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Chapter 1

Introduction en français

1.1 Catégori�cation 2-Calabi�Yau

La notion de catégorie triangulée 2-Calabi�Yau prend son importance de
la �catégori�cation� des algèbres amassées de S. Fomin et A. Zelevinsky au
moyen de la théorie des représentations de carquois et d'algèbres de dimension
�nie.

Catégori�er une algèbre amassée AQ ⊂ Q(x1, . . . , n) associée à un car-
quois Q signi�e se donner

• une catégorie C (triangulée ou de Frobenius),

• une structure amassée T sur C, au sens de [BIRS],

• un objet T ∈ T dont l'algèbre des endomorphismes a pour carquois de
Gabriel le carquois Q,

• un caractère d'amas envoyant T sur l'amas initial et réalisant une bijec-
tion, entre les objet dans T et les amas de AQ d'une part, les facteurs
directs indécomposables d'objets dans T et les variables d'amas d'autre
part.

Voir l'article [Kela] pour un tour d'horizon sur ce sujet. Les deux exem-
ples fondateurs de la catégori�cation d'algèbres amassées sont les catégories
amassées et les catégories de modules sur les algèbres préprojectives.

A tout carquois acyclique Q est associée une catégorie amassée CQ, dé�nie
dans [BMR+06] et également dans [CCS06] pour le cas An. C'est une caté-
gorie triangulée, par un théorème de [Kel05]. Sa structure amassée est donnée
par les objets amas-basculants ; la bijection explicite ([CK06], [BCK+07])
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10 CHAPTER 1. INTRODUCTION EN FRANÇAIS

avec les amas et variables d'amas est donnée par l'aplication de Caldero�
Chapoton [CC06]. L'étude de cette application a en particulier donné lieu,
dans [CK08], à deux conjectures détaillées plus loin.

Dans les catégories de modules sur les algèbres préprojectives, étudiées
par C. Geiss, B. Leclerc et J. Schröer ([GLS06], [GLS05], [GLS07]...), la
structure amassée est formée des objets rigides maximaux équivalents par
mutation à l'objet rigide maximal initial. Un caractère d'amas est construit
([GLS07]) à l'aide des travaux de Lusztig sur les bases canoniques.

Les catégories considérées dans ces deux exemples véri�ent une propriété,
appelée 2-Calabi�Yau, qui s'avère primordiale pour catégori�er des algèbres
amassées. Cette remarque a motivé l'étude générale des catégories trian-
gulées 2-Calabi�Yau dans [KR07], [IY08]... Depuis, de nombreuses autres
catégories 2-Calabi�Yau sont apparues en lien avec les algèbres amassées :
les catégories CM de [GLSa], subQJ de [BIRS], les catégories stables de caté-
gories de modules de Cohen�Macaulay maximaux sur des singularités isolées
([KR07], [BIKR08]), les catégories amassées généralisées CQ,W de [Ami]...

Cette thèse s'inscrit dans l'étude de la catégori�cation d'algèbres amassées
par des catégories triangulées 2-Calabi�Yau. Le contenu des chapitres 4 et 6
a été publié dans [Pal08] et [Pal09] respectivement.

1.2 Deux conjectures de [CK08]

Soit Q un carquois de Dynkin et soit T un objet amas-basculant de la caté-
gorie amassées CQ. On note B l'algèbre des endomorphismes de T , et 〈 , 〉a
la forme anti-symétrique associée, dé�nie ci-dessous à la section 1.4.

Conjecture 1 ([CK08]) La forme 〈 , 〉a descend au groupe de Grothendieck
K0(modB).

A chaque B-module indécomposableM , on associe la fraction rationnelle

XM =
∑
e

χ(Gre(M))
∏
i

x
〈Si,e〉a−〈Si,M〉
i .

On note ind modB un système de représentants des classes d'isomorphie de
B-modules indécomposables.

Conjecture 2 ([CK08]) L'ensemble {XM ,M ∈ ind modB} est exactement
l'ensemble des variables d'amas de l'algèbre amassée AQ qui n'appartiennent
pas à l'amas associé à T .
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1.3 Cadre et notations

Soit k un corps algébriquement clos et soit C une k-catégorie triangulée Hom-
�nie, de Krull�Schmidt, 2-Calabi�Yau. On note C(X, Y ) l'espace des mor-
phismes de X vers Y , Σ le foncteur de suspension de C, et on écrit par-
fois Ext1

C(X, Y ) pour C(X,ΣY ). On suppose que C admet un objet amas-
basculant T . Cela signi�e que

• l'objet T est rigide : C(T,ΣT ) = 0,

• pour tout objet X de C, l'égalité C(X,ΣT ) = 0 implique X ∈ addT .

Notons B l'algèbre des endomorphismes de T . Sous ces hypothèses, la caté-
gorie C/(ΣT ) est équivalente à la catégorie modB des B-modules de type
�ni ([BMR07], [KR07], voir aussi [KZ08]). Notons F le foncteur

C(T, ?) : C −→ modB

et n le nombre de classes d'isomorphie de B-modules simples.

1.4 Forme bilinéaire antisymétrique

Pour N et N ′ deux B-modules de type �ni, posons

〈N,N ′〉 = dim HomB(N,N ′)− dim Ext1
B(N,N ′)

et
〈N,N ′〉a = 〈N,N ′〉 − 〈N ′, N〉.

Fixons deux B-modules N et N ′, et considérons une présentation projective
P1 → P0 → N → 0 et une coprésentation injective 0 → N → I0 → I1. On a
alors deux égalités

〈N,N ′〉 = dim HomB(P0, N
′)− dim HomB(P1, N

′) + δ

〈N ′, N〉 = dim HomB(N ′, I0)− dim HomB(N ′, I1) + δ′,

où δ et δ′ sont les dimensions de certains espaces de morphismes dans C. En
utilisant la propriété de 2-Calabi�Yau, on montre que ces espaces sont duaux
et on a donc l'égalité δ = δ′.

Théorème (4.11) : L'application 〈 , 〉a dé�nit une forme bilinéaire anti-
symétrique sur le groupe de Grothendieck K0(modB).

Ce théorème implique en particulier la conjecture 1. Cette simpli�ca-
tion un peu mystérieuse des termes δ et δ′ n'éclaire pas de façon satis-
faisante l'étrangeté de cette forme antisymétrique dé�nie sur le groupe de
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GrothendieckK0(modB). Supposons C algébrique, c'est-à-dire catégorie sta-
ble d'une catégorie de Frobenius. On relie dans la section 4.3.3 la forme 〈 , 〉a
à la forme d'Euler d'une catégorie triangulée munie d'une t-structure dont
le c÷ur est la catégorie modB. Cette preuve s'appuie sur une propriété de
3-Calabi�Yau démontrée dans [KR07].

1.5 Caractères amassés

Un caractère amassé (dé�nition 4.2) sur C, à valeurs dans un anneau com-
mutatif A, est une application

χ : obj C −→ A

telle que :

(a) si L,M ∈ C sont isomorphes, leur image coïncide, χ(L) = χ(M),

(b) pour tous L,M dans C, on a χ(L⊕M) = χ(L)χ(M),

(c) si C(L,ΣM) est de dimension 1, alors

χ(L)χ(M) = χ(B) + χ(B′)

où

L→ B →M → ΣL et M → B′ → L→ ΣM

sont deux triangles non scindés.

Dans [CC06], P. Caldero et F. Chapoton dé�nissent une application sur les
objets de la catégorie amassée CQ associée à un carquois acyclique Q, à
valeurs dans Q(x1, . . . , xn). B. Keller et P. Caldero ont montré, dans [CK08]
pour les carquois de Dynkin et dans [CK06] pour les carquois acycliques, que
l'application de Caldero�Chapoton est un caractère amassé. Sur la catégorie
(stable) des modules sur une algèbre préprojective associée à un carquois de
Dynkin, C. Geiss, B. Leclerc et J. Schröer dé�nissent également un caractère
amassé (voir [GLS07]).

Remarquons que si deux caractères amassés coïncident sur les facteurs
directs indécomposables d'un objet amas-basculant T ′, alors ils coïncindent
sur chaque rigide indécomposable �accessible depuis T ′� (voir le lemme 4.18
pour un énoncé précis).

Soit T ∈ C un objet amas-basculant dont les facteurs directs indécompos-
ables T1, . . . , Tn sont deux à deux non isomorphes. Si X ∈ C, on dé�nit son
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indice et son coindice (relativement à T ) de la façon suivante. Etant donnés
deux triangles de Keller�Reiten

TX1 → TX0 → X → ΣTX1 et ΣT 1
X → X → Σ2T 0

X → Σ2T 1
X ,

où TX0 , TX1 , T 0
X et T 1

X sont dans addT , l'indice de X, noté indX, est la
classe [FTX0 ] − [FTX1 ] dans K0(projB), et son coindice, noté coindX, la
classe [FT 0

X ]− [FT 1
X ]. L'indice des objets rigides est étudié dans [DK08], et

utilisé pour démontrer certains résultats fortement liés à des conjectures sur
les algèbres amassées.

Notons Pi, pour i = 1, . . . , n, le B-module projectif indécomposable image
de Ti par F , et Si sa tête simple. L'indice et le coindice sont reliés à la forme
bilinéaire antisymétrique :

Lemme (4.7) : Soit X indécomposable dans C. Alors

indX =


−[Pi] si X ' ΣTi∑n

i=1〈FX, Si〉[Pi] sinon,

coindX =


−[Pi] si X ' ΣTi∑n

i=1〈Si, FX〉[Pi] sinon.

Pour chaque objet M de C, on dé�nit, selon la formule proposée par
P. Caldero et B. Keller dans [CK08], une fraction rationnelle XT

M dans
Q(x1, . . . , xn) par :

XT
M = x− coindM

∑
e∈K0(modB)

χ
(
Gre(FM)

) n∏
i=1

x
〈Si,e〉a
i ,

où

• Gre(FM) désigne la grassmannienne de sous-modules de vecteur di-
mension e de FM ,

• on note xa, pour a ∈ K0(projB), le produit
∏n

i=1 x
[a:Pi]
i .

Grâce à un phénomène de dichotomie similaire à celui de la section 3.3
de [CK08], on prouve le théorème suivant.

Théorème (4.4) : L'application XT : obj C −→ Q(x1, . . . , xn) est un carac-
tère amassé.
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Ce théorème est valable dans un cadre relativement général. Il s'applique
aux catégories amassées, comme aux catégories stables de catégories de mod-
ules sur une algèbre préprojective ou aux catégories amassées généralisées
de [Ami] associées à des carquois à potentiel. Il implique, grâce à [CK06,
Theorem 4] (voir aussi [BCK+07]), une forme plus générale de la conjec-
ture 2. Supposons, dans le corollaire suivant, que C est la catégorie amassée
associée à un carquois acyclique Q. Notons QT le carquois de Gabriel de
l'algèbre EndC(T ), et AQT

l'algèbre amassée associée.

Corollaire (4.19) : Le caractère amassé XT induit une bijection entre classes
d'isomorphie d'objets rigides indécomposables de C et variables d'amas de
l'algèbre amassée AQT

. Cette bijection envoie les objets amas-basculants de
C sur les amas de AQT

.

1.6 Formule de multiplication

La première formule de multiplication démontrée est celle de [CK08], et con-
cerne l'application de Caldero�Chapoton de la catégorie amassée associée à
un carquois de Dynkin. Une formule inspirée de cette dernière est démontrée
dans [GLS07] pour la catégorie des modules sur une algèbre préprojective
de Dynkin. La formulation du théorème 5.1 en est l'analogue. La formule
de [CK08] est généralisée dans [Huba], puis dans [XX] et [Xu].

Si ε est un morphisme dans C(L,ΣM), on note mt(ε) l'un quelconque des
objets Y apparaissant dans un triangle M → Y → L

ε→ ΣM .

Théorème (5.1) : Soient L,M ∈ C. Si les cônes de C sont constructibles
(voir la section 5.1.3),

• les �bres de l'application qui, à ε ∈ C(L,ΣM), associe XT
mt(ε) sont

constructibles,

• on a la formule

χ(PC(L,ΣM))XT
LX

T
M =

∫
[ε]∈PC(L,ΣM)

XT
mt(ε) +

∫
[ε]∈PC(M,ΣL)

XT
mt(ε).

On montre que les hypothèses du théorème 5.1 sont véri�ées par :

• (section 5.2.4) les catégories stables de catégories de Frobenius Hom-
�nies, comme par exemple les catégories CM de [GLSa], dont les caté-
gories amassées CQ sont un cas particulier,

• (section 5.2.5) les catégories amassées généralisées CQ,W de [Ami].
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1.7 Groupes de Grothendieck

Certaines catégories triangulées 2-Calabi�Yau C n'admettant pas d'objet
amas-basculant possèdent néanmoins certaines sous-catégories aux propriétés
similaires. C'est le cas par exemple de

• la catégorie amassée CH, où H est la catégorie des représentations de
dimension �nie sur k du carquois A∞∞ avec orientation linéaire [KR07],

• la catégorie D de [HJ].

Une sous-catégorie pleine T de C est dite amas-basculante ([Iya07], [KR07])
si :

• pour tous T, T ′ ∈ T , on a Ext1
C(T, T

′) = 0,

• pour tout X ∈ C, si Ext1
C(X,T ) = 0 pour tout T ∈ T alors X ∈ T ,

• la sous-catégorie T est fonctoriellement �nie.

Si T est un objet amas-basculant, la catégorie addT est une sous-catégories
amas-basculante de C.

On suppose désormais que C est algébrique, et possède une sous-catégorie
amas-basculante T . Soit E une catégorie de Frobenius telle que C = E , et
soit M la sous-catégorie pleine de E relevant canoniquement T . On note
P la sous-catégorie pleine de E dont les objets sont projectifs-injectifs. On
note Hb

E−ac (M) la sous-catégorie pleine de la catégorie homotopique bornée
Hb (M) dont les objets sont acycliques en tant que complexes d'objets de E .
En utilisant la suite exacte courte

0 → Hb (P) → Db (E) → E → 0

de [KV87], on montre :

Lemme (6.2): On a une suite exacte de catégories triangulées

0 → Hb
E−ac (M) → Hb (M) /Hb (P) → E → 0.

Après passage aux groupes de Grothendieck, on obtient le théorème suiv-
ant.

Théorème (6.10) : Le groupe de Grothendieck Ktri
0 (E) est le quotient de

Kadd
0 (M) par les relations BM∗ −BM où

M∗ → BM →M → ΣM∗ et M → BM∗ →M∗ → ΣM
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sont deux triangles d'échange.

Cette description de K0(C) permet d'améliorer un résultat de [BKL08].
Dans cet article, M. Barot, D. Kussin et H. Lenzing étudient le groupe de
Grothendieck de la catégorie amassée CA associée à une algèbre héréditaire ou
canonique A. Ils supposent cette catégorie munie d'une structure triangulée
admissible, c'est-à-dire rendant exact le foncteur de projection Db(modA) →
CA. Ils dé�nissent un groupe K0(CA) dans lequel les relations sont induites
par les triangles provenant de triangles dans la catégorie dérivée. Ce groupe
coïncide avec le groupe de Grothendieck usuel dans de nombreux cas :

Théorème (Barot�Kussin�Lenzing [BKL08]) : Dans chacun des trois cas
suivants, les groupes K0(CA) et K0(CA) sont égaux.

(i) A est une algèbre canonique dont la suite de poids (p1, . . . , pt) possède
au moins un poids pair,

(ii) A est tubulaire,

(iii) A est héréditaire de type de représentation �ni.

Sous une restriction sur la structure de catégorie triangulée de CA, on
généralise le cas (iii) du théorème précédent.

Théorème (6.16) : Soit A une algèbre héréditaire de dimension �nie, et
soit CA la catégorie amassée associée. On suppose CA munie de sa structure
triangulée canonique dé�nie dans [Kel05]. On a alors l'égalité K0(CA) =
K0(CA).

1.8 Equivalences dérivées

On note ModM la catégorie des foncteurs k-linéaires contravariants de M
dans la catégorie des k-espaces vectoriels. Soit T ′ une sous-catégorie amas-
basculante de C, et soit M′ la sous-catégorie pleine de E correspondante.

Proposition (6.4) Les catégories dérivées DMod M et DMod M′ sont
équivalentes.

La preuve de cette proposition s'appuie sur un théorème de B. Keller
dans [Kel94] généralisant un théorème de Rickard.

Il est montré, dans [KR07], que la catégorie modM est une catégorie
abélienne. On note perMM la sous-catégorie pleine de perM formée des
objets dont l'homologie est dans modM. La catégorie triangulée perMM
est munie d'une t-structure dont le c÷ur est modM ([Tab07]).
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Proposition (6.8) L'équivalence dérivée de la proposition précédente entre
les catégories ModM et ModM′ induit une équivalence triangulée entre les
catégories perMM et perM′M′.

1.9 Formule de mutation généralisée

On note BM la matrice anti-symétrique associée au carquois de la sous-
catégorie M (les boucles et les 2-cycles éventuels n'interviennent pas dans
cette matrice).

Lemme (6.11) La matrice BM est la matrice de la forme bilinéaire anti-
symétrique

〈 , 〉a : K0(modM)×K0(modM) −→ Z

dans la base des simples.

Notons (Mj)j∈J et (M ′
i)i∈I des systèmes de représentants des classes

d'isomorphie d'objets indécomposables de M et M′ respectivement. Pour
chaque j ∈ J , �xons un triangle d'approximation de Keller�Reiten

Σ−1Mj −→
⊕
i

βijM
′
i −→

⊕
i

αijM
′
i −→Mj.

Notons T la matrice dont les coe�cients sont tij = αij − βij.

Théorème (6.12) : Les matrices BM et BM′ sont reliées par l'égalité

BM′ = TBMT
t.

Remarque : Pour avoir cette dernière égalité, on n'a pas supposé les sous-
catégories M et M′ liées par une suite de mutations.

Comme conséquence de ce théorème, on retrouve un résultat de [IY08],
[BIRS] (généralisé dans [DK08]) : les objets amas-basculants d'une telle caté-
gorie C ont tous le même nombre de (classes d'isomorphie de) facteurs directs
indécomposables.

En suivant une méthode initiée dans [GLS06], on montre (théorème 6.14)
que si T ′ est la mutation de T par rapport à un indécomposable M , alors la
matrice BM′ est obtenue par mutation de S. Fomin et A. Zelevinsky de BM,
dans la direction M . Le théorème 6.12 peut donc se voir comme une règle
de mutation généralisée.
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Chapter 2

Summary of results

The contents of chapter 4 have been published in [Pal08], and those of chap-
ter 6 in [Pal09].

2.1 Notations

Let k be an algebraically closed �eld, and let C be a Hom-�nite, 2-Calabi�Yau,
Krull�Schmidt, triangulated k-category. We denote the space of morphisms
from an object X to an object Y by C(X, Y ), and the suspension functor of
C by Σ. We sometimes write Ext1

C(X, Y ) for C(X,ΣY ). We further assume
that the category C admits a cluster tilting object T . Therefore,

• the object T is rigid : C(T,ΣT ) = 0 and

• for any object X of C, if the space C(X,ΣT ) vanishes, then X belongs
to addT .

We denote the endomorphism algebra of T by B. Under the hypotheses
above, the category C/(ΣT ) is equivalent to the category modB of �nite
dimensional B modules ([BMR07], [KR07], see also [KZ08]). We denote the
functor

C(T, ?) : C −→ modB

by F , and the number of isoclasses of simple B-modules by n.

2.2 The antisymmetric bilinear form

For any two B-modules N and N ′, de�ne

〈N,N ′〉 = dim HomB(N,N ′)− dim Ext1
B(N,N ′)

19
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and
〈N,N ′〉a = 〈N,N ′〉 − 〈N ′, N〉.

Let N and N ′ be two B-modules. Let P1 → P0 → N → 0 be a projective
presentation of the module N and 0 → N → I0 → I1 be an injective co-
presentation of N . We have the following equalities:

〈N,N ′〉 = dim HomB(P0, N
′)− dim HomB(P1, N

′) + δ

〈N ′, N〉 = dim HomB(N ′, I0)− dim HomB(N ′, I1) + δ′,

where δ and δ′ are the dimensions of some morphism spaces in C. By the
2-Calabi�Yau property, these spaces are shown to be in duality and we have
δ = δ′.

Theorem (4.11) : The map 〈 , 〉a induces an antisymmetric bilinear form
on the Grothendieck group K0(modB).

As a consequence of theorem 4.11, conjecture 1 of [CK08] holds. As-
sume that C is the stable category of a Frobenius category. We prove, in
section 4.3.3, that the antisymmetric bilinear form is in fact induced by the
Euler form of a triangulated category which admits a t-structure whose heart
is the abelian category modB. The proof relies on a 3-Calabi�Yau property
proved in [KR07].

2.3 Cluster characters

A cluster character (de�nition 4.2) on C with values in a commutative ring
A is a map

χ : obj(C) −→ A

such that

(a) for all isomorphic objects L and M , we have χ(L) = χ(M),

(b) for all objects L and M of C, we have χ(L⊕M) = χ(L)χ(M),

(c) for all objects L and M of C such that dim Ext1
C(L,M) = 1, we have

χ(L)χ(M) = χ(B) + χ(B′),

where B and B′ are the middle terms of `the' non-split triangles

L→ B →M → ΣL and M → B′ → L→ ΣM

with end terms L and M .
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Let Q be an acyclic quiver, and denote the cluster category associated
with Q by CQ. In [CC06], P. Caldero and F. Chapoton de�ne a map

X? : obj CQ −→ Q(x1, . . . , xn).

B. Keller and P. Caldero proved that the Caldero�Chapoton map is a cluster
character, in [CK08] for Dynkin quivers and in [CK06] for acyclic quivers.
By considering (stable) categories of modules over preprojective algebras,
C. Geiss, B. Leclerc and J. Schröer use the work of Lusztig [Lus00] in order
to de�ne a cluster character (see [GLS07]).

Note that there is a weak form of uniqueness for the cluster characters
on C (see lemma 4.18 for a precise statement): Assume that χ1 and χ2 are
two cluster characters on C with values in A, and that they coincide on the
indecomposable direct summands of a cluster tilting object T ′. Then, χ1 and
χ2 coincide on each indecomposable rigid object `reachable from T ′'.

Let T ∈ C be a cluster tilting object whose indecomposable direct sum-
mands T1, . . . , Tn are pairwise non-isomorphic. For any X ∈ C, the index
of X (with respect to T ), denoted by indX, is the element of K0(projB)
de�ned as follows: Let TX1 → TX0 → X → ΣTX1 be an approximation
triangle of Keller�Reiten, ie. TX0 and TX1 belong to addT . Then indX
is the class [FTX0 ] − [FTX1 ]. Similarly, one de�nes the coindex of X by
coindX = [FT 0

X ] − [FT 1
X ] where T 0

X and T 1
X are objects of addT apearing

in a triangle ΣT 1
X → X → Σ2T 0

X → Σ2T 1
X . The indices of rigid objects are

studied in [DK08], where they are used to prove some results strongly related
to conjectures on cluster algebras.

For i = 1, . . . , n, denote the indecomposable projective B-module image
of Ti under F by Pi, and its simple top by Si. The next lemma shows how
indices and coindices are related to the antisymmetric bilinear form.

Lemma (4.7) : Let X ∈ C be indecomposable. Then

indX =


−[Pi] if X ' ΣTi∑n

i=1〈FX, Si〉[Pi] otherwise,

coindX =


−[Pi] if X ' ΣTi∑n

i=1〈Si, FX〉[Pi] otherwise.

