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Abstract

In this thesis, we define and study Poisson and coisotropic structures on derived stacks
in the framework of derived algebraic geometry. We consider two possible presentations
of Poisson structures of different flavour: the first one is purely algebraic, while the
second is more geometric. We show that the two approaches are in fact equivalent. We
also introduce the notion of coisotropic structure on a morphism between derived stacks,
once again presenting two equivalent definitions: one of them involves an appropriate
generalization of the Swiss Cheese operad of Voronov, while the other is expressed in
terms of relative polyvector fields. In particular, we show that the identity morphism
carries a unique coisotropic structure; in turn, this gives rise to a non-trivial forget-
ful map from n-shifted Poisson structures to (n-1)-shifted Poisson structures. We also
prove that the intersection of two coisotropic morphisms inside a n-shifted Poisson stack
is naturally equipped with a canonical (n-1)-shifted Poisson structure. Moreover, we
provide an equivalence between the space of non-degenerate coisotropic structures and
the space of Lagrangian structures in derived geometry, as introduced in the work of
Pantev-Toën-Vaquié-Vezzosi.

Résumé

Dans cette thèse, on définit et on étudie les notions de structure de Poisson et coïsotrope
sur un champ dérivé, dans le contexte de la géométrie algébrique dérivée. On consid-
ère deux présentations différentes de structure de Poisson : la première est purement
algébrique, alors que la deuxième est plus géométrique. On montre que les deux ap-
proches sont en fait équivalentes. On introduit aussi la notion de structure coïsotrope
sur un morphisme de champs dérivés, encore une fois en présentant deux définitions
équivalentes : la première est basée sur une généralisation appropriée de l’opérade
Swiss-Cheese de Voronov, tandis que la deuxième est formulée en termes de champs
de multivecteurs rélatifs. En particulier, on montre que le morphisme identité admet
une unique structure coïsotrope ; cela produit une application d’oubli des structures
de Poisson n-décalées aux structures de Poisson (n-1)-décalées. On montre aussi que
l’intersection de deux morphismes coïsotropes dans un champ de Poisson n-décalé est
naturellement équipée d’une structure de Poisson (n-1)-décalée canonique. En outre,
on fournit une équivalence entre l’espace de structures coïsotropes non-dégénérées et
l’espace des structures Lagrangiennes en géométrie dérivée, introduites dans les travaux
de Pantev-Toën-Vaquié-Vezzosi.
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Introduction

This thesis is concerned with generalizing classical constructions and results from ordinary Poisson
geometry to the broader context of derived algebraic geometry. In particular, we develop the theory
of Poisson and coisotropic structures for derived Artin stacks, which are the main geometric objects
of study of derived algebraic geometry. We study differences and similarities of derived Poisson and
coisotropic structures, with respect to their classical versions. The comparison with the existent
literature about derived symplectic geometry is also discussed. The results contained in this text
should hopefully open the way to a possible deformation quantization of derived coisotropic moduli
spaces.

Derived algebraic geometry was introduced as a homotopical generalization of classical algebraic
geometry. The basic idea behind it is to change the category of affine pieces one uses to construct
geometric objects (schemes, algebraic spaces, stacks). Classically, the building blocks of algebraic
geometry are k-algebras, where k is an ordinary ring; gluing together those elementary pieces, one
produces global geometric objects.

The starting point of derived algebraic geometry is to take as affine pieces simplicial k-algebras,
that is to say simplicial objects in the category of k-algebras. When the characteristic of k is zero,
these can be thought as non positively graded commutative differential graded algebras. In any
case, the category of new affines has some sort of inner homotopical nature: the obvious notion
of equivalence between two derived affines is not an isomorphism, but rather a weak homotopy
equivalence (or a quasi-isomorphism, depending on the model we are working with). It is thus
natural, when gluing such objects, to do it up to weak equivalences.

This vague ideas are formalized using the technology of ∞-categories. Namely, one needs to
present the category of derived affines as an ∞-category, to specify some Grothendieck topology
on it, and to explain how to glue affines with respect to this topology (that is to say, construct an
∞-category of sheaves). This approach has been carried out by Toën and Vezzosi in [HAG-I] and
[HAG-II].

This makes this homotopical version of classical algebraic geometry indeed possible. Motivations
for developing such a theory come from different fields of mathematics, and in particular algebraic
geometry and topology. For example, the so-called hidden smoothness philosophy affirms that
singular moduli spaces are in fact truncations of the “true” higher moduli spaces, which are smooth.

One easy example is the moduli stack Vectn(S) of rank n vector bundles of a smooth projective
surface S: in this case the dimension of the (stacky) tangent space is not locally constant, and thus
Vectn(S) cannot be smooth.

This lack of smoothness is philosophically due to the fact that often times the right moduli space
to consider is the derived one: this is now a geometrically treatable object, whose classical part is
what one saw in classical algebraic geometry.

1
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During the last decade, derived algebraic geometry has become one of the most rapidly expanding
topics in modern mathematics. In particular, the introduction of the notions of symplectic and
Poisson structures on derived stacks provided a formalism in which many previous results and
intuitions found a rigorous and unified treatment. The construction of symplectic and Poisson
structures on moduli spaces has been a central interest in mathematics for many years, and most
of the classically observed symplectic and Poisson structures on moduli spaces have their derived
analogs.

Moreover, derived Poisson geometry paves the way to deformation quantization of derived moduli
spaces: we refer to [CPTVV] and [PV] for more details.

The study of derived symplectic and Poisson geometry is still at its early stages, but it has
already had interesting consequence on the underived level. To mention a few moduli theoretic
results, we mention that (−1)-shifted symplectic structures naturally induce obstruction theories
in the sense of [BF]. Moreover, the results in [BBJ] implies that the Donaldson-Thomas moduli
space, which is (−1)-symplectic, is Zariski locally isomorphic to a critical locus of a potential. More
recently, Shende and Takeda showed in [ST] that there exist derived Lagrangian structures on a
variety of moduli space, such as wild character varieties, certain cluster varieties, multiplicative
Nakajima varieties, and the augmentation variety of knot contact homology of character varieties.

In classical symplectic geometry, the most relevant sub-manifolds of a symplectic manifold are
the Lagrangians. In their paper [PTVV], Pantev, Toën, Vaquié and Vezzosi defined what it means
for a morphisms of derived stacks f : X → Y to have a Lagrangian structures, provided Y is
(shifted) symplectic.

In the ordinary categorical approach to symplectic geometry, Lagrangian submanifolds are the
objects of the symplectic category of [We1]. In classical Poisson geometry, the notion of Lagrangian
submanifold does not make sense, and the role of Lagrangians is now played by coisotropic sub-
manifolds. The importance of coisotropic submanifolds is also evident from the point of view of
deformation quantization: if a Poisson algebra A is quantized to an associative algebra B, then we
have a correspondences{

Coisotropic sub-algebras of A
}
�
{

One sided ideals of B
}
.

This is the so-called Poisson creed of Lu (see [Lu]), which is the Poisson analogue of the symplectic
creed of Weinstein in [We1].

However, contrary to the Lagrangian and symplectic case of [PTVV], the treatment of coisotropic
structures given in [CPTVV] is somewhat unsatisfactory: the definition relies on a conjectural result
(the additivity property of the Poisson operad), and its high level of abstraction implies that it would
be difficult to give concrete examples of coisotropic structures.

The goal of this thesis is precisely to study in detail Poisson and coisotropic structures in derived
algebraic geometry. In a first part (Chapter 1), we give two definitions of derived Poisson structures
on derived affine schemes, prove that they are equivalent, and then extend these notions and their
equivalence to general derived stacks (Chapter 2). We also propose a definition of coisotropic
structures on a morphism; again we start with the case of derived affine schemes (Chapter 3), where
we give two definitions of derived coisotropic structures and prove that they are in fact equivalent.
Then in Chapter 4 we transplant these equivalent definitions in the general context of derived Artin
stacks, and prove derived extensions of many classical results (see for instance [We2]) on coisotropics.

Shifted symplectic structures were introduced in [PTVV], while Poisson structures were studied
in [CPTVV], building on our work [Me]. While classically defining Poisson structures is in no way
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different that defining symplectic structures, things change dramatically as soon as we move in
the derived context. A rapid glimpse at the two papers will convince the reader that there is a
remarkable change of point of view between the two approaches. This is justified by some intrinsic
technical problems in the very definition of shifted Poisson structures. Namely, polyvectors are not
as functorial as differential forms are: given any map of algebras A→ B, there is no sensible way to
define a map between multi-derivations (the algebraic incarnation of polyvectors) on A and on B.
On the other hand, there is a natural notion of pullback of differential forms, which induces a natural
map Ω1

A → Ω1
B, which can be used to define a functorial de Rham algebra of differential forms.

Geometrically, this is nothing more than observing that for smooth manifold the construction of
the tangent bundle is functorial, while the cotangent bundle is not, or at least not in a trivial way.

Another crucial problem is that for a smooth manifold, one defines a Poisson structure on a
smooth manifold X to be a bivector field π such that [π, π] = 0, where the bracket is the Schouten-
Nijenhuis bracket of polyvectors fields on X (see for instance [Va]). Now, if X is taken to be a
derived stack, there is no easy or elementary way to endow its algebra of polyvectors field with
a natural bracket. Said in another way, the canonical Poisson structure that should exist on the
cotangent bundle of a derived stack X is not easy to define. One reason is the fact that we are
working in a ∞-categorical context, and thus there is little hope to construct algebraic structures
explicitly: most of the time we have to deal with algebraic relations that only hold up to homotopy.

In order to overcome such problems, in [CPTVV] the authors had to introduce new and broader
techniques, with the goal of developing differential calculus in very general symmetric monoidal
model categories. Most importantly, they developed a new tool, which they call formal localization,
that will be probably prove to be extremely useful in further developing of derived algebraic geom-
etry. The results presented in this thesis are among other things another proof of the usefulness
and the flexibility of such techniques, since we use them extensively, and often in a relative context
(that is to say, we work with maps instead of working with objects, like in the case of coisotropic
structures on a morphism).

Let us now briefly go through the content of this text.
In chapter 0, we review the notions of formal derived geometry and formal localization, as

introduced and studied in [CPTVV]. We keep the exposition to a minimum, and we do not give
any proof. The interested reader will find details and proofs in the original paper, while an excellent
review is the very recent [PV]. The main object of study is a derived Artin stack X, together with
the natural projection X → XDR to its de Rham stack XDR. The de Rham stack has the same
reduced points of X, and the fundamental property of the projection X → XDR is that its fiber
taken at any closed point x : Spec k → XDR is the formal completion of X at x, which is denoted
X̂x. This allows us to define an algebra PX(∞) inside a properly defined symmetric monoidal ∞-
categoryMX of prestacks over XDR, which knows a lot about the original stack X. In particular
we have an equivalence

Perf(X) ' PX(∞)−modperf ,

where Perf(X) is the ∞-category of perfect complexes on X, and PX(∞) −modperf is a suitably
defined sub-category of PX(∞)-modules. Notice that this is already a very strong result, since in
particular it allows to do differential calculus on X treating it as it was just an algebra inside the
categoryMX . In particular, we have

Symp(X,n) ' Symp(PX(∞), n),
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where Symp(−, n) is the space of n-shifted symplectic structures of [PTVV]. In other terms, the
geometrically defined shifted symplectic structures on X are equivalent to algebraic symplectic
structures on PX(∞).

It seems now reasonable to define n-shifted Poisson structures on X as Pn+1-structures on the
algebra PX(∞), where Pn+1 is the operad encoding dg Poisson algebras with brackets of degree −n.
On the other hand, we are now given an algebra PX(∞), and we could therefore construct its graded
algebra of (shifted) multi-derivations. By the general differential calculus formalism of [CPTVV],
this algebra naturally carries a (shifted) Lie bracket, making it into a shifted Poisson algebra. One
is led to ask whether these two natural definition coincide. Notice that at the classical level, this
is the same of asking if, starting a smooth manifold X, to give a Poisson bracket on the algebra of
functions C∞(X) is the same as to give a bivector π satisfying [π, π] = 0. This is course trivially
true for underived objects, but as explained before the derived nature of the question requires one
to handle it with care.

In chapter 1, we address this precise question. Working in the simpler language of commuta-
tive differential graded algebras, we give two possible (and sensible) definitions of shifted Poisson
structure on an algebra A. Algebraically speaking, one could consider extending the commutative
structure to get a Poisson structure on A. The natural appearance of moduli space of algebraic
structures brings us in the context of operad theory, by which we explicitly study what it means
for A to have a shifted Lie bracket compatible with the given multiplication. Namely, one can give
the following definition.

Definition 0.0.1. Let A be a commutative dg algebra. The space of Pn+1-structures on A is defined
as the pullback of the following diagram

Pn+1(A) //

��

MapdgOp(Pn+1,EndA)

��
∗ //MapdgOp(Comm,EndA)

of spaces, where the bottom map is the given multiplicative structure on A.

Here the fact that we are working in a derived, homotopical context implies that we constantly
have to work with up-to-homotopy algebraic structures and up-to-homotopy compatibilities between
those. This is encoded in the fact that in the above definition, we are using mapping spaces in the
model category of dg operads, which can be computed by first resolving the source. In some way,
MapdgOp(Pn+1,EndA) has to be considered a moduli space of homotopy Pn+1-structures.

On the other hand, A is implicitly thought as a geometric object, namely a derived affine scheme.
As such, under mild assumptions it has a nicely behaved tangent complex TA (which is a dg A-
module), a derived analogue for vector fields. Let us now also introduce a derived analogue for
the algebra of polyvector fields: we denote with Pol(A,n) the graded complex SymA(TA[−n]), and
we will call it the algebra of n-shifted polyvectors. This algebra can be endowed with an explicit
Poisson structure, which is induced (as in the classical case) by the Lie bracket of vector fields. In
particular, Pol(A,n)[n] has a natural structure of graded dg Lie algebra. We now give the second
possible definition of Poisson structures on A, more in line with the ordinary geometric approach
of Poisson geometry.

Let us denote by dgModgr the category of graded cochain complexes. Notice that objects of
dgModgr have two natural gradings, to which we will refer as cohomological grading and weight
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grading. Inside dgModgr, consider the category dgLiegr of graded complexes endowed with a Lie
bracket of cohomological degree 0 and weight degree −1.

Definition 0.0.2. Let A be a commutative dg algebra. The space of n-shifted Poisson structures
on A is

Pois(A,n) := MapdgLiegr(k[−1](2),Pol(A,n+ 1)[n+ 1])

where k[−1](2) is the trivial Lie algebra k sitting in cohomological degree 1 and weight 2.

Note that if A is a classical (not dg) algebra and n = 0, then Pol(A, 1) is the ordinary Ger-
stenhaber algebra of polyvectors fields, described for example in [Va]. If moreover we replace the
mapping space above with the set of strict morphisms of graded dg Lie algebras, then we get pre-
cisely the set of bivectors π on A such that [π, π] = 0. It is thus clear that the definition above is
an homotopical generalization of the ordinary definition of Poisson structures in terms of bivector
fields.

As already mentioned, the homotopical character of the question is such that writing down ex-
plicit equations becomes an hard task, which we however make unnecessary by using a construction
of Kapranov and Manin [KM], and using it to give a relatively clean and equation-free description
of the dg Lie algebra controlling algebraic Poisson structures on A.

The main result of the chapter states that the dg Lie algebra controlling algebraic Poisson struc-
tures on A is in fact equivalent to the polyvectors algebra on A, giving us the expected equivalence
between the two definitions of Poisson structures.

Theorem 0.0.3 ([Me], see also Theorem 1.3.2). Let A be a commutative dg algebra, and suppose
moreover that its cotangent complex LA is a perfect A-module. Then there is a natural isomorphism

Pois(A,n)
∼−→ Pn+1(A)

in the homotopy category of simplicial sets.

At the end of the chapter we also give an alternative way of proving the result, which makes use
of the canonical explicit resolution of the Lie operad.

Theorem 0.0.3 is the fundamental starting point of the theory of derived Poisson geometry, as
developed in [CPTVV]. Using the above result, we are now able to finally define shifted Poisson
structures on a derived Artin stack X. This is done in chapter 2, where we follow the exposition of
[CPTVV] and [PV]. As mentioned, Theorem 0.0.3 plays a fundamental role here, as it guarantees
that one can safely pass from bivectors to algebraic structures. In particular, having an algebraic
description of shifted Poisson structures on derived Artin stacks opens the possibility to discuss
shifted deformation quantization, as in the last section of [CPTVV].

More specifically, thanks to formal localization one can define a polyvectors algebra Pol(X,n).
Then, having in mind to follow the bivector approach, we can define n-shifted Poisson structures
on X using Pol(X,n), exactly as in the affine case.

Definition 0.0.4. Let X be a derived Artin stack, locally of finite presentation. The space of
n-shifted Poisson structures on X is

Pois(X,n) := MapdgLiegr(k[−1](2),Pol(X,n+ 1)[n+ 1])

again dgLiegr is the ∞-category of graded dg Lie algebras over k.
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Alternatively, the formal localization machinery also encodes pretty much all of the geometric
information of X in the prestack PX(∞), together with its DXDR(∞)-linear structure. Another
natural thing to do is to define Poisson structures in terms of additional algebraic structures on the
commutative algebra PX(∞).

Definition 0.0.5. Let X be a derived Artin stack, locally of finite presentation. The space of n-
shifted Poisson structures Pois′(X,n) on X is the space of lifts of the given commutative algebra
structure on PX(∞) to a compatible DXDR(∞)-linear Pn+1-structure. Explicitly, Pois′(X,n) is the
fiber product

Pois′(X,n) //

��

MapdgOp(Pn+1,EndPX(∞))

��
∗ //MapdgOp(Comm,EndPX(∞))

where PX(∞) is viewed as an object inside the symmetric monoidal ∞-category of DXDR(∞)-
modules.

The equivalence of the two definitions above is proven using Theorem 0.0.3. More specifically,
we need a slightly modified version of it: in fact, we observe in chapter 2 that even if we drop the
hypothesis on the cotangent complex being perfect, the theorem remains valid, provided we define
the polyvector algebra only using the cotangent complex. Apart from this caveat, the arguments
given in the proof of Theorem 0.0.3 work exactly in the same way for the general case, so that we
get the following result.

Theorem 0.0.6 (see Theorem 2.2.3). With notations as above, there is a natural equivalence of
spaces

Pois(X,n) ' Pois′(X,n).

Now that the definition of Poisson structure is behind us, we move on in chapter 3 to coisotropic
structures. Given a map f : X → Y between derived Artin stacks, we follow the same path used
for Poisson structures in chapters 1 and 2: thanks to formal localization, we can first start studying
coisotropic structures on f where X and Y are affine, and then apply these definitions to the general
case of derived Artin stacks by passing to the associated algebras PX(∞) and PY (∞).

Contrary to the Poisson case, for a classical coisotropic it is not entirely clear which is the
underlying algebraic structure encoding the geometric information: this thesis solves this problem,
and we will show that the algebraic structure one can see on a classical coisotropic is a particular
case of much more general homotopical algebraic structure.

Let us first of all recall the classical geometric definition of a coisotropic submanifold.

Definition 0.0.7. Let X be a smooth, underived manifold, and let C → X be a sub-manifold. Let
π ∈ Γ(Λ2TX) be a Poisson bivector on X. Then C is said to be coisotropic if the restriction of the
induced map

π∗ : T ∗X −→ TX

to the conormal bundle N∗C lands in TC. Diagrammatically, C if coisotropic if it exists a dotted
arrow

N∗C �
� //

��

T ∗X

��
TC �

� // TX
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making the diagram commute, where the top and the bottom arrows are the natural inclusions.

Remark that we can rephrase this notion by saying that the image of the bivector π in Γ(Λ2(NC))
under the map induced by TX → NC is zero. Having this definition in mind, we can construct a
derived version of it. Let f : A → B a morphism of commutative dg algebras; it induces [HAG-II]
a natural fiber sequence of B-modules

Tf → TB → TA ⊗A B.

Notice that, following the analogy with ordinary differential geometry, TA ⊗A B is the pullback of
the tangent bundle of A (in the case of a sub-manifold, this is just the restriction), and thus Tf [1]
plays the role of the normal bundle. In particular, we can use the previous sequence to get a natural
map of A-modules TA → TA ⊗A B → Tf [1]. This in turn induces a morphism of algebras

SymA(TA[−n− 1]) −→ SymB(Tf [−n])

for every n. Let us denote the homotopy fiber of this map Pol(f, n + 1), and call it the relative
polyvectors algebra of f . Shifting back by n+ 1, we get

Pol(A,n+ 1)[n+ 1] −→ SymB(Tf [−n])[n+ 1].

Notice that the source of the map is naturally a graded dg Lie, while the target is not, for trivial
degree reasons. Thus a priori there is no reasons to Pol(f, n + 1)[n + 1] to be a Lie algebra, since
it is not a limit of Lie algebras. Nevertheless, we prove in chapter 3 that Pol(f, n + 1)[n + 1] does
have a Lie structure, and it moreover fits in the following fiber sequence of graded Lie algebras

SymB(Tf [−n])[n]→ Pol(f, n+ 1)[n+ 1]→ Pol(A,n+ 1)[n+ 1].

The relative polyvectors by definition control coisotropic structures.

Definition 0.0.8. Let f : A→ B a map of commutative dg algebras. Suppose moreover that we are
given an n-shifted Poisson structure π on A. Then the space Cois(f, π) of coisotropic structures on
f relative to π is the space of dotted maps of Lie algebras

SymB(Tf [−n])[n] Pol(f, n+ 1)[n+ 1] Pol(A,n+ 1)[n+ 1]

k[−1](2)

π

making the diagram commute. More precisely, Cois(f, π) is the homotopy fiber of the map of spaces

MapdgLiegr(k[−1](2),Pol(f, n+ 1)[n+ 1]) −→ MapdgLiegr(k[−1](2),Pol(A,n+ 1)[n+ 1])

taken at the point corresponding to π.

By the previous discussion, it is clear that in the case of ordinary affine schemes and n = 0 this
notion is equivalent the classical coisotropic definition.

The natural question is now to find an equivalent algebraic structure on a morphism of algebras:
as we said, this is not an easy goal. One proposal for such a derived algebraic structure is given
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in [Sa]; in order to recall this notion, let us fix some notations. If B is a Pn-algebra, then we can
naturally produce a Pn+1-algebra Z(B), called the Poisson center of B. As a commutative algebra,
we have

Z(B) = ŜymB(T[−n])

where the Lie bracket is the standard Lie bracket of multi-derivations, while the differential has
two components: one given by the internal differential of the B-module TB and another given by
[πB,−]. Notice that there is a natural projections of commutative dg algebras Z(B)→ B.

Let P[n+1,n] be the two-colored operad whose algebras are couples of objects (V,W ) together
with the following additional structure:

• a Pn+1-structure on V ;

• a Pn-structure on W ;

• a map of Pn+1-algebras V → Z(W ).

In order to explicitly construct the operad P[n+1,n], in Chapter 3 we will define generalized Swiss
cheese operads, inspired by the classical Swiss cheese operad of Voronov (see [Vo]). Our P[n+1,n]

will then be a particular case of this construction.
Notice that by composing with the projection Z(W )→W , we get a natural forgetful functor

P[n+1,n]−alg −→ Comm∆1−alg,

where Comm∆1 is the two-colored operad encoding morphisms of commutative algebras.

Definition 0.0.9. Let f : A → B a map of commutative dg algebra. Then the moduli space
P[n+1,n](f) of P[n+1,n]-structures on f is the fiber product of simplicial sets

P[n+1,n](f) //

��

MapdgOp(P[n+1,n],EndA,B)

��
∗ //MapdgOp(Comm∆1 ,EndA,B)

where the bottom arrow is given by f itself. If moreover we were given a Pn+1-structure πA on A,
Then we define the Cois′(f, πA) to be the following fiber product on simplicial sets

Cois′(f, πA)

��

// P[n+1,n](f)

��
∗ // Pn+1(A)

where the bottom map is the given Pn+1-structure πA.

Notice that the algebraic definition is particularly badly suited for an immediate interpretation
as a derived version of the classical definition of coisotropic: for example, if X is a derived Artin
stack endowed with a n-shifted Poisson structure, then if C → X is a coisotropic it follows by
definition that C is itself (n − 1)-shifted Poisson. This structure cannot be seen at the classical
level, as smooth ordinary objects can only carry 0-shifted Poisson structures, and moreover those
coincide with classical Poisson structures.

One of the main results in chapter 3 proves that the algebraic notion is in fact equivalent with
the previous (derived) geometric definition.
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Theorem 0.0.10 (see Theorem 3.4.11). Let again f : A → B be a map of cdgas, and let πA be a
n-shifted Poisson structure on A. Then the space Cois(f, πA) of coisotropic structures on f in the
sense of definition 0.0.8 is equivalent to the space Cois′(f, πA) of coisotropic structures in the sense
of definition 0.0.9.

This theorem has of course a reassuring component: the (perhaps) strangely looking algebraic
definition is in fact equivalent to a more down-to-earth one. Nevertheless, this means that definition
0.0.9 is justified, in the sense that it does have in fact a precise geometric interpretation.

The procedure adopted for the proof of this theorem is philosophically similar to what happened
in chapter 1 for Poisson structure: we develop a general operadic formalism (building on ideas of
Calaque and Willwacher) to get a description of the dg Lie algebra encoding P[n+1,n]-structures on
f , and we then prove that this Lie algebra is in fact quasi-isomorphic to Pol(f, n+ 1)[n+ 1].

In chapter 4 we complete the picture, using the results of chapter 3 to give a sensible definition
of coisotropic structures on morphisms f : L → X between derived Artin stacks. Here we use the
full power of the formalism of formal localization, as we are able to work with the objects PL(∞)
and PX(∞), which are algebra in the symmetric monoidal∞-categoriesML andMX respectively.
More specifically, the morphism f naturally induces a monoidal pullback functor f∗ :MX →ML,
together with a canonical map

f∗P : f∗PX(∞) −→ PL(∞)

of algebras in the categoryML. We can now use the algebraic description of coisotropic structures
given before to define general coisotropics.

Definition 0.0.11. Let L→ X be a morphisms of derived Artin stacks, locally of finite presentation.
Let πX be a n-shifted Poisson structure on X. The space Cois(f, πX) of coisotropic structures on f
is the fiber product in simplicial sets

Cois(f, πX)

��

// P[n+1,n](f
∗
P)

��
∗ // Pn+1(f∗PX(∞))

where the bottom map is the Pn+1-structure on f∗PX(∞) coming from πX .

Again, this is a reasonable definition, but it fails to produce immediate examples. To this
purpose, we can use Theorem 0.0.10 to give an alternative definition.

Theorem 0.0.12 (see Theorem 4.1.5). Let f : L→ X be a map of derived Artin stacks, locally of
finite presentation. Suppose πX is a n-shifted Poisson structure on X. Then the space Cois(f, πX)
can also be described as the homotopy fiber of the morphism

MapdgLiegr(k[−1](2),Pol(f∗P , n+ 1)[n+ 1]) −→ MapdgLiegr(k[−1](2),Pol(f∗PX(∞), n+ 1)[n+ 1])

taken at the point given by the Poisson structure πX .

This definition can be now more easily unzipped: by results contained in [CPTVV], the polyvec-
tors algebra on PX(∞) is a model for the geometric polyvectors on the derived Artin stack X. This
means in particular that we are now able to construct a series of expected examples of derived
coisotropic structures:
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• Suppose L is now a smooth sub-scheme of a smooth schemes X, and πX is a (0-shifted)
Poisson structure on X is the ordinary sense. Let us denote by f : L → X the inclusion.
Then the space of coisotropic structures on f is either empty or contractible, and it is non-
empty precisely when L is a coisotropic subscheme in the usual sense.

• Let X be a derived Artin stack, endowed with a n-shifted Poisson structure πX . Then the
identity morphism X → X has a canonical coisotropic structure.

• Let f : X → Y be a morphisms of derived Artin stacks. Suppose both X and Y are endowed
with n-shifted Poisson structures, denoted πX and πY respectively. Then f is a Poisson map
(in the sense that it preserves Poisson structures) if and only if its graph g : X → X × Y is
coisotropic, where X × Y is taken with the n-shifted Poisson structure πX − πY .
More precisely, there is a canonical equivalence of spaces

Pois(f) ' Cois(g, πX − πY )

where with Pois(f) we denoted the space of lifts of f to a Poisson map.

Notice that many of this points were observed in the seminal paper of Weinstein about coisotropic
calculus [We2]. We thus proved that many of its classical results stay true in the derived world,
therefore confirming that the chosen definitions are the “right” ones.

On the other hand, we also discovered some strictly derived phenomena. For example, let X
be a derived stack, and consider the canonical map px : X → Speck. Consider Speck as being
equipped with the trivial n-shifted Poisson structure. Then, giving a coisotropic structure on pX is
equivalent to giving an (n− 1)-shifted Poisson structure on X.

Let us now explain some of the advantages of having a theory of coisotropic structures in the
derived context. Let us turn back to the classical theory of coisotropic calculus, as constructed in
[We2]. One of the main results of that paper is about what the author calls coisotropic relations.
By definition, a coisotropic relation from a Poisson manifold (X,πX) to another Poisson manifold
(Y, πY ) is a coisotropic submanifold in (X × Y, πX − πY ). Weinstein then proves that under quite
strong transversality assumption, these relations can be composed: given a relation from X to Y
and another one from Y to Z, these can be combined in order to obtain a relation from X to Z. In
practice, the transversality condition is generally not satisfied, which limits the scope of Weinstein’s
theorem. Notice that this result has no hope of being true in the classical setting without the
transversality hypothesis. In particular, this prevents the Poisson relations to be the morphisms of
an ordinary category of Poisson manifolds.

But in the context of derived algebraic geometry, all issues about transverse intersections magi-
cally disappear. In particular, we prove in chapter 4 the following theorem, which has to be thought
as a first step towards a complete derived generalization of Weinsten’s composition of Poisson rela-
tions, and therefore possibly to the construction to a (suitably higher) category of (shifted) Poisson
manifolds.

Theorem 0.0.13 (see Theorem 4.2.2). Let X,L1 and L2 be derived Artin stacks, locally of finite
presentation, and let πX ∈ Pois(X,n) be a n-shifted Poisson structure on X. Let f1 : L1 → X
and f2 : L2 → X be morphisms of stacks, and suppose both f1 and f2 are equipped with coisotropic
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structures. Then the derived intersection Y , defined as the fiber product

Y //

��

L1

f1
��

L2
f2 // X

has a canonical (n−1)-shifted Poisson structures. This structure is such that the map Y → L1×L2 is
a morphism of (n−1)-shifted Poisson stacks, where L2 is taken with the opposite Poisson structure.

Notice that a similar result was proven (at the cohomological underived level) by Baranovsky
and Ginzburg in [BG]. On the other hand, a parallel statement in the context of derived symplectic
geometry was one of the main theorems of [PTVV], where of course coisotropics are now substituted
with Lagrangians. Our result vastly generalizes the theorem in [BG], which becomes a consequence
of Theorem 0.0.13.

The end of chapter 4 is devoted to the study of the relation existing between coisotropic and
Lagrangian structures. In [CPTVV], the authors proved that a n-symplectic structure on a derived
Artin stack X naturally induce a n-Poisson structure, which is moreover non-degenerate in an
appropriate sense. This could look like a trivial statement, but it is important to remark this
is far from being easy. One needs to start by once again using formal localization techniques to
reduce the question to a similar question on the algebra PX . Even here, the homotopical nature of
the structures involved creates complications: the non-degeneracy condition imposed to symplectic
structures only ask for a quasi-isomorphism between the tangent and the cotangent complex of X.
While this is the natural thing to ask in derived geometry, it prevents all classical methods to work.

We follow the same path for our relative case: we define a notion of non-degeneracy for coisotropic
structures, and we get to prove the following theorem, which was conjectured in both [JS] and
[CPTVV].

Theorem 0.0.14 (see Theorem 4.3.7). Let f : L →X a map of derived Artin stacks, locally of
finite presentation. Let πX be a non-degenerate n-shifted Poisson structure on X, in the sense of
[CPTVV]. Then on X there is an induced n-shifted symplectic structure ωX . We have a natural
equivalence of spaces

Coisnd(f, πX)
∼−→ Lagr(f, ωX),

where Coisnd(f, πX) is the space of non-degenerate coisotropic structures on f , and Lagr(f, ωX) is
the space of Lagriangan structures on f (in the sense of [PTVV]).

Apart from its foundational value, the above theorem also has concrete interesting consequences.
As already mentioned, there are many natural moduli spaces that appear as derived Lagrangians
inside shifted symplectic stacks (see [ST] for a detailed list). The above results allows us to consider
these moduli spaces as having a natural coisotropic structure, which can now hopefully be quantized,
extending ideas and results of ordinary Poisson geometry (see for example [CF] and [OP]). This
process should then produce interesting quantizations of moduli spaces coming from topology and
representation theory.

We remark also that Theorem 0.0.14 allows us to find back results on Lagrangian structures
using the theory of coisotropic structures developed in this thesis. For example, one can check that
Theorem 2.9 in [PTVV] is now a direct consequence of Theorem 0.0.13 together with Theorem
0.0.14.
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The final chapter is devoted to the problem of comparing our definition of coisotropic structure
with the one proposed in section 3.4 of [CPTVV]. We propose two promising approaches, but we
refer to the paper [MS] for more details on this particular subject.

Background

Throughout this thesis, we will assume the reader has some familiarity with derived algebraic
geometry, for which useful reviews are [To1], and the more recent [To2], while the foundational
works are Toën-Vezzosi [HAG-II], J. Lurie’s DAG series [Lur1], and also the recent [Lur4]. We will
use both the old but very often still useful language of model categories (see e.g. [Ho] or [Hir]),
and the more modern language and theory of ∞-categories ([Lur2]). We try to recall most of the
operadic notions we use, but good references are [Hi], [BM], [LV], [DR].
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Résumé substantiel

Cette thèse veut généraliser des constructions et des résultats classiques de la géométrie de Poisson
ordinaire au contexte plus vaste de la géométrie algébrique dérivée. En particulier, on développe
la théorie des structures de Poisson et des structures coisotropes pour des champs d’Artin dérivés,
qui sont les principaux objets géométriques étudiés en géométrie algébrique dérivée. On étudie
différences et similarités entre les structures de Poisson et coisotrope dérivées et leurs versions
classiques. On s’occupe aussi de la comparaison avec la littérature déjà présente à propos de la
géométrie symplectique dérivée. Les résultats contenus dans cette thèse devraient ouvrir la voie à
une quantification par déformation des champs dérivés de modules coisotropes.

