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Résumé

Dans cette these, nous nous intéressons a I’étude des géométries des réseaux dans PU(2,1),
en d’autres termes, construction des domaines fondamentaux de ces réseaux pour leur ac-
tion dans ’espace hyperbolique complexe. Dans le troisieme chapitre, nous construisons
un domaine fondamental pour la sceur du groupe modulaire d’Eisenstein-Picard et cal-
culatons le volume de son orbifold de quotient par la fomula de Gauss-Bonnet. Dans
le quatrieme chapitre nous donnons les generateurs des groupes modulaires euclidiens de
Picard PU(2,1;04) ou d = 2,7,11. De plus, domaines fondamentaux des stabilisateurs
de 'infini sont obtenu ainsi que de leurs présentations. Dans le cinquiéme chapitre nous
donnons une nouvelle construction des domaines fondamentaux pour certains groupes de
Mostow, qui sont engendrés par trois réflexions complexe d’ordre 3. Ces domaines sont une
généralisation naturelle du domaine de la sceur du groupe modulaire d’Eisenstein-Picard.
Comme application, nous calculons la cohomologie de la surface d’Eisenstein-Picard et sa
soeur & coefficients locaux dans le dernier chapitre.

Mots-clefs

Réseaux - Space hyperbolique complexe - Domaine fondamental - Bisecteur - Groupes modulaires
de Picard - Groupes de Mostow - Cohomologie - Coeflicients locaux

Geometry of complex hyperbolic lattices

Abstract

This thesis concerns the study of the geometry of lattices in PU(2, 1), in other words, con-
struction of fundamental domains for these lattices for their action in complex hyperbolic
space. In the third chapter we construct a fundamental domain for the sister of Eisenstein-
Picard modular group and compute the volume of its quotient orbifold by Gauss-Bonnet
fomula. In the fourth chapter we give the generators of the Euclidean Picard modular
groups PU(2,1;0,4) where d = 2,,7,11. Furthermore, fundamental domains of their sta-
bilizers of the infinity are obtained as well as their presentations. In the fifth chapter we
give a new construction of fundamental domains for certain Mostow groups, that are gen-
erated by three braiding complex reflections of order 3. These fundamental domains are
a natural generalization of the domain for the sister of Eisenstein-Picard modular group.
As an application, we compute the cohomology of Eisenstein-Picard modular surface and
its sister with local coefficients in the last chapter.

Keywords

Lattices - Complex hyperbolic space - Fundamental domain - Bisector - Picard modular groups -
Mostow groups - Cohomology - Local coefficients
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10 Contents

0.1 Introduction en francais

Cette these consiste en 1’étude de la géométrie de certains réseaux de PU(2,1), & travers
leur action sur I’espace hyperbolique complexe.

Un réseau dans un groupe topologique localement compact G muni de la mesure de
Haar est un sous-groupe discret I' de G tel que le quotient I'\G soit de volume fini.
Nous nous intéressons en particulier au cas ou le groupe de Lie associé est le groupe des
isométries holomorphes de I'espace hyperbolique complexe H(%, et un réseau hyperbolique
complexe est un sous-groupe discret I' de PU(2,1) tel que le volume du quotient H(QC /T
est fini pour la métrique de Bergman.

e Un réseau est dit uniforme ou cocompact si le quotient H?C /T est compact, c’est-a-
dire, s’il existe un domaine fondamental compact de I, et est appelé non-uniforme
ou de covolume infinite sinon.

e Un réseau I' C G est réductible si G admet sous-groupes normaux connexes H, H’
tel que HH' = G, H N H' est discret et T'/(T'N H) - (I'N H') est fini. Un réseau est
irréductible s’il n’est pas réductible. En outre, l'irréductibilité est équivalente a la
condition que pour tout sous-groupe normal connexe H C G et m: G — G/H est la
projection naturelle, 7(I") est dense.

e Deux sous-groupes H; et Hy d’un groupe sont commensurables si leur intersection
Hy N Hy est d’indice fini dans Hy et Ho. Soit G C GL,(K) un groupe algébrique
linéaire défini sur un corps de nombres K. Un sous-groupe I' C G(K) est dit arith-
métique s’il est commensurable avec G(O), ou O est 'anneau des entiers de K.

Les réseaux des espaces symétriques de rang un ont été étudiés depuis longtemps avec
des résultats importants de rigidité et d’arithméticité. Un probléeme fondamental dans
I’étude des espaces symétriques est la relation entre groupes arithmétiques et réseaux. En
général, Borel et Harish-Chandra [BHC62] ont pouvé que dans tout espace symétrique
de type non-compact, les groupes arithmétiques sont des réseaux. En revanche, Margulis
[Mar84] a montré que lorsque le rang de 'espace symétrique est au moins deux, tous les
réseaux irréductibles sont arithmétiques.

Des progres ont été faits pour les espaces symétriques de rang un de type non-compact,
par exemple, les espaces symétriques suivants :

Hip Hg Hy Hp

lesquels sont les espaces hyperboliques respectivement réel, complexe et quaternionique de
dimension n ainsi que le plan hyperbolique sur les octonions de Cayley (voir le chapitre 19
du livre [Mos83]). Dans ces cas, Corlette [Cor92] et Gromov et Schoen [GS92] ont montré
que dans Hij pour n > 2 et dans H(%) tous les réseaux sont arithmétiques. En plus, Gromov
et Piatetski-Shapiro [GPS87] ont donné des exemples des réseaux non-arithmétiques de Hg
pour tout n > 2. L’existence de réseaux non-arithmétiques dans la géométrie hyperbolique
complexe n’a pas été démontrée complétement. Plus précisément, Mostow [Mos80] a
construit une famille de réseaux non-arithmétiques dans le plan hyperbolique complexe
HZ dont nous parlerons ci-dessous. Deligne et Mostow [DMS86] ont trouvé un réseau non-
arithmétique de H%. La question de savoir s’il existe des réseaux non-arithmétiques de H¢:
avec n > 4 est encore ouverte. Il s’agit peut-étre de la question ouverte le puls importante
du domaine.



0.1. Introduction en francais 11

Il existe quatre méthodes de construction de réseaux dans ’espace hyperbolique com-
plexe : les constructions arithmétiques, 1'utilisation de différents espaces de modules, la
géométrie algébrique et la construction des domaines fondamentaux ; voir la papier [Par09]
pour I’étude préliminaire et ses références pour plus de détails. Nous nous intéressons en
particulier aux réseaux dans PU(2, 1) par la construction d’un domaine fondamental dans
HZ. En d’autres termes, il faut trouver un ensemble ouvert connexe D € HZ tel que
DN~y(D) =0 pour tout v € T' — {Id} et U,erv(D) = HZ, ott D est la cloture de D dans
H?C. Une difficulté de cette construction est qu’il n’existe pas d’hypersurfaces réelles to-
talement géodésiques en géométrie hyperbolique complexe, et en particulier pas de notions
naturelles de polyedres.

Une méthode simple de la construction de domaines fondamentaux est de construire le
domaine de Dirichlet centré en un point pg € H¢. Le domaine de Dirichlet est I’ensemble
des points de H qui sont plus proches de py que de tout autre point dans la I'-orbite de py.
C’est-a-dire, I’objet principal dans cette construction est ’ensemble des points équidistants
a deux points donnés, qu’on 'appele un bissecteur. Le premier exemple de domaine de
Dirichlet hyperbolique complexe est attribué a Giraud [Gir21] ; voir également ’annexe A
de Goldman [Gol99]. Une généralisation naturelle du domaine de Dirichlet est le domaine
de Ford, voir la section 9.3 de [Gol99]. Ici le point zy se trouve sur OHE et la distance
est remplacée par une fonction de Busemann centrée en zy. Les courbes de niveau d’une
fonction de Busemann sont les horosphéres. Les faces du domaine de Ford sont contenues
dans des bissecteurs appelés sphéres isométriques par rapport a la métrique de Cygan, une
métrique naturelle sur le groupe de Heisenberg. Comme le stabilisateur de zg est infini, on
peut obtenir un domaine fondamental en considérant l'intersection du domaine de Ford
avec un domaine fondamental du stabilisateur.

Typiquement, un domaine fondamental est un polyedre localement fini D muni d’une
structure combinatoire. Les faces de codimension 1 de D, appelées faces, peuvent étre
parmi une grande variété d’hypersurfaces réelles (par exemple des bissecteurs, C-spheres
et R-spheéres), mais il doit exister des isométries d’appariement: chaque face doit étre
envoyée bijectivement sur une face (peut-étre lui-méme) par une isométrie d’appariement
dans PU(2,1). Le théoréme du polyédre de Poincaré donne les conditions permettant
d’affirmer que le groupe engendré par les isométries d’appariement est discret, que D
est un domaine fondamental et on obtient une présentation de ce groupe. Une autre
conséquence du théoreme de Poincaré, est qu’on peut obtenir la caractéristique d’Euler de
I’orbifold et ainsi de calculer le volume par la version hyperbolique complexe du théoréme
de Gauss-Bonnet. Nous donnons quelques exemples de domaines fondamentaux explicites
qui ont été construits pour des réseaux de PU(2,1).

o L’un des réseaux arithmétiques les plus simples de PU(2,1) est le groupe modu-
laire d’Eisenstein-Picard PU(2,1,Z[w]) comprenant des matrices dont les entrées
sont toutes dans les coefficients d’Eisenstein Z[w] ol w est une racine cubique de
l'unité. C’est I'un des premiers exemples de Picard [Pic83] dans PU(2,1) et c’est
la généralisation naturelle du groupe modulaire classique PSL(2,Z) dans PSL(2,R).
En fait, Picard [Pic83) [Pic84] construit une famille de réseaux arithmétiques notés
PU(2,1;0,), ce qu’on appelle groupes modulaires de Picard, on Oy est anneau des
entiers dans le corps de nombres quadratique imaginaire Q(Z\/&) La géométrie du
groupe PU(2,1,Z]w]) a été étudiée par Falbel et Parker dans [FP06]. En d’autres
termes, ils ont construit un domaine fondamental muni de la structure combinatoire
la plus simple possible. Ce domaine est un 4-simplexe, qui est un céne géodésique
construit & partir d'un 3-simplexe avec un sommet idéal (le point fixé parabolique).
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Cette construction est tout a fait analogue au 2-simplexe avec un sommet idéal qui
est le domaine fondamental pour le groupe modulaire classique PSL(2,7Z) dans le
plan hyperbolique H%:

Un autre groupe modulaire de Picard est appelé groupe modulaire de Gauss-Picard
dont lanneau associé est Z[i], noté PU(2,1;Z[i]). Francsics et Lax ont décrit dans
[FLO5L [FLa05] un domaine fondamental pour ce groupe. Leur domaine fondamental
est seulement semi-explicite et ne comprend pas ’analyse de la combinatoire. Plus
récemment, Falbel, Francsics, Lax et Parker [FEP10, [FFLP11] en construisent un
domaine fondamental & partir du domaine de Ford, qui est analogue au cas de
PU(2,1,Z]w]). 1l peut étre obtenu par l'intersection du domaine de Ford avec un
domaine fondamental pour le stabilisateur. La différence est principalement due au
fait qu’il y a trois arétes compactes qui sont contenues dans trois spheres isométrique
respectivement.

Dans son célebre article [Mos80], Mostow a étudié de nouveaux exemples de sous-
groupes de PU(2,1) engendrés par trois réflexions complexes d’ordre p (p = 3,4,5)
et a montré que ces sont des réseaux hyperboliques complexes en construisant des do-
maines fondamentaux de Dirichlet. Toutes les faces de codimension 1 sont contenues
dans des bissecteurs. Comme nous l’avons mentionné, ’absence d’hypersurfaces
réelles totalement géodésiques donne lieu a la difficulté de comprendre ’intersection
de deux bissecteurs. Il y a eu quelques erreurs mineures dans la construction de
Mostow, voir [Der05]. Une autre de construction des domaines fondamentaux pour
les mémes groupes a été proposée par Deraux, Falbel et Paupert [DFPO05].

Ron Livné dans sa these [Liv81] a construit une famille de réseaux dans PU(2,1) par
utilisant des techniques issues de la géométrie algébrique. Parker [Par(06] a utilisé
la méthode de Thurston pour donner une construction géométrique des réseaux de
Livné. Plus précisément, il a construit un polyedre fondamental pour les groupes
de Livné, chaque aréte de laquelle est contenue dans un bissecteur. Un lien entre
les groupes de Livné et le groupe modulaire d’Eisenstein-Picard provient de la de-
scription du domaine fondamental. Le polyédre fondamental dans [Par06] est un
cOne géodésique obtenu a partir d’un tétraédre vers un triangle géodésique sur une
droite complexe. Si cette droite complexe dégéneére en un sommet idéal, les groupes
de Livné devient le groupe modulaire d’Eisenstein-Picard. En d’autres termes, cette
configuration limite correspond a un domaine fondamental pour le groupe modulaire
d’Eisenstein-Picard qui est différente de celle de [FP06]. Plus récemment, Boadi dans
sa these [Boll] a utilisé la méme approche que pour les groupes de Livné pour con-
struire des domaines fondamentaux pour les groupes de Mostow du premier type
mentionné dans [Par09]. Le domaine fondamental, dans la construction de Boadi,
est composé de deux simplexes en dimension 4 recollés sur la face commune en
dimension 3.

D’autres exemples viennent de représentations de groupes triangulaires hyperboliques
dans PU(2,1). Par convention, nous adoptons les notations suivantes pour ces
réseaux. Soit (p,q,r) un groupe triangulaire hyperbolique avec 1/p+1/q+1/r < 1,
défini comme étant le groupe de Coxeter avec la présentation,

(a1, 02, 03] 0?03, 63, (a2a3)", (a301)7, (010)")

Nous pouvons considérer une famille de représentations p; : (p,q,7) — PU(2,1).
Nous définissons I'(p, ¢, 7; n) comme 'image d’une représentation non-fidele p;(p, ¢, )
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ou pi(arasasas) est un élément elliptique d’ordre n. Deraux montre dans [Der06]
que le groupe I'(4, 4, 4; 5) est un réseau cocompact de PU(2,1). Parker et Thompson
[PT10] ont construit un domaine fondamental pour le réseau de Deraux et ont donné
la présentation

<al, az, ag| a?, (a;a;)?, (a;aja;)'?, (aiajakaj)5> .

De plus, Thompson dans sa these [Thol0] a découvert deux nouveaux réseaux dé-
formés du groupe trianglaire hyperbolique, I'(3,3,4;7) et I'(3,3,5;5). Il a construit
conjecturalement leur domaines fondamentaux. La méme construction des domaines
fondamentaux pourrait étre effectuée pour tout I'(p, ¢, 7;n) ot ajazas est un élément
elliptique régulier d’ordre fini. Plus explicitement, le domaine fondamental consiste
en un cone de dimension 4 sur une région de dimension 3 connexe bornée de H(Qc
avec un point cone (le point fixé de ajazas).

Soit X = G/K un espace symétrique de type non compact, ou G est le groupe des
points réels d’'un groupe algébrique semi-simple G défini sur Q. Soit I' C G un réseau
arithmétique et (E, p) un I'-module. Comme 'espace localement symétrique I'\ X est un
K(T', 1), le groupe de cohomologie I" est isomorphe & la cohomologie de ’espace localement
symétrique, c.-a-d.

H*(T,E)= H* (T'\X;E),

ou E désigne le faisceau associé au systéme local sur (le variété ou 'orbifold) I'\ X défini
par (E, p). Une épine est un déformation rétracte I'-équivariante Xo C X telle que T'\ X
est compact s’il existe. Des exemples d’épines explicites ont été construits pour quelques
I'. Par exemple, Soulé dans [Sou78] a trouvé une épine pour SL3(Z) et le cas des groupes
euclidiens de Bianchi SLy(Oy) (oud = 1,2,3,7,11) a été traité par Mendoza dans [Men79].
Plus généralement, Ash [As77, [As84] a utilisé la méthode de well-rounded retract pour
construire une épine pour tous les espaces symétriques linéaires. Cette méthode peux étre
appliquée pour les groupes algébriques ou les points réels sont isomorphes & un produit
des groupes suivants [FK94] :

o GL,(R) ;

« GLn(C);

e GL,(H) ;

e O(1,n—1)xR*;

 Le groupe de Lie noncompact d’algebre de Lie eg(_g6) © R.

Pour quelques exemples en petite dimension, la cohomologie a été calculée combinatoire-
ment & partir de la structure cellulaire d’une épine dans [As80, [Men79, [Sou78, [SV8&3].

Plus récemment, Yasaki a construit dans [Yas06] une rétraction sur une épine pour
groupes en Q-rang 1. Comme application, il a construit dans [Yas08] une épine explicite
pour I' = SU(2, 1; Z[i]) et calcule la cohomologie de HZ /T & coefficients locaux.

Plan de theése

Le plan de cette these est le suivant. Les principaux résultats se répartissent en trois
grands chapitres, tous les trois indépendants, comportant chacun une introduction.
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Dans le premier chapitre nous rappelons les deux modeéles du plan hyperbolique com-
plexe H%, les isométries hyperboliques complexes et leur classification. Trois types de
sous-variétés totalement géodésiques seront décrites. En plus, nous discutons de la projec-
tion orthogonale sur une géodésique complexe qui sera utilisée dans la these. Le domaine
de Siegel a la méme structure que le modele du demi-espace supérieur de I'espace hy-
perbolique réel. De plus, le bord s’identifie au compactifié en un point du groupe de
Heisenberg. Nous définissons la métrique de Cygan sur le groupe de Heisenberg et de la
spheére de Cygan. La référence générale pour ce chapitre est le livre de Goldman [Gol99]
ou Parker [Parl0].

Nous passons en revue, dans le deuxiéme chapitre, la définition d’un bissecteur qui
est 'ensemble points a égales distances de deux points donnés. Un bissecteur est une
hypersurfaces analytiques réelles dans HZ, ce qui est difféomorphe & R3. Ces hypersurfaces
jouissent de deux décompositions naturelles dans les sous-variétés totalement géodésiques
; voir[Mos80l, [Gol99]. Les sphéres isométriques sont des exemples des bissecteurs. Nous
construisons des polyedres dont les faces de codimension un peuvent étre contenues dans
des bissecteurs ou spheres isométriques dans les chapitres suivants. Nous passons en revue
le théoréme du polyedre de Poincaré qui sera d’usage constant tout au long de la theése.

Dans le troisieme chapitre, nous construisons un domaine fondamental explicitement
pour un groupe (que nous appelons la sceur du groupe modulaire d’Eisenstein-Picard)
noté Gy. Ce groupe a d’abord été défini par Parker dans [Par98], ou il montre que les
surfaces modulaires d’Eisenstein-Picard et HZ /Gy sont des candidats pour étre 'orbifold
hyperbolique complexe avec cusp de volume minimal. Stover dans son article [StolQ] a
affirmé que ce sont précisément les deux orbifolds hyperboliques complexes de volume
minimal. Nous énongons le résultat principal de ce chapitre :

Théoréme 0.1.1. I existe un domaine fondamental pour Ga, qui est un cone géodésique
sur un prisme (voir la Figure vers (oo, avec les isométries d’appariement I1, R, S et
T. Par conséquent, le groupe Ga engendré par I, R, S,T est discret et a la présentation :

6 __ —-1Q\3 _ _ Q21
G2:<11,R,S,T]§ = (B 8)° =R, T] = S°T >

(T'L)P=S'h)=R 11} =1d

Ce troisieéme chapitre a été publié dans Mathematical Proceedings of Cambridge Philo-
sophical Society [Zh11].

Le quatrieme chapitre est consacré a donner les générateurs des groupes modulaires de
Picard PU(2,1;Oy4) ou anneau d’entier Oy est Euclidien, c’est a dired = 1,2,3,7,11. En
particulier, le cas de Op et O3 ont déja été étudiés dans de nombreux aspects. Par exemple,
le domaine fondamental explicite de ces deux groupes a été obtenu dans [FEP10, [FP06].
Il y a peu de résultats pour les autres groupes modulaires de Picard. Chaque élément du
groupe modulaire de Gauss-Picard peut étre décomposé en un produit des générateurs
par un algorithme simple [FFLP11]. Nous avons commencé par essayer de construire les
domaines fondamentaux pour ces groupes PU(2,1;04) d’apres la méthode utilisée par
Falbel et Parker dans [FP06]. Cela a conduit & un domaine qui était trop complexe a
comprendre. Enfin, un résultat de construction de domaine fondamental nous permet
de donner les générateurs pour les groupes modulaires euclidiens de Picard de maniere
géométrique. Nous énoncons plus précisément :

Théoréme 0.1.2. Les groupes modulaires euclidiens de Picard PU(2,1;04) otud =2,3,7
sont engendrés par une involution, une rotation de Heisenberg, deux rotations spirales de
Heisenberg et une translation verticale.
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Essentiellement, cette méthode peut étre appliquée sur le cas de Q4 dont le nombre de
classe est un. Cette classe est plus grande que celle des O4 ot Oy est Euclidien. Toutefois, il
est plus difficile de déterminer la collection finie des spheres spinales contenant le domaine
fondamental pour le groupe cuspidal lorsque d est plus grand.

Ce chapitre a été accepté pour publication dans Transactions of American Mathemat-
ical Society.

Le cinquiéme chapitre consiste en 1’étude des réseaux de Mostow I'(p, k), basée sur
le fait que la sceur du groupe modulaire d’Eisenstein-Picard qui est un cas particulier
du réseau de Mostow I'(3,6). Mostow [Mos80] a considéré tout d’abord une famille re-
marquable des groupes engendrés par trois réflexions complexes Ri, Ry, R3 d’ordre p ou
p=3,4,5. Le fait que ces groupes soient discrets a été vérifié par la construction d’un do-
maine fondamental pour leur action. Apres le travail de Mostow, Deraux, Falbel et Paupert
[DFPO05] ont construit un nouveau domaine fondamental qui est plus simple que celui de
Mostow, mais surtout qui permet 'utilisation de la synthese des arguments géométriques.
Nous donnons maintenant une autre construction de nouveaux domaines fondamentaux
pour certains réseaux de Mostow I'(3, k) ou les valeurs de k satisfont 1/k+1/l = 1/6 pour
un entier . L’idée principale de ce chapitre est inspirée par la construction de [Par(6].
Plus de motivations et de résultats peuvent étre trouvés dans I'introduction détaillée de ce
chapitre, ainsi que quelques notations. Le groupe I'y est I'un des réseaux de Mostow que
nous considérons avec les générateurs géométriques I, R, S et T. Notez bien que nous
utilisons les mémes notations que dans le troisieme chapitre, mais ces générateurs sont des
produits de Ry, R, R3 et J, qui sont les générateurs de l'article original [Mos80]. Nous
résumons les résultats :

Théoréme 0.1.3. Le groupe I'y C PU(2,1) est discret s’il existe un entier | tel que
1/k+1/l=1/6, c.-d-d., la paire ordonnée (k,l) est dans la liste

(7,42), (8,24), (9,18), (10,15), (12,12), (15,10), (18,9), (24,8), (42,7).
Dans ce cas, il existe un domaine fondamental D avec les isométries d’appariement donnée

par R = (JRl_lJ)Q, S = JRl_l, T= (JRl_l)z, I = JRl_lJ et les relations cycle donnent
la présentation suivante:

Ty = <R, S, T, 1

Rk — Tl _ (R_15)3 — (T_lfl)g — (5_1[1)3
=[R,T)=1Id, T=S? R=1I} ‘

Le dernier chapitre, motivé par le travail de Yasaki dans [Yas08], est consacré de
calculer la cohomologie de la surface d’Eisenstein-Picard et sa soeur a coefficients locaux.
Cette méthode peut étre généralisée au domaine fondamental d’un cusp. Nous donnons
la cohomologie a Z-coefficients triviaux suivant:

Théoréme 0.1.4. A coefficients triviauz,

S N
-
|
o

H'(HZ/G1;Z) = {

H'(H%/GxZ) =

—N
N
S,
Ll
= o
s
\3[\3
-~
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0.2 Introduction in English

This thesis consists in the study of the geometry of some lattices in PU(2,1) by means of
their action on the complex hyperbolic space.

A lattice in a locally compact topological group G with Haar measure is a discrete
subgroup I' of G such that the quotient I'\G has finite volume. In our particular case
of interest where the associated Lie group is the holomorphic isometry group of complex
hyperbolic space H2, a complex hyperbolic lattice is a discrete subgroup I' of PU(2,1) such
that the volume of the quotient HZ /I" is finite with respect to the Bergman metric.

e A lattice is said to be wuniform or cocompact if the quotient H% /T is compact,
namely, there exists a compact fundamental domain of I and is called non-uniform
or coinfinite-volume otherwise.

o A lattice I' C G is reducible if G admits connected normal subgroups H, H' such
that HH' = G, H N H' is discrete and T'/(I' N H) - (I' N H') is finite. A lattice is
irreducible if it is not reducible. Also, irreducibility is equivalent to the condition
that for any connected normal subgroup H C G and 7 : G — G/H is the natural
projection, 7(T") is dense.

e Two subgroups Hi and H» of a group are commensurable if their intersection Hy N Hs
has finite index in both H; and Hy. Let G C GL,(K) be a linear algebraic group
defined over a number field . A subgroup I' C G(K) is an arithmetic subgroup if
it is commensurable with G(O), where O is the ring of integers of /.

Lattices in rank one symmetric spaces have been studied for a long time with important
results concerning rigidity and arithmeticity. A fundamental problem in the study of
symmetric spaces is the relationship between arithmetic groups and lattices. In general,
Borel and Harish-Chandra [BHC62] proved that in all symmetric spaces of non-compact
type all arithmetic groups are lattices. In contrast, Margulis [Mar84] showed that when
the rank of symmetric space is at least two then all irreducible lattices are arithmetic.

More progress has been made in rank one symmetric space of non-compact type, for
example, the following symmetric spaces:

Hp Hg Hy Hp

which are hyperbolic spaces of dimension n over the reals, complex numbers quaternions
respectively, and the hyperbolic plane over the Cayley octonions (see Chapter 19 of book
[Mos83]). In these cases, Corlette [Cor92] and Gromov and Schoen [GS92] have shown
that in Hfj for n > 2 and in H(%) all lattices are arithmetic. Furthermore, Gromov and
Piatetski-Shapiro [GPS87] have given examples of non-arithmetic lattices in Hy for all
n > 2. The existence of non-arithmetic lattices in complex hyperbolic geometry has not
completely been settled. More explicitly, Mostow [Mos80] constructed a family of non-
arithmetic lattices in complex hyperbolic plane H(2c which we will discuss below. Deligne
and Mostow [DMS6] found a non-arithmetic lattice in HZ.. The question whether there
exist non-arithmetic lattices in H¢ with n > 4 is still open. This is perhaps the most
important open question in the field.

There are four major methods of constructing lattices in complex hyperbolic space
such as arithmetic constructions, use of moduli of different objects, algebraic geometry and
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construction of fundamental domains; see the introductory survey paper [Par09] and its
references for further details. Our particular case of interest is to study lattices in PU(2,1)
by building a fundamental domain acting on H%. In other words, one must find an open
connected set D € HZ so that DNy (D) = () for all vy € T —Id and Uyerv(D) = HZ, where
D is the closure of D inside H(%. The difficulty of constructing a fundamental domain is
mostly due to the fact that there are no totally geodesic real hypersurfaces in complex
hyperbolic geometry, and in particular no natural notion of polyhedra.

One simple method of constructing fundamental domains is to construct the Dirichlet
domain based at a central point pg € H¢. The Dirichlet domain is the set of points in
¢ that are closer to pg than to any other point in the I'-orbit of pg. Namely, the basic
object in this construction is the set of points equidistant from two given points, which is
called a bisector. The first example of complex hyperbolic Dirichlet domain was due to
Giraud [Gir21]; see also Appendix A of Goldman [Gol99]. A natural generalization of the
Dirichlet domain is the Ford domain, see Section 9.3 of [Gol99]. Here the point zg lies on
OHP and the distance is replaced with a Busemann function based at zg. The level sets
of a Busemann function are horospheres. The sides of the Ford domain are contained in
bisectors called isometric spheres with respect to the Cygan metric, a natural metric on
the Heisenberg group. As the stabilizer of zg is infinite, one may obtain a fundamental
domain by intersecting the Ford domain with a fundamental domain for the stabiliser.

Typically, a fundamental domain is a locally finite polyhedron D with some combi-
natorial structure. The codimension one faces of D, called sides, may be contained in a
wide variety of real hypersurfaces (for example bisectors, C-spheres and R-spheres), but
there should exist a set of side pairing maps: each side should be mapped bijectively to
another side (possibly itself) by a map in PU(2;1). Poincaré’s polyhedron theorem gives
conditions under which the group generated by the side pairing maps is discrete with D as
a fundamental domain and moreover one obtains a presentation for this group. Another
consequence of Poincaré’s theorem, is that can obtain the orbifold Euler characteristic
of the quotient and so calculate its volume by the complex hyperbolic version of Gauss-
Bonnet theorem. We give some examples of explicit fundamental domains which have
been constructed for lattices in PU(2,1).

o One of the simplest arithmetic lattices in PU(2,1) is the Eisenstein-Picard modular
group PU(2,1,Z[w]) comprising matrices whose entries are all in the Eisenstein in-
tegers Z[w] where w is the cube-root of unity. This is one of Picard’s first examples
[Pic83] in PU(2,1) and is the natural generalization of the classic modular group
PSL(2,Z) in PSL(2,R). In fact, Picard [Pic83| [Pic84] constructed a family of arith-
metic lattices PU(2,1;Oy4), so-called Picard modular groups, where Oy is the ring
of integers in the imaginary quadratic number field Q(Z\/E) The geometry of the
group PU(2,1,7Z[w]) has been studied by Falbel and Parker [FP06]. In other words,
they constructed a fundamental domain with the simplest possible combinatorial
structure, which is 4-simplex, itself a geodesic cone based on 3-simplex with an ideal
cone point (the parabolic fixed point). This construction is completely analogous to
the 2-simplex with one ideal vertex which is the fundamental domain for the classical
modular group PSL(2,Z) in the hyperbolic plane H{.

e Another Picard modular group is called Gauss-Picard modular group where the asso-
ciated ring is Z[i]. Francsics and Lax [FL05, [FLa05] described a fundamental domain
for this group PU(2,1;Z[i]). Their fundamental domain is only semi-explicit and
did not include analysis of the combinatorics of the fundamental domain. More re-
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cently, Falbel, Francsics, Lax and Parker [FEP10, [FFLP11] construct a fundamental
domain from the Ford domain, which is analogous to the case of PU(2,1, Z[w]). The
fundamental domain for PU(2,1;Z[i]) may be obtained by intersecting the Ford do-
main with a fundamental domain for the stabiliser. The difference is mostly due to
the fact that there are three compact sides which are contained in three isometric
spheres respectively.

In his famous paper [Mos80], Mostow studied new examples of subgroups of PU (2, 1)
generated by three complex reflections of order p (p = 3,4,5) and showed that
these are complex hyperbolic lattices by building fundamental domains, specifically,
Dirichlet domains. All the codimension-1 faces are contained in bisectors. As we
have mentioned, the absence of totally geodesic real hypersurfaces gives rise to the
difficulty of understanding the intersection of two bisectors. There were some minor
errors in Mostow’s construction; see [Der05] . Another construction of fundamental
domains for the same groups was given by Deraux, Falbel and Paupert [DFEP05].

Ron Livné in his thesis [Liv81] constructed a family of lattices in PU(2,1) by using
techniques from algebraic geometry. Parker [Par06] used Thurston’s method to give
a geometrical construction of Livné’s lattices. Specifically, he constructed a funda-
mental polyhedron for Livné’s groups, each side of which is contained a bisector. A
link between Livné’s groups and the Eisenstein-Picard modular group comes from
the description of fundamental domain. The pattern of the fundamental polyhedra
in [Par06] is a geodesic cone starting from a tetrahedron pointing to a geodesic tri-
angle on a complex line. As this complex line degenerates to an ideal vertex, Livné’s
group becomes the Eisenstein-Picard modular group. In other words, this limiting
configuration corresponds to a fundamental domain for the Eisenstein-Picard mod-
ular group which is different from that in [FP06]. More recently, Boadi in his thesis
[Boll] used the same approach as for Livné’s groups to construct fundamental do-
mains for Mostow groups of the first kind mentioned in [Par(9]. The fundamental
domain, in Boadi’s construction, is made up of two 4-dimensional simplices glued
along a common 3-dimensional face.

Other examples come from the representation of hyperbolic triangle groups in PU (2, 1).
For convenience, we adopt the following notations for these lattices. Let (p,q,7) be a
hyperbolic triangle group with 1/p+1/q+1/r < 1, that is defined to be the Coxeter
group with presentation,

<a1, as,az| at, a3, a3, (aza3)?, (azar)?, (a1a2)r> .

We may consider a family of representations p; : (p,q,7) — PU(2,1). We de-
fine T'(p,q,;n) to be the image of a non-faithful representation p:(p,q,r) where
pt(arasagas) is an elliptic element of order n. The group I'(4,4,4;5) is a cocom-
pact lattice in PU(2,1) due to Deraux [Der06]. Parker and Thompson [PT10] have
constructed a fundamental domain for Deraux’s lattice and give the presentation

<a1, ag, az| af, (a;a;)*, (aiajar)'’, (aiajakaj)5> :

Furthermore, Thompson in his thesis [Thol0] discovered two new deformed triangle
group lattices, I'(3,3,4;7) and I'(3, 3,5;5). He constructed conjectural fundamental
domains for them. The same construction of fundamental domains could be carried
out for any I'(p, ¢, 7; n) with ajagas finite order regular elliptic element. Specifically,
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the fundamental domain consists of a 4-dimensional cone over a connected bounded
3-dimensional region of HZ with a cone point (the fixed point of ajasas).

Let X = G/K be a symmetric space of non-compact type, where G is the group of real
points of an semisimple algebraic group G defined over Q. Let I' C G be an arithmetic
lattice and (F, p) be a I'module. Since the locally symmetric space I'\ X is a K(I', 1), the
group cohomology of I' is isomorphic to the cohomology of the locally symmetric space,
namely

H*(T,E)= H*"(T'\X;E),

where E denotes the sheaf associated to the local system on (the manifold or the orbifold)
I\ X defined by (E, p). A spine is a I'-equivariant deformation retract Xo C X such that
M\ X is compact if it exists. Explicit examples of spines have been constructed for various
I'. For example, Soulé [Sou78] found a spine for SL3(Z) and the case of the Euclidean
Bianchi groups SLs(Oy) ( for d =1,2,3,7,11) was treated by Mendoza in [Men79]. More
generally, Ash [As77) [As84] used the well-rounded retract method for constructing a spine
for all linear symmetric spaces. This covers algebraic groups where the real points are
isomorphic to a product of the following groups [FK94]:

o GL,(R);

« GLn(C);

o GL,(H);

e O(l,n—1)xR*;

+ The non-compact Lie group with Lie algebra eg_o6) @ R.

For some low-dimensional examples, the cohomology has been computed combinatorially
from the cellular structure of a spine [Sou78, [As80, [Men79, [SV&3].

More recently, Yasaki constructed in [Yas06] a retraction onto a spine for Q-rank 1
groups. As an application, he [Yas08|] constructed an explicit spine for I' = SU(2, 1; Z][i])
and computed the cohomology of H(QC /T with local coefficients.

Plan of thesis

The thesis is organized as follows. The main results will fall into three large chapters, each
of which is conceived to be self-contained, with its own introduction.

In the first chapter we recall the two models of complex hyperbolic plane H(QC, complex
hyperbolic isometries and their classification. Three types of totally geodesic submanifolds
will be described. Moreover, we discuss the orthogonal projection into a complex geodesic
which will be used in the thesis. The Siegel domain has the same structure as the upper
half-space model of real hyperbolic space. Further to say that the boundary is identified
with the one-point compactification of the Heisenberg group. We define the Cygan metric
on the Heisenberg group and Cygan spheres. The general reference for this chapter is the
book of Goldman [Gol99] or Parker [Parl0].

We review, in the second chapter, the definition of a bisector which is the equidistant
between two distinct points. A bisector is a real analytic hypersurfaces in H% which
is diffeomorphic to R3. These hypersurfaces come about as close as possible to being
totally geodesic. Specifically, they enjoy two natural decompositions into totally geodesic
submanifolds, called slice and meridian decompositions [Mos80, [Gol99]. Isometric spheres
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are examples of bisectors. We will build the polyhedra whose codimensional 1 faces may
be contained in bisectors or isometric spheres in later chapters. We review Poincaré’s
polyhedron theorem as the main technical tool throughout the thesis.