For each object M of C, de�ne a fraction XT
M in Q(x1, . . . , xn), following

the formula proposed in [CK08]:

XT
M = x− coindM

∑
e∈K0(modB)

χ
(
Gre(FM)

) n∏
i=1

x
〈Si,e〉a
i ,
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where

• the grassmannian of submodules of FM of dimension vector e is de-
noted by Gre(FM),

• for any a in K0(projB), the product
∏n

i=1 x
[a;Pi]
i is denoted by xa.

By using a phenomenon of dichotomy similar to that of section 3.3 of [CK08],
we prove the following:

Theorem (4.4) : The map XT : obj C −→ Q(x1, . . . , xn) is a cluster char-
acter.

This theorem holds for instance when C is

• the cluster category associated with an acyclic quiver,

• the stable category of modules over a preprojective algebra of Dynkin
type,

• the generalized cluster category of [Ami], associated with a Jacobi-�nite
quiver with potential,

• the 2-Calabi�Yau reductions ([IY08], see also [CK06]) of any of the
examples above...

Thanks to [CK06, Theorem 4] (see also [BCK+07]), one obtains a generaliza-
tion of the second conjecture of [CK08] as a corollary of theorem 4.4. Assume
in the following corollary that C is the cluster category associated with an
acyclic quiver Q. Denote the Gabriel quiver of the endomorphism algebra
EndC(T ) by QT , and the corresponding cluster algebra by AQT

.

Corollary (4.19) : The cluster character XT induces a bijection between the
isoclasses of indecomposable rigid objects of CQ and the cluster variables of
the cluster algebra AQT

. This bijection sends the cluster tilting objects of CQ
to the clusters of AQT

.

2.4 Multiplication formula

The �rst multiplication formula, concerning the Caldero�Chapoton map of
the cluster category associated with a Dynkin quiver, was proved in [CK08].
Inspired from this one, another formula was proved in [GLS07], in the case of
module categories over a preprojective algebra of Dynkin type. The formula
of [CK08] was later generalized in [Huba], [XX] and [Xu].
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For any morphism ε in C(L,ΣM), we denote any middle term Y of a
triangle M → Y → L→ ΣM by mt(ε).

Theorem (5.1) : Let L,M ∈ C. Under some constructibility hypothesis (see
section 5.1.3), we have

• the �bers of the map which sends ε ∈ C(L,ΣM) to XT
mt(ε) are con-

structible, and

• we have:

χ(PC(L,ΣM))XT
LX

T
M =

∫
[ε]∈PC(L,ΣM)

XT
mt(ε) +

∫
[ε]∈PC(M,ΣL)

XT
mt(ε).

We prove that this hypothesis is satis�ed by

• (section 5.2.4) stable categories of Hom-�nite Frobenius categories, such
as the categories CM of [GLSa], some particular cases of which are the
cluster categories CQ,

• (section 5.2.5) the generalized cluster categories CQ,W of [Ami].

2.5 Grothendieck groups

Some triangulated categories C, which do not admit any cluster tilting object,
nevertheless have subcategories with similar properties. To name a few, this
is the case of

• the cluster category CH, where H is the category of �nite dimensional
representations over k of the quiver of type A∞∞ with linear orienta-
tion [KR07],

• the category D of [HJ].

A cluster tilting subcategory of C ([Iya07], [KR07]) is a full subcategory T
such that:

• For all T, T ′ ∈ T , we have Ext1
C(T, T

′) = 0,

• for any X in C, if Ext1
C(X,T ) vanishes for all T ∈ T , then X belongs

to T ,

• the subcategory T is functorially �nite.
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Note that if T is a cluster tilting object, then the category addT is a cluster
tilting subcategory of C.

In all the following, we assume C to be algebraic, with a cluster tilting
subcategory T . Let E be a Frobenius category such that C = E , and let M
be the full subcategory of E which canonically lifts T . We let P denote the
full subcategory of E whose objects are projective-injective. Let Hb

E−ac (M)
be the full subcategory of the bounded homotopy category Hb (M) whose
objects are acyclic as complexes of objects of E . By using the short exact
sequence

0 → Hb (P) → Db (E) → E → 0

of [KV87], we prove the following:

Lemma (6.2) : There is a short exact sequence of triangulated categories

0 → Hb
E−ac (M) → Hb (M) /Hb (P) → E → 0.

This allows us to compute the Grothendieck group of C.
Theorem (6.10) : The Grothendieck group Ktri

0 (E) is the quotient of the
group Kadd

0 (M) by all relations BM∗ −BM where

M∗ → BM →M → ΣM∗ et M → BM∗ →M∗ → ΣM

are exchange triangles.

This computation of K0(C) enables us to improve on a result of [BKL08].
In this article, M. Barot, D. Kussin and H. Lenzing study the Grothendieck
group of the cluster category CA associated with an algebra A which is either
hereditary or canonical. They assume that the category CA is endowed with
an admissible triangulated structure, ie. for which the projection functor
Db(modA) → CA is exact. They de�ne a group K0(CA) by only considering
the relations arising from triangles induced by the ones of Db(modA). This
group coincides with the usual Grothendieck group in many cases:

Theorem (Barot�Kussin�Lenzing [BKL08]) We have K0(CA) = K0(CA) in
each of the following three cases:

(i) A is canonical with weight sequence (p1, . . . , pt) having at least one even
weight.

(ii) A is tubular,

(iii) A is hereditary of �nite representation type.
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Under some restriction on the triangulated structure of CA, we have the
following generalization of case (iii) of the previous theorem:

Theorem (6.16) : Let A be a �nite-dimensional hereditary algebra, and let
CA be the associated cluster category with its triangulated structure de�ned
in [Kel05]. Then we have K0(CA) = K0(CA).

2.6 Derived equivalences

We denote the category of k-linear contravariant functors fromM to the cat-
egory of k-vector spaces by ModM. Let T ′ be a cluster tilting subcategory
of C, and let M′ be the corresponding full subcategory of E .
Proposition (6.4) : The derived categories DMod M and DMod M′ are
equivalent.

The proof relies on a theorem of [Kel94] which generalizes a theorem of
Rickard [Ric89].

It is proved in [KR07] that the category modM is abelian. Let perMM
be the full subcategory of perM whose objects are the complexes with ho-
mologies in modM. The triangulated category perMM admits a t-structure
whose heart is the abelian category modM ([Tab07]).

Proposition (6.8) : The derived equivalence from ModM to ModM′ in-
duces a triangle equivalence from perMM to perM′M′.

2.7 The generalized mutation rule

Let BM be the antisymmetric matrix associated with the quiver of the sub-
category M (loops and 2-cycles do not appear in this matrix).

Lemma (6.11) : The matrix BM is the matrix of the antisymmetric bilinear
form

〈 , 〉a : K0(modM)×K0(modM) −→ Z
in the basis given by the simple modules.

Let (Mj)j∈J and (M ′
i)i∈I be systems of representatives for the isoclasses

of indecomposable objects of M and M′ respectively. For each j ∈ J , let

Σ−1Mj −→
⊕
i

βijM
′
i −→

⊕
i

αijM
′
i −→Mj

be an approximation triangle of Keller�Reiten. Let T be the matrix whose
coe�cients are tij = αij − βij for all (i, j) ∈ I × J .
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Theorem (6.12) : The matrices BM and BM′ are related by the equality

BM′ = TBMT
t.

Remark : For this equality to hold, one does not have to assume the subcat-
egories M and M′ to be linked by a chain of mutations.

As a consequence of the previous theorem, we obtain a new proof of a
result of [IY08], [BIRS] (generalized in [DK08]): The cluster tilting objects of
such a category C all have the same number of (isoclasses of) indecomposable
direct summands.

Inspired by a method of [GLS06], we prove in theorem 6.14 that the
mutation of cluster tilting subcategories T is compatible with the Fomin�
Zelevinsky mutation of the matrices BM. Therefore, theorem 6.14 can be
thought of as a generalized mutation rule.



Chapter 3

Preliminaries

3.1 Triangulated categories

Our main references on triangulated categories are [Ver96], the book of
D. Happel [Hap88] for a nice introduction and the book of A. Neeman [Nee01]
for a more complete study.

3.1.1 Axioms

Let C be an additive category endowed with an automorphism Σ, called the
suspension functor. The category C is triangulated if it is endowed with a
class ∆ of diagrams of the form X → Y → Z → ΣX which is stable under
isomorphisms and which satis�es axioms (TR1) to (TR4) below. A diagram
in ∆ is called a triangle.

(TR1) Every morphism X
f−→ Y in C can be embedded into a trian-

gle X
f−→ Y −→ Z −→ ΣX. For any object X of C, the following diagram

X
1X−→ X −→ 0 −→ ΣX is a triangle.

(TR2) The diagram X
f−→ Y

g−→ Z
h−→ ΣX is a triangle if and only if

the shifted diagram Y
g−→ Z

h−→ ΣX
−Σf−→ ΣY is a triangle.

(TR3) For any two triangles

X
f−→ Y

g−→ Z
h−→ ΣX and X ′ f ′−→ Y ′ g′−→ Z ′

h′−→ ΣX ′

and for any morphism (α, β) : f → f ′, there exists a (non unique) morphism

27
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γ : Z → Z ′ such that

X
f //

α

��

Y
g //

β
��

Z
h //

γ

��

ΣX

Σα
��

X ′ f ′ // Y ′ g′ // Z ′
h′ // ΣX ′

is a morphism of triangles (ie. is commutative).
(TR4) (The octahedral axiom)
Let X

u−→ Y1 and Y1
v−→ Y2 be two composable morphisms in C. Let

there be given triangles

X
u−→ Y1 −→ Z1 −→ ΣX,

Y1
v−→ Y2 −→ ΣX ′ −→ ΣY1,

X
vu−→ Y2 −→ Z2 −→ ΣX.

These can be completed to a commutative diagram

X ′

��

X ′

��
X

u // Y1
//

v

��

Z1

��

// ΣX

X
vu // Y2

//

��

Z2
//

��

ΣX

ΣX ′ ΣX ′

whose rows and columns are triangles and where the following square is
commutative

Z2
//

��

ΣX

��
ΣX ′ // ΣY1.

Remark : There are many di�erent equivalent fomulations of the octahedral
axiom, see the notes [Hubd] of A. Hubery. A nice diagram illustrating this
axiom may be found in [KS94].

A functor F between two triangulated categories (C,Σ) and (C ′,Σ′) is
called a triangle functor or an exact functor if it is endowed with an invertible
natural transformation FΣ → Σ′F which makes the image under F of a
triangle in C a triangle in C ′.
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3.1.2 Some properties

Let C be a triangulated category. The following three properties show that
triangles behave almost as well as short exact sequences.

Proposition 3.1. Let X
f−→ Y

g−→ Z
h−→ ΣX be a triangle in C. Then the

compositions gf and hg vanish.

Proposition 3.2. Let X
f−→ Y

g−→ Z
h−→ ΣX be a triangle in C, and let M

be an object of C. Then the following two complexes, induced by the functors
represented and co-represented by M , are acyclic:

C(ΣX,M) −→ C(Z,M) −→ C(Y,M) −→ C(X,M),

C(M,X) −→ C(M,Y ) −→ C(M,Z) −→ C(M,ΣX).

Proposition 3.3. Let

X //

α

��

Y //

β
��

Z //

γ

��

ΣX

Σα
��

X ′ // Y ′ // Z ′ // ΣX ′

be a morphism of triangles. If two out of the three arrows α, β and γ are
isomorphisms, then so is the third.

The following is a consequence of the octahedral axiom: Any commutative
square

X
a1 //

a2

��

Y1

b1
��

Y2
b2 // Z

can be completed to a commutative diagram

X
a1 //

a2

��

Y1

b1
��

// Z1
//

��

ΣX

Y2
b2 //

��

Z

��

// T2
//

��

ΣY2

Z2

��

// T1

��

// T

��

// ΣZ2

ΣX ΣY1 ΣZ1

whose rows and columns are triangles.
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3.1.3 Examples

Stable categories

Exact categories have been axiomatized in [Qui73]. A small exact category
is a full subcategory of an abelian category, closed under extensions. Fol-
lowing [GR97], we will call con�ation (resp. in�ation, resp. de�ation) an
admissible exact sequence (resp. admissible mono, resp. admissible epi). An
exact category is said to have enough projectives if for any object X there is
a de�ation from a projective object (with respect to the exact structure) to
X. Dually, it has enough injectives if any object admits an in�ation to some
injective object. An exact category is called a Frobenius category if it has
enough projectives, enough injectives and if moreover the projectives coincide
with the injectives. Let E be a Frobenius category. The morphisms factoring
through a projective-injective object form an ideal P of the category E . The
stable category E has the same objects as E but the morphisms from X to
Y are given by E(X, Y ) = E(X, Y )/P(X, Y ). By a result of Happel [Hap88],
the stable category E is triangulated. Its suspension functor is constructed
in the following way: Let X ∈ E , and let X → IX be any in�ation to a
projective-injective object. Complete it to a con�ation X → IX → ΣX to

get the suspension of X. Let X
i−→ Z

p−→ Y be a con�ation in E . The
identity of X induces a morphism of con�ations

X
i // Z

p //

��

Y

ε

��
X // IX // ΣX.

The triangles in E are those isomorphic to the image in E of some (i, p,−ε)
constructed in this way.

Derived categories

Our main reference on derived categories is [Ver96]. See also [Kel98] and
[Noo08] for some nice lecture notes.

Let A be an abelian category. For example, A might be the category
modA of �nitely generated right modules over a �nite dimensional k-algebra
A (where k is an algebraically closed �eld). Let CA denote the category
of di�erential complexes over A. Its objects are complexes of objects of
A and its morphisms are morphisms of degree 0 which commute with the
di�erentials. A morphism of complexes f : M → N is null-homotopic if there
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is a morphism h : M → N of degree -1 such that f = dh+ hd:

· · · //M−1

��

//

}}z
z

z
z

z
M0

��

//

||y
y

y
y

M1

��

//

}}{
{

{
{

· · ·

~~|
|

|
|

|

· · · // N−1
// N0

// N1
// · · ·

If a morphism f is null-homotopic, then the induced morphism in homology
vanishes. The homotopy category HA has the same objects as CA, its mor-
phisms are the classes of morphisms of complexes modulo the null-homotopic
morphisms. The homotopy category is the stable category of a Frobenius cat-
egory, thus it is triangulated. A morphism in HA is a quasi-isomorphism if
it induces an isomorphism in homology. The derived category DA is the
localization of HA with respect to the class of quasi-isomorphisms. For ref-
erences on localization of triangulated categories see for instance [Ver96],
[Nee01], [Kra]. A morphism from X to Y in DA is the class of a diagram

X ′

f

  A
AA

AA
AA

A
w

~~||
||

||
||

X Y

where f ∈ HA(X ′, Y ), w is a quasi-isomorphism and two such diagrams are
equivalent if there exists a commutative diagram

X ′

!!C
CC

CC
CC

C
'

}}zz
zz

zz
zz

X Z
'oo

��

OO

// Y

X ′′.

'

aaDDDDDDDD

=={{{{{{{{

The derived category DA is a triangulated category.

3.1.4 t-structures

References on t-structures are [BBD82], [KV88] and [ATJLSS03].

De�nition

Let C be a triangulated category. A t-structure on C is given by two strictly
(ie. stable under isomorphisms) full subcategories C≤0 and C≥0 satisfying
condition (i), (ii) and (iii) below. For any n ∈ Z, denote by C≤n (resp. C≥n)
the subcategory Σ−nC≤0 (resp. Σ−nC≥0).
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(i) For any X ∈ C≤0 and any Y ∈ C≥1, we have C(X, Y ) = 0.

(ii) We have the following inclusions C≤0 ⊂ C≤1 and C≥0 ⊃ C≥1.

(iii) For any X ∈ C, there exists a triangle

A −→ X −→ B −→ ΣA

where A ∈ C≤0 and B ∈ C≥1.

If (C≤0, C≥0) is a t-structue on C, its heart H = C≤0 ∩ C≥0 is an abelian
category [BBD82].

Aisles and t-structures

In [KV88], B. Keller and D. Vossieck gave a nice concise description of t-
structures, via the notion of aisles. A strictly full subcategory U of C is
called an aisle if

• it is stable under shifts, extensions and

• the inclusion U → C admits a right adjoint.

Proposition 3.4 ([KV88]). A strictly full subcategory U is an aisle if and
only if

(
U , (ΣU)⊥

)
is a t-structure.

Let (C≤0, C≥0) be a t-structure on C. The right adjoint to the inclusion
C≤n → C is denoted by τ≤n, and the left adjoint to C≥n → C by τ≥n. Thus,
for all n ∈ Z and all X ∈ C, there is a triangle

τ≤nX −→ X −→ τ≥n+1X −→ Στ≤nX.

Example

Let C be the bounded derived category Db(modA) of a �nite dimensional k-
algebra A (where k is an algebraically closed �eld). It is the full subcategory
of the derived category whose objects have homologies of �nite total dimen-
sion. The strictly full subcategory C≤0 of complexes whose homologies vanish
in positive dimensions is an aisle in Db(modA). The heart of the correspond-
ing t-structure is the abelian category modA. Recall that the Grothendieck
group of an abelian (resp. triangulated) category is the free abelian group on
the isoclasses of objects modulo the relations [Z] = [X] + [Y ] for each short
exact sequence (resp. triangle) X → Z → Y (resp. X → Z → Y → ΣX).
There is an isomorphism:

K0(Db(modA)) −→ K0(modA)

which sends a class [X] to
∑

i∈Z(−1)i[H iX].
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3.1.5 2-Calabi�Yau tilted algebras

A Hom-�nite triangulated category C is called 2-Calabi�Yau if there are
bifunctorial isomorphisms C(X,ΣY ) ' DC(Y,ΣX) for any X, Y ∈ C, where
D denotes the duality functor Homk(?, k).

Let C be a (Hom-�nite) 2-Calabi�Yau triangulated category. An object
T ∈ C is called a cluster tilting object ([Iya07], [KR07]) if:

• It is rigid C(T,ΣT ) = 0 and

• for any X ∈ C, if C(X,ΣT ) = 0 then X is in the additive closure addT
of T .

An object in C is called basic, if its indecomposable direct summands are
pairwise non isomorphic.

Theorem 3.5 ([BMR+06] for cluster categories, [IY08]). Let C be a 2-Calabi�
Yau triangulated category. For any basic cluster tilting object T = T1⊕· · ·⊕Tn
in C and any i ∈ {1, . . . , n}, there exists a unique (up to isomorphism)
indecomposable object T ∗i not isomorphic to Ti such that (T/Ti) ⊕ T ∗i is a
cluster tilting object in C. Moreover, there are non split triangles

Ti → B → T ∗i → ΣTi and T ∗i → B′ → Ti → ΣT ∗i

where Ti → B is a minimal left addT/Ti-approximation and B′ → Ti is a
minimal right addT/Ti-approximation.

Theorem 3.6 ([BMR07], [KR07], see also [KZ08]). If T is a cluster tilting
object in C, then the functor F co-represented by T induces an equivalence of
categories

C/(ΣT )
'−→ mod EndC(T ).

An algebra B is called 2-Calabi�Yau tilted if it is the endomorphism
algebra of a cluster tilting object in a 2-Calabi�Yau triangulated category.
When the triangulated category is a cluster category, the algebra B is called
cluster tilted.

Let T be a cluster tilting object in a 2-Calabi�Yau triangulated category
C. We denote the corresponding 2-Calabi�Yau tilted algebra by B, and the
functor C(T, ?) : C −→ modB by F .

Proposition 3.7. Let X
f−→ Y

g−→ Z −→ ΣX be a triangle in C. Then:

• The morphism g induces a monomorphism in the category modB if
and only if f belongs to the ideal (ΣT ) of morphisms factoring through
an object in add ΣT .
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• The morphism f induces an epimorphism in the category modB if and
only if g belongs to (ΣT ).

Moreover, if X does not have any direct summand in add ΣT , then:

• The B-module FX is projective if and only if X belongs to addT .

• The B-module FX is injective if and only if X belongs to add Σ2T .

3.2 Cluster categories

3.2.1 De�nition

Let Q be a �nite acyclic quiver and k be an algebraically closed �eld. De-
note by τ the Auslander�Reiten translation in the bounded derived category
Db(mod kQ), and by Σ the suspension functor.

De�nition 3.8 ([BMR+06], also [CCS06] for the Dynkin case An). The
cluster category CQ associated with Q is the orbit category Db(mod kQ)/τ−1Σ:

• Its objects are the objects of Db(mod kQ) and

• for any X, Y ∈ CQ, the space of morphisms from X to Y is

CQ(X, Y ) =
∐
i∈Z

HomDb(mod kQ)

(
(τ−1Σ)iX, Y

)
.

Theorem 3.9 ([Kel05]). The cluster category CQ is triangulated and the
canonical functor Db(mod kQ) −→ CQ is exact.

Let Q be a �nite acyclic quiver. Let ind(kQ) be a complete set of rep-
resentatives for the indecomposable kQ-modules. For each vertex i in Q,
denote the corresponding indecomposable projective kQ-module by Pi.

Theorem 3.10 ([BMR+06]). With the notations above:

• The cluster category CQ is a Krull�Schmidt category.

• The set ind(kQ)q{ΣPi, i ∈ Q0} is a complete set of representatives for
the isoclasses of indecomposable objects of CQ.

• The cluster category is 2-Calabi�Yau and the image of kQ in CQ is a
cluster tilting object.



3.2. CLUSTER CATEGORIES 35

Example : The cluster category associated with the quiver D4.
The Auslander�Reiten quiver of CD4 is

?>=<89:;T1
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;;
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;;

��?
??

??
?? ΣT1

��?
??

??
?

?>=<89:;T1

//

??�������

��?
??

??
?? ΣT0

// //

��;
;;

;;
;;

AA������� ?>=<89:;T0
// //

��?
??

??
??

??�������
ΣT3

// //

��?
??

??
?

??������ ?>=<89:;T3
// //

��?
??

??
??

??�������
ΣT0

?>=<89:;T2

??�������

AA�������

??�������
ΣT2

??������ ?>=<89:;T2

The object T := T1 ⊕ T2 ⊕ T3 ⊕ T4 is cluster-tilting.
The quiver of B =EndCD4

(T ) is

1

��=
==

==
=

0

@@������

��=
==

==
= 3oo

2

@@������

with the following relations: Any composition with the middle arrow van-
ishes, and the square is commutative.

3.2.2 Preprojective algebras

All of this section is from [GLSa]. Let k be an algebraically closed �eld, and
let Q be a �nite acyclic quiver. Its double quiver Q is obtained from Q by
adding an arrow a∗, in the opposite direction, for each arrow a in Q. The
preprojective algebra associated with Q is the path algebra kQ modulo the
ideal generated by

∑
a∈Q1

a∗a− aa∗.
A kQ-module M is called terminal if

(i) it is preinjective,

(ii) for any indecomposable kQ-module X, if HomkQ(M,X) does not van-
ish, then X is in addM and

(iii) each indecomposable injective kQ-module is (isomorphic to) a direct
summand of M .

Denote the forgetful functor mod Λ → mod kQ by πQ, and let M be a ter-
minal kQ-module.

De�nition 3.11 ([GLSa]). The category CM is the full subcategory π−1
Q (addM)

of mod Λ.
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Theorem 3.12 ([GLSa]). Let M be a terminal kQ-module. Then the fol-
lowing hold:

• The category CM is a Frobenius category.

• The stable category CM is 2-Calabi�Yau and has cluster tilting objects.

• If M is the direct sum
⊕

i∈Q0
Ii⊕ τ(Ii) where τ denotes the Auslander�

Reiten translation of mod kQ and Ii the injective module associated
with vertex i, then the stable category CM is triangle equivalent to the
cluster category CQ.

In particular, the cluster category CQ is the stable category of a Hom-�nite
Frobenius category.

