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Résumé

En généralisant la correspondance de Landau–Ginzburg/Calabi–Yau pour les hypersurfaces,
nous pouvons relier une intersection complète de Calabi–Yau à un modèle hybride de Landau–
Ginzburg : une famille de singularités isolées au-dessus d’une droite projective. Pendant ces
dernières années, Fan, Jarvis et Ruan ont défini des invariants quantiques pour les singula-
rités de ce type, et Clader et Clader–Ross ont fourni une équivalence entre ces invariants et
les invariants de Gromov–Witten d’intersections complètes. De cette manière, la cohomologie
quantique donne un identification des groupes de cohomologie de la intersection complète de
Calabi–Yau et du modèle hybride de Landau–Ginzburg. Il n’est pas clair comment relier cela
à l’isomorphisme connu qui découle de certaines équivalences dérivées dues à Segal, Shipman,
Orlov et Isik. Nous répondons à cette question pour les intersections complètes de Calabi–Yau
de deux cubiques.

Mots-clefs

Géométrie algébrique ; symétrie miroir ; théorie de Gromov–Witten ; théorie de Fan–Jarvis–
Ruan–Witten ; correspondance de Landau–Ginzburg/Calabi–Yau ; factorisation matricielles ;
équivalences d’Orlov.



Abstract

By generalizing the Landau–Ginzburg/Calabi–Yau correspondence for hypersurfaces, we
can relate a Calabi–Yau complete intersection to a hybrid Landau–Ginzburg model: a family
of isolated singularities fibered over a projective line. In recent years, Fan, Jarvis and Ruan
have defined quantum invariants for singularities of this type, and Clader and Clader–Ross have
provided an equivalence between these invariants and Gromov–Witten invariants of complete
intersections. In this way, quantum cohomology yields an identification of the cohomology
groups of the Calabi–Yau and of the hybrid Landau–Ginzburg model. It is not clear how
to relate this to the known isomorphism descending from certain derived equivalences (due to
Segal, Shipman, Orlov and Isik). We answer this question for Calabi–Yau complete intersections
of two cubics.

Keywords

Algebraic geometry; mirror symmetry; Gromov–Witten theory; Fan–Jarvis–Ruan–Witten the-
ory; Landau–Ginzburg/Calabi–Yau correspondence; matrix factorization; Orlov equivalence.
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Introduction

The Landau–Ginzburg/Calabi–Yau (LG/CY) correspondence in string theory describes a
relationship between the sigma model on a Calabi–Yau hypersurface and the Landau–Ginzburg
model whose potential is the defining equation of the Calabi–Yau variety. Following Witten
[47], we can present the LG/CY correspondence in a purely algebro-geometric way starting
from a variation of stability conditions in geometric invariant theory (GIT). From this point
of view, we can naturally generalize the LG/CY correspondence to the Calabi–Yau complete
intersections.

The variation of stability conditions leads to two different curve-counting theories. Analytic
continuation naturally allows us to compare them. A natural question arises: what is the
interpretation of the linear transformation matching the generating functions encoding the
two theories? The answer given in this thesis for Calabi–Yau complete intersections of two
cubics is an equivalence of triangulated categories known as Orlov equivalence applied to the
two GIT quotients. More precisely GIT quotients are classically interpreted as chambers and
the transition between them is usually phrased in terms of window-transitions. Each of these
transitions is related to a specialization of Orlov’s functor (see §3.3). This is a mathematical
object of independent interest not directly related to curve-counting theories. In particular it
sheds new light on the LG/CY correspondence.

The isomorphism of cohomology groups

We start from r homogeneous polynomials W1, . . . ,Wr of the same degree d defining a
smooth complete intersection

i : Xd,...,d ↪→ PN−1.

The complete intersection Xd,...,d is Calabi–Yau 1 as soon as dr equals N . Following a standard
procedure (see Witten [47], we also refer to Herbst–Hori–Page [30]) we can cast this setup

1. Here the Calabi–Yau condition is meant in the weak sense: the canonical bundle ω is trivial.
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within a representation of C∗ as follows. Consider a C∗-action on the vector space

V = CN × Cr = SpecC[x1, . . . , xN , p1, . . . , pr]

with weight 1 on the first N variables, and weight −d on the following r variables:

λ · (x1, . . . , xN , p1, . . . , pr) = (λx1, . . . , λxN , λ
−dp1, . . . , λ

−dpr).

GIT provides a systematic description of the geometric quotients that can be obtained from
the action C∗×V → V . Indeed we can choose two different GIT stability conditions to identify
two maximal open sets within Ω ⊂ V whose quotient [Ω/C∗] is a smooth Deligne–Mumford
stack. For

Ω+ = V \ (x1 = · · · = xN = 0) and Ω− = V \ (p1 = · · · = pr = 0),

we obtain the total space X+ of the vector bundle O(−d)⊕r on PN−1 and the total space X−
of the vector bundle O(−1)⊕N on P(d, . . . , d) (the weighted projective stack with an overall
stabilizer µd, whose coarse space equals Pr−1).

The Calabi–Yau complete intersection Xd,...,d, or rather its cohomology, arises as the coho-
mology of X+ relative to the generic fiber of

W =
r∑
j=1

pjWj : X+ −−−−→ C. (1)

In fact, we have isomorphisms

H∗−2r(X+,W
−1(1)) ∼= H∗−2r(PN−1,PN−1\Xd,...,d) ∼= H∗(Xd,...,d),

where the first isomorphism comes from retraction, the second isomorphism is the Thom iso-
morphism.

For X−, the same procedure yields a family of isolated singularities over P(d, . . . , d):

X−
W = ∑r

j=1 pjWj
//

��

C

P(d, . . . , d)

. (2)

We call it a hybrid Landau–Ginzburg model (X−,W ). It is the analogue of the µd-invariant
polynomial

[CN/µd] W //

��

C

Bµd = P(d)
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defining the Landau–Ginzburg singularity model of Calabi–Yau hypersurface in [10, 12].
Since X− is an orbifold, we consider its orbifold Chen–Ruan cohomology (see 0.4) relative

to the generic fiber of W . It is isomorphic to the the cohomology group of Xd,...,d via the
isomorphism

H∗CR(X−,W−1(1)) ∼= H∗(X+,W
−1(1))

coming from the variation of GIT stability condition (see Chiodo–Nagel [11] in higher general-
ity).

The isomorphism
H∗(Xd,...,d) ∼= H∗−2r

CR (X−,W−1(1))

is an isomorphism of graded vector spaces. It is not an isomorphism of rings. The subject of
this thesis is an enhanced correspondence in terms of curve-counting theories.

Curve-counting theories

For the Calabi–Yau complete intersection Xd,...,d, we consider the quantum product, a de-
formation of the cup product on H∗(Xd,...,d). It can be defined via the Gromov–Witten (GW)
theory (see [28]).

For the Landau–Ginzburg model (X−,W ), a curve-counting theory was constructed by
Fan–Jarvis–Ruan in [24, 25, 26, 27]. We will use their definition, which we will refer to as
FJRW theory, see §1.2 and §1.3. Since the first definition of FJRW theory [24], several alter-
native constructions have been provided: Polishchuk–Vaintrob [41], Chang–Li–Li [9], Ciocan-
Fontanine–Favero–Guéré–Kim–Shoemaker [13].

According to the LG/CY correspondence, it is natural to conjecture that the genus-0 GW
theory of the Calabi–Yau complete intersection and the genus-0 FJRW theory of (X−,W ) are
equivalent in the following sense.

The genus-0 GW theory of the Calabi–Yau complete intersection is determined by a function
IGW taking values in the subspace

HGW := i∗H(Pr−1) ⊂ H∗(Xd,...,d)

of classes coming from the ambient space Pr−1. Similarly a subspace

HFJRW ⊂ H∗−2r
CR (X−,W−1(1)).

is defined (see §1.2.3). The genus-0 FJRW theory of (X−,W ) is determined by a function IFJRW

taking values in HFJRW. The two theories are equivalent in the sense that IGW matches IFJRW

up to an analytic continuation and a linear map.
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The above conjecture was proven in the hypersurface case (i.e. r = 1) by Chiodo–Ruan
[12], Chiodo–Iritani–Ruan [10] and Lee–Priddis–Shoemaker [37], and generalized to certain
complete intersections (i.e. r > 1) by Clader [14] and Clader–Ross [16]. Chiodo–Iritani–Ruan
[10] provided a geometric interpretation in the hypersurface case in terms of Orlov functor. We
focus on the complete intersection case.

In this thesis, we simplify the I-functions with the help of Γ-classes introduced by Iritani
[32], and compute the explicit form of a discrete family of linear maps

Ul : HFJRW → HGW (3)

indexed by l ∈ Z relating IFJRW (1.24) and IGW (1.23). Then, we can relate Ul to categorical
equivalences.

Equivalences of categories

A matrix factorization of a polynomial P ∈ C[x1, . . . , xn] is the datum of C[x1, . . . , xn]-
module homomorphism f1 and f2 between free C[x1, . . . , xn]-modules E1 and E2

E1
f1
// E2

f2oo

such that f1 ◦f2 = P · IdE2 and f2 ◦f1 = P · IdE1 . A generalized version is a matrix factorization
of a function over a stack; it can be found in [42, 43]. The graded matrix factorizations of a
given function form a triangulated category, we call it the derived category of graded matrix
factorizations [40, 42, 43].

Orlov [40] proved that there is a discrete family of equivalences of triangulated categories
indexed by Z between the derived category of graded matrix factorizations of a homogeneous
polynomial P and the bounded derived category of coherent sheaves on the Calabi–Yau hyper-
surface defined by P = 0.

We use the generalization of Orlov’s result to the complete intersections. There is a discrete
family of equivalences

Orlt : DMF(X−,W )→ Db(Xd,...,d) (4)

between the derived category of graded matrix factorizations of the function W on X− and the
bounded derived category of coherent sheaves on the Calabi–Yau complete intersection Xd,...,d.
These equivalences are constructed by composing two functors. One of them is due to Segal
[42]; the other one is due to Shipman [43], see also Isik [33] for an alternative construction.

In this thesis, we find a method to compute the functor Orlt explicitly. The strategy is
stated in §3.4.
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Main result

A physics paper [30] by Herbst–Hori–Page predicts that the LG/CY correspondence is
related to equivalences of categories. In the hypersurface case, it was verified by Chiodo–
Iritani–Ruan in [10]. We study the case of complete intersection of two cubics in P5, i.e. the
case N = 6, d = 3, r = 2.

Let X3,3 be the complete intersection of two cubics in P5. Let Db(X3,3) be the bounded
derived category of coherent sheaves on X3,3. The Chern character on Db(X3,3) takes values in
HGW.

We define a subcategory (see §4.4)

DMF(X−,W )nar ⊂ DMF(X−,W );

and we define a Chern character on DMF(X−,W )nar taking values in HFJRW (see §4.2).
Our main result states that the categorical equivalences (4) match the linear maps (3)

relating the two curve-counting theories.

Theorem 0.1 (Theorem 4.11). For every integer t, the following diagram commutes

DMF(X−,W )nar
Orlt //

inv∗ ch
��

Db(X3,3)
inv∗ ch
��

HFJRW
Ut // HGW,

where inv∗ on the right/left side is the involution on HGW /FJRW induced by the canonical invo-
lution of the inertia stack of X3,3/X− (see §0.4).

Our method provides an effective algorithm for any N, d, r. Howerer, the complexity of the
analytic continuation prevents us from giving a general proof in terms of closed formulae. So
we restrict ourselves to the case N = 6, d = 3, r = 2, the simplest case where the complete
intersection is a Calabi–Yau 3-fold but not a hypersurface.

In the light of Theorem 0.1, we interprete the monodromies of the I-function in terms of
auto-equivalences of the derived category. It is interesting to see that, in the case of Calabi–Yau
complete intersection of four conics, we have maximally unipotent type monodromy on both
LG and CY side. This was also observed by Joshi and Klemm [34].





Notations

— µr is the group of rth roots of unit. We denote e 2πi
r by ζr. We write ζ3 as ζ when there

is no ambiguity.
— P(w1, . . . , wk) is the weighted projective stack with weights w1, . . . , wk. It is the quotient

stack [(Ck − {0})/C∗], where the C∗-action on Ck − {0} is given by

λ · (x1, . . . , xk) = (λw1x1, . . . , λ
wkxk).

— Xd,...,d is a Calabi–Yau complete intersection in the weighted projective stack P(w1, . . . , wN),
see §1.2.1; in particular, X3,3 is the complete intersection of two cubics in P5.

— M
1
d
g,n(Pr−1, β) is the moduli space of Landau–Ginzburg stable map introduced in Defi-

nition 1.2.
— H∗(X) is the singular cohomology of X with coefficients in C.
— H∗+k(X) is the graded vector space obtained by shifting the grading on H∗(X) by k;

i.e. the degree-n part of H∗+k(X) is isomorphic to the degree-(n− k) part of H∗(X).
— H∗(X,Z) is the singular cohomology of X with coefficients in Z.
— H∗CR(X) is the Chen–Ruan cohomology of X with coefficients in C, see §0.4.
— X+ and X− are two GIT quotients introduced in example 0.11.
— O(k)[l] are equivariant line bundles over both X+ and X−; they are introduced in §3.2.
— K+ and K− are two Koszul matrix factorizations over both X+ and X−; they are intro-

duced in §3.2.
— HGW is the ambient part of the state space of GW theory of X3,3 , see §1.1.
— HFJRW is the narrow part of the state space of FJRW theory of the case of interest, see

§1.2.3.
— 1(1), 1(2), H(1) and H(2) are elements of HFJRW; 1(0) and H(0) are formally added ele-

ments, see Remark 2.7.
— H(k) and H(l) represent the same element if k ≡ l mod 3; same for 1(k).
— Ul is a discrete family of linear maps between HFJRW and HGW; they are introduced in

the definition 2.3.
— DMFC∗R(X,F ) is the derived category of graded matrix factorizations of a function F
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over X, see Definition 3.4.
— Orlk is a discrete family of equivalences of triangulated categories between DMFC∗R(X−,W )

and DMFC∗R(X+,W ); they are introduced in §3.3.
— Orlmod

k is a modified family of Orlk, see §4.4.



Preliminaries

0.1 Moduli spaces curves

We work over the field of complex numbers C.

Definition 0.2. A nodal curve is a proper and connected curve for which all singularities have
a neighbourhood isomorphic to a neighbourhood of the origin in

{(x, y) ∈ C2 : xy = 0}.

The singularities are called nodes.

Definition 0.3. A genus-g n-pointed nodal curve (over a scheme S) is the data of a proper and
flat morphism π : C → S with sections σi : S → C for i ∈ {1, . . . , n}, satisfying the following
conditions:

1. each geometric fiber Cx of π is a projective, connected, reduced nodal curve of arithmetic
genus g;

2. the images of σi are disjoint and lies within the smooth locus of π.

If π′ : C ′ → S ′, σ′i : S ′ → C ′, i = 1, . . . , n is another n-pointed genus-g nodal curve, a
morphism between them is a pull-back square

C
F //

π
��

C ′

π′

��
S

f //

σi

VV

S ′

σ′i

VV

such that F ◦ σi = σ′i ◦ f for all i = 1, . . . , n.
We say the n-pointed curve π : C → S, σi : S → C, i = 1, . . . , n is stable if each geometric

fiber (Cx, σ1(x), . . . , σn(x)) has finitely many automorphisms; or equivalently, the log-canonical
sheaf

ωlog,Cx := ωCx(σ1(x) + · · ·+ σn(x))

is ample.
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We can define a contravariant functorMg,n from the category of algebraic schemes over C
to the category of sets. For a scheme S, letMg,n(S) be the set of isomorphism classes of stable
n-pointed genus-g nodal curve over S; for a morphism of scheme f : S → S ′, a morphism of set
Mg,n(S ′)→Mg,n(S) can be defined by pulling back π : C → S ′ to S. It is proven by Deligne
and Mumford [23] thatMg,n can be represented by a proper Deligne–Mumford stack (see [3]
for a complete definition). We call it the moduli of stable curves.

Definition 0.4. Let X be an algebraic scheme, a map from a genus-g n-pointed nodal curve to
X is the data of a genus-g n-pointed nodal curve π : C → S, σi : S → C, i = 1, . . . , n, together
with a morphism µ : C → X. A morphism between two maps from genus-g n-pointed nodal
curve to X is given by the following commutative diagram:

X

C

µ

77

F //

π
��

C ′

π′

��

µ′

>>

S
f //

σi

VV

S ′

σ′i

VV

A map from a genus-g n-pointed nodal curve to X is stable if each geometric fiber has finitely
many automorphisms; or equivalently, the sheaf

ωlog,Cx ⊗ f ∗M

is ample for any sufficiently ample sheaf M on X. We say a map from genus-g n-pointed nodal
curves to X is of degree β ∈ H2(X,Z) if µ∗([Cx]) = β for every geometric fiber Cx.

Fix an homology class β ∈ H2(X,Z), we can define a contravariant funtor Mg,n(X, β)
sending an algebraic scheme S to the set of isomorphism classes of stable maps from genus-g n-
pointed nodal curves over S to X of degree β. The functorMg,n(X, β) can be also represented
by a proper Deligne–Mumford stack. We call it the moduli of stable maps; it is constructed by
Kontsevich [36], see also [3, 28].