In the third chapter we construct an explicit fundamental domain for the group (we
call the sister of Eisenstein-Picard modular group) denoted by G3. This group was first
defined by Parker in [Par98], in which he showed that Eisenstein-Picard modular surfaces
and H(QC /G9 are candidates for the cusped, complex hyperbolic orbifold of minimal volume.
Stover in his article [Stol0] affirmed that they are precisely the two of orbifolds with
minimal volume. We state the main result of this chapter as follows:

Theorem 0.2.1. There is a fundamental domain for Ge, that is a geodesic cone over a
prism (see Figure pointing to oo, with the side-pairing maps 11, R, S and T. As the
consequence, the group Go generated by 11, R, S, T is discrete and has the presentation:

6 __ —-1q\3 _ _ Q2p—1
G2:<11’R’S7T|R—(R $)3 = [R,T] = ST >

=(T'L)P =(S'h)?} =R} =1d

This third chapter has been published in Mathematical Proceedings of the Cambridge
Philosophical Society [Zh11].

This fourth chapter is devoted to give the generators of the Picard modular groups
PU(2,1;04) where the integer ring Oy is Euclidean, i.e. d = 1,2,3,7,11. In particular,
the cases of O; and O3 have been studied in many aspects. For example, the explicit
fundamental domain for these two groups were obtained in [FFP10l [FP06]. There are few
results for other picard modular groups. Each element of the Gauss-Picard modular group
can be decomposed as a product of the generators by a simple algorithm [FFLP11]. We
began by trying to construct fundamental domain for these groups PU(2,1; Q) following
the method used by Falbel and Parker in [FP06]. This leads to a domain that was much
to complicated to understand. However, a result of constructing fundamental domain
enables us to give the generators for the Fuclidean Picard modular groups in a geometric
way. We state explicitly as follows:

Theorem 0.2.2. The Euclidean Picard modular groups PU(2,1;Oy) where d = 2,3,7 are
generated by an involution, a Heisenberg rotation, two screw Heisenberg rotations and a
vertical translation.

Essentially, this method can be implemented on the case of Oy with class number one.
This is a larger collection of Oy than the Euclidean ring. However it is more complicated
to determine the finite collection of spinal spheres containing the fundamental domain for
the cusp group as d becoming large.

This chapter has been accepted for publication in Transactions of the American Math-
ematical Society.

The fifth chapter consists in the study of Mostow’s lattices I'(p, k), based on the rela-
tionship that the sister of Eisenstein-Picard modular group corresponds to one of Mostow’s
lattices I'(3,6). Mostow [Mos80|] considered firstly a remarkable family of groups gener-
ated by three braiding complex reflections Rj, Re, R3 of order p where p = 3,4,5. The
discreteness of these groups was verified by building a fundamental domain for their action.
After Mostow’s work, Deraux, Falbel and Paupert [DEP05] constructed a new fundamen-
tal domain which is simpler than Mostow’s, but mostly which allows the use of synthetic
geometric arguments. We now give another new construction of fundamental domains
for certain Mostow’s lattices I'(3, k) where the values of k satisfy 1/k + 1/1 = 1/6 for
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an integer [. The main idea of this chapter is inspired by the construction of [Par(6].
Further motivations and results can be found in the detailed introduction to that chapter,
as well as some notations. The group 'y is one of Mostow’s lattices we consider with the
geometric generators I1, R, S and T. Note that we use the same notations as in the third
chapter but these generators are the product of Ry, Ry, R3 and J which are the generators
coming from the original article [Mos80]. We summarizes the result in the following:

Theorem 0.2.3. The group I'y, C PU(2,1) is discrete if there is an integer | such that
1/k+ 1/l =1/6, namely, the ordered pair (k,l) is in the list

(7,42), (8,24), (9,18), (10,15), (12,12), (15,10), (18,9), (24,8), (42,7).
In that case, there is a fundamental domain D with side pairings given by R = (JRIIJ)Q,

S = JRl_l, T = (JRl_l)Q, I = JRl_lJ and the cycle relations give the following presen-
tation of the group

Fk = <R7 Sa T7 II

Rk: — Tl —_ (R_15)3 — (T‘1]1)3 — (5_1]1)3
=[R,T)=1d, T=S8% R=I? '

The last chapter, motivated by the Yasaki’s work [Yas08], is devoted to compute the
cohomology of Eisenstein-Picard modular surface and its sister with local coefficients. This
method can be generalized to the case of fundamental domain with one cusp. We give the
cohomology with trivial Z-coefficients as follows:

Theorem 0.2.4. With trivial coefficients,

SN

H'(HZ/G;Z) = {

H'(H%/Go;Z) =
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S
= o
s
ﬂl\)
-~
Vv
w






Chapter 1

Complex hyperbolic space



24 Chapter 1. Complex hyperbolic space

In this chapter we review some basic features of complex hyperbolic geometry which may
be needed later on; we will mainly focus on the case of (complex) dimension 2. The
material is completely standard and may be found in more details in the book of Goldman
[Gol99] and the forthcoming book of Parker [Par10] or in the article of Chen and Greenberg
[CGT4].

Let C™! be the complex vector space C"t! of dimension n + 1 equipped with a non-
degenerate, indefinite Hermitian form (-,-) of signature (n,1). Here (-,-) is given by a
non-singular (n + 1) x (n + 1) Hermitian matrix H with n positive eigenvalues and 1
negative eigenvalue, which is

1 0 O
H =

0 1 0

0 0 -1

Specifically, (z, w) = w*Hz where z, w are column vectors in C"*! and the operator * is
the Hermitian transpose. Thus we may define subsets V_, Vj and V. of C™! by

V. = {ze€C"(z32) <0},
Vo = {z€C™|(z2) =0},
Ve = {ze€C"|(z2) >0}

A vector z € C™! is negative (respectively null, positive) if and only if (z,z) < 0
(respectively (z,z) =0, (z,z) > 0).

Let P : C»!\{0} — CP" denote the standard projection map defined by P(z) = [z]
where [z] is the equivalence class of z. On the chart of C™! with 2,1 # 0 the projection
map P is given by

z
' 21/2n11

P : — : e C".

Zn
Zn/zn+1
Zn+1

The projective model of complex hyperbolic space Hf is defined to be the collection
of negative lines in C™! and its boundary is defined to be the collection of null lines. In
other words Hf is PV_ and 0HE is PVj.

For the projective model the metric on H, called the Bergman metric is given by

ds? — —4 det< (z,z) (dz,z) )

(z,2)? (z,dz) (dz,dz)

The distance between points w,u € H is given by the formula

oo (B0 = o

where w,u are the lift of w,w in C**!. This formula is independent of which lifts z and
w in C™! of z and w we choose.

For each element A of PU(n,1), A is unitary with respect to (-,-), namely, A acts
isometrically on the projective model of complex hyperbolic space. Thus the Lie group
PU(n,1) is a subgroup of the complex hyperbolic isometry group. There are isometries
of HE not in PU(n, 1) for instance the complex conjugation z — Z. All of the isometries
of HZ will be described in the following theorem.
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Theorem 1.0.5. (see [Gol99]) The holomorphic isometries of Hi are given by the matri-
ces in PU(n,1); all other isometries are antiholomorphic which are obtained by composing
an element of PU(n, 1) with complex conjugation. The group of all the isometries of HE,

-

denoted by PU(n,1), is generated by PU(n,1) and the complex conjugation.

We have defined the projective model and then go on to specialize to the unit ball model
and the Siegel domain model. This is simultaneously a complex version of the projective
and Klein-Beltrami models of ordinary (real) hyperbolic space and also a generalization
to higher complex dimensions of the Poincaré disc and half plane models of the hyperbolic
plane. In what follows we restrict ourselves to the case of complex hyperbolic 2-space.

1.1 Complex hyperbolic plane

Different choices of Hermitian forms will lead to different models of complex hyperbolic
plane H%. We describe the following two models, which will be most useful.

1.1.1 The unit ball model

In this section, the representative matrix of the Hermitian form is chosen as follows

0
0 1,

1
H =0
0 -1

S = O

namely, for all z € C%!, the first Hermitian product (z,z)1 = |21]? + |22]® — |23/%. On the
chart of P(V_) with z3 = 1, complex hyperbolic plane is given by

H(2C =B = {(21,22) : ’21|2 + |2’2‘2 < 1}.
Its boundary P(Vp) is homeomorphic to the sphere S3:
OHZ = {(21,22) : |21]* + |2o|> = 1}.

This model is a generalization of Poincaré disc model for complex hyperbolic line,
which we will mention later.

1.1.2 The Siegel domain model

Let (-,-)2 denote the second Hermitian form associated to the following matrix

0
Hy=10
1

o = O

1
0
0
For the second Hermitian form, the standard lift of z is negative if and only if

21 + ’22‘2 +7z1 = 2%(2’1) + |22‘2 < 0.

Thus P(V_) is a paraboloid in C?, called the Siegel domain. Likewise, its boundary
P(Vp) satisfies
2R(z1) + \z2]2 =0.
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However, not all points in P(Vp) lie in C2 ¢ CP?. We have to add an extra point, denoted
(oo, On the boundary of the Siegel domain. The standard lift of ¢ is

1
0
0

Recall that one of the important models of real hyperbolic 3-space H% is the upper half
space in R3. The boundary of this model is the one point compactification of C regarded
as the extended complex plane C U {oo} (or Riemann sphere). The Siegel domain model
has an analogous construction.

Fix u € Ry and consider the standard lift z of z € HZ satisfying (z,z) = —u. In
other words, 2R(z1) = —|z2|> — u. We rewrite 2z = ( € C which means that z; =
(—|¢|? — u +4v)/2. Thus for a ({,v,u) € C x R x R corresponds to

(=I¢P = u+iv)/2
zZ= ¢ € HZ.
1

In this way we can identify a point z in the Siegel domain with ({,v,u) € C x R x Ry,
called the horospherical coordinate of z.

Definition 1.1.1. The set of points of the Siegel domain H, = C x R x {u} is called the
horosphere of height u. Likewise, the horoball Uy of height t is defined to be the union of
all horospheres of height u > t.

The finite boundary points z € 0H% — {gx} is the horosphere of height zero (¢, v,0),
that can be parameterized by (¢,v) € C x R. Therefore we can identify the boundary of
the Siegel domain with the one-point compactification of C x R. Furthermore, consider a
family of the maps that fix the infinity and sends the origin to the point ({,v) given by

1 —C (—I¢P +iv)/2
T(Cv)=]0 1 ¢
0 O 1

In terms of their action on the boundary, C x R has a group law which gives the structure
of the Heisenberg group N as follows

(Cv) o (&1) = (C+ & v+t +23(£(0)).

Remark 1.1.2. There are other Hermitian forms which are widely used in the literature
(see page 67 of [CGT4]). The one given by the matrix

0 -1 0

-1 0 0
0 0 1
will be seen in the study of complex hyperbolic triangle groups. Following Mostow, it is
most convenient to use the Gram matrix as the Hermitian form. This form will always be
defined, but only for certain points in the parameter space will it have the correct signature
(see [PPa09]). Furthermore, using this Hermitian form, calculations in complex hyperbolic
geometry have a tendency to become extremely complicated but only the simple matrix
representation for the group, refer to Chapter 5.
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1.1.3 Cayley-transform associated to two models

Analogous to the map

passing from the Poincaré disc to the upper half plane, the following Cayley-transform
interchanges the first and second Hermitian forms

1 1 0 1

C=—10 v2 0
V2 1 0 -1

The map C conjugates H; and Hy with C? = Id, in other words, Hy = C*H,C.
On the affine chart with z3 = 1 of CP?, we see that

C:(Z]_,ZQ)—>(21+1 V222 >

21—1’ 21—1

The Cayley transform leads to a generalized form of the stereographic projection. This
mapping 7 : S3\ {ea} — R3, where S3 = OB? and ey = (1,0) € C?, is defined as the
composition of the Cayley transform restricted S\ {es} followed by the projection

21 — 2%(2’1),
29 — 29.

The stereographic projection m can be extended to a mapping from S2 onto the one-
. . . =3 3 .
point compactification R™ of R>, given by

(21, 22) = [ﬂ@ _4%(Z1)] :

21—17 |Zl—1‘2

Using the stereographic projection, we can identify S°\ {ea} with A" and S® with the
one-point compactification N of /. The inverse function of the stereographic projection

—|z2 + it +2 2v/2z
—|z|2+it =27 |22 +it—2 )

is given by

T ([21]) = (

1.2 Totally geodesic submanifolds

In the general theory of symmetric spaces, one can readily prove that the only totally
geodesic subspaces of H% are either complex linear subspaces or totally real totally geodesic
submanifolds. There are only four types of totally geodesic subspaces in H%:

e the points

o the geodesics
e C-planes

e R-planes

In particular, it doesn’t exist totally geodesic real hypersurface in complex hyperbolic
space. A sketch of the proof can be found in the Section 3.1.11 of [Gol99].
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1.2.1 Geodesics

There exists a unique geodesic joining a pair of distinct points in H(QC U 8H% (see Theorem
3.1.11 of [Gol99]). Let z and w two points in O9HZ, up to normalization, we suppose that
their lifts z and w in Vj satisfy (z, w) = —1. The geodesic joining z and w can be described
in the following proposition.

Proposition 1.2.1. (see [Parl(]) Let z,w € V; be null vectors with (z,w) = —1. The
geodesic o(t) with endpoints z and w is the collection of points in H% corresponding to the
vector €'/?z + e~ t/?w in C21 where t is the arc length parameter.

The following proposition describes the expression for the geodesic connecting two
distinct points in H(QC.

Proposition 1.2.2. (see Proposition 5.2, [Parl0]) Let o(t) be a geodesic parameterized
by arc length t joining z and w in HA. Suppose that o(r) = z and o(s) = w such that
their lifts z,w satisfy (z,z) = (w,w) = —2 and (z,w) is real and negative. Then o(t) is
given by the vector
sinh((t — s)/2) sinh((r —t)/2)
sinh((r —)/2)” " sinb((r — 5)/2)

W. (1.1)

1.2.2 C-planes

Definition 1.2.3. A complez line (or C-plane) of H(QC is the intersection with H% of a
complex projective line of CIP? (when this intersection is not empty).

Such a C-plane is an embedded copy of H%: (more precisely, in the ball model, it carries
the Poincaré model of real hyperbolic plane, with constant curvature —1, see [Gol99] and
[Par10]). Each C-plane is also the fixed-point set of a one-parameter family of (holomor-
phic) isometries, one of which is an involution, so that C-planes are totally geodesic.

We denote nt = {z € C>! : (n,z) = 0}. The following proposition shows the duality
between P(V ) and the set of complex lines.

Proposition 1.2.4. e Fach complex line ¥ of H(% is associated to a unique point
n € P(V4) such that X = nt N H2 where n is a lift of n in C*1. Such a vector n is
called the polar vector to X.

e For all points n in P(V,), the intersection n N H% is a complex line of H% which
does not depend on the choice of lift n.

The elements of PU(2,1) act on P(V, ) transitively. As a consequence, we have

Proposition 1.2.5. The group PU(2,1) acts transitively on the set of C-planes, with
isotropy group a conjugate of P(U(1) x U(1,1)).

Example 1.2.6. In the unit ball model, the vector

0
n=|1
0

is polar to the complex line {(z1,0) : |z1] < 1}. Observe that the vector n is fixed by the
Cayley transformation. In the Siegel domain model, it corresponds to the complex line
given in horospherical coordinates by

{(0,v,u) :v e Ru € Ry }.
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1.2.3 R-planes

Definition 1.2.7. A Lagrangian plane (or R-plane) is a mazimal totally real subspace of
HZ, that is the projective image of a real 3-subspace L of C*' such that (v,w) € R for all
v,w € L (and such that L N HZ # ).

Such a R-plane is an embedded copy of H% (more precisely, in the ball model, it carries
the Klein-Beltrami model of real hyperbolic plane, with constant curvature —1/4, see
[Gol99] and [Par1(]). Each R-plane is also the fixed-point set of a unique (antiholomorphic)
isometry, which is an involution. In particular, R-planes are also totally geodesic.

Example 1.2.8. In the unit ball model, a standard example of R-plane is
Lo = {(21,22) € H% : 21, 20 € R},

that is a copy of real hyperbolic plane H%. In the Siegel domain model, it becomes
{(z,0,u) : € R,u € Ry} in horospherical coordinates.

We show the action of PU(2,1) on the R-planes of H% in the following proposition.

Proposition 1.2.9. The group PU(2,1) acts transitively on the set of R-planes, with
isotropy group a conjugate of PO(2,1).

1.2.4 Orthogonal projection onto C-planes

In the following we describe the orthogonal projection of geodesics onto a complex line
that will be used later. The sketch of the proof follows from geometric facts and refers to
the same situation in [Thol0] for calculations.

Lemma 1.2.10. Let Iy, be the orthogonal projection of complex hyperbolic space onto a
complex line 2 and o be a geodesic.

e Then the image lx(0) is a single point

e or an arc of a geometric circle in ¥. In particular, if c N X # 0, then Ix (o) is the
segment of a geodesic in X.

Proof. Using the ball model of HZ, we may assume that ¥ = {(z1,0)|z; € C}. This makes
the orthogonal projection linear, that is IIx(21,22) = 2z1. We also assume z; # const
otherwise the geodesic will be contained in the C-line {(a, z2)|a = constant, zo € C}), so
o will be projected to a single point.

Recall, a complex line is the non-empty intersection of a complex projective line with
H?C and a geodesic is the locus of a quadratic equation with respect to the real and
imaginary parts of coordinates in a C-line. From this, we see that IIs (o) is the locus of a
quadratic equation with respect to R(z1) and (z1), which is a geometric circle in X.

To see this is true for a general C-line, recall that a C-line is an embedded copy of H{,
an element of PU(2,1) sending a C-line to another is an isometry of H}. Isometries of
H%: is a Mobius transformation, which sends circles to circles. For the particular case of
oMY # ), the result follows from the fact that the linear projection preserves the straight
line. O

Corollary 1.2.11. In the ball model of H%, let 31 and Yo be C-planes, v a hypercycle
in Yo and Ils, be the orthogonal projection map onto 1. Then Ils, (y) is an arc of a
geometric circle in 31 or a point if 31 and Yo are orthogonal.
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Proof. Note that the hypercycle is the arc of a Euclidean circle in the Poincaré disc (see
Proposition [2.1.8]). This corollary follows from the same argument as Lemma [1.2.10f [

Lemma 1.2.12. Let o be a geodesic and p,q be two points on o. Then the geodesic
segment [p, q| projects to the shorter arc of a geometric circle in a coordinate azis.

Proof. Let ¥ be a complex line containing the geodesic . Using the ball model of H(QC,
we know that X is an embedded copy of Poincaré disc in H%. We consider the extension
to projective space of o and X, denoted by @ and 3 respectively. There is an involution
fixing S (the boundary of 9HZ%) in C?

(21,22) — ( a1 & ) )

21|24 |22/ |21 + |22

which preserves the extension X and swaps the two parts \o and o. It follows (like in
Poincaré disc) that o is shorter than @\o with respect to the Euclidean metric. By Lemma
the projection of 7 is a geometrical circle in a C-line. Furthermore, the orthogonal
projection on a coordinate axis is linear, which implies that it preservers the angle. As a
consequence, the projection sends the geodesic o to the shorter arc of a geometric circle.
So does each geodesic segment [p, g]. O

1.3 Complex hyperbolic isometries

Let U(2,1) be the group of matrices that are unitary with respect to the Hermitian form
(+,+). The group of holomorphic isometries of complex hyperbolic space is the projective
unitary group PU(2,1) = U(2,1)/U(1), with a natural identification U(1) = {e¥I,0 ¢
[0,27)} where I is the identity matrix in U(2,1). It will be useful to consider SU(2,1),
the group of matrices with determinant 1 which are unitary with respect to (-,-). Then
the group SU(2,1) is a 3-fold covering of PU(2,1), that is

PU(2,1) = SU(2,1)/{I,wI,w*I}

where w = (—1+1i+/3)/2 is a cube root of unity.

1.3.1 Classification of the elements of SU(2,1)

In this section we recall briefly the different types of isometries of H%. A holomorphic
complex hyperbolic isometry of H% is said to be:

(i) lozodromic if it fixes exactly two points of OHZ;
(ii) parabolic if it fixes exactly one point of OHZ;
(iil) elliptic if it fixes at least one point in H.
Following Chen and Greenberg [CGT4], we now give the first criterion for classifying
the elements of SU(2,1).

Proposition 1.3.1. Let g be a holomorphic isometry of H% and A a lift of g in U(2,1),
then

o g is elliptic if A is semisimple with eigenvalues of norm 1;
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FIGURE 1.1: The deltoid given by f(7) = 0. Its interior corresponds to f(7) < 0 and
its exterior corresponds to f(7) > 0.

e g is loxodromic if A is semisimple with two eigenvalues A and 3! where Al # 1;

e g is parabolic if A is not semisimple. In this case, its eigenvalues are of norm 1.

Definition 1.3.2. o An elliptic element g is called regular elliptic if and only if its
etgenvalues are distinct. In the other case, we say that g is special.

e A parabolic element g is called pure parabolic if it can be represented by a unipotent
element of U(2,1), that is, a linear transformation having 1 as its only eigenvalue.
In the other case, we say that g is screw-parabolic.

Definition 1.3.3. The map 7 : SU(2,1) — C is defined to be the trace of matrices in
SU(2,1). Let f be the polynomial

f(2) = |z* = 8R(2%) + 18)2)* — 27.

Let Us C C denote the set of cube roots of unity. The second criterion is described in
the following theorem.

Theorem 1.3.4. (see [Gol99], Chapter 6) Let A be a matriz of SU(2,1) and g be the
isometry of H% associated to A. Then

(i) g is regular elliptic if and only if f(T(A)) < 0;
(ii) g is lozodromic if and only if f(7(A)) > 0;
(iii) g is screw-parabolic if and only if g is not elliptic and T(A) € f~1(0) — 3Us;

(iv) g a complex reflection (about either a point or a complex geodesic) if and only if A
is elliptic and T7(A) € f~1(0) — 3Us;

(v) 7(A) € 3Us if and only if A represents a unipotent automorphism of HZ.
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Figure depicts the level set f~1(0) of f, which is a classical curve called a deltoid (see
Chapter 8 of Lockwood [Loc61] or page 26 of Kirwan [Kir92] where it is written in terms
of x = R(7) and y = I(7)). The interior of the deltoid corresponds to conjugacy classes of
elliptic elements and its exterior corresponds to conjugacy classes of loxodromic elements.
Its boundary corresponds to various parabolic conjugacy classes and complex reflections,
its three cusps correspond to the central elements and various unipotent conjugacy classes.

1.3.2 The elliptic elements

In the unit ball model, up to conjugation, a lift of an elliptic transformation in SU(2,1) is

e 0 0
A= 0 ¢ 0 . (1.2)
0 0 e i0r+02)

In this case A fixes the center of the ball, corresponding to the vector [0,0,1]7, and
preserves the double axis of coordinates. The two quantities 267 + 02 and 61 + 265 in the
range of [0, 27), called the angles of the elliptic element, determine the conjugacy class of
an elliptic element.

Example 1.3.5. Using the unit ball model, in homogeneous coordinates, the function
(21, 22) —> (€921, € 2)

is elliptic and fixes only the origin if €’® and e*? are different from 1.

The regular elliptic elements

If Ae SU(2,1) is a lift of regular elliptic g, then g has three fixed points in CP?, which
are the images of eigenvectors of A under the projection.

« One of these fixed points is in HZ.

o The two other points are in P(V,) which are polar to the preserved complex lines.

The special elliptic elements

A special elliptic element has a repeated eigenvector. In this case, the angles can be
divided into two types:

o {0,p}, in this case we call it complex reflection: g fixes a complex line ¥ and acts
on the complex line orthogonal to ¥ as a rotation with angle ¢.

o {©,p}, in this case we call it complex reflection in a point: g preserves each of the
complex lines passing through this point in H% and acts on each of these complex
lines as a reflection with angle .

More precisely, the following proposition gives the formula of a complex reflection in
H2.
C
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Proposition 1.3.6. Let X be a complex line with polar vector n. Then the complex
reflection with angle ¢ fizing ¥ is given in U(2,1) by

(z,1)

R(z) =z + ("9 — 1) mon

In particular, R is represented by a matriz in SU(2,1) as follows,

R(z) = e /37 + (e2%/3 — e*i“’/:})i(z’ n>> n.
n,n

Remark 1.3.7. If ¢ = 7, this reflection is called involution or half-turn, given by

(21, 22) — (—21, —2’2).

For every point z € H(% there is a unique half-turn fixing z whose differential equals —I on
TZH%. These involutions equip H% with the structure of a Riemannian symmetric space
(see [Gol99], page 82).

1.3.3 The loxodromic elements

Let g be a loxodromic element of H% and A a lift of g in SU(2,1). Let z, and w, be the
two fixed points of g in OHZ.

Definition 1.3.8. The geodesic o4 joining z4 and wy is called the axis of g. The complex
line ¥y containing the geodesic o4 is called the complex axis of g.

The geodesic o, and complex line Y, are preserved by g. As a result, the polar vector
Ug = Ej‘ to the complex line 3, is fixed by g. We describe this in the following proposition.

Proposition 1.3.9. A lozodromic element of PU(2,1) has three fized points in CP?, two
of which are lying in the boundary of H2 and the third in P(V..).

Let z4,w, and uy be lifts of z,,w, and u, respectively. We suppose that, up to
conjugation, their lifts in C? are

0 1 0
zg=| 0|, wg=10|,uy=111/,
1 0 0
then A is the matrix
A0 0
A=10 XX 0 . (1.3)
0 0 1/

If [A| > 1, then z, is an attractive fixed point and wy is a repulsive fixed point. Otherwise,
the situations are just converse. Since A acts on the geodesic as a translation, the quantity
p(w, A(w)) on every point of o is called length of translation, denoted l,. The relation of

ly and A is give by
l 1 1
h{Z)==([\? >
cos <2) 2<| | +|)\|2
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1.3.4 The parabolic elements

A parabolic element fixes exactly one point in the boundary. Up to conjugation, we can
suppose that it fixes co. From Lemma we write the matrix of SU(2,1) fixing oo
which is not loxodromic as follows
1 —e%z (—|z]2 +it)/2
A=e 08 0  e z (1.4)
0 0 1

with z € C and ¢t € R.

Lemma 1.3.10. (see [Pari0]) Suppose that A € SU(2,1) has the standard matriz form
(zjx)>*3. Then the following are equivalent:

1. A fizes 0o;
2. A is upper triangular;
3. Z31 =0.

A pure parabolic element has a lift in SU(2, 1) which is unipotent. A unipotent matrix
A of SU(2,1) is one such that A — I is nilpotent, in other words, such that some power
(A—1I)" is zero. The smallest such n is sometimes called the degree of unipotency of A—1I.
We can classify, in terms of degree, the conjugacy class of pure parabolic isometries:

Proposition 1.3.11. All pure parabolic isometries can be divided into two conjugacy class

—

in PU(2,1):
1. The first conjugacy class consists of the isometries which lift to a unipotent matrix
A in SU(2,1) such that the degree of unipotency of A — I is two. Writing z = 0,t =
1,0 = 0 in the matriz form , we obtain a representation with shortest length of

translation. There are two candidates in PU(2,1) for this conjugacy class, denoted
by Ay and A_:

2. For the isometries which lift to a unipotent matriz A in SU(2,1) such that the degree
of A — I is three. The conjugacy class is represented by

1 -1 —1/2
A=|0 1 1
0 0 1

Definition 1.3.12. In the previous proposition, the parabolic isometries of the first con-
jugacy class will be denoted by parabolic transformations of vertical type, and the
second class will be called horizontal type.

For the screw-parabolic isometries, up to conjugation, we can suppose that the positive
eigenvector is [0,1,0]7. Under this condition, a matrix representation of a conjugacy class
is

e—i6‘/3 0 —6_7:0/37;/2
A=| o @0 g
0 0 672’9/3
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Remark 1.3.13. Both screw-parabolic isometries and parabolic isometries of vertical type
preserve a complex line where they act as a translation. Furthermore, screw-parabolic
elements rotate around the preserved complex line with an angle 6.

1.4 The action on dH%

In this section we work in the boundary of the Siegel domain model and discuss the
classification of elements of PU(2,1) in terms of their action on the boundary. Recall
that R? U {goo} in the Siegel’s domain model is naturally equipped with the structure of
the Heisenberg group on C x R. In other words, the boundary of the Siegel domain is
identified with the one-point compactification of the Heisenberg group.

1.4.1 The Heisenberg group

Definition 1.4.1. The Heisenberg group N of dimension 3 is C X R equipped with the
group law

(G, v) o (6,1) = (C+& v+t +23(CE)).

We remark that I(C€) = w((, &) where w is the standard symplectic form on C. The
Heisenberg group is 2-step nilpotent. Observe that

(<7 1)) < (fa t) < (_C7 —1)) < (_€7 _t) = (07 4%(Cag))

where (—(, —v) is the inverse of the element (,v). Therefore the center of N consists of
the form (0,v) and the commutator of any two elements lies in the center.

The stabilizer of ¢,

We now describe the action of the stabilizer of ¢, on the Heisenberg group.

Definition 1.4.2. We denote Sim(N') the group of the restrictions of elements of PU(2,1)
fixing qoo on the Heisenberg group. The elements of Sim(N') will be called Heisenberg
stmilarities. (The elements are similarities with respect to the Cygan metric which we
will mention a little later.)

If A fixes g then it is upper triangular. As a matrix in SU(2, 1), it is given by

A =AZ/A ()22 +it) /20
A=10 X/ z/\
0 0 1/

with A € C* and (z,t) € C x R. More precisely,

(I) The Heisenberg group acts on itself by Heisenberg translations. This is a normal
subgroup of the group Sim(N). For (zg,ty) € N, this is

T(zo,to) : (Z, t) — (Z + 20,t+to + 23(520)) = (Zo, to) <O (Z, t).
As a matrix in SU(2,1) this is

1 —Z (—’20‘2 +it0)/2
0 1 20
0 O 1

Heisenberg translation by (0,¢o) for any ¢ € R is called vertical translation by to.
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(IT) The unitary group U(1) acts on the Heisenberg group by Heisenberg rotations. For
e € U(1), the rotation fixing go = (0,0,0) is given by

1 0 0
0 €? 0
0 0 1

In Heisenberg coordinates, this Heisenberg rotation is given by
Ry : (z,t) = (e¥2,1).

All other Heisenberg rotations may be obtained from these by conjugating by a
Heisenberg translation.

III) For A € R, Heisenberg dilation by X fixing ¢~ and gy = (0,0,0) € OHZ is given by
+ C

A0 0
01 0
0 0 !
In Heisenberg coordinates, the Heisenberg dilation is given by

Dy : (z,t) — (Az, At).

All other Heisenberg dilations fixing g, may be obtained by conjugating by a Heisen-
berg translation.

The stabilizer of ¢, in PU(2,1) is generated by all Heisenberg translations, rotations
and dilations. However, only Heisenberg translations and rotations are isometric with
respect to various natural metrics on N. For this reason the group generated by all
Heisenberg translations and rotations, which is the semidirect product U(1) x N, is called
the Heisenberg isometry group Isom(N'). The nontrivial central elements of the Heisenberg
isometry group are precisely the vertical translations.

The vertical projection

Geometrically, we think of the C-factor of A/ as being horizontal and the R-factor as being
vertical. There is a canonical projection from A to C called vertical projection and denoted
by II, given by II : (z,t) — z. Using the exact sequence

0—R-—NLC—o,

we obtain the exact sequence (see Scott [Sco83] page 467)

0 — R — Isom(N) RN Isom(C) — 1. (1.5)

Here Isom(C) = C x U(1) is the group of orientation preserving Euclidean isometries of
C.
Observe the elements in Isom(C) can be represented by matrices in GL(2,C) of the

form ) )
e? 2y z | ez + 2
0 1 1| 1
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Therefore, the map I, can be given by

1 —Zpe®  (—|z0|* +itg)/2 0
M.:| 0 ¢* 20 — [ 60 Zlo ] : (1.6)
0 0 1
It is clear that
1 0 dty/2
Ker(IL,) = 01 0 it eR
00 1

is the group of vertical translations fixing g.o.

1.4.2 The Cygan metric

In this section we define a metric on the Heisenberg group, the Cygan metric. The Cygan
metric can be extended to an incomplete metric on H(% which agrees with the Cygan
metric on each horosphere. This metric should be thought of as the counterpart to the
Euclidean metric on the upper half space model of real hyperbolic space.

Recall that the Heisenberg norm is given by

172
(2, 8)] = [l = |
Definition 1.4.3. The Cygan metric on N is defined to be

po((z1,t1), (22, t2)) = ‘(zl,tl) o (Z27t2)_1‘.

In other words,

‘1/2

po((z1,t1), (22,t2)) = ’|Zl — 2|? — ity + ity — 2i(21 %) (1.7)

Remark 1.4.4. We remark that the Cygan metric defined by (1.7 is not a path metric.
In other words, there exist pairs of points such that the Cygan distance between them is
strictly shorter than the Cygan length of any path joining them (see the proof of [Parl(]).

We extend the Cygan metric to an incomplete metric on Hié — {g¢eo} as follows

~ . . . _ |12
,0(]((2’1, tl,ul), (Zg,tg, ’LLQ)) = ’|Zl — 22|2 + |’LL1 — ’UQ’ - Ztl + ZtQ — 22%(2122)‘ (18)

We now show that the extended Cygan metric on Hi(% — {go} is exactly a metric.
Naturally the restriction on 9HZ — {goo} is also metric.

Proposition 1.4.5. (c.f. [Parl0]) The function py(-,-) on H7%— {gs0} given by is
a metric.

Proof. It obviously satisfies the properties of non-negativity, identity of indiscernible and
symmetry. It suffices to verify the triangle inequality. That is,

15% ((Zlvtla Ul)a (227t27u2))

= ‘|Z1 — 22|2 + |up — ug| — ity + ity — 21'%(2132)‘
< ‘|Zl — ,2:3|2 + |U1 — U3| — ity + ity — 2@'%(2123)‘

+2|z1 — 23]|23 — 22| + “23 — Z2’2 + |ug — ug| — itg + ity — 2@%(23?2)‘

< (ﬁo ((z1,t1,u1), (23, t3,u3)) + po ((23,t3,u3), (22,2, u2)) )2-
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We conclude this section by considering spheres with respect to the Cygan metric.

Definition 1.4.6. The Cygan sphere of radius r € Ry and center wyg = (z0,t0) =
(20,t0,0) € OHZ s defined by

In

S?“(w[)) - {'LU = (Z,t,u) : ﬁo(w,wo) = T}_
other words, Sy(wp) is given by
Sp(wo) = {w = (2,t,u) : ||z — 20 + u + it — itg — 2iS(%0)| = r?}.

A simple lemma will be useful in the Chapter 4, we state it as follows.

Lemma 1.4.7. (c.f. [FFP10]) All Cygan balls are affinely convex.

Proof. The Cygan ball of radius r centered at o = (0,0,0) is given by

2
S,(0) = {(2,t,u) € HZ : (\z|2 + u) + 1 <rth
For A € (0,1) and (21,t1,u1), (22, t2, u2) € Sy(0), a simple calculation gives rise to

2
(X214 (1= Nz + dur + (1= Nuz) + (1 + (1= \)ta)®

IN

(M1l ) + (1= W) (|2l +u2))” + Ay + (1= A)to)?
M= +u)? +8) + 1= 2) (= +w)? + )
< at+ (1-— /\)7“4 =t

IN

Clearly S, (o) is affinely convex. Any other Cygan ball is the image of one centred at
o under a Heisenberg translation. Since Heisenberg translations are affine motions, the
image is still affinely convex. O

Remark 1.4.8. The boundary of a Cygan sphere on 8H(% is called a spinal sphere.

o For zp = 0. Spinal spheres centered at wy = (0, () are ovoids with the property that
along the locus z = 0 they have fourth order contact with their tangent plane. The
diameter of their equator, that is the points (z,t) with |z| = r, grows linearly with
r. On the other hand, the diameter of their meridians, that is the points (0,¢) with
|t — to| = r?, grows quadratically with r. Geometrically, as r tends to zero, spinal
spheres become very short and fat, lie a pancake, see Figure (a). Conversely, as r
tends to infinity, spinal spheres become very long and thin, like a cigar, see Figure

=)

e For zg # 0. Cygan spheres are sheared ovoids, see Figure (c), the magnitude of
the shear being proportional to |zg|. Otherwise they enjoy the same properties as
the case zg = 0.
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FIGURE 1.2: The shapes of spinal spheres in the Heisenberg group.
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In this chapter we mostly state some geometric objects which are used to construct a
polyhedron. There are no totally geodesic real hypersurfaces in H(2c- The lack of totally
geodesic real hypersurfaces complicates the construction of fundamental domains. How-
ever there is a three dimensional submanifold that is foliated by totally geodesic subspaces
in two different ways. Throughout the thesis, the basic idea of constructing a fundamental
domain is to verify the conditions of Poincaré’s polyhedron theorem. As well, we can
obtain a geometric presentation for the group we consider by the Poincaré’s polyhedron
theorem.

