Notes on the Cartan Model

Alberto Arabia

§1. The Cartan model

1.1. Let G denote a connected compact Lie Group with universal fibre bundle $\mathbb{E}G$. Let $\mathbb{E}G = \bigcup_{m \in \mathbb{N}} \mathbb{E}G(m)$, where $\mathbb{E}(m) \subseteq \mathbb{E}G$ is a compact G-manifold with no cohomology in degrees belonging to the interval [1, m+1].

Let M be a G-manifold. Denote $(\Omega^*(M), d_M)$ its de Rham complex of differential forms, $Z^*(M)$ the subring of cocycles, $B^*(M)$ its ideal of coboundaries, and finally $H^*_{dR}(M) = Z^*(M)/B^*(M)$ its de Rham cohomology ring.

The "Cartan complex of M" is by definition

$$\left(\Omega_{\boldsymbol{G}}(\boldsymbol{M}), d_{\boldsymbol{G}}\right) := \begin{cases} \Omega_{\boldsymbol{G}}(\boldsymbol{M}) = \left(S(\mathfrak{g}^{\vee}) \otimes \Omega(\boldsymbol{M})\right)^{\boldsymbol{G}} \\ d_{\boldsymbol{G}}(\omega(X)) = d_{\boldsymbol{M}}(\omega(X)) - \iota(X)(\omega(X)) \end{cases}$$

Théorème (Cartan model). For any G-manifold M, there exist a natural isomorphism

$$H^*(\boldsymbol{M}_{\boldsymbol{G}},\mathbb{R})\cong H^*(\Omega_{\boldsymbol{G}}(\boldsymbol{M}),d_{\boldsymbol{G}})$$

where the left hand side denotes the singular cohomology of the Borel construction on M, the space $M_G := \mathbb{E}G \times_G M$.

1.2. The last theorem is a consequence of the three following propositions.

Proposition A. For each $n \in \mathbb{N}$, the restriction map

$$H^n(\mathbb{E}G \times_G M, \mathbb{R}) \to H^n(\mathbb{E}G(m) \times_G M, \mathbb{R})$$

is un isomorphism for all $m \gg 0$.

Proposition B (Cartan). For each $m \in \mathbb{N}$, one has a natural isomorphism

$$H^{n}(I\!\!E G(m) \times_{G} M, \mathbb{R}) \cong H^{*}(\Omega_{G}(I\!\!E G(m) \times M), d_{G})$$

Proposition C (Homotopic invariance). Let $f: M \to N$ be a *G*-equivariant map between *G*-manifolds such that $f^*: H^{\ell}_{dR}(N) \to H^{\ell}_{dR}(M)$ is an isomorphism for all $\ell \leq 2N$, then the induced pull-back map

$$f^{\ell}: H^{\ell}(\Omega_{\boldsymbol{G}}(\boldsymbol{N}), d_{\boldsymbol{G}}) \to H^{\ell}(\Omega_{\boldsymbol{G}}(\boldsymbol{M}), d_{\boldsymbol{G}})$$

is an isomorphism for all $\ell < N$.

1.3. The Cartan model theorem then follows from the natural diagram

$$\begin{split} \underset{m}{\operatorname{limproj}} & H(I\!\!E G(m) \times_{G} M, \mathbb{R}) \xrightarrow{\cong} \underset{m}{\operatorname{prop. B}} \operatorname{limproj} H(\Omega_{G}(I\!\!E G(m) \times M), d_{G}) \\ & \cong \uparrow \operatorname{prop. A} & \cong \uparrow \operatorname{prop. C} \\ & H(I\!\!E G \times_{G} M, \mathbb{R}) & H(\Omega_{G}(M), d_{G}) \end{split}$$

where the "prop. C" arrow is induced by the projections $\mathbb{E}G(m) \times M \twoheadrightarrow M$, $(x,m) \mapsto m$.

The fact that the arrows in this diagram are bijections is a consequence of propositions A, B, C.

\S **2.** Proposition A

The singular cohomologies of $\mathbb{E}G \times_G M$ and of $\mathbb{E}G(m) \times_G M$ are just the *G*-equivariant cohomologies of $\mathbb{E}G \times M$ and $\mathbb{E}G(m) \times M$, as the group *G* acts freely in these topological spaces. On the other and, the natural map between the fibred spaces over $\mathbb{B}G$

induces a morphism of the Leray spectral sequences associated to these fibrations, which coincides with the natural restriction map

$$\rho_2^{p,q}: H^p(\mathbb{B}G) \otimes H^q(\mathbb{E}G \times M) \longrightarrow H^p(\mathbb{B}G) \otimes H^q(\mathbb{E}G(m) \times M)$$

at the $I\!\!E_2^{p,q}$ terms.

