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Abstract. Inspired by recent work of Cerulli–Feigin–Reineke on desin-
gularizations of quiver Grassmannians of representations of Dynkin quiv-
ers, we obtain desingularizations in considerably more general situations
and in particular for Grassmannians of modules over iterated tilted al-
gebras of Dynkin type. Our desingularization map is constructed from
Nakajima’s desingularization map for graded quiver varieties.
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1. Introduction and main results

A quiver Grassmannian is the variety of subrepresentations with given

dimension vector of a fixed quiver representation. To the best of the au-

thors’ knowledge, quiver Grassmannians first appeared in Schofield’s work

[37]. They are projective varieties and Reineke shows in [30] that every pro-

jective variety can be realized as a quiver Grassmannian (we refer to the

final example of Hille’s [18] for a similar, and in fact closely related result,

and to Ringel’s [35] for an analogous ‘universality theorem’ in the setting

of Auslander algebras). Caldero-Chapoton discovered [2] that the canoni-

cal generators of Fomin-Zelevinsky’s cluster algebras [13] can be interpreted

as generating polynomials of Euler characteristics of quiver Grassmannians.

Since then, quiver Grassmannians have played an important role in the ad-

ditive categorification of (quantum) cluster algebras, cf. for example [2] [3]

[8] [27] [28] [9].

In [7], [4], Cerulli–Feigin–Reineke initiated a systematic study of (singu-

lar) quiver Grassmannians of Dynkin quivers, starting from the surprising
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observation that the type A degenerate flag varieties studied in [10] [11]

[12] are of this form. An important aspect of their work is the construction

of desingularizations, which they achieve in their recent paper [5] general-

izing [12]. In [6], they link these desingularizations to a construction by

Hernandez–Leclerc [17], which has been generalized by Leclerc–Plamondon

[23] and further generalized by the present authors in [20].

In this article, we build on [20] to construct desingularizations of quiver

Grassmannians in much more general situations and in particular for all

modules over the repetitive algebra of an arbitrary iterated tilted algebra B

of Dynkin type, like the algebra B given by the square quiver

1

��

// 2

��
3 // 4

with the commutativity relation (B is tilted of type D4). The main in-

gredient of our construction is the desingularization map for graded quiver

varieties introduced by Nakajima [26] [27] and generalized from bipartite to

acylic quivers by Qin [28] [29].

More precisely, we consider a module M over the singular Nakajima cat-

egory S associated with an acyclic quiver Q, cf. section 3.3. By [23], such

a module corresponds to a point in the graded affine quiver variety M0(d)

associated with Q and the dimension vector d = dimM of M . Nakajima

has constructed a pre-desingularization (i.e. a proper, surjective morphism

with smooth domain)

π :M(d)→M0(d)

of M0(d). Here the points of M(d) can be interpreted as (orbits of stable)

representations of the regular Nakajima category R, which contains S as

a full subcategory, and the map π takes a representation L of R to its

restriction res(L) to S ⊂ R. We will show that for suitable modules M , each

quiver Grassmannian of M admits a desingularization by a disjoint union

of connected components of quiver Grassmannians of a distinguished point

in the fiber of π over M , namely the so-called intermediate Kan extension

KLR(M) of section 2.10 of [20].

Let us describe our main results more precisely. Let M be a finite-

dimensional S-module of dimension vector d. Let w be a dimension vector

less or equal to d. Using Nakajima’s stratification of M0(d), we assign a

dimension vector (vC , w) of R with each irreducible component C of the

quiver Grassmannian Grw(M), cf. Lemma 3.9. Let Vw(M) be the set of

the vectors vC . Recall that a module is rigid if its space of selfextensions

vanishes. The following result is modeled on Theorem 7.4 of [5] with the

intermediate Kan extension KLR(M) playing the role of the module M̂ of

[loc. cit.].
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Theorem 1.1 (Theorem 3.11). Suppose that KLR(M) is rigid. Then the

map

πGr :
∐

v∈Vw(M)

Gr(v,w)(KLR(M))→ Grw(M)

taking U ⊂ KLR(M) to res(U) ⊂ M is a pre-desingularization (a proper,

surjective morphism with smooth domain).

We determine the fibres of the map πGr in Theorem 3.13. To make sure

that the generic fibre is reduced to a point, we need to shrink the domain

of πGr. We do this as follows: An R-module is bistable if it is isomorphic

to the intermediate extension of some S-module. For a dimension vector

(v, w) of R, denote by Grbs(v,w)(KLR(M)) the bistable Grassmannian, i.e. the

closure of the set of points corresponding to bistable submodules. In analogy

with Remark 7.8 of [loc. cit.], we conjecture that the bistable Grassmannian

actually equals the whole Grassmannian. The following result is modeled

on Corollary 7.7 of [5] with the bistable Grassmannians playing the role of

the sets S[N ] in [loc. cit.].

Theorem 1.2 (Theorem 3.11). Suppose that KLR(M) is rigid. The map

πbs :
∐

v∈Vw(M)

Grbs(v,w)(KLR(M))→ Grw(M)

taking U ⊂ KLR(M) to res(U) ⊂M is a desingularization (a proper, surjec-

tive morphism with smooth domain which induces an isomorphism between

dense open subsets).

We will give sufficient conditions for KLR(M) to be rigid (Lemmas 2.4

and 2.6) and show by an example that this is not always the case (sec-

tion 3.14). Nevertheless, as a consequence of the above theorems, we will

obtain desingularizations for all modules over the repetitive algebra of an

iterated tilted algebra of Dynkin type (Corollary 4.4). We will show that

this covers in particular all the cases considered in [5] and yields a natural

interpretation for the algebra HQ of [loc. cit.] (cf. section 4.5).

The paper is organized as follows. In section 2, we introduce the inter-

mediate extension Fλρ associated to a localization functor between abelian

categories F : A → B which admits a right and a left adjoint. In Lemma 2.4,

we give sufficient conditions for an object in the image of Fλρ to be rigid.

In section 2.5, we examine the particular case where F is the restriction

mod(mod(P))→ mod(P)

along the Yoneda embedding P → mod(P) from a coherent category P to

its category of finitely presented modules.

In section 3, we recall the definition of the regular and the singular Naka-

jima categories R and S introduced in [23] (cf. also section 2 of [20]) and

explain how they relate to Nakajima’s graded quiver varieties. In section 3.5,
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for certain subsets σ−1(C) of the set of vertices of S, we consider the quo-

tients SC and RC obtained by factoring out the ideal generated by the

identities of the vertices outside σ−1(C). We will later need the extra gen-

erality afforded by a suitable choice of C in order to recover the results

of Cerulli–Feigin–Reineke [5]. In section 3.7, we state and prove our main

Theorems.

