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ON CLUSTER ALGEBRAS WITH COEFFICIENTS

AND 2-CALABI-YAU CATEGORIES

CHANGJIAN FU AND BERNHARD KELLER

Abstract. Building on work by Geiss-Leclerc-Schröer and by Buan-Iyama-
Reiten-Scott we investigate the link between certain cluster algebras with co-
efficients and suitable 2-Calabi-Yau categories. These include the cluster cat-
egories associated with acyclic quivers and certain Frobenius subcategories of
module categories over preprojective algebras. Our motivation comes from
the conjectures formulated by Fomin and Zelevinsky in ‘Cluster algebras IV:
Coefficients’. We provide new evidence for Conjectures 5.4, 6.10, 7.2, 7.10 and
7.12 and show by an example that the statement of Conjecture 7.17 does not
always hold.

1. Introduction

In this article, we pursue the representation-theoretic approach to Fomin-
Zelevinsky’s cluster algebras [19], [20], [8], [21] developed by Marsh-Reineke-
Zelevinsky [35], Buan-Marsh-Reineke-Reiten-Todorov [6], [7], Caldero-Chapoton
and Caldero-Keller [9], [10], [11], Geiss-Leclerc-Schröer [25], [26], [23], [2] and many
others; cf. the surveys [4], [31], [39], [40].

Our emphasis here is on cluster algebras with coefficients. More precisely, we
investigate certain symmetric cluster algebras of geometric type with coefficients.
Coefficients are of great importance both in geometric examples of cluster algebras
[27], [28], [8], [41], [23] and in the study of duality phenomena [18] as shown in [21].
Following [2], we consider two types of categories which allow us to incorporate
coefficients into the representation-theoretic model:

1) 2-Calabi-Yau Frobenius categories;
2) 2-Calabi-Yau ‘subtriangulated’ categories, i.e. full subcategories of the form

⊥(ΣD) of a 2-Calabi-Yau triangulated category C, where D is a rigid func-
torially finite subcategory of C and Σ is the suspension functor of C.

In both cases, we establish the link between the category and its associated cluster
algebra using (variants of) cluster characters in the sense of Palu [36]. For subtri-
angulated categories, we use the restriction of the cluster characters constructed in
[36]. For Frobenius categories, we construct a suitable variant in section 3 (Theo-
rem 3.3).

The work of Geiss-Leclerc-Schröer [26], [23] and Buan-Iyama-Reiten-Scott [2]
provides us with large classes of 2-Calabi-Yau Frobenius categories and of 2-Calabi-
Yau subtriangulated categories which admit cluster structures in the sense of [2].
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Our general results imply that for these classes, the 2-Calabi-Yau categories do
yield ‘categorifications’ of the corresponding cluster algebras with coefficients (The-
orems 5.4 and 6.3). As an application, we show that Conjectures 7.2, 7.10 and 7.12
of [21] hold for these cluster algebras (Theorem 5.5 and Theorem 6.3). Let us recall
the statements of these conjectures:

7.2 cluster monomials are linearly independent;
7.10 different cluster monomials have different g-vectors and the g-vectors of the

cluster variables in any given cluster form a basis of the ambient lattice;
7.12 the g-vectors of a cluster variable with respect to two neighbouring clusters

are related by a certain piecewise linear transformation (so that the g-
vectors equal the g†-vectors of [13]).

In the case of cluster algebras with principal coefficients admitting a categori-
fication by a 2-Calabi-Yau subtriangulated category, we obtain a representation-
theoretic interpretation of the F -polynomial defined in section 3 of [21]; cf. Theo-
rem 6.5. This interpretation implies in particular that Conjecture 5.4 of [21] holds
in this case: The constant coefficient of the F -polynomial equals 1. We also deduce
that the multidegree of the F -polynomial associated with a rigid indecomposable
equals the dimension vector of the corresponding module (Proposition 6.6). By
combining this with recent work by Buan-Marsh-Reiten [5], cf. also [17], we obtain
a counterexample to Conjecture 7.17 (and 6.11) of [21]. We point out that the
corresponding computations were already present in G. Cerulli’s work [12]. Fol-
lowing a suggestion by A. Zelevinsky, we show that, by assuming the existence of
suitable categorifications, instead of the equality claimed in Conjecture 7.17, one
does have an inequality: The multidegree of the F -polynomial is greater than or
equal to the denominator vector (Proposition 6.8). We also show in certain cases
that the transformation rule for g-vectors predicted by Conjecture 6.10 of [21] does
hold (Proposition 6.9).

Let us emphasize that our proofs for certain cluster algebras of some of the
conjectures of [21] depend on the existence of suitable Hom-finite 2-Calabi-Yau
categories with a cluster-tilting object. This hypothesis imposes a finiteness con-
dition on the corresponding cluster algebra (to the best of our knowledge, it is not
known how to express this condition in combinatorial terms). The construction of
such 2-Calabi-Yau categories is a nontrivial problem for which we rely on [6] in the
acyclic case and on [26], [23], [2] and [1] in the nonacyclic case. As A. Zelevinsky
has kindly informed us, many of the conjectures of [21] will be proved in [16] in full
generality building on [35] and [15].

2. Recollections

2.1. Cluster algebras. In this section, we recall the construction of cluster alge-
bras of geometric type with coefficients from [21]. For an integer x, we use the
notation

[x]+ = max(x, 0)

and

sgn(x) =

⎧⎨
⎩

−1 if x < 0;
0 if x = 0;
−1 if x < 0.

The tropical semifield on a finite family of variables uj , j ∈ J , is the abelian
group (written multiplicatively) freely generated by the uj , j ∈ J , endowed with
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the addition ⊕ defined by∏
j

u
aj

j ⊕
∏
j

u
bj
j =

∏
j

u
min(aj ,bj)
j .

Let 1 ≤ r ≤ n be integers. Let P be the tropical semifield on the indeterminates
xr+1, . . . , xn. Let QP be the group algebra on the abelian group P. It identifies
with the algebra of Laurent polynomials with rational coefficients in the variables
xr+1, . . . , xn. Let F be the field of fractions of the ring of polynomials with coeffi-

cients in QP in r indeterminates. A seed in F is a pair (B̃,x) formed by

• an n×r matrix B̃ with integer entries whose principal part B (the submatrix
formed by the first r rows) is antisymmetric;

• a free generating set x = {x1, . . . , xr} of the field F .

The matrix B̃ is called the exchange matrix and the set x the cluster of the seed
(B̃,x). Let 1 ≤ s ≤ r be an integer. The seed mutation in the direction s transforms

the seed (B̃,x) into the seed µs(B̃,x) = (B̃′,x′), where

• the entries b′ij of B̃′ are given by

b′ij =

{
−bij if i = s or j = s;
bij + sgn(bis)[bisbsj ]+ otherwise.

• The cluster x′ = {x′
1, . . . , x

′
r} is given by x′

j = xj for j �= s whereas x′
s ∈ F

is determined by the exchange relation

x′
sxs =

n∏
i=1

x
[bis]+
i +

n∏
i=1

x
[−bis]+
i .

Mutation in a fixed direction is an involution.
Let Tr be the r-regular tree, whose edges are labeled by the numbers 1, . . . , r

so that the r edges emanating from each vertex carry different labels. A cluster
pattern is the assignment of a seed (B̃t,xt) to each vertex t of Tr such that the
seeds assigned to vertices t and t′ linked by an edge labeled s are obtained from
each other by the seed mutation µs.

Fix a vertex t0 of the r-regular tree Tr. Clearly, a cluster pattern is uniquely
determined by the initial seed (B̃t0 , xt0), which can be chosen arbitrarily.

Fix a seed (B̃,x) and let (B̃t,xt), t ∈ Tr be the unique cluster pattern with initial

seed (B̃,x). The clusters associated with (B̃,x) are the sets xt, t ∈ Tr. The cluster

variables are the elements of the clusters. The cluster algebra A(B̃) = A(B̃,x) is
the ZP-subalgebra of F generated by the cluster variables. Its ring of coefficients
is ZP. It is a ‘cluster algebra without coefficients’ if r = n and thus ZP = Z.

2.2. Cluster algebras from ice quivers. As we have seen in the previous sub-
section, our cluster algebras are given by certain integer matrices B̃. Such matrices
can also be encoded by ‘ice quivers’: A quiver is a quadruple Q = (Q0, Q1, s, t),
where Q0 is a set (the set of vertices), Q1 is a set (the set of arrows) and s and t
are two maps Q1 → Q0 (taking an arrow to its source, respectively to its target).
An ice quiver is a pair (Q,F ) consisting of a quiver Q and a subset F of its set of
vertices (F is the set of frozen vertices).

Let (Q,F ) be an ice quiver such that the set Q0 is the set of natural numbers
from 1 to n, the set Q1 is finite and the set F is the set of natural numbers from
r + 1 to n for some 1 ≤ r ≤ n. The associated integer matrix B̃(Q,F ) is the n× r
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matrix whose entry bij equals the number of arrows from i to j minus the number
of arrows from j to i. The cluster algebra with coefficients A(Q,F ) is defined as the

cluster algebra A(B̃(Q,F )). The matrix B̃(Q,F ) determines the ice quiver (Q,F )
if

1) Q does not have loops (arrows from a vertex to itself) and
2) Q does not have 2-cycles (pairs of distinct arrows α, β such that s(α) = t(β)

and t(α) = s(β)) and
3) there are no arrows between any vertices of F .

Given integers 1 ≤ r ≤ n, each integer matrix B̃ with antisymmetric principal part
B (formed by the first r rows of B̃), is obtained as the matrix associated with a
unique ice quiver satisfying these properties. The mutation of ice quivers satisfying
conditions 1)-3) is defined via the mutation of the corresponding integer matrices
recalled in section 2.1.

2.3. Krull-Schmidt categories. An additive category has split idempotents if
each idempotent endomorphism e of an object X gives rise to a direct sum decom-
position Y ⊕ Z ∼→ X such that Y is a kernel for e. A Krull-Schmidt category is
an additive category where the endomorphism rings of indecomposable objects are
local and each object decomposes into a finite direct sum of indecomposable objects
(which are then unique up to isomorphism and permutation). Each Krull-Schmidt
category has split idempotents. We write indec(C) for the set of isomorphism classes
of indecomposable objects of a Krull-Schmidt category C.

Let C be a Krull-Schmidt category. An object X of C is basic if every indecom-
posable of C occurs with multiplicity ≤ 1 in X. In this case, X is fully determined
by the full additive subcategory add(X) whose objects are the direct factors of finite
direct sums of copies of X. The map X �→ add(X) yields a bijection between the
isomorphism classes of basic objects and the full additive subcategories of C which
are stable under taking direct factors and only contain finitely many indecompos-
ables up to isomorphism.

Let k be an algebraically closed field. A k-category is a category whose mor-
phism sets are endowed with structures of k-vector spaces such that the composi-
tion maps are bilinear. A k-category is Hom-finite if all of its morphism spaces are
finite-dimensional. A k-linear category is a k-category which is additive. Let C be
a k-linear Hom-finite category with split idempotents. Then C is a Krull-Schmidt
category. Let T be an additive subcategory of C stable under taking direct factors.
The quiver Q = Q(T ) of T is defined as follows: The vertices of Q are the iso-
morphism classes of indecomposable objects of T , and the number of arrows from
the isoclass of T1 to that of T2 equals the dimension of the space of irreducible
morphisms

irr(T1, T2) = rad(T1, T2)/rad
2(T1, T2) ,

where rad denotes the radical of T , i.e. the ideal such that rad(T1, T2) is formed by
all nonisomorphisms from T1 to T2.

2.4. 2-Calabi-Yau triangulated categories. Let k be an algebraically closed
field. Let C be a k-linear triangulated category with suspension functor Σ. We
assume that C is Hom-finite and has split idempotents. Thus, it is a Krull-Schmidt
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category. For objects X, Y of C and an integer i, we define

Exti(X,Y ) = C(X,ΣiY ).

An object X of C is rigid if Ext1(X,X) = 0.
Let d be an integer. Following [42], cf. also [32], we define the category C to be

d-Calabi-Yau if there exists a family of linear forms

tX : C(X,ΣdX) → k , X ∈ obj(C) ,

such that the bilinear forms

〈, 〉 : C(Y,ΣdX)× C(X,Y ) → k , (f, g) �→ tX(f ◦ g)

are nondegenerate and satisfy

〈Σpf, g〉 = (−1)pq〈Σqg, f〉

for all f in C(Y,ΣqX) and all g ∈ C(X,ΣpY ), where p+ q = d.
Let us assume that C is 2-Calabi-Yau. A cluster-tilting subcategory of C is a full

additive subcategory T ⊂ C which is stable under taking direct factors and such
that

• for each object X of C, the functors C(X, ?) : T → mod k and C(?, X) :
T op → mod k are finitely generated;

• an object X of C belongs to T iff we have Ext1(T,X) = 0 for all objects T
of T .

