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Graded quiver varieties
and derived categories

By Bernhard Keller at Paris and Sarah Scherotzke at Bonn

To the memory of Dieter Happel

Abstract. Inspired by recent work of Hernandez–Leclerc and Leclerc–Plamondon
we investigate the link between Nakajima’s graded affine quiver varieties associated with an
acyclic connected quiverQ and the derived category ofQ. As Leclerc–Plamondon have shown,
the points of these varieties can be interpreted as representations of a category, which we call
the (singular) Nakajima category S . We determine the quiver of S and the number of mini-
mal relations between any two given vertices. We construct a ı-functor ˆ taking each finite-
dimensional representation of S to an object of the derived category of Q. We show that the
functor ˆ establishes a bijection between the strata of the graded affine quiver varieties and
the isomorphism classes of objects in the image of ˆ. If the underlying graph of Q is an ADE
Dynkin diagram, the image is the whole derived category; otherwise, it is the category of ‘line
bundles over the non-commutative curve given by Q’. We show that the degeneration order
between strata corresponds to Jensen–Su–Zimmermann’s degeneration order on objects of the
derived category. Moreover, if Q is an ADE Dynkin quiver, the singular category S is weakly
Gorenstein of dimension 1 and its derived category of singularities is equivalent to the derived
category of Q.

1. Introduction

Let Q be a Dynkin quiver, i.e. a quiver whose underlying graph is an ADE Dynkin dia-
gram �. The (affine) graded quiver varieties associated with Q were introduced by Nakajima
in [35]. In type A, they generalize Ginzburg–Vasserot’s graded nilpotent orbit closures [13].
They have been of great importance in

(1) Nakajima’s geometric study [35] of the finite-dimensional representations of the quantum
affine algebra Uq.bg/ associated with �,

(2) his related study of cluster algebras in [34, 36], cf. also the survey [30].

Let us elaborate on the second point: In [36], Nakajima showed how to use categories of per-
verse sheaves on graded quiver varieties in order to investigate the cluster algebra AQ as-
sociated with Q by Fomin–Zelevinsky [8]. He did so not only for Dynkin quivers but more
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generally for arbitrary bipartite quivers (where each vertex either has only incoming or only
outgoing arrows). He showed that the dual Grothendieck ring associated with these categories
(almost) yields a monoidal categorification of AQ in the sense of Hernandez–Leclerc [16],
who had constructed monoidal categorifications in types An and D4 (they extend their results
to all linearly oriented quivers of type A or D in their recent article [17]). Qin [37, 38] has
generalized Nakajima’s construction of graded quiver varieties to all acyclic quivers Q and
Kimura–Qin [28] have used these varieties to extend Nakajima’s results on cluster algebras to
this generality.

In Section 9 of their remarkable study [18] of deformed Grothendieck rings of quan-
tum affine algebras, Hernandez–Leclerc proved that the graded quiver varieties associated with
certain special weights are isomorphic to varieties of representations of Q in such a way that
Nakajima’s stratification corresponds to the natural stratification by orbits. This description was
extended by Leclerc–Plamondon [31], who showed that the quiver varieties in a much larger
class are isomorphic to varieties of representations of the repetitive algebra [14, 19] associated
with Q, where Nakajima’s stratification again corresponds to the natural one by orbits. Let us
call LP-varieties the graded quiver varieties covered by Leclerc–Plamondon’s construction. Via
Happel’s equivalence [14] between the stable category of the repetitive algebra ofQ and the de-
rived category of Q, Leclerc–Plamondon’s isomorphism yields a map from a given LP-variety
to the set of isomorphism classes of the derived category of Q and, as shown in [31], the fibers
of this map are precisely the Nakajima strata. In this article, we extend this last result in two
directions simultaneously:

(1) from LP-varieties to all graded quiver varieties,

(2) from Dynkin quivers to arbitrary acyclic quivers (using Qin’s definition [37,38] of graded
quiver varieties).

Along the way, we obtain information on graded affine quiver varieties as well as on their desin-
gularization by Nakajima’s smooth (quasi-projective) graded quiver varieties. Among other
results,

- we determine the quiver of the singular Nakajima category S , whose representations
form the (affine) graded quiver varieties,

- we determine the number of minimal relations between the vertices of the quiver of S ;
remarkably, there are no relations if Q is a connected non-Dynkin quiver,

- we construct the stratifying functorˆ from the category of finite-dimensional S-modules
to the derived category of Q and use it to describe the strata and their closures in terms
of the derived category,

- we describe the fibers of Nakajima’s desingularization map using ˆ in the spirit of theo-
rems by Lusztig [32], Savage–Tingley [43] and Shipman [44],

- we extend Happel’s equivalence [14] by showing that, for a Dynkin quiver Q, the sin-
gular category S is weakly Gorenstein and that its derived category of singularities is
equivalent to the derived category of Q,

- we vastly generalize the preceding point by showing that for any configuration C of
vertices of S satisfying a certain natural condition, the associated quotient SC of S is
weakly Gorenstein with associated derived category of singularities equivalent to the
derived category of Q.
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We refer to Section 2 for a more detailed description of our main results. In the companion
paper [26], we show how to use Nakajima’s desingularization map to generalize recent results
by Cerulli–Feigin–Reineke [4, 5] on quiver Grassmannians.

Let us emphasize that throughout, we use framed quiver varieties. As shown by Crawley–
Boevey [6], from the point of view of the geometry of the individual quiver varieties, the fram-
ing may be neglected. However, it is essential in the applications to quantum affine algebras
and cluster algebras alluded to above as well as in the homological approach we use. We hope
to come back to the relation of this approach with that of Frenkel–Khovanov–Schiffmann [9]
in future work.

Acknowledgement. A large part of the work on this article was done during the cluster
algebra program at the MSRI in fall 2012. The authors are grateful to the MSRI for finan-
cial support and ideal working conditions. They are indebted to Bernard Leclerc and Pierre-
Guy Plamondon for informing them about the main results of [31] prior to its appearance
on the archive. They are obliged to Osamu Iyama for pointing out reference [20] and to
Harold Williams for asking a question that lead to Theorem 2.8. They thank Giovanni Cerulli
Irelli, David Hernandez, Osamu Iyama, Bernard Leclerc, Pierre-Guy Plamondon, Fan Qin and
Markus Reineke for stimulating conversations and for helpful comments on a preliminary ver-
sion of this article.

2. Notation and main results

2.1. Repetition quivers and Happel’s theorem. Let Q be a quiver. Thus, Q is an
oriented graph given by a set of vertices Q0, a set of arrows Q1 and two maps s W Q1 ! Q0
and t W Q1 ! Q0 taking an arrow to its source vertex respectively its target vertex. We assume
that Q is finite (both Q0 and Q1 are finite) and acyclic (there are no oriented cycles in Q).

The repetition quiver ZQ, cf. [41], has the set of vertices ZQ0 formed by all pairs
.i; p/, where i belongs to Q0 and p is an integer. For each arrow ˛ W i ! j , it has the arrows
.˛; p/ W .i; p/! .j; p/ and �.˛; p/ W .j; p � 1/! .i; p/, where p runs through the integers.
If ˇ is an arbitrary arrow of ZQ, we put �.ˇ/ D �.˛; p/ if ˇ D .˛; p/ and �.ˇ/ D .˛; p � 1/
if ˇ D �.˛; p/. We denote by � W ZQ! ZQ the automorphism of ZQ given by the left trans-
lation by one unit: we have �.i; p/ D .i; p � 1/ and �.ˇ/ D �2.ˇ/ for all i 2 Q0, p 2 Z, and
for all arrows ˇ of ZQ. For example, when Q is the quiver 1! 2! 3, the repetition quiver
has the form given in Figure 1.
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Figure 1. The repetition quiver ZQ for Q of type A3.

Let k be a field. Following [11, 40], we define the mesh category k.ZQ/ to be the
k-category whose objects are the vertices of ZQ and whose morphism space from a to b
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is the space of all k-linear combinations of paths from a to b modulo the subspace spanned by
all elements urxv, where u and v are paths and

rx D
X

ˇ Wy!x

�.ˇ/ˇ W

y1
ˇ1

��
�.x/

�.ˇ1/
==

�.ˇs/ !!

::: x

ys
ˇs

@@

is the mesh relator associated with a vertex x of ZQ. Here the sum runs over all arrows
ˇ W y ! x of ZQ. For example, in the mesh category k.Z EA2/ associated with the quiver
Q D EA2 W 1! 2, the composition of any two consecutive arrows vanishes. The computation
of the morphism spaces in k.ZQ/ is easy using additive functions, cf. [11, Section 6.5].

