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Introduction

The main objects of interest in my thesis are the Markov traces on Hecke
algebras and the weight formula discovered by Yasushi Gomi [Gom06] in
2006.

Gomi’s “special” Markov traces are the natural generalization of the
HOMFLY-PT trace [Jon87] used to construct the famous 2-variable knot
invariant. The achievement of Gomi is that he found a beautiful formula
for special Markov traces whose weights include Lusztig’s Fourier trans-
form matrix coming from the character theory of finite groups of Lie type.
Moreover, Gomi’s formula allowed him to give a construction of Markov
traces for all finite Coxeter groups. Previous works of Meinolf Geck, Sofia
Lambropoulou [GL97] and of Meinolf Geck, Lacrimioara Iancu, Gunter
Malle [GIM00] have shown that there are infinitely many Markov traces
satisfying Markov conditions for standard parabolic subgroups in the cases
Bn, Dn and G(e, 1, n). Special Markov traces are unique and can be char-
acterised by some additional Markov conditions.

My first goal was to extend Gomi’s results to a much larger class of finite
reflection groups, the so-called spetsial complex reflection groups. Works of
George Lusztig and Gunter Malle [Lus94], Gunter Malle [Mal95] and recent
work of Michel Broué, Gunter Malle and Jean Michel have shown that there
exists a Fourier transform matrix even in the non-rational case, where there
are no such objects as algebraic groups. Using Malle’s formulae I show that
Gomi’s weight formula holds in the case of groups G(e, 1, n) and G(e, e, n),
leaving only a finite number of exceptional groups to consider. This work can
be regarded as another evidence of existence of Spetses, mysterious objects
which in the case of complex reflection groups play the role of algebraic
groups in the case of Weyl groups.

Recently, after the discovery of a new invariant of oriented links, triply-
graded Khovanov-Rozansky link homology [KR08], [Kho07], the situa-
tion becomes even more interesting in the case of finite Coxeter groups.
Mikhail Khovanov shows that their link invariant can be constructed using
Hochschild homology of Soergel bimodules. His construction makes sense
for all finite Coxeter groups and gives a new way to obtain Markov traces
on Hecke algebras. We call them Khovanov-Rozansky traces. These Markov
traces have the same parameters as Gomi’s special Markov traces. My sci-
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ence advisor Jean Michel naturally conjectured that Khovanov-Rozansky
traces should coincide with Gomi’s traces for all finite Coxeter groups. One
year later Ben Webster and Geordie Williamson [WW09] have proved this
conjecture in the case of Weyl groups using Lusztig’s theory of character
sheaves. After that I gave a positive answer in the case of dihedral groups
using the theory of Soergel bimodules and a direct calculation of character
values on Kazhdan-Lusztig basis elements. I should point out that a useful
idea to help calculate values of the Khovanov-Rozansky trace in the dihedral
case was given to me by Raphael Rouquier in private communication. Hence
only two cases of the groups H3 and H4 remain to be considered.
The thesis has the following structure:
• In the first two chapters we recall the basic definitions and facts about
complex reflection groups, Coxeter groups, braid groups and Hecke
algebras.

• Third chapter is dedicated to the special Markov traces, or the traces
constructed by Gomi, and their generalisation for complex reflection
groups G(e, 1, n) and G(e, e, n). In section (3.1) we formulate Jones-
Ocneanu theorem (3.1.3) which was the starting point of the study of
Markov traces. Section (3.2) is dedicated to the notions of Markov
trace, Markov property and the definition of special Markov traces
of non-exceptional types. In section (3.3), following Geck, Iancu and
Malle, we give definition (3.3.1) of Markov trace in the case ofG(e, 1, n)
as well as the formula for its weights in theorem (3.3.5). Section
(3.4) contains the definition of the special Markov trace for the group
G(e, e, n). In all sections special Markov traces are constructed ei-
ther as the unique Markov traces satisfying additional Markov prop-
erties regarding “non-standard” parabolic subgroups or as restrictions
of some specialized Markov traces to Hecke subalgebras.

• Fourth chapter is pretty much independent of the first three chap-
ters. It contains all necessary definitions and facts to construct
the Khovanov-Rozansky trace. In theorem (4.4.9) I prove that the
Khovanov-Rozansky trace is actually a Markov trace with the given
parameter z. The proof there is a sort of compilation of the results in
the articles [KR08], [Kho07] and some hints given to me by Raphael
Rouquier during his visit to Paris.

• Fifth chapter contains the history of appearance and properties of
Lusztig’s Fourier transform matrix, generic and fake degrees. Section
(5.1) is dedicated to Lusztig’s Fourier transform matrix in the con-
text of algebraic groups. In sections (5.2), (5.3) and (5.4) we give,
following Lusztig and Malle, definitions and properties of Lusztig’s
Fourier transform matrix, generic and fake degrees for non-rational fi-
nite Coxeter groups and the groups G(e, 1, n) and G(e, e, n). It should
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be pointed out that the Fourier matrix is not completely defined in
the case of G(e, e, n). At the moment we have only several properties
that the conjectural Fourier matrix should satisfy. They are listed in
conjecture (5.4.34).

• Chapter six contains Gomi’s theorem (6.1.3) giving a construction of
Markov traces for all finite Coxeter groups and the formula for the
weigths of the special Markov traces of non-exceptional types. It can
be briefly formulated as follows:

Theorem 0.0.1 Let W be a finite Coxeter group and HW the corre-
sponding Hecke algebra with the parameters q and −1. Let τg be the
trace on HW whose weights ωχ are given by the formula:

ωχ =
(1− q

1 + r

)n ∑
µ∈IrrW

Sχ,µPµ(q, r), for χ ∈ IrrW (0.0.2)

where S is the Fourier transform matrix and Pµ(q, r) is the Molien
series. Then τg is a Markov trace. It is equal to the special Markov
trace when W is of non-exceptional type.

In sections (6.2) and (6.3) we extend Gomi’s result to the case of the
groups G(e, 1, n) and G(e, e, n). These results support Broué, Malle,
Michel’s conjecture that for spetsial complex reflection groups there
should be a similar theory to the theory of algebraic groups in the
rational case.

• Chapter seven is devoted to the proof of Jean Michel’s conjecture
(7.0.1) that Gomi’s traces coincide with Khovanov-Rozansky traces.
Section (7.1) contains the plan of Webster-Williamson proof in the
case of Weyl groups. Section (7.2) is dedicated to the proof of the
conjecture in the case of dihedral groups.





Chapter 1

Complex Reflection Groups

1.1 Definition of Complex Reflection Groups
Definition 1.1.1 Let k be a subfield of C and V be a k-vector space
of dimension n. An element s ∈ End(V ) is called pseudo-reflection if
rank(IdV − s) = 1. When s is of finite order it has a unique eigenvalue
ζ 6= 1, root of unity, and it is called reflection.

Remark 1.1.2 The term "reflection" comes from the case where k = R, ζ =
−1 and s is a hyperplane reflection.

By definition every reflection s has the form s(x) = x− r(x)r where r ∈ V ∗
is a linear form whose kernel is the hyperplane Hs = Ker(s − IdV ) and r
is an eigenvector corresponding to the eigenvalue ζ. The hyperplane Hs is
called the reflecting hyperplane of the reflection s; the vector r and the form
r are called root and coroot corresponding to s. They are defined up to a
scalar.

Let W be a finite subgroup of GL(V ). We denote by Ref(W ) the set of
reflections in W .

Definition 1.1.3 The group W is called (finite) complex reflection group
if it is generated by Ref(W ). In that case V is called the reflection repre-
sentation or the natural representation of W .

Remark 1.1.4 • In case k = Q we obtain the notion of finite rational
reflection group which coincides with the notion of Weyl group.

• In case k = R we obtain the notion of finite real reflection group
which coincides with the notion of finite Coxeter group which will be
introduced later.

Definition 1.1.5 A parabolic subgroup of W is the subgroup of elements
of W which act trivially on a fixed subspace of V .
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The following result obtained by Steinberg implies that a parabolic subgroup
of a complex reflection group is also a complex reflection group.

Theorem 1.1.6 (Steinberg) Let V ′ be a subspace of V and WV ′ be the
parabolic subgroup of W which acts trivially on V ′. Then WV ′ is generated
by those reflections of W whose reflecting hyperplane contains V ′ and thus
is a complex reflection group.

Definition 1.1.7 A finite complex reflection group is called irreducible if
the corresponding reflection representation is irreducible.

Maschke’s theorem tells us that V can be decomposed into a direct sum
V1 ⊕ . . . ⊕ Vr of irreducible representations Vi of W . Denote by Wi the
parabolic subgroups of W acting trivially on the subspaces ⊕j 6=iVj . Then
the following proposition is an easy consequence of Steinberg theorem:

Proposition 1.1.8 For 1 ≤ i ≤ r we have

• The group Wi is a complex reflection group with the reflection repre-
sentation Vi.

• The action of Wi on Vi is irreducible. Thus Wi is an irreducible com-
plex reflection group.

• W = W1 × . . .×Wr.

Remark 1.1.9 The above proposition implies that in order to classify all
complex reflection groups we just need to classify the irreducible ones.

1.2 Polynomial Invariants and Finite Complex Re-
flection Groups

The aim of this subsection is to give the classic characterization of finite
complex reflection groups.

Let V be a k-vector space of dimension n and W be a finite subgroup
of GL(V ). Let S(V ) be the symmetric algebra on V (i.e. tensor algebra of
V factorized by the ideal generated by all differences v ⊗ u− u⊗ v for all
u, v ∈ V ). For any choice of basis (x1, x2, . . . , xn) of V one can identify S(V )
with the graded ring of polynomials k[x1, x2, . . . , xn] (here we set deg xi = 1).
The action v 7→ w(v) of W on V naturally extends to the action of W on
S(V ). We will see that W is a finite complex reflection group if and only
if the corresponding algebra of W -invariants S(V )W is also an algebra of
polynomials. The first important result is as follows:

Theorem 1.2.1 (Hilbert-Noether) S(V )W is a finitely generated algebra
over k.
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Since the action of W preserves the degrees of elements of S(V ) one can
choose a homogeneous system of generators (f1, f2, . . . , fr) of S(V )W . Every
generator xi of S(V ) satisfies the equation

∏
w∈W (X−wxi) thus the algebra

S(V ) is of finite rank as S(V )W -module. Taking into account that the
transcendence degree of S(V ) is n we can choose n algebraically independent
elements among fi’s. Thus (after renumbering of fi’s) we get an inclusion of
the polynomial algebra k[f1, f2, . . . , fn] into S(V )W . Now we can formulate
Shephard-Todd-Chevalley characterization theorem:
Theorem 1.2.2 Let (f1, f2, . . . , fn) be algebraically independent elements
of S(V )W of homogeneous degrees (d1, d2, . . . , dn) such that their product
d1d2 . . . dn is minimal. Then |W | ≤ d1d2 . . . dn and the following statements
are equivalent:
• |W | = d1d2 . . . dn.

• W is generated by Ref(W ) and therefore is a finite complex reflection
group.

• S(V )W = k[f1, f2, . . . , fn].

Remark 1.2.3 Let I be the ideal of S(V ) generated by the homogeneous
elements of S(V )W of positive degree. It can be proven that ifW is a complex
reflection group then the representation S(V )/I of W is a graded version of
the regular representation of G and there is an isomorphism of G-modules
S(V ) ∼= (S(V )/I)⊗k S(V )W .

Remark 1.2.4 From now on we will considerW as finite complex reflection
group.

1.3 Groups G(de, e,n)
We will now introduce an important family of complex reflection groups, the
so-called infinite series which is one of the main subjects in this thesis.

For an integer l denote by ζl an l-th primitive root of 1 and by µl the
set of all l-th roots of 1 in C. Let d, e, n be positive integers and V be
an n-dimensional vector space over the field k = Q(ζde) ⊂ C. The group
G(de, e, n) ⊂ GL(V ) is defined as a set of monomial matrices (matrices with
just one non-zero entry in every row and every column) whose coefficients
lie in µde while their product lies in µd. If D is the subgroup of diagonal
matrices of G(de, e, n) then |D| = (de)n/e and G(de, e, n) ∼= D o Sn where
Sn is the symmetric group.

Denote by si the matrices of permutation (i, i + 1), by s′1 the matrix 0 ζ−1
e 0

ζe 0 0
0 0 Id

 and by t the matrix diag(ζd, 1, . . . , 1). All these matrices

are reflections. One can easily see that:
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• G(e, e, n) is generated by s′1, s1, . . . , sn−1.

• G(d, 1, n) is generated by t, s1, . . . , sn−1.

• Two cases mentioned above are the only cases when groups G(de, e, n)
are generated by n reflections. In all the other cases G(de, e, n) can be
generated only by n+ 1 reflections.

If x1, x2, . . . , xn is a basis of V then algebraically independent generators of
the ring of invariants S(V )G(de,e,n) are fi :=

∑
j1<j2<...<ji(xj1 . . . xji)

de for
i = 1, . . . , n − 1 and fn = (x1x2 . . . xn)d. Indeed, it is clear that these are
invariant polynomials. They are algebraically independent since xdei are the
roots of the polynomial

Xn − f1X
n−1 + . . .+ (−1)n−1fn−1X + (−1)nfen

and thus x1, x2, . . . , xn are algebraic over f1, f2, . . . , fn. To see that fi’s
generate the whole S(V )G(de,e,n) we just need to verify that the product of
their degrees (de, 2de, . . . , (n− 1)de, nd) is equal to the order of G(de, e, n).
This is true since |G(de, e, n)| = |D||Sn| = d(de)n−1n!.

1.4 Coxeter Groups
In this section we give all necessary definitions concerned with Coxeter
groups.

Let W be a group generated by a set S of involutions. For any s, t ∈ S
denote by mst ∈ Z ∪ {∞} the order of the product st in W . If mst is finite,
the word ststs . . .︸ ︷︷ ︸

mst terms
is denoted by ∆s,t.

Definition 1.4.1 (W,S) is a Coxeter system if〈
S | s2 = 1,∆s,t = ∆t,s ∀s, t ∈ S

〉
is a presentation of W .

Remark 1.4.2 In that case W is called a Coxeter group and elements of
S are called Coxeter generators.

Definition 1.4.3 Let w ∈ W . Denote by l(w) the length of w with respect
to the Coxeter generators. We say that w = s1 . . . sk with si ∈ S is a reduced
word or a reduced expression of w if k = l(w).

Later we will need the notion of the Bruhat order ≤ on W .

Definition 1.4.4 Let x, y ∈ W . We say that x ≤ y if there is a reduced
expression y = s1 . . . sk such that omitting some of si’s gives a product that
represents x.
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Definition-Theorem 1.4.5 For I ⊂ S denote by WI the subgroup of W
generated by I. Then (WI , I) is a Coxeter system and the group WI is called
a parabolic subgroup of W .

Proof. Cf [Bou68, Ch 4, § 1, Th 2] �
Now we introduce the notion of the geometric representation:

Definition-Theorem 1.4.6 Let (W,S) be a Coxeter system. Suppose that
W is finite and n = |S| < ∞. Define an action of W on V = Rn with the
basis {es}s∈S as follows:

s(et) = et + 2cos(π/mst)es, for s, t ∈ S.

Then this is a well-defined action and we have an inclusion W � � //GL(V ).
This inclusion is called the geometric representation of W .

Proof. Cf [Bou68, Ch 4, § 4, Th 1] and [Bou68, Ch 4, § 4, Cor 2] �
An easy consequence of above theorem shows that a finite Coxeter group is
a finite real reflection group (cf. (1.1.4)).

Remark 1.4.7 The inverse is also true: For a finite real reflection group
W one can find a set S ⊂ W of involutions such that (W,S) is a Coxeter
system.

Let (W,S) be a Coxeter system. The presentation of the Coxeter group
W is encoded by its Coxeter graph or a Coxeter-Dynkin diagram which is
constructed as follows: The vertices are in bĳection with the set S and there
is an edge between s and t if mst ≥ 3. This edge is marked by mst. There
is also a convention: if mst = 3 then the corresponding edge is just a simple
line; if mst = 4 it is double, if mst = 5 it is a triple-line, etc.

Proposition 1.4.8 Let W be a finite Coxeter group and V its geometric
representation. Let Γ be the Coxeter graph of W . Then V is an irreducible
representation of W (and thus W is irreducible as a real reflection group) if
and only if W and Γ are as follows:

• Type An: W = G(1, 1, n+ 1) ©
s1
©
s2
· · ·©

sn

• Type Bn: W = G(2, 1, n) ©
t
©
s1
©
s2
· · · ©

sn−1

• Type Dn: W = G(2, 2, n)
s′1©�

s1©�
©
s2
©
s3
· · · ©

sn−1

• Type E6: W = G35 ©
s1
©
s3
©
s4

©s2

©
s5
©
s6
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• Type E7: W = G36 ©
s1
©
s3
©
s4

©s2

©
s5
©
s6
©
s7

• Type E8: W = G37 ©
s1
©
s3
©
s4

©s2

©
s5
©
s6
©
s7
©
s8

• Type F4: W = G28 ©
s
©
t
©
u
©
v

• Type I2(m): W = G(m,m, 2) ©
s0

m ©
s1

• Type H3: W = G23 ©
s

5 ©
t
©
u

• Type H4: W = G30 ©
s

5©
t
©
u
©
v

Remark 1.4.9 Coxeter groups of type I2(m) are called dihedral groups.
Groups of types An, Bn, Dn and I2(m) are called non-exceptional Coxeter
groups.

Remark 1.4.10 This classification is a part of the classification of irre-
ducible complex reflection groups which will be briefly described in the next
section.

1.5 Classification of Finite Complex Reflection
Groups

As we have pointed out in (1.1.9) in order to classify finite complex reflection
groups it is sufficient to classify the irreducible ones. This classification has
been made by Shephard and Todd (cf. [ST54]).

Definition 1.5.1 Let W,W ′ be complex reflection groups and V, V ′ be their
reflection representations over subfields k and k′ of C. We say that W is
isomorphic to W ′ and write W ' W ′ or (V,W ) ' (V ′,W ′) if there exists
an isomorphism of C-vector spaces f : V ⊗k C

∼ //V ′ ⊗k′ C which induces
a group isomorphism of W and W ′ regarded as subgroups of GL(V ⊗k C)
and GL(V ′ ⊗k′ C).

Theorem 1.5.2 (Shephard-Todd) Let W be an irreducible complex re-
flection group and V its reflection representation. Then one of the following
assertions is true:

• There exist integers d, e, n, with de ≥ 2, n ≥ 1 such that (V,W ) '
(Vn, G(de, e, n)) where Vn is the matrix representation of G(de, e, n)
described in section (1.3).
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• There exists an integer n such that (V,W ) ' (Qn−1, Sn).

• W is isomorphic to one of the 34 exceptional groups G4, G5, . . . , G37.

Remark 1.5.3 It is not hard to see that if two finite Coxeter groups have the
same Coxeter graphs then they are isomorphic as finite real reflection groups.
Thus the classification (1.4.8) is a part of Shephard-Todd classification.

One can extend the notion of Coxeter-Dynkin diagram and encode the pre-
sentations with generators and relations of all complex reflection groups
by certain diagrams D "à la Coxeter-Dynkin" (cf. [BMR98, Appendix 2],
[BM04, Chapter 2] and [Bes08, Th. 0.6]). This will give also the presenta-
tions of the associated braid groups (cf. (2.1.12)). We will provide some of
these diagrams.

• W = G(d, 1, n), d ≥ 2 D : ©
t
d ©

s1
©
s2
· · · ©

sn−1

• W = G(e, e, n), e ≥ 2, n ≥ 3 D : e
s′1©�

s1©�
©
s2
©
s3
· · · ©

sn−1

Here vertices and edges carry the same meaning as those in the Coxeter-
Dynkin diagrams;©

t
d means that the order of the generator t is d,©

si
means

that the order of si is 2.

The diagram e
s′1©�

s1©�
©
s2

corresponds to the presentation

s21 = s
′2
1 = s22 = 1,

s1s2s1 = s2s1s2, s
′
1s2s

′
1 = s2s

′
1s2, s2s

′
1s1s2s

′
1s1 = s′1s1s2s

′
1s1s2,

s1s
′
1s1 . . .︸ ︷︷ ︸

e terms

= s′1s1s
′
1 . . .︸ ︷︷ ︸

e terms

.
(1.5.4)

Now assume that W is a complex reflection group G(d, 1, n), or G(e, e, n) or
a Coxeter group. There is the following connection between diagrams and
the parabolic subgroups of W in the sense of (1.1.5) and (1.4.5):

Proposition 1.5.5 Let D be the diagram of W .

• Every full subdiagram D′ of D gives a presentation of the corresponding
subgroup W (D′) of W generated by the reflections corresponding to the
vertices of D′. The subgroup W (D′) is a parabolic subgroup of W in
the sense of (1.1.5).

• If P1 ⊂ . . . ⊂ Pk is a chain of parabolic subgroups of W , there exists
g ∈W and a chain D1 ⊂ . . . ⊂ Dk of full subdiagrams of D such that

(P1, . . . , Pk) = g(W (D1), . . . ,W (Dk)).
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Remark 1.5.6 • The assumption about the group W in the above
proposition is made for simplicity. Look [BMR98, Fact 1.7] for the
general case.

• Proposition (1.5.5) shows that the definition (1.4.5) of parabolic sub-
groups agrees with the definition (1.1.5) when we look at a finite Cox-
eter group as a real reflection group.

Remark 1.5.7 As we will see in the next section the above diagrams can
be used to provide presentations of braid groups and Hecke algebras corre-
sponding to complex reflection groups.



Chapter 2

Braid Groups and Hecke
Algebras

Most results in this chapter are classic and can be found for example in
[BMR98] , [MM10] and [GP00].

2.1 Braid Groups Associated with Complex Re-
flection Groups

Let W be a complex reflection group and V be its reflection representation
over some k ⊂ C. In this section we work with the "complexification" of the
k-vector space V , namely with V ⊗k C and denote it by the same letter V .

Notation 2.1.1 Denote by AW the set {Hs}s∈Ref(W ) of reflecting hyper-
planes of W . For H ∈ AW denote by WH the pointwise stabilizer of H in
W .

Proposition 2.1.2 For any H ∈ AW the group WH is cyclic and generated
by an element sH such that detV (sH) = ζeH where eH = |WH |.

Definition 2.1.3 The reflection sH in the above proposition is called a dis-
tinguished reflection in W .

The group W has a natural action H 7→ w(H) on the set AW . If we fix
` ∈W\AW then eH , H ∈ ` depends only on ` since Ww(H) = wWHw

−1. We
will denote it by e`.

Definition 2.1.4 Let M = V −
⋃
H∈AW H. Fix any x0 ∈ M. The

fundamental group P (W ) = π1(M, x0) is called pure braid group corre-
sponding to W . Let x0 be the W -orbit of x0. The fundamental group
B(W ) = π1(W\M, x0) is called braid group corresponding to W .
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Remark 2.1.5 This definition is clearly independent of the choice of x0
since bothM and W\M are connected topological spaces.

According to Steinberg’s theorem (1.1.6) the surjection M // //W\M is a
covering map and we get the following exact sequence:

1 //P (W ) //B(W ) //W op //1 .

Definition 2.1.6 (Generator of the monodromy) Let H ∈ AW , sH be
the corresponding distinguished reflection and LH := Im(sH − IdV ). Then
sH(x) = ζeHpr⊥H(x) + prH(x) where prH is the projection on H along LH
and pr⊥H is the projection on LH along H.

Define a path inM from x0 to sH(x0) as follows:

• For a point x ∈M define a path σH,x(t) = ζteHpr⊥H(x) + prH(x) in V .

• For any path γ ⊂M from x0 to x define a path σH,γ = sH(γ−1)σH,xγ.

• Choose the path γ and the point x "close enough" to H in such a way
that σH,γ ⊂M.

The image sH,γ ∈ B(W ) of σH,γ via the surjection M // //W\M is called
generator of the monodromy around H.

Remark 2.1.7 It follows immediately from the definition that the image of
sH,γ via the surjection B(W ) // //W op is sH .

Remark 2.1.8 It is not hard too see that for two different paths γ and γ′
the generators sH,γ and sH,γ′ are conjugated in B(W ).

Definition 2.1.9 Let s be a distinguished reflection in W with reflection
hyperplane H. An s-generator of the monodromy is a generator of the mon-
odromy s around the image of H in W\M such that its image via the sur-
jection B(W ) // //W op is s.

In order to formulate an important theorem about the structure of braid
groups we introduce the following notation:

Notation 2.1.10 Let D be a diagram for a complex reflection group W (cf.
(1.5)). We denote by Dopbr the opposite braid diagramm associated with D:
the set of vertices of D subject to all opposite relations (words in reverse
order) of D except the orders of the vertices of D. These relations are called
braid relations.
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Example 2.1.11 For the diagram D = e
s′1©�

s1©�
©
s2

for the complex reflection

group G(e, e, 3) the diagram Dopbr is represented by the picture e
s′1©•�

s1©•�
©•
s2

and

corresponds to the following presentation (cf. (1.5.4)):

s1s2s1 = s2s1s2, s′1s2s′1 = s2s′1s2, s2s1s′1s2s1s′1 = s1s′1s2s1s′1s2,
s1s′1s1 . . .︸ ︷︷ ︸
e terms

= s′1s1s′1 . . .︸ ︷︷ ︸
e terms

.

Theorem 2.1.12 (Presentation of Braid Groups) Let W be an irre-
ducible complex reflection group. Let N (D) be the set of vertices of the dia-
gram D for W identified with a set of reflections of W . For each s ∈ N (D)
there exists an s-generator of the monodromy s ∈ B(W ) such that the set
{s}s∈N (D), together with the braid relations of Dopbr , is a presentation of
B(W ).

The above theorem (cf. [BMR98, Th. 2.27]) shows that in the case when
W is a real reflection group the definition of its braid group agrees with
the definition of the braid group corresponding to W regarded as a Coxeter
group, which is as follows:

Definition 2.1.13 Let (W,S) be a Coxeter system. The group B(W ) with
the presentation

B(W ) =
〈
{σs}s∈S | σsσtσs . . .︸ ︷︷ ︸

mst terms

= σtσsσt . . .︸ ︷︷ ︸
mst terms

s, t ∈ S
〉

is the braid group corresponding to W .

2.2 Hecke Algebra
2.2.1 Hecke Algebra: Classical Situation
Definition 2.2.1 Let G be a finite group, H ≤ G a subgroup and let ψ be
a k-character afforded by kHe for some idempotent e ∈ kH. The Hecke
algebra H(G,H,ψ) is the subalgebra ekGe of kG.

Remark 2.2.2 Since kG is semisimple and the Hecke algebra ekGe is iso-
morphic to the opposite ring (EndkGkGe)op where EndkGkGe is viewed as
an algebra of left operators on kGe it is also semisimple.

Remark 2.2.3 The Hecke algebra H(G,H,ψ) is independent of the left
ideal kHe affording ψ. Indeed, if kHe ∼= kHe′ for another idempotent e′,
then clearly kGe ∼= kGe′ and by the preceeding remark ekGe ∼= e′kGe′.
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Next theorem [Isa76, ] establishes a connection between irreducible char-
acters of the group G and irreducible characters of the Hecke algebra
H(G,H,ψ).

Theorem 2.2.4 Let H = H(G,H,ψ) be the Hecke algebra associated with
G, H, e and ψ as above. The following statements hold:

(i) Let φ ∈ IrrG. Then the restriction φH 6= 0 if and only if the multiplic-
ity (φ, IndGHψ) 6= 0.

(ii) The map φ 7→ φH is a bĳection from the set of irreducible characters φ
of G such that (φ, IndGHψ) 6= 0, to the set of all irreducible characters
of the semisimple k-algebra H.

(iii) If ϕ is an irreducible character of H corresponding to φ ∈ IrrG accord-
ing to part (ii), then degϕ = (φ, IndGHψ).

We will be interested in Hecke algebras in a special case. Namely, let G
be a finite group with BN -pair, W the Weyl group of G, and S the set of
distinguished generators of W . Let

G =
∐
w∈W

BwB

be the Bruhat decomposition of G with respect to a Borel subgroup B. The
pair (W,S) is a Coxeter system thus the group W has the presentation〈

S | s2 = 1,∆s,t = ∆t,s ∀∀s, t ∈ S
〉

where ms,t is the order of the product st (cf. (1.4.1)).
Iwahori and Matsumoto have shown that the Hecke algebra H(G,B) :=

H(G,B,1B) has a presentation, as an algebra, similar to the presentation
of the group W . This allows to establish a bĳection between the irreducible
characters of H(G,B) and the irreducible characters of W .

To formulate their theorem we need some definitions. First of all, recall
that H(G,B) = ekGe, where e = |B|−1∑

b∈B b is the idempotent in kB such
that the left ideal kGe affords the permutation representation k(G/B). It
has the standard basis consisting of the elements

aD = |B|−1 ∑
x∈D

x, D ∈ B\G/B.

Since there is a bĳection map w ↔ BwB from W to the double cosets
B\G/B we shall label the standard basis elements by the elements of W ,
and denote them by {aw}w∈W .

For each w ∈W , we define its index

indw = |B : wB ∩B| = |BwB/B|,
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here wB stands for ẇB, where ẇ is a coset representative in N corresponding
to the element w ∈ N/T . In particular, the index parameters of G are
defined to be the numbers

qs = inds, s ∈ S.

Now we can formulate

Theorem 2.2.5 (Iwahori-Matsumoto)

• The Hecke algebra H(G,B) is generated by elements {as}s∈S. These
generators satisfy the quadratic relations

a2
s = (qs − 1)as + qs1, s ∈ S,

and the homogeneous relations

asatas · · ·︸ ︷︷ ︸
mst terms

= atasat · · ·︸ ︷︷ ︸
mst terms

• The generators and relations given above define a presentation of the
Hecke algebra H(G,B).

Remark 2.2.6 The above results can be applied in the following case: G =
GF , B = BF where G is a connected affine algebraic group over Fq, split
over Fq, with the corresponding Frobenius map F , and B is a rational Borel
subgroup of G. (cf. (5.1.3) and (5.1.5))

Remark 2.2.7 One can show using the properties of the BN -pair that if
s, t ∈ S are conjugate in W then qs = qt.

Remark 2.2.8 Theorem (2.2.5) makes it natural to investigate the so-called
Iwahori-Hecke algebras, replacing numbers qs by some parameters. We give
the main definitions and properties of these algebras in next subsections.

2.2.2 Iwahori-Hecke Algebras
Let (W,S) be a Coxeter system. Let q = {qs, q′s}s∈S be a set of variables
such that qs = qt and q′s = q′t if s and t are conjugate in W and A = Z[q±1].

Definition 2.2.9 The Iwahori-Hecke algebra H{qs,q′s}s∈S (W,A) over the
ring A with the parameters {qs, q′s}s∈S ⊂ A is a unitary A-algebra with
the following presentation by generators and relations:〈
{Ts}s∈S | TsTtTs . . .︸ ︷︷ ︸

mst terms

= TtTsTt . . .︸ ︷︷ ︸
mst terms

, (Ts − qs)(Ts − q′s) = 0 s, t ∈ S
〉
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Remark 2.2.10 One can see that H{qs,q′s}s∈S (W,A) is just a quotient of
the braid group algebra AB(W ) by the ideal generated by the elements (σs−
qs)(σs − q′s) (cf. (2.1.13)).

Remark 2.2.11 It is obvious that Iwahori-Hecke algebra becomes the group
algebra ZW via the specialization qs 7→ 1, q′s 7→ −1. Thus it can be regarded
as a deformation of the group algebra ZW .