Standard arguments show then that if m is sufficiently large (in fact if $m \ge 2n$), the induced morphisms $\rho_r^{p,q}$, with n = p + q, will be isomorphic between the corresponding subsequent terms $\mathbb{E}_r^{p,q}$, for all $r \ge 2$. This implies that the induced map $\rho_{\infty}^{*,*}$ on $\bigoplus_{n=p+q} \mathbb{E}_{\infty}^{p,q}$ is also bijective, and proposition A follows since this map is the graded morphism induced by the restriction map

$$H^{n}(\mathbb{E}G \times_{G} (\mathbb{E}G \times M), \mathbb{R}) \longrightarrow H^{n}(\mathbb{E}G \times_{G} (\mathbb{E}G(m) \times M), \mathbb{R})$$

filtered by a finite decreasing filtration.

\S **3.** Proposition B

This is Cartan's theorem for principal G-bundles.

§4. Proposition C

4.1. Symmetrization. A very particular feature concerns the *G*-modules $\Omega^{\ell}(M)$.

Proposition (Symmetrizing operator). Let G be a compact Lie group endowed with the Haar measure. Let M be a G-manifold. Let V be a finite dimensional G-module. For $\ell \in \mathbb{N}$, endow $V \otimes \Omega^{\ell}(M)$ with the diagonal action of G, i.e. $g \cdot (v \otimes \omega) = g \cdot v \otimes g \cdot \omega$.

a) The map $\mathfrak{S}: \mathbf{V} \otimes \Omega^{\ell}(\mathbf{M}) \to \mathbf{V} \otimes \Omega^{\ell}(\mathbf{M})$

$$\mathfrak{S}(v\otimes\omega) = \int_{G} g \cdot (v\otimes\omega) \, dg$$

is well defined and verifies:

i) $(\mathbf{id} \otimes d_M) \circ \mathfrak{S} = \mathfrak{S} \circ (\mathbf{id} \otimes d_M).$ ii) $\mathfrak{S}(\mathbf{V} \otimes \mathbf{K}^{\ell}) = (\mathbf{V} \otimes \mathbf{K}^{\ell})^G$, where $\mathbf{K}^{\ell} \in {\Omega^{\ell}(\mathbf{M}), \mathbf{B}^{\ell}(\mathbf{M}), \mathbf{Z}^{\ell}(\mathbf{M}), H_{\mathrm{dR}}^{\ell}(\mathbf{M})}$ iii) $\mathfrak{S}^2 = \mathfrak{S}$, b) If G is connected, there exist a canonical isomorphism

$$H((\mathbf{V}\otimes\Omega^*(\mathbf{M}))^{\mathbf{G}}, \mathbf{id}\otimes d_{\mathbf{M}})\cong \mathbf{V}^{\mathbf{G}}\otimes H^*_{\mathrm{dR}}(\mathbf{M})$$

Proof. Claim (a) is standard. For (b), let's denote $\Omega^{\ell} = \Omega^{\ell}(M)$, $B^{\ell} = B^{\ell}(M)$ and $Z^{\ell} = Z^{\ell}(M)$. One then has the following sequence of inclusions and surjections which is exact at the Ω 's terms :

$$B^{\ell-1} \xrightarrow{\subseteq} Z^{\ell-1} \xrightarrow{\subseteq} \Omega^{\ell-1} \xrightarrow{d_M} B^{\ell} \xrightarrow{\subseteq} Z^{\ell} \xrightarrow{\subseteq} \Omega^{\ell} \xrightarrow{d_M} ,$$

giving rise to the analog sequence of G-modules

$$V \otimes B^{\ell-1} \xrightarrow{\subseteq} V \otimes Z^{\ell-1} \xrightarrow{\subseteq} V \otimes \Omega^{\ell-1} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\subseteq} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\subseteq} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\cong} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes B^{\ell} \xrightarrow{\cong} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes \Omega^{\ell} \xrightarrow{\operatorname{id} \otimes d_M} V \otimes Z^{\ell} \xrightarrow{\cong} V \otimes Q^{\ell} \otimes Q^{\ell} \xrightarrow{\cong} V \otimes Q^{\ell} \xrightarrow{\cong} V \otimes Q^{\ell} \otimes Q^{\ell} \xrightarrow{\cong} V \otimes Q^{\ell} \otimes Q^{\ell} \xrightarrow{\cong} V \otimes Q^{\ell} \otimes Q^{\ell} \otimes Q^{\ell} \otimes Q^{\ell} \xrightarrow{\cong} V \otimes Q^{\ell} \otimes Q$$

as $V \otimes (_)$ is an exact functor. Now, if we take *G*-invariants, the map

$$(\boldsymbol{V} \otimes \Omega^{\ell-1})^{\boldsymbol{G}} \xrightarrow{\operatorname{id} \otimes d_{\boldsymbol{M}}} (\boldsymbol{V} \otimes \boldsymbol{B}^{\ell})^{\boldsymbol{G}} \tag{(\diamond)}$$

