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Résumé

Dans ce travail, nous étudions trois sujets liés & 'opérateur de Yang-Baxter: algébres
d’endormorphismes et la g-trace, constructions d’algebres de Yang-Baxter et de cogébres
de Yang-Baxter, algébres B, quantiques et algébres de quasi-battage quantiques. Ce
sont des quantifications d’objets familiers correspondants au sens ou le flip classique est
remplacé par un tressage.

Ce travail est divisé en trois chapitres.

Chapitre 1: Soit (V,0) un espace avec un tressage o de type de Hecke et tel que
dim S¢ (V) = 1 pour certain suffisamment grand i. Nous étudions I'algeébre d’endomorphismes
i EndS%(V). Aprés avoir défini trois produits associatifs sur cet espace, nous constru-
isons une g-analogue de la trace classique, appelé g-trace, de tout endomorphisme de
S*(V). Cette nouvelle trace est un morphisme de P’algébre si on considére le troisiéme
produit. Et nous montrons que cette g-trace est proportionnele a la trace quantique.

Chapitre 2: Nous présentons des méthodes pour construire des algebres de Yang-
Baxter et des cogébres de Yang-Baxter. Ils comprennent: modules de Yetter-Drinfel’d avec
conditions de compatibilité supplémentaires, algébres de battage quantiques et algébres
B, quantiques. L’algébre B., quantique est une généralisation de l’algebre de Yang-
Baxter et de I'algébre B,,. Nous également introduisons 'algebre de 2-YB qui est motivée
par les travaux de Loday et Ronco. Ils fournissent des algebres B, quantiques.

Chapitre 3: Nous définissons ’algébre de quasi-battage quantique par algebres B,
quantiques, dans ’esprit de ’algébre de battage quantique intruduite par Rosso. Nous
étudions des propriétés de ces algebres de quasi-battage quantiques. Par exemple, la
propriété universelle, la commutativité, etc.

Mots-clefs

Q-traces, algébres de Yang-Baxter, algébres de battage quantiques, algébres B,, quan-
tiques, algebres de quasi-battage quantiques.




Chern-Weil Theory on quantum groups

Abstract

In this work, we study three topics related to the Yang-Baxter operator: endomorphism
algebras and the g-trace, constructions of Yang-Baxter algebras and Yang-Baxter coal-
gebras, quantum B_,-algebras, and quantum quasi-shuffle algebras. They are the quan-
tizations of the corresponding objects in the sense that the usual flip is replaced by a
braiding.

This work is divided into three chapters.

Chapter 1: Let (V,0) be a braided space with a braiding o of Hecke type and such
that dim S? (V) = 1 for some sufficiently large . We study the endomorphism algebra
@ _,EndS%(V). After defining three associative products on this space, we construct a
q-analogue of the usual trace, called g-trace, for any endomorphism of S¥(V'). This new
trace is an algebra morphism with respect to the third product. And we show that this
g-trace is just the quantum trace up to some scalar.

Chapter 2: We introduce several methods to construct Yang-Baxter (or short for YB)
algebras and Yang-Baxter coalgebras. They include: Yetter-Drinfel’d modules with extra
compatible conditions, quantum-shuffle algebras and quantum B.-algebras. Quantum
B.-algebras are generalizations of both YB algebras and B..-algebras. We also introduce
2-YB algebras, which are motivated by the work of Loday and Ronco, to provide quantum
B.-algebras.

Chapter 3: Using the tool of quantum B.-algebras, we quantize quasi-shuffle algebras
in the spirit of Rosso’s quantum shuffle algebras. We study various properties of these
quantum quasi-shuffle algebras. For instance, the universal property, the commutativity
and so on.

Keywords

Q-traces, Yang-Baxter algebras, quantum shuffle algebras, B,.-algebras, quantum quasi-
shuffle algebras.
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Notations

Let (H,A,&,S) be a Hopf algebra. We adopt Sweedler’s notations for coalgebras and
comodules: for any h € H,

Ah) =" hay @ h,
(h)
and for a left H-comodule (M, p) and any m € M,

p(m) = Z m(-1y ® M-
(m)

The symmetric group of n letters {1,2,...,n} is written by &,,. An (iq,...,4;)-shuffle
is an element w € &; 4.4 such that w(l) < -+ < w(iy),w(i; +1) < -+ < w(iy +
i2)y ..y w(ip + -+ i1+ 1) <o <w(iy + -+ +14). We denote by &;,._; the set of all
(i1,...,17;)-shuffles.

A braiding o on a vector space V' is an invertible linear map in End(V ® V') satisfying
the quantum Yang-Baxter equation on V®3:

-----

(O’@ ldv)(ldv ®O’>(O’ ® ldv) = (ldv ® O')(O' ®1dv)(1dv ® O').

A braided vector space (V, o) is a vector space V' equipped with a braiding o. For any
n € Nand 1 < i < n—1, we denote by o; the operator idg(ifl)@)o@idg("ﬂ;l) € End(V®").
For any w € 6,,, we denote by T, the corresponding lift of w in the braid group B,,, defined
as follows: if w = s;, ---s; is any reduced expression of w, where s; = (i,i + 1), then
T, = 04, -+ 04 . Sometimes we also use 7)) to indicate the action of o.

The usual flip switching two factors is denoted by 7. For a vector space V', we denote by
® the tensor product within 7'(V'), and by & the one between 7'(V') and T'(V') respectively.

Let ¢ be a nonzero number in C. For ¢ # 1 and any n = 0,1,2,..., we denote
(n)q = 11__q:) and

1, n =0,
(n),! :{ (-g-(=") .51

(I-g)* =
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Chapter 1

Endomorphism algebras and q-traces

1.1 Introduction

More than two decades ago, Osborn investigated the space @®;>¢oEnd N (V) of endomor-
phisms of the exterior algebra in order to give an algebraic description of Chern-Weil
theory (see [22] and [23]). He defined three associative products on this space. The first
one is just the composition of endomorphisms. Since the exterior algebra is also a coal-
gebra, he defined the second one to be the convolution product. And then he combined
the first two ones to make out the third product. Assuming that dim A\"(V) = 1 for
sufficiently large 7, he constructed a trace function by using the second product. This
trace gives the usual one when it is restricted on End(V). And when one considers the
third product, it is an algebra morphism.

On the other side, after the birth of quantum groups, mathematicians use Yang-Baxter
operators to quantize many algebra structures. In his paper [7|, Gurevich studied Yang-
Baxter operators of Hecke type, which he called Hecke symmetries. And then he defined
symmetric algebras and exterior algebras with respect to these operators, which are ana-
logue to the usual ones. Later, Hashimoto and Hayashi ([9]), Wambst (]|28]) discussed
these algebras from different aspects. In [26], a remarkable property of the quantized sym-
metric algebra is discovered. For some special Yang-Baxter operators, the symmetric one,
as Hopf algebra, is isomorphic to the “upper triangular part of the quantized enveloping
algebra associated with a symmetrizable Cartan matrix.

It is interesting to extend Osborn’s trace to the quantum case. Let (V, o) be a braided
vector space with braiding o of Hecke type, and S!(V) be the i-th component of the
quantum symmetric algebra S, (V') built on (V, o). We assume that dim S¥(V) = 1 for
some N and dim S%¥(V) = 0 for k£ > N. Then, on the vector space &) EndS2(V), the
convolution product, the third product, and the trace can be constructed step-by-step
following the ones in [23]. And this trace, called g-trace, is an algebra morphism with
respect to the third product. Specially, let V' be the fundamental representation of U,sln 1

11



12 CHAPTER 1. ENDOMORPHISM ALGEBRAS AND Q-TRACES

and o the braiding given by the R-matrix of U,sly 1. Then o is of Hecke type and S (V)
vanishes when i is sufficiently large. To our surprise, the g-trace in this case has already
existed for more than one decade.

In the theory of quantum groups, there is an important invariant which generalizes the
usual trace of endomorphisms. It is the so-called quantum trace. If C is a ribbon category
with unit I, V' is an object of C and f is an endomorphism of V', then the quantum trace
is an element of the monoid End(7). It coincides with the usual trace when C = Vect(k)
(see [15]). When we take C to be the category of finite dimensional representations of
ue (see [16]), the quantum trace is given by the usual trace and the group-like elements
K;’s. This is a functorial approach. After an easy computation, we can show that it is a
proportion of the g-trace. So we give a more elementary approach of the quantum trace
of A type.

This chapter is organized as follows. In Section 2 we give some essential properties
of braidings of Hecke type which we will use in the rest of this chapter. We define three
products on @) EndS?(V) for a braided vector space V with a braiding o of Hecke type
in Section 3. In Section 4 we construct the q-trace of &, EndS2(V) and prove that it
is an algebra morphism with respect to the third product. And then in Section 5, we
apply our constructions to the the special braided vector space (V, o), where V' is the
fundamental representation of U;sly1 and o is the braiding given by the R-matrix of
this U,sly1-module. Section 6 contains an other approach of the usual quantum trace of
Uys v 4. Finally, we use the quantum alternating multilinear form to obtain the quantum
determinant of a matrix.

1.2 Braidings of Hecke type

We first recall some notions and properties of braidings of Hecke type and quantum
symmetric algebras. For more details, one can see [7], [26] and [6].

A braiding o is said to be of Hecke type if it satisfies the following lwahori’s quadratic
equation:

(O' + idV®V)(O' — I/idv®v) = O, (11)

where v is a nonzero scalar in C.

In the following, we fix ¢ a braiding of Hecke type with parameter v, and use I to
denote idy ex.

For k > 1, we define the following three operators II;, B¥), A®) ¢ End(V®*) by:

o e i =k,
e ;041" 0Ok—1, Z:1,Q,k—1,
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k
B® =%"11,
=1

and

A(k) _ 11, k= ].,
B®(AFD 1),  k>2.

It is convenient to use the following figure to denote o:

>

Then 11; is:

TN

Now we give another approach to A®). The following lemma is well-known (see [10]).

Lemma 1.1. Set
Sl = {1781}7
Sy = {1,5273281}7

Sie1 = {1} U sp1 Ay,

Spfl = {17 Sp—1,""" s Sp—1Sp-2" " 51}'
Then any o € &, can be written in a unique form o = uy - - - up—1 with u; € S;.

Lemma 1.2. For any u; € S;, we have
l(ul .. 'up—l) = l(“l) + LR + l(up_l)-

Proof. First we notice that for £ < ¢ — 1,
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P t==F,
Sp1- - sk(t) = ¢, t <k,
t—1, t>k.

So we get that if ug - - - u,_1 (k) = p then u,_; = sp_1 - - 5.

Wupr) =p—k = #{(k J)Ik <j <pur-upa(k) > ur---upa(j)}

Now we want to prove that

#{, )N <i<j<p—Tur - up (i) >urup2(j)}
= #HE )N <i<j<piF#kur-up (i) >up-up())}

Notice that

#{@ )k <i<j<pur-up(i) >ur-upa(h)}
= #HE )k <i<j<pur-upo(i—1)>urua(j — 1)}
= #HENE<i<i<p—Tour-up (i) >ur-upa(d)},

#{E N <i<j<pi<kourup (i) >uupa(h)}

= #HE NI <i<k<j<pur-up1(i) >ur---upa(j)}
+#{(, )1 <i<k=jur--up_1(i) >uy---up_1(k)}
FH#{(, )1 < <j <kyurupa(i) > urcupoa ()}

= #HEHN<i<k<j<pour-up (i) >ur-upa(j — 1)}
TN < i< <kurupa(i) >urup-2())}

= #HE I <i<k<j<p—Tlour-u (i) >urupa())}
+#{ ()L < i <j <kyune o up—a(i) > ur- - up-a())}

= #{(, )1 <i<j<p—-1,0i<k,uy--upo(i)>us---uy2(j)}

By combining the above computations, we get
l(u1 cee up_l) = l(U,l e up_g) + l(up_l).
So the conclusion follows from the induction on p. O

Proposition 1.3. Forp > 1, we have
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Proof. We use induction on p.

The case of p =1 is trivial. We assume that the result holds for k.

A(k-i—l) _ B(k—H) (A(k:) ® Il)

k+1
- me( Y 1)
=1 wESE x1e,
k+1
= (ZUZUZH ceog) o ( Z Tw)
=1 weBX1lg,
k+1
T.)

= (Z T5l31+1”'5k) © ( Z

w€6k><161

k+1

= Z Z T5l51+1“'5k-

=1 weSkx1lg,

= Z T,

wESK 41

oT,

where the fifth equality follows from the above two lemmas.

15

]

The following proposition plays an important role in the construction of g-trace. It is

due to Gurevich ([7], Proposition 2.4):
Proposition 1.4. For k > 1 we have

(AP = (k) 1A,

Proof. In End(V®*), we have

{Hiﬂj = in(Leh)o |, 1<i<j<k-—1,

HZ‘H]' = Hj(Hi—l(g)Il), 1§]<Z§]€—1

We illustrate the verification by the following figures:
N1<i<j<k-—1:

k

U -1
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N 1<j<i<k-—1l:

IR TR

B(k)(B(kfl) @ 11)op_1

- oM e Lo
- Cm)
=:ZH+ > mIm+ Y I

1<i<j<k—1 1<j<i<k—1
= Z L+ Y WnLeh)sg,+ Y ILIL,oh)
1<i<j<k—1 1<j<i<k—1
= ZH + Z I;(IL - @ 1)
1<j<i<k—1
+(l/ — 1) Z H]’+1 (Hz X Il)O'kfl + v Z H]+1<Hz & Il)
1<i<j<k—1 1<i<j<k—-1

k‘

-1

= L+ ) ILLaoh)

7j=1 1<j<i<k—1
+(v—1) Z 1L 1L + v Z ;1 (I ® Ih)
1<i<j<k—1 1<i<j<k—1
::ZH+ > I @)+ u—lZH+ > IL)
1<j<i<k—1 1<i<j<k—1
+v Z I (I ® 1)
1<i<j<k—1

= }:H—+ > (Lo @)

1<j<i<k—-1
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+(u—1)(ini+ Y L eh)+r Y Mn(Lek)

1<i<j<k—1 1<i<j<k—1

k—1
— I/(Zﬂl—F Z Hi(Hj,1 ®Il) + v Z H]+1(Hl®11>)
i=1

1<i<j<k—1 1<i<j<k—1

= vB®WB*D gI)).
And for any £ > 2 and 1 <i <k — 1, we have

Axél(k)O'Z
_ B(k)(B(k—l) @I;)- - (B(l) ® Ip_1)0:
= B(k)(B(kfl) @I;)- - ((B(iH) ® kaH)(B(i) @ Ip_i)oi) - - (B(l) ® Ir_1)
= vA®,

So

AR AR — A(k)Bi(k)M(kq) ®1;)
k
= APG M)At Ve

=1
k
= (Z A(k)O'lO'H_l-..O-k_l)(A(k_l) ®Il)
=1
= (1+v+ VP yk—l)A(k)(A(k—l) ®1)
= k), AP BEVA Y L)L)

= (k),1A®).

1.3 The endomorphism algebra of S,(V)

Let (V,0) be a braided vector space. Using the braiding o, one can generalize the usual
shuffle algebra structure on T'(V') to the so-called quantum shuffle algebra structure (for
more detail, one can see [26] and [6]). The quantum shuffle algebra is T (V') equipped with
the following associative product sh: for any v,...,vi4; € V,

Sh(Ul R R ’l}i@'l}i+1 XX ’UiJrj) = Z TU,(’UI XX U'L'+j)- (12)

”LUGGZ'J
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We denote by T,(V') the quantum shuffle algebra. The subalgebra S, (V') of T,(V') gener-
ated by V with respect to the quantum shuffie product is called the quantum symmetric
algebra. Tn fact, S;(V) = @izoIm (Y, ce, Tw). We also denote SL(V) =Im(Y, co Tw)-

T,(V) is a coalgebra with the deconcatenation coproduct §:

1@ @)=Y U@ @U@Vif ® - @y, (1.3)
i=0
We denote by ;; the composition of § with the projection T'(V)QT (V) — V&' @ V&I,

We endow T5,(V) ® T, (V) with the associative product x, which is given by (sh ®
sh)(idy’ ® T, ®id}") on the component V'@V @V gV Here

(12 i il 42 e i
XNiZ\ 41 g2 e i 12 e )

Then § is an algebra morphism from 7, (V) to T,(V) @ T,(V). So (S,(V),9d) is also a
coalgebra.