The following proposition can be found in [GP00, Th. 4.4.6]:

Proposition 2.2.12 (Alternative definition) Iwahori-Hecke algebra
H{qs,q′s}s∈S (W,A) is a free A-module with the basis {Tw}w∈W and the
following multiplication rule:

∀s ∈ S TsTw =
{

Tsw , l(sw) > l(w)
(qs + q′s)Tw − qsq′sTsw , l(sw) < l(w),

Tw = Ts1 . . .Tsk where w = s1 . . . sk is any reduced expression of w (cf.
(1.4.3)).

Proof. Cf [GP00, Cor 4.4.5] �

Definition 2.2.13 Let B be any ring and A κ //B be a ring mor-
phism making B into an A algebra. We call the tensor product B ⊗A
H{qs,q′s}s∈S (W,A) Iwahori-Hecke algebra (or just Hecke algebra) over B with
the parameters {κ(qs), κ(q′s)}s∈S ⊂ B.

An important example of an Iwahori-Hecke algebra is as follows

Example 2.2.14 Let v be a variable, B = Z[v±1] and κ : A //B is given
by qs 7→ v−2, q′s 7→ −1. We denote by H′W the Iwahori-Hecke algebra over
Z[v±1] with the parameters (v−2,−1).

Proposition (2.2.12) shows that H′W is a free B-module with the basis
{Tw}w∈W . Later we will need the notion of an alternative K-basis of H′W
defined as follows

Definition-Theorem 2.2.15 Consider in the Hecke algebra H′W the el-
ements T̃w = vl(w)Tw. By [KL79] there is exactly one involution d :
H //H with d(v) = v−1 and d(Tw) = (Tw−1)−1 and for w ∈ W there is
a unique C ′w ∈ H′W with d(C ′w) = C ′w and

C ′w ∈ T̃w +
∑
y

vZ[v]T̃y.

These elements form the so-called Kazhdan-Lusztig basis of H′W .

Remark 2.2.16 The Iwahori-Hecke algebra turns out to be a geneneric
Hecke algebra corresponding to real reflection groups, whose definition we
provide in the next subsection.
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2.2.3 Generic Hecke Algebra
Let W be a complex reflection group.

Definition 2.2.17 Let

u = (u`,j)(`∈W\AW )(0≤j≤e`−1)

be a set of∑`∈W\AW e` variables and Z[u±1] the ring of Laurent polynomials
in these variables. Then the generic Hecke algebra Hu(W ) is the Z[u±1]-
algebra Z[u±1]B(W )/J , where B(W ) is the braid group associated to W (cf.
(2.1.4)) and J is the ideal of Z[u±1]B(W ) generated by the elements of the
form

e`−1∏
j=0

(sH,γ − u`,j),

where sH,γ is any generator of the monodromy around a hyperplane H ∈
`, ` ∈W\AW (cf. (2.1.6)).

Remark 2.2.18 It follows from (2.1.8) that in the above definition we do
not need to consider all possible paths γ for a fixed ` and H ∈ `, but just one
of them since the products ∏e`−1

j=0 (sH,γ −u`,j) are conjugate in Z[u±1]B(W ).

Now assume that W is an irreducible complex reflection group. Let D be
the diagram of W (cf. (1.5)) and let s be an s-generator of the monodromy
corresponding to a vertex s ∈ N (D) (cf. (2.1.12)). We set us,j := u`,j , es :=
e` for 0 ≤ j ≤ e` − 1, where ` is the W -orbit of the reflecting hyperplane of
s. Denote by Ts the image of s under the surjection

Z[u±1]B(W ) // //Hu(W ) . (2.2.19)

The following proposition is an immediate consequence of theorem (2.1.12):

Proposition 2.2.20 (Presentation of Generic Hecke Algebras) Let
W be an irreducible complex reflection group. The generic Hecke algebra
Hu(W ) is isomorphic to the Z[u±1]-algebra generated by the elements
(Ts)s∈N (D) with the following defining relations:

• the elements Ts satisfy the braid relations defined by Dopbr ,

• we have (Ts − us,0)(Ts − us,1) . . . (Ts − us,es−1) = 0

Let I be a subspace of the reflection representation V of W and WI the
corresponding parabolic subgroup of W (cf. (1.1.5)). Denote by AI the set
of reflecting hyperplanes of WI and by

t = (t`,j)(`∈WI\AI)(0≤j≤e`−1)
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a set of
∑
`∈WI\AS e` variables.

Let a : WI\AI //W\AW be the map which sends a WI -orbit of hy-
perplanes onto the corresponding W -orbit. We have a morphism

Z[t±1] //Z[u±1] , t`,j 7→ ua(`),j

and the injections (cf. (2.1.4) and [BMR98, (2.29)]):

B(WI) � � // π1(WI\M, x0) � � // B(W )

which induce an inclusion

Ht(WI)⊗Z[t±1] Z[u±1] � � // Hu(W ) .

Definition 2.2.21 • The image of the above inclusion is called the
parabolic Hecke subalgebra of Hu(W ) associated with WI .

• Let W be as in (1.5.5), J be a subset of N (D) and DJ the corre-
sponding full subdiagram of D. Then the parabolic Hecke subalgebra of
Hu(W ) associated with W (DJ) is called the parabolic Hecke subalge-
bra of Hu(W ) corresponding to J .

Definition 2.2.22 Let Z[u±1] κ //B be a ring morphism making B an
Z[u±1] algebra. By analogy with (2.2.13) we call the tensor product
B ⊗Z[u±1] Hu(W ) the Hecke algebra of W over B with the parameters
κ(u`,j)(`∈W\AW )(0≤j≤e`−1).

2.2.4 Structure of Hecke Algebras
In this section we formulate without proof some well-known structural prop-
erties of generic Hecke algebras. For more information and references one
can look at [MM10].

The first important property is:

Theorem 2.2.23 Let W be an irreducible complex reflection group differ-
ent from G17, G18, G19, G29, G31, G32, G33 and G34 (cf. (1.5.2)). Then the
generic Hecke algebra Hu(W ) is a free Z[u±1]-module of rank |W |.

Proof. Cf [MM10, Tables 8,9] �
In order to formulate other properties of generic Hecke algebras we need
the following definitions and theorems which can be found for example in
[GP00].

Definition 2.2.24 K-algebra H of finite dimension over a field K is called

• split semisimple if H is isomorphic as K-algebra to a sum ⊕iMni(K)
of matrix algebras.
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• separable if H⊗K K is isomorphic as K-algebra to a sum ⊕iMni(K)
of matrix algebras, where K is the algebraic closure of K.

The numbers ni are called numerical invariants of H.

Definition 2.2.25 Assume that A is an integral domain and H is an A-
algebra finitely generated as an A-module. Let K be an extension of Frac(A).
The field K is called a splitting field of H if H⊗A K is split semisimple.

Theorem 2.2.26 (Tits deformation theorem) Let f : A //k be a
ring morphism where A is an integral domain and k is a field. Denote
Frac(A) by K. Consider an A-algebra H which is a free finite-dimensional
A-module.

(1) Suppose that H⊗A K and H⊗A k are separable. Then they have the
same numerical invariants.

(2) Let A be the integral closure of A in K and k the algebraic closure of
k. Then f can be extended to f : A //k . And under the assumption
(1) we have:

• For any irreducible character χ of H ⊗A K and any a ∈ H the
value χ(a) is in A.
• f ◦ χ is an irreducible character of H⊗A k.

Definition 2.2.27 Let H be an A-algebra which is a free n-dimensional
A-module.

• An A-linear map τ : H //A is called a central function or a trace
if τ(hh′) = τ(h′h) for any h, h′ ∈ H.

• Let (h1, . . . , hn) be some A-basis of H. The algebra H is called sym-
metric if there is a trace τ and an A-basis (h′1, . . . , h′n) of H such that
τ(hih′j) = δi,j. In this case τ is called a symmetrizing trace for H.

Example 2.2.28 The classical example of a symmetric algebra is a group
algebra kW with the symmetrizing trace τ0 given by τ0(w) = δw,1. This trace
is called the canonical trace on kW .

The following theorem can be found in [GP00, (7.2)]:

Theorem 2.2.29 Let H be a symmetric A-algebra with a symmetrizing
trace τ such that τ(1) = 1. Assume that A is an integral domain and denote
Frac(A) by K. Suppose that H ⊗A K is split semisimple. Then τ can be
decomposed as follows:

τ =
∑
M

1
SχM

χM ,
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where M runs over all isomorphism classes of simple H⊗AK-modules and
χM are the corresponding characters. The elements SχM ∈ K are integral
over A and called the Schur elements attached to M .

It is not hard to see that the reflection representation V ofW can be realized
over the field KW ⊂ C generated by the traces of the elements of W on
V . It is a theorem of Benard and Bessis (cf. [Bes97, Th. 0.2]) that all
representations of W can be realized over KW .

Let O be the ring of integers of KW and let Ã = O[v±1] with

v = (v`,j)(`∈W\AW )(0≤j≤e`−1) such that v|µ(KW )|
`,j = ζ−je` u`,j ,

where µ(KW ) is the group of roots of unity in KW .
Gunter Malle proves the following theorem in [Mal99, Th. 5.2]:

Theorem 2.2.30 (Malle) Let W be any complex reflection group. Then
the field KW (v) is a splitting field for the generic Hecke algebra Hu(W ).

Remark 2.2.31 One has stronger versions of the above theorem for certain
classes of complex reflection groups:

• If W = G(d, 1, n) (cf. (1.3)) then Ariki and Koike prove that the
field Q(u) is a splitting field for the generic Hecke algebra Hu(W ) (cf.
[AK94]).

• If W = G(e, e, n) then Ariki proves that the field Q(ζe,u) is a splitting
field for the generic Hecke algebra Hu(W ) (cf. [Ari95]).

Consider the specialization

f : Z[u±1] //KW given by u`,j 7→ ζje` . (2.2.32)

Then proposition (2.2.20) implies that Hu(W )⊗Z[u±1] KW is isomorphic to
the group algebra KWW . Theorems (2.2.23), (2.2.30) and Tits deforma-
tion theorem applied to the Z[u±1]-module Hu(W ) show that the KW (v)-
algebras Hu(W ) ⊗Z[u±1] KW (v) and KW (v)W are isomorphic. This gives
us a bĳection between the irreducible characters of W and Hu(W ) ⊗Z[u±1]
KW (v):

IrrW //IrrHu(W ) : χ 7→ χ(q). (2.2.33)

Remark 2.2.34 Tits deformation theorem implies that the inverse χ(q) 7→
χ of the above bĳection is given by some extension to Ã of the specialization
(2.2.32).

The next important result following from [MM10] is:
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Proposition 2.2.35 Let W be an irreducible complex reflection group dif-
ferent from G17, G18, G19, G29, G31, G32, G33 and G34 (cf. (1.5.2)). Then the
generic Hecke algebra Hu(W ) is a symmetric algebra with a symmetrizing
trace τ which specializes to the canonical trace on KWW via (2.2.32).

Remark 2.2.36 In the case when W is a Coxeter group and Hu(W ) is
the Iwahori-Hecke algebra H{qs,q′s}s∈S (W,Z[q±1]) a symmetrizing trace τ
can be constructed using the alternative definition of Iwahori-Hecke algebra
(2.2.12): τ(Tw) := δw,1.

Since KW is an algebraic number field we have Frac(Ã) = KW (v) and
theorem (2.2.29) applied to the symmetric algebra Hu(W )⊗Z[u±1] Ã implies
that the symmetrizing trace τ can be decomposed into the sum

τ =
∑

χ∈IrrHu(W )

1
Sχ
χ

where the Schur elements Sχ are integral over Ã and thus lie in Ã since it
is integrally closed.

Remark 2.2.37 In the case when W is a rational reflection group (Weyl
group) and Hu(W ) is the Iwahori-Hecke algebra with the parameters (q,−1)
we have KW = Q,Z[u±1] = Z[q±1]. Thus the corresponding Schur elements
lie in Ã = Z[√q±1].

In the next chapter we will introduce a generalization of the notion of a
symmetrizing trace on a Hecke algebra: special Markov traces.





Chapter 3

Special Markov Traces

3.1 Symmetric Group Case: Links
In this introductory section we follow Geck and Pfeiffer [GP00, (4.5)]. Let n
be a positive integer. An oriented n-link is an embedding of n copies of the
interval [0, 1] ⊂ R into R3 such that 0 and 1 are mapped to the same point
(the orientation is induced by the natural ordering of [0, 1]). A 1-link is also
called a knot. We are interested in knots and links modulo isotopy of R3.
The problem of classifying oriented links modulo isotopy can be translated
into a purely algebraic problem about braid groups. This is based on the
following facts.

Let B(Sn) be the braid group corresponding to the symmetric group
Sn. Denote by si the generators of B(Sn) corresponding to the standard
generators si = (i, i + 1), 1 ≤ i ≤ n − 1. The generators of B(Sn) can be
represented by oriented diagrams as indicated below. Writing any g ∈ B(Sn)
as a product of the generators and their inverses, we also obtain a diagram
for g by concatenating the diagrams for the generators.
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1 2 3
• • •

g = s1s2s1 ∈ B(S3)

"Closing" such a diagram by joining the end points we obtain the plane pro-



32 Chapter 3. Special Markov Traces

jection of an oriented link in R3. We call it the closure of the corresponding
element of the braid group.

•
???

???????

????

ON ML•

��������
?> =<•�� ��

�������������������

@@@@

��@@@
��• • • JKHI

closure of g

:;89 ����

∼ OOOO

Theorem 3.1.1 (Alexander) Every oriented link is isotopic in R3 to the
closure of an element of B(Sn).

This theorem induces the question: Can the fact that two links in R3 are
isotopic be expressed in terms of braid groups ? The answer is positive . For
this purpose, we consider the infinite disjoint union

B∞ =
∐
n≥1

B(Sn).

Given g, g′ ∈ B∞, we write g ∼ g′ if one of the following relations is satisfied:

(i) We have g, g′ ∈ B(Sn) and g′ = x−1gx for some x ∈ B(Sn).

(ii) We have g ∈ B(Sn), g′ ∈ B(Sn+1) and g′ = gsn or g′ = gs−1
n .

The above relations are called the Markov relations due to the following
theorem [Tra98]:

Theorem 3.1.2 (Markov) Two elements of B∞ are equivalent under the
equivalence relation generated by ∼ if and only if the corresponding links
obtained by closure are isotopic in R3.

Thus to define an invariant of oriented links is the same as to define a map
on B∞ which takes equal values on elements g, g′ ∈ B∞ satisfying (i) or (ii).
In order to solve the latter problem, the key idea is to look for maps which
factor through the corresponding Iwahori-Hecke algebras for suitable values
of parameters.

Let L = Q(u, v) where u, v are variables. For any n ≥ 1 we consider the
Iwahori-Hecke algebra Hu,v(Sn, L) associated with Sn over the field L, with
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the parameters qsi = u, q′si = v for 1 ≤ i ≤ n−1 (cf. (2.2.9)). We will regard
Hu,v(Sn, L) as a parabolic Hecke subalgebra of Hu,v(Sn+1, L) (cf. (2.2.21)).
The following theorem allows us to construct a two-variable invariant of
oriented knots and links, the so-called HOMFLY-PT polynomial.

Theorem 3.1.3 (Jones-Ocneanu) There is a unique family of L-linear
maps τn : Hu,v(Sn, L) → L (n ≥ 1) such that the following conditions
hold:

(M1) τ1(1) = 1

(M2) τn(hh′) = τn(h′h) for all n ≥ 1 and h,h′ ∈ Hu,v(Sn, L).

(M3) τn+1(hTsn) = τn+1(hT−1
sn ) = τn(h) for all n ≥ 1 and h ∈ Hu,v(Sn, L).

Moreover, we have τn+1(h) = 1+uv
u+v τn(h) for all n ≥ 1 and h ∈ Hu,v(Sn, L).

Remark 3.1.4 Let P = −uv and Q = u + v. Let b ∈ B(Sn) and b∗ its
image under the surjection (2.2.19). Then Jones-Ocneanu theorem easily
implies that τn(b∗) ∈ Z[P±1, Q±1].

To construct a HOMFLY-PT polynomial consider an oriented link L. By
theorem (3.1.1) it is isotopic to the closure of some g ∈ B(Sn) for n ≥ 1
(in fact, there is an algorithm due to Vogel [Vog90] allowing to find such g

using circles of Seifert). We set

XL(P,Q) := τn(g∗) ∈ Z[P±1, Q±1] (cf. (3.1.4))

where τn is as in theorem (3.1.3); g∗ denotes the image of g under the sur-
jection L(B(Sn)) // //Hu,v(Sn, L) , si 7→ Tsi (cf. (2.2.19)). The properties
(M2) and (M3) make sure that τn(g∗) does not depend on the choice of g.

If we make the change of variables P = t2 andQ = tx, we can identify the
above invariant with the HOMFLY-PT polynomial PL(t, x) in [Jon87, (6.2)].
Furthermore, the Jones polynomial JL(t) (classic knot invariant) is obtained
by setting P = t2, Q = t1/2(t − 1). Finally, setting P = 1, Q = t1/2 − t−1/2

we obtain the classical Alexander polynomial AL(t).

3.2 Coxeter Group Case
3.2.1 Markov Trace
Let (W,S) be a finite Coxeter system and HS the corresponding Iwahori-
Hecke algebra over a field K with generators {Ts}s∈S and parameters
{qs,−1}s∈S ⊂ K (cf. (2.2.13)). For any I ⊂ S we have a canonical em-
bedding of the Iwahori-Hecke algebras HI ⊂ HS (cf. (2.2.21)).

In order to reformulate Jones-Ocneanu theorem in a more convenient way
for us, we need the following definition introduced by Gomi [Gom06, 3.3].
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Definition 3.2.1 Let τ : HS → K be a K-linear function and zs ∈ K for
s ∈ S. Then τ is called a Markov trace (with the parameters {zs}s∈S) if the
following conditions are satisfied:

(M1) τ(1) = 1,

(M2) τ(ab) = τ(ba) for a, b ∈ HS,

(M3) τ(aTs) = zsτ(a) for any s ∈ S and a ∈ HS\{s}.

We call the conditions above the Markov property. If all the parameters zs
are equal to some z ∈ K then we just say that τ is a Markov trace with the
parameter z.

3.2.2 Type A

We pass to the notations corresponding to the classification of finite Coxeter
groups.

• Let (WAn−1 , SAn−1) be a Coxeter system of type An−1 (cf. (1.4.8)).

• Let q, z be variables and K = Q(q, z). The Iwahori-Hecke algebra of
WAn−1 = Sn over K with the parameters qs = q, q′s = −1 is denoted
by HSAn−1

(cf. (2.2.13)).

• As in (3.2.1) for any I ⊂ SAn−1 we denote by HI the corresponding
Hecke subalgebra.

We set q = −uv−1, z = − u+v
v(1+uv) . Then Jones-Ocneanu theorem (3.1.3) is

equivalent to the following theorem:

Theorem 3.2.2 (Jones-Ocneanu) For any n ≥ 1 there exists a unique
Markov trace τAn−1 : HSAn−1

→ K with the parameter z.

Proof. ((3.2.2)⇒ (3.1.3)) : Let (Tsi)1≤i≤n−1 be the standard generators
of HSAn−1

. Then the elements T′si := −vTsi , 1 ≤ i ≤ n− 1 satisfy the braid
relations of type An−1 (cf. (2.1.10), (1.4.8) type An−1) and

(T′si − u)(T
′
si − v) = 0 for 1 ≤ i ≤ n− 1

and thus can be regarded as standard generators of the Iwahori-Hecke alge-
braHu,v(Sn, L) ∼= HSAn−1

⊗KL with the parameters u, v, where L = Q(u, v).
Suppose that for any n ≥ 1 there exists a trace τAn−1 on HSAn−1

as in
(3.2.2). Then τAn−1⊗K Id is a trace on Hu,v(Sn, L). Define a family of traces

τn :=
(1 + uv

u+ v

)n−1
τAn−1 ⊗K Id. (3.2.3)
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Then this family satisfies the conditions of theorem (3.1.3) with the standard
basis (T′si)1≤i≤n−1. Indeed, the properties (M1) and (M2) follow immedi-
ately and we just need to check (M3):

τn+1(hT′sn) = −v
(1 + uv

u+ v

)n
τAn(hTsn) =

(1 + uv

u+ v

)n−1
τAn(h) = τn(h)

τn+1(hT′−1
sn ) = (u+ v)u−1v−1τn+1(h)− u−1v−1τn+1(hT′sn)

= (u+ v)u−1v−1
(1 + uv

u+ v

)n
τAn(h)− u−1v−1τn(h)

= (u+ v)u−1v−1
(1 + uv

u+ v

)
τn(h)− u−1v−1τn(h) = τn(h)

The uniqueness of such a family will follow from the second part of the proof.
((3.1.3)⇒ (3.2.2)) : We suppose now that there exists a family of traces
τn : Hu,v(Sn, L) → L (n ≥ 1) as in (3.1.3) with respect to the standard
basis (T′si)1≤i≤n−1. We set

τAn−1 :=
(
u+ v

1 + uv

)n−1
τn

and consider its restriction on HSAn−1
. Then τAn−1 is a Markov trace with

the parameter z. Indeed, properties (M1) and (M2) of (3.2.1) are obvious.
Uniqueness of the traces τAn−1 follows from the first part of the proof (cf.
formula (3.2.3)) and the uniqueness of the family satisfying the conditions
of theorem (3.1.3). To check property (M3) we use induction on n.

If n = 1 then HSAn−1
= K · 1 and property (M3) is trivial.

Suppose we have checked property (M3) for the traces τAk for all k ≤ n−
2. We will check it for τAn−1 . If s = sn−1 then the equality τAn−1(hTsn−1) =
zτAn−1(h) is a consequence of

τAn−1(hTsn−1) = −v−1
(
u+ v

1 + uv

)n−1
τn(hT′sn−1)

= −v−1
(
u+ v

1 + uv

)n−1
τn−1(h) = −v−1

(
u+ v

1 + uv

)n
τn(h) = zτAn−1(h)

Suppose that s = si (1 ≤ i ≤ n − 2). The set of genera-
tors {Ts1 , . . . ,Tsn−1} \ {Tsi} can be decomposed into the disjoint union
of two mutually commuting sets J1 = {Ts1 , . . . ,Tsi−1} and J2 =
{Tsi+1 , . . . ,Tsn−1}. By linearity it is enough to consider the case when
h ∈ HSAn−1\{si} is just a product of some elements and their inverses from
J1
⊔

J2. Hence h = h1h2 where hi ∈ 〈Ji〉. The subalgebra 〈J2〉 is just
the Iwahori-Hecke algebra of type An−i−1. Thus its basis consists of re-
duced products of Tsj , i < j. Since Sn = Sn−1sn−1Sn−1, we can write
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h2 = h3Tε
sn−1h4, where h3,h4 ∈ J2 \ {Tsn−1} and ε ∈ {0, 1}. If ε = 0 then

h = h1h3h4 and both h and hTsi lie in the parabolic subalgebra HSAn−2
of

HSAn−1
generated by {Ts1 , . . . ,Tsn−2} thus we can use the induction:

τAn−1(hTsi) = τAn−2(hTsi) = zτAn−2(h) = zτAn−1(h).

In the case ε = 1 we have h = h1h3Tsn−1h4 and the equalities

τAn−1(hTsi) = τAn−1(h1h3Tsn−1h4Tsi) = τAn−1(h4Tsih1h3Tsn−1)
= zτAn−1(h4Tsih1h3) = zτAn−2(h4Tsih1h3) = zτAn−2(h1h3h4Tsi)

= z2τAn−2(h1h3h4) = z2τAn−2(h4h1h3) = z2τAn−1(h4h1h3)
= zτAn−1(h4h1h3Tsn−1) = zτAn−1(h).

make the step in the induction. �
The algebra HSAn−1

is split semisimple over K and its irreducible char-
acters are in canonical bĳection with those of Sn via the specialization q 7→ 1
(cf. (2.2.31) and (2.2.34)).

Following e.g. Zelevinsky [Zel81, §6] we see that the irreducible char-
acters of the symmetric group Sn are parametrized by the partitions of n:
to a partition α = (0 ≤ α1 ≤ α2 ≤ . . . ≤ αk) with |α| :=

∑k
i=1 αi = n

corresponds the unique common irreducible constituent {α} of the char-
acters IndSnSα1 and IndSnSαtε where αt is the transposed partitition of α,
Sα = Sα1 × Sα2 × . . .× Sαk and ε is the sign character.

For an irreducible character {α} of Sn denote by {α}(q) that of HSAn−1
via the bĳection (2.2.34). Then we have

τAn−1 =
∑

{α}∈IrrSn

ω{α}{α}(q) with ω{α} ∈ K.

Elements ω{α} are called the weights of τAn−1 . We need the following

Definition 3.2.4 Let α = (0 ≤ α1 ≤ . . . ≤ αk) be a partition of n.

• The Young diagram assigned to α is the set

{(i, j) ∈ N× N | i ≤ k, j ≤ αk−i+1}.

• We identify α with its Young diagram. For x = (i, j) ∈ α define its
hook length h(x) as the cardinality of the set {(i′, j′) ∈ α | i′ = i, j′ ≥
j or i′ ≥ i, j′ = j}.

• For x = (i, j) ∈ α define its content by c(x) = j − i.

Ocneanu has given a formula for the weight ω{α} (cf. [Jon87, (5.4)]).
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Theorem 3.2.5 Let α = (0 ≤ α1 ≤ . . . ≤ αk) be a partition of n. Let τAn−1

be the Markov trace of type An−1 with the parameter z. Then its weight ω{α}
corresponding to the irreducible character {α} is as follows

ω{α} = qn(α) ∏
x∈α

1− q + (1− qc(x))z
1− qh(x)

where n(α) =
∑k
i=1(k − i)αi, h(x) and c(x) are as in (3.2.4).

Remark 3.2.6 The above theorem is a particular case (e = 1) of the theo-
rem (3.3.5) due to Geck, Iancu and Malle.

3.2.3 Type B

We use the following notations:

• Let Q, q, y, z be variables and K = Q(Q, q, y, z).

• Denote by (WBn , SBn) the Coxeter system of type Bn; with SBn =
{t, s1, . . . , sn−1}.

• For n ≥ 1 denote by HQ,qSBn
the Iwahori-Hecke algebra of type Bn over

the field K with the parameters qt = Q, q′t = −1, qs = q, q′s = −1 for
s ∈ SBn \ {t}.

• As in (3.2.1) for any I ⊂ SBn we denote by HQ,qI the corresponding
Hecke subalgebra.

• The standard generators of HQ,qSBn
are denoted by Ts, s ∈ SBn .

In [GL97, Th. 4.3] Geck and Lambropoulou state a theorem whose particular
case is the following:

Theorem 3.2.7 For any n ≥ 1 there exists a unique trace τy,zBn : HQ,qSBn
→ K

which satisfies the following properties:

• τy,zBn (1) = 1.

• τy,zBn (hTsk) = zτy,zBn (h) where 1 ≤ k ≤ n − 1 and h lies in
the parabolic Hecke subalgebra of HQ,qSBn

generated by the elements
{Tt,Ts1 , . . . ,Tsk−1}.

• τy,zBn (T′0T′1 . . .T′k) = yk+1 for 0 ≤ k ≤ n − 1, where T′i =
TsiTsi−1 . . .Ts1TtT−1

s1 . . .T
−1
si−1T−1

si for 0 ≤ i ≤ n− 1.

The above theorem implies the following:



38 Chapter 3. Special Markov Traces

Theorem 3.2.8 For any n ≥ 1 there exists a unique Markov trace τy,zBn :
HQ,qSBn

→ K with the parameters

zt = y and zs1 = . . . = zsn−1 = z,

which satisfies the following additional properties:

τy,zBn (T′0T′1 . . .T′k) = yk+1 for 0 ≤ k ≤ n− 1,

where T′i = TsiTsi−1 . . .Ts1TtT−1
s1 . . .T

−1
si−1T−1

si for 0 ≤ i ≤ n− 1.
Proof. Proof that τy,zBn in theorem (3.2.7) is a Markov trace in the sense
of (3.2.1) is contained in the proof of lemma (3.3.2), properties (M3) and
(M3′) for e = 2, ξ = z, η1 = y, u0 = Q and u1 = −1 . �

Definition 3.2.9 The trace function τy,zBn on HQ,qSBn
is called the Markov

trace of type Bn with the parameters y, z.

Definition 3.2.10 The trace τBn := τ z,zBn is called the special Markov trace
of type Bn (with the parameter z) on the Iwahori-Hecke algebra Hq,qSBn (the
Iwahori-Hecke algebra of type Bn over the field Q(q, z) with the parameters
qs = q, q′s = −1).

We have the following

Proposition 3.2.11 The special Markov trace τBn can be characterized as
the unique Markov trace on Hq,qSBn with the parameter z satisfying the addi-
tional twisted Markov property:

τBn(aT′k) = zτBn(a) for 1 ≤ k ≤ n− 1 and a ∈ Hq,qSBn\{sk},

where T′k = TskTsk−1 . . .Ts1TtT−1
s1 . . .T

−1
sk−1T−1

sk

Proof. The existence and uniqueness of such trace τ will follow from lemma
(3.3.2) (with e = 2, ξ = η1 = z, u0 = q and u1 = −1). Applying the twisted
Markov property several times we have

τ(T′0T′1 . . .T′k) = zτ(T′0T′1 . . .T′k−1) = . . . = zkτ(T′0) = zk+1.

Thus, τ satisfies the conditions of theorem (3.2.8) with y = z,Q = q and
hence coincides with τBn . �

Remark 3.2.12 When we consider HSAn−1
as a parabolic subalgebra of

Hq,qSBn , the restriction of the special Markov trace τBn to HSAn−1
coincides

with the Markov trace τAn−1 (cf. 3.2.2). We call special the unique Markov
trace τAn−1.

Remark 3.2.13 By analogy with the case An−1 the trace τBn can be de-
composed into a sum of irreducible characters of Hq,qSBn . We do not give here
the formula since it is a particular case of a general decomposition formula
which will be given in (3.3.5).
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3.2.4 Type D
In this subsection we present the construction of the special Markov trace
of type Dn. We follow [Gom06, 3.4], [GL97, 4.7] and use the following
notations:

• Let q, y, z be variables and K = Q(q, y, z).

• Denote by (WDn , SDn) the Coxeter system of type Dn; with SDn =
{s′1, s1, . . . , sn−1}.

• For n ≥ 1 denote by HSDn the Iwahori-Hecke algebra of type Dn over
the field K with the parameters qs = q, q′s = −1.

• As in (3.2.1) for any I ⊂ SDn we denote by HI the corresponding
Hecke subalgebra.

The Coxeter group WDn can be regarded as the subgroup of WBn generated
by the elements {t−1s1t, s1, . . . , sn−1}. And the Iwahori-Hecke algebraHSDn
of type Dn can be regarded as a subalgebra of the specialization H1,q

SBn
via

Q 7→ 1 of the Iwahori-Hecke algebra HQ,qSBn
of type Bn(cf. (3.2.3)). The

generators of HSDn are as follows

{Ts′1
,Ts1 , . . . ,Tsn−1} where Ts′1

:= T−1
t Ts1Tt.

