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ABSTRACT. In this article we study Cohen-Macaulay modules over one-dimensional hypersur-
face singularities and the relationship with representation theory of associative algebras using
methods of cluster tilting theory. We give a criterion for existence of cluster tilting objects
and their complete description by homological method using higher almost split sequences and
results from birational geometry. We obtain a large class of 2-CY tilted algebras which are finite
dimensional symmetric and satisfies 72 = id. In particular, we compute 2-CY tilted algebras
for simple/minimally elliptic curve singuralities.

INTRODUCTION

Motivated by the Fomin-Zelevinsky theory of cluster algebras [FZ1, FZ2, FZ3], a tilting
theory in cluster categories was initiated in [BMRRT]. For a finite dimensional hereditary
algebra H over a field k, the associated cluster category Cp is the orbit category DY(H)/F,
where DP(H) is the bounded derived category of finite dimensional H-modules and the functor
F:DY(H) — D°(H) is 77![1] = S71[2]. Here 7 denotes the translation associated with almost
split sequences/triangles and S the Serre functor on D?(H) [BK]. (See [CCS] for an independent
definition of the cluster category when H is of Dynkin type A,,).

An object T in a cluster category Cyy was defined to be a (cluster) tilting object if Ext(ljH (T,T) =
0, and if Ext(le (X,X]]T) =0, then X isin addT. The corresponding endomorphism algebras,
called cluster tilted algebras, were investigated in [BMR1] and subsequent papers. A useful ad-
ditional property of a cluster tilting object was that even the weaker condition EX‘E};H (X, 7)=0
implies that X is in add 7', called Ext-configuration in [BMRRT]. Such a property also appears
naturally in the work of the second author on a higher theory of almost split sequences in mod-
ule categories [I1, I2] and the corresponding modules were called maximal 1-orthogonal. For
a category mod A of finite dimensional modules over a preprojective algebra of Dynkin type A
over an algebraically closed field k, the property corresponding to the above definition of cluster
tilting object in a cluster category was called maximal rigid [GLSc]. Also in this setting it was
shown that being maximal 1-orthogonal was a consequence of being maximal rigid. The same
result holds for the stable category modA.

The categories Cyy and modA are both triangulated categories [Ke, H], with finite dimensional
homomorphism spaces, and they have Calabi-Yau dimension 2 (2-CY for short) (see [BMRRT,
Kel;[AR, 3.1,1.2][C][Ke, 8.5]). The last fact means that there is a Serre functor S = %2, where
3} is the shift functor in the triangulated category.

For an arbitrary 2-CY triangulated category C with finite dimensional homomorphism spaces
over a field k, a cluster tilting object T in C was defined to be an object satisfying the stronger
property discussed above, corresponding to the property of being maximal 1-orthogonal/Ext-
configuration [KR]. The corresponding class of algebras, containing the cluster tilted ones, have
been called 2-CY tilted. With this concept many results have been generalised from cluster
categories, and from the stable categories modA, to this more general setting in [KR], which
moreover contains several results which are new also in the first two cases.

One of the important applications of classical tilting theory has been the construction of de-
rived equivalences: Given a tilting bundle 7' on a smooth projective variety X, the total right
derived functor of Hom(7, ) is an equivalence from the bounded derived category of coherent
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sheaves on X to the bounded derived category of finite dimensional modules over the endo-
morphism algebra of T'. Analogously, cluster tilting theory allows one to establish equivalences
between very large factor categories appearing in the local situation of Cohen-Macaulay mod-
ules and categories of modules over finite-dimensional algebras. Namely, if CM(R) is the stable
category of maximal Cohen-Macaulay modules over an isolated hypersurface singularity, then
CM(R) is 2-CY. If it contains a cluster tilting object T', then the functor Hom(7', ) induces an
equivalence between the quotient of CM(R) by the ideal of morphisms factoring through 77" and
the category of finite-dimensional modules over the endomorphism algebra B = End(7). It is
then not hard to see that B is symmetric and the indecomposable nonprojective B-modules are
T-periodic of 7-period at most 2. In this article, we study examples of this setup arising from
finite, tame and wild CM-type isolated hypersurface singularities E. The endomorphism alge-
bras of the cluster tilting objects in the tame case occur in lists in [BS, Er, Sk]. We also obtain
a large class of symmetric finite dimensional algebras where the stable AR-quiver consists only
of tubes of rank one or two. Examples of selfinjective algebras whose stable AR-quiver consists
only of tubes of rank one or three were known previously [AR].

In the process we investigate the relationship between cluster tilting and maximal rigid objects.
It is of interest to know if the first property implies the second one in general. In this paper we
provide interesting examples where this is not the case. The setting we deal with are the simple
isolated hypersurface singularities R in dimension one over an algebraically closed field k, with
the stable category CM(R) of maximal Cohen-Macaulay R-modules being our 2-CY category.
These singularities are indexed by the Dynkin diagrams, and in the cases D,, for odd n and E~
we give examples of maximal rigid objects which are not cluster tilting.

We also investigate the other Dynkin diagrams, and it is interesting to notice that there are
also cases with no nonzero rigid objects (A,, n even, Fg, Eg), and cases where the maximal
rigid objects coincide with the cluster tilting objects (A4,,n odd and D,,n even). In the last
case we see that both loops and 2-cycles can occur for the associated 2-CY tilted algebras,
whereas this never happens for the cases C and modA [BMRRT, BMR2, GLSc|. The results are
also valid for any odd dimensional simple hypersurface singularity, since the stable categories of
Cohen-Macaulay modules are all triangle equivalent (see [Kn, So]).

We shall construct a large class of one-dimensional hypersurface singularities R having a
cluster tilting object including examples coming from simple singularities and minimally elliptic
singularities. We classify all rigid object in CM(R) for these R, in particular, we give a bijection
between cluster tilting objects in CM(R) and elements in a symmetric group. Our method
is based on a higher theory of almost split sequences [I1, 12], and a crucial role is played by
the endomorphism algebras Endg(T") (called ‘three dimensional Auslander algebras’) of cluster
tilting objects T in CM(R). These algebras have global dimension three, and have 2-CY tilted
algebras as stable factors. The functor Homp (7T, ) : CM(R) — mod Endg(T') sends cluster
tilting objects in CM(R) to tilting modules over Endz(T"). By comparing cluster mutations in
CM(R) and tilting mutation over Endg(T'), we can apply results on tilting mutation due to
Riedtmann-Schofield [RS] to get information on cluster tilting objects in CM(R).

We focus on the interplay between cluster tilting theory and birational geometry. In [V1, V2],
Van den Bergh established a relationship between crepant resolutions of singularities and certain
algebras called non-commutative crepant resolutions via derived equivalence. It is known that
three dimensional Auslander algebras of cluster tilting objects of three dimensional normal
Gorenstein singularities are 3-CY in the sense that the bounded derived category of finite length
modules is 3-CY, and form a class of non-commutative crepant resolution [12, IR]. Thus we have a
connection between cluster tilting theory and birational geometry. We translate Katz’s criterion
[Kat] for three dimensional cA,-singularities on existence of crepant resolutions to a criterion for
one-dimensional hypersurface singularities on existence of cluster tilting objects. Consequently
the class of hypersurface singularities, which are shown to have cluster tilting objects by using
higher almost split sequences, are exactly the class having cluster tilting objects. However we
do not know whether the number of cluster tilting objects has a meaning in birational geometry.

In section 2 we investigate maximal rigid objects and cluster tilting objects in CM(R) for
simple one-dimensional hypersurface singularities. We decide whether extension spaces are zero
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or not by using covering techniques. In section 3 we point out that we could also use the
computer program Singular [GP] to accomplish the same thing. In section 4 we construct a
cluster tilting objects for a large class of isolated hypersurface singularities, where the associated
2-CY tilted algebras can be of finite, tame or wild representation type. We also give a formula
for the number of cluster tilting and indecomposable rigid objects. In section 5 we establish
a connection between existence of cluster tilting objects and existence of small resolutions. In
section 6 we give a geometric approach to the results in section 4. Section 7 is devoted to
computing some concrete examples of 2-CY tilted algebras. In section 8 we generalize results
from section 2 to 2-CY triangulated categories with only a finite number of indecomposable
objects.

We refer to [Y] as a general reference for representation theory of Cohen-Macaulay rings, and
[AGV] for classification of singularities.
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1. MAIN RESULTS

Let (R, m) be a local complete d-dimensional commutative noetherian Gorenstein isolated
singularity and R/m = k C R, where k is an algebraically closed field. We denote by CM(R) the
category of maximal Cohen-Macaulay modules over R. Then CM(R) is a Frobenius category,
and so the stable category CM(R) is a triangulated category with shift functor ¥ = Q~! [H].

We collect some fundamental results.

e We have AR-duality
Hom(X,Y) ~ DExt}(Y,7X)

with 7 ~ Q2= [Au]. In particular, CM(R) is (d — 1)-CY.
e If R is a hypersurface singularity, then ¥? = id [Ei].
e (Knorrer periodicity)

CM(K[[zo, -+, xa, y, 2]l/(f + y2)) = CM(K[[xo, - - -, zall/(f))

for any f € k[[zo,-- - ,zq]] [Kn] ([So] in characteristic two).

Consequently, if d is odd, then 7 =  and CM(R) is 2-CY. If d is even, then 7 = id and
CM(R) is 1-CY, hence any non-free CM R-module M satisfies Exth(M, M) # 0.

Definition 1.1. Let C = CM(R) or CM(R). We call an object M € C
e rigid if Exth(M, M) =0,
e maximal rigid if it is rigid and any rigid N € C satisfying M € add N satisfies N €
add M,
e cluster tilting if add M = {X € C | Exth(M, X) =0} = {X € C | Exth(X, M) = 0}.

Cluster tilting objects are maximal rigid, thought the converse does not necessarily hold. If
C is 2-CY, then M € C is cluster tilting if and only if add M = {X € C | Exth(M, X) = 0}.