Dans le chapitre 0, on rappelle les notions de géométrie dérivée formelle et de localisation
formelle, qui ont étés introduites et étudiées dans [CPTVV]. On ne s’agissant que de préliminaires,
on ne donne aucune preuve. Le lecteur intéressé trouvera tous les détails et les preuves dans l’article
[CPTVV], ainsi que dans l’excellente review [PV]. Le principal objet qu’on étudie est un champ
d’Artin dérivé X, avec la projection naturelle X → XDR, où XDR est le champ de de Rham associé
à X. Le champ XDR a les mêmes points réduits de X, et la propriété fondamentale de la projection
X → XDR est que sa fibre en un point fermé x : Speck → XDR est le complété formel de X en x,
dénoté X̂x. Cela permet de définir une algèbre PX(∞) dans une∞-catégorie symétrique monoidale
MX de pré-champs sur XDR, qui connait beaucoup du champ de départ X. En particulier, on a
une équivalence

Perf(X) ' PX(∞)−modperf ,

où Perf(X) est l’∞-catégorie des complexes parfaits sur X, et PX(∞) − modperf est une sous-
catégorie appropriée de PX(∞)-modules. On remarque qu’il s’agit déjà d’un résultat très fort, car
il nous permets de faire du calcul différentiel sur X en le traitant comme s’il était juste une algèbre
dans la catégorieMX . En particulier, on obtient

Symp(X,n) ' Symp(PX(∞), n),

où Symp(−, n) est l’espace des structures symplectiques n-décalées de [PTVV]. Autrement dit, les
structures symplectiques décalées de X définies géométriquement sont équivalentes aux structures
symplectiques algébriques de l’algèbre PX(∞).

On est donc emmenés à définir les structures de Poisson n-décalées sur un champ X comme
étant les structures Pn+1 sur l’algèbre PX(∞), où Pn+1 est l’opérade des dg algèbres de Poisson
avec crochet de degré −n. Au même temps, on dispose maintenant d’une algèbre PX(∞) : on peut
donc construire l’algèbre graduée de ses multi-dérivations (décalées), et l’utiliser pour donner une
définition alternative de structure de Poisson sur X. Il est naturel à ce point de comparer ces deux
possibles définitions. Au niveau classique, cela revient á se demander si, étant donnée une variété
lisse X, la donnée d’un crochet de Poisson sur l’algèbre des fonctions C∞(X) est équivalente à la

14
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donnée d’un bivecteur π tel que [π, π] = 0. La question est triviale pour des objets non-dérivés, mais
la nature homotopique du contexte dérivé la rend beaucoup plus délicate dans le cas de l’algèbre
PX(∞).

Dans le chapitre 1, on attaque précisement cette question. En travaillant dans le langage plus
simples des dg algèbres commutatives, on donne deux définitions possibles de structure de Poisson
décalée sur une algèbre A. D’un point de vue algébrique, on peut considérer d’étendre la structure
commutative sur A pour obtenir une structure de Poisson. Cela nous conduit dans le contexte de
la théorie des opérades, avec laquelle on donne la définition suivante.

Definition 0.0.15. Soit A une dg algèbre commutative. L’espace des structures Pn+1 sur A est
défini avec le diagramme cartésien suivant

Pn+1(A) //

��

MapdgOp(Pn+1,EndA)

��
∗ //MapdgOp(Comm,EndA)

d’espaces, où le morphisme en bas est la structure multiplicative donnée sur A.

D’autre part A est toujours implicitement considérée comme un objet géométrique, c’est-à-dire
un schéma affine dérivé. Sous des hypothèses assez faibles, il a donc un complexe tangent TA qui
est un dg A-module dualisable. Le module TA est un analogue dérivé des champs de vecteurs sur
A. On introduit aussi un analogue dérivé de l’algèbre des champs de poly-vecteurs : on dénote
Pol(A,n) le complexe gradué SymA(TA[−n]), et on l’appelle l’algèbre des poly-vecteurs n-décalés.
Cette algèbre peut être munie d’une structure de Poisson explicite, qui est induite (tout comme
dans le cas classique) par le crochet de Lie des champs de vecteurs. En particulier, Pol(A,n)[n] a
une structure naturelle de dg algèbre de Lie graduée. Cela nous permet de donner une deuxième
définition possible de structure de Poisson sur A, plus en ligne avec l’approche géométrique classique.

Soit dgModgr la catégorie des complexes gradués. Les objets de dgModgr ont deux graduations
naturelles, qu’on va appeler le degré cohomologique et le poids. Dans dgModgr, on considère la
catégorie dgLiegr des complexes gradués munis d’un crochet de Lie de degré cohomologique 0 et de
poids −1.

Definition 0.0.16. Soit A une dg algèbre commutative. L’espace des structures de Poisson n-
décalées sur A est

Pois(A,n) := MapdgLiegr(k[−1](2),Pol(A,n+ 1)[n+ 1])

où k[−1](2) est l’algèbre de Lie triviale k en degré cohomologique 1 et poids 2.

Le résultat principal du chapitre est l’équivalence des deux défnitions de structure de Poisson.

Theorem 0.0.17 ([Me], see also Theorem 1.3.2). Soit A une dg algèbre commutative telle que son
complexe cotangent LA est un A-module parfait. Alors on a un isomorphisme

Pois(A,n)
∼−→ Pn+1(A)

dans la catégorie homotopique des ensembles simpliciaux.
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Le Théorème 0.0.17 est un des points de départ de la géométrie de Poisson dérivée, développée
dans [CPTVV]. En utilisant le résultat ci-dessus, on est maintenant capables de définir une structure
de Poisson décalée sur un champ d’Artin dérivé X. Cela est fait dans le chapitre 2, où on suit
l’exposition de [CPTVV] et [PV]. Le Théorème 0.0.3 joue ici un rôle fondamentale : en particulier,
le fait d’avoir une description opéradique des structures de Poisson permet de pouvoir parler de
quantification par déformation de champs d’Artin dérivés (voir la dernière section de [CPTVV]).

Plus précisément, la localisation formelle permet de définir une algèbre des poly-vecteurs Pol(X,n).
On peut définir les structures de Poisson décalées dans la manière suivante :

Definition 0.0.18. Soit X un champ d’Artin dérivé, localement de présentation finie. L’espace
des structures de Poisson n-décalées sur X est

Pois(X,n) := MapdgLiegr(k[−1](2),Pol(X,n+ 1)[n+ 1])

où dgLiegr est toujours l’∞-catégorie des algèbres de Lie graduées sur k.

Alternativement, la localisation formelle nous dit qu’une bonne partie de l’information géométrique
de X se retrouve dans le pré-champ PX(∞) avec sa structure DXDR(∞)-linéaire.

Definition 0.0.19. Soit X un champ d’Artin dérivé, localement de présentation finie. L’espace
Pois′(X,n) des structures de Poisson n-décalées sur X est le produit fibré

Pois′(X,n) //

��

MapdgOp(Pn+1,EndPX(∞))

��
∗ //MapdgOp(Comm,EndPX(∞))

où PX(∞) est considéré comme un objet dans l’∞-catégorie monoidale symétrique des DXDR(∞)-
modules.

L’équivalence des deux définitions ci-dessus est encore montrée avec le Théorème 0.0.3.

Theorem 0.0.20 (see Theorem 2.2.3). Avec les mêmes notations, on a une équivalence

Pois(X,n) ' Pois′(X,n).

Dans le chapitre 3, on s’occupe des structures coisotropes. Si X → Y est un morphisme de
champs dérivés, on définit d’abord une structure coisotrope dans le cas où X et Y sont affines, et
après on applique ces définitions au cas général en passant aux algèbres associées PX(∞) et PY (∞).

Tout d’abord, on rappelle la définition classique de sous-variété coisotrope.

Definition 0.0.21. Soit X une variété lisse, et soit C → X une sous-variété. Soit π ∈ Γ(Λ2TX)
un bivecteur de Poisson sur X. Alors on dit que C est coisotrope si l’image de la restriction de

π∗ : T ∗X −→ TX

au fibré conormale N∗C est contenue TC. Alternativement, C est coisotrope s’il existe un mor-
phisme

N∗C �
� //

��

T ∗X

��
TC �

� // TX

qui fait commuter le diagramme, où les flèches horizontales sont les inclusions naturelles.
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On remarque que cette notion peut se traduire aussi en disant que l’image du bivecteur π dans
Γ(Λ2(NC)) est zéro. On peut construire une version dérivée de cette définition de la manière
suivante. Si f : A → B est un morphisme de dg algèbres commutatives, il induit une séquence
exacte naturelle de B-modules

Tf → TB → TA ⊗A B,

où Tf [1] joue le rôle du fibré normal. En particulier, on obtient un morphisme d’algèbres graduées

SymA(TA[−n− 1]) −→ SymB(Tf [−n])

pour tout n. Soit Pol(f, n + 1) la fibre homotopique de ce morphisme, qui sera appelée l’algèbre
des poly-vecteurs relatifs de f . En appliquant un décalage de n+ 1, on a

Pol(A,n+ 1)[n+ 1] −→ SymB(Tf [−n])[n+ 1].

Notons que la source de ce morphisme est une algèbre de Lie graduée, alors que le but ne l’est pas.
Donc a priori il n’y a aucune raison pour avoir un crochet de Lie sur Pol(f, n+ 1)[n+ 1], car il n’est
pas une limite d’algèbres de Lie. Cependant, on montre dans le chapitre 3 que Pol(f, n+ 1)[n+ 1]
est en fait une algèbre de Lie, et qu’on a une séquence exacte d’algèbres de Lie graduées

SymB(Tf [−n])[n]→ Pol(f, n+ 1)[n+ 1]→ Pol(A,n+ 1)[n+ 1].

Definition 0.0.22. Soit f : A→ B un morphisme de dg algèbres commutatives. Supposons qu’on
a une structure de Poisson n-décalée π sur A. Alors l’espace Cois(f, π) des structures coisotropes
sur f relatives à π est l’espace des morphismes d’algèbres de Lie

SymB(Tf [−n])[n] Pol(f, n+ 1)[n+ 1] Pol(A,n+ 1)[n+ 1]

k[−1](2)

π

qui font commuter le diagramme. Plus précisément, Cois(f, π) est la fibre homotopique du mor-
phisme d’espaces

MapdgLiegr(k[−1](2),Pol(f, n+ 1)[n+ 1]) −→ MapdgLiegr(k[−1](2),Pol(A,n+ 1)[n+ 1])

prise au point qui correspond à π.

La question est maintenant de trouver une structure algébrique équivalente sur un morphisme
d’algèbres. Une proposition a été donnée dans [Sa]. Si B est une Pn-algèbre, on peut produire
naturellement une Pn+1-algèbre Z(B), dite le centre de Poisson de B. En tant qu’algèbre commu-
tative, on a

Z(B) = ŜymB(T[−n])

où le crochet de Lie est le crochet standard des multi-dérivations, et la différentielle a deux com-
posantes: une induite par la différentielle interne du B-module TB et une autre donnée par [πB,−].
On a immédiatement une projection naturelle d’algèbres commutatives Z(B)→ B.

Soit P[n+1,n] L’opérade colorée dont les algèbres sont les couples d’objets (V,W ) avec les struc-
tures additionnelles suivantes:
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• une structure Pn+1 sur V ;

• une structure Pn sur W ;

• un morphisme de Pn+1-algèbres V → Z(W ).

On a un foncteur d’oubli naturel

P[n+1,n]−alg −→ Comm∆1−alg,

où Comm∆1 est l’opérade colorée des morphismes d’algèbres commutatives.

Definition 0.0.23. Soit f : A → B un morphisme d’algèbres commutatives. Alors l’espace des
modules P[n+1,n](f) de structures P[n+1,n] sur f est le produit fibré

P[n+1,n](f) //

��

MapdgOp(P[n+1,n],EndA,B)

��
∗ //MapdgOp(Comm∆1 ,EndA,B)

où le morphisme en bas est donné par f . Si de plus on avait une structure donnée πA on A, on
définit l’espace Cois′(f, πA) comme le produit fibré

Cois′(f, πA)

��

// P[n+1,n](f)

��
∗ // Pn+1(A)

où le morphisme en bas est πA.

Un des résultats principaux du chapitre 3 est le suivant.

Theorem 0.0.24 (see Theorem 3.4.11). Soit f : A→ B un morphisme de dg algèbres commutatives,
et soit πA une structure de Poisson n-décalée sur A. Alors l’espace Cois(f, πA) des structures
coisotropes sur f au sens de la Définition 0.0.22 est équivalent à l’espace Cois′(f, πA) des structures
coisotropes au sens de la Définition 0.0.23.

Dans le chapitre 4 on utilise les résultats du chapitre 3 pour donner une définition de struc-
ture coisotrope sur un morphisme f : L → X de champs d’Artin dérivés. On utilise ici la puis-
sance du formalisme de la localisation formelle, et on est donc capable de travailler avec les objets
PL(∞) et PX(∞), qui sont des algèbres dans les ∞-catégories monoidales symétriquesML etMX

respectivement. Plus spécifiquement, le morphisme f induit un foncteur monoidal de pullback
f∗ :MX →ML, avec une flèche naturelle

f∗P : f∗PX(∞) −→ PL(∞)

d’algèbres dans la catégorieML.
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Definition 0.0.25. Soit L → X un morphisme de champs d’Artin dérivés, localement de présen-
tation finie. Soit πX une structure de Poisson n-décalée sur X. L’espace Cois(f, πX) de structures
coisotropes sur f est le produit fibré

Cois(f, πX)

��

// P[n+1,n](f
∗
P)

��
∗ // Pn+1(f∗PX(∞))

où le morphisme en bas est la structure Pn+1 sur f∗PX(∞) venant de πX .

Encore une fois, on montre qu’il est possible de donner une caractérisation différente des struc-
tures coisotropes: on utilise le Théorème 0.0.24 pour montrer l’énoncé suivant.

Theorem 0.0.26 (see Theorem 4.1.5). Soit f : L→ X un morphisme de champs d’Artin dérivés,
localement de présentation finie. Supposons que πX est une structure de Poisson n-décalée sur X.
Alors l’espace Cois(f, πX) est aussi équivalent à la fibre homotopique du morphisme

MapdgLiegr(k[−1](2),Pol(f∗P , n+ 1)[n+ 1]) −→ MapdgLiegr(k[−1](2),Pol(f∗PX(∞), n+ 1)[n+ 1])

prise au point correspondant à la structure de Poisson πX .

Le fait d’avoir une théorie des structures coisotropes dans le contexte dérivé a ses avantages.
Par exemple, un des résultats principaux de Weinstein dans [We2] est à propos de ce qu’il appelle
relations coisotropes. Par définition, une relation coisotrope (ou correspondance coisotrope) d’une
variété de Poisson (X,πX) vers une autre variété de Poisson (Y, πY ) est une sous-variété de Poisson
dans (X×Y, πX−πY ). Weinstein montre alors que sous des hypothèses assez fortes de transversalité,
ces relations peuvent être composées : si on dispose d’une relation deX vers Y et d’une autre relation
de Y vers Z, on peut en obtenir une de X vers Z. Dans la pratique, la condition de transversalité
n’est pas toujours satisfaite, ce qui rend moins fort le théorème de Weinstein. D’autre part le
résultat n’a aucun espoir d’être vrai dans le contexte classique sans l’hypothèse de transversalité.
En particulier, cela empêche les correspondances coisotropes d’être les morphismes d’une catégorie
des variétés de Poisson.

Mais dans le contexte de la géométrie dérivée, tous les problèmes d’intersection transverse dis-
paraissent de façon magique. En particulier, on montre dans le chapitre 4 le théorème suivant,
qui doit être considéré comme un premier pas vers une généralisation dérivée de la composition de
correspondances de Weinstein, et donc vers la construction d’une∞-catégorie de champs dérivés de
Poisson.

Theorem 0.0.27 (see Theorem 4.2.2). Soient X,L1 et L2 des champs d’Artin dérivés, localement
de présentation finie, et soit πX ∈ Pois(X,n) une structure de Poisson n-décalée sur X. Soient
f1 : L1 → X et f2 : L2 → X des morphismes de champs, et supposons que f1 et f2 soient équipés
avec des structures coisotropes. Alors l’intersection dérivée Y , définie comme étant le produit fibré

Y //

��

L1

f1
��

L2
f2 // X
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a une structure de Poisson (n − 1)-décalée canonique. Cette structure est telle que la flèche Y →
L1×L2 est un morphisme de champs de Poisson (n−1)-décalés, où L2 est considéré avec la structure
de Poisson opposée.

Un résultat similaire avait été montré (au niveau cohomologique non-dérivé) par Baranovsky et
Ginzburg dans [BG]. De l’autre coté, un énoncé parallèle dans le monde de la géométrie symplectique
dérivée est un des théorèmes principaux de [PTVV], où bien sûr les structures coisotropes sont
remplacées par des structures lagrangiennes. Le Théorème 0.0.27 est donc une généralisation à la
fois des résultats de [BG] et du théorème sur les intersections de lagrangiennes de [PTVV].

La fin du chapitre 4 est dédiée à l’étude de la relation entre les structures coisotropes et les
structures lagrangiennes. Dans [CPTVV], les auteurs montrent qu’un structure n-symplectique sur
un champ d’Artin dérivé induit de manière naturelle une structure de n-Poisson, qui de plus est
non-dégénérée dans un sens approprié. Il est important de souligner que ce résultat est loin d’être
trivial dans le monde dérivé. D’abord, il faut utiliser l’approche de la localisation formelle pour
réduire la question à l’algèbre PX . Même ici, la nature homotopique des structures considérée pose
des problèmes: la définition de structure symplectique donne juste un quasi-isomorphisme entre le
complexe tangent et le complexe cotangent. Si d’un coté il s’agit d’un choix naturel en géométrie
dérivée, le fait ne pas disposer d’un vrai isomorphisme empêche toute méthode classique de marcher.

Dans le cas rélatif, on introduit une notion de structure coisotropes non-dégénérée, et on montre
le théorème suivant, qui avait été conjecturé dans [JS] et [CPTVV].

Theorem 0.0.28 (see Theorem 4.3.7). Soit f : L→ X un morphisme de champs d’Artin dérivés,
localement de présentation finie. Soit πX une structure de Poisson n-décalée sur X, dans le sens
de [CPTVV], qui induit sur X une structure symplectique n-décalée ωX . On a une équivalence
naturelle d’espaces

Coisnd(f, πX)
∼−→ Lagr(f, ωX),

où Coisnd(f, πX) est l’espace des structures coisotropes non-dégénérées sur f , et Lagr(f, ωX) est
l’espace des structures Lagrangiennes sur f (dans le sens de [PTVV]).

Ce théorème est bien sûr important du point de vue fondationnel, mais il a aussi des conséquences
concrètes intéressantes. En effet, il y a beaucoup d’espaces de modules qui apparaissent comme des
lagrangiennes dérivées dans des champs dérivés symplectiques (l’article [ST] en donne une liste assez
détaillée). Grâce au théorème ci-dessus, ces espaces de modules ont aussi une structure coisotrope,
et on peut maintenant espérer d’étendre au contexte dérivé des résultats de quantification des sous-
variétés coisotropes (par exemples ceux de [CF] et [OP]). Ce procédé devrait alors produire des
quantifications intéressantes pour des espaces de modules liés à la topologie et à la théorie des
représentations.

On remarque aussi que le Théorème 0.0.28 permet de retrouver des résultats sur les structures
lagrangiennes en utilisant la théorie des structures coisotropes développée dans cette thèse. Par
exemple, le Théorème 2.9 dans [PTVV] est maintenant une conséquence du Théorème 0.0.27 et du
Théorème 0.0.28.

Le chapitre final est consacré au problème de la comparaison de notre définition de structure
coisotrope avec celle proposée dans la section 3.4 de [CPTVV]. On propose deux approches dif-
férentes, mais on renvoie le lecteur à l’article [MS] pour plus de détails sur ce sujet.



Chapter 0

Preliminaries and formal localization

In this chapter we present the general framework in which we will work for most of the time. Almost
all the material is taken from [CPTVV].

We start by a preliminary section on our categorical conventions. In many situation throughout
this this thesis, we will need to be able to do differential calculus in a quite general ∞-categorical
setting. This first section is devoted to fix notations and properties of the model and ∞-categories
we will work in, much in the spirit of the first chapter of [CPTVV].

The second section deals with the basic definitions of the objects involved in differential calculus.
More specifically, we explain how to construct cotangent complexes and de Rham algebras internal
to a nice enough symmetric monoidal ∞-category, and we also treat the slightly more delicate case
of tangent complexes and algebras of polyvector fields.

Section 3 is devoted to specialize the formalism developed in the first two sections in the case
where the base ∞-category is ε− dgModgr, the category of graded mixed dg modules over the base
field k. This is one of the most important situations in which we will use the general theory of
differential calculus. We will introduce the so-called Tate realization, which is a refined version of
the concept of realization defined in section 1.

In section 4 we introduce the main concepts of formal derived geometry. The subject is of course
a vast one, and we will just summarize the definitions and the results that will be needed in the
following chapters.

We also recall the notion of formal derived stacks, and more importantly we give an outline
of the method of formal localization, which is a very strong technical tool developed in [CPTVV].
This is done in section 5. For our purposes, formal localization will play a fundamental role in
extending the definitions and the results obtained on affines (chapters 1 and 3) to general derived
stacks (chapters 2 and 4). It should be stressed that formal derived geometry and derived formal
localization are interesting in their own right, and they will prove useful in many future development
of derived algebraic geometry.

We will nevertheless omit any complete proof and avoid technicalities, as they have already been
spelled out in the original paper [CPTVV]. The interested reader can also look at the recent survey
[PV].

21
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0.1 Categorical setting

Let k be a field of characteristic zero, and let C(k) be the category of unbounded cochain complexes
of k-modules. The category C(k) has a standard projective model structure, whose weak equiva-
lences are the quasi-isomorphisms and whose fibrations are degree-wise surjections. Moreover, C(k)
is naturally a closed symmetric monoidal category, where the monoidal structure is given by the
standard tensor product ⊗k of cochain complexes, and the unit is k sitting in degree 0. These two
structures are compatible, in the sense that the following compatibility condition is satisfied: given
two cofibrations f : A→ B and g : C → D, the induced map

(A⊗D)
∐
A⊗C

(B ⊗ C) −→ B ⊗D

is again a cofibration. Moreover the above map is a trivial cofibration if f or g is.
Let nowM be a symmetric monoidal combinatorial model category. In addiction to this, suppose

M is C(k)-enriched, or equivalently M is a symmetric monoidal C(k)-model algebra in the sense
of Hovey (see definition 4.2.20 in [Ho]). As it is proven in Appendix 1 of [CPTVV], such an M
becomes a stable model category. Furthermore, we will make the following assumptions on M .

• The unit of M is cofibrant.

• Let f : A → B be a cofibration, and take C to be an object of M . Then for any morphism
A⊗ C → D the strict pushout of the diagram

A⊗ C //

��

D

B ⊗ C

is also a model for the homotopy pushout.

• If A is a cofibrant object, then the functor

M −→ M
X 7−→ A⊗X

preserves weak equivalences.

• Finite products and filtered colimits preserve weak equivalences.

In particular, by the results of [SS], if A is a commutative monoid in M then the category
A −modM of A-modules in M inherits a structure of symmetric monoidal model category, where
weak equivalences and fibrations are detected in M . Moreover, if A and B are weakly equivalent
commutative monoids inM , then the two categoriesA−modM andB−modM are Quillen equivalent.

Given such a model categoryM , we will often be interested in working in the category of graded
mixed objects in M . In order to give an abstract enough definition of such construction, let us
start by considering any commutative and cocommutative Hopf dg algebra A. Since M is enriched
over C(k), we can construct the category A− comodM of A-comodules in M . This category comes
equipped with a natural forgetful functor to M ; its right adjoint is the functor M → A− comodM
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sending an object X to the cofree comodule X ⊗A. The fact that A was not only a coalgebra, but
also an algebra allows us to consider A− comodM as a symmetric monoidal category, such that the
forgetful functor A− comodM →M becomes naturally a symmetric monoidal functor.

Let us now specialize the above construction for A = k[t, t−1]⊗ Symk(k[1]), where the variable
t sits in degree 0. If we denote by ε the generator of degree −1 of Symk(k[1]), the comultiplication
in A is defined by sending t to t ⊗ t, and ε to ε ⊗ 1 + t ⊗ ε. The counit sends t to 1 and ε to 0.
It is immediate to see that with such comultiplication and counit, A becomes a commutative and
cocommutative Hopf dg algebra.

Our interest in such A lies in the fact that the category A − comodM of A-comodules in M is
naturally identified with the category of graded mixed objects in M , and will be denoted ε−Mgr.
More explicitly, an object X in ε−Mgr is the collection of the following data:

• a sequence {X(p)}p∈Z of objects of M indexed by Z;

• a sequence of morphisms in M

{εp : X(p) −→ X(p+ 1)[1]}p∈Z

such that the composition

X(p) −→ X(p+ 1)[1] −→ X(p+ 2)[2]

is zero for every p.

Alternatively, one can of course think of X as being the direct sum of the various X(p). In the
special case in which we take M to be C(k), we will write ε −Mgr = ε − dgModgr and call its
objects graded mixed complexes.

Notice that in our context, ε−Mgr is again a symmetric monoidal model category satisfying all
of out starting assumptions on M : in fact, the category Mgr of graded objects in M is naturally a
symmetric monoidal model category, and we can use it to define a model structure on ε−Mgr via
the forgetful functor ε −Mgr → Mgr. In particular, both weak equivalences and cofibrations are
detected in Mgr.

We will sometimes adopt the more modern point of view of∞-categories, which are more general
objects than model categories. All the text could have possibly have been written keeping the use
of model categories to a minimum, but we felt that the use of the more explicit approach of model
categories simplifies the understanding of the contents.

For a general model categoryM , we will denote byM the associated∞-category L(M), obtained
by formally inverting weak equivalences. If M satisfies the assumptions of the previous section,M
becomes a stable ∞-category in the sense of [Lur3], and it also has an induced symmetric monoidal
structure. As usual, a concrete model forM is the category of fibrant and cofibrant objects in M ,
together with its standard simplicial enrichment.

Given such anM, we will denote by CAlgM the ∞-category of commutative algebras internal
toM, in the sense of [Lur3]. One can of course also think of CAlgM as the ∞-category associated
to the model category of commutative monoids in M .

In analogy with the case of model categories, we define the symmetric monoidal ∞-category
of graded mixed objects in M to be L(ε −Mgr), and we denote it by ε −Mgr. The category of
commutative monoids inside ε −Mgr will be denoted ε − cdgagr

M, and its objects will be called
graded mixed commutative dg algebras inM. There is a natural forgetful ∞-functor

ε− cdgagr
M −→ ε−Mgr



CHAPTER 0. PRELIMINARIES AND FORMAL LOCALIZATION 24

whose left adjoint is given by the free algebra construction.
Notice that ifM is a model category satisfying our assumptions, then in particularM is enriched

over C(k) and the monoidal unit 1M is cofibrant. This means that there is a natural Quillen functor

M −→ C(k)
X 7−→ Hom(1M , X).

This functor has a left adjoint, which uses the tensor enrichment of M : namely, it is given by

C(k) −→ M
C 7−→ C ⊗ 1M

At the general ∞-category level, the above right adjoint will be called realization functor, and the
image of an object X inM will be denoted |X|.

We end this section by noticing that since the unit 1M is a comonoid object, the realization
functor is lax symmetric monoidal, and thus it induces similar right adjoint functors

cdgaM −→ cdgak
ε− cdgagr

M −→ ε− cdgagr
k

The image of an object X through any of the realization functors above will always be denoted |X|.

0.2 Differential calculus

We now concentrate on algebra objects inside an ∞-categoryM as in the previous section. Given
such an A ∈ M, we can define an ∞-category of A-modules in M, which can be realized as the
localization along weak equivalences of the model category of A-modules in M , where we have
considered A as an algebra in M . Notice that since A is commutative, the category A−ModM of
A-modules inM is itself a symmetric monoidal stable ∞-category.

Our next goal is to define the cotangent complex and the de Rham algebra of an algebra
A ∈ CAlgM. As usual, given an A-module N , we can consider the trivial square-zero extension
A⊕N ; this is again an object in CAlgM, and comes moreover with a canonical projectionA⊕N → A,
which is a morphism of commutative algebras inM.

We can the define the space Der(A,N) of derivations from A to N as in [HAG-II]: it is the
space of dotted maps making the following diagram

A⊕N

��
A

;;

id
// A

commute in cdgaM. This defines an ∞-functor

Der(A,−) : A−ModM −→ sSet
N 7−→ Der(A,N)

This functor is corepresentable by an object, denoted LintA .

Definition 0.2.1. Given an algebra A ∈ CAlgM, the object LintA ∈ M is the internal cotangent
complex of A. Its realization LA := |LintA | is simply called the cotangent complex of A.
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Remark that by general properties of the realization functor, LA is naturally an |A|-module in
C(k). Moreover, in the simple case where M = C(k), then the above definition coincides with the
usual one.

We now pass to de Rham algebras. Given any graded mixed algebra B ∈ ε − cdgagr
M, it is

immediate to check that its weight zero part B(0) naturally inherits the structure of a commutative
algebra inM. This defines an ∞-functor

(−)(0) : ε− cdgagr
M −→ cdgaM

B 7−→ B(0)

It turns out this functor has a left adjoint, which will be denoted

DRint : cdgaM −→ ε− cdgagr
M.

We refer to [CPTVV], Section 1.3.2 for more details.

Definition 0.2.2. Given a commutative algebra A ∈ cdgaM, the object DRint(A) ∈ ε − cdgagr
M is

the internal de Rham algebra of A. Its realization DR(A) := |DRint(A)| ∈ ε− cdgagr
k will be simply

called the de Rham algebra of A.

The relation between the (internal) cotangent complex and the de Rham algebra is given by the
following result, which is Proposition 1.3.12 in [CPTVV].

Proposition 0.2.3. For every A ∈ cdgaM, there is a natural equivalence

SymA(LintA [−1]) −→ DRint(A)

in the ∞-category cdgagrM, which is moreover natural in A.

Notice that this is not an equivalence of graded mixed algebras, simply because a priori there
is no mixed structure on SymA(LintA [−1]). One can actually look at this proposition as a way to
induce a (weak) mixed structure on the left hand side, giving an abstract construction of the de
Rham differential.

A similar construction of the internal cotangent complex and of the internal de Rham algebra
applies to the relative context: starting with a morphism A → B in cdgaM, one can construct an
object LintB/A which lives in B −ModM, together with a graded mixed algebra DRint(B/A) ∈ ε −
cdgagr

M. Both graded algebras SymB(LintB/A[−1]) and DRint(B/A) comes equipped with a morphism
from A, considered as concentrated in weight 0. Then we have an equivalence

SymB(LintB/A[−1]) −→ DRint(B/A)

in the comma ∞-category A/cdgagrM. Again, we refer to Section 1.3.2 in [CPTVV] for more details
on the relative version of DRint, which is however completely analogous to the absolute case.

0.2.1 Differential forms and polyvectors

Using the above formalism, we can define differential forms and polyvector fields for general com-
mutative algebras inM.
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Definition 0.2.4. Let A ∈ CAlgM be a commutative algebra in M. Then the space of p-forms of
degree n on A is the mapping space

Ap(A,n) := MapM(1M[−n],∧pAL
int
A ).

We define moreover the space of closed p-forms of degree n to be the mapping space

Ap,cl(A,n) := Mapε−Mgr(1M(p)[−n− p],DRint(A)),

where 1M(p)[−n − p] is the monoidal unit of M viewed as a graded mixed object concentrated in
weight p, with trivial mixed structure.

Notice that there is an induced map Ap,cl(A,n)→ Ap(A,n), which sends a closed p-form to the
underlying p-form. By definition of realization functors, one has natural equivalences

Ap(A,n) ' MapC(k)(k[−n],∧p|A|LA)

Ap,cl(A,n) ' Mapε−dgModgr(k(p)[−n− p],DR(A))

We now pass to symplectic structures. Let A ∈ CAlgM, and consider the∞-category A−ModM.
This is a closed symmetric monoidal∞-category, so that in particular we can take dual of A-modules.
The dual of an A-module N will be denoted by N∨.

Definition 0.2.5. For A ∈ CAlgM, the internal tangent complex of A is the A-module TintA :=
(LintA )∨. Its realization TA = |TintA | ∈ |A| −Mod will be simply called the tangent complex of A.

In particular, if LintA is dualizable, any 2-form ω of degree n on A induces by adjunction a
morphism

ω] : TintA −→ LintA [n].

Definition 0.2.6. Let A ∈ CAlgM, and suppose that LintA is dualizable. Then we say that a closed
2-form ω ∈ A2,cl(A,n) is non-degenerate if the morphism induced by the underlying 2-form gives
an equivalences

TintA ' LintA [n]

of A-modules. We define the space of n-shifted symplectic structures on A Symp(A,n) to be the
subspace of A2,cl(A,n) given by the union of connected components of non-degenerate closed forms.

The definition of polyvector fields, which is in some sense the dual notion of differential forms,
is a bit more delicate in this context. In particular, the ordinary lack of functoriality of the algebra
of polyvector fields makes the definition in the ∞-categorical world not entirely trivial.

Let us us thus start with an algebra A in the model category M . We can define T(p)(A,n), the
n-shifted p-multiderivations on A as in section 1.4.2 of [CPTVV]. Note that this is in particular an
object of M . Moreover, the symmetric group Sp acts naturally on T(p) := (A,n), and let us denote
by T(p)(A,n)Sp the object of M of Sp-invariants multiderivations.

Definition 0.2.7. Let A ∈ CAlgM . The object of symmetric internal n-shifted multiderivations
on A is

Polint(A,n) :=
⊕

T (p)(A,n)Sp
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Note that Polint(A,n) is in a natural way an object of Mgr. In addiction to this, there is a
canonical multiplication of weight 0 in Polint(A,n), and the composition by insertion gives rise to a
shifted Lie structure, which has to be interpreted as an analogue of the classical Schouten-Nijenhuis
bracket. These algebraic structures are compatible, so that Polint(A,n) is a graded Pn+1-algebra in
M : by this we mean that the commutative product has weight 0, while the Lie bracket has weight
−1.

