. (2.5.56)

Consequently, proposition 2.4.6 implies our second necessary condition

Q is holomorphic.

Similarly

aΩν + bΩν∗ = aω
Ων

ω
+
b

ω
ωΩν∗

= aω +
b

ω
ΩνΩν∗ using (2.3.31)

= aω − 2
b

ω
Q using (2.4.36).

This yields that (2.5.52) is equivalent to

Q =
aω2

2b
=

f

2g
=

fg

2g2
=

1

2
abϕ2 =

η2 − κ
4

ϕ2. (2.5.57)

Summing up our analysis has given us two necessary conditions :

� X is isothermic, with ϕω ∈ R

� Q is holomorphic, with Q = η2−κ
4 ϕ2.

Let us show they are su�cient.

Let X be an isothermic immersion such that Q is holomorphic. Our aim is to write Q
and WS3(X) in the forms respectively of (2.5.57) and (2.5.56).

Since X is isothermic there exists a non null holomorphic function ϕ0 such that

R := ϕ0ω ∈ R.

Claim 1 : there exists a constant m ∈ R such that Q = mϕ2
0.

Proof. We will write Q as a function of ϕ, using (2.4.37) :

Q = (ωzz̄ω − ωzωz̄) e−2Λ + ω2h
2 + 1

4

Since ω = R
ϕ0
,

ωz =
Rz
ϕ0

ωz̄ =
Rz̄
ϕ0
− ∂zϕ0R

ϕ2
0

ωzz̄ =
Rzz̄
ϕ0
− ∂zϕ0Rz

ϕ2
0

.
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Thus

ωzz̄ω − ωzωz̄ =
R

ϕ0

(
Rzz̄
ϕ0
− ∂zϕ0Rz

ϕ2
0

)
− Rz
ϕ0

(
Rz̄
ϕ0
− ∂zϕ0R

ϕ2
0

)

=
Rzz̄R−RzRz̄

ϕ2
0

=

(
Rzz̄R−RzRz̄
|ϕ0|4

)
ϕ2

0.

(2.5.58)

As announced Q can be expressed :

Q =
(Rzz̄R−RzRz̄) e−2Λ + h2+1

4 R2

|ϕ0|4
ϕ2

0. (2.5.59)

Since R ∈ R, (Rzz̄R−RzRz̄)e−2Λ+h2+1
4

R2

|ϕ0|4
is real. Further(

(Rzz̄R−RzRz̄) e−2Λ + h2+1
4 R2

|ϕ0|4

)
z̄

= Az =

(
Q

ϕ2
0

)
z̄

= 0

since Q (equivalently Q) and ϕ0 are holomorphic. As a real holomorphic function A is
necessarily a constant that we will denote m. This proves claim 1.

Claim 2 : There exists n ∈ R such that WS3(X) = nωϕ0e
−2Λ.

Proof. Proposition 2.4.6 yields f holomorphic on D such that

WS3(X) = ωfe−2Λ.

Using ω = R
ϕ0

one deduces (
f

ϕ0

)
=
WS3(X)

Re−2Λ
∈ R.

Since f
ϕ0

is holomorphic, there exists n ∈ R such that f = nϕ0, which proves claim 2.

Claim 3 : There exists λ ∈ R, κ ∈ {−1, 0, 1} and η ∈ R such that

WS3(X) = −2ηωϕ0e
−2Λ and Q = η2−κ

4 λ2ϕ2
0.

Proof. If n2 − m 6= 0, let λ = 2

√∣∣∣(n4 )2 −m∣∣∣, κ = sg(
(
n
4

)2 − m) and η = − n
2λ . Then

n = −2λη and

m = −
((n

4

)2
−m

)
+
(n

4

)2

= −λ
2κ

4
+ λ2 η

2

4

= λ2 η
2 − κ

4
.

If n2 = 16m, let κ = 0, λ = 1, n = −2η, which concludes the proof of claim 3.
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In the following we set ϕ = λϕ0.

Claim 4 : v = ηY + η2−κ
2

ϕ
ων + ω

ϕν
∗ is a constant vector in R4,1.

Proof. Since η ∈ R,

a :=
η2 − κ

2

ϕ

ω
=
η2 − κ

2

|ϕ|2

ωϕ
∈ R

and
b :=

ω

ϕ
=

ωϕ

|ϕ|2
∈ R.

Then v does belong in R4,1. Further

az̄ + a
ωz̄
ω

=
η2 − κ

2
ϕ

(
−ωz̄
ω2

+
ωz̄
ω2

)
= 0

and
bz̄ − b

ωz̄
ω

=
1

ϕ
(ωz̄ − ωz̄) = 0,

meaning that a and b satisfy (2.5.49) and (2.5.50). Besides

b
WS3(X)

2
+ η|ω|2e−2Λ = −2

η

2
ωϕe−2Λω

ϕ
+ η|ω|2e−2Λ = 0

since by design, see claim 3, WS3(X) = −2ηωϕe−2Λ = −2ηωϕe−2Λ. v must then satisfy
(2.5.51). Once more, by construction, Q satis�es (2.5.57), which was shown to be equivalent
to (2.5.52). v then satis�es : vz = 0, and v is a constant in R4,1, which proves claim 4.

Y is then hyperplanar and, according to theorem 2.5.1, X is conformally CMC in a
space depending entirely on 〈v, v〉 = κ. κ can be expressed explicitely from Q et WS3(X).
Indeed (

WS3(X)

4

)2

− ω2e−4ΛQ =
η2

4
ω2ϕ2e−4Λ − η2 − κ

4
ϕ2ω2e−4Λ using Claim 3

= κ

(
ϕωe−2Λ

2

)2

.

Since ϕω ∈ R∗,
(
ϕωe−2Λ

2

)2
∈ R∗+ and necessarily :

κ = sg

((
WS3(X)

4

)2

− ω2e−4ΛQ

)
. (2.5.60)

We deduce the following theorem.

Theorem B. Let X be a smooth conformal immersion on D in S3, and Φ (respectively
Z) its representation in R3 (respectively H3) through π (respectively π̃). We assume
that X (or equivalently, see (A.2.29) and (A.2.42), Φ or Z) has no umbilic point. One
of the representation of X is conformally CMC in its ambient space if and only if Q is

holomorphic and X is isothermic. More precisely
(
WS3 (X)

4

)2
−ω2e−4ΛQ is then necessarily

real and
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� Φ is conformally CMC (respectively minimal) in R3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ = 0.

� X is conformally CMC (respectively minimal) in S3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ < 0.

� Z is conformally CMC (respectively minimal) in H3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ > 0.

Conformally minimal immersions satisfy WS3(X) = 0.

Notice especially that according to our analysis X isothermic and Q holomorphic heav-
ily determines Q. As a matter of fact it ensures that ω2Q ∈ R. Accordingly one can slightly
change the hypotheses of theorem B.

Theorem C. Let X be a smooth conformal immersion on D in S3, and Φ (respectively
Z) its representation in R3 (respectively H3) through π (respectively π̃). We assume
X (or equivalently, see (A.2.29) and (A.2.42), Φ or Z) has no umbilic point. One of
the representation of X is conformally CMC in its ambient space if and only if Q is
holomorphic and ω2Q ∈ R. More precisely
� Φ is conformally CMC (respectively minimal) in R3 if and only if(

WS3(X)

4

)2

− ω2e−4ΛQ = 0.

� X is conformally CMC (respectively minimal) in S3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ < 0.

� Z is conformally CMC (respectively minimal) in H3 if and only if(
WS3(X)

4

)2

− ω2e−4ΛQ > 0.

Conformally minimal immersions satisfy WS3(X) = 0.

Proof. If X is conformally CMC, then Q is holomorphic and (WS3(X))2−ω2e−4ΛQ is real
according to theorem B. Then since WS3(X) ∈ R, ω2Q ∈ R.

Conversely assume that Q is holomorphic and ω2Q ∈ R. Then using corollary 2.4.2,
X is isothermic and conformal Willmore or Willmore. If X is isothermic, the theorem is
proved with theorem B. Let us then assume that X is Willmore. Let us �rst assume that
Q is non null. Away from the zeros of Q, ω2Q does not cancel and is then of �xed sign,
and
√
Q is holomorphic. Then (

ω
√
Q
)2
∈ R∗,

and thus
ω
√
Q ∈ R or iR.

There exists then a non null holomorphic function (ϕ =
√
Q or ϕ = i

√
Q) such that

ωϕ ∈ R. The theorem is then proved with theorem B. The case X Willmore and Q = 0
is now the only one left. Using theorem2.5.2 yields Φ conformally minimal in R3. This
concludes the proof.



106 Chapter 2. Conformal Gauss map approaches

2.6 Classi�cation of Willmore spheres

Let us consider Φ a branched Willmore immersion of a sphere in R3. Proposition 2.4.5
ensures that Q is a meromorphic quartic on the sphere. A glance at expression (2.4.38)
ensure that poles of Q may only occur at branch points of the immersion. In the immersed
case Q is then a holomorphic quartic on the sphere. Basic complex analysis then states
that Q is null. From theorem 2.5.2 the following theorem by R. Bryant (theorem E in
[Bry84]) follows.

Theorem 2.6.1. Let Φ : S2 → R3 be a Willmore immersion. Then Φ
(
S2
)
is conformally

minimal in R3.

The branched case can be partially treated through the expansions of the quartic at
the branch points o�ered by theorem 1.5.1. Following is a concatenation of a result by T.
Lamm and H. Nguyen (theorem 3.1 from [LN15]) and A. Michelat and T. Rivière (theorem
G from [MR17]).

Proposition 2.6.2. Let Φ : D → R3 be a branched true Willmore immersion with a
single branch point at 0 of multiplicity θ + 1. Then Q is meromorphic on D with a single
pole at the branch point of order at most 2.

Proof. Using (2.4.38), since H2Ω2 is bounded across concentration points (this can be seen
by combining (1.5.107) and (1.5.106)), the only possibly singular term is then

e−2λ (Ωzz̄Ω− ΩzΩz̄) .

Estimate (1.5.110) concludes the proof.

From this we extend somewhat the classi�cation of Willmore spheres to branched Will-
more spheres. It has been partially found by T. Lamm and H. Nguyen (theorem I.2 in
[LN15]) and extended to this form by A. Michelat and T. Rivière (theorem F in [MR17]).
Where they used mostly Riemann-Roch type theorems, we will give a proof using only
Liouville theorem.

Theorem 2.6.3. Let Φ : S2 → R3 be a branched true Willmore immersion, with at most
3 branch points. Then Φ

(
S2
)
is conformally minimal in R3.

Proof. We choose a two chart atlas on S2, z = 1
h . In the z-chart, Q = Q(z)dz4 with,

according to proposition 2.6.2 at most three poles of order at most 2, let us say at a, b and
c ∈ C. Then (z − a)2(z − b)2(z − c)2Q is a holomorphic function on C. Further changing
charts, one �nds

Q = Q

(
1

h

)
d

(
1

h

)4

=
Q
(

1
h

)
h8

dh4.

Since Q has no pole at ∞,
Q( 1

h)
h8 is holomorphic around h = 0. Then(

1

h
− a
)2(1

h
− b
)2(1

h
− c
)2

Q

(
1

h

)
= h2Q

(
1
h

)
h8

(1− ah)2 (1− bh)2 (1− ch)2 .

Then (z−a)2(z− b)2(z− c)2Q is a holomorphic function on C which tends toward 0 at∞.
By Liouville theorem (z − a)2(z − b)2(z − c)2Q = 0, which means Q = 0. This concludes
the proof.
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2.7 Bryant's quartic at branch point of residue α ≤ θ − 1

This subsection will study how the Bryant's quartic of a true Willmore immersion
behaves around a branch point of multiplicity θ + 1 when the immersion is better than
expected, namely when the second residue satis�es α ≤ θ − 1 (compared to the native
control α ≤ θ).Most of the computations, the theorems concluding them and the ideas are
originally found in section 4 of [MR17]. We will only expose the broad strokes to give an
idea of the phenomena, and sometimes rephrase and reframe their results. The main one
is the following :

Theorem 2.7.1. Let Φ : D→ R3 be a branched true Willmore conformal immersion with
a single branch point of multiplicity θ + 1 at the origin such that the second residue α at
the branch point satis�es α ≤ θ − 1.
Then the Bryant's quartic Q of Φ is holomorphic on D. In addition either α ≤ θ − 2 or 0
is an umbilic point.

Proof. We will use the formalism of section 1.5.2. Using estimate (1.5.110), the singular
term of the Bryant's quartic at the origin has at most a pole of order 1. For α < θ − 1
the origin is a regular point for Q which is then holomorphic on the disk. We will thus
consider only the α = θ − 1 case.

From the expressions (1.5.106) and (1.5.107) we deduce that this singular term has the
overall z−1CV where C and V are the two complex constants in the expansion (1.5.102)
(given below when α = θ − 1) :

Φz =
1

2

 1
−i
0

 zθ + ~A2z
θ+2 +

(
V zθ+1 +

C

θ + 1
zz̄θ+1 +

C

2
zθz̄2

)0
0
1


+ ξz,

(2.7.61)

where ξ satis�es

∇jξ = O
(
|z|θ+4−j−ν

)
for all υ > 0 and j ≤ 3,

|z|θ∇4ξ ∈ Lp(D) ∀p ∈ N.

Doing the same variable change as in section 1.5.2, we can assume that ~A2 has no compo-

nent along

 1
−i
0

. Using the conformal equality, namely 〈Φz,Φz〉 = 0, we can give a more

accurate version of (2.7.61) :

Φz =
1

2

 1
−i
0

 zθ − V 2

2
zθ+2

1
i
0


+

(
V zθ+1 +Wzθ+2 +

C

θ + 1
zz̄θ+1 +

C

2
zθz̄2

)0
0
1

+ ξz.

(2.7.62)

One can notice that terms of the shape CV appear as the �rst polynomial terms in
both z and z̄ when computing 〈Φz,Φz〉. Since Φ is conformal it would mean that this
quantity cancels out. We however need to do an expansion up to O(rθ+4) to make sure no
higher order term can compensate it.
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With that goal in mind we use the �rst equation from (1.2.44) and write :

~Lz = −2i
(
Hz~n+HΩe−2λΦz̄

)
= −2i ~Hz + 2iH~nz − 2iHΩe−2λΦz̄.

Hence, using (1.5.106), (1.5.107) and (2.7.62) :(
~H +

i

2
~L

)
z

= H2Φz + 2HΩe−2λΦz̄

= 2
(
C

2
z2−θ + C2zθz̄2−2θ + 2 |C|2 zz̄1−θ

) 1
−i
0


+ 2

(
Cz1−θ + Cz̄1−θ

)
V

1
i
0

+O
(
r3−θ−υ

)
.

(2.7.63)

To make the computations more palatable we have stopped giving the leftover terms names,
and used the O formalism. While we cannot traditionnally di�erentiate these O, all the
formalism developed by Y. Bernard and T. Rivière ensures that we can (see section 1.5.2
for examples, or [BR13] for the original). All our leftover estimated terms are then di�er-
entiable enough for our purposes.
When θ ≥ 4 :

Multiplying (2.7.63) by z̄θ and applying ∂z̄ to the end result yields:

∆

(
z̄θ
[
i

2
~L+ ~H

]
− 2z̄θ

(
C

2

3− θ
z3−θ +

C2

1 + θ
zθ+1z̄2−2θ + |C|2z2z̄1−θ

)
e

−2z̄θ
(

C

2− θ
z2−θ + Czz̄1−θ

)
V e

)
= O(r2−υ),

where e =

 1
−i
0

. Using theorem A.3.9 and integrating once, we deduce that there exists

P ∈ C[X] such that

i

2
~L+ ~H = P (z̄) + 2

(
C

2

3− θ
z3−θ +

C2

1 + θ
zθ+1z̄2−2θ + |C|2z2z̄1−θ

) 1
−i
0


+ 2

(
C

2− θ
z2−θ + Czz̄1−θ

)
V

1
i
0

+O
(
r4−θ−υ

)
.

Since ~L is real we can take the real part of the previous equality and obtain an expansion
of ~H. Throwing away the super�uous terms it gives :

~H = 4<

(p1z
2−θ + q1z̄

2−θ +
V C

2− θ
z2−θ + V Czz̄1−θ

)1
i
0


+ 2

(
Cz1−θ + Cz̄1−θ + h1z

2−θ + h1z̄
2−θ
)0

0
1

+O
(
r3−θ

)
.

(2.7.64)
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Here p1, q1, h1 come from the decomposition of P in our working base of C3.
From (2.7.62) we get the following expansion for the conformal factor :

|Φz|2 =
e2λ

2
=
r2θ

2
+ |V |2 r2θ+2 +O

(
r2θ+3−υ

)
.

Injecting it into (2.7.64) yields :

~He2λ

2
= 4<

(p1z
2z̄θ + q1z

θz̄2 +
V C

2− θ
z2z̄θ + V Czθ+1z̄

)1
i
0


+
(
Czz̄θ + Czθz̄ + h1z

2z̄θ + h1z
θz̄2
)0

0
1

+O
(
rθ+3

)
.

(2.7.65)

When we inject (2.7.65) into the conformal equation

Φzz̄ =
~He2λ

2
,

and apply theorem A.3.9, we end up with an expansion of Φz. Namely

Φz = A1

1
i
0

+A2

 1
−i
0

+A3

0
0
1

+O
(
rθ+4

)
, (2.7.66)

where

A1 = −|V |
2

2
zθ+2 + U3z

θ+3 +
p1

1 + θ
z2z̄θ+1 +

q1

3
zθz̄3 +

V C

(1 + θ)(2− θ)
z2z̄θ+1 +

V C

2
zθ+1z̄2,

A2 =
z2

2
+W3z

θ+3 +
p1

3
zθz̄3 +

q1

θ + 1
z2z̄θ+1 +

V C

3(2− θ)
zθz̄3 +

V C

θ + 2
zz̄θ+2,

A3 = V zθ+1 +Wzθ+2 + W̃zθ+3 +
C

2
zθz̄2 +

C

θ + 1
zz̄θ+1 +

h1

θ + 1
z2z̄θ+1 +

h1

3
zθz̄3.

We can then compute 〈Φz,Φz〉 and �nd :

〈Φz,Φz〉 = 2z2θ+3 (2U3 + VW ) + 2z2θ+1z̄2CV +
2

3
z2θz̄3

(
p1 +

CV

2− θ

)
+

2

θ + 1
z2+θz̄θ+1

(
p1 +

CV

2− θ

)
+ 2zθ+2z̄θ+1 V C

θ + 1
+

2

θ + 1
zθ+1z̄θ+2CV +O

(
r2θ+4

)
.

(2.7.67)
Since Φ is conformal, 〈Φz,Φz〉 = 0 which implies that CV = 0.

When θ ≤ 3 : The computations are actually very similar, with logarithmic terms
added. Since those cannot be compensated by mere power functions, it only adds terms
to (2.7.67), and thus the conclusion will remain the same.

The consequences are twofold. First is that Q is actually holomorphic across the branch
point, since the singular term is CV z−1. Second is that either C = 0 or V = 0. In the �rst
case the second residue satis�es α ≤ θ− 2. In the second case one has

(
Ωe−λ

)
(0) = 0, and

then 0 is an umbilic point. This concludes the proof.

Combining theorem 2.6.3 and theorem 2.7.1, we can state

Theorem 2.7.2. True branched Willmore spheres with at most three branch points of
maximal second residues are conformally minimal.

A. Michelat's and T. Rivière's work then allows one to extend Bryant's classi�cation
result to some branched Willmore spheres.
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3.1 Introduction

A major part of this chapter is dedicated to recalling the state of the art concerning
the compactness of weak immersions, and more speci�cally of weak Willmore immersions.
Once more, since most of the theorems are already known, we will not detail the proofs
but give the underlying ideas.

First subsection 3.2.1 will recall theorem 5.3 of T. Rivière's [Riv16], which o�ers a
concentration-compactness result for weak immersions. In essence, when one manages to
�nd charts of uniformly small energy, the local Harnack controls on the conformal factor
obtained by corollary 1.3.2 ensure uniform bounds, and thus weak convergence. When-
ever this cannot be done, it reveals a concentration point, around which the convergence
is weaker. Whenever the immersions are assumed to be Willmore, the ε-regularity the-
orem (theorem 1.4.3) gives smooth controls and ensures the smooth convergence toward
a smooth Willmore immersion, away from the concentration points. However at those
points, the limit immersion may degenerate and become branched, which represents a loss
of compactness for Willmore immersions. Studying the behavior of the immersions at the
concentration points with a blow-up procedure sheds light on bubbling phenomena and the
appearance of a tree of Willmore spherical bubbles. Due to the concentration, the Harnack
inequality on the conformal factor is lost, and thus branch points might appear on the limit
surface. Bubbles are glued to the surface on these concentration points thanks to neck do-
mains which crucially will have no energy at the limit : this is the no-neck energy, which
in turn yields an energy quantization. Subsection 3.2.2 will then give di�erent versions of
those results for weak Willmore immersions, either under hypotheses of compactness for
the induced metric (from theorems I.2 and I.3 of [BR14]), or under a control of residues
(theorem I.2 in [LR18a]).
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Figure 3.1 � A bubbling con�guration : using a Bryant's minimal surface to glue a Cli�ord
torus and 3 spheres.

The goal for what remains of the present work is to show a convergence result across
the concentration points when the bubble is minimal, or in other words to eliminate as
many bubbling con�gurations as possible. From the work of P. Laurain and T. Rivière
in [LR18a] comes a �rst restriction on the surfaces involved in bubbling. Both the limit
surfaces and the bubbles are true Willmore surfaces, which eliminates all possibility of
catenoïd-like bubbles. From this they deduced a low energy compactness result. Similarly
we will show a highly constraining result, linking the branched behavior of the bubbles and
the surfaces around their linking points.

Theorem D. A Willmore bubble with a branched end of multiplicity θ+ 1 at in�nity can
only appear on a branch point of multiplicity θ + 1.
A Willmore bubble with a branch point of multiplicity θ − 1 at in�nity can only appear
on a branched end of multiplicity θ − 1.

In essence this result is a consequence of the no-neck energy. The branched order of the
bubble or the surface can be seen as a winding number of the immersion. Since the neck
has no energy, it can neither wind up or unwind the immersion, and can only transmit the
branched behavior from one to the other.

We will conclude this chapter by detailing, to our knowledge, the �rst explicit example
of Willmore bubbling. It will consist in fusing three of the four ends of a Bryant's minimal
surface. This can be done if we carefully respect a kind of equilibrium formula, and yields
a López surface. Considering the process on the inversed surfaces, we fuse three sheets at
their intersection to obtain, at the limit, a branch point of multiplicity 3. The appearance
of such a branch point is symptomatic of concentration phenomena. Indeed, on this branch
point, an Enneper bubble is glued on the concentration point in accordance with theorem
D. With this example, we not only prove that high energy Willmore immersions may
degenerate into branched Willmore immersions, and are thus not compact, we o�er the
�rst explicit instance of Willmore bubbling when its mere possibility seemed dubious at
the beginning of my doctoral studies. Further section 4.4.4 will o�er insight on why this
example stems from the lack of compactness and commutativity of the conformal group.
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Theorem E. There exists Φk : S2 → R3 a sequence of Willmore immersions such that

W (Φk) = 16π,

and
Φk → Φ∞,

smoothly on S2\{0}, where Φ∞ is the inversion of a Lopez surface. Further

lim
k→∞

E(Φk) = E(Φ∞) + E(Ψ∞),

where Ψ∞ : C→ R3 is the immersion of an Enneper surface.
The goal is then to �nd where the compactness threshold lies. In the torus case, P.

Laurain and T. Rivière introduced an a priori possible bubbling con�guration, consisting
in an Enneper bubble, glued on the branch point of an inverted Chen-Gackstatter torus.
Eliminating this will be the goal of the �nal chapter of the present work.

ε3E
(
.
ε

)

triple branch point

Figure 3.2 � Desingularizing the inversion of a Chen-Gackstatter surface with a piece of
Enneper.

3.2 Compactness results

3.2.1 Compactness for weak immersions : the concentration-compactness
dialectic

In this subsection we will brie�y go over the main ideas of section 5 of [Riv16], dealing
with the compactness of sequences of weak immersions of bounded energy E, and the
introduction of concentration-compactness phenomena.
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Since the energy E is a conformal invariant, any sequence of bounded E can only
converge up to applying external conformal di�eomorphisms. Indeed, considering Φ an
immersion of a Riemann surface remaining in a compact of R3, the sequences Φk = kΦ
Φ̃k = Φ + k~a respectively blow and drift to in�nity, and thus cannot be expected to
converge. In fact one needs to apply conformal di�eomorphisms to these examples (a
dilation in the �rst case and a translation in the second) to ensure convergence. In that
way any convergence result will have to take into consideration the lack of compactness of
Conf(R3).

In a similar manner, taking Φ a likewise bounded immersion of a Riemann surface, and
Ψk a non compact sequence of di�eomorphisms of Σ, Φk = Φ ◦Ψk cannot be expected to
converge as immersions. One must then compensate the possible loss of compactness of
the parametrization, even though the image surface converges. To that aim, if the induced
conformal class of the metrics is assumed to be in a compact subset of the moduli space
MΣ, up to extraction the conformal classes converge. Then, up to applying Riemann's
uniformization theorem the induced metric themselves converge which allows one to deal
with this loss of compactness.

Taking these considerations into account we de�ne a notion of weak convergence.
De�nition 3.2.1. Let Φk ∈ EΣ. Let gk be the induced metric, and hk the uniformized
metric of constant scalar curvature. We assume that the induced conformal classes [(Σ, hk)]
are contained in a compact subset ofMΣ, the moduli space of Σ. Then up to extraction
there exists a constant scalar curvature metric h∞ such that hk → h∞. The sequence
Φk is called weakly convergent if there exist Lipschitz di�eomorphisms Ψk of Σ, conformal
transformations Θk ∈ Conf(R3) with

Φk(Σ) ∩ {center of inversion of Θk} = ∅

and �nitely many points a1, . . . , aN ∈ Σ, called concentration points such that

ξk := Θk ◦ Φk ◦Ψk : (Σ, hk)→ R3

is conformal, and there exists a map ξ∞ : Σ→ R3 such that

� ξ∞ : (Σ, h∞)→ R3 is conformal,

� ξk ⇀ ξ∞ weakly in W 2,2
loc (Σ\{a1, . . . , aN}),

� ln |dξk|2 ⇀ ln |dξ∞|2 weakly in (L∞)∗loc (Σ\{a1, . . . , aN})
� ξk ⇀ ξ∞ weakly in W 1,2 ∩ (L∞)∗ (Σ).

We can then state the weak almost-closure theorem (theorem 5.3 of T. Rivière's [Riv16]).
Theorem 3.2.1. Let Φk ∈ EΣ such that

sup
k

∫
Σ
|∇~n|2 <∞.

Let gk be the induced metric, and hk the uniformized metric of constant scalar curvature.
We assume that the induced conformal classes [(Σ, hk)] are contained in a compact subset
of MΣ, the moduli space of Σ. Then, up to extraction, Φk converges in the sense of
de�nition 3.2.1.

Proof. Since the proof is extensively detailed in section 5 of [Riv16], we will only present
its outline, which will be su�cient for understanding the involved ideas.

The di�eomorphisms Ψk are the conformal transformations given by the uniformization
theorem. The convergence of the metrics then ensures the convergence of the harmonic
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atlas, and allows us to work in local conformal charts. Further considering any point x ∈ Σ,
the question is whether one can �nd a disk centered on x such that the energy of ∇~nk
is uniformly low, in fact lower than the ε0 in theorem 1.3.3. The points around which it
is not possible are the concentration points. Since around each one a precise quantum of
energy concentrates, and since, by hypothesis,

∫
Σ

∣∣∇~nk∣∣2 < ∞, they are in �nite number.
Away from these points one can apply theorem 1.3.3 and control the conformal factor up
to a constant, which is in turn managed using conformal di�eomorphisms Θk of R3∪{∞}.
The sequence Φk is then uniformly bounded away from the concentration points, which
yields the convergence in the sense of de�nition 3.2.1 thanks to classical Riesz compactness
theorems.

In the speci�c case of sequences of weak Willmore immersions, the low energy condition
of theorem 1.3.3 combines fairly well with the ε-regularity condition of theorem 1.4.3, as
we will see in the following.

3.2.2 Energy quantization results for sequences of Willmore immersions

In the context of Willmore immersions, theorem 1.4.3 will ensure the smoothness of the
convergence away from the concentration points, while bubbling extraction procedures (for
two slightly di�erent examples see [BR14] or [LR18a]) allows one to extract bubble trees
of possibly branched, possibly non compact Willmore spheres. A key result is the energy
quantization, which ensures that no energy is lost in the necks. Following is a combination
of theorem I.2 and I.3 in [BR14]. Once more, we will not detail the proof, but give some
of the overall ideas.

Theorem 3.2.2. Let Φk be a sequence of Willmore immersions of a closed surface Σ.
Assume that

lim sup
k→∞

W (Φk) <∞,

and that the conformal class of Φ∗kξ remains within a compact subdomain of the moduli
space of Σ. Then modulo extraction of a subsequence, the following energy identity holds

lim
k→∞

W (Φk) = W (Φ∞) +

p∑
s=1

W (ηs) +

q∑
t=1

[W (ζt)− 4πθt] ,

where Φ∞ (respectively ηs, ζt) is a possibly branched smooth immersion of Σ (respectively
S2) and θt ∈ N. Further there exists a1 . . . an ∈ Σ such that

Φk → Φ∞ in C∞loc

(
Σ\{a1, . . . , an}

)
up to conformal di�eomorphisms of R3 ∪ {∞}. Moreover there exists a sequence of radii
ρsk, points x

s
k ∈ C converging to one of the ai such that up to conformal di�eomorphisms

of R3

Φk (ρsky + xsk)→ ηs ◦ π−1(y) in C∞loc (C\{�nite set}) .

Finally there exists a sequence of radii ρtk, points x
t
k ∈ C converging to one of the ai such

that up to conformal di�eomorphisms of R3

Φk

(
ρtky + xtk

)
→ ιpt ◦ ζt ◦ π−1(y) in C∞loc (C\{�nite set}) .

Here ιpt is an inversion at p ∈ ζt(S2). The integer θt is the density of ζt at pt.
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While theorem 3.2.2 states an energy quantization for W , equality VIII.8 in [BR14]
o�ers in fact a stronger energy quantization for E (and one for E follows). The ai are the
aforementioned concentration points and the ηs and ιpt ◦ ζt are the bubbles blown on those
concentration points. More precisely, the ηs are the compact bubbles, while the ιpt ◦ ζt are
the non compact ones. Non-compact bubbles stand out as a consequence of the conformal
invariance of the problem (see [Lau12a] to compare with the bubble tree extraction in the
constant mean curvature framework). One might notice that W (ιpt ◦ ζt) = W (ζt)− 4πθt,
and deduce that if W (ζt) = 4πθt, then the bubble ιpt ◦ ζt is minimal. This case, which we
will refer to as minimal bubbling will be of special interest to us in this memoir. Further
if there is only one bubble at a given concentration point we will call the bubbling simple.
For simplicity's sake we will mostly consider simple bubbling.