Let M € C be a basic cluster tilting object and X an indecomposable summand of M = X@®N.
Then there exist triangles/short exact sequences (called exchange sequences)

XEN Y and YO N, 8 x

such that N; € add N, f; is a minimal right (add N)-approximation, and g; is a minimal left
(add N)-approximation. Then Y @ N is a basic cluster tilting object again called (cluster)
mutation of M [BMRRT]. It is known that there are no more basic cluster tilting objects
containing N [IY].
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Let R = k[[z,y, za, -+ ,z4]]/(f) be a simple hypersurface singularity so that in characteristic
zero f is one of the following polynomials,

(An) 2 +y" '+ B+t tz (21
(D) 2?y+y" ' 423+23+ - +27 (n>4
(Bs) 2*4yt+28+22+ - +22
(Br) a3+ap+23+25++22
(Bg) a4y’ +25+25+ -+ 2]

~— —

Then R is of finite Cohen-Macaulay representation type [Ar, GK, Kn].
We shall show the following result in section 2 using additive functions on the AR quiver. We
shall explain another proof using Singular in section 3.

Theorem 1.2. Let k be an algebraically closed field of characteristic zero and R a simple
hypersurface singularity of dimension d > 1.

(1) Assume that d is even. Then CM(R) does not have non-zero rigid objects.

(2) Assume that d is odd. Then the number of indecomposable rigid objects, cluster tilting
objects, mazximal rigid objects, and indecomposable summands of mazimal rigid objects in CM(R)
are as follows:

’ f \ indec. m’gz’d\ cluster tilting \ max. rigid \ summands of mazx. rigid‘
(Ay) n:odd 2 2 2 1
(Ay) n: even 0 0 1 0
(Dy) n: odd 2 0 2 1
(Dy) n: even 6 6 6 2
(Eg) 0 0 1 0
(Er) 2 0 2 1
(Eg) 0 0 1 0

We also consider a minimally elliptic curve singularity T}, ;(\) (p < q). Assume for simplicity
that our base field k is algebraically closed of characteristic zero. Then these singularities are
given by the equations

2P+l + Ay =0,

where %4—% < % and certain values of A € k have to be excluded. They are tame Cohen-Macaulay
representation type [D, Kah, DG]. We divide into two cases.

(i) Assume % + % = £. This case occurs if and only if (p,q) = (3,6) or (4,4), and Tp4()) is
called simply elliptic. The corresponding coordinate rings can be written in the form

Ts6(N) = K[z, y]]/(y(y — 2°)(y — Aa?))
and
Ty a(N) = Kl[z, Y]]/ (zy(z — y) (= — A\y)),

where in both cases A € k\ {0,1}.

(ii) Assume % + % < % Then T, 4(\) does not depend on the continuous parameter A, and is
called a cusp singularity. In this case the corresponding coordinate rings can be written in the
form

Ty = El[z, )1/ (2772 = y?) (2" —y772)).
We shall show the following result in section 6 by applying a result in birational geometry.
Theorem 1.3. Let k be an algebraically closed field of characteristic zero and R a minimally
elliptic curve singularity Ty 4(\).

(a) R has a cluster tilting object if and only if p = 3 and q is even or if both p and q are
even.
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(b) The number of indecomposable rigid objects, cluster tilting objects, and indecomposable
summands of cluster tilting objects in CM(R) are as follows:

] D, q \ indec. Tigid \ cluster tilting \ summands of cluster tilting ‘
p=3, q: even 6 6 2
P, q : even 14 24 3

We also prove the following general theorem, which includes both Theorem 1.2 (except the
assertion on maximal rigid objects) and Theorem 1.3. The ‘if’ part in (a) and the assertion (b)
are proved in section 4 by a purely homological method. The proof of (a), including another
proof of the ‘if’ part, is given in section 6 by applying Katz’s criterion in birational geometry.

Theorem 1.4. Let R = k[[z,yl]/(f) (f € (z,y)) be a one-dimensional reduced hypersurface
singularity.
(a) R has a cluster tilting object if and only if f is a product f = f1--- fn with f; & (z,y)>.
(b) The number of indecomposable rigid objects, cluster tilting objects, and indecomposable
summands of cluster tilting objects in CM(R) are as follows:

] indec. Tigid \ cluster tilting \ summands of cluster tilting ‘
| 2" =2 ] n! \ n—1 \

The following result gives a bridge between cluster tilting theory and birational geometry.
The terminologies are explained in section 5.

Theorem 1.5. Let (R, m) be a three dimensional isolated cA,, singularity defined by the equation
g(x,y)+zt and R' a one dimensional singularity defined by g(x,y). Then the following conditions
are equivalent.

(a) Spec R has a small resolution.

(b) Spec R has a crepant resolution.

(c¢) (R,m) has a non-commutative crepant resolution.
(d) CM(R) has a cluster tilting object.
(e) C
(f) T

A

E(R’) has a cluster tilting object.
e number of irreducible power series in the prime decomposition of g(x,y) is n + 1.

We end this section by giving an application to finite dimensional algebras. A 2-CY tilted
algebra is an endomorphism ring End¢ (M) of a cluster tilting object T' in a 2-CY triangulated
category C. In section 7, we shall show the following result and compute 2-CY tilted algebras
associated with minimally elliptic curve singularities.

Theorem 1.6. Let (R, m) be an isolated hypersurface singularity and T' a 2-CY tilted algebra
coming from CM(R). Then we have the following.

(a) T is a symmetric algebra.
(b) All components in the stable AR-quiver of I are tubes of rank 1 or 2.

For example, put

R =k[[z,y]]/((x = My) - (z = Any)) and M = P k([z, y]]/((x = My) - (z — Aiy))
i=1
for distinct elements \; € k. Then M is a cluster tilting object in CM(R) by Theorem 4.1, so
I' = Endp (M) satisfies the conditions in Theorem 1.6. Since CM R has wild Cohen-Macaulay
representation type if n > 4 [DG, Th. 3], we should get a family of examples of finite dimensional
symmetric k-algebras whose stable AR-quiver consists only of tubes of rank 1 or 2, and are of
wild representation type.
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2. SIMPLE HYPERSURFACE SINGULARITIES

Let R be a one-dimensional simple hypersurface singularity. In this case the AR-quivers are
known for CM(R) [DW], and so also for CM(R). We use the notation from [Y].

In order to locate the indecomposable rigid modules M, that is, the modules M with Ext!(M, M) =
0, the following lemmas are useful, where part (a) of the first one is proved in [HKR], and the
second one is a direct consequence of [KR] (generalizing [BMR1]).

Lemma 2.1. (a) Let C be an abelian or triangulated k-category with finite dimensional ho-
1
momorphism spaces. Let A @ B1 ® By C be a short exact sequence or a
triangle, where A is indecomposable, By and B monzero, and (g1, g2) has no nonzero
indecomposable summand which is an isomorphism. Then Hom(A,C) #0 .

(b) Let 0 — A 5B % ¢ = 0 be an almost split sequence in CM(R), where R is an
isolated hypersurface singularity, and B has at least two indecomposable nonprojective

summands in a decomposition of B into a direct sum of indecomposable modules. Then
Ext!(C,C) # 0.

Proof. (a) See [HKR].
(b) Using (a) together with the above AR-formula and 72 = id, we obtain D Ext!(C,C) ~
Hom(77'C, C) = Hom(7C, C) ~ Hom(A, C) # 0, where D = Homy( , k). O

(91,92)
=,

Lemma 2.2. Let T be a cluster tilting object in the Hom-finite connected 2-CY category C, and
I' = End¢(T).
(a) The functor G = Home (T, ): C — modT induces an equivalence of categories G: C/add(rT) —
modI'.
(b) The AR-quiver for T' is as a translation quiver obtained from the AR-quiver for C by
removing the vertices corresponding to the indecomposable summands of 7T .
(c) Assume 72 =id. Then we have the following.
(i) T is a symmetric algebra.
(ii) The indecomposable nonprojective I'-modules have T-period one or two.
(iii) If C has an infinite number of nonisomorphic indecomposable objects, then all com-
ponents in the stable AR-quiver of T are tubes of rank one or two.
(d) If C has only a finite number n of nonisomorphic indecomposable objects, and T has t
nonisomorphic indecomposable summands, then there are n —t nonisomorphic indecom-
posable I'-modules.

Proof. For (a) and (b) see [BMRI1]|[KR]. Since C is 2-CY, we have 7 = ¥, and a functorial
isomorphism

DHome (T, T) ~ Home (T, ¥*T) = Home (T, 72T) ~ Home (T, T)).

This shows that I is symmetric. Let C' be an indecomposable nonprojective I'-module. Viewing
C as an object in C we have Tg C ~ (', and 7C is not a projective ['-module since C'is not removed.
Hence we have TEC ~ (. If C has an infinite number of nonisomorphic indecomposable objects,
then T is of infinite type. Then each component of the AR-quiver is infinite, and hence is a tube
of rank one or two. Finally, (d) is a direct consequence of (a). O

We also use that in our cases we have a covering functor II: £(ZQ) — CM(R), where @ is
the appropriate Dynkin quiver and k(ZQ) is the mesh category of the translation quiver ZQ
[Rie][Am], (see also [I1, Section 4.4] for another explanation using functorial method).

For the one-dimensional simple hypersurface singularities we have the cases A4,, (n even or
odd), D,, (n odd or even), Eg, F7 and Eg. We now investigate them case by case.

Proposition 2.3. In the case A, (with n even) there are no indecomposable rigid objects.

Proof. We have the stable AR-quiver

116122"'2 n/2

Vo v
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Here, and later, a dotted line between two indecomposable modules means that they are
connected via 7.

Since 71; ~ I; for each j, Ext!(I;,I;) # 0 for j = 1,--- ,n/2. Hence no I; is rigid. O

Proposition 2.4. In the case A, (with n odd) the mazimal rigid objects coincide with the cluster

tilting objects. There are two indecomposable ones, and the corresponding 2-CY tilted algebras
(n+1)

are k[z]/(x™=2 )

Proof. We have the stable AR-quiver

Since TM; ~ M, fori =1,--- ;n —1/2, we have
Ext!(M;, M;) ~ Hom(M;, 7M;) ~ Hom(M;, M;) # 0.

