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Abstract. These are lecture notes of a short course on the moduli stack of
vector bundles on an algebraic curve. The aim of the course was to use this
example to introduce the notion of algebraic stacks and to illustrate how
one can work with these objects. Applications given are the (non)-existence
of universal families on coarse moduli spaces and the computation of the
cohomology of the moduli stack.

Introduction

This text consists of my notes for a course on algebraic stacks given at the German-
Spanish Workshop on vector bundles on algebraic curves in Essen and Madrid 2007,
organized by L. Álvarez-Cónsul, O. Garćıa-Prada, and A. Schmitt. The aim of the
course was to use the example of vector bundles on curves to introduce the basic
notions of algebraic stacks and to illustrate how one can work with these objects.

The course consisted of 5 one-hour lectures and was meant to be introduc-
tory. We start with the definition of stacks. In order to get to some interesting
applications we chose to give only those parts of the basic theory that are needed
in our applications. Also we often chose to give ad hoc definitions, whenever these
are easier to digest than the abstract ones. The time constraints had the side effect
that I deliberately skipped some of the technical fine print in the first lectures. On
the one hand I hope that this makes the subject more accessible, because the ideas
are most of the time not so difficult to understand. On the other hand for written
notes I feel that some of the fine print should at least be indicated. Since there are
excellent references for these points available I will try to include some comments
indicating where one can find more information. In order not to distract the reader
who wants to get a first idea what the subject is about, I will put these comments
in fine print.
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Finally, I gave a set of exercises for the course, these are included in the text.
The structure of the lectures was as follows: The first lecture gives the defi-

nition of an algebraic stack. The second lecture explaines why geometric notions
make sense for such stacks and introduce sheaves on stacks. As an example on how
to work with these we begin Lecture 3 by proving the innocuous technical result of
Laumon–Moret-Bailly that on a noetherian stack any quasi-coherent sheaf is the
limit of its coherent subsheaves. We then consider the relation with coarse moduli
spaces. We introduce the notion of a gerbe in order to give a simple proof of the
classical result on the non existence of a universal family of vector bundles on
coarse moduli spaces of bundles when rank and degree are not coprime. This uses
the theorem proven in the beginning of the lecture. In the 4th lecture we introduce
cohomology of constructible sheaves and, as an example we indicate how one can
compute the cohomology ring of the moduli stack of vector bundles on a curve. In
the last lecture we give some ideas how one can deduce results on the cohomology
of the coarse moduli spaces.

Of course this material is not original. The basic results on algebraic stacks
are explained in the book of Laumon and Moret-Bailly [20], the standard reference
on the subject. The results on Gm-gerbes can be found in Lieblich’s thesis [22],
the application to the non-existence of universal families has been explained in
great generality by Biswas and Hoffmann [8]. The calculation of the cohomology
ring of the moduli stack owes much to the classical work of Atiyah-Bott [2]. The
reformulation in terms of stacks was the subject G. Harder suggested as subject
of my Diploma-thesis. However we use Beauville’s trick here in order to avoid the
usage of the Lefschetz-trace formula. A more general result is proven in [19].

Also, by now there are several very good introductory notes on the basic
definitions on stacks available (for example [11],[15]), each giving an introduction
form a different point of view.

Acknowledgements: First of all I would like to thank the organizers of the
workshops for the opportunity to give the lectures and A. Schmitt in particular
for his encouragement leading to this writeup. I thank N. Hoffmann for many
dicussions around stacks and J. Bergström and the referee for their comments.
I thank H. Esnault and E. Viehweg for their generous support and the unique
atmosphere of their group.

1. Lecture: Algebraic stacks

1.1. Motivation and definition

The main motivation to introduce algebraic stacks is that we want to study moduli
spaces. One of the simplest problems would be to look for a classifying space for
vector bundles, say of rank n. So we would like to have a space BGLn such that
for any test scheme T

Mor(T,BGLn) = 〈vector bundles of rank n on T 〉/isomorphism. (1.1)
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This would be nice, because to construct functorial invariants, like Chern
classes it would then be sufficient to construct cohomology classes of BGLn.

However, such a space cannot exist, because every vector bundle E on T is
locally trivial, so the map T → BGLn corresponding to E would have to be locally
constant so E would have to be trivial globally.

This is a bit disappointing, since topologists do know a classifying space
BGLn, such that for any space T the homotopy classes of maps f : T → BGLn
correspond to isomorphism classes of vector bundles on T .

Since we do not have a good algebraic replacement for homotopy classes of
maps, we have (at least) two other ways to circumvent the problem:

1. (see Georg Hein’s lectures) Restrict the functor and the expectations on the
representing space, i.e. consider coarse moduli spaces.

2. Don’t pass to isomorphism classes in (1.1)!

The second option is used for the definition of stacks. Before giving the definition,
recall that the Yoneda-Lemma (valid in any category) tells us that any scheme X
is determined by its functor of points, i.e. X is determined by the functor

Mor( , X) : Schemes→ Sets

sending a scheme T to the set Mor(T,X). Furthermore this functor Mor( , X)
is a sheaf, in the sense that a morphism T → X can be obtained from glueing
morphisms on a covering of T .

The definition of a stack follows this idea, we first define a stack to be given
by its functor of points. So in the case of BGLn we just define BGLn(T ) to be the
category of vector bundles of rank n on T . Vector bundles can also be obtained by
glueing bundles on an open covering, so the general definition of a stack will be that
it is a sheaf of categories (more precisely a sheaf of groupoids). In writing down
the axioms that should be satisfied by such an assignment we keep the example
BGLn in mind.

In a second step we will then try to see how one can do geometry using such
objects.

Definition 1.1. A stack is a sheaf of groupoids:

M : Sch→ Groupoids ⊂ Categories

i.e., an assignment

1. for any scheme T a categoryM(T ) in which all morphisms are isomorphisms.
2. for any morphism f : X → Y a functor f∗ :M(Y )→M(X).

3. for any pair of composable morphisms X
f−→ Y

g−→ Z a natural transforma-
tion φf,g : f∗ ◦g∗ ⇒ (g◦f)∗. These transformations have to be associative for
composition, in particular we assume this transformation to be the identity
if one of the morphisms is the identity.

satisfying the following gluing conditions:
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1. (Objects glue) Given a covering1 Ui � T , objects Ei ∈ M(Ui) and isomor-
phisms φij : Ei|Ui∩Uj → Ej |Ui∩Uj satisfying a cocycle condition on 3-fold
intersections, there exists an object E ∈ M(T ), unique up to isomorphism
together with isomorphisms ψi : E|Ui → Ei such that φij = ψj ◦ ψ−1

i .
2. (Morphisms glue) Given a covering Ui � T , objects E ,F ∈ M(T ) and mor-

phisms φi : E|Ui → F|Ui such that φi|Ui∩Uj = φj |Ui∩Uj then there is a unique
morphism φ : E → F such that φ|Ui = φi.

Remark 1.2. In the definition we used the word covering to mean one of the
following choices: In complex geometry we use the analytic topology. Otherwise we
mean a covering in either the étale topology or the fppf topology (i.e. a surjective
map Ui → X which is étale or flat of finite presentation respectively). In this case
the intersection Ui ∩ Uj has to be defined as Ui ∩ Uj := Ui ×X Uj .

Finally, the notation E|Ui means the pull back of E to Ui given by the map
Ui → X.

Actually to make the above definition precise, we would need to spell out the canonical isomorphisms
of E|Ui |Ui∩Uj → E|Uj |Ui∩Uj given by the last part of the bi-functor. This would make the definition more

difficult to read.

Also it is sometimes not quite obvious how to define all pull back functors functorially. In fact one

often has to make a choice here. This can be avoided using the language of fibred categories as in [20]. This

means that similarly to the procedure of replacing a sheaf by its espace étalé one considers the large category∐
T∈SchM(T ) instead of the different M(T ). This has other advantages (see the last remark in [16] VI) but

to me the above definition seems easier to digest at first.

Let us collect some examples

Example 1.3. Let C be a smooth projective curve (a general scheme which is flat
of finite type over the base would do here). Then let Bunn,C be the stack given
by2

Bunn,C(T ) := 〈vector bundles of rank n on C × T 〉.
Here the morphisms in the category are isomorphisms of vector bundles and the
functors f∗ are given by the pull-back of bundles. The gluing conditions are satis-
fied, by descent for vector bundles ([16] Exposé VIII, Théorème 1.1 and Proposition
1.10).