Let τy,zBn be the Markov trace on H1,q
SBn

with the parameters y, z (cf. (3.2.9)).
Consider the restriction of τy,zBn to HSDn . It is obvious that τy,zBn

∣∣
HSDn

sat-
isfies the conditions (M1) and (M2) of (3.2.1). If s ∈ {s2, . . . , sn−1} then
the equations of (M3) are satisfied because of the Markov property of τy,zBn .
When s = s′1 or s = s1, the equations of (M3) are reduced to the equality
τy,zBn (Ts′1

Ts1) = z2 (here the argument is similar to that in (3.2.2), induction
on n and the fact that Sn = Sn−1sn−1Sn−1). We have

τy,zBn (Ts′1
Ts1) = τy,zBn (T−1

t Ts1TtTs1) = τy,zBn (TtTs1TtTs1).

Since Ts1 = qT−1
s1 + (q − 1) we get

τy,zBn (Ts′1
Ts1) = qτy,zBn (TtTs1TtT−1

s1 ) + (q − 1)τy,zBn (Ts1)

= qτy,zBn (T′0T′1) + (q − 1)z = qy2 + (q − 1)z.

Thus in order to get a Markov trace with the parameter z we need to spe-
cialize y2 7→ zq−1(z − q + 1).

Lemma 3.2.14 For any w ∈ WDn ≤ WBn let Tw be the corresponding
element of the standard K-basis of H1,q

SBn
(cf. (2.2.12)). Then τy,zBn (Tw) ∈

Q(q, z, y2),
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Proof. Consider the following diagram:

H1,q
SBn

τy,zBn

$$IIIIIIIII

γ // H1,q
SBn

τ−y,zBn

zzuuuuuuuuu

Q(q, z, y)

where γ is the automorphism of the Iwahori-Hecke algebra HSBn sending
Tt to −Tt and Tsi to Tsi . Theorem (3.2.8) implies that the above diagram
is commutative. If we consider the element Tw as a word in generators
Tt,Ts1 , . . . ,Tsn−1 then the generator Tt appears an even number of times
in it and hence γ sends Tw to itself. Thus τy,zBn (Tw) = τ−y,zBn

(Tw) and
τy,zBn (Tw) ∈ Q(q, z, y2). �
The above lemma implies that we do not need to specify the specialization
of y, just that of y2.

Definition 3.2.15 We define the special Markov trace τDn : HSDn →
Q(q, z) of type Dn as the specialization of τy,zBn

∣∣
HSDn

via y2 7→ zq−1(z−q+1).

Remark 3.2.16 By analogy with the cases An−1 and Bn the trace τDn can
be decomposed into a sum of irreducible characters of HSDn . We do not
give here the formula since it is a particular case of a general decomposition
formula which will be given in the case G(e, e, n).

3.2.5 Type I2(m)
Kihara has shown that the notion of special Markov trace (cf.
(3.2.10),(3.2.15)) can be extended to the dihedral case. We use the following
notations:

• Let q, z be variables and K = Q(q, z).

• Denote by (I2(m), {s0, s1}) the Coxeter system of type I2(m).

• For m ≥ 1 denote by Hm the Iwahori-Hecke algebra of type I2(m)
over the field K with the parameters qs0 = qs1 = q, q′s0 = q′s1 = −1.

• The standard generators of Hm are denoted by T0 and T1.

In [Kih04] Kihara proves the following:

Theorem 3.2.17 There exists a unique trace function τm on Hm which
satisfies the following equations:

(1) τm(1) = 1,

(2) τm(T0) = τm(T1) = z,
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(3) τm(T0T1 . . .︸ ︷︷ ︸
i+ 1

. . .T−1
0 T−1

1︸ ︷︷ ︸
i− 1

) = z2 for 1 ≤ i ≤
[
m−1

2

]
.

The above theorem can be reformulated in the following way:

Theorem 3.2.18 There exists a unique Markov trace τm : Hm → K with
the parameter z satisfying the additional twisted Markov property:

τm(aT′i) = zτm(a) for 1 ≤ i ≤
[
m− 1

2

]
and a ∈ H{s0},

where T′i = T1T0 . . .Ti−1TiT−1
i+1 . . .T

−1
0 T−1

1 and all indices are taken mod-
ulo 2.

Proof. Proof that this theorem is equivalent to theorem (3.2.17) follows
from the simple fact that H{s0} = K ⊕K ·T0 as a K-vector space. �

Definition 3.2.19 The trace function τm on Hm is called the special
Markov trace of type I2(m).

Remark 3.2.20 By analogy with the cases An−1, Bn and Dn the trace τm
can be decomposed into a sum of irreducible characters of Hm. We do not
give here the formula since it is a particular case of a general decomposition
formula which will be given in the case G(e, e, n).

3.3 Geck-Iancu-Malle Definition in the Case
G(e,1,n)

Here we present the generalization of the notion of Markov trace in the
case of W (e)

n := G(e, 1, n) (cf. (1.3)). It was constructed by Lambropoulou
in [Lam99, §4] and its weight formula has been given by Geck, Iancu and
Malle in [GIM00, Th. 1.3]. Recall, that the diagram of W (e)

n is

©
t
e ©

s1
©
s2
· · · ©

sn−1
(cf. (1.5)).

Thus W
(e)
n has a presentation with the set of generators S

(e)
n =

{t, s1, s2, . . . , sn−1} and the following defining relations:

(1) te = 1,

(2) s2i = 1 for 1 ≤ i ≤ n− 1,

(3) ts1ts1 = s1ts1t,

(4) tsi = sit for 2 ≤ i ≤ n− 1,



42 Chapter 3. Special Markov Traces

(5) sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2,

(6) sisj = sjsi if |i− j| ≥ 2.

The corresponding generic Hecke algebra H(e)
n (q,−1, u0, u1, . . . , ue−1) (or

symply H(e)
n ) is an algebra over the ring A := Z[q±1, u0, u1, . . . , ue−1] where

q, u0, u1, . . . , ue−1 are indeterminates (cf. (2.2.17)). By proposition (2.2.20)
the algebra H(e)

n has a presentation with generators Tt,Ts1 ,Ts2 , . . . ,Tsn−1

and the defining relations:

(1) (Tt − u0)(Tt − u1) . . . (Tt − ue−1) = 0,

(2) T2
si = q1 + (q − 1)Tsi for 1 ≤ i ≤ n− 1,

(3) TtTs1TtTs1 = Ts1TtTs1Tt,

(4) TtTsi = TsiTt for 2 ≤ i ≤ n− 1,

(5) TsiTsi+1Tsi = Tsi+1TsiTsi+1 for 1 ≤ i ≤ n− 2,

(6) TsiTsj = TsjTsi if |i− j| ≥ 2.

where 1 denotes the identity element of H(e)
n .

Let K = Q(q, u0, u1, . . . , ue−1) be the field of fractions of A. We will
use the same notation H(e)

n for the algebra obtained by extending scalars
from A to K. One can see that Jones-Ocneanu and Geck-Lambropoulou
constructions of Markov traces of type An and Bn were defined inductively,
using the chain of subgroups W (e)

0 ⊂ W
(e)
1 ⊂ . . . ⊂ W

(e)
n (e ∈ {1, 2}) and

the corresponding chain of subalgebras H(e)
0 ⊂ H(e)

1 ⊂ · · · ⊂ H(e)
n (e ∈

{1, 2}) , where W (e)
m (respectively H(e)

m ) is generated by t, s1, s2, . . . , sm−1

(respectively by Tt,Ts1 ,Ts2 , . . . ,Tsm−1) for 1 ≤ m ≤ n. Here we setW (e)
0 =

{1} and H(e)
0 = {K · 1} by convention. Thus it was quite natural to give a

similar definition with "inductive" properties:

Definition 3.3.1 Let ξ, η1, . . . , ηe−1 ∈ K and τ : H(e)
n → K be a K-

linear trace function. We say that τ is a Markov trace with parameters
ξ, η1, . . . , ηe−1 if

(1) τ(1) = 1,

(2) τ(hTsm) = ξτ(h) for 1 ≤ m ≤ n− 1 and h ∈ H(e)
m ,

(3) τ(h(T′m)k) = ηkτ(h) for 0 ≤ m ≤ n− 1, 1 ≤ k ≤ e− 1 and h ∈ H(e)
m ,

where T′m = TsmTsm−1 · · ·Ts1TtT−1
s1 · · ·T

−1
sm−1Tsm.
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By [Lam99, Th. 6], given ξ, η1, . . . , ηe−1 ∈ K, a Markov trace exists and is
uniquely determined by the above conditions.

To show that the above definition is a natural generalization of the
Markov traces of type An−1 (cf. (3.2.2)) and Bn (cf. (3.2.9)) we prove
the following simple lemma:

Lemma 3.3.2 (Markov trace via Gomi) The trace τ : H(e)
n → K in the

definition (3.3.1) can be characterized as the unique K-linear function on
H(e)
n with the following properties:

(M1) τ(1) = 1,

(M2) τ(hh′) = τ(h′h) for h,h′ ∈ H(e)
n ,

(M3) τ(hTs) = ξτ(h) for s ∈ {s1, . . . , sn−1} and h ∈ H
S

(e)
n \{s}

, the Hecke

subalgebra of H(e)
n generated by all T’s except Ts (cf. (3.2.1)).

(M3’) τ(hTk
t ) = ηkτ(h) for 1 ≤ k ≤ e− 1 and h ∈ H

S
(e)
n \{t}

.

And the additional property:

(M4) τ(h(T′m)k) = ηkτ(h) for 1 ≤ m ≤ n − 1, 1 ≤ k ≤ e − 1 and h ∈
H
S

(e)
n \{sm}

Proof. In order to prove the lemma we just need to prove the following
statement: The properties (1), (2) and (3) of (3.3.1) imply the properties
(M3), (M3′) and (M4).

Property (M3). We use induction on n. If n = 1 then H(e)
n = K[Tt]

and property (M3) is trivial. Suppose we have proved our statement for all
k ≤ n−1. We will now prove it for n. If s = sn−1 then the equality τ(hTs) =
ξτ(h) holds by (2). Suppose that s = si (1 ≤ i ≤ n − 2). The set of
generators {Tt,Ts1 , . . . ,Tsn−1}\{Tsi} can be decomposed into the disjoint
union of two mutually commuting sets J1 = {Tt,Ts1 , . . . ,Tsi−1} and J2 =
{Tsi+1 , . . . ,Tsn−1}. By linearity we can suppose that h ∈ H

S
(e)
n \{si}

is just a
product of some elements and their inverses from J1

⊔
J2. Hence h = h1h2

where hi ∈ 〈Ji〉. The subalgebra 〈J2〉 is just the Iwahori-Hecke algebra
of type An−i−1. Thus its basis consists of reduced products of Tsj , i <
j. And without loss of generality we can write h2 = h3Tε

sn−1h4, where
h3,h4 ∈ 〈J2 \ {Tsn−1}〉 and ε ∈ {0, 1}. If ε = 0 then h = h1h3h4 and
both h and hTsi lie in the parabolic subalgebra H(e)

n−1 of H(e)
n generated by

{Tt,Ts1 , . . . ,Tsn−2} thus we can use the induction. In the case ε = 1 we
have h = h1h3Tsn−1h4 and the equalities

τ(hTsi) = τ(h1h3Tsn−1h4Tsi) = τ(h4Tsih1h3Tsn−1) = ξτ(h4Tsih1h3) =
ξτ(h1h3h4Tsi) = ξ2τ(h1h3h4) = ξ2τ(h4h1h3) = ξτ(h4h1h3Tsn−1) = ξτ(h).
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make the step in induction.
Property (M3’). The proof is very similar to that in the case of (M3).

We use induction on n. If n = 1 then H(e)
n = K[Tt] and we just have

to verify the equality τ(Tk
t ) = ηk which is a consequence of property (3)

in (3.3.1) for m = 0. Suppose we have checked the property (M3’) for
n − 1. We will check it for n. Since h is an element of H

S
(e)
n \{t}

which
is just the Iwahori-Hecke algebra of type An−1 we can assume that h =
h1Tε

sn−1h2, where h1,h2 lie in the parabolic subalgebra of H
S

(e)
n

generated
by the elements {Ts1 , . . . ,Tsn−2} and ε ∈ {0, 1}. If ε = 0 then h = h1h2

and both h and hTk
t lie in the parabolic subalgebra H(e)

n−1 of H(e)
n generated

by {Tt,Ts1 , . . . ,Tsn−2} thus we can use the induction. In the case ε = 1 we
have h = h1Tsn−1h2 and the equalities

τ(hTk
t ) = τ(h1Tsn−1h2Tk

t ) = τ(h2Tk
th1Tsn−1) =

ξτ(h2Tk
th1) = ξτ(h1h2Tk

t )
induction= ξηkτ(h1h2) =

ξηkτ(h2h1) = ηkτ(h2h1Tsn−1) = ηkτ(h).

make the step in induction.
Property (M4). The proof is very similar to that in the cases of (M3)

and (M3’). We use induction on n again. If n = m+ 1 then property (M4)
follows from property (3) of (3.3.1). Suppose we have proved our statement
for n − 1. We will now prove it for n. Since h ∈ H

S
(e)
n \{sm}

and the sets
J1 = {Tt,Ts1 , . . . ,Tsm−1} and J2 = {Tsm+1 , . . . ,Tsn−1} mutually commute
we can suppose that h = h1h2 where hi ∈ 〈Ji〉. The subalgebra 〈J2〉 is
just the Iwahori-Hecke algebra of type An−m−1. Thus its basis consists of
reduced products of Tsj ,m < j. And without loss of generality we can write
h2 = h3Tε

sn−1h4, where h3,h4 ∈ 〈J2 \{Tsn−1}〉 and ε ∈ {0, 1}. If ε = 0 then
h = h1h3h4 and both h and h(T′m)k lie in the parabolic subalgebra H(e)

n−1
of H(e)

n generated by {Tt,Ts1 , . . . ,Tsn−2} thus we can use the induction. In
the case ε = 1 we have h = h1h3Tsn−1h4 and the equalities

τ(h(T′m)k) =τ(h1h3Tsn−1h4(T′m)k)

=τ(h4(T′m)kh1h3Tsn−1)
(M3)= ξτ(h4(T′m)kh1h3)

=ξτ(h1h3h4(T′m)k) induction= ξηkτ(h1h3h4) = ξηkτ(h4h1h3)
=ηkτ(h4h1h3Tsn−1) = ηkτ(h1h3Tsn−1h4) = ηkτ(h).

make the step in induction. �
By (2.2.31) the algebra H(e)

n is split semisimple over K and its irreducible
characters are in bĳection with those of W (e)

n .
The group W (e)

n is obviously isomorphic to the wreath product Ce o Sn
where Ce is the cyclic group of order e. Thus the classification of represen-
tations of wreath products by Sn can be applied (cf. [Zel81, §7]).
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Definition 3.3.3 Let α = (α0, . . . , αe−1) be a e-tuple of partititions αi =
(0 ≤ αi,1 ≤ αi,2 ≤ . . . ≤ αi,mi) such that ∑e−1

i=0 |αi| = n. Then α is called
e-partition of n.

Proposition 3.3.4 The set of irreducible characters of W
(e)
n is

parametrized by e-partitions of n as follows:

α↔ χα := IndW
(e)
n

W
(e)
α

(({α0} ⊗ ζ0)� ({α1} ⊗ ζ1)� . . .� ({αe−1} ⊗ ζe−1)) .

Here W (e)
α = W

(e)
|α0|×. . .×W

(e)
|αe−1|; characters {αi} are regarded as characters

of W (e)
|αi| provided by surjections W (e)

|αi| � S|αi|; linear characters ζi of W (e)
|αi|

are given as follows:

ζi(S|αi|) = 1 and ζi sends the generator of each Ce to ζi,

where ζ is an e-th primitive root of 1. The operations ⊗ and � are inner
and external tensor products of characters.

Denote by Λ(e)
n the set of e-partitions of n. Thus we can write:

Irr(H(e)
n ) =

{
χα

(q)|α ∈ Λ(e)
n

}
(cf. (2.2.33) ).

Since H(e)
n is a symmetric algebra there exist unique elements

ωα(ξ, η1, . . . , ηe−1) ∈ K such that

τ =
∑

α∈Λ(e)
n

ωα(ξ, η1, . . . , ηe−1)χα
(q).

They are called the weights of τ .
In [GIM00, 1.2 and 1.3] the authors have given an explicit combinatorial

formulae for the weights of the Markov trace on H(e)
n , proving at the same

time the existence of a Markov trace for any given choice of ξ, η1, . . . , ηe−1 ∈
K. To state their main result we need to introduce some notations.

For any e-tuple S = (S0, S1, . . . , Se−1) of finite subsets Sk ⊂ Z≥0 with
|S0| = m+ 1, |S1| = . . . = |Se−1| = m define

DS(q;u0, . . . , ue−1)

:=

(−1)(
e
2)(m2 )+ne ·

∏
0≤k≤l≤e−1

∏
(λ,λ′)∈Sk×Sl
λ′<λ if k=l

(qλuk − qλ
′
ul) ·

e−1∏
k=0

unk

qf(m,e) ·
e−1∏
k,l=0

∏
λ∈Sk
λ≥1

λ∏
h=1

(qhuk − ul) ·
∏

0≤k<l≤e−1
(uk − ul)m

,
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where f(m, e) =
(e(m−1)+1

2
)
+
(e(m−2)+1

2
)
+ . . ..

As in [Mal95, 2.13], to any e-partition α = (α0, . . . , αe−1) of n we as-
sociate an e-tuple Sα = (S0, S1, . . . , Se−1) of finite subsets Sk ⊂ Z≥0 with
|S0| − 1 = |S1| = . . . = |Se−1|, as follows. Writing α0 = (0 ≤ α0,1 ≤ . . . ≤
α0,m+1) and αk = (0 ≤ αk,1 ≤ · · · ≤ αk,m) for 1 ≤ k ≤ e− 1 for some large
enough m, we set

S0 := {α0,i + i− 1 | 1 ≤ i ≤ m+ 1},
Sk := {αk,i + i− 1 | 1 ≤ i ≤ m} (1 ≤ k ≤ e− 1).

Finally we define Dα := DSα(q;u0q
−1, u1, . . . , ue−1) ∈ K. As pointed out

in the remark following [Mal95, 2.19], Dα does not depend on the choice of
m and thus is well-defined.

Theorem 3.3.5 (Geck, Iancu, Malle) Let ξ, η1, . . . , ηe−1 ∈ K. For any
α ∈ Λ(e)

n we define

Rα(ξ, η1, . . . , ηe−1) =
e−1∏
k=0

∏
x∈αk

(
(−1)e−1 ∏

l=0
l 6=k

u−1
l

[
ξ(1− qc(x))

e−1∏
l=0
l 6=k

(ukqc(x) − ul)+

+(1− q)
(e−1∑
i=1

(ue−i−1
k q(e−i)c(x)

i∑
j=1

(−1)i−jηjσi−j) + (−1)e−1
e−1∏
l=0
l 6=k

ul
)])

,

(3.3.6)
where σi denotes the i-th elementary symmetric function in u0, . . . , ue−1 (by
convention σ0 = 1) and c(x) denotes the content of x ∈ αk. Then

τξ,η1,...,ηe−1 :=
∑

α∈Λ(e)
n

DαRα(ξ, η1, . . . , ηe−1)χα
(q) (3.3.7)

is a Markov trace on H(e)
n with parameters ξ, η1, . . . , ηe−1.

Remark 3.3.8 If we pose e = 1, ξ = z, u0 = 1 then Tt = 1 and η’s will
dissappear. Lemma (3.3.2) implies that the Markov trace τ is the Markov
trace τAn−1 (cf. (3.2.2)). And theorem (3.3.5) implies Ocneanu’s formula
(3.2.5).

Remark 3.3.9 If we pose e = 2, ξ = z, η1 = y, u0 = Q, u1 = −1 then
lemma (3.3.2) implies that the Markov trace τ is the Markov trace τy,zBn (cf.
(3.2.2)). And theorem (3.3.5) provides a formula for its weights.

The special Markov traces τAn−1 and τBn can be considered as particular
cases of the following trace:

Definition 3.3.10 Consider the Markov trace with parameters ξ = z, ηi =
zqi−1(1 ≤ i ≤ e) :

τe := τz,z,zq,...,zqe−1 : H → C(q, z)
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where H is the spetsial Hecke algebra obtained from the generic Hecke algebra
H(e)
n (q,−1, u0, u1, . . . , ue−1) via the specialization

u0 7→ q, ui 7→ ζi (1 ≤ i ≤ e− 1). (3.3.11)

The trace τe is called the special Markov trace of the group W (e)
n .

Lemma (3.3.2) immediately implies the following

Corollary 3.3.12 The special Markov trace τe : H → C(q, z) can be char-
acterized as the unique trace function on H with the following properties:

• τe(1) = 1,

• τe(hTs) = zτe(h) for s ∈ {s1, . . . , sn−1} and h ∈ H
S

(e)
n \{s}

, the Hecke
subalgebra of H generated by all T’s except Ts (cf. (3.2.1)).

• τe(hTk
t ) = zqk−1τe(h) for 1 ≤ k ≤ e− 1 and h ∈ H

S
(e)
n \{t}

.

And the additional property:

• τe(h(T′m)k) = zqk−1τe(h) for 1 ≤ m ≤ n − 1, 1 ≤ k ≤ e − 1 and
h ∈ H

S
(e)
n \{sm}

.

3.4 Case G(e, e,n)

3.4.1 Special Markov Trace for the Group G(e, e,n).

In this subsection we present a construction of the special Markov trace of
the group W̃ (e)

n := G(e, e, n) (cf. (1.3)). It is a direct generalization of the
construction done by Gomi in the case of Dn (cf. (3.2.4)). The group W̃ (e)

n

is generated by the set S̃(e)
n := {s′1, s1, s2, . . . , sn−1} and has the following

diagram:

e
s′1©�

s1©�
©
s2
©
s3
· · · ©

sn−1
(cf. (1.5)).

We will identify it with a subgroup of W (e)
n via

s′1 7→ t−1s1t, si 7→ si for 1 ≤ i ≤ n− 1 (cf. (1.5)).

This is a normal subgroup of index e of W (e)
n since it is the kernel of the

linear character χ(∅,(n),∅,...,∅) (cf. (3.3.4)).
The corresponding Hecke algebra H̃(e)

n over the field C(q) can
be regarded as a subalgebra of the Hecke algebra H(e)

n (q, ζ) :=
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H(e)
n (q,−1, 1, ζ, . . . , ζe−1)⊗Q(ζ)C where H(e)

n (q,−1, 1, ζ, . . . , ζe−1) is the spe-
cialization via

uj 7→ ζj , 0 ≤ j ≤ e− 1, ζ = exp(2πi/e)

of the Hecke algebra H(e)
n (q,−1, u0, u1, . . . , ue−1) of the group W

(e)
n (cf.

(3.3)). The generators of H̃(e)
n are as follows

{Ts′1
,Ts1 , . . . ,Tsn−1} where Ts′1

:= T−1
t Ts1Tt.

Let z be a variable. By theorem (3.3.5) there exists the Markov trace τ in
the sense of (3.3.1) with the parameters

ξ = z, ηe−1 = (zq−1(z − q + 1)e−1)
1
e , ηi = ηe−ie−1(z − q + 1)i+1−e (3.4.1)

on the Hecke algebra H(e)
n (q, ζ). Denote by τ̃e the restriction of τ from

H(e)
n (q, ζ) to H̃(e)

n .

Lemma 3.4.2 We have

τ̃e(H̃(e)
n ) ⊂ C(q, z).

Proof. Here we use the same argument as we did in (3.2.14). Consider the
following diagram:

H(e)
n (q, ζ)

τ

''NNNNNNNNNNN

γ // H(e)
n (q, ζ)

τ ′

wwppppppppppp

C(q, z, ηe−1)

where γ is the automorphism of the Hecke algebra H(e)
n (q, ζ) sending Tt to

ζTt and Tsi to Tsi . The trace τ ′ is the Markov trace in the sense of (3.3.1)
with the parameters

ξ = z, ηe−1 = ζ(zq−1(z − q + 1)e−1)
1
e , ηi = ηe−ie−1(z − q + 1)i+1−e

on the Hecke algebra H(e)
n (q, ζ). Theorem (3.3.5) implies that the above

diagram is commutative. Consider any element h ∈ H̃(e)
n ⊂ H(e)

n (q, ζ).
By C(q)-linearity we can think that h is just a product of the generators
Ts′1

,Ts1 , . . . ,Tsn−1 . Since Ts′1
= T−1

t Ts1Tt, the total power of the gener-
ator Tt in this product is divisible by e. Hence γ sends h to itself. Thus
τ(h) = τ ′(h) and τ̃e(h) = τ(h) ∈ C(q, z, ηee−1) = C(q, z). �
The following lemma shows that the trace τ̃e is a generalization of the special
Markov trace of type Dn (cf. (3.2.15)):
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Lemma 3.4.3 (Markov trace via Gomi) The trace τ̃e : H̃(e)
n → C(q, z)

has the following properties:
(M1) τ̃e(1) = 1,

(M2) τ̃e(hTs) = zτ̃e(h) for s ∈ S̃(e)
n and h ∈ H

S̃
(e)
n \{s}

, the Hecke subalgebra

of H̃(e)
n generated by all T’s except Ts (cf. (3.2.1)).

Proof. Since τ̃e is a restriction of τ property (M1) as well as property (M2)
when s = sm,m > 1 are inherited from properties (M1) and (M3) of τ (cf.
(3.3.2)). Thus in order to check property (M2) for any s ∈ S̃(e)

n we just need
to consider two cases:

Case s = s′1 = t−1s1t. Here as in the proof of lemma (3.3.2) we proceed
by induction on n. For n = 2 we need to prove that for h ∈ 〈Ts1〉 we have
τ̃e(hT−1

t Ts1Tt) = zτ̃e(h). Since τ̃e(T−1
t Ts1Tt) = τ̃e(Ts1) = z and T2

s1 =
(q − 1)Ts1 + q we only need to check the equality τ̃e(Ts1T−1

t Ts1Tt) = z2.
We use property (M4) of τ in (3.3.2) for k = e− 1,m = 1 and h = Tt:

τ(TtTs1Te−1
t T−1

s1 ) = ηe−1τ(Tt).

We have

τ̃e(Ts1T−1
t Ts1Tt) =τ(Ts1T−1

t Ts1Tt) = τ(TtTs1T−1
t (qT−1

s1 + q − 1)) =
qτ(TtTs1Te−1

t T−1
s1 ) + (q − 1)τ(TtTs1T−1

t ) =
qηe−1τ(Tt) + (q − 1)z = qηe−1η1 + (q − 1)z =
z(z − q + 1) + (q − 1)z = z2.

Suppose we have proved our statement for all n′ ≤ n− 1. We need to prove
it for n. Since the parabolic Hecke subalgebra H

S̃
(e)
n \{s}

is of type An−1

we do the step of the induction exactly the same way we did it in (3.3.2)
property (M3’).

Case s = s1. This case follows from the previous one. Indeed, using the
relations (cf. (3.3))

TtTs1TtTs1 = Ts1TtTs1Tt, TtTsi = TsiTt for 2 ≤ i ≤ n− 1

we get Ts1TthT−1
t T−1

s1 ∈ HS̃(e)
n \{s′1}

for h ∈ H
S̃

(e)
n \{s1}

and

τ̃e(hTs1) = τ(hTs1) =τ(TthT−1
t TtTs1T−1

t ) = τ(TthT−1
t T−1

s1 T−1
t Ts1TtTs1) =

τ((Ts1TthT−1
t T−1

s1 )T−1
t Ts1Tt) =

zτ(Ts1TthT−1
t T−1

s1 ) = zτ(h) �

Definition 3.4.4 The trace τ̃e : H̃(e)
n → C(q, z) is called the special Markov

trace for the group W̃ (e)
n .

In the next subsection we recall the Clifford theory and use it to classify ir-
reducible characters of W̃ (e)

n using the classification of irreducible characters
of W (e)

n .
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3.4.2 Clifford Theory and Irreducible Characters of
G(e, e,n).

Definition 3.4.5 Let H be a normal subgroup of a finite group G. For π ∈
IrrH define its inertia group IG(π) := {g ∈ G|∀h ∈ H : π(h) = π(g−1hg)}.

We need the following two theorems (cf. [Isa76, Th. 6.2 and 6.11]):

Theorem 3.4.6 (Clifford) Let H E G, χ ∈ IrrG and π ∈ IrrH such that
〈π, χH〉H 6= 0, T = IG(π) then

χH = e
∑

g∈G/T
πg

where e = 〈χH , π〉H and πg(h) = π(g−1hg).

Theorem 3.4.7 Again H E G, π ∈ IrrH, T = IG(π). Let

A = {ψ ∈ IrrT |〈ψH , π〉H 6= 0}, B = {χ ∈ IrrG|〈χH , π〉H 6= 0}.

(a) If ψ ∈ A then IndGT ψ is irreducible.

(b) The map ψ 7→ IndGT ψ is a bĳection of A onto B.

(c) If IndGHψ = χ with ψ ∈ A then ψ is the unique irreducible constituent
of χT which lies in A and 〈ψH , π〉H = 〈χH , π〉H .

Now we apply the above theorems to the following example:

Example 3.4.8 Suppose G = H o 〈t〉 where te = 1. For π ∈ IrrH its
inertia group T = IG(π) = H o 〈tp〉 for some p ≥ 0.

Let E be a C-vector space affording the irreducible representation corre-
sponding to π. Since tp ∈ T there exists an isomorphism f0 : E → E such
that t−phtpf0(v) = f0(hv) for any v ∈ E.

Irreducibility of π implies that there exists λ ∈ C such that f := λf0
satisfy fe/p = IdE. Defining the action of tp on E by tp ∗ v := f−1(v) we
get an action of T on E. Thus there exists ψ ∈ IrrT such that ψH = χ. We
will denote it by χ.

Comparing degrees of characters we have IndTHχ =
∑e/p
j=1 χ ⊗ ξj where

ξ ∈ IrrT is a linear character with ξ(H) = 1, ξ(tp) = exp(2ipπ/e). And thus
IndGHχ =

∑e/p
j=1 IndGT [χ⊗ ξj ] where each character IndGT [χ⊗ ξj ] is irreducible

by theorem (3.4.7)(a). Finally , IndGHχ =
∑e/p−1
j=0 IndGT [χ]⊗εj where ε ∈ IrrG

is a linear character with ξ(H) = 1, ξ(t) = exp(2iπ/e); also we have that
e/p is the minimal number k such that IndGT [χ] = IndGT [χ]⊗ εk.

Remark 3.4.9 Note that the number e/p can be characterized as the min-
imal number k > 0 such that IndGT [χ] = IndGT [χ]⊗ εk.
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If we consider any φ ∈ IrrG and χ ∈ IrrH such that 〈φH , χ〉H 6= 0 then
φ = IndGT (χ) for some extension χ of χ to T (cf. Th. (3.4.7)(b)) where
T = IG(χ) = H o 〈tp〉 is known since the minimal number k such that
φ = φ ⊗ εk is known (cf. Rem. (3.4.9)). By Clifford theorem we have
φH = 〈φH , χ〉H

∑
g∈G/T χ

g =
∑p−1
j=0 χ

tj since 〈φH , χ〉H = 〈χ, χ〉H = 1.

Since W (e)
n = W̃

(e)
n o 〈t〉 we can apply the results from the above example

to classify the irreducible characters of W̃ (e)
n . We will use the following

notations:

• For an e-partition α = (α0, α1, . . . , αe−1) of n (cf. (3.3.3)) we denote
by π(α) its cyclic permutation (αe−1, α0, . . . , αe−2) and by s(α) the
cardinality of the set {0 ≤ i ≤ e− 1|πi(α) = α}.