Let o be a braiding of Hecke type on V such that dim SY(V) = 1 for some N and
dim S¥(V) = 0 for k > N.

For A € @) (EndS2(V), we write A = (Ao, A1, ..., Ay), where A, € EndS2(V) is
the p-th component of A.

For A,B € &) EndS2(V), we define the composition product AoB € ®\ ;EndS?(V)
by (A o B), = A, o B, with the usual composition. Obviously, @) ;EndS?(V) is an
associative algebra with a two-sided unit element I = (Io,I;,...Iy), where I, is the
identity map of S2(V).

We can also define the convolution product A « B € @&,/ (EndS2(V) by

p
(A * B)p = ZA[ * Bp,l,
=0

where A; * B; = sho (A; ® B;)04;; € EndS:7 (V). It is well-known that the convolution
product of endomorphisms is associative. It follows immediately that ()" EndS?(V), *)
is an associative algebra with the two-sided unit element Iy = (I, 0,...,0).

Proposition 1.5. For 0 < p < N, we have

I = (p),'L,.
Proof. 1t follows from that

I o AP — AW 4 I?p o AP
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Corollary 1.6. For 0 <i,5 < N withi+ j < N, we have

LixI; = (Z +j) Litj,
v v

For any A € EndS}(V) = End(V) and v is not a root of 1, we define

i+J i+7)u!
uhere ('), = {553

1 1 1
*A *2 *N
= (Iy, —A, ——
ey ( 05 (1)1/' 7(2)11‘ ? ’(N)V' )
In particular, e = (Ip, Iy,...,In).
If we write
-1 —1)\N N(N-1)/2
(61*114)—1 — (Io, A, v *27”‘7 ( ) v A*N),
0 @2 (N),!

then we have
(e*A)—l % G;A — e*A % (e*A)—l — IO-

v v

We define
a: @) EndSE(V) — @) EndS2(V),
A — A*e”;h.

Consequently a has an inverse defined by a™'(A) = A * (™).

v

Definition 1.7. For any A, B € ®) (EndS?(V'), we define the third product A x B of
A and B by
AxB=a'((aA)o(aB)) = ((Axe")o(Bxe))*(ef) "

v

Remark 1.8. @;VZOEndS},’(V) is an associative algebra with two-sided unit element I
with respect to the third product.

Indeed,

(AxB)xC = a_1<(a(A x B)) o (QC))
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= o' ((a oa '((eA)o (aB))) o (aC)>
= o '((@A) o (aB) o (aC))
= Ax(BxCQC).

And

I()XA = Oé_l

Proposition 1.9. For 0 <r < N, A; € EndS.(V) and B; € EndSZ(V), we have

r Vs(sfl)/Z

(Ai x Bj)y = Z_; B ((Ai # Trmsmi) 0 (Bj # Lrsj)) * 17,
where I; =0 fort < 0.
Proof. The formula follows from the definition of the third product. m

Corollary 1.10. (A; x B;), =0 for r < max(i,j) and (A, X B,), = A, o B,.

1.4 The g-trace

Definition 1.11. The g-trace of any A € &) (EndS2(V) is the unique element Tr,A € C
such that («¢A)y = (Tr,A)ly € EndSY (V).

Theorem 1.12. The q¢-trace is an algebra morphism with respect to the third product.
Precisely, for A, B € ®)_EndS2(V), we have

1. Tr,(A+ B) = Tr,A + Tr,B,

2. Tr,(A x B) = (Tr,A)(Tr,B),

3. Try(A x B) =Tr, (B x A).

Proof. 1.
N
(Oé(A + B))N = Z(Ak —+ Bk) * Ika

k=0
= (OéA)N + (aB)N.
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So

Tl“q(A -+ B)IN = (TrqA)IN -+ (TI'qB>IN
(Tr,A + Tr,B)Iy.

Therefore Tr, (A + B) = Tr,A + Tr,B.

2. By the definition, A x B = a7 !((aA) o (aB)), we have a(A x B) = (0A) o (aB).
So
(a(A x B))y = (@A) o (aB)y,

which implies

TI‘q(A X B)IN = (TrqA)IN ¢} (TI‘qB)IN
= (Tr,A)(Tr,B)Ix.

So we have Tr, (A x B) = (Tr,A)(Tr,B).
3. It follows from the identity stated in 2 immediately. m

1.5 Fundamental representation of /sl

We first recall the quantum group U,sly; and fix some notations.

Let (aij)1<ij<n+1 be the Cartan matrix of slyq, i.e.,

2 -1 O

Uyslny is the C-algebra with generators F;, Fj, Kiﬂ, where 1 < i < N, and relations

KK, = K;K;, K;K7' = K7 'K; =1,
KE;K;" = ¢"I E},
K, F; K = q " Fj,

K — K

EZF} — F}E’z — (Sij q — qil 5
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and the quantum Serre relations:

E,E; = E;E;, |i —j| > 2,
E}E; — (¢+q "EE;E; + E;E} =0, |i — j| =1,
FFy = FF, |i—jl =22,
FiF;—(q+q WEFF+ FiF =0, |i—jl=1.

UysIv41 is a Hopf algebra with the structures:

AK = KM oK

AE, = 1®E,+E ®K;,,
AF;, = K'oF+F®l,
5( z:tl) = 1’

e(E;) = 0,

e(F;)) =0,

SKH = K,

SE; = —-EK

Let V = CN*! and E;; be the matrix with entry 1 in the position (¢,j) and entries 0
elsewhere. We define the fundamental representation of U,sly41 to be

EndV,
Eiit,
Eit1,,

Z Ey+qEy; + qilEiJrl,iJrl-
I#i,i+1

p: Z/{q5[N+1

S
AU

Then the action of the R-matrix on V ® Vis

N+1
R _qZE’L’L®EZZ+ZEZ]®EjZ+ q_q ZE]]®EZ’L
1#] i<j

Let c=¢ 'R, € GL(V ® V). If we denote by ¢; = (0,...,0,1,0,...,0)" € V the unit
column vector whose components are zero except the i-th component is 1. then we have:

€i®ei7 =17

C(@i & 6]') = q’lej X e, 1< j,
g le;@ei+(1—qgHe;®ej, 0> 7.
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c is a braiding on V and satisfies the Iwahori’s quadratic equation:

(C - idv®v)<c + q_QidV@)V) =0. (14)
We define ¢V = (¢7')!, where ¢t means the transpose of the operator. Then ¢ €
GL(V*® V*). Let {f;} be the dual basis of {e;}. We have
cfiof)=q aiohi+(1-¢)fief; i<j

Obviously ¢ is a braiding on V* and satisfies the Iwahori’s equation:
(¢V —idy-gy+)(c” + ¢*idy+gy~) = 0.
Let J be the two-sided ideal generated by Ker(idygy —c) in T(V'). Since J is generated
by homogeneous elements of degree 2, we could give J a natural grading:
I =3nTHV).
Here 3N T*(V) means the ideal generated by Ker(idy gy — ¢) in T*(V).
Definition 1.13. We define the quantum exterior algebra A, (V') with respect to ¢ by:

AL (v) =T/,
AW =1v)a=@BA M.

Let 7 : T(V) — A.(V) be the canonical projection. For any e; ® --- ®e;, € TP(V),
we will write e;, A---Ae;, = m(e;, @--- @ e;,).

From easy computation, we have

Ker(idygy — ¢) = Spanc{e; ® e;,¢ 'e; @ e; + ¢; @ ¢;(i < 7)}.

So it follows immediately that:

1. A\,(V) is a graded algebra generated by {es,...,eny1} with relations:

e; Ne; =0,
and
ejNei=—q eiNej (i < 7).
2. NXV)=C, AL(V) =V and A\’(V) =0 for p > N + 1.

3. For 1<p<N+1 {eAN---Nei, |1 <ip <--- <ip <N+ 1} is a basis of the
linear space A”(V).

4. A, (V) is a noncommutative local ring with the maximal ideal {0} U P,~, AE(V).
Let A®) = Zweep(_l)l(w)Tfi - Zweep Te.
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Proposition 1.14 ([7], Proposition 2.13). For k > 1, we have the following linear
1somorphism:
ImA® = AF(V),

So A.(V) is just the quantum symmetric algebra S_.(V'). We can identify the wedge
product A on A (V) with the quantum shuffle product sh on S_.(V'). The map e; — f;
induces an isomorphism of algebras:

i:/\C(V) — /\cv(v*).

Indeed, we have

Ker(idy+gy+ — ¢") = Spanc{f; ® fi, i ® f; + ¢~ f; @ fi(i > j)}.

So in A (V*), we have
finfi=0, finfi=—a""finf; (i <j).

Now we give a more explicit description of the action of A® which will be used to
compute the g-trace.

We first introduce a notation which will be used frequently in the rest of this chapter.
Given A, B,C C 6, Ao B = C means that the image of the composition map o on Ax B
lies in C' and it is bijective.

Proposition 1.15. 1. For1 <1 <1y <--- <1, < N+ 1, we have

A(p)<ez.1 R ® 61’,,) = Z (—q)_l(“’)w(ei1 K& ez'p)
weS,
- Z <_Q)7l(w)eiw—1<1) & B8, g,
weS,

2. For1 <143 <ig---<i, <N+1, and1 <t <p, we have

A(p)(eil K& Gip)
— Z <_q)7l(w)A(t) (eiw(l) ® e ® eiw(t)> ® A(pft) (ei

wGthp,t

R--® eiw(p))-

w(t+1)

In particular,

P
AP (e; - ® e;,) = Z(_Q)l_leiz QAP V(e @6, Q- ® ei,);
=1

where the symbol ~ means that the term is omitted.
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Proof. 1.
AP (e, @ ® e,) = Z (=)™ (e, @ --- @ €i,)
weS,
= Y )T (e, @ ey,
weS,

The second equality follows from the fact that every permutation w € &, can be written

in a unique reduced form w = wy - - - w,_1, where w; € {1, s;, 8;Si—1,..., 88151}
2. Without loss of generality, we assume 41 = 1,...,%, = p. For any w € &;,_, we
have

(=)™ AP ewn) @ -+ @ ewiwy) ® AP (Ewan) @+ ® eugy)

= (=" (=) " Po(ewm @ -+ @ ew))

g€y
® ( Z (_Q)_Z(T)T(ew(t-H) PSRNy 6w(p)))
TGGP,t
UGGt,TEgp_t

T (ewt+1) @+ ® €u(p)))-

Since &, 0 (6 X &,_;) = 6, and all the expressions are reduced, we have the formula.

[]

For1<t<p<N+landl<i <ip<---<i, <N+1, we define

Appileqg N---Neg,) = Z (—q)’l(w)eiw(l) AN Neiyy @iy N A€y
wWES: p_¢t

More explicitly,
At,p—t<6i1 VANRRRIVAY eip)
AV A(P)(eil R ® 61’;,)
= Y (MUY AT D) ow e, & @ e,)

weS p—t
= Y 0 O e (Y (-0 9)
WES p—¢ €S, BeES, ¢

Ow_l(eil K- ® eip)
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= Z Z Z (—q) 1B (q @ B ow e, @+ ®ey,)

wEGt,p_t acS; ﬂGGp_t

- Z (_q)il(w)(eiwfl(n ® i) @ (i) @ B a,)-

weS,

So A is just the deconcatenation coproduct on S_.(V).

If we define a symmetric nondegenerated bilinear form (,) on V' by requiring that the
basis {e;} is orthonormal and extend it to 7'(V'), then we have:

Proposition 1.16. (A.(V), A, A, €) is self-dual with respect to the above bilinear form.

Proof. For s +t < N + 1 and any multi-indices sets i = {i,...,is} with 1 <i3 <--- <
i <N 41, j={j1,..,j} with1 <ji <---<ji < N+Tlandk={k,..., kos} with
1 <k < <hyy <N+1,

1) if iU j # k, then obviously we have
< (e Ao ANeig) ANejy Ao Nej,) e A Neg,,, >=0,
and
<ey N Ne, ®ej N Nej,, Dgiler, N Neg,,,) >=0.
2)if iU j =k, then

<ep N Nei, @ej N Neg, Dgp(en, A Newg,,) >

- Z (_q>_l(7) < 67:1 JARRRNA eiS7ekT(1) ARERRA ek‘r(t) >
TGSsyt

X <ej N Nej,, e N Nk gy >

T(t+1)

_ (_q)l(il ,,,,, Ts,J15ee0t)

= <<€i1/\"'/\eis)/\(ej1/\"'/\ejt),ekl/\"'/\ek

T if xeC,
770, it zéC.

> .

s+t

In both cases, we have
<l,z >=¢(x).

1.6 The relation between g-traces and quantum traces

In Section 2, we have defined three products on @;>oEnd(A’V). Now we describe the
convolution product more precisely in this case.
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For s < t,
Eijx Ey(es Ner) = shigo (B Ey)oAyg(es Aey)
= shijo (B ® Ep)(es @ e — ¢ e, ® es)
= 0;s0ne; Nep — q_léjtélsei A ey
= (0;501 — q_15jt5ls)ei A e.
Similarly, Ey x E;;j(es A e;) = (015050 — ¢~ 01d;s)ex A e;. So we get that
Ei;j x By, = Eijj* By =0, Vi, j, k,
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Ek:j * Eil = —qilEij * Ekl; ifi < k?,Vj, l, (3)
E; * Ekj = —q_lEij * Ekl; lfj < Z,V?:, k.
Generally, for 1 <[, <--- <[, < N+land 1< <---<i, <N +1, we have
— 7l(j17"'9jp)ei /\ . /\ €; , lf ) — l7
Eijo* - x By (e Ae-- Ney,) = (~a) ' ’ Lo
Pp P 0, otherwise.
So {Ei, j, * Ei i 1<ip<---<i, <N+1,1<5 < - <j, <N+ 1} is a C-basis
of End \? ( ) Wthh implies that @) 'End A\?(V') is a C-algebra generated by {E;;}.

From easy computations we get that if 1 <7; <--- <4, < N+1,1<j; <---

N+1,1<k<--<k<N+land1 <[ <---<l, <N+1, then
(Eiljl*”'*Eipjp>O(Ekll1 *"'*Ekplp) :6J1k1(sj E?, * "*Eiplp

pkp 1l

<Jp <

For given A,, = > i<ij<.<im<N+1 CLJ1 ’] Eijy*- % E; ;. €EndA\"(V) and B, =
1<j1 < <]m<N+1
D 1<k <<kn<N+1 b k"E % By, € End A(V), we have

1<l < <lp<N+1

— i1°0m pk1kn R X
A, xB, = E aj by By, % x B

ImJm
,7,k,l

o ~ao(m)yac(m+1)--ac(m+n)
= > D 5T rom Viomt ) rmn)

07766m+n,N+177n7n [ ﬂesm n

* Ek’lh koooee 3k Ek’nln

Eaa(l),ﬁ‘r(l) Koeeox Eaa(ern),,BT(ern)
_ Z Z aao(l)-'ua(m) bao(m+1)~~~aa(m+n)
Br(1)--B7r(m) “Br(m~+1)---B1(m+n)
U7T€6m+n,N+l—m—n a»ﬁesm,n

><(—q)_l(a)_l(ﬁ)Ea(l),T(l) %% Ea(m+n)77(m+n)'

For 1 <p < N+1, welet {F,.;,|1 <i <---<ip, <N+ 1} be the dual basis of

{ejg Ao Ney |1 <1 <o <jp <N+ 1}, e,
F;'lu.ip(ejl /\ e /\ ejp) = 5’i1j1 .. 5

ipJp*
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We define , )
P (V) = (AV)),
fi1 VAR fip — F’il‘-~ip~
It is a linear isomorphism. Then we have the following linear isomorphism:
i EndAZ(V)  — AeV) @ Ao (V7),
Eiljl*'“*Eipjp = eil/\”'/\eip@fjl/\”'/\fjp'

If we endow A.(V) ® A (V*) with the tensor algebra structure, then EB;V:JBI Ve
P, (V*) is a subalgebra.

