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Résumé

Résumé

Cette thèse est consacrée au développement et à l’utilisation d’outils catégoriques pour
l’étude des algèbres amassées de S. Fomin et A. Zelevinsky. La catégorie amassée géné-
ralisée de C. Amiot est une catégorie triangulée ayant été utilisée, dans le cas où elle est
Hom-finie, pour catégorifier certaines algèbres amassées au moyen de caractères amassés
au sens de Y. Palu. Dans cette thèse, nous généralisons les méthodes connues au cas où
la catégorie amassée n’est pas Hom-finie, obtenant ainsi une catégorification de toute al-
gèbre amassée antisymétrique. Pour ce faire, nous nous restreignons à une sous-catégorie
de la catégorie amassée qui est stable par mutation et possède une propriété analogue à la
condition 2-Calabi–Yau. Nous prouvons l’existence d’un caractère amassé sur cette sous-
catégorie. Nous utilisons ensuite ces outils pour interpréter la combinatoire des algèbres
amassées au moyen de la catégorie amassée. Notamment, nous démontrons une corres-
pondance entre les g-vecteurs et les indices, donnons une interprétation des F -polynômes,
et prouvons que les définitions de mutation dans l’algèbre et dans la catégorie sont cohé-
rentes entre elles. Ces propriétés nous permettent de donner une nouvelle démonstration
à de nombreuses conjectures pour les algèbres amassées antisymétriques. Finalement, en
nous inspirant d’un travail récent de C. Geiss, B. Leclerc et J. Schröer, nous montrons
comment l’ensemble des indices, en bijection avec l’ensemble des g-vecteurs, permet la
construction d’une base de certaines algèbres amassées. Nous expliquons pourquoi cette
construction fournit un bon candidat pour l’obtention d’une base de l’algèbre amassée
supérieure en général.

Mots-clefs

Catégories triangulées, Catégories amassées, Algèbres amassées.
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Cluster categories with infinite-dimensional morphism
spaces, applications

Abstract

This thesis is concerned with the development and application of categorical tools in
the study of the cluster algebras of S. Fomin and A. Zelevinsky. C. Amiot’s generalized
cluster category is a triangulated category which has been used, in the case where it is
Hom-finite, to categorify a certain class of cluster algebras, using cluster characters in the
sense of Y. Palu. In this thesis, we generalize these results to the case where the cluster
category is not Hom-finite, thus obtaining a categorification of any skew-symmetric cluster
algebra. In order to do so, we restrict ourselves to a subcategory of the cluster category
which is stable under mutation and satisfies an analogue of the 2-Calabi–Yau condition.
We prove the existence of a cluster character on this subcategory. We then use these tools
to interpret the combinatorics of cluster algebras inside the cluster category. In particular,
we prove a correspondence between g-vectors and indices, provide an interpretation of F -
polynomials, and show that the definition of mutation in the algebra and in the category
are consistent with each other. These properties allow us to give new proofs of numerous
conjectures for skew-symmetric cluster algebras. Finally, starting from recent work by
C. Geiss, B. Leclerc and J. Schröer, we show how the set of indices parametrizes a basis
for a class of cluster algebras. We then show that this construction provides us with a
good candidate for a basis of the upper cluster algebra in general.

Keywords

Triangulated categories, Cluster categories, Cluster algebras.
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Chapitre 1

Préliminaires

1.1 Algèbres amassées

Dans leur article [29] publié en 2002, S. Fomin et A. Zelevinsky introduisent la notion
d’algèbre amassée. Ils espèrent ainsi fournir un cadre combinatoire pour l’étude de la
positivité totale dans les variétés algébriques, d’après G. Lusztig [64], et la construction
de bases canoniques pour les groupes quantiques, d’après M. Kashiwara [49] et G. Lusztig
[63]. Malgré l’apparition relativement récente des algèbres amassées dans la littérature,
une quantité surprenante de domaines des mathématiques leur sont aujourd’hui liés. Le
lecteur intéressé se voit offrir un vaste choix d’articles proposant un tour d’horizon ce cette
théorie et de ses applications ; citons ici [75] [40] [50] [28] [62] [71] et [1].

Dans cette section, nous définirons la notion d’algèbre amassée (ou, selon la termi-
nologie de [31], d’algèbre amassée avec coefficients de type géométrique), énoncerons des
propriétés fondamentales, puis mentionnerons quelques exemples.

1.1.1 Mutation

Un carquois Q est un graphe orienté ; on écrit Q = (Q0, Q1, s, t), où Q0 est l’ensemble
des sommets du carquois, Q1 est l’ensemble de ses flèches, et s (ou t) est l’application
associant à chaque flèche sa source (ou son but). Un carquois est fini s’il ne possède qu’un
nombre fini de sommets et de flèches.

Définition 1.1.1. Soit Q un carquois fini sans cycles orientés de longueur ≤ 2, et soit i
un de ses sommets. La mutation de Q en i est le carquois µi(Q) construit à partir de Q
comme suit :

1. pour chaque sous-carquois j
a // i

b // ` , ajouter une flèche j
[ba] // ` ;

2. remplacer chaque flèche a ayant i comme source ou but par une flèche a∗ allant dans
le sens opposé ;

3. retirer toutes les flèches d’un ensemble maximal de cycles de longueur 2 disjoints
deux à deux.

Exemple 1.1.2. Le diagramme ci-dessous donne le résultat d’une mutation au sommet
2 d’un carquois.

Q = 1 // 2

��

µ2(Q) = 1

��<<<<<<<< 2oo

4

OO

3oo 4

OO

3oo

OO
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Exemple 1.1.3. Soit Q le carquois ci-dessous.

2

��>>>>>>>>

1

@@��������
3ks

Alors tout carquois obtenu par mutations successives de Q est une rotation de l’un des
quatre carquois

•

��@@@@@@@ •

��~~~~~~~
•

��~~~~~~~
•

•

??~~~~~~~
•ks • +3 •

__@@@@@@@
• •oo

__@@@@@@@
•

??~~~~~~~
•.oo

``AAAAAAAA

Le lecteur souhaitant expérimenter davantage avec l’opération de mutation trouvera
sur la page personnelle de B. Keller un programme [53] offrant cette possibilité.

Remarque 1.1.4. La mutation en un sommet est une involution : µ2
i (Q) = Q.

Nous avons défini la mutation, qui est l’opération combinatoire à la base de la définition
des algèbres amassées. Nous aurons à considérer des carquois et leurs mutations successives.
Cependant, il nous faudra interdire la mutation en certains sommets ; ceci nous mène à la
définition de carquois glacé, d’après [32].

Définition 1.1.5. Un carquois glacé est un couple (Q,F ), où Q est un carquois fini sans
cycles orientés de longueur ≤ 2 et F est un ensemble de sommets de Q, appelés sommets
gelés de Q.

La mutation des carquois glacés est définie comme celle des carquois non glacés, à
l’exception du fait que la mutation en un sommet gelé sera toujours une opération interdite.
La mutation d’un carquois glacé préserve l’ensemble F des sommets gelés. Lorsque F est
vide, on écrit Q au lieu de (Q,F ).

1.1.2 Graines

Définition 1.1.6. Une graine est un couple
(
(Q,F ), u

)
, où (Q,F ) est un carquois glacé,

et u = {u1, . . . , un} est une famille libre et génératrice du corps Q(x1, . . . , xn).

Soit
(
(Q,F ), u

)
une graine, et soit i un sommet non gelé de Q. La mutation de la graine(

(Q,F ), u
)
en i est la graine µi

(
(Q,F ), u

)
=
(
(Q′, F ′), u′

)
, où

– l’ensemble des sommets gelés F ′ est égal à F ,
– le carquois Q′ est la mutation de Q au sommet i, et
– l’ensemble u′ est obtenu à partir de u en remplaçant l’élément ui par un élément u′i
vérifiant la relation d’échange ci-dessous :

uiu
′
i =

∏
s(a)=i

ut(a) +
∏
t(a)=i

us(a).

La graine initiale associée à un carquois glacé (Q,F ) est la graine
(
(Q,F ), {x1, . . . , xn}

)
.

Remarque 1.1.7. La mutation des graines en un sommet est une involution.
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Exemple 1.1.8. Le diagramme ci-dessous donne le résultat d’une mutation au sommet
2 d’une graine.

Q = 1 // 2

��

µ2(Q) = 1

��<<<<<<<< 2oo

4

OO

3oo 4

OO

3oo

OO

u = {x1, x2, x3, x4} u′ = {x1,
x1+x3
x2

, x3, x4}

1.1.3 Algèbres amassées

Définition 1.1.9. Soit (Q,F ) un carquois glacé. On numérote de 1 à n les sommets de
Q, et de r + 1 à n les sommets gelés.

– Les éléments xr+1, . . . , xn de Q(x1, . . . , xn) sont les coefficients.
– Les ensembles u dans les graines

(
(R,F ), u

)
obtenues par mutations successives de

la graine initiale associée à (Q,F ) sont les amas.
– Les éléments des amas qui ne sont pas des coefficients sont les variables d’amas.
– La Q-sous-algèbre AQ,F de Q(x1, . . . , xn) engendrée par les variables d’amas et les
coefficients est l’algèbre amassée (avec coefficients, de type géométrique) associée à
(Q,F ).

De nombreux exemples d’algèbres amassées sont connus et peuvent être trouvés dans
l’une des références mentionnées au premier paragraphe de ce chapitre. Une importante
classe d’exemples est donnée par les anneaux de coordonnées de sous-groupes unipotents
maximaux d’un groupe algébrique semi-simple complexe, voir [5].

Une propriété fondamentale des variables d’amas de toute algèbre amassée est le phé-
nomène de Laurent.

Théorème 1.1.10 ([29], Théorème 3.1). Soit AQ,F l’algèbre amassée associée à un car-
quois glacé (Q,F ), et soit u = {u1, . . . , un} un amas quelconque de AQ,F . Alors toute va-
riable d’amas de AQ,F est un polynôme de Laurent à coefficients entiers en les u1, . . . , un.

Conjecture 1.1.11 ([29]). Avec les notations du Théorème 1.1.10, toute variable d’amas
est un polynôme de Laurent à coefficients entiers positifs en les u1, . . . , un.

On ignore à ce jour si cette conjecture est vraie.
Une des motivations principales pour la création des algèbres amassées est l’étude des

bases canoniques de M. Kashiwara et G. Lusztig. Dès leur premier article [29] sur le sujet,
S. Fomin et A. Zelevinsky conjecturent que les monômes d’amas, c’est-à-dire les monômes
ayant pour facteurs des variables d’amas issues d’un même amas, font partie d’une base de
l’algèbre amassée. Cette conjecture est confirmée pour une grande classe d’exemples par
des résultats de C. Geiss, B. Leclerc et J. Schröer [35]. Nous montrons dans cette thèse
(voir le Théorème 4.3.7 (2)) que les monômes d’amas d’une algèbre amassée avec assez
de coefficients sont toujours linéairement indépendants, même s’ils ne suffisent pas à en
former une base.

1.2 Catégories triangulées

Dans cette section, nous rappelons les définitions de catégories triangulées, catégories
dérivées et foncteurs dérivés, que nous utiliserons dans cette thèse.
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1.2.1 Définition des catégories triangulées

Définition 1.2.1 ([74]). Soit k un anneau commutatif. Une catégorie triangulée sur k est
une k-catégorie additive T munie

– d’un automorphisme de k-catégories Σ : T → T , appelé foncteur de suspension, et

– d’une collection de triplets de morphismes X
f // Y

g // Z
h // ΣX , appelés

triangles,
de telle sorte que les axiomes (TR1) à (TR4) soient vérifiés.

Un peu de terminologie supplémentaire est nécessaire pour énoncer les axiomes. Soient

X
f // Y

g // Z
h // ΣX et X ′

f ′ // Y ′
g′ // Z ′

h′ // ΣX ′ deux triangles de T . Un
morphisme de triangles du premier vers le second est la donnée de trois morphismes
X

a // X ′ , Y b // Y ′ et Z
c // Z ′ de T tels que le diagramme

X
f //

a
��

Y
g //

b
��

Z
h //

c
��

ΣX

Σa
��

X ′
f ′ // Y ′

g′ // Z ′
h′ // ΣX ′

soit commutatif. Un isomorphisme de triangles est un morphisme de triangles admettant
un inverse.

Soit n un entier, et soient X et Y deux objets de T . Un morphisme de degré n de X
vers Y est un morphisme de X vers ΣnY .

Nous pouvons maintenant énoncer les axiomes (TR1) à (TR4).
(TR1) – Tout triplet de morphismes isomorphe à un triangle est un triangle.

– Pour tout morphisme X
f // Y de T , il existe un triangle contenant f , c’est-à-

dire un triangle X
f // Y

g // Z
h // ΣX .

– Pour tout objet X de T , X idX // X // 0 // ΣX est un triangle.

(TR2) Le triplet X f // Y
g // Z

h // ΣX est un triangle si, et seulement si, le triplet

Y
g // Z

h // ΣX −Σf // ΣY en est un.

(TR3) Soient X
f // Y

g // Z
h // ΣX et X ′

f ′ // Y ′
g′ // Z ′

h′ // ΣX ′ deux tri-
angles. Tout couple (a, b) de morphismes tels que bf = f ′a se complète en un mor-
phisme

X
f //

a
��

Y
g //

b
��

Z
h //

c
��

ΣX

Σa
��

X ′
f ′ // Y ′

g′ // Z ′
h′ // ΣX ′

de triangles.
(TR4) (Axiome de l’octaèdre) Soient

X
u // Y

i // Z ′
j // ΣX

Y
v // Z

i′ // X ′
j′ // ΣY

X
vu // Z

i′′ // Y ′
j′′ // ΣX

trois triangles. Il existe deux morphismes Z ′
f // Y ′ et Y ′

g // X ′ tels que
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– Z ′
f // Y ′

g // X ′
(Σi)j′// ΣZ ′ soit un triangle,

– j′′ ◦ f = j et g ◦ i′′ = i′, et
– f ◦ i = i′′ ◦ v et (Σu) ◦ j′′ = j′ ◦ g.

L’axiome (TR4) est avantageusement représenté par un octaèdre
Y ′

X Z

Z ′

Y

X ′

+��������

j′′

		��������
i′′

aaCCCCCCCCCCCCCCCCCCCCCCCC

f

::ttttttttttttttttttttt

g

��

vu //
+VVVVVV

j **VVVVVV

u

��/
/////////

v

88qqqqqqqqqqqqqqqqqqqqq

i′
jj

i

ccGGGGGGGGGGGGGGGGGGGGGG

(Σi)j′
+oo

j′+

		

dont quatre des faces sont des diagrammes commutatifs, quatre des faces sont des
triangles, et dont les deux grands carrés reliant la base et le sommet sont commutatifs. La
notation A + // B désigne un morphisme de degré 1 de A vers B.

Définition 1.2.2. Soient T et T ′ deux catégories triangulées. Un foncteur triangulé de
T vers T ′ est la donnée d’un foncteur k-additif F : T → T ′ et d’un isomorphisme de

foncteurs Φ : FΣ → ΣF tels que si X
f // Y

g // Z
h // ΣX est un triangle de T ,

alors
FX

Ff // FY
Fg // FZ

ΦX◦Fh // ΣFX
est un triangle de T ′.

1.2.2 Quotients triangulés

Soit T une catégorie triangulée, et soit N une sous-catégorie triangulée pleine, stricte
(c’est-à-dire stable par isomorphismes) et épaisse (c’est-à-dire stable sous l’action de
prendre des facteurs directs) de T .

Proposition 1.2.3 ([74]). Il existe une catégorie triangulée T /N et un foncteur triangulé
Q : T → T /N tels que tous les objets de N soient envoyés vers l’objet nul par Q, et pour
tout foncteur triangulé F : T → T ′ envoyant les objets de N vers l’objet nul, il existe un
unique foncteur triangulé F ′ : T /N → T ′ tel que F ′ ◦Q = F , comme sur le diagramme :

T Q //

F !!DDDDDDDD T /N

F ′

��
T ′.

On peut construire la catégorie T /N comme suit. Les objets de T /N sont ceux de
T . Soient X et Y deux objets de T /N . Les morphismes de X vers Y sont les classes
d’équivalences de diagrammes de la forme

X ′

s

~~}}}}}}}}
f

  AAAAAAAA

X Y,
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où s et f sont des morphismes de T , et s est contenu dans un triangle

X ′
s // X // N // ΣX ′ ,

où N est un objet de N . Ces diagrammes sont soumis à la relation d’équivalence suivante :

X ′

s

~~||||||||
f

  AAAAAAAA X ′′

s′

}}||||||||
f ′

!!BBBBBBBB

X Y et X Y

sont équivalents s’il existe un troisième tel diagramme

X ′′′

s′′

}}||||||||
f ′′

!!BBBBBBBB

X Y,

et un diagramme commutatif
X ′

s

}}{{{{{{{{
f

!!CCCCCCCC

X X ′′′
s′′oo

OO

��

f ′′ // Y

X ′′.
s′

aaCCCCCCCC f ′

=={{{{{{{{

La composition de deux morphismes

X ′

s

~~||||||||
f

  AAAAAAAA Y ′

t

~~}}}}}}}}
g

  AAAAAAAA

X Y et Y Z

se calcule comme suit. Il existe un diagramme commutatif comme ci-dessous, où les lignes
sont des triangles et N est un objet de N :

W
u //

h
��

X ′ //

f
��

N // ΣW

Σh
��

Y ′
t // Y // N // ΣY ′.

On obtient alors un diagramme commutatif

W
u

}}||||||||
h

  BBBBBBBB

X ′

s

~~||||||||
f

!!BBBBBBBB Y ′

t

~~||||||||
g

  AAAAAAAA

X Y Z.

On vérifie que le diagramme
W

su

~~||||||||
gh

  AAAAAAAA

X Z
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est un morphisme dans T /N ; c’est la composition des deux morphismes de départ. Ceci
confère à T /N une structure de catégorie triangulée, dont les triangles sont les triplets
de morphismes A // B // C // ΣA isomorphes à l’image d’un triangle de T par
le foncteur canonique Q : T → T /N envoyant chaque objet sur lui-même et chaque
morphisme f : X → Y sur

X
idX

~~}}}}}}}}
f

  AAAAAAAA

X Y.

De plus le foncteur Q satisfait aux hypothèse de la proposition 1.2.3.
Une grande classe d’exemples de quotients triangulés est donnée par les catégories

dérivées, comme nous le verrons dans la prochaine section.

1.3 Catégorie dérivée d’une algèbre différentielle graduée

Dans cette thèse, un exemple essentiel de catégorie triangulée est donné par la catégorie
dérivée d’une algèbre différentielle graduée. Notre référence principale pour cette section
est l’article [54] de B. Keller. Nous fixons un anneau commutatif k pour toute la section.

Définition 1.3.1. Une algèbre différentielle graduée (ou algèbre dg pour simplifier) est une
k-algèbre graduée A =

⊕
i∈ZA

i munie d’une application k-linéaire homogène d : A → A
de degré 1, appelée différentielle, telle que

∀a ∈ Ai,∀b ∈ A, d(ab) = d(a)b+ (−1)iad(b),

et telle que d ◦ d = 0.

Toute k-algèbre est une algèbre dg concentrée en degré 0. Toute k-algèbre graduée est
une algèbre dg de différentielle nulle. La cohomologie d’une algèbre dg A est définie en
chaque degré par

H i(A) = Ker di

Im di−1

Définition 1.3.2. Soit A une k-algèbre dg. Un A-module différentiel gradué (ou A-module
dg pour simplifier) est un A-module gradué à droite M = ⊕i∈ZM i muni d’une application
k-linéaire homogène d : M →M de degré 1, appelée différentielle, telle que

∀a ∈ A,∀m ∈M i, d(ma) = d(m)a+ (−1)imd(a),

et telle que d ◦ d = 0.

Les modules dg sur une algèbre A concentrée en degré 0 sont les complexes de A-
modules dont la différentielle est A-linéaire. La cohomologie des modules dg est définie
comme pour celle des algèbres dg.

Nous allons définir plusieurs catégories ayant pour objets les modules dg sur une algèbre
dg A donnée. La définition finale sera celle de la catégorie dérivée de A.

Définition 1.3.3. Soient M et N deux A-modules dg. Le k-module dg HomA(M,N) est
défini ainsi :

– pour chaque entier i, HomA(M,N)i est le sous-ensemble de
∏
n∈Z Homk(Mn, Nn+i)

dont les éléments sont les (fn)n∈Z tels que

∀a ∈ Aj ,∀m ∈M i, fj(m)a = fj+i(ma);
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– la différentielle de HomA(M,N) est définie par

∀f ∈ HomA(M,N)i, d(f) = dN ◦ f − (−1)if ◦ dM .

Remarquons que le noyau de d0, que l’on désigne par Z0(HomA(M,N)), est exac-
tement l’ensemble des applications A-linéaires homogènes de degré 0 de M vers N qui
commutent avec les différentielles. Notons également que l’homologie en degré 0, désignée
par H0(HomA(M,N)), est exactement le quotient de Z0(HomA(M,N)) par la relation
d’homotopie (deux morphismes A-linéaires f et g de degré 0 de M vers N sont homotopes
s’il existe un morphisme A-linéaire s de degré −1 tel que dN ◦ s+ s ◦ dM = f − g).

Définition 1.3.4. Soit A une k-algèbre dg. La catégorie des A-modules dg est la k-
catégorie CA dont les objets sont les A-modules dg et dont l’ensemble de morphismes
de M vers N est donné par Z0(HomA(M,N)), pour tous A-modules dg M et N . La
catégorie d’homotopie de A est la catégorie HA définie de façon similaire, où les ensembles
de morphismes sont donnés par H0(HomA(M,N)).

Tout morphisme de Z0(HomA(M,N)) induit naturellement un morphisme en coho-
mologie H i(M) → H i(N) pour tout entier i. Deux morphismes homotopes induisent les
mêmes morphismes en cohomologie ; on peut donc dire que les morphismes pris dans
H0(HomA(M,N)) induisent les morphismes en cohomologie. Un quasi-isomorphisme est
un morphisme de HA qui induit des isomorphismes en cohomologie en chaque degré.

La définition de la catégorie dérivée de A repose sur le fait que la catégorie HA est
triangulée (son foncteur de suspension étant le décalage habituel des complexes), et que
les objets N tels qu’il existe un triangle

X
s // Y // N // ΣX

où s est un quasi-isomorphisme forment une sous-catégorie triangulée pleine, stricte et
épaisse N de HA. Ces objets N sont caractérisés par le fait que leur cohomologie est nulle
en chaque degré.

Définition 1.3.5. Soit A une k-algèbre dg. Sa catégorie dérivée est le quotient triangulé

DA = HA/N .

Dans cette thèse, nous utiliserons des quotients triangulés de sous-catégories de DA.

1.4 Foncteurs dérivés

Il s’avère souvent nécessaire de savoir construire des foncteurs entre catégories dérivées.
Nous présentons ici une méthode pour le faire. Nos principales références pour cette section
sont [54] et [55].

Soient A et B deux k-algèbres dg. Soit M un B-A-bimodule dg, c’est-à-dire un B-A-
bimodule gradué M = ⊕i∈ZM i muni d’une différentielle d faisant de M un A-module dg
à droite et un B-module dg à gauche tel que

∀a ∈ A,∀b ∈ B, ∀m ∈M, (bm)a = b(ma).

Ce bimodule donne naissance à deux foncteurs

CA
HomA(M,?) // CB.

?⊗BM
oo
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Pour tout A-module dgX, le B-module dgHomA(M, ?) est défini comme dans la définition
1.3.3 ; sa structure de B-module est déduite de celle de M . Pour tout B-module dg Y , le
A-module dg Y ⊗B M est le quotient du k-module dg Y ⊗kM défini comme suit :

– pour tout entier i, (Y ⊗kM)i =
⊕

j+`=i Y
j ⊗M ` ;

– la différentielle est donnée par d = dY ⊗ idM + idY ⊗ dM ,
par le sous-module dg engendré par les éléments de la forme y ⊗ bx− yb⊗ x, avec y ∈ Y ,
b ∈ B et x ∈ X.

Ces deux foncteurs forment une adjonction (? ⊗B M,HomA(M, ?)). On vérifie qu’ils
induisent des foncteurs

HA
HomA(M,?) // HB.

?⊗BM
oo

entre les catégories d’homotopie. Cependant, de manière générale, ils n’induisent pas de
foncteurs entre les catégories dérivées. Un outil pour résoudre ce problème est la notion
de remplacements fibrant et cofibrant.

Définition 1.4.1. 1. Un A-module dg P est cofibrant si, pour tout quasi-isomorphisme
s : X → Y qui est surjectif en chaque degré, on a que

HomCA(P,X) s∗ // HomCA(P, Y )

est surjectif.
2. Un A-module dg I est fibrant si, pour tout quasi-isomorphisme i : X → Y qui est

injectif en chaque degré, on a que

HomCA(Y, I) i∗ // HomCA(X, I)

est surjectif.

Proposition 1.4.2 ([54]). Le foncteur naturel HA → DA admet un adjoint à gauche p
et un adjoint à droite i tels que, pour tout objet M de DA,

– pM est cofibrant et iM est fibrant, et
– il existe des quasi-isomorphismes pM →M et M → iM .

L’objet pM de HA est un remplacement cofibrant de M , et l’objet iM est un rempla-
cement fibrant de M .

Définition 1.4.3. Soit M un B-A-bimodule dg.
– Le produit tensoriel dérivé à gauche est le foncteur ?⊗LBM donné par la composition

DB p // HB ?⊗BM // HA // DA.

– Le foncteur Hom dérivé à droite est le foncteur RHomA(M, ?) donné par la compo-
sition

DA i // HA
RHomA(M,?) // HB // DB.

Notons que ces deux définitions donnent une adjonction (? ⊗LB M,RHomA(M, ?)) de
foncteurs triangulés.





Chapter 2

Summary of results

This thesis takes part in the categorification of S. Fomin’s and A. Zelevinsky’s cluster
algebras by means of triangulated categories. The main contribution that it contains is
the study of the generalized cluster category of C. Amiot in the case when its morphism
spaces are of infinite dimension. In this chapter, we give a short summary of the main
results of this work.

The thesis is organized as follows. In Chapter 3, we study the cluster category in
the case where its morphism spaces are infinite-dimensional. We prove the existence of a
cluster character in the sense of Y. Palu. In Chapter 4, we apply the results thus obtained
to prove several conjectures of S. Fomin and A. Zelevinsky for any skew-symmetric cluster
algebra. In Chapter 5, we turn to the problem of the construction of generic bases for
cluster algebras by using our setup.

The results of Chapters 3 and 4 were published in [70] and [69], respectively. Those of
Chapter 5 were the subject of a short talk given at the Oberwolfach workshop Represen-
tation Theory of Quivers and Finite Dimensional Algebras.

2.1 Cluster categories with infinite-dimensional morphism
spaces

Let (Q,W ) be a quiver with potential in the sense of [22]. Then one can define
a differential graded algebra Γ from (Q,W ), called the complete Ginzburg dg algebra,
following [42]. Let DΓ be the derived category of Γ, per Γ be its perfect derived category,
and DfdΓ be the full subcategory of DΓ consisting of objects with finite-dimensional total
homology. Then, following [2], we define the (generalized) cluster category of (Q,W ) as
the triangulated quotient

CQ,W = per Γ/DfdΓ.

If (Q,W ) is Jacobi-finite, then it was proved in [2] that CQ,W has finite-dimensional
morphism spaces, that it is 2-Calabi–Yau (that is, we have bifunctorial isomorphisms
Ext1

C(X,Y ) ∼= DExt1
C(Y,X)) and that the object Γ is cluster-tilting (that is, it has no

self-extensions, and if Ext1
C(Γ, X) = 0, then X belongs to addΓ). However, none of these

properties hold if (Q,W ) is not Jacobi-finite.
The approach that we use to study the cluster categories with infinite-dimensional

morphism spaces is to restrict ourselves to subcategories of CQ,W .

Definition (Section 3.2.6). Let T be any triangulated category, and let T be an object of
T . Define prT T to be the full subcategory of T whose objects are those X such that there
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exists a triangle
T1 // T0 // X // ΣT1,

with T0 and T1 in addT .

Definition (3.3.9). The subcategory D of CQ,W is the full subcategory of prCΣ−1Γ∩ prCΓ
whose objects are those X such that Ext1

C(Γ, X) is finite-dimensional.

These subcategories allow us to recover the good properties that we had in the case
where (Q,W ) was Jacobi-finite.

Proposition (3.2.7). The subcategory prCΓ depends only on the mutation class of Γ.

Proposition (3.2.16). Let X be an object of prCΓ∪prCΣ−1Γ and Y be an object of prCΓ.
Then there exists a bifunctorial bilinear form

βX,Y : HomC(X,Y )×HomC(Y,Σ2X) −→ k.

which is non-degenerate. In particular, if one of the two spaces is finite-dimensional, then
so is the other.

We also get a theorem which allows us to gain some control over the mutation in the
derived category DΓ. As proved in [58], mutations can be viewed as derived equivalences.
Let Γ′ be the complete Ginzburg dg algebra of the mutated quiver with potential µ̃i(Q,W ).
For any vertex j of Q, let Γj = ejΓ and Γ′j = ejΓ′.

Theorem ([58], Theorem 3.2). 1. There is a triangle equivalence µ̃+
i from D(Γ′) to

D(Γ) sending Γ′j to Γj if i 6= j and to the cone Γ∗i of the morphism

Γi −→
⊕
α

Γt(α)

whose components are given by left multiplication by α if i = j. The functor µ̃+
i

restricts to triangle equivalences from per Γ′ to per Γ and from DfdΓ′ to DfdΓ.

2. Let Γred and Γ′red be the complete Ginzburg dg algebra of the reduced part of (Q,W )
and µ̃i(Q,W ), respectively. The functor µ̃+

i induces a triangle equivalence µ+
i :

D(Γ′red) −→ D(Γred) which restricts to triangle equivalences from per Γ′red to per Γred
and from DfdΓ′red to DfdΓred.

Denote the quasi-inverse of µ̃+
i by µ̃−i . Then we get the following theorem.

Theorem (3.2.18). Let Γ be the complete Ginzburg dg algebra of a non-degenerate quiver
with potential (Q,W ). Let (ε1, ε2, . . . , εr−1) be a sequence of signs. Let (i1, . . . , ir) be
a sequence of vertices, and let T =

⊕
j∈Q0 Tj be the image of Γ(r) by the sequence of

equivalences

DΓ(r)
µ̃

εr−1
ir−1 // . . .

µ̃
ε1
i1 // DΓ(1) = DΓ.

Suppose that Tj lies in prDΓΓ for all vertices j of Q. Then there exists a unique sign εr
such that all summands of the image of Γ(r+1) by µ̃ε1i1 µ̃

ε2
i2
· · · µ̃εr

ir
lie in prDΓΓ.
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2.2 Cluster characters

Let (Q,W ) be a quiver with potential. On the subcategory D of CQ,W , we can define
a cluster character in the sense of Y. Palu [68].

Definition (3.3.10). A cluster character on CQ,W with values in a commutative ring A is
a map

χ : obj(D) −→ A

satisfying the following conditions :
– if X and Y are two isomorphic objects in D, then we have χ(X) = χ(Y );
– for all objects X and Y of D, χ(X ⊕ Y ) = χ(X)χ(Y );
– (multiplication formula) for all objects X and Y of D such that dim Ext1

C(X,Y ) = 1,
the equality

χ(X)χ(Y ) = χ(E) + χ(E′)

holds, where X −→ E −→ Y −→ ΣX and Y −→ E′ −→ X −→ ΣY are non split
triangles.

For any object X of D, define the index of X (with respect to Γ) as the element of
K0(addΓ) given by

indΓX = [T0]− [T1],

where T0 and T1 are objects of addΓ such that there exists a triangle

T1 // T0 // X // ΣT1.

Lemma (3.3.6). Let X be an object in D. Then the sum indT X+indT Σ−1X only depends
on the dimension vector d of Ext1

C(Γ, X) viewed as an EndC(Γ)-module. Denote this sum
by ι(d).

Define the map
X ′? : obj(D) −→ Q(x1, . . . , xn)

as follows: for any object M of D, put

X ′M = xindΓX
∑

e
χ
(
Gre

(
Ext1

C(Γ,M)
))
x−ι(e),

where χ is the Euler–Poincaré characteristic.

Theorem (3.3.12). The map X ′? defined above is a cluster character on C.

2.3 Application to cluster algebras

We can use the cluster character defined above to interpret the combinatorics of cluster
algebras inside the cluster category. This can be done for arbitrary skew-symmetric cluster
algebras.

Theorem (3.4.1). Let (Q,W ) be a non-degenerate quiver with potential. Then the cluster
character X ′? induces a surjection from the set of isomorphism classes of indecomposable
reachable objects of D to the set of cluster variables of the cluster algebra associated with
Q.

In [31] were defined combinatorial objects related to cluster algebras, namely g-vectors
and F -polynomials. The authors then formulated several conjectures:
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(5.4) every F -polynomial has constant term 1;
(6.13) the g-vectors of the cluster variables of any given seed are sign-coherent in a sense

to be defined;
(7.2) cluster monomials are linearly independent;
(7.10) different cluster monomials have different g-vectors, and the g-vectors of the clus-

ter variables of any cluster form a basis of Zr;
(7.12) the mutation rule for g-vectors can be expressed using a certain piecewise-linear

transformation.
We now work with cluster algebras with coefficients (of geometric type). That is, we

consider an ice quiver (in the sense of [32]) with mutable vertices 1 to r and frozen vertices
r+ 1 to n. We let F be the set of frozen vertices. The cluster variables are then obtained
by iterated mutations at mutable vertices.