The non-degeneracy hypothesis from theorem 3.2.2 makes sure that no compactness is
lost on the source domain, as explained in the previous subsection. It can be left out, but
at the price of another condition on the convergence of residues which ensure that the neck
domain do not degenerate too violently, as explained in theorem 1.1 in [LR18a]. We quote
it for completeness' sake.
Theorem 3.2.3. Let (Σ, hk) be a sequence of closed surfaces with �xed genus, constant
curvature and normalized volume if needed. We assume that this sequence converges to a
nodal surface (Σ̃, h̃) and we denote

(
cij

)
the �nite number of pinching geodesics of length

lik. Then let Φk : (Σ, hk) → R3 be a sequence of conformal Willmore immersions with
bounded energy :

lim sup
k→∞

W (Φk) <∞

such that around every degenerating geodesic

lim
k→∞

~γ0
k

√
lk

= 0.

Then the conclusion of theorem 3.2.2 stands.
Since the proofs are both quite long and quite technical, we will not give them here

and instead refer the reader to the original papers (theorems I.2 and I.3 in [BR14], and
theorem 1.1 in [LR18a] respectively). We however wish to explain one key point : the
control of the conformal factor.

Broadly speaking, the proof is in two parts. First is an extraction scheme designed to
�nd all the bubbles and to decompose Σ into a limit surface, bubbles and neck domains
(essentially annuli of degenerating conformal classes). Then comes the no-neck energy.
The aim is to exploit the Willmore equations in order to have vanishing controls of the L2

norm of ∇~n in the neck domains. The �rst step is controlling the conformal factor. It is
clear that since the energy concentrates, theorem 1.3.3 and thus estimate (1.3.72) are no
longer valid. The absence of (1.3.72) is in fact precisely what makes the developping of
branch points possible. However, the extraction schemes presented in [BR14] and [LR18a]
naturally yields

∥∥∇~nk∥∥
L2,∞ → 0. Modifying the proof of theorem 1.3.3 to work on annuli

of degenerating conformal classes with an input small control of L2,∞ is one of the major
advances in [BR14]. To that aim they introduced L2,∞ Coulomb frames in neck domains.
Resulting is the following lemma.
Lemma 3.2.1. There exists a constant η > 0 with the following property. Let 0 < 4r <
R <∞. If Φ is any (weak) conformal immersion of Ω := DR\Dr into R3 with L2-bounded
second fundamental form and satisfying

‖∇~n‖L2,∞(Ω) <
√
η,
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then there exist 1
2 < α < 1 and A ∈ R depending on R, r, m and Φ such that

‖λ(x)− d log |x| −A‖
L∞

(
DαR\D r

α

) ≤ C
(
‖∇λ‖L2,∞(Ω) +

∫
Ω
|∇~n|2 dz2

)
, (3.2.1)

where d satis�es∣∣∣∣2πd− ∫
∂Dr

∂rλdl

∣∣∣∣ ≤C
[∫

D2r\Dr
|∇~n|2 dz2

+
1

log R
r

(
‖∇λ‖L2,∞(Ω) +

∫
Ω
|∇~n|2 dz2

)]
.

(3.2.2)

Here the classical Harnack control around a constant given by (1.3.72) is replaced by
a control around a power function. Indeed compare (1.3.72)

eΛ

C
≤ eλ ≤ CeΛ,

with this direct consequence of lemma 3.2.1 :

eArd

C
≤ eλ ≤ CeArd.

This lemma is, in the author's opinion, the centerpiece in the energy quantization. While
the proof is far from over, one can now work with ~L, S and ~R in a similar way as what
has been done for the ε-regularity, but on annuli. One must also notice that to prove
theorem 3.2.3 it is necessary to control the residues, which is an added di�culty to the
proof. However, for brevity's sake, we will stop our look at the idea behind the proof there.
Remark 3.2.1. As has been noticed by P. Laurain and T. Rivière in [LR18a], when in
the context of [BR14], while the immersions may degenerate around concentration points
into branched immersions, the residues ~γ0, . . . , ~γ3 around the branch points are obtained
as limit of residues de�ned on disks (and not punctured disks) ~γ0

k, . . . , ~γ3
k, and thus are

necessarily null. Consequently all the surfaces involved in bubbling phenomena are true
Willmore surfaces.

This excludes some bubbling con�gurations. For instance no catenoïd bubble can
appear. In fact enough con�gurations have been eliminated for a compactness result for
small energies (theorem I.2 in [LR18a]).
Theorem 3.2.4. Let Σ be a closed surface of genus g ≥ 1, and let Φk : Σ → R3 be a
sequence of conformal Willmore immersions such that the conformal class of the induced
metric remains in a compact set of the moduli space and :

lim sup
k→∞

W (Φk) < 12π.

Then up to extraction and conformal di�eomorphisms of R3 ∪ {∞} and Σ, Φk converges
to a smooth Willmore immersion Φ∞ : Σ→ R3 in C∞ (Σ).

In their aforementioned paper, P. Laurain and T. Rivière also put forth a bubbling
con�guration of energy 12π where compactness might fail, namely an inverted Chen-
Gackstatter torus whose branch point is desingularized by an Enneper surface. Finding
additional constraints which one may exploit to eliminate this con�guration is the prime
motivator for what is to follow.

As we have throughout this thesis, we will favor working in local conformal charts (and
in complex notations when convenient). We then present a standardized working version
of simple bubbling on a disk.
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Lemma 3.2.2. Let ξk be a sequence of Willmore immersions of a closed surface Σ satisfying
the hypotheses of theorem 3.2.2. Then, in proper conformal charts around a concentration
point on which a simple bubble is blown up ξk yields a sequence of Willmore conformal
immersions Φε : D → R3, of conformal factor λε = 1

2 ln
(
|∇Φε|2

2

)
, Gauss map ~nε, mean

curvature Hε and tracefree curvature Ωε := 2 〈Φε
zz, ~n

ε〉, satisfying the following set of
hypotheses :

1. There exists C0 > 0 such that

‖Φε‖L∞(D) + ‖∇Φε‖L2(D) + ‖∇λε‖L2,∞(D) + ‖∇~nε‖L2(D) ≤ C0.

2. Φε → Φ0 C∞loc (D\{0}), where Φ0 is a true branched Willmore conformal immersion,
with a unique branch point of multiplicity θ0 + 1 at 0, meaning that

Φ0
z ∼0

~Azθ0 . (3.2.3)

We denote λ0 its conformal factor, ~n0 its Gauss map, H0 its mean curvature and Ω0

its tracefree curvature.

3. There exists a sequence of real numbers Cε > 0 such that

Φ̃ε :=
Φε (ε.)− Φε(0)

Cε
→ Φ1

z

C∞loc (C), where Φ1 is assumed to be a conformal Willmore immersion of C, possibly non
compact, with a branched behavior at in�nity : meaning that there exists θ1 ∈ Z\{−1}.

Φ1
z ∼∞ Ãzθ1 .

We denote λ1 its conformal factor, ~n1 its Gauss map, H1 its mean curvature and Ω1

its tracefree curvature.

4.

lim
R→∞

lim
ε→0

∫
D 1
R
\DεR

|∇~nε|2 dz

 = 0.

Proof. Such assumptions are natural if we consider ξk satisfying the hypotheses of theorem
3.2.2. Thanks to theorems I.2 and I.3 of [BR14] such a sequence ξk converges smoothly away
from concentration points. In a conformal chart centered on a concentration point, ξk yields
a sequence of conformal, weak Willmore immersions Φk : D → R3 converging smoothly
away from the origin toward a true Willmore surface (i.e. hypothesis 2). Hypothesis
1 stands if we choose proper conformal charts (see theorem 3.1 of P. Laurain and T.
Rivière's [LR18b], recalled here in theorem 1.3.2, for a detailed explanation). Hypothesis
3 then speci�es that we consider the case where there is only one simple bubble which
concentrates on 0 in the aforementioned chart. We do not presume on the behavior of Φ1

at in�nity. It may have a branched end (if θ1 > −1) in which case it is of multiplicity
θ + 1, or a branch point (if θ < −1) in which case it is of multiplicity −θ − 1. Since
θ = −1 would induce some residues, remark 3.2.1 excludes this case. Hypothesis 4 is just
the energy quantization once the whole bubble tree is extracted and corresponds to

inequality VIII.8 in [BR14]. Further, by de�nition of a concentration point∥∥∥∇~nk∥∥∥
L∞(D)

→∞.
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We then de�ne the concentration speed as

εk =
1

‖∇~nk‖L∞(D)

→ 0,

and we assume it is reached at the origin. For simplicity's sake we reparametrize this
sequence by the concentration speed which we denote ε.

3.2.3 Branch point-branched end correspondance, proof of theorem D

The goal of this subsection is to show that in lemma 3.2.2, Φ1 has an end at in�nity,
and that is multiplicity equals the multiplicity of the branch point of the surface Φ0.
Lemma 3.2.3. Let Φε : D→ R3 satisfying 1-4. Then θ0 = θ1 = θ.
Proof. Since Φε is conformal, the Liouville equation states

∆λε = Kεe2λε , (3.2.4)

where Kε is the Gauss curvature of Φε. Then given R ∈ R+∫
D 1
R
\DεR

Kεe2λεdz =

∫
D 1
R
\DεR

∆λεdz

=

∫
∂D 1

R

∂rλ
εdσ −

∫
∂DεR

∂rλ
εdσ

=

∫
∂D 1

R

∂rλ
εdσ −

∫
∂DR

ε∂rλ
ε(ε.)dσ

=

∫
∂D 1

R

∂rλ
εdσ −

∫
∂DR

∂r [λε(ε.)] dσ

=

∫
∂D 1

R

∂rλ
εdσ −

∫
∂DR

∂rλ̃
εdσ.

(3.2.5)

Besides, hypotheses 2 and 3 ensure that λε → λ0 on ∂D 1
R
and λ̃ε → λ1 on ∂DR. Further,

since Φ0 has a branch point of multiplicity θ0 + 1 at 0,

lim
R→∞

∫
D 1
R

∂rλ
0dσ → 2πθ0. (3.2.6)

Similarly, the behavior of Φ1 at in�nity (without assuming that it is an end or a branch
point) implies :

lim
R→∞

∫
DR
∂λ1dσ → 2πθ1. (3.2.7)

Injecting (3.2.6) and (3.2.7) in (3.2.5) yields

2π |θ0 − θ1| ≤ lim
R→∞

lim
ε→0

∣∣∣∣∣∣
∫
∂D 1

R

∂rλ
εdσ −

∫
∂DR

∂rλ̃
εdσ

∣∣∣∣∣∣


≤ lim
R→∞

lim
ε→0

∣∣∣∣∣∣
∫
D 1
R
\DεR

Kεe2λεdz

∣∣∣∣∣∣
 ≤ lim

R→∞

lim
ε→0

∫
D 1
R
\DεR

∣∣∣Kεe2λε
∣∣∣ dz


≤ lim
R→∞

lim
ε→0

∫
D 1
R
\DεR

|∇~nε|2 dz

 = 0,
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using hypothesis 1. As a conclusion θ0 = θ1 = θ.

While we wrote the proof in the simple bubbling case, it remains valid for any behavior
of Φ0 and Φ1 (branched points or ends) and relies solely on the energy quantization result.
In a broader frame it yields a construction rule for Willmore bubble trees.

Theorem D. A Willmore bubble with a branched end of multiplicity θ+ 1 at in�nity can
only appear on a branch point of multiplicity θ + 1.
A Willmore bubble with a branch point of multiplicity θ − 1 at in�nity can only appear
on a branched end of multiplicity θ − 1.

3.3 An explicit example of Willmore bubbling : non com-
pactness above 16π

Before considering genus one sequences in order to remove the obstruction to compact-
ness put forth by P. Laurain and T. Rivière, a study of the spherical case o�ers interesting
perspectives. Indeed in his seminal work [Bry84], partly recalled in section 2.6, R. Bryant
o�ered a classi�cation of Willmore immersions of a sphere in R3, showed they were con-
formal transformations of minimal immersions (see theorem 2.6.1), and thus that their
Willmore energy was 4π-quantized. Moreover while giving a complete description of the
Willmore immersions of energy 16π (part 5), R. Bryant remarked :

"Surprisingly, this space [of Willmore immersions of energy 16π] is not compact."

It is then interesting to consider whether one can degenerate a sequence of 16π immersions
into a bubble blown on a Willmore sphere. A quick study direct our search toward the most
likely case : a sequence of four ended Bryant's surfaces (see example 1.2.2) degenerating
into an Enneper immersion glued on the branch point of the inverse of a López minimal
surface.

Theorem E. There exists Φk : S2 → R3 a sequence of Willmore immersions such that

W (Φk) = 16π,

and
Φk → Φ∞,

smoothly on S2\{0}, where Φ∞ is the inversion of a López surface. Further

lim
k→∞

E(Φk) = E(Φ∞) + E(Ψ∞),

where Ψ∞ : C→ R3 is the immersion of an Enneper surface.

Theorem E proves that minimal bubbles can appear and thus that Willmore immersions
are not compact. It might also indicate the possibility of gluing an Enneper bubble on an
inverted Chen-Gackstatter torus. However R. Bryant's classi�cation result proves that
one cannot glue an Enneper bubble on an inverted Enneper surface (the resulting surface
would be of energy 12π, and thus limit of Willmore immersions of equal energy, which R.
Bryant showed did not exist). The local behavior of the limit surface around its branch
point needs then to be constrained in order to forbid this case. Since the Chen-Gackstatter
torus and the Enneper surface are asymptotic near their branched end there is hope yet to
eliminate this con�guration.
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Proof. We will build a sequence of Willmore immersions whose energy E concentrates on a
point where an Enneper bubble blows up. Working from section 5 of R. Bryant's [Bry84],
we study a family of four ended minimal immersions Ψµ : C\{a1, a2, a2} → R3 :

Ψµ = 2< (fµ)

fµ =
a1

z − µ
+

a2

z − µj
+

a3

z − µj2
+ a4z,

(3.3.8)

with a1, a2, a3, a4 ∈ C3, j3 = 1, and µ a real parameter that will go toward 0. As explained
in [Bry84] the (ai) must be constrained for Ψµ to be a conformal immersion. Indeed :〈

(Ψµ)z , (Ψµ)z
〉

=
〈
(fµ)z , (fµ)z

〉
=
〈a1, a1〉
(z − µ)4 +

〈a2, a2〉
(z − µj)4 +

〈a3, a3〉
(z − µj2)4 + 〈a4, a4〉

+
2 〈a1, a2〉

(z − µ)2 (z − µj)2 +
2 〈a1, a3〉

(z − µ)2 (z − µj2)2 +
2 〈a2, a3〉

(z − µj)2 (z − µj2)2

− 2 〈a1, a4〉
(z − µ)2 −

2 〈a2, a4〉
(z − µj)2 −

2 〈a3, a4〉
(z − µj2)2 .

Further since given u, v ∈ C :

1

(z − u)2 (z − v)2 =
1

(u− v)2

1

(z − u)2
+

1

(u− v)2

1

(z − v)2
− 2

(u− v)3

1

z − u
+

2

(u− v)3

1

z − v
,

we deduce that
〈
(Ψµ)z , (Ψµ)z

〉
= 0 if and only if

〈a1, a1〉 = 〈a2, a2〉 = 〈a3, a3〉 = 〈a4, a4〉 = 0,

〈a1, a2〉 = 〈a1, a3〉 = 〈a2, a3〉 ,

and a4 = − 1

3µ2

(
a1 + ja2 + j2a3

)
.

(3.3.9)

One can check that under the conditions (3.3.9), (a1, a2, a3) is a linearly independant family
of C3 and thus that Ψµ is an immersion.

Here we take, with b ∈ C a parameter to be adjusted later,

a1 =
1

2µ2

1
i
0

 ,

a2 =
j

2µ2

1
i
0

− µ2b2

2

 1
−i
0

+ bj2

0
0
1

 ,

a3 =
j2

2µ2

1
i
0

− µ2b2

2

 1
−i
0

− bj
0

0
1

 .

One can check that these (ai) satisfy (3.3.9). Computing, we �nd :

fµ =
3

z3 − µ3

1

2

1
i
0

− b2(µ2 2z + µ

z2 + µz + µ2
+
z

3

)
1

2

 1
−i
0

+ bj(j − 1)
z + µ

z2 + µz + µ2

0
0
1

 .
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To simplify this expression, we set b = 3a
2j(j−1) with a ∈ C to be �xed at the end of the

reasoning, and reach :

fµ =
3

z3 − µ3

1

2

1
i
0

+
a2

4

(
3µ2 2z + µ

z2 + µz + µ2
+ z

)
1

2

 1
−i
0

+
3a

2

z + µ

z2 + µz + µ2

0
0
1

 .

(3.3.10)
Then Ψµ : S2 → R3 is a sequence of minimal immersions with four simple planar ends.
Applying theorem 1.2.5 and proposition 1.2.4 we �nd :∫

S2

KΨµdvolgΨµ
= −12π, (3.3.11)

∫
S2

∣∣Å∣∣2
Ψµ
dvolgΨµ

= 24π. (3.3.12)

Letting µ→ 0 in (3.3.10) we �nd that, away from 0,

fµ → f0 =
3

2z3

1
i
0

+
a2z

8

 1
−i
0

+
3a

2z

0
0
1

 ,

and deduce that Ψµ → Ψ0 := 2<(f0) smoothly away from 0, where Ψ0 is a branched
minimal immersion of the sphere with one simple planar end and one planar end of mul-
tiplicity 3. This immersion is in fact the López minimal surface mentioned in theorem E,
and described in example 1.2.3. Then∫

S2

KΨ0dvolgΨ0
= −8π, (3.3.13)

∫
S2

∣∣Å∣∣2
Ψ0
dvolgΨ0

= 16π. (3.3.14)

Let p be a point in R3 such that d(p,Ψµ) > 1. We now introduced Φµ := ιp ◦ Ψµ and
Φ0 := ιp◦Ψ0, with ι(x) = x−p

|x−p|2 the inversion in R3 centered at p. Then Φµ is a sequence of
closed Willmore conformal immersions of the sphere converging toward Φ0 smoothly away
from 0, and Φ0 is a closed Willmore conformal branched immersion of the sphere with a
single branch point of multiplicity 3 at 0. Thus∫

S2

KΦµdvolgΦµ
= 4π, (3.3.15)

∫
S2

KΦ0dvolgΦ0
= 8π. (3.3.16)

Since
∣∣Å∣∣2dvolg is a conformal invariant, we deduce from (3.3.12) and (3.3.14) :∫

S2

∣∣Å∣∣2
Φµ
dvolgΦµ

= 24π, (3.3.17)

∫
S2

∣∣Å∣∣2
Φ0
dvolgΦ0

= 16π. (3.3.18)
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With proposition 1.2.4 we conclude with (3.3.15) and (3.3.17) :∫
S2

H2
ΦµdvolgΦµ

=
1

2

∫
S2

∣∣Å∣∣2
Φµ
dvolgΦµ

+

∫
S2

KΦµdvolgΦµ
= 16π, (3.3.19)

and with (3.3.16) and (3.3.18) :∫
S2

H2
Φ0
dvolgΦ0

=
1

2

∫
S2

∣∣Å∣∣2
Φ0
dvolgΦ0

+

∫
S2

KΦ0dvolgΦ0
= 16π. (3.3.20)

Comparing (3.3.17)-(3.3.20) reveals that while : W (Φµ)→W (Φ0), there is an energy gap
of 8π in E (or equivalently in E). From this, and the energy quantization theorem (theorem
3.2.2, written above), we deduce that a simple minimal bubble of energy E = 8π is blown.
The only possible bubble is then an Enneper surface (see for instance [Oss86] or example
1.2.5), given by :

E(z) = 2<

z
2

1
i
0

+
z2

2

0
0
1

− z3

6

 1
−i
0

 . (3.3.21)

This is enough to ensure that the immersions Φµ o�er an exemple of an Enneper bubble
appearing on a sequence of Willmore immersions, which proves theorem E.

We however wish to make the appearance of the Enneper bubble explicit in the compu-
tations. To do that we will perform a blow-up at the origin at scale µ3. This concentration
scale has been determined the classical way (see the bubble tree extraction procedure
in [LR18a] or [BR14]) by computing

∥∥∇~nΨµ

∥∥
L∞(S2)

. Since these computations do not,
by themselves, further the understanding of the bubbling phenomena, they are omitted.
Considering (3.3.10) we �nd

fµ
(
µ3z
)

=
3

2µ3 (µ6z3 − 1)

1
i
0

+
a2µ

8

(
3

2zµ2 + 1

1 + µ2z + µ4z2
+ µ2z

) 1
−i
0


+

3a

2µ

1 + µ2z

1 + µ2z + µ4z2

0
0
1


=

(
− 3

2µ3
− 3µ3z3

2
+O

(
µ9
))1

i
0

+
a2

2

(
3µ

4
+ zµ3 −+O(µ5)

) 1
−i
0


+ a

(
3

2µ
− 3

2
µ3z2 +O(µ5)

)0
0
1

 .

Which means that

Ψµ(µ3z) =
1

2

(
3a2µ

4
− 3

µ3
+ µ3

(
a2z − 3z3

)
+O(µ5)

)1
i
0


+

1

2

(
3a2µ

4
− 3

µ3
+ µ3

(
a2z − 3z̄3

)
+O(µ5)

) 1
−i
0


+

(
3 (a+ a)

2µ
− 3µ3

2

(
az2 + az̄2

)
+O(µ5)

)0
0
1

 .
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With p = p1

2

 1
−i
0

+ p1

2

1
i
0

+ p3

0
0
1

 , de�ned previously, we conclude :

Ψµ(µ3z)− p =
1

µ3

1

2

(
−3− µ3p1 +

3a2µ4

4
+ µ6

(
a2z − 3z3

)
+O(µ8)

)1
i
0


+

1

2

(
−3− µ3p1 +

3a2µ4

4
+ µ6

(
a2z − 3z̄3

)
+O(µ8)

) 1
−i
0


+

(
3(a+ a)µ2

2
− µ3p3 −

3µ6

2
(az2 + az̄2) +O(µ8)

)0
0
1

 .

(3.3.22)

Here, the only relevant terms are the �rst non constant ones i.e. those in µ6. This yields :

∣∣Ψµ(µ3z)− p
∣∣2 =

1

µ6

(
9 + 3µ3(p1 + p1) + µ4 9(a2 + a2)

4
+ µ4 9(a+ a)2

4

−3µ5(a+ a)

2
(p3 + p3)− 3µ6(a2z + a2z̄−3z3 − 3z̄3 + |p1|2 + |p3|2)

+O(µ7)
)
.

(3.3.23)
We can combine (3.3.22) and (3.3.23) :

Φµ

(
µ3z
)

=
Ψµ − p
|Ψµ − p|2

= µ3

1

2

(
−1

3
− µ3

9
p1 +

a2µ4

12
+
µ6

9

(
a2z − 3z3

)
+O(µ7)

)1
i
0


+

1

2

(
−1

3
− µ3

9
p1 +

a2µ4

12
+
µ6

9

(
a2z − 3z̄3

)
+O(µ7)

) 1
−i
0


+

(
a+ aµ2

6
− µ3

9
p3 −

µ6

6
(az2 + az̄2) +O(µ7)

)0
0
1

(1− 1

3
µ3(p1 + p1)

−µ4 (a2 + a2)

4
− µ4 (a+ a)2

4
+
µ5(a+ a)

6
(p3 + p3)

+
1

3
µ6(a2z + a2z̄ − 3z3 − 3z̄3 + |p1|2 + |p3|2 +

1

3
(p1 + p1)2) +O(µ7)

)
.

Since the constant terms are irrelevant, we can gather them into Φµ(0) and simplify some-
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what the expression into :

Φµ

(
µ3z
)

= Φµ(0) + µ9

1

9

(
a2z̄ − 3z3 − a2z − a2z̄ + 3z3 + 3z̄3

) 1

2

1
i
0


+

1

9

(
a2z − 3z̄3 − a2z − a2z̄ + 3z3 + 3z̄3

) 1

2

 1
−i
0

− az2 + az̄2

6

0
0
1


+O(µ10)

= Φµ(0) + µ9

( z̄3

3
− a2

9
z

)
1

2

1
i
0

+

(
z3

3
− a2

9
z̄

)
1

2

 1
−i
0


−
(
a

3

z2

2
+
a

3

z̄2

2

)0
0
1

+O(µ10).

Taking a = 3 we �nd exactly

Φµ

(
µ3z
)

= Φµ(0)− µ9E(z) +O
(
µ10
)
. (3.3.24)

Hence we do have :

Φµ(µ3z)− Φµ(0)

−µ9
→ E(z)

smoothly on every compact of C, which does illustrate theorem E.

Remark 3.3.1. Chosing another value for a would have led to another Enneper surface,
with Enneper-Weierstrass data (f, g) = (1, 3

az) instead of simply (f, g) = (1, z).

Remark 3.3.2. One must notice the fundamentally asymetric role of Φ0 (the surface) and
E (the bubble). Indeed while we have compactly glued E on Φ0 we cannot compactly glue
Ψ0 = ι◦Φ0 on an inverted Enneper using the same construction, since Ψ0 has an end which
is not on the concentration point. Doing so would require to glue a closed bubble tree on
said planar end (and would necessarily add Willmore energy to the concentration point).
Further theorem G ensures that no construction will ever enable us to do so, given that
the second residue of the inverted Enneper surface is α = 2 (see example 1.C of [BR13]).

Remark 3.3.3. It must also be pointed out that this counter-example explicitely illustrates
the di�erence between the ε-regularity of E. Kuwert and R. Schatzle (theorem 2.10 of
[KS01b]) and those obtained with the T. Rivière formalism (theorems I.5 in [Riv08] and
I.1 in [BR14]) as was explained in [BWV18]. Indeed consider the end of the Bryant
surfaces placed at in�nity, sent to the origin after the inversion. This point is regular, that
is, without concentration, and one can always �nd intrinsic neighborhoods of uniformly
small energy. However when one takes an extrinsic neighborhood of the image point
after inversion, one cannot help intersecting the image of the Enneper bubble, and thus
containing a given quantum of energy. This point is thus singular for theorem 2.10 of
[KS01b]. The two approaches are thus di�erent not only in philosophy, but also in the
results they yield.
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Figure 3.3 � The transformation of the Bryant's surfaces into a López surface

Figure 3.4 � The blow-up into an Enneper surface
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4.1 Introduction

This �nal chapter studies the case where only one bubble, which is minimal, concen-
trates on a given concentration point. We call it simple minimal bubbling. The aim is to
show that it is then more regular than expected.

We start by modifying the ε-regularity theorem 1.4.3, making a relevant use of system
(1.2.49), to replace the small ‖∇~n‖L2 control by a smaller, less demanding (since (A.2.11)
stands) control on ‖H∇Φ‖L2 . The following theorem was one of the foci of [Mar19c].

Theorem F. Let Φ ∈ E (D). We assume

‖∇λ‖L2,∞(Dρ) + ‖∇~n‖L2(Dρ) ≤ C0.

Then there exists ε′0 depending only on C0 such that if

‖H∇Φ‖L2(D) ≤ ε
′
0

then for any r < 1 there exists a constant C ∈ R depending on r, C0, p and

r0 =
1

ρ
inf

{
s

∣∣∣∣∣
∫
Bs(p)

| ∇~n|2 =
8π

6
, ∀p ∈ Dρ s.t. Bs(p) ⊂ Dρ

}
,
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such that
‖H∇Φ‖L∞(Dr) ≤ C‖H∇Φ‖L2(D),

and
‖∇Φ‖W 3,p(Dr) ≤ C‖∇Φ‖L2(D)

for all p <∞.

Theorem F, thanks to the added regularity it provides, can then serve as a jumping
point for successive expansions of increasing accuracy, whose end result is a control of the
second residue of the limit surface at its branch points receiving simple minimal bubbling.

Theorem G. Let Φk be a sequence of Willmore immersions of a closed surface Σ. Assume
that

lim sup
k→∞

W (Φk) <∞,

and that the conformal class of Φ∗kξ remains within a compact subdomain of the moduli
space of Σ. Then at each concentration point p ∈ Σ of multiplicity θp+1 on which a simple
minimal bubble is blown, the second residue αp of the limit immersion Φ∞ satis�es

αp ≤ θp − 1.

Since the inverted Chen-Gackstatter torus has second residue 2, it cannot be the re-
cipient of simple minimal bubbling, which will give compactness below 12π, as follows.

Theorem H. Let Σ be a closed surface of genus 1 and Φk : Σ → R3 a sequence of
Willmore immersions such that the induced metric remains in a compact set of the moduli
space and

lim sup
k→∞

W (Φk) ≤ 12π.

Then there exists a di�eomorphism ψk of Σ and a conformal transformation Θk of R3∪{∞},
such that Θk ◦Φk ◦ψk converges up to a subsequence toward a smooth Willmore immersion
Φ∞ : Σ→ R3 in C∞ (Σ).

In fact theorem G eliminates all Chen-Gackstatter surfaces as recipient of simple min-
imal bubbling, and even further, all inversions of minimal surfaces with ends asymptotic
to an Enneper surface. Should someone prove the expected classi�cation result ensuring
that minimal immersions of critical total curvature are asymptotic to Enneper, theorem H
could be extended to surfaces of higher genus.

We would now like to highlight the di�culties we will encounter in our path towards
these three key theorems. Indeed theorem F by itself cannot yield control across a con-
centration point, precisely because those are the ones where r0 → 0, and thus where the
resulting estimates degenerate. This is why, we will in fact �rst prove a more �exible result
with a starting hypothesis on ~L.

Theorem 4.1.1. Let Φ ∈ E (D) satisfy the hypotheses of theorem 1.4.1. We assume there
exists r′ < 1 and C1 > 0 such that∥∥∥~Leλ∥∥∥

L2,∞(Dr′ )
≤ C1 ‖H∇Φ‖L2(D)

where ~L is given by (1.2.43). Then there exists ε′0 depending only on C0 such that if

‖H∇Φ‖L2(D) ≤ ε
′
0,
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then, for any r < r′, there exists a constant C ∈ R depending on r, C0, p and C1 such that

‖H∇Φ‖L∞(Dr) ≤ C‖H∇Φ‖L2(D),

and
‖∇Φ‖W 3,p(Dr) ≤ C‖∇Φ‖L2(D)

for all p <∞.

The proof will rely on a joint exploitation of systems (1.2.46) and (1.2.49), and an
analytical ropewalking, where the regularity lost with (1.2.49) is exactly compensated by
sharper estimates for (1.2.46). Further, the controls obtained on ~L are �exible enough to
apply on the neck domains. Indeed, we will slightly modify inequality (VI.23) in [BR14]
(in the fashion of theorem 1.4.1) to better suit our needs.