• Let χα be the irreducible character of W
(e)
n correspond-

ing to an e-partition α (cf. (3.3.4)). We denote by
χ(α,1), χ(α,ζe/s(α)), . . . , χ(α,(ζe/s(α))(s(α)−1)) the irreducible charac-
ters of W̃ (e)

n which lie in the restriction of χα to W̃ (e)
n .

• Let µ ∈ IrrW̃ (e)
n . We denote by α(µ) an e-partition (which is defined

up to a cyclic permutation) such that χα(µ) lies in IndW
(e)
n

W̃
(e)
n

µ.

3.4.3 Weights of the Special Markov Trace for the Group
G(e, e,n).

By (2.2.31) the Hecke algebra H̃(e)
n is split semisimple over C(q) and its

irreducible characters are in bĳection with those of W̃ (e)
n . We can write:

Irr(H(e)
n ) =

{
µ(q)|µ ∈ IrrW̃ (e)

n

}
(cf. (2.2.33) ).

By (2.2.35) the Hecke algebra H̃(e)
n is a symmetric algebra. Lemma (3.4.2)

and [GP00, Ex. (7.4)(b)] imply that there exist unique elements ω′µ ∈ C(q, z)
such that

τ̃e =
∑

µ∈IrrW̃ (e)
n

ω′µµ
(q). (3.4.10)

They are called the weights of τ̃e. The following lemma gives us an expression
for the weights of τ̃e:

Lemma 3.4.11 Let µ ∈ IrrW̃ (e)
n . Then

ω′µ = 1
s(α(µ))

e−1∑
i=0

ωπi(α(µ))

where ωα is the weight of the trace τ corresponding to the irreducible char-
acter χα of W (e)

n .
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Proof. Consider the decomposition of the trace τ :

τ =
∑

α∈Λ(e)
n

ωαχα
(q).

Results from the example (3.4.8), Tits deformation theorem (2.2.26) and
the fact that the specializations of H̃(e)

n ≤ H(e)
n (q, ζ) via q 7→ 1 are CW̃ (e)

n ≤
CW (e)

n imply:

τ̃e = τ |H̃(e)
n

=
∑

α∈Λ(e)
n

ωαχα
(q)|H̃(e)

n
=

∑
α∈Λ(e)

n

ωα

s(α)−1∑
i=0

χ
(q)
(α,ζei/s(α)) =

∑
µ∈IrrW̃ (e)

n

(e/s(α(µ))−1∑
i=0

ωπi(α(µ))

)
µ(q) =

∑
µ∈IrrW̃ (e)

n

1
s(α(µ))

(e−1∑
i=0

ωπi(α(µ))

)
µ(q)

By [GP00, Ex. (7.4)(b)] we have that the decomposition of the trace τ̃e in a
sum of irreducible characters of H̃(e)

n is unique. This finishes the proof. �

Remark 3.4.12 The formula in the above lemma can also be obtained using
[Mal95, Lemma 5.11] and ideas from the proof of [Mal95, Satz 5.13].



Chapter 4

Khovanov-Rozansky Trace

In this chapter we introduce the notion of the so-called Khovanov-Rozansky
trace which is a natural generalization of the HOMFLY-PT polynomial, a
two-variable knot invariant. In chapter 7 we will see that it coincides with
the Gomi trace defined in chapter 6 for all finite Coxeter groups except,
possibly, H3 and H4. Here we will often follow the article of Mikhail Kho-
vanov [Kho07].

4.1 Hochschild Homology
Let k be a field, R be a commutative graded k-algebra and M be a graded
R-bimodule. Thus M is a left and a right R-module, um = mu for any
u ∈ k,m ∈M and the two actions are compatible in the sense that a(mb) =
(am)b for any a, b ∈ R and m ∈M . The bimodule M can also be regarded
as a left Re-module, where Re = R ⊗k R is the enveloping algebra of R.
One can define a functor ∗R of R-coinvariants from the category of graded
R-bimodules to the category of graded R-modules in the following way:
MR := R ⊗Re M. The R-coinvariants functor is right exact and its i-th
derived functor takes M to TorRei (R,M).

Definition 4.1.1 The graded R-module TorRei (R,M) is denoted by
HHi(R,M) and called the i-th Hochschild homology group of M . The
Hochschild homology of M is the direct sum

HH(R,M) :=
⊕
i≥0

HHi(R,M).

To compute Hochschild homology one can take any resolution of the
R-bimodule R by projective R-bimodules

· · · −→ P2 −→ P1 −→ P0 −→ R −→ 0,

tensor it with M , removing the right term MR:

· · · −→ P2 ⊗Re M −→ P1 ⊗Re M −→ P0 ⊗Re M −→ 0.
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The homology of this complex is isomorphic to the Hochschild homology of
M .

Any k-algebra R has the standard bar resolution Cbar
∗ (R) by free R-

bimodules Cbar
n (R) := R⊗n+2, n ≥ 0 with boundary map b′:

b′n : Cbar
n (R)→ Cbar

n−1(R) :

b′n(r0, r1, . . . , rn+1) =
n∑
i=0

(−1)i(r0, . . . , riri+1, . . . , rn+1).

From now on we will consider the case when k = C and R =
C[x1, x2, . . . , xn] the algebra of complex polynomials in n variables. We
regard R as a graded C-algebra with deg xi = 2.

We will use the following

Notation 4.1.2 LetM be any graded R-module andMi (i ∈ Z) its homoge-
neous components. Then for k ∈ Z we denote by M(k) the "shifted" graded
R-modules defined by M(k)i := Mk+i.

Replacing R by Re we get the notion of shifted graded R-bimodules.
The polynomial algebra R admits a "Koszul" resolution (which is much

smaller then the "bar" one) by free Re = R⊗R-modules given by the tensor
product over Re of the complexes

0 −→ Re(−2) ×µi−−−→ Re −→ 0,

for 1 ≤ i ≤ n. Here ×µi means the multiplication by µi := 1⊗ xi − xi ⊗ 1.
We use a shift to make the multiplication preserve the polynomial degree.

4.2 The Category of Soergel Bimodules
Let (W,S) be a Coxeter system with |S| = n < ∞ ; let V be a complex
vector space with basis e1, . . . , en such that W ↪→ GL(V ) is the geometric
representation of the Coxeter group W . The geometric representation gives
us an action of W on V which can be naturally extended to the action of
W on the symmetric algebra S(V ∗), which can also be regarded as a ring
R = C[x1, x2, ..., xn] of polynomials in n variables.

Now we will introduce the notion of Soergel bimodules, after Wolfgang So-
ergel, who introduced them and explained their importance for the infinite-
dimensional representation theory of simple Lie algebras and closely related
Kazhdan-Lusztig theory (cf. [Soe92] and [Soe95]). For any simple generator
s ∈ S we define an R-bimodule Bs := R ⊗Rs R, where Rs is the ring of
polynomials invariant by s, R acts on Bs by right and left multiplication.

Definition 4.2.1 We define the Soergel category R as the full sub-
category of the category of graded R-bimodules whose objects are
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(Bs1 ⊗R Bs2 ⊗R · · · ⊗R Bsk) (l) and all sums of their direct summands.
(Here k ∈ Z+,l ∈ Z and si ∈ S for 1 ≤ i ≤ k). The objects of the So-
ergel category are called Soergel bimodules.

Let 〈R〉 be the split Grothendieck group of the Soergel category. Tensor-
ing ⊗R defines a ring structure on 〈R〉. Soergel has proven the following
"categorification" theorem:

Theorem 4.2.2 (Soergel) Let H′W be the Iwahori-Hecke algebra of W
with the parameters qs = v−2, q′s = −1 (cf. (2.2.14)). Then there is ex-
actly one ring homomorphism

E : H′W → 〈R〉

such that we have E(v) = 〈R(1)〉 and E(Ts + 1) = 〈Bs〉 , ∀s ∈ S.

There is a famous Soergel conjecture concerning the above homomorphism
E :

Conjecture 4.2.3 (Soergel) Let C ′x be a Kazhdan-Lusztig basis element
corresponding to x ∈ W (cf. (2.2.15)). Then there is an indecomposable
graded R-bimodule Bx which is finitely generated as a left and as a right
R-module such that

E(C ′x) = 〈Bx〉 .

Remark 4.2.4 In the case when W is a Weyl group the conjecture above is
proven in [Soe92]. The case when W is a dihedral group is done in [Soe07,
Th. 4.2].

Since we will be particularly interested in the dihedral case we give more
details here.

Notation 4.2.5 Given any finite dimensional representation V of the group
W we consider for any x ∈W the graph

Gr(x) = {(xλ, λ)} ⊂ V × V

and form for any finite subset A ⊂W the Zariski closed subset in V × V

Gr(A) =
⋃
x∈A

Gr(x).

Notation 4.2.6 Recall that the ring of complex polynomials R can be re-
garded as the C-algebra of all regular functions on V . If we identify
Re = R⊗R with the regular functions on V ×V via the rule (f ⊗ g)(λ, µ) =
f(λ)g(µ) then the ring of regular functions on Gr(A) is a quotient of Re and
inherits the structure of graded R-bimodule. It’s not hard to see that this
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R-bimodule is finitely generated as left and as right R-module. Following
the notations of Soergel we denote it by

R(A) = R(Gr(A)).

Let ≤ be the Bruhat order on W . For A = {y|y ≤ x} we put R(A) = R≤x.

Example 4.2.7 With the notations above its not hard to see that R(≤ 1) =
R and R(≤ s) = Bs.

Now we can formulate the property of the above homomorphism E in case
of dihedral groups (W = I2(m)):

Theorem 4.2.8 (Soergel) For any element x ∈W we have

E(C ′x) = 〈R≤x(l(x))〉 ,

where (l(x)) means the shift in the graduation by the length of x.

4.3 Rouquier Complex
Raphael Rouquier has found a connection between the braid group and
Soergel bimodules Bs, s ∈ S.

We assign to a generator σs of the braid group B a cochain complex
F (σs) of Soergel bimodules

F (σs) : 0 −→ Bs
m−→ R −→ 0,

where m(a⊗ b) = ab for any a, b ∈ R; the bimodule Bs is placed in cohomo-
logical degree 0.

To the braid group element σ−1
s we assign a cochain complex F (σ−1

s ) of
Soergel bimodules

F (σ−1
s ) : 0 −→ R

η−→ Bs(2) −→ 0,

here the R-bimodule morphism η is defined by η(1) := 1 ⊗ as + as ⊗ 1,
where as := e∗s is dual to the basis vector es; the bimodule R is placed in
cohomological degree −1.

To a braid word

σ = σε1s1σ
ε2
s2 · · ·σ

εk
sk
, εi = ±1, si ∈ S for 1 ≤ i ≤ k

we assign the tensor product over R of the above complexes and denote it
by F (σ):

F (σ) = F (σε1s1)⊗R F (σε2s2)⊗R · · · ⊗R F (σεksk). (4.3.1)

This complex is an element of the category B(R) of cochain complexes of
graded R-bimodules up to chain homotopies. Rouquier [Rou06] has proved
the following important theorem:
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Proposition 4.3.2 (Rouquier) If the braid words σ and σ represent the
same element of the braid group then the complexes F (σ) and F (σ) are
isomorphic in B(R).

In particular, the tensor product F (σi)⊗RF (σ−1
i ) is chain homotopy equiv-

alent to the complex 0 −→ R −→ 0 (where R is placed in cohomological
degree 0).

Remark 4.3.3 From now on we will refer to F (σ) as Rouquier complexes.

4.4 Khovanov-Rozansky Trace
Now we pass to Khovanov’s construction via Rouquier’s complex of
Khovanov-Rozansky link homology.

Again, let σ = σε1s1σ
ε2
s2 · · ·σ

εk
sk

(εi = ±1, si ∈ S for 1 ≤ i ≤ k) be a braid
word. The Rouquier complex F (σ):

· · · ∂−→ F j(σ) ∂−→ F j+1(σ) ∂−→ · · ·

has k + 1 nontrivial terms. Each term F j(σ) is a direct sum of graded R-
bimodules which are shifts of tensor products of Bsi ’s and thus F j(σ) is a
Soergel bimodule.

The Hochschild homology HH(R,F j(σ)) of a bimodule F j(σ) is a bi-
graded C-vector space. Taking Hochschild homology of each term we obtain
a complex HH(F (σ)) of bigraded vector spaces

. . .
HH(∂)−−−−→ HH(R,F j(σ)) HH(∂)−−−−→ HH(R,F j+1(σ)) HH(∂)−−−−→ . . .

Definition 4.4.1 The homology of the above complex is denoted by HHH(σ)
and called Khovanov-Rozansky homology.

It is easy to see that HHH(σ) is a triply-graded C-vector space. In the
classical case when W = Sn is a symmetric group Khovanov and Rozansky
have proved the following theorem:

Theorem 4.4.2 Up to an overall shift in the grading, HHH(σ) is an invari-
ant of oriented links and, up to isomorphism, depends only on the closure of
σ. The homology theory is isomorphic to the reduced homology H(σ) which
is defined in [KR08].

The theorem implies that the Euler characteristic of HHH(σ) in the
classical case of the symmetric group is the HOMFLYPT link polyno-
mial [FYH+85], [PT87]. By introducing a fractional 1

2Z triple grading and a
suitable shift as in Wu [Wu08], the grading indeterminacy can be renormal-
ized away. This fact makes it natural to investigate the Euler characteristic
of HHH(σ) in the case of an arbitrary finite Coxeter group W .
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We start with the definition of a map 〈 · 〉V from the braid group B to
the field K = C(v, r) of rational functions in v and r:

〈σ〉V :=
(

1− v2

1 + r

)n
·
∑
i

(−1)idimgrv,tHH(R,F i(σ))

=
(

1− v2

1 + r

)n
·
∑
i,j,k

(−1)i dimC HHj(R,F i(σ))k · vk · tj ,

(4.4.3)

where t = rv−2, the index i corresponds to the cohomological grading of the
Rouquier complex, j - to the Hochschild homology grading and k - to the
polynomial grading of R-modules HHj(R,F i(σ)).

Remark 4.4.4 The map above is nothing else but the graded Euler charac-
teristic (multiplied by normalizing coefficient) of the complex HH(F (σ)).

Proposition 4.4.5 The map 〈 · 〉V is well-defined , i.e. is independent of
the choice of the braid word representing σ.

Proof. This proposition is a direct consequence of the Rouquier theorem.
�

By linearity the above map can be extended to a K-linear morphism
from the group algebra KB to K which we denote by the same symbol
〈 · 〉V .

Proposition 4.4.6 The above morphism has the following properties:

(a) (Trace property) For any σ1, σ2 ∈ KB we have 〈σ1σ2〉V = 〈σ2σ1〉V .

(b) (Normalizing property) 〈1〉V = 1.

(c) (Hecke property) For any σ ∈ KB and s ∈ S we have
〈σσs〉V = v2 〈σσ−1

s

〉
V + (v2 − 1) 〈σ〉V

Proof. (a) Here we need to compare Euler characteristics of the com-
plexes HH(F (σ1) ⊗R F (σ2)) and HH(F (σ2) ⊗R F (σ1)). The definition of a
tensor product of complexes allows us to reduce this to the comparison of
Hochschild homologies HHi(R,M ⊗RN) and HHi(R,N ⊗RM) where M,N
are tensor products over R of some Bs, s ∈ S.

Let A be the category of all graded R-bimodules. We will work in D(A),
the derived category of A. By definition HHi(R,M ⊗R N) = Hi(R̃ ⊗Re
(M ⊗R N)) where R̃ ' R is a free Re-resolution of R. We have a series of
isomorphisms in D(A):

R̃⊗Re (M ⊗R N) ' R̃⊗Re M̃ ⊗R N ' R⊗Re M̃ ⊗R N,
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where M̃ ⊗R N is a free Re-resolution of M ⊗R N . Let us precise its struc-
ture. Denote by M̃ 'M and Ñ ' N free Re-resolutions ofM and N . Then
M ⊗R N 'M ⊗R Ñ since M is a free right R-module (as a tensor product
of Bs which are free right R-modules). But M ⊗R Ñ ' M̃ ⊗R Ñ and we get
a free Re-resolution M̃ ⊗R Ñ of M ⊗R N .

Similarly, Ñ ⊗R M̃ is a free Re-resolution of N ⊗RM and HHi(R,N ⊗R
M) = Hi(R ⊗Re (M̃ ⊗R Ñ)). Thus in order to prove the equality it is
sufficient to prove that

R⊗Re (M̃ ⊗R Ñ) ' R⊗Re (Ñ ⊗R M̃),

which is not hard to do. The morphism is simply r⊗Re a⊗R b 7→ r⊗Re b⊗Ra
for r ∈ R, a ∈ M̃i, b ∈ Ñj .
(b) In this case F (1) = 0 → R → 0 and we have to calculate HHi(R,R).
In order to do that we take a Koszul resolution R̃ of R. Recall that it is a
tensor product over Re of complexes

0 −→ Re(−2) ×µi−−−→ Re −→ 0,

for 1 ≤ i ≤ n, where ×µi is the multiplication by µi := 1 ⊗ xi − xi ⊗ 1.
By definition HHi(R,R) = Hi(R ⊗Re R̃) = R ⊗Re R̃i since all boundary
operators of the complex R⊗Re R̃ are zero. This gives us the formula

∑
i,k

dimC HHi(R,R)k · vk · ti = (1 + tv2)ndimgrvR =
(

1 + tv2

1− v2

)n
.

But this is the inverse of the normalizing coefficient. Thus 〈1〉V = 1.
(c) We have

F i(σσs) = F i(σ)⊗R Bs ⊕ F i−1(σ)

and

F i(σσ−1
s ) = F i+1(σ)⊕ F i(σ)⊗R Bs(2).

We will use the following notation

Notation 4.4.7 For a finitely generated graded R-bimodule M we de-
note by ♠v,t(M) the bigraded dimension of its Hochschild homology∑
j,k dimC HHj(R,M)k · vk · tj.
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From the definition of 〈σσs〉V we have(
1− v2

1 + tv2

)n
〈σσs〉V

=
∑
i

(−1)i♠v,t(F i(σσs))

=
∑
i

(−1)i♠v,t(F i(σ)⊗R Bs) +
∑
i

(−1)i♠v,t(F i−1(σ))

=v2∑
i

(−1)i♠v,t(F i(σ)⊗R Bs(2))−
∑
i

(−1)i♠v,t(F i(σ))

=v2∑
i

(−1)i♠v,t(F i+1(σ)) + v2∑
i

(−1)i♠v,t(F i(σ)⊗R Bs(2))

+ v2∑
i

(−1)i♠v,t(F i(σ))−
∑
i

(−1)i♠v,t(F i(σ))

=v2∑
i

(−1)i♠v,t(F i(σσ−1
s )) + (v2 − 1)

∑
i

(−1)i♠v,t(F i(σ))

=v2
(

1− v2

1 + tv2

)n 〈
σσ−1

s

〉
V

+ (v2 − 1)
(

1− v2

1 + tv2

)n
〈σ〉V

�
The above proposition allows us to factorize the morphism 〈 · 〉V through

the Iwahori-Hecke algebra HW with the parameters qs = v2, q′s = −1, which
is a natural quotient of KB:

KB
〈 · 〉V //

"" ""FFFFFFFF K

HW
τkr

=={{{{{{{{

Definition 4.4.8 The right diagonal map τkr in the above diagram is a
trace such that τkr(1) = 1 and is called the Khovanov-Rozansky trace.

Theorem 4.4.9 The trace τkr is a Markov trace with the parameter z =
r(v2−1)
r+1 .

Proof. The idea of the proof is based on the proof of [Kho07, Th. 1] where
Koszul complexes are used. We will use the following notations.

Notation 4.4.10 We pose

Rnx := C[x1, . . . , xn] Rny := C[y1, . . . , yn] Rnz := C[z1, . . . , zn]
Rnx,y := Rnx ⊗C R

n
y Rnx,z := Rnx ⊗C R

n
z Rny,z := Rny ⊗C R

n
z

Rnx,y,z := Rnx ⊗C R
n
y ⊗C R

n
z .

The action of W on Rny , Rnz is exactly the same as on R = Rnx and is directly
induced on Rnx,y, Rnx,z, Rny,z, Rnx,y,z.
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Notation 4.4.11 Let A be a graded ring and a1, . . . ak some homogeneous
elements in A. We denote by (a1, . . . , ak)A the corresponding Koszul com-
plex which is defined as a tensor product over A of small complexes

0→ A(−deg ai)
×ai−→ A→ 0

where ×ai means the multiplication by ai.

We will also need two simple facts:

Fact 4.4.12 Let (a1, . . . , ak)A be a Koszul complex and λ ∈ A be an element
such that λai is homogeneous of the same degree as aj for some i 6= j. Then
we have the following isomorphism of complexes:

(a1, . . . , ai, . . . , aj . . . , ak)A ' (a1, . . . , ai, . . . , aj + λai . . . , ak)A.

Fact 4.4.13 Let A,B be some C-algebras, K• some complex of A ⊗C B-
modules and L• a complex of A-modules. Then there is an obvious isomor-
phism of complexes

K• ⊗A L• ' K• ⊗A⊗B (L• ⊗C B)

In order to prove the theorem it is enough to show that τkr(bσs) = zτkr(b)
for any s ∈ S, b ∈ HS\{s} since all the other properties follow from the
proposition above. Linearity of τkr allows us to assume that b is a product
of simple generators σt, t 6= s of the braid group.

Recall that by definition(
1−v2
1+tv2

)n
τkr(bσs) =

∑
i(−1)i♠v,t(F i(bσs))

=
∑
i(−1)i♠v,t(F i(b)⊗R Bs)
−
∑
i(−1)i♠v,t(F i(b))(

1−v2
1+tv2

)n
zτkr(b) = tv2(v2−1)

tv2+1
∑
i(−1)i♠v,t(F i(b)).

Thus it is enough to prove the following equality:

(tv2 + 1)♠v,t(Θb ⊗R Bs) = (tv4 + 1)♠v,t(Θb),

where the bimodule Θb is a tensor product over R of some Bt’s (t 6= s) since
every F i(b) is a direct sum of such bimodules.

Let us look at our vector space V . Since dimC V = n > n− 1 = |S \ {s}|
there exists a vector v ∈ V ∗ invariant under the action of any s′ ∈ S, s′ 6= s.
We can assume that v = xn and x1, . . . , xn−1 ∈ V s. Let ux = xn − wx
(wx ∈ V ∗s) be an element of V ∗ dual to the root of s (vectors uy = yn −wy
and uz = zn − wz will be the corresponding copies of ux in Rny and Rnz ).
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Lemma 4.4.14 There is an isomorphism of Rnx,y-modules

Θb ' Θ′b ⊗C C[xn],

where Θ′b is some Rn−1
x,y -module, yn acts on C[xn] by multiplication by xn.

Proof. Easy consequence from the fact that Θb is a tensor product of some
Bt’s. �
Let us prove the following

Proposition 4.4.15 Let Θ̃′b be a free Rn−1
x,y -resolution of Θ′b. Then the fol-

lowing complex Kb,s is a free Rnx,y,z-resolution of Θb ⊗Rny Bs:(
Θ̃′b ⊗C C[xn, yn]⊗C R

n
z

)
⊗Rnx,y,z(xn−yn, y1−z1, . . . , yn−1−zn−1, u

2
y−u2

z)Rnx,y,z .

Proof. Indeed, the complex above is isomorphic to[(
Θ̃′b ⊗C C[xn, yn]

)
⊗Rnx,y (xn − yn)Rnx,y

]
⊗Rnx,y(y1 − z1, . . . , yn−1 − zn−1, u

2
y − u2

z)Rnx,y,z
'

[
Θ̃′b ⊗Rn−1

x,y
(xn − yn)Rnx,y

]
⊗Rny (y1 − z1, . . . , yn−1 − zn−1, u

2
y − u2

z)Rny,z

Since the complex Θ̃′b ⊗Rn−1
x,y

(xn − yn)Rnx,y is isomorphic to Θ̃′b ⊗C (xn −
yn)C[xn,yn], it is a free Rnx,y-resolution of Θb. At the same time the complex
(y1−z1, . . . , yn−1−zn−1, u

2
y−u2

z)Rny,z considered as a complex of Rny -modules
is homotopy equivalent to the free Rny -module Bs. This proves that their
tensor product over Rny is a free Rnx,y,z-resolution of Θb ⊗Rny Bs. �
In order to calculate HH(R,Θb⊗RBs) we take the tensor product over Rnx,z
of Kb,s and a free Rnx,z-resolution of R represented by the Koszul complex
(x1 − z1, . . . , xn − zn)Rnx,z . This tensor product is equal to

Kb,s ⊗Rnx,y,z (x1 − z1, . . . , xn − zn)Rnx,y,z .

And this is equal to(
Θ̃′b ⊗C C[xn, yn]⊗C R

n
z

)
⊗Rnx,y,z(xn − yn, y1 − z1, . . . , yn−1 − zn−1, u

2
y − u2

z, x1 − z1, . . . , xn − zn)Rnx,y,z
'

(
Θ̃′b ⊗C C[xn, yn]⊗C R

n
z

)
⊗Rnx,y,z(xn − yn, y1 − z1, . . . , yn−1 − zn−1, 0, x1 − z1, . . . , xn − zn)Rnx,y,z

where the element u2
y − u2

z = (yn − zn − wy + wz)(yn + zn − wy − wz)
of homogeneous degree 4 was "killed" by elements xn − yn, xn − zn, y1 −
z1 . . . , , yn−1 − zn−1. Denoting the homology of the complex(

Θ̃′b ⊗C C[xn, yn]⊗C R
n
z

)
⊗Rnx,y,z(xn − yn, y1 − z1, . . . , yn−1 − zn−1, x1 − z1, . . . , xn − zn)Rnx,y,z
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by H•b,s (which is double-graded) we have:

♠v,t(Θb ⊗R Bs) = (1 + tv4)dimgrv,tH•b,s.

The proof that
♠v,t(Θb) = (1 + tv2)dimgrv,tH•b,s

is completely analogous. First we make a formal note that the complex Lb,s:(
Θ̃′b ⊗C C[xn, yn]⊗C R

n
z

)
⊗Rnx,y,z(xn−yn, y1−z1, . . . , yn−1−zn−1, yn−zn)Rnx,y,z

is a free Rnx,y,z-resolution of Θb. Then we take the tensor product over Rnx,z
of Lb,s and the Koszul complex (x1 − z1, . . . , xn − zn)Rnx,z . And we get(

Θ̃′b ⊗C C[xn, yn]⊗C R
n
z

)
⊗Rnx,y,z(xn − yn, y1 − z1, . . . , yn−1 − zn−1, yn − zn, x1 − z1, . . . , xn − zn)Rnx,y,z

'
(
Θ̃′b ⊗C C[xn, yn]⊗C R

n
z

)
⊗Rnx,y,z(xn − yn, y1 − z1, . . . , yn−1 − zn−1, 0, x1 − z1, . . . , xn − zn)Rnx,y,z ,

where the element yn−zn of homogeneous degree 2 was "killed" by elements
xn − yn and xn − zn. This ends the proof. �





Chapter 5

Fourier Transform

5.1 Case of Weyl Groups

Our goal in this section is to give a brief history of appearance of the Fourier
transform matrix in the rational case.

5.1.1 Characters RG
T (θ)

Let G be a connected affine algebraic group over Fq, split over Fq; thus
G contains a split maximal torus T1 and the Fq-structure is given by a
Frobenius map F which acts trivially on the Weyl group W = NG(T1)/T1.

The starting point in the study of irreducible representations of the finite
group GF over the field Ql was their construction. The obvious way to
construct such representations is to start with some subgroup H of GF (for
example, H = LF , where L is a rational Levi subgroup of G) and build
representations of GF using the usual induction functor IndGF

H . Actually
the representations thus obtained would not have the right properties, in
particular, their decomposition into irreducible representations will be very
difficult to work with. The right construction is to use the Harish-Chandra
induction functor RG

L .

Definition 5.1.1 Let P be a rational parabolic subgroup of G and L a ra-
tional Levi subgroup of P, so that we have a rational Levi decomposition
P = LU where U is the unipotent radical of P. The functor from the
category of left LF -modules the category of left GF -modules defined by

RG
L : E 7→ Ql

[
GF /UF

]
⊗Ql[LF ] E

where GF acts on Ql
[
GF /UF

]
by left translations and LF by right trans-

lations is called Harish-Chandra induction.
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Remark 5.1.2 The parabolic subgroup P does not appear in the notation
since the Mackey formula allows to prove that RG

L does not depend on the
parabolic subgroup used in its construction. (cf. [DM91, (6.1) , (5.1)])

Remark 5.1.3 As you can see the functor RG
L is only defined when L is a

rational Levi subgroup of a rational parabolic subgroup P of G.

Trying to extend the construction of the functor RG
L to the case where L

is a rational Levi subgroup of G but not the Levi subgroup of any rational
parabolic subgroup of G, Deligne and Lusztig came to the idea of using
l-adic cohomology of certain varieties.

It is a very deep result that to any variety X over Fq one can associate
canonically l-adic cohomology groups with compact supportH i

c(X,Ql), with
properties analogous to those familiar from algebraic topology. These are
finite dimensional Ql-vector spaces, zero for i < 0 and for large i. They
are functorial in the sense that a finite map f : X → X′ induces a Ql-
linear map f∗ : H i

c(X′,Ql)→ H i
c(X,Ql). Definition and properties of l-adic

cohomology can be found in (S.G.A 4,5).
l-adic cohomology can be used to construct representations of finite

groups as follows: Assume that G is a finite group acting on a variety X.
Then g ∈ G acts on H i

c(X,Ql) by (g∗)−1 and this is a representation of G.
We can also form the alternating sum H∗c (X) :=

∑
i(−1)iH i

c(X,Ql). This
gives a virtual representation of G over Ql, whose trace can be computed by
Lefschetz’s fixed-point formula.

Definition 5.1.4 Let P be a parabolic subgroup of G and L a rational Levi
subgroup of P, so that we have a Levi decomposition P = LU. Let RG

L⊂P
be the functor from the category of left LF -modules to the category of left
GF -modules defined by

RG
L⊂P : E 7→ H∗c (L−1(U))⊗Ql[LF ] E

where L : G → G is the Lang map x 7→ x−1Fx and the action of (g, l) ∈
G × (LF )opp is induced by that on L−1(U) given by x 7→ gxl. The functor
RG

L⊂P is called the Deligne-Lusztig induction.

Remark 5.1.5 In general it is not known whether RG
L⊂P depends on the

choice of a parabolic subgroup P or not (latest results on this topic can be
found in [BM11]). But when L is a torus the Mackey formula holds for the
Deligne-Lusztig induction and it can be proven that RG

L⊂P does not depend
on the parabolic subgroup used in its construction. (cf. [DM91, Th. (11.13)
and remark after it]). Thus we can use the notation RG

L in that case.

Remark 5.1.6 When P is rational then U is also and H∗c (L−1(U)) '
Ql
[
GF /UF

]
as G× (LF )opp-modules (cf. [DM91, note after (11.1)]), thus

Deligne-Lusztig induction is indeed a generalization of Harish-Chandra in-
duction.
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Certain characters associated to representations constructed using
Deligne-Lustig induction proved to be very useful in studying the irreducible
representations of GF .

Definition 5.1.7 When L = T is a rational maximal torus, RG
T (θ) for

θ ∈ Irr(TF ) is called a Deligne-Lusztig character.

