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Résumé
La partie principale de cette thèse est consacrée à l’étude de certaines constructions

et de structures liées aux algèbres de battages quantiques : algèbres différentielles et les
opérateurs de Kashiwara ; idéaux de définition et le problème de spécialisation ; homo-
logie de coHochschild et théorème de type Borel-Weil-Bott. Dans le dernier chapitre,
on obtient une famille d’identités entre les puissances de la fonction η de Dedekind et
la trace de l’élément de Coxeter du groupe de tresses d’Artin agissant sur les algèbres
de coordonnées quantiques.

Mots-clefs

Algèbres q-Bosons, algèbres de Nichols, algèbres de battages quantiques, algèbres
de Weyl quantiques, fonction η de Dedekind, homologie de coHochschild, groupes
quantiques.

Around quantum shuffle algebras: defining ideals,
specializations and cohomology

Abstract
The main part of this thesis is devoted to study some constructions and struc-

tures around quantum shuffle algebras: differential algebras and Kashiwara operators;
defining ideals and specialization problem; coHochschild homology and an analogue of
Borel-Weil-Bott theorem. In the last chapter we prove a family of identities relating
powers of Dedekind η-function and the trace of the Coxeter element in the Artin braid
groups acting on quantum coordinate algebras.

Keywords
q-Boson algebras, coHochschild homology, Dedekind η-function, Nichols algebras,

quantum groups, quantum shuffle algebras, quantum Weyl algebras.
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Chapitre 1

Introduction

Cette thèse est dédiée à l’étude de quelques constructions autour des objets prove-
nant des algèbres enveloppantes quantiques : les algèbres de battages quantiques (ou
dualement, les algèbres de Nichols) et les liens avec les q-séries. Elle contient quatre
parties dont les trois premières sont reliées. Les résultats principaux sont expliqués
brièvement ci-dessous.

1.1 Les algèbres q-Bosons
Cette partie reprend les chapitres 2 et 3.

1.1.1 Motivation
Les algèbres q-Bosons Bq(g), comme les extensions des algèbres de Weyl quantiques

Wq(g), sont construites initialement dans les travaux de M. Kashiwara [44] sur les
bases cristallines, ayant pour but de définir les «opérateurs de Kashiwara» agissant
sur la partie négative U<0

q (g) d’un groupe quantique associé à une algèbre de Kac-
Moody symétrizable g. C’est dans ce même article que la simplicité de U<0

q (g) comme
un Wq(g)-module est démontrée en utilisant les calculs concernant les relations de
commutation entre les générateurs et l’élément de Casimir ; la semi-simplicité de la
catégorie O(Wq(g)) y est conjecturée être un exercice simple.

Or, ce problème n’est pas aussi simple que l’indication donnée par Kashiwara peut
le laisser croire : l’article [65] donne une «preuve» insuffisante.

La première démonstration complète est publiée dans [66] plus tard environ dix
ans, en appliquant un outil de «projecteurs extrêmaux», avec de gros calculs pour
vérifier ses propriétés.

1.1.2 Une esquisse
L’essentiel de la première partie de cette thèse est dédiée à donner une démons-

tration conceptuelle du théorème structurel de la catégorie O(Wq(g)) : on expliquera
pourquoi la semi-simplicité de O(Wq(g)) provient de la dualité intrinsèque de l’algèbre
Wq(g).
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Dans notre approche, la trivialité de la catégorie O(Wq(g)) dépend fortement d’une
construction plus fonctorielle de l’algèbre Wq(g) comme un double. En voici une ex-
plication rapide.

Soient A et B deux algèbres de Hopf et ϕ : A× B → k un accouplement de Hopf
généralisé. Le double quantique et le double de Heisenberg associés sont notés par
Dϕ(A,B) et Hϕ(A,B) respectivement. Munis des structures de Dϕ(A,B)-module et
comodule sur Hϕ(A,B) définies dans la Section 2.2.8, on a
Proposition 1 (Proposition 2.3). Hϕ(A,B) est un Dϕ(A,B)-Yetter-Drinfel’d module
algèbre.

L’avantage d’avoir la structure de Yetter-Drinfel’d provient de l’existence d’un
tressage

σ : Hϕ(A,B)⊗Hϕ(A,B)→ Hϕ(A,B)⊗Hϕ(A,B)
qui munit l’espace vectoriel Hϕ(A,B) ⊗ Hϕ(A,B) d’une structure d’algèbre en rem-
plaçant le flip usuel par le tressage ci-dessus. On le notera Hϕ(A,B)⊗Hϕ(A,B) pour
souligner cette structure d’algèbre.

Lorsque A = U≥0
q (g) et B = U≤0

q (g) sont les parties positive et négative d’un groupe
quantique, en identifiant les deux parties tores et faisant un changement de variables,
le double de Heisenberg n’est rien d’autre que Bq(g). À ce moment, la proposition
ci-dessus s’écrit comme
Proposition 2 (Proposition 2.7). Wq(g) est un Uq(g)-Yetter-Drinfel’d module algèbre.

Comme conséquence immédiate, le tressage
σ : Wq(g)⊗Wq(g)→ Wq(g)⊗Wq(g)

qui munit Wq(g)⊗Wq(g) d’une structure d’algèbre, est bien défini. De plus, l’algèbre
Wq(g) se retrouve ainsi : soient B<0

q (g) et B>0
q (g) les images de U<0

q (g) et U>0
q (g) dans

Wq(g), alors
Proposition 3 (Proposition 2.8). Il existe un isomorphisme d’algèbre

B<0
q (g)⊗B>0

q (g) ∼= Wq(g).
En utilisant cette construction, une version tressée du théorème structurel des

modules de Hopf peut être appliqué aux Wq(g)-modules dans O(Wq(g)) et finalement
on obtient
Théorème 1 (Theorem 2.1). Il existe une équivalence de catégorie

O(Wq(g)) ∼ Vect

où Vect est la catégorie des espaces vectoriels. Plus précisément, cette équivalence est
donnée par :

M 7→M coρ, V 7→ B<0
q ⊗ V

pour M ∈ O(Wq(g)) et V ∈ Vect, où M coρ = {m ∈M | ρ(m) = m⊗ 1} est l’ensemble
des coinvariants à droite dans M .

Le théorème structurel de la catégorie O(Bq(g)) provient du même principe, voir
Theorem 2.2 pour un énoncé complet. De plus, la semi-simplicité de O(Bq(g)) et la
classification des objets simples en sont des corollaires immédiats.
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1.1.3 Les avantages
La construction ci-dessus nous permet d’interpréter plusieurs notions importantes

d’une manière plus compacte et jolie.
1. L’ensemble des vecteurs extrêmaux dans M s’identifie à M coρ.
2. Dans la démonstration du théorème structurel des modules de Hopf, un projec-

teur P : M →M coρ apparaît. Dans la situation ci-dessus, ce projecteur coïncide
avec celui défini par Kashiwara dans le cas sl2 ; de plus, à une bar involution
près, il est rien d’autre que le «projecteur extrêmal» au sens de Nakashima.

3. Les opérateurs de Kashiwara sur U<0
q (g) peuvent être écrits comme une convolu-

tion qui est plus fonctorielle que la définition originale et ceci s’étend à un cadre
plus général.

1.1.4 Sous-algèbres unipotentes
Une grande partie de la construction ci-dessus peut se généraliser au cas «cellules

de Bruhat», ce qui forme le contenu principal du chapitre 3.
Supposons que g est une algèbre de Lie semi-simple de dimension finie. Soient

w ∈ W un élément appartenant au groupe de Weyl de g et U<0
q [w] la sous-algèbre

unipotente associée contenue dans U<0
q . En restreignant l’accouplement de Hopf ϕ

entre U>0
q et U<0

q au sous-espace U>0
q × U<0

q [w], le double de Heisenberg Hϕ[w] est
bien défini.

On peut similairement définir la catégorieO(Hϕ[w]) et prouver le théorème suivant.

Théorème 2 (Corollary 3.1). Il existe une équivalence de catégorie

O(Hϕ[w]) ∼ (U<0
q [w])⊥M

où (U<0
q [w])⊥ est une cogèbre «complémentaire» définie dans la Section 3.2.2 et (U<0

q [w])⊥M
est la catégorie des (U<0

q [w])⊥-comodules à gauche.

En particulier, si w = w0 est le plus long élément dans W , l’algèbre U<0
q [w] est

l’algèbre U<0
q (g) toute entière et la catégorie (U<0

q [w])⊥M se réduit à la catégorie Vect :
ceci n’est rien d’autre que le cas du chapitre 2.

1.2 L’idéal de définition d’une algèbre de Nichols
Cette partie reprend les chapitres 4 et 5.

1.2.1 Motivation
En gros, une algèbre de Nichols est un objet dans la catégorie des algèbres de Hopf

tressées naturellement associé à un module de Yetter-Drinfel’d V sur une algèbre de
Hopf H (ou plus général, à un espace vectoriel tressé). Plusieurs algèbres importantes
se trouvent dans ce cadre en choisissant H et V proprement : par exemple, les algèbres
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extérieures, les algèbres symétriques et les parties négatives (ou positives) des groupes
quantiques.

Plus précisément, une algèbre de Nichols peut être construite à partir d’une algèbre
tensorielle tressée T (V ), qui est une algèbre de Hopf tressée en remplaçant le flip par
le tressage provenant de la structure de Yetter-Drinfel’d pour munir T (V ) ⊗ T (V )
d’une structure d’algèbre associative. L’algèbre de Nichols N(V ) se définit comme le
quotient de T (V ) par un idéal de définition I(V ) défini comme le plus grand coidéal
contenu dans le sous-espace de T (V ) engendré par les tenseurs de degrés supérieurs ou
égaux à deux. Comme conséquence, nous pourrons dire que l’algèbre de Hopf tressée
N(V ) est engendrée par les générateurs dans V et les relations dans I(V ).

Les deux problèmes suivants sont initialement posés par N. Andruskiewitsch dans
[2], les versions ici sont légèrement modifiées :

1. Trouver un ensemble de générateurs «agréables» dans I(V ).
2. Sous quelles conditions l’idéal I(V ) est-il finiment engendré ?

Ces deux chapitres sont dédiés à les étudier.

1.2.2 Éléments de niveau n

Les études des idéaux I(V ) commençent dans les travaux de Andruskiewitsch-
Graña [3], M. Rosso [73] et P. Schauenburg [79].

Théorème 3. Soit Sn : T (V )→ T (V ) l’opérateur de symétrisation totale. Alors

N(V ) =
⊕
n≥0

(
V ⊗n/ ker(Sn)

)
.

Ce théorème sert de point de départ aux travaux dans les chapitres 3 et 4 pour
étudier le noyau de chaque Sn.

Dans le chapitre 3, nous introduissons la notion «d’éléments de niveau n» en consi-
dérant une décomposition de Sn et étudions ses propriétés.

Pour n ≥ 2 un entier, notons Bn le groupe de tresses en n brins engendré par les
générateurs σ1, · · · , σn−1 et les relations bien connues. Soient 1 < s < n un entier et i :
Bs → Bn un morphisme injectif de groupes. On l’appelle un «plongement positionel»
s’il existe un entier 0 ≤ r ≤ n− s tel que i(σt) = σt+r pour tout 1 ≤ t ≤ s− 1.

Fixons un entier n ≥ 2 et soit v ∈ V ⊗n un élément non-nul. Puisque V est un
espace tressé, l’espace vectoriel V ⊗n admet une structure de k[Bn]-module. On notera
k[Xv] le k[Bn] sous-module de V ⊗n engendré par v, Sn : k[Xv]→ k[Xv] est bien défini.

Préservons les hypothèses concernant v comme ci-dessus ; on l’appelle «de niveau
n» si

1. v est annulé par Sn ;
2. Pour tout plongement positionel ι : Bs → Bn, l’équation ι(θs)x = x n’admet

aucune solution dans k[Xv], où θs est l’élément engendrant le centre de Bs.
L’avantage de considérer les éléments «de niveau n» s’explique par le théorème

suivant :
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Théorème 4 (Theorem 4.2). Les éléments «de niveau n» sont primitifs.

Soit ∆n l’élément de Garside dans Bn. Alors d’après [48], Theorem 1.24, θn = ∆2
n

engendre le centre Z(Bn) de Bn. Les éléments «aux niveaux n» sont fortement reliés
aux points fixes de l’action de θn sur V ⊗n. Les algorithmes pour calculer ces éléments
à partir des points fixes de θn sont proposés dans la Section 4.5.3.

Il faudrait remarquer que si la structure du module de Yetter-Drinfel’d est du type
diagonal provenant d’une matrice de Cartan symétrisable, alors toutes les relations de
Serre quantiques dans T (V ) sont clairement de niveau n, donc primitives.

1.2.3 Cas diagonal
Les résultats principaux du chapitre 4 sont valables pour les algèbres de Nichols de

type quelconque. Lorsqu’on se restreint à des cas particuliers (par exemple, ceux de
type diagonal), il y doit avoir des renforcements provenant des propriétés supplémen-
taires imposées au tressage.

Dans le chapitre 5, sous l’hypothèse que les tressages sont de type diagonal, on
introduit un espace vectoriel : «l’espace des pré-relations», qui engendre l’idéal de
définition I(V ) et qui est de taille «assez petite». Les conditions proposées dans la
définition de ces relations nous permettent d’étudier le problème de spécialisation de
ces algèbres quand le tressage est associé à une matrice de Cartan généralisée qui n’est
pas forcément symétrisable.

De plus, on expliquera la raison pour laquelle l’espace des pré-relations est «assez
petit» : on établit un lien entre la taille de cet espace et les solutions entières d’une
forme quadratique entière.

1.2.4 Application au problème de spécialisation
Cette application est une étape vers la compréhension des groupes quantiques as-

sociés aux matrices de Cartan généralisées non-symétrisables, la motivation provenant
du problème suivant posé par M. Kashiwara [45], Section 13, Problem 3 :

Est-ce qu’un graphe cristallin pour g non-symétrisable a un sens ?

À cause du fait que les groupes quantiques ont initialement définis par Drinfel’d
et Jimbo en quantifiant de la présentation de Chevalley-Serre des bigèbres de Lie et
cette construction n’est valable que dans le cas symétrisable, on ne connaissait pas
de définition possible jusqu’à l’apparition de la recherche sur les algèbres de Nichols
[67] ou dualement des algèbres de battages quantiques [73]. Cet possibilité d’avoir une
définition n’implique jamais de connaissance sur sa structure et ses représentations.
En effet, même dans le cas non-quantifié (c’est-à-dire, les algèbres de Kac-Moody),
ce problème (donner une description explicite de g par générateurs et relations) reste
ouvert (il faut rappeler que dans le cas symétrisable, c’est le théorème de Gabber-Kac).

Dans le chapitre 5, on cherche à comprendre le problème de spécialisation de ces
groupes quantiques en étudiant l’idéal de définition.



14 Chapitre 1. Introduction

Plus précisément, on propose un sous-espace vectoriel dans l’idéal de définition qui
s’appelle «pré-relations». Les restrictions posées sont triples : une pré-relation est un
élément non-nul dans T (V ) vérifiant :

1. il est annulé par tous les opérateurs différentiels ;
2. il est obtenu comme crochets itérés ;
3. il est un point fixe sous l’action du centre du groupe de tresse.

Théorème 5 (Theorem 5.2). L’idéal de Hopf engendré par les pré-relations à droite
(ou à gauche) est l’idéal de définition I(V ).

Ensuite, ce théorème est appliqué à l’étude du morphisme de spécialisation. Les
contre-exemples sont construits pour expliquer que ce morphisme n’est pas bien défini
pour toutes les matrices de Cartan généralisées. Passer à la matrice moyenne donne
une solution de ce problème : en effet, le théorème suivant est démontré :

Théorème 6 (Theorem 5.3). Le morphisme de spécialisation est bien défini une fois
qu’on passe à la matrice de Cartan généralisée moyenne. De plus, il est surjectif.

1.3 Un théorème du type Borel-Weil-Bott pour les
algèbres de battages quantiques

Cette partie reprend le chapitre 6.

1.3.1 Motivations
L’un des problèmes centraux dans la théorie des représentations des groupes et

algèbres est de construire les représentations irréductibles et indécomposables. Dans le
monde analytique, (par exemple, groupes de Lie), il existe deux outils principaux pour
étudier ce problème : les «théorème de Peter-Weyl» et «théorème de Borel-Weil-Bott»
qui permettent de réaliser les représentations irréductibles à partir des fonctions sur
le groupe.

À la fin du dernier siècle, les algèbres enveloppantes associées aux algèbres de Kac-
Moody symétrisables sont déformées parfaitement comme les algèbres de Hopf dans
les travaux de Drinfel’d et Jimbo et les résultats sont nommés «algèbres enveloppantes
quantiques» ou «groupes quantiques».

De plus, cette procédure déforme simultanément les représentations irréductibles
des algèbres enveloppantes, ce qui nous motive à nous poser la question suivante : y
a-t-il des analogues des théorèmes de Peter-Weyl et Borel-Weil-Bott dans le cadre des
groupes quantiques ?

Un analogue du théorème de Borel-Weil-Bott a été formalisé rapidement par An-
derson, Polo et Wen dans [1] : ils ont étudié un analogue de la variété de drapeaux
G/B et considéré un caractère dessus comme un fibré en droite. Finalement, le théo-
rème a été généralisé en utilisant des techniques provenant de la théorie des groupes
algébriques. Par ailleurs, en 1994, un théorème de Peter-Weyl «postiche» est démontré
par A. Joseph et G. Letzter dans [41].
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Dans ce chapitre, nous considérons une autre construction dans le cadre «algèbres
de battages quantiques» pour donner une généralisation différente du théorème de
Borel-Weil-Bott aux groupes quantiques.

1.3.2 Une esquisse
Etant donnée une algèbre de Hopf H et un module de Hopf M sur celle-ci, l’en-

semble des coinvariants à droite V = M coR dans M admet une structure de H-module
au sens de Yetter-Drinfel’d qui le munit d’une structure d’espace tressé. Ensuite, la
machine d’algèbres de battages quantiques construite par M. Rosso dans [73] peut s’ap-
pliquer pour fabriquer fonctoriellement une algèbre de Hopf tressée Sσ(V ). Lorsque les
choix de H etM sont faits proprement, Sσ(V ) est isomorphe à la partie strictement né-
gative (ou positive) d’un groupe quantique. Cette algèbre Sσ(V ) sert comme analogue
de la «variété de drapeau» dans notre généralisation.

Le bicomodule sur lequel l’homologie prend sa valeur est construit en élargissant
l’algèbre de Hopf H par un élément group-like Kλ paramétré par un poids dominant
λ ∈ P++ et le module de Hopf M par un vecteur vλ avec les actions et coactions
bien choisies (voir Section 6.4.1 pour les détails), puis l’algèbre de battages quantiques
Sσ̃(W ) sort de la machine avec W = span(V, vλ) et un tressage σ̃ qui contient Sσ(V )
comme une sous-algèbre de Hopf tressée. Une graduation prenant en compte l’appa-
rition de vλ est considérée en mettant degré 0 sur les éléments dans Sσ(V ) et mettant
en degré 1 vλ : notons Sσ̃(W )(n) l’ensemble des éléments de degré n dans Sσ̃(W ). Une
conséquence immédiate de cette construction affirme que les Sσ̃(W )(n) admettent les
structures de Sσ(V )-bimodules de Hopf, où Sσ̃(W )(1) sert comme un «fibré en droite»
non-commutatif sur Sσ(V ). L’avantage de cette construction se trouve dans le fait
qu’elle est plus proche que la géométrie dans le cas commutatif et qu’elle est plus
fonctorielle.

Notons que la théorie d’homologie qu’on utilisera est celle du cadre dual : l’homo-
logie de coHochschild des cogèbres prenant ses valeurs dans les bicomodules au-dessus.

1.3.3 Résultats principaux
Supposons que g est une algèbre de Lie simple de dimension finie.

Théorème 7 (Theorem 6.7). Le groupe d’homologie de coHochschild de Sσ(V ) pre-
nant valeurs dans Sσ̃(W )(1) est donné par :

1. Si q n’est pas une racine de l’unité et λ ∈ P++ est un poids dominant,

Hochn(Sσ(V ), Sσ̃(W )(1)) =
{
L(λ) n = 0;

0, n 6= 0,

comme Uq(g)-modules.
2. Si ql = 1 est une racine primitive de l’unité et λ ∈ P l++ est un poids dominant

ayant les coefficients par rapport aux racines simples moins que l, on a :

Hochn(Sσ(V ), Sσ̃(W )(1)) =
{

L(λ) n = 0;
∧n(n−), n ≥ 1,
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comme Uq(g)-modules, où n− s’identifie avec la partie négative de g.

La démonstration de ce théorème comporte deux parties : le calcul de l’homologie
en degré 0 provient d’un théorème dû à M. Rosso qui décrit l’espace des coinvariants
à droite de la structure de Sσ(V )-module de Hopf sur Sσ̃(W )(1). L’annulation de l’ho-
mologie en degré plus grand s’obtient en utilisant les outils suivants :

1. L’autodualité de l’algèbre de battages quantiques Sσ(V ) pour relier l’homologie
d’algèbre et de cogèbre.

2. La filtration de PBW de Sσ(V ), (resp. Sσ̃(W )(1)), et l’algèbre (le module) gra-
dué(e) associé(e).

3. La dualité de Koszul pour obtenir une résolution de gr(Sσ̃(W )(1)).
4. Une homotopie explicite pour prouver l’acyclicité du complexe ci-dessus.
5. Revenir au cas filtré par un argument de la suite spectrale.
6. Au cas racine de l’unité, on extrait un sous-complexe dans le complexe de Koszul

ayant une différentielle nulle et tel que le reste est acyclique.
Cette construction admet divers avantages :

1. Elle nous permet d’étudier les «fibrés» de degrés plus hauts : Sσ̃(W )(2), Sσ̃(W )(3),
· · · :
Théorème 8 (Theorem 6.10). Sous l’hypothèse du point (1) dans le théorème
précédent, on a :
(a) Si pour tout i ∈ I, (λ, α∨i ) = 1, alors comme Uq(g)-modules,

Hochn(Sσ(V ), Sσ̃(W )(2)) =
{
L(λ)⊗ L(λ) n = 0;

0 n 6= 0.

(b) Si J ⊂ I est le sous-ensemble contenant les j ∈ I tel que (λ, α∨j ) = 1, alors
comme Uq(g)-modules,

Hochn(Sσ(V ), Sσ̃(W )(2)) =


(L(λ)⊗ L(λ))

/⊕
j∈J

L(2λ− αj) n = 0;

0 n 6= 0.

2. Elle donne une construction inductive des parties négatives (positives) des groupes
quantiques et simultanément les bases PBW : voir Sections 6.8 et 6.9.

3. Elle peut se généraliser à un cadre plus large : les algèbres affines quantiques, les
algèbres de Hall sphériques, etc. (On espère y revenir dans le futur.)

1.4 Fonction η de Dedekind et groupes quantiques
Cette partie contient le chapitre 7.
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1.4.1 Motivations historiques
La fonction de partition p(n) d’un nombre naturel n est un object mathématique

important. L’inverse de sa série génératrice, notée par ϕ(x), admet une expression
simple et compacte ∏n≥1(1 − xn) qui est reliée avec la fonction η de Dedekind par
la relation η(x) = x

1
24ϕ(x). La 24-ième puissance de η(x) est une forme modulaire de

poids 12 qui contient les fonctions τ de Ramanujan comme les coefficients dans sa série
de Taylor.

Quelques puissances de ϕ(x) sont étudiées par Euler puis par Jacobi dans ses
travaux sur les fonctions θ et les fonctions elliptiques. Par exemple, il est démontré
par Jacobi que

ϕ(x)3 =
∞∑
n=0

(−1)n(2n+ 1)x
n(n+1)

2 .

Ces formules concernant les puissances de ϕ(x) et η(x) sont largement élargies dans
les travaux de I. MacDonald en les expliquant comme cas particuliers de la formule
de dénominateur de Weyl associée aux systèmes de racines affines. Par exemple, la
formule de Jacobi s’obtient à partir des informations combinatoires du système de
racine du type A1.

En 1976, les formules de MacDonald sont réintérprétées par B. Kostant en utilisant
la théorie des représentations des groupes de Lie compacts : par exemple, si G est
simplement lacé, il les réécrit comme une somme sur les poids dominants :

η(x)dimG =
∑
λ∈P+

Tr(c, V1(λ)0)dimV1(λ)x(λ+ρ,λ+ρ),

où c est un élément de Coxeter dans le groupe de Weyl, V1(λ) est la représentation de
g de plus haut poids λ et V1(λ)0 est son sous-espace de poids 0.

1.4.2 Groupes quantiques
Avec comme but de construire les solutions de l’équation de Yang-Baxter, les

groupes quantiques sont construits par Drinfel’d et Jimbo comme déformations for-
melles des algèbres enveloppantes au milieu des années 1980. Cette procédure déforme
non seulement les algèbres mais aussi les représentations intégrables et les groupes de
Weyl.

De nouvelles structures et de nouveaux outils paraissent après cette procédure : la
R-matrice universelle, l’action du groupe de tresse, les bases canoniques (cristallines),
etc. De plus, l’apparition du paramètre q enrichit la structure interne de l’algèbre
enveloppante : cette liberté nous permet de marquer les croisements différents dans les
diagrammes planaires des nœuds pour obtenir les invariants quantiques.

1.4.3 Groupe de Weyl quantique
Le groupe de Weyl associé à une algèbre de Lie semi-simple contrôle la symétrie

interne de cette algèbre et de ses représentations. Une déformation de ces symétries
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est construite parfaitement dans les travaux de Kirillov-Reshetikhin et Levendorski-
Soibelman pour obtenir une forme explicite de la R-matrice universelle. Ceci munit
toutes les représentations intégrables d’une symétrie donnée par le groupe de tresse
d’Artin.

1.4.4 La fonction η de Dedekind et groupes quantiques
Le chapitre 7 est dédié à bien comprendre et généraliser les formules de Jacobi, Mac-

Donald et Kostant en utilisant les nouveaux outils offerts par la théorie des groupes
quantiques. Plus précisément, on écrira les puissances de la fonction η de Dedekind
comme la trace d’un opérateur agissant sur l’algèbre quantique des coordonnées asso-
ciée à un groupe quantique.

En effet, soient g une algèbre de Lie simple complexe de rang l, W son groupe de
Weyl, q un paramètre formel, Uq(g) le groupe quantique associé à g, Bg le groupe de
tresse d’Artin associé à W avec générateurs σ1, · · · , σl, Cq[G] l’anneau des coordonées
quantiques, λ ∈ P+ un poids dominant, V (λ) la représentation irréductible de Uq(g)
de plus haut poids λ du type 1.

Le groupe Bg agit sur V (λ) donc sur

Cq[G] ∼=
⊕
λ∈P+

V (λ)⊗ V (λ)∗

via le plongement
Bg → Aut(Cq[G]), σi 7→ σi ⊗ id.

Notons Π = σ1 · · ·σl ∈ Bg un élément de Coxeter dans Bg et h le nombre de Coxeter
de W .

Théorème 9 (Theorem 7.3). On a l’identité suivante :

Tr(Π⊗ id,Cq[G]) =
(

l∏
i=1

ϕ(q(αi,αi))
)h+1

.



Chapitre 2

q-Boson algebras

Contents of this chapter is published in [24].

2.1 Introduction
In his article [44], M.Kashiwara defined crystal bases for quantized enveloping

algebras. To show the existence of such bases for the strictly negative parts U<0
q (g)

of quantized enveloping algebras, he constructed an associative algebra generated by
operators on U<0

q (g), which is a q-analogue of boson. In fact, this algebra is a quantized
version of the usual Weyl algebra and with the help of such algebra, he proved that
U<0
q (g), viewed as a module over this "quantized Weyl algebra", is simple. Moreover, he

affirmed without proof that imposing a finiteness condition on modules over "quantized
Weyl algebra" will lead to semi-simplicity results.

Later, in his article [65], T.Nakashima defined the so called "q-Boson algebra"
Bq(g), an extension of the quantized Weyl algebraWq(g) by a torus, and studied these
algebras. Finally, in [66], he archived in proving the semi-simplicity of O(Bq), the
category of modules over Bq(g) with some finiteness conditions, where the main tool
is an "extremal projector" defined therein. But we should point out that the proof in
[66] depends on the "Casimir-like" element of a pairing ; to get the desired properties,
the author has to use a large quantity of computation, see for example [83], [65] and
[66].

In this article, we will construct quantized enveloping algebras(quantum groups),
q-Boson algebras and quantized Weyl algebras in a unified method and give an action
of quantum groups on quantized Weyl algebras by the Schrödinger representation. This
enables us to give another construction of the quantized Weyl algebra with the help of
the braiding in some Yetter-Drinfel’d module category. With this construction, we can
obtain a structural result for all Wq(g)-modules with a natural finiteness condition,
which will lead directly to the semi-simplicity of O(Bq) and the classification of all
simple objects in it. Moreover, the proof we give here is more conceptual : it means that
the structure of category O(Bq) depends heavily on the intrinsic duality of Bq(g). As a
byproduct, we prove the semi-simplicity of Wq(g)-modules with a finiteness condition
and classify all simple modules of this type.

This work is inspired by an observation in the finite dimensional case : once we



20 Chapitre 2. q-Boson algebras

have a nondegenerate pairing between two Hopf algebras, we may form the smash
product of them, where the "module algebra type" action is given by this pairing. If
we have a finite dimensional module over this smash product, from the duality, we
will obtain simultaneously a module and a comodule structure, and the construction
of smash product is exactly the compatibility condition of the module and comodule
structures to yield a Hopf module. As showed in [81], all Hopf modules are trivial, that
is to say, a free module over the original Hopf algebra, and blocks are parameterized
by a vector space called "coinvariants".

We would like to generalize this observation to a more general case, for example,
quantized Weyl algebras or q-Boson algebras. But unfortunately, it does not work well
ase the action of torus part is not locally nilpotent. Our main idea for overcoming
this difficulty is to hide the "torus part" behind the construction with the help of a
braiding originated in a quantum group action. This is the main reason for our use of
the technical language of Yetter-Drinfel’d modules and braided Hopf algebras.

We want to be more precise : for any module M in O(Bq), it is possible to restrict
it to the quantized Weyl algebra to obtain aWq(g)-module with a finiteness condition.
In Section 2.4.1, we will realize Wq(g) as an algebra obtained from its negative and
positive parts with a braiding, this enables us to get a module and comodule structure
on M . Unfortunately again, these structures are not compatible, but it is not too far
away : they are compatible in the sense of braiding in this case ; we may still prove a
trivialization result, which gives out the structural theorem of all Wq(g)-modules with
finiteness condition and will lead easily to the structure theory of category O(Bq).

In the proof of the structural theorem of Hopf modules, there exists a projection
from the Hopf module to the set of its coinvariants, which will be shown to be exactly
the "extremal projector" in [66] and the projection given in [44], (3.2.2) in the sl2 case.
This explains the "extremal projector" in a more natural way.

The constitution of this chapter is as follows. In Section 2.2, we recall some notions
in Hopf algebras and give out an action of quantum doubles on Heisenberg doubles
with the help of Schrödinger representations. In Section 2.3, we construct quantum
groups and q-Boson algebras concretely and calculate the action between them in the
case of sl2. In Section 2.4, we give constructions of quantized Weyl algebras from the
braiding in Yetter-Drinfel’d category and prove the main theorem on the structure of
O(Bq), at last, we compare our projection with those defined in [44] and [66].

At last, we should remark that in the preparation of this chapter, the preprint of
A.M. Semikhatov [77] came into our sight, he got essentially same results as in the
Section 2.2 of this chapter, though with a different objective and point of view.

2.2 Hopf pairings and double constructions

From now on, suppose that we are working on the complex field C. Results in this
section hold for any field with characteristic 0. All tensor products are over C if not
specified otherwise.
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2.2.1 Yetter-Drinfel’d modules
Let H be a Hopf algebra. A vector space V is called a (left) H-Yetter-Drinfel’d

module if it is simultaneously an H-module and an H-comodule satisfying the Yetter-
Drinfel’d compatibility condition : for any h ∈ H and v ∈ V ,∑

h(1)v(−1) ⊗ h(2).v(0) =
∑

(h(1).v)(−1)h(2) ⊗ (h(1).v)(0),

where ∆(h) = ∑
h(1) ⊗ h(2) and ρ(v) = ∑

v(−1) ⊗ v(0) are Sweedler notations for
coproduct and comodule structure maps.

Morphisms between two H-Yetter-Drinfel’d modules are linear maps preserving
H-module and H-comodule structures.

We let H
HYD denote the category of H-Yetter-Drinfel’d modules ; it is a tensor

category.
The advantage of Yetter-Drinfel’d module is : for V,W ∈ H

HYD, there exists a
braiding σ : V ⊗W → W ⊗ V , given by σ(v ⊗ w) = ∑

v(−1).w ⊗ v(0). If both V and
W are H-module algebras, V ⊗W will have an algebra structure if we use σ instead
of the usual flip. We let V⊗W denote this algebra.

2.2.2 Braided Hopf algebras in H
HYD

In [69], D.Radford constructed the biproduct of two Hopf algebras when there
exists an action and coaction between them and obtained the necessary and sufficient
conditions for the existence of a Hopf algebra structure on this biproduct. See Theorem
1 and Proposition 2 in [69].

Once the language of Yetter-Drinfel’d module has been adopted, conditions in [69]
can be easily rewritten.

Definition 2.1 ([6], Section 1.3). A braided Hopf algebra in the category H
HYD is a

collection (A,m, η,∆, ε, S) such that :

1. (A,m, η) is an algebra in H
HYD ; (A,∆, ε) is a coalgebra in H

HYD. That is to say,
m, η,∆, ε are morphisms in H

HYD ;
2. ∆ : A→ A⊗A is a morphism of algebras ;
3. ε : A→ C, η : C→ A are morphisms of algebras ;
4. S is the convolution inverse of IdA ∈ End(A).

Remark 2.1. 1. Once a braided Hopf algebra A has been given, we can form the
tensor product A⊗H, it yields a Hopf algebra structure, as shown in [69].

2. An important example here is the construction of the "positive part" of a quan-
tized enveloping algebra as a twist of a braided Hopf algebra with primitive
coproduct by a commutative group algebra.

3. For a general construction in the framework of Hopf algebras with a projection,
see [6], Section 1.5.



22 Chapitre 2. q-Boson algebras

2.2.3 Braided Hopf modules
Let B be a braided Hopf algebra in some Yetter-Drinfel’d module category. For

a left braided B-Hopf module M , we mean a left B-module and a left B-comodule
satisfying compatibility condition as follows :

ρ ◦ l = (m⊗ l) ◦ (id⊗ σ ⊗ id) ◦ (∆⊗ ρ) : B ⊗M → B ⊗M,

where m is the multiplication in B, l : B ⊗M → M is the module structure map,
ρ : M → B ⊗M is the comodule structure map and σ is the braiding in the fixed
Yetter-Drinfel’d module category.
Example 2.1. Let V be a vector space over C. Then B⊗V admits a trivial B-braided
Hopf module structure given by : for b, b′ ∈ B and v ∈ V ,

b′.(b⊗ v) = b′b⊗ v, ρ(b⊗ v) =
∑

b(1) ⊗ b(2) ⊗ v ∈ B ⊗ (B ⊗ V ).

We let B
BM denote the category of left B-braided Hopf modules. The following

proposition gives the triviality of such kind of modules.
Proposition 2.1. Let M ∈ B

BM be a braided Hopf module, ρ : M → B ⊗M be the
structural map, M coρ = {m ∈ M | ρ(m) = 1 ⊗ m} be the set of coinvariants. Then
there exists an isomorphism of B-braided Hopf modules :

M ∼= B ⊗M coρ,

where the right hand side admits the trivial Hopf module structure as in the example
above. Moreover, maps in two directions are given by :

M → B ⊗M coρ, m 7→
∑

m(−1) ⊗ P (m(0)),
B ⊗M coρ →M, b⊗m 7→ bm,

where m ∈M , b ∈ B and P : M →M coρ is defined by : P (m) = ∑
S(m(−1))m(0).

The proof for the triviality of Hopf modules given in [81] can be adopted to the
braided case.
Remark 2.2. Proposition 2.1 can be translated into the categorical language, which
says that there exists an equivalence of category B

BM ∼ Vect, where Vect is the
category of vector spaces, given by M 7→ M coρ and V 7→ B ⊗ V for M ∈ B

BM and
V ∈ Vect.

2.2.4 Generalized Hopf pairings
Generalized Hopf pairings give dualities between Hopf algebras.
Let A and B be two Hopf algebras with invertible antipodes. A generalized Hopf

pairing between A and B is a bilinear form ϕ : A×B → C satisfying :
1. for any a ∈ A, b, b′ ∈ B, ϕ(a, bb′) = ∑

ϕ(a(1), b)ϕ(a(2), b
′) ;

2. for any a, a′ ∈ A, b ∈ B, ϕ(aa′, b) = ∑
ϕ(a, b(2))ϕ(a′, b(1)) ;

3. for any a ∈ A, b ∈ B, ϕ(a, 1) = ε(a), ϕ(1, b) = ε(b).
Remark 2.3. From the uniqueness of the antipode and conditions (1)-(3) above, we
have : for any a ∈ A, b ∈ B, ϕ(S(a), b) = ϕ(a, S−1(b)).
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2.2.5 Quantum doubles
Let A and B be two Hopf algebras with invertible antipodes and ϕ be a generalized

Hopf pairing between them. The quantum double Dϕ(A,B) is defined by :
1. as a vector space, it is A⊗B ;
2. as a coalgebra, it is the tensor product of coalgebras A and B ;
3. as an algebra, the multiplication is given by :

(a⊗ b)(a′ ⊗ b′) =
∑

ϕ(S−1(a′(1)), b(1))ϕ(a′(3), b(3))aa′(2) ⊗ b(2)b
′.

2.2.6 Schrödinger Representations
The prototype of Schrödinger representation in physics is the momentum group G

action on a position space M ; this will give out an action of C(M) oC(G) on C(M).
Details of this view point can be found in the Chapter 6 of [60].

The definitions and propositions in this subsection are essentially in [60], Example
7.1.8.

The Schrödinger representation of Dϕ(A,B) on A is given by : for a, x ∈ A, b ∈ B,

(a⊗ 1).x =
∑

a(1)xS(a(2)),

(1⊗ b).x =
∑

ϕ(x(1), S(b))x(2).

The Schrödinger representation of Dϕ(A,B) on B is given by : for a ∈ A, b, y ∈ B,

(a⊗ 1).y =
∑

ϕ(a, y(1))y(2),

(1⊗ b).y =
∑

b(1)yS(b(2)).
So

(a⊗ b).x =
∑

ϕ(x(1), S(b))a(1)x(2)S(a(2)),

(a⊗ b).y =
∑

ϕ(a, b(1)y(1)S(b(4)))b(2)y(2)S(b(3)).

Proposition 2.2 ([60], Example 7.1.8). With the definition above, both A and B are
Dϕ(A,B)-module algebras.

2.2.7 Heisenberg doubles
Keep assumptions in previous sections. Now we construct the Heisenberg double

between A and B ; it is the smash product of them where the module algebra type
action of A on B is given by the Hopf pairing. For the background of this double, see
[54].

The Heisenberg double Hϕ(A,B) is an algebra defined as follows :
1. as a vector space, it is B ⊗ A and we denote the pure tensor by b]a ;
2. the product is given by : for a, a′ ∈ A, b, b′ ∈ B,

(b]a)(b′]a′) =
∑

ϕ(a(1), b
′
(1))bb′(2)]a(2)a

′.

Remark 2.4. In general, Hϕ(A,B) has no Hopf algebra structure.
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2.2.8 Quantum double action on Heisenberg double
We define an action of Dϕ(A,B) on Hϕ(A,B) as follows : for a, a′ ∈ A, b, b′ ∈ B,

(a⊗ b).(b′]a′) =
∑

(a(1) ⊗ b(1)).b′](a(2) ⊗ b(2)).a′,

this is a diagonal type action. Moreover, we have the following result :

Proposition 2.3. With this action, Hϕ(A,B) is a Dϕ(A,B)-module algebra.

To be more precise, the above action can be written as :

(a⊗ b).(b′]a′) =
∑

ϕ(a(1), b(1)b
′
(1)S(b(4)))ϕ(a′(1), S(b(5)))b(2)b

′
(2)S(b(3))]a(2)a

′
(2)S(a(3)).

Remark 2.5. This proposition gives a family of examples for Yang-Baxter algebras ;
for the definition and fundamental properties, see [37]. Properties of such kind of
algebra make it possible to define a braiding on the tensor product of Hϕ(A,B), which
gives an algebra structure on Hϕ(A,B)⊗n. Equivalently, we can translate this braiding
in the framework of Yetter-Drinfel’d modules, which is much more useful for future
applications.

We define a Dϕ(A,B)-comodule structure on both A and B as follows :

A→ Dϕ(A,B)⊗ A, a 7→
∑

a(1) ⊗ 1⊗ a(2),

B → Dϕ(A,B)⊗B, b 7→
∑

1⊗ b(1) ⊗ b(2).

Proposition 2.4. With Schrödinger representations and comodule structure maps
defined above, both A and B are in the category Dϕ

DϕYD.

More generally, we have the following result.

Proposition 2.5. With the comodule structure map defined by :

δ : Hϕ(A,B)→ Dϕ(A,B)⊗Hϕ(A,B), b]a 7→
∑

((1⊗ b(1))(a(1) ⊗ 1))⊗ b(2)]a(2),

for a ∈ A, b ∈ B, Hϕ(A,B) is in the category Dϕ
DϕYD.

The rest part of this section will be devoted to giving proofs of these propositions
using the Miyashita-Ulbrich action. This is recommended by the referee.

2.2.9 Twisted product
Let H be a Hopf algebra, σ : H ⊗ H → C be a 2-cocycle which is invertible in

(H⊗H)∗ (for a definition, see [20] or [54]). Then we can form the following two twisted
products on H.

Definition 2.2. The twisted algebra Hσ is defined as follows :
1. as a vector space, it is H itself ;
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2. for any x, y ∈ H, the product on Hσ is given by :

x • y =
∑

σ(x(1), y(1))x(2)y(2)σ
−1(x(3), y(3)),

where σ−1 is the inverse of σ in (H ⊗H)∗.

With the original coproduct on H, Hσ is a Hopf algebra.

Definition 2.3. The twisted algebra σH is defined as follows :
1. as a vector space, it is H itself ;
2. for any x, y ∈ H, the product in σH is given by :

x ◦ y =
∑

σ(x(1), y(1))x(2)y(2).

The coproduct on H gives σH a left Hσ-comodule algebra structure. Moreover,
σH is cleft Hσ-Hopf-Galois extension over C on the left such that the identity map
γ : Hσ → σH is a convolution-invertible Hσ-comodule morphism (see, for example,
Theorem 4.3 in [64]). We let γ−1 denote the convolution-inverse of γ.

For x ∈ Hσ, y ∈ σH,

x ⇀ y =
∑

γ(x(1)) ◦ y ◦ γ−1(x(2))

gives the Miyashita-Ulbrich action of Hσ on σH (see [78] for the definition).
From Corollary 3.1 in [78], the Miyashita-Ulbrich action of Hσ on σH and the

original coaction make σH into an algebra object in the category Hσ

HσYD.

2.2.10 Application to the double construction
We preserve notations in previous sections.
Let A,B be two Hopf algebras and H = B ⊗ A be their tensor product. Suppose

that there exists a Hopf pairing ϕ between A and B. Then we can define a 2-cocycle
using this pairing : for a, a′ ∈ A and b, b′ ∈ B,

σ : H ⊗H → C, σ(b⊗ a, b′ ⊗ a′) = ε(b)ϕ(a, b′)ε(a′).

Moreover, the inverse of σ is given by :

σ−1 : H ⊗H → C, σ−1(b⊗ a, b′ ⊗ a′) = ε(b)ϕ(a, S(b′))ε(a′).

Proposition 2.6 ([20],[54]). (1). There exists an isomorphism of Hopf algebras :

Dϕ(A,B)→ Hσ, a⊗ b 7→ (1⊗ a) • (b⊗ 1).

(2). As algebras, Hϕ(A,B) = σH.

Thus Hϕ is a cleft Dϕ-Hopf-Galois extension over C on the left.
In this case, we compute the Miyashita-Ulbrich action explicitly. Note that Dϕ

includes A, B as Hopf subalgebras, and thatHϕ includes A (resp., B) as a left A- (resp.,
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B-)comodule subalgebra. It results that the identity map Dϕ
∼−→ Hσ → σH = Hϕ,

when restricted to A, B, has antipodes of A, B as convolution inverses.
Let a, a′ ∈ A and b, b′ ∈ B. Then

(a⊗ 1) ⇀ (b⊗ 1) =
∑

(1⊗ a(1))(b⊗ 1)(1⊗ S(a(2)))
=

∑
ϕ(a, b(1))b(2) ⊗ 1;

(a⊗ 1) ⇀ (1⊗ a′) =
∑

(1⊗ a(1))(1⊗ a′)(1⊗ S(a(2)))
= 1⊗

∑
a(1)a

′S(a(2));

(1⊗ b) ⇀ (1⊗ a) =
∑

(b(1) ⊗ 1)(1⊗ a)(S(b(2) ⊗ 1)
= 1⊗

∑
ϕ(a(1), S(b))a(2);

(1⊗ b) ⇀ (b′ ⊗ 1) =
∑

(b(1) ⊗ 1)(b′ ⊗ 1)(S(b(2) ⊗ 1)
=

∑
b(1)b

′S(b(2))⊗ 1.

These recover Schrödinger representations of Dϕ(A,B) on A and B.
Now Proposition 2.2, 2.3 and 2.4 are direct corollaries of Corollary 3.1 in [78].

Proposition 2.5 comes from the same corollary in [78] and Proposition 2.6.

2.3 Construction of quantum algebras
This section is devoted to the construction of three important quantum algebras :

quantum groups, quantized Weyl algebras and q-Boson algebras from the machinery
built in the last section.

2.3.1 Definitions and notations
Assume that q ∈ C∗ is not a root of unity. The q-numbers are defined by :

[n] = qn − q−n

q − q−1 , [n]! =
n∏
i=1

[i],
[
n

k

]
= [n]!

[k]![n− k]! .

