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Hilbert schemes of points: affine case

A: a finitely generated commutative unital C-algebra.

X = Spec(A): the algebraic variety over C whose ring of functions is A.

The n-th Hilbert scheme of points of X parametrizes the set of codi-

mension n ideals I C A:

Hilbn(X) = {I C A : dimCA/I = n}.

Grothendieck: this set carries the structure of a quasiprojective algebraic scheme

over C.



Hilbert schemes of points: affine case, geometry

Geometric interpretation For I ∈ Hilbn(X), we get a surjection

A� A/I

defining a subscheme (subvariety)

Z = Spec(A/I) ⊂ X = SpecA

of finite length n. So we can think of Hilbn(X) as parametrizing finite length

subschemes of the geometric space X = SpecA.

Construction Choosing P1, . . . , Pn distinct points in X , we can let Z = ∪Pi
and

I = IZ = {f ∈ A : f (Pi) = 0}C A.
Then

IZ ∈ Hilbn(X).

This construction however does not give all codimension n ideals.



Hilbert schemes of points: affine case, example

Example A = C[x, y], corresponding to the affine plane X = Spec(A) = C2.

• 〈1〉 ∈ Hilb0(X) corresponds to the empty subscheme.

• 〈x, y〉 ∈ Hilb1(X) corresponds to the origin in C2.

• 〈x− α, y − β〉 ∈ Hilb1(X) for α, β ∈ C corresponds to P = (α, β) ∈ C2.

Indeed

Hilb1(X) ∼= X.

• 〈x2− 1, y〉 = 〈x+ 1, y〉 ∩ 〈x− 1, y〉 ∈ Hilb2(X) corresponds to the pair of

points Z = (1, 0) ∪ (−1, 0) in C2.

• 〈x2, y〉 ∈ Hilb2(X) gives a length-two fat subscheme supported at

the origin;

A/I = C[x, y]/〈x2, y〉 = C[x]/〈x2〉
is an Artinian ring with nilpotent elements.

• 〈x2, xy, y2〉 ∈ Hilb3(X) gives a length-three fat subscheme at the origin.



Hilbert schemes of points: global case

Let X be a general quasiprojective algebraic variety. We can then define

Hilbn(X) = {Z ⊂ X a subscheme of length n}.

Once again, a collection of n distinct points of X gives Z = ∪Pi ∈ Hilbn(X).

The Hilbert scheme parametrizes, in a geometric way, collisions between points

of X .

Indeed, a subscheme Z ⊂ X of length n has support Supp(Z) ⊂ X , a set of

unordered points in X together with multiplicities summing to n. This gives

rise to the Hilbert–Chow morphism

φHC : Hilbn(X)→ Sn(X)

to the n-th symmetric product of X

Sn(X) =

n︷ ︸︸ ︷
X × . . .×X /Sn

where Sn is the symmetric group.



Geometry and topology of Hilbert schemes of points

The Hilbert scheme has its own geometry over C, and hence topology. Its

topology is a combination of

• the global topology of the space X , and

• the local topology of Hilbert schemes of local C-algebras OX,x.

For this talk, one object of interest is the generating function

ZX(q) = 1 +
∑
n≥1

χtop(Hilbn(X)) qn

We are also interested in geometric questions such as

• when is Hilbn(X) nonsingular;

• when is Hilbn(X) irreducible?



Smooth curves

Let first X = C be a smooth connected algebraic curve over C. Then the

Hilbert–Chow morphism is an isomorphism:

φHC : Hilbn(C) ∼= Sn(C).

Slogan: “in one dimension, there is only one way for points to collide”.

This in particular shows that Hilbn(C) is irreducible and nonsingular.

Theorem (MacDonald)

ZC(q) = (1− q)−χtop(C).

Example If C = A1, then Hilbn(C) = An (“Newton’s theorem on symmetric

functions”), and so

ZA1(q) = 1 + q + q2 + . . . = (1− q)−1.



Smooth surfaces

Let now X be a smooth algebraic surface over C.

Theorem (Fogarty) The algebraic variety Hilbn(X) is irreducible and nonsin-

gular. The Hilbert–Chow morphism

φHC : Hilbn(X)→ Sn(X)

is a resolution of singularities of the symmetric product.