Even if the association A 7→ Polint(A,n) is not completely functorial in A, it is still possible to
define a restricted functoriality, as in section 1.4.2 of [CPTVV].

Recall that a morphism of f : A → B inside CAlgM is said to be formally étale if the induced
map

LintA ⊗A B −→ LintB
is an equivalence of B-modules.

Proposition 0.2.8. Let CAlgfetM be the sub-∞-category of CAlgM consisting of formally étale mor-
phisms. There is a well defined ∞-functor

Polint(−, n) : CAlgfetM −→ Pn+1 − algM

such that if A ∈ CAlgM and B is a fibrant-cofibrant replacement of A, then Polint(A,n) ' Polint(B,n).

Definition 0.2.9. The object Polint(A,n) of the previous proposition is called the internal algebra
of polyvectors fields on A. Its realization Pol(A,n) := |Polint(A,n)| is simply called algebra of
polyvector fields on A.

The relation between polyvectors and the tangent complex is as expected: if A ∈ CAlgM is such
that LintA is dualizable, then we have a natural equivalence

Polint(A,n) ' SymA(TintA [−n])

in the ∞-category CAlggrM of graded algebras inM.

0.3 Tate realizations and twistings

We already introduced early in this chapter the realization functorsM→ C(k), which were defined
for any M satisfying our starting hypothesis. This functor is a right adjoint, and in some sense
it forgets part of the information contained in an object X ∈ M. For example, if M is the the
∞-category of dg A-modules for some commutative dg algebra A, then in this case the realization is
simply the usual functorM→ C(k) which forgets the A-action. Another very important example
is the case in whichM is the∞-category of sheaves of complexes on an∞-site: here the realization
functor is typically given by global sections.

In this section we study the above formalism of differential calculus in the case whereM is itself
the ∞-category of graded mixed k-dg modules. For suchM, the realization functor has an explicit
description.

Proposition 0.3.1. Let X be an object of ε− dgModgr. There is a natural equivalence

|X| '
∏
p≥0

X(p)

inside the category C(k), where the right hand side is endowed with the total differential obtained
as sum of the internal differential and the mixed structure of X.
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As usual, we refer to the paper [CPTVV] (and in particular to Proposition 1.5.1) for more details
and the proof.

In particular, the above proposition tells us that the standard realization functors does not see
the negative weights of a graded mixed dg module X. In our geometric application of interest, this
will prove to be too much: forgetting the negative weights loses too much information. In order to
overcome such problems, we defined a refined realization functor.

Definition 0.3.2. Let againM = ε− dgModgr. The Tate realization ∞-functor is defined to be

| − |t : M −→ dgMod

X 7−→ colimi≥0

∏
p≥−i

X(p).

Note that there is a canonical natural transformation of functors |− | → |− |t. Also, this defines
an equivalence |X| ' |X|t as soon as X(p) ' 0 for every negative p.

Using this alternative realization functor, we can define Tate version of the objects involved in
differential calculus.

Definition 0.3.3. LetM be the ∞-category ε− dgModgr, and consider an algebra A ∈ CAlgM.

• The Tate de Rham algebra of A is defined by

DRt(A) := |DRint(A)|t

as an object in ε− cdgagr.

• The Tate algebra of n-shifted polyvectors of A is defined by

Polt(A,n) := |Polint(A,n)|t

as a graded Pn+1-algebra in complexes.

By the above observation, if we start with A such that A(p) = 0 for every negative p, then
there is a natural equivalence DR(A) ' DRt(A). The situation for polyvectors is different: the
weights of TintA are dual to those of A, so that Polint(A,n) has in general non-trivial negative weight
components. This implies that the map Pol(A,n)→ Polt(A,n) will not be an equivalence in general.

We end this section by remarking that the Tate realization functors can actually be interpreted
as a standard realization functor, provided that we slightly modify the starting category M =
ε− dgModgr. Namely, consider the following ind-object inM

k(∞) := {k(0) −→ k(1) −→ . . . k(i) −→ . . .},

where k(i) is the object of M which has only k sitting in degree 0 and weight i, with trivial
differential and mixed structure. Since the category Ind(M) of ind-objects inM is still symmetric
monoidal, we get a well defined ∞-functor

(−)(∞) : M −→ Ind(M)
A 7−→ A⊗ k(∞).
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This functor will be interpreted as a twist by k(∞), and we will use the simpler notation A(∞) :=
A ⊗ k(∞). Notice also that k(∞) is an algebra in Ind(M), so that if A is an algebra in M, then
A(∞) is an algebra in Ind(M).

The ∞-category Ind(M) fits into our categorical framework, so that it has a natural standard
realization functor to dgMod. One can check that for every object X ∈M, there is an equivalence

|X|t ' |X ⊗ k(∞)|.

In particular, this implies that the Tate de Rham algebra and the Tate polyvectors can also be
interpreted in an alternative way.

Proposition 0.3.4. Let A ∈ CAlgM, and suppose LintA is dualizable. Then there is a natural
equivalence

DRt(A) ' DR(A(∞)/k(∞))

in the ∞-category of graded mixed k-dg modules. Similarly, there is an equivalence

Polint(A,n) ' Pol(A(∞)/k(∞), n)

in the ∞-category of graded Pn+1-algebras.

0.4 Formal derived stacks

Recall that A ∈ cdga≤0
k is almost finitely presented if H0(A) is a k-algebra of finite type, and all

the H i(A) are finitely presented H0(A)-modules. Throughout this chapter, dAff is the opposite
∞-category of almost finitely presented commutative dg algebras (in non-positive degrees). We will
just call its element derived affine stacks, without recalling the finite presentation condition. This
∞-category has a standard étale topology (as explained in [HAG-II], definition 2.2.2.3), and thus
we can construct the associated∞-topos of derived stacks, which will be denoted simply dSt, again
omitting the finitude condition.

The starting point of formal derived geometry is of course the definition of formal derived stack.

Definition 0.4.1. Let X ∈ dSt. We say that X is a formal derived stack if it satisfies the following
conditions:

1. The stack X is nilcomplete, that is to say that for every SpecA ∈ dAff, the canonical map

X(A) −→ lim
n
X(A≤n)

is an equivalence of space, where A≤n is the n-th Postnikov tower decomposition of A.

2. The stack X is infinitesimally cohesive, that is to say that for all cartesian squares in dAffop

A //

��

A1

��
A2

// A0
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such that both induced maps H0(A1) → H0(A0) and H0(A2) → H0(A0) are surjective with
nilpotent kernels, the induced square of spaces

X(A) //

��

X(A1)

��
X(A2) // X(A0)

is again cartesian.

Notice that all derived Artin stacks (in the sense of [HAG-II]) are formal: nilcompleteness is a
consequence of the representability criterion of Toën and Vezzosi in [HAG-II, Appendix C], while
the infinitesimally cohesiveness follows from [Lur1, DAG XIV, Lemma 2.1.7]. Moreover, any limit
of formal derived stacks is again a formal derived stack. The main non-trivial examples of formal
derived stacks are provided by the following very general categorical construction on the∞-category
of derived affines schemes.

We say that A ∈ dAffop is reduced if it is discrete and H0(A) is a reduced (non dg) k-algebra.
Denote the ∞-category of reduced cdga by algred, and consider the natural inclusion functor i :
algred → cdga≤0. This functor has a left adjoint, explicitly given by

cdga≤0 −→ algred

A 7−→ Ared

where Ared is the reduced k-algebra H0(A)/Nilp(H0(A)). One can moreover check that i induces
an∞-functor i∗ : dSt→ Stred, where Stred is the category of stacks on (algred)op, endowed with the
étale topology. The functor i∗ has both a right adjoint (denoted i∗) and a left adjoint (denoted i!).

Definition 0.4.2. 1. The composite i∗i∗ : dSt→ dSt is called the de Rham stack functor. The
image of X ∈ dSt under the de Rham stack functor is denoted XDR.

2. The composite i!i∗ : dSt → dSt is called the reduced stack functor. The image of X ∈ dSt
under the reduced stack functor is denoted Xred.

For more details on the de Rham stack, we refer to the work of Simpson (see [Si1] and [Si2]).
Notice that by adjunction, we get natural morphisms of derived stacks X → XDR and Xred → X.

Definition 0.4.3. Let f : X → Y be a morphism of derived stacks. The formal completion of Y
along f is denoted Ŷf , and it is defined as the pullback

Ŷf //

��

XDR

��
Y // YDR

in the ∞-category dSt.

We now state the main properties of these constructions. Most of them are easy verification,
and the details can be found in [CPTVV].

• The functors i∗ and i! are fully faithful.
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• The composite i!i∗ is left adjoint to i∗i
∗, or equivalently the reduced stack functor is left

adjoint to the de Rham functor.

• For every A ∈ cdga≤0 and X ∈ dSt, we have XDR(A) ' X(Ared) and (SpecA)red '
Spec(Ared).

• XDR is a formal derived stack for every X ∈ dSt.

• If Y is a formal derived stack and f : X → Y is any map in dSt, then the formal completion
Ŷf is again a formal derived stack.

Let X be a derived stack, and let us now consider the canonical map X → XDR. This map will
be the main object of study by formal localization. The first observation is that X → XDR can be
viewed as the family of formal completions of X at its points: this is essentially the content of the
following proposition.

Proposition 0.4.4. Let X be a derived stack, and let SpecA ∈ dAff. Suppose we have an A-point
of XDR, given by a map SpecA→ XDR. By definition of the de Rham stack, this corresponds to an
Ared-point of X. Consider the induced morphism

f : SpecAred −→ SpecA×X.

Then the fiber product X ×XDR SpecA is equivalent to the formal completion ̂(SpecA×X)f .

In particular, taking A = k in the above proposition tells us that the fiber of X → XDR over a
k-point x is exactly the formal completion X̂x.

Notice that the formal derived stack XDR has always a cotangent complex, for any derived stack
X. In fact, if A ∈ cdga≤0 and M is an A-module, then

XDR(A⊕M) ' X((A⊕M)red) ' (Ared) ' XDR(A).

This means that LXDR ' 0, so that using the transitivity sequence associated to X → XDR we get

LX ' LX/XDR .

0.5 Formal localization

As already mentioned, formal localization is a very general tool in derived algebraic geometry. In
this text we will limit ourselves to the specific application to derived Poisson geometry. Again, the
general theory can be found in section 2 of [CPTVV]. In this section, X will be a derived Artin
stack, locally of finite presentation.

Consider the map q : X → XDR. Let SpecA→ XDR be an A-point of XDR, and let XA be the
fiber product

XA
//

��

X

��
SpecA // XDR

We already saw that XA is equivalent to the formal completion of the map SpecAred → SpecA×X.
This is easily seen to imply that (XA)red ' SpecAred. In particular, the map SpecA → XDR
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corresponds to a map SpecAred → X, which is induced by the canonical map SpecAred ' (XA)red →
XA, so that we get a diagram

XA
//

��

X

��
SpecAred //

99

SpecA // XDR

Notice also that by hypothesis, X has a perfect cotangent complex, and moreover we have
LX ' LX/XDR . By base change, we also get that LXA/A is perfect.

We now pass to the main construction of the section. Consider the ∞-functor

D : cdga≤0 −→ ε− cdgagr

A 7−→ DR(Ared/A)

where DR(Ared/A) is the relative de Rham algebra of Ared over A. As a graded cdga, D(A) =
DR(Ared/A) is equivalent to SymAred(LAred/A[−1]). This functor satisfies descent for the étale
topology, and thus we get an induced ∞-functor

D : dSt −→ ε− cdgagr

X 7−→ limSpecA→X D(A).

The functor D can be used to define two important prestacks of graded mixed cdga on dAff/XDR.

Definition 0.5.1. 1. With notations as above, the crystalline structure sheaf of X is defined to
be the prestack

DXDR : (dAff/XDR)op −→ ε− cdgagr

(SpecA→ XDR) 7−→ D(A).

2. The prestack of principal parts of X is defined as

PX : (dAff/XDR)op −→ ε− cdgagr

(SpecA→ XDR) 7−→ D(XA).

where as before XA = SpecA×XDR X.

Note that as a (non-mixed) graded cdga, D(XA) is equivalent to SymAred(LSpecAred/XA [−1]).
This means that D(A) and D(XA) can be interpreted as Chevalley-Eilenberg complexes of TA/Ared
and TSpecAred/XA , seen as Lie algebroids over SpecAred.

Consider the ∞-categoryM of prestacks of graded mixed modules on dAff/XDR. The objects
DXDR and PX are then algebras inM. Remark that the morphismXA → SpecA induces a canonical
map of prestacks DXDR → PX , which can be interpreted as a DXDR-linear structure on the algebra
PX . It follows that PX is an algebra in the category of DXDR-modules. As such we can consider its
polyvectors and de Rham algebras. In particular, we can define

Polt(PX , n) : (dAff/XDR)op −→ Pn+1 − alggr

(SpecA→ XDR) 7−→ |Pol(PX(A)/D(A), n)|t

and
DRt(PX , n) : (dAff/XDR)op −→ ε− cdgagr

(SpecA→ XDR) 7−→ |DR(PX(A)/D(A))|t



CHAPTER 0. PRELIMINARIES AND FORMAL LOCALIZATION 33

which are now stacks on XDR.
It turns out that PX , considered as a DXDR-algebra, knows a lot about the geometry of X.

Consider a morphism of derived Artin stack X → Y locally of finite presentation. We can define

DR(X/Y ) := Γ(X,SymOX (LX/Y [−1]),

as a graded commutative dg algebra over k. Similarly, we define

Pol(X/Y, n) := Γ(X,SymOX (TX/Y [−n])

which is again a graded commutative dg algebra over k.

Theorem 0.5.2. Let again X be a derived Artin stack.

1. There is a natural equivalence of graded mixed cdgas

DR(X/XDR) ' DR(X) ' Γ(XDR,DRt(PX)).

2. For every integer n, there is a natural equivalence of graded complexes

Pol(X/XDR, n) ' Pol(X,n) ' Γ(XDR,Polt(PX , n)).

3. There is an equivalence of ∞-categories

Perf(X) ' PX −modperf

where PX −modperf is the full sub-∞-category of PX-modules inside DXDR-modules, formed
by prestacks F of PX-modules on dAff/XDR such that

• For every SpecA → XDR, the PX(A)-module F (A) is of the form PX(A) ⊗Ared F0, for
some F0 ∈ Perf(Ared).

• For every map SpecA→ SpecB inside dAff/XDR, we have F (A) ' F (B)⊗PX(B)PX(A).

This theorem allows us to translate most of the questions about the geometry of X into algebraic
questions about the prestack PX , together with its DXDR-linear structure. For our purpose, notice
in particular that it suggests that there could be a definition of Poisson structure given in purely
algebraic terms, since the algebra PX recovers much of the geometry of the derived Artin stack
X. Of course, one needs to understand which is the correct definition of Poisson structure in the
algebraic setting: the next chapter addresses precisely this issue.



Chapter 1

Shifted Poisson structures on derived
affine stacks

As we have seen in the previous chapter, formal localization allows to reduce general question about
the global geometry of X to algebraic structures on its prestack of principal parts PX . In order
to define shifted Poisson structures in general, one thus needs to understand the affine case. The
goal of this chapter is to study in detail what happens on affines. There are at least two sensible
definitions of Poisson structures on an algebra, and the main result of this chapter proves that they
actually coincide.

We work in commutative algebras in cochain complexes, but the arguments extend immediately
to a general model category M , satisfying our starting assumptions. We will come back to this
point in the next chapter.

Let A be a commutative dg algebra concentrated in degrees (−∞,m], and let SpecA be the
associated derived stack. We give two proofs of the existence of a canonical map from the moduli
space of shifted Poisson structures (as they were initially introduced in the paper [PTVV]) on SpecA
to the moduli space of homotopy (shifted) Poisson algebra structures on A. The first makes use of
a more general description of the Poisson operad and of its cofibrant models, while the second is
more computational and involves an explicit resolution of the Poisson operad.

Let us first of all recall the setting we are working in. In classical Poisson geometry, one
defines a Poisson structure on a smooth manifold to be a Poisson bracket on the algebra of global
functions, which is just a Lie bracket compatible with the product of functions. This notion (which
is of algebraic nature) has a more geometric version. The geometric analog of skew-symmetric
biderivations are bivector fields, and quite expectedly one can define a Poisson structure to be a
bivector field satisfying some additional property. The equivalence of the two definitions of Poisson
structure is a well-known fact in classical algebraic or differential geometry.

Recently, in their paper [PTVV] Pantev, Toën, Vaquié and Vezzosi introduced the notion of
symplectic and Poisson structures in the context of derived algebraic geometry. Informally speaking,
derived algebraic geometry is the study of spaces whose local models are derived commutative
algebras, that is to say simplicial commutative algebras. If we suppose to be working over a base field
k of characteristic zero, the local models can also be taken to be non-positively graded commutative
dg-algebras. See [To1] for a recent survey, or [HAG-I], [HAG-II], [Lur2] for a complete treatment of
the subject.

34
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In attempting to extend Poisson structures to derived algebraic geometry, there are thus two
natural approaches: either via bivector fields or via Poisson brackets on the algebra of functions.
We will show that these two approaches indeed agree for a huge and geometrically meaningful class
of derived stacks. To do so, we will need to use techniques very different from the arguments in the
non-derived setting. To be a bit more specific, [PTVV] proposed to use the bivector approach to
define a n-Poisson structure on a (nice enough) derived algebraic stack. We refer to Section 1 for
the precise definitions of the objects appearing below.

Definition ( [PTVV], [To1] ). Let X be a derived Artin stack locally of finite presentation over k,
and let n ∈ Z. The space of n-shifted Poisson structures on X is the simplicial set

Pois(X,n) := MapdgLiegr(k[−1](2),Pol(X,n)[n+ 1])

where k[−1](2) is concentrated in degree 1, pure of weight 2, and has the trivial bracket. The graded
complex Pol(X,n) is the complex of n-shifted polyvector fields.

The purpose of this chapter is to show that, at least for a nice enough affine derived stack
SpecA (where A is a derived commutative algebra), the equivalence between Poisson bivectors
and Poisson brackets remains true. Our result is further evidence that for nice derived stacks the
definition in [PTVV] is the correct derived generalization of Poisson geometry. As we are working
in an inherently homotopical context, Poisson brackets have to be given up to homotopy: these
are basically Pn,∞-structures on A whose (weakly) commutative product is (equivalent to) the one
given on A.

With this goal in mind, after having fixed our notational conventions in Section 1, we study
in Section 2 the relation between the categories of dg-operads and of graded dg-Lie algebras. In
particular, we would like to be able to describe the moduli space of Poisson brackets on a given
commutative algebra via a mapping space in the category of graded dg-Lie algebras. This is accom-
plished in greater generality in Theorem 1.2.11.

In Section 3, we apply the results of the previous section to derived algebraic geometry, and we
eventually obtain the following result

Theorem. Let A be a commutative dg algebra concentrated in degrees (−∞,m], with m ≥ 0, and let
EndA be the (linear) endomorphism operad of the dg-module A. Let X = SpecA be the associated
derived stack, and let P hn+1(A) be the homotopy fiber of the morphism of simplicial sets

MapdgOp(Pn+1,EndA) −→ MapdgOp(Comm,EndA)

taken at the point µA corresponding to the given (strict) multiplication in A.
Then there is a natural map in the homotopy category of simplicial sets

Pois(X,n) −→ P hn+1(A) .

Moreover, this is an isomorphism if LX is a perfect complex.

This is exactly the result we were looking for, since the simplicial set P hn+1(A) is the natural
moduli space of weak Poisson brackets on A.

Finally in Section 4 we give an alternative proof of this theorem, which is more computational
and uses both an explicit resolution of the strict Poisson operad and the classical concrete definition
of L∞-algebra.
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The results in this chapter are started as a part of a bigger project aimed at defining and study-
ing higher quantizations of moduli spaces equipped with shifted Poisson structures. This has been
recently achieved in the paper [CPTVV], where the authors give a more general definition of shifted
Poisson structure using the results of this chapter. For further details on the general project and
its goals, we refer to the introductions of [PTVV] and of [CPTVV], or to the surveys [To1], [To2]
and [PV].

The problem studied in this chapter was suggested by my advisors, and also raised independently
by N. Rozenblyum and J. Lurie.

1.1 Notations

Let us fix the notations used in this chapter.

• k is the base field, which is of characteristic 0.

• cdga≤0 denotes the category of (strictly) commutative differential graded algebras, concen-
trated in non-positive degrees. We adopt the cohomological point of view, and the differential
increases the degree by 1. The category cdga≤0 has the usual model structure for which weak
equivalences are quasi-isomorphisms, and fibrations are surjections in negative degrees.

• C(k) denotes the category of unbounded cochain complexes over k. Its objects will be called
also dg-modules. It has the usual model structure for which weak equivalences are the quasi-
isomorphisms and fibrations are surjections. It is also a symmetric monoidal model category
for the standard tensor product ⊗k.

• We will use the term symmetric sequence to indicate a collection of dg-modules {V (m)}m∈N
such that every V (m) has an action of the symmetric group Sm on it. Explicitly, V (m) is a
differential graded Sm-module, meaning that for every p ∈ Z the degree p component V (m)p

is an Sm-module, and that the differential is a map of Sm-modules. Equivalently, one can
say that V (m) is a differential graded k[Sm]-module, where k[Sm] is the group algebra of Sm.
In the literature objects of this kind are sometimes called S-modules, Σ∗-objects or also just
collections in C(k) (see for example [BM] or Chapter 5 in [LV]). If V is a symmetric sequence
and f ∈ V (m), we will denote by f s the image of f under the action of a permutation s ∈ Sm.
We will say that f is symmetric if f s = f for every s ∈ Sm. Similarly, we will say that f is
anti-symmetric if f s = (−1)sf for every s, where (−1)s denotes the sign of s. We will use the
notation V S for the symmetric sequence of invariants (i.e. of symmetric elements): explicitly,
V S(m) = V (m)Sm . We will allow ourselves to switch quite freely from the point of view of
symmetric sequences to the one of graded dg-modules with an action of Sm on the weight m
component.

Any symmetric sequence V can be naturally seen as a functor from C(k) to itself, sending a
dg module M to

⊕
(V (n)⊗Sn M⊗n), where the Sn-action on M⊗n is the natural one. Given

two symmetric sequences V and W , one can thus consider them as functors and take their
composition; it can be shown that this composition comes from a symmetric sequence, denoted
V ◦W .
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• dgOp is the category of monochromatic (i.e. uncolored) operads in the symmetric monoidal
category C(k) (dg-operads for short). It carries a model structure with componentwise quasi-
isomorphisms as weak equivalences and componentwise surjections as fibrations (see [Hi]).
In particular, every dg-operad is fibrant. If P is a dg-operad, we denote by P∞ a cofibrant
replacement; then P∞-algebras are up-to-homotopy P-algebras. The operads of commutative
algebras, of Lie algebras and of Poisson n-algebras will be denoted with Comm, Lie and Pn
respectively. Our convention is that a Poisson n-algebra has a Lie bracket of degree 1−n; with
this definition, the cohomology of a En-algebra is a Pn-algebra. Notice however that there
are other conventions in the literature: for example in [CFL] the authors define a Poisson
n-algebra to have Lie bracket of degree −n.

• dgLiegr is the category whose objects are graded dg-Lie algebras, that is to say graded dg-
modules L together with an antisymmetric binary operation [·, ·] : L ⊗ L → L satisfying the
(graded) Jacobi identity. The additional (i.e. the non-cohomological one) grading will be
called weight. The bracket must be of cohomological degree 0 and of weight −1. Notice thus
that these are not algebras for the trivial graded version of the Lie operad, since we are asking
for the bracket to have weight −1.

The fact that the bracket has weight −1 is purely conventional: one can of course obtain
the same results using brackets of weight 0. The seemingly strange choice is motivated by
the observation that for an affine derived stack SpecA, the natural bracket on the (shifted)
polyvectors fields SymA(TA[−n]) has weight −1. This is the same convention used for example
in [PTVV].

• Given a dg-module V , one defines its suspension V [1] to be the cochain complex V ⊗ k[1],
where k[1] is the complex who is k in degree −1 and 0 elsewhere. If we do the same on
operads, we should be a bit more careful. In fact, given an operad O, the symmetric sequence
O′(m) = O(m)[1] does not inherit an operad structure. Instead, one defines the suspension
of O to be the symmetric sequence whose terms are sO(m) = O(m)[1 − m], together with
the natural operadic structure on it. A little more abstractly, sO is just O⊗H Endk[1], where
⊗H denotes the Hadamard tensor product of operads (see [LV], Section 5.3.3). Note that the
arity p component of Endk[1] is k[1 − p]; as a Sp-module, it is just the sign representation.
This operadic suspension is an auto equivalence of the category dgOp, its inverse being a
desuspension functor denoted O 7→ s−1O, and which sends O to O ⊗H Endk[−1].

1.2 Operads and graded Lie algebras

1.2.1 The operad Lie and some generalizations

In this section we study the dg-operad Lie and its cofibrant resolutions. Namely, we describe what
it means to have a map from any of these dg-operads to another dg-operad O.

We start by recalling how we can obtain a graded dg-Lie algebra L(O) in a natural way starting
with a dg-operad O (see [KM], section 1.7). These are classical results in operad theory, and they
play a very important role in the remainder of the paper.

Proposition 1.2.1. Let O be a dg-operad. Then the graded dg-module L(O) =
⊕

nO(n) has
a natural structure of a graded dg-Lie algebra, where the Lie bracket is induced by the following
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pre-Lie product

f ? g =

p∑
i=1

∑
s∈Sip,q

(f ◦i g)s

where f and g are of weight (i.e. arity) p and q respectively, and where Sip,q is the set of permutations
of p+ q − 1 elements such that

s−1(1) < s−1(2) < · · · < s−1(i) < s−1(i+ q) < · · · < s−1(p+ q − 1)

and
s−1(i) < s−1(i+ 1) < · · · < s−1(i+ q − 1) .

Recall that one obtains a Lie bracket starting from a pre-Lie structure in a natural way: in
our case, [f, g] = f ? g − (−1)|f ||g|g ? f . One has of course to check that the ? operation defines
a pre-Lie product (and therefore a Lie bracket): this is done by direct computation, showing that
the so called associator f ? (g ? h)− (f ? g) ? h is (graded) symmetric on g and h (see [LV], Section
5.4.6).

The Lie bracket defined above has a first nice property: the following lemma is a straightforward
consequence of the definition of the pre-Lie product.

Lemma 1.2.2. Let O be a dg-operad, and let f, g ∈ L(O) be two symmetric elements. Then their
bracket in L(O) remains symmetric.

In particular, L(O) has a sub-Lie algebra of symmetric elements L(O)S.
Our first goal is to use the construction of L(O) to find an alternative description to the set

HomdgOp(Lie,O).
As an operad, Lie admits a very nice presentation : it is generated by a binary operation of

degree 0 which is antisymmetric and satisfies the Jacobi identity. More specifically, if l ∈ Lie(2)0 is
the generator, it has to satisfy l ◦1 l + (l ◦1 l)(123) + (l ◦1 l)(132) = 0.

Thus we can safely say that

HomdgOp(Lie,O) = {x ∈ O(2)0|x(12) = −x and x ◦1 x+ (x ◦1 x)(123) + (x ◦1 x)(132) = 0}.

In Section 1, we defined the operadic suspension, which is an auto-equivalence of the category
of dg-operads. The operad sLie has one generator in arity 2 of degree 1, which is now symmetric;
the Jacobi relation still holds in the same form, since it only involves even permutations. Note that
algebras for this operad are just dg-Lie algebras whose bracket is of degree 1, or equivalently dg-
modules V with a dg-Lie algebra structure on V [−1]. The operadic suspension being an equivalence,
we have in particular HomdgOp(Lie,O) ∼= HomdgOp(sLie, sO). Maps from the operad sLie have a
nice description in terms of maps of graded dg-Lie algebras.

Proposition 1.2.3. Let O be a dg-operad. Then we have

HomdgOp(sLie,O) ∼= HomdgLiegr(k[−1](2),L(O)S)

where k[−1](2) is the graded dg-Lie algebra which has just k in degree 1 and weight 2, with zero
bracket, while L is the functor dgOp→ dgLiegr defined at the beginning of this section.
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Proof. It follows from the explicit presentation of sLie given before that

HomdgOp(sLie,O) = {x ∈ O(2)1|x(12) = x and x ◦1 x+ (x ◦1 x)(123) + (x ◦1 x)(132) = 0}

so that in order to prove the lemma we are led to show that the Jacobi relation is equivalent to the
condition [x, x] = 0 in L(O). This is done by direct calculation, since for any symmetric x ∈ O(2)
we have

x ? x = x ◦1 x+ (x ◦1 x)(23) + (x ◦2 x)

= x ◦1 x+ (x ◦1 x)(123) + (x ◦1 x)(132)

where we just use the general identities that describe the relationship between partial composition
and the action of the symmetric groups. More specifically, take f ∈ O(p) and g ∈ O(q). Then for
every s ∈ Sq one has

f ◦i gs = (f ◦i g)s
′

where s′ ∈ Sp+q−1 acts as s on the block {i, i + 1, . . . , i + q − 1} and as the identity elsewhere.
Moreover, for every τ ∈ Sp, one has

f t ◦i g = (f ◦t(i) g)t
′

where t′ ∈ Sp+q−1 acts as the identity on the block {i, i+1, . . . , i+q−1} with values in {t(i), t(i)+
1, . . . , t(i) + q − 1} and as t elsewhere (sending {1, . . . , p+ q − 1} \ {i, . . . , i+ q − 1} to {1, . . . , p+
q − 1} \ {t(i), . . . , t(i) + q − 1}).

The lemma now follows from the observation that for an element x ∈ L(P) of degree 1, one has
[x, x] = 2(x ? x).

One immediately has the following consequence.

Corollary 1.2.4. For any dg-operad O, we have

HomdgOp(Lie,O) ∼= HomdgOp(sLie, sO) ∼= HomdgLiegr(k[−1](2),L(sO)S) .

Next we try to find a result analogous to the last proposition for a cofibrant resolution s̃LieQ of
the dg-operad sLie. Our strategy is as follows: given a nice replacement Q(k[−1](2)) of k[−1](2)

as a graded dg Lie algebra, we find a “lift” of this replacement to a cofibrant approximation s̃LieQ
of the dg operad sLie. This construction will actually produce a functor from semi-free graded Lie
algebras to semi-free operads, but we will not need this functoriality.

Suppose we have a semi-free resolution Q(k[−1](2)) of k[−1](2) as a graded dg-Lie algebra. This
means that if we forget the differential Q(k[−1](2)) is a free graded Lie algebra, say with generators
{pi}i∈I , homogeneous of degree di and of weight wi. Then there are of course relations {rj}j∈J that
can specify the value of d(pi), where d is the differential. We can now use this resolution to build a
dg-operad s̃LieQ.

Concretely, for every i ∈ I, take a symmetric generator p̃i of arity wi and of degree di. As
for relations, we take the same relations rj defining Q(k[−1](2)); this means that whenever such a
relation rj contains a bracket [pi1 , pi2 ], we reinterpret it as the bracket (introduced at the beginning
of this section) of elements of an operad [p̃i1 , p̃i2 ], thus getting a relation r̃j for the generators p̃i.
Let us denote s̃LieQ the semi-free operad having all the p̃i as generators and all the r̃j as rela-
tions. The definition of the operad s̃LieQ allows us to describe quite naturally the set of morphism
HomdgOp(s̃LieQ,O) for an arbitrary operad O. One can in fact prove the following result.
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Proposition 1.2.5. Let Q(k[−1](2)) be a semi-free resolution of the graded dg-Lie algebra k[−1](2),
and let s̃LieQ be the operad defined above, which has the same generators and relations of Q(k[−1](2)),
and such that all generators are symmetric. Then for every dg-operad O we have

HomdgOp(s̃LieQ,O) ∼= HomdgLiegr(Q(k[−1](2)),L(O)S) .

Proof. This follows from the definition of s̃LieQ in terms of generators and relations. Just like
what we said before for sLie, morphisms form s̃LieQ are completely determined by the images
of the generators p̃i, provided that they satisfy the relations defining s̃LieQ. Every relation can
be expressed inside L(s̃LieQ), since they only specify the differentials of the p̃i in terms of their
brackets. And by definition these relations of course coincide with those of Q(k[−1](2)), giving the
desired result.

In particular, we observe that s̃LieQ is a cofibrant approximation of sLie: the weak equivalence
s̃LieQ → sLie is induced by the weak equivalence Q(k[−1](2)) → k[−1](2). The fact that it is
cofibrant follows from the definition of cofibrations in the model category of dg-operads, given in
[Hi].

The operad s̃LieQ is therefore weakly equivalent to any cofibrant replacement of sLie. This is
just a consequence of the existence of the dotted arrow in the following commutative diagram

∅ (sLie)∞

s̃LieQ sLie

Since the operadic suspension preserves weak equivalences and fibrations, the map s(Lie∞) →
sLie is a trivial fibration, where Lie∞ is the standard minimal model of the operad Lie, studied for
example by Markl in [Mar]. In particular, it follows that s̃LieQ is weakly equivalent to s(Lie∞).
Once again this is just a consequence of the existence of a model category structure on dgOp, which
assures that the dotted arrow in the following diagram

∅ s(Lie∞)

s̃LieQ sLie

exists, and that it is a weak equivalence.
Note that this does not imply that

HomdgOp(Lie∞,O) ∼= HomdgOp(sLie∞, sO) ∼= HomdgLiegr(Q(k[−1](2)),L(sO)S)

since s̃LieQ and sLie∞ are not isomorphic in general.
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1.2.2 Derivations and multi-derivations

Our goal now is to define shifted Poisson brackets on a commutative algebra, and hence we need to
understand derivations of a commutative algebra in an operadic way.

Recall that for a commutative dg-algebra A we have a standard notion of multi-derivation.
Namely one says that a linear map φ : A⊗p → A is a multi-derivation if for every i = 1, . . . p and
for every choice of a1, . . . , âi, . . . ap ∈ A the induced linear map

A −→ A
x 7−→ φ(a1, . . . , ai−1, x, ai+1, . . . ap)

is a (graded) derivation of A. More generally, for every operadic morphism µ : Comm→ O, we can
say what it means for any element of O to be a derivation with respect to µ. Notice that the map
µ is completely determined by the image in O(2) of the generator of the operad Comm; in order to
simplify the notation, we will also use the letter µ to denote the image of the generator.