So only the indecomposable objects N_ and N, could be rigid. We use covering techniques and
additive functions to compute the support of Hom(/N_,). For simplicity, we write [ = (n — 1)/2

M,y M,y My 1 0
A A N /N /N
M, M, My - 1 1 0
N J . N /N /N
M4 M4 M4 AN SN\ S
/ \ / \ / 1>1>1>0>1>1 1>()>70
My»N_»M;» Ny~ My=N_ - JONCSON SN AR
o N S 1 0 1 | [ 1

N_ N, N_

We see that Hom(N_, N} ) = 0, so Ext!(N,, Ny ) = Ext!(N,,7N_) = 0, and Ext!(N_, N_) =
0. Since Extl(N+,N_) # 0, we see that Ny and N_ are exactly the maximal rigid objects.
Further Hom(N_, M;) # 0 for all 4, so Ext} (N, M;) # 0 and Ext!(N_, M;) # 0 for all 4. This
shows that N, and N_ are also cluster tilting objects.

The description of the cluster tilted algebras follows directly from the above picture. ]

Proposition 2.5. In the case D,, with n odd we have two maximal rigid objects, which both are
indecomposable, and neither one is cluster tilting.

Proof. We have the AR-quiver

—Y) — M —>Yy —> My — - — M_3)/2

B N

I | I [ I I
KKK T
I I I [ I I ==

A

%Xl%-Nlﬁ-XQ%NQ%"‘%N(n_g)/Q

Using Lemma 2.1, the only candidates for being indecomposable rigid are A and B. We compute
the support of Hom(A, )
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A B 1 0
SN S /NS
Y: X7 - 1 0
SN A SN
Y, M, 1 :0
AN SN
N, M; \
N X1 AN
SN 1 0
X, Yyqm - 7N
/NS 1 0

A B
where B = 7A and | = (n — 3)/2. We see that Hom(A, B) = 0, so that Ext!(A, A) = 0. Then A
is clearly maximal rigid. Since Hom(A, M;) = 0, we have Ext'(A, N7) = 0, so A is not cluster
tilting. Alternatively, we could use that we see that End(A4)°P ~ k[z]/(z?), which has two
indecomposable modules, whereas CM(R) has 2n — 3 indecomposable objects. If A was cluster
tilting, End(A)°" would have had 2n — 3 — 1 = 2n — 4 indecomposable modules, by Lemma
2.2. g

Proposition 2.6. In the case Do, with n a positive integer we have that the mazximal rigid
objects coincide with the cluster tilting ones. There are 6 of them, and each is a direct sum of
two monisomorphic indecomposable objects.

The corresponding 2-CY-tilted algebras are given by the quiver with relations - % afa =

0 = Bagf in the case Dy, and by ’YQ . %’ with Y"1 = Ba, 78 =0 = ay and % with
(aB)"ta = 0= (Ba)" 13 for 2n > 4.
Proof. We have the AR-quiver

%Y1%M1%Y2%M2%"'% n_l

OO0

‘>X1‘>N1‘>XQ‘>N2‘>H-‘> n—1

By Lemma 2.1, the only possible indecomposable rigid objects are: A, B, Cy, C_, D,, D_.
We compute the support of Hom(Cy, ):

D_ Cc_ D_ C_ D_
SN N o SN /S
CrY>Dy>X;>Cp =Y, i V= Dy > X = Oy = Y) :
NN N SN SN S
Nz-1_ Mz-1_ Nz-1_ Ml—l N M
TS S TR S
N N N SN S
N1 My N1 My
NN SN S
Y; X Y, -
N SN S

A B
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wherel=n—1

1

0
7N /N NSNS
1o 1> 0% 1> 15 oo 1=0=1>1>0

NS 7N NSNS
1 1

1 1 1 1
NN SN SN S
1 1 1 0
NN SN S
1 1 0
NSNS
1 0

We see that Hom(C;, D) = 0, so Ext!(Cy,C}) = 0 = Ext'(D,, D, ). Further, Hom(C,,C_) =
0, so Ext!(Cy, D_) = 0. By symmetry Ext!(D_, D_) = 0 = Ext'(C_,C_) and Ext!(D,,C_) =
0. Also Ext!(Cy,A) = 0, Ext!(Cy, B) # 0, so Ext'(Dy,B) = 0, Ext!(Dy, A) # 0. Further
Ext!(Cy, X) #0for X # A, D_,Cy.

We now compute the support of Hom(A, )

C_ D_
N N
X1 =Cy =Y, =Dy > X
N N
N M4 N1 M

N, M, M, Ny M,
SN S NN S\
X 1 }/1 X 1 Yi X 1

NS NN N
A R A B

where [ = n — 1 and we have an odd number of columns and rows.

We see that Hom (A, B) = 0, so Ext! (4, A) = 0, hence also Ext' (B, B) = 0. Since Hom(A, D_) =
0, we have Ext!'(4,C_) = 0, hence Ext(B,D_) = 0. Since Hom(A4,C_) # 0, we have
Ext'(A, D_) # 0, so Ext!(B, D) # 0.

It follows that Cy [[D—, C_[[ D4, C+[[A, DL [[B, A][C- and B[ D_ are maximal
rigid.

These are also cluster tilting: We have Hom(A4, X;) # 0, Hom(A, N;) # 0, so Ext!(B, X;) #
0, Ext!(B,N;) # 0. Similarly, Ext'(A4,Y;) # 0, Ext'(A, M;) # 0. Also Hom(C,,Y;) # 0,
Hom(C,, N;) # 0, so Ext}(Dy,Y;) # 0, Ext! (D, N;) # 0. Hence Ext!(C,, X;) # 0,
Ext!(Cy, M;) # 0. So Ext!(D_,Y;) # 0, Ext'(D_, N;) # 0, Ext}(C_, X;) # 0, Ext}(C_, M;) #
0. We see that each indecomposable rigid object can be extended to a cluster tilting object in
exactly two ways, which we would know from a general result in [IY].
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The exchange graph is as follows:

{C-i-’ D—}

/ \
{B,D-} {4,Cv}
{BvD-i-} {A7C—}

\ /

{C—a D+}

Considering the above pictures, we get the desired description of the corresponding 2-CY tilted
algebras in terms of quivers with relations. O

Proposition 2.7. In the case Eg there are no indecomposable rigid objects.

Proof. We have the AR-quiver

M2<:>X

The only candidates for indecomposable rigid objects according to Lemma 2.1 are M7 and Nj.
We compute the support of Hom(My, ).

Ny Ny 1 0

N /NS

A B 1 1

SN N 7NN
X>-M2>-X>M2>X 1>1>1>0>1

SN SN S NSNS

A B A 1 0 1
AN N SN NN TN
M, Ny M, Ny 1 0 0 1

We see that Hom (M, N) # 0, so that Ext!(My, M;) # 0 and Ext!(Ny, N7) # 0. O

Proposition 2.8. In the case E; there are two maximal rigid objects, which both are indecom-
posable, and neither of them is cluster tilting.

Proof. We have the AR-quiver

XK XX

Using Lemma 2.1, we see that the only candidates for indecomposable rigid objects are A, B,
M;i, N1, C and D. We first compute the support of Hom(A4, ).
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M,y
RN
Y X1
NS
Y3 > (C > X3 =D
N N
Yy Xo Y
SN SN S
Mo Ny Mo
N N N
A B A B

1

1

0

0

1

0

NN NN SN
1 1 0 1 1 0

AN NSNS NS NN
1=1>1>0>1>1>1>0= 1= 1= 1> 0> 0

11

NSNS NSNS N SN

1

0

1

1

1

0

1

0

AN/ANANANS NSNS N SN

1
/NS
0

0 0
NSNS

0

0

1

NSNS

1

1

0

0 0
NSNS

0

We see that Ext!(A4, A) = 0, and so also Ext'(B,B) =0, so A and B are rigid.
Next we compute the support of Hom(Mj, ).

M, Ny M, My

N N SN S
X4 Y1 X4
NN N

Y3>C>X3>D>Y3

N NS
Xo Ys
NN
Mo Ny
N S
B

1
NS

1

0

0
NN
0

1

1
/

NN N

1-1=1=0>1

NSNS

1

N /N
N/

1

1

1

0

1

0
NN
1

We see that Ext!(My, M;) # 0 and Ext*(Ny, N1) # 0, so that M; and N are not rigid.
Then we compute the support of Hom(C, ).

N1 My
N SN
X1 Y: X1
N /N S
C>X3>D>Y3>C>X3>D
NN N
Y5 X Y5
N SN S
No My
NN
A B

1

/NS
NSNS

0
N
1

1-1=0=1>1=2>1

NN N
NSNS
1 1
NN

1

2

0

We see that Ext!(C,C) # 0 and Ext!(D, D) # 0, so that C and D are not rigid. Hence A

and B are the rigid indecomposable objects, and they are maximal rigid.
Since Ext!(A, C) = 0, we see that A and hence B is not cluster tilting.

Proposition 2.9. In the case Eg there are no indecomposable rigid objects.

Proof. We have the AR-quiver

N2‘>D2

X

My — Cy — Y

Ay — - By

!