Theorem (Göttsche)

ZX(q) = E(q)χtop(X)

where

E(q) =
∏
m

(1− qm)−1

is essentially the Dedekind eta function.

Remark In particular, up to a power of q, this is a modular function of q.



Smooth surfaces: an example

Example, continued Return to X = C2, the affine plane, corresponding to

the ring A = C[x, y]. Special ideals: monomial ideals attached to parti-

tions.

Example Let λ = (4, 2, 1), a partition of 7.

We get the monomial ideal

Iλ = 〈x4, x2y, xy2, y3〉 ∈ Hilb7(C2).



Smooth surfaces: an example

Example, continued Return to X = C2, the affine plane, corresponding to

the ring A = C[x, y]. Special ideals: monomial ideals attached to parti-

tions.

Using the technique of torus localization, we obtain

χtop(Hilbn(C2)) = #{monomial ideals of colength n}
= #{λ a partition of n}
= p(n)

and so

ZC2(q) = 1 +
∑
n≥1

p(n)qn =
∏
m

(1− qm)−1

as stated by Göttsche’s formula!



Singular curves

Next, let X = C be a singular algebraic curve over C with a finite number

of planar singularities Pi ∈ C.

The corresponding Hilbert schemes Hilbn(C) are of course singular (already for

n = 1!) but known to be irreducible.

Theorem (conjectured by Oblomkov and Shende, proved by Maulik)

ZC(q) = (1− q)−χ(C)
k∏
j=1

Z(Pi,C)(q)

Here each Z(Pi,C)(q) is a highly nontrivial local term that can be expressed

in terms of the HOMFLY polynomial of the embedded link of the singularity

Pi ∈ C.



Singular surfaces

In joint work with Gyenge and Némethi, followed by further work with Craw,

Gammelgaard and Gyenge, we explored the case of singular algebraic sur-

faces.

As in the curve case, one is only likely to get results for restricted classes of

singularities. We study the simplest possible class: rational double points.

There are many equivalent characterisations of surface rational double points.

The most useful for us will be the following.

Definition A surface rational double point P ∈ X is a quotient singularity

locally analytically of the form

P = [(0, 0)] ∈ X = C2/Γ

for a finite matrix group

Γ < SL(2,C).



Classification of surface rational double points

Definition A surface rational double point P ∈ X is a quotient singularity

locally of the form P = [(0, 0)] ∈ X = C2/Γ for a finite group Γ < SL(2,C).

We have

A = C[X ] = C[x, y]Γ,

the ring of invariants.

Such groups/singularities correspond to finite subgroups of the rotation group

SO(3), and so come in three families.

• Abelian groups Γ = Cr+1, called type Ar.

• (Binary) dihedral groups, called type Dr.

• Exceptional groups (tetrahedral, octahedral, icosahedral), called types E6,

E7, E8.

Via the McKay correspondence, these subgroups of SL(2,C) can be related

to simply laced (finite and affine) Dynkin diagrams, hence their names.



Singular and equivariant Hilbert schemes

Our main interest is in the spaces Hilbn(X) for X = C2/Γ with coordinate ring

A = C[x, y]Γ. These are singular spaces for n ≥ 1.

Given the action of the group Γ on C2, one can define equivariant Hilbert

schemes also, for any finite-dimensional representation ρ ∈ Rep(Γ) of Γ:

Hilbρ(C2) = {I C C[x, y] Γ-invariant : C[x, y]/I 'Γ ρ}.

Their topological Euler characteristics can be collected into a master generating

function

ZC2,Γ(q0, . . . , qr) =

∞∑
m0,...,mr=0

χtop

(
Hilbm0ρ0+...+mrρr(C2)

)
qm0

0 · . . . · qmr
r

where Irrep(Γ) = {ρ0, ρ1, . . . , ρr}.

This function ZC2,Γ(q0, . . . , qr) turns out to be closely related to the function

ZX(q) attached to the singular surface X = C2/Γ.



The abelian case

The case of an abelian group Let Γ be the group of type Ar

Γ =

{(
ω 0

0 ω−1

)
: ωr+1 = 1

}
< SL(2,C).