3.2.3 Tilting graph

Tilting modules

Let A be a �nite dimensional k-algebra. An A-module T is a tilting module
if

• its projective dimension is bounded by 1, pdimT ≤ 1,

• it is rigid, Ext1
A(T, T ) = 0 and

• there is a short exact sequence 0 → A→ T 0 → T 1 → 0 where T 0 and
T 1 are in addT .

Let Q be an acyclic quiver. It is proved in [BMR+06, Theorem 3.3], that
each tilting kQ-module induces a cluster tilting object in CQ and conversely
that each cluster tilting object in CQ comes from a tilting module over some
hereditary algebra derived equivalent to kQ.

An A-module T is called an almost complete tilting module if there exists
an indecomposable module T0 such that T ⊕ T0 is a tilting module. Such an
indecomposable T0 is called a complement of T .

Theorem 3.13. Let T be an almost complete tilting module. Then:

• ([HR82], [Bon81]) There exists a complement.

• ([RS90], [Ung90]) There are at most two complements, up to isomor-
phism.

• ([HU89]) There are exactly two complements if and only if T is sincere.
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Recall that a module M is sincere if each simple appears as a factor in
a composition series of M , or equivalently if there are non-zero morphisms
from P to M for any projective P .

Let Q be an acyclic quiver with set of vertices {1, . . . , n}. Denote the
associated cluster category by CQ and the functor CQ(kQ, ?) by F . Recall

that F induces a projection CQ
F−→ mod kQ.

Remark : Let T be an almost complete tilting kQ-module. Assume that the
space HomkQ(Pi, T ) vanishes for some indecomposable projective Pi. Then
we have

CQ(ΣPi,ΣT ) = CQ(Pi, T )

= HomkQ(Pi, T )

6= 0.

Therefore T ⊕ ΣPi is a cluster tilting object in CQ.

Theorem 3.14 ([HR82], [Bon81]). Let T be a kQ-module. Then T is tilting
if and only if T is rigid and has exactly n pairwise non-isomorphic indecom-
posable direct factors.

Tilting graph

Let Q be an acyclic quiver with vertices 1, . . . , n. The tilting graph of the
cluster category CQ is de�ned as follows:

• Its vertices are the isomorphism classes of basic cluster tilting objects.

• There is an edge joining two vertices if and only if the corresponding
cluster tilting objects have all but one of their indecomposable direct
summands in common.

Similarly one de�nes the tilting graph of mod kQ, considering tilting modules
instead of cluster tilting objects. A vertex of the tilting graph is saturated
if it is n-valent. This means that it corresponds to a tilting module T =
T1 ⊕ · · · ⊕ Tn such that T/Ti is sincere, for all i = 1, . . . , n.

Theorem 3.15 ([Ung96], Theorem 3.1). Any connected component of the
tilting graph of mod kQ contains a non-saturated vertex.

Proposition 3.16 ([BMR+06], Proposition 3.5). The tilting graph of CQ is
connected.
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This result has been recently generalized to arbitrary hereditary artin
algebras by Andrew Hubery in [Hubb].

We give here a proof which slightly di�ers from that of [BMR+06].

Proof. Let us prove by induction on n = |Q0| that the tilting graph of CQ is
connected.

Let T be a basic cluster tilting object of CQ which does not have any
direct summand in add(ΣkQ). First note that FT is a tilting kQ-module.
Indeed, it is rigid, for instance by lemma 4.8, and it has n indecomposable
direct summands as required in theorem 3.14. Note also that if µiT does not
have any direct summand in add(ΣkQ) either, then FT and FµiT are the
two completions of the almost complete tilting module FT/FTi.

If none of the cluster tilting objects mutation equivalent (ie. linked by a
chain of mutations) to T have a direct summand in add(ΣkQ), then all the
vertices of the connected component of FT in the tilting graph of mod kQ
are saturated. Therefore theorem 3.15 implies that T is mutation equivalent
to some cluster tilting object T ′ with a direct summand in add(ΣkQ), say
ΣPj. It is proved in [CK06, Theorem 5], that the subgraph of the tilting
graph of CQ whose vertices correspond to cluster tilting objects containing
ΣPj as a direct summand is isomorphic to the tilting graph of CQ′ for some
quiver Q′ with |Q′

0| = |Q0| − 1. By induction, this subgraph is connected,
and T ′ is mutation equivalent to ΣkQ.

We have thus shown that any cluster tilting object in CQ is mutation
equivalent to ΣkQ. Therefore the tilting graph of CQ is connected.

3.2.4 The Caldero�Chapoton map

Euler characteristic

For a variety X, χ(X) denotes its Euler�Poincaré characteristic with respect
to the étale cohomology with proper support: χ(X) =

∑
i(−1)i dimH i

c(X).
The Euler characteristic enjoys the following properties:

• If X is an a�ne space, then χ(X) = 1.

• If X and Y are varieties, then we have χ(X q Y ) = χ(X) + χ(Y ),

• and we have χ(X × Y ) = χ(X)χ(Y ).

• More generally, if X → Y is a surjective morphism whose �bers have
constant Euler characteristic c, then χ(X) = c χ(Y ).
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De�nition

Let Q be an acyclic quiver with n vertices, and let CQ be the associated
cluster category. If M is a �nite dimensional kQ-module and e a positive
class in K0(mod kQ), then Gre(M) denotes the variety of submodules of M
with dimension vector e. Recall that the Euler form is de�ned by

〈dimM, dimN〉 = dim HomkQ(M,N)− dim Ext1
kQ(M,N).

The Caldero�Chapoton map [CC06]

X? : obj CQ −→ Q(x1, . . . , xn)

is de�ned by:

• For all M,N ∈ CQ, we have XM⊕N = XMXN .

• If M is isomorphic to the shift ΣPi of the indecomposable projective
kQ-module associated with vertex i, then XM = xi.

• If M is an indecomposable kQ-module, then

XM =
∑
e

χ(GreM)
n∏
i=1

x
〈Si,e〉−〈e,Si〉−〈Si,M〉
i .

Some multiplication formulae

The Caldero�Chapoton map satis�es some multiplicative properties which,
in particular, categorify the mutation of cluster variables. Let Q be an acyclic
quiver.

Theorem 3.17 ([CK08] for Q Dynkin, [CK06]). Let L and M be two objects
of CQ such that CQ(L,ΣM) has dimension 1. Fix two non-split triangles

M → B → L→ ΣM and L→ B′ →M → ΣL.

Then we have XLXM = XB +XB′.

Let Q be a Dynkin quiver. For any two objects L and M of CQ, de�ne
CQ(L,ΣM)Y to be the set of the morphisms from L to ΣM which appear in
a triangle M → Y ′ → L → ΣM where Y ′ is isomorphic to Y . It is shown
in [CK08] that the set CQ(L,ΣM)Y is constructible, so that PCQ(L,ΣM)Y
has a well-de�ned Euler characteristic.
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Theorem 3.18 ([CK08]). Let Q be a Dynkin quiver, and let L,M ∈ CQ be
such that CQ(L,ΣM) does not vanish. Then

χ(PCQ(L,ΣM))XLXM =
∑
Y

(
χ(PCQ(L,ΣM)Y ) + χ(PCQ(M,ΣL)Y )

)
XY ,

where Y runs through the isoclasses of CQ.

C. Geiss, B. Lerclerc and J. Schröer proved in [GLS07] some similar formu-
lae for an analogue of the Caldero�Chapoton map in the category of modules
over a preprojective algebra.

In [Huba], A. Hubery proved a generalization of theorem 3.18, based on
the existence of Hall polynomials which he proved in the a�ne case. Staying
close to this point of vue, J. Xiao and F. Xu proved in [XX] a projective
version of Green's formula and applied it to generalize the multiplication
formula for acyclic cluster algebras. Another proof of this formula was found
by F. Xu in [Xu] based on the 2-Calabi�Yau property, instead of Green's
formula.

3.2.5 Some applications to cluster algebras

Categori�cation

Let Q be an acyclic quiver.

Theorem 3.19 ([CK06], see also [BCK+07]). The Caldero�Chapoton map
induces bijections between:

• The indecomposable rigid objects of the cluster category CQ and the
cluster variables of the cluster algebra AQ associated with Q.

• The basic cluster tilting objects of CQ and the clusters of AQ.

The proof of this theorem relies on the categori�cation of the Fomin�
Zelevinsky mutation given in theorem 3.17, and on the connectedness of the
tilting graph of CQ.

The following three corollaries were conjectured in [FZ03b]. Denote the
cluster algebra associated with an acyclic quiver Q by AQ.

Corollary 3.20 ([CK06], [BMRT07]). Let Q be an acyclic quiver. A seed in
AQ is determined by its cluster.

Indeed, if x is a cluster, the matrix of a seed containing x is determined
by the endomorphism algebra of the cluster tilting object associated with x
under the bijection of theorem 3.19.
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Corollary 3.21 ([CK06]). Let Q be an acyclic quiver. For any cluster vari-
able x of AQ, the set of seeds whose cluster contain x form a connected
subgraph of the exchange graph.

Corollary 3.22 ([CK06]). Let Q be an acyclic quiver. The set of seeds of
AQ whose matrix is acyclic form a connected subgraph of the exchange graph.

Positivity

S. Fomin and A. Zelevinsky proved in [FZ02] that any cluster variable of a
cluster algebra is a Laurent polynomial in the cluster variables appearing in
any given cluster. They conjectured that the coe�cients of these Laurent
polynomials are non-negative.

Theorem 3.23 ([CK08] for Q Dynkin, [CR08]). Let Q be some acyclic
quiver and let M ∈ CQ be a rigid indecomposable kQ-module. Then we have
χ(Gre(M)) ≥ 0 for all dimension vector e.

In particular, the coe�cients in the Laurent expansion in the initial cluster
of any cluster variable of the cluster algebra AQ are non-negative.

3.2.6 Generalized cluster categories

The derived category of a dg algebra

For an introduction to derived categories of dg algebras (and of dg categories),
see [Kel94] and [Kel06].

A dg algebra A is a Z-graded k-algebra endowed with a di�erential d :
A→ A of degree +1 satisfying the graded Leibniz rule: For any a ∈ Ap and
any b ∈ A, d(ab) = (da)b + (−1)padb. Let A be a dg algebra. A (right)
dg A-module M is a Z-graded module over A with a di�erential such that:
For any m ∈ Mp and any a ∈ A, d(ma) = (dm)a + (−1)pmda. The objects
of the abelian category CA are the dg A-modules, and its morphisms are
the morphisms of graded modules, of degree 0, which commute with the
di�erentials. If A is a `usual' algebra, A is a dg algebra concentrated in
degree 0. The category CA is then the category of complexes of A-modules.
A morphism of dg modules f : M → N is null-homotopic if there is an
A-linear morphism h : M → N of degree -1 such that f = dh+ hd:

· · · //M−1

��

//

}}z
z

z
z

z
M0

��

//
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y

y
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42 CHAPTER 3. PRELIMINARIES

If a morphism f is null-homotopic, then the induced morphism in homology
vanishes. The homotopy category HA has the same objects as CA and its
morphisms are the residue classes of morphisms in CAmodulo null-homotopy.
The homotopy category is triangulated. A quasi-isomorphism is a morphism
in CA or in HA which induces an isomorphism in homology. The derived
category DA is obtained from the homotopy category HA by localizing at
the class of all quasi-isomorphisms. The bounded derived category DbA, also
denoted by DfdA, is the full subcategory of DA of objects whose homology is
of �nite total dimension. The perfect derived category perA is the smallest
full triangulated thick (ie. stable under taking direct summands) subcategory
of DA containing A.

The Ginzburg dg algebra

The de�nition of the Ginzburg dg algebra comes from [Gin, section 4.2].
Let (Q,W ) be a �nite quiver with potential (QP for short) (see for instance

[DWZ]). De�ne a new quiver Q̃ as follows:

• The vertices of Q̃ are the vertices of Q.

• Each arrow a of Q yields two arrows of Q̃: An arrow, again denoted by
a, which has same source and same target as the corresponding arrow
of Q, and an arrow a∗, whose source is the target of a and vice versa.

• Each vertex i of Q yields a loop ti at vertex i in Q̃.

If c is a cycle of a path algebra kQ′, the cyclic derivative of c associated
with an arrow a ∈ Q′

1 is

∂ac =
∑
c=vau

uv.

The Ginzburg dg algebra Γ(Q,W ), associated with the quiver with potential

(Q,W ), is the path algebra kQ̃ endowed with:

• The grading obtained by requiring that any arrow a coming from an
arrow in Q is of degree 0, that any arrow of the form a∗ is of degree
−1, and that any loop ti is of degree −2.

• The di�erential de�ned on the generators by da∗ = ∂aW for all a in
Q1, and dti =

∑
t(a)=i aa

∗ −
∑

s(a)=i a
∗a for all i in Q0.

The homology of the Ginzburg dg algebra in degree zero is the Jacobian
algebra associated with (Q,W ):

H0 Γ(Q,W ) = kQ/〈∂aW, a ∈ Q1〉 = J(Q,W ).
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The cluster category associated with a QP

Let (Q,W ) be a quiver with potential, and assume that its Jacobian alge-
bra J(Q,W ) is �nite dimensional over k. Such a quiver with potential is
called Jacobi-�nite, following [Ami]. Denote by Γ the Ginzburg dg algebra
associated with (Q,W ).

Theorem 3.24 (Keller). Let (Q,W ) be a Jacobi-�nite quiver with potential.
Then the bounded derived category DbΓ is included in the perfect derived
category per Γ.

De�nition 3.25 (Amiot). The generalized cluster category C(Q,W ) associated
with a Jacobi-�nite quiver with potential (Q,W ) is the localization of the
perfect derived category per Γ at the subcategory DbΓ.

Denote by T the image of Γ in C(Q,W ).

Theorem 3.26 (Amiot). Let (Q,W ) be a Jacobi-�nite quiver with potential.
Then the triangulated category C(Q,W ) is Hom-�nite, 2-Calabi�Yau and T is
a cluster tilting object in C(Q,W ). Moreover, the endomorphism algebra of T
EndC(Q,W )

(T ) is isomorphic to the Jacobian algebra J(Q,W ).
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Chapter 4

Cluster characters for

2-Calabi�Yau triangulated

categories

The contents of this chapter have been published in [Pal08].

Introduction

Cluster algebras were invented and studied by S. Fomin and A. Zelevinsky in
[FZ02], [FZ03a], [FZ07] and in collaboration with A. Berenstein in [BFZ05].
They are commutative algebras endowed with a distinguished set of genera-
tors called the cluster variables. These generators are gathered into overlap-
ping sets of �xed �nite cardinality, called clusters, which are de�ned recur-
sively from an initial one via an operation called mutation. A cluster algebra
is said to be of �nite type if it only has a �nite number of cluster variables.
The �nite type cluster algebras were classi�ed in [FZ03a].

It was recognized in [MRZ03] that the combinatorics of cluster mutation
are closely related to those of tilting theory in the representation theory
of quivers and �nite dimensional algebras. This discovery was the main
motivation for the invention of cluster categories (in [CCS06] for the An-
case and in [BMR+06] for the general case). These are certain triangulated
categories [Kel05] which, in many cases, allow one to `categorify' cluster
algebras: In the categorical setting, the cluster-tilting objects play the role
of the clusters, and their indecomposable direct summands the one of the
cluster variables.

In [GLS06], [GLS05], [GLS07], the authors study another setting for the
categori�cation of cluster algebras: The module categories of preprojective

45
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algebras of Dynkin type. They succeed in categorifying a di�erent class of
cluster algebras, which also contains many cluster algebras of in�nite type.

Both cluster categories and module categories of preprojective algebras
of Dynkin type are 2-Calabi�Yau categories in the sense that we have bifunc-
torial isomorphisms

Ext1(X, Y ) ' DExt1(Y,X),

which are highly relevant in establishing the link with cluster algebras. This
motivates the study of more general 2-Calabi�Yau categories in [KR07], [KR],
[Tab07], [KZ08], [IR08], [IY08], [BIRS]. In order to show that a given 2-
Calabi�Yau category `categori�es' a given cluster algebra, a crucial point
is

a) to construct an explicit map from the set of indecomposable factors of
cluster-tilting objects to the set of cluster variables, and

b) to show that it is bijective.

Such a map was constructed for module categories of preprojective algebras of
Dynkin type in [GLS06] using Lusztig's work [Lus00]. For cluster categories,
it was de�ned by P. Caldero and F. Chapoton in [CC06]. More generally,
for each object M of the cluster category, they de�ned a fraction XM in
Q(x1, . . . , xn). The bijectivity property of the Caldero�Chapoton map was
proved in [CC06] for �nite type and in [CK06], cf. also [BCK+07], for acyclic
type.

A crucial property of the Caldero�Chapoton map is the following. For
any pair of indecomposable objects L and M of C whose extension space
C(L,ΣM) is one-dimensional, we have

XLXM = XB +XB′ ,

where Σ denotes the suspension in C and where B and B′ are the middle
terms of `the' two non-split triangles with outer terms L and M . We de�ne,
in de�ntion 4.2 a cluster character to be a map satisfying this multiplication
formula.

This property has been proved in [CK08] in the �nite case, in [GLS07] for
the analogue of the Caldero�Chapoton map in the preprojective case, and in
[CK06] in the acyclic case.

The main result of this chapter is a generalisation of this multiplication
formula. Starting from an arbitrary cluster-tilting object T and an arbitrary
2-Calabi�Yau category C over an algebraically closed �eld (as in the setting
of [KR07]), we de�ne, for each object L of C, a fraction XT

L using a formula
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proposed in [CK08, 6.1]. We show that the map L 7→ XT
L is a cluster char-

acter. We deduce that it has the bijectivity property in the �nite and the
acyclic case, which con�rms conjecture 2 of [CK08]. Here, it yields a new
way of expressing cluster variables as Laurent polynomials in the variables of
a �xed cluster. Our theorem also applies to stable categories of preprojective
algebras of Dynkin type and their Calabi�Yau reductions studied in [GLS08]
and [BIRS], and to the generalized cluster categories de�ned in [Ami].

Let k be an algebraically closed �eld, and let C be a 2-Calabi�Yau Hom-
�nite triangulated k-category with a cluster-tilting object T (see section 4.1).

This chapter is organised as follows: In the �rst section, the notations are
given and the main result is stated. In the next two sections, we investigate
the exponents appearing in the de�nition of XT

L . In section 4.2, we de�ne
the index and the coindex of an object of C and show how they are related
to the exponents. Section 4.3 is devoted to the study of the antisymmetric
bilinear form 〈 , 〉a on modEndCT . We show that this form descends to the
Grothendieck group K0(modEndCT ), con�rming conjecture 1 of [CK08, 6.1].
In section 4.4, we prove that the same phenomenon of dichotomy as in [CK06,
section 3] (see also [GLS07]) still holds in our setting. The results of the �rst
sections are used in section 4.5 to prove the multiplication formula. We draw
some consequences in section 4.5.2. Two examples are given in section 4.6.

4.1 Main result

Let k be an algebraically closed �eld, and let C be a k-linear triangulated
category with split idempotents. Denote by Σ its suspension functor. Assume
moreover that the category C

a) is Hom-�nite: For any two objects X and Y in C, the space of mor-
phisms C(X, Y ) is �nite-dimensional,

b) is 2-Calabi�Yau: There exist bifunctorial isomorphisms

C(X,ΣY ) ' DC(Y,ΣX),

where D denotes the duality functor Homk(?, k), and

c) admits a cluster-tilting object T , which means that

i) C(T,ΣT ) = 0 and

ii) for any X in C, if C(X,ΣT ) = 0, then X belongs to the full
subcategory addT formed by the direct summands of sums of
copies of T .
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For two objects X and Y of C, we often write (X, Y ) for the space of
morphisms C(X, Y ) and we denote its dimension by [X, Y ]. Similarly, we
write 1(X, Y ) for C(X,ΣY ) and 1[X, Y ] for its dimension. Let B be the
endomorphism algebra of T in C, and let modB be the category of �nite-
dimensional right B-modules. As shown in [BMR07], cf. also [KR07], the
functor

F : C −→ modB , X 7−→ C(T,X),

induces an equivalence of categories

C/(ΣT )
'−→ modB,

where (ΣT ) denotes the ideal of morphisms of C which factor through a direct
sum of copies of ΣT .

The following useful proposition is proved in [KR07] and [KZ08]:

Proposition 4.1. Let X
f→ Y

g→ Z → ΣX be a triangle in C. Then

. The morphism g induces a monomorphism in modB if and only if
f ∈ (ΣT ).

. The morphism f induces an epimorphism in modB if and only if
g ∈ (ΣT )

Moreover, if X has no direct summands in addΣT , then FX is projective
(resp. injective) if and only if X lies in add (T ) (resp. in add (Σ2T ) ).

De�nition 4.2. A cluster character on C with values in a commutative ring
A is a map

χ : obj(C) −→ A

such that

. for all isomorphic objects L and M , we have χ(L) = χ(M),

. for all objects L and M of C, we have χ(L⊕M) = χ(L)χ(M),

. for all objects L and M of C such that dim Ext1
C(L,M) = 1, we have

χ(L)χ(M) = χ(B) + χ(B′),

where B and B′ are the middle terms of `the' non-split triangles

L→ B →M → ΣL and M → B′ → L→ ΣM

with end terms L and M .
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Let N be a �nite-dimensional B-module and e an element of K0(modB).
We write Gre(N) for the variety of submodules N ′ of N whose class in
K0(modB) is e. It is a closed, hence projective, subvariety of the classical
Grassmannian of subspaces of N . Let χ(GreN) denote its Euler�Poincaré
characteristic with respect to the étale cohomology with proper support.
Let Ksp

0 (modB) denote the `split' Grothendieck group of modB, i.e. the
quotient of the free abelian group on the set of isomorphism classes [N ] of
�nite-dimensional B-modules N , modulo the subgroup generated by all ele-
ments

[N1 ⊕N2]− [N1]− [N2].

We de�ne a bilinear form

〈 , 〉 : Ksp
0 (modB)×Ksp

0 (modB) −→ Z

by setting
〈N,N ′〉 = [N,N ′] − 1[N,N ′]

for all �nite-dimensional B-modules N and N ′. We de�ne an antisymmetric
bilinear form on Ksp

0 (modB) by setting

〈N,N ′〉a = 〈N,N ′〉 − 〈N ′, N〉

for all �nite-dimensional B-modulesN andN ′. Let T1, . . . , Tn be the pairwise
non-isomorphic indecomposable direct summands of T and, for i = 1, . . . , n,
let Si be the top of the projective B-module Pi = FTi. The set of all
Si, i = 1, . . . , n is a set of representatives for the isoclasses of simple B-
modules.

We need a lemma, the proof of which will be given in section 4.3.1.

Lemma 4.3. For any i = 1, . . . , n, the linear form 〈Si, ?〉a on Ksp
0 (modB)

induces a well-de�ned form

〈Si, ?〉a : K0(modB) → Z.

Let ind C be a set of representatives for the isoclasses of indecomposable
objects of C. De�ne, as in [CK08, 6.1], a Caldero�Chapoton map, XT

? :
ind C → Q(x1, . . . , xn) by

XT
M =

{
xi if M ' ΣTi∑

e χ(Gre FM)
∏n

i=1 x
〈Si,e〉a−〈Si,FM〉
i else.

Extend it to a map XT
? : C → Q(x1, . . . , xn) by requiring that

XT
M⊕N = XT

MX
T
N .

When there are no possible confusions, we often denote XT
M by XM . The

main result of this article is the following
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Theorem 4.4. The map XT
? : C → Q(x1, . . . , xn) is a cluster character.

We will prove the theorem in section 4.5.1, illustrate it by examples in
section 4.6 and draw some consequences in section 4.5.2.