X1 —= X9 —C; — B — N

XXX

Yo — Dy — Ay — M,

O

The only candidates for indecomposable rigid objects are M, N1, Ms, No, Ay and Bs, by

Lemma 2.1. We first compute the support of Hom(M;, ):

0
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Ms Ny 1 0
NS 1/ \1/ \0
D C
/! 2\ v 2\ NSNS
}/1>BQ>X1>A2>Y1 /1;1;110;111
AN AN S SN Y
X Y, X
AN 7 N N 1/ \0/ \0/ \1/
Dy G D 1 AN /N AN AN
AN N AN S 10 0 0 1 -
By Ay By Ay AN/ N /N SN SN
o /N N N 1 0 0 0 0 1
M1 N1 M1 Nl Ml

We see that Ext!(My, M) # 0, and hence Ext!(Ny, Ny) # 0.
Next we compute the support of Hom(M,, ):

Mo Ny Mo Ny 1 0 0 1
NN SN S NN SN S
Cy Dy Co 1 0 1

NN SN NN TN
Yy > By X1 > Ay = Y} 1>1>1>0>1
Y X2 1\ /1\
N\ 1 1

Dy 1 N

NS 1

Ay \
\ 1

My

We see that Ext!(Ma, My) # 0, and hence Ext!(Ny, No) # 0.
Finally we compute the support of Hom(Asg, ):

My Ny 1 0
N N /N /N
D2 CQ D2 s 1 1 1
N N /S N /NS
Ao>Y> Bo> X1> Ay =Y] = By 1>1\>\0;1§1;2§1
\YQ/ \X2/ \Y2 1 1 9
N AN A N\ . VAR . /
D G NN
NN 1 1
Ay By - NS
NS 1
M,
It follows that Ext!(As, Ay) # 0, and similarly Ext!(By, By) # 0. Hence there are no inde-
composable rigid objects. ]

3. COMPUTATION WITH Singular

An alternative way to carry out computations of Ext'-spaces in the stable category of maximal
Cohen-Macaulay modules is to use the computer algebra system Singular, see [GP]. Let

R = ]{3[1131, Z2,. .. wrn} <x1,x2,...,xn>/I

be a Cohen-Macaulay local ring which is an isolated singularity, and M and N two maximal
Cohen-Macaulay modules. Denote by R the completion of R. Since all the spaces Ext}é(M ,N)
(¢ > 1) are finite-dimensional over k and the functor mod R — mod R is exact, maps the maximal
Cohen-Macaulay modules to maximal Cohen-Macaulay modules and the finite length modules
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to finite length modules, we can conclude that
dimy (Ext}y(M, N)) = dimy (Bxt’s (M, N)).
As an illustration we show how to do this for the case E~.

Proposition 3.1. In the case E; there are two mazximal rigid objects, which both are indecom-
posable and neither of them is cluster tilting.

By [Y] the AR-quiver of CM(R) has the form

C- —D

A%M29Y2 39Y1%M1
|
| /< >< |

B%]\&%Xz9 X1%N1

By Lemma 2.1 only the modules A, B,C, D, My, N can be rigid. Since N = 7(M), B = 7(A),
N; = 7(Mj), the pairs of modules (A, B), (C, D) and (M1, N1) are rigid or not rigid simultane-
ously. By [Y] we have the following presentations:

2

REYW . R R A_,

M1—>0,

so we can use the computer algebra system Singular in order to compute the Ext!'-spaces
between these modules.

> Singular (call the program ¢ ‘Singular’’)

LIB ‘‘homolog.lib’’; (call the library of homological algebra)
ring S = 0,(x,y),ds; (defines the ring S = Q[z, Y]z )

ideal I = x3 + xy3; (defines the ideal 23 + x> in 9)

qring R = std(I); (defines the ring Q[z, ], /1)

module A = [x];

module C [x2, xy21, [xy, -x21;

module M1 = [x2, xy2], [y, -x2]; (define modules A, C, M)
list 1 = Ext(1,A,A,1);

// dimension of Extl. 1 (Output: Exth(A, A) =0)

> list 1 = Ext(l,C,C,l);

// ** redefining 1 *x

// dimension of Ext': 0 (the Krull dimension of ExtL(C,C) is 0)
// vdim of Ext': 2 (dimy(Extkh(C,C))=2)

> list 1 = Ext(1,M1,M1,1);

// *x redefining 1 **

// dimension of Ext': 0

// vdim of Extl: 10

> list 1 = Ext(1,A,C,1);

// *x redefining 1 **

// dimension of Ext': -1

V VV V V V VYV

This computation shows that the modules A and B are rigid, C, D, M7 and Np are not rigid
and since Ext}(A, C) = 0, there are no cluster tilting objects in the stable category CM(R).
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4. ONE-DIMENSIONAL HYPERSURFACE SINGULARITIES

We shall construct a large class of one-dimensional hypersurface singularities having a cluster
tilting object, then classify all cluster tilting objects. Our method is based on higher theory of
almost split sequences and Auslander algebras studied in [I1, I12]. We also use a relationship
between cluster tilting objects in CM(R) and tilting modules over the endomorphism algebra of
a cluster tilting object [12]. Then we shall compare cluster mutation with tilting mutation by
using results due to Riedtmann-Schofield [RS].

In this section, we usually consider tilting objects in CM(R) instead of CM(R).

Let k be an infinite field, S := k[[z,y]] and m := (z,y). We fix f € m and write f = f1--- f,
for irreducible formal power series f; € m (1 <1i <n). Put

S;:=S8/(fi--f;) and R:=S,=S/(f).

We assume that R is reduced, so we have (f;) # (f;) for any i # j.
Our main results in this section are the following.

Theorem 4.1. (a) D, Si is a rigid object in CM(R).
(b) ;- Si is a cluster tilting object in CM(R) if the following condition (A) is satisfied.
(A) fi ¢ m? for any 1 <i < n.

Let &,, be the symmetric group of degree n. For w € &,, and I C {1,--- ,n}, we put

SP =S/ (fu)  fut) Mw =Sy and S;:=S/([]#)-
i=1 iel
Theorem 4.2. Assume that (A) is satisfied.

(a) There are exactly n! cluster tilting objects M,, (w € &,,) and exactly 2" — 1 indecompos-
able rigid objects S; (0 #1 C {1,--- ,n}) in CM(R).

(b) For any w € &,, there are exactly n! Cohen-Macaulay tilting Endg(M,)-modules
Hompg(M,y, M) (W' € &) of projective dimension at most one. Moreover, all algebras
Endgr(My) (w € &,,) are derived equivalent.

It is interesting to compare with results in [IR], where two-dimensional (2-Calabi-Yau) alge-
bras I' are treated and a bijection between elements in an affine Weyl group and tilting I'-modules
of projective dimension at most one is given. Here the algebra is one-dimensional, and Weyl
groups appear.

Here we consider three examples.

(a) Let R be a curve singularity of type Ag,_1 or Dapt9, SO
R=S5/((x—y")(z+y")) or R=S5/(y(z—y")(x+y"))

By our theorems, there are exactly 2 or 6 cluster tilting objects and exactly 3 or 7

indecomposable rigid objects in CM(R), which fits with our computations in section 1.
(b) Let R be a curve singularity of type T3 244+2(A) or Top1224+2(A), sO

R=S/((z—y")(@—y)(z+y?) (R=5/(yly—a*)(y —Aa?)) for ¢ = 2),

R=5/((a" —y)(a” +y)@—y)(z+y?) (R=5/(zy(z—y)(z - Ay)) for p=¢q=1).

By our theorems, there are exactly 6 or 24 cluster tilting objects and exactly 7 or 15

indecomposable rigid objects in CM(R).
(c) Let \j € k (1 <i < n) be mutually distinct elements in k. Put

R:=5/((x = y) - (= Any))-

By our theorems, there are exactly n! cluster tilting objects and exactly 2™ — 1 indecom-
posable rigid objects in CM(R).

First of all, Theorem 4.1(a) follows immediately from the following observation.

Proposition 4.3. For g1,92 € m and g3 € S, put R := S/(g19293). If ¢1 and g2 have no
common factor, then Exth(S/(g195), 5/(g1)) = 0 = Exth(S/(g1), 5/(g105)).
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Proof. We have a projective resolution
RZR™ R — S/(g1g3) — 0.
Applying Hompg( ,S/(g1)), we have a complex

S/(g1) 25 /(1) & S/ (1)

This is exact since g1 and go have no common factor. Thus we have the former equation, and
the other one can be proved similarly. O

Our plan of proof of Theorem 4.1(b) is the following.
(i) First we shall prove Theorem 4.1 under the following stronger assumption:

(B) m= (flafZ) == (fn—lyfn)-

(ii) Then we shall prove the general statement of Theorem 4.1.
We need the following general result in [I1, 12].

Proposition 4.4. Let R be a complete local Gorenstein ring of dimension at most three and
M a rigid Cohen-Macaulay R-module which is a generator. Then the following conditions are
equivalent.
(a) M is a cluster tilting object in CM(R).
(b) gl.dim Endg (M) < 3.
(¢c) For any X € CM(R), there erists an exact sequence 0 — My — My — X — 0 with
M; € add M.
(d) For any indecomposable direct summand X of M, there exists an exact sequence 0 —
My — My — My % X with M; € add M and a is a right almost split map in add M.

Proof. (a)<(b) Apply [I2, Th. 5.1(3)] for d = m = 1 and n = 2 there.

(a)<(c) See [I1, Prop. 2.2.2].

(a)=(d) See [I1, Th. 3.3.1].

(d)=(b) For any simple Endg(M)-module S, there exists an indecomposable direct sum-
mand X of M such that S is the top of the projective Homp(M, X). Then the sequence in
(d) gives a projective resolution 0 — Hompg(M, My) — Homp(M, M;) — Hompg(M, My) —
Homp(M,X) — S — 0. Thus we have pd S < 3 and gl. dimEndr(M) < 3. O

The sequence in (d) is called a 2-almost split sequence when X is non-projective. There is a
close relationship between 2-almost split sequences and exchange sequences [IY].

We shall construct exact sequences satisfying the above condition (d) in Lemma 4.5 and
Lemma 4.6 below.

We use the equality

a5 ={ G2 P 1S

Lemma 4.5. (a) We have exchange sequences

1
: 1 (fi )
Yt 2D, G40 @ it =55 S/(fr -+ fimafisn) = O,

-1
0—S/(f1-- firfiz1) RELEN i1 D Si—1 g S; — 0.

(b) Under the assumption (B), we have a 2-almost split sequence

0—S;

fi 1 -1
1 —1 (it fian) (7)
0—5; Yo 1), Sit1®Si — 5 8 @S 50

in add @, S; for any 1 <i < n.

Proof. (a) Consider the map a := (}3) : Sit1 @ Si—1 — S;. Any morphism from S; to S; factors
through 1 : S;41 — S; (resp. fi : Si—1 — S;) if 7 > i (resp. j < ). Thus a is a minimal right
(add €D, 4; Sj)-approximation.