Definition (4.3.2). Let U be the full subcategory of D whose objects are those X such that
Ext1

C(Γj , X) vanishes, for j = r + 1, . . . , n.

Using this definition, we get that g-vectors in the cluster algebra correspond to indices
in the cluster category.

Proposition (4.3.6). LetM be an object of U . Then X ′M admits a g-vector. This g-vector
is (g1, . . . , gr), where gj = [indΓM : Γj ].

Moreover, we have the following property.

Proposition (4.3.1). Objects of prCΓ which have no self-extensions are determined by
their index.

This allows us to prove several conjectures of [31].

Theorem (4.3.7). Let (Q,F ) be an ice quiver whose matrix if of full rank r. Then con-
jectures (6.13), (7.2), (7.10) and (7.12) hold for the associated cluster algebra.

Theorem (4.3.13). Conjecture (5.4) holds.

2.4 Link with decorated representations

Decorated representations of quivers with potential and their mutations were intro-
duced in [22], along with their F -polynomials, g-vectors, h-vectors and E-invariants. Let
(Q,W ) be a non-degenerate quiver with potential. We define two maps Φ and Ψ be-
tween the set of isomorphism classes of objects of D and the set of isomorphism classes of
decorated representations of (Q,W ) as follows:{

isoclasses of
objects of D

}
←→

{
isoclasses of decorated

representations of (Q,W )

}

X = X ′ ⊕
n⊕
i=1

(eiΓ)mi 7−→ Φ(X) =
(
FX ′,

n⊕
i=1

(Si)mi
)

Ψ(M) = M ⊕
n⊕
i=1

(eiΓ)mi ←− [ M =
(
M,

n⊕
i=1

Smi
i

)
,

where F = Ext1
C(Γ, ?), and M is a lift of M through F having no direct summands in

addΓ.
Then we get several properties showing that the theory of decorated representations

and the theory of cluster categories are consistent with one another.
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Proposition (4.4.1). With the above notations, Φ and Ψ are mutual inverse maps. More-
over, if i ∈ Q0 is not on any cycle of length ≤ 2, and if (Q′,W ′) = µ̃i(Q,W ), then for
any object X of D, we have that

ΦQ′,W ′(µ̃−i (X)) = µ̃i(ΦQ,W (X)),

where the functor µ̃−i is as defined after Theorem 3.2.6.

Proposition (4.4.6). Let X be an object of D. Then we have the equality

FX(xr+1, . . . , xn) = FΦ(X)(xr+1, . . . , xn).

Proposition (4.4.8). Let (Q,W ) be a quiver with potential, and let C be the associated
cluster category. Let X be an object of D. Let gΦ(X) = (g1, . . . , gn) be the g-vector of the
decorated representation Φ(X). Then we have the equality

gi = [indΓX : Γi]

for any vertex i of Q.

Corollary (4.4.9). For any decorated representationM = (M,V ) of a quiver with poten-
tial (Q,W ), we have the equality

hi = −dim HomJ(Q,W )(Si,M)

for any vertex i of Q.

Proposition (4.4.15). Let (Q,W ) be a quiver with potential, and let C be the associated
cluster category. Let X and Y be objects of D. Then we have the following equalities:

1. Einj(Φ(X),Φ(Y )) = dim(ΣΓ)(X,ΣY );
2. Esym(Φ(X),Φ(Y )) = dim(ΣΓ)(X,ΣY ) + dim(ΣΓ)(Y,ΣX);
3. E(Φ(X)) = (1/2) dim HomC(X,ΣX),

where (ΣΓ)(X,Y ) is the subspace of HomC(X,Y ) containing all morphisms factoring
through an object of addΣΓ.

2.5 Indices and generic bases

In the last chapter of this thesis, we show how, in some cases, we can construct a basis
of the cluster algebra from the set K0(addΓ) of indices in the cluster category. For this
section, we assume that (Q,W ) is non-degenerate and Jacobi-finite.

Definition (5.2.2). Define the map

I : K0(addΓ) −→ Q(x1, . . . , xn)

as follows: for any [T0]− [T1] ∈ addΓ, let I([T0]− [T1]) be the generic value taken by the
constructible function X ′cone(f), for f taken in HomC(T1, T0).

Theorem (5.1.1). The image of I lies in the upper cluster algebra associated with Q. If
the matrix of Q is of full rank, then the elements in the image of I are linearly independent
over Z. If (Q,W ) arises from the setting of [35], then the image of I is the basis of the
cluster algebra AQ found in that paper.
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In their construction of a basis for cluster algebras, the authors of [35] consider strongly
reduced components of the variety rep(A) of finite-dimensional representations of the Ja-
cobian algebra A of (Q,W ). These components can be obtained from the set of indices.

Theorem (5.1.2). There exists a canonical surjection

Ψ : K0(addA) −→ {strongly reduced components of rep(A)}.

Two elements δ and δ′ have the same image by Ψ if, and only if, their canonical decom-
positions (in the sense of H. Derksen and J. Fei [20]) can be written as

δ = δ1 ⊕ δ and δ′1 ⊕ δ,

with δ1 and δ′1 non-negative.

One can define the operation of mutation on the set of indices, and with this definition,
the following result holds.

Theorem (5.1.3). The map I commutes with mutation.

Finally, these results allow us to prove part of Conjecture 4.1 of [27] in the case where
(Q,W ) is Jacobi-finite. This conjecture states that there exists a bijection

Zn −→ E(A),

where E(A) is the subset of the cluster algebra consisting of elements which are Laurent
polynomials with positive coefficients in the cluster variables of every cluster, and which
cannot be written as a sum of two or more such elements, such that:

1. the bijection commutes with mutation (where the mutation in Zn is defined in [27]);
2. an element (a1, . . . , an) of Zn with non-negative coefficients is sent to the element∏n

j=1 x
aj

j ;

3. the set E(A) is a Z-basis of the upper cluster algebra A+
Q.

Theorem (5.6.2). Let (Q,W ) be a non-degenerate, Jacobi-finite quiver with potential.
Then the map

I : Zn ∼= addΓ −→ A+
Q

satisfies conditions 1 and 2 above. If, moreover, (Q,W ) arises from the setting of [35],
then the image of I satisfies condition 3.



Chapter 3

Cluster characters

3.1 Introduction

In their series of papers [29], [30], [5] and [31] published between 2002 and 2007,
S. Fomin and A. Zelevinsky, together with A. Berenstein for the third paper, introduced
and developped the theory of cluster algebras. They were motivated by the search for a
combinatorial setting for total positivity and canonical bases. Cluster algebras are a class
of commutative algebras endowed with a distinguished set of generators, the cluster vari-
ables. The cluster variables are grouped into finite subsets, called clusters, and are defined
recursively from initial variables by repeatedly applying an operation called mutation on
the clusters. Recent surveys of the subject include [75], [40] and [50].

Cluster categories were introduced by A. Buan, R. Marsh, M. Reineke, I. Reiten and
G. Todorov in [10], and by P. Caldero, F. Chapoton and R. Schiffler in [11] for the An
case, in order to give a categorical interpretation of mutation of cluster variables. In
[12], P. Caldero and F. Chapoton used the geometry of quiver Grassmannians to define
a map which, as they showed, yields a bijection from the set of isomorphism classes of
indecomposable objects of the cluster category of a Dynkin quiver to the set of cluster
variables in the associated cluster algebra. It was proved by P. Caldero and B. Keller in
[13] that, for cluster algebras associated with acyclic quivers, the Caldero-Chapoton map
induces a bijection between the set of isomorphism classes of indecomposable rigid objects
and the set of cluster variables.

Using the notion of quiver with potential as defined in [22], C. Amiot generalized the
definition of cluster category in [2]. In the case where the quiver with potential is Jacobi-
finite, the cluster character of Y. Palu introduced in [68] sends reachable indecomposable
rigid objects of the (generalized) cluster category to cluster variables.

Another approach for the categorification of cluster algebras is studied by C. Geiss,
B. Leclerc and J. Schröer in [37], [38], [39] and [34] where the authors use the category of
modules over preprojective algebras of acyclic type.

In both cases, the categories encountered enjoy the following properties: (1) they
are Hom-finite, meaning that the spaces of morphisms between any two objects is finite-
dimensional; and (2) they are 2-Calabi–Yau in the sense that for any two objects X and
Y , there is a bifunctorial isomorphism

Ext1(X,Y ) ∼= DExt1(Y,X).

In this chapter, we study a version of Y. Palu’s cluster characters for Hom-infinite
cluster categories, that is, cluster categories with possibly infinite-dimensional morphism
spaces. This cluster character L 7→ X ′L is not defined for all objects L but only for those
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in a suitable subcategory D, which we introduce. We show that D is mutation-invariant
(in a sense to be defined) and that, for any objects X and Y of D, there is a bifunctorial
non-degenarate bilinear form

Hom(X,ΣY )×Hom(Y,ΣX) −→ k

(this can be thought of as an adapted version of the 2-Calabi–Yau property).
The category D is equivalent to a k-linear subcategory of a certain derived category

(the analogue of C. Amiot’s fundamental domain F in [2]). We show that this subcategory
also enjoys a certain property of invariance under mutation, as was first formulated as a
“hope” by K. Nagao in [66].

The main feature of the definition of the subcategory D is the requirement that for
any object X of D, there exists a triangle

TX1 −→ TX0 −→ X −→ ΣTX1

where TX0 and TX1 are direct sums of direct summands of a certain fixed rigid object T .
This allows a definition of the index of X, as in [18] and [68].

The main result of this chapter, besides the definition and study of the subcategory
D, is the proof of a multiplication formula analogous to that of [68]: if X and Y are two
objetcts of D such that the spaces Hom(X,ΣY ) and Hom(Y,ΣX) are one-dimensional,
and if

X // E // Y // ΣX and Y // E′ // X // ΣY

are two non-split triangles, then we have the equality

X ′XX
′
Y = X ′E +X ′E′ .

This cluster character is in particular defined for the cluster category of any non-
degenerate quiver with potential in the sense of [22] (be it Jacobi-finite or not), and thus
gives a categorification of any skew-symmetric cluster algebra. Applications to cluster
algebras will be the subject of a subsequent paper by the author.

In a different setting, using decorated representations of quivers with potentials, a cate-
gorification of any skew-symmetric cluster algebra was obtained by H. Derksen, J. Weyman
and A. Zelevinsky in the papers [22] and [21], and these results were used by the authors
to prove almost all of the conjectures formulated in [31].

The chapter is organized as follows.
In Section 3.2, the main results concerning cluster categories of a quiver with potential

and mutation are recalled. In particular, we include the interpretation of mutation as
derived equivalence, after [58]. The subcategory prCΓ, needed to define the subcategory
D, is introduced and studied from Subsection 3.2.6 up to the next section. In Subsection
3.2.8, we prove a result on the mutation of objects in the derived category, confirming
K. Nagao’s hope in [66]. With hindsight, a precursor of this result is [46, Corollary 5.7].

Section 3.3 is devoted to the definition of the cluster character X ′?. After some prelim-
inary results, it is introduced in Subsection 3.3.3 together with the subcategory D. The
multiplication formula is then proved in Subsection 3.3.5.

Finally, a link with skew-symmetric cluster algebras is given in Section 3.4.
Throughout the chapter, the symbol k will denote an algebraically closed field. When

working with any triangulated category, we will use the symbol Σ to denote its suspension
functor. An object X of any such category is rigid if the space HomC(X,ΣX) vanishes.
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3.2 Cluster category

In this section, after a brief reminder on quivers with potentials, the cluster category
of a quiver with potential is defined after [2]. Mutation in the cluster category is then
recalled. Finally, we construct a subcategory on which a version of the cluster character
of [68] will be defined in Section 3.3.

3.2.1 Skew-symmetric cluster algebras

We briefly review the definition of (skew-symmetric) cluster algebras (the original
definition appeared in [29] using mutation of matrices; the use of quivers was described,
for example, in [30, Definition 7.3] in a slightly different way than the one used here, and
in [41, Section 1.1]). This material will be used in Section 3.4.

A quiver is a quadruple Q = (Q0, Q1, s, t) consisting of a set Q0 of vertices, a set Q1
of arrows, and two maps s, t : Q1 −→ Q0 which send each arrow to its source or target. A
quiver is finite if it has finitely many vertices and arrows.

Let Q be a finite quiver without oriented cycles of length at most 2. We will denote the
vertices of Q by the numbers 1, 2, . . . , n. Let i be a vertex of Q. One defines the mutation
of Q at i to be the quiver µi(Q) obtained from Q in three steps :

1. for each subquiver of the form j
a // i

b // ` , add an arrow [ba] from j to `;
2. for each arrow a such that s(a) = i or t(a) = i, delete a and add an arrow a∗ from
t(a) to s(a) (that is, in the opposite direction);

3. delete the arrows of a maximal set of pairwise disjoint oriented cycles of length 2
(which may have appeared in the first step).

A seed is a pair (Q,u), where Q is a finite quiver without oriented cycles of length at
most 2, and u = (u1, u2, . . . , un) is an (ordered) free generating set of Q(x1, x2, . . . , xn).
Recall that n is the number of vertices of Q.

If i is a vertex of Q, the mutation of the seed (Q,u) is a new seed, say (Q′,u′) =
(u′1, u′2, . . . , u′n)), where

– Q′ is the mutated quiver µi(Q);
– u′j = uj whenever j 6= i;
– u′i is given by the equality

u′iui =
∏

a∈Q1,t(a)=i
xs(a) +

∏
b∈Q1,s(b)=i

xt(b).

Definition 3.2.1. Let Q be a finite quiver without oriented cycles of length at most 2.
Define the initial seed as the seed (Q,x = (x1, x2, . . . , xn)).

– A cluster is any set u appearing in a seed (R,u) obtained from the initial seed by a
finite sequence of mutation.

– A cluster variable is any element of a cluster.
– The cluster algebra associated with Q is the Q-subalgebra of the field of rational
functions Q(x1, x2, . . . , xn) generated by the set of all cluster variables.

3.2.2 Quivers with potentials and their mutation

We recall the notion of quiver with potential from [22]. Let Q be a finite quiver. Denote
by k̂Q its completed path algebra, that is, the k-algebra whose underlying k-vector space
is ∏

w path
kw
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and whose multiplication is deduced from the composition of paths by distributivity (by
convention, we compose paths from right to left). It is a topological algebra for the m-adic
topology, where m is the ideal of k̂Q generated by the arrows of Q. A potential on Q is
an element W of the space

Pot(Q) = k̂Q/C,

where C is the closure of the commutator subspace [k̂Q, k̂Q] in k̂Q. In other words, it is a
(possibly infinite) linear combination of cyclically inequivalent oriented cycles of Q. The
pair (Q,W ) is a quiver with potential.

Given any arrow a of Q, the cyclic derivative with respect to a is the continuous linear
map ∂a from Pot(Q) to k̂Q whose action on (equivalence classes of) oriented cycles is
given by

∂a(br · · · b2b1) =
∑
bi=a

bi−1bi−2 · · · b1brbr−1 · · · bi+1.

The Jacobian algebra J(Q,W ) of a quiver with potential (Q,W ) is the quotient of the
algebra k̂Q by the closure of the ideal generated by the cyclic derivatives ∂aW , as a ranges
over all arrows of Q. In case J(Q,W ) is finite-dimensional, (Q,W ) is Jacobi-finite.

The above map is generalized as follows. For any path p of Q, define ∂p as the linear
map from Pot(Q) to k̂Q whose action on any (equivalence class of) oriented cycle c is
given by

∂p(c) =
∑
c=upv

vu+
∑

c=p1wp2
p=p2p1

w,

where the sums are taken over all decompositions of c into paths of smaller length, with
u, v and w possibly trivial paths, and p1 and p2 non-trivial paths.

Let (Q,W ) be a quiver with potential. In order to define the mutation of (Q,W ) at
a vertex `, we must recall the process of reduction of a quiver with potential. Let Λ be
the k-algebra given by

⊕
i∈Q0 kei, where ei is the idempotent associated with the vertex

i. Two quivers with potentials (Q,W ) and (Q′,W ′) are right-equivalent if Q0 = Q′0 and
there exists an Λ-algebra isomorphism ϕ : k̂Q −→ k̂Q′ sending the class of W to the class
of W ′ in Pot(Q′). In that case, it is shown in [22] that the Jacobian algebras of the two
quivers with potentials are isomorphic.

A quiver with potential (Q,W ) is trivial ifW is a (possibly infinite) linear combination
of paths of length at least 2, and J(Q,W ) is isomorphic to Λ. It is reduced if W has no
terms which are cycles of length at most 2.

The direct sum of two quivers with potentials (Q,W ) and (Q′,W ′) such that Q0 = Q′0
is defined as being (Q′′,W +W ′), where Q′′ is the quiver with the same set of vertices as
Q and Q′ and whose set of arrows is the union of those of Q and Q′.

Theorem 3.2.2 (([22], Theorem 4.6 and Proposition 4.5)). Any quiver with potential
(Q,W ) is right equivalent to a direct sum of a reduced one (Qred,Wred) and a trivial one
(Qtriv,Wtriv), both unique up to right-equivalence. Moreover, J(Q,W ) and J(Qred,Wred)
are isomorphic.

We can now define the mutation of quivers with potentials. Let (Q,W ) be a quiver
with potential, and let ` be a vertex of Q not involved in any cycle of length ≤ 2. Assume
thatW is written as a series of oriented cycles which do not begin or end in ` (W is always
cyclically equivalent to such a potential). The mutation of (Q,W ) at vertex ` is the new
quiver with potential µ`(Q,W ) obtained from (Q,W ) as follows.

1. For any subquiver i
a // `

b // j of Q, add an arrow i
[ba] // j .
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2. Delete any arrow a incident with ` and replace it by an arrow a? going in the opposite
direction; the first two steps yield a new quiver Q̃.

3. Let W̃ be the potential on Q̃ defined by W̃ = [W ] +
∑
a?b?[ba], where the sum

is taken over all subquivers of Q of the form i
a // `

b // j , and where [W ] is
obtained from W by replacing each occurence of ba in its terms by [ba]. These three
steps yield a new quiver with potential µ̃`(Q,W ) = (Q̃, W̃ ).

The mutation µ`(Q,W ) is then defined as the reduced part of µ̃`(Q,W ). Note that
µ`(Q,W ) might contain oriented cycles of length 2, even if (Q,W ) did not. This prevents
us from performing iterated mutations following an arbitrary sequence of vertices.

A vertex i of (Q,W ) which is not involved in any oriented cycle of length ≤ 2 (and
thus at which mutation can be performed) is an admissible vertex. An admissible sequence
of vertices is a sequence i = (i1, . . . , is) of vertices of Q such that i1 is an admissible vertex
of (Q,W ), and im is an admissible vertex of µm−1µm−2 · · ·µ1(Q,W ), for 1 < m ≤ s. In
that case, we denote by µi(Q,W ) the mutated quiver with potential µsµs−1 · · ·µ1(Q,W ).

A quiver with potential is non-degenerate if any sequence of vertices is admissible.
Since we work over an algebraically closed field, the following existence result applies.

Proposition 3.2.3 ([22], Corollary 7.4). Suppose that Q is a finite quiver without oriented
cycles of length at most 2. If the field k is uncountable, then there exists a potential W on
Q such that (Q,W ) is non-degenerate.

3.2.3 Complete Ginzburg dg algebras

Let (Q,W ) be a quiver with potential. Following Ginzburg in [42], we construct a
differential graded (dg) algebra Γ = ΓQ,W as follows.

First construct a new graded quiver Q from Q. The vertices of Q are those of Q; its
arrows are those of Q (these have degree 0), to which we add

– for any arrow a : i −→ j of Q, an arrow a∗ : j −→ i of degree −1;
– for any vertex i of Q, a loop ti : i −→ i of degree −2.
Then, for any integer i, let

Γi =
∏

ω path of degree i
kω.

This defines the graded k-algebra structure of Γ. Its differential d is defined from its action
on the arrows of Q. We put

– d(a) = 0, for each arrow a of Q;
– d(a∗) = ∂aW , for each arrow a of Q;
– d(ti) = ei

(∑
a∈Q1(aa∗ − a∗a)

)
ei, for each vertex i of Q.

The differential graded algebra Γ thus defined is the complete Ginzburg dg algebra of
(Q,W ). It is linked to the Jacobian algebra of (Q,W ) as follows.

Lemma 3.2.4 ([58], Lemma 2.8). With the above notations, J(Q,W ) is isomorphic to
H0Γ.

3.2.4 Cluster category

Keep the notations of Section 3.2.3.
Denote by DΓ the derived category of Γ (see [54] or [58] for background material on

the derived category of a dg algebra). Consider Γ as an object of DΓ. The perfect derived
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category of Γ is the smallest full triangulated subcategory of DΓ containing Γ and closed
under taking direct summands. It is denoted by per Γ.

Denote by DfdΓ the full subcategory of DΓ whose objects are those of DΓ with finite-
dimensional total homology. This means that homology is zero except in finitely many
degrees, where it is of finite dimension. As shown in [58, Theorem 2.17], the category
DfdΓ is a triangulated subcategory of per Γ.

Moreover, we have the following relative 3-Calabi–Yau property of DfdΓ in DΓ.

Theorem 3.2.5 ([56], Lemma 4.1 and [51], Theorem 6.3). For any objects L of DΓ and
M of DfdΓ, there is a canonical isomorphism

DHomDΓ(M,L) −→ HomDΓ(Σ−3L,M)

functorial in both M and L.

Following [2, Definition 3.5] (and [58, Section 4] in the non Jacobi-finite case), we define
the cluster category of (Q,W ) as the idempotent completion of the triangulated quotient
(per Γ)/DfdΓ, and denote it by C = CQ,W .

In case (Q,W ) is Jacobi-finite, CQ,W enjoys the following properties ([2, Theorem 3.6]
and [57, Proposition 2.1]) :

– it is Hom-finite;
– it is 2-Calabi–Yau;
– the object Γ is cluster-tilting in the sense that it is rigid and any object X of C such
that HomC(Γ,ΣX) = 0 is in addΓ;

– any object X of C admits an (addΓ)-presentation, that is, there exists a triangle
TX1

// TX0
// X // ΣTX1 , with TX1 and TX0 in addΓ.

As we shall see later, most of these properties do not hold when (Q,W ) is not Jacobi-
finite.

3.2.5 Mutation in C

Keep the notations of the previous section. Let i be a vertex of Q not involved in any
oriented cycle of length 2. As seen in Section 3.2.2, one can mutate (Q,W ) at the vertex
i.

In the cluster category, this corresponds to changing a direct factor of Γ. Let Γ′ be
the complete Ginzburg dg algebra of µ̃i(Q,W ). For any vertex j of Q, let Γj = ejΓ and
Γ′j = ejΓ′.

Theorem 3.2.6 ([58], Theorem 3.2). 1. There is a triangle equivalence µ̃+
i from D(Γ′)

to D(Γ) sending Γ′j to Γj if i 6= j and to the cone Γ∗i of the morphism

Γi −→
⊕
α

Γt(α)

whose components are given by left multiplication by α if i = j. The functor µ̃+
i

restricts to triangle equivalences from per Γ′ to per Γ and from DfdΓ′ to DfdΓ.
2. Let Γred and Γ′red be the complete Ginzburg dg algebra of the reduced part of (Q,W )

and µ̃i(Q,W ), respectively. The functor µ̃+
i induces a triangle equivalence µ+

i :
D(Γ′red) −→ D(Γred) which restricts to triangle equivalences from per Γ′red to per Γred
and from DfdΓ′red to DfdΓred.
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The object Γ∗i ⊕
⊕
j 6=i Γj in DΓ is the mutation of Γ at the vertex i, and we denote it

by µi(Γ).
Note that in part (2) of the above theorem, ejΓ′red is still sent to ejΓred if i 6= j and to

the cone Γ∗red,i of the morphism

eiΓred −→
⊕
α

et(α)Γred

whose components are given by left multiplication by α if i = j.
For instance, if (i1, i2, . . . , ir) is an admissible sequence of vertices, then we get a

sequence of triangle equivalences

DΓ(r) −→ . . . −→ DΓ(1) −→ DΓ,

where Γ(j) is the complete Ginzburg dg-algebra of µijµij−1 . . . µi1(Q,W ), for any j ∈
{1, 2, . . . , r}. We denote the image of Γ(r) in DΓ by µirµir−1 . . . µi1(Γ).

We now remark some consequences of 3.2.6 on the level of cluster categories. First,
there are induced triangle equivalence Cµ̃i(Q,W ) −→ CQ,W and Cµi(Q,W ) −→ CQ,W .

Moreover, as shown in Section 4 of [58], the cone of the morphism⊕
β:j→i

Γj −→ Γi

whose components are given by left multiplication by β is isomorphic to ΣΓ∗i in C. Hence
we have triangles in C

Γi −→
⊕
α:i→j

Γj −→ Γ∗i −→ ΣΓi and Γ∗i −→
⊕
α:j→i

Γj −→ Γi −→ ΣΓ∗i ,

and dim HomC(Γj ,ΣΓ∗i ) = δi,j (see [58, Section 4]).
If (Q,W ) is non-degenerate and reduced, then any sequence of vertices i1, . . . , ir yields

a sequence of triangle equivalences

Cµir ...µi1 (Q,W ) −→ . . . −→ Cµi1 (Q,W ) −→ CQ,W

sending Γµir ...µi1 (Q,W ) to µir . . . µi1(ΓQ,W ).

3.2.6 The subcategory prCΓ
Since in general the cluster category does not enjoy the properties listed in Section

3.2.4, we will need to restrict ourselves to a subcategory of it.
Let T be any triangulated category. For any subcategory T ′ of T , define ind T ′ as

the set of isomorphism classes of indecomposable objects of T contained in T ′. Denote
by add T ′ the full subcategory of T whose objects are all finite direct sums of direct
summands of objects in T ′. The subcategory T ′ is rigid if, for any two objects X and Y
of T ′, HomT (X,ΣY ) = 0.

Finally, define prT T ′ as the full subcategory of T whose objects are cones of morphisms
in add T ′ (the letters “pr” stand for presentation, as all objects of prT T ′ admit an (add T ′)-
presentation). In the notations of [4, Section 1.3.9], this subcategory is written as (add T ′)∗
(addΣT ′).

As we shall now prove, the category prT T ′ is invariant under “mutation” of T ′.
Recall that a category T ′ is Krull–Schmidt if any object can be written as a finite

direct sum of objects whose endomorphism rings are local. Note that in that case, we
have T ′ = add T ′.
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Proposition 3.2.7. Let R and R′ be rigid Krull–Schmidt subcategories of a triangulated
category T . Suppose that there exist indecomposable objects R of R and R∗ of R′ such
that indR \ {R} = indR′ \ {R∗}. Suppose, furthermore, that dim HomT (R,ΣR∗) =
dim HomT (R∗,ΣR) = 1. Let

R −→ E −→ R∗ −→ ΣR and R∗ −→ E′ −→ R −→ ΣR∗

be non-split triangles, and suppose that E and E′ lie in R∩R′.
Then prTR = prTR′.

Proof In view of the symmetry of the hypotheses, we only have to prove that any
object of prTR is an object of prTR′.

Let X be an object of prTR. Let T1 −→ T0 −→ X −→ ΣT1 be a triangle, with T1 and
T0 in R.

The category R being Krull–Schmidt, one can write (in a unique way up to isomor-
phism) T0 = T 0 ⊕Rm, where R is not a direct summand of T 0.

The composition T 0 ⊕ (E′)m −→ T 0 ⊕Rm −→ X yields an octahedron

ΣW

T 0 ⊕ (E′)m X.

(ΣR∗)m

T 0 ⊕Rm

ΣT1
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Now write T1 = T 1 ⊕Rn. Then we have a triangle

(R∗)m //W // T 1 ⊕Rn ε // (ΣR∗)m .

Since HomT (T 1,ΣR∗) = 0 and dim HomT (R,ΣR∗) = 1, by a change of basis, we can write
ε in matrix form as (

Irx 0
0 0

)

where x is a non-zero element of HomT (R,ΣR∗). Therefore W is isomorphic to (E′)r ⊕
Rn−r ⊕ (R∗)m−r ⊕ T 1.

Now, we have a triangle W −→ T 0 ⊕ (E′)m −→ X −→ ΣW . Compose Σ−1X −→ W
with W = (E′)r ⊕ Rn−r ⊕ (R∗)m−r ⊕ T 1 −→ (E′)r ⊕ En−r ⊕ (R∗)m−r ⊕ T 1 (the second
term is changed) to get an octahedron
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V

Σ−1X (E′)r ⊕ En−r ⊕ (R∗)m−r ⊕ T 1.

T 0 ⊕ (E′)m

(E′)r ⊕Rn−r ⊕ (R∗)m−r ⊕ T 1

(R∗)n−r

+��������

		��������
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The morphism (R∗)n−r −→ T 0 ⊕ (E′)m is zero, so the triangle T 0 ⊕ (E′)m −→ V −→
(R∗)n−r −→ Σ(T 0 ⊕ (E′)m) splits, and V is isomorphic to (R∗)n−r ⊕ T 0 ⊕ (E′)m.

Hence we have a triangle

(E′)r ⊕ En−r ⊕ (R∗)m−r ⊕ T 1 −→ (R∗)n−r ⊕ T 0 ⊕ (E′)m −→ X −→ . . . ,

proving that X belongs to prTR′. This finishes the proof. �

Corollary 3.2.8. Let C be the cluster category of a quiver with potential (Q,W ). For any
admissible sequence (i1, . . . , ir) of vertices of Q, the following equality holds :

prCΓ = prC
(
µir . . . µi1(Γ)

)
.

Proof We apply Proposition 3.2.7 and use induction on r. That addΓ is a Krull–
Schmidt category is shown in Corollary 3.2.12 below. We also need that Γ is a rigid object
of C ; this follows from Proposition 3.2.10 below. �

3.2.7 Properties of prCΓ
Let C be the cluster category of a quiver with potential (Q,W ). We will prove in

this section that the subcategory prCΓ enjoys versions of some of the properties listed in
Section 3.2.4.

We denote by D≤0 (and D≥0 respectively) the full subcategory of DΓ whose objects are
those X whose homology is concentrated in non-positive (and non-negative, respectively)
degrees. Recall that D≤0 and D≥0 form a t-structure; in particular, HomDΓ(D≤0,D≥1)
vanishes, and for each object X of DΓ, there exists a unique (up to a unique triangle
isomorphism) triangle

τ≤0X −→ X −→ τ≥1X −→ Στ≤0X

with τ≤0X in D≤0 and τ≥1X in D≥1.

Lemma 3.2.9. If X and Y lie in prDΓΓ, then the quotient functor per Γ −→ C induces
an isomorphism

HomDΓ(X,Y ) −→ HomC(X,Y ).

Proof Let X and Y be as in the statement. In particular, X and Y lie in D≤0Γ.
First suppose that a morphism f : X −→ Y is sent to zero in C. This means that f

factors as
X

g //M
h // Y ,
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withM in DfdΓ. Now, X = τ≤1X, so g factors through τ≤1M , which is still in Dfd. Using
Theorem 3.2.5, we have an isomorphism

DHomDΓ(τ≤1M,Y ) −→ HomDΓ(Y,Σ3τ≤1M).

The right hand side of this equation is zero, since HomDΓ(Y,D≤−2Γ) = 0. Hence
f = 0. This shows injectivity.

To prove surjectivity, consider a fraction

X
f // Y ′ Y

soo ,

where the cone of s is an object N of DfdΓ.
The following diagram will be helpful.

Y

s
��

Y

t
��

X
f // Y ′

g //

��

Y ′′

��
τ≤0N // N

��

// τ≥1N

h
��

ΣY ΣY

We have that HomDΓ(τ≤0N,ΣY ) is isomorphic to DHomDΓ(Y,Σ2τ≤0N) because of
Theorem 3.2.5, and this space is zero since HomDΓ(Y,D≤−2) vanishes. Thus there exists a
morphism h : τ≥1N → ΣY such that the lower right square of the above diagram commute.
We embed h in a triangle; this triangle is the rightmost column of the diagram.

We get a new fraction

X
gf // Y ′′ Y

too

which is equal to the one we started with. But since X is in D≤0 and τ≥1N is in D≥1,
the space HomDΓ(X, τ≥1N) vanishes. Thus there exists a morphism ` : X → Y such
that gf = t`. It is easily seen that the fraction is then the image of ` under the quotient
functor.

Thus the map is surjective. �

Proposition 3.2.10. The quotient functor per Γ −→ C restricts to an equivalence of
(k-linear) categories prDΓΓ −→ prCΓ.

Proof It is a consequence of Lemma 3.2.9 that the functor is fully faithful.
It remains to be shown that it is dense. Let Z be an object of prCΓ, and let T1 −→

T0 −→ Z −→ ΣT1 be an addΓ-presentation. The functor being fully faithful, the mor-
phism T1 −→ T0 lifts in prDΓΓ to a morphism P1 −→ P0, with P0 and P1 in addΓ. Its
cone is clearly sent to Z in C. This finishes the proof of the equivalence. �

As in [2], we have the following characterization of prDΓΓ, which we shall prove after
Corollary 3.2.12.