Let g be a symmetrizable Kac-Moody Lie algebra, h be its Cartan subalgebra,
n = dimh = rank(g), Q be its root lattice, Q+ be the set of its positive roots, P be
its weight lattice, ∆ = {α1 · · · , αn} be the set of simple roots, P+ = P ∩ (Q ⊗Z Q).
We denote (·, ·) the standard inner product on h∗ and define qi = q

(αi,αi)
2 .

Bricks of our construction are Hopf algebras Ũ≥0
q and Ũ≤0

q , which are defined by
generators and relations :
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1. Ũ≥0
q is generated by Ei, (i = 1, · · · , n), K±1

λ (λ ∈ P+) with relations :

KλEiK
−1
λ = q(αi,λ)Ei, KλK

−1
λ = K−1

λ Kλ = 1.
It has a Hopf algebra structure given by :

∆(Kλ) = Kλ ⊗Kλ, ∆(Ei) = Ei ⊗K−1
αi

+ 1⊗ Ei,

ε(Ei) = 0, ε(Kλ) = 1, S(Ei) = −EiKαi , S(Kλ) = K−1
λ .

2. Ũ≤0
q is generated by Fi, (i = 1, · · · , n), K ′λ

±1 (λ ∈ P+) with relations :

K ′λFiK
′
λ
−1 = q−(αi,λ)Fi, K ′λK

′
λ
−1 = K ′λ

−1
K ′λ = 1.

It has a Hopf algebra structure given by :

∆(K ′λ) = K ′λ ⊗K ′λ, ∆(Fi) = Fi ⊗ 1 +K ′αi ⊗ Fαi ,

ε(Fi) = 0, ε(K ′λ) = 1, S(Fi) = −FiK ′αi
−1
, S(K ′λ) = K ′λ

−1
.

If λ = αi for some i, we denote Ki := Kαi .

2.3.2 Construction of quantum groups
The construction in this section can be found in [47].
We let Dϕ(Ũ≥0

q , Ũ≤0
q ) denote the quantum double of Ũ≥0

q and Ũ≤0
q , where the ge-

neralized Hopf pairing ϕ : Ũ≥0
q × Ũ≤0

q → C is defined by :

ϕ(Ei, Fj) = δij
q−1
i − qi

, ϕ(Kλ, K
′
µ) = q−(λ,µ), ϕ(Ei, K ′λ) = ϕ(Kλ, Fi) = 0,

ϕ(E ′, 1) = ε(E ′), ϕ(1, F ′) = ε(F ′), ∀E ′ ∈ Ũ+
q , F

′ ∈ Ũ−q .
Now, from the definition of the multiplication in quantum double,

(1⊗ Fj)(Ei ⊗ 1) = ϕ(Ei, Fj)1⊗K ′j + Ei ⊗ Fi + ϕ(S−1(Ei), Fj)K−1
i ⊗ 1,

that is to say,

EiFj − FjEi = δij
K ′i −K−1

i

qi − q−1
i

.

With the same kind of computation, we also have :

K ′λEi = q(λ,αi)EiK
′
λ, FiKλ = q(λ,αi)KλFi.

The quantum group Uq(g) can be obtained as follows : at first, to get a non-
degenerate pairing, we need to do the quotient by its left and right radical, denoted
Il and Ir respectively. Denote U≥0

q = Ũ≥0
q /Il and U≤0

q = Ũ≤0
q /Ir. Then ϕ induces a

nondegenerate pairing on U≥0
q ⊗U≤0

q , which is also denoted by ϕ. The quantum group
associated to g is the quotient :

Uq(g) = Dϕ(U≥0
q , U≤0

q )/(Kλ −K ′λ| λ ∈ P).
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Remark 2.6. Il (resp. Ir) is generated by quantized Serre relations in Ũ≥0
q (resp.

Ũ≤0
q ). Indeed, it is shown in [3] that the radical of this Hopf pairing coincides with the

defining ideal of the associated Nichols algebra, which is well-known to be generated
by the quantized Serre relations.

2.3.3 Heisenberg double and q-Boson algebras
The procedure above, once applied to the Heisenberg double, will give q-Boson

algebra.
In this section, we directly adopt notations U≥0

q and U≤0
q (that is to say, we add

quantized Serre relations) and generators U≥0
q =< ei, t

±1
λ >, U≤0

q =< fi, t
′±1
λ > for

making it distinct from the quantum double case. Moreover, ti := tαi .
Now we compute the multiplication structure between U≥0

q and U≤0
q :

(1]tλ)(fi]1) = ϕ(tλ, t′i)fi]tλ = q−(αi,λ)fi]tλ,

(1]ei)(t′λ]1) = t′λ]ei.

For this reason, it is better to adopt generators e′i = (q−1
i − qi)tiei, which leads to :

∆(e′i) = e′i ⊗ 1 + ti ⊗ e′i, tλe
′
it
−1
λ = q(αi,λ)e′i, ϕ(e′i, fj) = δij.

With these modified notations,

(1]e′i)(t′λ]1) = ϕ(ti, t′λ)t′λ]e′i = q−(λ,αi)t′λ]e
′
i,

this is what we desired.
We calculate the relation between e′i and fj :

(1]e′i)(fj]1) = ϕ(e′i, fj) + ϕ(ti, t′j)fj]e′i = q−(αi,αj)fj]e
′
i + δij.

A simplification of the notation gives :

e′ifj = q−(αi,αj)fje
′
i + δij.

Then all relations in q-Boson algebra have beed recovered and

Bq(g) ∼= Hϕ(U≥0
q , U≤0

q )/(tλ − t′λ| λ ∈ P),

where Bq(g) is the q-Boson algebra defined in [65] and [66].

2.3.4 Action of quantum doubles on Heisenberg doubles
Proposition 2.5 gives an action ofDϕ(U≥0

q , U≤0
q ) onHϕ(U≥0

q , U≤0
q ) such thatHϕ(U≥0

q , U≤0
q )

is a Dϕ(U≥0
q , U≤0

q )-Yetter-Drinfel’d module. In this section, we will show that, this ac-
tion gives a Uq(g)-module algebra structure on Hϕ(U≥0

q , U≤0
q ), but it can not pass to

the quotient to get an action on Bq(g). So more naturally, we need to introduce the
quantized Weyl algebra Wq(g) : this is a subalgebra of Bq(g), a Uq(g)-Yetter-Drinfel’d
module and a Uq(g)-module algebra.
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At first, we calculate the action of Kλ and K ′λ :

Kλ.e
′
i = adKλ(e′i) = q(λ,αi)e′i, K ′λ.e

′
i = ϕ(ti, K ′λ

−1)e′i = q(λ,αi)e′i,

Kλ.fi = ϕ(Kλ, t
′
i)fi = q−(λ,αi)fi, K ′λ.fi = adK ′λ(fi) = q−(λ,αi)fi.

So the action of Dϕ(U≥0
q , U≤0

q ) on Hϕ(U≥0
q , U≤0

q ) may pass to the quotient to give a
Uq(g)-module structure on Hϕ(U≥0

q , U≤0
q ).

But this in general can not give an action of Uq(g) on Bq(g) as we will show in an
example later. LetWq(g) denote the subalgebra of Bq(g) generated by e′i and fj. It is a
quantized version of classical Weyl algebra : taking the Cartan matrix C = 0 and q = 1
will recover the usual Weyl algebra. (The condition C = 0 has to do with quantized
Serre relations.) The name "quantized Weyl algebra" is proposed by A.Joseph in [42].
In [44], M.Kashiwara calls it "q-analogue of Boson".

From the definition of Schrödinger representation and Proposition 2.5, we have :

Proposition 2.7. Wq(g) is a Uq(g)-module algebra a Uq(g)-Yetter-Drinfel’d module.

2.3.5 Example
In this section, we compute the action of the quantum double on the Heisenberg

double in the case of g = sl2. Generators of Dϕ(U≥0
q , U≤0

q ) are E,F,K±1, K ′±1 ; for
Hϕ(U≥0

q , U≤0
q ), they are e, f, t±1, t′±1.

At first, we calculate the action of K and K ′ :

K.e′ = adK(e′) = q2e′, K ′.e′ = ϕ(t,K ′−1)e′ = q2e′,

K.f = ϕ(K, t′)f = q−2f, K ′.f = adK ′(f) = q−2f.

This verifies that the action of Dϕ(U≥0
q , U≤0

q ) on Hϕ(U≥0
q , U≤0

q ) may pass to the quo-
tient to give a Uq(sl2)-module structure on Hϕ(U≥0

q , U≤0
q ).

But in general, it is not possible to obtain an action of Uq(sl2) on Bq(sl2) after the
following computation :

E.t = adE(t) = (1− q2)et2, E.t′ = 0.

So it is natural to consider the action of Uq(g) on Wq(g).
In the end, it is better to write down formulas for all other actions : first recall that

e = t−1e′

q−1−q and suppose that m ≤ n :

Em.e′
n = [n+m− 1]!

[n− 1]! q−
(2n+3+m)m

2 e′
n+m

,

Em.fn = 1
(q−1 − q)m

[n]!
[n−m]!q

(2n−m−1)m
2 fn−m,

Fm.e′
n = (−1)m [n]!

[n−m]!q
(2n+3−m)m

2 e′
n−m

, Fm.fn =
m−1∏
i=0

(1− q−2(n+i))fn+m.

These formulas will be useful for the calculation in Section 2.4.1.
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2.4 Modules over q-Boson algebras
Sometimes, we use notations Uq, Bq and Wq instead of Uq(g), Bq(g) and Wq(g)

for short. Capital letters will be used for elements in Uq(g), lowercases for Bq(g) and
Wq(g).

Let B>0
q and B<0

q denote subalgebras of Bq(g) generated by e′i, fj (1 ≤ i, j ≤ n)
respectively and B0

q the subalgebra generated by t±1
λ (λ ∈ P+). Let U0

q denote the
sub-Hopf algebra of Uq generated by K±1

λ (λ ∈ P+).

2.4.1 Construction of Wq(g) from braiding

We have seen in the previous section that Wq(g) is in Uq
UqYD.

There exists a Uq-Yetter-Drinfel’d module algebra structure on B>0
q : the Uq-module

structure is given by the Schrödinger representation and the Uq-comodule structure is
given by δ(e′i) = (q−1

i − qi)KiEi ⊗ 1 + Ki ⊗ e′i. It is easy to see that B>0
q is indeed a

Uq-module as the adjoint action preserves it. These structures are compatible as δ is
just ∆ in Uq.

In the category Uq
UqYD, we can use the braiding arising from the Yetter-Drinfel’d

structure to give the tensor product of two module algebras an algebra structure. We
will consider Wq ⊗Wq and denote the braiding by σ ; then (m⊗m) ◦ (id⊗ σ ⊗ id) :

Wq ⊗Wq ⊗Wq ⊗Wq → Wq ⊗Wq ⊗Wq ⊗Wq → Wq ⊗Wq,

gives Wq ⊗Wq an algebra structure. We denote this algebra by Wq⊗Wq.
We want to restrict this braiding to the subspace B<0

q ⊗ B>0
q ⊂ Wq ⊗ Wq. Af-

ter the definition of the braiding, this requires to restrict the Uq-comodule structure
on Wq to B>0

q and the Uq-module structure on Wq to B<0
q . The comodule structure

could be directly restricted as we did in the beginning of this section ; the possibility
for the restriction of the module structure comes from the fact that the Schrödinger
representation makes B<0

q stable. As a consequence, we obtain an algebra B<0
q ⊗B>0

q .
We precise the algebra structure on B<0

q ⊗B>0
q :

(fi ⊗ 1)(1⊗ e′j) = fi ⊗ e′j,

(1⊗ e′i)(fj ⊗ 1) =
∑

(e′i)(−1) · fj ⊗ (e′i)(0)

= ((q−1 − q)KiEi) · fj ⊗ 1 +Ki · fj ⊗ e′i
= δij + q−(αi,αj)fj ⊗ e′i.

These are nothing but relations in the quantized Weyl algebra Wq(g). Moreover, as a
vector space, Wq(g) has a decomposition Wq(g) ∼= B<0

q ⊗B>0
q , where the inverse map

is given by the multiplication. This proves the following proposition :

Proposition 2.8. There exists an algebra isomorphism :

B<0
q ⊗B>0

q
∼= Wq(g), f ⊗ e 7→ fe,

where f ∈ B<0
q , e ∈ B>0

q .
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2.4.2 Modules over Wq(g)
This subsection is devoted to studying modules over Wq(g) with finiteness condi-

tions.
We define the category O(Wq) as a full subcategory of Wq(g)-modules containing

thoseWq(g)-modules satisfying the following locally nilpotent condition : for anyM in
O(Wq) and m ∈M , there exists an integer l > 0 such that for any 1 ≤ i1, · · · , il ≤ n,
e′i1e

′
i2 · · · e

′
il
.m = 0.

Let M be a Wq(g)-module in O(Wq). The braided Hopf algebras B>0
q and B<0

q

are both N-graded by defining deg(e′i) = deg(fi) = 1. We let B>0
q (n) denote the

finite dimensional subspace of B>0
q containing elements of degree n and (B>0

q )g =⊕
n≥0B

>0
q (n)∗ the graded dual coalgebra of B>0

q .
Recall that there exists a pairing between B>0

q and B<0
q given by ϕ(e′i, fj) = δij.

As ϕ(B>0
q (n), B<0

q (m)) = 0 for m 6= n and the restriction of ϕ to B>0
q (n) × B<0

q (n),
n ≥ 0, is non-degenerate, the graded dual of B>0

q is anti-isomorphic to B<0
q as graded

coalgebras. The prefix "anti" comes from Lemma 2.5 in [61] for the restricted pairing
B>0
q ×B<0

q → C on braided Hopf algebras. Thus we obtain an isomorphism of graded
braided Hopf algebras

(B>0
q )g ∼= B<0

q .

From the definition, the action of B>0
q onM is locally nilpotent, then from duality,

we obtain a left (B>0
q )g-comodule structure on M . With the help of the isomorphism

above, there is a left B<0
q -comodule structure on M given in the following way : if we

adopt the Sweedler notation for ρ : M → B<0
q ⊗M as ρ(m) = ∑

m(−1) ⊗m(0), then
for e ∈ B>0

q ,
e.m =

∑
ϕ(e,m(−1))m(0).

Thus from a Wq-module, we obtain a B<0
q -module which is simultaneously a B<0

q -
comodule, and is, moreover, a braided Hopf module.

Remark 2.7. For the left B<0
q -comodule structure on M , it is needed to consider the

braided Hopf algebra structure on B<0
q , that is to say, we use the primitive coproduct

and twist the algebra structure by the braiding, i.e., ∆0 : B<0
q → B<0

q ⊗B<0
q , ∆0(fi) =

fi⊗ 1 + 1⊗ fi. This gives us a good duality between left B>0
q -modules and right B<0

q -
comodules. For the left B<0

q -module structure on M , we keep the ordinary coproduct
∆(fi) = fi ⊗ 1 + ti ⊗ fi ∈ B−q ⊗B<0

q .

We define a linear projection π : B−q → B<0
q by ft 7→ fε(t), where f ∈ B<0

q and
t ∈ B0

q .

Proposition 2.9. The following compatibility relation between the module and co-
module structures defined above holds : for f ∈ B<0

q and m ∈M ,

ρ(f.m) =
∑

π(f(1)m(−1))⊗ f(2).m(0) = ∆0(f)ρ(m). (2.1)

Proof. At first we compute ρ(f.m) : for any e ∈ B>0
q ,
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e(f.m) = (ef).m =
∑

(e(−1) · f)e(0)m

=
∑

ϕ(e(0),m(−1))(e(−1) · f)m(0)

=
∑

ϕ(e(−1), f(1))ϕ(e(0),m(−1))f(2).m(0)

=
∑

ϕ(e, f(1)m(−1))f(2)m(0).

In this computation, although f(1)m(−1) is not necessary in B<0
q , we always have

ϕ(e, f(1)m(−1)) = ϕ(e, π(f(1)m(−1))),

which gives the first equality.
We prove the second one : from the definition of the braiding,

∆0(f)ρ(m) =
∑

f (1)((f (2))(−1).m(−1))⊗ (f (2))(0)m(0), (2.2)

where ∆0(f) = ∑
f (1) ⊗ f (2).

As explained in Remark 2.7, we look B<0
q as a braided Hopf algebra when consi-

dering the comodule structure, so (f (2))(0) = f (2) and from the definition of ∆ in
B<0
q ,

π(f(1))((f(2))(−1).m(−1)) = π(f(1)m(−1)).

Notice that ∆0(f) = (π ⊗ id)(∆(f)). So∑
f (1) ⊗ f (2) =

∑
π(f(1))⊗ f(2)

and the formula above gives the second equality.

In the categorical language, the proposition above is interpreted as :

Corollary 2.1. There exists an equivalence of category O(Wq) ∼
B<0
q

B<0
q
M.

The following theorem gives the structural result for Wq-modules with finiteness
conditions.

Theorem 2.1. There exists an equivalence of category O(Wq) ∼ Vect, where Vect
is the category of vector spaces. The equivalence is given by :

M 7→M coρ, V 7→ B<0
q ⊗ V,

where M ∈ O(Wq), V ∈ Vect, M coρ = {m ∈ M | ρ(m) = 1 ⊗m} is the set of right
coinvariants.

Proof. We have seen in Corollary 2.1 that categories O(Wq) and
B<0
q

B<0
q
M are equivalent,

so the theorem comes from the triviality of the braided Hopf modules as showed in
Proposition 2.1.
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It is better to write down an explicit formula for ρ.
For β ∈ Q+ ∪ {0}, we denote

(B>0
q )β = {x ∈ B>0

q | tλxt−1
λ = q(β,λ)x,∀tλ ∈ U0

q }.

Moreover, (B<0
q )−β can be similarly defined. Elements in (B>0

q )β (resp, (B<0
q )−β) are

called of degree β (resp, −β). Let eα,i ∈ (B>0
q )α, 1 ≤ i ≤ dim((B>0

q )α) be a basis of
B>0
q , fβ,j be the dual basis respected to ϕ, such that

ϕ(eα,i, fβ,j) = δijδαβ.

We define formally the Casimir element R = ∑
i,α fα,i⊗eα,i. AsM ∈ O(Bq), R(1⊗m)

is well-defined for any m ∈M . This element R, up to a normalization, coincides with
the Casimir element in the Chapter 4 of [58].

Proposition 2.10. For any m ∈M , ρ(m) = R(1⊗m).

Proof. For m ∈M , we suppose that ρ(m) = ∑
α,j fα,j ⊗mα,j, then from the definition

of the left comodule structure,

eβ,i.m =
∑
α,j

ϕ(eβ,i, fα,j)mα,j = mβ,i,

which gives ρ(m) = ∑
α,i fα,i ⊗ eα,i.m = R(1⊗m).

We verify formula (2.1) in an example.

Example 2.2. Consider the sl2 case, generators of Bq(sl2) will be denoted by e, f, t±1.
We choose m ∈M such that e.m 6= 0 and e2.m = 0. Then

ρ(f.m) = 1⊗fm+f⊗efm+f 2⊗ 1
q−2 + 1e

2fm = 1⊗fm+f⊗q−2fem+f⊗m+f 2⊗em,

as e2f = q−4fe2 + (q−2 + 1)e. This gives

(π ⊗ id)(∆(f)ρ(m)) = (π ⊗ id)(f ⊗m+ f 2 ⊗ em+ t⊗ fm+ tf ⊗ fem)
= f ⊗m+ f 2 ⊗ em+ 1⊗ fm+ f ⊗ q−2fem.

On the other side, for the primitive coproduct,

∆0(f)ρ(m) = f ⊗m+ f 2 ⊗ em+ 1⊗ fm+ q−2f ⊗ fem.

For a Wq-module M , 0 6= m ∈M is called a maximal vector if it is annihilated by
all e′i. The set of all maximal vectors in M is denoted by K(M).

The following lemma is a direct consequence of the definition.

Lemma 2.1. Suppose that m ∈ M coρ. Then for any non-constant element e ∈ B>0
q ,

e.m = 0.

The following lemma is well-known.
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Lemma 2.2. Let f ∈ B<0
q , f /∈ C∗, such that for any i, e′i.f = 0. Then f = 0.

Proof. If e′i.f = 0 for any i, f is annihilated by all non-constant elements in B>0
q .

For any e ∈ B>0
q , e.f = ∑

ϕ(e, f(1))f(2), where we can suppose that these f(2) are
linearly independent, so ϕ(e, f(1)) = 0 for any f(1) and any non-constant e ∈ B>0

q , the
non-degeneracy of the Hopf pairing forces f(1) to be constants.

So f = (id⊗ ε)∆(f) = ∑
f(1)ε(f(2)) ∈ C and it must be 0 after the hypothesis.

Combined with Theorem 2.1 above, Lemma 2.1 and 2.2 give :

Corollary 2.2. Let M ∈ O(Wq) be a Wq-module. Then M coρ = K(M).

Remark 2.8. The corollary above gives another interpretation of the "extremal vec-
tors" defined in [66] from a dual point of view.

2.4.3 Modules over Bq(g)
We recall the definition of the category O(Bq) in [66] : it is a full subcategory of

left module category over Bq(g) containing objects satisfying the following conditions :
(i). Any object M in O(Bq) has a weight space decomposition :

M =
⊕
λ∈P

Mλ, Mλ = {m ∈M | tµ.m = q(µ,λ)m}.

(ii). For any M in O(Bq) and any m ∈ M , there exists an integer l > 0 such that for
any 1 ≤ i1, · · · , il ≤ n, e′i1e

′
i2 · · · e

′
il
.m = 0.

Moreover, we let O′(Bq) denote the full sub-category of the category of Bq-modules
containing objects satisfying only (ii) above. The category O(Bq) is a sub-category of
O′(Bq).

The main theorem of this chapter is the following structural result.

Theorem 2.2. There exists an equivalence of category O′(Bq) ∼ U0
q
Mod. The equi-

valence is given by :
M 7→ K(M), V 7→ B<0

q ⊗ V,

where M ∈ O′(Bq), V is a U0
q -module and K(M) is the set of maximal vectors in M ,

when it is looked as a Wq-module.
Moreover, when restricted to the subcategory O(Bq), the equivalence above gives

O(Bq) ∼ PGr, where the latter is the category of P-graded vector spaces.

Remark 2.9. Results in this chapter will be generalized in Chapter 4 to give a similar
result for Nichols algebras associated to Yetter-Drinfel’d modules.

The next subsection is devoted to giving a the proof of this result.
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2.4.4 Proof of Theorem 2.2
We proceed to the proof of Theorem 2.2.
At first, for any U0

q -module V , we may look it as a vector space through the
forgetful functor. From Theorem 2.1, N = B<0

q ⊗ V admits a locally nilpotent Wq-
module structure such that N coρ = V . Moreover, if the U0

q -module structure on V is
under consideration, there exists a Bq-module structure on B<0

q ⊗ V giving by : for
v ∈ V , x, f ∈ B<0

q , e ∈ B>0
q , t ∈ B0

q ,

e.(x⊗ v) =
∑

ϕ(e, x(1))x(2) ⊗ v, f.(x⊗ v) = fx⊗ v, t.(x⊗ v) = txt−1 ⊗ tv.

As a summary, the discussion above gives a functor U0
q
Mod→ O′(Bq).

From now on, let M ∈ O′(Bq) be a Bq-module with finiteness condition.
The restriction from Bq-modules to Wq-modules gives a functor O′(Bq)→ O(Wq),

which gives functor O′(Bq) → U0
q
Mod by composing with the equivalence functor

O(Wq)→ Vect.
From Theorem 2.1 and the module structures defined above, these two functors

give an equivalence of category O′(Bq) ∼ U0
q
Mod, and the first point of Theorem 2.2

comes from Corollary 2.2.
The second assertion in the theorem comes from the equivalence of the U0

q -modules
satisfying condition (i) in O(Bq) and P-graded vector spaces.

2.4.5 Semi-simplicity
Now it is easy to deduce the structural results for O(Bq) as showed in [66].
The following result is a direct corollary of Theorem 2.2 and Lemma 2.1.

Corollary 2.3. Let M ∈ O(Bq) be a non-trivial Bq-module. There exist non-zero
maximal vectors in M .

For λ ∈ P , we define a left ideal of Bq by :

Iλ =
∑
i

Bqe
′
i +

∑
Bq(tα − q(λ,α)),

and denote H(λ) = Bq/Iλ, then H(λ) is a free B<0
q -module of rank 1, generated by 1.

The following corollaries follow from Theorem 2.2.

Corollary 2.4. Let M ∈ O(Bq), v ∈ M be a maximal vector of weight λ. Then
B<0
q ⊗Cv → H(λ), F ⊗v 7→ F.v is an isomorphism of Bq-modules. In particular, H(λ)

are all simple objects in O(Bq).

Corollary 2.5. (1). Let M ∈ O(Bq) be a simple Bq-module. Then there exists some
λ such that M ∼= H(λ).
(2). Suppose that M ∈ O(Bq), then M is semi-simple.
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2.4.6 Extremal projector
This section is devoted to the computation of the projection P in the g = sl2 case,

and show that it is exactly the operator given by the formula (3.2.2) of [44]. Moreover,
changing q by q−1 leads us to the formula in Example 5.1 of [66].

At first, we calculate ∆0 : B<0
q → B<0

q ⊗B<0
q and the antipode.

Lemma 2.3. (1). ∆0(fn) =
n∑
p=0

[
n

p

]
qp

2−npfp ⊗ fn−p ;

(2). S(fn) = (−1)nq−n(n−1)fn.

Proof. (1). By induction on n and use the identity[
n+ 1
p+ 1

]
= qp+1

[
n

p+ 1

]
+ qp−n

[
n

p

]
.

(2). Applying S ⊗ id on the formula of ∆0(fn) then use induction and the following
identity

r∑
i=0

(−1)iq−i(r−1)
[
r

i

]
= 0.

After Proposition 2.10, we obtain a well-defined comodule structure map in the sl2
case :

ρ(m) =
∞∑
n=0

q
n(n−1)

2
fn

[n]! ⊗ e
n.m, (2.3)

then the projection is given by

P (m) =
∞∑
n=0

(−1)nq−
n(n−1)

2
fn

[n]!e
n.m. (2.4)

It is exactly the operator defined in [44], (3.2.2) and almost the extremal projector Γ
in [66].



Chapitre 3

q-Boson algebras of Schubert cells
and Kashiwara operators

In this chapter, using the notion of relative Hopf modules, we generalize the main
result in the last chapter to the case of unipotent subalgebras associated to elements in
the Weyl group. As a complement of the last chapter, we define the Kashiwara operator
as a "convolution type" map which coincide with the original definition of Kashiwara
but can be generalized to the case of Nichols algebras. Moreover, some formulas in [44]
based on detailed calculations can be derived easily from our approach.

We fix C as the base field.

3.1 General results for relative Hopf modules

3.1.1 Cotensor product
The cotensor product over a coalgebra C is a dual version of the tensor product over

some fixed algebra A. We recall the definition of cotensor product in this subsection.
Let C be a coalgebra, M be a right C-comodule and N be a left C-comodule. The

cotensor product of M and N is a C-vector space defined as follows : we consider two
linear maps δR ⊗ idN , idM ⊗ δL : M ⊗N →M ⊗ C ⊗N ; the cotensor product of M
and N , which is denoted by M�CN , is the equaliser of δR ⊗ idN and idM ⊗ δL.

3.1.2 Relative Hopf modules
We explain the notion of relative Hopf modules after [82].
For our purpose, we consider only relative Hopf modules associated to a Hopf

algebra A and its coideal subalgebra B in the following discussion.
Let A be a Hopf algebra and B ⊂ A be a left coideal subalgebra (i.e. B is a

subalgebra of A satisfying ∆(B) ⊂ A⊗B).
We define an abelian category A

BM as follows :

1. An object in A
BM is a C-vector space M , equipped with a left A-comodule and

a left B-module structure (where a : B ⊗M → M and ρ : M → A ⊗M are
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structural morphisms) such that the following diagram is commutative :

B ⊗M
∆⊗ρ
��

a //M
ρ // A⊗M

A⊗B ⊗ A⊗M id⊗σ⊗id // A⊗ A⊗B ⊗M.

m⊗a

OO

2. Morphisms are linear maps which are simultaneously an A-comodule and a B-
module map.

Objects in A
BM are called (A,B)-Hopf modules.

We let B+ = B∩ker εA denote the augmentation part in B and define a projection
π : A→ A/B+A, where B+A is the right ideal in A generated by B+, thus B+A is a
right regular submodule (i.e., a sub-representation of the right regular representation
of A on itself) of A and a bilateral coideal, which implies that π is a right A-module
coalgebra morphism.

3.1.3 Equivalence of categories
In this subsection, we briefly recall a theorem describing (A,B)-Hopf modules due

to Takeuchi [82].
We let πM denote the category of left π(A)-comodules. In [82], Takeuchi defined

two functors :
Φ : ABM→ πM, Ψ : πM→ A

BM.

1. Let M ∈ A
BM be an (A,B)-Hopf module. Then (π ⊗ id) ◦ ρ gives M a π(A)-

comodule structure. Moreover, B+M is a π(A)-subcomodule because of the com-
patibility condition in A

BM and so is M = M/B+M as a quotient by a π(A)-
subcomodule. The functor Φ : ABM→ πM is defined by M 7→M .

2. Let V ∈ πM be a π(A)-comodule. We remark that A itself is a right π(A)-
comodule given by the projection π. Thus we obtain an (A,B)-Hopf module
A�πV as the cotensor product on π(A), where we use A�πV to simplify the
notation A�π(A)V . The functor Ψ : πM→ A

BM is defined by V 7→ A�πV .

Theorem 3.1 ([82]). Let B ⊂ A be a left coideal subalgebra and π : A → A/B+A
the projection as defined above. Suppose that there is a right A-module N which
is a faithfully flat right B-module. Then two functors Ψ and Φ above establish an
equivalence of category A

BM∼ πM.

It is better to make these two isomorphisms Φ ◦ Ψ ∼ Id and Ψ ◦ Φ ∼ Id explicit.
For M ∈ A

BM, the isomorphism M → A�πM is given by : m 7→ ∑
m(−1) ⊗m(0). For

V ∈ πM, A�πV → V is given by ∑ ai ⊗ vi 7→
∑
ε(ai)vi.

After Takeuchi, we let Bπ denote the set

Bπ = {a ∈ A|
∑

a(1) ⊗ π(a(2)) = a⊗ π(1)},

this is a left coideal subalgebra of A.

Proposition 3.1 ([82]). With the same hypothesis as in the theorem above, B = Bπ.
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3.2 Application to U<0
q [w]

3.2.1 Construction of Hϕ[w]
In this subsection, we will recall the construction of a subalgebra of the q-Boson

algebra associated to an element w in the Weyl group W .
We begin with a general remark : since the construction of the quantum double

will not be used in this chapter, we will suppose that the generator Ei (resp. Fi) here
is e′i (resp. fi) used in the last chapter for a q-Boson algebra.

A good reference of the following statements is Lusztig’s book [58].
Let g be a finite dimensional simple Lie algebra, W be the corresponding Weyl

group. Let w ∈ W be an element in the Weyl group and w = si1 · · · sik be a reduced
expression of w. By a simple argument (the Weyl group acts simply transitively on the
set of Weyl chambers), there exists a reduced decomposition of w0 = sj1 · · · sjN such
that w = sjN−k+1 · · · sjN is its tail, where w0 is the longest element in the Weyl group
W .

For this w ∈ W , we can associate with it a subalgebra U<0
q [w] of the algebra

U<0
q (g), where U<0

q (g) is the braided Hopf algebra generated by Fi, i ∈ I, satisfying
Serre relations.

We fix some notations here. For the reduced decomposition of w above, we define
β1 = αi1 , · · · , βt = si1 · · · sit−1(αit), · · · and Fβt the corresponding PBW root vector in
U<0
q associated to βt. Then U<0

q [w] is generated by these Fβi , 1 ≤ i ≤ k, as an algebra
and {Fmk

βk
· · ·Fm1

β1 | mi ≥ 0, i = 1, · · · , k} is a linear basis of U<0
q [w]. Moreover, we

can continue this procedure to obtain all PBW root vectors associated to the reduced
decomposition of w0 as above. They are denoted by {β1, · · · , βk, βk+1, · · · , βN}. Thus
U<0
q has a linear basis {FmN

βN
· · ·Fm1

β1 | mi ≥ 0, i = 1, · · · , N}.
Proposition 3.2. With the comodule structure given by the coproduct in U<0

q , U<0
q [w]

is a left U<0
q (g)-comodule algebra (that is to say, U<0

q [w] is a left coideal subalgebra of
U<0
q ).
Let ϕ : U≥0

q ×U≤0
q → C be the generalized Hopf pairing defined in the last chapter.

Being restricted to U>0
q × U<0

q [w], we obtain a bilinear form over it ; as U<0
q [w] is

a coideal subalgebra of U<0
q , this restriction is also a generalized Hopf pairing (we

remark that there is no adjoint relation for the antipode S since the latter is not a
Hopf algebra).

From the definition of the Heisenberg double in 2.2.7, the multiplication is given
by :

(1]a)(b]1) =
∑

ϕ(a(1), b(1))b(2)]a(2).

From the argument above, the Heisenberg double of U>0
q and U<0

q [w] is well defined
and thus we obtain an associative subalgebra Hϕ[w] of the whole Heisenberg double
Hϕ of U+

q and U−q .

3.2.2 Category O(Hϕ[w])
We study the category O(Hϕ[w]) in this subsection.
The category O(Hϕ[w]) is defined as a full subcategory of Hϕ[w]-module satisfying
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the following nilpotency condition : for any M ∈ O(Hϕ[w]) and m ∈ M , there exists
an integer l > 0 such that for any 1 ≤ i1, · · · , il ≤ n, Ei1 · · ·Eil .m = 0.

Let M be an Hϕ[w]-module which is contained in O(Hϕ[w]). Then M is both a
U>0
q -module and a U<0

q [w]-module. For a U>0
q -module with the finiteness condition as

in category O, we can give it a U<0
q -comodule structure (we need to define a linear

map
ρ : M → U<0

q ⊗M, m 7→
∑

m(−1) ⊗m(0),

which is determined by : e.m = ∑
ϕ(e,m(−1))m(0), for any e ∈ U>0

q ; this is a well-
defined comodule structural map as the generalized Hopf pairing between U>0

q and
U<0
q is graded non-degenerate). As a summary, we obtain a U<0

q [w]-module and a
U<0
q -comodule structure on M .

Now we want to show that the comodule structure and the module structure de-
fined above satisfy the compatibility condition. In the last chapter, to construct the
quantized Weyl algebra Wq(g), we considered the algebra B−−q ⊗B++

q by restricting
the braiding on Wq ⊗ Wq to these two components. Now we try to restrict it on
U>0
q ⊗U<0

q [w]. Recall the definition of the braiding in a Yetter-Drinfel’d module cate-
gory : σ(v⊗w) = ∑

v(−1).w⊗v(0). It suffices to show that the action of U>0
q on U<0

q [w]
preserves the latter, this comes from the definition of Schrödinger representation in
the last chapter : (a ⊗ 1).y = ∑

ϕ(a, y(1))y(2) and the fact that U<0
q [w] is a left U<0

q -
comodule.

From the argument above, we obtain a subalgebra

U<0
q [w]⊗U>0

q ⊂ U<0
q ⊗U>0

q
∼= Wq(g).

Thus U<0
q [w]⊗U>0

q is isomorphic to Hϕ[w] as an algebra, so the compatibility condition
as Proposition 2.9 in the last chapter holds in this restricted framework. As U<0

q [w] ⊂
U<0
q is a left coideal subalgebra, we obtain the following proposition :

Proposition 3.3. Let M ∈ O(Hϕ[w]). Then M is a (U<0
q , U<0

q [w])-Hopf module.
To apply Theorem 3.1, we need to find a right U<0

q -module N which is faithfully
flat when restricted to the subalgebra U<0

q [w]. As a candidate, we consider the right
regular U<0

q -module U<0
q , the restriction to U<0

q [w] gives a right U<0
q [w]-module.

Proposition 3.4. As a right U<0
q [w]-module, U<0

q is faithfully flat.
Proof. We remark that if A is an algebra, then all free A-modules are faithfully flat
over A.

Now we proceed to prove that as a right U<0
q [w]-module, U<0

q is free. It suffices to
produce a basis : as we remarked at the beginning of this section, U<0

q has a linear
basis {FmN

βN
· · ·Fm1

β1 } and U
<0
q [w] has a linear basis {Fmk

βk
· · ·Fm1

β1 }. As U
<0
q [w] itself is

an algebra, the vector space decomposition

U<0
q =

⊕
mk+1,··· ,mN≥0

FmN
βN
· · ·Fmk+1

βk+1
⊗ U<0

q [w]

is a decomposition of right U<0
q [w]-modules. Moreover, for each (mN , · · · ,mk+1) ∈

NN−k
≥0 , FmN

βN
· · ·Fmk+1

βk+1
⊗U<0

q [w] is a free right U<0
q [w]-module of rank 1. Thus U<0

q is a
right free U<0

q [w]-module, so faithfully flat over it.



3.2. Application to U<0
q [w] 41

Before giving the main theorem, we want to give a glimpse to the quotient A/B+A :
in this case, it is U<0

q /(U<0
q [w])+U<0

q .
As a vector space, U<0

q has another linear basis {Fm1
β1 · · ·F

mN
βN
| m1, · · · ,mN ≥ 0}

and U<0
q [w] has another linear basis {Fm1

β1 · · ·F
mk
βk
| m1, · · · ,mk ≥ 0}, they differ from

reversing the order on the root system coming from the fixed decomposition of w0.
Thus as a vector space, (U<0

q [w])+U<0
q contains elements Fm1

β1 · · ·F
mk
βk
F
mk+1
βk+1

· · ·FmN
βN

with m1, · · · ,mk not simultaneous zero. So the quotient, as a vector space, has a linear
basis {Fmk+1

βk+1
· · ·FmN

βN
| mk+1, · · · ,mN ≥ 0}. This vector space admits a U<0

q -module
and a coalgebra structure given by the quotient.

We let (U<0
q [w])⊥ denote this right U<0

q -module coalgebra. Thus the part π(A) in
Theorem 3.1 is isomorphic to (U<0

q [w])⊥.
Thus the following theorem comes from Theorem 3.1 and the discussion above.

Theorem 3.2. There exists an equivalence of category

U<0
q

U<0
q [w]M∼

(U<0
q [w])⊥M

given by M 7→ M/(U<0
q [w])+M and V 7→ U<0

q �(U<0
q [w])⊥V for M ∈ U<0

q

U<0
q [w]M and

V ∈ (U<0
q [w])⊥M.

This theorem gives us an isomorphism of (U<0
q , U<0

q [w])-Hopf modules :

M
∼ // U<0

q �(U<0
q [w])⊥

(
M/(U<0

q [w])+M
)
,

which is defined by m 7→ ∑
m(−1) ⊗m(0). Combining results above, we obtain that

Corollary 3.1. We have an equivalence of category

O(Hϕ[w]) ∼ (U<0
q [w])⊥M.

3.2.3 Particular cases
In this subsection, we consider some particular cases of Theorem 3.2 and Corollary

3.1 above.
We start from considering U<0

q [w] ∈ O(Hϕ[w]). Recall that the U>0
q -module struc-

ture on U<0
q [w] is given by the Schrödinger representation : for a ∈ U>0

q and y ∈ U<0
q [w],

a.y =
∑

ϕ(a, y(1))y(2).

At first, it is clear that U<0
q [w]/(U<0

q [w])+U<0
q [w] ∼= C. Thus after the definition of

the cotensor product,

U<0
q �(U<0

q [w])⊥C ∼= {x ∈ U<0
q |

∑
x(1) ⊗ π(x(2)) = x⊗ 1}.

Once Proposition 3.1 is applied, we obtain that the set in the right hand side is exactly
U<0
q [w].
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More generally, for M ∈ O(Hϕ[w]), if the left (U<0
q [w])⊥-comodule structure on

V = M/(U<0
q [w])+M is trivial (that is to say, for any v ∈ V , ρ(v) = 1 ⊗ v), then as

(U<0
q , U<0

q [w])-Hopf modules, we have :

M ∼= U<0
q [w]⊗ V,

where the right hand side admits a trivial Hopf module structure.
At last, we discuss when this comodule structure is trivial.
We consider the PBW basis elememt F (m) = FmN

βN
· · ·Fm1

β1 for somem = (m1, · · · ,mN) ∈
NN
≥0 and let E(m) denote its dual basis in U>0

q with respect to the generalized Hopf
pairing. Then for M ∈ O(Hϕ[w]), the U<0

q -comodule structure on M is given by :
ρ : M → U<0

q ⊗M , for x ∈M ,

ρ(x) =
∑

m∈NN≥0

F (m)⊗ E(m).x .

The (U<0
q [w])⊥-comodule structure on V = M/(U<0

q [w])+M is trivial means that the
first component in the formula of ρ above could not be contained in (U<0

q [w])⊥ ∩ ker ε
when the second component is zero in the quotient M/(U<0

q [w])+M , which forces for
any m = (m1, · · · ,mN) ∈ NN

≥0 such that m1 = · · · = mk = 0 and any x ∈M , we have
E(m).x ∈ (U<0

q [w])+M .
As a summary, we obtain the following result.

Proposition 3.5. Let M ∈ O(Hϕ[w]). If for any m = (m1, · · · ,mN) ∈ NN
≥0 such that

m1 = · · · = mk = 0, E(m)M ⊂ (U<0
q [w])+M , then there exists a vector space V =

M/(U<0
q [w])+M such that as (U<0

q , U<0
q [w])-Hopf module, we have M ∼= U<0

q [w]⊗ V ,
where the right hand side admits a trivial Hopf module structure.

3.3 Kashiwara operators
In this section, we keep notations in the last chapter.

3.3.1 Application to sl2-copies
Let g be a symmetrizable Kac-Moody Lie algebra and Uq(g) the corresponding

quantized enveloping algebra with a formal parameter q. Let Bq(g) and Wq(g) denote
respectively the corresponding q-Boson algebra and quantized Weyl algebra. Let U<0

q

denote the strictly negative part of Uq(g).
In the previous chapter, we have proved the semi-simplicity of the categoryO(Bq(g))

and O(Wq(g)) and showed that there exists an extremal projection operator given by
the projection in the structure theorem of Hopf modules.

We choose a Uq(sl2)-copy in Uq(g) corresponding to the simple root αi and let Uq,i
denote it. Then we have the corresponding subalgebras Bq,i and Wq,i in Bq(g) and
Wq(g) respectively.
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It is clear that the strictly negative part U<0
q , once looked as a module over Bq,i, is

in the category O(Bq,i). So after the structural theorem of Hopf modules, we obtain
an isomorphism

ϕi : U<0
q

∼ // B<0
q,i ⊗ V,

x 7→
∑

x(−1) ⊗ P (x(0)),
where

1. V is the set of extremal vectors corresponding to the i-th direction in U<0
q , which

are exactly those elements in U<0
q annihilated by the action of e′i ;

2. the projection P : U<0
q → V is given by P (x) = ∑

S(x(−1))x(0) ;
3. the inverse of ϕi is given by the action of B<0

q,i on V :

a : B<0
q,i ⊗ V → U<0

q , x⊗ v 7→ x.v;

4. as shown in the formula (2.4), the operator P has the following explicit form :

P (x) =
∞∑
n=0

q
−n(n−1)

2
i f

(n)
i e′i

n
.x.

3.3.2 Convolution product
Let A ∈ End(B<0

q,i ) be an endomorphism. We can lift it to an endomorphism of
U<0
q as follows :

U<0
q

ϕi // B<0
q,i ⊗ V

A⊗id // B<0
q,i ⊗ V

a // U<0
q .

It results a linear map
Ψi : End(B<0

q,i )→ End(U<0
q ),

where both sides are associative algebras under the composition of endomorphisms.
We have :

Lemma 3.1. For any i ∈ I, Ψi is an algebra morphism.

Proof. Since a is the inverse of ϕi, Ψi maps identity to identity. Taking f, g ∈ End(B<0
q,i ),

then
Ψi(f ◦ g) = ϕi ◦ f ◦ a ◦ ϕi ◦ g ◦ a = Ψi(f) ◦Ψi(g).

We denote the normalized power f (n)
i = fni

[n]q ! .
Let Di be the endomorphism in End(B<0

q,i ) sending f (n)
i to f (n−1)

i (differentiation).
Let Ii be the endomorphism in End(B<0

q,i ) sending f (n)
i to f (n+1)

i (integration).

Definition 3.1. For any i ∈ I, the images of endomorphisms Di and Ii under Ψi in
End(U<0

q ) are called Kashiwara operators of rank 1. We let ẽi and f̃i denote them,
respectively.
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After the definition and the lemma above, the relation ẽif̃i = 1 is clear.
It is also clear that these operators ẽi, f̃i coincide with the Kashiwara operators

defined in [44]. The following lemma gives the explicit form of the decomposition in
the definition of Kashiwara operators :

Lemma 3.2. Let u ∈ U<0
q . If u = ∑

n≥0 f
(n)
i un and e′iun = 0, then

un =
∞∑
m=0

(−1)mq
n2−n−m2+m

2
i f

(m)
i e′m+n

i u.

Proof. After the lemma above, Ψi(id)(u) = u. The left hand side can be computed in
another way as a ◦ (id⊗ P ) ◦ ρ. Applying the formulas (2.3) and (2.4) gives

u =
∞∑
n=0

f
(n)
i

( ∞∑
m=0

(−1)mq
n2−n−m2+m

2
i f

(m)
i e′m+n

i u

)
,

from which the lemma.

We let Pi,n denote the endomorphism in End(U<0
q ) defined by

Pi,n =
∞∑
m=0

(−1)mq
n2−n−m2+m

2
i f

(m)
i e′m+n

i ,

then the decomposition above can be written as

u =
∞∑
n=0

f
(n)
i Pi,n(u).

This recovers the formula in Proposition 3.2.1 of [44].



Chapitre 4

On defining ideals and differential
algebras of Nichols algebras

Contents of this chapter is published in [25].

4.1 Introduction
Nichols algebras, as their name says, are constructed by W.D. Nichols in [67] with

the name "bialgebra of type one" for classifying finite dimensional graded Hopf algebras
generated by elements in degree 0 and 1. No much attention was paid to his work at
that time until quantized enveloping algebras are constructed by Drinfel’d and Jimbo
in the middle of eighties.

The construction of Nichols, after having slept for about 15 years, is highlighted
by M. Rosso in his article [73] to give a functorial and coordinate free construction
of quantized enveloping algebras, which meanwhile gives the motivation and another
point of view to researches on pointed Hopf algebras.

