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Résumé

Dans cette thèse, nous nous intéressons à l’étude des géométries des réseaux dans PU(2, 1),
en d’autres termes, construction des domaines fondamentaux de ces réseaux pour leur ac-
tion dans l’espace hyperbolique complexe. Dans le troisième chapitre, nous construisons
un domaine fondamental pour la sœur du groupe modulaire d’Eisenstein-Picard et cal-
culatons le volume de son orbifold de quotient par la fomula de Gauss-Bonnet. Dans
le quatrième chapitre nous donnons les generateurs des groupes modulaires euclidiens de
Picard PU(2, 1;Od) où d = 2, 7, 11. De plus, domaines fondamentaux des stabilisateurs
de l’infini sont obtenu ainsi que de leurs présentations. Dans le cinquième chapitre nous
donnons une nouvelle construction des domaines fondamentaux pour certains groupes de
Mostow, qui sont engendrés par trois réflexions complexe d’ordre 3. Ces domaines sont une
généralisation naturelle du domaine de la sœur du groupe modulaire d’Eisenstein-Picard.
Comme application, nous calculons la cohomologie de la surface d’Eisenstein-Picard et sa
soeur à coefficients locaux dans le dernier chapitre.

Mots-clefs

Réseaux · Space hyperbolique complexe · Domaine fondamental · Bisecteur · Groupes modulaires
de Picard · Groupes de Mostow · Cohomologie · Coefficients locaux

Geometry of complex hyperbolic lattices

Abstract

This thesis concerns the study of the geometry of lattices in PU(2, 1), in other words, con-
struction of fundamental domains for these lattices for their action in complex hyperbolic
space. In the third chapter we construct a fundamental domain for the sister of Eisenstein-
Picard modular group and compute the volume of its quotient orbifold by Gauss-Bonnet
fomula. In the fourth chapter we give the generators of the Euclidean Picard modular
groups PU(2, 1;Od) where d = 2, , 7, 11. Furthermore, fundamental domains of their sta-
bilizers of the infinity are obtained as well as their presentations. In the fifth chapter we
give a new construction of fundamental domains for certain Mostow groups, that are gen-
erated by three braiding complex reflections of order 3. These fundamental domains are
a natural generalization of the domain for the sister of Eisenstein-Picard modular group.
As an application, we compute the cohomology of Eisenstein-Picard modular surface and
its sister with local coefficients in the last chapter.

Keywords

Lattices · Complex hyperbolic space · Fundamental domain · Bisector · Picard modular groups ·
Mostow groups · Cohomology · Local coefficients
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0.1 Introduction en français

Cette thèse consiste en l’étude de la géométrie de certains réseaux de PU(2, 1), à travers
leur action sur l’espace hyperbolique complexe.

Un réseau dans un groupe topologique localement compact G muni de la mesure de
Haar est un sous-groupe discret Γ de G tel que le quotient Γ\G soit de volume fini.
Nous nous intéressons en particulier au cas où le groupe de Lie associé est le groupe des
isométries holomorphes de l’espace hyperbolique complexe H2

C, et un réseau hyperbolique
complexe est un sous-groupe discret Γ de PU(2, 1) tel que le volume du quotient H2

C/Γ
est fini pour la métrique de Bergman.

• Un réseau est dit uniforme ou cocompact si le quotient H2
C/Γ est compact, c’est-à-

dire, s’il existe un domaine fondamental compact de Γ, et est appelé non-uniforme
ou de covolume infinite sinon.

• Un réseau Γ ⊂ G est réductible si G admet sous-groupes normaux connexes H,H ′
tel que HH ′ = G, H ∩H ′ est discret et Γ/(Γ ∩H) · (Γ ∩H ′) est fini. Un réseau est
irréductible s’il n’est pas réductible. En outre, l’irréductibilité est équivalente à la
condition que pour tout sous-groupe normal connexe H ⊂ G et π : G→ G/H est la
projection naturelle, π(Γ) est dense.

• Deux sous-groupes H1 et H2 d’un groupe sont commensurables si leur intersection
H1 ∩ H2 est d’indice fini dans H1 et H2. Soit G ⊂ GLn(K) un groupe algébrique
linéaire défini sur un corps de nombres K. Un sous-groupe Γ ⊂ G(K) est dit arith-
métique s’il est commensurable avec G(O), où O est l’anneau des entiers de K.

Les réseaux des espaces symétriques de rang un ont été étudiés depuis longtemps avec
des résultats importants de rigidité et d’arithméticité. Un problème fondamental dans
l’étude des espaces symétriques est la relation entre groupes arithmétiques et réseaux. En
général, Borel et Harish-Chandra [BHC62] ont pouvé que dans tout espace symétrique
de type non-compact, les groupes arithmétiques sont des réseaux. En revanche, Margulis
[Mar84] a montré que lorsque le rang de l’espace symétrique est au moins deux, tous les
réseaux irréductibles sont arithmétiques.

Des progrès ont été faits pour les espaces symétriques de rang un de type non-compact,
par exemple, les espaces symétriques suivants :

Hn
R Hn

C Hn
H Hn

O

lesquels sont les espaces hyperboliques respectivement réel, complexe et quaternionique de
dimension n ainsi que le plan hyperbolique sur les octonions de Cayley (voir le chapitre 19
du livre [Mos83]). Dans ces cas, Corlette [Cor92] et Gromov et Schoen [GS92] ont montré
que dans Hn

H pour n ≥ 2 et dans H2
O tous les réseaux sont arithmétiques. En plus, Gromov

et Piatetski-Shapiro [GPS87] ont donné des exemples des réseaux non-arithmétiques deHn
R

pour tout n ≥ 2. L’existence de réseaux non-arithmétiques dans la géométrie hyperbolique
complexe n’a pas été démontrée complètement. Plus précisément, Mostow [Mos80] a
construit une famille de réseaux non-arithmétiques dans le plan hyperbolique complexe
H2

C dont nous parlerons ci-dessous. Deligne et Mostow [DM86] ont trouvé un réseau non-
arithmétique deH3

C. La question de savoir s’il existe des réseaux non-arithmétiques deHn
C

avec n ≥ 4 est encore ouverte. Il s’agit peut-être de la question ouverte le puls importante
du domaine.
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Il existe quatre méthodes de construction de réseaux dans l’espace hyperbolique com-
plexe : les constructions arithmétiques, l’utilisation de différents espaces de modules, la
géométrie algébrique et la construction des domaines fondamentaux ; voir la papier [Par09]
pour l’étude préliminaire et ses références pour plus de détails. Nous nous intéressons en
particulier aux réseaux dans PU(2, 1) par la construction d’un domaine fondamental dans
H2

C. En d’autres termes, il faut trouver un ensemble ouvert connexe D ∈ H2
C tel que

D ∩ γ(D) = ∅ pour tout γ ∈ Γ− {Id} et ⋃γ∈Γ γ(D) = H2
C, où D est la clôture de D dans

H2
C. Une difficulté de cette construction est qu’il n’existe pas d’hypersurfaces réelles to-

talement géodésiques en géométrie hyperbolique complexe, et en particulier pas de notions
naturelles de polyèdres.

Une méthode simple de la construction de domaines fondamentaux est de construire le
domaine de Dirichlet centré en un point p0 ∈ Hn

C. Le domaine de Dirichlet est l’ensemble
des points deHn

C qui sont plus proches de p0 que de tout autre point dans la Γ-orbite de p0.
C’est-à-dire, l’objet principal dans cette construction est l’ensemble des points équidistants
à deux points donnés, qu’on l’appele un bissecteur. Le premier exemple de domaine de
Dirichlet hyperbolique complexe est attribué à Giraud [Gir21] ; voir également l’annexe A
de Goldman [Gol99]. Une généralisation naturelle du domaine de Dirichlet est le domaine
de Ford, voir la section 9.3 de [Gol99]. Ici le point z0 se trouve sur ∂Hn

C et la distance
est remplacée par une fonction de Busemann centrée en z0. Les courbes de niveau d’une
fonction de Busemann sont les horosphères. Les faces du domaine de Ford sont contenues
dans des bissecteurs appelés sphères isométriques par rapport à la métrique de Cygan, une
métrique naturelle sur le groupe de Heisenberg. Comme le stabilisateur de z0 est infini, on
peut obtenir un domaine fondamental en considérant l’intersection du domaine de Ford
avec un domaine fondamental du stabilisateur.

Typiquement, un domaine fondamental est un polyèdre localement fini D muni d’une
structure combinatoire. Les faces de codimension 1 de D, appelées faces, peuvent être
parmi une grande variété d’hypersurfaces réelles (par exemple des bissecteurs, C-sphères
et R-sphères), mais il doit exister des isométries d’appariement: chaque face doit être
envoyée bijectivement sur une face (peut-être lui-même) par une isométrie d’appariement
dans PU(2, 1). Le théorème du polyèdre de Poincaré donne les conditions permettant
d’affirmer que le groupe engendré par les isométries d’appariement est discret, que D
est un domaine fondamental et on obtient une présentation de ce groupe. Une autre
conséquence du théorème de Poincaré, est qu’on peut obtenir la caractéristique d’Euler de
l’orbifold et ainsi de calculer le volume par la version hyperbolique complexe du théorème
de Gauss-Bonnet. Nous donnons quelques exemples de domaines fondamentaux explicites
qui ont été construits pour des réseaux de PU(2, 1).

• L’un des réseaux arithmétiques les plus simples de PU(2, 1) est le groupe modu-
laire d’Eisenstein-Picard PU(2, 1,Z[ω]) comprenant des matrices dont les entrées
sont toutes dans les coefficients d’Eisenstein Z[ω] où ω est une racine cubique de
l’unité. C’est l’un des premiers exemples de Picard [Pic83] dans PU(2, 1) et c’est
la généralisation naturelle du groupe modulaire classique PSL(2,Z) dans PSL(2,R).
En fait, Picard [Pic83, Pic84] construit une famille de réseaux arithmétiques notés
PU(2, 1;Od), ce qu’on appelle groupes modulaires de Picard, où Od est l’anneau des
entiers dans le corps de nombres quadratique imaginaire Q(i

√
d). La géométrie du

groupe PU(2, 1,Z[ω]) a été étudiée par Falbel et Parker dans [FP06]. En d’autres
termes, ils ont construit un domaine fondamental muni de la structure combinatoire
la plus simple possible. Ce domaine est un 4-simplexe, qui est un cône géodésique
construit à partir d’un 3-simplexe avec un sommet idéal (le point fixé parabolique).
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Cette construction est tout à fait analogue au 2-simplexe avec un sommet idéal qui
est le domaine fondamental pour le groupe modulaire classique PSL(2,Z) dans le
plan hyperbolique H1

C.

• Un autre groupe modulaire de Picard est appelé groupe modulaire de Gauss-Picard
dont l’anneau associé est Z[i], noté PU(2, 1;Z[i]). Francsics et Lax ont décrit dans
[FL05, FLa05] un domaine fondamental pour ce groupe. Leur domaine fondamental
est seulement semi-explicite et ne comprend pas l’analyse de la combinatoire. Plus
récemment, Falbel, Francsics, Lax et Parker [FFP10, FFLP11] en construisent un
domaine fondamental à partir du domaine de Ford, qui est analogue au cas de
PU(2, 1,Z[ω]). Il peut être obtenu par l’intersection du domaine de Ford avec un
domaine fondamental pour le stabilisateur. La différence est principalement due au
fait qu’il y a trois arêtes compactes qui sont contenues dans trois sphères isométrique
respectivement.

• Dans son célèbre article [Mos80], Mostow a étudié de nouveaux exemples de sous-
groupes de PU(2, 1) engendrés par trois réflexions complexes d’ordre p (p = 3, 4, 5)
et a montré que ces sont des réseaux hyperboliques complexes en construisant des do-
maines fondamentaux de Dirichlet. Toutes les faces de codimension 1 sont contenues
dans des bissecteurs. Comme nous l’avons mentionné, l’absence d’hypersurfaces
réelles totalement géodésiques donne lieu à la difficulté de comprendre l’intersection
de deux bissecteurs. Il y a eu quelques erreurs mineures dans la construction de
Mostow, voir [Der05]. Une autre de construction des domaines fondamentaux pour
les mêmes groupes a été proposée par Deraux, Falbel et Paupert [DFP05].

• Ron Livné dans sa thèse [Liv81] a construit une famille de réseaux dans PU(2, 1) par
utilisant des techniques issues de la géométrie algébrique. Parker [Par06] a utilisé
la méthode de Thurston pour donner une construction géométrique des réseaux de
Livné. Plus précisément, il a construit un polyèdre fondamental pour les groupes
de Livné, chaque arête de laquelle est contenue dans un bissecteur. Un lien entre
les groupes de Livné et le groupe modulaire d’Eisenstein-Picard provient de la de-
scription du domaine fondamental. Le polyèdre fondamental dans [Par06] est un
cône géodésique obtenu à partir d’un tétraèdre vers un triangle géodésique sur une
droite complexe. Si cette droite complexe dégénère en un sommet idéal, les groupes
de Livné devient le groupe modulaire d’Eisenstein-Picard. En d’autres termes, cette
configuration limite correspond à un domaine fondamental pour le groupe modulaire
d’Eisenstein-Picard qui est différente de celle de [FP06]. Plus récemment, Boadi dans
sa thèse [Bo11] a utilisé la même approche que pour les groupes de Livné pour con-
struire des domaines fondamentaux pour les groupes de Mostow du premier type
mentionné dans [Par09]. Le domaine fondamental, dans la construction de Boadi,
est composé de deux simplexes en dimension 4 recollés sur la face commune en
dimension 3.

• D’autres exemples viennent de représentations de groupes triangulaires hyperboliques
dans PU(2, 1). Par convention, nous adoptons les notations suivantes pour ces
réseaux. Soit (p, q, r) un groupe triangulaire hyperbolique avec 1/p+ 1/q + 1/r < 1,
défini comme étant le groupe de Coxeter avec la présentation,〈

a1, a2, a3| a2
1, a

2
2, a

2
3, (a2a3)p, (a3a1)q, (a1a2)r

〉
.

Nous pouvons considèrer une famille de représentations ρt : (p, q, r) → PU(2, 1).
Nous définissons Γ(p, q, r;n) comme l’image d’une représentation non-fidèle ρt(p, q, r)
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où ρt(a1a3a2a3) est un élément elliptique d’ordre n. Deraux montre dans [Der06]
que le groupe Γ(4, 4, 4; 5) est un réseau cocompact de PU(2, 1). Parker et Thompson
[PT10] ont construit un domaine fondamental pour le réseau de Deraux et ont donné
la présentation 〈

a1, a2, a3| a2
i , (aiaj)4, (aiajak)10, (aiajakaj)5

〉
.

De plus, Thompson dans sa thèse [Tho10] a découvert deux nouveaux réseaux dé-
formés du groupe trianglaire hyperbolique, Γ(3, 3, 4; 7) et Γ(3, 3, 5; 5). Il a construit
conjecturalement leur domaines fondamentaux. La même construction des domaines
fondamentaux pourrait être effectuée pour tout Γ(p, q, r;n) où a1a2a3 est un élément
elliptique régulier d’ordre fini. Plus explicitement, le domaine fondamental consiste
en un cône de dimension 4 sur une région de dimension 3 connexe bornée de H2

C
avec un point cône (le point fixé de a1a2a3).

Soit X = G/K un espace symétrique de type non compact, où G est le groupe des
points réels d’un groupe algébrique semi-simple G défini sur Q. Soit Γ ⊂ G un réseau
arithmétique et (E, ρ) un Γ-module. Comme l’espace localement symétrique Γ\X est un
K(Γ, 1), le groupe de cohomologie Γ est isomorphe à la cohomologie de l’espace localement
symétrique, c.-à-d.

H∗(Γ, E) ∼= H∗(Γ\X;E),

où E désigne le faisceau associé au système local sur (le variété ou l’orbifold) Γ\X défini
par (E, ρ). Une épine est un déformation rétracte Γ-équivariante X0 ⊂ X telle que Γ\X0
est compact s’il existe. Des exemples d’épines explicites ont été construits pour quelques
Γ. Par exemple, Soulé dans [Sou78] a trouvé une épine pour SL3(Z) et le cas des groupes
euclidiens de Bianchi SL2(Od) (où d = 1, 2, 3, 7, 11) a été traité par Mendoza dans [Men79].
Plus généralement, Ash [As77, As84] a utilisé la méthode de well-rounded retract pour
construire une épine pour tous les espaces symétriques linéaires. Cette méthode peux être
appliquée pour les groupes algébriques où les points réels sont isomorphes à un produit
des groupes suivants [FK94] :

• GLn(R) ;

• GLn(C) ;

• GLn(H) ;

• O(1, n− 1)× R× ;

• Le groupe de Lie noncompact d’algèbre de Lie e6(−26) ⊕ R.

Pour quelques exemples en petite dimension, la cohomologie a été calculée combinatoire-
ment à partir de la structure cellulaire d’une épine dans [As80, Men79, Sou78, SV83].

Plus récemment, Yasaki a construit dans [Yas06] une rétraction sur une épine pour
groupes en Q-rang 1. Comme application, il a construit dans [Yas08] une épine explicite
pour Γ = SU(2, 1;Z[i]) et calcule la cohomologie de H2

C/Γ à coefficients locaux.

Plan de thèse

Le plan de cette thèse est le suivant. Les principaux résultats se répartissent en trois
grands chapitres, tous les trois indépendants, comportant chacun une introduction.
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Dans le premier chapitre nous rappelons les deux modèles du plan hyperbolique com-
plexe H2

C, les isométries hyperboliques complexes et leur classification. Trois types de
sous-variétés totalement géodésiques seront décrites. En plus, nous discutons de la projec-
tion orthogonale sur une géodésique complexe qui sera utilisée dans la thèse. Le domaine
de Siegel a la même structure que le modèle du demi-espace supérieur de l’espace hy-
perbolique réel. De plus, le bord s’identifie au compactifié en un point du groupe de
Heisenberg. Nous définissons la métrique de Cygan sur le groupe de Heisenberg et de la
sphère de Cygan. La référence générale pour ce chapitre est le livre de Goldman [Gol99]
ou Parker [Par10].

Nous passons en revue, dans le deuxième chapitre, la définition d’un bissecteur qui
est l’ensemble points à égales distances de deux points donnés. Un bissecteur est une
hypersurfaces analytiques réelles dans H2

C, ce qui est difféomorphe à R3. Ces hypersurfaces
jouissent de deux décompositions naturelles dans les sous-variétés totalement géodésiques
; voir[Mos80, Gol99]. Les sphères isométriques sont des exemples des bissecteurs. Nous
construisons des polyèdres dont les faces de codimension un peuvent être contenues dans
des bissecteurs ou sphères isométriques dans les chapitres suivants. Nous passons en revue
le théorème du polyèdre de Poincaré qui sera d’usage constant tout au long de la thèse.

Dans le troisième chapitre, nous construisons un domaine fondamental explicitement
pour un groupe (que nous appelons la sœur du groupe modulaire d’Eisenstein-Picard)
noté G2. Ce groupe a d’abord été défini par Parker dans [Par98], où il montre que les
surfaces modulaires d’Eisenstein-Picard et H2

C/G2 sont des candidats pour être l’orbifold
hyperbolique complexe avec cusp de volume minimal. Stover dans son article [Sto10] a
affirmé que ce sont précisément les deux orbifolds hyperboliques complexes de volume
minimal. Nous énonçons le résultat principal de ce chapitre :

Théorème 0.1.1. Il existe un domaine fondamental pour G2, qui est un cône géodésique
sur un prisme (voir la Figure 3.6) vers q∞, avec les isométries d’appariement I1, R, S et
T . Par conséquent, le groupe G2 engendré par I1, R, S, T est discret et a la présentation :

G2 =
〈
I1, R, S, T |

R6 = (R−1S)3 = [R, T ] = S2T−1

= (T−1I1)3 = (S−1I1)3 = R−1I2
1 = Id

〉
.

Ce troisième chapitre a été publié dans Mathematical Proceedings of Cambridge Philo-
sophical Society [Zh11].

Le quatrième chapitre est consacré à donner les générateurs des groupes modulaires de
Picard PU(2, 1;Od) où l’anneau d’entier Od est Euclidien, c’est à dire d = 1, 2, 3, 7, 11. En
particulier, le cas de O1 et O3 ont déja été étudiés dans de nombreux aspects. Par exemple,
le domaine fondamental explicite de ces deux groupes a été obtenu dans [FFP10, FP06].
Il y a peu de résultats pour les autres groupes modulaires de Picard. Chaque élément du
groupe modulaire de Gauss-Picard peut être décomposé en un produit des générateurs
par un algorithme simple [FFLP11]. Nous avons commencé par essayer de construire les
domaines fondamentaux pour ces groupes PU(2, 1;Od) d’après la méthode utilisée par
Falbel et Parker dans [FP06]. Cela a conduit à un domaine qui était trop complexe à
comprendre. Enfin, un résultat de construction de domaine fondamental nous permet
de donner les générateurs pour les groupes modulaires euclidiens de Picard de manière
géométrique. Nous énoncons plus précisément :

Théorème 0.1.2. Les groupes modulaires euclidiens de Picard PU(2, 1;Od) où d = 2, 3, 7
sont engendrés par une involution, une rotation de Heisenberg, deux rotations spirales de
Heisenberg et une translation verticale.
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Essentiellement, cette méthode peut être appliquée sur le cas de Od dont le nombre de
classe est un. Cette classe est plus grande que celle desOd oùOd est Euclidien. Toutefois, il
est plus difficile de déterminer la collection finie des sphères spinales contenant le domaine
fondamental pour le groupe cuspidal lorsque d est plus grand.

Ce chapitre a été accepté pour publication dans Transactions of American Mathemat-
ical Society.

Le cinquième chapitre consiste en l’étude des réseaux de Mostow Γ(p, k), basée sur
le fait que la sœur du groupe modulaire d’Eisenstein-Picard qui est un cas particulier
du réseau de Mostow Γ(3, 6). Mostow [Mos80] a considéré tout d’abord une famille re-
marquable des groupes engendrés par trois réflexions complexes R1, R2, R3 d’ordre p où
p = 3, 4, 5. Le fait que ces groupes soient discrets a été vérifié par la construction d’un do-
maine fondamental pour leur action. Après le travail de Mostow, Deraux, Falbel et Paupert
[DFP05] ont construit un nouveau domaine fondamental qui est plus simple que celui de
Mostow, mais surtout qui permet l’utilisation de la synthèse des arguments géométriques.
Nous donnons maintenant une autre construction de nouveaux domaines fondamentaux
pour certains réseaux de Mostow Γ(3, k) où les valeurs de k satisfont 1/k+1/l = 1/6 pour
un entier l. L’idée principale de ce chapitre est inspirée par la construction de [Par06].
Plus de motivations et de résultats peuvent être trouvés dans l’introduction détaillée de ce
chapitre, ainsi que quelques notations. Le groupe Γk est l’un des réseaux de Mostow que
nous considérons avec les générateurs géométriques I1, R, S et T . Notez bien que nous
utilisons les mêmes notations que dans le troisième chapitre, mais ces générateurs sont des
produits de R1, R2, R3 et J , qui sont les générateurs de l’article original [Mos80]. Nous
résumons les résultats :

Théorème 0.1.3. Le groupe Γk ⊂ PU(2, 1) est discret s’il existe un entier l tel que
1/k + 1/l = 1/6, c.-à-d., la paire ordonnée (k, l) est dans la liste

(7, 42), (8, 24), (9, 18), (10, 15), (12, 12), (15, 10), (18, 9), (24, 8), (42, 7).

Dans ce cas, il existe un domaine fondamental D avec les isométries d’appariement donnée
par R = (JR−1

1 J)2, S = JR−1
1 , T = (JR−1

1 )2, I1 = JR−1
1 J et les relations cycle donnent

la présentation suivante:

Γk =
〈
R,S, T, I1

∣∣∣∣∣ Rk = T l = (R−1S)3 = (T−1I1)3 = (S−1I1)3

= [R, T ] = Id, T = S2, R = I2
1

〉
.

Le dernier chapitre, motivé par le travail de Yasaki dans [Yas08], est consacré de
calculer la cohomologie de la surface d’Eisenstein-Picard et sa soeur à coefficients locaux.
Cette méthode peut être généralisée au domaine fondamental d’un cusp. Nous donnons
la cohomologie à Z-coefficients triviaux suivant:

Théorème 0.1.4. A coefficients triviaux,

H i(H2
C/G1;Z) =

{
Z, i = 0
0, i ≥ 1.

H i(H2
C/G2;Z) =

{
Z, i = 0, 2
0, i = 1 or i ≥ 3.
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0.2 Introduction in English

This thesis consists in the study of the geometry of some lattices in PU(2, 1) by means of
their action on the complex hyperbolic space.

A lattice in a locally compact topological group G with Haar measure is a discrete
subgroup Γ of G such that the quotient Γ\G has finite volume. In our particular case
of interest where the associated Lie group is the holomorphic isometry group of complex
hyperbolic space H2

C, a complex hyperbolic lattice is a discrete subgroup Γ of PU(2, 1) such
that the volume of the quotient H2

C/Γ is finite with respect to the Bergman metric.

• A lattice is said to be uniform or cocompact if the quotient H2
C/Γ is compact,

namely, there exists a compact fundamental domain of Γ and is called non-uniform
or coinfinite-volume otherwise.

• A lattice Γ ⊂ G is reducible if G admits connected normal subgroups H,H ′ such
that HH ′ = G, H ∩ H ′ is discrete and Γ/(Γ ∩ H) · (Γ ∩ H ′) is finite. A lattice is
irreducible if it is not reducible. Also, irreducibility is equivalent to the condition
that for any connected normal subgroup H ⊂ G and π : G → G/H is the natural
projection, π(Γ) is dense.

• Two subgroups H1 and H2 of a group are commensurable if their intersection H1∩H2
has finite index in both H1 and H2. Let G ⊂ GLn(K) be a linear algebraic group
defined over a number field K. A subgroup Γ ⊂ G(K) is an arithmetic subgroup if
it is commensurable with G(O), where O is the ring of integers of K.

Lattices in rank one symmetric spaces have been studied for a long time with important
results concerning rigidity and arithmeticity. A fundamental problem in the study of
symmetric spaces is the relationship between arithmetic groups and lattices. In general,
Borel and Harish-Chandra [BHC62] proved that in all symmetric spaces of non-compact
type all arithmetic groups are lattices. In contrast, Margulis [Mar84] showed that when
the rank of symmetric space is at least two then all irreducible lattices are arithmetic.

More progress has been made in rank one symmetric space of non-compact type, for
example, the following symmetric spaces:

Hn
R Hn

C Hn
H Hn

O

which are hyperbolic spaces of dimension n over the reals, complex numbers quaternions
respectively, and the hyperbolic plane over the Cayley octonions (see Chapter 19 of book
[Mos83]). In these cases, Corlette [Cor92] and Gromov and Schoen [GS92] have shown
that in Hn

H for n ≥ 2 and in H2
O all lattices are arithmetic. Furthermore, Gromov and

Piatetski-Shapiro [GPS87] have given examples of non-arithmetic lattices in Hn
R for all

n ≥ 2. The existence of non-arithmetic lattices in complex hyperbolic geometry has not
completely been settled. More explicitly, Mostow [Mos80] constructed a family of non-
arithmetic lattices in complex hyperbolic plane H2

C which we will discuss below. Deligne
and Mostow [DM86] found a non-arithmetic lattice in H3

C. The question whether there
exist non-arithmetic lattices in Hn

C with n ≥ 4 is still open. This is perhaps the most
important open question in the field.

There are four major methods of constructing lattices in complex hyperbolic space
such as arithmetic constructions, use of moduli of different objects, algebraic geometry and
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construction of fundamental domains; see the introductory survey paper [Par09] and its
references for further details. Our particular case of interest is to study lattices in PU(2, 1)
by building a fundamental domain acting on H2

C. In other words, one must find an open
connected set D ∈ H2

C so that D∩γ(D) = ∅ for all γ ∈ Γ−Id and ⋃γ∈Γ γ(D) = H2
C, where

D is the closure of D inside H2
C. The difficulty of constructing a fundamental domain is

mostly due to the fact that there are no totally geodesic real hypersurfaces in complex
hyperbolic geometry, and in particular no natural notion of polyhedra.

One simple method of constructing fundamental domains is to construct the Dirichlet
domain based at a central point p0 ∈ Hn

C. The Dirichlet domain is the set of points in
Hn

C that are closer to p0 than to any other point in the Γ-orbit of p0. Namely, the basic
object in this construction is the set of points equidistant from two given points, which is
called a bisector. The first example of complex hyperbolic Dirichlet domain was due to
Giraud [Gir21]; see also Appendix A of Goldman [Gol99]. A natural generalization of the
Dirichlet domain is the Ford domain, see Section 9.3 of [Gol99]. Here the point z0 lies on
∂Hn

C and the distance is replaced with a Busemann function based at z0. The level sets
of a Busemann function are horospheres. The sides of the Ford domain are contained in
bisectors called isometric spheres with respect to the Cygan metric, a natural metric on
the Heisenberg group. As the stabilizer of z0 is infinite, one may obtain a fundamental
domain by intersecting the Ford domain with a fundamental domain for the stabiliser.

Typically, a fundamental domain is a locally finite polyhedron D with some combi-
natorial structure. The codimension one faces of D, called sides, may be contained in a
wide variety of real hypersurfaces (for example bisectors, C-spheres and R-spheres), but
there should exist a set of side pairing maps: each side should be mapped bijectively to
another side (possibly itself) by a map in PU(2; 1). Poincaré’s polyhedron theorem gives
conditions under which the group generated by the side pairing maps is discrete with D as
a fundamental domain and moreover one obtains a presentation for this group. Another
consequence of Poincaré’s theorem, is that can obtain the orbifold Euler characteristic
of the quotient and so calculate its volume by the complex hyperbolic version of Gauss-
Bonnet theorem. We give some examples of explicit fundamental domains which have
been constructed for lattices in PU(2, 1).

• One of the simplest arithmetic lattices in PU(2, 1) is the Eisenstein-Picard modular
group PU(2, 1,Z[ω]) comprising matrices whose entries are all in the Eisenstein in-
tegers Z[ω] where ω is the cube-root of unity. This is one of Picard’s first examples
[Pic83] in PU(2, 1) and is the natural generalization of the classic modular group
PSL(2,Z) in PSL(2,R). In fact, Picard [Pic83, Pic84] constructed a family of arith-
metic lattices PU(2, 1;Od), so-called Picard modular groups, where Od is the ring
of integers in the imaginary quadratic number field Q(i

√
d). The geometry of the

group PU(2, 1,Z[ω]) has been studied by Falbel and Parker [FP06]. In other words,
they constructed a fundamental domain with the simplest possible combinatorial
structure, which is 4-simplex, itself a geodesic cone based on 3-simplex with an ideal
cone point (the parabolic fixed point). This construction is completely analogous to
the 2-simplex with one ideal vertex which is the fundamental domain for the classical
modular group PSL(2,Z) in the hyperbolic plane H1

C.

• Another Picard modular group is called Gauss-Picard modular group where the asso-
ciated ring is Z[i]. Francsics and Lax [FL05, FLa05] described a fundamental domain
for this group PU(2, 1;Z[i]). Their fundamental domain is only semi-explicit and
did not include analysis of the combinatorics of the fundamental domain. More re-
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cently, Falbel, Francsics, Lax and Parker [FFP10, FFLP11] construct a fundamental
domain from the Ford domain, which is analogous to the case of PU(2, 1,Z[ω]). The
fundamental domain for PU(2, 1;Z[i]) may be obtained by intersecting the Ford do-
main with a fundamental domain for the stabiliser. The difference is mostly due to
the fact that there are three compact sides which are contained in three isometric
spheres respectively.

• In his famous paper [Mos80], Mostow studied new examples of subgroups of PU(2, 1)
generated by three complex reflections of order p (p = 3, 4, 5) and showed that
these are complex hyperbolic lattices by building fundamental domains, specifically,
Dirichlet domains. All the codimension-1 faces are contained in bisectors. As we
have mentioned, the absence of totally geodesic real hypersurfaces gives rise to the
difficulty of understanding the intersection of two bisectors. There were some minor
errors in Mostow’s construction; see [Der05] . Another construction of fundamental
domains for the same groups was given by Deraux, Falbel and Paupert [DFP05].

• Ron Livné in his thesis [Liv81] constructed a family of lattices in PU(2, 1) by using
techniques from algebraic geometry. Parker [Par06] used Thurston’s method to give
a geometrical construction of Livné’s lattices. Specifically, he constructed a funda-
mental polyhedron for Livné’s groups, each side of which is contained a bisector. A
link between Livné’s groups and the Eisenstein-Picard modular group comes from
the description of fundamental domain. The pattern of the fundamental polyhedra
in [Par06] is a geodesic cone starting from a tetrahedron pointing to a geodesic tri-
angle on a complex line. As this complex line degenerates to an ideal vertex, Livné’s
group becomes the Eisenstein-Picard modular group. In other words, this limiting
configuration corresponds to a fundamental domain for the Eisenstein-Picard mod-
ular group which is different from that in [FP06]. More recently, Boadi in his thesis
[Bo11] used the same approach as for Livné’s groups to construct fundamental do-
mains for Mostow groups of the first kind mentioned in [Par09]. The fundamental
domain, in Boadi’s construction, is made up of two 4-dimensional simplices glued
along a common 3-dimensional face.

• Other examples come from the representation of hyperbolic triangle groups in PU(2, 1).
For convenience, we adopt the following notations for these lattices. Let (p, q, r) be a
hyperbolic triangle group with 1/p+ 1/q+ 1/r < 1, that is defined to be the Coxeter
group with presentation,〈

a1, a2, a3| a2
1, a

2
2, a

2
3, (a2a3)p, (a3a1)q, (a1a2)r

〉
.

We may consider a family of representations ρt : (p, q, r) → PU(2, 1). We de-
fine Γ(p, q, r;n) to be the image of a non-faithful representation ρt(p, q, r) where
ρt(a1a3a2a3) is an elliptic element of order n. The group Γ(4, 4, 4; 5) is a cocom-
pact lattice in PU(2, 1) due to Deraux [Der06]. Parker and Thompson [PT10] have
constructed a fundamental domain for Deraux’s lattice and give the presentation〈

a1, a2, a3| a2
i , (aiaj)4, (aiajak)10, (aiajakaj)5

〉
.

Furthermore, Thompson in his thesis [Tho10] discovered two new deformed triangle
group lattices, Γ(3, 3, 4; 7) and Γ(3, 3, 5; 5). He constructed conjectural fundamental
domains for them. The same construction of fundamental domains could be carried
out for any Γ(p, q, r;n) with a1a2a3 finite order regular elliptic element. Specifically,
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the fundamental domain consists of a 4-dimensional cone over a connected bounded
3-dimensional region of H2

C with a cone point (the fixed point of a1a2a3).

Let X = G/K be a symmetric space of non-compact type, where G is the group of real
points of an semisimple algebraic group G defined over Q. Let Γ ⊂ G be an arithmetic
lattice and (E, ρ) be a Γ-module. Since the locally symmetric space Γ\X is a K(Γ, 1), the
group cohomology of Γ is isomorphic to the cohomology of the locally symmetric space,
namely

H∗(Γ, E) ∼= H∗(Γ\X;E),

where E denotes the sheaf associated to the local system on (the manifold or the orbifold)
Γ\X defined by (E, ρ). A spine is a Γ-equivariant deformation retract X0 ⊂ X such that
Γ\X0 is compact if it exists. Explicit examples of spines have been constructed for various
Γ. For example, Soulé [Sou78] found a spine for SL3(Z) and the case of the Euclidean
Bianchi groups SL2(Od) ( for d = 1, 2, 3, 7, 11) was treated by Mendoza in [Men79]. More
generally, Ash [As77, As84] used the well-rounded retract method for constructing a spine
for all linear symmetric spaces. This covers algebraic groups where the real points are
isomorphic to a product of the following groups [FK94]:

• GLn(R);

• GLn(C);

• GLn(H);

• O(1, n− 1)× R×;

• The non-compact Lie group with Lie algebra e6(−26) ⊕ R.

For some low-dimensional examples, the cohomology has been computed combinatorially
from the cellular structure of a spine [Sou78, As80, Men79, SV83].

More recently, Yasaki constructed in [Yas06] a retraction onto a spine for Q-rank 1
groups. As an application, he [Yas08] constructed an explicit spine for Γ = SU(2, 1;Z[i])
and computed the cohomology of H2

C/Γ with local coefficients.

Plan of thesis

The thesis is organized as follows. The main results will fall into three large chapters, each
of which is conceived to be self-contained, with its own introduction.

In the first chapter we recall the two models of complex hyperbolic plane H2
C, complex

hyperbolic isometries and their classification. Three types of totally geodesic submanifolds
will be described. Moreover, we discuss the orthogonal projection into a complex geodesic
which will be used in the thesis. The Siegel domain has the same structure as the upper
half-space model of real hyperbolic space. Further to say that the boundary is identified
with the one-point compactification of the Heisenberg group. We define the Cygan metric
on the Heisenberg group and Cygan spheres. The general reference for this chapter is the
book of Goldman [Gol99] or Parker [Par10].

We review, in the second chapter, the definition of a bisector which is the equidistant
between two distinct points. A bisector is a real analytic hypersurfaces in H2

C which
is diffeomorphic to R3. These hypersurfaces come about as close as possible to being
totally geodesic. Specifically, they enjoy two natural decompositions into totally geodesic
submanifolds, called slice and meridian decompositions [Mos80, Gol99]. Isometric spheres
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are examples of bisectors. We will build the polyhedra whose codimensional 1 faces may
be contained in bisectors or isometric spheres in later chapters. We review Poincaré’s
polyhedron theorem as the main technical tool throughout the thesis.

In the third chapter we construct an explicit fundamental domain for the group (we
call the sister of Eisenstein-Picard modular group) denoted by G2. This group was first
defined by Parker in [Par98], in which he showed that Eisenstein-Picard modular surfaces
andH2

C/G2 are candidates for the cusped, complex hyperbolic orbifold of minimal volume.
Stover in his article [Sto10] affirmed that they are precisely the two of orbifolds with
minimal volume. We state the main result of this chapter as follows:

Theorem 0.2.1. There is a fundamental domain for G2, that is a geodesic cone over a
prism (see Figure 3.6) pointing to q∞, with the side-pairing maps I1, R, S and T . As the
consequence, the group G2 generated by I1, R, S, T is discrete and has the presentation:

G2 =
〈
I1, R, S, T

∣∣∣∣∣ R6 = (R−1S)3 = [R, T ] = S2T−1

= (T−1I1)3 = (S−1I1)3 = R−1I2
1 = Id

〉
.

This third chapter has been published in Mathematical Proceedings of the Cambridge
Philosophical Society [Zh11].

This fourth chapter is devoted to give the generators of the Picard modular groups
PU(2, 1;Od) where the integer ring Od is Euclidean, i.e. d = 1, 2, 3, 7, 11. In particular,
the cases of O1 and O3 have been studied in many aspects. For example, the explicit
fundamental domain for these two groups were obtained in [FFP10, FP06]. There are few
results for other picard modular groups. Each element of the Gauss-Picard modular group
can be decomposed as a product of the generators by a simple algorithm [FFLP11]. We
began by trying to construct fundamental domain for these groups PU(2, 1;Od) following
the method used by Falbel and Parker in [FP06]. This leads to a domain that was much
to complicated to understand. However, a result of constructing fundamental domain
enables us to give the generators for the Euclidean Picard modular groups in a geometric
way. We state explicitly as follows:

Theorem 0.2.2. The Euclidean Picard modular groups PU(2, 1;Od) where d = 2, 3, 7 are
generated by an involution, a Heisenberg rotation, two screw Heisenberg rotations and a
vertical translation.

Essentially, this method can be implemented on the case of Od with class number one.
This is a larger collection of Od than the Euclidean ring. However it is more complicated
to determine the finite collection of spinal spheres containing the fundamental domain for
the cusp group as d becoming large.

This chapter has been accepted for publication in Transactions of the American Math-
ematical Society.

The fifth chapter consists in the study of Mostow’s lattices Γ(p, k), based on the rela-
tionship that the sister of Eisenstein-Picard modular group corresponds to one of Mostow’s
lattices Γ(3, 6). Mostow [Mos80] considered firstly a remarkable family of groups gener-
ated by three braiding complex reflections R1, R2, R3 of order p where p = 3, 4, 5. The
discreteness of these groups was verified by building a fundamental domain for their action.
After Mostow’s work, Deraux, Falbel and Paupert [DFP05] constructed a new fundamen-
tal domain which is simpler than Mostow’s, but mostly which allows the use of synthetic
geometric arguments. We now give another new construction of fundamental domains
for certain Mostow’s lattices Γ(3, k) where the values of k satisfy 1/k + 1/l = 1/6 for
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an integer l. The main idea of this chapter is inspired by the construction of [Par06].
Further motivations and results can be found in the detailed introduction to that chapter,
as well as some notations. The group Γk is one of Mostow’s lattices we consider with the
geometric generators I1, R, S and T . Note that we use the same notations as in the third
chapter but these generators are the product of R1, R2, R3 and J which are the generators
coming from the original article [Mos80]. We summarizes the result in the following:

Theorem 0.2.3. The group Γk ⊂ PU(2, 1) is discrete if there is an integer l such that
1/k + 1/l = 1/6, namely, the ordered pair (k, l) is in the list

(7, 42), (8, 24), (9, 18), (10, 15), (12, 12), (15, 10), (18, 9), (24, 8), (42, 7).

In that case, there is a fundamental domain D with side pairings given by R = (JR−1
1 J)2,

S = JR−1
1 , T = (JR−1

1 )2, I1 = JR−1
1 J and the cycle relations give the following presen-

tation of the group

Γk =
〈
R,S, T, I1

∣∣∣∣∣ Rk = T l = (R−1S)3 = (T−1I1)3 = (S−1I1)3

= [R, T ] = Id, T = S2, R = I2
1

〉
.