Theorem 4.1.2. Let R > 0 and Φ ∈ E (DR) be a conformal weak Willmore immersion.
Let ~n denote its Gauss map, H its mean curvature and λ its conformal factor. We assume

‖∇~n‖L2(DR) + ‖∇λ‖L2,∞(DR) ≤ C0.

Then there exists ε0 > 0 (independant of Φ) such that if 0 < 8r < R and

sup
r<s<R

2

∫
D2s\Ds

|∇~n|2 ≤ ε0,

then there exists ~L ∈ R3 and C ∈ R depending on C0 but not on the conformal class of
DR\Dr such that ∥∥∥eλ (~L− ~L

)∥∥∥
L2,∞

(
DR

2
\D2r

) ≤ C‖H∇Φ‖L2(DR),

where ~L is given by (1.2.43).

One can then combine theorems 1.4.1 and 4.1.2 to enjoy estimates on ~L both on the
neck-domain, and on the bubbles, which thanks to the �exibility of theorem 4.1.1 yields
the true control on H across the concentration point.

To simplify the proceedings we will introduce a local formalism that we will show is
equivalent to the simple minimal bubbling.

Theorem 4.1.3. Let Φε : D→ R3 a sequence of conformal, weak, Willmore immersions,
of Gauss map ~nε, mean curvature Hε and conformal factor λε, of parameter ε > 0. We
assume

1.
∫
D
|∇~nε|2 dz ≤M <∞,

2. ‖∇λε‖L2,∞(D) ≤M ,

3. lim
R→∞

lim
ε→0

∫
D 1
R
\DεR

|∇~nε|2 dz

 = 0,

4. Φε → Φ0 in C∞loc (D\{0}), with Φ0 a branched Willmore immersion on D,

5. There exists Cε > 0 such that Φε(ε.)−Φε(0)
Cε → Ψ in C∞loc (C), with Ψ a minimal immersion

(that is of mean curvature HΨ = 0).

Then Φε → Φ0 C2,α (D) for all α < 1.
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With these notations, the �rst notable expansion on our way to theorem G is a precise
description of the conformal factor.

Theorem 4.1.4. Let Φε be a sequence of Willmore conformal immersions. We assume
there is only one concentration point on which a simple minimal bubble is blown, at scale
ε. Then there exists lε ∈ L∞ (D) such that :

λε = ln
(
εθ + rθ

)
+ lε,

‖lε‖L∞(D) ≤ C(C0).

As a result if we denote χ =
√
ε2 + r2, the immersion satis�es the following Harnack

inequality :
χθ

C(C0)
≤ eλε ≤ C(C0)χθ.

Building on this expansion, we can �nd others on the immersion, the mean curvature,
and even ∇S and ∇~R. All these can be injected into the Willmore equations. Since those
are non linear, each and every one will yield a linearized version and thus a constraint on
the terms of the expansions. These constraints will add up, until enough regularity in the
convergence is gained to prove theorem G.

While all the preceding results were prepublished in [Mar19c] and [Mar19b], the con-
cluding section of the present chapter will present an unpublished analysis of the lack of
compactness of Willmore immersions, explained by the properties of the conformal group.
In a reasonable attempt to exploit the whole conformal group to control to control the
mean curvature, we will prove that, because the conformal group is neither compact nor
commutative, one can only tamper with inversions under a pointwise hypothesis at the
concentration point. Under this assumption, the bubbling regularity jumps signi�cantly.
Namely we will show the following

Theorem 4.1.5. Let Σ be a compact Riemann surface of genus less than 1, and Φk :
Σ → R3 a sequence of Willmore immersions of uniformly bounded total curvature and
such that the conformal class of the induced metric is in a compact of the moduli space.
We further assume that Φk has only a single concentration point p on which a simple
Enneper bubble is blown, and that Φk converges smoothly away from p toward a branched
immersion Φ0 : Σ→ R3. Then either

∇Hk(p)

‖∇~nk‖L∞(Σ)

→∞, (4.1.1)

or Φ0 is the inversion of a branched minimal immersion, with second residue α ≤ −2.

The hypothesis (4.1.1) is the aforementioned pointwise control necessary to use in-
versions to control the mean curvature at the concentration point. It is signi�cant that
the example displayed in theorem E does not satisfy (4.1.1), and can then be seen as a
consequence of the lack of commutativity and compactness of the conformal group.

4.2 H ε-regularity : proof of theorem F

4.2.1 Results starting with a control on ~L

This subsection will focus on proving an ε-regularity result with control on H starting
with a control on ~L. Namely
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Theorem 4.2.1. Let Φ ∈ E (D) satisfy the hypotheses of theorem 1.4.1. We assume there
exists r′ < 1 and C1 > 0 such that∥∥∥~Leλ∥∥∥

L2,∞(Dr′ )
≤ C1 ‖H∇Φ‖L2(D)

where ~L is given by (1.2.43). Then there exists ε′0 depending only on C0 such that if

‖H∇Φ‖ ≤ ε′0

then for any r < r′ there exists a constant C ∈ R depending on r, C0, p and C1 such that

‖H∇Φ‖L∞(Dr) ≤ C‖H∇Φ‖L2(D),

and
‖∇Φ‖W 3,p(Dr) ≤ C‖∇Φ‖L2(D)

for all p <∞.

Proof. Let r < r′ < 1, we follow the outline given in the introduction.
Step 1 : W 1,(2,1) control on the Willmore quantities

Let ~L satisfy our hypothesis. Theorem 1.4.2 gives :

‖∇S‖
L2,1

(
D r+r′

2

) +
∥∥∥∇~R∥∥∥

L2,1

(
D r+r′

2

) ≤ C1‖H∇Φ‖L2(D). (4.2.2)

Step 2 : W 1,q control on the Willmore quantities, for q > 2
Thanks to (1.2.46) and (1.2.49) we can decompose in any Bt(p), with p ∈ D r+r′

2

and t

su�ciently small, S = σ + s and ~R = ~ρ+ ~r, with{
∆σ = ∆S = 〈H∇Φ,∇⊥ ~R〉 = −〈∇~n,∇⊥ ~R〉 in Bt(p)
σ = 0 on ∂Bt(p),

(4.2.3)


∆~ρ = ∆~R = −H∇Φ×∇⊥ ~R−∇⊥SH∇Φ

= ∇~n×∇⊥ ~R+∇⊥S∇~n in Bt(p)

~ρ = 0 on ∂Bt(p)

(4.2.4)

{
∆s = 0 in Bt(p)

s = S on ∂Bt(p),
(4.2.5)

{
∆~r = 0 in Bt(p)

~r = ~R on ∂Bt(p).
(4.2.6)

Since s and ~r are harmonic functions, l → 1
l2

∫
Bl(p)

|∇s|2 and l → 1
l2

∫
Bl(p)

|∇~r|2 are
classically non-decreasing (see lemma IV.1 in [Riv07]). It follows that

‖∇s‖2
L2

(
B t

2
(p)

) ≤ 1

4
‖∇s‖2L2(Bt(p))

,

‖∇~r‖2
L2

(
B t

2
(p)

) ≤ 1

4
‖∇~r‖2L2(Bt(p))

.

(4.2.7)
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Furthermore thanks to (4.2.3) and theorem A.3.6 we have

‖∇σ‖L2,1(Bt(p)) ≤ C‖∇~R‖L2(Bt(p))‖∇~n‖L2(Bt(p)). (4.2.8)

Thanks to (4.2.3) and theorem A.3.3 we �nd

‖∇σ‖L2,∞(Bt(p))
≤ C

∥∥∥〈H∇Φ,∇⊥ ~R〉
∥∥∥
L1(Bt(p))

≤ C
∥∥∥∇~R∥∥∥

L2(Bt(p))
‖H∇Φ‖L2(Bt(p))

.
(4.2.9)

Exploiting the duality of L2,1 and L2,∞, (4.2.8) and (4.2.9) yield

‖∇σ‖2L2(Bt(p))
≤ ‖∇σ‖L2,∞(Bt(p))

‖∇σ‖L2,1(Bt(p))

≤ C
(
‖∇~n‖L2(D)

)
‖∇~R‖2L2(Bt(p))

‖H∇Φ‖L2(D) .
(4.2.10)

Working similarly with ~ρ we �nd

‖∇~ρ‖2L2(Bt(p))
≤ C

(
‖∇~n‖L2(D)

)(
‖∇~R‖2L2(Bt(p))

+ ‖∇S‖2L2(Bt(p))

)
‖H∇Φ‖L2(D) . (4.2.11)

We remind the reader that the constant from theorems A.3.6 and A.3.3 are universal due
to the scale invariance properties of the L2, L2,∞ and L2,1 norms. The constants in (4.2.10)
and (4.2.11) then do depend solely on ‖∇~n‖L2(D).

We can combine (4.2.7), (4.2.10) and (4.2.11) to get

‖∇S‖2
L2

(
B t

2
(p)

) + ‖∇~R‖2
L2

(
B t

2
(p)

) ≤ 1

2

(
‖∇s‖2L2(Bt(p))

+ ‖∇~r‖2L2(Bt(p))

)
+ 2C

(
‖∇~n‖L2(D)

)(
‖∇~R‖2L2(Bt(p))

+ ‖∇S‖2L2(Bt(p))

)
‖H∇Φ‖L2(D)

≤
(

1

2
+ ‖H∇Φ‖L2(D)C

)(
‖∇S‖2L2(Bt(p))

+ ‖∇~R‖2L2(Bt(p))

)
,

(4.2.12)
where C depends solely on ‖∇~n‖L2(D). Should ‖H∇Φ‖L2(D) be small enough then (4.2.12)
would yield

‖∇S‖2
L2

(
B t

2
(p)

) + ‖∇~R‖2
L2

(
B t

2
(p)

) ≤ 3

4

(
‖∇S‖2L2(Bt(p))

+ ‖∇~R‖2L2(Bt(p))

)
. (4.2.13)

Since the chosen ε′0 depends only of ‖∇~n‖L2(D), (4.2.13) is uniformly true for all Bl(p) ⊂
D 2r+r′

3

and yields a Morrey-type estimate on D 2r+r′
3

. Through usual estimates on Riesz

potentials, see for instance theorem 3.1 in [Ada75] , it entails

∃q > 2 s.t. ‖∇S‖
Lq
(
D 3r+r′

4

)+
∥∥∥∇~R∥∥∥

Lq
(
D 3r+r′

4

) ≤ Cq
‖∇S‖

L2

(
D r+r′

2

) +
∥∥∥∇~R∥∥∥

L2

(
D r+r′

2

)
 .

(4.2.14)

Step 3 : L∞ control on H∇Φ
Thanks to Step 2 and (1.2.52) we deduce

‖H∇Φ‖
Lq
(
D 3r+r′

4

) ≤ Cq
‖∇S‖

L2

(
D r+r′

2

) + ‖∇~R‖
L2

(
D r+r′

2

)
 .
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The criticality of system (1.2.49) is thus broken : ∆S,∆~R are in L
q
2 with q

2 > 1. One can
apply classic Calderón-Zygmund theory (see for instance theorem 9.9 and 9.11 of [GT01])
to start a bootstrap of limiting regularity L∞ on H∇Φ. In �ne one has with estimate
(4.2.2)

‖∇S‖
W 1,p

(
D 4r+r′

5

)+
∥∥∥∇~R∥∥∥

W 1,p

(
D 4r+r′

5

)+ ‖H∇Φ‖
L∞

(
D 4r+r′

5

) ≤ C‖H∇Φ‖L2(D) (4.2.15)

for all p <∞. Here C is a real constant which depends on r, r′, C0 and C1.
Step 4 : W 3,p control on Φ

The control on ∇Φ is obtained by a similar Calderón-Zygmund bootstrap on equation

2∆Φ = ∇⊥S∇Φ +∇⊥ ~R×∇Φ,

which achieves the proof.

One only needs to combine theorems 1.4.1 and 4.2.1 to prove :

Theorem F. Let Φ ∈ E (D) satisfy the hypotheses of theorem 1.4.1. Then there exists ε′0
depending only on C0 such that if

‖H∇Φ‖L2(D) ≤ ε
′
0,

then for any r < 1 there exists a constant C ∈ R depending on r, C0, p and r0 (de�ned in
(1.3.67)) such that

‖H∇Φ‖L∞(Dr) ≤ C‖H∇Φ‖L2(D),

and
‖∇Φ‖W 3,p(Dr) ≤ C‖∇Φ‖L2(D)

for all p <∞.

The dependance in r0 is actually problematic for our blow-up analys purposes. Indeed
as the energy concentrates, r0 goes to 0, and the estimates in theorem F degenerate.
However applied to a ball of radius ε (using the notations of lemma 3.2.2), theorem 1.4.1
will yield uniform estimates on ~L. One then only has to control ~L on the so-called "neck
area" : D\Dε.

4.2.2 Results on a "neck-type" domain

In this section we focus on a control of ~L on annuli of small energy, independantly of
its conformal class. We modify a preexisting result ((VI.23) in [BR14]) into the following
theorem.

Theorem 4.2.2. Let R > 0 and Φ ∈ E (DR) be a conformal weak Willmore immersion.
Let ~n denote its Gauss map, H its mean curvature and λ its conformal factor. We assume

‖∇~n‖L2(DR) + ‖∇λ‖L2,∞(DR) ≤ C0.

Then there exists ε0 > 0 (independant of Φ) such that if 0 < 8r < R and

sup
r<s<R

2

∫
D2s\Ds

|∇~n|2 ≤ ε0,
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then there exists ~L ∈ R3 and C ∈ R depending on C0 but not on the conformal class of
DR\Dr such that ∥∥∥eλ (~L− ~L

)∥∥∥
L2,∞

(
DR

2
\D2r

) ≤ C‖H∇Φ‖L2(DR),

where ~L is given by (1.2.43).

Once more, we will follow Y. Bernard and T. Rivière's proof, with a few tweaks in order
to obtain a control of ~Leλ by H∇Φ instead of ∇~n. It is important for Φ to be well-de�ned,
and the bound on its conformal factor and Gauss map to stand, on the whole disk and not
merely on the annulus. We refer the reader to [LR18a] for a study of what can happen
otherwise. In the context of theorem 3.2.2, theorem 4.2.2 gives controls on the neck regions
around the concentration points.

Proof. Step 1 : Pointwise estimates on ~H and ∇ ~H
We set ourselves in the setting of theorem 4.2.2 and consider Φ ∈ E (DR) a conformal weak
Willmore immersions of Gauss map ~n, mean curvature H, conformal factor λ and tracefree
second fundamental form Å. We assume that

‖∇~n‖L2(DR) + ‖∇λ‖L2,∞(DR) ≤ C0 <∞,

and that

sup
r<s<R

2

∫
D2s\Ds

|∇~n|2 ≤ ε0. (4.2.16)

Consider x ∈ DR
2
\D2r, then B |x|

4

(x) ⊂ D2|x|\D |x|
2

and thus (4.2.16) implies

∫
B |x|

4

(x)
|∇~n|2 ≤ ε0. (4.2.17)

On B |x|
4

(x) one can then apply either theorem 1.4.3, or theorem F (with r0 = 1 since

(4.2.17) stands) to deduce

‖∇~n‖
L∞

(
B |x|

8

(x)

) ≤ C

|x|
‖∇~n‖

L2

(
B |x|

4

(x)

) , (4.2.18)

and

‖H∇Φ‖
L∞

(
B |x|

8

(x)

) ≤ C

|x|
‖H∇Φ‖

L2

(
B |x|

4

(x)

) . (4.2.19)

Here C depends on C0. Corollary 1.3.1 then ensures a Harnack inequality on B |x|
8

(x),

meaning there exists Λ ∈ R and C depending only on C0 such that for all p ∈ B |x|
8

(x) we

have
eΛ

C
≤ eλ(p) ≤ CeΛ. (4.2.20)

This allows one to control H with (4.2.19) :

‖H‖
L∞

(
B |x|

8

(x)

) ≤ Ce−Λ

|x|
‖H∇Φ‖

L2

(
B |x|

4

(x)

) . (4.2.21)
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Since Φ is Willmore, it satis�es (1.2.30) :

∆H +
∣∣Å∣∣2H = 0.

Combining (4.2.18), (4.2.21) and (A.2.10) yields∥∥∥∣∣Å∣∣2H∥∥∥
L∞

(
B |x|

8

(x)

) ≤ Ce−Λ

|x|3
‖H∇Φ‖

L2

(
B |x|

4

(x)

) .
Then

‖∆H‖
L∞

(
B |x|

8

(x)

) ≤ Ce−Λ

|x|3
‖H∇Φ‖

L2

(
B |x|

4

(x)

) .
Classic Calderón-Zygmund results (see for instance theorem 9.9 and 9.11 of [GT01]) ensure
that

‖∇H‖
L∞

(
B |x|

16

(x)

) ≤ Ce−Λ

|x|2
‖H∇Φ‖

L2

(
B |x|

4

(x)

) . (4.2.22)

Combining �rst (4.2.19) and (4.2.20), and then (4.2.22) and (4.2.20) yields when evaluated
at x

eλ(x) |H(x)| ≤ Cδ(|x|), (4.2.23)

eλ(x) |∇H(x)| ≤ C

|x|
δ(|x|), (4.2.24)

where
δ(s) =

1

s
‖H∇Φ‖

L2
(
D2s\D s

2

) .
Since ∇ ~H = ∇H~n + H∇~n, we can extend (4.2.23) and (4.2.24) to ~H and ∇ ~H thanks to
(4.2.18), which yields the desired estimates.
Step 2 : Controls on δ

We have
sδ(s) ≤ ‖H∇Φ‖

L2
(
DR\D r

2

) . (4.2.25)

Further for any function positive function f :∫ R
2

r

1

s

∫ 2s

s
2

f(t)dtds ≤
∫ R

r
2

∫ 2t

t
2

1

s
f(t)dsdt

≤
∫ R

r
2

f(t) log

(
2t
t
2

)
dt

≤ log 4

∫ R

r
2

f(t)dt.

(4.2.26)

Applying (4.2.26) with f(t) =
∫
∂Dt |H∇Φ|2 dσ∂Dt we �nd∫ R

2

r
sδ2(s)ds ≤ log 4 ‖H∇Φ‖2

L2
(
DR\D r

2

) , (4.2.27)

while with f̃(t) =
∫
∂Dt |∇~n|

2 dσ∂Dt , it yields (VI.9) in [BR14] :∫ R
2

r
sδ̃2(s)ds ≤ log 4 ‖∇~n‖2

L2
(
DR\D r

2

) , (4.2.28)
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where

δ̃(s) =
1

s
‖∇~n‖

L2
(
D2s\D s

2

) .
Step 3 : Exploitation and control of ~L

Let ~L be a �rst Willmore quantity of Φ on DR, i.e. satisfying (1.3.74). From (1.3.74),
(4.2.18), (4.2.23) and (4.2.24) we deduce for all x ∈ DR

2
\D2r

∣∣∣∇~L∣∣∣ (x) ≤ Ce−λ(x)

|x|
δ(|x|). (4.2.29)

We consider for any r ≤ t ≤ R

~Lt :=
1

|∂Dt|

∫
∂Dt

~Ldσ∂Dt .

Then given x ∈ DR
2
\D2r∣∣∣~L(x)− ~L|x|

∣∣∣ ≤ ∫
∂D|x|

∣∣∣∇~L∣∣∣ dσ∂D|x|
≤
∫
∂D|x|

Ce−λ(x)

|x|
δ(|x|)dσ∂D|x|

≤ Cδ(|x|)
∫ 2π

0
e−λ(|x|eiθ)dθ.

(4.2.30)

Further, in our case lemma 3.2.1 implies the following Harnack inequality for all x ∈
DR

2
\D2r

eA|x|d

C
≤ eλ(x) ≤ CeA|x|d, (4.2.31)

with d, A in R, and C a constant depending on C0. Then (4.2.30) yields∣∣∣~L(x)− ~L|x|
∣∣∣ ≤ Cδ(|x|)e−λ(x), (4.2.32)

with C depending on C0. We can then estimate ~L− ~L|x| with (4.2.27) and (4.2.32) :

∫
DR

2
\D2r

e2λ
∣∣∣~L− ~L|x|∣∣∣2 dx ≤ C ∫ R

2

2r
rδ2(r)dr ≤ C ‖H∇Φ‖2

L2
(
DR\D r

2

) . (4.2.33)

We will control similarly d~Lt
dt = 1

2π

∫ 2π
0

∂~L
∂t (t, θ)dθ. We use expression (1.4.76) of ∇~L

and deduce

1

2π

∫ 2π

0

∂~L

∂t
(t, θ)dθ =

3

2π

∫ 2π

0
H∂θ~ndθ +

1

2π

∫ 2π

0
∂ν~n× ~Hdθ.

Using (4.2.18), (4.2.23) and (4.2.31) we deduce from this∣∣∣∣∣d~Ltdt
∣∣∣∣∣ ≤ Ce−A δ(t)δ̃(t)td

. (4.2.34)
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De�ning a(t) =
∣∣∣~Lt∣∣∣ yields ∣∣dadt ∣∣ ≤ ∣∣∣d~Ltdt ∣∣∣ which, combined with (4.2.31) and (4.2.34) ensures∣∣∣∣dadt

∣∣∣∣ ≤ Ce−A δ(t)δ̃(t)td
. (4.2.35)

Then ∫ R
2

2r
s1+d

∣∣∣∣dads
∣∣∣∣ (s)ds ≤ Ce−A ∫ R

2

2r
sδ(s)δ̃(s)

≤ Ce−A
(∫ R

2

2r
sδ(s)2ds

) 1
2
(∫ R

2

2r
sδ̃(s)2ds

) 1
2

.

We can then apply (4.2.27) and (4.2.28) and conclude∫ R
2

2r
s1+d

∣∣∣∣dads
∣∣∣∣ (s)ds ≤ Ce−A ‖∇~n‖L2(DR\Dr) ‖H∇Φ‖L2(DR\Dr)

≤ CC0e
−A ‖H∇Φ‖L2(DR\Dr) .

(4.2.36)

An integration by parts gives for any r < τ < T < R,∫ T

τ
s1+dda

ds
(s)ds = T 1+da(T )− τ1+da(τ)− (1 + d)

∫ T

τ
sda(s)ds.

Hence, since a ≥ 0, we have
� if d ≤ −1, for all 2r < t < R

2 ,

t1+da(t) ≤ (2r)1+da(2r) +

∫ R
2

2r
s1+d

∣∣∣∣dads
∣∣∣∣ (s)ds,

� if d ≥ −1, for all 2r < t < R
2 ,

t1+da(t) ≤
(
R

2

)1+d

a

(
R

2

)
+

∫ R
2

2r
s1+d

∣∣∣∣dads
∣∣∣∣ (s)ds.

Then, if d ≤ −1, we take
∫
∂D2r

~L = 0, whereas if d ≥ −1, we take
∫
∂DR

2

~L = 0.

In both cases, for all 2r < |x| < R
2 , thanks to (4.2.36), we have

|x|eλ(x)
∣∣∣~L|x|∣∣∣ ≤ |x|d+1eAa(|x|)

≤ eA
∫ R

2

2r
s1+d

∣∣∣∣dadt
∣∣∣∣ (s)ds

≤ C ‖H∇Φ‖L2(DR\Dr) ,

(4.2.37)

where C depends only on C0. Since 1
|x| is in L

2,∞, we conclude with∥∥∥eλ(x)~L|x|

∥∥∥
L2,∞

(
DR

2
\D2r

) ≤ C ‖H∇Φ‖L2(DR\Dr) . (4.2.38)

Combined with (4.2.33), this yields the desired result :∥∥∥eλ~L∥∥∥
L2,∞

(
DR

2
\D2r

) ≤ C ‖H∇Φ‖L2(DR\Dr) .

The constant appearing in the theorem corresponds to the choice of
∫
∂D2r

~L = 0 or∫
∂DR

2

~L = 0 depending on d.
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This result combines fairly well with theorem 4.2.1. Indeed thinking in the context
of simple minimal bubbling, one can slice the domain of study into a bubble domain, on
which ~L is bounded with theorem 1.4.1, and a neck domain where one estimates ~L thanks
to theorem 4.2.2. Then ~L will bounded on the whole set, which allows for better controls
and increasingly regular convergences.

4.3 Constraints on minimal bubbling

4.3.1 Consequences of the ε-regularity

The following result, which was the core of the prepublication [Mar19c], stands.

Theorem 4.3.1. Let Φε : D→ R3 a sequence of conformal, weak, Willmore immersions,
of Gauss map ~nε, mean curvature Hε and conformal factor λε, of parameter ε > 0. We
assume

1.
∫
D
|∇~nε|2 dz ≤M <∞,

2. ‖∇λε‖L2,∞(D) ≤M ,

3. lim
R→∞

lim
ε→0

∫
D 1
R
\DεR

|∇~nε|2 dz

 = 0,

4. Φε → Φ0 in C∞loc (D\{0}), with Φ0 a branched Willmore immersion on D,

5. There exists Cε > 0 such that Φε(ε.)−Φε(0)
Cε → Ψ in C∞loc (C), with Ψ a minimal immersion

(that is of mean curvature HΨ = 0).

Then Φε → Φ0 C2,α (D) for all α < 1.

The assumptions of the theorem are natural. They correspond to the conclusions of
lemma 3.2.2, and thus to the compactness theorem 3.2.2 in a good conformal chart. The
only added assumption is that the bubble is minimal. We are considering simple minimal
bubbling.

Proof. In the following Φ̃ε := Φε(ε.)−Φε(0)
Cε : D 1

ε
→ R3 and ~̃nε, H̃ε λ̃ε will denote respec-

tively its Gauss map, its mean curvature and its conformal factor. We can check :

~̃nε = ~nε (ε.) , (4.3.39)

H̃ε∇Φ̃ε = εHε∇Φε (ε.) . (4.3.40)

Then for all 1
ε > R > 0 ∫

DεR
|∇~nε|2 dz =

∫
DR

∣∣∣∇~̃nε∣∣∣2 dz, (4.3.41)

and ∫
DεR
|Hε∇Φε|2 dz =

∫
DR

∣∣∣H̃ε∇Φ̃ε
∣∣∣2 dz. (4.3.42)

Hypothesis 5 implies

lim
ε→0

∫
DεR
|∇~nε|2 dz =

∫
DR
|∇~nΨ|2 dz, (4.3.43)

lim
ε→0

∫
DεR
|Hε∇Φε|2 dz =

∫
DR
|HΨ∇Ψ|2 dz = 0. (4.3.44)
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Besides combining (A.2.11) and hypothesis 3 yields

lim
R→∞

lim
ε→0

∫
D 1
R
\DεR

|Hε∇Φε|2 dz

 ≤ lim
R→∞

lim
ε→0

∫
D 1
R
\DεR

|∇~nε|2 dz

 = 0. (4.3.45)

Together (4.3.44) and (4.3.45) ensure that for R su�ciently big and ε su�ciently small

‖Hε∇Φε‖
L2

(
D 1
R

) ≤ ε′0 (M) , (4.3.46)

with ε′0(M) given by theorem 4.2.1. Up to a rescaling, and thus without loss of generality,
we can assume that (4.3.46) stands on D. We will �nd a uniform L2,∞ bound on a �rst
Willmore quantity, theorem 4.2.1 then gives the uniform controls proving theorem 4.3.1.

Recalling (4.3.41) yields

lim
ε→0

∫
DεR
|∇~nε|2 dz =

∫
DR
|∇~nΨ|2 dz.

Then either Ψ parametrizes a plane, and classical ε-regularity results yield smooth conver-
gence (and there is de facto no real bubbling) or for R big enough,

lim
ε→0

∫
DεR
|∇~nε|2 dz > 8π

3
.

Then

inf

{
s

∣∣∣∣∣
∫
Bs(p)

| ∇~nε|2 =
8π

6
, ∀p ∈ D s.t. Bs(p) ⊂ D

}
→ 0.

This means that the estimates given by theorem 1.4.1 degenerates as ε goes to 0. Finding
a uniform control on ~Leλ will require a "bubble-neck" decomposition. The bubble region
will be D4εR while the neck region will be D 1

R
\DεR, with a R that we determine in what

follows. We consider ~Lε a �rst Willmore quantity of Φε on D.
Step 1 : Neck estimates

By hypothesis 3, there exists R0 > 0 such that for ε small enough,∫
D 1
R0

\DεR0

|∇~nε| ≤ ε0,

where ε0 is given by theorem 4.2.2. In turn, this ensures that

sup
εR0<s<

1
2R0

∫
D2s\Ds

|∇~nε|2 ≤ ε0.

We can then apply theorem 4.2.2 and �nd a sequence ~Lε1 ∈ R3 such that∥∥∥(~Lε − ~Lε1
)
eλ

ε
∥∥∥
L2,∞

(
D 1

2R0

\D2εR0

) ≤ C ‖Hε∇Φε‖L2(D) , (4.3.47)

where C depends solely on M de�ned in 1 and 2.
Step 2 : Bubble estimates

Let pε = εxε ∈ D4R0ε and r
ε = εsε such that Brε(pε) ⊂ D4R0ε and∫

Brε (pε)
| ∇~nε|2 =

8π

6
.
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Then xε ∈ D4R0 and sε ≤ 4R0, meaning that there exists x ∈ D4R0 and s ≤ 4R0 such that
(up to a subsequence)

xε → x,

sε → s,

Bs (x) ⊂ D4R0 .

Adapting slightly (4.3.41) we �nd

lim
ε→0

∫
Brε (pε)

|∇~nε|2 dz = lim
ε→0

∫
Bsε (xε)

∣∣∣∇~̃nε∣∣∣2 dz =

∫
Bs(x)

|∇~nΨ|2 dz =
8π

6
.

Necessarily

s

4R0
≥ rΨ

0 :=
1

4R0
inf

{
t

∣∣∣∣∣
∫
Bt(p)

| ∇~nΨ|2 =
8π

6
, ∀p ∈ D4R0 s.t. Bs(t) ⊂ D4R0

}
> 0.