The construction in [73] starts with a Hopf algebra H and an H-Hopf bimoduleM .
Then the set of right coinvariantsMR admits a braiding σM : MR⊗MR →MR⊗MR.
Once the usual flip is replaced by this braiding, the classical construction of shuffle
algebra will give a new Hopf algebra whose structure is controlled by this braiding, and
is called quantum shuffle algebra. This construction gives many interesting examples :
the positive part of a quantized enveloping algebra associated to a symmetrizable
Cartan matrix can be found as a Hopf sub-algebra generated by H and MR in the
quantum shuffle algebra with some particular Hopf algebra H and H-Hopf bimodule
M .

A well-known result affirms that there is an equivalence of braided category between
the category of Hopf bimodules over H and that of left H-Yetter-Drinfel’d modules,
given by sending a Hopf bimodule M to the set of its right coinvariants MR ; so it is
possible to work in the context of Yetter-Drinfel’d modules at the very beginning. This
gives a translation of language between Nichols-Rosso and Andruskiewitsch-Schneider.

The dual construction of quantum shuffle algebra is easier to understand : it is the
braided tensor algebra T (V ) for V = MR and the Nichols algebra N(V ) is the quotient
of T (V ) by some Hopf ideal I(V ). As an example, it gives the strict positive part of
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quantized enveloping algebras when H and V are properly chosen.
In the latter case, as a quotient of the braided Hopf algebra T (V ), N(V ) can be

viewed as imposing some relations in T (V ) which have good behavior under the co-
product. It is natural to ask for the structure of such ideals, but unfortunately, this
Hopf ideal is defined as the maximal coideal contained in the set of elements in T (V )
of degree no less than 2 and it is very difficult to read out these relations directly from
such an abstract definition.

Similar problems arise in some other places in mathematics. For example, the
Gabber-Kac theorem in the theory of Kac-Moody Lie algebras is of the same philo-
sophy : starting with a symmetrizable Cartan matrix and some Chevalley generators,
it is possible to construct a Lie algebra with Chevalley relations ; but to get a Kac-
Moody Lie algebra, one is forced to do the quotient by an ideal with some maximal
properties and of course with mysteries. It is in Gabber-Kac [30] that they proved that
this ideal is generated by Serre relations, which completes the whole story. It should be
remarked that this result is not simple at all : the proof clarifies some structures and
uses several tools in Kac-Moody Lie algebras, such as generalized Casimir elements
and Verma modules.

As we know, for Nichols algebras, the problem of deciding generating relations in
the ideal I(V ) is still open and the best general result can be found in the literature is
due to M. Rosso [73], P. Schauenburg [79] and others, which affirms that elements of
degree n in I(V ) are those annihilated by the symmetrization operator Sn. However,
it is still difficult to make these relations explicit because of the appearance of large
amount of equations when a basis is chosen.

The main objective of this chapter is to give some restrictions on elements in I(V )
to obtain a number of important relations imposed, and we conjecture that these re-
lations generate I(V ) as an ideal.

To be more precise, the restriction is at first given by some operators Pn, called
Dynkin operators, on T (V ) ; these operators can be viewed as analogues of the Dynkin
projection operators in the characterization of free Lie algebras. Our first restriction
is passing from ker(Sn) to ker(Sn) ∩ Im(Pn) : though the latter is somehow subtle
at a first glimpse, in some important cases, they will generate the Hopf ideal I(V ) ;
in general, if a conjecture of Andruskiewitsch-Schneider is true, the statement above
holds for any Nichols algebras. This is proved by showing that all primitive elements
of degree n are eigenvectors of Pn with eigenvalue n.

Another restriction is given by concentrating on some levels in T (V ) having their
origin in the decomposition of the element Sn in the group algebra C[Bn], where Bn is
the braid group on n strands. The main idea here is building a bridge to connect some
solutions of equation Snx = 0 in V ⊗n with the invariant space for the central element
θn of Bn, which are much easier to understand and compute. Moreover, it throws
some light on understanding the structure of Nichols algebras from the representation
theory of braid groups, though the latter is difficult indeed.

When constructing this bridge, we captured the appearance of the Dynkin opera-
tor Pn as an important ingredient. Moreover, it is a central tool when constructing
solutions of Snx = 0 from solutions of the equation θnx = x. As an example, we obtain
quantized Serre relations from a pedestrian point of view : that is to say, the machinery
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will tell us what these relations are by assuming almost no knowledge on Lie theory
and quantized enveloping algebra.

A natural question is posed when observing the calculation in the exterior algebra
and quantized enveloping algebras : whether elements with levels in T (V ) are primi-
tive ?

The second part of this chapter is devoted to give a positive answer in the general
case : that is to say, for any braiding coming from a Yetter-Drinfel’d structure.

The proof is based on the construction of the differential algebra of a Nichols al-
gebra, which can be viewed as a generalization of the construction of the quantized
Weyl algebra over a quantized enveloping algebra given in [24]. The advantage of our
approach is : at the very beginning, we never make hypotheses on the type of the brai-
ding, so this is a general construction shared by all kinds of Nichols algebras coming
from a Yetter-Drinfel’d module.

Once restricting ourselves to the diagonal case, with the help of these differential
operators, we proved the classical Taylor lemma, which generalizes a result in Hecken-
berger [34]. Moreover, when the derivation is given by a primitive element of degree
1, a decomposition theorem of T (V ) as a braided algebra is obtained, which can be
viewed as a generalization of a result in classical Weyl algebra given by A. Joseph [39]
in solving the Gelfan’d-Kirillov conjecture.

At last, we show that elements with levels are all primitive with the help of these
differential operators.

The organization of this chapter is as follows :
In Section 2, some notions in Hopf algebras are recalled and notations are introdu-

ced. Section 3 is devoted to defining Dynkin operators and proving the "convolution
invariance" of these operators. In Section 4, we are concerned with the decomposition
of specific elements in the group algebra of braid groups, which is an algebraic prepa-
ration for solving equation Snx = 0. The construction of the bridge mentioned above
is given in Section 5 and some properties of ker(Sn) ∩ Im(Pn) are obtained. Section
6 contains examples in the diagonal case ; a concrete calculation of quantized Serre
relations in the case Uq(sl3) is among examples. In Section 7, the differential algebra
of a Nichols algebra is constructed and then the Taylor Lemma and a decomposition
theorem are proved as an application in Section 8. Finally, the main theorem on pri-
mitive elements is demonstrated with the help of the differential algebra in Section 9.

4.2 Recollections on Hopf algebras

From now on, suppose that we are working in the complex field C. All algebras
and modules concerned are over C. Results in this section will hold for any field of
characteristic 0. All tensor products are over C if not specified otherwise.

This section is devoted to giving a recollection on some constructions in Hopf
algebras and fixing notations.
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4.2.1 Yetter-Drinfel’d modules
Let H be a Hopf algebra. A vector space V is called a (left) H-Yetter-Drinfel’d

module if :
1. It is simultaneously an H-module and an H-comodule ;
2. These two structures satisfy the Yetter-Drinfel’d compatibility condition : for

any h ∈ H and v ∈ V ,∑
h(1)v(−1) ⊗ h(2).v(0) =

∑
(h(1).v)(−1)h(2) ⊗ (h(1).v)(0),

where ∆(h) = ∑
h(1) ⊗ h(2) and ρ(v) = ∑

v(−1) ⊗ v(0) are Sweedler notations for
coproduct and comodule structure map.

Morphisms between two H-Yetter-Drinfel’d modules are linear maps preserving H-
module and H-comodule structures.

We denote the category of H-Yetter-Drinfel’d modules by H
HYD ; it is a tensor

category.
The advantage of working in the category of Yetter-Drinfel’d module is : for V,W ∈

H
HYD, there exists a braiding σV,W : V ⊗ W → W ⊗ V , given by σV,W (v ⊗ w) =∑
v(−1).w ⊗ v(0). This braiding gives H

HYD a braided tensor category structure.
Let A and B be two algebras in H

HYD. Then A ⊗ B admits an algebra structure
with the following multiplication map :

A⊗B ⊗ A⊗B id⊗σB,A⊗id−−−−−−−→ A⊗ A⊗B ⊗B mA⊗mB−−−−−→ A⊗B,

where mA and mB are multiplications in A and B, respectively.

4.2.2 Braided Hopf algebras in H
HYD

Definition 4.1 ([6], Section 1.3). A braided Hopf algebra in the category H
HYD is a

collection (A,m, η,∆, ε, S) such that :
1. (A,m, η) is an algebra in H

HYD ; (A,∆, ε) is a coalgebra in H
HYD. It is to say,

m, η,∆, ε are morphisms in H
HYD ;

2. ∆ : A → A⊗A is a morphism of algebra. The notation ⊗ stands for the tensor
product of two Yetter-Drinfel’d module algebras, where we use the braiding in
H
HYD instead of the usual flip ;

3. ε : A→ C is a morphism of algebra ;
4. S is the convolution inverse of idA ∈ End(A).

The most important example of a braided Hopf algebra is the braided tensor Hopf
algebra defined as follows.

Example 4.1 ([6]). Let V ∈ H
HYD be an H-Yetter-Drinfel’d module. There exists a

braided Hopf algebra structure on the tensor algebra

T (V ) =
∞⊕
n=0

V ⊗n.
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1. The multiplication is the original one on T (V ) given by the concatenation.
2. The coalgebra structure is defined on V by : for any v ∈ V , ∆(v) = v⊗1+1⊗v,
ε(v) = 0. Then it can be extended to the whole T (V ) by the universal property
of T (V ) as an algebra.

4.2.3 Nichols algebras
Let V ∈ H

HYD be a finite dimensional C-vector space and T (V ) be the braided
tensor Hopf algebra over V as defined in Example 5.1 ; it is N-graded.

We will recall briefly the definition and the explicit construction of Nichols algebras,
which dates back to [67] and is given in [6]. Another definition in a dual point of view
is given in [73] under the name quantum shuffle algebra and is denoted by Sσ(V ). The
difference between them is : the construction in [73] is in the graded dual of T (V ), so
instead of being a quotient object, it will be a sub-object in the graded dual. But they
are isomorphic as braided Hopf algebra up to a symmetrization morphism.

Definition 4.2 ([6]). A graded braided Hopf algebra R = ⊕∞
n=0R(n) is called a

Nichols algebra of V if
1. R(0) ∼= C, R(1) ∼= V ∈ H

HYD ;
2. R is generated as an algebra by R(1) ;
3. R(1) is the set of all primitive elements in R.

We let N(V ) denote this braided Hopf algebra.

Remark 4.1. It is conjectured by Andruskiewitsch and Schneider in [6] that (3)
implies (2) when R is finite dimensional.

There is a construction of N(V ) from T (V ) as shown in [6] : let

T≥2(V ) =
⊕
n≥2

V ⊗n

and I(V ) be the maximal coideal of T (V ) contained in T≥2(V ). Then I(V ) is also a
two-sided ideal ; the Nichols algebra N(V ) of V can be constructed as T (V )/I(V ). We
denote S the convolution inverse of id : N(V )→ N(V ).

For k ∈ N, let N(V )k denote the subspace of degree k elements in N(V ) ; so from
the definition, N(V )0 = C and N(V )1 = V is the set of all primitive elements in N(V ).

4.2.4 Nichols algebras of diagonal type
In this subsection, we recall a particular type of Nichols algebra, which will be a

good source of examples in our later discussions. A concrete approach can be found in
[6].

Let G be an abelian group and H = C[G] be its group algebra : it is a commutative
and cocommutative Hopf algebra. We let Ĝ denote the character group of G. Let
V ∈ H

HYD be a finite dimensional H-Yetter-Drinfel’d module and dimV = n. Let
T (V ) denote the braided tensor Hopf algebra and N(V ) denote the associated Nichols



50
Chapitre 4. On defining ideals and differential algebras of Nichols

algebras

algebra.
As shown in [67] or Remark 1.5 in [6], the category H

HYD is made of a G-graded
vector space V = ⊕

g∈G Vg such that for any h ∈ G and v ∈ Vg, h.v ∈ Vg. The
comodule structure is given by : for V in H

HYD and v ∈ Vg in the decomposition above,
the comodule structure map δ : V → H ⊗ V is δ(v) = g ⊗ v.

Definition 4.3. Let V ∈ H
HYD be a finite dimensional H-Yetter-Drinfel’d module. V

is called of diagonal type if there exists a basis {v1, · · · , vn} of V , g1, · · · , gn ∈ G and
χ1, · · · , χn ∈ Ĝ such that for any g ∈ G and vi ∈ Vgi ,

g.vi = χi(g)vi.

Sometimes, we call T (V ) of diagonal type if V is of diagonal type.
In this case, the braiding in H

HYD is given by : for V,W ∈ H
HYD,

σV,W : V ⊗W → W ⊗ V, σV,W (v ⊗ w) = (g.w)⊗ v

for any g ∈ G, v ∈ Vg and w ∈ W .
In particular, if we choose V = W and v1, · · · , vn be a basis of V as in the definition

above, the braiding, when acting on basis elements, is given by : for 1 ≤ i, j ≤ n,

σV,V (vi ⊗ vj) = χj(gi)vj ⊗ vi.

So σV,V is completely determined by the matrix (χj(gi))1≤i,j≤n. We denote qij = χj(gi)
and call (qij)1≤i,j≤n a braiding matrix.

It is convenient to define a bicharacter χ over G when G = Zn to rewrite the
braiding above.

Definition 4.4. A bicharacter over an abelian group A is a map χ : A×A→ C∗ such
that :

χ(a+ b, c) = χ(a, c)χ(b, c), χ(a, b+ c) = χ(a, b)χ(a, c),
for any a, b, c ∈ A.

Suppose that G = Zn and V ∈ H
HYD. Then V , T (V ) and N(V ) are all Zn-graded.

Let v1, · · · , vn be a basis of V as in Definition 5.2, α1, · · · , αn be a free basis of Zn and
deg(vi) = αi be their grade degrees in Zn.

If this is the case, a bicharacter over Zn can be defined using the braiding matrix :
for any 1 ≤ i, j ≤ n, χ : Zn × Zn → C∗ is determined by χ(αi, αj) = qij.

4.2.5 Radford’s biproduct
Let A ∈ H

HYD be a braided Hopf algebra. Then A ⊗ H admits a Hopf algebra
structure from a construction in Radford [69], which is called the biproduct of A and
H.

These structures are defined by :
1. The multiplication is given by the crossed product : for a, a′ ∈ A, h, h′ ∈ H,

(a⊗ h)(a′ ⊗ h′) =
∑

a(h(1).a
′)⊗ h(2)h

′;
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2. The comultiplication is given by : for a ∈ A and h ∈ H,

∆(a⊗ h) =
∑

(a(1) ⊗ (a(2))(−1)h(1))⊗ ((a(2))(0) ⊗ h(2));

3. The antipode is completely determined by : for a ∈ A and h ∈ H,

S(a⊗ h) =
∑

(1⊗ SH(h)SH(a(−1)))(SA(a(0))⊗ 1).

Proposition 4.1 (Radford). With structures defined above, A⊗H is a Hopf algebra.
We let A]H denote it.

4.2.6 Quantum doubles and Heisenberg doubles
We recall first the definition of a generalized Hopf pairing, which gives duality

between Hopf algebras.

Definition 4.5 ([47]). Let A and B be two Hopf algebras with invertible antipodes.
A generalized Hopf pairing between A and B is a bilinear form ϕ : A × B → C such
that :

1. For any a ∈ A, b, b′ ∈ B, ϕ(a, bb′) = ∑
ϕ(a(1), b)ϕ(a(2), b

′) ;
2. For any a, a′ ∈ A, b ∈ B, ϕ(aa′, b) = ∑

ϕ(a, b(2))ϕ(a′, b(1)) ;
3. For any a ∈ A, b ∈ B, ϕ(a, 1) = ε(a), ϕ(1, b) = ε(b).

Remark 4.2. From the uniqueness of the antipode and conditions (1)-(3) above, we
have : for any a ∈ A, b ∈ B, ϕ(S(a), b) = ϕ(a, S−1(b)).

Starting with a generalized Hopf pairing between two Hopf algebras, we can define
the quantum double and the Heisenberg double of them, which will be essential in our
later construction of differential algebras of Nichols algebras.

Definition 4.6 ([47]). Let A, B be two Hopf algebras with invertible antipodes and ϕ
be a generalized Hopf pairing between them. The quantum double Dϕ(A,B) is defined
by :

1. As a vector space, it is A⊗B ;
2. As a coalgebra, it is the tensor product of coalgebras A and B ;
3. As an algebra, the multiplication is given by :

(a⊗ b)(a′ ⊗ b′) =
∑

ϕ(S−1(a′(1)), b(1))ϕ(a′(3), b(3))aa′(2) ⊗ b(2)b
′.

Then we construct the Heisenberg double of A and B : it is a crossed product of
them where the module algebra type action of A on B is given by the Hopf pairing.

Definition 4.7 ([54]). The Heisenberg double Hϕ(A,B) of A and B is an algebra
defined as follows :

1. As a vector space, it is B ⊗ A and we let b]a denote a pure tensor ;
2. The product is given by : for a, a′ ∈ A, b, b′ ∈ B,

(b]a)(b′]a′) =
∑

ϕ(a(1), b
′
(1))bb′(2)]a(2)a

′.
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4.3 Dynkin operators and their properties
In this section, we will define Dynkin operators in the group algebras of braid

groups. The definition of these operators is motivated by the iterated brackets in Lie
algebras which are used by Dynkin in the proof of the Dynkin-Wever-Spechet theorem
for characterizing elements in free Lie algebras (for example, see [70]).

As will be shown in this section, Dynkin operators have good properties under the
convolution product, which generalizes the corresponding result in free Lie algebras.
This will be used to detect primitive elements later.

4.3.1 Definition of Dynkin operators
We suppose that n ≥ 2 is an integer.
Let Sn denote the symmetric group : it acts on an alphabet with n letters by

permuting their positions. It can be generated by the set of transpositions {si =
(i, i+ 1)| 1 ≤ i ≤ n− 1}.

Let Bn be the braid group of n strands, it is defined by generators σi for 1 ≤ i ≤
n− 1 and relations :

σiσj = σjσi, for |i− j| ≥ 2; σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n− 2.

Let π : Bn → Sn be the canonical surjection which maps σi ∈ Bn to si = (i, i+ 1) ∈
Sn.

We consider the group S±n = Z/2Z × Sn, where Z/2Z = {±1} is the signature.
We are going to define a subset Pi,j ⊂ S±n by induction on |i− j| for 1 ≤ i ≤ j ≤ n.

We omit the signature 1. Define Pi,i = {(1)}, Pi,i+1 = {(1),−(i, i+ 1)}, and

Pi,j = Pi+1,j ∪ (Pi,j−1 ◦ −(i, j, j − 1, · · · , i+ 1)),

where ◦ is the product in C[Sn].
Moreover, we define

Pi,j =
∑

(ε,ω)∈Pi,j

εω ∈ C[Sn].

Let σ ∈ Sn and σ = si1 · · · sir be a reduced expression of σ. It is possible to
define a corresponding lifted element Tσ = σi1 · · ·σir ∈ Bn. This gives a linear map
T : C[Sn]→ C[Bn] called Matsumoto section. For 0 ≤ k ≤ n, let Sk,n−k ⊂ Sn denote
the set of (k, n− k)-shuffles in Sn defined by :

Sk,n−k = {σ ∈ Sn| σ−1(1) < · · · < σ−1(k), σ−1(k + 1) < · · · < σ−1(n)}.

Example 4.2. We explain the definition of these elements Pi,j in an example for S4 :

P1,2 = {(1),−(12)}, P1,3 = P2,3 ∪ (P1,2 ◦ −(132)) = {(1),−(23),−(132), (13)},
P2,4 = {(1),−(34),−(243), (24)},

P1,4 = P2,4 ∪ (P1,3 ◦ −(1432))
= {(1),−(34),−(243), (24),−(1432), (142), (1423),−(14)(23)}.
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These elements Pi,j and Pi,j come from iterated brackets :

[a, [b, [c, d]]] = abcd− abdc− acdb+ adcb− bcda+ bdca+ cdba− dcba.

When S±4 acts on letters abcd by permuting their position and then multiplying by
the signature, an easy computation gives :

[a, [b, [c, d]]] = TP1,4(abcd).

Definition 4.8. We call these Pi,j Dynkin operators in C[Sn] and corresponding
elements TPi,j Dynkin operators in C[Bn].

For σ ∈ Sn, let l(σ) denote the length of σ. It is exactly the number of generators
appearing in any reduced expression of σ.

Remark 4.3. In general, the Matsumoto section T : Sn → Bn is not a group homo-
morphism, but we have the following property : for w,w′ ∈ Sn, if l(ww′) = l(w)+l(w′),
then TwTw′ = Tww′ .

Lemma 4.1. Let w ∈ P1,k and σ ∈ Sk,n−k. Then Twσ = TwTσ.

Proof. Recall that the length of an element in Sn equals to the number of inversions
of its action on {1, · · · , n}. As w permutes only the first k positions, and the (k, n−k)-
shuffle σ preserves the order of first k positions, the number of inversions of wσ is the
sum of those for w and σ, which means that l(wσ) = l(w) + l(σ) and then the lemma
comes from the remark above.

The following lemma is helpful for the understanding of the operator Pi,j and for
our further applications.

Lemma 4.2. For n ≥ 2 and 1 ≤ i < j ≤ n, the following identity holds in C[Bn] :

Pi,j = (1− σj−1σj−2 · · ·σi)(1− σj−1σj−2 · · · σi+1) · · · (1− σj−1).

Proof. It suffices to show it for i = 1 and j = n. We prove it by induction on n. The
case n = 2 is clear.

Suppose that the lemma holds for n− 1. From the definition of P1,n, P1,n = P2,n−
P1,n−1 ◦ (1, n, · · · , 2), so P1,n = P2,n − (1, n, · · · , 2) ◦ P2,n and then

TP1,n = (1− σn−1σn−2 · · ·σ1)TP2,n .

From the induction hypothesis,

TP2,n = (1− σn−1σn−2 · · · σ2) · · · (1− σn−1σn−2)(1− σn−1),

which finishes the proof.
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4.3.2 Properties of Dynkin operators
We treat T (V ) as a braided Hopf algebra as in Section 4.2.
At first, we define Dynkin operators on T (V ).

Definition 4.9. We define a graded endomorphism Φ ∈⊕∞n=0End(V ⊗n) by : Φ(1) = 0
and for x ∈ V ⊗n with n ≥ 1,

Φ(x) = TP1,n(x) ∈ V ⊗n.

It can be viewed as a linear map Φ : T (V ) → T (V ) and is called a Dynkin operator
on T (V ).

Using this notation, we can deduce from Lemma 4.2 the following inductive cha-
racterization of Φ : for v ∈ V and w ∈ V ⊗n, we have :

Φ(vw) =
{

vw, if w ∈ C,
(1− T(1,n+1,··· ,2))(vΦ(w)), if n ≥ 1. (4.1)

Moreover, the following identity is clear :

T(1,n+1,··· ,2)(vΦ(w)) = (Φ|V ⊗n ⊗ id)(T(1,n+1,··· ,2)(vw)). (4.2)

The following proposition can be viewed as a generalization of a classical result
for free Lie algebras in [70]. As T (V ) is a braided Hopf algebra, we let ∗ denote the
convolution product in End(T (V )).

Theorem 4.1. Let x ∈ V ⊗n. Then

(Φ ∗ id)(x) = nx.

Proof. The proof is given by induction on the degree n. The case n = 1 is trivial.
Let n ≥ 2. Suppose that the theorem holds for all elements of degree n − 1. It

suffices to show that for any v ∈ V and v ∈ V ⊗n−1,

(Φ ∗ id)(vw) = nvw.

We write ∆(w) = 1⊗w+∑w′⊗w′′ where w′ ∈ ker ε = ⊕∞
k=1 V

⊗k. For a homogeneous
element x ∈ T (V ), we let l(x) denote its degree. As ∆ is an algebra morphism, with
these notations,

∆(vw) = v ⊗ w + 1⊗ vw +
∑

vw′ ⊗ w′′ + (1⊗ v)(
∑

w′ ⊗ w′′),

and then

(Φ ∗ id)(vw) = Φ(v)w +
∑

Φ(vw′)w′′ + (Φ|V ⊗l(w′) ⊗ id)(T(1,l(w′)+1,··· ,2)(vw′))w′′.

By the induction hypothesis,

(n− 1)w = (Φ ∗ id)(w) =
∑

Φ(w′)w′′,
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then after (4.1),∑
Φ(vw′)w′′ =

∑
vΦ(w′)w′′ −

∑
T(1,l(w′)+1,··· ,2)(vΦ(w′))w′′.

In this formula, the first term is (n− 1)vw and the second one, after (4.2), equals to

(Φ|V ⊗l(w′) ⊗ id)(T(1,l(w′)+1,··· ,2)(vw′))w′′.

Combining these formulas terminates the proof of the theorem.

To write down the formula in a more compact form, we define the number operator :

Definition 4.10. The number operator N : T (V )→ T (V ) is the linear map defined
by : N (1) = 0 and for any x ∈ V ⊗n with n ≥ 1,

N (x) = nx.

So the formula in Theorem 4.1 can be written as

(Φ ∗ id)(x) = N (x).

As S is the convolution inverse of the identity map, we have :

Corollary 4.1. Let x ∈ T (V ). Then :

(N ∗ S)(x) = Φ(x).

As an application of Corollary 4.1, we may descend Φ from braided tensor Hopf
algebra T (V ) to Nichols algebra N(V ).

Proposition 4.2. Φ(I(V )) ⊂ I(V ), so Φ induces a linear map Φ : N(V )→ N(V ).

Proof. From the definition of I(V ), it is both a coideal and a two-sided ideal of T (V ).
So the coproduct on it satisfies :

∆(I(V )) ⊂ I(V )⊗ T (V ) + T (V )⊗ I(V ).

From Corollary 4.1, Φ(I(V )) = (N ∗ S)(I(V )) ⊂ I(V ) because S(I(V )) ⊂ I(V ) and
N respects I(V ) (note that I(V ) is a homogeneous ideal).

4.4 Decompositions in braid groups
The objective of this section is to give a preparation for results that will be used

in our investigations on the Dynkin operators and their relations with the structure of
Nichols algebras. As such operators live in the group algebra C[Bn], we would like to
give first some decomposition results for some specific elements in C[Bn].
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4.4.1 Central element
Let n ≥ 2 be an integer and Z(Bn) denote the center of Bn.
In the braid group Bn, there is a Garside element

∆n = (σ1 · · ·σn−1)(σ1 · · · σn−2) · · · (σ1σ2)σ1.

The following characterization of Z(Bn) is well known.

Proposition 4.3 ([48], Theorem 1.24). For n ≥ 3, let θn = ∆2
n. Then Z(Bn) is

generated by θn.

For the particular case n = 2, we have θ2 = ∆2
2 = σ2

1.
Between lines of the proof of the proposition above in [48], the following lemma is

obtained.

Lemma 4.3 ([48]). For any 1 ≤ i ≤ n− 1, σi∆n = ∆nσn−i.

Lemma 4.4. The following identities hold :
1. For any 1 ≤ s ≤ n− 2,

σs(σn−1σn−2 · · ·σ1) = (σn−1σn−2 · · ·σ1)σs+1.

2. The element ∆n has another presentation :

∆n = σn−1(σn−2σn−1) · · · (σ1 · · · σn−2σn−1).

3. The element θn has another presentation :

θn = ∆2
n = (σn−1σn−2 · · ·σ1)n.

Proof. 1. This can be proved by a direct verification.
2. ∆n is the image under the Matsumoto section of the element σ ∈ Sn such that

for any 1 ≤ i ≤ n, σ(i) = n− i+ 1. It is easy to check that once projected to Sn,
the element on the right hand side is exactly σ. Moreover, this decomposition is
reduced because both sides have the same length, which finishes the proof.

3. This identity comes from a direct computation using Lemma 4.3 :

∆2
n = ∆n∆n

= ∆n(σ1σ2 · · ·σn−1)(σ1σ2 · · ·σn−2) · · · (σ1σ2)σ1

= (σn−1σn−2 · · ·σ1)(σn−1σn−2 · · ·σ2) · · · (σn−1σn−2)σn−1∆n

= (σn−1 · · · σ1) · · · (σn−1σn−2)σn−1(σ1 · · · σn−1) · · · (σ1σ2)σ1

= (σn−1σn−2 · · ·σ1)n.

The following proposition is the main result of this subsection.
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Proposition 4.4. The element θn has another presentation :

θn = ∆2
n = (σ2

n−1σn−2 · · · σ1)n−1.

Proof. From Lemma 4.4,

∆2
n = (σn−1σn−2 · · ·σ1)(σn−1σn−2 · · · σ1) · · · (σn−1σn−2 · · ·σ1).

At first, using Lemma 4.4, it is possible to move the first σ1 towards right until it can
not move anymore. We exchange it with (σn−1σn−2 · · ·σ1) for n− 2 times, which gives
σn−1 finally and so :

∆2
n = (σn−1σn−2 · · ·σ2)(σn−1σn−2 · · ·σ1) · · · (σ2

n−1σn−2 · · ·σ1).

Repeating this procedure with the help of Lemma 4.4 for the first σ2, · · · , σn−2, we
will obtain the presentation as announced in the proposition.

4.4.2 Decompositions in the group algebra
In this subsection, we will work in the group algebra C[Bn] for some n ≥ 2.
The symmetrization operator in C[Bn] is defined by :

Sn =
∑
σ∈Sn

Tσ ∈ C[Bn].

Because V is a braided vector space and Bn acts naturally on V ⊗n, we may treat Sn
as a linear operator in End(V ⊗n).

For 1 ≤ i ≤ n − 1, let (i, i + 1) ∈ Sn be a transposition. We have seen that
T(i,i+1) = σi.

The element Sn ∈ C[Bn] has a remarkable decomposition as shown in [23]. For any
2 ≤ m ≤ n, we define

Tm = 1 + σm−1 + σm−1σm−2 + · · ·+ σm−1σm−2 · · · σ1 ∈ C[Bn].

Proposition 4.5 ([23]). For any n ≥ 2,

Sn = T2T3 · · ·Tn ∈ C[Bn].

In fact, this proposition is true when being projected to C[Sn] ; then notice that
the expansion of the product on the right hand side contains only reduced terms.

Recall the definition of P1,n in Section 4.3.1. To simplify the notation, we denote

Pn = TP1,n ∈ C[Bn].

This element will be an important ingredient in our further discussion.
For n ≥ 2, recall the decomposition of Pn given in Lemma 4.2 :

Pn = (1− σn−1σn−2 · · ·σ1)(1− σn−1σn−2 · · ·σ2) · · · (1− σn−1).

This element Pn permits us to give a much more refined structure of Tn. We intro-
duce another member

T ′n = (1− σ2
n−1σn−2 · · ·σ1)(1− σ2

n−1σn−2 · · · σ2) · · · (1− σ2
n−1) ∈ C[Bn].
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Proposition 4.6. For n ≥ 2, the decomposition TnPn = T ′n holds in C[Bn].
Proof. The Proposition 6.11 in [23] affirms that if all inverses appearing are well defi-
ned, then

Tn = (1− σ2
n−1σn−2 · · ·σ1) · · · (1− σ2

n−1)(1− σn−1)−1 · · · (1− σn−1 · · ·σ1)−1.

So the proposition follows from Lemma 4.2.
Corollary 4.2. The following identity holds in C[Bn] :(

n−2∑
k=0

(σ2
n−1σn−2 · · ·σ1)k

)
(1− σ2

n−1σn−2 · · ·σ1) = 1−∆2
n = 1− θn.

Moreover, for 3 ≤ s ≤ n − 1, let ιs : Bs ↪→ Bn be the canonical embedding of braid
groups on the last s strands. If θs is the central element in Bs, we denote θιss = ιs(θs)
and θι22 = σ2

n−1, then there exists an element

Ln =
( 1∑
k=0

(σ2
n−1σn−2)k

)
· · ·

(
n−2∑
k=0

(σ2
n−1σn−2 · · · σ1)k

)
∈ C[Bn],

such that in C[Bn],

LnT
′
n = (1− θn)(1− θιn−1

n−1 ) · · · (1− θι22 ).

4.5 The study of the ideal I(V )
We keep assumptions and notations in previous sections.

4.5.1 A result on the quotient ideal
As we have seen, the Nichols algebra associated to an H-Yetter-Drinfel’d module

V is a quotient of the braided tensor Hopf algebra T (V ) by a maximal coideal I(V )
contained in T≥2(V ). This definition tells us almost nothing about the concrete struc-
ture of I(V ) : as I(V ) is an ideal, the Nichols algebra N(V ) can be viewed as imposing
some relations in T (V ), but such relations can never be read directly from the defini-
tion.

As we know, the best result for the structure of I(V ) is obtained by M. Rosso in
[73] in a dual point of view and by P. Schaurenburg in [79]. We recall this result in
this subsection.

Let Sn : V ⊗n → V ⊗n be the element in C[Bn] defined in Section 4.4.2.
Proposition 4.7 ([73], [79], [85]). Let V be an H-Yetter-Drinfel’d module. Then

N(V ) =
⊕
n≥0

(
V ⊗n/ ker(Sn)

)
.

So to make more precise the structure of I(V ), it suffices to study each subspace
ker(Sn). In the following part of this section, we want to characterize a part of elements
in ker(Sn) and show that in cases of great interest, this part is the essential one for
understanding the structure of ker(Sn).
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4.5.2 General assumption
From now on, assume that n ≥ 2 is an integer. To study the structure of ker(Sn),

we want first to concentrate on some essential "levels" in it.

Definition 4.11. Let 1 < s < n be an integer and i : Bs → Bn be an injection of
groups. We call i a positional embedding if there exists some integer 0 ≤ r ≤ n − s
such that for any 1 ≤ t ≤ s− 1, i(σt) = σt+r.

For an element v ∈ V ⊗n, if v ∈ ker(Sn), there are two possibilities :
1. There exists some 2 ≤ s < n and some positional embedding of groups ι : Bs ↪→

Bn such that v is annihilated by ι(Ss) ;
2. For any s and positional embedding ι as above, v is not in ker(ι(Ss)).

Elements falling in the case (2) are much more interesting in our framework. So we
would like to give a more concrete assumption for the purpose of concentrating on
such elements ; here, we want to impose a somehow stronger restriction.

Let v ∈ V ⊗n be a non-zero element and C[Xv] denote the C[Bn]-submodule of V ⊗n
generated by v, that is to say, C[Xv] = C[Bn].v. Because C[Xv] is a C[Bn]-module,
Sn : C[Xv]→ C[Xv] is well defined.

We fix this v ∈ V ⊗n as above, the restriction on v we want to impose is as follows :

Definition 4.12. An element v ∈ V ⊗n is called of level n if Snv = 0 and for any
2 ≤ s ≤ n − 1 and any positional embedding ι : Bs ↪→ Bn, the equation ι(θs)x = x
has no solution in C[Xv].

Proposition 4.8. If v ∈ V ⊗n is a non-zero solution of equation (1−σ2
n−1σn−2 · · · σ1)x =

0, then θn.v = v.

Proof. If (1− σ2
n−1σn−2 · · ·σ1)v = 0, from Corollary 4.2,

0 =
(
n−2∑
k=0

(σ2
n−1σn−2 · · ·σ1)k

)
(1− σ2

n−1σn−2 · · · σ1)v = (1− θn)v.

Remark 4.4. As V ⊗n is a C[Bn]-module, we can define H ⊂ V ⊗n as the subspace
of V ⊗n formed by eigenvectors of θn with eigenvalue 1 (that is to say, H = {w ∈
V ⊗n| θnw = w}).

As θn ∈ Z(Bn), for any w ∈ H and Y ∈ C[Bn], we have θnY w = Y w, thus H is a
C[Bn]-submodule of V ⊗n. It means that if v ∈ H, then C[Xv] ⊂ H.

Lemma 4.5. Let v ∈ V ⊗n be a non-zero element of level n. Then for any 2 ≤ i ≤ n−1
and any positional embedding ιi : Bi ↪→ Bn, ιi(Si)x = 0 has no solution on C[Xv].

Proof. Let ιi : Bi ↪→ Bn be a positional embedding such that ιi(Si)x = 0 has a
solution in C[Xv]. Then ιi(Si) = ιi(T2) · · · ιi(Ti) ∈ C[Bn]. The equation ιi(Si)x = 0
has a solution in C[Xv] means that det(ιi(Si)) = 0, so there exists some 2 ≤ j ≤ i such
that det(ιi(Tj)) = 0.
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Because ιi(Tj)ιi(Pj) = ιi(T ′j), we obtain that det(ιi(T ′j)) = 0. From the definition
of T ′j , there exists some 1 ≤ k ≤ j − 1 such that

det(1− ιi(σ2
j−1σj−2 · · ·σk)) = 0.

So we can choose another positional embedding ι : Bj−k+1 → Bn such that for the
action of C[Bn] on C[Xv],

det(1− ι(σ2
j−kσj−k−1 · · ·σ1)) = 0.

So, from Proposition 4.8, ι(θj−k+1)x = x has a non-zero solution on C[Xv], which
contradicts to the assumption that v is of level n.

4.5.3 Solutions
Fix some n ≥ 2, we want to solve the equation Snx = 0 on C[Xv] for some non-zero

element v ∈ V ⊗n.
We define an element in C[Bn] :

X = (1− σ2
n−1σn−2 · · ·σ2) · · · (1− σ2

n−1σn−2 · · ·σ3) · · · (1− σ2
n−1σn−2)(1− σ2

n−1).

Proposition 4.9. If v ∈ V ⊗n is a non-zero element of level n, then X is invertible on
C[Xv].

Proof. Wemay viewX as an element in End(C[Xv]). IfX is not invertible, det(X) = 0.
From the definition, there must exist some term, say (1 − σ2

n−1σn−2 · · ·σi), for some
2 ≤ i ≤ n− 1, having determinant 0. So there exists some nonzero element w ∈ C[Xv]
such that (1 − σ2

n−1σn−2 · · ·σi)w = 0. But from Proposition 4.8, we may find some
positional embedding ι : Bn−i+1 ↪→ Bn such that ι(θn−i+1)w = w, which contradicts
to the assumption that v is of level n.

The level n assumption we are working with will give more information on solutions
of equation Snx = 0.

Proposition 4.10. Let v ∈ V ⊗n be a non-zero element of level n.
1. There exists a bijection between nonzero solutions of equation T ′nx = 0 and of

the equation (1− σ2
n−1σn−2 · · ·σ1)x = 0 in C[Xv].

2. Equations Snx = 0 and Tnx = 0 have the same solutions in C[Xv].

Proof. 1. From Proposition 4.9, X−1 : C[Xv] → C[Xv] is well defined. So this
proposition comes from the identity : T ′n = (1− σ2

n−1σn−2 · · ·σ1)X.
2. Let w be a non-zero solution of Tnx = 0, then from Proposition 4.5, Snw = 0.

Conversely, let u be a non-zero solution of Snx = 0. If Tnu 6= 0, again from
Proposition 4.5, Tnu will be a non-zero solution of equation T2 · · ·Tn−1x = 0 on
C[Xv], so Sn−1x = 0 has a non-zero solution on C[Xv], contradicts Lemma 4.5
above.
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Recall that Pn = TP1,n ∈ C[Bn] as defined in the last section, Pn ∈ End(C[Xv]).
Now, let w ∈ ker(Sn)∩Im(Pn) be a non-zero element of level n. Then from Lemma

4.5, w satisfies Tnw = 0. Moreover, because it is in Im(Pn), we can choose some w′
such that Pn(w′) = w, then

T ′nw
′ = Tnw = 0.

From the identity T ′n = (1 − σ2
n−1σn−2 · · ·σ1)X, Xw′ is a solution of the equation

(1 − σ2
n−1σn−2 · · ·σ1)x = 0, so from Proposition 4.8, θnXw′ = Xw′. This discussion

gives the following proposition.

Proposition 4.11. Let w ∈ ker(Sn)∩Im(Pn) be an element of level n. Then θnw = w.

Proof. From the definition of w′, if θn fixes w′, then it fixes w. So if θnw 6= w, then it
does not fix w′ and then Xw′ (see Remark 4.4), which is a contradiction.

Remark 4.5. Let H denote the eigenspace of θn corresponding to the eigenvalue 1 as
in the Remark 4.4 above. If we let En denote the set of elements in Im(Pn) with level
n in V ⊗n, then the proposition above implies that En ⊂ Pn(H).

We have constructed solutions of equation θnx = x on C[Xv] from some kinds of
elements in ker(Sn) ∩ Im(Pn). Now we proceed to consider the construction in the
opposite direction.

Let w ∈ C[Xv] be a solution of θnx = x. If

u =
(
n−2∑
k=0

(σ2
n−1σn−2 · · ·σ1)k

)
w 6= 0,

it will be a solution of the equation (1−σ2
n−1σn−2 · · ·σ1)x = 0, then X−1u is a solution

of the equation T ′nx = 0 and PnX−1u will be a non-trivial solution of Snx = 0 if it is not
zero ; moreover, it is in Im(Pn), from which we obtain an element in ker(Sn)∩Im(Pn).

There are some possibilities for the appearance of zero elements when passing from
the solutions of θnx = x to those of Snx = 0. The appearance of zeros mostly comes
from the fact that an element satisfying θnx = x may be the solution of ιs(θs)x = x
for some 2 ≤ s ≤ n− 1 and some positional embedding ιs : Bs ↪→ Bn.

The subspace ker(Sn) ∩ Im(Pn) is sufficiently important, as will be shown in the
next subsection.

4.5.4 Properties of ker(Sn) ∩ Im(Pn)
In this subsection, suppose that n ≥ 2 is an integer.
Instead of End(C[Xv]), it is better in this subsection to view Sn, Pn as elements

in End(V ⊗n). We want to show that ker(Sn)∩ Im(Pn) contains all primitive elements
and in some special cases (for example, the diagonal case), it generates ker(Sn).

Proposition 4.12. Let v ∈ V ⊗n be a homogeneous primitive element of degree n.
Then v ∈ ker(Sn) ∩ Im(Pn).
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Proof. The fact v ∈ ker(Sn) is a corollary of the definition of Nichols algebra and
Proposition 5.1. So it suffices to show that v ∈ Im(Pn).

The element v is primitive means that ∆(v) = v ⊗ 1 + 1 ⊗ v. From Theorem 4.1,
Φ ∗ id = N , so

nv = Φ ∗ id(v) = m ◦ (Φ⊗ id)∆(v) = Φ(v),

and then
v = 1

n
Φ(v) = 1

n
Pn(v) ∈ Im(Pn).

The second property we want to establish is that in the diagonal case, these sub-
spaces ker(Sn) ∩ Im(Pn) will generate the ideal (also coideal) I(V ).

Recall that from the definition of Nichols algebra and Proposition 5.1, the subspace

I(V ) =
⊕
n≥2

ker(Sn) ⊂ T (V )

is a maximal coideal contained in T≥2(V ). Moreover, it is a homogeneous ideal.
Let J ⊂ T≥2(V ) be a coideal in H

HYD containing the subspace⊕
n≥2

(ker(Sn) ∩ Im(Pn)) .

Such a coideal does exist as I(V ) satisfies these conditions.

Proposition 4.13. Let T (V ) be of diagonal type. Then the ideal generated by J in
T (V ) is I(V ).

Proof. Let K be the two-sided ideal generated by J ⊂ T≥2(V ) in T (V ). Then K is also
an ideal in T≥2(V ). As a two-sided ideal generated by a coideal, K is also a coideal.
From the maximality of I(V ), K ⊂ I(V ).

We proceed to prove that T (V )/K ∼= N(V ). For this purpose, the following lemma
is needed.

Lemma 4.6 ([35]). Suppose that the Nichols algebra is of diagonal type. Let K ⊂
T≥2(V ) be simultaneously an ideal, a coideal and an H-Yetter-Drinfel’d module. If all
primitive elements in T (V )/K are concentrated in V , then T (V )/K ∼= N(V ).

From this lemma, it suffices to show that there is no non-zero primitive element of
degree greater than 1 in T (V )/K.

Suppose that v is such a non-zero element which is moreover homogeneous of degree
n, so in T (V ),

∆(v) ∈ v ⊗ 1 + 1⊗ v +K ⊗ T (V ) + T (V )⊗K.

As K ⊂ I(V ),

∆(v) ∈ v ⊗ 1 + 1⊗ v + I(V )⊗ T (V ) + T (V )⊗ I(V ).
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But in T (V )/I(V ), from the definition of Nichols algebra, there is no such element,
which forces v ∈ I(V ) and then Snv = 0.

We need to show that in fact v ∈ K. From Corollary 4.1,

Pn(v) = N ∗ S(v) ∈ nv +K

and then v − k ∈ Im(Pn) for some k ∈ K. As Snv = 0 and K ⊂ ker(Sn), v − k ∈
ker(Sn) ∩ Im(Pn) ⊂ K ; this implies v ∈ K.

This proposition shows the importance of these subspaces ker(Sn)∩ Im(Pn) in the
study of the defining ideal.

Remark 4.6. This proposition holds for the general case if the conjecture in Remark
4.1 is true.

4.5.5 Main theorem
The main result of this chapter is :

Theorem 4.2. Elements of level n are primitive.

From this theorem, level n solutions of Snx = 0 are primitive elements of degree n,
so they are in ker(Sn)∩ Im(Pn). Moreover, this introduces a method to find primitive
elements in T (V ).

The proof of this theorem will be given in the end of this chapter, after introducing
the differential algebra of a Nichols algebra.

4.6 Applications
In this section, we give some applications of the machinery constructed above.
Though the discussion in the last section is somehow elementary, it may give remar-

kable results and good points of view once being applied to some concrete examples.

4.6.1 A general application for the diagonal type
Let H be the group algebra of an abelian group G, V ∈ H

HYD be of diagonal type,
T (V ) and N(V ) be the braided tensor Hopf algebra and Nichols algebra, respectively.

Suppose that dimV = m, with basis v1, · · · , vm such that

σ(vi ⊗ vj) = qijvj ⊗ vi.