2.1 Bisectors

A bisector is the locus of points in complex hyperbolic space equidistant from a given,
pair of points in complex hyperbolic space, say p and ¢q. By the normalization of p and ¢
such that (p,p) = (q,q), we give the definition as follows:

Definition 2.1.1. The bisector equidistant from p and q is defined as

Bpy={z € H:[(z,p)| = [(z,a)l} (2.1)

Remark 2.1.2. This definition of a bisector only depends on (p,p) = (q,q) and not on
whether this quantity is positive, negative or zero. If (p,p) = (q,q) > 0, then p and ¢ are
polar vectors to complex lines C,, and C;. Thus B, 4 is equidistant from two complex lines
Cp and Cy. In other words, for each z € B, 4 the distance from z to the closest point of C,
is the same as the distance from z to the closest point of C,.

Definition 2.1.3. e The points p and q lie in a unique complex line X, called the
complezx spine of the bisector B, 4.

o We call spine the geodesic o in X that is equidistant from our pair of points with
respect to the natural Poincaré metric on X. It is given by

c=XNBp,={2€3:p(2,p) =p(z,q)}

Bisectors are not totally geodesic in complex hyperbolic space, but can be described
in terms of a foliation by totally geodesic subspaces in two different ways.

Theorem 2.1.4. (Mostow,Goldman)([Mos80, |Gol99))

1. Let Iy : H(ZC — 3 be the orthogonal projection map onto 3. Then B is the preimage
of o under 1lyx,

B=1I5'(0) = |J II5'(s).

seo

Each fibre of this map, that is, each complex line that is the preimage of a point of
o, is a slice of B.

2. The bisector B is the union of all Lagrangian planes that contain o. These La-
grangian planes are called meridians of B.

Corollary 2.1.5. e A bisector is uniquely determined by its real spine.
o The bisector B is preserved under a complex involution in any of its slices.

o The bisector B is preserved under an anti-holomorphic involution in any of its merid-
tans.
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Definition 2.1.6. Let B be a bisector. The intersection S = BN 8H% is called a spinal
sphere. Suppose that o is the spine of B, the two points of N 8H(zc are called the vertices
of bisector.

2.1.1 Intersection of bisectors

The intersection of two or more bisectors can be very complicated, in general it is not
necessarily connected or contained in a totally geodesic subspace. We adopt the following
notation and recall several results which allow us to understand bisector intersections.

Definition 2.1.7. Let By and By denote bisectors with complex spines 31 and Xo.
1. We call By and By cospinal if and only if X1 = Yo;

2. We call By and By coequidistant if and only if X1 and ¥g intersect outside the real
spines;

3. We call By and B cotranchal if and only if they share a common slice;
4. We call By and By comeridanal if and only it they share a common meridian.

In terms of the slice decomposition for bisectors, the following result helps us to un-
derstand bisector intersections.

Proposition 2.1.8. ([Mos80]) Let B be a bisector and C be a complex line such that
BNC #0, then C C B (in which case C is a slice of B) or C N B is a hypercycle in C. In
the ball model a hypercycle is an arc of a Euclidean circle intersecting the boundary.

We remark that a hypercycle in C is a curve with constant geodesic curvature (i.e.
the magnitude of the mean curvature is constant). In particular, unless the two bisectors
share a common slice, Proposition [2.1.8] implies that each connected component of the
intersection By N Be is a disk which is foliated by arcs of circles. It can be proven that
there are at most two connected components. If the bisectors are coequidistant, there is
a remarkable result due to Giraud.

Proposition 2.1.9. ([Gir21, [Gol99]) Let B1 and Ba be two coequidistant bisectors with
complex spines X1 and Yo respectively, then B1N By is a smooth disk, moreover there exists
one (and no more) bisector containing By N By other than By and Bs.

This intersection is not totally geodesic, we call it a Giraud disc. In particular, we can
find the third bisector passing through the Giraud disc using the following proposition,
see also [Thol0] and Figure

Proposition 2.1.10. Let By and By be a pair of coequidistant bisectors with respective
complex (real) spines 31 and Xy (01 and o3) such that their intersection is a Giraud disc
G. The third bisector Bs containing G can be defined as the following procedure. We
denote X1 N Xy = po and let Ry, be the unique reflection fixing o; for i = 1,2. Suppose
that p1 = Ro, (po) and p2 = Ry, (po), then

Bi = Bpyp ={z€HE:p(z,m) = plz,p1)},
By = Bpop ={z€HE:p(z,p0) = plz,p2)},
By = Bpp,={z€ H(%Z p(z,m1) = p(z,p2)}
and
G ={z € Hz : p(z,p0) = p(z,p1) = p(2,p3)}.
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FIGURE 2.1: The schematic view of Giraud disc.

2.1.2 Intersection with geodesics

Proposition 2.1.11. (see Theorem 5.5.1, [Gol99]) A real geodesic o is contained in B if
and only if o is contained in either a slice or a meridian of B.

If the geodesic o is not entirely contained in B, the following proposition shows how
to see the number of intersection points between o and B.

Proposition 2.1.12. Let B be a bisector and o a geodesic, o not contained B, then c NX
consists of at most two points. Moreover the number of intersection points between o and
B is equal to the number of intersection points between o (the real spine of B) with s (o)
(the image of o under orthogonal projection onto the complex spine of B).

Corollary 2.1.13. Let B be a bisector, with complex spine ¥ and o a geodesic. If cNY # ()
and o is not contained in B, then o intersects B in at most one point.

2.2 Isometric spheres

2.2.1 Busemann function

We compute the Busemann function in the Siegel domain model in order to define the
isometric spheres. Consider a unit speed geodesic o; € H% such that lim; .o 03 = Goo.
The corresponding Busemann function (see [BGS85), [Gol99]) is defined as

hoo(z) = lim (p(z,0¢) — ).
Explicitly, the points in the Siegel domain corresponding to the vectors
—et/? /2

o = 0
ot/2
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move (as t — 00) at unit speed along a geodesic towards ¢ corresponding to

Qoo:

e} S O =

Let z be the standard lift of z and (z,z) < 0. As t — oo, we see that
’—et/2/2 + zle*t/Z’

V—2R(21) — [z
t/2
~ 2cosh™! c
(2\/—2%(21) - |Z2|2>

ot/2
~ 2log
(\/—2%(21) - |Z2\2>
1

—2R(21) — |22]?

p(z,6¢) = 2cosh™!

= t+log

Definition 2.2.1. The Busemann function in Siegel domain is given by

1
—(2R(21) + |22/%)

hoo(2) = log — —log Wa(2)

where
_<Z7 Z)

(2, Qo) (Qoo, 2)

Recall that the horosphere (centered at goo) of height u is the set of points satisfying
(z,z) = u, that is the corresponding level sets ho!(—logu) of hoo(2). For zgp € HA and
A € PU(2,1), then B(zg, A=%(z9)) is a bisector equidistant between 2o and A=!(zg). As 2o
tends to the boundary, then the distance in B(zg, A~!(2)) is replaced with a Busemann
function based at zg. We have

Ueo(z) =

Definition 2.2.2. Given an element A € PU(2,1) such that A(¢eo) # oo, the isometric
sphere of A is defined to be the hypersurface

{2z € H:: hool2) = hoo(A(2))}.

In other words,
{z€ H:: [(2,Q0)| = {2, A7 (Quo))[}

where z and Qoo are Tespectively the standard lifts of z and qs in C>1.

Example 2.2.3. The isometric sphere of

0 0 1
Iy=10 -1 0
1 0 0
is
S={(ztu): || +u—it| =2} (2.2)
in horospherical coordinates or
S = {[2’1,2’2,2’3] S H% : |2’1‘ = ’23|} (23)

in homogeneous coordinates.
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Remark 2.2.4. e The isometric sphere S is the Cygan sphere at the origin, called the
standard isometric sphere. All other isometric spheres are images of S by Heisenberg
dilations, rotations and translations. Thus the isometric sphere with radius r and
center (2o, to,0) is given by

{(z,t,u) : ‘]z — 20|? + u+ it — ity +2z’%(z§0)’ = 7”2}.

o If A has the matrix form as

a b c
d e f |, (2.4)
g h j

then A(geo) # (oo if and only if g # 0; see Lemma [1.3.10, The isometric sphere of A
has radius r = 1/2/[g| and center A~!(gw), which in horospherical coordinates is

(z07t070) = (Z,Q%(é),0> .

2.2.2 Dirichlet and Ford domains

The simplest type of fundamental polyhedra for discrete groups are Dirichlet and Ford
fundamental polyhedra.

Suppose I' € PU(2,1) is a discrete group of isometries of H% and choose a point
20 € H%, called the base point of the polyhedron.

Definition 2.2.5. The Dirichlet domain for I' centered at zy is defined as

D.(T) = {2 € HE| p(2,20) < p(2,7(20)) ¥y € T\{Id}}.

In other words, ©.,,(T") is the intersection of equidistant half-spaces

D () = (] H(20,7(20))
y#id

where the equidistant half-space is defined by
H(u,v) = {z € HE| p(z,u) < p(z,v)}.

Remark 2.2.6. The base point should not be fixed by any element of I'. If so, the
Dirichlet domain is exactly a fundamental domain otherwise a fundamental domain of I’
is the intersection of a fundamental domain for T'y (the stabilizer of the base point) and
Dirichlet domain for I' — I'y.

We define the Ford domain when the base point zg tends to an ideal point by using
Busemann function. Here the boundary of Ford domain become the union of parts of
isometric spheres. As well, the Dirichlet fundamental domains converge to Ford funda-
mental domains. Replace zp by goo and the Bergman metric p by Busemann function in
the previous definition.

Definition 2.2.7. The Ford domain is defined as
Foo(D) = {2 € HE| hoo(2) < hoo(7(2))}.

In other words, Foo(I') is the intersection of isometric spheres of all elements not fizing
infinity, that is,
Foo () = {z € HZ| (2, Quo)| < (2,71 (Qo0))}-
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2.2.3 The geographical coordinates

Isometric spheres are examples of bisectors and, as such, have a very nice foliation by two
different families of totally geodesic submanifolds,

e the slices,
¢ the meridians.

The real geodesic passing through two vertices of a bisector is called the spine of the
bisector.

Together the slices and meridians give geographical coordinates on the bisector (see
[EP0G6]). In order to parameterize the standard isometric sphere S, we write

2% 4+ u — it = 2%
for 6 € [-7/2,7/2] (in particular, |z| < v2cos#) and

= rezoc—&—zG/Q

for r € {—\/2 cos(f), /2 cos(@)] and o € [—7/2,7/2).

Definition 2.2.8. In geographical coordinates, S is parameterized by
it

reio‘rw/z 10 € [—g, ;r] Q€ [—g, 72r> , T E |:—\/2COS(0), \/QCOS(Q):| . (2.5)

In horospherical coordinates, the point of S with geographical coordinates (r, 6, a) is
given by (re'®t?/2 _25in(f), 2 cos(f) —r2). The spine, slices and meridians of S are given
in the next proposition in terms of geographical coordinates.

Proposition 2.2.9. (¢f. [F'P06]) The isometric sphere of Iy, S, with coordinates given
by is a bisector. Moreover

(i) the spine of S is given by r = 0;
(ii) the slices of S are given by 6 = 0y for fized Oy € [—7/2,7/2];
(iii) the meridians of S are given by o = v for fized oy € [—7/2,7/2).

Proof. The spine of S passes through its vertices ¢oo and Ip(geo). Thus the spine lies in
the complex line spanned by ¢ and Ip(geo), that is the equation z = 0 and the first part
follows.

A slice is the preimage of a point of the spine under orthogonal projection onto the
complex spine. When we orthogonally project onto the complex spine z = 0, we throw
away the second coordinate in the vector and leave the other entries unchanged. For each
point (0, —25sin(6p), 2 cos(fp)) on the spine, the points of slice are given by

—_etbo
z c HZ
1

The second part follows immediately.
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The meridians of S are the fixed-point of antiholomorphic involutions fixing the spine.
For ag € [-7/2,7/2), these maps are given by

21 Z3
an : z9 — —621&052
z3 Z1

By applying ¢, on the points of S, we see that

_eie 1 _eie
Cor o | reioti®/2 |y | _pelico—ia—if/2 | | | . 2ico—ia+if/2
0"
1 —e~ 10 1
Therefore, the fixed-points by ¢,, is given by o = ayp, that is the meridian. O

2.3 Poincaré’s polyhedron theorem

Definition 2.3.1. Let I' be a discrete group of complex hyperbolic isometries. A subset
A of H% is called a fundamental domain for I' if the following satisfy.

e A is a domain in H%, that is an open connected set;
e AN~N(A)=0 for ally € T\ {id};

° U'yEF V(Z) = H%;

e the complex hyperbolic volume of A is 0.

In this section we establish a Poincaré’s polyhedron theorem suitable for our purposes,
compare [FZ99, [PPI106]. We will follow the formulation given by Mostow in [Mos80] and
also refer to [DFPO05, [FP06, Par06]. In what follows our polyhedron D constructed in
the thesis is homeomorphic to the combinatorial model, we will use a form of Poincaré’s
polyhedron theorem to show that D is a fundamental domain and obtain a geometric
presentation for the group.

Definition 2.3.2. A polyhedron is a cellular complex homeomorphic to a (compact) poly-
tope, with the properties that there is only one cell of highest dimension and that each
codimension-two cell is contained in exactly two codimension-one cells (noncompact if
possible). Then its realization as a cell complex in a space X is called a polyhedron.

Each of its codimension-2 cells, called faces, is contained in exactly two codimension-1
cells, called sides. A polyhedron is smooth if its cells are smooth. For the boundary
of polyhedron, the sides contained in bisectors are naturally smooth. Nevertheless, the
sides of our polyhedron not contained in bisectors (see Figure are foliated by geodesic
triangular cones, which gives rise to their smoothness. Moreover, their faces foliated by
geodesics are also smooth.

Definition 2.3.3. A Poincaré polyhedron is a smooth polyhedron D in a manifold X with
sides S; and side-pairing maps g; € Isom(X) satisfying:

(I) The sides of polyhedron are paired by a set A of homeomorphisms g;j : S; — S; of
X called the side-pairing transformations, which respect the cell structure. We
assume that if g;; € A, gigl =g € A.
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(II) For every g;j € A such that S; = g;;(S;), then g;;(D)ND = S;.

Remark 2.3.4. If S; = S (that is, a side-pairing maps one side to itself), then we impose
the restriction that g;; : S; — 5; is of order two, and we call it a reflection. In this case,
the relation g2 = 1 is called a reflection relation.

Let S; be a side of D and F; be a face contained in Fy. Let S} be the other side
containing F;. Let Sy be the side paired to S} by g1 and F, = g1(F1). Again, there exists
only one other side containing F5, which we call F}. We define recursively ¢; and F;, so
that g;_10---0g1(F1) = Fj.

Definition 2.3.5. Cyclic condition

Cyclic is the condition that for each pair (F1,S1) (a face contained in a side), there exists
n > 1 such that, in the construction in the previous paragraph, g, o---o gi1(S1) = S1 and
gn ©---0g1 restricted to Fy is the identity. Moreover, writing g = gn0---0 g1, there exists
a positive integer m such that g™ =1 and

g1 (D)U(g2091) " (D)U---Ug H(D)U

(g109) (D) U (g2ogr1og) " (D)U---U(¢>)(D)

(grog™ ) H(D)U(g2aogrog™ )" (D)U---U(¢g™) (D)

is a cover of a closed neighborhood of the interior of F1 by D and its images.
The relation g™ = (gn 0 --- 0 g1)™ = Id is called a cycle relation.

We now state Poincaré’s polyhedron theorem:

Theorem 2.3.6. (Poincaré’s polyhedron theorem) Let D be a compact Poincaré poly-
hedron with side-pairing transformations A C I som(H%) in H(% satisfying the cyclic con-
dition. Let I' be the group gemerated by A. Then

o T is a discrete subgroup of Isom(HZ),

e D is a fundamental domain, and

e [ has a presentation given by

I' = ( A | reflection relations, cycle relations).
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This chapter has been published in Mathematical Proceedings of the Cambridge Philosoph-
ical Society (see reference [Zh11] in the bibliography).

3.1 Introduction

Picard modular groups for Oy, denoted by PU(2,1,0y), are the subgroups of PU(2,1)
with entries in Oy where Oy be the ring of integers in the imaginary quadratic number field
Q(iv/d). The general family of arithmetic groups PU(2,1,0y) gives the simplest lattices
known and they are due to Picard [Pic83| [Pic84]. In particular, the case of O3 = Z[w],
where w is a cube root of unity was treated in [FP06] whose fundamental domain is
a 4-simplex with one ideal vertex. A description of the fundamental domain in the case
O; = Z[i] was obtained in [FFP10, [FL0O5, [FLa05]. In [FEP10], Falbel, Francsics and Parker
describe a fundamental domain for the group PU(2,1;O;) and analyze the combinatorics
of the fundamental domain to obtain a presentation of the group.

Recently, Stover [Stol0] has studied volumes of Picard modular surfaces. One of his
main results is that there are exactly only two of arithmetic cusped complex hyperbolic
orbifolds with minimal volume, namely, whose corresponding fundamental groups are the
Eisenstein-Picard modular group and its sister. The sister of Eisenstein-Picard modular
group PU(2,1,Z[w]) was defined by Parker in [Par98]. It is convenient to adopt the
following notation for 3 x 3 complex matrices:

211”12 ~13
221 222 223
231 ”32 %33

Following notations as in [Par98|, we denote the Eisenstein-Picard modular group
by 1 and its sister by (G in this chapter. Let G2 be the collection of all elements of
PU(Q(iv/3)) whose entries in the above form have z11, 212, 213(iV3), 201/(i1V3), 222, 223,
231/(iV/3), 232/(iV/3), and z33 all in O3. In other words,

(i) z13 = x13/2 + iy13/2V/3, where 213 and yi3 are integers of the same parity;

(ii) zjk = zjx/2+ i\/gyjk/2 for all other j, k, where xj;, and y;;, are integers of the same
parity;

(iii) 91,231 and x39 are all divisible by 3.

By construction, G; and G2 are commensurable. Furthermore, they have a common
subgroup G N G2 of index 4 in both G and Go; see [Par98]. As a consequence, one of
the main results in [Par98] is as follows:

Theorem 3.1.1. [Par98] Let Gy and G2 be as above. The orbifolds H%/Gl and H%/Gg
are distinct and have volumes

7.‘.2

Vol(HZ/G1) = Vol(H% /Gs) = TR

However, neither Parker nor Stover give an explicit fundamental domain or a presen-
tation for Gs.

The first part of this chapter is devoted to construct an explicit fundamental domain

for the action of G2 on H(QC. The special feature which simplifies the analysis is that the

quotient H(Qc /G2 has only one cusp. The main idea (inspired by the analogous construction
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of G; [EFP06]) is to obtain a fundamental domain from the Ford domain instead of the
Dirichlet domain. The Ford domain is the intersection of the exteriors of isometric spheres
of all elements not fixing infinity, that is also a fundamental domain for the coset space
of (G2) (the stabilizer of the point at infinity). In order to construct a fundamental
domain, we must intersect the Ford domain with a suitable fundamental domain for (G2) .
Using the complex hyperbolic version of Poincaré’s polyhedron theorem, we show their
intersection gives a fundamental domain, from which we obtain a presentation. The main
difference between the fundamental domain we construct and the one for PU(2,1, Z|w])
is that our domain comprises two compact sides which are paired.

The second part of this chapter is devoted to use a form of Gauss-Bonnet theorem
to calculate the volume of the orbifold HZ/Go, which is the known value of the volume
of the quotient orbifold (see Theorem . In order to do this we have to analyze the
stabilizers and orbits of all n-dimensional faces of our fundamental polyhedron.

3.2 The group G,

In this section we describe some general features of the group Go. In particular, we find
a set of generators and describe a fundamental domain for the stabilizer of infinity.

Let w denote the cube root of unity (—1+iy/3)/2. The group G comprises all matrices
in U(2,1) (preserving the second Hermitian form) of the form

a b ci/V3
A= | div3 e f
giv3 hiv3 ]

where a, b, --- , h,j are all elements of Z[w].

3.2.1 The stabilizer (G3)s of ¢

First, we want to analyze (G2)c, the stabilizer of ¢o. Every element of (G2)s is up-
per triangular, and its diagonal entries are units in Z[w]. Therefore, (G2)s contains no
dilations and so is a subgroup of Isom(/N); and fits into the exact sequence (1.5]) as

0 — RN (G2)oo — (G2)oo — T ((Ga)eo) — 1.

We can find explicitly the kernel and image of (G2)x as in [FP06].

Proposition 3.2.1. The stabilizer (G2)oo 0f oo n Go satisfies

9
00— -7 — (Ga)oo ~2 A(2,3,6) — 1,

V3

where /\(2,3,6) denotes the triangle group comprising orientation-preserving symmetries

of Z|w).
Proof. From the explicit construction (|1.6)) of II., we see that for A € (G2)wo,

IL(4) = [ () = ] ,
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where zg € Z[w]. It follows from Proposition 3.1 of [FP06] that IL.((G2)) is generated by
R.(z) = —wz and S.(z) = —z + 1, which is the triangle group A(2,3,6) = {R., S.| RS =
S7 = (R.S.)% =1}.

Likewise, the kernel of I, is easily seen to consist of those vertical translations in
(G2) oo, that is , Heisenberg translation by (0,2n/v/3) € N for n € Z. O

The following proposition gives the generators of (G2)no.

Proposition 3.2.2. (G2)~ is generated by

1 0 0 1 1 —wi/V3
R=|0 —-w 0|, S=|0 -1 1
0 0 1 0 0 1

Proof. The triangle group A(2,3,6) is generated by
IL.(R) =R, : z — —wz, I(S)=8i:2— —2+1.

Hence we only need to show that R and S generate R N (G2)oo =~ %Z. Observe that

2
1 0 i/V3

=101 0 |=T, (3.1)
00 1

which is precisely the generator of %Z N (G2)oo- Therefore (G2)o is generated by R and
S. O

We first construct a fundamental domain for the parabolic subgroup (G3)~ acting on
the Heisenberg group. We want to describe the action of R and S on each horosphere.
Recall that complex hyperbolic space can be parameterized in horospherical coordinates
(2,t,u) € C x R x RT by:

(— |22 —u +it)/2
(z,t,u) — z
1

Then, using the matrices of R and S, we obtain the following action of R,

1 0 0 (—|2|*> —u+it)/2 (—|2|*> —u+it)/2
0 —w 0 z = —wz
0 0 1 1 1
and S,
1 1 —wi/V3 (—|2|* —u+it)/2
0 -1 1 z
0 0 1 1
(=22 —u+it)/2+ 2z —wi/V3
= —z+1
I 1
(<l — 2+ 1P —uti [t +29(2) +1/V3]) /2
= —z+1
i 1
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We also introduce two elliptic elements fixing g, used in later:

1 1 wi/V3 1 1 —wi/V3
RS~ = w 1 and R'S=|0 w —w . (3.2)
00 1 0 0 1

Therefore, we have the properties of those matrices:

(i) R has order 6 and rotates the complex line spanned by 0 and oo by 7/3, that is, it
acts on horospherical coordinates by

R:(z,t,u) — (—wz, t,u).

(ii) T is the shortest vertical translation. Its action on horospherical coordinates is given
by
T: (2,t,u) — (2,t +2/V3,u).

(iii) S has a screw parabolic map with axis the complex line through z = 1/2. It acts on
horospherical coordinates by

S:(ztu) — (—z+1,t+23(2) + 1/V3,u)

(iv) RS~! has order 3 and rotates the complex line through z = 1/2 +i/2v/3 by 27/3.
It acts on horospherical coordinates by

RSV (z,t,u) — (@2 — @, t + 23(w2) — 1/V/3, ).

(v) R™'S also has order 3 and rotates the complex line through z = 1/2 —i/2v/3 by
27/3. It acts on horospherical coordinates by

R7YS: (2,t,u) — (wz —w, t 4 23(2) + 1/V3,u).

These actions preserve each horosphere, that is, the set of points where u is constant.
Thus we may drop the dependence on u, and we obtain the action on N/ = C x R.

We now construct a fundamental domain for the action of (G2)oo on N. We know that
IL((G2)oo = AA(2,3,6) is a triangle group of Zw]. A fundamental domain for this group
is the triangle in C with vertices at 0,1/2 —i/2v/3 and 1/2 + i/2v/3; see Figure Side
pairing maps are given by

—w 0 -1 1
el e ] s [0]
The first of these is a rotation of order 6 fixing 0 and the second is a rotation of order 2
fixing 1/2.
A fundamental domain for (G2)s can be constructed by the intersection of preimages
of this triangle under vertical projection II and a fundamental domain for ker(II,). The
inverse image of the triangle under II is an infinite prism. The kernel of II, is the infinite

cycle group generated by T, the vertical translation by (0,2/v/3). So a fundamental
domain for this group is the set of points where —1/y/3 < t < 1/4/3. Hence a fundamental
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FIGURE 3.1: Fundamental domain for A(2,3,6) in C. The map R, rotates by /3
about the origin and the map S. rotates by 7 about 1/2.

domain for (Gg)s is the prism in A with vertices at (0,£1/+/3), (1/2 —i/2v/3,£1//3),
(1/2+414/2v/3, £1//3); see Figure The side pairings act on points (z,t) € A as follows:

R(z,t) = (—wz,t),
S(zt) = (—z+1,t423(z) +1/V3),
T(z,t) = (2,t+2/V3).

We can see the action of S on the triangle (3], 27, 25 ) is the composition of a reflection
on the edge 2725 and a clockwise rotation. We summarize the side-pairing maps by acting
on the vertices of the prism:

R o (&, %, 50, 80) — (80,40, 45, 4,
S (B, 57,5) — (BF, 25, 5),

Denoting all the edges by the ordered pairs of their endpoints, we can also consider
the edge cycles given by these side-pairings are

G 20) 5 (55.%),

e Seha) B e,

(r.27) > (57.20) -5 (65,3 T (51, %),

o) 2 Gous) D e T e s T (s

This has used all the edges of fundamental domain. The first of these cycles gives the
relation RS = I, the second gives the relation (R~!5)3 = I, the third gives the relation
S? = T and the last gives the relation T"'R™'TR = I. These relations can directly follow

from the properties of matrices (3.1]) and (3.2)).

This enables us to give the following proposition.
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R sh — (L4 i L
& =1(0,%) — L =Gtam )
A
s N\ (L 1
A X v )
T
S
o= _L\
& =(0,-%) — (1 i 1
H=G+t35 5

FIGURE 3.2: Fundamental domain for (G2)s in the Heisenberg group: the map R
rotates through 7/3 about z = 0; the map S is a screw Heisenberg rotation through
m about z = 1/2 followed by an upward vertical translation by 1/4/3; the map T
translates along t-axis by 2/\/§

Proposition 3.2.3. A fundamental domain for (G2)eo is the prism with vertices (in
Heisenberg coordinates) (z,t) = (0,£1/v/3), (1/2—i/2v/3,£1/V/3), (1/2+i/2v/3, £1//3).

A presentation is given by

(G9)oo = (R, S, T| RS = (R™15)3 = [R, T] = identity, S* =T).

3.2.2 Generators of GG

First consider the map

0 0 i/V3
I]_ == 0 —Ww 0 9
iv3 0 0

it has the isometric sphere Sy given in horospherical coordinates by

So = {(z,t,u) : ’|z\2+u—it|‘ =2//3} (3.3)
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or in geographical coordinates Sy is parameterized by

—e?/\/3 2cosf  [2cosd
reietif/2 | 9 c[—n/2,7/2),a € [-1/2,7/2), 1 € l—\/ o \/ o8 ] . (34)
) V3 V3

Observe that the action of I3 on &y is given by

0 0 i/V3 —e/\/3 i/V3 —e7/\/3

0 —w 0 retatif/2 | — | peiatif/2—in/3 | — —iet? retlatm/6)—if/2
iv3 0 0 1 —ie'? 1

We see that I1 maps Sp to itself, sending the point with coordinates (r, ¢, «) to the point
with coordinates (r, —0,a + 7/6) when —7/2 < o < 7/3 or the point with coordinates
(—r,—6,o0 — 57/6) when 7/3 < a < /2. Therefore I; is an elliptic element of order 12.
Moreover, I; swaps the inside and the outside of Sy.

Proposition 3.2.4. Let (G2)x be the stabilizer of g in Ga. Then there exists a funda-
mental domain for the action of (G2)e on OHz whose interior lies inside the ball in 0 H~
whose boundary is 0Sy.

Proof. The same results are proved for the Eisenstein-Picard group in [FP06] and Gauss-
Picard group in [FEP10]. As in the proof of Proposition the prism with vertices
(in Heisenberg coordinates) (0,+1/v/3), (1/2 —i/2v/3,£1/v/3), (1/2 +i/2v/3,41//3) is
a fundamental domain for (G2)s. All these vertices lie inside 0S5y in Heisenberg group.
Since 08y is affinely convex (c.f. Lemma , the whole prism lies inside 0Sy. O

We now show that adjoining I; to (G2) gives the full group Gs. In order to prove
that, we should show that (R, S, T, I;) has only one cusp. The fact that G2 has only one
cusp is already known we refer the reader to [Par98].

Proposition 3.2.5. The group Gy is generated by T, R, S and I.

Proof. (cf. [EP06, [FEP10]) The same result for the Eisenstein-Picard group and Gauss-
Picard group. Since a fundamental domain for (R,S,T,I;) lies outside the isometric
sphere of I; and inside the fundamental domain for (R,S,T). The Proposition
implies (R, S, T, I;) has only one cusp. The fact that G2 has the same cusp as the group
generated by T, R, S and I; implies that they are the same. O

3.3 Construction of a prism

In this section, we will construct a prism P by the intersection of isometric spheres. In
fact, the prism Pg is the compact part of the boundary of a fundamental domain for Gs.
To have a global view of the prism we refer the readers to Figures [3.3]and 3.6l The prism
contains two compact sides of the fundamental domain and the other sides are cones based
at the faces of this prism with cone point the ideal vertex.

We begin by investigating the intersection of Sy with its neighboring isometric spheres.
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3.3.1 The intersection of Sy and its neighbors

Here we will use some isometric spheres and their intersections to define the compact sides.
The bisectors we need are the following:

So, T(So), T~1(S0), S(S0), S~1(So), RS~ (S0), R™'S(So)
which are, respectively, the isometric spheres of
L, ThT', T'nT, SnLS™Y, ST'LS, RST'ILSR', R'SLST'R.
In particular, it suffices to determine
TE(So) NSy,  SE(Sp) N So.
The other intersections are easily obtained from these. For example,
R™1S8(Sp) NSy = R7H(S(Sp) N Sy).

We need to investigate the intersection of these bisectors with Sp. A direct computation
shows that T(Sp), T~1(So), S(So), S~1(Sp) are given by

T(So) = {(z,t.u) ¢ | |2 +u— it +2i/V3| = 2/V3}, (3.5)
T7(S0) = {(z.tw) 1| |27 4w — it — 2i/V3| = 2/V3}, (3.6)
$(So) = {(zt, ) | |2 = 22+ w1 —it +i/V3| =2/V3}, (3.7)
S7HS0) = {(ztw) 1| 22 = 22+ u+ 1 — it — i/ V3| = 2/V3}. (3.8)

We start to describe the intersection of these bisectors. Note that 7T and ST will be
denoted by T, T~! and S, S™! respectively in Lemmas and

Lemma 3.3.1. In geographical coordinates, a point (r,0,a) of Sp with 0 € [—7/6,7/6]
does mot intersect the interior of T(Sy) and T~1(Sy). Furthermore, T*(Sp) N Sy is a
common slice of the bisectors TT(Sy) and Sy which corresponds to § = Fr /6.

Proof. Recall that a point of Sy is given by
o ez‘G / \/3

reiatio/2
1
In horospherical coordinates, it is given by (reio“rw/ 2 —2sinf/v/3,2cos 6/ V3 — 7,2)7 where
0 € [-n/2,7/2], a € [-7/2,7/2), r € [—\/(QCOSQ)/\/g, \/(20089)/\/5} Therefore, a

point of Sy does not intersect the interior of T'(Sp) if and only if

+ 2 0 + 2 0+ ’

2+ —=cosf —r? +i—=sinf4i—

V3 V3 V3

A simple computation implies that sinf > —1/2, i.e. 6 € [—m/6,7/2]. Similarly, a point
of Sy does not intersect the interior of T~1(Sy) if and only if § € [~7/2,7/6]. Therefore,
T*(Sy) NSy are respectively the slices § = F7/6. This completes the result. O
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Lemma 3.3.2. S*(Sg) NSy is a topological disk.

Proof. In fact in horospherical coordinates (z,¢,u) of the bisector Sy, the intersection is
foliated by arcs of circles, each contained in a slice of height t. We show it explicitly as
follows. Recall that the coordinates (z,t), with that |z|* 4+ #? < 4/3, parameterize the
bisector Sy whose equation, in horospherical coordinates, are (|z]? + u)? +t? = 4/3. As
vectors in C>! we obtain therefore

(—|2|? —u +it)/2 (—\/4/3 — 2 +it)/2
1 1

Then we have

(—VAB = +it) /2

S - z
1
(1 1 —wi/V3 (—/4/3 =12 +it)/2
= 0 -1 1 z
(0 0 1 1
[ (VA3 = +it)/2+ 2 —wi/\/3
1

The condition that such a point lies in Sy is that the first entry has absolute value 1/ V3,
that is,

—VAB P +it | wi 1

z = —.
2 V3| V3
For each fixed height (with —2/4/3 < t < 2/+/3), the intersection lies on the circle centered

at (v/4/3 — 2 —it)/2 + wi//3 with radius 1/v/3. The condition for the existence of an
intersection between this circle and the slice of height ¢ is that the sum of the radii of

these two circles, 1/v/3 + (4/3 — t2)1/4, be greater than the distance between the centers,
that is, |(\/4/3 — t2 —it)/2 + @i/v/3|. That gives the equation

1+(4—t2)1/4 2> w—i+—”4/3_t2_it2
RAY 73 5

whose solution is

2 2914/3 + 504)1/3 1 4/3 2
——<t<( V3 +504) vi_2

+ - < —=.
V3 3 (2913 +504)1/3 3 V3

This shows that the intersection is foliated by a one-parameter family of arcs of circles
and therefore is a topological disc. Observe that S=!(Sp) NSy = S~1(Sp N S(Sp) implies
that is also a topological disk. O

We describe this intersection in more details below.
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3.3.2 The vertices

In this section we define the vertices of the prism, all of them will correspond to vertices of
the fundamental domain for (G2)~ in the Heisenberg group. In fact, the vertical projection
(z,t,u) — (z,t) which projects the geodesic passing through (z,t,u) to ¢ to its end point
(z,t) maps the vertices of this prism to the vertices of fundamental domain for (G2)oo.
We start to define the vertices of the prism as points of C*! and discuss their horo-
spherical and geographical coordinates. There are three vertices lying on the common slice
of Sy and T'(Sp), which are denoted by z;, j=0,1,2. Let zg define the intersection of the
spine of Sy and the common slice § = —7/6 (that is height ¢ = 1/4/3 in the Heisenberg
group N'). Other two vertices are the intersection of four bisectors, that are given by

= SonNT(S)NS™H(Sy) N RS(Sy),
= SoNT(S) NS(Se)NRS™HSy).

Similarly, three vertices lie on the common slice of Sy and T~!(Sp), which are denoted
by z;,7 =0,1,2. Let z; define the intersection of the spine of Sy and the common slice

0 = 7/6 (that is height t = —1/4/3 in N). Other two vertices are given by

2 = SonT1Sy)NSHSy) NR™S(Sp),
SoNT1(Sy) N S(Sy) N RS™L(Sy).