A cluster-tilting object is a basic object T of C such that add(T ) is a cluster-
tilting subcategory. Equivalently, an object T is cluster-tilting if it is rigid and if
each object X satisfying Ext1(T,X) = 0 belongs to add(T ). The following definition
is taken from section 1 of [2]. Recall that C is a Hom-finite k-linear triangulated
category with split idempotents which is 2-Calabi-Yau.

Definition 2.1 ([2]). The cluster-tilting subcategories of C determine a cluster
structure on C if the following hold:

0) There is at least one cluster-tilting subcategory in C.
1) For each cluster-tilting subcategory T ′ of C and each indecomposable M of

T ′, there is a unique (up to isomorphism) indecomposable M∗ not isomor-
phic to M and such that the additive subcategory T ′′ = µM (T ′) of C with
set of indecomposables

indec(T ′′) = indec(T ′) \ {M} ∪ {M∗}

is a cluster-tilting subcategory.
2) In the situation of 1), there are triangles

M∗ f �� E
g �� M �� ΣM∗ and M

s �� E′ t �� M∗ �� ΣM∗ ,

where g and t are minimal right T ′ ∩ T ′′-approximations and f and s are
minimal left T ′ ∩ T ′′-approximations.

3) For any cluster-tilting subcategory T ′, the quiver Q(T ′) does not have loops
nor 2-cycles.

4) We have Q(µM (T ′)) = µM (Q(T ′)) for each cluster-tilting subcategory T ′

of C and each indecomposable M of T ′.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

864 CHANGJIAN FU AND BERNHARD KELLER

The cluster-tilting subcategory T ′′ = µM (T ′) of 1) is the mutation of T ′ at the
indecomposable object M . The mutation of a cluster-tilting object T is defined via
the mutation of the cluster-tilting subcategory add(T ).

Lemma 2.2. Suppose that the cluster-tilting subcategories determine a cluster
structure on C. Then, in the situation of condition 2) of Definition 2.1, the follow-
ing hold:

a) The space Ext1(M,M∗) is one-dimensional (hence, by the 2-Calabi-Yau
property, so is the space Ext1(M∗,M)) and the triangles of 2) are nonsplit.

3) The multiplicity of an indecomposable U of T ′∩T ′′ in E equals the number
of arrows from U to M in the quiver Q(T ′) and that from M∗ to U in
Q(T ′′); the multiplicity of U in E′ equals the number of arrows from M to
U in Q(T ′) and that from U to M∗ in Q(T ′′).

Proof. a) The first triangle yields an exact sequence

C(M,E) → C(M,M) → Ext1(M,M∗) → 0.

By the absence of loops required in condition 3), each radical morphism from M to
M factors through E. Since k is algebraically closed, the radical is of codimension
1 in the local algebra C(M,M). Thus, the space Ext1(M,M∗) is one-dimensional.
The minimality of the approximations implies that the triangles are nonsplit. b)
This follows if we combine the definition of the quivers Q(T ′) and Q(T ′′), with the
approximation properties of f , g, s and t. �

We refer to section 1, page 11 of [2] for a list of classes of examples where this
assumption holds. In particular, this list contains the cluster categories associated
with finite quivers without oriented cycles and the stable categories of preprojective
algebras of Dynkin quivers. We refer the reader to the surveys [4], [39], [30], [31] for
more information on cluster categories and to the survey [24] for more information
on stable categories of Dynkin quivers.

2.5. Cluster characters. The notion of cluster character is due to Palu [37]. Un-
der suitable assumptions, cluster characters allow one to pass from 2-Calabi-Yau
categories to cluster algebras. We recall the definition and the main construction
from [37]. Let k be an algebraically closed field and C a k-linear Hom-finite trian-
gulated category with split idempotents which is 2-Calabi-Yau. Let R be a com-
mutative ring. A cluster character on C with values in R is a map ζ : obj(C) → R
such that

1) we have ζ(L) = ζ(L′) if L and L′ are isomorphic,
2) we have ζ(L⊕M) = ζ(L)ζ(M) for all objects L and M and

3) if L and M are objects such that Ext1(L,M) is one-dimensional (and hence
Ext1(M,L) is one-dimensional) and

L → E → M → ΣL and M → E′ → L → ΣM

are nonsplit triangles, then we have

(2.1) ζ(L)ζ(M) = ζ(E) + ζ(E′).

Assume that C has a cluster-tilting object T which is the direct sum of r pairwise
nonisomorphic indecomposable summands T1, . . .Tr. In a vast generalization of
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Caldero-Chapoton’s work [9], Palu has shown in [37] that there is a canonical
cluster-character

XT
? : obj(C) → Z[x1, . . . , xr] , M �→ XT

M

such that XT
ΣTi

= xi for 1 ≤ i ≤ r. Let us recall Palu’s construction. First we
need to introduce some more notation. Let C be the endomorphism algebra of T .
Let modC denote the category of k-finite-dimensional right C-modules. For each
1 ≤ i ≤ r, the morphism space C(T, Ti) becomes an indecomposable projective
right C-module denoted by Pi. Its simple top is denoted by Si. For L and M in
modC, define

〈L,M〉 = dimHomC(L,M)− dimExt1C(L,M)

and put

〈L,M〉a = 〈L,M〉 − 〈M,L〉.
By Theorem 11 of [37], the map (L,M) �→ 〈L,M〉a induces a well-defined bilinear
form on the Grothendieck group K0(modC). By [34], for any X ∈ C, we have
triangles

TX
1 → TX

0 → X → ΣTX
1 and X → Σ2T 0

X → Σ2T 1
X → ΣX,

where TX
1 , TX

0 , T 0
X and T 1

X belong to add(T ). The index and coindex of X with
respect to T are defined to be the classes in K0(addT ):

indT (X) = [TX
0 ]− [TX

1 ] and coindT (X) = [T 0
X ]− [T 1

X ].

For an object M of C, one defines

XT
M =

r∏
i=1

x
−[coindT (M):Ti]
i

∑
e

χ(Gre(C(T,M))
r∏

i=1

x
〈Si,e〉a
i ,

where e runs through the positive elements of the Grothendieck group K0(modC)
and Gre(C(T,M)) denotes the variety of submodules U of the right C-module
C(T,M) such that the class of U is e and χ is the Euler characteristic (of the
underlying topological space if k = C or of l-adic cohomology if k is arbitrary).

2.6. From 2-CY categories to cluster algebras without coefficients. In this
section, we show how certain 2-Calabi-Yau triangulated categories can be linked to
cluster algebras without coefficients via cluster characters. All we need to do is to
combine the results recalled in sections 2.4 and 2.5. In the main part of the paper,
we will concentrate on the case where our cluster algebras do have coefficients.

Let k be an algebraically closed field and C a Hom-finite k-linear 2-Calabi-Yau
triangulated category with split idempotents as defined in section 2.4. Let T be a
cluster-tilting object in C. Assume that T is the direct sum of r pairwise noniso-
morphic indecomposable objects T1, . . . , Tr. Let

ζT : obj(C) → Q(x1, . . . , xr)

be Palu’s cluster character associated with T as recalled in section 2.5. In particular,
we have

(2.2) ζT (ΣTi) = xi for 1 ≤ i ≤ r.

Now assume that the cluster-tilting subcategories define a cluster structure on C (cf.
section 2.4). A cluster-tilting object T ′ is reachable from T if add(T ′) is obtained
from add(T ) by a finite sequence of mutations as defined in 2.4. A rigid object
M is reachable from T if it lies in add(T ′) for a cluster-tilting object T ′ reachable
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from T . Let Q be the quiver of the endomorphism algebra C of T , or equivalently,
the quiver of the category add(T ). We consider Q as an ice quiver with an empty
set of frozen vertices and denote by A(Q) the associated cluster algebra without
coefficients (defined by specializing the construction of 2.2 to the case where the
set of frozen vertices is empty). It is the subalgebra of Q(x1, . . . , xr) generated by
the cluster variables.

Proposition 2.3. Assume that the above assumptions hold and in particular that
the cluster-tilting subcategories define a cluster-structure on C (cf. section 2.4).

a) The map M �→ ζT (ΣM) induces a surjection from the set of rigid objects
reachable from T onto the set of cluster variables of the cluster algebra
A(Q).

b) The surjection of a) induces a surjection from the set of cluster-tilting ob-
jects reachable from T onto the set of clusters of A(Q).

Proof. Clearly, part a) follows from part b). Let us prove part b). Let Tr be
the r-regular tree and let t0 be a fixed vertex of Tr. Let B be the antisymmetric
matrix associated with the quiver Q and let x be the initial cluster x1, . . . , xr. Let
(Bt,xt), t ∈ Tr, be the unique cluster pattern with initial seed (Bt0 ,xt0) = (B,x)
(cf. section 2.1). To each vertex t of T, we assign a cluster-tilting object Tt with
indecomposable direct summands Tt,1, . . . , Tt,r such that

1) we have Tt0 = T and
2) if t is linked to t′ by an edge labeled s, then Tt′ is obtained from Tt by

mutating at the summand Tt,s.

It follows from point 1) of the definition of a cluster structure that Tt is well-defined
for each vertex t of T. Moreover, it follows from point 4) of the same definition
that for each vertex t of T, the antisymmetric matrix Bt corresponds to the quiver
of the category add(Tt) under the bijection of section 2.2. We claim that for each
vertex t of T, the cluster character takes the shift ΣTt,i of the indecomposable direct
summand Tt,i of Tt to the cluster variable xt,i, 1 ≤ i ≤ r. Indeed, this holds for
t = t0 by equation (2.2). Now assume that it holds for some vertex t and that t
is linked to a vertex t′ by an edge labeled s. We know that the indecomposable
summands of Tt′ are the Tt′,i = Tt,i for i �= s and a new summand T ′

t,s which is not
isomorphic to Tt,s. By part a) of Lemma 2.2, the extension space between Tt,s and
Tt′,s is one-dimensional and we have the nonsplit triangles

Tt′,s → E → Tt,s → ΣTt′,s and Tt,s → E′ → Tt′,s → ΣTt,s.

Here, the middle terms are sums of copies of the Tt,i, i �= s, and the multiplicities are
determined by the quivers of the endomorphism algebras of T and T ′, as indicated in
part b) of Lemma 2.2. More precisely, if btij denotes the (i, j)-entry of the exchange

matrix, then the summand Tt,i occurs in E with multiplicity [btis]+ and in E′ with
multiplicity [btsi]+ = [−btis]+. Now if we use points 2) and 3) of the definition of a
cluster character, we see that the induction hypothesis and equation (2.1) yield the
exchange relation

xt,sζT (ΣTt′,s) =
n∏

i=1

x
[btik]+
i +

n∏
i=1

x
[−btik]+
i .

Thus, we have ζT (ΣTt′,s) = xt′,s as required. �
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2.7. Frobenius categories. A Frobenius category is an exact category in the sense
of Quillen [38] which has enough projectives and enough injectives and where an
object is projective iff it is injective. By definition, such a category is endowed with
a class of admissible exact sequences

0 → L → M → N → 0.

Following [22] we will call the left morphism L → M of such a sequence an inflation,
the right morphism a deflation and, sometimes, the whole sequence a conflation.
Let E be a Frobenius category. Its associated stable category E is the quotient of
E by the ideal of morphisms factoring through a projective-injective object. It was
shown by Happel [29] that E has a canonical structure of a triangulated category.
We have

ExtiE(L,M) ∼→ ExtiE(L,M)

for all objects L and M of E and all integers i ≥ 1. An object M of E is rigid if
Ext1E(M,M) = 0.

Let k be an algebraically closed field and E a Hom-finite Frobenius category
with split idempotents. Suppose that E is a 2-Calabi-Yau Frobenius category, i.e.
its associated stable category C = E is 2-Calabi-Yau in the sense of section 2.4. A
cluster-tilting subcategory of E is a full additive subcategory T ⊂ E which is stable
under taking direct factors and such that

• for each object X of E , the functors E(X, ?) : T → mod k and E(?, X) :
T op → mod k are finitely generated;

• an object X of E belongs to T iff we have Ext1E(T,X) = 0 for all objects T
of T .