Remark 0.5. If X is a point, then we haveMg,n(X, 0) =Mg,n.

0.2 Twisted curve

In this thesis, we need to consider moduli problems of rth roots of certain line bundles.
However, these moduli spaces are not proper if we only work on nodal curves. To fix this, we
give the definition of twisted nodal curve, which is interesting on its own right.
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Definition 0.6. [1] A twisted genus-g n-pointed nodal curve (over a scheme S) is a proper and
flat morphism of Deligne–Mumford stacks C → S with n closed substacks Σi ⊂ C, such that

1. the fibers are purely 1-dimensional with at most nodal singularities;

2. the substacks Σi are étale gerbes banded by µr over S (see Remark 0.7);

3. the coarse moduli space (C,Σi) forms a genus-g n-pointed nodal curve over S;

4. the morphism to coarse moduli space C → C is an isomorphism away from the nodes
and the substacks Σi;

5. the local picture at a node is given by [U/µr]→ T , where
— T = SpecA,
— U = SpecA[z, w]/(zw − t) for some t ∈ A,
— the action of µr is given by (z, w) 7→ (ξrz, ξ−1

r w);

6. the local picture at a marked point is given by [U/µr]→ T , where
— T = SpecA,
— U = SpecA[x],
— the action of µr is given by x 7→ ξrx.

Remark 0.7. Recall that an étale gerbe banded by µr is a stack which locally looks like
X × Bµr, where Bµr is the classifying stack of principal µr-bundles. The stack Bµr can be
represented as the quotient stack of the µr-action on a point ∗, i.e.

Bµr = [∗/µr].

Let L be a line bundle over a twisted curve C. Then there exist m1, . . . ,mn ∈ Zr, such that
local picture of L at the ith marked point is given by [V/µr]→ [U/µr], where

— U = SpecA[x],
— V = SpecA[x, y]
— the action of µr is given by (x, y) 7→ (ξrx, ξmir y).

We call mi the multiplicity of L at the ith marked point.

Similarly, the local picture of L at a node is given by [V/µr]→ [U/µr], where
— U = SpecA[z, w]/(zw − t) for some t ∈ A,
— V = SpecA[z, w, y]/(zw − t),
— the action of µr is given by (z, w, y) 7→ (ξrz, ξ−1

r w, ξmr y).
We call m ∈ Zr the multiplicity of L at this node. Note that if we change the order of z and
w, the multiplicity changes from m to −m in Zr.
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0.3 Geometric invariant theory

Definition 0.8. Let L be a line bundle on X with the projection π : L → X, and let G be a
reductive algebraic group with an action σ on X . A G-linearisation of L is an extension of
the action σ on X to an action σ on L such that the diagram

G× L
id×π

��

σ // L

π
��

G×X σ
// X

commutes, and G acts linearly on each fiber. We denote the line bundle L with a G-linearisation
χ by Lχ.

Definition 0.9 ([39]). Let Lχ be a G-linearized line bundle on X. We define the following
conditions.

1. Semistability. A geometric point x ∈ X is said to be semistable if there exists a section
s ∈ H0(X,L⊗nχ ) for some n > 0, such that s(x) 6= 0, Xs = {s 6= 0} is affine, and s is
G-invariant.

2. Stability. A geometric point x ∈ X is said to be stable if it is semistable and the action
of G on Xs is closed.

3. Unstability. A geometric point x ∈ X is said to be unstable if it is not semistable.

The sets of semistable, stable and unstable points are denoted by Xss
G (Lχ), Xs

G(Lχ) and Xus
G (Lχ)

respectively.

Definition 0.10. The GIT quotient stack [X//χG] is defined to be the stack

[X//χG] := [Xss
G (Lχ)/G].

Example 0.11. Let G = C∗, consider a G-action on the vector space

V = CN × Cr = SpecC[x1, . . . , xN , p1, . . . , pr]

with weights wi on the first N variables xi, and weights −dj on the following r variables pj:

λ · (x1, . . . , xN , p1, . . . , pr) = (λw1x1, . . . , λ
wNxN , λ

−d1p1, . . . , λ
−drpr),

where w1, . . . , wN , d1, . . . , dr are positive integers. A character θ : G → C∗ determines a G-
linearisation of the trivial line bundle L over V .
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Positive phase. Consider the character θ1 : G→ C∗ defined by

θ1(λ) = λk, k > 0.

We claim that if α ∈ (CN\{0})×Cr, then α is semistable. Without loss of generality, we can
assume the first component of α is not zero. Consider the section s ∈ H0(V, L⊗w1

θ1 ) given by

(x1, . . . , xN , p1, . . . , pr) 7→ xk1.

The section s satisfies s(α) 6= 0, and s is G-invariant in H0(V, L⊗w1
θ1 ); so α is semistable by

definition.
On the other hand, if α 6∈ (CN\{0}) × Cr, i.e. x1 = · · · = xN = 0, then α is unstable.

This happens because, for any positive l, every G-invariant section of L⊗lθ1 vanishes at α. Every
section of L⊗lθ1 is a polynomial on CN+r. The sections s satisfying s(α) 6= 0 contains pn1

1 . . . pnrr

for some nonnegative integers n1, . . . , nr. Such sections are not G-invariant in H0(V, L⊗lθ1 ) for
any l > 0. Therefore we get

V ss
G (Lθ1) = (CN\{0})× Cr

and
[V//θ1C∗] = [(CN\{0})× Cr/C∗].

This is the total space of the vector bundle
r⊕
i=1
O(−di)

over the weighted projective space P(w1, . . . , wN). We denote it by X+.

Negative phase. Consider another character θ2 : G→ C∗ defined by

θ2(λ) = λ−k, k > 0.

By the same argument as above, we get

V ss
G (Lθ2) = CN × (Cr\{0}).

and
[V//θ2C∗] = [CN × (Cr\{0})/C∗].

This is isomorphic to the total space of the vector bundle
N⊕
i=1
O(−wi)

over the weighted projective space P(d1, . . . , dr). We denote it by X−.



24 Preliminaries

Remark 0.12. Note that there is a change of sign in the identification of X− with the total
space of the vector bundle

N⊕
i=1
O(−wi)

over P(d1, . . . , dr). It is somehow better to understand X− as the total space of

N⊕
i=1
O(wi)

over “P(−d1, . . . ,−dr)”.

0.4 Orbifold Chen–Ruan cohomology

Let X be a smooth Deligne–Mumford stack over C, and let IX be the inertia stack of X .
A point on IX is given by a pair (x, g) of a point x ∈ X and g ∈ Aut(x). Let T be the index
set of components of IX , then we can write

IX =
⊔
v∈T
Xv.

There is a canonical involution
inv : IX → IX

defined by
(x, g) 7→ (x, g−1).

Take a point (x, g) ∈ IX and let

TxX =
⊕

0≤f<1
(TxX )f

be the eigenvalue decomposition of TxX with respect to the action given by g, where g acts on
(TxX )f by e2πif . We define

a(x,g) :=
∑

0≤f<1
f dim(TxX )f .

This number is independent of the choice of (x, g) ∈ Xv, so we can associate a rational number
av to each connected component Xv of IX . This is called age-shifting number.

Definition 0.13. The Chen–Ruan cohomology group of X is the direct sum of the singular
cohomology of Xv, v ∈ T with coefficients in C, together with the age-shift in gradings:

H∗CR(X ,C) :=
⊕
v∈T

H∗+2av(Xv,C).
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We will omit C in the notation of cohomology groups with coefficients in C.
The Poincaré pairing for α, β ∈ H∗CR(X ) is defined by

(α, β) :=
∫
IX
α ∧ inv∗β.

For an orbifold vector bundle Ẽ on the inertia stack IX , we have an eigenbundle decompo-
sition of Ẽ|Xv

Ẽ|Xv =
⊕

0≤f<1
Ẽv,f

with respect to the action of the stabilizer of Xv, where Ẽv,f is the subbundle with eigen-
value e2πif . Let pr : IX → X be the projection. For an orbifold vector bundle E on X , let
{δv,f,i}1≤i≤lv,f be the Chern roots of (pr∗E)v,f , where lv,f is the dimension of (pr∗E)v,f .

Definition 0.14. We define some H∗CR(X )-value characteristic classes of an orbifold vector
bundle E on X :

— The Chern character of E is defined by

ch(E) :=
⊕
v∈T

∑
0≤f<1

e2πif ch ((pr∗E)v,f ) .

— The Todd class of E is defined by

Td(E) :=
⊕
v∈T

∏
0<f<1

1≤i≤lv,f

1
1− e−2πife−δv,f,i

∏
1≤i≤lv,0

δv,0,i
1− e−δv,0,i .

— The Gamma class of E is defined in [32], which is

Γ(E) :=
⊕
v∈T

∏
0≤f<1

lv,f∏
i=1

Γ(1− f + δv,f,i).

The Gamma function on the right-hand side should be expanded in series at 1− f , i.e.

Γ(1− f + δv,f,i) = Γ(1− f) + Γ′(1− f)δv,f,i + 1
2Γ′′(1− f)δ2

v,f,i + . . . .

Proposition 0.15 (Grothendieck–Riemann–Roth formula [46]). Let X and Y be Deligne–
Mumford stacks with quasiprojective coarse moduli spaces and f : X → Y a proper morphism
which factors as

f = g ◦ i,

where i : X → P is a closed regular immersion and g : P → Y is a smooth morphism. Assume
that every coherent sheaf on X and Y is a quotient of a vector bundle. Let E ∈ K0(X ), then

ch(f∗E) = If∗(ch(E) Td(Tf )),

where f∗ is the K-theoretic pushforward and If : IX → IY is the map induced by f .
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0.5 Structure of the thesis

In §1, we introduce GW theory and FJRW theory; we show these two theories are related
via GIT; we state Clader’s result [14] on relating these two theories by analytic continuation.

In §2, we carry out the analytic continuation explicitly; we find linear maps relating GW
theory and FJRW theory.

In §3, we introduce the notion of matrix factorizations; we introduce categorical equivalences
between derived categories of matrix factorizations constructed by Segal [42] and Shipman [43];
in particular, we find a way to compute these equivalences explicitly.

In §4, we prove our main result stating the linear maps find in §2 are compatible with the
categorical equivalences introduced in §3; we apply our result to study the monodromy of a
local system; we also discuss the relation between our main result and the result of Coates,
Iritani and Jiang [19] on crepant transformation conjecture.



Chapter 1

Enumerative theories

We introduce the Gromov–Witten (GW) theory and the Fan–Jarvis–Ruan–Witten theory
in this chapter. We are particularly interested in two special cases; one of them is the genus-0
Gromov–Witten theory of the complete intersection X3,3 of two cubics in P5, the other one is
a genus-0 Fan–Jarvis–Ruan–Witten (FJRW) theory constructed by Clader in [14]. We recall
Clader’s result stating that these two theories are related to each other in §1.5. A more general
theory constructed by Fan, Jarvis and Ruan is introduced in §1.3. We explain how the above
two theories can be regarded as special cases of the general theory by taking different GIT
stability conditions of the same group action.

1.1 Gromov–Witten theory

Let X be a smooth projective variety, the Gromov–Witten theory for X is aimed to “count”
the number of curves inside X satisfying certain restrictions. The main idea of the theory to
achieve this by considering the intersection theory for the moduli space of stable maps into X
introduced in Definition 0.4.

The moduli spaceMg,n(X, β) is usually singular and its components have different dimen-
sions. However, by using Hirzebruch–Riemann–Roch formula, it has an expected dimension (see
[22] for example)

vdimMg,n(X, β) = (dimX − 3)(1− g) +
∫
β
c1(TX) + n. (1.1)

For each s = 1, . . . , n, there exists a natural evaluation map

evs : Mg,n(X, β)→ X

sending f : (C, x1, . . . , xn) → X to f(xs). If we are in an ideal situation (when Mg,n(X, β) is
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smooth, and all of its components have expected dimension), for any choice of φ1, . . . , φn ∈
H∗(X), the integral

∫
[Mg,n(X,β)]

n∏
s=1

(ev∗s φs) (1.2)

should count the number of genus-g curves C in X with homology class β such that the
intersections of C with the Poincaré duals of φs are nonzero.

However, we are usually not in an ideal situation. To solve this, we replace the fundamental
class [Mg,n(X, β)] by the virtual fundamental class [Mg,n(X, β)]vir. It is a homology class of
expected dimension, and behaves like the ordinary fundamental class (see [6]).

We can also insert some canonical cohomology classes ofMg,n(X, β) into the integral (1.2).
Let

ψs ∈ H2(Mg,n(X, β))

be the first Chern class of the universal cotangent line bundle at the sth marked point. For any
choice of φ1, . . . , φn ∈ H∗(X), a1, . . . , an ∈ Z≥0 and d ∈ Z, the corresponding Gromov–Witten
invariant is defined as

〈φ1ψ
a1
1 , . . . , φn−1ψ

an−1
n−1 , φnψ

an
n 〉

GW,X
g,n,β :=

∫
[Mg,n(X,β)]vir

n∏
s=1

(ψass ev∗s φs). (1.3)

The graded vector space H∗(X) is called the state space of the Gromov–Witten theory for X;
the invariants defined above are also called correlators.

We can define a generating function for genus-0 Gromov–Witten invariants as follows:

F0
GW,X(t) :=

∑
n,β

Qβ

n! 〈t(ψ1), . . . , t(ψn−1), t(ψn)〉GW,X
0,n,β ,

where
t = t0 + t1z + t2z

2 + · · · ∈ H∗(X)⊗ C[z]

is a polynomial taking values in H∗(X), and Qβ is the representative of β in the group ring of
H2(X,Z).

Let X3,3 be a complete intersection of two cubics inside P5. We are particularly interested
in the genus-0 Gromov–Witten theory of X3,3. It is related to the genus-0 Gromov–Witten
theory of P5. In fact, let i : X3,3 → P5 be the inclusion morphism, it induces a morphism of
moduli space

i : M0,n(X3,3, β)→Mg,n(P5, i∗β).

By Lefschetz hyperplane theorem, we have an isomorphism

i∗ : H2(X3,3,Z) ∼= H2(P5,Z);
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we identify both of them with Z, and represent d times the hyperplane class p by the integer d
for simplicity.

Let M0,n(P5, d) be the moduli spaces of genus-0 degree-d n-marked stable maps to P5,
C0,n(P5, d) be the universal curve over it, and ev be the evaluation map as in the following
diagram.

C0,n(P5, d) ev //

π
��

P5

M0,n(P5, d)

.

Then M0,n(X3,3, d) is the intersection of the zero locus of two sections of the vector bundle
π∗ ev∗OP5(3). For any choice of φ1, . . . , φn ∈ i∗H∗(P5) ⊂ H∗(X3,3), we can rewrite the GW
invariants as follows:

〈φ1ψ
a1
1 , . . . , φn−1ψ

an−1
n−1 , φnψ

an
n 〉

GW,X3,3
0,n,d =

∫
i∗[M0,n(P5,d)]

ctop
(
(π∗ ev∗OP5(3))⊕2

) n∏
s=1

(ψass ev∗s φs).

(1.4)
Note that in the above definition, φ1, . . . , φn are taken from i∗H∗(P5), which is a subspace of
the state space H∗(X3,3). This subspace is the ambient part of H∗(X3,3); the theory we defined
is the genus-0 Gromov–Witten theory for X3,3 restricted to the ambient part. The restricted
theory is what we are interested in. We omit the superscript X3,3 and set

HGW := i∗H∗(P5);

we can define a generating function for the restricted theory:

F0
GW(t) :=

∑
n,d

Qd

n! 〈t(ψ1), . . . , t(ψn−1), t(ψn)〉GW
0,n,d, (1.5)

where t = t0 + t1z + t2z
2 + · · · ∈ HGW ⊗ C[z].

Remark 1.1. Let p ∈ H2(X3,3) be the hyperplane class. Denote the degree-2 part of t0 by
t20p. We can take t20p out of the bracket by repeatedly applying the divisor equation (see [2] for
example). Then Q and t20p always appear together in the form Qet

2
0 . So we can set Q = 1, and

denote et20 by v without losing any information. This is a standard procedure, see [17].

1.2 Fan–Jarvis–Ruan–Witten theory

Fan–Jarvis–Ruan–Witten (FJRW) theory was introduced in the series of papers [24, 25, 26,
27]. In this section, we focus on a version of FJRW theory defined by Clader [14].
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1.2.1 Input data

Let W1, . . . ,Wr be a collection of degree-d quasihomogeneous polynomials in the variables
x1, . . . , xN , where xi has weight wi. The weights w1, . . . , wN are coprime. We require the
nondegenerate condition be satisfied, i.e. the forms dW1, . . . , dWr are linearly independent at
the common 0-locus of the polynomials Wi, except at the point x1 = · · · = xN = 0. Then the
equation

W1 = · · · = Wr = 0

defines a complete intersection Xd,...,d in the weighted projective stack P(w1, . . . , wN). The
weights w1, . . . , wN satisfy the Calabi–Yau condition

N∑
i=1

wi = rd.

By the adjunction formula, Xd,...,d is Calabi–Yau in the sense that its canonical sheaf is trivial.
We further require the Gorenstein condition be satisfied:

wi|d, 1 ≤ i ≤ N.

Clader defined a enumerative theory for above data in [14]. We are particularly interested
in the case N = 6, r = 2, w1 = · · · = w6 = 1, d = 3.

