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Abstract. An FB-module is, after Thomas Church and Benson Farb ([1]), a count-
able family W := {Wm}m∈N of finite dimensional linear representations Wm of the
symmetric groups Sm, over the field of rational numbers Q, hereafter an Sm-module.
The study of the asymptotic behavior of an FB-module is the main motivation of their
work. Among the different types of stability they consider, two play a central rôle : the
representation stability and the character polynomiality, which we now recall.

• An FB-moduleW is said to be (eventually) representation stable (RS), if there exists
N ∈ N, such that

Wm ∼
⊕

λ
Vλ[m]

nλ , for all m ≥ N ,

where λ := (λ1, . . . , λ`) is a partition verifying |λ|+ λ1 ≤ N , where Vλ[m] is the simple
Sm-module associated with the partition λ[m] := (m− |λ|, λ1, . . . , λ`), and where {nλ}
is a family of natural numbers independent of m. The smallest such N is the rank of
representation stability of W, it will be denoted by ‘rankRS(W)’.

• An FB-module W is said to be (eventually) of polynomial character (PC), if there
exist N ∈ N and a polynomial PW ∈ Q[X1, . . . , XN ], such that

χ
Wm(g) = PW(X1(g), . . . , XN (g)) , for all m ≥ N and g ∈ Sm ,

where χWm is the character of the Sm-moduleWm, and Xi(g) is the number of i-cycles
in the decomposition of g as product of disjoint cycles in Sm. The polynomial PW ,
which is unique, is the polynomial character of W. The smallest such N is the rank of
polynomiality of W, it will be denoted by ‘rankPC(W)’.

The purpose of these notes is to present à self-contained proof of the fact that these two
properties are equivalent. While the implication (RS)⇒ (PC) is a simple consequence
of the Frobenius character formula, the converse does not seem to be documented and
motivates the present work. More precisely, we prove :

Theorem (4.1.1). Let W be an FB-module.

a) If W is (RS) for m ≥ N , then W is (PC) for m ≥ N .
b) If W is (PC) for m ≥ N with polynomial character PW , then W is (RS) for

m ≥ max{N, 2 degw (PW)}, where degw (PW) is the degree of the PW under the
convention that degw (Xi) := i.

We will exhibit FB-modules W such that rankPC(W) = 0, and rankRS(W) = N , for
N arbitrarily big. In particular, there are no universal upper bounds for the numbers
rankRS(W)/ rankPC(W) or rankRS(W)− rankPC(W) (cf. proposition 2.3.4-(a)).
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Warning. The next two sections introduce notations and some well-known
properies of FI-modules, which advanced readers can skip.

1. Preliminaries
1.1. General notations
•Given a group G, we denote by G-mod the category of G-modules, i.e. of finite
dimensional linear representations of G over the field of rational numbers Q.
•The symmetric group Sm is the group of bijections of the interval of natural
numbers [[1,m]]. For n ≤m, the inclusion Sn ⊆ Sm identifies a permutation g
of [[1, n]] with its extension to [[1,m]] that fixes all i > n.
•Qm and ε(Q)m denote respectively the trivial and the alternating or signature
representation of the group Sm.
• Sa � Sb is the stabilizer of the partition [[1, a+ b]] = [[1, a]] t [[a+ 1, a+ b]].
• If Wa is an Sa-module and Wb is an Sb-module, we denote by Wa � Wb the
tensor product Wa⊗QWb endowed with the Sa � Sb-module structure defined
by the componentwise action (ga, gb)(wa ⊗ xb) := ga(wa)⊗ gb(wb).
•A partition of m ∈ N\{0} is any decreasing sequence of natural numbers
λ := (λ1 ≥ . . . ≥ λ` > 0) such that m =

∑
i λi. It is also denoted as the m-

tuple (1n1 , 2n2 , . . . ,mnm) where nk := #{i | λi = k}, so that m =
∑
i ini. The

notation λ `m says that λ is a partition of m, and |λ| is used for the number
partitioned by λ. The partition λ is empty if |λ| = 0.
•Qcl(Sm) denotes the Q-algebra of rational class functions of Sm. These are
the functions f : Sm → Q which are constant along the conjugacy classes of
Sm, i.e. such hat f(gxg−1) = f(x), ∀g, x ∈ Sm. The scalar product

〈〈_ |_ 〉〉Sm : Qcl(Sm)×Qcl(Sm)→ Q
is defined by

〈〈 f1 | f2 〉〉Sm :=
1

|Sm|
∑
g∈Sm

f1(g) f2(g−1) .
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• If Wm is an Sm-module, χWm
: Sm → Q denotes its character. The Schur’s

orthogonality relations state that if V1 and V2 are simple Sm-modules, then
〈〈χV1 | χV2 〉〉Sm is equal to 1 if V1 is isomorphic to V2, and to 0 otherwise.

From now, and up to the end of this preliminary section, we will be recalling
concepts and terminology coming from Church’s and Farb’s works (cf. [1]).

1.2. The categories of FB and FI modules
• FB denotes the category of Finite sets and Bijections. An FB-module is,
by definition, a covariant functor from the category FB to the category
Vecf (k) of finite dimensional Q-vector spaces and Q-linear maps :

W : FB Vecf (k) .

To give an FB-moduleW is then equivalent to give the countable collection
{Wm :=W([[1,m]])}m∈N, where Wm is an Sm-module. A morphism of FB-
modules f :W →Z corresponds then to a family {fm : Wm → Zm}m∈N of
morphisms of Sm-modules. We thus have a canonical identification :

MorFB(W,Z) =
∏

m∈N
HomSm(Wm, Zm)

The category of FB-modules will be denoted by FB-mod. It is a semi-
simple abelian category.

• FI denotes the category of Finite sets and Injections. An FI-module is a
covariant functor from FI to the category Vecf (k) of finite dimensional
Q-vector spaces and Q-linear maps :

W : FI Vecf (k) .

To give an FI-module is thus equivalent to give

FI-1) an FB-module W := {Wm}m∈N;
FI-2) for all m ∈ N, an interior map φ(W)m :Wm→Wm+1 (in short φm),

which is a Q-linear map such that, for all g ∈ Sm ⊆ Sm+1, one has

φm(g · w) = g · φm(w) .

FI-3) for all n ≥ m, the image of φn,m := φn−1 ◦ · · · ◦ φm must satisfy:

φn,m(Wm) ⊆ (Wn)1m�Sn−m .