Clearly if these conditions hold, each projective-injective object of E belongs to T .
A cluster-tilting object is a basic object T of E such that add(T ) is a cluster-tilting
subcategory. Equivalently, an object T is cluster-tilting if it is rigid and if each
object X satisfying Ext1E(T,X) = 0 belongs to add(T ). The following definition
is taken from section 1 of [2]. Recall that E is a k-linear Hom-finite Frobenius
category with split idempotents such that the associated stable category C = E is
2-Calabi-Yau.

Definition 2.4 ([2]). The cluster-tilting subcategories of E determine a cluster
structure on E if the following hold:

0) There is at least one cluster-tilting subcategory in E .
1) For each cluster-tilting subcategory T ′ of E and each nonprojective inde-

composable M of T ′, there is a unique (up to isomorphism) nonprojective
indecomposable M∗ not isomorphic to M and such that the additive sub-
category T ′′ = µM (T ′) of E with set of indecomposables

indec(T ′′) = indec(T ′) \ {M} ∪ {M∗}
is a cluster-tilting subcategory.

2) In the situation of 1), there are conflations

0 �� M∗ f �� E
g �� M �� 0 and 0 �� M

s �� E′ t �� M∗ �� 0 ,

where g and t are minimal right T ′ ∩ T ′′-approximations, and f and s are
minimal left T ′ ∩ T ′′-approximations.

3) For any cluster-tilting subcategory T ′, the quiver Q(T ′) does not have loops
nor 2-cycles.
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4) We have Q◦(µM (T ′)) = µM (Q◦(T ′)) for each cluster-tilting subcategory
T ′ of E and each nonprojective indecomposable M of T ′, where Q◦(T ′)
denotes the quiver obtained from Q(T ′) by removing all arrows between
projective vertices.

The cluster-tilting subcategory T ′′ = µM (T ′) of 1) is the mutation of T ′ at the
nonprojective indecomposable object M . The mutation of a cluster-tilting object T
is defined via the mutation of the cluster-tilting subcategory add(T ).

Lemma 2.5. Suppose that the cluster-tilting subcategories determine a cluster
structure on E . Then, in the situation of condition 2) of Definition 2.4, the follow-
ing hold:

a) The space Ext1(M,M∗) is one-dimensional (hence, by the 2-Calabi-Yau
property, so is the space Ext1(M∗,M)) and the conflations of 2) are non-
split.

b) The multiplicity of an indecomposable U of T ′∩T ′′ in E equals the number
of arrows from U to M in the quiver Q(T ′) and that from M∗ to U in
Q(T ′′); the multiplicity of U in E′ equals the number of arrows from M to
U in Q(T ′) and that from U to M∗ in Q(T ′′).

We omit the proof of the lemma since it is entirely parallel to that of Lemma 2.2.
Large classes of examples of Frobenius categories where the cluster-tilting objects
define a cluster-structure are obtained in [23] and [3]; cf. the survey [24] and Ex-
ample 5.3 below. For an extension of the theory from the antisymmetric to the
antisymmetrizable case, we refer to [14].

3. Cluster characters for 2-Calabi-Yau Frobenius categories

Let k be an algebraically closed field and E a k-linear Frobenius category with
split idempotents. We assume that E is Hom-finite and that the stable category
C = E is 2-Calabi-Yau (cf. section 2.4).

Definition 3.1. A cluster character on E with values in a commutative ring R is
a map ζ : obj(E) → R such that

1) we have ζ(L) = ζ(L′) if L and L′ are isomorphic,
2) we have ζ(L⊕M) = ζ(L)ζ(M) for all objects L and M and
3) if L and M are objects such that Ext1E(L,M) is one-dimensional (and hence

Ext1E(M,L) is one-dimensional) and

0 → L → E → M → 0 and 0 → M → E′ → L → 0

are nonsplit triangles, then we have

(3.1) ζ(L)ζ(M) = ζ(E) + ζ(E′).

From now on, we assume in addition that E contains a cluster-tilting object T .
Using T we will construct a cluster character on E and link it to Palu’s cluster
character associated with the image of T in the triangulated category C = E (cf.
section 2.5).

Let C be the endomorphism algebra of T (in E) and C = EndC(T ). Let

F = HomE(T, ?) : E → modC,

G = HomC(T, ?) : C → modC.
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Let Ti, 1 ≤ i ≤ n, be the pairwise nonisomorphic indecomposable direct summands
of T . We choose the numbering of the Ti so that Ti is projective exactly for
r < i ≤ n for some integer 1 ≤ r ≤ n. For 1 ≤ i ≤ n, let Si be the top of the
indecomposable projective Pi = FTi. Note that C and C are finite-dimensional k-
algebras, so finitely presented modules are the same as finitely generated modules.
As in section 4 of [34], we identify ModC with the full subcategory of ModC
formed by the modules without composition factors isomorphic to one of the Si,
r < i ≤ n. Let DC be the unbounded derived category of the abelian category
ModC of all right C-modules. Let perC be the perfect derived category of C, i.e.
the full subcategory of DC whose objects are all the complexes quasi-isomorphic to
bounded complexes of finitely generated projective C-modules. Let Db(modC) be
the bounded derived category of modC identified with the full subcategory of DC
whose objects are all complexes whose total homology is finite-dimensional over k.
As shown in section 4 of [34], we have the following embeddings:

modC ↪→ perC ↪→ Db(modC).

We have a bilinear form

〈 , 〉 : K0(perC)×K0(Db(modC)) −→ Z

defined by

〈[P ], [X]〉 =
∑

(−1)idim HomDb(modC)(P,Σ
iX),

where K0(perC) (resp. K0(Db(modC))) is the Grothendieck group of perC (resp.
Db(modC)) and Σ is the shift functor of Db(modC).

For arbitrary finitely generated C-modules L and N , put

[L,N ] = 0[L,N ] = dimk HomC(L,N) and i[L,N ] = dimk Ext
i
C(L,N) for i ≥ 1.

Let

〈L,N〉τ = [L,N ]− 1[L,N ] and 〈L,N〉3 =
3∑

i=0

(−1)i i[L,N ]

be the truncated Euler forms on the split Grothendieck group Ksp
0 (modC). By the

proposition below, if L is a C-module, then 〈L,N〉3 only depends on the dimension
vector dim L in K0(modC). We put

〈dim L,N〉3 = 〈L,N〉3.

Proposition 3.2. a) The restriction of the map

K0(perC) −→ K0(D
b(modC)) = K0(modC)

induced by the inclusion of perC into Db(modC) to the subgroup generated
by the [Si], 1 ≤ i ≤ r, is injective.

b) If L, N are two C-modules such that dim L = dim N in K0(modC), then

〈L, Y 〉3 = 〈N, Y 〉3
for each finitely generated C-module Y .

Proof. a) We need to show that for arbitrary finitely generated C-modules L, N
with dim L = dim N , we have [L] = [N ] in K0(perC). Let

0 = Ls ⊂ Ls−1 ⊂ · · · ⊂ L0 = L

and
0 = Ns ⊂ Ns−1 ⊂ · · · ⊂ N0 = N
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be composition series of L and N , respectively. By [34], we know that every C-
module has projective dimension at most 3 in modC. Assume for simplicity that
Ls−1 = S1, Ls−2/Ls−1 = S2. Denote by P ∗

i a minimal projective resolution of Si.
Then we have the following commutative diagram:

0 �� P 3
1

��

��

P 2
1

��

��

P 1
1

��

��

P 0
1

��

��

Ls−1
��

��

0

0 �� P 3
1 ⊕ P 3

2
��

��

P 2
1 ⊕ P 2

2
��

��

P 1
1 ⊕ P 1

2
��

��

P 0
1 ⊕ P 0

2
��

��

Ls−2
��

��

0

0 �� P 3
2

�� P 2
2

�� P 1
2

�� P 0
2

�� Ls−2/Ls−1
�� 0

where the middle term is a projective resolution of Ls−2. In this way, we inductively
construct projective resolutions for L and N . If mi is the multiplicity of Si in the
composition factors of L and N , then we obtain projective resolutions of L and N
of the form

0 →
r⊕

i=1

(P 3
i )

mi
f3−→

r⊕
i=1

(P 2
i )

mi
f2−→

r⊕
i=1

(P 1
i )

mi
f1−→

r⊕
i=1

(P 0
i )

mi → L → 0,

0 →
r⊕

i=1

(P 3
i )

mi
g3−→

r⊕
i=1

(P 2
i )

mi
g2−→

r⊕
i=1

(P 1
i )

mi
g1−→

r⊕
i=1

(P 0
i )

mi → N → 0.

Let PL (resp. PN ) be the projective resolution complex of L (resp. N). We
have L ∼= PL and N ∼= PN in perC, which implies [L] = [PL] = [PN ] = [N ] in
K0(perC).

b) We have

〈L, Y 〉3 = 〈PL, Y 〉 = 〈[PL], [Y ]〉,
〈N, Y 〉3 = 〈PN , Y 〉 = 〈[PN ], [Y ]〉.

By a), we have [PL] = [PN ] in K0(perC), which implies the equality. �

One should note that the truncated Euler form 〈 , 〉3 does not descend to the
Grothendieck group K0(modC) in general (except if the global dimension of C is
not greater than 3); cf. Remark 3.5.

Using the bilinear forms introduced so far, for M ∈ E , we define the Laurent
polynomial

X ′
M =

n∏
i=1

x
〈FM,Si〉τ
i

∑
e

χ(Gre(Ext
1
E(T,M)))

n∏
i=1

x
−〈e,Si〉3
i .

Here we consider Ext1E(T,M) as a right C-module via the natural action of C =
EndE(T ) on the first argument; the sum ranges over all the elements of the Grothen-
dieck group; for a C-module L, the notation Gre(L) denotes the projective variety
of submodules of L whose class in the Grothendieck group is e; for an algebraic
variety V , the notation χ(V ) denotes the Euler characteristic (of the underlying
topological space of V if k = C and of l-adic cohomology if k is arbitrary).

Since C is 2-Calabi-Yau, the object T =
⊕r

i=1 Ti is a cluster-tilting object of C.
For an object M of C, put

XM = XT
M ,
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whereM �→ XT
M is Palu’s cluster character associated with the cluster-tilting object

T ; cf. section 2.5.
The following theorem shows that M �→ X ′

M is a cluster character on E and that,
if we specialize the ‘coefficients’ xr+1, . . . , xn to 1, it specializes to the composition
of Palu’s cluster character M �→ XM with the suspension functor M �→ ΣM .
Notice that this theorem does not involve cluster algebras (but paves the way
for establishing a link with cluster algebras when E admits a cluster structure;
cf. Theorem 5.4 below).

Theorem 3.3. As above, let k be an algebraically closed field and E a k-linear
Frobenius category with split idempotents such that E is Hom-finite, the stable cate-
gory C = E is 2-Calabi-Yau and E contains a cluster-tilting object T . For an object
M of E , let X ′

M and XM be the Laurent polynomials defined above.

a) We have X ′
Ti

= xi for 1 ≤ i ≤ n.
b) The specialization of X ′

M at xr+1 = xr+2 = . . . = 1 is XΣM , where Σ is
the suspension of C.

c) For any two objects L and M of E , we have X ′
L⊕M = X ′

LX
′
M .

d) If L and M are objects of E such that Ext1E(L,M) is one-dimensional and
we have nonsplit conflations

0 → L → E → M → 0 and 0 → M → E′ → L → 0 ,

then we have
X ′

LX
′
M = X ′

E +X ′
E′ .

Proof. a) This is straightforward.
b) We have

XΣM =

r∏
i=1

x
−[coindT (ΣM):Ti]
i

∑
e

χ(Gre(GΣM))

r∏
i=1

x
〈Si,e〉a
i .

Now by the definition, we have

GΣM = HomC(T,ΣM) = ExtE(T,M).

Therefore, we only need to show that the exponents of xi, 1 ≤ i ≤ r, in the
corresponding terms of XΣM and X ′

M are equal. There exists a triangle in C given
by

T 1
M → T 0

M → M → ΣT1

with T 0
M and T 1

M in addT . We may and will assume that this triangle is minimal,
i.e. does not admit a nonzero direct factor of the form

T ′ → T ′ → 0 → ΣT ′.

Since E is Frobenius, we can lift this triangle to a short exact sequence in E ,
0 → T 1

M → T 0
M ⊕ P → M → 0,

where P is a projective of E . Applying the functor F to this short exact sequence,
we get a projective resolution of FM as a C-module,

0 → FT 1
M → F (T 0

M ⊕ P ) → FM → 0.

