0.1. The Reconstruction Theorem of Kontsevich-Soibelman. Let $\left\{e_{1}, \ldots, e_{m}\right\}$ be a basis for $N \cong \mathbb{Z}^{m}$, and let

$$
\delta(n): N \rightarrow \mathbb{Z}
$$

be the linear function defined by $\delta(n)=\lambda_{1}+\ldots+\lambda_{m}$ for for $n=\lambda_{1} e_{1}+\ldots+\lambda_{m} e_{m}$.
Theorem 0.1. Consistent scattering diagrams (or $\hat{\boldsymbol{g}}$-complexes), up to equivalence are in bijective correspondence with elements of the group

$$
\hat{G}=\lim _{\leftarrow} G_{\leq k}
$$

Proof. One direction is immediate: given any consistent $\hat{\mathbf{g}}$-complex, we define an element of \hat{G} given by the path-ordered product along any path between arbitrary points in $M_{\mathbb{R}}^{+}$ and $M_{\mathbb{R}}^{-}$. Conversely, we will first show that from any element

$$
g \in G_{\leq k}
$$

we can construct a consistent g-complex, up to equivalence. We construct the set of walls from $G_{\leq k}$ as follows. Let

$$
P:=\left\{n \in N^{+} \mid \delta(n) \leq k\right\}
$$

Note that P is finite subset of N^{+}. The subdivisions of n^{\perp}, for each $n \in P$, into polyhedral cones in $M_{\mathbb{R}}$ is in bijective correspondence with partitions of the set P, as defined in B, Example 2.5]. Since P is finite, it admits finitely many partitions, and hence we obtain finitely many codimension one cones (walls), say $\left\{d_{i}\right\}_{i \in I}$, for a finite index set I, with $d_{i} \subset n^{\perp}$, for some $n \in P$. Now, we assign to each such wall, a wall-crossing automorphism.

Note that for any point $x \in M_{\mathbb{R}}$, there is a unique decomposition of g with respect to x, given by

$$
g=g_{+}^{x} \cdot g_{0}^{x} \cdot g_{-}^{x}
$$

where $g_{0}^{x} \in G_{0}^{x}$, and $g_{ \pm}^{x} \in G_{ \pm}^{x}$. Moreover, there are natural projection maps

$$
\begin{aligned}
\pi_{*}^{x}: G & G_{*}^{x} \\
g & \longmapsto g_{*}^{x}
\end{aligned}
$$

for each $* \in\{0,+,-\}$. We define the wall-crossing automorphism associated to each wall d_{i}, for $i \in I$, denoted by $\Phi\left(d_{i}\right)$, by

$$
\Phi\left(d_{i}\right):=g_{0}^{x_{i}}
$$

where $x_{i} \in M_{\mathbb{R}}$ is a generic point of d_{i}, and $g_{0}^{x_{i}}=\pi_{0}^{x_{i}}(g)$. Note that, since we have a finite set of walls, the decomposition $\mathbf{g}=\mathbf{g}_{+}^{x} \oplus \mathbf{g}_{0}^{x} \oplus \mathbf{g}_{-}^{x}$ of the Lie algebra varies discretely with x to order k, for a general point $x \in n^{\perp}$ for any $n \in P$. Therefore, the image of g_{0}^{x} under the projection map $G \mapsto G_{\leq k}$ is constant for $x \in d$, along each wall $d \in\left\{d_{i}\right\}_{i \in I}$.

It remains to show that the g-complex we defined, by describing the set of walls along with wall-crossing automorphisms on each wall, is consistent. For this, it suffices to show
that for any generic path γ connecting two arbitrary points $\Theta_{+} \in M_{\mathbb{R}}^{+}$and $\Theta_{-} \in M_{\mathbb{R}}^{-}$, the path ordered product is the same. We will show this indeed is the case, by showing that the path ordered product for any such path equals $g \in G_{\leq k}$.