From the definition of the braiding, the action of C[Bn] on V ⊗n has the following
decomposition

V ⊗n =
⊕
i∈I

C[Bn].vi11 · · · vimm ,

where the sum runs over I = {i = (i1, · · · , im)| i1 + · · ·+ im = n}.
We fix some i = (i1, · · · , im) ∈ Nm such that i ∈ I and a monomial vi = vi11 · · · vimm ,

then in
C[Xi] = C[Bn].vi,
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if θnx = x has a solution, we must obtain θnvi = vi.
Indeed, when projected canonically to Sn, the element θn ∈ Bn corresponds to 1,

so if θnx = x, θn will stablize all components of x. From the decomposition above, for
any component x0 of x, there exists a nonzero constant c and an element σ ∈ Bn such
that cx0 = σ(vi), thus vi = σ−1(cx0). Thus all level n elements are contained in the
sum of some C[Xi] for some vi satisfying θnvi = vi.

To exclude those elements which have not level n but are stable under the action
of θn, some notations are needed.

We fix some i and vi. It is more convenient to write vi = e1 · · · en, where ei are
some vj’s. Then let Ti = (tij) denote a matrix in Mn(C) with tii = 1 and for i 6= j, tij
are defined by

σ(ei ⊗ ej) = tijej ⊗ ei.

For some 2 ≤ s ≤ n, 1 ≤ k1 < · · · < ks ≤ n, k = (k1, · · · , ks), we define :

Πk
s =

s∏
i=1

s∏
j=1

tki,kj .

The following proposition is an easy consequence of the definition.

Proposition 4.14. With the notations above, we have :
1. θnvi = vi if and only if Πk

n = 1.
2. If for any 2 ≤ s ≤ n − 1 and any k, Πk

s 6= 1, then vi satisfies the assumption in
Definition 4.12. Moreover, all elements in ker(Sn) ∩ C[Xvi ] are of level n.

Remark 4.7. Under the assumptions (2) in the proposition above,
1. From Theorem 4.2, all elements in ker(Sn) ∩ C[Xvi ] are primitive.
2. From Remark 4.5, all elements in ker(Sn)∩C[Xvi ] can be constructed from C[Xvi ]

by the method given in the end of Section 4.5.3. So such a family of primitive
elements can be easily and directly computed.

Remark 4.8. If v ∈ V ⊗V is an element in ker(S2)∩ Im(P2), then it must be of level
2 and so primitive. Moreover, in the diagonal case, level 2 elements in ker(S2)∩Im(P2)
can be obtained from monomials stablized by θ2 by applying P2.

4.6.2 Exterior algebras
In this subsection, as a warm up, we apply results of the previous section to the

construction of exterior algebras.
The main ingredient is the Hopf algebra H = C[G], where G = Z/2Z = {1, ε}. Let

V be a finite dimensional vector space with basis v1, · · · , vm.
1. The action of H on V is given by : for v ∈ V , ε.v = −v ;
2. The coaction is given by : δ(v) = ε⊗ v, where δ : V → H ⊗ V .
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This makes V an H-Yetter-Drinfel’d module.
We form the braided Hopf algebra T (V ) and want to calculate relations appearing

in the ideal I(V ).
At first, we consider relations in V ⊗n of level n. In fact, for n ≥ 3, there are no

such relations because if v = vi1 · · · vin ∈ V ⊗n is a pure tensor such that θnv = v,
from the definition of the braiding, there must exist some 1 ≤ s < t ≤ n such that
σ2(vis ⊗ vit) = vis ⊗ vit , which contradicts the definition of level n relations.

So it suffices to consider relations of level 2 in V ⊗2. We start from considering all
solutions of θ2x = x in V ⊗2. These solutions are : vivj, for 1 ≤ i, j ≤ n.

As in the procedure of constructing solutions of Snx = 0 from θnx = x given in the
last section, the action of P2 on these elements gives :

P2(vivj) = vivj + vjvi,

so vivj + vjvi ∈ ker(S2) ∩ Im(P2). Moreover, from Remark 4.8 in the last subsection,
we obtain

ker(S2) ∩ Im(P2) = span{vivj + vjvi| 1 ≤ i, j ≤ n}.

4.6.3 Quantized enveloping algebras
In this subsection, we will discover the quantized Serre relations in the definition

of the quantized enveloping algebra Uq(g) associated to a symmetrizable Kac-Moody
Lie algebra g by assuming almost no knowledge about the existence of such relations.

Let q be a nonzero complex number such that for any N ≥ 1, qN 6= 1. Let g be
a symmetrizable Kac-Moody Lie algebra of rank n, C = (Cij)n×n be its generalized
Cartan matrix and A = DC be the symmetrization of the Cartan matrix by some
diagonal matrix D = (d1, · · · , dn) with di positive integers which are relatively prime.
We denote A = (aij)n×n.

At first, we briefly recall the construction of the strict positive part of Uq(g) in the
framework of Nichols algebras. This construction is due to M. Rosso and can be found
in [73] with a slightly different language.

LetH = C[G] be the group algebra whereG is the abelian group Zn. LetK1, · · · , Kn

denote a basis of Zn. Then H is a commutative and cocommutative Hopf algebra.
Let V be a C-vector space of dimension n with basis E1, · · · , En. We define an

H-Yetter-Drinfel’d module structure on V by :
1. The action of Ki on Ej is given by : Ki.Ej = qaijEj ;
2. The coaction of Ei is given by : δ(Ei) = Ki ⊗ Ei, where δ : V → H ⊗ V is the

structure map of left H-comodule structure on V .
Starting with this V ∈ H

HYD, the braided tensor algebra T (V ) and the corresponding
Nichols algebra N(V ) can be constructed. The defining ideal is denoted by I(V ).

Assume that we know nothing about this ideal I(V ) (because from the general
theory of quantized enveloping algebras, we know that I(V ) is generated by quantized
Serre relations). Here, our point of view is much more pedestrian : if we do not know
them, how to find ?

Results in the previous section will offer us a method.
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At first, we want to concentrate on the case Uq(sl3), the simplest one which has such
quantized Serre relations. In this case, H = Z2 with basis K1, K2, V is of dimension 2
with basis E1, E2.

We would like to compute the level 3 relations in I(V ).
At first, we write down all monomials of degree 3 which are stabilized by the action

of θ3 but not for all θ2 with possible embeddings. They are :

E2
1E2, E1E2E1, E2E

2
1 , E1E

2
2 , E2E1E2, E2

2E1.

After the action of 1 + σ2
2σ1, we obtain :

2E2
1E2, E1E2E1 + q3E2E

2
1 , E2E

2
1 + q−3E1E2E1,

E1E
2
2 + q−3E2E1E2, E2E1E2 + q3E1E

2
2 , 2E2

2E1.

In this case, X = 1− σ2
2, so the action of X−1 on these elements will give :

x1 = 2
1− q−2E

2
1E2, x2 = 1

1− q−2E1E2E1 + q3

1− q4E2E
2
1 ,

x3 = 1
1− q4E2E

2
1 + q−3

1− q−2E1E2E1, x4 = 1
1− q4E1E

2
2 + q−3

1− q−2E2E1E2,

x5 = 1
1− q−2E2E1E2 + q3

1− q4E1E
2
2 , x6 = 1

1− q−2E
2
2E1.

It is easy to compute the action of P3 on all possible monomials :

P3(E2
1E2) = E2

1E2 − (q + q−1)E1E2E1 + E2E
2
1 ,

P3(E1E2E1) = 2E1E2E1 − q−1E2
1E2 − qE2E

2
1 ,

P3(E2E
2
1) = (1− q2)E2E

2
1 − (q−2 − 1)E2

1E2,

P3(E1E
2
2) = (1− q2)E1E

2
2 − (q−2 − 1)E2

2E1,

P3(E2E1E2) = 2E2E1E2 − qE1E
2
2 − q−1E2

2E1,

P3(E2
2E1) = E2

2E1 − (q + q−1)E2E1E2 + E1E
2
2 .

And then
P3(x1) = 2

1− q−2 (E2
1E2 − (q + q−1)E1E2E1 + E2E

2
1),

P3(x2) = − 2q−1

1− q−4 (E2
1E2 − (q + q−1)E1E2E1 + E2E

2
1),

P3(x3) = 2
1− q4 (E2

1E2 − (q + q−1)E1E2E1 + E2E
2
1),

P3(x4) = 2
1− q4 (E2

2E1 − (q + q−1)E2E1E2 + E1E
2
2),

P3(x5) = − 2q−1

1− q−4 (E2
2E1 − (q + q−1)E2E1E2 + E1E

2
2),
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P3(x6) = 2
1− q−2 (E2

2E1 − (q + q−1)E2E1E2 + E1E
2
2).

So starting with solutions of θ3x = x with level 3, the solutions in Im(P3) with
level 3 we obtained for the equation S3x = 0 are exactly the quantized Serre relations
of degree 3.

Moreover, we show that there are no other relations of level 3. If w ∈ ker(S3) is
such an element, it will be stable under the action of θ3, so it is a linear combination
of monomials above, then it must be a linear combination of degree 3 Serre relations.

Finally, we turn to the level n elements for an arbitrary integer n ≥ 2. As explained
in Section 4.6.1, it suffices to consider a monomial of form Es

1E
t
2 for some positive

integers s and t.
The action of θs+t on this monomial gives :

θs+t(Es
1E

t
2) = qs

2−s+t2−t−stEs
1E

t
2.

So this monomial is stablized by θs+t if and only if

s2 − s+ t2 − t− st = 1
2
(
(s− t)2 + (s− 1)2 + (t− 1)2 − 2

)
= 0.

The only possible positive integer solutions (s, t) of the equation (s− t)2 + (s− 1)2 +
(t− 1)2 = 2 are (2, 2), (2, 1) and (1, 2). But (s, t) = (2, 2) is not of level 4 because we
can always find a subword which is fixed by θ3.

As a conclusion, the only possible level in this case is 3 and all possible relations
coming from level 3 elements are quantized Serre relations as shown above.

4.6.4 Primitivity of Serre relations
As an application of the main theorem, we deduce a short proof for the primitivity

of Serre relations with little computation. A direct proof can be found in the appendix
of [5].

Let A = (aij)n×n be a symmetrized Cartan matrix and V be a Zn-Yetter-Drinfeld
module of diagonal type with dimension n. Notations in the previous subsection are
adopted. Moreover, suppose that the braiding matrix (qij) satisfies :

qijqji = q
aij
ii , 1 ≤ i, j ≤ n. (4.3)

Proposition 4.15. For any 1 ≤ i, j ≤ n, i 6= j, we denote N = 1 − aij. Then
PN+1(vNi vj) is a primitive element, where PN+1 is the Dynkin operator.
Proof. At first, it is easy to show that

(1− σ2
NσN−1 · · ·σ1)(vNi vj) = (1− q−aijii qijqji)vNi vj.

From the hypothesis (4.3) above, the right hand side is 0, so from Proposition 4.8,
θN+1(vNi vj) = vNi vj.

Moreover, it is obvious that for any 1 < s < N + 1 and any positional embedding
ι : Bs ↪→ BN+1, ι(θs)(vNi vj) 6= vNi vj. As a consequence, in the algorithm after Remark
4.5, X−1 is well defined and from the definition of X, X−1(vNi vj) = λvNi vj for some
non-zero constant λ. Then PN+1(vNi vj) is a nonzero solution of SN+1x = 0 of level n,
so it is primitive by Theorem 4.2.
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4.6.5 Quantized enveloping algebras revisited
We keep notations in the beginning of Section 4.6.3.
Because A = DC is a symmetrized Cartan matrix, for any 1 ≤ i, j ≤ n, we have

dicij = djcji. Then from the definition of qij, the following lemma is clear.

Lemma 4.7. Let A = DC be a symmetrized Cartan matrix. Then for any 1 ≤ i, j ≤ n,

qijqji = q
aij
ii .

Combined with Proposition 4.15, this lemma gives :

Corollary 4.3. Let g be a symmetrizable Kac-Moody algebra. Then degree n quan-
tized Serre relations in Uq(g) are of level n. Moreover, the union of level n elements
for n ≥ 2 generates I(V ) as an ideal.

Remark 4.9. The corollary above explains the reason for the importance of sym-
metrizable Kac-Moody algebras : they contain sufficient Serre relations. This gives a
strong constraint on the representation theory of such Lie algebras.

4.7 Differential algebras of Nichols alegbras

4.7.1 Pairings between Nichols algebras
In this subsection, we want to recall a result of [13] and [61]. It should be remarked

that these two constructions, though in different languages (one is dual to the other),
are essentially the same.

Let
H =

∞⊕
n=0

Hn, B =
∞⊕
n=0

Bn

be two graded Hopf algebras with finite dimensional graded components.

Definition 4.13. A generalized Hopf pairing φ : H × B → C is called graded if for
any i 6= j, φ(Hi, Bj) = 0.

We fix a graded Hopf pairing φ0 : H × B → C between H and B and assume
moreover that φ0 is non-degenerate.

Let V ∈ H
HYD and W ∈ B

BYD be two Yetter-Drinfel’d modules, φ1 : V ×W → C
be a non-degenerate bilinear form such that for any h ∈ H, b ∈ B, v ∈ V and w ∈ W ,

φ1(h.v, w) =
∑

φ0(h,w(−1))φ1(v, w(0)), (4.4)

φ1(v, b.w) =
∑

φ0(v(−1), b)φ1(v(0), w), (4.5)
where δV (v) = ∑

v(−1) ⊗ v(0) and δW (w) = ∑
w(−1) ⊗ w(0) are H-comodule and B-

comodule structure maps, respectively.
Let T (V ), T (W ) be the corresponding braided tensor Hopf algebras and N(V ),

N(W ) be Nichols algebras associated to V andW , respectively. LetBH(V ) = N(V )]H
and BB(W ) = N(W )]B denote crossed biproducts defined in Section 4.2.5.
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Theorem 4.3 ([13],[61]). There exists a unique graded Hopf pairing

φ : BH(V )×BB(W )→ C,

extending φ0 and φ1. Moreover, it is non-degenerate.

In the following argument, attention will be paid to a particular case of this theo-
rem. In our framework, we take H = B and V = W in Theorem 4.3, φ0 : H ×H → C
a non-degenerate graded Hopf pairing and φ1 : V × V → C a non-degenerate bilinear
form satisfying the compatibility conditions above. So the machinery in Theorem 4.3
produces a non-degenerate graded Hopf pairing

φ : BH(V )×BH(V )→ C.

This will be the main tool in our further construction.

4.7.2 Double construction and Schrödinger representation
In this subsection, as a review, we will apply results from [24], Section 2 to the case

of Nichols algebras.
Suppose that H is a graded Hopf algebra, V ∈ H

HYD is an H-Yetter-Drinfel’d
module and φ : BH(V ) × BH(V ) → C is the non-degenerate graded Hopf pairing
constructed in the last section.

We recall some results from [24] briefly.
To indicate their positions, we denote B+

H(V ) = BH(V ), B−H(V ) = BH(V ) and

Dφ(BH(V )) = Dφ(B+
H(V ),B−H(V ))

their quantum double. The Schrödinger representation defined in [24] gives a module
algebra type action of Dφ(BH(V )) on these two components.

1. On B+
H(V ), the action is given by : for a, x ∈ B+

H(V ) and b ∈ B−H(V ),

(a⊗ 1).x =
∑

a(1)xS(a(2)),

(1⊗ b).x =
∑

ϕ(x(1), S(b))x(2).

2. On B−H(V ), the action is given by : for a ∈ B+
H(V ) and b, y ∈ B−H(V ),

(a⊗ 1).y =
∑

ϕ(a, y(1))y(2),

(1⊗ b).y =
∑

b(1)yS(b(2)).

As has been shown in [24], these actions give both B+
H(V ) and B−H(V ) a Dφ(BH(V ))-

module algebra structure.
Moreover, we can construct the Heisenberg double

Hφ(BH(V )) = Hφ(B+
H(V ),B−H(V )),
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which, in general, is not a Hopf algebra.
In [24], we defined an action of Dφ(BH(V )) on Hφ(BH(V )) by : for a, a′ ∈ B+

H(V )
and b, b′ ∈ B−H(V ),

(a⊗ b).(b′]a′) =
∑

(a(1) ⊗ b(1)).b′](a(2) ⊗ b(2)).a′,

which makes Hφ(BH(V )) a Dφ(BH(V ))-module algebra.
The following two results are also obtained in [24].

Proposition 4.16 ([24]). We define a Dφ(BH(V ))-comodule structure on B+
H(V ) and

B−H(V ) by : for a ∈ B+
H(V ) and b ∈ B−H(V ),

B+
H(V )→ Dφ(BH(V ))⊗B+

H(V ), a 7→
∑

a(1) ⊗ 1⊗ a(2),

B−H(V )→ Dφ(BH(V ))⊗B−H(V ), b 7→
∑

1⊗ b(1) ⊗ b(2).

Then with the Schrödinger representation and comodule structures defined above,
both B+

H(V ) and B−H(V ) are in the category Dφ
Dφ
YD.

Moreover, the Heisenberg doubleHφ(BH(V )) is in theDφ(BH(V ))-Yetter-Drinfel’d
module category.

Theorem 4.4 ([24]). We define a Dφ(BH(V ))-comodule structure on Hφ(BH(V ))
by : for a ∈ B+

H(V ) and b ∈ B−H(V ),

Hφ(BH(V ))→ Dφ(BH(V ))⊗Hφ(BH(V )),

b]a 7→
∑

(1⊗ b(1)).(a(1) ⊗ 1)⊗ b(2)]a(2).

Then with the module structure defined above and this comodule structure,Hφ(BH(V ))
is in the category Dφ

Dφ
YD.

4.7.3 Construction of differential algebras
In this section, we want to construct the differential algebra of a Nichols algebra.

It generalizes the construction of quantized Weyl algebra in [24].
But it should be remarked that the construction in [24] concentrates on a specific

Hopf algebra, say C[Zn] and a special action on the Nichols algebra. So to generalize
it, we need some more work.

LetN+(V ) andN−(V ) be Nichols algebras contained inB+
H(V ) andB−H(V ) respec-

tively. We would like to give both N+(V ) and N−(V ) a Dφ(BH(V ))-Yetter-Drinfel’d
module algebra structure.

For N+(V ), the Dφ(BH(V ))-module structure is given by the Schrödinger repre-
sentation and the Dφ(BH(V ))-comodule structure is given by :

N+(V )→ Dφ(BH(V ))⊗N+(V ),

b 7→
∑

(b(1)](b(2))(−1) ⊗ 1)⊗ (b(2))(0).

This is obtained from the formula in Proposition 4.16.
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Proposition 4.17. With the structures defined above,N+(V ) is aDφ(BH(V ))-Yetter-
Drinfel’d module algebra.
Proof. At first, we need to show that the Schrödinger representation preserves N+(V ).

Let a ∈ BH(V ). It suffices to prove that if x ∈ N+(V ), then both (a ⊗ 1).x and
(1 ⊗ a).x are contained in N+(V ). For this purpose, because the action is linear, we
write a = b]h ∈ N+(V )]H. From the formula given in Radford’s crossed biproduct,
((b]h)⊗ 1).x =

∑
(b]h)(1)xS((b]h)(2))

=
∑

(b(1)](b(2))(−1)h(1))(x]1)S((b(2))(0)]h(2))
=

∑
(b(1)((b(2))(−3)h(1).x)](b(2))(−2)h(2))(1]S(h(3))S((b(2))(−1)))(S((b(2))(0))]1)

=
∑

(b(1)((b(2))(−3)h(1).x)](b(2))(−2)h(2)S(h(3))S((b(2))(−1)))(S((b(2))(0))]1)
=

∑
b(1)((b(2))(−1)h(1).x)S((b(2))(0))]1,

which is in N+(V ).
For the other action, we have :

(1⊗ (b]h)).x =
∑

φ(x(1), S(b]h))x(2).

From the definition of the crossed biproduct, when restricted to N+(V ), the coproduct
gives ∆ : N+(V )→ BH(V )⊗N+(V ), so the result is in N+(V ).

Thus the action and coaction of Dφ(BH(V )) on N+(V ) are both well defined and
as a consequence, N+(V ) is a Dφ(BH(V ))-module algebra.

These structures are compatible because we have seen that the coaction defined
above is just the restriction of the coproduct in Dφ(BH(V )) on N+(V ).

The same argument, once applied to N−(V ), implies that N−(V ) is a Dφ(BH(V ))-
Yetter-Drinfel’d module algebra.

As remarked after the definition of Yetter-Drinfel’d modules, we may use the na-
tural braiding in the category Dφ

Dφ
YD to give N−(V ) ⊗ N+(V ) an associative algebra

structure, which is denoted by Wφ(V ) and is called the differential algebra of the Ni-
chols algebra N(V ) = N−(V ).

This gives a natural action of Wφ(V ) on N−(V ), where N+(V ) ⊂ Wφ(V ) acts by
"differential".
Remark 4.10. 1. It should be pointed out that N−(V )⊗N+(V ) is a subalgebra of

Hφ(BH(V )). This can be obtained from the definition of the braiding σ in the ca-
tegory Dφ

Dφ
YD and the formula for the action of Dφ(BH(V )) on B−H(V ).Moreover,

it is exactly the subalgebra of Hφ(BH(V )) generated by N−(V ) and N+(V ).
2. This action of Wφ(V ) on N−(V ) can be explained as follows : we consider the

trivial N+(V )-module C given by the counit ε, then

IndWφ(V )
N+(V )(C.1) = Wφ(V )⊗N+(V ) C.1

is isomorphic to N−(V ) as a vector space and from this, N−(V ) can be regarded
as a Wφ(V )-module.

3. A direct construction of the differential algebra of a Nichols algebra without
passing to the quantum double can be found in [4].
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4.7.4 Non-degeneracy assumption
We should point out that results in previous sections do not depend on the non-

degeneracy of the generalized Hopf pairing. Some results concerning with this property
will be discussed in this subsection.

Recall the notation N(V ) = N−(V ). SoWφ(V ) acts on N(V ) by : for x ∈ N+(V ) ⊂
Wφ(V ) and y ∈ N(V ),

x.y =
∑

φ(x, y(1))y(2).

Because the generalized Hopf pairing is graded and non-degenerate, results in [24]
can be generalized to the present context.

Let v1, · · · , vn be a basis of V .

Lemma 4.8. Let y ∈ N(V ), y /∈ C∗ such that for any basis element vi ∈ N+(V ) ⊂
Wφ(V ), vi.y = 0. Then y = 0.

Proposition 4.18. Let y ∈ N(V ) such that y 6= 0. Then there exists x ∈ N+(V ) ⊂
Wφ(V ) such that x.y is a non-zero constant.

4.8 Applications to Nichols algebras
At first, we want to show that the differential algebra above generalizes the skew-

derivation defined by Nichols [67].

4.8.1 Derivations
We keep notations from previous sections and fix a basis v1, · · · , vn of V .

Definition 4.14. For a ∈ N+(V ), we define the left derivation ∂La : N(V ) → N(V )
by : for y ∈ N(V ), ∂La (y) = a.y. If a = vi, the notation ∂Li is adopted for ∂Lvi .

In the proposition below, we suppose that φ1 : V × V → C is given by the natural
duality between V ∗ and V and the Nichols algebra is of diagonal type.

Proposition 4.19. For i = 1, · · · , n, the definition of ∂Li above coincides with the one
given in [34].

Proof. If the Nichols algebra is of diagonal type,

∂Li (vi1 · · · vik) =
∑

φ(vi, (vi1 · · · vik)(1))(vi1 · · · vik)(2).

From the definition of the coproduct in Nichols algebras, the fact that σ is of diagonal
type and φ is graded, we obtain that terms satisfying

φ(vi, (vi1 · · · vik)(1)) 6= 0

are exactly those given by the shuffle action S1,k−1 in the coproduct formula. A simple
calculation shows that

S1,k−1 = {1, σ1, σ1σ2, · · · , σ1 · · ·σk−1},

which gives exactly the formula in the definition after Heckenberger.
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Remark 4.11. The advantage of our definition for differential operators on Nichols
algebras are twofold :

1. This is a global and functorial construction, we never need to work in a specific
coordinate system at the beginning ;

2. We make no assumption on the type of the braiding, it has less restriction and
can be applied to more general cases, for example : Hecke type, quantum group
type, and so on.

Remark 4.12. In the same spirit, for a ∈ N+(V ), the right differential operator
∂Ra can be similarly defined by considering the right action : for y ∈ N(V ), a.y =∑
y(1)φ(a, y(2)).

Some results from [34] can be generalized with simple proofs.

Lemma 4.9. Let x ∈ N(V ) and a ∈ N+(V ). Then :

∆(∂La (x)) =
∑

∂La (x(1))⊗ x(2), ∆(∂Ra (x)) =
∑

x(1) ⊗ ∂Ra (x(2)).

Proof. We prove it for ∂La :

∆(∂La (x)) = ∆
(∑

φ(a, x(1))x(2)
)

=
∑

φ(a, x(1))x(2) ⊗ x(3) =
∑

∂La (x(1))⊗ x(2).

Moreover, we have following results :

Lemma 4.10. For any a, b ∈ N+(V ), ∂La ∂Rb = ∂Rb ∂
L
a .

Lemma 4.11. For x, y ∈ N(V ) and 1 ≤ i ≤ n, we have :

∂Li (xy) = ∂Li (x)y +
∑

x(0)φ((vi)(−1), x(−1))∂L(vi)(0)
(y).

Proof. At first, from the definition,

∆(xy) =
∑

x(1)((x(2))(−1).y(1))⊗ (x(2))(0)y(2).

so the action of ∂Li gives :

∂Li (xy) =
∑

φ(vi, x(1)((x(2))(−1).y(1)))(x(2))(0)y(2)

=
∑(

φ(vi, x(1))ε((x(2))(−1).y(1)) + ε(x(1))φ(vi, (x(2))(−1).y(1))
)

(x(2))(0)y(2)

=
∑

φ(vi, x)y + φ(vi, x(−1).y(1))x(0)y(2)

= ∂Li (x)y +
∑

φ((vi)(−1), x(−1))x(0)∂
L
(vi)(0)

(y).
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4.8.2 Taylor Lemma
This subsection is devoted to generalizing the Taylor Lemma in [40] to diagonal

type Nichols algebras. We keep notations from the last subsection and suppose that
G = Zn.

Remark 4.13. As remarked in the beginning of Section 4.7.4, derivations constructed
in Section 4.8.1 can be similarly defined on T (V ).

For any a ∈ T (V ), we have defined ∂La : T (V ) → T (V ), which will be denoted by
∂a in this subsection.

From now on, we fix a homogeneous element w ∈ T (V ) of degree α (the degree
given by Zn), denote qα,α = χ(α, α) and

T (V )∂w = {v ∈ T (V )| ∂w(v) = 0}.

Remark 4.14. It is easy to see that if w ∈ T (V ) is a non-constant element, ∂w is a
locally nilpotent linear map because it decreases the degree when acts on an element.

Lemma 4.12 (Taylor Lemma). Suppose that q is not a root of unity. If there exists
some homogeneous element a ∈ T (V ) such that ∂w(a) = 1, then a is free over T (V )∂w
and as vector spaces, we have :

T (V ) = T (V )∂w ⊗C C[a].

Proof. Recall that α is the degree of w.
Because T (V ) is Zn-graded and ∂w is a linear map of degree −α, we may suppose

that a is homogeneous of degree α.
It is clear that T (V )∂w ⊗ C[a] ⊂ T (V ). Now we prove the other inclusion.
Because we are working under the diagonal hypothesis, a simple computation gives

that
∂nw(an) = (n)qα,α !.

Then if for some xi ∈ T (V )∂w , ∑xia
i = 0, applying ∂w sufficiently many times will

force all xi to be zero.
Let x ∈ T (V ) be a homogeneous element. Then ∂w(x) is also homogeneous. We

let µ denote the degree of x and n ∈ N a positive integer such that ∂nw(x) 6= 0 but
∂n+1
w (x) = 0. If x ∈ T (V )∂w , the lemma is proved. Now we suppose that x /∈ T (V )∂w ,

which implies that n > 0.
We let λ denote the degree of ∂nw(x) and qα,λ = χ(α, λ), then

∂nw(∂nw(x)an) = qnα,λ∂
n
w(x)∂nw(an).

If we define
X = x− 1

(n)qα,α !
1
qnα,λ

∂nw(x)an,

then X ≡ x (mod T (V )∂w ⊗ C[a]) and

∂nw(X) = ∂nw(x)− 1
(n)qα,α !

1
qnα,λ

qnα,λ∂
n
w(x)∂nw(an) = 0.

So the lemma follows by induction on the nilpotent degree of x.
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For a homogeneous element b ∈ T (V ), let ∂◦b denote its degree.

Remark 4.15. Let w ∈ T (V ) be an element such that it has non-zero image in N(V ).
As the pairing we are considering is non-degenerate, the element a always exists if q
is not a root of unity.

We denote qii = χ(αi, αi) and suppose that q is not a root of unity.

Theorem 4.5. Let w = vi for some 1 ≤ i ≤ n and a ∈ T (V ) be a homogeneous
element satisfying ∂i(a) = 1. We dispose −∂◦vi the degree of a and define the adjoint
action of C[a] on T (V )∂i by : for a homogeneous element b ∈ T (V )∂i ,

a · b = ab− χ(∂◦a, ∂◦b)ba.

Then we can form the crossed product of C[a] and T (V )∂i with the help of this action,
which is denoted by T (V )∂i]C[a]. With this construction, the multiplication gives an
isomorphism of algebra :

T (V ) ∼= T (V )∂i]C[a].

Proof. At first, we should show that the action defined above preserves T (V )∂i . Let
b ∈ T (V )∂i and denote qi,b = χ(∂◦vi, ∂◦b). Then

∂i(a · b) = ∂i(ab)− q−1
i,b ∂i(ba)

= ∂i(a)b+ χ(∂◦vi, ∂◦a)a∂i(b)− q−1
i,b ∂i(b)a− q−1

i,b qi,bb∂i(a)
= ∂i(a)b− b∂i(a) = 0,

where equations ∂i(b) = 0 and ∂i(a) = 1 are used. So the crossed product is well
defined.

Note that a is primitive. We proceed to prove that the multiplication is a morphism
of algebra : what needs to be demonstrated is that for any m,n ∈ N and homogeneous
elements x, y ∈ T (V )∂w ,

(x⊗ am)(y ⊗ an) = xamyan.

From the definition, it suffices to show that

(1⊗ am)(y ⊗ 1) = amy.

At first, it should be pointed out that from the definition, the action of C[a] on
T (V )∂i is just the commutator coming from a braiding. If we let Φ denote the linear
map in Theorem 4.1, then :

(1⊗ am)(y ⊗ 1) = (Φ⊗ id)(∆(am)(y ⊗ 1)).

So it suffices to prove that

m ◦ (Φ⊗ id)(∆(am)(y ⊗ 1)) = amy.
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We proceed to show this by induction.
For m = 1,

m ◦ (Φ⊗ id)(∆(a)(y ⊗ 1)) = m ◦ (Φ⊗ id)(ay ⊗ 1 + χ(∂◦a, ∂◦y)y ⊗ a)
= ay − χ(∂◦a, ∂◦y)ya+ χ(∂◦a, ∂◦y)ya
= ay.

For the general case, we denote ∆(am−1)(y ⊗ 1) = ∑
x′ ⊗ x′′, then

m ◦ (Φ⊗ id)(∆(am)(y ⊗ 1))
= m ◦ (Φ⊗ id)

(
(a⊗ 1 + 1⊗ a)

(∑
x′ ⊗ x′′

))
= m ◦ (Φ⊗ id)

(∑
ax′ ⊗ x′′ +

∑
χ(∂◦a, ∂◦x′)x′ ⊗ ax′′

)
=

∑
aΦ(x′)x′′ −

∑
χ(∂◦a, ∂◦x′)Φ(x′)ax′′ +

∑
χ(∂◦a, ∂◦x′)Φ(x′)ax′′

=
∑

aΦ(x′)x′′

= amy,

where the last equality comes from the induction hypothesis.
Remark 4.16. In the theorem, we need to take the opposite of the degree of a because
it acts as a differential operator, which has negative degree. But to get an isomorphism,
a positive one is needed.

4.9 Primitive elements
This last section is devoted to giving a proof of Theorem 4.2.
At first, as in the construction of Section 4.7, let φ : N(V ) ⊗ N(V ) → C be a

non-degenerate pairing between Nichols algebras.
For x ∈ T (V ), we let ∆i,j(x) denote the component of ∆(x) of bidegree (i, j).

Proposition 4.20. Let x ∈ ker(Sn) be a non-zero solution of equation Snx = 0 of
level n. Then for any i = 1, · · · , n, ∂Ri (x) = 0.
Proof. At first, we prove that ∂Ri (x) = 0. From the definition of ∂Ri and the fact that
φ is graded, the possible non-zero terms in ∂Ri (x) are those belonging to ∆n−1,1(x) in
∆(x).

From the definition of the coproduct, ∆n−1,1 corresponds to the action of the ele-
ment ∑

σ∈Sn−1,1

Tσ.

It is clear that
Sn−1,1 = {1, σn−1, σn−1σn−2, · · · , σn−1 · · · σ1},

so in fact, ∆n−1,1 corresponds to the part Tn in the decomposition of Sn. The condition
of x being of level n means that Tnx = 0, thus

(id⊗ φ(vi, ·)) ◦∆n−1,1(x) = 0,

and so ∂Ri (x) = 0.
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Corollary 4.4. With the assumption in the last proposition, for any non-constant
a ∈ T (V ), we have ∂Ra (x) = 0.

Proposition 4.21. Let x ∈ T (V ) be a homogeneous element which is not a constant.
If for any non-constant element a ∈ T (V ), ∂Ra (x) = 0, then ∆(x)−x⊗1 ∈ T (V )⊗I(V ),
x ∈ I(V ).

Proof. If for any a ∈ T (V ), ∂Ra (x) = 0, then ∑x(1)φ(a, x(2)) = 0 for any a. We choose
x(1) to be linearly independent. If x(2) is not a constant, it must be in the right radical
of φ, which is exactly I(V ).

So ∆(x) − x ⊗ 1 ∈ T (V ) ⊗ I(V ). We obtain that x ∈ I(V ) by applying ε ⊗ id on
both sides.

It is clear that if x ∈ ker(S2) be a non-zero solution of S2x = 0 with level 2, then
x is primitive.

Theorem 4.6. Let n ≥ 2 and x ∈ ker(Sn) be a non-zero solution of equation Snx = 0
with level n. Then x is primitive and it is in Im(Pn).

Proof. The case n = 2 is clear.
Let n > 3 and x be a solution of equation Snx = 0 with level n. It suffices to prove

that ∆i,n−i(x) = 0 for any 2 ≤ i ≤ n− 2.
From the definition, components in ∆i,n−i(x) can be obtained by acting a shuffle

element on x, we want to show that ∆i,n−i(x) = ∑
x′ ⊗ x′′ = 0.

From Corollary 4.4, x is of level n implies that for any non-constant a ∈ T (V ),
∂Ra (x) = 0. So from Proposition 4.21, ∆(x)−x⊗1 ∈ T (V )⊗I(V ) and then x′′ ∈ I(V ),
Sn−ix

′′ = 0. It is easy to see that there exists a positional embedding ι : Bn−i ↪→ Bn

such that

ι(Sn−i)
 ∑
σ∈Si,n−i

Tσ

 (x) = 0,

which means that the equation ι(Sn−i)v = 0 has a non-zero solution in C[Xx]. It
contradicts Lemma 4.5.

Corollary 4.5. Let n ≥ 2 and En be the set of level n solutions of equation Snx = 0
in V ⊗n. Then En is a subspace of T (V ). If we denote P = ⊕

n≥2En, then P is a coideal
and the ideal K generated by P in T (V ) is contained in I(V ).





Chapitre 5

Specialization of quantum groups :
non-symmetrizable case

5.1 Introduction

5.1.1 Motivations
Quantized enveloping algebras (quantum groups) Uq(g) are constructed by V. Drin-

fel’d and M. Jimbo in the eighties of the last century in the aim of deforming the usual
enveloping algebra associated to symmetrizable Kac-Moody Lie algebras g to construct
solutions of Yang-Baxter equations. They motivate numerous work in the last decade
such as pointed Hopf algebras, canonical (crystal) bases, knot invariants, quiver re-
presentations and Hall algebras, (quantum) cluster algebras, Hecke algebras, quantum
affine and toroidal algebras, and so on.

In the original definition of quantum groups in generators and relations, the symme-
trizable condition is essential in writing down explicitly the quantized Serre relations.
With this explicit expression, it is not difficult to construct a specialization map sen-
ding q to 1 to recover the enveloping algebra U(g). It is shown to be an isomorphism
of Hopf algebra in Lusztig [55]. It should be remarked that the well-definedness of the
specialization map depends on the knowledge of the quantized Serre relations and the
Gabber-Kac theorem in Kac-Moody Lie algebras.

In a survey article [45], M. Kashiwara posed the following problem : has a crystal
graph for non-symmetrizable g a meaning ? He also remarked that the quantum group
Uq(g) associated to a general Kac-Moody Lie algebra g is not known at that time.

The first functorial (coordinate-free) construction of (the positive or negative part
of) a quantum group appears in the work of M. Rosso [73] with the name "quantum
shuffle algebras" and then explained in a dual language by Andruskiewitsch-Schneider
[6] named "Nichols algebras". These constructions largely generalize the definition of
the usual quantum group and can be applied in particular to the non-symmetrizable
case to obtain a half of the quantum group. Then the machinery of the quantum double
construction can be used to combine the positive and negative parts to yield the whole
quantum group.

Compared with the definition in generators and relations, although having many
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advantages, this construction does not fit for studying the specialization problem as
neither defining relations of the quantum group nor explicit relations in the Kac-Moody
Lie algebra is known in the non-symmetrizable case.

This chapter is devoted to understanding the specialization problem in the non-
symmetrizable case through studying the defining ideal of the corresponding Nichols
algebra.

5.1.2 Defining ideals in Nichols algebras
Let (V, σ) be a braided vector space. The tensor algebra T (V ) admits a braided

Hopf algebra structure by imposing a coproduct making elements in V primitive ; it
can be then generalized to the entire T (V ) in replacing the usual flip by the braiding.

If the braiding σ comes from an H-Yetter-Drinfel’d module structure on V over a
Hopf algebra H, the Nichols algebra can be defined as the quotient of T (V ) by some
maximal ideal and coideal I(V ) contained in the set of elements of degree no less than
2. We call I(V ) the defining ideal of the Nichols algebra N(V ).

As an example, for a symmetrizable Kac-Moody Lie algebra g, the negative part
U−q (g) of the corresponding quantum group is a Nichols algebra, in which case the
defining ideal I(V ) is generated as a Hopf ideal by quantized Serre relations. In general,
it is very difficult to find out a minimal generating set of I(V ) as a Hopf ideal in T (V ).

In [2], Andruskiewitsch posed some problems which guide the researches of this
domain and the following ones concerning defining ideals appear therein :

1. For those N(V ) having finite Gelfan’d-Kirillov dimension, decide a minimal ge-
nerating set of I(V ).

2. When is the ideal I(V ) finitely generated ?
The first general result on the study of the defining ideal is due to M. Rosso [73]

and P. Schauenburg [79] who characterizes it as the kernel of the total symmetrization
operators.

In [25], we proposed the notion of "level n" elements with the help of a decomposi-
tion of the total symmetrization operator in the braid group and proved the primitivity
of them. These elements could be easily computed and the degrees where they appear
are strongly restricted. This construction works for Nichols algebra of arbitrary type,
but we must pay the price that they may not generate the defining ideal, which is
essentially due to the strong condition we have posed.

Once restricted to some particular cases, with a slight modification on the condi-
tions of "level n" elements, we will show that it gives indeed a generating set.

5.1.3 Main ideas and results
The main part of this chapter is devoted to proposing some methods in the study

of a slightly modified version of the problems above. Firstly, we will restrict ourselves
to the Nichols algebras of diagonal type having infinite Gelfan’d-Kirillov dimensions.
Secondly, our principle has a pragmatic feature : we do not always desire a minimal
generating set of the defining ideal but are satisfied with finding generating subsets
fitting for solving concrete problems.
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We propose four subsets of the defining ideal I(V ) : left and right constants, left and
right pre-relations. The first two sets are defined as the intersection of kernels of left
and right differential operators and the last two are their subsets obtained by selecting
elements which are simultaneously contained in images of the Dynkin operators and
fixed by the action of the centre of the braid group.

Two main results (Theorem 5.1 and Theorem 5.2) in this chapter affirm that they
are all generating set of the defining ideal.

These results are then applied to the study of the specialization problem. In general,
if the generalized Cartan matrix C is not symmetric, we show in a counterexample
that the natural specialization map may not be well-defined. So in our approach, the
first step is passing to a symmetric matrix Av(C) by taking the average of the Cartan
matrix. A result due to Andruskiewitsch and Schneider ensures that this procedure
does not lose too many information.

Once passed to the averaged matrix, we prove in Theorem 5.3 that the specializa-
tion map Uq(Av(C))→ U(g(Av(C))) is well-defined and is surjective.

As the other application, we relate the degrees where pre-relations may appear
with integral points of some quadratic forms arising from the action of the centre of
the braid group. This allows us to reprove some well-known results in a completely
different way which we hope could shed light on the finite generation problem of I(V ).

5.1.4 Constitution of this chapter
After giving some recollections on Nichols algebras and braid groups in Section

5.2 and 5.3, we define the constants and pre-relations in Section 5.4 and 5.5 and
show that they are indeed generating sets. These results are then applied to study
the specialization problem in Section 5.6 and 5.7. Another application to the finitely
generating property is given in Section 5.8.

5.2 Recollections on Nichols algebras
Let k be an algebraically closed field of characteristic 0. All algebras and vector

spaces, if not specified, are over the field k.

5.2.1 Nichols algebras
Let H be a Hopf algebra and H

HYD be the category of H-Yetter-Drinfel’d modules
([6]).

Definition 5.1 ([6]). A graded braided Hopf algebra R = ⊕∞
n=0R(n) is called a

Nichols algebra of V if
1. R(0) ∼= k, R(1) ∼= V ∈ H

HYD ;
2. R is generated as an algebra by R(1) ;
3. R(1) is the set of all primitive elements in R.

We let N(V ) denote this braided Hopf algebra.
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A concrete construction of Nichols algebras can be given as a quotient of the braided
Hopf algebra T (V ).

Example 5.1 ([6]). Let V ∈ H
HYD be an H-Yetter-Drinfel’d module. There exists a

braided tensor Hopf algebra structure on the tensor algebra

T (V ) =
∞⊕
n=0

V ⊗n.

1. The multiplication on T (V ) is given by the concatenation.
2. The coalgebra structure is defined on V by : for any v ∈ V , ∆(v) = v⊗1+1⊗v,
ε(v) = 0. Then it can be extended to the whole T (V ) by the universal property
of T (V ) as an algebra.

For k ≥ 2, let T≥k(V ) = ⊕
n≥k V

⊗n and I(V ) be the maximal coideal of T (V )
contained in T≥2(V ). Then I(V ) is also a two-sided ideal ; the Nichols algebra N(V )
associated with V is isomorphic to T (V )/I(V ) as a braided Hopf algebra. We let S
denote the convolution inverse of the identity map on N(V ).

5.2.2 Nichols algebras of diagonal type
Let G = ZN be an abelian group and H = k[G] be its group algebra. We let Ĝ

denote the character group of G. Let V ∈ H
HYD be an H-Yetter-Drinfel’d module of

dimensional N . Then V has a decomposition into linear subspaces V = ⊕
g∈G Vg where

Vg = {v ∈ V | δ(v) = g ⊗ v}.
We let I = {1, · · · , N} denote the index set.

Definition 5.2. Let V ∈ H
HYD be an H-Yetter-Drinfel’d module of dimension N . V is

called of diagonal type if there exists a basis {v1, · · · , vN} of V , elements g1, · · · , gN ∈
G and characters χ1, · · · , χN ∈ Ĝ such that vi ∈ Vgi and for any g ∈ G,

g.vi = χi(g)vi.

We call T (V ) and N(V ) of diagonal type if V is so.
If V ∈ H

HYD is of diagonal type, the braiding σV,V has an explicit form : for
1 ≤ i, j ≤ N ,

σV,V (vi ⊗ vj) = χj(gi)vj ⊗ vi.

As a consequence, σV,V is completely determined by the matrix (χj(gi))1≤i,j≤N ∈
MN(k). We denote qij = χj(gi) and call (qij)1≤i,j≤N the braiding matrix associated
to σV,V .

Let k× = k\{0}. For an arbitrary matrix A = (qij) ∈MN(k) with coefficients in k×,
we let N(VA) denote the Nichols algebra associated to the H-Yetter-Drinfel’d module
V of diagonal type with the braiding matrix A. If the matrix A under consideration
is fixed, we denote it by N(V ) for short.
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5.2.3 Differential operators
Let v1, · · · , vN be a basis of V as fixed in the last subsection.

Definition 5.3 ([47]). Let A and B be two Hopf algebras with invertible antipodes.
A generalized Hopf pairing between A and B is a bilinear form ϕ : A × B → k such
that :

1. For any a ∈ A, b, b′ ∈ B, ϕ(a, bb′) = ∑
ϕ(a(1), b)ϕ(a(2), b

′) ;
2. For any a, a′ ∈ A, b ∈ B, ϕ(aa′, b) = ∑

ϕ(a, b(2))ϕ(a′, b(1)) ;
3. For any a ∈ A, b ∈ B, ϕ(a, 1) = ε(a), ϕ(1, b) = ε(b).

Let ϕ be a generalized Hopf pairing on T (V ) such that ϕ(vi, vj) = δij (Kronecker
delta notation). This pairing is in general not non-degenerate and its kernel is given by
the defining ideal I(V ), so it may pass the quotient to give a non-degenerate generalized
Hopf pairing on N(V ) (see, for example, Section 3.2 in [3] for details).

Definition 5.4 ([25]). For any a ∈ T (V ), the left and right differential operators
associated to the element a are defined by :

1. ∂La : T (V )→ T (V ), ∂La (x) = ∑
ϕ(a, x(1))x(2) ;

2. ∂Ra : T (V )→ T (V ), ∂Ra (x) = ∑
x(1)ϕ(a, x(2)).

If a = vi for some i ∈ I, we will denote them by ∂Li and ∂Ri , respectively.

These differential operators descend to N(V ) to give an endomorphism of N(V ).
We keep the notations ∂La and ∂Ra for this induced endomorphsm.

The following known lemma, whose proof is trivial, will be useful. It also holds
when T (V ) is replaced by N(V ).

Lemma 5.1. 1. For any a, x ∈ T (V ), we have :

∆(∂La (x)) =
∑

∂La (x(1))⊗ x(2), ∆(∂Ra (x)) =
∑

x(1) ⊗ ∂Ra (x(2)).