Definition 1.2.6. Let O be a dg-operad, and let µ : Comm → O be a morphism of dg-operads.
Suppose f ∈ O(p) is an element of O of arity p ∈ N. We say that f is a p-derivation with respect
to µ if we have

f ◦i µ = (µ ◦1 f)(p+1 p ... i+2 i+1) + (µ ◦2 f)(1 2 ... i−1 i)

for every i = 1, . . . , p. The symmetric sub-sequence of O formed by p-derivations will be denoted by
MD(O, µ), and its elements will just be called multi-derivations with respect to µ. If the morphism
µ is clear from the context, we will just writeMD(O).

The definition is coherent with the classical case of derivations of an algebra: if O is the endo-
morphism operad of a dg-module V and µ is an actual commutative product on V (so that (V, µ)
is just a commutative dg-algebra), then multi-derivations in our sense are exactly multi-derivations
in the standard sense.

Let us remark that one could give a definition analogous to Definition 1.2.6 that works for every
element µ ∈ O(2), of any degree, and without making any assumption on the symmetry of µ. For
example, a derivation with respect to such a µ is just an element f ∈ O(1) such that

f ◦ µ = (−1)|µ||f |µ ◦1 f + (−1)|µ||f |µ ◦2 f .

In order to generalize this to multi-derivations, one should keep track of the signs.

Definition 1.2.7. Let O be a dg-operad, and let µ ∈ O(2). An element f ∈ O(p) is called a
p-derivation with respect to µ if for every i = 1, 2, . . . , p we have

f ◦i µ = (−1)|µ||f |(µ ◦1 f)(i+1 p+1 p ... i+2) + (−1)|µ||f |(µ ◦2 f)(1 2 ... i−1 i)

The dg-module of derivations of an algebra A is known to be a dg-Lie algebra in a natural way:
the (graded) commutator of two derivations is in fact still a derivation. Derivations thus form a
sub-Lie algebra of HomdgMod(A,A). More can be said, since actually the graded module of multi-
derivations of A is a graded sub-Lie algebra of L(EndA). The following lemma tells us that the
same remains true in the world of operads.

Proposition 1.2.8. Let O be a dg-operad, and let µ ∈ O(2) be a binary operation. The (graded
module associated to the) symmetric sequence of multi-derivations with respect to µ of Definition
1.2.7 is closed under the Lie bracket of L(O).
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Proof. This follows from a straightforward computation: let us give the main ideas without going
into all the details. We will suppose that µ is of even degree in order to avoid keeping track of too
many signs. The proof for µ of odd degree is exactly the same, with additional signs of course.

Let f ∈ O(p) and g ∈ O(q) be two multi-derivations with respect to µ. We have

[f, g] ◦i µ = (f ? g) ◦i µ+ (−1)|f ||g|(g ? f) ◦i µ ,

and we would like to show that this is equal to

(µ ◦1 [f, g])(p+q ... i+1) + (µ ◦2 [f, g])(1 ... i) = (µ ◦1 (f ? g))(p+q ... i+1)+

+ (−1)|f ||g|(µ ◦1 (g ? f))(p+q ... i+1)+

+ (µ ◦2 (f ? g))(1 ... i)

+ (−1)|f ||g|(µ ◦2 (g ? f))(1 ... i)

Notice that just as with composition of vector fields, f ? g and g ? f have no hope of being multi-
derivations themselves, and one really has to develop the sums in order to prove the result. Using
the relations between partial compositions and the action of the symmetric groups, we may write

(f ? g) ◦i µ =

p∑
j=1

∑
s∈Sjp,q

(f ◦j g)s ◦i µ =

p∑
j=1

∑
s∈Sjp,q

((f ◦j g) ◦s(i) µ)s
′
.

We now observe that if s(i) /∈ {j, j + 1, . . . , j + q − 1}, then we can just use the fact that f is a
derivation, and we are done. A similar reasoning applies to (g?f)◦iµ. When s(i) ∈ {j, j+1, . . . , j+
q − 1}, it gets a bit more complicated. With some care, we can write down what it is left to prove,
that is

p∑
j=1

∑
s∈Sjp,q

j≤s(i)<j+q

((µ ◦2 f) ◦1 g)ϕ·(j+q j+q−1 ... s(i)+1)·s′ =

= (−1)|f ||g|
q∑

k=1

∑
t∈Skq,p

k≤t(i)<k+p

((µ ◦1 g) ◦q+1 f)ψ·(k k+1 ... t(i))·t′

where ϕ ∈ Sp+q is the permutation that exchanges the blocks {1, . . . , j−1} and {j, . . . , j+q−1}, and
ψ ∈ Sp+q is the permutation that exchanges the blocks {k+ 1, . . . , k+p} and {k+p+ 1, . . . , p+ q}.
This last equation is true by direct verification: both sides are equal to the sum of all possible
“products” of the form µ ◦ (f, g).

1.2.3 The operad P̃n,Q

Recall (see Section 8.6 of [LV] and references therein) that given two operads P and Q, if we choose
a morphism of symmetric sequences Λ : Q ◦P → P ◦Q (satisfying a series of axioms), then we can
put an operad structure on the composite of the underlying symmetric sequences P ◦Q. The idea is
that in order to define a composition (P ◦Q)◦(P ◦Q)→ P◦Q, we can use the morphism Λ followed
by the given compositions P ◦ P → P and Q ◦ Q → Q, coming from the operad structures on P
and Q. Informally speaking, Λ specifies how the operations encoded by the operad P interact with
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those encoded by Q. Such a Λ is called a distributive law, because of the motivating example of the
relation between the sum and the multiplication in a ring. When P and Q have a nice presentation
in terms of generators and relations, we only need a rewriting rule for the generators (we refer again
to Section 8.6 of [LV] for more details).

We now let Q(k[−1](2)) be again a semi-free resolution of the graded dg-Lie algebra k[−1](2):
as before, we can associate to it an operad s̃LieQ, which is quasi-isomorphic to sLie∞. The operad
introduced in the following definition will play a central role in the remainder of the paper.

Definition 1.2.9. Let Q(k[−1](2)) be again a semi-free resolution of the graded dg-Lie algebra
k[−1](2), and let as before s̃LieQ be the operad of Proposition 1.2.5. We define the operad P̃n,Q
to be the operad obtained by means of a rewriting rule out of s−ns̃LieQ and Comm, imposing the
condition that every generator of s−ns̃LieQ is a multi-derivation with respect to the generator of
Comm. Explicitly, if we denote by s−np̃i the generators of s−ns̃LieQ and by µ the generator of
Comm, the rewriting rule sends s−np̃i ◦k µ to (µ ◦1 f)(k+1 p+1 p ... i+2) + (µ ◦2 f)(1 2 ... k−1 k).

It is clear from the definition that P̃n,Q-algebras are commutative dg-algebras A with a compat-
ible s̃LieQ-structure on A[n], where the compatibility is given by the condition that the operations
defining the s̃LieQ-structure must be multi-derivations of the commutative dg algebra A. This
operad is obviously weakly equivalent to the dg-operad obtained in a similar way out of Comm
and sLie∞ (recall that with Lie∞ we mean the minimal model of the operad Lie). Let us call P̂n
this latter operad. More specifically, P̂n-algebras are commutative dg-algebras A together with a
Lie∞-structure on A[n − 1]. The two structures are compatible, meaning that the multi-brackets
defining the (shifted) Lie∞-structure are multi-derivations on the algebra A.
Remark. The operad P̂n (actually a non-shifted version of it) has appeared for instance in [CF],
where the authors called its algebras flat P∞-algebras. However, as Cattaneo and Felder correctly
remarked in their paper, their notation is a bit misleading, because P̂n is not a cofibrant replacement
of the operad Pn: in particular the product encoded in P̂n is strictly commutative. One could see
P̂n as an operad standing between the original Pn and its minimal model Pn,∞. For this reason,
algebras for P̂n will be called semi-strict Pn-algebras. For an explicit definition of Pn,∞-algebras
in term of generators and relations in the case n = 2 (corresponding to homotopy Gerstenhaber
algebras), one can look at [Gi].

By construction, the operad P̃n,Q has a natural map from the commutative dg-operad Comm.
If O is any dg-operad, we now describe the fiber of the induced morphism HomdgOp(P̃n,Q,O) →
HomdgOp(Comm,O) at a point µ. In particular, if we take O to be the endomorphism operad of
a dg-module V , we are studying the possible ways in which a given commutative structure on V
can be extended to a P̃n,Q-structure. From the very definition of P̃n,Q, it is clear that what we are
missing is a shifted s̃LieQ-structure made out of multi-derivations. Luckily the preceding results
give us exactly a way to compute those structures.

Proposition 1.2.10. Let O be a dg-operad, and let µ : Comm→ O be a map of operads. The fiber
at µ of the map

HomdgOp(P̃n,Q,O)→ HomdgOp(Comm,O)

is the set HomdgLiegr(Q(k[−1](2)),L(snMD(O))S) .

Proof. By definition of the operad P̃n,Q, the strict fiber we are trying to compute is a subset
of HomdgOp(s̃LieQ, s

nO): in fact, it is composed of morphisms s−ns̃LieQ → O. The condition
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they must satisfy is that the image of the generators must be multi-derivations with respect
to µ. It follows that our fiber is the subset of maps s̃LieQ → snO which send generators to
suspensions of multi-derivations. Using Proposition 1.2.5, we thus get that the fiber is exactly
HomdgLiegr(Q(k[−1](2)),L(snMD(O))S). Notice that it may seem that we are being a bit inaccu-
rate here, as it is not entirely obvious that the (operadic) suspensions of elements of the sub-Lie
algebra MD(O) are still a sub-Lie algebra of L(snO). This is nonetheless true, and it follows
from the observation that elements in snMD(O) are exactly multi-derivations with respect to the
n-suspension of the commutative product µ. To see this, take f a multi-derivation of O of arity p.
We want to show that image under the operadic suspension of f is a multi-derivation of sO with
respect to the suspension of µ. This would easily imply our claim, and therefore the theorem.

Recall that the component of arity p of sO is O(p) ⊗ k[1 − p], where k[1 − p] is the signature
representation of Sp put in degree p − 1. We denote the generator of k[1 − p] by xp−1, so that
|xp−1| = p− 1. By definition of the compositions in sO, we have

(f ⊗ xp−1) ◦i (µ⊗ x1) = (f ◦i µ)⊗ (xp−1 ◦i x1)

= (µ ◦1 f)(i+1 p+1...i+2) ⊗ (xp−1 ◦i x1)+

+ (µ ◦1 f)(i p+1...i+1) ⊗ (xp−1 ◦i x1)

= (−1)p−i((µ ◦1 f)⊗ (xp−1 ◦i x1))(i+1 p+1...i+2)+

+ (−1)p+1−i((µ ◦1 f)⊗ (xp−1 ◦i x1))(i p+1...i+1)

Now observe that

(µ ◦1 f)⊗ (xp−1 ◦i x1) = (−1)i−1(µ ◦1 f)⊗ (x1 ◦1 xp−1)

= (−1)i−1(−1)|f |(µ⊗ x1) ◦1 (f ⊗ xp−1)

so that we have

(f ⊗ xp−1) ◦i (µ⊗ x1) = (−1)p−1(−1)|f |((µ⊗ x1) ◦1 (f ⊗ xp−1))(i+1 p+1...i+2) −
− (−1)p−1(−1)|f |((µ⊗ x1) ◦1 (f ⊗ xp−1))(i p+1...i+1)

which tells us exactly that f ⊗ xp−1 is a multi-derivation with respect to the binary operation
µ⊗ x1.

1.2.4 The moduli space of P̃n,Q-structures

We are now ready to prove our first main result. Given two dg-operads P and Q, one can form a
simplicial space of morphisms from P to Q, which we will denote by HomdgOp(P,Q). Namely, we
can construct a simplicial resolution Q• of Q and consider the simplicial set whose n-simplices are
Hom(P,Qn) and whose face and degeneracy maps are the ones induced by the simplicial structure
of Q•. Notice that this is not the derived mapping space between P and Q in the model category
of dg-operads, since we are not replacing P with a cofibrant model. If the operad P is cofibrant,
then HomdgOp(P,Q) is isomorphic to the mapping space MapdgOp(P,Q) in the homotopy category
of simplicial sets.

The simplicial set HomdgOp(P,Q) has a nice interpretation if we put Q = EndV , where V is a
dg-module. In this case, HomdgOp(P,EndV ) can be thought of as a sort of moduli space of P-algebra
structures on V .
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We can ask whether Proposition 1.2.10 remains true at the level of simplicial sets. First of all,
we remark that the question makes sense: for every operad O, we have a naturally induced map
HomdgOp(P̃n,Q,O)→ HomdgOp(Comm,O) (induced by the natural morphism of operads Comm→
P̃n,Q) that forgets the additional structure, and we could wonder if we can describe the fiber of a
0-simplex µ ∈ HomdgOp(Comm,O) in terms of some simplicial set of morphisms in the category
dgLiegr. The following theorem answers this question affirmatively.

Theorem 1.2.11. Let O be a dg-operad, and let µ : Comm→ O be a map of operads. The (strict)
fiber at µ of the morphism of simplicial sets

HomdgOp(P̃n,Q,O)→ HomdgOp(Comm,O)

is the simplicial set HomdgLiegr(Q(k[−1](2)),L(snMD(O))S⊗Ω∗), which is a right homotopy function
complex from k[−1](2) to L(snMD(O))S in the model category of graded dg-Lie algebras.

Before proving the theorem, we give explicit ways to compute simplicial resolutions and mapping
spaces in both model categories dgOp and dgLiegr.

Let L ∈ dgLiegr. We can construct new graded dg-Lie algebras from L by extension of scalars
from k to any k-dg-algebra. Let us define Ωn to be the dg-algebra of algebraic differential forms on
Spec

(
k[t0, . . . , tn]�t0 + · · ·+ tn = 1

)
. As an algebra, we have

Ωn = k[t0, . . . , tn, dt0, . . . , dtn]/(1−
∑

ti,
∑

dti)

where the generators ti have degree 0 and the dti have degree 1. The algebras Ωn define a simplicial
object in the category of commutative dg-algebras in a natural way. Then the simplicial graded
dg-Lie algebra L⊗Ω∗ is a simplicial resolution of L. Hence in dgLiegr, the mapping space between
two objects L and M has an explicit representative. Its n-simplices are

MapdgLiegr(L,M)n = HomdgLiegr(Q(L),M ⊗k Ωn) ,

where Q is a cofibrant replacement of L.
Just as for graded dg-Lie algebras, given an operad O we can construct new operads by extension

of scalars.

Proposition 1.2.12. For a dg-operad O, the simplicial object O ⊗k Ω∗ (defined as above) gives
a fibrant simplicial framing of the operad O (i.e. a fibrant replacement of O in the Reedy model
category of simplicial objects in dgOp).

This follows directly from [Fr], Part II, Chapter 7 (in particular Theorem 7.3.5).

Proof of Theorem 1.2.11. By construction, the m-simplices of the fiber are the m-simplices of
the simplicial set HomdgOp(P̃n,Q,O) that are sent to µ, viewed as a degenerate m-simplex of
HomdgOp(Comm,O). Therefore we can use Proposition 1.2.10 in order to compute them: they
are the fiber of the function

HomdgOp(P̃n,Q,O ⊗ Ωm)→ HomdgOp(Comm,O ⊗ Ωm)

taken at the point µ. Notice that we are being a bit sloppy in order to keep notation as simple as pos-
sible, as we are identifying µ : Comm→ O with the composition Comm→ O → O⊗Ωn. So Propo-
sition 1.2.10 tells us that the m-simplices of the fiber are HomdgLiegr(Q(k[−1](2)),L(snMD(O ⊗
Ωm))S).
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Observe now that multi-derivations of O ⊗ Ωn are just multi-derivations of O with respect to
µ, considered over the dg-algebra Ωn. Concretely, this means MD(O ⊗ Ωn) = MD(O) ⊗ Ωn as
graded dg-Lie algebras. Moreover, the operadic suspension commutes with extension of scalars, as
does taking invariants. It follows that the graded dg-Lie of n-simplices is

HomdgLiegr(Q(k[−1](2)),L(snMD(O))S ⊗ Ωm) = MapdgLiegr(k[−1](2),L(snMD(O))S)m

where the Map on the right is computed by means of the right homotopy function complex described
before. These isomorphisms organize in a natural way to give an isomorphism of simplicial set
between the fiber at µ and a right homotopy function complex MapdgLiegr(k[−1](2),L(snMD(O))S),
and this proves the theorem.

1.3 Applications to derived algebraic geometry

Let again Q(k[−1](2)) be a semi-free resolution of the dg-Lie algebra k[−1](2). In this section we
apply Theorem 1.2.11 to the context of derived Poisson geometry. In particular, we will show in
Theorem 1.3.1 that a n-Poisson structure in the sense of [PTVV] on a derived stack of the form
SpecA (with A concentrated in degree (−∞,m], with m ≥ 0) gives rise to a P̃n+1,Q-structure on A.

Recall from [PTVV] that for a derived scheme X which is locally of finite presentation, the space
Pois(X,n) of n-Poisson structures on X is the mapping space MapdgLiegr(k[−1](2),Pol(X,n)[n+1]),
where Pol(X,n) is the graded Poisson dg-algebra of n-shifted polyvectors, that is to say

Pol(X,n) = RΓ(X,SymOXTX [−n− 1]) .

IfX = SpecA is affine, Pol(X,n) becomes just SymA(TA[−n−1]) with the usual Schouten-Nijenhuis
bracket.

Recall also from [Qu] that the category of bounded above cochain complexes have a natural
model structure, taking as weak equivalences the quasi-isomorphisms and as fibrations the degree-
wise surjections. This structure induces in the standard way (via the free-forgetful adjunction) a
model structure on bounded above commutative dg algebras.

Theorem 1.3.1. Let A be a cofibrant object in the model category of commutative dg algebras that
are bounded above. Suppose that A, viewed as a derived stack, admits a n-shifted Poisson structure
in the sense of [PTVV]. Then A has a structure of an P̃n+1,Q-algebra, whose commutative product
coincide with the given multiplication in A. More precisely, let µA be the multiplication in A, and
let P̃n+1,Q(A) be the fiber of the map of simplicial sets

HomdgOp(P̃n+1,Q,EndA) −→ HomdgOp(Comm,EndA)

at the point µA.
We have a natural map of simplicial set

Pois(SpecA,n) −→ P̃n+1,Q(A)

Moreover, this map is a weak equivalence if the cotangent complex LA is perfect.

Proof. The simplicial set P̃n+1,Q(A) has an equivalent description given by Theorem 1.2.11, namely
we can rewrite it as HomdgLiegr(Q(k[−1](2)),L(sn+1MD(A))S⊗Ω∗), whereMD(A) is the Lie algebra
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of multi-derivations of the operad EndA, with respect to the natural multiplication µA : Comm→
EndA (see Definition 1.2.6); that is to say, the classically defined multi-derivations of the algebra
A. By functoriality, in order to prove the theorem it will suffice to build up a map of graded dg-Lie
algebras

SymA(TA[−n− 1])[n+ 1] −→ L(sn+1MD(A))S .

To construct this morphism, notice that since A is cofibrant, LA is just the standard mod-
ule of Kähler differentials, and multi-derivations of A of arity p are by definition the A-module
HomA(L⊗pA , A). Hence the weight p component of the graded dg-Lie algebra L(sn+1MD(A))S is
precisely given by the symmetric elements inside HomA(L⊗pA , A)⊗ k[1− p]⊗(n+1), where k[1− p] is
the signature representation of Sp concentrated in degree p − 1. As an Sp-module, k[1 − p]⊗n can
be either a trivial or a signature representation, depending on the parity of n. Concretely, we have

k[1− p]⊗(n+1) =

{
the trivial representation of Sp if n is odd
the signature representation of Sp if n is even

where the Sp-modules are always concentrated in degree (n + 1)(p − 1). It follows that as a dg-
module, the weight p part of L(sn+1MD(A))S is isomorphic to HomA(Symp

ALA, A)[(n+ 1)(1− p)]
if n is odd, and to HomA(ΛpALA, A)[(n+ 1)(1− p)] if n is even.

On the other hand, the weight p component of SymA(TA[−n− 1])[n+ 1] is just Symp
A(TA[−n−

1])[n+ 1], and we have a natural map of k-dg-modules (actually of A-dg-modules)

Symp
A(TA[−n− 1])[n+ 1] −→ HomA(Symp

A(LA[n+ 1]), A)[n+ 1]

induced by the fact that TA is by definition the dual of LA. Notice that this map is not an equivalence
in general: it becomes an equivalence however if we suppose that LA is perfect. Observe next that
we have

Symp
A(LA[n+ 1]) =

{
Symp

A(LA)[n(p− 1)] if n is odd
ΛpA(LA)[n(p− 1)] if n is even

so that for every n, HomA(Symp
A(LA[n+ 1]), A)[n+ 1] is isomorphic as a dg-module to the weight

p component of L(sn+1MD(A))S.
Putting all this together, we do get a map of graded dg-modules

SymA(TA[−n− 1])[n+ 1] −→ L(sn+1MD(A))S .

The point is to check that this map is compatible with the two Lie brackets: on the left hand side,
we have the Schouten bracket, induced by the natural Lie structure on TA, while on the right hand
side we have the bracket of the Lie algebra associated to the operad sn+1EndA = EndA[n+1].

This can be done by direct calculation, since both brackets have a known explicit expression.
One has just to check that the signs coincide.

More abstractly, we can also observe that there is an adjunction{
A-dg-modules B with a compatible
k-linear dg-Lie structure on B[m]

}
�

{
commutative A-dg-algebras B with a

compatible k-linear dg-Lie structure on B[m]

}
where on the right hand side, compatible means that if we forget the A-action we are left with a
Pm+1-algebra. Alternatively, these are just Pm+1-algebras in C(k) whose underlying commutative
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algebra is actually an A-algebra, with no relation between the Poisson bracket and the A-action.
Notice that the left hand side is essentially the category of Lie algebroids over A.

The adjunction is thus a “lift” of the usual free-forget adjunction between A-modules and A-
algebras to the situation where the underlying k-modules have Lie structures. The right adjoint is
the forgetful functor, while the left adjoint sends X to SymA(X). In particular this implies that if
we were able to show that L(sn+1MD(A))S[−n−1] has a compatible A-algebra structure, then the
existence of a Lie algebra map

SymA(TA[−n− 1])[n+ 1] −→ L(sn+1MD(A))S .

would follow from the existence of a morphism of Lie algebras (and of A-modules)

TA −→ L(sn+1MD(A))S .

But it follows from the definitions that the weight one component of L(sn+1MD(A))S is precisely
TA, and that the restriction of the bracket of L(sn+1MD(A))S to TA is the natural one (that is to
say the graded commutator).

We are thus left to define an appropriate degree zero product on L(sn+1MD(A))S[−n − 1].
It turns out that it is induced by the natural shuffle product on the multilinear morphisms from
A[n+ 1] to itself, which has the following explicit description. Denote by µ the multiplication of A;
for f ∈ EndA[n+1](p) and g ∈ EndA[n+1](q), we pose

f · g =
∑

s∈Shp,q

(sn+1µ(f, g))s

where the sum is taken over all permutations s ∈ Sp+q such that s−1(1) < · · · < s−1(p) and
s−1(p + 1) < · · · < s−1(p + q). It easy to check that this defines a degree m product, which
becomes commutative if regarded on L(EndA[n+1])[−n − 1]. Moreover, if f and g are symmetric
multi-derivations, then f · g is again a symmetric multi-derivation. Finally, the graded Leibniz
identity

[f, g · h] = [f, g] · h+ (−1)|g|(|f |+n+1)g · [f, h]

for f, g, h ∈ L(sn+1MD(A))S[−n−1] should be checked to be true. Notice that here the product g ·h
denotes the operation induced by the shuffle product defined above: this means that there are other
signs involved, due to the so-called décalage isomorphism. The verification of the identity is a long
but straightforward computation, and we omit the details. To summarize, L(sn+1MD(A))S[−n−1]
is an A-algebra with a k-linear compatible Lie bracket of degree −n−1, and by the discussion above
this proves the theorem.

We can rephrase the results of Theorem 1.3.1 in a different way: we constructed a map of
simplicial sets

MapdgLiegr(k[−1](2), SymA(TA[−n− 1])[n+ 1])
φ−−→ HomdgOp(P̃n+1,Q,EndA)

that fits in the following diagram
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Pois(SpecA,n) P̃n+1,Q(A) HomdgOp(P̃n+1,Q,EndA)

pt HomdgOp(Comm,EndA)

φ

µA

where the square on the right is a pullback of simplicial sets.
Let us weaken a bit our results in order to express them in a more homotopical language. The

following theorem is the main result of this text.

Theorem 1.3.2. Let A be a commutative dg algebra concentrated in degree (−∞,m], and let X =
SpecA be the derived stack associated to A. Let P hn+1(A) be the homotopy fiber of the morphism of
simplicial sets

MapdgOp(Pn+1,EndA) −→ MapdgOp(Comm,EndA)

taken at the point µA corresponding to the given (strict) multiplication in A.
Then there is a natural map in the homotopy category of simplicial sets

Pois(X,n) −→ P hn+1(A) .

Moreover, this is an isomorphism if LX is a perfect complex.

Proof. Notice that since we are only looking for a morphism in the homotopy category of simplicial
sets, we can safely suppose that A is cofibrant: in fact, the homotopy type of both Pois(X,n) and
P hn+1(A) does not change if we replace A with another algebra quasi-isomorphic to it.

As already mentioned towards the end of Section 2, the mapping space between two operads P
and Q can be computed by taking a cofibrant replacement of the first one and a simplicial resolution
of the second one. Let us denote by C the cofibrant replacement functor in the model category of
dg-operads. In particular, one has

MapdgOp(P,Q) ∼= HomdgOp(C(P),Q) .

Notice that we don’t need to replace Q with a fibrant model, since all operads are fibrant.
In order to compute the homotopy fiber P hn+1(A), one has thus to take cofibrant models for the

operad Comm and Pn+1. For example, let us take the minimal model Comm∞ of Comm, and take
Pn+1,∞ to be the operad whose algebras are Comm∞-algebras together with a s̃LieQ-structure on
A[n] made of homotopy derivations, in the sense of [DL], [Do]. This just means that the generators
of s̃LieQ satisfy the Leibniz identity only up to homotopy.

These are clearly cofibrant models for Comm and Pn+1, and there is an obvious forgetful functor
Comm∞ → Pn+1,∞, that is actually easily seen to be a cofibration in dgOp using the characterization
of cofibrations given in [Hi]. This means that the induced morphism

HomdgOp(Pn+1,∞,EndA) −→ HomdgOp(Comm∞,EndA)

is a fibration between fibrant simplicial sets, and therefore its strict fiber is weakly equivalent to its
homotopy fiber, which in turn is a model for P hn+1(A), the homotopy fiber of

MapdgOp(Pn+1,EndA) −→ MapdgOp(Comm,EndA) .

Let us now consider the following diagram of simplicial sets:
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HomdgOp(Pn+1,Q,EndA) HomdgOp(Pn+1,∞,EndA)

HomdgOp(Comm,EndA) HomdgOp(Comm∞,EndA)

where Pn+1,Q is the operad whose algebras are strictly commutative algebras together with a s̃LieQ-
structure on A[n] made of homotopy derivations. By definition, this is a pullback diagram of
simplicial sets, so that the strict fiber of the map on the right (taken at the point µ) is equivalent
to the strict fiber of the map on the left (still taken at µ; this makes sense since µ factors through
HomdgOp(Comm,EndA)).

But now the strict fiber of the map

HomdgOp(Pn+1,Q,EndA) −→ HomdgOp(Comm,EndA)

is the space of s̃LieQ-structures on A[n] made of homotopy derivations. Our next goal is now to
describe this space, that can actually be quite complicated for a general A.

There is a naturally defined dg module Derh(A) of homotopy derivation of A, which can be used
to compute the Hochshild cohomology of the algebra A. Namely, instead of resolving A and then
computing strict derivations, one can leave A unresolved and compute homotopy derivations (see
[Do], section 3). In particular, this shows that for a cofibrant algebra A one has a quasi-isomorphism
Der(A) ∼= Derh(A), where Der(A) is the standard complex of strict derivations of A. Let us remark
that this result should not come as a surprise, since both Der(A) and Derh(A) are in this case
sensible candidates for the tangent complex of the algebra A, and one should expect no ambiguity
in the definition of such a geometrically meaningful object.

In particular this tells us that for A cofibrant, the space of s̃LieQ-structures on A[n] made of
homotopy derivations is weakly equivalent to the space of s̃LieQ-structures on A[n] made of strict
derivations; but this last space is by definition P̃n+1,Q(A). Now Theorem 1.3.1 gives us a map of
simplicial sets from Pois(A;n) to P̃n+1,Q(A), which corresponds to a map in the homotopy category
of simplicial sets from Pois(A;n) to P hn+1(A).

We conclude by observing that the last statement of the theorem is a direct consequence of the
analogous statement in Theorem 1.3.1.

1.4 Another proof of the main result

In this last section we will give a more explicit description of our results: we take a particular
resolution of the graded dg-Lie algebra k[−1](2) and study the induced resolution of the Lie operad.
We check that its algebras are just Lie∞-algebras in the standard sense, see for example [HS]. These
concrete computations also give an alternative proof of Theorem 1.3.2.

The graded dgLie algebra k[−1](2) has a cofibrant resolution L0 given by the free Lie algebra
generated by elements pi for i = 2, 3, . . . , such that pi sits in weight i and in cohomological degree
1 ; the differential in L0 is defined as to satisfy

dpn = −1

2

∑
i+j=n+1

[pi, pj ]



CHAPTER 1. SHIFTED POISSON STRUCTURES ON DERIVED AFFINE STACKS 51

Notice that in particular that we have dp2 = 0. The map L0 → k[−1](2) sends p2 to the generator
of k[−1](2) and the other pi to zero.

By definition, the space of n-shifted Poisson structures on A is

MapdgLiegr(k[−1](2), SymA(TA[−n− 1])[n+ 1])

and we can use the explicit resolution L0 to compute its n-simplices: these are just elements in

HomdgLiegr(L0, SymA(TA[−n− 1])[n+ 1]⊗ Ωn) .

In particular, the points of the space of n-shifted structures on A can be identified with

HomdgLiegr(L0, SymA(TA[−n− 1])[n+ 1]) .

If A is cofibrant, then the dg module of derivations of A is a model for TA. In this case the same
argument used in the proof of Theorem 1.3.1 proves that SymA(TA[−n− 1])[n+ 1] maps into the
dg Lie algebra of symmetric (shifted) multi-derivations L(sn+1MD(A))S, which in turn sits inside
L(sn+1EndA)S ∼= L(EndA[n+1])

S, the dg Lie of all symmetric multilinear maps of A[n+ 1].
Putting all together, we get a map from the points of Pois(A,n) to

HomdgLiegr(L0,
⊕
i∈N

Homk(Symi
k(A[n+ 1]), A[n+ 1])) .

So at the level of the vertices, a n-Poisson structure on A gives a sequence of symmetric mul-
tilinear maps qi (the images of the pi) on A[n + 1], such that every qi is an i-linear map of degree
1.

One of the possible definitions (see for example [Man]) of a L∞-structures is the following.

Definition 1.4.1. If V is a graded vector space, an L∞-structure on V is a sequence of symmetric
maps of degree 1

ln : SymnV [1]→ V [1] , n > 0

such that for every n > 0 we have ∑
i+j=n+1

[li, lj ] = 0 ,

where the bracket is the Lie bracket we defined before on
⊕
i∈N

Homk(Symi
k(V [1]), V [1]).

So if we want to prove that (still at the level of the vertices) an n-Poisson structure gives us
an L∞-structure on A[n], we could try to find such ln on A[n + 1]. Natural candidates are the
qi that come directly from the shifted Poisson structure; these are given for i > 1. Notice that
our brackets satisfy the graded antisymmetry relation [x, y] = −(−1)|x||y|[y, x] ; in particular, this
relation does not involve the weights of x and y. In our case |pi| = |qi| = 1, and so it follows
[pi, pj ] = [qi, qj ] = [pj , pi] = [qj , qi]. Let us take q1 = d, the differential of A[n+ 1]. We should now
verify that the symmetric maps qi satisfy∑

i+j=n+1

[qi, qj ] = 0 .
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The other observation we need to make is that for every multilinear map f ∈ Homk(Symi
k(A[n+

1]), A[n + 1])), we have [q1, f ] = [f, q1] = d(f), where d here is the differential of multilinear maps
on A[n+ 1].

So using these facts we have∑
i+j=n+1

[qi, qj ] = 2d(qn) +
∑

i+j=n+1
i,j>1

[qi, qj ] = 0 ,

which is what we wanted. To summarize, an n-Poisson structure induces an L∞-structure on A[n].
Now we need to show that the induced L∞-structure on A[n] is compatible with the algebra

structure on A, that is to say that A becomes a semi-strict Pn+1-algebra. But the qi we constructed
in the previous step are (by definition) derivations of the given commutative product on A ; this
gives A precisely the structure of a semi-strict Pn+1-algebra.

The upshot of this discussion is the fact that we got a map

HomdgLiegr(L0, SymA(TA[−n− 1])[n+ 1]) −→ HomdgOp(P̂n+1,EndA)

for which the image is contained in the P̂n+1-structures whose commutative product is the one
given on A. Equivalently, we get a function from HomdgLiegr(L0, SymA(TA[−n − 1])[n + 1]) to the
(non-homotopical) fiber product of the following diagram of sets

HomdgOp(P̂n+1,EndA)

pt HomdgOp(Comm,EndA)
µA

where µA denotes the given commutative product of A. From here one can proceed in the exact
same way as done towards the end of Section 2: namely, we can use Theorem 1.2.11 (and the explicit
descriptions of the simplicial framings in dgOp and dgLiegr) in order to prove that we have a map
of simplicial sets from HomdgLiegr(L0, SymA(TA[−n− 1])[n+ 1]) to the (strict) fiber of the natural
map HomdgOp(P̂n+1,EndA)→ HomdgOp(Comm,EndA), taken at µA.

Now the same arguments used at the end of Section 3 allow to obtain a map in the homotopy
category of simplicial sets

Pois(X,n) −→ P hn+1(A)

giving a more concrete proof of Theorem 1.3.2.