The last chapter, motivated by the Yasaki’s work [Yas08], is devoted to compute the
cohomology of Eisenstein-Picard modular surface and its sister with local coefficients. This
method can be generalized to the case of fundamental domain with one cusp. We give the
cohomology with trivial Z-coefficients as follows:

Theorem 0.2.4. With trivial coefficients,

H i(H2
C/G1;Z) =

{
Z, i = 0
0, i ≥ 1.

H i(H2
C/G2;Z) =

{
Z, i = 0, 2
0, i = 1 or i ≥ 3.
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In this chapter we review some basic features of complex hyperbolic geometry which may
be needed later on; we will mainly focus on the case of (complex) dimension 2. The
material is completely standard and may be found in more details in the book of Goldman
[Gol99] and the forthcoming book of Parker [Par10] or in the article of Chen and Greenberg
[CG74].

Let Cn,1 be the complex vector space Cn+1 of dimension n + 1 equipped with a non-
degenerate, indefinite Hermitian form 〈·, ·〉 of signature (n, 1). Here 〈·, ·〉 is given by a
non-singular (n + 1) × (n + 1) Hermitian matrix H with n positive eigenvalues and 1
negative eigenvalue, which is

H =


1 · · · 0 0
... . . . ...
0 1 0
0 · · · 0 −1

 .
Specifically, 〈z,w〉 = w∗Hz where z,w are column vectors in Cn+1 and the operator ∗ is
the Hermitian transpose. Thus we may define subsets V−, V0 and V+ of Cn,1 by

V− = {z ∈ Cn,1|〈z, z〉 < 0},
V0 = {z ∈ Cn,1|〈z, z〉 = 0},
V+ = {z ∈ Cn,1|〈z, z〉 > 0}.

A vector z ∈ Cn,1 is negative (respectively null, positive) if and only if 〈z, z〉 < 0
(respectively 〈z, z〉 = 0, 〈z, z〉 > 0).

Let P : Cn,1\{0} 7−→ CPn denote the standard projection map defined by P(z) = [z]
where [z] is the equivalence class of z. On the chart of Cn,1 with zn+1 6= 0 the projection
map P is given by

P :


z1
...
zn
zn+1

 7−→
 z1/zn+1

...
zn/zn+1

 ∈ Cn.

The projective model of complex hyperbolic space Hn
C is defined to be the collection

of negative lines in Cn,1 and its boundary is defined to be the collection of null lines. In
other words Hn

C is PV− and ∂Hn
C is PV0.

For the projective model the metric on Hn
C, called the Bergman metric is given by

ds2 = −4
〈z, z〉2det

(
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

)
.

The distance between points w, u ∈ Hn
C is given by the formula

cosh2
(
ρ(w, u)

2

)
= 〈w,u〉〈u,w〉
〈w,w〉〈u,u〉

where w,u are the lift of w, u in Cn+1. This formula is independent of which lifts z and
w in Cn,1 of z and w we choose.

For each element A of PU(n, 1), A is unitary with respect to 〈·, ·〉, namely, A acts
isometrically on the projective model of complex hyperbolic space. Thus the Lie group
PU(n, 1) is a subgroup of the complex hyperbolic isometry group. There are isometries
of Hn

C not in PU(n, 1) for instance the complex conjugation z 7→ z. All of the isometries
of Hn

C will be described in the following theorem.



1.1. Complex hyperbolic plane 25

Theorem 1.0.5. (see [Gol99]) The holomorphic isometries of Hn
C are given by the matri-

ces in PU(n, 1); all other isometries are antiholomorphic which are obtained by composing
an element of PU(n, 1) with complex conjugation. The group of all the isometries of Hn

C,
denoted by ̂PU(n, 1), is generated by PU(n, 1) and the complex conjugation.

We have defined the projective model and then go on to specialize to the unit ball model
and the Siegel domain model. This is simultaneously a complex version of the projective
and Klein-Beltrami models of ordinary (real) hyperbolic space and also a generalization
to higher complex dimensions of the Poincaré disc and half plane models of the hyperbolic
plane. In what follows we restrict ourselves to the case of complex hyperbolic 2-space.

1.1 Complex hyperbolic plane

Different choices of Hermitian forms will lead to different models of complex hyperbolic
plane H2

C. We describe the following two models, which will be most useful.

1.1.1 The unit ball model

In this section, the representative matrix of the Hermitian form is chosen as follows

H1 =

 1 0 0
0 1 0
0 0 −1

 ,
namely, for all z ∈ C2,1, the first Hermitian product 〈z, z〉1 = |z1|2 + |z2|2 − |z3|2. On the
chart of P(V−) with z3 = 1, complex hyperbolic plane is given by

H2
C = B2 = {(z1, z2) : |z1|2 + |z2|2 < 1}.

Its boundary P(V0) is homeomorphic to the sphere S3:

∂H2
C = {(z1, z2) : |z1|2 + |z2|2 = 1}.

This model is a generalization of Poincaré disc model for complex hyperbolic line,
which we will mention later.

1.1.2 The Siegel domain model

Let 〈·, ·〉2 denote the second Hermitian form associated to the following matrix

H2 =

 0 0 1
0 1 0
1 0 0

 .
For the second Hermitian form, the standard lift of z is negative if and only if

z1 + |z2|2 + z1 = 2<(z1) + |z2|2 < 0.

Thus P(V−) is a paraboloid in C2, called the Siegel domain. Likewise, its boundary
P(V0) satisfies

2<(z1) + |z2|2 = 0.
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However, not all points in P(V0) lie in C2 ⊂ CP2. We have to add an extra point, denoted
q∞, on the boundary of the Siegel domain. The standard lift of q∞ is 1

0
0

 .
Recall that one of the important models of real hyperbolic 3-space H3

R is the upper half
space in R3. The boundary of this model is the one point compactification of C regarded
as the extended complex plane C ∪ {∞} (or Riemann sphere). The Siegel domain model
has an analogous construction.

Fix u ∈ R+ and consider the standard lift z of z ∈ H2
C satisfying 〈z, z〉 = −u. In

other words, 2<(z1) = −|z2|2 − u. We rewrite z2 = ζ ∈ C which means that z1 =
(−|ζ|2 − u+ iv)/2. Thus for a (ζ, v, u) ∈ C× R× R+ corresponds to

z =

 (−|ζ|2 − u+ iv)/2
ζ
1

 ∈ H2
C.

In this way we can identify a point z in the Siegel domain with (ζ, v, u) ∈ C × R × R+,
called the horospherical coordinate of z.

Definition 1.1.1. The set of points of the Siegel domain Hu = C×R× {u} is called the
horosphere of height u. Likewise, the horoball Ut of height t is defined to be the union of
all horospheres of height u > t.

The finite boundary points z ∈ ∂H2
C − {q∞} is the horosphere of height zero (ζ, v, 0),

that can be parameterized by (ζ, v) ∈ C × R. Therefore we can identify the boundary of
the Siegel domain with the one-point compactification of C×R. Furthermore, consider a
family of the maps that fix the infinity and sends the origin to the point (ζ, v) given by

T (ζ, v) =

 1 −ζ (−|ζ|2 + iv)/2
0 1 ζ
0 0 1

 .
In terms of their action on the boundary, C×R has a group law which gives the structure
of the Heisenberg group N as follows

(ζ, v) � (ξ, t) = (ζ + ξ, v + t+ 2=(ξζ)).

Remark 1.1.2. There are other Hermitian forms which are widely used in the literature
(see page 67 of [CG74]). The one given by the matrix 0 −1 0

−1 0 0
0 0 1


will be seen in the study of complex hyperbolic triangle groups. Following Mostow, it is
most convenient to use the Gram matrix as the Hermitian form. This form will always be
defined, but only for certain points in the parameter space will it have the correct signature
(see [PPa09]). Furthermore, using this Hermitian form, calculations in complex hyperbolic
geometry have a tendency to become extremely complicated but only the simple matrix
representation for the group, refer to Chapter 5.
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1.1.3 Cayley-transform associated to two models

Analogous to the map
z 7−→ −iz + i

z − i
passing from the Poincaré disc to the upper half plane, the following Cayley-transform
interchanges the first and second Hermitian forms

C = 1√
2

 1 0 1
0
√

2 0
1 0 −1

 .
The map C conjugates H1 and H2 with C2 = Id, in other words, H2 = C∗H1C.

On the affine chart with z3 = 1 of CP2, we see that

C : (z1, z2) −→
(
z1 + 1
z1 − 1 ,

√
2 z2
z1 − 1

)
.

The Cayley transform leads to a generalized form of the stereographic projection. This
mapping π : S3 \ {e2} → R3, where S3 = ∂B2 and e2 = (1, 0) ∈ C2, is defined as the
composition of the Cayley transform restricted S3 \ {e2} followed by the projection{

z1 → 2=(z1),
z2 → z2.

The stereographic projection π can be extended to a mapping from S3 onto the one-
point compactification R3 of R3, given by

π(z1, z2) =
[ √

2z2
z1 − 1 ,

−4=(z1)
|z1 − 1|2

]
.

Using the stereographic projection, we can identify S3 \ {e2} with N and S3 with the
one-point compactification N of N . The inverse function of the stereographic projection
is given by

π−1([z, t]) =
(
−|z|2 + it+ 2
−|z|2 + it− 2 ,

2
√

2z
−|z|2 + it− 2

)
.

1.2 Totally geodesic submanifolds

In the general theory of symmetric spaces, one can readily prove that the only totally
geodesic subspaces of H2

C are either complex linear subspaces or totally real totally geodesic
submanifolds. There are only four types of totally geodesic subspaces in H2

C:

• the points

• the geodesics

• C-planes

• R-planes

In particular, it doesn’t exist totally geodesic real hypersurface in complex hyperbolic
space. A sketch of the proof can be found in the Section 3.1.11 of [Gol99].
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1.2.1 Geodesics

There exists a unique geodesic joining a pair of distinct points in H2
C∪∂H2

C (see Theorem
3.1.11 of [Gol99]). Let z and w two points in ∂H2

C, up to normalization, we suppose that
their lifts z and w in V0 satisfy 〈z,w〉 = −1. The geodesic joining z and w can be described
in the following proposition.

Proposition 1.2.1. (see [Par10]) Let z,w ∈ V0 be null vectors with 〈z,w〉 = −1. The
geodesic σ(t) with endpoints z and w is the collection of points in H2

C corresponding to the
vector et/2z + e−t/2w in C2,1 where t is the arc length parameter.

The following proposition describes the expression for the geodesic connecting two
distinct points in H2

C.

Proposition 1.2.2. (see Proposition 5.2, [Par10]) Let σ(t) be a geodesic parameterized
by arc length t joining z and w in H2

C. Suppose that σ(r) = z and σ(s) = w such that
their lifts z,w satisfy 〈z, z〉 = 〈w,w〉 = −2 and 〈z,w〉 is real and negative. Then σ(t) is
given by the vector

sinh((t− s)/2)
sinh((r − s)/2)z + sinh((r − t)/2)

sinh((r − s)/2)w. (1.1)

1.2.2 C-planes

Definition 1.2.3. A complex line (or C-plane) of H2
C is the intersection with H2

C of a
complex projective line of CP2 (when this intersection is not empty).

Such a C-plane is an embedded copy of H1
C (more precisely, in the ball model, it carries

the Poincaré model of real hyperbolic plane, with constant curvature −1, see [Gol99] and
[Par10]). Each C-plane is also the fixed-point set of a one-parameter family of (holomor-
phic) isometries, one of which is an involution, so that C-planes are totally geodesic.

We denote n⊥ = {z ∈ C2,1 : 〈n, z〉 = 0}. The following proposition shows the duality
between P(V+) and the set of complex lines.

Proposition 1.2.4. • Each complex line Σ of H2
C is associated to a unique point

n ∈ P(V+) such that Σ = n⊥ ∩H2
C where n is a lift of n in C2,1. Such a vector n is

called the polar vector to Σ.

• For all points n in P(V+), the intersection n⊥ ∩H2
C is a complex line of H2

C which
does not depend on the choice of lift n.

The elements of PU(2, 1) act on P(V+) transitively. As a consequence, we have

Proposition 1.2.5. The group PU(2, 1) acts transitively on the set of C-planes, with
isotropy group a conjugate of P (U(1)× U(1, 1)).

Example 1.2.6. In the unit ball model, the vector

n =

 0
1
0


is polar to the complex line {(z1, 0) : |z1| < 1}. Observe that the vector n is fixed by the
Cayley transformation. In the Siegel domain model, it corresponds to the complex line
given in horospherical coordinates by

{(0, v, u) : v ∈ R, u ∈ R+}.
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1.2.3 R-planes

Definition 1.2.7. A Lagrangian plane (or R-plane) is a maximal totally real subspace of
H2

C, that is the projective image of a real 3-subspace L of C2,1 such that 〈v, w〉 ∈ R for all
v, w ∈ L (and such that L ∩H2

C 6= ∅).

Such a R-plane is an embedded copy of H2
R (more precisely, in the ball model, it carries

the Klein-Beltrami model of real hyperbolic plane, with constant curvature −1/4, see
[Gol99] and [Par10]). Each R-plane is also the fixed-point set of a unique (antiholomorphic)
isometry, which is an involution. In particular, R-planes are also totally geodesic.

Example 1.2.8. In the unit ball model, a standard example of R-plane is

L0 = {(z1, z2) ∈ H2
C : z1, z2 ∈ R},

that is a copy of real hyperbolic plane H2
R. In the Siegel domain model, it becomes

{(x, 0, u) : x ∈ R, u ∈ R+} in horospherical coordinates.

We show the action of PU(2, 1) on the R-planes of H2
C in the following proposition.

Proposition 1.2.9. The group PU(2, 1) acts transitively on the set of R-planes, with
isotropy group a conjugate of PO(2, 1).

1.2.4 Orthogonal projection onto C-planes

In the following we describe the orthogonal projection of geodesics onto a complex line
that will be used later. The sketch of the proof follows from geometric facts and refers to
the same situation in [Tho10] for calculations.

Lemma 1.2.10. Let ΠΣ be the orthogonal projection of complex hyperbolic space onto a
complex line Σ and σ be a geodesic.

• Then the image ΠΣ(σ) is a single point

• or an arc of a geometric circle in Σ. In particular, if σ ∩ Σ 6= ∅, then ΠΣ(σ) is the
segment of a geodesic in Σ.

Proof. Using the ball model of H2
C, we may assume that Σ = {(z1, 0)|z1 ∈ C}. This makes

the orthogonal projection linear, that is ΠΣ(z1, z2) = z1. We also assume z1 6= const
otherwise the geodesic will be contained in the C-line {(a, z2)|a = constant, z2 ∈ C}), so
σ will be projected to a single point.

Recall, a complex line is the non-empty intersection of a complex projective line with
H2

C and a geodesic is the locus of a quadratic equation with respect to the real and
imaginary parts of coordinates in a C-line. From this, we see that ΠΣ(σ) is the locus of a
quadratic equation with respect to <(z1) and =(z1), which is a geometric circle in Σ.

To see this is true for a general C-line, recall that a C-line is an embedded copy of H1
C,

an element of PU(2, 1) sending a C-line to another is an isometry of H1
C. Isometries of

H1
C is a Möbius transformation, which sends circles to circles. For the particular case of

σ∩Σ 6= ∅, the result follows from the fact that the linear projection preserves the straight
line.

Corollary 1.2.11. In the ball model of H2
C, let Σ1 and Σ2 be C-planes, γ a hypercycle

in Σ2 and ΠΣ1 be the orthogonal projection map onto Σ1. Then ΠΣ1(γ) is an arc of a
geometric circle in Σ1 or a point if Σ1 and Σ2 are orthogonal.
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Proof. Note that the hypercycle is the arc of a Euclidean circle in the Poincaré disc (see
Proposition 2.1.8). This corollary follows from the same argument as Lemma 1.2.10.

Lemma 1.2.12. Let σ be a geodesic and p, q be two points on σ. Then the geodesic
segment [p, q] projects to the shorter arc of a geometric circle in a coordinate axis.

Proof. Let Σ be a complex line containing the geodesic σ. Using the ball model of H2
C,

we know that Σ is an embedded copy of Poincaré disc in H2
C. We consider the extension

to projective space of σ and Σ, denoted by σ and Σ respectively. There is an involution
fixing S3 (the boundary of ∂H2

C) in C2

(z1, z2) −→
(

z1
|z1|2 + |z2|2

,
z2

|z1|2 + |z2|2
)
,

which preserves the extension Σ and swaps the two parts σ\σ and σ. It follows (like in
Poincaré disc) that σ is shorter than σ\σ with respect to the Euclidean metric. By Lemma
1.2.10, the projection of σ is a geometrical circle in a C-line. Furthermore, the orthogonal
projection on a coordinate axis is linear, which implies that it preservers the angle. As a
consequence, the projection sends the geodesic σ to the shorter arc of a geometric circle.
So does each geodesic segment [p, q].

1.3 Complex hyperbolic isometries

Let U(2, 1) be the group of matrices that are unitary with respect to the Hermitian form
〈·, ·〉. The group of holomorphic isometries of complex hyperbolic space is the projective
unitary group PU(2, 1) = U(2, 1)/U(1), with a natural identification U(1) = {eiθI, θ ∈
[0, 2π)} where I is the identity matrix in U(2, 1). It will be useful to consider SU(2, 1),
the group of matrices with determinant 1 which are unitary with respect to 〈·, ·〉. Then
the group SU(2, 1) is a 3-fold covering of PU(2, 1), that is

PU(2, 1) = SU(2, 1)/{I, ωI, ω2I}

where ω = (−1 + i
√

3)/2 is a cube root of unity.

1.3.1 Classification of the elements of SU(2, 1)
In this section we recall briefly the different types of isometries of H2

C. A holomorphic
complex hyperbolic isometry of H2

C is said to be:

(i) loxodromic if it fixes exactly two points of ∂H2
C;

(ii) parabolic if it fixes exactly one point of ∂H2
C;

(iii) elliptic if it fixes at least one point in H2
C.

Following Chen and Greenberg [CG74], we now give the first criterion for classifying
the elements of SU(2, 1).

Proposition 1.3.1. Let g be a holomorphic isometry of H2
C and A a lift of g in U(2, 1),

then

• g is elliptic if A is semisimple with eigenvalues of norm 1;



1.3. Complex hyperbolic isometries 31

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Figure 1.1: The deltoid given by f(τ) = 0. Its interior corresponds to f(τ) < 0 and
its exterior corresponds to f(τ) > 0.

• g is loxodromic if A is semisimple with two eigenvalues λ and λ−1 where |λ| 6= 1;

• g is parabolic if A is not semisimple. In this case, its eigenvalues are of norm 1.

Definition 1.3.2. • An elliptic element g is called regular elliptic if and only if its
eigenvalues are distinct. In the other case, we say that g is special.

• A parabolic element g is called pure parabolic if it can be represented by a unipotent
element of U(2, 1), that is, a linear transformation having 1 as its only eigenvalue.
In the other case, we say that g is screw-parabolic.

Definition 1.3.3. The map τ : SU(2, 1) −→ C is defined to be the trace of matrices in
SU(2, 1). Let f be the polynomial

f(z) = |z|4 − 8<(z3) + 18|z|2 − 27.

Let U3 ⊂ C denote the set of cube roots of unity. The second criterion is described in
the following theorem.

Theorem 1.3.4. (see [Gol99], Chapter 6) Let A be a matrix of SU(2, 1) and g be the
isometry of H2

C associated to A. Then

(i) g is regular elliptic if and only if f(τ(A)) < 0;

(ii) g is loxodromic if and only if f(τ(A)) > 0;

(iii) g is screw-parabolic if and only if g is not elliptic and τ(A) ∈ f−1(0)− 3U3;

(iv) g a complex reflection (about either a point or a complex geodesic) if and only if A
is elliptic and τ(A) ∈ f−1(0)− 3U3;

(v) τ(A) ∈ 3U3 if and only if A represents a unipotent automorphism of H2
C.
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Figure 1.1 depicts the level set f−1(0) of f , which is a classical curve called a deltoid (see
Chapter 8 of Lockwood [Loc61] or page 26 of Kirwan [Kir92] where it is written in terms
of x = <(τ) and y = =(τ)). The interior of the deltoid corresponds to conjugacy classes of
elliptic elements and its exterior corresponds to conjugacy classes of loxodromic elements.
Its boundary corresponds to various parabolic conjugacy classes and complex reflections,
its three cusps correspond to the central elements and various unipotent conjugacy classes.

1.3.2 The elliptic elements

In the unit ball model, up to conjugation, a lift of an elliptic transformation in SU(2, 1) is

A =

 eiθ1 0 0
0 eiθ2 0
0 0 e−i(θ1+θ2)

 . (1.2)

In this case A fixes the center of the ball, corresponding to the vector [0, 0, 1]T , and
preserves the double axis of coordinates. The two quantities 2θ1 + θ2 and θ1 + 2θ2 in the
range of [0, 2π), called the angles of the elliptic element, determine the conjugacy class of
an elliptic element.

Example 1.3.5. Using the unit ball model, in homogeneous coordinates, the function

(z1, z2) 7−→ (eiαz1, e
iβz2)

is elliptic and fixes only the origin if eiα and eiβ are different from 1.

The regular elliptic elements

If A ∈ SU(2, 1) is a lift of regular elliptic g, then g has three fixed points in CP2, which
are the images of eigenvectors of A under the projection.

• One of these fixed points is in H2
C.

• The two other points are in P(V+) which are polar to the preserved complex lines.

The special elliptic elements

A special elliptic element has a repeated eigenvector. In this case, the angles can be
divided into two types:

• {0, ϕ}, in this case we call it complex reflection: g fixes a complex line Σ and acts
on the complex line orthogonal to Σ as a rotation with angle ϕ.

• {ϕ,ϕ}, in this case we call it complex reflection in a point: g preserves each of the
complex lines passing through this point in H2

C and acts on each of these complex
lines as a reflection with angle ϕ.

More precisely, the following proposition gives the formula of a complex reflection in
H2

C.
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Proposition 1.3.6. Let Σ be a complex line with polar vector n. Then the complex
reflection with angle ϕ fixing Σ is given in U(2, 1) by

R(z) = z + (eiϕ − 1) 〈z,n〉
〈n,n〉

n.

In particular, R is represented by a matrix in SU(2, 1) as follows,

R(z) = e−iϕ/3z + (e2iϕ/3 − e−iϕ/3) 〈z,n〉
〈n,n〉n.

Remark 1.3.7. If ϕ = π, this reflection is called involution or half-turn, given by

(z1, z2) 7−→ (−z1,−z2).

For every point z ∈ H2
C there is a unique half-turn fixing z whose differential equals −I on

TzH2
C. These involutions equip H2

C with the structure of a Riemannian symmetric space
(see [Gol99], page 82).

1.3.3 The loxodromic elements

Let g be a loxodromic element of H2
C and A a lift of g in SU(2, 1). Let zg and wg be the

two fixed points of g in ∂H2
C.

Definition 1.3.8. The geodesic σg joining zg and wg is called the axis of g. The complex
line Σg containing the geodesic σg is called the complex axis of g.

The geodesic σg and complex line Σg are preserved by g. As a result, the polar vector
ug = Σ⊥g to the complex line Σg is fixed by g. We describe this in the following proposition.

Proposition 1.3.9. A loxodromic element of PU(2, 1) has three fixed points in CP2, two
of which are lying in the boundary of H2

C and the third in P(V+).

Let zg,wg and ug be lifts of zg, wg and ug respectively. We suppose that, up to
conjugation, their lifts in C3 are

zg =

 0
0
1

 ,wg =

 1
0
0

 ,ug =

 0
1
0

 ,
then A is the matrix

A =

 λ 0 0
0 λ/λ 0
0 0 1/λ

 . (1.3)

If |λ| > 1, then zg is an attractive fixed point and wg is a repulsive fixed point. Otherwise,
the situations are just converse. Since A acts on the geodesic as a translation, the quantity
ρ(w,A(w)) on every point of σg is called length of translation, denoted lg. The relation of
lg and λ is give by

cosh
(
lg
2

)
= 1

2

(
|λ|2 + 1

|λ|2
)
.
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1.3.4 The parabolic elements

A parabolic element fixes exactly one point in the boundary. Up to conjugation, we can
suppose that it fixes ∞. From Lemma 1.3.10, we write the matrix of SU(2, 1) fixing ∞
which is not loxodromic as follows

A = e−iθ/3

 1 −eiθz (−|z|2 + it)/2
0 eiθ z
0 0 1

 (1.4)

with z ∈ C and t ∈ R.

Lemma 1.3.10. (see [Par10]) Suppose that A ∈ SU(2, 1) has the standard matrix form
(zjk)3×3. Then the following are equivalent:

1. A fixes ∞;

2. A is upper triangular;

3. z31=0.

A pure parabolic element has a lift in SU(2, 1) which is unipotent. A unipotent matrix
A of SU(2, 1) is one such that A − I is nilpotent, in other words, such that some power
(A−I)n is zero. The smallest such n is sometimes called the degree of unipotency of A−I.
We can classify, in terms of degree, the conjugacy class of pure parabolic isometries:

Proposition 1.3.11. All pure parabolic isometries can be divided into two conjugacy class
in ̂PU(2, 1):

1. The first conjugacy class consists of the isometries which lift to a unipotent matrix
A in SU(2, 1) such that the degree of unipotency of A− I is two. Writing z = 0, t =
1, θ = 0 in the matrix form (1.4), we obtain a representation with shortest length of
translation. There are two candidates in PU(2, 1) for this conjugacy class, denoted
by A+ and A−:

A± =

 1 0 ±i/2
0 1 0
0 0 1

 .
2. For the isometries which lift to a unipotent matrix A in SU(2, 1) such that the degree

of A− I is three. The conjugacy class is represented by

A =

 1 −1 −1/2
0 1 1
0 0 1

 .
Definition 1.3.12. In the previous proposition, the parabolic isometries of the first con-
jugacy class will be denoted by parabolic transformations of vertical type, and the
second class will be called horizontal type.

For the screw-parabolic isometries, up to conjugation, we can suppose that the positive
eigenvector is [0, 1, 0]T . Under this condition, a matrix representation of a conjugacy class
is

A =

 e−iθ/3 0 −e−iθ/3i/2
0 e2iθ/3 0
0 0 e−iθ/3

 .
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Remark 1.3.13. Both screw-parabolic isometries and parabolic isometries of vertical type
preserve a complex line where they act as a translation. Furthermore, screw-parabolic
elements rotate around the preserved complex line with an angle θ.

1.4 The action on ∂H2
C

In this section we work in the boundary of the Siegel domain model and discuss the
classification of elements of PU(2, 1) in terms of their action on the boundary. Recall
that R3 ∪ {q∞} in the Siegel’s domain model is naturally equipped with the structure of
the Heisenberg group on C × R. In other words, the boundary of the Siegel domain is
identified with the one-point compactification of the Heisenberg group.

1.4.1 The Heisenberg group

Definition 1.4.1. The Heisenberg group N of dimension 3 is C × R equipped with the
group law

(ζ, v) � (ξ, t) = (ζ + ξ, v + t+ 2=(ζξ)).
We remark that =(ζξ) = ω(ζ, ξ) where ω is the standard symplectic form on C. The

Heisenberg group is 2-step nilpotent. Observe that

(ζ, v) � (ξ, t) � (−ζ,−v) � (−ξ,−t) = (0, 4=(ζ, ξ))

where (−ζ,−v) is the inverse of the element (ζ, v). Therefore the center of N consists of
the form (0, v) and the commutator of any two elements lies in the center.

The stabilizer of q∞

We now describe the action of the stabilizer of q∞ on the Heisenberg group.
Definition 1.4.2. We denote Sim(N ) the group of the restrictions of elements of PU(2, 1)
fixing q∞ on the Heisenberg group. The elements of Sim(N ) will be called Heisenberg
similarities. (The elements are similarities with respect to the Cygan metric which we
will mention a little later.)

If A fixes q∞ then it is upper triangular. As a matrix in SU(2, 1), it is given by

A =

 λ −λz/λ (−|z|2 + it)/2λ
0 λ/λ z/λ
0 0 1/λ


with λ ∈ C∗ and (z, t) ∈ C× R. More precisely,

(I) The Heisenberg group acts on itself by Heisenberg translations. This is a normal
subgroup of the group Sim(N ). For (z0, t0) ∈ N , this is

T(z0,t0) : (z, t) 7→ (z + z0, t+ t0 + 2=(zz0)) = (z0, t0) � (z, t).

As a matrix in SU(2, 1) this is 1 −z0 (−|z0|2 + it0)/2
0 1 z0
0 0 1

 .
Heisenberg translation by (0, t0) for any t ∈ R is called vertical translation by t0.
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(II) The unitary group U(1) acts on the Heisenberg group by Heisenberg rotations. For
eiθ ∈ U(1), the rotation fixing q0 = (0, 0, 0) is given by 1 0 0

0 eiθ 0
0 0 1

 .
In Heisenberg coordinates, this Heisenberg rotation is given by

Rθ : (z, t) 7→ (eiθz, t).

All other Heisenberg rotations may be obtained from these by conjugating by a
Heisenberg translation.

(III) For λ ∈ R+, Heisenberg dilation by λ fixing q∞ and q0 = (0, 0, 0) ∈ ∂H2
C is given by λ 0 0

0 1 0
0 0 λ−1

 .
In Heisenberg coordinates, the Heisenberg dilation is given by

Dλ : (z, t) 7→ (λz, λ2t).

All other Heisenberg dilations fixing q∞ may be obtained by conjugating by a Heisen-
berg translation.

The stabilizer of q∞ in PU(2, 1) is generated by all Heisenberg translations, rotations
and dilations. However, only Heisenberg translations and rotations are isometric with
respect to various natural metrics on N . For this reason the group generated by all
Heisenberg translations and rotations, which is the semidirect product U(1)nN , is called
the Heisenberg isometry group Isom(N ). The nontrivial central elements of the Heisenberg
isometry group are precisely the vertical translations.

The vertical projection

Geometrically, we think of the C-factor of N as being horizontal and the R-factor as being
vertical. There is a canonical projection from N to C called vertical projection and denoted
by Π, given by Π : (z, t) 7−→ z. Using the exact sequence

0 −→ R −→ N Π−→ C −→ 0,

we obtain the exact sequence (see Scott [Sco83] page 467)

0 −→ R −→ Isom(N ) Π∗−→ Isom(C) −→ 1. (1.5)

Here Isom(C) = C o U(1) is the group of orientation preserving Euclidean isometries of
C.

Observe the elements in Isom(C) can be represented by matrices in GL(2,C) of the
form [

eiθ z0
0 1

] [
z
1

]
=
[
eiθz + z0

1

]
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Therefore, the map Π∗ can be given by

Π∗ :

 1 −z0e
iθ (−|z0|2 + it0)/2

0 eiθ z0
0 0 1

 −→ [
eiθ z0
0 1

]
. (1.6)

It is clear that

Ker(Π∗) =


 1 0 it0/2

0 1 0
0 0 1

 : t0 ∈ R


is the group of vertical translations fixing q∞.

1.4.2 The Cygan metric

In this section we define a metric on the Heisenberg group, the Cygan metric. The Cygan
metric can be extended to an incomplete metric on H2

C which agrees with the Cygan
metric on each horosphere. This metric should be thought of as the counterpart to the
Euclidean metric on the upper half space model of real hyperbolic space.

Recall that the Heisenberg norm is given by

|(z, t)| =
∣∣∣|z|2 − it∣∣∣1/2 .

Definition 1.4.3. The Cygan metric on N is defined to be

ρ0((z1, t1), (z2, t2)) =
∣∣∣(z1, t1) � (z2, t2)−1

∣∣∣ .
In other words,

ρ0((z1, t1), (z2, t2)) =
∣∣∣|z1 − z2|2 − it1 + it2 − 2i=(z1z2)

∣∣∣1/2 . (1.7)

Remark 1.4.4. We remark that the Cygan metric defined by (1.7) is not a path metric.
In other words, there exist pairs of points such that the Cygan distance between them is
strictly shorter than the Cygan length of any path joining them (see the proof of [Par10]).

We extend the Cygan metric to an incomplete metric on H2
C − {q∞} as follows

ρ̃0((z1, t1, u1), (z2, t2, u2)) =
∣∣∣|z1 − z2|2 + |u1 − u2| − it1 + it2 − 2i=(z1z2)

∣∣∣1/2 (1.8)

We now show that the extended Cygan metric on H2
C − {q∞} is exactly a metric.

Naturally the restriction on ∂H2
C − {q∞} is also metric.

Proposition 1.4.5. (c.f. [Par10]) The function ρ̃0(·, ·) on H2
C − {q∞} given by (1.8) is

a metric.
Proof. It obviously satisfies the properties of non-negativity, identity of indiscernible and
symmetry. It suffices to verify the triangle inequality. That is,

ρ̃2
0 ((z1, t1, u1), (z2, t2, u2))
=

∣∣∣|z1 − z2|2 + |u1 − u2| − it1 + it2 − 2i=(z1z2)
∣∣∣

≤
∣∣∣|z1 − z3|2 + |u1 − u3| − it1 + it3 − 2i=(z1z3)

∣∣∣
+2|z1 − z3||z3 − z2|+

∣∣∣|z3 − z2|2 + |u3 − u2| − it3 + it2 − 2i=(z3z2)
∣∣∣

≤
(
ρ̃0 ((z1, t1, u1), (z3, t3, u3)) + ρ̃0 ((z3, t3, u3), (z2, t2, u2))

)2
.
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We conclude this section by considering spheres with respect to the Cygan metric.

Definition 1.4.6. The Cygan sphere of radius r ∈ R+ and center w0 = (z0, t0) =
(z0, t0, 0) ∈ ∂H2

C is defined by

Sr(w0) = {w = (z, t, u) : ρ̃0(w,w0) = r}.

In other words, Sr(w0) is given by

Sr(w0) = {w = (z, t, u) :
∣∣∣|z − z0|2 + u+ it− it0 − 2i=(zz0)

∣∣∣ = r2}.

A simple lemma will be useful in the Chapter 4, we state it as follows.

Lemma 1.4.7. (c.f. [FFP10]) All Cygan balls are affinely convex.

Proof. The Cygan ball of radius r centered at o = (0, 0, 0) is given by

Sr(o) = {(z, t, u) ∈ H2
C :

(
|z|2 + u

)2
+ t2 ≤ r4}.

For λ ∈ (0, 1) and (z1, t1, u1), (z2, t2, u2) ∈ Sr(o), a simple calculation gives rise to(
|λz1 + (1− λ)z2|2 + λu1 + (1− λ)u2

)2
+ (λt1 + (1− λ)t2)2

≤
(
λ(|z1|2 + u1) + (1− λ)(|z2|2 + u2)

)2
+ (λt1 + (1− λ)t2)2

≤ λ
(
(|z1|2 + u1)2 + t21

)
+ (1− λ)

(
(|z1|2 + u1)2 + t21

)
≤ λr4 + (1− λ)r4 = r4.

Clearly Sr(o) is affinely convex. Any other Cygan ball is the image of one centred at
o under a Heisenberg translation. Since Heisenberg translations are affine motions, the
image is still affinely convex.

Remark 1.4.8. The boundary of a Cygan sphere on ∂H2
C is called a spinal sphere.

• For z0 = 0. Spinal spheres centered at w0 = (0, t0) are ovoids with the property that
along the locus z = 0 they have fourth order contact with their tangent plane. The
diameter of their equator, that is the points (z, t) with |z| = r, grows linearly with
r. On the other hand, the diameter of their meridians, that is the points (0, t) with
|t − t0| = r2, grows quadratically with r. Geometrically, as r tends to zero, spinal
spheres become very short and fat, lie a pancake, see Figure 1.2(a). Conversely, as r
tends to infinity, spinal spheres become very long and thin, like a cigar, see Figure
1.2(b).

• For z0 6= 0. Cygan spheres are sheared ovoids, see Figure 1.2(c), the magnitude of
the shear being proportional to |z0|. Otherwise they enjoy the same properties as
the case z0 = 0.
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(a) Pancake

(b) Cigar

(c) Sheared ovoid

1

Figure 1.2: The shapes of spinal spheres in the Heisenberg group.
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In this chapter we mostly state some geometric objects which are used to construct a
polyhedron. There are no totally geodesic real hypersurfaces in H2

C. The lack of totally
geodesic real hypersurfaces complicates the construction of fundamental domains. How-
ever there is a three dimensional submanifold that is foliated by totally geodesic subspaces
in two different ways. Throughout the thesis, the basic idea of constructing a fundamental
domain is to verify the conditions of Poincaré’s polyhedron theorem. As well, we can
obtain a geometric presentation for the group we consider by the Poincaré’s polyhedron
theorem.

2.1 Bisectors

A bisector is the locus of points in complex hyperbolic space equidistant from a given,
pair of points in complex hyperbolic space, say p and q. By the normalization of p and q
such that 〈p,p〉 = 〈q,q〉, we give the definition as follows:

Definition 2.1.1. The bisector equidistant from p and q is defined as

Bp,q =
{
z ∈ H2

C : |〈z,p〉| = |〈z,q〉|
}
. (2.1)

Remark 2.1.2. This definition of a bisector only depends on 〈p,p〉 = 〈q,q〉 and not on
whether this quantity is positive, negative or zero. If 〈p,p〉 = 〈q,q〉 > 0, then p and q are
polar vectors to complex lines Cp and Cq. Thus Bp,q is equidistant from two complex lines
Cp and Cq. In other words, for each z ∈ Bp,q the distance from z to the closest point of Cp
is the same as the distance from z to the closest point of Cq.

Definition 2.1.3. • The points p and q lie in a unique complex line Σ, called the
complex spine of the bisector Bp,q.

• We call spine the geodesic σ in Σ that is equidistant from our pair of points with
respect to the natural Poincaré metric on Σ. It is given by

σ = Σ ∩ Bp,q = {z ∈ Σ : ρ(z, p) = ρ(z, q)}.

Bisectors are not totally geodesic in complex hyperbolic space, but can be described
in terms of a foliation by totally geodesic subspaces in two different ways.

Theorem 2.1.4. (Mostow,Goldman)([Mos80, Gol99])

1. Let ΠΣ : H2
C 7→ Σ be the orthogonal projection map onto Σ. Then B is the preimage

of σ under ΠΣ,
B = Π−1

Σ (σ) =
⋃
s∈σ

Π−1
Σ (s).

Each fibre of this map, that is, each complex line that is the preimage of a point of
σ, is a slice of B.

2. The bisector B is the union of all Lagrangian planes that contain σ. These La-
grangian planes are called meridians of B.

Corollary 2.1.5. • A bisector is uniquely determined by its real spine.

• The bisector B is preserved under a complex involution in any of its slices.

• The bisector B is preserved under an anti-holomorphic involution in any of its merid-
ians.
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Definition 2.1.6. Let B be a bisector. The intersection S = B ∩ ∂H2
C is called a spinal

sphere. Suppose that σ is the spine of B, the two points of σ∩∂H2
C are called the vertices

of bisector.

2.1.1 Intersection of bisectors

The intersection of two or more bisectors can be very complicated, in general it is not
necessarily connected or contained in a totally geodesic subspace. We adopt the following
notation and recall several results which allow us to understand bisector intersections.
Definition 2.1.7. Let B1 and B2 denote bisectors with complex spines Σ1 and Σ2.

1. We call B1 and B2 cospinal if and only if Σ1 = Σ2;

2. We call B1 and B2 coequidistant if and only if Σ1 and Σ2 intersect outside the real
spines;

3. We call B1 and B2 cotranchal if and only if they share a common slice;

4. We call B1 and B2 comeridanal if and only it they share a common meridian.

In terms of the slice decomposition for bisectors, the following result helps us to un-
derstand bisector intersections.
Proposition 2.1.8. ([Mos80]) Let B be a bisector and C be a complex line such that
B ∩ C 6= ∅, then C ⊂ B (in which case C is a slice of B) or C ∩ B is a hypercycle in C. In
the ball model a hypercycle is an arc of a Euclidean circle intersecting the boundary.

We remark that a hypercycle in C is a curve with constant geodesic curvature (i.e.
the magnitude of the mean curvature is constant). In particular, unless the two bisectors
share a common slice, Proposition 2.1.8 implies that each connected component of the
intersection B1 ∩ B2 is a disk which is foliated by arcs of circles. It can be proven that
there are at most two connected components. If the bisectors are coequidistant, there is
a remarkable result due to Giraud.
Proposition 2.1.9. ([Gir21, Gol99]) Let B1 and B2 be two coequidistant bisectors with
complex spines Σ1 and Σ2 respectively, then B1∩B2 is a smooth disk, moreover there exists
one (and no more) bisector containing B1 ∩ B2 other than B1 and B2.

This intersection is not totally geodesic, we call it a Giraud disc. In particular, we can
find the third bisector passing through the Giraud disc using the following proposition,
see also [Tho10] and Figure 2.1.
Proposition 2.1.10. Let B1 and B2 be a pair of coequidistant bisectors with respective
complex (real) spines Σ1 and Σ2 (σ1 and σ2) such that their intersection is a Giraud disc
G. The third bisector B3 containing G can be defined as the following procedure. We
denote Σ1 ∩ Σ2 = p0 and let Rσi be the unique reflection fixing σi for i = 1, 2. Suppose
that p1 = Rσ1(p0) and p2 = Rσ2(p0), then

B1 = Bp0,p1 = {z ∈ H2
C : ρ(z, p0) = ρ(z, p1)},

B2 = Bp0,p2 = {z ∈ H2
C : ρ(z, p0) = ρ(z, p2)},

B3 = Bp1,p2 = {z ∈ H2
C : ρ(z, p1) = ρ(z, p2)}

and
G = {z ∈ H2

C : ρ(z, p0) = ρ(z, p1) = ρ(z, p3)}.
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p0

p1 p2

Σ1

Σ2

σ1 σ2

Giraud disc

Figure 2.1: The schematic view of Giraud disc.

2.1.2 Intersection with geodesics

Proposition 2.1.11. (see Theorem 5.5.1, [Gol99]) A real geodesic σ is contained in B if
and only if σ is contained in either a slice or a meridian of B.