Under this equivalence, a morphism of FI-modules f :W → Z is simply a
morphism of FB-modules which is compatible with the interior maps φm,
i.e. such that the diagrams

Wm
φ(W)m

//

fm
��

Wm+1

fm+1
��

Zm
φ(Z)m

// Zm+1

are commutative.
The category of FI-modules will be denoted by FI-mod. It is an abelian

category, which is not semi-simple.
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1.2.1. Comments

a) The category FB-mod is equivalent to the full subcategory of FI-mod of FI-
modules whose interior maps are null.

b) A more interesting subcategory of FI-mod is that of the FI-modules whose
interior maps are injective and (eventually) exhaustive, i.e. such that the im-
age φm(Wm) generates Wm+1 as Sm+1-module (for large m). Among these,
there are the FI-modules Vλ’s, which bind up all the simple Sm-modules
Vλ[m] (cf. 1.6.1). We will see that an FB-moduleW which is (PC), is asymp-
totically isomorphic to a finite direct sum of Vλ’s, and, as such, it admits a
structure of FI-module with interior maps injective and eventually exhaus-
tive (see 4.1.2). From this perspective, the (PC) property is a numerical
condition on FB-modules revealing the existence of a nontrivial structure of
FI-module on W : that of representation stable FI-modules (cf. 1.7.1).

1.2.2. The stupid truncations
The functor (_)≥` :FI-mod FI-mod that “truncates ” an FI-module {Wm}m∈N
by replacing by 0 its terms Wm for m< `, is an additive exact functor. There is
a natural inclusion (_)≥`� idFI whose cokernel is the truncation (_)<` which
replaces the terms Wm for m ≥ ` by 0. We thus have short exact sequences

0→ (W)≥`�W � (W)<` → 0 ,

which are natural with respect to W. The full subcategory FI-mod≥` of FI-
modules W such that the inclusion W≥`�W is an isomorphism is an abelian
subcategory, and the same for the full subcategory FI-mod<` of FI-modules W
such that the quotient W �W<` is an isomorphism. One has,

ExtiFI
(
FI-mod≥`,FI-mod≤`

)
= 0 , ∀i > 0 .

The intersection FI-mod≥` ∩FI-mod≤` is the (semi-simple) category S`-mod.

1.3. Projective FI-modules
An obvious way to construct FI-modules of the type described in 1.2.1-(b) is to
start off with a given representation Wn of some Sn and define, for all m ∈ N :

P(Wn)m :=

{
0 , if m < n,
indSm

Sn�Sm−n

(
Wn � km−n

)
, otherwise.

For each m ≥ n, the composition of the following natural maps ιm and κm+1 :

Wn � km−n
� �

ιm //

ψm
''

Wn � km+1−n� _
κm+1
��

ind
Sm+1

Sn�Sm+1−n

(
Wn � km+1−n

)
gives the map ψm whose image is invariant under

(
1n � Sm+1−n

)
, something

that implies that the induced maps

φm := ind(ψm) : indSm
Sn�Sm−n

(
Wn � km−n

)
→ ind

Sm+1

Sn�Sm+1−n

(
Wn � km+1−n

)
4



satisfy the requirements which make of the family

P(W ) := {φm : P(Wn)m → P(Wn)m+1}m∈N ,

an FI-module.

1.3.1. Proposition. Let Wn be a representation of Sn.

a) The interior maps of P(Wn) are injective ∀m ∈ N, and exhaustive ∀m ≥ n.
b) There is a natural identification of functors

MorFI(P(Wn),_) = HomSn(Wn, (_)n) .

c) P(Wn) is a projective FI-module, and it is a simple projective FI-modules if
and only if Wn is a simple Sn-module. All simple projective FI-modules are
of this form.

d) The category FI-mod has enough projective objects.

Proof. Left to the reader. �

1.4. Young diagrams and Pieri’s rule
We recall the re-parametrization of irreducible representations of the symmetric
groups introduced by Church and Farb.

1.4.1. The socle and the weight of a partition
Let λ = (λ1 ≥ λ2 ≥ · · · ≥ λ` > 0) be a non-empty partition of m :=

∑
i λi.

• The socle of λ is the sub-partition λ := (λ2, . . . , λ`).
• The weight of λ is the number w (λ) := |λ| = λ2 + · · ·+ λ`.

Notice that the map λ 7→ λ is injective from the set of partitions of m ∈ N,
so that it amounts the same giving (λ ` m) or giving the pair (m,λ). In terms
of Young diagrams, in order to get the socle λ of λ, one simply erases the first
row of the Young diagram corresponding to λ. The picture is thus :

λ := 7→ λ := .

Conversely, given λ = (λ1, λ2, . . . , λ`) and any m ≥ |λ| + λ1, Church and Farb
introduce the notation

λ[m] := (m− |λ|, λ1, . . . , λ`) ,

which, in terms of Young diagrams, corresponds to simply add a first row with
as many boxes as is necessary to raise the total number of boxes from |λ| to m.

λ := 7→ λ[m] := .

Notice the following obvious facts :

λ[m] ` m, λ[m] = λ , λ = λ[ |λ| ] .
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1.4.2. Irreducible representations of the symmetric groups
The irreducible representations of Sn are parametrized by the partitions ν `
n. The simple Sn-module associated with ν is denoted by Vν . The following
proposition recalls a very fundamental and basic fact about the representations
of the symmetric groups (see [2], chap. 4, thm. 4.3, pp. 46–).

1.4.3. Proposition. The irreducible representations of the symmetric groups
over a field k of characteristic zero are defined over the field of rational numbers.
In particular, if Wm is a Q[Sm]-module of finite dimension, the character

χWm
: Sm → k , g 7→ tr(g : Wm →Wm) ,

a priori with values in k, takes its values in the ring of integers Z ⊆ k.

Hint. Because Wm is defined over the rationals, the traces are rationals and are
sums of roots of unity, hence algebraic integers, hence integersz. �

1.4.4. Pieri’s rule
Pieri’s rule (1) gives the irreducible factors of the terms P(Vν)m, for any given
partition ν ` n ≤ m. The rule says that in the decomposition

P(Vν)m := indSm
Sn�Sm−n

(
Vν � km−n

)
=
⊕

µ`m
Vµ

nν(µ) , (1)

the nonzero multiplicities nν(µ) are all equal to 1, and the corresponding parti-
tions µ are those obtained from ν by adding m− n boxes in different columns.
For example, if ν := (3, 2, 2) and m ∈ {8, 9, 10, 11}, we have

indS8

S7�S1
V = V ⊕ V ⊕ V

indS9

S7�S2
V = V ⊕ V ⊕ V ⊕ V ⊕ V

indS10

S7�S3
V = V ⊕ V ⊕ V ⊕ V ⊕ V ⊕ V

indS11

S7�S4
V = V ⊕ V ⊕ V ⊕ V ⊕ V ⊕ V

and, a key observation, due to Church and Farb, is that for m ≥ |ν|+ ν1 (=10),
the set of socles of the Young diagrams appearing in the decomposition (1) be-
comes constant. The following lemma then follows in an obvious way.