Assume that γ traces out N walls d_{i}, with generic points x_{i} such that $\gamma\left(t_{i}\right)=x_{i}$. Recall that we had defined for each wall, the wall crossing automorphism by considering the decomposition of g for x_{i}, that is, $g=g_{+}^{x_{i}} \cdot g_{0}^{x_{i}} \cdot g_{-}^{x_{i}}$ and setting $\Phi\left(d_{i}\right)=g_{0}^{x_{i}}$. Hence, the path ordered product along γ by definition, up to a sign convention depending on the orientation of γ, is

$$
\Phi_{\mathcal{D}}=g_{0}^{x_{N}} \ldots g_{0}^{x_{1}}
$$

We need to show $g_{0}^{x_{N}} \ldots g_{0}^{x_{1}}=g$. We proceed similarly as in GHKK, Thm. 1.17].
We first show inductively that the factorization of the element g, given by the generic point x_{j} of the wall d_{j}, for any $j \in\{1, \ldots, N\}$, can be written as

$$
g=\left(g_{+}\right)\left(g_{0}^{x_{j}}\right)\left(g_{0}^{x_{j-1}} \ldots g_{0}^{x_{1}}\right)
$$

for some $g_{+} \in G_{+}^{x_{j}}$. For $j=1$, writing the factorization of g for x_{1}, we obtain $g=g_{+}^{x_{1}} g_{0}^{x_{1}} g_{-}^{x_{1}}$. From GHKK, pg 26] or B, Lemma 3.1], we have $g_{-}^{x_{1}} \in G_{+}^{\Theta_{+}}$, where $\Theta_{+}=\gamma(0)$. Hence $g_{-}^{x_{1}} \in G_{-}^{x_{1}} \cap G_{+}^{\Theta_{+}}=1$ (the last equality holds since d_{1} is the first wall traced by γ). If the claim is true for $j-1$, then we have

$$
\begin{equation*}
g=\left(g^{\prime}\right) g_{0}^{x_{j-1}}\left(g_{0}^{x_{j-2}} \ldots g_{0}^{x_{1}}\right) \tag{0.1}
\end{equation*}
$$

for $g^{\prime} \in G_{+}^{x_{j-1}}$. Now, writing the decomposition of g^{\prime} for x_{j}, we get $g^{\prime}=g_{+}^{x_{j}} \cdot g_{0}^{x_{j}} \cdot g_{-}^{x_{j}} \in G_{+}^{x_{j-1}}$. Note that $g_{-}^{x_{j}}=1$: this again follows by [B, Lemma 3.1], since $G_{+}^{x_{j-1}} \cap G_{-}^{x_{j}}=1$ (as there are no walls between d_{j-1} and d_{j}). Hence,

$$
\begin{equation*}
g^{\prime}=g_{+}^{x_{j}} \cdot g_{0}^{x_{j}} \tag{0.2}
\end{equation*}
$$

Now, from equations (0.1) and (0.2) we obtain

$$
g=\left(g_{+}^{x_{j}}\right) g_{0}^{x_{j}}\left(g_{0}^{x_{j-1}} g_{0}^{x_{j-2}} \ldots g_{0}^{x_{1}}\right)
$$

for $g_{+}^{x_{j}} \in G_{+}^{x_{j}}$. Hence, the claim follows. Note that since, d_{N} is the last wall, we have $g_{+}^{x_{N}} \in G_{+}^{x_{N}} \cap G_{-}^{\Theta_{-}}=1$, where $\Theta_{-}=\gamma(1)$. Therefore, we obtain

$$
\Phi_{\mathcal{D}}=g_{0}^{x_{N}}\left(g_{0}^{x_{N-1}} g_{0}^{x_{j-2}} \ldots g_{0}^{x_{1}}\right)=g
$$

This shows the consistency of the \mathbf{g}-complex we defined. The bijective correspondence between equivalence classes of consistent $\hat{\mathbf{g}}$-complexes and elements of \hat{G} follows by taking the limit as $k \rightarrow \infty$.

References

[GHKK] Gross, Mark, Paul Hacking, Sean Keel, and Maxim Kontsevich. "Canonical bases for cluster algebras." Journal of the American Mathematical Society 31, no. 2 (2018): 497-608.
[B] Bridgeland, Tom. "Scattering diagrams, Hall algebras and stability conditions." arXiv preprint arXiv:1603.00416 (2016).