Chapter 2

Shifted Poisson structures on general
derived stacks

In this chapter we put together the results of the two previous sections, giving a definition of shifted
Poisson structure on a general derived Artin stack. The material is mostly taken from [Me] and
[CPTVV], and we will need it in chapter 4 to extend the results of chapter 3 to the general case.

In the first section, we remark that theorem 1.3.2, the main result of chapter 1, is not perfectly
suited to be used in the context arising from formal localization. More specifically, in the proof
of Theorem 1.3.2 we needed a finiteness assumption on the algebra, assuring that the cotangent
complex will be perfect. This is not a big issue though, since the slightly peculiar definition of
polyvectors in chapter 0 does not require one to deal with the tangent complex, and thus there is
no need to assume any dualizability condition on the cotangent complex. We end up by stating
Theorem 2.1.2, which is the modified version of Thereom 1.3.2 that we will use in the following
sections.

In section 2, we attack the problem of defining shifted Poisson structures for general derived
stacks. As for the affine case, we give two possible definitions, and we show that Theorem 2.1.2
implies that they are in fact equivalent as expected. Thanks to formal localization, this looks a lot
like the affine case, where we already showed this kind of result in chapter 1.

2.1 A slight modification of Theorem 1.3.2

Later in this chapter, we will try to extend the results of the previous chapter to general derived
Artin stacks, not necessarily affine. In particular, we will need to prove a statement similar to
Theorem 1.3.2, which shows that the two possible definitions of shifted Poisson structures (the one
in term of bivectors and the one in term of Poisson brackets) are in fact equivalent.

Recall that in Chapter 1 we worked in the simpler category C(k) of cochain complexes over
k. But it is immediate to check that all arguments translates smoothly in the context of any
symmetric monoidal ∞-category M having a well behaved C(k)-enrichment. In particular, our
starting hypothesis on the model category M in the preliminary chapter are enough to assure that
Theorem 1.3.2 stays true in the associated ∞-category.

Using the general formalism of differential calculus in M presented in chapter 0, we can thus
state a general categorical version of Theorem 1.3.2.

Let M be a symmetric monoidal model category, satisfying our starting assumption of chapter

53
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0. Recall that in particular M is C(k)-enriched. Let M be the associated symmetric monoidal
∞-category.

Theorem 2.1.1. With notations as above, take A ∈ CAlgM to be a commutative algebra in M,
and suppose moreover that LintA is dualizable as an object of A −ModM. Then the homotopy fiber
of the map

MapdgOp(Pn+1,EndA) −→ MapdgOp(Comm,EndA),

taken at the point given by the commutative structure on A, is naturally equivalent to

MapLieAlggrM
(1M[−1](2), SymA(TintA [−n− 1])[n+ 1])

where 1M is the monoidal unit and LieAlggrM is the ∞-category of graded Lie algebras inM.

Note that this results reduces exactly to theorem 1.3.2 if we start withM = C(k), and as already
mentioned the hypothesis on M assures that we do get an interpretation of theorem 1.3.2 also in
the general case.

There is still a small issue with Theorem 2.1.1, which prevents us to use it freely for Poisson
structures on general derived stacks. Namely, we put the hypothesis that as an A-module, the
cotangent complex LintA was dualizable. In the affine case treated in chapter 1, this was a natural
assumption, since we want to work to geometric objects locally of finite presentation, and in par-
ticular this assures that the cotangent complex will be perfect (hence dualizable). Notice that as
explained in the proof of theorem 1.3.2, if LintA is not dualizable there is no hope to get the desired
equivalence, and Theorem 2.1.1 is, as stated, simply false.

The situation for a general derived stack X is different though: the algebra A to which we
would like to apply Theorem 2.1.1 is PX(∞), as we saw that formal localization techniques allow
to establish a deep link between PX(∞) and the geometry of X itself. Here it is not entirely
clear whether PX(∞) has a dualizable cotangent complex, internal to the∞-category of DXDR(∞)-
modules.

It turns out that the conclusions of Theorem 2.1.1 can be slightly modified if one drops the
dualizability hypothesis on the cotangent complex.

Theorem 2.1.2. LetM be an∞-category satisfying the hypothesis of chapter 0, and let A ∈ CAlgM
be a commutative algebra inM. Then the homotopy fiber of the map

MapdgOp(Pn+1,EndA) −→ MapdgOp(Comm,EndA),

taken at the point given by the commutative structure on A, is naturally equivalent to

MapLieAlggrM
(1M[−1](2),Polint(A,n+ 1)[n+ 1]),

where Polint(A,n+1) is the algebra of internal (n+1)-shifted polyvectors on A, as defined in chapter
0.

Proof. The proof is basically the same exact proof of Theorem 1.3.2 (and thus of Theorem 2.1.1).
One just needs to notice that during the proof of Theorem 1.3.2 we passed through a canonical
identification between the fiber of the morphism

MapdgOp(Pn+1,EndA) −→ MapdgOp(Comm,EndA)
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and the space of Maurer-Cartan elements of weight ≥ 2 in the completed Lie algebra of multideriva-
tions, using the dual of the symmetric algebra on the cotangent complex.

Recall from chapter 0 that Polint(A,n) was defined precisely using multiderivations, without ever
mentioning the internal tangent complex of A, so that we immediately get the desired result.

Of course, if the internal cotangent complex LintA happens to be dualizable, we already observed
that there is a natural equivalence

Polint(A,n) ' SymA(TintA [−n]),

so that we find back theorem 2.1.1.

2.2 Poisson structures

Our goal in this section is to extend the results of chapter 1 to general stacks. We start by recalling
the objects involved in what will follow.

Let X be a derived Artin stack locally of finite presentation. Consider the associated de Rham
stack XDR: recall that as a functor on the category cdga≤0 , XDR sends an algebra A to X(Ared),
where Ared is the reduced algebra H0(A)red. The de Rham stack comes equipped with a natural
projection q : X → XDR, whose fibers are the formal completions of X at its points. Moreover,
there are two naturally defined prestacks of graded mixed algebras on XDR, denoted DXDR and
PX ; they are to be thought as derived version of the crystalline structure sheaf and of the sheaf of
principal parts respectively. Just as in the classical case, we have a morphism DXDR → PX , that
we think of as a DXDR-linear structure on PX .

The main result of formal localization, as introduced in [CPTVV] and briefly recalled at the
end of our preliminary chapter, tells us that we can recover the geometrically defined polyvectors
on a derived stack X in terms of the Tate polyvectors on the PX . More specifically, we have an
equivalence

Pol(X,n) ' Γ(XDR,Polt(PX/DXDR , n)).

Here global sections are defined in terms of limits: given a derived stack Z and a functor

F : (dAff/Z)op −→ C

to a nice enough ∞-category C, we set

Γ(Z,F) := lim
SpecA→Z

F(A).

Note that in particular this implies that Pol(X,n) is naturally endowed with a structure of a
graded Pn+1-algebra, coming from the natural Pn+1-structure on (Tate) polyvectors on an algebra
in a general ∞-category M as in chapter 0. This allows us to give a precise definition of Poisson
structures on a derived Artin stack X, in the spirit of what was suggested in [PTVV].

Definition 2.2.1. Let X be a derived Artin stack, locally of finite presentation. The space of
n-shifted Poisson structures on X is

Pois(X,n) := MapdgLiegr(k[−1](2),Pol(X,n+ 1)[n+ 1])

where as in chapter 1 we denoted with dgLiegr the ∞-category of graded dg Lie algebras over k.
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In the simpler case where X = Spec A is affine and LX is perfect, it is easy to see that
Pol(X,n) ' SymA(TA[−n]). In particular, the definition above generalized the one used in the
previous chapter.

Notice that this is again a definition of geometric nature: we think of a Poisson structure as a
shifted bivector π on X, which moreover satisfies [π, π] = 0, at least up to homotopy. As already
explained in the introduction, one would like to have a more algebraic definition, since one of the
main goals of derived Poisson geometry is to be able to use Kontsevich’s formality and quantize
symplectic/Poisson derived moduli stacks. Therefore, we need precisely the results of the previous
chapter.

As explained in chapter 0, Tate polyvectors can be interpreted as standard polyvectors on a
twisted version of the algebra. This process was defined in the ∞-category ε− dgModgr of graded
mixed complexes, but it remains of course valid in any category of diagrams of graded mixed
complexes. This means that as algebras in functors to the category of graded mixed modules, both
DXDR and PX admit natural twistings DXDR(∞) and PX(∞), that are now prestacks of algebras
in Ind-objects in the category of graded mixed modules. Explicitly, we have

DXDR(∞) : (dAff/XDR)op −→ Ind(ε− dgModgr)
(SpecA→ XDR) 7−→ D(A)(∞)

and in a similar way

PX(∞) : (dAff/XDR)op −→ Ind(ε− dgModgr)
(SpecA→ XDR) 7−→ D(XA)(∞)

where XA is the defined as the homotopy fiber product

XA
//

��

X

��
SpecA // XDR.

Notice that in particular PX(∞) is a commutative algebra in the category of DXDR(∞)-modules.
With these notations, we can now give an alternative definition of Poisson structures.

Definition 2.2.2. Let X be a derived Artin stack, locally of finite presentation. The space of n-
shifted Poisson structures Pois′(X,n) on X is the space of lifts of the given commutative algebra
structure on PX(∞) to a compatible DXDR(∞)-linear Pn+1-structure. Explicitly, Pois′(X,n) is the
fiber product

Pois′(X,n) //

��

MapdgOp(Pn+1,EndPX(∞))

��
∗ //MapdgOp(Comm,EndPX(∞))

where PX(∞) is viewed as an object inside the C(k)-enriched symmetric monoidal ∞-category of
DXDR(∞)-modules.

If X = SpecA is an affine derived stack, this is exactly the homotopy fiber of

Map(Pn+1,EndA)→ Map(Comm,EndA)

taken at the point corresponding to the given commutative structure on A.
Using theorem 2.1.2, we can now prove that the two definitions do coincide.
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Theorem 2.2.3. Let again X be a derived Artin stack, locally of finite presentation. With notations
as above, there is a canonical equivalence of spaces

Pois(X,n) ∼= Pois′(X,n).

Proof. Let us denote byM the ∞-category of functors

(dAff/XDR)op −→ Ind(ε− dgModgr).

Then DXDR(∞) is an object in CAlgM, and thus we can consider the associated category of modules
DXDR(∞)−ModM. Let us denote by C the ∞-category of commutative algebras in DXDR-modules
in M, that is to say C := CAlgDXDR (∞)−ModM . By definition, the twisted stack of principal
parts PX(∞) lives in the symmetric monoidal ∞-category C. Applying Theorem 2.1.2, we get an
equivalence

Pois′(X,n) ' MapLieAlggrC
(DXDR(∞)[−1](2),Polint(PX(∞), n+ 1)[n+ 1]),

where we used the fact that DXDR(∞) is the monoidal unit in C. On the other hand, recall that
the realization functor yields by definition a right adjoint

| − | : LieAlggr
C −→ dgLiegr,

so that we also have

Pois′(X,n) ' MapdgLiegr(k[−1](2), |Polint(PX(∞), n+ 1)[n+ 1]|).

Since by definition we set

Pois(X,n) ' MapdgLiegr(k[−1](2),Pol(X,n+ 1)[n+ 1]),

we are left with proving an equivalence

|Polint(PX(∞), n)| ' Pol(X,n).

But by the results of formal localization exposed in chapter 0, the right hand side can be described
in terms of PX , namely

Pol(X,n) ' lim
SpecA→XDR

Polt(PX(A)/DXDR(A), n)

' lim
SpecA→XDR

|Polint(PX(∞)(A), n)|

where we used the usual relation between Tate realization and twisting by k(∞). Let us now look
more in detail at the explicit form of the realization functor for Polint(PX(∞), n). In the∞-category
of (dAff/XDR)op-shaped diagrams in Ind(ε− dgModgr), the monoidal unit is the constant diagram
k. In general, in any category of I-shaped diagrams in a symmetric monoidal category C, the
monoidal unit is the constant diagram 1C , where 1C is the unit of C. It is a general result that if
C is also C(k)-enriched, then the C(k)-enrichment satisfies

HomFun(I,C)(1C , X) ' lim
i∈I

Hom(1C , X(i))
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for every diagram X. Applied in our situation of interest, this implies

|F | ' lim
SpecA→XDR

|F (A)|

for every F in C. In particular, putting F = Polint(PX(∞), n), we get

|Polint(PX(∞), n)| ' lim
SpecA→XDR

|Polint(PX(∞)(A), n)|

which is precisely what we needed.



Chapter 3

Coisotropic structures on affine derived
stacks

In this chapter we define and study coisotropic structures on morphisms of derived affine stacks.
The theory is parallel to the one developed for Lagrangian structures in [PTVV], though, as already
explained, derived Poisson geometry is much less functorial that derived symplectic geometry, so
that also coisotropic structures become more complicated than Lagrangian ones.

The chapter is organized as follows. In the first section we fix some notations about the objects
involved, and we recall some well-known construction in the operadic world. In particular, we recall
some generalities on convolution algebras and the Harrison complex, which will be used in the rest of
the chapter. Since we will be interested in algebraic structures on morphisms A→ B of commutative
dg algebras, we are forced to use the formalism of colored operads. Most of the monochromatic
constructions carry over to the colored case, also due to the standard model structure of Caviglia
(see theorem 3.1.5).

In section 2, we start with a dg operad O, and we give a detailed construction of the operad
governing pair of homotopy O-algebras A and B, together with an ∞-morphism A → B. Thanks
to results in [DW], the moduli space of such algebraic structures can be described in terms of
Maurer-Cartan elements in a properly defined L∞-algebra.

During Section 3, we establish a very general operadic formalism in order to define what we
call Swiss cheese operad SC(C1, C2), where C1 and C2 are reduced Hopf cooperads, together with
a compatibility condition. This is a two-colors operad which is a slight generalization of the well
known operad of Voronov (see [Vo]). We explicitly describe algebras over SC(C1, C2), and we get
an expression of SC(C1, C2)-structures on a couple (A,B) in term of Maurer-Cartan element in
an appropriately defined L∞-algebra L(C1, C2, A,B), again borrowing ideas from the cylinder L∞-
algebra of Dolgushev and Willwacher (see [DW]).

In section 4, we define coisotropic structures on morphisms of cdgas as P[n+1,n]-structure, where
P[n+1,n] is a two-colors operad which is an incarnation of our general swiss-cheese construction in
section 1. Moreover, we show that the Maurer-Cartan elements of the L∞-algebra L(C1, C2, A,B) are
equivalent to Maurer-Cartan elements in a geometrically relevant Lie algebra of what we call relative
polyvectors. In particular this gives an alternative (and more intuitive) definition of coisotropic
structure.

59
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3.1 Operadic notations and preliminaries

3.1.1 Lie algebras and Maurer-Cartan elements

Recall that given a dg Lie algebra g the set of Maurer–Cartan elements is defined to be the set of
elements x ∈ g such that

dx+
1

2
[x, x] = 0.

Similarly, we can make sense of Maurer-Cartan elements in more general L∞-algebras. Recall
that an L∞-algebra g is said to be nilpotent if its lower central series F ig terminates, where F 1g = g
and we define inductively

F ig =
∑

i1+···+ik

[F i1g, . . . , F ikg].

We say that a L∞-algebra g is pro-nilpotent if it is an inverse limit of nilpotent algebras.
If g is a nilpotent or a pro-nilpotent L∞-algebra we can define the set of Maurer–Cartan elements

in g to be the set of elements x ∈ g satisfying

dx+
∑
n≥2

1

n!
[x, ..., x]n = 0.

Let Ω• be the cosimplicial commutative algebra of polynomial differential forms on simplices,
which already appeared in chapter 1. For instance, Ω0 = k and Ω1 = k[x, y] with deg(x) = 0,
deg(y) = 1 and dx = y. We define the space of Maurer–Cartan elements MC(g) to be the simplicial
set of Maurer–Cartan elements in g⊗ Ω•, see [Ge] for more details.

Given an L∞-algebra g and a Maurer-Cartan element x ∈ g, we can define the L∞-algebra
obtained by twisting g by x: as a vector space, it is still g, and the brackets are defined to be

[x1, . . . , xn]n :=
∑
k≥0

1

k!
[x, . . . , x, x1, . . . , xn]n+k

for x1, . . . , xn ∈ g.
The following lemma is an easy verification.

Lemma 3.1.1. Let g1 and g2 be pro-nilpotent L∞ algebras with a pair of morphisms p : g1 → g2

and i : g2 → g1 such that p ◦ i = idg2. Then the homotopy fiber of

MC(g1)→ MC(g2)

at a Maurer–Cartan element x ∈ g2 is equivalent to the space of Maurer–Cartan elements in the
L∞ algebra ker p twisted by the element i(x).

The space of Maurer–Cartan elements in a dg Lie algebra is homotopy invariant only for a pro-
nilpotent dg Lie algebra. One way to ensure pro-nilpotence is to keep track of the grading. Recall
that in the previous chapters we already encountered a notion of graded dg Lie algebra (see in
particular the first section of chapter 1). We recall here the definition for the sake of completeness.

Definition 3.1.2. A graded dg Lie algebra is a graded complex

g =
⊕
m∈Z

gm

together with a Lie bracket of cohomological degree 0 and weight −1.
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2 4 1 3 5

Figure 3.1: The tree tσ corresponding
to a (2, 3)-shuffle σ.

Figure 3.2: A pitchfork in Isomt(7, 3).

Similarly, one can define graded L∞-algebras to be graded complexes with L∞ operations ln of
weight 1− n. These form categories dgLiegr and Lgr

∞.
Given a graded dg Lie algebra or a graded L∞-algebra g we introduce the completions

g≥m =
∏
n≥m

gn.

Note that in particular by our conventions g≥m for any m ≥ 2 is pro-nilpotent.
As usual, we denote by k[−1](2) the trivial one-dimensional dg Lie algebra concentrated in

cohomological degree 1 and weight 2. We have the following statement, which is proved for instance
in the last section of chapter 1.

Lemma 3.1.3. Let g be a graded L∞ algebra. The space MapLgr
∞(k[−1](2), g) is equivalent to the

space of Maurer–Cartan elements in the pro-nilpotent L∞ algebra g≥2.

3.1.2 Operadic notations

Throughout this chapter, we will need at various points to be a tad more explicit with respect
to chapter 1. We will therefore need some additional (quite standard) notations. Our conventions
about operads mainly follow those of [DR] and [LV]. Unless precisely stated, all operads we consider
are operads in cochain complexes.

Recall that a symmetric sequence V is a sequence of cochain complexes V (n) together with
an action of Sn on V (n). The category of symmetric sequences is monoidal with respect to the
composition product and an operad is an algebra in the category of symmetric sequences. Similarly,
a cooperad is a coalgebra in the category of symmetric sequences.

We denote by Treem(n) the groupoid of planar trees with labeled n incoming edges and m
vertices. The morphisms are not necessarily planar isomorphisms between trees. For instance, the
groupoid Tree2(n) has components parametrized by (p, n − p)-shuffles σ for any p, where a shuffle
σ corresponds to the tree tσ as shown in Figure 3.1.

We will also be interested in the set Isomt(n, r) of pitchforks with n incoming edges and r + 1
vertices, see Figure 3.2 for an example and [DW, Section 2] for more details. The groupoid Tree3(n)
has trees of two kinds: pitchforks in Isomt(n, 2) and the complement Tree0

3(n).
Given a tree t ∈ Treem(n) and a symmetric sequence O we define O(t) to be the tensor product

O(t) =
⊗
i

O(ni)

where the tensor product is taken over the vertices of t and ni is the number of incoming edges at
vertex i.
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Given an operad O, a tree t ∈ Treem(n) naturally defines a multiplication map

mt : O(t)→ O(n),

corresponding to the formal composition of operations in O. Similarly, for a cooperad C we have a
comultiplication map

∆t : C(n)→ C(t).
Recall that trees play an important role in the description of the free operad: for a symmetric

sequence P, the free operad Free(P) has operations parametrized by trees t whose vertices are
labeled by operations in P.

All our operads will have either O(0) = k or O(0) = 0. In the latter case we say that the operad
is reduced. Given a non-reduced operad O we denote by Onu the same operad with Onu(0) = 0.

All cooperads we consider will have C(1) = k. In particular, they are canonically coaugmented.
Let us denote the cokernel of the coaugmentation by C◦. Given a coaugmented cooperad C we define
its cobar complex ΩC to be the free operad on the symmetric sequence C◦[−1]. The differential on
the generators X ∈ C(n)[−1] for n > 1 is given by

dX = −sd1(s−1X)−
∑

t∈π0(Tree2(n))

(s⊗ s)(t,∆t(s
−1X)) (3.1)

where d1 is the differential on the symmetric sequence C, and s stands for suspension.
The following lemma is standard, and its proof can be found for instance in [LV, Proposition

6.5.6].

Lemma 3.1.4. The cobar differential d on ΩC squares to zero.

Given an operad O and a complex A, we define the free O-algebra on A to be

O(A) =
⊕
n

(O(n)⊗A⊗n)Sn .

Similarly, for a cooperad C and a complex A, we define the cofree conilpotent C-coalgebra on A
to be

C(A) =
⊕
n

(C(n)⊗A⊗n)Sn .

We will also be interested in colored symmetric sequences and colored operads. Let V be a
set. A V-colored symmetric sequence is a collection of complexes V(v⊗n1

1 ⊗ ...⊗ v⊗nmm , v0) for every
collection of elements v0, v1, ..., vm ∈ V together with an action of Sn1 × ... × Snm . As before, the
category of V-colored symmetric sequences has a composition product and a V-colored operad is
defined to be an algebra object in the category of V-colored symmetric sequences.

We say that a (colored) dg operad O is semi-free if it is free as a graded (colored) operad. The
following results allows us to look for semi-free resolutions of colored dg operads, much like in the
case of monochromatic operads.

Theorem 3.1.5 (Caviglia, [Ca]). The category of (colored) dg operads has a model structure with
the following properties:

• A weak equivalence is the weak equivalence of the underlying (colored) symmetric sequences.

• A semi-free (colored) operad is cofibrant.

• Every (colored) operad is fibrant.
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3.1.3 Convolution algebras and resolutions

Given a (monochromatic) operad O, we will be mostly interested in working with some cofibrant
resolution O′ → O. One natural object of interest is then the mapping space MapdgOp(O′,EndX),
which parametrizes O′-structures on the object X. More generally, one would like to better under-
stand the mapping space MapdgOp(O′,P), where P is now any dg operad. We saw in chapter 1 that
in the case O ' Lie this space can be usefully described as the space of Maurer-Cartan elements
inside a properly defined dg Lie algebra associated to P.

In this section, we study this problem for a general O, but we suppose moreover that the
resolution O′ is of the form ΩC, where C is a cooperad. We start by recalling the definition of the
convolution Lie algebra, and we describe its Maurer-Cartan elements.

Let C be a cooperad, and let P a dg operad. We introduce the convolution algebra Conv(C,P)
as follows. As a complex it is defined to be

Conv(C,P) =
∏
n≥2

HomSn(C(n),P(n)),

where the product is taken in the category of dg modules, and HomSn is the cochain complex of
maps of Sn-modules. In the special case in which P is an endormorphisms operad, we denote

L(C;A) := Conv(C,EndA).

It is well known that the convolution algebra Conv(C,P) admits a pre-Lie product. More
specifically, let us now introduce a binary operation on Conv(C,P) by

(f • g)(X) =
∑

t∈π0(Tree2(n))

mt((f ⊗ g)∆t(X))

for any f, g ∈ Conv(C,P) and X ∈ C(n). The following bracket

[f, g] = f • g − (−1)|f ||g|g • f.

satisfies the Jacobi identity, that is to say Conv(C,P) becomes a pre-Lie algebra. This is essentially
the content of [DR, Proposition 4.1].

Consider the graded piece

Conv(C,P)n = HomSn(C(n),P(n)).

It is easy to see that the pre-Lie structure gives a map

Conv(C,P)n ⊗ Conv(C,P)m → Conv(C,P)n+m−1.

Therefore, the completion
Conv(C,P) =

∏
n≥2

Conv(C,P)n

is a pro-nilpotent pre-Lie algebra.

The Lie structure on the convolution algebra is very useful, as its Maurer-Cartan elements have
a nice description in terms of mapping spaces of operads.
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Proposition 3.1.6. Assume O is a reduced augmented operad with a weak equivalence ΩC ∼→ O.
Then the mapping space MapdgOp(O,P) is equivalent to the space of Maurer–Cartan elements in
the convolution algebra Conv(C,P).

Proof. We have a sequence of equivalences of spaces

MapdgOp(O,P) ∼= MapdgOp(ΩC,P) ∼= Hom•(ΩC,P) ∼= Hom(ΩC,P ⊗ Ω•).

An operad morphism f : ΩC → P is uniquely specified by a degree 0 map of symmetric sequences
f0 : C◦[−1]→ P satisfying the equation

d(f0(X)) = f(dX)

= f(−sd(s−1X)−
∑

t∈π0(Tree2(n))

(s⊗ s)(t,∆t(s
−1X)))

= −f0(sd(s−1X))− f(
∑

t∈π0(Tree2(n))

(s⊗ s)(t,∆t(s
−1X)))

for any X ∈ C◦(n)[−1]. Since f is a morphism of operads, the last term can also be written in terms
of f0, so we obtain

d(f0(X)) + f0(sd(s−1X)) +
∑

t∈π0(Tree2(n))

µt((f0s⊗ f0s)∆t(s
−1X)) = 0.

Identifying degree 0 maps f0 : C◦[−1]→ P with degree 1 maps f0s : C◦ → P we get exactly the
Maurer–Cartan equation in Conv(C,P). Since the simplicial set of Maurer–Cartan elements in a dg
Lie algebra g is defined to be the set of Maurer–Cartan elements in g⊗Ω• and Conv(C,P ⊗Ω•) ∼=
Conv(C,P)⊗ Ω•, we are done.

3.1.4 The Harrison complex

We will now give some explicit examples of our previous constructions. Let us begin with the case
O = Commnu, the non-unital commutative operad. The operad is Koszul and we have a canonical
resolution Ω(coLie{1}) → Commnu, where coLie{1} is the cooperad of shifted Lie coalgebras with
the cobracket of degree 1. Define the filtered dg Lie algebra

Harr•(A,A) := Hom(coLie(A[1]), A[1]) ⊂
∏
n≥1

Hom(A⊗n, A)[1− n],

of maps A⊗n → A vanishing on elements of the form∑
σ∈Sr,n−r

(−1)sgn(σ)aσ(1) ⊗ ...⊗ aσ(n).

The pre-Lie structure is given by

(f ◦ g)(a1, ..., an) =
∑

(−1)|g|
∑i
k=1(|ak|+1)f(a1, ..., ai, g(ai+1, ..., ai+j), ai+j+1, ..., an).

We have a natural decreasing filtration on Harr•(A,A) using the arity filtration on the cofree
Lie coalgebra where

Harr≥m(A,A) ⊂
∏
n≥m

Hom(A⊗n, A)[1− n].
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Proposition 3.1.6 implies that the space MapdgOp(Commnu,EndA) is equivalent to the space of
Maurer–Cartan elements in the dg Lie algebra Harr≥2(A,A). Note that Harr≥2(A,A) is naturally
pro-nilpotent.

If A is a commutative dg algebra, the multiplication defines a Maurer–Cartan element in
Harr•(A,A). The induced differential on Harr•(A,A) is given by

(df)(a1, ..., an) = df(a1, ..., an)

+
n∑
i=1

(−1)|f |+
∑i−1
q=1 |aq |+if(a1, ...,dai, ..., an)

+

n−1∑
i=1

(−1)|f |+
∑i
q=1 |aq |+i+1f(a1, ..., aiai+1, ..., an)

+ (−1)(|f |+1)(|a1|+1)a1f(a2, ..., an) + (−1)
∑n−1
q=1 |aq |+|f |+n+1f(a1, ..., an−1)an.

We call Harr•(A,A) with this differential the Harrison cochain complex. Let us also define the
Harrison chain complex. As a graded vector space it is defined to be

Harr•(A,A) = A⊗ coLie(A[1])[−1].

The differential on Harr•(A,A) is characterized uniquely by the property that the quotient map
A⊗ T(A[1])[−1]→ Harr•(A,A) from the bar complex is compatible with the differential.

Consider the morphism Harr•(A,A) → Ω1
A given by sending f ⊗ g 7→ fddRg where g ∈ A ⊂

coLie(A[1])[−1]. The following lemma is standard, and is contained for example in [CK].

Lemma 3.1.7. Suppose A is a cofibrant cdga. Then the morphism Harr•(A,A) → Ω1
A is a quasi-

isomorphism.

We have a morphism Der(A,A)→ Harr•(A,A) dual to the previous one given by the inclusion
Der(A,A) ⊂ End(A) ⊂ Harr•(A,A).

Proposition 3.1.8. Let A be a cdga. The Harrison complex Harr•(A,A) is a model for the tangent
complex TA. If A is cofibrant, the morphism Der(A,A) → Harr•(A,A) is a quasi-isomorphism of
dg Lie algebras.

Proof. By Lemma 3.1.7, we have a quasi-isomorphism of A-modules A⊗coLie(A[1])[−1] ∼= LA. The
first claim follows by taking the A-linear dual.

The fact that Der(A,A) → Harr•(A,A) is a quasi-isomorphism follows from the same Lemma.
Compatibility with the Lie bracket is immediate as the pre-Lie structure on

End(A) ⊂ Harr•(A,A)

is given by composition.

3.2 The operad of ∞-morphisms

Let O be any operad. We are now going to introduce a colored operad O ⊗∆1 whose set of colors
is {A,P}. Algebras over O ⊗∆1 consist of a pair of O-algebras A,B together with a morphism of
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O-algebras A→ B. Explicitly,

(O ⊗∆1)(A⊗n,A) = O(n), (O ⊗∆1)(P⊗n,P) = O(n)

(O ⊗∆1)(A⊗n,P) = O(n), (O ⊗∆1)(P⊗n,A) = 0.

The operad structure on (O ⊗∆1) comes from the operad structure on O itself.
Assume we have a resolution ΩC ∼→ O. As usual, ΩC can be interpreted as an up-to-homotopy

version of O. Our next goal is to use C to construct an up-to-homotopy version of the operad
O ⊗∆1. Let us start by defining a colored symmetric sequence C ⊗∆1 as follows:

(C ⊗∆1)(A⊗n,A) = C◦(n), (C ⊗∆1)(P⊗n,P) = C◦(n)

(C ⊗∆1)(A⊗n,P) = C(n)[1], (C ⊗∆1)(P⊗n,A) = 0.

We then define the colored operad F = Free(C⊗∆1[−1]). It has the following explicit description:

F (A⊗n,A) = (ΩC)(n), F (P⊗n,P) = (ΩC)(n)

F (A⊗n,P) = (ΩC ◦ C ◦ ΩC)(n), F (P⊗n,A) = 0.

The cooperad structure on C can be used to define a differential on F . More precisely, the
differential on the terms F (A⊗n,A) and F (P⊗n,P) is the usual cobar differential. The differential
on the generators X ∈ C(n) ⊂ F (A⊗n,P) has three components:

• The first component d1X comes from the differential on C(n) itself.

• The second component is

d2X = −
∑

t∈Tree2(n)

(s⊗ 1)(t,∆t(X))

for any X ∈ C(n) ⊂ F (A⊗n,P), where we treat the first tensor factor as an element of
F (A⊗−,A), the second tensor factor as an element of F (A⊗−,P) and the height 1 node is on
the right.

• The third component is

d3X =
∑
r

∑
t∈Isomt(n,r)

(1⊗ ...⊗ 1⊗ s)(t,∆t(X)),

where the first r factors are treated as elements of F (A⊗−,P), the last factor is treated as an
element of F (P⊗−,P) and the rightmost tensor factor again comes from the height 1 node.

The operations in the free operad F are parametrized by trees with solid edges corresponding
to A and dashed edges corresponding to P; the vertices of the trees are labeled by the operations
in C ⊗∆1. See Figure 3.3 for a pictorial presentation of the differentials.

Lemma 3.2.1. The total differential on Free(C ⊗∆1[−1]) squares to zero.

Proof. Let us denote by d1 the internal differential on C which gives the first term in the cobar
differential (3.1); we denote by dA the second term of the cobar differential on F (A⊗−,A) and by
dP the second term of the cobar differential on F (A⊗−,P). The total differentials on F (A⊗−,A)
and F (P⊗−,P) square to zero by Lemma 3.1.4.

Now consider a generator X ∈ C(n) ⊂ F (A⊗n,P). Let us split the terms appearing in d2X into
the following combinations:
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Figure 3.3: Operation X and summands in d2X and d3X.

1. d2
1X,

2. d1d2X + d2d1X,

3. d1d3X + d3d1X,

4. dAd2X + d2
2X,

5. d3d2X + d2d3X,

6. dPd3X + d2
3X.

Figure 3.4: Some trees appearing in terms of type (4), (5) and (6) respectively.

We claim that each of these is zero. Indeed, d2
1X = 0 follows from the fact that the internal

differential on C squares to zero. The terms of type (2) and (3) separately vanish since the cooperad
maps are compatible with the internal differential.

Recall the subset π0(Tree0
3(n)) ⊂ π0(Tree3(n)) from the proof of Lemma 3.1.4 and denote

∆t(X) = Xt
(1) ⊗X

t
(2).

Then

dAd2X =−
∑

t∈π0(Tree2(n))

(dAsX
t
(1) ⊗X

t
(2))

=
∑

t∈π0(Tree03(n))

(s⊗ s⊗ 1)(Xt
(1) ⊗X

t
(2) ⊗X

t
(3))
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Similarly,

d2
2X =

∑
t∈π0(Tree2(n))

(−1)
|Xt

(1)
|
(sXt

(1))⊗ (d2X
t
(2))

=−
∑

t∈π0(Tree03(n))

(−1)
|Xt

(1)
|
(sXt

(1))⊗ (sXt
(2))⊗X

t
(3)

−
∑

t∈Isomt(n,2)

(−1)
|Xtl

(1)
|
(sXtl

(1))⊗ (sXtl
(2))⊗X

tl
(3)

−
∑

t∈Isomt(n,2)

(−1)
|Xtr

(1)
|
(sXtr

(1))⊗ (sXtr
(2))⊗X

tr
(3).

As in the proof of Lemma 3.1.4, the terms involving sums over pitchforks cancel. But the sums
over π0(Tree3(n)) have opposite signs, so terms of type (4) vanish.