4.2 Index, coindex and Euler form

In the next two sections, our aim is to understand the exponents appearing
in the de�nition of XM . More precisely, for two objects L and M of C, we
want to know how the exponents in XB depend on the choice of the middle
term B of a triangle with outer terms L and M .

4.2.1 Index and coindex

Let X be an object of C. De�ne its index indX ∈ K0(projB) as follows.
There exists a triangle (see [KR1])

TX1 → TX0 → X → ΣTX1

with TX0 and TX1 in addT . De�ne indX to be the class [FTX0 ] − [FTX1 ] in
K0(projB). Similarly, de�ne the coindex of X, denoted by coindX, to be
the class [FT 0

X ]− [FT 1
X ] in K0(projB), where

X → Σ2T 0
X → Σ2T 1

X → ΣX

is a triangle in C with T 0
X , T

1
X ∈ addT .

Lemma 4.5. We have the following properties:

1. The index and coindex are well de�ned.

2. indX = − coind ΣX.

3. indTi = [Pi] and ind ΣTi = −[Pi] where Pi = FTi.

4. indX − coindX only depends on FX ∈ modB.

Proof. A right addT -approximation of an object X of C is a morphism

T ′
f→ X with T ′ ∈ addT such that any morphism T ′′ → X with T ′′ ∈ addT

factors through f . It is called minimal if, moreover, any morphism T ′
g−→ T ′

such that fg = f is an isomorphism. A minimal approximation is unique up
to isomorphism. Assertions (2) and (3) are left to the reader.
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(1) In any triangle of the form

TX1 → TX0
f→ X → ΣTX1 ,

the morphism f is a right addT -approximation. Therefore, any such triangle
is obtained from one where f is minimal by adding a trivial triangle

T ′ → T ′ → 0 → ΣT ′

with T ′ ∈ addT . The index is thus well-de�ned. Dually, one can de�ne left
approximations and show that the coindex is well-de�ned.
(4) Let T ′ be an object in addT . Take two triangles

TX1 → TX0 → X → ΣTX1 and

X → Σ2T 0
X → Σ2T 1

X → ΣX

with TX0 , TX1 , T 0
X and T 1

X in addT . Then, we have two triangles

TX1 ⊕ T ′ → TX0 → X ⊕ ΣT ′ → Σ(TX1 ⊕ T ′) and

X ⊕ ΣT ′ → Σ2T 0
X → Σ2(T 1

X ⊕ T ′) → ΣX ⊕ Σ2T ′.

We thus have the equality:

ind(X ⊕ ΣT ′)− coind(X ⊕ ΣT ′) = indX − coindX.

Proposition 4.6. Let X
f→ Z

g→ Y
ε→ ΣX be a triangle in C. Take C ∈ C

(resp. K ∈ C) to be any lift of CokerFg (resp. KerFf). Then

indZ = indX + indY − indC − ind Σ−1C and
coindZ = coindX + coindY − coindK − coind ΣK.

Proof. Let us begin with the equality for the indices. First, consider the case
where FC = 0. This means that the morphism ε belongs to the ideal (ΣT ).
Take two triangles

TX1 −→ TX0 −→ X −→ ΣTX1 and T Y1 −→ T Y0 −→ Y −→ ΣT Y1

in C, where the objects TX0 , TX1 , T Y0 , T Y1 belong to the subcategory addT .
Since the morphism ε belongs to the ideal (ΣT ), the following composition
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T Y0 → Y
ε→ ΣX vanishes. The morphism T Y0 → Y thus factors through g.

This gives a commutative square

TX0 ⊕ T Y0
//

��

T Y0

��
Z // Y.

Fit it into a nine-diagram

TX1
//

��

Z ′ //

��

T Y1
//

��

ΣTX1

TX0
//

��

TX0 ⊕ T Y0
//

��

T Y0
0 //

��

0

$$H
HHHHHHHH

yyr
r

r
r

r
r

ΣTX0

X //

��

Z
g //

��

Y
ε //

��

ΣX

ΣTX1 ΣZ ′ ΣT Y1 ,

whose rows and columns are triangles. Since the morphism T Y1 → ΣTX1
vanishes, the triangle in the �rst row splits, so that we have

Z ′ ' TX1 ⊕ T Y1 and indZ = indX + indY.

Now, let us prove the formula in the general case. Let FY
a−→ M be a

cokernel for Fg. Since the composition FεFg vanishes, the morphism Fε
factors through a:

FY
Fε //

a
""D

DD
DD

DD
D FΣX.

M
b

;;w
w

w
w

w

Let Y
α−→ C ′ be a lift of a in C, and let β be a lift of b. The images

under F of the morphisms ε and β α coincide, therefore the morphism β α−ε
belongs to the ideal (ΣT ). Thus there exist an object T ′ in addT and two
morphisms α′ and β′ such that the following diagram commutes:

Y
ε //

[αα′ ] $$IIIIIIIIII ΣX.

C ′ ⊕ ΣT ′
[β β′]

99rrrrrrrrrr
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Let C be the direct sum C ′ ⊕ ΣT ′.
The octahedral axiom yields a commutative diagram

U

��

U

��
X // Z //

��

Y
ε //

[αα′ ]
��

ΣX

X // V
γ′ //

γ

��

C
[β β′] //

γ′′

��

ΣX

ΣU ΣU,

whose two central rows and columns are triangles. Due to the choice of C,
the morphisms γ′, γ′′, hence γ belong to the ideal (ΣT ). We thus have the
equalities:

indY = indC + indU,

indX = indV + ind Σ−1C,

indZ = indV + indU,

giving the desired formula. Moreover, as seen in lemma 4.5 (4), the sum
indC+ind Σ−1C = indC−coindC does not depend on the particular choice
of C. Apply this formula to the triangle

Σ−1X −→ Σ−1Z −→ Σ−1Y −→ X

and use lemma 4.5(2) to obtain the formula for the coindices. Remark that
the long exact sequence yields the equality of Coker(−FΣ−1g) and KerFf .

4.2.2 Exponents.

We now compute the index and coindex in terms of the Euler form.

Lemma 4.7. Let X ∈ C be indecomposable. Then

indX =


−[Pi] if X ' ΣTi∑n

i=1〈FX, Si〉[Pi] else,

coindX =


−[Pi] if X ' ΣTi∑n

i=1〈Si, FX〉[Pi] else.
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Proof. Let X be an indecomposable object in C, non-isomorphic to any of
the ΣTi's. Take a triangle

TX1
f−→ TX0

g−→ X
ε−→ ΣTX1

with the morphism g being a minimal right addT -approximation, as de�ned
in the proof of lemma 4.5. We thus get a minimal projective presentation

PX
1 −→ PX

0 −→ FX −→ 0

where PX
i = FTXi , i = 0, 1. For any i, the di�erential in the complex

0 −→ (PX
0 , Si) −→ (PX

1 , Si) −→ · · ·

vanishes. Therefore, we have

[FX, Si] = [PX
0 , Si] = [PX

0 : Pi],
1[FX, Si] = [PX

1 , Si] = [PX
1 : Pi],

〈FX, Si〉 = [indX : Pi].

The proof for the coindex is analogous: We use a minimal injective copre-
sentation of FX induced by a triangle

X −→ Σ2T 0
X −→ Σ2T 1

X −→ ΣX.

Let us write xe for
∏n

i=1 x
[e:Pi]
i where e ∈ K0(projB) and [e : Pi] is the

ith coe�cient of e in the basis [P1], . . . , [Pn]. Then, by lemma 4.7, for any
indecomposable object M in C, we have

XM = x− coindM
∑
e

χ(Gre FM)
n∏
i=1

x<Si,e>a

i .

4.3 The antisymmetric bilinear form

In this part, we give a positive answer to the �rst conjecture of [CK08,
6.1] and prove that the exponents in XM are well de�ned. The �rst lemma
is su�cient for this latter purpose, but is not very enlightening, whereas
the second proof of theorem 4.11 gives us a better understanding of the
antisymetric bilinear form. When the category C is algebraic, this form is,
in fact, the usual Euler form on the Grothendieck group of a triangulated
category together with a t-structure whose heart is the abelian category
modB itself.
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4.3.1 The map XT is well de�ned

Let us �rst show that any short exact sequence in modB can be lifted to a
triangle in C.

Lemma 4.8. Let 0 → x→ y → z → 0 be a short exact sequence in modB.
Then there exists a triangle in C

X −→ Y −→ Z −→ ΣX

whose image under F is isomorphic to the given short exact sequence.

Proof. Let

0 −→ x
i−→ y

p−→ z −→ 0

be a short exact sequence in modB. Let X
f−→ Y be a lift of the monomor-

phism x
i−→ y in C. Fix a triangle

TX1 −→ TX0 −→ X −→ ΣTX1

and form a triangle

X −→ Y ⊕ ΣTX1 −→ Z
ε−→ ΣX .

The commutative left square extends to a morphism of triangles

X // Y ⊕ ΣTX1

[0 1]
��

// Z

���
�
�

ε // ΣX

X // ΣTX1
// ΣTX0

// ΣX.

so that the morphism ε lies in the ideal (ΣT ). Therefore, the sequence

0 −→ x
i−→ y −→ FZ −→ 0

is exact, and the modules FZ and z are isomorphic.

Proof of lemma 4.3.
Let X be an object of the category C. Using section 4.2.2 we have

coindX − indX =
n∑
i=1

〈Si, FX〉a [Pi] .

Therefore, it is su�cient to show that the form

K0(modB) −→ Z
[FX] 7−→ coindX − indX
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is well de�ned. We already know that coindX− indX only depends on FX.
Take 0 → x→ y → z → 0 to be a short exact sequence in modB. Lift it, as
in lemma 4.8, to a triangle

X −→ Y −→ Z −→ ΣX in C.

By proposition 4.6, we have

indY − coindY = (indX + indZ)− (coindX + coindZ)

which is the required equality.

Corollary 4.9. The map

XT
? : C −→ Q(x1, . . . , xn)

is well de�ned.

4.3.2 The antisymmetric bilinear form descends to the

Grothendieck group

In this subsection, we prove a stronger result than in the previous one. This
gives a positive answer to the �rst conjecture in [CK08, 6.1].

Lemma 4.10. Let T ′ be any cluster-tilting object in C. We have bifunctorial
isomorphisms

C/(T ′)(Σ
−1X, Y ) ' D(T ′)(Σ−1Y,X).

Proof. Let X and Y be two objects of C, and let T ′1 −→ T ′0 −→ X
η−→ ΣT ′1

be a triangle in C, with T ′0 and T ′1 in addT ′. Consider the morphism

α : (T ′1, Y ) −→ (Σ−1X, Y )

f 7−→ f ◦ Σ−1η.

We have
D(T ′)(Σ−1X, Y ) ' D Imα ' ImDα.

Since the category C is 2-Calabi�Yau, the dual of α, Dα, is isomorphic to

α′ : (Σ−1Y,X) −→ (Σ−1Y,ΣT ′1)

g 7−→ η ◦ g.

We thus have isomorphisms

D(T ′)(Σ−1X, Y ) ' Imα′

' (Σ−1Y,X)/Kerα′

' C/(T ′)(Σ
−1Y,X).
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Theorem 4.11. The antisymmetric bilinear form 〈 , 〉a descends to the
Grothendieck group K0(modB).

Proof. Let X and Y be two objects in the category C. In order to compute
〈FX,FY 〉 = [FX,FY ]− 1[FX,FY ], let us construct a projective presenta-
tion in the following way. Let

Σ−1X
g−→ TX1

f−→ TX0 −→ X

be a triangle in C with TX0 and TX1 being two objects in the subcategory
addT . This triangle induces an exact sequence in modB

FΣ−1X
Fg−→ FTX1

Ff−→ FTX0 −→ FX −→ 0,

where FTX0 and FTX1 are �nite-dimensional projective B-modules. Form the
complex (∗)

0 −→ HomB(FTX0 , FY ) −→ HomB(FTX1 , FY ) −→ HomB(FΣ−1X,FY ).

Since the object T is cluster-tilting in C, there are no morphisms from any
object in addT to any object in addΣT . The complex (∗) is thus isomorphic
to the following one :

0 −→ C(TX0 , Y )
f∗−→ C(TX1 , Y )

g∗−→ C/(ΣT )(Σ
−1X, Y ),

where f ∗ (resp. g∗) denotes the composition by f (resp. g). Therefore, we
have

HomB(FX,FY ) ' Ker f ∗

Ext1
B(FX,FY ) ' Ker g∗/ Im f ∗.

We can now express the bilinear form as

〈FX,FY 〉 = dim Ker f ∗ − dim Ker g∗ + rk f ∗

= [TX0 , Y ]− [TX1 , Y ] + rk g∗,

with the image of the morphism g∗ being the quotient by the ideal (ΣT ) of
the space of morphisms from Σ−1X to Y , in C, which belong to the ideal
(T ):

Im g∗ = (T )/(ΣT )(Σ
−1X, Y ).

Similarily, using an injective copresentation given by a triangle of the form

X −→ Σ2T 0
X −→ Σ2T 1

X

β−→ ΣX,
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we obtain

〈FY, FX〉 = [Y,Σ2T 0
X ]− [Y,Σ2T 1

X ] + rk β∗,

and Im β∗ = (Σ2T )/(ΣT )(Y,ΣX). By lemma 4.10, we have bifunctorial iso-
morphisms

(T )/(ΣT )(Σ
−1X, Y ) ' D(ΣT )/(T )(Σ

−1Y,X) ' D(Σ2T )/(ΣT )(Y,ΣX).

Therefore, we have the equality

〈FX,FY 〉a = [TX0 , Y ]− [TX1 , Y ]− [Y,Σ2T 0
X ] + [Y,Σ2T 1

X ]

= [FTX0 , FY ]− [FTX1 , FY ]− [FY, FΣ2T 0
X ] + [FY, FΣ2T 1

X ].

Since FT is projective and FΣ2T in injective, this formula shows that 〈 , 〉a
descends to a bilinear form on the Grothendieck group K0(modB).

4.3.3 The antisymmetric bilinear form and the Euler

form.

In this subsection, assume moreover that the category C is algebraic, as
in [KR07, section 4]: There exists a k-linear Frobenius category with split
idempotents E whose stable category is C. Denote byM the preimage, in E ,
of addT via the canonical projection functor. The categoryM thus contains
the full subcategory P of E whose objects are the projective objects in E ,
and we haveM = addT . Let ModM be the category ofM-modules, i.e. of
k-linear contravariant functors from M to the category of k-vector spaces.
The category modM of �nitely presented M-modules is identi�ed with the
full subcategory of ModM of �nitely presented M-modules vanishing on
P . This last category is equivalent to the abelian category modB of �nitely
generated B-modules. Recall that the perfect derived category perM is the
full triangulated subcategory of the derived category of DModM generated
by the �nitely generated projective M-modules. De�ne perMM to be the
full subcategory of perM whose objects X satisfy the following conditions:

. for each integer n, the �nitely presented M-module HnX belongs to
modM,

. the module HnX vanishes for all but �nitely many n ∈ Z.

It can easily be shown that perMM is a triangulated subcategory of perM.
Moreover, as shown in [Tab07], the canonical t-structure on DModM in-
duces a t-structure on perMM, whose heart is the abelian category modM.
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The following lemma shows that the Euler form

K0

(
perMM

)
× K0

(
perMM

)
−→ Z

([X], [Y ]) 7−→ 〈[X], [Y ]〉 =
∑
i∈Z

(−1)i dim perMM
(
X,ΣiY

)
is well de�ned.

Lemma 4.12. Let X and Y belong to perMM. Then the vector spaces
perMM (X,ΣiY ) are �nite dimensional and only �nitely many of them are
non-zero.

Proof. Since X belongs to perM, we may assume that it is representable:
There existsM inM such thatX = M .̂ Moreover, the module HnY vanishes
for all but �nitely many n ∈ Z. We thus may assume Y to be concentrated
in degree 0. Therefore, the space perMM (X,ΣiY ) = perMM(M ,̂ΣiH0Y )
vanishes for all non-zero i. For i = 0, it equals

HomM
(
M ,̂H0Y

)
= H0Y (M)

= HomM
(
M(?,M),H0Y

)
.

this last space being �nite dimensional.

This enables us to give another proof of theorem 4.11. This proof is less
general than the previous one, but is nevertheless much more enlightening.
Proof of theorem 4.11. Let X and Y be two �nitely presented M-modules,
lying in the heart of the t-structure on perMM. We have:

〈[X], [Y ]〉 =
∑
i∈Z

(−1)i dim perMM
(
X,ΣiY

)
=

3∑
i=0

(−1)i dim perMM
(
X,ΣiY

)
(4.1)

= dim perMM(X, Y )− dim perMM(X,ΣY )

+ dim perMM(X,Σ2Y )− dim perMM(X,Σ3Y )

= dim perMM(X, Y )− dim perMM(X,ΣY ) (4.2)

+ dim perMM(Y,X)− dim perMM(Y,ΣX)

= dim HomM(X, Y )− dim Ext1
M(X, Y )

+ dim HomM(Y,X)− dim Ext1
M(Y,X)

= 〈[X], [Y ]〉a
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where the classes are now taken in K0(modB). Equalities (3.1) and (3.2)
are consequences of the 3-Calabi�Yau property of the category perMM,
cf. [KR07].

4.4 Dichotomy

Our aim in this part is to study the coe�cients appearing in the de�nition of
XM . In particular, we will prove that the phenomenon of dichotomy proved
in [CK06] (see also [GLS07]) remains true in this more general setting.

Recall that we write xe for
∏n

i=1 x
[e:Pi]
i where e ∈ K0(projB) and [e : Pi]

is the ith coe�cient of e in the basis [P1], . . . , [Pn].

Lemma 4.13. For any M ∈ C, we have

XM = x− coindM
∑
e

χ(Gre FM)
n∏
i=1

x
〈Si,e〉a
i .

Proof. We already know that this formula holds for indecomposable objects
of C, cf. section 4.2.2. Let us prove that it still holds for decomposable
objects, by recursion on the number of indecomposable direct summands.

Let M and N be two objects in C. As shown in [CC06], we have

χ (Grg F (M ⊕N)) =
∑
e+f=g

χ (Gre FM)χ (Grf FN) .

Therefore, we have XM⊕N = XMXN =(
x− coindM

∑
e

χ(Gre FM)
n∏
i=1

x<Si,e>a

i

)(
x− coindN

∑
f

χ(Gre FN)
n∏
i=1

x<Si,f>a

i

)

= x−(coindM+coindN)
∑
g

∑
e+f=g

χ (Gre FM)χ (Grf FN)
n∏
i=1

x<Si,e+f>a

i

= x− coind(M⊕N)
∑
g

χ (Grg F (M ⊕N))
n∏
i=1

x<Si,g>a

i

Lemma 4.14. Let M
i−→ B

p−→ L
ε−→ ΣM be a triangle in C, and

let U
iU−→ M and V

iV−→ L be two morphisms whose images under F are
monomorphisms. Then the following conditions are equivalent:
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i) There exists a submodule E ⊂ FB such that
FV = (Fp)E and FU = (Fi)−1E,

ii) There exist two morphisms e : Σ−1V −→ U and f : Σ−1L −→ U such
that

a) (Σ−1ε)(Σ−1iV ) = iUe

b) e ∈ (T )

c) iUf − Σ−1ε ∈ (ΣT ).

iii) Condition ii) where, moreover, e = fΣ−1iV .

The following diagrams will help the reader parse the conditions:

FΣ−1L
FΣ−1ε // FM

Fi // FB
Fp // FL

FU
?�

OO

// E
?�

OO

// FV
?�

OO

// 0,

Σ−1L
Σ−1ε //

f

##F
FF

FF
FF

FF
M

Σ−1V

Σ−1iV

OO

e
// U.

iU

OO

Proof. Assume condition ii) holds. Then, by a), there exists a morphism of
triangles

Σ−1L
Σ−1ε //M

i // B
p // L

Σ−1V

Σ−1iV

OO

e // U

iU

OO

//___ W //___

j

OO�
�
�

V

iV

OO

Take E to be the image of the morphism Fj. The morphism e factors through
addT , so that we have FΣe = 0 and the functor F induces a commutative
diagram

FΣ−1L
FΣ−1ε //

Ff

��8
88

88
88

88
88

88
88

8 FM
Fi // FB

Fp // FL
Fε // FΣM

E
?�

OO

## ##G
G

G
G

G

FU
?�

FiU

OO

//

;;wwwwwwwww
FW //

OOOO

FV
?�

FiV

OO

// 0

whose rows are exact sequences. It remains to show that FU = (Fi)−1E.
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We have FU ⊂ (Fi)−1E since (Fi)(FiU) factors through the monomor-
phism E → FB. The existence of the morphism Ff shows, via diagram
chasing, the converse inclusion.

Conversely, let E ⊂ FB be such that FV = (Fp)E and FU = (Fi)−1E.
In particular, FU contains KerFi = ImFΣ−1ε so that the morphism FΣ−1ε
factors through FiU . This gives us the morphism f , satisfying condition c).
De�ne the morphism e as follows. There exists a triangle

T1 −→ T0 −→ V −→ ΣT1,

where T1, T0 belong to addT . Applying the functor F to this triangle, we get
an epimorphism FT0 → FV with FT0 projective. This epimorphism thus
factors through the surjection E → FV , and composing it with E → FB
gives a commutative square

FT0
//

��

FV

��
FB // FL.

Since C(T,ΣT ) = 0, this commutative square lifts to a morphism of triangles

Σ−1V

��

// T1

��

// T0

��

// V

��
Σ−1L //M // B // L.

The morphism T1 →M thus induced, factors through the morphism U →M .
Indeed, we have FU = (Fi)−1E and the following diagram commutes :

FM // FB

FT1

;;wwwwwwww
// FT0

<<xxxxxxxx

""F
FFFFFFF

FU //?�

OO

E.
?�

OO

The morphism e is then given by the composition Σ−1V −→ T1 −→ U .
Let us show that condition ii) implies condition iii). By hypothesis, we have

iUe = (Σ−1ε)(Σ−1iV )

and
iUfΣ−1iV ≡ (Σ−1ε)(Σ−1iV ) mod (ΣT ).
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Therefore, the morphism iU (fΣ−1iV − e) belongs to the ideal (ΣT ). The
morphism FiU is a monomorphism, so that the morphism h := fΣ−1iV − e

lies in (ΣT ). There exists a morphism Σ−1L
l−→ U such that h = lΣ−1iV :

Σ−1C
∈(T ) //

0
%%JJJJJJJJJJ Σ−1V

Σ−1iV //

h ∈(ΣT )

��

Σ−1L
c //

l
zzt

t
t

t
t

C

U .

Since the morphism Σ−1C → Σ−1V lies in the ideal (T ), there exists a
morphism of triangles

Σ−1C //

��

Σ−1V // Σ−1L
c //

v
��

C

��
T 1
V

u // Σ−1V // ΣT 0
V

// ΣT 1
V .

The composition lΣ−1iV belongs to the ideal (ΣT ), so that the composition
l(Σ−1iV )u vanishes. We thus have a morphism of triangles

T 1
V

u //

��

Σ−1V //

Σ−1iV
��

ΣT 0
V

//

w

��

ΣT 1
V

��
Σ−1C ′ // Σ−1L

l // U // C ′.

Therefore, we have (Σ−1iV )(l−wv) = 0, and there exists a morphism C
l′→ U

such that l − wv = l′c. The morphism l0 = l − l′c thus factors through ΣT1.
Put f0 = f − l0. We have

f0Σ
−1iV = fΣ−1iV − lΣ−1iV + l′cΣ−1iV = e

and

iUf0 = iUf − iU l0

≡ iUf mod (ΣT )

≡ Σ−1ε mod (ΣT ).