Lemma 3.2.11. We have that that prDΓΓ = D≤0 ∩ ⊥D≤−2 ∩ per Γ.
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Corollary 3.2.12. The category prCΓ is a Krull–Schmidt category.

Proof In view of Proposition 3.2.10, it suffices to prove that prDΓΓ is a Krull–
Schmidt category. It is shown in [58, Lemma 2.17] that the category per Γ is a Krull–
Schmidt category. Since prDΓΓ is a full subcategory of per Γ, it is sufficient to prove
that any direct summand of an object in prDΓΓ is also in prDΓΓ. The equality prDΓΓ =
D≤0∩⊥D≤−2∩per Γ of Lemma 3.2.11 implies this property. Note that it also follows from
[47, Proposition 2.1], whose proof does not depend on the Hom-finiteness assumption. �

In order to prove Lemma 3.2.11, we will need the following definition.

Definition 3.2.13. A dg Γ-module M is minimal perfect if its underlying graded module
is of the form

N⊕
j=1

Rj ,

where each Rj is a finite direct sum of shifted copies of direct summands of Γ, and if its
differential is of the form dint + δ, where dint is the direct sum of the differential of the
Rj , and δ, as a degree 1 map from

⊕N
j=1Rj to itself, is a strictly upper triangular matrix

whose entries are in the ideal of Γ generated by the arrows.

Lemma 3.2.14. Let M be a dg Γ-module such that M is perfect in DΓ. Then M is
quasi-isomorphic to a minimal perfect dg module.

Proof We will apply results of [6]. Using the notation of [6, Section 6.2], per Γ is
equivalent to the category Tr(C), where C is the dg category whose objects are vertices
of the quiver Q and morphisms dg vector spaces are given by the paths of Q. Thus any
object of per Γ is quasi-isomorphic to a dg module as in Definition 3.2.13, where the entries
of δ do not necessarily lie in the ideal generated by the arrows.

As a graded Γ-module, any such object can be written in the form Σi1Γj1⊕. . .⊕Σir Γjr ,
where each j` is a vertex of Q and each i` is an integer. Assume that i1 ≤ . . . ≤ ir. The
subcategory of objects wich can be written in this form, with a ≤ i1 ≤ ir ≤ b, is denoted
by C[a,b]. According to [6, Lemma 5.2.1], C[a,b] is closed under taking direct summands.

Let X be an object of per Γ. Then there are integers a and b such that X lies in C[a,b].
We prove the Lemma by induction on b− a.

If a = b, then δ has to be zero, and X is minimal perfect.
Suppose that all objects of C[a,b] are isomorphic to a minimal perfect dg module when-

ever b− a is less or equal to some integer n ≥ 0.
Let X be an object of C[a,b], with b− a = n+ 1. We can assume that X is of the form

Σi1Γj1 ⊕ . . .⊕ Σir Γjr and that its differential is written in matrix form as
dΣi1Γj1

f12 . . . f1r
0 dΣi2Γj2

. . . f2r
...

... . . . ...
0 0 . . . dΣir Γjr

 ,

where all the fuv are in the ideal generated by the arrows.
Suppose that iq = iq+1 = . . . = ir, but iq−1 < iq. Then X is the cone of the morphism

from Σiq−1Γjq⊕ . . .⊕Σir−1Γjr to the submodule X ′ of X whose underlying graded module
is Σi1Γj1 ⊕ . . .⊕ Σiq−1Γjq−1 given by the matrix
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
Σ−1f1,q Σ−1f1,q+1 . . . Σ−1f1,r
Σ−1f2,q Σ−1f2,q+1 . . . Σ−1f2,r

...
...

...
Σ−1fq−1,q Σ−1fq−1,q+1 . . . Σ−1fq−1,r

 ,
whose entries are still elements of Γ. Note that X ′ lies in C[a,b−1]. By the induction
hypothesis, X ′ is quasi-isomorphic to a minimal perfect dg module. Thus we can assume
that fij is in the ideal generated by the arrows, for i = 1, 2, . . . q−1 and j = 1, 2, . . . , q−1.

The rest of the proof is another induction, this time on the number of summands of
X of the form ΣmΓ` (this number is r − q + 1).

If this number is 1, then X is the cone of a morphism given in matrix form by a
column. If this column contains no isomorphisms, then X is minimal perfect. Otherwise,
we can suppose that the lowest term of the column is an isomorphism φ (by reordering
the terms; note that if X ′ contained any term of the form ΣmΓ`, we could not suppose
this, because by reordering the terms, the differential of X ′ could then not be triangular
anymore). In this case, the morphism is a section, whose retraction is given by the matrix
(0, 0, . . . , φ−1). Thus X is quasi-isomorphic to a summand of X ′, and is thus in C[a,b−1].
By induction hypothesis, it is quasi-isomorphic to a minimal perfect.

If r − q + 1 is greater than one, then X is obtained from X ′ in the following recursive
fashion. Put X0 = X ′, and for an integer k > 0, let Xk be the cone of the morphism

Σ−1f1,q+k−1
Σ−1f2,q+k−1

...
Σ−1fq+k−2,q+k−1


into Xk−1. Then X is equal to Xr−q+1.

If one of these columns contains an isomorphism, we can reorder the terms so that the
isomorphism is contained in the first of these columns. Then, by the above reasoning, this
first column is a section, X1 is quasi-isomorphic to a dg module which has no summands
of the form ΣmΓ`, and X has only r − q summands of this form. By induction, X is
quasi-isomorphic to a minimal perfect dg module. This finishes the proof.

�

Proof (of Lemma 3.2.11.) It is easily seen that prDΓΓ in contained in D≤0∩⊥D≤−2∩
per Γ. Let X be in D≤0∩⊥D≤−2∩per Γ. Then X is quasi-isomorphic to a minimal perfect
dg module. Thus suppose that X is minimal perfect.

Let Si be the simple dg module at the vertex i. Since X is minimal perfect, the
dimension of HomDΓ(X,ΣpSi) is equal to the number of summands of X isomorphic to
ΣpΓi, as a graded Γ-module. Since X is in D≤0 ∩ ⊥D≤−2, this number is zero unless i is
0 or 1. This proves that X is the cone of a morphism between objects of addΓ, and thus
X is in prDΓΓ. �

We will need a particular result on the calculus of fractions in C for certain objects.
Recall that, for any two objects X and Y of per Γ, the space HomC(X,ΣY ) is the colimit
of the direct system (HomDΓ(X ′,ΣY )) taken over all morphisms f : X ′ → X whose cone
is in DfdΓ .

Lemma 3.2.15. Let X and Y be objects of prDΓΓ. Then the space HomC(X,ΣY ) is
the colimit of the direct system (HomDΓ(X ′,ΣY )) taken over all morphisms f : X ′ → X
whose cone is in DfdΓ ∩ D≤0 ∩ D≥0 and such that X ′ lies in D≤0.
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Proof There is a natural map

colim HomDΓ(X ′,ΣY ) −→ HomC(X,ΣY ),

where the colimit is taken over all morphisms f : X ′ → X whose cone is inDfdΓ∩D≤0∩D≥0
and such that X ′ lies in D≤0.

We first prove that it is surjective. Let X X ′
soo f // ΣY be a morphism in C,

with N = cone(s) in DfdΓ.
Using the canonical morphism N → τ≥0N , we get a commuting diagram whose two

lower rows and two leftmost columns are triangles:

Σ−1τ<0N

��

Σ−1τ<0N

��
Σ−1N

��

// X ′
s //

a
��

X // N

��
Σ−1τ≥0N //

��

X ′′

��

t // X // τ≥0N.

τ<0N τ<0N

Thanks to the 3-Calabi–Yau property, the space HomDΓ(Σ−1τ<0N,ΣY ) is isomorphic
to DHomDΓ(Y,Στ<0N), and this is zero since τ<0N is in D≤−2. Therefore f factors
through a, and there exists a morphism g : X ′′ −→ ΣY such that ga = f . The fraction

X X ′′
too g // ΣY is equal to X X ′

soo f // ΣY , and the cone of t is in Dfd∩D≥0.
Using the canonical morphism τ≤0τ≥0N → τ≥0N , we get a commuting diagram whose

rows are triangles:

Σ−1τ≤0τ≥0N

��

// X ′′′
u //

b
��

X // τ≤0τ≥0N

��
Σ−1τ≥0N // X ′′

t // X // τ≥0N.

Taking h = bg, we get a fraction X X ′′′
uoo h // ΣY which is equal to the fraction

X X ′′
too g // ΣY and is such that the cone of u lies in Dfd ∩ D≥0 ∩ D≤0.

However, X ′′′ has no reason to lie in D≤0. Using the canonical morphism τ≤0X
′′′ →

X ′′′, we get another commuting diagram whose middle rows and leftmost columns are
triangles:

Σ−1τ>0X
′′′

��

Σ−1τ>0X
′′′

��
Σ−1M

��

// τ≤0X
′′′ v //

c

��

X //M

��
Σ−1τ≤0τ≥0N //

��

X ′′′
u //

��

X // τ≤0τ≥0N.

τ>0X
′′′ τ>0X

′′′
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Since X and τ≤0X
′′′ are in D≤0, then so is M . Moreover, τ>0X

′′′ = H1X ′′′ is in Dfd;
indeed, the lower triangle gives an exact sequence H0τ≤0τ≥0N → H1X ′′′ → H1X whose
leftmost term is finite-dimensional and whose rightmost term is zero. Therefore, since
τ>0X

′′′ and τ≤0τ≥0N are in D≥0 ∩ Dfd, then so is M , thanks to the leftmost triangle.

Hence, if we put j = hc, we have a new fraction X τ≤0X
′′′voo j // ΣY which is

equal to X X ′′′
uoo h // ΣY , and which is such that τ≤0X

′′′ is in D≤0 and cone(v) is
in Dfd ∩ D≤0 ∩ D≥0. This proves surjectivity of the map.

We now prove that the map is injective. Let X X ′
soo f // ΣY be a fraction with

X ′ in D≤0 and cone(s) in Dfd ∩ D≤0 ∩ D≥0. Suppose it is zero in HomC(X,ΣY ), that is,
f factors through an object of Dfd. We must prove that it factors through an object of
Dfd ∩ D≤0 ∩ D≥0.

Put f = hg, with g : X ′ → M and h : M → ΣY , and M an object of Dfd. Consider
the following diagram:

X ′
ϕ //

g

""EEEEEEEEE τ≤0τ≥0M

c

��
τ<0M

a //M
b //

h

||yyyyyyyyy
τ≥0M

d
��uuΣY τ>0M.

By the 3-Calabi–Yau property, we have an isomorphism

HomDΓ(τ<0M,ΣY ) ∼= DHomDΓ(Y,Σ2τ<0M),

and this is zero since Σ2τ<0M is in D≤−3. Hence h factors through b.
Moreover, HomDΓ(X ′, τ>0M) is zero, since X ′ is in D≤0 and τ>0M is in D>0. Hence

bg factors through c.
This shows that f = hg factors through τ≤0τ≥0M , which is an object ofDfd∩D≤0∩D≥0.

Embed ϕ in a triangle

X ′′
ε // X ′

ϕ // τ≤0τ≥0M // ΣX ′′.

Then the fraction (sε)−1(fε) is equal to s−1f . Since f factors through τ≤0τ≥0M , fε
is zero.

Consider finally the natural morphism σ : τ≤0X
′′ → X ′′. Its cone τ>0X

′′ is isomorphic
to Σ−1τ≤0τ≥0M , and is thus in Dfd. Therefore the cone of sεσ is also in Dfd by com-
position, and we have a fraction (sεσ)−1(fεσ) which is equal to s−1f , and is such that
fεσ = 0, τ≤0X

′′ ∈ D≤0 and cone(sεσ) ∈ D≤0 ∩ D≥0 ∩ Dfd. This proves injectivity of the
map. �

Using the isomorphism of Theorem 3.2.5, we get a bifunctorial non-degenerate bilinear
form

βM,L : HomDΓ(M,L)×HomDΓ(Σ−3L,M) −→ k

for M in Dfd and L in per Γ. Using this, C. Amiot constructs in [2, Section 1.1] a
bifunctorial bilinear form

βX,Y : HomDΓ(X,Y )×HomDΓ(Y,Σ2X) −→ k
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for X and Y in C in the following way.
Using the calculus of left fractions, let s−1f : X → Y and t−1g : Y → Σ2X be

morphisms in C. Composing them, we get a diagram

X
f

  @@@@@@@@ Y

s

{{wwwwwwwww
g

$$IIIIIIIII Σ2X

t

{{vvvvvvvvv

Y ′

h

##GGGGGGGG Σ2X ′

s′

zzuuuuuuuuu

Σ2X ′′.

Put Σ2u = s′t. Then one gets a commuting diagram, where rows are triangles:

N
a // X

u //

f
��

X ′′ // ΣN

Y

h
��

Σ2X ′ // Σ2X ′′
b // Σ2N // Σ3X ′.

Note that N is in Dfd. We put βX,Y (s−1f, t−1g) = βN,Y ′(fa, bh).

Proposition 3.2.16. Let X be an object of prCΓ ∪ prCΣ−1Γ and Y be an object of prCΓ.
Then the bifunctorial bilinear form

βX,Y : HomC(X,Y )×HomC(Y,Σ2X) −→ k.

is non-degenerate. In particular, if one of the two spaces is finite-dimensional, then so is
the other.

Proof Let X and Y be objects in prCΓ ∪ prCΣ−1Γ and in prCΓ, respectively. In view
of Proposition 3.2.10, there exist lifts X and Y of X and Y in prDΓΓ ∪ prDΓΣ−1Γ and
prDΓΓ, respectively. In particular, X and Y lie in D≤1Γ.

Using the calculus of right-fractions, let f ◦ s−1 be non-zero a morphism from X to Y
in C = per Γ/DfdΓ, with f : X ′ −→ Y and s : X ′ −→ X morphisms in DΓ such that the
cone of s is in DfdΓ.

If X lies in prDΓΓ, then Lemma 3.2.9 allows us to suppose that X ′ = X and s = idX .
If X lies in prDΓΣ−1Γ, then Lemma 3.2.15 allows us to suppose that X ′ lies in D≤1. In
both case, X ′ lies in D≤1.

We now use [58, Proposition 2.19] : the (contravariant) functor

Φ : per Γ −→ Mod (Dfd(Γ)op)
P 7−→ HomDΓ(P, ?)|DfdΓ

is fully faithful. Thus Φ(f) 6= 0, meaning there exist N in DfdΓ and a morphism h : Y −→
N such that its composition with f is non-zero.

Recall from Theorem 3.2.5 that we have a non-degenerate bilinear form

β : HomDΓ(Σ−3N,X)×HomDΓ(X,N) −→ k,

so there exists a morphism j : Σ−3N −→ X such that β(j, h ◦ f) 6= 0.
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All the morphisms can be arranged in the following commuting diagram, where the
upper and lower row are triangles in DΓ.

Σ−3N
j // X

′ g //

f
��

X ′′ // Σ−2N

Y
h //

`
��

N

Σ2X
′ Σ2g // Σ2X ′′ // N

Σ3j // Σ3X
′
.

We will show the existence of a morphism ` : Y −→ Σ2X ′′ making the above diagram
commute. Once this is shown, the construction of [2] gives that

βX,Y (fs−1, (Σ2s)(Σ2g)−1 ◦ `) = βX,Y (f, (Σ2g)−1 ◦ `) = β(j, h ◦ f) 6= 0,

and shows that βX,Y is non-degenerate (here the first equality follows from the bifuncto-
riality of the bilinear form, and the second follows from its definition).

The existence of ` follows from the fact that HomDΓ(Y ,D≤−2Γ) = 0, so that (Σ3j)◦h =
0. �

To end this section, we will prove that, in general, prCΓ is not equal to the whole
cluster category.

Lemma 3.2.17. Let (Q,W ) be a quiver with potential which is not Jacobi-finite. Then
Σ2Γ is not in prCΓ.

Proof Suppose that Σ2Γ lies in prCΓ. Then, by Proposition 3.2.10, it lifts to an
object X in prDΓΓ. We have that

HomC(Γ,Σ2Γ) = HomDΓ(Γ, X) = H0X.

Now, since X and Σ2Γ have the same image in C, and since H0Σ2Γ is zero (and thus
finite-dimensional), H0X must be finite-dimensional.

By Proposition 3.2.16, this implies that HomC(Γ,Γ) is also finite-dimensional, contra-
dicting the hypothesis that H0Γ = J(Q,W ) is of infinite dimension.

Thus Σ2Γ cannot be in prCΓ. �

3.2.8 Mutation of Γ in prDΓΓ
Recall the equivalence µ̃+

i of Theorem 3.2.6. Denote by µ̃−i the quasi-inverse of the
functor DΓ −→ DΓ′ obtained by applying Theorem 3.2.6 to the mutation of µi(Q,W ) at
the vertex i. Then µ̃−i (Γ′i) is isomorphic to the cone of the morphism

Σ−1⊕
α

Γs(α) −→ Σ−1Γi

whose components are given by right multiplication by α.
In this subsection, we prove the following theorem, which was first formulated as a

“hope” by K. Nagao in his message [66] and which is used in [65]. In a more restrictive
setup, an analogous result was obtained in [46, Corollary 5.7].
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Theorem 3.2.18. Let Γ be the complete Ginzburg dg algebra of a quiver with potential
(Q,W ). Let (ε1, ε2, . . . , εr−1) be a sequence of signs. Let (i1, . . . , ir) be an admissible
sequence of vertices, and let T =

⊕
j∈Q0 Tj be the image of Γ(r) by the sequence of equiva-

lences

DΓ(r)
µ̃

εr−1
ir−1 // . . .

µ̃
ε1
i1 // DΓ(1) = DΓ.

Suppose that Tj lies in prDΓΓ for all vertices j of Q. Then there exists a sign εr such that
all summands of the image of Γ(r+1) by µ̃ε1i1 µ̃

ε2
i2
· · · µ̃εr

ir
lie in prDΓΓ.

We start by proving a result relating morphisms in the cluster category and in the
derived category, first proved in [2, Proposition 2.12] in the Hom-finite case.

Proposition 3.2.19. Let X and Y be objects of prDΓΓ such that HomDΓ(X,ΣY ) is finite-
dimensional. Then there is an exact sequence of vector spaces

0 −→ HomDΓ(X,ΣY ) −→ HomC(X,ΣY ) −→ DHomDΓ(Y,ΣX) −→ 0.

The proof of the proposition requires some preparation. First a lemma on limits.

Lemma 3.2.20. Let (Vi) be an inverse system of finite-dimensional vector spaces with
finite-dimensional limit. Then the canonical arrow

colim (DVi) −→ D(limVi)

is an isomorphism.

Proof This follows by duality from the isomorphisms

Dcolim (DVi) ∼= lim (DDVi) ∼= limVi.

�

We can now prove Proposition 3.2.19.
Proof (of Proposition 3.2.19.) Let X ′ −→ X −→ N −→ ΣX ′ be a triangle in DΓ,

with X ′ in D≤0 and N in Dfd ∩ D≤0 ∩ D≥0.
By the 3-Calabi–Yau property, HomDΓ(N,ΣY ) ∼= DHomDΓ(Y,Σ2N), and this is zero

since Σ2N is in D≤−2. Moreover, HomDΓ(Σ−1X,ΣY ) ∼= HomDΓ(X,Σ2Y ), and this is also
zero since Σ2Y is in D≤−2.

The above triangle thus gives an exact sequence

0 −→ HomDΓ(X,ΣY ) −→ HomDΓ(X ′,ΣY ) −→ HomDΓ(Σ−1N,ΣY ) −→ 0.

We want to take the colimit of this exact sequence with respect to all morphisms
f ′′ : X ′′ → X whose cone is in Dfd ∩ D≤0 ∩ D≥0 and with X ′′ in D≤0. The colimit will
still be a short exact sequence, since, as we shall prove, all the spaces involved and their
colimits are finite-dimensional.

The leftmost term is constant; its colimit is itself.
Consider the rightmost term. Since Y is in prDΓΓ, there is a triangle

P1 −→ P0 −→ Y −→ ΣP1

with P0 and P1 in addΓ. Noticing that HomDΓ(Pi, N) = HomDΓ(H0Pi,H0N) for i ∈
{1, 2}, we get an exact sequence

0→ HomD(Y,N)→ HomD(H0P0,H0N)→ HomD(H0P1,H0N)→ HomD(Y,ΣN)→ 0.
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Since the two middle spaces are finite-dimensional, so are the other two, and the limit
of this sequence is still exact.

Now H0X is an (EndDΓ Γ)-module. Since EndDΓ Γ is the jacobian algebra of a quiver
with potential, H0X is the limit of all its finite-dimensional quotients. The system given
by the H0N is a system of all the finite-dimensional quotients of H0X; its limit is thus
H0X.

Hence the limit of HomDΓ(H0Pi,H0N) is HomDΓ(H0Pi,H0X), which is isomorphic to
HomDΓ(Pi,H0X). We thus have an exact sequence

HomDΓ(P0,H0X)→ HomDΓ(P1,H0X)→ lim HomDΓ(Y,ΣN)→ 0.

This implies the isomorphisms

lim HomDΓ(Y,ΣN) ∼= HomDΓ(Y,ΣH0X) ∼= HomDΓ(Y,ΣX).

Using Lemma 3.2.20, we thus get that colimDHomDΓ(Y,ΣN) = DHomDΓ(Y,ΣX),
and the 3-Calabi–Yau property of Theorem 3.2.5 implies that DHomDΓ(Y,ΣN) is isomor-
phic to HomDΓ(Σ−1N,ΣY ). Therefore the colimit of the HomDΓ(Σ−1N,ΣY ) is the space
DHomDΓ(Y,ΣX) as desired.

It remains to be shown that the colimit of the terms of the form HomDΓ(X ′,ΣY ) is
HomDΓ(X,ΣY ). This is exactly Lemma 3.2.15. This finishes the proof of the Proposition.
�

This enables us to formulate a result on the lifting of triangles from the cluster category
to the derived category.

Proposition 3.2.21. Let X and Y be objects of prCΓ, with dim HomC(X,ΣY ) = 1 (and
so dim HomC(Y,ΣX) = 1 by Proposition 3.2.16). Let

X −→ E −→ Y −→ ΣX and Y −→ E′ −→ X −→ ΣY

be non-split triangles (they are unique up to isomorphism). Then one of the two triangles
lifts to a triangle A −→ B −→ C −→ ΣA in per Γ, with A, B and C in prDΓΓ.

Proof According to Proposition 3.2.10, we can lift X and Y to objects X and
Y of prDΓ. Using the short exact sequence of Proposition 3.2.19, we have that one of
HomDΓ(X,ΣY ) and HomDΓ(Y ,ΣX) is one-dimensional.

Suppose that HomDΓ(Y ,ΣX) is one-dimensional. Let

X −→ E −→ Y −→ ΣX

be a non-split triangle. Since prDΓΓ = D≤0 ∩⊥D≤−2 ∩ per Γ is closed under extensions, E
lies in prDΓΓ. Thus the equivalence of Proposition 3.2.10 implies that the triangle descends
to a non-split triangle in C. Up to isomorphism, this non-split triangle is X −→ E −→
Y −→ ΣX.

The proof is similar if HomDΓ(X,ΣY ) is one-dimensional; in this case, the triangle
Y −→ E′ −→ X −→ ΣY is the one which can be lifted. �

We can now prove the main theorem of this subsection.
Proof (of Theorem 3.2.18.)
Put i = ir. For any vertex j 6= i, the image of Γ(r+1) by µ̃ε1i1 µ̃

ε2
i2
· · · µ̃εr−1

ir−1
µ̃εir is

isomorphic to Tj for any sign ε, and is in prDΓΓ by hypothesis. Now, the images of
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Γ(r+1)
i by µ̃ε1i1 µ̃

ε2
i2
· · · µ̃εr−1

ir−1
µ̃+
ir

and by µ̃ε1i1 µ̃
ε2
i2
· · · µ̃εr−1

ir−1
µ̃−ir become isomorphic in the clus-

ter category CQ,W , and they lie in prCΓ. Denote these images by T ∗i . We have that
dim HomC(Ti,ΣT ∗i ) = 1. Thus we can apply Proposition 3.2.21 and get that T ∗i is lifted
in prDΓΓ either to µ̃ε1i1 µ̃

ε2
i2
· · · µ̃εr−1

ir−1
µ̃+
ir

(Γr+1
i ) or to µ̃ε1i1 µ̃

ε2
i2
· · · µ̃εr−1

ir−1
µ̃−ir (Γr+1

i ). �

3.3 Cluster character

Let C be a (not necessarily Hom–finite) triangulated category with suspension functor
Σ. Let T =

⊕n
i=1 Ti be a basic rigid object in C (with each Ti indecomposable), that is, an

object T such that HomC(T,ΣT ) = 0 and i 6= j implies that Ti and Tj are not isomorphic.
We will assume the following :

1. prCT is a Krull–Schmidt category;
2. B = EndC(T ) is the (completed) Jacobian algebra of a quiver with potential (Q,W );
3. the simple B–module at each vertex can be lifted to an object in prC(T ) ∩ prC(ΣT )

through the functor HomC(T,−);
4. for all objectsX of prC(ΣT )∪prC(T ) and Y of prC(ΣT ), there exists a non-degenerate

bilinear form
HomC(X,Y )×HomC(Y,Σ2X) −→ k

which is functorial in both variables.

Lemma 3.3.1. The above hypotheses hold for the cluster category CQ,W of a quiver with
potential (Q,W ), where T is taken to be Σ−1Γ.

Proof Condition (1) is proved in Corollary 3.2.12, since prCΓ is equivalent to prCΣ−1Γ.
Condition (2) follows from Proposition 3.2.10, since EndC(Σ−1Γ) is isomorphic to EndC(Γ),
which is in turn isomorphic to EndDΓ(Γ) = H0Γ, and this is the completed Jacobian alge-
bra of (Q,W ). Condition (3) follows from the fact that HomC(Γi,ΣΓ∗i ) = HomDΓ(Γi,ΣΓ∗i )
is one-dimensional (see [58, Section 4]). Finally, condition (4) is exactly the contents of
Proposition 3.2.16. �

As in [18] and [68], define the index with respect to T of an object X of prCT as the
element of K0(addT ) given by

indT X = [TX0 ]− [TX1 ],

where TX1 −→ TX0 −→ X −→ ΣTX1 is an (addT )-presentation of X. One can show as in
[68] that the index is well-defined, that is, does not depend on the choice of a presentation.
We write indT X =

∑
i∈Q0 [indT X : Ti][Ti], where [indT X : Ti] is an integer for all i ∈ Q0.

3.3.1 Modules

Consider the functors F = HomC(T,−) : C −→ ModB and G = HomC(−,Σ2T ) :
C −→ ModBop, where ModB is the category of right B–modules.

For an object U of C, let (U) be the ideal of morphisms in C factoring through an
object of addU .

This subsection is devoted to proving some useful properties of the functors F and G.

Lemma 3.3.2. Let X and Y be objects in C.
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1. If X lies in prCT , then F induces an isomorphism

HomC(X,Y )/(ΣT ) −→ HomB(FX,FY ).

If Y lies in prCΣT , then G induces an isomorphism

HomC(X,Y )/(ΣT ) −→ HomBop(GY,GX).

2. F induces an equivalence of categories

prCT/(ΣT ) −→ modB,

where modB denotes the category of finitely presented B–modules.
3. Any finite-dimensional B–module can be lifted through F to an object in prCT ∩

prCΣT . Any short exact sequence of finite-dimensional B-modules can be lifted
through F to a triangle of C, whose three terms are in prCT ∩ prCΣT .

Proof (1) We only prove the first isomorphism; the proof of the second one is dual.
First, suppose that X = Ti is an indecomposable summand of T . Let f : FTi −→ FY be
a morphism of B–modules. Note that any element g of FTi = HomC(T, Ti) is of the form
pg′, where p : T −→ Ti is the canonical projection and g′ is an endomorphism of T . Hence
f(g) = f(p)g′. Moreover, consider the idempotent ei in EndC T associated with Ti. We
have that f(p) = f(pei) = f(p)ei. Hence f(p) can be viewed as a morphism from Ti to Y ,
and f = F (f(p)). This shows that there is a bijection HomC(Ti, Y ) −→ HomB(FTi, FY ).

One easily sees that this bijection will also hold if X is a direct sum of direct summands
of T .

Now, let X be in prCT , and let TX1
α // TX0

β // X
γ // ΣTX1 be a triangle in C,

with TX0 , TX1 ∈ addT . Let f : FX −→ FY be a morphism of B–modules. We have that
fFβ belongs to HomB(FTX0 , FY ), and by the above lifts to a morphism ω : TX0 −→ Y .

Moreover, F (ωα) = FωFα = fFβFα = 0, and by injectivity, ωα = 0. Hence there
exists φ : X −→ Y such that φβ = ω, so FφFβ = fFβ. Since Fβ is surjective, this gives
Fφ = f . Therefore the map HomC(X,Y ) −→ HomB(FX,FY ) is surjective.

Suppose now that u : X −→ Y is such that Fu = 0. Then F (uβ) = FuFβ = 0, and
by the injectivity proved above, uβ = 0, and u factors through ΣTX1 . This finishes the
proof.

(2) It follows from part (1) that the functor is fully faithful. Let now M ∈ modB,
and let P1 −→ P0 −→M −→ 0 be a projective presentation. By part (1), P1 −→ P0 lifts
to a morphism T1 −→ T0 in C, with T0, T1 ∈ addT . We can embed this morphism in a
triangle T1 −→ T0 −→ X −→ ΣT1, and we see that FX is isomorphic to M . This proves
the equivalence.

(3) By our hypothesis, the statement is true for the simple modules at each vertex.
LetM be a finite-dimensional B–module. According to a remark following Definition 10.1
of [22], M is nilpotent. Therefore it can be obtained from the simple modules by repeated
extensions. All we have to do is show that the property is preserved by extensions in
ModB.

Let 0 −→ L −→ M −→ N −→ 0 be a short exact sequence, with L and N in modB
admitting lifts L and N in prCT ∩ prCΣT , respectively. Using projective presentations of
L and N , we consctruct one for M and obtain a diagram as below, where the upper two
rows are split.
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0 // PL1
//

��

PL1 ⊕ PN1 //

��

PN1
//

��

0

0 // PL0
//

��

PL0 ⊕ PN0 //

��

PN0
//

��

0

0 // L //

��

M //

��

N //

��

0

0 0 0

Thanks to part (2), the upper left square can be lifted into a commutative diagram

TL1
//

��

TL1 ⊕ TN1

��
TL0

// TL0 ⊕ TN0

which in turn embeds in a nine-diagram as follows.

TL1
//

��

TL1 ⊕ TN1 //

��

TN1
//

��

ΣTL1

TL0
//

��

TL0 ⊕ TN0 //

��

TN0
//

��

ΣTL0

L //

��

M //

��

N //

��

ΣL

ΣTL1 // ΣTL1 ⊕ ΣTN1 // ΣTN1

Hence M is a lift of M in prCT . Now, since N lies in prCΣT , it follows from part (1)
that the morphism Σ−1N −→ L is in (ΣT ), and thus from Lemma 3.3.4 below that M is
also in prCΣT . This finishes the proof. �

Lemma 3.3.3. Let X, Y and Z be objects in C. Suppose that Y and Z lie in prCΣT and
that FY is finite-dimensional. Let

X
f // Y

g // Z // ΣX

be a triangle. If Ff = 0, then f ∈ (ΣT ).

Proof The equality Ff = 0 means that Fg is injective. Using the non-degenerate
bilinear form, we get a commuting diagram

HomC(T, Y ) �
� Fg //

� _

��

HomC(T,Z)� _

��
DHomC(Y,Σ2T ) DGg // DHomC(Z,Σ2T ),
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where the top horizontal morphism and the two vertical ones are injective. Since FY is
finite-dimensional, the left morphism is an isomorphism. Thus DGg is injective, and Gg
is surjective. But this means that Gf = 0, and by part (1) of Lemma 3.3.2, f ∈ (ΣT ). �

3.3.2 Presentations and index

Let us now study some closure properties of prCT , and deduce some relations between
triangles and indices.

Lemma 3.3.4. Let X // Y // Z
ε // ΣX be a triangle in C such that ε is in (ΣT ).

Then

1. If two of X, Y and Z lie in prCT , then so does the third one.

2. If X,Y, Z ∈ prCT , then we have an equality indT X + indT Z = indT Y .

Proof Let us first suppose thatX and Z lie in prCT . Let TX1 −→ TX0 −→ X −→ ΣTX1
and TZ1 −→ TZ0 −→ Z −→ ΣTZ1 be two triangles, with TX0 , TX1 , TZ0 and TZ1 in addT .