If the geodesic σ is not entirely contained in B, the following proposition shows how
to see the number of intersection points between σ and B.

Proposition 2.1.12. Let B be a bisector and σ a geodesic, σ not contained B, then σ∩Σ
consists of at most two points. Moreover the number of intersection points between σ and
B is equal to the number of intersection points between σB (the real spine of B) with ΠΣ(σ)
(the image of σ under orthogonal projection onto the complex spine of B).

Corollary 2.1.13. Let B be a bisector, with complex spine Σ and σ a geodesic. If σ∩Σ 6= ∅
and σ is not contained in B, then σ intersects B in at most one point.

2.2 Isometric spheres

2.2.1 Busemann function

We compute the Busemann function in the Siegel domain model in order to define the
isometric spheres. Consider a unit speed geodesic σt ∈ H2

C such that limt→∞ σt = q∞.
The corresponding Busemann function (see [BGS85, Gol99]) is defined as

h∞(z) = lim
t→∞

(ρ(z, σt)− t).

Explicitly, the points in the Siegel domain corresponding to the vectors

σ̃t =

 −et/2/20
e−t/2


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move (as t→∞) at unit speed along a geodesic towards q∞ corresponding to

Q∞ =

 1
0
0

 .
Let z be the standard lift of z and 〈z, z〉 < 0. As t→∞, we see that

ρ(z, σ̃t) = 2 cosh−1

∣∣∣−et/2/2 + z1e
−t/2

∣∣∣√
−2<(z1)− |z2|2

∼ 2 cosh−1
(

et/2

2
√
−2<(z1)− |z2|2

)

∼ 2 log
(

et/2√
−2<(z1)− |z2|2

)

= t+ log 1
−2<(z1)− |z2|2

.

Definition 2.2.1. The Busemann function in Siegel domain is given by

h∞(z) = log 1
−(2<(z1) + |z2|2) = − log Ψ∞(z)

where
Ψ∞(z) = −〈z, z〉

〈z, Q∞〉〈Q∞, z〉
.

Recall that the horosphere (centered at q∞) of height u is the set of points satisfying
〈z, z〉 = u, that is the corresponding level sets h−1

∞ (− log u) of h∞(z). For z0 ∈ H2
C and

A ∈ PU(2, 1), then B(z0, A
−1(z0)) is a bisector equidistant between z0 and A−1(z0). As z0

tends to the boundary, then the distance in B(z0, A
−1(z0)) is replaced with a Busemann

function based at z0. We have

Definition 2.2.2. Given an element A ∈ PU(2, 1) such that A(q∞) 6= q∞, the isometric
sphere of A is defined to be the hypersurface

{z ∈ H2
C : h∞(z) = h∞(A(z))}.

In other words,
{z ∈ H2

C : |〈z, Q∞〉| = |〈z, A−1(Q∞)〉|}
where z and Q∞ are respectively the standard lifts of z and q∞ in C2,1.

Example 2.2.3. The isometric sphere of

I0 =

 0 0 1
0 −1 0
1 0 0


is

S = {(z, t, u) :
∣∣∣|z|2 + u− it

∣∣∣ = 2} (2.2)

in horospherical coordinates or

S = {[z1, z2, z3] ∈ H2
C : |z1| = |z3|} (2.3)

in homogeneous coordinates.
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Remark 2.2.4. • The isometric sphere S is the Cygan sphere at the origin, called the
standard isometric sphere. All other isometric spheres are images of S by Heisenberg
dilations, rotations and translations. Thus the isometric sphere with radius r and
center (z0, t0, 0) is given by{

(z, t, u) :
∣∣∣|z − z0|2 + u+ it− it0 + 2i=(zz0)

∣∣∣ = r2
}
.

• If A has the matrix form as  a b c
d e f
g h j

 , (2.4)

then A(q∞) 6= q∞ if and only if g 6= 0; see Lemma 1.3.10. The isometric sphere of A
has radius r =

√
2/|g| and center A−1(q∞), which in horospherical coordinates is

(z0, t0, 0) =
(
h

g
, 2=

( j
g

)
, 0
)
.

2.2.2 Dirichlet and Ford domains

The simplest type of fundamental polyhedra for discrete groups are Dirichlet and Ford
fundamental polyhedra.

Suppose Γ ⊂ PU(2, 1) is a discrete group of isometries of H2
C and choose a point

z0 ∈ H2
C, called the base point of the polyhedron.

Definition 2.2.5. The Dirichlet domain for Γ centered at z0 is defined as

Dz0(Γ) = {z ∈ H2
C| ρ(z, z0) < ρ(z, γ(z0)) ∀γ ∈ Γ\{Id}}.

In other words, Dz0(Γ) is the intersection of equidistant half-spaces

Dz0(Γ) =
⋂
γ 6=id

H(z0, γ(z0))

where the equidistant half-space is defined by

H(u, v) = {z ∈ H2
C| ρ(z, u) < ρ(z, v)}.

Remark 2.2.6. The base point should not be fixed by any element of Γ. If so, the
Dirichlet domain is exactly a fundamental domain otherwise a fundamental domain of Γ
is the intersection of a fundamental domain for Γ0 (the stabilizer of the base point) and
Dirichlet domain for Γ− Γ0.

We define the Ford domain when the base point z0 tends to an ideal point by using
Busemann function. Here the boundary of Ford domain become the union of parts of
isometric spheres. As well, the Dirichlet fundamental domains converge to Ford funda-
mental domains. Replace z0 by q∞ and the Bergman metric ρ by Busemann function in
the previous definition.

Definition 2.2.7. The Ford domain is defined as

F∞(Γ) = {z ∈ H2
C| h∞(z) < h∞(γ(z))}.

In other words, F∞(Γ) is the intersection of isometric spheres of all elements not fixing
infinity, that is,

F∞(Γ) = {z ∈ H2
C| |〈z, Q∞〉| < |〈z, γ−1(Q∞)〉|}.
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2.2.3 The geographical coordinates

Isometric spheres are examples of bisectors and, as such, have a very nice foliation by two
different families of totally geodesic submanifolds,

• the slices,

• the meridians.

The real geodesic passing through two vertices of a bisector is called the spine of the
bisector.

Together the slices and meridians give geographical coordinates on the bisector (see
[FP06]). In order to parameterize the standard isometric sphere S, we write

|z|2 + u− it = 2eiθ

for θ ∈ [−π/2, π/2] (in particular, |z| ≤
√

2 cos θ) and

z = reiα+iθ/2

for r ∈
[
−
√

2 cos(θ),
√

2 cos(θ)
]
and α ∈ [−π/2, π/2).

Definition 2.2.8. In geographical coordinates, S is parameterized by
 −eiθ
reiα+iθ/2

1

 : θ ∈
[
−π2 ,

π

2

]
, α ∈

[
−π2 ,

π

2

)
, r ∈

[
−
√

2 cos(θ),
√

2 cos(θ)
] . (2.5)

In horospherical coordinates, the point of S with geographical coordinates (r, θ, α) is
given by (reiα+iθ/2,−2 sin(θ), 2 cos(θ)−r2). The spine, slices and meridians of S are given
in the next proposition in terms of geographical coordinates.

Proposition 2.2.9. (cf. [FP06]) The isometric sphere of I0, S, with coordinates given
by (2.5) is a bisector. Moreover

(i) the spine of S is given by r = 0;

(ii) the slices of S are given by θ = θ0 for fixed θ0 ∈ [−π/2, π/2];

(iii) the meridians of S are given by α = α0 for fixed α0 ∈ [−π/2, π/2).

Proof. The spine of S passes through its vertices q∞ and I0(q∞). Thus the spine lies in
the complex line spanned by q∞ and I0(q∞), that is the equation z = 0 and the first part
follows.

A slice is the preimage of a point of the spine under orthogonal projection onto the
complex spine. When we orthogonally project onto the complex spine z = 0, we throw
away the second coordinate in the vector and leave the other entries unchanged. For each
point (0,−2 sin(θ0), 2 cos(θ0)) on the spine, the points of slice are given by

 −eiθ0z
1

 ∈ H2
C

 .
The second part follows immediately.
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The meridians of S are the fixed-point of antiholomorphic involutions fixing the spine.
For α0 ∈ [−π/2, π/2), these maps are given by

`α0 :

 z1
z2
z3

 7−→
 z3
−e2iα0z2

z1

 .
By applying `α0 on the points of S, we see that

`α0 :

 −eiθ
reiα+iθ/2

1

 7−→
 1
−re2iα0−iα−iθ/2

−e−iθ

 ∼
 −eiθ
re2iα0−iα+iθ/2

1

 .
Therefore, the fixed-points by `α0 is given by α = α0, that is the meridian.

2.3 Poincaré’s polyhedron theorem

Definition 2.3.1. Let Γ be a discrete group of complex hyperbolic isometries. A subset
∆ of H2

C is called a fundamental domain for Γ if the following satisfy.

• ∆ is a domain in H2
C, that is an open connected set;

• ∆ ∩ γ(∆) = ∅ for all γ ∈ Γ \ {id};

• ⋃
γ∈Γ γ(∆) = H2

C;

• the complex hyperbolic volume of ∂∆ is 0.

In this section we establish a Poincaré’s polyhedron theorem suitable for our purposes,
compare [FZ99, PPl06]. We will follow the formulation given by Mostow in [Mos80] and
also refer to [DFP05, FP06, Par06]. In what follows our polyhedron D constructed in
the thesis is homeomorphic to the combinatorial model, we will use a form of Poincaré’s
polyhedron theorem to show that D is a fundamental domain and obtain a geometric
presentation for the group.

Definition 2.3.2. A polyhedron is a cellular complex homeomorphic to a (compact) poly-
tope, with the properties that there is only one cell of highest dimension and that each
codimension-two cell is contained in exactly two codimension-one cells (noncompact if
possible). Then its realization as a cell complex in a space X is called a polyhedron.

Each of its codimension-2 cells, called faces, is contained in exactly two codimension-1
cells, called sides. A polyhedron is smooth if its cells are smooth. For the boundary
of polyhedron, the sides contained in bisectors are naturally smooth. Nevertheless, the
sides of our polyhedron not contained in bisectors (see Figure 5.7) are foliated by geodesic
triangular cones, which gives rise to their smoothness. Moreover, their faces foliated by
geodesics are also smooth.

Definition 2.3.3. A Poincaré polyhedron is a smooth polyhedron D in a manifold X with
sides Sj and side-pairing maps gj ∈ Isom(X) satisfying:

(I) The sides of polyhedron are paired by a set Λ of homeomorphisms gij : Si −→ Sj of
X called the side-pairing transformations, which respect the cell structure. We
assume that if gij ∈ Λ, g−1

ij = gji ∈ Λ.
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(II) For every gij ∈ Λ such that Si = gij(Sj), then gij(D) ∩D = Si.

Remark 2.3.4. If Si = Sj (that is, a side-pairing maps one side to itself), then we impose
the restriction that gii : Si −→ Si is of order two, and we call it a reflection. In this case,
the relation g2

ii = 1 is called a reflection relation.

Let S1 be a side of D and F1 be a face contained in F1. Let S′1 be the other side
containing F1. Let S2 be the side paired to S′1 by g1 and F2 = g1(F1). Again, there exists
only one other side containing F2, which we call F ′2. We define recursively gi and Fi, so
that gi−1 ◦ · · · ◦ g1(F1) = Fi.

Definition 2.3.5. Cyclic condition
Cyclic is the condition that for each pair (F1, S1) (a face contained in a side), there exists
n ≥ 1 such that, in the construction in the previous paragraph, gn ◦ · · · ◦ g1(S1) = S1 and
gn ◦ · · · ◦ g1 restricted to F1 is the identity. Moreover, writing g = gn ◦ · · · ◦ g1, there exists
a positive integer m such that gm = 1 and

g−1
1 (D) ∪ (g2 ◦ g1)−1(D) ∪ · · · ∪ g−1(D)∪

(g1 ◦ g)−1(D) ∪ (g2 ◦ g1 ◦ g)−1(D) ∪ · · · ∪ (g2)−1(D)
...

(g1 ◦ gm−1)−1(D) ∪ (g2 ◦ g1 ◦ gm−1)−1(D) ∪ · · · ∪ (gm)−1(D)

is a cover of a closed neighborhood of the interior of F1 by D and its images.
The relation gm = (gn ◦ · · · ◦ g1)m = Id is called a cycle relation.

We now state Poincaré’s polyhedron theorem:

Theorem 2.3.6. (Poincaré’s polyhedron theorem) Let D be a compact Poincaré poly-
hedron with side-pairing transformations Λ ⊂ Isom(H2

C) in H2
C satisfying the cyclic con-

dition. Let Γ be the group generated by Λ. Then

• Γ is a discrete subgroup of Isom(H2
C),

• D is a fundamental domain, and

• Γ has a presentation given by

Γ = 〈 Λ | reflection relations, cycle relations〉.
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This chapter has been published in Mathematical Proceedings of the Cambridge Philosoph-
ical Society (see reference [Zh11] in the bibliography).

3.1 Introduction

Picard modular groups for Od, denoted by PU(2, 1,Od), are the subgroups of PU(2, 1)
with entries in Od where Od be the ring of integers in the imaginary quadratic number field
Q(i
√
d). The general family of arithmetic groups PU(2, 1,Od) gives the simplest lattices

known and they are due to Picard [Pic83, Pic84]. In particular, the case of O3 = Z[ω],
where ω is a cube root of unity was treated in [FP06] whose fundamental domain is
a 4-simplex with one ideal vertex. A description of the fundamental domain in the case
O1 = Z[i] was obtained in [FFP10, FL05, FLa05]. In [FFP10], Falbel, Francsics and Parker
describe a fundamental domain for the group PU(2, 1;O1) and analyze the combinatorics
of the fundamental domain to obtain a presentation of the group.

Recently, Stover [Sto10] has studied volumes of Picard modular surfaces. One of his
main results is that there are exactly only two of arithmetic cusped complex hyperbolic
orbifolds with minimal volume, namely, whose corresponding fundamental groups are the
Eisenstein-Picard modular group and its sister. The sister of Eisenstein-Picard modular
group PU(2, 1,Z[ω]) was defined by Parker in [Par98]. It is convenient to adopt the
following notation for 3× 3 complex matrices: z11 z12 z13

z21 z22 z23
z31 z32 z33

 .
Following notations as in [Par98], we denote the Eisenstein-Picard modular group

by G1 and its sister by G2 in this chapter. Let G2 be the collection of all elements of
PU(Q(i

√
3)) whose entries in the above form have z11, z12, z13(i

√
3), z21/(i

√
3), z22, z23,

z31/(i
√

3), z32/(i
√

3), and z33 all in O3. In other words,

(i) z13 = x13/2 + iy13/2
√

3, where x13 and y13 are integers of the same parity;

(ii) zjk = xjk/2 + i
√

3yjk/2 for all other j, k, where xjk and yjk are integers of the same
parity;

(iii) x21, x31 and x32 are all divisible by 3.

By construction, G1 and G2 are commensurable. Furthermore, they have a common
subgroup G1 ∩ G2 of index 4 in both G1 and G2; see [Par98]. As a consequence, one of
the main results in [Par98] is as follows:

Theorem 3.1.1. [Par98] Let G1 and G2 be as above. The orbifolds H2
C/G1 and H2

C/G2
are distinct and have volumes

Vol(H2
C/G1) = Vol(H2

C/G2) = π2

27 .

However, neither Parker nor Stover give an explicit fundamental domain or a presen-
tation for G2.

The first part of this chapter is devoted to construct an explicit fundamental domain
for the action of G2 on H2

C. The special feature which simplifies the analysis is that the
quotientH2

C/G2 has only one cusp. The main idea (inspired by the analogous construction
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of G1 [FP06]) is to obtain a fundamental domain from the Ford domain instead of the
Dirichlet domain. The Ford domain is the intersection of the exteriors of isometric spheres
of all elements not fixing infinity, that is also a fundamental domain for the coset space
of (G2)∞ (the stabilizer of the point at infinity). In order to construct a fundamental
domain, we must intersect the Ford domain with a suitable fundamental domain for (G2)∞.
Using the complex hyperbolic version of Poincaré’s polyhedron theorem, we show their
intersection gives a fundamental domain, from which we obtain a presentation. The main
difference between the fundamental domain we construct and the one for PU(2, 1,Z[ω])
is that our domain comprises two compact sides which are paired.

The second part of this chapter is devoted to use a form of Gauss-Bonnet theorem
to calculate the volume of the orbifold H2

C/G2, which is the known value of the volume
of the quotient orbifold (see Theorem 3.1.1). In order to do this we have to analyze the
stabilizers and orbits of all n-dimensional faces of our fundamental polyhedron.

3.2 The group G2

In this section we describe some general features of the group G2. In particular, we find
a set of generators and describe a fundamental domain for the stabilizer of infinity.

Let ω denote the cube root of unity (−1+i
√

3)/2. The group G2 comprises all matrices
in U(2, 1) (preserving the second Hermitian form) of the form

A =

 a b ci/
√

3
di
√

3 e f

gi
√

3 hi
√

3 j


where a, b, · · · , h, j are all elements of Z[ω].

3.2.1 The stabilizer (G2)∞ of q∞

First, we want to analyze (G2)∞, the stabilizer of q∞. Every element of (G2)∞ is up-
per triangular, and its diagonal entries are units in Z[ω]. Therefore, (G2)∞ contains no
dilations and so is a subgroup of Isom(N ); and fits into the exact sequence (1.5) as

0 −→ R ∩ (G2)∞ −→ (G2)∞
Π∗−→ Π∗((G2)∞) −→ 1.

We can find explicitly the kernel and image of (G2)∞ as in [FP06].

Proposition 3.2.1. The stabilizer (G2)∞ of q∞ in G2 satisfies

0 −→ 2√
3
Z −→ (G2)∞

Π∗−→ 4(2, 3, 6) −→ 1,

where 4(2, 3, 6) denotes the triangle group comprising orientation-preserving symmetries
of Z[ω].

Proof. From the explicit construction (1.6) of Π∗, we see that for A ∈ (G2)∞,

Π∗(A) =
[

(−ω)n z0
0 1

]
,
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where z0 ∈ Z[ω]. It follows from Proposition 3.1 of [FP06] that Π∗((G2)∞) is generated by
R∗(z) = −ωz and S∗(z) = −z + 1, which is the triangle group 4(2, 3, 6) = {R∗, S∗| R6

∗ =
S2
∗ = (R∗S∗)3 = 1}.
Likewise, the kernel of Π∗ is easily seen to consist of those vertical translations in

(G2)∞, that is , Heisenberg translation by (0, 2n/
√

3) ∈ N for n ∈ Z.

The following proposition gives the generators of (G2)∞.

Proposition 3.2.2. (G2)∞ is generated by

R =

 1 0 0
0 −ω 0
0 0 1

 , S =

 1 1 −ωi/
√

3
0 −1 1
0 0 1

 .
Proof. The triangle group 4(2, 3, 6) is generated by

Π∗(R) = R∗ : z −→ −ωz, Π∗(S) = S∗ : z −→ −z + 1.

Hence we only need to show that R and S generate R ∩ (G2)∞ ' 2√
3Z. Observe that

S2 =

 1 0 i/
√

3
0 1 0
0 0 1

 = T, (3.1)

which is precisely the generator of 2√
3Z∩ (G2)∞. Therefore (G2)∞ is generated by R and

S.

We first construct a fundamental domain for the parabolic subgroup (G2)∞ acting on
the Heisenberg group. We want to describe the action of R and S on each horosphere.
Recall that complex hyperbolic space can be parameterized in horospherical coordinates
(z, t, u) ∈ C× R× R+ by:

(z, t, u) −→

 (−|z|2 − u+ it)/2
z
1

 .
Then, using the matrices of R and S, we obtain the following action of R, 1 0 0

0 −ω 0
0 0 1


 (−|z|2 − u+ it)/2

z
1

 =

 (−|z|2 − u+ it)/2
−ωz

1


and S,  1 1 −ωi/

√
3

0 −1 1
0 0 1


 (−|z|2 − u+ it)/2

z
1


=

 (−|z|2 − u+ it)/2 + z − ωi/
√

3
−z + 1

1



=


(
−| − z + 1|2 − u+ i

[
t+ 2=(z) + 1/

√
3
])
/2

−z + 1
1

 .
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We also introduce two elliptic elements fixing q∞ used in later:

RS−1 =

 1 1 ωi/
√

3
0 ω 1
0 0 1

 and R−1S =

 1 1 −ωi/
√

3
0 ω −ω
0 0 1

 . (3.2)

Therefore, we have the properties of those matrices:

(i) R has order 6 and rotates the complex line spanned by 0 and ∞ by π/3, that is, it
acts on horospherical coordinates by

R : (z, t, u) 7−→ (−ωz, t, u).

(ii) T is the shortest vertical translation. Its action on horospherical coordinates is given
by

T : (z, t, u) 7−→ (z, t+ 2/
√

3, u).

(iii) S has a screw parabolic map with axis the complex line through z = 1/2. It acts on
horospherical coordinates by

S : (z, t, u) 7−→ (−z + 1, t+ 2=(z) + 1/
√

3, u)

(iv) RS−1 has order 3 and rotates the complex line through z = 1/2 + i/2
√

3 by 2π/3.
It acts on horospherical coordinates by

RS−1 : (z, t, u) 7−→ (ωz − ω, t+ 2=(ωz)− 1/
√

3, u).

(v) R−1S also has order 3 and rotates the complex line through z = 1/2 − i/2
√

3 by
2π/3. It acts on horospherical coordinates by

R−1S : (z, t, u) 7−→ (ωz − ω, t+ 2=(z) + 1/
√

3, u).

These actions preserve each horosphere, that is, the set of points where u is constant.
Thus we may drop the dependence on u, and we obtain the action on N = C× R.

We now construct a fundamental domain for the action of (G2)∞ on N . We know that
Π∗((G2)∞ = 4(2, 3, 6) is a triangle group of Z[ω]. A fundamental domain for this group
is the triangle in C with vertices at 0, 1/2− i/2

√
3 and 1/2 + i/2

√
3; see Figure 3.1. Side

pairing maps are given by

R∗ =
[
−ω 0
0 1

]
, S∗ =

[
−1 1
0 1

]
.

The first of these is a rotation of order 6 fixing 0 and the second is a rotation of order 2
fixing 1/2.

A fundamental domain for (G2)∞ can be constructed by the intersection of preimages
of this triangle under vertical projection Π and a fundamental domain for ker(Π∗). The
inverse image of the triangle under Π is an infinite prism. The kernel of Π∗ is the infinite
cycle group generated by T , the vertical translation by (0, 2/

√
3). So a fundamental

domain for this group is the set of points where −1/
√

3 < t < 1/
√

3. Hence a fundamental
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0 1
2

1
2
+ i

2
√

3

1
2 − i

2
√

3

R∗
S∗

Figure 3.1: Fundamental domain for ∆(2, 3, 6) in C. The map R∗ rotates by π/3
about the origin and the map S∗ rotates by π about 1/2.

domain for (G2)∞ is the prism in N with vertices at (0,±1/
√

3), (1/2− i/2
√

3,±1/
√

3),
(1/2+i/2

√
3,±1/

√
3); see Figure 3.2. The side pairings act on points (z, t) ∈ N as follows:

R(z, t) = (−ωz, t),
S(z, t) = (−z + 1, t+ 2=(z) + 1/

√
3),

T (z, t) = (z, t+ 2/
√

3).

We can see the action of S on the triangle (ẑ+
1 , ẑ

−
1 , ẑ

−
2 ) is the composition of a reflection

on the edge ẑ+
1 ẑ
−
2 and a clockwise rotation. We summarize the side-pairing maps by acting

on the vertices of the prism:

R : (ẑ+
0 , ẑ

−
0 , ẑ

−
1 , ẑ

+
1 ) 7−→ (ẑ+

0 , ẑ
−
0 , ẑ

−
2 , ẑ

+
2 ),

S : (ẑ+
1 , ẑ

−
1 , ẑ

−
2 ) 7−→ (ẑ+

2 , ẑ
−
2 , ẑ

+
1 ),

T : (ẑ−0 , ẑ−1 , ẑ−2 ) 7−→ (ẑ+
0 , ẑ

+
1 , ẑ

+
2 ).

Denoting all the edges by the ordered pairs of their endpoints, we can also consider
the edge cycles given by these side-pairings are

(ẑ+
0 , ẑ

−
0 ) R−→ (ẑ+

0 , ẑ
−
0 ),

(ẑ+
1 , ẑ

−
1 ) S−→ (ẑ+

2 , ẑ
−
2 ) R−1
−→ (ẑ+

1 , ẑ
−
1 ),

(ẑ−1 , ẑ−2 ) S−→ (ẑ−2 , ẑ+
1 ) S−→ (ẑ+

1 , ẑ
+
2 ) T−1
−→ (ẑ−1 , ẑ−2 ),

(ẑ−0 , ẑ−1 ) R−→ (ẑ−0 , ẑ−2 ) T−→ (ẑ+
0 , ẑ

+
2 ) R−1
−→ (ẑ+

0 , ẑ
+
1 ) T−1
−→ (ẑ−0 , ẑ−1 ).

This has used all the edges of fundamental domain. The first of these cycles gives the
relation R6 = I, the second gives the relation (R−1S)3 = I, the third gives the relation
S2 = T and the last gives the relation T−1R−1TR = I. These relations can directly follow
from the properties of matrices (3.1) and (3.2).

This enables us to give the following proposition.
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R

S

T

ẑ+
0 = (0, 1√

3
)

ẑ+
1 = (1

2
− i

2
√

3
, 1√

3
)

ẑ+
2 = (1

2 +
i

2
√

3
, 1√

3
)

ẑ−0 = (0,− 1√
3
)

ẑ−1 = (1
2 − i

2
√

3
,− 1√

3
)

ẑ−2 = (1
2
+ i

2
√

3
,− 1√

3
)

Figure 3.2: Fundamental domain for (G2)∞ in the Heisenberg group: the map R
rotates through π/3 about z = 0; the map S is a screw Heisenberg rotation through
π about z = 1/2 followed by an upward vertical translation by 1/

√
3; the map T

translates along t-axis by 2/
√

3.

Proposition 3.2.3. A fundamental domain for (G2)∞ is the prism with vertices (in
Heisenberg coordinates) (z, t) = (0,±1/

√
3), (1/2−i/2

√
3,±1/

√
3), (1/2+i/2

√
3,±1/

√
3).

A presentation is given by

(G2)∞ = 〈R,S, T | R6 = (R−1S)3 = [R, T ] = identity, S2 = T 〉.

3.2.2 Generators of G2

First consider the map

I1 =

 0 0 i/
√

3
0 −ω 0
i
√

3 0 0

 ,
it has the isometric sphere S0 given in horospherical coordinates by

S0 = {(z, t, u) :
∣∣∣|z|2 + u− it|

∣∣∣ = 2/
√

3} (3.3)



58 Chapter 3. A minimal volume arithmetic cusped complex hyperbolic orbifold

or in geographical coordinates S0 is parameterized by
 −eiθ/

√
3

reiα+iθ/2

1

 : θ ∈ [−π/2, π/2], α ∈ [−π/2, π/2), r ∈
[
−
√

2 cos θ√
3
,

√
2 cos θ√

3

] . (3.4)

Observe that the action of I1 on S0 is given by 0 0 i/
√

3
0 −ω 0
i
√

3 0 0


 −eiθ/

√
3

reiα+iθ/2

1

 =

 i/
√

3
reiα+iθ/2−iπ/3

−ieiθ

 = −ieiθ
 −e−iθ/

√
3

rei(α+π/6)−iθ/2

1


We see that I1 maps S0 to itself, sending the point with coordinates (r, θ, α) to the point

with coordinates (r,−θ, α + π/6) when −π/2 ≤ α < π/3 or the point with coordinates
(−r,−θ, α − 5π/6) when π/3 ≤ α < π/2. Therefore I1 is an elliptic element of order 12.
Moreover, I1 swaps the inside and the outside of S0.

Proposition 3.2.4. Let (G2)∞ be the stabilizer of q∞ in G2. Then there exists a funda-
mental domain for the action of (G2)∞ on ∂H2

C whose interior lies inside the ball in ∂H2
C

whose boundary is ∂S0.

Proof. The same results are proved for the Eisenstein-Picard group in [FP06] and Gauss-
Picard group in [FFP10]. As in the proof of Proposition 3.2.3, the prism with vertices
(in Heisenberg coordinates) (0,±1/

√
3), (1/2− i/2

√
3,±1/

√
3), (1/2 + i/2

√
3,±1/

√
3) is

a fundamental domain for (G2)∞. All these vertices lie inside ∂S0 in Heisenberg group.
Since ∂S0 is affinely convex (c.f. Lemma 1.4.7), the whole prism lies inside ∂S0.

We now show that adjoining I1 to (G2)∞ gives the full group G2. In order to prove
that, we should show that 〈R,S, T, I1〉 has only one cusp. The fact that G2 has only one
cusp is already known we refer the reader to [Par98].

Proposition 3.2.5. The group G2 is generated by T,R, S and I1.

Proof. (cf. [FP06, FFP10]) The same result for the Eisenstein-Picard group and Gauss-
Picard group. Since a fundamental domain for 〈R,S, T, I1〉 lies outside the isometric
sphere of I1 and inside the fundamental domain for 〈R,S, T 〉. The Proposition 3.2.4
implies 〈R,S, T, I1〉 has only one cusp. The fact that G2 has the same cusp as the group
generated by T,R, S and I1 implies that they are the same.

3.3 Construction of a prism

In this section, we will construct a prism P0 by the intersection of isometric spheres. In
fact, the prism P0 is the compact part of the boundary of a fundamental domain for G2.
To have a global view of the prism we refer the readers to Figures 3.3 and 3.6. The prism
contains two compact sides of the fundamental domain and the other sides are cones based
at the faces of this prism with cone point the ideal vertex.

We begin by investigating the intersection of S0 with its neighboring isometric spheres.
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3.3.1 The intersection of S0 and its neighbors

Here we will use some isometric spheres and their intersections to define the compact sides.
The bisectors we need are the following:

S0, T (S0), T−1(S0), S(S0), S−1(S0), RS−1(S0), R−1S(S0)

which are, respectively, the isometric spheres of

I1, T I1T
−1, T−1I1T, SI1S

−1, S−1I1S, RS−1I1SR
−1, R−1SI1S

−1R.

In particular, it suffices to determine

T±(S0) ∩ S0, S±(S0) ∩ S0.

The other intersections are easily obtained from these. For example,

R−1S(S0) ∩ S0 = R−1(S(S0) ∩ S0).

We need to investigate the intersection of these bisectors with S0. A direct computation
shows that T (S0), T−1(S0), S(S0), S−1(S0) are given by

T (S0) =
{

(z, t, u) :
∣∣∣ |z|2 + u− it+ 2i/

√
3
∣∣∣ = 2/

√
3
}
, (3.5)

T−1(S0) =
{

(z, t, u) :
∣∣∣ |z|2 + u− it− 2i/

√
3
∣∣∣ = 2/

√
3
}
, (3.6)

S(S0) =
{

(z, t, u) :
∣∣∣ |z|2 − 2z + u+ 1− it+ i/

√
3
∣∣∣ = 2/

√
3
}
, (3.7)

S−1(S0) =
{

(z, t, u) :
∣∣∣ |z|2 − 2z + u+ 1− it− i/

√
3
∣∣∣ = 2/

√
3
}
. (3.8)

We start to describe the intersection of these bisectors. Note that T± and S± will be
denoted by T, T−1 and S, S−1 respectively in Lemmas 3.3.1 and 3.3.2.

Lemma 3.3.1. In geographical coordinates, a point (r, θ, α) of S0 with θ ∈ [−π/6, π/6]
does not intersect the interior of T (S0) and T−1(S0). Furthermore, T±(S0) ∩ S0 is a
common slice of the bisectors T±(S0) and S0 which corresponds to θ = ∓π/6.

Proof. Recall that a point of S0 is given by −eiθ/
√

3
reiα+iθ/2

1

 .
In horospherical coordinates, it is given by

(
reiα+iθ/2,−2 sin θ/

√
3, 2 cos θ/

√
3− r2

)
, where

θ ∈ [−π/2, π/2], α ∈ [−π/2, π/2), r ∈
[
−
√

(2 cos θ)/
√

3,
√

(2 cos θ)/
√

3
]
. Therefore, a

point of S0 does not intersect the interior of T (S0) if and only if∣∣∣∣r2 + 2√
3

cos θ − r2 + i
2√
3

sin θ + i
2√
3

∣∣∣∣ ≥ 2√
3
.

A simple computation implies that sin θ ≥ −1/2, i.e. θ ∈ [−π/6, π/2]. Similarly, a point
of S0 does not intersect the interior of T−1(S0) if and only if θ ∈ [−π/2, π/6]. Therefore,
T±(S0) ∩ S0 are respectively the slices θ = ∓π/6. This completes the result.
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Lemma 3.3.2. S±(S0) ∩ S0 is a topological disk.

Proof. In fact in horospherical coordinates (z, t, u) of the bisector S0, the intersection is
foliated by arcs of circles, each contained in a slice of height t. We show it explicitly as
follows. Recall that the coordinates (z, t), with that |z|4 + t2 < 4/3, parameterize the
bisector S0 whose equation, in horospherical coordinates, are (|z|2 + u)2 + t2 = 4/3. As
vectors in C2,1 we obtain therefore (−|z|2 − u+ it)/2

z
1

 =

 (−
√

4/3− t2 + it)/2
z
1

 .
Then we have

S ·

 (−
√

4/3− t2 + it)/2
z
1


=

 1 1 −ωi/
√

3
0 −1 1
0 0 1


 (−

√
4/3− t2 + it)/2

z
1


=

 (−
√

4/3− t2 + it)/2 + z − ωi/
√

3
z
1

 .
The condition that such a point lies in S0 is that the first entry has absolute value 1/

√
3,

that is, ∣∣∣∣∣−
√

4/3− t2 + it

2 + z − ωi√
3

∣∣∣∣∣ = 1√
3
.

For each fixed height (with −2/
√

3 < t < 2/
√

3), the intersection lies on the circle centered
at (

√
4/3− t2 − it)/2 + ωi/

√
3 with radius 1/

√
3. The condition for the existence of an

intersection between this circle and the slice of height t is that the sum of the radii of
these two circles, 1/

√
3 + (4/3− t2)1/4, be greater than the distance between the centers,

that is, |(
√

4/3− t2 − it)/2 + ωi/
√

3|. That gives the equation

[
1√
3

+
(4

3 − t
2
)1/4

]2

>

∣∣∣∣∣ ωi√3
+
√

4/3− t2 − it
2

∣∣∣∣∣
2

whose solution is

− 2√
3
< t <

(291
√

3 + 504)1/3

3 + 1
(291
√

3 + 504)1/3 −
4
√

3
3 <

2√
3
.

This shows that the intersection is foliated by a one-parameter family of arcs of circles
and therefore is a topological disc. Observe that S−1(S0) ∩ S0 = S−1(S0 ∩ S(S0) implies
that is also a topological disk.

We describe this intersection in more details below.
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3.3.2 The vertices

In this section we define the vertices of the prism, all of them will correspond to vertices of
the fundamental domain for (G2)∞ in the Heisenberg group. In fact, the vertical projection
(z, t, u)→ (z, t) which projects the geodesic passing through (z, t, u) to q∞ to its end point
(z, t) maps the vertices of this prism to the vertices of fundamental domain for (G2)∞.

We start to define the vertices of the prism as points of C2,1 and discuss their horo-
spherical and geographical coordinates. There are three vertices lying on the common slice
of S0 and T (S0), which are denoted by z+

j , j = 0, 1, 2. Let z+
0 define the intersection of the

spine of S0 and the common slice θ = −π/6 (that is height t = 1/
√

3 in the Heisenberg
group N ). Other two vertices are the intersection of four bisectors, that are given by

z+
1 = S0 ∩ T (S0) ∩ S−1(S0) ∩R−1S(S0),
z+

2 = S0 ∩ T (S0) ∩ S(S0) ∩RS−1(S0).

Similarly, three vertices lie on the common slice of S0 and T−1(S0), which are denoted
by z−j , j = 0, 1, 2. Let z−0 define the intersection of the spine of S0 and the common slice
θ = π/6 (that is height t = −1/

√
3 in N ). Other two vertices are given by

z−1 = S0 ∩ T−1(S0) ∩ S−1(S0) ∩R−1S(S0),
z−2 = S0 ∩ T−1(S0) ∩ S(S0) ∩RS−1(S0).

We now list all the vertices as points of C2,1:
The vertices on the common slice of S0 and T (S0) are

z+
0 =

 −
1
2 + i

2
√

3
0
1

 , z+
1 =

 −
1
2 + i

2
√

3
1
2 −

i
2
√

3
1

 , z+
2 =

 −
1
2 + i

2
√

3
1
2 + i

2
√

3
1

 .
The vertices on the common slice of S0 and T−1(S0) are

z−0 =

 −
1
2 −

i
2
√

3
0
1

 , z−1 =

 −
1
2 −

i
2
√

3
1
2 −

i
2
√

3
1

 , z−2 =

 −
1
2 −

i
2
√

3
1
2 + i

2
√

3
1

 .
In horospherical and geographical coordinates of these vertices z±j points are given by

z t u r θ α

z+
0 0 1/

√
3 1 0 −π/6

z+
1 1/2− i/2

√
3 1/

√
3 2/3 1/

√
3 −π/6 −π/12

z+
2 1/2 + i/2

√
3 1/

√
3 2/3 1/

√
3 −π/6 π/4

z−0 0 −1/
√

3 1 0 π/6
z−1 1/2− i/2

√
3 −1/

√
3 2/3 1/

√
3 π/6 −π/4

z−2 1/2 + i/2
√

3 −1/
√

3 2/3 1/
√

3 π/6 π/12

By computation we verify that z+
1 , z

−
2 ∈ S(S0) ∩ S−1(S0).
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3.3.3 The edges

We first investigate the intersection of S0 and S(S0), S−1(S0) more closely than before.
We compute it explicitly in geographical coordinates and show the following result.

Lemma 3.3.3. A point (r, θ, α) of S0 in geographical coordinates with −π/12 ≤ α ≤ π/4
does not intersect the interior of S(S0), provided that

r ≤ 1√
3

[
2 cos

(
θ

2 −
π

12

)
cos

(
α− π

12

)
−
√

1− 4 cos2
(
θ

2 −
π

12

)
sin2

(
α− π

12

)]
with equality if and only if the point lies in S0 ∩ S(S0).
Proof. A point of H2

C does not lie in the interior of S(S0) (cf. 3.7) if satisfies
2√
3
≤
∣∣∣∣|z|2 − 2z + u+ 1− it+ i√

3

∣∣∣∣ . (3.9)

If such a point lies on S0, we can write it in geographical coordinates. Substituting in
(3.9) gives

1 ≤
∣∣∣−√3rei(α+θ/2) + eiθ + eiπ/6

∣∣∣ =
∣∣∣∣√3rei(α−π/12) − 2 cos

(
θ

2 −
π

12

)∣∣∣∣ . (3.10)

We have equality in (3.10) if and only if the point lies in S0 ∩ S(S0). Expanding out the
right-hand side of (3.10), we see that is equivalent to

3r2 − 4
√

3r cos
(
θ

2 −
π

12

)
cos

(
α− π

12

)
+ 4 cos2

(
θ

2 −
π

12

)
− 1 ≥ 0. (3.11)

By solving this inequality, we know that all points of S0 do not intersect the interior of
S(S0) if satisfy with

r ≤ 1√
3

[
2 cos

(
θ

2 −
π

12

)
cos

(
α− π

12

)
−
√

1− 4 cos2
(
θ

2 −
π

12

)
sin2

(
α− π

12

)]
or

r ≥ 1√
3

[
2 cos

(
θ

2 −
π

12

)
cos

(
α− π

12

)
+
√

1− 4 cos2
(
θ

2 −
π

12

)
sin2

(
α− π

12

)]
.

We claim that the second of these solutions is always greater than
√

2 cos(θ)/
√

3 as
−π/12 ≤ α ≤ π/4 and so does not correspond to a point of S0. In order to see this,
observe that −π/12 ≤ α ≤ π/4 implies 2 cos(α/2− π/12) ≥

√
3 and 4 sin2(α− π/12) ≤ 1.

Thus

1√
3

[
2 cos

(
θ

2 −
π

12

)
cos

(
α− π

12

)
+
√

1− 4 cos2
(
θ

2 −
π

12

)
sin2

(
α− π

12

)]

≥ 1√
3

[√
3 cos

(
θ

2 −
π

12

)
− sin

(
θ

2 −
π

12

)]
= 2√

3
cos

(
θ

2 + π

12

)

=
√

2√
3

[cos(θ + π/6) + 1√
3

]

≥
√

2 cos θ√
3
.
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In fact,

cos(θ + π/6) + 1√
3

− cos θ = 1√
3

[√
3

2 cos θ − 1
2 sin θ + 1−

√
3 cos θ

]

= 1− sin(θ + π/3)√
3

≥ 0.

Note that when θ = π/6 and α = π/12 or π/4, then we have equality in both inequalities
above. But in this case 1 = 4 cos2 (θ/2− π/12) sin2 (α− π/12), so the quadratic equation
(3.11) has a repeated root.

Similarly, we can also obtain the following results.

Lemma 3.3.4. A point (r, θ, α) of S0 in geographical coordinates with −π/4 ≤ α ≤ π/12
does not intersect the interior of S−1(S0), provided that

r ≤ 1√
3

[
2 cos

(
θ

2 + π

12

)
cos

(
α+ π

12

)
−
√

1− 4 cos2
(
θ

2 + π

12

)
sin2

(
α+ π

12

)]

with equality if and only if the point lies in S0 ∩ S−1(S0).

We should understand the intersection of S0 and R−1S(S0), RS−1(S0) and observe
that R−1S(S0)∩S0 = R−1(S(S0)∩S0), RS−1(S0)∩S0 = R(S−1(S0)∩S0). The following
lemmas can be derived from Lemma 3.3.3 and Lemma 3.3.4.