Proposition 4.15. Let L,M ∈ C be such that dim C(L,ΣM) = 1. Let

∆ : M
i−→ B

p−→ L
ε−→ ΣM

and ∆′ : L
i′−→ B′ p′−→M

ε′−→ ΣL

be non-split triangles. Then conditions i) to iii) hold for the triangle ∆ if
and only if they do not for the triangle ∆′.
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Proof. De�ne linear maps α from the space C(Σ−1L,U) ⊕ C(Σ−1L,M) to
C/(T ) (Σ−1V, U)⊕ C(Σ−1V,M)⊕ C/(ΣT ) (Σ−1L,M) and α′ from the space
(T )(Σ−1U, V )⊕ C(Σ−1M,V )⊕ (ΣT )(Σ−1M,L) to C(Σ−1U,L)⊕C(Σ−1M,L)
by

α(f, η) = (fΣ−1iV , iUfΣ−1iV − ηΣ−1iV , iUf − η)

and
α′(e′, f ′, g′) = (iV e

′ + g′Σ−1iU + iV f
′Σ−1iU ,−g′ − iV f

′).

Since the morphism space C(L,ΣM) is one-dimensional, the morphism ε
satis�es condition iii) if and only if the composition

β : Kerα � � // (Σ−1L,U)⊕ (Σ−1L,M) // // (Σ−1L,M)

does not vanish. Assume condition iii) to be false for the triangle ∆. This
happens if and only if the morphism β vanishes, if and only if its dual Dβ
vanishes. Since the category C is 2-Calabi�Yau, lemma 4.10 implies that the
morphism Dβ is isomorphic to the morphism:

β′ : (Σ−1M,L) � � // (Σ−1U,L)⊕ (Σ−1M,L) // // Cokerα′.

Therefore, β′(Σ−1ε) = 0 is equivalent to Σ−1ε being in Imα′, which is equiv-
alent to the existence of three mophisms e′, f ′, g′ as in the diagram

Σ−1M
g′ //

f ′

##F
FF

FF
FF

FF
L

Σ−1U

Σ−1iU

OO

e′
// V

iV

OO

such that 
e′ ∈ (T )
g′ ∈ (ΣT )
Σ−1ε′ = iV f

′ + g′

iV e
′ = (Σ−1ε′)(Σ−1iU).

We have thus shown that condition iii) does not hold for the triangle ∆ if
and only if condition ii) holds for the triangle ∆′.

4.5 The multiplication formula

We use sections 4.2 and 4.4 to prove the multiplication formula, and apply
it to prove conjecture 2 in [CK08].
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4.5.1 Proof of theorem 4.4

We use the same notations as in the statement of theorem 4.4.
De�ne, for any classes e, f, g in the Grothendieck group K0(modB), the
following varieties

Xe,f = {E ⊂ FB s.t. [(Fi)−1E] = e and [(Fp)E] = f}
Ye,f = {E ⊂ FB′ s.t. [(Fi′)−1E] = f and [(Fp′)E] = e}
Xg
e,f = Xe,f ∩Grg(FB)

Y g
e,f = Ye,f ∩Grg(FB

′).

We thus have

Grg(FB) =
∐
e,f

Xg
e,f and Grg(FB

′) =
∐
e,f

Y g
e,f .

Moreover, we have

χ (Gre(FM)×Grf (FL)) = χ (Xe,f t Ye,f )
= χ (Xe,f ) + χ (Ye,f )

=
∑
g

(
χ
(
Xg
e,f

)
+ χ

(
Y g
e,f

))
.

where the �rst equality is a consequence of the dichotomy phenomenon as
follows: Consider the map

Xe,f t Ye,f −→ Gre(FM)×Grf (FL)

which sends a submodule E of FB to the pair ((Fi)−1E, (Fp)E). By propo-
sition 4.15, it is surjective, and, as shown in [CC06], its �bers are a�ne
spaces.

Lemma 4.16. Let e, f and g be classes in K0(mod EndC(T )). Assume that
Xg
e,f is non-empty. Then, we have∑

〈Si, g〉a[Pi]− coindB =
∑

〈Si, e+ f〉a[Pi]− coindM − coindL.

Proof. Let E be a submodule of FB in Xg
e,f . Let U

iU−→M and V
iV−→ L be

two morphisms in the category C such that FU ' (Fi)−1E, FV ' (Fp)E
and the images of iU and iV in modB are isomorphic to the inclusions of FU
in FM and FV in FL respectively. Let K ∈ C be a lift of the kernel of Fi.
By proposition 4.6, the following equality holds:

(1) coindB = coindM + coindL− coindK − coind(ΣK).
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By diagram chasing, the kernel of Fi is also a kernel of the induced morphism
from FU to E. Therefore, in K0(modB), we have

(2) g = e+ f − [FK].

We have the following equalities:∑
〈Si, FK〉a[Pi] = coindK − indK (by lemma 4.7)

= coindK + coind(ΣK) (by lemma 4.5).

Equality (2) thus yields

(3)
∑

〈Si, g〉a[Pi] =
∑

〈Si, e+ f〉a[Pi]− coindK − coind(ΣK).

It only remains to sum equalities (1) and (3) to �nish the proof.

Proof of theorem 4.4.
Using lemma 4.13, we have

XMXL = x− coindM−coindL
∑
e,f

χ(Gre FM)χ(Grf FL)
n∏
i=1

x
〈Si,e+f〉a
i ,

XB = x− coindB
∑
g

χ(Grg FB)
n∏
i=1

x
〈Si,g〉a
i and

XB′ = x− coindB′
∑
g

χ(Grg FB
′)

n∏
i=1

x
〈Si,g〉a
i .

Therefore

XMXL = x− coindM−coindL
∑
e,f

χ (Gre(FM))χ (Grf (FL))
∏

x
〈Si,e+f〉a
i

= x− coindM−coindL
∑
e,f,g

(
χ
(
Xg
e,f

)
+ χ

(
Y g
e,f

))∏
x
〈Si,e+f〉a
i

= x− coindB
∑
e,f,g

χ
(
Xg
e,f

)∏
x
〈Si,g〉a
i

+x− coindB′
∑
e,f,g

χ
(
Y g
e,f

)∏
x
〈Si,g〉a
i

= x− coindB
∑
g

χ (Grg(FB))
∏

x
〈Si,g〉a
i

+x− coindB′
∑
g

χ (Grg(FB
′))
∏

x
〈Si,g〉a
i

= XB +XB′ .



4.5. THE MULTIPLICATION FORMULA 67

4.5.2 Consequences

Let Q be a �nite acyclic connected quiver, and let C be the cluster category
associated to Q.

An object of C without self-extensions is called rigid. An object of C
is called basic if its indecomposable direct summands are pairwise non-
isomorphic. For a basic cluster-tilting object T of C, let QT denote the
quiver of End (T ), and AQT

the associated cluster algebra.

Proposition 4.17. A cluster character χ on C with values in Q(x1, . . . , xn)
which sends a basic cluster-tilting object T of C to a cluster of AQT

sends any
cluster-tilting object T ′ of C to a cluster of AQT

, and any rigid indecomposable
object to a cluster variable.

Proof. Since the tilting graph of C is connected, cf. [BMR+06, proposition
3.5], we can prove the �rst part of the proposition by recursion on the mini-
mal number of mutations linking T ′ to T . Let T ′′ = T ′′1 ⊕ · · · ⊕T ′′n be a basic
cluster-tilting object, whose image under χ is a cluster of AQT

. Assume that
T ′ = T ′1⊕T ′′2 ⊕· · ·⊕T ′′n is the mutation in direction 1 of T ′′. Since χ is a cluster
character, it satis�es the multiplication formula, and theorem 6.1 of [BMR08]
shows that the mutation, in direction 1, of the cluster (χ(T ′′1 ), . . . , χ(T ′′n )) is
the cluster (χ(T ′1), χ(T ′′2 ), . . . , χ(T ′′n )). We have thus proved that the image
under χ of any cluster-tilting object is a cluster. It is proved in [BMR+06,
proposition 3.2] that any rigid indecomposable object of C is a direct sum-
mand of a basic cluster-tilting object. Therefore, the image under χ of any
rigid indecomposable object is a cluster variable of AQT

.

Remark: As a corollary of the proof of proposition 4.17, a cluster character is
characterised, on a set of representatives for the isoclasses of indecomposable
rigid objects of C by the image of each direct summand of any given cluster-
tilting object. In fact, using [BIRS, 1.10], this remains true in the more
general context of [BIRS]: Let C be a Hom-�nite triangulated 2-Calabi�Yau
category having maximal rigid objects without loops nor strong 2-cycles.
Denote by n the number of non-isomorphic indecomposable direct summands
of any maximal rigid object.

Lemma 4.18. Let χ1 and χ2 be two cluster characters on C with values in
Q(x1, . . . , xn). Assume that χ1 and χ2 coincide on all indecomposable direct
summands of a cluster-tilting object T in C. Then χ1 and χ2 coincide on all
direct summands of the cluster-tilting objects in C which are obtained from T
by a �nite sequence of mutations.

The following corollary was conjectured for the �nite case in [CK08]: Let
C be the cluster category of the �nite acyclic quiver Q.
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Corollary 4.19. Let T be any basic cluster-tilting object in C, and let QT

denote the quiver of End (T ). Denote by T a set of representatives for the
isoclasses of indecomposable rigid objects of C. Then XT induces a bijection
from the set T to the set of cluster variables of the associated cluster algebra
AQT

, sending basic cluster-tilting objects to clusters.

Proof. In view of theorem 4.4, proposition 4.17 shows that the map XT sends
rigid indecomposable objects to cluster variables and cluster-tilting objects
to clusters. It remains to show that it induces a bijection. This follows
from [CK06, theorem 4], where it is proved for the Caldero-Chapoton map
XkQ.

As in the proof of proposition 4.17, we proceed by induction on the min-
imal number of mutations linking T to kQ.

Let T ′ be a basic cluster-tilting object such that the map XT ′ induces a
bijection from the set T to the set of cluster variables. Assume that T is
the mutation in direction 1 of T ′. Denote by f the canonical isomorphism
from AQT ′

to AQT
. Theorem 6.1 of [BMR08] shows that the two cluster

characters XT and f ◦XT ′ coincide on the indecomposable direct summands
of ΣT . Therefore, they coincide on all rigid objects and the map XT also
induces a bijection.

Remark: We have shown that, for any basic cluster-tilting object T , we have
a commutative diagram

T

~~}}
}}

}}
}} XT

!!C
CC

CC
CC

C

AQ AQT

'oo

where the arrow on the left side is the Caldero�Chapoton map.

4.6 Examples

4.6.1 The cluster category CA4

The Auslander�Reiten quiver of CA4 is

ΣT4

##F
FFF

?>=<89:;T4

""E
EE

EE
EE ΣT1

##HH
HHH

""E
EE

EE
EE

<<yyyyyy MC

!!C
CC

CC
C

=={{{{{

##H
HHHHHHH

;;wwwwwww ΣT2

��?
??

??

ΣT2

""E
EE

EE

<<yyyyyy ?>=<89:;T2

##F
FFFFFF

;;xxxxx

""E
EE

EE
E

<<yyyyyyyy

##H
HHHHHH

;;wwwwwww

��?
??

??

ΣT1

;;wwwww ?>=<89:;T1

<<yyyyyy

=={{{{{{{ ΣT3

;;wwwwwww ?>=<89:;T3

??������
ΣT4
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The object T := T1 ⊕ T2 ⊕ T3 ⊕ T4 is cluster-tilting. Indeed, it is obtained
from the image of the kQ-projective module kQ in CA4 by the mutation of
the third vertex.

The quiver of B =EndCA4
(T ) is

1 2oo

α

��

4
γoo

3
β

@@�������
.

with relations βα = γβ = αγ = 0. For i = 1, . . . , n, let Pi be the image of Ti
in modB, let Ii be the image of Σ2Ti and let Si be the simple top of Pi. Let
M be the �nite-dimensional B-module given by:

M = k koo

��

0oo

0

@@��������
.

The shape and the relations of the AR�quiver of B are obtained from the
ones of CA4 by deleting the vertices corresponding to the objects ΣTi and all
arrows ending to or starting from these vertices.

S3

��

P3 = I4oo

S1 = P1
// P2

��

//M

��

// P4 = I1

��
I3 // S2

// I2

��
S4

II

Let MC be an indecomposable lift of M in CA4 . The triangles

T3 −→ T2 −→MC −→ ΣT3 and T1 −→ T4 −→ Σ−1MC −→ ΣT1

allows us to compute the index and coindex of MC:

indMC = [P2]− [P3]

coindMC = [P1]− [P4].

Up to isomorphism, the submodules of M are 0, the simple S1, and M itself.
We thus have

XMC =
x4x2 + x4 + x3x1

x1x2

.
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4.6.2 The cluster category CD4

The Auslander�Reiten quiver of CD4 is

?>=<89:;T1

��?
??

??
??

��;
;;

;;
;;

��?
??

??
?? ΣT1

��?
??

??
?

?>=<89:;T1

//

??�������

��?
??

??
?? ΣT0

// //

��;
;;

;;
;;

AA������� ?>=<89:;T0
// //

��?
??

??
??

??�������
ΣT3

// //

��?
??

??
?

??������ ?>=<89:;T3
// //

��?
??

??
??

??�������
ΣT0

?>=<89:;T2

??�������

AA�������

??�������
ΣT2

??������ ?>=<89:;T2

The object T := T1 ⊕ T2 ⊕ T3 ⊕ T4 is cluster-tilting.
The quiver of B =EndCD4

(T ) is

1

��=
==

==
=

0

@@������

��=
==

==
= 3oo

2

@@������

with the following relations: Any composition with the middle arrow van-
ishes, and the square is commutative.

For i = 1, . . . , n, let Pi be the image of Ti in modB, let Ii be the image
of Σ2Ti and let Si be the simple top of Pi. Let M and N be the �nite-
dimensional B-modules given by:

k

��=
==

==
= k

��=
==

==
=

M : k

��=
==

==
=

@@������
0oo N : 0

@@������

��=
==

==
= koo

k

@@������
k

@@������

As in the previous example, one can easily compute the AR-quiver of B.

P3 = I0

		

P1

  @
@@

@@
@@

@ S2

##H
HH

HH
HH

HH
H I1

��@
@@

@@
@@

S3

  A
AA

AA
AA

>>}}}}}}}
N //

##G
GG

GG
GG

GG
G

;;wwwwwwwwww
P0 = I3 //M

  @
@@

@@
@@

@

??~~~~~~~~
S0

pp

P2

>>~~~~~~~~
S1

;;vvvvvvvvvv
I2

??~~~~~~~
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The submodules of M are, up to isomorphism, 0, S1, S2, S1 ⊕ S2 and M .
Let MC be an indecomposable lift of M in CD4 . Either by using addT -
approximations and addΣT -approximations or by [KN02, section 5.2], one
can compute the triangles

T3 −→ T0 −→MC −→ ΣT3 and T1⊕T2 −→ T0 −→ Σ−1M −→ ΣT1⊕ΣT2.

We thus have

indMC = [P0]− [P3], coindMC = [P1] + [P2]− [P0]

and

XMC =
(x0 + x3)

2 + x1x2x3

x0x1x2

.
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Chapter 5

Cluster characters II: A

multiplication formula

Introduction

In recent years, the link between Fomin�Zelevinsky's cluster algebras [FZ02]
and the representation theory of quivers and �nite-dimensional algebras has
been investigated intensely, cf. for example the surveys [BM06], [GLSb],
[Kela]. In its most tangible form, this link is given by a map taking ob-
jects of cluster categories to elements of cluster algebras. Such a map was
�rst constructed by P. Caldero and F. Chapoton [CC06] for cluster cate-
gories and cluster algebras associated with Dynkin quivers. The results of
P. Caldero and B. Keller [CK08] yield two multiplication formulae for the
Caldero�Chapoton map of cluster categories associated with Dynkin quiv-
ers. The �rst one categori�es the exchange relations of cluster variables and
only applies to objects L andM such that Ext1(L,M) is of dimension 1. The
second one generalizes it to arbitrary dimensions, and yields some new rela-
tions in the associated cluster algebras. These relations very much resemble
relations in dual Ringel�Hall algebras [Sch, section 5.5]. Motivated by these
results, C. Geiss, B. Leclerc and J. Schröer [GLS07] proved two analogous
formulae for module categories over preprojective algebras. In this latter
situation, the number of isomorphism classes of indecomposable objects is
usually in�nite. Generalizations of the �rst formula were proved in [CK06]
for cluster categories associated with any acyclic quiver, and later in [Pal08]
for 2-Calabi�Yau triangulated categories. The �rst generalization of the sec-
ond multiplication formula, by A. Hubery (see [Huba]), was based on the
existence of Hall polynomials which he proved in the a�ne case [Hubc], gen-
eralizing Ringel's result [Rin90] for Dynkin quivers. Staying close to this
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point of view, J. Xiao and F. Xu proved in [XX] a projective version of
Green's formula [Rin96] and applied it to generalize the multiplication for-
mula for acyclic cluster algebras. Another proof of this formula was found
by F. Xu in [Xu], who used the 2-Calabi�Yau property instead of Green's
formula. Our aim in this chapter is to generalize the second multiplication
formula to more general 2-Calabi�Yau categories for the cluster character
associated with an arbitrary cluster tilting object. This in particular applies
to the generalized cluster categories introduced by C. Amiot [Ami] and to
stable categories of modules over a preprojective algebra.

The chapter is organized as follows: In the �rst section, we �x some
notations and state our main result: A multiplication formula for the cluster
character associated with any cluster tilting object. In section 5.2, we recall
some de�nitions and prove the `constructibility of kernels and cokernels' in
modules categories. We apply these facts to prove that:

• If the triangulated category has constructible cones (see section 5.1.4),
the sets under consideration in the multiplication formula, and in its
proof, are constructible.

• Stable categories of Hom-�nite Frobenius categories have constructible
cones.

• Generalized cluster categories de�ned in [Ami] have constructible cones.

Thus, all of the 2-Calabi�Yau triangulated categories related to cluster al-
gebras which have been introduced so far have constructible cones. Notably
this holds for cluster categories associated with acyclic quivers, and for the
stable categories associated with the exact subcategories of module categories
over preprojective algebras constructed in [GLS08] and [BIRS]. In the last
section, we prove the main theorem.

5.1 Notations and main result

Let k be the �eld of complex numbers. The only place where we will need
more than the fact that k is an algebraically closed �eld is proposition 5.2
in section 5.2.1. Let C be a Hom-�nite, 2-Calabi�Yau, Krull�Schmidt k-
category which admits a cluster tilting object T . In order to prove the main
theorem, a constructibility hypothesis, will be needed. This hypothesis is
precisely stated in section 5.1.3 and it will always be explicitly stated when
it is assumed. Stable categories of Hom-�nite Frobenius categories satisfy this
constructibility hypothesis, cf. section 5.2.4, so that the main theorem applies
to cluster categories (thanks to the result of [GLSa] stated in the preliminary
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section), to stable module categories over preprojective algebras... Moreover,
the main theorem applies to the generalized cluster categories of [Ami], cf.
section 5.2.5.

We let B denote the endomorphism algebra of T in C, and we let F
denote the covariant functor from C to modB co-represented by T . We
denote the image in Q(x1, . . . , xn) of an object M in C under the cluster
character associated with T (see chapter 4) by XT

M . Recall that it is given
by the following formula: Let QT be the Gabriel quiver of B, and denote
by 1, . . . , n its vertices. For each vertex i, denote the corresponding simple
(resp. projective) module by Si (resp. Pi). Then we have

XT
M = x− coindM

∑
e

χ(Gre FM)
n∏
i=1

x
〈Si,e〉a
i ,

where coindM denotes the coindex ofM and 〈 , 〉a the antisymmetric bilinear
form on K0(modB) (for more complete de�nitions, see chapter 4). For any
two objects L and M in C, and any morphism ε in C(L,ΣM), we denote any
object Y appearing in a triangle of the form

M −→ Y −→ L
ε−→ ΣM

by mt(ε) (the middle term of ε).

5.1.1 XT -strati�cation

Let L and M be objects in C. If an object Y of C occurs as mt(ε) for some
morphism ε in C(L,ΣM), we let 〈Y 〉 denote the set of all isomorphism classes
of objects Y ′ ∈ C such that:

• Y ′ is the middle term of some morphism in C(L,ΣM),

• coindY ′ = coindY and

• for all e in K0(modB), we have χ
(
Gre(FY

′)
)

= χ
(
Gre(FY )

)
.

The equality of classes 〈Y 〉 = 〈Y ′〉 yields an equivalence relation on the `set'
of middle terms of morphisms in C(L,ΣM). Fix a set Y of representatives
for this relation. Further, we denote the set of all ε with mt(ε) ∈ 〈Y 〉 by
C(L,ΣM)〈Y 〉, and the set of ε′ ∈ C(L,ΣM) such that XT

mt(ε′) = XT
mt(ε) by

〈ε〉. It will be proven in section 5.2.3 that if the cylinders of the morphisms
L → ΣM are constructible with respect to T in the sense of section 5.1.3
below, then the sets C(L,ΣM)〈Y 〉 are constructible, and the set Y is �nite.



76 CHAPTER 5. A MULTIPLICATION FORMULA

Remark that if Y ′ belongs to 〈Y 〉, then XT
Y ′ = XT

Y . Hence the �bers of
the map sending ε to XT

mt(ε) are �nite unions of sets C(L,ΣM)〈Y 〉. Therefore,

the sets 〈ε〉 are constructible, we have

C(L,ΣM) =
∐
ε∈R

〈ε〉

for some �nite set R ⊂ C(L,ΣM), and

C(L,ΣM) =
∐
Y ∈Y

C(L,ΣM)〈Y 〉

is a re�nement of the previous decomposition.

5.1.2 The variety repdBQ

Let V be a �nite dimensional k-vector space. We denote by rep′B(V ) the
set of morphisms of k-algebras from Bop to Endk(V ). Since B is �nitely
generated, the set rep′B(V ) is a closed subvariety of some �nite product of
copies of Endk(V ).

Let Q be a �nite quiver, and let d = (di)i∈Q0 be a tuple of non-negative
integers. A d-dimensional matrix representation of Q in modB is given by

• a right B-module structure on kdi for each vertex i of Q and

• a B-linear map kdi → kdj for each arrow α : i→ j of Q.

Clearly, for �xed d, the d-dimensional matrix representations of Q in modB
form an a�ne variety repdBQ on which the group GL(d) =

∏
i∈Q0

GLdi
(k)

acts by changing the bases in the spaces kdi . We write repdBQ/GL(d) for
the set of orbits.

5.1.3 Constructible cones

Let
−→
A4 be the quiver: 1 → 2 → 3 → 4. Let T , L and M be objects of C. Let

dmax be the 4-tuple of integers

(dimFM, dimFM + dimFL, dimFL, dimFΣM).

Let ΦL,M be the map from C(L,ΣM) to∐
d≤dmax

repd(B
−→
A4)/GL(d)
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sending a morphism ε to the orbit of the exact sequence of B-modules

C(T,M) Fi // C(T, Y )
Fp // C(T, L) Fε // C(T,ΣM),

where M
i−→ Y

p−→ L
ε−→ ΣM is a triangle in C. The cylinders over the

morphisms L→ ΣM are constructible with respect to T if the map ΦL,M lifts
to a constructible map

ϕL,M : C(L,ΣM) −→
∐

d≤dmax

repd(B
−→
A4)

(see section 5.2.1). The category C is said to have constructible cones if this
holds for arbitrary objects L,M and T .