Similarly CohC is the stack of coherent sheaves on C:

CohC(T ) := 〈coherent sheaves on C × T flat over T〉

Example 1.4. Let G be an affine algebraic group, then we denote by

BG(T ) := 〈principal G− bundles on T 〉
the classifying stack of G.

Example 1.5. Let X be a scheme. Then X(T ) := Mor(T,X) is a stack. Here
we consider the set Mor(T,X) as a category in which the only morphisms are

1see the remark following the definition
2We denote categories by 〈〉 to distinguish them from sets.
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identities, the pull-back functors f∗ for f : S → T being given by composition
with f . Such a stack is called a representable stack.

Example 1.6. (Quotient stacks) Let X be a scheme (say over some field k in order
to avoid a flatness condition in what follows) and G be an algebraic group acting
on X. Then we define the quotient stack [X/G] by

[X/G](T ) :=

〈
P

g //
p��

X

T

∣∣∣∣ P → T is a G bundle
P → X is a G-equivariant map

〉
Morphisms in this category are isomorphisms of G-bundles commuting with the
map to X.

To check that this definition makes sense let us consider the case that there
exist a quotient X/G of X by G such that the map X → X/G is a G−bundle. In

this case any diagram P
g //

p��
X
��

T X/G

defines a map g : T → X/G and in this way P

becomes canonically isomorphic to the pull-back of the G-bundle g∗X = X×X/GT
over T . So in this case the category [X/G](T ) is canonically equivalent to the set
X/G(T ), which we consider as a category in which the only morphisms are the
identities of elements.

Remark 1.7. Stacks form a 2−category. Morphisms of stacks are given by functors
between the corresponding categories: A morphism F : M → N is given by
a collection of functors FT : M(T ) → N (T ) for all T together with for every
f : X → Y a natural transformation Ff : FX ◦ f∗ → f∗ ◦ FY satisfying an
associativity constraint.

A 2-morphism is a morphism between such functors F,G. It is given by a
natural transformation φ : FT → GT for all T , compatible with the pull-back
functors f∗.

Example 1.8. 1. The tensor product defines a morphism Bunn,C ×Bunm,C →
Bunnm,C sending a pair of vector bundles E ,F to E ⊗ F .

2. An example of a 2−morphism is as follows. Consider the identity functor
id : Bunn,C → Bunn,C . Fix an invertible scalar α. A 2-morphism from id → id is
then given by multiplication by α on all objects.

The first important observation is that the examples of stacks given above
are indeed moduli-spaces:

Lemma 1.9 (Yoneda lemma for stacks). Let M be a stack. Then for any scheme
T there is a natural equivalence of categories:

MorStacks(T ,M) ∼=M(T ).

Proof. First note that we can define a functor:

MorStacks(T ,M)→M(T )
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by sending F : T →M to F (idT ) ∈M(T ).
Conversely, given an object E ∈ M(T ) we can define a morphism FE : T →M

by sending f ∈ T (S) = Mor(S, T ) to f∗(E) ∈M(S).
Note that the composition E 7→ FE 7→ FE(idT ) = id∗E = E is the identity.
Conversely, let us compute the composition F 7→ F (idT ) 7→ FF (idT ). We have

FF (idT )(f : S → T ) = f∗(F (idT )). But Ff : F (f : S → T ) → f∗(F (idT )) then
gives a natural isomorphism. �

Because of this lemma we will often simply write T instead of T .

1.2. How to make this geometric?

In order to make sense of geometric notions for stacks, we look for a notion of
charts for an algebraic stack. To see why this could make sense let us begin by
computing a fibre product in a simple example:

Take G a smooth group and consider our stack BG, classifying G-bundles.
Let pt = Spec k be a point, and E be a G-bundle on some other scheme X. By the
Yoneda lemma, E defines a morphism FE : X → BG and the trivial bundle defines
a morphism triv : pt→ BG:

pt

triv

��
X

FE // BG

.

We want to compute the fibre product of this diagram. For any scheme T this is
given by:

X ×BG pt(T ) =

〈 T

f

��0
00

00
00 p

((QQQQQQQ

pt
triv��

X
FE// BG

;φ : triv ◦ p
∼=−→ FE ◦ f

〉

= 〈(f, p, φ)|φ : f∗E ∼= p∗(triv) = T ×G〉
= {(f, s)|s : T → f∗E a section}
= E(T ).

Thus the T -valued points of the fibre product are a set and not only a category
and the resulting stack is equivalent to the G-bundle E . This means:

1. For every FE : X → BG the pull back of the morphism pt → BG is the
G-bundle E , so pt→ BG is the universal G-bundle on BG!

2. The map pt→ BG becomes a smooth surjection after every base-change.

The second point means that we should regard the map pt → BG as a smooth
covering of BG so we could consider it as an atlas for BG. The existence of such
a map will be the main part of the definition of algebraic stacks.
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More generally, let M be any stack and x : X → M, y : Y → M be two
morphisms. Then for any scheme T :

X ×M Y (T ) =

〈 X

T

f >>}}

g   
AA

Y

, φ : f∗x ∼= g∗y

〉
=: Isom(x, y)

is a sheaf and in all the examples we have seen so far it is even represented by a
scheme.

Definition 1.10. A stack M is called algebraic if
1. For all X →M, Y →M the fibre product X ×M Y is representable.
2. There exists a scheme u : U → M such that for all schemes X → M the

projection X ×M U → X is a smooth surjection.
3. The forgetful map Isom(u, u) = U ×M U → U × U is quasicompact and

separated.

Remark 1.11. The last condition is a technical condition. It implies that Isom(x, y)
is always separated. In particular we are not allowed to consider non-separated
group schemes and it also rules out quotients like [A1

C/Qdiscrete].
We call a map u : U →M as in 2. an atlas of M.

Remark 1.12. There is a second technical problem. In order to get a definition in
which algebraicity of a stack can be checked by deformation-theoretic conditions
it is more natural to replace the requirement that X ×M Y is a scheme by the
weaker condition that it is an algebraic space. Once one is used to algebraic stacks
this will not be a difficult concept, because the definition is exactly the same as
the above, if one adds the condition that the stackM is actually a sheaf, i.e. that
all M(T ) are sets. In this context the last technical condition is then needed to
make the condition on fibred products to be schemes to be reasonable.

Example 1.13. We have just seen that the stack BG is algebraic. Analogously
quotient stacks [X/G] are algebraic, the canonical map X → [X/G] given by the
trivial G-bundle G×X → X is an atlas.

The most important example in this course will be the following:

Example 1.14. Let C be a smooth projective curve. And denote by Bunn the stack
of vector bundles of rank n on C. This is an algebraic stack. We know that for two
bundles E ,F on C ×X and C × Y the sheaf Isom(E ,F) ⊂ Hom(E ,F) is an open
subscheme. And Hom(E ,F)→ X × Y is affine.

An atlas of Bunn is given as follows: Choose an ample bundle O(1) on C:

U :=
∐
N∈N

〈
(E , si)|

E a bundle on C such that E ⊗ OC(N)
globally generated, H1(C, E ⊗ OC(N)) = 0
si a basis of H0(C, E ⊗ OC(N))

〉
This is a representable functor by the theory of Hilbert- (or Quot-)schemes.
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The condition that fibre products are representable gets a name:

Definition 1.15. A morphism F : M→ N of stacks is called representable if for
all X → N the fibre product X ×N M is representable.

As before, in this definition one should again use algebraic spaces to define representability. This will

not make a difference in our examples.

Example 1.16. The standard example for a non-representable morphism is the
projection BG→ pt. More generally it is not difficult to check that representable
morphisms induce injections on the automorphism groups of objects. This condi-
tion is actually a sufficent condition for morphisms between algebraic stacks, if one
takes the above fine print on the notion of representability into account, i.e. if one
uses the larger category of algebraic spaces instead of schemes as representable
stacks.

Exercise 1.17. Show that the property of a morphism to be representable is stable
under pull-backs.

Exercise 1.18. Show that the fibre product X ×M Y is representable for all X,Y
if and only if the diagonal morphism ∆ :M→M×M is representable.