Since HomC(T,ΣT ) = 0, the composition TZ0 −→ Z −→ ΣX vanishes, so TZ0 −→ Z
factors through Y . This gives a commutative square

TX0 ⊕ TZ0 //

��

TZ0

��
Y // Z

which can be completed into a nine-diagram

TX1
//

��

TX1 ⊕ TZ1 //

��

TZ1

��

// ΣTX1

TX0
//

��

TX0 ⊕ TZ0 //

��

TZ0

��

// ΣTX0

X //

��

Y //

��

Z //

��

ΣX

ΣTX1 ΣTX1 ⊕ ΣTZ1 ΣTZ1

showing that Y is in prCT and that assertion 2 is true.
Now suppose that X and Y lie in prCT . Since the composition Z −→ ΣX −→ Σ2TX1

is zero, the morphism Z −→ ΣX factors through ΣTX0 . This yields an octahedron
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ΣY

Z ΣX

ΣW

ΣTX0

Σ2TX1

+��������

		��������

aaCCCCCCCCCCCCCCCCCCCCCCCC

::ttttttttttttttttttttt ��

//
+VVVVV

**VVVVVV

��/
///////// 88qqqqqqqqqqqqqqqqqq

jjccGGGGGGGGGGGGGGGGGGGGG

+oo

+

		

which produces a triangle TX1 −→ W −→ Y −→ ΣTX1 . Composing with Y −→ ΣT Y1 ,
we get a second octahedron

ΣU

W ΣT Y1

ΣTX1

Y

ΣT Y0

+��������

		��������

aaCCCCCCCCCCCCCCCCCCCCCCC

::tttttttttttttttttttt ��

//
+VVVV

**VVVVVV

��/
///////// 88qqqqqqqqqqqqqqqqqqq

jjccGGGGGGGGGGGGGGGGGGGGG

+oo

+

		

which gives triangles TX1 −→ U −→ T Y0 −→ ΣTX1 and T Y1 −→ U −→ W −→ ΣT Y1 .
Note that, since HomC(T,ΣT ) = 0, the first triangle is split, so U is isomorphic to TX1 ⊕T Y0 .

From the first octahedron, one gets a triangle TX0 −→ W −→ Z −→ ΣTX0 . Construct
one last octahedron with the composition U −→W −→ Z.

ΣV

U Z

ΣT Y1

W

ΣTX0

+��������

		��������

aaCCCCCCCCCCCCCCCCCCCCCCCC

::tttttttttttttttttttt ��

//
+VVVV

**VVVVVV

��/
///////// 88qqqqqqqqqqqqqqqqqqqqq

jjccGGGGGGGGGGGGGGGGGGGGG

+oo

+

		

As was the case for U , V is in a split triangle, and is thus isomorphic to T Y1 ⊕ TX0 .
Hence there is a triangle V −→ U −→ Z −→ ΣV , with U and V in add T . This proves
that Z lies in prCT .

Finally, suppose that Y and Z are in prCT . Notice that since Σ−1ε factors through
addT , the composition Σ−1TZ0 −→ Σ−1Z −→ X vanishes. Applying a reasonning dual to
that of the preceding case, one proves that X lies in prCT . �
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The next lemma is an adapted version of Proposition 6 of [68].

Lemma 3.3.5. Let X
α // Y

β // Z
γ // ΣX be a triangle in C, with X,Z ∈ prCT

such that CokerFβ is finite-dimensional. Let C ∈ prCT ∩ prCΣT be such that FC =
CokerFβ. Then Y ∈ prCT , and indT X + indT Z = indT Y + indT C + indT Σ−1C.

Proof Note that since CokerFβ is finite-dimensional, it can be lifted to C ∈ prCT ∩
prCΣT thanks to Lemma 3.3.2.

The case where γ factors through addΣT was treated in Lemma 3.3.4. In that case,
CokerFβ = 0, and C ∈ addΣT , so that indT C = − indT Σ−1C.

Suppose now that γ is not in (ΣT ). In modB, there is a commutative triangle
FZ //

%%KKKKKKKKKK FΣX

CokerFβ

88rrrrrrrrrr

which, thanks to Lemma 3.3.2, we can lift to a commutative triangle
Z

a //

b

##HHHHHHHHH ΣX

C ⊕ ΣT

c

::uuuuuuuuu

in C, where T lies in addT . Form an octahedron
ΣY

Z ΣX.

U

C ⊕ ΣT

U ′

+��������

		��������

aaCCCCCCCCCCCCCCCCCCCCCCCC

::ttttttttttttttttttttt ��

//
+VVVVVV

**VVVVVV

��/
///////// 88qqqqqqqqqqqqqqqqqq

jjccGGGGGGGGGGGGGGGGGGGGGG

+oo

+

		

Since Fb is an epimorphism, the morphism C⊕ΣT −→ U must lie in (ΣT ), by Lemma
3.3.2, part (1). Since Fc is a monomorphism, the same must hold for Σ−1U ′ −→ C ⊕ΣT ,
by Lemma 3.3.3. By composition, the morphism Σ−1U ′ −→ U is also in (ΣT ).

We thus have three triangles
Σ−1U // Z // C ⊕ ΣT // U

Σ−1C ⊕ T // X // Σ−1U ′ // C ⊕ ΣT

Σ−1U // Y // Σ−1U ′ // U
whose third morphism factors through ΣT . Applying Lemma 3.3.4, we get that Σ−1U ,

Σ−1U ′ and Y are in prCT , and that

indT Σ−1U + indT C + indT ΣT = indT Z,

indT Σ−1C + indT T + indT Σ−1U ′ = indT X, and
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indT Y = indT Σ−1U + indT Σ−1U ′.

Summing up, and noticing that indT T = − indT ΣT , we get the desired equality. �

Lemma 3.3.6. Let X be an object in prCT ∩ prCΣT such that FX is finite-dimensional.
Then the sum indT X + indT Σ−1X only depends on the dimension vector of FX.

Proof First, notice that FX = 0 if, and only if, X is in addΣT .
Second, suppose X is indecomposable. If Y is another such object such that FX and

FY are isomorphic and non-zero, then X and Y are isomorphic in C. Indeed, in view of
Lemma 3.3.2, part (2), there exist morphisms f : X −→ Y and g : Y −→ X such that
f ◦ g = idX + t and g ◦ f = idY + t′, with t, t′ ∈ (ΣT ). But since the endomorphism rings
of X and Y are local and not contained in (ΣT ), this implies that f ◦ g and g ◦ f are
isomorphisms.

Third, let us show that the sum depends only on the isomorphism class of FX. Let
Y be another such object such that FX and FY are isomorphic. Write X = X ⊕ ΣTX
and Y = Y ⊕ΣT Y , where TX , T Y ∈ addT and X,Y have no direct summand in addΣT .
Then FX = FY , and by the above X and Y are isomorphic. We have

indT X + indT Σ−1X = indT X + indT Σ−1X + indT ΣTX + indT TX

= indT X + indT Σ−1X

= indT Y + indT Σ−1Y + indT ΣT Y + indT T Y

= indT Y + indT Σ−1Y.

Finally, we prove that the sum only depends on the dimension vector of FX. Let
0 −→ L −→ M −→ N −→ 0 be an exact sequence in modB. As in the proof of part (3)
of Lemma 3.3.2, lift it to a triangle L −→M −→ N −→ ΣL, where the last morphism in
in (ΣT ) ∩ (Σ2T ). Using Lemma 3.3.4, we get the equality

indT M + indT Σ−1M = indT L+ indT Σ−1L+ indT N + indT Σ−1N.

This gives the independance on the dimension vector. �

Notation 3.3.7. For a dimension vector e, denote by ι(e) the sum indT X + indT Σ−1X,
where dimFX = e (by the above Lemma, this does not depend on the choice of such an
X).

Lemma 3.3.8. If X ∈ prC(T ) and Y ∈ prC(ΣT ), then the bilinear form induces a non-
degenerate bilinear form

(ΣT )(X,Y )×HomC(Y,Σ2X)/(Σ2T ) −→ k.

Proof Let TX1
// TX0

// X
η // ΣTX1 be a triangle, with TX0 , TX1 in addT .

Consider the following diagram.

HomC(X,Y ) × HomC(Y,Σ2X)

Σ2η∗
��

// k

HomC(ΣTX1 , Y )

η∗

OO

× HomC(Y,Σ3TX1 ) // k
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The bifunctoriality of the bilinear form (call it β) implies that for each morphism f in
HomC(ΣTX1 , Y ) and each g in HomC(Y,Σ2X), β(η∗f, g) = β(f,Σ2η∗g).

As a consequence, there is an induced non-degenerate bilinear form

Im η∗ × Im Σ2η∗ −→ k.

Since Im η∗ is isomorphic to (ΣT )(X,Y ), and since Im Σ2η∗ is in turn isomorphic to
HomC(Y,Σ2X)/(Σ2T ), we get the desired result.

�

3.3.3 Cluster character : definition

In [68], Y. Palu defined the notion of cluster character for a Hom–finite 2-Calabi–Yau
triangulated category with a cluster-tilting object. In our context, the category C is not
Hom–finite nor 2-Calabi–Yau, and the object T is only assumed to be rigid. However, the
definition can be adapted to this situation as follows.

Definition 3.3.9. Let C be a triangulated category and T be a rigid object as above. The
category D is the full subcategory of prCT ∩ prCΣT whose objects are those X such that
FX is a finite-dimensional B–module.

Under the hypotheses of this Section, the subcategory D is Krull–Schmidt and stable
under extensions. Moreover, in the special case where C = CQ,W and T = Σ−1Γ, the
subcategory D does not depend on the mutation class of T ; that is, replacing Γ by any
µr . . . µ1Γ in the definition of T yields the same subcategory D (this is a consequence of
the nearly Morita equivalence of [58, Corollary 4.6] and of Corollary 3.2.8).

The subcategory D allows us to extend the notion of cluster characters.

Definition 3.3.10. Let C be a triangulated category and T be a rigid object as above.
Let D be as in Definition 3.3.9.

A cluster character on C (with respect to T ) with values in a commutative ring A is a
map

χ : obj(D) −→ A

satisfying the following conditions :
– if X and Y are two isomorphic objects in D, then we have χ(X) = χ(Y );
– for all objects X and Y of D, χ(X ⊕ Y ) = χ(X)χ(Y );
– (multiplication formula) for all objects X and Y of D such that dim Ext1

C(X,Y ) = 1,
the equality

χ(X)χ(Y ) = χ(E) + χ(E′)

holds, where X −→ E −→ Y −→ ΣX and Y −→ E′ −→ X −→ ΣY are non split
triangles.

Note that Ext1
C(Y,X) is one-dimensional, thanks to the non-degenerate bilinear form.

Also note that E and E′ are in D, thanks to Lemma 3.3.5, so χ(E) and χ(E′) are defined.

Remark 3.3.11. If the category C happens to be Hom–finite and 2-Calabi–Yau, and if T
is a cluster-tilting object, then this definition is equivalent to the one given in [68]. Indeed,
in that case, it was shown in [57], Proposition 2.1, that prCT = prCΣT = C, so D = C.
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Let D be as in Definition 3.3.10 and ι be as in Notation 3.3.7. Define the map

X ′? : obj(D) −→ Q(x1, x2, . . . , xn)

as follows : for any object X of D, put

X ′X = xindT Σ−1X
∑
e

χ
(
Gre(FX)

)
x−ι(e).

Here, χ is the Euler–Poincaré characteristic.
This definition is exactly the one in [68] and is a “shift” of the one in [32], both of

which were given in a Hom-finite setup.

Theorem 3.3.12. The map X ′? defined above is a cluster character on C with respect to
T .

It is readily seen that the first two conditions of Definition 3.3.10 are satisfied by X ′?.
We thus need to show that the multiplication formula holds in order to prove Theorem
3.3.12.

3.3.4 Dichotomy

This subsection mimics Section 4 of [68]. Our aim here is to prove the following
dichotomy phenomenon.

Let X and Y be objects of D such that dim Ext1
C(X,Y ) = 1. This implies that

dim Ext1
C(Y,X) = 1. Let

X
i // E

p // Y
ε // ΣX

Y
i′ // E′

p′ // X
ε′ // ΣY

be non-split triangles. Recall that Lemma 3.3.5 implies that E and E′ are in D.
Let U and V be submodules of FX and FY , respectively. Define

GU,V =
{
W ∈

⋃
e

Gre(FE)
∣∣∣ (Fi)−1(W ) = U, Fp(W ) = V

}
and

G′U,V =
{
W ∈

⋃
e

Gre(FE′)
∣∣∣ (Fi′)−1(W ) = V, Fp′(W ) = U

}
.

Proposition 3.3.13 (Dichotomy). Let U and V be as above. Then exactly one of GU,V
and G′U,V is non-empty.

In order to prove this Proposition, a few lemmata are needed.
Using Lemma 3.3.2, lift the inclusions U ⊆ FX and V ⊆ FY to morphisms iU : U −→

X and iV : V −→ Y , where U and V lie in prCT ∩ prCΣT . Keep these notations for the
rest of this Section and for the next.

The first lemma is about finiteness.

Lemma 3.3.14. Let X and U be as above. Let M be an object of C such that FM and
HomC(X,ΣM) are finite-dimensional. Then HomC(U,ΣM) is also finite-dimensional.
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Proof Embed iU in a triangle Σ−1X
α // Z

β // U
iU // X . From this triangle,

one gets the exact sequence

HomC(X,ΣM)
i∗U // HomC(U,ΣM) β∗ // HomC(Z,ΣM).

The image of β∗ is isomorphic to HomC(U,ΣM)/ Im i∗U . Since HomC(X,ΣM) is finite-
dimensional by hypothesis, it suffices to show that Im β∗ is finite-dimensional to prove the
Lemma.

Since Σ−1X and U are in prCT and CokerFβ is finite-dimensional, Lemma 3.3.5 can
be applied to get that Z is in prCT . Let TZ1

// TZ0
// Z // ΣTZ1 be a triangle,

with TZ0 and TZ1 in prCT .
Now, FiU is a monomorphism, so Fβ = 0, and Lemma 3.3.2 implies that β lies in

(ΣT ). Therefore Im β∗ is contained in (ΣT )(Z,ΣM). It is thus sufficient to show that the
latter is finite-dimensional.

We have an exact sequence

HomC(ΣTZ1 ,ΣM) γ // HomC(Z,ΣM) // HomC(TZ0 ,ΣM).

Since T is rigid, we have that (ΣT )(Z,ΣM) = Im γ. It is thus finite-dimensional. Indeed,
FM = HomC(T,M) is finite-dimensional, and this implies that the same property holds
for HomC(ΣTZ1 ,ΣM). This finishes the proof. �

The second lemma is a characterization in C of the non-emptiness of GU,V . It is
essentially [68, Lemma 14], where the proof differs in that not every object lies in prCT .

Lemma 3.3.15. With the above notations, the following are equivalent:
1. GU,V is non-empty;
2. there exist morphisms e : Σ−1V −→ U and f : Σ−1Y −→ U such that

(a) (Σ−1ε)(Σ−1iV ) = iUe

(b) e ∈ (T )
(c) iUf − Σ−1ε ∈ (ΣT );

3. condition (2) where, moreover, e = fΣ−1iV .

Proof Let us first prove that (2) implies (1). The commutative square given by (a)
gives a morphism of triangles

U //

iU
��

W //

φ
��

V
Σe //

iV
��

ΣU
ΣiU
��

X
i // E

p // Y
ε // ΣX.

Applying the functor F , we get a commutative diagram in modB :

U //

FiU
��

FW //

Fφ
��

V
Σe //

FiV
��

0

FX
Fi // FE

Fp // FY.

An easy diagram chasing shows that the image of Fφ is in GU,V , using the morphism
f .
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Let us now prove that (1) implies (2). Let W be in GU,V . Notice that U contains
KerFi = Im FΣ−1ε, so FΣ−1ε factors through U . Since Σ−1Y ∈ prCT , Lemma 3.3.2
allows us to find a lift f : Σ−1Y −→ U of this factorization such that iUf −Σ−1ε ∈ (ΣT ).

Let us define e. Since V ∈ prCT , there exists a triangle

T V1
// T V0

// V // ΣT V1 .

Since FT V0 is projective, and since W
Fp // V is surjective, FT V0

// V factors
through Fp. Composing with the inclusion of W in FE, we get a commutative square

FT V0
//

��

V

��
FE // FY

which lifts to a morphism of triangles (thanks to Lemma 3.3.2)

Σ−1V //

��

T V1
//

��

T V0
//

��

V

��
Σ−1Y // X // E // Y.

Now FT V0
// FE factors through W , and since U = (Fi)−1(W ), then the image of

FT V1
// FX is contained in U . Thus T V1

// X factors through U , and we take e

to be the composition Σ−1V // T V1
// U . By construction, conditions (a) and (b)

are satisfied.
Obviously, (3) implies (2). Let us show that (2) implies (3).
First, since (Σ−1ε)(Σ−1iV ) = iUe and iUfΣ−1iV − (Σ−1ε)(Σ−1iV ) ∈ (ΣT ), we get that

iU (fΣ−1iV − e) ∈ (ΣT ). Since FiU is a monomorphism, and since Σ−1V ∈ prCT , we get
that h := fΣ−1iV − e ∈ (ΣT ).

Embed the morphism Σ−1iV into a triangle

Σ−1V
Σ−1iV // Σ−1Y // C // V .

Using Lemma 3.3.5, we see that C lies in prCT , and since FiV is a monomorphism, this
implies that C // V lies in (ΣT ), by Lemma 3.3.2.

Now, h ∈ (ΣT ) and Σ−1C // Σ−1V ∈ (T ), so their composition vanishes. There-
fore there exists a morphism Σ−1Y

` // U such that `Σ−1iV = h.
Since V is in prCΣT , there is a triangle T 1

V
// T 0
V

// Σ−1V // ΣT 1
V . Now,

since Σ−1C // Σ−1V ∈ (T ) and `Σ−1iV ∈ (ΣT ), we have morphisms of triangles

Σ−1C //

��

Σ−1V
Σ−1iV // Σ−1Y

c //

v
��

C

��
T 0
V

u //

��

Σ−1V //

Σ−1iV
��

ΣT 1
V

//

w
��

ΣT 0
V

��
Σ−1C ′ // Σ−1Y

` // U // C ′.
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Since the composition (` − wv)Σ−1iV vanishes, there exists a morphism `′ from C to
U such that `′c = `− wv.

Put f0 = f − wv. Then

f0Σ−1iV = fΣ−1iV − `Σ−1iV + `′cΣ−1iV = fΣ−1iV − h+ 0 = e.

Moreover, iUf0 − Σ−1ε = (iUf − Σ−1ε)− wv ∈ (ΣT ). This finishes the proof. �

Proof (of Proposition 3.3.13) The proof is similar to that of Proposition 15 of [68].
Consider the linear map

α : (Σ−1Y,U)⊕ (Σ−1Y,X) → (Σ−1V ,X)⊕ (Σ−1V ,U)/(T )⊕ (Σ−1Y,X)/(ΣT )
(x, y) 7→ (y(Σ−1iV )− iUx(Σ−1iV ), xΣ−1iV , iUx− y),

where we write (X,Y ) instead of HomC(X,Y ). Then f ∈ HomC(Σ−1Y,U) satisfies condi-
tion (3) of Lemma 3.3.15 if, and only if, (f,Σ−1ε) is in Kerα. Since HomC(Y,Σ−1X) is
one-dimensional, the existence of such an f is equivalent to the statement that the map

β : Kerα �
� // (Σ−1Y,U)⊕ (Y,ΣX) // // (Y,ΣX)

does not vanish, where the second map is the canonical projection.
Now, the emptiness of GU,V is equivalent to the vanishing of β, which is equivalent to

the vanishing of its dual

Dβ : D(Y,ΣX) �
� // D(Σ−1Y,U)⊕D(Y,ΣX) // // CokerDα,

which is in turn equivalent to the fact that any element of the space D(Σ−1Y,U) ⊕
D(Y,ΣX) of the form (0, z) lies in Im Dα.

Using Lemma 3.3.14 and the non-degenerate bilinear form, we see that all five spaces
involved in the definition of α are finite-dimensional. Therefore, Lemma 3.3.8 yields the
following commutative diagram, where the vertical morphisms are componentwise isomor-
phisms :

D(Σ−1V ,X)⊕D(Σ−1V ,U)/(T )⊕D(Σ−1Y,X)/(ΣT ) Dα // D(Σ−1Y,U)⊕D(Σ−1Y,X)

(X,ΣV )⊕ (ΣT )(U,ΣV )⊕ (Σ2T )(X,ΣY ) α′ //

OO

(U,ΣY )⊕ (X,ΣY ).

OO

Here, the action of α′ is given by α′(x, y, z) = ((ΣiV )xiU +(ΣiV )y+ziU ,−(ΣiV )x−z).
Now, any element of the form (0, w) is in Im α′ if, and only if, (0, ε′) is in Im α′, which

in turn is equivalent to the fact that condition (2) of Lemma 3.3.15 is satisfied, and thus
to the fact that G′U,V is non-empty. This finishes the proof. �

3.3.5 Multiplication formula

The main goal of this section is to prove the following Proposition, using the results
of the previous sections.

Proposition 3.3.16 (Multiplication formula). The map X ′? satisfies the multiplication
formula given in Definition 3.3.10.
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In order to prove this result, some notation is in order. Let X and Y be objects of D
such that HomC(X,ΣY ) is one-dimensional. Let

X
i // E

p // Y
ε // ΣX and

Y
i′ // E′

p′ // X
ε′ // ΣX

be non-split triangles in C. For any submodules U of FX and V of FY , define GU,V
and G′U,V as in Section 3.3.4.

For any dimension vectors e, f and g, define the following varieties :

Ge,f =
⋃

dimU = e
dimV = f

GU,V

G′e,f =
⋃

dimU = e
dimV = f

G′U,V

Gge,f = Ge,f ∩Grg(FE)

G
′g
e,f = G′e,f ∩Grg(FE′).

We first need an equality on Euler characteristics.

Lemma 3.3.17. With the above notation, we have that

χ(Gre(FX))χ(Grf (FY )) =
∑
g

(
χ(Gge,f ) + χ(G

′g
e,f )

)
.

Proof The Lemma is a consequence of the following successive equalities:

χ(Gre(FX))χ(Grf (FY )) = χ(Gre(FX)×Grf (FY ))
= χ(Ge,f tG′e,f )
= χ(Ge,f ) + χ(G′e,f )

=
∑
g

(
χ(Gge,f ) + χ(G

′g
e,f )

)
.

The only equality requiring explanation is the second one. Consider the map

Ge,f tG′e,f −→ Gre(FX)×Grf (FY )

W 7−→


(
(Fi)−1(W ), (Fp)(W )

)
if W ∈ Ge,f(

(Fi′)−1(W ), (Fp′)(W )
)

if W ∈ G′e,f .

As a consequence of Proposition 3.3.13, the map is surjective, and as shown in [12],
its fibers are affine spaces. The Euler characteristic of all its fibers is thus 1, and we have
the desired equality. �

Secondly, we need an interpretation of the dimension vectors e, f and g.
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Lemma 3.3.18. If Gge,f is not empty, then

dim (CokerFΣ−1p) = e+ f − g.

Proof We have the following commuting diagram in modB, where the rows are exact
sequences:

0 // K // U //

FiU
��

W //

FiW
��

V //

FiV
��

0

FX
Fi // FE

Fp // FY
Fε // FΣX.

In this diagram, dimU = e, dimW = g and dimV = f . The existence of such a
diagram is guaranteed by the non-emptiness of Gge,f .

Now CokerFΣ−1p is isomorphic to KerFi, which is in turn isomorphic to Ker (Fi ◦
FiU ), since U = (Fi)−1(W ). This last kernel is isomorphic to K. Hence the equality
dim (CokerFΣ−1p) = dimK holds.

Finally, the upper exact sequence gives the equality dimK+ dimW = dimU + dimV .
By rearranging and substituting terms, we get the desired equality. �

Everything is now in place to prove the multiplication formula.
Proof (of Proposition 3.3.16) The result is a consequence of the following successive

equalities (explanations follow).

X ′XX
′
Y = xindT Σ−1X+indT Σ−1Y

∑
e,f

χ
(
Gre(FX)

)
χ
(
Grf (FY )

)
x−ι(e+f)

= xindT Σ−1X+indT Σ−1Y
∑
e,f,g

(
χ(Gge,f ) + χ(G

′g
e,f )

)
x−ι(e+f)

= xindT Σ−1X+indT Σ−1Y−ι(Coker FΣ−1p)−ι(g) ∑
e,f,g

χ(Gge,f ) +

+ xindT Σ−1X+indT Σ−1Y−ι(Coker FΣ−1p′)−ι(g) ∑
e,f,g

χ(G
′g
e,f )

= xindT Σ−1E
∑
g

χ
(
Grg(FE)

)
x−ι(g) +

+ xindT Σ−1E′
∑
g

χ
(
Grg(FE′)

)
x−ι(g)

= X ′E +X ′E′ .

The first equality is just the definition of X ′?. The second one is a consequence of
Lemma 3.3.17, and the third one of Lemma 3.3.18. The fourth follows from Lemma 3.3.5.
The fifth equality is obtained by definition of Gge,f and G

′g
e,f . The final equality is, again,

just the definition of X ′?. �

3.4 Application to cluster algebras

In this section, we apply the cluster character developped in Section 3.3 to any skew-
symmetric cluster algebra, taking T = Σ−1Γ.

An object X of a triangulated category is rigid if Hom(X,ΣX) vanishes. Let CQ,W
be the cluster category of a quiver with potential (Q,W ). A reachable object of CQ,W
is a direct factor of a direct sum of copies µir . . . µi1(Γ) for some admissible sequence of
vertices (i1, . . . , ir) of Q. Notice that each reachable object is rigid.
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Theorem 3.4.1. Let (Q,W ) be a quiver with potential. Then the cluster character X ′?
defined in 3.3.10 gives a surjection from the set of isomorphism classes of indecomposable
reachable objects of CQ,W to the set of clusters variables of the cluster algebra associated
with Q obtained by mutating the initial seed at admissible sequences of vertices.

More precisely, X ′? sends the indecomposable summands of µir . . . µi1(Γ) to the elements
of the mutated cluster µir . . . µi1(x1, . . . , xr), where (x1, . . . , xr) is the initial cluster.

Proof Let (i1, . . . , ir) be an admissible sequence of vertices. It is easily seen that
X ′Γi

= xi for all vertices i. It is a consequence of [58, Corollary 4.6] that the space
HomC(Σ−1Γ, µir . . . µi1(Γ)) is finite dimensional. Moreover, µir . . . µi1(Γ) is obviously in
prC(µir . . . µi1(Γ))∩prC(Σ−1µir . . . µi1(Γ)), which is equal to prCΓ∩prCΣ−1Γ by Corollary
3.2.8. Therefore µir . . . µi1(Γ) is in the subcategory D of Definition 3.3.9, and we can apply
X ′? to µir . . . µi1(Γ).

We prove the result by induction on r.
First notice that µir . . . µi1(Γ)i = µir−1 . . . µi1(Γ)i if i 6= ir. Now, for i = ir, using the

triangle equivalence Cµir ...µi1 (Q,W ) −→ CQ,W , we get triangles

µir−1 . . . µi1(Γ)ir −→
⊕
ir→j

µir−1 . . . µi1(Γ)j −→ µir . . . µi1(Γ)ir −→ . . .

µir . . . µi1(Γ)ir −→
⊕
j→ir

µir−1 . . . µi1(Γ)j −→ µir−1 . . . µi1(Γ)ir −→ . . .

to which we can apply the multiplication formula of Proposition 3.3.16. In this way, we
obtain the mutation of variables in the cluster algebra. This proves the result. �

Remark 3.4.2. In some cases, the surjection of Theorem 3.4.1 is known to be a bijection,
namely if the quiver Q is mutation-equivalent to an acyclic quiver ([13, Theorem 4]) or if
the skew-symmetric matrix associated with Q is of full rank (Corollary 4.3.9). We do not
know whether it is a bijection in general.





Chapter 4

Applications to cluster algebras

4.1 Introduction

Since their introduction by S. Fomin and A. Zelevinsky in [29], cluster algebras have
been found to enjoy connections with several branches of mathematics, see for instance the
survey papers [75], [40] and [50], or the talks of the ICM 2010 [28], [62] and [71]. Cluster
algebras are commutative algebras generated by cluster variables grouped into sets of
fixed finite cardinality called clusters. Of particular importance are cluster algebras with
coefficients, as most known examples of cluster algebras are of this kind. In this chapter,
we will work with cluster algebras of geometric type with coefficients.

In [31], the authors developped a combinatorial framework allowing the study of co-
efficients in cluster algebras. Important tools that the authors introduced are the F -
polynomials and g-vectors. In particular, they proved that the behaviour of the coeffi-
cients in any cluster algebra is governed by that of the coefficients in a cluster algebra with
principal coefficients, using the F -polynomials (see [31, Theorem 3.7]).

The authors phrased a number of conjectures, mostly regarding F -polynomials and
g-vectors. We list some of them here:
(5.4) every F -polynomial has constant term 1;
(6.13) the g-vectors of the cluster variables of any given seed are sign-coherent in a sense

to be defined;
(7.2) cluster monomials are linearly independent;
(7.10) different cluster monomials have different g-vectors, and the g-vectors of the clus-

ter variables of any cluster form a basis of Zr;
(7.12) the mutation rule for g-vectors can be expressed using a certain piecewise-linear

transformation.
Work on these conjectures includes
– a proof of (7.2) by P. Sherman and A. Zelevinsky [73] for Dynkin and affine type of

rank 2;
– a proof of (7.2) by P. Caldero and B. Keller [14] for Dynkin type;
– a proof of (7.2) by G. Dupont [25] for affine type A;
– a proof of (7.2) by M. Ding, J. Xiao and F. Xu [23] for affine types;
– a proof of (7.2) by G. Cerulli Irelli [15] in type A(1)

2 by explicit computations;
– a proof of (5.4) by R. Schiffler [72] for cluster algebras arising from unpunctured
surfaces;

– a proof of (7.2) by L. Demonet [19] for certain skew-symmetrizable cluster algebras;
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– a proof of all five conjectures by C. Fu and B. Keller [32] for cluster algebras categori-
fied by Hom-finite 2-Calabi–Yau Frobenius or triangulated categories, using work of
R. Dehy and B. Keller [18];

– a proof of (7.2) by C. Geiss, B. Leclerc and J. Schröer [34] for acyclic cluster algebras;
– a proof of (5.4), (6.13), (7.10) and (7.12) in full generality by H. Derksen, J. Weyman
and A. Zelevinsky [21] using decorated representations of quivers with potentials;

– a proof of (5.4), (6.13), (7.10) and (7.12) in full generality by K. Nagao [65] using
Donaldson–Thomas theory (see for instance [48], [59] and [9]).

In this chapter, we use (generalized) cluster categories to give a new proof of (5.4),
(6.13), (7.10) and (7.12) in full generality, and to prove (7.2) for any skew-symmetric
cluster algebra of geometric type whose associated matrix is of full rank.

More precisely, we use the cluster category introduced by the group of authors A. Buan,
R. Marsh, M. Reineke, I. Reiten and G. Todorov in [10] (and independently by P. Caldero,
F. Chapoton and R. Schiffler in [11] in the An case) and generalized to any quiver with
potential by C. Amiot in [2]. Note that this category can be Hom-infinite. We obtain
applications to cluster algebras via the cluster character of Y. Palu [68], which generalized
the map introduced by P. Caldero and F. Chapoton in [12]. It was extended in Chapter
3 to possibly Hom-infinite cluster categories. In particular, we have to restrict the cluster
character to a suitable subcategory D of the cluster category.

Using this cluster character, we give categorical interpretations of F -polynomials and
g-vectors which allow us to prove the conjectures mentioned above. We prove (7.2), (6.13),
(7.10) and (7.12) in section 4.3.2 and (5.4) in section 4.3.3. Some of our results concerning
rigid objects in section 4.3.1 and indices in section 4.3.2 are used in [44] and [45]. The
methods we use are mainly generalizations of those used for the Hom-finite case in [18]
and [32].

The key tool that we use in our proofs is the multiplication formula proved in Propo-
sition 3.3.16, while the proofs of H. Derksen, J. Weyman and A. Zelevinsky rely on a
substitution formula [21, Lemma 5.2].

We also show in section 4.4 that the setup used in [21] is closely related to the cluster-
categorical approach. We prove in section 4.4.1 that (isomorphism classes of) decorated
representations over a quiver with potential are in bijection with (isomorphism classes of)
objects in the subcategory D of the cluster category. In sections 4.4.2 and 4.4.3, we give
an interpretation of the F -polynomial, g-vector, h-vector and E-invariant of a decorated
representation in cluster-categorical terms. In particular, we prove a stronger version of
[21, Lemma 9.2] in Corollary 4.4.16. Using the substitution formula for F -polynomials [21,
Lemma 5.2], we also obtain a substitution formula for cluster characters of not necessarily
rigid object (Corollary 4.4.14).

4.2 Recollections

4.2.1 Background on cluster algebras with coefficients

We give a brief summary of the definitions and results we will need concerning cluster
algebras with coefficients. Our main source for the material in this section is [31].

Cluster algebras with coefficients

We will first recall the definition of (skew-symmetric) cluster algebras (of geometric
type).
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The tropical semifield Trop(u1, u2, . . . , un) is the abelian group (written multiplica-
tively) freely generated by the ui’s, with an addition ⊕ defined by∏

j

u
aj

j ⊕
∏
j

u
bj

j =
∏
j

u
min(aj ,bj)
j .

An ice quiver (see [32]) is a pair (Q,F ), where Q is a quiver and F is a subset of Q0.
The elements of F are the frozen vertices of Q. The ice quiver is finite if Q is finite.

Let r and n be integers such that 1 ≤ r ≤ n. Let us denote by P the tropical
semifield Trop(xr+1, . . . , xn). Let F be the field of fractions of the ring of polynomials in
r indeterminates with coefficients in QP.