Let kQ be the path algebra of Q. It is a finite-dimensional, hereditary k-algebra. For
each vertex i of Q, we write ei for the associated idempotent of kQ (the ‘lazy path at i ’)
and Pi D eikQ for the indecomposable projective kQ-module whose head is the simple mod-
ule Si concentrated at the vertex i . Let mod kQ be the category of all k-finite-dimensional
right kQ-modules. Let DQ be the bounded derived category Db.mod kQ/. It is a Krull–
Schmidt category [14] and a triangulated category. We write † for its shift (D suspension)
functor. Let ind.DQ/ be a full subcategory of DQ whose objects form a set of representa-
tives of the isomorphism classes of indecomposable objects of DQ. The following theorem
is [14, Proposition 4.6] and [15, Theorem 5.6].

Theorem 2.2 (Happel, 1987). There is a canonical fully faithful functor

H W k.ZQ/! ind.DQ/

taking each vertex .i; 0/ to the indecomposable projective module Pi , i 2 Q0. It is an equiv-
alence iff Q is a Dynkin quiver (i.e. its underlying graph is a disjoint union of ADE Dynkin
diagrams).

The dichotomy between Dynkin quivers and non-Dynkin quivers which appears in this
theorem is responsible for the distinction between these two cases which we have to introduce
in many of our proofs. Let � W DQ ! DQ be the autoequivalence given by the derived tensor
product with the k-dual of kQ considered as a bimodule. We have an isomorphism, bifunctorial
in L;M 2 DQ,

(2.2.1) DHomDQ
.L;M/ D HomDQ

.M; �L/;

where D denotes the duality over k. This means that � is the Serre functor of DQ. As shown
in [14], via the embedding H , the autoequivalence � of the mesh category corresponds to
the Auslander–Reiten translation �DQ

D †�1�, which we will also denote by � . For Dynkin
quivers, the combinatorial descriptions of � (equivalently: †) and of the image of mod kQ
in DQ are given in [11, Section 6.5].

For later use, we record the following isomorphism, which follows from Serre dual-
ity (2.2.1): For L;M 2 DQ and p 2 Z, we have

(2.2.2) D Extp
DQ

.L;M/ D HomDQ
.M;†�.p�1/�L/;

where, as usual, we write Extp
DQ

.L;M/ for HomDQ
.L;†pM/.
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2.3. Graded affine quiver varieties. Let Q be a finite acyclic quiver as in Section 2.1
and let k be the field of complex numbers. The framed quiver eQ is obtained fromQ by adding,
for each vertex i , a new vertex i 0 and a new arrow i ! i 0. For example, if Q is the quiver
1! 2, the framed quiver is

2 // 20

1 //

OO

10.

Let ZeQ be the repetition quiver of eQ. We refer to the vertices .i 0; p/, i 2 Q0, p 2 Z, as the
frozen vertices of ZeQ and mark them by squares as in the examples in Figure 2 associated
with quivers whose underlying graphs are A2 respectively D4. For a vertex x D .i; p/, we
put �.x/ D .i 0; p � 1/ and for a vertex .i 0; p/, we put �.i 0; p/ D .i; p � 1/.
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Figure 2. The quivers ZeQ associated with A2 and D4.

The regular (or smooth) Nakajima category R is the mesh category k.ZeQ/, where we
take into account the presence of frozen vertices by only imposing the mesh relations rx asso-
ciated with non-frozen vertices x. The singular Nakajima category S is the full subcategory
of R whose objects are the frozen vertices. In the main body of this article, we will work more
generally with the quotient SC of S associated with a configuration of vertices C , cf. Sec-
tion 3.3. This generality will in particular ensure that our results do contain those of [31] as
special cases. For simplicity, in this description of the main results, we restrict ourselves to
the case where SC D S . We write R0 and S0 for the sets of objects of the categories R

and S . An S-module is a k-linear functor M W Sop ! Mod k, where Mod k is the category of
k-vector spaces (cf. Section 3.1) Let w W S0 ! N be a dimension vector, i.e. a function with
finite support. The affine graded quiver variety M0.w/ is the variety of S-modules M such
that M.u/ D kw.u/ for each vertex u in S0. Notice that such a module is given by the images
of the morphisms of S and that these have to satisfy all the relations that hold in S . This shows
that the set M0.w/ canonically identifies with a Zariski closed subset of the finite-dimensional
affine space Y

u1;u2

Homk.HomS .u1; u2/; k
w.u2/�w.u1//;

where the product ranges over all objects u1, u2 of S . Thus, the set M0.w/ becomes indeed
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canonically an affine variety. By [31, Theorem 2.4], based on [29,32], this definition of M0.w/

is equivalent to Nakajima’s original definition in [35] when Q is a Dynkin quiver. The proof
of [31] also shows that when Q is bipartite (each vertex is a source or a sink), our definition
of M0.w/ agrees with Nakajima’s in [36] and when Q is an arbitrary acyclic quiver with
Kimura–Qin’s in [28].

Neither the original definition of M0.w/ nor the above variant are very explicit. However,
we can make the above definition more explicit by describing the category S by its quiver QS

with an admissible set of relations, cf. [12, Chapter 8] and [1, Section II.3]. Since the objects
of S are pairwise non-isomorphic, we can identify the set of vertices of QS with S0 and then
the number of arrows from �.y/ to �.x/ in QS equals

dim Ext1S .S�.x/; S�.y//;

where S�.x/ is the simple module associated with �.x/. Moreover, the number of relations
from �.y/ to �.x/ equals

dim Ext2S .S�.x/; S�.y//:

Theorem 2.4 (Corollary 3.10). For each integer p � 1 and all vertices x; y of ZQ,
we have a canonical isomorphism

Extp
S
.S�.x/; S�.y//

�
��! HomDQ

.H.x/;†pH.y//;

where H is Happel’s embedding (Theorem 2.2). These spaces vanish if no connected compo-
nent of Q is a Dynkin quiver and p � 2.

Thanks to the theorem and to formula (2.2.2), we find that the number of arrows, respec-
tively minimal relations, from �.x/ to �.y/ equals

dim HomDQ
.H.x/; �H.y// respectively dim HomDQ

.H.x/;†�1�H.y//:

It is not hard to see that this last dimension vanishes if no connected component of Q is
a Dynkin quiver. Thus, we obtain the following corollary.

Corollary 2.5. If Q is connected and not a Dynkin quiver, then for each dimension
vector w, the graded affine quiver variety M0.w/ is isomorphic to an affine space.

Let us consider two examples of Dynkin quivers: For the quiver Q W 1! 2, we find
that QS is the quiver

� � �

� � � � � �

� � �//

''//

77

a
//

b

77//

''

a
//

b

77
a //

c

''

a
//

77//

''
//

77
//

and that S is isomorphic to the path category ofQS modulo the ideal generated by all relations
of the form ab � ba, ac � ca and a3 � cb (we denote all horizontal arrows by a, all rising
arrows by b and all descending arrows by c). This example is deceptively simple. The great
complexity of the category S becomes visible when we look at the quiver of S in the case
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of D4. In the following drawing, we only depict the arrows which start at the leftmost vertex
on each row.
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Thus, the complete quiver is obtained from the one displayed by adding all translates of
the indicated arrows. Notice that there is a double arrow between the two vertices marked
by a dotted box. This implies that the variety of representations with dimension vector .d1; d2/
of the Kronecker quiver 1 � 2 is isomorphic to the graded affine quiver variety M0.w/ of
type D4 with dimension vector w such that w.�.x// D d1, w.�.��2.x// D d2 for x D .0; 1/
andw.y/ D 0 for all other frozen vertices y. The stratification of this variety given by the orbits
of the base change group GLd1

� GLd2
has infinitely many strata already for .d1; d2/ D .1; 1/.

On the other hand, the Nakajima stratification, which we will recall in the next section, always
has finitely many strata.