5.1.4 Main result

Let f be a constructible function from an algebraic variety over k to any
abelian group, and let C be a constructible subset of this variety. Then one
de�nes �the integral of f on C with respect to the Euler characteristic� to be∫

C

f =
∑

x∈f(C)

χ
(
C ∩ f−1(x)

)
x,

cf. for example the introduction of [Lus97]. Our aim in this paper is to prove
the following:

Theorem 5.1. Let T be any cluster tilting object in C. Let L and M be two
objects such that the cylinders over the morphisms L → ΣM and M → ΣL
are constructible with respect to T . Then we have:

χ(PC(L,ΣM))XT
LX

T
M =

∫
[ε]∈PC(L,ΣM)

XT
mt(ε) +

∫
[ε]∈PC(M,ΣL)

XT
mt(ε),

where [ε] denotes the class in PC(L,ΣM) of a non zero morphism ε in
C(L,ΣM).

The statement of the theorem is inspired from [GLS07], cf. also [XX].
We will prove it in section 5.3. Our proof is inspired from that of P. Caldero
and B. Keller in [CK08]. Note that in contrast with the situation considered
there, in the above formula, an in�nite number of isomorphism classes of
objects mt(ε) may appear.
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5.2 Constructibility

5.2.1 De�nitions

LetX be a topological space. A locally closed subset ofX is the intersection of
a closed subset with an open one. A constructible subset is a �nite (disjoint)
union of locally closed subsets. The family of constructible subsets is the
smallest one containing all open (equivalently: closed) subsets of X and
stable under taking �nite intersections and complements. A function f from
X to an abelian group is constructible if it is a �nite Z-linear combination
of characteristic functions of constructible subsets of X. Equivalently, f
is constructible if it takes a �nite number of values and if its �bers are
constructible subsets of X.

For an algebraic variety X, the ring of constructible functions from X to
Z is denoted by CF (X). The following proposition will be used, as in [XX],
in order to prove lemma 5.5 of section 5.2.3.

Proposition 5.2. [Dim04, Proposition 4.1.31] Associated with any mor-
phism of complex algebraic varieties f : X −→ Y , there is a well-de�ned
push-forward homomorphism CF (f) : CF (X) −→ CF (Y ). It is determined
by the property

CF (f)(1Z)(y) = χ(f−1(y) ∩ Z)

for any closed subvariety Z in X and any point y ∈ Y .

Let X and Y be algebraic varieties. A map f : X −→ Y is said to be
constructible if there exists a decomposition of X into a �nite union of locally
closed subsets Xi, i ∈ I, such that the restriction of f to each Xi is algebraic.
Note that the composition of two constructible maps is constructible, and
that the composition of a constructible function with a constructible map is
again a constructible function.

5.2.2 Kernels and cokernels are constructible

In section 2.1 of [Xu], it is shown that the kernel and cokernel of a morphism
of modules over a path algebra CQ are constructible. In this section, we
give direct proofs in the more general case where CQ is replaced by a �nite
dimensional algebra B.

Let L and M be two �nite dimensional vector spaces over the �eld k, of
respective dimensions n and m. Let N be a linear subspace ofM . De�ne EN
to be the set of all morphisms f ∈ Homk(L,M) such that Im f ⊕N = M .

Lemma 5.3. The set EN is a locally closed subset of Homk(L,M).



5.2. CONSTRUCTIBILITY 79

Proof. Let (u1, . . . , un) be a basis of L, and let (v1, . . . , vm) be a basis of M
whose p �rst vectors form a basis of N . Let r be such that r + p = m. Let
f : L −→ M be a k-linear map, and denote by A = (aij) its matrix in the
bases (u1, . . . , un) and (v1, . . . , vm). Denote by A1 the submatrix of A formed
by its �rst p rows and by A2 the one formed by its last r rows. For t ≤ n,
let P (t, n) be the set of all subsets of {1, . . . , n} of cardinality t.

The map f belongs to EN if and only if:

a) There exists j in P (r, n) such that the submatrix (aij)i>p,j∈j has a non-
zero determinant and

b) if the last r entries of a linear combination of columns of A vanish, then
the combination itself vanishes.

Condition b) is equivalent to the inclusion KerA2 ⊆ KerA1 and so to the
inclusion Im(At

1) ⊆ Im(At
2). Therefore, condition b) can be restated as con-

dition b'):

b') For all i0 ≤ p, and all l ∈ P (r+1, n), the determinant of the submatrix
of A obtained by taking lines in {i0, p+ 1, . . . ,m} and columns in l
vanishes.

Let Ωj be the set of all maps that satisfy condition a) with respect to the
index set j, and let F be the set of all maps that satisfy condition b'). For
all j ∈ P (r, n), the set Ωj is an open subset of Homk(L,M) and the set F is
a closed subset of Homk(L,M). Since we have the equality:

EN =
( ⋃
j∈P (r,n)

Ωj

)
∩ F,

the set EN is locally closed in Homk(L,M).

Let
−→
A2 be the quiver: 1 → 2.

Lemma 5.4. Let B be a �nite dimensional algebra, and let L and M be
�nitely generated B-modules of dimensions n and m respectively. The map
c from HomB(L,M) to

∐
d≤m rep(m,d)(B

−→
A2)/GL(m, d) which sends a mor-

phism l to the orbit of the representation M // // Coker l lifts to a con-

structible map from HomB(L,M) to
∐

d≤m rep(m,d)(B
−→
A2).

Dually, the map from HomB(L,M) to
∐

d≤n rep(d,n)(B
−→
A2)/GL(d, n) which

sends a morphism l to the orbit of the representation Ker l // // N lifts to a

constructible map from HomB(L,M) to
∐

d≤n rep(d,n)(B
−→
A2).
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Proof. Let us prove the �rst assertion. We keep the notations of the proof of
lemma 5.3. For a subset i of {1, . . . ,m}, let Ni be the linear subspace of M
generated by (vi)i∈i. Then HomB(L,M) is the union of its intersections with
each ENi

, for i ⊆ {1, . . . ,m}. It is thus enough to consider the restriction of

the map c to EN , where N // iN //M is a given linear subspace of M . Since
the set EN is the union of the locally closed subsets Ωj ∩ F , for j ∈ P (r, n),
we can �x such a j and only consider the restriction of c to Ωj ∩ F . Let f
be a morphism in HomB(L,M) and assume that f is in Ωj ∩ F . Then the
cokernel of the k-linear map f is N and the projection pf ofM onto N along
Im f is given by the n × p matrix (1 − CD−1), where C is the submatrix
(aij)i≤p,j∈j and D is the submatrix (aij)i>p,j∈j. Moreover, if we denote by

ρM ∈ rep′B(M) the structure of B-module of M , then the structure of B-
module ρ of N induced by f is given by ρ(b) = pf ◦ ρM(b) ◦ iN , for all
b ∈ B.

5.2.3 Constructibility of C(L,ΣM)〈Y 〉

Let k, C and T be as in section 5.1. Recall that B denotes the endomorphism
algebra EndC(T ). This algebra is the path algebra of a quiver QT with ideal
of relations I. Recall that we denote by 1, . . . , n the vertices of QT .

The following lemma is a particular case of [Dim04, Proposition 4.1.31],
and was already stated in [XX] for hereditary algebras.

Lemma 5.5. For any two dimension vectors e and d with e ≤ d, the function

µe : repd(QT , I) −→ Z
M 7−→ χ(GreM)

is constructible.

Proof. Let Gre(d) be the closed subset of

repd(QT , I)×
∏
i∈Q0

Grei
(kdi)

formed by those pairs (ρ,W ) for which the subspaces Wi ⊆ kdi , i ∈ Q0,
form a subrepresentation. Apply proposition 5.2 to the �rst projection
f : Gre(d) → repd(QT , I) and remark that µe = CF (f)(1Gre(d)).
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Corollary 5.6. Let L and M be objects in C, and let e ≤ dimFL+ dimFM
be in K0(modB). Assume that the cylinders over the morphisms L → ΣM
are constructible. Then the function

λe : C(L,ΣM) −→ Z
ε 7−→ χ(Gre F mt(ε))

is constructible.

Proof. By our hypothesis, the map sending ε ∈ C(L,ΣM) to the image of its
middle term in

∐
repd(QT , I)/GL(d), where the union is over the dimension

vectors d not greater than dimFL+dimFM , lifts to a constructible map from
C(L,ΣM) to

∐
repd(QT , I). The claim therefore follows from lemma 5.5.

Let M
i−→ Y

p−→ L
ε−→ ΣM be a triangle in C, and denote by g the

class of KerFi in the Grothendieck group K0(modB).

Lemma 5.7. We have:

coindY = coind(L⊕M)−
n∑
i=1

〈Si, g〉a[Pi].

Proof. Let K ∈ C lift KerFi. Using respectively proposition 4.6, assertion
(2) of lemma 4.5, lemma 4.7 and section 4.3, we have the following equalities:

coindY = coindL+ coindM − coindK − coind ΣK

= coind(L⊕M) + indK − coindK

= coind(L⊕M)−
n∑
i=1

〈Si, FK〉a[Pi]

= coind(L⊕M)−
n∑
i=1

〈Si, g〉a[Pi].

Corollary 5.8. Let L and M be two objects such that the cylinders over the
morphisms L→ ΣM are constructible. The map

λ : C(L,ΣM) −→ K0(projB)

which sends ε to the coindex (or to the index) of its middle term Y is con-
structible.
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Proof. Note that g is at most the sum of the dimension vectors of FL and
FM , so that by lemma 5.7 the map λ takes a �nite number of values. By
our hypothesis and lemma 5.4, there exists a constructible map:

C(L,ΣM) −→
∐

d≤dimFM

rep′B(kd)

which lifts the map sending ε to the isomorphism class of the structure of
B-module on KerFi. Moreover, the map sending a module ρ in the variety⋃
d≤dimFM rep′B(kd) to

∑n
i=1〈Si, ρ〉a[Pi] in K0(projB) only depends on the

dimension vector of ρ and thus is constructible. Therefore, the map λ is
constructible.

Proposition 5.9. Let L,M ∈ C be such that the cylinders over the mor-
phisms L → ΣM are constructible. Then the sets C(L,ΣM)〈Y 〉 are con-
structible subsets of C(L,ΣM). Moreover, the set C(L,ΣM) is a �nite dis-
joint union of such constructible subsets.

Proof. Fix a triangle M
i−→ Y

p−→ L
ε−→ ΣM in C. Then ε′ ∈ C(L,ΣM) is

in C(L,ΣM)〈Y 〉 if and only if

• λ(ε′) = λ(ε) and

• For all e ≤ dimFY , λe(ε
′) = λe(ε).

Therefore, the claim follows from corollary 5.6 and corollary 5.8.

5.2.4 Stable categories have constructible cones

In this section, we assume moreover that C is the stable category of a Hom-
�nite, Frobenius, Krull�Schmidt category E , which is linear over the alge-
braically closed �eld k. Our aim is to prove that such a category has con-
structible cones.

Let P denote the ideal in E of morphisms factoring through a projective-
injective object. Let T , L and M be objects of the category C. Fix a
k-linear section s of the projection E(L,ΣM) // // C(L,ΣM) induced by the

canonical functor E Π−→ C. Fix a con�ation M // // IM // // ΣM in E , with
IM being projective-injective in E , and, for any ε in C(L,ΣM), consider its
pull-back via sε:

M // ι // Y
π // //

��

L

sε

��
M // // IM // // ΣM.
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Via Π, this diagram induces a triangle M
i−→ Y

p−→ L
ε−→ ΣM in C.

For any X ∈ E , we have a commutative diagram with exact rows:

0 // E(X,M)
E(X,ι) // E(X, Y )

E(X,π) //

��

E(X,L)

E(X,sε)
��

0 // E(X,M) // E(X, IM) // E(X,ΣM).

Fix X ′ ∈ E and a morphism X ′ → X. Let C denote the endomorphism
algebra of X ′ → X in the category of morphisms of E , and let D′ denote the
set of all dimension vectors d = (d1, d2, d3, d4) such that d1 = dim E(X,M),
d3 = dim E(X,L), d2 ≤ d1 + d3 and d4 = dim E(X,ΣM).

Lemma 5.10. There exists a constructible map

µ : C(L,ΣM) −→
∐
d∈D′

repdC
−→
A4

which lifts the map sending ε to the orbit of the matrix representation of
−→
A4

in modC given by E(X,M)
E(X,ι) // E(X, Y )

E(X,π)// E(X,L)
E(X,sε)// E(X,ΣM) .

Proof. By de�nition of a pull-back, the map from the space E(X, Y ) to
E(X, IM)⊕ E(X,L) is a kernel for the map

E(X, IM)⊕ E(X,L) −→ E(X,ΣM).

Moreover, the morphism E(X,M)
E(X,ι) // E(X, Y ) is a kernel for E(X, π).

Therefore, lemma 5.4 in section 5.2.2 applies and such a constructible map
µ exists.

Denote by D the set of dimension vectors d = (d1, d2, d3, d4) such that:
d1 = dim C(T,M), d3 = dim C(T, L), d2 ≤ d1 + d3 and d4 = dim C(T,ΣM).

Proposition 5.11. There exists a constructible map

ϕ : C(L,ΣM) −→
∐
d∈D

repdB
−→
A4

which lifts the map sending ε to the orbit of the representation

C(T,M) Fi // C(T, Y )
Fp // C(T, L) Fε // C(T,ΣM) .
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Proof. Let T � IT be an in�ation from T to a projective-injective object
in E . This in�ation induces a commutative diagram (∗) of modules over the

endomorphism algebra B̃ of T � IT in the Frobenius category of in�ations
of E :

E(IT,M) //

(∗)
��

E(IT, Y ) //

��

E(IT, L) //

��

E(IT,ΣM)

��
E(T,M) // E(T, Y ) // E(T, L) // E(T,ΣM).

The map which sends ε to the orbit of the diagram (∗) lifts to a constructible
one. This is proved by repeating the proof of lemma 5.10 for the functor

E −→ mod B̃, U 7−→
(
E(IT, U) → E(T, U)

)
instead of U 7→ E(X,U) and using lemma 5.4 for B̃.

By applying lemma 5.4 to B̃ ⊗ kA4, we see that the vertical cokernel of
diagram (∗) is constructible as a B̃ ⊗ kA4-module. Now the claim follows
because the terms of the cokernel are B-modules and B is also the stable
endomorphism algebra of T � IT in the Frobenius category of in�ations of
E .

5.2.5 Generalized cluster categories have constructible

cones

Let (Q,W ) be a Jacobi-�nite quiver with potential W in kQ (cf. section 3.3
of [Ami]), and let Γ be the Ginzburg dg algebra associated with (Q,W ) (cf.
section 3.2.6). The perfect derived category per Γ is the thick subcategory
of the derived category DΓ generated by Γ. The �nite dimensional derived
category DfdΓ is the full subcategory of DΓ whose objects are the dg modules
whose homology is of �nite total dimension. It is easy to check that an object
M belongs to DfdΓ if and only if HomDΓ(P,M) is �nite dimensional for each
object P of per Γ.

Lemma 5.12 (Appendix of [KY]). a) The category DfdΓ is contained in
per Γ.

b) An object of DΓ belongs to DfdΓ if and only if it is quasi-isomorphic to
a dg Γ-module of �nite total dimension.

c) The category DfdΓ is equivalent to the localization of the homotopy cat-
egory HfdΓ of right dg Γ-modules of �nite total dimension with respect
to its subcategory of acyclic dg modules.
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Note that we stated the previous lemma under some restrictions which
do not appear in the appendix of [KY]. Recall that the generalized cluster
category associated with (Q,W ), de�ned in [Ami], is the localization of the
category per Γ by the full subcategory DfdΓ.

It is proved in [Ami] that the canonical t-structure on DΓ restricts to a
t-structure on per Γ. We will denote this t-structure by (per≤0, per≥0).

Denote by F the full subcategory of per Γ de�ned by:

F = per≤0 ∩ ⊥(per≤−2).

Recall from [Ami] that the canonical functor from per Γ to CΓ induces a
k-linear equivalence from F to CΓ and that the functor τ≤−1 induces an
equivalence from F to ΣF .

Fix an object T in CΓ. Without loss of generality, assume that T belongs
to F . Note that the canonical cluster tilting object Γ ∈ CΓ does belong to
F .

Lemma 5.13. Let X be an object of per Γ. If X is left orthogonal to per≤−3,
which happens for instance when X is in F or in ΣF , then there is a func-
torial isomorphism

Homper Γ(τ≤−1T,X)
'−→ CΓ(T,X).

Proof. Let X ∈ per Γ be left orthogonal to per≤−3. By [Ami, Proposition
2.8], we have CΓ(T,X) = lim−→Homper Γ(τ≤nT, τ≤nX). Moreover, for any n,

we have Homper Γ(τ≤nT, τ≤nX) = Homper Γ(τ≤nT,X). Let n < −1. The
object τ[n+1,−1]T is in Dfd(Γ) and X is in per Γ, so that the 3-Calabi�Yau
property (see [Kel08]) implies that the space Homper Γ(Σ−1τ[n+1,−1]T,X) is
isomorphic to the dual of Homper Γ(X,Σ2τ[n+1,−1]T ). This latter vanishes
since X belongs to ⊥(per≤−3). The same argument shows that the space
Homper Γ(τ[n+1,−1]T,X) also vanishes. Therefore applying the cohomological
functor Homper Γ(?, X) to the triangle

Σ−1τ[n+1,−1]T −→ τ≤nT −→ τ≤−1T −→ τ[n+1,−1]T,

yields an isomorphism Homper Γ(τ≤nT,X)
'−→ Homper Γ(τ≤−1T,X).

Lemma 5.14. Let X, Y ∈ per Γ and assume that X belongs to ⊥(per≤−3).
Then the functor τ≥−2 induces a bijection

Homper Γ(X, Y ) ' HomDfd(Γ)(τ≥−2X, τ≥−2Y ).
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Proof. By assumption, the object X is left orthogonal to the subcategory
per≤−3. Therefore, the space Homper Γ(X, Y ) is isomorphic to the space
Homper Γ(X, τ≥−2Y ), and thus to Homper Γ(τ≥−2X, τ≥−2Y ). Since X and Y
are perfect over Γ, their images under τ≥−2 are quasi-isomorphic to dg mod-
ules of �nite total dimension.

Proposition 5.15. Let Γ be the Ginzburg dg algebra associated with a Jacobi-
�nite quiver. Then the category Dfd(Γ) has constructible cones.

Proof. We write n for the ideal of Γ generated by the arrows of the Ginzburg
quiver, and p for the left adjoint to the canonical functor H(Γ) → D(Γ). Let
L,M and T be dg modules of �nite total dimension. Since HomDfd(Γ)(L,ΣM)

is �nite dimensional, there exists a quasi-isomorphism M
w−→M ′, where M ′

is of �nite total dimension and such that any morphism L → ΣM may be
represented by a fraction:

L
##G

GG
GG ΣM

Σwyysss
ss

ΣM ′.

We thus obtain a surjection Ext1
Hfd(Γ)(L,M

′) // // Ext1
Dfd(Γ)(L,M). Fix a k-

linear section s of this surjection. Choosem such thatM ′nm and Lnm vanish.
Then for the cone Y of any morphism from Σ−1M ′ to L, we have Y nm = 0.
For X being any one of L, M ′, Y we thus have isomorphisms

CΓ(T,X) ' HomH(Γ)(pT,X) ' HomHfd(Γ)(T
′, X)

where T ′ denotes the �nite dimensional quotient of pT by (pT )nm. The cat-
egory Hfd(Γ) is the stable category of a Hom-�nite Frobenius category. By
section 5.2.4, the categoryHfd(Γ) has constructible cones: There exists a con-
structible map ϕL,M ′ (associated with T ′) as in section 5.1.3. By composing
this map with the section s, we obtain a map ϕL,M as required.

Proposition 5.16. Let Γ be the Ginzburg dg algebra associated with a Jacobi-
�nite quiver. Then the generalized cluster category CΓ has constructible cones.

Proof. Let L and M be in CΓ. Up to replacing them by isomorphic objects
in CΓ, we may assume that L belongs to ΣF and M to F . The projection
then induces an isomorphism Homper Γ(L,ΣM)

'−→ CΓ(L,ΣM). Let ε be in

Homper Γ(L,ΣM), and let M → Y → L
ε→ ΣM be a triangle in per Γ. Let us

denote the sets of morphisms Homper Γ( , ) by ( , ). There is a commutative
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diagram

(τ≤−1T,Σ
−1L)

��

// (τ≤−1T,M)

��

// (τ≤−1T, Y )

��

// (τ≤−1T, L)

��

// (τ≤−1T,ΣM)

��
CΓ(T,Σ−1L) // CΓ(T,M) // CΓ(T, Y ) // CΓ(T, L) // CΓ(T,ΣM),

where the morphisms in the �rst two and in the last two columns are iso-
morphisms by lemma 5.13, and the middle one by the �ve lemma. Note that
τ≤−1T belongs to ΣF , so that, by lemma 5.14, we have isomorphisms:

Homper Γ(L,ΣM) ' HomDfd(Γ)(τ≥−2L, τ≥−2ΣM)

and

CΓ(T,X) ' HomDfd(Γ)(τ[−2,−1]T, τ≥−2X)

for X ∈ {Σ−1L,M,L,ΣM} and thus also for X being the middle term of any
triangle in Ext1

per Γ(L,M). Let ε ∈ CΓ(L,ΣM) and let M → Y → L
ε→ ΣM

be a triangle in CΓ. Let ε be the morphism in HomDfd(Γ)(τ≥−2L, τ≥−2ΣM)

corresponding to ε and let τ≥−2M → Z → τ≥−2L
ε→ τ≥−2ΣM be a triangle

in Dfd(Γ). Then the sequence obtained from Σ−1L → M → Y → L → ΣM
by applying the functor CΓ(T, ?) is isomorphic to the one obtained from
Σ−1τ≥−2L → τ≥−2M → Z → τ≥−2L → τ≥−2ΣM by applying the functor
HomDfd(Γ)(τ[−2,−1]T, ?). By proposition 5.15, the cylinders of the morphisms
L→ ΣM are constructible with respect to T .

5.3 Proof of theorem 5.1

Let T be a cluster tilting object of C. Let L and M be two objects in C, such
that the cylinders of the morphisms L→ ΣM andM → ΣL are constructible
with respect to T . Let ε be a morphism in C(L,ΣM)〈Y 〉 for some Y ∈ C,
and let M

i−→ Y ′ p−→ L
ε−→ ΣM be a triangle in C. The image of ε under

ϕL,M lifts the orbit of the matrix representation of
−→
A4 in modB given by

FM
Fi // FY ′ Fp // FL

Fε // FΣM . In all of this section, we will take the
liberty of denoting by Fi, Fp and FY ′ the image ϕL,M(ε). Denote by ∆
the dimension vector dimFL + dimFM . For any object Y in C and any
non-negative e, f and g in K0(modB), let W Y

LM(e, f, g) be the subset of

PC(L,ΣM)〈Y 〉 ×
∐
d≤∆

n∏
i=1

Grgi
(kdi)
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formed by the pairs ([ε], E) such that E is a submodule of FY ′ of dimension
vector g, dim(Fp)E = e and dim(Fi)−1E = f , where FY ′,Fi and Fp are
given by ϕL,M(ε). We let

• W Y
LM(g) denote the union of all W Y

LM(e, f, g) with e ≤ dimFL and
f ≤ dimFM and

• W Y
LM(e, f) denote the union of all W Y

LM(e, f, g) with g ≤ dimFL +
dimFM .

Lemma 5.17. The sets W Y
LM(e, f, g) are constructible.