Let (Q,F ) be a finite ice quiver, where Q has no oriented cycles of length ≤ 2, and
F and Q0 have r and n elements respectively. We will denote the elements of Q0 \ F by
the numbers 1, 2, . . . , r and those of F by (r + 1), (r + 2), . . . , n. Let i be in Q0 \ F . One
defines the mutation of (Q,F ) at i as the ice quiver µi(Q,F ) = (Q′, F ′) constructed from
(Q,F ) as follows:

– the sets Q′0 and F ′ are equal to Q0 and F , respectively;
– the quiver Q′ is the mutated quiver µi(Q) defined in section 3.2.1.
A seed is a pair

(
(Q,F ),x

)
, where (Q,F ) is an ice quiver as above, and x = {x1, . . . , xr}

is a free generating set of the field F . Given a vertex i of Q0 \F , the mutation of the seed(
(Q,F ),x

)
at the vertex i is the pair µi

(
(Q,F ),x

)
=
(
(Q′, F ′),x′

)
, where

– (Q′, F ′) is the mutated ice quiver µi(Q,F );
– x′ = x \ {xi} ∪ {x′i}, where x′i is obtained from the exchange relation

xix
′
i =

∏
α∈Q1
s(α)=i

xt(α) +
∏
α∈Q1
t(α)=i

xs(α).

The mutation of a seed is still a seed, and the mutation at a fixed vertex is an involution.
Fix an initial seed

(
(Q,F ),x

)
.

– The sets x′ obtained by repeated mutation of the initial seed are the clusters.
– The elements of the clusters are the cluster variables.
– The ZP-subalgebra of F generated by all cluster variables is the cluster algebra
A = A

(
(Q,F ),x

)
.

Suppose that n = 2r. A cluster algebra has principal coefficients at a seed
(
(Q′, F ′),x′

)
if there is exactly one arrow from (r+ `) to ` (for ` = 1, 2, . . . , r), and if these are the only
arrows whose source or target lies in F ′.

Cluster monomials and g-vectors

Given an ice quiver (Q,F ), we associate to it an (n× r)-matrix B̃ = (bij), where each
entry bij is the number of arrows from i to j minus the number or arrows from j to i.

Let
(
(Q,F ),x

)
be a seed of a cluster algebra A. A cluster monomial in A is a product

of cluster variables lying in the same cluster.
To define g-vectors, we shall need a bit of notation. For any integer j between 1 and

r, let ŷj be defined as
ŷj =

∏
`∈Q0

x
b`j

` .

LetM be the set of non-zero elements of A which can be written in the form

z = R(ŷ1, . . . , ŷr)
n∏
j=1

x
gj

j ,
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where R(u1, . . . , ur) is an element of Q(u1, . . . , ur). Note that all cluster monomials belong
toM. By [31, Proposition 7.8], if the matrix B̃ is of full rank r, then any element ofM
can be written in a unique way in the form above, with R primitive (that is, R can be
written as a ratio of two polynomials, none of which is divisible by any of the uj ’s). In
that case, if z is an element ofM written as above with R primitive, the vector

g(z) = (g1, . . . , gr)

is the g-vector of z.
Let us now state Conjectures 7.2, 7.10 and 7.12 of [31].

7.2 Cluster monomials are linearly independent over ZP.
7.10 Different cluster monomials have different g-vectors; the g-vectors of the cluster

variables of any cluster form a Z-basis of Zr.
7.12 Let g = (g1, . . . , gr) and g′ = (g′1, . . . , g′r) be the g-vectors of one cluster monomial

with respect to two clusters t and t′ related by one mutation at the vertex i. Then
we have

g′j =
{
−gi if j = i
gj + [bji]+gi − bji min(gi, 0) if j 6= i

where B = (bj`) is the matrix associated with the seed t, and we set [x]+ = max(x, 0)
for any real number x.

F -polynomials

Let A be a cluster algebra with principal coefficients at a given seed
(
(Q,F ),x

)
. Let

t be a seed of A and ` be a vertex of Q that is not in F . Then the `-th cluster variable of
t can be written as a subtraction-free rational function in variables x1, . . . , x2r. Following
[31, Definition 3.3], we define the F -polynomial F`,t as the specialization of this rational
function at x1 = . . . = xr = 1. It was proved in [31, Proposition 3.6] that F`,t is indeed a
polynomial.

We now state Conjecture 5.4 of [31] : Every F -polynomial has constant term 1.

Y -seeds and their mutations

We now recall the notion of Y -seeds from [31]. As above, let 1 ≤ r ≤ n be integers,
and let P be the tropical semifield in the variables xr+1, . . . , xn.

A Y -seed is a pair (Q,y), where
– Q is a finite quiver without oriented cycles of length ≤ 2; and
– y = (y1, . . . , yr) is an element of Pr.
Let (Q,y) be a Y -seed, and let i be a vertex of Q. The mutation of (Q,y) at the vertex

i is the Y -seed µi(Q,y) = (Q′,y′), where
– Q is the mutated quiver µi(Q); and
– y′ = (y′1, . . . , y′r) is obtained from y using the mutation rule

y′j =


y−1
i if i = j
yjy

m
i (yi ⊕ 1)−m if there are m arrows from i to j

yj(yi ⊕ 1)m if there are m arrows from j to i.

If, to any seed
(
(Q,F ),x

)
of a cluster algebra, we associate a Y -seed (Q,y) defined by

yj =
n∏

i=r+1
x
bij

i ,
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then for any such seed and its associated Y -seed, and for any vertex i of Q, we have that
the Y -seed associated to µi

(
(Q,F ),x

)
is µi(Q,y). This was proved in [31] after Definition

2.12.

4.2.2 Decorated representations of quivers with potentials

We defined quivers with potentials in section 3.2.2, after [22]. We now recall from [22,
Section 10] the notion of decorated representation of a quiver with potential.

Let (Q,W ) be a quiver with potential, and let J(Q,W ) be its Jacobian algebra. A
decorated representation of (Q,W ) is a pairM = (M,V ), where M is a finite-dimensional
nilpotent J(Q,W )-right module and V is a finite-dimensional Λ-module (recall that Λ is
given by

⊕
i∈Q0 kei).

We now turn to the mutation of decorated representations. Given a decorated rep-
resentation M = (M,V ) of (Q,W ), and given any admissible vertex ` of (Q,W ), we
construct a decorated representation µ̃`(M) = (M,V ) of µ̃`(Q,W ) as follows.

We view M as a representation of the opposite quiver Qop (we must work over the
opposite quiver, since we use right modules). In particular, to each vertex i is associated
a vector space Mi (which is equal to Mei), and to each arrow a : i → j is associated a
linear map Ma : Mj →Mi. For any path p = ar · · · a2a1, we denote by Mp the linear map
Ma1Ma2 · · ·Mar , and for any (possibly infinite) linear combination σ =

∑
i∈I λipi of paths,

we denote by Mσ the linear map
∑
i∈I λiMpi (this sum is finite since M is nilpotent). If σ

is zero in J(Q,W ), then Mσ is the zero map. Define the vector spaces Min and Mout by

Min =
⊕
a∈Q1
s(a)=`

Mt(a) and Mout =
⊕
b∈Q1
t(b)=`

Ms(b).

Define the linear map α : Min −→M` as the map given in matrix form by the line vector(
Ma : Mt(a) → M`

∣∣ a ∈ Q1, s(a) = `
)
. Similarly, define β : M` −→ Mout as the map

given in matrix form by the column vector
(
Mb : M` → Ms(b)

∣∣ b ∈ Q1, t(b) = `
)
. Define

a third map γ : Mout −→Min as the map given in matrix form by(
M∂abW : Ms(b) →Mt(a)

∣∣ a, b ∈ Q1, s(a) = t(b) = `
)
.

Now construct µ̃`(M) = (M,V ) as follows.
– For any vertex i 6= `, set M i = Mi and V i = Vi.
– Define M ` and V ` by

M ` = Ker γ
Im β

⊕ Im γ ⊕ Kerα
Im γ

⊕ V` and V ` = Kerβ
Kerβ ∩ Im α

.

– For any arrow a of Q not incident with `, set Ma = Ma.
– For any subquiver of the form i

a // `
b // j , set M [ba] = Mba.

– the actions of the remaining arrows are encoded in the maps

α =


−πρ
−γ
0
0

 and β =
(

0 ι ισ 0
)
,

where
– the map ρ : Mout → Ker γ is such that its composition with the inclusion map of
Ker γ gives the identity map of Ker γ;
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– the map π : Ker γ → Ker γ/ Im β is the natural projection map;
– the map σ : Kerα/ Im γ → Kerα is such that its composition with the projection

map Kerα→ Kerα/ Im γ gives the identity map of Kerα/ Im γ;
– the map ι : Im γ →Min is the natural inclusion map.

It is shown in [22, Proposition 10.7] that µ̃`(M) is indeed a decorated representation
of µ̃`(Q,W ).

4.2.3 Some invariants of decorated representations

In this section, we recall from [22] and [21] the definitions of F -polynomial, g-vector,
h-vector and E-invariant of a decorated representation.

We fix a quiver with potential (Q,W ) and a decorated representationM = (M,V ) of
(Q,W ). We number the vertices of Q from 1 to n.

The F -polynomial ofM is the polynomial of Z[u1, . . . , un] defined by

FM(u1, . . . , un) =
∑
e

χ
(
Gre(M)

) n∏
i=1

uei
i .

The g-vector ofM is the vector gM = (g1, . . . , gn) of Zn, where

gi = dimKer γi − dimMi + dimVi,

where γi is the map γ : Mout −→Min defined in section 4.2.2.
The h-vector ofM is the vector hM = (h1, . . . , hn) of Zn, where

hi = −dimKerβi

where βi is the map β : Mi −→Mout defined in section 4.2.2.
The E-invariant ofM is the integer

E(M) = dim HomJ(Q,W )(M,M) +
n∑
i=1

gi dimMi,

where (g1, . . . , gn) is the g-vector ofM.
Let N = (N,U) be another decorated representation of (Q,W ). The E-invariant can

also be defined using the two integer-valued invariants

Einj(M,N ) = dim HomJ(Q,W )(M,N) +
n∑
i=1

(dimMi)gi(N ) and

Esym(M,N ) = Einj(M,N ) + Einj(N ,M).

We have that E(M) = Einj(M,M) = (1/2)Esym(M,M).

4.2.4 More on mutations as derived equivalences

Let (Q,W ) be a quiver with potential. Assume that Q has no loops, and that i is a
vertex of Q not contained in a cycle of length 2. Let (Q′,W ′) be the mutated quiver with
potential µ̃i(Q,W ). Let Γ and Γ′ be the complete Ginzburg dg algebras associated with
(Q,W ) and (Q′,W ′), respectively.

We recall here some results of [58] on the mutation of Γ in DΓ. Let Γ∗i be the cone in
DΓ of the morphism

Γi −→
⊕
α

Γt(α)
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whose components are given by left multiplication by α. Similarly, let ΣΓ∗i be the cone of
the morphism ⊕

β

Γs(β) −→ Γi

whose components are given by left multiplication by β.
Then it is proved in the discussion after [58, Lemma 4.4] that the morphism ϕi :

ΣΓ∗i −→ ΣΓ∗i given in matrix form by(
−β∗ −∂αβW
ti a∗

)

becomes an isomorphism in C.

Remark 4.2.1. In particular, the composition of the morphisms

⊕
α Γt(α) // Γ∗i

Σ−1ϕi // Γ∗i //⊕
β Γs(β)

is given in matrix form by
(
− ∂abW

)
.

Recall the quasi-inverse equivalences µ̃+
i and µ̃−i of theorem 3.2.6 and section 3.2.8.

Note that these equivalences induce equivalences on the level of cluster categories, which
we will also denote by µ̃+

i and µ̃−i .
In Section 4.4.1, we will need a concrete description of µ̃+

i and µ̃−i . The functor µ̃+
i is

the derived functor ? ⊗LΓ′ T , where T is the Γ′-Γ-bimodule described below. The functor
µ̃−i is then HomΓ(T, ?).

As a right Γ-module, T is a direct sum
⊕n

j=1 Tj , where Tj is isomorphic to ejΓ if i 6= j
and Ti is the cone of the morphism

eiΓ −→
⊕
α∈Q1
s(α)=i

et(α)Γ,

whose components are given by left multiplication by α. Thus, as a graded module, Ti is
isomorphic to

PΣi ⊕
⊕
α∈Q1
s(α)=i

Pα,

where PΣi is a copy of Σ(eiΓ), and each Pα is a copy of et(α)Γ. We will denote by eΣi the
idempotent of PΣi and by eα the idempotent of Pα.

The left Γ′-module structure of T is described in terms of a homomorphism of dg
algebras Γ′ −→ HomΓ(T, T ), using the left HomΓ(T, T )-module structure of T . We will
need the description of the image of some elements of Γ′ under this homomorphism. This
description is given below.

For any vertex j of Q, the element ej is sent to the identity of Tj .
Any arrow δ not incident with i is sent to the map which is left multiplication by δ.
For any arrow α of Q such that s(α) = i, the element α? is sent to the map fα? :

Tt(α) −→ Ti defined by fα?(a) = eαa.
For any arrow β of Q such that t(β) = i, the element β? is sent to the map fβ? : Ti −→

Ts(β) defined by fβ?(eΣiai +
∑
s(ρ)=i eρaρ) = −β∗ai −

∑
s(ρ)=i(∂ρβW )aρ.
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4.3 Application to skew-symmetric cluster algebras

4.3.1 Rigid objects are determined by their index

This section is the Hom-infinite equivalent of [18, Section 2].
Let C be a triangulated category, and let T =

⊕n
i=1 Ti be a rigid object of C, where

the Ti’s are indecomposable and pairwise non-isomorphic. Assume that prCT is a Krull–
Schmidt category, and that B = EndC T is the completed Jacobian algebra J(Q,W ) of
a quiver with potential (Q,W ). An example of such a situation is the cluster category
CQ,W , with T = Σ−1Γ.

The main result of this section is the following.

Proposition 4.3.1. With the above assumptions, if X and Y are rigid objects in prCT
such that indT X = indT Y , then X and Y are isomorphic.

The rest of the Section is devoted to the proof of the Proposition.

Let X be an object of prCT , and let the triangle TX1
fX
// TX0

// X // ΣTX1
be an (addT )-presentation of X. The group AutC(TX1 ) × AutC(TX0 ) acts on the space
HomC(TX1 , TX0 ), with action defined by (g1, g0)f ′ = g0f

′(g1)−1. The orbit of fX under
this action is the image of the map

Φ : AutC(TX1 )×AutC(TX0 ) −→ HomC(TX1 , TX0 )
(g1, g0) 7−→ g0f

X(g1)−1.

Our strategy is to show that if Y is another rigid object of prCT , then the orbits of fX
and fY must intersect (and thus coincide), proving that X and Y are isomorphic.

It was proved in Lemma 3.3.2 that the functor F = HomC(T, ?) induces an equivalence
of categories

prCT/(ΣT ) −→ modB,

where modB is the category of finitely presented right B-modules. Since T is rigid, this
implies that F induces a fully faithful functor

addT −→ modB.

Thus we can often consider automorphisms and morphisms in the category modB instead
of in C.

Now, let m be the ideal of J(Q,W ) generated by the arrows of Q.
The group A = AutB(FTX1 )×AutB(FTX0 ) is the limit of the finite-dimensional affine

algebraic groups

An = AutB(FTX1 /(FTX1 mn))×AutB(FTX0 /(FTX0 mn))

with respect to the natural projection maps from An+1 to An, for n ∈ N.
Similarly, the vector space H = HomB(FTX1 , FTX0 ) is the limit of the spaces

Hn = HomB

(
FTX1 /(FTX1 mn), FTX0 /(FTX0 mn)

)
with respect to the natural projections. All the Hn are finite-dimensional spaces, and they
are endowed with the Zariski topology. The projection maps are then continuous, and H
is endowed with the limit topology.
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Finally, for any integer n, we define a morphism Φn : An → Hn which sends any
element (g1, g0) of An to g0f

X
n (g1)−1, where fXn is the image of fX in Hn under the

canonical projection. Then the morphism Φ is the limit of the Φn’s.
The situation is summarized in the following commuting diagram.

A = limAn

Φ
��

. . . // . . . // A3 //

Φ3
��

A2 //

Φ2
��

A1

Φ1
��

H = limHn . . . // . . . // H3 // H2 // H1.

The next step is the following : we will prove that the image of Φ is the limit of the
images of the Φn’s. This will follow from the Lemma below.

Lemma 4.3.2. Let (Xi)i∈N be a family of topological spaces. Let (fi : Xi → Xi−1)i≥1
be a family of continuous maps, and let X = limXi. Let (X ′i)i∈N be another family of
topological spaces, with continuous maps (f ′i : X ′i → X ′i−1)i≥1, and let X ′ = limX ′i. Let
(ui : Xi → X ′i) be a familiy of continuous maps such that f ′iui = ui−1fi for all i ≥ 1, and
let u = limui. Denote by pi : X → Xi and p′i : X ′ → X ′i the canonical projections. For
integers i < j, denote by fij (respectively f ′ij) the composition fjfj−1 . . . fi+1 (respectively
f ′jf
′
j−1 . . . f

′
i+1). Let x′ be an element of X ′ with the property that for all i ∈ N, there

exists j ≥ i such that for all ` ≥ j, fi`(u−1
` (p′`(x′))) = fij(u−1

j (p′j(x′))).
Then x′ admits a preimage in X, that is, there exists x ∈ X such that u(x) = x′.

Proof This is a consequence of the Mittag-Leffler theorem, see for instance [8, Corol-
lary II.5.2]. �

The above Lemma implies that the image of Φ is the limit of the images of the Φn.
Indeed, the universal property of the limit gives an inclusion from the image of Φ to the
limit of the images of the Φn. Let now x′ be in the image of Φ, and let x′n be its projection
in the image of Φn. The set Φ−1

n (xn) is a closed subset of An, and for any m ≥ n, the
image of Φ−1

m (xm) in Φ−1
n (xn) is closed. Since An has finite dimension as a variety, the

sequences of images of the Φ−1
m (xm) in Φ−1

n (xn) eventually becomes constant. Applying
the above Lemma, we get that x′ has a preimage in A by Φ. This proves that the image
of Φ is the limit of the images of the Φn.

We will now prove that the image of each Φn is open (and thus dense, since Hn is
irreducible). To prove this, we pass to the level of Lie algebras. To lighten notations,
we let En = EndB(FTX1 /FTX1 m) × EndB(FTX0 /FTX0 m) be the Lie algebra of An for all
positive integers n. To prove that the image of Φn is open, it is sufficient to show that the
map

Ψn : En −→ Hn

(g1, g0) 7−→ g0f
X
n − fXn g1

is surjective.
The limit of the En’s is E = EndB(FTX1 )× EndB(FTX0 ), and the limit of the Ψn’s is

the map

Ψ : E −→ H

(g1, g0) 7−→ g0f
X − fXg1.

The diagram below summarizes the situation.
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E = limEn

Ψ
��

. . . // . . . // E3 //

Ψ3
��

E2 //

Ψ2
��

E1

Ψ1
��

H = limHn . . . // . . . // H3 // H2 // H1.

All the canonical projections are surjective.

Lemma 4.3.3. The map Ψ defined above is surjective.

Proof This proof is contained in the proof of [18, Lemma 2.1] � As a consequence,

all the Ψn’s are surjective. Hence the images of the Φn’s are open.
From this, we deduce that if Y is another rigid object of prCT with (addT )-presentation

TX0
fY
// TX1

// Y // ΣTX1 , then X and Y are isomorphic. Indeed, by the above
reasoning, the orbit of fY is the limit of the orbits of its projections in the Hn’s. But these
orbits are open, and so they intersect (and coincide) with the images of the Φn defined
above. Hence the orbit of fY in H is the limit of the images of the Φn’s, and this is exactly
the orbit of fX . Therefore X and Y are isomorphic.

The last step in proving Proposition 4.3.1 is to show that given indT X, we can “deduce"
TX1 and TX0 .

An (addT )-approximation TX1 → TX0 → X → ΣTX1 is minimal if one of the following
conditions hold.

– The above triangle does not admit a direct summand of the form

R
idR // R // 0 // ΣR.

– The morphism f : TX0 → X in the presentation has the property that for any
g : TX0 → TX0 , the equality fg = f implies that g is an isomorphism.

In fact, any of these two conditions implies the other.

Lemma 4.3.4. The above two conditions are equivalent if prCT is Krull–Schmidt.

Proof First suppose that the presentation has the form

T ′1 ⊕R
u⊕1R // T ′0 ⊕R

(f ′,0) // X // ΣTX1 ,

where f = (f ′, 0) in matrix form. Then the endomorphism g of T ′0⊕R given by g = 1T ′0⊕0
is not an isomorphism, and fg = f .

Now suppose that the presentation admits no direct summand of the form

R
idR // R // 0 // ΣR.

Using the Krull–Schmidt property of prCT , we can decompose bot TX0 and TX1 as a finite
direct sum of objects with local endomorphism rings. In that case, the morphism f written
in matrix form (in any basis) has no non-zero entries.

Let g be an endomorphism of TX0 such that fg = f . Then f(1TX
0
− g) = 0. Consider

the morphism (1TX
0
− g) written in matrix form. If one of its entries is an isomorphism,

then by a change of basis we can write (1TX
0
− g) as the matrix(

∗ 0
0 φ

)
,
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where φ is an isomorphism. In that case, it is impossible that f(1TX
0
− g) = 0, since f

has no non-zero entries. This implies that none of the entries of the matrix of (1TX
0
− g)

is invertible. Therefore the diagonal entries of g are invertible (since for any element x of
a local ring, if (1 − x) is not invertible, then x is), while the other entries are not, and g
is an isomorphism. �

Lemma 4.3.5. If X is rigid and TX1
α→ TX0 → X

γ→ ΣTX1 is a minimal (addT )-
presentation, then TX1 and TX0 have no direct summand in common.

Proof The first proof of [18, Proposition 2.2] works in this setting. We include here
a similar argument for the convenience of the reader.

Suppose that Ti is a direct factor of TX0 . Let us prove that it is not a direct factor of
TX1 .

Applying F = HomC(T, ?) to the triangle above, we get a minimal projective presen-
tation of FX. This yields an exact sequence

(FX,Si) −→ (FTX0 , Si)
Fα∗−→ (FTX1 , Si),

where Si is the simple at the vertex i. Since the presentation is minimal, Fα∗ vanishes,
and there exists a non-zero morphism f : FX → Si. In particular, f is surjective.

Let g : FTX1 −→ Si be a morphism. Since FTX1 is projective, there exists a morphism
h : FTX1 −→ FX such that fh = g.

Lift Si to an object ΣT ∗i of C, and lift f , g, and h to morphisms f : X → ΣT ∗i ,
g : TX1 → ΣT ∗i and h : TX1 → X of C. Using Lemma 3.3.2, we get that fh = g.

Σ−1X
Σ−1γ // TX1

α //

g

��

h

{{wwwwwwwww
TX0

σ

}}
X

f // ΣT ∗i

Since X is rigid, hΣ−1γ vanishes, and thus so does gΣ−1γ. Then there exists a morphism
σ : TX0 → ΣT ∗i such that σα = g. But since Fα∗ = 0, we get that g = (Fσ)(Fα) vanishes.

We have thus shown that there are no non-zero morphisms from FTX1 to Si. Therefore
Ti is not a direct factor of TX1 . �

By the above Lemma, the knowledge of indT X is sufficient to deduce the isomorphism
classes of TX1 and TX0 in any minimal (add )-presentation of X. Therefore, if Y is another
rigid object of prCT with indT X = indT Y , all of the above reasoning implies that X and
Y are isomorphic. This finishes the proof of Proposition 4.3.1.

4.3.2 Index and g-vectors

It was proved in [32, Proposition 6.2] that, inside a certain Hom-finite cluster category
C, the index of an object M with respect to a cluster-tilting object T gives the g-vector
of X ′M with respect to the associated cluster. The authors then used this result to prove
conjectures of [31] in this case. In this section, we will prove a similar result, dropping the
assumption of Hom-finiteness.

Let (Q,F ) be a finite ice quiver, where Q has no oriented cycles of length ≤ 2. Sup-
pose that the associated matrix B has full rank r. Denote by A the associated cluster
algebra. Let W be a potential on Q, and let C = CQ,W be the associated cluster category.
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Denote by D the full subcategory of prCΓ∩ prCΣ−1Γ whose objects are those X such that
HomC(Σ−1Γ, X) is finite-dimensional.

Following [32], let U be the full subcategory of D defined by

U = {X ∈ D
∣∣ HomC(Σ−1Γj , X) = 0 for r + 1 ≤ j ≤ n}.

Note that U is invariant under iterated mutation of Γ at vertices 1, 2, . . . , r.
Let T =

⊕n
j=1 Tj =

⊕r
j=1 Tj ⊕

⊕n
j=r+1 Γj be a rigid object of D reachable from Γ by

mutation at an admissible sequence of vertices of Q not in F , and let G be the functor
HomC(Σ−1T, ?) from C to the category of EndC(T )-modules. Let X ′? be the associated
cluster character, defined by

X ′M = xindT M
∑
e

(
χ
(
Gre(GM)

))
x−ι(e),

where ι(e) is the vector indT Y +indT ΣY for any Y such that the dimension vector of GY
is e (it was proved in Lemma 3.3.6 that this vector is independent of the choice of such a
Y , see also [68]).

Since we only allow mutations at vertices not in F , the Gabriel quiver of T can be
thought of as an ice quiver (QT , F ) with same set of frozen vertices as (Q,F ). Let BT =
(bTj`) be the matrix associated to (QT , F ). According to [41, Lemma 1.2] and [5, Lemma
3.2] , BT is of full rank r if B is.

Suppose now that M is an object of U . Let us prove that X ′M then admits a g-
vector, that is, X ′M is in the set M defined in Section 4.2.1. In order to do this, let us
compute −ι(δj), where δj is the vector whose j-th coordinate is 1 and all others are 0, for
j = 1, 2, . . . , r.

Let T ∗j be an indecomposable object of D such that GT ∗j is the simple EndC(T )-module
at the vertex j. It follows from the derived equivalence in [58, Theorem 3.2] that we have
triangles

Tj →
⊕
α∈QT

1
s(α)=j

Tt(α) → T ∗j → ΣTj and T ∗j →
⊕
α∈QT

1
t(α)=j

Ts(α) → Tj → ΣT ∗j .

We deduce from those triangles that for any 0 ≤ ` ≤ n, the `-th entry of −ι(δj) is the
number of arrows in QT from ` to j minus the number of arrows from j to `. This number
is bT`j . Thus, with the notations of Section 4.2.1, we have that x−ι(δj) =

∏n
`=1 x

b`j

` = ŷj .
Therefore, since ι is additive, for M in U , we have the equality

X ′M = xindT M
∑
e

(
χ
(
Gre(GM)

)) r∏
j=1

ŷ
ej

j

(notice that if M is in U , then Gre(GM) is empty for all vectors e such that one of
er+1, . . . , en is non-zero). Moreover, the rational function

R(u1, . . . , ur) =
∑
e

(
χ
(
Gre(GM)

)) r∏
j=1

u
ej

j

is in fact a polynomial with constant coefficient 1, and is thus primitive.
We have proved the following result.

Proposition 4.3.6. Any object M of U is such that X ′M admits a g-vector. This g-vector
(g1, . . . , gr) is given by gj = [indT M : Tj ], for 1 ≤ j ≤ r.



4.3. Application to skew-symmetric cluster algebras 63

These considerations allow us to prove the following Theorem, whose parts (1), (3)
and (4) were first shown in the same generality in [21] using decorated representations,
and then in [65] using Donaldson–Thomas theory.

We say that a collection of vectors of Zr are sign-coherent if the i-th coordinates of all
the vectors of the collection are either all non-positive of all non-negative.

Theorem 4.3.7. Let (Q,F ) be any ice quiver without oriented cycles of length ≤ 2, and
let A be the associated cluster algebra. Suppose that the matrix B associated with (Q,F )
is of full rank r.

1. Conjecture 6.13 of [31] holds for A, that is, the g-vectors of the cluster variables of
any given cluster are sign-coherent.

2. Conjecture 7.2 of [31] holds for A, that is, the cluster monomials are linearly inde-
pendent over ZP, where P is the tropical semifield in the variables xr+1, . . . , xn.

3. Conjecture 7.10 of [31] holds for A, that is, different cluster monomials have different
g-vectors, and the g-vectors of the cluster variables of any cluster form a Z-basis of
Zr.

4. Conjecture 7.12 of [31] holds for A, that is, if g = (g1, . . . , gr) and g′ = (g′1, . . . , g′r)
are the g-vectors of one cluster monomial with respect to two clusters t and t′ related
by one mutation at the vertex i, then we have

g′j =
{
−gi if j = i
gj + [bji]+gi − bji min(gi, 0) if j 6= i

where B = (bj`) is the matrix associated with the seed t, and we set [x]+ = max(x, 0)
for any real number x.

Proof Choose a non-degenerate potentialW onQ, and let C = CQ,W be the associated
cluster category. Let X ′? be the cluster character associated with Γ.

We first prove Conjecture 6.13. We reproduce the arguments of [18, Section 2.4]. To
any cluster t of A, we associate (using Theorem 3.4.1) a reachable rigid object T of U ,
obtained by mutating at vertices not in F . Write T as the direct sum of the indecomposable
objects T1, . . . , Tn. Then, for 1 ≤ j ≤ r, we have that X ′Tj

is a cluster variable lying in
the cluster t. By Proposition 4.3.6, its g-vector (gj1, . . . , gjr) is given by gj` = [indΓ Tj : Γ`].
Now, by Lemma 4.3.5, any minimal addΓ-presentation of T

R1 −→ R0 −→ T −→ ΣR1

is such that R0 and R1 have no direct factor in common. But this triangle is a direct
sum of minimal presentations of T1, . . . , Tn. Therefore the indices of these objects must
be sign-coherent. This proves Conjecture 6.13.

Next, we prove Conjecture 7.2. We prove it in the same way as in [32, Corollary 4.4
(b) and Theorem 6.3 (c)]. Using Theorem 3.4.1, we associate to any finite collection of
clusters (tj)j∈J of A a family of reachable rigid objects (T j)j∈J of U , obtained by mutating
at vertices not in F (for the moment we do not know if this assignment is unique). Let
(Mj)j∈J be a family of pairwise non-isomorphic objects, where each Mj lies in addT j (in
particular, these objects are rigid). Any ZP-linear combination of cluster monomials can
be written as a Z-linear combination of some X ′Mj

’s, where the Mj ’s are as above. Thus
it is sufficient to show that the X ′Mj

’s are linearly independent over Z.
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The key idea is to assign a degree to each xj in such a way that each ŷj is of degree
1. Such an assignment is obtained by putting deg(xj) = kj , where the kj ’s are rational
numbers such that

(k1, . . . , kn)B = (1, . . . , 1).

This equation admits a solution, since the rank of B ir r. Thus the term of minimal degree
in X ′M is xindΓM , for any M in U .

Now let (cj)j∈J be a family of real numbers such that
∑
j∈J cjX

′
Mj

= 0. The term of
minimal degree of this polynomial has the form

∑
`∈L c`x

indΓM` for some non-empty subset
L of J , and this term must vanish. But according to Proposition 4.3.1, the indices of the
M`’s are pairwise distinct. Thus c` is zero for any ` ∈ L. Repeating this argument, we get
that cj is zero for any j ∈ J . This proves the linear independence of cluster monomials.

The proof of Conjecture 7.10 goes as follows. Let {w1, . . . , wr} be a cluster of A, and
let wa1

1 . . . war
r be a cluster monomial. Let T =

⊕r
j=1 Tj ⊕

⊕n
j=r+1 Γn be the rigid object

of C associated with that cluster. Then the cluster character

X ′M = xindΓM
∑
e

(
χ
(
Gre(HomC(Σ−1Γ,M)

))
x−ι(e)

sends the object
⊕r
j=1 T

aj

j to the cluster monomial wa1
1 . . . war

r . The g-vector of this cluster
monomial is the index of

⊕r
j=1 T

aj

j by Proposition 4.3.6, and by Proposition 4.3.1, this
object is completely determined by its index. Therefore two different cluster monomials,
being associated with different rigid objects of C, have different g-vectors.

Let us now prove that the g-vectors of w1, . . . , wr form a basis of Zr. For any object
M of D, denote by (indΓM)0 the vector containing the first r components of indΓM . In
view of Proposition 4.3.6, it is sufficient to prove that the vectors (indΓ T1)0, . . . , (indΓ Tr)0
form a basis of Zr.

We prove this by induction. The statement is trivially true for Γ. Now suppose it
is true for some reachable object T as above. Let 1 ≤ ` ≤ r be a vertex of Q, and let
T ′ = µ`(T ). We can write T ′ =

⊕n
j=1 T

′
j , where T ′j = Tj if j 6= `, and there are triangles

T` −→
⊕
α∈QT

1
s(α)=`

Tt(α) −→ T ′` −→ ΣT` and T ′` −→
⊕
α∈QT

1
t(α)=`

Ts(α) −→ T` −→ ΣT ′`

thanks to [58]. Moreover, the space HomC(T ′`,ΣT`) is one-dimensional; by applying Lemma
3.3.8 (with the T of the Lemma being equal to our Σ−1Γ), we get an isomorphism

(Γ)(T ′`,ΣT`) −→ DHomC(T`,ΣT ′`)/(Γ).