Recall that we are in a situation when G contains a rational Borel subgroup
B and a split maximal torus T1 in it. This allows us to parametrize the
GF -classes of rational tori by the conjugacy classes of W : For a class of
w ∈ W , we choose x ∈ G such that L(x) = ẇ (we can do it since L is
surjective) where ẇ is any representative of w in NG(T1), and we define
Tw = xT1x

−1. This is a rational maximal torus and it is not hard to see
that Tw is well-defined up to GF -conjugacy.

Proposition 5.1.8 The GF -conjugacy class of Tw depends only on the
W -conjugacy class of w ∈ W , and this gives a bĳection between the GF -
conjugacy classes of rational tori and the conjugacy classes of W .

Proof. Cf. [DM91, (3.22)] �

5.1.2 Lusztig Series
Here we present a brief sketch of how characters RG

T lead to a classification
of irreducible characters of GF . We start with the following important
definition:

Definition 5.1.9 Let T and T′ be two rational tori, and let θ and θ′ be
characters respectively of TF and T′F . We say that the pairs (T, θ) and
(T′, θ′) are geometrically conjugate if there exists g ∈ G such that T = gT′
and such that for any n satisfying g ∈ GFn we have

θ ◦NFn/F = θ′ ◦NFn/F ◦ ad(g)

where NFn/F : T→ T defined by τ 7→ τ · F τ . . . Fn−1
τ , is the so-called norm

on a torus.

Remark 5.1.10 If g ∈ GF in the definition of the geometric conjugacy
then we just get the usual GF -conjugacy of two pairs.

Definition (5.1.9) is justified by the following proposition which gives a
decomposition of the set of irreducible characters of GF into disjoint subsets.

Proposition 5.1.11

• For any χ ∈ Irr(GF ) there exists a rational maximal torus T and
θ ∈ Irr(TF ) such that

〈
χ,RG

T (θ)
〉

GF
6= 0.



68 Chapter 5. Fourier Transform

• Let T and T′ be two rational tori, and let θ and θ′ be characters
respectively of TF and T′F . If the virtual representations RG

T (θ) and
RG

T′(θ′) have a common irreducible constituent, then the pairs (T, θ)
and (T′, θ′) are geometrically conjugate.

Proof. Cf. [DM91, (13.1), (13.3)] �
Now, in order to parametrize the geometric conjugacy classes of pairs (T, θ)
we need to introduce the notion of the dual of a reductive group.

Definition 5.1.12 Two connected reductive algebraic groups G and G∗ are
said to be dual to each other if there exists a maximal torus T of G (resp. T∗
of G∗) and an isomorphism from X(T) to Y (T∗) which sends the roots of
G relative to T to the coroots of G∗ relative to T∗. If in addition G and G∗
are defined over Fq with respective Frobenius maps F and F ∗, and if T and
T∗ are rational and the isomorphism above is compatible with the actions of
F and F ∗, we say that the pair (G, F ) is dual to the pair (G∗, F ∗).

Remark 5.1.13 In particular, two tori T and T∗ are said to be dual to
each other if we have an isomorphism X(T) ∼−→ Y (T∗). Further we will
usually say that two groups are dual to each other, assuming that we have
chosen corresponding dual tori.

The following proposition gives a parametrization of geometric conjugacy
classes.

Proposition 5.1.14 Assume that (G, F ) and (G∗, F ∗) are dual. Geometric
conjugacy classes of pairs (T′, θ′) in G are in one-to-one correspondence
with F ∗-stable G∗-conjugacy classes of semi-simple elements of G∗.

Proof. Cf. [DM91, (13.12)] �

Remark 5.1.15 It is obvious that the character RG
T (θ) depends only on the

GF -conjugacy class of the pair (T, θ). The GF -conjugacy class of the pair
(T′, θ′) is in one-to-one correspondence with the G∗F ∗-conjugacy class of a
pair (T′∗, s) where s is a semi-simple element of G∗F ∗ and T′∗ is some ra-
tional maximal torus of G∗ containing s (cf. [DM91, (13.13)]). This allows
us to use the notation RG

T∗(s) for RG
T (θ).

The next definition is the first step towards the classification of irreducible
characters of GF .

Definition 5.1.16 The Lusztig series E(GF , (s)) associated to the G∗-
conjugacy class (s) of a semi-simple element s ∈ G∗F ∗ is the set of irre-
ducible characters of GF which occur is some RG

T (θ), where (T, θ) is in the
geometric conjugacy class associated by (5.1.14) to (s).
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5.1.3 Unipotent Characters and Lusztig’s Theorem
A particularly important Lusztig series, which is a kind of "prototype" for
the other ones, is the series associated to the identity element of G∗.

Definition 5.1.17 The elements of E(GF , 1) (ie, the irreducible compo-
nents of RG

T (IdT)) are called unipotent characters.

We have an inclusion Irr(W ) ⊂ E(GF , 1) (χ 7→ ρχ) defined as follows.
Consider the Hecke algebra H(W ) = EndGF

(
RG

T1
(IdT1)

)
=

EndGF

(
Ql
[
GF /BF

])
= H(GF ,BF ) (cf. (2.2.6)). The characters of H(W )

are in bĳection with the characters of W , we will denote them by the same
letters and write IrrW instead of IrrH(W ). We have a classical equality of
characters Ql

[
GF /BF

]
=
∑
χ∈IrrW χ⊗ ρχ where ρχ are some different irre-

ducible characters of GF (the last equality follows from a decomposition of
the H(W )×Ql[GF ]-module Ql

[
GF /BF

]
into the sum of simple modules).

Characters ρχ are unipotent since the equality above implies the decom-
position of the character RG

T1
(IdT1) into the sum of irreducible characters:

RG
T1

(IdT1) =
∑
χ∈IrrW χ(1)ρχ.

Now we will give a statement of the main result [Lus84, Main theorem
(4.23)] of Lusztig’s classification of characters of finite groups of Lie type for
algebraic groups with connected centre. We will present a simplified form
of his result, assuming that the algebraic group is split. (This implies that
in Lusztig’s notations in his theorem (4.23) the automorphism γ is always
the identity).

Theorem 5.1.18 (Lusztig) Let G be a connected affine algebraic group
defined over Fq, split over Fq, with connected centre, and G∗ be the dual
group of G;

• For a semi-simple element s ∈ G∗F ∗, there is a bĳection

E(GF , (s))↔ E(CG∗(s)F
∗
, 1)

and this bĳection can be chosen such that, extended by linearity to
virtual characters, it sends RG

T∗(s) to εGεCG∗ (s)R
CG∗ (s)
T∗ (IdT∗) for any

rational maximal torus T∗ of CG∗(s).

• There is a set which depends only on W

X(W ) =
∐
F

M(GF )

a disjoint union over disjoint families (two-sided cells) F of W of the
sets M(GF ) of isomorphism classes of finite-dimensional irreducible
GF -equivariant vector bundles over the finite groups GF (cf. [Lus84,
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(4.2), (4.3)-(4.13), (4.21.1)]);
and a bĳection

E(GF , 1)↔ X(W ), (ρ↔ xρ)

such that for any ρ ∈ E(GF , 1) and any χ ∈ Irr(W ) ⊂ E(GF , 1) we
have

〈ρ,Rχ〉GF = ∆(xρ) {xρ, xχ}

where W is the Weyl group of G with respect to the split torus T1;
εG = (−1)(Fq−rank of G) (cf. [DM91, remark after (8.11)]);
the class functions Rχ are defined by the following formula:

Rχ = |W |−1 ∑
w∈W

χ(w)RG
Tw

(Id)

the map ∆ : X(W )→ {±1} is almost always 1 (cf. [Lus84, (4.14)]);
the pairing { , } : X(W ) × X(W ) → Ql is defined by Lusztig in [Lus84,
(4.14.3), (4.21.2)]. We will say more about this pairing later in the subsec-
tion (5.2.2).

Remark 5.1.19 The decomposition of the characters Rχ provides the
decomposition of Deligne-Lusztig characters RG

Tw
(Id) since RG

Tw
(Id) =∑

χ∈Irr(W ) χ(w−1)Rχ, which in turn gives the decomposition of any Deligne-
Lusztig character RG

T (θ) by the first part of Lusztig’s theorem.

5.1.4 Lusztig Fourier Transform Matrix

Definition-Theorem 5.1.20 Let S be a matrix whose lines and columns
are indexed by the set X(W ), such that Sx,y = {x, y} for any x, y ∈ X(W ).
Then S is a symmetric, unitary matrix, independent of q. It is called the
Lusztig Fourier transform matrix (or simply Fourier matrix).

Remark 5.1.21 The matrix S is block diagonal with "small" diagonal blocks
indexed by two-sided cells ofW . The set of indices of the block corresponding
to a cell F is the set M(GF ) (also called Lusztig family) and its entries
are given by a formula which uses only the character theory of GF and its
subgroups.

Remark 5.1.22 Lusztig has completed the picture in [Lus85] by introduc-
ing class functions on GF , the characteristic functions of character sheaves
which complete the set {Rχ|χ ∈ Irr(W )} to a basis of the subspace spanned
by the unipotent characters. There is a function Rx attached to each
x ∈ X(W ) and the matrix S is the matrix of scalar products 〈Rx, ρx′〉GF

for x, x′ ∈ X(W ).
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5.1.5 Character Degrees and Fourier Matrix
In this section we give one important property of the Fourier matrix relating
fake degrees to generic degrees. We start with necessary definitions.

For a given Weyl group W and q any power of a prime number there is
G connected affine algebraic group over Fq with connected centre and split
maximal torus T1 such that W = NG(T1)/T1. Thus, to any χ ∈ Irr(W )
we can associate a virtual character Rχ : GF → Ql. One can show that
Rχ(1) ∈ Z and there is a polynomial fχ ∈ Z[q] in a variable q such that
fχ(q) = Rχ(1) for any q power of a prime.

Definition 5.1.23 The polynomial fχ ∈ Z[q] is called the fake degree of χ.

Consider the complex vector space V = X(T1)⊗C then we have an induced
action of W on the symmetric algebra S(V ) and by (1.2.3) the coinvari-
ant algebra SW := S(V )/I, where I is the graded ideal generated by the
W -invariants S(V )W of positive degree, is a graded version of the regular
representation of W . This gives an alternative definition of the fake degree:

Definition 5.1.24 For any χ ∈ Irr(W ) the fake degree fχ := 〈SW , χ〉W is
the graded multiplicity of χ in the coinvariant algebra SW .

Remark 5.1.25 On the other hand one can show that if x ∈ X(W ) and
x /∈ Irr(W ) then Rx(1) is always zero (always means: for any algebraic group
as above). Thus we can think that the fake degrees fx(q) of the corresponding
unipotent characters are zero.

Now we pass to the definition of the generic degrees. Again for a given
W and q we have an algebraic group as above. Let B be a rational Borel
subgroup containing the split torus T1. Then the pair (BF , NG(T1)F ) is a
(B,N)-pair with the corresponding Weyl groupW (cf. [DM91, (1.3)]). Thus
the Hecke algebra H(W ) = EndGF

(
RG

T1
(Id)

)
has a natural basis {Tw}w∈W

which comes from the Bruhat decomposition (cf. (2.2.6)).
The function τ : Tw 7→ Trace

(
Tw|RG

T1
(Id)

)
is a symmetrizing trace on

H(W ). We have τ(Tw) = 0 if w 6= 1, τ(T1) = dimRG
T1

(Id). Since H(W )
splits over Z[√q,√q−1], one can attach a Schur element Sχ ∈ Z[√q,√q−1]
to every χ ∈ IrrH(W ) (cf. (2.2.29) and (2.2.37)). We have ρχ(1) =
dimRG

T1
(Id)/Sχ and the fact that ρId = 1 implies that SId = dimRG

T1
(Id).

One can prove that for every χ ∈ Irr(W ) there is a polynomial gχ(q)
such that gχ(q) = SId/Sχ = deg ρχ for any q power of a prime.

Definition 5.1.26 The polynomial gχ is called the generic degree of χ.

Remark 5.1.27 The definition of the Fourier matrix S implies that for
any algebraic group G and a power q as above, S transforms the vector
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(Rx(1))X(W ) = (fx(q))X(W ) to the vector (ρx(1))X(W ) of degrees of unipotent
characters. Since the matrix S depends only on W we obtain that generic
degrees of unipotent characters can be defined as polynomials gx(q) such
that gx(q) = ρx(1) for any power of a prime q.

Thus we can state:

Proposition 5.1.28 The Fourier matrix S transforms the vector of fake
degrees, completed by zero, to the vector of generic degrees of unipotent
characters. In particular, its top left (square) part transforms fake degrees
to generic degrees.

Remark 5.1.29 It is possible to determine combinatorially the Fourier ma-
trix starting from W , using the above property and a few others, like symme-
try of S and S−1 = S, etc. This allows to generalize the notion of Fourier
matrix to finite Coxeter groups and to certain classes of complex reflection
groups. We will talk about it in the next sections.

5.2 Case of Non-Rational Coxeter Groups
As we have seen in the previous section the set E(GF , 1) ' X(W ) of unipo-
tent characters of a group GF and the corresponding Fourier matrix depend
only on the Weyl group associated to G. In the course of his classifica-
tion Lusztig observed that similar sets and matrices can also be attached
to some non-rational finite Coxeter groups, just as if there was a "fake al-
gebraic group" whose Weyl group is non-rational. In this section we will
briefly describe his constructions.

5.2.1 Unipotent Characters and their Degrees
Let W be a finite Coxeter group. We start with the construction of a
finite set U(W ) and a function Deg which associates to each ρ ∈ U(W ) a
polynomial Deg(ρ) ∈ R[q], which in the case of a Weyl group is equal to the
generic degree gxρ(q) of a unipotent representation ρ (cf Remark (5.1.27)).

First of all Lusztig postulates that if W and W ′ are two finite Coxeter
groups then U(W ×W ′) = U(W )× U(W ′) and Deg(ρ, ρ′) = Deg(ρ)Deg(ρ′)
for ρ ∈ U(W ) and ρ′ ∈ U(W ′) [Lus93, Postulate (2.3)]. In the case of Weyl
groups these bĳections are given by external tensor product of unipotent
representations.

Since the case where W is a Weyl group is understood, we see using the
above postulate that it is enough to define U(W ) and Deg in the case when
W is irreducible and non-rational, hence a dihedral group I2(p) of order 2p
(p = 5 or p ≥ 7) or a Coxeter group of type H3 or H4 (cf. (1.4.8)).

Notation 5.2.1 By analogy with the rational case we will use the word
representations for the elements of U(W ).
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Lusztig starts with the case where W is one of the groups H2 = I2(10), H3
or H4. First he constructs a set U(W,∅, 1) as the set of irreducible represen-
tations of the Hecke algebra Hq,−1 whose generic degrees are known. After
this using his postulates [Lus93, (2.2)] and [Lus93, (2.4)-(2.7)] (which hold in
the rational case) he extends the set U(W,∅, 1) constructing new representa-
tions and their degrees. Finally , using his postulate [Lus93, (2.8)] about the
sum

∑
ρ∈U(W ) Deg(ρ)2 he shows that the set of constructed representations

exhausts U(W ).
The second case is the case of dihedral groups. Let W be a dihedral

group I2(p) where p ≥ 3. Define an integer k ≥ 1 by p = 2k + 1 if p is
odd and by p = 2k + 2 if p is even. By methods similar to those used for
the groups H2,H3 and H4 Lusztig obtains that, if p = 2k + 1, then U(W )
consists of two objects 1, σ and of k2 other objects denoted ρi (1 ≤ i ≤ k)
and ρi,j , ρ′i,j (1 ≤ i < j ≤ k); if p = 2k+2, then U(W ) consists of two objects
1, σ and k2+k+2 objects denoted ρi, ρ′i (1 ≤ i ≤ k), ρi,j , ρ′i,j (1 ≤ i < j ≤ k)
and ε′, ε′′. The values of Deg are given as follows.

Deg(1) = 1,Deg(σ) = qp,

Deg(ρi) = (1− ξi)(1− ξ−i)
p

q(1− q2)(1− qp)
(1− q)2(q − ξi)(q − ξ−i)

,

Deg(ρ′i) = (1 + ξi)(1 + ξ−i)
p

q(1− q2)(1− qp)
(1 + q)2(q − ξi)(q − ξ−i)

,

Deg(ρi,j) = ξi + ξ−i − ξj − ξ−j

p

q(1− q2)(1− qp)
(q − ξi)(q − ξ−i)(q − ξj)(q − ξ−j)

,

Deg(ρ′i,j) = Deg(ρi,j),

Deg(ε′) = Deg(ε′′) = 2
p

q(1− q2)(1− qp)
(1− q2)2

.

where ξ = e2πi/p.

Remark 5.2.2 During his construction Lusztig obtains an analogue of the
inclusion Irr(W ) ⊂ E(GF , 1) (cf. 5.1.3) identifying IrrW with U(W,∅, 1) ⊂
U(W ).

Now we pass to the construction of the Fourier transform matrix.

5.2.2 Fusion Datum and Fourier Matrix

Every modular tensor category [BK01, Chapter 3] provides data known as
a fusion datum. A fusion datum in turn contains a Fourier Matrix corre-
sponding to it. The following definition can be found in [Lus94, (1.1)].

Definition 5.2.3 (Fusion datum) Let X be a finite set with a given ele-
ment x0 and with given commuting involutions # : X → X and b : X → X
such that x#

0 = xb
0 = x0. Set S = (sx,y)x,y∈X be a matrix with complex
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entries and let t = (tx)x∈X be a collection of non-zero complex numbers in-
dexed by X. We say that (X,x0,

#, b,S, t) is a fusion datum if the conditions
(a)-(g) below are satisfied.

(a) sx,y = sx#,yb = sxb,y# = sy#,x# = syb,xb = sy,x, for all x, y ∈ X;

(b) txb = tx# = t−1
x = tx, for all x ∈ X;

(c) ∑z∈X sx,zsz,y = δx,y, for all x, y ∈ X;

(d) sx,x0 ∈ R>0, for all x ∈ X;

(e) tx0 = 1;

(f) ∑u∈X
sx,usy,usz,u

sx0,u
∈ N, for all x, y, z ∈ X;

(g) ∑x,y∈X su,xbsx,ybsy,zbt−1
x t−1

y t−1
z = δu,z, for all u, z ∈ X.

The matrix S is called the Fourier transform corresponding to the fusion
datum.

Now we explain how a Fusion datum appears in the case of Weyl groups.
Recall that in the rational case we have a decomposition X(W ) =

∐
F M(GF )

where M(GF ) are isomorphism classes of finite-dimensional irreducible GF -
equivariant vector bundles over some finite groups GF and we have a pairing
{ , } : X(W ) × X(W ) → Ql which provides the decomposition of the
characters Rχ in irreducible characters.

Let G be a finite group. Consider the modular tensor category of finite-
dimensional G-equivariant vector bundles over G where G acts on itself by
conjugation. It is easy to see that the set M(G) of isomorphism classes of ir-
reducible G-equivariant vector bundles is in one-to-one correspondence with
the set of pairs (a, σ) where a ∈ G and σ is the character of an irreducible
representation of the centralizer CG(a), modulo the equivalence given by
(a, σ) ∼ (gag−1, σg) where g ∈ G.

Let x0 ∈ M(G) be the orbit of (1,1) ∈ M(G). Let # : M(G) → M(G)
and b : M(G)→M(G) be given by (a, σ) = (a, σ) (here σ is the composition
of σ and any automorphism from Gal(Ql/Q) sending roots of unity to their
inverses) and (a, σ)b = (a−1, σ).

Let S = ({m,m′}) be the matrix indexed by elements m,m′ ∈ M(G)
given by

{m,m′} =
∑

g∈G;aga′g−1=ga′g−1a

|CG(a)|−1|CG(a′)|−1|σ′(g−1a−1g)σ(ga′g−1)

where (a, σ) is any representative of m and (a′, σ′) is any representative of
m′.

Let t = (tm) be defined by tm = σ(a)/σ(1) for any m ∈ M(G) and any
representative (a, σ) of m.
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Proposition 5.2.4 X = M(G) together with x0,
#, b,S, t as above is a fu-

sion datum.

Proof. Cf. [Lus94, Prop. 1.6] �
Now we will precise Remark (5.1.21). Namely, to any two-sided cell F one
can associate a finite group GF and the entries of the block corresponding to
F of Lusztig’s Fourier matrix are given by the Fourier matrix corresponding
to the fusion datum (M(GF ), x0,

#, b,S, t) described above.
The notion of fusion datum proved to be very convenient for the con-

struction of a Fourier transform matrix even in the non-rational case. Here
we present the construction of Lusztig in the case of dihedral groups I2(p)
where p ≥ 3.

In this case there are only three two-sided cells: the cell containing
the trivial character, the cell containing the character w 7→ (−1)l(w) and
the cell containing all other characters. The blocks corresponding to the
first two cells are trivial. We only need to define the block of the Fourier
matrix corresponding to the "big" cell. It will be given by the Fourier matrix
corresponding to the following fusion datum.

Let p be an integer ≥ 3. Let X ′ be the set consisting of all ordered pairs
(i, j) of integers such that either

(a) 0 < i < j < p and i+ j < p, or

(b) 0 = i < j < p
2 .

Let X ′′ be the set consisting of the two elements (0, p/2)′, (0, p/2)′′, if p is
even, and let X ′′ = ∅, if p is odd. Let X be the disjoint union X ′ tX ′′.

Let x0 = (0, 1) ∈ X ′ and x 7→ x# = xb be the involution of X defined
by (i, j)# = (i, j)b = (i, p − j) if (i, j) ∈ X ′ and i > 0; x# = xb = x for all
other x ∈ X. Let ξ = e2πi/p. Let S = ({x, x′})x,x′∈X be the matrix defined
by

{(i, j), (k, l)} = ξkj−li + ξ−kj+li − ξlj−ki − ξ−lj+ki

p

if (i, j) ∈ X ′ and (k, l) ∈ X ′;

{(i, j), (0, p/2)′} = {(i, j), (0, p/2)′′}

= {(0, p/2)′, (i, j)} = {(0, p/2)′′, (i, j)} = (−1)i − (−1)j

p

if (i, j) ∈ X ′ and p is even;

{(0, p/2)′, (0, p/2)′} = {(0, p/2)′′, (0, p/2)′′} = 1− (−1)p/2 + p

2p
,

{(0, p/2)′, (0, p/2)′′} = {(0, p/2)′′, (0, p/2)′} = 1− (−1)p/2 − p
2p

.

if p is even.
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Let t = (tx)x∈X be defined by t(i,j) = ξ−ij if (i, j) ∈ X ′ and by tx = 1 if
x ∈ X ′′. Then we have the following proposition [Lus94, Prop. 3.2]:

Proposition 5.2.5 (X,x0,
#, b,S, t) just defined is a fusion datum. It is

called a dihedral fusion datum.

In order to construct the Fourier matrix of I2(p) we define the following
bĳection between the set U(I2(p))−{1, σ} (Lusztig family corresponding to
the "big" cell) and the set X which appears in the dihedral fusion datum
corresponding to p.

• Case p = 2k + 1:


ρi ↔ (0, i) for 1 ≤ i ≤ k,
ρi,j ↔ (i, j) for 1 ≤ i < j ≤ k,
ρ′i,j ↔ (i, p− j) for 1 ≤ i < j ≤ k.

• Case p = 2k + 2:



ρi ↔ (0, i) for 1 ≤ i ≤ k,
ρ′i ↔ (i, k + 1) for 1 ≤ i ≤ k,
ρi,j ↔ (i, j) for 1 ≤ i < j ≤ k,
ρ′i,j ↔ (i, p− j) for 1 ≤ i < j ≤ k,
ε′ ↔ (0, p/2)′,
ε′′ ↔ (0, p/2)′′.

Definition 5.2.6 Define a block-diagonal matrix S indexed by the set
U(I2(p)) with three blocks: two one-dimensional trivial blocks correspond-
ing to the representations 1 and σ and one "big" block indexed by the set
U(I2(p))−{1, σ}, entries of S in this block are obtained via the above bĳec-
tion from the entries of the Fourier matrix S corresponding to the dihedral
fusion datum. Then the matrix S is called the Fourier matrix of I2(p).

Remark 5.2.7 The third property of the Fourier matrix corresponding to a
fusion datum (cf. (c) in (5.2.3)) implies that the Fourier matrix of I2(p) is
equal to its inverse. (Cf. 5.1.29).

Proposition 5.2.8 The Fourier matrix just constructed transforms the vec-
tor (Deg(ρ))U(I2(p)) formed by the degrees of unipotent representations con-
structed in the previous section (5.2.1) into the vector formed by the fake
degrees (which are defined in the non-rational case) completed by zeros. And
has many other properties of Fourier matrices corresponding to Weyl groups.

Remark 5.2.9 Fourier matrices with the necessary properties were also
constructed for the groups H3 and H4 by Lusztig and Malle [Lus94, Ap-
pendix]. Since the Fourier matrix of a direct product of two Coxeter groups
can be given as a tensor product of corresponding Fourier matrices we have
a construction of Fourier matrix for any finite Coxeter group.
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5.3 G(e,1,n) Case

In this section, following Malle [Mal95], we present a combinatorial contruc-
tion in the case Wn = G(e, 1, n) of the set parametrizing the "unipotent
representations" and give formulae for their generic degrees . We also give
Malle’s contruction of the Fourier matrix. When e ≤ 2 the group Wn is of
type An−1 (the symmetric group Sn) or of type Bn (hyperoctahedral group)
and Malle’s constructions and formulae agree with already defined X(Wn),
(gx(q))x∈X(Wn) and Fourier matrices S for Weyl groups.

5.3.1 e-Symbols

We define the main combinatorial object which is used in Malle’s construc-
tions and definitions.

Definition 5.3.1 An ordered family S = (S0, . . . , Se−1) of e finite sequences
Si = (0 ≤ λi,1 < λi,2 < . . . < λi,mi) of strictly increasing non-negative
integers is called an e-Symbol and presented as follows:

S =


λ0,1 . . . λ0,m0

λ1,1 . . . λ1,m1
...

...
λe−1,1 . . . λe−1,me−1

 . (5.3.2)

Now we define different notions related to e-Symbols (or simply, Symbols,
when it is clear what e we are talking about).

Definition 5.3.3 • The content of the Symbol S in (5.3.2) is I(S) :=
m0 +m1 + . . .+me−1.

• The rank of S is

rg(S) :=
∑
i,j

λi,j −
⌊(I(S)− 1)(I(S)− e+ 1)

2e

⌋
.

• For a symbol S with I(S) ≡ 1(mod e) define

def(S) = (e− 1)(I(S)− 1)
2

−
e−1∑
i=0

i|Si| (mod e).

Such a Symbol is called reduced if def(S) = 0 and not all λi,1 are zero.
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5.3.2 Unipotent Representations and Generic Degrees.
Now we can introduce Malle’s definition of the set of "unipotent representa-
tions" and their degrees.

Definition 5.3.4 The set

U(Wn) := { reduced e-Symbols S | rg(S) = n, I(S) ≡ 1 (mod e)}

is called the set of unipotent representations of the group Wn. Their generic
degrees are defined by the following formula:

DegS(q) =

(−1)(
e
2)(m2 )

n∏
i=1

(qei − 1) ·
e−1∏
i=0

e−1∏
j=i

∏
(λ,µ)∈Si×Sj
µ<λ if i=j

(qλζi − qµζj)

τ(e)mq(
e(m−1)+1

2 )+(e(m−2)+1
2 )+... ·

e−1∏
i=0

Θ(Si, qe)

where

m = I(S)− 1
e

; τ(e) =
e−1∏
i=0

e−1∏
j=i+1

(ζi − ζj) =
√
−1(e−1

2 )√
e
e

and for any finite A ⊂ Z

Θ(A, q) =
∏
λ∈A
λ≥1

λ∏
h=1

(qh − 1).

Remark 5.3.5 In his article [Mal95] Gunter Malle gives many evidences
supporting the rightness of his construction: he proves that his set U(Wn)
and degree Deg have properties analogous to those of unipotent representa-
tions and their generic degrees in rational case and there are analogues of
Harish-Chandra-Theory and of the Fourier matrix. We will talk about his
construction of the Fourier matrix later.

5.3.3 Irreducible Representations and their Degrees
By analogy with the real case one can define an inclusion Irr(Wn) ⊂ U(Wn).
Recall that Irr(Wn) is parametrized by e-partitions of n (cf. (3.3.4)). Let
α = (α0, . . . , αe−1) be any e-partition of n. By adding zeros if necessary we
can think that α0 = (0 ≤ α0,1 ≤ . . . ≤ α0,m+1) and αi = (0 ≤ αi,1 ≤ . . . ≤
αi,m) for i > 0 and choose m such that not all αi,1 are zero. Define a symbol
Sα = (S0, . . . , Se−1) by Si,j = αi,j + j − 1. Then Sα is a reduced Symbol
with I(Sα) = em+ 1 and we obtain an inclusion

Irr(Wn) ↪→ U(Wn) : χα 7→ Sα. (5.3.6)
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Definition 5.3.7 For an e-partition α we call γχα(q) := DegSα
(q) the

generic degree of the character χα.

By analogy with the rational case, the generic degree of a character can
be obtained via the symmetrizing trace on a Hecke algebra. Consider
the spetsial Hecke algebra H obtained from the generic Hecke algebra
H(e)
n (q,−1, u0, u1, . . . , ue−1) (cf. (3.3)) via the specialization

u0 7→ q, ui 7→ ζi (1 ≤ i ≤ e− 1).

Then H is a symmetric algebra over C[q±1], split semisimple over C(q) and
free as a C[q±1]-module. The corresponding symmetrizing form t0 : H →
C[q±1] can be given by t0(Tw) = δw,1 where w is any reduced expres-
sion of w ∈ W (e)

n (with respect to S(e)
n ) and Tw denotes the corresponding

product of the standard generators of H (cf. [GIM00, (4.4)]). By [GIM00,
lemma(4.3)]) this form can also be defined as the Markov trace in the sense
of (3.3.1) with all parameters equal to zero. The theorem (3.3.5) implies the
following:

Proposition 5.3.8 Let

t0 =
∑

χ∈IrrWn

χ(q)

Sχ

be the decomposition of the symmetrizing form t0 into the sum of irreducible
characters of H (χ 7→ χ(q) means the canonical bĳection IrrWn → IrrH).
Then we have γχ(q) = S1/Sχ (cf. 5.1.26).

Let V be the reflection representation of Wn.

Definition 5.3.9 Let S(V ∗)Wn = S(V ∗)/I be the coinvariant algebra ofWn

(here V ∗ is the dual space of V and I is the ideal of S(V ∗) generated by the
homogeneous elements of S(V ∗)Wn of positive degree). For an e-partition
α the graded multiplicity Rχα of the character χα in S(V ∗)Wn is called the
fake degree of χα(cf. (5.1.23)).

Remark 5.3.10 In the above definition we use V ∗ instead of V following
the usual notation for complex reflection groups.

The following proposition (cf. [Mal95, (2.10)]) gives the formula for fake
degrees.

Proposition 5.3.11 For an e-Symbol S such that |S0| = m+1, |S1| = . . . =
|Se−1| = m define an element δS(q) ∈ C(q) by

δS(q) =
e−1∏
i=0

∆(Si, qe)
Θ(Si, qe)

·
∏e−1
i=1

∏
λ∈Si q

(e−i)λ

q(
e(m−1)+1

2 )+(e(m−2)+1
2 )+...