1.4.5. Lemma. Let ν ` n > 0.

a) For all µ ` m ≥ n, such that nν(µ) 6= 0, the weight of µ verifies

w (ν) ≤ w (µ) ≤ |ν| ,

and one has
{

w (µ) = w (ν) ⇐⇒ µ = ν[m]

w (µ) = |ν| ⇐⇒
(
m ≥ |ν|+ ν1

)
&
(
µ = ν[m]

)
.

1For a thorough introduction to these rules, read the paragraph §4.3, p. 54–62, on Fulton-
Harris’ book [2], and also the Littlewood-Richardson rules in its appendix A, p. 451.
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b) Let m0 = |ν|+ ν1 and let Pν be a set of partitions µ such that

ind
Sm0

Sn�Sm0−n

(
Vν � km0−n)

)
=
⊕

µ∈Pν
Vµ[m0] .

Then, for all m ≥ m0,

indSm
Sn�Sm−n

(
Vν � km−n)

)
=
⊕

µ∈Pν
Vµ[m] .

Proof. Left to the reader. �

1.5. The weight of a representation and of an FI-module

We extend the definition of weight, from partitions (1.4.1) to representations
and, more generally, to FB-modules.

• The weight of an Sm-module Wm is the upper bound of the weights of the
partitions associated with its irreducible factors, i.e. if

Wm ∼
⊕

µ`m
Vτ

nµ

then
w (Wm) := sup

{
w (µ)

∣∣ nµ 6= 0
}
.

For example, as a consequence of 1.4.5-(a), we have{
w (ν) ≤ w (P(Vν))m ≤ |ν| , ∀m ≥ |ν| , and

w (P(Vν))m = |ν| , ∀m ≥ |ν|+ ν1 .
(∗)

• The weight of an FB-module W := (Wm) is the upper-bound of the weights
of its terms, i.e.

w (W) := sup
{
w (Wm)

}
m∈N .

• The weight at infinity of an FB-module W := (Wm) is

w∞(W) := lim
N 7→+∞

w (W≥N ) .

–It is easy to see that w∞(W) = w (W≥N ), for some N � 0.

–We have w (P(Vλ)) = w∞(P(Vλ)) = |λ| .

1.5.1. The weight truncations

Let p ∈ N. Given an Sm-module Wm, denote by (Wm)w>p the sum of the irre-
ducible factors of Wm of weight > p.

• By Pieri’s rule 1.4.5-(a), ifW := {φm :Wm→Wm+1}m∈N is an FI-module,
one has φm

(
(Wm)w>p

)
⊆
(
(Wm+1)w>p

)
, in which case, the family

Ww>p :=
{
φm(Wm)w>p → (Wm)w>p

}
m∈N

is a sub-FI-module of W.

7



• Let Ww≤p :=W/Ww>p. The short exact sequence

0→Ww>p →W →Ww≤p → 0

is natural with respect to W.

1.5.2. Remark. The following are easy consequences of the definitions.

a) The full subcategory FI-modw>p of FI-modules W such that the inclusion
Ww>p�W is an isomorphism is an abelian subcategory.

b) The full subcategory FI-modw≤p of FI-modules W such that the quotient
W �Ww≤p is an isomorphism is an abelian subcategory.

c) ExtiFI
(
FI-modw>p,FI-modw≤p

)
= 0, for all i ∈ N.

1.6. The FI-module Vλ
Given a partition λ, consider the projective FI-module P(Vλ) introduced in 1.3.
The lemma 1.4.5-(a) says that for all m ≥ |λ| the smallest weight of the irre-
ducible factors of the terms P(Vλ)m is exactly w (λ), which is the weight of a
unique factor : the simple Sm-module Vλ[m] with multiplicity 1. The following
proposition results from this simple observation and the weight filtration 1.5.1.

1.6.1. Proposition. Let λ be a nonempty partition.
a) The terms of the quotient FI-module

Vλ := P(Vλ)w≤w (λ) =
{
φm : Vλ,m → Vλ,m+1

}
m∈N

are

Vλ,m =

{
0 , for all m < |λ|,

Vλ[m] , otherwise.

The interior maps φm are injective, and are exhaustive for m ≥ |λ|.
b) If V ′λ := {φ′m : Vλ,m→Vλ,m+1}m∈N is an FI-module such that φ′m is injective

and is exhaustive for all m ≥ N , then (V ′λ)≥N and (Vλ)≥N (cf. 1.2.2) are
isomorphic FI-modules for m ≥ N .

Proof. Left to the reader. �

1.7. Representation stability
1.7.1. Representation stable FI-modules
An FI-module W = {φm : Wm →Wm+1}m∈N is said to be representation stable
for m ≥ N , in short (RS)m≥N , if the following conditions are satisfied.

RS-1) The interior maps φm are injective form≥ 0, and exhaustive form≥N .

RS-2) For all m ≥ N , we have

Wm ∼
⊕
|λ|≤N

Vλ[m]
nλ ,

where the nλ are independent of m ≥ N .

We denote by rankRS(W), the smallest such N , and we call it the rank of rep-
resentation stability of W.
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1.7.2. Examples
a) P(Vλ) is (RS)m≥|λ|+λ1

, (lemma 1.4.5-(b)).
b) P(Wn) (RS)m≥2n, (consequence of lemma 1.4.5-(b)).
c) Vλ is (RS)m≥|λ|, (by definition).

1.7.3. Representation stable FB-modules
An FB-module W = {Wm}m∈N is said to be representation stable for m ≥ N ,
in short (RS)m≥N , if the previous condition (RS-2) is satisfied.