Proposition 1.17. v = @) 4', : (@) End AL(V), %) — @) AZ(V) @ AL (V) is an
1somorphism of algebras.

Proof. ITn @Y1 AP(V) @ AP (V*) we have

p=0 c
(i@ fi)ei® fi) = ehei® fiNfr=0, Vi, j,
(i@ fi)ler®@ f;) = eiNex® fi Afj=0, Vi, j,
(er@fi)lei®fi) = exhei@fiNfi=—qleiNex® f A fi
= —q e ® f)(er @ f1), ifi < k,Vj,1,
(@ fi)er® f;) = eiNen® fiNfi=—qeiNepx® fi A fi
\ = —q¢ e ® f)er ® fi), ifj <,Vi, k.
It shares the same multiplication rule in (3). So we get the result since ®)75" AZ(V) @
Po(V*) is generated by e; ® f; as an algebra. O

The quantum matriz algebra of rank N + 1, denoted by M, (N + 1), is the algebra
generated by {z;;|1 <i,7 < N + 1} with relations:

Tt = qTiTjt, Vi < j, Vi,

TitTis = QT;sTi, Vs < t, Vi, (4)
TiTjs = TjsTi, Vi < j, Vs < t,

TjpTis — TisTip = (¢ —q Hraxs, ,Vi<j, Vs<t.

The following properties of quantum matrix algebras is well-known (see [27] ):
1. My(N + 1) is a bialgebra with coproduct

A M(N+1) — My(N+1)@My (N +1),
N+1

Tij ink(g)xkjv
k=1

and counit

e:M,(N+1) — C,
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Lij = 51]
2. For any k € N, V¥ is a right M (N + 1)-comodule:

5. Ve VO @M, (N + 1),
€, @ ®ey Zlgjl,---,jng—i-l Cjy @+ @ €y @ Tjyiy * iy -

Moreover ¢ is an My(N + 1)-comodule map. So both A,(V') and S.(V') inherit M (N +1)-
comodule structures.

So EB%V:ngEnd AL(V) is a My(N + 1)-comodule with the structure map:
5: End AZ(V) — End AP(V) @ My (N +1)
Eijy ek Eipjp = Zk,l Eijyos-ex Eipjp ®Q Thyiy " ThyipTlajn * " Llyjp-

If AcEndAL(V)=End(V) with Ae; = S-2" ale;, then

Jj=1

(aA)N+1(61 VANKIIEIVAN 6N+1>
= (A*ezgl)N—H(el/\"'/\en)
= (A*IN)(el/\"'AGN+1)
= Shl,NO(A®IN)OA1,N(€1/\"'/\€N+1)

N+1
= shiyo(ARIN)D (—9)' "ei®@er A~ AG A+ Aeng)
=1
N
= shl,N(Z(—q)lﬂAei RerAN-NeGN-Nenyt)
=1

N+1
= (Z q_2(2_1)a2)61 /\."/\GN—FI‘
=1

So

N+1

Tr,A = Z g2Vl
i=1

Now let us recall the definition of the quantum trace. We know the positive roots of
sly11(C) are

aq, Ofl“l‘OéQ, 061+062+063, ceey Oél—i""—i‘OéN,
o, Qg+ Q3, Qo+ a3+, ..., Qa—+---+aQp,
RN

aN.



30 CHAPTER 1. ENDOMORPHISM ALGEBRAS AND Q-TRACES

The sum of all positive roots is

N
Zz (N+1—-i)a
=1

Set
K=KNKXNV . KN

For any A € End(V), we call
tr,(4) = Te(p(K) A)

the quantum trace of A, where Tr is the usual trace of endomorphism. From direct
computation, one gets that if A € End(V') with Ae; = ZNT a Te;, then

N+1

tl"q(A) _ Z qN—2(i—1)a
i=1

Hence, the g-trace is the quantum trace, just up to some scalar.

Proposition 1.18. For any A € End(V'), we have

Tr,A = ¢ Ntr, (A).

In general, the quantum trace of tr,A for A € End AL(V) is defined by:
tr,A = (P () A),

where pP : UysIn+1 — End AP(V) is the representation of Uyslyy1 on End AY(V) induced
by the fundamental representation p.

We have the generalization of the above proposition:

Proposition 1.19. For any A € End A%(V), we have

TryA = q_p(NH_p)trqA.

Proof. For any A € End A’(V) with A =3 1<ij<.cip<nt1 a? Eim %% F

1o inin> WE have
1<j1<<jp<N+1

A x IN+1—p
f— 21 Zp .. - .
- ( § ]1 “Jp Ell]l * Elp]p)

1<ig < <ip<N+1
1<j1<<jp<N+1



1.6. THE RELATION BETWEEN Q-TRACES AND QUANTUM TRACES 31

*( E Ek1k1 Kook EkN+1—pl€N+1—p)

1§k1<---<kN+1_p§N+1

- Z ;i ZZ;EZUl ok L, ¢ By ¥ ¥ EkN+17pkN+17P
i, j, k
o(1)-(p)
U)oy Po o) * -+ % Eo(n41)o(n41)

I
(]

0€Sp, N+1-p

= Z (—Q)_QZ(J)GZS;:Z%EH * ook By vy

0E€Sp, N+1-p

So we get
—2(5) o(1)-0o
RSP DR )t
o€Sp, N+1-p

For1<j <---<j, <N +1, we have

pp(K)A(ejl ARERRA ejp)
= P Y aen A Aey)

1<iy <-<ip<N+1

o 11 “ip . ]
= Z Qo .jr Ke; N /\Kezp

1<iy<+<ip<N+1

B i1-ip p(N+2)72(7;1+"'+ip) . e ;
= Z aj,..5,9 €iy N\ A Cips

1<y < <ip<N+1

since K = diag(¢",¢"~2,---,¢ ). So

tr,A = Z PO D=2 (i tip) it i
G117
1<iy < <ip<N+1 g
For an easy observation, we know that for any o € S, y41-, with o(1) = i1,--- ,0(p) = i,
we have [(0) = (i1 — 1)+ -+ ({p —p) = (i1 + - -+ 1p) — (1+2p)p Hence the proposition
holds. O
Proposition 1.20. For any A € End(V') with Ae; = ZN? alej,and 0 < p < N +1, we
have
Trqu - Zq_Q oY Z aﬁ ay, -
1, 7.7p
and

=

Tr,A™ = Z Z (_q)_(QZ(w)H(a)H(T))aTw(B g

ou( ow(p)”
0,7€6p WESp N41-p

In particular,
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* —l(o)=1(r) ,T(1 T(N+1
Tr, AN = Z (—q) 1)) ((1))...a((N ))

0,TESN 11
Proof. The first formula is trivial.

(@ A™) N1

*
= A"« IN—I—l—p

- <Z agEji)*p *( Z Euwpatywp+1) * % By(N41)wv+1))

weSp N+1-p

i,J
o Tw(1) Tw(p)
= D D Al et Bru(yew) * % Brug)ou)

0,7€6, WESNL1-_pp

*(Buwyw() * = * Bu(N41-pu(v+1-p)
B _ \=CUw) (o)), mw@d)  Tw(p)
= >, 2. (0 Uow(t) " Cou(p)

0,7€6) WwES, N11-p

X B * % By vt

Specially, if A € EndV with Ae; = ale;, then
1) Tr, ANt = (N +1),2la} - - ay iy,
* —92l(w) w(1 w
2) Te, A7 = (p)y2! T e, v (—0) 2 all)) )
3) Try AP = 310 (—q) =20 (al)r.

Let C = V(1) C V(2) C --- C V(i) C --- be a sequence of vector spaces with
V(i) = Spanc{e,...,e;}. We still use ¢ to denote the action of ¢ restricted on V(i) for
all 2. For any 1 < p < N, we define

(Trg)ps1: End AT (Varya) —  End A7(Viv),
Ei i % % E Eij, - * By ; Tr B,

11 p+1Jp+1 1J1 ipJp p+1Jp+1)

Where1§i1<---<ip+1§N+1and1§j1<---<jp+1§N+1.

Proposition 1.21. For any A € End AL(V'), we have

Tr,A = (—q)p(p_l)(Trq)l(Trq)g o (Try) pA.

g
Proof. We set A=) 1<i<<ip<Ny1a; P E;j %% E; ; . Then

g 1 J1Jp
1<j1<+<gp<N+1

(Trg)1(Trg)a - -+ (Try)pA
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- Z aéll"'i? Trquljl e Trqupjp

Jp
1<iy <-<ip<N+1
1<j1<+<jp<N+1

— ivip o 0 o N=2(-1) () 200-1)
- Z ajl"'jpélljl( q) 52p]p( Q)

1<ig <<ip<N+1

1<j1<<jp<N+1

- D G B
1<y < <ip<N+1
= (—q)p(lfp)TrqA.

1.7 Quantum forms and quantum determinants

Set
0, i =7,
qij = —q, 1< .ja
_q_17 L > j

Then e; A ej = gijej A e; and g;;q5; = 1 if © # 5.

Definition 1.22. The elements of AP(V) = Homc(AL(V),C) are called quantum p-
forms. Sometimes we denote AL = AL(V) simply and A, = 5, AL

For any w € AP, we could view it as a map

Vx--xV—=C
———

p times
with the following properties: for any w € &,,
Wles, - ,ei,,) _ (_q)—z(il,...,ip)+l(iw<1),...,iw@))w(eiw(l)’ o ,eiw@))-
Specially, for any 1 < k #£ [ < p,

w(ein"' y €yttt 56yt 76ip)

qikflik e Qijiinjij+1 e Qi]-ik,lw(eip e 7€'il7 e 7eik7 Tty eip)'

As an algebra, A, is generated by Al = V* with respect to the convolution product:
for any w; € AL, w € Al and any 1 <k < -+ < kjy; < N+1,

wi *waleg A--- Aeggy,)
= oW1 ®uwy)oAjjer, A--Negyy,)
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= Z (_Q)_l(w)wl(ekwm Ao Ny )02 (Chy iy N N Chyg))-
weS; ;

For any matrix A = (a%) € M,,(C), we denote

det ;A = Z (—Q)fl(w)aiuu) T a’Z(n)?

weS,

and call it the quantum determinant of A.

It is easy to see that:

Proposition 1.23. For any wi, -+ ,w, € Al with wi(e;) = a% and any 1 < ky < -+ <
k, < N +1, we have
(Wi kwp)(ery Ao Aeg,) = Z (_q>_l(ma’1€w(1) o a£w(?)
weS,

= det q(azj).



Chapter 2

Constructions of YB algebras and YB
coalgebras

2.1 Introduction

For any algebra (resp. coalgebra) A, there is a natural algebra (resp. coalgebra) structure
on A®" defined by using the multiplication (resp. comultiplication) and the usual flip.
Hashimoto and Hayashi [9] showed that if a Yang-Baxter operator is compatible with the
multiplication (resp. comultiplication) in some sense, then one can also provide a new
algebra (resp. coalgebra) structure on A®™ by using the Yang-Baxter operator instead of
the flip. They called the algebra (resp. coalgebra) with the compatible Yang-Baxter oper-
ator a Yang-Baxter algebra (resp. Yang-Baxter coalgebra). These algebras and coalgebras
play an important role in braided categories. For example, Baez [2| used them to study
the Hochschild homology. But there are few examples, and the question is how to provide
some. We provide a first series of examples as follows. For any Hopf algebra H, Woronow-
icz [30] constructed two Yang-Baxter operators Ty and T}, on H. By direct computation
one can show that these give Yang-Baxter algebra and Yang-Baxter coalgebra structures
on H. So one may wonder whether there is a general machinery behind this. One may
observe that Woronowicz’s braidings come from some special Yetter-Drinfel’d module
structures on H. Moreover the multiplication and comultiplication of H are compatible
with the Yetter-Drinfel’d module structures in some sense. This provides a systematic
way to construct Yang-Baxter algebras and Yang-Baxter coalgebras in the category of
Yetter-Drinfel’d modules.

We also observe that the quantum shuffle algebras discussed in [26] are certainly
interesting such examples. They are the quantization of the usual shuffle algebras on
T(V). They are obtained by replacing the flip by the braiding on V' to construct the
multiplication. This leads to consider the following question: what are the possible Yang-
Baxter algebra structures on the tensor space T'(V') of a braided vector space compatible
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with the natural braiding on T'(V).

In [19], Loday and Ronco proved a classification theorem for connected cofree bialge-
bras which are the analogues of the Poincaré-Birkhoff-Witt theorem and of the Cartier-
Milnor-Moore theorem for non-cocommutative Hopf algebras. The main tool used is the
notion of B.-algebra. This enables one to investigate all associative algebra structures
on T'(V') compatible with the deconcatenation coproduct. The point is that T'(V) is a
connected coalgebra in the sense of Quillen [24]. So by using the universal property of
T(V) with respect to the connected coalgebra structure, the product can be rebuilt from
the data of some linear maps M,, : V¥’ @ V¥ — V for p,q > 0. Conversely, one can
construct associative algebra structure for such given maps under some conditions. Fur-
thermore, with this algebra structure and the deconcatenation coproduct, 7'(V') becomes
a bialgebra. We extend this to the braided framework, where we use the "quantized"
coproduct instead of the tensor deconcatenation coproduct of T'(V) @ T'(V). T(V) will
become a "twisted" Hopf algebra in the sense of [26]. The underlying associative algebra
structure is provided by the quantum B.-algebra structure. This new object is not just
the generalization of B.-algebras, but also of Yang-Baxter algebras.

Works on multiple zeta values led naturally to quasi-shuffle algebras. Mainly, the
underlying vector space used to construct the shuffie algebra has also an algebra structure.
These algebras were already studied by [20], and there were some attempts to quantize
them, for examples, [1] and [11]. The quantum B..-algebras provide a good framework to
"deform" quasi-shuffle algebras in the spirit of quantum shuffie algebras, where the usual
flip is replaced by a braiding and we have to impose compatibility between the braiding
and the algebra structure on V. Then Yang-Baxter algebras or Yang-Baxter coalgebras
appear to be the relevant structures.

This chapter is organized as follows. In Section 2, we show that an algebra (resp.
coalgebra) with compatible Yetter-Drinfel’d module structure is a Yang-Baxter algebra
(resp. coalgebra). Specially, modules over a quasi-triangular Hopf algebra make sense.
And we use Woronowicz’s braidings to illustrate our constructions. Section 3 contains the
interesting example of Yang-Baxter algebra, which is the so-called quantum shuffle algebra
(introduced in [26]). We also prove that the cotensor algebra T7;(M) over a Hopf algebra
H and a H-Hopf bimodule M is both a Yang-Baxter algebra and a Yang-Baxter coalgebra.
As a consequence, the "upper triangular part" Uq+ of the quantized enveloping algebra
with a symmetrizable Cartan matrix is a Yang-Baxter algebra. In Section 4, we define
quantum B-algebra and prove that its tensor space has a Yang-Baxter algebra structure.
Quantum shuffle algebras and quantum quasi-shuffle algebras are special quantum B-
algebras. Finally, in Section 5, we introduce the notion of 2-YB algebras and use them to
construct quantum B.-algebras.
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2.2 Machineries arising from Yetter-Drinfel’d Modules

We will first recall the definitions of Yang-Baxter algebra and Yang-Baxter coalgebra
which were introduced in [9].

Definition 2.1. 1. Let A = (A, m,n) be an algebra with product m and unit n. Let o be
a braiding on A. We call (A,0) a Yang-Baxter algebra, or short for YB algebra, if the
following diagram is commutative:

A®3 9102 A®3 0201 , A®3

lm®idA lidA®m lm®id,4
A®2 T, A% 7, A®?
T’I@idA TidA®77 Tn@idA
K®A —» AQ9K —— K®A.
2. Let C' = (C, A, ¢) be a coalgebra with coproduct /\ and counit . Let o be a braiding

on C. We call (C,0) a Yang-Baxter coalgebra, or short for YB coalgebra, if the following
diagram is commutative:

O®3 0102 C®3 0201 O®3
TA@idc Tidc@& TA@idc
®2 g ®2 g ®?2
la@idc J/idc@a la‘@idc
KoC — CoK — K®C.
These definitions give a right way to extend the usual algebra (resp. coalgebra) struc-
ture on the tensor products of algebras (resp. coalgebras).