Monomial ideals in C[x, y] are Γ-equivariant, and correspond to partitions that

are coloured by r + 1 colours, in the following way (here r = 2 so Γ ∼= C3):



The abelian case: coloured box counting

We apply torus localization again. We get a coloured version of the partition

counting problem:

χtop

(
Hilb

∑
miρi(C2)

)
= #{λ a coloured partition with mi boxes of colour i}

and so

ZC2,Γ(q0, . . . , qr) = 1 +
∑
λ

∏
j

q
colj(λ)

j

is the coloured generating function of partitions (for diagonal colour-

ing).

Example For typeA1, Γ ∼= C2 and we get the generating function of partitions

in the checkerboard colouring

ZC2,C2
(q0, q1) = E(q0q1)2 ·

∞∑
m=−∞

qm
2

0 qm
2+m

1



The equivariant generating function in general

For abelian Γ < SL(2,C), the generating function of diagonally coloured parti-

tions can be determined purely combinatorially, and one gets a similar formula

to the A1 case.

However, the answer has a Lie-theoretic flavour, and generalises to all types in

the following way.

Theorem (essentially due to Nakajima) In all types, the equivariant generating

function has the following expression, with q =
∏

i q
δi
i :

ZC2,Γ(q0, . . . , qr) = E(q)r+1
∑

m∈Zr
q
1
2mtCm

r∏
i=1

qmi
i

Here r, C, δi are the rank, Cartan matrix and Dynkin indices corresponding to

the type of the group Γ.



The singular generating function

Our main interest was not in the equivariant function, but the function

ZX(q) = 1 +
∑
n≥1

χtop(Hilbn(X))qn

attached to the singular geometry X = C2/Γ.

Theorem (Gyenge–Némethi–Sz., 2015) Let Γ be of type Ar or Dr. Then,

with q =
∏

i q
δi
i and ξ = exp( 2πi

1+h), we have

ZX(q) = ZC2,Γ(q0, q1, . . . , qr)|q1=q2=...=qr=ξ

where h is the Coxeter number of the Lie algebra of the corresponding type.

The Theorem implies in particular that the function ZX(q) is modular.

We conjectured that the result also holds in type E.



Some aspects of the proof

• For typeAr, the argument is purely combinatorial and only involves coloured

partitions.

• Coloured partitions have a Lie-theoretic meaning as elements of a crys-

tal basis (of a certain representation of the affine Lie algebra)

• For type Dr, the argument has two parts:

1. the combinatorics of the crystal basis in type Dr, and

2. the study of the geometry of stratifications of Hilbert schemes indexed

by crystal basis elements.



The McKay quiver of Γ

Return to our finite subgroup Γ ⊂ SL(2,C), with Irrep(Γ) = {ρ0, ρ1, . . . , ρr}.
Let V be the canonical 2-dim rep of Γ.

The McKay graph of Γ has

• vertex set {0, 1, . . . , r};

• dim HomΓ(ρj, ρi ⊗ V ) edges from i to j.

McKay (1980): this graph is an extended Dynkin diagram of ADE type.

McKay quiver: turn the McKay graph into a quiver (oriented graph) by

introducing a pair of opposite arrows for each edge. Extend by an additional

vertex labelled ∞, with a pair of arrows to and from vertex 0. Call Q the

resulting quiver on the vertex set V (Q) = {0, 1, . . . , r,∞}, with edge set E(Q).



The McKay quiver of abelian Γ

Return to Γ ∼= µr+1 of type Ar

Γ =

{(
ω 0

0 ω−1

)
: ωr+1 = 1

}
< SL(2,C).

The (extended) McKay quiver Q looks as follows:



Representations of the McKay quiver

We want to study representation (quiver) varieties of the extended McKay

quiver Q. These depend on two parameters:

• the dimension vector d ∈ Nr+1, attaching to each vertex i a non-

negative integer di (with vertex ∞ always carrying dimension 1);

• the stability parameter θ ∈ Qr+1.