Therefore one of the two morphisms T ′` → ΣT` and T` → ΣT ′` in the triangles above is in
(Γ). Depending on which one is in (Γ), and applying Lemma 3.3.4 (2), we get that either

indΓ T
′
j =

 indΓ Tj if j 6= `
− indΓ T` +

∑
α∈QT

1
s(α)=`

indΓ Tt(α) if j = `.

or

indΓ T
′
j =

 indΓ Tj if j 6= `
− indΓ T` +

∑
α∈QT

1
t(α)=`

indΓ Ts(α) if j = `.

holds. Therefore the (indΓ T
′
j)0’s still form a basis of Zr. Conjecture 7.10 is proved.
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Finally, let us now prove Conjecture 7.12. Let T and T ′ be reachable rigid objects
related by a mutation at vertex `, as above. Then we have two triangles

T` −→ E −→ T ′` −→ ΣT` and T ′` −→ E′ −→ T` −→ ΣT ′`,

where E =
⊕

α∈QT
1

s(α)=`
Tt(α) and E′ =

⊕
α∈QT

1
t(α)=`

Ts(α). Moreover, the dimension of the space

HomC(T,ΣT ′) is one. Thus we can apply Proposition 3.2.7.
Let M be a rigid object in prCT , and let TM1 → TM0 → M → ΣTM1 be a minimal

(addT )-presentation. Then, by Proposition 3.2.7, M is in prCT ′. Moreover, if TM0 =
T
M
0 ⊕ T a` and TM1 = T

M
1 ⊕ T b` , where T` is not a direct summand of TM0 ⊕ T

M
1 , then the

end of the proof of that Proposition gives us a triangle

(E′)c ⊕ Eb−c ⊕ (T ′`)a−c ⊕ T
M
1 −→ (T ′`)b−c ⊕ T

M
0 ⊕ (E′)a −→M −→ . . . ,

for some integer c. Notice that [indT M : T`] = (a− b), and that since TM0 and TM0 have
no direct factor in common by Lemma 4.3.5, one of a and b must vanish ; thus c also
vanishes, since c ≤ min(a, b). Notice further that b = −min([indT M : T`], 0). Thus

[indT ′M : T ′j ] =


−[indT M : T`] (if j = `)
[indT M : Tj ] + [indT M : T`][bTj`]+ − bTj` min([indT M : T`], 0)

(if j 6= `).

This proves the desired result on g-vectors. �

Remark 4.3.8. Using the notations of the end of the proof of Theorem 4.3.7, we get that,
if M is an object of D which is not necessarily rigid, then

[indT ′M : T ′j ] =
{
−[indT M : T`] (if j = `)
[indT M : Tj ] + a[bj`]+ − b[−bj`]+ (if j 6= `).

Moreover, if the presentation TM1 → TM0 → M → ΣTM1 is minimal, then the integer c
vanishes. Indeed, in the proof of Proposition 3.2.7, c (or r in Proposition 3.2.7) is defined
by means of the composition

TM1 −→ T
M
0 ⊕ T a` −→ Σ(T ′`)a.

The minimality of the presentation implies that this composition vanishes, and thus that
c = 0.

Using Theorem 4.3.7, we get a refinement of Theorem 3.4.1.

Corollary 4.3.9. The cluster character X ′? associated with Γ induces a bijection between
the set of isomorphism classes of indecomposable reachable rigid objects of C and the set
of cluster variables of A.

Proof It was proved in Theorem 3.4.1 that we have a surjection. We deduce from
Theorem 4.3.7 that different indecomposable reachable rigid objects are sent to different
cluster variables. Indeed, different such objects are sent to elements in A which are linearly
independent, and thus different. �

We also get that the mutation of rigid objects governs the mutation of tropical Y -
variables, as shown in [52, Corollary 6.9] in the Hom-finite case.
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Corollary 4.3.10. Let (Q,W ) be a quiver with potential, and let C be the associated
cluster category. Let i = (i1, . . . , im) be an admissible sequence of vertices, and let T ′ be
the object µi(Γ). Let (Q,y) be a Y -seed, with y = (y1, . . . , yn).

Then µi(Q,y) is given by (µi(Q),y′), where

y′j =
n∏
s=1

y
−[indΣ−1T ′ Γs:Σ−1T ′j ]
s .

Proof The result is proved by induction on m. It is trivially true for m = 0, that is,
for empty sequences of mutations. Suppose it is true for any sequence of m mutations.

Let i′ = (i1, . . . , im, `) be an admissible sequence of m+ 1 mutations. Let T ′′ = µi′(Γ)
and (µi′(Q),y′′) = µi′(Q,y).

Using the mutation rule for Y -seeds (see section 4.2.1) and the induction hypothesis,
we get that

y′′` =
n∏
s=1

y
[indΣ−1T ′ Γs:Σ−1T ′j ]
s

and that, for any vertex j different from `,

y′′j =
n∏
s=1

y
−[indΣ−1T ′ Γs:Σ−1T ′j ]−[indΣ−1T ′ Γs:Σ−1T ′` ][bT ′

`j ]+−bT ′
`j min(−[indΣ−1T ′ Γs:Σ−1T ′` ],0)

s

Now, recall from the end of the proof of Theorem 4.3.7 that for any objectM of prCT ′,
we have an (addT ′′)-presentation

(E′)c ⊕ Eb−c ⊕ (T ′′` )a−c ⊕ T ′M1 −→ (T ′′` )b−c ⊕ T ′M0 ⊕ (E′)a −→M −→ . . . ,

and that [indT ′M : T ′`] = (a− b). Notice also that a = −min([− indT ′M : T ′`], 0). Thus

[indT ′′M : T ′′j ] =


−[indT ′M : T ′`] (if j = `)
[indT ′M : T ′j ] + [indT ′M : T ′`][bT

′
`j ]++

+bT ′`j min(−[indT ′M : T ′`], 0) (if j 6= `).

Replacing M by ΣΓs, and using the above computation of y′′j , we get exactly the desired
equality. �

Remark 4.3.11. The opposite category Cop is triangulated with suspension functor Σop =
Σ−1. If T is a rigid object of C, then it is rigid in Cop, and any object X admitting an
(addΣ−1T )-presentation in C admits an (addT )-presentation in Cop. If we denote by
indopT X the index of X with respect to T in Cop, then we have the equality indopT X =
− indΣ−1T X. Thus the equality of Corollary 4.3.10 can be written as

y′j =
n∏
s=1

y
[indop

T ′ Γs:T ′j ]
s .

This corresponds to the notation and point of view adopted in [52, Corollary 6.9].
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4.3.3 Cluster characters and F -polynomials

LetA be a cluster algebra with principal coefficients at a seed
(
(Q,F ),x

)
. In particular,

n = 2r, and the matrix B associated with (Q,F ) has full rank r.
Let W be a potential on Q, and let C = CQ,W be the cluster category associated

with (Q,W ). Let T be a rigid object of C reachable from Γ by mutation at an admissible
sequence of vertices (i1, . . . , is) not in F . Write T as

⊕2r
j=1 Tj , where T` = Γ` for r < ` ≤ 2r.

For any vertex j not in F , X ′Tj
is a cluster variable in A. Specializing at x1 = . . . =

xr = 1, we obtain the corresponding F -polynomial (see Section 4.2.1), which we will
denote by FTj .

We thus have the equality

FTj =
2r∏

i=r+1
x

[indΓ Tj :Γi]
i

∑
e

χ
(
Gre

(
HomC(Σ−1Γ, Tj)

)) 2r∏
i=r+1

x
−ι(e)i

i ,

where ι(e) was defined in section 3.3 and ι(e)i is the i-th component of ι(e).

Remark 4.3.12. The element X ′Tj
of A is the j-th cluster variable of the cluster obtained

from the initial cluster at the sequence of vertices (i1, . . . , is) by Theorem 3.4.1. Therefore,
the polynomial FTj is the corresponding F -polynomial.

It follows from our computation in Section 4.3.2 that for r < i ≤ 2r, there is an equality
−ι(e)i =

∑r
j=1 ejbij , and since our cluster algebra has principal coefficients, this number

is ei−r. Thus we get the equality

FTj =
2r∏

i=r+1
x

[indΓ Tj :Γi]
i

∑
e

χ
(
Gre

(
HomC(Σ−1Γ, Tj)

)) 2r∏
i=r+1

x
ei−r

i .

From this we can prove the following theorem, using methods very similar to those found
in [32], in which the theorem was proved in the Hom-finite case. Note that the theorem
was shown in [21] using decorated representations and in [65] using Donaldson–Thomas
theory.

Theorem 4.3.13. Conjecture 5.6 of [31] holds for A, that is, any F -polynomial has
constant term 1.

Proof It suffices to show that the polynomial FTj defined above has constant term
1. In order to do so, we will prove that, for any r < i ≤ 2r, the number [indΓ Tj : Γi]
vanishes.

We know that Tj lies in the subcategory U defined in Section 4.3.2, that is, for any
r < i ≤ 2r, the space HomC(Σ−1Γi, Tj) vanishes. Using Proposition 3.2.16, we get that
HomC(Tj ,ΣΓi) also vanishes.

Let T 1 → T 0 → Tj → ΣT 1 be a minimal (addΓ)-presentation of Tj . Let r < i ≤ 2r be
a vertex of Q. Suppose that Γi is a direct summand of T 1. Since HomC(Tj ,ΣΓi) is zero,
this implies that the presentation has the triangle

Γi
1Γi // Γi // 0 // ΣΓi

as a direct summand, contradicting the minimality of the presentation. Thus Γi is not a
direct summand of T 1.

Suppose that Γi is a direct summand of T 0. Since i is a sink in Q, and since Γi is not
a direct summand of T 1, we get that HomC(T 1,Γi) is zero. This implies that Γi is a direct
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summand of Tj , and since the latter is indecomposable, we get that it is isomorphic to the
former. This is a contradiction, since T must be basic. �

Definition 4.3.14. For any object M of D, the F -polynomial of M is the polynomial

FM =
∑
e

χ
(
Gre

(
HomC(Σ−1Γ,M)

)) 2r∏
i=r+1

x
ei−r

i

in Z[xr+1, . . . , x2r].

Thanks to Theorem 4.3.13, this definition is in accordance with the FTi used above.
Note that we have the equality

X ′M

∣∣∣
x1=...=xr=1

=
2r∏

i=r+1
x

[indΓ M :Γi]
i FM

We can deduce from the multiplication formula of Proposition 3.3.16 an equality for
the polynomials FM . This was first proved implicitly in [68, Section 5.1], see also [52,
Theorem 6.12].

Proposition 4.3.15. Let M and N be objects of D such that the space HomC(M,ΣN) is
one-dimensional. Let

M −→ E −→ N −→ ΣM and N −→ E′ −→M −→ ΣN

be non-split triangles. Then

FMFN =
2r∏

i=r+1
x
di−r

i FE +
2r∏

i=r+1
x
d′i−r

i FE′ ,

where d = (d1, . . . , d2r) is the dimension vector of the kernel K of the induced morphism
HomC(Σ−1Γ,M) −→ HomC(Σ−1Γ, E) and d′ = (d′1, . . . , d′2r) is the dimension vector of
the kernel K ′ of HomC(Σ−1Γ, N) −→ HomC(Σ−1Γ, E′).

Proof We know from Proposition 3.3.16 that X ′MX ′N = X ′E + X ′E′ . Specializing at
x1 = . . . = xr = 1, we get the equality

2r∏
i=r+1

x
[indΓ M :Γi]+[indΓ N :Γi]
i FMFN =

2r∏
i=r+1

x
[indΓ E:Γi]
i FE +

2r∏
i=r+1

x
[indΓ E

′:Γi]
i FE′ .

It follows from Lemma 3.3.5 (applied to the above triangles shifted by Σ−1, and with
T = Σ−1Γ) that

indΓM + indΓN = indΓE + indΓK + indΓ ΣK
= indΓE

′ + indΓK
′ + indΓ ΣK ′,

where K and K ′ are as in the statement of the Proposition. But indΓK+indΓ ΣK = ι(d),
and using our computation of ι(e) of Section 4.3.2, we get that −ι(d)i = di−r for r < i ≤ 2r.

Similarly, we get that indΓK
′ + indΓ ΣK ′ = ι(d′), and that −ι(d′)i = d′i−r for r < i ≤

2r. The desired equality follows.
�



4.4. Link with decorated representations 69

4.4 Link with decorated representations

In this section, an explicit link between cluster categories and the decorated represen-
tations of [22] is established. We show that the mutation of decorated representations of
[22] corresponds to the derived-equivalence of [58], and we give an interpretation of the
E-invariant of [21] as half the dimension of the space of selfextensions of an object in the
cluster category.

4.4.1 Mutations

Let (Q,W ) be a quiver with potential. Let Γ = ΓQ,W be the associated complete
Ginzburg dg algebra, and C = CQ,W be the associated cluster category. Let B = BQ,W
be the endomorphism algebra of Γ in C. Recall from [58, Lemma 2.8] that B is the
Jacobian algebra of (Q,W ). Denote by F the functor HomC(Σ−1Γ, ?) from C to ModB.
Let D = DQ,W be the full subcategory of prCΓ∩ prCΣ−1Γ whose objects are those X such
that FX is finite dimensional.

Consider the map Φ = ΦQ,W from the set of isomorphism classes of objects in D to
the set of isomorphism classes of decorated representations of (Q,W ) defined as follows.
For any object X of D, write X = X ′⊕

⊕
i∈Q0(eiΓ)mi , where X ′ has no direct summands

in addΓ. Such a decomposition of X is unique up to isomorphism, since prCΓ is a Krull–
Schmidt category, as shown in Chapter 3. Define Φ(X) to be the decorated representation
(F (X ′),

⊕
i∈Q0 S

mi
i ), where (0, Si) is the negative simple representation at the vertex i, for

any i in Q0.
Consider also the map Ψ = ΨQ,W from the set of isomorphism classes of decorated

representations of (Q,W ) to the set of isomorphism classes of objects in D defined as
follows. Recall from Chapter 3 that F induces an equivalence prCΣ−1Γ/(Γ) → modB,
where modB is the category of finitely presented B-modules. Let G be a quasi-inverse
equivalence. For any decorated representation (M,

⊕
i∈Q0 S

mi
i ), choose a representativeM

of G(M) in D which has no direct summands in addΓ (the representative can be chosen
to be in D thanks to Lemma 3.3.2). Such a representative is unique up to (non-unique)
isomorphism. The map Ψ then sends (M,

⊕
i∈Q0 S

mi
i ) to the object M ⊕

⊕
i∈Q0(eiΓi)mi .

The diagram below summarizes the definitions of Φ and Ψ.{
isoclasses of
objects of D

}
←→

{
isoclasses of decorated

representations of (Q,W )

}

X = X ′ ⊕
n⊕
i=1

(eiΓ)mi 7−→ Φ(X) =
(
FX ′,

n⊕
i=1

(Si)mi
)

Ψ(M) = M ⊕
n⊕
i=1

(eiΓ)mi ←− [ M =
(
M,

n⊕
i=1

Smi
i

)
The main result of this subsection states that the maps Φ and Ψ are mutually inverse

bijections, on the one hand, and that, via these maps, the derived equivalences of [58] are
compatible with the mutations of decorated representations of [22], on the other hand.

Proposition 4.4.1. With the above notations, Φ and Ψ are mutual inverse maps. More-
over, if i ∈ Q0 is not on any cycle of length ≤ 2, and if (Q′,W ′) = µ̃i(Q,W ), then for
any object X of D, we have that

ΦQ′,W ′(µ̃−i (X)) = µ̃i(ΦQ,W (X)),

where the functor µ̃−i is as defined after Theorem 3.2.6.
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The rest of this section is devoted to the proof of the Proposition.
It is obvious from the definition of Φ and Ψ that the two maps are mutual inverses.

Thus we only need to show that the two mutations agree.
Let Γ′ be the complete Ginzburg dg algebra of (Q′,W ′). Note that EndC′(Γ′) is the

Jacobian algebra J(Q′,W ′), by [58, Lemma 2.8]. Let C′ be the cluster category associated
with (Q′,W ′). We know from [21] that µ̃i(ΦQ,W (X)) is a decorated representation of
(Q′,W ′) = µ̃i(Q,W ). We need to show that it is isomorphic to ΦQ′,W ′(µ̃−i (X)).

We can (and will) assume for the rest of the proof that X is indecomposable, as all
the maps and functors considered commute with finite direct sums.

We first prove the proposition for some special cases.

Lemma 4.4.2. Assume that X is an indecomposable object of D such that either
– X is of the form ejΓ for j 6= i, or
– X is the cone Γ∗i of the morphism

Γi −→
⊕
α

Γt(α)

whose components are given by left multiplication by α.
Then the equality ΦQ′,W ′(µ̃−i (X)) = µ̃i(ΦQ,W (X)) holds.

Proof Suppose thatX = ejΓ for some vertex i 6= j. Then µ̃i(ΦQ,W (X)) = µ̃i(0, Sj) =
(0, Sj), and ΦQ′,W ′(µ̃−i (X)) = ΦQ′,W ′(ejΓ′) = (0, Sj), so the desired equality holds.

Suppose now that X is the cone Γ∗i of the morphism

Γi −→
⊕
α

Γt(α)

whose components are given by left multiplication by α. In that case, µ̃−i (X) = eiΓ′ and
Φ(X) = (Si, 0), so the desired equality is also satisfied. �

Now suppose that X is not of the above form. Using the definition of µ̃−i , we get that
Φ(µ̃−i (X)) is equal to Φ(HomΓ(T,X)), where T is as defined in section 4.2.4. Because of
our assumptions on X, this decorated representation is

(
HomC′

(
Σ−1Γ′,HomΓ(T,X)

)
, 0
)
.

We have the isomorphisms of EndC′(Γ′)-modules

HomC′
(
Σ−1Γ′,HomΓ(T,X)

)
= HomDΓ′

(
Σ−1Γ′,HomΓ(T,X)

)
= HomDΓ(Σ−1Γ′ ⊗LΓ′ T,X)
= HomDΓ(Σ−1T,X)
= HomC(Σ−1T,X),

where X is a lift of X in prDΓΣ−1Γ. Using this, we prove the Proposition for another
special case.

Lemma 4.4.3. If X = eiΓ, then ΦQ′,W ′(µ̃−i (X)) = µ̃i(ΦQ,W (X)).

Proof We have that µ̃i(ΦQ,W (eiΓ)) = (Si, 0). Moreover, the above calculation gives
that ΦQ′,W ′(µ̃−i (eiΓ)) =

(
HomC(Σ−1T, eiΓ), 0

)
.

For any vertex j 6= i, we have that HomC(Σ−1T, eiΓ)ej = HomC(Σ−1(ejT ), eiΓ) =
HomC(Σ−1(ejΓ), eiΓ), and this last space is zero.

For the vertex i, we have isomorphisms HomC(Σ−1T, eiΓ)ei = HomC(Σ−1(eiT ), eiΓ) =
HomC(Σ−1Γ∗i , eiΓ), and this space is one-dimensional.



4.4. Link with decorated representations 71

Therefore HomC(Σ−1T, eiΓ) is the simple module at the vertex i, and this proves the
desired equality. �

We now treat the remaining cases, that is, those where X is not in addΓ and is not
Γ∗i . Then Φ(X) = (FX, 0), and µ̃i(ΦQ,W (X)) = µ̃i(FX, 0) = (M ′, 0) is computed using
section 4.2.2. We will show that HomC(Σ−1T,X) is isomorphic to M ′ as a J(Q′,W ′)-
module, using heavily the definition of T given in section 4.2.4.

Lemma 4.4.4. For any vertex j, the vector spaces M ′ej and HomC(Σ−1T,X)ej are iso-
morphic.

Proof If j is a vertex different from i, then we have the isomorphisms of vector spaces
HomC(Σ−1T,X)ej = HomC(Σ−1(ejT ), X) = HomC(Σ−1(ejΓ), X) = (FX)ej = M ′ej .

For the vertex i, we have isomorphisms HomC(Σ−1T,X)ei = HomC(Σ−1(eiT ), X) =
HomC(Σ−1Γ∗i , X). Let us show that this space is isomorphic to M ′ei.

We have triangles in C

eiΓ −→
⊕
s(a)=i

et(a)Γ −→ Γ∗i −→ Σ(eiΓ) and

Γ∗i −→
⊕
t(a)=i

es(a)Γ −→ eiΓ −→ ΣΓ∗i .

These triangles yield a diagram with exact rows

(Σ−1Γ∗i , X)

ϕ∗i
��

(Σ−1⊕
t(a)=i es(a)Γ, X)

−γ
��

hoo (Σ−1(eiΓ), X)βoo (Γ∗i , X)oo

(Σ−1Γ∗i , X) g // (Σ−1⊕
s(a)=i et(a)Γ, X) α // (Σ−1(eiΓ), X) // (Σ−2Γ∗i , X),

where we write (Y1, Y2) for HomC(Y1, Y2), where −γ = gϕ∗ih, and where ϕi was defined in
section 4.2.4. Note that ϕ∗i is an isomorphism.

Notice that, in the notations of section 4.2.2, we have that (Σ−1⊕
t(a)=i es(a)Γ, X) =

(FX)out and (Σ−1⊕
s(a)=i et(a)Γ, X) = (FX)in. Moreover, the maps α and β in the

diagram above correspond to the maps α and β of section 4.2.2.
The map γ above also corresponds to the map γ defined in section 4.2.2. This follows

from the computation we made in Remark 4.2.1.
Using the above diagram, we get isomorphisms

(Σ−1Γ∗i , X) ∼= Im g ⊕Ker g
∼= Kerα⊕Ker g

and

Ker γ ∼= h−1(ϕ∗−1
i (Ker g)

)
∼= Kerh⊕Ker g
∼= Im β ⊕Ker g.

Thus (Σ−1Γ∗i , X) is (non-canonically) isomorphic to Kerα ⊕ Ker γ
Im β , which is in turn iso-

morphic to Ker γ
Im β ⊕ Im γ ⊕ Ker α

Im γ . But this is precisely M ′ei. �

It remains to be shown that the action of the arrows of Q′ on HomC(Σ−1T,X) is the
same as on M ′ in order to get the following Lemma.
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Lemma 4.4.5. As a J(Q′,W ′)-module, HomC(Σ−1T,X) is isomorphic to M ′.

Proof We know from Lemma 4.4.4 that the two modules considered are isomorphic
as Λ-modules, where Λ is as in section 3.2.2.

Now let a be an arrow of Q not incident with i. Then a is an arrow of Q′, and its
action on HomC(Σ−1T,X) is obviously the same as its action on M ′.

Consider now an arrow of Q′ of the form [ba], where t(a) = i = s(b) in Q. By the
definition of M ′ given in section 4.2.2, [ba] acts as ba on M ′, that is, M ′[ba] = (FX)ba.

According to the definition of T given in section 4.2.4, [ba] acts on T as the map

Ts(a) −→ Tt(b)

x 7−→ bax.

Hence the action of [ba] on HomC(Σ−1T,X) is also given by multiplication by ba. Thus
the action of [ba] on M ′ and on HomC(Σ−1T,X) coincide.

There remains to be considered the action of the arrows incident with i.
Keep the notations introduced in the proof of Lemma 4.4.4. We assert that the maps

ϕ∗ih and g encode the action of the arrows incident with i.
Recall that in DΓ, the object Γ∗i is isomorphic as a graded module to

Σ(eiΓ)⊕
⊕
a∈Q1
s(a)=i

et(a)Γ,

and that the map
⊕

a∈Q1
s(a)=i

et(a)Γ −→ Γ∗i is the canonical inclusion. Thus, its components

are given by

et(a)Γ −→ Γ∗i
x 7−→ eax.

for any arrow a of Q such that s(a) = i. By the definition of T , this is multiplication by
a?. Therefore g encodes the action of the arrows a? of Q′, where s(a) = i in Q.

Similarly, recall that in DΓ, the object Γ∗i is isomorphic as a graded module to( ⊕
b∈Q1
t(b)=i

et(b)Γ
)
⊕ Σ−1(eiΓ)

and that the map Γ∗i −→
⊕

b∈Q1
t(b)=i

et(b)Γ is given by the canonical projection. Thus its

composition with ϕ∗i is given by the matrix
(
−b∗ −∂abW

)
. Its components are the

maps

Γ∗i −→ es(b)Γ

eΣixi +
∑
s(a)=i

eaxa 7−→ −b∗xi +
∑
s(a)=i

(∂abW )xa

for any arrow b of Q such that t(b) = i. By the definition of T , this is multiplication by
b?. Thus ϕ∗ih encodes the action of the arrows b? of Q′, where t(b) = i in Q.

Finally, recall from Lemma 4.4.4 that HomC(Σ−1Γ∗i , X) is isomorphic to Ker γ
Im β ⊕Im γ⊕

Ker α
Im γ . Recall that the summand Ker γ

Im β corresponds to Ker g, while the summand Im γ ⊕
Ker α
Im γ corresponds to Im g.



4.4. Link with decorated representations 73

We choose a spliting Im γ ⊕ Ker α
Im γ in such a way that Im ϕ∗ih ∩ Ker α

Im γ = 0. In that

case, g is given in matrix form by
(

0 ι ισ
)
and ϕ∗ih, by

 −πρ−γ
0

, in the notations of

section 4.2.2. This proves that the action of the arrows ofQ′ onM ′ and on HomC(Σ−1T,X)
coincide, finishing the proof of the Lemma. �

We have proved Proposition 4.4.1.

4.4.2 Interpretation of F -polynomials, g-vectors and h-vectors

In this section, we study the relation between the F -polynomials of objects of D and
of decorated representations, and between the index of objects in D and the g-vectors of
decorated representations. We also give an interpretation of the h-vector.

Let (Q,W ) be a quiver with potential, and let C be the associated cluster category.
We keep the notations of the previous section for the maps Φ and Ψ.

We first prove a result regarding F -polynomials.

Proposition 4.4.6. Let X be an object of D. Then we have the equality

FX(xr+1, . . . , xn) = FΦ(X)(xr+1, . . . , xn).

Proof This is immediate from the definitions of FX , Φ and FΦ(X), given in Definition
4.3.14, Section 4.4.1 and Section 4.2.3, respectively. �

We now prove that g-vectors of decorated representations and indices of objects in the
cluster category are closely related. We will need the following Hom-infinite extension of
[68, Lemma 7].

Lemma 4.4.7. Let M be an indecomposable object of D. Then

[indΓM : eiΓ] =
{
δij if M ∼= eiΓ
dim Ext1

B(Si, FM)− dim HomB(Si, FM) otherwise,

where B = EndC(Γ).

Proof The result is obvious if M lies in addΓ. Suppose it does not. Let T1 −→
T0 −→M −→ ΣT1 be an (addΓ)-presentation of M .

The opposite category Cop is triangulated, with suspension functor Σop = Σ−1. Thus,
in Cop, we have a triangle Σ−1

op T0 −→ Σ−1
op T1 −→ M −→ T0. Applying the functor

F ′ = HomCop(Σ−1
op Γ, ?), we get a minimal projective resolution

F ′Σ−1
op T0 −→ F ′Σ−1

op T1 −→ F ′M −→ 0

of F ′M as a Bop-module.
Letting S′i be the simple Bop-module at the vertex i, we apply HomB′(?, Si) to the

above exact sequence and get a complex

0 −→ HomBop(F ′Σ−1
op T1, S

′
i) −→ HomBop(F ′Σ−1

op T0, S
′
i) −→ . . .

whose differential vanishes, since the presentation is minimal.
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Therefore we have the equalities

[indΓM : eiΓ] = dim Ext1
Bop(F ′M,S′i)− dim HomBop(F ′M,S′i)

= dim Ext1
B(Si, DF ′M)− dim HomB(Si, DF ′M),

where Si is the simple B-module at the vertex i.
Now, using Proposition 3.2.16, we get that

DF ′M = DHomCop(Σ−1
op Γ,M) = DHomC(M,ΣΓ) ∼= HomC(Σ−1Γ,M) = FM.

Thus DF ′M is isomorphic to FM as a B-module. This proves the lemma. �

We now prove the result on g-vectors of decorated representations.

Proposition 4.4.8. Let (Q,W ) be a quiver with potential, and let C be the associated
cluster category. Let X be an object of D. Let gΦ(X) = (g1, . . . , gn) be the g-vector of the
decorated representation Φ(X). Then we have the equality

gi = [indΓX : Γi]

for any vertex i of Q.

Proof We can assume that X is indecomposable. If X lies in addΓ, then the result
is obviously true. Suppose that X does not lie in addΓ.

Using the two triangles in C

eiΓ −→
⊕
s(a)=i

et(a)Γ −→ Γ∗i −→ Σ(eiΓ) and

Γ∗i −→
⊕
t(a)=i

es(a)Γ −→ eiΓ −→ ΣΓ∗i .

and applying the functor F = HomC(Σ−1Γ, ?), we get a projective resolution of the simple
B-module Si at the vertex i:

Pi −→
⊕
s(a)=i

Pt(a) −→
⊕
t(a)=i

Ps(a) −→ Pi −→ Si −→ 0,

where Pj is the indecomposable projective B-module at the vertex j. Applying now the
functor HomB(?, FM), we get the complex

0 −→ (FM)i
βi−→ (FM)out

−γi−→ (FM)in
αi−→ (FM)i.

From this complex, we see that HomB(Si,M) = Kerβi and that Ext1
B(Si,M) =

Ker γi/ Im βi. We also deduce an exact sequence

0 −→ Kerβi −→ (FM)i
βi−→ Ker γi −→ Ker γi/ Im βi −→ 0.

Using the above arguments and Lemma 4.4.7, we get the equalities

[indΓX : eiΓ] = dim Ext1
B(Si,M)− dim HomB(Si,M)

= dim(Ker γi/ Im βi) dimKerβi
= dimKer γi − dim(FM)i
= gi.

This finishes the proof. �

As a corollary of the proof of the above Proposition, we get an interpretation of the
h-vector of a decorated representation.
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Corollary 4.4.9. For any decorated representationM = (M,V ) of a quiver with potential
(Q,W ), we have the equality

hi = −dim HomJ(Q,W )(Si,M)

for any vertex i of Q.

This provides us with a way of “counting” the number of terms in a minimal presen-
tation.

Corollary 4.4.10. If g = (g1, . . . , gn) and h = (h1, . . . , hn) are the g-vector and h-vector
of a decorated representation M = (M,V ), h′ = (h′1, . . . , h′n) is the h-vector of µi(M),
and if

T1 −→ T0 −→ Ψ(M) −→ ΣT1

is a minimal (addΓ)-presentation of Ψ(M) (see Proposition 4.4.1), then −hi and −h′i are
the number of direct summands of T1 and T0 which are isomorphic to Γi, respectively.

Proof It follows from Corollary 4.4.9 that −hi = dim HomJ(Q,W )(Si,M).
Let T ∗i be an indecomposable object of D such that HomC(Σ−1Γ, T ∗i ) is the simple Si.

Then, by Lemma 3.3.2, we have that

HomJ(Q,W )(Si,M) ∼= HomC(T ∗i ,Ψ(M))/(Γ).

Applying HomC(T ∗i , ?) to the presentation, we get a long exact sequence

(T ∗i , T0) ψ∗−→ (T ∗i ,Ψ(M)) φ∗−→ (T ∗i ,ΣT1) −→ (T ∗i ,ΣT0).

We see that the image of ψ∗ is (Γ)(T ∗i ,Ψ(M)), so that HomC(T ∗i ,Ψ(M))/(Γ) is iso-
morphic to the image of φ∗. Thus −hi is the dimension of the image of φ∗.

Using Proposition 3.2.16, we get that the morphism (T ∗i ,ΣT1) −→ (T ∗i ,ΣT0) is isomor-
phic to the morphism D(Σ−1T1, T

∗
i ) −→ D(Σ−1T0, T

∗
i ), and this morphism is zero since

the presentation is minimal. Thus φ∗ is surjective.
Therefore −hi is equal to the dimension of HomC(Σ−1T1, T

∗
i ), which is equal to the

number of direct factors of T1 isomorphic to Γi in any decomposition of T1.
Furthermore, [21, Lemma 5.2] gives that gi = hi − h′i, and by Proposition 4.4.8, gi =

[indΓ Ψ(M) : Γi]. This immediately implies that −h′i is equal to the number of direct
factors of T0 isomorphic to Γi, and finishes the proof. �

Remark 4.4.11. Corollary 4.4.10 allows us to reformulate Remark 4.3.8 in the following
way. If M is any object of D, and if h = (h1, . . . , hn) and h′ = (h′1, . . . , h′n) are the
h-vectors of Φ(M) and µ̃iΦ(M), respectively, then

[indT ′M : T ′j ] =
{
−[indT M : Ti] (if i = j)
[indT M : Tj ]− h′i[bji]+ + hi[−bji]+ (if i 6= j).

As a corollary, we get a proof of Conjecture 6.10 of [31].

Corollary 4.4.12. Conjecture 6.10 of [31] is true, that is, if g = (g1, . . . , gn) and g′ =
(g′1, . . . , g′n) are the g-vectors of one cluster variable with respect to two clusters t and t′
related by one mutation at vertex i, and if h = (h1, . . . , hn) and h′ = (h′1, . . . , h′n) are its
h-vectors with respect to those clusters, then we have that

h′i = −[gi]+ and hi = min(0, gi).
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Proof Let M be an indecomposable object of D such that X ′M is the cluster variable
considered in the statement. In particular, M is reachable, and thus rigid. It follows from
equation (5.5) of [21] that the h-vector of the cluster variable corresponds to the h-vector
of the associated decorated representation.