1.2.2 Moduli space

Definition 1.2. [14] A genus-g n-pointed degree-β Landau–Ginzburg stable map (over a
scheme S) is given by the following objects.

L // (C,Σ1, . . . ,Σn) f // Pr−1,

together with an isomorphism

ϕ : L⊗d ∼−→ ωlog,C ⊗ f ∗O(−1),

where

1. (C,Σ1, . . . ,Σn) is a twisted genus-g n-pointed curve;

2. f is a morphism whose induced map between coarse moduli spaces is a genus-g n-pointed
stable map of degree β;

3. L is a representable orbifold line bundle on C and ϕ is an isomorphism of line bundles.
(L is representable means for any p ∈ C, the representation ρp : Gp → C∗ given by the
action of isotropy group on the fiber of L is faithful.)
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The morphism between two Landau–Ginzburg stable maps is defined in an obvious way.
These objects forms a category. In [14], Clader proves that it can be represented by a proper
Deligne–Munford stackM

1
d
g,n(Pr−1, β).

We have a natural decomposition

M
1
d
g,n(Pr−1, β) =

⊔
m1,...,mn∈Zd

M
1
d

g,(m1,...,mn)(P
r−1, β),

where M
1
d

g,(m1,...,mn)(Pr−1, β) is the substack in which the multiplicity of L at the ith marked
point is mi (see §0.2).

Definition 1.3. A componentM
1
d

g,(m1,...,mn)(Pr−1, β) is called narrow if all of the line bundles
L⊗w1 , . . . ,L⊗wN have nonzero multiplicities at all marked points.

Using the cosection technique developed in [35, 8, 9], a virtual fundamental class is defined
on each narrow component in [14]. In particular, in genus zero, under the Gorenstein condition

wj|d, ∀1 ≤ j ≤ N, (1.6)

the virtual fundamental class is easy to define. Let

π : C
1
d

0,(m1,...,mn)(P
r−1, β)→M

1
d

0,(m1,...,mn)(P
r−1, β)

be the universal curve and T be the universal line bundle over C
1
d

0,(m1,...,mn)(Pr−1, β). Let

ρ : M
1
d

0,(m1,...,mn)(P
r−1, β)→M0,n(Pr−1, β)

be the morphism defined by forgetting L. The virtual fundamental class of the narrow compo-
nentM

1
d

0,(m1,...,mn)(Pr−1, β) can be defined by the following formula:

[M
1
d

0,(m1,...,mn)(P
r−1, β)]vir = ctop(R1π∗(T ⊗w1 ⊕ · · · ⊕ T ⊗wN )) ∩ ρ∗[M0,n(Pr−1, β)]. (1.7)

Remark 1.4. We can take the top Chern class of R1π∗(T ⊗w1 ⊕ · · · ⊕ T ⊗wN ) because it is a
vector bundle. To see this, we show that the bundles L⊗wi have no nonzero global sections for
L in Definition 1.2. Let p : Cx → Cx be the morphism between be a geometric Cx fiber of C in
Definition 1.2 and its coarse moduli space Cx. Let Z be an irreducible component Cx. Then
we have the following formula:

p∗(L⊗wi)|⊗d/wiZ = ωlog,Cx ⊗ f ∗O(−1)⊗O(−Σjmi,jxj), (1.8)

where xj are special points (marked points and nodes) on Z and mi,j is the multiplicity of L⊗wi

at xj. Since we are working on the narrow components, the multiplicities at marked points
are all nonzero. Thus the degree of the right-hand side of (1.8) is less than the number of
points where Z meets the rest of the Cx minus 1. From this we can show that the sections of
p∗(L⊗wi)|⊗d/wiZ must be zero on each components inductively; therefore L⊗wi have no nonzero
global sections.
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1.2.3 State space

In order to describe the state space of FJRW theory, we define a new polynomial

W := p1W1 + · · ·+ prWr.

This is a polynomial on

V = CN × Cr = SpecC[x1, . . . , xN , p1, . . . , pr];

it is invariant under the C∗ action with weights (w1, . . . , wN ,−d, . . . ,−d). Then we can regard
W as a function on the GIT quotient

X− = [V//θ2C∗].

(See Example 0.11 for details, where we take d1 = · · · = dr = d.)
The state space of the FJRW theory is defined to be the Chen–Ruan cohomology of X−

relative to a generic fiber of W , with an additional shift −2r in degree; i.e.

H∗−2r
CR (X−,W−1(1)).

Case of interest

We are particularly interested in the case N = 6, r = 2, w1 = · · · = w6 = 1, d = 3. In this
case,

X− = [C6 × (C2\{0})/C∗].

This is the total space of the vector bundle

O(−1)⊕6

over the weighted projective space P(3, 3). The state space in this case can be computed as

H∗−4
CR (X−,W−1(1)) = H∗−4(X−,W−1(1))⊕H∗(P(3, 3))⊕H∗+4(P(3, 3)).

The subspace H∗(P(3, 3)) ⊕ H∗+4(P(3, 3) is called the narrow part of the FJRW state space.
We denote it by HFJRW. It is the analogue of the ambient part of the GW state space. Let
H(1) and H(2) be the hyperplane classes in the first and second P(3, 3), then we can write

HFJRW = H∗(P(3, 3))⊕H∗+4(P(3, 3)) = C1(1) ⊕ CH(1) ⊕ C1(2) ⊕ CH(2). (1.9)

Remark 1.5. We will discuss the relation between the state spaces of GW theory and FJRW
theory in §1.3.1.
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1.2.4 Correlators

For φ1, . . . , φn ∈ HFJRW, we want to define the FJRW correators

〈φ1ψ
a1
1 , . . . , φn−1ψ

an−1
n−1 , φnψ

an
n 〉FJRW

0,n,β .

In order to define them in a similar way to equation (1.3), we need to define the maps

ev∗i : HFJRW → H∗(M
1
d
g,n(Pr−1, β)).

We can do this in two equivalent ways. For simplicity, we focus on the case of interest, i.e.
N = 6, r = 2, w1 = · · · = w6 = 1, d = 3.

1. The log-canonical sheaf is trivial when restricted to the ith marked point Σi. Then, by
Definition 1.2, the restriction of the line bundle L to Σi satisfies

L|⊗3
Σi
∼= f ∗O(−1).

This datum is equivalent to a morphism from Σi to the weighted projective space P(3, 3).
It induces a morphism

evi : M
1
3
g,n(P1, β)→ ĪP(3, 3),

where ĪP(3, 3) is the rigidified inertia stack of P(3, 3) (see [1]). The cohomology group
H∗(ĪP(3, 3)) is isomorphic to the Chen–Ruan cohomology of P(3, 3), which is

H∗(P(3, 3))⊕H∗+4(P(3, 3))⊕H∗+8(P(3, 3)). (1.10)

We identify
HFJRW = H∗(P(3, 3))⊕H∗+4(P(3, 3))

with the second and third direct summands of (1.10); then the map

ev∗i : HFJRW → H∗(M
1
3
g,n(P1, β))

is defined.

2. The map ev∗i can be defined in a more direct way. Let φ be an element of the kth direct
summand of

HFJRW = H∗(P(3, 3))⊕H∗+4(P(3, 3)),

where k ∈ {1, 2}; we regard k as an element of Z3.
Let M

1
3
g,mi=k(P

1, β) be the component of M
1
3
g,n(P1, β) in which the multiplicity of L at

the ith marked point is k. Let

ev : M
1
3
g,mi=k(P

1, β)→ P1
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be the evaluation map defined by passing through the forgetful morphism

ρ : M
1
3
g,mi=k(P

1, β)→Mg,n(P1, β).

We regard φ as an element of H∗(P1) after identifying H∗(P(3, 3)) with H∗(P1). Then
we define the class

ev∗i (φ) := ev∗(φ).

This is a class in H∗(M
1
3
g,n(P1, β)) supported on the componentM

1
3
g,mi=k(P

1, β).

For φ1, . . . , φn ∈ HFJRW, the genus-0 FJRW correlators for the case of interest are defined by
the following formula:

〈φ1ψ
a1
1 , . . . , φn−1ψ

an−1
n−1 , φnψ

an
n 〉FJRW

0,n,β := 3
∫
ρ∗[M0,n(P1,β)]

ctop
(
(R1π∗(T ⊕6))∨

) n∏
s=1

(ψass ev∗s φs).

(1.11)

Remark 1.6. The classes φ1, . . . , φn are taken from HFJRW; from the second description of the
map ev∗i , the product

n∏
s=1

ev∗s φs

is supported on the narrow components of M
1
3
g,n(P1, β). Recall that the virtual fundamental

class (1.7) is only defined on the narrow components.

Remark 1.7. The factor 3 in (1.11) is the multiplicative inverse of the degree of the forgetful
morphism

ρ : M
1
3
0,(m1,...,mn)(P

1, β)→M0,n(P1, β)

whenM
1
3
0,(m1,...,mn)(P1, β) is not empty.

Similarly to equation (1.5), we define the genus-0 generating function for the FJRW theory:

F0
FJRW(t) :=

∑
n,d

Qd

n! 〈t(ψ1), . . . , t(ψn−1), t(ψn)〉FJRW
0,n,d , (1.12)

where t = t0 + t1z + t2z
2 + · · · ∈ HGW ⊗ C[z].

1.3 Relate GW theory and FJRW theory via GIT

In this section, we show that the FJRW theory introduced in §1.2 is related to the GW
theory of Xd,...,d via the variation of GIT stability condition in Example 0.11. Recall that
Xd,...,d is the Calabi–Yau complete intersection defined by

W1 = · · · = Wr = 0

in the weighted projective stack P(w1, . . . , wN) as in §1.2.1.
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1.3.1 Relate the state spaces

We start by showing the above two theories have isomorphic state spaces, i.e.

H∗−2r
CR (X−,W−1(1)) ∼= H∗CR(Xd,...,d). (1.13)

This can be understood as a result of the variation of GIT stability condition in Example 0.11.
In fact, the polynomial

W = p1W1 + · · ·+ prWr

can also be regarded as a function on

X+ = [(CN\{0})× Cr/C∗].

We have an isomorphism of graded vector spaces

H∗−2r
CR (X+,W

−1(1)) ∼= H∗CR(Xd,...,d). (1.14)

We prove (1.14) for the case of interest (a complete proof can be found in [11]). In this case
X+ is the total space of O(−3)⊕2 over P5; both X+ and X3,3 are smooth schemes so their
Chen–Ruan cohomology groups are just their singular cohomology groups. The isomorphism
(1.14) can be deduced from two successive isomorphisms

H∗−4(X+,W
−1(1)) ∼= H∗−4(P5,P5\X3,3) ∼= H∗(X3,3), (1.15)

where the first isomorphism comes from retraction, the second isomorphism is the Thom iso-
morphism. Then (1.13) is a consequence of the isomorphism

H∗CR(X+,W
−1(1)) ∼= H∗CR(X−,W−1(1)). (1.16)

The equation (1.16) is proven in [11]; it follows from its nonrelative version

H∗CR(X+) ∼= H∗CR(X−). (1.17)

In the case of interest, a direct computation shows that

H∗CR(X+) = H∗(P5)

and
H∗CR(X−) = H∗CR(P(3, 3)) = H∗(P(3, 3))⊕H∗+4(P(3, 3))⊕H∗+8(P(3, 3))

are isomorphic as graded vector spaces.
We can also say that the ambient part HGW and the narrow part HFJRW are related by

the variation of GIT stability condition. In fact, they are the subspaces of compact type of
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respective entire state spaces in the sense of [15]. Since both X− and X+ are total space of
vector bundles, We denote the corresponding zero sections by Xcp

− and Xcp
+ . The subspaces of

compact type are defined to be the image of the morphisms

H∗−2r
CR (X±, X±\Xcp

± )→ H∗−2r
CR (X±,W−1(1)) (1.18)

defined by restricting the relative cohomology classes.
We compute the subspaces of compact type for the cases of interest.
— The state space of the FJRW theory of case of interest is

H∗−4
CR (X−,W−1(1)) = H∗−4(X−,W−1(1))⊕H∗(P(3, 3))⊕H∗+4(P(3, 3)).

The morphism
H∗−4

CR (X−, X−\Xcp
− )→ H∗−4

CR (X−,W−1(1))

are isomorphisms when restricted to the last two direct summands. It is shown in [11]
that Hk

CR(X−,W−1(1)) = 0 if k 6= 7. So it is a zero morphism when restricted on the
first direct summand. Therefore, the subspace of compact type is

H∗(P(3, 3))⊕H∗+4(P(3, 3)).

It coincides with the narrow part HFJRW.
— We identify the state space of the GW theory of X3,3 with H∗−4

CR (X+,W
−1(1)) via equa-

tion (1.14). We can also identify H∗−4
CR (X+, X+\Xcp

+ ) with H∗(P5) via Thom isomor-
phism. Then (1.18) induces a morphism

u : H∗(P5)→ H∗(X3,3).

After tracking the Thom classes carefully, we can prove that u coincides with the re-
striction

i∗ : H∗(P5)→ H∗(X3,3).

Therefore, the subspace of compact type coincides with HGW.

1.3.2 Relate the moduli space

Fan, Jarvis and Ruan defined a new theory in [27]. Both the GW theory of Xd,...,d and the
FJRW theory introduced in §1.2 can be obtained from this new theory by taking different GIT
stability conditions.

To define the new theory, we need some more input data of group actions in addition to
§1.2.1. Let G = C∗, the first action we need is the G-action on the vector space

V = CN × Cr = SpecC[x1, . . . , xN , p1, . . . , pr]
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as in Example 0.11, with weights wi on the first N variables xi, and weight −d on the following
r variables:

λ · (x1, . . . , xN , p1, . . . , pr) = (λw1x1, . . . , λ
wNxN , λ

−dp1, . . . , λ
−dpr).

Since w1, . . . , wN are coprime, we can regard G as a subgroup of GL(V ).
We introduce another C∗-action. We denote this C∗ by C∗R. The group C∗R acts on V with

weight 0 on the first N variables, and weight 1 on the following r variables:

µ · (x1, . . . , xN , p1, . . . , pr) = (x1, . . . , xN , µp1, . . . , µpr). (1.19)

We can also regard C∗R as a subgroup of GL(V ). Let Γ be the subgroup of GL(V ) generated
by G and C∗R. Then we have an isomorphism

Γ = GC∗R ∼= G× C∗R.

Denote by ξ : Γ→ G and ζ : Γ→ C∗ the first and second projections.
We need the concept of good lifts.

Definition 1.8. We say a Γ-character θ̂ is a good lift of a G-character θ if it is compatible with
the inclusion G ≤ Γ, and satisfies

V ss
Γ,θ̂ = V ss

G,θ.

Example 1.9. When we choose a positive G-character

θ1(λ) = λk

for k > 0, we claim that the character of Γ = G× C∗R

θ̂1(λ, µ) = λk

is a good lift of θ1. Since V ss
Γ,θ̂1
⊂ V ss

G,θ1 , it is sufficient to check that the section of L⊗w1
θ̂1

(x1, . . . , xN , p1, . . . , pr) 7→ xk1

is invariant under the Γ-action (see Eample 0.11).
When we choose a negative G-character

θ2(λ) = λk

for k < 0, we claim that the Γ-character

θ̂2(λ, µ) = λkµ−
k
d (1.20)

is a good lift if d|k. It is sufficient to check that the section of L⊗d
θ̂2

(x1, . . . , xN , p1, . . . , pr) 7→ p−k1

is invariant under the Γ-action.
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Let Crit(W ) denote the critical locus of the polynomial

W = p1W1 + · · ·+ prWr.

The moduli space in the theory constructed in [27] is the moduli space of the following
objects.

Definition 1.10 ([27]). Let θ̂ be a good lift of θ, an∞-stable, k-pointed, genus-g LG-quasimaps
to [Crit(W )//θG] consists the following data:

— A twisted, k-pointed curve (C,Σ1, . . . ,Σk) of genus g.
— A representable principal Γ-bundle P : C → BΓ over C.
— A global section σ : C → P ×Γ V .
— An isomorphism κ : ζ∗P → ω̊log,C of principal C∗ bundles, where ω̊log,C is the principal

bundle associated to the line bundle ωlog,C.
such that the following conditions are satisfied:

1. The image of the induced map [σ] : C → [V/Γ] lies within [(V ss
G,θ ∩ Crit(W ))/Γ].

2. The line bundle ωlog,C ⊗ σ∗(N )ε is ample for all sufficiently large ε, where N is the line
bundles over [V/Γ] determined by the Γ-character θ̂.

Remark 1.11. It is more natural to start from quasihomogeneous polynomials W1, . . . ,Wr

with different degrees d1, . . . , dr. However, we do not have a well-defined enumerative theory
due to the lack of a good lift when we choose a negative character. In fact, when d1, . . . , dr are
not all the same, we can not find the Γ-character (1.20) as in Example 1.9.

Since Γ ∼= G×C∗R, and ζ is just the second projection, giving a principal Γ bundle P is the
same as giving a line bundle L such that P ∼= L̊ × ω̊log,C. Then we can write

P ×Γ V ∼=
N⊕
i=1
L⊗wi ⊕

(
ωlog,C ⊗ L⊗−d

)⊕r
.

Thus giving a section of P ×Γ V is the same as giving sections si ∈ Γ(C,L⊗wi) and tj ∈
Γ(C, ωlog,C ⊗ L⊗−d) for 1 ≤ i ≤ N and 1 ≤ j ≤ r.