2.6. Stratification. We keep the assumptions of Section 2.3. In particular, Q is an
acyclic quiver and R and S are the associated regular and singular Nakajima categories.
Let v W R0 n S0 ! N and w W S0 ! N be dimension vectors. Let eM.v; w/ be the set of
R-modules M such that

M.x/ D kv.x/; M.�.x// D kw.�.x// for all x 2 ZQ0

and that M is stable, i.e. we have HomR.Sx;M/ D 0 for each simple module Sx associated
with a non-frozen vertex x 2 ZQ0. Equivalently,M does not contain any non-zero submodule
supported only on non-frozen vertices. Let Gv be the product of the groups GL.kv.x//, where
x runs through the non-frozen vertices. By base change in the spaces kv.x/, the group Gv acts
freely on the set eM.v; w/. The graded quiver variety M.v; w/ is the quotient eM.v; w/=Gv.
For this definition and the following facts, we refer to Nakajima’s work [35, 36] for the case
where Q is Dynkin or bipartite and to Qin [37, 38] and Kimura–Qin [28] for the extension
to the case of an arbitrary acyclic quiver Q. The set M.v; w/ canonically becomes a smooth
quasi-projective variety and the projection map

� WM.v; w/!M0.w/

taking an R-module M to its restriction M jS is a proper map. Moreover, when v varies, the
graded affine quiver variety M0.w/ is stratified by the images of the non-empty ones among
the open subsets Mreg.v; w/ �M.v; w/ formed by the classes of the modules M 2M.v; w/

which, in addition, are co-stable, i.e. we have HomR.M; Sx/ D 0 for each non-frozen ver-
tex x (by [37, Proposition 4.1.3.8], this is equivalent to Nakajima’s original description). The
morphism � induces an isomorphism of each Mreg.v; w/ onto its image in M0.w/.

Recall that a ı-functor from an abelian to a triangulated category is (roughly) an additive
functor transforming short exact sequences into triangles, cf. e.g. [25]. If no connected compo-
nent of Q is a Dynkin quiver, let V denote the additive subcategory of DQ whose indecom-
posable objects are the sums of objects in the image of Happel’s embedding. The category V

becomes exact when endowed with all the sequences giving rise to triangles in DQ.

Brought to you by | Universite du Luxembourg
Authenticated

Download Date | 2/26/20 9:11 AM



92 Keller and Scherotzke, Graded quiver varieties and derived categories

Theorem 2.7 (Sections 4.1 and 4.12). There is a canonical ı-functor

ˆ W mod S ! DQ

taking the simple module S�.x/ associated with x 2 ZQ0 to H.x/ (cf. Theorem 2.2) and such
that two modules M1, M2 belonging to M0.w/ lie in the same stratum if and only if ˆ.M1/ is
isomorphic to ˆ.M2/ in the derived category DQ. Moreover, if no connected component of Q
is a Dynkin quiver, then ˆ arises from an exact functor mod S ! V .

The theorem is inspired by results obtained for Dynkin quivers and particular choices
of w by Hernandez–Leclerc [18] and by Leclerc–Plamondon [31]. It suggests that the vari-
eties M0.w/ should be related to the moduli stack of objects of DQ introduced and studied
by Toën–Vaquié [45]. The following theorem further underlines the geometric relevance of the
derived category.

Theorem 2.8 (Section 4.18). Under the bijection between strata of M0.w/ and isomor-
phism classes in its image under ˆ, the degeneration order among strata corresponds to the
degeneration order of Jensen–Su–Zimmermann [22] among isomorphism classes in the derived
category DQ.

Note that for Dynkin quiversQ, the degeneration order on strata of LP-varieties coincides
with the degeneration order on orbits in the representation spaces of the repetitive algebra and
also with the Hom-order on isomorphism classes of representations of the repetitive algebra,
cf. [31, Remark 3.15].

Now consider the projection � as a morphism
`
v M.v; w/ ! M0.w/. The following

theorem is a consequence of Nakajima’s slice theorem (see [35, Section 3.3] and [28, Sec-
tion 2.4]):

Theorem 2.9 (Section 4.19). For each module M 2M0.w/, the fiber ��1.¹M º/ is
homeomorphic to the Grassmannian of DQ-submodules of the right DQ-module

DHomDQ
.ˆ.M/; ‹/ W D

op
Q ! mod k:

Notice that each fiber contains a distinguished point: the zero submodule. It corresponds
to the pre-image of M under the isomorphism induced by � from a suitable Mreg.v; w/ onto
the unique stratum containing M .

2.10. Description of ˆ via Kan extensions. Recall that a k-category is a category
whose morphism spaces carry k-vector space structures such that the composition is bilinear.
For a k-category C , let Mod.C/ denote the category of all right C -modules, i.e. all k-linear
functors M W Cop ! Mod k, cf. Section 3.1.

The inclusion S ! R yields the restriction functor res W Mod.R/! Mod.S/. This func-
tor admits a left adjointKL and a right adjointKR, the left and the right Kan extension, cf. [33]:

Mod.R/

res
��

Mod.S/.

KL

OO

KR

OO
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As we will see in Section 4.3, they have simple and concrete descriptions. Both Kan extensions
are fully faithful (and so res is a localization of abelian categories in the sense of [10]). They
are linked by a canonical morphism

(2.10.1) can W KL ! KR:

By definition, the intermediate Kan extension KLR is its image, so that we have canonical
morphisms

(2.10.2) KL � KLR � KR:

The functor KLR restricted to certain subcategories plays an important role in [4]. For special
vectors w, the following proposition follows from [31, Section 3.3].

Proposition 2.11 (Section 4.9). Let w W S0 ! N be a dimension vector. Further, let
M 2M0.w/. Then the moduleKLR.M/ is both stable and co-stable and thus yields a pointfM
in Mreg.v; w/ for a suitable v. The unique stratum containing M is �.Mreg.v; w// and fM is
the unique pre-image of M under � WMreg.v; w/!M0.w/.

It is not hard to check that KLR is in fact an equivalence from Mod.S/ onto the full
subcategory of Mod.R/ whose objects are the modules which are both stable and co-stable.
The geometric meaning of the functor taking a stable R-module L toKLR.res.L// is given by
the following proposition, which is essentially implicit in Nakajima’s work [35].

Proposition 2.12 (Section 4.10). If L is a stable R-module belonging to M.v; w/ and
KLR.resL/ is of dimension vector .v0; w/, then the unique closed Gv-orbit in the closure
ofGvL in the affine variety rep.Rop; v; w/ of representations of Rop of dimension vector .v; w/
is that of KLR.resL/˚ S , where S denotes the semi-simple k.ZQ/-module of dimension
vector v � v0.

By applying the above proposition to L D KLR.M/ for an S-module M (notice that
res.KLR.M// identifies with M ), we see in particular that the Gv-orbit of KLR.M/ is closed
in the variety rep.Rop; v; w/.

For each S-moduleM , the morphismsKL.M/! KLR.M/! KR.M/ become invert-
ible when restricted to S . Thus, the modules CK.M/ and KK.M/ defined by

KK.M/ D ker.KL.M/! KLR.M//;

CK.M/ D cok.KLR.M/! KR.M//

vanish on S . Now we have an obvious isomorphism R=hSi ���! k.ZQ/, where hSi is the ideal
generated by the identical morphisms of S . Therefore, we may view CK.M/ and KK.M/ as
k.ZQ/-modules. The following proposition shows in particular that these modules are injective
respectively projective and that KK and CK determine ˆ.

Proposition 2.13 (Section 5.20). For M 2 mod.S/, we have functorial isomorphisms
of k.ZQ/-modules

KK.M/ D HomDQ
.H.‹/; �ˆ.M// and CK.M/ D DHomDQ

.ˆ.M/;H.‹//;

where H is Happel’s embedding (Theorem 2.2).
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2.14. Gorenstein homological algebra. Let us assume that Q is connected. The con-
struction of the stratifying functor ˆ of Theorem 2.7 is given in Section 4.1. The proof of its
exactness properties is quite different depending on whether Q is a Dynkin quiver or not: If Q
is not Dynkin, we give a direct argument in Section 4.22. In the Dynkin case, we use Goren-
stein homological algebra (cf. Section 5): Let us assume that Q is a Dynkin quiver and S the
associated singular Nakajima category. Recall that an S-moduleM is finitely presented if there
is a projective presentation

P1 ! P0 !M ! 0

with finitely generated projective modules P0 and P1. An S-module M is right-bounded if,
for all p � 0, the space M.i; p/ vanishes for all i 2 Q0; it is pointwise finite-dimensional if
all the spaces M.u/, u 2 S0, are finite-dimensional.

Proposition 2.15 (Sections 5.6 and 5.9). The following hold.

(a) The category S is coherent, i.e. its category of finitely presented modules is abelian.

(b) The category S is weakly Gorenstein of dimension 1 in the sense that, for all p > 1, we
have

Extp
S
.M;P / D 0

for each right-bounded pointwise finite-dimensional module M and each finitely gener-
ated projective module P .