Thus if we set

rε0 :=
1

4εR0
inf

{
r

∣∣∣∣∣
∫
Br(p)

| ∇~nε|2 =
8π

6
, ∀p ∈ D4εR0 s.t. Br(t) ⊂ D4εR0

}
,

we deduce that for ε small enough rε0 is uniformly bounded from below :

rε0 ≥
1

10
rΨ

0 . (4.3.48)

Inequality (4.3.48) translates the simple bubbling of Φε. While Φε concentrates at 0 at
the scale ε, Φ̃ε does not concentrate any further, everything happens at the same scale
for Φ̃ε. For instance corollary 1.3.2 ensures that the conformal factor satis�es a Harnack
inequality. Namely we �nd Λε ∈ R such that

∀x ∈ D3εR0

eΛε

C
≤ eλε(x) ≤ CeΛε . (4.3.49)

Here C depends on M and rΨ
0 . Theorem 1.4.1 then allows us to control the �rst Willmore

quantity ; i.e. there exists ~Lε2 ∈ R3 such that∥∥∥(~Lε − ~Lε2
)
eλ

ε
∥∥∥
L2,∞(D3εR0)

≤ C(M, rΨ
0 ) ‖Hε∇Φε‖L2(D) . (4.3.50)

Step 3 : Estimates across the concentration point

We �rst wish to estimate
∣∣∣ ~Lε1 − ~Lε2

∣∣∣. Using (4.3.47) and (4.3.50) we �nd∥∥∥( ~Lε1 − ~Lε2
)
eλ

ε
∥∥∥
L2,∞(D3R0ε

\D2R0ε)
≤
∥∥∥( ~Lε1 − ~Lε) eλε∥∥∥

L2,∞(D3R0ε
\D2R0ε)

+
∥∥∥(~Lε − ~Lε2

)
eλ

ε
∥∥∥
L2,∞(D3R0ε

\D2R0ε)

≤
∥∥∥( ~Lε1 − ~Lε) eλε∥∥∥

L2,∞
(
D 1

2R0

\D2R0ε

)
+
∥∥∥(~Lε − ~Lε2

)
eλ

ε
∥∥∥
L2,∞(D3R0ε)

≤ C(M, rΨ
0 ) ‖Hε∇Φε‖L2(D) .
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Thus ∣∣∣ ~Lε1 − ~Lε2
∣∣∣ ≤ C(M, rΨ

0 )

‖eλε‖L2,∞(D3R0ε
\D2R0ε)

‖Hε∇Φε‖L2(D) . (4.3.51)

We can now assemble our estimates on the neck and the bubble. Using successively (4.3.47),
(4.3.50) and (4.3.51) we �nd∥∥∥(~Lε − ~Lε1

)
eλ

ε
∥∥∥
L2,∞

(
D 1

2R0

) ≤ ∥∥∥(~Lε − ~Lε1
)
eλ

ε
∥∥∥
L2,∞

(
D 1

2R0

\D2εR0

)
+
∥∥∥(~Lε − ~Lε1

)
eλ

ε
∥∥∥
L2,∞(D3εR0)

≤ C(M) ‖Hε∇Φε‖L2(D)

+
∥∥∥(~Lε − ~Lε2

)
eλ

ε
∥∥∥
L2,∞(D3εR0)

+
∥∥∥( ~Lε2 − ~Lε1

)
eλ

ε
∥∥∥
L2,∞(D3εR0)

≤ C(M, rΨ
0 ) ‖Hε∇Φε‖L2(D) +

∣∣∣ ~Lε1 − ~Lε2
∣∣∣ ∥∥∥eλε∥∥∥

L2,∞(D3εR0)

≤ C(M, rΨ
0 ) ‖Hε∇Φε‖L2(D)

1 +

∥∥eλε∥∥
L2,∞(D3εR0)

‖eλε‖L2,∞(D3R0ε
\D2R0ε)

 .

With (4.3.49), we can simplify the last right-hand term in the inequality.∥∥eλε∥∥
L2,∞(D3εR0)

‖eλε‖L2,∞(D3R0ε
\D2R0ε)

≤ C(M, rΨ
0 )

∥∥eΛε
∥∥
L2,∞(D3εR0)

‖eΛε‖L2,∞(D3R0ε
\D2R0ε)

≤ C(M, rΨ
0 )

‖1‖L2,∞(D3εR0)

‖1‖L2,∞(D3R0ε
\D2R0ε)

≤ C(M, rΨ
0 )

since Λε is a constant. Accordingly there exists C(M, rΨ
0 ) > 0 such that the following

estimate across the concentration point stands.∥∥∥(~Lε − ~Lε1
)
eλ

ε
∥∥∥
L2,∞

(
D 1

2R0

) ≤ C(M, rΨ
0 ) ‖Hε∇Φε‖L2(D) . (4.3.52)

Step 4 : Conclusion

We have then found a �rst Willmore quantity, ~Lε − ~Lε1, with uniform L2,∞ control on a
disk of �xed radius ρ = 1

2R0
. Since (4.3.46) stands we can apply theorem 4.2.1 on Dρ and

�nd
‖Hε∇Φε‖

L∞
(
D ρ

2

) ≤ C‖Hε∇Φε‖L2(Dρ), (4.3.53)

‖∇Φε‖
W 3,p

(
D ρ

2

) ≤ C‖∇Φε‖L2(Dρ), (4.3.54)

while the second and third Willmore quantities satisfy

‖∇Sε‖
W 1,p

(
D ρ

2

) + ‖∇~Rε‖
W 1,p

(
D ρ

2

) ≤ C‖Hε∇Φε‖L2(Dρ) (4.3.55)

for all p <∞.
Theorem 4.3.1 then follows from classical compactness results.
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4.3.2 Drawing a local framework

We will slightly change the conclusions of lemma 3.2.2 to draw a framework that better
�ts simple minimal bubbling.

Lemma 4.3.1. Let ξk be a sequence of Willmore immersions of a closed surface Σ satisfying
the hypotheses of theorem 3.2.2. Then, in proper conformal charts around a concentration
point on which a simple minimal bubble is blown, ξk yields a sequence of Willmore con-
formal immersions Φε : D → R3, of conformal factor λε = 1

2 ln
(
|∇Φε|2

2

)
, Gauss map ~nε,

mean curvature Hε and tracefree curvature Ωε := 2 〈Φε
zz, ~n

ε〉, satisfying the following set
of hypotheses :

1. There exists C0 > 0 such that

‖Φε‖L∞(D) + ‖∇Φε‖L2(D) + ‖∇λε‖L2,∞(D) + ‖∇~nε‖L2(D) ≤ C0.

2. Φε → Φ0 C∞loc (D\{0}), where Φ0 is a true branched Willmore conformal immersion, with
a unique branch point of multiplicity θ + 1 at 0, meaning that

Φ0
z ∼0

~Azθ. (4.3.56)

We denote λ0 its conformal factor, ~n0 its Gauss map, H0 its mean curvature and Ω0 its
tracefree curvature.

3. There exists a sequence of real numbers Cε > 0 such that

Φ̃ε :=
Φε (ε.)− Φε(0)

Cε
→ Φ1

z

C∞loc (C), where Φ1 is assumed to be a minimal conformal immersion of C with a branched
end of multiplicity θ + 1, meaning that :

Φ1
z ∼∞ Ãzθ.

We denote λ1 its conformal factor, ~n1 its Gauss map, H1 its mean curvature and Ω1 its
tracefree curvature.

4.

lim
R→∞

lim
ε→0

∫
D 1
R
\DεR

|∇~nε|2 dz

 = 0.

5.
∣∣Ωεe−λ

ε∣∣ reaches its maximum at 0 and∣∣∣Ωεe−λ
ε
∣∣∣ (0) =

2

ε
.

Proof. Hypotheses 1, 2 and 4 were already obtained in lemma 3.2.2. Hypothesis 3 then
speci�es that we consider the case where there is only one simple minimal bubble which
concentrates on 0 in the aforementioned chart. The equality of the multiplicity of the end
of the bubble and the branch point of the surface is merely a consequence of theorem 3.2.3.
Further, by de�nition of a concentration point∥∥∥∇~nk∥∥∥

L∞(D)
→∞.
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On the other hand, theorem 4.3.1 states that∥∥∥Hk∇Φk
∥∥∥
L∞(D)

≤ C(C0).

Since
∣∣∇~nk∣∣2 =

∣∣Hk∇Φk
∣∣2 +

∣∣∣Ωke−λ
k
∣∣∣2, necessarily∥∥∥Ωke−λ

k
∥∥∥
L∞(D)

→∞.

We then rede�ne the concentration speed as

εk =
2∥∥Ωke−λk
∥∥
L∞(D)

,

and we assume it is reached at the origin. For simplicity's sake we reparametrize this
sequence by the concentration speed which we denote ε. Hypothesis 5 is then a consequence
of this slight adjustment.

This modi�cation is done in order to more subtly detect the phenomena. Indeed for
minimal simple bubbling, the mean curvature terms remain bounded, and thus concentra-
tion will happen entirely on the tracefree parts. Further, controls on Ω will be more easily
reverberated onto Φ than controls on ∇~n.

We can expand on hypotheses 1-5 up to, �rst macroscopic, then microscopic, adjust-
ments.

Lemma 4.3.2. Let Φε : D → R3 be a sequence of Willmore conformal immersions
satisfying hypotheses 1-5. Then θ is even, and up to macroscopic adjustments we can
assume that :

6.

Φ1
z =

1

2

 Q2 − P 2

i
(
Q2 + P 2

)
2PQ

 ,

where P,Q ∈ C θ
2
[X], P ∧Q = 1, and

P (0) = 0,

Q(0) = P ′(0) = 1,

P ′′(0) = 2Q′(0).

The end of multiplicity θ+1 of Φ1 can be highlighted as follows : there exists Ã ∈ C3\{0}
and V ∈ Cθ−1[X] such that

Φ1
z = Ãzθ + V.

Proof. Adjusting with homothetic transformations of R3 :

Since Φ1 has no branch point on C, up to a �xed rotation and a dilation in R3 one can
assume :

Φ1
z(0) =

1

2

1
i
0

 . (4.3.57)

Adjusting the parametrization :

Taking M−θ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

, we set Ψ := M−θΦ
1
(
eiθ.
)
. We denote respectively
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λΨ, HΨ, ΩΨ and ~nΨ its conformal factor, its mean curvature, its tracefree curvature and
its Gauss map. Then Ψz = eiθM−θΦ

1
z

(
eiθ.
)
which implies ~nΨ = M−θ~n and eλΨ = eλ

1
.

Consequently using (4.3.57)

Ψz(0) =
eiθ

2
Mθ

1
i
0

 =
eiθ

2

 e−iθ

ie−iθ

0

 =
1

2

1
i
0

 . (4.3.58)

Further we can compute Ψzz = e2iθM−θΦ
1
zz

(
eiθ
)
and deduce

ΩΨ = e2iθΩ1,

which in turn implies [
ΩΨe

−λΨ

]
(0) = e2iθ

[
Ω1e−λ

1
]

(0).

According to (4.3.78), one can choose θ such that e2iθ = −2

[Ω1e−λ1 ](0)
. In that case ΩΨ(0)e−λΨ(0) =

−2, which yields thanks to (4.3.58)

ΩΨ(0) = −2. (4.3.59)

The sequence Ψε = MθΦ
ε
(
eiθ.
)
satis�es hypotheses 1, 4 and 5, while

Ψε →MθΦ
0
(
eiθ
)

C∞loc (D\{0}) ,

Ψ̃ε → Ψ C∞loc (C) .

We will not change notations for simplicity's sake, and will merely assume, without loss of
generality, that

Ω1(0) = −2. (4.3.60)

Summing up :

Φ1
z =

1

2

1
i
0

 ,

Ω1(0) = −2,(∣∣Ω1
∣∣2 e−2λ1

)
z

(0) = 0.

(4.3.61)

Consequences on the Enneper-Weierstrass representation :

Since Φ1 is a minimal immersion, we can use the Enneper-Weierstrass representation :

Φ1
z =

f

2

 1− g2

i
(
1 + g2

)
2g


where f is a holomorphic function on C and g a meromorphic one. Since (according to
(4.3.74)) Φ1 has �nite total curvature, g is a meromorphic function of �nite degree on C.
Thus, there exists two polynomials P, Q ∈ C [X] such that P ∧ Q = 1 and g = P

Q . Since
Φ1 has no end on C, f has a zero of order 2k at each pole of order k of g. Consequently
there exists a holomorphic function f̃ such that f = Q2f̃ . Further, Φ1 has no branch point
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on C and one �nite end at ∞, thus f̃ is a holomorphic function without zeros and of �nite
order at in�nity, i.e. a constant. We can then write

Φ1
z =

1

2

 Q2 − P 2

i
(
Q2 + P 2

)
2PQ

 . (4.3.62)

Further since Φ1 is assumed to have an end of multiplicity θ + 1 one can expand (4.3.62)
as

Φ1
z = Ãzθ +O

(
zθ−1

)
, (4.3.63)

where Ã ∈ C3\{0}. Comparing (4.3.62) and (4.3.63) notably implies that θ is even and
P, Q ∈ C θ

2
[X]. From (4.3.62), we then successively deduce

~n1 =
1

|P |2 + |Q|2

 PQ+ PQ

i
(
PQ− PQ

)
|P |2 − |Q|2

 , (4.3.64)

e2λ1
=
(
|P |2 + |Q|2

)2
, (4.3.65)

Φ1
zz = Q′

Q
Qi
P

− P ′
 P
−iP
−Q

 , (4.3.66)

which implies
Ω1 = 2

(
PQ′ − P ′Q

)
, (4.3.67)

and in turn

Ω1e−λ
1

= 2
PQ′ − P ′Q
|P |2 + |Q|2

, (4.3.68)

∣∣∣Ω1e−λ
1
∣∣∣2 = 4

|P |2|Q′|2 + |P ′|2|Q|2 − PP ′Q′Q− P ′QPQ′
(|P |2 + |Q|2)2

. (4.3.69)

Conditions (4.3.61) then translate on P and Q as

P (0) = 0,

Q(0) = P ′(0) = 1,

P ′′(0) = 2Q′(0).

(4.3.70)

This concludes the proof.

Below, we write and prove the in�nitesimal counterpart of theorem 4.3.2.

Lemma 4.3.3. Let Φε : D → R3 be a sequence of Willmore conformal immersions
satisfying hypotheses 1-6.
Up to in�nitesimal adjustments we can assume that :

7.

Φε
z(0) =

Cε

ε
Φ1
z(0) =

Cε

2ε

1
i
0

 ,

[
Ωεe−λ

ε
]

(0) =
1

ε

[
Ω1e−λ

1
]

(0) = −2

ε
.
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Proof. Using homothetic transformations of R3 :

By hypothesis 3, Φ̃ε
z(0) → Φ1

z(0), thus there exists a sequence of homothetic transforma-
tions σε → Id such that σεΦ̃ε

z(0) = Φ1
z(0). Since σε tends toward the identity, hypotheses

1-3 are still satis�ed, and hypothesis 5 still stands due to the conformal invariance proper-
ties of the tracefree curvature. We will then apply this sequence of transformations without
changing the notations for simplicity's sake and assume Φ̃ε

z(0) = Φ1
z(0). Considering

Φ̃ε
z =

ε

Cε
Φε
z,

we deduce with (4.3.61),

Φε
z(0) =

Cε

2ε

1
i
0

 . (4.3.71)

Adjusting the parametrization :

Using (4.3.78) and (4.3.76), we can set

e2iθε =

[
Ω̃εe−λ̃

ε
]

(0)[
Ω1e−λ1

]
(0)

= ε

[
Ωεe−λ

ε]
(0)[

Ω1e−λ1
]

(0)
→ 1.

We consider Ψε = MθεΦ
ε
(
eiθ

ε
.
)
. Since eiθ

ε → 1, Ψε satis�es 1-6 (5 is still satis�ed due to
the invariance properties of the tracefree curvature). As detailed in the previous section
we have

Ω̃ε
Ψe
−λ̃εΨ = −2,

which implies [
Ωε

Ψe
−λεΨ

]
(0) = −2

ε
.

For simplicity's sake we will not change the notations and assume that Φε satis�es[
Ωεe−λ

ε
]

(0) = −2

ε
. (4.3.72)

This gives us the desired result.

An immediate consequence of hypotheses 2-4 is the following energy quantization result∫
D
|∇~nε|2 dz →

∫
D

∣∣∇~n0
∣∣2 dz +

∫
C

∣∣∇~n1
∣∣2 dz. (4.3.73)

while hypothesis 1 ensures∥∥∇~n0
∥∥
L2(D)

+
∥∥∇~n1

∥∥
L2(C)

≤ C(C0). (4.3.74)

Further if we denote λ̃ε the conformal factor of Φ̃ε, H̃ε its mean curvature, Ω̃ε its
tracefree curvature and ~̃n

ε
its Gauss map, we have

λ̃ε = λε (ε.)− ln

(
Cε

ε

)
, (4.3.75)

and
Ω̃εe−λ̃

ε
= ε

[
Ωεe−λ

ε
]

(ε.) . (4.3.76)
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Using hypothesis 5, one may conclude that∣∣∣Ω̃εe−λ̃
ε
∣∣∣ (0) = 2. (4.3.77)

Hypothesis 3 then yields ∣∣∣Ω1e−λ
1
∣∣∣ (0) = 2. (4.3.78)

Similarly we know, thanks to hypotheses 3 and 5,(∣∣∣Ω̃εe−λ̃
ε
∣∣∣)
z

(0) = 0, (4.3.79)

and : (∣∣∣Ω1e−λ
1
∣∣∣)
z

(0) = 0. (4.3.80)

Finally, hypothesis 4 allows us to apply theorem 1.5.1 to Φ0 : there exists α ≤ θ0,
~A ∈ C3\{0},

(
~Bj

)
j=1..θ0+1−α

∈ C3, ~Cα ∈ C3\{0} and ξ : D→ R3 such that

Φ0
z = ~Azθ0 +

θ0+1−α∑
j=1

~Bjz
θ0+j +

~Cα
θ0 + 1

zθ0−αzθ0+1 +
~Cα

θ0 + 1− α
zθ0zθ0+1−α + ξz, (4.3.81)

where ξ satis�es :

∇jξ = O
(
r2θ0+3−α−j−υ

)
,

for all υ > 0 and j ≤ θ0 + 2 − α. The second residue α is in fact de�ned as follows (see
theorem I.8 in [BR13]) :

H0 ∼ Cα|z|−α. (4.3.82)

Our proofs will use the quantities ~L, S and ~R, stemming from theWillmore conservation
laws (see for instance theorem I.4 in [Riv08]), which at the core, are a consequence of the
conformal invariance ofW (see [Ber16]). More precisely ~L, S and ~R are de�ned as follows :

∇⊥~L = ∇ ~H − 3π~n

(
∇ ~H

)
+∇⊥~n× ~H,

∇⊥S = 〈~L,∇⊥Φ〉,
∇⊥ ~R = ~L×∇⊥Φ + 2H∇⊥Φ.

(4.3.83)

Exploiting these was key in T. Rivière's proof of the ε-regularity for Willmore surfaces.
Under hypotheses 1-5, the conclusion of [Mar19c] stands and yields (see (96)-(98) in

the aforementioned paper) :

‖Hε∇Φε‖L∞(D) ≤ C(C0), (4.3.84)

‖∇Φε‖W 3,p(D) ≤ C(C0), (4.3.85)

while the second and third Willmore quantities satisfy

‖∇Sε‖W 1,p(D) + ‖∇~Rε‖W 1,p(D) ≤ C(C0) (4.3.86)

for all p <∞. Up to an inconsequential translation one can further assume Φε(0) = 0.
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4.3.3 Local expansion on the conformal factor

This section will prove the following expansion on the conformal factor, which will serve
as a stepping point in the proof of theorem G.

Theorem 4.3.2. Let Φε be a sequence of Willmore conformal immersions satisfying 1-7.
Then there exists lε ∈ L∞ (D) such that :

λε = ln
(
εθ + rθ

)
+ lε,

‖lε‖L∞(D) ≤ C(C0).

As a result if we denote χ =
√
ε2 + r2, the immersion satis�es the following Harnack

inequality :
χθ

C(C0)
≤ eλε ≤ C(C0)χθ.

Proof. Step 1 : Controls on the neck area

Given hypothesis 4, for any ε0 > 0 arbitrarily small there exists R big enough such that

lim
ε→0

∫
D 1
R
\DεR

|∇~nε|2 dz

 ≤ ε0. (4.3.87)

We �rst recall lemma V.3 of [BR14].

Lemma 4.3.4. There exists a constant η > 0 with the following property. Let 0 < 4r <
R <∞. If Φ is any (weak) conformal immersion of Ω := DR\Dr into R3 with L2-bounded
second fundamental form and satisfying

‖∇~n‖L2,∞(Ω) <
√
η,

then there exist 1
2 < α < 1 and A ∈ R depending on R, r, m and Φ such that

‖λ(x)− d ln |x| −A‖
L∞

(
DαR\D r

α

) ≤ C
(
‖∇λ‖L2,∞(Ω) +

∫
Ω
|∇~n|2

)
, (4.3.88)

where d satis�es∣∣∣∣2πd− ∫
∂Dr

∂rλdl∂Dr

∣∣∣∣ ≤C
[∫

D2r\Dr
|∇~n|2 dz

+
1

ln R
r

(
‖∇λ‖L2,∞(Ω) +

∫
Ω
|∇~n|2

)]
.

(4.3.89)

Thus, according to (4.3.87), there exists R0 such that for all R ≥ R0 and ε small
enough, we can apply lemma 4.3.4 on D 1

R
\DεR and conclude that there exists dεR and

AεR ∈ R such that

‖λε(x)− dεR ln r −AεR‖
L∞

(
D 1

2R
\D2εR

) ≤ C0, (4.3.90)

∣∣∣∣dεR − 1

2π

∫
∂DεR

∂rλ
εdl∂DεR

∣∣∣∣ ≤C
[∫

D2εR\DεR
|∇~n|2 dz +

C0

− ln (εR2)

]
. (4.3.91)
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Here C0 is the uniform bound given by hypothesis 1 (up to a multiplicative uniform con-
stant). We saw in (3.2.7) that

lim
R→∞

(
lim
ε→0

1

2π

∫
∂DεR

∂rλ
εdl∂DεR

)
= θ,

while hypothesis 4 ensures that

lim
R→∞

(
lim
ε→0

∫
D2εR\DεR

|∇~n|2 dz

)
= 0.

Hence we can �x R1 > 0 such that for ε small enough :

|dεR − θ| ≤
1

103
. (4.3.92)

Since R1 is �xed, we will get rid of the subscript on dε and Aε. Then for any ε small
enough :

‖λε(x)− dε ln r −Aε‖
L∞

(
D 1

2R1

\D2εR1

) ≤ C(C0, R1). (4.3.93)

Step 2 : Estimates on the exterior boundary :

Hypothesis 2 ensures that on ∂D 1
2R1

, λε → λ0 smoothly, and that λ0 is a bounded function

away from 0, which implies

‖λε‖
L∞

(
∂D 1

2R1

) ≤ C(C0, R1). (4.3.94)

On the other hand, (4.3.92) ensures

|dε lnR1| ≤ C(C0, R1). (4.3.95)

As a result, combining (4.3.93) on ∂D 1
2R1

, (4.3.94), and (4.3.95) yields

|Aε| ≤ C(C0, R1),

which we can inject in (4.3.93) to obtain

‖λε(x)− dε ln r‖
L∞

(
D 1

2R1

\D2εR1

) ≤ C(C0, R1). (4.3.96)

Step 3 : Estimates on the interior boundary :

Estimate (4.3.96) implies

‖λε(x)− dε ln r‖L∞(∂D2εR1) ≤ C(C0, R1). (4.3.97)

Further (4.3.75) yields

‖λε(x)− dε ln r‖L∞(∂D2εR1) =

∥∥∥∥λ̃ε(x)− dε ln r + ln

(
Cε

ε

)
− dε ln ε

∥∥∥∥
L∞(∂D2R1)

.

Hypothesis 3 then ensures that∥∥∥λ̃ε∥∥∥
L∞(D2R1)

≤ C(C0, R1), (4.3.98)
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and (4.3.92) that
‖dε ln r‖L∞(D2R1) ≤ C(C0, R1). (4.3.99)

Together (4.3.97), (4.3.98) and (4.3.99) yield∣∣∣∣ln( Cε

εdε+1

)∣∣∣∣ ≤ C(C0, R1). (4.3.100)

A direct consequence of (4.3.92) and (4.3.100) is the following estimate :

εθ+1−10−3

C(R1, C0)
≤ εd

ε+1

C(C0, R1)
≤ Cε ≤ C(C0, R1)εd

ε+1 ≤ C(C0, R1)εθ+1+10−3
. (4.3.101)

Step 4 : Expanding the conformal factor on the whole disk :

We forcefully write λε = ln
(
εd
ε

+ rd
ε)

+ lε. We aim to show that

‖lε‖L∞(D) ≤ C(C0, R1).

On D\D 1
4R1

:

Using hypothesis 2,
‖λε‖

L∞
(
D\D 1

4R1

) ≤ C(C0, R1). (4.3.102)

One might also notice that, thanks to (4.3.92), on D\D 1
4R1

:

∣∣∣ln(εdε + rd
ε
)∣∣∣ ≤ C(C0, R1)

∣∣∣∣∣ln
((

1

2R1

)m+ 1
100

)∣∣∣∣∣ . (4.3.103)

Then using (4.3.102) and (4.3.103) :

‖lε‖
L∞

(
D\D 1

4R1

) ≤ ‖λε‖
L∞

(
D\D 1

4R1

) +
∥∥∥ln
(
εd
ε

+ rd
ε
)∥∥∥

L∞
(
D\D 1

4R1

)
≤ C(C0, R1).

(4.3.104)

On D4εR1 :
Using hypothesis 3 ∥∥∥λ̃ε∥∥∥

L∞(D4R1)
≤ C(C0, R1), (4.3.105)

while thanks to (4.3.100)∥∥∥∥ln
(
εd
ε

+ rd
ε
)
− ln

(
Cε

ε

)∥∥∥∥
L∞(D4εR1)

≤
∥∥∥∥ln
(
εd
ε

+ (εr)d
ε
)
− ln

(
Cε

ε

)∥∥∥∥
L∞(D4R1)

≤
∥∥∥ln
(

1 + rd
ε
)∥∥∥

L∞(D4R1)
+

∥∥∥∥ln

(
Cε

εdε+1

)∥∥∥∥
L∞(D4R1)

≤ C(C0, R1).
(4.3.106)
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To conclude, we deduce thanks to (4.3.105) and (4.3.106) :

‖lε‖L∞(D4εR1) ≤
∥∥∥∥λε − ln

(
εd
ε

+ rd
ε
)

+ ln

(
Cε

ε

)
− ln

(
Cε

ε

)∥∥∥∥
L∞(D4εR1)

≤
∥∥∥∥λε − ln

(
Cε

ε

)∥∥∥∥
L∞(D4εR1)

+

∥∥∥∥ln
(
εd
ε

+ rd
ε
)
− ln

(
Cε

ε

)∥∥∥∥
L∞(D4εR1)

≤
∥∥∥λ̃ε∥∥∥

L∞(D4R1)
+

∥∥∥∥ln
(
εd
ε

+ rd
ε
)
− ln

(
Cε

ε

)∥∥∥∥
L∞(D4εR1)

≤ C(C0, R1).
(4.3.107)

On D 1
2R1

\D2εR1 :

Thanks to (4.3.96) :

‖lε‖
L∞

(
D 1

2R1

\D2εR1

) ≤ ‖λε − dε ln r‖
L∞

(
D 1

2R1

\D2εR1

) +

∥∥∥∥ln

(
rd
ε

εdε + rdε

)∥∥∥∥
L∞

(
D 1

2R1

\D2εR1

)
≤ C(C0, R1).

(4.3.108)
Combining (4.3.104), (4.3.107) and (4.3.108) yields

‖lε‖L∞(D) ≤ C(C0, R1), (4.3.109)

which is as desired. We now wish to re�ne this �rst expansion by showing that dε converges
toward θ fast enough to be replaced in (4.3.96).
Step 5 : Re�nement :

A consequence of estimate (4.3.109) is the following Harnack inequality on the conformal
factor :

εd
ε

+ rd
ε

C(C0, R1)
≤ eλε ≤ C(C0, R1)

(
εd
ε

+ rd
ε
)

which, using the notation χ =
√
ε2 + r2, we will rewrite in the more convenient form

χd
ε

C(C0, R1)
≤ eλε ≤ C(C0, R1)χd

ε
. (4.3.110)

Injecting (4.3.92) into (4.3.110) yields

eλ
ε ≤ C(C0, R1)χθ−10−3

. (4.3.111)

Since Φε is conformal,

∆Φε = 2Hεe2λε~nε = χθ−10−3
2Hεeλ

ε eλ
ε

χθ−10−3 ~n
ε. (4.3.112)

Noticing that (4.3.84) and(4.3.111) imply∥∥∥∥2Hεeλ
ε eλ

ε

χθ−10−3

∥∥∥∥
L∞(D)

≤ C(C0, R1), (4.3.113)

we can apply theorem A.3.9 to equation (4.3.112) and �nd :

Φε
z = P ε(z) + ϕε0, (4.3.114)
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where P ε =

θ∑
q=0

pεqz
q ∈ Cθ [X] with

∣∣pεq∣∣ ≤ C(C0, R1) for all q ≤ θ and ϕε0 : D → R3

satis�es

∀υ > 0

∥∥∥∥ ϕε0
χθ+1−10−3−υ

∥∥∥∥
L∞(D)

≤ Cυ (C0, R1) ,

∀p <∞
∥∥∥∥ ∇ϕε0χθ−10−3

∥∥∥∥
Lp(D)

≤ Cp (C0, R1) .

(4.3.115)

By convergence of Φε away from zero (hypothesis 2), pεq → pq ∈ C as ε goes to 0. Further
(4.3.115) yields ϕε0 → ϕ0 W

1,p (D), with ϕ0 satisfying

∀υ > 0
∥∥∥ ϕ0

rθ+1−10−3−υ

∥∥∥
L∞(D)

≤ Cυ (C0, R1) ,

∀p <∞
∥∥∥∥ ∇ϕ0

rθ−10−3

∥∥∥∥
Lp(D)

≤ Cp (C0, R1) ,
(4.3.116)

since χ→ r as ε→ 0. Then (4.3.114) ensures that

Φε
z →

θ∑
q=0

pqz
q + ϕ0. (4.3.117)

Since we assumed that Φε → Φ0 away from 0, comparing (4.3.81) and (4.3.117) yields

∀q < θ pεq → 0

pεθ → ~A 6= 0.
(4.3.118)

Further, (4.3.114) gives the following

Φ̃ε
z =

θ∑
q=0

pεq
εq+1

Cε
zq +

εϕε0 (ε.)

Cε
. (4.3.119)

One might also notice using (4.3.115)

|ϕε0| (εz) ≤ C(C0, R1)χθ+
1
2 (εz)

≤ εθ+
1
2C(C0, R1)

√
1 + r2

θ+ 1
2 .

(4.3.120)

This, along with (4.3.100), implies∣∣∣∣εϕε0 (ε.)

Cε

∣∣∣∣ ≤
∣∣∣∣∣εθ+1+ 1

2

Cε

∣∣∣∣∣C(C0, R1)
√

1 + r2
θ+ 1

2

≤ C(C0, R1)
√

1 + r2
θ+ 1

2 ε
1
2 .

Consequently
εϕε0 (εz)

Cε
→ 0 L∞loc (C) . (4.3.121)

Since Φ̃ε is assumed to converge smoothly towards Φ1 on compacts of C, we deduce from
(4.3.63), (4.3.119) and (4.3.121)

θ∑
q=0

pεq
εq+1

Cε
zq → Φ1

z = Ãzθ +O(zθ−1). (4.3.122)
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Hence
εθ+1

Cε
pεθ → Ã 6= 0.