Therefore, we have

〈FM,Si〉τ = [FT 0
M ⊕ FP, Si]− [FT 1

M , Si] = [FT 0
M , Si]− [FT 1

M , Si]

for 1 ≤ i ≤ r.
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On the other side, we have the following minimal triangle:

ΣM → Σ2T 1
M → Σ2T 0

M → Σ2M.

By the definition of the coindex, we get

−[coindT (ΣM) : Ti] = −[T 1
M − T 0

M : Ti] = 〈FM,Si〉τ , for 1 ≤ i ≤ r.

Next we will show that 〈Si, e〉a = −〈e, Si〉3. Let N be a C-module such that
dim N = e. Note that N and the Si, 1 ≤ i ≤ r, are C-modules and that all of
them are finitely presented C-modules. Therefore, they lie in the perfect derived
category per(C). Thus, we can use the relative 3-Calabi-Yau property of per(C)
(cf. [34]) to deduce that 〈Si, e〉a = −〈e, Si〉3. We have

Ext2C(N,Si) = ExtC(Si, N) = ExtC(Si, N),

Ext3C(N,Si) = HomC(Si, N) = HomC(Si, N),

for 1 ≤ i ≤ r. By the definition of 〈Si, N〉a, we have

〈Si, N〉a = dimk HomC(Si, N)− dimk ExtC(Si, N) + dimk ExtC(N,Si)

−dimk HomC(N,Si)

= dimk HomC(Si, N)− dimk ExtC(Si, N) + dimk ExtC(N,Si)

−dimk HomC(N,Si)

= 3[N,Si]− 2[N,Si] +
1[N,Si]− [N,Si]

= −〈N,Si〉3.
c) This is proved in exactly the same way as Corollary 3.7 in [9].
d) Let

0 → L
i−→ E

p−→ M → 0 and 0 → M
i′−→ E′ p′

−→ L → 0

be the nonsplit conflations in E , and let

ΣL
GΣi−−−→ ΣE

GΣp−−−→ ΣM → Σ2L,

ΣM
GΣi′−−−→ ΣE′ GΣp′

−−−→ ΣL → Σ2N

be the associated triangles in C. For any classes e, f , g in the Grothendieck group
K0(modC), let Xe,f be the variety whose points are the C-submodules E ⊂ GΣE
such that the dimension vector of (GΣi)−1E equals e and the dimension vector
of (GΣp)E equals f . Similarly, let Yf,e be the variety whose points are the C-
submodules E ⊂ GΣE′ such that the dimension vector of (GΣi′)−1E equals f and
the dimension vector of (GΣp′)E equals e. Put

Xg
e,f = Xe,f ∩Grg(GΣE),

Y g
f,e = Yf,e ∩Grg(GΣE′).

Since C is a 2-CY triangulated category, by section 5.1 of [37] we also have

χ(Gre(GΣL)×Grf (GΣM)) =
∑
g

χ(Xg
e,f ) + χ(Y g

f,e).

Therefore, part d) is a consequence of the following lemma.

Lemma 3.4. If Xg
e,f �= ∅, then we have the following equality:

−〈g, Si〉3 + 〈FE, Si〉τ = −〈e+ f, Si〉3 + 〈FL, Si〉τ + 〈FM,Si〉τ , 1 ≤ i ≤ n.
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Proof. We have the following commutative diagram as in section 4 of [37]:

(GΣi)−1E
α ��

i

��

E
β ��

j

��

(GΣp)E ��

k

��

0

GΣL
GΣi �� GΣE

GΣp �� GΣM �� GΣ2L

where i, j, k are monomorphisms, β is an epimorphism and [E] = g, [GΣi)−1E] = e,
[GΣp)E] = f in K0(modC). One can easily show that kerGΣi = kerα. We have
an exact sequence

0 → kerα → (GΣi)−1E → E → (GΣp)E → 0.

If we apply F = HomE(T, ?) to the short exact sequence

0 → L → E → M → 0,

we get the long exact sequences of C-modules

0 → FL → FE → FM → GΣL
GΣi−−−→ GΣE → . . . ,

and

0 → FL
Fi−→ FE

Fp−−→ FM → kerα → 0.

Since kerα, (GΣi)−1E, E, (GΣp)E are C-modules, and the projective dimensions
of FL, FE, FM are not greater than 1, we can use the method of Proposition 3.2
to construct the projective resolutions and compute the truncated Euler forms. We
get that

〈e, Si〉3 + 〈f, Si〉3 = 〈g, Si〉3 + 〈kerα, Si〉3
and

〈FL, Si〉3 + 〈FM,Si〉3 = 〈FE, Si〉3 + 〈kerα, Si〉3.
Note that 〈FL, Si〉3 = 〈FL, Si〉τ , 〈FM,Si〉3 = 〈FM,Si〉τ and 〈FE, Si〉3 =
〈FE, Si〉τ , which implies

〈FL, Si〉τ + 〈FM,Si〉τ − 〈e+ f, Si〉3 = 〈FE, Si〉τ − 〈g, Si〉3.
�

Remark 3.5. If C has finite global dimension, the Grothendieck group K0(modC)

has the Euler form 〈 , 〉. We can then define a Laurent polynomial Xf
M as follows:

Xf
M =

n∏
i=1

x
〈FM,Si〉
i

∑
e

χ(Gre(Ext
1
E(T,M)))

n∏
i=1

x
〈Si,e〉
i .

One can show that in this case X ′
M = Xf

M . In fact, if gldimC < ∞, then the
perfect derived category per(C) equals Db(modC), and Si belongs to per(C) for all
i. Thus, we have

〈Si, e〉 =
3∑

i=0

(−1)idimExtiC(Si, e) = −〈e, Si〉3

and 〈FM,Si〉τ = 〈FM,Si〉. The assumption that C is of finite global dimension
holds for the examples constructed in [2] by Proposition I.2.5 b) of [loc. cit.] and
for the examples constructed in [26] by Proposition 11.5 of [loc.cit.].
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4. Index and g-vector

4.1. Index. As in section 3, we let k be an algebraically closed field and E a k-
linear Frobenius category with split idempotents. We assume that E is Hom-finite
and that the stable category C = E is 2-Calabi-Yau (cf. section 2.4). Moreover, we
assume that E admits a cluster-tilting object T and we write C = EndE(T ) and
C = EndC(T ).

Let D(ModC) be the derived category of C-modules, D−(modC) the right
bounded derived category of modC, H−(P) the right bounded homotopy cate-
gory of finitely generated projective C-modules. It is well known that there is an
equivalence

H−(P)
∼−→ D−(modC).

Proposition 4.1. For an arbitrary C-module Z which is also a finitely presented
C-module we have a canonical isomorphism

DHomD−(modC)(Z, ?)
∼−→ HomD−(modC)(?, Z[3]).

Proof. For arbitrary X ∈ D−(modC), by the equivalence, we have a PX ∈ H−(P)
such that X ∼= PX in D−(modC). Assume that PX has the following form:

. . . → Pm → Pm+1 → . . . → Pn−1 → Pn → 0 → 0 . . . .

Put

X0 = . . . → 0 → 0 → Pn → 0 . . . ,

Xi = . . . → 0 → Pn−i → . . . → Pn → 0 . . . , for i > 0.

Clearly, the complex PX is the direct limit of the complexes Xi. We write hocolim
for the total left derived functor of the functor of taking the direct limit. Since
taking direct limits over filtered systems is an exact functor, the functor hocolim
is simply induced by the direct limit functor. Thus, we have PX

∼= hocolim Xi in
D(ModC). Note that by Proposition 4 of [34], Z belongs to perC; i.e. Z is compact
in D(ModC). So we have

HomD(ModC)(Z,X) ∼= HomD(ModC)(Z, PX)
∼= HomD(ModC)(Z, hocolimXi)
∼= colimHomD(ModC)(Z,Xi).

By the definition of Xi, we know that Xi ∈ perC. Since perC is a full subcat-
egory of D(ModC), by the relative 3-Calabi-Yau property of perC, we have the
following:

colimHomD(ModC)(Z,Xi) ∼= colimDHomD(ModC)(Xi, Z[3]).

It is easy to see that this colimit is a stationary system; i.e. ∃ N such that for
i > N , we have

DHomD(ModC)(Xi, Z[3]) ∼= DHomD(ModC)(Xi+1, Z[3]).

Thus, we have

colimDHomD(ModC)(Xi, Z[3]) ∼= D limHomD(ModC)(Xi, Z[3])
∼= DHomD(ModC)(hocolimXi, Z[3])
∼= DHomD(ModC)(PX , Z[3]).
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Note that since D−(modC) is a full subcategory of D(ModC), we get the isomor-
phism

DHomD−(modC)(Z,X)
∼−→ HomD−(modC)(X,Z[3]).

�

For each X ∈ E , there is a unique minimal conflation (up to isomorphism)

0 → T 1
X → T 0

X → X → 0

with T 0
X , T 1

X ∈ addT . As in [37], put

indT (X) = [T 0
X ]− [T 1

X ] in K0(addT ).

By the proof of Theorem 3.3, we have

indT (X) =
n∑

i=1

〈FX, Si〉τ [Ti].

The following result is easily deduced from Theorem 2.3 of [13].

Lemma 4.2. If X is a rigid object of E , then X is determined up to isomorphism
by indT (X); i.e. if Y is rigid and indT (X) = indT (Y ), then X is isomorphic to Y .

Proof. Since indT (X) = indT (Y ), we have indT (X) = indT (Y ) in the stable category
E . By Theorem 2.3 of [13], we have X ∼= Y in E . Thus, there are E-projectives PX

and PY such that X ⊕PX
∼= Y ⊕PY in E . For the minimal right T -approximation

of X ⊕ PX ,
0 → T 1 → T 0 → X ⊕ PX → 0,

we have indT (X ⊕ PX) = indT (Y ⊕ PY ) = [T 0]− [T 1]. Note that

indT (X) = indT (X ⊕ PX)− [PX ] = indT (Y ⊕ PY )− [PY ] = indT (Y ),

which implies [PX ] = [PY ] in K0(addT ). Thus, we have PX
∼= PY and X ∼= Y in

E . �

4.2. g-vector. Let us recall the definition of g-vectors from section 7 of [21]. Let

1 < r ≤ n be integers. Let B̃ = (b̃ij) be an n× r matrix with integer entries, whose
principal part B (i.e. the submatrix formed by the first r rows) is antisymmetric.

Let A(B̃) be the cluster algebra with coefficients associated with B̃; cf. the end of

section 2.1. Let z be an element of A(B̃). Suppose that we can write z as

z = R(ŷ1, . . . , ŷr)

n∏
i=1

xgi
i ,where ŷj =

n∏
i=1

x
b̃ij
i ,

where R(ŷ1, . . . , ŷr) is a primitive rational polynomial. If rank B̃ = r, then the
g-vector of z is defined by

g(z) = (g1, . . . , gr).

Note that rank B̃ = r implies that the g-vector is well-defined.
As in the previous section, we let k be an algebraically closed field and E a k-

linear Frobenius category with split idempotents. We assume that E is Hom-finite
and that the stable category C = E is 2-Calabi-Yau (cf. section 2.4). Moreover, we
assume that E admits a cluster-tilting object T and we write C = EndE(T ) and
C = EndC(T ). Let T1, T2, . . ., Tn be the pairwise nonisomorphic indecomposable
direct summands of T numbered in such a way that Ti is projective iff r < i ≤ n.
We define B(T ) = (bij)n×n to be the antisymmetric matrix associated with the
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quiver of the endomorphism algebra of T . Let B(T )0 be the submatrix formed by
the first r columns of B(T ). We suppose that we have rank B(T )0 = r. In analogy
with the definition of g-vectors in a cluster algebra, for M ∈ E , if we can write X ′

M

as

X ′
M = R(ŷ1, . . . , ŷr)

n∏
i=1

xgi
i ,where ŷj =

n∏
i=1

x
bij
i ,

where R(ŷ1, . . . , ŷr) is a primitive rational polynomial, then we define the g-vector
gT (X

′
M ) of M with respect to T to be

gT (X
′
M ) = (g1, . . . , gr).

As in the cluster algebra case, this is well-defined since rank B(T )0 = r.

Proposition 4.3. Assume that rank B(T )0 = r. For arbitrary M ∈ E , the g-vector
gT (X

′
M ) is well-defined and its i-th coordinate is given by

gT (X
′
M )(i) = [indT (M) : Ti], 1 ≤ i ≤ r.