Since M is rigid, Proposition 4.3.5 tells us that any minimal (addΓ)-presentation of
M has disjoint direct factors. The result follows directly from this and from Corollary
4.4.10. �

Remark 4.4.13. Conjecture 6.10 of [31] also follows directly from Conjecture 7.12 (see
Theorem 4.3.7(4) above) and equations (6.15) and (6.26) of [31]. We give the above proof
because it is an application of the results developped in this thesis.

Finally, we get an interpretation of the substitution formula of [21, Lemma 5.2] in
terms of cluster characters.

Corollary 4.4.14. Let (Q,W ) be a quiver with potential. Let i be an admissible vertex
of Q, and let ϕX : Q(x′1, . . . , x′n) −→ Q(x1, . . . , xn) be the field isomorphism sending x′j to
xj if i 6= j and to

(xi)−1(
n∏
`=1

x
[b`i]+
` +

n∏
`=1

x
[−b`i]+
` )

if i = j. Let C and C′ be the cluster categories of (Q,W ) and µ̃i(Q,W ), respectively, and
let µ̃+

i : C′ −→ C be the associated functor (see [58, Theorem 3.2]).
Then for any object M of the subcategory D′ of C′, we have that

X ′
µ̃+

i (M) = ϕX(X ′M ).

Proof Consider the field isomorphism ϕY : Q(y′1, . . . , y′n) −→ Q(y1, . . . , yn) whose
action on y′j is given by

ϕY (y′j) =


y−1
i if i = j
yjy

m
i (yi + 1)−m if there are m arrows from i to j

yj(yi + 1)m if there are m arrows from j to i.

Consider also the morphism ˆ(−) : Q(y1, . . . , yn) −→ Q(x1, . . . , xn) sending each yj to

ŷj =
n∏
`=1

x
b`j

` .

Denote by the same symbol the corresponding map from the field Q(y′1, . . . , y′n) to the
field Q(x′1, . . . , x′n). Then [31, Proposition 3.9] implies that ϕX(ẑ) = ̂(ϕY (z)) for any
z ∈ Q(y′1, . . . , y′n). In other words, the following diagram commutes:

Q(y1, . . . , yn)
ˆ(−) // Q(x1, . . . , xn)

Q(y′1, . . . , y′n)
ˆ(−) //

ϕY

OO

Q(x′1, . . . , x′n).

ϕX

OO

Let us now compute ϕX(X ′M ). We have that

ϕX(X ′M ) = ϕX(x′ indΓ′M )FM (ŷ′1, . . . , ŷ′n)

= ϕX(x′ indΓ′M )FM ( ̂(ϕY (y′1)), . . . , ̂(ϕY (y′n))).



4.4. Link with decorated representations 77

Now, using [21, Lemma 5.2], we can express the right-hand side of the equation in
terms of the ŷj . The equalities thus continue:

ϕX(X ′M ) = ϕX(x′ indΓ′M )ϕX(1 + ŷ′i)−h
′
i(1 + ŷi)hiFM (ŷ1, . . . , ŷn)

= ϕX(x′ indΓ′M )ϕX(1 + ŷ′i)−h
′
i(1 + ŷi)hix− indΓ µ̃

+
i (M)X ′

µ̃+
i (M).

Thus, in order to prove the Corollary, we must show that

ϕX(x′ indΓ′M )ϕX(1 + ŷ′i)−h
′
i(1 + ŷi)hix− indΓ µ̃

+
i (M) = 1. (4.1)

We do this in several steps. First, using the definition of ϕX and ϕY , we get

ϕX(1 + ŷ′i)−h
′
i(1 + ŷi)hi = (1 + ϕ̂Y (y′i))

−h′i(1 + ŷi)hi

= (1 + ŷ−1
i )−h′i(1 + ŷi)hi

= ŷ
h′i
i (1 + ŷi)hi−h′i .

Now, using Proposition 4.4.8, we get the equalities

ϕX
(
(x′)indΓ′M

)
x− indΓ µ̃

+
i (M) = ϕX(

n∏
`=1

(x′`)g
′
`)

n∏
`=1

x−g`
`

= xgi
i (

n∏
`=1

x
[b`i]+
` +

n∏
`=1

x
[−b`i]+
` )−gi(

∏
`6=i

x
g′`−g`

` )x−gi
i

= (
n∏
`=1

x
[b`i]+
` +

n∏
`=1

x
[−b`i]+
` )−gi(

∏
` 6=i

x
g′`−g`

` ).

Thus we have, using the fact that gi = hi−h′i [21, Lemma 5.2], that the left-hand side
of equation (4.1) is equal to

ŷ
h′i
i (1 + ŷi)gi(

n∏
`=1

x
[b`i]+
` +

n∏
`=1

x
[−b`i]+
` )−gi(

∏
` 6=i

x
g′`−g`

` )

which is in turn equal to (using Remark 4.4.11)

ŷ
h′i
i (

n∏
`=1

x
−[−b`i]+
` )gi(

∏
6̀=i
x
g′`−g`

` ) = ŷ
h′i
i (

n∏
`=1

x
−[−b`i]+
` )gi(

∏
` 6=i

x
hi[−b`i]+−h′i[b`i]+
` )

= ŷ
h′i
i (
∏
`6=i

x
h′i[−b`i]+−hi[−b`i]++hi[−b`i]+−h′i[b`i]+
` )

= ŷ
h′i
i (
∏
`6=i

x
−h′ib`i

` )

=
∏
`6=i

x
h′ib`i−h′ib`i

`

= 1.

This finishes the proof. �
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4.4.3 Extensions and the E-invariant

In this section, we give an interpretation of the E-invariant of a decorated representa-
tion, as defined in [21] (its definition was recalled in section 4.2.3), as the dimension of a
space of extensions, using the map Φ of section 4.4.1.

Proposition 4.4.15. Let (Q,W ) be a quiver with potential, and let C be the associated
cluster category. Let X and Y be objects of D. Then we have the following equalities:

1. Einj(Φ(X),Φ(Y )) = dim(ΣΓ)(X,ΣY );

2. Esym(Φ(X),Φ(Y )) = dim(ΣΓ)(X,ΣY ) + dim(ΣΓ)(Y,ΣX);

3. E(Φ(X)) = (1/2) dim HomC(X,ΣX),

where (ΣΓ)(X,Y ) is the subspace of HomC(X,Y ) containing all morphisms factoring
through an object of addΣΓ.

Proof The second equality follows immediately from the first one.
The third equality follows from the second one. Indeed, the second equality implies

that (ΣΓ)(X,ΣX) is finite-dimensional. It then follows from Lemma 3.3.8 that we have
an isomorphism

(ΣΓ)(X,ΣX) ∼= DHomC(X,ΣX)/(ΣΓ).

Since dim HomC(X,ΣX) = dim(ΣΓ)(X,ΣX) + dim HomC(X,ΣX)/(ΣΓ), we get that

dim HomC(X,ΣX) = 2 dim(ΣΓ)(X,ΣX)
= Esym(Φ(X),Φ(X))
= 2E(Φ(X)).

Let us now prove the first equality. Let

T Y1 −→ T Y0 −→ Y −→ ΣT Y1

be an (addΓ)-presentation of Y . This triangle yields an exact sequence

(X,Y ) u // (X,ΣT Y1 ) // (X,ΣT Y0 ) // (X,ΣY ) v // (X,Σ2T Y1 ),

which in turn gives an exact sequence

0 // Im u // (X,ΣT Y1 ) // (X,ΣT Y0 ) // Ker v // 0.

Since X is in D, the two middle terms of this exact sequence are isomorphic to (T Yi ,ΣX)
(for i = 1, 2) thanks to Proposition 3.2.16, and these spaces are finite-dimensional. There-
fore all of the terms of the exact sequence are finite-dimensional.

Now, Im u is isomorphic to (X,Y )/Keru, and Keru is exactly (Γ)(X,Y ). There-
fore, by Lemma 3.3.2, Im u is isomorphic to the space HomJ(Q,W )(FX,FY ), where
F = HomC(Σ−1Γ, ?).

Moreover, Ker v is exactly (ΣΓ)(X,ΣY ).



4.4. Link with decorated representations 79

Thus, using the above exact sequence and Proposition 4.4.8, we have the equalities

dim(ΣΓ)(X,ΣY ) = dim HomJ(Q,W )(FX,FY )− dim(X,ΣT Y1 ) + dim(X,ΣT Y0 )
= dim HomJ(Q,W )(FX,FY )− dim(T Y1 ,ΣX) + dim(T Y0 ,ΣX)

= dim HomJ(Q,W )(FX,FY )−
n∑
i=1

[T Y1 : Ti](dim(FX)i) +

+
n∑
i=1

[TX0 : Ti](dim(FX)i)

= dim HomJ(Q,W )(FX,FY ) +
n∑
i=1

[indΓ ΣY : Γi](dim(FX)i)

= dim HomJ(Q,W )(FX,FY ) +
n∑
i=1

gi(Φ(Y ))(dim(FX)i)

= Einj(Φ(X),Φ(Y )),

where [T Yj : Ti] is the number of direct summands of T Yj isomorphic to Ti in any decom-
position of T Yj into indecomposable objects, and where the g-vector of Φ(Y ) is given by
(g1(Φ(Y )), . . . ,gn(Φ(Y ))). This finishes the proof. �

As a corollary, we get the following stronger version of [21, Lemma 9.2].

Corollary 4.4.16. Let M and M′ be two decorated representations of a quiver with
potential (Q,W ). Assume that E(M′) = 0. Then the following conditions are equivalent:

1. M andM′ are isomorphic;
2. E(M) = 0, and gM = gM′.

Proof Condition (1) obviously implies condition (2). Now assume that condition (2)
is satisfied. Then Proposition 4.4.15 implies that Ψ(M) and Ψ(M′) are rigid objects of
D. By Proposition 4.4.8, the indices of Ψ(M) and Ψ(M′) are given by gM and gM′ . By
hypothesis, their indices are the same. Thus, by Proposition 4.3.1, Ψ(M) and Ψ(M′) are
isomorphic, and so areM andM′. �





Chapter 5

Indices and generic bases for
cluster algebras

5.1 Introduction

One of the main motivations of S. Fomin and A. Zelevinsky for introducing cluster
algebras in [29] was the search for a combinatorial framework in which one could study
the canonical bases of M. Kashiwara [49] and G. Lusztig [63]. Recent results of C. Geiss,
B. Leclerc and J. Schröer [35], who prove that coordinate rings of certain algebraic varieties
have a natural cluster algebra structure and find a basis for them, give ample justification
to this approach. The problem of finding “good” bases for cluster algebras is thus central
in the theory. These bases should, as conjectured already in [29], contain the cluster
monomials. We know from Theorem 4.3.7 that these are linearly independent when the
defining matrix of the (skew-symmetric) cluster algebra is of full rank. Good bases for
cluster algebras were previously constructed by G. Dupont [25] [24], by M. Ding, J. Xiao
and F. Xu [23] and by G. Cerulli Irelli [15].

In their paper [35], C. Geiss, B. Leclerc and J. Schröer find bases for a certain class of
(upper) cluster algebras and provide a candidate for a basis in general. In this chapter,
inspired by their ideas, we use cluster categories to give another realization of this candi-
date set. We prove that its elements are linearly independent when the defining matrix
is of full rank, and that it coincides with the basis of [35] when the cluster algebra arises
from the setting studied therein.

The point of view that we adopt allows us to link a conjecture of V. Fock and A. Gon-
charov [27] to one of [35]. Our results apply to cluster algebras AQ associated with a
quiver Q on which there exists a non-degenerate potential W (in the sense of [22]) making
(Q,W ) Jacobi-finite.

More precisely, let (Q,W ) be such a quiver with potential, and let CQ,W be the asso-
ciated cluster category (as defined by C. Amiot in [2]). Then Y. Palu’s cluster character
[68]

X ′M = xindT M
∑
e

(
χ
(
Gre(HomC(Σ−1Γ,M)

))
x−ι(e),

can be applied to objects of CQ,W ; the reachable indecomposable objects yield all the
cluster variables of the cluster algebra AQ in this way.

Each object M has an index indΓM (as defined by Y. Palu in [68], see also [18]) which
is an element of K0(addΓ). The main theorem of this chapter states that a good candidate
for a basis of AQ is parametrized by the set of indices via the cluster character. Let A+

Q

be the upper cluster algebra of [5] associated with Q.
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Theorem 5.1.1. There exists a canonical map

I : K0(addΓ) −→ A+
Q.

If the matrix of Q is of full rank, then the elements in the image of I are linearly inde-
pendent over Z. If (Q,W ) arises from the setting of [35], then the image of I is the basis
of the cluster algebra AQ found in that paper.

The map I sends an element [T0] − [T1] to the generic value taken by the cluster
character on cones of morphisms in HomC(T1, T0). It was first considered by G. Dupont
in [24].

In their construction of a basis for cluster algebras, the authors of [35] consider strongly
reduced components of the variety rep(A) of finite-dimensional representations of some
finite-dimensional algebra A. It so happens that we can recover all such components from
the set of indices K0(projA).

Theorem 5.1.2. Let (Q,W ) be a Jacobi-finite quiver with potential, and let A be its
Jacobian algebra. Then there exists a canonical surjection

Ψ : K0(addA) −→ {strongly reduced components of rep(A)}.

Two elements δ and δ′ have the same image by Ψ if, and only if, their canonical decom-
positions (in the sense of H. Derksen and J. Fei [20], see section 5.3.2) can be written
as

δ = δ1 ⊕ δ and δ′1 ⊕ δ,

with δ1 and δ′1 non-negative.

Note that in the setting of the theorem, K0(addA) is isomorphic to K0(addΓ), so the
notation is coherent with that of Theorem 5.1.1.

Elements of the cluster algebra can be mutated using the rules defined by S. Fomin
and A. Zelevinsky [29]. Elements of K0(addΓ) can also be mutated (in a way which we
will make precise). The map I of Theorem 5.1.1 is well-behaved with respect to those
different mutations, as conjectured in [24, Conjecture 9.2].

Theorem 5.1.3. The map I commutes with mutation.

As we shall see, this theorem allows us to link Conjecture 4.1 of [27] to one of [35].
This link, together with our results, also allows us to prove a part of Conjecture 4.1 of [27]
for a certain class of cluster algebras.

The chapter is organized as follows. We define the map I in section 5.2. Next, we
recall some notions on varieties of representations in section 5.3, and then prove Theorems
5.1.1, 5.1.2 and 5.1.3 in sections 5.6, 5.4 and 5.5, respectively. We end the chapter with an
example of a Hom-finite cluster category for which the image of the map I is not contained
in the cluster algebra, and in which there are cluster-tilting objects that are not related
by a sequence of mutations.

5.2 Generic value of cluster characters

Let (Q,W ) be a Jacobi-finite non-degenerate quiver with potential. Then C. Amiot’s
cluster category CQ,W (see section 3.2.4) is Hom-finite, 2-Calabi–Yau and admits a cluster-
tilting object Γ. In this setting, the cluster character X ′? of Y. Palu (see section 3.3.3) is
defined on the objects of CQ,W .
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For two objects L and M of CQ,W , and for a morphism ε from L to ΣM , we denote by
mt(ε) any representative of the isomorphism class of “middle terms” U in triangles

M −→ U −→ L −→ ΣM.

This notation is borrowed from [67], as is the next result. In order to state it, we will
need a bit of terminology (taken, for instance, from sections 2.3 to 2.5 of [43]). A locally
closed subset of a variety is the intersection of an open subset with a closed subset. A
constructible subset of a variety is a finite union of locally closed subsets. A function from
an algebraic variety to any abelian group is consctructible if its image is finite and each
fiber is a constructible subset of the variety.

Proposition 5.2.1 ([67]). Let L and M be objects of CQ,W . Then the function

HomC(L,ΣM) −→ Q(x1, . . . , xn)
ε 7−→ X ′mt(ε)

is constructible.

Proof This follows immediately from [67, Proposition 9]. �

Now, let T0 and T1 be objects in addΓ. It follows from Proposition 5.2.1 that the
function

ηT0,T1 : HomC(T1, T0) −→ Q(x1, . . . , xn)
ε 7−→ X ′mt(Σε)

is constructible. As in [24], we define the map I by using the fact that any constructible
function on an irreducible variety admits a generic value (that is, there is a dense open
subset of the domain of the function on which the function is constant).

Definition 5.2.2. We define the map

I : K0(addΓ) −→ Q(x1, . . . , xn)

by letting I([T0]− [T1]) be the generic value of the map ηT0,T1 defined above.

Proposition 5.2.3. If the matrix of Q is of full rank, then the elements in the image of
I are lineraly independent over Z.

Proof Similar to that of Theorem 4.3.7 (2). �

5.3 Varieties and projective presentations

In this section, we recall notions which we will need throughout the chapter.
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5.3.1 Varieties of representations

Let Q = (Q0, Q1, s, t) be a finite quiver, that is, an oriented graph with finitely many
vertices and arrows. We denote by kQ its path algebra. Let I be an admissible ideal of
kQ, and let A = kQ/I be a finite-dimensional algebra (for general background on quivers
and path algebras, we refer the reader to the book [3]).

Let d be a dimension vector for Q, that is, an element of NQ0 . The variety repd(A) is
the affine variety whose points are representations of Q with underlying space

∏
i∈Q0 k

di

satisfying the relations in I ; it is realized as a Zariski-closed subset of the affine space∏
a∈Q1 Homk(kds(a) , kdt(a)).
We denote by rep(A) the disjoint union of all repd(A) as d takes all possible values in

NQ0 . For general background on varieties of representations, we refer the reader to [16].
The algebraic group GLd is defined to be

∏
i∈Q0 GLdi

. It acts on repd(A) thus: for
any (gi) ∈ GLd and any (ϕa) ∈ repd(A), (gi)(ϕa) = (gt(a)ϕa(gs(a))−1). The orbit of a
representation M under the action of GLd is the set of representations with underlying
space

∏
i∈Q0 k

di isomorphic to M .
We will need the following information on the dimension of morphism and extension

spaces, and on minimal projective presentations.

Lemma 5.3.1 (Lemma 4.2 of [17]). The functions

repd1(A)× repd2(A) −→ Z

sending a pair (M1,M2) to the dimensions of the spaces HomA(M1,M2) and Ext1
A(M1,M2)

are upper semicontinuous.

Corollary 5.3.2. Let Z be an irreducible component of repd(A). There exist finitely
generated projective A-modules P1 and P0 and a dense open subset U of Z such that any
representation M in U admits a minimal projective presentation of the form

P1 −→ P0 −→M −→ 0.

Proof Given any representation M and a minimal projective presentation P1 −→
P0 −→ M −→ 0, the multiplicities of an indecomposable projective Q in P0 and P1 are
given by the dimensions of HomA(M,S) and Ext1

A(M,S), respectively, where S is a simple
module whose projective cover is Q.

Restrict the maps of Lemma 5.3.1 to Z × {S}. The restrictions are still upper semi-
continuous. Therefore the subsets of Z on which these functions take their minimal values
are (dense) open subsets of Z. Their intersection is a dense open subset of Z on which
the functions

dim HomA(?, S) and dim Ext1
A(?, S)

are constant. This proves the result. �

We now introduce a slight modification of a definition of [35, Section 7.1]. Let Z be
an irreducible component of rep(A). There is an open dense subset U of Z and positive
integers h(Z), e(Z) and c(Z) such that, for any M in U ,

1. dim HomA(M, τM) = h(Z) ;
2. dim Ext1

A(M,M) = e(Z) ; and
3. codimZ(GLdM) = c(Z),

where τ is the Auslander–Reiten translation (see, for example, [3, Chapter IV]). Moreover,
we have that c(Z) ≤ e(Z) ≤ h(Z).
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Definition 5.3.3 (Section 7.1 of [35]). An irreducible component Z of rep(A) such that
c(Z) = h(Z) is strongly reduced.

Remark 5.3.4. In the original definition of [35], the authors used the integer function
h′(Z) = dim HomA(τ−1M,M) and defined Z to be strongly reduced if c(Z) = h′(Z).

In the case where A is the Jacobian algebra of a quiver with potential (see [22]), the
two definitions coincide. Indeed, we have equalities

dim HomA(M, τM) = Eproj(M) (by [21, Corollary 10.9])
= Eproj(τ−1M) (by [20, Corollary 7.5])
= dim HomA(τ−1M,M) (by [21, Corollary 10.9]).

This can also be seen by using the cluster category C of the quiver with potential, as
defined in [2]. This category has a canonical cluster-tilting object Γ, and the functor
F = HomC(Γ, ?) induces an equivalence HomC(Γ, ?)/(ΣΓ) → modA ([57, Proposition
2.1(c)]), such that F (ΣX) = τ(FX) ([57, Section 3.5]). We then have

dim HomA(M, τM) = dim HomC(M,ΣM)− dim(ΣΓ)(M,ΣM)
= dim HomC(Σ−1M,M)− dim(Γ)(Σ−1M,M)
= dim HomC(Σ−1M,M)− dim(ΣΓ)(Σ−1M,M)
= dim HomA(τ−1M,M),

where M is a preimage of M by the functor F , and the second-to-last equality is a
consequence of [68, Lemma 10].

5.3.2 Decomposition of projective presentations

Let A be a finite-dimensional algebra, and let P ′1, P ′0, P ′′1 and P ′′0 be finitely generated
projective A-modules.

Definition 5.3.5 (Definition 3.1 of [20]). For any f ′ in HomA(P ′1, P ′0) and any f ′′ in
HomA(P ′′1 , P ′′0 ), define the space E(f ′, f ′′) as

E(f ′, f ′′) = HomKb(projA)(Σ
−1f ′, f ′′),

where f ′ and f ′′ are viewed as complexes in Kb(projA). Define E(f ′) to be E(f ′, f ′).

Lemma 5.3.6. If P ′1
f ′ // P ′0

//M ′ // 0 is a projective presentation, then

dimE(f ′, f ′′) ≥ dim HomA(M ′′, τM ′),

where M ′′ is the cokernel of f ′′. Equality holds if the presentation is minimal.

Proof Applying the right exact functor DHomA(?, A) = D(?)t to the presentation,
we get an exact sequence

0 // τM ′⊕ I // D(P ′1)t // D(P ′0)t // D(M ′)t // 0,

where I is a finite-dimensional injective A-module which vanishes if the presentation is
minimal. We use the fact that the morphism of functors DHomA(X, ?)→ HomA(?, DXt)
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is an isomorphism whenever X is projective, and we get a commutative diagram with
exact rows and vertical isomorphisms

DHomA(P ′1,M ′′)
∼=
��

Dφ // DHomA(P ′0,M ′′)
∼=
��

0 // HomA(M ′′, τM ′⊕ I) // HomA(M ′′, D(P ′1)t) // HomA(M ′′, D(P ′0)t).

Therefore DHomA(M ′′, τM ′⊕ I) is isomorphic to the cokernel of φ, which is in turn
isomorphic to E(f ′, f ′′) by [20, Lemma 3.2]. This proves the inequality. If the presentation
is minimal, then I vanishes and the equality holds.

�

We will need a result on the decomposition of general projective presentations, which
follows from the work of H. Derksen and J. Fei on the one hand, and from that of
W. Crawley-Boevey and J. Schröer on the other hand.

For any δ in K0(projA), let PHomA(δ) be the space HomA(P δ−, P δ+), where δ = [P δ+]−
[P δ−], and P δ+ and P δ− have no non-zero direct factors in common. If [P δ−] = 0, then δ is
called non-negative.

The vector δ is indecomposable if a general element of PHomA(δ) is indecomposable.
Its canonical decomposition is δ1⊕ . . .⊕ δs if a general element of PHomA(δ) has the form
f1 ⊕ . . .⊕ fs, with fi ∈ PHomA(δi) and each δi is indecomposable [20, Definition 4.3].

Theorem 5.3.7 (Derksen–Fei). Any δ ∈ K0(projA) admits a canonical decomposition
δ1 ⊕ . . .⊕ δs, where δ1, . . . , δs ∈ K0(projA) are unique up to reordering.

Proof Let d = dimP δ− and e = dimP δ+. Then the orbit of P δ− (or P δ+) is a dense
open subset of an irreducible component C− of repd(A) (or C+ of repe(A), respectively),
since P δ− is projective and thus has no self-extensions (see [33, Corollary 1.2]). Let

repd,e(A−→A2) = {(L,M, f)
∣∣ L ∈ repd(A),M ∈ repe(A), f ∈ HomA(L,M)}.

Then we can view PHomA(δ) = HomA(P δ−, P δ+) as an irreducible subvariety of the affine
variety repd,e(A−→A2). Let C be an irreducible component of repd,e(A−→A2) which contains
PHomA(δ). By [17, Theorem 1.1], there is a dense open subset U of C and indecomposable
irreducible components C1, . . . , Cs of rep(A−→A2) such that U ⊂ C1 ⊕ . . . ⊕ Cs. We have a
diagram

C
π−

~~}}}}}}}}
π+

  AAAAAAAA

C− C+

where π− and π+ are the natural projections; their images intersect the orbits of P δ− and
P δ+, respectively. Thus the preimages of these open orbits are dense open subsets of C,
whose common intersection with U is a dense open subset V of C. Now V ∩ PHomA(δ)
is non-empty, and is thus dense and open in PHomA(δ). The inclusion V ∩ PHomA(δ) ⊂
C1 ⊕ . . .⊕ Cs induces the canonical decomposition δ1 ⊕ . . .⊕ δs of δ.

�

Corollary 5.3.8. If the canonical decomposition of δ has no non-negative factors, then a
general element in PHomA(δ) is a minimal projective presentation.
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5.4 Indices and strongly reduced components

5.4.1 Morphic cokernels

Let A be a finite-dimensional k-algebra as before, and let d, d1 and d0 be dimension
vectors. Define the affine varieties

repd1,d0(A−→A2) = {(L,M, f)
∣∣ L ∈ repd1(A),M ∈ repd0(A), f ∈ HomA(L,M)}

repd1,d0(A−→A2)d = {(L,M, f) ∈ repd1,d0(A−→A2)
∣∣ dimCoker f = d}.

The latter is a locally closed subset of the former. The symbol −→A2 stands for the quiver
1→ 2 ; elements of the above sets are A-module-valued representations of −→A2.

Fix bases {u1, u2, . . . , u`} and {v1, v2, . . . , vm} of
∏
i∈Q0 k

d1,i and
∏
i∈Q0 k

d0,i , respec-
tively (these are the underlying vector spaces of L and M) ; choose the basis vectors so
that they all lie in some kde,i for e = 0, 1 and i ∈ Q0. For any subset i of {1, 2, . . . ,m}, let
Ni be the vector space generated by {vi| i ∈ i}, and let

Ei = {(L,M, f) ∈ repd1,d0(A−→A2)
∣∣ M ∼= Ni ⊕ Im f as a vector space}.

Notice that repd1,d0(A−→A2) is the union of the Ei, and that each Ei is contained in
repd1,d0(A−→A2)d for some dimension vector d. Notice also that Ei is the intersection of an
open subset with a closed subset. Indeed, an element (L,M, f) of repd1,d0(A−→A2) lies in Ei
if and only if the following two conditions are satisfied (here we write f as (aij) in matrix
form with respect to the fixed bases) :

(a) There exists a subset j of {1, . . . ,dimP1} such that |j| = m − |i| and the submatrix
(aij)i/∈i,j∈j has a non-zero determinant. This condition defines an open subset.

(b) For any i0 ∈ i, and any subset j of {1, . . . ,dimP1} such that |j| = m − |i| + 1, the
submatrix (aij), where j ∈ j and i is either i0 or not in i, has vanishing determinant.
This condition defines a closed subset.

In particular, if Ei is contained in repd1,d0(A−→A2)d, then it is open inside it, since the
second condition is then automatically satisfied. The next result is a slight generalization
of a statement of [67, Lemma 4].

Lemma 5.4.1. Assume that Ei is contained in repd1,d0(A−→A2)d. Then there exists a
morphism of varieties

Φ : Ei −→ repd(A)

such that Φ(f) is isomorphic to Coker f for any element f of Ei.

Proof Let (L,M, f) be an element of Ei. We define Φ(L,M, f), as a vector space, to
be the quotien of M by Im f , that is, Ni. Let us define the A-module structure.

Let Ωj be the open subset of Ei consisting of maps satisfying condition (a) above for
some fixed j. Then the Ωj form an open cover of Ei.

We define Φ on Ωj as follows. Assume that (L,M, f) lies in Ωj. Let D = (aij)i/∈i,j∈j
and C = (aij)i∈i,j∈j ; then D is invertible by condition (a).

Let b be an element of A. We will define the matrix of the action of b on Φ(L,M, f).
We do this through the following diagram :

Ei
Ii //M

ρM (b) //M
Pi // Ei ⊕ Ei′

F // Ei ⊕ Im f
π // Ei.
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Here Ii is the natural inclusion; ρM (b) is the action of b on M ; Pi is the permutation
matrix putting the basis vectors vi, i ∈ i, before the others; F is a base change matrix
given by (

1 −CD−1

0 D−1

)
and π is the natural projection, given by (1, 0). Thus the action of b on Φ(L,M, f) is given
by the matrix

(1,−CD−1)Pi(ρM (b))Ii.

We have thus defined the action of Φ on Ωj. This definition does not depend on j ;
indeed, assume that (L,M, f) is also in Ωj′ . Let D′ = (aij)i/∈i,j∈j′ and C ′ = (aij)i∈i,j∈j′ .
Then CD−1 = C ′(D′)−1. To see this, notice that condition (b) above implies that any
line of the matrix (aij) which is in i is a linear combination of the ones not in i. Therefore
there exists a matrix K such that (aij)i∈i = K(aij)i/∈i. Therefore C = KD and C ′ = KD′,
and we get the desired equality.

Therefore Φ is well-defined on an open cover of Ei, and it is thus a morphism of
varieties.

�

5.4.2 Codimensions of orbits

In the preceding section we have defined a morphism Φ : Ei −→ repd(A). Recall that
Φ(L,M, f) is isomorphic to Coker f , and that an open cover of repd1,d0(A−→A2)d is formed
by such Ei’s.

Define GLd1,d0 as the algebraic group GLd1 ×GLd0 . Then the group GLd1,d0 acts on
repd1,d0(A−→A2)d thus : for any (g1, g0) ∈ GLd1,d0 and any (L,M, f) ∈ repd1,d0(A−→A2)d, we
have that (g1, g0)(L,M, f) = (g1L, g0M, g0fg

−1
1 ).

Lemma 5.4.2. Let (L,M, f) be an element of Ei. Then the orbit of Φ(L,M, f) in repd(A)
is equal to the image by Φ of the intersection of the orbit of (L,M, f) with Ei. In short,

OΦ(L,M,f) = Φ(Ei ∩ O(L,M,f)).

Proof Let b be an element of A. Then we showed in lemma 5.4.1 that b acts on
Φ(L,M, f) by the matrix

(1,−CD−1)Pi(ρM (b))Ii.

Let γ be an element of GLd. Then the action of b on γΦ(L,M, f) is

γ(1,−CD−1)Pi(ρM (b))Iiγ
−1.

Consider the element G = (1, γ) of GLd1,d0 , where

G = P−1
i

(
γ 0
0 1

)
Pi.

Then G(L,M, f) = (L, γM, γf). In matrix form, we have that

γf = P−1
i

(
γ 0
0 1

)
PiP

−1
i

(
C A
D B

)
Pj = P−1

i

(
γC γA
D B

)
Pj.
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Therefore G(L,M, f) is still in Ei, and b acts on Φ(G(L,M, f)) by

(1,−γCD−1)Pi(ργM (b))Ii

= (1,−γCD−1)PiP
−1
i

(
γ 0
0 1

)
Pi(ρM (b))P−1

i

(
γ−1 0
0 1

)
PiIi

= (γ,−γCD−1)Pi(ρM (b))P−1
i

(
γ−1 0
0 1

)(
1
0

)

= γ(1,−CD−1)Pi(ρM (b))P−1
i

(
1
0

)
γ−1

= γ(1,−CD−1)Pi(ρM (b))Iiγ
−1.

Therefore Φ(G(L,M, f)) = γΦ(L,M, f). This proves that we have an inclusion
OΦ(L,M,f) ⊂ Φ(Ei ∩ O(L,M,f)).

The other inclusion follows from the fact that if (L′,M ′, f ′) lies in the orbit of (L,M, f),
then the cokernels of f and f ′ are isomorphic. This proves the lemma.

�

In the course of this section, we will be relying heavily on the following theorem on
dimensions, borrowed from the book [7].

Theorem 5.4.3 (Theorem AG.10.1 of [7]). Let a : X → Y be a dominant morphism
of irreducible varieties. Let W be an irreducible closed subvariety of Y and let Z be an
irreducible component of a−1(W ).

There exists an open dense subset U of Y (depending only on a) such that
– U ⊂ a(X), and
– if Z and a−1(U) have non-empty intersection, then codimXZ = codimYW .

For the next lemma, we shall make the following identifications and definitions:

HomA(L0,M0) = {(L,M, f) ∈ repd1,d0(A−→A2)
∣∣ L = L0,M = M0};

HomA(L0,M0)d = HomA(L0,M0) ∩ repd1,d0(A−→A2)d;

HOMA(L0,M0) = {(L,M, f) ∈ repd1,d0(A−→A2)
∣∣ L ∼= L0,M ∼= M0};

HOMA(L0,M0)d = HOMA(L0,M0) ∩ repd1,d0(A−→A2)d;
GLL0,M0 = AutA(L0)×AutA(M0).