Further, given that pεθ → ~A 6= 0, there exists C(C0, R1) > 0 such that∣∣∣∣ln( Cε

εθ+1

)∣∣∣∣ ≤ C(C0, R1). (4.3.123)

Combining (4.3.100) and (4.3.123) yields∣∣∣∣ln(εdεεθ
)∣∣∣∣ ≤ C(C0, R1),

which ensures
|(dε − θ) ln ε| ≤ C(C0, R1). (4.3.124)

Then, (4.3.96) and (4.3.124) combine and yield

‖λε − θ ln r‖
L∞

(
D 1

2R1

\D2εR1

) ≤ ‖λε − θ ln r‖
L∞

(
D 1

2R1

\D2εR1

) + ‖(θ − dε) ln r‖
L∞

(
D 1

2R1

\D2εR1

)
≤ C(C0, R1).

(4.3.125)
Since inequality (4.3.125) is analogous to (4.3.96), we can do all the reasonings from (4.3.96)
to (4.3.122) with dε = θ. The conformal factor then satis�es :

λε = ln
(
εθ + rθ

)
+ lε, (4.3.126)

with lε such that
‖lε‖L∞(D) ≤ C(C0, R1).

χθ

C(C0, R1)
≤ eλε ≤ C(C0, R1)χθ. (4.3.127)

This concludes the proof of the desired result since R1 is �xed.
Further for simplicity's sake we can, up to an inconsequential (thanks to (4.3.123))

adjustment, assume Cε = εθ+1. Then, exploiting (4.3.122) yields :

Ã = ~A. (4.3.128)

θ∑
q=0

pεqε
q−θzq → Φ1

z.

We can then decompose
P ε = εθΦ1

z

(z
ε

)
+ εθQε

(z
ε

)
,

with Qε ∈ Cθ[X] such that Qε → 0.
Φε then satis�es the following decomposition :

Φε
z = εθΦ1

z

(z
ε

)
+ εθQε

(z
ε

)
+ ϕε0, (4.3.129)

where

∀υ > 0

∥∥∥∥ ϕε0
χθ+1−υ

∥∥∥∥
L∞(D)

≤ Cυ (C0, R1) ,

∀p <∞
∥∥∥∥∇ϕε0χθ

∥∥∥∥
Lp(D)

≤ Cp (C0, R1) .

(4.3.130)
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Remark 4.3.1. One can compare the idea behind theorem 4.3.2 to the one in [M�95] :
the Liouville equation ensures that the conformal factor behaves as some, zd with d ∈ R,
and the fact that it comes form a conformal immersion, forces d to become an integer.

Remark 4.3.2. Equality (4.3.128) can be seen as prolonging theorem 3.2.3 : not only
must the multiplicity of the end and the multiplicity of the branch point correspond, but
so must the parametrization of the limit planes in both cases.

Remark 4.3.3. A. Michelat and T. Rivière have presented the author with another proof
of the expansion which works in the more general framework of any simple bubble (in
[MR19]).

4.4 Conditions on the limit surface :

4.4.1 First control of the second residue, proof of theorem G

The aim of this section is to prove :

Theorem G. Let Φk be a sequence of Willmore immersions of a closed surface Σ satisfying
the hypotheses of theorem 3.2.2. Then at each concentration point p ∈ Σ of multiplicity
θp + 1 on which a simple minimal bubble is blown, the second residue αp of the limit
immersion Φ∞ satis�es

αp ≤ θp − 1.

As detailed in lemmas 3.2.2, 4.3.2 and 4.3.3 we can equivalently work in conformal
parametrizations under hypotheses 1-7. We will then instead prove :

Theorem 4.4.1. Let Φε : D → R3 be a sequence of Willmore conformal immersions
satisfying hypotheses 1-7. Then the second residue of Φ0 at 0 satis�es

α ≤ θ − 1.

Proof. Step 1 : Expansion of Φε
zz :

We consider Φε satisfying hypotheses 1-7, and thus (4.3.126)-(4.3.130). The system (7) of
[Mar19c] states 

∆Sε =
〈
Hε∇Φε,∇⊥ ~Rε

〉
∆~Rε = −Hε∇Φε ×∇⊥ ~Rε −∇⊥SεHε∇Φε

∆Φε =
1

2

(
∇⊥Sε.∇Φε +∇⊥ ~Rε ×∇Φε

)
.

(4.4.131)

Then (4.3.84), (4.3.86) and (4.4.131) yield :

‖∆Sε‖L∞(D) +
∥∥∥∆~Rε

∥∥∥
L∞(D)

≤ C(C0). (4.4.132)

Applying theorem A.3.9 gives the following decomposition on Sε and ~Rε :

Sεz = Sεz(0) + σε0
~Rεz = ~Rεz(0) + ρε0,

(4.4.133)

with σε0 and ρε0 satisfying

∀υ > 0 |σε0| (z) + |ρε0| (z) ≤ Cυ(C0)χ1−υ,

∀p <∞ ‖∇σε0‖Lp(D) + ‖∇ρε0‖Lp(D) ≤ Cp(C0).
(4.4.134)
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Injecting (4.3.129) and (4.4.133) into the third equation of (4.4.131) yields

∆Φε = 2=
(
~Rεz(0)×

[
εθΦ1

z

(z
ε

)
+ εθQε

(z
ε

)]
+ Sεz(0)

[
εθΦ1

z

(z
ε

)
+ εθQε

(z
ε

)])
+ Ψε

0,

(4.4.135)
where

Ψε
0 := 2=

(
ρε0 × Φε

z + σε0Φε
z + ~Rεz × ϕε0 + Sεzϕ

ε
0

)
satis�es

∀υ > 0 |Ψε
0| (z) ≤ Cυ(C0)χθ+1−υ,

∀p <∞
∥∥∥∥∇Ψε

0

χθ

∥∥∥∥
Lp(D)

≤ Cp(C0).
(4.4.136)

One may notice that

h̃ε := 2=
(
~Rεz(0)×

[
εθΦ1

z

(z
ε

)
+ εθQε

(z
ε

)]
+ Sεz(0)

[
εθΦ1

z

(z
ε

)
+ εθQε

(z
ε

)])
is the sum of a polynomial of degree θ in z and a polynomial of degree θ in z, whose
coe�cients are uniformly bounded by a constant depending on C0. Additionnally it is a
O(χθ) thanks to theorem 4.3.2. We can then �nd a polynomial hε in z and z of total degree
θ + 2 such that

hε(0) = hεz(0) = hεz(0) = 0,

∆hε = h̃ε,

hε = O
(
χθ+2

)
.

Then
∆ (Φε − hε) = Ψε

0. (4.4.137)

Applying theorem A.3.3 to (4.4.137), with a = θ + 1− υ for υ arbitrarily small yields

Φε
z = P ε(z) + hεz + ϕε1, (4.4.138)

where P ε is a polynomial of degree θ + 1 that we can split P ε = P εθ + pεzθ+1 with
P εθ ∈ Cθ[X], and ϕε1 satis�es :

∀υ > 0
|ϕε1|

χθ+2−υ +
|∇ϕε1|
χθ+1−υ ≤ Cυ(C0),

∀p <∞
∥∥∥∥∇2ϕε1

χθ

∥∥∥∥
Lp(D)

≤ Cp(C0).

(4.4.139)

Comparing (4.3.129) and (4.4.138) as in the proof of lemma A.3.2 yields :

P εθ = εθ
[
Φ1
(z
ε

)
+Qε

(z
ε

)]
,

ϕε0 = pεzθ+1 + hεz + ϕε1.

Consequently ϕε0 satis�es :

|ϕε0|
χθ+1

+
|∇ϕε0|
χθ

≤ C(C0)

∀p <∞
∥∥∥∥∇2ϕε0
χθ−1

∥∥∥∥
Lp(D)

≤ Cp(C0).

(4.4.140)



158 Chapter 4. A study of simple minimal bubbling

Estimates (4.4.140) applied to (4.3.129) allow for a pointwise expansion of Φε
zz :

Φε
z = εθ

[
Φ1
z

(z
ε

)
+Qε

(z
ε

)]
+ ϕε0,

Φε
zz = εθ−1

[
Φ1
zz

(z
ε

)
+Qεz

(z
ε

)]
+ (ϕε0)z .

(4.4.141)

Step 2 : Initial conditions

The relations (4.4.141) yield when evaluated at 0

Φε
z(0) = εθΦ1

z(0) + εmQε(0) +O
(
εm+1

)
,

Φε
zz(0) = εθ−1Φ1

zz(0) + εθ−1Qεz(0) +O (εm) .
(4.4.142)

There, hypothesis 7 stands as :

Φε(0) = 0,

Φε
z(0) = εθΦ1

z(0) =
εθ

2

1
i
0

 ,

[
Ωεe−λ

ε
]

(0) =
1

εθ
Ωε(0) = −2

ε
.

This implies ~nε(0) =

 0
0
−1

, and since Ωε

2 = 〈~nε,Φε
zz〉,

Φε
z(0) =

εθ

2

1
i
0

 ,

〈
Φε
zz(0),

0
0
1

〉 = εθ−1.

(4.4.143)

Comparing (4.4.142) and (4.4.143) yields

Qε(0) = O(ε),〈
Qεz(0),

0
0
1

〉 = O(ε).

However as we pointed out in remark A.3.3, Qε is loosely de�ned. We can then evacuate
the coe�cients of order ε into ϕε0 (which we will do without changing the notations) to
obtain :

Qε(0) = 0,〈
Qεz(0),

0
0
1

〉 = 0.
(4.4.144)

To conclude we write Qε ∈ C3 as

Qε := Aε

1
i
0

+Bε

 1
−i
0

+ Cε

0
0
1

 ,
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then (4.4.144) yields
Aε(0) = Bε(0) = Cε(0) = 0,

Cεz(0) = 0.
(4.4.145)

When taken at 0, (1.2.53) yields

~Rεz(0) = εθ (Hε(0) + iV ε(0))

1
i
0

+ iSεz(0)

0
0
1

 . (4.4.146)

Estimate (4.3.86) then ensures that υε := εθ (Hε(0) + iV ε(0)) is uniformly bounded :

|υε| ≤ C(C0).

Step 3 : Φε is conformal

We will linearize the conformality condition :

〈Φε
z,Φ

ε
z〉 = 0.

Injecting (4.3.129) in the former yields

Q2Bε − P 2Aε + PQCε +AεBε +
(Cε)2

2
= 0. (4.4.147)

Applying hypothesis 6 and (4.4.145) then yields :

z2 divides Bε. (4.4.148)

Conformality also implies
〈∆Φε,Φε

z〉 = 0.

Injecting (4.4.135) and (4.4.141) into the former then yields〈
h̃ε, εθ

[
Φ1
z +Qε

] (z
ε

)〉
=
〈
h̃ε, ϕε0

〉
+ 〈∆Φε,Ψε

0〉 =: Ψε
1, (4.4.149)

with Ψε
1 satisfying, thanks to (4.4.136) and (4.4.140),

∀υ > 0 |Ψε
1| ≤ Cυχ2θ+1−υ. (4.4.150)

Considering that
〈
h̃ε, εθ

[
Φ1
z +Qε

] (
z
ε

)〉
is a polynomial of degree at most 2θ in z and z,

we can state : 〈
h̃ε, εθ

[
Φ1
z +Qε

] (z
ε

)〉
=

2θ∑
p+q=0

hεpqε
2θ−p−qzpzq.

Together (4.4.149) and (4.4.150) yield :

∀υ > 0

2θ∑
p+q=0

hεpqε
2θ−p−qzpzq = O

(
χ2θ+1−υ

)
.

Applying lemma A.3.4 then yields :

∀p, q ∀υ > 0 hεpq = O
(
ε1−υ) . (4.4.151)
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Step 4 : Computing h̃ε

We compute

εθΦ1
z

(z
ε

)
+ εθQε

(z
ε

)
= εθ

(
−
P 2
(
z
ε

)
2

+Bε
(z
ε

))1
i
0

+ εθ

(
Q2
(
z
ε

)
2

+Aε
(z
ε

)) 1
−i
0


+ εθ

(
P
(z
ε

)
Q
(z
ε

)
+ Cε

(z
ε

))0
0
1

 .

Hence

~Rεz(0)× εθ [Φ1
z +Qε]

(z
ε

)
= −2iυεεθ

[
Q2

2
+Aε

](z
ε

)0
0
1

+ iυεεθ[PQ+ Cε]
(z
ε

)1
i
0


+ Sεz(0)εθ

[
−P

2

2
+Bε

](z
ε

)1
i
0

− Sεz(0)εθ
[
Q2

2
+Aε

](z
ε

) 1
−i
0

 ,

and

Sεz(0)εθ [Φ1
z +Qε]

(z
ε

)
= Sεz(0)εθ

[
−P

2

2
+Bε

](z
ε

)1
i
0

+ Sεz(0)εθ
[
Q2

2
+Aε

](z
ε

) 1
−i
0


+ Sεz(0)εθ[PQ+ Cε]

(z
ε

)0
0
1

 .

Then

h̃ε = 2=

(Sεz(0)εθ[−P 2 + 2Bε]
(z
ε

)
+ iυεεθ[PQ+ Cε]

(z
ε

))1
i
0


+

(
Sεz(0)εθ[PQ+ Cε]

(z
ε

)
− iυεεθ[Q2 + 2Aε]

(z
ε

))0
0
1

 .

From this we deduce〈
h̃ε, εθ

[
Φ1
z +Qε

] (z
ε

)〉
=

(
Sεz(0)εθ[−P 2 + 2Bε]

(z
ε

)
+ iυεεθθ[PQ+ Cε]

(z
ε

))
εθ
[
−P 2 + 2Bε

] (z
ε

)
+

(
Sεz(0)εθ[PQ+ Cε]

(z
ε

)
− iυεεθ[Q2 + 2Aε]

(z
ε

))
εθ [PQ+ Cε]

(z
ε

)
= Sεz(0)ε2θ

[
|P |2

(
|P |2 + |Q|2

)
+ 2<

(
PQCε − 2P 2Bε

)
+ 4 |Bε|2 + |Cε|2

] (z
ε

)
+ iυεε2θ

[
−PQ

(
|P |2 + |Q|2

)
− P 2Cε + 2BεPQ− 2PQAε

−CεQ2 + 2BεCε − 2CεAε
] (z

ε

)
.

(4.4.152)
Studying (4.4.152) with (4.4.145), (4.4.148), (4.4.149), (4.4.150) and hypothesis 6 in mind,
we can write 〈

h̃ε, εθ
[
Φ1
z +Qε

] (z
ε

)〉
= −iυεε2θ−1z +O(r2), (4.4.153)
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which implies hε1,0 = −iυε, and in turn thanks to (4.4.151) :

∀s > 0 υε = O
(
ε1−s) . (4.4.154)

Then, (4.4.149), (4.4.150) and (4.4.152) give us :〈
h̃ε, εθ

[
Φ1
z +Qε

] (z
ε

)〉
= Sεz(0)ε2θ

[
|P |2

(
|P |2 + |Q|2

)
+ 2<

(
PQCε − 2P 2Bε

)
+ 4 |Bε|2 + |Cε|2

] (z
ε

)
+O

(
χ2θ+1−υ

)
.

(4.4.155)
A similar process on the remaining polynomial allows us to state

∀υ > 0 Sεz(0) = O
(
ε1−υ) . (4.4.156)

Step 5 : Conclusion

From (4.4.133), (4.4.154) and (4.4.155) we deduce :

∀υ > 0
∣∣∣~Rεz∣∣∣+ |Sεz | ≤ Cυχ1−υ,

∀p <∞
∥∥∥∇~Rεz∥∥∥

Lp(D)
+ ‖∇Sεz‖Lp(D) ≤ Cp.

(4.4.157)

Inequality (1.2.52) then yields :

∀υ > 0
∣∣∣Hεeλ

ε
∣∣∣ ≤ Cυχ1−υ. (4.4.158)

Letting (4.4.158) converge away from 0 gives, thanks to hypothesis 2, the following :

∀υ > 0
∣∣∣H0eλ

0
∣∣∣ ≤ Cυr1−υ.

However since Φ0 is assumed to have a branch point of order θ + 1 at 0, by de�nition,
eλ

0 ∼ Crθ, which means
∀υ > 0

∣∣H0
∣∣ ≤ Cυr1−θ−υ. (4.4.159)

By de�nition of α (see (4.3.82)), H0 ' r−α. Since α ∈ Z, (4.4.159) ensures :

α ≤ θ − 1. (4.4.160)

This concludes the proof of the desired result.

In the continuity of the previous proof we can improve on the convergence obtained in
theorem 4.3.1 :

Theorem 4.4.2. Let Φk : Σ → R3 be a sequence of Willmore immersions satisfying the
hypotheses of theorem 3.2.2. Assume further that at each concentration point a simple
minimal bubble is blown. Then Φk → Φ0 C3,η for all η < 1.

Proof. As before we can reason locally, under hypotheses 1-7, and will continue from
(4.4.160). Injecting (4.4.157) into (4.4.135) ensures :

∀υ > 0 |∆Φε| ≤ Cυχθ+1−υ

∀p <∞
∥∥∥∥∇ (∆Φε)

χθ

∥∥∥∥
Lp(D)

≤ Cp.
(4.4.161)
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We can then compute

HεΦε
z =

Φε
zz̄ × Φε

z

i |Φε
z|

2 ,

∇ (HεΦε
z) =

∇ (Φε
zz̄)× Φε

z

i |Φε
z|

2 +
Φε
zz̄ ×∇ (Φε

z)

i |Φε
z|

2 − (〈∇Φε
z,Φz̄〉+ 〈Φz,∇Φz̄〉)

Φε
zz̄ × Φε

z

i |Φε
z|

4 .

(4.4.162)
Combining (4.3.127), (4.4.141) and (4.4.161) yields :

∀υ > 0

∥∥∥∥HεΦε
z

χ1−υ

∥∥∥∥
L∞(D)

≤ Cυ,

∀p <∞ ‖∇ (HεΦε
z)‖Lp(D) ≤ Cp.

(4.4.163)

Consequently, injecting (4.4.163) into (4.4.131) and applying Calderon-Zygmund yields

∀p <∞ ‖∇Sε‖W 2,p(D) +
∥∥∥∇~Rε∥∥∥

W 2,p(D)
+ ‖∇Φε‖W 3,p(D) ≤ C(C0). (4.4.164)

Which proves theorem 4.4.2 thanks to classical embeddings.

Remark 4.4.1. We can further our expansions to the next order. Indeed injecting
(4.4.163) and (4.4.157) into (4.4.131) yields

∀υ > 0

∥∥∥∥∆Sε

χ2−υ

∥∥∥∥
L∞(D)

+

∥∥∥∥∥∆~Rε

χ2−υ

∥∥∥∥∥
L∞(D)

≤ Cυ,

∀p <∞
∥∥∥∥∆∇Sε

χ

∥∥∥∥
Lp(D)

+

∥∥∥∥∥∆∇~Rε

χ

∥∥∥∥∥
Lp(D)

≤ Cp.

Applying corollary A.3.3 then yields

Sεz = Sεz(0) + sε1z + sε2z
2 + σε1,

~Rεz = ~Rεz(0) + ~rε1z + ~rε2z
2 + ~ρε1,

(4.4.165)

where the sεj and the ~rεj are uniformly bounded constants and σε1, ρ
ε
1 satisfy :

∀υ > 0

∣∣∣∣ σε1χ3−υ

∣∣∣∣+

∣∣∣∣∇σε1χ2−υ

∣∣∣∣+

∣∣∣∣∣ ~ρε1
χ3−υ

∣∣∣∣∣+

∣∣∣∣∣ ∇~ρε1χ2−υ

∣∣∣∣∣ ≤ Cυ,
∀p <∞

∥∥∥∥∇2σε1
χ

∥∥∥∥
Lp(D)

+

∥∥∥∥∥∇2 ~ρε1
χ

∥∥∥∥∥
Lp(D)

≤ Cp.
(4.4.166)

Setting σε0 = sε1z + sε2z
2 + σε1 and ~ρε0 = ~rε1z + ~rε2z

2 + ρε1 yields∣∣∣∣σε0χ
∣∣∣∣+ |∇σε0|+

∣∣∣∣~ρε0χ
∣∣∣∣+ |∇~ρε0| ≤ C,

∀p <∞
∥∥ ∇2σε0

∥∥
Lp(D)

+
∥∥∇2~ρε0

∥∥
Lp(D)

≤ Cp.
(4.4.167)

We can then do all the reasonings from (4.4.135) to (4.4.163) for better controls :∣∣∣∣HεΦε
z

χ

∣∣∣∣+

∣∣∣∣Sεzχ
∣∣∣∣+

∣∣∣∣∣ ~Rεzχ
∣∣∣∣∣ ≤ C. (4.4.168)
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Injecting this added regularity into the third equation of (4.4.131) ensures :∣∣∣∣∆Φε

χ3

∣∣∣∣+

∣∣∣∣∆∇Φ

χ2

∣∣∣∣ ≤ C
∀p <∞

∥∥∥∥∆∇2Φ

χ

∥∥∥∥
Lp(D)

≤ Cp.
(4.4.169)

With another application of corollary A.3.3 we can expand Φε
z in the following manner :

Φε
z = εθ

[
Φ1
z

(z
ε

)
+Qε

(z
ε

)]
+ ϕε0, (4.4.170)

with
|ϕε0|
χθ+1

+
|∇ϕε0|
χθ

+

∣∣∇2ϕε0
∣∣

χθ−1
≤ C(C0)

∀p <∞
∥∥∥∥∇3ϕε0
χθ−2

∥∥∥∥
Lp(D)

≤ Cp(C0).

(4.4.171)

Remark 4.4.2. With subsection 2.7, theorem G implies that the Bryant's quartic of the
limit immersion is holomorphic across concentration points where a simple minimal bubble
is blown. Consequently it seems to suggest that surfaces involved in minimal bubbling,
tend themselves to be inversions of minimal surfaces.

4.4.2 An exploration of consequences : proof of theorem H

First we will put aside the �rst bubbling case imagined by P. Laurain and T. Rivière
in [LR18a] :

Corollary 4.4.1. The convergence of Willmore immersions cannot lead to a minimal
bubble and an inverted Chen-Gackstatter torus.

Proof. Applying theorem G in light of proposition 2.4.8 concludes the proof.

We conclude with a slight improvement of the threshold for compactness :

Theorem H. Let Σ be a closed surface of genus 1 and Φk : Σ → R3 a sequence of
Willmore immersions such that the induced metric remains in a compact set of the moduli
space and

lim sup
k→∞

W (Φk) ≤ 12π.

Then there exists a di�eomorphism ψk of Σ and a conformal transformation Θk of R3∪{∞},
such that Θk ◦Φk ◦ψk converges up to a subsequence toward a smooth Willmore immersion
Φ∞ : Σ→ R3 in C∞ (Σ).

Proof. We only have to exclude the case

lim sup
k→∞

W (Φk) = 12π. (4.4.172)

Consider then Φk satisfying (4.4.172) and converging toward Φ∞ away from a �nite number
of concentration points. We consider a concentration point and reason on its multiplicity
θ0 +1. If θ0 ≥ 1, using theorem D, the bubble glued on its concentration point is branched,
with the same multiplicity. Using proposition C.1 in [LR18a] ensures that the multiplicity
is odd, and then θ0 ≥ 2. Given P. Li and S. Yau's inequality (see [LY82]) and (4.4.172),
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Φ∞ has a Willmore energy of exactly 12π meaning that the branch point is of multiplicity
exactly 3, that the bubbles have no Willmore energy (i.e. they are minimal and more
accurately Enneper). Using formulas from theorem 1.2.6, Φ∞ is the inverse of a minimal
torus of total curvature −8π. The main result of [L�92] ensures that this minimal torus is
a Chen-Gackstatter immersion. We are then in the case excluded by corollary 4.4.1.

If the concentration point is not branched, we refer the reader to the concluding remark
of P. Laurain and T. Rivière's [LR18a] (found just before the appendix) which states that
the energy is then at least 2π2 + 12π, which concludes the proof.

There are di�erent prospects to improve on this result. First is to extend it to surfaces
of arbitrary geni. For any genus g, the 12π con�guration is going to be a Willmore surface
with a branch point of multiplicity 3 and an Enneper bubble. Applying theorem 1.2.6 we
know the limit surface is the inversion of a minimal surface with a single end of multiplicity
3, and thus, thanks to theorem 1.2.3, of critical total curvature :∫

Σ
Kdvolg = −4π (1 + g) .

Since [L�92] states that the Chen-Gackstatter surface is the only torus of critical total
curvature, we have the theorem. No such result is known for higher genus, even though
it seems reasonable, and is conjectured, that Chen-Gackstatter surfaces of higher genus
are the only examples, or that at least minimal surfaces of critical total curvature have an
Enneper end (which is actually the �rst step in [L�92]). Extension to higher genus is thus
a classi�cation of minimal surfaces issue.

The other way to deepen our result is to �nd the exact threshold for tori. Here we
see two possibilities : either all the involved surfaces are conformally minimal, and in that
case the threshold is immediately pushed back at 16π or higher, or they are not and in
which case some degeneracies are possible. One could then imagine a torus of Willmore
energy 12π + δ and a branch point of multiplicity 3 with low second residue on which a
simple Enneper bubble is blown. Given the current state of knowledge, it however seems
somewhat unlikely. In both cases one should �rst try to classify Willmore tori in Bryant's
fashion. The best available tool would then be F. Hélein's Weierstrass representation for
Willmore surfaces presented in [Hél98]. However this representation was reached thanks
to DPW methods, and is in not very explicit, limiting the interpretation possibilities.
Understanding this representation, or �nding an explicit equivalent, seems key to us, in
�nding exactly where the compactness threshold lies for sequences of immersed Willmore
tori.

4.4.3 Adjustments on the conformal Gauss map

To obtain hypotheses 1-7, we have used translations, rotations and dilations to adjust
the immersions. There remains one family of conformal transformations we can use for
adjustments : the inversions. In fact, with inversions, we can act on the mean curvature,
which may allow us to eliminate the problematic terms in the expansion (4.4.165). However
as we we will see this is only possible if the mean curvature at the point does not degenerate
too much. This section thus focuses on the proof of the following result.

Theorem 4.4.3. Let Φε be a sequence of Willmore conformal immersions satisfying hy-
potheses 1-7. If

Hε(0) = O(1),

εHε
z (0) = O(1),

(4.4.173)
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then up to in�nitesimal conformal adjustments we can assume that Φε satis�es

8.
Hε(0) = 0,

Hε
z (0) = 0.

We will write the proof using the Conformal Gauss map formalism.

Proof. We focus on the conformal Gauss map Ỹ ε at 0 of Φ̃ε. Hypotheses 3 and 6 ensure

Ỹ ε(0) = H̃ε(0)

 Φ̃ε

|Φ̃ε|2−1
2

|Φ̃ε|2−1
2

 (0) +


~̃n
ε〈

~̃n
ε
, Φ̃ε
〉〈

~̃n
ε
, Φ̃ε
〉
 (0)

= CεHε(0)


0
0
0
−1

2
1
2

+


0
0
−1
0
0

→ Y 1(0) =

 0
0
−1

 ,

(4.4.174)

Ỹ ε
z (0) = H̃ε

z (0)

 Φ̃ε

|Φ̃ε|2−1
2

|Φ̃ε|2−1
2

− Ω̃ε(0)e−2λ̃ε(0)


Φ̃ε
z(0)〈

Φ̃ε
z(0), Φ̃ε(0)

〉〈
Φ̃ε
z(0), Φ̃ε(0)

〉


= εCεHε
z (0)


0
0
0
−1

2
1
2

+


1
−i
0
0
0

→ Y 1
z (0) =


1
−i
0
0
0

 ,

(4.4.175)

e
Φ̃ε

(0) :=

 Φ̃ε

|Φ̃ε|2−1
2

|Φ̃ε|2−1
2

 =


1
−i
0
0
0

 . (4.4.176)

Then if we denote f̃ ε =

(
Ỹ ε, Ỹx√

〈Ỹx,Ỹx〉
,

Ỹy√
〈Ỹy ,Ỹy〉

, e
Φ̃ε

)
and f1 =

(
Y 1, Y 1

x√
〈 Y 1

x ,Y
1
x 〉
,

Y 1
y√

〈Y 1
y ,Y

1
y 〉
, eΦ1

)
,

we have
f̃ ε(0)→ f1(0).

Further since f̃ ε(0) and f1(0) are two orthonormal families for the Minkowski product,
there exists M̃ ε ∈ SO(4, 1) such that

M̃ εf̃ ε = f1,

M̃ ε → Id.
(4.4.177)

Quick computations ensure that

M̃ ε =

 Id −ν̃ε −ν̃ε

(ν̃ε)T 1− |ν̃
ε|2
2 − |ν̃

ε|2
2

− (ν̃ε)T |ν̃ε|2
2 1 + |ν̃ε|2

2

 , (4.4.178)
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with νε =

(1
4εC

ε∇Hε(0)

−Cε H
ε(0)
2

)
. Thanks to proposition 2.3.4, M̃ εỸ ε is the conformal Gauss

map of Ψ̃ε := ϕε ◦ Φ̃ε, where ϕε is a conformal di�eomorphism of R3 ∪∞ corresponding
to M̃ ε given by :

ϕε(x) = M̃ ε.x =
y�

y5 − y4

where

y = M̃ ε

 x
|x|2−1

2
|x|2+1

2

 =

y�y4

y5

 .

Hence we have an explicit formula for Ψ̃ε

Ψ̃ε(z) =
Φ̃ε −

∣∣∣Φ̃ε
∣∣∣2 ν̃ε

1− 2
〈
ν̃ε, Φ̃ε

〉
+ |Φ̃ε|2 |ν̃ε|2

, (4.4.179)

which implies that

Ψ̃ε
z(0) = Φ̃ε

z(0) =
1

2

1
i
0

 . (4.4.180)

Further since e
Ψ̃ε

(0) = M̃ εe
Φ̃ε

(0) = e1(0), Ψ̃ε(0) = Φ̃ε(0). Similarly Y
Ψ̃ε

(0) = M̃ εỸ ε(0) =

Y 1(0) and
(
Y

Ψ̃ε

)
z

(0) = M̃ εỸ ε
z (0) = Y 1

z (0) implies

H
Ψ̃ε

(0) = 0,(
H

Ψ̃ε

)
z

(0) = 0,

Ω
Ψ̃ε

(0) = −2.

(4.4.181)

We introduce

Ψε := CεΨ̃ε
(z
ε

)
= CεM̃ ε.