Proof. By the relative 3-Calabi-Yau property of D−(modC), for 1 ≤ i ≤ n, 1 ≤
j ≤ r, we have

〈Si, Sj〉3 = [Si, Sj ]− 1[Si, Sj ] +
2[Si, Sj ]− 3[Si, Sj ]

= [Si, Sj ]− 1[Si, Sj ] +
1[Sj , Si]− [Sj , Si]

= 1[Sj , Si]− 1[Si, Sj ]

= bij ,

where the last equality follows from the definition of B(T ). Recall the definition of
X ′

M :

X ′
M =

n∏
i=1

x
〈FM,Si〉τ
i

∑
e

χ(Gre(Ext
1
E(T,M)))

n∏
i=1

x
−〈e,Si〉3
i .

Let e be the dimension vector of a C-submodule of Ext1E(T,M) and ej its j-th
coordinate in the basis of the Si, 1 ≤ i ≤ n. Then we have

−〈e, Si〉3 = −
r∑

j=1

ej〈Sj , Si〉3 =

r∑
j=1

bijej .

Therefore, we get
n∏

i=1

x
−〈e,Si〉3
i =

n∏
i=1

x
∑r

j=1 bijej
i =

r∏
j=1

ŷj
ej .

Thus, we can write

X ′
M =

n∏
i=1

x
〈FM,Si〉τ
i (

∑
e

χ(Gre(Ext
1
E(T,M)))

r∏
j=1

ŷj
ej ).

The polynomial

R(ŷ1, . . . , ŷr) =
∑
e

χ(Gre(Ext
1
E(T,M)))

r∏
j=1

ŷj
ej

is primitive since it has constant term 1. Thus, by definition, we have gT (X
′
M )(i) =

〈FM,Si〉τ = [indT (M) : Ti]. �
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Corollary 4.4. As above, let E be a Hom-finite k-linear Frobenius category such
that its stable category C = E is 2-Calabi-Yau and assume that

• E admits a cluster-tilting object T with indecomposable direct summands
T1, . . . , Tn numbered in such a way that Ti is projective iff r < i ≤ n,
where 1 < r ≤ n is an integer;

• the first r columns of the antisymmetric matrix B(T ) associated with the
quiver of the algebra C = EndE(T ) are linearly independent.

Then the following hold.

a) The map M �→ X ′
M induces an injection from the set of isomorphism classes

of nonprojective rigid indecomposables of E into the set Q(x1, . . . , xn).
b) Let I be a finite set and T i, i ∈ I, cluster-tilting objects of E . Suppose

that for each i ∈ I, we are given an object Mi which belongs to addT i

and does not have nonzero projective direct factors. If the Mi are pairwise
nonisomorphic, then the X ′

Mi
are linearly independent.

Proof. a) clearly follows from b). Let us prove b). First, we will show that we can
assign a degree to each xi such that for every 1 ≤ i ≤ r the degree of ŷi is 1.

Indeed, it suffices to put deg(xi) = ki, where the ki are rationals such that we
have

(k1, k2, . . . , kn)B(T )0 = (1, 1, . . . , 1).

Since rank B(T )0 = r, this equation does admit a solution. Thus, the term of
strictly minimal total degree in X ′

Mj
is

n∏
i=1

x
[indT (Mj):Ti]
i .

Suppose that the X ′
Mi

are linearly dependent; i.e. there is a nonempty subset I ′

of I and rationals ci, i ∈ I ′, which are all nonzero such that∑
i∈I′

ciX
′
Mi

= 0.

If we consider the terms of minimal total degree of the polynomial above, we
find ∑

j∈I′′

cj

n∏
i=1

x
[indT (Mj):Ti]
i = 0

for some nonempty subset I ′′ of I. Since the Mj are all pairwise nonisomorphic,
Lemma 4.2 implies that the indices indT (Mj) are all distinct. Thus, the monomials∏n

i=1 x
[indT (Mj):Ti]
i are linearly independent, a contradiction. �

Remark 4.5. If the algebra C has finite global dimension, then the condition
rankB(T )0 = r is superfluous. Indeed, let A be the Cartan matrix of C. Then
B(T )0 is the submatrix formed by the first r columns of the invertible matrix A−t.

Next we will investigate the relation between the indices of an exchange pair.
Recall that F is the functor HomE(T, ?) : E → modC. A conflation of E ,

0 → X → Y → Z → 0,

is F -exact if

0 → FX → FY → FZ → 0
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is exact in modC. The F -exact sequences define a new exact structure on the
additive category E . For each X, we have an F -exact conflation

0 → T1 → T0 → X → 0.

This shows that E endowed with the F -exact sequences has enough projectives and
that its subcategory of projectives is addT . Moreover, if we denote by ExtiF (X,Z)
the i-th extension groups of the category E endowed with the F -exact sequences,
then Ext1F (X,Z) is the cohomology at HomE(T1, Z) of the complex

0 → HomE(X,Z) → HomE(T0, Z) → HomE(T1, Z) → 0 → . . . .

Lemma 4.6. For X,Z ∈ E , there is a functorial isomorphism

ExtiF (X,Z)
∼−→ ExtiC(FX,FZ).

Proof. Clearly, the derived functor

LF : Db(E) → Db(modC)

is fully faithful. Thus, ExtiF (X,Z)
∼−→ ExtiC(FX,FZ). �

Now Proposition 15.4 of [23] still holds in our general setting.

Proposition 4.7. Let T and R be cluster-tilting objects of E . Let

η′ : 0 → Rk → R′ → R∗
k → 0, η′′ : 0 → R∗

k → R′′ → Rk → 0

be the two exchange sequences associated to an indecomposable direct summand Rk

of R which is not E-projective. Then exactly one of η′ and η′′ is F -exact. Moreover,
we have

dim HomE(T,Rk)+dim HomE(T,R
∗
k)=max{dim HomE(T,R

′), dim HomE(T,R
′′)}.

Proof. Using Lemma 4.6, the proof is the same as that of proposition 15.4 in [23].
�

Corollary 4.8. Under the assumptions of the above proposition, put

I ′ = indT (R
′)− indT (Rk),

I ′′ = indT (R
′′)− indT (Rk).

Then we have

indT (R
∗
k) =

{
I ′, if dimFI ′ ≥ dimFI ′′,
I ′′, if dimFI ′ ≤ dimFI ′′,

and exactly one of these cases occurs. Let h(i) = [indT (R
′) − indT (R

′′) : Ti], for
1 ≤ i ≤ n. Then h is a linear combination of the columns of B(T )0.

Proof. The first part follows from Proposition 4.7 directly, because the index is
additive on F -exact sequences.

Since (Rk, R
∗
k) is an exchange pair, we have

X ′
Rk

X ′
R∗

k
= X ′

R′ +X ′
R′′ .

For simplicity, we write

HM =
∑
e

χ(Gre(ExtE(T,M)))

r∏
i=1

ŷi
ei
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for X ′
M . By Proposition 4.3, we have

n∏
i=1

x
[indT (Rk)+indT (R∗

k):Ti]
i HRk

HR∗
k
=

n∏
i=1

x
[indT (R′):Ti]
i HR′ +

n∏
i=1

x
[indT (R′′):Ti]
i HR′′ .

Assume that indT (R
∗
k) = indT (R

′)− indT (Rk). We have

HRk
HR∗

k
−HR′ =

n∏
i=1

x
[indT (R′′)−indT (R′):Ti]
i HR′′ .

By comparing the minimal total degree we get that
∏n

i=1 x
[indT (R′′)−indT (R′):Ti]
i is a

monomial in ŷi, 1 ≤ i ≤ r, which implies the result. �

5. Frobenius 2-Calabi-Yau realizations

Recall the bijection defined in section 2.2 between antisymmetric integer n × n
matrices and finite quivers without loops or 2-cycles with vertex set {1, 2, . . . , n}:
the quiver Q corresponds to the matrix B iff bij > 0 exactly when there are arrows
from i to j in Q and in this case their number is bij .

We call an n × n antisymmetric integer matrix B acyclic if the corresponding
quiver Q does not have oriented cycles. Two matrices B and B′ are called mutation
equivalent if we can obtain B′ from B by a series of matrix mutations followed by
conjugation with a permutation matrix.

Let 0 ≤ r < n be positive integers and let (Q,F ) be an ice quiver (cf. section 2.2)
with vertex set Q0 = {1, . . . , n} and set of frozen vertices F = {r + 1, . . . , n}. We

define B̃ to be the n×r matrix formed by the first r columns of the skew-symmetric
matrix associated with Q and we let A(Q,F ) = A(B̃) be the cluster algebra with

coefficients associated with B̃; cf. sections 2.1 and 2.2.

Definition 5.1. A Frobenius 2-Calabi-Yau realization of the cluster algebra A(B̃)
is a Frobenius category E with a cluster-tilting object T as in section 3 such that

1) E has a cluster structure in the sense of [2]; cf. section 2.7.
2) T has exactly n indecomposable pairwise nonisomorphic summands T1, T2,

. . ., Tn and among these, precisely Tr+1, . . ., Tn are projectives.

3) The matrix B̃ equals the matrix formed by the first r columns of the anti-
symmetric matrix associated with the quiver of the endomorphism algebra
of T in E .

Remark 5.2. Suppose we have a Frobenius 2-CY realization of a cluster algebra
A(Q,F ) as above. Let 1 ≤ s ≤ r. Then by Lemma 2.5 b), we have conflations

0 → T ∗
s → E → Ts → 0,

0 → Ts → E′ → T ∗
s → 0.

Here the middle terms are the sums

E =
⊕
bis>0

T bis
i , E′ =

⊕
bis<0

T−bis
i .

Therefore, none of the first r vertices of Q can be a source or a sink.
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Example 5.3. All quivers obtained from Theorem 2.3 of [23] and, more generally,
from Theorem II.4.1 of [2] admit Frobenius 2-Calabi-Yau realizations. We illustrate
this for the following specific case taken from section II.4 of [loc. cit.]. Let ∆ be
the graph

2
��

��

1

����
3 .

Let Λ be the completion of the preprojective algebra of ∆ and W the Weyl group
associated with ∆. Let w be the element ofW given by the reduced word s2s1s2s3s2.
Let ei, i = 1, 2, 3, be the primitive idempotents corresponding to the vertices of ∆.
Let Ii = Λ(1− ei)Λ. By Theorem II.2.8 of [2], the category SubΛ/Iw formed by all
Λ-submodules of finite direct sums of copies of Λ/Iw is a Frobenius category whose
associated stable category is 2-Calabi-Yau; moreover, it contains the cluster-tilting
object

T = Λ/I2 ⊕ Λ/I2I1 ⊕ Λ/I2I1I2 ⊕ Λ/I2I1I2I3 ⊕ Λ/Iw.

According to Proposition II.1.11 of [loc. cit.], in this decomposition, each direct
factor differs from the preceding one by one indecomposable direct summand Ti, 1 ≤
i ≤ 5, and among these, exactly T3, T4 and T5 are projective-injective. Moreover,
by Theorem II.4.1 of [loc. cit.], the quiver of the cluster-tilting object is

T1

����
��

�

T2

�������

��

T3

���������������

T4
�� T5 .

������������

Using Theorem I.1.6 of [2], one can easily show that the category SubΛ/Iw is a

Frobenius 2-Calabi-Yau realization of the cluster algebra A(B̃) given by the matrix

B̃ =

⎛
⎜⎜⎜⎜⎝

0 −1
1 0
−1 0
0 −1
0 1

⎞
⎟⎟⎟⎟⎠ .

We return to the general setup. Following [13] we define a cluster-tilting object
T ′ of E to be reachable from T if it is obtained from T by a finite sequence of
mutations. We define an indecomposable rigid object M to be reachable from T if
it occurs as a direct factor of a cluster-tilting object reachable from T .