An S-moduleM is Gorenstein-projective if Extp
S
.M;P /D 0 for all p > 1 and all finitely

generated projective S-modules P . Let gpr.S/ (resp. gin.S/) be the category of finitely pre-
sented Gorenstein-projective (resp. Gorenstein-injective) S-modules. For each finitely gener-
ated S-moduleM , let�M be the kernel of a surjective morphism P !M , where P is finitely
generated projective.

Theorem 2.16 (Sections 5.12 and 5.16). The category gpr.S/ is a Frobenius category.
There is a canonical equivalence from its stable category gpr.S/ to DQ sending �S�.x/
to H.x/ (Theorem 2.2) for each x 2 ZQ0.

Now the functor ˆ is obtained as the composition

mod.S/
�
��! gpr.S/ ���! DQ;

which shows in particular that it is a ı-functor.
Let proj.R/ denote the category of the finitely generated projective R-modules. The

following theorem allows us to view the regular category R as an Auslander category for the
Gorenstein projective S-modules.

Theorem 2.17 (Section 5.21). The restriction functor induces equivalences

proj.R/! gpr.S/ and inj.R/! gin.S/:

It yields isomorphisms from the quiver ZeQ onto the Auslander–Reiten quivers of gpr.S/ and
gin.S/ so that the frozen vertices correspond to the projective-injective vertices.
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In particular, we obtain that proj.R/ admits a natural structure of standard (in the sense
of [42, Section 2.3, p. 63]) Frobenius category whose projectives are the finite direct sums of
indecomposable projectives associated with the frozen vertices of ZeQ and where each mesh
ending in a non-frozen vertex yields an Auslander–Reiten conflation. More generally, in Sec-
tion 5, we will prove the above results (except coherence) for the quotients R! RC and
S ! SC associated with suitable configurations C , cf. Section 3.3. In the philosophy of [21],
the Frobenius category E D proj.RC / ‘admits a resolution’, namely itself, and so one expects
its category of projectives proj.SC / to be Gorenstein and the category itself to be equivalent to
the category Gorenstein-projective modules over proj.SC /. Technically, the categories we con-
sider do not quite fit into the framework of [21] but the philosophy of that paper is compatible
with our findings.

3. Homological properties of the Nakajima categories

3.1. Notations and recollections. Let k be a field and let Mod k be the category of
k-vector spaces. Recall that a k-category is a category whose morphism spaces are endowed
with k-vector space structures such that the composition is bilinear. Let C be a k-category.
We denote by Mod.C/ the category of right C -modules, i.e. k-linear functors Cop ! Mod.k/.
For each object x of C , we have the free module

x^ D x^C D C.‹; x/ W Cop
! Mod k

and the cofree module

x_ D x_C D D.C.x; ‹// W C
op
! Mod k:

Here, we write C.u; v/ for the space of morphisms HomC .u; v/ and D for the duality over the
ground field k. For each object x of C and each C -moduleM , we have canonical isomorphisms

(3.1.1) Hom.x^;M/ DM.x/ and Hom.M; x_/ D D.M.x//:

In particular, the module x^ is projective and x_ is injective. A module is finitely generated if
it is a quotient of a finite direct sum of modules x^; it is finitely cogenerated if it is a submodule
of a finite direct sum of modules x_. If x is an object of C whose endomorphism algebra is
local, then the free module x^ admits a unique simple quotient Sx , which is also the unique
simple submodule of x_. By Kaplansky’s theorem [23], if the endomorphism ring of each
object x of C is local, each projective module over C is a direct sum of free modules x^.

Let us make the following assumptions on C .

Assumption 3.2. (a) The morphism spaces of C are finite-dimensional.

(b) The category C is directed, i.e. the endomorphism algebra of each object is k and C is
endowed with an order relation such that C.x; y/ ¤ 0 implies x � y.

A C -module M is pointwise finite-dimensional if M.x/ is finite-dimensional for each
object x of C . It is right bounded if there is a finite set of objects E such that each object
x with M.x/ ¤ 0 is less than or equal to an object of E. For example, the modules x^ are
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96 Keller and Scherotzke, Graded quiver varieties and derived categories

pointwise finite-dimensional and right bounded. LetM be a pointwise finite-dimensional, right
bounded module. Then M admits a projective cover P !M by a (usually infinite) coprod-
uct P of free modules x^ and the multiplicity of x^ in P is finite and equals the dimension
of Hom.M; Sx/. Moreover, the kernel of P !M is again right bounded and pointwise finite-
dimensional. Thus, the module M admits a minimal projective resolution

� � � ! P1 ! P0 !M ! 0;

where each object Pi is a coproduct of free modules x^ and the multiplicity of x^ in Pi equals
the dimension of Exti .M; Sx/.

3.3. Resolutions for the simple RC -modules. Let Q be a connected acyclic quiver
and let C be a subset of the set of vertices of the repetition quiver ZQ. Let RC be the quotient
of R by the ideal generated by the identities of the frozen vertices not belonging to ��1.C /
and let SC be the full subcategory of RC formed by the vertices in ��1.C /. We make the
following assumption on C .

Assumption 3.4. For each non-frozen vertex x of ZeQ, the sequences

0! RC .‹; x/!
M
x!y

RC .‹; y/;(3.4.1)

0! RC .x; ‹/!
M
y!x

RC .y; ‹/

are exact, where the sums range over all arrows of ZeQ whose source (respectively, target) is x.

The assumption holds, for example, if C is the set of all vertices of ZQ. It also holds
in the following situation: Assume that E is a Hom-finite exact Krull–Schmidt category which
is standard (in the sense of [42, Section 2.3, p. 63]) and whose Auslander–Reiten quiver is the
full subquiver of ZeQ formed by the non-frozen vertices and the vertices ��1.c/, c 2 C , where
the latter correspond to the projective indecomposables of E . Then the sequences (3.4.1) are
associated with Auslander–Reiten conflations of E and hence are exact. For example, one can
take E to be the category of finite-dimensional modules over the repetitive algebra of an iterated
tilted algebra B of Dynkin type. The case where B itself is the path algebra of a Dynkin quiver
was considered by Leclerc–Plamondon [31].

In fact, as we will see in Theorem 5.23, when the assumption holds, the given set C
always comes from the choice of a Hom-finite exact Krull–Schmidt category which is moreover
standard and whose stable Auslander–Reiten quiver is ZQ.

Another sufficient condition for the assumption to hold is due to Iyama: According
to [20, Section 7.4 (2)], the assumption holds if for each vertex x of ZQ, there is a vertex c
in C such that there is a non-zero morphism from x to c in the mesh-category RC . Notice that
for this it is sufficient that the following condition (R) holds:

(R) for each vertex x of ZQ, there is a vertex c in C such that the space of morphisms
k.ZQ/.x; c/ in the mesh category of ZQ does not vanish.

This is the first condition which Riedtmann imposed on the ‘combinatorial configurations’ in
her sense, cf. [41, Definition 2.3] and [3].

Returning to the general setup we have the following lemma.
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Lemma 3.5. For each (non-frozen) vertex x of ZQ, we have (co-)resolutions of sim-
ple RC -modules:

(a) 0! �.x/^ ! �.x/^ ! S�.x/ ! 0,

(b) 0! S�.x/ ! �.x/_ ! x_ ! 0,

(c) 0! �.x/^ !
L
y!x y

^ ! x^ ! Sx ! 0,

(d) 0! Sx ! x_ !
L
x!y y

_ ! ��1.x/_ ! 0,

where in (c) and (d), the sum ranges over all arrows y ! x with target x in the quiver ZeQ,
respectively all arrows x ! y with source x.

The proof is an exercise. By the isomorphisms (3.1.1), we immediately obtain the fol-
lowing corollary.

Corollary 3.6. For each RC -module M and each vertex x of ZQ0, we have canonical
isomorphisms in the derived category of vector spaces, where the first term on the right is
always in degree 0:

(a) RHom.M; S�.x// D .DM.�.x//! DM.x//,

(b) RHom.S�.x/;M/ D .M.�.x//!M.�.x///,

(c) RHom.M; Sx/ D .DM.x/!
L
x!y DM.y/! DM.��1.x///,

(d) RHom.Sx;M/ D .M.x/!
L
y!xM.y/!M.�.x///.

(e) In particular, we have a canonical isomorphism

(3.6.1) D RHom.Sx;M/ D RHom.M;†2S�.x//;

where † denotes the suspension functor.