)

We now list all the vertices as points of C*!:
The vertices on the common slice of Sy and T'(Sp) are

1 i _1 i _1 i
= 0 Ao | 1 J N I G
0 X A 27573 |0 *2 2 T 33
1 1

The vertices on the common slice of Sy and T~1(Sy) are

D 1 1l 4
27 23 2 23 2 23
zi = O 27 = l — ? zi = l —|— L
0 ) 1 2 23 ’ 2 2 2V3
1 1 1

In horospherical and geographical coordinates of these vertices zjc points are given by

z t U r 0 Q
Pas 0 1/V3 1 0 —7/6
2 1/2 —i/2V/3 1/v3 2/3  1/V/3  —xm/6  —m/12

= 12+4/2v3 13 2/3]  1/V3  —m/6 /4
Zg 0 —1/V/3 1 0 /6

| 1/2—4/2v3  —1/vV3  2/3]  1/V3 /6 —7 /4
| 1/2+4/2/3  —1/V/3  2/3]  1/V3 /6 m/12

By computation we verify that z;", 25 € S(Sp) N S™1(Sp).
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3.3.3 The edges

We first investigate the intersection of Sy and S(Sp), S™1(Sp) more closely than before.
We compute it explicitly in geographical coordinates and show the following result.

Lemma 3.3.3. A point (r,0,a) of Sy in geographical coordinates with —m/12 < o < 7/4
does not intersect the interior of S(So), provided that

0 T T 0 T T
< — _ ) = _ 22 ) qin2 _
T /3 [2 cos < 12) cos (a 12) \/1 4 cos <2 12) sin (a 12)]

with equality if and only if the point lies in Sy N S(So).
Proof. A point of HZ does not lie in the interior of S(Sp) (cf. [3.7) if satisfies

2 2

— < ||z —22+u—|—1—zt—|—‘ 3.9
< | (39
If such a point lies on Sy, we can write it in geographical coordinates. Substituting in

B9) gives

| < ‘_\/grei(a+0/2) + ¢ + e”/6’ = ‘\/grei(o‘“/lz) — 2cos (g - 12)' : (3.10)

We have equality in (3.10]) if and only if the point lies in So N S(Sp). Expanding out the
right-hand side of (3.10)), we see that is equivalent to

3r2 — 4v/3r cos (9 - 7r> cos (oz - 7T) + 4 cos? (9 - W) —-1>0. (3.11)

2 12 12 2 12

By solving this inequality, we know that all points of Sg do not intersect the interior of
S(Sp) if satisfy with

— 2cos<9ﬂ)cos<aﬂ) 1 — 4 cos? <97T>sin2 (aﬂ)
f 12 12 2 12 12
1 0 T T 0 T T
> S B _ _ 2 (2 in2 _
r> 73 [2005 <2 12) cos (a 12)+\/1 4 cos (2 12) sin (a 12)]

We claim that the second of these solutions is always greater than (/2 cos(f)/v/3 as
—7/12 < a < 7w/4 and so does not correspond to a point of Sg. In order to see this,
observe that —7/12 < a < 7/4 implies 2 cos(a/2 — 7/12) > /3 and 4sin?(a — 7/12) < 1.

Thus
0 = T 6 = T
il 7_ T _ " _ 2 (2 - " \gin2 (o= L
\f[2cos< 12)cos (04 12)—1—\/1 4 cos (2 12) sin (a 12)]

\}g [\/?:cos <Z — 17;) — sin (g — 17;)]

B 2 [cos(f +7/6)+1
- S

S 2cos 6
pu— ﬁ .

or

v

Il

(@]

o

13}
7N\
(NN IS
+
[—
[\D :]
~~
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In fact,

COS(Q+W/6)+1—COS0 = L ﬁcose—lsinequ—\/?:cosG
V3 V3| 2 2
1 —sin(f + 7/3) >0.
V3

Note that when # = 7/6 and a = 7/12 or 7/4, then we have equality in both inequalities
above. But in this case 1 = 4 cos? (#/2 — 7/12) sin? (o — w/12), so the quadratic equation
(3.11)) has a repeated root. O

Similarly, we can also obtain the following results.

Lemma 3.3.4. A point (r,0,a) of So in geographical coordinates with —7m/4 < o < /12
does not intersect the interior of S™1(8y), provided that

7“<L 2cos<9+ﬂ)cos<a+ﬂ>— 1—4COSZ<9+ 7T)sin2(oz—1—7r>
- \/3 2 12 12 2 12 12

with equality if and only if the point lies in So N S™1(Sp).

We should understand the intersection of Sy and R~15(Sp), RS™1(Sp) and observe
that Rfls(S()) NSy = Ril(S(So) N So) RS (S()) NSy = R(Sil(S()) N S()) The following
lemmas can be derived from Lemma [3.3.3] and Lemma [3.3.41

Lemma 3.3.5. A point (r,0,«) of Sy in geographical coordinates with —7/4 < o < —m /12
does not intersect the interior of R~1S(Sy), provided that

0 T T 0 T T
< R _ _ _ <2 o s 02 _
r \f [2(305( 12) Ccos (a+4> \/1 4 cos <2 12) sin (a+4>]

with equality if and only if the point lies in Sy N R™1S(Sp).

Lemma 3.3.6. A point (r,0,«) of Sy in geographical coordinates with —mw /12 < o < 57w /12
does not intersect the interior of RS™1(Sy), provided that

r < 7 [QCOS (6 + 12) cos(a — %) \/1 ~ dcos” <g * 17;) sin” <a N Zﬂ

with equality if and only if the point lies in Sy N RS™1(Sp).

We can now characterize the edges of the prism not containing g... Some edges are
obtained by intersecting three bisectors. Some edges are contained in geodesic arcs by
construction. We now list them in the following lemma.

Lemma 3.3.7. (i) The edge joining Z(J)r and zy 1s contained in the spine of Sp.
(ii) The edge joining zac and z;E for j =1,2 is a geodesic arc.

(i) The edge joining 2 and z;r s given by points in geographical coordinates

g T <_7r> 1_m2<_7r> T o<
T T\ T 37T 2-%=

13
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(iv) The edge joining z; and zy s given by points in geographical coordinates

( +7r> 1 ,2< +7r> 7r< <7r
= cos — ] —y/=—s — —— —.
. T 3 A\ ) T Y=

(v) The edge joining z{ and zi is given by points in geographical coordinates

0 =

ol

1 0 « s s
= — =—~—— and ——-<60<—.
r « an 6 6

V3’ 2 6
Notice that the complex line z = re'®t9/2 = 1/2 — i /2/3 contains this edge.
(vi) The edge joining z; and z5 1s given by points in geographical coordinates
1
3

Notice that this edge lies in the complex line z = 1/2 —i/2+/3.

T 60 T
= = - - —_ <<
r Q ) and G 0

(vii) The edge joining z;{ and z5 is given by points in geographical coordinates

1 0 ™
= <f<-—.
- 76
Proof. Parts (i) and (ii) follow by construction.
We prove (iii) and then (iv) follows similarly. The edge joining z;” and 25 is defined to
the common intersection of the bisectors Sy, T'(Sp), S(Sp). Being in the first two of these
implies that § = —n/6 following from Lemma Substituting in Lemma and

requiring equality gives

ro= \}gl\/gcos(a—17;)—\/1—35in2<a—17r2>1
= cos(a—lﬁz)—\/;—siﬂ(a—;).

We know that a = —7/12 at 2" and a = 7/4 at z; . Moreover, r = 1/1/3 at both z;
and zy .

We now prove (vi) and then (v), (vii) follows similarly. The edge joining zi and z; is
defined to the common intersection of the bisectors Sy, S(Sp), RS™!(Sp). As in the proof
of Lemma the intersection of Sy and S(Sp) implies that

0 6
3r2 — 4v/3r cos (2 - 17;) cos (a - ;;) + 4 cos? (2 - 17T2> —-1=0. (3.12)

Similarly, the intersection of RS™1(Sy) with Sy implies another equality

9 n ™ 0
2 2

—4 Z 4 —Z) +4 4+ )—1=0. 1
3r \/g’f‘COS(2 12) COS(Oé 4) COS (2 12) 0 (3 3)

First we write ¢ = a — 7/6. Then subtracting the equations (3.12)) and (3.13) gives

V/3rsin (Z - ¢) = sin 0. (3.14)
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21

FIGURE 3.3: A schematic view of 1-skeleton of the prism Py. The compact sides
are contained in the isometric sphere Sp and the noncompact sides of the fundamental
domain are cones over the faces of the prism with cone point co.

Furthermore, adding the equations (3.12) and (3.13)) derives

0 = 3r2 — 2v/3r cos <Z + qb) — 3r cos <g - gb) +v3cosf + 1
. . (3.15)
= 3r%2 — V/3r(2cos 0 + V/3) cos (2 — qﬁ) — 2v/3r sin @ sin (2 — gb) +v3cosf+ 1
Combining with the equation (3.14]), we can simplify the equation (3.15]) that
0
V3r (2 cos 0 + \/§) cos (2 - QS) =3r? —1+ (2 cosf + \/§) cos . (3.16)
Making use of the equalities (3.14) and (3.16)), we see that
2 2 0
3r? (2 cos + \/§> = 3r? (2 cos + \/§> cos? (2 — ¢>
2 0
+3r2 (2 cosf + \/§> sin? (2 — ¢>

= [3r2 -1+ (200804—\/5) COSQ}z—f— (2c059+\/§>2(1 — cos?0)
2

= (32 —1)2+2(3r? —1)? (2 cos 0 + \/§) cos 6 + (2 cos 0 + \/§>
Taking all terms to the right of the equation and simplifying, we can obtain
0=(3r-1) (37"2 —2v3cos6 — 4) .
Thus, we can get the solution that

3r2=1 or 3r?>=2v3cosb+4,
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of which the latter is impossible since 3r? < 2v/3cosf. So r = 1/\/§ Substituting r =
1/4/3 in the equation (3.14)), it is easy to get ¢ = —/2, that is, o = 7/6 — /2. This
proves the result. O

Remark 3.3.8. The edges z; 27, 2{ 2, and zj z; lie on the surface of cylinder which is
given in the Euclidian coordinates (x,y, z) by

22 +y? =1/3,
—71/6 <z <7/6.

However, two faces (21, 21,25 ) and (27, 23, 257) don’t lie on the surface of cylinder.

3.3.4 Compact sides

In this section, we define two compact sides for the fundamental domain contained in the
isometric sphere Sy. For the sake of convenience, two compact sides are denoted by F7, Fg
and the non-compact sides will be denoted by F;,1 <7 < 6.

Definition 3.3.9. In geographical coordinates from , the compact sides are the points
in Sy given by

<r<p(b,a), —7w/6<0<7/6, —0/2—7/6<a<0/2,
<r<p,a), —7m/6<0<7/6, 0/2<a<m7/6—0/2,

1| 0 T T 0 T T
= |2 R — — ) —4/1—4cos2 (<= — — |sin? -
p2(0, a) 73 _ cos (2 12) cos (a 12) \/ coS (2 12)sm (a 12)

A realistic view of F7 and Fg is given in Figure We next describe explicitly all
the faces of F7 and Fg.

(i) The face Fi = (2g,25,21,2; ) of F7 is union of geodesics arcs with endpoints in
edges (23 25 ) and (2,27 ) on each slice. Therefore, its points are parameterized by

1 0
0<r<— a:_,_f and —

/3 276

We remark the projection of F; on the Heisenberg group is the same as the face
(20,25, 21+ 21) of the prism in Figure which corresponds to arg(z) = —m/6.

T
<0< -—.
- 76

=Y

(ii) The common face F' = (27,21, 25, 25 ) of F7 and Fg is the union of geodesics arcs
with endpoints in edges (ZBL 2y ) and (21F ,Z5 ) on each slice. Therefore, its points are
parameterized by

o<r

IN
S
IN

a=—- and —
2

ol
o3

1
<7)
_\/g
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(a) F7 (b) Fg
FIGURE 3.4: A realistic view of the two compact sides contained in Sp.

(iii) The face Fo = (27,2 ,%5 ;25 ) of Fg is union of geodesics arcs with endpoints in
edges (23 25) and (23, 25 ) on each slice. Therefore, its points are parameterized by

1 T 0 T T
N<r< — = — — — d ——<<—.
== YT 2 M 6-""%

We remark the projection of F» on the Heisenberg group is the same as the face
(20,25, 25, 25 of the prism in Figure which corresponds to arg(z) = /6.

(iv) The face F3 = (g ,21 ,25 ) of F7 is its intersection with the bisector T1(Sp) given
by 6 = 7/6. Therefore, its points are parameterized by —7/4 < o < 7/12 and

0reos (ot f5) =[5 s (a5
COS —_— — — — S — .
== T 1 37 M YT

(v) The face Fy = (25,21, 25) of Fg is its intersection with the bisector T'(Sp) given by
0 = —7/6. Therefore, its points are parameterized by —7/12 < o < 7/4 and

0<r< T 1 . 9 T
— — | —4/= —sin —— .
<r<cos|a 5 3 S o 5

(vi) The face F5 = (2, 21,2, ) of F7 is its intersection with the bisector S~!(Sp) given
by —7/6 <60 <7/6, —0/2 —71/6 < a <0/2 and

e () o) s (3o (o )
r=—|2cos|{ -+ |cos|a+ —|— —4cos* | =+ —= |sin” (o + —
V3 2 12 12 2 12 12
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z 5+
1 29
o %2

FIGURE 3.5: The modifications on the faces F5 and Fg: top view.

(vii) The face Fg = (21, 25 , 25 ) of Fg is its intersection with the bisector S(Sp) given by
—7m/6<0<m/6,0/2<a<m/6—0/2and

1 0 0
T:ﬁ chos(z—fQ>c08(a—1ﬂ2) —\/1—4(:032 (2—17;>sin2 (a—lg)}.

We remark that the major modifications for the fundamental domain of (G2)s Oc-
curred in the faces F5 and Fg, see Figure 3.5

3.3.5 The basic prism

We now are ready to construct the basic prism Py. In the previous section, we have
constructed a fundamental domain for (G2)s. Thus a fundamental domain for G5 is the
intersection of the outside of the isometric sphere Sy of I; with the fundamental domain
of (G2)x we have already constructed. More precisely, the fundamental domain for G is
the geodesic cone over the interior of the basic prism to the cone point oco.

In order to make the boundary of our prism lie outside any other isometric sphere, we
should make suitable modifications to the fundamental domain of (G2)s. The modifica-
tions consist of using the intersection of Sg and its neighboring isometric spheres stated
in Figure 3.5l The vertices of the fundamental domain are the same as those for the
intersection of Sy with the prism we have already constructed for (G2)~o, that is also the
intersection of three neighboring bisectors with Sy, listed in Section 3.3.2. There are some
geodesic edges, one of whose is contained in the spine of isometric sphere Sy, the others are
each contained in one of two slices of bisector Sy. Some generic edges are the intersection
of three bisectors constructed in Section 3.3.3.

The two dimensional faces containing g, are foliated by geodesics starting at the ideal
point ¢, and arriving at the corresponding edges. To determine the remaining compact
faces and sides, we observe that all the finite edges are contained in the isometric sphere
So. Two of the faces are contained in complex lines, two of the faces are foliated by a family
of geodesic arcs with endpoints at two edges, and the two remaining faces are defined as
intersections of Sy with appropriate images of Sy under elements of (G2)no.

The two compact sides are contained in Syg. The other six sides are cones based at
the faces of the prism with the cone point the ideal vertex g, all of which are listed in
Section 3.3.4.

We give the definition of the basic prism Py.
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(a) 1-skeleton

(b) 3-skeleton

FIGURE 3.6: A realistic view of the basic prism Py inside the isometric sphere So.
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Definition 3.3.10. In geographical coordinates, the prism Py consists of those points of
So for which —m/6 <60 < 7/6,

p(0,a) for —0/2—7/6<a<6/2,
OSTS{ p2(0,c) for 0/2<a<m/6—0/2,

where p1(0, ) and p2(0,a) are defined as before.

Following from the Definitions [3.3.9| and [3.3.10, we see clearly that the basic prism Pq
is the union of two compact sides F7 and Fg. (Compare with the standard fundamental
domain for PSL(2,7Z), that is a ideal geodesic triangle whose boundary consists of two
vertical lines and an arc of Euclidean circle with radius 1 centered at origin. This arc
is only one compact side of the fundamental domain of PSL(2,Z) with its side pairing
z — —1/z). The boundary of the prism are all the faces of the two compact sides except
for the common face F’ that is in the interior of Py. The schematic view is given in Figure
[B.3] and a realistic view is given in Figure [3.6

3.4 The side pairing maps

In the previous section we have constructed two compact sides F7 and Fg of the funda-
mental domain. The other sides are cones from the faces of our prism to the point ¢
defined in Section 3.4.2. A side pairing map is an element of PU(2,1) that sends one of
these sides to another (possibly the same). In this section, we will describe all the side
pairing maps in Gs.

3.4.1 Compact side pairing map

We consider the map Iy
0 0 i/V3
0 —w 0
iv3 0 0

acting on &y given by
L:(rb,a) — (r,—0,a+7/6).

By definition, we know that the compact side F7 is a region in Sy bounded by four
faces Fi, F', F3, F5 and the compact side Fg is a region in Sy bounded by four faces F’,
Fo, Fu, Fg. Observe that the map

L:(r0,a) — (r,—0,a+ 7/6), 112 =R:(r,0,a) — (r,0,a+7/3).

We can verify that
F'=9L(F), Fi=IL(Fs),

Fo = NL(Fs), Fo=R(F)=I{(Fi)=L(F).
For example, we take a point (r, 6, «) of Fp, that is satisfied the set of inequalities

1 0
a:—f—% and —

<
_\/g? 2

0<r <0<

T
G

ol
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Fa
f‘/
F h Fo
Fs
AN
F3
F. Fs

FIGURE 3.7: Two compact sides in geographical coordinates (r,0, «) inside the iso-
metric sphere Sy and its side pairing /1 maps F7 to Fs upside down and with a rotation.

It is clearly that the point I;(r, 6, ) satisfies the equations
1 0 T T
0<r< — = — d —=<6< =
<r< 73 a=j5 an <0<

that is, the point I1(r, 0, «) lies on the face F'. Thus we can obtain Fg = I1(F7), namely,
I is the side pairing map from F7 to Fg. The realistic view of these two compact sides
and its side pairing is given by Figure 3.7

3.4.2 Noncompact sides and side pairing maps

As the action of elements of (G3)oo preserves each horosphere, then we can give a natural
extension of faces of the prism Py. We define two pyramids Fi,Fy and four tetrahe-
dra F3,F4,F5,Fs. Each of these is the geodesic cone from ¢, over the union of faces
F1, Fo, Fs3, Fu, F5 and Fg of Py. To be precise, the pyramid F; is defined to be the union
of geodesic arcs based at the face F; with cone point g., and it is likewise for others.
By constructions, the intersection of Py with each of the pyramids Fi, Fo and tetrahedra
F;3, F4, F5, Fg is nothing other than the corresponding face of Py.

We define the 4-dimensional polyhedron D to be the geodesic cone pointing to g, over
the interior of Py. Furthermore, D has eight three-dimensional sides, namely Fi, Fo, F3,
Fy4, F5, Fg, Fr, Fg. Later we will show D is a fundamental domain for Gb.

This enables us to give the following proposition.

Proposition 3.4.1. R~Y(D)N D = Fy, and R maps F1 to Fo; T-Y(D)ND =F3, and T
maps F3 to Fy, likewise, ST1(D)ND = F5, S maps F5 to Fg.

Proof. By construction these sides are corresponding to associated faces of Py, and so this
directly follows from the matrices R, S and T in Proposition [3.2.2 O

We now have already described all the side pairing maps. In what follows, we summa-
rize the side pairing maps in terms of their action on the vertices.



72 Chapter 3. A minimal volume arithmetic cusped complex hyperbolic orbifold

R : (00,20,25,21,2) — (00,27, 25 , 23 , 23 ),
S o (00,2, 21,2 ) — (00,25, 25, 21 ),

T : (00,25,21,2 ) — (00,20, 21, 25),

I el - 4+ - +
1 (20,20 121 121 > 29 ) > (20, 20 » 29 5 21 1 23 )-

3.4.3 The face cycles

In this section we focus on the 2-dimensional faces of D. These faces may be contained in
complex lines or in Lagrangian planes. In such cases they are totally geodesic. Otherwise
the face is not totally geodesic and we refer to it as generic. We will describe all the 2-
dimensional faces and find the associated face cycles and cycle transformations, which will
turn out to give a presentation after we check that hypotheses of the Poincaré’s polyhedron
theorem are satisfied.

Faces in complex lines

Observe that the faces F3 and Fy are each contained in a complex line, that is, a slice of
Sop. These two complex lines are paired by T and each is preserved by R. Moreover, one
face is the image of the other under T or T~!. In order to obtain cycle transformation
we should find other side pairings for these two faces. We know these two faces are each
contained in one of compact sides F7 and Fg and they are the associated to side pairing
map I;. Therefore, this cycle can be described as the following table, which each column
has the vertices of each face and the generator in the fist row indicates that this column
is the image of the previous one under this map.

I 71
J— + p—
Zg =7 Zg 7 %
.
J— + p—
Z9 — Z9 — 29

The face F3 is fixed by 7'y, which is a complex reflection of order 3. Therefore the
cycle relation is (T711)3 = I.

The generic triangular faces

The faces F5, Fg with vertices the ordered triple (27, 21, 25 ), (25 , 25 , 21") respectively are
neither contained in complex line nor in Lagrangian planes. The map S~'I; maps F5 to
itself but acts on this face as a rotation of order 3, which is a regular elliptic element.
They form a face cycle as described in the following table

I St I St I St
P e S e e T U e S e 2
zy zfr > Z5 z; — zf“ — Z5 > Z{
Zy z;r — zf — oz > 2z zf > 29

The associated face cycle transformation is (S~117)3.
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The generic quadrilateral faces

The faces Fi, F', Fo with vertices the ordered quadruples respectively (zar , zfr,zf .20 ),
(29,25 21, z{f ), (z{f A 2 ) are generic faces that form a single face cycle. This is
described in the following table

I I R1
zar — zy zg — z{f
zfr — Zy z; — zf
zy zf — Z5 > Z{
— _l’_ — —
2y = 29 == 25 = Z

The associated cycle transformation is R™1I7.

The generic infinite faces

We have already seen the infinite faces and the associated face cycles, which correspond to
edges and edge cycles we considered when we analyzed (G2)oo. We now list them again.
There are two face cycles involving R associated to geodesic faces:

R R T R T
doo 7 Qo qoo 7 Qoo 7 Qo Y7 Qoo 7 (oo
+ + — — + + —
2y = z g = 2y = 2y = 2y — 2
Zg > Zzg Zy > Zy +— z; — zf s

The face cycles transformations are R and T-'R™'TR respectively, which give rise to
RS = T and the latter may be rewritten as [T, R] = I.
There are another two face cycles involving S associated to generic faces:

S R S S T-1
G > qoo 7 Qoo Qoo 7 Qoo Y7 Qoo 7 (oo
7 o= g zf Z] = Zy zf — 2z
Zy > Zy > Z Zy zf — z; > Zy

The associated cycles are R~1.S and T~15? respectively. These give the cycle relation
(R71S)=Tand T = 52,

3.5 The main theorems

In this section we prove that the 4-dimensional polyhedron D constructed as above is
indeed a fundamental domain for G5 and give a presentation for the group Gs.

3.5.1 D is a fundamental domain

In this subsection, we use Poincaré’s polyhedron theorem to conclude D is a fundamental
domain for G3. The techniques are the same as [FP06] and [FEP10]. We just apply these
arguments on this polyhedron D.

Theorem 3.5.1. The polyhedron D is a fundamental domain for Gs.
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non-bisector
|

(a) 3-dimensional view (b) 2-dimensional view

FIGURE 3.8: The images of D cover a neighborhood of the face Fi.

Proof. We have given D the structure of a prism with side pairing maps. For each two-
dimensional face of D, we have found all the face cycles given by the side-pairing maps. In
what follows, we want to verify that the images of D cover a neighborhood of the interior
of each two-dimensional face.

The faces containing ¢, are cones over its edges of Py. As the infinite faces are sent
to other infinite faces by maps in (G2)x, then the face cycles from faces containing g
are corresponding to edge cycles from Pg that are listed in Section 3.4.3. Therefore, the
images of D under (G2)s cover any horoball not intersecting Sy from the construction of
the fundamental domain for (G2)oo-

For all the compact faces, we need only take one face in each face cycle in order to
verify the tessellation around the associated face. Now consider the face F; with vertices
the ordered quadruple (zar , zf .21 5% ). The face cycle is

+ o+ = =y D~ =y D B
(20,21 ,21,20) — (20, 22,21 20 ) — (20,22, 23,20 ) = (20,21, 21, % )-
Therefore, R~11? is the identity on Ji, that is also the identity in Go. We want to show
that D, I; (D), I;*(D) = R~!(D) cover a neighborhood of Fj. In fact, the map R is
a rotation of Sy about its spine and preserves Sg. Therefore, R~1(Py) is also contained
in Sg. The image of D under R~! is the geodesic cone of R~!(Pg). Hence D U R~!(D)
cover that part of a neighborhood of F; exterior to Sy. Observe that the face Fi is
contained in I;'(Fg) = F7 and I; 1(F;) = I; (Fg) = R~(Fg), in other words, I; ! (Pg)
has a common side with each of Py and R™!(Py), namely, Pg N Il_l(Po) = F; and
R~ (Po) NI (Pg) = R~1(Fg). Moreover the maps I; swaps the exterior and the interior
of Sp. Thus we conclude that D U I; (D) U R~*(D) covers a neighborhood of Fi, see

Figure [3.8| for a schematic view.

Next we consider the face F3 with vertices the ordered triples (zy , 27 , 25 ). The face

cycles are

- - -, _
(20721722)—>(Z(—)~_?Zf_72;) (ZOVZl?ZQ)'
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non-bisector non-bisector
! |

S : ‘
U p | T 4(S) % p | D) SIS

1) S uTr) D) N (I7'$)"(D)

non-bisector

non-bisector ) . o
non-bisector non-bisector

I7'T(D) IF\TIY(D) I7'S(D) I;71SI7Y(D)

(a) The neighborhood of F3 (b) The neighborhood of F5

FIGURE 3.9: The images of D cover a neighborhood of the faces F3 and Fs.

Therefore T~'I; is the identity on F3 and a rotation about complex line containing
(20,21 ,%5 ). In fact, we can easily verify (T111)? is identity in G2. We will show that a
neighborhoods of the face F3 is tessellated by some images of D. To see this, first observe
that T~! is a vertical translation in the Heiseinberg group N, therefore, DUT (D) cover
a neighborhood of F3 exterior to two isometric spheres Sg and 771(Sp). The result will be
completed by a similar argument ([FEP10], Section 7.8). This argument may be applied to
the faces that are in the intersection of two distinct isometric spheres of the Ford domain.
This also shows a neighborhood of F5 is covering by some images of D since the face F3
is in the intersection of two isometric spheres of I; and S~1I;S.

From the point of view of geometry, we state that the face F3 is covered by D, I} 1(D),
I7'T(D), I7 TV YD), (I7'T)?(D) and (I71T)% 171 (D) = T-1(D) and the face Fs is tes-
sellated by D, I7 (D), I;'S(D), I7'SI7 YD), (I71S)?(D) and (I;1S)%1;1(D) = S~1(D)
by the same argument as above. We draw two-dimensional pictures to show more clearly,
see Figure (3.9

Notice that there is a difference between the two cases, that is not apparent from the
two dimensional picture. Namely, the map T~ 'I; is a complex reflection of order 3 and
fixes each point of the face Fi, whereas S™1I; is a regular elliptic of order 3 and acts on
the face F5 as a rotation.

By Poincaré’s polyhedron theorem, we conclude that D is a fundamental domain for
the group generated by the side pairing maps and the presentation is given by the cycle
relations. Recall that G5 was shown to be generated by R,S,T,I; in Proposition [3.2.5
which completes the proof. ]

3.5.2 A presentation for G,

In this section, we also use Poincaré’s polyhedron theorem on D to derive a presentation
for G2. We know the generators of G2 are side pairing maps for D given in Section 3.4.2.

For each two-dimensional face of D, we have already found all the cycles given by the
side-pairing maps listed in Section 3.4.3. Thus the stabilizer of infinity (G2)s has the
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following presentation
(G2)oo = (R, S, T| RS = (R7'S)* = [R,T] = S*°T ! = identity).

For the compact faces, we have given the cycles in Section 3.4.3. Therefore, we have
obtained the additional relations

(T7'0)? = (S7'1)? = R7'IE = identity.
Thus a presentation for G is given by
(R,S,T,I;] R® = (R7'S)? = [R,T] = S*T~' = (T7'1N)* = (S7'1)? = R7'I? = id).
We want to give a briefer presentation by eliminating several generators. Suppose
that Ao = T7'I; and A3 = S'I;, then we can get the relations S = AgA;l, R=1}=

(AsA5 1143)2 which can be used to eliminate the generators R,S,T and I;. From these
relations we obtain the following theorem:

Theorem 3.5.2. The maps Ay = T '} and Az = S~ generate Go. Moreover, a
presentation on these generators is

(A, Ag| A = Af = (434, A3)"? = [(As4; 7 A3)*, (434, 1)%] = identity).
Proof. We begin by showing that the relations involving As and As follow from the rela-

tions involving R, S, T and I;. First, the relations A3 = A3 = 1 follow directly from the
definition of As and As. Secondly, observe that the relations

AsAZ Ay = ST N TS ' =1
and
AsA = STINITIT =8, T =8%= (43451
Thus R = I, RS = 1 and [R, T]=1 imply that
(A345 1 A5)"? = [(A345 1 A3)%, (A3A51)?) = 1.
Using R = (A3A2_1A3)2, S = A3A2_1, we obtain
I = SA; = A3A;' Ay

and
T =NA;" = AsAy ' As Ayt = (A3A1)?,

Hence, (R, S,T,1;) = (Ag, As).
Finally, we show that the relations involving R, .S,T and I; are a consequence of those
involving As, As. First, it is obvious that

(TP =A3=1, (S7'n)*=A43=1, R°=(434;'43)"? =1,
and
R=(A3A5'A3)? =17, T = (434712 =52 [R,T]=[(A345A3)%, (A3A51)?] = 1.
Finally,
(RT'9)? = [(A3A5'A3) 2 A4y
= (A7'AAFT AT AR AT A AT
(A1 Az A3)°
= A7'A3As
= 1.
This completes the proof. O
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3.5.3 The volume of the orbifold H? /G,

We calculate the volume of HZ /Gy using the complex hyperbolic Gauss-Bonnet formula.
The similar case for Gauss-Picard group has been done, see [FFP10]. We state the Gauss-
Bonnet theorem for our convenience.

]2
V01<M):?X(M)v X(M):€0—61+€2—63+€4,

where e; is the numbers of i-cells weighted by the order of the stabilizers.

The volume of complex hyperbolic 2-orbifold H(QC /G2 was calculated firstly by John
Parker [Par98] as 72/27. Note that Stover [Stol(] states that there are exactly two non-
compact arithmetic complex hyperbolic 2-orbifold of minimal volume 72/27, whose fun-
damental groups are PU(2, 1;Z[w]) and its sister Ga. Observe, however, that [Par98] also
uses the Gauss-Bonnet theorem to calculate the volume. From the Table 1 on pages 228
and 229 of [Hol80], Holzapfel shows that x(HZ/SU(2,1;Z[w])) = 1/24, which implies
that x(HZ/PU(2,1;Z[w])) = 1/72. This is also shows the Euler characteristic of HZ/Go
is 1/72 by the fact that the groups PU(2,1;Z[w])) and G2 have a common subgroup of
index 4.

By the combinatorics of D, we also show the volume of the orbifold HZ/Gs.

Proposition 3.5.3. The volume of the orbifold Hx/Gy is w%/27.

Proof. According to the Gauss-Bonnet theorem, we need only show the Euler characteristic
of HZ /Gy is 1/72. Tt suffices to find the stabilizer of i-dimensional faces of D and calculate
their order.

o Vertices:

Cycle Stabilizer Order
20,25 (T, R) 18
220,20, 25 (LT-1,SIR) 24

The orders of the stabilizers are found as follows. Since R = I? and [R,T] = I,
T~ and R commute. Therefore, the group (T~!I3, R) is the product of two cyclic
groups (T ~1I;) and (R), and then it has order 18 since (T"'11)3 = I and R has order
6. Next, it is easy to check that (I;71)(S~'R)~! has order 4, and that its square is
in the center of (I; T, S™'R). Therefore, ([T, S~'R) is a degree 2 extension of
an (orientation preserving) (2,3, 3) triangle group (that is a tetrahedral group) and
so it has order 2 x 12 = 24 (Compare with the Proposition 5.1 of [Par(9]).

We conclude that
1 1 7

T 18T T

o Edges:
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Cycle Stabilizer Order
(20,%0) (I1) 12
(2. 27), (25,23 ): (29, 21 ), (20 . 23) (T~'5) 3
(zf>zl ), (Z;_722) (zf,z;),(zf,zg),(zl_,z;) <R715> 3
(29 00), (24 ,0) (R) 6
(21, 00), (27, 00), (23 ,00), (25 , 00) (R7'S) 3

These stabilizers are all cyclic groups and so their orders are the same as those
generators, seen in the previous section.

We conclude that
1 1 1 1 1 5

TR T3T3Te T3

o 2-faces:

Cycle Stabilizer Order

(20521523 )5 (2021 7Z2 ) (T'5h) 3

(Zf_vzl_azg) (22 1% 5 2 ) <Sil[1> 3

(zg’,zo_,zl_,zf_) (zg_?Zr?ZQaZO)((T 20, % 2_'2;_) (1d) 1

(20 %9 ,0) (R) 6

(21,21 ,00), (23,23 ,00) (R'S) 3

(21, 23 ,00), (21 , 23 ,00), (21, 23 ,0) (1d) 1

(25,21 ,00), (25, 23 , 00), (29 , 21, 00), (20 , 23 , o) (Id) L

These stabilizers are also cyclic and so their orders are obvious. We conclude that

S N
27373 6 3 6
o 3-faces:
Cycle Stabilizer Order
(00,29 521,22 )5 (00,29, 21 1 23) (Id) 1
(o0, Z17Z1az2)>(oo zQ,ZZ,zfr) (Id) 1
(o0, J7Z07zla21)>(00 2072072272;—) (Id) 1
((—]1— f_ZO_7Z1’22)7('20722720721’_72;—) <Id> 1
We conclude that
€3 =4
e Finally e4 = 1.
We compute now the orbifold Euler number to be
7 5 25 1
M) = ey — - = - 1=
X(M)=ey—e1+ex—e3+e4= 7 4+6 + 7
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3.5.4 Relation with Mostow’s group

In his notation of [Mos80], Mostow considered a family of complex reflection groups with
the angle 27 /p where p is one of 3,4,5. He described these groups by a Coxetor diagram
and a phase shift ¢ = exp(mit/3) where t = 1/p + 2/k — 1/2 and k is an integer, showed
the existence of non-arithmetic lattices in PU(2,1) by the construction of an explicit
fundamental domain of the groups for certain values of k and gave a presentation for each
of these groups. Parker in the survey paper [Par09], defined again the Mostow’s groups.
In that case, he allows p = 6 and divides into two types of them. More precisely, Mostow’s
groups of the first type are the complex reflection groups where 1/p+1/k > 1/2,p <6
and those of the second type are the groups where 1/p+1/k < 1/2,p < 6. The Eisenstein-
Picard modular group admits a presentation of a similar type, which is a Mostow’s group
of the first type with p = 6 and k = 2; (see [Par09] and Corollary 5.13 of [FP06]). For
the sister of Eisenstein-Picard modular group, we show that it is a Mostow’s group of the
first kind with p =3 and k£ = 6.

As in Theorem [3.5.2] if preserving the generator R, we may rewrite this presentation
as

Go = (A9, A3, R| A3 = A3 = RS = [R, (A3A51))] = 1, R = (A3A5' A3)?).

Using the notation of [Par(9], we state a Mostow’s group of the first type with p = 3 and
k = 6 as follows

D= (J,R,A| JP=R}=A%=1,A, = (JRT'J)>, AiR; = R1 A}).
We make a explicit connection between the group G and I' in the following proposition.

Proposition 3.5.4. There is a isomorphism ¢ from Gg to I given by ¢(Az) = J, p(A2) =
Ry and p(R) = A;y.