,
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where for any finite A ⊂ Z

∆(A, q) =
∏

λ,λ′∈A
λ′<λ

(qλ − qλ′).

Then the fake degree Rχα of the character χα corresponding to the e-
partition α of n is equal to

n∏
i=1

(qei − 1)δSα(q).

Remark 5.3.12 Gunter Malle uses the symmetric algebra S(V ) in his def-
inition of fake degrees thus we had to slightly change his formula.

5.3.4 Lusztig Families and Fourier Transform Matrix
Now we pass to Malle’s combinatorial definition of the Lusztig families of
the group Wn.

Definition 5.3.13 Two Symbols S and S′ lie in the same Family if and
only if as multisets S and S′ contain the same numbers with the same mul-
tiplicities.

Definition 5.3.14 Families of Symbols induce a decomposition of the set
U(Wn) into the union of disjoint subsets which are called Lusztig Families.

Remark 5.3.15 One can check that whenever Wn is a Coxeter group, the
above definition coincides with the definition of the Lusztig families in the
real case.

Definition 5.3.16 By analogy we say that two irreducible characters χα, χβ

are in the same family (in the real case one says that they belong to the same
two-sided cell) if the corresponding reduced Symbols Sα and Sβ belong to the
same Family.

We continue with Malle’s definition of the Fourier transform matrix.
Let Y be a totally ordered set with em+ 1 elements, m > 0; Ψ = Ψ(Y )

is the set of maps

ψ : Y → {0, . . . , e− 1}, such that
∑
y∈Y

ψ(y) ≡ m
(
e

2

)
(mod e),

with the subset Ψ0 of Ψ such that |ψ−1(i)| = m+ δ0,i.
There is a natural involution on Ψ

− : Ψ→ Ψ, ψ 7→ ψ with ψ(y) := e− ψ(y) (mod e)
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and a symmetric pairing 〈 , 〉 on Ψ given by

〈φ, ψ〉 = ε(φ)ε(ψ)
∏
y∈Y

ζ−φ(y)ψ(y)

where ζ = e2πi/e and

ε(ψ) = (−1)c(ψ), c(ψ) = |{(y, y′) ∈ Y × Y |y < y′, ψ(y) < ψ(y′)}|.

Definition 5.3.17 Consider the space H := RΨ of functions from the set
Ψ to some C-algebra R. The operator

T : H → H, T (f)(φ) := (−1)m(e−1)

τ(e)m
∑
ψ∈Ψ
〈φ, ψ〉 f(ψ)

is called the Fourier transform on H (τ(e) is defined in (5.3.4)).

In [Mal95, 4A] Malle proves the following important property of the Fourier
transform T :

Proposition 5.3.18 For any f ∈ H and ψ ∈ Ψ we have

T 2(f)(ψ) = (−1)m(e−1
2 )ε(ψ)ε(ψ)f(ψ).

where − is the involution defined above.

Any map π : Y → Z≥0 gives rise to an equivalence relation ∼π on Ψ defined
as follows

φ ∼π ψ if π ◦ φ−1(i) = π ◦ ψ−1(i) for 0 ≤ i ≤ e− 1.

Definition 5.3.19 An element ψ ∈ Ψ is called π-admissible if the equalities
π(y) = π(y′) and ψ(y) = ψ(y′) imply y = y′.

Denote by [ψ] the equivalence class of ψ under the relation ∼π.

Proposition 5.3.20 Let Y be any totally ordered set as above. For a re-
duced Symbol S with I(S) = em + 1 consider any map π : Y → Z≥0 such
that |π−1(k)| = |{i|k ∈ Si}|. Let F be the Lusztig Family of S. Then the
map κ from equivalence classes of π-admissible elements of Ψ to F given by

κ : [ψ] 7→ S[ψ], S
[ψ]
i := π(ψ−1(i))

is a well-defined bĳection independent of the choice of S ∈ F .

Proof. It is easy to see that κ is well-defined, injective and independent of
the choice of S ∈ F . Let us prove its surjectivity. Let S′ be any Symbol
from F . Then |π−1(k)| = |{i|k ∈ Si}| = |{i|k ∈ S′i}|.
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For any k ≥ 0 fix any bĳection

βk : π−1(k) ∼−−→ {i|k ∈ S′i}.

Define ψ on Y =
∐
k≥0 π

−1(k) by ψ|π−1(k) := βk. Then it is easy to see that
ψ ∈ Ψ is π-admissible and its image under the map κ is S′. �

Remark 5.3.21 It follows from the construction in the proof of the above
proposition that the equivalence class [ψ] of any π-admissible element ψ con-
sists of π-admissible elements which are parametrized by the choice of the
bĳections βk.

Now we explain how the Fourier transform defined in (5.3.17) provides the
Lusztig Fourier transform matrix of the group Wn.

Fix any Lusztig family F . Let Y, π, κ be as in proposition (5.3.20).
Consider the R-submodule Hπ of H (cf. (5.3.17)) of functions f ∈ H such
that

f(φ) = f(ψ) if [φ] = [ψ], f(ψ) = 0 for ψ not π-admissible.

Then Hπ is a free R-module with the basis{
f[φ] | φ is π-admissible , f[φ](ψ) := δ[φ],[ψ]

}
. (5.3.22)

Theorem 5.3.23 The R-submodule Hπ is stable under the Fourier trans-
form T defined in (5.3.17). The matrix of T |Hπ in the basis (5.3.22) is as
follows:

T (Y, π) :=

(−1)m(e−1)

τ(e)m
∑
ν∈[φ]

ε(ν)ε(ψ)
∏
y∈Y

ζ−ν(y)ψ(y)


f[φ],f[ψ]

Proof. Cf. [Mal95, (4.8), (4.10)] and remark (5.3.21) �
Define a parametrization of the basis (5.3.22) by F (cf. Prop. (5.3.20))

ιF : F → Hπ : S 7→ f[κ−1(S)]. (5.3.24)

Definition 5.3.25 Let S be a matrix whose lines and columns are indexed
by the set U(Wn) (cf. 5.3.4) and whose entries are defined as follows

SS,S′ :=
{
T (Y, π)ιF (S),ιF (S′) if S and S′ lie in the same Family F ,
0 if S and S′ lie in different Families

where Y, π are as in (5.3.20), T (Y, π) as in (5.3.23) and ιF as in (5.3.24).
Then S is called the Lusztig Fourier transform matrix (or simply Fourier
matrix) of the group Wn.
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Remark 5.3.26 The Fourier matrix S is a symmetric block-diagonal ma-
trix, whose blocks are indexed by the set of Lusztig families and for a given
Family F the corresponding block is indexed by the reduced Symbols S ∈ F
with the entries of the block independent of the choice of Y, π as in (5.3.20)
and R as in (5.3.17).

Remark 5.3.27 Proposition (5.3.18) implies S−1 = S.

Remark 5.3.28 In the case e = 1(Wn = Sn) the Lusztig families consist
of one element and the matrix S is the identity matrix. In the case e = 2
(Wn is of type Bn) the Fourier matrix just constructed coincides with the
Fourier matrix constructed by Lusztig for Bn.

Definition 5.3.29 Recall that we have an inclusion IrrWn ↪→ U(Wn) (cf.
5.3.6). For a reduced Symbol S ∈ U(Wn) define the fake degree RS to be
zero for S /∈ IrrWn and to be Rχα for S = Sα (cf. (5.3.9)).

Definition 5.3.30 • For an e-Symbol S = (S0, S1, S2, . . . , Se−1) define
the conjugate Symbol S := (S0, Se−1, Se−2, . . . , S1).

• By analogy for an e-partition α = (α0, α1, . . . , αe−1) define its conju-
gate α := (α0, αe−1, . . . , α1).

Remark 5.3.31 It can be easily seen that the complex conjugate χαof χα

is χα; The set U(Wn) as well as each Lusztig family is stable under conjuga-
tion; Conjugation commutes with the inclusion IrrWn ⊂ U(Wn): χα 7→ Sα

(cf. (5.3.3)).

In [Mal95, (4.17)] Malle proves the analogue of the proposition (5.2.8) for
the group Wn:

Proposition 5.3.32 The Fourier matrix S of the group Wn transforms the
vector (DegS)S∈U(Wn) formed by generic degrees to the vector

(
RS
)
S∈U(Wn)

formed by the fake degrees completed by zeros (cf. (5.3.29)).

The above proposition combined with the proposition ((5.3.18)) gives us the
following

Corollary 5.3.33 The Fourier matrix S of the group Wn transforms the
vector (RS)S∈U(Wn) formed by fake degrees to the vector (DegS)S∈U(Wn)
formed by generic degrees.

Proof. It is enough to prove this corollary for any Lusztig family F and
the corresponding block SF of the Fourier matrix S (cf. (5.3.26)). Let Y, π
be as in (5.3.20) and R = C(q). Then from the definition of S (cf. (5.3.25)),
proposition (5.3.32) and proposition (5.3.18) we get

(DegS)S∈F = S3
F
(
RS
)
S∈F = SF (ε(S)RS)S∈F
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where for a reduced Symbol S = (S0, . . . , Se−1) with |Si| = mi and I(S) =
em + 1 we pose ε(S) := (−1)c with c = m

(e−1
2
)

+
∑

1≤i<j≤e−1mimj . The
vector (ε(S)RS)S∈F is equal to the vector (RS)S∈F since RS = 0 for S /∈
IrrWn and ε(S) = 1 for S ∈ IrrWn (cf. (5.3.6)). �

5.4 G(e,e,n) Case
In this section, following Malle [Mal95] again, we present a combinatorial
contruction in the case W̃ (e)

n = G(e, e, n) of the set parametrizing the "unipo-
tent representations" and give formulae for their generic degrees. We also
give Malle’s contruction of the part of the Fourier matrix whose existence is
still conjectural for arbitrary e and n. If e = 2 then the group W̃ (e)

n is of type
Dn, if n = 2 then the group W̃ (e)

n is a dihedral group and Malle’s construc-
tions and formulae agree with the already defined U(W̃ (e)

n ), (Degρ)
ρ∈U(W̃ (e)

n )
and Fourier matrices S for finite Coxeter groups.

5.4.1 Equivalence Classes of e-Symbols.
The main combinatorial objects in Malle’s construction of "unipotent repre-
sentations" are not Symbols but their equivalence classes defined as follows:

Definition 5.4.1 We define equivalence of Symbols as the symmetric ,
transitive closure of the two following operations: cyclic permutation of Si
in S and simultaneous shift to the right of all Si given by (λi,1, . . . λi,mi) 7→
(0, λi,1 + 1, . . . λi,mi + 1).

Definition 5.4.2 Let S be an e-Symbol with I(S) ≡ 0(mod e) (cf. (5.3.1)).

• Define its defect by

def(S) = e− 1
2

I(S)−
e−1∑
i=0

i|Si|.

• By analogy with the representations of the group W̃
(e)
n (cf. (3.4.2))

define s(S) as the cardinality of the set

{0 ≤ i ≤ e− 1|πi(S) = S}

where π is the cyclic permutation of Si in S.

Recall that in (5.3.3) we defined the rank of S. In the case when I(S) = em
its formula looks easier:

rg(S) =
e−1∑
i=0

∑
λ∈Si

λ− e
(
m

2

)
.
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Notation 5.4.3 Denote by [S] the equivalence class in the sense of (5.4.1)
of a Symbol S. Then I(S) mod e, def(S) mod e, s(S) and rg(S) are constant
on the equivalence class [S]. We will denote them by I[S],def[S], s[S] and
rg[S].

5.4.2 Unipotent Representations and Generic Degrees.

In this subsection we introduce the set of "unipotent representations" and
their degrees for the group W̃ (e)

n (cf. [Mal95, (6.3)]).

Definition 5.4.4 Define the multiset

U(W̃ (e)
n ) := { equivalence classes [S] | rg[S] = n, I[S] ≡ def[S] ≡ 0 (mod e)}

where the multiplicity of [S] in U(W̃ (e)
n ) is s[S]. It is called the set of unipo-

tent representations of the group W̃ (e)
n . Their generic degrees are defined as

follows.
Let S be any representative of the equivalence class [S]. Then

Deg[S](q) :=

e

s(S)

(−1)(
e
2)(m2 )+γ(S)(qn − 1)

n−1∏
i=1

(qei − 1) ·
e−1∏
i=0

e−1∏
j=i

∏
(λ,µ)∈Si×Sj
µ<λ if i=j

(qλζi − qµζj)

τ(e)mq(
e(m−1)

2 )+(e(m−2)
2 )+... ·

e−1∏
i=0

Θ(Si, qe)

where

m = I(S)
e

, γ(S) = def(S)
e

(em− 1), τ(e) and Θ(Si, qe) are as in (5.3.4).

Remark 5.4.5 We slightly modified the original definition of Deg of Gunter
Malle multiplying by (−1)γ(S). This makes Deg[S](q) well-defined, i.e. in-
dependent of the choice of S ∈ [S].

Remark 5.4.6 In order to distinguish different copies of [S] in U(W̃ (e)
n ) we

will denote them by [S]0, [S]1 . . . , [S]s[S]−1.

Remark 5.4.7 As it is pointed out in [Mal95, (6.5)] the above definition
of the generic degrees of unipotent representations of W̃ (e)

n agrees with the
definition of the generic degrees of unipotent representations of Dn for e = 2
and of I2(e) for n = 2 (cf. (5.1.27) and (5.2.1)).
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5.4.3 Irreducible Representations and their Degrees
By analogy with the real case and the case G(e, 1, n) we will define an
inclusion Irr(W̃ (e)

n ) ⊂ U(W̃ (e)
n ). Let α = (α0, . . . , αe−1) be any e-partition

of n. By adding zeros if necessary we can think that αi = (0 ≤ αi,1 ≤ . . . ≤
αi,m) for 0 ≤ i ≤ e − 1 and some m. Define a Symbol Sα = (S0, . . . , Se−1)
by Si,j = αi,j + j − 1. Then Sα is a Symbol of rank n with I(Sα) = em

and def(Sα) = 0. Denote by π\Λ(e)
n the set of e-partitions of n modulo the

cyclic permutation π. In (3.4.2) we have seen that Irr(W̃ (e)
n ) is the disjoint

union:

Irr(W̃ (e)
n ) =

∐
α∈π\Λ(e)

n

{χ(α,1), χ(α,ζe/s(α)), . . . , χ(α,(ζe/s(α))(s(α)−1))}.

We define an inclusion of the set Irr(W̃ (e)
n ) into the multiset U(W̃ (e)

n ) as
follows:

For α ∈ π\Λ(e)
n the set {χ(α,1), χ(α,ζe/s(α)), . . . , χ(α,(ζe/s(α))(s(α)−1))}

goes to the s(α) = s[Sα] copies of [Sα] in U(W̃ (e)
n ). (5.4.8)

It is easy to see that this is a well-defined inclusion.

Definition 5.4.9 For an irreducible character µ ∈ Irr(W̃ (e)
n ) we define its

generic degree as γµ(q) := Deg[Sα(µ)].

By analogy with the real and G(e, 1, n) cases, the generic degree of a charac-
ter can be obtained via the symmetrizing trace on a Hecke algebra. Consider
the Hecke algebra H̃(e)

n (cf. (3.4.1)) which is symmetric and split semisim-
ple over C(q). The corresponding symmetrizing form t′0 : H̃(e)

n → C(q) can
be given as the restriction of the symmetrizing form t0 on the Hecke alge-
bra H(e)

n (q, ζ) (cf. [Mal95, lemma(5.11)]). By [GIM00, lemma(4.3)]) t0 is a
Markov trace in the sense of (3.3.1) with all parameters equal to zero, hence
it coincides with the trace τ for z = 0 (cf. (3.4.1)). This and definition
(3.4.4) imply that t′0 coincides with the special Markov trace τ̃e for z = 0.

Lemma (3.4.11) and theorem (3.3.5) applied to the trace τ give us the
following formula for the weights ω′µ of τ̃e:

ω′µ =
(−1)nDeg[Sα(µ)](q)

e(qn − 1)
∏n−1
i=1 (qei − 1)

e−1∑
i=0

Rπi(α(µ))(z, η1, . . . , ηe−1), (5.4.10)

which implies the following:

Proposition 5.4.11 Let

t′0 =
∑

µ∈Irr(W̃ (e)
n )

µ(q)

Sµ
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be the decomposition of the symmetrizing form t′0 into the sum of irreducible
characters of H̃(e)

n . Then we have γµ(q) = S1/Sµ (cf. (2.2.29)) where

S1 = (qn−1)
∏n−1
i=1 (qei−1)

(q−1)n is the Poincare polynomial of W̃ (e)
n .

Let V be the reflection representation of W̃ (e)
n . As in the case G(e, 1, n) we

give the following:

Definition 5.4.12 Let S(V ∗)
W̃

(e)
n

= S(V ∗)/I be the coinvariant algebra of
W̃

(e)
n where I is the ideal of S(V ∗) generated by the homogeneous elements of

S(V ∗)W̃
(e)
n of positive degree. For µ ∈ Irr(W̃ (e)

n ) the graded multiplicity Rµ
of the character µ in S(V ∗)

W̃
(e)
n

is called the fake degree of µ(cf. (5.1.23)
and (5.3.9)).

The following proposition (cf. [Mal95, (5.6)]) gives the formula for fake de-
grees.

Proposition 5.4.13 For an e-Symbol S such that |S0| = |S1| = . . . =
|Se−1| = m define an element δS(q) ∈ C(q) by

δS(q) = 1
s(S)

e−1∏
i=0

∆(Si, qe)
Θ(Si, qe)

·
∑e−1
j=0

∏e−1
i=1

∏
λ∈Si+j q

(e−i)λ

q(
e(m−1)

2 )+(e(m−2)
2 )+...

,

where ∆(Si, qe) are as in (5.3.11). Then the fake degree Rµ of a character
µ ∈ Irr(W̃ (e)

n ) is equal to

(qn − 1)
n−1∏
i=1

(qei − 1)δSα(µ)
(q).

Remark 5.4.14 Gunter Malle uses the symmetric algebra S(V ) in his def-
inition of fake degrees thus we had to slightly change his formula.

5.4.4 Lusztig Families and Fourier Transform Matrix

Malle’s combinatorial definition of the Lusztig families of the group W̃ (e)
n is

similar to the one in the case of G(e, 1, n) (cf. (5.3.4)).

Definition 5.4.15 • As in (5.3.13) we say that two Symbols S and S′
lie in the same Family if and only if as multisets S and S′ contain the
same numbers with the same multiplicities.

• Two equivalence classes of Symbols [S] and [S′] lie in the same Family
if and only if there exist Symbols S1 ∈ [S] and S′1 ∈ [S′] which lie in
the same Family.
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Definition 5.4.16 Families of equivalence classes of Symbols induce a de-
composition of the multiset U(W̃ (e)

n ) into the union of disjoint multisubsets
which are called Lusztig families:

• If s[S] = e then all e copies of [S] in U(W̃ (e)
n ) are Lusztig families with

one element.

• If [S] and [S′] lie in the same Family and s[S] < e (which implies that
s[S′] < e) then all copies of [S] and [S′] in U(W̃ (e)

n ) lie in the same
Lusztig family.

Remark 5.4.17 One can check that whenever W̃ (e)
n is a Coxeter group, the

above definition coincides with the definition of the Lusztig families in the
real case.

Definition 5.4.18 We say that two irreducible characters µ, µ′ ∈ Irr(W̃ (e)
n )

are in the same family (in the real case one says that they belong to the same
two-sided cell) if the corresponding copies of [Sα(µ)] and [Sα(µ′)] belong to
the same Lusztig family.

Remark 5.4.19 Defining families of characters we follow the result of
Maria Chlouveraki (cf. [Chl10, Th. (3.10)]) describing the so-called
Rouquier blocks which are a substitute for the families of characters in the
case of complex reflection groups (cf. [Rou99]).

We continue with Malle’s definition of the Fourier transform matrix.
Let Y be a totally ordered set with em elements, m > 0; Ψ = Ψ(Y ) is

the set of maps

ψ : Y → {0, . . . , e− 1}, such that
∑
y∈Y

ψ(y) ≡ m
(
e

2

)
(mod e),

with the subset Ψ0 of Ψ such that |ψ−1(i)| = m.
For ψ ∈ Ψ let γ(ψ) := em−1

e (m
(e
2
)
−
∑
y∈Y ψ(y)). There is a natural

involution on Ψ

− : Ψ→ Ψ, ψ 7→ ψ with ψ(y) := e− ψ(y) (mod e)

and a symmetric pairing 〈 , 〉 on Ψ given by

〈φ, ψ〉 = ε′(φ)ε′(ψ)
∏
y∈Y

ζ−φ(y)ψ(y)

where ζ = e2πi/e and

ε′(ψ) = (−1)c(ψ)+γ(ψ), c(ψ) = |{(y, y′) ∈ Y × Y |y < y′, ψ(y) < ψ(y′)}|.
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Remark 5.4.20 As in definition (5.4.4) we have changed Malle’s original
formula (cf. [Mal95, 6C]) by the sign (−1)γ(ψ). It won’t be hard to see that
all the good properties of the Fourier transform remain.

Remark 5.4.21 Another small difference with Malle’s original construc-
tion in [Mal95, 6C] is that we work only with the set 1Ψ in his notations.

Definition 5.4.22 For ψ ∈ Ψ define ψ+1 by (ψ+1)(y) := ψ(y)+1(mod e).
It is obvious that ψ + 1 is an element of Ψ.

Definition 5.4.23 Consider the space H̃ of functions from the set Ψ to
some C-algebra R with the following property:

f(ψ) = f(ψ + 1), for any f ∈ H̃, ψ ∈ Ψ.

The operator

T : H̃ → H̃, T (f)(φ) := (−1)m(e−1)

τ(e)m
∑
ψ∈Ψ
〈φ, ψ〉 f(ψ)

is called the Fourier transform on H̃ (τ(e) is defined in (5.3.4)).

In order to show that the image of the Fourier transform is indeed in H̃ we
prove the following:

Lemma 5.4.24 We have 〈φ+ 1, ψ〉 = 〈φ, ψ〉 for any φ, ψ ∈ Ψ.

Proof. By definition we have

〈φ+ 1, ψ〉 = ε′(φ+ 1)ε′(ψ)
∏
y∈Y

ζ−(φ(y)+1)ψ(y) =

(−1)φ−1(e−1)(em−φ−1(e−1))+(em−1)(φ−1(e−1)−m)ε′(φ)ε′(ψ)·

· ζ−m(e2)
∏
y∈Y

ζ−φ(y)ψ(y) = 〈φ, ψ〉 �

Lemma [Mal95, (6.19)] implies the following important property of the
Fourier transform T :

Proposition 5.4.25 For any f ∈ H̃ and ψ ∈ Ψ we have

T 2(f)(ψ) = (−1)m(e−1
2 )ε′(ψ)ε′(ψ)f(ψ),

where − is the involution defined above.

Definition 5.4.26 • Any map π : Y → Z≥0 gives rise to an equivalence
relation ( π-equivalence ) ∼π on Ψ defined as follows

φ ∼π ψ if π ◦ φ−1(i) = π ◦ ψ−1(i) for 0 ≤ i ≤ e− 1.

Denote by [ψ] the equivalence class of ψ under the relation ∼π.
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• An element ψ ∈ Ψ is called π-admissible if the equalities π(y) = π(y′)
and ψ(y) = ψ(y′) imply y = y′.

• We also define the equivalence relation ( π+-equivalence ) ∼π+ on Ψ
as the transitive closure of ∼π and the relation

φ ∼+ ψ if φ = ψ + j for some j.

Denote by [ψ]+ the equivalence class of ψ via the relation ∼π+.

Proposition 5.4.27 Let Y be any totally ordered set as above. For a Sym-
bol S with I(S) = em and def(S) ≡ 0(mod e) consider any map π : Y → Z≥0
such that |π−1(k)| = |{i|k ∈ Si}|.

(a) Let F ′ be the Family of S. Then the map κ from π-equivalence classes
of π-admissible elements of Ψ to F ′ given by

κ : [ψ] 7→ S[ψ], S
[ψ]
i := π(ψ−1(i))

is a well-defined bĳection independent of the choice of S ∈ F ′.

(b) Let F be the Family of the equivalence class [S]. Then the map κ′ from
π+-equivalence classes of π-admissible elements of Ψ to F given by

κ′ : [ψ]+ 7→ [S[ψ]], S
[ψ]
i = π(ψ−1(i))

is a well-defined bĳection independent of the choice of [S] ∈ F .

Proof. Same as in (5.3.20) �
Now we explain how the Fourier transform defined in (5.4.23) provides a
part of conjectural Lusztig Fourier transform matrix of the group W̃ (e)

n .
Fix any Family F of equivalence classes of Symbols. Let Y, π, κ′ be as in

proposition (5.4.27). Consider the R-submodule H̃π+ of H̃ (cf. (5.4.23)) of
functions f ∈ H̃ such that

f(φ) = f(ψ) if [φ]+ = [ψ]+, f(ψ) = 0 for ψ not π-admissible.

Then H̃π+ is a free R-module with the basis{
f[φ]+ | φ is π-admissible , f[φ]+(ψ) := δ[φ]+,[ψ]+

}
. (5.4.28)

Theorem 5.4.29 The R-submodule H̃π+ of H̃ is stable under the Fourier
transform T defined in (5.4.23). The matrix of T |Hπ+

in the basis (5.4.28)
is as follows:

T (Y, π+) :=

(−1)m(e−1)

τ(e)m
∑

ν∈[φ]+

ε′(ν)ε′(ψ)
∏
y∈Y

ζ−ν(y)ψ(y)


f[φ]+ ,f[ψ]+

(5.4.30)
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Proof. We follow [Mal95, (4.8)]. By definition

T (f[φ]+)(ψ) = (−1)m(e−1)

τ(e)m
∑
ν∈Ψ
〈ψ, ν〉 f[φ]+(ν) =

(−1)m(e−1)ε′(ψ)
τ(e)m

∑
ν∈[φ]+

ε′(ν)
∏
y∈Y

ζ−ψ(y)ν(y).

If ψ is not π-admissible then there exist y, y′ ∈ Y such that ψ(y) = ψ(y′)
and π(y) = π(y′). Dividing the set [φ]+ into pairs ν, ν ′ where ν ′(y) =
ν(y′), ν ′(y′) = ν(y) and is the same as ν on the rest of Y we see that the
above sum is equal to zero.

Let ψ be π-admissible. If ψ′ ∼π ψ then T (f[φ]+)(ψ′) = T (f[φ]+)(ψ) by
remark (5.3.21). Thus in order to prove the theorem we need to show that
if ψ′ = ψ+ 1 then T (f[φ]+)(ψ′) = T (f[φ]+)(ψ). And this follows from lemma
(5.4.24) �
Define a parametrization of the basis (5.4.28) by F (cf. (b) in (5.4.27))

ιF : F → Hπ+ : [S] 7→ f[κ′−1([S])]+ . (5.4.31)

Definition 5.4.32 Denote by U ′(W̃ (e)
n ) the set of equivalence classes of

Symbols [S] such that rg[S] = n, I[S] ≡ def[S] ≡ 0 (mod e). Let S′ be
the matrix whose lines and columns are indexed by the set U ′(W̃ (e)

n ) and
whose entries are defined as follows

S′[S],[S′] :=
{
T (Y, π+)ιF ([S]),ιF ([S′]) if |S] and |S′] lie in the same Family F ,
0 if [S] and [S′] lie in different Families

where Y, π are as in (5.4.27), T (Y, π+) as in (5.4.29) and ιF as in (5.4.31).
Then S′ is called pre-Fourier matrix of the group W̃ (e)

n .

Define the vector (R[S])[S]∈U ′(W̃ (e)
n ) of fake degrees by

R[S] :=
{
Rµ if [S] = [Sα(µ)] for µ ∈ Irr(W̃ (e)

n ) (cf. (5.4.13)),
0 otherwise.

Proposition 5.4.33 The pre-Fourier matrix S′ of the group W̃ (e)
n is a sym-

metric matrix which transforms the vector
(
s[S]Deg[S]

)
[S]∈U ′(W̃ (e)

n )
formed by

generic degrees to the vector
(
s[S]R[S]

)
[S]∈U ′(W̃ (e)

n )
where [S] is the equiva-

lence class of Symbols conjugated to the Symbols in [S] (cf. (5.3.30)). .

Proof. Follows from [Mal95, (6.26)] and the fact that 〈φ, ψ + 1〉 = 〈φ, ψ〉
for any φ, ψ ∈ Ψ (cf. (5.4.24)). �
The Lusztig Fourier transform matrix of the group W̃ (e)

n has not been found
yet. But the above proposition makes it natural to make, following Malle,
the following conjecture:
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Conjecture 5.4.34 The conjectural Lusztig Fourier transform matrix S of
the group W̃ (e)

n indexed by the set U(W̃ (e)
n ) has the following properties:

• S is a symmetric, unitary matrix whose fourth power is the identity
matrix.

• If [S] and [S′] are in the same Family then

s[S′]−1∑
j=0

S[S]i,[S′]j = 1
s[S]

S′[S],[S′] for any 0 ≤ i ≤ s[S]− 1,

where S′ is the pre-Fourier matrix defined in (5.4.32).

• If [S]i and [S′]j are in different Lusztig Families then S[S]i,[S′]j = 0.

Remark 5.4.35 Note that the conditions in the above conjecture partially
define the Lusztig Fourier transform matrix:

• If s[S′] = 1 then S[S]i,[S′]0 = 1
s[S]S

′
[S],[S′] for any 0 ≤ i ≤ s[S]− 1.

• If s[S] = e then S[S]i,[S]j = 0 if i 6= j and

S[S]i,[S]i = (−1)m(e−1)

τ(e)m
det(ζ−ij)m0≤i,j≤e−1 = 1.

The last equality agrees with the fact that [S]i are one-element Lusztig
families for [S] with s[S] = e (cf. (5.4.16)).

Define the vector (R[S])[S]∈U(W̃ (e)
n ) of fake degrees by

R[S]i :=
{
Rµ if [S]i is the image of µ ∈ Irr(W̃ (e)

n ) via Irr(W̃ (e)
n ) ↪→ U(W̃ (e)

n ),
0 otherwise.

Proposition 5.4.36 Any matrix with the properties from the conjecture
(5.4.34) transforms the vector

(
Deg[S]i

)
[S]i∈U(W̃ (e)

n )
formed by generic de-

grees to the vector
(
R[S]i

)
[S]i∈U(W̃ (e)

n )
.

Proof. Since both generic and fake degrees are constant on all copies of [S]
in U(W̃ (e)

n ) this proposition is a direct consequence of proposition (5.4.33).
�

Remark 5.4.37 In the case e = 2 or n = 2 (W̃ (e)
n is of type Dn or I2(e))

the Fourier matrix just constructed agrees with the classical constructions
by Lusztig.
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The above proposition combined with the proposition (5.4.25) gives us the
following:

Corollary 5.4.38 Any matrix S with the properties from the conjec-
ture (5.4.34) transforms the vector

(
R[S]i

)
[S]i∈U(W̃ (e)

n )
to the vector(

Deg[S]i

)
[S]i∈U(W̃ (e)

n )
formed by generic degrees.