Proposition 2.2 (][9], Proposition 4.2). 1. For a YB algebra (A,o0) and any i € N,
the YB pair (A®",T7 ) becomes a YB algebra with product mg; = m® o T and unit
N K ~ K% — A® where yii, w; € Sq; are given by

o 1 9 e i 41l P42 - 2

Xie =\ i1 442 - 20 1 9 ... i)
and

(123 - i il k2 - 2

Wi=\135 ... 2—1 2 4 o090 )

2. For a YB coalgebra (C,0), the YB pair (C*, T ) becomes a YB coalgebra with
coproduct Ny ; =T7_, o A% and counit €% C® — K® ~ K.

(3
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Remark 2.3. 1. Any algebra (resp. coalgebra) is a YB algebra (resp. coalgebra) with the
usual flip.

2. Obviously, if (A,o) is a YB algebra, then so is (A,071). And if (C,0) is a YB
coalgebra, then so is (C,o7 ).

3. Assume there is a nondegenerate bilinear form (,) between two vector spaces A
and B. It can be extended to (,) : A®" x B®" — K in the usual way. For any f €
End(A%Y), the adjoint operator adj(f) € End(B®?) of f is defined to be the one such that
(z,adj(f)(y)) = (f(z),y) for any x € A®" and y € B®". If (A,m,n,0) is a YB algebra,
then its adjoint (B, adj(m), adj(n),adj(0)) is a YB coalgebra.

The YB algebra and YB coalgebra structures given by Remark 2.3.1 are trivial. We
will give non trivial examples by using braided vector spaces as follows.

Let (V,0) be a braided vector space. For any i,j > 1, we denote

D TP S S R i R
XNiZ\ 41 g2 e i 12 e )
and define 8 : T(V)@T(V) — T(V)®T (V) by requiring that §;; = T;ij on V¥'QV®I . For
convenience, we denote by fy; and ;9 the usual flip maps.
It is easy to see that (3 is a braiding on T'(V') and (T(V'), m, 3) is a YB algebra, where

m is the concatenation product. And (7'(V'),m, 3) has a sort of universal property in the
category of YB algebras.

Definition 2.4. Let (Ay, 1) and (Az, an) be two YB algebras. A linear map f: Ay — Ay
1s called a morphism of YB algebras if

1. f is an algebra map, i.e., f(ab) = f(a)f(b) for any a,b € Ay,

2. (f® flag = ao(f @ f), i.e., f is a morphism of braided vector spaces.
Definition 2.5. Let (V,0) be braided vector space. A free YB algebra over V is a YB
algebra (Fyp(V'), ) with the following universal property:

1. there is an injective map i : V — Fyg(V') such that (i ® i)o =7(i ® 1),

2. for any YB algebra (A, ) and linear map ¢ : V. — A such that (p@p)o = a(pQy),
there is a unique morphism of YB algebras @ : Fyp(V') — A such that o i = .

Proposition 2.6. The free YB algebra exists and it is unique up to isomorphism.

Proof. Let ¢ : V — A be a linear map such that (¢ ® p)o = a(p ® ). By the universal
property of tensor algebra, there is a unique algebra map @ : T'(V)) — A which extends
. Let i : V. — T(V) be the inclusion map. Consider the YB algebra (T'(V'), m, ) where
m is the concatenation product. Then (T'(V'),1, ) is a free YB algebra over V. We only
need to check that (7 ® )8y = a(p @ @) on VE*@V®. We use induction on k + [ for
k,l>1.
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Wheni=j=1,(3®9)01 = (pR@p)o=a(p®¢) =a(@RP).
P) (@ QU ® -+ @ 1)
= afplw) - pu)@p(v) - pu)
alidy 1) (so(ul) - () @p(v1) - (v (w))
ma @ ida)asan (ip(u) -+ () @p(n) - ploir)@ep(w)

( )
(ma ®ida)a ((90®80)ﬁkz 1®90>(U1®"'Ul)
= (ma®ida) (@@ (@ ®P))(Bri—1 @idy)(uy @ - - v;)
( )
( (w1

a(@®

my ® idy (g0®90®30)(d®l '@ B1) (Bri ®@idy) (g @ - vy)

PR P)Bu ).

The following property above YB algebras is useful for the further discussion.

Lemma 2.7. Let (V,*,0) be a YB algebra. Then for any k,l > 1, we have

Bu(+* ® idgl) = (idgl @ ") Bry1.0s
611(10131 @) = (¥*® idgl)ﬁl,ﬂh

where ¥ = @k VOHL LV given by v1 ® -+ @ Uppq > U1 K - K Uy

39

Proof. We use induction on k + [. We prove the first equality. The second one can be

proved similarly.

When k£ =1 =1, it is just the condition of YB algebra.

Bu(x* @1d¥) = Bu(x ®id¥)(idy @ ¥ @1d¥)
(1dY @ *) By (idy @ **71 @ id)
(idY @ *)(By @ idy) (idy ® By)(idy @ ¥ @1dY)
= (id¥ ® #)(By @ idy) ({dP™ @ +* 1) (idy @ Br)
(i AP @ 1) (By @ idy ) (idy ® Bia)
(idy’ © *)

Brt1,-
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We define § to be the deconcatenation on 7'(V), i.e.,

n

J1 @ @vp) =Y (1@ V) D(Vig1 @+ D V).
i=0
We denoted by T¢(V') the coalgebra (T'(V), 6).

T<(V) is the dual construction of (T'(V'),m). So (T°(V), ) is a YB coalgebra. It is
valuable to present the following short proof of this statement, from which we can see
how it works more clearly.

Since
{ Xitik = Xk X le;)(le, X Xjk),
Xivik = (Lo; X Xik)(Xij X Lle,),
and all the expressions are reduced, we have
{ Bisje = (B ®@idy?)(id @ Byr),
Bivik = (id%j ® Bir)(Bi; ® id@’“)-
On V®k, we have 0 = @i+j;k5ij with 513(1)1 XK ’Ui_,_j) =1 ®---& vi@viﬂ XX Vitj-
We identify 6;; = id5/'®id;”. So on V@V e we have
(B ® 1Y) (1§ ® Bji) (65 @ 1dFY) = ﬁm,k(id@i@id%j ® idp*)
= (id¥F @1dY'@id) By ik
= (idY" ® 05)Bisjn-

The other compatibility condition for § and 3 can be proved similarly, and other conditions
for the YB coalgebra follow from the definitions of € and f.

Before giving general constructions of YB algebras and YB coalgebras, we recall some
terminologies first.

Definition 2.8. Let H be a Hopf algebra. A triple (V,-, p) is called a (left) Yetter-
Drinfel’d module over H if

1. (V,-) is a left H-module,
2. (V,p) is a left H-comodule,
3. foranyh € H andv €'V,

Y hayvn ® by v = ) (hay - v)-nhe) © (ha) - v))-
For any Yetter-Drinfel’d module V', there is a natural braiding oy : V@V - V&V

defined by oy (v ® w) = > v_1) - w ® v(. In the following, we will always adopt this oy
as the braiding of a Yetter-Drinfel’d module.
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Definition 2.9. Let (H, A, ¢) be a Hopf algebra. An algebra A is called a module-algebra,
over H if

1. A is an H-module, and
2. for any h € H and a,b € A,
he(ab) = > (ha)-a)(he-b),

(h)
h-1 = e(h)l

Definition 2.10. Let H be a Hopf algebra. An algebra A is called a comodule-algebra
over H if

1. Ais an H-comodule with structure map p: A — H® A,
2. p is an algebra morphism, i.e., for any a,b € A,
> (ab)ny ® (ab)o) = D acnb-1) @ abo),
(ab) (a),(b)
Theorem 2.11. Let (V,-, p) be a Yetter-Drinfel’d module over H. IfV is both a comodule-
algebra and module-algebra, then (V,ov) is a YB algebra.

Proof. For any x,y,z € V, we have

(idy @ m)(oy ®@idy)(idy @ oy)(z @ y ® 2)
= (idy @m)(oy ®idy)(D_ 2 ®@y1) - 2 @ y(o))
(v)

= (v @m)( > z1)- Y - 2) @ 30) ® Y(o))
(2),)

= ) (@mny-n) 2 @ 2oy
(2),)

= D (@) 2@ (@)

(zy)

= oy(m®idy)(z®yR z).
Also,
(m X 1dv>(1dv X Uv)(O'V X ldv)(l’ X Yy (039 Z)

= (m®idy)(idy ® UV)(Z T(—1) Y R T ® 2)
(z)
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= (m®idy)( Za: Y Qx(—1) - 2 QX0
= Z(l’(—m : y)(ﬂf( 1) 2) @ ()
= Z x(- (yz) ® Z(0)

= v(ldv Rm)(r Oy 2).

Finally,
ov(z®1ly) = Zx -1y ® 29
(z)
= Z&T (-0)1m @ 2(0)
- 1v®l‘,
and,

Uv(lv®$) = 1H£L‘®1V
= l‘@lv

]

Corollary 2.12. Under the above assumption, V? is an associative algebra with the
product: for any w,x,y,z € V,

(we)(yo:) =Y wen - y) @ 2=
(=)

Proof. Tt follows from the above theorem and Proposition 2.2. m

There is a dual description of coalgebras. We have a correspondence between algebras
and coalgebras, modules and comodules, etc. So the dual notions of module-algebras and
comodule-algebras are the following.

Definition 2.13. Let H be a Hopf algebra. A coalgebra (C,A) is called a module-
coalgebra over H if
1. C' is an H-module,

2. for any h € H ¢ € C, we have
Alh-c) = (hay - c)) @ (e - c@),

(c),(R)
6(]1-0) = €H(h)8c( )
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Definition 2.14. Let H be a Hopf algebra. A coalgebra (C,A) is called a comodule-
coalgebra over H if

1. C s an H-comodule with structure map p : C' — H ® C, and we denote for any
c€C, plc) = Z(C) ¢(-1) @ C(0),
2. for any c € C, we denote A(c) =37, M @ c?. And we have

Z ¢y ® (0(0))(1) ® (6(0))(2) — Z(C(l))(—l)(cm))(—l) ® (c(l))(o) ® (0(2))(0)7
(c) (c)

Theorem 2.15. Let (V,-, p) be a Yetter-Drinfel’d module over H. IfV is both a comodule-
coalgebra and module-coalgebra, then (V,ov) is a YB coalgebra.

Proof. For any x,y € V, we have

(O'V ® ldv>(1dv ® Uv)(A ® ldv>(l‘ ® y)

= (O’V X ldv)(ldv () O'V)(Z .213(1) ® .%'(2) ® y)
(z)

= (oy ® idv)(z AN (x(Q))(q) YD (90(2))(0))
(=)

— Z(x(l))(—l) . ((x(2))(_1) Y ® (I(D)(O) ® (x(2))(0)
()

= Z((I(l))(—l)($(2))(—1)) Y@ (M) ) ® (2?) )

(@)

= > 2 y® ()M @ (20)?
(@)

= (idv ® A)Uv(ﬂﬁ ® y),

where the fifth equality follows from the Condition 2 in the definition of comodule-
coalgebra.

Also,

(ldv X Uv>(0'v X ldv)(ldv X A)(l’ X y)
= (idy @ ov)(ov @idy) (D _z @y @ y?)
()

= (idy ® oy)( Z T(-1) " y(l) & x() @ y(z))
(2),(y)
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_ Z i n 3V @y - y? ® 2

= Z (@n - ) @ (2 - 9)® @ )
(@),(y)
= (A®idy)o(z®y).

Finally,
([d@eyv)ov(z®y) = Zx Y ®ev(r)
= Zx nev(zo)) -y
= 5(x)1H-y
= (@),
and

(ey @id)oy(z®@y) =

> evleen - y) @)
(@)

= > elwn)evly
(=)
e(y

) @ (o)
).

O

Corollary 2.16. Under the above assumption, V2 is a coalgebra with the coproduct: for
any x,y €V,

= Z W @ () 1y -y @ (@) © y®.
(@),(y)

Proof. Tt follows from the above theorem and Proposition 2.2. m

Examples (Woronowicz’s braidings).

For any Hopf algebra (H,m,n, A\, e, S), Woronowicz [30] constructed two braidings on
H: for any a,b € H,

Tu(a®@b) = > ba @ aS(ba))be)

Ti(a®@b) = > bay® S(bw))ab)
(®)
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They are invertible with inverses respectively:

Ty'(a®b) = > bS ' (ag)ag) @ ag),
(a)

(Th) a®@b) = ) aghS ' (aw) @ aq).
(@)

We consider H? = (H,mo7,n,/\,e,S™!) and H*? = (H,m,n,7o/\,&,S™1). Denote
Fy =Ty, and Fj; = (Theop) "t Precisely,

FH((I X b) = Z a(l)S(a(g))b (9 a2,
(a)

FJ/LI(CL & b) = Z a(l)bS(a(Q)) & a(s)-
(a)

It is well-known that H is a Yetter-Drinfel’d module over itself with the following
structures: for any x,h € H,

z-h = Y znmhS(ze),
p(h) = > ha) @ he).

It is easy to check that H is a module-algebra and comodule-algebra with these structures.
The action of o is op(z ®y) = 32, £1)yS(2(2)) ® 2(3). 1t is just the braiding F”. So by
Theorem 2.11, (H, F’) is a YB algebra.

H has also the following Yetter-Drinfel’d module structure: for any x, h € H,

xr-h = xh,
p(h) = 2w hwS(he) @ he).

It is easy to check that H is a module-coalgebra and comodule-coalgebra with these
structures. The action of o is ou(z ® y) = >, 21)S(z@)y ® (). It is just the
braiding F. Then by Theorem 2.15, (H, F') is a YB coalgebra.

The product and coproduct introduced in Corollary 2.12 and 2.16 are the generaliza-
tions of the smash product and smash coproduct respectively. This is related to some
work of Lambe and Radford ([17], p. 115-p. 119) who gave slightly a more general result,
but without considering YB algebras. Let V' and W be Yetter-Drinfel’d modules. They
proved that:

1. If V and W are both module-algebras and comodule-algebras. Then V' ® W has an
associative algebra structure given by: for any v,v' € V and w,w’ € W,

(vew)x (W @uw) = Z v(wyy - V") @ wyw'.
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2. If V and W are both module-coalgebras and comodule-coalgebras. Then V @ W
has an coassociative coalgebra structure given by: for any v,v" € V,

Av@w) = Z oW @ () yy - w @ (V@) @ w?.
(v),(w)

Notice that the category of Yetter-Drinfel’d modules is a braided monoidal category
(for the definition, one can see [16]). So V@ W is again a Yetter-Drinfel’d module with the
usual tensor product module and comodule structure. The natural braiding of V @ W is
just ¥ = (idy @0’ ®idw ) (oy @ow ) (idy ®0®idy ), where 6 and 6’ are given by, for any v € V
andw e W, 0(ve@w)=> vy w®ve and ' (w@v) = > w1 - v ® w respectively.
If V and W are both module-algebras (resp. coalgebras) and comodule-algebras (resp.
coalgebras), then so does V @ W (cf. [17]). Therefore we have immediately that:

Proposition 2.17. Let V and W be Yetter-Drinfel’d modules.

1 IfV and W are both module-algebras and comodule-algebras. Then (V @ W, %) is a
YB algebra with the product introduced above.

1 IfV and W are both module-coalgebras and comodule-coalgebras. Then (V @ W, )
18 a YB coalgebra with the coproduct introduced above.

In the following, we will focus on some special cases of the machinery introduced above.

Definition 2.18. A Hopf algebra H is said to be quasi-triangular if there ewists an in-
vertible element R € H ® H such that for all x € H,

RA(x) R = A%(x),
(A®id)(R) = Ri3Ras,
(id®@A)R) = RizRis,

where A? =70 /A, Ris=R®1, Ryg=10R and Ri3 = (T ®id)(1 ® R).