Proof. First, observe that the orders of generators of Gy and I' are the same if giving a
homomorphism satisfies with p(A3) = J,¢(A2) = R1 and ¢(R) = A;j. So it need only to
show other relations of Go and I' are equivalent.

In fact,

A1 = @(R) = p((A345" 43)?) = (p(A3)p(A2) " p(43))? = (JR 1 T)?
and [R, (A3A451)%] = 1 yields Ay (JR;H)2AT (JR )2 = 1. Moreover,
1 = (JR{H2A(JRTYH2AT!
= Ri(J 'Ry J YA (JRTI)RTIAT!
= RlAlRl_lAl_l

following from A; = (JRflJ)Q, that is, A1Ry = R1A;. Obviously, the above steps are
reversible, this complete the proof. O

Remark 3.5.5. For the general case of Mostow’s groups of the first type with the values
of p, k, the orbifold Euler characteristic has been calculated in [Sau90, [Par09], that is,

wwn-3G-D)-f

Therefore, we can show again the Euler characteristic

X(M) = (H/Ga) = x(HE/T) =

for p = 3 and k = 6 following from the Proposition [3.5.4
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This chapter has been accepted for publication in Transactions of the American Mathe-
matical Society.

4.1 Introduction

Let K = Q(v/—d) be a quadratic imaginary number field. Let Oy be the ring of alge-
braic integers of K. The Bianchi groups PSLs(Qy) are the simplest arithmetically defined
discrete groups. In number theory they have been used to study the zeta-functions of
binary Hermitian forms over the rings Q4. As isometry groups acting on the half-upper
space, they are of interest in the theory of Kleinian groups and the related theory of
hyperbolic orbifolds. Bianchi groups can be considered as the natural algebraic general-
ization of the classical modular group PSLs(Z). A good general reference for the Bianchi
groups and their relation to the modular group is [Fin89]. Likewise, Picard modular
groups PU(2,1;Oy) is a natural generalization of the Bianchi groups. These groups have
attracted a great deal of attention both for their intrinsic interest as discrete groups (see
Holzapfel’s book [Hol98|) and also for their applications in complex hyperbolic geometry
(as holomorphic automorphism subgroups).

A general method to determine finite presentations for each of the Bianchi group
PSLy(0O,) was developed by Swan [Swa71] based on geometrical work of Bianchi, while a
separate purely algebraic method was given by Cohn [Coh68]. The purpose of this chap-
ter is to give a description of generators for certain Picard modular groups PU(2,1;0,)
where the ring O, is Euclidean except for d = 1,3 (these two exceptional cases have
been studied in many aspects). Among the quadratic imaginary number rings Oy only
O1,09,03,07,011 have a Euclidean algorithm, see [STa79], although there is a larger
finite collection of Oy’s (d =1, 2, 3, 7, 11, 19, 43, 67, 163, see [Zin79]) which have class
number one. For these values of d the orbifold HZ/PU (2, 1; O4) has only one cusp.

The main idea (inspired by the work in [FP06, [FEP10l [Zh11]), is to begin by finding
suitable generators of the stabilizer of infinity of PU(2,1;O,) and then construct a fun-
damental domain for the stabilizer acting on the boundary of complex hyperbolic space
OHZ. The generators of the groups in ([FP06], [FFP10], [Zh1i]) are easy to obtain since
the fundamental domain constructed lies completely inside the boundary of the largest iso-
metric sphere centered at origin. The real difficulty for the Picard modular groups studied
here is to determine more isometric spheres such that the region that is the intersection
of the exteriors of these isometric spheres and the fundamental domain for the stabilizer
of the point at infinity we construct later has only one cusp. Again this reflects the un-
derlying number theory; O; and O3z have non-trivial units while the other three do not. A
simple algorithm to decompose any transformation in the Picard group PU(2,1;0;) as a
product of the generators was given in [FFLP11], it would be interesting to extend their
method to other Picard modular groups. However, it would also be important to find the
generators in a geometric way. This will provide more important information for future
research on the construction of an explicit fundamental domain for each of the Picard
modular groups.

4.2 On the structure of the stabilizer

In this section we will obtain the generators and a presentation of the stabilizer of the
point at infinity by analysis of the fundamental domain in the Heisenberg group.
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Let Oy be the ring of integers in the quadratic imaginary number field Q(iv/d), where
d is a positive square-free integer. If d = 1,2 (mod 4), then Oy = Z[iv/d] and if d =
3 (mod 4), then O4 = Z]wg], where wq = (1 +iv/d)/2. The group T'qy = PU(2,1;0y) is
called Fuclidean Picard modular group if the ring Oy is Euclidean, namely, only the rings
01,09, 03,07,011. Further relative to amalgamation property, these five groups can be
subclassified into three groupings {I'1}, {I's}, {I'2,I'7,T'11}. Since two classes {I'1}, {I'3}
(c.f. [FP06], [FEP10]) have been studied in detail, we mainly describe the remaining class
{FQ, F7, Fn}.

4.2.1 The stabilizer of ¢,

First we want to analyze (I'g)eo With d = 2,7,11, the stabilizer of g». Every element of
(T'4)oo is upper triangular and its diagonal entries are units in Oy4. Recall that the units of
Oq are +1, +i, they are +1, +w, +w? for O3 and they are £1 for others. Therefore (I'y)oo
contains no dilations and so is a subgroup of Isom(A) and fits into the exact sequence as

0— RN (Tg)oo — Ta)oo —5 T ((Ta)eo) — 1.

We can write the isometry group of the integer lattice as

Isom(Oy) = {lg f] :a,ﬁe(’)d,aisaunit}.

We now find the image and kernel in this exact sequence.

Proposition 4.2.1. The stabilizer (T'y)oo 0f goo in T'q satisfies

0 — 2vVdZ — (Tg)oe ~5 A — 1,
where A C Isom(Qy) is of index 2 if d = 2(mod 4) and A = Isom(Oy) if d = 3(mod 4).

Proof. Although we only consider the cases d = 2,7, 11, the ring Os represents those for
the values of d with d = 2(mod 4) and the rings Oz, O1; represent those of the values
d = 3(mod 4), the remaining case is the same as O; which has been done in [FFP10].
Observe that Isom(Qy) is generated by the subgroup of translations

and the finite subgroup of order two

A a 0 . .
{RO‘_[O 1].aeod,alsaumt}.

Then, to understand A C Isom(Oy), it suffices to determine which translations can be
lifted. We divide into two cases to complete the proof.

(i) The case O; with d = 2(mod 4)
Suppose that 3 € Oy = ZJZ\/&] and consider the translation 7} 3 by § in Z[iv/d) given
above. The preimage of T under IL, has the form
Tee=10 1 15}
0 1

o
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This map is in PU(2, 1; Z[iv/d]) if and only if |3|? is an even integer and t € 2v/dZ.
Writing 8 = m 4 ivdn for m,n € Z, then we can obtain m = 0 (mod 2) from the
conditions |B]? = m? + dn? € 2Z and d = 2(mod 4). Therefore, we conclude that
A C Isom(Z[iV/d)) is of index 2. Also, the kernel of II, is generated by

1 0 ivd
01 0 |,
00 1

which is a vertical translation of (0,2v/2).
(ii) The case Oy with d = 3(mod 4)

Suppose that 8 = m + nl%ﬁ € Oq with m,n € Z for d = 3(mod 4). By the
same argument of (i), it only suffices to determine m,n such that |3|? is an integer.
For d = 3(mod 4), it is easy to show that |8 = m? + mn + n?*(d + 1)/4 € Z for
any m,n € Z, which implies that A = Isom(Qy). Obviously, the kernel of II, is
generated by a vertical translation of (0,2v/d).

O]

4.2.2 Fundamental domains for the stabilizer

As the first step towards the construction of a fundamental domain for the action of
(T4)oo on the Heisenberg group N for d = 2,7,11, we shall find the suitable generators
of Isom(Qg) to construct a fundamental domain in C. This was already done by Feustel
and Hozapfel in [Feu84l [FH83], we state it again for the convenience for the reader.

In the proof of Proposition we saw that A = IL,((I'2)o0) is a subgroup of index 2
in I'som(O2) consisting of elements of GL(2, O2) of the form

{ [ (1) m+iv2n

0 ) ]:j:O,l,m,nGZ,mEO(mon)}.

A fundamental domain for this group is the triangle in C with vertices at —1 +1/2i/2 and
1+ 1/2i/2; see (a) in Figure Side paring maps are given by

7“(2)— -1 0 7"(2)— -1 2 r(2)— -1 V2
=10 1”2 |0 1”3 | o0 1 |

The first of these is a rotation of order 2 fixing origin, the second is a rotation of order
2 fixing 1 and the third is a rotation of order 2 fixing v/2i/2. Indeed every element of

A = GL(2,0,) is generated by r§2),r§2),r§2) as follows

(—17 2m4++v2ni | _[1 2771 v2i]"[-1 07
0 1 “lo 1| |o 1 0 1

2) (2\™ (.2 (2\" (.2
= ()" (57) ()
As the same argument, a fundamental domain for I'som(Q,) with d = 7 or 11 is the
triangle in C with vertices at (—1414v/d)/4, (1—iv/d)/4 and (3+1iv/d)/4; see (b) in Figure
Side paring maps are given by

Jo_ L0 @ | -1 @ | (1+1ivd)/2
1 = 0 1 y 12— 0 1 s I'g = 0 1 .
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5
rﬁ’

|

(a)

(b)

FIGURE 4.1: (a) Fundamental domain for a subgroup A of Isom(Q2) with index 2.
(b) Fundamental domain for Isom(QOgq4) with d = 7,11. This is also valid for all the
values of d with d = 3(mod 4).

All these maps are rotations by 7 fixing 0,1/2 and (1 4 iv/d)/4 respectively.

In order to produce a fundamental domain for (I'y)s we look at all the preimages
of the triangle (that is a fundamental domain of I1,((I'g))) under vertical projection
IT and we intersect this with a fundamental domain for ker(II,). The inverse of image
of the triangle under II is an infinite prism. The kernel of II, is the infinite cyclic group
generated by T, the vertical translation by (0,2+v/d). We give the generators and geometric
presentations for the isotropy subgroups (I'y)s by analysis of the combinatorics of the
fundamental domain in the Heisenberg group and compare on presentations with those
given by Dekimpe [Dek96].

Proposition 4.2.2. (I'e) is generated by

1 0 0 1 2 -2
rRP=]0 -10]|, RP=]0 -1 2 |,
0 0 1 0 0 1

1 —iv2 -1 10
RP=10 -1 2| and T®=|0 1 0
o 0 1 00

A presentation is given by
2 2
(T')o0 = <R§~2),T(2)|R§2) = [T(2)7 R§'2)] _ (T(2)2R§2)R§2)Rg2)) = Id).

Proof. Those matrices are constructed by lifting generators of the subgroup A C Isom(O3)
with index 2 and also T® is a generator of the kernel of the map II,. A fundamental
domain can be constructed with side pairings as Figure [£.2] where the vertices of the prism
are vy = (—1+v2i/2,v/2),v5 = (1++/2i/2,v/2), v{ = (1—v/2i/2,/2) for the upper cap of
the prism and vy = (=1 +v/2i/2, —V2), vy = (1 +/2i/2,—/2), v] = (1 —/2i/2,—/2)
for the base. In particular, the points vjf, U5, vét are the middle points of the edges
(v, v¥), (v, v3) and (v, i), respectively.

H_
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Ua

FIGURE 4.2: A fundamental domain Ps for (I'2) in the Heisenberg group: the map
R§2> rotates through 7 about z = 0, the map Rg) is a Heisenberg rotation through =«

about z = 1 and the map Rgz)

is a Heisenberg rotation through 7 about z = v/2i/2.

The actions of side—pairing maps on N are given by

1),

)= (==
)= (=
z,)Z(
t)=(

2+ 2,1 +4S(2)),
Z+iV2,t — 2V2R(2)),
= zt—|—2\[)

We describe the side pairing in terms of the action on the vertices:

R?
RY
T?RY
Ry
TR
7(2)

(vér,vf,vl_,vﬁ_) — (0370§7U57U5)7

7'}1 ,’U4,U4) — (U2_7’U2_7U4T)7

+ 4+ 4 .+
25 U5 V3 , Vg )-

The presentation can be obtained following from the edge cycles of the fundamental do-
main.

Writting o = Rgz)’ a=

R%Q)R( ) b= R(Q)R(Q) and ¢ = T then it is easy to see that

this presentation is equivalent to the presentation of the almost-crystallographic group of
type @ = p2 given in the page 160 of [Dek96|] with k1 = 4 and ko = k3 = k4 = 0. O
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FIGURE 4.3: A fundamental domain P7 for (I'7)s in the Heisenberg group: the
map R§7) rotates through 7 about z = 0, the action of parabolic Rg) is a Heisenberg
rotation through 7 about z = 1/2 followed by an upward vertical translation by /7

and the map R:(;) is a Heisenberg rotation through 7 about z = (1 + i/7)/4.

Proposition 4.2.3. (I'7) is generated by

1 0 0 1 1 -
RP=l0 -10]|, R"=]0 -1 1 |,
0 0 1 0 0 1
1 wry -1 1 0 /7
RP=10 -1 wy | and TW=]0 1 o0
0 0 1 00 1

A presentation is given by

2 2
(T)oe = <R§7),T(7)\R§7) _ Rg) _ [T(7) R(?)] = [T (7),R§7)]
— 7 Rg)’ ( R(7) R(7) R(7)> Id).

Proof. Those matrices are constructed by lifting generators of Isom(O7) and also T is
a generator of the kernel of the map II,. A fundamental domain can be constructed with
side pairings as Figure where the vertices of the prism are v = ((1 — i\/7)/4,V/7),
vy = ((3+iV7)/4, \f) vj = ((—1+iv/7)/4,/7) for the upper cap of the prism and v; =
(1—i/T)/4, \f) vy = ((3+iV7)/4,—V7),v; = ((=1+iV7)/4, \f) for the base. The
points v3 and vi are the middle points of the edges (v, vf) and (vy,vi). In particular,
we introduce more three points w = ((1 — iv7)/4,V7/2), wy = (3 +iV7)/4,—VT/2)
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and w3 = ((—1+1iv/7)/4,v/7/2). The actions of side-pairing maps on A/ are given by

R{(z,1) = (~2,1),

RO (z,t) = (—2 4+ 1,£ + 23(2) + V7)
RO (z,1) = (—2 + wr, t + 23(@r2)),
TO(2,t) = (z,t + 2V7).

R+ (vf of o7, v5) — (o o g, v5),

RY + (of vy, wi wi) — (wi,wi,vf, o),

R+ (vf ,wy vz, of) — (i, o7, v, 0]),
TORY  (wy,vy,v5) — (f ,wi,vf),

g (v1 s 02703,114,1}5)H(UT,U;,UJWI,U;)-

The presentation can be obtained following from the edge cycles of the fundamental do-
main.

Writting a = Rg), a= R§7)Ré7), b= R@Rg?) and ¢ = T(7), then it is easy to see that
this presentation is equivalent to the presentation of the almost-crystallographic group of
type @ = p2 given in the page 160 of [Dek96] with k1 = k2 = 1 and k3 = k4 = 0. O

Proposition 4.2.4. (T'11) is generated by

1 0 O 1 1 —wy1
rR™M=lo-10]|, RfM=]0 -1 1 |,
0 0 1 0 0 1
" 1 w1 —-1—-wn 1 0 /11
R"W=10 -1 wy and T =101 0
0 0 1 00 1

A presentation is given by
2 -2
(Moo = (R, TOVRTY” = (100, ) = 700 R
-2 -2
= TR = 700 (RIVRIVRYY) T = 1a).

Proof. Those matrices are constructed by lifting generators of I'som(QO11) and also T (11) ig

a generator of the kernel of the map II,. A fundamental domam can be constructed with
Side pairings as Figure Where the vertices of the prism are v{” = ((1 —iv/11)/4,/11),
vy = ((3+iV11)/4, 3\/>/2) vy = ((=1+41iy/11)/4,2+/11) for the upper cap of the prism
and o7 = (1 — ivA1)/4,—V11), v3 = ((3 + ivID)/4,—V/11/2), v3 = (~1+iv11)/4,0)
for the base. The points va—L are the middle points of the edges (vli, U?jf) In particular,
we introduce more three points wy = ((1 — iv/11)/4,0), we = ((3 +iv/11)/4,v/11/2) and
w3 = ((—1 4 iy/11)/4,/11). The actions of side-pairing maps on N are given by

”><z,t>:< ),
R@w:(z+1t+zx)+¢ﬁ)
RV (z8) = (—2 +win, t + 23@n2) + V1),
11>(z,t):(zt+2f)
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FIGURE 4.4: A fundamental domain P11 for (I'11)s in the Heisenberg group: the map
Rill) rotates through 7 about 2z = 0, the action of parabolic R;ll) is a screw Heisenberg
rotation through 7 about z = 1/2 followed by an upward vertical translation by V11
and the map Réll) is a screw Heisenberg rotation through 7 about z = (1 + iy/11)/4
followed by an upward vertical translation by v/11.

We describe the side pairing in terms of the action on the vertices:

REH) (vg v, wi,v5) — (vg,ws, vy, vy ),
T(H)Rgn) (w1, 07,05 ) — (v3 , w3, v7),

RSVl wnopvy) — (of wa, g o),

Rgn) (v3 w2, vy ,v3 ) — (v§, w3, 03,05 ),

7 (v ,v7 505,03 ) — (vg, v, v, vT).

The presentation can be obtained following from the edge cycles of the fundamental do-
main.
Writting o = Rgn), a = Rgn)RéH), b= Rgu)Rén) and ¢ = TV then it is easy to see

that this presentation is equivalent to the presentation of the almost-crystallographic group
of type @ = p2 given in the page 160 of [Dek96] with k3 = k4 = 0 and ko = k3 = 0. O

4.3 Statement of the results

In this section, we introduce the method used in ([FP06], [FEP10] and [Zh11]) to determine
the generators of the Euclidean Picard modular groups and then state our results.
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Recall the map

0 0 1
Iy=10 -1 0
1 0 0

defined in the Section 2.2. We consider the isometric sphere By of Iy given by , which
is a Cygan sphere centred at o = (0,0,0) with radius v/2. Observe that Iy maps By to
itself and swaps the inside and the outside of By. Given an element of I'j of the form ,
we know that the radius of its isometric sphere is y/2/|g|. For each case O, the radius
of isometric sphere is not greater than v/2 since the absolute of g is not smaller than 1
for g € O4. We show that the largest isometric spheres are all images of By under the
elements in (I'y)cc.

Proposition 4.3.1. An isometric sphere has the largest radius if and only if it is the
image of By under an element in (I'g) .

Proof. Obviously, the image of By under an element in (I'y) has the same radius v/2.
Conversely, given an element G of the form such that G(¢s0) # ¢oo, then the isometric
sphere of GG has the largest radius only if g = 1. So the center of the isometric sphere of
G in horospherical coordinates is G~1(o0) = (h,2$3(5),0). Since h and 23(j) € Oq4, we
can take a Heisenberg translation T' € (I'y)oo mapping the origin to (h,23(j). Writing
T' = GT1y, we know that T” fixes co. We conclude explicitly that the isometric sphere of
G is
{2 € B2 {2, 000)| = (2. G (ao0))| = (2. Tho ()} »

which is the image of By under T O

Our method is based on the special feature that the orbifold H(ZC /T4 has only one cusp
for d = 2,7,11. For these types of orbifolds, one would like to construct a fundamental
domain using the Ford domain (that is the intersection of the exteriors of isometric spheres
of all elements not fixing infinity), namely, the intersection of the Ford domain and a
fundamental domain for the stabilizer of infinity. The Ford domain is canonical, but we
can choose a fundamental domain for the stabilizer freely. In the previous section, we
found suitable generators of the stabilizer and constructed a fundamental domain for the
stabilizer in the Heisenberg group. We will show that adjoining Iy to (I'g)eo gives the
Euclidean Picard modular groups I'y. The basic idea of the proof is analogous to Theorem
3.5 of [FP06].

e Find a sufficient many of isometric spheres such that the union of the interior of
the boundary of these isometric spheres in the Heisenberg group covers each of the
prisms we constructed in the previous section. The problem of determining the
isometric spheres, as the key point, will be shown in the next section.

e From the first step, there is a fundamental domain for (Rgd), R;d), Réd),T (d),I()) con-

tained in the region that is obtained from the intersection of the exteriors of a finite
many isometric spheres found in the above step with the fundamental domain for the
stabilizer of infinity. It is obviously that this region is not exactly a fundamental do-
main since the isometric spheres which we found are sufficiently but not necessarily
to cover the prism. However, this region has only one cusp; see Figure 4.5

e Clearly, it follows that <R§d),R§d),R§d),T(d),Io> has only one cusp ¢s. Since the

group (Rgd),R(Qd),Réd),T(d),I@ is a subgroup of I'; and both groups have cofinite
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FIGURE 4.5: A schematic view in 2-dimension. The red line indicates a fundamental
domain for the cusp group in the Heisenberg group. The region bounded by the bold
lines (arcs) contains a fundamental domain for (Rgd),Réd)7R§d),T(d),Io>, The half-
circles drawn by the dotted line are other possible isometric spheres intersecting with

the fundamental domain for the cusp group.

volume, <Rgd),R§d),R§d),T (d),I()) must have finite index. Therefore, the fact that

both groups have the same stabilizer of ¢, implies they are the same.
After we check the determination of isometric spheres, we obtain the main results as
follows.

Theorem 4.3.2. Let K = Q(v/—2) and let Oy = Z[iv/2]. Then the group PU(2,1,0s) is
generated by the elements

0 0 1 1 0 1 2 -2
In=]0 -1 0|,R?=]0 -1 0[,RP?=|0 -1 2 |,
1 0 0 0 0 1 0 0 1
1 —iv2 —1 1 0 V2
RP?=10 -1 /2| and T®=|0 1 0
0o 0 1 00 1

Theorem 4.3.3. Let K = Q(v/=7) and let O7 = Zlwz], where wr = (1 +iv/7), be the
ring of integers of KC. Then the group PU(2,1,07) is generated by the elements

0 0 1 1 0 0 1 1 -wr
Ir=[0 -1 0[,R”=|0 -1 0[,RP=|0 -1 1 [,
1 0 0 0 0 1 00 1
1 w; -1 1 0 V7
RP=10 -1 wy | and TO=|0 1 0
0 0 1 00 1
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Theorem 4.3.4. Let K = Q(v/—11) and let O11 = Zlw11], where w11 = (1 +iy/11), be
the ring of integers of K. Then the group PU(2,1,011) is generated by the elements

0 0 1 0 1 —wn
=0 -1 0, R"W=]0-10,R"W=]0-1 1 [,
1 0 0 0 0 1 0 0 1
1 wn —1—-wn 1 0 /11
rR™W=1]0 -1 wy and T =1{0 1 0
0 0 1 00 1

Remark 4.3.5. For other values of d such that O4 has class number one, namely d = 19,
43, 67, 163, we can construct the same type of fundamental domain for (I'y)+ in the Heisen-
berg group as (I'11)so. All generators as the above types lie in PU(2,1;Oq4), but we don’t
know whether adjoining the element Iy to (I'y)so generates the full group PU(2,1;Oy).
Furthermore, the method of [EFLP11] could not be extended to non-Euclidean Picard
modular groups.

4.4 Determination of the isometric spheres

Recall that the Cygan sphere By is the isometric sphere of Iy. The boundary of By is a
spinal sphere denoted by Sy (this is not the same as the one in Chapter 3) in the Heisenberg
group, which is defined by

So={(z1): ‘|z|2 +it] =2}. (4.1)

Indeed we only need to consider the boundaries of isometric spheres in the Heisenberg
group because two isometric spheres have a non-empty interior intersection if and only if
their boundaries have a non-empty interior intersection.

4.4.1 The case O,

In the cases of PU(2,1;01) and PU(2,1;O3), all the vertices of the fundamental domain
for the stabilizer of g, acting on BH(QC lie inside Sp. For the group PU(2,1;O2), it is not
hard to show that six vertices of the prism Py lie outside Sy. Therefore we need to find
more isometric spheres whose boundaries together with Sy contain the prism Ps.

We consider the map

1 0 0
IRPIy=| -2 -1 0|,
9 2 1

whose isometric sphere which we denote by B is a Cygan sphere centered at the point
(1,0,0) (in horospherical coordinates) with radius 1. The boundary of B; is given by

Si={(z1) 1[Iz =12 +it + 2i3(z)| = 1}. (4.2)

Minimizing the number of spinal spheres by the symmetry of RgQ), it suffices to con-

sider Sy and several images of S; under some suitable elements in (I'2)s. In Heisenberg
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FIGURE 4.6: (a) The shading view of neighboring spinal spheres containing the fun-
damental domain for (I'2)es. (b) Another view for these spinal spheres.

coordinates these are given by

TO(S1) = {(2.0) : ||l — 1P + it — 20v/2 4+ 2i%(2)| = 1},

TOT(S) = {(2.1) 1 |Jo = 12 +it + 2iv2 + 2i8(2)| = 1},
RS = {(20): |2+ 12 + it - 209(2)] = 1},

TOTRPS) = {(21) : |l2+ 12 +it +2iv2 - 23(2)| = 1}

We claim that the prism Py lies inside the union of Sy and these images of Sy, see Figure
[4:6] for viewing these spinal spheres.

Proposition 4.4.1. The prism Pqy is contained in the union of the interiors of the spinal
spheres Sy, S, T (Sy), T(Q)_l(Sl), R§2) (S1) and T(Q)_lez) (S1).

Proof. Tt suffices to show there exist three points (v;)U) (5 = 1,2,3) on the edges
(v, v7), (v, v3) and (v],v3) which lie in the intersection of the interiors of Sy and
Sy such that the tetrahedron T(v{") with vertices v;", (v7)®, ()@, () lies in-
side S;. By the same argument, we can also obtain five other tetrahedra T(v3 ), T(vy),
T(vy), T(vy), T(vy) with apex vy, vy, vy, vy, vy respectively such that T(vy) €
Int(T(8))), T(v§) € Int(RP(Sy)), T(vy) € Int(T@ ' (S1)), T(vy) € Int(Sy) and
T(vsy) € Int(T(Q)flR?) (81)). Moreover, the core part obtained by cutting off six the
tetrahedra from the prism lies inside Sy.

We shall prove the existence of the tetrahedron T(v;") and the others follow similarly.
The edge joining vf and v; is contained in the complex line z = 1 — v/2i/2 which is given
by points with Heisenberg coordinates

2=1-2i/2, —V2<t<V2
The edge joining v;” and vy is given by points with Heisenberg coordinates

R(z)=1, —V2/2<S(2) <V2/2, t=+V2.



94 Chapter 4. The Euclidean Picard modular lattices

The edge joining vi” and v3 is given by points with Heisenberg coordinates
R(z) = —V23(z), t=V2.

From the equations 1| and 1) the points on the edge (vf ,v7 ) lie in the intersection
of the interiors of Sp and Sy if and only if

3/2+it <2 and [1/2-(t—V2)i| < 1. (4.3)

By easy calculations, the inequalities (4.3)) are equivalent to
V2—3/2 <t < V7)2.

Using the same argument as above, we obtain that the points on the edge (v{", vy ) lie

in the intersection of the interiors of Sy and S if and only if R(z) = 1 and —\/v/2 —1 <

3(2) < 1, where 6; ~ —0.208 is the largest real root of the equation 2*+4x2+4v/2x+1 = 0.
The points on the edge (v],v3) lie in the intersection of the interiors of Sy and Sy if and
only if R(z) = —v/23(z) and —2'/4/1/3 < 3(2) < da, where d; &~ —0.264 is the largest real
root of the equation 9zt + 12223 + 1822 + 822 +2 = 0.

In term of these, we choose three points as (v;")(!) = (1 V/2i/2,1) on the edge (v{,v]),
(v)? = (1 —i/2,v/2) on the edge (v]",vy) and (v = (V/2/2 —i/2,+/2) on the edge
(v, v7), which are inside the intersection of the interiors of Sy and Sy. Since the vertex

[ lies inside Sy, the tetrahedron T(v;") with the vertices v}, (v;)®), (v])@), (v])®) lies
inside S; by Lemma [1.4.7] O

4.4.2 The case O,

In this case, the distance between the top and base of the fundamental domain for the
stabilizer (I'7)so is greater than the diameter of Sy, which implies that the prism Pz
can not be contained inside Sy completely. Due to increasing the length of Heisenberg
translations, only the images of Sy under the elements in (I'7) could not cover the whole
prism. We show that there are also isometric spheres with Cygan radius smaller than v/2
whose centers are near to the origin.

Therefore we consider the map

1 00
Q=IR"Iy=] 1 1 0
wy 1 1

Consider the isometric spheres of Q and Q~!, which we denote by By and Bz, respectively.
The center of By is Q~!(c0), which is the point with horospherical coordinates (1/4 +
iv/7/4,/7/2,0) and the center of B3, is Q(00) which has horospherical coordinates (1/4 —
iv/7/4,4/7/2,0). Both these isometric spheres have Cygan radius /2/[wr| = 2/4. The
boundaries of these isometric spheres Bs and Bs are in Heisenberg coordinates given by

52:{zt ‘|z—w7/2| + it + iVT7/2 4 iS(wr2) ‘: } (4.4)
53—{ (z,1) ’|z—w7/2\ + it —iVT/2 +i( w7z’ } (4.5)

In order to cover the prim P7 by the spinal spheres, we use the symmetry property of
Rg). It suffices to consider Sy, S2 and the images of Sp and S3 under suitable elements in
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FIGURE 4.7: (a) The shading view of neighboring spinal spheres containing the fun-
damental domain for (I'7)se. (b) Another view for these spinal spheres.

(I'7)o. These spinal spheres are points with Heisenberg coordinates given by

) )i |lz =1 it = VT + 2i8(2)| = 4},

) )i |l =12+t + VT + 208(2)| = 4],

(83) = {(2:1) ¢ |l = (1 wr) /21 + it + VT +iS((1 +7)| = V2,
) )i I+ @r/2P + it — ivT/2 = iS(wrz)| = V2},
) )t ||z — @7 /2 4 it — iVT/2 + iS(wr2) :ﬂ}_

RORY R (S5) = {(2,1) :

We claim that the prism Py lies inside the union of Sy, S and these images Rg) (So),

~1 -1
Rg) (So), Rg) (S3), R;(:)Rg) (S3), Rg)Rg)Rg) (S3), see Figure [4.7] for viewing these
spinal spheres.

Proposition 4.4.2. The prism P7 is contained in the union of the interiors of the spinal
heres So, Sa, BSV(So), RS (So), RSV (S3), RO RY(Sy) and RVRY R (S
spheres Sy, Sz, Ry ' (S0), Ry’ (So), Ry” (S3), Ry "Ry (S3) and Ry "Ry’ Ry " (S3).

Proof. It suffices to show that the prism P7 can be decomposed into several pieces as
polyhedra such that each polyhedron lies inside a spinal sphere which is described in the
proposition and the common face of two adjacent polyhedra lie in the intersection of the
interior of two spinal spheres which contain these two polyhedra.

We need to add sixteen points on the faces of the prism P7 in order to decompose the
prim into seven polyhedra. These points are given, in Heisenberg coordinates, by

p1 = (1/4 —i\/7/4,3/2), p2 = (0.11 —i11+/7/100, 1.44 + /7/50),
p3 = (1/2,8/5), pa = (=1/10 4+ iv/7/10,/7),

ps = (—1/10 +iV/7/10,/7/2), pe = (3/4 +i\/T/4,1.7),

pr = (—=1/44iV7/4,1), ps = (1/4—iV/7/4,-1),

pg = (1/60 —i\/7/60, —2v/7/3), p1o = (—1/20 + i/7/20, —/7),

pin = (3/5+1iV7/10,—-2V7/3), pi2 = (7/10 +iV/7/5,—V/7),
p13 = (3/4 +iVT/4,-2v7/3), pra= (5/12+iT/4,—2\7/3),
p1s = (1/4 4+ iVT/4, —/7), P16 = (—1/4+i\/7/4,-1).
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ps

P16

v 1

P12

FIGURE 4.8: The decomposition of the prism P7 into the pieces of polyhedra.

We describe these polyhedra as follows:

The tetrahedron T with the vertices fuf , D1, P2, D3;

e The hexahedron H; with the vertices vf, v; , P2, P3, P4, P5, D6;

e The pentahedron Py with the vertices v; , D4, D5, D6, 1)2_, p7;

o The pentahedron Py with the vertices vy, ps, p9, P10, P11, P12;

o The hexahedron Hy with the vertices pg, p10, P11, P12, P13, V3 , P14, D15;
e The pentahedron P3 with the vertices pg, p1o, P14, P15, P16, vi;

The octahedron O with the vertices p1, p2, p3, ps, D6, P7, P8; P9, P11, P13, P14, P16-

Note that the face (p1,p2,p3) of T and the face (p2,ps,ps,ps) of Hy are on the face
(p1,ps,pe) of O; the common face (vy,p4,ps,ps) of Hy and Py is a vertical plane; the
face (pg,p11,p13,p14) of Hy is parallel to the base of the prism. Furthermore, the faces
(p9, P10, P11, P12) and (pg, P10, P14, P15) are the trapeziums since the edge (pg, p11) is parallel
to (p10, p12) and the edge (po, p14) is parallel to (pio,p15)-

By examining the location of the points and applying Lemma [1.4.7] we conclude that

the tetrahedron T is inside the spinal sphere RgnR:(;)Rg) (S3); the hexahedron Hj is

contained inside the spinal sphere Rg) (So); the pentahedron P; is inside Rg)Rg) (S3);

~1
the pentahedron Py is contained inside Rg) (Sp); the hexahedron H is contained inside

-1
Rg) (S3); the pentahedron Ps is inside So; the remaining octahedron O is inside Sp; see
Figure [4.8) for viewing the polyhedral decomposition of the prism. O
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4.4.3 The case O

In this case, we again know that the fundamental domain for the stabilizer (I'11)s cannot
be inside Sg completely. The radius of spinal spheres other than the largest are so small
that these spinal spheres do not contribute much to covering the prism P1;. Due to the
different shape of the prism P17 with the case O7, we only need to consider the largest
spinal spheres which are the images of Sy under the elements of (I'11)x. In order to
determine a union of the spinal spheres which covers the prism P11, we minimize their
number by the symmetry of Rgn). It suffices to consider Sg and the images of Sy under
suitable elements in (I'11)s. In Heisenberg coordinates they are given by

TON(Sy) = {(2,0) 1 []2? + it — 2iV1T + 2i9(2)| =
RyV(S)) = {(z0) ]z — 1P +it - iVIL + 2i8(2

( >\
R§”)R§“)(80) = z,t) ||z + 112 it — V11 — 22\9(2)‘
(2)

\q,_/

(
(
(
(z,t) : ||z = 1 + it + V11 + 2iS(z
(z,1) : ||z —wn | + it — V11 — 2i
(
(
(
(

| |
W—’

(@1

(@12)| =

CQ
F:
I
W

CQ

2, t) 1 ||z —wi|? +it + V11— 2i
R RSy —
RV RSVRN(S) =

4
2,8) ||z + o P+ it — V11 — 2iS(wyi2)| = 4
z,t) ||z — @ |2 4 it — V11 + 2iS(wyi2)| = 4

t) ||z —wn | + it + V11 + 2iS(wi12)| = 4

RWRI TR (s) = (=

Definition 4.4.3. Let X be a closed polygonal chain (not necessarily in a plane) in 3-
dimensional space, then a topological disc defined by the cone over X with apex v is called
a cone-polygon, denoted by 2,(X).

Note that a polygon in traditional sense can be interpreted as a cone-polygon, in that
case, the boundary of cone-polygon and the apex lie in the same plane and moreover the
apex is in the interior of the boundary. We claim that the prism P1; lies inside the union
of Sy and its images as above, see Figure [£.9] for viewing these spinal spheres.

Proposition 4.4.4. The prism P11 is contained in the union of the interiors of the spinal
—1 -1

spheres Sy, T (Sp), R(H)(SO), RIS, R (So), RV (S0), RUVRIM(S,),

REH)RQH)(SO), R(ll)R(ll) Rgn)(So) and Rgn)RéH)Rgm(So)

Proof. Using the same argument as Proposition we want to decompose the prism
P1; into several polyhedral cells. The difference is the complicated intersection of the
spinal spheres, which makes it difficult to decompose into several polyhedral cells, each of
which is contained in one spinal sphere. Observe that a union of interiors of several spinal
spheres is a star-convex set if they have a non-empty interior intersection. We shall show
that the collection of these spinal spheres can be separated into several parts such that
each part contains certain polyhedral cell. All these polyhedral cells are defined by the
cone-polygon as its boundary.
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FIGURE 4.9: (a) The shading view of neighboring spinal spheres containing the fun-
damental domain for (I'11)s. (b) Another view for these spinal spheres.