Proof. Similar to the proof of corollary (5.3.33) �





Chapter 6

Gomi’s Formula

Let (W,S) be a finite Coxeter system. Denote by HW the Iwahori-Hecke
algebra ofW with the parameters qs = q, q′s = −1. In chapter 3 we have seen
a brief history of appearance and construction of special Markov traces on
HW . The classical example of a special Markov trace is the symmetrizing
form t0 on HW (when the parameter z 7→ 0) which can be decomposed
into the sum of irreducible characters of HW with weights equal to the
corresponding generic degrees divided by the Poincare polynomial of W
(the Schur element attached to 1 (cf. (2.2.29))). In turn the generic degrees
can be obtained from the fake degrees using the Fourier matrix of W (cf.
(5.1.28) and (5.2.8)) giving the formula for the weights of the symmetrizing
form t0.

This led Yasushi Gomi to the following idea:
• Consider any special Markov trace (forW of type An, Bn, Dn or I2(m))

with any parameter z.

• Take as an analogue of the fake degrees (which appear in the Molien
series of S(V ), where V affords the reflection representation of W ) the
Molien series of S(V )⊗Λ(V ) where Λ(V ) is the exterior algebra of V .

• Try to obtain a formula for the weights of special Markov traces using
the Molien series and the Fourier matrix.

• Using these formulae obtain certain Markov traces for the finite Cox-
eter groups of exceptional type.

Remark 6.0.1 As we will see the Markov traces he considers are actually
Khovanov-Rozansky traces discussed in chapter 4. (This is still conjectural
for H3 and H4).

Following this idea Gomi [Gom06, (4.1)] constructs traces on HW giving the
formulae for their weights and proves that these traces satisfy the Markov
property (cf. 3.2.1) and are equal to special Markov traces for W of non-
exceptional type. We recall his construction in the next section.
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6.1 Gomi’s Theorem
Let (W,SW ) be a finite Coxeter system. Recall that S = S(V ) and L = Λ(V )
are symmetric and exterior algebras of the n-dimensional C-vector space
V affording the reflection representation of W . We introduce the usual
graduation on S and L posing deg(v) = 1 for v ∈ V \{0} and denote by
Si, Li their homogeneous components of degree i.

Define a bigraded character of W with values in C[[q]][r] by

TrS⊗L(w) =
∑
i≥0

n∑
j=0

TrSi⊗Lj (w)qirj .

Definition 6.1.1 Consider the decomposition of TrS⊗L into the sum of ir-
reducible characters of W :

TrS⊗L =
∑

χ∈IrrW
Pχ(q, r)χ with Pχ(q, r) ∈ C[[q]][r].

The weight Pχ(q, r) is called the Molien series of S ⊗ L for χ.
There is an inclusion IrrW ⊂ U(W ) of the set of irreducible characters into
the set of unipotent representations (cf (5.1.3) and (5.2.2)). For a pair (χ, µ)
of irreducible characters ofW we will denote by Sχ,µ the corresponding entry
of the Fourier matrix of W (cf. (5.1.20), (5.2.6) and (5.2.9)).

For χ ∈ IrrW define the weight ωχ ∈ C(q, r) by

ωχ =
(1− q

1 + r

)n ∑
µ∈IrrW

Sχ,µPµ(q, r). (6.1.2)

Let HW be the Iwahori-Hecke algebra ofW with the parameters qs = q, q′s =
−1. As usual we identify the irreducible characters ofW with the irreducible
characters of HW via χ 7→ χ(q).

In [Gom06, Th. 4.1] Gomi proves the following theorem:

Theorem 6.1.3 (Gomi) Define a trace τg on HW as follows:

τg =
∑

χ∈IrrW
ωχχ(q)

Then
• τg is a Markov trace with the parameter z = r(q−1)

1+r .

• τg coincides with the special Markov traces for W of non-exceptional
type.

Definition 6.1.4 The trace τg is called the special Markov trace or Gomi
trace for the group W .

In the next section we will consider the similar situation in the case of
complex reflection groups G(e, 1, n).
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6.2 An extension of Gomi’s Formula to the Case
of G(e,1,n)

In this section we return to the groupWn = G(e, 1, n) (cf. (5.3)). Recall that
in section (3.3) we gave definition (3.3.10) of the special Markov trace τe on
the spetsial Hecke algebra H. It seems to be the most natural generalization
of the special Markov traces for finite Coxeter groups of type An−1 and Bn.
This will be supported by the theorem below, which is the analogue of
Gomi’s theorem (6.1.3) for finite Coxeter groups.

Definition 6.2.1 Let V be an n-dimensional C-vector space affording the
reflection representaion of Wn. Let S = S(V ∗) and L = Λ(V ∗) be the
symmetric and exterior algebras of the dual space of V . For an e-partition
α of n let χα be the corresponding irreducible character of Wn(cf (3.3.4)).
By analogy with the real case we define the Molien series Pχα(q, r) ∈ C[[q]][r]
for χα as the bigraded multiplicity of χα in the bigraded algebra S ⊗ L (cf
(6.1.1)).

We’ve seen in (5.3.8) that the generic degrees of the irreducible characters
of Wn appear in the weights of the symmetrizing form of the spetsial Hecke
algebra H. This and the fact that the algebra H is the generalization of
the Iwahori-Hecke algebra with the parameters q,−1 make it natural to ask
whether we have the analogue of the formula (6.1.2) for the weights of the
special Markov trace τe?

The answer is "Yes" and is given by the following

Theorem 6.2.2 For χα ∈ IrrWn define the weight ωχα ∈ C[[q]][r] by

ωχα =
(1− q

1 + r

)n ∑
χα′∈IrrWn

SSα,Sα′Pχα′ (q, r), (6.2.3)

where SSα,Sα′ is the entry of the Fourier matrix S of Wn (cf (5.3.25))
corresponding to the pair (Sα, Sα′) of reduced Symbols associated to the e-
partitions α,α′ via (5.3.6).

Let τg be the trace on H defined as follows

τg =
∑

χα∈IrrWn

ωχαχα
(q),

where χα
(q) is the irreducible character of the spetsial Hecke algebra H cor-

responding to the character χα. Then τg coincides with the special Markov
trace τe.

Proof. The idea of the proof is totally analogous to Gomi’s proof that his
trace τg is the special trace of type Bn whenW is of type Bn (cf. [Gom06, Th.
4.1 Type B]).
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We do it in three steps. Each step will be presented as lemma. These
three lemmae combined with corollary (5.3.33) will give the proof of the
theorem.

Lemma 6.2.4 For an e-partition α = (α0, α1 . . . , αe−1) the Molien series
for the character χα is Pχα(q, r) = Rχα

(1−q)nS1Ξα where

Ξα =
e−1∏
k=0

∏
x∈αk

(1 + rqec(x)−1+eδk,0), (6.2.5)

Rχα is the fake degree of the character χα (cf. (5.3.9)), S1 =
∏n

i=1(q
ei−1)

(q−1)n
is the Poincare polynomial of Wn (or the Schur element attached to 1 (cf.
(5.3.8))), c(x) is the content of x ∈ αk (cf. (3.2.4)).

Proof. By definition of χα (cf (3.3.4)) and the Frobenius reciprocity we
have

Pχα(q, r)
= 〈TrS⊗L, χα〉Wn

= 〈TrS⊗L|Wα , ({α0} ⊗ ζ0)� ({α1} ⊗ ζ1)� . . .� ({αe−1} ⊗ ζe−1)〉Wα

=
〈
TrS(V ∗0 )⊗L(V ∗0 ), {α0} ⊗ ζ0

〉
W|α0|

· . . .

·
〈
TrS(V ∗e−1)⊗L(V ∗e−1), {αe−1} ⊗ ζe−1

〉
W|αe−1|

where V ∗ = ⊕e−1
k=0V

∗
k and V ∗k are the dual spaces to the C-vector spaces

affording the reflection representations of W|αk|.
Thus in order to calculate Pχα(q, r) we just need to calculate the ex-

pressions of type
〈
TrS⊗L, {α} ⊗ ζk

〉
Wn

where α is a partition of n and
0 ≤ k ≤ e− 1.

We have〈
TrS⊗L, {α} ⊗ ζk

〉
Wn

= |Wn|−1 ∑
g∈(Ce)n

∑
w∈Sn

{α}(w)ζk(g)
detV (1 + rwg)
detV (1− qwg)

= |Sn|−1 ∑
w∈Sn

{α}(w)e−n
∑

g∈(Ce)n

ζk(g) detV (1 + rwg)
detV (1− qwg)

.

Let us prove the following formula

∆ := e−n
∑

g∈(Ce)n

ζk(g)−1 detV (1 + rwg)
detV (1− qwg)

= qkn
detV (1 + rq−1+eδk,0w)

detV (1− qew)
(6.2.6)

Since each side is the product of terms attached to the cycles of w we can
think without loss of generality that w is the cyclic permutation of the base
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of V . Thus for any variable x we have detV (1 + xwg) = 1− (−x)nζ1(g) for
any g ∈ (Ce)n.

And

∆ = e−n
∑

g∈(Ce)n

ζ1(g)−k(1− (−r)nζ1(g))
1− qnζ1(g)

= e−1
∑e−1
i=0 ζ

−ik(1− (−r)nζi)
∏
j 6=i(1− qnζj)

1− qen

where the last equality is obtained by taking the sum over g ∈ (Ce)n with a
fixed ζ1(g).

Let Ak(q, r) be the numerator of the above fraction. It is a linear poly-
nomial in rn and considering indices modulo e we can write Ak(q, r) =
Bk(q)− (−r)nBk−1(q) where Bk(q) :=

∑e−1
i=0 ζ

−ik∏
j 6=i(1− qnζj). Note that

B0(q) = qn(e−1)∑e−1
i=0

∏
j 6=i(q−n − ζj) = e since the last sum is nothing else

but the derivative of
∏e−1
j=0(q−n − ζj) = q−en − 1 with respect to q−n.

From

Ak(q,−q) = Bk(q)− qnBk−1(q) =
(e−1∑
i=0

ζik
)
(1− qen) = eδk,0(1− qen)

we obtain Bk = eqkn for 0 ≤ k ≤ e− 1.
Finally

∆ = e−1Ak(q, r)
1− qen

= qkn
1− (−rq−1+eδk,0)n

1− qen

and using the fact (1− (−x)n) = detV (1 + xw) we get the formula (6.2.6).
Now by (6.2.6) we have〈
TrS⊗L, {α} ⊗ ζk

〉
Wn

= |Sn|−1 ∑
w∈Sn

{α}(w)q(e−k−eδk,0)ndetV (1 + rq−1+eδk,0w)
detV (1− qew)

= q(e−k−eδk,0)nP{α}(q
e, rq−1+eδk,0) =

= q(e−k−eδk,0)nP{α}(qe, rq−1+eδk,0) =

= Fα,k(q)
∏
x∈α

(1 + rqec(x)−1+eδk,0)

where P{α}(q, r) is the Molien series for the irreducible character {α} of Sn
(which is rational and hence the complex conjugate {α} is {α} itself) and
Fα,k(q) is some element of C(q) (cf. [Gom06, Th. 2.6]).

Using this we get the formula for the Molien series for the irreducible
character χα of Wn:

Pχα(q, r) = F (q)
e−1∏
k=0

∏
x∈αk

(1 + rqec(x)−1+eδk,0)
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where F (q) =
∏e−1
k=0 Fαk,k(q). And from the definition of the Molien series

(cf. (6.2.1)) we obtain

F (q) = Pχα(q, 0) = Rχα

(1− q)nS1
.

This finishes the proof of the lemma. �

Lemma 6.2.7 Let Rα be the specialization of Rα(ξ, η1, . . . , ηe−1) (cf
(3.3.5)) via

u0 7→ q, ξ 7→ z, ui 7→ ζi, ηi 7→ zqi−1 (1 ≤ i ≤ e− 1), z = r(q − 1)
r + 1

.

(6.2.8)
Then

Rα = (1− q)n

(r + 1)n
Ξα (cf. (6.2.5)) (6.2.9)

Proof. Denote by Jk,x the polynomials in the square brackets in the defining
expression for Rα(ξ, η1, . . . , ηe−1) (cf (3.3.5)). Thus we have

Rα(ξ, η1, . . . , ηe−1) =
e−1∏
k=0

∏
x∈αk

[
(−1)e−1

e−1∏
l=0
l 6=k

u−1
l Jk,x

]
.

In order to calculate Jk,x(q), the specializations of Jk,x via (6.2.8) we need
the following simple fact about the symmetric functions of q, ζ, . . . , ζe−1.

Fact 6.2.10 If

(X − q)(X − ζ) . . . (X − ζe−1) = Xe − σ1X
e−1 + σ2X

e−2 − . . .+ (−1)eσe

then σe = (−1)e−1q and σi = (−1)i−1(q − 1) for 0 < i < e.

We consider two cases:
Case k = 0: Here we have

J0,x(q) = z(1− qc(x))
e−1∏
l=1

(qc(x)+1 − ζ l)

+(1− q)
(e−1∑
i=1

(q(e−i)c(x)+e−i−1
i∑

j=1
(−1)i−jzqj−1σi−j) + 1

)
(6.2.10)= z(1− qc(x))

e−1∏
l=1

(qc(x)+1 − ζ l)

+(1− q)
(
z
e−1∑
i=1

(q(c(x)+1)(e−i)−1 + 1
)
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For simplicity introduce the notation Y := qc(x)+1. Then the last expression
is equal to

z

(
1− Y

q

)
(Y e−1 + . . .+ 1)

+ z(1− q)
(
Y e−1

q
+ . . .+ Y

q
+
(1
q
− 1
q

))
+ 1− q

= zq−1(1− Y )(Y e−1 + . . .+ 1) + z(1− q−1) + 1− q
= zq−1(1− Y e) + z(1− q−1) + 1− q
= z(1− Y eq−1) + 1− q

= 1− q
r + 1

(1 + rqec(x)−1+e).

Case k ≥ 1: Using (6.2.10) again we have

Jk,x(q) = z(1− qc(x))(ζkqc(x) − q)
e−1∏
l=1
l 6=k

(ζkqc(x) − ζ l)

+ (1− q)
(
z
e−1∑
i=1

(ζk(e−i−1)q(e−i)c(x)) + ζe−kq
)

Making the notation Y := ζkqc(x) we rewrite the last expression as

z(1− ζ−kY )(Y − q)
e−1∏
l=1
l 6=k

(Y − ζ l) + (1− q)
(
z
e−1∑
i=1

(ζ−kY e−i) + ζ−kq

)

= −ζ−k
[
z(Y − q)(Y e−1 + . . .+ 1)

+ z(q − 1)(Y e−1 + . . .+ Y + (1− 1)) + q(q − 1)
]

= −ζ−k(z(Y e − 1)− z(q − 1) + q(q − 1)) = −ζ−k(z(Y e − q) + q(q − 1))

= ζ−kq
1− q
r + 1

(1 + rqec(x)−1).

This combined with (6.2.10) finishes the proof �

Remark 6.2.11 The above lemma implies that the weight of the special
Markov trace τe corresponding to the irreducible character χα (cf. (3.3.5))
is equal to

(1− q)n

(r + 1)n
Dα(q)Ξα

where Dα(q) := DSα(q; 1, ζ, . . . , ζe−1).
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Lemma 6.2.12 For an e-partition α of n let Sα = (S0, . . . , Se−1) be the
corresponding reduced Symbol with I(S) = em + 1 (cf. (5.3.6)). Then Ξα

(cf. (6.2.5)) depends only on the multiset Sα and thus is constant on the
family of χα (cf. (5.3.16)).

Proof. In order to prove the lemma we will show that the multiset

Cα := {c(x0) + 1 +m, c(x1) +m, . . . , c(xe−1) +m|xi ∈ αi, 0 ≤ i ≤ e− 1}

depends only on the multiset Sα. Indeed, it is not hard to see that the
multiset

Cα0 := {c(x) +m+ 1|x ∈ α0}

is obtained from the multiset

{S0,m+1, S0,m+1 − 1, . . . , 1, 0, S0,m, S0,m − 1, . . . , 0, . . . , S0,1, . . . , 0}

by removing its multisubset

{m,m− 1, . . . , 1, 0,m− 1,m− 2, . . . , 0, . . . , 1, 0, 0}.

And the multisets

Cαi := {c(x) +m|x ∈ αi} (1 ≤ i ≤ e− 1)

are obtained from the multisets

{Si,m, Si,m − 1, . . . , 1, 0, Si,m−1, Si,m−1 − 1, . . . , 0, . . . , Si,1, . . . , 0}

by removing their multisubsets

{m− 1,m− 2, . . . , 1, 0,m− 2, . . . , 0, . . . , 1, 0, 0} �

Now we are ready to finish the proof of the theorem. If we pose r = 0 then
z = 0 and the trace τe is just the symmetrizing form t0 on the spetsial Hecke
algebra H (cf. [GIM00, Lemma 4.3]).

From (6.2.11) and (5.3.8) we obtain two decompositions of t0:

t0 =
∑

χα∈IrrWn

(1− q)nDα(q)χα
(q) =

∑
χα∈IrrWn

γχα(q)
S1

χα
(q).

Thus
Dα(q) = γχα(q)

(1− q)nS1
(5.3.33)=

∑
χα′∈IrrWn

SSα,Sα′

Rχα′

(1− q)nS1
.

If χα and χα′ are in the same family then by lemmae (6.2.4), (6.2.7) and
(6.2.12) we have

Ξα
Rχα′

(1− q)nS1
(6.2.12)= Ξα′

Rχα′

(1− q)nS1
= Pχα′ (q, r).
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Let us apply the above equalities to the weight
(

1−q
1+r

)n
Dα(q)Ξα of τe cor-

responding to the character χα (cf. (6.2.11)):(1− q
1 + r

)n
Dα(q)Ξα =

(1− q
1 + r

)n ∑
χα′∈IrrWn

SSα,Sα′Ξα
Rχα′

(1− q)nS1

=
(1− q

1 + r

)n ∑
χα′∈IrrWn

SSα,Sα′Pχα′ (q, r)

= ωχα

since SSα,Sα′ = 0 when χα and χα′ are in different families (cf. (5.3.25)).
This finishes the proof of the theorem. �

6.3 An extension of Gomi’s Formula to the Case
of G(e,e,n)

In this section we consider the case of the group W̃ (e)
n = G(e, e, n). At the

moment the Lusztig Fourier matrix for the group W̃
(e)
n is not completely

defined, but we will prove that the conditions on the matrix S in the con-
jecture (5.4.34) are sufficient to formulate and prove the analogue of Gomi’s
theorem (6.1.3) for the group W̃ (e)

n .

Theorem 6.3.1 For µ ∈ IrrW̃ (e)
n define the weight ωµ ∈ C[[q]][r] by

ωµ :=
(1− q

1 + r

)n
·

∑
µ′∈IrrW̃ (e)

n

Sµ,µ′Pµ′(q, r), (6.3.2)

where Sµ,µ′ is the entry of the matrix S from the conjecture (5.4.34) and
Pµ′(q, r) is the Molien series for µ′ defined by analogy with (6.2.1).

Let τg be the trace on the Hecke algebra H̃(e)
n (cf. (3.4.1)) defined as

follows
τg :=

∑
µ∈IrrW̃ (e)

n

ωµµ
(q),

where µ(q) is the irreducible character of the Hecke algebra H̃(e)
n correspond-

ing to the character µ of W̃ (e)
n . Then τg coincides with the special Markov

trace τ̃e for the group W̃ (e)
n with the parameter z = r(q−1)

r+1 (cf. (3.4.4)).

Proof. In order to prove the theorem we need to show that for any µ ∈
IrrW̃ (e)

n the weight ωµ of τg is equal to the weight ω′µ of τ̃e for z = r(q−1)
r+1 (cf.

(3.4.10)). We use some ideas from Gomi’s proof of theorem (6.1.3) in the
case when W is of type Dn (cf. [Gom06, (4.5)]). We start with the following
simple lemma:
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Lemma 6.3.3 For any µ ∈ IrrW̃ (e)
n the weight ωµ ∈ C[[q]][r] is a rational

function from C(q, r).

Proof. To prove that ωµ ∈ C(q, r) it is enough to prove that Pµ′(q, r) ∈
C(q, r) for any µ′ ∈ IrrW̃ (e)

n . By definition of the Molien series we have:

Pµ′(q, r) =
〈
TrS⊗L|W̃ (e)

n
, µ′
〉
W̃

(e)
n

=
∑

w∈W̃ (e)
n

µ′(w)detV (1 + rw)
detV (1− qw)

∈ C(q, r),

where S ⊗C L is the C-algebra from (6.2.1). �

The above lemma and the fact that ω′µ ∈ C(q, z) = C(q, r) (cf. (3.4.3))
imply that if we prove that ωµ = ω′µ for r = −qem+1 for all large enough
integers m then we will prove the theorem. We will need the following
notation:

Notation 6.3.4 For an e-Symbol S = (S0, . . . , Se−1) with Si = (0 ≤ λi,1 <
. . . λi,m) and 0 ≤ k ≤ e− 1 define the Symbols

kS(0) :=


0 λ−k,1 + 1 . . . λ−k,m + 1

λ1−k,1 + 1 . . . λ1−k,m + 1
...

...
λe−1−k,1 + 1 . . . λe−1−k,m + 1

 . (6.3.5)

These Symbols are reduced in the sense of (5.3.3).

We proceed with two lemmae giving us expressions for Pµ(q,−qem+1) and
ω′µ for r = −qem+1.

Lemma 6.3.6 Let µ ∈ IrrW̃ (e)
n and S = Sα(µ) is the Symbol with em entries

attached to an e-partition α(µ) for µ (cf (5.4.3)). Then we have:

ω′µ =
( 1− q

1− qem+1

)n
·

∏e−1
i=0 Θ(0S(0)

i , qe)
qm

2(e2)Um
∏n
i=1(qei − 1)

· 1
s(α(µ))

·
e−1∑
k=0

DegkS(0)(q),

where Um =
(∏m−1

i=1
∏m−i
j=1 (qej − 1)

)e
·
∏m
j=1(qej − 1); generic degrees

DegkS(0)(q) and Θ(0S(0)
i , qe) are as in (5.3.4).

Proof. By (5.4.10) we have

ω′µ =
(−1)nDeg[Sα(µ)](q)

e(qn − 1)
∏n−1
i=1 (qei − 1)

e−1∑
k=0

Rπk(α(µ))(z, η1, . . . , ηe−1).
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If r = −qem+1 then z = qem+1(q−1)
qem+1−1 and by (3.4.1) we get ηi = qm(e−i)(q−1)

qem+1−1 .
Denote the entries of the Symbol S by Si = (λi,1, . . . , λi,m). By (3.3.6) we
get

Rπk(α(µ))(z, η1, . . . , ηe−1) =
( 1− q
qem+1 − 1

)n
·

·
e−1∏
i=0

∏
x∈α(µ)i−k

(ζiqc(x)+m+1 − 1)(ζiqc(x)+m − ζ) . . . (ζiqc(x)+m − ζe−1) =

( 1− q
qem+1 − 1

)n
·
e−1∏
i=0

(
m∏
j=1

qλi−k,j+1ζi − 1
qjζi − 1

·
∏

x∈α(µ)i−k

(qe(c(x)+m) − 1)
)

=

= (−1)m(e−1)·
( 1− q
qem+1 − 1

)n
·
∏e−1
i=0

∏m
j=1(qλi−k,j+1ζi − 1) ·

∏e−1
i=0 Θ(Si, qe)

Um
.

In the last two equalities we used the fact that the multisets

{c(x) +m|x ∈ α(µ)i−k}

are obtained from the multisets

{λi−k,m, λi−k,m − 1, . . . , 1, 0, λi−k,m−1, λi−k,m−1 − 1, . . . , 0, . . . , λi−k,1, . . . , 0}

by removing their multisubsets

{m− 1,m− 2, . . . , 1, 0,m− 2, . . . , 0, . . . , 1, 0, 0}.

Combining the expression for Rπk(α(µ))(z, η1, . . . , ηe−1) and formulae for
Deg[Sα(µ)](q) (cf. (5.4.4)) we obtain:

ω′µ = 1
s(S)

(−1)(
e
2)(m2 )+m(e−1) ·

e−1∏
i=0

e−1∏
j=i

∏
(λ,µ)∈Si×Sj
µ<λ if i=j

(qλζi − qµζj)

τ(e)mq(
e(m−1)

2 )+(e(m−2)
2 )+...Um

·

·
( 1− q

1− qem+1

)n
·
e−1∑
k=0

e−1∏
i=0

m∏
j=1

(qλi−k,j+1ζi − 1).

Multiplying the numerator and the denominator of the above fraction
by qe(

m
2 )+m2(e2) and comparing the summands in the above sum with the

formulae for DegkS(0)(q) (cf. (5.3.4)) we finish the proof of the lemma. �

Lemma 6.3.7 Keeping the notations from the previous lemma we have the
following formula:

Pµ(q,−qem+1) =
∏e−1
i=0 Θ(0S(0)

i , qe)
qm

2(e2)Um
∏n
i=1(qei − 1)

· 1
s(α(µ))

·
e−1∑
k=0

RkS(0) ,
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where RkS(0) are fake degrees corresponding to kS(0) (cf. (5.3.29)).

Proof. We consider the group W̃
(e)
n as a subgroup of the group W

(e)
n :=

G(e, 1, n). Both W̃ (e)
n and W (e)

n act on the C-algebra S ⊗C L (cf. (6.2.1)).
By Frobenius reciprocity we have:

Pµ(q, r) =
〈
TrS⊗L|W̃ (e)

n
, µ
〉
W̃

(e)
n

=
〈

TrS⊗L, IndW
(e)
n

W̃
(e)
n

µ

〉
W

(e)
n

=

=
〈

TrS⊗L,
1

s(α(µ))

e−1∑
k=0

χπk(α(µ))

〉
W

(e)
n

= 1
s(α(µ))

e−1∑
k=0

Pχ
πk(α(µ))

(q, r).

For 0 ≤ k ≤ e − 1 denote the Symbols Sπk(α(µ)) (cf. (5.3.6)) by πkS.
Combining the formula for Molien series from lemma (6.2.4) and the formula
for fake degrees from proposition (5.3.11) we have:

Pµ(q,−qem+1) = (−1)n

s(α(µ))

e−1∑
k=0

e−1∏
i=0

∆(πkSi, qe)
Θ(πkSi, qe)

·
∏e−1
i=1

∏
λ∈πkSi q

(e−i)λ

q(
e(m−1)+1

2 )+(e(m−2)+1
2 )+...

·

e−1∏
i=0

∏
x∈α(µ)i−k

(1− qe(c(x)+m+eδi,0)) =

= 1
s(α(µ))

e−1∑
k=0

∏e−1
i=0 ∆(πkSi, qe) ·

∏e−1
i=1

∏
λ∈πkSi q

(e−i)λ

q(
e(m−1)+1

2 )+(e(m−2)+1
2 )+...Um

.

The definitions of kS(0) and πkS imply that the Symbol kS(0) can be ob-
tained from πkS by adding 1 to all entries in the rows 1, . . . , e − 1. Hence
multiplying the numerators and the denominators of the fractions in the
above sum by qe(e−1)(m2 )+m(e2) and comparing the summands with the for-
mulae for RkS(0) (cf. (5.3.11)) we finish the proof of the lemma. �

Let Fµ be the Family of the equivalence class [Sα(µ)] (cf. (5.4.15)).
Denote by Fµ0 the subset of Fµ of equivalence classes whose Symbols have
the same number of elements in each row. It is easy to see that Fµ0 is the
intersection of Fµ and {[Sα(µ′)] | µ′ ∈ IrrW̃ (e)

n }.
Let as above S = Sα(µ) be a Symbol with em entries. We will work with

the groupWn+m(e−1) = G(e, 1, n+m(e−1)). Denote by F the Lusztig Fam-
ily in the sense of (5.3.14) of the reduced symbol 0S(0) ∈ U(Wn+m(e−1)) and
by F0 the intersection F ∩ IrrWn+m(e−1) where IrrWn+m(e−1) is considered
as a subset of U(Wn+m(e−1)). For an equivalence class [S′] ∈ Fµ0 denote by
S′ any of its representatives with em elements. Then one can see that the
disjoint union

F (0)
0 :=

∐
[S′]∈Fµ0

{0S′(0), 1S
′(0), . . . , e/s[S

′]−1S
′(0)}
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is equal to the subset of F0 made up by Symbols with zero in the upper row.
Let S∗ be the Lusztig Fourier transform matrix of the group Wn+m(e−1)

(cf. (5.3.25)). By corollary (5.3.33) the matrix S∗ indexed by the
set U(Wn+m(e−1)) sends the vector (RS′)S′∈U(Wn+m(e−1)) to the vector
(DegS′)S′∈U(Wn+m(e−1)). Restricting ourselves to the block of S∗ correspond-
ing to the Family F we see that the part of S∗ indexed by the set F0 sends
the vector (RS′)S′∈F0

to the vector (DegS′)S′∈F0
since the vector (RS′)S′∈F

is zero outside of F0. In particular

DegkS(0) =
∑
S′∈F0

S∗kS(0),S′RS′ , 0 ≤ k ≤ e− 1.

Taking the sum of the above equalities for 0 ≤ k ≤ e− 1 we get

e−1∑
k=0

DegkS(0) =
∑
S′∈F0

(e−1∑
k=0

S∗kS(0),S′

)
RS′ . (6.3.8)

Lemma 6.3.9 Let [S] be in Fµ0 and S be a representative of [S] with em
elements. Let S′ ∈ F0.

(a) If S′ /∈ F (0)
0 then ∑e−1

k=0 S∗kS(0),S′
= 0.

(b) If S′ ∈ F (0)
0 define S′′ by S′ = iS

′′(0) for some i. Then

e−1∑
k=0

S∗kS(0),S′ = S′[S],[S′′]

where S′ is the pre-Fourier matrix of the group W̃
(e)
n defined in

(5.4.32).

Proof. Let Y be a totally ordered set with em elements and π : Y → Z≥0
be a map corresponding to the Lusztig Family Fµ (cf. (5.4.27)). Denote
by Y ∗ the totally ordered set Y t {y} where y is the maximal element. Let
π∗ : Y ∗ → Z≥0 be the map defined by

π∗(y) =
{
π(y) + 1 if y ∈ Y,
0 if y = y.

Then the Fourier transform T (Y ∗, π∗) can be used to construct the block
corresponding to the Family F of the Lusztig Fourier transform matrix S∗
(cf. (5.3.25)). Denote by Ψ∗ the set of maps

ψ : Y ∗ → {0, . . . , e− 1}, such that
∑
y∈Y ∗

ψ(y) ≡ m
(
e

2

)
(mod e),
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with the subset Ψ∗0 of Ψ∗ such that |ψ−1(i)| = m + δ0,i (cf. (5.3.4)). For
ψ ∈ Ψ∗ we will denote by ψ ⊕ j the element of Ψ∗ such that (ψ ⊕ k)(y) ≡
ψ(y) + k − kδy,y(mod e). We keep unchanged other notations from (5.3.4).