Let hC i denote the ideal of RC generated by the identities of the vertices in ��1.C /.
By Happel’s theorem (2.2), we have a fully faithful embedding

H W RC =hC i ! DQ;

which is an equivalence if and only ifQ is a Dynkin quiver. IfQ is Dynkin, let† be the unique
bijection of the vertices of ZQ such that

H.†x/ D †H.x/:

If Q is arbitrary acyclic, for each non-frozen vertex x 2 ZQ0, let

x^D D .RC =hC i/.‹; x/ D DQ.‹; x/;

x_D D D.RC =hC i/.x; ‹// D DDQ.x; ‹/;

where, for simplicity, we omit the Happel functor H from the notations. Moreover, put

PC .x/ D
M

�.y/2C

DQ.y; x/˝ �.y/
^;(3.6.2)

IC .x/ D
Y

��1.y/2C

DDQ.x; y/˝ �
�1.y/_:
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98 Keller and Scherotzke, Graded quiver varieties and derived categories

Theorem 3.7. The following hold.

(a) Suppose that Q is a Dynkin quiver. For each non-frozen vertex x 2 ZQ0, we have a res-
olution of RC -modules

(3.7.1) 0! .†�1x/^ ! PC .x/! x^ ! x^D ! 0

and a coresolution

(3.7.2) 0! x_D ! x_ ! IC .x/! .†x/_ ! 0:

(b) Suppose that Q is not a Dynkin quiver. For each non-frozen vertex x 2 ZQ0, we have
a resolution of RC -modules

0! PC .x/! x^ ! x^D ! 0

and a coresolution
0! x_D ! x_ ! IC .x/! 0:

Proof. Note that the category RC satisfies Assumption 3.2. Thus, to check the claims,
it suffices to compute the extensions between the simple modules Su, where u is any vertex
of ZeQ, and x^

D
respectively x_

D
. For this, we use Lemma 3.5. Let y be a non-frozen vertex.

We have

RHom.x^D ; S�.y// D RHom.x^D ; �.y/
_
! y_/ D .0! DDQ.y; x//:

This yields the term PC .x/ in the resolution (3.7.1). Similarly, we find

RHom.x^D ; Sy/ D RHom.x^; .y_ !
M
y!z

z_ ! ��1.y/_//

D .DDQ.y; x/!
Y
y!z

DDQ.z; x/! DDQ.�
�1.y/; x//:

This complex is also obtained by applying Hom.x^; ‹/ to the complex of DQ-modules

y_D !
Y
y!z

z_D ! ��1.y/_D

which is associated with the Auslander–Reiten triangle

y !
M
y!z

z ! ��1.y/! †y

of DQ. Thus, we have an exact sequence of DQ-modules

0! SD
y ! y_D !

Y
y!z

z_D ! ��1.y/_D ! SD
†y ! 0;

where SD
y is the simple DQ-module associated with the vertex y. It follows that the homology

of RHom.x^
D
; Sy/ is given by SD

y .x/ in degree 0 and SD
†y.x/ D S

D
y .†

�1.x// in degree 2.
This yields the projective resolution in (a). In the non-Dynkin case, no objectH.y/, y 2 ZQ0,
is isomorphic to †�1H.x/. Thus, the homology of RHom.x^

D
; Sy/ in degree 2 vanishes and

we find the projective resolution in (b). A similar argument yields the injective co-resolutions
in (a) and (b).
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3.8. Resolutions for the simple SC -modules. We keep the notations and assump-
tions of Section 3.3. Notice that for each frozen vertex �.x/, x 2 ZQ0, the restriction of the
free RC -module �.x/^

RC
to SC is the free SC -module �.x/^

SC
and similarly for the co-free

modules associated with the frozen vertices. In particular, the restrictions to SC of the mod-
ules PC .x/ and IC .x/ defined in (3.6.2) are still projective respectively injective. By abuse of
notation, we denote the restricted modules by the same symbols PC .x/ and IC .x/.

Theorem 3.9. Suppose that Q is connected. Let x be a vertex of ZQ.

(a) If Q is a Dynkin quiver, the simple SC -module S��1.x/ admits a minimal projective
resolution of the form

� � � ! PC .†
�2x/! PC .†

�1x/! PC .x/! ��1.x/^ ! S��1.x/ ! 0

and the simple SC -module S�.x/ admits a minimal injective resolution of the form

0! S�.x/ ! �.x/_ ! IC .x/! IC .†x/! IC .†
2x/! � � � :

(b) If Q is not a Dynkin quiver, the simple SC -module S��1.x/ admits a minimal projective
resolution of the form

0! PC .x/! ��1.x/^ ! S��1.x/ ! 0

and the simple SC -module S�.x/ admits a minimal injective resolution of the form

0! S�.x/ ! �.x/_ ! IC .x/! 0:

Proof. Part (a) of Lemma 3.5 yields an exact sequence of RC -modules

0! x^ ! ��1.x/^ ! S��1.x/ ! 0:

We restrict it to SC and now have to construct a minimal resolution for res.x^/, where res
denotes the restriction functor. If Q is not a Dynkin quiver, part (b) of Theorem 3.7 yields the
exact sequence of RC -modules

0! PC .x/! x^ ! x^D ! 0:

Since the restriction of x^
D

to SC vanishes, we find that res.x^/ is isomorphic to the restriction
of PC .x/ to SC , which yields the projective resolution in (b). If Q is a Dynkin quiver, part (a)
of Theorem 3.7 yields the exact sequence of RC -modules

0! .†�1x/^ ! PC .x/! x^ ! x^D ! 0:

Since the restriction res.x^
D
/ vanishes, we obtain a short exact sequence

0! res..†�1x/^/! PC .x/! res.x^/! 0

and more generally an exact sequence

0! res..†�.pC1/x/^/! PC .†
�px/! res..†�px/^/! 0

for each p � 0. We obtain the desired resolution by splicing these sequences together. The
construction of the injective co-resolutions is analogous.
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Corollary 3.10. Let x and y be vertices of ZQ. For each p � 1, we have an isomor-
phism

Extp
SC
.S�.x/; S�.y// D DQ.H.x/;†

pH.y//:

If Q is not a Dynkin quiver, these spaces vanish for all p � 2.

Proof. We use the minimal injective co-resolutions in Theorem 3.9. Suppose that Q is
a Dynkin quiver and p � 1. We have

Extp
SC
.S�.x/; S�.y// D Hom.S�.x/; IC .†

p�1y//

D Hom.S�.x/;
Y

DDQ.†
p�1y; z/˝ ��1.z/_/:

Now the space Hom.S�.x/; ��1.z/_/ vanishes unless �.x/ D ��1.z/, i.e. z D �2.x/ D �.x/.
Hence we find

Extp
SC
.S�.x/; S�.y// D DDQ.†

p�1y; �.x//

D DDQ.†
p�1y;†�1�x/

D DQ.x;†
py/:

4. The stratifying functor ˆ

4.1. Construction of ˆ. Let Q be a connected acyclic quiver and let C be a subset of
the set of frozen vertices of the repetition quiver ZeQ which satisfies Assumption 3.4. Notice
that Mod.RC / is a subcategory of Mod.R/ and similarly Mod.SC / a subcategory of Mod.S/.
Let resC W Mod.RC /! Mod.SC / be the restriction functor. Clearly, it is just the restriction
of the functor res W Mod.R/! Mod.S/ to the subcategories under consideration. The left and
right adjoints KL and KR of res take the subcategory Mod.SC / of Mod.S/ to Mod.RC / and
thus induce left and right adjoints KCL and KCR of resC so that we have

Mod.RC /

resC

��

Mod.SC /.

KC
L

OO

KC
R

OO

The functor resC is still a localization of abelian categories in the sense of [10]. In the sequel,
we will omit the exponents C in the notation for the functorsKCL andKCR and simply writeKL
and KR. We have the canonical morphism

(4.1.1) can W KL ! KR:

(which is just the restriction to Mod.SC / of the canonical morphism between the non-restricted
functors). By definition, the intermediate Kan extension KLR is its image, the functor KK its
kernel and the functor CK its cokernel so that we have the following diagram of functors
from Mod.SC / to Mod.RC /:

0 // KK // KL //

"" ""

KR // CK // 0.