remains onto. Indeed, if $\sum_{\alpha} v_{\alpha} \otimes \omega_{\alpha} \in (\mathbf{V} \otimes \mathbf{B}^{\ell})^{G}$, choose $\nu_{\alpha} \in \Omega^{\ell-1}$ such that $\omega_{\alpha} = d_{\mathbf{M}}(\nu_{\alpha})$. We then have after (a)

$$(\mathbf{id} \otimes d_M) \big(\mathfrak{S}(\sum_{\alpha} v_{\alpha} \otimes \nu_{\alpha}) \big) = \mathfrak{S}(\mathbf{id} \otimes d_M) \big(\sum_{\alpha} v_{\alpha} \otimes \nu_{\alpha} \big) = \mathfrak{S}(\sum_{\alpha} v_{\alpha} \otimes \omega_{\alpha}) = \sum_{\alpha} v_{\alpha} \otimes \omega_{\alpha},$$

proving that (\diamond) is onto. One gets in this way a sequence of injections and surjections

$$(V \otimes B^{\ell-1})^G \xrightarrow{\subseteq} (V \otimes Z^{\ell-1})^G \xrightarrow{\subseteq} (V \otimes \Omega^{\ell-1})^G \xrightarrow{\rightarrow} (V \otimes B^\ell)^G \xrightarrow{\subseteq} (V \otimes Z^\ell)^G \xrightarrow{\subseteq} (V \otimes \Omega^\ell)^G \xrightarrow{\rightarrow} (V \otimes \Omega^\ell)^G \xrightarrow{\rightarrow} (V \otimes \Omega^\ell)^G \xrightarrow{\subseteq} (V \otimes \Omega^\ell)^G \xrightarrow{\rightarrow} (V \otimes \Omega^\ell)^G \xrightarrow{\subseteq} (V \otimes \Omega^\ell)$$

which is again exact at the Ω 's terms. This fact immediately gives a canonical isomorphism

$$H^{\ell}((\mathbf{V}\otimes\Omega^{*})^{\mathbf{G}}, \mathrm{id}\otimes d_{\mathbf{M}}) \longrightarrow (\mathbf{V}\otimes\mathbf{Z}^{\ell})^{\mathbf{G}}/(\mathbf{V}\otimes\mathbf{B}^{\ell})^{\mathbf{G}}.$$
 (*)

On the other hand, and for the same reasons as above, one has the exact sequence

$$\mathbf{0} \to \mathbf{V} \otimes \mathbf{B}^{\ell} \xrightarrow{\simeq} \mathbf{V} \otimes \mathbf{Z}^{\ell} \xrightarrow{\longrightarrow} \mathbf{V} \otimes H^{\ell} \to \mathbf{0},$$

where $H^{\ell} := H^{\ell}_{dR}(M)$. And, using the symmetrizing operator \mathfrak{S} over $V \otimes Z^{\ell}$ as we did in the previous paragraph, we get the exactness of the sequence

$$\mathbf{0} \to (\mathbf{V} \otimes \mathbf{B}^{\ell})^G \xrightarrow{}_{\subseteq} (\mathbf{V} \otimes \mathbf{Z}^{\ell})^G \xrightarrow{}_{\twoheadrightarrow} (\mathbf{V} \otimes H^{\ell})^G \to \mathbf{0},$$

which shows that the right hand side of (*) is just $(\mathbf{V} \otimes H^{\ell})^{\mathbf{G}}$. We then have

$$H^{\ell}((\mathbf{V}\otimes\Omega^{*})^{\mathbf{G}},\mathbf{id}\otimes d_{\mathbf{M}})=(\mathbf{V}\otimes H^{\ell})^{\mathbf{G}}=\mathbf{V}^{\mathbf{G}}\otimes H^{\ell},$$

as the action of G on H^{ℓ} is trivial because G is connected.

4.2. Proof of C. Put $\Omega_{\mathbf{G}}(\mathbf{M})_i = (S^{\geq i}(\mathfrak{g}^{\vee}) \otimes \Omega)^{\mathbf{G}}$, where $S^{\geq i}(\mathfrak{g}^{\vee})$ denotes the ideal of $S(\mathfrak{g}^{\vee})$ generated by the products of i elements of \mathfrak{g}^{\vee} . Each $\Omega_{\mathbf{G}}(\mathbf{M})_i$ is clearly a $d_{\mathbf{G}}$ subcomplex of $\Omega_{\mathbf{G}}(\mathbf{M})$ and we get a decreasing filtration

$$\Omega_{\boldsymbol{G}}(\boldsymbol{M}) = \Omega_{\boldsymbol{G}}(\boldsymbol{M})_0 \supseteq \Omega_{\boldsymbol{G}}(\boldsymbol{M})_1 \supseteq \cdots \supseteq \Omega_{\boldsymbol{G}}(\boldsymbol{M})_i \supseteq \cdots \qquad (\boldsymbol{\diamond}\boldsymbol{\diamond})$$

which is regular (1) as one has $\Omega_{G}^{\ell}(M) \cap \Omega_{G}(M)_{i} = 0$, for $i > \ell$. As usual, this data generates a