Lemma 3.3.5. A point (r, θ, α) of S0 in geographical coordinates with −π/4 ≤ α ≤ −π/12
does not intersect the interior of R−1S(S0), provided that

r ≤ 1√
3

[
2 cos

(
θ

2 −
π

12

)
cos

(
α+ π

4

)
−
√

1− 4 cos2
(
θ

2 −
π

12

)
sin2

(
α+ π

4

)]

with equality if and only if the point lies in S0 ∩R−1S(S0).

Lemma 3.3.6. A point (r, θ, α) of S0 in geographical coordinates with −π/12 ≤ α ≤ 5π/12
does not intersect the interior of RS−1(S0), provided that

r ≤ 1√
3

[
2 cos

(
θ

2 + π

12

)
cos(α− π

4 )−
√

1− 4 cos2
(
θ

2 + π

12

)
sin2

(
α− π

4

)]

with equality if and only if the point lies in S0 ∩RS−1(S0).

We can now characterize the edges of the prism not containing q∞. Some edges are
obtained by intersecting three bisectors. Some edges are contained in geodesic arcs by
construction. We now list them in the following lemma.

Lemma 3.3.7. (i) The edge joining z+
0 and z−0 is contained in the spine of S0.

(ii) The edge joining z±0 and z±j for j = 1, 2 is a geodesic arc.

(iii) The edge joining z+
1 and z+

2 is given by points in geographical coordinates

θ = −π6 , r = cos
(
α− π

12

)
−
√

1
3 − sin2

(
α− π

12

)
, − π

12 ≤ α ≤
π

4 .



64 Chapter 3. A minimal volume arithmetic cusped complex hyperbolic orbifold

(iv) The edge joining z−1 and z−2 is given by points in geographical coordinates

θ = π

6 , r = cos
(
α+ π

12

)
−
√

1
3 − sin2

(
α+ π

12

)
, −π4 ≤ α ≤

π

12 .

(v) The edge joining z+
1 and z−1 is given by points in geographical coordinates

r = 1√
3
, α = −θ2 −

π

6 and − π

6 ≤ θ ≤
π

6 .

Notice that the complex line z = reiα+iθ/2 = 1/2− i/2
√

3 contains this edge.

(vi) The edge joining z+
2 and z−2 is given by points in geographical coordinates

r = 1√
3
, α = π

6 −
θ

2 and − π

6 ≤ θ ≤
π

6 .

Notice that this edge lies in the complex line z = 1/2− i/2
√

3.

(vii) The edge joining z+
1 and z−2 is given by points in geographical coordinates

r = 1√
3
, α = θ

2 and − π

6 ≤ θ ≤
π

6 .

Proof. Parts (i) and (ii) follow by construction.
We prove (iii) and then (iv) follows similarly. The edge joining z+

1 and z+
2 is defined to

the common intersection of the bisectors S0, T (S0), S(S0). Being in the first two of these
implies that θ = −π/6 following from Lemma 3.3.1. Substituting in Lemma 3.3.3 and
requiring equality gives

r = 1√
3

[
√

3 cos
(
α− π

12

)
−
√

1− 3 sin2
(
α− π

12

)]

= cos
(
α− π

12

)
−
√

1
3 − sin2

(
α− π

12

)
.

We know that α = −π/12 at z+
1 and α = π/4 at z+

2 . Moreover, r = 1/
√

3 at both z+
1

and z+
2 .

We now prove (vi) and then (v), (vii) follows similarly. The edge joining z+
2 and z−2 is

defined to the common intersection of the bisectors S0, S(S0), RS−1(S0). As in the proof
of Lemma 3.3.3, the intersection of S0 and S(S0) implies that

3r2 − 4
√

3r cos
(
θ

2 −
π

12

)
cos

(
α− π

12

)
+ 4 cos2

(
θ

2 −
π

12

)
− 1 = 0. (3.12)

Similarly, the intersection of RS−1(S0) with S0 implies another equality

3r2 − 4
√

3r cos
(
θ

2 + π

12

)
cos

(
α− π

4

)
+ 4 cos2

(
θ

2 + π

12

)
− 1 = 0. (3.13)

First we write φ = α− π/6. Then subtracting the equations (3.12) and (3.13) gives

√
3r sin

(
θ

2 − φ
)

= sin θ. (3.14)
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z+
0

z+
1

z+
2

z−0

z−1

z−2

Figure 3.3: A schematic view of 1-skeleton of the prism P0. The compact sides
are contained in the isometric sphere S0 and the noncompact sides of the fundamental
domain are cones over the faces of the prism with cone point ∞.

Furthermore, adding the equations (3.12) and (3.13) derives

0 = 3r2 − 2
√

3r cos
(
θ

2 + φ

)
− 3r cos

(
θ

2 − φ
)

+
√

3 cos θ + 1

= 3r2 −
√

3r(2 cos θ +
√

3) cos
(
θ

2 − φ
)
− 2
√

3r sin θ sin
(
θ

2 − φ
)

+
√

3 cos θ + 1
(3.15)

Combining with the equation (3.14), we can simplify the equation (3.15) that
√

3r
(
2 cos θ +

√
3
)

cos
(
θ

2 − φ
)

= 3r2 − 1 +
(
2 cos θ +

√
3
)

cos θ. (3.16)

Making use of the equalities (3.14) and (3.16), we see that

3r2
(
2 cos θ +

√
3
)2

= 3r2
(
2 cos θ +

√
3
)2

cos2
(
θ

2 − φ
)

+3r2
(
2 cos θ +

√
3
)2

sin2
(
θ

2 − φ
)

=
[
3r2 − 1 +

(
2 cos θ +

√
3
)

cos θ
]2

+
(
2 cos θ +

√
3
)2

(1− cos2 θ)

= (3r2 − 1)2 + 2(3r2 − 1)2
(
2 cos θ +

√
3
)

cos θ +
(
2 cos θ +

√
3
)2
.

Taking all terms to the right of the equation and simplifying, we can obtain

0 = (3r2 − 1)
(
3r2 − 2

√
3 cos θ − 4

)
.

Thus, we can get the solution that

3r2 = 1 or 3r2 = 2
√

3 cos θ + 4,
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of which the latter is impossible since 3r2 ≤ 2
√

3 cos θ. So r = 1/
√

3. Substituting r =
1/
√

3 in the equation (3.14), it is easy to get φ = −θ/2, that is, α = π/6 − θ/2. This
proves the result.

Remark 3.3.8. The edges z+
1 z
−
1 , z

+
1 z
−
2 and z+

2 z
−
2 lie on the surface of cylinder which is

given in the Euclidian coordinates (x, y, z) by{
x2 + y2 = 1/3,
−π/6 ≤ z ≤ π/6.

However, two faces (z+
1 , z

−
1 , z

−
2 ) and (z+

1 , z
−
2 , z

+
2 ) don’t lie on the surface of cylinder.

3.3.4 Compact sides

In this section, we define two compact sides for the fundamental domain contained in the
isometric sphere S0. For the sake of convenience, two compact sides are denoted by F7,F8
and the non-compact sides will be denoted by Fi, 1 ≤ i ≤ 6.

Definition 3.3.9. In geographical coordinates from (3.4), the compact sides are the points
in S0 given by

F7 : 0 ≤ r ≤ ρ1(θ, α), −π/6 ≤ θ ≤ π/6, −θ/2− π/6 ≤ α ≤ θ/2,
F8 : 0 ≤ r ≤ ρ2(θ, α), −π/6 ≤ θ ≤ π/6, θ/2 ≤ α ≤ π/6− θ/2,

where

ρ1(θ, α) = 1√
3

[
2 cos

(
θ

2 + π

12

)
cos

(
α+ π

12

)
−
√

1− 4 cos2
(
θ

2 + π

12

)
sin2

(
α+ π

12

)]
,

ρ2(θ, α) = 1√
3

[
2 cos

(
θ

2 −
π

12

)
cos

(
α− π

12

)
−
√

1− 4 cos2
(
θ

2 −
π

12

)
sin2

(
α− π

12

)]
.

A realistic view of F7 and F8 is given in Figure 3.4. We next describe explicitly all
the faces of F7 and F8.

(i) The face F1 = (z+
0 , z

−
0 , z

−
1 , z

+
1 ) of F7 is union of geodesics arcs with endpoints in

edges (z+
0 z
−
0 ) and (z+

1 , z
−
1 ) on each slice. Therefore, its points are parameterized by

0 ≤ r ≤ 1√
3
, α = −θ2 −

π

6 and − π

6 ≤ θ ≤
π

6 .

We remark the projection of F1 on the Heisenberg group is the same as the face
(ẑ+

0 , ẑ
−
0 , ẑ

−
1 , ẑ

+
1 ) of the prism in Figure 3.2, which corresponds to arg(z) = −π/6.

(ii) The common face F ′ = (z+
0 , z

+
1 , z

−
2 , z

−
0 ) of F7 and F8 is the union of geodesics arcs

with endpoints in edges (z+
0 z
−
0 ) and (z+

1 , z
−
2 ) on each slice. Therefore, its points are

parameterized by

0 ≤ r ≤ 1√
3
, α = θ

2 and − π

6 ≤ θ ≤
π

6 .



3.3. Construction of a prism 67

(a) F7 (b) F8

Figure 3.4: A realistic view of the two compact sides contained in S0.

(iii) The face F2 = (z+
0 , z

−
0 , z

−
2 , z

+
2 ) of F8 is union of geodesics arcs with endpoints in

edges (z+
0 z
−
0 ) and (z+

2 , z
−
2 ) on each slice. Therefore, its points are parameterized by

0 ≤ r ≤ 1√
3
, α = π

6 −
θ

2 and − π

6 ≤ θ ≤
π

6 .

We remark the projection of F2 on the Heisenberg group is the same as the face
(ẑ+

0 , ẑ
−
0 , ẑ

−
2 , ẑ

+
2 ) of the prism in Figure 3.2, which corresponds to arg(z) = π/6.

(iv) The face F3 = (z−0 , z−1 , z−2 ) of F7 is its intersection with the bisector T−1(S0) given
by θ = π/6. Therefore, its points are parameterized by −π/4 ≤ α ≤ π/12 and

0 ≤ r ≤ cos
(
α+ π

12

)
−
√

1
3 − sin2

(
α+ π

12

)
.

(v) The face F4 = (z+
0 , z

+
1 , z

+
2 ) of F8 is its intersection with the bisector T (S0) given by

θ = −π/6. Therefore, its points are parameterized by −π/12 ≤ α ≤ π/4 and

0 ≤ r ≤ cos
(
α− π

12

)
−
√

1
3 − sin2

(
α− π

12

)
.

(vi) The face F5 = (z+
1 , z

−
1 , z

−
2 ) of F7 is its intersection with the bisector S−1(S0) given

by −π/6 ≤ θ ≤ π/6, −θ/2− π/6 ≤ α ≤ θ/2 and

r = 1√
3

[
2 cos

(
θ

2 + π

12

)
cos

(
α+ π

12

)
−
√

1− 4 cos2
(
θ

2 + π

12

)
sin2

(
α+ π

12

)]
.
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ẑ+
1

ẑ−1

ẑ+
2

ẑ−2

z+
1

z−1

z+
2

z−2

F5

F6

down

down

up

Figure 3.5: The modifications on the faces F5 and F6: top view.

(vii) The face F6 = (z+
1 , z

−
2 , z

+
2 ) of F8 is its intersection with the bisector S(S0) given by

−π/6 ≤ θ ≤ π/6, θ/2 ≤ α ≤ π/6− θ/2 and

r = 1√
3

[
2 cos

(
θ

2 −
π

12

)
cos

(
α− π

12

)
−
√

1− 4 cos2
(
θ

2 −
π

12

)
sin2

(
α− π

12

)]
.

We remark that the major modifications for the fundamental domain of (G2)∞ oc-
curred in the faces F5 and F6, see Figure 3.5.

3.3.5 The basic prism

We now are ready to construct the basic prism P0. In the previous section, we have
constructed a fundamental domain for (G2)∞. Thus a fundamental domain for G2 is the
intersection of the outside of the isometric sphere S0 of I1 with the fundamental domain
of (G2)∞ we have already constructed. More precisely, the fundamental domain for G2 is
the geodesic cone over the interior of the basic prism to the cone point ∞.

In order to make the boundary of our prism lie outside any other isometric sphere, we
should make suitable modifications to the fundamental domain of (G2)∞. The modifica-
tions consist of using the intersection of S0 and its neighboring isometric spheres stated
in Figure 3.5. The vertices of the fundamental domain are the same as those for the
intersection of S0 with the prism we have already constructed for (G2)∞, that is also the
intersection of three neighboring bisectors with S0, listed in Section 3.3.2. There are some
geodesic edges, one of whose is contained in the spine of isometric sphere S0, the others are
each contained in one of two slices of bisector S0. Some generic edges are the intersection
of three bisectors constructed in Section 3.3.3.

The two dimensional faces containing q∞ are foliated by geodesics starting at the ideal
point q∞ and arriving at the corresponding edges. To determine the remaining compact
faces and sides, we observe that all the finite edges are contained in the isometric sphere
S0. Two of the faces are contained in complex lines, two of the faces are foliated by a family
of geodesic arcs with endpoints at two edges, and the two remaining faces are defined as
intersections of S0 with appropriate images of S0 under elements of (G2)∞.

The two compact sides are contained in S0. The other six sides are cones based at
the faces of the prism with the cone point the ideal vertex q∞, all of which are listed in
Section 3.3.4.

We give the definition of the basic prism P0.
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z+0

z+1

z+2

z−0

z−1 z−2

(a) 1-skeleton

(b) 3-skeleton

Figure 3.6: A realistic view of the basic prism P0 inside the isometric sphere S0.
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Definition 3.3.10. In geographical coordinates, the prism P0 consists of those points of
S0 for which −π/6 ≤ θ ≤ π/6,

0 ≤ r ≤
{
ρ1(θ, α) for −θ/2− π/6 ≤ α ≤ θ/2,
ρ2(θ, α) for θ/2 ≤ α ≤ π/6− θ/2,

where ρ1(θ, α) and ρ2(θ, α) are defined as before.

Following from the Definitions 3.3.9 and 3.3.10, we see clearly that the basic prism P0
is the union of two compact sides F7 and F8. (Compare with the standard fundamental
domain for PSL(2,Z), that is a ideal geodesic triangle whose boundary consists of two
vertical lines and an arc of Euclidean circle with radius 1 centered at origin. This arc
is only one compact side of the fundamental domain of PSL(2,Z) with its side pairing
z 7→ −1/z). The boundary of the prism are all the faces of the two compact sides except
for the common face F ′ that is in the interior of P0. The schematic view is given in Figure
3.3 and a realistic view is given in Figure 3.6.

3.4 The side pairing maps

In the previous section we have constructed two compact sides F7 and F8 of the funda-
mental domain. The other sides are cones from the faces of our prism to the point q∞
defined in Section 3.4.2. A side pairing map is an element of PU(2, 1) that sends one of
these sides to another (possibly the same). In this section, we will describe all the side
pairing maps in G2.

3.4.1 Compact side pairing map

We consider the map I1  0 0 i/
√

3
0 −ω 0
i
√

3 0 0


acting on S0 given by

I1 : (r, θ, α) −→ (r,−θ, α+ π/6).

By definition, we know that the compact side F7 is a region in S0 bounded by four
faces F1, F ′, F3, F5 and the compact side F8 is a region in S0 bounded by four faces F ′,
F2, F4, F6. Observe that the map

I1 : (r, θ, α) −→ (r,−θ, α+ π/6), I2
1 = R : (r, θ, α) −→ (r, θ, α+ π/3).

We can verify that
F ′ = I1(F1), F4 = I1(F3),

F6 = I1(F5), F2 = R(F1) = I2
1 (F1) = I1(F ′).

For example, we take a point (r, θ, α) of F1, that is satisfied the set of inequalities

0 ≤ r ≤ 1√
3
, α = −θ2 −

π

6 and − π

6 ≤ θ ≤
π

6 .
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I1

F7
F8

F3

F4

F1

F ′

F ′

F2

F5

F6

Figure 3.7: Two compact sides in geographical coordinates (r, θ, α) inside the iso-
metric sphere S0 and its side pairing I1 maps F7 to F8 upside down and with a rotation.

It is clearly that the point I1(r, θ, α) satisfies the equations

0 ≤ r ≤ 1√
3
, α = θ

2 and − π

6 ≤ θ ≤
π

6 ,

that is, the point I1(r, θ, α) lies on the face F ′. Thus we can obtain F8 = I1(F7), namely,
I1 is the side pairing map from F7 to F8. The realistic view of these two compact sides
and its side pairing is given by Figure 3.7.

3.4.2 Noncompact sides and side pairing maps

As the action of elements of (G2)∞ preserves each horosphere, then we can give a natural
extension of faces of the prism P0. We define two pyramids F1,F2 and four tetrahe-
dra F3,F4,F5,F6. Each of these is the geodesic cone from q∞ over the union of faces
F1,F2,F3,F4,F5 and F6 of P0. To be precise, the pyramid F1 is defined to be the union
of geodesic arcs based at the face F1 with cone point q∞ and it is likewise for others.
By constructions, the intersection of P0 with each of the pyramids F1,F2 and tetrahedra
F3,F4,F5,F6 is nothing other than the corresponding face of P0.

We define the 4-dimensional polyhedron D to be the geodesic cone pointing to q∞ over
the interior of P0. Furthermore, D has eight three-dimensional sides, namely F1, F2, F3,
F4, F5, F6, F7, F8. Later we will show D is a fundamental domain for G2.

This enables us to give the following proposition.

Proposition 3.4.1. R−1(D)∩D = F1, and R maps F1 to F2; T−1(D)∩D = F3, and T
maps F3 to F4, likewise, S−1(D) ∩D = F5, S maps F5 to F6.

Proof. By construction these sides are corresponding to associated faces of P0, and so this
directly follows from the matrices R,S and T in Proposition 3.2.2.

We now have already described all the side pairing maps. In what follows, we summa-
rize the side pairing maps in terms of their action on the vertices.
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R : (∞, z+
0 , z

−
0 , z

−
1 , z

+
1 ) 7−→ (∞, z+

0 , z
−
0 , z

−
2 , z

+
2 ),

S : (∞, z+
1 , z

−
1 , z

−
2 ) 7−→ (∞, z+

2 , z
−
2 , z

+
1 ),

T : (∞, z−0 , z−1 , z−2 ) 7−→ (∞, z+
0 , z

+
1 , z

+
2 ),

I1 : (z+
0 , z

−
0 , z

+
1 , z

−
1 , z

−
2 ) 7−→ (z−0 , z+

0 , z
−
2 , z

+
1 , z

+
2 ).

3.4.3 The face cycles

In this section we focus on the 2-dimensional faces of D. These faces may be contained in
complex lines or in Lagrangian planes. In such cases they are totally geodesic. Otherwise
the face is not totally geodesic and we refer to it as generic. We will describe all the 2-
dimensional faces and find the associated face cycles and cycle transformations, which will
turn out to give a presentation after we check that hypotheses of the Poincaré’s polyhedron
theorem are satisfied.

Faces in complex lines

Observe that the faces F3 and F4 are each contained in a complex line, that is, a slice of
S0. These two complex lines are paired by T and each is preserved by R. Moreover, one
face is the image of the other under T or T−1. In order to obtain cycle transformation
we should find other side pairings for these two faces. We know these two faces are each
contained in one of compact sides F7 and F8 and they are the associated to side pairing
map I1. Therefore, this cycle can be described as the following table, which each column
has the vertices of each face and the generator in the fist row indicates that this column
is the image of the previous one under this map.

I1 T−1

z−0 7−→ z+
0 7−→ z−0

z−1 7−→ z+
1 7−→ z−1

z−2 7−→ z+
2 7−→ z−2

The face F3 is fixed by T−1I1, which is a complex reflection of order 3. Therefore the
cycle relation is (T−1I1)3 = I.

The generic triangular faces

The faces F5,F6 with vertices the ordered triple (z+
1 , z

−
1 , z

−
2 ), (z+

2 , z
−
2 , z

+
1 ) respectively are

neither contained in complex line nor in Lagrangian planes. The map S−1I1 maps F5 to
itself but acts on this face as a rotation of order 3, which is a regular elliptic element.
They form a face cycle as described in the following table

I1 S−1 I1 S−1 I1 S−1

z+
1 7−→ z−2 7−→ z−1 7−→ z+

1 7−→ z−2 7−→ z+
2 7−→ z+

1
z−1 7−→ z+

1 7−→ z−2 7−→ z+
2 7−→ z+

1 7−→ z−2 7−→ z−1
z−2 7−→ z+

2 7−→ z+
1 7−→ z−2 7−→ z−1 7−→ z+

1 7−→ z−2

The associated face cycle transformation is (S−1I1)3.
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The generic quadrilateral faces

The faces F1,F ′,F2 with vertices the ordered quadruples respectively (z+
0 , z

+
1 , z

−
1 , z

−
0 ),

(z−0 , z−2 , z+
1 , z

+
0 ), (z+

0 , z
+
2 , z

−
2 , z

−
0 ) are generic faces that form a single face cycle. This is

described in the following table

I1 I1 R−1

z+
0 7−→ z−0 7−→ z+

0 7−→ z+
0

z+
1 7−→ z−2 7−→ z+

2 7−→ z+
1

z−1 7−→ z+
1 7−→ z−2 7−→ z−1

z−0 7−→ z+
0 7−→ z−0 7−→ z−0

The associated cycle transformation is R−1I2
1 .

The generic infinite faces

We have already seen the infinite faces and the associated face cycles, which correspond to
edges and edge cycles we considered when we analyzed (G2)∞. We now list them again.

There are two face cycles involving R associated to geodesic faces:

R
q∞ 7−→ q∞
z+

0 7−→ z+
0

z−0 7−→ z−0

R T R−1 T−1

q∞ 7−→ q∞ 7−→ q∞ 7−→ q∞ 7−→ q∞
z−0 7−→ z−0 7−→ z+

0 7−→ z+
0 7−→ z−0

z−1 7−→ z−2 7−→ z+
2 7−→ z+

1 7−→ z−1

The face cycles transformations are R and T−1R−1TR respectively, which give rise to
R6 = I and the latter may be rewritten as [T,R] = I.

There are another two face cycles involving S associated to generic faces:

S R−1

q∞ 7−→ q∞ 7−→ q∞
z+

1 7−→ z+
2 7−→ z+

1
z−1 7−→ z−2 7−→ z−1

S S T−1

q∞ 7−→ q∞ 7−→ q∞ 7−→ q∞
z−1 7−→ z−2 7−→ z+

1 7−→ z−1
z−2 7−→ z+

1 7−→ z+
2 7−→ z−2

The associated cycles are R−1S and T−1S2 respectively. These give the cycle relation
(R−1S) = I and T = S2.

3.5 The main theorems

In this section we prove that the 4-dimensional polyhedron D constructed as above is
indeed a fundamental domain for G2 and give a presentation for the group G2.

3.5.1 D is a fundamental domain

In this subsection, we use Poincaré’s polyhedron theorem to conclude D is a fundamental
domain for G2. The techniques are the same as [FP06] and [FFP10]. We just apply these
arguments on this polyhedron D.

Theorem 3.5.1. The polyhedron D is a fundamental domain for G2.
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R−1(P0)

P0

I−1
1 (P0)

R−1

(a) 3-dimensional view

R−1(D)

non-bisector

D

I−1
1 (D)

F7

F8

R−1(F8)

R−1(F7)

(b) 2-dimensional view

Figure 3.8: The images of D cover a neighborhood of the face F1.

Proof. We have given D the structure of a prism with side pairing maps. For each two-
dimensional face of D, we have found all the face cycles given by the side-pairing maps. In
what follows, we want to verify that the images of D cover a neighborhood of the interior
of each two-dimensional face.

The faces containing q∞ are cones over its edges of P0. As the infinite faces are sent
to other infinite faces by maps in (G2)∞, then the face cycles from faces containing q∞
are corresponding to edge cycles from P0 that are listed in Section 3.4.3. Therefore, the
images of D under (G2)∞ cover any horoball not intersecting S0 from the construction of
the fundamental domain for (G2)∞.

For all the compact faces, we need only take one face in each face cycle in order to
verify the tessellation around the associated face. Now consider the face F1 with vertices
the ordered quadruple (z+

0 , z
+
1 , z

−
1 , z

−
0 ). The face cycle is

(z+
0 , z

+
1 , z

−
1 , z

−
0 ) I1−→ (z−0 , z−2 , z+

1 , z
+
0 ) I1−→ (z+

0 , z
+
2 , z

−
2 , z

−
0 ) R−1
−→ (z+

0 , z
+
1 , z

−
1 , z

−
0 ).

Therefore, R−1I2
1 is the identity on F1, that is also the identity in G2. We want to show

that D, I−1
1 (D), I−2

1 (D) = R−1(D) cover a neighborhood of F1. In fact, the map R is
a rotation of S0 about its spine and preserves S0. Therefore, R−1(P0) is also contained
in S0. The image of D under R−1 is the geodesic cone of R−1(P0). Hence D ∪ R−1(D)
cover that part of a neighborhood of F1 exterior to S0. Observe that the face F1 is
contained in I−1

1 (F8) = F7 and I−1
1 (F7) = I−2

1 (F8) = R−1(F8), in other words, I−1
1 (P0)

has a common side with each of P0 and R−1(P0), namely, P0 ∩ I−1
1 (P0) = F7 and

R−1(P0)∩ I−1
1 (P0) = R−1(F8). Moreover the maps I1 swaps the exterior and the interior

of S0. Thus we conclude that D ∪ I−1
1 (D) ∪ R−1(D) covers a neighborhood of F1, see

Figure 3.8 for a schematic view.
Next we consider the face F3 with vertices the ordered triples (z−0 , z−1 , z−2 ). The face

cycles are
(z−0 , z−1 , z−2 ) I1−→ (z+

0 , z
+
1 , z

+
2 ) T−1
−→ (z−0 , z−1 , z−2 ).
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S0 T−1(S0)

non-bisector
non-bisector

non-bisector

D

I−1
1 (D)

I−1
1 T (D) I−1

1 TI−1
1 (D)

(I−1
1 T )2(D)

T−1(D)

(a) The neighborhood of F3

S0 S−1(S0)

non-bisector

non-bisector

non-bisector

D

I−1
1 (D)

I−1
1 S(D) I−1

1 SI−1
1 (D)

(I−1
1 S)2(D)

S−1(D)

(b) The neighborhood of F5

Figure 3.9: The images of D cover a neighborhood of the faces F3 and F5.

Therefore T−1I1 is the identity on F3 and a rotation about complex line containing
(z−0 , z−1 , z−2 ). In fact, we can easily verify (T−1I1)3 is identity in G2. We will show that a
neighborhoods of the face F3 is tessellated by some images of D. To see this, first observe
that T−1 is a vertical translation in the Heiseinberg group N , therefore, D∪T−1(D) cover
a neighborhood of F3 exterior to two isometric spheres S0 and T−1(S0). The result will be
completed by a similar argument ([FFP10], Section 7.8). This argument may be applied to
the faces that are in the intersection of two distinct isometric spheres of the Ford domain.
This also shows a neighborhood of F5 is covering by some images of D since the face F5
is in the intersection of two isometric spheres of I1 and S−1I1S.

From the point of view of geometry, we state that the face F3 is covered by D, I−1
1 (D),

I−1
1 T (D), I−1

1 TI−1
1 (D), (I−1

1 T )2(D) and (I−1
1 T )2I−1

1 (D) = T−1(D) and the face F5 is tes-
sellated byD, I−1

1 (D), I−1
1 S(D), I−1

1 SI−1
1 (D), (I−1

1 S)2(D) and (I−1
1 S)2I−1

1 (D) = S−1(D)
by the same argument as above. We draw two-dimensional pictures to show more clearly,
see Figure 3.9.

Notice that there is a difference between the two cases, that is not apparent from the
two dimensional picture. Namely, the map T−1I1 is a complex reflection of order 3 and
fixes each point of the face F1, whereas S−1I1 is a regular elliptic of order 3 and acts on
the face F5 as a rotation.

By Poincaré’s polyhedron theorem, we conclude that D is a fundamental domain for
the group generated by the side pairing maps and the presentation is given by the cycle
relations. Recall that G2 was shown to be generated by R,S, T, I1 in Proposition 3.2.5,
which completes the proof.

3.5.2 A presentation for G2

In this section, we also use Poincaré’s polyhedron theorem on D to derive a presentation
for G2. We know the generators of G2 are side pairing maps for D given in Section 3.4.2.

For each two-dimensional face of D, we have already found all the cycles given by the
side-pairing maps listed in Section 3.4.3. Thus the stabilizer of infinity (G2)∞ has the
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following presentation
(G2)∞ = 〈R,S, T | R6 = (R−1S)3 = [R, T ] = S2T−1 = identity〉.

For the compact faces, we have given the cycles in Section 3.4.3. Therefore, we have
obtained the additional relations

(T−1I1)3 = (S−1I1)3 = R−1I2
1 = identity.

Thus a presentation for G2 is given by
〈R,S, T, I1| R6 = (R−1S)3 = [R, T ] = S2T−1 = (T−1I1)3 = (S−1I1)3 = R−1I2

1 = id〉.

We want to give a briefer presentation by eliminating several generators. Suppose
that A2 = T−1I1 and A3 = S−1I1, then we can get the relations S = A3A

−1
2 , R = I2

1 =
(A3A

−1
2 A3)2 which can be used to eliminate the generators R,S, T and I1. From these

relations we obtain the following theorem:
Theorem 3.5.2. The maps A2 = T−1I1 and A3 = S−1I1 generate G2. Moreover, a
presentation on these generators is

〈A2, A3| A3
2 = A3

3 = (A3A
−1
2 A3)12 = [(A3A

−1
2 A3)2, (A3A

−1
2 )2] = identity〉.

Proof. We begin by showing that the relations involving A2 and A3 follow from the rela-
tions involving R,S, T and I1. First, the relations A3

2 = A3
3 = 1 follow directly from the

definition of A2 and A3. Secondly, observe that the relations
A3A

−1
2 A3 = S−1I1I

−1
1 TS−1I1 = I1

and
A3A

−1
2 = S−1I1I

−1
1 T = S, T = S2 = (A3A

−1
2 )2.

Thus R = I2
1 , R6 = 1 and [R, T ]=1 imply that

(A3A
−1
2 A3)12 = [(A3A

−1
2 A3)2, (A3A

−1
2 )2] = 1.

Using R = (A3A
−1
2 A3)2, S = A3A

−1
2 , we obtain

I1 = SA3 = A3A
−1
2 A3

and
T = I1A

−1
2 = A3A

−1
2 A3A

−1
2 = (A3A

−1
2 )2,

Hence, 〈R,S, T, I1〉 = 〈A2, A3〉.
Finally, we show that the relations involving R,S, T and I1 are a consequence of those

involving A2, A3. First, it is obvious that
(T−1I1)3 = A3

2 = 1, (S−1I1)3 = A3
3 = 1, R6 = (A3A

−1
2 A3)12 = 1,

and
R = (A3A

−1
2 A3)2 = I2

1 , T = (A3A
−1
2 )2 = S2, [R, T ] = [(A3A

−1
2 A3)2, (A3A

−1
2 )2] = 1.

Finally,
(R−1S)3 = [(A3A

−1
2 A3)−2A3A

−1
2 ]3

= (A−1
3 A2A

−1
3 A−1

2 A2A
−1
3 A2A

−1
2 )3

= (A−1
3 A2A3)3

= A−1
3 A3

2A3

= 1.
This completes the proof.
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3.5.3 The volume of the orbifold H2
C/G2

We calculate the volume of H2
C/G2 using the complex hyperbolic Gauss-Bonnet formula.

The similar case for Gauss-Picard group has been done, see [FFP10]. We state the Gauss-
Bonnet theorem for our convenience.

Vol(M) = 8π2

3 χ(M), χ(M) = e0 − e1 + e2 − e3 + e4,

where ei is the numbers of i-cells weighted by the order of the stabilizers.
The volume of complex hyperbolic 2-orbifold H2

C/G2 was calculated firstly by John
Parker [Par98] as π2/27. Note that Stover [Sto10] states that there are exactly two non-
compact arithmetic complex hyperbolic 2-orbifold of minimal volume π2/27, whose fun-
damental groups are PU(2, 1;Z[ω]) and its sister G2. Observe, however, that [Par98] also
uses the Gauss-Bonnet theorem to calculate the volume. From the Table 1 on pages 228
and 229 of [Hol80], Holzapfel shows that χ(H2

C/SU(2, 1;Z[ω])) = 1/24, which implies
that χ(H2

C/PU(2, 1;Z[ω])) = 1/72. This is also shows the Euler characteristic of H2
C/G2

is 1/72 by the fact that the groups PU(2, 1;Z[ω])) and G2 have a common subgroup of
index 4.

By the combinatorics of D, we also show the volume of the orbifold H2
C/G2.

Proposition 3.5.3. The volume of the orbifold H2
C/G2 is π2/27.

Proof. According to the Gauss-Bonnet theorem, we need only show the Euler characteristic
ofH2

C/G2 is 1/72. It suffices to find the stabilizer of i-dimensional faces of D and calculate
their order.

• Vertices:

Cycle Stabilizer Order
z+

0 , z
−
0 〈T−1I1, R〉 18

z+
1 , z

−
1 , z

+
2 , z

−
2 〈I1T

−1, S−1R〉 24

The orders of the stabilizers are found as follows. Since R = I2
1 and [R, T ] = I,

T−1I1 and R commute. Therefore, the group 〈T−1I1, R〉 is the product of two cyclic
groups 〈T−1I1〉 and 〈R〉, and then it has order 18 since (T−1I1)3 = I and R has order
6. Next, it is easy to check that (I1T

−1)(S−1R)−1 has order 4, and that its square is
in the center of 〈I1T

−1, S−1R〉. Therefore, 〈I1T
−1, S−1R〉 is a degree 2 extension of

an (orientation preserving) (2, 3, 3) triangle group (that is a tetrahedral group) and
so it has order 2× 12 = 24 (Compare with the Proposition 5.1 of [Par09]).

We conclude that

e0 = 1
18 + 1

24 = 7
72 .

• Edges:
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Cycle Stabilizer Order
(z+

0 , z
−
0 ) 〈I1〉 12

(z+
0 , z

+
1 ), (z+

0 , z
+
2 ), (z−0 , z−1 ), (z−0 , z−2 ) 〈T−1I1〉 3

(z+
1 , z

−
1 ), (z+

2 , z
−
2 ), (z+

1 , z
+
2 ), (z+

1 , z
−
2 ), (z−1 , z−2 ) 〈R−1S〉 3

(z+
0 ,∞), (z−0 ,∞) 〈R〉 6

(z+
1 ,∞), (z−1 ,∞), (z+

2 ,∞), (z−2 ,∞) 〈R−1S〉 3

These stabilizers are all cyclic groups and so their orders are the same as those
generators, seen in the previous section.
We conclude that

e1 = 1
12 + 1

3 + 1
3 + 1

6 + 1
3 = 5

4 .

• 2-faces:

Cycle Stabilizer Order
(z+

0 , z
+
1 , z

+
2 ), (z−0 , z−1 , z−2 ) 〈T−1I1〉 3

(z+
1 , z

−
1 , z

−
2 ), (z+

2 , z
−
2 , z

+
1 ) 〈S−1I1〉 3

(z+
0 , z

−
0 , z

−
1 , z

+
1 ), (z+

0 , z
+
1 , z

−
2 , z

−
0 ), (z+

0 , z
−
0 , z

−
2 , z

+
2 ) 〈Id〉 1

(z+
0 , z

−
0 ,∞) 〈R〉 6

(z+
1 , z

−
1 ,∞), (z+

2 , z
−
2 ,∞) 〈R−1S〉 3

(z+
1 , z

+
2 ,∞), (z+

1 , z
−
2 ,∞), (z−1 , z−2 ,∞) 〈Id〉 1

(z+
0 , z

+
1 ,∞), (z+

0 , z
+
2 ,∞), (z−0 , z−1 ,∞), (z−0 , z−2 ,∞) 〈Id〉 1

These stabilizers are also cyclic and so their orders are obvious. We conclude that

e2 = 1
3 + 1

3 + 1 + 1
6 + 1

3 + 1 + 1 = 25
6 .

• 3-faces:

Cycle Stabilizer Order
(∞, z+

0 , z
+
1 , z

+
2 ), (∞, z−0 , z−1 , z−2 ) 〈Id〉 1

(∞, z+
1 , z

−
1 , z

−
2 ), (∞, z+

2 , z
−
2 , z

+
1 ) 〈Id〉 1

(∞, z+
0 , z

−
0 , z

−
1 , z

+
1 ), (∞, z+

0 , z
−
0 , z

−
2 , z

+
2 ) 〈Id〉 1

(z+
0 , z

+
1 , z

−
0 , z

−
1 , z

−
2 ), (z−0 , z−2 , z+

0 , z
+
1 , z

+
2 ) 〈Id〉 1

We conclude that
e3 = 4.

• Finally e4 = 1.

We compute now the orbifold Euler number to be

χ(M) = e0 − e1 + e2 − e3 + e4 = 7
72 −

5
4 + 25

6 − 4 + 1 = 1
72 .
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3.5.4 Relation with Mostow’s group

In his notation of [Mos80], Mostow considered a family of complex reflection groups with
the angle 2π/p where p is one of 3, 4, 5. He described these groups by a Coxetor diagram
and a phase shift φ = exp(πit/3) where t = 1/p + 2/k − 1/2 and k is an integer, showed
the existence of non-arithmetic lattices in PU(2, 1) by the construction of an explicit
fundamental domain of the groups for certain values of k and gave a presentation for each
of these groups. Parker in the survey paper [Par09], defined again the Mostow’s groups.
In that case, he allows p = 6 and divides into two types of them. More precisely, Mostow’s
groups of the first type are the complex reflection groups where 1/p + 1/k ≥ 1/2, p ≤ 6
and those of the second type are the groups where 1/p+1/k < 1/2, p ≤ 6. The Eisenstein-
Picard modular group admits a presentation of a similar type, which is a Mostow’s group
of the first type with p = 6 and k = 2; (see [Par09] and Corollary 5.13 of [FP06]). For
the sister of Eisenstein-Picard modular group, we show that it is a Mostow’s group of the
first kind with p = 3 and k = 6.

As in Theorem 3.5.2, if preserving the generator R, we may rewrite this presentation
as

G2 = 〈A2, A3, R| A3
2 = A3

3 = R6 = [R, (A3A
−1
2 )2] = 1, R = (A3A

−1
2 A3)2〉.

Using the notation of [Par09], we state a Mostow’s group of the first type with p = 3 and
k = 6 as follows

Γ = 〈J,R1, A1| J3 = R3
1 = A6

1 = 1, A1 = (JR−1
1 J)2, A1R1 = R1A1〉.

We make a explicit connection between the group G2 and Γ in the following proposition.

Proposition 3.5.4. There is a isomorphism ϕ from G2 to Γ given by ϕ(A3) = J, ϕ(A2) =
R1 and ϕ(R) = A1.
Proof. First, observe that the orders of generators of G2 and Γ are the same if giving a
homomorphism satisfies with ϕ(A3) = J, ϕ(A2) = R1 and ϕ(R) = A1. So it need only to
show other relations of G2 and Γ are equivalent.

In fact,

A1 = ϕ(R) = ϕ((A3A
−1
2 A3)2) = (ϕ(A3)ϕ(A2)−1ϕ(A3))2 = (JR−1

1 J)2

and [R, (A3A
−1
2 )2] = 1 yields A1(JR−1

1 )2A−1
1 (JR−1

1 )−2 = 1. Moreover,

1 = (JR−1
1 )−2A1(JR−1

1 )2A−1
1

= R1(J−1R1J
−1)A1(JR−1

1 J)R−1
1 A−1

1
= R1A1R

−1
1 A−1

1

following from A1 = (JR−1
1 J)2, that is, A1R1 = R1A1. Obviously, the above steps are

reversible, this complete the proof.

Remark 3.5.5. For the general case of Mostow’s groups of the first type with the values
of p, k, the orbifold Euler characteristic has been calculated in [Sau90, Par09], that is,

χ(H2
C/Γ) = 1

2

[
2
(1

2 −
1
p

)
− 1
k

]2
.

Therefore, we can show again the Euler characteristic

χ(M) = χ(H2
C/G2) = χ(H2

C/Γ) = 1
72

for p = 3 and k = 6 following from the Proposition 3.5.4.
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This chapter has been accepted for publication in Transactions of the American Mathe-
matical Society.

4.1 Introduction

Let K = Q(
√
−d) be a quadratic imaginary number field. Let Od be the ring of alge-

braic integers of K. The Bianchi groups PSL2(Od) are the simplest arithmetically defined
discrete groups. In number theory they have been used to study the zeta-functions of
binary Hermitian forms over the rings Od. As isometry groups acting on the half-upper
space, they are of interest in the theory of Kleinian groups and the related theory of
hyperbolic orbifolds. Bianchi groups can be considered as the natural algebraic general-
ization of the classical modular group PSL2(Z). A good general reference for the Bianchi
groups and their relation to the modular group is [Fin89]. Likewise, Picard modular
groups PU(2, 1;Od) is a natural generalization of the Bianchi groups. These groups have
attracted a great deal of attention both for their intrinsic interest as discrete groups (see
Holzapfel’s book [Hol98]) and also for their applications in complex hyperbolic geometry
(as holomorphic automorphism subgroups).