Theorem 5.4. Let 1 < r ≤ n be integers and A(B̃) the cluster algebra with

coefficients associated with an initial n×r matrix B̃ of maximal rank. Suppose that
A(B̃) admits a Frobenius 2-CY realization E with cluster-tilting object T .

a) The map M �→ X ′
M induces a bijection from the set of isomorphism classes

of indecomposable rigid nonprojective objects of E reachable from T onto
the set of cluster variables of A(B̃). Under this bijection, the cluster-tilting

objects reachable from T correspond to the clusters of A(B̃).
b) The map M �→ indT (M) is a bijection from the set of isomorphism classes

of indecomposable rigid nonprojective objects of E reachable from T onto
the set of g-vectors of cluster variables of A(B̃).
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Proof. a) It follows from Theorem 3.3 c) that X ′
M is a cluster variable for each inde-

composable rigid M reachable from T and from the existence of a cluster structure
on E that the map M �→ X ′

M is a surjection onto the set of cluster variables. The
injectivity of the map M �→ X ′

M follows from Lemma 4.2 and Proposition 4.3. The
second statement follows from the first one and the fact that E has a cluster struc-
ture. b) The map is injective by Lemma 4.2. It is surjective thanks to part a) and
Proposition 4.3. �
Theorem 5.5. Let 1 < r ≤ n be integers and A(B̃) the cluster algebra with

coefficients associated with an initial n×r matrix B̃ of maximal rank. Suppose that
A(B̃) admits a Frobenius 2-CY realization E with cluster tilting object T .

a) Conjecture 7.2 of [21] holds for A; i.e. cluster monomials are linearly in-
dependent.

b) Conjecture 7.10 of [21] holds for A; i.e.
1) Different cluster monomials have different g-vectors with respect to a
given initial seed.
2) The g-vectors of the cluster variables in any given cluster form a Z-basis
of the lattice Zr.

c) Conjecture 7.12 of [21] holds for A; i.e. if (g1, . . . , gr) and (g′1, . . . , g
′
r)

are the g-vectors of one and the same cluster variable with respect to two
clusters t and t′ related by the mutation at l, then we have

g′j =

{
−gl if j = l,
gj + [bjl]+gl − bjl min(gl, 0) if j �= l,

where the bij are the entries of the r× r matrix B associated with t and we
write [x]+ for max(x, 0) for any integer x.

Proof. a) By Theorem 5.4 a), each cluster monomial m is the image X ′
M of a

rigid object M of E , where M does not have any nonzero projective direct factor.
Moreover, such an object M is unique up to isomorphism. Thus, given a set m1,
. . . , mN of pairwise distinct cluster monomials, we obtain a set M1, . . . ,MN of
pairwise nonisomorphic rigid objects without projective direct factors such that
X ′

Mi
= mi for 1 ≤ i ≤ N . Thus, by Corollary 4.4 b), the images X ′

Mi
= mi of the

Mi are not only pairwise distinct but in fact linearly independent.
b) Let us prove 1). Let m and m′ be two distinct cluster monomials. We

would like to compare their g-vectors with respect to a given initial cluster. By
Theorem 5.4 a), we may assume that this given cluster consists of the images under
M �→ X ′

M of the indecomposable direct factors of T . Still by Theorem 5.4 a),
the monomials m and m′ are the images X ′

M and X ′
M ′ of two nonisomorphic rigid

objects M and M ′ of E without nonzero projective direct factors. Thus M and
M ′ are still nonisomorphic in the stable category C = E . But by Theorem 2.3
of [13], nonisomorphic rigid objects have distinct indices indT (M) and indT (M

′).
Therefore, they have distinct g-vectors by Proposition 4.3. Now let us prove 2).
Let a cluster x′ be given. By Theorem 5.4 a), the variables x′

i in x′ are the images
under M �→ X ′

M of the indecomposable nonprojective direct summands T ′
i of a

cluster-tilting object T ′ reachable from T . By Proposition 4.3, the g-vector of each
x′
i is the index of T ′

i . Now by Theorem 2.6 of [13], the indices of the indecomposable
direct factors of a cluster-tilting object form a basis of the lattice K0(addT ), where
T is the image of T in C. Thus the g-vectors of the x′

i form a basis of the lattice
Zr.
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c) By Theorem 5.4 a), we may assume that under the maps M �→ X ′
M , the

clusters t and t′ correspond to the cluster-tilting object T and another cluster-tilting
object T ′ obtained from T by mutation at the nonprojective indecomposable direct
factor Tl. Moreover, the given cluster variable x corresponds to some nonprojective
rigid indecomposable object X. By Proposition 4.3, the g-vectors of x with respect
to t and t′ are given by the components of the indices indT (X) and indT ′(X) in
the bases formed by the indT (Ti), 1 ≤ i ≤ r, respectively the indT ′(T ′

i ), 1 ≤ i ≤ r,
where the Ti and the T ′

i are the nonprojective indecomposable direct factors of T ,
respectively T ′. Now Theorem 3.1 of [13] tells us exactly how indT (X) and indT ′(X)
are related: Let

Tl
�� E′ �� T ∗

l
�� ΣTl and T ∗

l
�� E �� Tl

�� ΣT ∗
l

be the exchange triangles associated with the mutation from T to T ′. Let

φ+ : K0(addT ) → K0(addT
′) and φ− : K0(addT ) → K0(addT

′)

be the linear maps which send the classes [Ti], i �= l, to themselves and send [Tl] to

φ+([Tl]) = [E]− [T ∗
l ], respectively φ−([Tl]) = [E′]− [T ∗

l ].

Then by Theorem 3.1 of [13], we have

indT ′(X) =

{
φ+(indT (X)) if [indT (X) : Tl] ≥ 0,
φ−(indT (X)) if [indT (X) : Tl] ≤ 0.

We leave it to the reader to check that this yields exactly the rule given in the
assertion. �

Let B̃ be a 2r × r matrix whose principal (i.e. top r × r) part B0 is mutation
equivalent to an acyclic matrix, and whose complementary (i.e. bottom) part is the

r × r identity matrix. Let A(B̃) be the cluster algebra with the initial seed (x, B̃).

Theorem 5.6. With the above notation, the cluster algebra A(B̃) does not admit
a Frobenius 2-CY realization.

Proof. Suppose that A(B̃) has a Frobenius 2-CY realization E . Then there is a
cluster-tilting object T of E with 2r indecomposable direct summands. Then we
have B(T )0 = B̃. Since B0 is mutation equivalent to an acyclic matrix Bc by
a series of mutations, we have a cluster-tilting object T ′ such that the quiver of
the stable endomorphism algebra of T ′ corresponds to Bc. Let A be the stable
endomorphism algebra of T ′. By the main theorem of [33], we have a triangle
equivalence E � CA, where CA is the cluster category of A. Thus the cluster-tilting
graph of E is connected and every rigid object of E can be extended to a cluster-
tilting object of E .

Let F = HomE(T, ?). Let Si, 1 ≤ i ≤ 2r, be the simple modules of EndE(T ). For
each object M of E , we have the Laurent polynomial

X ′
M =

2r∏
i=1

x
〈FM,Si〉τ
i

∑
e

χ(Gre(Ext
1
E(T,M)))

2r∏
i=1

x
−〈e,Si〉3
i .

Let

yj =

2r∏
i=1

x
bij
i , 1 ≤ j ≤ r.
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As in Proposition 4.3, we can rewrite X ′
M as

X ′
M =

2r∏
i=1

x
〈FM,Si〉τ
i (1 +

∑
e
=0

χ(Gre(Ext
1
E(T,M)))

r∏
i=1

y
ej
j ),

where ej is the j-th coordinate of e in the basis of the Si, 1 ≤ i ≤ 2r. If the
indecomposable object M is rigid and not isomorphic to Ti for r < i ≤ 2r, then
X ′

M is a cluster variable of A(B̃). By the definition of the rational function Fl,t

associated with the cluster variable xl,t in [21], we have

FM = X ′
M (x1 = x2 = . . . = xr = 1)

=

2r∏
i=r+1

x
〈FM,Si〉τ
i (1 +

∑
e
=0

χ(Gre(Ext
1
E(T,M)))

2r∏
j=r+1

x
ej−r

j ).

Put

GM = 1 +
∑
e
=0

χ(Gre Ext
1
E(T,M))

2r∏
j=r+1

x
ej−r

j .

Note that GM is always a polynomial of xi, r + 1 ≤ i ≤ 2r, with constant term
1. By Proposition 5.2 in [21], we know that the polynomial FM is not divisible
by xi, r + 1 ≤ i ≤ 2r. Now for i > r, we have 〈FM,Si〉τ ≥ 0 in general, which
implies that 〈FM,Si〉τ = 0. In particular, 〈FM,Si〉τ = [indT (M) : Ti] = 0, for
r + 1 ≤ i ≤ 2r. Consider M = ΣT1, which is rigid and indecomposable, so X ′

M is

a cluster variable of the cluster algebra A(B̃). But in the Frobenius category E we
have the conflation

0 → T1 → P → ΣT1 → 0,

where P is an injective hull of T1, which implies

indT (M) = [P ]− [T1].

Thus there is always some r + 1 ≤ i ≤ 2r such that [indT (M) : Ti] �= 0, a contra-
diction. �

Remark 5.7. In the above notation, if B0 is acyclic, then it is easy to deduce that
the cluster algebra A(B̃) does not have a Frobenius 2-CY realization. Indeed in this

case, one of the first r vertices of Q which corresponds to B̃ is always a sink. This
is incompatible with the existence of a Frobenius 2-CY realization by Remark 5.2.

6. Triangulated 2-Calabi-Yau realizations

6.1. Definitions. Let B = (bij)n×n be an antisymmetric integer matrix and A(B)
the associated cluster algebra. A 2-Calabi-Yau triangulated category C is called a
triangulated 2-Calabi-Yau realization of the matrix B if C admits a cluster-tilting
object T such that

• C has a cluster structure in the sense [2]; cf. section 2.4.
• T has exactly n nonisomorphic indecomposable direct summands T1, . . .,
Tn.
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• The antisymmetric matrix B(T ) associated with the quiver of the endo-
morphism algebra of T equals B.

We denote a triangulated 2-CY realization of B by C ⊃ addT .
Let n1 and n2 be positive integers. Let B1 and B2 be antisymmetric integer n1×

n1, resp. n2 × n2 matrices. Let B21 be an integer n2 × n1 matrix with nonnegative
entries. Let Ci ⊃ Ti be a triangulated 2-CY realization of Bi, i = 1, 2. Let B be
the matrix (

B1 −Bt
21

B21 B2

)
.

A gluing of C1 ⊃ T1 with C2 ⊃ T2 with respect to B is a triangulated 2-CY
realization C ⊃ T of B endowed with full additive subcategories T ′

1 and T ′
2 such

that

• HomC(T ′
1 , T ′

2 ) = 0.
• The set indec(T ) is the disjoint union of indec(T ′

1 ) with indec(T ′
2 ).

• There is a triangle equivalence

⊥(ΣT ′
1 )/(T ′

1 )
∼−→ C2

inducing an equivalence T ′
2

∼−→ T2.
• There is a triangle equivalence

⊥(ΣT ′
2 )/(T ′

2 )
∼−→ C1

inducing an equivalence T ′
1

∼−→ T1.
A principal gluing of C1 ⊃ T1 is a gluing of C1 ⊃ T1 with C2 ⊃ T2 with respect to(

B1 −In1

In1
0

)
,

where C2 is the cluster category of (A1)
n1 and T2 is the image of the subcategory

of finitely generated projective modules.
It is well known that each acyclic matrix B admits a triangulated 2-CY realiza-

tion CQB
, where CQB

is the cluster category of the quiver QB corresponding to B.
In the last subsection, we will see that CQB

does admit a principal gluing.

Conjecture 6.1. If C1 and C2 are algebraic, a gluing exists for any matrix B21

with nonnegative entries.

Amiot’s work [1] provides some evidence for the conjecture. Indeed, if C1 and
C2 are generalized cluster categories [1] associated with Jacobi-finite quivers with
potential [15], it is easy to construct a quiver with potential which provides a gluing
as required by the conjecture.

6.2. Cluster algebras with coefficients. Let B be an antisymmetric integer
n × n matrix. Suppose that the matrix B admits a triangulated 2-CY realization
C with the cluster-tilting subcategory T = addT . Let Ti, 1 ≤ i ≤ n, be the
nonisomorphic indecomposable direct summands of T . By the definition, we have
B(T ) = B. The mutations of the matrix B correspond to the mutations of the
cluster-tilting object T . Fix an integer 0 < r ≤ n and consider the submatrix B0

of B formed by the first r columns of B. If l ≤ r, then we have

µl(B
0) = (µl(B))0,
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where µl is the mutation in the direction l. Thus we can view the cluster algebra
A(B0) with coefficients as a subcluster algebra of A(B); cf. Ch. III of [2].

Denote by P the full subcategory of C whose objects are the finite direct sums
of copies of Tr+1, . . . , Tn. We define a subcategory of C as follows:

U = ⊥(ΣP) = {X ∈ C|Ext1C(Ti, X) = 0 for r < i ≤ n}.
By Theorem I.2.1 of [2], the quotient category U/P is a 2-Calabi-Yau triangulated
category and the projection U → U/P induces a bijection between the cluster-
tilting subcategories of C containing P and the cluster-tilting subcategories of U/P.
Thus, a mutation of a cluster-tilting object in U/P can be viewed as a mutation
of a cluster-tilting object in U ⊂ C which does not affect the direct summands Ti,
r < i ≤ n. This exactly corresponds to a mutation of the matrix B in one of the first
r directions. In particular, a mutation of the cluster algebra A(B0) corresponds to
a mutation of a cluster-tilting object in U .