We first define a tetrahedron ¥ with vertices vy, q1, g2, g3, where

a1 = (1/4—ivi1/4, ~2v11/3),
a2 = (3/20 = 3iv/T1/20, —4y/11/5)
g3 = (7/20 — 3iv/11/20, —9\/ﬁ/10) .

Observe that the points g1, g2, g3 lie on the edges (v, vy), (v],v3) and (vy, vy ), respec-
tively. By Lemma and simple calculations show that the tetrahedron ¥ is contained
inside Rgll)Rgll) Rgll)(&)).

Next, we define a hexahedron $); with vertices q1, ¢2, g3, 94, g5, g6, q7,va' and another
hexahedron $)2 with vertices v, , g5, g6, 97, g3, g9, Where

g = (1/4-iV11/4,-1/2), g5 = (042 + 0263, ~0.71V/11 + 0.39) ,
g6 = (0.6 + iv/I1/10, —0.65\/ﬁ) . qr = (0.58 + 2i/11/25, —1.92) ,
gs = (3/4+iV11/4,0), @0 = (0.55 + iv/11 /4, —2/T1/5).

Observe that the points qu, g6, gs, go lie on the edges (vi",vy), (v],vy), (v3,v;) and
(vy ,v3 ), respectively. The points g5 lies on the interior of the base of the prism P; and
the point g7 lies on the interior of the face (v, vy, vy ,v5). Then we know that the hex-
ahedron $1 has the faces (q1,92,3), (91,5, vy ), (44,5, 47), (45,46, 97), (41, 42,05, ¢a) and
(41,43, 96, 47, q4) and the hexahedron $7 has the faces (g5, 46,97), (45,47, 08), (V3 48, q9),

(g5,48,99), (46,97,98,v5 ), (g5,46,v5 ,q9). By examining the location of these points and

-1
Lemma|1.4.7, we conclude that the hexahedron ); is contained inside Réll) (Sp) and the

hexahedron $ is lied inside RS (Sp).

We focus on describing other polyhedral cells in the decomposition of the prism Py;.
Let 24 denote the union of Rgll) (So), Rgll)Rgn) (So) and Rgll)Réll) Rgll)(Sg). We verify
that g10 = (0.2—0.44,2.4) is in the intersection of the interiors of these three spinal spheres,
which implies that %4 is a star-convex set about ¢i1. Analogously, we know %5, denoted
by the union of T (S), Rgn)(Sg), Rgll)RgH)(So) and R:())H)Rgn)(so), is a star-convex
set about ¢1; = (0.18 + 0.727,4.8). This can be verified by examining the location of g2
which is in the intersection of the interiors of these four spinal spheres. We need to add
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the following points on the faces of the prism Pj1, each of which is in the intersection of
the interiors of at least two spinal spheres.

q12 = (1/4 —iy/11/4,1/11/2), q13 = (0.21 — 0.213y/11,/11/2),

q1a = (0,V/11/2), q15 = (—0.21 + 0.213/11,1/11/2),

q16 = (iv11/4,1), qi7 = (3/4+iV11/4,1),

q1s = (0.42 — 2i+/11/25,1.95), qio = (3/4 +iV/11/4,\/11),

QQo = (0.6 +i1/11/10,27/11/20), qo1 = (0.42 + 0.264,1.29+/11 4 0.39),
92 = (—1.4 4+ 1.4ivV11,4V11/5),  q3 = (—1/4 +iV/11/4,V/11/2).

Observe that the points gi2,¢20, g2 lie on the edges (vi,vy), (vi,vy) and (v, v3)

respectively and the points 17, g19 lie on the edge (1)2+ , Uy ). Moreover, the points i3, q14,
q15, g22 lie on the interior of the face (vf,vl , V3 , U3 1), the point g6 lies on the interior

of the face (vy, vy ,v3,v5), the point g5 lies on the interior of the face (v, vy, vy ,v5)

and the points ¢91 lies on the interior of the top (Uf, v; , v; ). We need to add other three

points in the interior of the prism P;; which are used to define the cone-polygon,

go4 = (—0.16 + 0.747,1.4),
25 = (0.328 — 0.28i,1.99),
q26 = (0.325 4+ 0.29¢,4.652).

We verify the location of all these points as follows:

o The point g2 is in the intersection of the interiors of Sy and Rgn)Rg )Rgn) (So);

o The point g3 is in the intersection of the interiors of Sp, R](LH)RQI)RSI)(SO) and
YRS (S0);

o The point g2 is in the intersection of the interiors of Sy and REH)R;(J) )Rgn) (So);

o The point g3 is in the intersection of the interiors of Sp, Rgn)RéH)Rgn)(So) and
i RS (S0);

o The point g14 is in the intersection of the interiors of Sp, Rgl )(So) and R(H)R(H) (So);

e The point g5 is in the intersection of the interiors of Sy, Rgn)(So) R(H)(So) and

RYVRYM(S0):

o The points ¢4, q19, g20 are in the intersection of the interiors of Rgn) (Sp) and Rén) (So);

e The point ¢17 is in the intersection of the interiors of Sy and Rén)(&))‘

e The point ¢3 is in the intersection of the interiors of Sp, R(H)R(H)Rgn)(So) and
(1) o .
RZ (50)5

o« The point go; is in the intersection of the interiors of TN (Sy), Rgll)(&)) and
(1) ¢ .
R3 (SO),

. - . . o (11) ,(11) (11)

o The point gg9 is in the intersection of the interiors of Ry 'Ry 7’ (Sp), Ry ' (Sp) and

R (So);

o The point vy is in the intersection of the interiors of Rgn)Rgn) (Sp) and TH(Sy),
RV (S0);
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o The point go3 is in the intersection of the interiors of Sp, Rgll) (Sp) and Réll) Réll) (So);

o The point go4 is in the intersection of the interiors of Sy, Rgu)(So), Rgn)(So) and

Ry Ry (80);

e The point g¢o5 is in the intersection of the interiors of Sy, Rgu)(So), REH)RSI)(SO)
and R{"W R BRI (8):

« The point ¢ is in the intersection of the interiors of T(M)(Sy), Rgn)(So), Rén)(So)

and RU™ R (Sp).

In terms of these, we denote by X; a closed polygonal chain joining in order with
the points pi2, p13, pi4, P15, P16, P17, P1s and denote by X9 a closed polygonal chain
joining in order with the points pig, p19, P20, P21, var, P22, P24. So then we can define two
cone-polygons Z,,.(X1) and Zg,s(X2). By examining the locations of these points, we

q26

show that Z,,;(X1) is in the intersection of the interiors of S, Ui and P, (X2) is in the

intersection of the interiors of Rgll)(&)) and T(M(Sy), Rgll)Rgll)(So), R:())ll)(So), namely,
the intersection of the interiors of %4 and %. The remaining faces can be easily verified
which are contained inside Sy, % or % .

Finally, we define three polyhedral cells as follows:

(i) The polyhedral cell B is defined by its boundary as the faces Zy, (X1), Zgos(X2),
(v, @20, 21,05 ), (v, @12, qus, 17, qu9, g20) and (v, 12, 13, 14, qis, G22, Vg );

(11) The polyhedral cell mg is deﬁned by the faces -@qga (XQ), (QQ3, q16, QQ4), (Q15, q23, QQ4),

(va 420, 4921, var)v (/Ul+a 412,418,417, 419, Q20) and (’U1+) 412,413,414, 415, 422, /U(;r) as its bound-
ary;

(iii) The polyhedral cell B3 is defined by the faces Py, (X1), (q4,95,97), (¢5.97,48),

(Q47 g5, v(]_)v (1)3_7 U()_v g5, qg)a (Q8, q9, ’1)3_, 423,416, Q17)7 (Q157 q23, QQ4)7 (Q47 q7,48,417, 418, Q12)7
(@23, 916, q24) and (q12, q13, q14, 415, @23, V3 , Vg » G4) as its boundary.

By Lemma[1.4.7)and the properties of star-convex of %) and %, we conclude that the
polyhedral cell 1 contained inside %4; the polyhedral cell 35 contained inside %s; the
polyhedral cell B3 is contained inside Sy. This completes the proof. ]
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5.1 Introduction

In [Mos80] Mostow used the construction of fundamental domain to show that certain
subgroups of PU(2,1) are lattices. More recently, there has been a renewed interest
in construction of fundamental domain (see [DEP05, [FP06, [FEP10, Par06l [Zh1l]. In
particular, Deraux, Falbel and Paupert gave a new construction of fundamental domains
for some of the groups considered by Mostow in [Mos80]. In this chapter we give another
construction for the same groups. Our construction generalizes the fundamental domain
we gave for the sister of the Eisenstein-Picard modular group. This generalization is in
the same spirit as the construction of fundamental domains for Livné’s groups given by
Parker [Par06] which generalizes the construction of the domain for the Eisenstein-Picard
modular group given in [FP06].

Mostow groups are generated by three complex reflections Rj, Re, R3 each of order
p = 3,4,5. The complex lines fixed by three reflections are permuted by a map J of order
3, equivalently, JR;J ! = R;.1 (indices taken cyclically). So (Ri, Ra, R3) is a normal
subgroup of (R;,J) with index 3 (or 1). Moreover, the complex reflection R; satisfies the
braid relation R;R;R; = RjR;R;. Such groups are determined up to conjugation by a
real parameter, which Mostow calls a phase shift, and denoted by . These groups have
the property that A; = (JR; 1J)? is also a complex reflection and there is a one to one
correspondence between the phase shift parameter ¢ and the angle of this reflection A;.
In order for (Ry,J) to be discrete, the complex reflection A; should have finite order and
we take this order to be k. Following Parker [Par09], we use p and k rather than ¢ to
specify the group (Ry,J).

In this chapter we mainly restrict our attention to the case p = 3. When p = 3 the
values of k that lead to a lattice are exactly those for which there is an integer [ so that
1/k 4+ 1/l = 1/6 (see also the table of [Par09], page 27). In [Zh1l] we constructed a
fundamental domain for the case £ = 6 and while we consider the case k > 7 here and
we construct a fundamental domain whose shape is based on the shape of the domain in
[Zh11]. The main difference is that the vertex of co is replaced with a triangle in a complex
line and we need to be careful when constructing geodesic cones to point this triangle.
Our construction is inspired by the construction of Parker [Par06] where p > 7 and k = 2.
The fundamental domains Parker constructed are a generalization of the construction for
p =6,k = 2 given in [FP06]. Again the main difference is that the vertex of oo is replaced
with a triangle in a complex line.

Our fundamental polyhedron is a 4-dimensional domain, which is well defined by its
boundary (the union of 3-cells is homeomorphic to S®). Analogous to [Par06], the basic
construction is to take a complex line Lg instead of oo fixed by I'y C I' (assume that
I' is the group we consider) and the intersection of a fundamental domain for 'y and
a Dirichlet type domain for I'/T'y (suppose that Ly does not intersect any of its images
under I'/Ty). We adopt, in this chapter, the notions of polyhedron that the 3-dimensional
(2,1, 0-dimensional) skeletons of polyhedron are called the sides (faces, edges and vertices)
respectively. The vertices of our polyhedron are the intersection of two complex lines.
Many, but not all, edges are geodesic arcs. Most of the sides are contained in bisectors.
Only two sides not contained in bisectors will be constructed; they are the foliated by
the geodesic 2-dimensional cones (each of pieces called a sheet in what follows). Each of
the faces is either contained in totally geodesic submanifolds or contained in a Giraud
disc or a foliation of geodesics. Consider the group generated by the side pairings of our
polyhedron, we use the appropriate version of the Poincaré’s polyhedron theorem to show
that our polyhedron is a fundamental domain and give a presentation for this group.
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5.2 Description of the group

We consider the complex hyperbolic triangle group generated by three complex reflections
R1, Rs, R3 of order p with the property that there is an element J of order 3 so that

J¥=1, Ry=JRiJ ', Rs=JRyJ ' =J'RyJ (5.1)

We call (Ry, Ra, R3) an equilateral triangle group if satisfy the condition (5.1)). For more
details on complex hyperbolic triangle groups, we refer to [PPa09] as a general reference.

5.2.1 The group I';

Consider an equilateral complex hyperbolic triangle group defined as , up to con-
jugation, equilateral complex triangle group may be parameterized by 7 = tr(RyJ) (see
[PPa09]). For the stake of simplicity, we denote by u = ¢*7/37. Using their normalization
of [PPa09], we may take the Hermitian form H to be

2—uwd—w (@ -uwr (v -u)T
H=| W-u7 2-u*-w @ -ur |. (5.2)
2

@ —u)r (W -u)T 2-ud-—u’

This leads to the following matrices in SU(H) for Ry, Ry, R3 and J:

TR -y 3 0 0
Ri=|0 @w O , Ry=| —ur u?® 7|,
0 0 m 0 0 m
(a0 0 | 00 1
Rs=|0 7w 0o |, J=1(11 00
T —uT u® 01 0

As shown in [Par09] that |7| = 1 is equivalent to Mostow’s condition that the generators
R; and Ry, satisfy the braid relation R; R, R; = R R; Ry, for j # k. Furthermore, following
Sauter [Sau90] we define A; = (JRj_lJ)2 for j =1,2,3, then A; is a complex reflection or
a pure Heisenberg translation.

We focus on our attention to consider the group generated by three complex reflections
of order 3 and so u® = €*7/3 is a cube root of unity. We follow Parker and Paupert’s
expressions and write 7 = —e2"/3% _and denote the corresponding group by I'y. Following
the notation of [Zh11], we give the geometrical generators as R = (JRy'J)?, S = JR!,
T = (JR;Y)? and I = JRy'J and so the group ', may be rewritten as (R, S, T, I1). Our
main result is to construct a fundamental domain of 'y, acting on the complex hyperbolic
space and obtain a geometrical presentation for the group I'i.

5.2.2 The stabilizer of complex line

In this section we shall explore the isotropy subgroup of complex line in 'y, which gives
rise to the suitable values of k& we need. As described in [Zh11], the subgroup (R, S,T) is
conjugate to the stabilizer of infinity. It is natural to consider the subgroup (R,S,T) of
I'y, and calculate the common eigenvector n of R, .S and T
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Following the definitions, we see easily that 7" = S?, which can simplify the group
(R,S,T) to (R,S) = (R™'S,S) = (R3, JR; ). Tt suffices to find a common eigenvector of
Rs and JR;'. As the matrix of SU(H),

u 0 0 0 0 U
Rs=|0 @ 0 |, JR'‘=|% —ur 7
T —uT u? 0 u 0

By simply calculations, it is easy to see that the common eigenvector of R3 and J Rl_1 in
C?>!is
u’T
n= | u’t

-1
Moreover, T is a complex reflection on the complex line with polar vector n, that is the
eigenvector corresponding to non-repeated eigenvalue of T

Using the Hermitian form (5.2)), the following calculations enable us to know whether
the eigenvector n is a negative, null or positive vector in C>!.
u’T
T —1 } H | @t
-1
= 1- 4+ -BP+ 7 3P+ 1 -8
2—ud -7+ (v -7+ (@ — )T
3+ 2isin(2n/3) (72 — 72)
= 3—2V3sin(27/k).

(n,n) = {EQT u?

This becomes

(n,n) >0 < k>6,
(nn) =0 & k=6,
(n,n) <0 & k<6.

For k > 6, in other words, n is a positive vector in C?!, then it is polar vector to a
complex line as required. When k = 6 the eigenvector n turns into a null vector. Thus as
n tends to the null we must also have the complex line with polar vector n degenerating to
a point on the boundary of complex hyperbolic space as well. This limiting configuration
corresponds to the cusp of lattice, which is isomorphic to the sister of Eisenstein-Picard
modular group treated in [Zh11].

5.2.3 New normalization of I';,

Using the Hermitian form , calculations in complex hyperbolic space have a tendency
to become extremely complicated, which means that explicit constructions are rather
difficult to obtain. We have to make a good choice of coordinates in order to give simple,
explicit geometrical arguments on I'. In what follows we choose the first Hermitian matrix

0
0

1
H =0
0 -1

S = O
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The corresponding Hermitian form in complex vector space C*! is defined by
<Z, w> = z1W1 + 2oW2 — z3W3,

where z and w are the column vectors [21, 29, 23]" and [wy, wo, w3]! respectively. Thus we
obtain in non-homogeneous coordinates the complex ball

HE = {(21,22) € C* : |z1* + |22|* < 1}.

The key point of our normalization is based on the geometrical observation of two
complex lines fixed by 7" and R respectively. Following from the braid relation, it is
easy to know that R commutes with 7. Thus two complex lines fixed by 7" and R are
orthogonal, denoted by C; and Cs respectively. We choose a new coordinate system of the
complex ball, which makes C; and Cs to be the z;-axis and z9-axis, specifically

Ci = {(21,0) € C?: |z < 1}, (5.3)
Co = {(0,20) € C?: |z| < 1}. (5.4)

We now start to normalize the generators of I'y in the new system of coordinates.
Before normalizing, we need to introduce two angle parameters, denoted by ¢; = 7/k and
¢2 = w/6 — 7 /k, which play an important role in the normalization of the group I'y. Also,
we shall give several numbers related to ¢; and ¢o in order to simplify the expressions.
For convenience, we remind the readers to keep these numbers in mind.

sin(mw/6 — ¢2)

sin(mw/6 — ¢1)
sin(7/6 + ¢2)’

sin(7/6 + ¢1)’

_ \/ tan(¢1/2)
a tan(w/6 — ¢1/2)’
_ \/ sin(7/6 — ¢1/2)

A = y/tan(¢1/2) tan(m/6 — ¢1/2),

cos(¢1/2)sin(m/6 + ¢1)
As the matrix of SU(2,1), complex reflections R and T are given by

[ et/ 0 0 ]
R= 0 23 :
0 0 e %3
[ e—2id2/3 0 0 T (55)
T = 0 et o
0 0 e %92/3

We start to define the vertices of our polyhedron to be intersection of two complex
lines. Basically, we consider two more complex lines fixed by R; and Rg3, denoted by £
and L3 respectively.

(i) The vertices on Ly:
z1=L1NCo, 2o =L1NL3, Z3:£1QR(£3);
(ii) The vertices on T'(Ly):

Zg = T(,Cl) NCo, 24 = T(,Cl) NLs, z5 = T(Ll) N R(,Cg);
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(iii) The vertices on Cy:

z7 =C1NCy, 28 =C1NLs, 2g=C1 N R(,Cg).

Proposition 5.2.1. If z; is defined as (i), (ii) and (iii) for j =1,2,---,9, then we have

73 — R(Zz), Z5 — R(Z4), Zg = R(Zg),
Zg — T(Zl), z4 — T(ZQ), z5 — T(Zg).

Proof. The braid relations give rise to the properties that R commutes with R; and T
commutes with R3. As a consequence, we know that R commutes with TR;T~! and T
commutes with RR3R~!. It follows that C; is orthogonal to £3, R(£L3) and Cs is orthogonal
to L1, T(L1). We see clearly that R preserves £1,T(L1),Cy and T preserves L3, R(L3),Ca.
The result follows easily from the definitions. O

We now start with investigating the coordinates of complex lines of £; and L3 by the
symmetry map J. Consider the triangle with the vertices zo, z3, z4, first observe that J
acts on the vertices with the property that J(z;) = z;41 (with indices taken cyclically).
To see this, it follows from Ry(z2) = R3(z2) = z2 and J3 = 1 that

J(Zg) = RR3R1(Z2> = R(Zg) = 73,
J(z4) = JT(22) = J 'Ry I (22) = Ry *(22) = 2o,
J(z3) = JR(2z2) = J 'Ry 'Ry (22) = T (22) = 24.

Thus, this is an equilateral triangle whose vertices as the vectors of C>! satisfy the
following conditions

(z1,21) = (22,22) = (23,23), [(21,22)| = [(22,23)| = (23, 21)|- (5.6)

The condition (5.6|) gives rise to the coordinates of complex lines £; and L3, which are
given by, in terms of non-homogeneous coordinates

Ly = {(zl,xgeid’?) €C?:|z| < /11— x%}, (5.7)
L3 = {(mle_i¢1,22> €C?: |zl </1— m2}. (5.8)

As the vectors of C*!, these vertices are given by

[ 0 1 I e i z1€e'91
71 = mge*i‘z’? , Zg = xge*id"" , Zg = xQe*i‘z’Q ,
1 1 1
[ e i 1 I x1e 0]
Z4= | x0e"? |, z5=| a0 |, 76 = | xpe'®? |, (5.9)
1 1 1
0 I e i I x1€6'91 1
z7 = 0 s z8 — 0 N zZg9 = 0
1 1 1
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Recall, (c.f. Proposition |1.3.6]) given a vector v with (v,v) > 0, complex reflection in
the complex line with polar vector v is given by

(20, (5.10)

Rvyg(z) =z + (C - 1) <’U 1)>

where ( is a complex number of absolute value one.
Observe that the polar vectors to complex lines £ and L3, denoted by n;, n3 respec-
tively, are given by

0 1
n; = 1 , ng = 0
xgeid’? argei‘ﬁl

Since Ry and Rj are complex reflections with order 3, we denote ¢ = u® = ¢%™/3 and then
¢ —1=1i/3e"™/3. Using the formula (5.10) together with the fact that (ny,n;) = 1 — x3
and (n3,n3) = 1 — 22, complex reflections Ry and R3 are given as the matrix of SU(2,1)

by

u 0 0
Ri=1|0 i(u?+u)e 92 _i(u?+u)y/1—-4sin? goe~ 2
1= 2 sin ¢o 2sin ¢2
0 i(u?+1)/1—4 sin? $ae?P2 _i(u?4u)etd2
L 2 sin ¢o 2sin ¢2 i
[ i(u24m)e—i%1 0 _i(umy/1-dsin? =01 1
2 sin ¢ 2 sin ¢
R3 = 0 u 0
i(u?+u)y/1—4sin2 ¢1e*®1 0 _i(ul4m)ett1
L 2 sin ¢ 2 sin ¢ i

The symmetry map J plays an important role in the construction which is obtained

from J = RR3R; that

i1 V/(1—4sin? ¢1)(1—4sin? ¢2) _ /1-4sin? ¢
2sin ¢ 4 sin ¢1 sin ¢o 4 sin ¢ sin ¢2
J = i(¢2—¢14m)/3 0 e~ 192 _ \/1—45sin? gge~i?2
2 sin ¢o 2 sin ¢2

\/1—4sin? b1 etf1

2sin ¢

\/1—4sin? b2

4 sin ¢1 sin ¢2

" Z4sin ¢1 sin ¢2

We now define, from the relations S = J Rl_l, Iy = TR, the remaining generators as

follows
o—ida/3 [ 1 0 —VI—4sin?¢, |
=55 0 —2sin ¢ €92 0 : (5.11)
o1 | T 25?4, 0 -1
b1 /3 [ —2sin goeit 0 0
1= 0 1 —V/1 — 4sin? ¢y (5.12)
singz | 0 V1~ 4sin2 g ~1

5.3 A combinatorial polyhedron

In this section we construct a polyhedron D which we will prove later to be a funda-
mental domain for 'y in complex hyperbolic space. The polyhedron D is defined to be
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4-dimensional domain bounded by the sides we construct in the Sections 5.3.2 and 5.3.3.
Many (but not all) sides of D are contained in bisectors and the vertices are the same as
defined in previous section. The main idea of construction is to happen on the sides that
are not contained in bisectors, each of which is the foliation of the geodesic triangle cones
over Giraud disc. To have a schematic view of the polyhedron, we refer the readers to see

Figures [5.4) and 58|

5.3.1 Bisectors

In this section we review briefly the theory of bisectors and summarize some bisectors that
contain four sides of our polyhedron.

Definition 5.3.1. The standard bisector in the ball model is defined as
BO = {(21,22) € H(% 1z € C,%(Zz) = 0}

in non-homogeneous coordinates, which is equidistant from p = (0,i/2) and g = (0, —i/2)

given in .

We have given the geographical coordinates on the isometric spheres. Analogously, the
standard bisector By (compare with [FP06]) is parameterized, in geographical coordinates,
by

reia
s |rael-n/2m/2)se[-11re[-V1-s2 V-5 . (5.13)
1

The spine, slices and meridians of By are given in the next proposition in terms of
geographical coordinates.

Proposition 5.3.2. The standard bisector with geographical coordinates is given by .
Furthermore,

o the spine of By is given by r = 0;
e the slices of By are given by s = sg for fized sy € [—1,1];

e the meridians of By are given by o = «yp for fized ag € [—7/2,7/2).

Four of the bisectors we use to construct the polyhedron D have a very simple de-
scription. These four bisectors come in two cospinal pairs, the complex spines being the
coordinate axes. We now write down these bisectors and some of the points for that
are contained in the corresponding bisector.

Bisector Definition Vertices on spine Other vertices
Brs arg (21) = —¢1 77,78 1,72, 24, Z6
Brg arg (21 Z7, 29 1,23, 25, Z6

(21) = ¢1
Bi7 arg (z2) = —¢2 Z1,%Z7 72,23, 28, Z9
Bes7 arg (z2) = ¢ Z6, Z7 Z4,%5, 28, Z9
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5.3.2 The core sides

In this section we define two core sides S. and S of the polyhedron D contained in a
bisector B, called the core bisector, which is the equidistant between two complex lines
C1 and I7(Cy) as explained in Section 2.1 (compare [Zh11]). Also we call the core prism
P. in B, which is made up of two sides S. and S’ as shown in Figure for the schematic
view. Furthermore, other sides of D come from the foliation of geodesics connecting with
points on the faces of P, and points of the top triangle. Four of these are contained
in the bisectors given in the previous section. In the case of the sister G2, noncompact
sides of fundamental polyhedron arise from the limiting configuration that the top triangle
converges to an ideal vertex. In other words, that is the geodesic cone over the faces of
the core prism to the ideal point which is the cusp of lattice; see [Zh11].

The core bisector and its neighbors

Let ngy denote the polar vector to complex line C; and denote I; 1(no) its image under by
I7!, these are

0 i1 /3 0
np= |11, I '(n ¢ 1

0) = 5=
0 2sin ¢ V1 — 4sin® ¢y

It is clear that (ng,ng) = (I; *(ng), I; '(ng)) = 1. We consider the bisector equidistant
from ng and I (ng) which is defined in non-homogeneous coordinates (c.f. (2.1))) by

B. = {(zl,ZQ) € H(% : 2sin ¢o|20] = |22 — /1 — 4sin? ¢2|} (5.14)

Moreover, the complex spine of B, is exactly Co that spanned by ng and I, L(ng). Since
both complex lines £; and T'(L1) are orthogonal to complex spine Ca, it follows that the
spine of B, pass through a pair of vertices z; and zg by the slice decomposition for bisector,
see Figure 5.1}

We shall explore the spine of B, in order to give the parametrization in terms of
geographical coordinates (r,s,«a). We use the coordinate system (x,y) = (Re(z),Im(z))
in C, then the Poincaré disc turns out to be {(x,y)|z% + y* < 1} and the spine o :

2
1 5 4sin? g
rT———— ty =—F7—. 5.15
( \/1—4sin2¢2> Y 1 — 4sin? ¢ ( )
. . . 1 . . 2 sin ¢2 .
This is a circle centered at <m,0> with the radius Vidsint oy’ The spine o

intersects with z-axis at the point (u,0). Then we apply a Mobius transformation
mapping (u,0) to the origin in the Poincaré’s disc, i.e.

w@=f:L.

The equation (5.15) becomes |z + p| = |z — p| under the map 9, i.e. y-axis. Taking a
matrix C' in SU(2,1) as

eim/6 0 0
C=| 0 B/ —p?) e ™op/(-p?) |,
0 e™Pp/L—p?) e (1 - p?)
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-
W

FIGURE 5.1: Configuration of the spines of bisector B. and z1,z¢ on the complex
spine Co for k =7, 8, 9, 10, 12, 15, 18, 24, 42. Here the spine is close to the origin as
k large.

then the matrix C' maps the spine of standard bisector By to the spine of B, and further-
more the geographical coordinates on B, turns out to be obtained from By. Therefore the
core bisector B, is given in terms of geographical coordinates (7, s, «) by

oy
V1-— pfre a€[-n/2,7/2), se[-1,1],

pre | re[vI=Evi=) ' (5.16)

We start to define two sides S, and S, in the geographical coordinates. As described in
[EFP10], we will discuss the triangular face with the vertices zs, z3,z4 on the intersection
B. N S7Y(B.) in terms of two slice s-parameters. We give the details for this face on
B.N S71(B.) and others follow similarly.

Proposition 5.3.3. The part of B. N S™Y(B.) outside T~Y(B.), R~'S(B.), S(B.) forms
a triangular face of fundamental polyhedron, see Figure [5.3. In terms of geographical
coordinates (1, o, ag) on Be and (r1, s1, 1) on S™Y(B.) this face is given by

—)\SS()S)\, —/\Sslg)\, —2)\§80—81§0. (5.17)

Moreover, the boundary of this triangle admits the following description in geographical
coordinates.

(i) Points of B.N S™Y(B.) NT~Y(B.) are given by sg = —\.
(ii) Points of B.N S~ (B.) N S(B.) are given by s1 = .
(iii) Points of B. N S™1(B.) N R71S(B.) are given by sy — s1 = 0.

Similarly, we state the result on the intersection of B. N S(B.).
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FIGURE 5.2: A schematic picture
of triangular face F234.The level sets Z)
of sg are dashed lines and the level
sets of s; are dotted lines.

Z3

Proposition 5.3.4. The part of B. N S(B.) outside T(B.), RS~ (B.), S™Y(B.) forms
a triangular face of fundamental polyhedron, see Figure [5.3. In terms of geographical
coordinates (1o, So, g) on Be and (ra, s2,an) on S(B.) this face is given by

—)\SSOS/\, —)\SSQS)\, OSSQ—SQSQ/\. (5.18)

Moreover, the boundary of this triangle admits the following description in geographical
coordinates.

(i) Points of B.NS(B.) NT(B.) are given by so = .
(ii) Points of B. N S(B.) N S™Y(B,) are given by sy = —\.
(iii) Points of B. N S(B.) N RS™Y(B.) are given by sy — so = 0.

Proof. The first item follows directly from Lemma The map S sends (r9, o, ap) €
B. to (ra, s2,a2) € S(B.). Thus S sends the points on B. N S~Y(B.) N T~1(B,) given by
so = —A\ to the points on B. N S(B.) N S~(B,) given by s3 = —\.

We will postpone (iii) part of the proof until to Corollary O

We remark that none of the triple intersections (i) to (ii7) in Propositions and
[5.34)is contained in a geodesic. Before we prove the Proposition [5.3.3] we need to explore
the intersection B. N S~!(B.) in terms of two slices parameters sg, s; and how intersects
the neighboring bisectors T~!(B.), R~1S(B.) and S(B.).

Proposition 5.3.5. Consider the geographical coordinates (ro, so, ) on B. and (r1, s1,a1)
on S7Y(B.). Points on B.N S~ (B.) may be uniquely expressed in terms of so and s1; see
Figure|5.9. The range of these parameters is determined by the inequality

(14 dpso)(p + is1) — 2sin 12 (1 +ipsy) (p + isp) 5
<4/1—s§.
V(= 21— sin? 1) (s + is1) :
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The other coordinates are given by

iao _ (L+ips0)(p + is1) — 2sin ¢1e'®2(1 + ips1) (1 + iso) (5.19)

\/(1 — p2)(1 — 4sin? ¢1)(p + is1)
i _ (L ins1) (e + iso) — 25in gre”"?2 (1 + ipso) (u + is1) (5.20)
V(1= u2)(1 — 4sin? 61) (4 + iso)

Tro€

Proof. In geographical coordinates, points of B, N .S~!(B.) are given by

1 0 —V/1 —4sin? ¢y V1 — p2riet

0 —2sin ¢re~ 2 0 w+isy
V1 — 4sin? ¢y 0 -1 1+idps;
V1 — p2rief — /1 — 4sin? ¢y (1 +ipsy) V1 — p2rgetao
= —2sin 1”2 (u + isy) = 1+ 180
V1 —4sin? ¢11/1 — p2rie?® — (1 +ipsy) 1+ iusg

These points as the above expression are the same with homogeneous coordinates in C?*.
Hence

—2sin ¢1e*i¢2(u +is1) S0 (5.21)
V1 —4sinZ ¢)\/1 — p2rieir — (1+ipsy) 1 +iuso’ ’
V1= p2riei® — /1 —4sin? 1 (14 ips1) /1 — pProe (5.22)

—2sin ¢1e™"%2 (u + is1)  ptisg '

Rearranging (5.21)) gives
ion _ (L ipst)(p + iso) — 2singre*?2(1 + ipso) (1 + is1)
V(1= u2)(1 — 4sin® é1) (4 + iso)

To find rpe’® we just use this formula to substitute for r1e’* in ([5.22)).
In order to be in B, we must have rZ < 1 — s2. Using (5.19) we can obtain the range
of sg, s1 as required. O

re

Analogously, we describe B. N S(B.) and B. N R~15(13.).

Proposition 5.3.6. Consider the geographical coordinates (o, so, ag) on B. and (ra, s2, ag)
on S(B.). Points on B. N S(B.) may be uniquely expressed in terms of so and s3. The
range of these parameters is determined by the inequality

(Lt i) +isn) = 25im e (Lt iws)p-+isw)| [~
V(= 12)(1 = dsin? 1) (1 + is2)
The other coordinates are given by
ino (1L +ipso)(p + isz) — 2singre” " (1 4 ipsz) (1 + is0)

= (5.23)
V(= u2)(1 — 4sin? 6y) (4 + is2)

1o — (1 4 dps2) (1 + iso) — 2sin ¢1e"%2 (1 + ipuso) (1 + is2) (5.24)

V(L= #2)(1 — dsin® o) ( + iso)

o€
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FIGURE 5.3: A schematic picture
of triangular face F345. The level z) Z5
sets of sg are dashed lines and the :
level sets of so are dotted lines.

Z3

Proposition 5.3.7. Consider the geographical coordinates (o, so, ag) on B. and (rs, s3, as3)
on R71S(B.). Points on B.N R™1S(B.) may be uniquely expressed in terms of so and s3.
The range of these parameters is determined by the inequality

(14 ipso)(p + is3) — 2sin pre™ 2 (1 + ipus3)(u + iso) 5
<4/1—s§.
V(= 12)(1 = 4sin? 61) (s + isg) "

The other coordinates are given by

i _ € (L +dpso) (p + iss) — 2singre” " (1 + ips3) (1 + iso)]

roe (5.25)
V(L= i2)(1 — 4sin® f1)(u +iss)
raei®s — (1 + ips3) (p +iso) — 2sin ¢1e'? (1 + ipso) (p + is3) (5.26)
V(1= 1) (1 = 4sin? 61) (s + is0)
Proof. In geographical coordinates, points of B.N R~1S(B.) are given by
u?ei?? 0 —u?\/1 — 4sin? ¢y V1 — p2rzeis
0 2w sin ¢ 0 w183
—7+\/1 — 4sin? ¢16_i¢2 0 ue 12 14 iuss
e 291[\/T — pu2rze’@s — \/1 — 4sin? ¢y (1 + iuss)] V1 — p2roeiao
= —25sin ¢1€'2 (u + is3) = W+ isg
V1 —4sin? p1\/1 — p2r3e’®s — (1 +ipsy) 1+ iusg
The result follows as before. O

Corollary 5.3.8. In terms of geographical coordinates (r1, s1, 1) on S~ (B.) and (12, 2, a2)
on S(B.), points of B. NS~ (B.) N S(B.) are given by s1 = X or s = —\.
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Proof. Points of B, N S~Y(B.) N S(B,) are given by

iog _ (14 ps0) (4 + is1) — 2sin P12 (1 +ips1) (1 + iso)
V(A= 2)(1 = 4sin? 6y) (i + is1)

(1 + ipso) (p + is2) — 2sin gpre™*?2 (1 + ipsy) (1 + is0)
V(L= 122)(1 — dsin? ¢1) (s + iso)

o€

From this we find
P2 [(1 — s182) +i(sa+ ps1)] = e 92 [(1 — s182) +i(s1 + psa)].
Hence s1 4+ s = 0 and s1 = A. O

Corollary 5.3.9. In terms of geographical coordinates (ro, so,ap) on Be, (r1,s1,a1) on
S=Y(B.) and (rs,s3,a3) on R~1S(B.), points of B. N S~ (B.) N R~1S(B.) are given by
so— 81 =0 and sg — s3 = 0.