In section 4.2, we show that for a suitable choice of C, the category SC is

equivalent to the category of indecomposable projectives over the repetitive

algebra Â of an iterated tilted algebra A of Dynkin type and that the cate-

goryRC is equivalent to the category of indecomposable representations of Â

(Proposition 4.3). By Lemma 2.6, we know that the intermediate extension

of a finite-dimensional Â-module is always rigid. Thus, we obtain a desingu-

larization map for any finite-dimensional module over the repetitive algebra

Â of A. We then specialize A to the path algebra kQ of a Dynkin quiver

Q. The category of finite-dimensional kQ-modules appears naturally as a

full subcategory of mod(k̂Q). In section 4.5, we show that the intermediate

extension KLR restricted to the category of finite-dimensional kQ-modules

specializes to the functor Λ constructed by Cerulli–Feigin–Reineke [5] and

that our desingularization specializes to theirs. In section 5, we illustrate the

desingularization theorem using a module over a tilted algebra of type D4.

Acknowledgments. This article was conceived during the cluster algebra

program at the MSRI in fall 2012. The authors are grateful to the MSRI

for financial support and ideal working conditions. They thank Giovanni

Cerulli Irelli, Bernard Leclerc, Pierre-Guy Plamondon and Markus Reineke

for stimulating conversations and Shengyong Pan for pointing out a missing

hypothesis in a previous version of Lemma 2.4 c).

2. Intermediate Kan extensions

2.1. Intermediate Kan extensions and rigidity. We first study the

properties of the intermediate extension in the framework of abelian cat-

egories: Let A and B be abelian categories. Let F : A → B be a localization

functor, i.e. F is exact and induces an equivalence

A/ ker(F ) ∼→ B ,

where A/ ker(F ) is the localization of A with respect to the Serre subcat-

egory ker(F ) in the sense of [14]. We assume that F admits both a right

adjoint Fρ and a left adjoint Fλ so that we have three adjoint functors

A
F
��
B.

Fλ

OO

Fρ

OO
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Notice that Fλ and Fρ are both fully faithful (since F is a localization), that

Fλ is right exact and preserves projectivity and that Fρ is left exact and

preserves injectivity. Denote the adjunction morphisms by

φ : FλF → 1A , ψ : 1B → FFλ , η : FFρ → 1B , ε : 1A → FρF.

Lemma 2.2. Let M be an object of A.

a) The adjunction morphism M → FρFM is mono if and only if the

group Hom(N,M) vanishes for each object N of ker(F ).

b) The adjunction morphism M → FρFM is invertible iff we have

Hom(N,M) = 0 = Ext1(N,M) for each object N of ker(F ).

We leave the proof of part a) as an exercise for the reader. Part b) is the

characterization of the image of the adjoint of a localization functor given

in Lemme 1, page 370 of [14]. We call an object M stable if it satisfies

the conditions part a). Dually, it is co-stable if it satisfies the dual condi-

tions: the adjunction morphism FλFM →M is epi or, equivalently, we have

Hom(M,N) = 0 for each object N of ker(F ).

Lemma 2.3. The following square is commutative

FλFFρ
∼
Fλη

//

φFρ
��

Fλ

εFλ
��

Fρ
∼
Fρψ

// FρFFλ

Proof. Since F : A → B is essentially surjective, it suffices to check the

commutativity after pre-composing with F . Consider the diagram

FλF
∼

FλFε
//

φ

��

FλFFρF
∼

FληF
//

φFρF

��

FλF
φ //

εFλF
��

1A

ε

��
1A ε

// FρF
∼

FρψF
// FρFFλF

∼
FρFφ

// FρF.

Here the composition (FληF )(FλFε) is the identity and so is the composition

(FρFφ)(FρψF ). Thus, the large rectangle is commutative. The leftmost

square is commutative because φ : FλF → 1A is a natural transformation

and the rightmost square is commutative because so is ε : 1A → FρF . It

follows that the central square is commutative as claimed.
√

By Lemma 2.3, we have a canonical morphism

can : Fλ → Fρ.

We define the intermediate extension Fλρ to be its image. Notice that, for

each object M of B, the object Fλρ(M) is both stable (as a subobject of

FρM) and co-stable (as a quotient of FλM). We have canonical morphisms

Fλ
π // Fλρ

ι // Fρ
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and their images under F are invertible (since Fι is mono, Fπ is epi and

their composition F (can) is invertible). One deduces that Fλρ induces an

equivalence from B onto the full subcategory of A formed by the objects

which are both stable and co-stable.

Lemma 2.4. a) For all objects L of A and M of B, we have canonical

injections

Ext1A(L,FρM)→ Ext1B(FL,M) and Ext1A(FλM,L)→ Ext1B(M,FL).

b) If L is rigid in B, then Fλ(L), Fρ(L) and Fλρ(L) are rigid in A.

c) Conversely, suppose that Fλρ(L) is rigid in A, that Ext1A(X,N) = 0

for each stable object X and each object N in ker(F ) and more-

over that the group Ext2A(U,U) vanishes, where U is the cokernel of

Fλρ(L)→ Fρ(L). Then L is rigid in B.

Proof. a) We define the image of the class of an exact sequence

0 // FρM
i // E

p // L // 0

to be the class of the sequence

0 // M
j // FE

Fp // FL // 0 ,

where j = (Fi)(ηM)−1. Clearly, this yields a well-defined map

Ext1A(L,FρM)→ Ext1B(L,M).

It is not hard to check that if r : FE → M is a retraction for j, then

(Fρr)(ηE) is a retraction for i. Thus, our map is injective. Dually, one

obtains the second injection.

b) By part a), we have the injection

Ext1A(FλL,FλL)→ Ext1B(L,FFλL) = Ext1B(L,L) = 0

and similarly for FρL. Now consider the exact sequence

0 // Fλρ(L) // Fρ(L) // U // 0.

Here the object U lies in ker(F ). If we apply the functor HomA(Fλρ(L), ?)

to the exact sequence, we obtain the exact sequence

HomA(Fλρ(L), U)→ Ext1A(Fλρ(L), Fλρ(L))→ Ext1A(Fλρ(L), Fρ(L)).

Since Fλρ(L) is co-stable and U lies in ker(F ), the left-hand term vanishes.

Since we have FFλρ(L) = L and L is rigid, the right hand term vanishes by

part a). Thus, the object Fλρ(L) is rigid.

c) Let

0 // L
i // E // L // 0
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be a non split exact sequence in B. Then Fρ(i) is a non split monomorphism

of A (since Fρ is fully faithful) and so the sequence

0 // Fρ(L)
Fρ(i) // Fρ(E) // cok(Fρ(i)) // 0

is non split in A. The object cok(Fρ(i)) is stable since for N ∈ ker(F ), we

have

Hom(N,Fρ(E)) = 0 = Ext1A(N,Fρ(L)).

Moreover, the image F cok(Fρ(i)) is isomorphic to L since F is exact. So

we have an exact sequence

0→ Fλρ(L)→ cok(Fρ(i))→ V → 0

with V in ker(F ). If we apply Hom(?, Fρ(L)) to this sequence, we obtain an

exact sequence

0→ Ext1(cok(Fρ(i)), Fρ(L))→ Ext1(Fλρ(L), Fρ(L)).