(
1

Cε
Φε

)
= M ε.Φε,

with M ε = DCεM̃
εD 1

Cε
, where

Dλ =

Id 0 0

0 λ
2 + 1

2λ
λ
2 −

1
2λ

0 λ
2 −

1
2λ

λ
2 + 1

2λ


is the matrix of the dilation of factor λ in SO(4, 1) (see (2.2.5)). Ψε is a sequence of
immersions satisfying hypotheses 4, 3, 5 , 6, 7 and

HΨε(0) = 0,

(HΨε)z (0) = 0.
(4.4.182)

IfM ε converges in SO(4, 1) toward a matrix which is not the representation of the inversion
at the origin, Ψε can be proven to satisfy hypothesis 1 and 2. To that end we can compute :

M ε =

 Id −νε −νε

(νε)T 1− |ν
ε|2
2 − |ν

ε|2
2

− (νε)T |νε|2
2 1 + |νε|2

2

 , (4.4.183)
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with

νε =

(
1
4ε∇H

ε(0)
−1

2H
ε(0)

)
. (4.4.184)

Since νε = O(1), then up to extracting a subsequence νε → ν ∈ R3. Since

Ψε =
Φε − |Φε|2 νε

1− 2 〈νε,Φε〉+ |Φε|2 |νε|2
,

then Ψε converges toward

Ψ0 =
Φ0 −

∣∣Φ0
∣∣2 ν

1− 2 〈ν,Φ0〉+ |Φ0|2 |ν|2
.

The application x→ x−|x|2ν
1−2〈ν,x〉+|x|2|ν|2 is a conformal transform bounded away from ν

|ν|2 6= 0

which is sent to ∞. Up to restricting the domain of study we can then assume that Ψε

satis�es 1 and 2.
On the other hand, if νε →∞, the conformal transform given by M ε degenerates and

Ψε → 0.

These considerations conclude the proof of the theorem, given expression (4.4.184) of νε.

Remark 4.4.3. Requiring (4.4.173) to properly adjust the mean curvature stems from the
lack of compactness and commutativity of the invariance group in our problem. Indeed that
may allow DCεM̃

εD 1
Cε

to degenerate even though M̃ ε converges toward the identity. In
other words, while it is possible to adjust the mean curvature of the blown-up immersions,
carrying this back to the immersion it is not automatic due to the non-compact rescaling
between the two.

Following is an analysis of the gluing of an Enneper bubble when the mean curvature
has been adjusted that way. It is meant as an illustration of how the lackluster properties of
the conformal group (non-commutativity, non-compactness) allow for the bubbling example
presented in subsection 3.3.

4.4.4 Speci�c case of an Enneper bubble

In this section we show how under a small control on the concentration point, one �nds
higher regularity for the surface receiving the minimal bubbling. While the computations
necessary for the proof may be obscure and di�cult to follow, drawing a parallel with the
CMC case may clarify the phenomena. In [Lau12b] P. Laurain treated the case of CMC
bubbling for spheres, by using the invariance group to erase all the solutions of the linearized
equation. This is possible because of the properties of the CMC invariance group (the
isometries). In the Willmore case, and more speci�cally in the Enneper simple bubbling
con�guration, in order to eliminate the solutions of the linearized equation, one must draw
upon all of the conformal group, which is non-compact and non-commutative, meaning that
we need additional pointwise controls to do these adjustments both at the microscopic (on
the bubble) and macroscopic (on the surface) scale. If we enjoy these pointwise controls we
experience a regularity jump corresponding to the main result of [Lau12b] (we do not, even
in this case, eliminate Enneper bubbling due to the much greater �exibility of Willmore
surfaces compared to CMC surfaces). The bubbling example given in section 3.3 lies just
before this regularity jump, and makes clear that the lackluster topological properties of
Conf(R3) do engender some non-compactness for Willmore immersions.
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Theorem 4.4.4. Let Σ be a compact Riemann surface of genus less than 1, and Φk :
Σ → R3 a sequence of Willmore immersions of uniformly bounded total curvature and
such that the conformal class of the induced metric is in a compact of the moduli space.
We further assume that Φk has only a single concentration point p on which a simple
Enneper bubble is blown, and that Φk converges smoothly away from p toward a branched
immersion Φ0 : Σ→ R3. Then either

∇Hk(p)

‖∇~nk‖L∞(Σ)

→∞, (4.4.185)

or Φ0 is the inversion of a branched minimal immersion, with second residue α ≤ −2.

Proof. As has been readily explained, looking at Φk in good conformal charts, and up to
minor adjustments allows us to consider Φε : D→ R3 satisfying hypotheses 1-7. Further,
if (4.4.185) does not stand, we can apply theorem 4.4.3 and �nd a converging sequence
of conformal transformations of R3 ∪ {∞}, Θk, such that, while Ψk := Θk ◦ Φk may have
ends, it is a uniformly bounded smooth immersion around the concentration point p, which
satis�es hypothesis 8. Additionally, Ψk converges smoothly toward a branched Willmore
immersion Ψ0 with a single branch point at p and possibly a �nite number of simple planar
ends. When considering the immersion in local charts we will still denote it Φε, to avoid
multiplying notations. It then satis�es 1- 8. We follow from the proof of theorem 4.4.1,
start with its conclusions and use the same formalism.

We are thus considering case where Φ1 = E = <

∫ 1

2

 1− z2

i
(
1 + z2

)
2z

, i.e. in the

language of lemma 4.3.1 : Q = 1, P = z. Then m = 2, and (4.3.126), (4.3.127), (4.4.170),
(4.4.171) (4.4.145) and (4.4.147) yield the following :

� The conformal factor satis�es

λε = ln
(
ε2 + r2

)
+ lε, (4.4.186)

with lε such that
‖lε‖L∞(D) ≤ C(C0, R1).

Consequently
χ2

C(C0, R1)
≤ eλε ≤ C(C0, R1)χ2. (4.4.187)

� The immersion is expanded as

Φε
z = ε2

[
Ez

(z
ε

)
+Qε

(z
ε

)]
+ ϕε0, (4.4.188)

with
|ϕε0|
χ3

+
|∇ϕε0|
χ2

+

∣∣∇2ϕε0
∣∣

χ
≤ C(C0),

∀p <∞
∥∥∇3ϕε0

∥∥
Lp(D)

≤ Cp(C0),

(4.4.189)

and

Qε = Aε

1
i
0

+Bε

 1
−i
0

+ Cε

0
0
1

 , (4.4.190)
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where
Aε = aε1z + aε2z

2

Bε = bε1z + bε2z
2

Cε = cεz2,

(4.4.191)

which also satisfy

ε4Bε
(z
ε

)
−ε2z2Aε

(z
ε

)
+ε3zCε

(z
ε

)
+ε4Aε

(z
ε

)
Bε
(z
ε

)
+ε4

(
Cε
(
z
ε

))2
2

= 0. (4.4.192)

cε = 0 :

A direct consequence of (4.4.192) is

Bε = 0,

Aε = cεz +
(cε)2

2
z2.

(4.4.193)

The immediate aim here is to use the only initial condition that we have yet to exploit
(i.e.

(
|Ωε| e−λε

)
z

(0) = 0 ) and �nd cε = 0. We compute(
|Ωε|2 e−2λε

)
z

= Ωε
zΩ

εe−2λε + ΩεΩε
z̄e
−2λε − 2λεz |Ωε|2 e−2λε .

Since Ωε = 2 〈Φε
zz, ~n

ε〉,

Ωε
z = 2 〈Φε

zzz, ~n
ε〉 − 2

〈
Φε
zz,Ω

εe−2λεΦε
z̄

〉
= 2 〈Φε

zzz, ~n
ε〉 − 2λεzΩ

ε.

Similarly
Ωε
z̄ = 2 〈Φε

zz̄z, ~n
ε〉 − 2 〈Φε

zz, H
εΦε

z̄〉
= 2 〈Φε

zz̄z, ~n
ε〉 − 2λεzH

εe2λε .

Hence(
|Ωε|2 e−2λε

)
z

= 2 〈Φε
zzz, ~n

ε〉Ωεe−2λε + 2 〈Φε
zz̄z̄, ~n

ε〉Ωεe−2λε − 4λεz |Ωε|2 e−2λε − 2λεz̄H
εΩε.

(4.4.194)
From (4.4.188) we �nd

|Φε
z|

2 =

(
ε2 + r2

)2
2

+ 2<
(〈

Qε, ε2Ez

(z
ε

)〉)
+ ψε

=

(
ε2 + r2

)2
2

+ 2<
(
ε4Aε

(z
ε

)
+ ε3z̄Cε

(z
ε

))
+ ψε

=

(
ε2 + r2

)2
2

+ 2<

(
ε3zcε + εz2z̄cε + ε2z2 (cε)2

2

)
+ ψε,

(4.4.195)

where ψε satis�es
|ψε|
χ5

+
|∇ψε|
χ4

+

∣∣∇2ψε
∣∣

χ3
≤ C(C0),

∀p <∞
∥∥∥∥∇3ψε

χ2

∥∥∥∥
Lp(D)

≤ Cp(C0).

(4.4.196)
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Since |Φε
z|

2 = e2λ
ε

2 , we deduce :

λεz(0)e2λε(0) = ε3cε +O
(
ε4
)
.

By hypothesis 7, eλ
ε
(0) = ε2, which yields

λεz(0) =
cε

ε
+O(1). (4.4.197)

Then, thanks once more to our hypothesis 7(
4λεz |Ωε|2 e−2λε

)
(0) =

16cε

ε3
+O

(
1

ε2

)
. (4.4.198)

Thanks to (4.4.168),

Hε(0) = O

(
1

ε

)
.

This implies

(2λεz̄Ω
εHε) (0) = O

(
1

ε

)
. (4.4.199)

Further, thanks to (4.4.169), ∆∇Φε(0) = O
(
ε2
)
, and hence(

2 〈Φε
zz̄z̄, ~n

ε〉Ωεe−2λε
)

(0) = O

(
1

ε

)
. (4.4.200)

To conclude

(
|Ωε|2 e−2λε

)
z

(0) =
4

ε3

〈
Φε
zzz(0),

0
0
1

〉− 16
cε

ε3
+O

(
1

ε3

)

= −8
cε

ε3
+O

(
1

ε3

)
= 0.

Hence
cε = O (ε) , (4.4.201)

which allows us to take cε = 0 (see remark A.3.3). Henceforth we will use the following
expansion for Φε :

Φε
z = ε2Ez

(z
ε

)
+ ϕε0, (4.4.202)

where ϕε0 satis�es (4.4.189). The expansion (4.4.202) ensures

|Φε
z|

2 =

(
ε2 + r2

)2
2

+ Ψε, (4.4.203)

with
|Ψε|
χ5

+
|∇Ψε|
χ4

+

∣∣∇2Ψε
∣∣

χ3
≤ C,

∀p <∞
∥∥∥∥∇3Ψε

χ2

∥∥∥∥
Lp(D)

≤ Cp.
(4.4.204)

Similarly
~nε = ω

(z
ε

)
+ νε, (4.4.205)
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where ω (z) = 1
1+r2

 z + z̄
i (z̄ − z)
r2 − 1

 is the Gauss map of E, and νε satis�es :

|νε|
χ

+ χ |∇νε|+ χ2
∣∣∇2νε

∣∣ ≤ C,
∀p <∞

∥∥χ3∇3νε
∥∥
Lp(D)

≤ Cp.
(4.4.206)

Expansion of Hε :

Starting from (4.4.165) we expand

Sεz = Sεz(0) + sε1z + σε2,

~Rεz = ~Rεz(0) + ~rε1z + ~ρε2,
(4.4.207)

with
σε2 = sε2z

2 + σε1,

ρε2 = ~rε2z
2 + ~ρε1,

which consequently satisfy∣∣∣∣σε2χ2

∣∣∣∣+

∣∣∣∣∇σε2χ
∣∣∣∣+

∣∣∣∣∣ ~ρε2χ2

∣∣∣∣∣+

∣∣∣∣∣∇~ρε2χ
∣∣∣∣∣ ≤ C,

∀p <∞
∥∥∇2σε2

∥∥
Lp(D)

+
∥∥∥∇2 ~ρε2

∥∥∥
Lp(D)

≤ Cp.
(4.4.208)

Given (4.4.207),
Sεzz = sε1 + σε2,z,

~Rεzz = ~rε1 + ~ρε2,z,

and thus, thanks to (4.4.208),
Sεzz(0) = sε1 +O (ε) ,

~Rεzz(0) = ~rε1 +O (ε) .

We can then, up to modifying σε2 and ~ρε2 without impacting (4.4.208) assume :

Sεz = Sεz(0) + Sεzz(0)z + σε2,

~Rεz = ~Rεz(0) + ~Rεzz(0)z + ~ρε2.
(4.4.209)

From (1.2.53), we �nd

~Rεzz = 2 ((Hε
z + iV ε

z ) + 2λεz (Hε + iV ε)) Φε
z + (Hε + iV ε) Ωε~nε

− iSεzz~nε + iSεzHΦε
z + iSεzΩ

εe−2λεΦε
z̄.

(4.4.210)

Further, since

i~Lεz = 2
(
Hε
z~n

ε +HεΩεe−2λεΦε
z̄

)
, (4.4.211)

we can compute

Sεzz =
〈
~Lεz,Φ

ε
z

〉
+

〈
~Lε, 2λεzΦ

ε
z +

Ω

2
~nε
〉

= −iHεΩε + 2λεzS
ε
z + ΩεV ε.

(4.4.212)
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Similarly,

V ε
z =

1

2

〈
~Lεz, ~n

ε
〉
− Hε

2
Sεz −

Ωεe−2λε

2
Sεz̄

= −iHε
z −

Hε

2
Sεz −

Ωεe−2λε

2
Sεz̄ .

(4.4.213)

Injecting (4.4.212) and (4.4.213) into (4.4.210) yields

~Rεzz =
(

4Hε
z − iΩεe−2λεSεz̄ + 4λεz [Hε + iV ε]

)
Φε
z + iSεzΩ

εe−2λεΦε
z̄ +−2iλεzS

ε
z~n

ε. (4.4.214)

The expansion (4.4.203) ensures

λεze
2λε = 2z̄

(
ε2 + r2

)
+ Ψε

z,

which yields
λεz(0) = O(1). (4.4.215)

With hypothesis 5, hypothesis 7, (4.4.168) and (4.4.215), (4.4.210) implies :

~Rεzz(0) =

(
2ε2Hε

z (0) +
iSεz̄(0)

ε

)1
i
0

− iSεz(0)

ε

 1
−i
0

+O(ε). (4.4.216)

Similarly,
Sεzz(0) = 2iε (Hε(0) + iV ε(0)) +O(ε). (4.4.217)

Denoting υε = ε (Hε(0) + iV ε(0)), the following expansions stand :

Sεz = Sεz(0) + 2iυεz + σ̃ε2,

~Rεz = ευε

1
i
0

+ iSεz(0)

0
0
1

+

(2ε2Hε
z (0) +

iSεz̄(0)

ε

)1
i
0

− iSεz(0)

ε

 1
−i
0

 z + ρ̃ε2.

(4.4.218)

We can then exploit the relation Sεz = i
〈
~nε, ~Rεz

〉
, using (4.4.205) and (4.4.218) :

Sεz(0) + 2iυεz = i

〈
ω
(z
ε

)
, ευε

1
i
0

+ iSεz(0)

0
0
1


+

(2ε2Hε
z (0) +

iSεz̄(0)

ε

)1
i
0

− iSεz(0)

ε

 1
−i
0

 z〉+O
(
χ2
)

=
2i

ε2 + r2

(
εz

(
ευε +

(
2ε2Hε

z (0) +
iSεz̄(0)

ε

)
z

)
−zz̄iSεz(0) +

r2 − ε2

2
iSεz(0)

)
+O(χ2).

This implies

ε2Sεz(0) + 2iε2zυε + zz̄Sεz(0) + 2iz2z̄υε = i
(
−ε2iSεz(0) + 2ε2υεz +

(
4ε3Hε

z (0) + i2Sεz̄(0)
)
z2

−zz̄iSε(0)) +O
(
χ4
)
,

which, in turn, ensures :(
4ε3Hε

z (0) + 2iSεz̄(0)
)
z2 − 2z2z̄υε = O

(
χ4
)
. (4.4.219)
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Applying lemma A.3.4 to (4.4.219) yields

υε = O(ε),

2ε3Hε
z (0) + iSεz̄(0) = O(ε).

(4.4.220)

A consequence of (4.4.220) is that

Hε(0) = O(1). (4.4.221)

We can then modify (4.4.218) into

Sεz = −2iε3Hε
z̄ (0) + σε3,

~Rεz = 2ε3Hε
z̄ (0)

0
0
1

− 2ε2Hε
z̄ (0)z

 1
−i
0

+ ρε3,
(4.4.222)

with σε3 and ρε3 satisfying (4.4.208). We can then compute with (4.4.202) and (4.4.222) :

~Rεz × Φε
z̄ + SεzΦ

ε
z̄ = iε2Hε

z̄ (0)

2εz̄2

1
i
0

+ 2εzz̄

 1
−i
0

− 2
[
ε2z̄ − zz̄2

]0
0
1

+ κε

= 2iε2Hε
z̄ (0)z̄

(
ε2 + r2

)
ω
(z
ε

)
+ κε,

where κε satis�es ∣∣∣∣κεχ4

∣∣∣∣+

∣∣∣∣∇κεχ3

∣∣∣∣ ≤ C,
∀p <∞

∥∥∥∥∇2κε

χ2

∥∥∥∥
Lp(D)

≤ Cp.
(4.4.223)

The third equation of (4.4.131) then yields

∆Φε = 2ε2 (Hε
z (0)z +Hε

z̄ (0)z̄)
(
ε2 + r2

)
ωε
(z
ε

)
+ = (κε) (4.4.224)

We can conclude using ∆Φε = 2e2λεHε~nε and expansions (4.4.203) and (4.4.205), �nally
reaching

Hε =
ε2Hε

z (0)z + ε2Hε
z̄ (0)z̄

ε2 + r2
+ ζε, (4.4.225)

where ζε satis�es
|ζε|+ |χ∇ζε| ≤ C,
∀p <∞

∥∥χ2∇2ζε
∥∥
Lp(D)

≤ Cp.
(4.4.226)

Let us notice that the expression obtained for Hε corresponds to a solution of the linearized
Willmore equation for an Enneper bubble. Indeed the Willmore equation ∆H+

∣∣Å∣∣2H = 0
linearizes as

∆h+ 2

(
2ε

ε2 + r2

)2

h = 0.

Rescaling at scale ε, this is exactly the Jacobi equation on the sphere, and the �rst term
on the expansion of Hε(ε.) is a solution. In the following we write all the possible solutions
of the equation.

Solutions of the linearized equation :
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Proposition 4.4.5. Let hε such that

hεzz̄ +
2ε2

(ε2 + r2)2h
ε = O

(
χdegP ε−3

)
. (4.4.227)

with
(
ε2 + r2

)2
hε ∈ CdegP ε+2[z, z̄]. This means

hε =

degP ε+2∑
p+q=0

hεp,qz
pz̄q

(ε2 + r2)2 .

Then

hε =

degP ε−2∑
q=0

V ε
q z̄

q (q − 1)r2 + (q + 1)ε2

ε2 + r2

+

degP ε−2∑
q=0

W ε
q z

q (q − 1)r2 + (q + 1)ε2

ε2 + r2
+O

(
χdegP ε2−1

)
.

(4.4.228)

Proof. We can compute

hεzz̄ =

degP ε+2∑
p+q=0

hεp,q
(pq − 2p− 2q + 4) zp+1z̄q+1 + 2ε2(pq − p− q − 1)zpz̄q + ε4pqzp−1z̄q−1

(ε2 + r2)4 .

This yields :

LE = hεzz̄ +
2ε2

(ε2 + r2)2h
ε

=

degP ε+4∑
p+q=0

hεp−1,q−1(p− 3)(q − 3) + 2ε2hεpq(pq − p− q) + ε4hεp+1,q+1(p+ 1)(q + 1)

(ε2 + r2)4 zpz̄q.

Consequently

degP ε2 +4∑
p+q=0

(
hεp−1,q−1(p− 3)(q − 3) + 2ε2hεpq(pq − p− q) + ε4hεp+1,q+1(p+ 1)(q + 1)

)
zpz̄q = O

(
χdegP ε+5

)
.

Applying lemma A.3.4 then yields for all p+ q ≤ degP ε + 4 :

hεp−1,q−1(p− 3)(q − 3) + 2ε2hεpq(pq − p− q) + ε4hεp+1,q+1(p+ 1)(q + 1) = O(εdegP ε+5−p−q).
(4.4.229)

A quick induction ensures that for all p, q ≥ 3,

hεp,q = O(εdegP ε+3−p−q).

Given q ≥ 2, considering (4.4.229) with p = 2, q, yields :

2ε2(q − 2)hε2,q = (q − 3)h1,q−1 +O
(
εdegP ε+3−q

)
, (4.4.230)

while with p = 1, q − 1, it ensures :

2ε4qhε2,q = 2ε2h1,q−1 + 2(q − 4)hε0,q−2 +O
(
εdegP ε+5−q

)
. (4.4.231)
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Combining (4.4.230) and (4.4.231) yields :

hε1,q−1 =
2ε2(q − 2)

q − 3
hε2,q +O

(
εdegP ε+3−q

)
,

hε0,q−2 =
ε4(q − 1)

q − 3
hε2,q +O

(
εdegP ε+5−q

)
.

(4.4.232)

This gives

hε2,qz
2z̄q + hε1,q−1zz̄

q−1 + hε0,q−2z̄
q−2 =

hε2,q z̄
q−2

q − 3

(
(q − 3)z2z̄2 + 2ε2(q − 2)zz̄ + ε4(q − 1)

)
+O

(
χdegP ε+3

)
,

=
hε2,q z̄

q−2

q − 3

(
ε2 + r2

) (
(q − 3)r2 + (q − 1)ε2

)
+O

(
χdegP ε+3

)
.

(4.4.233)
Working similarly with the hεq,2 yields :

hεq,2z
q z̄2 + hεq−1,1z

q−1z̄ + hεq−2,0z
q−2 =

hεq,2z
q−2

q − 3

(
(q − 3)z2z̄2 + 2ε2(q − 2)zz̄ + ε4(q − 1)

)
+O

(
χdegP ε+3

)
,

=
hεq,2z

q−2

q − 3

(
ε2 + r2

) (
(q − 3)r2 + (q − 1)ε2

)
+O

(
χdegP ε+3

)
.

(4.4.234)
Hence we �nally can write :

hε =

degP ε∑
q=2

hε2,q z̄
q−2

q − 3

(q − 3)r2 + (q − 1)ε2

ε2 + r2
+

degP ε∑
q=2

hεq,2z
q−2

q − 3

(q − 3)r2 + (q − 1)ε2

ε2 + r2
+O

(
χdegP ε−1

)
,

which we reframe as :

hε =

degP ε−2∑
q=0

V ε
q z̄

q (q − 1)r2 + (q + 1)ε2

ε2 + r2
+

degP ε−2∑
q=0

W ε
q z

q (q − 1)r2 + (q + 1)ε2

ε2 + r2
+O

(
χdegP ε−1

)
.

This is the desired result which concludes the proof.

This is in accordance with the expansion (4.4.225) obtained for Hε. Without adding
any hypothesis on the mean curvature at 0, there is no hope for any better controls.
However, with the assumption (4.4.173), there will be a jump in regularity.

Under good initial conditions :

Let Φε : D → R3 be a sequence of Willmore conformal immersions satisfying hypotheses
1 - 8. Then (4.4.223), (4.4.224), (4.4.225) and (4.4.226) imply :

Sεz = σ̃ε2,

~Rεz = ρ̃ε2,

HεΦε
z = θε,

(4.4.235)



176 Chapter 4. A study of simple minimal bubbling

where θε satis�es the same estimates as σ̃ε2 and ρ̃ε2, detailed in (4.4.208). Proceeding as in
(4.4.165) -(4.4.209) allows us to decompose :

Sεz = P ε1 + σε3
~Rεz = P ε2 + ~ρε3,

(4.4.236)

where P ε1 , P
ε
2 ∈ C2 [X], and

|σε3|
χdegP ε1 +1

+
|∇σε3|
χdegP ε1

+
|∇2σε3|
χdegP ε1−1

≤ C,

|~ρε3|
χdegP ε2 +1

+
|∇~ρε3|
χdegP ε2

+
|∇2~ρε3|
χdegP ε2−1

≤ C,

∀p <∞
∥∥∥∥ ∇3σε3
χdegP ε1−2

∥∥∥∥
Lp(D)

+

∥∥∥∥ ∇3~ρε3
χdegP ε2−2

∥∥∥∥
Lp(D)

≤ Cp.

(4.4.237)

Here we have written (4.4.237) depending on degP εi as it will be more convenient for later
applications. For the �rst pass in this loop degP εi = 2. The third equation of (4.4.131)
yields

∆Φε = =
(
P ε1 ε

2E
(z
ε

)
+ P ε2 × ε2E

(z
ε

))
+ ϕε3,

and
|ϕε3|

χdegP ε2 +3
+
|∇ϕε3|

χdegP ε2 +2
+
|∇2ϕε3|
χdegP ε2 +1

≤ C,

∀p <∞
∥∥∥∥ ∇3ϕε3
χdegP ε2

∥∥∥∥
Lp(D)

≤ Cp.
(4.4.238)

Then since Hε = 〈∆Φε,~nε〉
|∇Φε|2 , we �nd

Hε = hε +O
(
χdegP ε2−1

)
, (4.4.239)

where

hε = 2i

〈
P ε2 , ε

2Ez
(
z
ε

)〉
−
〈
P ε2 , ε

2Ez
(
z
ε

)〉
(ε2 + r2)2 , (4.4.240)

and hε is a solution of (4.4.227), with degP ε = degP ε2 . The conclusion of proposition 4.4.5
then stands. According to 8, hε(0) = hεz(0) = 0.

Consequently, as long as degP ε2 ≤ 3, hε = O
(
χdegP ε2−1

)
, which implies thanks to

Hε = O
(
χdegP ε2−1

)
. (4.4.241)

Injecting (4.4.236) and (4.4.241) into (4.4.131) ensure

∆Sε = O
(
χdegP ε2 +3

)
,

∆~Rε = O
(
χdegP ε2 +3

)
.

(4.4.242)

We can thus go through the process from (4.4.235) to (4.4.227) once more until we reach
degP ε2 = 4. The �nal estimate is then :

Hε = O
(
χ2
)
,

∇Hε = O (χ) .
(4.4.243)
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Local consequences on the limit surface :

Letting ε→ 0 away from 0 in (4.4.243) yields the following estimates on the mean curvature
H0 of Φ0 :

H0 = O(r2)

∇H0 = O(r).
(4.4.244)

Going back to (4.3.81) and (4.3.82), (4.4.244) is tantamount to

α ≤ −2. (4.4.245)

Injecting (4.4.245) into (2.4.38) then ensures that

Q0 = O
(
r2
)
. (4.4.246)

Then (4.4.246) implies that p is in fact a zero of order 2. The Bryant's functional of Φ0

and Ψ0 is then a holomorphic function on a compact Riemann surface, with at least a zero.
Hence

Q0 = 0.

This concludes the proof.

Remark 4.4.4. In the proof of theorem 4.4.4, nothing prevents Ψ0 from being minimal,
in which case Θ is simply the limit of the Θk, and is not centered on Φ0(p).
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Appendix

A.1 A brief reminder on Lorentz spaces

The following will recall basic notions concerning Lorentz spaces and is mostly extracted
from chapter 3 of [Hél02]. It will contain no proof.

De�nition A.1.1. Let O be an open subset of Rm, |O| be the lebesgue measure of O,
and f : O → R be a measurable function. The non-increasing rearrangement of |f | on
[0, |O|) is the unique function, denoted by f∗, from [0, |O|) to R which is non-increasing
and such that

measure{x ∈ O | |f(x)| ≥ s} = measure{t ∈ (0, |O|) | f∗(t) ≥ s}.

De�nition A.1.2. Let O be an open subset in Rm, 1 < p <∞, 1 ≤ q ≤ ∞. The Lorentz
space Lp,q(O,R) is the set of measurable functions f : O → R such that

|f |p,q =

[∫ ∞
0

(
t

1
p f∗(t)

)q dt
t

] 1
q

<∞, if q <∞,

or
|f |p,∞ = sup

t>0
t

1
p f∗(t) <∞, if q =∞.

While the quantities |f |p,q are not norms (they do not satisfy the triangular inequality,
if we de�ne

f∗∗(t) =
1

t

∫ t

0
f∗(s)ds,

the quantities

‖f‖p,q =

[∫ ∞
0

(
t

1
p f∗∗(t)

)q dt
t

] 1
q

, if q <∞,

‖f‖p,∞ = sup
t>0

t
1
p f∗∗(t),

are space norms.

Theorem A.1.1. The Lorentz space Lp,q(O,R) is a Banach space.
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While the de�nition itself is complex and rather obscure, the Lorentz spaces can be
understood as generalizations of the Lebesgue spaces. In fact one has for any 1 < q < p <
q′ <∞ and any p > 1

Lp,1 ⊂ Lp,q ⊂ Lp,p = Lp ⊂ Lp,q′ ⊂ Lp,∞.

Actually one can interpolate the Lebesgue space in between Lorentz spaces thanks to
Marcinkiewitz interpolation theorem (see theorem 3.3.3 from [Hél02]).

Theorem A.1.2. Let O be an open subset of Rm and U an open subset of Rn. Let r0,
r1, p0, p1 be real numbers such that

1 ≤ r0 < r1 ≤ ∞,

and
1 ≤ p0 6= p1 ≤ ∞.

Let T be a linear operator whose domain D contains⋃
r0≤r≤r1

Lr(O),

and which maps continuously Lr0(O) to Lp0(U), and Lr1(O) to Lp1(U) with the norms

∀f ∈ Lr0(O), ‖Tf‖Lp0 (U) ≤ k0‖f‖Lr0 (O),

∀f ∈ Lr1(O), ‖Tf‖Lp1 (U) ≤ k0‖f‖Lr1 (O).

Then, for each 1 ≤ q ≤ ∞, and for every pair (p, r) such that ∃θ ∈ (0, 1),

1

p
=

1− θ
p0

+
θ

p1
and

1

r
=

1− θ
r0

+
θ

r1
,

f maps continuously Lr,q(O) to Lp,q(U), and moreover,

∀f ∈ Lr,q(O), ‖Tf‖Lp,q(U) ≤ Bθ ‖f‖Lr,q(O) ,

where

Bθ =

(
r

|γ|p

) 1
q

2
1
p

(
rk0

r − r0
+

r1k1

r1 − r

)
,

and

γ =

(
1

p0
− 1

p

)(
1

r0
− 1

r

)−1

=

(
1

p1
− 1

p

)(
1

r
− 1

r1

)−1

.

In the present work we will only use L2,∞, L2 = L2,2 and L2,∞. In accordance with
theorem A.1.2, L2,1 is a slightly more restrictive space than L2, whose elements are a
bit smoother, while L2,∞ is a bigger space which allows for more singular behaviors. For
instance :

Example A.1.1. In dimension 2, 1
r ∈ L

2,∞(D), but 1
r /∈ L

2(D).

Additionnally, theorems 3.3.4 and 3.3.5 of [Hél02] o�er a perspective on L2,∞ and L2,1

as some kind of closure of the L2 space regarding Calderón-Zygmund theorems or Sobolev
injections. Indeed while W 1,p ↪→ C0,α for all p > 2, W 1,2 only injects into Lq for q < ∞.
Closing this gap is the Lorentz space L2,1.
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Theorem A.1.3. Let O be an open compact subset of R3 with smooth boundary. Let
f ∈W 1,2(O) and suppose that∇f ∈ L2,1(O). Then f is continuous and uniformly bounded
in O.