A general method to determine finite presentations for each of the Bianchi group
PSL2(Od) was developed by Swan [Swa71] based on geometrical work of Bianchi, while a
separate purely algebraic method was given by Cohn [Coh68]. The purpose of this chap-
ter is to give a description of generators for certain Picard modular groups PU(2, 1;Od)
where the ring Od is Euclidean except for d = 1, 3 (these two exceptional cases have
been studied in many aspects). Among the quadratic imaginary number rings Od only
O1,O2,O3,O7,O11 have a Euclidean algorithm, see [STa79], although there is a larger
finite collection of Od’s (d = 1, 2, 3, 7, 11, 19, 43, 67, 163, see [Zin79]) which have class
number one. For these values of d the orbifold H2

C/PU(2, 1;Od) has only one cusp.
The main idea (inspired by the work in [FP06, FFP10, Zh11]), is to begin by finding

suitable generators of the stabilizer of infinity of PU(2, 1;Od) and then construct a fun-
damental domain for the stabilizer acting on the boundary of complex hyperbolic space
∂H2

C. The generators of the groups in ([FP06], [FFP10], [Zh11]) are easy to obtain since
the fundamental domain constructed lies completely inside the boundary of the largest iso-
metric sphere centered at origin. The real difficulty for the Picard modular groups studied
here is to determine more isometric spheres such that the region that is the intersection
of the exteriors of these isometric spheres and the fundamental domain for the stabilizer
of the point at infinity we construct later has only one cusp. Again this reflects the un-
derlying number theory; O1 and O3 have non-trivial units while the other three do not. A
simple algorithm to decompose any transformation in the Picard group PU(2, 1;O1) as a
product of the generators was given in [FFLP11], it would be interesting to extend their
method to other Picard modular groups. However, it would also be important to find the
generators in a geometric way. This will provide more important information for future
research on the construction of an explicit fundamental domain for each of the Picard
modular groups.

4.2 On the structure of the stabilizer

In this section we will obtain the generators and a presentation of the stabilizer of the
point at infinity by analysis of the fundamental domain in the Heisenberg group.
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Let Od be the ring of integers in the quadratic imaginary number field Q(i
√
d), where

d is a positive square-free integer. If d ≡ 1, 2 (mod 4), then Od = Z[i
√
d] and if d ≡

3 (mod 4), then Od = Z[ωd], where ωd = (1 + i
√
d)/2. The group Γd = PU(2, 1;Od) is

called Euclidean Picard modular group if the ring Od is Euclidean, namely, only the rings
O1,O2,O3,O7,O11. Further relative to amalgamation property, these five groups can be
subclassified into three groupings {Γ1}, {Γ3}, {Γ2,Γ7,Γ11}. Since two classes {Γ1}, {Γ3}
(c.f. [FP06], [FFP10]) have been studied in detail, we mainly describe the remaining class
{Γ2,Γ7,Γ11}.

4.2.1 The stabilizer of q∞

First we want to analyze (Γd)∞ with d = 2, 7, 11, the stabilizer of q∞. Every element of
(Γd)∞ is upper triangular and its diagonal entries are units in Od. Recall that the units of
O1 are ±1,±i, they are ±1,±ω,±ω2 for O3 and they are ±1 for others. Therefore (Γd)∞
contains no dilations and so is a subgroup of Isom(N ) and fits into the exact sequence as

0 −→ R ∩ (Γd)∞ −→ (Γd)∞
Π∗−→ Π∗((Γd)∞) −→ 1.

We can write the isometry group of the integer lattice as

Isom(Od) =
{[

α β
0 1

]
: α, β ∈ Od, α is a unit

}
.

We now find the image and kernel in this exact sequence.

Proposition 4.2.1. The stabilizer (Γd)∞ of q∞ in Γd satisfies

0 −→ 2
√
dZ −→ (Γd)∞

Π∗−→ ∆ −→ 1,

where ∆ ⊂ Isom(Od) is of index 2 if d ≡ 2(mod 4) and ∆ = Isom(Od) if d ≡ 3(mod 4).

Proof. Although we only consider the cases d = 2, 7, 11, the ring O2 represents those for
the values of d with d ≡ 2(mod 4) and the rings O7,O11 represent those of the values
d ≡ 3(mod 4), the remaining case is the same as O1 which has been done in [FFP10].
Observe that Isom(Od) is generated by the subgroup of translations{

T̂β =
[

1 β
0 1

]
: β ∈ Od

}

and the finite subgroup of order two{
R̂α =

[
α 0
0 1

]
: α ∈ Od, α is a unit

}
.

Then, to understand ∆ ⊂ Isom(Od), it suffices to determine which translations can be
lifted. We divide into two cases to complete the proof.

(i) The case Od with d ≡ 2(mod 4)
Suppose that β ∈ Od = Z[i

√
d] and consider the translation T̂β by β in Z[i

√
d] given

above. The preimage of T̂β under Π∗ has the form

Tβ,t =

 1 −β −|β|2+it
2

0 1 β
0 0 1

 .
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This map is in PU(2, 1;Z[i
√
d]) if and only if |β|2 is an even integer and t ∈ 2

√
dZ.

Writing β = m + i
√
dn for m,n ∈ Z, then we can obtain m ≡ 0 (mod 2) from the

conditions |β|2 = m2 + dn2 ∈ 2Z and d ≡ 2(mod 4). Therefore, we conclude that
∆ ⊂ Isom(Z[i

√
d]) is of index 2. Also, the kernel of Π∗ is generated by 1 0 i

√
d

0 1 0
0 0 1

 ,
which is a vertical translation of (0, 2

√
2).

(ii) The case Od with d ≡ 3(mod 4)

Suppose that β = m + n1+i
√
d

2 ∈ Od with m,n ∈ Z for d ≡ 3(mod 4). By the
same argument of (i), it only suffices to determine m,n such that |β|2 is an integer.
For d ≡ 3(mod 4), it is easy to show that |β|2 = m2 + mn + n2(d + 1)/4 ∈ Z for
any m,n ∈ Z, which implies that ∆ = Isom(Od). Obviously, the kernel of Π∗ is
generated by a vertical translation of (0, 2

√
d).

4.2.2 Fundamental domains for the stabilizer

As the first step towards the construction of a fundamental domain for the action of
(Γd)∞ on the Heisenberg group N for d = 2, 7, 11, we shall find the suitable generators
of Isom(Od) to construct a fundamental domain in C. This was already done by Feustel
and Hozapfel in [Feu84, FH83], we state it again for the convenience for the reader.

In the proof of Proposition 4.2.1 we saw that ∆ = Π∗((Γ2)∞) is a subgroup of index 2
in Isom(O2) consisting of elements of GL(2,O2) of the form{[

(−1)j m+ i
√

2n
0 1

]
: j = 0, 1,m, n ∈ Z,m ≡ 0(mod 2)

}
.

A fundamental domain for this group is the triangle in C with vertices at −1 +
√

2i/2 and
1±
√

2i/2; see (a) in Figure 4.1. Side paring maps are given by

r
(2)
1 =

[
−1 0
0 1

]
, r

(2)
2 =

[
−1 2
0 1

]
, r

(2)
3 =

[
−1

√
2i

0 1

]
.

The first of these is a rotation of order 2 fixing origin, the second is a rotation of order
2 fixing 1 and the third is a rotation of order 2 fixing

√
2i/2. Indeed every element of

∆ = GL(2,O2) is generated by r(2)
1 , r

(2)
2 , r

(2)
3 as follows[

(−1)j 2m+
√

2ni
0 1

]
=
[

1 2
0 1

]m [
1
√

2i
0 1

]n [
−1 0
0 1

]j
=
(
r

(2)
2 r

(2)
1

)m (
r

(2)
3 r

(2)
1

)n (
r

(2)
1

)j
.

As the same argument, a fundamental domain for Isom(Od) with d = 7 or 11 is the
triangle in C with vertices at (−1+ i

√
d)/4, (1− i

√
d)/4 and (3+ i

√
d)/4; see (b) in Figure

4.1. Side paring maps are given by

r
(d)
1 =

[
−1 0
0 1

]
, r

(d)
2 =

[
−1 1
0 1

]
, r

(d)
3 =

[
−1 (1 + i

√
d)/2

0 1

]
.
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r
(2)
1

r
(2)
2

r
(2)
3

0 1

i
√
2

2

(a)

r
(d)
1 r

(d)
2

r
(d)
3

0

ωd
2

1
2

(b)

Figure 4.1: (a) Fundamental domain for a subgroup ∆ of Isom(O2) with index 2.
(b) Fundamental domain for Isom(Od) with d = 7, 11. This is also valid for all the
values of d with d ≡ 3(mod 4).

All these maps are rotations by π fixing 0, 1/2 and (1 + i
√
d)/4 respectively.

In order to produce a fundamental domain for (Γd)∞ we look at all the preimages
of the triangle (that is a fundamental domain of Π∗((Γd)∞)) under vertical projection
Π and we intersect this with a fundamental domain for ker(Π∗). The inverse of image
of the triangle under Π is an infinite prism. The kernel of Π∗ is the infinite cyclic group
generated by T , the vertical translation by (0, 2

√
d). We give the generators and geometric

presentations for the isotropy subgroups (Γd)∞ by analysis of the combinatorics of the
fundamental domain in the Heisenberg group and compare on presentations with those
given by Dekimpe [Dek96].

Proposition 4.2.2. (Γ2)∞ is generated by

R
(2)
1 =

 1 0 0
0 −1 0
0 0 1

 , R
(2)
2 =

 1 2 −2
0 −1 2
0 0 1

 ,

R
(2)
3 =

 1 −i
√

2 −1
0 −1 i

√
2

0 0 1

 and T (2) =

 1 0 i
√

2
0 1 0
0 0 1

 .
A presentation is given by

(Γ2)∞ = 〈R(2)
j , T (2)|R(2)

j

2
= [T (2), R

(2)
j ] =

(
T (2)2

R
(2)
1 R

(2)
3 R

(2)
2

)2
= Id〉.

Proof. Those matrices are constructed by lifting generators of the subgroup ∆ ⊂ Isom(O2)
with index 2 and also T (2) is a generator of the kernel of the map Π∗. A fundamental
domain can be constructed with side pairings as Figure 4.2, where the vertices of the prism
are v+

3 = (−1+
√

2i/2,
√

2), v+
2 = (1+

√
2i/2,

√
2), v+

1 = (1−
√

2i/2,
√

2) for the upper cap of
the prism and v−3 = (−1 +

√
2i/2,−

√
2), v−2 = (1 +

√
2i/2,−

√
2), v−1 = (1−

√
2i/2,−

√
2)

for the base. In particular, the points v±4 , v±5 , v±6 are the middle points of the edges
(v±1 , v±2 ), (v±2 , v±3 ) and (v±3 , v±1 ), respectively.
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T (2)

R
(2)
1

R
(2)
2

R
(2)
3

T (2)R
(2)
2

T (2)R
(2)
3

v+1

v+2

v+3

v+4

v+5

v+6

v−1

v−2

v−3

v−4

v−5

v−6

Figure 4.2: A fundamental domain P2 for (Γ2)∞ in the Heisenberg group: the map
R

(2)
1 rotates through π about z = 0, the map R(2)

2 is a Heisenberg rotation through π
about z = 1 and the map R(2)

3 is a Heisenberg rotation through π about z =
√

2i/2.

The actions of side-pairing maps on N are given by

R
(2)
1 (z, t) = (−z, t),

R
(2)
2 (z, t) = (−z + 2, t+ 4=(z)),

R
(2)
3 (z, t) = (−z + i

√
2, t− 2

√
2<(z)),

T (2)(z, t) = (z, t+ 2
√

2).

We describe the side pairing in terms of the action on the vertices:

R
(2)
1 : (v+

6 , v
+
1 , v

−
1 , v

−
6 ) −→ (v+

6 , v
+
3 , v

−
3 , v

−
6 ),

R
(2)
2 : (v+

1 , v
+
4 , v

−
4 ) −→ (v−2 , v+

4 , v
−
4 ),

T (2)R
(2)
2 : (v+

1 , v
−
1 , v

−
4 ) −→ (v+

2 , v
−
2 , v

+
4 ),

R
(2)
3 : (v+

2 , v
+
5 , v

−
5 ) −→ (v−3 , v+

5 , v
−
5 ),

T (2)R
(2)
3 : (v+

2 , v
−
2 , v

−
5 ) −→ (v+

3 , v
+
3 , v

+
5 ),

T (2) : (v−1 , v−4 , v−2 , v−5 , v−3 , v−6 ) −→ (v+
1 , v

+
4 , v

+
2 , v

+
5 , v

+
3 , v

+
6 ).

The presentation can be obtained following from the edge cycles of the fundamental do-
main.

Writting α = R
(2)
1 , a = R

(2)
1 R

(2)
2 , b = R

(2)
1 R

(2)
3 and c = T (2), then it is easy to see that

this presentation is equivalent to the presentation of the almost-crystallographic group of
type Q = p2 given in the page 160 of [Dek96] with k1 = 4 and k2 = k3 = k4 = 0.
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T (7)

R
(7)
1

R
(7)
2

R
(7)
3

T (7)R
(7)
3

v+1

v+2

v+3

v+4
v+5

v−1

v−2

v−3

v−4
v−5

w+
1

w+
2

w−
1

Figure 4.3: A fundamental domain P7 for (Γ7)∞ in the Heisenberg group: the
map R(7)

1 rotates through π about z = 0, the action of parabolic R(7)
2 is a Heisenberg

rotation through π about z = 1/2 followed by an upward vertical translation by
√

7
and the map R(7)

3 is a Heisenberg rotation through π about z = (1 + i
√

7)/4.

Proposition 4.2.3. (Γ7)∞ is generated by

R
(7)
1 =

 1 0 0
0 −1 0
0 0 1

 , R
(7)
2 =

 1 1 −ω7
0 −1 1
0 0 1

 ,

R
(7)
3 =

 1 ω7 −1
0 −1 ω7
0 0 1

 and T (7) =

 1 0 i
√

7
0 1 0
0 0 1

 .
A presentation is given by

(Γ7)∞ = 〈R(7)
j , T (7)|R(7)

1
2

= R
(7)
3

2
= [T (7), R

(7)
1 ] = [T (7), R

(7)
3 ]

= T (7)R
(7)
2
−2

=
(
R

(7)
1 R

(7)
3 R

(7)
2

)2
= Id〉.

Proof. Those matrices are constructed by lifting generators of Isom(O7) and also T (7) is
a generator of the kernel of the map Π∗. A fundamental domain can be constructed with
side pairings as Figure 4.3, where the vertices of the prism are v+

1 = ((1 − i
√

7)/4,
√

7),
v+

2 = ((3+ i
√

7)/4,
√

7), v+
4 = ((−1+ i

√
7)/4,

√
7) for the upper cap of the prism and v−1 =

((1−i
√

7)/4,−
√

7), v−2 = ((3+i
√

7)/4,−
√

7), v−4 = ((−1+i
√

7)/4,−
√

7) for the base. The
points v±3 and v±5 are the middle points of the edges (v±2 , v±4 ) and (v±4 , v±1 ). In particular,
we introduce more three points w+

1 = ((1 − i
√

7)/4,
√

7/2), w−2 = ((3 + i
√

7)/4,−
√

7/2)
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and w+
3 = ((−1 + i

√
7)/4,

√
7/2). The actions of side-pairing maps on N are given by

R
(7)
1 (z, t) = (−z, t),

R
(7)
2 (z, t) = (−z + 1, t+ 2=(z) +

√
7),

R
(7)
3 (z, t) = (−z + ω7, t+ 2=(ω7z)),

T (7)(z, t) = (z, t+ 2
√

7).

We describe the side pairing in terms of the action on the vertices:

R
(7)
1 : (v+

5 , v
+
1 , v

−
1 , v

−
5 ) −→ (v+

5 , v
+
4 , v

−
4 , v

−
5 ),

R
(7)
2 : (v−1 , v−2 , w−1 , w+

1 ) −→ (w−1 , w+
1 , v

+
1 , v

+
2 ),

R
(7)
3 : (v+

2 , w
−
1 , v

−
3 , v

+
3 ) −→ (w+

2 , v
−
4 , v

−
3 , v

+
3 ),

T (7)R
(7)
3 : (w−1 , v−2 , v−3 ) −→ (v+

4 , w
+
2 , v

+
3 ),

T (7) : (v−1 , v−2 , v−3 , v−4 , v−5 ) −→ (v+
1 , v

+
2 , v

+
3 , v

+
4 , v

+
5 ).

The presentation can be obtained following from the edge cycles of the fundamental do-
main.

Writting α = R
(7)
1 , a = R

(7)
1 R

(7)
2 , b = R

(7)
1 R

(7)
3 and c = T (7), then it is easy to see that

this presentation is equivalent to the presentation of the almost-crystallographic group of
type Q = p2 given in the page 160 of [Dek96] with k1 = k2 = 1 and k3 = k4 = 0.

Proposition 4.2.4. (Γ11)∞ is generated by

R
(11)
1 =

 1 0 0
0 −1 0
0 0 1

 , R
(11)
2 =

 1 1 −ω11
0 −1 1
0 0 1

 ,

R
(11)
3 =

 1 ω11 −1− ω11
0 −1 ω11
0 0 1

 and T (11) =

 1 0 i
√

11
0 1 0
0 0 1

 .
A presentation is given by

(Γ11)∞ = 〈R(11)
j , T (11)|R(11)

1
2

= [T (11), R
(11)
1 ] = T (11)R

(11)
2
−2

= T (11)R
(11)
3
−2

= T (11)
(
R

(11)
1 R

(11)
3 R

(11)
2

)−2
= Id〉.

Proof. Those matrices are constructed by lifting generators of Isom(O11) and also T (11) is
a generator of the kernel of the map Π∗. A fundamental domain can be constructed with
side pairings as Figure 4.4, where the vertices of the prism are v+

1 = ((1− i
√

11)/4,
√

11),
v+

2 = ((3 + i
√

11)/4, 3
√

11/2), v+
3 = ((−1 + i

√
11)/4, 2

√
11) for the upper cap of the prism

and v−1 = ((1− i
√

11)/4,−
√

11), v−2 = ((3 + i
√

11)/4,−
√

11/2), v−3 = ((−1 + i
√

11)/4, 0)
for the base. The points v±0 are the middle points of the edges (v±1 , v±3 ). In particular,
we introduce more three points w1 = ((1 − i

√
11)/4, 0), w2 = ((3 + i

√
11)/4,

√
11/2) and

w3 = ((−1 + i
√

11)/4,
√

11). The actions of side-pairing maps on N are given by

R
(11)
1 (z, t) = (−z, t),

R
(11)
2 (z, t) = (−z + 1, t+ 2=(z) +

√
11),

R
(11)
3 (z, t) = (−z + ω11, t+ 2=(ω11z) +

√
11),

T (11)(z, t) = (z, t+ 2
√

11).
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T (11)

R
(11)
2

R
(11)
3

T (11)R
(11)
1

v+1

v+2

v+3

v+0

v−1

v−2

v−3

v−0

w1

w2

w3

Figure 4.4: A fundamental domain P11 for (Γ11)∞ in the Heisenberg group: the map
R

(11)
1 rotates through π about z = 0, the action of parabolic R(11)

2 is a screw Heisenberg
rotation through π about z = 1/2 followed by an upward vertical translation by

√
11

and the map R(11)
3 is a screw Heisenberg rotation through π about z = (1 + i

√
11)/4

followed by an upward vertical translation by
√

11.

We describe the side pairing in terms of the action on the vertices:

R
(11)
1 : (v+

0 , v
+
1 , w1, v

−
0 ) −→ (v+

0 , w3, v
−
3 , v

−
0 ),

T (11)R
(11)
1 : (w1, v

−
1 , v

−
0 ) −→ (v+

3 , w3, v
+
0 ),

R
(11)
2 : (v+

1 , w1, v
−
1 , v

−
2 ) −→ (v+

2 , w2, v
−
2 , v

+
1 ),

R
(11)
3 : (v+

2 , w2, v
−
2 , v

−
3 ) −→ (v+

3 , w3, v
−
3 , v

+
2 ),

T (11) : (v−0 , v−1 , v−2 , v−3 ) −→ (v+
0 , v

+
1 , v

+
2 , v

+
3 ).

The presentation can be obtained following from the edge cycles of the fundamental do-
main.

Writting α = R
(11)
1 , a = R

(11)
1 R

(11)
2 , b = R

(11)
1 R

(11)
3 and c = T (11), then it is easy to see

that this presentation is equivalent to the presentation of the almost-crystallographic group
of type Q = p2 given in the page 160 of [Dek96] with k1 = k4 = 0 and k2 = k3 = 0.

4.3 Statement of the results

In this section, we introduce the method used in ([FP06], [FFP10] and [Zh11]) to determine
the generators of the Euclidean Picard modular groups and then state our results.
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Recall the map

I0 =

 0 0 1
0 −1 0
1 0 0


defined in the Section 2.2. We consider the isometric sphere B0 of I0 given by (2.2), which
is a Cygan sphere centred at o = (0, 0, 0) with radius

√
2. Observe that I0 maps B0 to

itself and swaps the inside and the outside of B0. Given an element of Γd of the form (2.4),
we know that the radius of its isometric sphere is

√
2/|g|. For each case Od, the radius

of isometric sphere is not greater than
√

2 since the absolute of g is not smaller than 1
for g ∈ Od. We show that the largest isometric spheres are all images of B0 under the
elements in (Γd)∞.

Proposition 4.3.1. An isometric sphere has the largest radius if and only if it is the
image of B0 under an element in (Γd)∞.

Proof. Obviously, the image of B0 under an element in (Γd)∞ has the same radius
√

2.
Conversely, given an element G of the form (2.4) such that G(q∞) 6= q∞, then the isometric
sphere of G has the largest radius only if g = 1. So the center of the isometric sphere of
G in horospherical coordinates is G−1(∞) = (h, 2=(j), 0). Since h and 2=(j) ∈ Od, we
can take a Heisenberg translation T ∈ (Γd)∞ mapping the origin to (h, 2=(j). Writing
T ′ = GTI0, we know that T ′ fixes ∞. We conclude explicitly that the isometric sphere of
G is {

z ∈ H2
C : |〈z, q∞〉| = |〈z, G−1(q∞)〉| = |〈z, T I0(q∞)〉|

}
,

which is the image of B0 under T .

Our method is based on the special feature that the orbifold H2
C/Γd has only one cusp

for d = 2, 7, 11. For these types of orbifolds, one would like to construct a fundamental
domain using the Ford domain (that is the intersection of the exteriors of isometric spheres
of all elements not fixing infinity), namely, the intersection of the Ford domain and a
fundamental domain for the stabilizer of infinity. The Ford domain is canonical, but we
can choose a fundamental domain for the stabilizer freely. In the previous section, we
found suitable generators of the stabilizer and constructed a fundamental domain for the
stabilizer in the Heisenberg group. We will show that adjoining I0 to (Γd)∞ gives the
Euclidean Picard modular groups Γd. The basic idea of the proof is analogous to Theorem
3.5 of [FP06].

• Find a sufficient many of isometric spheres such that the union of the interior of
the boundary of these isometric spheres in the Heisenberg group covers each of the
prisms we constructed in the previous section. The problem of determining the
isometric spheres, as the key point, will be shown in the next section.

• From the first step, there is a fundamental domain for 〈R(d)
1 , R

(d)
2 , R

(d)
3 , T (d), I0〉 con-

tained in the region that is obtained from the intersection of the exteriors of a finite
many isometric spheres found in the above step with the fundamental domain for the
stabilizer of infinity. It is obviously that this region is not exactly a fundamental do-
main since the isometric spheres which we found are sufficiently but not necessarily
to cover the prism. However, this region has only one cusp; see Figure 4.5.

• Clearly, it follows that 〈R(d)
1 , R

(d)
2 , R

(d)
3 , T (d), I0〉 has only one cusp q∞. Since the

group 〈R(d)
1 , R

(d)
2 , R

(d)
3 , T (d), I0〉 is a subgroup of Γd and both groups have cofinite
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1

Figure 4.5: A schematic view in 2-dimension. The red line indicates a fundamental
domain for the cusp group in the Heisenberg group. The region bounded by the bold
lines (arcs) contains a fundamental domain for 〈R(d)

1 , R
(d)
2 , R

(d)
3 , T (d), I0〉. The half-

circles drawn by the dotted line are other possible isometric spheres intersecting with
the fundamental domain for the cusp group.

volume, 〈R(d)
1 , R

(d)
2 , R

(d)
3 , T (d), I0〉 must have finite index. Therefore, the fact that

both groups have the same stabilizer of q∞ implies they are the same.

After we check the determination of isometric spheres, we obtain the main results as
follows.

Theorem 4.3.2. Let K = Q(
√
−2) and let O2 = Z[i

√
2]. Then the group PU(2, 1,O2) is

generated by the elements

I0 =

 0 0 1
0 −1 0
1 0 0

 , R(2)
1 =

 1 0 0
0 −1 0
0 0 1

 , R(2)
2 =

 1 2 −2
0 −1 2
0 0 1

 ,

R
(2)
3 =

 1 −i
√

2 −1
0 −1 i

√
2

0 0 1

 and T (2) =

 1 0 i
√

2
0 1 0
0 0 1

 .

Theorem 4.3.3. Let K = Q(
√
−7) and let O7 = Z[ω7], where ω7 = 1

2(1 + i
√

7), be the
ring of integers of K. Then the group PU(2, 1,O7) is generated by the elements

I0 =

 0 0 1
0 −1 0
1 0 0

 , R(7)
1 =

 1 0 0
0 −1 0
0 0 1

 , R(7)
2 =

 1 1 −ω7
0 −1 1
0 0 1

 ,

R
(7)
3 =

 1 ω7 −1
0 −1 ω7
0 0 1

 and T (7) =

 1 0 i
√

7
0 1 0
0 0 1

 .
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Theorem 4.3.4. Let K = Q(
√
−11) and let O11 = Z[ω11], where ω11 = 1

2(1 + i
√

11), be
the ring of integers of K. Then the group PU(2, 1,O11) is generated by the elements

I0 =

 0 0 1
0 −1 0
1 0 0

 , R(11)
1 =

 1 0 0
0 −1 0
0 0 1

 , R(11)
2 =

 1 1 −ω11
0 −1 1
0 0 1

 ,

R
(11)
3 =

 1 ω11 −1− ω11
0 −1 ω11
0 0 1

 and T (11) =

 1 0 i
√

11
0 1 0
0 0 1

 .

Remark 4.3.5. For other values of d such that Od has class number one, namely d = 19,
43, 67, 163, we can construct the same type of fundamental domain for (Γd)∞ in the Heisen-
berg group as (Γ11)∞. All generators as the above types lie in PU(2, 1;Od), but we don’t
know whether adjoining the element I0 to (Γd)∞ generates the full group PU(2, 1;Od).
Furthermore, the method of [FFLP11] could not be extended to non-Euclidean Picard
modular groups.

4.4 Determination of the isometric spheres

Recall that the Cygan sphere B0 is the isometric sphere of I0. The boundary of B0 is a
spinal sphere denoted by S0 (this is not the same as the one in Chapter 3) in the Heisenberg
group, which is defined by

S0 =
{

(z, t) :
∣∣∣|z|2 + it

∣∣∣ = 2
}
. (4.1)

Indeed we only need to consider the boundaries of isometric spheres in the Heisenberg
group because two isometric spheres have a non-empty interior intersection if and only if
their boundaries have a non-empty interior intersection.

4.4.1 The case O2

In the cases of PU(2, 1;O1) and PU(2, 1;O3), all the vertices of the fundamental domain
for the stabilizer of q∞ acting on ∂H2

C lie inside S0. For the group PU(2, 1;O2), it is not
hard to show that six vertices of the prism P2 lie outside S0. Therefore we need to find
more isometric spheres whose boundaries together with S0 contain the prism P2.

We consider the map

I0R
(2)
2 I0 =

 1 0 0
−2 −1 0
−2 −2 1

 ,
whose isometric sphere which we denote by B1 is a Cygan sphere centered at the point
(1, 0, 0) (in horospherical coordinates) with radius 1. The boundary of B1 is given by

S1 =
{

(z, t) :
∣∣∣|z − 1|2 + it+ 2i=(z)

∣∣∣ = 1
}
. (4.2)

Minimizing the number of spinal spheres by the symmetry of R(2)
1 , it suffices to con-

sider S0 and several images of S1 under some suitable elements in (Γ2)∞. In Heisenberg
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(a) (b)

Figure 4.6: (a) The shading view of neighboring spinal spheres containing the fun-
damental domain for (Γ2)∞. (b) Another view for these spinal spheres.

coordinates these are given by

T (2)(S1) =
{

(z, t) :
∣∣∣|z − 1|2 + it− 2i

√
2 + 2i=(z)

∣∣∣ = 1
}
,

T (2)−1(S1) =
{

(z, t) :
∣∣∣|z − 1|2 + it+ 2i

√
2 + 2i=(z)

∣∣∣ = 1
}
,

R
(2)
1 (S1) =

{
(z, t) :

∣∣∣|z + 1|2 + it− 2i=(z)
∣∣∣ = 1

}
,

T (2)−1
R

(2)
1 (S1) =

{
(z, t) :

∣∣∣|z + 1|2 + it+ 2i
√

2− 2i=(z)
∣∣∣ = 1

}
.

We claim that the prism P2 lies inside the union of S0 and these images of S1, see Figure
4.6 for viewing these spinal spheres.

Proposition 4.4.1. The prism P2 is contained in the union of the interiors of the spinal
spheres S0, S1, T

(2)(S1), T (2)−1(S1), R(2)
1 (S1) and T (2)−1

R
(2)
1 (S1).

Proof. It suffices to show there exist three points (v+
1 )(j) (j = 1, 2, 3) on the edges

(v+
1 , v

−
1 ), (v+

1 , v
+
2 ) and (v+

1 , v
+
3 ) which lie in the intersection of the interiors of S0 and

S1 such that the tetrahedron T(v+
1 ) with vertices v+

1 , (v+
1 )(1), (v+

1 )(2), (v+
1 )(3) lies in-

side S1. By the same argument, we can also obtain five other tetrahedra T(v+
2 ), T(v+

3 ),
T(v−1 ), T(v−2 ), T(v−3 ) with apex v+

2 , v
+
3 , v

−
1 , v

−
2 , v

−
3 respectively such that T(v+

2 ) ∈
Int(T (2)(S1)), T(v+

3 ) ∈ Int(R(2)
1 (S1)), T(v−1 ) ∈ Int(T (2)−1(S1)), T(v−2 ) ∈ Int(S1) and

T(v−3 ) ∈ Int(T (2)−1
R

(2)
1 (S1)). Moreover, the core part obtained by cutting off six the

tetrahedra from the prism lies inside S0.
We shall prove the existence of the tetrahedron T(v+

1 ) and the others follow similarly.
The edge joining v+

1 and v−1 is contained in the complex line z = 1−
√

2i/2 which is given
by points with Heisenberg coordinates

z = 1−
√

2i/2, −
√

2 ≤ t ≤
√

2.

The edge joining v+
1 and v+

2 is given by points with Heisenberg coordinates

<(z) = 1, −
√

2/2 ≤ =(z) ≤
√

2/2, t =
√

2.
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The edge joining v+
1 and v+

3 is given by points with Heisenberg coordinates

<(z) = −
√

2=(z), t =
√

2.

From the equations (4.1) and (4.2), the points on the edge (v+
1 , v

−
1 ) lie in the intersection

of the interiors of S0 and S1 if and only if

|3/2 + it| < 2 and
∣∣∣1/2− (t−

√
2)i
∣∣∣ < 1. (4.3)

By easy calculations, the inequalities (4.3) are equivalent to
√

2−
√

3/2 < t <
√

7/2.

Using the same argument as above, we obtain that the points on the edge (v+
1 , v

+
2 ) lie

in the intersection of the interiors of S0 and S1 if and only if <(z) = 1 and −
√√

2− 1 <
=(z) < δ1, where δ1 ≈ −0.208 is the largest real root of the equation x4+4x2+4

√
2x+1 = 0.

The points on the edge (v+
1 , v

+
3 ) lie in the intersection of the interiors of S0 and S1 if and

only if <(z) = −
√

2=(z) and −21/4/
√

3 < =(z) < δ2, where δ2 ≈ −0.264 is the largest real
root of the equation 9x4 + 12

√
2x3 + 18x2 + 8

√
2x+ 2 = 0.

In term of these, we choose three points as (v+
1 )(1) = (1−

√
2i/2, 1) on the edge (v+

1 , v
−
1 ),

(v+
1 )(2) = (1 − i/2,

√
2) on the edge (v+

1 , v
+
2 ) and (v+

1 )(3) = (
√

2/2 − i/2,
√

2) on the edge
(v+

1 , v
+
3 ), which are inside the intersection of the interiors of S0 and S1. Since the vertex

v+
1 lies inside S1, the tetrahedron T(v+

1 ) with the vertices v+
1 , (v+

1 )(1), (v+
1 )(2), (v+

1 )(3) lies
inside S1 by Lemma 1.4.7.

4.4.2 The case O7

In this case, the distance between the top and base of the fundamental domain for the
stabilizer (Γ7)∞ is greater than the diameter of S0, which implies that the prism P7
can not be contained inside S0 completely. Due to increasing the length of Heisenberg
translations, only the images of S0 under the elements in (Γ7)∞ could not cover the whole
prism. We show that there are also isometric spheres with Cygan radius smaller than

√
2

whose centers are near to the origin.
Therefore we consider the map

Q = I0R
(7)
2 I0 =

 1 0 0
1 1 0
ω7 1 1

 .
Consider the isometric spheres of Q and Q−1, which we denote by B2 and B3, respectively.
The center of B2 is Q−1(∞), which is the point with horospherical coordinates (1/4 +
i
√

7/4,
√

7/2, 0) and the center of B3, is Q(∞) which has horospherical coordinates (1/4−
i
√

7/4,
√

7/2, 0). Both these isometric spheres have Cygan radius
√

2/|ω7| = 21/4. The
boundaries of these isometric spheres B2 and B3 are in Heisenberg coordinates given by

S2 =
{

(z, t) :
∣∣∣|z − ω7/2|2 + it+ i

√
7/2 + i=(ω7z)

∣∣∣ =
√

2
}
, (4.4)

S3 =
{

(z, t) :
∣∣∣|z − ω7/2|2 + it− i

√
7/2 + i=(ω7z)

∣∣∣ =
√

2
}
. (4.5)

In order to cover the prim P7 by the spinal spheres, we use the symmetry property of
R

(7)
1 . It suffices to consider S0,S2 and the images of S0 and S3 under suitable elements in
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(a) (b)

Figure 4.7: (a) The shading view of neighboring spinal spheres containing the fun-
damental domain for (Γ7)∞. (b) Another view for these spinal spheres.

(Γ7)∞. These spinal spheres are points with Heisenberg coordinates given by

R
(7)
2 (S0) =

{
(z, t) :

∣∣∣|z − 1|2 + it− i
√

7 + 2i=(z)
∣∣∣ = 4

}
,

R
(7)
2
−1

(S0) =
{

(z, t) :
∣∣∣|z − 1|2 + it+ i

√
7 + 2i=(z)

∣∣∣ = 4
}
,

R
(7)
2
−1

(S3) =
{

(z, t) :
∣∣∣|z − (1 + ω7)/2|2 + it+ i

√
7 + i=((1 + ω7))

∣∣∣ =
√

2
}
,

R
(7)
3 R

(7)
2 (S3) =

{
(z, t) :

∣∣∣|ζ + ω7/2|2 + it− i
√

7/2− i=(ω7z)
∣∣∣ =
√

2
}
,

R
(7)
1 R

(7)
3 R

(7)
2 (S3) =

{
(z, t) :

∣∣∣|z − ω7/2|2 + it− i
√

7/2 + i=(ω7z)
∣∣∣ =
√

2
}
.

We claim that the prism P7 lies inside the union of S0, S2 and these images R(7)
2 (S0),

R
(7)
2
−1

(S0), R(7)
2
−1

(S3), R(7)
3 R

(7)
2 (S3), R(7)

1 R
(7)
3 R

(7)
2 (S3), see Figure 4.7 for viewing these

spinal spheres.
Proposition 4.4.2. The prism P7 is contained in the union of the interiors of the spinal
spheres S0, S2, R(7)

2 (S0), R(7)
2
−1

(S0), R(7)
2
−1

(S3), R(7)
3 R

(7)
2 (S3) and R(7)

1 R
(7)
3 R

(7)
2 (S3).

Proof. It suffices to show that the prism P7 can be decomposed into several pieces as
polyhedra such that each polyhedron lies inside a spinal sphere which is described in the
proposition and the common face of two adjacent polyhedra lie in the intersection of the
interior of two spinal spheres which contain these two polyhedra.

We need to add sixteen points on the faces of the prism P7 in order to decompose the
prim into seven polyhedra. These points are given, in Heisenberg coordinates, by

p1 = (1/4− i
√

7/4, 3/2), p2 = (0.11− i11
√

7/100, 1.44 +
√

7/50),
p3 = (1/2, 8/5), p4 = (−1/10 + i

√
7/10,

√
7),

p5 = (−1/10 + i
√

7/10,
√

7/2), p6 = (3/4 + i
√

7/4, 1.7),
p7 = (−1/4 + i

√
7/4, 1), p8 = (1/4− i

√
7/4,−1),

p9 = (1/60− i
√

7/60,−2
√

7/3), p10 = (−1/20 + i
√

7/20,−
√

7),
p11 = (3/5 + i

√
7/10,−2

√
7/3), p12 = (7/10 + i

√
7/5,−

√
7),

p13 = (3/4 + i
√

7/4,−2
√

7/3), p14 = (5/12 + i
√

7/4,−2
√

7/3),
p15 = (1/4 + i

√
7/4,−

√
7), p16 = (−1/4 + i

√
7/4,−1).



96 Chapter 4. The Euclidean Picard modular lattices

T
P1

P2
P3

H1

H2

O

v+1

v+2

v+4

v−1

v−2

v−4

p1 p2

p3

p4

p5

p6

p7

p8

p9
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Figure 4.8: The decomposition of the prism P7 into the pieces of polyhedra.

We describe these polyhedra as follows:

• The tetrahedron T with the vertices v+
1 , p1, p2, p3;

• The hexahedron H1 with the vertices v+
1 , v

+
2 , p2, p3, p4, p5, p6;

• The pentahedron P1 with the vertices v+
2 , p4, p5, p6, v

+
4 , p7;

• The pentahedron P2 with the vertices v−1 , p8, p9, p10, p11, p12;

• The hexahedron H2 with the vertices p9, p10, p11, p12, p13, v
−
2 , p14, p15;

• The pentahedron P3 with the vertices p9, p10, p14, p15, p16, v
+
4 ;

• The octahedron O with the vertices p1, p2, p3, p5, p6, p7, p8, p9, p11, p13, p14, p16.

Note that the face (p1, p2, p3) of T and the face (p2, p3, p5, p6) of H1 are on the face
(p1, p5, p6) of O; the common face (v+

2 , p4, p5, p6) of H1 and P1 is a vertical plane; the
face (p9, p11, p13, p14) of H2 is parallel to the base of the prism. Furthermore, the faces
(p9, p10, p11, p12) and (p9, p10, p14, p15) are the trapeziums since the edge (p9, p11) is parallel
to (p10, p12) and the edge (p9, p14) is parallel to (p10, p15).

By examining the location of the points and applying Lemma 1.4.7, we conclude that
the tetrahedron T is inside the spinal sphere R

(7)
1 R

(7)
3 R

(7)
2 (S3); the hexahedron H1 is

contained inside the spinal sphere R(7)
2 (S0); the pentahedron P1 is inside R(7)

3 R
(7)
2 (S3);

the pentahedron P2 is contained inside R(7)
2
−1

(S0); the hexahedron H2 is contained inside
R

(7)
2
−1

(S3); the pentahedron P3 is inside S2; the remaining octahedron O is inside S0; see
Figure 4.8 for viewing the polyhedral decomposition of the prism.
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4.4.3 The case O11

In this case, we again know that the fundamental domain for the stabilizer (Γ11)∞ cannot
be inside S0 completely. The radius of spinal spheres other than the largest are so small
that these spinal spheres do not contribute much to covering the prism P11. Due to the
different shape of the prism P11 with the case O7, we only need to consider the largest
spinal spheres which are the images of S0 under the elements of (Γ11)∞. In order to
determine a union of the spinal spheres which covers the prism P11, we minimize their
number by the symmetry of R(11)

1 . It suffices to consider S0 and the images of S0 under
suitable elements in (Γ11)∞. In Heisenberg coordinates they are given by

T (11)(S0) =
{

(z, t) :
∣∣∣|z|2 + it− 2i

√
11 + 2i=(z)

∣∣∣ = 4
}
,

R
(11)
2 (S0) =

{
(z, t) :

∣∣∣|z − 1|2 + it− i
√

11 + 2i=(z)
∣∣∣ = 4

}
,

R
(11)
1 R

(11)
2 (S0) =

{
(z, t) :

∣∣∣|z + 1|2 + it− i
√

11− 2i=(z)
∣∣∣ = 4

}
,

R
(11)
2
−1

(S0) =
{

(z, t) :
∣∣∣|z − 1|2 + it+ i

√
11 + 2i=(z)

∣∣∣ = 4
}
,

R
(11)
3 (S0) =

{
(z, t) :

∣∣∣|z − ω11|2 + it− i
√

11− 2i=(ω11z)
∣∣∣ = 4

}
,

R
(11)
3
−1

(S0) =
{

(z, t) :
∣∣∣|z − ω11|2 + it+ i

√
11− 2i=(ω11z)

∣∣∣ = 4
}
,

R
(11)
3 R

(11)
2 (S0) =

{
(z, t) :

∣∣∣|z + ω11|2 + it− i
√

11− 2i=(ω11z)
∣∣∣ = 4

}
,

R
(11)
1 R

(11)
3 R

(11)
2 (S0) =

{
(z, t) :

∣∣∣|z − ω11|2 + it− i
√

11 + 2i=(ω11z)
∣∣∣ = 4

}
,

R
(11)
1 R

(11)
3
−1
R

(11)
2 (S0) =

{
(z, t) :

∣∣∣|z − ω11|2 + it+ i
√

11 + 2i=(ω11z)
∣∣∣ = 4

}
.

Definition 4.4.3. Let X be a closed polygonal chain (not necessarily in a plane) in 3-
dimensional space, then a topological disc defined by the cone over X with apex v is called
a cone-polygon, denoted by Dv(X).

Note that a polygon in traditional sense can be interpreted as a cone-polygon, in that
case, the boundary of cone-polygon and the apex lie in the same plane and moreover the
apex is in the interior of the boundary. We claim that the prism P11 lies inside the union
of S0 and its images as above, see Figure 4.9 for viewing these spinal spheres.