Since we have found a non zero element in Ext1(cok(Fρ(i)), Fρ(L)), we see

that the right hand group does not vanish. We claim that Ext1(Fλρ(L), U)

vanishes. Indeed, this follows from our assumption when we apply Ext1(?, U)

to the sequence

0→ Fλρ(L)→ Fρ(L)→ U → 0.

Now we claim that we have an isomorphism

Ext1(Fλρ(L), Fλρ(L)) ∼→ Ext1(Fλρ(L), Fρ(L)).

Indeed this follows by applying Ext1(Fλρ(L), ?) to the sequence

0→ Fλρ(L)→ Fρ(L)→ U → 0.

We conclude that Ext1(Fλρ(L), Fλρ(L)) is non zero as claimed.
√

2.5. The case of the Auslander category. We consider the special case

of the setup of section 2.1 where B is a module category and A = mod(B)

the Auslander category.

Let k be a field and P a skeletally small k-category (i.e. its isomorphism

classes form a set). Let mod(P) be the category of finitely presented P-

modules, i.e. of k-linear functors M : Pop → Mod k admitting an exact

sequence

P1 → P0 →M → 0

where P0 and P1 are finitely generated projective P-modules, i.e. direct

factors of finite direct sums of representable P-modules P∧ = P(?, P ), P ∈
P. Notice that the category mod(P) is still skeletally small. We assume

that mod(P) is abelian or, equivalently, that P is coherent, i.e. the kernel

of any morphism between finitely generated projective P-modules is finitely

generated. We have the Yoneda embedding P → mod(P) taking P to P∧.
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Let B = mod(P), A = mod(B) and let F = res : A → B be the restriction

along the Yoneda embedding. Thus, we have functors

mod(P)

P

Yoneda

OO
mod(mod(P))

res
��

A

mod(P)

KL

OO

KR

OO

B,

where Fλ = KL and Fρ = KR are the left and right Kan extensions adjoint

to the restriction functor F = res. As in section 2.1, let KLR = Fλρ be the

intermediate extension.

Lemma 2.6. a) The functor KR : A → B is isomorphic to the Yoneda

embedding

mod(P)→ mod(mod(P)), M 7→M∧ = Hom(?,M).

In particular, for each injective I of mod(P), the module KR(I) is

both projective and injective.

b) The canonical morphism KL(P )→ KR(P ) is invertible for all finitely

generated projective P-modules P .

c) Let M be in mod(P) and

0 // ΩM
g // P0

f // M // 0

be an exact sequence with finitely generated projective P0. Then the

induced sequence

0 // (ΩM)∧
g∧ // P∧0

// KLR(M) // 0

is a projective resolution of KLR(M). If P0 is also injective, then

KLR(M) is rigid.

We refer to section 3.14 for an example where KLR(M) is not rigid.

Proof. a) For L in mod(P), we have functorial isomorphisms

(KRM)(L) = Hom(L∧,KRM) = Hom(res(L∧),M) = Hom(L,M) = M∧(L).

b) We have KL(P ) = P∧ and by a), we have P∧ = KR(P ).

c) We have a commutative diagram with exact rows

KL(P0) // KL(M) //

��

0

0 // (ΩM)∧ // P∧0
f∧ // KR(M) = M∧
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Thus, the image of f∧ is KLR(M). Now suppose that P0 is injective. Let

h : (ΩM)∧ → KLR(M) represent an element of Ext1(KLR(M),KLR(M)).

0 // (ΩM)∧

l

zzv
v

v
v

v

g∧ //

h
��

P∧0
// KLR(M) // 0

P∧0
// KLR(M)

Since (ΩM)∧ is projective, the morphism h lifts along P∧0 → KLR(M) to a

morphism l : (ΩM)∧ → P∧0 . Since P∧0 is injective, the morphism l extends

along g∧ : (ΩM)∧ → P∧0 . Thus, the morphism h extends along g∧ and its

class in Ext1(KLR(M),KLR(M)) vanishes.
√

3. Desingularization of quiver Grassmannians

3.1. Repetition quivers and the derived category. Let Q be a quiver.

We write Q0 for its set of vertices and Q1 for its set of arrows. We assume

that Q is finite, i.e. both Q0 and Q1 are finite, and acyclic, i.e. it has no

oriented cycles.

Let k be a field. The path algebra kQ is a finite-dimensional heredi-

tary k-algebra. Let mod kQ be the category of all k-finite-dimensional right

kQ-modules. The projective indecomposable modules are given up to iso-

morphism by Pi = eikQ, where ei denotes the path of length zero at the

vertex i. The head of Pi is the simple module Si concentrated at the vertex i.

We denote by DQ the bounded derived category Db(mod kQ). Endowed

with the shift (=suspension) functor Σ it is a triangulated category. By

[16] the derived category DQ is a Krull–Schmidt category which admits

Auslander-Reiten triangles or, equivalently, a Serre functor, cf. [31]. Let τDQ
be the Auslander-Reiten translation. The Serre functor is then given by S =

Σ ◦ τDQ and is isomorphic to the derived tensor product with the bimodule

D(kQ) = Homk(kQ, k). Let us denote by ind(DQ) a full subcategory of DQ
whose set of objects contains exactly one representative of each isomorphism

class of indecomposable objects of DQ. If Q is an orientation of an ADE

Dynkin diagram, Happel showed that ind(DQ) can be fully described in

combinatorial terms using the so-called repetition quiver. The repetition

quiver ZQ, cf. [33], has the set of vertices Q0×Z. We obtain its set of arrows

from Q1 as follows: For each arrow α : i → j in Q1 and each integer p, we

have an arrow (α, p) : (i, p)→ (j, p) and an arrow σ(α, p) : (j, p−1)→ (i, p).

We define the automorphism τ of ZQ to be the shift by one unit to the left,

so that we have in particular τ(i, p) = (i, p−1) for all vertices (i, p) ∈ Q0×Z.

Following [15] [32], we define the mesh category k(ZQ) to be the k-

category whose objects are the vertices of ZQ and whose morphism space

from a to b is the space of all k-linear combinations of paths from a to b

modulo the subspace spanned by all elements urxv, where u and v are paths
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and rx is the sum of all paths from τ(x) to x. For example if Q = ~A2 : 1→ 2,

the repetition quiver is

•

��????????? τ(x)

��????????
x

��????????? •

. . . •

??��������
•

??���������
•

??���������
. . .

In the mesh category k(Z ~A2) associated with the quiver Q = ~A2 : 1 → 2,

the composition of any two consecutive arrows vanishes. The mesh category

k(ZQ) and ind(DQ) are related as follows:

Theorem 3.2 (Prop. 4.6 of [16]). There is a canonical fully faithful functor

H : k(ZQ)→ ind(DQ)

taking each vertex (i, 0) to the indecomposable projective module Pi, i ∈ Q0.

It is an equivalence iff Q is an orientation of an ADE Dynkin diagram.

Note that the map τ induces naturally an autoequivalence on k(ZQ).

Happel showed that H ◦ τ is isomorphic to τDQ ◦ H. We will therefore

denote τDQ by τ .