Given this data, we fix a set of vector spaces {Vi : I ∈ V (Q)} of dimension di
attached to each vertex, with V∞ of dimension 1, and we consider the collection

of all linear maps {ϕij : Vi → Vj : (ij) ∈ E(Q)}, subject two conditions:

• they should satisfy the preprojective relations;

• they should be semistable with respect to the parameter θ (King).

Let Uθ(d) denote the space of all linear maps satisfying these two conditions.

This is a locally closed subvariety of an affine space.



Quiver varieties

The space Uθ(d) carries an action of the group G =
∏r

i=0 GL(Vi). Orbits of

this group parametrise isomorphism classes of representations of Q, which

are θ-semistable with dimension vector d and satisfy the relations.

Define the (Nakajima) quiver variety

Mθ(d) = Uθ(d)//θG,

the Geometric Invariant Theory (GIT) quotient of Uθ(d) by the group G.

Example 1 (Kronheimer–Nakajima) Choose d1 = {dim ρi}. Then for generic

stability condition θ, the GIT quotient Mθ(d1) is independent of θ, and is

isomorphic to the minimal resolution Y of the surface singularity X = C2/Γ.

Example 2 (folklore) Let dn = {n · dim ρi} for some natural number n.

Choose the stability condition θ = 0. Then the GIT quotient M0(dn) is affine

(general fact), and is isomorphic to the n-th symmetric product Sn(X). In

particular, M0(d1) ∼= X .



Generic and special stability parameters

We continue to work with this setup: fix dn = {n ·dim ρi}, and study the space

Mθ(dn) as the stability parameter θ ∈ Qr+1 varies.

By general principles of variation of GIT (Thaddeus, Dolgachev-Hu), we ex-

pect a wall-and-chamber structure, with stability parameters in open chambers

giving nice GIT quotients Mθ(dn), while the quotient Mθ0(dn) becomes more

singular for parameters θ0 lying in walls.

The general setup will also induce morphisms

Mθ(dn)→Mθ0(dn)

relating different quiver varieties.

Example (continued) With d1 = {dim ρi} as above, moving from a generic

stability condition θ to θ = 0 gives a morphism Mθ(d1) →M0(d1) which can

be identified with the minimal resolution Y → X = C2/Γ.



A distinguished chamber in stability space

Theorem (Varagnolo–Vasserot, Kuznetsov) Fix n ≥ 1. There exists a distin-

guished open chamber C+ ⊂ Qr+1 inside stability space, so that for θ ∈ C+,

Mθ(dn) ∼= Hilbn·ρreg(C2)

where on the right we have the Γ-equivariant Hilbert scheme of C2 correspond-

ing to n · ρreg ∈ Rep(Γ), with ρreg ∈ Rep(Γ) is the regular representation.

The morphism to the stability space at zero stability can be identified with

Hilbn·ρreg(C2)→ Sn(C2/Γ)

which is a minimal resolution of singularities.

Example (continued again) For n = 1, we this fits with a theorem of

Kapranov and Vasserot, the isomorphism

Hilbρreg(C2) ∼= Y

between the minimal resolution Y of X and the so-called Γ-Hilbert scheme.



The wall-and-chamber structure of stability space

In a recent paper, Bellamy and Craw understood the structure of the entire

stability space, at least as far as generic open chambers are concerned.

Theorem (Bellamy–Craw, 2018) The closed cone C̄+ ⊂ Qr+1 can be identified

with the nef cone (closed ample cone) of the variety Hilbn·ρreg(C2). There

is a larger cone N ⊂ Qr+1, with a finite (combinatorially described) wall-

and-chamber structure, open chambers of which correspond to ample cones of

birational models of Hilbn·ρreg(C2).

Example Let Γ ∼= µ3, corresponding to Dynkin type A2, and n = 3.

C+



A distinguished corner of stability space

C+

〈θ0〉

Theorem (Craw–Gammelgaard–Gyenge–Sz., 2019) For a distinguished ray

〈θ0〉 ∈ ∂C̄+, we have an isomorphism

Mθ0(dn) ∼= Hilbn(C2/Γ)

between a quiver variety and the Hilbert scheme of points of the surface singu-

larity.