Proof. Denote by ∆ the dimension vector dimFL + dimFM , and �x a di-
mension vector g. Consider the map induced by ϕL,M which sends a pair
(ε, E) in C(L,ΣM)〈Y 〉 ×

∐
d≤∆

∏
i∈Q0

Grgi
(kdi) to (Fi, Fp, FY ′, E). By our

assumption, this map (exists and) is constructible. Therefore, the subset of

C(L,ΣM)〈Y 〉 ×
∐
d≤∆

∏
i∈Q0

Grgi
(kdi)

formed by the pairs (ε, E) such that E is a submodule of FY ′ is a con-
structible subset. We denote by V Y

LM(g) this constructible subset. We thus
have a constructible function V Y

LM(g) −→ Z2n sending the pair (ε, E) to
(dim(Fi)−1E, dim(Fp)E). This function induces a constructible function
δ : W Y

LM(g) −→ Z2n, and the setW Y
LM(e, f, g) is the �ber of δ above (e, f).

The �ber above the class [ε] of the projection W Y
LM(g) → PC(L,ΣM)〈Y 〉

is {[ε]}×Grg FY
′ and thus all �bers have Euler characteristics equal to that

of Grg FY . Therefore we have:

(∗∗) χ
(
W Y
LM(g)

)
= χ

(
PC(L,ΣM)〈Y 〉

)
χ(Grg FY ).

De�ne L(e, f) to be the variety PC(L,ΣM)×Gre FL×Grf FM . Consider
the following map:∐

Y ∈Y

W Y
LM(e, f)

ψ−→ L(e, f)

([ε], E) 7−→
(
[ε], (Fp)E, (Fi)−1E

)
.

By our assumption, the map ψ is constructible.
Let L1(e, f) be the subvariety of L(e, f) formed by the points in the image

of ψ, and let L2(e, f) be the complement of L1(e, f) in L(e, f).



5.3. PROOF OF THE MAIN RESULT 89

We want to compute

dim C(L,ΣM)XLXM = x− coind(L⊕M)
∑
e,f

χ(L(e, f))
n∏
i=1

x
〈Si,e+f〉a
i

=
∑
e,f

χ(L1(e, f))x− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i

+
∑
e,f

χ(L2(e, f))x− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i .

Denote by s1 (resp. s2) the �rst term (resp. second term) in the right hand
side of the last equality above.

As shown in [CC06], the �bers of ψ over L1(e, f) are a�ne spaces. For the
convenience of the reader, we sketch a proof. Let ([ε], U, V ) be in L1(e, f).
Denote by Y the middle term of ε and by GrU,V the projection of the �ber
ψ−1([ε], U, V ) on the second factor GrFY . Let W be a cokernel of the injec-
tion of U in FM .

W

FM

π
OOOO

i // FY
p // FL // FΣM

U
?�

iU

OO

// E
?�

OO

// // V
?�
iV

OO

Lemma 5.18. (Caldero�Chapoton) There is a bijection

HomB(V,W ) −→ GrU,V .

Proof. De�ne a free transitive action of HomB(V,W ) on GrU,V in the follow-
ing way: For any E in GrU,V and any g in HomB(V,W ), de�ne Eg to be
the submodule of FY of elements of the form i(m) + x where m belongs to
FM , x belongs to E and gpx = πm. Note that Eg belongs to GrU,V (since
the kernel of i is included in U), that E0 = E and that (Eg)h = Eg+h. This
action is free: An element i(m) + x is in E if and only if m is in U . This is
equivalent to the vanishing of πm, which in turn is equivalent to px belonging
to the kernel of g. This action is transitive: Let E and E ′ be in GrU,V . For
any v in V , let g(v) be π(x′ − x) where x ∈ E, x′ ∈ E ′ and px = px′ = v.
This de�nes a map g : V −→ W such that Eg = E ′.

By lemma 5.18, we obtain the following equality between the Euler char-
acteristics: ∑

〈Y 〉

χ(W Y
LM(e, f)) = χ(L1(e, f)),
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which implies the equality

s1 =
∑
e,f,〈Y 〉

χ
(
W Y
LM(e, f)

)
x− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i .

If the pair ([ε], E) belongs to W Y
LM(e, f, g), then by lemma 4.16, we have

n∑
i=1

〈Si, e+ f〉a[Pi]− coind(L⊕M) =
n∑
i=1

〈Si, g〉a[Pi]− coind(mt(ε))

and coind(mt(ε)) = coindY since the morphism ε is in C(L,ΣM)〈Y 〉. There-
fore,

s1 =
∑

e,f,g,〈Y 〉

χ
(
W Y
LM(e, f, g)

)
x− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i

=
∑

e,f,g,〈Y 〉

χ
(
W Y
LM(e, f, g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i

=
∑
g,〈Y 〉

χ
(
W Y
LM(g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i

=
∑
〈Y 〉

∑
g

χ
(
PC(L,ΣM)〈Y 〉

)
χ(Grg FY )x− coindY

n∏
i=1

x
〈Si,g〉a
i by (∗∗)

=
∑
〈Y 〉

χ
(
PC(L,ΣM)〈Y 〉

)
XY .

Recall that since C is 2-Calabi�Yau, there is an isomorphism

φL,M : C(Σ−1L,M) −→ DC(M,ΣL).

We denote by φ the induced duality pairing:

φ : C(Σ−1L,M)× C(M,ΣL) −→ k

(a, b) 7−→ φL,M(a)b.

Let Ce,f (Y, g) consist of all pairs
(
([ε], U, V ), ([η], E)

)
in L2(e, f) ×W Y

ML(g)
such that φ(Σ−1ε, η) 6= 0, (Fi)−1E = V and (Fp)E = U , where Fi, Fp are
given by ϕM,L(η). The set Ce,f (Y, g) is constructible, by our assumption.
Let Ce,f be the union of all Ce,f (Y, g), where Y runs through the set of
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representatives Y , and g throughK0(modB). We then consider the following
two projections

Ce,f

p1

��

and Ce,f (Y, g)

p2
��

L2(e, f) W Y
ML(f, e, g).

The aim of the next proposition is to show that the projections p1 and p2

are surjective, and to describe their �bers.

Let U be in Gre FL, and V be in Grf FM . Let U
iU−→ L and V

iV−→M lift
these two inclusions to the triangulated category C. As in chapter 4, let us
consider the following two morphisms: the morphism α from C(Σ−1L,U) ⊕
C(Σ−1L,M) to C/(T ) (Σ−1V, U)⊕ (Σ−1V,M)⊕ C/(ΣT ) (Σ−1L,M) and

α′ : (ΣT )(U,ΣV )⊕ C(M,ΣV )⊕ (Σ2T )(M,ΣL) −→ C(U,ΣL)⊕ C(M,ΣL)

de�ned by:

α(a, b) = (aΣ−1iV , iUaΣ
−1iV − bΣ−1iV , iUa− b)

and

α′(a, b, c) =
(
(ΣiV )a+ c iU + (ΣiV )b iU ,−c− (ΣiV )b

)
.

Remark that the maps α and α′ are dual to each other via the pairing
φ. In the following lemma, orthogonal means orthogonal with respect to this
pairing.

Proposition 5.19. [CK08, proposition 3] With the same notations as above,
the following assertions are equivalent:

(i) The triple ([ε], U, V ) belongs to L2(e, f).

(ii) The morphism Σ−1ε is not orthogonal to C(M,ΣL) ∩ Imα′.

(iii) There is an η ∈ C(M,ΣL) such that φ(Σ−1ε, η) 6= 0 and such that if

L
i−→ N

p−→M
η−→ ΣL

is a triangle in C, then there exists E ∈ GrFN with (Fi)−1E = V and
(Fp)E = U .
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Proof. Let us start with the equivalence of (i) and (ii). The same proof
as that in [CK08, proposition 3] applies in this setup: Denote by p the
canonical projection of C(Σ−1L,U) ⊕ C(Σ−1L,M) onto C(Σ−1L,M). Then,
by lemma 4.14, assertion (i) is equivalent to Σ−1ε not belonging to p(Kerα).
That is, the morphism Σ−1ε is not in the image of the composition:

q : Kerα −→ C(Σ−1L,U)⊕ C(Σ−1L,M) −→ C(Σ−1L,M).

So (i) holds if and only if Σ−1ε is not in the orthogonal of the orthogonal of
the image of q. The orthogonal of the image of q is the kernel of its dual,
which is given by the composition:

C(M,ΣL) −→ C(U,ΣL)⊕ C(M,ΣL) −→ Cokerα′.

Therefore assertion (i) is equivalent to the morphism Σ−1ε not being in the
orthogonal of C(M,ΣL)∩ Imα′ which proves that (i) and (ii) are equivalent.

By lemma 4.14, a morphism in C(M,ΣL) is in the image of α′ if and
only if it satis�es the second condition in (iii). Therefore (ii) and (iii) are
equivalent.

A variety X is called an extension of a�ne spaces in [CK08] if there is a
vector space V and a surjective morphism X −→ V whose �bers are a�ne
spaces of constant dimension. Note that extensions of a�ne spaces have
Euler characteristics equal to 1.

Proposition 5.20. [CK08, proposition 4]

a) The projection Ce,f
p1−→ L2(e, f) is surjective and its �bers are exten-

sions of a�ne spaces.

b) The projection Ce,f (Y, g)
p2−→ W Y

ML(f, e, g) is surjective and its �bers
are a�ne spaces.

c) If Ce,f (Y, g) is not empty, then we have

n∑
i=1

〈Si, e+ f〉a[Pi]− coind(L⊕M) =
n∑
i=1

〈Si, g〉a[Pi]− coindY.

Proof. Let us �rst prove assertion a). The projection p1 is surjective by
the equivalence of i) and iii) in proposition 5.19. Let X be the �ber of
p1 above some ([ε], U, V ) in L2(e, f). Let V be the set of all classes [η] in
P
(
C(M,ΣL)∩ Imα′

)
such that φ(Σ−1ε, η) does not vanish. The set V is the

projectivization of the complement in C(M,ΣL) ∩ Imα′ of the hyperplane
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Kerφ(Σ−1ε, ). Hence V is a vector space. Let us consider the projection
π : X −→ V . This projection is surjective by lemma 4.14. Let η represent
a class in V , and let Fi, Fp be given by ϕM,L(η). Then the �ber of π
above [η] is given by the submodules E of FY such that (Fi)−1E = V and
(Fp)E = U . Lemma 5.18 thus shows that the �bers of π are a�ne spaces of
constant dimension.

Let us prove assertion b). Let ([η], E) be in W Y
ML(f, e, g). The �ber of p2

above ([η], E) consists of the elements of the form
(
([ε], U, V ), ([η], E)

)
where

U and V are �xed submodules given by [η] and E, and [ε] ∈ PC(L,ΣM) is
such that φ(Σ−1ε, η) does not vanish. Therefore the projection p2 is surjective
and its �bers are a�ne spaces.

To prove assertion c), apply lemma 4.16 and remark that if Y ′ belongs to
〈Y 〉, then Y ′ and Y have the same coindex.

As a consequence, we obtain the following equalities:

χ(Ce,f ) = χ(L2(e, f)) and χ
(
Ce,f (Y, g)

)
= χ

(
W Y
ML(f, e, g)

)
.

We are now able to compute s2 :

s2 =
∑
e,f

χ(L2(e, f))x− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i

=
∑
e,f

χ(Ce,f )x
− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i by 5.20 a)

=
∑

e,f,g,〈Y 〉

χ
(
Ce,f (Y, g)

)
x− coind(L⊕M)

n∏
i=1

x
〈Si,e+f〉a
i

=
∑

e,f,g,〈Y 〉

χ
(
Ce,f (Y, g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i by 5.20 c)

=
∑

e,f,g,〈Y 〉

χ
(
W Y
ML(f, e, g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i by 5.20 b)

=
∑
g,〈Y 〉

χ
(
W Y
ML(g)

)
x− coindY

n∏
i=1

x
〈Si,g〉a
i

=
∑
g,〈Y 〉

χ
(
PC(M,ΣL)〈Y 〉

)
χ(Grg FY )x− coindY

n∏
i=1

x
〈Si,g〉a
i by (∗∗)

=
∑
〈Y 〉

χ
(
PC(M,ΣL)〈Y 〉

)
XY .
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Chapter 6

Grothendieck group and

generalized mutation rule for

2-Calabi�Yau triangulated

categories

The contents of this chapter have been published in [Pal09].

Introduction

In their study [CK08] of the connections between cluster algebras (see [Zel07])
and quiver representations, P. Caldero and B. Keller conjectured that a cer-
tain antisymmetric bilinear form is well�de�ned on the Grothendieck group
of a cluster tilted algebra associated with a �nite�dimensional hereditary
algebra. The conjecture is proved in 4 in the more general context of Hom-
�nite 2-Calabi�Yau triangulated categories. It is used in order to study the
existence of a cluster character on such a category C, by using a formula
proposed by Caldero�Keller.

In the present chapter, we restrict ourselves to the case where C is al-
gebraic (i.e. is the stable category of a Frobenius category). We �rst use
this bilinear form to prove a generalized mutation rule for quivers of cluster�
tilting subcategories in C. When the cluster�tilting subcategories are related
by a single mutation, this shows, via the method of [GLS06], that their quiv-
ers are related by the Fomin�Zelevinsky mutation rule. This special case was
already proved in [BIRS], without assuming C to be algebraic.

We also compute the Grothendieck group of the triangulated category C.
In particular, this allows us to improve on results by M. Barot, D. Kussin

95
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and H. Lenzing: We compare the Grothendieck group of a cluster category
CA with the group K0(CA). The latter group was de�ned in [BKL08] by only
considering the triangles in CA which are induced by those of the derived
category. More precisely, we prove that those two groups are isomorphic for
any cluster category associated with a �nite-dimensional hereditary algebra,
with its triangulated structure de�ned by B. Keller in [Kel05].

This chapter is organized as follows: The �rst section is dedicated to
notation and necessary background from [FZ02], [GLS06], [KR07], [Pal08]. In
section 6.2, we compute the Grothendieck group of the triangulated category
C. In section 6.3, we prove a generalized mutation rule for quivers of cluster�
tilting subcategories in C. In particular, this yields a new way to prove, under
the restriction that C is algebraic, that the quiver of the mutation of a cluster�
tilting object T is given by the Fomin�Zelevinsky mutation of the quiver of T .
We �nally show that K0(CA) = K0(CA) for any �nite-dimensional hereditary
algebra A.

6.1 Notations and background

Let E be a Frobenius category whose idempotents split and which is linear
over a given algebraically closed �eld k. By a result of Happel [Hap88], its
stable category C = E is triangulated. We assume moreover, that C is Hom-
�nite, 2-Calabi�Yau and has a cluster�tilting subcategory (see section 6.1.2),
and we denote by Σ its suspension functor. Note that we do not assume that
E is Hom-�nite.

We write X ( , ), or HomX ( , ), for the morphisms in a category X and
HomX ( , ) for the morphisms in the category of X -modules. We also denote
by Xˆ the projective X -module represented by X: Xˆ= X (?, X).

6.1.1 Fomin�Zelevinsky mutation for matrices

Let B = (bij)i,j∈I be a �nite or in�nite matrix, and let k be in I. The Fomin
and Zelevinsky mutation of B (see [FZ02]) in direction k is the matrix

µk(B) = (b′ij)

de�ned by

b′ij =

{
−bij if i = k or j = k,

bij +
|bik|bkj+bik|bkj |

2
else.

Note that µk
(
µk(B)

)
= B and that if B is skew-symmetric, then so is µk(B).
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We recall two lemmas of [GLS06], stated for in�nite matrices, which will
be useful in section 6.3. Note that lemma 7.2 is a restatement of [BFZ05,
(3.2)]. Let S = (sij) be the matrix de�ned by

sij =

{
−δij +

|bij |−bij
2

if i = k,
δij else.

Lemma 7.1 ([GLS06, Geiss�Leclerc�Schröer]) : Assume that B is skew-
symmetric. Then, S2 = 1 and the (i, j)-entry of the transpose of the matrix
S is given by

stij =

{
−δij +

|bij |+bij
2

if j = k,
δij else.

The matrix S yields a convenient way to describe the mutation of B in
the direction k:
Lemma 7.2 ([GLS06, Geiss�Leclerc�Schröer], [BFZ05, Berenstein�
Fomin�Zelevinsky]) : Assume that B is skew-symmetric. Then we have:

µk(B) = StBS.

Note that the product is well-de�ned since the matrix S has a �nite
number of non-vanishing entries in each column.

6.1.2 Cluster�tilting subcategories

A cluster�tilting subcategory (see [KR07]) of C is a full subcategory T such
that

a) T is a linear subcategory;

b) for any object X in C, the contravariant functor C(?, X)|T is �nitely
generated;

c) for any object X in C, we have C(X,ΣT ) = 0 for all T in T if and only
if X belongs to T .

We now recall some results from [KR07], which we will use in what follows.
Let T be a cluster�tilting subcategory of C, and denote by M its preimage
in E . In particular M contains the full subcategory P of E formed by the
projective�injective objects, and we have M = T .

The following proposition will be used implicitly, extensively in this paper.
Proposition [KR07, Keller�Reiten] :

a) The category modM of �nitely presented M-modules is abelian.
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b) For each object X ∈ C, there is a triangle

Σ−1X −→MX
1 −→MX

0 −→ X

of C, with MX
0 and MX

1 in M.

Recall that the perfect derived category perM is the full triangulated
subcategory of the derived category of DModM generated by the �nitely
generated projective M-modules.
Proposition [KR07, Keller�Reiten] :

a) For each X ∈ E, there are con�ations

0 −→M1 −→M0 −→ X −→ 0 and 0 −→ X −→M0 −→M1 −→ 0

in E, with M0, M1, M0 and M1 in M.

b) Let Z be in modM. Then Z considered as an M-module lies in the
perfect derived category perM.

6.1.3 The antisymmetric bilinear form

In section 6.3, we will use the existence of the antisymmetric bilinear form
〈 , 〉a on K0(modM). We thus recall its de�nition from [CK08].

Let 〈 , 〉 be a truncated Euler form on modM de�ned by

〈M,N〉 = dim HomM(M,N)− dim Ext1
M(M,N)

for any M,N ∈ modM. De�ne 〈 , 〉a to be the antisymmetrization of this
form:

〈 , 〉a = 〈M,N〉 − 〈N,M〉.
This bilinear form descends to the Grothendieck group K0(modM):
Lemma [Pal08, section 3] : The antisymmetric bilinear form

〈M,N〉a : K0(modM)×K0(modM) −→ Z

is well-de�ned.

6.2 Grothendieck groups of algebraic 2-CY cat-
egories with a cluster tilting subcategory

We �x a cluster�tilting subcategory T of C, and we denote byM its preimage
in E . In particular M contains the full subcategory P of E formed by the
projective�injective objects, and we have M = T .
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We denote by Hb (E) and Db (E) respectively the bounded homotopy cat-
egory and the bounded derived category of E . We also denote by Hb

E−ac (E),
Hb (P), Hb (M) and Hb

E−ac (M) the full subcategories of Hb (E) whose ob-
jects are the E-acyclic complexes, the complexes of projective objects in E ,
the complexes of objects ofM and the E-acyclic complexes of objects ofM,
respectively.

6.2.1 A short exact sequence of triangulated categories

Lemma 6.1. Let A1 and A2 be thick, full triangulated subcategories of a
triangulated category A and let B be A1 ∩ A2. Assume that for any object
X in A there is a triangle X1 −→ X −→ X2 −→ ΣX1 in A, with X1 in
A1 and X2 in A2. Then the induced functor A1/B −→ A/A2 is a triangle
equivalence.

Proof. Under these assumptions, denote by F the induced triangle functor
from A1/B to A/A2. We are going to show that the functor F is a full,
conservative, dense functor. Since any full conservative triangle functor is
fully faithful, F will then be an equivalence of categories.

We �rst show that F is full. Let X1 and X ′
1 be two objects in A1. Let f

be a morphism from X1 to X ′
1 in A/A2 and let

Y
w
  A

AA
AA

~~}}
}}

}

X1 X ′
1

be a left fraction which represents f . The morphism w is in the multiplicative
system associated with A2 and thus yields a triangle

Σ−1A2 → Y
w−→ X ′

1 → A2

where A2 lies in the subcategory A2. Moreover, by assumption, there exists a
triangle Y1 → Y → Y2 → ΣY1 with Yi in Ai. Applying the octahedral axiom
to the composition Y1 → Y → X ′

1 yields a commutative diagram whose two
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middle rows and columns are triangles in A

Σ−1A2

��

Σ−1A2

��
Y1

// Y

��

// Y2

��

// ΣY1

Y1
// X ′

1

��

// Z

��

// ΣY1

A2 A2
.

Since Y2 and A2 belong to A2, so does Z. And since X ′
1 and Y1 belong to

A1, so does Z. This implies, that Z belongs to B. The morphism Y1 → X ′
1

is in the multiplicative system of A1 associated with B and the diagram

Y1

  A
AA

AA

~~}}
}}

}

X1 X ′
1

is a left fraction which represents f . This implies that f is the image of a
morphism in A1/B. Therefore the functor F is full.

We now show that F is conservative. Let X1
f−→ Y1 → Z1 → ΣX1 be a

triangle in A1. Assume that Ff is an isomorphism in A/A2, which implies
that Z1 is an object of A2. Therefore, Z1 is an object of B and f is an
isomorphism in A1/B.

We �nally show that F is dense. Let X be an object of the category
A/A2, and let X1 → X → X2 → ΣX1 be a triangle in A with Xi in Ai.
Since X2 belongs to A2, the image of the morphism X1 → X in A/A2 is
an isomorphism. Thus X is isomorphic to the image by F of an object in
A1/B.

As a corollary, we have the following:

Lemma 6.2. The following sequence of triangulated categories is short exact:

0 −→ Hb
E−ac (M) −→ Hb (M) −→ Db (E) −→ 0.

Remark: This lemma remains true if C is d-Calabi�Yau and M is (d − 1)-
cluster�tilting, using section 5.4 of [KR07].
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Proof. For any object X in Hb (E), the existence of an object M in Hb (M)
and of a quasi-isomorphism w from M to X is obtained using the approxi-
mation con�ations of Keller�Reiten (see section 6.1.2). Since the cone of the
morphism w belongs to Hb

E−ac (E), lemma 6.1 applies to the subcategories
Hb
E−ac (M), Hb (M) and Hb

E−ac (E) of Hb (E).

Proposition 6.3.The following diagram is commutative with exact rows and
columns:

0 0

0 //Hb
E−ac (M)

iM //Hb (M) /Hb (P)

OO

// E //

OO

0

0 //Hb
E−ac (M) //Hb (M) //

OO

Db (E) //

OO

0 (D)

Hb (P)

OO

Hb (P)

iP

OO

// 0

0

OO

0

OO

.

Proof. The column on the right side has been shown to be exact in [KV87]
and [Ric91]. The second row is exact by lemma 6.2. The subcategories
Hb
E−ac (M) and Hb (P) of Hb (M) are left and right orthogonal to each other.

This implies that the induced functors iM and iP are fully faithful and that
taking the quotient of Hb (M) by those two subcategories either in one order
or in the other gives the same category. Therefore the �rst row is exact.

6.2.2 Invariance under mutation

A natural question is then to which extent the diagram (D) depends on
the choice of a particular cluster�tilting subcategory. Thus let T ′ be another
cluster�tilting subcategory of C, and letM′ be its preimage in E . Let ModM
(resp. ModM′) be the category ofM-modules (resp. M′-modules), i.e. of k-
linear contravariant functors from M (resp. M′) to the category of k-vector
spaces.

Let X be the M′-M-bimodule which sends the pair of objects (M ′,M)
to the k-vector space E(M ′,M). The bimodule X induces a functor

F =?⊗M X : ModM−→ ModM′

denoted by TX in [Kel94, section 6.1].
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Recall that the perfect derived category perM is the full triangulated
subcategory of the derived category DModM generated by the �nitely gen-
erated projective M-modules.

Proposition 6.4. The left derived functor

LF : DMod M −→ DMod M′

is an equivalence of categories.