The main idea - which will be explained in the next lecture - is that this
concept of algebraic stacks allows to translate every notion for schemes that can
be checked on a smooth covering into a notion for stacks. For example smoothness,
closed and open substacks. But also sheaves and cohomology, we will simply define
sheaves to be sheaves on one atlas together with a descent datum to M.

Remark 1.19. One might wonder why one does not replace ”smooth” by ”flat” in
the definition of algebraic stacks. The reason for this is a theorem of Artin ([1]
Thm. 6.1), which says that this would not give a more general notion!

Exercise 1.20 (2-Fibred Products). For any stack M one defines its inertia stack
I(M) as

I(M)(T ) ∼= 〈(t, φ)|t ∈M(T ), φ ∈ Aut(t)〉.

Show that I(M) ∼=M×M×MM where the map M→M×M is the diagonal.

Exercise 1.21. Given G an algebraic group and H ⊂ G a closed subgroup we
consider the canonical map BH → BG mapping any H-bundle to the induced
G-bundle. Show that there is a (2-)cartesian diagram:

G/H //

��

BH

��
pt // BG.
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If H ⊂ G is normal, then there is a (2-)cartesian diagram

BH //

��

BG

��
pt // B(G/H).

(Of course these diagrams are well-known in topology as homotopy-fibrations.)

Exercise 1.22 (Points of a stack). Let M be an algebraic stack. We define its set
of points |M| as the union

(qk⊂K a fieldObjects(M(K)))/ ∼
where ∼ declares x ∈M(K) equivalent to y ∈M(K ′) if there is a field extension
K ′′ containing K and K ′ such that x|K′′ ∼= y|K′′ .

Let X →M be an atlas ofM. Show that |M| = |X|/ ∼M where ∼M is the
equivalence relation defined by |X ×M X| → |X| × |X|.

(You might also want to define a Zariski-topology on |M|.)

2. Lecture: Geometric properties of algebraic stacks

2.1. Properties of stacks and morphisms

Recall that the essential point in the definition of algebraicity of a stackM is the
existence of a smooth surjection u : U �M from a scheme U to M. Let us use
this to define some first geometric properties of algebraic stacks:

Definition 2.1. An algebraic stackM is called smooth (resp. normal/reduced/locally
of finite presentation/locally noetherian/regular) if there exists an atlas u : U �M
with U being smooth (resp. normal/reduced/locally of finite presentation/locally
noetherian/regular).

Note that for schemes this definition gives nothing new, because all the above
properties can be checked locally on a smooth covering of a scheme.

Similarly properties of morphisms which can be checked after a smooth base
change extend to properties of representable morphisms of algebraic stacks:

Definition 2.2. Let P be a property of morphisms of schemes f : X → Y such that
f has P if and only if for some smooth surjective Y ′ → Y the induced morphism
f ′ : X ×Y Y ′ → Y ′ has P (e.g. closed immersion, open immersion, affine, finite,
proper).

We say that a representable morphism F : M → N of algebraic stacks
has property P if for some (equivalently any) atlas u : U � N the morphism
M×N U → U has P .

Remark 2.3. In particular the above definition gives us a notion of closed and open
substacks of an algebraic stack.

Let us give some examples:
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1. IfM = [X/G] is a quotient stack, then open/closed substacks are of the form
[Y/G] where Y ⊂ X is an open/closed subscheme.

2. In our example Bunn, the stack of vector bundles on a projective curve, the
substack Bunssn of semistable vector bundles3 is an open substack, because
for any family of bundles, instability is a closed condition.
Finally we can also define properties of arbitrary morphisms of stacks as long

as we can check these properties locally in the source and the image of a morphism:

Definition 2.4. Let P be a property of morphisms of schemes f : X → Y such that

f has P if and only if there exists some commutative diagram X ′
f̃ //

smooth
����

Y ′

smooth
����

X
f // Y

such

that f̃ has P . For example being smooth, flat, locally of finite presentation.
Then a morphism of algebraic stacks F :M→N has P if for some atlases v :

V →M, u : U → N there exists a commutative diagram: V
f̃ //

smooth
����

U

smooth
����

M F // N

such

that f̃ has P .

Example 2.5. In geometric invariant theory one often encounters the situation that
one has an action of GLn on a scheme X, such that the center of GLn acts trivially,
i.e. the action actually factors through an action of the group PGLn on X. In this
case the canonical morphism [X/GLn]→ [X/PGLn] is smooth and surjective, but
not representable.

Finally, we claim that our main example of an algebraic stack Bunn is a
smooth stack. One way to do this would be to directly apply the definition above
to the atlas given in the last lecture and try to check that this atlas is smooth.
However there is an intrinsic way to show smoothness, avoiding the choice of an
atlas. This is as follows:

Recall the lifting criterion for smoothness: A morphism of schemes f : X → Y
is smooth if and only if f is locally of finite presentation and for all (local) Artin
algebras A with an ideal I ⊂ A with I2 = (0) one can complete any diagram:

Spec(A/I) //
� _

��

X

f

��
Spec(A) //

::u
u

u
u

u
Y.

3Recall that a vector bundle E on a curve is called semistable if for all subbundles F ⊂ E we

have
deg(F)
rk(F)

≤ deg(E)
rk(E)

.
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Lemma 2.6. LetM be an algebraic stack, locally of finite presentation over Spec(k)
such that the structure morphismM→ Spec(k) satisfies the above lifting criterion
for smoothness. Then M is smooth.

Proof. Let u : U �M be an atlas. We have to show that U is smooth, i.e., that
the lifting criterion holds for U → Spec(k). So assume that we are given:

Spec(A/I) //
� _

��

&&NNNNNNNNNNN U

��
M

��
Spec(A) t // Spec(k).

Since M → Spec(k) satisfies the lifting criterion by assumption, we can lift t to
t̃ : Spec(A)→M.

Knowing that u is smooth, implies that the projection U ×M Spec(A) →
Spec(A) is a smooth morphism of schemes. So we can also find a lifting in:

Spec(A/I) //
� u

((PPPPPPPPPPPP
U ×M Spec(A)

��

// U

��
Spec(A) t̃ //M

��
Spec(A) t // Spec(k),

which proves our claim. �

Let us apply this to show that Bunn is smooth: Giving a morphism Spec(A/I)→
Bunn is the same as giving a family of vector bundles E on C×Spec(A/I). We have
to check that we can extend any such family to a vector bundle E on C×Spec(A).
Denote by m the maximal ideal of A and k = A/m. By induction we can as-
sume that I = (ν) is generated by one element and that ν · m = 0. Denote by
E0 := E ⊗A/I k.

One way to see that an extension E exists is to describe E by gluing cocycles
and to lift these cocycles. (The lack of the cocycle condition for the lifted elements
gives an element in H2(C, End(E0)) ⊗k I. This group is zero, because C is 1-
dimensional.) Again one can avoid cocycles here. First, since we assumed that
I = (ν) is generated by one element and that ν ·m = 0 we have an exact sequence
of A/I-modules:

0→ k
ν·−→ m→ A/I → k = A/m→ 0 (2.1)
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Claim 2.7. E extends to a bundle E on C × Spec(A) if and only if the class

obs(E) := (2.1)⊗A/I E ∈ Ext2(E0, E0)

vanishes.

Of course this condition is automatic here, because Ext2(E0, E0) = 0, on a
curve C.

Proof. Let us decompose the sequence 2.1 into two short exact sequences: Denote
by mA/I the maximal ideal of A/I.

0→ k → m→ mA/I → 0

0→ mA/I → A/I → k → 0

Tensoring the second sequence with E we get a short exact sequence 0→ mA/I ⊗
E → E → E0 → 0. This defines a long exact sequence:

· · · → Ext1(E , E0)→ Ext1(mA/I ⊗ E , E0) ∂−→ Ext2(E0, E0)→ · · · .

The class obs(E) is then (by definition) given by the image of 0→ E0 → m⊗ E →
mA/I ⊗ E → 0 under the boundary map ∂.

Assume first that E exists. Then we can tensor the diagram

k //

��

m //

��

mA/I

��
k // A // A/I

with E :
E0 //

��

m⊗ E //

��

mA/I ⊗ E

��
E0 // E // E

.