3.3. The regular and the singular Nakajima category. Let Q be a

finite acyclic quiver as in section 3.1. The framed quiver Q̃ is obtained from

Q by adding, for each vertex i, a new vertex i′ and a new arrow i→ i′. For

example, if Q is the quiver 1→ 2, the framed quiver is

2 // 2′

1 //

OO

1′.

Let Z Q̃ be the repetition quiver of Q̃. We refer to the vertices (i′, p), i ∈ Q0,

p ∈ Z, as the frozen vertices of Z Q̃ and mark them by squares . For example,

if the underlying quiver of Q is the Dynkin diagram A2, the repetition Z Q̃
is the quiver

· · · // · //

��???????? // · //

��???????? // · //

""DDDDDDDDD · · ·

· · · //

>>}}}}}}}}}
// · //

??�������� // · //

??�������� // · · · .

For a vertex x = (i, p), we put σ(x) = (i′, p− 1) and for a vertex (i′, p), we

put σ(i′, p) = (i, p).

The regular Nakajima category R is the mesh category k(Z Q̃), where we

only impose mesh relations associated with the non frozen vertices. The

singular Nakajima category S is the full subcategory of R whose objects are

the frozen vertices.
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Notice that while R is given by a quiver with relations, it is not clear

how to describe the subcategory S ⊂ R in this way. In Theorem 2.4 of [20],

we have shown that S is given by a quiver QS with relations such that the

vertices of QS are the frozen vertices of Z Q̃, the number of arrows in QS
from σ(x) to σ(y) equals the dimension of

Ext1DQ(H(y), H(x))

and the minimal number of relations in the space of paths from σ(x) to σ(y)

is given by the dimension of

Ext2DQ(H(y), H(x)).

For the quiver Q : 1→ 2, we find that QS is the quiver

· · ·

· · · · · ·

· · ·//

''OOOOOOOOOOOOOO

//

77oooooooooooooo
a

//

boooooo

77oooooo

//

''OOOOOOOOOOOOOO

a
//

boooooo

77oooooo

a //

c
OOOOOO

''OOOOOO

a
//

77oooooooooooooo

//

''OOOOOOOOOOOOOO

//

77oooooooooooooo

//

and that S is isomorphic to the path category of QS modulo the ideal gen-

erated by all relations of the form ab− ba, ac− ca, a3 − cb and bc− a3 (we

denote all horizontal arrows by a, all rising arrows by b and all descending

arrows by c).

3.4. Graded quiver varieties. Although, from a strictly logical point of

view, we do not need graded quiver varieties in this article, we include this

section for the convenience of the reader. Let us fix a dimension vector w :

S0 → N, i.e. a function with finite support. The affine graded quiver variety

M0(w) is the affine variety repw(S) of S-modules M such that M(u) = kw(u)

for each vertex u ∈ S0. This definition is equivalent to Nakajima’s original

definition in [26] [27] (Q bipartite) and to the definition in [28] (Q acyclic),

cf. the proof of Theorem 2.4 of [23], based on [24] [22].

Now in addition to the dimension vector w : S0 → N, let us fix a dimension

vector v : R0 \S0 → N of R. Let repv,w(R) denote the variety of R-modules

of dimension vector (v, w). Let Gv be the product of the groups Gl(kv(x)),

where x runs through the non frozen vertices. The group Gv acts on the

variety repv,w(R) by base change in the spaces kv(x). To define the smooth

graded quiver variety M(v, w), we consider the set M̃(v, w) ⊂ repv,w(R)

formed by the R-modules M with dimension vector (v, w) which are stable,

i.e. do not have non zero R-submodules which restrict to the zero module

of S. The graded quiver variety is the quotient

M(v, w) = M̃(v, w)/Gv.

For this definition and the following facts, we refer to Nakajima’s work [26]

[27] for the case where Q is Dynkin or bipartite and to Qin [28] and Kimura-

Qin [21] for the extension to the case of an arbitrary acyclic quiver Q. The
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set M(v, w) canonically becomes a smooth quasi-projective variety and the

projection map

π :M(v, w)→M0(w)

taking an R-module M to its restriction resM is a proper map (notice that

res is constant on the Gv-orbits). We denote by M(w) =
∐
vM(v, w) the

disjoint union over all dimension vectors v.

In [26] Nakajima shows that the affine quiver variety admits a finite strat-

ification

M0(w) =
∐
v

Mbs
0 (v, w)

into the locally closed smooth subsets Mbs
0 (v, w) formed by the orbits of

bistable (i.e. stable and co-stable) representations (these are called ‘regular’

in [26]). He also shows that we have

Mbs
0 (v, w) =

∐
v′≤v
Mbs

0 (v′, w),

where the order on the dimension vectors is given by v′ ≤ v if and only if

v′(i) ≤ v(i) for all i ∈ R0 \ S0. As shown in [20], the strata Mbs
0 (v, w) can

be described by

Mbs
0 (v, w) = {L ∈M0(w)| dimKLRL = (v, w)},

where KLR : ModS → ModR is the intermediate Kan extension in the sense

of Section 2 associated with the restriction functor res : ModR → ModS.

3.5. Configurations. Let C be a subset of the set of vertices of the repe-

tition quiver ZQ. Let RC be the quotient of R by the ideal generated by

the identities of the frozen vertices not belonging to σ−1(C) and let SC be

the full subcategory of RC formed by the vertices in σ−1(C). Notice that

Mod(RC) is a subcategory of Mod(R) and similarly Mod(SC) a subcategory

of Mod(S). Let resC : Mod(RC) → Mod(SC) be the restriction functor.

Clearly, it is just the restriction of the functor res : Mod(R) → Mod(S) to

the subcategories under consideration. The left and right adjoints KL and

KR of res take the subcategory Mod(SC) of Mod(S) to Mod(RC) and thus

induce left and right adjoints KC
L and KC

R of resC so that we have

Mod(RC)

resC

��
Mod(SC).

KC
L

OO

KC
R

OO

The functor resC is a localization of abelian categories in the sense of [14],

or equivalently, its adjoints are fully faithful. In the sequel, we will omit the

exponents C in the notation for the functors KC
L and KC

R and simply write

KL and KR.
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To ensure that the category of finite-dimensional RC-modules has global

dimension at most two, we make the following assumption on C.

Assumption 3.6. For each non frozen vertex x of Z Q̃, the sequences

(3.6.1)

0→ RC(?, x)→
⊕
x→y
RC(?, y) and 0→ RC(x, ?)→

⊕
y→x
RC(y, ?)

are exact, where the sums range over all arrows of Z Q̃ whose source (re-

spectively, target) is x.

Note that the assumption holds if C is the set of all vertices of ZQ.

The following situation provides further examples of sets C satisfying the

assumption: Assume that E is a Hom-finite exact Krull–Schmidt category

which is standard (in the sense of section 2.3, page 63 of [36]) and whose

stable Auslander–Reiten quiver is ZQ. Let us define C as the set of vertices

c such that σ−1(c) corresponds to a projective indecomposable object of E .

Then the sequences (3.6.1) are associated with Auslander–Reiten conflations

of E and hence are exact. In section 4.2, we show how iterated tilted algebras

of Dynkin type give rise to such configurations C.