Let (H,R) be a quasi-triangular Hopf algebra with R = ). s, ®t;, € H® H. We have
that (¢ ®id)(R) =1 = (id®¢)(R). For any H-module M, we define p: M — H @ M by
p(m) =>.t;®s;-m. Then (M, -, p) is a Yetter-Drinfel’d module over H and the braiding
o is just the action of the R-matrix of H (e.g., see [3]).

Theorem 2.19. Let (H,R) be a quasi-triangular Hopf algebra and (A,m) be a module-
algebra over H. Then (A,04) is a YB algebra.

Proof. We only need to check that A is also a comodule-algebra. We denote R = ), 5,®t;.
Then from equation (2) we have

Z A(SZ) X ti = Z SR8 X tktl.

k.l
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Hence

DD @ (s)m @ (i) = > _titi @ 51 @ 5.
7 (S,) kil
For any a,b € A, we have
D (ab) 1) @ (ab)oy = Yt @ si-(ab)
(ab) '
= Y ti@ (s a)((si)@ - b)
1,(84)
= D titi® (sp-a)(s; - b)

k.l

= Z a(-1)b(-1) ® a(0)b(0)-
(a),(b)
And
p(lA) = Ztl & 8; - 1A
= Y e(s)ti®@1a

i

= 1lp®1,4.
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]

Theorem 2.20. Let (H,R) be a quasi-triangular Hopf algebra and (C,A) be a module-

coalgebra over H. Then (C,0¢) is a YB coalgebra.

Proof. We only need to check that C'is also a comodule-coalgebra. For any ¢ € C

Y e @ ()M @ (¢0)?
(©

= ) i@ (i) @ (si )
1,(si-¢)

= > t®(s)a) ey @ () - e
iV(Si)7(C)

= Z tett @ Sk - c(1) @ 81 - C(2)

k,l,(c)

= S () (@) ey ® () ® (@) 0)-
(c)

Z c-ne(c)) = Z tie(s; - ¢)
(c) @

And
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2.3 Examples related to quantum shuffle algebras

For a Yetter-Drinfel’d module V' which is both a module-algebra and a comodule-algebra,
V® is a YB algebra by Proposition 2.2.1. One can have an interesting YB algebra
structure on T'(V') as follows, which will be generalized for any braided vector space later.

We first review some terminologies. An (i1, ..., )-shuffle is an element w € &;, ...,
such that w(l) < --- < w(iy),w(iy +1) < -+ < w(iy + i), ..., wliy +---+i1+1) <
<o <w(iy 4+ -+ +14;). We denote by &;, __;, the set of all (iy,...,7)-shuffles.

Let V be a Yetter-Drinfel’d module over a Hopf algebra H with the natural braid-
ing 0. In [26], the following associative product on T'(V') was constructed (in fact, the

construction works for any braided vector space): for any xy,...,z;1; € V,
(01 ® - ® w1 ® Ori) = Y Tl ® - ®wg) (24)
weS; ;

T(V) equipped with m, is called the quantum shuffle algebra and denoted by T,(V).
Moreover, the Yetter-Drinfel’d module 7,,(V') is a module-algebra and a comodule-algebra,
with the diagonal action and coaction respectively (cf. [26], Proposition 9). So 7,(V) is
a YB algebra. In fact, the result holds for any braided vector space.

Theorem 2.21. Let (V,0) be a braided vector space. Then (T,(V'),3) is a YB algebra.
The subalgebra Sy(V') of T,(V') generated by V' is also a YB algebra with braiding (3.

Proof. For any triple (i, j, k) of positive integers and any w € &, ;, we have that

(1e, X w)(xik X 1s,) (e, X Xjk) = Xitjn(w X 1g,).-
And all the expressions are reduced. This gives us that
(1d5* @ my) (B @ idy?) (15" @ Bji) = Bign(mo @ id5").
The other conditions can be proved similarly. Hence (7,(V), 3) is a YB algebra.

From the definition, S, (V) = @®;>oIm(} T7). By observing that x;;(6; x &) =

weS; Tw
(6, %x6;)x;; and all the expressions are reduced, we see (3 is a braiding on S, (V). Certainly

it is a YB algebra since it is a subalgebra of T, (V). O
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Remark 2.22. By using the dual construction, we know (T'(V'), 3) is a YB coalgebra with
the following coproduct A: for any xi,...,x, € V, the component of A(x1 ® -+ @ x,,) in
VEPQYENTP g

A @ Qzp)= Y, Tpi(11®- - @),

weESp,n—p

Example (Quantum exterior algebras). Let V be a vector space over C with basis
{e1,...,en}. Take a nonzero scalar ¢ € C. We define a braiding o on V' by

6,’@67;, Z :ja
ole;®@e;) =14 q lejQe, i < 7,
gle;@e+(1—qgHe®ej, 0>

Then o satisfies the Iwahori’s quadratic equation (o —idygy)(0 + ¢ %idygy) = 0. In fact,
this o is given by the R-matrix in the fundamental representation of Uysly. By a result of
Gurevich (cf. [7], Proposition 2.13), we know that T'(V')/I = @izolm(zweei(—l)l(w)Tw)
as algebras, where [(w) is the length of w and I is the ideal of T(V') generated by
Ker(idyez — o). So by easy computation, we get that Ker(idygy — ¢) = Spanc{e; ®
e, q te;®ej+e;@e;(i < j)}. We denote by e;, A- - -Ae;, the image of e;, ®- - -®e;, in S, (V).
So S, (V) is an algebra generated by (e;) and the relations ef = 0 and e;Ae; = —g 'e;Ae; if
i < j. This S,(V) is called the quantum exterior algebra over V. It is a finite dimensional
YB algebra with the braiding f3.

The quantum exterior algebra has another YB algebra structure as follows. We denote
the increasing set (i1,...,45) by i and so on. For 1 <i; < -+ <ig < Nand 1< j <
-+ < 3¢ < N, we denote

07 71f lml # wa
Qﬁ{(Zk,jl”Zk > ]l} — st, otherwise.

(ih e aisljla e 7.jt) = {
Using the above notation, it is easy to see that

ey N Neg, Nej, N+ Nej, = (_q>—(i17"'7is|j17"'7jt)€j1 AN Nej, Neiy N+ Ne,.

Definition 2.23. The q-flip 7 =@, , Zs1: So(V) @ S,(V) — S,(V) @ S, (V) is defined
by: for1<ip<---<ig< Nandl1<j; <---<j <N,

Taileq N Nei, @ejy A Nej,) = (—q) 0 isindde, A Ne; @ey Aee Ae,.
Obviously, .7 is a braiding. And .7 induces a representation of the symmetric group,
ie., 72 =id. Indeed, for 1 <i; <---<ig < N+land1<j <---<j; <N +1, the
result is trivial if i N j # (. Otherwise,

(7;17"' ais‘jla"' ajt)+(jla"' >jt’7;17"' ais)
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= Qﬁ{(lka]l)llk > ]l} — st + Zﬁ{(]ua Zv)l]u > Z'v} — st
= 2st — 2st
= 0.

For any sequence I = (iy,...,i,), we denote by (/) the number of pairs (i4,1d,) such
that a < b but i, > 4, and e; = e;; A -~ Ne;,. (S,(V),A,T) is a YB algebra and
(S5(V),8,7) is a YB coalgebra. Given any increasing multi-indices I, J and K. If
JN K # 0, the result is trivial. Assume that J N K = (.

(A®ids,vy)) ZaT(e1®@es ® ex)

— ( )I|J (I|K) eJ/\eK®€I

= (—q) I'JUKG Neg ® er

_ ( q)l I|JUK)€ Wi ® er
= y(( ) €[®ejuK)

== 9(6[@6]/\6[()

= Z(ids, 1) @ N)(e1 ® ey @ ex),

where J W K is the the rearrangement of the disjoint union J LI K with the increasing
order.

For s +t=|J|,

%%(ldsﬁ ®5)(6[®€J)
= BT(er® Y (=) enw) ® enw)

’LUGSS t

— Z (_q)—l(w)+(I|J1(w))+(I|J2(w))ejl(w) ® €)@ €1

wWESs ¢
= (idg,() ®
= (idga(v) &

) ((—=q)"e; @er)
5)17 (6 I e J),
where Jl (QU) = (jw—l(l), e ,jw—l(s)) and JQ(’[U) = (jw*l(s-i-l)a ce ajw*l(s—i-t))' The other
conditions can be verified similarly.

Originally, quantum shuffle algebras were discovered from the cotensor algebras (cf.
[26]). Combining the discussions in the previous section, it is not hard to see that the
cotensor algebra is both a YB algebra and YB coalgebra. Here, we give a more general

description of this phenomenon in the framework of bialgebras with a projection onto a
Hopf algebra which is due to Radford [25].

Definition 2.24 (cf. [21], [29]). Let H be a Hopf algebra. A Hopf bimodule over H
1s a vector space M given with an H-bimodule structure, an H-bicomodule structure with
left and right coactions 6, : M — H ® M, éop : M — M ® H which commute in the



2.3. EXAMPLES RELATED TO QUANTUM SHUFFLE ALGEBRAS o1

following sense: (6, ®idy)dr = (idy ® )0, and such that d;, and dg are morphisms of
H-bimodules.

We denote by V' the subspace of right coinvariants M = {m € M|dgr(m) = m @ 1}.
Then V is a left Yetter-Drinfel’d module with coaction § and the left adjoint action given
by: for any h € H and m € M,

h-m= Z h(l)mS(h(g)).

Let H be a Hopf algebra with antipode S and A be a bialgebra. Suppose there are two
bialgebra maps i : H — A and 7 : A — H such that moi =idgy. Set Il =idsx(ioSom),
where « is the convolution product on End(A), and B = II(A). The following statements
are easy to verify (cf. [25]).

1. A is a Hopf bimodule over H with actions h-a = i(h)a and a - h = ai(h), coactions
dp(a) = > m(ap))®aw) and 0g(a) = > aq)y®@7(ag)) for any h € H and a € A. Obviously,
by the projection formula from a Hopf bimodule to its right coinvariant subspace, A% = B.
So B is a left Yetter-Drinfel’d module over H with the left adjoint action.

2. B is a subalgebra of A. Furthermore it is both a module-algebra and a comodule-
algebra. B has a coalgebra structure such that II is a coalgebra map. And with this
coalgebra structure, B is both a module-coalgebra and comodule-coalgebra.

3. The map B® H — A given by b ® h — bi(h) is a bialgebra isomorphism, where
B ® H is with the smash product and smash coproduct.

So combining Woronowicz’s examples and Proposition 2.16, the bialgebra A is both a
YB algebra and a YB coalgebra. If A is moreover a Hopf algebra, then it is again a YB
algebra and YB coalgebra with Woronowicz’s braidings. Obviously, these two YB algebra
(resp. coalgebra) structures are different.

Now we restrict our attention on cotensor algebras, which will give us YB algebras
related to quantum groups. For a Hopf bimodule M over H, one can construct the
cotensor algebra over T (M). More precisely, we define MOM = Ker(dr ® idy — idy ®
o) and M Ok — MUE10M for k > 3. And the cotensor algebra built over H and
M is TG¢(M) = H® M @ $psoMF. Tt is again a Hopf bimodule over H. From the
universal property of cotensor algebra, one can construct a Hopf algebra structure with
a complicated multiplication on 75 (M). We denote by Sy (M) the subalgebra of 15 (M)
generated by H and M. Then Sy (M) is a sub-Hopf algebra. For more details, one can see
[21]. Obviously, T¢(V') defined above is the cotensor algebra over the trivial Hopf algebra
K. Here V is a Hopf bimodule with scalar multiplication and the coactions defined by
dr(v) =1®wv and dr(v) =v® 1 for any v € V.

Since the inclusion H — T5 (M) and the projection T (M) — H are bialgebra maps,
we get:

Theorem 2.25. Let M be a Hopf bimodule over H. Then both T§ (M) and Sg(M) are
YB algebras and YB coalgebras.
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As an application of the above theorem, we consider the following special case. Let
G =7Z"XZJ/l;XxZ]lyx---Z]l, and H = K[G] be the group algebra of G. We fix generators
Kiy,...,Kyof G (N =r+p). Let V be a vector space over C with basis {e1,...,ex}. We
know V' is a Yetter-Drinfel’d module over H with action and coaction given by dr(e;) =
K; ® e; and K; - e; = ¢;je; with some nonzero scalar ¢;; € C respectively. The braiding
coming from the Yetter-Drinfel’d module structure is given by o(e; ® €;) = ¢;je; ® e;.
Now we choose special ¢;; to construct meaningful examples. Let A = (a;;)1<ij<n be
a symetrizable generalized Cartan matrix, (di,...,dy) positive integers relatively prime
such that (d;a;;) is symmetric. Let ¢ € C and define ¢;; = ¢%®s. By Theorem 15 in [26],
Sp (M) is isomorphic, as a Hopf algebra, to the sub Hopf algebra Uq+ of the quantized
universal enveloping algebra associated with A when G = Z" and ¢ is not a root of
unity; Sy (M) is isomorphic, as a Hopf algebra, to the quotient of the restricted quantized
enveloping algebra u;r by the two-sided Hopf ideal generated by the elements (K! — 1),
i=1,...,N when G = (Z/1)" and q is a primitive I-th root of unity. Then we have:

Corollary 2.26. Both U and u} are YB algebras and YB coalgebras.

We use the above special S,(V) ® H to illustrate the difference between the braiding
coming from Woronowicz’s construction and the one from the tensor product of two
Yetter-Drinfel’d modules.

We use the following notation: for any g = Ki'- K}\’,V € G, qy = qﬁ o -qj{,vj, ie.,
g-ej = qge;. For any g,h € G, Woronowicz’s braiding F’ has the following action on
Sy(V)® H:

F’((ei Rg)® (e ® h)>

= D (@ 9)w(e; @M)S((e; ® 9)2) © (€5 ® 9)s)
= (Kig)(e; ® h)S(Kig) ® (e; ® g)
+(Kig)(e; @ h)S(e; ® g) ® g
+(e; ® g)(e; ®h)S(9) ® g
= (ijyi(e; ® h) ® (e; ® g)
—ijg;(¢; ® Kigh) (K 'g™!) e @ Klg™)) @ ¢
+ei ®g)(e;®hg ) ®yg
= ij4i(€; ® h) ® (e, ® g)
—ij49;9ni(eje; @ h) ® g
+qq5(eie; @ h) ® g,

where the second and third equalities follow from the formulas A(e; ® g) = K;g ® (e; ®
9)+ (e;®g) @ g and S(e; ® 9) = —(K;'g7")(e; ® g).
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And the braiding in the category of Yetter-Drinfel’d modules is :

E((ei ®g)®(e; ® h)> = qij(e; ®h) ® (e; ® g).

2.4 Quantum B_-algebras

Let (C, A\, e) be a coalgebra with a preferred group-like element 1c € € and denote
Alr) = Az) —2®1c — 1lc @ for any x € C. And A is called the reduced coproduct.
We also denote C' = Kere. C'= K1¢ @ C since © — e(x)1¢ € C for any x € C.

Definition 2.27 (cf. [19]). (C,A) is said to be connected if C' = U,>oF,.C, where

FC = Klg,
F.C = {ze€C|Ax) € F,_1,C®F,_,C}, forr>1.

Now we collect some properties of the reduced coproduct and of connected coalgebras.
They are certainly well-known. We provide a proof because we could not find one in the
literature.

Proposition 2.28. Let (C, A, ¢€) be a coalgebra.

1. The reduced coproduct is coassociative, i.e., (A ®ide)A = (ide @ A)A. So we can
adopt the following notations: N id, N A, and A = (A ® id%n_l)z(n_l) for
n > 2.

2. AN(C)cCwC.

3. If C is connected, then N (CNF.C)=0 for any r > 0.

Proof. 1. For any x € C,

(B ®ide)A(2)

= (A® ide)(xq)y @z —le®@r —2® 1¢)

= Azp) @@ — A(le) @2 — Alr) ® 1¢
(T @ 2@2) — Lo @ z) — Oz(1) ® 1) ® 2(3)
—(le®le—1le@le—1c® 1)@
—(r)y @z —le®r—2® 1) ® 1¢

= 1) QT2 T3 — lo®@ra) @@ —r0) @l @29
tle®le®@r—20) Q2 Rlc+1lc®rR1lc+1r®1c® 1o

= 21 ® (12 @) — 1o @x@e) —7@2) @ lo)
—1le®@ @Rz —le®@r—2@ 1) +2®1c® 1¢
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1y @ M) — 1o ® Alz) — 2 @ A(le)
= (idc ® Z)Z(ZL‘)

2. For any z € C,

(ldc®€)z<l’) = (1dc®€)(A(l‘) — 10®5L‘—l‘®10)
= rx—0—2x
= 0.