Besides while the Calderón-Zygmund theory works for Lp with p > 1, it classically fails
for L1. Closing this boundary is the L2,∞ space.

Theorem A.1.4. Let O be an open subset of R2, with smooth boundary. Let f ∈ L1(O),
and φ be a solution of {

∆φ = f in O

φ = 0 on ∂O.

Then ∇φ ∈ L2,∞(O) and
‖∇φ‖L2,∞(O) ≤ C ‖f‖L1(O) .

To sum up, the Lorentz spaces are a re�nement of Lebesgue spaces, that can be seen
as closure for the Sobolev embeddings, or the Calderón-Zygmund inequalities.

A.2 Formulas for a conformal immersion

In this section we show several formulas useful for the core of the thesis. Most are well
known, but their proof is included for self-containedness, and to display the interplays that
we will make use of throughout our reasonings.

A.2.1 Conformal immersions of a disk in R3

Let Φ : D→ R3 be a conformal immersion, that is such that

|Φx|2 − |Φy|2 = 〈Φx,Φy〉 = 0.

Its Gauss map is de�ned as ~n =
Φx×Φy
|Φx×Φy | (with × the usual vectorial product in R3) and

its conformal factor as λ = ln |Φx| = ln |Φy|. Its second fundamental form is then

A :=
〈
∇2Φ, ~n

〉
=:

(
e f
f g

)
.

One can check

∇~n = −e−2λA∇Φ = −e−2λ

(
eΦx + fΦy

fΦx + gΦy

)
, (A.2.1)

and deduce immediately

∇⊥~n = −e−2λ

(
−fΦx − gΦy

eΦx + fΦy

)
. (A.2.2)

De�ning the mean curvature as

H =
e+ g

2e2λ
,

and the tracefree second fundamental form as

Å = e−2λ

( e−g
2 f

f g−e
2

)
,
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one �nds
∇~n = −H∇Φ− Å∇Φ,

∇⊥~n = −H∇⊥Φ + Å∇⊥Φ.
(A.2.3)

By de�nition of ~n
~n× Φx = Φy,

~n× Φy = −Φx,

which implies
~n×∇Φ = −∇⊥Φ,

~n×∇⊥Φ = ∇Φ.
(A.2.4)

Combining (A.2.3) and (A.2.4) yields

~n×∇~n = H∇⊥Φ + Å∇⊥Φ,

~n×∇⊥~n = −H∇Φ + Å∇Φ.
(A.2.5)

As a result, H∇Φ and Å∇Φ can be deduced solely from ∇~n :

H∇Φ = −~n×∇
⊥~n+∇~n
2

,

Å∇Φ =
~n×∇⊥~n−∇~n

2
.

(A.2.6)

It is well known that since Φ is conformal

∆Φ = ~H |∇Φ|2 , (A.2.7)

where ~H = H~n, and
∆λ = Ke2λ (A.2.8)

where K = e−4λ detA = e−4λ
(
eg − f2

)
is the Gauss curvature. Equation (A.2.8) is known

as the Liouville equation.
With (A.2.3), one can compute

|∇~n|2 =
∣∣∣H∇Φ + Å∇Φ

∣∣∣2
= |H∇Φ|2 +

∣∣∣Å∇Φ
∣∣∣2 , (A.2.9)

since Å is tracefree. From (A.2.9) we deduce∣∣Å∣∣ ≤ |∇~n| , (A.2.10)

and
|H∇Φ| ≤ |∇~n| . (A.2.11)

A.2.2 Conformal immersions of a disk in R3 : complex notations

In this context, it is most convenient to use complex notations. Let

∂z =
1

2
(∂x − i∂y) =

1

2

(
1
−i

)
.∇ =

i

2

(
1
−i

)
.∇⊥. (A.2.12)
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Then, Φ conformal translates as
〈Φz,Φz〉 = 0,

|Φz|2 =
e2λ

2
.

(A.2.13)

The Gauss map can be written in coplex notations in the following way

~n =
Φz × Φz̄

i |Φz|2
, (A.2.14)

which gives the complex counterpart to (A.2.4) :

~n× Φz = iΦz

~n× Φz̄ = −iΦz.
(A.2.15)

If we de�ne the tracefree curvature as Ω = e−g
2 − if = 2 〈Φzz, ~n〉, (A.2.3) becomes

~nz = −HΦz − Ωe−2λΦz̄, (A.2.16)

while (A.2.9) turns into

|~nz|2 =
H2e2λ + |Ω|2 e−2λ

2
. (A.2.17)

Similarly, (A.2.7) translates to

Φzz̄ =
He2λ

2
~n. (A.2.18)

Exploiting (A.2.13), one �nds

〈Φzz,Φz〉 = 0

〈Φzz,Φz̄〉 = (〈Φz,Φz̄〉)z − 〈Φz,Φzz̄〉
= λze

2λ.

Subsequently,

Φzz = 2λzΦz +
Ω

2
~n. (A.2.19)

We can then compute

~nzz̄ = −Hz̄Φz −
H2e2λ

2
~n−

(
Ωz̄e

−2λ − 2λz̄Ωe
−2λ
)

Φz̄ − 2λz̄

(
Ωe−2λ

)
Φz̄ −

|Ω|2 e−2λ

2
~n

= −Hz̄Φz − Ωz̄e
−2λΦz̄ −

H2e2λ + |Ω|2 e−2λ

2
~n.

However, ~nzz̄ ∈ R3 since ~n ∈ R3. Then necessarily Ωz̄e
−2λ = Hz̄ i.e.

Hz = Ωz̄e
−2λ. (A.2.20)

Equation (A.2.20) is the Gauss-Codazzi equation in complex notations.
Using (A.2.20) and (A.2.17), we �nd

~nzz̄ + |~nz|2 ~n+ 2< (HzΦz̄) = 0. (A.2.21)

While the complex notations are most convenient for computations, the resulting equations
are not always telling. We will then translate (A.2.21) back to its classic real form :

~nzz̄ + |~nz|2 ~n+ 2< (HzΦz̄) =
1

4

(
∆~n+ |∇~n|2 ~n+ 2 (HxΦx +HyΦy)

)
.
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The Gauss map ~n then satis�es

∆~n+ |∇~n|2 ~n+ 2∇H∇Φ = 0. (A.2.22)

This can be slightly changed to better suit our needs

∆~n+ |∇~n|2 ~n+ 2∇H∇Φ = ∆~n+ |∇~n|2 ~n+ 2div (H∇Φ)− 2H∆Φ

= ∆~n+
(
|∇~n|2 − 2 |H∇Φ|2

)
~n+ 2div (H∇Φ)

= ∆~n+

(∣∣∣Å∇Φ
∣∣∣2 − |H∇Φ|2

)
~n+ 2div (H∇Φ) .

The second equality is obtained with (A.2.7), and the third with (A.2.9). Now we compute

∇~n×∇⊥~n = −~nx × ~ny + ~ny × ~nx = −2~nx × ~ny
= −2e−4λ (eΦx + fΦy)× (fΦx + gΦy)

= −2e−2λ
(
eg~n− f2~n

)
= −2e−2λ

((
e+ g

2

)2

−
(
e− g

2

)2

− f2

)
~n

= −2H2e2λ~n+ 2

((
e− g

2

)2

+ f2

)
e−2λ~n

= − |H∇Φ|2 ~n+
∣∣∣Å∇Φ

∣∣∣2 ~n.
We then �nd

∆~n+∇⊥~n×∇~n+ 2div (H∇Φ) = 0. (A.2.23)

A.2.3 Formulas in S3

Let Φ : D → R3 be a smooth conformal immersion and X = π−1 ◦ Φ : D → S3.
Let Λ := 1

2 log
(

2 |Xz|2
)
be its conformal factor, ~N such that

(
X, e−ΛXx, e

−ΛXy, ~N
)
is

a direct orthonormal basis of R4 its Gauss map, h =
〈
Xzz̄
|Xz |2

, ~N
〉
its mean curvature and

ω := 2 〈Xzz, ~n〉 its tracefree curvature. Then

X :=
1

1 + |Φ|2

(
2Φ

|Φ|2 − 1

)
, (A.2.24)

which yields

Xz = dπ−1 (Φz) =
2

1 + |Φ|2

(
Φz

0

)
− 4〈Φz,Φ〉3

(1 + |Φ|2)2

(
Φ
−1

)
. (A.2.25)

Since π is conformal,
〈
dπ−1 (Φz) , dπ

−1 (~n)
〉

= 〈Φz, ~n〉 = 0. Then ~N = dπ−1(~n)
|dπ−1(~n)| and

thus
~N =

(
~n
0

)
− 2〈~n,Φ〉

1 + |Φ|2

(
Φ
−1

)
. (A.2.26)

Using the corresponding de�nitions we successively deduce

e2Λ = 2 〈Xz, Xz̄〉 =
4

(1 + |Φ|2)2 e
2λ, (A.2.27)
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h =

〈
Xzz̄

|Xz|2
, ~N

〉
=
|Φ|2 + 1

2
H + 〈~n,Φ〉 (A.2.28)

ω = 2
〈
Xzz, ~N

〉
=

2Ω

1 + |Φ|2
. (A.2.29)

Then one can compute

h

(
X
1

)
+

(
~N
0

)
=

(
|Φ|2 + 1

2
H + 〈~n,Φ〉

)
2Φ

1+|Φ|2
|Φ|2−1
1+|Φ|2

1

+

~n−
2〈~n,Φ〉
1+|Φ|2 Φ

2〈~n,Φ〉
1+|Φ|2

0



=


HΦ + 2〈~n,Φ〉

1+|Φ|2 Φ

H |Φ|
2−1
2 + 〈~n,Φ〉 |Φ|

2−1
1+|Φ|2

H |Φ|
2+1
2 + 〈~n,Φ〉

+

~n−
2〈~n,Φ〉
1+|Φ|2 Φ

2〈~n,Φ〉
1+|Φ|2

0



= H

 Φ
|Φ|2−1

2
|Φ|2+1

2

+

 ~n
〈~n,Φ〉
〈~n,Φ〉

 .

(A.2.30)

Which shows that

Y = h

(
X
1

)
+

(
N
0

)
. (A.2.31)

One may wish to compute in S3 without going through Φ. The relevant formulas then
are

~Nz = −hXz − ωe−2ΛXz̄, (A.2.32)

Xzz̄ = h
e2Λ

2
~N − e2Λ

2
X, (A.2.33)

Xzz = 2ΛzXz +
ω

2
~N, (A.2.34)

and Gauss-Codazzi can be written

ωz̄e
−2Λ = hz. (A.2.35)

A.2.4 Application : mean curvature of a sphere in S3

Let σ be a sphere in S3. Up to an isometry of S3 σ can be assumed to be a sphere
centered on the south pole S of radius r ≤ π

2 . Then π ◦ σ is a sphere of R3 centered
on the origin of radius R ≤ 1. It can be conformally parametrized over R2 ∪ ∞ by

Φ(x, y) = R
1+x2+y2

 2x
2y

x2 + y2 − 1

, of constant mean curvature H = 1
R . Then σ is confor-

mally parametrized by

X =
1

1 +R2

 2R
1+x2+y2

 2x
2y

x2 + y2 − 1


R2 − 1

 .
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One can easily compute using basic trigonometry the tangent of r and �nd

tan (r) =
2R

1−R2
.

1−R21 r

2R

Figure A.1 � 2D illustration

Computing h at any point (x, y) using (A.2.28) yields with H = 1
R , ~n = −Φ

R

h =
R2 + 1

2R
−R =

1

tan(r)

for any (x, y).
Since neither h nor r change under the action of isometries, any sphere σ of S3 of radius

r has constant mean curvature

h = cotan(r). (A.2.36)

A.2.5 Formulas in H3

Let Φ : D → R3 be a smooth conformal immersion and Z = π̃−1 ◦ Φ : D → H3 (see
section 2.2.1 for the de�nition of the projection π̃). Then

Z :=
1

1− |Φ|2

(
2Φ

|Φ|2 + 1

)
(A.2.37)

which yields

Zz =
2

1− |Φ|2

(
Φz

0

)
+

4〈Φz,Φ〉
(1− |Φ|2)2

(
Φ
1

)
. (A.2.38)

Since π̃ is conformal,
〈
dπ̃−1 (~n) , Zz

〉
= 〈Φz, ~n〉 = 0. Then ~nZ = dπ̃−1(~n)

|dπ̃−1(~n)| and thus

~nZ =

(
~n
0

)
+

2〈~n,Φ〉
1− |Φ|2

(
Φ
1

)
. (A.2.39)

Using the corresponding de�nition we successively deduce

e2λZ =
4

(1− |Φ|2)2 e
2λ, (A.2.40)

HZ =
1− |Φ|2

2
H − 〈~n,Φ〉, (A.2.41)
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ΩZ =
2Ω

1− |Φ|2
. (A.2.42)

Then, one can compute

HZ

Zh−1
Z4

+

~nZh0
~nZ4

 =

(
1− |Φ|2

2
H − 〈~n,Φ〉

)
2Φ

1−|Φ|2

−1
|Φ|2+1
1−|Φ|2

+

~n+ 2〈~n,Φ〉
1−|Φ|2 Φ

0
2〈~n,Φ〉
1−|Φ|2



=


HΦ− 2〈~n,Φ〉

1−|Φ|2 Φ

−1−|Φ|2
2 H + 〈~n,Φ〉

H |Φ|
2+1
2 − 〈~n,Φ〉 |Φ|

2+1
1−|Φ|2

+

~n+ 2〈~n,Φ〉
1−|Φ|2 Φ

0
2〈~n,Φ〉
1−|Φ|2



= H

 Φ
|Φ|2−1

2
|Φ|2+1

2

+

 ~n
〈~n,Φ〉
〈~n,Φ〉

 .

(A.2.43)

Which shows that

Y = HZ

Zh−1
Z4

+

~nZh0
~nZ4

 . (A.2.44)

A.2.6 Computations for the conformal Gauss map

Let Φ : D → R3 be a smooth conformal immersion of representation X in S3 and of
conformal Gauss map Y .

Let us �rst use the expression (2.3.15). Then

Yz = Hz

 Φ
|Φ|2−1

2
|Φ|2+1

2

+H

 Φz

〈Φz,Φ〉
〈Φz,Φz〉

+

 ~nz
〈~nz,Φ〉
〈~nz,Φ〉


and using (A.2.16)

Yz = Hz

 Φ
|Φ|2−1

2
|Φ|2+1

2

− Ωe−2λ

 Φz̄

〈Φz̄,Φ〉
〈Φz̄,Φ〉

 . (A.2.45)

Using (A.2.20) and (A.2.19) we compute

Yzz̄ = Hzz̄

 Φ
|Φ|2−1

2
|Φ|2+1

2

− |Ω|2
2
e−2λ

 ~n
〈~n,Φ〉
〈~n,Φ〉



=
W(Φ)

4

 Φ
|Φ|2−1

2
|Φ|2+1

2

− |Ω|2 e−2λ

2
Y

(A.2.46)

where
W(Φ)

4
= Hzz̄ +

|Ω|2 e−2λ

2
H ∈ R. (A.2.47)
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On the other hand,

Yzz = Hzz

 Φ
|Φ|2−1

2
|Φ|2+1

2

+Hz

 Φz

〈Φz,Φ〉
〈Φz,Φ〉

− (Ωe−2λ
)
z

 Φz̄

〈Φz̄,Φ〉
〈Φz̄,Φ〉


− Ω

H
2

 ~n
〈~n,Φ〉
〈~n,Φ〉

+
1

2

0
1
1


(A.2.48)

using (A.2.18). Then, if we de�ne Bryant's functional as Q = 〈Yzz, Yzz〉 we �nd

Q = HzzΩ−Hz

(
Ωe−2λ

)
z
e2λ + Ω

H2

4

=
(

Ωz̄e
−2λ
)
z

Ω− Ωz̄

(
Ωe−2λ

)
z

+ Ω
H2

4
using (A.2.20)

= (Ωzz̄Ω− ΩzΩz̄) e
−2λ + Ω

H2

4

= Ω2e−2λ

(
Ωz

Ω

)
z̄

+ Ω
H2

4
= Ω2e−2λ

(
Ωz̄

Ω

)
z

+ Ω
H2

4
.

(A.2.49)

We will now compute using expression (A.2.44). Then

Yz = hz

(
X
1

)
+ h

(
Xz

1

)
+

(
~Nz

0

)

and using (A.2.32)

Yz = hz

(
X
1

)
− ωe−2Λ

(
Xz̄

0

)
. (A.2.50)

Using (A.2.35) and (A.2.34), we compute

Yzz̄ = hzz̄

(
X
1

)
− |ω|

2

2
e−2Λ

(
~N
0

)
=
WS3(X)

4

(
X
1

)
− |ω|

2 e−2Λ

2
Y

(A.2.51)

where

WS3(X)

4
= hzz̄ +

|ω|2 e−2Λ

2
h ∈ R. (A.2.52)



A.2. Formulas for a conformal immersion 191

Notice that using (A.2.27), (A.2.28) and (A.2.29)

WS3(X)

4
=

(
|Φ|2 + 1

2
H + 〈~n,Φ〉

)
zz̄

+

(
|Φ|2 + 1

2
H + 〈~n,Φ〉

)
|Ω|2e−2λ

2

=

(
|Φ|2 + 1

2
Hz + 〈Φz,Φ〉H + 〈~nz,Φ〉

)
z̄

+
|Φ|2 + 1

2
H
|Ω|2e−2λ

2

+ 〈~n,Φ〉 |Ω|
2e−2λ

2

=

(
|Φ|2 + 1

2
Hz − Ωe−2λ〈Φz̄,Φ〉

)
z̄

+
|Φ|2 + 1

2
H
|Ω|2e−2λ

2

+ 〈~n,Φ〉 |Ω|
2e−2λ

2

=
|Φ|2 + 1

2

W(Φ)

4
+ 〈Φz̄,Φ〉Hz − Ωz̄e

−2λ〈Φz̄,Φ〉 −
|Ω|2e−2λ

2
〈~n,Φ〉

+ 〈~n,Φ〉 |Ω|
2e−2λ

2

=
|Φ|2 + 1

2

W(Φ)

4
,

(A.2.53)

using (A.2.16) to obtain the third equality and (A.2.35) to conclude. On the other hand

Yzz = hzz

(
X
1

)
+ hz

(
Xz

0

)
−
(
ωe−2Λ

)
z

(
Xz̄

0

)
− ω

(
h

2

(
~N
0

)
− 1

2

(
X
0

))
(A.2.54)

using (A.2.18). Then if we de�ne Q = 〈Yzz, Yzz〉 we �nd, once more by applying (A.2.35),

Q = hzzω − hz
(
ωe−2Λ

)
z
e2Λ + ω2h

2 + 1

4

=
(
ωz̄e
−2Λ
)
z
ω − ωz̄

(
ωe−2Λ

)
z

+ ω2h
2 + 1

4

= (ωzz̄ω − ωzωz̄) e−2Λ + ω2h
2 + 1

4

= ω2e−2Λ
(ωz
ω

)
z̄

+ ω2h
2 + 1

4
= ω2e−2Λ

(ωz̄
ω

)
z

+ ω2h
2 + 1

4
.

(A.2.55)

A.2.7 Formulas in S4,1

This section is devoted to computations for spacelike immersions in S4,1 without relying
on their being the conformal Gauss map of a given immersion.

Let Y : D → S4,1 be a smooth-spacelike conformal immersion, that is Y satis�es

〈Yz, Yz〉 = 0

and

〈Yz, Yz̄〉 =:
e2L

2
> 0.

Let ν, ν∗ ∈ C4,1 such that e = (Y, Yz, Yz̄, ν, ν
∗) is an orthogonal frame of R4,1, that is

〈Y, ν〉 = 〈Yz, ν〉 = 〈Yz̄, ν〉 = 〈ν, ν〉 = 0

and
〈Y, ν∗〉 = 〈Yz, ν∗〉 = 〈Yz̄, ν∗〉 = 〈ν∗, ν∗〉 = 0.
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We de�ne successively the tracefree curvature in the direction ν

Ων = 2 〈Yzz, ν〉 , (A.2.56)

the tracefree curvature in the direction ν∗

Ων∗ = 2 〈Yzz, ν∗〉 , (A.2.57)

the mean curvature in the direction ν

Hν = 2e−2L 〈Yzz̄, ν〉 , (A.2.58)

and the mean curvature in the direction ν∗

Hν∗ = 2e−2L 〈Yzz, ν∗〉 . (A.2.59)

Then

Yzz = 2LzYz +
Ων

2〈ν, ν∗〉
ν∗ +

Ων∗

2〈ν, ν∗〉
ν, (A.2.60)

and

Yzz̄ =
Hνe

2L

2〈ν, ν∗〉
ν∗ +

Hν∗e
2L

2〈ν, ν∗〉
ν − e2L

2
Y. (A.2.61)

Further
〈νz, Y 〉 = (〈ν, Y 〉)z − 〈ν, Yz〉 = 0, (A.2.62)

and with (A.2.60),

〈νz, Yz〉 = (〈ν, Yz〉)z − 〈ν, Yzz〉

= −2Lz 〈ν, Yz〉 −
Ων

2〈ν, ν∗〉
〈ν, ν∗〉 − Ω∗ν

2〈ν, ν∗〉
〈ν, ν〉

= −Ων

2
,

(A.2.63)

while with (A.2.61),
〈νz, Yz̄〉 = (〈ν, Yz̄〉)z − 〈ν, Yzz̄〉

= − Hνe
2L

2〈ν, ν∗〉
〈ν, ν∗〉

= −Hνe
2L

2
,

(A.2.64)

and
〈νz, ν〉 = (〈ν, ν〉)z − 〈ν, νz〉,

meaning
〈νz, ν〉 = 0. (A.2.65)

Combining (A.2.62), (A.2.63), (A.2.64) and (A.2.65) yields

νz = −〈νz, ν∗〉 ν −HνYz − Ωνe
−2LYz̄. (A.2.66)

Similarly
〈ν∗z , Y 〉 = (〈ν∗, Y 〉)z − 〈ν

∗, Yz〉 = 0, (A.2.67)
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and with (A.2.60),

〈ν∗z , Yz〉 = (〈ν∗, Yz〉)z − 〈ν
∗, Yzz〉

= −2Lz 〈ν∗, Yz〉 −
Ων∗

2〈ν, ν∗〉
〈ν, ν∗〉 − Ων

2〈ν, ν∗〉
〈ν∗, ν∗〉

= −Ων∗

2
,

(A.2.68)

while with (A.2.61)
〈ν∗z , Yz̄〉 = (〈ν∗, Yz̄〉)z − 〈ν

∗, Yzz̄〉

= −Hν∗e
2L

2〈ν, ν∗〉
〈ν, ν∗〉

= −Hν∗e
2L

2
,

(A.2.69)

〈ν∗zν∗〉 = 0, (A.2.70)

ν∗z = −〈ν∗z , ν〉 ν∗ −Hν∗Yz − Ων∗e
−2LYz̄. (A.2.71)

Then
〈νz, νz〉 = HνΩν

〈ν∗z , ν∗z 〉 = Hν∗Ων∗ .
(A.2.72)

A.3 Analytic lemmas

A.3.1 Low-regularity estimates

Following is a sequence of low regularity auxiliary theorems needed in our proofs.

Theorem A.3.1 (Theorem 3.5 in [Riv16]). Let X ∈ L1
(
D,R2

)
, if f is the W 1,1

0 solution
in a distributional sense of {

∆f = divX in D,
f = 0 on ∂D,

then f ∈ L2,∞ (D) with
‖f‖L2,∞(D) ≤ C‖X‖L1(D).

Theorem A.3.2. Let V ∈ D′
(
R3
)
such that ∇V = ∇⊥a + B with ∇⊥a ∈ H−1

(
D,R2

)
and B ∈ L1

(
D,R2

)
. Then for any r < 1 there exists c ∈ R a constant and C(r) > 0 such

that
‖V − c‖L2,∞(Dr) ≤ C(r)

(
‖A‖H−1(D) + ‖B‖L1(D)

)
.

Proof. We write ∇V = ∇b+H with{
∆b = divB in D
b = 0 on ∂D.

Since
div(H) = ∆V −∆b = div

(
∇⊥a+B

)
− div(B) = 0

and
curl(H) = curl (∇V −∇b) = 0
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in D′ (D), one �nds div(H) = curl(H) = 0, that is H is harmonic. We will write it H = ∇h
with h harmonic.Using theorem A.3.1, we �nd

‖b‖L2,∞(D) ≤ C‖B‖L1(D). (A.3.73)

Besides, given φ ∈ C∞c (D) :

|〈H,φ〉| =
∣∣∣〈∇⊥a+B −∇b, φ〉

∣∣∣
≤
∣∣∣〈∇⊥a, φ〉∣∣∣+ |〈B,φ〉|+ |〈b,∇φ〉|

≤ ‖∇⊥a‖H−1(D)‖φ‖H1(D) + ‖B‖L1(D)‖φ‖L∞(D)

+ ‖b‖L2,∞(D)‖∇φ‖L2,1(D)

since L2,1 =
(
L2,∞)∗. Now using (A.3.73) and the continuous injection L2,1 ↪→ L2 we �nd

|〈H,φ〉| ≤ C
(
‖∇⊥a‖H−1(D) + ‖B‖L1(D)

) (
‖φ‖L∞(D) + ‖∇φ‖L2,1(D)

)
.

This yields

|〈∇h, φ〉| ≤ C
(
‖∇⊥a‖H−1(D) + ‖B‖L1(D)

) (
‖φ‖L∞(D) + ‖∇φ‖L2,1(D)

)
. (A.3.74)

Since h is harmonic, we write hz =
∑
p∈Z

hpz
p, and we apply (A.3.74) with φp = rη(r)e−ipθ,

where η is a smooth positive cut-o� function on D with support in
[
0, 3

4

]
, η = 1 on

[
0, 1

2

]
.∣∣∣∣∫

D
hpη(r)rp+2drdθ

∣∣∣∣ ≤ C (‖∇⊥a‖H−1(D) + ‖B‖L1(D)

) (
‖φp‖L∞(D) + ‖∇φp‖L2,1(D)

)
≤ C‖η‖C1(D)

(
‖∇⊥a‖H−1(D) + ‖B‖L1(D)

)
p.

However, since η ≥ 0 and η = 1 on D 1
2
:∣∣∣∣∫

D
η(r)rp+2drdθ

∣∣∣∣ ≥ ∫
D 1

2

η(r)rp+2drdθ,

≥
∫
D 1

2

rp+2dr.

This means that for p ≥ −2

|hp| ≤ C‖η‖C1(D)

(
‖∇⊥a‖H−1(D) + ‖B‖L1(D)

)
p(p+ 3) (A.3.75)

and for p < −2
|hp| = 0.

Thus hp grows at most quadratically and as a consequence
∑
p∈Z

hpz
p converges on Dr with

r < 1. Then there exists c1 ∈ R such that h can be written

h(z)− c1 = 2<

h−2

z
+
h−1

2
log(r) +

∑
p≥0

hp
p+ 1

zp+1
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which converges smoothly on Dr for any r < 1. Then

‖h− c1‖L2,∞(Dr) ≤ C

|h−2|
∥∥∥∥1

r

∥∥∥∥
L2,∞(Dr)

+ |h−1| ‖log r‖L2,∞(Dr) +
∑
p≥0

∣∣∣∣ hp
p+ 1

∣∣∣∣ ∥∥rp+1
∥∥
L2,∞(Dr)


≤ C

|h−2|+ |h−1|+
∑
p≥0

∣∣∣∣ hp
(p+ 1) (2p+ 4)

∣∣∣∣ r2p+4


≤ C

(
‖∇⊥a‖H−1(D) + ‖B‖L1(D)

)1 +
∑
p≥0

p(p+ 3)

(p+ 1) (2p+ 4)
r2p+4

 ,

using (A.3.75). This yields

‖h− c1‖L2,∞(Dr) ≤ C(r)
(
‖∇⊥a‖H−1(D) + ‖B‖L1(D)

)
. (A.3.76)

Here C(r) < ∞ as soon as r < 1. Since by de�nition ∇V = ∇b + ∇h, there exists a
constant c ∈ R such that

V − c = b+ h− c1.

Using (A.3.73) and (A.3.76) we then deduce

‖V − c‖L2,∞(Dr) ≤ C
(
‖∇⊥a‖H−1(D) + ‖B‖L1(D)

)
with C depending only on r, which concludes the proof.

We conclude this subsection by recalling an extension of Calderon-Zygmund with
Lorentz spaces (theorem 3.3.6 in [Hél02]).

Theorem A.3.3. Let Ω be an open subset of R2 with C1 boundary. Let f ∈ L1 (Ω) and
ϕ solution of {

∆ϕ = f in Ω

ϕ = 0 on ∂Ω.

then there exists a constant C (Ω) such that

‖ϕ‖L2,∞(Ω) ≤ C (Ω) ‖f‖L1(Ω) .

A.3.2 Integrability by compensation

Following are a few variations on Wente's theorem, which will prove useful in the core
of the article. First is Wente's inequality, originally presented in [Wen71], we here follow
see also 3.1.2 in [Hél02]

Theorem A.3.4. Let a,b ∈W 1,2 (D,R) and u a solution of{
∆u = ∇a.∇⊥b in D
u = 0 on ∂D.

Then u ∈ C0 (D,R) ∩W 1,2 (D,R), and there exists C > 0

‖u‖L∞(D) + ‖∇u‖L2(D) ≤ C ‖∇a‖L2(D) ‖∇b‖L2(D) .
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Following are two re�nements for Lorentz spaces, �rst theorem 3.4.5 then 3.4.1 of
[Hél02]

Theorem A.3.5. Let Ω be a bounded domain of R2, with C2 boundary. Suppose a and
b such that ∇a ∈ L2,∞ (Ω) and ∇b ∈ L2 (Ω). Let ϕ be the solution of{

∆ϕ = ∇a.∇⊥b in Ω

ϕ = 0 on ∂Ω.

Then ϕ ∈W 1,2 (Ω), and there exists C(Ω) > 0 such that

‖∇ϕ‖L2(Ω) ≤ C(Ω)‖∇a‖L2,∞(Ω)‖∇b‖L2(Ω).

Theorem A.3.6. Let Ω be a bounded domain of R2, with C2 boundary. Suppose a and
b such that a ∈W 1,2 (Ω) and b ∈W 1,2 (Ω). Let ϕ be the solution of{

∆ϕ = ∇a.∇⊥b in Ω

ϕ = 0 on ∂Ω.

Then ϕ ∈W 1,(2,1) (Ω), and there exists C(Ω) > 0 such that

‖∇ϕ‖L2,1(Ω) ≤ C(Ω)‖∇a‖L2(Ω)‖∇b‖L2(Ω).