In fact, we have shown in Theorem 5.23 of [20] that when the assumption

holds and Q is a Dynkin quiver, then the set C always comes from the choice

of a Hom-finite exact Krull–Schmidt category which is standard and whose

stable Auslander–Reiten quiver is ZQ.

3.7. The desingularization theorem. Let M be a finite-dimensional SC-

module such that KLR(M) is rigid. Recall that a variety is equidimensional

if all its irreducible components have the same dimension.

Lemma 3.8. Each quiver Grassmannian Gre(KLR(M)) is smooth and equi-

dimensional.

Proof. Indeed, by Proposition 7.1 of [5], we only need to check the following:

The module KLR(M) is finite-dimensional, the space Exti(KLRM,KLRM)

vanishes for all i ≥ 1 and the category of finite-dimensional RC-modules is

of global dimension at most 2. The first condition is satisfied by section 4.8

of [20] and the last one is shown in Lemma 3.5 of [20]. Finally, the module

KLR(M) is both of projective and of injective dimension at most one by

Lemma 4.15 of [20] and KLR(M) is rigid by our assumption. Therefore

Exti(KLR(M),KLR(M)) vanishes for all i ≥ 1.
√

We introduce a stratification with finitely many strata on Grw(M) using

Nakajima’s stratification of the representation spacesM0(w). Following [7,

2.3], we write

Hom0(w,M) = {(N, f)|N ∈ modw(SC) and f : N →M is injective}.
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Then Grw(M) is isomorphic to the quotient Hom0(w,M)/Gw where Gw is

the product of the groups GL(kw(x)) for all x ∈ S0. We have a canonical

map

p : Hom0(w,M)→ modw(SC)

given by the projection. For a function with finite support v : R0 \ S0 → N,

we define the locally closed subset Mbs
0 (v, w)Gr of Grw(M) by

Mbs
0 (v, w)Gr = p−1(Mbs

0 (v, w))/Gw.

For fixed w, the subsetMbs
0 (v, w) is non empty only for finitely many func-

tions v. Thus, the variety Grw(M) decomposes into the disjoint union of

finitely many strata Mbs
0 (v, w)Gr. We have

(3.8.1) Mbs
0 (v, w)Gr ⊂ p−1(Mbs

0 (v, w))/Gw =
∐
v′≤v
Mbs

0 (v′, w)Gr.

Thus, if v is minimal with the property thatMbs
0 (v, w)Gr is not empty, then

it is closed.

Lemma 3.9. Let C be an irreducible component of Grw(M). Then there is

a unique dimension vector vC such that

C ∩Mbs
0 (vC , w)Gr

is an open dense subset in C. The vector vC is the unique maximal element

in the set of vectors v such that

C ∩Mbs
0 (v, w)Gr

is non empty.

Proof. Let V be the set of functions v such that C ∩ Mbs
0 (v, w)Gr is not

empty. Then it follows from (3.8.1) that for a subset V ′ ⊂ V stable under

taking predecessors for the componentwise order, the union of the subsets

C ∩ Mbs
0 (v, w)Gr, where v ranges over V ′, is closed in C. In particular,

this happens if V ′ is the complement of a maximal element v of V . Thus,

if vC is maximal in V , the set C ∩Mbs
0 (vC , w)Gr is open and dense in C.

Since the strata Mbs
0 (v, w)Gr are pairwise disjoint, the maximal element vC

is uniquely determined by the irreducible component C.
√

As KLR(M) is stable, each submodule of KLR(M) is stable and in par-

ticular, the points of Gr(v,w)(KLR(M)) yield points of M(v, w). We define

the subset Mbs(v, w)Gr of Gr(v,w)(KLR(M)) in analogy with Mbs
0 (v, w)Gr,

so that a point of Gr(v,w)(KLR(M)) lies in Mbs(v, w)Gr if and only if the

corresponding submodule is bistable.

Lemma 3.10. a) The restriction functor induces an isomorphism

Mbs(v, w)Gr ∼→Mbs
0 (v, w)Gr.
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b) The varietiesMbs(v, w)Gr,Mbs(v, w)Gr andMbs
0 (v, w)Gr are smooth

and equidimensional.

Proof. a) Let us first check that this map is bijective: Indeed, it is surjective,

since a submodule L ⊂M is obtained by restricting the bistable submodule

KLR(L) ⊂ KLR(M). It is injective because if a submodule N ⊂ KLR(M) is

costable, it is generated by the spaces N(x), x ∈ S0, and is thus determined

by its restriction to S. This also shows how to construct an inverse of the

map: a submodule L ⊂ M is sent to the submodule of KLR(M) generated

by the spaces L(x), x ∈ S0.
b) By Lemma 3.8, the variety Gr(v,w)(KLR(M)) is smooth and equidi-

mensional. Thus, the same holds for its open subset Mbs(v, w)Gr. The

closure of this subset is the union of the connected (=irreducible) compo-

nents of Gr(v,w)(KLR(M)) which meet Mbs(v, w)Gr. Thus, the closure is

also smooth and equidimensional. By a), we obtain the same assertion for

Mbs
0 (v, w)Gr.

√

As in section 1, we say that a morphism of algebraic varieties π : X → Y

is a desingularization if X is smooth, π is proper and surjective and induces

an isomorphism from an open dense subset of X onto an open dense subset

of Y . Recall that the bistable quiver Grassmannian is defined as

Grbs(v,w)(KLR(M)) =Mbs(v, w)Gr.

Theorem 3.11. As above, we assume that M is an SC-module such that

KLR(M) is rigid. Let w be a dimension vector less or equal to the dimension

vector of M . Let Vw(M) be the set of the vectors vC , where C ranges over

the irreducible components of Grw(M) (cf. Lemma 3.9). Let

πbs :
∐

v∈Vw(M)

Grbs(v,w)(KLR(M))→ Grw(M),

be the map taking a submodule L to its restriction to SC .

a) The map πbs is a desingularization. It induces an isomorphism be-

tween the dense open subsets∐
v∈Vw(M)

Mbs(v, w)Gr →
∐

v∈Vw(M)

Mbs
0 (v, w)Gr ⊂ Grw(M).

b) Let C be an irreducible component of Grw(M) and vC the unique

vector such that C ∩ Mbs
0 (vC , w)Gr is a dense open subset of C

(Lemma 3.9). Then the map

πC : π−1(C) ∩Grbs(v,w)(KLR(M))→ C

taking a submodule L to its restriction res(L) to SC is a desingular-

ization. It induces an isomorphism between the dense open subsets

π−1(C) ∩Mbs(vC , w)Gr ∼→ C ∩Mbs
0 (vC , w)Gr.
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Remark 3.12. Theorems 1.1 and 1.2 of Section 1 are immediate conse-

quences of part a).

Proof. Part a) is an immediate consequence of part b). To prove b), we note

that the domain of πC is smooth by part b) of Lemma 3.10. The map πC is

proper since its domain is projective. It induces the isomorphism between

dense open sets by part a) of Lemma 3.10.
√

Generalizing remark 7.8 of [5] we conjecture thatMbs(v, w)Gr equals the

whole Grassmannian Gr(v,w)(KLRM). If this is true, we have an easy de-

scription of the fibres using the next theorem.