It is easily checked that Kera = {s € S;11 |5 € fiSi} = (fi)/(f1--- fix1) = S/(f1-- fi—1fi+1),
where we denote by s the image of s via the natural surjection S;+1 — S;.
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Consider the surjective map b := (fiil) DSt @ Sic1 — S/(f1--- ficifiv1). Tt is easily
checked that Kerb = {s € S;11 | 5 € (fit1)/(f1 - fim1fiv1)} = (fix1)/(f1--- fix1) = Si, where
we denote by 5 the image of s via the natural surjection S;+1 — S/(f1-- fi—1fit1)-

(b) This sequence is exact by (a). Any non-isomorphic endomorphism of S; is multiplication
with an element in m, which is equal to (f;, fi+1) by (B). Since fi+1 (resp. f;) : S; — S; factors
through 1:S;41 — S; (resp. f; : Si—1 — S;), we have that a is a right almost split map. O

Now we choose fp1+1 € m such that m = (f,, fnt1), and f,41 and fi--- f,, has no common
factor.

Lemma 4.6. Under the assumption (B), we have an exact sequence

(fne1)

(fn _fn+1) Sn @ Sn_l Sn

0— Sp—1
with a right almost split map (f’}zl) in add @}, S;.

Proof. Consider the map a := (f'}zl) : Sp @ Sp—1 — Sp. Any morphism from S; (j < n) to S,
factors through f,, : Sp,—1 — Sp.

Any non-isomorphic endomorphism of S,, is multiplication with an element in m = (f,4+1, fn).
Since f, : S, — Sy factors through f, : S,—1 — S,, we have that a is a right almost split map.

It is easily checked that Kera = {s € Sp—1 | fns € fnt1Sn} = (fns1s f1o - fam1)/(f1++ fr=1),
which is isomorphic to S,—1 by the choice of f,11. O

Thus we finished the proof of Theorem 4.1 under the stronger assumption (B).
To show the general statement of Theorem 4.1, we need some preliminary observations.

Lemma 4.7. Let R and R’ be complete local Gorenstein rings with dim R = dim R and M
a rigid object in CM(R) which is a generator. Assume that there exists a surjection R' — R,
and we regard CM(R) as a full subcategory of CM(R'). If R' & M is a cluster tilting object in
CM(R'), then M is a cluster tilting object in CM(R).

Proof. We use the equivalence (a)<(c) in Proposition 4.4. For any X € CM(R), there exists

an exact sequence 0 — N; — Ny EA X — 0 with N; € add(R' @ M) and a minimal right
add(R’ & M)-approximation f of X. Since f is right minimal, we have Ny € add M. Since M
is a generator of R, we have that Ny € add M. Thus M satisfies condition (c¢) in Proposition
4.4. O

Next let us consider cluster mutation in CM(R). We use the notation introduced at the
beginning of this section.

Lemma 4.8. For w € &,,, we assume that M,, is a cluster tilting object in CM(R). Then, for
1<i<nands; = (ii+ 1), we have exchange sequences
0—S"—=S8,85%, = 85" =0 and 0— 5" — S5, ® 5", — S —0.
Proof. Without loss of generality, we can assume w = 1. Then the assertion follows from Lemma
4.5(a). O
Immediately, we have the following.

Proposition 4.9. Assume that M,, is a cluster tilting object in CM(R) for some w € &,,.

(a) The mutations of M, are Mys, (1 <i<n).
(b) My is a cluster tilting object in CM(R) for any w' € &,,.

Proof. (a) This follows from Lemma 4.8.
(b) This follows from (a) since &,, is generated by s; (1 < i < n). O

Now we shall prove Theorem 4.1. Since k is an infinite field, we can take irreducible formal

power series g; € m (1 < i < n) such that heo;—1 := f; and ho; := g; satisfy the following
conditions:

o (h;) # (hj) for any i # j.
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o m = (hy,hg) = (ha,h3) = -+~ = (hai_1, ha;).
Put R := S/(hy--hap—1). This is reduced by the first condition.

Since we have already proved Theorem 4.1 under the assumption (B), we have that @1221_1 S/(hy--

is a cluster tilting object in CM(R’). By Proposition 4.9, @f’;;l S/ (hu(1y - huwy) is a cluster

tilting object in CM(R') for any w € Gg,_1. In particular,

n n—1
@S/ )& @ S/(fr-- fagi - 9)
i=1 i=1

is a cluster tilting object in CM(R’). Moreover we have surjections

R’_>...—>S/(f1"‘fn9192)HS/(fl"'fngl)_)R'

Using Lemma 4.7 repeatedly, we have that @; ,(S/(f1---fi)) is a cluster tilting object in
CM(R). Thus we have proved Theorem 4.1. O

In the rest we shall show Theorem 4.2. We recall results on tilting mutation due to Riedtmann-
Schofield [RS]. For simplicity, a tilting module means a tilting module of projective dimension
at most one.

Let ' be a module-finite algebra over a complete local ring with n simple modules. Their
results remain valid in this setting. Recall that, for basic tilting ['-modules T and U, we write

T<U

if Exth(T,U) = 0. Then < gives a partial order. On the other hand, we call a T-module T
almost complete tilting if pd T < 1, Exth(T,T) = 0 and T has exactly (n — 1) non-isomorphic
indecomposable direct summands.

Proposition 4.10. (a) Any almost complete tilting I'-module has at most two complements.
(b) T and U are neighbors in the partial order if and only if there exists an almost complete
tilting I'-module which is a common direct summand of T and U .
(c) Assume T < U. Then there exists a sequence T =Ty < Ty < Ty < --- < U salisfying
the following conditions.
(i) T; and T;iy1 are neighbors.
(ii) Either T; = U for some i or the sequence is infinite.

If the conditions in (b) above are satisfied, we call T a (tilting) mutation of U.
We also need the following easy observation on Cohen-Macaulay tilting modules.

Lemma 4.11. Let I' be a module-finite algebra over a complete local Gorenstein ring R such

that I' € CM(R), and T and U tilting I'-modules. Assume U € CM(T").
(a) If T < U, then T € CM(T").
(b) Let P be a projective I'-module such that Hompg(P, R) is a projective I'°P-module. Then
P €addU.

Proof. (a) Recall that T' < U holds if and only if there exists an exact sequence 0 — 7' — Uy —
U; — 0 with U; € addU. Thus the assertion holds.

(b) There exists an exact sequence 0 — P — Uy — Uy — 0 with U; € add U, which must
split since Exth(U, P) = 0. O

Finally, let us recall the following relation between cluster tilting and tilting (see [I2, Th.
5.3.2] for (a), and (b) is clear).

Proposition 4.12. Let R be a complete local Gorenstein ring and M, N and N’ cluster tilting
objects in CM(R).

(a) Hompg(M, N) is a tilting Endr(M)-module of projective dimension at most one.
(b) If N is a mutation of N, then Homg(M, N') is a mutation of Homp(M, N).
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Now we shall prove Theorem 4.2. Fix w € &, and put I' := Endg(M,). The functor
Homp (M, ): CM(R) — CM(T) is fully faithful since M, is a generator of R. By Theorem 4.1,
M,, is a cluster tilting object in CM(R). By Proposition 4.12(a), Hompg(M,,, M) (v’ € &,,) is
a Cohen-Macaulay tilting I'-module.

(b) Take any Cohen-Macaulay tilting I'-module U. Since P := Hompg(M,, R) is a projective
I'-module such that Homg(P, R) = M,, = Hompg(R, M,,) is a projective I'°’-module, we have
P € addU by Lemma 4.11(b). In particular, each Cohen-Macaulay tilting I-module has at
most (n — 1) mutations which are Cohen-Macaulay by Proposition 4.10(a)(b). Conversely, any
Cohen-Macaulay tilting I'-module of the form Hompg(M,,, M) (w' € &,,) has precisely (n — 1)
mutations Hompg(M,,, Myys,) (1 < i < n) which are Cohen-Macaulay by Proposition 4.9 and
Proposition 4.12(b).

Now we shall show that U is isomorphic to Homp (M., M,,) for some w’. Since I' < U, there
exists a sequence

Fr=Ty<hi<Ihy<---<U

satisfying the conditions in Proposition 4.10(c). By Lemma 4.11(a), each 7; is Cohen-Macaulay.
Since I' has the form I' = Hompg(M,,, M,,), the above argument implies that each 7; has the
form Homp (M, M) for some w' € &,,. Since &, is a finite group, the above sequence must
be finite. Thus U = T; holds for some 4, hence the proof is completed.

(a) Let U be a cluster tilting object in CM(R). Again by Proposition 4.12(a), Homp (M, U)
is a Cohen-Macaulay tilting I'-module. By part (b) which we already proved, Hompg(M,,,U) is
isomorphic to Hompg(M,,, M) for some w’ € &,,. Thus U is isomorphic to M,,, and the former
assertion is proved.

For the latter assertion, we only have to show that any rigid object in CM(R) is a direct
summand of some cluster tilting object in CM(R). This is valid by the following general result
in [BIRS, Th. 1.9]. O

Proposition 4.13. Let C be a 2-CY Frobenius category with a cluster tilting object. Then any
rigid object in C is a direct summand of some cluster tilting object in C.

We end this section with the following application to dimension three.
Now let S” := k[[z,y,u,v]], fi e m = (x,y) (1 <i<n)and R" :=S5"/(f1-- fn +uwv). For
we Sy and I C{1,---,n}, we put

U = (u, fw1) - fw@) C R, My = EBUZU) and Ur := (u, Hf,) c s
i=1 iel
We have the following result.
Corollary 4.14. Under the assumption (A), we have the following.

(a) There are exactly n! indecomposable rigid objects M, (w € &,) and exactly 2" — 1
indecomposable rigid objects Uy (0 # 1 C {1,---,n}) in CM(R").

(b) There are non-commutative crepant resolutions Endgr(My) (w € &,) of R”, which are
derived equivalent.

Proof. (a) This follows from Knérrer periodicity CM(R) — CM(R").
(b) Any cluster tilting object gives a non-commutative crepant resolution. See 5.4 below. [

For example,
kllz, y, u,v]]/((x = Ary) -+ (# = Any) + wv)
has a non-commutative crepant resolution for distinct elements A1,--- , A, € k.