In that case, we say that W and
⊕

λ∈P V
nλ
λ are asymptotically isomorphic as

FB-modules, and we will write

W≥N ∼
⊕
|λ|≤N

(Vλ)nλ≥N (2)

2. Character polynomiality of FI-modules
2.1. Character polynomiality
We denote by Qcl(Sm) the Q-algebra of class functions defined on Sm with val-
ues in Q, i.e. functions f : Sm→ Q which are constant on each conjugacy classe
of Sm. We denote by Q[X] the ring of polynomials with coefficients in Q, and
in countably many variables X1, X2, . . . , endowed with the grading ‘degw ’ that
stipulates that :

degw (Xi) := i .

2.1.1.The weight of a polynomial. In the sequel, in order avoid confusions
with the usual degree deg(P ) of a polynomial P ∈A[X], the one which stipulates
that deg(Xi) = 1, we will call degw (P ) the weight of P .

2.1.2. Proposition. Denote by Xm,i : Sm→ N the class function which assigns
to g ∈ Sm, the number Xm,i(g) of i-cycles in the decomposition of g as product
of disjoint cycles in Sm.

a) The map ρm : Q[X]−→Qcl(Sm)

Xi 7−→ (g 7→ Xm,i(g))
(3)

is an homomorphism of Q-algebras whose kernel contains the polynomials(
X1 + 2X2 + · · ·+mXm −m

)
and

(
Xi(Xi − 1) · · ·

(
Xi −

⌊
m/i

⌋))
. (4)

The restriction
ρm : Q[X1, . . . , Xm−1]� Qcl(Sm)

is surjective. In particular, the characters of Sm are represented by polyno-
mials with rational coefficients and in the variables X1, . . . , Xm−1.

b) For n ≤ m and g ∈ Sn, we have

(i) ρm(X1)(ιg) = ρn(X1)(g) + (m− n) ,

(ii) ρm(Xi)(ιg) = ρn(Xi)(g) , ∀i > 1 .

Sn
ρn

))
� _

ι
��

A

Sm
ρm

44
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Hint. (a) The fact that the polynomials (4) belong to ker(ρm) is clear. Next, to
see that ρm is surjective, it suffices to show that the characteristic function of a
conjugacy class of Sm can be realized as a polynomial in X1, . . . , Xm.

For k ∈ [[1,m]], let Rk(Z) := Z(Z − 1) · · · ̂(Z − k) · · ·
(
Z −m) and consider

Dk(Z) := Rk(Z)/Rk(k) ∈ Q[Z] .

This polynomial has the property that

ρm(Dk(Xi)(g) =

{
1 , if Xi(g) = k ,
0 , otherwise.

So that, if
∑
i ini = m, we get

ρm(Dn1(X1)Dn2(X2) · · ·Dnm(Xm))(g) =

{
1 , if g is of type (1n1 , . . . ,mnm)

0 , otherwise.

(b) is clear. �

2.1.3. Convention. In order to alleviate notations, we will simply write Xi(g)

for Xm,i(g), and this, despite the possible ambiguity of ‘X1(g)’ (cf. 2.1.2-(b-i)).

2.1.4. Definition. An FB-module W := {Wm}m∈N is said to be of polynomial
character for m≥N , in short (PC)m≥N , if there exists a polynomial PW ∈Q[X]

such that
χ
Wm = ρm(PW) , ∀m ≥ N .

We denote by rankPC(W), the smallest such N , and we call it the rank of char-
acter polynomiality of W.

2.1.5. Proposition and definition. The polynomial PW that asymptotically
represents the characters of the terms Wm of an FB-module W := {Wm}m∈N is
unique. It is called the polynomial character of the FB-module W.

Proof. Indeed, if P ′W were another polynomial representing χWm
for m≫ 0,

the difference Q := PW −P ′W , that we may assume to belong to Q[X1, . . . , XN ],
would be a polynomial representing the zero class function for all m≫ N .

If Q is not the null polynomial, we can write it as a polynomial in XN with
coefficients Qi in Q[X1, . . . , XN−1] :

Q = Q0 +Q1XN +Q2X
2
N + · · ·+QrX

r
N , and Qr 6= 0. (∗)

Now, for any family of numbers a := {a1, . . . , aN−1 ⊆ N}, and for any i ∈ N, it is
easy to find mi≫N and gi ∈ Smi such that X1(gi) = a1, . . . , XN−1(gi) = aN−1
and XN (gi) > i. In that case Q(a,XN ) has infinitely many roots and is, there-
fore, the null polynomial in XN . In particular, Qr(a) = 0 for all choices of a,
which is only possible if Qr is the null polynomial in Q[X1, . . . , XN−1], contrary
to its definition (∗). The polynomial Q must therefore be the null polynomial.�
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2.2. Frobenius character formula
Given a partition λ := (λ1, . . . , λ`) `m, Frobenius gave a celebrated formula to
compute the character χVλ of the simple Sm-module Vλ. The important point
for us about this formula is that it gives an expression of χVλ as a polynomial
only depending on the socle λ. As a consequence, the same polynomial expresses
the characters of all the terms in the FI-module Vλ,m, for m ≥ |λ|, something
that self-explains the character polynomiality of the FI-module Vλ = {Vλ,m}m.

2.2.1. Frobenius polynomial for χVλ

Following Macdonald in his book [3] (ex. I.7.14, p. 122), let y := {y1, . . . , y`}
be a set of ` abstract variables, where ` := `(λ). The discriminant of y is the
antisymmetric homogeneous polynomial

∆(y) :=
∏

i<j
(yi − yj)

and, for d ∈ N, the d-power sum of y is the symmetric homogeneous polynomial

Pd(y) := yd1 + · · ·+ yd` .

The value χVλ(g) for g ∈ Sm, is, after Frobenius, the coefficient of the monomial

y
λ1+(`−1)
1 y

λ2+(`−2)
2 y

λ3+(`−3)
3 · · · yλ`` ,

in the development of the product

∆(y)
(∏

d≥1
Pd(y)Xd(g)

)
. (5)

This coefficient, denoted by Xλ, is a polynomial in Q[X], we call it the Frobenius
polynomial for χVλ .

2.2.2. Proposition. The Frobenius polynomial Xλ for χVλ only depends on the
socle λ of λ, it belongs to the ring Q[X1, . . . , Xλ2+`−2] and its weight is :

degw (Xλ) = w (λ) .

The characters of Sm can thus be represented by polynomials in Q[X1, . . . , Xm−1]

of weights ≤ m− 1.