A distinguished corner of stability space (continued)

Theorem (continued) The resulting chain of morphisms

Mθ(dn)→Mθ0(dn)→M0(dn)

can be identified with the chain

Hilbn·ρreg(C2)→ Hilbn(C2/Γ)→ Sn(C2/Γ)

which includes the Hilbert–Chow morphism of the singular variety X = C2/Γ.

Corollary The Hilbert scheme Hilbn(X) of the surface singularity X = C2/Γ

is an irreducible, normal quasiprojective variety with a unique symplectic (Calabi–

Yau) resolution.

This is about as nice as one could hope for! Irreducibility was known before

(Xudong Zheng, 2017). Conjecturally this property characterises surface

rational double points among all varieties of dimension at least 2.



Many spaces in one diagram

We get the following diagram of GIT-induced morphisms, including the Hilbert–

Chow morphisms of both the singularity X = C2/Γ and its minimal resolu-

tion Y .



Back to Euler characteristics

As opposed to the combinatorial story, which only applies to type A and type

D singularities, the quiver story is completely general. We have identified the

resolution of singularities

Hilbn·ρreg(C2)→ Hilbn(X)

with a map

Mθ(dn)→Mθ0(dn)

between quiver varieties.

This suggests that the conjecture of Gyenge–Némethi–Sz. about the generating

function of Euler characteristics of Hilbn(X) could be approached this way.



Specialising stability parameters in geometry

Nakajima, 2009: the fibres of the map Mθ(dn) → Mθ0(dn) between quiver

varieties are themselves (Lagrangian subvarieties in) quiver varieties associated

with finite ADE quivers.

This looks like it gives an approach to the conjecture. However, computing the

Euler characteristics of fibres directly is still hard! Nevertheless...

Theorem (Nakajima, 2020) For Γ of arbitrary type, with q =
∏

i q
δi
i and

ξ = exp( 2πi
1+h), the generating function of the Hilbert scheme of points of the

surface singularity X = C2/Γ is related to the equivariant generating function

by the formula

ZX(q) = ZC2,Γ(q0, q1, . . . , qr)|q1=q2=...=qr=ξ

where h is the Coxeter number of the Lie algebra of the corresponding type. In

other words, the conjecture of Gyenge–Némethi–Sz. from 2015 holds.

How does he do it?



Specialising stability parameters in representation theory

Nakajima, 2009:

• the collection of spaces {Mθ(d) : d ∈ Nr+1}, for generic stability parameter

and all dimension vectors, give rise to a representation of the affine

Lie algebra ĝ attached to the McKay quiver as Dynkin diagram;

• going from a generic stability parameter to a degenerate one corresponds

to branching of representations with respect to subalgebras of ĝ;

• specifically, going from a generic parameter θ to our special ray θ0 corre-

sponds to considering representations of ĝ as representations of the finite-

dimensional Lie algebra g ↪→ ĝ.

This gives the following interpretation of the GyNSz conjecure: the generating

function of Euler characteristics of our spaces Hilbn(C2/Γ) is given by the

graded quantum dimension, taken at a specific root of unity, of the basic

representation of the affine Lie algebra, restricted to g ↪→ ĝ.



Quantum dimensions of standard modules

It turns out that in computing this quantum dimension, a lot of cancellations

happen, and the GyNSz conjecture is reduced to the following statement.

Theorem (Nakajima, 2020) The quantum dimention of an arbitrary so-called

standard module of Uq(Lg) of type ADE at the root of unity ξ = exp( 2πi
1+h) is

equal to 1.

While this statement fits into more general conjectures in representation theory,

it appears that this was a new result Nakajima needed to prove for E7, E8. For

E8, his proof relies on his own earlier computations of characters, done on a

supercomputer, as well as further miraculous cancellations such as

(−4) + 18 + (−23) + 10 = 1.



Further directions

• Other walls in the space of stability parameters - some interesting geometry

and combinatorics - work in progress by Gyenge, Sz. and others

• This is the rank 1 story - how about higher rank? Work in progress by

Gammelgaard

• How much of the picture exists for a finite subgroup G < SL(3,C)? Some

really interesting combinatorics, ideas from Donaldson–Thomas theory...

for another time

• Can we really understand why this simple substitution works? Nakajima’s

proof still relies on some mysterious cancellations...



Thank you!