This shows that obs(E) is zero, because of the long exact sequence above.
Conversely given such a diagram one can reconstruct the A-module structure

on E by defining multiplication with an element in m by the composition E → E →
m⊗ E → E . �

2.2. Sheaves on stacks

Recall that descent for quasi coherent sheaves on schemes says that given a scheme
X and U � X a smooth surjective morphism (one could replace smooth by fppf
here) then we have an equivalence of categories

Qcoh(X)
∼=−→
〈F quasicoherent sheaf on U together with a descent datum:

φ : pr∗1F
∼=−→ pr∗2F on U ×X U + cocycle cond.

〉
.

(See [16] Exopsé VIII, Théorème 1.1)
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Definition 2.8. A quasi coherent sheaf F on an algebraic stack M is the datum
consisting of:

1. For all smooth maps x : X → M, where X is a scheme, a quasi-coherent
sheaf FX,x on X.

2. For all diagrams V v
!!DD

D
f // U

u}}{{
{

M

together with an isomorphism φ : u ◦ f → v

an isomorphism θf,φ : f∗FU,u → FV,v compatible under composition.

Remark 2.9. 1. The category of quasi coherent sheaves on M can also be de-
scribed as the category of sheaves on some atlas together with a descent
datum.

2. Since the functors f∗, f∗ commute with flat base change, we immediately get
such functors for representable F :M→N .

3. We can always define F∗ as a limit, i.e.,

Γ(M,F) :=
{

(sU,u ∈ H0(U,FU,u)|θf,φ(sU,u) = sV,v
}
.

And again this can also be computed on a single atlas.

Example 2.10. 1. The structure sheaf OM of an algebraic stack is given by
OM,U,u = OU . Similarly we can define ideal sheaves of closed substacks, by
defining it to be given by the ideal sheaf of the preimage of the substack in
any atlas.

2. Continuing the first example, given a smooth, closed substack N ⊂ M of a
smooth algebraic stack the normal bundle of N is a vector bundle, given by
the normal bundle computed on any presentation.

3. There is a universal vector bundle Euniv on C × Bunn, simply because any
morphism T → Bunn defines a bundle on C × T .

4. To give a line bundle on Bunn is the same as a functorial assignment of
a line bundle to any family of vector bundles. An example is given by the
determinant of cohomology det(H∗(C, E)). (See G. Hein’s lecture).

Remark 2.11. Using coherent sheaves we can also perform local constructions on
stacks, i.e., blowing up substacks, taking the projective bundle of a vector bundle,
taking normalizations or the reduced substack: We can do this on any smooth
atlas and then use descent to define the corresponding object over any T →M.

For quotient stacks [X/G] this just means to do the corresponding construc-
tion on X and observe that the G-action extends to the scheme obtained.

To put this definition in the general framework one should of course spell out an explicit Grothendieck

topology in order to obtain all the standard functorialities. This requires some careful work. Also some natural

sheaves (like the cotangent bundle) do not satisfy the condition that the θf,φ are isomorphisms so it is natural

to drop this condition. The first written results in this direction appeared in the language of simplicial schemes

[12]. A reference for the results on stacks is [20] together with corrections by Olsson [23].

Exercise 2.12 (A normalization). The group Z/2Z acts on A2 by interchanging the
coordinates. Let X ⊂ A2 denote the union of the two coordinate axis and consider
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the stack M := [X/(Z/2Z)]. Note that the inclusion of {0} ⊂ X defines a closed
embedding BZ/2Z ⊂ [X/(Z/2Z)]. Show that the normalization Mnorm ∼= A1 is a
scheme.

Exercise 2.13 (A blow-up). Let the multiplicative group Gm act on A2 via t.(x, y) =
(tx, t−1y) and consider the quotient stack [A2/Gm]. Again the inclusion {0} ⊂ A2

defines a closed substack BGm ⊂ A2.
Calculate the blow-up BlM(BGm) of BGm inM. Show that an open subset

of the exceptional fibre is isomorphic to Bµ2 (here µ2 ⊂ Gm is the subgroup of
elements of square 1, so this is just ±1 if we are not in characteristic 2).

Exercise 2.14. Let ζ be a primitive 6−th root of unity. Let Z/6 act on A2 by
n.(x, y) := (ζ2nx, ζ3ny). Calculate the inertia stack I([A2/(Z/6)]) and describe
its irreducible components. (These are sometimes called sectors in physics-related
literature.)

3. Lecture: Relation with coarse moduli spaces

Before describing some applications of stacks to classical questions I want to give a
sample theorem on sheaves on algebraic stack which appeared in [20]. This theorem
might look completely innocuous, or even boring at first sight. However it turns
out to have surprising applications:

Theorem 3.1 ([20], Prop. 15.4.). Let M be a noetherian algebraic stack. Then any
quasi-coherent sheaf on M is the filtered limit of its coherent subsheaves.

Corollary 3.2. Any representation of a smooth noetherian algebraic group is the
union of its finite dimensional subrepresentations.

Proof of corollary. Take M = BG. Then by definition a quasicoherent sheaf on
BG is the same as a sheaf on Spec(k), i.e. a vector space, together with an action
of G. �

Proof. Let F be a quasi coherent sheaf onM. Choose an atlas u : U �M ofM.
In particular Fu,U = u∗F is quasi-coherent on U . In particular this sheaf is the
union of its quasi-coherent subsheaves u∗F = lim−→Gi, where Gi are coherent on U .
In particular we have F ↪→ u∗u

∗F = lim−→u∗Gi.
Define Fi := F∩u∗Gi so that F = lim−→Fi. To see that Fi are coherent consider

the diagram:

Fi := F ∩ u∗Gi� _

��

� � // u∗Gi� _

��
F � � // u∗u∗F .
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By adjunction we get:
u∗Fi� _

��

// Gi� _

��
u∗F id // u∗F .

In particular u∗Fi is a subsheaf of Gi. Thus Fi is coherent. �

Exercise 3.3. (If you know the proof that any representation of an algebraic group
G over a field is the union of its finite-dimensional subrepresentations.) Rewrite
the proof that any quasi-coherent sheaf on a noetherian stack is the filtered in-
ductive limit of coherent subsheaves in the case of BG explicitly on the standard
presentation pt→ BG in order to see that the argument is a generalization of the
argument you know.

Corollary 3.4. Let M be a smooth, noetherian algebraic stack and U ⊂ M be an
open substack. Let LU be a line bundle on U . Then there exists a line bundle L on
M such that L|U ∼= LU .

I learnt this corollary from Lieblich’s thesis [22]. Note that we cannot argue
with divisors here, because the example of BG already shows that a line bundle
on a stack does not necessarily have meromorphic sections.

Proof. The sheaf j∗LU is quasi coherent. Thus we can write j∗LU = lim−→Fi for some
coherent sheaves Fi. This implies that we can even find Fi such that Fi|U = LU .
Then the double dual (F∨i )∨ is a reflexive sheaf of rank 1 on a smooth stack. So it
has to be a line bundle. (Again, this result holds for stacks, because we can check
it on a smooth atlas.) �

3.1. Coarse moduli spaces

Definition 3.5. Let M be an algebraic stack. An algebraic space M together with
a map p :M→M is called coarse moduli space for M if

1. For all schemes X and morphisms q :M→ X there exist a unique morphism
M → X making

M

!!C
CC

CC
CC

C
// X

M

>>}
}

}
}

commutative.
2. For all algebraically closed fields K we have M(K)/isomorphism = M(K).

If M only satisfies the first condition, it is called categorial coarse moduli space.

Remark 3.6. Categorial coarse moduli spaces can be very small. IfM = [An/Gm],
the quotient of the affine space by the multiplication by non-zero scalars, then
M→ pt is a categorial quotient.
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Example 3.7. Let Bunstablen be the moduli stack of stable bundles on a curve.
Then the coarse moduli space of stable bundles Mstable constructed by geometric
invariant theory (see G. Hein’s lectures) is a coarse moduli space for Bunstablen .
The GIT construction shows that Bunstablen = [X/GLN ] (for some scheme X) and
constructs Mstable = X/PGLN . In particular we get a map Bunstablen → Mstable

which satisfies the stronger property that for any T →Mstable there exists an etale
covering T ′ � T such that the map T ′ →Mstable lifts to T ′ → X and therefore it
lifts to Bunstablen .