KLR
<<

<<
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The kernel N of the functor res is the abelian subcategory formed by the modules which vanish
on the frozen vertices. Clearly, the category N is isomorphic to the category of modules over
the quotient RC =hSC i of RC by the ideal generated by the identities of the objects of SC .
Notice that this quotient is isomorphic to the mesh category k.ZQ/. We will identify

N D Mod.RC =hSC i/ D Mod.k.ZQ//:

Composition with the functor res sends the morphisms

KL ! KLR ! KR

to isomorphisms. Thus, the images of KK and CK lie in the subcategory

N D Mod.k.ZQ//:

In Theorem 4.8, we will see that for each finite-dimensional SC -module M , the k.ZQ/-mod-
ule CK.M/ is a finitely cogenerated injective module. Thus, there is an object ˆ.M/ in the
derived category DQ such that

CK.M/.x/ D DHom.ˆ.M/;H.x//

functorially in x 2 ZQ. Clearly, the map M 7! ˆ.M/ underlies a k-linear functor

ˆ W mod.SC /! DQ:

We call ˆ the stratifying functor because of Theorem 2.7. Our construction does not make
it clear which exactness properties the stratifying functor has but we will show the following
theorem. Recall from Section 2.6 that if no connected component of Q is a Dynkin quiver,
then V denotes the additive subcategory of DQ whose indecomposable objects are the sums
of objects in the image of Happel’s embedding. The category V becomes exact when endowed
with all the sequences giving rise to triangles in DQ.

Theorem 4.2. The following hold.

(a) If no connected component ofQ is a Dynkin quiver, then the functorˆ is exact as a func-
tor mod.SC /! V .

(b) If Q is a Dynkin quiver, then ˆ underlies a ı-functor mod.SC /! DQ.

We will prove part (a) in Section 4.22. Part (b) will follow from the alternative construc-
tion of ˆ via Gorenstein homological algebra in Section 5.20.

4.3. Computation of the right Kan extension. Let us show how to compute, in prin-
ciple, the right Kan extension of a finite-dimensional S-module M . Let L D KR.M/. This
module is still pointwise finite-dimensional and left bounded (since it is a submodule of a fi-
nitely cogenerated injective R-module). Thus, the module L D KR.M/ satisfies

(4.3.1) L.u/ D 0

for all vertices u sufficiently far to the left in ZeQ. Moreover, for all vertices x of ZQ, we have

(4.3.2) L.�.x// DM.�.x//

Brought to you by | Universite du Luxembourg
Authenticated

Download Date | 2/26/20 9:11 AM



102 Keller and Scherotzke, Graded quiver varieties and derived categories

and the sequence

(4.3.3) 0! L.x/!
M
y!x

L.y/! L.�.x//

is exact because Hom.Sx; L/ D Ext1.Sx; L/ D 0. Thus, we can compute L.x/ once we
know L.�.x// and L.y/ for all vertices y of ZeQ which are sources of arrows y ! x of ZeQ.
Using (4.3.1), (4.3.2) and (4.3.3) we can compute KR.L/ by ‘knitting from left to right’ as in
the following example: We consider the quiver Q of type A2 and the vertices x and y of ZeQ
given by

� � � // � //

!!

// z //

!!

// � //

��

� � �

� � � //

<<

�.x/ // x //

==

�.y/ // y //

AA

// � � � .

LetM be the S-moduleM such thatM.u/ D 0 for all elements u distinct from �.x/ and �.y/,
M.�.x// DM1, M.�.y// DM2 and the only non-trivial value of M on an arrow is given by
a linear map f WM2 !M1. If we apply the above algorithm, we find that KR.M/ is the
following representation of R:

� � � 0oo

~~

0oo M1
oo 0oo ker.f /

{{

oo 0oo 0oo

��

0 M1
oo M1

aa

M2
f
oo M2

�f
aa

0oo 0oo

bb

� � � .oo

IfP !M is an epimorphism with projectiveP , then so isKL.P /!KL.M/ and soKLR.M/

is the image of the induced map KL.P /! KR.M/. This shows that KLR.M/ � KR.M/ is
the submodule generated by the spacesM.�.v//, where v runs through the vertices of ZQ. By
taking the quotient modulo this submodule, we obtain the k.ZQ/-module CK.M/, which in
our example is given by

0

��

M1

{{

ker.f /

{{

0.

��

0 cok.f /

bb

M2

�f
``

0

aa

We see that it is the injective k.ZQ/-module Idx
x ˚ I

dz
z ˚ I

dy

y , where dx D dim cok.f /,
dz D rk.f /, dy D dim ker.f /.

4.4. The representability theorem. In this subsection we shall prove Theorem 4.8.

Lemma 4.5. An RC -module M belongs to the image of KR, respectively KL, if and
only if, for each N 2 N , we have

Hom.N;M/ D 0 and Ext1.N;M/ D 0;

respectively
Hom.M;N / D 0 and Ext1.M;N / D 0:

Proof. This is a general characterization of the image of the adjoint of a localization
functor, cf. [10, Lemme 1, p. 370].
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Lemma 4.6. LetM be an SC -module and letN 2 N . We have canonical isomorphisms

Hom.N;CK.M// ���! Ext1.N;KLRM/

and

Hom.KK.M/;N / ���! Ext1.KLRM;N/:

Proof. The first isomorphism is obtained by applying the functor Hom.N; ‹/ to the exact
sequence

0! KLR.M/! KR.M/! CK.M/! 0

and using Lemma 4.5. Dually, one obtains the second isomorphism.

We will see in Theorem 4.8 below that if M is a finite-dimensional SC -module, then
KK.M/ is projective and CK.M/ is injective. The main step in the proof is the following
lemma.

Lemma 4.7. Let M be a finite-dimensional SC -module and let

(4.7.1) 0! N 0 ! N ! N 00 ! 0

be an exact sequence in N .

(a) If N 0 is right bounded and pointwise finite-dimensional, then the left exact functor
Hom.KK.M/; ‹/ transforms (4.7.1) into an exact sequence.

(b) If N 00 is left bounded and pointwise finite-dimensional, then the left exact functor
Hom.‹;CK.M// transforms (4.7.1) into an exact sequence.

Proof. We prove (a), the proof of (b) being dual. By Lemma 4.6, on the subcategory N ,
the functor Hom.KK.M/; ‹/ is isomorphic to Ext1.KLR.M/; ‹/. We have an exact sequence

E0.KLR.M/;N 00/! E1.KLR.M/;N 0/! E1.KLR.M/;N /! E1.KLR; N
00/

! E2.KLR.M/;N 0/;

where we abbreviate Hom. � ; � / byE0. � ; � / and Extp. � ; � / byEp. � ; � /, p � 1. Here the group
Hom.KLR.M/;N 00/ vanishes since KLR.M/ is a quotient of KL.M/. The claim will fol-
low once we show that Ext2.KLR.M/;N 0/ vanishes. Since N 0 is right bounded and point-
wise finite-dimensional, it is the inverse limit of a countable system N 0p, p 2 N, of finite-
dimensional RC -modules. We have an exact sequence

0! lim1 E1.KLR.M/;N 0p/! E2.KLR.M/;N 0/! lim E2.KLR.M/;N 0p/! 0;

where lim1 is the first right derived functor of the inverse limit functor lim, cf. [46, Appli-
cation 3.5.10]. Since KLR.M/ is finite-dimensional, it admits a finite resolution by finitely
generated projective RC -modules. Now Hom.P;N 0p/ is finite-dimensional for each finitely
generated projective P and each N 0p. So the spaces Ext1.KLR.M/;N 0p/ are all finite-dimen-
sional and the lim1 term in the above sequence vanishes by the Mittag-Leffler Lemma. It re-
mains to be shown that each Ext2.KLR.M/;N 0p/ vanishes. For this, since N 0p is of finite
length, it suffices to check that Ext2.KLR.M/; Sx/ vanishes for each vertex x of ZQ. Indeed,
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104 Keller and Scherotzke, Graded quiver varieties and derived categories

by Lemma 3.6, we have

Ext2.KLR.M/; Sx/ D DHom.S��1.x/; KLR.M//

and this last space vanishes because KLR.M/ is a submodule of KR.M/.

Theorem 4.8. If M is a finite-dimensional SC -module, then

� KK.M/ is a finitely generated projective RC =hSC i-module,

� CK.M/ is a finitely cogenerated injective RC =hSC i-module.