Proof. Because the polynomial (5) is homogeneous, we can make y1 = 1 without
loosing information. In that case, χVλ(g) is the coefficient in the monomial

y
λ2+(`−2)
2 y

λ3+(`−3)
3 · · · yλ`` ,

after the development of the product

∆(ỹ)
(∏

j>1
(1− yj)

)(∏
d≥1

(1 + Pd(ỹ))Xd(g)
)

(‡‡)

where ỹ := {y2, . . . , y`}. But, in this product the first factor ∆(ỹ) is already
homogeneous of total degree (`− 2) + (`− 3) + · · · , so that we have to seek, in
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the development of the remaining factors, terms whose total degree is bounded
by |λ| = λ2 + · · ·+ λ`. But then, since we have(

1 + Pd
)Xd = 1+

(
Xd
1

)
Pd+

(
Xd
2

)
P 2
d+

(
Xd
3

)
P 3
d + · · ·

and because degtot(P
a
d ) = ad, we conclude that

• If d > λ2 + ` − 2, the factor
(
1 + Pd

)Xd only contributes to χVλ with its
term 1Xd , so that it can be neglected. The product symbol

∏
d≥1 in (‡‡)

can therefore be replaced by
∏λ2+`−2
d=1 .

• The coefficient
(
Xd
j

)
is a polynomial of degree j in Xd and appears attached

to monomials in ỹ of total degree jd. We can thus conclude that after de-
velopment, the expression of χVλ is a polynomial in X1, . . . , Xλ2+`−2 of
weight |λ| = w (λ). �

The following corollary of proposition 2.2.2 is now immediate from the definition
of representation stable FB-modules 1.7.3.

2.2.3. Corollary An FB-module which is (RS)≥N , is also (PC)≥N .

Proof. Left to the reader. �

2.3. Basic examples of character polynomiality of FI-modules

2.3.1. The `-cycles of [[1,m]]

Given m, ` ∈ N, we denote by Γm` the set of `-tuples (i1, . . . , i`) of pairwise
distinct elements of [[1,m]] modulo cyclic permutation, i.e. such that

(i1, . . . , i`) = (i2, . . . , i`, i1) = (i3, . . . , i`, i1, i2) = · · ·

The symmetric group Sm acts on Γm` by

g · (i1, . . . , i`) = (g(i1), g(i2), . . . , g(i`)) . (6)

The elements of Γm` are called the `-cycles of [[1,m]].

2.3.2. Comments

a) Given g ∈ Sm, the set [[1,m]] is decomposed in 〈g〉-orbits, each of which can
be endowed with a cyclic order defined by g. For example, if x ∈ [[1,m]], we
may consider the ordering (x → g(x) → g2(x) → · · · → x), which gives the
well-known decomposition of g ∈ Sm as product of disjoint cycles.

b) For m ≥ `, there is a difference between the cases ` = 1 and ` > 1.

i) For ` = 1, we have Γm1 = [[1,m]] endowed with the standard action of Sm.
ii) For any ` > 0, define the support of an `-cycle γ := (i1, . . . , i`) to be the

set of its coordinates {{γ}} := {i1, . . . , i`} ⊆ [[1,m]]. Then let :

γ̃ ∈ Sm :=

{
γ̃(ij) := ij+1 (mod `) , for ij ∈ {{γ}},
γ̃(x) := x , for x 6∈ {{γ}}.

12



If `= 1, the map (_̃) : Γm1 → Sm, is the constant map γ 7→ 1m, whereas, if
` > 1, the map (_̃) : Γm` ⊆ Sm is injective, and the action (6) of Sm on Γm`
appears to be also induced by the conjugation action of Sm on itself, i.e. :

g̃ · γ = g γ̃ g−1 .

We will identify γ and γ̃ if no confusion is likely to arise. In this sense,
for g ∈ Sm, the set of fixed points (Γm` )g :=

{
γ ∈ Γm`

∣∣ g · γ = γ
}
is :

(Γm` )g =
{
`-cycles γ ∈ Sm

∣∣ gγ = γg
}
. (7)

iii) For m, ` > 0, we have

|Γm` | =
m(m− 1) · · · (m− (`−1))

`
·

2.3.3. The FI-modules IEν
For m, ` > 0, let IEm` be the Q-vector space spanned by the set Γm` of `-cycles
of [[1,m]], i.e.

IEm` :=
⊕

γ∈Γm`
Q · γ .

Endow it with the linear action of Sm induced by its action on the basis Γm` .

Notice that, according to this definition, IEm` = 0, for all m< `. On the other
hand, for all m ≥ n, the set Γn` is a subset of Γm` invariant under the action of
1n � Sm−n, so that the natural inclusions Γm` ⊆ Γ

m+1
` induce the interior maps

(clearly injective) of an FI-module

IE` :=
{
φ(IE`)m : IEm` � IEm+1

`

}
In this, since the natural maps between orbit spaces: Sm\Γm` → Sm+1\Γm+1

`

are bijective for m ≥ `, the interior maps φ(IE`)m are exhaustive for m ≥ `.

More generally, if ν := (1n1 , 2n2 , . . . , NnN ) = (ν1 ≥ ν2 ≥ · · · ≥ ν`) is a nonempty
partition, let

IEmν := (IEm1 )⊗n1 ⊗ (IEm2 )⊗n2 ⊗ · · · ⊗ (IEmN )⊗nN ,

:= IEν1 ⊗ IEν2 ⊗ · · · ⊗ IEν` ,

and define φ(IEν)m : IEmν → IEm+1
ν as the tensor product of interior maps

φ(IEν)m := φ(IE1)⊗n1 ⊗ · · · ⊗ φ(IEN )⊗nN ,

:= φ(IEν1)⊗ · · · ⊗ φ(IEν`) .

The family

IEν :=
{
φ(IEν)m : IEmν � IEm+1

ν

}
m

is then an FI-module (with interior maps clearly injective).
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2.3.4. Proposition
a) For m, ` ∈ N, the character χIEm` is expressed by the following polynomial of

Q[X1, . . . , X`] of weight ` and independent of m ∈ N :

E` = X` +
∑

ed=` , e 6=1
φ(d)

de−1

e
Xd(Xd − 1) · · ·

(
Xd − (e−1)

)
, (∗`)

where φ is the Euler’s totient function.

The FI-module IE` := {IEm` � IEm+1
` }m has the following ranks

rankPC(IE`) = 0 and rankRS(IE`) = 2` .