Proof. Recall that if X is an object in a category X , we denote by Xˆ the
functor X (?, X) represented by X. By [Kel94, 6.1], it is enough to check the
following three properties:

1. For all objects M , N of M, the group HomDMod M′ (LFM ,̂ LFN [̂n])
vanishes for n 6= 0 and identi�es with HomM (M,N) for n = 0 ;

2. for any object M of M, the complex LFMˆ belongs to perM′ ;

3. the set {LFM ,̂ M ∈M} generates DMod M′ as a triangulated cate-
gory with in�nite sums.

Let M be an object of M, and let M ′
1
// //M ′

0
// //M be a con�ation in

E , with M ′
0 and M

′
1 in M′, and whose de�ation is a right M′-approximation

(cf. section 4 of [KR07]). The surjectivity of the map (M ′
0)̂ −→ E(?,M)|M′

implies that the complex P = (· · · → 0 → (M ′
1)̂ → (M ′

0)̂ → 0 → · · · ) is
quasi-isomorphic to LFMˆ = E(?,M)|M′ . Therefore LFMˆ belongs to the
subcategory perM′ of DMod M′. Moreover, we have, for any n ∈ Z and
any N ∈M, the equality

HomDMod M′ (LFM ,̂LFN [̂n]) = HomHb ModM (P, E(?, N)|M′ [n])

where the right-hand side vanishes for n 6= 0, 1. In case n = 1 it also vanishes,
since Ext1

E(M,N) vanishes. Now,

HomHb ModM′ (P, E(?, N)|M′) ' Ker (E(M ′
0, N) → E(M ′

1, N))

' E(M,N).

It only remains to be shown that the set R = {LFM ,̂ M ∈M} generates
DMod M′. Denote byR the full triangulated subcategory with in�nite sums
of DMod M′ generated by the set R. The set {(M ′)̂ , M ′ ∈M′} generates
DMod M′ as a triangulated category with in�nite sums. Thus it is enough
to show that, for any object M ′ of M′, the complex (M ′)̂ concentrated in
degree 0 belongs to the subcategory R. Let M ′ be an object of M′, and
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let M ′ // i //M0
p // //M1 be a con�ation of E with M0 and M1 in M. Since

Ext1
E(?,M

′)|M′ vanishes, we have a short exact sequence of M′-modules

0 −→ E(?,M ′)|M′ −→ E(?,M0)|M′ −→ E(?,M1)|M′ −→ 0,

which yields the triangle

(M ′)̂ −→ LFM0̂ −→ LFM1̂ −→ Σ(M ′)̂ .

As a corollary of proposition 6.4, up to equivalence the diagram (D) does
not depend on the choice of a cluster�tilting subcategory. To be more precise:
The functor LF restricts to a functor from perM to perM′. Let G be the
functor from Hb (M) to Hb (M′) induced by this restriction via the Yoneda
equivalence.

Corollary 6.5. The following diagram is commutative

DMod M LF // DMod M′

Hb (M)

��

* 


88ppppppppppp
G //

OO

Hb (M′)

��

* 


77ooooooooooo

Hb (P)
S3

ffMMMMMMMMMM
?�

kK

xxqqqqqqqqqq
Hb (P)
T4

ffNNNNNNNNNNN
?�

OO

jJ

xxppppppppppp

Db (E) Db (E)

and the functor G is an equivalence of categories.

We denote by perMM the full subcategory of perM whose objects are
the complexes with homologies in modM. The following lemma will allow
us to compute the Grothendieck group of perMM in section 6.2.3:

Lemma 6.6. The canonical t-structure on the derived category DMod M
restricts to a t-structure on perMM, whose heart is modM.

Proof. By [KV88], it is enough to show that for any object M• of perMM,
its truncation τ≤0M

• in DMod M belongs to perMM. Since M• is in
perMM, τ≤0M

• is bounded, and is thus formed from the complexes Hi(M•)
concentrated in one degree by taking iterated extensions. But, for any i,
the M-module Hi(M•) actually is an M-module. Therefore, by [KR07] (see
section 6.1.2), it is perfect as an M-module and it lies in perMM.
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The next lemma already appears in [Tab07]. For the convenience of the
reader, we include a proof.

Lemma 6.7. The Yoneda equivalence of triangulated categories from Hb (M)
to perM induces a triangle equivalence Hb

E−ac (M) −→ perMM.

Proof. We �rst show that the cohomology groups of an E-acyclic bounded
complex M vanish on P . Let P be a projective object in E and let E be a
kernel in E of the map Mn −→ Mn+1. Since M is E-acyclic, such an object
exists, and moreover, it is an image of the map Mn−1 −→ Mn. Any map
from P toMn whose composition withMn →Mn+1 vanishes factors through
the kernel E � Mn. Since P is projective, this factorization factors through
the de�ation Mn−1 � E.

P

vvl l l l l l l l

��

p
w

�



�
�
!

��

0

((PPPPPPPPPPPPPP

Mn−1

"" ""F
FF

FF
FF

FF
//Mn //Mn+1

E
==

=={{{{{{{{

Therefore, we have Hn(M )̂(P ) = 0 for all projective objects P , and Hn(M )̂
belongs to modM. Thus the Yoneda functor induces a fully faithful functor
from Hb

E−ac (M) to perMM. To prove that it is dense, it is enough to prove
that any object of the heart modM of the t-structure on perMM is in its
essential image.

But this was proved in [KR07, section 4] (see section 6.1.2).

Proposition 6.8. There is a triangle equivalence of categories

perM′M′ '−→ perMM

Proof. Since the categories Hb (P) and Hb
E−ac (M′) are left�right orthogonal

in Hb (M′), this is immediate from corollary 6.5 and lemma 6.7.

6.2.3 Grothendieck groups

For a triangulated (resp. additive, resp. abelian) category A, we denote by
Ktri

0 (A) or simply K0(A) (resp. Kadd
0 (A), resp. Kab

0 (A)) its Grothendieck
group (with respect to the mentioned structure of the category). For an
object A in A, we also denote by [A] its class in the Grothendieck group of
A.
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The short exact sequence of triangulated categories

0 −→ Hb
E−ac (M) −→ Hb (M) /Hb (P) −→ E −→ 0

given by proposition 6.3 induces an exact sequence in the Grothendieck
groups

(∗) K0

(
Hb
E−ac (M)

)
−→ K0

(
Hb (M) /Hb (P)

)
−→ K0

(
E
)
−→ 0.

Lemma 6.9. The exact sequence (∗) is isomorphic to an exact sequence

(∗∗) Kab
0

(
modM

) ϕ−→ Kadd
0

(
M
)
−→ K tri

0

(
E
)
−→ 0.

Proof. First, note that, by [Tab07], see also lemma 6.7, we have an isomor-
phism between the Grothendieck groups K0

(
Hb
E−ac (M)

)
and K0

(
perMM

)
.

The t-structure on perMM whose heart is modM, see lemma 6.6, in turn

yields an isomorphism between the Grothendieck groups Ktri
0

(
perMM

)
and

Kab
0

(
modM

)
. Next, we show that the canonical additive functor α from

M to Hb (M) /Hb (P) induces an isomorphism between the Grothendieck
groups Kadd

0

(
M
)
and Ktri

0

(
Hb (M) /Hb (P)

)
. For this, let us consider the

canonical additive functor M β−→ Hb (M) and the triangle functor γ from
Hb (M) to Hb (M). The following diagram describes the situation:

Hb (M) Hb (M)
γoo

��
M

β

OO

α //Hb (M) /Hb (P)

γ
ggP P P P P P

The functor γ vanishes on the full subcategory Hb (P), thus inducing a tri-
angle functor, still denoted by γ, from Hb (M) /Hb (P) to Hb (M). Further-
more, the functor β induces an isomorphism at the level of Grothendieck
groups, whose inverse K0(β)−1 is given by

Ktri
0

(
Hb (M)

)
−→ Kadd

0

(
M
)

[M ] 7−→
∑
i∈Z

(−1)i[M i].

As the group Ktri
0

(
Hb (M) /Hb (P)

)
is generated by objects concentrated

in degree 0, it is straightforward to check that the morphisms K0(α) and
K0(β)−1K0(γ) are inverse to each other.
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As a consequence of the exact sequence (∗∗), we have an isomorphism
between Ktri

0

(
E
)
and Kadd

0

(
M
)
/ Imϕ. In order to compute Ktri

0

(
E
)
, the

map ϕ has to be made explicit. We �rst recall some results from Iyama�
Yoshino [IY08] which generalize results from [BMR+06]: For any indecom-
posable M of M not in P , there exists M∗ unique up to isomorphism such
that (M,M∗) is an exchange pair, i.e.

a) M∗ is an indecomposable object, not isomorphic to M and

b) the full additive subcategory of C generated by M∗ and M/M is
cluster�tilting.

Moreover, there exist two (non-split) exchange triangles

M∗ → BM →M → ΣM∗ and M → BM∗ →M∗ → ΣM

We may now state the following:

Theorem 6.10. The Grothendieck group of the triangulated category E is the
quotient of that of the additive subcategory M by all relations [BM∗ ]− [BM ]:

K tri
0

(
E
)
' Kadd

0

(
M
)
/([BM∗ ]− [BM ])M .

Proof. We denote by SM the simple M-module associated to the indecom-
posable object M . This means that SM(M ′) vanishes for all indecomposable
objects M ′ in M not isomorphic to M and that SM(M) is isomorphic to k.
The abelian group Kab

0

(
modM

)
is generated by all classes [SM ]. In view

of lemma 6.9, it is su�cient to prove that the image of the class [(SM)⊕d]
under ϕ is [BM∗ ]− [BM ], where d is the dimension of E(M,ΣM∗). First note
that the M-module Ext1

E(?,M
∗)|M vanishes on the projectives ; it can thus

be viewed as an M-module, and as such, is isomorphic to (SM)⊕d. After
replacing BM and BM ′ by isomorphic objects of E , we can assume that the
exchange triangles M∗ → BM → M → ΣM∗ and M → BM∗ → M∗ → ΣM
come from con�ations M∗ // // BM

// //M and M // // BM∗ // //M∗. The
spliced complex

(· · · → 0 →M → BM∗ → BM →M → 0 → · · · )

denoted by C•, is then an E-acyclic complex, and it is the image of (SM)⊕d

under the functor modM ⊂ perMM ' Hb
E−ac (M). Indeed, we have two

long exact sequences induced by the con�ations above:

0 →M(?,M) →M(?, BM∗) → E(?,M∗)|M → Ext1
E(?,M)|M = 0 and
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E(?,M∗)|M � M(?, BM) →M(?,M) → Ext1
E(?,M

∗)|M→ Ext1
E(?, BM)|M.

Since BM belongs to M, the functor Ext1
E(?, BM) vanishes on M, and the

complex:

(C )̂ : (· · · → 0 →Mˆ→ (BM∗ )̂ → (BM )̂ →Mˆ→ 0 → · · · )

is quasi-isomorphic to (SM)⊕d.
Now, in the notations of the proof of lemma 6.9, ϕ

(
d[SM ]

)
is the im-

age of the class of the E-acyclic complex complex C• under the morphism
K0(β)−1K0(γ). This is [M ]− [BM ]+ [BM∗ ]− [M ] which equals [BM∗ ]− [BM ]
as claimed.

6.3 The generalized mutation rule

Let T and T ′ be two cluster tilting subcategories of C. Let Q and Q′ be the
quivers obtained from their Auslander�Reiten quivers by removing all loops
and oriented 2-cycles.

Our aim, in this section, is to give a rule relating Q′ to Q, and to prove
that it generalizes the Fomin�Zelevinsky mutation rule.
Remark:

. Assume that C has cluster tilting objects. Then it is proved in [BIRS,
Theorem I.1.6], without assuming the category C to be algebraic, that
the Auslander�Reiten quivers of two cluster tilting objects having all
but one indecomposable direct summands in common (up to isomor-
phism) are related by the Fomin�Zelevinsky mutation rule.

. To prove that the generalized mutation rule actually generalizes the
Fomin�Zelevinsky mutation rule, we use the ideas of the section 7
of [GLS06].

6.3.1 The rule

As in section 6.2, we �x a cluster�tilting subcategory T of C, and write M
for its preimage in E , so that T = M. De�ne Q to be the quiver obtained
from the Auslander�Reiten quiver ofM by deleting its loops and its oriented
2-cycles. Its vertex corresponding to an indecomposable object L will also
be labelled by L. We denote by aLN the number of arrows from vertex L to
vertex N in the quiver Q. Let BM be the matrix whose entries are given by
bLN = aLN − aNL.

Let RM be the matrix of 〈 , 〉a : K0(modM)×K0(modM) −→ Z in the
basis given by the classes of the simple modules.
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Lemma 6.11. The matrices RM and BM are equal: RM = BM.

Proof. Let L and N be two non-projective indecomposable objects in M.
Then dim Hom(SL, SN)− dim Hom(SN , SL) = 0 and we have:

〈[SL], [SN ]〉a = dim Ext1(SN , SL)− dim Ext1(SL, SN) = bL,N .

Let T ′ be another cluster�tilting subcategory of C, and let M′ be its
preimage in the Frobenius category E . Let (M ′

i)i∈I (resp. (Mj)j∈J) be rep-
resentatives for the isoclasses of non-projective indecomposable objects in
M′ (resp. M). The equivalence of categories perMM ∼−→ perM′M′ of
proposition 6.8 induces an isomorphism between the Grothendieck groups
K0(modM) andK0(modM′) whose matrix, in the bases given by the classes
of the simple modules, is denoted by S. The equivalence of categories
DMod M ∼−→ DMod M′ restricts to the identity on Hb (P), so that it
induces an equivalence perM/ perP ∼−→ perM′/ perP . Denote by projP
(resp. projM, resp. projM′) the full subcategory of modP (resp. ModM,
resp. ModM′) whose objects are the representable functors. Let T be
the matrix of the induced isomorphism from K0(projM)/K0(projP) to
K0(projM′)/K0(projP), in the bases given by the classes [M(?,Mj)], j ∈ J ,
and [M′(?,M ′

i)], i ∈ I. The matrix T is much easier to compute than the
matrix S. Its entries tij are given by the approximation triangles of Keller
and Reiten in the following way: For all j, there exists a triangle of the form

Σ−1Mj −→
⊕
i

βijM
′
i −→

⊕
i

αijM
′
i −→Mj.

Then, we have:

Theorem 6.12. a) (Generalized mutation rule) The following equalities
hold:

tij = αij − βij

and
BM′ = TBMT

t.

b) The category C has a cluster�tilting object if and only if all its cluster�
tilting subcategories have a �nite number of pairwise non-isomorphic
indecomposable objects.

c) All cluster�tilting objects of C have the same number of indecomposable
direct summands (up to isomorphism).
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Note that point c) was shown in [Iya07, 5.3.3(1)] (see also [BIRS, I.1.8])
and, in a more general context, in [DK08]. Note also that, for the generalized
mutation rule to hold, the cluster�tilting subcategories do not need to be
related by a sequence of mutation.

Proof. Assertions b) and c) are consequences of the existence of an isomor-
phism between the Grothendieck groups K0(modM) and K0(modM′). Let
us prove the equalities a). Recall from [Pal08, section 3.3], that the antisym-
metric bilinear form 〈 , 〉a on modM is induced by the usual Euler form
〈 , 〉E on perMM. The following commutative diagram

perMM× perMM

〈 , 〉E
''PPPPPPPPPPPPP
' // perM′M′ × perM′M′

〈 , 〉E
vvmmmmmmmmmmmmmm

Z ,

thus induces a commutative diagram

K0(modM)×K0(modM)

〈 , 〉a
))SSSSSSSSSSSSSSSS
S×S // K0(modM′)×K0(modM′)

〈 , 〉a
uukkkkkkkkkkkkkkkkk

Z .

This proves the equality RM = StRM′S, or, by lemma 6.11,

(1) BM = StBM′S.

Any object of perMM becomes an object of perM/ perP through the com-
position perMM ↪→ perM � perM/ perP . Let M and N be two non-
projective indecomposable objects in M. Since SN vanishes on P , we have

HomperM/ perP
(
M(?,M), SN

)
= HomperM

(
M(?,M), SN

)
= HomModM

(
M(?,M), SN

)
= SN(M).

Thus dim HomperM/ perP
(
M(?,M), SN

)
= δMN , and the commutative dia-

gram

perM/ perP × perM/ perP

RHom **UUUUUUUUUUUUUUU
' // perM′/ perP × perM′/ perP

RHomttiiiiiiiiiiiiiii

per k ,
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induces a commutative diagram

K0(projM)/K0(projP)×K0(modM)

Id
))TTTTTTTTTTTTTTTTT
T×S // K0(projM′)/K0(projP)×K0(modM′)

Id
uujjjjjjjjjjjjjjjjj

Z .

In other words, the matrix S is the inverse of the transpose of T :

(2) S = T -t

Equalities (1) and (2) imply what was claimed, that is

BM′ = TBMT
t .

Let us compute the matrix T : Let M be indecomposable non-projective
in M, and let

Σ−1M −→M ′
1 −→M ′

0 −→M

be a Keller�Reiten approximation triangle of M with respect to M′, which
we may assume to come from a con�ation in E . This con�ation yields a
projective resolution

0 −→ (M ′
1)̂ −→ (M ′

0)̂ −→ E(?,M)|M′ −→ Ext1
E(?,M

′
1)|M′ = 0.

so that T sends the class of Mˆ to [(M ′
0)̂ ] − [(M ′

1)̂ ]. Therefore, tij equals
αij − βij.

6.3.2 Examples

Example 1

As a �rst example, let C be the cluster category associated with the quiver of
type A4: 1 → 2 → 3 → 4. Its Auslander�Reiten quiver is the Moebius strip:
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Let M = M1⊕M2⊕M3⊕M4, where the indecomposable Mi corresponds to
the vertex labelled by i in the picture. Let also M ′ = M ′

1 ⊕M ′
2 ⊕M ′

3 ⊕M ′
4,
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whereM ′
1 = M1, and where the indecomposableM ′

i corresponds to the vertex
labelled by i′ if i 6= 1. One easily computes the following Keller�Reiten
approximation triangles:

Σ−1M1 −→ 0 −→M ′
1 −→M1,

Σ−1M2 −→M ′
2 −→M ′

1 −→M2,
Σ−1M3 −→M ′

4 −→ 0 −→M4 and
Σ−1M4 −→M ′

4 −→M ′
3 −→M4;

so that the matrix T is given by:

T =


1 1 0 0
0 −1 0 0
0 0 0 1
0 0 −1 −1

 .

We also have

BM ′ =


0 −1 1 0
1 0 −1 0

−1 1 0 −1
0 0 1 0

 .

Let maple compute

T -1BM ′T -t =


0 1 0 0

−1 0 −1 1
0 1 0 −1
0 −1 1 0

 ,

which is BM .

Example 2

Let us look at a more interesting example, where one cannot easily read the
quiver of M ′ from the Auslander�Reiten quiver of C. Let C be the cluster
category associated with the quiver Q:

1 0
// //oooo 2.

For i = 0, 1, 2, let Mi be (the image in C of) the projective indecomposable
(right) kQ-module associated with vertex i. Their dimension vectors are re-
spectively [1, 0, 0], [2, 1, 0] and [2, 0, 1]. LetM be the direct sumM0⊕M1⊕M2.
Let M ′ be the direct sum M ′

0 ⊕M ′
1 ⊕M ′

2, where M
′
0,M

′
1 and M ′

2 are (the
images in C of) the indecomposable regular kQ-modules with dimension vec-
tors [1, 2, 0], [0, 1, 0] and [2, 4, 1] respectively. As one can check, using [Kelb],
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M and M ′ are two cluster�tilting objects of C. Computation of Keller�
Reiten approximation triangles, amounts to computing projective resolutions
in mod kQ, viewed as mod EndC(M). One easily computes these projective
resolutions, by considering dimension vectors:

0 −→ 8M0 −→M2 ⊕ 4M1 −→M ′
2 −→ 0,

0 −→ 2M0 −→M1 −→M ′
1 −→ 0 and

0 −→ 3M0 −→ 2M1 −→M ′
0 −→ 0.

By applying the generalized mutation rule, one gets the following quiver

1
(6)

����
��

��
��

0

(2) ��>
>>

>>
>>

2,

(4)

OO

which is therefore the quiver of EndC(M
′) since by [BMR08], there are no

loops or 2-cycles in the quiver of the endomorphism algebra of a cluster�
tilting object in a cluster category.

6.3.3 Back to the mutation rule

We assume in this section that the Auslander�Reiten quiver of M has no
loops or 2-cycles. Under the notations of section 6.3.1, let k be in I and let
(Mk,M

′
k) be an exchange pair (see section 6.2.3). We choose M′ to be the

cluster�tilting subcategory of C obtained fromM by replacingMk byM
′
k, so

that M ′
i = Mi for all i 6= k. Recall that T is the matrix of the isomorphism

K0(projM)/K0(projP) −→ K0(projM′)/K0(projP).

Lemma 6.13. Then, the (i, j)-entry of the matrix T is given by

tij =

{
−δij +

|bij |+bij
2

if j = k
δij else.

Proof. Let us apply theorem 6.12 to compute the matrix T . For all j 6= k, the
triangle Σ−1Mj → 0 → M ′

j = Mj is a Keller�Reiten approximation triangle
of Mj with respect to M′. We thus have tij = δij for all j 6= k. There is a
triangle unique up to isomorphism

M ′
k −→ BMk

−→Mk −→ ΣM ′
k
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where BMk
−→Mk is a right M∩M′-approximation. Since the Auslander�

Reiten quiver of M has no loops and no 2-cycles, BMk
is isomorphic to the

direct sum:
⊕

i∈I(M
′
j)
aik . We thus have tik = −δik+aik, which equals |bik|+bik2

.
Remark that, by lemma 7.1 of [GLS06], as stated in section 6.1.1, we have
T 2 = Id, so that S = T t and

sij =

{
−δij +

|bij |−bij
2

if i = k
δij else.

Theorem 6.14. The matrix BM′ is obtained from the matrix BM by the
Fomin�Zelevinsky mutation rule in the direction M .

Proof. By [BFZ05] (see section 6.1.1), and by lemma 6.13, we know that the
mutation of the matrix BM in direction M is given by TBM′T t, which is
BM, by the generalized mutation rule (theorem 6.12).

6.3.4 Cluster categories

In [BKL08], the authors study the Grothendieck group of the cluster cate-
gory CA associated with an algebra A which is either hereditary or canonical,
endowed with any admissible triangulated structure. A triangulated struc-
ture on the category CA is said to be admissible in [BKL08] if the projection
functor from the bounded derived category Db(modA) to CA is exact (tri-
angulated). They de�ne a Grothendieck group K0(CA) with respect to the
triangles induced by those of Db(modA), and show that it coincides with the
usual Grothendieck group of the cluster category in many cases:

Theorem 6.15. [Barot�Kussin�Lenzing] We have K0(CA) = K0(CA) in each
of the following three cases:

(i) A is canonical with weight sequence (p1, . . . , pt) having at least one even
weight.

(ii) A is tubular,

(iii) A is hereditary of �nite representation type.

Under some restriction on the triangulated structure of CA, we have the
following generalization of case (iii) of theorem 6.15:

Theorem 6.16. Let A be a �nite-dimensional hereditary algebra, and let
CA be the associated cluster category with its triangulated structure de�ned
in [Kel05]. Then we have K0(CA) = K0(CA).
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Proof. By lemma 3.2 in [BKL08], this theorem is a corollary of the following
lemma.

Lemma 6.17. Under the assumptions of section 6.3.1, and if moreover M
has a �nite number n of non-isomorphic indecomposable objects, then we
have an isomorphism K0(C) ' Zn/ ImBM.

Proof. This is a restatement of theorem 6.10.
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