2. For any a, b ∈ T (V ), ∂La ∂Rb = ∂Rb ∂
L
a holds.

5.3 Identities in braid groups

5.3.1 Braid groups
We suppose that n ≥ 2 is an integer. Let Sn denote the symmetric group : it acts

on an alphabet with n letters by permuting their positions. It can be generated by the
set of transpositions {si = (i, i+ 1)| 1 ≤ i ≤ n− 1}.

Let Bn denote the braid group of n strands. It is defined by generators σi for
1 ≤ i ≤ n− 1 and relations :

σiσj = σjσi, for |i− j| ≥ 2; σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n− 2.

Let σ ∈ Sn and σ = si1 · · · sir be a reduced expression of σ. We denote the correspon-
ding lifted element Tσ = σi1 · · ·σir ∈ Bn. This gives a linear map T : k[Sn] → k[Bn]
called Matsumoto section.
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5.3.2 Defining ideals
The total symmetrization operator in k[Bn] is defined by :

Sn =
∑
σ∈Sn

Tσ ∈ k[Bn].

As V ∈ H
HYD, Bn acts naturally on V ⊗n. We look Sn as a linear operator in End(V ⊗n).

Proposition 5.1 ([73], [79]). Let V be an H-Yetter-Drinfel’d module. Then

N(V ) =
⊕
n≥0

(
V ⊗n/ ker(Sn)

)
.

After this proposition, N(V ) can be viewed as imposing some relations in T (V ),
locating defining relations of N(V ) can be reduced to the study of each subspace
ker(Sn).

5.3.3 Particular elements in braid groups and their relations
We start by introducing some particular elements in the group algebra of braid

groups.

Definition 5.5. Let n ≥ 2 be an integer. We define the following elements in k[Bn] :

Garside element : ∆n = (σ1 · · ·σn−1)(σ1 · · ·σn−2) · · · (σ1σ2)σ1;

Central element : θn = ∆2
n;

Right differential element : Tn = 1 + σn−1 + σn−1σn−2 + · · ·+ σn−1σn−2 · · ·σ1;
Right Dynkin element : Pn = (1− σn−1σn−2 · · ·σ1)(1− σn−1σn−2 · · ·σ2) · · · (1− σn−1);

T ′n = (1− σ2
n−1σn−2 · · · σ1)(1− σ2

n−1σn−2 · · ·σ2) · · · (1− σ2
n−1);

Left differential element : Un = 1 + σ1 + σ1σ2 + · · ·+ σ1σ2 · · ·σn−1;
Left Dynkin element : Qn = (1− σ1σ2 · · · σn−1)(1− σ1σ2 · · · σn−2) · · · (1− σ1);

U ′n = (1− σ2
1σ2 · · ·σn−1)(1− σ2

1σ2 · · ·σn−2) · · · (1− σ2
1).

We give a summary for some known results on the relations between these elements :

Proposition 5.2 ([25], [48]). The following identities hold :
1. for n ≥ 3, Z(Bn), the centre of Bn, is generated by θn ;
2. for any 1 ≤ i ≤ n− 1, σi∆n = ∆nσn−i ;
3. θn = ∆2

n = (σn−1σn−2 · · ·σ1)n = (σ2
n−1σn−2 · · · σ1)n−1 ;

4.
(∑n−2

k=0(σ2
n−1σn−2 · · ·σ1)k

)
(1− σ2

n−1σn−2 · · ·σ1) = 1−∆2
n = 1− θn ;

5. Sn = T2T3 · · ·Tn = U2U3 · · ·Un ;
6. TnPn = T ′n, UnQn = U ′n.

We fix the notation for the embeddings of braid groups in a fixed position.

Definition 5.6. For m ≥ 3 and 2 ≤ k ≤ m − 1, we let ιmk : Bk → Bm denote the
group homomorphism satisfying ιmk (σi) = σm−k+i.
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5.3.4 Relations with differential operators
The following lemma explains the relation between the operator Tn and the diffe-

rential operator ∂Ri defined in the Section 5.2.3.

Lemma 5.2. Let x ∈ T n(V ). The following statements are equivalent :
1. Tnx = 0 ;
2. For any i ∈ I, ∂Ri (x) = 0.

Proof. It comes from the following identity, which is clear from definition : for any
x ∈ T n(V ),

Tnx =
∑
i∈I

∂Ri (x)vi.

Remark 5.1. The same result holds for left operators : Unx = 0 if and only if for any
i ∈ I, ∂Li (x) = 0.

5.3.5 Tensor space representation of Bn

We call i = (i1, · · · , im) ∈ Nm a partition of n, denote by i ` n, if i1 + · · ·+ im = n.
As V is an H-Yetter-Drinfel’d module, the braid group Bn acts on V ⊗n, making

it a k[Bn]-module.
As the braiding is of diagonal type, we have the following decomposition of V ⊗n

into its submodules :
V ⊗n =

⊕
i∈I

k[Bn].vi11 · · · vimm , (5.1)

where I = {i = (i1, · · · , im)| i ` n}.
To simplify the notation, for i = (i1, · · · , im), we denote vi = vi11 · · · vimm and the

k[Bn]-module k[Xi] = k[Bn].vi.
We let H denote the set of invariants (V ⊗n)θn under the action of the central

element θn. As θn ∈ Z(Bn), θnvi = vi implies that k[Xi] ⊂ H. Moreover, there exists
some subset J ⊂ I such that

H =
⊕
i∈J

k[Xi]

(see the argument in the Section 6.1 of [25]).
We end this subsection by the following remark, which will be frequently used in

the following discussions.

Remark 5.2. Let i ` n, x ∈ k[Xi] and v ∈ V . Then (id−σn · · ·σ1)(vx) is in the ideal
generated by x.

To show this, notice that the coefficient λ such that σn · · ·σ1(vx) = λxv only
depends on the chosen partition i, so is a constant for any x ∈ k[Xi].
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5.3.6 Defining ideals of degree 2
Elements of degree two in the defining ideal can be tackled by hand. They are

characterized by the following proposition :

Proposition 5.3. The following statements are equivalent :
1. qijqji = 1 ;
2. vivj − qijvjvi ∈ kerS2 ;
3. θ2(vivj) = vivj.

Proof. It suffices to prove that (2) is equivalent to (3). Notice that vivj − qijvjvi =
P2(vivj) and S2 = T2. Then T2P2(vivj) = 0 if and only if T ′2(vivj) = 0 if and only if
θ2(vivj) = vivj.

5.4 Another characterization of I(V )
In this section, we give a characterization for a generating set of the defining ideal

I(V ) using kernels of operators Tn. This is motivated by the work of Frønsdal and
Galindo [29]. In fact, we could use the left or right differential operators to give a
complete characterization of elements generating the defining ideal.

The following definition is due to Frønsdal-Galindo [29] :

Definition 5.7. An element w ∈ T n(V ) is called a right (left) constant of degree n
if Tnx = 0 (Unx = 0). We let ConRn (ConLn) denote the vector space generated by all
right (left) constants of degree n and for any m ≥ 2,

ConR≤m = span
 ⋃

2≤n≤m
ConRn

 , ConR = span
⋃
n≥2

ConRn

 ,

ConL≤m = span
 ⋃

2≤n≤m
ConLn

 , ConL = span
⋃
n≥2

ConLn

 ,
where the notation span(X) stands for the vector space generated by the set X.

The main technical tool is the following non-commutative version of the Taylor
lemma for the diagonal braiding.

Lemma 5.3 (Taylor Lemma, [29]). 1. (Left version) For any integer l ≥ 1 and
i = (i1, · · · , il) ∈ {1, · · · , l}l, there exists

Ai =
∑
σ∈Sl

Aσviσ(1) · · · viσ(l) ∈ T
l(V )

with Aσ ∈ k such that for any x ∈ Tm(V ),

x = c(x) +
∑
l≥1

∑
i∈{1,··· ,l}l

Ai∂Li1 · · · ∂
L
il

(x),

where c(x) ∈ Tm(V ) satisfying ∂Li (c(x)) = 0 for any i ∈ I.
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2. (Right version) For any integer l ≥ 1 and i = (i1, · · · , il) ∈ {1, · · · , l}l, there
exists

Bi =
∑
σ∈Sl

Bσviσ(1) · · · viσ(l) ∈ T
l(V )

with Bσ ∈ k such that for any x ∈ Tm(V ),

x = d(x) +
∑
l≥1

∑
i∈{1,··· ,l}l

∂Ri1 · · · ∂
R
il

(x)Bi,

where d(x) ∈ Tm(V ) satisfying ∂Ri (d(x)) = 0 for any i ∈ I.

Lemma 5.4. For anym ≥ 2, ConL≤m and ConR≤m are coideals in the coalgebra T≤m(V ).

Proof. We prove it for ConR≤m. Let x ∈ kerTn for some n. Then for any i ∈ I, ∂Ri (x) =
0, which implies that

0 = ∆(∂Ri (x)) =
∑

x(1) ⊗ ∂Ri (x(2))

and then for any i ∈ I, ∂Ri (x(2)) = 0. This gives ∆(x)− x⊗ 1 ∈ T≤m(V )⊗ConR≤m and

∆(x) ∈ ConR≤m ⊗ T≤m(V ) + T≤m(V )⊗ ConR≤m.

For a ring R and a subset X ⊂ R, we let < X >ideal denote the ideal in R generated
by X.

Theorem 5.1. For any m ≥ 2, let

Rm =
〈
ConR≤m

〉
ideal
∩ Tm(V ).

Then Rm = kerSm.

Proof. Since Sr = T2T3 · · ·Tr and ker(Tr : T r(V ) → T r(V )) ⊂ kerSr ⊂ I(V ), the
inclusion Rm ⊂ kerSm comes from the fact that I(V ) = ⊕

m≥2 kerSm is an ideal.
It suffices to prove the other inclusion. Let x ∈ kerSm. We prove that x ∈ Rm by
induction on m. The case m = 2 is clear as T2 = S2.

Suppose that for any 2 ≤ k ≤ m − 1, Rk = kerSk. We affirm that it suffices to
show that if for any i ∈ I, ∂Ri (x) ∈ kerSm−1, then x ∈ Rm. Indeed, for an element
x ∈ kerSm, there are two cases :

1. Tmx = 0 ; in this case, x ∈ Rm is clear from definition.
2. Tmx 6= 0 ; from the decomposition of Sn, Tmx ∈ kerSm−1, which implies that

for any i ∈ I, ∂Ri (x) ∈ kerSm−1. The proof will be terminated if the affirmation
above is proved.

We proceed to show the affirmation above. The following lemma is needed.

Lemma 5.5. For any k ≥ 3, if x ∈ Rk, then ∂Ri (x) ∈ Rk−1 for any i ∈ I.
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We continue the proof of the theorem. Let x ∈ Tm(V ) satisfying that for any i ∈ I,
∂Ri (x) ∈ kerSm−1 = Rm−1. From the right version of the Taylor lemma,

x = d(x) +
∑
l≥1

∑
i∈{1,··· ,l}l

∂Ri1 · · · ∂
R
il

(x)Bi.

The first term d(x) in the right hand side satisfies Tm(d(x)) = 0 so it is in Rm.
Moreover, the hypothesis on ∂Ri (x) and the lemma above force ∂Ri1 · · · ∂

R
in(x) to be in

Rm−n, so the second term is in Rm.

Now it suffices to prove the lemma.

Proof of the lemma. It suffices to deal with the case where x = urw ∈ Rk such that
r ∈ kerTs ∩ k[Xi] for some i ` s, u ∈ T p(V ) and w ∈ T q(V ) satisfying k = s+ p+ q.

We have the following decomposition of Tk : let

T 1
k = 1 + σk−1 + σk−1σk−2 + · · ·+ σk−1 · · ·σp+s+1,

T 2
k = σk−1 · · ·σp+s(ιp+ss (Ts)),

T 3
k = σk−1 · · ·σp−1 + · · ·+ σk−1 · · ·σ1.

Then Tk = T 1
k + T 2

k + T 3
k .

It is clear that T 2
kx = 0. On the other hand, T 1

kx and T 3
kx are in Rk as from Remark

5.2, they are in the ideal generated by r. Moreover, it should be remarked that in Tkx,
r is always contained in the first k − 1 tensor terms. This is true from the definition
of T 1

k and T 3
k .

As a conclusion, we have shown that Tkx ∈ Rk, so ∂Ri (x) ∈ Rk−1 for any i ∈ I,
after the relation between Tk and ∂Ri given in the proof of Lemma 5.2.

In the proof of the previous theorem, we have already shown the following propo-
sition, which can be looked as a sort of "invariance under integration".

Proposition 5.4. Let x ∈ Tm(V ) such that for any i ∈ I, ∂Ri (x) ∈ Rm−1. Then
x ∈ Rm.

Combined this proposition with the lemma above, we obtain the following charac-
terization of Rm or kerSm.

Corollary 5.1. For x ∈ Tm(V ), the following statements are equivalent :
1. x ∈ Rm ;
2. for any i ∈ I, ∂Ri (x) ∈ Rm−1.

These results are still correct when the prefix "right" is replaced by "left". The proof
above can be adapted by using the left version of the Taylor lemma. We omit these
statements but end with the following corollary.

Corollary 5.2. Let
Lm =

〈
ConL≤m

〉
ideal
∩ Tm(V ).

Then Rm = Lm = kerSm.
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As a conclusion, to find the generating relations, it suffices to consider those in the
intersection of ker ∂Ri for all i ∈ I, or the intersection of ker ∂Li for all i ∈ I. We will
see in the next section a sharper result permitting us to get more constraints.

Remark 5.3. Globally, there is no difference between the left and right cases. But
it should be remarked that an element annihilated by all right differentials is not
necessarily contained in the kernel of all ∂Li . We will return to this problem in Section
5.5.2.

The following lemma is an easy consequence of Lemma 5.1.

Lemma 5.6. For any i ∈ I and m ≥ 3, ∂Ri (∂Li ) sends ConL≤m (ConR≤m) to ConL≤m−1
(ConR≤m−1).

5.5 Defining relations in the diagonal type

5.5.1 More constraints
In this subsection, we propose an another set of generators in I(V ) by giving more

constraints on the left and right constants, these constraints give a restriction on the
degrees where generators may appear. It should be mentioned that under the finite
dimensional assumption, a generating set of the defining ideal is found recently by I.
Angiono ([7], [8]). We start from some motivations of the main definition.

Proposition 5.5 ([25]). The Hopf ideal in H
HYD generated by⊕n≥2 (ker(Sn) ∩ Im(Pn))

is I(V ).

The main result in the last section could be used to give more constraints.

Corollary 5.3. The Hopf ideal in H
HYD generated by⊕n≥2 (ker(Tn) ∩ Im(Pn)) is I(V ).

From this corollary, to find relations imposed in N(V ), it suffices to concentrate on
elements in Im(Pn) which are killed by all right differentials ∂Ri .

After Proposition 5.2, to find a generating set of I(V ), it suffices to consider the
solution of the equation T ′nx = TnPnx = 0 in T n(V ). This observation motivates the
following definition :

Definition 5.8. We call a non-zero element v ∈ T n(V ) a right pre-relation of degree
n if

1. Tnv = 0 and ιnn−1(T ′n−1)v 6= 0 ;
2. v ∈ Im(Pn) ;
3. θnv = v.

Let Relnr denote the vector space generated by all right pre-relations of degree n and
Relr denote the vector space generated by ⋃n≥2 Relnr . Elements in Relr are called right
pre-relations.
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We can similarly define left pre-relations of degree n by replacing Tn by Un, T ′n−1 by
U ′n−1 and Pn by Qn in the definition above. Let Relnl denote the vector space generated
by all left pre-relations of degree n and Rell denote the vector space generated by⋃
n≥2 Relnl . Elements in Rell are called left pre-relations.

Remark 5.4. We call them pre-relations as they may be redundant.

The main result of this section is the following theorem.

Theorem 5.2. The Hopf ideal generated by Relr is I(V ).

The rest of this subsection is devoted to giving the proof of this theorem. The main
idea of the proof is to exclude redundant elements in the union of all kerTn.

Recall the definition of T ′n :

T ′n = (1− σ2
n−1σn−2 · · · σ1)(1− σ2

n−1σn−2 · · ·σ2) · · · (1− σ2
n−1σn−2)(1− σ2

n−1).

We define the following elements in k[Bn] :

Xm,n = (1− σ2
n−1σn−2 · · ·σn−m) · · · (1− σ2

n−1σn−2)(1− σ2
n−1) = ιnm+1(T ′m+1).

Then X1,n = (1− σ2
n−1) and Xn−1,n = T ′n.

Lemma 5.7. If T ′nv = 0 and Xn−2,nv 6= 0, then θnv = v.

Proof. From definition, T ′nv = (1−σ2
n−1σn−2 · · ·σ1)Xn−2,nv. If Xn−2,nv 6= 0, it will be a

solution of the equation (1− σ2
n−1σn−2 · · ·σ1)x = 0. After Proposition 5.2, multiplying

both sides by ∑n−2
k=0(σ2

n−1σn−2 · · ·σ1)k gives θnXn−2,nv = Xn−2,nv. This implies θnv = v
after the argument in Section 5.3.5.

Corollary 5.4. If v ∈ T n(V ) such that T ′nv = 0 and for any 2 ≤ k ≤ n−1, ιnk(θk)v 6= v,
then θnv = v.

Proof. From the lemma above, it suffices to show that Xn−2,nv 6= 0. Otherwise, take
the smallest k such that Xk−1,nv 6= 0 but Xk,nv = 0. As Xk,n = ιnk+1(T ′k+1), the lemma
above can be applied to this case and it gives ιnk+1(θk+1)v = v. This contradicts the
hypothesis.

Now let v ∈ T n(V ) be a solution of the equation T ′nx = Xn−1,nx = 0. There are
two possibilities :

1. Xn−2,nv 6= 0. As we have shown in the lemma above, θnv = v. So Pnv is a right
pre-relation.

2. Xn−2,nv = 0. In this case, there exists a smallest k such that Xk−1,nv 6= 0 but
Xk,nv = 0. As a corollary, we have ιnk+1(θk+1)v = v.

We would like to show that only relations falling into the first case are interesting.
To be more precise, if v falls into the second case, Pnv can be generated by lower
degree elements in the first case. This is the following lemma.

Lemma 5.8. If v ∈ T n(V ) is an element such that T ′nv = 0 and Xn−2,nv = 0, then
Pnv is in the ideal generated by right pre-relations of lower degrees.
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Proof. We apply induction on n. There is nothing to prove in the case n = 2.
Let v ∈ T n(V ) such that T ′nv = 0 and Xn−2,nv = 0. Let k be the smallest integer

such that Xk−1,nv 6= 0 but Xk,nv = 0.
After the definition of Pn, the following identity holds :

Pnv = (1− σn−1 · · ·σ1) · · · (1− σn−1 · · ·σk+1)ιnk+1(Pk+1)v.

We write
v =

∑
i

∑
j`k+1

ui ⊗ wi,j,

where ui ∈ T n−k−1(V ) are linearly independent and wi,j ∈ T k+1(V ) ∩ k[Xj]. Then
Xk,n(v) = 0 implies that ∑

j`k+1
Xk,nwi,j = 0,

where we view wi,j as if in the last k+ 1 positions. As these k[Xj] are disjoint, for any
j, Xk,nwi,j = 0.

There are two cases : recall that Xk,n = ιnk+1(T ′k+1),

1. Xk−1,nwi,j = 0. In this case, after applying the induction hypothesis on wi,j,
Pkwi,j is generated by right pre-relations of lower degrees. So Pn(uiwi,j) is gene-
rated by right pre-relations of lower degrees after Remark 5.2.

2. Xk−1,nwi,j 6= 0, then Pkwi,j is a right pre-relation of degree k and Pn(uiwi,j) is
generated by right pre-relations of lower degree after Remark 5.2.

As a summary, for any i and j, Pn(uiwi,j) is generated by right pre-relations lower
degree, so is Pnv.

As a conclusion, to solve the equation Tnx = 0 in the aim of finding defining
relations, it suffices to work inside the k[Bn]-module k[Xi] such that θn(vi) = vi.

Example 5.2. We compute pre-relations of degree 2. It should be remarked that
Rel2r = Rel2l , as P2 = Q2 and T2 = U2.

In this case, it suffices to consider each k[Xi] where i = (s, t). The following facts
are clear after Proposition 5.3 :

1. T2P2 = 1 − θ2 acts as zero on Rel2r, so it suffices to consider the fixed points of
θ2 ;

2. θ2vi = vi if and only if qstqts = 1.

These observations give the following characterization of Rel2r :

Rel2r = span{vsvt − qstvtvs| s ≤ t such that qtsqst = 1}.

There is no redundant relations in this list and it coincides with the set of constants
of degree 2.
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5.5.2 Balancing left and right objects
We have remarked that in general, the left and right constants and pre-relations

may not coincide. This subsection is devoted to understanding symmetries between
left and right constants and pre-relations.

The following lemma is clear after Proposition 5.2.

Lemma 5.9. For any n ≥ 2, ∆nTn = Un∆n and ∆nPn = Qn∆n.

After the following result, the Garside element permutes left and right pre-relations.

Corollary 5.5. The Garside element ∆n induces a linear isomorphism Relnr ∼= Relnl .

Proof. As ∆2
n = θn acts as identity on Relnr , ∆n is a linear isomorphism. It suffices to

show that the image of ∆n is contained in Relnl .
Let w ∈ Relnr . We verify that ∆nw ∈ Relnl . The first condition holds as after the

lemma above, Un∆nw = ∆nTnw = 0 and the other point comes from the injectivity
of ∆n. If we write w = Pnv, then after the lemma again, ∆nw = ∆nPnv = Qn∆nv
implies ∆nw is in the image of Qn. The invariance under θn is clear.

A similar result holds when the pre-relations are replaced by constants.

Corollary 5.6. The Garside element ∆n induces a linear isomorphism Connr ∼= Connl .

Proof. It is clear that ∆n sends Connr to Connl , then it suffices to show that ∆n is an
isomorphism.

After the decomposition (5.1) and notations therein, we can write Connr and Connl
into direct sums of the k[Bn]-modules k[Xi] for i ` n such that the action of θn is given
by an invertible scalar on each summand space. So ∆n induces a linear isomorphism

k[Xi] ∩ Connr ∼= k[Xi] ∩ Connl

and then a linear isomorphism between Connr and Connl .

5.6 Generalized quantum groups

5.6.1 Generalized quantum groups
In the theory of Nichols algebras, if the Nichols algebra N(V ) is arising from a

Yetter-Drinfel’d module V ∈ H
HYD, we can form the bosonization N(V )#H, which

gives a true Hopf algebra. This construction, once applied to the Nichols algebra of
diagonal type associated to the data of a symmetrizable Kac-Moody Lie algebra, gives
the positive or negative part of the quantum group. But here, we would like to define
them in a more direct way.

Definition 5.9. Let A = (qij)1≤i,j≤N be a braiding matrix in MN(k×).
1. T≤0(A) is defined as the Hopf algebra generated by Fi, K±1

i for i ∈ I with
relations :

KiFjK
−1
i = q−1

ij Fj, KiK
−1
i = K−1

i Ki = 1;
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2. T≥0(A) is defined as the Hopf algebra generated by Ei, K ′±1
i for i ∈ I with

relations :
K ′iEjK

′−1
i = qijEj, K

′
iK
′−1
i = K ′−1

i K ′i = 1,

3. N≤0(A) is defined by adding all right pre-relations to T≤0(A) ;
4. N≥0(A) is defined by adding all left pre-relations to T≥0(A).

After Theorem 5.2, pre-relations generate the defining ideals, which are, after a
well-known result, radicals of a generalized Hopf pairing.

We define a generalized Hopf pairing ϕ : T≥0(A)× T≤0(A)→ k such that for any
i, j ∈ I,

ϕ(Ei, Fj) = δij
q − q−1 , ϕ(K ′i, Kj) = qij,

ϕ(Ei, Kj) = ϕ(K ′i, Fj) = 0.
Moreover, as its radicals coincide with defining ideals, it induces a non-degenerate
generalized Hopf pairing ϕ : N≥0(A)×N≤0(A)→ k.

The following quantum double construction permits us to define the generalized
quantum group.

Definition 5.10 ([47]). Let A, B be two Hopf algebras with invertible antipodes
and ϕ be a generalized Hopf pairing between them. The quantum double Dϕ(A,B) is
defined by :

1. As a vector space, it is A⊗B ;
2. As a coalgebra, it is the tensor product of coalgebras A and B ;
3. As an algebra, the multiplication is given by :

(a⊗ b)(a′ ⊗ b′) =
∑

ϕ(S−1(a′(1)), b(1))ϕ(a′(3), b(3))aa′(2) ⊗ b(2)b
′.

Definition 5.11. The generalized quantum group Nq(A) associated to the braided
matrix A is defined by :

Nq(A) = Dϕ(N≥0(A), N≤0(A))/(Ki −K ′i| i ∈ I),

where (Ki −K ′i| i ∈ I) is the Hopf ideal generated by these Ki −K ′i.

We can also similarly define the Hopf algebra Tq(A) by replacing N≥0(A) and
N≤0(A) by T≥0(A) and T≤0(A). Then Nq(A) is the quotient of Tq(A) by the Hopf
ideal generated by the defining ideals.

After an easy computation, the commutation relation between Ei and Fj is given
by :

[Ei, Fj] = δij
Ki −K−1

i

q − q−1 .

Remark 5.5. We use the notation Nq(A) instead of Uq(A) as, in general, it may not
related to the universal enveloping algebra associated to a Kac-Moody Lie algebra.
This will be explained in Example 5.3.
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5.6.2 Averaged quantum group
In the construction above, we are interested in a particular case where the braiding

matrix comes from a generalized Cartan matrix.
Let C = (cij)1≤i,j≤N be a generalized Cartan matrix in MN(Z), i.e., an integral

matrix satisfying :
1. cii = 2 ;
2. For any i 6= j, cij ≤ 0 ;
3. cij = 0 implies cji = 0.

Let q be a variable. The generalized quantum group associated to C is defined byNq(A)
where A = (qcij)1≤i,j≤N . This demands us to define Nq(A) on the field K = k(q), the
field of rational functions of one variable on k. In fact, to the convenience of further
discussion, we take K = k(q 1

2 ) since elements in our matrices may be contained in the
additive group 1

2Z.
It is natural to ask for the specialization problem of Nq(A) where A arises from a ge-

neralized Cartan matrix. But unfortunately, the specialization map is not well-defined
in most cases if A is not-symmetric. We will see in Example 5.3 a counterexample.

This phenomenon motivates us to modify the definition of a generalized quantum
group to respect the validity of the specialization map.

Definition 5.12. Let C ∈MN(Z) be a generalized Cartan matrix.
1. The averaged matrix associated to C is defined by Av(C) = (Av(C)ij)1≤i,j≤N

where Av(C)ij = 1
2(cij + cji). Then Av(C) ∈MN(Q).

2. The averaged quantum group associated to C is the generalized quantum group
associated to Av(C).

3. The quantum group associated to C is defined by :
(a) If C is symmetrizable, we respect the original definition of quantum groups

Uq(C) as a k(q 1
2 )-algebra.

(b) If C is non-symmetrizable, the quantum group Uq(C) is defined asNq(Av(C)),
it is a k(q 1

2 )-algebra.

We let N>0
q (C) (N<0

q (C)) denote the subalgebra of N≥0
q (C) (resp. N≤0

q (C)) gene-
rated by Ei (resp. Fi) for i ∈ I. They are Nichols algebras associated to the braiding
matrix A = (qcij) (resp. A′ = (q−cij)). The following result dues to N. Andruskiewitsch
and H.-J. Schneider shows that passing from N<0

q (C) to N<0
q (Av(C)) will not lose too

many informations.

Proposition 5.6 ([6]). Let V and V ′ be two Yetter-Drinfel’d modules of diagonal
type with braiding matrices (qij)1≤i,j≤N and (q′ij)1≤i,j≤N satisfying qijqji = q′ijq

′
ji for

any i, j ∈ I with respect to the bases v1, · · · , vN of V and v′1, · · · , v′N of V ′. Then
1. there exists a linear isomorphism ψ : N(V ) → N(V ′) such that for any i ∈ I,
ψ(vi) = v′i ;



5.6. Generalized quantum groups 95

2. this linear map ψ almost preserves the algebra structure : for any i, j ∈ I,

ψ(vivj) =
{
q′ijq

−1
ij v

′
iv
′
j if i ≤ j;

v′iv
′
j, if i > j.

After this result, the algebraic structure on N<0
q (C) can be pulled-back from that

on N<0
q (Av(C)) using this isomorphism.

Remark 5.6. We let C be a non-symmetrizable Cartan matrix. After Remark 1 and
Theorem 21 in [73], in order that N<0

q (C) to be of finite Gelfan’d-Kirillov dimen-
sion, the matrix Av(C) must be in MN(Z). This implies that most algebras we are
considering are of infinite Gelfand-Kirillov dimensions.

5.6.3 Bar involution in symmetric case
In this subsection, we suppose moreover that the braiding matrix is symmetric :

that is to say, qij = qji for any i, j ∈ I.
This hypothesis allows us to study the bar involution on the Nichols algebras. This

operation is very fundamental in the study of quantum groups, especially for canonical
(global crystal) bases.

Definition 5.13. The bar involution − : T (V ) → T (V ) is a k-linear automorphism
given by q 7→ q−1 and vi 7→ vi.

Definition 5.14. For any i ∈ I, we define ∂Ri , ∂Li ∈ Endk(T (V )) by the composition
of bar involution and ∂Ri , ∂Li .

We start from showing that bar involution descends to Nichols algebras. The fol-
lowing lemma is needed.

Lemma 5.10. For any i, j ∈ I, ∂Rj ∂Ri = q−1
ij ∂

R
i ∂

R
j .

Proof. The following formulas hold after direct verifications : for any i1, · · · , in ∈ I,

∂Rj (vi1 · · · vin) = qj,in∂
R
j (vi1 · · · vin−1)vin + vi1 · · · vin−1∂

R
j (vin),

∂Ri (vi1 · · · vin) = q−1
i,in∂

R
i (vi1 · · · vin−1)vin + vi1 · · · vin−1∂

R
i (vin).

Moreover, it should be remarked that it suffices to prove the lemma for monomials.
We use induction on the degree n of the monomial. The case n = 1 is trivial. Taking

a monomial vi1 · · · vin and using formulas above, we have :

∂Rj ∂
R
i (vi1 · · · vin)

= qj,inq
−1
i,in∂

R
j ∂

R
i (vi1 · · · vin−1)vin + q−1

i,in∂
R
i (vi1 · · · vin−1)∂Rj (vin) + ∂Rj (vi1 · · · vin−1)∂Ri (vin),

∂Ri ∂
R
j (vi1 · · · vin)

= qj,inq
−1
i,in∂

R
i ∂

R
j (vi1 · · · vin−1)vin + qj,in∂

R
j (vi1 · · · vin−1)∂Ri (vin) + ∂Ri (vi1 · · · vin−1)∂Rj (vin).
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Applying induction hypothesis gives

(∂Rj ∂Ri − q−1
ij ∂

R
i ∂

R
j )(vi1 · · · vin)

= (1− q−1
ij qj,in)∂Rj (vi1 · · · vin−1)∂Ri (vin) + (q−1

i,in − q
−1
ij )∂Ri (vi1 · · · vin−1)∂Rj (vin).

Notice that if i 6= in and j 6= in, the right hand side is zero. We separate into some
cases :

1. If i = j = in, then two coefficients in the right hand side are zero.
2. If i 6= j, i = in, then the second term in the right hand side vanish and the first

term gives zero.
3. If i 6= j, j = in then the first term in the right hand side vanish and the second

term gives zero.
As a summary, the identity (∂Rj ∂Ri − q−1

ij ∂
R
i ∂

R
j )(vi1 · · · vin) = 0 is proved.

Proposition 5.7. The restriction of the bar involution induces a linear isomorphism
I(V )→ I(V ).

Proof. Since it is a graded ideal, we let I(V )n denote the set of degree n elements in
I(V ).

We first show that ∂Ri (I(V )) ⊂ I(V ) by induction on the degree of elements in
I(V ). The case n = 2 is clear as ∂Ri annihilates I(V )2. Let v ∈ I(V )n. After Corollary
5.1, it suffices to show that for any j ∈ I, ∂Rj ∂Ri (x) ∈ I(V ). From the lemma above,
∂Rj ∂

R
i = q−1

ij ∂
R
i ∂

R
j , where using Corollary 5.1 again, ∂Rj (v) is in I(V ) with lower degree

so ∂Ri ∂Rj (v) ∈ I(V ) after the induction hypothesis. This shows ∂Rj ∂Ri (v) ∈ I(V ).
We turn to the proof of the proposition. Let v ∈ I(V )n. Then it is clear that

∂Ri (v) = ∂Ri (v). We use induction on n. The case n = 2 is clear. The argument above
shows that ∂Ri (v) ∈ I(V ) with lower degree, so ∂Ri (v) ∈ I(V ) after the induction
hypothesis. This proves that for any i ∈ I, ∂Ri (v) = ∂Ri (v) ∈ I(V ), so v ∈ I(V ) after
Corollary 5.1.

After this proposition, the bar involution may pass to the quotient to give a k-linear
isomorphism of Nichols algebras N(V )→ N(V ).

The rest of this subsection is devoted to show a relation between the bar involution
and the action of the Garside element on the image of the Dynkin operator Pn.

Proposition 5.8. For any v ∈ T n(V ) satisfying θnv = v, we have ∆nPnv = (−1)n−1Pnv.

Proof. We start from tackling the case where v = vi1 · · · vin is a monomial. In this
case, the formula to be proved can be written as ∆nPnv = (−1)n−1Pnv.

From the definition of Pn, for 1 ≤ j1 < · · · < js ≤ n− 1, if we let

Ej1,··· ,js = (σn−1 · · ·σj1) · · · (σn−1 · · ·σjs),

then the Dynkin operator Pn can be written as :

Pn =
n−1∑
s=0

(−1)s
∑

1≤j1<···js≤n−1
Ej1,··· ,js .
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Claim. Let 1 ≤ j1 < · · · js ≤ n − 1 and 1 ≤ j′1 < · · · j′t ≤ n − 1 satisfy t + s = n − 1
and {j1, · · · , js, j′1 · · · , j′t} = {1, · · · , n− 1}. Then for any v = vi1 · · · vin ,

∆nEj1,··· ,jsv = Ej′1··· ,j′tv.

Indeed, we do the computation in detail. To simplify notations, we define

Qj1,··· ,js
i1,··· ,in = qjs,js+1 · · · qjs,inqjs−1,js−1+1 · · · qjs−1,in · · · qj1,j1+1 · · · qj1,in .

Then the condition θnv = v and the fact that the braiding matrix is symmetric give

Qj1,··· ,js
i1,··· ,inQ

j′1,··· ,j
′
t

i1,··· ,in = 1. (5.2)

With this notation,

∆nEj1,··· ,js(vi1 · · · vin) = Qj1,··· ,js
i1,··· ,invj1 · · · vjsvj′t · · · vj′1 ,

Ej′1,··· ,j′t(vi1 · · · vin) = Q
j′1,··· ,j

′
t

i1,··· ,invj1 · · · vjsvj′t · · · vj′1 .

The equation (5.2) gives
Qj1,··· ,js
i1,··· ,in = Q

j′1,··· ,j
′
t

i1,··· ,in ,

from which the claim is proved.
Now for v = vi1 · · · vin , we have

∆nPnv =
n−1∑
s=0

(−1)s
∑

1≤j1<···<js≤n−1
∆nEj1,··· ,jsv

=
n−1∑
s=0

(−1)s
∑

1≤j′1<···<j′n−1−s≤n−1
Ej′1,··· ,j′n−1−s

v

= (−1)n−1
n−1∑
t=0

(−1)t
∑

1≤j′1<···<j′t≤n−1
Ej′1,··· ,j′tv = (−1)n−1Pnv.

It remains to tackle the general case : suppose that v = ∑
aivi where vi are monomials.

Applying the formula above gives :

∆nPnv =
∑

ai∆nPnvi

= (−1)n−1∑ aiPnvi

= (−1)n−1∑ aiPnvi = (−1)n−1Pnv.

Corollary 5.7. If v ∈ T (V ) such that v = v and Pnv is a right pre-relation. Then
Pnv is a left pre-relation.

For example, this holds when v is a monomial.
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5.7 On the specialization problem

5.7.1 Kac-Moody Lie algebras
We start with a brief recollection on some fundamental results of Kac-Moody Lie

algebras.
Let C be a generalized Cartan matrix. The Kac-Moody Lie algebra associated

with C is defined by : g(C) = g̃(C)/r, where g̃(C) is the Lie algebra with Chevalley
generators ei, fi and relations with respect to some realization (h,Π,Π∨) of C and r is
the unique maximal ideal in g̃(C) which intersects h trivially (see [43], Chapter 1 for
details). Moreover, if we write

g̃(C) = ñ− ⊕ h⊕ ñ+

as vector space, we have r = r+ ⊕ r− as a direct sum of ideal, where r+ = r ∩ n+ and
r− = r ∩ n−.

The following characterization of elements in r is clear from Lemma 1.5 of [43].

Lemma 5.11. Let x ∈ ñ−. Then x ∈ r− if and only if for any ei, [ei, x] ∈ r−. The
same is true for fi and r+.

As a corollary, a part of elements in r are obtained in Section 3.3 of [43] : in g(C),
for i 6= j,

(adei)1−aij(ej) = 0, (adfi)1−aij(fj) = 0. (5.3)
For this Lie algebra g(C), we associate to it the universal enveloping algebra

U(g(C)), then the relations (5.3) above hold in U(g(C)). But if the matrix C is not
symmetric, the ideal generated by these relations may not exhaust r.

5.7.2 Specialization (I)
Let C be a generalized Cartan matrix and A = k[q 1

2 , q−
1
2 ]. We start from conside-

ring an A-form of Tq(C).
Let TA be theA-subalgebra of Tq(C) generated by Ei, Fi,K±1

i and [Ki; 0] = Ki−K−1
i

q−q−1

for i ∈ I. Moreover, TA is a Hopf algebra and is called the integral form of Tq(C).
We let (q 1

2−1) denote the ideal in A generated by q 1
2−1 and A1 = k[q 1

2 , q−
1
2 ]/(q 1

2−
1) ∼= k, where the isomorphism is given by the evaluation at 1. We define T ′1(C) =
Tq(C) ⊗A A1 and T1(C) the quotient T ′1(C)/(Ki − 1| i ∈ I), where (Ki − 1| i ∈ I) is
the Hopf ideal generated by these elements. The following facts hold :

1. There is a Hopf algebra morphism σ̃ : Tq(C) → T1(C) ∼= U(g̃(C)). When com-
posed with the projection U(g̃(C)→ U(g(C)), it gives a Hopf algebra morphism
σ : Tq(C)→ U(g(C)), which is called the specialization map ;

2. Restrictions of the map above give the following specialization maps : T<0(C)→
U(n−) and T>0

q (C)→ U(n+).
To obtain a true specialization map, it is demanded that the morphism σ may pass

through the quotient by defining ideals to give a Hopf algebra morphism Nq(A) →
U(g(C)).
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Example 5.3. We consider the following non-symmetrizable generalized Cartan ma-
trix

C =

 2 −2 −1
−1 2 −1
−3 −1 2

 .
In the braided tensor Hopf algebra of diagonal type associated to this matrix, we want
to find some particular pre-relations : it is easy to show that θ4(F 3

3F1) = F 3
3F1 and

moreover
T4P4(F 3

3F1) = T ′4(F 3
3F1) = 0.

This implies that P4(F 3
3F1) is a right pre-relation of degree 4 where :

P4(F 3
3F1) = F 3

3F1 − (q−3 + q−1 + q)F 2
3F1F3 + (q−4 + q−2 + 1)F3F1F

2
3 − q−3F1F

3
3 .

This element is specialized to

[f3, [f3, [f3, f1]]] = f 3
3 f1 − 3f 2

3 f1f3 + 3f3f1f
2
3 − f1f

3
3

in U(n−). We show that it is not contained in U(r−) so does not give 0.
The successive adjoint actions of e3 give :

[e3, f
3
3 f1 − 3f 2

3 f1f3 + 3f3f1f
2
3 − f1f

3
3 ] = 3(f 2

3 f1 − 2f3f1f3 + f1f
2
3 ),

[e3, f
2
3 f1 − 2f3f1f3 + f1f

2
3 ] = 4(f3f1 − f1f3),

[e3, f3f1 − f1f3] = 3f1.

If [f3, [f3, [f3, f1]]] were in U(r−), so is f1 after Lemma 5.11. This is impossible as r−
would intersect with h non-trivially.

This example shows that the specialization map may not be well-defined if the
matrix is not symmetric.

5.7.3 Specialization (II)
Let C be a generalized Cartan matrix and Av(C) be the associated averaged ma-

trix. To obtain a well-defined specialization map, it is needed to pass to the averaged
quantum groups. So we suppose moreover that the matrix C is non-symmetrizable as
the other case is well-known.

We use notations Tq(Av(C)), T<0
q (Av(C)) and their quotients Uq(C) and U<0

q (C).

Theorem 5.3. The specialization map σ : Tq(Av(C))→ U(g(C)) passes the quotient
to give a surjective map σ : Uq(C)→ U(g(C)).

The rest of this subsection is devoted to giving a proof of this theorem. We start
from the following lemma :

Lemma 5.12. For any w ∈ T<0
q (Av(C)) and any i ∈ I,

[Ei, w] = Ki∂
L
i (w)− ∂Ri (w)K−1

i

q − q−1 .
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This formula can be proved either by induction or by verifying directly on a mo-
nomial ; notice that the symmetry condition on the braiding matrix is essential.

Recall that σ̃ : Tq(Av(C))→ U(g̃(C)) is the specialization map, then we have :

Lemma 5.13. Let w ∈ T<0
q (Av(C)) be an element of degree n satisfying Tnw = 0.

Then σ̃(w) ∈ U(r−).

Proof. We first show that [Ei, w] ∈ U(r−) for any i ∈ I by induction on the degree of
n. The case n = 2 is clear as we have computed all constants of degree 2 in Example
5.2. According to the lemma above and the fact that Tnw = 0, we have

[Ei, w] = Ki
∂Li (w)
q − q−1 .

If the right hand side is sent to zero after σ̃, [Ei, w] = 0 ∈ U(r−). If not, after Lemma

5.1, ∂Li (w)
q − q−1 is annihilated by the action of Tn−1 and so it is specialized to an element

in U(r−) according to the induction hypothesis. This proved σ̃([Ei, w]) ∈ U(r−). As
σ̃ is an algebra morphism, [ei, σ̃(w)] ∈ U(r−) and then σ̃(w) ∈ U(r−) after Lemma
5.11.

Proof of theorem. We have proved in the lemma above that right constants are spe-
cialized to U(r−) under σ̃. A similar argument can be applied to left constants to
show that their specializations are in U(r+). So we obtain a well-defined algebra
map σ : Uq(C) → U(g(C)) and the surjectivity is clear. The theorem holds because
Relr ⊂ Conr and Rell ⊂ Conl.

5.8 Application

5.8.1 General calculation
Let A ∈ MN(Z) be a generalized Cartan matrix. We consider the element vi for

i = (1m1 , · · · , NmN ) :
θ(vi) = qλvi

where
λ =

N∑
k=1

2mk(mk − 1)−
N∑
p=1

∑
q<p

(apq + aqp)mpmq.

So vi is a right pre-relation only if λ = 0. To find these pre-relations, it suffices to
consider the integral solutions of this quadratic form.

5.8.2 Study of the quadratic form
The calculation above motivates us to study the following quadratic forms :

Q(x1, · · · , xn) =
n∑
i=1

x2
i −

∑
i<j

bijxixj,
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S(x1, · · · , xn) =
n∑
i=1

(xi − 1)2,

where bij = aij + aji are non-negative integers as in the last subsection.
Let m ≤ n be an integer (not necessary positive) and Cm be the intersection of the

following two varieties

Q(x1, · · · , xn) = m, S(x1, · · · , xn) = n−m.

Let E(Cm) be the set of integral points on Cm and E = ⋃
m≤nE(Cm). Then the set of

all integral solutions of λ = 0 is the same as E.

Proposition 5.9. If the quadratic form Q(x1, · · · , xn) is semi-positive definite, E is
a finite set.

Proof. If Q(x1, · · · , xn) is semi-positive definite, E is a finite union of E(Cm) for 0 ≤
m ≤ n. For each m, as S(x1, · · · , xn) = n −m is compact, so is its intersection with
Q(x1, · · · , xn) = m. The finiteness of E(Cm) and E is clear.

Corollary 5.8. If the quadratic form Q(x1, · · · , xn) is semi-positive definite, the de-
fining ideal I(V ) is finitely generated.

Proof. After the proposition, there are only a finite number of i such that k[Xi] contai-
ning right pre-relations ; moreover, each k[Xi] is finite dimensional.





Chapitre 6

A Borel-Weil-Bott type theorem of
quantum shuffle algebras

A main part of this chapter is contained in the pre-publication [26].

6.1 Introduction

6.1.1 History and motivations
One of the central problems of representation theory is the construction of all irre-

ducible or indecomposable representations of a given group or (associative) algebra. In
the framework of complex compact Lie groups, there are in general two systematic ways
to realize the finite dimensional ones as functions on the corresponding Lie groups :
the Peter-Weyl theorem and the Borel-Weil-Bott theorem. The former decomposes the
algebra of square integrable functions on a compact Lie group G as a Hilbert direct
sum of endomorphism rings of all finite dimensional irreducible representations ; the
latter views such a representation as global sections of some equivariant line bundle
Lλ over the flag variety G/B where B is a fixed Borel subgroup.

Around 1985, Drinfel’d and Jimbo constructed the quantum group Uq(g) as a de-
formation of the ordinary enveloping algebra U(g) associated to a symmetrizable Kac-
Moody Lie algebra g. As a quotient of a Drinfel’d double, Uq(g) is a quasi-triangular
Hopf algebra : as a consequence, the category of finite dimensional Uq(g)-modules is
braided ; this can be applied to the construction of braid group representations and
then explicit solutions of the Yang-Baxter equation.

