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Stability of Abhyankar valuations

Antoine Ducros

Let K be a field equipped with a Krull valuation |.| (throughout the whole pa-
per we will use the multiplicative notation) and let L be a finite extension of K.
Let |.|1, . . . , |.|n be the valuations on L extending |.|, and for every i, let ei and fi be
the ramification and inertia indexes of the valued field extension (K, |.|) ↪→ (L, |.|i).
One always has

∑
eifi ! [L : F ], and the extension L of the valued field (K, |.|)

is said to be defectless if the equality holds. We say that (K, |.|) is stable if every
finite extension of it is defectless.

Remark. The product eifi can also be intepreted as the degree of the graded
residue extension induced by (K, |.|) ↪→ (L, |.|i).

Examples. Any algebraically closed field is stable; any complete, discretely
valued field is stable; the function field of an irreducible smooth algebraic curve,
endowed with the discrete valuation associated to a closed point of the curve, is
stable; any valued field whose residue characteristic is zero is stable

Let us now give a more involved example. Let G be an ordered abelian group
containing |K∗| and let r = (r1, . . . , rn) be a n-uple of elements of G. We denote
by ηK,r the valuation on K(T1, . . . , Tn) that sends any polynomial

∑
aIT I to

max |aI | · rI (with T = (T1, . . . , Tn)).

Theorem. If the valued field (K, |.|) is stable, so is (K(T1, . . . , Tn), ηK,r) for
every r = (r1, . . . , rn) as above.

It has been given several proofs by Gruson, Temkin, Ohm, Kuhlmann, Teissier
(see [3], [9], [7], [6], [8]; to the author’s knowledge, the first proof working in
full generality was that of Kuhlmann, the preceeding proofs requiring some extra-
assumptions on K and/or on the ri’s). In what follows we will present a new
proof of this theorem, which is based upon model-theoretic tools; it is part of a
joint work (which is still at its very beginning) with Ehud Hrushovski and François
Loeser.

Step 1. By induction, it is sufficient to prove the theorem for n = 1. One then
reduces straightforwardly to the case where K is algebraically closed; note that
this step requires to understand what happens when K is replaced with one of its
finite extensions, and this is here that our stability assumption is used.

Step 2. Now we fix a finite extension F of K(T ), and an element r in an ordered
group G containing |K∗|. We want to prove that F is a defectless extension
of (K(T ), ηr). For that purpose, let us consider a non-trivially valued, algebraically
closed extension L ofK such that r ∈ |L∗|. Let E0 be a finite dimensionalK-vector
subspace of F . Let ⟨.⟩ be any extension of ηL,r to FL. Using (part of) the seminal
work [4] of Haskell, Hrushovski and Macpherson on the elimination of imaginaries
in the theory ACVF, together with some further results by Hrushovski and Loeser
in[5], one gets the following:

1) the restriction of ⟨.⟩ to L⊗K E0 is a norm which is definable with param-
eters in K ∪ {r};
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2) as a consequence of 1), there exists a basis e1, . . . , ed of E0 over K and
elements s1, . . . , sd of |K∗| · rQ such that ⟨

∑
aiei⟩ = max |ai|si for every

d-uple (ai) ∈ Ld.

The formula given in 2) immediately implies that the graded reduction ˜L⊗K E0

gr

is equal to L̃gr ⊗K̃gr Ẽ0
gr
. As a consequence, F̃L

gr
is nothing but the graded

fraction field of L̃gr⊗K̃gr F̃ gr. As L̃(T )
gr

is itself equal by a direct computation to

the graded fraction field of L̃gr ⊗K̃gr K̃(T )
gr

, we eventually get

F̃L
gr

= L̃(T )
gr
⊗

K̃(T )
gr F̃ gr.