Proof. Since M is a finite-dimensional SC -module, it is finitely generated. Thus the
moduleKL.M/ is also finitely generated and hence right bounded and pointwise finite-dimen-
sional. These properties are inherited by the submodule KK.M/ of KL.M/. Moreover, this
submodule is supported on the vertices of ZQ. Thus, there is a surjection P ! KK.M/ where
P is a direct sum of projective k.ZQ/-modules u^i , i 2 I , such that the family of the ver-
tices ui is right bounded and each vertex x of ZQ occurs at most finitely many times among
the ui , i 2 I . It follows that P is right bounded and pointwise finite-dimensional and so is the
kernel M 0 of P !M . Thus, by Lemma 4.7, the functor Hom.KK.M/; ‹/ takes the sequence

0!M 0 ! P ! KK.M/! 0

to an exact sequence. Thus, the morphism P ! KK.M/ splits and KK.M/ is a direct factor
of P . Let us show that P is finitely generated. First we notice that KLR.M/ is finite-dimen-
sional since it is pointwise finite-dimensional and both right and left bounded. Therefore, for
each vertex x of ZQ, by Corollary 3.6, the space

Hom.KK.M/; Sx/ D Ext1.KLR.M/; Sx/

is finite-dimensional and vanishes for all but finitely many vertices x. Hence KK.M/ must be
a finite sum of projective k.ZQ/-modules x^. The proof of the second assertion is dual.

4.9. Description of the strata. Our goal in this subsection is to prove the description
of the strata of M0.w/ given in Proposition 2.11. We use the notations and assumptions of
Section 4.1. We define an arbitrary (not necessarily finite-dimensional) RC -module U to be
stable if we have Hom.N;U / D 0 for each moduleN in the kernel N of the restriction functor
res. If U is finite-dimensional, it is stable if and only if Hom.Sx; U / D 0 for each vertex x
of ZQ. Dually, U is co-stable if Hom.U;N / D 0 for each N in N . Clearly submodules of
stable modules are stable and quotient modules of co-stable modules are co-stable. Now let
us fix an SC -module M . By the adjunctions between KL, res and KR, for each SC -module
M , the module KR.M/ is stable and KL.M/ is co-stable. Since KLR.M/ is a submodule of
KR.M/ and a quotient ofKL.M/, it is both stable and co-stable. This yields the first statement
of Proposition 2.11. If we apply the functor res to the canonical morphism

can W KL.M/! KR.M/;

we obtain the composition of the adjunction morphisms

resKL.M/ � ��M �
��! resKR.M/
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Keller and Scherotzke, Graded quiver varieties and derived categories 105

and in particular the restriction res.can/ is invertible. Since the restriction functor is exact,
it also makes the canonical morphisms

KL.M/ � KLR.M/ � KR.M/

invertible and so res.KLR.M// is canonically isomorphic to M . Now let us assume that M
is finite-dimensional of dimension vector w and belongs to M0.w/. Then KLR.M/ is finite-
dimensional: Indeed,KL.M/ is right bounded,KR.M/ is left bounded and both are pointwise
finite-dimensional. Let .v; w/ be the dimension vector of KLR.M/. Since res.KLR.M// is
isomorphic to M , the second component of the dimension vector of KLR.M/ is indeed
the dimension vector w of M . This also shows that the image under � of the point fM
of Mreg.v; w/ corresponding to KLR.M/ equals M , which therefore does belong to the stra-
tum �.Mreg.v; w//. Now the other assertions of Proposition 2.11 are immediate from the facts
recalled in Section 2.6.

4.10. Intermediate extensions and closed orbits. Our goal in this subsection is to
prove Proposition 2.12. We use the notations and assumptions of Section 4.1 above. If M is
a finite-dimensional R-module of dimension vector .v; w/, the Gv-orbit of M is the orbit cor-
responding to M in the affine variety rep.Rop; v; w/ of representations of Rop with dimension
vector .v; w/. By abuse of language, we say that a Gv-stable subset of rep.Rop; v; w/ contains
a module if it contains the orbit corresponding to the module.

Lemma 4.11. Let
0! L!M ! N ! 0

be an exact sequence of finite-dimensional RC -modules. If res.L/ D 0 (resp. res.N / D 0),
then the closure of the Gv-orbit of M contains Lss ˚N (resp. L˚Nss), where Lss is the
semi-simple module with the same dimension vector as L.

Proof. For each vertex x of ZQ, we choose an isomorphism Mx D Lx ˚Nx which
provides a splitting of the sequence

0! Lx !Mx ! Nx ! 0:

For an invertible scalar t , let g.t/ be the element of Gv which acts by t ˚ 1 on Lx ˚Nx .
When t tends to zero, the representation g.t/:x, where x is a point in the orbit of M , tends
to L˚N . Since L is a nilpotent representation of k.ZQ/, its Gv-orbit contains Lss in its
closure. Thus, the Gv orbit of M contains Lss ˚N in its closure. The proof of the second
statement is analogous.

Let us now prove Proposition 2.12. Since L is stable, we have an exact sequence

0! KLR.resL/! L! N ! 0;

where res.N / D 0. By the lemma, the closure of theGv-orbit of L containsKLR.resL/˚Nss.
Now let U be a module in the unique closed Gv-orbit in the closure of the Gv-orbit of L (the
existence of this unique orbit is guaranteed by geometric invariant theory). Let us show that the
orbit of U contains KLR.resL/˚Nss. We have res.U / D res.L/ since the restriction to SC
of a module is constant on the closure of its Gv-orbit. Thus, the morphisms

KL.res.M//! KR.res.M// and KL.res.U //! KR.res.U //
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106 Keller and Scherotzke, Graded quiver varieties and derived categories

are equal and so KL.res.M//! KR.res.M// factors through the adjunction morphism

" W U ! KR.resU/:

Therefore, the module KLR.resM/ is contained in im."/ � KR.resU/. Let i denote the in-
clusion KLR.resM/ � im."/. Now by the lemma, the closure of the orbit of U contains
im."/˚ .ker."//ss and the closure of the orbit of im."/ contains KLR.resM/˚ .cok.i//ss.
Thus the orbit of U , which equals its closure, contains the object

KLR.resM/˚ .cok.i//ss ˚ .ker."//ss:

This shows that U is isomorphic to KLR.resM/˚Nss, as claimed.

4.12. Characterization of the strata. Our goal in this subsection is to prove the char-
acterization of the strata of M0.w/ given in Theorem 2.7. We use the notations and assump-
tions of Section 4.1. We need the following lemmas. For a vector v W ZQ0 ! Z, we define
Cqv W ZQ0 ! Z by

.Cqv/.x/ D v.x/ �

�X
y!x

v.y/

�
C v.�.x//; x 2 ZQ0;

where the sum ranges over all arrows y ! x of ZQ. The index q reminds us that Cq is a ‘quan-
tum Cartan matrix’, cf. [36, Section 3.1]. Notice that the linear map v 7! Cqv is injective on
the space of finitely-supported vectors.

Lemma 4.13. Let U be a finite-dimensional RC -module of dimension vector .v; w/.
If U is stable and co-stable, the vector

x 7! dim Ext1.Sx; U /; x 2 ZQ0;

equals w� � Cqv (where w� is the composition w ı � ).

Proof. By part (d) of Corollary 3.6, the space Ext1.Sx; U / is the homology in degree 1
of the complex

0! U.x/!
M
y!x

U.y/! U.�.x//! 0;

where the sum ranges over all arrows y ! x of RC . Since U is stable and co-stable, the
homologies in degree 0 and 2 of this complex vanish. Thus, the dimension of the homology in
degree 1 equals

� dimU.x/C

�X
y!x

dimU.y/

�
� dimU.�.x// D �.Cqv/.x/C w.�.x//:

Lemma 4.14. LetM be an SC -module. Let .v; w/ be the dimension vector ofKLR.M/.
Then, for each vertex x of ZQ, the multiplicity of the indecomposable H.x/ in ˆ.M/ equals

dim Ext1.Sx; KLR.M// D .w� � Cqv/.x/:

Proof. Recall from Section 4.1 that CK.M/ isomorphic to the finitely cogenerated in-
jective module DHom.ˆ.M/;H.‹//. The multiplicity of an indecomposable H.x/ in ˆ.M/
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equals the multiplicity of the injective indecomposable

DHom.H.x/;H.‹// D Dk.ZQ/.x; ‹/

in CK.M/. This multiplicity equals the multiplicity of the simple Sx in the socle of CK.M/,
that is to say the dimension of Hom.Sx;CK.M//. Now by Lemma 4.6, we have the isomor-
phism

Hom.Sx;CK.M// D Ext1.Sx; KLR.M//:

By Lemma 4.13, the dimension of the right hand side equals .w� � Cqv/.x/.