Recall from section 2.5 that on C, we have Palu’s cluster character associated
with T , which is given by the formula

XM = XT
M =

n∏
i=1

x
−[coindT M :Ti]
i

∑
e

χ(Gre(HomC(T,M)))
n∏

i=1

x
〈Si,e〉a
i .

We consider the composition of this map with the shift:

X ′
M = XΣM =

n∏
i=1

x
[indT M :Ti]
i

∑
e

χ(Gre(HomC(T,ΣM)))
n∏

i=1

x
〈Si,e〉a
i .

We consider the restriction of the map M �→ X ′
M to the subcategory U . It follows

from Proposition 2.3 that if M is an indecomposable rigid object reachable from
T in U , then X ′

M is a cluster variable of A(B0). We will rewrite this variable so
as to express its g-vector (if it is defined) in terms of the index of M : Let M be
an object of U . Then HomC(T,ΣM) is an EndC(T )-module which vanishes at each
vertex r < i ≤ n. Let e be the image of HomC(T,ΣM) in the Grothendieck group
of modEndC(T ). Let ej be the j-th coordinate of e with respect to the basis Si,
1 ≤ i ≤ n. We have

〈Si, e〉a = 〈Si, e〉τ − 〈e, Si〉τ

=

r∑
j=1

ej(〈Si, Sj〉τ − 〈Sj , Si〉τ )

=

r∑
j=1

ej(Ext
1
EndC(T )(Sj , Si)− Ext1EndC(T )(Si, Sj))

=
r∑

j=1

bijej .

As in section 4, put

yj =
n∏

i=1

x
bij
i , for 1 ≤ j ≤ r.

Then X ′
M can be rewritten as

X ′
M =

n∏
i=1

x
[indT (M):Ti]
i (1 +

∑
e
=0

χ(Gre(HomC(T,ΣM)))

r∏
j=1

y
ej
j ).
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As in section 4, when rank B0 = r, we can define the g-vector of M ∈ U with
respect to a cluster tilting object T . Thus we have proved part a) of the following
proposition. We leave the easy proof of part b) to the reader.

Proposition 6.2. Suppose that rank B0 = r. Let M be an object of U .
a) The g-vector of X ′

M with respect to the initial cluster is given by

gT (X
′
M )(i) = [indT (M) : Ti], for 1 ≤ i ≤ r.

b) The index of the image of M in U/P with respect to the image of T is

r∑
i=1

gT (X
′
M )(i)[Ti].

In analogy with the definition in section 5, we define a cluster-tilting object T ′

of U to be reachable from T if it is obtained from T by a sequence of mutations
at indecomposable rigid objects of U not in P. We define an indecomposable rigid
object of U to be reachable from T if it is a direct factor of a cluster-tilting object
reachable from T .

Theorem 6.3. Let B be an antisymmetric integer n× n matrix and 1 ≤ r ≤ n an
integer such that the submatrix B0 of B formed by the first r columns has rank r.
Let A = A(B0) be the associated cluster algebra with coefficients. Assume that the
matrix B admits a triangulated 2-CY realization given by a triangulated category C
with a cluster tilting object T which is the sum of n indecomposable direct factors
T1, . . . , Tn. Denote by P the full subcategory of C whose objects are the finite direct
sums of copies of Tr+1, . . . , Tn and define the subcategory U of C by

U = ⊥(ΣP) = {X ∈ C|Ext1C(Ti, X) = 0 for r < i ≤ n}.

For M ∈ C, define (cf. section 2.5)

X ′
M = XT

ΣM =

n∏
i=1

x
[indT M :Ti]
i

∑
e

χ(Gre(HomC(T,ΣM)))

n∏
i=1

x
〈Si,e〉a
i .

Then the following hold.

a) The map M �→ X ′
M induces a bijection from the set of isomorphism classes

of indecomposable rigid objects of U not belonging to P and reachable from
T onto the set of cluster variables of A(B0). Under this bijection, the
cluster-tilting objects of U reachable from T correspond to the clusters of
A(B0).

b) The map M �→ [indT (M) : Ti]1≤i≤r is a bijection from the set of indecom-
posable rigid objects of U not belonging to P and reachable from T onto the
set of g-vectors of cluster variables of A(B0).

c) Conjecture 7.2 of [21] holds for A; i.e. the cluster monomials are linearly
independent over Z. Moreover, the cluster monomials form a basis of the
Z[xr+1, . . . , xn]-submodule of A(B0) which they generate.

d) Conjecture 7.10 of [21] holds for A; i.e.
1) Different cluster monomials have different g-vectors with respect to a
given initial seed.
2) The g-vectors of the cluster variables in any given cluster form a Z-basis
of the lattice Zr.
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e) Conjecture 7.12 of [21] holds for A; i.e. if (g1, . . . , gr) and (g′1, . . . , g
′
r)

are the g-vectors of one and the same cluster variable with respect to two
clusters t and t′ related by the mutation at l, then we have

g′j =

{
−gl if j = l,
gj + [bjl]+gl − bjl min(gl, 0) if j �= l,

where the bij are the entries of the r× r matrix B associated with t and we
write [x]+ for max(x, 0) for any integer x.

Proof. It follows from Proposition 2.3 that the map M �→ X ′
M is well-defined and

surjective onto the set of cluster variables of A(B0). It is injective by Proposition
6.2 b) because rigid objects of U/P are determined by their indices and the map
taking a rigid object M of U without nonzero direct factors in P to its image in U/P
is injective (up to isomorphism). This also implies part b). The same proof as for
Corollary 4.4 b) yields the linear independence of the cluster monomials in c). Let
us prove that the cluster monomials form a basis of the Z[xr+1, . . . , xn]-submodule
of A(B0) which they generate. Indeed, over Z, this submodule is spanned by the
images X ′

M of all rigid objects of U obtained as direct sums of objects of P and
indecomposable rigid objects reachable from T not belonging to P. Such objects
M are, in particular, rigid in T and they can be distinguished (up to isomorphism)
by their indices. Now again, the same proof as for Corollary 4.4 b) shows that
these X ′

M are linearly independent over Z. Clearly this implies that the cluster
monomials form a basis of the Z[xr+1, . . . , xn]-submodule of A(B0) which they
generate. As in the proof of Theorem 5.5 b), the assertions in part d) follow from
the interpretation of the g-vector given in 6.2 b) and the facts that

1) rigid objects of U/P are determined by their indices (Theorem 2.3 of [13])
and

2) the indices of the indecomposable direct factors of a cluster-tilting subcat-
egory T of U/P form a basis of K0(T ) (Theorem 2.6 of [13]).

Part e) is proved in exactly the same way as the corresponding statement for cluster
algebras with a 2-CY Frobenius realization in Theorem 5.4 c). �

Example 6.4. Let A4 be the quiver 3 → 1 → 2 ← 4, CQ the corresponding cluster
category. The following is the AR quiver of CQ, where Pi, 1 ≤ i ≤ 4, are the
indecomposable projective kQ-modules.

P4

����
��

123

������ ΣP3

��			
		

. . . P2

		








���� 12

������








 ΣP1

��			
		

. . .

. . . P1

		






����
��

124

������

����
��

� 2

��������

��					 ΣP2
. . .

P3

		����
S1

		




M

��������
ΣP4

�������

Let T = P1 ⊕ P2 ⊕ P3 ⊕ P4 be the canonical cluster-tilting object in CQ, P =
add(P3 ⊕ P4). It is easy to see that the indecomposable objects in U/P ∼= CA2

are
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exactly P1, P2,M,ΣP1,ΣP2. In this case, the matrix B(T )0 is⎛
⎜⎜⎝

0 1
−1 0
1 0
0 1

⎞
⎟⎟⎠ .

We have rankB(T )0 = 2. Moreover, the cluster algebra A(B(T )0) has principal
coefficients.

6.3. Cluster algebras with principal coefficients. In this subsection, we sup-
pose that 2r = n and that the complementary part of B0 is the r × r identity
matrix. Thus the cluster algebra A(B0) has principal coefficients. Recall that for
the matrix B, we have a triangulated 2-CY realization C ⊃ addT and we have
fixed P = add(Tr+1 ⊕ . . . ⊕ T2r). Let Q = add(T1 ⊕ . . . ⊕ Tr). Let C1 = U/P
and C2 = ⊥(ΣQ)/Q be the quotient categories, T1 = add(π1(T1 ⊕ . . . ⊕ Tr)) and
T2 = add(π2(Tr+1⊕. . .⊕T2r)) the corresponding cluster-tilting subcategories, where
π1 and π2 are the respective projection functors. Then C is a gluing of C1 ⊃ T1
with C2 ⊃ T2 with respect to the matrix B.

As in section 5, for a cluster variable xl,t of the cluster algebra A(B0) which
corresponds to an indecomposable rigid object M ∈ U and not in P, we denote the
rational function Fl,t defined in section 3 of [21] by FM . Since xl,t = X ′

M , we have

FM = X ′
M (x1 = . . . = xr = 1)

=
2r∏

i=r+1

x
[indT (M):Ti]
i (1 +

∑
e
=0

χ(Gre(HomC(T,ΣM)))
2r∏

j=r+1

x
ej−r

j ).

The following result is now a consequence of Proposition 3.6 and 5.2 in [21]. We
give a proof based on representation theory. Note that Conjecture 5.4 of [21] will
be proved in full generality in [16].

Theorem 6.5. Conjecture 5.4 of [21] holds for A(B0); i.e. the polynomial FM has
constant term 1. Thus we have

FM = 1 +
∑
e
=0

χ(Gre(HomC(T,ΣM)))

2r∏
j=r+1

x
ej−r

j .

Proof. We need to show that for each i > r, [indT (M) : Ti] is zero. Since X ′
M is a

cluster variable and M is indecomposable, we have the following two cases:
Case 1: M ∼= ΣTj for some j ≤ r. We have indT (M) = −[Tj ], which implies that
[indT (M) : Ti] = 0.
Case 2: M is not isomorphic to ΣTj for any j ≤ r. Recall that by assumption, M
is not isomorphic to Tj for any j > r. We have the following minimal triangle:

T 1
M → T 0

M → M → ΣT 1
M

with T 0
M , T 1

M in addT and indT (M) = [T 0
M ]− [T 1

M ]. Since M belongs to U , for each
i > r we have HomC(M,ΣTi) = 0. If we had [T 1

M : Ti] �= 0 for some i > r, then the
above minimal triangle would have a nonzero direct factor

Ti → Ti → 0 → ΣTi.

Suppose that we have [T 0
M : Ti] �= 0 for some i > r. Applying the functor F =

HomC(T, ?) to the triangle, we get a minimal projective resolution of FM as an
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EndC(T )-module. Note that for i > r, the projective module FTi is also a simple
module, which implies that FM is decomposable, a contradiction. �

Suppose that the indecomposable rigid object M of C is reachable from T and
consider the polynomial FM of Theorem 6.5. We define the f -vector fT (M) =
(f1, . . . , fr) of M with respect to T by

FM |Trop(u1,...,ur)(u
−1
1 , . . . , u−1

r ) = u−f1
1 . . . u−fr

r ,

where Trop(u1, . . . , ur) is the tropical semifield defined in section 2.1.

Proposition 6.6. Suppose that M is not isomorphic to Ti for 1 ≤ i ≤ 2r, and let
dim HomC(T,ΣM) = (d1, . . . , dr). Then we have

di = fi, 1 ≤ i ≤ r.

Proof. By Theorem 6.5, we have

FM = 1 +
∑
e
=0

χ(Gre(HomC(T,ΣM)))

2r∏
j=r+1

x
ej−r

j .

Therefore, we obtain

FM |Trop(u1,...,ur)(u
−1
1 , . . . , u−1

r ) = 1⊕
⊕
e
=0

χ(Gre(HomC(T,ΣM)))

r∏
j=1

u
−ej
j

= u−d1
1 . . . u−dr

n .

�

Under the assumptions above, we have proved that the dimension vector of
HomC(T,ΣM) equals the f -vector fT (M). Conjecture 7.17 of [21] states that the
f -vectors coincide with the denominator vectors in general. But by recent work of A.
Buan, R. Marsh and I. Reiten [5], the dimension vectors do not always coincide with
the denominator vectors. In fact, as shown in [5], for a quiver Q whose underlying
graph is an affine Dynkin diagram, the vector dimHomCQ

(T,M) is different from

the denominator vector of XT
M if M = R and R is a direct factor of T , where

R is a rigid regular indecomposable of maximal quasi-length. This leads to the
following minimal counterexample to Conjecture 7.17 in [21]. Let us point out that
the corresponding computations already appear in [12]. In subsection 5.5 below,
we will show that in many cases, the f -vector is greater than or equal to the
denominator vector.