Proof. Points of B.N S™Y(B.) N R~1S(B,.) are given by

iag (L +ipso)(pu+is1) — 2sin g1 (1 + ips1) (p + iso)
V@ = )1~ 4sin? gy) (u + is1)
_ e [(1 4 ipso) (i + is3) — 2sin dre” " (1 4 ipsy) (1 + iso)]
U= ) (1 — asin? ) (1 + is3)

roe

From this we find

€m0 +ipsy)  e™/S(1+ips3)  i(1+ipso)

H+isq M+ is3 1+ 18

Comparing with the real and imaginary parts yields

V3u(s1 — s3) + 25153 = so(s1 + s3),
\/gso(sl — 83) +2usg = u(s1 + s3).

This simplifies to be a quadratic equation with respect to s; that

(V8so — p)si + (280 + V3p? — V/3s3)s1 — pso(V3u + s9) = 0

whose solutions are s; = sg and s1 = % > X\ which is impossible. Thus we obtain
- 0

Sop = S1 = S3. L]

Proof of (iii) part of Proposition . Since the map R preserves the sg-slices of B, and
sends (r3, s3,a3) € R71S(B.) to (12, s9, ) € S(B.), it follows that points of B.NS~1(B.)N
R~'S(B.) given by so — 53 = 0 are sent by R to be points of B.NS(B.) N RS™(B.) given
by sg — s2 = 0 as required. O

We now investigate the intersection of B, with its images under 7" and 7.

Lemma 5.3.10. The bisectors B. and T~(B.) have a common slice which corresponding
to so = —A in terms of geographical coordinates (ro, sg, o) on Be.
Likewise, B, and T(B.) have a common slice sy = A in geographical coordinates.
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Proof. Points of B, are given by 2sin ¢a|2| = |22 — /1 — 4sin? ¢| and points of T-1(B.)
are given by 2sin¢s|zs| = |22 — /1 — 4sin® ¢oe 2?2, The common solution is zp =
T2 "2 In geographical coordinates this is

u —l—.zso _ $2€_i¢2

1+ 1USQ
and sp € [—1,1], we obtain that sp = —A. O
The vertices
We have already seen the vertices z; (1 = 1,2,---,6) of D lying on two slices £; and

T(Ly) of B.. We now list them again as the intersection of B, with images of B, under
suitable elements in the stabilizer of C; and discuss their non-homogeneous coordinates
and geographical coordinates.

(i) The vertices on the slice £1 = B.NT~!(B.) corresponding to s = —\. Let z; define
the intersection of the spine of B, with £;. The other vertices are given by

7o =B.NT 1 (B.)NS Y (B.)NR1S(B.),
z3=B.NT 1 (B.)NS(B.) N RS (B,).

(ii) The vertices on the slice T'(L1) = B. N T(B.) corresponding to s = A. Let zg define
the intersection of the spine of B, with T'(L1). The other vertices are given by

zs=B.NT(B.) NS HB.)NRLS(B,),
z5 = B.NT(B.)NS(B.)NRS™B.).

In non-homogeneous coordinates and geographical coordinates of the vertices z; are

given by
21 22 r S o

Z1 0 xoe 192 0 —A
Z9 xr1e 101 xoe 192 P —A —3¢1/2
Z3 1691 Toe P2 P = 1/2
Z4 rie 91 Toe'P2 p A —¢1/2
z5 x1€'P1 Toei®P2 p A 301/2
Zg 0 xo€'P2 0 A

The edges

We now characterize the edges of the prism contained in the intersection of three bisectors.
Let vji = yr; denote the edge of D with the vertices z; and z; as endpoints. Just half
of the edges are contained in geodesic. We now list them in the following lemmas. Recall

sin(mw/6—¢1/2)
cos(¢1/2) sin(mw/6+¢1)

the number p = for the reader as shown in Section 5.2.3.

Lemma 5.3.11. (i) The edge yi6 is contained in the spine of B.;
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(ii) The edge v12 is a geodesic arc, given in geographical coordinates by

Ko

0<rg<p, so=—-XA ag= 5

(iii) The edge v13 is a geodesic arc, given in geographical coordinates by

o

0<ro<p, so=-A «ao >

(iv) The edge v46 is a geodesic arc, given in geographical coordinates by

4

0<rg<p, sg=A, «ay= >

(v) The edge vs¢ is a geodesic arc, given in geographical coordinates by

_ 301
b

Proof. Part (i) follows by construction. We now prove (ii) and the other parts follow
similarly. The edge 12 is defined to be the intersection of B. N T~1(B.) N Brg. It follows
that the edge is contained in the slice of B, with sp = —A by Lemma [5.3.10] Following
the definition of Brg, we see that arg(z1) = arg (ﬁ%) = —¢; which implies that
ag = —3¢1/2. Therefore this edge is a geodesic arc since it is contained both a Lagrangian
plane and a complex line. Moreover, we know that rg = 0 at z; and rq = p at zo. L]

0<ro<p, so=XA

We describe the edges not contained in a geodesic arc.
Lemma 5.3.12. (i) The edge 724 is given the points (ro, o, ag) of Be by
i _2singae "1 (1 + ipso)
V(1= 12)(1 — 4sin? 61)

where so € [=\, A] and not contained in a geodesic.

To€

(ii) The edge 34 is given the points (1o, so, o) of Be by
2sin o (1 — iuso)
V(1= p2)(1 — 4sin? py)

where sg € [—A, \] and not contained in a geodesic.

roe'®® =

(iii) The edge ~ys5 is given the points (1o, So, o) of B by
oo 2506261 (1 + ipso)
V(1= p2)(1 — 4sin? py)

where so € [—\, A] and not contained in a geodesic.

o€

(iv) The edge ya3 is given by points (1o, So, o) of B with so = —\ and
iao _ (1= 3p\) (p 4 is1) — 2sin @12 (1 + dpsy) (u — M)
V(1= @)1 — 4sin® g1) ( + is1)

where s1 € [—\, A] and not contained in a geodesic.

To€
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V/
Z9
Zg
V/
Z5
Z4
Z]
Z3
Z)

FIGURE 5.4: The schematic view of the core prism P. contained in B. and the
geodesic triangle on the complex line C;.

(v) The edge v45 is given by points (1o, So, ) of Be with so = X and

(14 i) (p 4 is2) — 2sin e 2 (1 + ipsg) (p + iN)
V(1= u2)(1 — 4sin® 6y) ( + is2)

roe’™°

where sy € [—\, A] and not contained in a geodesic.

Proof. We now prove (i) and the others follow similarly. This follows by substituting
$1 = Sg in and using the fact that zo and z4 correspond to sy = —\ and sg = A
respectively. In particular, we see that neither sg nor «q is constant on this edge. This
implies that this edge cannot be contained in a geodesic. O
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The faces

In order to define the two sides S, and S, contained in B, it suffices to describe their
faces. We denote them by Fj;, or Fjji, where 4, j, k and [ are the indices of the vertices
of the face. We repeat the previous result and summarize them again.

e Two C-planar faces Fi23 and Fys6. The boundary of Fia3 is 12 U v13 U 23 and the
boundary of Fys6 is Y46 U V56 U V45-

o Two triangular faces Fa34 and Fy5 are contained in the intersections B. N S~1(B,)
and B.NS(B.) respectively. The boundary of Fa34 is 23 U734 U724 and the boundary
of F345 is 34 U va5 U y35.

e Three quadrilateral faces Fio46, F1346 and JFisse are foliated by geodesics. More
precisely, given a fixed sp € [—A, A] , the slice sg intersects with the face Fia46 (resp.
Fi346 and Fiss6) to be a geodesic, one of whose endpoints is lying at 716 and the other

is lying at o4 (resp. 734 and ~35). The boundary of Fiag6 is 12 U724 U4 N Y16, the
boundary of Fis4g is v13Uv34Uv46MNv16 and the boundary of Fi356 is v13UY35UY56 N Y16-

We remark that the faces Fio46 and Fi356 are contained in the intersection of B, with
Brg and Brg respectively. Since each geodesic as a foliation of Fia4¢ (or Fisse) is also lying
in a meridian of Brg (or Brg).

To this end, we give the definitions of two sides S, and S.. Note that the boundary of
S is Froa6 U Fizag U Fi23 U Fazq and the boundary of Sé is Fi3a6 U Fiss6 U Fuse U F345.

Definition 5.3.13. The side S, is made up of those points (ro, so, ) of Be with
(1) =X < so < A;
(7i) arctan(usg) — ¢1 < ap < — arctan(usg);

(iii) (ro,s0, ) is outside S~(B.).

We has shown that a point (rg, s, o) in the intersection B. NS~ (B,) need to satisfy
the formula . Compare with two sides of equality in , it follows that the ratio
between the imaginary part and real part of the right side of is equal to tan ag, which
makes s; out to be a function f(sg,ap) with respect to sp and ag. Thus the condition
(7i7) can be written in terms of geographical coordinates as

(14 ipso)(p + is1) — 2sin 12 (1 + ipsy ) (p + isg)
V(L= 2)(1 — dsin® gp)(u +is)

by replacing s; with f(sg, ap).
Definition 5.3.14. The side S.. is made up of those points (rg, so, o) of Be with
(i) =A< s0<A;
(i) —arctan(usp) < ag < arctan(uso) + ¢1;
(iii) (ro, so, ) is outside S(B.).
The condition (i4i) is the same argument as (4i7) of Definition only if consider

(5.23)) in Proposition [5.3.6]
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5.3.3 Sides of prism type

In this section we define four sides of the polyhedron D. These sides are contained in
bisectors, denoted by S17,Sg7, S7s and Sr7g each of whose indices is the same as its corre-
sponding bisector. A simple description of these sides is a triangular prism whose top and
bottom faces are respectively contained in different slices of a bisector.

The sides S7s and Syg

For these two sides, we only need to analyze the side S7g and the other follows similarly
since Brg = R(Brg).

Recall, two vertices z7y and zg lie on the spine of B7g. We take the edge ~y7g is a
geodesic segment contained in the spine of B7g. In terms of slice decomposition, the faces
Fie7 and Foug are respectively contained in two of the slices of B7g. In terms of meridian
decomposition, the faces Fio7s and Fug7s are respectively contained in two of the meridians
of Brg. To see this, we verify that arg(za) = —¢@ for the vertices z1, 22 and arg(z2) = ¢
for the vertices z4,2¢ in (5.9).

We define the face Fio46 to be the intersection of B7g and B.. More precise, a point
(21, 22) on the intersection of Brg N B, in non-homogeneous coordinates is given by

arg(z1) = —¢1, 2singo|z| = [22 — /1 — 4sin® ¢o].

Furthermore, a point z = (z1, 2z2) of Brg lies outside of B., (i.e. the distance between z
and I;1(Cy) is greater than the distance between z and Cy) if and only if

arg(z1) = —¢1, 2singo|za| < |22 — /1 — 4sin? ¢o].

From the above analysis, we give the following explicit definition of the sides Sys and
Srg.

Definition 5.3.15. The side S7g is made up of those points (z1,z2) of Brg with

arg(z1) = —¢1, |21 <@, —¢o <arg(ze) < ¢éo,
2811’1(;52|22|§ |22* 174sin2¢2|.

Definition 5.3.16. The side S79 is made up of those points (21, z2) of Brg with

arg(z1) = ¢1, |21l <x1, —¢o <arg(z) < ¢o,

2sin ¢olzo| < |22 — /1 — 4sin? ¢o|.

Remark 5.3.17. The face Fio46 is foliated by geodesics each of which are the intersection
of a meridian of B7g and a slice of B.. Points in the intersection is given by

H+is
1+ius

arg(zz) = arg ( ) = const € [—¢2, P2],

which is corresponding to a constant sg.
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The sides S17 and Sg7

Similarly, these two sides are respectively contained in cospinal and cotranchal bisectors
whose common slice is C; and common complex spine is Cs.

We begin with defining the common face Frgg. Recall that the edges y7s and 79 are
the geodesic segments contained in the spines of Brg and Brg respectively. We define the
edge v39 to be a geodesic segment connecting with zg and zg. In order to see this, we
apply S on the complex line C;. Recall, S preserves the complex line C; and S? acts on
Cy as identity. Using this, we see that the restriction of S to Cy is given by

2z — /1 —4sin® ¢y
% Y
V1 —4sin® g1z — 1

Since S| e is of order 2, it preserves the geodesic passing through zg and zg and acts as a

rotation of 7 at its fixed point (y/tan(¢2/2)/tan(m/6 — ¢2/2),0). From the above analysis,
we define the face F7g9 to be a geodesic triangular face lying on the complex line Cq, refer

to Figure [5.5

In order to define two sides S17 and Sgr, it remains to define two faces Faggg and Fyssg.

S’CI : |z| < 1.

o We denote oo = arg(z1) and so the meridians of By; and Bg; correspond to a being
constant. We denote [z, w] by the geodesic segment between z and w in H?C.

¢ Projecting a meridian « onto Cq, it becomes a straight line passing through the origin
with angle a.

o For each a € [—¢1, ¢1], we denote p§ by the intersection of this straight line with
the edge vgg. Moreover, we denote by p{ and pg by the intersection of the meridian
a with the edges 23 and 45 respectively.

We now define the faces Fasgg and Fyss9 as follows:

Fasso = |J [pY pgland Fusso= |  [p%, PGl
a€[—1,¢1] a€[—1,01]

The region {(z1,22) : —¢1 < arg(z1) < ¢1,arg(z2) = —¢a, |22| < z2} enclosed by two
different slices and meridians of By7 is called a dihedral angle region. From the geometric
view of point, the face Fo389 separates the dihedral angle region in Bi7 into two compo-
nents. We are interested in the component containing the spine of Bi7, and we denote
this component by €;7. Similarly, €47 is the component of the dihedral angle region in
Bg7 containing its spine.

Definition 5.3.18. The side Si7 is made up of those points (21, z2) of Bi7 with
—¢1 <arg(z1) < ¢1,  arg(z2) = —¢2, |z <22

and (z1,z2) is lying in C17.

Definition 5.3.19. The side Sg7 is made up of those points (21, z2) of Begr with
—¢1 <arg(z1) < é1, arg(ze) =2, |22 < 22

and (z1,z2) is lying in Cer.
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C <O
FIGURE 5.5: The triangle drawn by green line indicates the face Frs9. Orthogonal

projection of the edges 23 and 45 onto C;y is the blue arc of circle lying inside Frgg
and another blue arc indicates the projection of 734.

| —

5.3.4 Sides of wedge type

We define, in this section, two special sides S, and S; which are not contained in bisectors.
These sides are foliated by 2-dimensional cones over Giraud disc.

Projection of the faces Fa34 and Fiy5

Recall that orthogonal projection of the faces Fasq and Fsy5 onto Cy is a leaf-shaped region
bounded by two blue arcs in Figure [5.5] The edge vg9 separates the leaf-shaped region
into two parts, denoted by A and B; see Figure [5.6

For a € [—¢1, ¢1], we denote [, by the intersection of a straight line of angle o passing
through the origin with A. Clearly, A is foliated by the straight segments [, for o €
[—¢1, ¢1]. Furthermore, the straight segment reduces to zg for o = ¢1 or zg for @ = —¢y.
Since S is of order 2 by acting on C;, S maps A to B (or B to A). It follows that B can
be foliated by the geodesic arcs I/, = S(I_,) for a € [—¢1,¢1]. From Lemma we
see that [, and [/, have the same common endpoint p§. Thus the connected curves I, Ul
are leaves of a foliation of the leaf-shaped region AU B for o € [—¢1, ¢1].

Lemma 5.3.20. For a € [~¢1,¢1], then S|, (Py®) = P
Proof. Using the z-coordinate in Ci, the edge 7gg is a geodesic which can be written by
1 2 sin ¢
zZ — =
V1—4sin?2¢| /1 —4sin2¢;

with |2| < 1. Then the point py® = re™* on the edge 39 may satisfy

2
L ) (5.27)

V1 — 4sin® ¢y
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FIGURE 5.6: The leaf-shaped region is separated by g9 into A and B. A is foliated
by the straight segments I, with angle o and B is foliated by the geodesic arcs I.,.

Thus (5.27)) leads to

S|, (95) = re” — .\/21 — 4iip2 P1
\/mre o —1
V1 —4sin? ¢y (12 + 1) — 2r cos o + 4sin? ¢y re'®
(1 — 4sin? ¢)r2 — 2rcosan/1 — 4sin? ¢y + 1
4sin? ¢yre’®
T 4sin? o1

1

=re

This completes the result. ]

Parameterization of the faces Fo34 and Fiys

We start to parameterize the triangular faces F234 and F345 by the meridian a-parameter.

We denote Il¢, by the orthogonal projection onto C;. Recall, 739 separates the leaf-
shaped region into A and B. Then there exist two curves fs34 and f345 such that fa34
and (345 separate resepectively the faces Fogs and F3y45 into two parts, one of which is
projected to A and the other is projected to B. Moreover, S(l234) = {345 and then
e, (€234) = e, (€345) = 7go-

For o € [—¢1, ¢1], we consider the pre-image of I, U1/, on Fogs, denoted by L$5,. In
other words, we have Il¢, (L54) = lo Ul,. Similarly, there is a curve L§;; in F345 such
that ¢, (Lgy5) = lo UL, For each o € [—¢1, ¢1], we see that L3, and fog4 (LGy5 and l345)
intersect a point whose orthogonal projection on C; is pg.

In order to see this, we construct a family of Lagrangian planes which contain the
geodesic segments connecting with p§ and a point of Fags (or Faas).
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e Analysis of the pre-image Hgll(la) C L$3, and the

case Hgll(la) C L§y5 follows similarly. For s € 2 P %
[—A, A], a slice Cs of B, corresponds to s being con-
stant. We denote p, by the intersection of the slice
Cs with the edge v16. A bisector whose spine is the
geodesic passing through 0 and ps in Cy is denoted
by Bs. It follows that C; and C; turn out be two
of the slices of B;. For a fixed a@ € [—¢1,¢1], a
meridian L, s of B containing [, intersects with C; s
and Fa34 at a point g, . For s = —\, we see that
das = p} and I, ([pf, p§]) = lo. We can take
Sa € (—A, A) such that Il¢, ([qa,s.. P§]) = p§. Thus
a curve consisting of points q, s for [—A, Sa) becomes
Hgll(la) C L$y5, drawn by the blue line in Fagy.

z2 pY 3

o Analysis of the pre-image Hgll (I,) C L$34. We denote q_,, ; by the intersection of
L_, s with Cs and Fays. For a fixed a € [—¢1, ¢1], we can take s, € (=X, A) such
that Il¢, ([a”, 5 , P “]) = Po ™ and He, ([a’, 5, Py *]) = l-a. Since the map S pre-
serves C1, we have Il¢, (S ([d" 4.4, Pp ) = S~ (e, (19" 4.5, Po *])). In particular,
Ie, (S7H([a 5, Po 1) = S7HPe®) = p§ and e, (S ([d_, . Po *]) = 57 (la) =
I!,. Thus we define a curve consisting of points 5(q’_,, ) for [s},, A], which is drawn

by the green line in Fo34. In fact, the geodesic segment S7'([q", ), Py “]) is con-
tained in the meridian S™!(L_, ) of bisector S~1(B;).

The same construction can be implemented for the face F345. This enables us to give
the following proposition.

Proposition 5.3.21. For a € [—¢1, ¢1], then S(LS34) = L3,+.

Sides foliated by 2-dimensional cones

For each a € [—¢1, ¢1], we define a sheet X935, to be the geodesic cone from Lgs, to the
point p{. In other words, we join with each point of L3, to p§ by a geodesic segment,
that is
934 = U (PG, 2.
z€L55,
Analogously, the sheet X5 is defined to be the geodesic cone from L§5 to the point pg,
that is
X545 = U PG, 2.

zeLg)

Proposition 5.3.22. For a # 3 € [—¢1, ¢1], X954 (resp. X%45) and %534 (resp. %§45) are
disjoint.

Proof. Tt suffices to show that the orthogonal projection of X5, (or X$45) onto Cy is I, UL,
From Lemma the projection of [z, pg] is a geodesic segment joining p§ and Il¢, (z).
Observe that both I, and I/, are geodesic segments with common endpoint p§. For each
point z of LSy, it follows that Il¢, (z) € I, U, implies Il¢, ([z, pg]) is contained in I, UL,
For a # (8 € [~¢1, ¢1], therefore, {lo Ul } N {lg Uls} = 0 implies that X35, N X5s, =0 (or
X515 N Xay5 = ). u
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—«

o
Zg Py Py Zg

—Q
X34 X3t

Zy
—
L 345

o
L 234

Z3 Z3

FIGURE 5.7: The schematic view of the sheets of two sides Sy and ;. The action of
S on a sheet X534 to Xg,;.

We are ready to describe the sides S, and S;, for the schematic view in Figure

Definition 5.3.23. The side S, is made up of the sheets X953, for o € [—¢1, ¢1], namely,

Sg= U 934-

a€—¢1,01]
Definition 5.3.24. The side S;, is made up of the sheets X§y5 for a € [~¢1, ¢1], namely,
Sg= U 345-

a€[—¢1,¢1]

From Proposition|5.3.22) we remark that both S; and S; are real analytic 3-submanifolds.

5.3.5 Construction of the polyhedron

In the previous sections we constructed eight 3-dimensional cells which are sides of our
polyhedron. We define the polyhedron D to be the interior of the union of eight 3-cells,
refer to Figure[5.7] It follows from Proposition[5.3.25|that D is well-defined a 4-dimensional
domain.

Proposition 5.3.25. S,US.US, U S; U S17 U Sg7 U S7g U Stg is homeomorphic to S3.

Proof. Recall of the basic geometric fact that S3 can be interpreted as the union of two
3-balls gluing along S?. We see, up to homotopy, that the core prism P. is a 3-ball with
the boundary Fio3 U Fuse U Fioag U Fisse U Fosq U Fag5. Another 3-ball is the union of
Sy> Sy S17, Se7, S78, S79 Whose boundary is also Fi23 U Fase U Fi2ae U Fizse U Faza U Faas.
In order to see this, we can think that two faces Fi23 and Fys6 are lying at both sides of
the face Frgg. This completes the result. O

We also need to ensure that the interior of two sides S, and S; cannot intersect the
other sides contained in bisectors. This follows directly from the following proposition.

Proposition 5.3.26. The interior of Sy and S; does not intersect with the sides contained
in bisectors.
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Z7

Z(

Zg

Z5

7]

FIGURE 5.8: The schematic view of eight sides of the polyhedron D in the complex

Z)

Z9

Z3

hyperbolic space. D is a 4-dimensional domain bounded by these eight sides.
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Proof. 1t suffices to show the interior of each sheet X953, (or X§,5) does not meet with the
sides contained in bisectors for o € [—¢1, ¢1]. We only need to analyze the sheet X55, and
the other follows similarly.

Recall, the bisectors containing the sides come in pairs so that the complex spines are
the coordinate axes. As in the Proposition 1.2.28 of [Thol(] (or the Section 2.1.2), the
number of intersection points between a geodesic and a bisector is equal to the number of
intersection points between its spine and the projection of the geodesic onto its complex
spine. Moreover, as in Section 1.2.4, we know that the projection of a geodesic ¢ to a
complex line C is an arc of a geometrical circle (and in particular, this is also a geodesic
arc if cNC # 0) in C. For the case that C is a coordinate axis, the projection of a geodesic
segment [z, w] is a shorter arc of a geometrical circle with endpoints Il¢(z) and Il¢(w)
(the images of points under orthogonal projection onto C).

For a € [—¢1,¢1] and z € LS,,, we consider the projection of the geodesic segment
[p§, z] onto the coordinate axes C; and Ca. We denote I, Iy by the orthogonal projection
onto C; and Cs respectively.

(i) Pair of sides S7g, S7g are contained in bisectors Byg, Brg whose spines contain y7g and
v79. Clearly, I ([p§, z]) = o U, does not intersect with y7g and ~7g.

(ii) Pair of sides Si7,Sg7 are contained in bisectors Bi7, Bgy whose spines contain the
straight segment ;7 and ~g7.

o+ For z € 17 *(I,), the geodesic segment [p§, z] is contained in a meridian of Bs.
Thus I2([p§, z]) is a straight segment with endpoints z7 and a point of v;6 and
cannot intersect with 17, v67.

o For z € I }(1),), we see that IT;(Sy7) = I1;(Se7) is the geodesic triangular face
Frso and I1y ([p§, z]) = I/,. The interior of I/, does not intersect with Frgg.

(iii) Pair of sides S., S, are contained in bisector B. whose spine contains 1.

o For z € TI; (1), then Ty([p§,2]) is a straight segment which intersects with
~v16 only at Ia(z).

o We denote (pf,*) by the extension of [pf,z| from p§ to co without p§. For
z € TI7 (1)), observe that IT;(pg, *) is a geodesic ray from p§ to the boundary
passing through S(0), see Figure Non-intersection of II; (pg, *) and Frgg
shows that (p§,*) cannot intersect with the sides S17 and Sg7. Thus we know
that IIs(p§, *) does not intersect with 17 and v¢7. From the geometric view, we
claim that IIx([pf, z]) intersects with 16 only at IIz(z). In fact, the interior of
Iy ([p§, z]) can only lie inside the angle region —¢9 < arg(z2) < ¢2. Otherwise,
it is not the shorter arc of a circle which is contradiction with Lemma [.2.12 If
Iy ([pf, z]) intersects with 16 twice, then Ila(pf, *) intersects with 17 or ez,
which is a contradiction.

From the above analysis, we see that the interior of [p§,z] for a € [—¢1, ¢1] cannot
intersect with the sides contained in bisectors. O

5.4 The main theorem

Our goal is to use Poincaré’s polyhedron theorem to show that the polyhedron D is a
fundamental domain and find a geometrical presentation although we already know both
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that the group I'y is discrete and that a presentation of 'y (see [DFP05) [Par06]). We will
prove the following result:

Theorem 5.4.1. Suppose that the ordered pair (k,l) is in the list
(7,42), (8,24), (9,18), (10,15), (12,12), (15,10), (18,9), (24,8), (42,7),

that is, | = 6k/(k — 6). Then writing ¢p1 = w/k and ¢o = w/l, the group Ty generated by
the side pairings of D is a discrete subgroup of PU(2,1) with fundamental domain D and
presentation

(5.28)

Rk’ — Tl —_ (R—ls)?) _ (T_1[1)3 — (5—1[1)3
Fk—<R,S,T,Il. :[R,T:I:l, T:S2, R:I% .

Remark 5.4.2. As the roles of k and [ are actually symmetric, there are only 5 different
groups 'y for k = 7,8,9,10, 12. In particular, among them only I'g and I';5 are arithmetic,
see the Table on the Page 27 of [Par(9].

We will prove this theorem by verifying the conditions of the Poincaré’s polyhedron
theorem, following the strategy outlined below. For the case of £ = 6, that is | = oo,
this makes T turn into a parabolic which gives rise to the disappearance of T' in the
presentation. Thus the group I's is exactly the same as Gy (compare [Zhll]), up to
conjugation.

Writing J = S, Ry = T '}, Ay = R and A} = JTJ~!, the presentation of
Theorem [(.4.7] becomes

PB=RI=Ab=4'=1
<J,R1,A1,A’1: Ay = (JR{Y)2 Ay = (J7IR{Y T2, >
A1R; = RiAy, A{R, = R A)

Note that [A1, R1] = [R,T] follows from R = I? and [A], Ry] = J[T, R]J~! follows from
T = S? and R™1S = J~!'R;J. This is the presentation in terms of Ry, J given in [Par09)
with p = 3.

5.4.1 The side pairing maps

Let R,S,T and I; be given by (5.5)), (5.11) and (5.12)) respectively. In this section we
show that these maps are the side-pairings of our polyhedron D and pair the sides of D

as follows (see Figure [5.9).
RZS78—>879, T!Sl7—>867, S:Sg—)S;, Il SC—)Sé

We now verify these maps satisfy conditions (/) and (/) in Definition for each
side. Tt is clear that the side pairing maps R, S, T satisfy condition (I) and we give more
details for the side pairing map I;.

Recall that the map

o—ior/3 | —2sin Paeit 0 0
1122 iné 0 1 —+/1 — 4sin? g9
SI 92 0 V1 — 4sin? ¢o 1
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The action of I; on the bisector B, (see (5.16)) is given by

oit1/3 —25in poe'?1 0 0 V1 — p2ret@
e 0 1 —/1 —4sin ¢y | . W+ is
sin g2 0 V1 — 4sin? ¢y 1 1+ius

/1 — M2Tei(04+¢1)
w—1s
1—1us

—  _eitn/3

We see that I} maps B, to itself, sending the point with coordinates (7, s, «) to the point
with coordinates (r, —s, a4+ ¢1) when —7/2 < a < /2 — ¢ or the point with coordinates
(—r,—s,a+¢1 —m) when 7/2 — 1 < a < 7/2.

In terms of its action on the vertices of prism, we summarize as follows

zy, — Zg,
Z9 — 24,
I : z3 — 1Zs,
zy, — 1Z3,
Ze —— Z1.

By Lemmas [5.3.11] and [5.3.12] we can easily see that

Ii(vi6) = 716, L1(712) = Y46, L1(713) = 756,

I (y24) = 34, I1(734) = 35,

which implies that
I (Fi246) = Fi346, I (Fi346) = Fi3s6-

We now concentrate on showing I1(Fas4) = Fuse and I1(Fr23) = Fuse. Observe that
the face Faz4 is contained in the intersection B, N S~1(B.) = B. N J(B.) that is a Giraud
disc. Moreover, we have J(Fazs) C J(Be) N J 1(B.) and J~1(Fazs) € JH(B.) N B, since
J is a regular elliptic element of order 3. As the permutation of J on the edges 793, 7v34
and 724, the triple intersection B, N J(B.) N J~1(B.) contains 23,734 and y24. It follows
that the third bisector containing the face Fazq is J~1(B.) = I;'S(B.). Obviously the
map I sends points of B, N Il_lS(BC) to points of B, N S(B;). Furthermore, the edge 23
is contained in B, N Il_lS(Bc) with s) = —\ and the edge 745 is contained in B. N S(B.)
with s9p = A, which implies that I1(y23) = 745. From the above argument, we obtain
I (Fas4) = Fuase and I1(Fio3) = Fuse. As a result, we prove that I;(S.) = S..

We give the following lemma to verify condition (I7) for each side.
Lemma 5.4.3. If g is one of R, S, T, I, then g~ (D) ND = g(D) N D = (. Moreover,

RID)ND =S8, T-'(D)ND=S;, S'MD)ND=S§, L'DnND=S,
D )ynD = 8.

(
YyND =8, T(D

( (
R(D )ND =S8y, SMD)ND=S,, NL(D
Proof. o Consider the side Szg and other sides S7g, S17, Sg7 follow similarly. If z € D

then —¢1 < arg(z1) < ¢; with equality only when z € Brg (or Brg). Likewise, if
w = R(z) € D then —¢; < arg(e??12;) < ¢;. Hence if R(z) € D, or equivalently
z € R71(D), then —3¢; < arg(z1) < —¢1. Thus z € DN R~Y(D) if and only if
z € Brg and precisely z € Srs.
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FIGURE 5.9: The sides of the polyhedron and side pairings. The bold lines denote

the spines of the bisectors.



130

Chapter 5. New construction of fundamental domains for certain Mostow groups

 Consider the core sides S, and S... Observe that I; preserves B. and swaps one side

5.4.2

of B. with the other. If z = (21, 22) € D then 2sin ¢o|29| < |22 — /1 — 4sin? | with
equality only when z € S, US,. If z € D, then w = [;(z) satisfying 2sin ¢o|ws| >
|wg—+/1 — 4sin? ¢o| does not intersect D. Only z € S, (resp. z € S.) then I1(z) € S.
(resp. I (z) € S.).

Consider the sides S; and S;. By construction, we see that S(Sy) = S;. It suffices
to show that the images of other sides under S cannot intersect with the sides of
D except for S;. In order to see this, the spines of S(Brs) and S(Brg) are the
geodesic segments connecting with S(0) and zg,zg. It is easy to see that there
is no intersection of the interior of S(Brs) and S(Brg) with the sides of D. The
spines of S(By7) and S(Bg7) are the straight lines in common complex spine S(Cs).
Their projection on C; is a geodesic triangle with vertices zs,zg, S(0). Thus they
don’t intersect with the sides of D. For the side Sy, T(S;) NS, = @ implies that
S(Sy) NSy = 0. Moreover, S(S;) = T(S,) implies that this is the same projection
of §; on C; and a rotation of the projection on C; with angle ¢».

O

The face cycles

We now write the face cycles induced by the side-pairings in terms of type of face and the
label of face reflects the order of vertices.

e The C-planar triangle cycles:

R
Fier — Fie7,
T
Fr89 — Frso,
I 71
Fr23 — Feas — F123,

s R-1
Foug — F359 — Fous.

e The R-planar quadrilateral cycles:

T R 7-1 R!
Fiogr — Feagr — Fesor — F1397 — Fios7-

e The Giraud triangle cycles:

I St I s-1 I S—1
Foza — Fusz — Fzaa — Frsza — Faoz — F3a5 — Foza.

e The generic quadrilateral cycles:

I I R1
Fioa6 — Feaz1 — Fi3s6 — F1246,

S S 71
Fo398 — F3ag9 — Fuas9s — F2398.
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5.4.3 Verifying the tessellation conditions

In this section we verify the cyclic condition of the Poincaré’s polyhedron theorem, we
refer more details to [DFP05] and [Par06]. Recall that for a face cycle

}'1&)]:2&,,,_)]:”%}'1.

The cycle transformation g, 0 g,_1---0g1 acts on Fi as the identity and there is a certain
integer m such that (g, o gn—1---091)™ = Id. We call n the length of cycle and n - m its
total length. In order to ensure condition cyclic we must show that there is a neighborhood
U of the interior of the face such that U is covered by D and its images under relevant sid
pairings. Specifically, for the above face cycle, the following images of D:

91" D), (g2091) D), -+, ((gn©Gn-1---091)™) " (D) =D

cover a neighborhood of F;. We only sufficiently consider a neighborhood U of one member
of a single face cycle and others are the images of U under suitable side-pairings.

Tessellation around C-planar faces

In this section we consider the faces contained in a complex line. These are the faces
F123, Fase, Fr89, Fi67, Foas and Fzs9. They form four face cycles described again as follows:

R T
Fier — Fiers Frsg —  Frso.

The face Fig7 is in the intersection of two bisectors Brg and Brg. If a point z = (21, 22) € D,
then —¢1 < arg(z1) < ¢; and the face Fig7 is contained in z; = 0. We know R acts on
z1-plane as a rotation with the angle 2¢;. Therefore, the union of the images of D under
Rifori=1,2,---,k covers a sufficient small neighborhood of the face Fig7. Similarly, the
union of the images of D under 77 for j = 1,2, - -, covers a sufficient small neighborhood
of the face Frgg, we refer to the schematic view of their images in Figure If the group
is discrete, these elliptic elements are necessary to have finite order which gives rise to
k,l € Z. Together with the condition 1/k + 1/l = 1/6, we obtain the pairs (k,) listed in
Theorem Otherwise the group is not discrete (see [Mos88]). From the geometrical
point of view, in this case, D will intersect its image under some non-trivial power of R
or T'.

Proposition 5.4.4. The polyhedron D and its images under the power of R (resp. T)
tessellate around the face Figr (resp. Frso). Moreover, the cycle transformation corre-
sponding to the face Fig7 (resp. Frsgo) is R (resp. T) and n =1, m =k (resp. m =1).
This gives the cycle relation RF = T" =1,

The remaining two face cycles:

I 71

Fros3 — Fase — Fi123,
s R1

Foag — Fzsg — Fous.
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FIGURE 5.10: (a) The images oiﬁ under the power of R tiling a neighborhood of
the face Fig7. (b) The images of D under the power of T tiling a neighborhood of the
face .7:789.

FIGURE 5.11: (a) The images of D covering a neighborhood of the face Fiz3. (b)
The images of D covering a neighborhood of the face F245. The black points at the
center indicate the corresponding faces.

Both of 77'I; and R™'S are the complex reflections. The main difference between
them is that the face Fi23 is in the intersection of two bisectors B, Bi7 and the face Faus
is in the intersection of a bisector Brg with a side S, which is not contained in bisector. It
is the same schematic 2-dimensional picture of covering a neighborhood of Fj23 and Faus,

see Figure [5.11}

Proposition 5.4.5. The polyhedron D and its images under I, I7'T, I TICY, T
and T~ tessellate around the face Fia3. Moreover, the cycle transformation corresponding
to the face Fiaz is T~ and n = 2, m = 3. This gives the cycle relation (T~111)% = 1.