Proposition 4.4.4. The prism P11 is contained in the union of the interiors of the spinal
spheres S0, T

(11)(S0), R(11)
2 (S0), R(11)

2
−1

(S0), R(11)
3 (S0), R(11)

3
−1

(S0), R(11)
3 R

(11)
2 (S0),

R
(11)
1 R

(11)
2 (S0), R(11)

1 R
(11)
3
−1
R

(11)
2 (S0) and R(11)

1 R
(11)
3 R

(11)
2 (S0)

Proof. Using the same argument as Proposition 4.4.2, we want to decompose the prism
P11 into several polyhedral cells. The difference is the complicated intersection of the
spinal spheres, which makes it difficult to decompose into several polyhedral cells, each of
which is contained in one spinal sphere. Observe that a union of interiors of several spinal
spheres is a star-convex set if they have a non-empty interior intersection. We shall show
that the collection of these spinal spheres can be separated into several parts such that
each part contains certain polyhedral cell. All these polyhedral cells are defined by the
cone-polygon as its boundary.
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(a) (b)

Figure 4.9: (a) The shading view of neighboring spinal spheres containing the fun-
damental domain for (Γ11)∞. (b) Another view for these spinal spheres.

We first define a tetrahedron T with vertices v−1 , q1, q2, q3, where

q1 =
(
1/4− i

√
11/4,−2

√
11/3

)
,

q2 =
(
3/20− 3i

√
11/20,−4

√
11/5

)
,

q3 =
(
7/20− 3i

√
11/20,−9

√
11/10

)
.

Observe that the points q1, q2, q3 lie on the edges (v+
1 , v

−
1 ), (v−1 , v−3 ) and (v−1 , v−2 ), respec-

tively. By Lemma 1.4.7 and simple calculations show that the tetrahedron T is contained
inside R(11)

1 R
(11)
3
−1
R

(11)
2 (S0).

Next, we define a hexahedron H1 with vertices q1, q2, q3, q4, q5, q6, q7, v
+
0 and another

hexahedron H2 with vertices v−2 , q5, q6, q7, q8, q9, where

q4 =
(
1/4− i

√
11/4,−1/2

)
, q5 =

(
0.42 + 0.26i,−0.71

√
11 + 0.39

)
,

q6 =
(
0.6 + i

√
11/10,−0.65

√
11
)
, q7 =

(
0.58 + 2i

√
11/25,−1.92

)
,

q8 =
(
3/4 + i

√
11/4, 0

)
, q9 = (0.55 + i

√
11/4,−2

√
11/5).

Observe that the points q4, q6, q8, q9 lie on the edges (v+
1 , v

−
1 ), (v−1 , v−2 ), (v+

2 , v
−
2 ) and

(v−2 , v−3 ), respectively. The points q5 lies on the interior of the base of the prism P11 and
the point q7 lies on the interior of the face (v+

1 , v
−
1 , v

−
2 , v

+
2 ). Then we know that the hex-

ahedron H1 has the faces (q1, q2, q3), (q4, q5, v
−
0 ), (q4, q5, q7), (q5, q6, q7), (q1, q2, v

+
0 , q4) and

(q1, q3, q6, q7, q4) and the hexahedron H2 has the faces (q5, q6, q7), (q5, q7, q8), (v−2 , q8, q9),
(q5, q8, q9), (q6, q7, q8, v

−
2 ), (q5, q6, v

−
2 , q9). By examining the location of these points and

Lemma 1.4.7, we conclude that the hexahedron H1 is contained inside R(11)
2
−1

(S0) and the
hexahedron H2 is lied inside R(11)

3
−1

(S0).
We focus on describing other polyhedral cells in the decomposition of the prism P11.

Let U1 denote the union of R(11)
2 (S0), R(11)

1 R
(11)
2 (S0) and R(11)

1 R
(11)
3 R

(11)
2 (S0). We verify

that q10 = (0.2−0.4i, 2.4) is in the intersection of the interiors of these three spinal spheres,
which implies that U1 is a star-convex set about q11. Analogously, we know U2, denoted
by the union of T (11)(S0), R(11)

3 (S0), R(11)
1 R

(11)
2 (S0) and R

(11)
3 R

(11)
2 (S0), is a star-convex

set about q11 = (0.18 + 0.72i, 4.8). This can be verified by examining the location of q12
which is in the intersection of the interiors of these four spinal spheres. We need to add
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the following points on the faces of the prism P11, each of which is in the intersection of
the interiors of at least two spinal spheres.

q12 = (1/4− i
√

11/4,
√

11/2), q13 = (0.21− 0.21i
√

11,
√

11/2),
q14 = (0,

√
11/2), q15 = (−0.21 + 0.21i

√
11,
√

11/2),
q16 = (i

√
11/4, 1), q17 = (3/4 + i

√
11/4, 1),

q18 = (0.42− 2i
√

11/25, 1.95), q19 = (3/4 + i
√

11/4,
√

11),
q20 = (0.6 + i

√
11/10, 27

√
11/20), q21 = (0.42 + 0.26i, 1.29

√
11 + 0.39),

q22 = (−1.4 + 1.4i
√

11, 4
√

11/5), q23 = (−1/4 + i
√

11/4,
√

11/2).

Observe that the points q12, q20, q23 lie on the edges (v+
1 , v

−
1 ), (v+

1 , v
+
2 ) and (v+

3 , v
−
3 )

respectively and the points q17, q19 lie on the edge (v+
2 , v

−
2 ). Moreover, the points q13, q14,

q15, q22 lie on the interior of the face (v+
1 , v

−
1 , v

−
3 , v

+
3 ), the point q16 lies on the interior

of the face (v+
2 , v

−
2 , v

−
3 , v

+
3 ), the point q18 lies on the interior of the face (v+

1 , v
−
1 , v

−
2 , v

+
2 )

and the points q21 lies on the interior of the top (v+
1 , v

+
2 , v

+
3 ). We need to add other three

points in the interior of the prism P11 which are used to define the cone-polygon,

q24 = (−0.16 + 0.74i, 1.4),
q25 = (0.328− 0.28i, 1.99),
q26 = (0.325 + 0.29i, 4.652).

We verify the location of all these points as follows:

• The point q12 is in the intersection of the interiors of S0 and R(11)
1 R

(11)
3 R

(11)
2 (S0);

• The point q13 is in the intersection of the interiors of S0, R(11)
1 R

(11)
3 R

(11)
2 (S0) and

R
(11)
1 R

(11)
2 (S0);

• The point q12 is in the intersection of the interiors of S0 and R(11)
1 R

(11)
3 R

(11)
2 (S0);

• The point q13 is in the intersection of the interiors of S0, R(11)
1 R

(11)
3 R

(11)
2 (S0) and

R
(11)
1 R

(11)
2 (S0);

• The point q14 is in the intersection of the interiors of S0, R(11)
2 (S0) and R(11)

1 R
(11)
2 (S0);

• The point q15 is in the intersection of the interiors of S0, R(11)
2 (S0), R(11)

3 (S0) and
R

(11)
3 R

(11)
2 (S0);

• The points q16, q19, q20 are in the intersection of the interiors ofR(11)
2 (S0) andR(11)

3 (S0);

• The point q17 is in the intersection of the interiors of S0 and R(11)
2 (S0);

• The point q18 is in the intersection of the interiors of S0, R(11)
1 R

(11)
3 R

(11)
2 (S0) and

R
(11)
2 (S0);

• The point q21 is in the intersection of the interiors of T (11)(S0), R(11)
2 (S0) and

R
(11)
3 (S0);

• The point q22 is in the intersection of the interiors of R(11)
1 R

(11)
2 (S0), R(11)

2 (S0) and
R

(11)
3 (S0);

• The point v+
0 is in the intersection of the interiors of R(11)

1 R
(11)
2 (S0) and T (11)(S0),

R
(11)
2 (S0);



100 Chapter 4. The Euclidean Picard modular lattices

• The point q23 is in the intersection of the interiors of S0, R(11)
3 (S0) and R(11)

3 R
(11)
2 (S0);

• The point q24 is in the intersection of the interiors of S0, R
(11)
2 (S0), R(11)

3 (S0) and
R

(11)
3 R

(11)
2 (S0);

• The point q25 is in the intersection of the interiors of S0, R
(11)
2 (S0), R(11)

1 R
(11)
2 (S0)

and R(11)
1 R

(11)
3 R

(11)
2 (S0);

• The point q26 is in the intersection of the interiors of T (11)(S0), R(11)
2 (S0), R(11)

3 (S0)
and R(11)

1 R
(11)
2 (S0).

In terms of these, we denote by X1 a closed polygonal chain joining in order with
the points p12, p13, p14, p15, p16, p17, p18 and denote by X2 a closed polygonal chain
joining in order with the points p16, p19, p20, p21, v

+
0 , p22, p24. So then we can define two

cone-polygons Dq25(X1) and Dq26(X2). By examining the locations of these points, we
show that Dq25(X1) is in the intersection of the interiors of S0, U1 and Dq26(X2) is in the
intersection of the interiors of R(11)

2 (S0) and T (11)(S0), R(11)
1 R

(11)
2 (S0), R(11)

3 (S0), namely,
the intersection of the interiors of U1 and U2. The remaining faces can be easily verified
which are contained inside S0,U1 or U2 .

Finally, we define three polyhedral cells as follows:

(i) The polyhedral cell P1 is defined by its boundary as the faces Dq25(X1), Dq26(X2),
(v+

1 , q20, q21, v
+
0 ), (v+

1 , q12, q18, q17, q19, q20) and (v+
1 , q12, q13, q14, q15, q22, v

+
0 );

(ii) The polyhedral cell P2 is defined by the faces Dq26(X2), (q23, q16, q24), (q15, q23, q24),
(v+

1 , q20, q21, v
+
0 ), (v+

1 , q12, q18, q17, q19, q20) and (v+
1 , q12, q13, q14, q15, q22, v

+
0 ) as its bound-

ary;

(iii) The polyhedral cell P3 is defined by the faces Dq25(X1), (q4, q5, q7), (q5, q7, q8),
(q4, q5, v

−
0 ), (v−3 , v−0 , q5, q9), (q8, q9, v

−
3 , q23, q16, q17), (q15, q23, q24), (q4, q7, q8, q17, q18, q12),

(q23, q16, q24) and (q12, q13, q14, q15, q23, v
−
3 , v

−
0 , q4) as its boundary.

By Lemma 1.4.7 and the properties of star-convex of U1 and U2, we conclude that the
polyhedral cell P1 contained inside U1; the polyhedral cell P2 contained inside U2; the
polyhedral cell P3 is contained inside S0. This completes the proof.
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5.1 Introduction

In [Mos80] Mostow used the construction of fundamental domain to show that certain
subgroups of PU(2, 1) are lattices. More recently, there has been a renewed interest
in construction of fundamental domain (see [DFP05, FP06, FFP10, Par06, Zh11]. In
particular, Deraux, Falbel and Paupert gave a new construction of fundamental domains
for some of the groups considered by Mostow in [Mos80]. In this chapter we give another
construction for the same groups. Our construction generalizes the fundamental domain
we gave for the sister of the Eisenstein-Picard modular group. This generalization is in
the same spirit as the construction of fundamental domains for Livné’s groups given by
Parker [Par06] which generalizes the construction of the domain for the Eisenstein-Picard
modular group given in [FP06].

Mostow groups are generated by three complex reflections R1, R2, R3 each of order
p = 3, 4, 5. The complex lines fixed by three reflections are permuted by a map J of order
3, equivalently, JRiJ−1 = Ri+1 (indices taken cyclically). So 〈R1, R2, R3〉 is a normal
subgroup of 〈R1, J〉 with index 3 (or 1). Moreover, the complex reflection Ri satisfies the
braid relation RiRjRi = RjRiRj . Such groups are determined up to conjugation by a
real parameter, which Mostow calls a phase shift, and denoted by ϕ. These groups have
the property that Ai = (JR−1

i J)2 is also a complex reflection and there is a one to one
correspondence between the phase shift parameter ϕ and the angle of this reflection Ai.
In order for 〈R1, J〉 to be discrete, the complex reflection Ai should have finite order and
we take this order to be k. Following Parker [Par09], we use p and k rather than ϕ to
specify the group 〈R1, J〉.

In this chapter we mainly restrict our attention to the case p = 3. When p = 3 the
values of k that lead to a lattice are exactly those for which there is an integer l so that
1/k + 1/l = 1/6 (see also the table of [Par09], page 27). In [Zh11] we constructed a
fundamental domain for the case k = 6 and while we consider the case k ≥ 7 here and
we construct a fundamental domain whose shape is based on the shape of the domain in
[Zh11]. The main difference is that the vertex of∞ is replaced with a triangle in a complex
line and we need to be careful when constructing geodesic cones to point this triangle.
Our construction is inspired by the construction of Parker [Par06] where p ≥ 7 and k = 2.
The fundamental domains Parker constructed are a generalization of the construction for
p = 6, k = 2 given in [FP06]. Again the main difference is that the vertex of∞ is replaced
with a triangle in a complex line.

Our fundamental polyhedron is a 4-dimensional domain, which is well defined by its
boundary (the union of 3-cells is homeomorphic to S3). Analogous to [Par06], the basic
construction is to take a complex line L0 instead of ∞ fixed by Γ0 ⊂ Γ (assume that
Γ is the group we consider) and the intersection of a fundamental domain for Γ0 and
a Dirichlet type domain for Γ/Γ0 (suppose that L0 does not intersect any of its images
under Γ/Γ0). We adopt, in this chapter, the notions of polyhedron that the 3-dimensional
(2, 1, 0-dimensional) skeletons of polyhedron are called the sides (faces, edges and vertices)
respectively. The vertices of our polyhedron are the intersection of two complex lines.
Many, but not all, edges are geodesic arcs. Most of the sides are contained in bisectors.
Only two sides not contained in bisectors will be constructed; they are the foliated by
the geodesic 2-dimensional cones (each of pieces called a sheet in what follows). Each of
the faces is either contained in totally geodesic submanifolds or contained in a Giraud
disc or a foliation of geodesics. Consider the group generated by the side pairings of our
polyhedron, we use the appropriate version of the Poincaré’s polyhedron theorem to show
that our polyhedron is a fundamental domain and give a presentation for this group.
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5.2 Description of the group

We consider the complex hyperbolic triangle group generated by three complex reflections
R1, R2, R3 of order p with the property that there is an element J of order 3 so that

J3 = I, R2 = JR1J
−1, R3 = JR2J

−1 = J−1R1J. (5.1)

We call 〈R1, R2, R3〉 an equilateral triangle group if satisfy the condition (5.1). For more
details on complex hyperbolic triangle groups, we refer to [PPa09] as a general reference.

5.2.1 The group Γk

Consider an equilateral complex hyperbolic triangle group defined as (5.1), up to con-
jugation, equilateral complex triangle group may be parameterized by τ = tr(R1J) (see
[PPa09]). For the stake of simplicity, we denote by u = e2iπ/3p. Using their normalization
of [PPa09], we may take the Hermitian form H to be

H =

 2− u3 − u3 (u2 − u)τ (u2 − u)τ
(u2 − u)τ 2− u3 − u3 (u2 − u)τ
(u2 − u)τ (u2 − u)τ 2− u3 − u3

 . (5.2)

This leads to the following matrices in SU(H) for R1, R2, R3 and J :

R1 =

 u2 τ −uτ
0 u 0
0 0 u

 , R2 =

 u 0 0
−uτ u2 τ

0 0 u

 ,
R3 =

 u 0 0
0 u 0
τ −uτ u2

 , J =

 0 0 1
1 0 0
0 1 0

 .
As shown in [Par09] that |τ | = 1 is equivalent to Mostow’s condition that the generators
Rj and Rk satisfy the braid relation RjRkRj = RkRjRk for j 6= k. Furthermore, following
Sauter [Sau90] we define Aj = (JR−1

j J)2 for j = 1, 2, 3, then Aj is a complex reflection or
a pure Heisenberg translation.

We focus on our attention to consider the group generated by three complex reflections
of order 3 and so u3 = e2iπ/3 is a cube root of unity. We follow Parker and Paupert’s
expressions and write τ = −e−2iπ/3k, and denote the corresponding group by Γk. Following
the notation of [Zh11], we give the geometrical generators as R = (JR−1

1 J)2, S = JR−1
1 ,

T = (JR−1
1 )2 and I1 = JR−1

1 J and so the group Γk may be rewritten as 〈R,S, T, I1〉. Our
main result is to construct a fundamental domain of Γk acting on the complex hyperbolic
space and obtain a geometrical presentation for the group Γk.

5.2.2 The stabilizer of complex line

In this section we shall explore the isotropy subgroup of complex line in Γk, which gives
rise to the suitable values of k we need. As described in [Zh11], the subgroup 〈R,S, T 〉 is
conjugate to the stabilizer of infinity. It is natural to consider the subgroup 〈R,S, T 〉 of
Γk and calculate the common eigenvector n of R,S and T .
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Following the definitions, we see easily that T = S2, which can simplify the group
〈R,S, T 〉 to 〈R,S〉 = 〈R−1S, S〉 = 〈R3, JR

−1
1 〉. It suffices to find a common eigenvector of

R3 and JR−1
1 . As the matrix of SU(H),

R3 =

 u 0 0
0 u 0
τ −uτ u2

 , JR−1
1 =

 0 0 u
u2 −uτ τ
0 u 0

 .
By simply calculations, it is easy to see that the common eigenvector of R3 and JR−1

1 in
C2,1 is

n =

 u2τ
u2τ
−1

 .
Moreover, T is a complex reflection on the complex line with polar vector n, that is the
eigenvector corresponding to non-repeated eigenvalue of T .

Using the Hermitian form (5.2), the following calculations enable us to know whether
the eigenvector n is a negative, null or positive vector in C2,1.

〈n,n〉 =
[
u2τ u2τ −1

]
H

 u2τ
u2τ
−1


= 1− u3 + u6τ3 − u3τ3 + u6τ3 − u3τ3 + 1− u3

= 2− u3 − u3 + (u3 − u3)τ3 + (u3 − u3)τ3

= 3 + 2i sin(2π/3)(τ3 − τ3)
= 3− 2

√
3 sin(2π/k).

This becomes

〈n,n〉 > 0 ⇔ k > 6,
〈n,n〉 = 0 ⇔ k = 6,
〈n,n〉 < 0 ⇔ k < 6.

For k > 6, in other words, n is a positive vector in C2,1, then it is polar vector to a
complex line as required. When k = 6 the eigenvector n turns into a null vector. Thus as
n tends to the null we must also have the complex line with polar vector n degenerating to
a point on the boundary of complex hyperbolic space as well. This limiting configuration
corresponds to the cusp of lattice, which is isomorphic to the sister of Eisenstein-Picard
modular group treated in [Zh11].

5.2.3 New normalization of Γk

Using the Hermitian form (5.2), calculations in complex hyperbolic space have a tendency
to become extremely complicated, which means that explicit constructions are rather
difficult to obtain. We have to make a good choice of coordinates in order to give simple,
explicit geometrical arguments on Γk. In what follows we choose the first Hermitian matrix

H1 =

 1 0 0
0 1 0
0 0 −1

 .
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The corresponding Hermitian form in complex vector space C2,1 is defined by

〈z, w〉 = z1w1 + z2w2 − z3w3,

where z and w are the column vectors [z1, z2, z3]t and [w1, w2, w3]t respectively. Thus we
obtain in non-homogeneous coordinates the complex ball

H2
C = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}.

The key point of our normalization is based on the geometrical observation of two
complex lines fixed by T and R respectively. Following from the braid relation, it is
easy to know that R commutes with T . Thus two complex lines fixed by T and R are
orthogonal, denoted by C1 and C2 respectively. We choose a new coordinate system of the
complex ball, which makes C1 and C2 to be the z1-axis and z2-axis, specifically

C1 = {(z1, 0) ∈ C2 : |z1| < 1}, (5.3)
C2 = {(0, z2) ∈ C2 : |z2| < 1}. (5.4)

We now start to normalize the generators of Γk in the new system of coordinates.
Before normalizing, we need to introduce two angle parameters, denoted by φ1 = π/k and
φ2 = π/6−π/k, which play an important role in the normalization of the group Γk. Also,
we shall give several numbers related to φ1 and φ2 in order to simplify the expressions.
For convenience, we remind the readers to keep these numbers in mind.

x1 =
√

sin(π/6− φ1)
sin(π/6 + φ1) , x2 =

√
sin(π/6− φ2)
sin(π/6 + φ2) ,

µ =
√

tan(φ1/2)
tan(π/6− φ1/2) , λ =

√
tan(φ1/2) tan(π/6− φ1/2),

ρ =
√

sin(π/6− φ1/2)
cos(φ1/2) sin(π/6 + φ1) .

As the matrix of SU(2, 1), complex reflections R and T are given by

R =

 e4iφ1/3 0 0
0 e−2iφ1/3 0
0 0 e−2iφ1/3

 ,
T =

 e−2iφ2/3 0 0
0 e4iφ2/3 0
0 0 e−2iφ2/3

 .
(5.5)

We start to define the vertices of our polyhedron to be intersection of two complex
lines. Basically, we consider two more complex lines fixed by R1 and R3, denoted by L1
and L3 respectively.

(i) The vertices on L1:

z1 = L1 ∩ C2, z2 = L1 ∩ L3, z3 = L1 ∩R(L3);

(ii) The vertices on T (L1):

z6 = T (L1) ∩ C2, z4 = T (L1) ∩ L3, z5 = T (L1) ∩R(L3);
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(iii) The vertices on C1:

z7 = C1 ∩ C2, z8 = C1 ∩ L3, z9 = C1 ∩R(L3).

Proposition 5.2.1. If zj is defined as (i), (ii) and (iii) for j = 1, 2, · · · , 9, then we have

z3 = R(z2), z5 = R(z4), z9 = R(z8),
z6 = T (z1), z4 = T (z2), z5 = T (z3).

Proof. The braid relations give rise to the properties that R commutes with R1 and T
commutes with R3. As a consequence, we know that R commutes with TR1T

−1 and T
commutes with RR3R

−1. It follows that C1 is orthogonal to L3, R(L3) and C2 is orthogonal
to L1, T (L1). We see clearly that R preserves L1, T (L1), C1 and T preserves L3, R(L3), C2.
The result follows easily from the definitions.

We now start with investigating the coordinates of complex lines of L1 and L3 by the
symmetry map J . Consider the triangle with the vertices z2, z3, z4, first observe that J
acts on the vertices with the property that J(zj) = zj+1 (with indices taken cyclically).
To see this, it follows from R1(z2) = R3(z2) = z2 and J3 = 1 that

J(z2) = RR3R1(z2) = R(z2) = z3,

J(z4) = JT (z2) = J−1R−1
1 J(z2) = R−1

3 (z2) = z2,

J(z3) = JR(z2) = J−1R−1
1 R−1

3 (z2) = J−1(z2) = z4.

Thus, this is an equilateral triangle whose vertices as the vectors of C2,1 satisfy the
following conditions

〈z1, z1〉 = 〈z2, z2〉 = 〈z3, z3〉, |〈z1, z2〉| = |〈z2, z3〉| = |〈z3, z1〉|. (5.6)

The condition (5.6) gives rise to the coordinates of complex lines L1 and L3, which are
given by, in terms of non-homogeneous coordinates

L1 =
{(
z1, x2e

−iφ2
)
∈ C2 : |z1| <

√
1− x2

2

}
, (5.7)

L3 =
{(
x1e
−iφ1 , z2

)
∈ C2 : |z2| <

√
1− x2

1

}
. (5.8)

As the vectors of C2,1, these vertices are given by

z1 =

 0
x2e
−iφ2

1

 , z2 =

 x1e
−iφ1

x2e
−iφ2

1

 , z3 =

 x1e
iφ1

x2e
−iφ2

1

 ,
z4 =

 x1e
−iφ1

x2e
iφ2

1

 , z5 =

 x1e
iφ1

x2e
iφ2

1

 , z6 =

 0
x2e

iφ2

1

 ,
z7 =

 0
0
1

 , z8 =

 x1e
−iφ1

0
1

 , z9 =

 x1e
iφ1

0
1

 .
(5.9)
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Recall, (c.f. Proposition 1.3.6) given a vector v with 〈v, v〉 > 0, complex reflection in
the complex line with polar vector v is given by

Rv,ζ(z) = z + (ζ − 1)〈z, v〉
〈v, v〉

v. (5.10)

where ζ is a complex number of absolute value one.
Observe that the polar vectors to complex lines L1 and L3, denoted by n1,n3 respec-

tively, are given by

n1 =

 0
1

x2e
iφ2

 , n3 =

 1
0

x2e
iφ1

 .
Since R1 and R3 are complex reflections with order 3, we denote ζ = u3 = e2iπ/3 and then
ζ − 1 = i

√
3eiπ/3. Using the formula (5.10) together with the fact that 〈n1,n1〉 = 1 − x2

2
and 〈n3,n3〉 = 1− x2

1, complex reflections R1 and R3 are given as the matrix of SU(2, 1)
by

R1 =


u 0 0
0 i(u2+u)e−iφ2

2 sinφ2
− i(u2+u)

√
1−4 sin2 φ2e−iφ2

2 sinφ2

0 i(u2+u)
√

1−4 sin2 φ2eiφ2

2 sinφ2
− i(u2+u)eiφ2

2 sinφ2

 ,

R3 =


i(u2+u)e−iφ1

2 sinφ1
0 − i(u2+u)

√
1−4 sin2 φ1e−iφ1

2 sinφ1
0 u 0

i(u2+u)
√

1−4 sin2 φ1eiφ1

2 sinφ1
0 − i(u2+u)eiφ1

2 sinφ1

 .
The symmetry map J plays an important role in the construction which is obtained

from J = RR3R1 that

J = ei(φ2−φ1+π)/3


eiφ1

2 sinφ1

√
(1−4 sin2 φ1)(1−4 sin2 φ2)

4 sinφ1 sinφ2
−
√

1−4 sin2 φ1
4 sinφ1 sinφ2

0 e−iφ2
2 sinφ2

−
√

1−4 sin2 φ2e−iφ2

2 sinφ2√
1−4 sin2 φ1eiφ1

2 sinφ1

√
1−4 sin2 φ2

4 sinφ1 sinφ2
− 1

4 sinφ1 sinφ2

 .

We now define, from the relations S = JR−1
1 , I1 = TR1, the remaining generators as

follows

S = e−iφ2/3

2 sinφ1

 1 0 −
√

1− 4 sin2 φ1
0 −2 sinφ1e

iφ2 0√
1− 4 sin2 φ1 0 −1

 , (5.11)

I1 = e−iφ1/3

2 sinφ2

 −2 sinφ2e
iφ1 0 0

0 1 −
√

1− 4 sin2 φ2
0

√
1− 4 sin2 φ2 −1

 . (5.12)

5.3 A combinatorial polyhedron

In this section we construct a polyhedron D which we will prove later to be a funda-
mental domain for Γk in complex hyperbolic space. The polyhedron D is defined to be
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4-dimensional domain bounded by the sides we construct in the Sections 5.3.2 and 5.3.3.
Many (but not all) sides of D are contained in bisectors and the vertices are the same as
defined in previous section. The main idea of construction is to happen on the sides that
are not contained in bisectors, each of which is the foliation of the geodesic triangle cones
over Giraud disc. To have a schematic view of the polyhedron, we refer the readers to see
Figures 5.4 and 5.8.

5.3.1 Bisectors

In this section we review briefly the theory of bisectors and summarize some bisectors that
contain four sides of our polyhedron.

Definition 5.3.1. The standard bisector in the ball model is defined as

B0 = {(z1, z2) ∈ H2
C : z1 ∈ C,=(z2) = 0}

in non-homogeneous coordinates, which is equidistant from p = (0, i/2) and q = (0,−i/2)
given in (2.1).

We have given the geographical coordinates on the isometric spheres. Analogously, the
standard bisector B0 (compare with [FP06]) is parameterized, in geographical coordinates,
by 

 reiα

s
1

 : α ∈ [−π/2, π/2), s ∈ [−1, 1], r ∈
[
−
√

1− s2,
√

1− s2
] . (5.13)

The spine, slices and meridians of B0 are given in the next proposition in terms of
geographical coordinates.

Proposition 5.3.2. The standard bisector with geographical coordinates is given by (5.13).
Furthermore,

• the spine of B0 is given by r = 0;

• the slices of B0 are given by s = s0 for fixed s0 ∈ [−1, 1];

• the meridians of B0 are given by α = α0 for fixed α0 ∈ [−π/2, π/2).

Four of the bisectors we use to construct the polyhedron D have a very simple de-
scription. These four bisectors come in two cospinal pairs, the complex spines being the
coordinate axes. We now write down these bisectors and some of the points for (5.9) that
are contained in the corresponding bisector.

Bisector Definition Vertices on spine Other vertices
B78 arg (z1) = −φ1 z7, z8 z1, z2, z4, z6
B79 arg (z1) = φ1 z7, z9 z1, z3, z5, z6
B17 arg (z2) = −φ2 z1, z7 z2, z3, z8, z9
B67 arg (z2) = φ2 z6, z7 z4, z5, z8, z9
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5.3.2 The core sides

In this section we define two core sides Sc and S ′c of the polyhedron D contained in a
bisector Bc, called the core bisector, which is the equidistant between two complex lines
C1 and I−1

1 (C1) as explained in Section 2.1 (compare [Zh11]). Also we call the core prism
Pc in Bc which is made up of two sides Sc and S ′c as shown in Figure 5.4 for the schematic
view. Furthermore, other sides of D come from the foliation of geodesics connecting with
points on the faces of Pc and points of the top triangle. Four of these are contained
in the bisectors given in the previous section. In the case of the sister G2, noncompact
sides of fundamental polyhedron arise from the limiting configuration that the top triangle
converges to an ideal vertex. In other words, that is the geodesic cone over the faces of
the core prism to the ideal point which is the cusp of lattice; see [Zh11].

The core bisector and its neighbors

Let n0 denote the polar vector to complex line C1 and denote I−1
1 (n0) its image under by

I−1
1 , these are

n0 =

 0
1
0

 , I−1
1 (n0) = eiφ1/3

2 sinφ2

 0
1√

1− 4 sin2 φ2

 .
It is clear that 〈n0,n0〉 = 〈I−1

1 (n0), I−1
1 (n0)〉 = 1. We consider the bisector equidistant

from n0 and I−1
1 (n0) which is defined in non-homogeneous coordinates (c.f. (2.1)) by

Bc =
{

(z1, z2) ∈ H2
C : 2 sinφ2|z2| = |z2 −

√
1− 4 sin2 φ2|

}
. (5.14)

Moreover, the complex spine of Bc is exactly C2 that spanned by n0 and I−1
1 (n0). Since

both complex lines L1 and T (L1) are orthogonal to complex spine C2, it follows that the
spine of Bc pass through a pair of vertices z1 and z6 by the slice decomposition for bisector,
see Figure 5.1.

We shall explore the spine of Bc in order to give the parametrization in terms of
geographical coordinates (r, s, α). We use the coordinate system (x, y) = (Re(z), Im(z))
in C, then the Poincaré disc turns out to be {(x, y)|x2 + y2 < 1} and the spine σ :(

x− 1√
1− 4 sin2 φ2

)2

+ y2 = 4 sin2 φ2
1− 4 sin2 φ2

. (5.15)

This is a circle centered at
(

1√
1−4 sin2 φ2

, 0
)

with the radius 2 sinφ2√
1−4 sin2 φ2

. The spine σ
intersects with x-axis at the point (µ, 0). Then we apply a Möbius transformation ψ
mapping (µ, 0) to the origin in the Poincaré’s disc, i.e.

ψ(z) = z − µ
1− µz .

The equation (5.15) becomes |z + µ| = |z − µ| under the map ψ, i.e. y-axis. Taking a
matrix C in SU(2, 1) as

C =

 e−iπ/6 0 0
0 eiπ/3/(1− µ2) e−iπ/6µ/(1− µ2)
0 eiπ/3µ/(1− µ2) e−iπ/6/(1− µ2)

 ,
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Figure 5.1: Configuration of the spines of bisector Bc and z1, z6 on the complex
spine C2 for k = 7, 8, 9, 10, 12, 15, 18, 24, 42. Here the spine is close to the origin as
k large.

then the matrix C maps the spine of standard bisector B0 to the spine of Bc and further-
more the geographical coordinates on Bc turns out to be obtained from B0. Therefore the
core bisector Bc is given in terms of geographical coordinates (r, s, α) by


√

1− µ2reiα

µ+ is
1 + iµs

 :
α ∈ [−π/2, π/2), s ∈ [−1, 1],
r ∈

[
−
√

1− s2,
√

1− s2
]

 . (5.16)

We start to define two sides Sc and S ′c in the geographical coordinates. As described in
[FFP10], we will discuss the triangular face with the vertices z2, z3, z4 on the intersection
Bc ∩ S−1(Bc) in terms of two slice s-parameters. We give the details for this face on
Bc ∩ S−1(Bc) and others follow similarly.

Proposition 5.3.3. The part of Bc ∩ S−1(Bc) outside T−1(Bc), R−1S(Bc), S(Bc) forms
a triangular face of fundamental polyhedron, see Figure 5.2. In terms of geographical
coordinates (r0, s0, α0) on Bc and (r1, s1, α1) on S−1(Bc) this face is given by

− λ ≤ s0 ≤ λ, −λ ≤ s1 ≤ λ, −2λ ≤ s0 − s1 ≤ 0. (5.17)

Moreover, the boundary of this triangle admits the following description in geographical
coordinates.

(i) Points of Bc ∩ S−1(Bc) ∩ T−1(Bc) are given by s0 = −λ.

(ii) Points of Bc ∩ S−1(Bc) ∩ S(Bc) are given by s1 = λ.

(iii) Points of Bc ∩ S−1(Bc) ∩R−1S(Bc) are given by s0 − s1 = 0.

Similarly, we state the result on the intersection of Bc ∩ S(Bc).
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Figure 5.2: A schematic picture
of triangular face F234.The level sets
of s0 are dashed lines and the level
sets of s1 are dotted lines.

z2
z3

z4

Proposition 5.3.4. The part of Bc ∩ S(Bc) outside T (Bc), RS−1(Bc), S−1(Bc) forms
a triangular face of fundamental polyhedron, see Figure 5.3. In terms of geographical
coordinates (r0, s0, α0) on Bc and (r2, s2, α2) on S(Bc) this face is given by

− λ ≤ s0 ≤ λ, −λ ≤ s2 ≤ λ, 0 ≤ s0 − s2 ≤ 2λ. (5.18)

Moreover, the boundary of this triangle admits the following description in geographical
coordinates.

(i) Points of Bc ∩ S(Bc) ∩ T (Bc) are given by s0 = λ.

(ii) Points of Bc ∩ S(Bc) ∩ S−1(Bc) are given by s2 = −λ.

(iii) Points of Bc ∩ S(Bc) ∩RS−1(Bc) are given by s0 − s2 = 0.

Proof. The first item follows directly from Lemma 5.3.10. The map S sends (r0, s0, α0) ∈
Bc to (r2, s2, α2) ∈ S(Bc). Thus S sends the points on Bc ∩ S−1(Bc) ∩ T−1(Bc) given by
s0 = −λ to the points on Bc ∩ S(Bc) ∩ S−1(Bc) given by s2 = −λ.

We will postpone (iii) part of the proof until to Corollary 5.3.9.

We remark that none of the triple intersections (i) to (iii) in Propositions 5.3.3 and
5.3.4 is contained in a geodesic. Before we prove the Proposition 5.3.3, we need to explore
the intersection Bc ∩ S−1(Bc) in terms of two slices parameters s0, s1 and how intersects
the neighboring bisectors T−1(Bc), R−1S(Bc) and S(Bc).

Proposition 5.3.5. Consider the geographical coordinates (r0, s0, α0) on Bc and (r1, s1, α1)
on S−1(Bc). Points on Bc ∩S−1(Bc) may be uniquely expressed in terms of s0 and s1; see
Figure 5.2. The range of these parameters is determined by the inequality∣∣∣∣∣∣(1 + iµs0)(µ+ is1)− 2 sinφ1e

iφ2(1 + iµs1)(µ+ is0)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is1)

∣∣∣∣∣∣ <
√

1− s2
0.



112 Chapter 5. New construction of fundamental domains for certain Mostow groups

The other coordinates are given by

r0e
iα0 = (1 + iµs0)(µ+ is1)− 2 sinφ1e

iφ2(1 + iµs1)(µ+ is0)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is1)

(5.19)

r1e
iα1 = (1 + iµs1)(µ+ is0)− 2 sinφ1e

−iφ2(1 + iµs0)(µ+ is1)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is0)

(5.20)

Proof. In geographical coordinates, points of Bc ∩ S−1(Bc) are given by 1 0 −
√

1− 4 sin2 φ1
0 −2 sinφ1e

−iφ2 0√
1− 4 sin2 φ1 0 −1



√

1− µ2r1e
iα1

µ+ is1
1 + iµs1


=


√

1− µ2r1e
iα1 −

√
1− 4 sin2 φ1(1 + iµs1)

−2 sinφ1e
−iφ2(µ+ is1)√

1− 4 sin2 φ1
√

1− µ2r1e
iα1 − (1 + iµs1)

 =


√

1− µ2r0e
iα0

µ+ is0
1 + iµs0


These points as the above expression are the same with homogeneous coordinates in C2,1.
Hence

−2 sinφ1e
−iφ2(µ+ is1)√

1− 4 sin2 φ1
√

1− µ2r1eiα1 − (1 + iµs1)
= µ+ is0

1 + iµs0
, (5.21)√

1− µ2r1e
iα1 −

√
1− 4 sin2 φ1(1 + iµs1)

−2 sinφ1e−iφ2(µ+ is1) =
√

1− µ2r0e
iα0

µ+ is0
. (5.22)

Rearranging (5.21) gives

r1e
iα1 = (1 + iµs1)(µ+ is0)− 2 sinφ1e

−iφ2(1 + iµs0)(µ+ is1)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is0)

.

To find r0e
iα0 we just use this formula to substitute for r1e

iα1 in (5.22).
In order to be in Bc we must have r2

0 < 1− s2
0. Using (5.19) we can obtain the range

of s0, s1 as required.

Analogously, we describe Bc ∩ S(Bc) and Bc ∩R−1S(Bc).

Proposition 5.3.6. Consider the geographical coordinates (r0, s0, α0) on Bc and (r2, s2, α2)
on S(Bc). Points on Bc ∩ S(Bc) may be uniquely expressed in terms of s0 and s2. The
range of these parameters is determined by the inequality∣∣∣∣∣∣(1 + iµs0)(µ+ is2)− 2 sinφ1e

−iφ2(1 + iµs2)(µ+ is0)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is2)

∣∣∣∣∣∣ <
√

1− s2
0.

The other coordinates are given by

r0e
iα0 = (1 + iµs0)(µ+ is2)− 2 sinφ1e

−iφ2(1 + iµs2)(µ+ is0)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is2)

(5.23)

r2e
iα2 = (1 + iµs2)(µ+ is0)− 2 sinφ1e

iφ2(1 + iµs0)(µ+ is2)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is0)

(5.24)
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Figure 5.3: A schematic picture
of triangular face F345. The level
sets of s0 are dashed lines and the
level sets of s2 are dotted lines.

z3

z4 z5

Proposition 5.3.7. Consider the geographical coordinates (r0, s0, α0) on Bc and (r3, s3, α3)
on R−1S(Bc). Points on Bc ∩R−1S(Bc) may be uniquely expressed in terms of s0 and s3.
The range of these parameters is determined by the inequality∣∣∣∣∣∣(1 + iµs0)(µ+ is3)− 2 sinφ1e

−iφ2(1 + iµs3)(µ+ is0)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is3)

∣∣∣∣∣∣ <
√

1− s2
0.

The other coordinates are given by

r0e
iα0 = e−2iφ1 [(1 + iµs0)(µ+ is3)− 2 sinφ1e

−iφ2(1 + iµs3)(µ+ is0)]√
(1− µ2)(1− 4 sin2 φ1)(µ+ is3)

(5.25)

r3e
iα3 = (1 + iµs3)(µ+ is0)− 2 sinφ1e

iφ2(1 + iµs0)(µ+ is3)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is0)

(5.26)

Proof. In geographical coordinates, points of Bc ∩R−1S(Bc) are given by u2eiφ2 0 −u2√1− 4 sin2 φ1e
iφ2

0 2u sinφ1 0
−u
√

1− 4 sin2 φ1e
−iφ2 0 ue−iφ2



√

1− µ2r3e
iα3

µ+ is3
1 + iµs3


=

 e−2iφ1 [
√

1− µ2r3e
iα3 −

√
1− 4 sin2 φ1(1 + iµs3)]

−2 sinφ1e
iφ2(µ+ is3)√

1− 4 sin2 φ1
√

1− µ2r3e
iα3 − (1 + iµs1)

 =


√

1− µ2r0e
iα0

µ+ is0
1 + iµs0

 .
The result follows as before.

Corollary 5.3.8. In terms of geographical coordinates (r1, s1, α1) on S−1(Bc) and (r2, s2, α2)
on S(Bc), points of Bc ∩ S−1(Bc) ∩ S(Bc) are given by s1 = λ or s2 = −λ.
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Proof. Points of Bc ∩ S−1(Bc) ∩ S(Bc) are given by

r0e
iα0 = (1 + iµs0)(µ+ is1)− 2 sinφ1e

iφ2(1 + iµs1)(µ+ is0)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is1)

= (1 + iµs0)(µ+ is2)− 2 sinφ1e
−iφ2(1 + iµs2)(µ+ is0)√

(1− µ2)(1− 4 sin2 φ1)(µ+ is2)
.

From this we find

eiφ2 [µ(1− s1s2) + i(s2 + µs1)] = e−iφ2 [µ(1− s1s2) + i(s1 + µs2)].

Hence s1 + s2 = 0 and s1 = λ.