5. LINK WITH BIRATIONAL GEOMETRY

There is another approach to the investigation of cluster tilting objects for maximal Cohen-
Macaulay modules, using birational geometry. More specifically there is a close connection
between resolutions of three dimensional Gorenstein singularities and cluster-tilting theory, pro-
vided by the so-called non-commutative crepant resolutions of Van den Bergh. This provides at
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the same time alternative proofs for geometric results, using cluster tilting objects. The aim of
this section is to establish this link with small resolutions. We give relevant criteria for having
small resolutions, and apply them to give an alternative approach to most of the results in the
previous sections.
Let (R, m) be a complete normal Gorenstein algebra of Krull dimension 3 over an algebraically
closed field k, and let X = Spec(R). A resolution of singularities Y’ =, X is called
e crepant, if wy = 1*wyxy = Oy.
e small, if the relative dimension of the exceptional locus of 7 is smaller than one.
A small resolution is automatically crepant, but the converse is in general not true. However,
both types of resolutions coincide for certain important classes of three-dimensional singularities.
A ¢DV (compound Du Val) singularity is a three dimensional singularity given by the equation

f(x7 y? Z) + tg($7 y? Z7 t) = 07
where f(x,y, z) defines a simple surface singularity and g(z,y, z,t) is arbitrary.

It is called cA,, (respectively, cD,, cE,) if the intersection of f+tg with a generic hyperplane
in k* is an A,, (vespectively, D,,, E,) surface singularity. By definition, a generic hyperplane
means that the coefficients defining this hyperplane belong to a Zariski (dense) open subset of
k*. Note that any cDV singularity is terminal.

Theorem 5.1. [Re, Cor. 1.12, Th. 1.14] Let X be a Gorenstein threefold singularity.

(a) If X has a small resolution, then it is ¢cDV.
(b) If X is an isolated cDV singularity, then any crepant resolution of X is small.

There is a close connection with the non-commutative crepant resolutions of Van den Bergh
defined as follows.

Definition 5.2. [V2, Def. 4.1] Let (R, m) be a normal Gorenstein domain of Krull dimension
three. An R-module M gives rise to a non-commutative crepant resolution if
(i) M is reflexive,
(i) A= Endg(M) is Cohen-Macaulay as an R-module,
(iii) gl.dim(A) = 3.

The following result establishes a useful connection.

Theorem 5.3. [V1, Cor. 3.2.11|[V2, Th. 6.6.3] Let (R, m) be an isolated cDV singularity of
Krull dimension three. Then there exists a crepant resolution of X = Spec R if and only if there
exists a non-commutative one in the sense of Definition 5.2.

The existence of a non-commutative crepant resolution turns out to be equivalent to the existence
of a cluster tilting object in the triangulated category CM(R).

Theorem 5.4. [12, Th. 5.2.1][IR, Th. 8.9] Let (R, m) be a normal Gorenstein isolated singu-
larity of Krull dimension three. Then the existence of a non-commutative crepant resolution is

equivalent to the existence of a cluster tilting object in the stable category of maximal Cohen-
Macaulay modules CM(R).

Proof. For convenience of the reader, we give an outline of the proof (see also Proposition 4.4).
Let us first assume that M is a cluster tilting object in CM(R). Then M is automatically
reflexive. From the exact sequence

00— QM) —F —M-—0
we obtain
(1) 0 — Endgr(M) — Homp(F, M) — Homp(Q(M), M) — Exth(M, M) — 0.
Since M is rigid, Exth(M, M) = 0. Moreover, depth(Hompg(F, M)) = depth(M) = 3 and
depth(Homp(Q2(M), M) > 2, and hence depth(Endgr(M)) = 3 and A = End(M) is maximal
Cohen-Macaulay over R.

For the difficult part of this implication, claiming that gl.dim(A4) = 3, we refer to [I1, Th.
3.6.2].
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For the other direction, let M be a module giving rise to a non-commutative crepant resolution.
Then by [IR, Th. 8.9] there exists another module M’ giving rise to a non-commutative crepant
resolution, which is maximal Cohen-Macaulay and contains R as a direct summand.

By the assumption, depth(Endg(M’)) = 3 and we can apply [IR, Lem. 8.5] to the exact
sequence(1) to deduce that ExthL(M’, M') = 0, so that M’ is rigid. The difficult part saying
that M’ is cluster tilting is proven in [I12, Th. 5.2.1]. O

We now summarize the results of this section.

Theorem 5.5. Let (R, m) be a three dimensional isolated cDV singularity. Then the following
are equivalent.

(a) Spec R has a small resolution.

(b) Spec R has a crepant resolution.

(c) (R m) has a non-commutative crepant resolution.
(d) CM(R) has a cluster tilting object.

We have an efficient criterion for existence of a small resolution of a cA,, singularity.

Theorem 5.6. [Kat, Th. 1.1] Let X = Spec(R) be an isolated cA, singularity.

(a) Let Y — X be a small resolution. Then the exceptional curve in'Y is a chain of n
projective lines and X has the form g(x,y) + uv, where the curve singularity g(x,y) has
n + 1 distinct branches at the origin.

(b) If X has the form g(x,y) + wv, where the curve singularity g(xz,y) has n + 1 distinct
branches at the origin, then X has a small resolution.

Using the criterion of Katz together with Knorrer periodicity, we get additional equivalent
conditions in a special case.

Theorem 5.7. Let (R, m) be a three dimensional isolated cA,, singularity defined by the equation
g(z,y) + zt. Then the following conditions are equivalent in addition to (a)-(d) in Theorem 5.5.

(e) Let R' be a one dimensional singularity defined by g(xz,y). Then CM(R’) has a cluster
tilting object.
(f) The number of irreducible power series in the prime decomposition of g(x,y) is n+ 1.

Proof. (a)<(f) This follows from Theorem 5.6.

(d)<(e) By the Knorrer correspondence there is an equivalence of triangulated categories
between the stable categories CM(R) = CM(R’). For, the equivalence of these stable categories
given in [Kn], [So] is induced by an exact functor taking projectives to projectives. O

Theorem 5.8. Assume that the equivalent conditions in Theorem 5.7 are satisfied. Then the
following numbers are equal.

(a) One plus the number of irreducible components of the exceptional curve of a small reso-
lution of Spec R.

(b) The number of irreducible power series in the prime decomposition of g(z,t).

(¢c) The number of simple modules of non-commutative crepant resolutions of (R, m).

(d) One plus the number of non-isomorphic indecomposable summands of cluster tilting ob-
jects in CM(R).

Proof. (a) and (b) are equal by Theorem 5.6.
(a) and (c) are equal by [V1, Th. 3.5.6].
(c) and (d) are equal by [IR, Cor. 8.8]. O

6. APPLICATION TO CURVE SINGULARITIES

In this section we apply results in the previous section to some curve singularities to investigate
whether they have cluster tilting object or not. In addition to simple singularities, we study some
other nice singularities. In what follows we refer to [AGV] as a general reference for classification
of singularities.
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To apply results in previous sections to minimally elliptic singularities, we also consider a
three-dimensional hypersurface singularity

Tp,q72,2()‘) = ]ﬂ[[.ﬁ, Y, u, U]]/(xp + yq + )\3:2y2 + uv).

To apply Theorem 5.7 to a curve singularity, we have to know that the corresponding three
dimensional singularity is cA,. It is given by the following result, where we denote by ord(g)
the degree of the lowest term of a power series g.

Proposition 6.1. We have the following properties of three-dimensional hypersurface singular-
ities:

) An (n>1) is a cAi—singularity,

) Dy, (n>4) and E,, (n=6,7,8) are cAy—singularities,

) T3422(X) (¢ > 6) is a cAy—singularity,
)
)

~

p.0.22(A) (0> q>4) is a cAs-singularity,
kl[z,y, 2,t)] /(22 + v + g(2,)) (g € k[[2,1]]) is a cAn, —singularity if m = ord(g) — 1 > 1.

We shall give a detailed proof at the end of this section. In view of Theorem 5.7 and Propo-
sition 6.1, we have the following main result in this section.

Theorem 6.2. (a) A simple three dimensional singularity satisfies the equivalent conditions
in Theorem 5.8 if and only if it is of type A, (n is odd) or D,, (n is even).
(b) A T 4.22(\)-singularity satisfies the equivalent conditions in Theorem 5.8 if and only if
p =3 and q is even or if both p and q are even.
(¢) A singularity k[[z,y,u,v]]/(uv + f1--- fn) with irreducible and mutually prime f; €
(x,y) C K[[z,y]] (1 < i < n) satisfies the equivalent conditions in Theorem 5.8 if and
only if fi ¢ (z,y)? for any i.

Proof. Each singularity is cA,, by Proposition 6.1, and defined by an equation of the form
g(z,y) + uv. By Theorem 5.8, we only have to check whether the number of irreducible power
series factors of g(z,y) is m + 1 or not.

(a) For an A,-singularity, we have m = 1 and g(z,y) = 2% +y
and only if n is odd.

For a D,,-singularity, we have m = 2 and g(z,y) = (2 + 3" ?)y. So g has three factors if
and only if n is even.

For an E,-singularity, we have m = 2 and g(z,y) = 2 + y*, x(2? + y3) or 2% + 5. In each
case, g does not have three factors.

(b) First we consider the simply elliptic case. We have m = 2 and g(z,y) = y(y —22)(y — \z?)
for (p,q) = (3,6), and m = 3 and g(x,y) = zy(z — y)(x — A\y) for (p,q) = (4,4). In both cases,
g has m 4 1 factors.

Now we consider the cusp case. We have m = 2 for p = 3 and m = 3 for p > 3, and
g(z,y) = (P72 — y?)(2? — y9=2). So g has m + 1 factors if and only if p = 3 and ¢ is even or if
both p and g are even.

(c) We have m = Y1 jord(f;) —1 and g = f1--- fn. So g has m + 1 factors if and only if
ord(f;) =1 for any i. O

"+l So g has two factors if

Immediately we have the following conclusion.

Corollary 6.3. (a) A simple curve singularity has a cluster tilting object if and only if it is
of type Ay, (n is odd) or D,, (n is even). The number of non-isomorphic indecomposable
summands of cluster tilting objects is 1 for type A, (n is odd) and 2 for type D,, (n is
even).

(b) A T}, 4(N\)-singularity has a cluster tilting object if and only if p = 3 and q is even or
if both p and q are even. The number of non-isomorphic indecomposable summands of
cluster tilting objects is 2 if p = 3 and q is even, and 3 if both p and p are even.