Note that in the above example all geometric fibres of the map Bunstablen →
Mstable are isomorphic to BGm. This corresponds to the fact that the automor-
phism group of a stable bundle consist only of scalars. Such a morphism is called
a gerbe. Let us give the definition:

Definition 3.8. A morphism F :M→N of algebraic stacks is called a gerbe over
N if

1. F is locally surjective, i.e., for any T → N there exists a covering T ′ � T
such that the morphism T ′ → N can be lifted to M. (In other words, any
object of N locally comes from an object of M.)

2. All objects in a fibre are locally isomorphic: if t1, t2 : T → M are two
objects with F (t1) ∼= F (t2) then there exists a covering T ′ � T such that
t1|T ′ ∼= t2|T ′ .

F :M→ N is called a Gm-gerbe if for all t : T →M the relative automorphism
group Aut(t/N ) is canonically isomorphic to Gm(T ) (equivalently: I(M) ×I(N )

N ∼= Gm ×N ).

Example 3.9. We have just seen that Bunstablen → Mstable is a Gm-gerbe. More
generally if N = [X/PGLn] then M := [X/GLn]→ [X/PGLn] is a Gm-gerbe.

So a Gm-gerbe on a scheme X can be thought of as a BGm-bundle over X.
A notion of triviality of such a bundle is useful:

Lemma 3.10. For a Gm-gerbe F :M→N the following are equivalent:
1. The morphism F :M→N has a section.
2. M∼= BGm ×N .
3. There is a line bundle of weight4 1 on M.

A gerbe satisfying the above conditions is called neutral.

Remark 3.11 (Weight). Since for any u : U →M we have Gm ⊂ Aut(U →M), the
θId,α for α ∈ Gm(U) define a Gm action on FU,u, i.e. a direct sum decomposition
FU,u = ⊕n∈ZFnU,u such that F i is the subsheaf on which Gm acts via multiplication
with the i− th power.

Since this decomposition is canonical it defines F = ⊕Fn. A sheaf is called
of weight i if F = F i.

4see below
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Proof. By the remark, 2. implies 3., because the universal bundle on BGm is of
weight 1. The implication 2.⇒ 1. is also clear.

Let us show that 1. ⇒ 3.. Let s : N → M be a section. Then N ×M N =
Aut(s) = Gm × N , i.e. the section s : N → M makes N into a Gm-bundle of
weight one on M.

Finally 3. ⇒ 2.: Let L be a line bundle of weight 1 on M and denote by L◦
the corresponding Gm-bundle. Since BGm is the classifying stack of line bundles
this defines a morphism M → BGm such that L◦ = pt ×BGm M. So we get a
cartesian diagram:

L◦

��

// N = N × pt

��
M // N ×BGm.

This implies that M → N × BGm is locally surjective, all objects in a fibre are
locally isomorphic, because this already holds for M → N so this is a gerbe.
However the map is also an isomorphism on automorphism groups, so it must be
an isomorphism. �

Let us apply these notions in order to study when a Poincaré-family exists
on the coarse moduli spaces Md,stable

n of stable vector bundles of rank n and degre
d. Recall that a Poincaré-family is a vector bundle on C × Md,stable

n such that
the fibre over every point of Md,stable

n lies in the isomorphism class of bundles
defined by this point. So such a bundle is the same thing as a section of the map
Bund,stablen →Md,stable

n .
With these preparations we can now show the following result of Ramanan

([24]), reproven by Drezet and Narasimhan ([10] Théorème G).

Corollary 3.12. Assume that the genus g of our curve C is bigger than 1.
1. If (n, d) = 1 then there exists a Poincaré-family on the coarse moduli space
Md,stable
n of stable vector bundles on C.

2. If (n, d) 6= 1 then there is no open subset U ⊂ Md,stable
n (with U 6= ∅) such

that there exists a Poincaré family on C × U .

Proof. The first part is well known: For any point c ∈ C the restriction of the
universal bundle E on C × Bundn to c × Bundn has weight 1, so det(E|c×Bundn

) has
weight n.

Next, note that by transport of structure for any bundle E the scalar auto-
morphisms act as scalar automorphisms on the cohomology groups Hi(C, E). Thus,
the Riemann-Roch theorem the bundle det(H∗(C, E)) has weight d+ (g − 1)n so
that there exist a product of these two bundles having weight 1. By the Lemma
this means that the map Bund,stablen →Md

n has a section, so that we can pull back
the universal bundle by this section to obtain a Poincaré bundle on Md

n.
For the second part let (n, d) = (k) 6= 1. Assume there was a Poincaré family

on some non-empty open subset U ⊂Md
n. This would mean that there is a section
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U → Bundn. By the Lemma there would then exist a line bundle of weight 1 on
U := U×Md

n
Bundn ⊂ Bundn. Since Bundn is smooth, we can apply the corollary from

the beginning of the lecture to extend this line bundle to any noetherian substack
of Bundn. And this would still have weight 1.

Now pick a stable bundle E of rank n/k and degree d/k (the assumption
on the genus of C assures that stable bundles exist, see remark following this
proof). Then the bundle E⊕k defines a point of Bundn. We have Aut(E⊕k) = GLk
and thus we find BGLk ⊂ Bundn. However there is no line bundle of weight 1 on
BGLk → BPGLk, because this would imply that BGLk = BPGLk × BGm but
GLk 6∼= PGLk ×Gm. So we found a contradiction. �

A much more general statement of this type can be found in an article of
Biswas and Hoffmann [8].

Remark 3.13. In the course of the above proof we used the existence of (semi-
)stable bundles on curves of genus > 1. This is a classical result (see also fr
example [25]), but again one can also rephrase this in terms of the moduli stack.
Namely in the next lecture we will see that the substack of instable bundles has
positive codimension in the stack of all bundles if the genus of C is > 0, so in
particular semistable bundles have to exist. A similar argument works for the
strictly semistable locus if the genus of C is > 1.

Exercise 3.14. Let M be a scheme and M → M be a Gm-gerbe. Let E → M
be a vector bundle of weight 1. Denote the complement of the zero-section of E
by E◦ ⊂ E. Show that E◦ → M is a bundle of projective spaces, i.e. there is a
smooth covering U →M such that E◦|U ∼= U × Pn−1.

4. Lecture: Cohomology of Bund
n

Next we want to calculate the cohomology of some étale sheaves on stacks. (If you
prefer to work in an analytic category these would just correspond to constructable
sheaves in the analytic topology.) The aim of this lecture is on the one hand to give
an impression of some techniques which help to do such computations and on the
other hand to show that the results are often much nicer than the corresponding
results for coarse moduli spaces.

To avoid to introducing more theory, we use the same working-definition as
before:

Definition 4.1. A sheaf on an algebraic stackM is a collection of sheaves FU,u for
all u : U →M together with compatible morphisms θf,φ : f−1FU,u → FV,v for all
v : V →M, f : V → U and φ : u ◦ f → v.

A sheaf is called cartesian if all θf,φ are isomorphisms.

Remark 4.2. As before it turns out that the cohomology groups H∗(M,F) can
be calculated from an atlas. Given an atlas u : U � M we denote by Up :=
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U ×M · · · ×M U the p+ 1-fold product of U overM. Then there exists a spectral
sequence (see e.g., [23]) with

Ep,q1 := Hq(Up,FUp)⇒ Hp+q(M,F).

From this one can immediately conclude that the Künneth formula and
Gysin-sequences ([9]) also exist for stacks, simply by applying the formulas for
the Up.

Example 4.3. Let us compute H∗(BGm,Q`). The quotient map An− 0→ Pn−1 is
a Gm-bundle. Thus we get a cartesian diagram:

An − 0

��

// pt

��
Pn−1

p // BGm.

From this we see that the fibres of p are An − 0. Thus we get that

Rip∗Q` =
{

Q` i = 0
0 i < 2n− 1.

The Leray spectral sequence for p therefore implies thatHi(BGm) ∼= Hi(Pn−1)
for i < 2n − 1. Thus we find that H∗(BGm,Q`) = Q`[c1] is a polynomial ring in
one generator of degree 2.

Example 4.4. Replacing An−0 in the previous example by the space Mat(n,N)rk=n

of n×N matrices of rank n one can show that H∗(BGLn,Q`) = Q`[c1, . . . , cn] is
a polynomial ring, with generators ci(the universal Chern classes) of degree 2i.

As an application of this computation one can define the Chern classes of a
vector bundle as the pull back of the ci under the morphism to BGLn which is
defined by the vector bundle.