Corollary 5.3.9. In terms of geographical coordinates (r0, s0, α0) on Bc, (r1, s1, α1) on
S−1(Bc) and (r3, s3, α3) on R−1S(Bc), points of Bc ∩ S−1(Bc) ∩ R−1S(Bc) are given by
s0 − s1 = 0 and s0 − s3 = 0.

Proof. Points of Bc ∩ S−1(Bc) ∩R−1S(Bc) are given by

r0e
iα0 = (1 + iµs0)(µ+ is1)− 2 sinφ1e

iφ2(1 + iµs1)(µ+ is0)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is1)

= e−2iφ1 [(1 + iµs0)(µ+ is3)− 2 sinφ1e
−iφ2(1 + iµs3)(µ+ is0)]√

(1− µ2)(1− 4 sin2 φ1)(µ+ is3)
.

From this we find

eiπ/6(1 + iµs1)
µ+ is1

− e−iπ/6(1 + iµs3)
µ+ is3

= i(1 + iµs0)
µ+ is0

.

Comparing with the real and imaginary parts yields
√

3µ(s1 − s3) + 2s1s3 = s0(s1 + s3),
√

3s0(s1 − s3) + 2µs0 = µ(s1 + s3).

This simplifies to be a quadratic equation with respect to s1 that

(
√

3s0 − µ)s2
1 + (2µs0 +

√
3µ2 −

√
3s2

0)s1 − µs0(
√

3µ+ s0) = 0

whose solutions are s1 = s0 and s1 = µ(
√

3µ+s0)
µ−
√

3s0
> λ which is impossible. Thus we obtain

s0 = s1 = s3.

Proof of (iii) part of Proposition 5.3.4. Since the map R preserves the s0-slices of Bc and
sends (r3, s3, α3) ∈ R−1S(Bc) to (r2, s2, α2) ∈ S(Bc), it follows that points of Bc∩S−1(Bc)∩
R−1S(Bc) given by s0− s3 = 0 are sent by R to be points of Bc ∩ S(Bc)∩RS−1(Bc) given
by s0 − s2 = 0 as required.

We now investigate the intersection of Bc with its images under T and T−1.

Lemma 5.3.10. The bisectors Bc and T−1(Bc) have a common slice which corresponding
to s0 = −λ in terms of geographical coordinates (r0, s0, α0) on Bc.

Likewise, Bc and T (Bc) have a common slice s0 = λ in geographical coordinates.
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Proof. Points of Bc are given by 2 sinφ2|z2| = |z2 −
√

1− 4 sin2 φ2| and points of T−1(Bc)
are given by 2 sinφ2|z2| = |z2 −

√
1− 4 sin2 φ2e

−2iφ2 |. The common solution is z2 =
x2e
−iφ2 . In geographical coordinates this is

µ+ is0
1 + iµs0

= x2e
−iφ2

and s0 ∈ [−1, 1], we obtain that s0 = −λ.

The vertices

We have already seen the vertices zi (i = 1, 2, · · · , 6) of D lying on two slices L1 and
T (L1) of Bc. We now list them again as the intersection of Bc with images of Bc under
suitable elements in the stabilizer of C1 and discuss their non-homogeneous coordinates
and geographical coordinates.

(i) The vertices on the slice L1 = Bc ∩ T−1(Bc) corresponding to s = −λ. Let z1 define
the intersection of the spine of Bc with L1. The other vertices are given by

z2 = Bc ∩ T−1(Bc) ∩ S−1(Bc) ∩R−1S(Bc),
z3 = Bc ∩ T−1(Bc) ∩ S(Bc) ∩RS−1(Bc).

(ii) The vertices on the slice T (L1) = Bc ∩ T (Bc) corresponding to s = λ. Let z6 define
the intersection of the spine of Bc with T (L1). The other vertices are given by

z4 = Bc ∩ T (Bc) ∩ S−1(Bc) ∩R−1S(Bc),
z5 = Bc ∩ T (Bc) ∩ S(Bc) ∩RS−1(Bc).

In non-homogeneous coordinates and geographical coordinates of the vertices zi are
given by

z1 z2 r s α

z1 0 x2e
−iφ2 0 −λ

z2 x1e
−iφ1 x2e

−iφ2 ρ −λ −3φ1/2
z3 x1e

iφ1 x2e
−iφ2 ρ −λ φ1/2

z4 x1e
−iφ1 x2e

iφ2 ρ λ −φ1/2
z5 x1e

iφ1 x2e
iφ2 ρ λ 3φ1/2

z6 0 x2e
iφ2 0 λ

The edges

We now characterize the edges of the prism contained in the intersection of three bisectors.
Let γjk = γkj denote the edge of D with the vertices zj and zk as endpoints. Just half
of the edges are contained in geodesic. We now list them in the following lemmas. Recall
the number ρ =

√
sin(π/6−φ1/2)

cos(φ1/2) sin(π/6+φ1) for the reader as shown in Section 5.2.3.

Lemma 5.3.11. (i) The edge γ16 is contained in the spine of Bc;
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(ii) The edge γ12 is a geodesic arc, given in geographical coordinates by

0 ≤ r0 ≤ ρ, s0 = −λ, α0 = −3φ1
2 .

(iii) The edge γ13 is a geodesic arc, given in geographical coordinates by

0 ≤ r0 ≤ ρ, s0 = −λ, α0 = φ1
2 .

(iv) The edge γ46 is a geodesic arc, given in geographical coordinates by

0 ≤ r0 ≤ ρ, s0 = λ, α0 = −φ1
2 .

(v) The edge γ56 is a geodesic arc, given in geographical coordinates by

0 ≤ r0 ≤ ρ, s0 = λ, α0 = 3φ1
2 .

Proof. Part (i) follows by construction. We now prove (ii) and the other parts follow
similarly. The edge γ12 is defined to be the intersection of Bc ∩ T−1(Bc) ∩ B78. It follows
that the edge is contained in the slice of Bc with s0 = −λ by Lemma 5.3.10. Following
the definition of B78, we see that arg (z1) = arg

(
eiα0

1−i tan(φ1/2)

)
= −φ1 which implies that

α0 = −3φ1/2. Therefore this edge is a geodesic arc since it is contained both a Lagrangian
plane and a complex line. Moreover, we know that r0 = 0 at z1 and r0 = ρ at z2.

We describe the edges not contained in a geodesic arc.

Lemma 5.3.12. (i) The edge γ24 is given the points (r0, s0, α0) of Bc by

r0e
iα0 = 2 sinφ2e

−iφ1(1 + iµs0)√
(1− µ2)(1− 4 sin2 φ1)

where s0 ∈ [−λ, λ] and not contained in a geodesic.

(ii) The edge γ34 is given the points (r0, s0, α0) of Bc by

r0e
iα0 = 2 sinφ2(1− iµs0)√

(1− µ2)(1− 4 sin2 φ1)

where s0 ∈ [−λ, λ] and not contained in a geodesic.

(iii) The edge γ35 is given the points (r0, s0, α0) of Bc by

r0e
iα0 = 2 sinφ2e

iφ1(1 + iµs0)√
(1− µ2)(1− 4 sin2 φ1)

where s0 ∈ [−λ, λ] and not contained in a geodesic.

(iv) The edge γ23 is given by points (r0, s0, α0) of Bc with s0 = −λ and

r0e
iα0 = (1− iµλ)(µ+ is1)− 2 sinφ1e

iφ2(1 + iµs1)(µ− iλ)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is1)

where s1 ∈ [−λ, λ] and not contained in a geodesic.
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Figure 5.4: The schematic view of the core prism Pc contained in Bc and the
geodesic triangle on the complex line C1.

(v) The edge γ45 is given by points (r0, s0, α0) of Bc with s0 = λ and

r0e
iα0 = (1 + iµλ)(µ+ is2)− 2 sinφ1e

−iφ2(1 + iµs2)(µ+ iλ)√
(1− µ2)(1− 4 sin2 φ1)(µ+ is2)

where s2 ∈ [−λ, λ] and not contained in a geodesic.

Proof. We now prove (i) and the others follow similarly. This follows by substituting
s1 = s0 in (5.19) and using the fact that z2 and z4 correspond to s0 = −λ and s0 = λ
respectively. In particular, we see that neither s0 nor α0 is constant on this edge. This
implies that this edge cannot be contained in a geodesic.
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The faces

In order to define the two sides Sc and S ′c contained in Bc, it suffices to describe their
faces. We denote them by Fijk or Fijkl, where i, j, k and l are the indices of the vertices
of the face. We repeat the previous result and summarize them again.

• Two C-planar faces F123 and F456. The boundary of F123 is γ12 ∪ γ13 ∪ γ23 and the
boundary of F456 is γ46 ∪ γ56 ∪ γ45.

• Two triangular faces F234 and F345 are contained in the intersections Bc ∩ S−1(Bc)
and Bc∩S(Bc) respectively. The boundary of F234 is γ23∪γ34∪γ24 and the boundary
of F345 is γ34 ∪ γ45 ∪ γ35.

• Three quadrilateral faces F1246,F1346 and F1356 are foliated by geodesics. More
precisely, given a fixed s0 ∈ [−λ, λ] , the slice s0 intersects with the face F1246 (resp.
F1346 and F1356) to be a geodesic, one of whose endpoints is lying at γ16 and the other
is lying at γ24 (resp. γ34 and γ35). The boundary of F1246 is γ12∪γ24∪γ46∩γ16, the
boundary of F1346 is γ13∪γ34∪γ46∩γ16 and the boundary of F1356 is γ13∪γ35∪γ56∩γ16.

We remark that the faces F1246 and F1356 are contained in the intersection of Bc with
B78 and B79 respectively. Since each geodesic as a foliation of F1246 (or F1356) is also lying
in a meridian of B78 (or B79).

To this end, we give the definitions of two sides Sc and S ′c. Note that the boundary of
Sc is F1246 ∪ F1346 ∪ F123 ∪ F234 and the boundary of S ′c is F1346 ∪ F1356 ∪ F456 ∪ F345.

Definition 5.3.13. The side Sc is made up of those points (r0, s0, α0) of Bc with

(i) −λ ≤ s0 ≤ λ;

(ii) arctan(µs0)− φ1 ≤ α0 ≤ − arctan(µs0);

(iii) (r0, s0, α0) is outside S−1(Bc).

We has shown that a point (r0, s0, α0) in the intersection Bc ∩ S−1(Bc) need to satisfy
the formula (5.19). Compare with two sides of equality in (5.19), it follows that the ratio
between the imaginary part and real part of the right side of (5.19) is equal to tanα0, which
makes s1 out to be a function f(s0, α0) with respect to s0 and α0. Thus the condition
(iii) can be written in terms of geographical coordinates as

r0 ≤

∣∣∣∣∣∣(1 + iµs0)(µ+ is1)− 2 sinφ1e
iφ2(1 + iµs1)(µ+ is0)√

(1− µ2)(1− 4 sin2 φ1)(µ+ is1)

∣∣∣∣∣∣
by replacing s1 with f(s0, α0).

Definition 5.3.14. The side S ′c is made up of those points (r0, s0, α0) of Bc with

(i) −λ ≤ s0 ≤ λ;

(ii) − arctan(µs0) ≤ α0 ≤ arctan(µs0) + φ1;

(iii) (r0, s0, α0) is outside S(Bc).

The condition (iii) is the same argument as (iii) of Definition 5.3.13 only if consider
(5.23) in Proposition 5.3.6.
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5.3.3 Sides of prism type

In this section we define four sides of the polyhedron D. These sides are contained in
bisectors, denoted by S17,S67,S78 and S79 each of whose indices is the same as its corre-
sponding bisector. A simple description of these sides is a triangular prism whose top and
bottom faces are respectively contained in different slices of a bisector.

The sides S78 and S79

For these two sides, we only need to analyze the side S78 and the other follows similarly
since B79 = R(B78).

Recall, two vertices z7 and z8 lie on the spine of B78. We take the edge γ78 is a
geodesic segment contained in the spine of B78. In terms of slice decomposition, the faces
F167 and F248 are respectively contained in two of the slices of B78. In terms of meridian
decomposition, the faces F1278 and F4678 are respectively contained in two of the meridians
of B78. To see this, we verify that arg(z2) = −φ2 for the vertices z1, z2 and arg(z2) = φ2
for the vertices z4, z6 in (5.9).

We define the face F1246 to be the intersection of B78 and Bc. More precise, a point
(z1, z2) on the intersection of B78 ∩ Bc in non-homogeneous coordinates is given by

arg(z1) = −φ1, 2 sinφ2|z2| = |z2 −
√

1− 4 sin2 φ2|.

Furthermore, a point z = (z1, z2) of B78 lies outside of Bc, (i.e. the distance between z
and I−1

1 (C1) is greater than the distance between z and C1) if and only if

arg(z1) = −φ1, 2 sinφ2|z2| < |z2 −
√

1− 4 sin2 φ2|.

From the above analysis, we give the following explicit definition of the sides S78 and
S79.

Definition 5.3.15. The side S78 is made up of those points (z1, z2) of B78 with

arg(z1) = −φ1, |z1| ≤ x1, −φ2 ≤ arg(z2) ≤ φ2,

2 sinφ2|z2| ≤ |z2 −
√

1− 4 sin2 φ2|.

Definition 5.3.16. The side S79 is made up of those points (z1, z2) of B79 with

arg(z1) = φ1, |z1| ≤ x1, −φ2 ≤ arg(z2) ≤ φ2,

2 sinφ2|z2| ≤ |z2 −
√

1− 4 sin2 φ2|.

Remark 5.3.17. The face F1246 is foliated by geodesics each of which are the intersection
of a meridian of B78 and a slice of Bc. Points in the intersection is given by

arg(z2) = arg
(
µ+ is

1 + iµs

)
= const ∈ [−φ2, φ2],

which is corresponding to a constant s0.
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The sides S17 and S67

Similarly, these two sides are respectively contained in cospinal and cotranchal bisectors
whose common slice is C1 and common complex spine is C2.

We begin with defining the common face F789. Recall that the edges γ78 and γ79 are
the geodesic segments contained in the spines of B78 and B79 respectively. We define the
edge γ89 to be a geodesic segment connecting with z8 and z9. In order to see this, we
apply S on the complex line C1. Recall, S preserves the complex line C1 and S2 acts on
C1 as identity. Using this, we see that the restriction of S to C1 is given by

S
∣∣
C1 : z → z −

√
1− 4 sin2 φ1√

1− 4 sin2 φ1z − 1
, |z| < 1.

Since S
∣∣
C1 is of order 2, it preserves the geodesic passing through z8 and z9 and acts as a

rotation of π at its fixed point (
√

tan(φ2/2)/ tan(π/6− φ2/2), 0). From the above analysis,
we define the face F789 to be a geodesic triangular face lying on the complex line C1, refer
to Figure 5.5.

In order to define two sides S17 and S67, it remains to define two faces F2389 and F4589.

• We denote α = arg(z1) and so the meridians of B17 and B67 correspond to α being
constant. We denote [z, w] by the geodesic segment between z and w in H2

C.

• Projecting a meridian α onto C1, it becomes a straight line passing through the origin
with angle α.

• For each α ∈ [−φ1, φ1], we denote pα0 by the intersection of this straight line with
the edge γ89. Moreover, we denote by pα1 and pα2 by the intersection of the meridian
α with the edges γ23 and γ45 respectively.

We now define the faces F2389 and F4589 as follows:

F2389 =
⋃

α∈[−φ1,φ1]
[pα1 ,pα0 ] and F4589 =

⋃
α∈[−φ1,φ1]

[pα2 ,pα0 ].

The region {(z1, z2) : −φ1 ≤ arg(z1) ≤ φ1, arg(z2) = −φ2, |z2| ≤ x2} enclosed by two
different slices and meridians of B17 is called a dihedral angle region. From the geometric
view of point, the face F2389 separates the dihedral angle region in B17 into two compo-
nents. We are interested in the component containing the spine of B17, and we denote
this component by C17. Similarly, C67 is the component of the dihedral angle region in
B67 containing its spine.

Definition 5.3.18. The side S17 is made up of those points (z1, z2) of B17 with

−φ1 ≤ arg(z1) ≤ φ1, arg(z2) = −φ2, |z2| ≤ x2

and (z1, z2) is lying in C17.

Definition 5.3.19. The side S67 is made up of those points (z1, z2) of B67 with

−φ1 ≤ arg(z1) ≤ φ1, arg(z2) = φ2, |z2| ≤ x2

and (z1, z2) is lying in C67.
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Figure 5.5: The triangle drawn by green line indicates the face F789. Orthogonal
projection of the edges γ23 and γ45 onto C1 is the blue arc of circle lying inside F789
and another blue arc indicates the projection of γ34.

5.3.4 Sides of wedge type

We define, in this section, two special sides Sg and S ′g which are not contained in bisectors.
These sides are foliated by 2-dimensional cones over Giraud disc.

Projection of the faces F234 and F345

Recall that orthogonal projection of the faces F234 and F345 onto C1 is a leaf-shaped region
bounded by two blue arcs in Figure 5.5. The edge γ89 separates the leaf-shaped region
into two parts, denoted by A and B; see Figure 5.6.

For α ∈ [−φ1, φ1], we denote lα by the intersection of a straight line of angle α passing
through the origin with A. Clearly, A is foliated by the straight segments lα for α ∈
[−φ1, φ1]. Furthermore, the straight segment reduces to z9 for α = φ1 or z8 for α = −φ1.
Since S is of order 2 by acting on C1, S maps A to B (or B to A). It follows that B can
be foliated by the geodesic arcs l′α = S(l−α) for α ∈ [−φ1, φ1]. From Lemma 5.3.20, we
see that lα and l′α have the same common endpoint pα0 . Thus the connected curves lα ∪ l′α
are leaves of a foliation of the leaf-shaped region A ∪B for α ∈ [−φ1, φ1].

Lemma 5.3.20. For α ∈ [−φ1, φ1], then S
∣∣
C1(p−α0 ) = pα0 .

Proof. Using the z-coordinate in C1, the edge γ89 is a geodesic which can be written by∣∣∣∣∣z − 1√
1− 4 sin2 φ1

∣∣∣∣∣ = 2 sinφ1√
1− 4 sin2 φ1

with |z| < 1. Then the point p−α0 = re−iα on the edge γ89 may satisfy

r2 − 2r cosα√
1− 4 sin2 φ1

+ 1 = 0. (5.27)
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−α
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pα
0

p−α
0
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1

Figure 5.6: The leaf-shaped region is separated by γ89 into A and B. A is foliated
by the straight segments lα with angle α and B is foliated by the geodesic arcs l′α.

Thus (5.27) leads to

S
∣∣
C1(p−α0 ) = re−iα −

√
1− 4 sin2 φ1√

1− 4 sin2 φ1re−iα − 1

=
√

1− 4 sin2 φ1(r2 + 1)− 2r cosα+ 4 sin2 φ1re
iα

(1− 4 sin2 φ1)r2 − 2r cosα
√

1− 4 sin2 φ1 + 1

= 4 sin2 φ1re
iα

4 sin2 φ1

= reiα.

This completes the result.

Parameterization of the faces F234 and F345

We start to parameterize the triangular faces F234 and F345 by the meridian α-parameter.
We denote ΠC1 by the orthogonal projection onto C1. Recall, γ89 separates the leaf-

shaped region into A and B. Then there exist two curves `234 and `345 such that `234
and `345 separate resepectively the faces F234 and F345 into two parts, one of which is
projected to A and the other is projected to B. Moreover, S(`234) = `345 and then
ΠC1(`234) = ΠC1(`345) = γ89.

For α ∈ [−φ1, φ1], we consider the pre-image of lα ∪ l′α on F234, denoted by Lα234. In
other words, we have ΠC1(Lα234) = lα ∪ l′α. Similarly, there is a curve Lα345 in F345 such
that ΠC1(Lα345) = lα∪ l′α. For each α ∈ [−φ1, φ1], we see that Lα234 and `234 (Lα345 and `345)
intersect a point whose orthogonal projection on C1 is pα0 .

In order to see this, we construct a family of Lagrangian planes which contain the
geodesic segments connecting with pα0 and a point of F234 (or F345).
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•

S−1

S

z2 z3

z4 z5

pα1

p−α
2

1

Analysis of the pre-image Π−1
C1 (lα) ⊂ Lα234 and the

case Π−1
C1 (lα) ⊂ Lα345 follows similarly. For s ∈

[−λ, λ], a slice Cs of Bc corresponds to s being con-
stant. We denote ps by the intersection of the slice
Cs with the edge γ16. A bisector whose spine is the
geodesic passing through 0 and ps in C2 is denoted
by Bs. It follows that Cs and C1 turn out be two
of the slices of Bs. For a fixed α ∈ [−φ1, φ1], a
meridian Lα,s of Bs containing lα intersects with Cs
and F234 at a point qα,s. For s = −λ, we see that
qα,s = pα1 and ΠC1([pα1 ,pα0 ]) = lα. We can take
sα ∈ (−λ, λ) such that ΠC1([qα,sα ,pα0 ]) = pα0 . Thus
a curve consisting of points qα,s for [−λ, sα] becomes
Π−1
C1 (lα) ⊂ Lα345, drawn by the blue line in F234.

• Analysis of the pre-image Π−1
C1 (l′α) ⊂ Lα234. We denote q′−α,s by the intersection of

L−α,s with Cs and F345. For a fixed α ∈ [−φ1, φ1], we can take s′α ∈ (−λ, λ) such
that ΠC1([q′−α,s′α ,p

−α
0 ]) = p−α0 and ΠC1([q′−α,λ,p

−α
0 ]) = l−α. Since the map S pre-

serves C1, we have ΠC1(S−1([q′−α,s,p−α0 ])) = S−1(ΠC1([q′−α,s,p−α0 ])). In particular,
ΠC1(S−1([q′−α,s′α ,p

−α
0 ])) = S−1(p−α0 ) = pα0 and ΠC1(S−1([q′−α,λ,p

−α
0 ])) = S−1(lα) =

l′α. Thus we define a curve consisting of points S−1(q′−α,s) for [s′α, λ], which is drawn
by the green line in F234. In fact, the geodesic segment S−1([q′−α,s),p−α0 ]) is con-
tained in the meridian S−1(L−α,s) of bisector S−1(Bs).

The same construction can be implemented for the face F345. This enables us to give
the following proposition.

Proposition 5.3.21. For α ∈ [−φ1, φ1], then S(Lα234) = L−α345.

Sides foliated by 2-dimensional cones

For each α ∈ [−φ1, φ1], we define a sheet Xα234 to be the geodesic cone from Lα234 to the
point pα0 . In other words, we join with each point of Lα234 to pα0 by a geodesic segment,
that is

Xα234 =
⋃

z∈Lα234

[pα0 , z].

Analogously, the sheet Xα345 is defined to be the geodesic cone from Lα345 to the point pα0 ,
that is

Xα345 =
⋃

z∈Lα345

[pα0 , z].

Proposition 5.3.22. For α 6= β ∈ [−φ1, φ1], Xα234 (resp. Xα345) and Xβ234 (resp. Xβ345) are
disjoint.

Proof. It suffices to show that the orthogonal projection of Xα234 (or Xα345) onto C1 is lα∪ l′α.
From Lemma 1.2.10, the projection of [z,pα0 ] is a geodesic segment joining pα0 and ΠC1(z).
Observe that both lα and l′α are geodesic segments with common endpoint pα0 . For each
point z of Lα234, it follows that ΠC1(z) ∈ lα ∪ l′α implies ΠC1([z,pα0 ]) is contained in lα ∪ l′α.
For α 6= β ∈ [−φ1, φ1], therefore, {lα ∪ l′α} ∩ {lβ ∪ l′β} = ∅ implies that Xα234 ∩X

β
234 = ∅ (or

Xα345 ∩ Xβ345 = ∅).
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Figure 5.7: The schematic view of the sheets of two sides Sg and S ′g. The action of
S on a sheet Xα234 to X−α345.

We are ready to describe the sides Sg and S ′g, for the schematic view in Figure 5.7.

Definition 5.3.23. The side Sg is made up of the sheets Xα234 for α ∈ [−φ1, φ1], namely,
Sg = ⋃

α∈[−φ1,φ1]
Xα234.

Definition 5.3.24. The side S′g is made up of the sheets Xα345 for α ∈ [−φ1, φ1], namely,
S ′g = ⋃

α∈[−φ1,φ1]
Xα345.

From Proposition 5.3.22, we remark that both Sg and S ′g are real analytic 3-submanifolds.

5.3.5 Construction of the polyhedron

In the previous sections we constructed eight 3-dimensional cells which are sides of our
polyhedron. We define the polyhedron D to be the interior of the union of eight 3-cells,
refer to Figure 5.7. It follows from Proposition 5.3.25 that D is well-defined a 4-dimensional
domain.

Proposition 5.3.25. Sc ∪ S ′c ∪ Sg ∪ S ′g ∪ S17 ∪ S67 ∪ S78 ∪ S79 is homeomorphic to S3.

Proof. Recall of the basic geometric fact that S3 can be interpreted as the union of two
3-balls gluing along S2. We see, up to homotopy, that the core prism Pc is a 3-ball with
the boundary F123 ∪ F456 ∪ F1246 ∪ F1356 ∪ F234 ∪ F345. Another 3-ball is the union of
Sg,S ′g,S17,S67,S78,S79 whose boundary is also F123 ∪ F456 ∪ F1246 ∪ F1356 ∪ F234 ∪ F345.
In order to see this, we can think that two faces F123 and F456 are lying at both sides of
the face F789. This completes the result.

We also need to ensure that the interior of two sides Sg and S ′g cannot intersect the
other sides contained in bisectors. This follows directly from the following proposition.

Proposition 5.3.26. The interior of Sg and S ′g does not intersect with the sides contained
in bisectors.
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Figure 5.8: The schematic view of eight sides of the polyhedron D in the complex
hyperbolic space. D is a 4-dimensional domain bounded by these eight sides.
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Proof. It suffices to show the interior of each sheet Xα234 (or Xα345) does not meet with the
sides contained in bisectors for α ∈ [−φ1, φ1]. We only need to analyze the sheet Xα234 and
the other follows similarly.

Recall, the bisectors containing the sides come in pairs so that the complex spines are
the coordinate axes. As in the Proposition 1.2.28 of [Tho10] (or the Section 2.1.2), the
number of intersection points between a geodesic and a bisector is equal to the number of
intersection points between its spine and the projection of the geodesic onto its complex
spine. Moreover, as in Section 1.2.4, we know that the projection of a geodesic σ to a
complex line C is an arc of a geometrical circle (and in particular, this is also a geodesic
arc if σ∩C 6= ∅) in C. For the case that C is a coordinate axis, the projection of a geodesic
segment [z,w] is a shorter arc of a geometrical circle with endpoints ΠC(z) and ΠC(w)
(the images of points under orthogonal projection onto C).

For α ∈ [−φ1, φ1] and z ∈ Lα234, we consider the projection of the geodesic segment
[pα0 , z] onto the coordinate axes C1 and C2. We denote Π1,Π2 by the orthogonal projection
onto C1 and C2 respectively.

(i) Pair of sides S78,S79 are contained in bisectors B78,B79 whose spines contain γ78 and
γ79. Clearly, Π1([pα0 , z]) = lα ∪ l′α does not intersect with γ78 and γ79.

(ii) Pair of sides S17,S67 are contained in bisectors B17,B67 whose spines contain the
straight segment γ17 and γ67.

• For z ∈ Π−1
1 (lα), the geodesic segment [pα0 , z] is contained in a meridian of Bs.

Thus Π2([pα0 , z]) is a straight segment with endpoints z7 and a point of γ16 and
cannot intersect with γ17, γ67.

• For z ∈ Π−1
1 (l′α), we see that Π1(S17) = Π1(S67) is the geodesic triangular face

F789 and Π1([pα0 , z]) = l′α. The interior of l′α does not intersect with F789.

(iii) Pair of sides Sc,S ′c are contained in bisector Bc whose spine contains γ16.

• For z ∈ Π−1
1 (lα), then Π2([pα0 , z]) is a straight segment which intersects with

γ16 only at Π2(z).
• We denote (pα0 , ∗) by the extension of [pα0 , z] from pα0 to ∞ without pα0 . For

z ∈ Π−1
1 (l′α), observe that Π1(pα0 , ∗) is a geodesic ray from pα0 to the boundary

passing through S(0), see Figure 5.6. Non-intersection of Π1(pα0 , ∗) and F789
shows that (pα0 , ∗) cannot intersect with the sides S17 and S67. Thus we know
that Π2(pα0 , ∗) does not intersect with γ17 and γ67. From the geometric view, we
claim that Π2([pα0 , z]) intersects with γ16 only at Π2(z). In fact, the interior of
Π2([pα0 , z]) can only lie inside the angle region −φ2 ≤ arg(z2) ≤ φ2. Otherwise,
it is not the shorter arc of a circle which is contradiction with Lemma 1.2.12. If
Π2([pα0 , z]) intersects with γ16 twice, then Π2(pα0 , ∗) intersects with γ17 or γ67,
which is a contradiction.

From the above analysis, we see that the interior of [pα0 , z] for α ∈ [−φ1, φ1] cannot
intersect with the sides contained in bisectors.

5.4 The main theorem

Our goal is to use Poincaré’s polyhedron theorem to show that the polyhedron D is a
fundamental domain and find a geometrical presentation although we already know both
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that the group Γk is discrete and that a presentation of Γk (see [DFP05, Par06]). We will
prove the following result:

Theorem 5.4.1. Suppose that the ordered pair (k, l) is in the list

(7, 42), (8, 24), (9, 18), (10, 15), (12, 12), (15, 10), (18, 9), (24, 8), (42, 7),

that is, l = 6k/(k − 6). Then writing φ1 = π/k and φ2 = π/l, the group Γk generated by
the side pairings of D is a discrete subgroup of PU(2, 1) with fundamental domain D and
presentation

Γk =
〈
R,S, T, I1 : Rk = T l = (R−1S)3 = (T−1I1)3 = (S−1I1)3

= [R, T ] = 1, T = S2, R = I2
1

〉
. (5.28)

Remark 5.4.2. As the roles of k and l are actually symmetric, there are only 5 different
groups Γk for k = 7, 8, 9, 10, 12. In particular, among them only Γ9 and Γ12 are arithmetic,
see the Table on the Page 27 of [Par09].

We will prove this theorem by verifying the conditions of the Poincaré’s polyhedron
theorem, following the strategy outlined below. For the case of k = 6, that is l = ∞,
this makes T turn into a parabolic which gives rise to the disappearance of T l in the
presentation. Thus the group Γ6 is exactly the same as G2 (compare [Zh11]), up to
conjugation.

Writing J = S−1I1, R1 = T−1I1, A1 = R and A′1 = JTJ−1, the presentation of
Theorem 5.4.1 becomes

〈
J,R1, A1, A

′
1 :

J3 = R3
1 = Ak1 = A′1

l = 1,
A1 = (JR−1

1 J)2, A′1 = (J−1R−1
1 J−1)2,

A1R1 = R1A1, A
′
1R1 = R1A

′
1

〉
.

Note that [A1, R1] = [R, T ] follows from R = I2
1 and [A′1, R1] = J [T,R]J−1 follows from

T = S2 and R−1S = J−1R1J . This is the presentation in terms of R1, J given in [Par09]
with p = 3.

5.4.1 The side pairing maps

Let R,S, T and I1 be given by (5.5), (5.11) and (5.12) respectively. In this section we
show that these maps are the side-pairings of our polyhedron D and pair the sides of D
as follows (see Figure 5.9).

R : S78 −→ S79, T : S17 −→ S67, S : Sg −→ S ′g, I1 : Sc −→ S ′c.

We now verify these maps satisfy conditions (I) and (II) in Definition 2.3.3 for each
side. It is clear that the side pairing maps R,S, T satisfy condition (I) and we give more
details for the side pairing map I1.

Recall that the map

I1 = e−iφ1/3

2 sinφ2

 −2 sinφ2e
iφ1 0 0

0 1 −
√

1− 4 sin2 φ2
0

√
1− 4 sin2 φ2 −1

 .
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The action of I1 on the bisector Bc (see (5.16)) is given by

e−iφ1/3

2 sinφ2

 −2 sinφ2e
iφ1 0 0

0 1 −
√

1− 4 sin2 φ2
0

√
1− 4 sin2 φ2 −1

 .

√

1− µ2reiα

µ+ is
1 + iµs


= −e−iφ1/3


√

1− µ2rei(α+φ1)

µ− is
1− iµs

 .
We see that I1 maps Bc to itself, sending the point with coordinates (r, s, α) to the point
with coordinates (r,−s, α+φ1) when −π/2 ≤ α < π/2−φ1 or the point with coordinates
(−r,−s, α+ φ1 − π) when π/2− φ1 ≤ α < π/2.

In terms of its action on the vertices of prism, we summarize as follows

I1 :

z1 −→ z6,
z2 −→ z4,
z3 −→ z5,
z4 −→ z3,
z6 −→ z1.

By Lemmas 5.3.11 and 5.3.12, we can easily see that

I1(γ16) = γ16, I1(γ12) = γ46, I1(γ13) = γ56,

I1(γ24) = γ34, I1(γ34) = γ35,

which implies that
I1(F1246) = F1346, I1(F1346) = F1356.

We now concentrate on showing I1(F234) = F456 and I1(F123) = F456. Observe that
the face F234 is contained in the intersection Bc ∩ S−1(Bc) = Bc ∩ J(Bc) that is a Giraud
disc. Moreover, we have J(F234) ⊂ J(Bc) ∩ J−1(Bc) and J−1(F234) ⊂ J−1(Bc) ∩ Bc since
J is a regular elliptic element of order 3. As the permutation of J on the edges γ23, γ34
and γ24, the triple intersection Bc ∩ J(Bc) ∩ J−1(Bc) contains γ23, γ34 and γ24. It follows
that the third bisector containing the face F234 is J−1(Bc) = I−1

1 S(Bc). Obviously the
map I1 sends points of Bc ∩ I−1

1 S(Bc) to points of Bc ∩ S(Bc). Furthermore, the edge γ23
is contained in Bc ∩ I−1

1 S(Bc) with s0 = −λ and the edge γ45 is contained in Bc ∩ S(Bc)
with s0 = λ, which implies that I1(γ23) = γ45. From the above argument, we obtain
I1(F234) = F456 and I1(F123) = F456. As a result, we prove that I1(Sc) = S ′c.

We give the following lemma to verify condition (II) for each side.

Lemma 5.4.3. If g is one of R,S, T, I1, then g−1(D) ∩D = g(D) ∩D = ∅. Moreover,

R−1(D) ∩D = S78, T−1(D) ∩D = S17, S−1(D) ∩D = Sg, I−1
1 (D) ∩D = Sc,

R(D) ∩D = S79, T (D) ∩D = S67, S(D) ∩D = S ′g, I1(D) ∩D = S ′c.

Proof. • Consider the side S78 and other sides S79,S17,S67 follow similarly. If z ∈ D
then −φ1 ≤ arg(z1) ≤ φ1 with equality only when z ∈ B78 (or B79). Likewise, if
w = R(z) ∈ D then −φ1 ≤ arg(ei2φ1z1) ≤ φ1. Hence if R(z) ∈ D, or equivalently
z ∈ R−1(D), then −3φ1 ≤ arg(z1) ≤ −φ1. Thus z ∈ D ∩ R−1(D) if and only if
z ∈ B78 and precisely z ∈ S78.
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Figure 5.9: The sides of the polyhedron and side pairings. The bold lines denote
the spines of the bisectors.
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• Consider the core sides Sc and S ′c. Observe that I1 preserves Bc and swaps one side
of Bc with the other. If z = (z1, z2) ∈ D then 2 sinφ2|z2| ≤ |z2−

√
1− 4 sin2 φ2| with

equality only when z ∈ Sc ∪ S ′c. If z ∈ D, then w = I1(z) satisfying 2 sinφ2|w2| >
|w2−

√
1− 4 sin2 φ2| does not intersect D. Only z ∈ Sc (resp. z ∈ S ′c) then I1(z) ∈ S ′c

(resp. I−1
1 (z) ∈ Sc).

• Consider the sides Sg and S ′g. By construction, we see that S(Sg) = S ′g. It suffices
to show that the images of other sides under S cannot intersect with the sides of
D except for S ′g. In order to see this, the spines of S(B78) and S(B79) are the
geodesic segments connecting with S(0) and z8, z9. It is easy to see that there
is no intersection of the interior of S(B78) and S(B79) with the sides of D. The
spines of S(B17) and S(B67) are the straight lines in common complex spine S(C2).
Their projection on C1 is a geodesic triangle with vertices z8, z9, S(0). Thus they
don’t intersect with the sides of D. For the side Sg, T (S ′g) ∩ S ′g = ∅ implies that
S(S ′g) ∩ Sg = ∅. Moreover, S(S ′g) = T (Sg) implies that this is the same projection
of Sg on C1 and a rotation of the projection on C2 with angle φ2.

5.4.2 The face cycles

We now write the face cycles induced by the side-pairings in terms of type of face and the
label of face reflects the order of vertices.

• The C-planar triangle cycles:

F167
R−→ F167,

F789
T−→ F789,

F123
I1−→ F645

T−1
−→ F123,

F248
S−→ F359

R−1
−→ F248.

• The R-planar quadrilateral cycles:

F1287
T−→ F6487

R−→ F6597
T−1
−→ F1397

R−1
−→ F1287.

• The Giraud triangle cycles:

F234
I1−→ F453

S−1
−→ F342

I1−→ F534
S−1
−→ F423

I1−→ F345
S−1
−→ F234.

• The generic quadrilateral cycles:

F1246
I1−→ F6431

I1−→ F1356
R−1
−→ F1246,

F2398
S−→ F3489

S−→ F4598
T−1
−→ F2398.
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5.4.3 Verifying the tessellation conditions

In this section we verify the cyclic condition of the Poincaré’s polyhedron theorem, we
refer more details to [DFP05] and [Par06]. Recall that for a face cycle

F1
g1−→ F2

g2−→ · · · −→ Fn
gn−→ F1.

The cycle transformation gn ◦ gn−1 · · · ◦ g1 acts on F1 as the identity and there is a certain
integer m such that (gn ◦ gn−1 · · · ◦ g1)m = Id. We call n the length of cycle and n ·m its
total length. In order to ensure condition cyclic we must show that there is a neighborhood
U of the interior of the face such that U is covered by D and its images under relevant sid
pairings. Specifically, for the above face cycle, the following images of D:

g−1
1 (D), (g2 ◦ g1)−1(D), · · · , ((gn ◦ gn−1 · · · ◦ g1)m)−1 (D) = D

cover a neighborhood of F1. We only sufficiently consider a neighborhood U of one member
of a single face cycle and others are the images of U under suitable side-pairings.

Tessellation around C-planar faces

In this section we consider the faces contained in a complex line. These are the faces
F123,F456,F789,F167,F248 and F359. They form four face cycles described again as follows:

F167
R−→ F167, F789

T−→ F789.

The face F167 is in the intersection of two bisectors B78 and B79. If a point z = (z1, z2) ∈ D,
then −φ1 ≤ arg(z1) ≤ φ1 and the face F167 is contained in z1 = 0. We know R acts on
z1-plane as a rotation with the angle 2φ1. Therefore, the union of the images of D under
Ri for i = 1, 2, · · · , k covers a sufficient small neighborhood of the face F167. Similarly, the
union of the images of D under T j for j = 1, 2, · · · , l covers a sufficient small neighborhood
of the face F789, we refer to the schematic view of their images in Figure 5.10. If the group
is discrete, these elliptic elements are necessary to have finite order which gives rise to
k, l ∈ Z. Together with the condition 1/k + 1/l = 1/6, we obtain the pairs (k, l) listed in
Theorem 5.4.1. Otherwise the group is not discrete (see [Mos88]). From the geometrical
point of view, in this case, D will intersect its image under some non-trivial power of R
or T .

Proposition 5.4.4. The polyhedron D and its images under the power of R (resp. T )
tessellate around the face F167 (resp. F789). Moreover, the cycle transformation corre-
sponding to the face F167 (resp. F789) is R (resp. T ) and n = 1, m = k (resp. m = l).
This gives the cycle relation Rk = T l = 1.

The remaining two face cycles:

F123
I1−→ F456

T−1
−→ F123,

F248
S−→ F359

R−1
−→ F248.
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· · · D
2φ1

2φ1

2φ1

R(D)

R−1(D)

B79

B78

(a)

· · · D
2φ2

2φ2

2φ2

T (D)

T−1(D)

B67

B17

(b)

Figure 5.10: (a) The images of D under the power of R tiling a neighborhood of
the face F167. (b) The images of D under the power of T tiling a neighborhood of the
face F789.

D
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I1T
−1(Bc)

T−1(Bc)

B17

I−1
1 (B67) T−1I1(B17)

I−1
1 (D)

I−1
1 T (D) I−1

1 TI−1
1 (D)

T−1I1(D)

T−1(D)

(a)

D

B78

R−1S(B78)

S−1(B79)

Sg

R−1S(Sg)
S−1R(Sg)

R−1(D)

R−1S(D) R−1SR−1(D)

S−1R(D)

S−1(D)

(b)

Figure 5.11: (a) The images of D covering a neighborhood of the face F123. (b)
The images of D covering a neighborhood of the face F248. The black points at the
center indicate the corresponding faces.

Both of T−1I1 and R−1S are the complex reflections. The main difference between
them is that the face F123 is in the intersection of two bisectors Bc,B17 and the face F248
is in the intersection of a bisector B78 with a side Sg which is not contained in bisector. It
is the same schematic 2-dimensional picture of covering a neighborhood of F123 and F248,
see Figure 5.11.

Proposition 5.4.5. The polyhedron D and its images under I−1
1 , I−1

1 T , I−1
1 TI−1

1 , T−1I1
and T−1 tessellate around the face F123. Moreover, the cycle transformation corresponding
to the face F123 is T−1I1 and n = 2, m = 3. This gives the cycle relation (T−1I1)3 = 1.