Theorem 3.13. The fibre of πv,w : Gr(v,w)(KLRM) → Grw(M) over a

submodule U ⊂M is isomorphic to the quiver Grassmannian of submodules

of dimension (v, w)− dimKLR(U) of the module KLR(M)/KLR(U).

Proof. The claim is equivalent to the statement that the fibre is isomorphic

to the variety of submodules V ⊂ KLR(M) containing KLR(U) and such

that dimV = (v, w).

By the definition of πv,w, this is equivalent to the following statement:

Suppose that V ⊂ KLR(M) is a submodule of dimension vector (v, w).

Then the restriction res(V ) equals U if and only if we have KLR(U) ⊂ V .

Indeed, if we have KLR(U) ⊂ V , then we have

U = resKLR(U) ⊂ res(V )

and

dimU = dim res(V ).

Hence we have U = res(V ) as claimed.

Conversely, suppose that we have res(V ) = U . By assumption, we

have V ⊂ KLR(M). Since KLR(M) is stable, so is V . Thus, we have

KLR(res(V )) ⊂ V . But we also have KLR(V ) = KLR(U). Thus, we have

KLR(U) ⊂ V as claimed.
√

3.14. Example of a non rigid intermediate extension. In section 3.7,

to prove that πGr is indeed a desingularization, we made the assumption

that the intermediate extension KLR(M) is rigid. We gave some sufficient

conditions for this to hold in Lemma 2.6. Let us show by an example that

KLR(M) is not always rigid.

Let Q be some orientation of A3 and let w be a dimension vector which

takes the value 1 in the marked boxes and zero everywhere else in the quiver
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of R associated with Q:

· · ·

��?????????? // //

��?????????? // //

//

>>}}}}}}}}}}}

  AAAAAAAAAAA • // //

��??????????

??���������� • // //

��??????????

??���������� •

· · ·

??���������� // //

??���������� // //

By Theorem 2.4 of [20], the modules in S with dimension vector w are given

by the representations with dimension vector (1, 1, 1) of the quiver

• ((// • // •

The following module M ∈ modS is not rigid and has dimension vector w:

k k
1oo k.

1oo

1

��

Its intermediate extension KLRM is the RC-module given by

k
1

���������

k k1oo k1oo k1oo

1
^^>>>>>>>

1���������
k.1oo

k

−21

^^>>>>>>>

Using Corollary 3.6 of [20] it is easy to see that the space Ext1(Sx,KLR(M))

vanishes for all non-frozen vertices x ∈ R0 − S0 except for the vertex z:

· · ·

��?????????? // //

��????????? // //

//

>>}}}}}}}}}}}

  AAAAAAAAAAA • // //

��??????????

??���������� • // z //

��?????????

??���������
•

· · ·

??���������� // //

??��������� // //

Hence, by Lemma 4.13 of [20], the cokernel of KLRM ↪→ KRM is repre-

sented as a module of DQ ∼= R/〈S〉 by z, i.e. it is the injective module z∨D
defined by

z∨D = DHomDQ(z,−),

where we identify the vertex z with its image in DQ under the Happel

functor. Now using the projective resolution of z∨D from Theorem 3.7 of

[20], we have

Ext2R(z∨D, z
∨
D) ∼= Hom((Σ−1z)∨, z∨D) ∼= DHomDQ(z,Σ−1z)
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which vanishes, since z is an indecomposable object of DQ. So using part

c) of Lemma 2.4 (the vanishing of extensions from stables to objects in the

kernel follows from part e) of Corollary 3.6 of [20]), we deduce that KLR(M)

is not rigid, since M is not rigid.

4. Quiver Grassmannians over repetitive algebras

4.1. Repetitive algebras. Let A be a finite-dimensional k-algebra and

DA = Homk(A, k) the bimodule dual to A. Let T (A) be the trivial exten-

sion, i.e. the algebra A⊕DA with the multiplication

(a, f)(b, g) = (ab, ag + fb), a, b ∈ A, f, g ∈ DA.

We endow T (A) with the N-grading such that T (A)0 = A, T (A)1 = DA

and T (A)p = 0 for all p ≥ 2. A Z-graded module M over T (A) is given by

a sequence Mp, p ∈ Z, of A-modules and A-linear maps

mp : ν(Mp)→Mp+1 , p ∈ Z ,

where ν(L) = L ⊗A DA, such that mp+1 ◦ ν(mp) = 0 for all p ∈ Z. Equiv-

alently, such a module may be interpreted as a module over the repetitive

algebra, which is a suitably defined (locally unital) infinite matrix algebra,

cf. section 10 of [16]. Let grm(T (A)) be the category of Z-graded T (A)-

modules of finite dimension over A with morphisms the homogeneous T (A)-

linear maps of degree 0. Let P ⊂ grm(T (A)) be the full subcategory of the

projective graded modules. We have a canonical equivalence

grm(T (A)) ∼→ mod(P)

taking a module M to the restriction of Hom(?,M) to P and the category

P fits into the setup of section 2.5: it is coherent since its projectives are

of finite dimension and the finitely presented P-modules coincide with the

finite-dimensional P-modules.

For a graded T (A)-module M , let M〈1〉 denote the shifted module defined

by

M〈1〉p = Mp+1,mp
M〈1〉 = mp+1

M .

For a graded left T (A)-module M , let DM denote the k-dual right module

with (DM)p = D(M−p), p ∈ Z. We have a canonical isomorphism of A-

modules

DT (A) ∼→ (T (A))〈1〉.
This shows that the projectives coincide with the injectives in mod(P),

which is therefore a Frobenius category. Thus, the associated stable cate-

gory mod(P) (the quotient of grmT (A) by the ideal of morphisms factoring

through a projective) is canonically triangulated, cf. [16]. By a theorem of

Happel [16], the canonical embedding

modA→ mod(P)
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taking an A-module to the corresponding graded T (A)-module concentrated

in degree 0 extends to a fully faithful triangle functor

(4.1.1) Db(modA)→ mod(P)

and this functor is an equivalence if and only if A is of finite global dimension.

4.2. The case of iterated tilted algebras of Dynkin type. From now

on, let us suppose that A is derived equivalent to the path algebra kQ for a

Dynkin quiver Q with underlying graph ∆ (for example, we can take A = kQ

or A a tilted algebra of type Q, cf. [16] [19]). For a Krull–Schmidt category

C, let us denote by ind(C) the full subcategory whose objects form a set of

representatives for the isomorphism classes of the indecomposable objects

of C. By combining Happel’s theorem 3.2 with the equivalence (4.1.1), we

obtain an isomorphism

(4.2.1) k(ZQ)
∼ // ind(mod(P)).

Let si, i ∈ Q0, denote the vertices of ZQ corresponding to the simple A-

modules Si (considered as T (A)-modules concentrated in degree 0). Let h

be the Coxeter number of ∆. Let C be the set of the following vertices of

ZQ:

(4.2.2) τp(h−1)τ−1Σ−1si , p ∈ Z , i ∈ Q0.