So A(r) € Ker(ide ® €) = H ® Kere = H ® C. By applying ¢ ® idc on A(z), we get
A(z) € C® H. Hence we have A(z) e ( HRC)N(C® H)=C®C.

3. We use induction on 7.
The case 7 = 0. A (CNFC)=ide(CN K1) = 0.

The case r = 1. Given any r € CNFE,C. Since z € F,C, we have Z(m) e CRFC =
Kle ® 1¢. So we assume A(x) = ale ® 1¢ for some a € K.

(®e)A(z) = (e@e)(Alr)—r®@1c— le®1)
e(z) —e(lo)e(x) — e(x)e(1e)
0.

But we also have (¢ ® e)A(z) = (¢ ® €)(ale ® 1¢) = «, which implies a = 0. So
AT N FC) =o0.

We assume the result holds for r. For any x € CNF,C, AU () = (ide ®Z(T))Z(x) €
ECoA"(F.nT)=0. O

There is a well-known universal property for 7¢(V):

Proposition 2.29. Given a connected coalgebra (C, A, ¢) and a linear map ¢ : C —V
such that ¢(1¢) = 0, there is a unique coalgebra morphism ¢ : C'— T(V) which extends
¢, i.e., Pyo¢ = ¢, where Py : T°(V) — V is the projection onto V. Explicitly, ¢ =

——(n—1

5"‘2@1 ¢¥" o A

Corollary 2.30. Let C be a connected coalgebra. If &,V : C — T(V) are coalgebra
maps such that Py o ® = Py oW and Py o ®(1¢) = 0= Py o U(lp), then & = V.

Proof. C is connected and Py o ® : C' — V is a linear map with Py o ®(1¢) = 0. Then
by the universal property we know there is a unique coalgebra map Py o ® : C' — T¢(V)
such that Py o Py o ® = Py, o ®. But obviously ® is such a map. So Py o ® = &. From
the same reason we have Py o W = U. Hence we have & = V. O
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Using Proposition 2.2 and the fact, which is mentioned in Section 2, that (7°(V'), ) is
a YB coalgebra, we know there is a coalgebra structure on T¢(V)®* by combining 3 and
J:
Bos= T2 0%

and the counit is %",

Proposition 2.31. Let (V, o) be a braided vector space. Then for anyn > 1, (T(V)*", Ag.,)
is connected.

Proof. Obviously, 12" is a group-like element of T¢(V)®™. For any r > 0, we have that
F,=F(TWV)*) = & V&g eV
0<iy +-Hin <r
O
From now on, we use Ag to denote Agy for n = 2. Since w,! = sy € &y, N =

(idTC(V) ® ﬁ ® idTC(V)) O (5 ® 5)

Let M = @M, : T°(V)®T°(V) — V be a linear map such that M,, : VPV — V|
and

My = 0,
MlO = ldV = M017
Mn() = 0 = Mgn, for n > 2.

Since M (1®1) = 0, there is a unique coalgebra map * : T¢(V)QT(V) — T(V) by
the universal property of T¢(V'). Explicitly,

k=(e@e)+ > Mo A",
n>1

We shall investigate conditions under which * is an associative product. Here we start by
giving another form of % by using the map M and the deconcatenation §.

Proposition 2.32. Forn > 0, we have that

A(gn) — Tﬁ o (5(n))®2‘

Wit
Proof. We use induction on n.
When n = 0, it is trivial since w; = 1g,.
When n = 1, A(Bl) =Ng=[(6®@6) =T o(6M)%% since wy = ss.
When n = 2,

AP = (Dp®idrew) ® idrey) g
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B2(8 ® 0 @ idypeqyy @ idrpeyy)B2(0 @ 6)
Bo(0 ® (6 ® idre(yy) B2 ® idreqy) © (6 @ 6)
B (0 ® Bofi(idre(vy @ 6) @ idger)) © (8 ® 8)
= 32643(0 ® idpe(vy ® 0 @ idpeqyy) 0 (0 ® 6)
= Tf,0 (6)*,

For n > 3,
NG = (Bpwidgy) A
= (o(0 ® 6 @idF2))TY o (60)%?

(
= B0 @ 0 @idP,) ) (dPe ) @ T )By -+ - Buyr 0 (60)2
= BulidF2 ) ® Ty )(0 @ 6 @idF2,)) By - Buyr 0 (67)%2
= ﬁ2<1d?3 ) ® Tofn)ﬁsﬁsﬁs)@ “ BrgsBnte
o(6 ® @Yy, ® 6 @ id}l,) o (6)
= 79 o(§ntD)®2

Wn+2

The third and last equalities follow from the fact that w,,1 = (1g, X wy)sy -+ S,41 for
n > 1, wyro = s2(le, X W,)S4838554 - SpigSnie for n > 3 and both expressions are
reduced. O

Lemma 2.33. Forn > 1, we have M®" A(anl) (1®1) = 0.

Proof. Tt follows from the fact that A (1g1) = (1®1)%" and My = 0. O

(n—1)

Proposition 2.34. Forn > 1, we have M®"Ag = M®”A(Bn_1)

Proof. We use induction on n.
When n =1, it is trivial.
For n > 2 any u,v € T¢(V),

M®HA_5(TL71)
= (M8, @ M)A p(ugw)
= (1A @ M) (8 (ugp) — (12D (ugr) - (12o)e(121))
= MO ALY (ugw) — (MO AT (101) @My (ugw)
—(ME 7 AT (uzv)) @ Mo (121)
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= M A/(anl) (u@v).

Corollary 2.35. The * defined by the M,y,’s can be rewritten as

x=c®¢c+ Z M®" o TP o (§n=1)®2,

n>1

But this * is not an associative product on 7¢(V') in general. Now we will generalize the
definition of YB algebra by giving some compatibility conditions between M,,,’s and the
braiding, and prove that under these conditions the new object makes % to be associative
automatically and T¢(V') become a YB algebra with .

Definition 2.36. A quantum B.-algebra (V, M, o) is a braided vector space (V, o) equipped
with a operation M = ©M,,, where

Mpq : V®p®V®q_)V7 pZ(), QZOa
satisfying
1.
MOO = 07
My = idy = Mo,
M, = 0 = M,,, forn > 2,

2. Yang-Bazxter conditions: for any i,j,k > 1,

ﬁlk(Mij ®idP") = ([dPf ® Mg)ﬁzﬂ,k;
Ba(idY @ M) = (M @id")Bi vk,

3. Associativity condition: for any triple (i, j, k) of positive integers,

i+j
S Moo (M 0 7557 ) 0 1d)
r=1

Jj+k

= Y Myo (idf ® (M® o 55 7Y)). (2.5)
=1

Remark 2.37. For any vector space V', (V,7) is always a braided vector space with the
usual flip 7. And the Yang-Baxter conditions in the above definition hold automatically. In
this case, the quantum By -algebra returns to the classical By -algebra (for the definition
of Boo-algebras, one can see [19]).
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Examples. 1. A braided vector space (V,0) is a quantum B.-algebra with M;; = 0
except for the pairs (1,0) and (0, 1).

2. A YB algebra (A,m,o) is a quantum B,.-algebra with M;; = m and M;; = 0
except for the pairs (1,0), (0,1) and (1,1).

In the following, we adopt the notation M, j,, i ) = M, @ -+ @ M, j, .
Lemma 2.38. Let (V,M,0) be a quantum By -algebra. Then for any k,l > 1, we have
{ B (M i, oing) @ 147) = (147 @ My o)) Binctaoini

6lk<id%l ® M(i1,j1,---7ik,jk)) = (M(i17j17---7ik7jk) ® id%l)ﬁl,il"!‘jl"r“""ik"‘jk‘

Proof. We use induction on k.

The case k = 1 is trivial.
ﬂk—i-l,l(M(imi ----- iht1,Jk+1) ® idgl)
= (ﬁkl ® idV)(idgk ® ﬁll)(M(ihjl ..... iks1dkrr) & id%)
- (Bkl ® idV) (M(il,jh---,ikdk) ® Bll(Mik+1jk+l ® id%?l))
= (ﬁkl ® idV) (M(ihjhm,ik,jk) ® (id%l ® Mik+1jk+1)ﬁik+1+jk+lvl>
= (ﬁkl(M(il,jl,.u,ik,jk) ®idy') ® idV>
O(idgilerHkH ® Mik+1jk+1>(1d§*i1+m+ik ® /Bik+1+jk+17l)
= ((idgl ® M(il7j17~~7ik’7]'k))ﬂi1+j1+"'+ik+jkyl ® idV)
o<id§i1+m+ik+l ® Mik+1jk+1)<id%il+m+ik ® ﬂik+1+jk+1,l)
. 181
- <1d% ® M(i17j1 ----- ik+17jk+1))
O(/Bil+j1+"'+ik+jk7l ® ldV)(ld?;“JrJﬂk & ﬁik+1+jk+17l)

_ s &l
= (ldV ®M(il’jlam:ikyjk))6i1+j1+"‘+ik+jkyl'

The another equality is proved similarly. O]

Lemma 2.39. Let (C,A,0) be a YB coalgebra and 1¢ be a group-like element of C. If
c(le®@z)=2®1c and o(z ® 1¢) = l¢ ® x for any x € C, then we have

(EC ®Z)O' = 0102(Z®id£),
(A®ide)o = o901(ide ® A).
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Proof. For any z,y € C, we denote o(x ® y) =y’ ® 2/. Then

(ldo®A) (2 ®y)

= (ide ® A)(y @)

= y ® L)

yoAQ@) -y eleed -y @dle

(ide ® A)o(z @ y) — 0102(lc ® T Q@ y) — 0102(x @ 1o ® y)
= 0102((A(z) —le @z —2® 1c) ®Y)

= 0103(A®ide)(z®y).

The another equality is proved similarly. ]

__ The following notation is adopted to shorten the length of identities. We denote by
Dgi, i iny the composition of Ag : VEIFRgY @t —>'(T(V)@T(V'))@(T('V)@T(V))
with the projection (T(V)QT(V))R(T(V)QRT(V)) — VEIQVeNQVe2@V @2 And we
denote
——(k-1) B
Bi1,31smmsiodie) <Aﬂ(i17j1,i2,j2)

the map from V®i1+~"+ik@v®j1+~'+jk to V®i1@‘/®j1@. . ,@V@ik@‘/@jk'

- ®iztgz et tiey o A (K—2)
o S
® idy, ) AIB(11+’L2731+J27Z37]37---a1kvjk)7

Lemma 2.40. For any k,l > 1, we have

5z'1+j1+ +ip+ik, Z(A_ﬁgf;gll),...,ik,jk) ® id%l)
= (d¥ ® AQEZ Jll g Bt bl
Bl +j1+- +zk+gk(1d®l ® Aﬁgi gll i)

Proof. Since (T¢(V)®?,Ag, TP ) is a YB coalgebra, by the above lemma, we have

(ich )82 & Ag)

X22

et (T522 ® lch )(lch( ®2 ® T>?22)(A_/g ® ldc),
(Ag @ idgeqy )Tfm
= (1ch( ®2 ® T£22)<T>?22 ® 1ch ®2)(idc ® Aﬁ)
On V®Z®V®J®V®k®v®l T>/<622 = T)?i+j,k+l = 6i+j7k+l'

So on V®uti2g@itig| Org)/©s

s 1®r+s ~
(1dV ® Aﬂ(il,jl,ig,jg)ﬁil+jl+i2+j27r+s)
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- 1Qia+7] . @i+ o .
(ﬁi1+j1’T+5 ® ldez ]2)(1dV“ 7 & 61‘2-0—]'2,7“4-5)(Aﬁ(ihjl,iz,jz) ® 1d%r+s>7

and on V¥@V®IgV kgl @l

: 1®r+s
(A/B(i17jl7i27j2) ® idy, )/BT+S,i1+j1+i2+j2

@it Dot /- _
= (1dv“ " ®ﬁr+8,i2+j2)(ﬂ7“+5,i1+j1 ®1dvl2 J2)<1dgr+s ® Aﬁ(ihjmmh))'

In order to prove our lemma, we use induction on k and the above formulas for » = [ and
s = 0.

The cases k =1 and k = 2 are trivial.

~—(k) )
6i1+j1+"’+ik+1+jk+1,l(Aﬁ(ihjl,,,,,ik,jk) ® ldV )

- 1®13+73+ k41 1 1®%1+71+Hi2+72
- <ﬁi1+i2+jl+.727l®ldv )(ldV

® 6i3+j3+-"+jk+1,l)

N . A®igtjste i1+ A (R~ .1l
o o o )
(Aﬁ(zhh,zz,]z) ® ldV )(AB(11+12731+J27137J37---71k+1,]k+1) ® ldV )
_ - 1®i3+g3 4+ F i1\ A - 1®iz+g3++jpr1+l
= (Bitistirtinl @ idy (Dpy ooy ®@idy, )
(41,91,2,52)
——(k=1)

s (@11 +J1+i2+j2 o ) s 1l
O(ldv ® 6’3"'73"'“""3’“‘*‘1’0<Aﬁ(i1+i27j1+j2,i3,j37~~~7ik+1,jk+1) ® idy )

_ ~ s 1R - 1®i3+73 4+ +ik+1
- (ﬁi1+j1+i2+j2,l(Aﬂ(ihﬁ,imjz) ® 1dV ) ® 1dV )

- 111471 +i2+72 L . (k—1) iy

o(ldv ® ﬂzs+]3+~~+ﬂk+1,l)(Aﬁ(h+i27j1+j27i37j37"'7ik+1’jk“) @ ldv )

B . s Qi3 +y3+ k41

= (<1dV ® Aﬁ(il,ﬁ,i%]‘z))Bi1+jl+i2+j2’l ® ldv )

« 1®i1+j1+ia+j2 o . (k1) idy!

o(ldv ® 5@3+J3+"‘+Jk+17l)< B (i1 +i2,51+72,13,03 s ikt 1:Jk41) ® 1dV )
R - 1®i3+g 3+ F k41
= (1dV ® Aﬁ(il,jl,imjz) ® ldv )

——(k—1) : 1@l

06i1+j1+--~+jk+1,l< B (i14i2,§1472,83,73 sk +1555+1) ® ldv )
el o - 1®i3+73 4+ k41
= (1dV ® Aﬁ(i1,j17i27j2) ® ldv )

(k—1)
(i1+i27j1+j2,i3,j37~~7ik+17jk+1))ﬁi1+j1+m+jk+hl

i@l o A (k)
= (idy ®Aﬁ(il,jl,...,ik+1,jk+1)>ﬁi1+ﬂ'1+"'+ik+1+ﬂ'k+hl'

o(id¥ ® Ag

The another equality can be proved similarly. O
Proposition 2.41. Let (V, M, o) be a quantum By -algebra. Then we have

Blx @idpeyy) = (idpe) ® *)B15s,
Bidrey @ %) = (x ® idpevy) B2,
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where ¥ =e®@e+ ), M® o A_g(rfl)

Proof. We only need to verify that for all k,1 > 1,

( ——(k-1) . l
6kl ((M(i17j17-~~7ik:jk) © Aﬁ(il,jl,...,ik,jk)) ® ld% )
- 10l ~—(k=1)
= (idY @ (M, jy, - inir) © DBiir i in i) Bintgi ot ds
- 121 ——(k—1)
/Blk (ld% ® <M(i17j17"'=ik7jk) O(Aﬂ)(il,jh...,ik,jk)))
—— (k-1 . 1
L= (M) © D80, yin ) @AV By it i
They follow from the above lemmas immediately. O

Theorem 2.42. Let (V,M,0) be a quantum By,-algebra. Then (T(V),*,03) is a YB
algebra.