When q is not a root of unity, the similarity between representation theories of
Uq(g) and U(g) can be explained as a quantization procedure of representations. This
phenomenon suggests to develop necessary tools and frameworks to generalize the
Peter-Weyl and Borel-Weil-Bott theorem to quantum groups. A mock version of the
former is partially achieved and clarified in a series of works due to Joseph-Letzter [41]
and Caldero [11].

An analogue of Borel-Weil-Bott theorem for quantum groups is obtained in an
earlier work of Anderson-Polo-Wen [1] by viewing the negative part U−q (g) of Uq(g) as
the corresponding flag variety and a character as a line bundle over it. They finally
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generalized the whole theorem using techniques coming from the representation theory
of algebraic groups.

In this chapter, we would like to provide another point of view on generalizing
the Borel-Weil-Bott theorem to quantum groups. Compared with the approach of
Anderson-Polo-Wen, our construction has following advantages :

1. The construction is functorial : no explicit coordinate and character are needed
at the very beginning ;

2. We may start with a general quantum shuffle algebra (it is well-known that the
negative part of a quantum group is a very particular kind of such algebras).

In general, there are four constructions of the negative part of quantum groups in
the literature :

1. By generators and relations (due to Drinfel’d [21] and Jimbo [38]) ;
2. Through the Hall algebra associated to the category of representations of a quiver

(due to Ringel [71], Green [32]) ;
3. As perverse sheaves over the moduli space of quiver representations (due to

Lusztig [57]) ;
4. As a quantum shuffle algebra associated to an abelian group algebra and a Hopf

bimodule over it (due to Rosso [73]).

We will choose the last approach and go back to the second one in the applications.

6.1.2 Known results
Apart from the work of Anderson-Polo-Wen, the Hochschild cohomology of alge-

bras associated to quantum groups are also studied in the work of Ginzburg-Kumar
[31] : they computed the Hochschild cohomology of the (strictly) negative parts of the
restricted quantum groups with coefficients in regular bimodules and one-dimensional
weight modules. Methods therein are motivated by those appearing in the representa-
tion theory of algebraic groups.

6.1.3 Quantum shuffle algebras
The tensor algebra T (V ) associated with a vector space V is a graded Hopf al-

gebra with concatenation multiplication and shuffle comultiplication. Its graded dual
T (V )∗,gr is also a graded Hopf algebra, where the multiplication is given by the shuffle
product and comultiplication is the deconcatenation. A quantum shuffle algebra is al-
most the latter with the replacement of the symmetric group by an associated braid
group, where the braiding comes from a Yetter-Drinfel’d module structure.

To be more precise, we start with a Hopf algebra H and an H-Hopf bimodule M ;
the right coinvariant space V = M coR admits an H-Yetter-Drinfel’d module structure
and thus a braiding σ : V ⊗ V → V ⊗ V . The construction of the shuffle algebra with
this braiding gives the quantum shuffle algebra Sσ(V ) as a subalgebra.
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6.1.4 Main results
Suppose that g is a finite dimensional semi-simple Lie algebra. The main construc-

tion for the object analogous to the line bundle in our framework is given by imposing
an element in the set of coinvariants M coR to build another quantum shuffle algebra
Sσ̃(W ), which is automatically a Hopf bimodule over Sσ(V ), and the "line bundle"
appears as a sub-Hopf bimodule Sσ̃(W )(1) in Sσ̃(W ) by considering a grading in it.

With these constructions, the main purpose of this chapter can be listed as follows :
1. Provide a non-commutative version of the line bundle over the flag variety G/B

and present a Borel-Weil-Bott type theorem in this framework : this is done by
considering the coHochschild homology of the quantum shuffle algebra Sσ(V )
with coefficient in the Sσ(V )-bicomodule Sσ̃(W )(1) defined above and the main
theorem is :
Theorem. The coHochschild homology groups of Sσ(V ) with coefficient in the
Sσ(V )-bicomodule Sσ̃(W )(1) are :
(a) If q is not a root of unity and λ ∈ P+, as Uq(g)-modules :

Hochn(Sσ(V ), Sσ̃(W )(1)) =
{
L(λ) n = 0;

0, n 6= 0.

(b) If ql = 1 is a primitive root of unity and λ ∈ P l+, as Uq(g)-modules :

Hochn(Sσ(V ), Sσ̃(W )(1)) =
{

L(λ) n = 0;
∧n(n−), n ≥ 1.

where n− is identified with the negative part of the Lie algebra g.
2. Explain how this approach can be generalized to the "line bundle" of higher

degree : that is to say, there is a family of Sσ(V )-bicomodules Sσ̃(W )(n) such
that the coHochschild homology group of degree 0 for Sσ(V ) with coefficient in
these bicomodules can be found as a sum of irreducible representations. More
precisely, we will prove the following theorem in degree two :
Theorem. Let q ∈ k∗ not be a root of unity and λ ∈ P+ be a dominant weight.
(a) If for any i ∈ I, (λ, α∨i ) 6= 1, then as Uq(g)-modules,

Hochn(Sσ(V ), Sσ̃(W )(2)) =
{
L(λ)⊗ L(λ) n = 0;

0, n 6= 0.

(b) If J is the subset of I containing those j ∈ I such that (λ, α∨j ) = 1, then as
Uq(g)-modules,

Hochn(Sσ(V ), Sσ̃(W )(2)) =


(L(λ)⊗ L(λ))/

⊕
j∈J

L(2λ− αj) n = 0;

0, n 6= 0.

3. The construction of the Sσ(V )-bicomodules Sσ̃(W )(n) above provides a systema-
tical way to construct inductively both the negative part of a quantum group
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and the PBW basis. This can be interpreted as an inductive construction of
the composition algebra associated to a quiver. Moreover, we explain how to
construct the composition algebra of a framed quiver (more precisely, the ver-
sion of Crawley-Boevey [14]) starting from the unframed one. This inductive
construction has different initial data from that in [73] as the braiding here is of
diagonal type but of quantum group type.

6.1.5 Constitution of this chapter
The organization of this chapter is as follows :
We start in Section 6.2 with a recollection on quantum shuffle algebras and construc-

tions around them. In Section 6.3 we explain how to recover quantum groups as quan-
tum shuffle algebras and composition algebras. Section 6.4 is devoted to giving the
main construction of the Sσ(V )-Hopf bimodule Sσ̃(W )(n) and a theorem of Rosso.
CoHochschild homology is recalled in Section 6.5, moreover we discuss the module
and comodule structures on these groups therein. Section 6.6, as a main part of this
chapter, calculates the coHochschild homology groups, which gives an analogue of
Borel-Weil-Bott theorem. As a continuation, we consider the case of degree two in
Section 6.7 and obtain a similar result. Finally, in Section 6.8 and 6.9, we will discuss
some applications of our construction such as an inductive construction of composition
algebras associated with quivers.

6.2 Recollections on quantum shuffle algebras
We fix a field k of characteristic 0 in this chapter. All algebras, modules, vector

spaces and tensor products are over k if not specified.
In this section, we recall the construction of quantum shuffle algebras given in [73].

For the basic notion of Hopf algebras, see [81].

6.2.1 Symmetric groups and braid groups
We fix some integer n ≥ 1. Let Sn denote the symmetric group acting on an

alphabet with n elements, say, {1, 2, · · · , n}. For an integer 0 ≤ k ≤ n, we let Sk,n−k
denote the set of (k, n− k)-shuffles in Sn defined by

Sk,n−k = {ω ∈ Sn| ω−1(1) < · · · < ω−1(k), ω−1(k + 1) < · · · < ω−1(n)}.

Moreover, once Sk ×Sn−k is viewed as a subgroup of Sn, the multiplication gives a
bijection

(Sk ×Sn−k)×Sk,n−k
∼ // Sn

which induces a decomposition of Sn.
The braid group Bn is generated by n− 1 generators σ1, · · · , σn−1 and relations :

σiσj = σjσi, if |i− j| ≥ 2, σiσi+1σi = σi+1σiσi+1 for i = 1, · · · , n− 2.
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For 1 ≤ i ≤ n− 1, we let si denote the transposition (i, i + 1) in Sn. Because Sn

can be viewed as imposing relations σ2
i = 1 in Bn, there exists a canonical projection

πn : Bn → Sn by sending σi to si.
This projection admits a section in the level of sets : it is a map T : Sn → Bn

sending a reduced expression ω = si1 · · · sik ∈ Sn to Tω = σi1 · · ·σik ∈ Bn. This map
T is called the Matsumoto section.

6.2.2 Hopf bimodules and coinvariants
Let H be a Hopf algebra with invertible antipode and M be a vector space.

Definition 6.1. M is called an H-Hopf bimodule if it satisfies :
1. M is an H-bimodule ;
2. M is an H-bicomodule with structure maps δL : M → H ⊗M and δR : M →
M ⊗H ;

3. These two structures are compatible : the maps δL and δR are bimodule mor-
phisms, where the bimodule structures on H ⊗M and M ⊗H are given by the
tensor product.

If M is an H-Hopf bimodule, it is at the same time a left H-Hopf module and a
right H-Hopf module (for the definition of Hopf modules, see [81]).

One of the most important structures for Hopf modules is the set of coinvariants
as it gives a parametrization of blocks in such modules. The set of left coinvariants
M coL and right coinvariants M coR are defined by :

M coL = {m ∈M | δL(m) = 1⊗m}, M coR = {m ∈M | δR(m) = m⊗ 1}.

Proposition 6.1 ([81]). Let M be a right H-Hopf module. Then there exists an
isomorphism of right H-Hopf modules : M ∼= M coR ⊗ H, where the right hand side
admits the trivial right Hopf module structure. Moreover, maps in two directions are
given by :

M →M coR ⊗H, m 7→
∑

P (m(0))⊗m(1), M coR ⊗H →M, m⊗ h 7→ mh,

where m ∈M , h ∈ H, δR(m) = ∑
m(0) ⊗m(1) and P : M →M coR is defined by :

P (m) =
∑

m(0)S(m(1)).

We have an analogous result for left H-Hopf modules.
Now we concentrate on the set of right coinvariants M coR : it admits some left

structures.
1. As δL and δR are compatible, M coR is a left subcomodule of M .
2. Once we defined the left H-module structure on M by the adjoint action, say
h.m = ∑

h(1)mS(h(2)) for h ∈ H and m ∈M , M coR is a left H-module.
But these will not give M coR a left H-Hopf module structure as the adjoint action is
not in general a left comodule morphism. This difference raises up a structure of great
interest called Yetter-Drinfel’d module.
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6.2.3 Yetter-Drinfel’d modules
Let H be a Hopf algebra. A vector space V is called a (left) H-Yetter-Drinfel’d

module if it is simultaneously an H-module and an H-comodule satisfying the Yetter-
Drinfel’d compatibility condition : for any h ∈ H and v ∈ V ,∑

h(1)v(−1) ⊗ h(2).v(0) =
∑

(h(1).v)(−1)h(2) ⊗ (h(1).v)(0),

where ∆(h) = ∑
h(1) ⊗ h(2) and ρ(v) = ∑

v(−1) ⊗ v(0) are Sweedler notations for
coproducts and comodule structure maps.

Morphisms between two H-Yetter-Drinfel’d modules are linear maps preserving
H-module and H-comodule structures.

The compatibility condition between left module and comodule structures onM coR

in the last subsection can be explained in the framework of Yetter-Drinfel’d module.

Proposition 6.2 ([73]). Let H be a Hopf algebra. There exists an equivalence of
category between the category of H-Hopf bimodules and the category of H-Yetter-
Drinfel’d modules which sends a Hopf bimodule M to the set of its right coinvariants
M coR.

6.2.4 Quantum double construction
Let A and B be two Hopf algebras with invertible antipodes. A generalized Hopf

pairing between A and B is a bilinear form ϕ : A×B → C satisfying :
1. For any a ∈ A, b, b′ ∈ B, ϕ(a, bb′) = ∑

ϕ(a(1), b)ϕ(a(2), b
′) ;

2. For any a, a′ ∈ A, b ∈ B, ϕ(aa′, b) = ∑
ϕ(a, b(2))ϕ(a′, b(1)) ;

3. For any a ∈ A, b ∈ B, ϕ(a, 1) = ε(a), ϕ(1, b) = ε(b).
If ϕ is a generalized Hopf pairing between A and B, the quantum double Dϕ(A,B) is
defined by :

1. As a vector space, it is A⊗B ;
2. As a coalgebra, it is the tensor product of coalgebras A and B ;
3. As an algebra, the multiplication is given by :

(a⊗ b)(a′ ⊗ b′) =
∑

ϕ(S−1(a′(1)), b(1))ϕ(a′(3), b(3))aa′(2) ⊗ b(2)b
′.

If H is a finite dimensional Hopf algebra, it is well-known that there exists an
equivalence between the category of H-Yetter-Drinfel’d modules and the category of
modules over the quantum double Dϕ(H) = Dϕ(H,H∗) where the generalized Hopf
pairing is given by the duality betweenH andH∗. The following result is a consequence
of Proposition 6.2.

Corollary 6.1. Let H be a finite dimensional Hopf algebra. There exists an equi-
valence of category between the category of H-Hopf bimodules and the category of
modules over Dϕ(H) which sends M to the set of its right coinvariants M coR.

Remark 6.1. It should be pointed out that the corollary above holds if H is a graded
Hopf algebra with finite dimensional components and H∗ is its graded dual.
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6.2.5 Tensor product structures
In this subsection, we consider tensor product structures on two categories men-

tioned above.
Let M and N be two Hopf bimodules. We define an H-bimodule and an H-

bicomodule structure on M ⊗H N as follows :
1. The bimodule structure comes from the left module structure on M and right

module structure on N ;
2. The bicomodule structure comes from the one on the tensor product of two

bicomodules.

Lemma 6.1. The module and comodule structures above are well-defined. With these
structures, M ⊗H N is an H-Hopf bimodule.

Proof. The only problem occurs on the well-definedness of the comodule structures.
We concentrate on the case of left comodule : at first, it is clear that there is a linear
map δ̃L : M ⊗ N → H ⊗ M ⊗H N ; it suffices to show that it passes through the
quotient to give δL : M ⊗H N → H ⊗M ⊗H N . This last point can be obtained by a
simple verification.

The following proposition implies that the equivalence of category in the last two
subsections preserves tensor product structures.

Proposition 6.3 ([73]). Let M and N be two Hopf bimodules. Then as H-Yetter-
Drinfel’d modules, we have :

(M ⊗H N)coR ∼= M coR ⊗N coR.

If moreoverH is of finite dimensional, the isomorphism above preservesDϕ(H)-module
structures.

6.2.6 Constructions of braiding
In the category of H-Hopf bimodules, Woronowicz introduced a braiding structure

which is explained in [73]. In this subsection, we discuss the relation between braidings
appearing in these three categories.

1. Let M and N be two H-Hopf bimodules. Then there exists a unique H-Hopf
bimodule isomorphism σ : M ⊗H N → N ⊗HM such that for any ω ∈M coL and
η ∈ M coR, σ(ω ⊗ η) = η ⊗ ω. Moreover, σ satisfies the braid equation. So the
category of H-Hopf modules is a braided tensor category.

2. Let V and W be two H-Yetter-Drinfel’d modules. We define an isomorphism of
Yetter-Drinfel’d modules σ : V ⊗W → W ⊗ V by

σ(v ⊗ w) =
∑

v(−1).w ⊗ v(0).

Then σ satisfies the braid equation and so the category of H-Yetter-Drinfel’d
modules is a braided tensor category.
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3. If H is a finite dimensional Hopf algebra, the quantum double Dϕ(H) is a quasi-
triangular Hopf algebra and so the category of modules over Dϕ(H) admits a
braided tensor structure where the braiding is given by the action of the R-matrix
in Dϕ(H).

Theorem 6.1 ([73]). The functor sending M to M coR is an equivalence of braided
tensor category between the category of H-Hopf bimodules and of H-Yetter-Drinfel’d
modules. If moreover H is of finite dimensional, the above two categories are equivalent
to the braided tensor category formed by Dϕ(H)-modules.

6.2.7 Tensor algebra and its dual
Let H be a Hopf algebra and M be an H-Hopf bimodule. We have constructed a

braiding on the set of its right coinvariants M coR, which, from now on, will be denoted
by V for short.

This construction gives a representation of braid group Bn on V ⊗n by sending σi
to id⊗(i−1) ⊗ σ ⊗ id(n−i−1).

We consider the tensor space

T (V ) =
∞⊕
n=0

V ⊗n

of V and write (v1, · · · , vn) for the pure tensor v1 ⊗ · · · ⊗ vn where v1, · · · , vn ∈ V . It
is well known that there is a braided Hopf algebra structure (for a definition, see [6])
on T (V ) defined by :

1. The algebra structure is given by the concatenation ;
2. The coalgebra structure is graded and is given by : for v1, · · · , vn ∈ V , the
V ⊗p ⊗ V ⊗(n−p)-component of ∆((v1, · · · , vn)) is the shuffle action∑

σ∈Sp,n−p
Tσ((v1, · · · , vn)),

where Tσ is the image of σ under the Matsumoto section.
If the graded dual of T (V ) is under consideration, we have a dual algebra and a

dual coalgebra structure on it :
1. The algebra structure is graded and is defined by : for v1, · · · , vn ∈ V ,

(v1, · · · , vp) ∗ (vp+1, · · · , vn) =
∑

σ∈Sp,n−p
Tσ((v1, · · · , vn));

2. The coalgebra structure is given by the deconcatenation :

∆((v1, · · · , vn)) = (v1, · · · , vn)⊗1+
n−1∑
p=1

(v1, · · · , vp)⊗(vp+1, · · · , vn)+1⊗(v1, · · · , vn).

As shown in Proposition 9 of [73], T (V ), with structures defined above, is a braided
Hopf algebra. We let Tσ(V ) denote it.



6.2. Recollections on quantum shuffle algebras 111

6.2.8 Cotensor product
The cotensor product over a coalgebra C is a dual version of the tensor product over

some fixed algebra A. We recall the definition of cotensor product in this subsection,
more information can be found in [18], [67] and [73].

Let C be a coalgebra and M,N be two C-bicomodules. The cotensor product of
M and N is a C-bicomodule defined as follows : we consider two linear maps δR⊗ idN ,
idM⊗δL : M⊗N →M⊗C⊗N ; the cotensor product ofM and N , which is denoted
by M�CN , is the equalizer of δR ⊗ idN and idM ⊗ δL.

6.2.9 Quantum shuffle algebras and their bosonizations
In this subsection, we recall the definition of the quantum shuffle algebra given in

[73] and [74]. Notations in previous subsections will be adopted.
We start from considering the linear map V → Tσ(V ) given by the identity map.

From the universal property of T (V ) as an algebra, we obtain a graded algebra mor-
phism π : T (V )→ Tσ(V ).
Definition 6.2. The image of the graded algebra morphism π is called the quantum
shuffle algebra and will be denoted by Sσ(V ) ; it is a subalgebra of Tσ(V ).

For any integer n ≥ 1, we define two elements

Sn =
∑
σ∈Sn

σ ∈ k[Sn], Σn =
∑
σ∈Sn

Tσ ∈ k[Bn].

The element Σn, once acting on V ⊗n, is called a symmetrization operator. The following
lemma hides between lines of [73].
Lemma 6.2 ([73]). When restricted to V ⊗n, the map π : T (V ) → Tσ(V ) is given by
the symmetrization operator Σn.

This gives the following isomorphism of braided Hopf algebras

π : T (V )
/ ∞⊕

n=2
ker Σn

∼= Sσ(V ).

Remark 6.2. Up to a symmetrization map, the Nichols algebra defined in [67] and
[6] is isomorphic to the quantum symmetric algebra as braided Hopf algebra.

At last, we describe the bosonization of quantum shuffle algebras, following [73].
In fact, instead of considering only the set of right coinvariants, we can start with

the H-Hopf bimodule M and consider the cotensor Hopf algebra

T�
H (M) = H ⊕

( ∞⊕
n=1

M�Hn

)
.

We let SH(M) denote the sub-Hopf algebra of T�
H (M) generated by H and M . It is

an H-Hopf bimodule and the set of its right coinvariants is isomorphic to Sσ(V ) as an
algebra ; moreover, as an algebra, SH(M) is isomorphic to the crossed product of H
and Sσ(V ).

This SH(M) is called the bosonization of Sσ(V ) by the Hopf algebra H.
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6.2.10 Pairings between quantum shuffle algebras
We explain the construction of graded non-degenerate Hopf pairings on SH(M)

and Sσ(V ) in this subsection, after [13].
Let H be a graded Hopf algebra and ψ0 : H × H → k be a non-degenerate Hopf

pairing. Let ψ1 : V × V → k be a non-degenerate bilinear form such that

ψ1(h.v, w) =
∑

ψ0(h,w(−1))ψ1(v, w(0)), ψ1(v, h.w) =
∑

ψ0(v(−1), h)ψ1(v(0), w)

for any h ∈ H and v, w ∈ V .
After [13], there exists a unique non-degenerate graded Hopf pairing ψ : SH(M)×

SH(M) → k extending ψ0 and ψ1. Once restricted to Sσ(V ), we obtain a non-
degenerate graded Hopf pairing ψ : Sσ(V ) × Sσ(V ) → k. As ψ is graded, for any
m,n ∈ Z≥0 such that m 6= n, we have :

ψ(Smσ (V ), Snσ (V )) = 0

and the restriction of ψ on Snσ (V )× Snσ (V ) is non-degenerate.

Remark 6.3. Such a pairing ψ always exists when the quantum shuffle algebra is of
diagonal type (we refer to Section 6.3.1 for a definition).

6.2.11 Remarks on braided structures
We have mentioned above that Sσ(V ) is not a Hopf algebra but a braided Hopf

algebra : that is to say, the product and coproduct structures are compatible up to the
braiding coming from the Yetter-Drinfel’d structure. For example, for x, y ∈ Sσ(V ),

∆(xy) =
∑

x(1)((x(2))(−1).y(1))⊗ (x(2))(0)y(2).

If the braiding under consideration is of diagonal type (for example, see Section
6.3.1 below and this is the case will be studied in this chapter), (x(2))(−1) is given
by a constant χ(x(2), y(1)) depending only on the degree of x(2) and y(1) if they are
homogeneous. In this case, the term (x(2))(0) is nothing but x(2), so the formula above
reads

∆(xy) =
∑

χ(x(2), y(1))x(1)y(1) ⊗ x(2)y(2).

In this case, χ satisfies following properties : for homogeneous elements a, b, c ∈ Sσ(V ),

χ(ab, c) = χ(a, c)χ(b, c), χ(a, bc) = χ(a, b)χ(a, c).

In the following argument, we will adopt this χ notation and sometimes suppress
the prefix "braided" for short.

6.3 Construction of quantum groups

6.3.1 Construction of quantum groups
In this subsection, we recall the construction of the strictly negative part of a

quantized enveloping algebra (quantum group) as a quantum shuffle algebra.
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Let H = k[G] be the group algebra of a finitely generated abelian group G. After
the classification of finite rank Z-modules, there exists an integer r ≥ 0 and some
positive integers l1, · · · , ls such that

G ∼= Zr ×
(

s∏
i=1

Z/li
)
.

We suppose that n = r + s is the rank of G. From the argument before Lemma
14 in [73], if V = M coR is the set of right coinvariants of an H-Hopf bimodule M
and (F1, · · · , Fn) is a basis of the vector space V , then the braiding on V can be
characterized by a square matrix of n2 numbers qij, 1 ≤ i, j ≤ n, which is called the
braiding matrix.

To be more concrete, if we let K1, · · · , Kn denote a free Z-basis of G, then the left
H-comodule structure on V is given by δL(Fi) = K−1

i ⊗ Fi and the left H-module
structure is determined by Ki.Fj = q−1

ij Fj. With this construction, the braiding is
characterized by

σ(Fi ⊗ Fj) = K−1
i .Fj ⊗ Fi = qijFj ⊗ Fi.

In particular, if the braiding matrix comes from some data in Lie theory, for example,
a symmetrizable Cartan matrix, the quantum shuffle algebra constructed above is of
great interest.

Let C = (cij) ∈Mn(Z) be a symmetrizable generalized Cartan matrix and (d1, · · · , dn)
be positive integers such that the matrix A = (dicij) = (aij) is symmetric. We choose
q 6= 0,±1 be an element in k and define the braiding matrix (qij) ∈Mn(C) by qij = qaij .

For each symmetrizable generalized Cartan matrix C, we can associate to it a Kac-
Moody Lie algebra g(C). After Drinfel’d and Jimbo, there exists a corresponding
quantized enveloping algebra Uq(g(C)) defined by generators and relations. The fol-
lowing theorem permits us to give a functorial construction of the (strictly) negative
part of such algebras.

Theorem 6.2 ([73]). After the construction above, we have :
1. Let G = Zn and q not be a root of unity. Then the quantum shuffle algebra
Sσ(V ) is isomorphic, as a braided Hopf algebra, to the strictly negative part of
Uq(g(C)). Moreover, the bosonization SH(M) is isomorphic, as a Hopf algebra,
to the negative part of Uq(g(C)).

2. We fix a positive integer l ≥ 3 and a primitive l-th root of unity q. Let G =
(Z/l)n. Then the quantum shuffle algebra Sσ(V ) is isomorphic to the strictly
negative part of the restricted quantized enveloping algebra uq(g(C)). Moreover,
the bosonization SH(M) is isomorphic, as a Hopf algebra, to the quotient of the
negative part of uq(g(C)) by the Hopf ideal generated by K l

i − 1, i = 1, · · · , n.

To obtain the whole quantum group, it suffices to double the bosonization SH(M)
using the quantum double construction given in Section 6.2.4 then identify two copies
of H. The book [47] can be served as a good reference for this construction.

The isomorphism given in Section 6.2.9

π : T (V )
/ ∞⊕

n=2
ker Σn

∼= Sσ(V ),
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implies that the kernel ⊕∞n=2 ker Σn is indeed generated by quantized Serre relations
in Uq(g).

6.3.2 Composition algebras
This subsection is devoted to recalling another point of view for quantum groups

from the representation theory of quivers.
A family of important examples of the generalized symmetrizable Cartan matrices

comes from quivers, which can be viewed as the Dynkin graphs associated to such
matrices.

Let Q = (I, F ) be an unoriented quiver with n vertices and with no edge loops.
A matrix C ∈ Mn(Z) can be associated to it when we set −cij the number of edges
between vertices i and j and cii = 2. Thus we obtain a Kac-Moody Lie algebra g(Q)
and then a quantized enveloping algebra Uq(g(Q)). We let U<0

q (g(Q)) denote the strict
negative part of Uq(g(Q)).

Once the base field k = Fq is taken to be a finite field of q elements, we can
consider the Hall algebra HQ associated to the category of representations of the
quiver Q, named CQ. HQ is a braided Hopf algebra where the braiding comes from
the multiplicative Euler form on weights of elements to be exchanged, where the Euler
form is defined on the Grothendieck group of CQ, which can be viewed as the set of
weights of representations. Details can be found in the introductory notes [80].

The composition algebra CQ is defined as a sub-braided Hopf algebra of HQ gene-
rated as an algebra by all isomorphism classes of simple objects in CQ.

We remark that in HQ and CQ, the cardinal q of the finite field can be treated as
a formal parameter or a non-zero number which is not a root of unity.

Theorem 6.3 (Ringel, Green). There exists an isomorphism of braided Hopf algebras

U<0
q (g(Q)) ∼= CQ

given by sending Fi to the irreducible representation of Q associated to the vertex i.

6.4 Main Construction and Rosso’s theorem

6.4.1 Data
We preserve assumptions in Section 6.3.1 and fix the following notations :
1. (h,Π,Π∨) is a realization of the generalized Cartan matrix C and W is the Weyl

group.
2. (·, ·) is a W -invariant bilinear form on QΠ such that (αi, αj) = aij.
3. P = {λ ∈ h∗| (λ, αi) ∈ Z,∀i = 1, · · · , n} is that weight lattice and P+ ⊂ P is

the set of dominant weights in g.
4. For λ ∈ P , L(λ) is the unique (up to isomorphism) irreducible representation of

g with highest weight λ.
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If q is a primitive root of unity such that ql = 1 for some odd l ≥ 3, we let P l
denote the set {λ ∈ P| |(λ, αi)| < l} and P l+ = P l ∩ P+.

For a weight λ ∈ P or P l, we letK denote the commutative Hopf algebra generated
by H together with group-like elements K±1

λ such that KλK
−1
λ = K−1

λ Kλ = 1 and let
W denote the vector space generated by V and vλ. We dispose the following structures
on W .

1. W is a left K-comodule with structure map δL(vλ) = K−1
λ ⊗ vλ, when restricted

to V , δL is the H-comodule structural map of V ;
2. W is a left K-module with the module structure given by :

Kλ.Fi = q(λ,αi)Fi, Kλ.vλ = q−2vλ and Ki.vλ = q(λ,αi)vλ.

The other actions come from those in V .
As a vector space, we set N = W ⊗K ; it admits an K-Hopf bimodule structure with
the following definitions :

1. Right module and comodule structures are trivial : i.e., they come from the
regular right K-module and K-comodule structures on K ;

2. Left module and comodule structures come from the tensor product.
Then it is clear that when this structure is under consideration, N coR = W .
Starting with this K-Hopf bimodule N , we can construct the corresponding quan-

tum shuffle algebra Sσ̃(W ) and its bosonization SK(N). An easy computation gives
the following formula for the braiding σ̃ on W ⊗W : when restricted to V ⊗ V , it
coincides with σ ;

σ̃(Fi ⊗ vλ) = q−(λ,αi)vλ ⊗ Fi, σ̃(vλ ⊗ vλ) = q2vλ ⊗ vλ σ̃(vλ ⊗ Fi) = q−(λ,αi)Fi ⊗ vλ.

On Sσ̃(W ), we introduce a degree structure by letting deg(Fi) = 0 and deg(vλ) = 1.
We let Sσ̃(W )(k) denote the subspace of Sσ̃(W ) consisting of elements of degree k. For
any k, Sσ̃(W )(k) does not admit an algebra structure.

As V ⊂ W is a K-submodule and H ⊂ K is a sub-Hopf algebra, V is a sub-
K-Yetter-Drinfel’d module of W . It is then clear that (V, σ) is a sub-braided vector
space of (W, σ̃) and Sσ(V ) is a sub-braided Hopf algebra of Sσ̃(W ) in the category of
K-Yetter-Drinfel’d modules.

6.4.2 Hopf bimodule structure on Sσ̃(W )
With the gradation defined in the end of last subsection, Sσ̃(W ) is a graded braided

Hopf algebra with Sσ̃(W )(0) = Sσ(V ).
The projection p : Sσ̃(W )→ Sσ(V ) onto degree 0 and the embedding i : Sσ(V )→

Sσ̃(W ) into degree 0 are both braided Hopf algebra morphisms. This gives Sσ̃(W ) a
braided-Sσ(V )-Hopf bimodule structure : left and right comodule structural maps are
(p⊗ id)∆ and (id⊗ p)∆ ; left and right module structure are induced by i : Sσ(V )→
Sσ̃(W ).

As elements in Sσ(V ) are of degree 0, for each k ∈ N, Sσ̃(W )(k) inherits a braided
Hopf bimodule structure. To simplify notations, we let Mk denote Sσ̃(W )(k) and M
denote Sσ̃(W ).
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6.4.3 A theorem of Rosso
In this subsection, we explain a theorem due to M. Rosso which computes the

coinvariant space M coR
1 .

As M and each Mk for k ∈ N are right braided Sσ(V )-Hopf modules, we let M coR

and M coR
k denote the set of their right coinvariants, respectively. The braided version

of the structural theorem of Hopf modules can be then applied to give the following
isomorphisms of right braided Hopf modules :

Sσ̃(W ) ∼= M coR ⊗ Sσ(V ), Sσ̃(W )(k) ∼= M coR
k ⊗ Sσ(V ).

We discuss the module and comodule structures on these sets of coinvariants :
1. As we have explained in Section 6.2.2, for any k ∈ N, M coR and M coR

k admit
adjoint Sσ(V )-module structures.

2. M coR and M coR
k are all Sσ(V )-left comodules : they are induced by the left

comodule structures on M and Mk, respectively.
3. The module and comodule structures on M coR and M coR

k are compatible in the
sense of Yetter-Drinfel’d. Thus both of them are Sσ(V )-Yetter-Drinfel’d modules.

In fact, we can use the bosonization procedure to avoid all prefixes "braided".
As both Sσ(V ) and Sσ̃(W ) are in the category of K-Yetter-Drinfel’d modules, the
bosonization with K gives two Hopf algebras SK(M) and SK(N). If the Hopf algebra
K is designated to be of degree 0, the projection onto degree 0 and the embedding
into degree 0 endow SK(N) and all SK(N)(k) for k ∈ N Hopf bimodule structures over
SK(M). The structural theorem of right Hopf modules can be then applied to give

SK(N) ∼= M coR ⊗ SK(M), SK(N)(k) ∼= M coR
k ⊗ SK(M).

Then M coR and M coR
k are in the category of SK(M)-Yetter-Drinfel’d modules. After

Theorem 2.1, they admit Dϕ(SK(M))-module structures. Moreover, as Dϕ(SH(M)) is
a sub-Hopf algebra of Dϕ(SK(M)), they admit Dϕ(SH(M))-structures.

If the generalized Hopf pairing is carefully chosen (for example, we take the pairing
in the definition of the quantum group as a double), the H-action and the dual of
H-coaction with respect to the pairing coincide. As a consequence of Theorem 6.2,
M coR and M coR

k for any k ∈ N admit Uq(g)-module structures.
The following theorem is due to Rosso [75].

Theorem 6.4 (Rosso). M coR
1 is an irreducible Uq(g)-module of highest weight λ, so

it is isomorphic to L(λ).

6.5 Coalgebra homology and module structures

6.5.1 Hochschild homology of an algebra
Let A be an associative algebra and M be an A-bimodule.
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The Hochschild homology of A with coefficient in M is defined as the homology of
the following complex (C•(A,M), d), where

Cn(A,M) = M ⊗ A⊗n,

and the differential d : Cn(A,M) → Cn−1(A,M) is given by : for a1, · · · , an ∈ A and
m ∈M ,

d(m⊗ a1 ⊗ · · · ⊗ an) = ma1 ⊗ a2 ⊗ · · · ⊗ an

+
n−1∑
i=1

(−1)im⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+(−1)nanm⊗ a1 ⊗ · · · ⊗ an−1.

We denote Hn(A,M) = Hn(C•(A,M), d), the n-th homology group of the complex
(C•(A,M), d).

6.5.2 coHochschild homology of a coalgebra
The coHochschild homology of a coalgebra is a dual version of the construction of

the Hochschild homology of an algebra and was first studied by P. Cartier.
Let C be a coalgebra and N be a C-bicomodule. We recall the coHochschild ho-

mology of C with coefficient in a C-bicomodule N given in [18] as follows :
We let Rn(C,N) denote N ⊗C⊗n and the differential δ : N ⊗C⊗n → N ⊗C⊗(n+1)

is given by :

δ(n⊗ c1 ⊗ · · · ⊗ cn) = δR(n)⊗ c1 ⊗ · · · ⊗ cn

+
n∑
i=1

(−1)in⊗ c1 ⊗ · · · ⊗∆(ci)⊗ · · · ⊗ cn

+(−1)n+1∑n(0) ⊗ c1 ⊗ · · · ⊗ cn ⊗ n(−1),

where δL, δR are C-bicomodule structure maps and for n ∈ N , δL(n) = ∑
n(−1)⊗n(0).

The coHochschild homology of C with coefficient in a C-bicomodule N is defined
by

Hochi(C,N) = H i(R•(C,N), δ),

where H i(R•(C,N), δ) is the i-th cohomology group of the complex (R•(C,N), δ).

6.5.3 Module and comodule structures on coHochschild ho-
mology

In this subsection, we discuss how module and comodule structures on N induce
such structures on the coHochschild homology groups.

At first, we suppose that C and D are two coalgebras. Comodule structures which
we will work with are defined by :

1. N is a C-bicomodule such that the left C-comodule structure is trivial.
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2. N admits a (D,C)-comodule structure ; that is to say, N admits a left D-
comodule structure compatible with its right C-comodule structure).

3. The coalgebra C admits a left trivial D-comodule structure.

Then for any integer i ≥ 0, N ⊗ C⊗i admits a left D-comodule structure given by
the tensor product if structures above are under consideration.

Proposition 6.4. For any integer i ≥ 0, Hochi(C,N) inherits aD-comodule structure.

Proof. It suffices to show that for any i ≥ 0,

di : N ⊗ C⊗i → N ⊗ C⊗(i+1)

is a D-comodule morphism. It suffices to show the commutativity of the following
diagram :

N ⊗ C⊗i di //

δDL
��

N ⊗ C⊗(i+1)

δDL
��

D ⊗N ⊗ C⊗i idD⊗d
i
// D ⊗N ⊗ C⊗(i+1).

We take an element n⊗ c1 ⊗ · · · ⊗ ci ∈ N ⊗ C⊗i, then

(idD ⊗ di)(δDL (n⊗ c1 ⊗ · · · ⊗ ci))
=

∑
n(−1) ⊗ n(0) ⊗ n(1) ⊗ c1 ⊗ · · · ⊗ ci

+
i∑

p=1
(−1)p

∑
n(−1) ⊗ n(0) ⊗ c1 ⊗ · · · ⊗ cp(1) ⊗ c

p
(2) ⊗ · · · ⊗ c

i

+(−1)i+1∑n(−1) ⊗ n(0) ⊗ c1 ⊗ · · · ⊗ ci ⊗ 1
= δDL (di(n⊗ c1 ⊗ · · · ⊗ ci)).

As a consequence, δDL induces δDL : Hochi(C,N) → D ⊗ Hochi(C,N), which gives a
D-comodule structure on Hochi(C,N).

Moreover, we consider the module structure on the coHochschild homology groups.
At this time, we suppose that following data are given :

1. C is a trivial D-bimodule given by the counit ε ;
2. M is a C-bicomodule where the left C-comodule is trivial ;
3. M is a D-bimodule, then it is a left adjoint D-module ;
4. the right C-comodule structural map on M is a D-bimodule morphism.

Then for any integer i ≥ 0, M ⊗ C⊗i admits a D-module structure given by : it acts
on M by the adjoint action and acts trivially on the other components.

Proposition 6.5. For any integer i ≥ 0, Hochi(C,M) inherits a D-module structure.
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Proof. As in the last proposition, it suffices to show that for any i ≥ 0, di : M ⊗
C⊗i →M ⊗C⊗(i+1) is a morphism of D-module, that is to say, the following diagram
commutes :

D ⊗M ⊗ C⊗i idD⊗di//

a

��

D ⊗M ⊗ C⊗(i+1)

a

��
M ⊗ C⊗i di //M ⊗ C⊗(i+1),

where a is the left adjoint D-module structural map.
We take an element d⊗m⊗ c1 ⊗ · · · ⊗ ci ∈ D ⊗M ⊗ C⊗i, then

a ◦ (id⊗ di)(d⊗m⊗ c1 ⊗ · · · ⊗ ci)
=

∑
d(1)m(0)S(d(2))⊗m(1) ⊗ c1 ⊗ · · · ⊗ ci

+
i∑

p=1
(−1)pd(1)mS(d(2))⊗ c1 ⊗ · · · ⊗ cp(1) ⊗ c

p
(2) ⊗ · · · ⊗ c

i

+(−1)i+1∑ d(1)mS(d(2))⊗ c1 ⊗ · · · ⊗ ci ⊗ 1.

On the other side,

di ◦ a(d⊗m⊗ c1 ⊗ · · · ⊗ ci)
= di

(∑
d(1)mS(d(2))⊗ c1 ⊗ · · · ⊗ ci

)
= a ◦ (id⊗ di)(d⊗m⊗ c1 ⊗ · · · ⊗ ci).

As a summary, for two Hopf algebras C, D and a vector space M satisfying the
following conditions :

1. C is a trivial D-Hopf bimodule ;
2. M is a C-bicomodule where the left comodule structure is trivial ;
3. M is a left D-comodule such that M is a (D,C)-bicomodule ;
4. M is a D-bimodule such that the right C-comodule structural map is a D-

bimodule morphism.
Then for any i ∈ N, Hochi(C,M) inherits an adjoint D-module structure and a D-
comodule structure from the corresponding ones on M .

6.6 A Borel-Weil-Bott type theorem
In this section, we compute the coHochschild homology of Sσ(V ) with coefficient

in the bicomodule Sσ̃(W )(1) to obtain a Borel-Weil-Bott type theorem. These can
be viewed as an analogue of the flag variety and an equivariant line bundle over it
respectively. We explain them in the following correspondence :

1. The quantum shuffle algebra Sσ(V ) can be viewed as an analogue of a non-
commutative object corresponds to the flag variety G/B.
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2. The Sσ(V )-Hopf bimodule generated by one vector (for example, vλ) is an ana-
logous of the equivariant line bundle L(λ) generated by a weight λ vector over
G/B.

3. The set of coinvariants in Sσ̃(W ) is an analogue of the set of global invariants
(more precisely, the set of global sections) on L(λ).

6.6.1 Main construction
For this cohomological purpose, we need to do a little change for the Sσ(V )-module

and comodule structures on Sσ̃(W ).
1. The right Sσ(V )-module structure is given by the multiplication in Sσ̃(W ).
2. The left Sσ(V )-comodule structure on Sσ̃(W ) is defined by :

δL : Sσ̃(W )→ Sσ(V )⊗ Sσ̃(W ), Fi 7→ 1⊗ Fi, vλ 7→ 1⊗ vλ.

3. The right Sσ(V )-comodule structure on Sσ̃(W ) is given by :

δR : Sσ̃(W )→ Sσ̃(W )⊗ Sσ(V ), Fi 7→ Fi ⊗ 1 + 1⊗ Fi, vλ 7→ vλ ⊗ 1.

That is to say, we trivialize the left comodule structure and make right structures
being untouched.

Lemma 6.3. With structures defined above, both Sσ̃(W ) and Sσ̃(W )(1) are right
Sσ(V )-Hopf modules and Sσ̃(W )-bicomodules.

It should be pointed out that as we do not touch the right Hopf module structure,
the set of right coinvariants will be the same as the original case. That is to say, if
we let M1 denote Sσ̃(W )(1) with the above module and comodule structures, then as
vector space, M coR

1
∼= L(λ).

6.6.2 Calculation of Hoch0

Now we proceed to calculate the degree 0 coHochschild homology of Sσ(V ) as a
coalgebra with coefficient in the Sσ(V )-bicomodule Sσ̃(W )(1). We point out that this
will only use the Sσ(V )-bicomodule structure on M1.

It is better to start with a general framework. This will be useful to explain the
set of coinvariants as some "global sections".

Let C be a coalgebra and M be a right C-Hopf module. We give M a trivial left
C-comodule structure by defining δL(m) = 1⊗m. Then M is a C-bicomodule.

Proposition 6.6. With assumptions above, Hoch0(C,M) = M coR.

Proof. We compute Hoch0(C,M). From definition, this is given by the kernel of

d0 : M →M ⊗ C, m 7→
∑

m(0) ⊗m(−1) −
∑

m(0) ⊗m(1),

where δL(m) = ∑
m(−1) ⊗m(0) and δR(m) = ∑

m(0) ⊗m(1).
The trivialization of the left comodule structure implies that d0(m) = 0 if and only

if ∑m(0) ⊗m(1) = m⊗ 1, which is equivalent to m ∈M coR.
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According this proposition, Hoch0(Sσ(V ), Sσ̃(W )(1)) ∼= L(λ) as vector space. Now
we will endow them with module and comodule structures using machineries built in
Section 6.5.3.

To make notations more transparent, we denote C = D = Sσ(V ). The Sσ(V )-
structures given at the beginning of this section on Sσ̃(W ) are treated as C-module
and comodule structures.

Now we define the D-module and comodule structures on Sσ̃(W ) :
1. The left Sσ(V )-comodule structure is given by :

δL : Sσ̃(W )→ Sσ(V )⊗ Sσ̃(W ), Fi 7→ Fi ⊗ 1 + 1⊗ Fi, vλ 7→ 1⊗ vλ.
2. The left Sσ(V )-module structure is given by the adjoint action.

Then Sσ̃(W )(1) inherits these structures.
It is clear that these C,D-module and comodule structures on M satisfy the hy-

pothesis before Proposition 6.4 and 6.5. So according to these propositions, for any
i, the homology group Hochi(Sσ(V ), Sσ̃(W )(1)) admits a D-comodule structure and a
D-module structure given by the adjoint action. These module and comodule struc-
tures satisfy the Yetter-Drinfel’d compatibility condition, thus all homology groups
Hochi(Sσ(V ), Sσ̃(W )(1)) admit Uq(g)-module structures.
Corollary 6.2. Let λ ∈ P (if ql = 1 is a primitive root of unity, λ ∈ P l). As Uq(g)-
modules, we have Hoch0(Sσ(V ), Sσ̃(W )(1)) ∼= L(λ).

The following part of this section is devoted to calculating the higher coHochschild
homology groups in the generic and root of unity cases respectively.

6.6.3 Duality between Hochschild and coHochschild homolo-
gies

We start with a general setting : suppose that

C• : · · · d // Cn
d // · · · d // C2

d // C1
d //M,

C ′• : · · · Cn
δoo · · ·δoo C2

δoo C1
δoo Mδoo

are two complexes of finite dimensional vector spaces where M is in degree 0 and Ci
in degree i such that

1. for each i = 1, 2, · · · , there exists a bilinear form ϕi : Ci × Ci → k ;
2. there is a bilinear form ϕ0 : M ×M → k ;
3. differentials d and δ are adjoint to each other with respect to these pairings.

We let H•(M) (resp. H•(M)) denote the homology group of the complex C• (resp.
C ′•). As these complexes have differentials which are adjoint to each other, the bilinear
forms ϕ0, ϕ1, · · · , ϕn, · · · induce a bilinear form ϕ : Hn(M) × Hn(M) → k for any
n ≥ 0.

If moreover these bilinear forms are non-degenerate, we have the following duality
result whose proof is direct.
Proposition 6.7. Let ϕ0, ϕ1, · · · , ϕn, · · · be non-degenerate bilinear forms. Then ϕ :
Hn(M)×Hn(M)→ k is non-degenerate.
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6.6.4 Application to quantum shuffle algebra
We fix a non-degenerate graded Hopf pairing on Sσ̃(W ) as explained in Section

6.2.10. This subsection is devoted to giving a proof the following result :
Proposition 6.8. For any n ≥ 0, the bilinear form

ϕ : Hn(Sσ(V ), Sσ̃(W )(1))× Hochn(Sσ(V ), Sσ̃(W )(1))→ k

is non-degenerate.
We consider the Bar complex of Sσ̃(W )(1)

Sσ̃(W )(1) ⊗ Sσ(V )⊗n d // · · · d // Sσ̃(W )(1) ⊗ Sσ(V ) d // Sσ̃(W )(1)

and the coBar complex

Sσ̃(W )(1)
δ // Sσ̃(W )(1) ⊗ Sσ(V ) δ // · · · δ // Sσ̃(W )(1) ⊗ Sσ(V )⊗n δ // · · · .