In order to determine the semistable locus of the critical locus of W , we write

dW =
r∑
i=1

(pidWi +Widpi).

According to the nondegeneracy condition, the critical locus of W is

{x1 = · · · = xN = 0} ∪ {p1 = · · · = pr = W1 = · · · = Wr = 0}.
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— When we choose a positive G-character, condition 1 in Definition 1.10 implies

p1 = · · · = pr = 0

and
W1(s1, . . . , sN) = · · · = Wr(s1, . . . , sN) = 0.

In this case the above datum is equivalent to a stable map to the complete intersection
Xd,...,d. The theory is only defined on the classes of compact type. It coincides with the
classic Gromov–Witten theory for Xd,...,d restricted to the hyperplane section classes.

— When we choose a negative G-character, condition 1 in Definition 1.10 implies

x1 = · · · = xN = 0.

In this case the above datum is equivalent to a map f : C → Pr−1 together with an iso-
morphism φ : L⊗d ∼= ωlog,C⊗f ∗O(−1). This coincides with the FJRW theory constructed
in §1.2.

1.4 Givental’s formalism and computation of I-functions

In this section, we explain how the genus-0 GW/FJRW theory introduced above can be
encoded by a HGW /FJRW valued function IGW /FJRW. This is a standard procedure in GW
theory (see [29] for example); the argument for FJRW theory can be found in [14].

The following construction works for both GW and FJRW theories. In this section, this
construction is applied to the the following four special cases:

— the GW theory of X3,3 restricted to the ambient part;
— the GW theory of P5;
— the FJRW theory of the case of interest (restricted to the narrow part) introduced in

§1.2;
— the GW theory of P1.

Let H be the state space of one of the above theories. Introduce the vector space of infinite
dimension

H = H ⊗ C((z−1))

of H-valued Laurent series in z−1. We define a symplectic form on H by

Ω(f, g) = Resz=0 (f(−z), g(z)) ,

where (·, ·) is the Poincaré paring on H. In this way H is decomposed as

H = H+ ⊕H−,
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with H+ = H⊗C[z] and H− = z−1H⊗C[[z−1]]. Then H can be regarded as the total cotangent
space of H+. An element of H can be expressed in Darboux coordinates {qαk , pl,β} as∑

α
k≥0

qαkφαz
k +

∑
β
l≥0

pl,βφ
β(−z)−l−1,

where {φα} is a bass for H and {φβ} is its dual bass under Poincaré duality. Set

q =
∑
α
k≥0

qαkφαz
k;

we regard the genus-0 generating function F0 (see (1.5), (1.12), F0 of the GW theories of P1

and P5 can be defined in the same way) as a function on H+ after a dilaton shift relating q and
t in H+ = H ⊗ C[z]. In the GW case, the dilaton shift is

q = t− 1z,

where 1 denotes the constant function in H0; in the FJRW case, the dilaton shift is

q = t− 1(1)z,

where 1(1) denotes the constant function from the first summand of the state space (see (1.9)).
In this way, the genus-0 theory is encoded by a Lagrangian cone

L = {(p, q) : p = dqF
0} ⊂ T ∗H+ ∼= H.

At every point f ∈ L, the tangent space TfL satisfies Givental’s geometric condition [18, 14]

zTfL = L ∩ TfL.

Therefore L is ruled by a family of subspaces

{zT : T is a tangent space to L}.

Let the J-function J be the H-valued function of τ ∈ H defined by

J(τ,−z) = −z + τ +
∑
n,d,α

Qd

n!

〈
τ, . . . , τ,

φα
−z − ψn+1

〉
0,n+1,d

φα ∈ −z + τ +H−,

where φα ranges over a basis for H with dual basis φα, and φα
−z−ψn+1

should be expanded as
Laurent series in z, i.e.

φα
−z − ψn+1

= φα ·
(
−1
z

+ ψn+1

z2 −
ψ2
n+1
z3 + . . .

)
.

The J-function can be interpreted as the intersection of L with the hyperplane {−z+ τ +H−}.
According to [18], the partial derivatives of J(τ,−z) in directions in H generate the tangent
space TJ(τ,−z)L; also, the cone L is ruled by the family of subspaces

{zTJ(τ,−z)L : τ ∈ H}.

In this sense, the J-function J(τ,−z) determines the cone L.
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Twisted theory

The genus-0 GW theory of P5 well-known. We can compute the genus-0 GW theory for
X3,3 via its relation to the genus-0 GW theory of P5 (see (1.4)). Similarly, we can compute the
FJRW theory of the case of interest via its relation to the genus-0 GW theory of P1 and (see
(1.11)).

Recall that in §1.1 the correlators of genus-0 GW theory for X3,3 restricted to the ambient
part can be written as

〈φ1ψ
a1
1 , . . . , φn−1ψ

an−1
n−1 , φnψ

an
n 〉

GW,X3,3
0,n,d =

∫
i∗[M0,n(P5,d)]

ctop
(
(π∗ ev∗OP5(3))⊕2

) n∏
s=1

(ψass ev∗s φs),

(1.21)
where π : C0,n(P5, d) → M0,n(P5, d) is the universal curve, and ev : C0,n(P5, d) → P5 is the
evaluation map.

We can define a new theory by replacing the top Chern class in (1.21) with any multiplicative
characteristic class. In particular, if we replace the top Chern class with trivial characteristic
class, which is identical 1, we obtain the Gromov–Witten theory of P5.

By applying Grothendieck–Riemann–Roth formula to π : C0,n(P5, d)→M0,n(P5, d), we com-
pute the Chern characters of π∗ ev∗OP5(3) and find a modification IGW of the J-function of the
GW theory of P5, which lies on the Lagrangian cone of the GW theory of X3,3! Similar to the
J function, due to Givental’s geometric condition, the function IGW also determines the whole
Lagrangian cone of the GW theory of X3,3 restricted to the ambient part.

Remark 1.12. In fact we need to work via the equivariant cohomology. We take the mul-
tiplicative characteristic class to be the equivariant top Chern class and take nonequivariant
limit at last. See [18] for details.

The same story happens for the genus-0 FJRW theory of the case of interest. In fact, its
correlators can be written as

〈φ1ψ
a1
1 , . . . , φn−1ψ

an−1
n−1 , φnψ

an
n 〉FJRW

0,n,β = 3
∫
ρ∗[M0,n(P1,β)]

ctop
(
(R1π∗(T ⊕6))∨

) n∏
s=1

(ψass ev∗s φs).

(1.22)

If we replace the top Chern class with trivial characteristic class, we get the GW theory of P1

essentially (the factor 3 is canceled since it is the inverse of the degree of ρ, see Remark 1.7).
Then we can find a modification IFJRW of the J-function of the GW theory of P1. The whole
Lagrangian cone of the FJRW theory of the case of interest is determined by IFJRW.

Furthermore, in the both genus-0 GW theory of X3,3 and the genus-0 FJRW of the case of
interest, the I-function is determined by its restriction to the degree-2 part of the state space
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H. This is because in these two cases, the corrector

〈φ1ψ
a1
1 , . . . , φn−1ψ

an−1
n−1 , φnψ

an
n 〉0,n,d

vanishes unless
n∑
i=1

deg φi + 2
n∑
i=1

ai = 2n

for the degree reason. By applying string equation and dilaton equation repeatedly (see [2]),
we can show that all the correctors can be deduced from the correctors of the form

〈φ1, . . . , φn−1, φn〉0,n,d

where φ1, . . . , φn come from the degree-2 part of the state space. In this way all information of
these two theories is encoded by their I-functions restricted to the degree-2 part of their state
space.

For the GW theory of X3,3 restricted to the ambient part, the I-function IGW was computed
in [20]:

IGW(tp, z) = ze
tp
z

∑
n≥0

ent

(∏
0<b≤3n(3p+ bz)

)2

(∏
0<b≤n(p+ bz)

)6 Qn,

where p ∈ HGW is the hyperplane class. We can regard it as a function of v = et and set Q = 1
(see Remark 1.1), then we rewrite

IGW(v, z) = zv
p
z

∑
n≥0

vn

(∏
0<b≤3n(3p+ bz)

)2

(∏
0<b≤n(p+ bz)

)6 . (1.23)

This is a multivalued function in v taking values in HGW. It is analytic on |v| < 3−6.
For the FJRW theory of the case of interest, the I-function IFJRW was computed in [14]:

IFJRW(tH(1), z) =
∑
d≥0

d6≡−1 mod 3

ze(d+1)t+ tH(d+1)
z

36[ d3 ]

∏
0<b≤d

b≡d+1 mod 3

(H(d+1) + bz)6

∏
0<b≤d

(H(d+1) + bz)2 1(d+1)Qd,

where H(h) ∈ HFJRW, H(h) = H(h mod 3) if h ≥ 3. We can regard it as a function of u = et and
set Q = 1, then we rewrite

IFJRW(u, z) =
∑
d≥0

d6≡−1 mod 3

zud+1+H(d+1)
z

36[ d3 ]

∏
0<b≤d

b≡d+1 mod 3

(H(d+1) + bz)6

∏
0<b≤d

(H(d+1) + bz)2 1(d+1). (1.24)

This is a multivalued function in u taking values in HFJRW. It is analytic on |u| < 32.
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1.5 Picard–Fuchs equation

Let Vλ be given in P5 by

Q1 = x3
1 + x3

2 + x3
3 − 3λx4x5x6 = 0

Q2 = x3
4 + x3

5 + x3
6 − 3λx1x2x3 = 0

This is a Calabi–Yau complete intersection of dimension 3 for λ ∈ C\{0, e 2kπi
6 , k = 0, 1, . . . , 5}.

Let G81 be a group with elements of form gα,β,δ,ε,µ, where α, β, δ, ε ∈ Z3, µ ∈ Z9, and 3µ =
α + β = δ + ε mod 3. The action of G81 on P5 is given by

gα,β,δ,ε,µ : (x1, x2, x3, x4, x5, x6) 7→ (ζα3 ζ
µ
9 x1, ζ

β
3 ζ

µ
9 x2, ζ

µ
9 x3, ζ

−δ
9 ζ−µ9 x4, ζ

−ε
3 ζ−µ9 x5, ζ

−µ
9 x6),

where ζn = e
2πi
n . Note that Vλ is preserved by the G81 action. In [38], Libgober deduce the

Picard–Fuchs equation of the family [Vλ/G81]. Under the change of variable v = 3−6λ−6 and
set

Θ = v
d

dv
,

the Picard–Fuchs equation is(
Θ4 − 36v

(
Θ + 1

3

)2 (
Θ + 2

3

)2)
F = 0. (1.25)

Clader showed in [14] that IGW (v, z) satisfies equation (1.25); moreover, IFJRW(u, z) satisfies
equation (1.25) after a change of variables v = u−3. Since equation (1.25) is a degree-4 dif-
ferential equation, and IGW , IFJRW are vector valued functions taking values in 4-dimensional
vector spaces, Clader deduced the following result.

Theorem 1.13 (Clader [14]). There is a C[z, z−1]-valued degree-preserving linear transforma-
tion mapping IFJRW to the analytic continuation of IGW.

Clader only showed the existence of such linear map. In the next section, we will simplify
the I-functions, and get a family of explicit C-valued linear maps relating the simplified I-
functions by a different method. This will allow us to relate these linear maps to equivalences
of certain categories in §4.
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Analytic continuation

In this chapter, we introduce the H-functions, which are constant linear transform of the
I-functions. Then we compute the analytic continuation of HGW and compare it with HFJRW.
In this way we find a linear map

U : HFJRW → HGW,

which identifies HFJRW with the analytic continuation HGW.

2.1 Gradings on the state spaces

To define the H-functions, we need two different gradings on the state spaces HFJRW and
HGW.

The first grading Gr is the standard grading inherited from the Chen–Ruan cohomology
groups in (1.13). More precisely, the standard grading Gr on HFJRW is given by

Gr(1(1)) = 0,Gr(H(1)) = 2,Gr(1(2)) = 4,Gr(H(2)) = 6;

the standard grading Gr on HGW is given by

Gr(pn) = 2n.

The second grading deg0 is called bare degree in [10]. It is the degree without age-shift in
the definition of Chen–Ruan cohomology (see §0.4). The bare degree deg0 on HFJRW is given
by

deg0(1(1)) = deg0(1(2)) = −4, deg0(H(1)) = deg0(H(2)) = −2;

the bare degree deg0 on HGW is given by

deg0(pn) = 2n.

Remark 2.1. The bare degree on HGW agrees with the standard grading since X3,3 is a smooth
scheme and the age-shift number is zero.
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2.2 The H-functions

We introduce the H-functions as in [10]. In both GW theory and FJRW theory, the H-
function is defined by the formula

I = z−
Gr
2

(
Γ · (2πi)

deg0
2 H

)
, (2.1)

where I, Gr and deg0 are the I-function, standard grading and bare degree in the corresponding
theory; Γ is a chosen class in the corresponding state space. The notation (2πi)

deg0
2 represents

the linear endomorphism of the state space given by

α 7→ (2πi)
deg0(α)

2 · α.

The notation z−Gr
2 is defined similarly.

2.2.1 Computation of HGW

The class ΓGW is chosen to be the Gamma class (see §0.4) of the tangent bundle of X3,3.
Using the exact sequence

0→ i∗OP5(−3)⊕2 → i∗ΩP5 → ΩX3,3 → 0

and the Euler sequence
0→ ΩP5 → OP5(−1)⊕6 → OP5 → 0,

we get
ΓGW = Γ(1 + p)6

Γ(1 + 3p)2 .

We rewrite (1.23) as

IGW(v, z) =
∑
n≥0

zv
p
z

+nΓ(p
z

+ 1)6Γ(3p
z

+ 3n+ 1)2

Γ(3p
z

+ 1)2Γ(p
z

+ n+ 1)6 .

Then we have

IGW(v, z) = z−
Gr
2
∑
n≥0

zvp+n
Γ(p+ 1)6

Γ(3p+ 1)2
Γ(3p+ 3n+ 1)2

Γ(p+ n+ 1)6

= z−
Gr
2

ΓGW · (2πi)
deg0

2
∑
d≥0

zv
p

2πi+n
Γ(3 p

2πi + 3n+ 1)2

Γ( p
2πi + n+ 1)6

 . (2.2)

Compare (2.2) with (2.1), we have

HGW(v, z) =
∑
n≥0

zv
p

2πi+n
Γ(3 p

2πi + 3n+ 1)2

Γ( p
2πi + n+ 1)6 . (2.3)
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2.2.2 Computation of HFJRW

The class ΓFJRW is chosen to be the narrow part of the Gamma class of the tangent bundle
of X−, which is

ΓFJRW = Γ
(

2
3 −

H(1)

3

)6

Γ(1 +H(1))21(1) + Γ
(

1
3 −

H(2)

3

)6

Γ(1 +H(2))21(2). (2.4)

Remark 2.2. Note that there is a sign issue; see Remark 0.12. In fact, although we can
identify X− with total space of O(−1)⊕6 over P(3, 3), there is a change of sign. Under this
identification, the line bundle O(−1) over P(3, 3) has eigenvalue e 2πi

3 instead of e 4πi
3 with respect

to the stabilizer e 2πi
3 ∈ C∗.

We can rewrite (1.24) as

IFJRW(u, z) =z
∑
d≥0

d6≡−1 mod 3

ud+1+H(d+1)
z z−6〈 d3 〉

Γ(H(d+1)

3z + d
3 + 1

3)6Γ(H(d+1)

z
+ 1)2

Γ(H(d+1)

3z + 〈d3〉+ 1
3)6Γ(H(d+1)

z
+ d+ 1)2

1(d+1)

=z
∑
d≥0

d≡0 mod 3

ud+1+H(1)
z

Γ(H(1)

3z + d
3 + 1

3)6Γ(H(1)

z
+ 1)2

Γ(H(1)

3z + 1
3)6Γ(H(1)

z
+ d+ 1)2

1(1)

+ z
∑
d≥0

d≡1 mod 3

ud+1+H(2)
z z−2 Γ(H(2)

3z + d
3 + 2

3)6Γ(H(2)

z
+ 1)2

Γ(H(2)

3z + 1
3)6Γ(H(2)

z
+ d+ 1)2

1(2).

(2.5)

By (2.1) we have

(2πi)−2HFJRW(u, z) =z
∑
d≥0

d≡0 mod 3

ud+1+H(1)
2πi

Γ(1 + H(1)

2πi )2

Γ(1 + H(1)

2πi )2

·
Γ(d3 + 1

3 + 1
3
H(1)

2πi )6

Γ(1
3 + 1

3
H(1)

2πi )6Γ(2
3 −

1
3
H(1)

2πi )6Γ(d+ 1 + H(1)

2πi )2
1(1)

+ z
∑
d≥0

d≡1 mod 3

ud+1+H(2)
2πi

Γ(1 + H(2)

2πi )2

Γ(1 + H(2)

2πi )2

·
Γ(d3 + 1

3 + 1
3
H(2)

2πi )6

Γ(2
3 + 1

3
H(2)

2πi )6Γ(1
3 −

1
3
H(2)

2πi )6Γ(d+ 1 + H(2)

2πi )2
1(2)

=z
∑
d≥0

d≡0 mod 3

ud+1+H(1)
2πi

Γ(d3 + 1
3 + 1

3
H(1)

2πi )6

Γ(1
3 + 1

3
H(1)

2πi )6Γ(2
3 −

1
3
H(1)

2πi )6Γ(d+ 1 + H(1)

2πi )2
1(1)

+ z
∑
d≥0

d≡1 mod 3

ud+1+H(2)
2πi

Γ(d3 + 1
3 + 1

3
H(2)

2πi )6

Γ(2
3 + 1

3
H(2)

2πi )6Γ(1
3 −

1
3
H(2)

2πi )6Γ(d+ 1 + H(2)

2πi )2
1(2).