We have

d2d3X =
∑
r

∑
t∈Isomt(n,r)

(d2 ⊗ 1)(1⊗r ⊗ s)(Xt
(1) ⊗ ...⊗X

t
(r) ⊗X

t
(r+1))

= −
∑
r,i

∑
t∈Isomt(n,r)

(1⊗r ⊗ s)(1⊗(i−1) ⊗ d2 ⊗ 1⊗(r+1))(Xt
(1) ⊗ ...⊗X

t
(r) ⊗X

t
(r+1))

= −
∑
r

∑
t∈Isomt(n,r)

r∑
i=1

(−1)
∑i−1
j=1 |X

t
(j)
|
(1⊗r ⊗ s)(Xt

(1) ⊗ ...⊗ d2X
t
(i) ⊗ ...⊗X

t
(r+1))

= −
∑
r

∑
t∈Isomt(n,r)

r∑
i=1

nt
i∑

k=0

∑
σ∈S

k,nt
i
−k

(1⊗(i−1) ⊗ s⊗ 1⊗(r−i+1) ⊗ s)∆tσ•it(X),

where tσ •i t is the tree obtained by inserting tσ into the i-th nodal vertex of t.
Similarly,

d3d2X = −
n∑
k=0

∑
σ∈Sk,n−k

(1⊗ d3)(s⊗ 1)∆tσ(X)

=
n∑
k=0

∑
σ∈Sk,n−k

(s⊗ 1)(1⊗ d3)∆tσ(X)

=
n∑
k=0

∑
σ∈Sk,n−k

∑
r

∑
t∈Isomt(n,r)

(s⊗ 1⊗r ⊗ s)∆tσ•1t(X),

where the sum goes over pitchforks t with nt1 ≥ k. We can identify terms in d2d3X with those in
d3d2X if we permute the nodes of t so that the tree tσ is always attached to the vertex i = 1. Then
we get terms with opposite signs, so terms of type (5) vanish.

For terms of type (6) we have

dPd3X =
∑
r

∑
t∈Isomt(n,r)

(1⊗r ⊗ dPs)∆t(X)

= −
∑
r

∑
t∈Isomt(n,r)

∑
k

∑
σ∈Sk,r−k

(1⊗r ⊗ s⊗ s)∆t•0tσ(X),
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where t •0 tσ is the tree obtained by inserting tσ into the unique height 1 node of t.
We also have

d2
3X =

∑
q

∑
t∈Isomt(n,q)

(d3 ⊗ 1)(1⊗q ⊗ s)∆t(X)

= −
∑
q

∑
t∈Isomt(n,q)

q∑
i=1

(1⊗q ⊗ s)(1i−1 ⊗ d3 ⊗ 1q−i)∆t(X)

= −
∑
q

∑
t∈Isomt(n,q)

q∑
i=1

∑
k

∑
t′∈Isomt(nt

i ,k)

(1⊗(k+q−1) ⊗ s)(1i−1 ⊗ 1⊗k ⊗ s⊗ 1q−i ⊗ 1)∆t•it′(X)

=
∑
q

∑
t∈Isomt(n,q)

q∑
i=1

∑
k

∑
t′∈Isomt(nt

i ,k)

(1i−1 ⊗ 1⊗k ⊗ s⊗ 1q−i ⊗ s)∆t•it′(X)

The trees of the type t •i t′ can be identified with the trees of the type t •0 tσ once we set
k + q − 1 = r. The corresponding terms in dPd3 and d2

3 have opposite signs, so terms of type (6)
vanish as well.

We denote by Ω(C⊗∆1) the colored operad Free(C⊗∆1[−1]) equipped with the above differential.
There is a morphism of colored operads Ω(C ⊗∆1)→ O⊗∆1 coming from the morphism ΩC → O
in arities (A⊗n,A) and (P⊗n,P) and the morphism C → 1 in arity (A⊗n,P).

Lemma 3.2.2. The morphism Ω(C ⊗∆1)→ O⊗∆1 is a weak equivalence.

Proof. The claim in arities (A⊗n,A) and (P⊗n,P) follows from the assumption that ΩC → O is a
weak equivalence.

The claim in arity (A⊗n,P) follows from the fact that the symmetric sequence ΩC ◦ C with the
differential d2 is quasi-isomorphic to 1 [LV, Lemma 6.5.14]. Therefore, the symmetric sequence
ΩC ◦ C ◦ ΩC is weakly equivalent to 1 ◦ ΩC which in turn is weakly equivalent to O.

We thus have a resolution of the colored operad O ⊗ ∆1; moreover, recall from the Caviglia
model structure of theorem 3.1.5 that this resolution is cofibrant, since it is manifestly semi-free.
We now go on to describe its algebras.

To this purpose, let us introduce the L∞-algebra L(C;A,B) which controls deformations of a
pair of ΩC-algebras A and B together with an∞-morphism A→ B. This construction appeared in
work of Dolgushev and Willwacher under the name of cylinder L∞-algebra (see [DW, Section 3]).
As a complex it is

L(C;A,B) = L(C;A)⊕ L(C;B)⊕Hom(C(A), B)[−1]

with the differentials coming from C, A and B.
The L∞ brackets are given as follows:

• The Lie structure on the first and second terms are those on the convolution algebras L(C;A)
and L(C;B).

• The Lie bracket between an element P ∈ L(C;A) and sT ∈ Hom(C,Hom(A⊗−, B))[−1] lands
in Hom(C,Hom(A⊗−, B))[−1] and is given by

[sT, P ](X; a1, ..., an) =
n∑
p=0

∑
σ∈Sp,n−p

±sT (X(1);P (X(2); aσ(1), ..., aσ(p)), aσ(p+1), ..., aσ(n))
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for X ∈ C(n) and where ∆tσ(X) = X(1) ⊗X(2). Here the sign is the Koszul sign associated
to the permutation of {T, PX(1), X(2), a1, . . . , an}.

• The L∞ brackets between an element R ∈ L(C;B) and sTi ∈ Hom(C,Hom(A⊗−, B))[−1] land
in Hom(C,Hom(A⊗−, B))[−1] and are given by

[R, sT1, ..., sTr](X; a1, ..., an) = −
∑
σ∈Sr

∑
t∈Isomt(n,r)

± sR(X(0);Tσ(1)(X(1); aλt(1), ..., aλt(nt
1)), ...,

Tσ(r)(X(r); aλt(n−nt
r+1), ..., aλt(n))).

Here again the sign is the Koszul sign associated to the permutation of the set of graded
elements {T1, . . . Tr, X(1), X(2), a1, . . . , an}.

The remaining brackets are either extended in the obvious way by symmetry or declared to be zero.
The following statement is proved in [DW, Claim 3.1] and essentially follows from Lemma 3.2.1:

Lemma 3.2.3. These brackets define an L∞ structure on L(C;A,B).

Moreover, Dolgushev and Willwacher give the following description of the Maurer-Cartan ele-
ments in the cylinder algebra [DW, Claim 3.2].

Lemma 3.2.4. The Maurer-Cartan equation for the L∞-algebra L(C, A,B) is well defined, and
Maurer-Cartan elements in L(C, A,B) correspond to ΩC-structures on A and B together with an
∞-morphism of ΩC-algebras from A to B.

We know show that Maurer-Cartan elements in L(C, A,B) also correspond to algebras for the
operad Ω(C ⊗∆1), giving our desired description of its algebras.

Proposition 3.2.5. The mapping space Map(O⊗∆1,EndA,B) is equivalent to the space of Maurer–
Cartan elements in the L∞ algebra L(C;A,B).

Proof. As in Proposition 3.1.6, we have a sequence of weak equivalences

Map(O ⊗∆1,EndA,B) ∼= Hom(Ω(C ⊗∆1),EndA,B) = Hom(Ω(C ⊗∆1),EndA,B ⊗ Ω•).

A morphism of colored operads f : Ω(C ⊗∆1)→ P is uniquely determined by degree 0 maps

fAA : C◦[−1]→ P(A⊗−,A), fPP : C◦[−1]→ P(P⊗−,P), fAP : C → P(A⊗−,P).

These have to satisfy the equations

dfAA(X) = f(dX), X ∈ C◦(n)[−1]

dfPP(X) = f(dX), X ∈ C◦(n)[−1]

dfAP(X) = f(dX), X ∈ C(n),

where in the first line we consider X as a generator of Ω(C ⊗∆1) in arity (A⊗n,A), in the second
line as a generator in arity (P⊗n,P) and in the last line as a generator in arity (A⊗n,P).
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As in Proposition 3.1.6, the first two equations imply that the elements fAA0 s and fAP0 s satisfy
the Maurer–Cartan equations in the convolution algebras Conv(C,P(A⊗−,A)) and Conv(C,P(P⊗−,P)).
The last equation becomes

dfAP(X) = fAP0 (d1X)− f

 ∑
t∈π0(Tree2(n))

(s⊗ 1)(t,∆t(X))


+ f

∑
r

∑
t∈Isomt(n,r)

(1⊗r ⊗ s)(t,∆t(X))


= fAP(d1X)−

∑
t∈π0(Tree2(n))

µt((f
AAs⊗ fAP)∆t(X))

+
∑
r

∑
t∈Isomt(n,r)

µt(((f
AP)⊗r ⊗ fPPs)∆t(X))

This implies that (fAAs, fAP , fPPs) defines a Maurer–Cartan element.

3.3 Swiss-cheese operads

The goal of this section is to define a generalized version of the swiss-cheese operad of Voronov (see
[Vo]). The construction uses ideas taken from [CW].

Suppose C is a Hopf cooperad, i.e. a cooperad in dg algebras. Calaque and Willwacher proved
that for any cochain complex A, the natural pre-Lie structure on L(C, A) can be lifted to a so-called
C-pre-Lie structure. More specifically, the operad preLieC has operation parametrized by rooted
trees where each vertex is labeled by an operation of C whose arity is equal to the number of
incoming edges at the given vertex. Explicitly, let T (n) be the set of rooted trees with n vertices;
then we have

preLieC(n) =
⊕

t∈T (n)

(
n⊗
i=1

C(ti)

)
,

where ti is the number of incoming edges at the vertex i (see [CW, Section 3] for more details).
As mentioned, the for any complex A the convolution algebra L(C, A) is in a natural way a

preLieC-algebra. Suppose now we are given an ΩC-structure on A. We have already seen that
this corresponds to a Maurer-Cartan element in L(C, A), which can in turn be used to twist its
differential in order to obtain a twisted convolution algebra L(C, A)′.

Definition 3.3.1. The twisted convolution algebra L(C, A)′ is called the center of the ΩC-algebra
A, and it will be denoted ZC(A) (or simply Z(A), if there is no ambiguity).

The operad preLieC does not act on ZC(A), but an appropriately twisted version of it indeed
does. By the general formalism of operadic twisting (see [DW], [CW]), one can in fact construct an
operad TwpreLieC . The operad TwpreLieC has operations parametrized by rooted trees where some
“external” vertices are labeled by elements of C and the rest of the vertices, “internal” vertices, are
unlabeled. In the pictures external vertices are colored white and internal vertices are colored black.
The operad TwpreLieC then acts naturally on the twisted convolution algebra L(C;A)′, where the
internal vertices are assigned the Maurer-Cartan element itself. We refer again to [CW, Section 3]
for more details on this constructions.
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As an example, consider the case O = Pnun , the operad of non-unital Pn-algebras. Then we have
a weak equivalence Ω(coPnun {n}) → Pnun , where coPnun {n} is the cooperad of shifted non-counital
Pn-coalgebras with comultiplication of degree n and cobracket of degree 1.

Given a homotopy Pn-algebra B we define the Poisson center Z(B) to be

Z(B) = Hom(coPunn {n},EndB)[−n]

with the differential twisted by the Maurer–Cartan element πB defining the homotopy Pn-algebra
structure.

Tamarkin [Ta] defined a homotopy Pn+1-structure on the Poisson center Z(B) which we now
sketch following Calaque–Willwacher [CW]. Recall that coPn is a Hopf cooperad. Therefore, we
have an action of the operad TwpreLiecoPn on Z(B). Explicitly, the homotopy Pn+1-action on
Conv(coPn{n},EndB)[−n] is given by a morphism of operads

Ω(coPnun+1{n+ 1})→ TwpreLiecoPn{n}

defined on generators by the following rule:

• The generators
x1...xk ∈ coLie{1}(k) ⊂ coPnun+1{n+ 1}(k)

are sent to the tree drawn in Figure 3.5 with the root labeled by the element

x1...xk ∈ coLie{1}(k) ⊂ coPnun {n}(k).

Here x1...xk is the image of the k-ary comultiplication under the projection

coAss{1} → coLie{1}.

• The generator
x1 ∧ x2 ∈ coComm{n+ 1}(2) ⊂ coPnun+1{n+ 1}(2)

is sent to the linear combination of trees shown in Figure 3.6.

• The generators
x1 ∧ x2...xk ∈ coPnun+1{n+ 1}(k)

for k > 2 are sent to the tree shown in Figure 3.7 with the root labeled by the element

x2...xk ∈ coLie{1}(k − 1) ⊂ coPnun {n}(k − 1).

• The rest of the generators are sent to zero.

Note that under the natural inclusion Ω(coCommnu{n+ 1}) ⊂ Ω(coPnun+1{n+ 1}) the homotopy
Lie structure on Z(B) is strict and coincides with the Lie bracket on the convolution algebra as
easily seen from Figure 3.6.

We are now going to define a colored operad which can be considered as a version of the
Swiss–cheese operad. Let C1 be a reduced cooperad and C2 a reduced Hopf cooperad together
with an operad morphism F : ΩC1 → TwpreLieC2 . Notice that this map automatically gives an
ΩC1-structure on ZC2(B) for any ΩC2-algebra B. From this data we will define a cofibrant colored
operad SC(C1, C2), whose algebras will be couples (A,B) such that
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1 ... k

Figure 3.5: Image of x1...xk.

1

2

−(−1)n 2

1

Figure 3.6: Image of x1 ∧ x2.

1

2 ... k

Figure 3.7: Image of x1 ∧
x2...xk

• A is a ΩC1-algebra;

• B is a ΩC2-algebra;

• there is an ∞-morphism of ΩC1-algebras from A to ZC2(B).

As before, we will explicitly present SC(C1, C2), starting from a colored symmetric sequence. The
set of colors of SC(C1, C2) is {A,P}. The operad is semi-free on the colored symmetric sequence
P (C1, C2) whose nonzero elements are

P (C1, C2)(A⊗m,A) = C1(m), m > 1

P (C1, C2)(P⊗l,P) = C2(l), l > 1

P (C1, C2)(A⊗m ⊗ P⊗l,P) = C1(m)⊗ C2(l)[1], m > 1, l ≥ 0.

The colored operad Free(P (C1, C2)[−1]) has operations parametrized by trees with edges of two
types: those of color A that we denote by solid lines and those of color P that we denote by dashed
lines. The vertices of the trees are labeled by generating operations in P (C1, C2). We define a
differential on Free(P (C1, C2)[−1]) in the following way. The differentials in arities (A⊗−,A) and
(P⊗−,P) are the usual cobar differentials (3.1). The differential on an element s−nX ⊗ Y for
X ∈ C1(m) and Y ∈ C2(l) has four components:

•
d1(X ⊗ Y ) = d1X ⊗ Y + (−1)|X|X ⊗ d1Y

where d1 are the internal differentials on the complexes C1(m) and C2(l).

•
d2(X ⊗ Y ) = (1⊗ s−1)

∑
t∈π0(Tree2(m))

(s⊗ s)(t,∆t(X)) ◦ Y.

Here we denote by (t,∆t(X)) ◦ Y the tree t with additional l dashed incoming edges at the
root which is labeled by X(0) ⊗ Y .

•
d3(X ⊗ Y ) = (1⊗ s−1)X ◦

∑
t∈π0(Tree2(l))

(s⊗ s)(t,∆t(Y )).

•
d4(X ⊗ Y ) =

∑
r

∑
t∈Isomt(m,r)

F (t,∆t(X), Y ).
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Figure 3.8: A tree t and t ◦ Y with l = 2.

Here F (t,∆t(X), Y ) is defined in the following way. LetX(0) be the label of the root in ∆t(X).
The image of sX(0) under F : ΩC1 → TwpreLieC2 is a tree F (sX(0)) labeled by r elements of
C2. Consider the composition t ◦0 F (sX(0)). We consider the following set of trees t̃: a tree
t̃ is obtained from t ◦0 F (sX(0)) by adding an arbitrary number of incoming dashed edges to
vertices so that the total number of incoming dashed edges is l. Note that the vertices of the
tree t are labeled by elements of C1 while the vertices of F (sX(0)) are labeled by elements Zi of
C2. The labelings of vertices of t ◦0 F (sX(0)) are of two kinds: external vertices are labeled by
the tensor product X(i)⊗ Y(i)Z(i) (where Y(i)Z(i) is the product in the Hopf cooperad C2) and
they belong to the operations in P (A⊗− ⊗ P⊗−,P); the internal vertices are simply labeled
by elements of C2 and they belong to the operations in P (P⊗−,P). We refer to figure 3.9 for
an example. We define F (t,∆t(X), Y ) to be the sum over all such trees t̃.

1

2

3

Figure 3.9: A pitchfork t, a rooted tree F (sX(0)) and an example of t̃.

Lemma 3.3.2. The total differential d on Free(P(C1, C2)[−1]) squares to zero.

Proof. The claim in arities (A⊗m, cA) and (P⊗l,P) follows from Lemma 3.1.4.
The proof of the claim in arities (A⊗m ⊗ P⊗l,P) is similar to the proof of Lemma 3.2.1, so we

only give a sketch of the proof. Let us split the differentials on the generators in arities (A⊗−,A)
and (P⊗−,P) as d = d1 + dA and d = d1 + dP respectively.

Given an element X ⊗ Y for X ∈ C1(m) and Y ∈ C2(l) the expression d2(X ⊗ Y ) splits into the
following combinations:

1. d2
1(X ⊗ Y ),

2. (d1d2 + d2d1)(X ⊗ Y ),

3. (d1d3 + d3d1)(X ⊗ Y ),

4. (d1d4 + d4d1)(X ⊗ Y ),

5. (d2
2 + dAd2)(X ⊗ Y ),

6. (d2
3 + dPd3)(X ⊗ Y ),

7. (d2d3 + d3d2)(X ⊗ Y ),
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8. (d2d4 + d4d2)(X ⊗ Y ),

9. (d3d4 + d4d3)(X ⊗ Y ),

10. (d2
4 + dPd4)(X ⊗ Y ).

We claim that each of these is zero. It is obvious for terms of type (1). Terms of type (2)
and (3) vanish due to compatibility of the cooperad structure on C1 and C2 respectively with the
differentials. The vanishing of terms of type (5) and (6) is proved similarly to the vanishing of the
terms of type (4) in Lemma 3.2.1. The vanishing of the terms of type (7), (8), (9) is obvious as the
corresponding modifications of the trees are independent.

Differentials on both ΩC1 and TwpreLieC2 have a linear and a quadratic component. Therefore,
the compatibility of the morphism F : ΩC1 → TwpreLieC2 with differentials has two implications.
First, the compatibility of the linear parts of the differentials implies the vanishing of terms of type
(4). Second, the compatibility of the quadratic parts of the differentials implies the vanishing of
terms of type (10).

We denote by SC(C1, C2) the colored operad Free(P(C1, C2)[−1]) equipped with the above dif-
ferential.

We define the L∞ algebra L(C1, C2;A,B) as follows. As a complex,

L(C1, C2;A,B) = L(C1;A)⊕ L(C2;B)⊕Hom(C1(A)⊗ Cun2 (B), B)[−1].

The L∞ operations are given by the following rule:

• The first two terms have the standard convolution algebra brackets.

• The first two terms act on the third term by precomposition.

• Given R1, ..., Rm ∈ L(C2;B) and T1, ..., Tr ∈ Hom(C1(A)⊗ Cun2 (B), B), their bracket is

[R1, ..., Rq.T1, ..., Tr](X ⊗ Y ; a1, ..., am, b1, ..., bl)

for X ∈ C1(m) and Y ∈ C2(l) is given by the sum over pitchforks t ∈ Isomt(m, r) where
each term is given as follows. Let ∆t(X) = X(0) ⊗ ... where X(0) is assigned to the root and
recall the tree t ◦0 F (sX(0)). The value of the bracket is given by the sum over all ways of
assigning T1, ..., Tr to the white external vertices and R1, ..., Rq to the black internal vertices
of t ◦0 F (sX(0)).

The proof of the following proposition it entirely analogous to the one given for Proposition
3.2.5.

Proposition 3.3.3. The space of morphisms MapdgOp(SC(C1, C2),EndA,B) is equivalent to the space
of Maurer–Cartan elements in the L∞ algebra L(C1, C2;A,B).

Notice that a Maurer-Cartan element in L(C1, C2;A,B) gives a Maurer–Cartan element in
L(C1;A,Z(B)) where we use the morphism F : ΩC1 → TwpreLieC2 to give an action of ΩC1 on
Z(B). In particular, we get the following consequence.

Corollary 3.3.4. An algebra over the colored operad SC(C1, C2) is an ΩC1-algebra A, an Ω(C2)-
algebra B and a homotopy morphism of ΩC1-algebras A→ Z(B).
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3.4 Coisotropic structures on affines

We are now ready to apply the constructions and the results of the previous sections in order to
give the definition of coisotropic structures.

Recall from chapter 1 that for A a commutative dg algebra, we defined the space Pois(A,n) of
n-shifted Poisson structures on A to be the homotopy fiber of

MapdgOp(Pn+1,EndA)→ MapdgOp(Comm,EndA)

taken at the given commutative multiplication. Moreover, Theorem 1.3.2 gave us an alternative
way of describing the space Pois(A,n): we have in fact an equivalence

Pois(A,n) ∼= MapdgLiegr(k(2)[−1],Pol(A,n)[n+ 1]),

where Pol(A,n) is the algebra of shifted polyvectors on A.
Recall that given a homotopy Pn-algebra B we have the Poisson center

Z(B) = Hom(coPunn {n}(B), B)[−n]

which is a homotopy Pn+1-algebra. This structure was obtained from an explicit morphism of
operads

Ω(coPn+1{n+ 1})→ TwpreLiecoPn{n}
defined by Tamarkin and Calaque–Willwacher (see [Ta], [CW]).

Given such morphism, we can now define the operad which will encode coisotropic structures.

Definition 3.4.1. With notations as in Section 3.3, we define the (n + 1)-shifted Poisson swiss-
cheese operad to be

P[n+1,n] = SC(coPn+1{n+ 1}, coPn).

We have the following characterization of P[n+1,n]-algebras, which is a special case of Corollary
3.3.4.

Proposition 3.4.2. A P[n+1,n]-algebra structure on (A,B) consists of the following data:

• a homotopy Pn+1-structure on A;

• a homotopy Pn-structure on B;

• an ∞-morphism of Pn+1-algebras A→ Z(B), where Z(B) is the Poisson center on B.

Note that, by definition, we have a natural inclusion Ω(coLie{1}⊗∆1)→ P[n+1,n] which gives a
morphism Comm⊗∆1 → P[n+1,n] in the homotopy category of colored operads. In terms of algebras,
this implies that given a P[n+1,n]-algebra (A,B), we get an underlying map of commutative algebras
A→ B.

Definition 3.4.3. Let f : A→ B be a morphism of commutative dg algebras. The space Cois(f, n)
of n-shifted coisotropic structures on f is defined to be the homotopy fiber product of the diagram
of spaces

Cois(f, n) //

��

MapdgOp(P[n+1,n],EndA,B)

��
∗ //MapdgOp(Comm⊗∆1,EndA,B)

where the bottom map is induced by the given commutative structure on the morphism f .
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We remark that this definition is a homotopy version of the definition of coisotropic structures
given in [Sa, Definition 1.4].

We have a canonical pair of forgetful maps

Cois(f, n)

ww ''
Pois(B,n− 1) Pois(A,n)

induced by the morphisms

MapdgOp(P[n+1,n],EndA,B)

tt **
MapdgOp(Pn,EndB) MapdgOp(Pn+1,EndA).

Notice that this definition can be somewhat mysterious. If f : A→ B has a n-shifted coisotropic
structure, then in particular the algebras A and B are endowed Poisson structures of different shifts.
We stress that this is a purely derived phenomenon, as in the case where both A and B are classical
underived k-algebras, they can only admit unshifted (that is to say, 0-shifted) Poisson structures.

As a first evidence to the fact that Definiton 3.4.3 is a sensible generalization of the concept of
being coisotropic in ordinary smooth geometry, notice that classically if A is a Poisson algebra and
B ' A/I, then B is coisotropic if the multiplicative ideal I is closed under the Poisson bracket.

In this case, the inclusion I → A becomes in fact a morphism of non-unital Poisson algebras,
which is precisely what will happen for general P[n+1,n]-algebras in Section 3.4.1.

We will discuss the relation between definition 3.4.3 and the classical notion of coisotropic more
in detail in the following chapter.

3.4.1 From relative Poisson algebras to Poisson algebras

Recall that for a Pn-algebra B in M , we defined its Poisson center to be the convolution algebra

Conv(coPcun {n};B)[−n],

with differential twisted by the Maurer Cartan element πB defining the Pn-structure on B. Similarly,
let us denote with Def(B) its deformation complex, defined as

Conv(coPn{n};B),

again with differential twisted by πB. Notice that the main difference between Z(B) and Def(B)[−n]
is the absence of the weight 0 part in the convolution algebra. Also, the different shift convention
are taken for historical reasons, so that Def(B) is a Lie algebra. In particular, the natural map

Def(B)[−n]→ Z(B)

is a morphism of non-unital Pn+1-algebras. Rotating the fiber sequence

Def(B)[−n] −→ Z(B) −→ B
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we find
B[−1] −→ Def(B)[−n] −→ Z(B).

Since as mentioned the map on the right is a (non-unital) Pn+1-map, it follows that the whole fiber
sequence can be promoted to a fiber sequence of non-unital Pn+1-algebras.

Now suppose that we have a P[n+1,n]-algebra (A,B) in M . In particular, we have a Pn+1-
morphism A → Z(B). Therefore, we can construct a commutative diagran of non-unital Pn+1-
algebras

B[−1] // U(A,B) //

��

A

��
B[−1] // Def(B)[−n] // Z(B)

where the square on the right is Cartesian, and both rows are fiber sequences of non-unital Pn+1-
algebras in M . Notice in particular that the connecting morphism of the first row is given by the
composite A → Z(B) → B, which is exactly the underlying morphism in CAlgM of the P[n+1,n]-
algebra (A,B).

We can summarize the above discussion in the following proposition.

Proposition 3.4.4. Let (A,B) be a P[n+1,n]-algebra inM. Then the fiber U(A,B) of the underlying
morphism A → B in CAlgM has a natural structure of a non-unital Pn+1-algebra, such that the
map U(A,B)→ A preserves such structure.

One can get a similar result for graded Poisson algebras. More specifically, given a graded
Pn-algebra B, one can define a graded Pn+1-algebra Zgr(B) (its graded center) and a graded non-
unital Pn+1-algebra Defgr(B) (its graded deformation complex). Using the exact same arguments
as before, we get the following proposition.

Proposition 3.4.5. Let (A,B) be a graded P[n+1,n]-algebra inM. Then the fiber Ugr(A,B) of the
underlying map A → B has a natural structure of a graded non-unital Pn+1-algebra, such that the
map Ugr(A,B)→ A preserves such structure.

3.4.2 Graded mixed Poisson algebras

Consider a graded Pn-algebra A in M. The purpose of this section is to introduce the notion of
mixed structure on a graded Poisson algebra.

Definition 3.4.6. With notations as above, the space MixPn(A) of mixed structures on A is the
mapping space

MixPn(A) := MapLiegrM
(1M[−1](2),Defgr(A)),

where 1M is the monoidal unit ofM, and Defgr is the graded deformation complex of Section 3.4.1.

Remark. The space MixPn(A) can be thought as the space of all possible enhancements of A to
a graded mixed Pn-algebra. More specifically, there is a natural forgetful monoidal ∞-functor
Mgr,ε → Mgr, which simply forgets the mixed structure. The space MixPn(A) is then equivalent
to the underlying space of the fiber of the ∞-functor

Pn − algMgr,ε −→ Pn − algMgr
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taken at A. As always for our conventions, here the bracket in the graded operad Pn has weight −1.
However, we will not need this alternative characterization of mixed structures in the remainder of
the thesis.

Notice that given a graded Pn-algebra A, the results of Section 3.4.1 give us a simple recipe to
produce mixed structures on A.

Proposition 3.4.7. Let A ∈ Pn − alggrM be a graded Pn-algebra. There is a natural morphism of
spaces

MapLiegrM
(1M[−1](2), A[−n+ 1]) −→ MixPn(A).

Proof. This follows directly from the definition of the space MixPn(A) and from the existence of a
natural morphism A[−n+ 1]→ Defgr(A) inside the ∞-category LiegrM.

In particular, given a mixed structure on a graded Pn-algebra A, its graded center Zgr(A)
also inherits a mixed structure. In fact, there is a natural morphism Defgr(A) → Zgr(A) inside
Pn+1 − alggrM, which by the above proposition gives rise to a natural map

MixPn(A) −→ MixPn+1(Zgr(A))

in the ∞-category of spaces.

Remark. If one interprets mixed structures as in the previous remark, then the existence of the
induced mixed structure on Z(A)gr is just a formal consequence of the fact that A is an algebra
insideMgr,ε, and therefore its internal center still lives inMgr,ε.

For the coloured case of a graded P[n+1,n]-algebra, we can now give a similar definition of mixed
structures, which will be used later on.

Definition 3.4.8. Let (A,B) be a graded P[n+1,n]-algebra in M. The space MixP[n+1,n]
(A,B) of

mixed structures on (A,B) is defined to be the pullback of the following diagram in the ∞-category
of spaces

MixP[n+1,n]
(A,B) //

��

MixPn(B)

��
MixPn+1(A→ Zgr(B)) //MixPn+1(Zgr(B))

where A → Zgr(B) is treated as a graded Pn+1-algebra in the category Mor(M) of morphisms of
M.

3.4.3 Relative polyvectors

In this subsection we define the complex of relative polyvector fields for derived affine schemes. This
will give an alternative way to define coisotropic structures. Given a morphism of commutative dg
algebras f : A→ B, we have a natural fiber sequence

TB/A −→ TB −→ TA ⊗A B.

Interpreted in ordinary geometry, this suggests that TB/A[1] can be thought as a derived general-
ization of the normal bundle of the map f . In particular, for any n we get a map of B-modules

TA ⊗A B[−n− 1] −→ TB/A[n],



CHAPTER 3. COISOTROPIC STRUCTURES ON AFFINE DERIVED STACKS 80

which induces a map of B-algebras

SymB(TA ⊗A B[−n− 1]) −→ SymB(TB/A[−n]).

By precomposing with the natural map SymA(TA[−n− 1])→ SymA(T[−n− 1])⊗A B, we end up
with a canonical morphism of A-algebras

SymA(TA[−n− 1]) −→ SymB(TB/A[−n]).

Definition 3.4.9. Let f : A → B be a morphism of commutative dg algebras. The complex of
relative n-shifted polyvectors Pol(f, n) is the homotopy fiber of the map

Pol(A,n) −→ Pol(B/A, n− 1)

constructed above.

Remark that in particular a model for Pol(f, n+ 1) is

Pol(A,n+ 1)⊕ Pol(B/A, n)[−1],

where the differential is given by the two internal differentials and by the morphism Pol(A,n+1)→
Pol(B/A, n).

Our next goal is to enhance the diagram of graded modules

Pol(f, n+ 1)[n+ 1]

tt ))
Pol(A,n+ 1)[n+ 1] Pol(B,n)[n].

to a diagram of graded L∞-algebras. The first problem is of course to endow Pol(f, n+1)[n+1] with
a L∞-structure. Notice that this is not trivial, since there is for example no easy way to express
Pol(f, n+ 1)[n+ 1] as a limit of a diagram of L∞-algebras.

The L∞-structure appear however quite naturally if we adopt a slightly different approach to
relative polyvectors.

Consider again a morphism of dg modules f : A→ B. Consider the graded dg module

L := Hom(coPn+1{n+ 1}(A), A)⊕
Hom(coPn{n}(B), B)⊕
Hom(coPnun+1{n+ 1}(A)⊗ coPn{n}(B), B)[−n− 1],

where the differential is simply given by the internal differentials.
Note that both coPn+1{n + 1}(A) and coPn{n}(B) are given by a symmetric coalgebra and

we use the natural grading on the symmetric coalgebra to induce a grading on L. Moreover, we
already know from the previous sections that there is a natural L∞-structure on L: explicitly, the
L∞ brackets on L are defined in the same way as the brackets on L(coPn+1{n+ 1}, coPn;A,B).

If A and B are given commutative structures and f becomes a morphism of commutative
dg algebras, then this specifies a Maurer-Cartan element in L, which in turn defines a twisted
differential on L. We define Pol′(f, n+ 1)[n+ 1] the graded L∞ algebra obtained by twisting L by
this Maurer-Cartan element.
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Let us explicitly describe the twisted differential on Pol′(f, n + 1)[n + 1]. The Maurer–Cartan
element defined by f : A → B has three components: the multiplications mA, mB on A and B
respectively and the map A → B. The differentials on the first two terms are simply given by
twisting the convolution algebras by mA and mB respectively. The differential on the last term has
the following components:

• Pre-composition with mA.

• Pre-composition and post-composition with mB.

• The morphism f gives a morphism coLie(A[1]) → coLie(B[1]). This gives a differential on
Sym(coLie(A[1])[n]⊕ coLie(B[1])[n− 1]) and thus a differential on the last term of Pol(f, n+
1)[n+ 1].

The element mA ∈ L(coPn+1{n+ 1};A) has Lie brackets with the first term and the last term
and has no higher operations. This induces the usual twisted differential

Proposition 3.4.10. Let f : A → B be a morphism of commutative dg algebras. One has an
equivalence

Pol′(f, n+ 1)[n+ 1] ' Pol(f, n+ 1)[n+ 1]

of graded dg modules.

Proof. Recall that we have a morphism

A⊗ coLie(A[1])[−1]→ Ω1
A

given in weight 1 by f ⊗ g 7→ fddRg.
This induces a morphism

HomA(SymA(Ω1
A[n+ 1]), A)[n+ 1]→ HomA(A⊗ Sym(coLie(A[1])[n]), A)[n+ 1]

∼= Hom(Sym(coLie(A[1])[n]), A)[n+ 1].