Proposition 4.3. The isomorphism (4.2.1) lifts to an isomorphism

(4.3.1) RC
∼ // ind(mod(P))

taking si to the simple module Si, i ∈ Q0. It induces an isomorphism

(4.3.2) SC
∼ // ind(P).

Proof. The category P is locally bounded and locally representation-finite.

Moreover, it is directed. It follows from [1] that P is standard, i.e. the

category ind(mod(P)) is isomorphic to the mesh category of the Auslander–

Reiten quiver Γmod(P) (with the mesh relations associated with the non

projective vertices), cf. [34]. It remains to be checked that the Auslander–

Reiten quiver Γmod(P) is indeed obtained from ZQ by adding a new vertex

σ(x) and new arrows τ(x) → σ(x) → x to ZQ for each vertex x in C.

Indeed, the quiver ZQ is isomorphic to the stable Auslander–Reiten quiver

Γmod(P) via the isomorphism induced by (4.2.1), and we know that we have

to insert the vertex v(P ) corresponding to an indecomposable projective P

in the mesh starting at v(rad(P )). If PM is the projective cover of a simple

module M , we have the exact sequence

0→ rad(PM )→ PM →M → 0 ,

which shows that rad(PM ) = Σ−1M in the triangulated category mod(P).

Thus, we have to insert v(PM ) in the mesh ending at τ−1Σ−1v(M). Now
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the simple P-modules are of the form Si〈p〉, i ∈ Q0, p ∈ Z. It is well-known

and not hard to check that the shift 〈1〉 induces the composition SΣ in the

stable category mod(P) (equivalent to DQ), where S is the Serre functor.

Now we have

SΣ = τΣΣ = τΣ2 = ττ−h = τ−(h−1).

Here, the isomorphism Σ2 = τ−h follows from Happel’s theorem 3.2 and

from Gabriel’s description of the Serre functor (alias Nakayama functor) in

Proposition 6.5 of [15]. A detailed proof of a more precise statement is given

by Miyachi-Yekutieli in Theorem 4.1 of [25]. Thus, we get τ−1Σ−1Si〈−p〉 =

τp(h−1)τ−1Σ−1Si, which proves the claim. This construction of C also makes

the second assertion clear.
√

Let C ⊂ ZQ0 be as in the Proposition. It satisfies Assumption 3.6 by

the remark following the statement of the assumption. Let M ∈ mod(P)

be a finite-dimensional module (i.e. a finite-dimensional module over the

repetitive algebra). The proposition shows that we may consider M as a

module over the singular Nakajima category SC , and that we can consider

its intermediate extension

KLR(M) ∈ mod(mod(P))

as a module over the regular Nakajima categoryRC . By part c) of Lemma 2.6,

the intermediate extension KLR(M) is rigid, since each projective in mod(P)

is also injective. Thus, from Theorem 3.11, we obtain the following Corol-

lary.

Corollary 4.4. The map πbs of Theorem 3.11 provides a desingularization

of the quiver Grassmannian of M .

4.5. Link to Cerulli–Feigin–Reineke’s desingularization. In their ar-

ticle [5], Cerulli–Feigin–Reineke have constructed desingularizations of quiver

Grassmannians of representations of Dynkin quivers. We will show how their

construction fits into the framework of desingularizations of quiver Grass-

mannians of modules over repetitive algebras of section 4.2.

Let Q be a connected Dynkin quiver and A the path algebra of Q. Follow-

ing section 4 of [5], we define HQ to be the full subcategory of the category

of morphisms of mod(A) whose objects are the injective morphisms

f : P1 → P0

such that

1) P0 and P1 are finitely generated projective A-modules and

2) f does not admit a non zero direct factor of the form 0→ P , where

P is a finitely generated projective A-module.
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We define a commutative square of functors

HQ // mod(P) = grm(T (A))

proj(A) //

OO

P

OO

as follows:

- the functor proj(A)→ HQ takes a module P to the identity P → P ,

- the functor P → mod(P) is the Yoneda embedding,

- the functor HQ → grm(T (A)) takes a morphism f : P1 → P0 to

the graded module P1  ν(P0) which has P1 in degree 0, ν(P0) in

degree 1, ν(f) : ν(P1) → ν(P0) as the structural morphism and all

other components equal to zero,

- the functor proj(A) → P takes a module P to the graded T (A)-

module (P  ν(P )), where P in degree 0 is linked to ν(P ) in degree

1 by the identity map ν(P )→ ν(P ) and all other components vanish.

Notice that all four functors are fully faithful. Using the horizontal functors,

we can restrict a P-module to proj(A) and a mod(P)-module to HQ. In this

way, the category mod(A) identifies with the subcategory of mod(P) formed

by the modules supported on proj(A) and the category mod(HQ) with the

full subcategory of mod(mod(P)) formed by the modules supported on HQ.

Following section 5 of [5], for an A-module M , we define the HQ-module

M̂ by

M̂(P1 → P0) = im(Hom(P0,M)→ Hom(P1,M)).

The following proposition shows that the functor Λ : M 7→ M̂ of [loc. cit.]

is a particular case of the intermediate extension M 7→ KLR(M). Therefore,

Corollary 4.4 generalizes Corollary 7.7 of [5].

Proposition 4.6. Let M be an A-module identified with a P-module sup-

ported on proj(A) ⊂ P. Then the mod(P)-module KLR(M) is supported on

HQ and its restriction to HQ is canonically isomorphic to M̂ .

Proof. Let M∧ : mod(P) → mod(k) be the functor represented by M . We

have res(M∧) = M . Thus, by part c) of Lemma 5.4 of [20], the module

KLR(M) = KLR(res(M∧)) is the submodule of M∧ generated by the images

of all morphisms P∧ → M∧, where P belongs to P. Let us check that the

restriction of KLR(M) to HQ is isomorphic to M̂ . Let

0 // PM1
// PM0

// M // 0

be a minimal projective resolution of M in mod(A). We deduce that we

have a minimal projective resolution of (M  0) in mod(P) given by

0 // (PM1  ν(PM0 )) // (PM0  ν(PM0 )) // (M  0) // 0.
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For an arbitrary object L of mod(P), a morphism L → (M  0) factors

through a projective if and only if it factors through (PM0  ν(PM0 )). Using

this we see that for an object P1 → P0 of HQ, the module

KLR(P1  ν(P0))

is the image

im(Hom((P1  ν(P0)), (P
M
0  ν(PM0 )))→ Hom((P1  ν(P0)), (M  0)).

Clearly this image identifies with

im(Hom(P0,M)→ Hom(P1,M)) = M̂(P1 → P0).

It remains to be shown that KLR(M) vanishes at all indecomposables L not

belonging to the image ofHQ in mod(P). Indeed, for an object L of mod(P),

let Ω(L) denote the kernel of a projective cover and Ω−1(L) the cokernel

of an injective hull. Since Q is a Dynkin quiver and the stable category of

mod(P) is equivalent to the derived category of mod(A), the indecomposable

objects of mod(P) are exactly the projective-injective indecomposables and

the objects Ωp(L), where p ∈ Z and L is an indecomposable A-module.