¹Our reference on spectral sequences is: Godement, Topologie algébrique et théorie des Faisceaux, pp. 75-89.

spectral sequence $I\!\!E(M)_*$ whose first term is

$$I\!\!E(\boldsymbol{M})_0^{p,q} = (S^p(\mathfrak{g}^{\vee}) \otimes \Omega^q(\boldsymbol{M}))^{\boldsymbol{G}}, \qquad d_0 = (\mathbf{id} \otimes d_{\boldsymbol{M}}) : I\!\!E(\boldsymbol{M})_0^{p,q} \to I\!\!E(\boldsymbol{M})_0^{p,q+1}$$

so that one gets

$$I\!\!E(\boldsymbol{M})_1^{p,q} = S^p(\boldsymbol{\mathfrak{g}}^{\vee})^{\boldsymbol{G}} \otimes H^q_{\mathrm{dR}}(\boldsymbol{M})$$

as a consequence of (b) in the symmetrizing operator theorem.

Now, given a differentiable G-equivariant map $f : M \to N$ one gets a morphism of Cartan complexes $f^* : \Omega^*_G(N) \to \Omega^*_G(M)$ such that $f^*(\Omega^*_G(N)_i) \subseteq (\Omega^*_G(M)_i)$ for all $i \in \mathbb{N}$, inducing thereafter a morphism of spectral sequences

$$f_r^{*,\bullet}: I\!\!E(N)_r^{*,\bullet} \to I\!\!E(M)_r^{*,\bullet}$$

which, for r = 1, takes the value

$$f_1^{*,\bullet} = \mathrm{id}^* \otimes f^{\bullet} : S^*(\mathfrak{g}^{\vee})^G \otimes H^{\bullet}_{\mathrm{dR}}(N) \longrightarrow S^*(\mathfrak{g}^{\vee})^G \otimes H^{\bullet}_{\mathrm{dR}}(M)$$

Standard arguments then show that if $f^{\bullet}: H^{\bullet}_{dR}(N) \to H^{\bullet}_{dR}(M)$ is bijective in degrees $\leq 2N$, then

$$f^{p,q}_{\infty}: I\!\!E(N)^{p,q}_{\infty} \longrightarrow I\!\!E(M)^{p,q}_{\infty}$$

is bijective for $p + q \leq N$.

Recall now (*loc.cit.* thm. 4.4.2) that the filtration (∞) gives the sequence of morphisms

$$H(\Omega_{\boldsymbol{G}}(\boldsymbol{M})) = H(\Omega_{\boldsymbol{G}}(\boldsymbol{M})_0) \leftarrow H(\Omega_{\boldsymbol{G}}(\boldsymbol{M})_1) \leftarrow \cdots \leftarrow H(\Omega_{\boldsymbol{G}}(\boldsymbol{M})_i) \leftarrow \cdots$$

and that if we denote by $H(\Omega_{\mathbf{G}}(\mathbf{M}))_i$ the image of $H(\Omega_{\mathbf{G}}(\mathbf{M})_i)$ in $H(\Omega_{\mathbf{G}}(\mathbf{M}))$, we get a decreasing filtration

$$H(\Omega_{\boldsymbol{G}}(\boldsymbol{M})) = H(\Omega_{\boldsymbol{G}}(\boldsymbol{M}))_0 \supseteq H(\Omega_{\boldsymbol{G}}(\boldsymbol{M}))_1 \supseteq \cdots \leftarrow H(\Omega_{\boldsymbol{G}}(\boldsymbol{M}))_i \supseteq \cdots$$

such that the spectral series $I\!\!E(M)_*$ converges to $I\!\!E_{\infty}(M) = \operatorname{Gr} H(\Omega_G(M))_*$. The conclusion of the last paragraph maybe then restated by saying that the map

 $\operatorname{Gr} f^* : \operatorname{Gr} H(\Omega_{\boldsymbol{G}}(\boldsymbol{N}))_{\star} \to \operatorname{Gr} H(\Omega_{\boldsymbol{G}}(\boldsymbol{M}))_{\star}$

is bijective in total degrees bounded above by N, and the same for

 $f^*: H(\Omega_G(\mathbf{N})) \to H(\Omega_G(\mathbf{M})),$

-×

since the filtrations are regular.