We shall denote an element (L0,M0, f) of HomA(L0,M0) simply by the morphism f . Note
that the first and the third varieties are irreducible; indeed, the first one is a vector space,
and the third one is GLd1,d0 HomA(L0,M0), which is irreducible. Note that GLL0,M0 acts
on HomA(L0,M0).

Notice that, inside HomA(L,M) and HOMA(L,M), the subsets of the (L,M, f) such
that f is of maximal rank are open subsets, and the cokernels of those f all have the same
dimension vector. We denote those subsets by HomA(L,M)max and HOMA(L,M)max.

Lemma 5.4.4. Fix (L0,M0) ∈ repd1(A) × repd0(A). Let i be such that Ei intersects
HOMA(L0,M0)d, and consider the morphism Φ : Ei → repd(A) defined above. There
exists an open subset V of Ei ∩ HOMA(L0,M0)d such that for any (L,M, f) in V, the
following properties hold.
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1. If F is an irreducible component of HOMA(L,M)d which contains O(L,M,f), then

codimFO(L,M,f) = codimΦ(Ei∩F)OΦ(L,M,f).

In particular, if HOMA(L,M)d = HOMA(L,M)max, then

codimYO(L,M,f) = codimΦ(Ei∩Y)OΦ(L,M,f),

where Y = HOMA(L,M).
2. With the same notation as in (1), and letting X = HomA(L,M), we have that

codimXOf = codimYO(L,M,f).

Proof We first prove (1). Consider the following commuting diagram :

O(L,M,f)
_�

��

Ei ∩ O(L,M,f)
_�

��

oo Φ // OΦ(L,M,f)
_�

��
F Ei ∩ F? _oo Φ // Φ(Ei ∩ F).

The three varieties in the lower row are irreducible. Since Ei∩F is a dense open subset
of F , the lower-left morphism is dominant. The lower-right morphism is also dominant
(see, for instance, [7, AG.10.2]). So we can apply the dimension theorem 5.4.3; if U1 ⊂ F
and U2 ⊂ Φ(Ei∩F) are the open subsets described by the theorem, let V be the intersection
of their preimages in Ei ∩ F .

Now, Ei ∩ O(L,M,f) is an irreducible component of Φ−1(OΦ(L,M,f)) thanks to Lemma
5.4.2. Moreover, Ei ∩ O(L,M,f) is the preimage of O(L,M,f) by the inclusion. Thus we can
apply the dimension theorem and get

codimFO(L,M,f) = codimEi∩FEi ∩ O(L,M,f)

= codimΦ(Ei∩F)OΦ(L,M,f).

This proves the first result.
Let us now prove (2). Consider the diagram

Of �
� //

_�

��

HomA(L,M) //
_�

��

{(L,M)}
_�

��
O(L,M,f)

� � // HOMA(L,M) // OL ×OM .

Two applications of the dimension theorem 5.4.3 yields equalities

codimO(L,M,f)Of = dimOL ×OM
= codimYX ,

which in turn yields
codimXOf = codimYO(L,M,f).

�

For any f ∈ HomA(L,M), the action of GLL,M induces a morphism

π : GLL,M −→ Of
(g1, g0) 7−→ g0f(g1)−1
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which, in turn, induces a linear map on tangent spaces

dπ : EndA L⊕ EndAM −→ Tf (Of )
(h1, h0) 7−→ fh1 − h0f.

Here we view Tf (Of ) as a subspace of Tf (HomA(L,M)), which we identify with the space
HomA(L,M).

Lemma 5.4.5. The map dπ is surjective.

Proof The morphism π is surjective by definition. In particular, it is dominant. Since
we work over a field of characteristic zero, it is automatically separable. It then follows
from [7, Proposition II.6.7 and AG.17.3] that dπ is surjective. �

5.4.3 Orbits and the E-invariant

As before, let A be a finite-dimensional k-algebra and let P1 and P0 be finitely generated
A-modules.

Lemma 5.4.6. Let f be any element of HomA(P1, P0). We have the equality

codimXOf = dimE(f),

where X stands for HomA(P1, P0).

Proof Consider the linear map

ψ : HomA(P1, P0) −→ E(f)
g 7−→ g,

where g is the map from Σ−1f to f in Kb(projA) given by

· · · // 0 //

0
��

P1
f //

g

��

P0 //

0
��

· · ·

· · · // P1
f // P0 // 0 // · · · .

The map ψ is obviously surjective. Moreover, its kernel is exactly

Tf (Of ) = {h0f + fh1|hi ∈ EndA(Pi)},

since this is the very definition of null-homotopic maps from Σ−1f to f (the above equality
follows from Lemma 5.4.5). Therefore

codimXOf = dim
(

HomA(P1, P0)/Tf (Of )
)

= dimE(f).

�
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5.4.4 Proof of Theorem 5.1.2

We define the map

Ψ : K0(addA) −→ {strongly reduced components of rep(A)}.

To do so, we first define a map

Ψ′ : K0(addAop) −→ {strongly reduced components of rep(Aop)}.

For any element of the form δ = [P0]− [P1], where P1 and P0 are two projective modules
over Aop which share no non-zero direct factors, consider the morphism of varieties

Φ : Ei ∩HOMAop(P0, P1)max −→ repd(Aop)

constructed in section 5.4.1.
By Lemma 5.4.4, there is a dense open subset of the set HOMAop(P0, P1)max such that,

for any (L,M, f) in that open subset,

codimXOf = codimΦ(Ei∩Y)OΦ(L,M,f).

Now, by Lemma 5.4.6, we have that

codimXOf = dimE(f).

Therefore,

codimZOΦ(L,M,f) ≥ codimΦ(Ei∩Y)OΦ(L,M,f)

= dimE(f)
≥ dim HomAop(Φ(L,M, f), τΦ(L,M, f))
≥ codimZOΦ(L,M,f),

where the third inequality follows from Lemma 5.3.6. This implies that we have Z =
Φ(Ei ∩ Y), and that Z is a strongly reduced component of rep(Aop).

Define Ψ′(δ) to be this Z.
Now the duality D : mod (A) → mod (Aop) induces an isomorphism of varieties

rep(A)→ rep(Aop) which preserves strongly reduced components; thus there is a strongly
reduced component Z0 of rep(A) corresponding to Z. Moreover,K0(addA) ∼= K0(addAop)
in a natural way; δ thus corresponds to some δ0 ∈ K0(addA). We define Ψ(δ0) to be the
strongly reduced component Z0.

From this definition, it follows immediately that two elements δ and δ′ of K0(projAop)
have the same image by Ψ′ if, and only if, their canonical decompositions can be written
as

δ = δ1 ⊕ δ, δ′ = δ′1 ⊕ δ,

with δ1, δ
′
1 non-negative, for non-negative factors do not affect the cokernels.

Let us now prove that Ψ is surjective. It suffices to show that Ψ′ is surjective.
Let Z ′ be a strongly reduced component of rep(Aop). By Corollary 5.3.2, there is a

dense open subset U of Z ′ and there are finitely generated projective modules P1 and P0
such that every representation M in U admits a minimal projective presentation

P0 −→ P1 −→M −→ 0.
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Consider the locally closed subset HOMAop(P0, P1)d. There exists an irreducible com-
ponent F of it and an i such that Φ(Ei ∩ F) ∩ U is dense in Z ′. We get

codimFO(P1,P0,f) = codimΦ(Ei∩F)OΦ(P0,P1,f) (Lemma 5.4.4)
= codimZ′OΦ(P0,P1,f)

= dim HomAop(Φ(P0, P1, f), τΦ(P0, P1, f)) (Z ′ str. reduced)
= dimE(f) (Lemma 5.3.6)
= codimXOf (Lemma 5.4.6)
= codimYO(P0,P1,f) (Lemma 5.4.4).

Therefore F is of codimension zero in HOMAop(P0, P1). Thus we have the equality
HOMAop(P0, P1)d = HOMAop(P0, P1)max, and thus Ψ′([P0]− [P1]) = Z ′. This proves the
surjectivity of the map Ψ′.

5.5 Invariance under mutation

We now define the mutation of indices. This notion comes from the mutation of
Y -variables of [31], from the mutation of indices of [18] and from the mutation of X -
coordinates of [27].

Definition 5.5.1. Let (Q,W ) be a non-degenerate quiver with potential. Let (Q′,W ′) =
µi(Q,W ) be its mutation at a vertex i. Let Γ and Γ′ be the corresponding Ginzburg dg
algebras, considered as objects of the cluster categories CQ,W and CQ′,W ′ , respectively. The
mutation of indices is given by the map

µi : K0(addΓ) −→ K0(addΓ′)

defined by µi(
∑n
j=1 yj [Γj ]) =

∑n
j=1 y

′
j [Γ′j ], where

y′j =


−yi if i = j;
yj −m[−yi]+ if there are m arrows from i to j;
yj +m[yi]+ if there are m arrows from j to i.

Remarks 5.5.2. 1. This definition comes from the mutation rule described in [27,
Formula (13)], with elements taken in the tropicalization of the ring Z. However,
in order to get precisely the same mutation rule, one has to work over the opposite
quiver.

2. Recall the triangle equivalence µ−i : CQ,W → CQ′,W ′ of section 3.2.8. If X is an
object of CQ,W whose index (with respect to Γ) is indΓX, then the index of µ−i (X)
(with respect to Γ′) is µi(indΓX). This is a consequence of Theorem 3.2.6 and of
Proposition 3.2.7.

We reformulate Theorem 5.1.3 thus:

Theorem 5.5.3 (Reformulation of Theorem 5.1.3). We have a commutative diagram

K0(addΓ) µi //

I
��

K0(addΓ′)

I
��

Q(x1, . . . , xn)
ϕ−1

X // Q(x′1, . . . , x′n),

where ϕX is as in Corollary 4.4.14.
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During the proof of this result, we will need a lemma on the generic value of con-
structible functions.

Lemma 5.5.4. Let W , X and Y be irreducible varieties, and let A be an abelian group.
Assume that we have a commutative diagram

W
v

  AAAAAAAA
u

~~||||||||

X

ϕ
  BBBBBBBB Y

ψ~~}}}}}}}}

A

where u and v are dominant morphisms of varieties and ϕ and ψ are constructible func-
tions. Then the generic values taken by ϕ and ψ are equal.

Proof Let x ∈ A be the generic value taken by the function ϕ, and let y ∈ A be that
taken by ψ. By definition, ϕ−1(x) is an open dense subset of X, and since X is irreducible
and u is dominant, the intersection of ϕ−1(x) with the image of u contains a dense open
subset of X. Thus (ϕ ◦ u)−1(x) contains a dense open subset of W . For similar reasons,
(ψ ◦ v)−1(y) contains a dense open subset of W . Therefore (ϕ ◦ u)−1(x) and (ψ ◦ v)−1(y)
have a non-empty intersection, and taking w in their intersection, we get

x = (ϕ ◦ u)(w) = (ψ ◦ v)(w) = y.

This proves the result. �

We can now prove Theorem 5.5.3
Proof (of Theorem 5.5.3) Let [T0]− [T1] be an element of K0(addΓ). We can assume

that T0 and T1 have no direct factors in common. Then I([T0]− [T1]) is, by definition, the
generic value taken by the constructible function

ηT0,T1 : HomC(T1, T0) −→ Q(x1, . . . , xn)
ε 7−→ X ′mt(ε).

Let µi([T0]− [T1]) = [T ′0]− [T ′1] in K0(addΓ′). Then I([T ′0]− [T ′1]) is the generic value
taken by the constructible function

ηT ′0,T ′1 : HomC′(T ′1, T ′0) −→ Q(x′1, . . . , x′n)
ε 7−→ X ′mt(ε).

We want to show that I([T ′0]− [T ′1]) is the mutation of I([T0]− [T1]) at i; or, using our
notation, that I([T ′0]− [T ′1]) = ϕ−1

X (I([T0]− [T1])). It is a consequence of Corollary 4.4.14
that we have a commutative diagram

HomC(µ+
i (T ′1), µ+

i (T ′0))
µ−i //

η

��

HomC′(T ′1, T ′0)

η

��
Q(x1, . . . , xn)

ϕ−1
X // Q(x′1, . . . , x′n),

where the two horizontal arrows are isomorphisms and where we omitted the indices of
the maps η. Thus I([T ′0]− [T ′1]) = ϕ−1

X (I([µ+
i (T ′0)]− [µ+

i (T ′1)])), and to prove the theorem
it is therefore sufficient to show that I([µ+

i (T ′0)]− [µ+
i (T ′1)]) = I([T0]− [T1]).
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We consider two cases.
Step 1: Γi is not a direct summand of T1. In that case, we can write T0 = T 0 ⊕ Γmi ,

where Γi is not a direct summand of T 0. Recall that we have a (unique up to isomorphism)
non-split triangle

Γ∗i
α // E′

β // Γi
γ // ΣΓ∗i

where E′ =
⊕
a Γs(a), the sum being taken over all arrows a ending in i, and the morphism

α is given by multiplication by these arrows on each coordinate.
Then Proposition 3.2.7 (or rather, the triangle obtained at the end of its proof) allows

us to write

µ+
i (T ′0) = T 0 ⊕ (E′)m and µ+

i (T ′1) = T1 ⊕ (Γ∗i )m.

Consider the following diagram:

AutC(T 0 ⊕ (E′)m)×HomC(T1, T 0 ⊕ (E′)m)×AutC(T1 ⊕ (Γ∗i )m)

u
��

v

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYY

HomC(T1 ⊕ (Γ∗i )m, T 0 ⊕ (E′)m)

η
,,YYYYYYYYYYYYYYYYYYYYYYYYYYYY
HomC(T1, T0)

η

��
Q(x1, . . . , xn).

where u and v are defined as follows. The morphism v takes a triple (g, f, g′) and sends it
to the composition (idT 0

⊕ β⊕m) ◦ f . The morphism u takes a triple (g, f, g′) and sends it
to the morphism given in matrix form by

g

(
f1 0
f2 α⊕m

)
g′,

where f =
(
f1
f2

)
.

If we could apply Lemma 5.5.4 to the above diagram, then the theorem would be
proved. Let us show that the hypotheses of the Lemma are fulfilled. We easily see
that the three varieties involved are irreducible, and we know from section 5.2 that the
functions η are constructible. We must show that the square commutes and that u and v
are dominant.

Substep 1 : the square commutes. To show that the square commutes, we first notice
that, for any (g, f, g′) ∈ AutC(T 0 ⊕ (E′)m) × HomC(T1, T 0 ⊕ (E′)m) × AutC(T1 ⊕ (Γ∗i )m),
we have that ηv(g, f, g′) = ηv(id, f, id) (since g and g′ do not occur in the definition of v)
and that ηu(g, f, g′) = ηu(id, f, id) (since the map η takes the same value on orbits under
the action of AutC(T 0 ⊕ (E′)m) × AutC(T1 ⊕ (Γ∗i )m)). Thus it is sufficient to show that
ηv(id, f, id) = ηu(id, f, id). We invoke the octahedral axiom to get a diagram
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Y ′′ ⊕ Σ(Γ∗i )m

T1 ⊕ (Γ∗i )m T 0 ⊕ Γmi

Y ′

T 0 ⊕ (E′)m

Σ(Γ∗i )m

+��������

∗⊕id

		��������

aaCCCCCCCCCCCCCCCCCCCCCC

::tttttttttttttttttttt

(a,b)

��

(v(id,f,id),0) //
+VVVVVV
**

u(id,f,id)

��/
////////

id⊕β⊕m

88qqqqqqqqqqqqqqqqq

(0,γ⊕m)jjccGGGGGGGGGGGGGGGGGGGGG

+oo

+

		

where ∗ is an unknown morphism, Y ′ is the cone of u(id, f, id) and Y ′′ is the cone of
v(id, f, id). We need to show that Y ′ and Y ′′ are isomorphic in order to show that the
above square commutes, since ηu(id, f, id) = X ′Y ′ and ηv(id, f, id) = X ′Y ′′ . The octahedron
yields a commutative square

Y ′′ ⊕ Σ(Γ∗i )m
(a,b) //

∗⊕id
��

Σ(Γ∗i )m

(0,−Σα⊕m)t

��
ΣT1 ⊕ Σ(Γ∗i )m

−Σu(id,f,id) // ΣT 0 ⊕ Σ(E′)m

which, in turn, gives an equality of morphisms (in matrix form)(
0 0

(−Σα⊕m) ◦ a (−Σα⊕m) ◦ b

)
=
(
∗ 0
∗ −Σα⊕m

)
,

where again the stars are unknown morphisms. Thus (−Σα⊕m) ◦ b = −Σα⊕m, and

using the fact that the triangle Γ∗i
α // E′

β // Γi
γ // ΣΓ∗i is a minimal (addΓ)-

copresentation of Γ∗i , we get that b is an isomorphism. Therefore, the triangle (in the
octahedron)

Y ′ // Y ′′ ⊕ Σ(Γ∗i )m
(a,b) // Σ(Γ∗i )m // ΣY ′

is isomorphic to a triangle

Y ′ // Y ′′ ⊕ Σ(Γ∗i )m
(0,1) // Σ(Γ∗i )m // ΣY ′

which is a direct sum of two triangles, of the form Y ′ // Y ′′ // 0 // ΣY ′ and
0 // Σ(Γ∗i )m // Σ(Γ∗i )m // 0 . Thus Y ′ and Y ′′ are isomorphic, and substep 1 is
proven, that is, the above square commutes.

Substep 2 : the morphism v is dominant. In fact, we show that v is surjective, and
thus dominant. Indeed, let f ∈ HomC(T1, T0). Since T0 = T 0 ⊕ Γmi , we can write f in

matrix form as f =
(
f1
f2

)
.

Now, since we have a triangle Γ∗i
α // E′

β // Γi
γ // ΣΓ∗i , and since the space

HomC(T1,ΣΓ∗i ) vanishes (because Γi is not a direct summand of T1), we have that any
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morphism from T1 to Γmi factors through β⊕m. Thus we can write f2 = (β⊕m)f ′2, and we
have a preimage of f through v of the form

(id,
(
f1
f ′2

)
, id).

Substep 3 : the morphism u is dominant. We will prove that the image of u contains
the following dense open subset of HomC(T1 ⊕ (Γ∗i )m, T 0 ⊕ (E′)m):

{( f1 h
f2 g ◦ α⊕m ◦ g′

) ∣∣ f1, f2, h are arbitrary, g ∈ AutC((E′)m), g′ ∈ AutC((Γ∗i )m)
}
.

This subset is open because the subset {g ◦α⊕m ◦ g′| g ∈ AutC((E′)m), g′ ∈ AutC((Γ∗i )m)}
of HomC((Γ∗i )m, (E′)m) is open, thanks to the fact that Γmi is rigid and to [18, Lemma
2.1]. Let us show that it is contained in the image of u. Let(

f1 h
f2 g ◦ α⊕m ◦ g′

)

be an element of it. Then h = h′ ◦ α⊕m for some morphism h′, and we have(
f1 h
f2 g ◦ α⊕m ◦ g′

)
=
(
id h′

0 g

)(
f1 0

g−1f2 α⊕m

)(
id o
0 g′

)
,

which is in the image of u. Thus u is dominant.
Substep 4 We can now apply Lemma 5.5.4 to the above square, and as discussed earlier,

this proves the theorem for the case considered in step 1.
Step 2 : Γi is not a direct summand of T0. In that case, we can write T1 = T 1 ⊕ Γni ,

where Γi is not a direct summand of T 1. We can use arguments similar to those of step
1 to prove the theorem. We could also work in the opposite triangulated category CopQ,W ,
and notice that

HomC(T1, T0) = HomCop(T0, T1),

making step 2 in CQ,W equivalent to step 1 in CopQ,W . �

5.6 Proof of Theorem 5.1.1

Consider the map I : K0(addΓ) → Q(x1, . . . , xn) defined in Definition 5.2.2. We
proved in Proposition 5.2.3 that the elements in the image of I are linearly independent
over Z.

The fact that the image of I is contained in the upper cluster algebra A+
Q follows

from Theorem 5.1.3. Indeed, let (u1, . . . , un) be a cluster obtained from the initial seed
by a sequence of mutations at vertices i1, . . . , is. Let w be an element of Q(x1, . . . , xn),
expressed in terms of the initial cluster. Then its expression with respect to the cluster
(u1, . . . , un) is given by ϕ(s) ◦ · · · ◦ϕ(1)(w), where ϕ(j) is the isomorphism ϕ−1

X of Corollary
4.4.14 (defined with respect to the vertex ij). Theorem 5.1.3 implies that, for any δ ∈
K0(addΓ), we have

ϕ(s) ◦ · · · ◦ ϕ(1)(I(δ)) = I(µis ◦ · · ·µi1(δ)),
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which is a Laurent polynomial in the variables u1, . . . , un. This being true for any cluster,
I(δ) belongs to the upper cluster algebra.

Finally, suppose that (Q,W ) arises from the setting of [35], and let A be the Jacobian
algebra of (Q,W ). For any finite-dimensional representation M of A, define ψM thus: if

0 //M // I1
f // I0

is a minimal injective presentation of M , then the injective modules I1 and I0 lift in the
cluster category CQ,W to objects ΣT1 and ΣT0 of addΣΓ through HomC(Σ−1Γ, ?) (see [57,
Proposition 2.1]). Moreover, f lifts to a morphism f ∈ HomC(ΣT1,ΣT0). Then we put

ψM = X ′
mt(f).

For any irreducible component Z of repd(A), let ψZ be the generic value taken by ψM in
Z, and let

null(Z) = {m ∈ NQ0
∣∣ mi = 0 if di = 0}.

Then it is proved in [35, Theorem 5] that the set

B = {xmψZ
∣∣ Z is strongly reduced in rep(A),m ∈ null(Z)}

is a basis of the cluster algebra AQ. Let us prove that it is the image of the map I.
Assume that Z is a strongly reduced component of repd(A). Then, by Theorem 5.1.2,

we have Z = Ψ([T0] − [T1]) for some [T0] − [T1] ∈ K0(addΓ). By definition of Ψ (see
section 5.4.4), Z is the dual component of some Z ′ = Ψ′([P0]− [P1]), where [P0]− [P1] ∈
K0(addAop). By definition of Ψ′, there is a dense open subset U of HomAop(P0, P1) such
that the union of orbits of cokernels of morphisms in U contains a dense open subset of
Z ′. Thus a generic representation in Z ′ is isomorphic to a cokernel of a generic morphism
in HomAop(P0, P1). Dualizing, we get that a generic representation in Z is isomorphic
to a kernel of a generic morphism in HomA(DP1, DP0). Note that HomA(DP1, DP0) is
isomorphic to HomC(ΣT1,ΣT0) (since the DPi are finite-dimensional injective A-modules,
see [57, Proposition 2.1]).

Now, using Theorem 5.3.7, we get a canonical decomposition

[T0]− [T1] = δ1 ⊕ . . .⊕ δs,

where the δi are indecomposable. Assume that there are no non-negative terms in this
decomposition. This means that, generically in HomC(ΣT1,ΣT0), mt(ε) has no direct
summand in addΓ, so the generic value of X ′mt(ε) is ψZ ; in other words,

I([T0]− [T1]) = ψZ ∈ B.

Now, let m ∈ null(Z). Consider the non-negative element [
⊕n

i=1 Γmi
i ] ∈ K0(addΓ).

We will show that

[T0]− [T1] + [
n⊕
i=1

Γmi
i ] = δ1 ⊕ . . .⊕ δs ⊕

n⊕
i=1

[Γi]⊕mi

is a canonical decomposition. This will imply that

I([T0]− [T1] + [
n⊕
i=1

Γmi
i ]) = I([

n⊕
i=1

Γmi
i ])I([T0]− [T1])

= xmψZ ,
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and will thus prove that the set B is the image of the map I.
In order to do this, we work in the opposite category CopQ,W . We use the functor

F = HomCop((Σop)−1Γ, ?); in view of [20, Theorem 4.4], we only need to show that for
generic morphisms

f ′ ∈ HomAop(F (Σop)−1T0, F (Σop)−1T1) and f ′′ ∈ HomAop(
n⊕
i=1

F (Σop)−1Γmi
i , 0),

the spaces E(f ′, f ′′) and E(f ′′, f ′) vanish. Note that, by the above, a generic f ′ has a
cokernel M ′′ with dimension vector d. Using [20, Lemma 3.2], we thus get

E(f ′, f ′′) = Coker
(

HomAop(F (Σop)−1T1, 0)→ HomAop(F (Σop)−1T0, 0)
)

= 0

and

E(f ′′, f ′) = Coker
(
0,M ′′)→ HomAop(

n⊕
i=1

F (Σop)−1Γmi
i ,M ′′)

)
= HomAop(

n⊕
i=1

F (Σop)−1Γmi
i ,M ′′)

= 0,

since dimM ′′ = d, and m ∈ null(Z). This finishes the proof of the theorem.

Remark 5.6.1. Our proof that the image of the map I is the set B is valid for any
Jacobi-finite quiver with potential, and not only for those arising from the setting of [35].

5.6.1 Link with a conjecture of V. Fock and A. Goncharov

We now show how Theorems 5.1.1 and 5.1.3 are related to Conjecture 4.1 of [27].
Let Q be a quiver without oriented cycles of length ≤ 2, and let AQ be the associated
cluster algebra (without coefficients). The authors of [27] conjecture, in a slightly different
language, that there exists a bijection

Zn −→ E(A),

where E(A) is the subset of the cluster algebra consisting of elements which are Laurent
polynomials with positive coefficients in the cluster variables of every cluster, and which
cannot be written as a sum of two or more such elements. This bijection should have the
following properties:

1. It should commute with mutation (where the mutation in Zn is as defined in Def-
inition 5.5.1, when we identify the element (a1, . . . , an) of Zn with

∑n
j=1 aj [Γj ] in

addΓ).
2. An element (a1, . . . , an) of Zn with non-negative coefficients should be sent to the

element
∏n
j=1 x

aj

j .

3. The set E(A) should be a Z-basis of the upper cluster algebra A+
Q.

Other conditions are described in [27, Conjecture 4.1], but we will not discuss them here.
If we can equip the quiver Q with a non-degenerate potential W so that (Q,W ) is Jacobi-
finite, then we have a good candidate for such a map.
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Theorem 5.6.2. Let (Q,W ) be a non-degenerate, Jacobi-finite quiver with potential.
Then the map

I : Zn ∼= addΓ −→ A+
Q

defined in Definition 5.2.2 satisfies conditions 1 and 2 above. If, moreover, (Q,W ) arises
from the setting of [35], then the image of I satisfies condition 3.

Proof Condition 1 is Theorem 5.1.3. Condition 2 follows from the definition of I.
When we are in the setting of [35], condition 3 follows from Theorem 5.1.1 and from the
fact [36, Theorem 3.3] that in that case, the cluster algebra and the upper cluster algebra
coincide. �

Note that the coefficients of the elements in the image of I need not be positive, as
seen in [21, Example 3.6]. Thus the image of I is not contained in E(A) in general.

The conjecture of [27] discussed above is linked to one of [35], where the authors
conjecture that the set described in their Theorem 5 is a basis for the cluster algebra AQ,
starting from an arbitrary non-degenerate quiver with potential (Q,W ). Using Theorem
5.1.2, we know that, if (Q,W ) is Jacobi-finite, then this set of [35] is exactly the image
of the map I, and by Example 5.6.3 below, it is not necessarily contained in the cluster
algebra, so that in the conjecture of [35], one should replace “cluster algebra” by “upper
cluster algebra”. If I is a good candidate for the above map, then this is compatible with
[27, Conjecture 4.1].

Example 5.6.3. The quiver with potential described below arises from the work of
D. Labardini-Fragoso [61][60]. We will show that the image of the map I for this ex-
ample is not contained in the associated cluster algebra, and that its cluster-category
(which is Hom-finite) has cluster-tilting objects which are not related by a finite sequence
of mutations.

Consider the quiver
Q = 2

b1,b2

��>>>>>>>>

��>>>>>>>>

1

a1,a2
@@��������

@@�������� 3
c1,c2

oooo

with potential W = c1b1a1 + c2b2a2 − c1b2a1c2b1a2. As shown in [60, Example 8.2], this
quiver with potential is Jacobi-finite and non-degenerate. Its Jacobian algebra A is the
path algebra of Q, modulo the relations

c1b1 = c2b1a2c1b2; c1b1a2 = 0; b1a1c2 = 0; a1c1b2 = 0;
c2b2 = c1b2a1c2b1; c2b2a1 = 0; b2a2c1 = 0; a2c2b1 = 0;
b1a1 = b2a1c2b1a2; c1b2a2 = 0; b1a2c2 = 0; a1c2b2 = 0;
b2a2 = b1a2c1b2a1; c2b1a1 = 0; b2a1c1 = 0; a2c1b1 = 0;
a1c1 = a2c1b2a1c2;
a2c2 = a1c2b1a2c1;

and all non-alternating paths of length 4 and all paths of length 7 are zero. These relations
imply that c1b1a1 = c2b2a2; moreover, the Jacobian algebra is self-injective.

As a vector space, the indecomposable projective A-module P1 = e1A has a basis given
by

{e1, c1, c2, c1b1, c1b2, c2b1, c2b2, c1b1a1, c1b2a1, c2b1a2, c1b2a1c2, c2b1a2c1}.



5.6. Proof of Theorem 5.1.1 101

Similar calculations can be done for P2 and P3. As a representation of the opposite quiver,
we can draw P1 as

1
c1

wwpppppppppppppp
c2

''NNNNNNNNNNNNNN

3

b1

��

b2

��>>>>>>>> 3

b2

��

b1

����������

2
a1
��

2
a2
��

1
c2
��

1
c1
��

3

b1
))TTTTTTTTTTTTTTTTTTTTT 3

b2
uujjjjjjjjjjjjjjjjjjjjj

2

a1
''NNNNNNNNNNNNNN 2

a2
wwpppppppppppppp

1

Its socle is S1; thus P1 = I1, the indecomposable injective at vertex 1. For similar reasons,
P2 = I2 and P3 = I3.

Now, let C be the cluster category of (Q,W ). It is Hom-finite, since (Q,W ) is Jacobi-
finite (by results of [2]). Moreover, the functor F = HomC(Σ−1Γ, ?) sends Σ−1Γi to Pi
and ΣΓi to Ii = Pi, for i = 1, 2, 3.

Let us compute I([Γ1] − [Γ3]). By definition, it is the generic value of the cluster
character X ′? applied to cones of morphisms in HomC(Γ3,Γ1). Equivalently, it is the value
X ′M , where

Γ1 //M // ΣΓ3
f // ΣΓ1

is a triangle and f is generic in HomC(ΣΓ3,ΣΓ1). Applying the functor F , we get an
injective presentation

0 // FM // P3
Ff // P1,

where Ff is generic. Now, a generic Ff in HomA(P3, P1) is one for which dimKerFf is
minimal. We easily see that this minimal dimension vector is (1, 0, 1) (for instance, one
could take Ff to be the left multiplication by c1 + c2), so that

FM = 0

���������

���������

C
ϕ1,ϕ2 //// C

__???????

__???????

with ϕ1ϕ2 6= 0 as a representation of the opposite quiver. Thus FM has exactly 3 sub-
representations, of dimension vectors (0, 0, 0), (0, 0, 1) and (1, 0, 1). Applying the cluster
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character, we get

X ′M = xindΓ M
∑
e

χ(Gre(FM))x−ι(e)

= xindΓ M
∑
e

χ(Gre(FM))
3∏
j=1

ŷ
ej

j

= x1
x3

(1 + ŷ3 + ŷ1ŷ3)

= x1
x3

(1 + x−2
1 x2

2 + x−2
2 x2

3x
−2
1 x2

2)

= x2
1 + x2

2 + x2
3

x1x3
,

where we use the notations of section 4.3.2 for the formula of the cluster character. This
is the value of I([Γ1] − [Γ3]), and as shown in the proof of [5, Proposition 1.26], it does
not lie in the cluster algebra AQ.

Now, the objects Γ and ΣΓ are cluster-tilting objects in C. Note that

indΓ Γ =
3∑
j=1

[Γj ] and indΓ ΣΓ = −
3∑
j=1

[Γj ].

Let Y be an object of C with index
∑3
j=1 yj [Γj ]. By Remark 5.5.2, the index of µ−i (Y ) is

given by
∑3
j=1 y

′
j [Γ′j ] = µi(indΓ Y ), so that

y′j =


−yi if i = j;
yj + 2[yi]+ if there are arrows from j to i;
yj − 2[−yi]+ if there are arrows from i to j.

Thus we have that y′i = −yi, y′i+1 = yi+1 − 2[−yi]+ and y′i+2 = yi+2 + 2[yi]+, where
i, i+ 1, i+ 2 are considered modulo 3. Thus

y′i + y′i+1 + y′i+2 = −yi + yi+1 − 2[−yi]+ + yi+2 + 2[yi]+ = yi + yi+1 + yi+2.

This shows that the sum of the coefficients appearing in the index of Y is preserved under
mutation of Y . Since this sum is 3 for Γ and −3 for ΣΓ, the two objects cannot be related
by a sequence of mutations.

Remark 5.6.4. In the above example, the fact that the sum of the coefficients of the
indices is invariant under mutation was proved in [26, Section 2.2] (in a slightly different
language).
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