Although we will not use it, I would like to mention Behrend’s generalization
of the Lefschetz trace formula for algebraic stacks over finite fields. This gives an-
other way to interpret the above examples. Recall that for a smooth variety X over
a finite field k = Fq there is a natural action of the Frobenius on the cohomology
groups Hi(Xk,Q`). And the Lefschetz trace formula (see [9] p.88),says5 that

#X(Fq) = qdim(X)
∑
i

(−1)iTrace(Frob,Hi(Xk,Q`)).

Furthermore, the Weil conjectures imply that for a smooth, proper variety the
eigenvalues of Frob onHi(Xk,Q`) have absolute value q−i/2 and that this is enough
to recover the dimension of the cohomology groups from the knowledge of #X(Fqn)
for sufficiently many n.

5This is usually formulated for cohomology with compact supports. In that case the leading
factor qdim(X) disappears.



20 Jochen Heinloth

Behrend showed [5],[6] that a similar trace formula also holds for a large class
of smooth algebraic stacksM over Fq, including quotient stacks and Bunn, namely
that ∑

x∈M(Fq)/iso

1
# Aut(x)(Fq)

= qdim(M)
∑
i

(−1)iTrace(Frob,Hi(Mk,Q`)).

For example for BGm the left hand side is 1/(q − 1) = q−1(1 + q−1 + q−2 + . . . ).
The fact that the coefficients of the powers of q in this expansion are all equal to 1
already suggests that the cohomology should have a single generator in each even
degree.

Exercise 4.5. Check Behrend’s trace formula for the stacks B(Z/2) and B(Z/n)
over the finite field Fp.

Remark 4.6. In contrast to the preceeding exercise the proof of the trace formula
uses a reduction to quotients by GLn. This trick is quite useful in other contexts
as well, because GLn-bundles are locally trivial for the Zariski topology.

Our aim of this lecture is to compute the cohomology H∗(Bundn,Q`). First
note that the Gysin sequence implies that the cohomology in low degrees does not
change if one removes a substack of high codimension. Therefore

H∗(Bundn,Q`) = lim
U⊂Bundn finite type

H∗(U ,Q`).

And for each fixed degree ∗ the limit on the right hand side becomes stationary
for sufficiently large U , i.e. Hi(Bundn,Q`) = Hi(U ,Q`) if the codimension of the
complement of U is larger than i/2.

Let us first recall the construction of the so called Atiyah-Bott classes in the
cohomology of Bundn:

We have already seen that by definition of sheaves on stacks, there is a uni-
versal family of vector bundles Euniv on C×Bundn. In particular this bundle defines
a morphism univ : C × Bundn → BGLn and we set

ci(Euniv) := univ∗ci ∈ H∗(C × Bundn,Q`) = H∗(C,Q`)⊗H∗(Bundn,Q`).

We choose a basis 1 ∈ H0(C,Q`), (γj)j=1,...,2g ∈ H1(C,Q`), [pt] ∈ H2(C,Q`) in
order to decompose these Chern classes:

ci(Euniv) = 1⊗ ai +
2g∑
j=1

γj ⊗ bji + [pt]⊗ fi

for some ai, b
j
i , fi ∈ H∗(Bundn,Q`).

Using these classes we can give the main theorem of this lecture. This was
first proved by Atiyah-Bott in an analytic setup using equivariant cohomology.
An algebraic proof was first given by Biffet-Ghione-Laetizia [7]. The proof we will
explain here is a variant of [18]. To simplify notations we will write H∗(X,Q`) for
the cohomology of X computed over the algebraic closure of the ground field.
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Theorem 4.7. The cohomology of Bundn is freely generated by the Atiyah-Bott
classes:

H∗(Bundn,Q`) = Q`[a1, . . . , an]⊗
∧

[bji ] i=1,...n
j=1,...2g

⊗Q`[f2, . . . , fn].

A similar result holds for moduli spaces of principal bundles (see [2] for an
analytic proof and [19] for an algebraic version).

We want to indicate a proof of the above result.

4.1. First step: Independence of the generators

We first want show that the Atiyah-Bott classes generate a free subalgebra of the
cohomology. Let us consider the simplest case n = 1. Denote by PicdC the Picard
scheme of C, which is a coarse moduli space for Bund1. Over an algebraically closed
field there exists a Poincaré bundle on C × PicdC and thus 3.10 implies that:

Bund1 ∼= PicdC ×BGm.

Furthermore we know that PicdC is isomorphic to the Jacobian of C, which is an
abelian variety and its cohomology is the exterior algebra on H1(C,Q`). Thus

H∗(Bund1,Q`) ∼= H∗(PicdC ,Q`)⊗H∗(BGm,Q`) ∼=
∧

[bj1]⊗Q`[a1].

For n > 1 for any partition d =
∑
i=1n di with di ∈ Z consider the map

⊕d :
n∏
i=1

Bundi1 → Bundn

(Li) 7→ L1 ⊕ · · · ⊕ Ln
We know that the Chern classes of a direct sum of line bundles are given by

the elementary symmetric polynomials σi in the Chern classes of the line bundles.
Write c1(Ldiuniv) := 1⊗Ai +

∑
γj ⊗Bji + [pt]⊗ di. Then we have:

(⊕d)∗(ci(Euniv)) = σi(c1(Ld1univ), . . . , c1(Ldnuniv))

= σi(Ai, . . . , An) +
∑
j,k

γj ⊗ ∂kσi(A1, . . . , An)Bjk

+
∑

j+m=2g+1,k,l

[pt]⊗ ∂k∂lσ(A1, . . . , An)BjkB
m
l

+
∑
j,k

[pt]⊗ ∂kσi(A1, . . . , An)dk

Thus taking the union over all d = (d1, . . . , dn) we get a commutative dia-
gram:

H∗(Bundn,Q`) // ∏
d,

∑
di=d

Q`[A1, . . . , An]⊗
∧

[Bji ]i,j

Q`[ai, fi]⊗
∧

[bji ]

OO

� � // Q`[Ai]⊗
∧

[Bji ]⊗Q`[D1, D2, . . . , Dn]/
∑
Di = d

Di 7→(di)d

OO
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Here the lower horizontal map is given by

ai 7→ σi(A1, . . . , An), bji →
∑
k

∂kσi(A1, . . . , An)Bjk

and fi is mapped to the last two sumands of our computation above, replacing the
constants dk by variables Dk. This map is injective, because the ∂kσi are linearly
independent (this is equivalent to the fact that the map An → An/Sn is generically
étale).

The right vertical arrow is the evaluation of Di. This is injective, because we
evaluate at all integers simultaneously.

This shows that the left vertical arrow must be injective as well.

4.2. Second step: Why is it the whole ring?

One way to see this is to use Beauville’s trick (I think he quotes Ellingsrud and
Strømme) to show that the Atiyah-Bott classes generate the cohomology of some
coarse moduli spaces: If X is a smooth projective scheme then the Künneth com-
ponents of the diagonal [∆] ⊂ H∗(X × X) ∼= H∗(X) ⊗ H∗(X) generate H∗(X).
(This is not difficult. Note however that this does not seem to make sense for
stacks, because the diagonal morphism is not an embedding - look at the example
of BGm.)

Let again Euniv denote the universal bundle on C × Bundn and consider the
sheaf Hom(p∗12Euniv, p

∗
13Euniv) on C × Bund,stablen ×Bund,stablen .

The complex Rp23,∗Hom(p∗12Euniv, p
∗
13Euniv) can be represented by a complex

[K0
d1−→ K1] of vector bundles on Bund,stablen ×Bund,stablen . Since there are no

homomorphisms between non-isomorphic stable vector bundles of the same rank
and degree we know that the map d1 has maximal rank outside the diagonal
∆ ⊂ Bund,stablen ×Bund,stablen .

Thus we can apply the Porteous formula ([14], Chapter 14.4) (if we know that
codim ∆ = χ(K0 → K1)+1) to see that the top Chern class ctop(K0 → K1) = [∆].
On the other hand we can use the Riemann Roch theorem to compute

ch(Rp23,∗Hom(p∗12Euniv, p
∗
13Euniv)) = pr23,∗(pr∗C(Todd(C)) · ch(Euniv)ch(E∨univ)).