In particular [F̃L
gr

: L̃(T )
gr
] = [F̃ gr : K̃(T )

gr

] (note that here, all graded
reductions involved should be understood with respect to ⟨.⟩ and its restrictions
to the various fields). The author has proved in [1] (a mistake in the latter is
corrected in [2]), using also the aformentioned work by Haskell, Hrushovski and
Macpherson, that the restriction induces a bijection between the set of extensions
of ηL,r to FL and the set of extensions of ηK,r to F . It thus follows from the above
that F is a defectless extension of (K(T ), ηK,r) if and only if FL is a defectless
extension of (L(T ), ηL,r). Hence by replacing K with a suitable valued extension,
we may and do ssume that r ∈ |K∗| ̸= {1} (and thatK is still algebraically closed).

Step 3. Let b ∈ |K∗|. Let us choose λ ∈ K such that |λ| = b and let τ be the
image of T/λ in the residue field k of (K(T ), ηK,b); note that k = K̃(τ). Let b−

and b+ be elements of an ordered group containing |K∗| which are infinitely close
to b (with respect to |K∗|), with b− < b < b+. The valuation ηK,b− (resp. ηK,b+)
is the composition of ηK,b and of the discrete valuation ⟨.⟩0 (resp. ⟨.⟩∞) of k that
corresponds to τ = 0 (resp. τ = ∞), and the extensions of ηK,b− (resp. ηK,b+)
to F are compositions of extensions of ηK,b and of extensions of ⟨.⟩0 (resp. ⟨.⟩∞).
Since (k, ⟨.⟩0) and (k, ⟨.⟩∞) are stable, we see that the following are equivalent:

i) F is a defectless extension of (K(T ), ηK,b−) ;
ii) F is a defectless extension of (K(T ), ηK,b) ;
iii) F is a defectless extension of (K(T ), ηK,b+).

In the same spirit, let ε be an element of an ordered group containing |K∗|
which is infinitely close to zero with respect to |K∗|. The valuation ηK,ε is the
composition of the discrete valuation ⟨.⟩′0 of K(T ) corresponding to the closed
point T = 0 and of the valuation of K. Since both (K, |.|) and (K(T ), ⟨.⟩′0) are sta-
ble, (K(T ), ηK,ε) is stable; in particular, F is a defectless extension of (K(T ), ηK,ε).

Step 4. We will now use the theory of ”stable completions” introduced by
Hrushovski and Loeser in [5] as kind of a model-theoretic avatar of Berkovich
spaces. Let X be an irreducible, smooth, projective curve over K whose func-
tion field is isomorphic to F , and such that K(T ) ↪→ F is induced by a finite
map f : X → P1

K ; the latter induces a map f̂ : X̂ → P̂1
K , where the ”hat” denotes

the stable completion. Let M be the class of algebraically closed valued extension
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of K. For every L ∈ M, and any s ∈ |L∗|, the valuation ηL,s appears as a point
of P̂1(L), whose pre-images on X̂(L) correspond to the extensions of ηL,s to FL.
We denote by ∆L the set of s ∈ |L∗| such that the extension FL of (L(T ), ηs) is
defectless.

A fundamental result by Hrushovski and Loeser asserts that X̂ is definable
(this is specific to the one-dimensional case). This leads, together with the ”o-
minimality of the value group”, to the following fact: there exist finitely many dis-
joint non-empty intervals I1 < I2 < . . . < Im of |K∗| with endpoints in |K|∪{+∞}
(and with at least one element of |K∗| lying between Ij and Ij+1 for every j < n)
such that for every L ∈ M one has ∆L =

∐
Ij,L, where we denote by Ij,L the

interval of |L∗| with the same definition as that of Ij .

Step 5. Let L ∈ M such that there exist ε as in step 3 in the value group |L∗|.
By step 3, the extension F of (K(T ), ηK,ε) is defectless. By step 2, this implies
that the extension FL of (L, ηL,ε) is defectless. Therefore ε ∈ ∆L. This implies
that m " 1 and that the lower bound of I1 is equal to zero: indeed, if it were an
element c ∈ |K∗|, then ∆L =

∐
Ij,L would be contained in [c; +∞[L, contradicting

the fact that ε < c.
The interval I1 is thus of the form ]0; b[, [0; b] or ]0; +∞[. We will exclude ]0; b[

and ]0; b]. This will show that ∆K = |K∗| and will end the proof.