6.4. A counterexample.

Example 6.7. Let Q be the following quiver:

3



��
��

1 �� 2 .

������

Let A(Q) be the cluster algebra associated with the initial seed given by Q and
x = (x1, x2, x3). Consider the mutations at 3, 2, 1. Let xt3 be the corresponding
cluster. We have

xt3
1 =

x2
1 + 2x1x2 + x2

2 + x3

x1x2x3
,
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and the corresponding F -polynomial is

F
x
t3
1

= 1 + (1 + y1 + y1y2)y3 + y1y2y
2
3 .

Then the f -vector of xt3
1 does not coincide with the denominator vector.

Let us interpret this counterexample in terms of representation theory. Let A2,1

be the quiver

3

���
��

�

1

������
�� 2 .

Consider the cluster category CA2,1
of kA2,1. Let Pi, 1 ≤ i ≤ 3, be the indecompos-

able projective modules and Si the corresponding simple modules. Then

T = P1 ⊕ P2 ⊕ τS3

is a cluster-tilting object of CA2,1
, where τ is the Auslander-Reiten translation

functor. The quiver QT of T looks like

τS3

����
��

P1
�� P2 .

������

We will show that the cluster category CA2,1
⊃ addT admits a principal gluing. For

this, consider the following quiver Q1 :

6 �� 3

��
4 �� 1 ��

��

2 5 .��

It admits a cluster category CQ1
. Let TQ1

= kQ1 be the canonical cluster-tilting
object in CQ1

. Let T ′ = µ3(µ6(TQ1
)) be the cluster-tilting object obtained by

mutations from TQ1
. Denote the nonisomorphic indecomposable direct summands

of T ′ by T ′
i , 1 ≤ i ≤ 6. Then the quiver of QT ′ is

T ′
6

��
T ′
3

�����
�

T ′
4

�� T ′
1

�� T ′
2

������

T ′
5 .��

Let P = add(T ′
4⊕T ′

5⊕T ′
6). Then U/P is a 2-Calabi-Yau triangulated category and

admits a cluster-tilting object with the quiver QT . By the main theorem of [33], we
know that there is a triangle equivalence U/P � CA2,1

. Thus, we see that the matrix
B(T ′) admits a triangulated 2-CY realization CQ1

which is the required principal
gluing of CA2,1

⊃ addT . We may assume that the images of T ′
1, T

′
2, T

′
3 coincide with

P1, P2, τS3 in CA2,1
respectively. Denote the shift functor in CQ1

(resp. CA2,1
) by Σ

(resp. [1]).
Let N be the preimage of S3 in CQ1

. Then one can easily compute

dim HomCQ1
(T ′,ΣN) = dim HomCA2,1

(T, τS3) = (1, 1, 2).

Note that the denominator vector of X ′
N equals the denominator vector of XT

τS3
.

Now the result follows from the proposition above.
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6.5. An inequality. Let T be a 2-Calabi-Yau triangulated category with cluster-
tilting object T . Recall that we have the generalized Caldero-Chapoton map

XT
M =

n∏
i=1

x
−[coindT (M):Ti]
i

∑
e

χ(Gre(GM))

n∏
i=1

x
〈Si,e〉a
i ,

where G is the functor HomC(T, ?) : C → modEndC(T ). The following proposition
is proved in greater generality in [16].

Proposition 6.8. For each M in T , let dim GM = (m1, . . . ,mn) and let 1 ≤ i ≤
n. We have

−[coindT (M) : Ti] + 〈Si, e〉a ≥ −mi,

for each submodule N of GM with dimN = e. Thus the exponent of xi in the
denominator of XM is less than or equal to mi.

Proof. This result holds for the case M ∼= ΣT ′, T ′ ∈ addT obviously. We assume
that M is indecomposable and not isomorphic to any ΣT ′. The case where M
is decomposable is a consequence of the multiplication theorem for X?. Now by
Lemma 7 of [37], we have

−[coindT (M) : Ti] = −〈Si, GM〉τ .
Note that we have the short exact sequence of EndC(T )-modules

0 → N → GM → GM/N → 0.

By applying the functor Hom(Si, ?), we get

〈Si, N〉τ + 〈Si, GM/N〉τ − 〈Si, GM〉τ + dim Ext2(Si, N) ≥ 0.

By the stable 3-Calabi-Yau property of modEndC(T ) proved in [34], we have
dimExt2(Si, N) ≤ dimExt1(N,Si). Therefore, we have

−[coindT (M) : Ti] + 〈Si, e〉a ≥ −〈N,Si〉τ − 〈Si, GM/N〉τ − dimExt2(Si, N)

≥ −[N,Si]− [Si, GM/N ] + 1[Si, GM/N ]

≥ −mi.

�
6.6. Behaviour of the g-vectors under mutation. Let B = (bij) be an anti-
symmetric integer r×r matrix. Let C ⊃ addT be a triangulated 2-CY realization of
B. Let T1, . . . , Tr be the nonisomorphic indecomposable factors of T . Let 1 ≤ l ≤ r
be an integer and T ′ = µl(T ) the mutation of T at Tl. Thus, the nonisomorphic
indecomposable factors of T ′ are T1, . . . , T

∗
l , . . . , Tr. Let C1 be a principal gluing of

C ⊃ addT and C2 a principal gluing of C ⊃ addT ′ (we assume such gluings exist).
For each indecomposable object M ∈ C reachable from T , we denote by FT

M and

FT ′

M the F-polynomials of M with respect to C1 and C2, respectively. Following
[21], we define the integers hl and h′

l by

uhl = FT
M |Trop(u)(u

[−bk1]+ , . . . , u−1, . . . , u[−bkn]+),

uh′
l = FT ′

M |Trop(u)(u
[bk1]+ , . . . , u−1, . . . , u[bkn]+),

where u−1 is in the l-th position.
The following proposition shows that if the gluings C1 and C2 exist (for example

if C is algebraic and Conjecture 6.1 holds), then Conjecture 6.10 of [21] holds for
the cluster algebra with principal coefficients associated with B.
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Proposition 6.9. In the above notation, we have

h′
l = −[[indT (M) : Tl]]+, hl = min(0, [indT (M) : Tl]).

Proof. Let Si, 1 ≤ i ≤ r, be the top of the indecomposable right projective
EndC(T

′)-module HomC(T
′, T ′

i ). First we will show that gl = [indT (M) : Tl] > 0 iff
Sl occurs as a submodule of the module HomC(T

′,ΣM) and that the multiplicity
of Sl in the socle of HomC(T

′,ΣM) equals [indT (M) : Tl].
Suppose that gl > 0. Then we have the following triangle:

T 1
M → T 0′

M ⊕ (Tl)
gl → M → ΣT 1

M

with T 1
M , T 0′

M in addT and [T 0′

M : Tl] = 0, where (Tl)
gl is the sum of gl copies of

Tl. Applying the functor HomC(T
′, ?) to the shift of the above triangle, we get the

exact sequence

0 → HomC(T
′,Σ(Tl)

gl) → HomC(T
′,ΣM) → HomC(T

′,Σ2T 1
M ) → · · · .

Note that HomC(T
′,Σ(Tl)

g) ∼= (Sl)
gl ; i.e. Sl occurs with multiplicity ≥ gl in the

socle of HomC(T
′,ΣM). If the multiplicity of Sl in the socle of HomC(T

′,ΣM) was
> gl, then Sl would occur in the socle of HomC(T

′,Σ2T 1
M ). This is not the case

since HomC(T
′,Σ2T 1

M ) is the sum of injective indecomposables not isomorphic to
the injective hull HomC(T

′,Σ2Tl) of Sl. Conversely, if Sl occurs in the socle of
HomC(T

′,ΣM), thanks to the split idempotents property of C, we have an irre-
ducible morphism α : ΣTl → ΣM in C. Thus, by the definition of the index, we get
gl > 0. Moreover, the multiplicity of Sl equals gl by the same argument as before.

Assume that gl > 0. For an arbitrary submodule U of HomC(T
′,ΣM), let

dimU = (e1, . . . , en). We will show that

el ≤ gl +
∑
i

[bil]+ei.

Indeed, consider the projective resolution of the simple module Sl:

. . . →
⊕

P bil
i → Pl → Sl → 0.

Applying the functor HomEndC(T ′)(?, U), we get the exact sequence

0 → Hom(Sl, U) → Hom(Pl, U) → Hom(
⊕

P bil
i , U) → . . . ,

which implies the inequality because the dimension of Hom(Sl, U) is less than or
equal to the multiplicity of Sl in the socle of HomC(T

′,ΣM), which equals gl. By
Theorem 6.5, we have

uh′
l = FT ′

M |Trop(u)(u
[bk1]+ , . . . , u−1, . . . , u[bkn]+)

= 1⊕
⊕
e

χ(Gre(HomC(T
′,ΣM)))u−el

∏
i 
=l

(u[bki]+)ei .

We have just shown that for each e, we have

−el +
∑
i

[bil]+ei ≥ gl,

and the equality occurs if e is the dimension vector of the submodule (Sl)
gl . We

conclude that we have h′
l = −[indT (M) : Tl]. If gl ≤ 0, then Sl does not occur in

the socle of HomC(T
′,ΣM) and it is easy to see that h′

l = 0. Dually, we have the
equality hl = min(0, [indT (M) : Tl]). �
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6.7. Acyclic cluster algebras with principal coefficients. Let B be an anti-
symmetric integer r×r matrix. Assume that B is acyclic. Let Q be the correspond-
ing quiver of B with the set of vertices Q0 = {1, . . . , r} and with the set of arrows
Q1. Let CQ be the cluster category of Q, T = kQ the canonical cluster-tilting object
of CQ. We claim that the cluster category CQ ⊃ addT admits a principal gluing.

Indeed, we define a new quiver Q̃ = Q
←−∐

Q0 associated with Q: its set of vertices
is {1, . . . , 2r}, and its arrows are those of Q and new arrows from r + i to i for

each vertex i of Q. Since Q is acyclic, so is Q̃; hence kQ̃ is finite-dimensional and
hereditary. Thus, we have the cluster category CQ̃ which is a triangulated 2-CY
realization of the matrix (

B −Ir
Ir 0

)
.

In particular, CQ̃ ⊃ add kQ̃ is a principal gluing for CQ ⊃ addT . Thus, Propo-
sition 6.2, Theorem 6.3, Theorem 6.5 and Proposition 6.6 hold for acyclic cluster
algebras with principal coefficients.

Let Pi, 1 ≤ i ≤ 2r, be the nonisomorphic indecomposable projective right mod-
ules of kQ̃. Let P = add(Pr+1 ⊕ . . .⊕ P2r). We have a triangle equivalence

⊥(ΣP)/P ∼−→ CQ.
Recall that there is a partial order on Zr defined by

α ≤ β iff α(i) ≤ β(i), for 1 ≤ i ≤ r, whereα, β ∈ Zr.

Proposition 6.10. Let B be a 2r × r integer matrix, whose principal part is an-
tisymmetric and acyclic and whose complementary part is the identity matrix. Let
σ be a sequence k1, . . ., km with 1 ≤ ki ≤ r. Denote by Bσ the matrix

µk1
◦ µk2

. . . ◦ µkm
(B) = (bσij).

Let Eσ = (e1, e2, . . . , er) be the complementary part of Bσ, where ei ∈ Zr, 1 ≤ i ≤ r.
Then for each i, we have ei ≤ 0 or ei ≥ 0.

Proof. Suppose that there is some k such that ek � 0 and ek � 0. For simplicity,
assume that k = 1, i.e., that there are r < i, j ≤ 2r such that bσi1 > 0 and bσj1 < 0.

Let Q be the quiver corresponding to the principal part of B and let Q̃ be as
constructed above. By the argument above, there is a cluster-tilting object T ′ of
CkQ̃ such that B(T ′)0 = Bσ. We have arrows Pi → T ′

1 and T ′
1 → Pj , where T ′

1

is the indecomposable direct summand of T ′ corresponding to the first column of
Bσ. Now if we consider the mutation in direction 1 of T ′, we will have an arrow
Pi → Pj in Qµ1(T ′). But this is impossible, since for r < l ≤ 2r, the Pl are simple
pairwise nonisomorphic modules, so we have

HomCkQ̃
(Pi, Pj) = HomkQ̃(Pi, Pj) = 0.

�
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