And the same, if considered as an FB-module.

b) Given a sequence Z := (Z1, . . . , ZN ) of polynomials of Q[X], and given d∈N,
we denote by Q≤d[Z1, . . . , ZN ] the subspace of polynomials of weight ≤ d
relative to Z, i.e. the subspace spanned by the elements Za11 · · ·Z

aN
N where∑

i i ai ≤ d. Then, for all N ∈ N, the natural inclusion :

Q≤d[E1, . . . ,EN ] ⊆ Q≤d[X1, . . . , XN ]

is an equality.

c) For every nonempty partition ν := (1n1 , 2n2 , . . . , NnN ), we have

i) w (IEmν ) ≤ min{m, |ν|}.
ii) The FI-module IEν := {IEmν � IEm+1

ν }m is (PC)m≥0 and (RS)m≥2|ν|.

Proof. (a) Since the linear action of g ∈ Sm is induced by its action on the basis
Γm` ⊆ IEm` , the trace χIEm` (g) is the cardinality of the set (Γm` )g of fixed `-cycles.

When m < `, the set Γm` is empty and IEm` = 0. Also, since in Sm there is no
permutation g such that ρm(Xd)(g) ≥ `/d, we necessary have that ρm(E`) = 0.
This states (a) when m < `. Suppose now that m ≥ `.
Following 2.3.2-(b), we have two cases to consider :

– ` = 1. Then Γm1 = [[1,m]], χIEm1 (g) = |[[1,m]]g| = X1(g), and (a) is obvious.

– ` > 1. The set (Γm` )g identifies, after 2.3.2-(b-ii)-(7), with the set of `-cycles
γ ∈ Sm such that gγ = γg. As a consequence, g{{γ}} = {{γ}} and the set {{γ}}
appears endowed with two actions commuting to each other. But then, since the
action of γ on {{γ}} is transitive, the 〈g〉-orbits in it are equipotent. Denote by d
their common cardinality, and set e := `/d. Then, gκ = γe, (or, equivalently,
g = γκe) for some κ ∈ [[1, d]], relatively prime to d.

d

. . .

. . .

. . .

γ
g

e := ℓ/d

γ γ γ γ γ

γ γ γ γ γ

gκ=γe

Now, the map
ξκ,e : Γm` → Sm , γ 7→ γκe ,
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is clearly a fibration over its image, which is the set of products of disjoint d-
cycles. Hence, if π is any such product, we have

∣∣ξ−1κ,e(π)
∣∣ =

m(m− 1) · · · (m− `+ 1)

`

m(m− 1) · · · (m− `+ 1)

dee!

= de−1(e− 1)! .

And, since the number of products π made up of disjoint d-cycles of g is given
by the combinatorial number

(
Xd(g)
e

)
, we finally get the equality∣∣(Γm` )g

∣∣ =
∑

de=`
φ(d) de−1(e− 1)!

(
Xd(g)

e

)
,

=
∑

de=`
φ(d)

de−1

e
Xd(g)

(
Xd(g)− 1

)
· · ·
(
Xd(g)− (e−1)

)
.

In both cases, `= 1 and ` > 1, the expression of |(Γm` )g| is independent of m≥ `,
which implies that the FI-module IE` is (PC)m≥0.

To finish, we observe that since the action of Sm on Γm` is transitive, we have
an isomorphism of Sm-space :

Γm` = Sm · (1, . . . , `) ' Sm ×〈γ〉�Sm−` {pt} ,

as FixSm(γ) = 〈γ〉 � Sm−`. Therefore,

IEm` = indSm
S`�Sm−`

((
Q[S`]⊗〈(1,...,`)〉 Q

)
� km−`

)
.

and IE` is the projective FI-module P(Q[S`/〈(1, . . . , `)〉]) for which we have al-
ready shown that it is (RS)m≥2` (cf. 1.7.2-(b)).

We can be a little more precise if we observe that the simple S`-module Q`
appears with multiplicity 1 in Q[S`]⊗〈(1,...,`)〉 Q, which is the case because :

HomS`(Q[S`]⊗〈(1,...,`)〉 Q,Q`) = Hom〈(1,...,`)〉(Q,Q) = Q .

We deduce that IE` contains as factor the sub-FI-module P(Q`) =P(V0[`]) whose
rank of representation stability is exactly 2`. Therefore, rankRS(IE`) = 2`.

(b) In (a), the equation (∗`) shows that E` is equal to X`, modulo a polynomial
of weight ` in the variables Xd for d|` and d 6= `. (In particular, E1 = X1.)
Now, given N ≥ 1, the system of equations (∗`), for ` ≤ N , can be inverted by
recursively introducing some polynomials Qm` (Z1, . . . , Z`) ∈ Q[Z] of weight `,
such that

X` = Qm` (E1, . . . ,E`) , ∀` ≤ N .

The equality,
Q[X1, . . . , XN ] = Q[E1, . . . ,EN ] ,

but also,
Q≤d[X1, . . . , XN ] = Q≤d[E1, . . . ,EN ] , ∀d ∈ N ,

then follows straightforward.
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(c) Since the action of Sm on IEmν := IEmν1 ⊗ · · · ⊗ IEmν` is induced by its
component-wise action on the basis Γmν := Γmν1 × Γmν2 × · · · × Γmν` , the struc-
ture of Q[Sm]-module of IEmν follows from the structure of Sm-space of Γmν .
Given γ := (γ1, . . . , γ`) ∈ Γmν , we have

Sm · γ = Sm/StabSm(γ) = Sm ×StabSm ({{γ}})

(
S{{γ}}/ StabS{{γ}}(γ)

)
(‡)

where we set {{γ}} := {{γ1}} ∪ · · · ∪ {{γ`}}.
As a consequence the Q[Sm]-module IEmν is a direct sum of induced modules

of the form:
indSm

S{{γ}}�S{{{γ}}
Wn � km−n ,

where n := |{{γ}}| ≤ min{m, |ν|} and Wn := S{{γ}}/ StabS{{γ}}(γ).

When m ≥ |ν|, the corollary 1.4.5-(a) to Pieri’s rule, gives the inequality

w (ν) ≤ w (IEmν ) ≤ |ν| ,

and (c-i) follows.

(c-ii) Since χIEmν = χn1

IEm1
· · ·χnN

IEmN
and since IE` is (PC)m≥0 after (a), we imme-

diately get the fact that IEν is (PC)m≥0.

To finish, we notice that, on the one hand, the number of terms of the form (‡)
is exactly de number of Sm-orbits in Γmν , and, on the other hand, that the in-
creasing sequence Sm\Γmν ⊆ Sm+1\Γm+1

ν stabilizes for m ≥ |ν|. Therefore, the
truncated FI-module (IEν)≥|ν| is isomorphic to the sum of truncated projective
FI-modules P(Wn)≥|ν|, all being (RS)m≥2|ν|, after 1.7.2-(b).