The right hand side of this formula is given in terms of the Atiyah-Bott classes.
Together with Porteous formula, this gives an expression of [∆] in terms of the
Atiyah-Bott classes. However this does only work for stable bundles and to use
the trick one also needs to know that Bund,stablen is a Gm-gerbe over a smooth
projective variety.

To get into such a situation one can use parabolic bundles: Pick a finite set
of points S = {p1, . . . , pN} ∈ C. Then one defines the stack of parabolic bundles:

Bundn,S(T ) := 〈E ∈ Bundn(T ), (E1,p ( · · · ( En,p = E|p×T )p∈S a full flag of subspaces〉

Forgetting the flags defines a morphism forget : Bundn,S → Bundn, the fibres of
which are products of flag manifolds

∏
p∈S Flagn. The theorem of Leray-Hirsch
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says that for such a fibration we have:

H∗(Bundn,S) = H∗(Bundn)⊗
⊗
p∈S

H∗(Flagn).

In particular H∗(Bundn) is generated by the Atiyah-Bott classes if and only if
H∗(Bundn,S) is generated by the Atiyah-Bott classes and the Chern classes defined
by the flags Ei,p (we call this collection of classes the canonical classes).

Now one can argue as follows (all these steps require some care):

1. There exist open substacks Bund,α−stablen,S ⊂ Bundn,S of α-stable bundles, de-
pending on some parameter α. If α is chosen well, this substack has a pro-
jective coarse moduli space Md

n,S and the map Bund,α−stablen,S → Md
n,S is a

Gm-gerbe.
2. We can do Beauville’s trick for parabolic bundles using homomorphisms re-

specting the flags instead of arbitrary homomorphisms of vector bundles.
Thus H∗(Bund,stablen,S ) is generated by the canonical classes.

3. The codimension of the instable bundles Bund,instn,S ⊂ Bundn,S goes to ∞ for
N →∞ (and well-chosen stability parameters).

Putting these results together we get a proof of the theorem.

5. Lecture: The cohomology of the coarse moduli space (coprime
case)

In this lecture we want to continue our study of geometric properties of the stack
Bundn in order to give some more phenomena that can occur when studying alge-
braic stacks. As aim of the lecture we also want to explain why the results of the
previous lecture are useful, even if one is only interested in coarse moduli spaces.
Namely, we want to deduce a description of the cohomology of the coarse moduli
space from the results of the previous lecture. To do this we will study the part
of the moduli stack that parameterizes instable bundles. This stack has a natu-
ral stratification. We will see what the strata look like and we will analyze the
Gysin-sequence for this stratification.

We begin with the Harder-Narasimhan ”stratification”6 of Bundn:

Proposition 5.1 (Harder-Narasimhan filtration). Let E be a vector bundle on C,
defined over an algebraically closed field. Then there exists a canonical filtration
0 ( E1 ( · · · ( Es = E such that for all i we have:

1. µ(Ei) := deg(Ei)
rank(Ei) > µ(Ei+1). (µ(E) is called the slope of E)

2. Ei+1/Ei is a semistable vector bundle.
We denote by t(E) := ((ni, di))i the type of instability of E.

6We put quotation marks here, in order to warn the reader that the closure of a stratum need
not be a union of strata if n > 2, see Example 5.11.
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The proof of the proposition proceeds by induction, observing that a subsheaf
of maximal slope has to be semistable and that for two such subsheaves, their sum
also satisfied this condition.

Remark 5.2. 1. The type of instability t(E) defines a convex polygon, with ver-
tices (ni, di). Here convexity is guaranteed by the first condition above. This
is called the Harder-Narasimhan polygon of E .

2. For any F ⊂ E the point (rank(F),deg(F)) lies below the polygon of E .
3. If one has a family of vector bundles on C, then the HN-polygon can only get

bigger under specialization, because the closure of a subsheaf in the generic
fibre defines a subsheaf in the special fibre.

In particular for any T → Bundn given by a family E we get a canoni-
cal decomposition T = ∪t polygonT

t into locally closed subschemes such that T t

consists of those points such that the Harder-Narasimhan polygon of the corre-
sponding bundle is of type t. Since this is canonical it defines a decomposition
of Bundn = ∪t Bund,tn and by the 3rd point of the above remark, the substack
Bund,≤tn = ∪t′≤t Bund,tn ⊂ Bundn is open.

We can describe this more precisely:
1. Given a type t = (ni, di)i we define the stack of filtered bundles

Filtdn(T ) := 〈E1 ⊂ E2 · · · ⊂ Es|deg(Ei) = di, rk(Ei) = ni〉..

This is an algebraic stack and the forgetful morphism

Filtdn → Bundn
is representable, by the theory of Quot-schemes.

2. There is a morphism Filtdn →
∏
i Bundi−di−1

ni−ni−1
that maps the filtered bundle

E• to its subquotients Ei/Ei−1.
3. There is an open substack Filtssn,d ⊂ Filtn,d defined by the condition that the

subquotients Ei/Ei−1 are semistable.
Given a filtered bundle E• we define End(E•) ⊂ End(Es) to be the subgroup of
those endomorphisms respecting the filtration, i.e. those φ such that φ(Ei) ⊂ Ei
for all i.

Proposition 5.3. If a type t = (n, d) is a convex polygon, then the forgetful map
Filtd,ssn → Bundn is an immersion.

The normal bundle Nforget to forget is given by R1p∗(End(Euniv)/End(E•,univ)).

The first point has a nice corollary:

Corollary 5.4. The Harder-Narasimhan filtration of a vector bundle E on C ×
Spec(K) is defined over K and not only after passing to the algebraic closure.

Remark 5.5. The above proposition implies that all Harder-Narasimhan strata
are smooth stacks. However, for any k ∈ Z there are only finitely many strata of
dimension ≥ k. Moreover, any bundle E of rank n > 1 admits subbundles of rank
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1. However given an extension L → E → E/L we can find a family over A1 × C
such that the restriction to Gm is the constant family E ×Gm, but the fibre over
0 is L ⊕ E/L. In particular no point of Bunn is closed.

To prove the proposition we need to introduce the tangent stack of an alge-
braic stack:

Recall that for a scheme X the tangent space TX can be defined as the
scheme representing the functor given on affine schemes by: TX(Spec(A)) :=
X(Spec(A[ε]/ε2)). We can do the same for stacks:

Definition 5.6. The tangent stack TM to an algebraic stack M is the stack given
on affine schemes by

TM(Spec(A)) :=M(Spec(A[ε]/ε2)).

Remark 5.7. TM is an algebraic stack, given an atlas u : U �M the canonical
map TU → TM is an atlas for TM.

Example 5.8. TBG = [pt/TG]. Note that the tangent space to a group is again a
group. This is immediate from the above definition of TG.

Example 5.9. The fibre of the tangent stack T Bundn at a bundle E on C is by
definition the groupoid of extensions Ẽ of E to C × Spec(k[ε]/ε2). As in our proof
of smoothness of Bundn this can be described as follows: We have an exact sequence
of k[ε]/ε2-modules k → k[ε]/ε2 → k. Thus an extension Ẽ of E gives an extension

0→ E → Ẽ → E → 0.

And conversely such an extension of vector bundles defines a k[ε]/ε2-module struc-
ture on Ẽ , multiplication by ε being given by the compositon Ẽ → E → Ẽ . The
automorphisms of such an extension are given by Hom(E , E) = H0(C, End(E)).
Thus we see that:

TE Bundn = [H1(C, End(E))/H0(C, End(E))]

where the quotient is taken by letting the additive group H0 act trivially on H1.

The same computation holds for Filtdn if one replaces End(E) by End(E•).
Now note:

1. The uniqueness of the Harder-Narasimhan flag of a bundle E is equivalent to
the statement that the fibre of forget over E consists of a single point.

2. The map T Filtdn → T Bundn at E can be computed from the cohomology
sequence:

H0(C, End(E)) ↪→ H0(C, End(E•))→ 0 = H0(C, End(E)/End(E•))
H1(C, End(E)) ↪→ H1(C, End(E•))→ H1(C, End(E)/End(E•))

Here we used that H0(C, End(E)/End(E•)) = 0 because there are no ho-
momorphisms from a semistable bundle to a semi stable bundle of smaller
slope.
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This implies the proposition (pointwise), because an unramified map (i.e.,
inducing an injection on the tangent spaces) whose fibres are points is an immer-
sion.