Proposition 5.4.6. The polyhedron D and its images under R−1, R−1S, R−1SR−1, S−1R
and S−1 tessellate around the face F248. Moreover, the cycle transformation corresponding
to the face F248 is R−1S and n = 2, m = 3. This gives the cycle relation (R−1S)3 = 1.
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Bc

I−1
1 S(Bc)

S−1(Bc)

Sg

I−1
1 S(Sg)

S−1I1(Sg)

D

I−1
1 (D)

I−1
1 S(D) I−1

1 SI−1
1 (D)

S−1I1(D)

S−1(D)

Figure 5.12: The images of D covering a neighborhood of the face F234. The black
point at the center indicates the face F234.

Tessellation around R-planar faces

In this section we only consider a single face cycle in which the faces are all contained in
Lagrangian planes. The associate face cycle is

F1278
T−→ F4678

R−→ F5679
T−1
−→ F1379

R−1
−→ F1278.

The schematic image of the tiling of a neighborhood of the face F1278:

D R−1(D)
T−1(D) T−1R−1(D)

In fact that D and its images as above have disjoint interiors follows easily from Lemma
5.4.3. Moreover, the bisector B17 separates D and T−1(D), the bisector B78 separates D
and R−1(D). Thus applying T−1 to D and R−1(D), we see that the bisector T−1(B78)
separates T−1(D) and T−1R−1(D). Analogously, applying R−1 to D and T−1(D), the
bisector R−1(B17) separates R−1(D) and R−1T−1(D) = T−1R−1(D).

Proposition 5.4.7. The polyhedron D and its images under T−1, R−1 and T−1R−1 tes-
sellate around the face F1278. Moreover, the cycle transformation corresponding to the
face F1278 is R−1T−1RT and n = 4, m = 1. This gives the cycle relation [T,R] = 1.

Tessellation around the face F234

The face F234 is contained in a Giraud disc which is the intersection of Bc, S−1(Bc) and
I−1

1 S(Bc). It is given by an equation of the form

|〈z,n0〉| = |〈z, I−1
1 (n0)〉| = |〈z, I−1

1 SI−1
1 (n0)〉|.

As the arguments in Section 7.8 of [FFP10], we see that there are three regions where the
first (resp. second and third) of these quantities as above is the smallest tessellate around
the face F234.
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Note that the points of D around the face F234 is bounded by Bc and the side Sg
and the points of S−1(D) around the face F234 is bounded by S−1(Bc) and the side Sg.
Thus the union of D and S−1(D) covers a neighborhood of F234 in the region where the
first quantity is smallest. Applying the elements S−1I1 and I−1

1 S, we obtain the union
I−1

1 (D), I−1
1 S(D), I−1

1 SI−1
1 (D) and S−1I1(D) covering the other two regions, see Figure

5.12. There is a difference around the faces F123 (or F248) and F234, that is not apparent
from the 2-dimensional picture. We give the difference in the following proposition.

Proposition 5.4.8. The polyhedron D and its images under I−1
1 , I−1

1 S, I−1
1 SI−1

1 , S−1I1
and S−1 tessellate around the face F234. Moreover, the cycle transformation corresponding
to the face F234 is (S−1I1)3 and n = 6, m = 1. This gives the cycle relation (S−1I1)3 = 1.

Tessellation around the generic quadrilateral faces

In this section we consider the faces of D that are neither contained in a complex line nor
in a Lagrangian plane nor in a Giraud disc. These faces are regarded as the foliation of
geodesics.

We first consider the face F1346, the associated face cycle is

F1346
I1−→ F1356

R−1
−→ F1246

I1−→ F1346.

This is the same situation as in [Zh11]. We state again and refer to the 2-dimensional
picture in Figure 5.13.

The face F1346 is the intersection of Sc and S ′c contained in the core bisector Bc and D
covers the part of a neighborhood of F1346 at the side of Bc where |〈z,n0〉| < |〈z, I−1

1 (n0)〉|.
Observe that I1 or I−1

1 swaps one side of Bc and the other. Moreover, I−1
1 (D) ∩D = Sc,

I1(D)∩D = S ′c and I−1
1 (D)∩ I1(D) = I−1

1 (S79) = I1(S78). Therefore D∪ I−1
1 (D)∪ I1(D)

covers a neighborhood of F1346.

Proposition 5.4.9. The polyhedron D and its images under I−1
1 and I1 tessellate around

the face F1346. Moreover, the cycle transformation corresponding to the face F1346 is
I1R

−1I1 and n = 3, m = 1. This gives the cycle relation I1R
−1I1 = 1.

For the face F3489, the associated face cycle is

F3489
S−→ F4589

T−1
−→ F2389

S−→ F3489.

The face F1346 is the intersection of Sg and S ′g. Since the map S (or S−1) acts on the
triangle F789 as rotation of π around its fixed point, the image S(D) (or S−1(D)) may be
interpreted as lying in the other side of Sg ∪S ′g by S or S−1. Furthermore, it follows from
Lemma 5.4.3 that S−1(D)∩D = Sg, S(D)∩D = S ′g. It is obvious that S−1(D)∩S(D) =
S−1(S67) = S(S17) is contained in a bisector, and Sg ∩ S ′g ∩ S−1(S67) = F1346, see Figure
5.14. The result follows from the same argument as above.
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B78 B79

I−1
1 (B79)

Sc S ′
c

D

I−1
1 (D) I1(D)

Figure 5.13: The images of D covering a neighborhood of the face F1346. The black
point at the center indicates the face F1346.

B67

B17

S−1(B67)

Sg

S ′
g

D

S−1(D)

S(D)

Figure 5.14: The images of D covering a neighborhood of the face F3489. The black
point at the center indicates the face F3489.

Proposition 5.4.10. The polyhedron D and its images under S−1 and S tessellate around
the face F3489. Moreover, the cycle transformation corresponding to the face F3489 is
ST−1S and n = 3, m = 1. This gives the cycle relation ST−1S = 1.

This completes the proof of Theorem 5.4.1 by Poincaré’s polyhedron theorem with
Propositions 5.4.4-5.4.10.

5.4.4 Euler orbifold characteristics

We compute again their Euler orbifold characteristics χ(H2
C/Γk) by analyzing the stabilizer

of i-dimensional faces of our fundamental domain D, which agrees with the formula in Page
38 of [Par09] by substituting p = 3, see also Theorem 5.1’ of [Sau90]. The following table
gives the order of the stabilizer for the vertices, 1-simplices, 2-simplices, 3-simplices and
the only 4-cell, the whole of D.
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i-cells Cycle Stabilizer Order
z1, z6 〈T−1I1, R〉 3k

Vertices z8, z9 〈R−1S, T 〉 3l
z7 〈R, T 〉 kl
z2, z3, z4, z5 〈I1T

−1, S−1R〉 24
γ16 〈I1〉 2k
γ89 〈S〉 2l

Edges γ17, γ67 〈R〉 k
γ78, γ79 〈T 〉 l
γ23, γ34, γ45, γ24, γ35 〈R−1S〉 2k
γ28, γ48, γ39, γ59 〈R−1S〉 2k
F123,F456 〈T−1I1〉 3
F234,F345 〈S−1I1〉 3
F248,F359 〈R−1S〉 3

2-faces F167 〈R〉 k
F789 〈T 〉 l
F1246,F1346,F1356 〈Id〉 1
F1278,F4678,F1379,F5679 〈Id〉 1
F2389,F3489,F4589 〈Id〉 1
Sc,S ′c 〈Id〉 1

3-faces Sg,S ′g 〈Id〉 1
S78,S79 〈Id〉 1
S17,S67 〈Id〉 1

Polyhedron D 〈Id〉 1

Using 1/l = 1/6− 1/k, we compute the Euler orbifold characteristic to be

χ(H2
C/Γk) = 1

3

(1
k

+ 1
l

)
+ 1

24 + 1
kl
− 1

2

(1
k

+ 1
l

)
−
(1
k

+ 1
l

)
− 1 + 25

6 − 4 + 1

= 1
72 + 1

k

(1
6 −

1
k

)
.

5.5 Mostow groups of the second type

We review, in this section, the Mostow groups of the second type, which is written based
on related materials in the Parker’s survey paper [Par09]. It aims to explain briefly the
previous construction of fundamental domains might be adapted for all Mostow groups of
the second type.

Let Γ(p, k) denote the equilateral triangle group 〈R1, R2, R3〉 where each Ri is of order
p. Mostow groups of the second type are the groups Γ(p, k) where the values of p, k and
l = 1/(1/2− 1/p− 1/k) are given in the following table.

p 3 3 3 3 3 4 4 4 5 5 6 6
k 7 8 9 10 12 5 6 8 5 5 4 6
l 42 24 18 15 12 20 12 8 20 10 12 6

In fact, the values of k and l can be interchanged.
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We begin with the given geometric generators

R = (JR−1
1 J)2, S = JR−1

1 , T = (JR−1
1 )2, I1 = JR−1

1 J.

A conjectural presentation of Γ(p, k) immediately follows from the above setting and the
braid relations that

Γ(p, k) =
〈
R,S, T, I1

∣∣∣∣∣ Rk = T l = (R−1S)p = (T−1I1)p = (S−1I1)3

= [R, T ] = 1, T = S2, R = I2
1

〉
. (5.29)

To confirm that (5.29) is an exact presentation for Γ(p, k), it needs to construct the same
fundamental domains as the previous sections.

The key point of construction is to analyze the stabilizer group 〈R,S, T 〉. As we
computed in Section 5.2.2, the common eigenvector of R,S is

n =

 u2τ
u2τ
−1


and T fixes the complex line to the polar vector n.

By an easy calculation, we obtain

〈n,n〉H =
[
u2τ u2τ −1

]
H

 u2τ
u2τ
−1


= 1− u3 + u6τ3 − u3τ3 + u6τ3 − u3τ3 + 1− u3

= 2
[
1− cos 2π

p
− cos(4π

p
+ 2π

k
) + cos(2π

p
+ 2π

k
)
]

, 2N(p, k).

The basic construction requires us that the stabilizer group fixes a complex line. It suffices
to analyze the norm of n and ask for the positive values.

• For p = 4,
N(4, k) = 1−

√
2 sin(2π

k
− π

4 ),

then N(4, k) ≥ 0 if and only k ≥ 4.

• For p = 5, then

N(5, k) = 1− cos 2π
5 + 2 sin(3π

5 + 2π
k

) sin π5 > 0.

• For p = 6,
N(6, k) = 1

2 + cos 2π
k
.

then N(6, k) ≥ 0 if and only k ≥ 3.

As T is a complex refection fixing the complex line n⊥, and

T =

 0 u2 0
−u3τ u2τ2 + uτ 0
u −τ uτ

 ,
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z1 z2

z3

z4
z5

z6

z7 z8 z9

R

R1

R2

R3

J

T

Figure 5.15: The schematic view of construction in 2-dimension. The bold lines
are the complex lines. The bold points are the intersection of two complex lines which
give rise to the vertices of polyhedron.

T has the eigenvalue u2τ2 corresponding to n and a repeated eigenvalue uτ . Thus the
relation T l = 1 implies that

1
l

= 1
2 −

1
p
− 1
k

(5.30)

for a positive integer l (l = ∞ if possible). Only possible values of k, l satisfying (5.30)
listed in the table.

The construction of fundamental domains follows from the complex lines fixed by R,
T , R1, R3, RR3R

−1 and TR1T
−1, see Figure 5.15. The orthogonal properties of these

complex lines come from the braid relations. A fundamental domain of the stabilizer
group 〈R,S〉 acting on the complex line n⊥ is a geodesic hyperbolic triangle 4(k/2, p, p)
with the interior angles 2π/k, π/p, π/p. As l tends to ∞, the complex line n⊥ degenerates
to an ideal point. The action of the stabilizer group 〈R,S〉 on the boundary is almost-
Euclidean, in other words, the triangle 4(k/2, p, p) becomes an Euclidean triangle in a
horizontal section of the Heisenberg group since 1/p+ 1/k = 1/2.

From the above arguments, the construction of fundamental domains for Γ(3, k) can be
implemented for all Mostow groups of the second type. Analogous to the case G2 = Γ(3, 6),
the limiting configuration of fundamental domains for Γ(4, k) and Γ(6, k) turns out to be
two of Mostow groups of the first type. In that case, T becomes to be a parabolic element.
The presentation may be obtained by removing the relation T l = 1. This gives a new
approach to construct the fundamental domains for some of Mostow groups of the first
type.
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In this chapter, we compute the cohomology of the Eisenstein-Picard modular surface and
its sister with local coefficients. Our results follow the work by Yasaki [Yas08], where he
constructed explicitly a spine for SU(2, 1;Z[i]) and used it to compute the cohomology for
SU(2, 1;Z[i]).

6.1 Algorithm to compute the cohomology

This section recalls Dan Yasaki’s work [Yas08], which describes − from the theoretical
viewpoint − an algorithm to compute the cohomology of arithmetic groups as well as the
quotient orbifolds.

6.1.1 Spines

Let G be a connected semisimple Lie group with finite center, and K a maximal compact
subgroup of G. Then X = G/K is a Riemannian symmetric space of noncompact type.
Let Γ be an arithmetic subgroup of G, and Γ\X be the corresponding locally symmetric
space. The special case of our interest is when G is the Lie group SU(2, 1) and Γ is a
lattice. In that case, the associated symmetric space X will be the complex hyperbolic
plane H2

C.

Definition 6.1.1. The virtual cohomological dimension (vcd) of Γ is the highest dimen-
sion of a space X ′ such that there exists a subgroup Γ′ ⊂ Γ of index finite, such that Γ′
acts freely on X ′ and Γ′\X ′ is compact.

Borel and Serre [BS73] showed that the discrepancy between the dimension of X and
vcd(Γ) is given by the Q-rank of Γ, the dimension of a maximal Q-split torus in Γ. In our
case, X is 4-dimensional, and rankQ(Γ) = 1, then

vcd(Γ) = dim(X)− rankQ(Γ) = 3.

This allows us to find a 3-dimensional Γ-equivariant deformation retract X0 ⊂ X.

Definition 6.1.2. A spine is a Γ-equivariant deformation retract X0 ⊂ X of dimension
equal to the virtual cohomological dimension such that Γ\X0 is compact.

Remark 6.1.3. A spine, in the previous chapters, is a geodesic in H2
C that determines

a bisector. However, a spine in this chapter has a different sense that is a 3-dimensional
subspace of H2

C.

For the general case of Q-rank 1 groups, Yasaki showed in [Yas06] the existence of
spines. More precisely, a Γ-equivariant deformation retract of X was constructed by a
family of exhaustion functions. Such exhaustion functions, from a geometric point of view,
can be thought of as a measure of height with respect to a cusp or a rational parabolic
subgroup. Recall that Busemann functions, in the same sense, can be also regarded as
a distance of points between in the interior and on the boundary and its level set is a
measure of height, called a horosphere. One can show that Busemann functions are a
negative logarithm of these exhaustion functions, see Example 6.1.4 for the simple case.

Example 6.1.4. For G = SL2(R),Γ = SL2(Z) and the associated symmetric space is
Poincaré’s upper half-plane H. Let z = x+ iy ∈ H and λ = p/q ∈ Q in reduced form be a
cusp.
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• Exhaustion functions are given by

f∞(z) = y,

fλ(z) = y

(p− xq)2 + q2y2 .

• Consider a unit-speed geodesic iet which converges to ∞, Busmann function with
respect to ∞ is given by

h∞(z) = d(z, iet)− t

= cosh−1
(

1 + x2 + (y − et)2

2yet

)
− t

= log(et/y)− t
= − log y.

In general, Busmann function with respect to λ is given by

hλ(z) = hγ · ∞(z) = =(γ−1 · z) = − log
[

y

(p− qx)2 + q2y2

]
where γ has the matrix form as(

p ∗
q ∗

)
∈ SL2(Z).

In what follows, we will use Busemann functions as defined in Section 2.2.1 to describe
a spine for Γ ⊂ SU(2, 1), that is a special case of Q-rank 1 groups. Let z = (ζ, v, u) ∈ H2

C
be a point in horospherical coordinates and θ = (ζ0, v0, 0) be a cusp. Busmann functions
are given by

h∞(z) = − log u,

hθ(z) = − log
[

4u
(|ζ|2 + |ζ0|2 + u− 2<(ζ0ζ))2 + (v − v0 + 2=(ζ0ζ))2

]
.

In order to define the spine, we need the following notions:

• Denote by P the set of fixed points by all parabolic subgroups of Γ.

• For p ∈ P, we define

Xp = {z ∈ H2
C| hp(z) ≤ hq(z) for every q ∈ P\{p}}.

• In general, for a subset J ⊂ P,

B(J ) = {z ∈ H2
C| hp(z) = hq(z) for every pair p, q ∈ J },

X(J ) =
⋂
p∈J

Xp,

X ′(J ) = X(J )\
⋃
J ′)J

X(J ′).

We call the set X ′(J ) a degenerate tile.
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Figure 6.1: Spine for SL2(Z).

Remark 6.1.5. • When P contains only a conjugacy class of parabolic fixed points,
then Xp reduces to the Ford domain with respect to p.

• When J = {p, q} is of order 2, then X(J ) = B(J ) is the bisector between p and
q. In this case, we can think of it by using Busemann function instead of Bergman
metric in (2.1).

Definition 6.1.6. A subset J ⊂ P is called admissible if X(J ) is non-empty, and
strongly admissible if X ′(J ) is non-empty.

Proposition 6.1.7. [Yas06] Let S denote the collection of strongly admissible subsets of
P. Then the symmetric space X has a Γ-invariant degenerate tiling

X =
∐
J∈S

X ′(J )

such that γ ·X ′(J ) = X ′(γ · J ) for all γ ∈ Γ and J ∈ S .

The following definition enables us to give a spine for Γ, which is proved in [Yas06] as
the main result.

Definition 6.1.8. ([Yas06]) We define a Γ-invariant subset X0 ⊂ X by

X0 =
∐
J∈S
|J |>1

X ′(J ).

Note that X0 = X\
⋃
p∈P

X ′({p}). In the special case of one cusp (only one conjugacy

class of parabolic fixed points), the spine has a simple description which is the union of
Γ-images of the boundary of the Ford domain. For example, for G = SL2(R), Γ = SL2(Z),
a spine is the familiar infinite trivalent tree in upper half plane (Figure 6.1).

6.1.2 Connection with fundamental domain

As shown in [Yas06], the construction of the spine also gives a way to construct an exact
fundamental domain for Γ. We investigate, on the contrary, the spine coming from the
fundamental domain of Γ.
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Example 6.1.9. For G = SL2(R) and Γ = SL2(Z) is a lattice of G acting on the upper
half plane H. Then a fundamental domain for Γ is a familiar ideal geodesic triangle at the
vertices ∞, eiπ/3, ei2π/3 with the side pairing maps

z → −1
z
, z → z + 1.

We define

a1 = {eit : π/3 ≤ t ≤ 2π/3},
a 1

2
= {eit : π/2 ≤ t ≤ 2π/3}.

It is immediately that a 1
2
∼= a1/〈z → −1

z 〉 and a1 can be regarded as the vertical geodesic
retraction of fundamental domain. Obviously, the spine for SL2(Z) is the union of the
Γ-images of a 1

2
, and the arc a 1

2
is a fundamental domain for Γ in the spine.

Motivated by the example of SL2(R), it allows us to give the following lemma.

Lemma 6.1.10. Let Γ be a lattice of SU(2, 1) with class number one. Suppose that a
fundamental domain D of Γ is a geodesic cone based on connected compact set D0, then
a spine for Γ comes from the union of the Γ-images of D0. In particular, a fundamental
domain for Γ in the spine is contained in D0.

Proof. In the Siegel domain model of H2
C, we define AD0 to be the vertical geodesic

projection along the u-coordinate onto D0 in D. Denote by

X0 =
⋃
γ∈Γ

γ ·D0.

It suffices to show X0 is a Γ-equivariant deformation retract of H2
C.

For z ∈ H2
C, there exist a point zD ∈ D and γz ∈ Γ such that γz · zD = z. Define a

family of maps gt : H2
C → H2

C by

gt(z) = γz · [(1− t)zD + tAD0 ◦ zD].

It is clear that g0 = id and g1(H2
C) ⊂ X0. For any γ ∈ Γ and z′ = γ · z, then γz′ = γ · γz.

It follows that
γ · gt(z) = gt(γ · z).

This gt gives a Γ-equivariant deformation retract of H2
C onto X0.

Remark 6.1.11. For Γ = SU(2, 1;Z[i]), a fundamental domain of Γ constructed in
[FFP10] consists of three compact sides (the core side and two pyramids) with the side
pairings I0 and S. Lemma 6.1.10 enables us to give a fundamental domain for Γ in the
spine, which is made up of two 3-cells − a pyramid and half of the core side. This is similar
to Yasaki’s constructions of two conjugacy classes X,Y of 3-cells [Yas08]. For more details
about these two constructions, we refer to the end of Section 8 in [FFP10].

Eisenstein-Picard modular surface and its sister

For the time being, we recall that the Eisenstein-Picard modular group and its sister are
denoted by G1 and G2 respectively as in [Par98].
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p0

p1

p2

p3

(a) Γ = G1

p1

p2

p3

p4

p5

(b) Γ = G2

Figure 6.2: A fundamental domain for Γ in the spine.

• For Γ = G1.
Falbel and Parker [FP06] constructed a fundamental domain for the action of G1
on H2

C, which is a 4-simplex with one ideal vertex. Following their notations, G1 is
generated by the side pairing maps R,P and Q, where ω = (−1 + i

√
3)/2 is a cube

root of unity and

R =

 0 0 1
0 −1 0
1 0 0

 , P =

 1 1 ω
0 1 −ω
0 0 1

 , Q =

 1 1 ω
0 −1 1
0 0 1

 .
Lemma 6.1.10 enables us to give a fundamental domain for G1 in the spine, which
is a tetrahedron (see Figure 6.2(a)). The action on the vertices is given by

p1
P−→ p2

P−→ p3,

(p0, p1, p3) QP
−1
−→ (p0, p2, p3),

(p0, p1, p2) R−→ (p0, p1, p2).

• For Γ = G2.
A fundamental domain of G2 constructed in Chapter 3 is a geodesic cone to infinity
over a prism. This prism consists of two compact sides with side pairing map I1.
Recall that G2 is generated by R,S, T and I1, refer to the matrices in Section 3.2.
(Here the capital R is not the same representative matrix as the one of G1).
One compact side, which is a wedge (see Figure 6.2(b)), gives a fundamental domain
for G2 in the spine by Lemma 6.1.10. We repeat the action of side pairing maps on
the vertices:

p2
S−1I1−→ p3

I−1
1 S
−→ p4,

(p1, p2, p4, p5) I1−→ (p5, p4, p3, p1),
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Table 6.1: Representative cells and their stabilizers for G1

Cell Dimension Stabilizer Generators
T 3 trivial 〈id〉
4012 2 Z/2Z 〈R〉
4013 2 trivial 〈id〉
4123 2 trivial 〈id〉
e03 1 Z/6Z 〈PQ−1〉
e01 1 Z/2Z 〈R〉
e12 1 Z/2Z 〈R〉
p0 0 Z/6Z× Z/2Z 〈PQ−1, R〉
p1 0 Group ]72 〈PQ−1P,R〉

Table 6.2: Representative cells and their stabilizers for G2

Cell Dimension Stabilizer Generators
W 3 trivial 〈id〉
21245 2 trivial 〈id〉
4123 2 trivial 〈id〉
4234 2 Z/3Z 〈S−1I1〉
e15 1 Z/6Z 〈R〉
e12 1 Z/3Z 〈T−1I1〉
e23 1 Z/2Z 〈T−1I1〉
p1 0 Z/6Z× Z/3Z 〈R, T−1I1〉
p2 0 Group ]24 〈R−1S, T−1I1〉

(p5, p1, p2) R−→ (p5, p1, p3),

(p1, p2) T−→ (p5, p4).

Notation. • Let T denote a tetrahedron with vertices p0, p1, p2, p3 and W denote a
wedge with vertices p1, p2, p3, p4, p5; see Figure 6.2.

• Let 2ijkl denote a quadrangle where the label is corresponding to its vertices.

• Let 4ijk denote a triangle where the label is corresponding to its vertices.

• Let eij denote an edge with endpoints pi and pj .

For i = 0, 1, 2, 3, we consider all the Γ-conjugacy classes of i-dimensional cells of X0.
For each Γ-conjugacy class, we fix a representative and compute the stabilizer. The results
are given in Tables 6.1 and 6.2.

6.1.3 Cohomology computation from the cell structure

In the previous section, we obtain the cell structure of fundamental domain for Γ in the
spine, which allows us to compute the cohomology of H2

C/Γ with local coefficients. The
main reference for this section is [Yas08].
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Orbifolds

We briefly review the basic definitions concerning orbifolds, or V -manifolds in the termi-
nology of Satake (see [Sat56, Sat57]). Let Ω be a Hausdorff topological space.

• An orbifold chart on Ω is given by a connected open subset Ũ ⊆ Rn for some integer
n ≥ 0, a finite group Γ

Ũ
of C∞-automorphisms of Ũ , and a map ϕ : Ũ → M such

that ϕ is Γ
Ũ
-invariant (ϕ ◦ g = ϕ for all g ∈ Γ

Ũ
) which induces a homeomorphism

of Ũ/Γ
Ũ
onto a open subset U = ϕ(Ũ) ⊆M ;

• An embedding λ : (Ũ ,Γ
Ũ
, ϕ) ↪→ (Ṽ ,Γ

Ṽ
, ψ) between two charts is a smooth em-

bedding λ : Ũ ↪→ Ṽ such that for any γ ∈ Γ
Ũ
, there exists a γ′ ∈ Γ

Ṽ
such that

λ ◦ γ = γ′ ◦ λ and ψ ◦ λ = ϕ;

• An orbifold atlas on Ω is a family U = {(Ũ ,Γ
Ũ
, ϕ)} of such charts, which cover Ω

and are locally compatible in the following sense: given any two charts (Ũ ,Γ
Ũ
, ϕ)

for U = ϕ(Ũ) ⊆M and (Ṽ ,Γ
Ṽ
, ψ) for V = ϕ(Ṽ ) ⊆M , and a point x = U ∩V , there

exists an open neighborhood W ⊆ U ∩ V of x and a chart (W̃ ,Γ
W̃
, φ) for W such

that there are embeddings (W̃ ,Γ
W̃
, φ) ↪→ (Ũ ,Γ

Ũ
, ϕ) and (W̃ ,Γ

W̃
, φ) ↪→ (Ṽ ,Γ

Ṽ
, ψ).

Definition 6.1.12. An orbifold (of dimension n) is such a space Ω with an equivalence
class of atlases U . Two such atlases are said to be equivalent if they have a common
refinement.

Local system over Γ\X

Since Γ acts properly discontinuously on X, Γ\X has a canonical structure of an orbifold.
Let π denote the projection X → Γ\X. Since X0 is a spine, there exists a Γ-equivariant
deformation retract g : X → X0, which induces a deformation retract g̃ : Γ\X → Γ\X0.
Then it is naturally that a projection π0 = π|X0 : X0 → Γ\X0.

Let E be a Γ-module with Γ-action given by ρ : Γ → GL(E). We define the Γ-
equivariant presheaf E on Γ\X. For every open set U ⊂M ,

EΓ(U) =
{
f : π−1(U)→ E

∣∣∣f(γ · x) = ρ(γ)f(x),∀γ ∈ Γ, x ∈ π−1(U)
}
.

Let E denote the sheafification of EΓ. We call E the sheaf associated to the local system
on Γ\X defined by (E, ρ). We will extend this terminology to Γ\X0, where the sheaf
associated to the local system defined by (E, ρ) is denoted by E0.

Considier a family of open sets U = {Ui} in an orbifold atlas on Γ\X, we define the
cohomology of Γ\X with local coefficients as follows.

• C0(U ;E) = {α0 | α0
i = α0|Ui ∈ EΓ(Ui)}

• Cq(U ;E) = {αq | αqi0i1···iq = α0|Ui0∩Ui1 ···∩Uiq ∈ EΓ(Ui0 ∩ Ui1 · · · ∩ Uiq)}

• The differential operator d is defined by

d · αq(Ui0 ∩ Ui1 · · · ∩ Uiq ∩ Uiq+1) = (−1)j
q+1∑
j=0

αq
i0i1···̂ij ···iq+1

.
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Then the sequence

0→ C0(U ;E) d→ C1(U ;E) d→ C2(U ;E) d→ · · ·

is exact and the cohomology of Γ\X is defined by

H∗(Γ\X;E) = Ker(d)
Im(d) .

To this end, we recall without proof a result which compares the cohomology of the
whole space and its deformation retract (also see a proof in [Yas08]).

Theorem 6.1.13. [Yas08] H∗(Γ\X;E) ∼= H∗(Γ\X0;E0).

This theorem enables us to compute the cohomology of Γ\X from the structure of its
spine.

Cohomology of regular cell complex

Definition 6.1.14. A finite regular cell complex is a finite CW complex where the
attaching map from each closed cell into the complex is a homeomorphism onto its image.

Definition 6.1.15. For a finite regular cell complex C, the face poset of C is the set of
closed cells with the partial ordering derived from containment. Given a face poset (P,<),
the order complex of P is the simplicial complex whose vertices are the elements of P
and the k-simplices of P are (k + 1)-flags p0 < p1 < · · · < pk with pi ∈ P .

Let F denote the order complex of the face poset of X0 and Fk denote the set of
k-simplices of F . We can take, up to normalization, a Γ-equivariant homeomorphism
Φ : F → X0 satisfying

• Φ(γ · x) = γ · Φ(x) for all γ ∈ Γ and x ∈ F .

• Φ(σ0 < σ1 < · · · < σk) ⊂ σk for all σ0 < σ1 < · · · < σk ordered simplices of F .

Let UF denote the open cover of F consisting of open star neighborhoods of each vertex
in F . Using the Γ-equivariant homeomorphism Φ, we get an open cover U0 = Φ(UF ) of
X0 so that there is an open set Uσ ∈ U0 for each cell σ. For each p, denote Rp a set of
representatives of Γ-conjugacy classes of p-cells of X0. Let [σ] denote the representative
of the conjugacy class of σ.

Čech cohomology Ȟ ∗(U0;E0) is defined by the cochain complex and codifferential as
follows:

C0(U0;E0) =
⊕

[σ]∈R0

E0(U[σ])

=
⊕

[σ]∈R0

{
f : π−1

0 (U[σ])→ E | f(γ · x) = ρ(γ)f(x), ∀γ ∈ Γ, x ∈ π−1
0 (U[σ])

}
= {f : F0 → E| f(γ · F ) = ρ(γ)f(F ), ∀γ ∈ Γ, F ∈ F0}.

Ck(U0;E0) = {f : Fk → E| f(γ · F ) = ρ(γ)f(F ), ∀γ ∈ Γ, F ∈ Fk}.
For f ∈ Ck(U0;E0), df ∈ Ck+1(U0;E0) is given by

df(σ0 < · · · < σk+1) =
k+1∑
i=0

(−1)if(σ0 < · · · < σ̂i < · · · < σk+1).
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Proposition 6.1.16. [Yas05] Let E0 be the sheaf associated to the local system on Γ\X0
defined by (E, ρ) and U0 be defined as above. Then H∗(Γ\X0;E0)=Ȟ ∗(U0;E0).

Proposition 6.1.16 gives the computation of the cohomology of Γ\X0 with local co-
efficients from the Čech cohomology for the cover U0. An implementation of method
for computing the cohomology is given in Theorem 6.1.18. It is useful to introduce the
following notions for computation.

We define Top : F → X0 to be the map which sends a flag σ0 < · · · < σk to σk. For a
cell σ ∈ X0, let Fσ = Top−1(σ), which is the set of maximal flags terminating at σ. For
each representative [σ], we fix a distinguished maximal flag of cells F[σ] = σ0 < σ1 < · · · <
σp where σk is an k-cell and σp = [σ]. For each σ ∈ X0, there exists a unique simplex
Fσ that is Γ-conjugate to F[σ]. In other words, there is a unique element γσ ∈ Γ, up to
StabΓ(σ), such that

γσ · F[σ] = Fσ.

For each fixed p-cell, let Sσ denote the simplicial complex arising from the face poset of
cells in σ. More precisely, the vertices of Sσ are the cells contained in σ and the k-simplices
are the (k + 1)-flags σ0 < σ1 < · · · < σk.
Proposition 6.1.17. [Yas05] Let σ be a p-cell and Sσ the corresponding complex defined
above. Choose an orientation of Sσ. Then there exists a map

nσ : {p-simplices of Sσ} → {±1}

such that ∂Sσ = ∑
F∈Spσ

nσ(F )∂F . Furthermore, if F and H intersect in a (p−1)-face, then

nσ(F ) = −nσ(H).
After fixing the distinguished maximal flag {F[σ]} for each p-cell σ ∈ Rp, we define

a function sgnσ : ∂σ → {±1}. Choose the orientation of Sσ so that the map nσ(F[σ]) =
(−1)p. Then for τ ∈ ∂σ, we define

sgnσ(τ) = nσ(Fτ < σ).

For convenience, we explain how to determine the sgnσ from an intuitive point of view,
see Figure 6.3.

We now ready to give the main theorem for computing the cohomology from the cell
structure.
Theorem 6.1.18. ([Yas08]) The cohomology H∗(Γ\X0;E0) can be computed from the
complex

0→
⊕
σ∈R0

EStabΓ(σ) →
⊕
σ∈R1

EStabΓ(σ) → · · · →
⊕
σ∈R

EStabΓ(σ) → 0

where the differential

δ :
⊕

σ∈Rp−1

EStabΓ(σ) →
⊕
σ∈Rp

EStabΓ(σ)

is given by
(δv)σ =

∑
τ∈∂σ

sgnσ(τ)ρ(γτ )v[τ ].

Here γτ , sgn, and [·] defined above and the vector v[τ ] is the [τ ]-component of the vector
v ∈

⊕
σ∈Rp−1

EStabΓ(σ).
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Figure 6.3: The simplicial complex Sσ arising from the cell σ.
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Table 6.3: Distinguished maximal flags

3-cells 2-cells 1-cells 0-cells
T > 4012 > e01 > p0 4012 > e01 > p0 e03 > p0 p0

4013 > e01 > p0 e01 > p0 p1
4123 > e12 > p1 e12 > p1

Table 6.4: T Data

σ ∈ ∂T Fσ γσ sgn(σ)
4012 4012 > e01 > p0 id −1
4013 4013 > e01 > p0 id +1
4023 4023 > e02 > p0 QP−1 −1
4123 4123 > e12 > p1 id +1

6.2 The cohomology of H2
C/G1

As an application of Theorem 6.1.18, we choose the distinguished maximal flags given in
Table 6.3. With this choice of distinguished flags, we compute γσ, Fσ and sgnσ for each
cell given in Tables 6.4 − 6.7. Combining with Table 6.1, Theorem 6.1.18 enables us to
give the following theorem.

Theorem 6.2.1. Let E be a G1-module with the action of G1 given by ρ1 : G1 → GL(E).
Then H∗(H2

C/G1;E) can be computed from the following cochain complex.

0→ C 0 → C 1 → C 2 → C 3 → 0.

where

C 0 = E〈ρ1(PQ−1),ρ1(R)〉⊕E〈ρ1(PQ−1P ),ρ1(R)〉,

C 1 = Eρ1(PQ−1)⊕Eρ1(R)⊕Eρ1(R),

C 2 = Eρ1(R)⊕E
⊕

E,

C 3 = E.

Then (λi) ∈ C 0, (µi) ∈ C 1, (νi) ∈ C 2, the differentials are given by

δ
(1)
0 (λ) =

 −λ1 + ρ1(P 2)λ2
−λ1 + λ2

(ρ1(QP−1)− 1)λ2

 ,
δ

(1)
1 (µ) =

 (1− ρ1(QP−1)µ2 + µ3
−µ1 + µ2 + ρ1(PQ−1P )µ3

(1− ρ1(PQP−1) + ρ1(P ))µ3

 ,
δ

(1)
2 (ν) =

[
−ν1 + (1− ρ1(QP−1))ν2 + ν3

]
.

Consider the trivial representation E = Z, then the cohomology of H2
C/G1 with Z-

coefficients is isomorphic to the singular cohomology of H2
C/G1. Theorem 6.2.1 enables

us to compute explicitly the cohomology from the chain complex

0→ Z2 → Z3 → Z3 → Z→ 0
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Table 6.5: 4012 and 4013 Data

σ ∈ ∂4012 Fσ γσ sgn(σ) σ ∈ ∂4013 Fσ γσ sgn(σ)
e01 e01 > p0 id +1 e01 e01 > p0 id +1
e02 e02 > p0 QP−1 −1 e03 e03 > p0 id −1
e12 e12 > p1 id +1 e12 e13 > p1 PQ−1P +1

Table 6.6: 4123 Data

σ ∈ ∂4123 Fσ γσ sgn(σ)
e12 e12 > p1 id +1
e13 e13 > p1 PQP−1 −1
e23 e23 > p2 P +1

with the differentials given by

δ
(1)
0 =

 −1 1
−1 1
0 0

 , δ
(1)
1 =

 0 0 1
−1 1 1
0 0 1

 , δ
(1)
2 =

[
−1 0 1

]
.

Theorem 6.2.2. Let Z denote the constant sheaf of integers on H2
C/G1. Then

H i(H2
C/G1;Z) =

{
Z, i = 0
0, i ≥ 1.

6.3 The cohomology of H2
C/G2

Analogue to Theorem 6.2.1, Theorem 6.3.1 follows from all the data for representatives of
cells, distinguished flags, γσ, Fσ and sgnσ in Table 6.2 and Tables 6.8 − 6.12.

Theorem 6.3.1. Let E be a G2-module with the action of G2 given by ρ2 : G2 → GL(E).
Then H∗(H2

C/G2;E) can be computed from the following cochain complex.

0→ C 0 → C 1 → C 2 → C 3 → 0.

where

C 0 = E〈ρ2(R),ρ2(T−1I1)〉⊕E〈ρ2(R−1S),ρ2(T−1I1)〉,

C 1 = Eρ2(R)⊕Eρ2(T−1I1)⊕Eρ2(T−1I1),

C 2 = E
⊕

E
⊕

Eρ2(S−1I1),

C 3 = E.

Table 6.7: e03, e01 and e12 Data

σ ∈ ∂e03 γσ sgn(σ) σ ∈ ∂e01 γσ sgn(σ) σ ∈ ∂e12 γσ sgn(σ)
p0 id −1 p0 id −1 p1 id −1
p3 P 2 +1 p1 id +1 p2 QP−1 +1
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Table 6.8: Distinguished maximal flags

3-cells 2-cells 1-cells 0-cells
W > 21245 > e12 > p1 21245 > e12 > p1 e15 > p1 p1

4123 > e12 > p1 e12 > p1 p2
4234 > e23 > p2 e23 > p2

Table 6.9: W Data

σ ∈ ∂W Fσ γσ sgn(σ)
21245 21245 > e12 > p1 id −1
21345 21345 > e45 > p5 I1 −1
4123 4123 > e12 > p1 id +1
4234 4234 > e23 > p2 id −1

Then (αi) ∈ C 0, (βi) ∈ C 1, (κi) ∈ C 2, the differentials are given by

δ
(2)
0 (α) =

 (ρ2(T )− 1)α1
−α1 + α2

(ρ2(S−1I1)− 1)α2

 ,
δ

(2)
1 (β) =

 −β1 + (1− ρ2(T ))β2 − ρ2(I−1
1 S)β3

(1− ρ2(R))β2 + β3
(1 + ρ2(S−1I1) + ρ2(I−1

1 S))β3

 ,
δ

(2)
2 (κ) =

[
−(1 + ρ2(I1))κ1 + κ2 − κ3

]
.

Similarly, Theorem 6.3.1 gives us to explicitly compute the cohomology H∗(H2
C/G2;Z)

from the chain complex
0→ Z2 → Z3 → Z3 → Z→ 0

with the differentials given by

δ
(2)
0 =

 0 0
−1 1
0 0

 , δ
(2)
1 =

 −1 0 −1
0 0 1
0 0 3

 , δ
(2)
2 =

[
−2 1 −1

]
.

Theorem 6.3.2. Let Z denote the constant sheaf of integers on H2
C/G2. Then

H i(H2
C/G2;Z) =

{
Z, i = 0, 2
0, i = 1 or i ≥ 3.

Table 6.10: 21245 Data

σ ∈ ∂21245 Fσ γσ sgn(σ)
e12 e12 > p1 id +1
e24 e24 > p4 I−1

1 S −1
e45 e45 > p5 T −1
e15 e15 > p1 id −1
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Table 6.11: 4123 and 4234 Data

σ ∈ ∂4123 Fσ γσ sgn(σ) σ ∈ ∂4234 Fσ γσ sgn(σ)
e12 e12 > p1 id +1 e23 e23 > p2 id +1
e23 e23 > p2 id +1 e34 e34 > p3 S−1I1 +1
e13 e13 > p1 R −1 e24 e24 > p4 I−1

1 S +1

Table 6.12: e15, e12 and e23 Data

σ ∈ ∂e15 γσ sgn(σ) σ ∈ ∂e12 γσ sgn(σ) σ ∈ ∂e23 γσ sgn(σ)
p1 id −1 p1 id −1 p2 id −1
p5 T +1 p2 id +1 p3 S−1I1 +1

Proof. We only compute the 2-dimensional cohomology H2(H2
C/G2) . The others are

easier. It suffices to show H2(H2
C/G2) = Ker(δ(2)

2 )/Im(δ(2)
1 ) is isomorphic to Z. Note that

Ker(δ(2)
2 ) = {(κ1, κ2, κ3) ∈ Z3| κ2 = 2κ1 + κ3} ∼= {(κ1, κ3) ∈ Z2}

and
Im(δ(2)

1 ) = {(κ1, κ2, κ3) ∈ Z3| κ3 = 3κ2} = {(κ1, κ3) ∈ Z2| 3κ1 + κ3 = 0}.

Consider a homomorphism

Z2 φ−→ Z
(κ1, κ3) −→ 3κ1 + κ3,

then φ is surjective implies that

Ker(δ(2)
2 )/Im(δ(2)

1 ) = Z2/Ker(φ) ∼= Z.
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