The Sσ(V )-bimodule and bicomodule structures on Sσ̃(W )(1) are given by :
1. The left Sσ(V )-module structure on Sσ̃(W )(1) is given by multiplication and the

right module structure is given by the augmentation map ε ;
2. The left Sσ(V )-comodule structure on Sσ̃(W )(1) is trivial and the right comodule

structure is deduced from the restriction of the comultiplication in Sσ̃(W )(1).
With these definitions, Sσ(V )-bimodule and bicomodule structures on Sσ̃(W )(1) are in
duality and differentials d and δ are adjoint to each other with respect to the pairing.

Moreover, both Sσ(V ) and Sσ̃(W )(1) have gradations induced by the cotensor coal-
gebra :

Sσ(V ) =
∞⊕
n=0

Snσ (V ), Sσ̃(W )(1) =
∞⊕
n=0

Snσ̃ (W )(1),

where Snσ (V ) and Sn
σ̃
(W )(1) are linearly generated by monomials of length n in the

quantum shuffle product.
Then the Bar and coBar complexes admit gradations induced by those on Sσ(V )

and Sσ̃(W )(1) : for example, elements of degree p in Sσ̃(W )(1) ⊗ Sσ(V )⊗n are formed
by : ⊕

i0+···+in=p
Si0
σ̃

(W )(1) ⊗ Si1σ (V )⊗ · · · ⊗ Sinσ (V ).

From the definition of differentials d and δ, they both preserve this gradation on the
Bar and coBar complexes and give gradations on the Hochschild and coHochschild
homology groups ; we let Hn(Sσ(V ), Sσ̃(W )(1))t and Hochn(Sσ(V ), Sσ̃(W )(1))t denote
sets of homology classes of degree t with homology degree n.

Fixing some degree t, there is a subcomplex C• → St
σ̃
(W )(1) defined by :

Cr =
⊕

i0+···+ir=t
Si0
σ̃

(W )(1) ⊗ Si1σ (V )⊗ · · · ⊗ Sirσ (V );

these Cr are finite dimensional.
This subcomplex satisfies conditions in Proposition 6.7, so the Hopf pairing induces

an isomorphism of vector space : for any n, t = 0, 1, · · · ,
Hn(Sσ(V ), Sσ̃(W )(1))t ∼= Hochn(Sσ(V ), Sσ̃(W )(1))t.
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6.6.5 De Concini-Kac filtration
Let S be a commutative totally ordered semi-group and A be an S-filtered algebra

with unit, that is to say : A = ⋃
s∈S As such that

1. for any s ∈ S, As is a subspace of A ;
2. for any s < s′ ∈ S, As ⊂ As′ ;
3. for any s, s′ ∈ S, As · As′ ⊂ As+s′ .

The graded algebra associated to this filtration is denoted by grA = ⊕
s∈S grsA, where

grsA = As/
∑
s′<sAs′ .

Let M be a free left A-module with generating set M0. A filtration of A induces
a filtration on M by defining Ms = As ·M0. Then {Ms}s∈S forms a filtration on M
which is compatible with the A-module structure : for any s, s′ ∈ S, As.Ms′ ⊂ Ms+s′ .
We let grM denote the associated graded vector space ⊕s∈S grsM , where grsM =
Ms/

∑
s′<sMs′ . Then grM is a left grA-module.

From now on and until the end of this chapter, g is assumed to be a
finite dimensional semi-simple Lie algebra.

We study the De Concini-Kac filtration in the rest of this subsection.
We fix an expression of the longest element w0 in the Weyl groupW , which permits

us to construct a PBW basis of Sσ(V ) using Lyndon words. Let ∆+ = {β1, · · · , βN}
be the set of positive roots associated to the Cartan matrix C. Once an expression
of w0 is fixed, we obtain a total ordering on ∆+ : for example, we may suppose that
β1 > β2 > · · · > βN .

For each βi ∈ ∆+, there is a PBW root vector Fβi ∈ Sσ(V ) such that the set

{F i1
β1 · · ·F

iN
βN
| (i1, · · · , iN) ∈ NN}

forms a linear basis of Sσ(V ) which can be identified with the lattice NN . We equip NN

with its lexicographical ordering, then it is a totally ordered commutative semi-group.
For a monomial F i1

β1 · · ·F
iN
βN

, we define its degree

d(F i1
β1 · · ·F

iN
βN

) = (i1, · · · , iN) ∈ NN .

If i = (i1, · · · , iN), the notation F i = F i1
β1 · · ·F

iN
βN

will be adopted.

Lemma 6.4 (Levendorskii-Soibelman, Kirillov-Reshetikhin). For any βi < βj, we
have :

FβjFβi − q(βi,βj)FβiFβj =
∑
k∈NN

αkF
k,

where αk ∈ k and αk 6= 0 unless d(F k) < d(FβiFβj).

We define an NN -filtration on Sσ(V ) by : for i ∈ NN , Sσ(V )i is the linear subspace
of Sσ(V ) generated by monomials F k such that d(F k) ≤ i.

Proposition 6.9 (De Concini-Kac, [16]).
1. {Sσ(V )i| i ∈ NN} forms an NN -filtration of Sσ(V ).
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2. The associated graded algebra grSσ(V ) is generated by homogeneous generators
{Fβi | i = 1, · · · , N} and relations :

FβjFβi = q(βi,βj)FβiFβj , for βi < βj.

That is to say, grSσ(V ) is a kind of "multi-parameter quantum plane" ; it is an
integral algebra, i.e., has no nontrivial zero-divisors.

Now we turn to study the induced NN -filtration on the left Sσ(V )-module Sσ̃(W )(1).
As we have seen before, there is an isomorphism of vector space

Sσ̃(W )(1) ∼= L(λ)⊗ Sσ(V ).

Let v1, · · · , vr be a linear basis of L(λ), where r = dimL(λ). Then a linear basis of
Sσ̃(W )(1) is given by

F i1
β1 · · ·F

iN
βN
vε1

1 · · · vεrr ,
where i = (i1, · · · , iN) ∈ NN and ε = (ε1, · · · , εr) ∈ {0, 1}r such that |ε| = ∑r

i=1 εi = 1.
The Sσ(V )-module structure on Sσ̃(W )(1) is given by the left multiplication in

Sσ(V ), so the induced NN -filtration on M = Sσ̃(W )(1) is as follows : for any s ∈ NN ,

Ms = {F i1
β1 · · ·F

iN
βN
vε1

1 · · · vεrr | i ≤ s}.

We let grM = grSσ̃(W )(1) denote the associated grSσ(V )-module.
We have an explicit description of grM according to Theorem 6.4 :

grM =
⊕

i∈NN ,k=1,··· ,r
F i1
β1 · · ·F

iN
βN
⊗ vk,

where the grSσ(V )-module structure is given by : for Fβt ∈ grSσ(V ) and F i1
β1 · · ·F

iN
βN
⊗

vk ∈ grM ,

Fβt · F i1
β1 · · ·F

iN
βN
⊗ vk =

t−1∏
s=1

q−is(βs,βt)F i1
β1 · · ·F

it+1
βt
· · ·F iN

βN
⊗ vk.

The Sσ(V )-bimodule structure on Sσ̃(W )(1) gives grSσ̃(W )(1) a grSσ(V )-bimodule
structure.

This construction still works when ql = 1 is a root of unity, we refer to [31] for
complete statements.

6.6.6 Hochschild homology of graded algebra : generic case
This section is devoted to computing the Hochschild homology groupH•(grSσ(V ), grSσ̃(W )(1))

with the bimodule structure defined above. To simplify the notation, we let Gσ(V ) and
Gσ̃(W )(1) denote grSσ(V ) and grSσ̃(W )(1) respectively.

The main theorem of this section is :

Theorem 6.5. Let λ ∈ P+ and q not be a root of unity. Then the Hochschild homology
group of Gσ(V ) with coefficient in Gσ̃(W )(1) is given by :

Hn(Gσ(V ), Gσ̃(W )(1)) =
{
L(λ) n = 0;

0, n 6= 0.
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The main idea of the proof is to use the Koszul resolution of the Koszul algebra
Gσ(V ), then apply an analogue of the homotopy defined by M. Wambst in [84].

We let Λq(V ) denote the graded algebra generated by homogeneous generators
Fβ1 , · · · , FβN of degree 1 and relations

1. for any βi < βj, FβjFβi + q(βi,βj)FβiFβj = 0 ;
2. for any i = 1, · · · , N , F 2

βi
= 0.

Then Λq(V ) = ⊕N
k=0 Λk

q(V ), where Λk
q(V ) is generated as a vector space by Fβi1 ∧

· · · ∧ Fβik for i1 < · · · < ik. This Λq(V ) is the Koszul dual of Gσ(V ).
According Theorem 5.3 in [68], Gσ(V ) is a homogeneous Koszul algebra because

it is obviously a PBW algebra (see Section 5.1 of [68] for a definition). Then as a
Gσ(V )-bimodule, there is a Koszul complex starting from Gσ̃(W )(1) :

· · · // Gσ̃(W )(1) ⊗ Λk
q(V ) d // · · · d // Gσ̃(W )(1) ⊗ Λ1

q(V ) d // Gσ̃(W )(1).

We write down the differential d explicitly : for i ∈ NN and ε ∈ {0, 1}r with |ε| = 1,
we denote

F (i,ε) = F i1
β1 · · ·F

iN
βN
vε1

1 · · · vεrr ,

then

d(F (i,ε)⊗Fβi1∧· · ·∧Fβin ) =
n∑
k=1

(−1)k−1
n∏

s=k+1
QikisFβikF

(i,ε)⊗Fβ1∧· · ·∧F̂βik ∧· · ·∧Fβin ,

where Qikis = q(βik ,βis ) and the hat notation hides the corresponding term. It should
be pointed out that d is well-defined because the right Gσ(V )-module on Gσ̃(W )(1) is
trivial.

To simplify notations, we let Qij denote the number such that FβiFβj = QijFβjFβi
for any positive roots βi, βj. Then relations in Gσ(V ) imply that Qij = Q−1

ji for any
i 6= j and Qii = 1.

Now we mimic the definition of the homotopy as in [84], Section 6 to show that
the Koszul complex above is acyclic.

For any α = (i, ε) ∈ NN × {0, 1}r as above with |ε| = 1 and any β ∈ {0, 1}N , we
define for any i = 1, · · · , N ,

Ω(α, β, i) =


0 βi = 0;

ε(β, i)
N∏

s=i+1
Qβs
is

i−1∏
p=1

Q
−ip
pi , βi 6= 0,

where ε(β, i) = (−1)
∑i−1

s=1 βs .
For any i = 1, · · · , N , we let [i] denote the element in NN × {0, 1}r or in {0, 1}N

such that its i-th component is 1 and the others are zero. Then the differential in the
Koszul complex can be written as :

d(Fα ⊗ F β) =
N∑
i=1

Ω(α, β, i)Fα+[i] ⊗ F β−[i].
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With notations above, we define

ω(α, β, i) =
{

0 βi = 1 or αi = 0;
Ω(α− [i], β + [i], i)−1, if not.

We define a map h : Gσ̃(W )(1) ⊗ Λn
q (V )→ Gσ̃(W )(1) ⊗ Λn+1

q (V ) by :

h(Fα ⊗ F β) = 1
||α + β||

N∑
i=1

ω(α, β, i)Fα−[i] ⊗ F β+[i],

where ||α + β|| = Card({i = 1, · · · , N | (α + β)i 6= 0}) (here we extend β by 0 to an
element in NN × {0, 1}r ⊂ NN+r and (α + β)i is the i-th component of α + β).

Lemma 6.5. hd+ dh = 1, i.e., h is a homotopy.

A similar argument as in the proof of Theorem 6.1 of [84] can be applied to our
case to prove this lemma. We provide at the end of this subsection some details of this
verification as a modified version will be applied to the root of unity case. Thus the
complex Gσ̃(W )(1) ⊗ Λ•q(V ) is acyclic.

Thus it suffices to compute the degree 0 homology group. This can be directly
calculated as follows : the degree 0 homology group is Gσ̃(W )(1)/imd where

d : Gσ̃(W )(1) ⊗ V → Gσ̃(W )(1)

is given by :
d(Fα ⊗ Fβi) = FβiF

α.

Recall that we have a linear basis F (i,ε) for Gσ̃(W )(1) where i ∈ NN and ε ∈ {0, 1}r
satisfying |ε| = 1. So after going to the quotient, the surviving elements are those F (i,ε)

with i = (0, · · · , 0). Thus H0(Gσ(V ), Gσ̃(W )(1)) = L(λ) as vector space.

Proof of Lemma. It suffices to verify that h is a homotopy. After the formula of d and
h,

dh(Fα ⊗ F β) = 1
||α + β||

N∑
i=1

N∑
j=1

ω(α, β, i)Ω(α− [i], β + [i], j)Fα−[i]+[j] ⊗ F β+[i]−[j],

hd(Fα ⊗ F β) = 1
||α + β||

N∑
i=1

N∑
j=1

Ω(α, β, j)ω(α + [j], β − [j], i)Fα−[i]+[j] ⊗ F β+[i]−[j].

We want to show that for i 6= j,

ω(α, β, i)Ω(α− [i], β + [i], j) + Ω(α, β, j)ω(α + [j], β − [j], i) = 0.

If i < j, from the definition of Ω and ω, we have :

ε(β, i)ε(β + [i], j)
 N∏
s=j+1

Qβs
js

j−1∏
p=1

Q
−ip
pj

 N∏
s=i+1

Qβs
isQ

−1
ij

i−1∏
p=1

Q
−ip
pi

−1

+ ε(β, j)ε(β − [j], i)
 N∏
s=j+1

Qβs
js

j−1∏
p=1

Q
−ip
pj Qij

 N∏
s=i+1

Qβs
is

i−1∏
p=1

Q
−ip
pi

−1

= 0
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Then it suffices to show that if i < j,

ε(β, i)ε(β + [i], j) + ε(β, j)ε(β − [j], i) = 0,

but this is clear from definition.
The case i > j can be similarly obtained.
Now it suffices to prove that
N∑
i=1

(ω(α, β, i)Ω(α− [i], β + [i], i) + Ω(α, β, i)ω(α + [i], β − [i], i)) = ||α + β||.

Notice that each multiplication of ω and Ω is either 0 or 1. So we separate it into four
cases :

1. αi = 0, βi = 0 ; in this case, the i-summand is 0 ;
2. αi 6= 0, βi = 0 ; in this case, the i-summand is 1 ;
3. αi = 0, βi = 1 ; in this case, the i-summand is 1 ;
4. αi 6= 0, βi = 1 ; in this case, the i-summand is 1.

Thus ω(α, β, i)Ω(α − [i], β + [i], i) + Ω(α, β, i)ω(α + [i], β − [i], i) = 1 if and only if
(α + β)i 6= 0, from which we proved the above identity.

6.6.7 Hochschild homology of graded algebra : root of unity
case

We let ql = 1 be a primitive l-th root of unity in this subsection.

Theorem 6.6. Let λ ∈ P l+. The Hochschild homology groups of Gσ(V ) with coeffi-
cients in Gσ̃(W )(1) are given by :

Hn(Gσ(V ), Gσ̃(W )(1)) =
{

L(λ) n = 0;
∧n(n−), n 6= 1.

where n− is identified with the negative part of the Lie algebra g.

The rest of this subsection is devoted to proving this theorem.
We use the Koszul complex as in the generic case :

K• = · · · // Gσ̃(W )(1) ⊗ Λk
q(V ) d // · · · d // Gσ̃(W )(1) ⊗ Λ1

q(V ) d // Gσ̃(W )(1).

We consider the following subcomplex of K• :

S• = · · · //
⊕

1≤i1<···<ik≤N

kF
l−1
βi1
· · ·F l−1

βik
⊗ Fβi1

∧ · · · ∧ Fβik
d // · · · d //

N⊕
s=1

kF
l−1
βis
⊗ Fβis

d // 0 .

From the definition of the differential and the fact that for any 1 ≤ i ≤ n, F l
βi

= 0,
each term in S• has no pre-image under d in K•. Thus we obtain a complement R• of
S• in K• such that as complexes,

K• = S• ⊕R•.



128
Chapitre 6. A Borel-Weil-Bott type theorem of quantum shuffle

algebras

It is clear that in S•, all differentials are zero, so identifying F l−1
βi1
· · ·F l−1

βik
⊗Fβi1 ∧ · · ·∧

Fβik with Fβi1 ∧ · · · ∧ Fβik gives a bijection : for k ≥ 1,

Hk(S•) ∼ // ∧k(n−) .

Now we proceed to show that the complex R• is acyclic with H0(R•) = L(λ) by
applying a modification of the homotopy defined in the generic case.

We explain the modifications :
1. The definition of Ω(α, β, j) for j = 1, · · · , N , α = (i, ε) ∈ (Z/l)N × {0, 1}r,
β ∈ {0, 1}N with |ε| = 1 :

Ω(α, β, j) =


0 βj = 0 or ij = l − 1;

ε(β, j)
N∏

s=j+1
Qβs
js

j−1∏
p=1

Q
−ip
pi , βj 6= 0 and ij 6= l − 1,

2. The definition of ω(α, β, j) need not to be changed.
3. In the last step of the proof, there are 6 cases to be considered :

(a) αi = 0, βi = 0, then the i-summand is 0 ;
(b) αi = 0, βi = 1, then the i-summand is 1 ;
(c) αi = l − 1, βi = 0, then the i-summand is 1 ;
(d) αi = l − 1, βi = 1, then the i-summand is 0 ;
(e) αi 6= 0, l − 1, βi = 0, then the i-summand is 1 ;
(f) αi 6= 0, l − 1, βi = 1, then the i-summand is 1.

So the i-summand is 0 if and only if (α+ β)i = 0 in (Z/l)N × {0, 1}r. Moreover,
in the complex R•, there does not exist a term Fα ⊗ F β such that for any
i, (α + β)i = 0 (as such terms are all contained in S•), which implies that
||α+ β|| 6= 0. So a homotopy from R• to itself can be defined similarly as in the
generic case, which shows that R• is acyclic.

Finally, the result concerned withH0(R•) is similar with the generic case, which finishes
the proof.

6.6.8 Main results
The theorem in the last subsection permits us to compute the Hochschild homology

groups H•(Sσ(V ), Sσ̃(W )(1)) by an argument of spectral sequence.

Theorem 6.7. The Hochschild homology groups of Sσ(V ) with coefficient in the
Sσ(V )-bimodule Sσ̃(W )(1) are :

1. If q is not a root of unity and λ ∈ P+, we have :

Hn(Sσ(V ), Sσ̃(W )(1)) =
{
L(λ) n = 0;

0, n 6= 0.
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2. If ql = 1 is a primitive root of unity and λ ∈ P l+, we have :

Hn(Sσ(V ), Sσ̃(W )(1)) =
{

L(λ) n = 0;
∧n(n−), n ≥ 1.

where n− is identified with the negative part of the Lie algebra g.

To pass from the graded case to the general case, it suffices to apply the following
lemma due to May [62], Theorem 3.

Lemma 6.6 (May spectral sequence). Let A be a filtered algebra with unit such that
its filtration is exhaustive, M be a filtered A-module where the filtration is induced
from that of A. Then there exists a convergent spectral sequence

E2
p,q = Hp+q(grA, grM) =⇒ H•(A,M).

In our context, from theorems in last sections, the spectral sequence collapses at
E2-term : it is clear in the generic case ; in the root of unity case, this holds as all
differentials are zero in the E2-sheet. This gives the desired isomorphism of homology
groups :

Hn(Gσ(V ), Gσ̃(W )(1)) ∼ // Hn(Sσ(V ), Sσ̃(W )(1)) ,

which finishes the proof.
As a corollary, the first theorem announced in the introduction comes from Propo-

sition 6.8.

6.7 On the study of coinvariants of degree 2
General assumption : from now on until the end of this chapter, we suppose

that q is not a root of unity and λ ∈ P+ is a dominant weight.
In this section, as a continuation of Theorem 6.4, we will study the set of coinva-

riants of degree 2. We keep the notations of last sections.
We fix an integer n ≥ 1. LetMn denote the subspace of Sσ̃(W ) containing elements

of degree n with the degree structure defined by deg(Fi) = 0 and deg(vλ) = 1. The
same argument as in last sections shows that Mn = (Sσ̃(W ))(n) is an Sσ(V )-sub-Hopf
bimodule of Sσ̃(W ). Then we can consider the set of right coinvariants M coR

n in Mn

and from the structure theorem of Hopf bimodules,

(Sσ̃(W ))(n) = Mn
∼= M coR

n ⊗ Sσ(V ).

6.7.1 Basic construction
In the following part of this section, we will concentrate on the case n = 2 to give

an explicit description of M coR
2 .

The main tool for tackling this case is the following construction.
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At first, we consider the following commutative diagram :

T (W )(1) ⊗T (V ) T (W )(1)
S1 //

∼= m

��

Sσ̃(W )(1) ⊗Sσ(V ) Sσ̃(W )(1)

m

��
T (W )(2)

S2 // Sσ̃(W )(2).

We start by explaining morphisms appearing in this diagram. Let Σn = ∑
σ∈Sn Tσ ∈

k[Bn] denote the symmetrization operator, it acts linearly on V ⊗n. The map

S1 =
∞⊕

n,m=0
Σn ⊗ Σm

is given by the symmetrization on both components. It is well-defined because as
explained in Section 6.2.9, the symmetrization map T (W )→ Sσ̃(W ) is a morphism of
algebra. The morphism S2 = ⊕∞

n=0 Σn is just the symmetrization map. The horizontal
morphisms are given by symmetrization, so both of them are surjection. Two vertical
morphisms are given by multiplications and so the left one is an isomorphism. It
permits us to identify elements in T (W )(1)⊗T (V )T (W )(1) and T (W )(2). We will denote
S2 ◦m by S2 for short.

Lemma 6.7. We have kerS1 ⊂ kerS2, so the right vertical map m is surjective.

Proof. This comes from a general observation. For three integers n, n1, n2 ≥ 0 satis-
fying n = n1 + n2, as shown in Section 6.2.1, we can decompose the symmetric group
Sn as

Sn = (Sn1 ×Sn2) ◦Sn1,n2 .

Moreover, this decomposition can be lifted to the braid group Bn by the Matsumoto
section. So for an element x in W⊗n, if∑

σ∈Sn1,n2

Tσ(x) = 0,

the total symmetrization

∑
ω∈Sn

Tω(x) =
∑

τ∈Sn1×Sn2

Tτ

 ∑
σ∈Sn1,n2

Tσ(x)
 = 0.

From the definition of S1 and S2, it is now clear that kerS1 ⊂ kerS2. Thus we obtain
a linear surjection

Sσ̃(W )(1) ⊗Sσ(V ) Sσ̃(W )(1) → Sσ̃(W )(2)

given by the multiplication.

Now we consider the inclusion map

Sσ̃(W )(1) → Sσ̃(W )
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which is an Sσ(V )-bimodule morphism. Thanks to the universal property of the tensor
algebra (see, for example, Proposition 1.4.1 of [67]), it can be lifted to a morphism of
algebra

TSσ(V )(Sσ̃(W )(1))→ Sσ̃(W )

given by the multiplication.
A similar argument as in the lemma above can be applied to show the following

corollary :

Corollary 6.3. The multiplication map TSσ(V )(Sσ̃(W )(1))→ Sσ̃(W ) is surjective.

That is to say, as an Sσ(V )-bimodule, Sσ̃(W ) is generated by Sσ̃(W )(1).
We proceed to consider the Sσ(V )-structures of this morphism.
1. TSσ(V )(Sσ̃(W )(1)) is an Sσ(V )-bicomodule : for each n ∈ N, as a tensor product,
T n(Sσ̃(W )(1)) is an Sσ(V )-bicomodule. Combined with the canonical projection,
we obtain linear maps

δL : T n(Sσ̃(W )(1))→ Sσ(V )⊗ T nSσ(V )(Sσ̃(W )(1)),

δR : T n(Sσ̃(W )(1))→ T nSσ(V )(Sσ̃(W )(1))⊗ Sσ(V )

which make T nSσ(V )(Sσ̃(W )(1)) an Sσ(V )-bicomodule, according to Lemma 6.1.
2. TSσ(V )(Sσ̃(W )(1)) is an Sσ(V )-bimodule as each T nSσ(V )(Sσ̃(W )(1)) is.
3. These two structures on TSσ(V )(Sσ̃(W )(1)) make it into an Sσ(V )-Hopf bimodule.
4. Sσ̃(W ) has its ordinary Sσ(V )-bimodule and bicomodule structures as in the

beginning of Section 6.4.2.
5. As right Sσ(V )-Hopf modules, there are isomorphisms

M coR
n ⊗ Sσ(V ) ∼= Sσ̃(W )(n), M

coR ⊗ Sσ(V ) ∼= Sσ̃(W )

given by multiplications.
Combining these observations and constructions, we have : as left Sσ(V )-modules

and comodules,
TSσ(V )(Sσ̃(W )(1)) ∼= T (M coR

1 )⊗ Sσ(V ),

Sσ̃(W ) ∼=
∞⊕
n=0

M coR
n ⊗ Sσ(V ).

These M coR
n and T (M coR

1 ) are Sσ(V )-Yetter Drinfel’d modules as explained in Section
6.2.2. Once id ⊗ ε is applied to both sides, we obtain a surjection of Sσ(V )-Yetter-
Drinfel’d modules T (M coR

1 ) → ⊕∞
n=0M

coR
n given by the multiplication. The following

corollary is just a particular case :

Corollary 6.4. The multiplication gives an Sσ(V )-Yetter-Drinfel’d module surjection

m : M coR
1 ⊗M coR

1 →M coR
2 .
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6.7.2 Study of M coR
2 : non-critical case

The non-critical and critical case are separated in view of studying new Serre
relations appearing when passing from degree 1 to degree 2.

Let λ be a dominant weight. We call λ non-critical in degree 2 if there does not
exist i ∈ I such that (λ, α∨i ) = 1. If the degree is under consideration, we will call λ
non-critical.

We start from a general remark. Let C ′ = (c′i,j)(n+1)×(n+1)be the generalized Cartan
matrix obtained from C by adding a last row and a last column : its elements are : for
1 ≤ i, j ≤ n, c′i,j = ci,j ; c′n+1,n+1 = 2 and for 1 ≤ i ≤ n, c′n+1,i = c′i,n+1 = −(λ, α∨i ).

Thanks to Theorem 6.2, Sσ̃(W ) ∼= U−q (g(C ′)) as braided Hopf algebra.
From the definition of the quantized enveloping algebra, U−q (g(C ′)), as an algebra,

is freely generated by F1, · · · , Fn and vλ with relations :

ad(Fi)1−aij(Fj) = 0, i 6= j = 1, · · · , n;

ad(vλ)1+(λ,α∨i )(Fi) = 0, ad(Fi)1+(λ,α∨i )(vλ) = 0, for i = 1, · · · , n.

The following theorem determines the set of coinvariants of degree 2 in the non-
critical case.

Theorem 6.8. Suppose that for any i ∈ I, (λ, α∨i ) 6= 1. Then the multiplication map
gives an isomorphism of left Sσ(V )-Yetter-Drinfel’d modules

L(λ)⊗ L(λ) ∼ //M coR
2 .

Proof. It suffices to show that in this case, the surjectionm : Sσ̃(W )(1)⊗Sσ(V )Sσ̃(W )(1) →
Sσ̃(W )(2) is an isomorphism.

The following lemma comes from basic linear algebra.

Lemma 6.8. Let U, V,W be three vector spaces and f : U → V , g : V → W be
two linear surjections. We denote h = g ◦ f . Then h is surjective, ker f ⊂ kerh and
ker g = kerh/ ker f .

From this lemma, to prove that m is an injection, it suffices to show that ker(S2 ◦
m) = kerS1.

We consider the difference between kerS1 and kerS2. From the general remark
before the theorem and the fact that kerS1 and kerS2 are generated by quanti-
zed Serre relations, it suffices to compare the quantized Serre relations appearing in
Sσ̃(W )(1) ⊗Sσ(V ) Sσ̃(W )(1) and Sσ̃(W )(2).

It is clear that the difference may contain only relations ad(vλ)1+(λ,α∨i )(Fi) = 0.
But for a monomial in Sσ̃(W )(2), vλ appears twice, so the only possible relation in the
difference of the kernel is given by ad(vλ)2(Fi) = 0 for some i = 1, · · · , n.

As we are in the non-critical case : for any i = 1, · · · , n, (λ, α∨i ) 6= 1. This forbids
such relations and thus there is no difference between kerS1 and kerS2.
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6.7.3 Study of M coR
2 : critical case

In this subsection, we will study the critical case, that is to say, there exists some
i ∈ I such that (λ, α∨i ) = 1.

We start from dealing with the case that there is only one i ∈ I such that (λ, α∨i ) =
1.
Theorem 6.9. Let i ∈ I be the only element such that (λ, α∨i ) = 1. We let L(2λ−αi)
denote the sub-Yetter-Drinfel’d module of L(λ)⊗ L(λ) generated by

Pi = vλ ⊗ ad(vλ)(Fi)− q2+(λ,α∨i )ad(vλ)(Fi)⊗ vλ,

which is irreducible as a Uq(g)-module. Then the multiplication map gives an isomor-
phism of Yetter-Drinfel’d modules

(L(λ)⊗ L(λ)) /L(2λ− αi) ∼ //M coR
2 .

Proof. As in the proof above, we start from considering the difference between kerS2
and kerS1. Because (λ, α∨i ) = 1, the same argument as in the last theorem shows that
this difference is generated by the element v2

λFi in T (W )(2), that is to say, the relation
ad(vλ)2(Fi) = 0 in Sσ̃(W )(2). (We may calculate this directly, or adopt the method
given in [25]. For example, see the example in Section 6.3 therein.)

In Sσ̃(W )(1) ⊗Sσ(V ) Sσ̃(W )(1), the element v2
λFi corresponds to

Pi = vλ ⊗ ad(vλ)(Fi)− q2−(λ,α∨i )ad(vλ)(Fi)⊗ vλ.

This element is not zero as (λ, α∨i ) = 1 and q 6= ±1 imply that ad(vλ)(Fi) 6= 0. Moreo-
ver, the element Pi is also in M coR

1 ⊗M coR
1 and the multiplication m : M coR

1 ⊗M coR
1 →

M coR
2 maps Pi to 0.
As a summary, we have shown that the kernel of m : M coR

1 ⊗M coR
1 → M coR

2 is
generated by Pi as an Sσ(V )-Yetter-Drinfel’d module because v2

λFi is the only relation
in kerS2/ kerS1.

Moreover, the weight of Pi is 2λ− αi, which is a dominant weight after the domi-
nance of λ and (λ, α∨i ) = 1. Then the Sσ(V )-Yetter-Drinfel’d module generated by Pi
is isomorphic to the irreducible representation L(2λ− αi) of Uq(g). Thus we obtained
an isomorphism of Uq(g)-module

(L(λ)⊗ L(λ)) /L(2λ− αi) ∼ //M coR
2 .

Remark 6.4. We should point out that, as v2
λ ∈ M coR

2 , there is always a copy of the
highest weight representation L(2λ) in M coR

2 .
Corollary 6.5. Let J ⊂ I be the subset of I containing elements j ∈ I satisfying
(λ, α∨j ) = 1. Then we have an isomorphism of Sσ(V )-Yetter-Drinfel’d modules

(L(λ)⊗ L(λ))
/⊕

j∈J
L(2λ− αj) ∼ //M coR

2 .

where L(2λ− αj) is the sub-Yetter-Drinfel’d module of L(λ)⊗ L(λ) generated by Pj
as defined in Theorem 6.9, which is irreducible as Uq(g)-module.
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Proof. In this case, the difference between kerS2 and kerS1 is generated by {v2
λFj| j ∈

J} ⊂ T (W )(2). Moreover, because these L(2λ− αj) are irreducible as Uq(g)-modules,
they intersect trivially. Thus the same argument as in the theorem above shows that
the kernel of m : M coR

1 ⊗M coR
1 → M coR

2 is generated by Pj, which are defined in the
above theorem, as an Sσ(V )-Yetter-Drinfel’d module. This gives the corollary.

6.7.4 Homological interpretation
Results obtained in this section can be interpreted in the framework of coHochschild

homology as follows :

Theorem 6.10. Let q ∈ k∗ not be a root of unity and λ ∈ P+ be a dominant weight.
1. If for any i ∈ I, (λ, α∨i ) 6= 1, then as Uq(g)-modules,

Hochn(Sσ(V ), Sσ̃(W )(2)) =
{
L(λ)⊗ L(λ) n = 0;

0, n 6= 0.

2. If J is the subset of I containing those j ∈ I satisfying (λ, α∨j ) = 1, then as
Uq(g)-modules,

Hochn(Sσ(V ), Sσ̃(W )(2)) =


(L(λ)⊗ L(λ))/

⊕
j∈J

L(2λ− αj) n = 0;

0, n 6= 0.

Proof. Results on Hoch0(Sσ(V ), Sσ̃(W )(2)) come from Proposition 6.6, Theorem 6.9
and Corollary 6.5. For the vanishing of higher homology groups, arguments from Sec-
tion 6.6.4 to Section 6.6.6 on Sσ̃(W )(1) can be applied similarly to Sσ̃(W )(2) as we have
already known Hoch0(Sσ(V ), Sσ̃(W )(2)).

6.8 Examples and PBW basis
This section is devoted to providing some examples for the construction above.

Moreover, we explain how to give an inductive construction of PBW basis in the type
A.

6.8.1 Examples
Theorems in proceeding sections give us some interesting examples for the construc-

tion of quantum algebras.

Example 6.1. As a warm-up example, we consider the construction of the strictly
negative part of Uq(sl4) from the same part of Uq(sl3).

We adopt notations in [9], Planche I. For this construction, we suppose that V =
{F1, F2} with a braiding determined by the Cartan matrix ; we choose λ = $2 be the
dominant weight such that (λ, α∨1 ) = 0 and (λ, α∨2 ) = 1.

LetW be the vector space generated by F1, F2 and vλ and σ̃ as in the construction.
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Then Sσ̃(W ) is isomorphic, as a braided Hopf algebra, to the strictly negative part of
Uq(sl4).

Thus if the strictly negative part of Uq(sl4) is viewed as a Hopf bimodule over the
same part of Uq(sl3), we obtain from theorems above that

Sσ̃(W )(1) ∼= L($2)⊗ Sσ(V ), Sσ̃(W )(2) ∼= L(2$2)⊗ Sσ(V ).

The second isomorphism can be proved as follows : at first, from the dimension formula
(see, for example, [36]),

dimL($2) = 3, dimL(2$2) = 6, dim(2$2 − α2) = 3.

Then Theorem 6.9 gives the isomorphism above by comparing dimensions.

We turn to a general construction for the type A.

Example 6.2. For and integer n ≥ 2, the method in the example above can be used
to construct Uq(sln+1) from Uq(sln). It is different from the one given in [73] : braidings
here are of diagonal type but in [73], they are much more complicated (for example,
in type A, they are of Hecke type ; in general, they are of quantum group type).

In Uq(sln), we choose the dominant weight λ = $n−1. Then the construction above
gives the strictly negative part of Uq(sln+1). Moreover, the same argument as in the
example above gives :

Sσ̃(W )(1) ∼= L($n−1)⊗ Sσ(V ), Sσ̃(W )(2) ∼= L(2$n−1)⊗ Sσ(V ).

In the case of type An, when λ = $n−1, we have a uniform description for all degree
p coinvariants.

Theorem 6.11. We keep hypothesis in the above example. For any integer p ≥ 0, we
have an isomorphism of Sσ(V )-Yetter-Drinfel’d modules :

Sσ̃(W )(p) ∼= L(p$n−1)⊗ Sσ(V ).

Thus if we let M denote Sσ̃(W ), then

M coR ∼=
∞⊕
p=0

L(p$n−1).

Proof. It suffices to notice that

L((p− 1)$n−1)⊗ L($n−1) ∼= L(p$n−1)⊕ L(p$n−1 − αn−1).

We turn to the type D.
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Example 6.3. Before going to the construction, we remark that the Planche IV of
[9] has a typo not contained in the errata : in the third line of (II), the sum should be
over i ≤ k < j.

In this example, we construct the negative part of Uq(so8) from that of Uq(sl4). For
this sake, we choose λ = $2. Again from the dimension formula, we obtain that

dimL($2) = 6, dimL(2$2) = 20, dimL(2$2 − α2) = 15.

Thus dimM coR
2 = 21 and it must contain a unique copy of L(2$2), whose dimension

is 20. So we obtain that
M coR

2
∼= L(2$2)⊕ L(0).

As a byproduct, this construction gives a decomposition

L($2)⊗ L($2) ∼= L(2$2)⊕ L(2$2 − α2)⊕ L(0).

Remark 6.5. For a general n ≥ 2, we can construct Uq(so2n) from Uq(sln) by choosing
λ = $n−2.

More interesting examples would be obtained when more complicated representa-
tions are chosen.

Example 6.4. The strictly positive part of Uq(ŝl2).
This can be obtained from the construction above starting from the strictly negative

part of Uq(sl2) by choosing λ = α = 2$1, which is the highest weight of the adjoint
representation of sl2.

In this example, (λ, α∨) = 2, so it falls into the non-critical case, from which we
obtain an isomorphism of Uq(sl2)-modules given by multiplication

L(α)⊗ L(α) ∼= M coR
2 .

Then the latter has dimension 9.
In [15], a PBW basis of Uq(ŝl2) is constructed : the M coR

2 part above corresponds
to 9 basis elements

Eδ+α2 , E2δ, E2δ+α1 , EδEδ+α1 , EδEα2 , Eδ+α1Eα2 , E2
δ , E2

α2 , E2
δ+α1 ,

where notations in [15] are adopted.
As Uq(sl2)-modules,

L(α)⊗ L(α) ∼= L(4$1)⊕ L(2$1)⊕ L(0);

this corresponds to a decomposition of these 9 PBW basis elements under the adjoint
action of Eα1 .

Remark 6.6. For general cases, although types of the braiding are different, choices
in [73], Section 4 can be adopted directly to our case. In the non-simply laced case,
we should enlarge the torus part as shown in [73].
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6.8.2 PBW basis : type A case
This construction can be used to give an inductive construction of PBW basis for

the strictly negative part when g is a finite dimensional simple Lie algebra. In this
subsection, we give an example for the type A case.

We recall that in the last section of [73], there is an inductive construction of PBW
basis. That construction comes from the following fact : the braiding in the type A is
of Hecke type, so the quantum shuffle algebra can be factorized through an exterior
algebra, which gives a PBW type basis.

The construction we will give in type A is different from the one in [73] : in the
whole construction, the braiding we are considering is of diagonal type but of quantum
group type, which is much simpler.

We use Sσ(V ) for the strictly negative part of Uq(sln) and choose λ = $n−1 be the
fundamental representation, then Sσ̃(W ) is isomorphic to the strictly negative part of
Uq(sln+1). Suppose that we have constructed a PBW basis for Sσ(V ).

From Theorem 6.11, we have

∞⊕
p=0

(L(p$n−1)⊗ Sσ(V )) ∼ // Sσ̃(W ),

where L(p$n−1) is the irreducible Uq(sln)-module and the isomorphism is given by the
multiplication. We have the following observations :

1. All elements in L(p$n−1) are of the form ad(F )(vpλ) for some F ∈ Sσ(V ).
2. Any F ∈ Sσ(V ) can be written as a linear combination of ordered product of

the PBW basis elements in Sσ(V ).
3. Let H be a Hopf algebra and M be an H-bimodule algebra. For x ∈ H and
a, b ∈M , the adjoint action has the property :

ad(x)(ab) =
∑

ad(x(1))(a)ad(x(2))(b).

4. As ad(Fn−1)2(vλ) = ad(vλ)2(Fn−1) = 0, elements in L($n−1) are q-commutative
when they are multiplied in Sσ̃(W ) (see [47], Proposition 3.2, page 39). (To
obtain this, we do not need to know the information of the Hecke type braiding.)

So to obtain a linear basis of L(p$n−1), it suffices make all elements of Sσ(V ) act
in an adjoint way on vpλ and from (3) above, it can be written as an ordered product of
a linear basis in L($n−1). As basis elements of L($n−1) are q-commutative, if we let
v1, · · · , vn denote a basis of L($n−1) and fix some order (for example, v1 > · · · > vn)
on these basis elements, any element in M coR can be written as an ordered product
vs1

1 · · · vsnn . We want to show that {vs1
1 · · · vsnn | s1, · · · , sn ≥ 0} forms a linear basis of

M coR.
To show this, we notice that in each vi, there exists only one copy of vλ. Thus it

suffices to show that degree p elements in this basis form a basis of L(p$n−1).
At first, all degree p elements in {vs1

1 · · · vsnn | s1, · · · , sn ≥ 0} are contained in
L(p$n−1) ; moreover, these elements will generate L(p$n−1) as a vector space. We
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count degree p elements in the above set, there are
(
n+p−1

p

)
, which is exactly the

dimension of L(p$n−1).
Thus we obtain that elements in {vs1

1 · · · vsnn | s1, · · · , sn ≥ 0} are linearly inde-
pendent, so a linear basis of M coR.

6.9 Inductive construction of quivers and compo-
sition algebras

This section is devoted to explaining the results above in a graphical setting.

6.9.1 Quivers associated to quantum shuffle algebras
Let Sσ(V ) be a quantum shuffle algebra with a basis {F1, · · · , Fn}. Moreover, we

suppose that
1. The braiding is given by a braiding matrix with diagonal q2, the other entries

are given by negative integer powers of q ;
2. The braiding σ is symmetric, that is to say, if for any v, w ∈ V , σ(v⊗w) = αw⊗v,

then σ(w ⊗ v) = αv ⊗ w.
Starting from Sσ(V ) with these properties, we can associate with it an unoriented
quiver Q = (I, F ) constructed by :

1. The set of vertices I is indexed by the basis {F1, · · · , Fn}, we let i denote the
vertex corresponding to Fi ;

2. For i 6= j ∈ I, if σ(Fi ⊗ Fj) = qaijFj ⊗ Fi, there are −aij unoriented edges in F
connecting vertices i and j.

Moreover, we can choose a total order on the basis elements {F1, · · · , Fn} of V (for
example, F1 ≤ F2 ≤ · · · ≤ Fn). This will give an orientation on Q by changing an edge
to an arrow from the smaller vertex to the bigger one.

6.9.2 Inductive construction of quiver
As we are restricted to the finite dimensional case, we will discuss the construction

of new quivers from one of type A, D, or E.
Let Q be an oriented quiver of type A, D, or E. We let g(Q) denote the corres-

ponding simple Lie algebra associated to the underlying graph of Q (it means that we
forget the orientation).

From the quiver Q, we can construct a quantum shuffle algebra Sσ(V ) with Cartan
matrix A the adjacent matrix of Q with diagonal elements given by 2.

Let λ be a dominant weight in the weight lattice of g(Q). Then as in Section 6.4,
we form a quantum shuffle algebra Sσ̃(W ) by adding vλ.

The following proposition is clear from the construction.

Proposition 6.10. The unoriented quiver Q associated with Sσ̃(W ) can be construc-
ted by adding a vertex n+ 1 and (λ, α∨i ) edges between vertex i and n+ 1.
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We can define an order on W by letting vλ the maximal element. From now on,
when we are talking about the orientation of this new quiver, it is always of this form.
Example 6.5. (1). We take Q the quiver of type An and λ = $1 + $n (for the type
A1, λ = 2$1). The construction above will give us the extended Dynkin quiver A(1)

n .
And then Sσ̃(W ) is the negative part of the affine quantum group Uq(ŝln+1).
(2). We take Q the quiver of type A1 and λ = 3α

2 . This will give us the oriented quiver

•1 **
44// •2,

which is of wild type.
Some other type of examples associated with framed quivers will be given in the

next subsection.

6.9.3 Applications
In this subsection, we will discuss the construction of some family of quiver asso-

ciated with the framed quiver after Nakajima.
For an oriented quiver Q = (I, F ) with |I| = n, Nakajima associated with it a

framed quiver Qf = (If , F f ) constructed by :
1. Taking another copy of I, denoted by I ′, and a bijection I → I ′ by i 7→ i′. We

define If = I t I ′.
2. For any map i 7→ i′ above, add an arrow from i to i′ in F . Thus we obtain F f .
A dimension vector of a representation ofQf is a pair (v,w) where v = (v1, · · · , vn) ∈

NI and w = (w1, · · · , wn) ∈ NI′ . Once this dimension vector is fixed, in [14], Crawley-
Boevey constructed another quiver Qw whose representations are in bijective corres-
pondence with representations of the framed quiver.

This new quiver Qw = (I ∪ {∞}, Fw) associated with w is defined as follows :
1. We add a new vertex ∞.
2. For any i ∈ I, we add wi arrows from i to ∞ in the set of arrows F , which gives
Fw.

Thus there is a bijection between representations of Qf with dimension vector (v,w)
and those of Qw of dimension vector (v, 1).

Now we explain how to construct Qw in our framework. We suppose that the
original quiver Q is of type A,D,E as we have concentrated on these cases at the
beginning.

Let g = g(Q) be the Lie algebra associated with the quiver Q. For the fixed
dimension vector w = (w1, · · · , wn), we choose the weight λ in the weight lattice of g
such that (λ, α∨i ) = wi. As components of a dimension vector are non-negative, λ is
dominant. Then we construct the quantum symmetric algebra Sσ(V ) corresponding
to g and Sσ̃(W ) by adding a highest weight vector vλ into Sσ(V ) as we did in previous
sections.

It is clear from the construction above that the quiver associated to Sσ̃(W ) is
exactly Qw.

The following proposition comes from Theorem 6.3.
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Proposition 6.11. Let CQw denote the composition algebra associated to the quiver
Qw. Then as braided Hopf algebras, we have an isomorphism :

Sσ̃(W ) ∼ // CQw .