Proof. We only need to show that x is associative. First we show that *(x ® idpeyy) and
*(idpe(v) ® *) are coalgebra maps from (T°(V)®3, Ag3) to T¢(V).

(5 [e] *(* ® idTC(V))

= Yo o0 %% o (* ® ich(V))
)
* Q%) 0 g0 ((x®@%)0As®0J)
% ® %) 0 [Jg 0 (>x<®>k®ich ®ich ) ﬁ20ﬁ®3
) o (x ® B(x ® idpe(v)) ® idgpery) 0 B2 0 53
) o (x ® (idre(r) @ *) 3182 @ idre(rry) 0 B2 0 6%°
Yo (x® ideyy ® * @ idpeqy ) o 333435 0 6%°
) o (x @ idpe(vy ® * @ idye V))oTﬁ L 00%?
*(* @ idpe(v)) @ *(x @ idpevy)) Dps -
The first and third equalities follow from the fact that * : T¢(V)@T(V) — T¢(V) is a
coalgebra map.

Similarly, we can prove that *(idre(y) ® *) is also a coalgebra map.
Now we show that Py o #(* ® idze(yy) = Py o *(idpery @ x). On VEQVEIQV @k,

PV o ( k (* ® ldTC(V)))
i+j+k . i+j )
— PV( § : M®s O_Aﬂ(s_ ) o (} :(M®r O—AB(T— )) ®id§k)>
r=1

s=1
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i+j

= Y Mo (M 055" 7Y) ®idgh)
r=1

Jj+k

- Z Mj o (idy' ® (M®' o A_ﬁ(lil)))
=1

i+j+k o itk o
= Pv< Z M®® o A@(S_ 'o (Zid{e}z ® (M® o Ag( - )))>
s=1 =1

= Pyo *(ich(V) & *)

Then by the Corollary 4.4, we have that *(* ®@idgey) = *(idpe(y ® *). The compatibility
conditions for the unit and braiding are trivial. O]

Remark 2.43. By using the dual construction stated in Remark 2.3.3, we can easily
define quantum B,.-coalgebras and prove that they provide YB coalgebras.

Example (Reconstruction of quantum shuffle algebras). Let (Vo) be a braided vector
space. Then (V, M, o) is a By -algebra with My = idy = My and M,, = 0 for other
cases. The resulting algebra T (V) in the above theorem is just the quantum shuffle
algebra, i.e., x = m,.

Example (Quantum quasi-shuffle algebras). Let (V,m,o) be a YB algebra. Then
(V,M,0) is a By -algebra with My = idy = My, My; = m and M,, = 0 for other
cases. The resulting algebra T'(V') in the above theorem is called the quantum quasi-

shuffle algebra. We denote by x, the quantum quasi-shuffle product. This new product
has the following inductive relation: for any w,...,u;,vi,...,v; € A,

(U1 @ -+ @ U;) Mg (11 ® -+ R V)
= ((U1®"'®Ui) X (U1®“‘®Ujfl)) Q v;
—|—(I><IU ®idA)O'i+j_1 .. ai(ul R RQURUVI Q- & "Uj)
+(Me @M)0ipjg - 0i(U1 @ QU V1 ® - - @ V). (2.6)
It is the generalization of quantum shuffle algebra and the quantization of the classical

quasi-shuffle algebra. We will discuss systematically the quantum quasi-shuffle algebra in
next chapter.

Proposition 2.44. Let V be a Yetter-Drinfel’d module over a Hopf algebra H which
18 both a module-algebra and comodule-algebra with multiplication my . Then the quan-
tum quasi-shuffle algebra built on V is a module-algebra with the diagonal action and a
comodule-algebra with the diagonal coaction.

Proof. We use induction to prove the statement. On VQV, x,= my + m,. Since T,(V)
is both a module-algebra and comodule-algebra with the diagonal action and coaction
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respectively, and my is both a module map and comodule map, the result holds. Using
the inductive relation (6) to reduce the degree, the rest of the proof follows from that my
is both a module map and comodule map. O

Remark 2.45. We make the assumptions above. Using the inductive relation (6), we can
define a map X, T(V)@ T (V) — T(V). It is not difficult to prove by induction that
this M, defines an associative product on T'(V'). Noticing that the natural braiding of the
Yetter-Drinfel’d module T'(V') is just 5, T'(V') satisfies all conditions of Theorem 2.11.
Hence we can reprove that (T'(V'), X4, 3) is a YB algebra in this special case.

Let (V, M, o) be a quantum B -algebra and * be the product constructed by M and o
as before. We denote by Q, (V') the subalgebra of (T'(V'), %) generated by V. If we define
#" VOt 5 T(V) by v1 @ +++ @ Upyq + V1 % -+ x U4, and *° = idy for convenience,
then Q, (V) = K & @®,,>0lm«". This algebra is a generalization of the quantum symmetric
algebra over V.

Proposition 2.46. (Q,(V),[) is a YB algebra.

Proof. In order to prove the statement, we only need to verify that § is a braiding on
Qo (V). In fact, we have that B(x* @ *!) = (¥! @ **)By11,41. We use induction on k + [.

The case k = [ = 0 is trivial since o(idy ® idy) = (idy ® idy)o.
When k+1>1,
ﬁ(*k ® *l) = [B(x®idre))(idv ® * 1 @ *l)

(idrvy ® *) 1 B (idy & 1 o % )

(idpv ®*)ﬁ1(1dv®ﬁ( k= 1®>x<))

= (idrpy ® *)B1(idy @ # @ «" 1) (idy ® Brir1)
(idr) © ) (B(idy © ') @ ) (idy © Brii1)
(' ® )(61 11 @ 1YY (idv @ Brgr)
(' @ ") Brs1,p1-

]

For any quantum B-algebra (V, M, o), if we endow T(V) with the usual grading,
then the algebra (T'(V), *) is not graded in general. But with this grading, we have:
Proposition 2.47. The term of highest degree in the product x is the quantum shuffle
product.

Proof. We need to verify that for any i,7 > 1, M®”jA_g(i+j_1) = Zwegij T7. We use
induction on i +j. When i = j = 1, M®?A5(u®v) = u ®@v + o(u ® v) = um,v.

MRV () @ @ uen ® - @ v)
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_ ((M®z‘+j—1A—6(i+j—2)) ® M>A_5(U1 R QURU Q- ® Uj)

— (<M®i+jflA_ﬁ(i+jf2)> ® M) (ul R--® Ui@vl R ® vjil@l@pj
—|—u1 Qe QU 1®51j(uz‘®vl Q- Uj)®1)
Z T° ®@idy + Z v ®@idy)oitj—1 - -)(u1®---®vj)

wEGL] 1 wEGZ 1,5

= (W ® - @u)my (v ® -+ @ vj).

The third equality follows from the fact that w € &, ; implies either w(i + j) =i+ j or
w(i) =1+ 7. O

From the classical theory (cf. [19]), we also know that (7¢(V),*) has an antipode S
given by S(1) = 1 and S(x) = 3, (1) +*" 05" (x) for any = € Kere.

2.5 Construction of quantum B -algebras

We now introduce a new notion motivated by [19].

Definition 2.48. A unital 2-YB algebra is a braided vector space (V, o) equipped with two
associative algebra structure * and -, which share the same unit, such that both (V,*,o)
and (V,-,0) are YB algebras. We denote a 2-YB algebra by (V, %, -, 0).

Examples. 1. Let (A, m,«) be a YB algebra. Then (A, m,m,a) is a trivial unital 2-YB
algebra.

2. Let (V, o) be a braided vector space. Then (7'(V'), m, m,, 3) is a unital 2-YB algebra,
where m is the concatenation product.

Let (V,%,-,0) be a unital 2-YB algebra. We adopt the notation -* = .®k ; V®k+1 1/,
We define M, : V¥ @ V®1 — V for p,q > 0 inductively as follows:

MOO = 07
My = idy = Moy,
M,y = 0 = My, forn > 2,

and

Mpg(ur @ -+ @ up®v1 @ - -+ ® vy)
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p+q

k—1 ~—(k-1)
- Z Z BT M g1inet) © LBy a1 @ @ UpBUL @ -+ ® 1),
k=2 Iy, Jx

where I, = (i1,...,1) and Jy = (j1,-..,Jx) run through all the partitions of length k of
p and ¢ respectively.

For instance,

My (u®v) = wuxwv
— My @ Myp)(l®@o(u®@v)®1)
— (M @Mp)(u®o(l®1l)®wv)
= uxv—-0(u®v)—u-wv,

My (u®@v@w) = (u-v)xw
—u - My (v@w) — (M ®idy)(u ® o(v @ w))
— 2 (u®@v@w+or(u® VW) +0102(u @V W))
= (u-v)*xw—u-(v*w)
+2op(u®@v@w) — (x®idy)o(u ® v ® w),

and

* (v-w)— (u*xv) - w

Mlg(u@?]@/IU) = Uu
+20w®vew) —-(idy ® x)o(u®@ v w).

Proposition 2.49. Let (V,*,-,0) be a unital 2-YB algebra and M = (M,,) be the maps
defined above. Then (V, M, o) is a quantum B -algebra.

Proof. First we verify the Yang-Baxter conditions. We use induction on i + j + k.

Wheni=j=%F=1,

fin(My ®idy) = o(x®idy — (- ®idy)o; — - @ idy)

(idy ® *)oy09 — (idy ® -)o10901 — (idy ® +)o109
(idy ® *)0102 (idy ® -)oy0109 — (idy ® )o109
= (1dv ® (x — -0 — ))0102

= (idy ® Mi1)Par.

ﬁlk( pg & 1d®k)
Bir(x @1dP) (P @ - @ idPF)

r— E [2d) ~ s 1@l
- Z B (- ' ®id® )((M(ii7j1,---7ir7j7') © Aﬁ(il,jl,...,ihjr)) ® ld% )
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= (i7" ® %) (B @ idy)(idy @ Bup) (P! @ 4 @ id")
- Z(id@l @ 'T_1>5rk((M(ii,jl,...,ir,jr) © A_ﬁ(il,jl,...,z‘T,jT)) ® id@l)
= (id7* @0y @ P @ 1) By en

_ Z(id®l @) ((M(ii,jh%im) 0 Dgii i) @ id%l)ﬁerq,k
- (id%k ® Mpq)ﬂzﬂ-q,k'

The third equality follows from the induction hypothesis and a similar method used in
the proof of Proposition 4.12.

The condition f3;; (id$' ® M) = (Mj ® id@i)ﬁi,ﬂk can be verified similarly.

Now we want to prove that M = (M,,) also satisfy the associativity condition. We
also use induction on i 4+ j + k.

When i = j = k = 1, the associativity condition is just M (M ®idy )+ Mo+ Mooy =
My (idy ® Myy) + Mg + Miaos

My (Myy ®idy) + Moy + Myyoq
= ¥ —o(*®idy) — (* ®idy)

—x (- ®idy)oy + -o(- ®idy)oy + 2oy
—x (- ®@idy) + -o(- ®@idy) 4 -2
+# (- ®idy) — -(idy ® *) + 20y — -(* @ idy )09
+* (- ®idy)o; — -(idy ® *)oy + 20901 — -(x ® idy )o90y
= ** — (idy @ *)o109 — -(* ®idy)

+ .2 010201 + -201 + -20102 + .2

— - (idy ® *) + 209 — -(* ®idy) oy

— - (idy ® *)oy + 20901 — -o(idy @ *)
) — -(idy ® %)
—* (idy ® -)oy + -o(idy @ oy + 209
—* (idy ® -) + -o(idy ® -) + -(idy @ )
* (idy ® ) — -(x ®idy) + 2oy — -(idy ® *)o,

(
(

I
*
|
8
=
<
®
*

* (idy ® Yoy — -(x @ idy oy + 20109 — -(idy ® *)o109
= My (idy @ Myy) + Myg + Mis0s.

For i+j+k > 2, we notice that *(-""1@-~1) = 3 _ 7! T o TIME ALY,
i+7 L )
S Mo (M 0 55,"7) @1d3)
r=1
_ Z ( " (;r—l ® .'r—1> . Z '1_1M®l ° A(ﬁl_l))) o (<M®r o A/(gr—l)) ® ld%k)

r>1 1>2
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= (T e nf e k)

r>1

_ZZZ VS l 1) ((M‘X”’oA(T 1)®1d®k)

r>1 1>2
_ *( % (‘i—l ® ‘j—l) ® ‘k—l)
=YD (CTME T o AF) @ M) By o (M 0 AfTY) @ id)
r>1 [>2

= x(x@idy) (eI @

o Z Z m_l ® 'ql_l) ® Mpz,qz)

r>1
r r—1 .
o Qg (P1,91,p2,92) O((M® © A(g )> ® ld%?k)
= *(x®id )(-i_l ®RIT® .k—1>
-2 Z (M@ © My, g,) © (7 © By @1dp*)

r>1

(m—1)
O(Z M(T1781="'7TP178P1) Aﬂ (r1,81,--,Tpy »8q1 )

-1
<X)-]\4(7“p1+1,sp1+17 ) )A(m :

= Tp1+p2,Sp1+p2 B (Tpy+1,5p1+15--Tp1 +p2+5p1 +p2)
®id§q1 ® id%qz)
O(Aﬁ (P14 Frpy 814 F8py Ty +1FFTpy +po Spy +1++5p; +ps) ® ldgk)
— (*®1d )<'i—1®'j—1®'k—1)

— Z Z p1—1 ® .‘h—l) ® Mp%qz)

r>1

(p1—1) - 1®q
O(Z M(leslruﬂ'mvspl) Aﬁ (r1,81,--,7p1 18q71 ) ®ldv 1

®M( A(pz—l) ®id§q2)

Tp1+1:Sp1+15--Tp+po 75p1+p2) B (Tp1+1,sp1+1,...,7'p1 +pgsSpy +p2)

@ty . ®g
O(ldV ® /8TP1+1+"'+SP1+P27‘11 ® ldV )

Rk
(AB T1+ +Tp1751+ +5p177’p1+1+ +Tp1+p273p1+1+ +5p1+p2 ®1d )

— *(* ® ldv)(-lil ® J-1 ® _kfl)

_ ZZ * p1—1 Q .Q1—1) ® Mpz,qz)

r>1

(p1—1) . 184
O(Z M("’lyslru»rplyspl) Aﬁ ('r’l,Sl,...,Tpl,Sql) ®ldV '

1 .
®M(rp1+1,spl+1,..., A(m ) ®1d§(p)

Tp1+pasSpitpa) B (Tp14+1+8p1+15--5Tpy +p2+Sp1 +p2)
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© Aﬁ73a(71+'”+7’p1’51"‘""1’51@17‘1177’p1+1+"'+rp1+z72’3p1+1+"'+5p1+p2v‘p)
: i—1 —1 k—1
= *(* R 1dv)(.Z RIT®. )
. ip—1 o joq—1 o k—r—1
Y (sr@idy)(r g Al R

pHg+r<it+j+k
s s—1 - 1®s
® Z Msr o ((M® © A/(B )) ® ldg ) © A313,(i—P»j—Q7k—T1P7Q»T)
s>1

— *(ldv ® *)('i—l ® J-1 ® 'k—l)
Y (rldvexre e i

prqt+r<it+j+k
. ~1
® Z Mps o <1d§p ® (M®* o A(gs ))) 0 Ag 3 (i—p,j—ak—rp.ar)
s>1
jt+k

= S Myo (id¥ @ (M o 25071)).
=1

The third equality follows from the induction hypothesis and the associativity of *. And
here Ag g3 (i jkimn) Mmeans the composition of Agy : VEFTkgy@itmgyeitn _, 7(1/)%6
with the projection from T'(V)®¢ to V¥V ®IQVekgVlgyemgyen, O

Let Asyp be the category of unital 2-YB algebras and Agp_ be the category of quan-
tum B-algebras. By the above proposition, we get a functor

(—)oBw : A2y — Ags.,

by (V)QBoo = (V7 M? O) for any (‘/a *, '70) € AQyB-

By the above proposition, we have immediately that:

Corollary 2.50. Let (V, M, o) be a quantum Bu,-algebra and (T'(V'), x,m, 3) be the 2-YB
algebra with product x = e @e+ ) o, M®”A_g(n71)
inclusion i : V. — T(V) is a (]ﬂmtum_Boo—algebm morphism, i.e., i o My, = M, 0 (i® ®
i®9), for any p,q > 0. Here M,, is the quantum By -algebra structure on T(V') defined
above.

and m the concatenation. Then the



Chapter 3

Quantum quasi-shuffle algebras

3.1 Introduction

Quasi-shuffle algebras are the generalization of shuffle algebras. As we know, they are first
constructed by Newman and Radford (|20]) for the study of the cofree irreducible Hopf
algebra built on an associative algebra. For an algebra U, Newman and Radford defined
an associative algebra structure on 7'(U) by combining the multiplication of U and the
shuffle product of T'(U). These algebras have their particular interest in many branches of
algebras and a number of applications have been found in the past decade. For example,
they can be applied to commutative TriDendriform algebras [18], Rota-Baxter algebras
[5], multiple zeta values [11].