Step 6. Assume that I1 is equal to ]0; b[ or ]0; b] with b ∈ |K∗|. Choose L ∈ M

such that there exists elements b− and b+ as in step 3 in the value group |L∗|.
Since b− ∈]0; b[L⊂ I1,L, the extension FL of (L(T ), ηL,b−) is defectless. By step 2,
this implies that F is a defectless extension of (K(T ), ηK,b−) as well. By step 3,
F is then a defectless extension of (K(T ), ηK,b); therefore b ∈ ∆K and I1 =]0; b].
This implies the existence of c > b such that Ij ⊂]c; +∞[ for every j " 2.

Since F is a defectless extension of (K(T ), ηK,b), by using again step 3, we see
that F is a defectless extension of (K(T ), ηK,b+). By step 2, the extension FL

of (L(T ), ηL,b+) is defectless. Hence b+ ∈ ∆L, but the latter consists of ]0; b]L
and of elements of |L∗| which belong to Ij,L for j " 2, hence are greater than c;
since b < b+ < c, we get a contradiction.
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Differential-Henselian Fields

Lou van den Dries

(joint work with Matthias Aschenbrenner, Joris van der Hoeven)

After some twenty years of study we established in Spring 2014 some decisive
results about the model theory of the valued differential field T of transseries,
similar to what Tarski achieved for the field of real numbers in the 1940s, and
Ax, Kochen, Ersov, and Macintyre in the 1960s and 1970s for henselian valued
fields like C((t)) and the p-adic fields. We finished the program outlined in [1],
and hope to make the results available soon. Some of our work deals with general
valued differential fields with continuous derivation. Below we discuss the notion
of differential-henselianity in this setting.

Let K be a valued differential field : a field K with a valuation v : K× → Γ whose
residue field k := O/m has characteristic zero, and also equipped with a derivation
∂ : K → K. Here Γ = v(K×) is the value group, O = OK is the valuation ring of
v, and m is the maximal ideal of O. Also C = CK := {f ∈ K : ∂(f) = 0} is the
constant field of the differential field K. We often write f ′ for ∂(f).

We focus on the case that ∂ is continuous (for the valuation topology). If the
derivation is small in the sense that ∂(m) ⊆ m, then ∂ is continuous. As a partial
converse, if ∂ is continuous, then some multiple a∂ with a ∈ K× is small. From
now on we assume that our derivation ∂ on K is small. This has the effect that
also ∂(O) ⊆ O, and so ∂ induces a derivation on the residue field; we view k below
as equipped with this induced derivation. Examples of such K include:

(i) k(t) and k((t)) with the t-adic valuation and ∂ = t d
dt , with k any field of

characteristic zero;
(ii) Hardy fields, with O = {germs in K of bounded functions}; see [3];
(iii) T, the valued differential field of transseries; see [5, 1];
(iv) k((tΓ)) where k is any differential field of characteristic zero, Γ any ordered

abelian group, and ∂(
∑

γ aγt
γ) :=

∑
γ a

′
γt
γ ; see [9].

We say that K has few constants if v is trivial on C, that is, v(C×) = {0}, and
that K has many constants if v(C×) = Γ. In (i), (ii), (iii) we have few constants,
and in (iv) we have C = Ck((tΓ)): many constants. If K has many constants,
then K is monotone in the sense of [4], that is, v(f) ≤ v(f ′) for all f ∈ K. But
the examples in (i) are also monotone.

Asymptotic K are defined by another interaction of valuation and derivation:

0 < v(f) ≤ v(g) =⇒ v(f ′) ≤ v(g′).