Combining three such morphisms, we get a morphism from

HomA(SymA(Ω1
A[n+ 1]), A)[n+ 1]⊕HomB(SymB(Ω1

B[n]⊕ f∗Ω1
A[n+ 1]), B)[n]

to Pol(f, n)[n+ 1].
Introduce the differentials f∗Ω1

A[n+ 1]→ Ω1
B[n] given by the pullback of differential forms and

HomA(SymA(Ω1
A[n+ 1]), A)→HomB(SymB(f∗Ω1

A[n+ 1]), B)[−1])

∼=HomA(SymA(Ω1
A[n+ 1]), B)[−1]

given by the post-composition A→ B.
Using the explicit description of the differential on Pol(f, n+ 1)[n+ 1] a straightforward check

shows that the morphism is compatible with the differentials.
Now suppose A is cofibrant and A → B is a cofibration. In particular, B is cofibrant. Then

each of the morphisms into the Harrison complex are quasi-isomorphisms by Lemma 3.1.7. Since
A→ B is a cofibration, the composite

Ω1
B/A → f∗Ω1

A[−1]→ Ω1
B ⊕ f∗Ω1

A[−1]

is a quasi-isomorphism (where Ω1
B⊕f∗Ω1

A[−1] is considered with the additional differential discussed
above), and the claim follows.
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The above proposition assures that Pol(f, n+1)[n+1] does in fact have a L∞-structure. This is
essential to our purposes, since this Lie structure allows us to make sense of the following statement,
which is the fundamental result of this chapter.

Theorem 3.4.11. Given a morphism of commutative dg algebras f : A→ B we have an equivalence
of spaces

Cois(f, n) ∼= MapLgr
∞(k(2)[−1],Pol(f, n+ 1)[n+ 1]).

Proof. We begin with the following basic observation. We have a homotopy Cartesian diagram

Map(P[n+1,n],EndA,B)

��

//Map(Pnu[n+1,n],EndA,B)

��
Map(Comm⊗∆1,EndA,B) //Map(Commnu ⊗∆1,EndA,B).

Therefore, the homotopy fibers of the two vertical maps are equivalent.
By Proposition 3.2.5 the space Map(Commnu⊗∆1,EndA,B) is equivalent to the space of Maurer–

Cartan elements in the L∞ algebra

L(coLie{1};A,B) ∼=Hom(coLie◦(A[1]), A)[1]

⊕Hom(coLie◦(B[1]), B)[1]

⊕Hom(coLie(A[1]), B).

By Proposition 3.3.3 the space Map(Pnu[n+1,n],EndA,B) is equivalent to the space of Maurer–
Cartan elements in the L∞ algebra

L(coPn+1{n+ 1}, coPn;A,B) ∼=Hom(coPn+1,◦{n+ 1}(A), A)

⊕Hom(coPn,◦{n}(B), B)

⊕Hom(coPn+1{n+ 1}(A)⊗ coPunn {n}(B), B)[−n− 1].

The morphism Map(Pnu[n+1,n],EndA,B) → Map(Commnu ⊗∆1,EndA,B) is induced by the mor-
phism of L∞ algebras

p : L(coPn+1{n+ 1}, coPn;A,B)→ L(coLie{1};A,B)

which is given by the inclusion of the space of cogenerators in the reduced symmetric coalgebra.
We also have an inclusion

i : L(coLie{1};A,B)→ L(coPn+1{n+ 1}, coPn;A,B)

given by projecting the symmetric coalgebras to the space of cogenerators. Therefore, by Lemma
3.1.1 the homotopy fiber of

Map(Pnu[n+1,n],EndA,B)→ Map(Commnu ⊗∆1,EndA,B)

is equivalent to the space of Maurer–Cartan elements of

Pol(f, n+ 1)[n+ 1]≥2 =Hom(Sym≥2(coLie(A[1])[n]), A)[n+ 1]

⊕Hom(Sym≥2(coLie(A[1])[n]⊕ coLie(B[1])[n− 1]), B)[n].

The claim then follows from Lemma 3.1.3.
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It is obvious from construction that the natural projections induce a correspondence of graded
L∞ algebras

Pol(f, n+ 1)[n+ 1]

tt ))
Pol(A,n+ 1)[n+ 1] Pol(B,n)[n]

Moreover, the relative polyvectors algebra fits in a fiber sequence of L∞-algebra

Pol(B/A, n)[n] −→ Pol(f, n+ 1)[n+ 1] −→ Pol(A,n+ 1)[n+ 1].

Notice that an n-shifted Poisson structure onA is given by a Maurer-Cartan element πA in Pol(A,n+
1)[n + 1]; by the above discussion, we can interpret a coisotropic structure on a map A → B as a
lift of πA to a Maurer-Cartan element in Pol(f, n+ 1)[n+ 1].



Chapter 4

Coisotropic structures on derived stacks

The purpose of this chapter is to explain how to generalize Definition 3.4.3 to the case of morphism
between derived stacks.

In the first section we give, as in the affine case, two possible definitions of coisotropic structures
on a morphism of derived Artin stacks, proving that they are equivalent. We list some examples of
derived coisotropic structures, both generalizing classical constructions and exposing intrinsically
derived phenomena.

In the second section we prove a general existence theorem for Poisson structures, which is
parallel to the Lagrangian intersection theorem of [PTVV]. Given an n-shifted Poisson stack X
and two coisotropic structures on a couple of morphisms L1 → X and L2 → X, we show that the
derived intersection L12 = L1 ×X L2 naturally carries a (n− 1)-shifted Poisson structure, which is
in general non-trivial. This generalizes previous (homological, 0-shifted) results of Baranovsky and
Ginzburg in [BG], as well as the affine case worked out of [Sa].

The third and final section deals with the comparison with shifted Lagrangian structures, as
defined in [PTVV]. We give a definition of what it means for a coisotropic structures to be non-
degenerate, and show that the space of non-degenerate coisotropic structures on a map f is equivalent
to the space of Lagrangian structures on f . This generalize Theorem 3.2.5 of [CPTVV], solving
Conjecture 3.4.5 in [CPTVV] and Conjecture 1.1 in [JS].

4.1 Coisotropic structures

Notice that Definition 2.2.2 allows us to work in a almost purely algebraic context, since a Poisson
structure is some additional algebraic structure on a prestack. This gives in particular the possibility
to deal with coisotropic structures on general derived stacks using ideas from [Sa].

More specifically, letM be an ∞-category satisfying our starting assumption of chapter 0. Let
P[n+1,n] be the coloured operad whose algebras are pairs of objects (A,B) inM together with the
following additional structure:

• a Pn+1-structure on A;

• a Pn-structure on B;

• a morphism of Pn+1-algebras A → Z(B), where Z(B) is again the Poisson center of B,
considered with its natural structure of Pn+1-algebra.

84
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We refer to the previous chapter for more details on this operad. Since there is a canonical morphism
of commutative algebras Z(B)→ B, we get a natural forgetful functor

φ : P[n+1,n] − algM → Mor(CAlgM)

to the category of morphisms of commutative algebras, sending a P[n+1,n]-algebra (A,B) to the
underlying map A→ B. We can use this forgetful functor in order to study P[n+1,n]-structures over
a fixed map A→ B.

Definition 4.1.1. Let f : A → B be a map of commutative algebra objects in the ∞-category M.
The space of P[n+1,n]-structures on f is the fiber of the forgetful functor φ, taken at f . It will be
denoted P[n+1,n](f).

We are now ready to give the general definition of coisotropic structure on a map of derived
stack. Let f : L → X be a map of derived Artin stack locally of finite presentation. The map
f descends to a map between the de Rham stacks fDR : LDR → XDR, which in turn induces a
pullback functor (simply denoted f∗, with a slight abuse of notation) from prestacks on XDR to
prestacks on LDR. By definition of DXDR , one gets immediately an equivalence DLDR ∼= f∗DXDR .
As for the sheaves of principal parts, f induces a natural map

f∗(PX)→ PL

preserving the DLDR-linear structures. It follows that it exists an induced morphism

f∗P : f∗(PX(∞))→ PL(∞)

of DLDR(∞)-algebras. Now suppose that X is endowed with a n-shifted Poisson structure. This
corresponds to a Pn+1-structure on PX(∞), so that f∗(PX(∞)) becomes a DLDR(∞)-linear Pn+1-
algebra.

Definition 4.1.2. Let L → X be a map of derived Artin stacks locally of finite presentation, and
suppose X is endowed with a n-shifted Poisson structure. Let Pn+1(f∗P(PX(∞))) be the space of
Pn+1-structures on f∗P(PX(∞)) that are compatible with the natural commutative algebra structure.
Then as above the n-shifted Poisson structure on X gives a point p in Pn+1(f∗P(PX(∞))). We define
the space of n-shifted coisotropic structures on f (denoted Cois(f, n)) to be the fiber of the forgetful
functor

P[n+1,n](f
∗
P) −→ Pn+1(f∗P(PX(∞)))

taken at the point p.

Notice that this is just a reformulation of Definition 3.4.3, where we have replaced the category
of cochain complexes with the more complicated category of DLDR(∞)-modules.

Remark. Our definition is in the same spirit as that given in [CPTVV], Section 3.4. The difference
is that the authors used a different operad, that they denoted P(n+1,n), instead of our P[n+1,n]. We
strongly believe that the two definitions coincide, since for every Pn-algebra B there should be an
equivalence of Pn+1-algebras between Z(B) and EndPn(B). Notice however that even just proving
that EndPn(B) is a Pn+1-algebra is strictly related to the additivity conjecture for the Poisson
operad, as stated for example in Section 3.4 in [CPTVV]. We refer to chapter 5 for more details on
the comparison of the two definitions.
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As an immediate consequence of the very definition of coisotropic structure, we get the following
easy proposition, which links shifted Poisson structures on a stack with coisotropic structures on
its natural projection to Speck.

Proposition 4.1.3. Let X be a derived Artin stack. Let f : X → (Spec k, πn+1) be the natural
map to the point, taken with its trivial (n + 1)-shifted Poisson structure πn+1. Then there is an
equivalence

Cois(f, n+ 1) ∼= Pois(X,n) .

Notice that the same proposition stays true for symplectic and Lagrangian structures (see for
instance [Cal]).

4.1.1 Relative polyvectors for derived stacks

In this subsection we give an alternative definition of coisotropic structures on a morphism of derived
Artin stacks, using the notion of relative polyvectors. The goal is to prove an analogue of Theorem
3.4.11 in the case of derived stacks.

For every map of derived stack f : L→ X, the map we introduced in the previous subsection

f∗PX → PL

induces a morphism between the Tate polyvectors

Polt(f∗PX/DLDR , n+ 1) −→ Polt(PL/f∗PX , n)

whose fiber at zero will be denoted by Polt(f, n+ 1), with a slight abuse of notation. Finally, let

Pol(f, n+ 1) ∼= Γ(LDR,Polt(f, n+ 1)) .

We can use Pol(f, n) to give an alternative definition of coisotropic structure, which is maybe
closer to the classical intuition about coisotropic submanifolds.

Definition 4.1.4. Let f : L → X be a map of derived Artin stack, locally of finite presentation.
Suppose that X is endowed with a n-shifted Poisson structure π. Then the space Cois′(f, n) of
n-shifted coisotropic structures on f is the fiber of

MapdgLiegr(k[−1](2),Pol(f, n+1)[n+1]) −→ MapdgLiegr(k[−1](2),Γ(LDR,Polt(f∗PX , n+1)[n+1]))

taken at the point corresponding to π.

Let us immediately address the question of the equivalence of the two definitions of coisotropic
structures.

Theorem 4.1.5. Let again f : L→ X be a map of derived Artin stacks, locally of finite presentation.
Suppose moreover that X has a given n-shifted Poisson structure π ∈ Pois(X,n). Then the space of
coisotropic structures on f in the sense of Definition 4.1.2 is equivalent to the space of coisotropic
structures in the sense of Definition 4.1.4. In other words, there is a natural equivalnce

Cois(f, n) ' Cois′(f, n)

in the ∞-category of spaces.
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Proof. LetM be the category of DLDR(∞)-modules. Recall from the previous subsection that there
is a morphism of algebras inM

f∗P : f∗PX(∞)→ PL(∞) .

It follows from Theorem 3.4.11 applied in M that

P[n+1,n](f
∗
P) ∼= MapLiegrM

(1M[−1](2),Polint(f∗P , n+ 1)[n+ 1]) ,

where 1M is the monoidal unit ofM, and Polint(f∗P , n) is the fiber at zero of the map inM

Polint(f∗PX(∞), n+ 1) −→ Polint(PL(∞)/f∗PX(∞), n) .

But just as in the proof of Theorem 3.1.2 in [CPTVV], we also have

MapLiegrM
(1M[−1](2),Polint(f∗P , n+ 1)[n+ 1]) ∼= MapdgLiegr(k[−1](2), |Polint(f∗P , n+ 1)[n+ 1]|) ,

where the functor | · | : LiegrM → dglagr is the realization functor of [CPTVV]. Since this functor is
by definition a right adjoint, it commutes with limits, so that |Polint(f∗P , n)| is still the homotopy
fiber of the induced map

|Polint(f∗PX(∞), n+ 1)| −→ |Polint(PL(∞)/f∗PX(∞), n)| .

From the general properties between Tate realizations and twists by k(∞), this is exactly the
map

Γ(LDR,Polt(f∗PX , n+ 1)) −→ Γ(LDR,Polt(PL/f∗PX , n)) ,

so that by Theorem 3.4.11 its fiber Γ(LDR,Polt(f, n+1)) ∼= Pol(f, n+1) inherits a natural structure
of graded (n+1)-shifted dg Lie algebra. Combing Definition 4.1.2 and Theorem 2.2.3 we get precisely
that Cois(f, n) is equivalent to the fiber of

MapdgLiegr(k[−1](2),Pol(f, n+1)[n+1]) −→ MapdgLiegr(k[−1](2),Γ(LDR,Polt(f∗PX , n+1))[n+1])

taken at the point induced by the structure

π ∈ MapdgLiegr(k[−1](2),Γ(XDR,Polt(PX , n+ 1))[n+ 1])

which is what we wanted.

The alternative characterization of coisotropic structures given by Theorem 4.1.5 is of more
geometric nature than Definition 4.1.2. This perhaps helps understanding why this definition is a
sensible generalization of the classical notion, as explained in the following examples.

4.1.2 Examples

1. Smooth schemes. Let L be a smooth subscheme of a smooth scheme X, and let f : L→ X
the corresponding immersion. Suppose X is endowed with a classical Poisson structure π. In
our language, this is the same as saying that π ∈ Pois(X, 0). The shifted polyvectors Pol(X,n)
are just SymOX (TX [−n]), and the relative polyvectors Pol(f, n) coincide with the kernel of
the morphism of graded dg modules

Pol(X,n) −→ SymOL(TL/X [−n+ 1])



CHAPTER 4. COISOTROPIC STRUCTURES ON DERIVED STACKS 88

so that a lift of the 0-shifted Poisson on X to a coisotropic structure on f gives no additional
structure, as is the case for general derived objects, but rather just a condition on π: in
particular, Cois(f) is either empty or contractible. Concretely, the OL-module TL/X [1] is the
algebraic incarnation of the normal bundle NL/X ; it follows that f has a coisotropic structure
if and only if the projection of π in Λ2

OL(NL/X) is zero, that is to say if and only if L is a
coisotropic subscheme of X in the classical sense.

2. Identity. Let X be a derived Artin stack locally of finite presentation and consider the
identity morphism id : X → X. The projection Pol(id, n)→ Pol(X,n) is a quasi-isomorphism
for any n since TX/X = 0. Therefore, the natural projection

Cois(id, n)→ Pois(X,n)

is a weak equivalence, i.e. the identity morphism has a unique coisotropic structure for any
n-shifted Poisson structure on X.

An interesting consequence of this statement is that we obtain a forgetful map Pois(X,n)→
Pois(X,n− 1) given as the composite

Pois(X,n) ∼= Cois(id, n)→ Pois(X,n− 1).

Notice that an algebraic level, this is probably closely related to the decomposition functor
appearing in the additivity conjecture. We refer to chapter 5 for a more detailed discussion.

3. Point. LetX be a derived Artin stack locally of finite presentation and consider the projection
p : X → pt. The projection Pol(p, n + 1)[n + 1] → Pol(X,n)[n] is a quasi-isomorphism since
Tpt = 0 and TX/pt

∼= TX . Therefore, the natural morphism

Cois(p, n)→ Pois(X,n− 1)

is a weak equivalence. This gives another proof of Proposition 4.1.3.

4. Poisson maps. Let X,Y be derived Artin stacks locally of finite presentation, and suppose
they are given n-shifted Poisson structure πX and πY . Let also f : X → Y be a morphism of
stacks. The space of n-shifted Poisson map structures on f is the space Pois(f, n) of lifts of
the induced morphism of DXDR(∞)-algebras

f∗P : f∗PY (∞)→ PX(∞)

to a morphism of DXDR(∞)-linear Pn+1-algebras.

Proposition 4.1.6. With notations as above, let g : X → X × Y the graph of f . There is a
canonical equivalence of spaces

Pois(f, n) ∼= Cois(g, n),

where X × Y is considered as an n-shifted Poisson stacks with the structure (πX − πY ).

This result will be a direct consequence of the following analogous statement for affine derived
stacks.
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Proposition 4.1.7. Let f : A→ B be a map of dg algebras, and suppose A and B are given
Pn+1-structures πA and πB. Let Pois(f, n) be the space of lifts of f to a morphism of Pn+1-
algebras, and denote with g : A ⊗ B → B be the map induced by f and from the identity on
B. Then there is a canonical equivalence of spaces

Pois(f, n) ∼= Cois(g, n),

where A⊗B is considered with the Pn+1-structure πA − πB.

Proof. There is a natural fiber sequence of dg modules

L(A,B)→ Pol(A,n+ 1)[n+ 1]⊕ Pol(B,n+ 1)[n+ 1]→ SymB(TA ⊗A B[−n− 1])[n+ 1]

where L(A,B) is the cylinder Lie algebra of Proposition 3.2.5, which controls lifts of f to a
Pn+1-map. This means that Pois(f, n) is equivalent to the space of dotted arrows making the
following diagram of Lie algebras

k[−1](2)

(πA,πB)

��ss
L(A,B) // Pol(A,n+ 1)[n+ 1]⊕ Pol(B,n+ 1)[n+ 1]

commute.

On the other hand, coisotropic structures on g are controlled by the Lie algebra Pol(g, n +
1)[n+ 1], which fits it the fiber sequence

Pol(g + 1, n+ 1)[n+ 1]→ Pol(A⊗B,n+ 1)[n+ 1]→ SymB(TB/A⊗B[−n])[n+ 1] .

Similarly, this means that Cois(g, n) is the space of dotted arrows making the following dia-
gram of Lie algebras

k[−1](2)

πA−πB
��tt

Pol(g, n)[n+ 1] // Pol(A⊗B,n+ 1)[n+ 1]

commute. Notice that the map πA − πB above factors through the Lie algebra Pol(A,n +
1)[n + 1] ⊕ Pol(B,n + 1)[n + 1], and that the two cofibers SymB(TB/A⊗B[−n])[n + 1] and
SymB(TA ⊗A B[−n − 1])[n + 1] are naturally equivalent. In fact, consider the two algebra
maps

B // A⊗B g // B

whose composite is the identity by definition; then we get a natural equivalence TB/A⊗B ∼=
TA⊗B/B⊗A⊗BB[−1]. But TA⊗B/B ∼= TA⊗A (A⊗B), so that we have TB/A⊗B ∼= TA⊗AB[−1]
as B-modules.

The equivalence of the cofibers implies in particular that the induced diagram of Lie algebras

L(A,B) //

��

Pol(A,n+ 1)[n+ 1]⊕ Pol(B,n+ 1)[n+ 1]

��
Pol(g, n+ 1)[n+ 1] // Pol(A⊗B,n+ 1)[n+ 1]
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is cartesian, where the map on the right is the difference of the two natural maps from
Pol(A,n + 1)[n + 1] and from Pol(B,n + 1)[n + 1]. This means that lifting problems with
respect to the map on the top are equivalent to lifting problems for the bottom map, which
is exactly what we wanted.

We now use this result to prove the same statement for general Artin stacks.

Proof of Proposition 4.1.6. Consider the map of DXDR(∞)-modules

f∗P : f∗PY (∞)→ PX(∞)

By Proposition 4.1.7, we know that Pois(f∗P , n) ∼= Cois(g∗P , n), where g∗P is the induced map

g∗P : f∗PY (∞)⊗DXDR (∞) PX(∞)→ PX(∞)

so that it will suffice to prove that

f∗PY (∞)⊗DXDR (∞) PX(∞) ∼= g∗PX×Y (∞)

as DXDR(∞)-modules. This can be easily checked directly: for every affine A, given an A-point
of XDR, the value of g∗PX×Y (∞) on A is by definition D((X × Y )A)(∞), where (X × Y )A is
the fiber product

(X × Y )A //

��

X // X × Y

��
SpecA // XDR

// XDR × YDR

But (X × Y )A is naturally equivalent to XA × YA, so that

D((X × Y )A)(∞) ∼= D(XA)(∞)⊗DXDR (∞) D(YA)(∞)

which concludes the proof.

Notice that Proposition 4.1.6 immediately produces examples of coisotropic structures: for
every n-Poisson derived Artin stack X, the map to Speck is naturally a Poisson map, where
Speck is considered with its trivial n-Poisson structure. The graph of this map is the identity
map on X, which therefore admits a canonical coisotropic structure, already constructed in
example 2 above.

Alternatively, the identity map itself is of course a Poisson map. Its graph is the diagonal
X → X ×X, which then admits a canonical coisotropic structure.
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4.2 Coisotropic intersections

In this section we state and prove our main theorem, which extends the Lagrangian intersection
theorem (see [PTVV], Theorem 2.9) in the context of shifted Poisson structures. We start by
recalling the following result, which is Theorem 1.9 in [Sa].

Theorem 4.2.1 (Safronov). Let A,B1, B2 be three commutative algebras inM, and let f : A→ B1

and g : A → B2 two algebra morphisms. Let π ∈ Pois(A,n) be a Pn+1-structure on A, and let
γ1 ∈ Cois(f, n) and γ2 ∈ Cois(g, n) be coisotropic structures on f and g respectively, in the sense of
Definition 4.1.2. Then the (derived) tensor product B1 ⊗A B2 carries a natural Pn-structure such
that the projection Bop

1 ⊗B2 → B1⊗AB2 is a Poisson morphism, where Bop
1 is the algebra B1 taken

with opposite Poisson structure.

Notice that this theorem recovers in particular the constructions in [BG] for affine schemes. More
generally, derived algebraic geometry provides a suited general context to interpret the results of
Baranovsky and Ginzburg: we will extend Theorem 4.2.1 for general derived stacks, giving a general
conceptual explanation for the Gerstenhaber algebra structure constructed in [BG]. Concretely, we
will prove the following result.

Theorem 4.2.2. Let X,L1 and L2 be derived Artin stacks, locally of finite presentation, and let
π ∈ Pois(X,n) be a n-shifted Poisson structure on X. Let f : L1 → X and g : L2 → X be
morphisms of derived stacks, and let γ1 and γ2 be coisotropic structures on f and g respectively.
The derived intersection Y = L1 ×X L2 naturally carries a (n − 1)-shifted Poisson structure, such
that the map Y → L1 × L2 is a morphism of (n − 1)-Poisson stacks, where L1 is taken with the
opposite Poisson structure.

Proof. The cartesian diagram of stacks

Y
j //

i
��

L1

f

��
L2

g // X

induces a commutative square of DYDR(∞)-algebras

j∗f∗PX(∞) ∼= i∗g∗PX(∞) //

��

j∗PL1(∞)

��
i∗PL2(∞) // PY (∞)

By definition, the two coisotropic structures γ1 and γ2 produce two Pnn+1-structures on the maps

j∗f∗PX(∞)→ j∗PL1(∞) and i∗g∗PX(∞)→ i∗PL2(∞)

so that by Theorem 4.2.1 we obtain a natural Pn-structure on the coproduct

j∗PL1(∞)⊗i∗g∗PX(∞) i
∗PL2(∞) .
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Our goal is now to show that this coproduct is actually equivalent to PY (∞), which would immedi-
ately conclude the proof. Notice that the twist by k(∞) commutes with colimits, so that is enough
to show that

j∗PL1 ⊗i∗g∗PX i
∗PL2

∼= PY
as DYDR-algebras.

Let SpecA → YDR an A-point of YDR. We want to prove that j∗PL1 ⊗i∗g∗PX i∗PL2 and PY
coincide on the point SpecA → YDR. By definition, the value of PY on this point is D(YA), where
YA is the perfect formal derived stack over SpecA constructed as the fiber product

YA //

��

Y

��
SpecA // YDR

Since the (−)DR construction is defined as a right adjoint, it automatically commutes with limits,
so that YDR ∼= L1DR ×XDR L2DR . In particular any A-point of YDR has corresponding A-points of
L1DR , L2DR and XDR, for which one can define fibers L1A , L2A and XA. Therefore, we need to show
that

D(YA) ∼= D(L1A)⊗D(XA) D(L2A)

as graded mixed dg algebras.
We start by remarking that the fiber square

YA //

��

L1A

��
L2A

// XA

induces a map of graded mixed dg algebras

D(L1A)⊗D(XA) D(L2A)→ D(YA)

by universal property of the coproduct. In order to prove that this map is an equivalence, it is
enough to check it at the level of algebras, forgetting the graded mixed structures. But the forgetful
functor

CAlg(ε− dgModgr)→ CAlg(dgMod)

comes by definition from the forgetful functor

B − codgC(k) → C(k)

where B is the Hopf algebra B = k[t, t−1]⊗k k[ε] and B − codgC(k) is the category of B-comodules
in C(k). This means in particular that forgetting the graded mixed structure preserves colimits, so
that the underlying algebra of the pushout of

D(XA) //

��

D(L1A)

D(L2A)
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is exactly the tensor product of algebras D(L1A)⊗D(XA) D(L2A).
Recall that following [CPTVV], a formal derived stack F (in the sense of Definition 0.4.1) is

called affine if it satisfies the following two conditions:

• its reduced stack Fred is an affine derived scheme;

• F has a cotangent complex LF (in the sense of [HAG-II, Section 1.4]), such that for every B ∈
dAff and every map u : SpecB → F , the dg B-module u∗LF is coherent and cohomologically
bounded above.

Moreover, an affine formal derived stack F is called algebraisable if it is equivalent to the formal
completion along a map Fred → G, where G is an algebraic n-stack for some n.

Since XA, L1A , L2A are all algebraisable, by applying Theorem 2.2.2 of [CPTVV] we have equiv-
alences of algebras

D(L1A)⊗D(XA) D(L2A) ∼= SymAred(LAred/L1A
[−1])⊗Sym

Ared
(L
Ared/XA

[−1]) SymAred(LAred/L2A
[−1])

D(YA) ∼= SymAred(LAred/YA [−1])

The result now follows directly from the following lemma.
Lemma 4.2.1. Consider the following diagram of derived stacks

K
φ // X

i //

j
��

Y

g

��
Z

f //W

where the right square is cartesian. Then the following diagram of OK-modules

TK/X //

��

TK/Y

��
TK/Z // TK/W

is cartesian.

Proof. From the diagram of stacks, one immediately gets two fiber sequences of OK-modules

TK/Y // TK/W // φ∗i∗TY/W

TK/Z // TK/W // φ∗j∗TZ/W

and therefore the limit of
TK/Y

��
TK/Z // TK/W
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is precisely the fiber of the map TK/W → φ∗i∗TY/W ⊕ φ∗j∗TZ/W . But by general properties of
cartesian squares, TX/W ∼= i∗TY/W ⊕ j∗TZ/W , and hence φ∗TX/W ∼= φ∗i∗TY/W ⊕ φ∗j∗TZ/W . We
now conclude by observing that the fiber of the map

TK/W → φ∗TX/W

is naturally identified with TK/X .

We can now just apply the lemma to the diagram of algebraisable stacks

Spec(Ared) // YA //

��

L1A

��
L2A

// XA

and get a cartesian square of Ared-modules

TAred/YA //

��

TAred/L1A

��
TAred/L2A

// TAred/XA

From this we deduce a pushout diagram of Ared-algebras

SymAred(LAred/XA [−1]) //

��

SymAred(LAred/L1A
[−1])

��
SymAred(LAred/L2A

[−1]) // SymAred(LAred/YA [−1])

which is exactly what we wanted.

Remark. The argument in this section works in the same way if one wants to use the definition
of coisotropic structures given in [CPTVV], provided one has a result similar to Theorem 4.2.1.
Namely, one needs the following statement.

Proposition 4.2.3. Let f1 : A→ B1 and f2 : A→ B2 be morphisms of cdgas, with A equipped with
a Pn+1-structure π. Suppose both f1 and f2 are endowed with a coisotropic structure relative to π,
in the sense of [CPTVV], section 3.4. Then the intersection B1 ⊗A B2 has a natural Pn-structure,
such that the map B1 ⊗k Bop

2 → B1 ⊗A B2 is a map of Pn-algebras.

This will be an immediate corollary of the following slightly more general fact.

Proposition 4.2.4. Let A,B and C three cdgas with Pn+1-structures, and let f1 : A ⊗ Bop → L1

and f2 : B⊗Cop → L2 be cdgas map equipped with coisotropic structures (in the sense of [CPTVV],
section 3.4). Let L12 = L1⊗BL2. Then the map A⊗Cop → L12 has a natural coisotropic structure.
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Proof. By definition of coisotropic structures as given in [CPTVV], L1 is a left A-module and a
right B-module in the monoidal category of Pn-algebras, and similarly L2 is a left B-module and a
right C-module. From this we immediately see that L12 ' L1 ⊗B L2 is a left A-module and a right
C-module, which is exactly what we wanted. We conlude by noticing that the canonical morphism
L1 ⊗k L2 → L12 is a map of left A-modules and of right C-modules.

In particular, Theorem 4.2.2 is true for all definitions of derived coisotropic structures, that is
to say Definition 4.1.2, Definition 4.1.4 and [CPTVV, Definition 3.4.4].

4.3 Non degenerate coisotropic structures

The purpose of this section is to introduce the notion of non degeneracy of a coisotropic structure.
This is a relative version of non-degenerate Poisson structures, as treated in [CPTVV]. Our main
result is a proof of conjecture 3.4.5 in [CPTVV], stating that the space of non-degenerate coisotropic
structures is equivalent to the space of Lagrangian structures, in the sense of [PTVV]. We will follow
the same strategy used in [CPTVV] to prove that non-degenerate Poisson structures are equivalent
to symplectic structures.

4.3.1 Definition of non-degeneracy

We start by first looking at the affine case. Recall the following notion, which is taken from [CPTVV,
Definition 1.4.18].

Definition 4.3.1. Given an algebra A ∈ Pn+1 − algM, we say that A is non-degenerate if the
morphism

DRint(A) −→ Polint(A,n)

induced by the Poisson bracket is an equivalence inMgr.

Let f : A→ B a map inside CAlgM. Using the results of [MS, Section 2.7] we know that there
is a natural graded P[n+2,n+1]-structure on the couple

(Pol(A,n+ 1),Pol(B/A, n)),

such that the underlying morphism of graded commutative algebras is the map

Pol(A,n+ 1) −→ Pol(B/A, n)

induced by LA → LA ⊗A B → LB.
Moreover, the fiber of the above morphism is Pol(f, n + 1). Then we know from Section 3.4.1

that Pol(f, n+ 1) is in fact a graded Pn+2-algebra. By definition, an n-shifted coisotropic structure
on f is a morphism in the ∞-category of graded dg Lie algebras

k(2)[−1] −→ Pol(f, n+ 1)[n+ 1].

Our next goal is to show that one can use such a dg Lie morphism to endow the algebra

(Pol(A,n+ 1),Pol(B/A, n))
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with a mixed structure, in the sense of Section 3.4.2. In other words, we will show that there is a
morphism of spaces

Cois(f, n) −→ MixP[n+2,n+1]
(Pol(A,n+ 1),Pol(B/A, n)).

This will immediately follow from the following slightly more general statement.

Proposition 4.3.1. Let (R,S) be a graded P[n+2,n+1]-algebra in M. As in Section 3.4.1, let
Ugr(R,S) be the fiber of the underlying morphism of graded commutative algebras R → S. Then
there is a canonical morphism of spaces

MapLiegrM
(1M[−1](2), Ugr(R,S)[n+ 1]) −→ MixP[n+2,n+1]

(R,S).

Proof. By Definition 3.4.8, the space of mixed structures on (R,S) fits in a Cartesian square of
spaces

MixP[n+2,n+1]
(R,S) //

��

MixPn+2(R→ Zgr(S))

��
MixPn+1(S) //MixPn+2(Zgr(S))

where we considered R → Zgr(S) as a graded Pn+2-algebra inside the category Mor(M) of mor-
phisms ofM.

We start by noticing that there is a natural map

MapLiegrM
(1M[−1](2), Ugr(R,S)[n+ 1]) −→ MixPn+2(R→ Zgr(S)).

In fact, since Ugr(R,S)→ R→ Zgr(S) are maps of graded Pn+2-algebras, one has an induced map

MapLiegrM
(1M[−1](2), Ugr(R,S)[n+ 1]) −→ MapLiegr

Mor(M)
(1Mor(M)[−1](2), (R→ Zgr(S))[n+ 1]),

where 1Mor(M) is the monoidal unit of Mor(M), that is to say the identity map of 1M. Composing
this with the map of Proposition 3.4.7, we immediately get our desired morphism to MixPn+2(R→
Zgr(S)).

On the other hand, since Ugr(R,S)→ Defgr(S)[−n− 1] is a Pn+2-map, by definition of mixed
structures we get that there is a morphism of spaces

MapLiegrM
(1M[−1](2), Ugr(R,S)[n+ 1]) −→ MixPn+1(S).