After the birth of quantum groups, many algebraic objects had better understandings
in a more genenral framework, the braided category. For instance, shuffle algebras, special
examples of quasi-shuffle algebras, had been quantized in [26] ten years ago, and led a
more intrinsic understanding of quantum enveloping algebras. The next task is to find
a suitable way to quantize the quasi-shuffie algebra. There were some attempts, for
example, [1] and [11]. In Chapter 2, the quasi-shuffle algebra structure is quantized in
the spirit of quantum shuffle algebras (|26]), by replacing the usual flip by a braiding.
The resulting algebras, called quantum quasi-shuffle algebras, are the generalization of
quantum shuffle algebras and provide YB algebras. Since there are many good properties
for quasi-shuffie algebras, we hope that the quantum one can also share some of them or
some “g-analogues‘. The aim of this chapter is to provide some interesting properties of
these new algebras.

3.2 Properties of quantum quasi-shuffle algebras

We first illustrate the quantum quasi-shuffle algebra by some examples.

69
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1. Let (H, F') be the Woronowicz’s YB algebra. Then the first three products of the
quantum quasi-shuffle algebra (T'(H), xp (3) are: for any a,b,c € H,

aMF/b—ab—i-a@b—l—Za(l)bS 2)) ® ags),

(@®b) xpe = a®bet Y abuyeS(be) @ b,
+a®@b®c+ Y a®buycS(be) @ b
—i—Za(lb(lCS( b )®a ®b(3),

and

aXp (b®c) = ab®c+z ) ® ag)c
+a®b®c+§:mﬂﬁ 2) ® ag) ® ¢
—|—Za bS(aw)) ® agcS(aw)) ® ag).

2. Let V be a vector space with basis {ej,...,e,}. We define a braiding o on by
o(e; ® e;) = gije; ® e; for some non zero scalars ¢;;. For I = {iy,...,i} and J =
{j1,-- -, Jr}, set qr; = Hre{l kyseit, 1y Birs- We use e, - - - e;, to denote e; m, - - mye;, .

..........

Since x,s(6, xS;) = (65%x6,)x»s and all expressions are reduced, we have 5((e;, - €;,)®
(eik+1 T 6ik+z)) - qIJ(eik+1 T eik+z) ® (6i1 T eik)' Then

(ei1 e eik) Xo (eik+1 U eik+l)
(eh e eik+z)
+<6i1 Tt 6%) & (eik+1 e eik.H) + qIJ(eik-H e eik+l) &® (6,’1 e eik)?

(i €i) @ (Cipyy ** Cirer)) Mo (Ci iy " Ciprram)
= (e €i) @ (Cipyy = Ciprrym)
‘(e - i Cijprpr " eik+l+m) ® (eik+l+1 T 6ik+z+m)
(e ei) @ (Cipy i) @ (Cipprpy * Ciggrim)
+qrrc(€iy - €i) @ (€ipprsr ** Cinprom) @ (€ipyy = €ipy)

+QIKQJK(6ik+l+1 s €¢k+,+m) ® (€ €5,) ® (ez‘k+1 T eik_H)-

and

(ei1 to eik) Mo ((eik+1 T eik+z) ® (eik+z+1 T eik+l+m))

= (eh T eik-H) ® (eik+z+1 e 6ik+l+m)
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+QIJ(eik+1 T eikH) ® (6i1 € Cign T eik+l+m>
+(€i1 e eik) ® (eik+1 e eikH) ® (eik+l+1 e eik+z+m)
+qIJ(eik+1 e 6ik+l) ® (eil e eik) ® (eik+z+1 e eik+z+m)

+QIJ(]IK(€ik+1 e eik+z) ® <€ik+z+1 e eik+z+m) ® (eil T eik)'

We recall the following inductive relation: for any us,...,u;,vi,...,v; € A,

(u1®.®ul) NO’ (/Ul®...®/uj>
= ((u1®"'®uz‘) X (U1®"'®Uj_1)®vj)
+<Nm'—1,j ®idA)0i+j_1 oo Ji(ul R QU QU R R Uj)
+(Naifl,j71 ®m)0i+j72 < -Ui(ul R QU QU Q-+ ® Uj) (3.1)
where X,;; means the restriction of x, on VE*@V®!

Let (V, o) be a braided vector space. M = &M, : T°(V)®? — V is a linear map such
that Mg = idy = My and M;; = 0 except for the pairs (1,0), (0,1) and (1,1). Define

*=e@e+ ) 5 Mo A_ﬁ(n_l). Then we want to find out the necessary and sufficient
conditions for making (7°(V), x) into a YB algebra.

Theorem 3.1. For a braided vector space (V,o) and the above (T(V),*,(3) is a YB
algebra if and only if (V, Myy,0) is a YB algebra.
Proof. Obviously, if (V, My1,0) is a YB algebra, then the result holds.

Conversely, if * is associative, then for any u,v,w € V,

uxv = (e@e+Mol;" + M oA, (ugw)

= M (u®w)
+MP?(10810(u®1)@v + 186 (u@v)®1
Fu@Boo(181)@v + u®PB1 (18v)®1
—(181)@(ugv) — (ugv)®(131))

= Mu(u®v) + (Mo ® Mio)(1@0 (ugv)®1)
+(Mig @ Mor)((u®1)@(18v))

= M (u®v) + u®v + o(uQv)

= M (u®v) + umyv.

(u®wv)*w



72

And

CHAPTER 3. QUANTUM QUASI-SHUFFLE ALGEBRAS

= (e@e+ Mo, + M2 oA"Y + M0 557 (u® vaw)
= M® 1380 (u @ v®1)@w + u B (ve1)Qw

+(u ® v)®Foo(181)@w + 1881 (u ® vOW)®1

+u®Bi1 (v@w)®1 + (u ® v)@Bn (1ew)®1

—(181)@(u ® vew) — (u @ VW)X (181)]

+M® (Ag(ual)@(v0w) + Ag(u @ ve1)@(10w)

+(Ap @ M) (1831 (u ® v@W)®1)

+(Ap @ M) (u@bn (v@w)@1))
= u® M (v@w) + (M1 @ M) (u®c (v@w)R1)

+ M (18850(u @ v21)21R(18w) + uRbio(v21)R1@ (1@w)

‘|‘(U & ’U)@ﬁo()

191)@18(1gw) — (181)8(u @ ve)®(1Qw)

= u® Mpj(v@w) + (M ®idy)(u®@ o(v @ w))
+u@uvuw+o(u®@v®w) + o102(u®@ v w)
= u® My (v@w)+ (M @idy)(u® o(v @ w)) + (u ® v)mw.

ux (V@w)= Mp(uv) @ w+ (idy ® M) (o(u®v) @ w) + umy (v @ w).

(u*v)*w

u* (v w)

(M1 (u®v) + um,v) * w

My (Mg (u@v)@w) + My (u@v)mew

+(idy @ M) (umev@w) + (M @ id)(idy ® o) (um,o@w))
+um, v, w

Moy (M @ idy) + (idy + 0)(Mys @ idy)

+(idy ® My1)((idy + o) ®idy)

+(Miy @ idy) (02 + 0201)] (uRVRW)

+ UM, VT, W.

u s (M (v@w) + vmyw)
My (u@ My (v@w)) 4 umy My (v@w)
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+(My ® idy ) (u@vmew) + (idy ® M) (o ® idy ) (u@uvm,w))
+ UM, VI, W
= [Mu(idv ® M) + (idy + o) (idy ® M)
+(My ®@idy)(idy @ (idy + o))
+(idy ® Miq)(o1 + 0102) | (u@v@w)

‘U, v, W.

(uxv)*w=wux*(v*w)if and only if
My (My; ® idy) + My @ idy + o(My; @ idy)
—|—1dv X Mll + (ldV (024 Mll)o—l + (M11 X idv)O’g + (M11 X idv)O’gUl
= M (idy ® Myp) +idy ® My + o(idy ® Miq)
+My; @ idy + (M @ idy)oe + (idy ® Mip)oy + (idy @ Miq)oy0o,

ie.,

Mll(Mll X ldv) + O'(Mn X ldv) =+ (M11 & idv)O'QO'l
= M (idy @ My1) + o(idy ® Myy) + (idy ® Myy)oi09.

By comparing the degree of the result tensor vectors, we must have M (M ® idy) =
Mll(idV X Mll)-

On V@V, (idv®*>0'10'2 = U(*@ldv) It 1mphes that (idV®M11)0102+(idV®HIO-)O'10'2 =
o(My; ®idy )40 (m, ®idy ). Comparing the degree, we get (idy ® Mi;)o109 = (M7 ®idy).
Similarly, we have (M1 ® idy )os01 = o(idy ® Myy). O
Definition 3.2. A quadruple (H,-, /A, o) is called a twisted YB bialgebra if

1. (H,-,0) is a YB algebra,

2. (H,\,0) is a YB coalgebra,

3. - H® H — H 1is a coalgebra map, where H ® H 1is equipped with the twisted
coalgebra structure. Or equivalently, N\ : H — H ® H is an algebra map, where H ® H is
equipped with the twisted algebra structure.

From the condition 3 above, we have that A(1) =1® 1.

Examples. 1. Let (V,0) be a braided vector space. Then the quantum shuffle algebra
(T,(V),4,5) is a twisted YB bialgebra (see [20]).

2. Let (V,m,0) be a YB algebra. Then the quantum quasi-shuffle algebra (7¢(V), x,,
,3) is a twisted YB bialgebra with the deconcatenation coproduct 4.
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We denote by C'Byp the category of connected twisted YB bialgebras. It consists of
the following data:

1. the objects of C'Byg are the twisted YB bialgebras (H, -, A\, o) such that both H
and H ® H are connected, where H ® H is equipped with the twisted coalgebra structure;

2. a morphism f from object (Hy, o) to object (Hs,03) is both an algebra map and
a coalgebra map and satisfies that (f @ f)oy = o2(f @ f).

It is easy to see that both (T'(V), m,,d, 3) and (T°(V), X, 0, 3) are in C Byp.
Lemma 3.3. Let (Vi,01) and (Va,02) be two braided vector spaces and f: Vi — Vs be a
linear map such that oo( f @ f) = (f ® f)oy. Then for any i,5 > 1, T;gfj(f®Z~ ® f®7) =
(% @ FTEn.

Proof. We use induction on ¢ + j.

When ¢+ = j =1, it is trivial.

For i +j > 3,

(e fY) =

Xij

TP ®@idy,)(idy @ T ) (f* @ f7)

T @idy,)(fS @ TR (f @ [))

NG ®1dv2)(f®i 'e fYe Hidy T e Ty )
f®ﬂ ®f®l)(T"? ,®idy)(idy T @ T )
f@ﬂ ® f@Z)TUl

Xij®

(
(
= (I}
(
(

Let (V,m, o) be a YB algebra. We have the following universal property in C'Byg:

Proposition 3.4. For any (H,-,\,«) € CByg and a linear map f : H — V such that
mo (f®@f)=fo-, f(1)=0and (f® fla =o(f ® f), there exists a unique morphism
f:H—(T(V),X,,0,03) which extends f.

Proof. Since f(1) = 0 and H is connected, there is a unique coalgebra map f : H — T¢(V)

which extends f. More precisely, f = ey + Zn21 Fen 6 A—H(n—l)‘

We first prove that 3(f ® f) = (f ® f)a. We only need to verify it on H @ H.
sFef) = B (P @)@ Y ebg")
ij>1

= Y, e @ e sl

1,j>1

_ Z(f@] ®f®z) (A ~—(i—1) AH(j_l))

i,5>1
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= YU oG e Bs

= <7_® fe.

The third and the forth equalities follow from the above lemma and Lemma 2.39 respec-
tively.

The next step is to prove that f is an algebra map. We define two maps:

F:H®H — T(V),
h@g — f(h) %, f(g),

and

F,:H®H — T(V),
h®@g — f(hg).

We claim that both F} and F, are coalgebra maps, where H ® H is equipped the twisted
coalgebra structure.

Indeed,

5OF1 = Jo Ng(7®7)

idray ® B®idray) (0 ®0)(f & f)

idroy ® B®idpay) (0o f®@do f)

idr) ® B @idrw)(f@ @ f@ ) (A © Lp)
foB(fef)® f)Ay @ Ag)

F @ F)(idg ® a®idg)(Ag @ Ag)

e N N N N T T
X
9q
X
q
~— — — ~—
~, /™~ I/~

And

For any h,g € H, we have

PT’V o Fl(h®g) = PTV(T(}Z) No ?(g»
= Pro(X M= 5" (F () @ F(9))

n>1
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= M(f(h)® [(9)) | |
Y My @ £ BT © B ()

i,j>1

= Mu(f®f)(h®g)
= fo:(h®g)

= PryoF(h®g).

Since H ® H is connected with the twisted coalgebra structure, F; = Fy follows from the
Corollary 2.30. [

Definition 3.5. A YB algebra (A, m,0) is called twisted commutative if m oo = m.

Examples. 1. Let (A4, m) be an algebra. Then the trivial YB algebra structure (A, m, 1)
is twisted commutative if and only if A is commutative.

2. Then quantum exterior algebra (S,(V),A,.7) is a YB algebra. Moreover it is
twisted commutative.

Lemma 3.6. Let o be a braiding on'V such that o® = id®%. Then the braiding 3 on (V)
also satisfies that 3% = id?(zv).

Proof. We prove the statement for 3;; by using induction on i + j.
When i = j =1, it is trivial since (517 = o.

For i +j > 3,

Bjiofij = (Bj—1:® idv)(id{(’?j*1 ® 511)(1(1{(?%1 ® Bin)(Bij—1 ®idy)
17

If o = 47, then 02 = id{%?. The first nontrivial example is the g-flip 7.

Theorem 3.7. Let (V,m,o) be a YB algebra. Then he quantum quasi-shuffle algebra
(T(V), Mg, B) is twisted commutative if and only if (V,m, o) is twisted commutative and
o? =id$?.

Proof. 1f (T°(V'), X,, 3) is twisted commutative, then on V@V we have

m+idS> + 0 = m+m,

Mo1,1

Xs1,1 OO

= moa+0+02.
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Comparing the degree, we have that m = mo o and o2 = id{‘?.
Conversely, we use induction on i + j where i and j are the powers of V@V @/,
When ¢ = j =1, it is trivial.

For i 4+ j > 3, we use the inductive relation (3.1).

Moji O
= (Moji1 ®idy)(Bim1; @ idy)(idy' ™ @ bu )
+ (M)t <§§>idv)(id%j_1 ® 51,i)(id%j_l ® Bi1)(Bij—1 ®@idy)
H(Mojori-1 ©m)(idy T ® B @ idy)
o(idy’ ™' ® 11 @ idy) (idy ™ @ Bi1) (B0 @ idy)
= ((Mojim1 00i-1) @idy) (idy" ™ @ Buy)
+(Xojo1,i ®idv)(id§j_l ® (ﬁuﬁzl)) (Bij—1 ®idy)
+(Mpj1ic @m)(AdY T @ (Brio1Bi11) ®@idy)(idS 2 @ B11) (B @ idy)
= (Mo @idy)(idP' ™ @ Br )
+(Mgjo1,; Ridy) (8,1 ®idy)
+(Mgj1,i-1 ®M)(Bij-1 @ idy)

= Mgij -

7
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