(c¢) A singularity R = k[[z,y]]/(f1- - fn) with irreducible and mutually prime f; € (x,y) C
E[[x,y]] (1 <i < n) has a cluster tilting object if and only if fi ¢ (z,y)? for anyi. In this
case, the number of non-isomorphic indecomposable summands of cluster tilting objects

in CMR is n.



22 IGOR BURBAN, OSAMU IYAMA, BERNHARD KELLER, AND IDUN REITEN

Summarizing with Theorem 4.2, we have completed the proof of Theorem 1.4.

In the rest of this section, we shall prove Proposition 6.1.

Let k be an algebraically closed field of characteristic zero, R = k[[z1, 2, ..., x,]] the local
ring of formal power series and m its maximal ideal. We shall need the following standard
notions.

Definition 6.4. For f € m? we denote by J(f) = (%, e %) its Jacobi ideal. The Milnor
number u(f) is defined as

pu(f) = dimg(R/J(f))-
The following lemma is standard (see for example [AGV, GLSh]):
Lemma 6.5. A hypersurface singularity f = 0 is isolated if and only if p(f) < oc.

Definition 6.6 ([AGV]). Two hypersurface singularities f = 0 and g = 0 are called right
equivalent (f ~ g) if there exists an algebra automorphism ¢ € Aut(R) such that g = @(f).

Note, that f ~ g implies an isomorphism of k-algebras

R/(f) = R/(9)-
The following lemma is straightforward, see for example [GLSh, Lem. 2.10].

Lemma 6.7. Assume f ~ g, then u(f) = pu(g).

In what follows, we shall need the next standard result on classification of singularities, see
for example [GLSh, Cor. 2.24].

Theorem 6.8. Let f € m? be an isolated singularity with Milnor number p. Then
faf+yg

for any g € m**2. One also says that f is (u + 1) —determined meaning that the equivalence
class of f is determined by its (u + 1) —jet.

We shall need the following easy lemma.
Lemma 6.9. Let f = 2 + y? + p(x,y, 2), where
p(x,y,2) = 2" +pi(,9)2" "+ 4 pa(a,y)
1s a homogeneous form of degree n > 3. Then
fla? %4 2m

Proof. Write p(x,y,2) = 2" + xu + yv for some homogeneous forms u and v of degree n — 1.
Then

2y aut v = (2 +u/2) 4+ (y+v/2)2 + 2" — (u? +0?) /4
After a change of variables x — x 4+ u/2, y — y + v/2 and z +— z we reduce f to the form
f=2+y*+2"+h,
where h € m?(»~1) ¢ m™*1, Note that p(z? 4 y? + 2™) = n — 1, hence by Theorem 6.8 we have
[z 4%+ 2"
O
Now we are ready to give a proof of Proposition 6.1. We only have to show the assertion (e)

since other cases are special cases of this. We denote by H the hyperplane in a four-dimensional
space defined by the equation t = ax + By + vz, «, 8,7 € k. We put

g(z,t) = apz™ ™ + a12™t + - + apm1t™ ! + (higher terms).

Then the intersection of H with the singularity defined by the equation x? + 32 + g(z,t) is given
by the equation f = h + (higher terms), where

h=a2%4+y* +apz™ ™ 4+ a12™ (x4 By +v2) + -+ + a1 (e + By +v2)" L
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Now we consider the case m = 1. We have h ~ 22 + y? + 22 since any quadratic form can be
diagonalized using linear transformations. By Lemma 6.7, we have u(h) = pu(a? +y? + 22) = 1.
Hence f ~ h ~ 22 + y? + 22 by Theorem 6.8.

Next we consider the case m > 2. Assume o € k satisfies ag + a1 +-- - + am+1am+1 #0. By
Lemma 6.9, we have h ~ 22 +y%+ 2"+, By Lemma 6.7, we have p(h) = p(z? +y% 42" = m.
Hence f ~ h ~ 22 + % + 2™+ by Theorem 6.8.

Consequently, 2 + y? + g(2,t) is cAy,. O

7. EXAMPLES OF 2-CY TILTED ALGEBRAS

Since the 2-CY tilted algebras coming from maximal Cohen-Macaulay modules over hyper-
surfaces have some nice properties, it is of interest to have more explicit information about such
algebras. This section is devoted to some such computations for algebras coming from minimally
elliptic singularities. We obtain algebras appearing in classification lists for some classes of tame
self-injective algebras [Er, BS].

We start with giving some general properties which are direct consequences of Lemma 2.2.

Theorem 7.1. Let (R,m) be an isolated hypersurface singularity and T' a 2-CY tilted algebra
coming from CM(R). Then we have the following.

(a) T is a symmetric algebra.
(b) All components in the stable AR-quiver of I are tubes of rank 1 or 2.

We now start with our computations of 2-CY tilted algebras coming from minimally elliptic
singularities. We first introduce and investigate two classes of algebras, and then show that they
are isomorphic to 2-CY tilted algebras coming from minimally elliptic singularities.

For a quiver () with finitely many vertices and arrows we define the radical completion EZ) of
the path algebra k£Q) by the formula

kQ = lim kQ/ rad" (kQ).

The reason we deal with completion is the following: Let ) be a finite quiver, J the ideal of IEC\Q
generated by the arrows and I C J? a complete ideal such that A = kQ/I is finite-dimensional.

Lemma 7.2. The ideal I is generated in I;@ by a minimal system of relations, that is, a set of
elements p1,-- -, pn of I whose images form a k-basis of [/1J + JI.

The lemma is shown by a standard argument (cf [BMR3, Section 3]). Its analogue for the
non complete path algebra is not always true. For example, for the algebra A = By 2(\) defined
below, the elements p1,-- - , p, listed as generators for I form a minimal system of relations. So
they generate I in k/@ They also yield a k-basis of I'/I'J + JI' = I/IJ + JI, where I' = INkQ
and J' = JNkQ. But they do not generate the ideal I’ of kQ since, as one can show, the quotient
kQ/{p1,- -+ ,pn) is infinite-dimensional.

On the other hand, the ideal I’ is generated by the preimage p1,- - - , p, of abasisof I'/I'J" + J'T'
if the quotient kQ/{p1,--- , ppn) is finite-dimensional, since then the ideal (p1,--- , p,) contains
a power of J'. This happens for example for the algebra As(\) as defined below, cf. also [Sk,
5.9] and [BS, Th. 1].

We know that for all vertices i, j of @, we have

dimk €Z(I/IJ + JI)ej = dimk EX’C?\(SZ‘, S])
where S; and S; denote the simple A-modules corresponding to the vertices ¢ and j. When A is
2-CY tilted, then
dim Ext} (S;, S;) > dim Ext3 (S;, S;)
(see [BMR3, KR]). Thus the number of arrows in () is an upper bound on the number of
elements in a minimal system of relations.

Definition 7.3. (1) For ¢ > 2 and X € k* we write Ay(\) = k:/@/I, where

Q= ¢ (==
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and

I = (Yo —ap, B — pB,¢° = Ba, T = Aaf).
If ¢ = 2, then we additionally assume X\ # 1. (It can be shown that for ¢ > 3 we have Ay(\) =
Ay(1), so we drop the parameter X in this case.)

(2)For p,q > 1 and X € k* we write By 4(\) = @/I, where

K/ F)

and
I'= (Bo— " 70 = M, ap — dya, pf — 867,09 — afd, Yy — yap).
For p=q =1 we additionally assume X #£ 1.
When p = ¢ = 1, the generators ¢ and ¢ can be excluded and Bj;(\) is given by the
completion of the path algebra of the quiver
« Y
Q= - : =

modulo the relations

I = (afBa — dya, a0 — \oyd, yaB — Aoy, oy — Baf).
For (p,q) # (1,1) we have B, 4(\) = B, 4(1). In particular, for p = 1 and ¢ > 2 the algebra is

—

isomorphic to kQ /I, where

and
I'=(y6 — ¢4 afa — dya, Baf — By, 09 — aBd, Py — yab).
It turns out that the algebras A,(\) and B), 4()) are finite dimensional. In order to show this
it suffices to check that all oriented cycles in kQ/I are nilpotent.

Lemma 7.4. In the algebra Aq4(X\) the following zero relations hold:
OlﬁOé = Oa Baﬂ = Oa O‘S02 = 1!}205 = Oa ¢2ﬁ = ﬂdﬂ =0, 904 = Oa¢q+2 =0.
Proof. We have to consider separately the cases ¢ =2 and ¢ > 3.
Let ¢ = 2, then we assumed A # 1. We have
afa = ap? = v?a = X\"tafa,
hence afa = 0. In a similar way we obtain Ba3 = 0. Then aw? = afa = 0, ¢? = Bafa =0
and the remaining zero relations follow analogously.
Let ¢ > 3. Then
Wia = afia = ag® = v,
so (1 — 977 2)p2a = 0 and hence
V2o =aBa=0

in l;@ /I. The remaining zero relations follow similarly. O

Lemma 7.5. We have the following relations in By, q()\):
PP = 0,977 = 0,700 = Pya = 0,985 = By = 0.
Moreover, af -6y = dv - af. For g > p > 2 we have
(aB)* = (67)* =0,

for ¢ > p =1 we have
(aB)® = 0,(67)* =0, (aB)* - (57) =0
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and forp=q=1
(@B)® = (v6)® = 0,(af)® = af - 6y = A(7)*.

The proof is completely parallel to the proof of the previous lemma and is therefore skipped. [

The main result of this section is the following

Theorem 7.6. (a) Let R be a T3 244+2(\)-singularity, where ¢ > 2 and A € k*. Then in the
triangulated category CM(R) there exists a cluster tilting object with the corresponding 2-CY-
tilted algebra isomorphic to Ag(X).

(b)For R = Thp122¢+2(X) the category CM(R) has a cluster tilting object with endomorphism
algebra isomorphic to By 4(X).

Proof. (a) We consider first the case of T3 242(A).

The coordinate ring of 73 6(A) is isomorphic to

R = k[lz,y]]/(y(y — 2*)(y — A\a?)),

where A # 0,1. Consider Cohen-Macaulay modules M and N given by the two-periodic free

resolutions
y(y—Arz?)