We can be more precise if we observe that for m ≥ |ν| the module

Rm := indSm
Sν1�Sν2�···�Sν`�Sm−|ν|

Q

is a factor of IEmν . Now, the ideas used in 1.3, show that the FB-module
{Rm}m canonically determines a projective FI-module R := {Rm → Rm+1}m,
and thanks to an inductive argument on the number ` of terms in ν one can
prove, as in (a), that rankRS(R) = 2|ν| as an FI or FB module. Details are left
to the reader. �

3. Polynomial weight vs. Representation weight
3.1. On the minimal polynomial weight of a character
The Frobenius polynomial Xλ ∈Q[X] is of weight w (λ), and there are infinitely
many polynomials Pλ ∈ Q[X1, . . . , Xm−1] such that ρm(Pλ) = ρm(Xλ) = χ

Vλ .
In this section, we push further the study of the relationship between weights
of polynomials and weights of representations. We will see that w (Wm) is
the lowest possible weight for a polynomial PWm

∈ Q[X1, . . . , Xm−1] verifying
ρm(PWm

) = χ
Wm

. This is for example the case of XWm
:=
∑
λ nλXλ, where Vλ

is an irreducible factor of Wm of multiplicity nλ. Moreover, this last polynomial
is the only satisfying these conditions if and only if w (Wm) ≤ m/2.
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3.1.1. Theorem
a) For d,m ∈ N, denote by ρm|d the restriction of ρm : Q[X]→ Qcl(Sm) to the

subspace Q≤d[X] of polynomials of weight ≤ d. The image of the map

ρm|d :
(
Q≤d[X]

)
→ Qcl(Sm)

is the subspace

Q≤dcl (Sm) :=
〈
χ
Vλ

∣∣ (|λ| = m
)

&
(
w (λ) ≤ d

)〉
Q , (8)

and ker(ρm|d) = 0 if and only if d ≤ m/2.

b) Let P ∈ Q[X].
i) The scalar product 〈〈 1 | P 〉〉Sm is constant for m ≥ degw (P ).
ii) The scalar product 〈〈χVλ |P 〉〉Sm vanishes for λ `m s.t. w (λ)> degw (P ).
iii) Let Wm be a representation of Sm. If ρm(P ) = χ

Wm , then:

degw (P ) ≥ w (Wm) .

c) Let Wm =
⊕

λ`m Vλ
nλ be a representation of Sm. The polynomial

XWm
:=
∑

λ`m
nλXλ ∈ Q[X1, . . . , Xm−1]

where Xλ is the Frobenius polynomial for χVλ (2.2.2), always verifies

ρm(XWm
) = χ

Wm
and degw (XWm

) = w (Wm) ,

and it is the only polynomial verifying simultaneously these two equalities if
and only if w (Wm) ≤ m/2.

Proof. (a) In the equality (8), the inclusion ‘⊇’ is 2.2.2. For the converse, it suf-
fices to restrict oneself to the case of a monomial ρm(Xn1

1 · · ·X
nd
d ) for

∑
i ini≤ d,

or, what amounts to the same thing, thanks to 2.3.4-(b), to show that

(χIEm1 )n1 · · · (χIEmd )nd ∈
〈
χ
Vλ

∣∣ (|λ| = m
)

&
(
w (λ) ≤ d

)〉
Q .

Here, one recognizes, at the left, the character of IEmν , for ν := (1n1 , . . . , dnd).
Now, since we already know after 2.3.4-(c), that w (IEmν )≤ |ν|, we conclude that
w (IEmν ) ≤ d. The irreducible factors of IEmν are therefore of the form Vλ with
w (λ) ≤ d, which settles the inclusion ‘⊆’.
For the last claim about ker(ρm|d), notice that the space Q≤d[X1, . . . , Xd]

admits as basis the set of monomials

M(d) :=
{
Xn1

1 Xn2
2 . . . Xnd

d

∣∣ ∑d
i=1 ini ≤ d

}
,

while the space Q≤dcl (Sm) has a basis indexed by the following set of partitions :

L(d) :=
{
λ := (1n1 , 2n2 , . . . , λ

nλ2
2 )

∣∣ (∑λ2

i=1 ini ≤ d
)

&
(∑λ2

i=1 ini + λ2 ≤ m
)}
,

because {χVλ | λ ` m} is linearly independent after Schur orthogonality.

Since λ2 ≤ d, the map ξ : L(d)→M(d), which associates (1n1 , 2n2 , . . . , λ
nλ2
2 )

with the monomial Xn1
1 Xn2

2 . . . X
nλ2
λ2

is well defined and injective. The condi-
tion for ξ to be bijective is that λ2 be able to take the value d, in which case∑
i=1,...,λ2

ini = d, and that condition appears to be just that 2d ≤ m.
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(b-i) Again, thanks to 2.3.4-(b), it suffices to prove that〈〈
1
∣∣ χ

IEm1
(g)n1χ

IEm2
(g)n2 · · ·χIEmr (g)nr

〉〉
Sm

, (�)

is constant for all m ≥
∑r
i=1 ini . But (�) is nothing but the dimension of the

subspace of invariant tensors in the Sm-module

IEmν := (IEm1 )⊗n1 ⊗ (IEm2 )⊗n2 ⊗ · · · ⊗ (IEmr )⊗nr ,

where ν := (1n1 , 2n2 , . . . , rnr ).

Let ν = (ν1 ≥ ν2 ≥ · · · ≥ ν`). The canonical basis Bmν of IEmν is the set of
tensors

γ1 ⊗ γ2 ⊗ · · · ⊗ γ` ,

where γi is a cycle of length νi of Sm. The basis Bmν is clearly in bijection with
the set T mν of Young tableaux τ of shape ν, with the i’th row filled with elements
of [[1,m]] in a way they represent a cycle of length νi of Sm. The action of Sm
on Bmν induces in T mν the natural action of Sm on Young tableaux.

Because of these identifications, the dimension of (IEmν )Sm is the cardinality of
the orbit space T mν /Sm, and the stability we are seeking to prove, is equivalent
to the fact that the natural map

T mν /Sm → T m+1
ν /Sm+1 , [τ (mod Sm)] 7→ [τ (mod Sm+1)] ,

is a bijection. But the necessary and sufficient condition for this is precisely that
the total number of boxes |ν| be smaller or equal to m, since, in that case, a
single permutation g ∈ Sm will allow to renumber all the boxes simultaneously
with numbers in the interval [[1, |ν|]]. Hence (�) is constant form≥ |ν|=

∑
i ini .