Remark 5.10. In the preceding computation we could replace the bundle E by any
family parametrized by an affine scheme Spec(A). For any family T → Bundn (of
finite type) write Rp∗End(E) = [K0 → K1] as a complex of vector bundles on T .
Using the computation for affine schemes it is easy to see that the pull back of
T Bundn to T is given by the quotient stack [K0/K1]. This then proves the last part
of the proposition.

Example 5.11. We briefly consider the cae n = 3, d = 1, in order to indicate, why
the closure of a HN-stratum does not need to bee a union of strata. (See [13] for a
similar example and a complete analysis in the case of elliptic curves.) We consider
strata of bundles such that the HN-filtration consists of a single subsheaf, namely
the strata of type t1 = (n1 = 1, d1 = 1) and t2 = (n1 = 2, d1 = 2). Since the HN-
polygon of t1 lies below t2, the closure of Bunt13,1 can contain elements of Bunt23,1,
but by Remark 5.2 point 3. any such specialization E will contain a subsheaf L of
rank 1 and degree 1. Since the destabilizing subbundle E1 of E is a vector bundle
of rank 2 and degree 2, L will be contained in E1, so that E1 is semi-stable but not
stable. Thus, in case there exist stable bundles of rank 2 and degee 2 on C, the
closure of Bunt13,1 cannot contain the whole of Bunt23,1.

Let us give a concrete example, to show that the closure indeed intersects
Bunt23,1: The stratum Bunt23,1 is non-empty because it contains direct sums of line
bundles E = L1 ⊕ L2 ⊕ L3 with deg(L1) = deg(L2) = 1 and deg(L3) = −1.

Moreover, Ext1(L2,L3) = H1(C,L3 ⊗ L−1
2 ) and by Riemann-Roch this is a

vector space of dimension 2 − 1 + g > 0. Thus there exist non-trivial extensions
L3 → E2 → L2 and such an extension E2 cannot contain subbundles of positive
degree, since such a subbundle would have to split the extension. So we find a
bundle L1 ⊕ E2 in Bunt13,0 that can be degenerated into E = L1 ⊕ L2 ⊕ L3.

Corollary 5.12. There is a Gysin sequence:

· · · → H∗−codim(Filtt,ss)→ H∗(Bund,≤tn )→ H∗(Bund,<tn )→ . . . .

To prove that this sequence splits we need a lemma:

Lemma 5.13. Let p : M̃ → M be a Gm gerbe and E be a vector bundle of weight
w 6= 0 on M̃. Then

H∗(M̃) = H∗(M)[c1(E)]

and the top Chern class ctop(E) is not a zero divisor in H∗(M̃).

Proof. First note that the map (p, det(E)) : M̃ → M× BGm is a µrk(E)·w-gerbe.
For finite groups G the cohomology H∗(BG,Q`) vanishes. Therefor the Leray
spectral sequence for (p,det(E)) shows that H∗(M̃,Q`) ∼= H∗(M)[c1]. Which is
the first claim.
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Now let x : Spec(k) → M be any geometric point and x̃ : Spec(k) → M̃ a
lift of x. Then Spec(k)×M M̃ = BGm canonically. Using this we get a map:

m : BGm
i−→ M̃ det(E)−→ BGm.

And this composition is given by raising to the rk(E) · w’th power.
Thus i∗(ctop(E)) = (w · c1)n. Writing ctop(E) =

∑rk(E)
i=0 βic

i
1 we see that βrk(E)

is a non-zero constant and this proves the second claim. �

Corollary 5.14. The Gysin sequence:

· · · → H∗−codim(Filtt,ss)→ H∗(Bund,≤tn )→ H∗(Bund,<tn )→ . . .

splits.
In particular H∗(Bund,ssn ) is a quotient of H∗(Bundn) and thus generated by

the Atiyah-Bott classes.

Proof. The compositionH∗−codim(Filtt,ss)→ H∗(Bund,≤tn )→ H∗(Filtt,ss) is given
by the cup product with ctop(Nforget), which is injective. �

Remark 5.15. The cohomology of Filtt can also be computed:

H∗(Filtdn) = ⊗iH∗(Bundini).

The same holds for the semistable part.

This remark implies, that the cohomology of the instable part which occurs in
the Gysin sequence can be described in terms of the cohomology of moduli stacks of
bundles of smaller rank. This gives an inductive procedure to compute H∗(Bund,ssn )
for all n, d. Furthermore, in case that (n, d) = 1 this space is a Gm gerbe over the
coarse moduli space, so we get a recursive formula for the cohomology of the coarse
moduli space as well, by Lemma 5.13.

However, since the recursive formula contains a sum over all possible types
of instability, the result will not look very pleasant and we will not write it down.
To resolve the recursive formula is a quite difficult combinatorical problem. This
was first solved by Zagier [26], and in the more general situation of G−bundles
this was solved by Laumon and Rapoport [21].

In the special case of vector bundles of rank 2 these difficulties disappear, so
let us give the result in this simple case.

In order to cope with the formulae, let us introduce the Poincaré series of an
algebraic stack X with finite dimensional cohomology groups:

P (X , t) :=
∞∑
i=0

dim(Hi(X ))ti.

More generally, one can also use this formula to define P (H∗, t) for any graded
algebra H∗ such that the graded pieces Hi are finite dimensional. For example
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P (Q`[z], t) = 1
1−tdeg(z) and P (H∗1 ⊗H∗2 , t) = P (H∗1 , t)P (H∗2 , t). This implies that

P (Bunn,d, t) =
∏n
i=1(1 + t2i−1)2g∏n

i=1(1− t2i)
∏n−1
i=1 (1− t2i)

.

Theorem 5.16. The Poincaré series of the moduli stacks of semi-stable bundles of
rank 2 are:

P (Bunss2,d, t) =

{
(1+t)2g

(1−t2)2(1−t4) ((1 + t3)2g − t2g(1 + t)2g) if d is odd
(1+t)2g

(1−t2)2(1−t4) ((1 + t3)2g − t2g+2(1 + t)2g) if d is even

For odd d we have:

P (Md,stable
2 ), t) =

(1 + t)2g

(1− t2)(1− t4)
((1 + t3)2g − t2g(1 + t)2g).

Remark 5.17. It is a nice exercise to check these formulae for g = 0 using an
explicit description of Bunss2,d.

Proof. Remark 5.15 implies that

P (Filt(i,d−i)
(1,2) , t) = P (Buni1, t)P (Bund−i1 , t) =

((1 + t)2g)2

(1− t2)2
,

which is independent of i and d.
To compute the codimension of a HN-stratum, we recall the fibre of the

normal bundle to the stratum Bun(1,i)
2,d at E ∈ Bun(1,i)

2,d is H1(C, End(E)/End(E•)).
By the Riemann-Roch theorem the dimension of this vector space is −((d− 2i) +
1− g) = g − 1 + 2i− d. Now we apply Corollary 5.14:

P (Bunssn,d, t) = P (Bunn,d, t)−
∑
i> d

2

t2(g−1+2i−d)P (Filt(i,d−i)
(1,2) , t)

= P (Bunn,d, t)− P (Bun0
1, t)

2t2g−2
∑
i> d

2

t2(2i−d).

Thus for odd d we find:

P (Bunssn,d, t) =
(1 + t)2g(1 + t3)2g

(1− t2)2(1− t4)
− ((1 + t)2g)2

(1− t2)2

t2g

1− t4
,

and for even d we have:

P (Bunssn,d, t) =
(1 + t)2g(1 + t3)2g

(1− t2)2(1− t4)
− ((1 + t)2g)2

(1− t2)2

t2g+2

1− t4
,

To deduce the statement for the coarse moduli space we note that for (2, d) = 1
we have seen (Corollary 3.12 and Lemma 3.10 ) that Bunss2,d = Md,stable

2 × BGm.
And we know P (BGm, t) = P (Q`[c1], t) = 1

1−t2 . This proves the theorem. �
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Exercise 5.18. In the lecture we used the following construction: Let E0 → E1

be a map of vector bundles on a stack M, then the quotient stack [E1/E0] is an
algebraic stack. Prove this by giving a presentation.

Now if E′0 → E′1 is another map of vector bundles and (E0 → E1)→ (E′0 →
E′1) a morphism of complexes, which is a quasi-isomorphism, then this map induces
an isomorphism [E1/E0]→ [E′1/E

′
0].
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