Chapitre 7

Dedekind η-function and quantum
groups

Results in this chapter are pre-published in [28]

7.1 Introduction

7.1.1 History
The partition function p(n) of a positive integer n and its numerous variants have

a long history in combinatorics and number theory. A natural method to study these
functions defined on the set of integers is considering their generating functions (for
example : ψ(x) = ∑

n≥0 p(n)xn) to study their analytical properties, the algebraic
equation they satisfy or the (quasi-)symmetries under group actions and so on.

In the case of partition function, although p(n) augments rapidly and it is not
possible to express ψ(x) in a compact form, its inverse ψ(x)−1, which seems to be
more complicated, simplify the story by the formula

ψ(x)−1 =
∏
n≥1

(1− xn).

This inverse of ψ(x), denoted by ϕ(x), is a very standard mathematical object as
many modular forms can be constructed starting from ϕ(x). For example, η(x) =
x

1
24ϕ(x) is the Dedekind η-function and ∆(x) = η(x)24 is a modular form of weight 12

whose expansion into power series of x gives the famous Ramanujan’s τ -function as
coefficients.

Some other powers of ϕ(x) are studied by Euler, Jacobi and some other people in
various domains of mathematics such as combinatorics, number theory, θ-functions,
index theorems and so on.

As an example, Euler showed a relation between ϕ(x) and the pentagon numbers

ϕ(x) =
∑
n∈Z

(−1)nx
3n2−n

2
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and then Jacobi deduced the expression of ϕ(x)3 by triangle numbers in his study of
elliptic functions :

ϕ(x)3 =
∞∑
n=0

(−1)n(2n+ 1)x
n(n+1)

2 .

7.1.2 Work of MacDonald and Kostant
These formulas containing certain powers of the Dedekind η-function are largely

generalized in the work of I. MacDonald [59] by explaining them as particular cases of
the Weyl denominator formulas associated to some affine root systems. As an example,
the Jacobi identity above can be interpreted through combinatorial informations ari-
sing from the affine root system of type A1.

To be more precise, for any reduced root system on a finite dimensional real vector
space V with the standard bilinear form (·, ·), we can associate to it a complex Lie
algebra g. The following formula (formula (0.5) in [59]) is obtained as the specialization
of the Weyl denominator formula :

η(x)d =
∑
µ∈M

d(µ)x(µ+ρ,µ+ρ)/2g, (7.1)

where M is some set contained in the set of dominant integral weights, d = dimg,
d(µ) is the dimension of the irreducible representation of g of highest weight µ, g =
1
2((φ+ ρ, φ+ ρ)− (ρ, ρ)), φ is the highest root of g and ρ is half of the sum of positive
roots.

When the root system in the MacDonald’s identity (7.1) arises from a complex
compact simple Lie group G which is moreover simply connected, B. Kostant [50]
made the set M precise by connecting it with the trace of a Coxeter element c in
the Weyl group W acting on the subspace of weight zero V1(λ)0 in the irreducible
representation V1(λ) associated to a dominant integral weight λ ∈ P+. If the Lie
group is simply laced (i.e., type A,D,E), the formula due to Kostant reads :

η(x)dimG =
∑
λ∈P+

Tr(c, V1(λ)0)dimV1(λ)x(λ+ρ,λ+ρ). (7.2)

A similar result holding for general G can be found in [50] (see Theorem 7.2).
These formulas have various explications by using different tools in Lie theory, a

summary of corresponding results can be found in a Bourbaki seminar talk [17] by M.
Demazure.

7.1.3 Quantum groups and representations
Quantum groups (quantized enveloping algebras) appear in the middle of eighties

after the work of Drinfel’d and Jimbo in the aim of finding solutions of the Yang-Baxter
equation ; it can be looked as deformations (of Hopf algebras) of classical enveloping
algebras associated to symmetrizable Kac-Moody Lie algebras.

This quantization procedure deforms not only the enveloping algebras themselves
but also structures related to them : integrable representations, Weyl groups and so on.
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Moreover, some new structures and tools appear only after this process : R-matrices,
canonical (crystal) bases, integral forms, specialization to roots of unity and so on.

The appearance of the parameter q in the quantum groups enriches the internal
structure of the enveloping algebra as the latter can be recovered from the former by
specializing q to 1. For example, this one-dimensional freedom allows us to separate
some kinds of knots or links in labeling different crossings by this parameter.

7.1.4 Quantum Weyl group
The Weyl group associated to a finite dimensional simple Lie algebra reveals its

internal symmetries by permuting root spaces. Moreover, it acts simultaneously on the
integrable representations which makes it possible to give a classification of them.

In the quantization procedure mentioned above, when algebras and their repre-
sentations are deformed, it is natural to study the behaviors of automorphism groups
under this procedure : for instance, the Weyl group.

The quantization of Weyl groups acting on integrable representations is archived
after the work of Kirillov-Reshetikhin [49] and Levendorski-Soibelman [52] in the aim
of giving an explicit formula of the R-matrix. As this procedure arises from the de-
formation of the Poisson-Lie group structure [52], it is compatible with the whole
quantization picture. To be more precise, the action of Weyl groups on the integrable
representations are deformed in a way preserving the Coxeter commutation relations
but increasing the order of generators which results a lift of the Weyl groups to Artin
braid groups.

This tool is essential in the study of quantum groups : constructions of PBW basis
and R-matrices are direct from the action of quantum Weyl groups. Moreover, the
conjugation by the quantum Weyl group gives an action of the Artin braid group on
the quantized enveloping algebras, which is shown in [49], [52] and [76] to agree with
Lusztig’s automorphisms Ti.

7.1.5 Main results
The main objective of this chapter is to prove identities in the spirit of formula

(7.1) and (7.2) in the framework of quantum groups. It is surprising that powers of
Dedekind η-function can be expressed as a trace of an explicit operator on the quantum
coordinate algebra, which gives compact forms of identities cited above.

Let g be a finite dimensional simple Lie algebra and Uq(g) the associated quantum
group over C(q). The Artin braid group Bg associated to the Weyl group W of g acts
on the irreducible representation V (λ) of Uq(g) with dominant weight λ ∈ P+. Let
{σ1, · · · , σl} be the set of generators of Bg, Π = σ1 · · · σl be a Coxeter element and h
be the Coxeter number of the Weyl group. Then Π⊗id acts on the quantum coordinate
algebra Cq[G] = ⊕

λ∈P+ V (λ)⊗ V (λ)∗ componentwise and we obtain finally

Theorem. The following identity holds :

Tr(Π⊗ id,Cq[G]) =
(

l∏
i=1

ϕ(q(αi,αi))
)h+1

.
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These formulas serve as new interpretations of results due to Macdonald and Kos-
tant in the classical case.

7.1.6 Constitution of this chapter
After giving recollections on quantum groups and quantum Weyl groups in Section

7.2 and 7.3, we explain the relation between quantum Weyl groups and R-matrices in
Section 7.4. Section 7.5 is devoted to computing the action of the centre of the Artin
braid group on the irreducible representations of Lie algebra g. This will lead to the
main theorem in Section 7.6.

7.2 Quantum groups
This section is devoted to giving some recollections on different definitions of quan-

tum groups.

7.2.1 Notations
We fix notations for Lie algebras and their representations.
1. g is a finite dimensional simple Lie algebra with a fixed Cartan subalgebra h. We

let l = dimh denote the rank of g and I be the index set {1, · · · , l}.
2. Φ : g× g→ C is the Killing form given by Φ(x, y) = Tr(adxady) for x, y ∈ g. Its

restriction on h is non-degenerate and then induces a bilinear form on h∗ which
is also denoted by Φ.

3. ∆ (∆+) ⊂ h∗ is the set of (positive) roots of g.
4. Π = {α1, · · · , αl} is the set of simple roots of g.
5. C = (cij)l×l, where cij = 2Φ(αi, αj)/Φ(αi, αi), is the Cartan matrix of g.
6. W is the Weyl group of g generated by simple reflections si : h∗ → h∗ for i ∈ I

where si(αj) = αj − cijαi.
7. A Coxeter element is a product of all simple reflections, Coxeter elements are

conjugate in W .
8. D = diag(d1, · · · , dl) is the diagonal matrix with integers di relatively prime such

that A = DC is a symmetric matrix.
9. (·, ·) : h∗×h∗ → Q is the normalized bilinear form on h∗ such that (αi, αj) = aij.
10. Q = Zα1 + · · ·+ Zαl is the root lattice and Q+ = Nα1 + · · ·+ Nαl.
11. {$1, · · · , $l} is the set of fundamental weights in h∗ such that ($i, αj) = δij

where δij is the Kronecker notation.
12. P = Z$1 + · · ·+ Z$l is the weight lattice and P+ = N$1 + · · ·+ N$l is the set

of dominant integral weights.
13. For λ ∈ P+, V1(λ) is the finite dimensional irreducible representation of g of

highest weight λ.
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7.2.2 Definition
From now on, we suppose that q is a variable and qi = qdi . The q-numbers are

defined by

[n]q = qn − q−n

q − q−1 , [n]q! =
n∏
i=1

[i]q.

Definition 7.1. The quantized enveloping algebra (quantum group) Uq(g) is the as-
sociative C(q)-algebra with unit generated by Ei, Fi, Ki, K

−1
i for i ∈ I and relations

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

KiEjK
−1
i = q

cij
i Ej, KiFjK

−1
i = q

cij
i Fj, [Ei, Fj] = δij

Ki −K−1
i

qi − q−1
i

,

for i 6= j ∈ I,

1−cij∑
r=0

[1− cij
r

]
qi

E
1−cij−r
i EjE

r
i = 0,

1−cij∑
r=0

[1− cij
r

]
qi

F
1−cij−r
i FjF

r
i = 0.

There exists a unique Hopf algebra structure on Uq(g) : for i ∈ I,

∆(K±1
i ) = K±1

i ⊗K±1
i , ∆(Ei) = Ei ⊗Ki + 1⊗ Ei, ∆(Fi) = Fi ⊗ 1 +K−1

i ⊗ Fi,

ε(K±1
i ) = 1, ε(Ei) = 0, ε(Fi) = 0,

S(Ei) = −EiK−1
i , S(Fi) = −KiFi, S(Ki) = K−1

i , S(K−1
i ) = Ki.

Remark 7.1. This definition works for any symmetrizable Kac-Moody Lie algebras,
our restriction is determined by the nature of the problem.

For λ ∈ P+, we let V (λ) denote the finite dimensional irreducible representation
of Uq(g) of highest weight λ and type 1.

The following normalized generators will also be used

E
(n)
i = En

i

[n]q!
, F

(n)
i = F n

i

[n]q!
.

7.2.3 An ~-adic version
There is an ~-adic version of the quantum group which is the original definition of

Drinfel’d. As we will switch between these two versions of a quantum group several
times in the later discussion, the definition is recalled in this subsection.

Let ~ be a variable and C[[~]] be the ring of formal series in the parameter ~.

Definition 7.2. The ~-adic version of a quantized enveloping algebra U~(g) is the
associative algebra with unit over C[[~]], generated by X+

i , X−i , Hi for i ∈ I and
relations

[Hi, Hj] = 0, [Hi, X
+
j ] = aijX

+
i , [Hi, X

−
j ] = −aijX−j ,
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[X+
i , X

−
j ] = δij

e~diHi − e−~diHi
e~di − e−~di

,

for i 6= j ∈ I,
1−cij∑
r=0

[1− cij
r

]
qi

(X±i )1−cij−rX±j (X±i )r = 0.

There exists a unique Hopf algebra structure on U~(g) :

∆(Hi) = Hi ⊗ 1 + 1⊗Hi, ∆(X+
i ) = X+

i ⊗ e~diHi + 1⊗X+
i ,

∆(X−i ) = X−i ⊗ 1 + e−~diHi ⊗X−i ,

ε(X+
i ) = 0, ε(X−i ) = 0, ε(Hi) = 0,

S(X+
i ) = −X+

i e
−~diHi , S(X−i ) = −e~diHiX−i , S(Hi) = −Hi.

Remark 7.2. 1. To obtain Uq(g) inside U~(g), it suffices to take q = e~ and Ki =
e~diHi .

2. The advantage of working in the ~-adic framework is that the R-matrix can be
well defined when a completion of the tensor product is properly chosen. But as
a disadvantage, we could not specialize U~(g) to any complex number except 0.

7.2.4 Specialization
Let U(g) be the enveloping algebra associated to g with generators ei, fi, hi for

i ∈ I.
It should be remarked that Uq(g) has a Z[q, q−1]-form which is called an integral

form (for example, see Chapter 9 in [12] for details). This integral form allows us
to specialize Uq(g) to any non-zero complex number. We let limq→α Uq(g) denote the
specialized Hopf algebra. It is well known that limq→1 Uq(g) is isomorphic to U(g).

To be more precise, under the specialization q → 1, Ki is sent to 1 and [Ki; 0] =
Ki−K−1

i

qi−q−1
i

gives hi for i ∈ I.
Moreover, finite dimensional representations of Uq(g) can be specialized : for example,

when q tends to 1, the representation V (λ) will be specialized to V1(λ).

7.3 Quantum Weyl groups
This section is devoted to giving a summary for the definition of quantum Weyl

groups in the ordinary and ~-adic cases. Then we discuss their relations and speciali-
zations.

7.3.1 Braid groups associated to Weyl groups
We start from considering some specific elements in the Artin braid group associa-

ted to a Weyl group.
For i, j ∈ I, if the product cijcji = 0, 1, 2, 3, 4, we let mij = 2, 3, 4, 6,∞ respectively.
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Definition 7.3. The Artin braid group Bg associated to the Weyl group W of g is a
group generated by σ1, · · · , σl and relations

σiσj · · ·σiσj = σjσi · · ·σjσi,

where lengths of words in both sides are mij.

For example, if the Lie algebra g is of type Al, then mij = 3 if |i− j| = 1, otherwise
mij = 2. The Artin group Bg is the usual braid group Bl+1.

We let Π = σ1 · · · σl be a product of generators in Bg and call it a Coxeter element.
We let h denote the Coxeter number of the Weyl group W . The following proposition
explains some properties concerning the Coxeter element Π.

For an element w in the Weyl group W with reduced expression w = si1 · · · sit , we
let T (w) = σi1 · · ·σit be the element in Bg. It is well-known that T (w) is independent
of the reduced expression. Let w0 be the longest element in W . We call ∆ = T (w0)
the Garside element in Bg.

Proposition 7.1 ([10], Lemma 5.8 and Satz 7.1).
1. Let ∆ be the Garside element in Bg. Then Πh = ∆2.
2. If g is not isomorphic to sl2, the centre Z(Bg) of Bg is generated by ∆2.
3. If g ∼= sl2, the centre Z(Bg) is generated by σ1 = ∆.

7.3.2 Braid group acting on representations
We define the q-exponential function by

expq(x) =
∞∑
k=0

1
[k]q!

q
k(k−1)

2 xk.

The objective of this section is to recall an action of Artin braid group associated
to the Weyl group of g on the integrable modules of Uq(g), following [49], [52] and [76].
We start from the sl2 case.

For i ∈ I, we let Uq(g)i denote the subalgebra of Uq(g) generated by Ei, Fi and
K±1
i . It inherits a Hopf algebra structure from Uq(g). Moreover, as a Hopf algebra,

Uq(g)i is isomorphic to Uqi(sl2).
Let V (n) denote the (n+1)-dimensional irreducible representation of Uq(g)i of type

1. For i ∈ I, we define an endomorphism Si ∈ End(V (n)) by

Si = expq−1
i

(q−1
i EiK

−1
i )expq−1

i
(−Fi)expq−1

i
(qiEiKi)qHi(Hi+1)/2

i ,

where qHi(Hi+1)/2
i sends v ∈ V (n) to q

m(m+1)/2
i if Ki.v = qmi .v. This operator Si ∈

End(V (n)) is well-defined as both Ei and Fi act nilpotently on V (n).
We want to obtain an explicit form for the action of Si. If a basis v0, · · · , vn of

V (n) is chosen in such a way that

Ei.v0 = 0, F
(k)
i .v0 = vk, Ki.v0 = qni v0,

we have the following result.
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Lemma 7.1 ([76]). The action of Si on V (n) is given by

Si.vk = (−1)n−kq(n−k)(k+1)
i vn−k.

As a direct corollary, Si ∈ End(V (n)) is an automorphism.
We turn to the general case. Let M be an integrable Uq(g)-module. As M is a

direct sum of irreducible Uq(g)i-modules, Si ∈ End(M) is well-defined. As these Si are
invertible, we could consider the group generated by {Si| i ∈ I} in End(M). Using
relations between Si and Lusztig’s automorphism Ti which will be recalled later, Saito
proved the following result :

Proposition 7.2 ([76]). Let M be an integrable Uq(g)-module. The assignment σi 7→
Si extends to a group homomorphism between the the Artin group Bg and the sub-
group of Aut(M) generated by {Si| i ∈ I}.

7.3.3 Lusztig’s automorphism
There is another action of the Artin braid group on Uq(g) constructed by Lusztig,

see [58] for details.

Definition 7.4. There exist algebra automorphisms Ti : Uq(g)→ Uq(g) defined by

Ti(Ei) = −FiKi, Ti(Fi) = −K−1
i Ei, Ti(Kj) = KjK

−aij
i

and for any i 6= j,

Ti(Ej) =
−aij∑
k=0

(−1)kq−ki E
(−aij−k)
i EjE

(k)
i ,

Ti(Fj) =
−aij∑
k=0

(−1)kqki F
(k)
i FjF

(−aij−k)
i .

These Ti are called Lusztig’s automorphisms.

It is proved by Lusztig that these Ti satisfy the relations in the Artin braid group
associated to the Weyl group of g, which gives the following proposition :

Proposition 7.3 ([58]). The assignment σi 7→ Ti extends to a group homomorphism
between the Artin braid group Bg and the subgroup of Aut(Uq(g)) generated by
{Ti| i ∈ I}.

The quantum group Uq(g) acts on the integrable module M and the two braid
group actions above are closely related in the following way :

Proposition 7.4 ([76]). For any x ∈ Uq(g) and any integrable Uq(g)-module M ,
Ti(x) = SixS

−1
i in End(M).

After Proposition 7.2 and 7.3, we can define a Coxeter element Π in both Aut(M)
and Aut(Uq(g)) by S1 · · ·Sl and T1 · · ·Tl respectively. Results in Proposition 7.1 hold
for these elements in both of the automorphism groups.
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7.3.4 Quantum Weyl group : ~-adic version
We start from the sl2 case as above.
Let U~(sl2) be the ~-adic quantized enveloping algebra associated to sl2. Let V (n)

be the irreducible representation of U~(sl2) of rank n + 1. It is a free C[[~]]-module
with basis u0, · · · , un such that

H.uk = (n− 2k)uk, X+.uk = [n− k + 1]quk−1, X−.uk = [k + 1]quk+1.

For r, s = 0, · · · , n, we define linear functions C(n)
r,s : U~(sl2) → C[[~]] by : for any

x ∈ U~(sl2),

x.us =
n∑
r=0

C(n)
r,s (x)ur.

Let F~(sl2) ⊂ U~(sl2)∗ denote its C[[~]]-subalgebra generated by the set {C(n)
r,s | n ∈

N, 0 ≤ r, s ≤ n}. We define a linear form w~ ∈ F~(sl2)∗ by :

w~(C(n)
r,s ) =

(−1)re 1
4~n

2+~r if r + s = n,

0 otherwise.

Notice that there is a natural embedding U~(sl2) → F~(sl2)∗, we let Ũ~(sl2) denote
the subalgebra of F~(sl2)∗ generated by U~(sl2) and w~ and call it the quantum Weyl
group of U~(sl2). The commutation relations between w~ and elements in U~(sl2) are
given in Section 8.2 of [12].

There is another element w̃~ defined by

w̃~ = w~exp
(
−~

4H
2
)

= exp
(
−~

4H
2
)
w~ ∈ F~(sl2)∗.

We will see later that w̃~ is closely related to the Artin braid group action defined
above.

We turn to the general case where g is a simple Lie algebra. We notice that U~(g) is
generated by U~(g)i, where U~(g)i is the sub-Hopf algebra of U~(g) generated by X+

i ,
X−i and Hi which is moreover isomorphic to Udi~(sl2) as a Hopf algebra.

The inclusion U~(g)i → U~(g) induces a projection F~(g) → F~(g)i given by the
restriction where F~(g) is the Hopf algebra generated by matrix elements of all fi-
nite dimensional irreducible representations of U~(g) of type 1, and then induces an
inclusion F~(g)∗i → F~(g)∗.

As F~(g)∗i is isomorphic to Fdi~(sl2)∗, we can pull back w~ ∈ Fdi~(sl2)∗ to obtain
an element w~,i ∈ F~(g)∗i . We define

w̃~,i = w~,iexp
(
−~di

4 H2
i

)
= exp

(
−~di

4 H2
i

)
w~,i ∈ F~(g)∗i .

Definition 7.5. The quantum Weyl group Ũ~(g) associated to U~(g) is the subalgebra
of F~(g)∗ generated by U~(g) and w~,i for i ∈ I.

In fact, the quantum Weyl group is a Hopf algebra, after the following proposition.
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Proposition 7.5 ([49],[52]). With the following definition

∆(w~,i) = R−1
i (w~,i ⊗ w~,i), ε(w~,i) = 1, S(w~,i) = w~,ie

~diHi ,

where R−1
i is the inverse of the R-matrix associated U~(g)i (see Section 7.4.2 for a

detailed discussion), the quantum Weyl group Ũ~(g) is a Hopf algebra.

Remark 7.3. In the classical case, as can be viewed as a group algebra, the Weyl
group itself is a Hopf algebra. But this is not the case when everything is quantized :
according to the proposition above, these w~,i are not group-like and the antipode does
not give the inverse. That is why it is needed to put the U~(g) part in the definition
of the quantum Weyl group to retain the Hopf algebra structure.

The following result gives a relation between Si, Ti and w~,i.

Proposition 7.6. After the identification q = e~ and Ki = e~diHi , for any integrable
Uq(g)-module M , w̃~,i and Si coincide as elements in End(M).

Proof. It suffices to consider the sl2 case and representation V (n), which is the case
we can compute.

Choosing a basis of V (n) as in Section 7.3.2, we want to compute the action
of w~ on vi. As V (m) is a finite dimensional left U~(sl2)-module, it inherits a right
F~(sl2)-comodule structure and then a left F~(sl2)∗-module structure ; after an easy
computation, we have

w~.vi =
n∑
j=0

w~(C(n)
j,i )vj = (−1)n−ie~( 1

4n
2+n−i)vn−i.

As exp
(
−~

4H
2
)
acts as a scalar e− ~

4 (n−2i)2 on vi, the action of w̃~ on vi is given by

w̃~.vi = (−1)n−ie~(n−i)(i+1)vn−i,

which coincides with the action of Si in Lemma 7.1.

As a direct consequence, for any x ∈ Uq(g),

w̃~,ixw̃
−1
~,i = Ti(x)

as endomorphisms in End(M), where in the left hand side, we consider x as an element
in U~(g).

7.3.5 Specialization
For λ ∈ P+, as V (λ) is an integrable Uq(g)-module, Si ∈ End(V (λ)). Once the

variable q is specialized to 1, V (λ) goes to V1(λ) and Si is sent to

si = exp(ei)exp(−fi)exp(ei) ∈ End(V1(λ)),

which coincides with the action of the simple reflection si in the Weyl group W on the
integrable representations of U(g).
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7.4 R-matrix
One of the remarkable properties of quantum groups comes from the quasi-triangularity.

7.4.1 Definition and construction
Definition 7.6. Let H be a Hopf algebra and R ∈ H ⊗H be an invertible element.
The pair (H,R) is called a quasi-triangular Hopf algebra (QTHA) if

1. For any x ∈ H, ∆op(x)R = R∆(x).
2. (∆ ⊗ id)(R) = R13R23, (id ⊗ ∆) = R13R12, where for R = ∑

si ⊗ ti, R13 =∑
si ⊗ 1⊗ ti, R12 = ∑

si ⊗ ti ⊗ 1, R23 = ∑ 1⊗ si ⊗ ti.
If this is the case, we call R an R-matrix.

If (H,R) is a quasi-triangular Hopf algebra, the R-matrix will satisfy the famous
Yang-Baxter equation

R12R13R23 = R23R13R12,

which endows a braid structure on the category of H-modules.
The following well-known theorem due to Drinfel’d gives one of the advantages of

quantum groups.

Theorem 7.1. There exists R ∈ U~(g)⊗ U~(g) such that (U~(g), R) is a QTHA.

Remark 7.4. In fact, the R-matrix of U~(g) exists only in a completion of U~(g) ⊗
U~(g), see [46], Chapter XVII for a detailed discussion on this problem.

7.4.2 Construction of R-matrix
The aim of this subsection is to recall an explicit construction of the R-matrix,

which will be used in the proof of the main theorem.
We start from the construction of PBW basis elements in Uq(g).
Let w ∈ W be an element in the Weyl group of g with a reduced expression w =

si1 · · · sit . Lusztig defined an automorphism Tw ∈ Aut(Uq(g)) by Tw = Ti1 · · ·Tit and
showed that it is independent of the reduced expression chosen in the very beginning.

Now let w0 ∈ W be the longest element in the Weyl group. We fix a reduced
expression w0 = si1 · · · siN where N is the cardinal of the set of positive roots in g. We
denote

β1 = αi1 , β2 = si1(αi2), β3 = si1si2(αi3), · · · , βN = si1 · · · siN−1(αiN );

the set {β1, · · · , βN} coincides with the set of positive roots. The root vectors in Uq(g)
are defined by : for r = 1, · · · , N ,

Eβr = Ti1 · · ·Tir−1(Eir), Fβr = Ti1 · · ·Tir−1(Fir).

Then the set

{Er1
β1 · · ·E

rN
βN
Ks1

1 · · ·K
sl
l F

t1
β1 · · ·F

tN
βN
| r1, · · · , rN , t1, · · · , tN ∈ N, s1, · · · , sl ∈ Z}
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forms a linear basis of Uq(g).
For the ~-adic version of quantized enveloping algebras, the same construction can

be applied to construct X+
βi

and X−βi through replacing Eir by X+
ir and Fir by X−ir in

the definition of Lusztig’s automorphisms Ti and the root vectors Eβr , Fβr .
The R-matrix of U~(g) is given by

R~ = exp
~∑

i,j

BijHi ⊗Hj

 →∏
β∈∆+

expqβ
(
(1− q−2

β )X+
β ⊗X−β

)

where B = (Bij) is the inverse of the Cartan matrix C and qβ = e~dβ (dβ = di if
the positive root β is conjugate to αi under the action of Weyl group). Moreover,
the product is taken in the order on the set of positive roots induced by the fixed
decomposition of w0.

For example, in the case of U~(sl2), the R-matrix can be written explicitly as :

R~ =
( ∞∑
m=0

(
~
2

)m 1
m!H

m ⊗Hm

)( ∞∑
n=0

(1− q−2)n
[n]q!

qn(n+1)/2(X+)n ⊗ (X−)n
)
.

7.4.3 Drinfel’d element u
Let R = ∑

si⊗ti be the R-matrix of the ~-adic quantized enveloping algebra U~(g).
Drinfeld defined an invertible element u = ∑

S(ti)si ∈ U~(g) in [22] such that the
square of the antipode S2 coincides with the adjoint action of u. As S2 is given by the
adjoint action of K2ρ = e~H2ρ , where H2ρ = Hβ1 + · · ·+HβN (Hβi = Hαj1

+ · · ·+Hαjt
if βi = αj1 + · · ·+αjt) using notations in the last section, the element K−2ρu = uK−2ρ
is in the centre of U~(g).

As K−2ρu is in the centre of U~(g), it acts on V (λ) as a scalar after Schur lemma.
The following lemma is well-known :

Lemma 7.2. The central element K−2ρu acts as multiplication by q−(λ,λ+2ρ) on V (λ).

We let V (λ)0 denote the subspace of weight 0 in V (λ). As K−2ρ acts as identity on
V (λ)0, u acts as a scalar q−(λ,λ+2ρ) on it.

For example, using the explicit expression of the R-matrix, we have the following
formula of u in the case of sl2 : (we write E for X+ and F for X−) :

u =
∞∑
n=0

(1− q−2)n
[n]q!

qn(n+1)/2S(F n)
( ∞∑
m=0

(
−~

2

)m 1
m!H

2m
)
En.

As Bg is an Artin braid group, the square of w~,i will not give identity in general. In
fact, it is closely related to the Drinfel’d element, as will be explained in the following
result. It should be remarked that it is slightly different from Proposition 8.2.4 in [12].

Proposition 7.7 ([49]). For any j ∈ I, let uαj = ∑
S(ti)si, where Rαj = ∑

si ⊗ ti is
the R-matrix of U~(g)j. Then

w2
~,j = u−1

αj
exp (~djHj) εj,

where εj ∈ F~(sl2)∗j is defined by εj(C(n)
r,s ) = (−1)n.
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Proof. It suffices to show this in the case of sl2. We adopt notations in Section 7.3.2,
then for 0 ≤ k ≤ n, from the computation in Proposition 7.6,

w2
~.vk = w~

(
(−1)n−ke~(

1
4n

2+n−k)vn−k
)

= (−1)ne~(
1
2n

2+n)vk.

On the other side, after Lemma 7.2,

u−1Kε.vk = (−1)nq 1
2n

2+nvk.

7.5 Action of central element
The main target of this section is to compute the action of Z(Bg) on V (λ).

7.5.1 Action on extremal vectors
The Artin braid group Bg acts on V (λ). From Proposition 7.1, let θ = ∆2 = Πh be

the generator of the centre Z(Bg) ; we compute the action of θ on the highest weight
vector vλ in this subsection.

Let w0 = si1 · · · siN be the fixed reduced expression of w0 as in Section 7.4.2, then
we have

Lemma 7.3. The generator of Z(Bg) can be written as

θ = σi1 · · ·σiNσiN · · ·σi1 .

Proof. As both sides have the same length, it suffices to show that the right hand side
is in the centre of Bg. Since the Garside element ∆ has the property ∆σi = σl−i∆, for
any 1 ≤ t ≤ l,

σtσi1 · · ·σiNσiN · · ·σi1 = σi1 · · ·σiNσl−tσiN · · ·σi1 = σi1 · · ·σiNσiN · · ·σi1σt.

Return to our situation, when acting on V (λ), the central element θ in Bg has the
following expression after Proposition 7.4 :

θ = Si1 · · ·SiN−1S
2
iN
SiN−1 · · ·Si1

= Si1 · · ·SiN−2TiN−1(S2
iN

)S2
iN−1

SiN−2 · · ·Si1
= Ti1 · · ·TiN−1(S2

iN
)Si1 · · ·SiN−1SiN−1 · · ·Si1

= Ti1 · · ·TiN−1(S2
iN

)Ti1 · · ·TiN−2(S2
iN−1

) · · ·Ti1(S2
i2)S2

i1 .

We start from computing S2
i1 .vλ. Combining Proposition 7.6 and 7.7, for any k =

1, · · · , l,

S2
k = w̃2

~,k = w2
~,kexp

(
−~

2dkH
2
k

)
= u−1

k exp (~dkHk) exp
(
−~

2dkH
2
k

)
εk.
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When S2
i1 is acted on vλ, εi1 gives a constant c1 ∈ {±1} and exp (~di1Hi1) gives q(λ,αi1 ).

We compute the action of

ui1 =
∞∑
n=0

Q(n)S(F n
i1)
( ∞∑
m=0

(
~di1

2

)m 1
m!S(Hm

i1 )Hm
i1

)
En
i1

on the highest weight vector where Q(n) is a rational function in q such that Q(0) = 1 :
it is clear that only the middle part containing Hi1 contributes, which is given by :

∞∑
m=0

(
−~di1

2

)m 1
m!H

2m
i1 .vλ = e−

~
2di1 (λ,αi1 )2

.

As a consequence, u−1
i1 acts as a scalar exp

(
−~

2di1(λ, αi1)2
)
on vλ. As

exp
(
~
2di1H

2
i1

)
.vλ = e−

~
2di1 (λ,αi1 )2

,

we finally obtain that
S2
i1 .vλ = c1q

(λ,α1)vλ.

We turn to consider the action of a general term Ti1 · · ·Tik−1(S2
ik

) on vλ. The same
argument as above can be applied here : we let

βk = si1 · · · sik−1(αik),

then

Ti1 · · ·Tik−1(S2
ik

) = Ti1 · · ·Tik−1

(
u−1
ik
exp(~dikHik)exp

(
−~

2dikH
2
ik

)
εik

)
.

Since Ti1 · · ·Tik−1 is an algebra morphism, we compute each part in the right hand
side :

Ti1 · · ·Tik−1 (exp (~dikHik)) = Kβk ,

Ti1 · · ·Tik−1

(
exp

(
−~

2dikH
2
ik

))
= exp

(
−~

2dikH
2
βk

)
,

and

Ti1 · · ·Tik−1(uik)

= Ti1 · · ·Tik−1

( ∞∑
n=0

(∗)S(F n
ik

)
( ∞∑
m=0

(
−~dik

2

)m 1
m!H

2m
ik

))
Ti1 · · ·Tik−1

(
En
ik

)

= Ti1 · · ·Tik−1

( ∞∑
n=0

(∗)S(F n
ik

)
( ∞∑
m=0

(
−~dik

2

)m 1
m!H

2m
ik

))
En
βk
.

When acting on the highest weight vector, the only part which contributes is the
middle one consisting of Hik , so it suffices to compute

Ti1 · · ·Tik−1

( ∞∑
m=0

(
−~dik

2

)m 1
m!H

2m
ik

)
= exp

(
−~

2dikH
2
βk

)
,
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so Ti1 · · ·Tik−1(u−1
ik

) acts as exp
(
~
2dikH

2
βk

)
on vλ.

Combining the computation above, we have : there exists a constant ck ∈ {±1}
such that

Ti1 · · ·Tik−1(S2
ik

).vλ = ckq
(λ,βk)vλ.

As β1, · · · , βN run over the set of positive roots, we have proved the following result :
Proposition 7.8. There exists a constant c ∈ {±1} such that

θ.vλ = cq(λ,2ρ)vλ.

As θ ∈ Z(Bg), it acts by the same constant on each Bg-orbit in V (λ).

7.5.2 Central automorphism action
Let U≥0

q (g), (reps. U≤0
q (g);U<0

q (g)) denote the sub-Hopf algebra of Uq(g) generated
by Ei, K±1

i (resp. Fi, K±1
i ; Fi). We compute the action of T 2

w0 on PBW basis of U≤0
q (g)

in this subsection. It is known that Tw0 permutes U≥0
q (g) and U≤0

q (g), so T 2
w0 is an

automorphism of U≤0
q (g) and U≥0

q (g).
For i ∈ I, we let î denote the index satisfying w0(αi) = αî.

Lemma 7.4. For i ∈ I, the following identities hold :

T 2
w0(Ei) = q(αi,αi)K−2

i Ei, T 2
w0(Fi) = q(αi,αi)K2

i Fi, T 2
w0(Ki) = Ki.

Proof. A similar computation as in [56] Section 5.7 gives

Tw0(Ei) = −FîKî, Tw0(Fi) = −K−1
î
Eî, Tw0(Ki) = K−1

î
.

Then the lemma is clear as w0(αî) = αi.

We turn to consider the action of T 2
w0 on a root vector Fβk = Ti1 · · ·Tik−1(Fik). As

T 2
w0 ∈ Z(Bg) (here Bg is the Artin braid group generated by {Ti| i ∈ I}),

T 2
w0Ti1 · · ·Tik−1(Fik) = Ti1 · · ·Tik−1T

2
w0(Fik)

= Ti1 · · ·Tik−1

(
q(αik ,αik )K2

ik
Fik
)

= q(βk,βk)K2
βk
Fβk ,

where q(αik ,αik ) = q(βk,βk) as the bilinear form is invariant under the action of Weyl
group.

So in general, we have

T 2
w0(Fβj1 · · ·Fβjt ) = q

∑t

k=1(βjk ,βjk )K2
βj1
Fβj1 · · ·K

2
βjt
Fβjt

= q
∑t

k=1(βjk ,βjk )+
∑

i<k
2(βji ,βjk )K2

βj1
· · ·K2

βjt
Fβj1 · · ·Fβjt

= q(β,β)K2
βFβj1 · · ·Fβjt ,

where β = βj1 + · · ·+ βjt . These calculations give the following
Proposition 7.9. Let xβ ∈ U<0

q (g)−β. Then

T 2
w0(xβ) = q(β,β)K2

βxβ.
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7.5.3 Central element action on Weyl group orbits
Proposition 7.10. There exists a constant c ∈ {±1} such that for any non-zero
vector v ∈ V (λ)0 of weight 0,

θ.v = cq(λ,λ+2ρ)v.

Proof. It should be remarked that if λ is not in the root lattice Q, there will be no
vector of weight 0. So if v ∈ V (λ)0 is a non-zero vector, λ ∈ Q+ and there exists
x ∈ U<0

q (g)−λ such that v = x.vλ.
After Proposition 7.8 and 7.9, we have the following computation :

θ.v = Si1 · · ·SiNSiN · · ·Si1x.vλ
= Ti1 · · ·TiNTiN · · ·Ti1(x)θ.vλ
= T 2

w0(x)θ.vλ
= q(λ,λ)Kλxθ.vλ

= cq(λ,λ+2ρ)v,

where c ∈ {±1} comes from Proposition 7.8 by evaluating on the highest weight vector,
so it does not depend on the choice of v ∈ V (λ)0.

As a consequence, θ acts on V (λ)0 as a constant cq(λ,λ+2ρ).
Moreover, this method can be applied to compute the action of the central element

on each Bg-orbit. For example, if g = sl3 and λ = α1 + α2, then V (λ) is the adjoint
representation of dimension 8. θ acts as q4 on the outer cycle and q6 on the inner one
(it is the zero-weight space in this case).

7.5.4 Trace of Coxeter element
We compute the trace of the Coxeter element when it acts on V (λ). The following

observation simplifies the computation.
Let wt(V (λ)) denote the set of weights appearing in V (λ). Then as

Si(V (λ)µ) ⊂ V (λ)µ−(µ,αi)αi

after the definition of Si, the action of Artin braid group Bg on wt(V (λ)) is identical
with that of the Weyl group W . The action of Π is the same as the Coxeter element
c = s1 · · · sl ∈ W which has no fixed point in wt(V (λ))\{0}.

A standard proof of the statement above can be found in [9], Chapitre V, no 6.2.
As an immediate consequence of this observation, we have

Tr(Π, V (λ)) = Tr(Π, V (λ)0).

Moreover, generators of Bg preserve the zero-weight space V (λ)0, so we can also look
Bg as a subgroup of Aut(V (λ)0).

Notice that Πh = ∆2 = θ, so after Proposition 7.10, Πh acts as a scalar cq(λ,λ+2ρ)

on V (λ)0 for some c ∈ {±1}. If we let Λ denote the set of roots of the equation xh = c
in C, then the eigenvalues of Π belong to the set

{y.q
(λ,λ+2ρ)

h | y ∈ Λ}
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and the trace Tr(Π, V (λ)0) is given by δq
(λ,λ+2ρ)

h for some δ ∈ C. As a summary, we
have proved that
Proposition 7.11. There exists a constant δ ∈ C which does not depend on q such
that

Tr(Π, V (λ)) = δq
(λ,λ+2ρ)

h .

We will determine this constant in the next section and see that it is in fact non-
zero.

7.6 Main theorem

7.6.1 Dedekind η-function
We give a recollection on η-function in this subsection.
For a positive integer n, we let p(n) denote the partition number of n and p(0) = 1.

Let ψ(x) = ∑
n≥0 p(n)xn be their generating function and ϕ(x) = ψ(x)−1. Then ϕ(x)

has a simple expression
ϕ(x) =

∞∏
n=1

(1− xn).

This ϕ(x) is the simplest hypergeometric series and is closely related to the theory of
modular forms.

Let η(x) = x
1

24ϕ(x). Then η24(x) is a modular form of weight 12 and η(x) is
called the Dedekind η-function. The expansion of η(x)24 into power series contains
Ramanujan’s τ -function as coefficients.

7.6.2 A theorem due to Kostant
We preserve notations for a simple Lie algebra g given in Section 7.2.1.
Let V1(λ) be the irreducible representation of g of highest weight λ and V1(λ)0 be

the subspace of V1(λ) of weight 0. Then the Weyl groupW acts on V1(λ) and therefore
on V1(λ)0. We let

τλ : W → Aut(V1(λ)0)
denote this representation. Let c = s1 · · · sl be a Coxeter element in W , c(λ) = Φ(λ+
ρ, λ+ ρ)−Φ(ρ, ρ) where Φ is the Killing form on h∗. Let h be the Coxeter number of
W .
Theorem 7.2. [[50]] The following identity holds :(

l∏
i=1

ϕ(xhΦ(αi,αi))
)h+1

=
∑
λ∈P+

Tr(c, V1(λ)0)dimV1(λ)xc(λ).

In particular, if g is simply laced (i.e. of type A,D,E), the identity above has the form

ϕ(x)dimg =
∑
λ∈P+

Tr(c, V1(λ)0)dimV1(λ)xc(λ).

Moreover, Tr(c, V1(λ)0) ∈ {−1, 0, 1}.
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To simplify the notation, we let ε(λ) denote Tr(c, V1(λ)0).

Remark 7.5. If g = sl2, this theorem gives the famous Jacobi identity

ϕ(x)3 =
∞∑
n=0

(−1)n(2n+ 1)x
n(n+1)

2 .

Some discussions on particular cases of Theorem 7.2 can be found in [17] and [50].

7.6.3 Main result
We give an explanation of the identity in Theorem 7.2 in the framework of quantum

groups.

Coxeter numbers and Killing forms

The Killing form on h∗ is proportional to the inner product on the root system,
i.e., there exists a constant k ∈ C∗ such that for any x, y ∈ h∗,

kΦ(x, y) = (x, y).

For any simple Lie algebra g, we define a constant rg = k
h
. The following table gives

the explicit values of rg where the values of h and k are taken from [9].

g h k rg
Al l + 1 2(l + 1) 2

Bl(l ≥ 2) 2l 4l − 2 2l−1
l

Cl(l ≥ 2) 2l 4l + 4 2l+2
l

Dl(l ≥ 3) 2l − 2 4l − 4 2
E6 12 24 2
E7 18 36 2
E8 30 60 2
F4 12 18 3/2
G2 6 24 4

Main theorem

Let
Cq[G] =

⊕
λ∈P+

End(V (λ)) =
⊕
λ∈P+

V (λ)⊗ V (λ)∗

be the quantum coordinate algebra which can be viewed as a deformation of the algebra
of regular functions of a semi-simple algebraic group G.

It is clear that there is a canonical embedding⊕
λ∈P+

End(V (λ))⊗ End(V (λ)∗)→ End(Cq[G]).

Keeping notations in previous sections, we state the main theorem of this chapter.
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Theorem 7.3. Let Π be the Coxeter element in the Artin braid group Bg and V (λ)0
be the zero-weight space in V (λ) for λ ∈ P+. We denote c(λ) = Φ(λ+ρ, λ+ρ)−Φ(ρ, ρ).

1. We have
Tr(Π, V (λ)) = Tr(Π, V (λ)0) = ε(λ)qrgc(λ).

2. The following identity holds

Tr(Π⊗ id,Cq[G]) =
(

l∏
i=1

ϕ(q(αi,αi))
)h+1

,

where we look Π⊗ id as in End(Cq[G]) through the embedding above.
3. In particular, if g is simply laced, i.e., of type A,D,E, then

Tr(Π⊗ id,Cq[G]) = ϕ(q2)dimg.

Proof. We start from proving (2) and (3) by supposing (1) holds.
The point (2) comes from the following computation using (1) and Theorem 7.2 :

Tr(Π⊗ id,Cq[G]) = Tr
Π⊗ id,

⊕
λ∈P+

V (λ)⊗ V (λ)∗


=
∑
λ∈P+

Tr (Π⊗ id, V (λ)⊗ V (λ)∗)

=
∑
λ∈P+

dimC(q)V (λ)Tr(Π, V (λ))

=
∑
λ∈P+

ε(λ)dimC(q)V (λ)qrgc(λ)

=
(

l∏
i=1

ϕ(qrghΦ(αi,αi))
)h+1

=
(

l∏
i=1

ϕ(q(αi,αi))
)h+1

.

To show the point (3), it suffices to notice that in the simply laced case, (αi, αi) = 2
and l(h+ 1) = dimg.

Now we proceed to prove (1).
After Proposition 7.11, there exists some constant δ ∈ C such that

Tr(Π, V (λ)) = δq
(λ,λ+2ρ)

h = δqrgc(λ).

To determine this constant, we consider the specialization of Π and V (λ). As remarked
in Section 7.3.5, when q is specialized to 1, the automorphism Si ∈ End(V (λ)) goes
to si ∈ End(V1(λ)) in the Weyl group W and therefore Π is specialized to the Coxeter
element c ∈ W . In the formula above, the left hand side has limit Tr(c, V1(λ)) when q
tends to 1. On the other hand, as δ ∈ C, the right hand side has limit δ, from which
δ = ε(λ) and the theorem is proved.
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Variations

As a variant of the above identity, we can form the following series

ϕ(q, t) =
∑
λ∈P+

Tr(Π, V (λ))dimC(q)V (λ)tc(λ)

as in the Theorem 7.2. Then it is not difficult to show that

ϕ(q, t) =
(

l∏
i=1

ϕ
(
(qkth)Φ(αi,αi)

))h+1

.

When g is simply laced, the identity above gives

ϕ(q, t) = ϕ(q2t)dimg =
∏
n≥1

(1− q2ntn)
dimg

Example : Uq(sl2) case

When g = sl2, results in Theorem 7.3 can be directly verified.
In this case, there is only one generator S in the Artin braid group. Let V (n) be the

irreducible representation of dimension n + 1 of Uq(sl2) of type 1 with a basis chosen
as in Section 7.3.2. The Coxeter element in this case is given by S.

If n is odd, there is no zero-weight space in V (n), in this case, Tr(S, V (n)) = 0.
If n is even, the zero-weight space in V (n) is of dimension 1 which is generated by

vm, where n = 2m.
The action of S on vm is given by

S.vm = (−1)mq(n−m)(m+1)vm = (−1)mqm(m+1)vm.

From which the trace Tr(S ⊗ id,Cq[G]) :

Tr(S ⊗ id,Cq[G]) =
∞∑
m=0

(−1)m(2m+ 1)qm(m+1),

which coincides with ϕ(q2)3, after Jacobi’s identity.
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