(b-ii) After (a), ρm(P ) belongs to the linear span of the characters χVν of Sm,
with w (ν) ≤ degw (P ), and, tanks to Schur orthogonality, these characters are
orthogonal to any χVλ with w (λ) > degw (P ), hence the claim.

(b-iii) Indeed, if we had degw (P ) < w (Wm) then, for any irreducible factor Vλ
of Wm of weight w (Vλ) = w (Wm), we would get, after (b-ii) :

0 = 〈〈χVλ | P 〉〉Sm = 〈〈χVλ |Wm 〉〉Sm 6= 0 ,

which is a contradiction. Hence degw (P ) ≥ w (Wm).

(c) Immediate consequence of (b-iii) and the study of ker(ρm|d) in (a). �

3.1.2. Comments

• The proposition 2.3.4-(a) showed that, for fixed m ≥ N , the character of
the tensor product IEmν := (IEm1 )⊗n1 ⊗ (IEm2 )⊗n2 ⊗ · · · ⊗ (IEmN )⊗nN , view
as an Sm-module, is given by the polynomial : Eν := En1

1 En2
2 · · ·E

nN
N of

Q[X1, . . . , XN ] , whose weight degw (Eν) =
∑
i ini can be arbitrarily big.

On the other hand, theorem 3.1.1-(c) showed that the same character is
given the polynomial XIEmν

of Q[X1, . . . , Xm−1], of weight w (IEmν ) < m.
The reason of this disagreement is that, while Eν expresses a priori all the

characters in the family {χIEmν }m≥N simultaneously, the Frobenius poly-
nomial XIEmν

expresses a priori only one of them : χIEmν .
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Heuristically speaking, the elements in ker(ρm) allow to reduce the
weight of Eν to raise the require bounding by m. In the next section,
this distinction will be meaningful.

• It is also worth noting that while the explicit writing of Eν is very sim-
ple, thanks to formula 2.3.4-(a), the writing of XIEmν

can be quite involved
insofar it is based on the knowledge of the set of multiplicities nλ of the
irreducible factors Vλ in the decomposition IEmν =

⊕
λ`m V

nλ
λ , and also in

the explicit description of each Xλ, for nλ 6= 0.

The following is a useful corollary to theorem 3.1.1-(c)

3.1.3. Corollary. Let W be an FB-module which is (PC)m≥N and has polyno-
mial character PW .
a) PW = XWm

, for all m ≥ max{2 degw (PW), N}.
b) w (Wm) = degw (PW), for all m ≥ max{2 degw (PW), N}.
c) w (W≥N ) = degw (PW).

Proof. (a,b) Immediate after 3.1.1-(c).

(c) For all m≥N , we have ρm(PW) = χ
Wm

so that w (Wm)≤ degw (PW), again
after 3.1.1-(c). Therefore, supm≥N{w (Wm)} = degw (PW), after (b). �

4. (PC) versus (RS)

4.1. The equivalence
We show the equivalence, for an FB-moduleW, between the properties of being
(RS) and of being (PC). In it, two more elements will deserve special attention.
First, the ranks of validity of the properties, and, second, the weight of the
polynomial PW . The complete statement is the following.

4.1.1. Theorem. Let W be an FB-module.

a) If W is (RS) for m ≥ N , then W is (PC) for m ≥ N .

b) If W is (PC) for m ≥ N , and has polynomial character PW , then W is
(RS) for m ≥ max{2 degw (PW), N}.

Proof. (a) This is corollary 2.2.3. (b) Set d := degw (PW). After 3.1.3-(a), we
know that PW = XWm

for all m ≥ 2d, so that, if we decompose W2d in its
simple Q[S2d]-submodules :

W2d =
⊕
|λ|≤d

(Vλ[2d])
nλ ,

and if we denote λ′ := (λ1, λ1, λ2, . . . , λ`) for λ := (λ1, λ2, . . . , λ`), then the FI-
module

W ′ :=
⊕
|λ|≤d

(Vλ′)nλ ,

which is clearly (RS)m≥2d, will be such that, by construction :

PW′ = PW .
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As a consequence, there exists an isomorphism of FB-modules:

W≥max{2d,N} ∼ W ′≥max{2d,N} , (�)

and W is (RS) for m ≥ max{2d,N}, as stated. �

4.1.2. Remark. The proof of the last theorem, shows in (�) that an FB-module
which is (PC) is asymptotically isomorphic, as FB-module, to an (RS)-module.

5. Addendum on the weight of a tensor product
5.1. Reinterpretation of the weight of a representation

The theorem 3.1.1-(c) gives an alternative definition of the weight of a represen-
tationWm of Sm as the lowest possible weight of the polynomials expressing the
character χWm

. The following theorem then easily follows from corollary 3.1.3.

5.1.1. Proposition

a) If W1,m and W2,m are representations of Sm, then

w (W1,m ⊗W2,m) ≤ w (W1,m) + w (W2,m) .

b) If W1 and W2 are FB-modules which are (PC)m≥N , then

w (W1,m ⊗W2,m) = w (W1,m) + w (W2,m) ,

for all m ≥ 2(w (W1,m) + w (W2,m)). In particular,

w ((W1 ⊗W2)≥N ) = w ((W1)≥N ) + w ((W2)≥N )

c) w (Vλ[m] ⊗ Vµ[m]) = |λ|+ |µ|, ∀m ≥ 2(|λ|+ |µ|).

Proof. (a) As χW1⊗W2
= χ

W1
χ
W2

, we get

w (W1 ⊗W2) ≤(1) degw (XW1XW2)

= degw (XW1) + degw (XW2)

=(2) degw (W1) + degw (W2) ,

inequality ‘≤(1)’ after 3.1.1-(b-iii), and equality ‘=(2)’ after 3.1.1-(c).

(b) Let di := degw (PWi). We know after corollary 3.1.3-(a), that PWi = XWi,m ,

for m≥ 2 max{d1, d2}. Hence, XW1,mXW2,m = XW1,m⊗W2,m , for m≥ 2(d1 +d2),
after the same corollary. Therefore,

w (W1,m ⊗W2,m) = w (W1,m) + w (W2,m) ,

for m ≥ 2(d1 + d2), again after 3.1.1-(c).

(c) Particular case of (b). �
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