(2.6)
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2.3 Linear maps relating the H-functions

We can regard HGW as a function of log v by writing v as elog v. Then HGW is analytic on
<(log v) < −6 log 3. In the same way we can regard HFJRW as a function of log u. Then HFJRW

is analytic on <(log v) > −6 log 3 after a change of variable log v = −3 log u. We can extend
HGW analytically to the right side of the line <(log v) = −6 log 3 along a path passing through
the window wl as in figure 2.1, and compare it with HFJRW. In fact, they are related by the
following linear maps.

◦

◦

◦

◦

2(l − 2)πi

2(l − 1)πi

2lπi

2(l + 1)πi

<(log v) = −6 log 3

HGW HFJRWwindow wl
6

?

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

·
·
·
·
·
·
·
·

Figure 2.1 – The (log v)-plane.

Definition 2.3. For each l ∈ Z, the linear map Ul : HFJRW → HGW is defined by

1(1) 7→ l

9
(ζep)l

1− ζep + 1
9

(ζep)l+1

(1− ζep)2

H(1) 7→ 1
3

(ζep)l

1− ζep

1(2) 7→ l

9
(ζ2ep)l

1− ζ2ep
+ 1

9
(ζ2ep)l+1

(1− ζ2ep)2

H(2) 7→ 1
3

(ζ2ep)l

1− ζ2ep

(2.7)

where ζ = e
2πi

3 .

Remark 2.4. The right-hand side of (2.7) should be understood as elements of HGW in the
following way. We regard p as a small complex number and expand the right-hand side of (2.7)
at p = 0. Then we set pn = 0 for n ≥ 4. Or equivalently, we only take the first four terms in
the Taylor expansion. The remaining part is a linear combination of 1, p, p2 and p3; it can be
regarded as an element of HGW.
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Theorem 2.5. For every l ∈ Z, Ul(HFJRW(u, z)) coincides with the analytic continuation of
HGW(v, z) along a path passing through the window wl after the change of variable

log v = −3 log u.

Remark 2.6. We can write down the explicit linear map in Theorem 1.13 if we recover the
I-functions from the H-functions by (2.1).

Remark 2.7. We regard ep as complex number in the unit disk. By using
1

1− x = 1 + x+ x2 + x3 + . . . ,

1
(1− x)2 = 1 + 2x+ 3x3 + . . . ,

and adding formal elements 1(0) and H(0), we can rewrite (2.7) as

(
1(0) 1(1) 1(2)

)
7→ 1

9e
pl
(
1 ep e2p e3p . . .

)



l l l

l + 1 (l + 1)ζ (l + 1)ζ2

l + 2 (l + 2)ζ2 (l + 2)ζ
l + 3 l + 3 l + 3
l + 4 (l + 4)ζ (l + 4)ζ2

l + 5 (l + 5)ζ2 (l + 5)ζ
... ... ...




1

ζ l

ζ2l



(
H(0) H(1) H(2)

)
7→ 1

3e
pl
(
1 ep e2p e3p . . .

)



1 1 1
1 ζ ζ2

1 ζ2 ζ

1 1 1
1 ζ ζ2

1 ζ2 ζ
... ... ...




1

ζ l

ζ2l

 .

(2.8)

When we regard the right-hand side of (2.7) as functions of a complex number p, the two
expressions (2.7) and (2.8) coincide in the region

Ω = {p ∈ C : |ep| < 1}.

The origin p = 0 of the complex plane is contained in the closure of Ω; the right hand side of
(2.7) are locally bounded near p = 0. This allows us to take the Taylor expansion of the right-
hand side of (2.8) (except the image of 1(0) and H(0)) at p = 0 and regard them as elements of
HGW (see Remark 2.4).
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Note that the above argument does not work for the formally added elements 1(0) and H(0).
This does not matter because they are formal and will always produce 0-terms in practice (see
the proof of Proposition 4.8 for example).

Proof of Theorem 2.5. For l ∈ Z, consider the function

Fl(s) = ze( p
2πi+s) log v ·

Γ(3 p
2πi + 3s+ 1)2

Γ( p
2πi + s+ 1)6 ·

π

sin(πs) · e
−(2l−1)πis. (2.9)

The poles of Fl(s) are of the forms

s = k ∈ Z

or

3 p

2πi + 3s+ 1 = −d ∈ Z≤0, d ≡ 0, 1 mod 3.

They are represented by the black dots in figure 2.2. Consider the contour integral
∫
C Fl(s)ds

r 2r 0 r 1r -1r -2r -3r -4r -5

rrrrrrrrrrrrrr

?

Figure 2.2 – The s-plane.

along the path of figure 2.2. According to Lemma 3.3 in [31], the integral is absolutely conver-
gent (and defines an analytic function of v) if

|=(log v)− (2l − 1)π| < π.

Moreover, the integral is equal to the sum of of the residues on the right of the contour for
<(log v) < −6 log 3, and to the opposite of the sum of the residues on the left of the contour
for <(log v) > −6 log 3.

Near the poles s = k ∈ Z we have

π

sin(πs) · e
−(2l−1)πis = 1

s− k
+O(1),
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therefore

HGW(v, z) =
∑
n≥0

zv
p

2πi+n
Γ(3 p

2πi + 3n+ 1)2

Γ( p
2πi + n+ 1)6

=
∑
n≥0

Ress=n Fl(s)ds

=
∫
C
Fl(s)ds

(2.10)

for <(log v) < −6 log 3. Then the opposite of the sum of the residues on the left of the contour
gives the analytic continuation of HGW along a path passing through the windows wl.

In order to compute the residues, we introduce ψ, the logarithmic derivative of the gamma
function. It is often called the digamma function, and defined by

ψ(z) = d

dz
log(Γ(z)) = Γ′(z)

Γ(z) .

Near the nonpositive integer −k we have the Laurent expansion

Γ(z) = (−1)k
k!

( 1
z + k

+ ψ(k + 1)
)

+O(z + k). (2.11)

Thus for a negative integer poles s = n < 0,

Ress=n Fl(s)ds = zv
p

2πi+n
Γ(3 p

2πi + 3n+ 1)2

Γ( p
2πi + n+ 1)6 = 0

since
p4
∣∣∣∣Γ(3 p

2πi + 3n+ 1)2

Γ( p
2πi + n+ 1)6

and p4 = 0 in HGW.
The other poles of Fl(s)ds are of the form 3 p

2πi + 3s + 1 = −d for d ≥ 0, d ≡ 0, 1 mod 3.
We calculate the residue at these poles. Near s = − p

2πi −
d
3 −

1
3 , set s = ∆s + p

2πi + d
3 + 1

3 , we
have

Fl(s) =zv− d3− 1
3
(
1 + (log v)∆s+O((∆s)2)

)
· 1

(d!)2

(
1
9

1
(∆s)2 + 2ψ(d+ 1)

3
1

∆s +O(1)
)

· 1
Γ(−d

3 + 2
3)6

(
1− 6ψ(−d3 + 2

3)∆s+O((∆s)2)
)

· π

sin2( p
2πi + d

3 + 1
3)π

(
− sin( p

2πi + d

3 + 1
3)π − π cos( p

2πi + d

3 + 1
3)π∆s+O((∆s)2)

)

· e(2l−1)πi( p
2πi+

d
3 + 1

3 )
(
1− (2l − 1)πi∆s+O((∆s)2)

)
.

(2.12)



52 Chapter 2. Analytic continuation

Thus

Ress=− p
2πi−

d
3−

1
3
Fl =zv− d3− 1

3
1

(d!)2
1

Γ(−d
3 + 2

3)6
π

sin2( p
2πi + d

3 + 1
3)π

e(2l−1)πi( p
2πi+

d
3 + 1

3 )

·
[
sin( p

2πi + d

3 + 1
3)π ·

(
2
3ψ(−d3 + 2

3)− 2
3ψ(d+ 1)− 1

9 log v + 2l − 1
9 πi

)

− cos( p

2πi + d

3 + 1
3)π · π9

]

=zv− d3− 1
3 (2πi)

(√
3

2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2

(
ep+( d3 + 1

3 )2πi
)l

ep+( d3 + 1
3 )2πi − 1

· 1
3

(
2ψ(d3 + 1

3)− 2ψ(d+ 1) + 2ψ(−d3 + 2
3)− 2ψ(d3 + 1

3)− 1
3 log v

)

+ zv−
d
3−

1
3 (2πi)2

(√
3

2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2

(
ep+( d3 + 1

3 )2πi
)l

ep+( d3 + 1
3 )2πi − 1

· l9

− zv−
d
3−

1
3 (2πi)2

(√
3

2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2

(
ep+( d3 + 1

3 )2πi
)l+1

(
ep+( d3 + 1

3 )2πi − 1
)2 ·

1
9 .

(2.13)

We used

Γ(−d3 + 2
3)6Γ(d3 + 1

3)6 =
(

π

sin(d3 + 1
3)π

)6

=
(

2π√
3

)6

and

sin( p

2πi + d

3 + 1
3)π = e( p

2πi+
d
3 + 1

3 )2πi − 1
2ie( p

2πi+
d
3 + 1

3 )πi
.

Then we get the analytic continuation of HGW along a path passing through the windows wl,
which is ∑

d≥0
d 6≡−1 mod 3

−Ress=− p
2πi−

d
3−

1
3
Fl(s)

=
∑
d≥0

d≡0 mod 3

zv−
d
3−

1
3 (2πi)

(√
3

2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2

(
ep+

2πi
3
)l

1− ep+ 2πi
3

· 1
3

(
2ψ(d3 + 1

3)− 2ψ(d+ 1) + 2ψ(2
3)− 2ψ(1

3)− 1
3 log v

)

+
∑
d≥0

d≡0 mod 3

zv−
d
3−

1
3 (2πi)2

(√
3

2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2

·


(
ep+

2πi
3
)l

1− ep+ 2πi
3
· l9 +

(
ep+

2πi
3
)l+1

(
1− ep+ 2πi

3
)2 ·

1
9



(2.14)
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+
∑
d≥0

d≡1 mod 3

zv−
d
3−

1
3 (2πi)

(√
3

2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2

(
ep+

4πi
3
)l

1− ep+ 4πi
3

· 1
3

(
2ψ(d3 + 1

3)− 2ψ(d+ 1) + 2ψ(1
3)− 2ψ(2

3)− 1
3 log v

)

+
∑
d≥0

d≡1 mod 3

zv−
d
3−

1
3 (2πi)2

(√
3

2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2

·


(
ep+

4πi
3
)l

1− ep+ 4πi
3
· l9 +

(
ep+

4πi
3
)l+1

(
1− ep+ 4πi

3
)2 ·

1
9

 ,
where we used

ψ(−d3 + 2
3)− ψ(d3 + 1

3) =
π cos(d3 −

1
3)π

sin(d3 + 1
3)π

=

 ψ(2
3)− ψ(1

3) d ≡ 0 mod 3
ψ(1

3)− ψ(2
3) d ≡ 1 mod 3.

On the other hand, we can expand HFJRW with respect to H(1), H(2) by differentiating (2.6):

HFJRW(u, z) = z
∑
d≥0

d≡0 mod 3

ud+1 · (2πi)2 ·
(√

3
2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2 1
(1)

+z
∑
d≥0

d≡0 mod 3

ud+1 · 2πi ·
(√

3
2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2

·
(

2ψ(d3 + 1
3)− 2ψ(d+ 1) + 2ψ(2

3)− 2ψ(1
3) + log u

)
H(1)

+z
∑
d≥0

d≡1 mod 3

ud+1 · (2πi)2 ·
(√

3
2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2 1
(2)

+z
∑
d≥0

d≡1 mod 3

ud+1 · 2πi ·
(√

3
2π

)6 Γ(d3 + 1
3)6

Γ(d+ 1)2

·
(

2ψ(d3 + 1
3)− 2ψ(d+ 1) + 2ψ(1

3)− 2ψ(2
3) + log u

)
H(2).

(2.15)

We complete the proof by comparing (2.14) with (2.15). Indeed, we can obtain (2.14) by
replacing 1(1), 1(2), H(1) and H(2) in (2.15) with their image under Ul in Definition 2.3.





Chapter 3

Orlov-type functors

In this chapter, we introduce the categories of graded matrix factorizations. We introduce
two functors from “grade restriction rule”. An equivalence between the derived category of
graded matrix factorizations and the derived category of X3,3 is defined as a generalization of
Orlov functor.

3.1 Graded matrix factorizations

Definition 3.1. A Landau–Ginzburg (LG) model is the datum of a stack X with a C∗R-action,
together with a regular function F on X, where −1 ∈ C∗R acts trivially on X, and F has
C∗R-weight 2, i.e. for all λ ∈ C∗R and x ∈ X, we have

F (λ · x) = λ2F (x).

Example 3.2. As in the Example 0.11, we consider a vector space

V = C8 = Spec[x1, . . . , x6, p1, p2]

with a C∗-action of weights (1, 1, 1, 1, 1, 1,−3,−3), then there are two different GIT quotients:

X+ := [(C6\{0})× C2/C∗] = OP5(−3)⊕2

and
X− := [C6 × (C2\{0})/C∗] = OP(3,3)(−1)⊕6.

We define a C∗R-action on V with weights (0, 0, 0, 0, 0, 0, 2, 2), then it induces the C∗R-action on
both X+ and X−. Let W1 and W2 be two homogeneous polynomials of degree 3 as in §1.2.1,
then the function W := p1W1 + p2W2 on V is invariant under C∗, thus we can regard W as a
function on X+ and X−. We get two LG models (X−,W ) and (X+,W ) in this way.
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Remark 3.3. The C∗R-action defined above is different from the one define by (1.19) in §1.3.
However, the images of C∗R in GL(V ) induced by these two actions are the same. These two
actions are equivalent in the sense that the theory defined in §1.3 only depends on the groups
Γ and G.

Definition 3.4. A graded matrix factorization on a LG model (X,F ) is a finite rank vector
bundle E, equivariant with respect to C∗R, equipped with an endomorphism dE of C∗R-degree 1,
i.e. for all λ ∈ C∗R and all points (x, v) in the total space of E, we have

λ−1dE(λ · (x, v)) = λ · dE((x, v)),

where the λ−1 on the left-hand side is a scalar multiplication. We also require dE satisfy

d2
E = F · IdE .

We call E the underlying vector bundle of the graded matrix factorization.

A dg-categoryMFC∗R(X,F ) is constructed by Segal [42] and Shipman[43]. Its objects are
graded matrix factorizations over (X,F ). We define DMFC∗R(X,F ) to be the homotopy category
ofMFC∗R(X,F ), which is a trianglated category.

Now we describe how DMFC∗R(X,F ) naturally possess the structure of a triangulated cate-
gory. The shift functor on DMFC∗R(X,F ) is given by

(E, d)[1] = (E ⊗O[1],−d⊗ Id),

where O[1] is the trivial line bundle endowed with a C∗R-action of weight 1 on fiber direction.
The description of the distinguished triangles is more subtle. We only describe the ones

induced by honest morphisms of vector bundles; more details can be found in [43]. If f : E1 →
E2 is an honest C∗R-equivariant morphism of vector bundles that intertwines the differentials,
then we define the cone by

cone(f : E1 → E2) = Cf :=
E1[1]⊕ E2,

d1[1] 0
f d2

 .
A triangle isomorphic to a triangle of the form

E1
f−→ E2 → Cf → E1[1]→ . . .

is defined to be a distinguished triangle.

Remark 3.5. If we replace the C∗R-equivariant vector bundle in Definition 3.4 with a C∗R-
equivariant quasicoherent sheaf, we get the an object called curved graded quasicoherent sheaf
in [43]. All of these objects form a trianglated category DQcohC∗R(X,F ). Shipman [43] realizes
DMFC∗R(X±,W ) as a full triangulated subcategory of DQcohC∗R(X±,W ).
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3.2 Koszul matrix factorizations

Koszul matrix factorizations are important examples of on graded matrix factorizations
on (X±,W ). Before describing these graded matrix factorizations, we need to introduce line
bundles over X±.

Consider a C∗-action over C6×(C2−{0})×C with weights (1, 1, 1, 1, 1, 1,−3,−3, k), together
with a C∗R-action with weights (0, 0, 0, 0, 0, 0, 2, 2, l), then [C6 × (C2 − {0}) × C/C∗] is a C∗R-
equivariant line bundle over X−. We denote this line bundle by O(k)[l]. We can define O(k)[l]
over X+ in the same way.

Given a vector bundle E over X±, we denote the vector bundle E ⊗ O(k)[l] by E(k)[l].
Given a matrix factorization M = (E, d) over (X±,W ), we denote the matrix factorization
(E ⊗O(k)[l], (−1)ld⊗ Id) byM(k)[l].