Let [φ] = κ−1(0S(0)) where κ is from (5.3.20)). Then [φ⊕k] = κ−1(kS(0))
for any 0 ≤ k ≤ e − 1. By theorem (5.3.23) and definition (5.3.25) of the
Lusztig Fourier transform matrix S∗ we have:

e−1∑
k=0

S∗kS(0),S′ =
(−1)m(e−1)

τ(e)m
e−1∑
k=0

∑
ν∈[φ⊕k]

ε(ν)ε(ψ)
∏
y∈Y ∗

ζ−ν(y)ψ(y) (6.3.10)

where ψ is any representative of the equivalence class κ−1(S′).
It is not hard to see that if ν ∈ [φ] ⊂ Ψ∗ then ε(ν⊕k) = (−1)km(e−1)ε(ν)

and ν ⊕ k ∈ [φ⊕ k]. Hence the above sum is equal to

(−1)m(e−1)

τ(e)m
ε(ψ)

∑
ν∈[φ]

ε(ν)
e−1∑
k=0

(−1)km(e−1) ∏
y∈Y ∗

ζ−(ν(y)⊕k)ψ(y). (6.3.11)

We have

e−1∑
k=0

(−1)km(e−1) ∏
y∈Y ∗

ζ−(ν(y)⊕k)ψ(y) =

∏
y∈Y ∗

ζ−ν(y)ψ(y) ·
e−1∑
k=0

(−1)km(e−1) ∏
y∈Y

ζ−kψ(y) =

∏
y∈Y ∗

ζ−ν(y)ψ(y) ·
e−1∑
k=0

ζkψ(y),

where the second equality comes from the fact that ψ(y) +
∑
y∈Y ψ(y) ≡

m
(e
2
)
(mod e). The fact S′ /∈ F (0)

0 implies that ψ(y) 6= 0 hence
∑e−1
k=0 ζ

kψ(y) =
0. This proves the first part of the lemma.

In order to prove the second part we will use the notations from (5.4.4).
Let Ψ be the set of maps

ψ : Y → {0, . . . , e− 1}, such that
∑
y∈Y

ψ(y) ≡ m
(
e

2

)
(mod e),

with the subset Ψ0 of Ψ such that |ψ−1(i)| = m. Then there is the obvious
bĳection

Ψ∗(0)0 := {ψ ∈ Ψ∗0 | ψ(y) = 0} −→ Ψ0 given by ψ 7→ ψ̃ : ψ̃(y) = ψ(y), y ∈ Y.

It is obvious that if ψ = φ⊕ k then ψ̃ = φ̃+ k. The fact that y is maximal
in Y ∗ implies that ε(ψ) = ε′(ψ̃) for ψ ∈ Ψ∗(0)

0 . Let ψ be any representative
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of the equivalence class κ−1(iS′′(0)). Then formula (6.3.10) implies

e−1∑
k=0

S∗kS(0),S′ =
(−1)m(e−1)

τ(e)m
e−1∑
k=0

∑
ν̃∈[φ̃]+

ε′(ν̃)ε′(ψ̃)
∏
y∈Y

ζ−ν̃(y)ψ̃(y)

Comparing the above expression with the formula (5.4.30) we see that it
coincides with the entry indexed by (f[φ̃]+

, f[ψ̃]+
) of the matrix T (Y, π+).

The facts that [φ] = κ−1(0S(0)) and [ψ] = κ−1(iS′′(0)) imply that ιF ([S]) =
f[φ̃]+

and ιF ([S′′]) = f[ψ̃]+
where ιF is defined in (5.4.31). Hence by (5.4.32)

we have T (Y, π+)f
[φ̃]+

,f
[ψ̃]+

= S′[S],[S′′]. This finishes the proof of the lemma.
�
Formula (6.3.8) and the above lemma imply

e−1∑
k=0

DegkS(0) =
∑

S′∈F(0)
0

(e−1∑
k=0

S∗kS(0),S′

)
RS′ =

∑
[S′′]∈Fµ0

S′[S],[S′′]

e/s[S′′]−1∑
i=0

RiS
′′(0) =

∑
[S′′]∈Fµ0

S′[S],[S′′]
s[S′′]

e−1∑
k=0

RkS
′′(0) .

Now we are ready to prove that ωµ = ω′µ for r = −qem+1.
We start with the case when s(α(µ)) < e. Let F ′µ be the family of µ ∈
IrrW̃ (e)

n ⊂ U(W̃ (e)
n ) (cf. (5.4.18)). Then

F ′µ =
∐

[S′]∈Fµ0

{[S′]0, . . . , [S′]s[S′]−1}.

We denote by ν(F ′µ) the following expression figuring in lemmae (6.3.6) and
(6.3.7): ∏e−1

i=0 Θ(0S(0)
i , qe)

qm
2(e2)Um

∏n
i=1(qei − 1)

.

It is not hard to see that it is independent of the choice of µ in the family
F ′µ.

Properties of the matrtix S from the conjecture (5.4.34) and the formula
for Pµ′(q,−qem+1) in lemma (6.3.7) imply:

ωµ =
( 1− q

1− qem+1

)n
·

∑
µ′∈IrrW̃ (e)

n

Sµ,µ′Pµ′(q,−qem+1) =

( 1− q
1− qem+1

)n
·
∑
µ′∈F ′µ

Sµ,µ′Pµ′(q,−qem+1) =
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( 1− q
1− qem+1

)n
ν(F ′µ)

∑
[S′]∈Fµ0

1
s[S′]

s[S′]−1∑
j=0

Sµ,[S′]j
e−1∑
k=0

RkS
′(0) =

( 1− q
1− qem+1

)n
ν(F ′µ) ·

1
s(α(µ))

·
∑

[S′]∈Fµ0

S′[S],[S′]
s[S′]

e−1∑
k=0

RkS
′(0) =

( 1− q
1− qem+1

)n
ν(F ′µ) ·

1
s(α(µ))

·
e−1∑
k=0

DegkS(0)
(6.3.6)= ω′µ.

We pass to the case when s(α(µ)) = e. In this case we have F ′µ = {µ},Fµ0 =
{[S]} and F = {0S(0)}. Hence

ωµ =
( 1− q

1− qem+1

)n
Pµ(q,−qem+1) (6.3.7)=

( 1− q
1− qem+1

)n
ν(F ′µ)R0S(0) .

Corollary (5.3.33) combined with the fact that the Lusztig family of 0S(0)

has only one element implies Deg0S(0) = R0S(0) . Thus ωµ = ω′µ and the
theorem is proved. �



Chapter 7

Gomi and
Khovanov-Rozansky Traces

This chapter is devoted to the proof of the following conjecture:

Conjecture 7.0.1 (Jean Michel) Let (W,S) be a finite Coxeter system.
Then the Khovanov-Rozansky trace τkr (cf. (4.4.8)) coincides with the spe-
cial Markov trace τg for the group W introduced by Gomi (cf. (6.1.3)).

This conjecture tells us that the special Markov trace, the main subject of
the study in this thesis, can be constructed using the Hochschild homology
of Soergel bimodules from chapter 4.

7.1 Case of Weyl Groups
In this section we present a sketch of Ben Webster and Geordie Williamson’s
proof of Jean Michel’s conjecture in the case whenW is a Weyl group. Their
proof uses some difficult geometric notions which we will not define in this
thesis. Interested readers can look at their article [WW09].

Let G be a connected affine algebraic group over Fq, split over Fq, con-
taining a rational Borel subgroup B and a split maximal torus T1 ⊂ B such
thatW = NG(T1)/T1. For w ∈W denote by ẇ a representative in NG(T1)
of w.

Definition 7.1.1 Let ICw denote the intersection cohomology complex cor-
responding to the B × B orbit BẇB, normalized so that the restriction of
ICw to BẇB is the constant sheaf QlBẇB shifted by l(w) and Tate-twisted
by l(w)/2.

Let B∆ ⊂ B × B be the diagonal subgroup. Denote by H∗B∆
(ICw) the

B∆-equivariant cohomology of ICw. Webster and Williamson use that it is
a bigraded vector space by the weight of the Frobenius map and the degree
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of the cohomology. This allows them to construct a trace Tr on the Hecke
algebra HW (HΓ in their notation) as follows:

Theorem 7.1.2 (Webster-Williamson) For w ∈ W denote by C∗w the
corresponding Kazhdan-Lusztig element in Hw. Let Hi,jB∆

(ICw) be the sub-
space of HiB∆

(ICw) of weight j. Then the linear extension of the function
Tr(C∗w) =

∑
i,j dimHi,jB∆

(ICw)vitj−i is a trace on HW .

Proof. Part of theorem [WW09, Th. 6] �
Theorem [WW08, Th 1.4] and lemma (7.2.6) (which will be proven in the
next section) show us that the above trace Tr multiplied by

(
1−v2
1+vt

)|S|
coin-

cides with the Khovanov-Rozansky trace τkr (cf. (4.4.8)).

Remark 7.1.3 To evade possible confusion in the notations we should point
out that the variable t in theorem (7.1.2) is different from the variable t used
in chapter 4 and in the next section.

Webster and Williamson then show that H∗B∆
(ICw) ∼= H∗G∆

(Kw), where
Kw = indG∆

B∆
ICw is a character sheaf studied by Lusztig whose decompo-

sition into Springer sheaves is described by the Lusztig-Fourier transform.
They finally prove that the G∆-equivariant cohomology of a Springer sheaf
attached to χ ∈ IrrW is described by the Molien series Pχ(v2, vt). This
implies the following theorem:

Theorem 7.1.4 (Webster-Williamson) The weight ωχ of the character
χ in Tr is

ωχ =
∑

µ∈IrrW
Sχ,µPµ(v2, vt)

where Sχ,µ are the entries of Lusztig’s Fourier transform matrix S of W (cf.
(5.1.20).

Comparing the weights ωχ of Tr with the weights ωχ of Gomi’s trace τg (cf.

(6.1.2)) we see that τg coincides with the trace Tr multiplied by
(

1−v2
1+vt

)|S|
.

Thus it coincides with the Khovanov-Rozansky trace τkr and the conjecture
(7.0.1) is proven in the Weyl group case.

7.2 Case of Dihedral Groups
In this section we will work with the dihedral groups I2(m), an important
example of Coxeter groups. Recall its definition.

Definition 7.2.1 Let m be a positive integer. The dihedral group I2(m) is
the Coxeter group with the following presentation

I2(m) =
〈
s0, s1 | s20 = s21 = (s0s1)m = 1

〉
.
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Our goal is to prove Jean Michel’s conjecture (7.0.1) for dihedral groups.

Remark 7.2.2 In our case I2(m) the trace τg is the special Markov trace
τm of type I2(m) (cf. (3.2.19) and (6.1.3)).

Let v, r be variables and z = r(v2−1)
r+1 , t = rv−2. Let K = Q(v, r) = Q(v, z) =

Q(v, t). Denote by Hm the Iwahori-Hecke algebra of type I2(m) over the
field K with the parameters qs0 = qs1 = v2, q′s0 = q′s1 = −1. Recall that it
has the following presentation:

Hm =
〈
T0, T1|T0T1T0 · · ·︸ ︷︷ ︸

m terms

= T1T0T1 · · ·︸ ︷︷ ︸
m terms

, (Ti − v2)(Ti + 1) = 0 i ∈ {0, 1}
〉

We denote by H′m the Iwahori-Hecke algebra of type I2(m) with the param-
eters qs0 = qs1 = v−2, q′s0 = q′s1 = −1.

Remark 7.2.3 Some results in this section are true for any Coxeter system
(W,S). We will denote by HW (by H′W ) the corresponding Iwahori-Hecke
algebra over K with the parameters qs = v2, q′s = −1 (with the parameters
qs = v−2, q′s = −1) and by {Tw}w∈W their standard K-bases.
Recall that in (2.2.15) we have seen the definition of the Kazhdan-Lusztig
basis, an alternative K-basis of HW . In the case of dihedral groups it can
be given explicitly. For any x ∈ I2(m) the corresponding element of the
Kazhdan-Lusztig basis ofHm is C ′x = v−l(x)

∑
y≤x Ty where l(x) is the length

of x and ≤ is the Bruhat order on I2(m). By analogy the Kazhdan-Lusztig
basis of H′W is given by C ′x = vl(x)

∑
y≤x Ty for x ∈W .

Remark 7.2.4 In the next two subsections we will calculate the values of
the Khovanov-Rozansky trace τkr and the special Markov trace τm of dihedral
type on the Kazhdan-Lusztig basis elements C ′x. We will see that the values
of these traces coincide. This proves conjecture (7.0.1) in the dihedral case.

7.2.1 Values of the Khovanov-Rozansky Trace.
Our aim in this subsection is to prove the following

Proposition 7.2.5 Let x ∈ I2(m) and C ′x the Kazhdan-Lusztig basis ele-
ment of Hm. Then the value of the Khovanov-Rozansky trace τkr on C ′x is
as follows:

τkr(C ′x) = v−l(x)(z + 1)
(
v2l(x)−2 − 1
v2 − 1

z + 1
)
.

In (4.4.8) we defined the Khovanov-Rozansky trace τkr using the following
diagram:

KB
〈 · 〉V //

"" ""FFFFFFFF K

HW
τkr

=={{{{{{{{
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where KB is the group algebra of the braid group B corresponding to W .
In fact the above diagram can be enlarged:

Lemma 7.2.6 The following diagram is commutative:

KB
〈 · 〉V //

"" ""EEEEEEEEE K

HW
τkr

<<yyyyyyyyy

α

!!!a
!a

!a
!a

!a

〈R〉 ⊗C[q±1] K

β
kk

H′W
E

==

• Here α is a ring isomorphism defined by α(Ti) = Ti, i ∈ {0, 1} and
α(v) = v−1, α(t) = t;

• E is Soergel’s "categorification" homomorphism (cf. (4.2.2));

• Morphism β is the homomorphism of K-vector spaces defined by

β (〈M〉) =
(

1− v2

1 + r

)n
♠v,t(M) for any M ∈ R.

where ♠v,t(M) is the bigraded dimension of the Hochschild homology
of M (cf. (4.4.7)), n = |S|.

Proof. Since both τkr and β ◦ E ◦ α are K-linear it is enough to check
the commutativity on the basis elements {Tw}w∈W . Consider any reduced
decomposition of w into a product of simple generators si ∈ S of the group
W : w = si1si2 · · · sik , where k = l(w). Let σ = σi1σi2 . . . σik be the braid
group element whose image under the canonical surjection B // //W is w.
Then Tw = Tsi1

Tsi2
. . .Tsik

and the corresponding Rouquier complex F (σ)
has the following components (cf. (4.3.1)):

F j(σ) =


⊕

1≤i1<i2<...<ik−j≤k
Bsi1 ⊗R Bsi2 ⊗R · · · ⊗R Bsik−j for 0 ≤ j < k,

R for j = k,
0 otherwise.

From the other side

β ◦ E ◦ α(Tw) = β ◦ E(Tw) = β

(
k∏
i=1

(〈Bsi〉 − 〈R〉)
)

=β

 k⊕
j=0

⊕
1≤i1<i2<...<ik−j≤k

(−1)j
〈
Bsi1 ⊗R Bsi2 ⊗R · · · ⊗R Bsik−j

〉 .
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Comparing the definitions of β and 〈 · 〉V (cf.(4.4.3)) we have
τkr(Tw) = β ◦ E ◦ α(Tw). �

Notation 7.2.7 For any graded finitely generated R-module M its graded
dimension

∑
i dimCMiv

i is denoted by dimvM .

We also define dimv on the Grothendieck group 〈R〉 by dimv 〈M〉 := dimvM
and extend it on all 〈R〉 by linearity.

By lemma (7.2.6) and Soergel’s theorem (4.2.8) we get that in order to
calculate the value of the Khovanov-Rozansky trace τkr on the Kazhdan-
Lusztig basis element C ′x we must find the value of β(〈R≤x(l(x))〉) or simply
the value of ♠v,t(R≤x(l(x))) =

∑n
j=0 dimv HHj(R, R≤x(l(x)) )tj .

In the case of dihedral groups n = 2 and R = C[x1, x2]. Thus the Koszul
resolution of R consists of three non-trivial terms (cf. (4.1)):

0 −→ Re(−4) −→ Re(−2)⊕Re(−2) −→ Re −→ 0.

Tensoring it with R≤x(l(x)) we get:

0→ R≤x(l(x)− 4)→
R≤x(l(x)− 2)⊕R≤x(l(x)− 2)→ R≤x(l(x))→ 0 (7.2.8)

and we only need to calculate dimv HHj(R, R≤x(l(x)) ) for j ∈ {0, 1, 2}
since all higher Hochschild homology groups are trivial.

Calculation of dimv HH0(R, R≤x(l(x)) ).
Since the above resolution corresponds to the R-bimodule R we have

HH0(R,R≤x(l(x))) = R⊗Re R≤x(l(x)) = R(l(x)).

The second equality can be obtained by applying the functor ⊗ReR to the
short sequence of surjective ring homomorphisms:

Re = R⊗R // //R≤x // //R.

Thus dimv HH0(R, R≤x(l(x)) ) = v−l(x)

(1−v2)2 .
Calculation of dimv HH2(R, R≤x(l(x)) ).

Consider the functor D = Hom−R( , R) from the category R to the category
of R-bimodules. Here we provide our space of homomorphisms of right R-
modules with the obvious Z-grading. For M ∈ R define the right and the
left action of R on DM via the right and left action on the bimodule M by
(r1fr2)(m) = f(r1mr2) for m ∈M .

Proposition 7.2.9 (Soergel) The functor D has the following properties:

• D(M(k)) = D(M)(−k)
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• D(R≤x(l(x))) ∼= R≤x(l(x)) for any x ∈ I2(w).
We apply the functor D to the short sequence (7.2.8). By the proposition
(7.2.9) we obtain the sequence

0←− R≤x(l(x) + 4)←−
R≤x(l(x) + 2)⊕R≤x(l(x) + 2)←− R≤x(l(x))←− 0,

which is up to the shift by −4 isomorphic to the initial short sequence. Using
this and the fact that kernels, images and homologies in the short sequence
(7.2.8) are free as right R-modules we get

D(HH2(R,R≤x(l(x)))) ∼= HH0(R,R≤x(l(x) + 4)).

And since the functor D alternates the shifts we have

dimv HH0(R,R≤x(l(x)))v−4 = dimv−1 HH2(R,R≤x(l(x))) ·
(1− v−2)2

(1− v2)2

Hence
dimv HH2(R,R≤x(l(x))) = vl(x)

(1− v−2)2
.

Calculation of dimv HH1(R, R≤x(l(x)) ).
First of all we note that taking t = −1 we have that ♠v,−1(R≤x(l(x))) is the
Euler characteristic of the complex

0→ R≤x(l(x)− 4)→ R≤x(l(x)− 2)⊕R≤x(l(x)− 2)→ R≤x(l(x))→ 0

and thus is equal to (1− v2)2 dimv R≤x(l(x)).

Lemma 7.2.10

dimv R≤x(l(x)) = (1− v4)(v−l(x) − vl(x))
(1− v2)4

.

Proof. We will consider the indices modulo 2: for index i ∈ {0, 1} the index
i+ 1 ∈ {0, 1} \ {i}. Let α : HW → H′W be as in lemma (7.2.6). By Soergel’s
theorem (4.2.8) we have

〈R≤x(l(x))〉 = E ◦ α(C ′x) = E
(
ql(x)

∑
y≤x

Ty

)
=
∑
y≤x
E
(
ql(x)Ty

)
.

Taking a presentation of any Ty as a product of the generators T0,T1:
Ty = TiyTiy+1Tiy . . .︸ ︷︷ ︸

l(y) terms

, we can write

E
(
ql(x)Ty

)
= E

(
ql(x) TiyTiy+1Tiy . . .︸ ︷︷ ︸

l(y) terms

)
= E(ql(x)) E(Tiy)E(Tiy+1)E(Tiy) . . .︸ ︷︷ ︸

l(y) terms

= 〈R(l(x))〉
(〈
Biy

〉
− 〈R〉

) (〈
Biy+1

〉
− 〈R〉

) (〈
Biy

〉
− 〈R〉

)
· · ·︸ ︷︷ ︸

l(y) terms

,



7.2. Case of Dihedral Groups 117

where Bi = R⊗Rsi R (cf. (4.2)).
Since dimv R = (1 − v2)−2, it is not hard to see that dimv has the

following property:

dimv 〈M ⊗R N〉 = (1− v2)2 dimv 〈M〉dimv 〈N〉

for any R-bimodules M,N ∈ R such that M is free as a right R-module, N
is free as a left R-module. Hence, taking into account the easy formulae

dimv R = 1
(1− v2)2

dimv Bi = 1 + v2

(1− v2)2
,

we get

dimv R≤x(l(x)) = v−l(x)
∑
y≤x

v2l(y)

(1− v2)2
= (1− v4)(v−l(x) − vl(x))

(1− v2)4
. �

From this lemma we obtain

dimv HH1(R,R≤x(l(x))) =
= dimv HH0(R,R≤x(l(x))) + dimv HH2(R,R≤x(l(x)))−♠v,−1(R≤x(l(x)))

= v−l(x) + vl(x)+4 − (1− v4)(v−l(x) − vl(x))
(1− v2)2

.

We can finally calculate the value of the Khovanov-Rozansky trace τkr(C ′x):

τkr(C ′x)

=
(

1− v2

1 + tv2

)2

· v
−l(x) + tv−l(x) + tvl(x)+4 − t(1− v4)(v−l(x) − vl(x)) + t2vl(x)+4

(1− v2)2

= v−l(x)(1 + tv4)(1 + tv2l(x))
(1 + tv2)2

= v−l(x)(z + 1)
(
v2l(x)−2 − 1
v2 − 1

z + 1
)
,

where z = tv2(v2−1)
tv2+1 is a Markov trace parameter.

7.2.2 Values of the Special Markov Trace of Dihedral Type.
In this subsection we prove that the special Markov trace τm takes the same
values on the Kazhdan-Lusztig basis of Hm:

Proposition 7.2.11 Let x ∈ I2(m) and C ′x the Kazhdan-Lusztig basis el-
ement of Hm. Then the value of the special Markov trace τm on C ′x is as
follows

τm(C ′x) = v−l(x)(z + 1)
(
v2l(x)−2 − 1
v2 − 1

z + 1
)
.
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Let q = v2. Recall that by Gomi’s theorem (6.1.3) we have

τm = τg =
∑

φ∈IrrI2(m)
ωφφ(q) (7.2.12)

where

ωφ =
(

1− v2

1 + r

)2 ∑
µ∈IrrI2(m)

Sφ,µPµ(v2, r),

Pµ(v2, r) is the Molien series for µ (cf. (6.1.1)), Sφ,µ is the entry of the
Fourier matrix S of I2(m) corresponding to the pair (φ, µ) of irreducible
characters of I2(m) (cf. (5.2.2) and (5.2.6)).

We prove proposition (7.2.11) by direct calculation. We use the notation
of the CHEVIE system for the irreducible characters of I2(m):

IrrI2(m) =
{
{φ1,0, φ1,m, φ2,1, φ2,2, . . . , φ2,m−1

2
}, if m is odd,

{φ1,0, φ1,m, φ
′
1,m2

, φ′′1,m2
, φ2,1, φ2,2, . . . , φ2,m−2

2
}, if m is even.

Let ξ be an m-th primitive root of 1. The Iwahori-Hecke algebra Hm is split
semisimple over K(ξ) and its irreducible characters are in bĳection with the
irreducible characters of I2(m). As usual we denote by φ(q) the irreducible
character of Hm corresponding to φ ∈ IrrI2(m).

The following theorem can be found in [GP00, Th. (8.3.1)]:

Theorem 7.2.13 (Kilmoyer-Solomon) For an integer j let cj , c′j ∈ C(v)
be such that

cjc
′
j = v2(2 + ξj + ξ−j).

Then up to equivalence, the irreducible representations of Hm are as follows:
• Let m be odd. Then there are two one-dimensional representations
given by

φ
(q)
1,0 : T0 → v2,T1 → v2, φ

(q)
1,m : T0 → −1,T1 → −1,

and (m− 1)/2 irreducible representations of dimension two given by

φ
(q)
2,j : T0 →

[
−1 0
cj v2

]
; T1 →

[
v2 c′j
0 −1

]
for 1 ≤ j ≤ (m−1)/2.

• Let m be even. Then there are four one-dimensional representations
given by

φ
(q)
1,0 : T0 → v2, T1 → v2

φ
(q)
1,m : T0 → −1, T1 → −1

φ
′(q)
1,m2

: T0 → −1, T1 → v2

φ
′′(q)
1,m2

: T0 → v2, T1 → −1
.

and (m− 2)/2 irreducible representations of dimension two given by

φ
(q)
2,j : T0 →

[
−1 0
cj v2

]
; T1 →

[
v2 c′j
0 −1

]
for 1 ≤ j ≤ (m−2)/2
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In order to give the entries of the Fourier matrix S of I2(m) (cf. (5.2.6)) we
need to synchronize our notations with Lusztig’s notations of unipotent rep-
resentations U(I2(m)) (cf. (5.2.1)) and the inclusion IrrI2(m) ⊂ U(I2(m))
(cf. (5.2.2)):

• Case m = 2k + 1:


φ1,0 ↔ 1,
φ1,m ↔ σ,
φ2,i ↔ ρi ↔ (0, i) for 1 ≤ i ≤ k,

• Case m = 2k + 2:



φ1,0 ↔ 1,
φ1,m ↔ σ,
φ2,i ↔ ρi ↔ (0, i) for 1 ≤ i ≤ k,
φ′1,m2

↔ ε′ ↔ (0,m/2)′,
φ′′1,m2

↔ ε′′ ↔ (0,m/2)′′.

The set of irreducible characters IrrI2(m) is decomposed into two singletons
{φ1,0}, {φ1,m} and a family F which consists of the remaining characters. By
the above correspondence the entries of the Fourier matrix S corresponding
to the family F are as follows (cf. (5.2.2)):

Sφ2,j ,φ2,k = Sφ2,k,φ2,j = 2− ξjk − ξ−jk

m
, for 1 ≤ j, k ≤

[
m− 1

2

]
,

Sφ2,j ,φ′1,m2
= Sφ′1,m2

,φ2,j = Sφ2,j ,φ′′1,m2
= Sφ′′1,m2

,φ2,j =

= 1− (−1)j

m
, for 1 ≤ j ≤ m− 2

2
,

Sφ′1,m2
,φ′1,m2

= Sφ′′1,m2
,φ′′1,m2

= 1− (−1)
m
2 +m

2m
,

Sφ′1,m2
,φ′′1,m2

= Sφ′′1,m2
,φ′1,m2

= 1− (−1)
m
2 −m

2m
.

Let ωi,j = ωφ (respectively ω′1,m2 ,ω
′′
1,m2

) be the weight corresponding to φ =
φi,j (respectively φ′1,m2 , φ

′′
1,m2

). Direct calculation shows that

ω1,0 = (z + 1)((v2m−2 − 1)z + v2 − 1)
(v2 + 1)(v2m − 1)

,

ω1,m = (z − v2)((v2m−2 − 1)z − v2m−2(v2 − 1))
(v2 + 1)(v2m − 1)

,

ω2,j = (z + 1)(v2 − z)(2− ξj − ξ−j)
m(v2 − ξj)(v2 − ξ−j)

, for 1 ≤ j ≤
[
m− 1

2

]
,

ω′1,m2
= ω′′1,m2

= 2(z + 1)(v2 − z)
m(v2 + 1)2

.



120 Chapter 7. Gomi and Khovanov-Rozansky Traces

Let x ∈ I2(m). We are ready to calculate τm(C ′x) using the formula (7.2.12).
We may assume that x has even length 2p (once we obtain formulae for such
x’s we will easily get the formulae for all x ∈ I2(m) by induction ). Suppose
(without loss of generality) x = T0T1T0 · · ·T1︸ ︷︷ ︸

2p terms

.

2.4.1) Case m = 2k + 1 is odd.
By Gomi’s formula (7.2.12) we have

ρ := v2pτ(C ′x) = ω1,0
∑
y≤x

φ1,0(Ty)+ω1,m
∑
y≤x

φ1,m(Ty)+
m−1

2∑
j=1

ω2,j
∑
y≤x

φ2,j(Ty)

= (z + 1)((v2m−2 − 1)z + v2 − 1)
(v2 + 1)(v2m − 1)

· (1 + v2) · v
4p − 1
v2 − 1

+ ω1,m · 0

+ (z + 1)(v2 − z)
m

m−1
2∑
j=1

(1− ξj)(1− ξ−j)
(v2 − ξj)(v2 − ξ−j)

×

×
[
2 + 2v2(ξj + ξ−j) + 2v4(ξ2j + ξ−2j) + . . .

+ 2v2(p−1)(ξj(p−1) + ξ−j(p−1)) + v2p(ξjp + ξ−jp)

+ 2v
2 − 1
ξj − 1

(
ξj − 1 + v2(ξ2j − ξ−j) + v4(ξ3j − ξ−2j) + . . .

+ v2(p−1)(ξjp − ξ−j(p−1))
)]

The expression in the square brackets can be reduced to

(1 + v2ξj)v
2pξjp − 1
v2ξj − 1

+ (1 + v2ξ−j)v
2pξ−jp − 1
v2ξ−j − 1

+

2v
2 − 1
ξj − 1

(
ξj
v2pξjp − 1
v2ξj − 1

− v2pξ−jp − 1
v2ξ−j − 1

)

= ξj + 1
ξj − 1

(v2pξjp − 1− (v2pξ−jp − 1)) = v2p ξ
j + 1
ξj − 1

(ξjp − ξ−jp).

Thus

ρ = (z + 1)((v2m−2 − 1)z + v2 − 1)(v4p − 1)
(v2 − 1)(v2m − 1)

+ v2p(z + 1)(v2 − z)
m

m−1∑
j=1

ξjp − ξ−jp

v2 − ξj
.

To continue the calculation we need the following lemma
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Lemma 7.2.14 Let x be a variable, ξ an m-th primitive root of unity and
1 ≤ p ≤ m− 1. Then

m−1∑
j=1

ξ−jp − ξjp

x− ξj
= m(xm−p−1 − xp−1)

xm − 1
.

Proof. After multiplying both sides by xm − 1 we need to compare two
polynomials of degree less than m. Since these polynomials take the same
values for x = ξj , 0 ≤ j ≤ m− 1, they are the same. �
Applying this lemma for x = v2 we get

ρ = z + 1
v2m − 1

·
(

((v2m−2 − 1)z + v2 − 1)(v4p − 1)
q2 − 1

+ v2p(v2 − z)(v2m−2p−2 − v2p−2)
)

= (z + 1)
(
v4p−2

v2 − 1
z + 1

)
.

2.4.2) Case m = 2k is even.
Again by Gomi’s formula (7.2.12) we have

ρ = v2pτ(C ′x) = ω1,0
∑
y≤x

φ1,0(Ty) + ω1,m
∑
y≤x

φ1,m(Ty)

+ ω′1,m2

∑
y≤x

φ′1,m2
(Ty) + ω′′1,m2

∑
y≤x

φ′′1,m2
(Ty) +

m−2
2∑
j=1

ω2,j
∑
y≤x

φ2,j(Ty)

= (z + 1)((v2m−2 − 1)z + v2 − 1)
(v2 + 1)(v2m − 1)

· (1 + v2) · v
4p − 1
v2 − 1

+ ω1,m · 0

+ ω′1,m2
· 0 + ω′′1,m2

· 0 +
m−2

2∑
j=1

ω2,j
∑
y≤x

φ2,j(Ty).

Using the same formulae, lemma (7.2.14) and the obvious fact ξ−
mp
2 −ξ

mp
2 =

0 we obtain

ρ = (z + 1)((v2m−2 − 1)z + v2 − 1)(v4p − 1)
(v2 − 1)(v2m − 1)

+ v2p(z + 1)(v2 − z)
m

m−1∑
j=1

ξjp − ξ−jp

v2 − ξj
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= z + 1
v2m − 1

·
(

((v2m−2 − 1)z + v2 − 1)(v4p − 1)
v2 − 1

+ v2p(v2 − z)(v2m−2p−2 − v2p−2)
)

= (z + 1)
(
v4p−2

v2 − 1
z + 1

)
.

The proposition (7.2.11) is proven.
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