Clearly, the only indecomposable projective objects possibly admitting a non

zero morphism to M  0 are the P  ν(P ), where P is an indecomposable

projective A-module. Now let L be an indecomposable A-module and

0 // PL1
// PL0

// L // 0

a minimal projective resolution. We have KLR(M)(L 0) = 0 since

Hom((L 0), (PM0  ν(PM0 ))) = 0.

We have

Ω(L) = (PL1  ν(PL0 ))

and so this object belongs to HQ. It is easy to check that for p ≥ 2, the

object Ωp(L) has vanishing component in degree 0 and so does not admit

non zero morphisms to M . Now let

0 // L // I0L
// I1L

// 0

be a minimal injective coresolution. We have

Ω−1(L) = (ν−1(I0L) I1L)

and so Hom(Ω−1(L), (0  M)) = 0, where now the two components are

concentrated in degrees −1 and 0. For p ≥ 2, the object Ω−p(L) has van-

ishing component in degree 0 and so we have Hom(Ω−p(L), (0  M)) = 0

for p ≥ 2 as well.
√
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//
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//
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//
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//
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��???????

//
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//
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��???????
��???????

//

??�������� //

??��������

Figure 1. Example A3

4.7. The example A3. We illustrate section 4.5 by an example. Let Q be

the linearly oriented quiver

1 // 2 // 3

of type A3. Figure 1 shows the quiver of RC , where C is the configuration

obtained from Proposition 4.3. Thus, the quiver is also the Auslander-Reiten

quiver of the repetitive algebra of Q. It contains the Auslander-Reiten quiver

of the path algebra kQ as the triangle whose base is formed by the simples

S1, S2, S3. The vertices marked by • correspond to the indecomposables in

the image of the functor HQ → mod(P).

5. An example in tilted type D4

We illustrate Corollary 4.4 with an example of tilted type D4. We consider

the algebra B given by the square

1

��

// 2

��
3 // 4

with the commutativity relation (B is tilted of type D4). Let M be the

B-module given as the direct sum of the three modules I1 = P4, P2 and I3:

k k
1oo

k

1

OO

k
1
oo

1

OO k k
1oo

0

OO

0oo

OO 0 0oo

k

OO

k.
1oo

OO

All submodules of M with dimension vector (1, 1, 1, 1) are isomorphic to one

of the modules I1 and P2⊕I3. The space Hom(I1, P2⊕I3) is of dimension one.

Let us denote by L the submodule isomorphic to P2⊕I3, where we embed the

factor P2 into P4. We obtain Hom(L,M/L) ∼= Hom(P2⊕ I3, P2⊕ I3), which

is two-dimensional. Let N denote the submodule isomorphic to P2 ⊕ I3,

where we embed N into P2 ⊕ I3. In this case, we have Hom(N,M/N) ∼=
Hom(P2⊕ I3, I1), which is one-dimensional. Thus, the tangent spaces of the

quiver Grassmannian Gr(1,1,1,1)t(M) at the points L and N do not have the

same dimension. In fact the quiver Grassmannian consists of two irreducible
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Σ−1I3
&&NNNN
// // P3

$$HHHH τ−1P3

&&MMM
I3

##GGGGG

Σ−1τI2

77oooo

''OOOO
// Σ−1I4 //

&&NNNNNN Σ−1I2 //

&&MMM

88qqqqq
P4

// P2
//

$$HHHH

::vvvv
τ−1P4

// τ−1P2
//

&&MMM

88qqqqq
I4 // I2

��===

// ΣP1

99rrrr
Σ−1τI1

88pppp
88qqqqqqq

Σ−1I1

;;vvvv
P1

88qqqqq // // τ−1P1

;;wwww
// // I1

Figure 2. The AR-quiver of the repetitive algebra of D4

components, both isomorphic to the projective line, and which intersect at

the singular point L. The two components are given by the closures of S[I1]
and S[P2⊕I3], where S[N ] denotes the irreducible and locally closed subset in

Gr(1,1,1,1)t(M) of submodules isomorphic to N . Hence {v1, v2} = Vw(M) is

given by dimKLR(I1) = (v1, w) and dimKLR(P2 ⊕ I3) = (v2, w).

Let us choose the orientation

3

1 // 2

@@���

��===

4

of the Dynkin diagram D4. Removing the boxes from the quiver in Figure 2

gives the Auslander-Reiten quiver of the derived category DQ. In this cate-

gory, the suspension functor Σ is isomorphic to τ−3 and the Coxeter number

of D4 equals h = 6. Thus, the configuration C of section 4.2 is given by the

vertices corresponding to the objects τ5p+2Si of DQ and the quiver of RC is

the one displayed in Figure 2. Using Theorem 2.4 of [20] one verifies that

the quiver with relations of SC is the quiver

· · · 2

��>>>>>>>
//

��<<<<<<<<< · · ·

1

??�������
// 3 // 4

AA��������
// //

with commuting relations in the squares and no relations in the triangles.

The intermediate extension of M is the direct sum of the intermediate ex-

tensions of its three summands, namely the modules

k

���������
koo k

���������
oo

k

����������
koo koo

^^>>>>>>>

�����������
k

����������
oo koo

^^>>>>>>>

�����������

k koo

^^=========
k

^^========

^^=========
k

^^========

k,oo
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k

���������
koo

�����������
oo

k

���������
oo oo

^^>>>>>>>>

�����������

�����������
oo oo

\\999999999

�����������

k koo

^^>>>>>>>>

^^>>>>>>>>>

]];;;;;;;;;

\\999999999
oo

and

����������
oo

~~}}}}}}}}}
oo

�����������
oo oo

__>>>>>>>>

����������� k

���������
oo koo

``AAAAAAAA

����������

oo

\\999999999
k

]];;;;;;;;

^^>>>>>>>>>
k

^^>>>>>>>

k.oo

Here all non-labelled vertices are represented by zero spaces and all possibly

non zero maps are the identity. The intermediate extension of the generic

subrepresentations is given by the first summand KLR(I1) and the sum of

the last two summands KLR(P2)⊕KLR(I3) of KLR(M). We conclude that

the desingularization map of Corollary 4.4 is the map

GrdimKLR(I1)(KLR(M))
∐

GrdimKLR(I3⊕P2)(KLR(M))→ Gr(1,1,1,1)t(M)

taking U to res(U). Finally, it is easy to see that both Grassmannians on

the left hand side are isomorphic to projective lines.
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CNRS, Case 7012, Bâtiment Sophie Germain, 75205 Paris Cedex 13, France

S. S. : University of Bonn, Mathematisches Institut, Endenicher Allee 60,
53115 Bonn, Germany

E-mail address: keller@math.jussieu.fr, sarah@math.uni-bonn.de


	1. Introduction and main results
	2. Intermediate Kan extensions
	3. Desingularization of quiver Grassmannians
	4. Quiver Grassmannians over repetitive algebras
	5. An example in tilted type D4
	References