Now we describe the Koszul matrix factorizations K− and K+ over (X±,W ).
The underlying C∗R-equivariant vector bundle of the Koszul matrix factorization K− is

•∧
O(1)[−1]⊕6. (3.1)

In order to describe its differential, we take

fij := 1
3∂xjWi;

then f11, . . . , f16 and f21, . . . , f26 are homogeneous polynomials of degree 2 such that

W1 = x1f11 + · · ·+ x6f16

and
W2 = x1f21 + · · ·+ x6f26.

Then sx := (x1, . . . , x6) is a section of O(1)[0]⊕6, and spf := (p1f11 + p2f21, . . . , p1f16 + p2f26) is
a cosection of O(1)[−2]⊕6. Then the differential of K− is given by

d−(−) = sx ∧ (−) + spf ∨ (−),

where ∧ denote the wedge product and ∨ denote the contraction.
Similarly, the underlying C∗R-equivariant vector bundle of the other Koszul matrix factor-

ization K+ is
•∧
O(−3)[1]⊕2, (3.2)

and the differential is given by

d+(−) = sp ∧ (−) + sW ∨ (−),

where sp := (p1, p2) and sW := (W1,W2).
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Remark 3.6. Note that K+ = 0 in DMFC∗R(X−,W ). This happens because the complex

0 // O(0)[0] sp // O(−3)[1]⊕2 sp // O(−6)[2] // 0

is exact on X− (see Lemma 3.15).
Similarly, we have K− = 0 in DMFC∗R(X+,W ).

Given a graded matrix factorization (E, d), if E can be written as direct sum of subbundles
and d can be written as sum of the zero extension of morphisms between those subbundles,
then we can represent (E, d) by a diagram whose vertices are the subbundles, and whose arrows
are morphisms between them. For example, we can represent K+ by the diagram

O(0)[0]
sp

// O(−3)[1]⊕2sWoo
sp

// O(−6)[2].
sWoo

Remark 3.7. Let A be a vector bundle over X±, we define the graded matrix factorization
A⊗K+(q)[m] to be (A(q)[m]⊗ ∧•O(−3)[1]⊕2, (−1)m Id⊗d+), by an abuse of notation, it can
be represented by

A(q)[m]
(−1)msp

// A(q − 3)[m+ 1]⊕2(−1)msWoo
(−1)msp

// A(q − 6)[m+ 2].
(−1)msWoo (3.3)

The notation sW and sp can also be understood as morphisms with C∗R-weights different from
1; for example, the morphisms in the following diagram are also denoted by sW and sp

A(q)[i]
sp

// A(q − 3)[j]⊕2sWoo
sp

// A(q − 6)[k]
sWoo

for arbitrary i, j and k; they are the same morphisms as in (3.3) after forgetting the C∗R-action
and the (−1)m coming from sign convention. The notations sx and spf will be used in the same
way.

3.3 Grade restriction rule

For each t ∈ Z, Segal [42] constructs an equivalence between the bounded derived categories
of coherent sheaves

Φ̃t : Db(X−)→ Db(X+)

and an equivalence between the derived categories of graded matrix factorizations

Φt : DMFC∗R(X−,W )→ DMFC∗R(X+,W )

from “grade restriction rule”.



3.3. Grade restriction rule 59

Let X0 denote the Artin stack [C6 × C2/C∗], where the group C∗ acts on C6 × C2 with
weights (1, 1, 1, 1, 1, 1,−3,−3). Both X+ and X− are open substacks of X0. We denote by

i± : X± → X0

the inclusions. Let
G̃t ⊂ Db(X0)

be the triangulated subcategory generated by the line bundles O(k) for t ≤ k < t + 6. It is
proven in [42, 5] that both i∗− and i∗+ restrict to give equivalences

Db(X−) ∼←− G̃t
∼−→ Db(X+).

then for each t ∈ Z, we have an equivalence

Φ̃t : Db(X−)→ Db(X+)

passing through G̃t.
For the derived categories of graded matrix factorizations, Segal [42] proves the following

theorem.

Theorem 3.8 (Segal [42]). There is a family of quasiequivalences

Φt : MFC∗R(X−,W ) ∼−→MFC∗R(X+,W )

indexed by t ∈ Z. When passing to homotopy category, we get a family of equivalences of
trianglated category

Φt : DMFC∗R(X−,W ) ∼−→ DMFC∗R(X+,W ).

Similar to the derived category case, the functor Φt is constructed by passing through a
triangulated subcategory

Gt ⊂ DMFC∗R(X0,W ).

The construction of Gt is slightly different from G̃t in the derived category of coherent sheaves
case since we can not regard the line bundlesO(k)[l] as objects of DMFC∗R(X0,W ). Instead, Gt is
the full triangulated subcategory of DMFC∗R(X0,W ) consisting of graded matrix factorizations
(E, d) where E is a direct sum of O(k)[l] for t ≤ k < t+ 6.

Given a graded matrix factorization (E, d) over (X−,W ), we can find its image under Segal’s
functor Φt in two steps.

1. Find a graded matrix factorization (E ′, d′) which is isomorphic to (E, d) in DMFC∗R(X−,W ),
where E ′ is a direct sum of O(k)[l] for t ≤ k < t+ 6.
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2. Since O(k)[l] also stand for line bundles over X+, we take Φt ((E, d)) to be the graded
matrix factorization over (X+,W ) with the same direct summands and endomorphisms
as (E ′, d′).

The interval [t, t + 6) is called a window. In order to apply Segal’s functor, we need to find
(E ′, d′) in step 1 which fit the window. We explain the strategy in the next section.

3.4 Strategy to fit the window

We start by computing the image of an object E ∈ Db(X−) under the functor

Φ̃t : Db(X−)→ Db(X+).

Since X− is quasiprojective, we can represent E by objects from the set {O(k), k ∈ Z} after
shifting, taking direct sums and taking cones. Since over X− we have an exact sequence

0 // O(i+ 6) sp // O(i+ 3)⊕2 sp // O(i) // 0,

for k < t, we replace O(k) with the complex

0 // O(k + 6) sp // O(k + 3)⊕2 // 0 ;

for k ≥ t+ 6, we replace O(i) with the complex

0 // O(k − 3)⊕2 sp // O(k − 6) // 0 .

After replacing objects not fitting the window [t, t+6) repeatedly, we can represent E by objects
from the set {O(k), t ≤ k < t + 6}. Then the object in Db(X+) with the same representation
is the image of E under Φ̃t.

Our strategy for the computation of the functor

Φt : DMFC∗R(X−,W ) ∼−→ DMFC∗R(X+,W )

is similar. Let (E, d) be a graded matrix factorization, we want to modify it to make it fit the
window [t, t + 6). If E has a direct summand O(k)⊕m which does not fit the window, assume
k < t, we want to replace it by O(k + 6)⊕m ⊕ O(k + 3)⊕2m. If we can do this repeatedly,
then we can kill all direct summands not fitting the window, and finally get a graded matrix
factorization fitting the window.

However, the replacement is not as easy as in the derived category case. The following
lemma and proposition show how to replace a unwanted direct summand A in a graded matrix
factorizationM explicitly whenM is of a special form.
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Definition 3.9. Let M be a graded matrix factorization over (X±,W ), and A be a direct
summand of the underlying vector bundle of M. We say A is replaceable in M if M can be
represented by the diagram

A
dBA+p1δ1

BA+p2δ2
BA

// B
p1δ1

AB+p2δ2
ABoo

dCB+p1δ1
CB+p2δ2

CB

// C
dBC+p1δ1

BC+p2δ2
BCoo

dCC+p1δ1
CC+p2δ2

CC

cc

such that

1. we can write A, B and C as direct sums of O(k)[l], and all morphisms d and δ with
some indexes can be represented by matrices with entries in C[x1, . . . , x6];

2. the following equations hold

δ2
ABδ

1
BA = δ1

ABδ
2
BA = 0.

Lemma 3.10. Assume A is replaceable inM as in definition 3.9. Then, with the notation sW
and sp in Remark 3.7, the diagram

A(3)[−2]⊕2

−(dBA+p1δ1
BA+p2δ2

BA)◦sp

��

−sW
// A(6)[−3]

−spoo

B

−(δ1
AB ,δ

2
AB)

OO

dCB+p1δ1
CB+p2δ2

CB

// C
dBC+p1δ1

BC+p2δ2
BCoo

dCC+p1δ1
CC+p2δ2

CC

cc

δ1
ABδ

2
BC

OO

represents a graded matrix factorization over (X±,W ). We denote the new graded matrix
factorization byM\A.

Proof. It is easy to check the morphisms in the diagram have C∗R-weight 1. We need to prove
the square of sum of them equals to W · Id, i.e.

1. For each vertex, the sum of arrows going out composed with their reverse equals W · Id.
Because M and A ⊗ K+(6)[−3] are graded matrix factorizations, this is true at the
vertices A(6)[−3] and C. Note that we have

(p1δ
1
AB + p2δ

2
AB)(dBA + p1δ

1
BA + p2δ

2
BA) = p1W1 + p2W2;

since the sections p1, p2, x1, . . . , x6 are algebraically independent, we deduce

(δ1
AB, δ

2
AB) ◦ (dBA + p1δ

1
BA + p2δ

2
BA) = sW .

It follows that the property holds at A(3)[−2]. At B, it follows from

sp ◦ (δ1
AB, δ

2
AB) = p1δ

1
AB + p2δ

2
AB.
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2. By composing two successive arrows, we get morphisms from one vertex to another.
If we fix a pair of different source and target, the sum of those morphisms should be
zero. The morphism from A(6)[−3] to B is zero because sp ◦ sp = 0 in A⊗ K+(6)[−3].
Similarly the morphism froms A(3)[−2] to C, from B to C, and from C to B are zero.
SinceM is a graded matrix factorization, we have

(dBC + p1δ
1
BC + p2δ

2
BC)(dCB + p1δ

1
CB + p2δ

2
CB) + (dBA + p1δ

1
BA + p2δ

2
BA)(p1δ

1
AB + p2δ

2
AB)

=p1W1 + p2W2

and
(p1δ

1
AB + p2δ

2
AB)(dBC + p1δ

1
BC + p2δ

2
BC) = 0.

Hence we have

sW ◦ (δ1
AB, δ

2
AB) = −W2δ

1
AB +W1δ

2
AB

= −δ2
ABdBAδ

1
AB + δ1

ABdBAδ
2
AB

= −δ2
AB(W1 − δ1

BCdCB − dBCδ1
CB) + δ1

AB((W2 − δ2
BCdCB − dBCδ2

CB)

= W2δ
1
AB −W1δ

2
AB − 2δ1

ABδ
2
BCdCB.

So we get

sW ◦ (δ1
AB, δ

2
AB) + δ1

ABδ
2
BC(dCB + p1δ

1
CB + p2δ

2
CB)

=(−W2δ
1
AB +W1δ

2
AB + δ1

ABδ
2
BCdCB)− p1δ

2
ABδ

1
BCδ

1
CB + p2δ

1
ABδ

2
BCδ

2
CB

=p1δ
2
ABδ

1
BAδ

1
AB − p2δ

1
ABδ

2
BAδ

2
AB = 0.

This proves that the sum of morphisms from B to A(6)[−3] is zero.
We also have

(δ1
AB, δ

2
AB) ◦ (dBC + p1δ

1
BC + p2δ

2
BC) + spδ

1
ABδ

2
BC

=(p1δ
1
ABδ

1
BC + p2δ

1
ABδ

2
BC − p2δ

1
ABδ

2
BC , p1δ

2
ABδ

1
BC + p2δ

2
ABδ

2
BC + p1δ

1
ABδ

2
BC)

=(0, 0).

This proves that the sum morphisms from C to A(3)[−2] is zero.
Finally, since

(dBC + p1δ
1
BC + p2δ

2
BC)(dCC + p1δ

1
CC + p2δ

2
CC) = 0,

we have

δ1
ABδ

2
BC(dCC + p1δ

1
CC + p2δ

2
CC)

=δ1
ABδ

2
BCdCC − p1δ

2
ABδ

1
BCδ

1
CC + p2δ

1
ABδ

2
BCδ

2
CC

=− δ1
ABdBCδ

2
CC = 0.

This proves that the morphism from C to A(6)[−3] is zero.
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Proposition 3.11. If A is replaceable in M, then there exists a morphism of graded matrix
factorization

f : M→ A⊗K+(6)[−2].

Moreover, the cone Cf is isomorphic to (M\A)[1] in DMFC∗R(X±,W ).

Proof. The morphism between the underlying vector bundles A⊕B⊕C and A⊕A(3)[−1]⊕2⊕
A(6)[−2] is given by the matrix

IdA 0 0
0 (δ1

AB, δ
2
AB) 0

0 0 −δ1
ABδ

2
BC

 .
We can check this is indeed a morphism of graded matrix factorization by the method used in
the proof of Lemma 3.10. The cone Cf of f is given by

A
sW

// A(3)[−1]⊕2
sW

//
spoo A(6)[−2]

spoo

A[1]

IdA

OO

−(dBA+p1δ1
BA+p2δ2

BA)
// B[1]

−(p1δ1
AB+p2δ2

AB)
oo

−(dCB+p1δ1
CB+p2δ2

CB)
//

(δ1
AB ,δ

2
AB)

OO

C[1]
−(dBC+p1δ1

BC+p2δ2
BC)

oo

−(dCC+p1δ1
CC+p2δ2

CC)
gg

−δ1
ABδ

2
BC

OO
(3.4)

We know that (M\A)[1] is given by

A(3)[−1]⊕2

(dBA+p1δ1
BA+p2δ2

BA)◦sp

��

sW
// A(6)[−2]

spoo

B[1]

(δ1
AB ,δ

2
AB)

OO

−(dCB+p1δ1
CB+p2δ2

CB)
// C[1]

−(dBC+p1δ1
BC+p2δ2

BC)
oo

−(dCC+p1δ1
CC+p2δ2

CC)
gg

−δ1
ABδ

2
BC

OO
(3.5)

We write the underlying vector bundles of (3.4) and (3.5) as direct sums

A(6)[−2]⊕ A(3)[−1]⊕2 ⊕ C[1]⊕B[1]⊕ A⊕ A[1]

and
A(6)[−2]⊕ A(3)[−1]⊕2 ⊕ C[1]⊕B[1].

Under the order of direct summands above, we define a morphism of graded matrix factorization

F : Cf → (M\A)[1]
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by the matrix 
Id 0 0 0 0 0
0 Id 0 0 0 0
0 0 Id 0 0 0
0 0 0 Id dBA + p1δ

1
BA + p2δ

2
BA 0


and we define

G : (M\A)[1]→ Cf

by 

Id 0 0 0
0 Id 0 0
0 0 Id 0
0 0 0 Id
0 0 0 0
0 −sp 0 0


.

We have
F ◦G = Id(M\A)[1]

and

G ◦ F = IdCf +



0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 dBA + p1δ

1
BA + p2δ

2
BA 0

0 0 0 0 − Id 0
0 −sp 0 0 0 − Id


.

Define
H : Cf → Cf

as 

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 − Id 0


.

Then, we have
G ◦ F = IdCf +H ◦ dCf + dCf ◦H,

which means G◦F is homotopy to IdCf . Hence we get Cf = (M\A)[1] in DMFC∗R(X±,W ).
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Corollary 3.12. In DMFC∗R(X−,W ), we have M = M\A. In this way we replace A by
A(6)[−3]⊕ A(3)[−2] as claimed in the beginning of this section.

Proof. In DMFC∗R(X−,W ), we have
K+ = 0,

so
M = cone (f : M→ A⊗K+(6)[−2]) [−1] =M\A.

3.5 Orlov’s functor for complete intersection

Orolv [40] constructed a family of equivalences between a category of matrix factorization
and the derived category of a Calabi–Yau hypersurface in projective space. We want to gener-
alize it and get a family of equivalences between DMFC∗R(X−,W ) and Db(X3,3). We can do it
by composing the family of Segal’s functors Ψi introduced in §3.3 with a functor constructed
by Shipman [43].

Let
p : X+ = OP5(−3)⊕2 −→ P5

be the bundle projection, and let

i : OX3,3(−3)⊕2 → OP5(−3)⊕2

be the inclusion of the total space. Since p and i are C∗R-equivariant and W vanishes on
OX3,3(−3)⊕2, there are functors between the derived categories of curved graded quasicoherent
sheaves (see Remark 3.5)

p∗ : DQcohC∗R(X3,3, 0)→ DQcohC∗R(OX3,3(−3)⊕2, 0)

and
i∗ : DQcohC∗R(OX3,3(−3)⊕2, 0)→ DQcohC∗R(X+,W ).

Since the C∗R-action is trivial onX3,3, we can regard Db(X3,3) as a subcategory of DQcohC∗R(X3,3, 0).

Theorem 3.13 (Shipman [43]). The functor i∗ ◦ p∗ sends Db(X3,3) to DMFC∗R(X+,W ). More-
over, the restriction of i∗ ◦ p∗ to Db(X3,3)

Shi := i∗ ◦ p∗ : Db(X3,3) −→ DMFC∗R(X+,W )

is an equivalence of trianglated category.

We define Orlt to be the composition (Shi)−1 ◦Φt. Then we obtain a family of equivalences

Orlt : DMFC∗R(X−,W ) ∼−→ Db(X3,3).
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Description of Shipman’s functor

Shipman’s functor Shi can be characterized by the following proposition.