Remark A.3.1. One must notice that, since L2,∞ and L2,1 are scale-invariant, but not
conformal invariant, the constant C(Ω) in theorems A.3.5 and A.3.6 depends on the shape
of Ω, but not its size. The same constant C then works for all disks Dr. Since L2 is a
conformal invariant the constant in theorem A.3.4 does not depend on Ω. We refer the
reader to [BG93] for more details.

A.3.3 Hodge decomposition

In this subsection we brie�y recall results on the Hodge decomposition and recast them
in our framework.

Theorem A.3.7 (Lp decomposition, theorem 10.5.1 in [IM01]). Let Ω be a smoothly
bounded domain in Rn and 1 < p < ∞. Then for any l-di�erential form ω ∈ Lp there
exists a l− 1 di�erential form α, a l+ 1-di�erential form β and a l-di�erential form h such
that :

ω = dα+ d∗β + h

with dh = d∗h = 0 and

‖α‖W 1,p(Ω) + ‖β‖W 1,p(Ω) ≤ Cp (Ω) ‖ω‖Lp(Ω) .

Theorem 10.5.1 in [IM01] is in fact more accurate and actually goes into much more
details about the boundary conditions. However quoting it in a comprehensive manner
would require to introduce new notations. We thus restrict ourselves to this partial result,

which will satisfy our current needs. Taking X =

(
X1

X2

)
∈ Lp (Dr,R× R), and ω =

X1dx+X2dy, one can apply theorem A.3.7 and �nd a function α, a volume form β and a
harmonic 1-form h on Dr such that :

ω = dα+ d∗β + h,

‖α‖W 1,p(Dr) + ‖β‖W 1,p(Dr) ≤ Cp (Dr) ‖ω‖Lp(Dr) ≤ Cp (r) ‖X‖Lp(Dr) .

Since div(X) = d∗ω = ∆α we deduce



A.3. Analytic lemmas 197

Corollary A.3.1. Let r > 0 and 1 < p < ∞. For any X ∈ Lp (Dr,R× R) there exists
α ∈W 1,p (Dr) such that

div(X) = ∆α

and
‖α‖W 1,p(Dr) ≤ Cp (r) ‖X‖Lp(Dr) .

Using Marcinkiewitz interpolation theorem (see for example theorem 3.3.3 of [Hél02])
enables us to write

Corollary A.3.2. Let r > 0, for any X ∈ L2,1
(
Dr,R2

)
there exists α ∈W 1,(2,1) (Dr) such

that
∆α = div(X)

and
‖α‖W 1,(2,1)(Dr) ≤ C (r) ‖X‖L2,1(Dr) .

A.3.4 Weighted Calderon-Zygmund

Theorems A.3.8 and A.3.9 are taken from Y. Bernard and T. Rivière's [BR13] (Propo-
sition C.2 and C.3).

Theorem A.3.8. Let u ∈ C2
(
D\{0}

)
solve

∆u(z) = µ(z)f(z) in D,

with f ∈ Lp (D) for 2 < p ≤ ∞ and the weight µ satisfying for some a ∈ N

|µ(z)| = O (|z|a) .

Then
uz(z) = P (z) + |z|aT (z)

with P ∈ Ca [X] and T = O(|z|1−
2
p
−υ

) for all υ > 0. More precisely one has∥∥∥∥∥ T

|z|1−
2
p
−υ

∥∥∥∥∥
L∞(D)

≤ Cυ

(∥∥∥∥ µ

|z|a

∥∥∥∥
L∞(D)

‖f‖Lp(D) + ‖u‖C1(∂D)

)
.

Additionally if µ ∈ C1 (D\{0}), a 6= 0 and

∇µ(z) = O
(
|z|a−1

)
Then :

uzz(z) = Pz + |z|aQ

with Q ∈ Lp′ (D) for all p′ < p and

‖Q‖Lp′ (D) ≤ Cp′
((∥∥∥∥ µ

|z|a

∥∥∥∥
L∞(D)

+

∥∥∥∥ ∇µ|z|a−1

∥∥∥∥
L∞(D)

)
‖f‖Lp(D) + ‖u‖C1(∂D)

)
.

In fact Q =
(|z|aT (z))z
|z|a .

Remark A.3.2. Theorem A.3.8 works with a = 0, it is the classic Calderon-Zygmund
theorem.
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Proof. We will write the proof for p =∞ to paint a picture of the involved reasonings and
refer the reader to the original results for the general case (p <∞). Such an estimate can
be written freely away from 0. Then one can assume |z| ≤ 1

2 . Using Green's formula for
the Laplacian and denoting ν the outer normal unit vector to ∂D, one writes explicitely
u :

uz(z) =
1

2π

(∫
∂D

(
z̄ − x̄
|z − x|2

∂νu(x)− u(x)∂
z̄ − x̄
|z − x|2

)
dσ(x)−

∫
D

z̄ − x̄
|z − x|2

µ(x)f(x)dx

)
=: J0(z) + J1(z).

(A.3.77)
We �rst point out that for |x| > |z| one term can be expanded :

x̄− z̄
|x− z|2

=
∑
m≥0

zmx−(m+1).

Then we �nd :

J0(z) =
1

2π

∑
m≥0

∫
∂D

(
zmx−(m+1)∂νu(x)− u(x)∂ν

(
zmx−(m+1)

))
dσ(x)

=
1

2π

∑
m≥0

zm
∫ 2π

0

(
(m+ 1)u(eiθ)− (∂νu)

(
eiθ
))

ei(m+1)θdθ

=
∑
m≥0

Cmz
m

where the Cm are complex valued constants depending only on the C1 norm of u along
∂D. Since u is by hypothesis bounded C1 on the boundary of the unit disk by hypothesis,∫ 2π

0 u(eiθ)ei(m+1)θdθ and
∫ 2π

0 ∂νu
(
eiθ
)
ei(m+1)θdθ are bounded by the C1 norm of u and

thus the Cm are growing at most linearly. Thus there exists a δ > 0 such that for |z| ≤ δ,
and a C > 0

J0(z) =

a∑
m=0

Cmz
m +

∞∑
m=a+1

Cmz
m

∣∣∣∣∣
∞∑

m=a+1

Cmz
m

∣∣∣∣∣ ≤ C|z|a+1.

Then, one writes

J0(z) =
a∑

m=0

Cmz
m + |z|a+1T0(z) in Dδ,

with |z|a+1T0 =

∞∑
m=a+1

Cmz
m,

|T0| ≤ C‖u‖C1(∂D) <∞ in Dδ.

(A.3.78)

Now we notice J0 is uniformly bounded, with bounds depending only on ‖u‖C1(∂D)), on
D 1

2
. We can then extend (A.3.78) to the whole of D 1

2
up to a constant adjustment.

One must now control J1. We start by writing :

J1(z) =
1

2π

∫
D2|z|

z̄ − x̄
|z − x|2

µ(x)f(x)dx+
1

2π

∫
D\D2|z|

z̄ − x̄
|z − x|2

µ(x)f(x)dx

=
1

2π

∫
D2|z|

z̄ − x̄
|z − x|2

µ(x)f(x)dx+
1

2π

∫
D\D2|z|

∞∑
m=0

zmx−(m+1)µ(x)f(x)dx.
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Now, since on D\D2|z| ,
∞∑
m=0

(
|z|
|x|

)m
≤
∞∑
m=0

1

2m
<∞,

we deduce,

J1(z) =
1

2π

∫
D2|z|

z̄ − x̄
|z − x|2

µ(x)f(x)dx+

∞∑
m=0

1

2π

∫
D\D2|z|

zmx−(m+1)µ(x)f(x)dx.

We then introduce the following decomposition :

J1(z) = I1(z) +
a∑

m=0

Im1 (z) + Im2 (z)−
a∑

m=0

Im1 (z) +
∞∑

m=a+1

Im2 (z), (A.3.79)

where :
I1(z) :=

1

2π

∫
D2|z|

z̄ − x̄
|z − x|2

µ(x)f(x)dx,

Im1 (z) :=
1

2π

∫
D2|z|

zmx−(m+1)µ(x)f(x)dx,

Im2 (z) :=
1

2π

∫
D\D2|z|

zmx−(m+1)µ(x)f(x)dx.

We notice
a∑

m=0

Im1 (z) + Im2 (z) =
a∑

m=0

zm

2π

∫
D
x−(m+1)µ(x)f(x)dx,

and for m ≤ a∣∣∣∣∫
D
x−(m+1)µ(x)f(x)dx

∣∣∣∣ ≤ ∥∥∥∥ µ

|z|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

∫
D
|x|a−m−1dx

≤ C
∥∥∥∥ µ

|z|a

∥∥∥∥
L∞(D)

‖f‖L∞(D).

which yields
a∑

m=0

Im1 (z) + Im2 (z) =

a∑
m=0

Amz
m (A.3.80)

with Am = 1
2π

∫
D x
−(m+1)µ(x)f(x)dx a sequence of �nite coe�cients. Besides :

|I1(z)| ≤ 1

2π

∫
D2|z|

1

|z − x|
|µ(x)||f(x)|dx ≤ 1

2π
‖f‖L∞(D)

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

∫
D2|z|

|x|a

|z − x|
dx

≤ Ca|z|a‖f‖L∞(D)

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

∫
D2|z|

1

|z − x|
dx

≤ C|z|a+1‖f‖L∞(D)

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

,

(A.3.81)
and for m ≤ a,

|Im1 (z)| ≤ 1

2π

∫
D2|z|

|z|m|x|−(m+1)|µ(x)||f(x)|dx

≤ C‖f‖L∞(D)

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

|z|m
∫
D2|z|

|x|a−(m+1)dx ≤ Ca|z|a+1‖f‖L∞(D)

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

.

(A.3.82)
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Finally, for a+ 2 ≤ m we write

|Im2 (z)| ≤ C|z|m‖f‖L∞(D)

∫
D\D2|z|

|x|−(m+1)|µ(x)|dx

≤ C|z|m
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

∫
D\D2|z|

|x|a−(m+1)dx

≤ C|z|m
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

∫ 1

2|z|
ra−mdr

≤ C|z|m
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)
|2z|a+1−m − 1

m− a− 1

≤ C 1

2m−a−1 (m− a− 1)
|z|a+1

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D),

(A.3.83)

while Ia+1
2 is controlled in the following way

|Ia+1
2 (z)| ≤ C|z|a+1‖f‖L∞(D)

∫
D\D2|z|

|x|−(a+2)|µ(x)|dx

≤ C|z|a+1

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

∫
D\D2|z|

|x|−2dx

≤ C|z|a+1 ln |z|
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

≤ Cυ|z|a+1−υ
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D) ∀υ > 0.

(A.3.84)

Consequently∣∣∣∣∣
∞∑

m=a+1

Im2 (z)

∣∣∣∣∣ ≤ Cυ|z|a+1−υ
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

∑ 1

2m−a−1

≤ Cυ|z|a+1−υ
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D).

(A.3.85)

Injecting (A.3.80)-(A.3.85) into (A.3.79) shows J1 satis�es

J1(z) =
a∑

m=0

Amz
m + |z|a+1−υT1(z) in D

|T1| ≤ Cυ
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D).

(A.3.86)

To conclude, (A.3.78) and (A.3.86) yield the desired result on uz when applied to (A.3.77).
To prove the next part of the theorem one need only notice that necessarily

|z|aQ(z) = (|z|aT (z))z

=

 ∑
m≥a+1

Cmz
m


z

+ (I1)z (z) +
∑

m≥a+1

(Im2 )z (z)−
∑

0≤m≤a
(Im1 )z (z)

(A.3.87)
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Now, since we have shown that the Cm have a mere linear growth,
(∑

m≥a+1Cmz
m
)
z

=∑
m≥a+1mCmz

m−1 has the same strictly positive convergence radius. The same argument
as before applies and yields the wanted control on the �rst term of (A.3.87). The other
terms are estimated as before. Indeed :

| (Im1 )z (z)| ≤

∣∣∣∣∣ 1

2π

∫
D∩D2|x|

mzm−1x−m−1µ(x)f(x)dx+
1

2π

z̄

|z|

∫
∂D2|z|

zmx−m−1µ(x)f(x)dx

∣∣∣∣∣
≤ Cm|z|m−1

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

∫
D2|x|

|x|a−m−1dx+ C|z|a
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

≤ Ca|z|a‖f‖L∞(D),
(A.3.88)

as long as m ≤ a. Similarly :

| (Im2 ) (z)| ≤

∣∣∣∣∣ 1

2π

∫
D\D2|x|

mzm−1x−m−1µ(x)f(x)dx+
1

2π

z̄

|z|

∫
∂(D\D2|z|)

zmx−m−1µ(x)f(x)dx

∣∣∣∣∣
≤ Cm|z|m−1

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

∫
D\D2|z|

|x|a−m−1dx+
C

2m
|z|a

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

≤ C

2m
|z|a

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

(A.3.89)
for m ≥ a+ 2; while

|
(
Ia+1

2

)
z

(z)| ≤ Ca|z|a
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)

(∫
D\D2|z|

|x|−2dx+ 1

)

≤ Ca|z|a
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D) ln |z|.
(A.3.90)

The I1 estimate is slightly more di�cult to obtain. Di�erentiating we �nd I1 z = 1
2π (L(z) +K(z))

with
K(z) =

z̄

|z|

∫
∂D2|z|(0)

z̄ − x̄
|z − x|2

µ(x)f(x)dx

and
L(z) =

(
Ω ∗ fµχD∩D2|z|

)
(z)

where Ω(y) = −2 ȳ2

|y|4 . One clearly �nds :

|K(z)| ≤ C‖f‖L∞(D)

∫
∂D2|z|

|µ(x)| ≤ C|z|a‖f‖L∞(D)

∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

, (A.3.91)

and
L(z)− µ(z)

(
Ω ∗ fχD2|z|

)
(z) =

∫
D2|z|

Ω(z − x)f(x) (µ(x)− µ(z)) dx.

Given z in D, let Sz be the cone with apex z
2 such that it contains D |z|

2

. For x ∈ Sz, we
have 2|z − x| > |z|. Hence :∫
Sx∩D2|z|

Ω(z − x)f(x) (µ(x)− µ(z)) dx ≤ C

(
|µ(z)|
|z|2

∫
D2|z|

|f(x)|dx+
1

|z|2

∫
D2|z|

|f(x)||µ(x)|dx

)

≤ C
∥∥∥∥ µ

|x|a

∥∥∥∥
L∞(D)

‖f‖L∞(D)|z|a.
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Since µ ∈ C1 (D\{0}), µ ∈ C1 (Scz). Thus for all x ∈ Scz one can write :

|µ(z)− µ(x)| ≤ C
∥∥∥∥ ∇µ|x|a−1

∥∥∥∥
L∞(D)

|z|a−1|x− z|.

Accordingly :∣∣∣∣∣
∫
Scx∩D2|z|

Ω(z − x)f(x) (µ(z)− µ(x)) dx

∣∣∣∣∣ ≤ C
∥∥∥∥ ∇µ|x|a−1

∥∥∥∥
L∞(D)

|z|a−1

∫
D2|z|

|f(z)|
|z − x|

dx

≤ C
∥∥∥∥ ∇µ|x|a−1

∥∥∥∥
L∞(D)

|z|a−1‖f‖L∞(D)

∫
D2|z|

1

|z − x|
dx

≤ C
∥∥∥∥ ∇µ|x|a−1

∥∥∥∥
L∞(D)

|z|a−1‖f‖L∞(D)

∫
B3|z|(z)

1

|z − x|
dx

≤ C
∥∥∥∥ ∇µ|x|a−1

∥∥∥∥
L∞(D)

|z|a‖f‖L∞(D).

(A.3.92)
Combining (A.3.87), (A.3.88), (A.3.89), (A.3.91) and (A.3.92) yields the desired result and
concludes the proof.

In the core we will use weights with non integer exponents. The same proof allows for
this slight adaptation, already presented in [BR13].

Theorem A.3.9. Let u ∈ C2 (D\{0}) solve

∆u(z) = µ(z)f(z) in D,

with f ∈ Lp (D) for 2 < p ≤ ∞ and the weight µ satisfying for some a ∈ R+

|µ(z)| = O (|z|a) .

Then
uz(z) = P (z) + |z|aT (z)

with P ∈ Cdae [X] and T = O(|z|1−
2
p
−υ

) for all υ > 0. Here dae is the upper integral part
of a. More precisely one has∥∥∥∥∥ T

|z|1−
2
p
−υ

∥∥∥∥∥
L∞(D)

≤ Cυ

(∥∥∥∥ µ

|z|a

∥∥∥∥
L∞(D)

‖f‖Lp(D) + ‖u‖C1(∂D)

)
.

Additionally if µ ∈ C1 (D\{0}), a 6= 0 and

∇µ(z) = O
(
|z|a−1

)
Then :

uzz(z) = Pz + |z|aQ

with Q ∈ Lp′ (D) for all p′ < p and

‖Q‖Lp′ (D) ≤ Cp′
((∥∥∥∥ µ

|z|a

∥∥∥∥
L∞(D)

+

∥∥∥∥ ∇µ|z|a−1

∥∥∥∥
L∞(D)

)
‖f‖Lp(D) + ‖u‖C1(∂D)

)
.

In fact Q =
(|z|aT (z))z
|z|a .
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Proof. The proof is the same as in theorem A.3.8, if a is not an integer we simply split the
terms in the sums at dae, and we do not have to treat the a + 1 term separately in that
case (as we did in (A.3.84)).

Given the nature of the bubbling phenomena, we will need a version of such theorems
with sliding weights : χ =

√
ε2 + r2. The parameter ε will represent the concentration

speed.

Theorem A.3.10. Let (uε)ε>0 ∈ C2 (D\{0}) solve

∆uε(z) = χaf ε(z) in D,

with f ε ∈ Lp (D) for 2 ≤ p ≤ ∞, a ∈ R and χ :=
√
ε2 + r2. Then

uεz(z) = P ε(z) + χaT ε(z)

with P ε ∈ Cdae [X] and T ε = O(χ
1− 2

p
−υ

) for all υ > 0. Here dae is the upper integral part
of a. More precisely one has∥∥∥∥∥ T ε

χ
1− 2

p
−υ

∥∥∥∥∥
L∞(D)

≤ Cυ
(
‖f ε‖Lp(D) + ‖uε‖C1(∂D)

)
.

Additionally :

uεzz(z) = P εz + χaQε

with Qε ∈ Lp′ (D) for all p′ < p and

‖Qε‖Lp′ (D) ≤ Cp′
(
‖f ε‖Lp(D) + ‖uε‖C1(∂D)

)
.

In fact Qε =
(χaT ε(z))z

χa .

Proof. We �rst state that for all a ∈ R+, there exists Ca ∈ R∗+ such that

1

Ca
≤ εa + ra

χa
≤ Ca. (A.3.93)

Here Ca depends solely on a, and not on ε or r.
We then write

∆uε = (εa + ra)
χa

εa + ra
f ε = (εa + ra) f̃ ε,

where f̃ ε = χa

εa+ra f
ε satis�es, thanks to (A.3.93),∥∥∥f̃ ε∥∥∥

Lp(D)
≤ Ca ‖f ε‖Lp(D). (A.3.94)

We can then use Green's formula to write

uεz(z) =
1

2π

∫
∂D

(
z̄ − x̄
|z − x|2

∂νu
ε(x)− uε(x)∂

z̄ − x̄
|z − x|2

)
dσ(x)

− 1

2π

∫
D

z̄ − x̄
|z − x|2

(εa + ra) f̃ ε(x)dx

=
1

2π

∫
∂D

(
z̄ − x̄
|z − x|2

∂νu
ε(x)− uε(x)∂

z̄ − x̄
|z − x|2

)
dσ(x)

− 1

2π

∫
D

z̄ − x̄
|z − x|2

εaf̃ ε(x)dx− 1

2π

∫
D

z̄ − x̄
|z − x|2

raf̃ ε(x)dx

= Iε0(z) + Iε1(z) + Iε2(z).

(A.3.95)
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We can then successively estimate the three terms as in the proof of theorem A.3.9 and
write

Iε0(z) = P ε0 (z) + zdae+1T ε0 , (A.3.96)

where P ε0 is a polynomial of degree at most dae and whose coe�cients are bounded by
‖uε‖C1(∂D), and

‖T ε0 ‖L∞(D) ≤ C ‖u
ε‖C1(D) .

Working as for (A.3.86) we write

Iε1(z) = Cε + εaT ε1 (z)

Iε2(z) = P ε2 + raT ε2 (z)
(A.3.97)

where Cε is a constant and P ε2 a polynomial of degree at most dae, both bounded by
‖uε‖C1(∂D), while ∥∥∥∥ T ε1

r
1− 2

p
−υ

∥∥∥∥
L∞(D)

≤ Cυ
(∥∥∥f̃ ε∥∥∥

Lp(D)
+ ‖uε‖C1(D)

)
∥∥∥∥ T ε2

r
1− 2

p
−υ

∥∥∥∥
L∞(D)

≤ Cυ
(∥∥∥f̃ ε∥∥∥

Lp(D)
+ ‖uε‖C1(D)

)
.

In the end, combining (A.3.96) and (A.3.97) yields

uεz = P ε + εaT ε1 + raT ε3 , (A.3.98)

where P ε is a polynomial of degree at most dae, T ε1 is as previously stated and T ε3 still
satis�es ∥∥∥∥ T ε3

r
1− 2

p
−υ

∥∥∥∥
L∞(D)

≤ Cυ
(∥∥∥f̃ ε∥∥∥

Lp(D)
+ ‖uε‖C1(D)

)
.

Proceeding similarly then ensures that

uεzz = P εz + εaQε1 + raQε2, (A.3.99)

where Qε1 = T ε1, z and Q
ε
2 =

(raT ε3 )
z

ra satisfy for all p′ < p

‖Qε1‖Lp′ (D) ≤ Cp′
(∥∥∥f̃ ε∥∥∥

Lp(D)
+ ‖uε‖C1(∂D)

)
,

‖Qε3‖Lp′ (D) ≤ Cp′
(∥∥∥f̃ ε∥∥∥

Lp(D)
+ ‖uε‖C1(∂D)

)
.

Let us notice that the estimate on Qε1 is not stricto sensu derived from the proof of theorem
A.3.9, but from similar classical Calderon-Zygmund estimates.

From (A.3.98), we write uεz = P ε + χaT ε with

T ε =
εa

χa
T ε1 +

ra

χa
T ε3
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which then satis�es∥∥∥∥∥ T ε

χ
1− 2

p
−υ

∥∥∥∥∥
L∞(D)

≤
∥∥∥∥ εaχa

∥∥∥∥
L∞(D)

∥∥∥∥∥ T ε1

χ
1− 2

p
−υ

∥∥∥∥∥
L∞(D)

+

∥∥∥∥ raχa
∥∥∥∥
L∞(D)

∥∥∥∥∥ T ε3

χ
1− 2

p
−υ

∥∥∥∥∥
L∞(D)

≤
∥∥∥∥ εaχa

∥∥∥∥
L∞(D)

∥∥∥∥ T ε1

r
1− 2

p
−υ

∥∥∥∥
L∞(D)

∥∥∥∥∥ r1− 2
p
−υ

χ
1− 2

p
−υ

∥∥∥∥∥
L∞(D)

+

∥∥∥∥ raχa
∥∥∥∥
L∞(D)

∥∥∥∥ T ε3

r
1− 2

p
−υ

∥∥∥∥
L∞(D)

∥∥∥∥∥ r1− 2
p
−υ

χ
1− 2

p
−υ

∥∥∥∥∥
L∞(D)

≤ Cυ
(∥∥∥f̃ ε∥∥∥

Lp(D)
+ ‖uε‖C1(D)

)
,

(A.3.100)

using lemma A.3.1.
From (A.3.99) we write uεzz = P εz + χaQε with

Qε =
εa

χa
Qε1 +

ra

χa
Qε3 =

(χaT ε)z
χa

which then satis�es

‖Qε‖Lp′ (D) ≤
∥∥∥∥ εaχa

∥∥∥∥
L∞(D)

‖Qε1‖Lp′ (D) +

∥∥∥∥ raχa
∥∥∥∥
L∞(D)

‖Qε3‖Lp′ (D)

≤ Cp′
(∥∥∥f̃ ε∥∥∥

Lp(D)
+ ‖uε‖C1(D)

)
,

(A.3.101)

using lemma A.3.1.

Remark A.3.3. We must point out that the expansion o�ered by theorem A.3.10 is by
no means unique. Indeed if for instance uz = P ε + χmT ε, then one could readily write

uz = P ε + εm+1 + χm
(
T ε +

εm+1

χm

)
with T ε + εm+1

χm still satisfying (A.3.100).

We give here a small lemma which can help one to understand the essence of χ :

Lemma A.3.1. For all a,b ∈ R+, there exists a constant Ca,b such that

εarb

χa+b
≤ Ca,b.

Theorem A.3.10 can be applied several times to prove an increased regularity on the
higher order terms :

Lemma A.3.2. Let uε ∈ C2 (D\{0}) such that

∆uε = χaf ε,

with f ε ∈ L∞ and
∆ (∇uε) = χa−1gε,

with gε ∈ Lp. Then
uεz = P ε + µε,
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where P ε is a complex polynomial of degree at most dae, and µε such that

|µε|
χa+1−υ +

|∇µε|

χ
a− 2

p
−υ
≤ Cυ

(
‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
,

and ∥∥∥∥∇2µε

χa−1

∥∥∥∥
Lp′ (D)

≤ Cp′
(
‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
.

Proof. We apply theorem A.3.10 twice and decompose uz and (uz)z :

uεz = P ε1 + µε1

(uεz)z = P ε2 + µε2,
(A.3.102)

where

|µε1|
χa+1−υ +

|µε2|

χ
a− 2

p
−υ
≤ Cυ

(
‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
∥∥∥∥∇µε1χa

∥∥∥∥
Lp
′
1 (D)

+

∥∥∥∥∇µε2χa−1

∥∥∥∥
Lp
′
2 (D)

≤ Cp′1,p′2
(
‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
,

(A.3.103)
for all p′1 <∞ and p′2 < p. We then enjoy two expressions for uzz :

uzz = P ε1, z + µε1, z = P ε2 + µε2.

Consequently,
P ε1, z − P ε2 = µε2 − µε1, z,

which in turn, combined with (A.3.103), implies that∫
D

∣∣∣∣P ε1, z − P ε2χa

∣∣∣∣s dz ≤ Cs (‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
,

for all s <∞. We decompose

P ε1, z − P ε2 =

bac∑
q=0

pεqz
q,

and can state for a given R0 > 0∫
DεR0

∣∣∣∣∣
∑bac

q=0 p
ε
qz
q

χa

∣∣∣∣∣
s

dz ≤
∫
D

∣∣∣∣∣
∑bac

q=0 p
ε
qz
q

χa

∣∣∣∣∣
p

≤ Cs
(
‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
.

Changing variables yields

∫
DR0

∣∣∣∣∣∣∣
∑bac

q=0
pεq

ε
a−q− 2

p
zq

√
1 + r2a

∣∣∣∣∣∣∣
s

dz ≤ Cs
(
‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
.

And since on DR0 ,
1

1+r2 ≥ 1
1+R2

0
, we deduce

∫
DR0

∣∣∣∣∣∣
bac∑
q=0

pεq

ε
a−q− 2

p

zq

∣∣∣∣∣∣
s

dz ≤ Cs,R0

(
‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
. (A.3.104)
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It is now important to notice that the left-hand term in (A.3.104) is in fact a polynomial
in R0, which is uniformly bounded in ε on compacts of C. All its coe�cients are thus
uniformly bounded in ε, and straightforward computations then yield :

∀s <∞ ∀j ≤ bac ∀ε > 0

∣∣∣∣ pεq

εa−q−
2
s

∣∣∣∣ ≤ Cs (‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
which thanks to lemma A.3.1 translates on P ε1, z − P ε2 as

∀s <∞

∣∣∣∣∣P ε1, z − P ε2χa−
2
s

∣∣∣∣∣ ≤ Cs (‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
, (A.3.105)

and

∀s <∞

∣∣∣∣∣
(
P ε1, z − P ε2

)
z

χa−
2
s
−1

∣∣∣∣∣ ≤ Cs (‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
. (A.3.106)

Now since µε1, z = µε2 −
(
P ε1, z − P ε2

)
we can combine (A.3.103) and (A.3.105) to �nd for all

υ > 0 ∣∣∣∣∣ µε1 z

χ
a− 2

p
−υ

∣∣∣∣∣ ≤ Cυ (‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
. (A.3.107)

Further since µε1 zz = µε2 z −
(
P ε1, z − P ε2

)
z
, (A.3.103) and (A.3.106) yield for all p′ < p :∥∥∥∥µε1 zzχa−1

∥∥∥∥
Lp′ (D)

≤ Cp′
(
‖f ε‖L∞(D) + ‖gε‖Lp(D) + ‖uε‖C2(∂D)

)
. (A.3.108)

Applying similarly theorem A.3.10 to uεz̄ yields controls akin to (A.3.107) and (A.3.108)
on the missing terms in the gradient and the Hessian, which concludes the proof.

A cautious reader might have noticed that we have additionnaly shown the following
lemma :

Lemma A.3.3. Let u ∈ N, v ≥ u and P ε =
∑u

j=0 p
ε
jz
j ∈ Cu[X] such that

∀p <∞ P ε

χv
∈ Lp.

Then

∀ν > 0 ∀j ≤ u
∣∣∣∣ pεj
εv−j−ν

∣∣∣∣ ≤ Cν .
We will also use a corresponding result for polynomials in z and z̄ :

Lemma A.3.4. Let u ∈ N, v ≥ u and P ε =
∑u

i+j=0 p
ε
i,jz

iz̄j such that

∀p <∞ P ε

χv
≤ C.

Then

∀ν > 0 ∀i+ j ≤ u
∣∣∣∣ pεi,j
εv−i−j

∣∣∣∣ ≤ Cν .
Applying lemma A.3.2 several times yields :
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Corollary A.3.3. Let uε ∈ C2 (D\{0}) such that, for a ≥ t

∆uε = χaf ε0 ,

∆∇uε = χa−1f ε1

. . .

∆∇tuε = χa−tf εt

with f εj ∈ L∞ (D) for j ≤ t− 1 and f εt ∈ Lp (D). Then

uεz = P ε + µε,

where P ε is a complex polynomial of degree at most dae, and µε such that

|µε|
χa+1−υ +

|∇µε|
χa−υ

+ · · ·+
∣∣∇tµε∣∣

χ
a+1−t− 2

p
−υ
≤ Cυ

 t∑
q=0

∥∥f εq∥∥L∞(D)
+ ‖uε‖Ct+1(∂D)

 ,

and ∥∥∥∥∇t+1µε

χa−t

∥∥∥∥
Lp′ (D)

≤ Cp′

 t∑
q=0

∥∥f εq∥∥L∞(D)
+ ‖uε‖Ct+1(∂D)

 .

Proof. The proof is a recurrence whose initialization is theorem A.3.10 and whose heredity
is obtained by applying lemma is A.3.2 to the ∇suε.
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