The results of Section 3.4.1 assure that the square

Ugr(R,S) //

��

R

��
Defgr(S)[−n− 1] // Zgr(S)

is a pullback of graded Pn+2-algebras, and thus the mixed structures on R→ Zgr(S) and on S induce
the same mixed structure on Zgr(S). But now using the above presentation of MixP[n+2,n+1]

(R,S)
as a limit, we do get our desired morphism

MapLiegrM
(1M[−1](2), U(R,S)[n+ 1]) −→ MixP[n+2,n+1]

(R,S),

which concludes the proof.
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Corollary 4.3.2. Let A→ B be a morphism of commutative algebras inM. There is a canonical
map of spaces

Cois(f, n) −→ MixP[n+2,n+1]
(Pol(A,n+ 1),Pol(B/A, n)),

where (Pol(A,n + 1),Pol(B/A, n)) is considered with its canonical graded P[n+2,n+1]-algebra struc-
ture.

Proof. This is simply follows from the definition of coisotropic structures and from the previous
proposition.

Recall that there is a natural forgetful ∞-functor

P[n+2,n+1] − alggrM −→ Mor(CAlggrM),

which induces a map

Cois(f, n) −→ MixComm(Pol(A,n+ 1)→ Pol(B/A, n)).

In particular, given a P[n+1,n]-algebra (A,B), the map

Pol(A,n+ 1) −→ Pol(B/A, n)

becomes a morphism of graded mixed commutative algebras. By definition, the weight zero compo-
nent of this map is the underlying map f : A→ B in CAlgM, so that by the universal property of
the de Rham algebra (see [CPTVV, Section 1.4]) one gets a commutative square of graded mixed
commutative algebras

Pol(A,n+ 1) // Pol(B/A, n)

DR(A)

OO

// DR(B)

OO

where we have DR(A) ' SymA(LA[−1]) as graded commutative algebras.

Definition 4.3.2. We say that a P[n+1,n]-algebra (A,B) is non-degenerate if the two vertical arrows
in the diagram above are equivalences.

Let DR(f) denote the fiber of the map DR(A)→ DR(B). From the above diagram, we see that
there is a natural arrow of graded mixed algebras DR(f)→ Pol(f, n+ 1). Notice that the space of
morphisms in the ∞-category of graded modules

k(2) −→ DR(f)[n+ 1]

is by definition the space of closed 2-forms of degree n− 1 on A, having restriction to B homotopic
to 0. Equivalently, this can be described as the space of isotropic structures on the map A → B
(where A is only a pre-symplectic algebra). The module DR(f) fits into a diagram of graded mixed
modules

DR(f)[n+ 1] −→ Pol(f, n+ 1)[n+ 1]←− k(2)
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Definition 4.3.3. Let again (A,B) be a P[n+1,n]-algebra. The space of isotropic structures com-
patible with the given P[n+1,n]-structure is the space of dotted arrows making the following diagram
commute

DR(f)[n+ 1]

��
k(2)

77

// Pol(f, n+ 1)[n+ 1]

in the ∞-category of graded mixed modules.

Now suppose that (A,B) is a non-degenerate P[n+1,n]-algebra. Then the map DR(f)→ Pol(f, n+
1) is an equivalence, and therefore the space of compatible isotropic structures on f : A → B is
contractible. Notice that in this case the 2-form is automatically non-degenerate: in fact, we have
an induced equivalence

DR(A) ' Pol(A,n+ 1)

which by Theorem 3.2.5 of [CPTVV] can be used to turn the given non-degenerate shifted Poisson
structure on A to a non-degenerate closed 2-form, so that A is actually a shifted symplectic algebra.
Moreover, the fact that also DR(B) → Pol(B/A, n) is an equivalence implies that the isotropic
structure is actually Lagrangian.

As a consequence, for every morphism of cdga f : A→ B, there is a well-defined map of spaces

Pnd[n+1,n](f) −→ Lagr(f)

where Pnd[n+1,n](f) is the space of non-degenerate P[n+1,n]-structure on (A,B) such that the underlying
cdga map is f .

Now let us deal with the general case. Let X be a n-shifted Poisson stack, and let f : L → X
be a morphisms of derived Artin stacks, locally of finite presentation. Suppose we are given a point
γ ∈ Cois(f, n). This means in particular that we have a map of graded dg Lie algebras

k[−1](2) −→ Pol(X,n+ 1)[n+ 1]

such that the induced map

k[−1](2) −→ Γ(LDR,Polt(PL/f∗PX , n)[n+ 1]

is homotopic to zero. Looking at weight 2 components, the shifted Poisson structure on X induces
by adjunction a morphism of perfect complexes on X

π# : LX → TX [−n] ,

and the coisotropic condition implies that the induced map Lf → Tf [−n+ 1] is homotopic to zero.
This in turn gives the existence of dotted arrows in the following diagram

Lf [−1] //

��

f∗LX //

f∗π#

��

LL

��
TL[−n] // f∗TX [−n] // Tf [−n+ 1]

where both horizontal rows are fiber sequences of perfect complexes on L.
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Definition 4.3.4. With notations as above, the coisotropic structure γ on f is called non-degenerate
if the n-Poisson structure on X is non-degenerate, and the previous diagram is an equivalence of
fiber sequences. Equivalently, γ is non-degenerate if π# and the dotted arrows are equivalences of
perfect complexes.

The space of non-degenerate coisotropic structures on f will be denoted Coisnd(f).

By Theorem 4.1.5, the datum of a coisotropic structure on f : L→ X is equivalent to the datum
of a compatible P[n+1,n]-structure on the couple (f∗PX(∞),PL(∞)) in the category of DLDR(∞)-
modules.

Corollary 4.3.5. Let f : L → X be a map between derived Artin stacks, locally of finite pre-
sentation, and suppose X is equipped with a n-shifted Poisson structure. A coisotropic structure
γ ∈ Cois(f, n) is non-degenerate in the sense of Definition 4.3.4 if and only if the corresponding
P[n+1,n]-algebra

(f∗PX(∞),PL(∞))

in the category of DLDR(∞)-modules is non-degenerate in the sense on Definition 4.3.2.

This is an immediate consequence of the general correspondence between geometric differential
calculus on derived stacks and algebraic differential calculus on the associated prestacks of Tate
principal parts, as exposed in [CPTVV].

We also have a similar result for the symplectic case.

Corollary 4.3.6. Let f : L → X again be a map between derived Artin stacks, locally of finite
presentation, and suppose ωX is a n-shifted closed 2-form on X, such that f∗ω ∼ 0 inside the space
of closed 2-forms on L. The form ω canonically induces a n-shifted closed 2-form ω′ on the algebra
f∗PX(∞), relative to DLDR(∞), such that its restriction to PL(∞) is homotopic to zero.

Then ω is a Lagrangian structure on f if and only if ω′ is a Lagrangian on the couple

(f∗PX(∞),PL(∞))

in the category of DLDR(∞)-modules.

Notice that in the classical case (i.e. if X is a smooth Poisson scheme and f : L → X is a
coisotropic sub-scheme), then f is non-degenerate if and only if the Poisson structure on X comes
from a symplectic structure, and L is a Lagrangian sub-scheme. Our next goal is to prove a derived
extension of this result.

Theorem 4.3.7. Let X be a non-degenerate n-shifted Poisson stack, and let f : L → X be a
morphism of derived Artin stacks. Let Coisnd(f, n) be the subspace of Cois(f, n) of connected com-
ponents of non-degenerate coisotropic structures on f . Then X is canonically n-shifted symplectic,
and there exists an equivalence of spaces

Coisnd(f, n)→ Lagr(f, n) .

The proof of this theorem will closely follow the proof of Theorem 3.2.5 in [CPTVV]. The result
will follow from a slightly more general statement. We will need some general constructions on
stacks of Lie algebras and of mixed modules; this is already contained in [CPTVV], and we refer to
that paper for more details.
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4.3.2 Stacks associated with Lie algebras and mixed complexes

Recall from [CPTVV], section 3.3.1, that given some base derived stack Y , and some graded Lie
algebra L inside the category of OY -modules, then we can construct the stack associated with L as
the ∞-functor

V(L) : (dAff/Y )op −→ sSet

which sends (SpecA→ Y ) to the space

V(L)(A) = Mapdglagr(k[−1](2),L(A)).

Let p be an A-point of V(L).
By definition, the (higher) tangent spaces T ip(V(L)) of V(L) at the point p are the homotopy

fiber of the map
V(L)(A⊕A[i]) −→ V(L)(A)

taken at p.
Using the map

k[−1](2)→ L(A)

corresponding to the point p, L(A) becomes a weak mixed graded complex. Let us denote (L(A), p)
the complex L(A) together with its mixed structure induced by p.

One has then the following lemma, which is proven in [CPTVV].

Lemma 4.3.8. Suppose that for all i, the morphism

L(A)⊗A (A⊕A[i]) −→ L(A⊕A[i])

is an equivalence of graded dg Lie algebras. Then the tangent spaces of the derived stack V(L) at a
point p ∈ V(L)(A) have the following expression

T ip(V(L)) ' Mapε−dgmodgr(k[−1](2), (L(A), p)).

Remark. In [CPTVV], the authors proved the lemma only for A-points on V(L) that are given by
strict morphisms of graded dg Lie algebras, that is to say morphisms k[−1](2)→ L(A) in the usual
strict 1-category of Lie algebras. That was enough for their purpose, since Poisson structures can be
nicely strictified. In our case, the strictification of coisotropic structures is a bit more complicated,
and we cannot necessarily work with strict Maurer-Cartan elements.

In any case the lemma immediately extends to non-strict points. One just has to check that a
map k[−1](2) → L(A) in the ∞-category produces a weak mixed structure on L(A), and use the
fact that weak mixed structures can be strictified. For this, one can use for example the explicit
resolution of k[−1](2) described in [Me].

In a similar spirit, let us now consider a stack E , which is a graded mixed complex in the category
of OY -modules. We define the derived stack associated to E as

V(E) : (dAff/Y )op −→ sSet

which sends (SpecA→ Y ) to the space

V(E)(A) = Mapε−dgmodgr(k[−1](2), E(A)).
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As before, take an A-point p of V(E), and define the tangent spaces of V(E) at p as the homotopy
fibers of the maps

V(E)(A⊕A[i]) −→ V(E)(A)

taken at the point p. The previous lemma has a similar version that applies to this case.

Lemma 4.3.3. Suppose that for all i, the morphism

E(A)⊗A (A⊕A[i]) −→ E(A⊕A[i])

is an equivalence of graded mixed complexes. Then the tangent spaces of the derived stack V(E) at
a point p ∈ V(E)(A) have the following expression

T ip(V(E)) ' Mapε−dgmodgr(k[−1](2), E(A)[i]).

4.3.3 Sheafified coisotropic and Lagrangian structures

Let us now consider a sheafified version of the space of coisotropic structures. Recall that the map
f : L→ X induces a natural map f∗P : f∗PX(∞)→ PL(∞) of DLDR(∞)-modules.

Let Cois(f, n) be the stack on LDR defined as V(Lf ), where Lf is the dg Lie defined as

Lf : (SpecA→ LDR) 7−→ Pol(f∗P(A), n+ 1)[n+ 1]

and f∗P(A) is the map
f∗P(A) : f∗PX(∞)(A) −→ PL(∞)(A).

By definition, global sections of Cois(f, n) are in correspondence with P[n+1,n]-structures on the cou-
ple (f∗PX(∞),PL(∞)) in the category of DLDR(∞)-modules, such that the underlying commutative
monoid morphism is the given f∗P . We can also consider the sub-object Coisnd(f, n), consisting only
of non-degenerate P[n+1,n]-structures.

In a totally similar way, we can define Lagr(f, n): start with the stack V(Ef ) on LDR, where Ef
is the graded mixed DLDR(∞)-module

Ef : (SpecA→ LDR) 7−→ DR(f∗P(A)).

Consider the substack Lagr(f, n) of V(Ef ) consisting of non-degenerate isotropic structures.
The following is a slightly finer statement than Theorem 4.3.7.

Theorem 4.3.9. Let f : L→ X be a map of derived stacks. Then there is an equivalence of stacks
over LDR

φ : Coisnd(f, n)→ Lagr(f, n).

We start by proving that the map φ is an isomorphism on all higher homotopy sheaves.
We now take a derived affine SpecA, and consider an A-point x of Cois(f). As before, the point

x induces a mixed structure on the relative polyvectors Pol(f∗P(A), n+1). Let us denote this graded
mixed complex as Polε(f∗P(A), n+ 1).

Using lemma 3.3.4 of [CPTVV], we get an explicit description of the based loop stack of Cois(f)
at its point x.
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Corollary 4.3.10. With notations as above, we have an equivalence of derived stack over SpecA

ΩxCois(f) ' V(Polε(f∗P(A), n+ 1))

We can use this result to obtain a first step in the proof of Theorem 4.3.9.

Proposition 4.3.11. The morphism φ of Theorem 4.3.9 induces equivalences on based loop stacks.
In other words, for every point

x : SpecA −→ Coisnd(f, n)

the induced morphism
ΩxCoisnd(f, n) −→ Ωφ(x)Lagr(f, n)

is an equivalence of derived stacks over SpecA.

Proof. The previous corollary describes the loop stack ΩxCoisnd(f, n) as V(Polε(f∗P(A), n+1)). But
by universal property of the de Rham algebra, there is an induced morphism

ψx : DR(f∗P(A))→ Polε(f∗P(A), n+ 1)

of graded mixed complexes. Since the coisotropic structure is taken to be non-degenerate, ψx is
actually an equivalence, so that we get

ΩxCoisnd(f) ' V(DR(f∗P(A)).

Using again Lemma 3.3.4 in [CPTVV], the stack V(DR(f∗P(A)) is identified with the loop stack
Ωφ(x)Lagr(f, n). Therefore we end up with an equivalence of based loop stacks, which can be easily
checked to be the morphism induced by φ.

We now have to show that φ of Theorem 4.3.7 induces an isomorphism also on the π0-sheaves.

4.3.4 Infinitesimal theory

This is parallel to section 3.3.3 in [CPTVV]. Our goal is to reduce the proof of the equivalence of
the π0-sheaves of Coisnd(f, n) and Lagr(f, n) to a question over reduced base rings, in order to be
able to use a form of Darboux lemma and to explicitly prove the result.

Let again f : L→ X be a morphism of derived stacks. Consider the inclusion of ∞-categories

j : dAffred/LDR −→ dAff/LDR.

Proposition 4.3.12. The morphism φ of Theorem 4.3.9 is an equivalence of stacks if and only if
the induced morphism

j∗φ : j∗Coisnd(f, n) −→ j∗Lagr(f, n)

is an equivalence of stacks over dAffred/LDR.

Proof. Let SpecA→ LDR be an object in dAff/LDR. We will show that

φA : Coisnd(f, n)(A) −→ Lagr(f, n)(A)

is an equivalence as soon as

φAred : Coisnd(f, n)(Ared) −→ Lagr(f, n)(Ared)
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is an equivalence.
This will follow from exactly the same argument of Proposition 3.3.7 in [CPTVV]. Thus we

are left with showing that the stacks of coisotropic and lagrangian structures satisfy some nice
infinitesimal properties.

1. We say that a derived stack F over LDR is nilcomplete if for every SpecA→ LDR, the canonical
map

F (B) −→ lim
k

(F (A≤k))

is an equivalence, where A≤k is the k-th Postnikov truncation of A.

2. A derived stack F over LDR is infinitesimally cohesive if for every cartesian square of almost
finite presented objects in cdga≤0

A //

��

A1

��
A2

// A0

such that both H0(A1) → H0(A0) and H0(A2) → H0(A0) are surjective with nilpotent
kernels, the induced diagram of spaces

F (A) //

��

F (A1)

��
F (A2) // F (A0)

is again cartesian.

Lemma 4.3.13. The stacks Cois(f, n) and Lagr(f, n) are nilcomplete and infinitesimally cohesive.

Proof of the lemma. Recall that by definition, we have

Cois(f, n) ' V(Lf ) and Lagr(f, n) ' V(Ef )

with Lf and Ef two stacks of complexes on LDR. The lemma will be proven if we are able to
show that both Lf and Ef are nilcomplete and infinitesimally cohesive, as stacks of complexes.
But both stacks are defined as homotopy fibers of stacks that were showed to be nilcomplete and
infinitesimally cohesive in [CPTVV], Lemma 3.3.8. Since both properties are clearly stable under
limits, we are done.

4.3.5 Conclusion of the proof

Thanks to the previous sections, we can reduce the question of the equivalence of the stacks
Coisnd(f, n) and Lagr(f, n) to a question on the equivalence of the π0-sheaves which can be ac-
tually checked on reduced algebras.
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Recall that we have started with a map of derived Artin stacks f : L→ X. Let A be a reduced
discrete algebra, together with a morphism SpecA→ LDR. Since A is reduced, this corresponds to
an A-point of L. As before, consider the stacks

LA := L×LDR SpecA XA := X ×XDR SpecA,

where the map SpecA→ XDR is obtained by composing the given SpecA→ LDR with the induced
fDR : LDR → XDR. By functoriality of D, we get a natural map ϕ : D(XA) → D(LA) of graded
mixed A-cdgas. By the previous discussion, it will be enough to show that the morphism of spaces

MapndLiegrk
(k(2)[−1],Polt(ϕ, n+ 1)[n+ 1]) −→ MapndC(k)ε,gr(k(2)[−n− 2],DR(ϕ))

induces an isomorphism on the π0 sets, where Mapnd denotes the subspace of the mapping space
corresponding to non-degenerate coisotropic or isotropic structures on φ. The above map can be
easily sheafified over SpecA: namely, we can construct two sheaves C and L sending an open
SpecA′ ⊂ SpecA to

MapndLiegrk
(k(2)[−1],Polt(ϕ, n+ 1)[n+ 1]⊗A A′) and MapndC(k)ε,gr(k(2)[−n− 2],DR(ϕ)⊗A A′)

respectively. It will thus suffice to show that the induced map π0C → π0L is an isomorphism an
sheaves of sets on the small Zariski site of A. In order to prove this, we can show that for every
point p ∈ SpecA, the induced map between the stalks π0Cp → π0Lp is in fact an isomorphism of
set.

Let us thus fix such a point p. Notice that since A is reduced, D(A) ' A, and thus both D(XA)
and D(LA) are simply graded mixed A-cdgas. Forgetting the mixed structure, we have isomorphisms

D(XA) ' SymA(u∗f∗LX), D(LA) ' SymA(u∗LL),

where u : SpecA → L is the given A-point of L. The map ϕ : D(XA) → D(LA) is then the one
induced by the natural map of OL-modules f∗LX → LL.

We can now choose a model MX → ML for the map u∗f∗LX → u∗L which is a surjective
morphism of bounded complexes of projective A-modules of finite rank. Let us introduce the
graded A-cdgas BX = SymA(MX) and BL = SymA(ML). Exactly as in [CPTVV, Section 3.3.4],
the structure of a morphism of graded mixed algebras on D(XA)→ D(LA) induces a structure of an
explicit map of weak graded mixed algebras on our explicit models φ : BX → BL. Notice that since
MX →ML is a fibration (hence a surjection), the induced map φ is again a surjection of A-algebras.
Let us denote by Mf [−1] the strict kernel of MX → ML. As MX → ML is a fibration, Mf [−1] is
also a model for the homotopy fiber of MX → ML. We can now use the fact that BX and BL are
explicit: they are free as graded commutative A-algebras, and thus the tangent and the cotangent
complex are relatively easy to compute. The following lemma is a direct consequence of [CPTVV,
Lemma 3.3.10], and it gives a concrete expression for the de Rham and polyvectors algebras of the
map φ.

Lemma 4.3.14. Let BX and BL defined as above, and let M∗X and M∗f be the A-linear duals of the
complexes MX and Mf respectively. We have the following equivalences:

DRt(D(XA)) ' DRt(BX) ' |BX | ⊗A SymA(MX [−1])

DRt(D(LA)) ' DRt(BL) ' |BL| ⊗A SymA(ML[−1])
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Polt(D(XA), n+ 1) ' Polt(BX , n+ 1) ' |BX | ⊗A SymA(M∗X [−n− 1])

Polt(D(LA)/D(XA), n) ' |BL| ⊗A SymA(M∗f [−n])

Proof. The only difference with [CPTVV, Lemma 3.3.10] is the last identification. But notice that
the map BX → BL induces a fiber sequence of BL-modules

TBL −→ TBX ⊗BX BL −→ Tφ[1],

which in turn gives rise to a cofiber sequence of graded commutative algebras

SymBL(TBL [−n− 1])→ SymBX (TBX [−n− 1])⊗BL → SymBL(Tφ[−n]).

It follows that Pol(BL/BX , n− 1) is equivalent to the cofiber of the morphism

|BL| ⊗A SymA(M∗L[−n− 1]) −→ |BL| ⊗A SymA(M∗X [−n− 1]),

which is easily seen to be |BL| ⊗A SymA(M∗f [−n]).

The above lemma tells us in particular that the space of isotropic structures on φ is

MapC(k)gr,ε(k(2)[−n− 2],DR(φ)),

where DR(φ) fits in the homotopy fiber sequence of graded mixed dg algebras

DR(φ) −→ |BX | ⊗A SymA(MX [−1]) −→ |BL| ⊗A SymA(ML[−1]).

By assumption, MX →ML is surjective, so that also the map

SymA(MX [−1]) −→ |BL| ⊗A SymA(ML[−1])

is a surjection of graded mixed dg algebras. In particular, DR(φ) can be taken to be the strict
kernel of the above morphism.

Similarly, the space of coisotropic structures on φ is equivalent to

MapLiegrk
(k(2)[−1],Pol(φ, n)[n+ 1])

where Pol(φ, n) fits in the homotopy fiber sequence of graded dg modules

Pol(φ, n) −→ |BX | ⊗A SymA(M∗X [−n− 1]) −→ |BL| ⊗A SymA(M∗f [−n]).

By definition the map Mf [−1] → MX is injective, so that its dual M∗X → M∗f [1] is surjective.
This means that the strict kernel of

SymA(M∗X [−n− 1]) −→ |BL| ⊗A SymA(M∗f [−n])

is a model for Pol(φ, n).
Since we are now working locally (around the point p), we can suppose without loss of generality

that the complexes MX and ML are minimal at p, in the sense that their differentials vanish on
MX ⊗A k(p) and ML ⊗A k(p). The Darboux lemma in [CPTVV] immediately allows us to restrict
our attention to very simple Lagrangian and coisotropic structures.
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Lemma 4.3.15. Suppose both MX and ML are minimal at p.
(1) Every morphism in the ∞-category of graded mixed complexes

k(2)[−n− 2] −→ DR(φ)⊗A k(p)

is equivalent to a strict morphism of graded mixed complexes, that is to say to a strict morphism

k(2)[−n− 2] −→ DR(BX)

whose composite with DR(BX)→ DR(BL) is strictly equal to zero.
(2) Every non-degenerate morphism in the ∞-category of graded Lie algebras

k(2)[−1] −→ Pol(φ, n+ 1)[n+ 1]⊗A k(p)

is equivalent to a strict morphism of graded Lie algebras, that is to say to a strict morphism

k(2)[−1] −→ Pol(BX , n+ 1)⊗A k(p)

whose composition with Pol(BX , n+ 1)→ Pol(BL/BX , n) is strictly equal to zero.

Proof. Using the Darboux lemma [CPTVV, Lemma 3.3.11], we can show that the symplectic and
the non-degenerate Poisson (local) structures on BX can be taken to be strict. We conclude by
noticing that by our assumptions on MX → ML we can take both DR(φ) and Pol(φ, n + 1) to be
strict kernels.

The above Lemma tells us that locally at a point p, we can suppose both Lagrangians and
coisotropic structures to be given by strict symplectic/Poisson structures on BX whose restriction
to DR(BL) and Pol(BL/BX , n) is strictly zero. We will now separately prove that π0(C) → π0(L)
is surjective and injective.

For surjectivity, consider a strict Lagrangian structure given by a strictly closed two-form ωX of
degree n on BX which restricts to zero on BL. Since ωX : TBX → Ω1

BX
[n] is a quasi-isomorphism

and MX is minimal at p, after passing to a Zariski cover we can assume ωX in fact induces an
isomorphism. Let N∗BL/BX be the strict fiber of φ∗Ω1

BX
→ Ω1

BL
. Since ωX restricts to zero on

BL, it induces a morphism TBL → N∗BL/BX [n] which is assumed to be a quasi-isomorphism by
the Lagrangian condition. But again by minimality after passing to a Zariski cover we can assume
TBL → N∗BL/BX [n] is a strict isomorphism. Let πX be the bivector on BX which is obtained
by inverting ωX . It is a classical computation that the condition ddRωX = 0 is equivalent to
[πX , πX ] = 0. Now consider a diagram

0 // TBL
//

∼
��

φ∗TBX
//

∼
��

NBL/BX
//

∼
��

0

0 // N∗BL/BX [n] // φ∗Ω1
BX

[n] // Ω1
BL

[n] // 0

where the two rows are exact sequences. Therefore, the composite

N∗BL/BX [n] −→ φ∗Ω1
BX

[n]
πX−→ φ∗TBX −→ NBL/BX

is zero and hence πX defines a coisotropic structure compatible with the Lagrangian structure given
by ωX which is strictly non-degenerate.

Running the same argument in reverse we deduce injectivity. We therefore conclude that the
map of sheaves C → L is an equivalence, and hence Theorem 4.3.7 is finally proved.



Chapter 5

Comparison with the CPTVV definition

This chapter deals with the natural question on comparing various possible definitions of derived
coisotropic structures in the literature. In this text we proposed two different definitions: one with a
more “algebraic” flavor (Definition 4.1.2) and another one using polyvectors, which is probably more
intuitive and geometric (Definition 4.1.4). We already proved that these two are equivalent: this is
the content of Theorem 4.1.5. In the paper [CPTVV], the authors proposed a different definition of
coisotropic structure on a morphism; the goal of this chapter is precisely to discuss the comparison
of their definition with the one treated in this thesis.

In the first section, we start by recalling the [CPTVV] definition. It is based on the existence of
a rather non-explicit additivity functor for the Poisson operad, whose existence is at the moment
somewhat conjectural. One of the main advantages of the definition of coisotropic structures dis-
cussed in the previous chapters is precisely the fact that it avoids the use of the additivity property
of the Poisson operad.

In the second section we give two proposals for comparing the various definitions of coisotropic
structures. The first one is based on showing that the Poisson center Z(B) of a Pn-algebra B (see
chapter 3) is in fact a model for the internal endomorphisms object of B inside Pn − alg. This
could be possibly proven combining results of Lurie [Lur3] and Tamarkin [Ta], but we refer to [MS]
for the details. Notice that this approach somehow avoids the need of understanding the additivity
functor. The second idea concentrates on the construction of a such additivity functor: using results
in [Sa] and a conjecture contained in [FG], we produce a functor with which we can make sense
of the CPTVV definition. Moreover, we show that in this case any coisotropic in the sense of this
thesis is also a coisotropic in the sense of CPTVV, providing further evidence of the equivalence of
the two definitions.

5.1 The CPTVV definition

The content of this section appeared in [CPTVV], Section 3.4.
We start by observing that the operad Pn is a Hopf operad. As such, its category of algebras

has a naturally induced symmetric monoidal structure. More specifically, given two Pn-algebras A
and B in a categoryM, we can define their tensor product as Pn-algebras: the underlying object
inM is the tensor product A⊗B taken inM, and the Pn-structure is defined by the composition

Pn(p)⊗ (A⊗B)⊗p −→ Pn(p)⊗ Pn(p)⊗A⊗p ⊗B⊗p −→ A⊗B,
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where we used the Hopf structure on Pn and the Pn-structures on A and B. In particular, it makes
sense to consider the category Alg(Pn − algM) of associative algebra objects inside Pn − algM.

The additivity theorem for the Poisson operad gives a nice interpretation of these algebras, and
it can be stated in the following form.

Theorem 5.1.1. Let n ≥ 1, and let M be a symmetric monoidal ∞ category. There exists an
equivalence of ∞-categories

Decn+1 : Pn+1 − algM −→ Alg(Pn − algM)

satisfying the following two properties:

1. The ∞-functor Decn+1 is functorial in the variable M with respect to symmetric monoidal
∞-functors.

2. The ∞-functor Decn+1 commutes with the two forgetful ∞-functors toM.

Notice that by formality, one has En ' Pn, and thus the additivity property for the Poisson
operad follows from the proof of the Deligne’s conjecture given by Lurie in [Lur3]. However this
proof is not explicit and depends on the choices of formality equivalences. A more direct argument
has being announced by Rozenblyum.

In [CPTVV] the authors use Theorem 5.1.1 to give a definition of coisotropic structure on a
morphism. Namely, consider the two-colored operad P(n+1,n), whose algebras in a categoryM are
pairs (A,B) of objects ofM, together with

• a Pn+1-structure on A;

• a Pn-structure on B;

• an A-module structure on B in the category Pn-alg, where A is now seen as an algebra in
Pn-alg through Theorem 5.1.1.

By construction, there is a natural forgetful functor

P(n+1,n) − algM → Mor(CAlgM)

to the category of morphisms of commutative algebras inM.
Now let f : X → Y be a morphism of derived Artin stacks, locally of finite presentation, and

consider the induced morphism
f∗P : PY (∞) −→ f∗PX(∞)

in the ∞-category of DXDR(∞)-algebras. Let us denote by C the category of DXDR(∞)-modules.
Using the operad P(n+1,n), they give the following definition.

Definition 5.1.2 ([CPTVV], Section 3.4). With notations as above, the space C̃ois(f, n) of n-
shifted coisotropic structures on f is the fiber product

C̃ois(f, n) //

��

P(n+1,n) − algC

��
∗ //Mor(CAlgC)

where the bottom map corresponds to the morphisms f∗P .
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This definition is far from being explicit: it uses in particular a forgetful functor Pn+1− alg −→
Pn−alg, whose existence is not obvious. Notice that the easiest such functor is of the one factorizing
by the ∞-category of commutative algebras: more specifically, one has of course a natural forgetful
functor Pn+1 − alg → CAlg. On the other hand, there is an inclusion CAlg → Pn, which adds the
zero bracket to a commutative algebra. This is naturally too simplistic, as we completely forget
about the Pn+1-bracket.

Philosophically speaking, the additivity forgetful functor Pn+1 − alg −→ Pn − alg should send
a Pn+1-algebra A to a Pn-algebra A′ whose bracket is homotopic to zero, and the datum of the
starting Pn+1-bracket on A should be used to construct the homotopy witnessing the triviality of
the bracket on A′.

As a consequence, it is not easy to produce concrete examples of coisotropic structures in the
sense of the CPTVV definition above.

5.2 Two proposals for proving the equivalence

As explained in the previous section, Definition 5.1.2 express a coisotropic structure on a map A→ B
as an action of A on B in the category of Pn-algebras. Notice that the ∞-category Pn − alg is a
closed symmetric monoidal ∞-category, so that it makes sense to talk about internal hom-objects.
In particular, given any Pn-algebra X, there is a well defined endomorphism object EndPn(X); apart
from being by definition a Pn-algebra, EndPn(X) is also in a natural way an E1-algebra inside the
category Pn − alg. By the additivity theorem 5.1.1, EndPn(X) is thus a Pn+1-algebra.

Said in another way, suppose we are given a Pn+1-algebra A and a Pn-algebra B. To complete
this data to a P(n+1,n)-structure we need a morphism

A −→ EndPn(B).

of Pn+1-algebras. Recall that on the other hand the missing piece in order to obtain a P[n+1,n]-
structure is a morphism

A −→ Z(B),

again in the category of Pn+1-algebras, where Z(B) is the Poisson center of chapter 3.
It is therefore natural to propose the following.

Conjecture 5.2.1. LetM be an ∞-category satisfying our starting assumptions of chapter 0, and
let B ∈ Pn − algM be a Pn-algebra inM. Then there is an equivalence

EndPn(B) ' Z(B)

of Pn+1-algebras.

We remark that this conjecture is quite natural: the Poisson center is supposed to encode Pn-
deformations of B, and in the case of an En-algebra it is indeed true that En-deformations are
controlled by the endomorphisms object.

Rephrased in another way, the conjecture states that the Poisson center Z(B) is a concrete
model for the internal object of endomorphism of the Pn-algebra B.

Notice that as a consequence of the above conjecture, one would immediately get that, given a
map f : X → Y of derived Artin stack locally of finite presentation, there is an equivalence

Cois(f, n) ' C̃ois(f, n)



CHAPTER 5. COMPARISON WITH THE CPTVV DEFINITION 110

of spaces.

Alternatively, we end this chapter by sketching a proposal for the additivity functor of Theorem
5.1.1.

Let A be Pn+1-algebra: in particular, it is of course a simple E1-algebra, and as such we can
consider its bar complex B(A). As a graded k-module, it is defined to be

B(A) '
⊕
k∈N

A⊗k[k]

and it has the standard bar differential. With the usual deconcatenation coproduct, B(A) has the
structure of a coassociative coalgebra. Since the multiplication on A is also commutative, we can
endow B(A) with an additional commutative product, which is compatible with the coproduct in
the sense that

B(A) ∈ E1 − CoAlg(CAlg),

where E1 − CoAlg(CAlg) is the category of coassociative coalgebras inside the monoidal category
of commutative algebras. See Section 1 in [GJ] for more details on these classical constructions.

The additional data of the shifted Lie bracket on A can be used to give B(A) a compatible
structure of a Pn-algebra. More specifically, we have the following result.

Proposition 5.2.2. Let A be a Pn+1-algebra. Then its bar complex B(A) is in a natural way a
coassociative coalgebra inside the category of Pn-algebras, that is to say

B(A) ∈ E1 − CoAlg(Pn − alg).

The proof of this proposition can be found in [Sa], section 1.4. Assuming Conjecture 3.4.5 in
[FG], the above proposition yields the existence of an ∞-functor

Pn+1 − alg −→ E1 − alg(Pn − alg)

which is a candidate for the additivity functor of Theorem 5.1.1.
If we interpret Definition 5.1.2 using the above additivity functor, we can concretely compare the

various definition of coisotropic structures. In fact, the following result is an immediate consequence
of Proposition 1.8 in [Sa].

Proposition 5.2.3. Let (A,B) be a P[n+1,n]-algebra. Then using the functor above A can be regarded
as an associative algebra A′ inside the category of Pn-algebras, and B becomes naturally an A′-
module. Said in another way, there is a functor

P[n+1,n] − alg −→ P(n+1,n) − alg

where we make sense of the left hand side using the functor constructed thanks to proposition 5.2.2.

In particular, this shows that any coisotropic structure in the sense of chapter 4 is also a
coisotropic structure in the sense of definition 5.1.2. We plan to complete the proof of the ex-
pected equivalence between the two definitions in the near future.
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