Proposition 3.14 (Shipman [43]). The image of O(k)[l] ∈ Db(X3,3) under the functor Shi in
Theorem 3.13 is K+(k)[l].

This proposition is a consequence of the following lemma.

Lemma 3.15 (Shipman [43]). Let S be an object in DQcohC∗R(X±,W ) represented by the digram

S1 α1
// S2

β1oo
α2
// . . .

αn
//

β2oo Sn+1.
βnoo

If the complex
0 // S1

α1 // S2
α2 // . . .

αn // Sn+1 // 0

is exact, then S is zero in DQcohC∗R(X±,W ).

Remark 3.16. Let
j : P(3, 3)→ X−

be the inclusion as zero section. It is equivariant under the C∗R-action. Since the sheaves
OP(3,3)(k) are invariant under the C∗R-action on P(3, 3), we can regard them as objects of
DQcohC∗R(P(3, 3), 0). Then j∗OP(3,3)(k)[l] are objects in DQcohC∗R(X−,W ) with

j∗ : DQcohC∗R(P(3, 3), 0)→ DQcohC∗R(X−,W )

the pushforward functor.
Using Lemma 3.15, we can show that K−(q)[m] is isomorphic to j∗OP(3,3)(−q− 6)[m− 6] in

DQcohC∗R(X−,W ). This is because the complex

0 // O(q) sx // O(q + 1)⊕6 sx // . . .
sx // O(q + 6) // j∗OP(3,3)(−q − 6) // 0

(3.6)
is exact on X−.

Since Db(P(3, 3)) is generated by the set of objects {OP(3,3)(k), k ∈ Z}, we can get a functor

j∗ : Db(P(3, 3))→ DMFC∗R(X−,W ).

Notice that the last term in (3.6) is j∗OP(3,3)(−q− 6) instead of j∗OP(3,3)(q+ 6). This is due
to the sign issue discussed in Remark 0.12. Although we can identify X− with total space of
O(−1)⊕6 over P(3, 3), there is a change of sign. In fact, when we restrict the line bundle O(k)
over X− (see §3.11 for the definition of O(k)) to the zero section P(3, 3), we get the line bundle
O(−k) over P(3, 3).
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Matching analytic continuation and
categorical equivalences

In this chapter we compute the image of K−(q)[m] under the Orlov functors using the
strategy from the previous chapter. Then we show that the Orlov functors coincide with the
linear maps gotten from analytic continuation in the sense that

inv∗ ch (Orlt−3(K−(q)[m])⊗O(−3)) = Ut (inv∗ ch(K−(q)[m])) .

We apply our result to study the monodromy of a local system. We also discuss the relation be-
tween our main result and the result of Coates, Iritani and Jiang [19] on crepant transformation
conjecture.

4.1 Image of K−(q) under Orlov functor

We compute ch (Orlt(K−(q))) in this section.
Since Orlt = Shi−1 ◦ Φt, we need to compute Φt(K−(q)) first. The following Lemma shows

that it is sufficient to compute Φt(K−).

Lemma 4.1. For any object F in DMFC∗R(X−,W ) and any integer q,m, t, we have

Φt(F(q)[m]) = Φt−q(F)(q)[m].

Proof. If we can find a graded matrix factorization E such that E = F in DMFC∗R(X±,W )
and the underlying vector bundle of E is a direct sum of O(i)[j] for t ≤ i < t + 6, then
E(q)[m] = F(q)[m] in DMFC∗R(X±,W ) and the underlying vector bundle of E(q)[m] is a direct
sum of O(i)[j] for t+ q ≤ i < t+ q + 6. By the construction of Segal’s functor Φi, we have

Φt(F)(q)[m] = Φt+q(F(q)[m]).
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Corollary 4.2. For any integer q,m and t, we have

Orlt(K−(q)[m]) = Orlt−q(K−)(q)[m].

Proof. By construction of Shipman’s functor, we have

Shi(E ⊗ OX3,3(q)) = Shi(E)⊗OX+(q)

for all objects E ∈ Db(X3,3).

4.1.1 Introductory examples: Orl1(K−) and Orl2(K−)

We show how to use the strategy in §3.4 to compute Orl1(K−) and Orl2(K−).
By (3.1) we can represent K− by

O
sx
// O(1)[−1]⊕6

spfoo
sx
// C

spfoo

sx+spf
cc ,

where

C =
≥2∧
O(1)[−1]⊕6.

We compute Orl1(K−) first. The direct summand O of the underlying vector bundle of K−
does not fit the window 1 ≤ k ≤ 6. We can decompose spf as

spf = p1sf1 + p2sf2 ,

so O is replaceable in K−. Then, by Corollary 3.12, in DMFC∗R(X−,W ) we have an isomorphism
between K− and K(1)

− := K−\O, where K(1)
− can be represented by

O(3)[−2]⊕2

−sx◦sp

��

−sW
// O(6)[−3]

−spoo

O(1)[−1]⊕6

−(sf1 ,sf2 )

OO

sx
// C

spfoo

sx+spf
cc

0

OO

Note that the underlying vector bundle of K(1)
− is a direct sum of O(k)[l] for 1 ≤ k ≤ 6, which

fit the window, thus in DMFC∗R(X+,W ) we have

Φ1(K−) = K(1)
− .
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By Proposition 3.11 we know in DMFC∗R(X±,W )

K(1)
− = cone(K− → K+(6)[−2])[−1].

In DMFC∗R(X+,W ) we have K− = 0 hence

K(1)
− = K+(6)[−3] = Shi(O(6)[−3]),

so by Proposition 3.14 we have
Orl1(K−) = O(6)[−3].

Next we compute Orl2(K−). The window becomes 2 ≤ k ≤ 7. The direct summand O(1)[−1]⊕6

of the underlying vector bundle of K(1)
− does not fit the window. Again we can check that

O(1)[−1]⊕6 is replaceable in O(1)[−1]⊕6. Let

K(2)
− := K(1)

− \O(1)[−1]⊕6,

then in DMFC∗R(X−,W ) we have
K(2)
− = K(1)

− = K−

and all the direct summands of the underlying vector bundle of K(2)
− fit the window. Thus in

DMFC∗R(X+,W ) we have
Φ2(K−) = K

(2)
− .

By Proposition 3.11,
K(2)
− = cone

(
K(1)
− → K+(7)[−3]⊕6

)
[−1],

so
Orl2(K−) = cone

(
O(6)[−4]→ O(7)[−4]⊕6

)
.

4.1.2 Replaceablity of K−

In order to continue the procedure in §4.1.1 to compute Orlk(K−) for any integer k > 0, we
need the following proposition stating that we can always use the strategy in §3.4 to make K−
fit the window [t, t+ 6) for any integer t > 0.

Proposition 4.3. There exists a sequence of graded matrix factorizations {K(1)
− ,K

(2)
− ,K

(3)
− , . . .}

in DMFC∗R(X±,W ) such that

1. in DMFC∗R(X−,W ) we have K(1)
− = K(2)

− = · · · = K−;

2. the underlying vector bundle of K(t)
− is a direct sum of O(k)[l] for t ≤ k < t+ 6.
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Moreover, let the direct summand of underlying vector bundle of K(t)
− consisting of line bundles

in {O(t)[l], l ∈ Z} be
s⊕
i=1
O(t)[ni]⊕mi for n1 > n2 > · · · > ns,

then there exists a sequence of graded matrix factorizations

{K(t)(0)
− = K(t)

− ,K
(t)(1)
− ,K(t)(2)

− , . . . ,K(t)(s)
− = K(t+1)

− }

such that
K(t)(i+1)
− = cone

(
K(t)(i)
− → K+(t+ 6)[ni − 2]⊕mi

)
[−1]

in DMFC∗R(X±,W ) for a suitable morphism K(t)(i)
− → K+(t+6)[ni−2]⊕mi. The underlying vector

bundle of K(t)(i+1)
− is obtained by replacing the direct summand O(t)[ni]⊕mi in the underlying

vector bundle of K(t)(i)
− by O(t+ 6)[ni − 3]⊕mi ⊕O(t+ 3)[ni − 2]⊕2mi.

Proof. If we can show that O(t)[ni]⊕mi is replaceable in K(t)(i)
− , then we can define

K(t)(i+1)
− := K(t)(i)

− \O(t)[ni]⊕mi .

We show that this is always possible. We have written down K(1)
− and K(2)

− already. Note that
K(1)
− and K(2)

− satisfy the following property: their differentials are the sum of following types
of morphisms:

1. the zero extension of the morphism O(k)[l]⊕m f−→ O(k + i)[l − 1]⊕n, where

i ∈ Z≥0,

and f can be represented by a matrix with entries in C[x1, . . . , x6];

2. the zero extension of the morphism O(k)[l]⊕m p1f1+p2f2−−−−−−→ O(k + i)[l + 1]⊕n, where

i ∈ Z≥−3,

and f1, f2 can be represented by matrices with entries in C[x1, . . . , x6].

If K(t)(i)
− satisfies the property, since all the direct summands of K(t)(i)

− are of the form O(s)[j]
with s > t or s = t, j ≤ ni, all the nonzero arrow with target O(t)[ni]⊕mi are of type 2.
Moreover, we can not find two successive nonzero type-2 arrows such that the first start from
O(t)[ni]⊕mi and the second goes back to O(t)[ni]⊕mi . This means O(t)[ni]⊕mi is replaceable in
K(t)(i)
− . By construction in Lemma 3.10,

K(t)(i+1)
− := K(t)(i)

− \O(t)[ni]⊕mi

also satisfies above property, thus we can define all K(t)(i)
− inductively.
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Remark 4.4. We can get a completely similar sequence {K(0)
− ,K

(−1)
− ,K(−2)

− , . . .} if we replace
the direct summand

O(−t+ 5)[l]⊕m

in the underlying vector bundle of K(−t)
− with

O(−t+ 2)[l + 2]⊕2m ⊕O(−t− 1)[l + 3]⊕m

to get K(−t−1)
− . In this way we can compute Orlk(K−) for any k ≤ 0.

4.1.3 Computation of ch(Orlt(K−(q)))

From (1) and (2) in Proposition 4.3, we have

Φt(K−) = K(t)
− .

Since K(t)
− can be obtained by taking cones of morphism to K+(k)[n]⊕m repeatedly, after ap-

plying the functor (Shi)−1, we know Orlt(K−) can be obtained by taking cones of morphism to
O(k)[n]⊕m repeatedly. In particular, we can compute ch(Orlt(K−)).

Theorem 4.5. For all integers t, q and m we have

ch(Orlt(K−(q)[m])) = (−1)m
∑

t−3≤s≤t+2
s≡q mod 3

s− q
3

t−s+2∑
k=0

(−1)k+1
(

6
k

)
e(k+s+3)p.

Proof. It is computed in §4.1.1 that

Orl1(K−) = O(6)[−3],

so we have
ch(Orl1(K−)) = −e6p.

Now we compute
ch(Orlt+1(K−))− ch(Orlt(K−)).

We write the direct summand of underlying vector bundle of K(t)
− consisting of line bundles in

{O(t)[l], l ∈ Z} as
s⊕
i=1
O(t)[ni]⊕mi , for n1 > n2 > · · · > ns,

by Proposition 4.3 there exists a sequence of graded matrix factorizations

{K(t)(0)
− = K(t)

− ,K
(t)(1)
− ,K(t)(2)

− , . . . ,K(t)(s)
− = K(t+1)

− }
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such that
K(t)(i+1)
− = cone

(
K(t)(i)
− → K+(t+ 6)[ni − 2]⊕mi

)
[−1].

Therefore,

ch(Orlt+1(K−))− ch(Orlt(K−)) = ch
(
(Shi)−1(K(t)(s)

− )
)
− ch

(
(Shi)−1(K(t)(0)

− )
)

= −
s∑
i=1

ch
(
O(t+ 6)[ni − 2]⊕mi

)
.

When t ≥ 7, the direct summand O(t)[ni]⊕mi in the underlying vector bundle of K(t)
− comes

from O(t− 3)[ni + 2]⊕ai in the underlying vector bundle of K(t−3)
− and O(t− 6)[ni + 3]⊕bi in the

underlying vector bundle of K(t−6)
− , with 2ai + bi = ni. Therefore when t ≥ 7 we have

ch(Orlt+1(K−))− ch(Orlt(K−)) =2e3p (ch(Orlt−2(K−))− ch(Orlt−3(K−)))

− e6p (ch(Orlt−5(K−))− ch(Orlt−6(K−))) .

We can compute directly that

ch(Orl2(K−))− ch(Orl1(K−)) = 6e7p,

ch(Orl3(K−))− ch(Orl2(K−)) = −15e8p,

ch(Orl4(K−))− ch(Orl3(K−)) = 20e9p − 2 · e9p,

ch(Orl5(K−))− ch(Orl4(K−)) = −15e10p + 2 · 6e10p,

ch(Orl6(K−))− ch(Orl5(K−)) = 6e11p − 2 · 15e11p,

ch(Orl7(K−))− ch(Orl6(K−)) = −e12p + 2 · 20e12p − 3 · e12p.

Then we can check that for all t ≥ 1 we have

ch(Orlt+1(K−))− ch(Orlt(K−))

=(−1)s+1dt+ 1
3 e

(
6
s

)
ep+6 + (−1)sdt+ 1

3 − 1e
(

6
s+ 3

)
ep+6 + (−1)s+1dt+ 1

3 − 2e
(

6
s+ 6

)
ep+6,

where s ∈ {0, 1, 2}, s ≡ t mod 3, and we set
(

6
k

)
= 0 if k > 6. Using the fact that in HGW

6∑
i=0

(−1)k
(

6
k

)
eip = (1− ep)6 = 0

for dimension reason, we compute

ch(Orlt(K−)) = ch(Orl1(K−)) +
t−1∑
i=1

(ch(Orli(K−))− ch(Orli−1(K−)))

=
d t3 e∑
n=1

n
∑

0≤k≤6
3n+k−3≤t

(−1)k+1
(

6
k

)
e(3n+k+3)p

=
∑

t−3≤s≤t+2
s≡0 mod 3

s

3

t−s+2∑
k=0

(−1)k+1
(

6
k

)
e(s+k+3)p
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Then use Corollary 4.2, we get

ch(Orlt(K−(q)[m])) = (−1)meqp ch(Orlt−q(K−))

= (−1)m
∑

t−q−3≤s≤t−q+2
s≡0 mod 3

s

3

t−q−s+2∑
k=0

(−1)k+1
(

6
k

)
e(k+s+q+3)p

= (−1)m
∑

t−3≤s≤t+2
s≡q mod 3

s− q
3

t−s+2∑
k=0

(−1)k+1
(

6
k

)
e(k+s+3)p.

Remark 4.6. Segal points out there is another way to compute ch(Orlt(K−(q))). We can write

Orlt(K−(q)) = (Orlt ◦Orl−1
t−1) ◦ (Orlt−1 ◦Orl−1

t−2) ◦ · · · ◦ (Orl2 ◦Orl−1
1 ) ◦Orl1(K−(q)).

It follows from Theorem 3.13 in [42] that Orlk ◦Orl−1
k−1 are spherical twists on Db(X3,3). So

having computed Orl1(K−(q)) we can compute ch(Orlt(K−(q))) by applying t − 1 spherical
twists. Moreover, we only need to compute Orl1(K−) according to Corollary 4.2.

4.2 Chern character of K−(q)

The Chern character on DMFC∗R(X−,W ) (more precisely, onMFC∗R(X−,W )) takes values
in the Hochschild cohomology HH(MFC∗R(X−,W )). We do not have an isomorphism between
HH(MFC∗R(X−,W )) and HFJRW in the complete intersection case currently. But since all
Chern characters satisfy Grothendieck–Riemann–Roth, we can define a HFJRW-valued Chern
character for objects coming from the pushforward functor as follows.

Consider the inclusion

j : P(3, 3) −→ X− = OP(3,3)(−1)⊕6

as zero section. As discussed in Remark 3.16, we have a pushforward functor

j∗ : Db(P(3, 3))→ DMFC∗R(X−,W ).

We identify
HFJRW = H∗(P(3, 3))⊕H∗+4(P(3, 3))

with the second and third direct summands of

H∗CR(X−) = H∗CR(P(3, 3)) = H∗(P(3, 3))⊕H∗+4(P(3, 3))⊕H∗+8(P(3, 3)).
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Then we use Grothendieck–Riemann–Roth to define a HFJRW-valued Chern character

ch (j∗(E)) :=
(

ch(E) · 1
Td(OP(3,3)(−1)⊕6)

)∣∣∣∣∣
nar
,

where the notation |nar means we take the part coming from the second and third direct sum-
mands of H∗CR(P(3, 3)).

The Todd class (see §0.4) of the bundle OP(3,3)(−1)⊕6 is computed as

Td(OP(3,3)(−1)⊕6)|nar =
(
Td(OP(3,3)(−1))

)6
|nar

=
 1

1− ζ2e
H(1)

3

1(1) + 1
1− ζeH

(2)
3

1(2)

6

,
(4.1)

hence we have (
1

Td(OP(3,3)(−1)⊕6)

)∣∣∣∣∣
nar

=
(
1(1) − ζ2e

H(1)
3

)6
+
(
1(2) − ζe

H(2)
3

)6

=
2∑

k=1

(
(1− ζ−k)1(k) − 1

3ζ
−kH(k)

)6
.