M=(RYELR R),
a2
N=RY ")\ R R).

It is cluster tilting by Theorem 4.1 or Corollary 6.3. In order to compute the endomorphism
algebra End(M [[ N), note that

y—Az2

End(M) = k[¢]/{¢"),
where ¢ = (z,x) is an endomorphism of M viewed as a two-periodic map of a free resolution.
In End(M) we have (y,y) = (z,7)? = ¢?. Similarly,

M(N) = k[¢]/<¢4>> = (1’,%‘), (yay) = )\(l‘,$)2 = )\1#2»
and
Hom(M, N) = k* = ((1,y), (z,2y)), Hom(N, M) = k* = ((y, 1), (zy, x)).
The isomorphism Az(\) — End(M [[ N) is given by
o (z,2),¢ = (z,2),0— (Ly), B~ (y,1).
Assume now ¢ > 3 and R = T3 5442. By [AGV] we may write
R =Kz, y])/((z — y*)(@® — 4)).
Consider the Cohen-Macaulay module M [[ N, where
Z—12 22 —py2
M=RZY RV R,
xr— 2 x
N=(R (z—y*)(@+y9) R
Again, by a straightforward calculation

End(M) = k] /(¢"), ¢ = (y,9), End(N) = k[p]/(@7"2), ¥ = (y,9)

z—y1

R).

and
Hom(M, N) = k* = ((1,z + %), (v y(x + 7)),
Hom (M, N) = k* = ((x +y%,1), (y(z + y),))-
If ¢ > 4 then End(M [[ N) is isomorphic to /{:/@/I, where
0= o ~

«
= @i -%H.

— =5 A
and the relations are
fa = ¢* af =20 ap = pa,pf = Bib
for
o= wy),v==wy,a=Lz+y), 0= (z+y%1).
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By rescaling all generators o — 2%, 3 — 2°3, ¢ — 2, 1) — 294 for properly chosen a,b, f, g €
Q one can easily show End(M [[N) = A,.

The case ¢ = 3 has to be considered separately, since this time the relations are

Ba= ¢ +¢° af = 207, ap = Ya, pf = By
We claim that there exist invertible power series u(t), v(t),w(t), z(t) € k[[t]] such that the new
generators
¢ =u(p)p, ¥ =v(¥)y,d = aw(p) = w@)a, ' = Bz(¢) = 2(¢)

satisfy precisely the relations of the algebra As. This is fulfilled provided we have the following
equations in k[[t]]:
2w = u?(1 + tu)

2w = 203
UW = VW
uz = vz.
This system is equivalent to
1 t t
H=C2-t) =1+ +(2)2+...
ut) = (-0 = S+ ()7 )

and hence the statement is proven.

The case of Thpt22¢+2(A) is essentially similar. For p = ¢ = 1 we have

R =k[lz,y]]/(zy(z — y)(z — Ay)).
Take
— (R N zy(z—Ay) R),
— (R z(z—y) R y(z—Ay) R),
(

By Theorem 4.1 or Corollary 6.3,

Let now

R = k[[z, y]l/((z" — y)(@" + y)(y? — 2)(y? + ),
where (p,q) # (1,1) and

(y?+z)(y?—z)(zP+y)

zP—y
M= (R R R),

N=(R (2P —y) (=" +y) R (y?—=)(y+=) R),

K=(R (zP —y) (&P +y) (¥ +7) Ry R).
By Theorem 4.1 or Corollary 6.3, M [[ N[ K is cluster tilting, and by a similar case-by-case
analysis it can be verified that End(M [[N[[K) = By 4. O

We have seen that the algebras A,(\) and B, 4(\) are symmetric, and the indecomposable
nonprojective modules have 7-period at most 2, hence Q-period dividing 4 since 7 = Q2 in
this case. A direct computation shows that the Cartan matrix is nonsingular. Note that these
algebras appear in Erdmann’s list of algebras of quaternion type [Er|, see also [Sk], that is,
in addition to the above properties, the algebras are tame. Note that for the corresponding
algebras, more relations are given in Erdmann’s list. This has to do with the fact that we
are working with the completion, as discussed earlier. In our case all relations correspond to
different arrows in the quiver. The simply elliptic ones also appear in Biatkowski-Skowronski’s
list of weakly symmetric tubular algebras with a nonsingular Cartan matrix.

This provides a link between some stable categories of maximal Cohen-Macaulay modules over
isolated hypersurface singularities, and some classes of finite dimensional algebras, obtained via
cluster tilting theory.
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Previously a link between maximal Cohen-Macaulay modules and finite dimensional algebras
was given with the canonical algebras of Ringel, via the categories cohX of coherent sheaves on
weighted projective lines in the sense of Geigle-Lenzing [GL]. Here the category of vector bundles
is equivalent to the category of graded maximal Cohen-Macaulay modules with degree zero
maps, over some isolated singularity. And the canonical algebras are obtained as endomorphism
algebras of certain tilting objects in cohX which are vector bundles.

Note that it is known from work of Dieterich [D], Kahn [Kah], Drozd and Greuel [DG]
that minimally elliptic curve singularities have tame Cohen-Macaulay representation type. Vice
versa, any Cohen-Macaulay tame reduced hypersurface curve singularity is isomorphic to one of
the T} 4(A), see [DG]. Moreover, simply elliptic singularities are tame of polynomial growth and
cusp singularities are tame of exponential growth. Furthermore, the Auslander-Reiten quiver
of the corresponding stable categories of maximal Cohen-Macaulay modules consists of tubes of
rank one or two, see [Kah, Th. 3.1] and [DGK, Cor. 7.2].

It should follows from the tameness of CM (T3 ,(\)) and CM(T), 4())) that the associated 2-CY
tilted algebras are tame.

We point out that in the wild case we can obtain symmetric 2-CY tilted algebras where the
stable AR-quiver consists of tubes of rank one and two, and most of them should be wild. It
was previously known that there are examples of wild selfinjective algebras whose AR-quivers
consist of tubes of rank one or three [AR].

8. APPENDIX: 2-CY TRIANGULATED CATEGORIES OF FINITE TYPE

In this section, we consider more general situation than in section 2. Let k be an algebraically
closed field and C a k-linear connected 2-Calabi-Yau triangulated category with only finitely
many indecomposable objects. We show that it follows from the shape of the AR quiver of C
whether cluster tilting objects (resp. non-zero rigid objects) exist in C or not. Let us start with
giving the possible shapes of the AR quiver of C.

Proposition 8.1. The AR quiver of C is ZA/H for a Dynkin diagram A and a weakly admissible
subgroup H of Aut(ZA) which contains F' € Aut(ZA) defined by the list below. Moreover, H is
generated by a single element h € Aut(ZA) in the list below.

] A | Aut(ZA) | F ] h \

(An) n: odd ZxZ/2Z] (%31 (k,1) (k]"53, 5 is odd)

(Ay) n: even Z n+3 k (kln+3)

(Dy,) n: odd ZxZ/2Z| (n,1) (k,1) (kn)
(D4) ZxS; | (4,0 (k,o) (k[4, of =1)

(Dn) n:even, n>4|Z xZ/2Z | (n,0) | (k,0) (kln) or (k,1) (k|n, % is even)

(Eg) Zx7Z/2Z | (7,1) (1,1) or (7,1)
(Br) Z 10 1,2,5 or 10
(Es) Z 16 1,2.4.8 or 16

PrROOF By [XZ] (see also [Am, 4.0.4]), the AR quiver of C is ZA/H for a Dynkin diagram A
and a weakly admissible subgroup H of Aut(ZA). Since C is 2-Calabi-Yau, H contains F'. By
[Am, 2.2.1], H is generated by a single element h. By the condition F' € (h), we have the above
list. g
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Theorem 8.2. (1) C has a cluster tilting object if and only if the AR quiver of C is ZA/(h) for
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a Dynkin diagram A and h € Aut(ZA) in the list below.

] A | Aut(ZA) | h
(An) n: odd Z x7Z/2Z (%F,1) (3[n) or (%3,1)
(Ap) n: even Z o3 (3ln) orn+3
(Dy) 1 : odd 7 x 7)2Z (k, 1) (k[n)
(Da) Zx 55 | (ko) (K4 of =1, (k,0) #(1,1))
(Dp) n:even, n>4|Z x7Z/2Z k k) (k|n)
(Es) Z x 7/2Z (7,1)
(E7) Z 10
(Eg) Z 8 or 16

(2) C does not have a non-zero rigid object if and only if the AR quiver of C is ZA/{h) for a

Dynkin diagram A and h € Aut(ZA) in the list below.

] A | Aut(ZA) | h |

(A,) n: odd Z x7/2Z -
(Ay) n: even Z 1
(Dyp) n: odd Zx7/2Z| -—

(Dy) ZxS; | (1,1)

(Dp) n:even, n>4|Zx7Z/2Z | (1,0)

(Eg) Zx17/2Z | (1,1)
(£7) 4 1

(Eg) Z 1 or2

PROOF Our method is based on the computation of additive functions in section 2.

(1) Assume that h is on the list. Then one can check that C has a cluster tilting object. For
example, consider the (D,,) case here. Fix a vertex x € ZA corresponding to an end point of A
which is adjacent to the branch vertex of A. Then the subset {(1,1)'z | I € Z} of ZA is stable
under the action of h, and gives a cluster tilting object of C.

Conversely, assume that C has a cluster tilting object. Then one can check that A is on the list.
For example, consider the (A4,,) case with even n here. By [I1], cluster tilting objects correspond
to dissections of a regular (n + 3)-polygon into triangles by non-crossing diagonals. The action

of h shows that it is invariant under the rotation of Zi’é—radian. Since the center of the regular

t . . . e Qk _ 4 2 .
(n+ 3)-polygon is contained in some triangle or its edge, we have 2%% = 27, 3, 7 or 5. Since
kln+ 3 and n is even, we have k =n + 3 or "TJF?’

(2) If h is on the list above, then one can easily check that C does not have a non-zero
rigid objects. Conversely, if h is not on the list, then one can easily check that at least one

indecomposable object which corresponds to an end point of A is rigid. O
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