Proposition 5.4.6. The polyhedron D and its images under R~', R~'S, R"'SR™!, S™'R
and S~ tessellate around the face Fasg. Moreover, the cycle transformation corresponding
to the face Fasg is R™1S and n =2, m = 3. This gives the cycle relation (R715)3 = 1.
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I71S(Be)

FIGURE 5.12: The images of D covering a neighborhood of the face Faz4. The black
point at the center indicates the face Fas34.

Tessellation around R-planar faces

In this section we only consider a single face cycle in which the faces are all contained in
Lagrangian planes. The associate face cycle is

T R 71 R-1
Fiorg — Faers — Fserg — Fizrg —  Fiors.

The schematic image of the tiling of a neighborhood of the face Fia7s:

In fact that D and its images as above have disjoint interiors follows easily from Lemma
Moreover, the bisector By7 separates D and T~!(D), the bisector Brg separates D
and R~}(D). Thus applying T-! to D and R~!(D), we see that the bisector T~ (Brs)
separates T~1(D) and T-'R~!(D). Analogously, applying R~! to D and T-!(D), the
bisector R~1(B17) separates R~}(D) and R~!T-1(D) = T-'R~Y(D).

Proposition 5.4.7. The polyhedron D and its images under T, R™' and T"'R~! tes-
sellate around the face Fiars. Moreover, the cycle transformation corresponding to the
face Fiarg is R-YT'RT and n =4, m = 1. This gives the cycle relation [T, R] = 1.

Tessellation around the face Fa3y

The face Fa34 is contained in a Giraud disc which is the intersection of B, S_l(BC) and
I s (B.). It is given by an equation of the form

(2, 10)| = (2, 17" (no))| = {2, I7 ' SI7 " (no))].

As the arguments in Section 7.8 of [FEP10], we see that there are three regions where the
first (resp. second and third) of these quantities as above is the smallest tessellate around
the face Faz4.
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Note that the points of D around the face F234 is bounded by B. and the side S,
and the points of S~1(D) around the face Fa4 is bounded by S~1(B.) and the side S,.
Thus the union of D and S~1(D) covers a neighborhood of Fa34 in the region where the
first quantity is smallest. Applying the elements S~'I; and I 1S, we obtain the union
I7YD), I7'S(D), I;'SI7 (D) and S~1I;(D) covering the other two regions, see Figure
There is a difference around the faces Fia3 (or Fasg) and Fasg, that is not apparent
from the 2-dimensional picture. We give the difference in the following proposition.

Proposition 5.4.8. The polyhedron D and its images under I;*, I;'S, I; 'Sy, S~
and S~ tessellate around the face Fazs. Moreover, the cycle transformation corresponding
to the face Fazq is (ST111)% and n = 6, m = 1. This gives the cycle relation (S7111)3 =

Tessellation around the generic quadrilateral faces

In this section we consider the faces of D that are neither contained in a complex line nor
in a Lagrangian plane nor in a Giraud disc. These faces are regarded as the foliation of
geodesics.

We first consider the face Fi34¢, the associated face cycle is

Il R71 Il
Fizase — Fizse — Fioaae —  Fi346-

This is the same situation as in [Zh1I]. We state again and refer to the 2-dimensional
picture in Figure [5.13]

The face Figqe is the intersection of S, and S’ contained in the core bisector B, and D
covers the part of a nelghborhood of Fisq6 at the side of B, where |(z, ng)| < [(z, 171 (ng))].
Observe that Iy or I} swaps one side of B and the other. Moreover, I (D) NnD =S,
Il(D) ND = S, and Il ( )ﬁIl(D) = Il (879) = 11(878)‘ Therefore D UIl 1(ﬁ) UIl(ﬁ)
covers a neighborhood of Fisug.

Proposition 5.4.9. The polyhedron D and its images under Il_l and Iy tessellate around
the face Fisas. Moreover, the cycle transformation corresponding to the face Fisas is
LRI, andn =3, m =1. This gives the cycle relation TR~ 'I; = 1.

For the face Fs4g9, the associated face cycle is

S 71 S
F3a89 — Fasgg — Fazgg — F3ag9.

The face Fi346 is the intersection of S, and Sg’]. Since the map S (or S~!) acts on the
triangle Frgg as rotation of m around its fixed point, the image S(D) (or S~1(D)) may be
interpreted as lying in the other side of S, U Sg by S or S~!. Furthermore, it follows from
Lemmathat S1MD)NnD=§,, S(D )ﬁﬁ: ). It is obvious that S~!(D) N S(D) =
S~1(Se7) = S(S17) is contained in a bisector, and Sg N S; N S~1(Se7) = Fizae, see Figure
The result follows from the same argument as above.
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171 (Bry)

FIGURE 5.13: The images of D covering a neighborhood of the face Fi346. The black
point at the center indicates the face Fizas.

Bz

Bi7

FIGURE 5.14: The images of D covering a neighborhood of the face Fz4s9. The black
point at the center indicates the face Fsag9.

Proposition 5.4.10. The polyhedron D and its images under S~' and S tessellate around
the face Fsqg9. Moreover, the cycle transformation corresponding to the face Fsugg 18
ST=1S and n =3, m = 1. This gives the cycle relation ST™1S = 1.

This completes the proof of Theorem [5.4.1] by Poincaré’s polyhedron theorem with
Propositions

5.4.4 Euler orbifold characteristics

We compute again their Euler orbifold characteristics x(H%/T'y) by analyzing the stabilizer
of i-dimensional faces of our fundamental domain D, which agrees with the formula in Page
38 of [Par09] by substituting p = 3, see also Theorem 5.1’ of [Sau90]. The following table
gives the order of the stabilizer for the vertices, 1-simplices, 2-simplices, 3-simplices and
the only 4-cell, the whole of D.
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i-cells Cycle Stabilizer Order
Z1,Zg (T'11, R) 3k
Vertices zg3, Zg (R71S,T) 3l
Z7 (R,T) kl
79,23,24, 25 (LT~ S7IR) 24
V16 (I1) 2k
789 (S) 21
Edges Y175 Y67 <R> k
Y78, V79 (T) !
Y23, V345 V45, V24, V35 (R7LS) 2k
Y28 7485 V39, V59 (R719) 2k
F123, Fas6 (T~'1) 3
Fo3a, Faas (S11y) 3
Fouag, F359 (RLS) 3
2-faces Fie7 (R) k
Fr789 <T> l
F1246, F1346, F1356 (Id) 1
Fi278, Fa678, F1379, F5679 (Id) 1
F 2389, F3489, F4589 (Id) 1
S.,S. (Id) 1
3-faces Sy, S, (Id) 1
Srs, S19 (Id) 1
S17, Ser (Id) 1
’ Polyhedron ‘ D ‘ (Id) 1

Using 1/l =1/6 — 1/k, we compute the Euler orbifold characteristic to be

X(HE/T)

YIS U
3\k I 24 Kl

RYEN
72 kE\6 k)

(1)

5.5 Mostow groups of the second type

1

k

1 25
e e R |
+l> + oAt

We review, in this section, the Mostow groups of the second type, which is written based
on related materials in the Parker’s survey paper [Par(9]. It aims to explain briefly the
previous construction of fundamental domains might be adapted for all Mostow groups of

the second type.

Let I'(p, k) denote the equilateral triangle group (R;, R2, R3) where each R; is of order
p. Mostow groups of the second type are the groups I'(p, k) where the values of p, k and
l=1/(1/2—1/p—1/k) are given in the following table.

p
k

l

3 3 3 3 3 4 4 4 5
7 8 9 10 12 5 6 8 b
42 24 18 15 12 20 12 8 20

= o
S O O

In fact, the values of k and [ can be interchanged.
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We begin with the given geometric generators
R=(JR')? S=JR7Y, T = (JRTY, I, = JRT'J.

A conjectural presentation of I'(p, k) immediately follows from the above setting and the
braid relations that

D(p, k) = <R, S, T, I (5.29)

RF=T! = (R7'S)P = (T'1)P = (5'1)?
=[RT]=1, T=52 R=1I} '

To confirm that is an exact presentation for I'(p, k), it needs to construct the same
fundamental domains as the previous sections.

The key point of construction is to analyze the stabilizer group (R,S,T). As we
computed in Section 5.2.2, the common eigenvector of R, S is

u’T
n= | @’r

-1

and T fixes the complex line to the polar vector n.
By an easy calculation, we obtain

2

uT
(n,n)y = [HQT u*T —I}H ulT
-1
= 1-P 4+ -3+ -1 -7
2 47 27 2r 27
= 2{1—cos—cos+ + cos(— + —
T cos( 4+ ) Heos(Ch T
= 2N(p k).

The basic construction requires us that the stabilizer group fixes a complex line. It suffices
to analyze the norm of n and ask for the positive values.

e For p =4,
2
N4, k) =1—v2sin(2X - T,
k4
then N(4,k) > 0 if and only k > 4.
e For p =5, then
2 3 2
NGk =1— cosg + ZSin(g + %)sing > 0.
e For p =06,
1 2
N(6,k) = B +cos%.
then N(6,%k) > 0 if and only k& > 3.
As T is a complex refection fixing the complex line n*, and
0 u? 0
T=|-wr wWr*+ur 0 |,

u —T uT



138  Chapter 5. New construction of fundamental domains for certain Mostow groups

FIGURE 5.15: The schematic view of construction in 2-dimension. The bold lines
are the complex lines. The bold points are the intersection of two complex lines which
give rise to the vertices of polyhedron.

T has the eigenvalue w272 corresponding to n and a repeated eigenvalue u7. Thus the

relation 7% = 1 implies that
= __-_"Z (5.30)

for a positive integer [ (I = oo if possible). Only possible values of k,[ satisfying (5.30))
listed in the table.

The construction of fundamental domains follows from the complex lines fixed by R,
T, Ry, R3, RR3R~! and TR{T~', see Figure The orthogonal properties of these
complex lines come from the braid relations. A fundamental domain of the stabilizer
group (R, S) acting on the complex line nt is a geodesic hyperbolic triangle A(k/2,p,p)
with the interior angles 27 /k, w/p, m/p. As [ tends to oo, the complex line n' degenerates
to an ideal point. The action of the stabilizer group (R,S) on the boundary is almost-
Euclidean, in other words, the triangle A(k/2,p,p) becomes an Euclidean triangle in a
horizontal section of the Heisenberg group since 1/p+ 1/k = 1/2.

From the above arguments, the construction of fundamental domains for I'(3, k) can be
implemented for all Mostow groups of the second type. Analogous to the case Go = I'(3,6),
the limiting configuration of fundamental domains for I'(4, k) and I'(6, k) turns out to be
two of Mostow groups of the first type. In that case, T" becomes to be a parabolic element.
The presentation may be obtained by removing the relation 7% = 1. This gives a new
approach to construct the fundamental domains for some of Mostow groups of the first

type.
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In this chapter, we compute the cohomology of the Eisenstein-Picard modular surface and
its sister with local coefficients. Our results follow the work by Yasaki [Yas08], where he
constructed explicitly a spine for SU (2, 1;Z[i]) and used it to compute the cohomology for
SU(2,1;Z[i)).

6.1 Algorithm to compute the cohomology

This section recalls Dan Yasaki’s work [Yas08|, which describes — from the theoretical
viewpoint — an algorithm to compute the cohomology of arithmetic groups as well as the
quotient orbifolds.

6.1.1 Spines

Let G be a connected semisimple Lie group with finite center, and K a maximal compact

subgroup of G. Then X = G/K is a Riemannian symmetric space of noncompact type.

Let I" be an arithmetic subgroup of G, and I'\ X be the corresponding locally symmetric

space. The special case of our interest is when G is the Lie group SU(2,1) and I is a

lattice. In that case, the associated symmetric space X will be the complex hyperbolic
2

plane HE.

Definition 6.1.1. The virtual cohomological dimension (ved) of T' is the highest dimen-
sion of a space X' such that there exists a subgroup I" C T' of index finite, such that T’
acts freely on X' and T'\X' is compact.

Borel and Serre [BS73] showed that the discrepancy between the dimension of X and
ved(T) is given by the Q-rank of T', the dimension of a maximal Q-split torus in I. In our
case, X is 4-dimensional, and rankg(I') = 1, then

ved(IN) = dim(X) — rankg(I") = 3.
This allows us to find a 3-dimensional I'-equivariant deformation retract Xo C X.

Definition 6.1.2. A spine is a I'-equivariant deformation retract Xo C X of dimension
equal to the virtual cohomological dimension such that T\ X is compact.

Remark 6.1.3. A spine, in the previous chapters, is a geodesic in H(% that determines
a bisector. However, a spine in this chapter has a different sense that is a 3-dimensional
subspace of H(QC.

For the general case of Q-rank 1 groups, Yasaki showed in [Yas06] the existence of
spines. More precisely, a I'-equivariant deformation retract of X was constructed by a
family of exhaustion functions. Such exhaustion functions, from a geometric point of view,
can be thought of as a measure of height with respect to a cusp or a rational parabolic
subgroup. Recall that Busemann functions, in the same sense, can be also regarded as
a distance of points between in the interior and on the boundary and its level set is a
measure of height, called a horosphere. One can show that Busemann functions are a
negative logarithm of these exhaustion functions, see Example for the simple case.

Example 6.1.4. For G = SL3(R),I' = SLy(Z) and the associated symmetric space is
Poincaré’s upper half-plane $). Let z = x + iy € $ and A = p/q € Q in reduced form be a
cusp.
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e Ezhaustion functions are given by

foo(z) = Y

he) = (p— xQ)yZ + ¢*y?

t

e Consider a unit-speed geodesic ie* which converges to co, Busmann function with

respect to oo is given by
hool2) = d(z,ie') —t

2 )2
— cosh-] <1+$+(y€)> Ly

2yet

log(e'/y) —t
= —logy.

In general, Busmann function with respect to A is given by

ha(z) = hy - 00(2) =S(y7' - 2) = —log {(p - qac)y2 + q2y2}

where v has the matrix form as

(5 : ) € SLy(7Z).

In what follows, we will use Busemann functions as defined in Section 2.2.1 to describe
a spine for I' C SU(2,1), that is a special case of Q-rank 1 groups. Let z = ({,v,u) € HZ
be a point in horospherical coordinates and § = ({p, vo,0) be a cusp. Busmann functions
are given by

heo(z) = —logu,

ho(z) = 4du

-1 — — .
P LS + 1002 + 1 — 2R(Co0))2 + (v — vo + 23(0))2

In order to define the spine, we need the following notions:
e Denote by P the set of fixed points by all parabolic subgroups of I'.

o For p € P, we define

X, = {z € HE| hy(2) < hy(2) for every g € P\{p}}.

e In general, for a subset J C P,

B(J) = {z¢€ H%] hyp(z) = hy(z) for every pair p,q € J},
X(j) - ﬂ Xp7
peJ
X'(J) = X\ U X7
J2T7

We call the set X'(J) a degenerate tile.
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FIGURE 6.1: Spine for SL2(Z).

Remark 6.1.5. e« When P contains only a conjugacy class of parabolic fixed points,
then X, reduces to the Ford domain with respect to p.

o When J = {p,q} is of order 2, then X(J) = B(J) is the bisector between p and
q. In this case, we can think of it by using Busemann function instead of Bergman

metric in (2.1)).

Definition 6.1.6. A subset J C P is called admissible if X(J) is non-empty, and
strongly admissible if X'(J) is non-empty.

Proposition 6.1.7. [Yas06] Let . denote the collection of strongly admissible subsets of
P. Then the symmetric space X has a I'-invariant degenerate tiling

x= I X(9)

Jes
such that v - X'(J)=X'(v-J) forally €T and J € 7.

The following definition enables us to give a spine for I', which is proved in [Yas06] as
the main result.

Definition 6.1.8. ([Yas06]) We define a I'-invariant subset Xo C X by

Xo= [ X'(7).
e

Note that Xo = X\ U X'({p}). In the special case of one cusp (only one conjugacy
peEP
class of parabolic fixed points), the spine has a simple description which is the union of

I'-images of the boundary of the Ford domain. For example, for G = SLy(R), I' = SL2(Z),
a spine is the familiar infinite trivalent tree in upper half plane (Figure .

6.1.2 Connection with fundamental domain

As shown in [Yas06], the construction of the spine also gives a way to construct an exact
fundamental domain for I'. We investigate, on the contrary, the spine coming from the
fundamental domain of T
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Example 6.1.9. For G = SLy(R) and I' = SLy(Z) is a lattice of G acting on the upper
half plane $). Then a fundamental domain for I' is a familiar ideal geodesic triangle at the

vertices 0o, €™/3, ¢i27/3 with the side pairing maps

1
z———, z—z+1
z

We define

ap = {e":7m/3<t<2n/3},

ar = {e":7m/2<t<2m/3).

[NIE

It is immediately that a1 = a1/(z — —1) and a; can be regarded as the vertical geodesic
2

retraction of fundamental domain. Obviously, the spine for SLy(Z) is the union of the
I'-images of a1, and the arc a1 is a fundamental domain for I' in the spine.
2 2

Motivated by the example of SLs(R), it allows us to give the following lemma.

Lemma 6.1.10. Let " be a lattice of SU(2,1) with class number one. Suppose that a
fundamental domain D of T is a geodesic cone based on connected compact set Dy, then
a spine for I' comes from the union of the I'-images of Dy. In particular, a fundamental
domain for I' in the spine is contained in Dy.

Proof. In the Siegel domain model of H%, we define Ap, to be the vertical geodesic
projection along the u-coordinate onto Dy in D. Denote by

XO = U ’)/-Do.
yerl’

It suffices to show X is a I'-equivariant deformation retract of H(Qc.
For z € H(zc, there exist a point zp € D and 7, € I' such that 7, - zp = 2. Define a
family of maps g, : H(% — H(% by

gt(z) = - [(1 = t)zp + tAp, o zp].

It is clear that go = id and g1 (H%) C Xo. For any v € I' and 2’ = v - z, then v, = v - 7,.
It follows that

v g1(2) = ge(v - 2).

This ¢ gives a I-equivariant deformation retract of HA onto Xj. O

Remark 6.1.11. For I' = SU(2,1;ZJ[i]), a fundamental domain of I" constructed in
[EFP10] consists of three compact sides (the core side and two pyramids) with the side
pairings Iy and S. Lemma [6.1.10] enables us to give a fundamental domain for I' in the
spine, which is made up of two 3-cells — a pyramid and half of the core side. This is similar
to Yasaki’s constructions of two conjugacy classes X, Y of 3-cells [Yas08]. For more details
about these two constructions, we refer to the end of Section 8 in [FFP10].

Eisenstein-Picard modular surface and its sister

For the time being, we recall that the Eisenstein-Picard modular group and its sister are
denoted by G and G respectively as in [Par98].
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b3 23

P2

P1

P3

b1
p2

(a)F:G1 (b)F:GQ

FIGURE 6.2: A fundamental domain for I" in the spine.

e For I' = G;.

Falbel and Parker [FP06] constructed a fundamental domain for the action of Gy
on H2, which is a 4-simplex with one ideal vertex. Following their notations, G is

generated by the side pairing maps R, P and @, where w = (—1 +4/3)/2 is a cube
root of unity and

0 0 1 1 1 w 1 1 w
R=|0 -1 0|,P=|01 —w|,Q=10 -1 1
1 0 0 0 0 1 0O 0 1

Lemma [6.1.10] enables us to give a fundamental domain for G in the spine, which
is a tetrahedron (see Figure a)). The action on the vertices is given by

P P
pP1 —> P2 — D3,

P—l

Q
(Po;p1,p3) — (Po,P2,P3),

R
(po,p1,p2) — (Po, P1,P2)-

e For I' = Go.

A fundamental domain of G5 constructed in Chapter 3 is a geodesic cone to infinity
over a prism. This prism consists of two compact sides with side pairing map I;.
Recall that G4 is generated by R,S,T and Iy, refer to the matrices in Section 3.2.
(Here the capital R is not the same representative matrix as the one of Gy).

One compact side, which is a wedge (see Figure[6.2(b)), gives a fundamental domain

for G2 in the spine by Lemma [6.1.10, We repeat the action of side pairing maps on
the vertices:
sl I7'S
P2 — P3 — P4,

I
(p1,p2,p1,p5) — (5, Pa, D3, 1),
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TABLE 6.1: Representative cells and their stabilizers for G

Cell Dimension Stabilizer Generators
T 3 trivial (id)
DNo12 2 7.)27. (R)
No13 2 trivial (id)
JANE! 2 trivial (id)
€03 1 Z]6Z (PQ1)
€01 1 7)27 (R)
€12 1 7]27 (R)
Po 0 Z/67 x 7|27 (PQ71, R)
D1 0 Group £72 (PQ™'P,R)
TABLE 6.2: Representative cells and their stabilizers for G
Cell Dimension Stabilizer Generators
w 3 trivial (1d)
D245 2 trivial (id)
ANDY) 2 trivial <ld>
Nozy 2 Z/?)Z <S_111>
€15 1 Z7/6Z (R)
€12 1 Z/3Z (T'I)
€23 1 727 (T—'n)
1 0 7.)67 x 7.]3Z (R, T71I)
D2 0 Group #24 (RTS8, T7'I
R
(p51p17p2) — (p51p17p3)7
T
— (p5ap4)-
Notation. e Let T denote a tetrahedron with vertices pg, p1, p2, p3 and W denote a

wedge with vertices p1, pa, p3, p4, ps; see Figure

e Let O;;; denote a quadrangle where the label is corresponding to its vertices.

e Let Ajj;, denote a triangle where the label is corresponding to its vertices.

o Let ¢;; denote an edge with endpoints p; and p;.

For i = 0,1,2,3, we consider all the I'-conjugacy classes of i-dimensional cells of Xj.
For each I'-conjugacy class, we fix a representative and compute the stabilizer. The results

are given in Tables [6.1] and

6.1.3 Cohomology computation from the cell structure

In the previous section, we obtain the cell structure of fundamental domain for I" in the
spine, which allows us to compute the cohomology of H(QC /T with local coefficients. The

main reference for this section is [Yas0§].
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Orbifolds

We briefly review the basic definitions concerning orbifolds, or V-manifolds in the termi-
nology of Satake (see [Sat56l [Sat57]). Let © be a Hausdorff topological space.

 An orbifold chart on ) is given by a connected open subset U C R” for ‘some integer
n > 0, a finite group Iz of C*°-automorphisms of U, and a map ¢ : U — M such
that ¢ is I'y -invariant (¢ o g = ¢ for all g € I';) which induces a homeomorphism

of ﬁ/Fﬁ onto a open subset U = ¢(U) C M;

e An embedding A : (ﬁ', Fﬁ,gp) — (‘7,1“7,1/)) between two charts is a smooth em-

bedding A : U < V such that for any v € I'y, there exists a v € I';; such that
Aoy=+"oXand ¥ o\ = y;

e An orbifold atlas on Q is a family U = {(U, I's,¢)} of such charts, which cover
and are locally compatible in the following sense: given any two charts (U T, ®)
for U =¢(U) C M and (V, I, ) for V= ¢(V) € M, and a point z = UNV, there
exists an open neighborhood W C U NV of z and a chart (W, [ ¢) for W such
that there are embeddings (W,Fﬁ/, ®) — (U,Fﬁ7 v) and (W’FVT/’ ¢) = (V, Iy, ).

Definition 6.1.12. An orbifold (of dimension n) is such a space Q with an equivalence
class of atlases U. Two such atlases are said to be equivalent if they have a common
refinement.

Local system over I'\ X

Since T acts properly discontinuously on X, I'\ X has a canonical structure of an orbifold.
Let m denote the projection X — I'\X. Since Xy is a spine, there exists a I'-equivariant
deformation retract g : X — X, which induces a deformation retract g : '\ X — I'\ Xp.
Then it is naturally that a projection my = 7|x, : Xo — I'\ Xo.

Let E be a Imodule with I-action given by p : I' — GL(E). We define the I'-
equivariant presheaf & on I'\X. For every open set U C M,

En(U) = {f: 771 (U) = B |f(v-2) = p(1) (@), ¥y €T,z € x~1(U) .

Let E denote the sheafification of &r. We call E the sheaf associated to the local system
on I'\X defined by (E,p). We will extend this terminology to I'\ X, where the sheaf
associated to the local system defined by (F, p) is denoted by Eo.

Considier a family of open sets & = {U;} in an orbifold atlas on I'\ X, we define the
cohomology of I'\ X with local coefficients as follows.

o COWUGE) ={a° | af = |y, € & (Uy)}

. Cq(U;E) = {Oéq ’ o = ao‘UiomUil'”mUiq S SF(Uio NU; -+ N Uiq)}

i0i1-iq
o The differential operator d is defined by

q+1
o . ) — (_1)\J q
d-o aﬁoﬂlbl ﬂlﬁqﬂlhﬁd)_( 1) ,Oamhm%mwﬂ'
]:
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Then the sequence
0 C'UE) 4 O UsE) & CPUE) S -
is exact and the cohomology of T'\ X is defined by

Ker(d)

H*(T\X;E) = T

To this end, we recall without proof a result which compares the cohomology of the
whole space and its deformation retract (also see a proof in [Yas08g]).

Theorem 6.1.13. [Yas08] H*(IT'\X; E) = H*(I'\ Xo; Ep).

This theorem enables us to compute the cohomology of I'\ X from the structure of its
spine.

Cohomology of regular cell complex

Definition 6.1.14. A finite regular cell complex is a finite CW complex where the
attaching map from each closed cell into the complex is a homeomorphism onto its image.

Definition 6.1.15. For a finite reqular cell complex C, the face poset of C' is the set of
closed cells with the partial ordering derived from containment. Given a face poset (P, <),
the order complex of P is the simplicial complexr whose vertices are the elements of P
and the k-simplices of P are (k+ 1)-flags po < p1 < -+ < px with p; € P.

Let F denote the order complex of the face poset of Xy and F* denote the set of
k-simplices of F. We can take, up to normalization, a I'-equivariant homeomorphism
® : F — Xy satisfying

o O(y-z)=~ -P(x) forallye'and x € F.
o O(og <oy <+ <o) Coy forall g <oy <--- < oy ordered simplices of F.

Let U denote the open cover of F consisting of open star neighborhoods of each vertex
in F. Using the I'-equivariant homeomorphism ®, we get an open cover g = ®(Lxr) of
Xy so that there is an open set U, € g for each cell o. For each p, denote R, a set of
representatives of I'-conjugacy classes of p-cells of X. Let [0] denote the representative
of the conjugacy class of o.

Cech cohomology H *(Up; Ep) is defined by the cochain complex and codifferential as
follows:

C'8o;Eo) = P Eo(Upy)

[c]eR0
= @ {f:m'Up) = Bl f(y-2) = p(Mf(@), ¥y €T, €75 (U) }
[U]ERQ
= {f:F' > E|f(y-F)=p(y)f(F), VyeT,FeF}
C*MUo;Eo) ={f : F* - E| f(y- F) = p(0)f(F), VyeTl,FeF'}.
For f € CF(Up; Ey), df € CFH1(LUy; Ep) is given by

k+1

df(U() <0 < Uk+1) = Z(—l)if<0'0 <Ko << Jk+1).
=0
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Proposition 6.1.16. [Yas0)] Let Ey be the sheaf associated to the local system on M\ Xo
defined by (E, p) and LUy be defined as above. Then H*(T'\ Xo;Eo)=H"(o; Ep).

Proposition gives the computation of the cohomology of I'\ Xy with local co-
efficients from the Cech cohomology for the cover $ly. An implementation of method
for computing the cohomology is given in Theorem It is useful to introduce the
following notions for computation.

We define Top : F — X to be the map which sends a flag og < --- < 0} to 0. For a
cell ¢ € Xy, let F, = Top (o), which is the set of maximal flags terminating at . For
each representative [o], we fix a distinguished maximal flag of cells Fi,) = 09 < 01 <--- <
op where oy, is an k-cell and o, = [0]. For each ¢ € X, there exists a unique simplex
F that is I'-conjugate to Fj,). In other words, there is a unique element 7, € I', up to
Stabr(c), such that

Yo - Flo) = Fo.

For each fixed p-cell, let S, denote the simplicial complex arising from the face poset of
cells in o. More precisely, the vertices of S, are the cells contained in ¢ and the k-simplices
are the (k + 1)-flags 0p < 01 < -+ < 0.

Proposition 6.1.17. [Yas0j] Let o be a p-cell and S, the corresponding complex defined
above. Choose an orientation of S,. Then there exists a map

ne @ {p-simplices of Sy} — {£1}

such that 0S, = 3. nys(F)OF. Furthermore, if F' and H intersect in a (p—1)-face, then
Fes?
ne(F) = —ny(H).

After fixing the distinguished maximal flag {Fj,} for each p-cell o € R, we define
a function sgn, : 9o — {£1}. Choose the orientation of S, so that the map n,(Fj,) =
(—1)P. Then for 7 € do, we define

sgn, (7) = ne(Fr < o).

For convenience, we explain how to determine the sgn, from an intuitive point of view,
see Figure [6.3]

We now ready to give the main theorem for computing the cohomology from the cell
structure.

Theorem 6.1.18. ([Yas08/) The cohomology H*(I'\ Xo;Eo) can be computed from the
complex

0 — @ EStabp(J) N @ Estabr‘(O') SN @EStabp(U) =0
g€Ro ocER, gER
where the differential
5 @ EStabp(a) N @ EStabp(O')

o€Rp—1 oERp

s given by

(60)g = D sen,(7)p(Yr )V}

TEDT
Here v, sgn, and [] defined above and the vector v|;) is the [T]-component of the vector

ve P EStabr (o)
O'E'Rpf 1
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o
1/&,

/U2 - >
U1

(% 9

(a) 1-cell

U1

el €3

(b) 2-cell

(c) 3-cell

FIGURE 6.3: The simplicial complex S, arising from the cell o.
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TABLE 6.3: Distinguished maximal flags

3-cells

2-cells 1-cells 0-cells

T > Agi2 > eo1 > po | Dotz > eo1 > Do | €03 > Po Po

Ao13 > €o1 > Do | €01 > Po D1
A3 > e12 > p1 | e12 > p1

TABLE 6.4: T Data

o€ dT F, Yo sgn(o)
No12 | Do12 > eo1 > po id -1
Aoz | Doz > eo1 > po id +1
Nozg | Dozg > ez >po | QP71 —1
A3 | D123 > e12 > p1 id +1

6.2 The cohomology of H% /G

As an application of Theorem [6.1.18] we choose the distinguished maximal flags given in
Table With this choice of distinguished flags, we compute ~,, F,; and sgn, for each
cell given in Tables [6.4] — [6.7 Combining with Table Theorem enables us to
give the following theorem.

Theorem 6.2.1. Let E be a G1-module with the action of G1 given by p1 : G1 — GL(E).
Then H*(HZ%/G1;E) can be computed from the following cochain complex.

where
@0
@l
@2
@3

0% ¢ 5€? ¢ =0.

BP0 () (y (PO ) (),
E(PR™Y) @Em(R) @ g (®),

e BEPE,

E.

Then (\;) € €°, (wi) € €1, (v;) € €2, the differentials are given by

55"

(A

o (w)

X1 + p1(P?) A
= A1+ X ;
(P(QP™1) = 1)Ag

(1= p1(QP Mpa + pa
= —p 4 p2 + 1 (PQ ' Plus |,
| (1= p1(PQP™Y) + p1(P))pu3

= { —+ (1= p1(QP )2+ 3 ] :

Consider the trivial representation £ = Z, then the cohomology of H(% /G1 with Z-
coefficients is isomorphic to the singular cohomology of H%/G;. Theorem enables
us to compute explicitly the cohomology from the chain complex

022722770



6.3. The cohomology of HZ/G+ 151

TABLE 6.5: Agi2 and Agi3 Data

o € 012 F, Yo sgn(o) || o € 0Ap13 F, Yo sgn(o)
€01 €01 > Po id +1 €01 €o1 > Po id +1
€02 o2 >po | QP! -1 €03 €03 > Po id -1
e12 e12 > p1 id +1 e12 eis>p1 | PQTIP | +1

TABLE 6.6: Ai23 Data

o € 0N\123 F, Yo sgn(o)
€12 e12 > p1 id +1
€13 e13 >p1 | PQP™! -1
€23 €923 > P2 P +1

with the differentials given by

—1 1 0 01
=1 1], =111, =[-10 1]
0 0 0 01

Theorem 6.2.2. Let Z denote the constant sheaf of integers on H%/Gl. Then

A 7, i=0
Hi(HE/Gy; Z) = { Ny

6.3 The cohomology of H% /G5
Analogue to Theorem Theorem follows from all the data for representatives of
cells, distinguished flags, 7., F,, and sgn, in Table and Tables —

Theorem 6.3.1. Let E be a Ga-module with the action of Ga given by ps : Go — GL(E).
Then H*(HZ/G2;E) can be computed from the following cochain complex.

0= =€ = %* =€ —0.
where
¢ —  ple(R)p(T"'N)) @E (p2(R™18),p2(T~ 1))
¢l — prR @Em(T 'n) EBEM 1I1
¢* = EQPE@E=ET),

¢ = E.

TABLE 6.7: ep3, €01 and ez Data

o €deps | Vo | sgn(o) || o € depr | Yo | sgn(o) || o € ders Yo sgn(o)
Po id -1 Po id —1 P1 id -1
P3 P2 +1 1 id | +1 P2 QP ' | +1
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TABLE 6.8: Distinguished maximal flags

3-cells 2-cells 1-cells | O-cells
W > Ojo45 > €12 > p1 | Oiog5 > €12 >p1 | €15 > p1 D1
A1z > e12>p1 | €12 > p1 D2
Na3q > €93 > pa | €23 > po

TABLE 6.9: W Data

o€ O0W F, Yo | segn(o)
Oi245 | H1245 > €12 > p1 | id -1
Oi345 | H1sas > €45 > ps | 1 -1
A123 A3 > e >pr1 | id +1
AGEY! No3y > e93 > po | id -1

Then (a;) € 6°,(B;) € €1, (k;) € €2, the differentials are given by

) (p2(T) = 1)eny
5 (a) = —on + as ,
| (p2(S7' ) = Daw

[ —B1+ (1 — p2(T)) B2 — p2(I79) B3

57 (8) = (1 - pa(R))B2 + B ,
| (L p2(STHL) + p2(I719))Bs
0P (k) = [ —(1+pa(l))kr + 2 — kg |-

Similarly, T heoremm gives us to explicitly compute the cohomology H*(HZ/Go;Z)
from the chain complex
07227 —>73=7Z—0

with the differentials given by

0 10 -1
=1 1], =0 0 1|, &=[-21 1]
0 0 0 0 3

Theorem 6.3.2. Let Z denote the constant sheaf of integers on H%/Go. Then

Z, i=0,2

Hi(H%/G%Z):{ 0. i=1ori>3.

TABLE 6.10: 01245 Data

g c 051245 Fg Yo SgH(O')
€19 e12 > p1 id +1
€94 €24 > P4 Il_lS -1
€45 ess >ps | T -1
el els > p1 id -1
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TABLE 6.11: Ais3 and Qs34 Data
o € 0193 F, Yo | sgn(o) || o € 0 a3 F, Yo sgn(o)
€12 el2 >py | id +1 €23 €23 > P2 id +1
€93 eo3 > py | id +1 €34 €34 > P3 Sflfl +1
€13 e;s>p1 | R —1 €94 €24 > P4 IflS +1
TABLE 6.12: €15, €12 and e23 Data
o€des | Vo | sgn(o) || o € dera | Vo | sgu(o) || o € deas Yo sgn(o)
P1 id —1 P1 id -1 P2 id -1
D5 T +1 D2 id +1 p3 5_1[1 +1

Proof. We only compute the 2-dimensional cohomology H?*(HZ/G2) . The others are
casier. It suffices to show H%(HZ/G2) = Ker(éf))/lm(égz)) is isomorphic to Z. Note that

Ker(6)) = {(k1, k2, k3) € 3| kg = 2k1 + r3} = {(k1, k3) € Z2}

and
(6% = {(k1, ka2, k3) € Z3| K3 = 3ra} = {(k1, k3) € Z| 3k1 + kg = O}

Consider a homomorphism

72 % 7

(Iil,lig) — 3/€1+I€3,

then ¢ is surjective implies that

Ker(3$)/Im(6?) = 72 /Ker(¢) = Z.
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