On the other hand, as mentioned in Remark 3.16,

K−(q)[m] = j∗
(
OP(3,3)(−q − 6)[m− 6]

)
,

and

ch
(
OP(3,3)(−q − 6)[m− 6]

)
|nar = (−1)m−6 ch

(
OP(3,3)(−1)

)q+6
|nar

= (−1)m
2∑

k=1

(
ζk1(k) − 1

3ζ
kH(k)

)q+6
.

(4.2)

Then we get

inv∗ (ch(K−(q)[m])) = (−1)m
2∑

k=1

(
ζ−k1(k) − 1

3ζ
−kH(k)

)q+6 (
(1− ζk)1(k) − 1

3ζ
kH(k)

)6
.

Where
inv∗ : HFJRW → HFJRW.

is induced by the canonical involution (see §0.4)

inv : IX− → IX−.

It maps 1(k) and H(k) to 1(3−k) and H(3−k).

Remark 4.7. The exponents of ζ in (4.1) and (4.2) are different from the standard ones. This
is due to the sign issue discussed in Remark 2.2.
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4.3 Image of inv∗ (ch(K−(q)[m])) under Ul

We can expand inv∗ (ch(K−(q)[m])) as

inv∗ (ch(K−(q)[m])) =(−1)m
2∑

k=1
ζ−k(q+6)(1− ζk)61(k)

− 2 · (−1)m
2∑

k=1
ζ−k(q+5)(1− ζk)5H(k)

− q + 6
3 (−1)m

2∑
k=1

ζ−k(q+6)(1− ζk)6H(k).

There are three types of elements in the expansion, we compute their images under Ul.

Proposition 4.8. For any integer l and q, the following three equations hold.

Ul

( 2∑
k=1

ζ−qk
(
1− ζk

)6
1(k)

)
=1

3
∑

s≡q mod 3
l≤s≤l+5

s
s−l∑
k=0

(−1)l+k+6−s

 6
l + k + 6− s

 e(k+l)p

− 2
∑

s≡q mod 3
l≤s≤l+5

s−l−1∑
k=0

(−1)s−l−k
 5
s− l − k − 1

 e(k+l)p;
(4.3)

Ul

( 2∑
k=1

ζ−qk
(
1− ζk

)5
H(k)

)
=

∑
s≡q mod 3
l≤s≤l+4

s−l∑
k=0

(−1)s−l−k
 5
s− l − k

 e(k+l)p; (4.4)

Ul

( 2∑
k=1

ζ−qk
(
1− ζk

)6
H(k)

)
=

∑
s≡q mod 3
l≤s≤l+5

s−l∑
k=0

(−1)s−l−k
 6
s− l − k

 e(k+l)p. (4.5)

Proof. We only prove equation (4.3), the other two can be proven in the same way. We add
formal element 1(0) then we can write

2∑
k=1

ζ−qk
(
1− ζk

)6
1(k)

=
2∑

k=0
ζ−qk

(
1− ζk

)6
1(k)

=
(
1(0) 1(1) 1(2)

)
1

ζ−q

ζ−2q




1 1 1 1 1 1 1
1 ζ ζ2 1 ζ ζ2 1
1 ζ2 ζ 1 ζ2 ζ 1





1
−6
15
−20
15
−6
1


.

(4.6)
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By (2.8) we have

Ul

( 2∑
k=1

ζ−qk
(
1− ζk

)6
1(k)

)

=1
9e

pl
(
1 ep e2p e3p . . .

)



l l l

l + 1 (l + 1)ζ (l + 1)ζ2

l + 2 (l + 2)ζ2 (l + 2)ζ
l + 3 l + 3 l + 3
l + 4 (l + 4)ζ (l + 4)ζ2

l + 5 (l + 5)ζ2 (l + 5)ζ
... ... ...




1

ζ l

ζ2l



·


1

ζ−q

ζ−2q




1 1 1 1 1 1 1
1 ζ ζ2 1 ζ ζ2 1
1 ζ2 ζ 1 ζ2 ζ 1





1
−6
15
−20
15
−6
1



(4.7)

=1
3e

pl
(
1 ep e2p e3p . . .

)



l l
... ...

m m m

m+ 1 m+ 1
m+ 2 m+ 2

m+ 3 m+ 3 m+ 3
... ...

... ...





1
−6
15
−20
15
−6
1


,

where m ∈ {l, l + 1, l + 2}, and m ≡ q mod 3. Note that the centre matrix consists of slope-1
lines. Start from the third line, the contribution of each line to Ul

(∑2
k=1 ζ

−qk
(
1− ζk

)6
1(k)

)
is

1
3e

pl
6∑

k=0
(m+ 3t+ k)(−1)6−k

 6
6− k

 ekp

=1
3e

pl(m+ 3t)(1− ep)6 + 1
3e

pl
6∑

k=1
(−1)6−k · 6 ·

 5
k − 1

 ekp
=1

3e
pl(m+ 3t)(1− ep)6 − 2e(l+1)p(1− ep)5 = 0.
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Thus only the first two lines contribute. We have

Ul

( 2∑
k=1

ζ−qk
(
1− ζk

)6
1(k)

)

=1
3

∑
s≡q mod 3
l≤s≤l+5

s−l∑
k=0

(l + k)(−1)s−l−k
 6
s− l − k

 e(k+l)p

=1
3

∑
s≡q mod 3
l≤s≤l+5

s
s−l∑
k=0

(−1)l+k+6−s

 6
l + k + 6− s

 e(k+l)p

− 1
3

∑
s≡q mod 3
l≤s≤l+5

s−l∑
k=0

(s− l − k)(−1)s−l−k
 6
s− l − k

 e(k+l)p

=1
3

∑
s≡q mod 3
l≤s≤l+5

s
s−l∑
k=0

(−1)l+k+6−s

 6
l + k + 6− s

 e(k+l)p

− 2
∑

s≡q mod 3
l≤s≤l+5

s−l−1∑
k=0

(−1)s−l−k
 5
s− l − k − 1

 e(k+l)p.

(4.8)

Corollary 4.9. The image of inv∗ (ch(K−(q)[m])) under Ul is

Ul (inv∗ (ch(K−(q)[m]))) = (−1)m
∑

s≡q mod 3
l≤s≤l+5

s− q − 6
3

s−l∑
k=0

(−1)l+k+6−s

 6
l + k + 6− s

 e(k+l)p.

(4.9)

4.4 Main result

Proposition 4.10. For any integers q, m and t, we have

Ut (inv∗ (ch(K−(q)[m]))) = ch(Orlt−3(K−(q)[m])) · e−3p. (4.10)

Proof. Using the fact that

0 = (1− ep)6 =
6∑

k=0
(−1)k

(
6
k

)
ekp,
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we compute

Ut (inv∗ (ch(K−(q)[m]))) = (−1)m
∑

s≡q mod 3
t≤s≤t+5

s− q − 6
3

s−t∑
k=0

(−1)t+k+6−s

 6
t+ k + 6− s

 e(k+t)p

= (−1)m
∑

s≡q mod 3
t≤s≤t+5

s− q − 6
3

−1∑
k=s−t−6

(−1)t+k+5−s

 6
t+ k + 6− s

 e(k+t)p

= (−1)m
∑

s≡q mod 3
t≤s≤t+5

s− q − 6
3

t−s+5∑
k=0

(−1)k+1

6
k

 e(k+s−6)p

= (−1)m
∑

s≡q mod 3
t−6≤s≤t−1

s− q
3

t−s−1∑
k=0

(−1)k+1

6
k

 e(k+s)p

= ch(Orlt−3(K−(q)[m])) · e−3p.

The functor
⊗O(−3) : Db(X3,3)→ Db(X3,3)

given by
E 7→ E ⊗ O(−3)

is an equivalence of triangulated category. We define the modified Orlov functors by

Orlmod
t := ⊗O(−3) ◦Orlt−3 : DMFC∗R(X−,W )→ Db(X3,3),

they are still equivalences of triangulated category.
The Proposition 4.10 can be interpreted as the following theorem.

Theorem 4.11. Let G be the subcategory of DMFC∗R(X−,W ) generated by {K−(q)[m]}q,m∈Z,
then for any t ∈ Z, we have the following commutative diagram

G
Orlmod

t //

inv∗ ch
��

Db(X3,3)
inv∗ ch
��

HFJRW
Ut // HGW.

Remark 4.12. The canonical involution (see §0.4)

inv : IX3,3 → IX3,3

is identical since X3,3 has only one sector. So the inv∗ in the right arrow is is the identical map
of HGW .
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4.5 Application to monodromy

The Picard-Fuchs equation (1.25) determines a local system over Cv\{0, 3−6} = P1
v\{0, 3−6,∞}.

We study the monodromy around the three points in this section.

Theorem 4.13. Let γCY, γLG, γcon be the paths in P1
v\{0, 3−6,∞} as in figure 4.1.

1. The action on HGW induced by the circle γCY around 0 is given by multiplying

inv∗ ch
(
OX3,3(1)

)
= ep.

2. The action on HFJRW induced by the circle γLG around ∞ is given by multiplying the
narrow part of inv∗ ch(OX−(−1)), which is (see Remark 2.2 for the sign issue)

ζ3e
H(1)

3 1(1) + ζ2
3e

H(2)
3 1(2).

3. The action on HGW induced by the circle γcon around 3−6 coincides with the one induced
by a spherical twist of Db(X3,3).

Proof. 1. After the monodromy along γCY, log v turns into log v+ 2πi. According to equa-
tion (2.3), we have

HGW(log v + 2πi, z) =
∑
n≥0

ze( p
2πi+n)(log v+2πi) Γ(3 p

2πi + 3n+ 1)2

Γ( p
2πi + n+ 1)6

= HGW(log v, z) · ep.

2. After the monodromy along γLG, log v turns into log v−2πi, and log u turns into log u+
2πi
3 . According to equation (2.6), we have

HFJRW(log u+ 2πi
3 , z) = HFJRW(log u, z) ·

(
ζ3e

H(1)
3 1(1) + ζ2

3e
H(2)

3 1(2)
)
.

3. According to Theorem 4.11, go along γcon is the composition

(⊗O(−3) ◦Orlt−2) ◦ (⊗O(−3) ◦Orlt−3)−1

=⊗O(−3) ◦ (Shi)−1 ◦ Φt−2 ◦ Φ−1
t−3 ◦ Shi ◦ ⊗O(3),

which is conjugate to
Φt−2 ◦ Φ−1

t−3.

Then we can apply Theorem 3.13 in [42] to conclude.



80 Chapter 4. Matching analytic continuation and categorical equivalences

0 3−6 ∞

γCY γcon γLG

Figure 4.1 – Paths in P1
v\{0, 3−6,∞}.

Remark 4.14. Under the basis H(1),1(1), H(2),1(2), the action induced by γLG can be repre-
sented by 

ζ3
ζ3
3

ζ3

ζ2
3

ζ2
3
3

ζ2
3

 .

It has infinite order, so the point ∞ is no longer a orbifold point as in the hypersurface cases
[10]. It is called “K-type point” in, for example, [45].

Remark 4.15. We can use the same method to determine the monodromy around ∞ in the
case of complete intersection of four conics in P7. Up to conjugation, the matrix representation
of the monodromy is 

ζ2
ζ2
2

ζ2
8

ζ2
48

ζ2
ζ2
2

ζ2
8

ζ2
ζ2
2

ζ2

 .

Its square is maximally unipotent. Since the monodromy around 0 is also maximally unipotent,
it is a model with two maximally unipotent type points. This model was studied by Joshi and
Klemm in [34], and we check this property by FJRW theory.

4.6 Relation with the crepant transformation conjecture

In [19], Coates, Iritani and Jiang prove a theorem relating the equivariant GW theory of
X+ and X−. We discuss the relation between their result and Theorem 4.11.

4.6.1 Coates, Iritani and Jiang’s result

Theorem 4.16 ([19]). Let T = (C∗)8 be a torus with standard action on C6+2, and induced
action on X+ and X−. We have
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1. The analytic continuation (along a chosen path) of the H-function of the T -equivariant
GW theory of X+ coincide with the H-function of the T -equivariant GW theory of X−
after the linear map

ŨT : H∗CR,T (X−)→ H∗CR,T (X+)

2. There exists a common T -equivariant blowup X̃ of X±. The Fourier–Mukai transforma-
tion with kernel O

X̃
:

FMT : Db
T (X−)→ Db

T (X+)

coincides with ŨT via Chern character, i.e. the following diagram commutes

Db
T (X−) FMT //

inv∗ ch
��

Db
T (X+)

inv∗ ch
��

H∗CR,T (X−) ŨT // H∗CR,T (X+).

Remark 4.17. Since we can define a non-equivariant Fourier–Mukai transformation

FM : Db(X−)→ Db(X+),

the linear map ŨT admits a non-equivariant limit Ũ.

4.6.2 A circle of ideas

Now we discuss the relation between Theorem 4.11 and Theorem 4.16.
In fact, we can relate Ũ to Ut, and relate FM to Orlt. The circle of ideas is as follows. The

analogue version for for Calabi–Yau hypersurface case can be found in [44].
In [21], the Fourier–Mukai functor FM is proven to be equivalent to the functor Φ̃0 defined

from graded restriction rule in §3.3.

Proposition 4.18 ([21]). The Fourier–Mukai functor

FM : Db(X−)→ Db(X+)

and the functor
Φ̃0 : Db(X−)→ Db(X+)

are isomorphic.

We decompose

H∗CR(X−) = H∗(P(3, 3))⊕H∗+4(P(3, 3))⊕H∗+8(P(3, 3))
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as
C1(0) ⊕ CH(0) ⊕ C1(1) ⊕ CH(1) ⊕ C1(2) ⊕ CH(2).

Consider the linear maps
Ũl : H∗CR(X−)→ H∗CR(X+)

given by

1(k) 7→

 l + 3
9

(
ζkep

)l+6

1− ζkep + 1
9

(
ζkep

)l+7

(1− ζkep)2

 · (1− e−3p)2

H(k) 7→ 1
3

(
ζkep

)l+6

1− ζkep · (1− e
−3p)2

(4.11)

where ζ = e
2πi

3 . Note that the non-equivariant limit Ũ of ŨT coincides with Ũ0.
A direct computation shows that for all E ∈ Db(X−), we have

Ũl (inv∗ ch(E)) = inv∗ ch
(
Φ̃l(E)

)
. (4.12)

After identifying
C1(1) ⊕ CH(1) ⊕ C1(2) ⊕ CH(2) ⊂ H∗CR(X−)

with HFJRW, we can compare Ut in Theorem 4.11 with Ũt. In fact, the following proposition
holds.

Proposition 4.19. For all α ∈ HFJRW, we have

Ut(α) · (1− e3p)2 · e−6p = i∗
(
Ũt−3(α) · e−3p

)
, (4.13)

where i : X3,3 → X+ is the inclusion.

Proof. We can conclude by comparing (2.7) and (4.11) directly.

On the other hand, we can compare the functors Orlt with Φ̃l. In fact, we have aK-theoretic
commutative diagram.

Proposition 4.20. Let Db(X−)P(3,3)/Db(X+)P5 denote the full subcategory of Db(X−)/Db(X−)
consisting of complexes supported on P(3, 3)/P5. The equivalence

Φ̃t : Db(X−)→ Db(X+)

induces an equivalence
Φ̃t : Db(X−)P(3,3) → Db(X+)P5 .
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Furthermore, the diagram

K
(
Db(X−)P(3,3)

) Φ̃t // K
(
Db(X+)P5

)
π∗
��

K
(
Db(P(3, 3))

)
i∗
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i∗ ))

K
(
Db(P5)

)
i∗

��

K
(
DMFC∗R(X−,W )

) ⊗O(−6)[2]◦Orlt // K
(
Db(X3,3)

)

(4.14)

commutes, where K(D) represents the K-group of the triangulated category D.

Proof. The subcategory Db(X−)P(3,3) is strongly generated by i∗
(
Db(P(3, 3)

)
(see [4], Lemma

4.6 and 4.8). We can check that the image of i∗
(
Db(P(3, 3)

)
under Φ̃t lies within Db(X+)P5

by the same method as in §4.1. The same procedure also works for Φ̃t

−1
; in this way we prove

that Φ̃t is an equivalence between Db(X−)P(3,3) and Db(X+)P5 .
Note that at the level of K-theory, the computation of Φ̃t is exactly the same as the compu-

tation of Φt in §4.1; where the Koszul matrix factorizations K− and K+ are replaced by Koszul
complexes. The proof of the commutativity of diagram (4.14) is a tautological check.

Remark 4.21. Note that we can deduce Proposition 4.19 from Proposition 4.20 according to
Theorem 4.11 and equation (4.12).

Remark 4.22. The method of analytic continuation used by Coates, Iritani and Jiang in
[19] is similar to the one we used in §2. The complexity of our computation is cause by the
multiplicity of poles of (2.9). Coates, Iritani and Jiang work in equivariant cohonology so that
all the poles are simple. We try to make our result into the equivariant setting to split the
poles. A candidate of the group action on the FJRW theory is the (C∗)2-action on X− induced
by the standard (C∗)2-action on the last two coordinates of C6×C2. However, this (C∗)2-action
does not fix P(3, 3) ⊂ X−. Then the Grothendieck–Riemann–Roth computation for the theory
twisted by the (C∗)2-equivariant top Chern class (see §1.4) can not be done as in the standard
cases, where the group only acts on the fiber direction.
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