Theorem 2.7 is now an easy consequence: Let w be a dimension vector for SC (i.e. w
vanishes on the vertices not belonging to C ). Proposition 2.11 shows that two SC -modulesM1

and M2 belong to the same stratum of M0.w/ iff the RC -modules KLR.M1/ and KLR.M2/

have the same dimension vector .v; w/ and in this case, the objects ˆ.M1/ and ˆ.M2/ are
isomorphic, by Lemma 4.14. Conversely, if ˆ.M1/ and ˆ.M2/ are isomorphic, then by the
same lemma, we have

w� � Cqv1 D w� � Cqv2;

where .w; vi / is the dimension vector ofKLR.Mi /, i D 1; 2. Since Cq is injective on the space
of dimension vectors, we find that KLR.M1/ and KLR.M2/ have the same dimension vector,
which implies that M1 and M2 lie in the same stratum, by Proposition 2.11.

4.15. Resolution of the intermediate extension. For future reference, we record the
following lemma:

Lemma 4.16. Let M be a finite-dimensional SC -module.

(a) The RC -module KLR.M/ has a minimal injective resolution with finitely cogenerated
terms

0! KLR.M/! I 0 ! I 1 ! 0;

where I 0 is the direct sum of the modules �.x/_ with multiplicity equal to the dimension
of Hom.S�.x/;M/, x 2 ZQ0, and I 1 contains the summand x_ with multiplicity equal
to the multiplicity of H.x/ as a direct factor of ˆ.M/, x 2 ZQ0.

(b) The RC -module KLR.M/ has a minimal projective resolution with finitely generated
terms

0! P1 ! P0 ! KLR.M/! 0;

where P0 is the direct sum of the modules �.x/^ with multiplicity equal to the dimension
of Hom.M; S�.x//, x 2 ZQ0, and P1 contains the summand x^ with multiplicity equal
to the multiplicity of H.��1.x// as a direct factor of ˆ.x/.

Remark 4.17. One can show that if the projective SC -modules coincide with the injec-
tive ones, then I 1 contains no direct factor �.x/_ and P1 no direct factor �.x/^.

Proof. (a) The module KLR.M/ is finite-dimensional (cf. Section 4.9) and thus admits
an injective resolution with finitely cogenerated terms Ip and the multiplicity of the indecom-
posable injective u_ associated with a vertex u of ZeQ equals dim Extp

RC
.Su; KLR.M//. Let x
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108 Keller and Scherotzke, Graded quiver varieties and derived categories

be a vertex of ZQ. We have Hom.Sx; KLR.M// D 0 since KLR.M/ is stable. Since we have
Hom.S�.x/;CK.M// D 0, we find

Hom.S�.x/; KLR.M// D Hom.S�.x/; KR.M// D HomSC
.S�.x/;M/:

The multiplicity of x_ in I 1 equals Ext1
RC
.Sx; KLR.M// and this equals the multiplicity

of H.x/ in ˆ.M/ by Lemma 4.14. The proof of (b) is similar but uses the duality isomor-
phism (3.6.1) in addition.

4.18. On the degeneration order. Our goal in this subsection is to prove Theorem 2.8.
We may and will assume that Q is connected. Let .v; w/ and .v0; w/ be dimension vectors
of RC associated with non-empty subsets Mreg.v; w/ and Mreg.v0; w/ of the correspond-
ing smooth quiver varieties. Let M and M 0 be SC -modules belonging to the corresponding
strata. Let us assume that ˆ.M/ � ˆ.M 0/ in the degeneration order of [22] and show that the
stratum �.Mreg.v0; w// is contained in the closure of �.Mreg.v; w//. Recall from [37, Corol-
lary 4.1.3.14] that this is the case iff we have v0.x/ � v.x/ for all vertices x of ZQ0. Now by
Proposition 2.11, if we denote by dimU the dimension vector of a module U , we have

.v; w/ D dimKLR.M/

and
.v0; w/ D dimKLR.M

0/:

So we need to show the inequality

dimKLR.M
0/ � dimKLR.M/:

Indeed, by definition [22], the relation ˆ.M/ � ˆ.M 0/ means that there is an object Z of DQ

and a triangle

(4.18.1) ˆ.M 0/! ˆ.M/˚Z ! Z ! †ˆ.M 0/:

If Q is a Dynkin quiver, then thanks to the triangle equivalence of Theorem 5.18, we can find
a finite-dimensional SC -module U such that ˆ.U / is isomorphic to Z. If Q is not a Dynkin
quiver, then a priori, the object Z may not belong to the image of ˆ but we claim that we can
always replace it with an object in the image. For this, letH i

A
denote the homology functors for

the heart A of DQ whose indecomposable objects are the indecomposable regular kQ-modules
and all the objects �pP , where p 2 Z and P is an indecomposable projective kQ-module.
Thenˆ.M/ andˆ.M 0/ lie in A butZ may have non-vanishing homologies in several degrees.
However, if we apply H�1

A
to the triangle (4.18.1), we find the exact sequence

0! H�1A .Z/! H�1A .Z/! ˆ.M 0/! ˆ.M/˚H 0
A.Z/:

Since H�1
A
.Z/ is finite-dimensional, the second morphism of the sequence must be invertible

and so the map ˆ.M 0/! ˆ.M/˚H 0
A
.Z/ is injective. Thus, the following sequence is left

exact

(4.18.2) 0! ˆ.M 0/! ˆ.M/˚H 0
A.Z/! H 0

A.Z/! 0:

It is also right exact because H 1
A
.ˆ.M 0// vanishes. The category A contains the subcategory

of all regular kQ-modules as a torsion subcategory and the corresponding category of torsion-
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free objects is the category V formed by the direct sums of the objects �p.P /, where p 2 Z
and P is an indecomposable projective kQ-module. Since ˆ.M 0/ is torsion-free, the map

ˆ.M/˚H 0
A.Z/! H 0

A.Z/

induces an isomorphism in the torsion parts. Thus, if we apply the functor A! Atf (which
takes an object to its torsion-free quotient) to the exact sequence (4.18.2), we obtain an exact
sequence

0! ˆ.M 0/! ˆ.M/˚H 0
A.Z/tf ! H 0

A.Z/tf ! 0:

So after replacing Z with H 0
A
.Z/tf , we have a short exact sequence of objects in V :

(4.18.3) 0! ˆ.M 0/! ˆ.M/˚Z ! Z ! 0:

By the first part of Theorem 2.7, each object of V is isomorphic to the image under ˆ of
a finite-dimensional semi-simple SC -module. So we can find a finite-dimensional semi-simple
SC -module U such that ˆ.U / is isomorphic to Z.

From now on, Q may be Dynkin or non-Dynkin. By the surjectivity at the level of ex-
tensions stated in Lemma 5.15, respectively in Corollary 4.25, we can lift the triangle (4.18.1),
respectively the short exact sequence (4.18.3), to a short exact sequence of SC -modules

0!M 0 ! E ! U ! 0:

Since KL is right exact and KR is left exact, the image

0! KLR.M
0/! KLR.E/! KLR.U /! 0

of this sequence is exact at the terms KLR.M 0/ and KLR.U / but cannot be expected to be
exact at KLR.E/. Thus, we find the inequality

dim.KLR.M 0//C dim.KLR.U // � dim.KLR.E//:

Now we also know that we have

dimE D dimM 0 C dimU

D dimM C dimU

D dim.M ˚ U/

and thatˆ.E/ is isomorphic toˆ.M/˚Z D ˆ.M/˚ˆ.U / D ˆ.M ˚ U/. By Lemma 4.14
and the injectivity of the map v 7! Cqv, we conclude that we have

dim.KLR.E// D dim.KLR.M ˚ U//:

Thus, we obtain the inequality

dimKLR.M/ � dimKLR.M
0/

as claimed.
Conversely, suppose that we have v0.x/ � v.x/ for all vertices x 2 ZQ0. Then the class

ofˆ.M 0/ in the split Grothendieck groupKsplit
0 .DQ/ is obtained from that ofˆ.M/ by adding

a positive integer linear combination of elements of the form

(4.18.4) ŒU � � ŒE�C Œ��1.U /�
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associated with Auslander–Reiten triangles

(4.18.5) U ! E ! ��1.U /! †U

for indecomposables U of DQ. By the transitivity of the degeneration relation, we may assume
that the class of ˆ.M 0/ is obtained from that of ˆ.M/ by adding a single element (4.18.4).
This means that we have decompositions

ˆ.M/ ���! V ˚E and ˆ.M 0/ ���! V ˚ U ˚ ��1.U /

for some V in DQ. Now if we add a split triangle over the identity of V ˚ ��1.U / to the
triangle (4.18.5), we obtain a triangle

V ˚ ��1.U /˚ U ! V ˚ ��1.U /˚E ! ��1.U /! †.V ˚ ��1.U /˚ U/;

and this is of the form

ˆ.M 0/! ˆ.M/˚Z ! Z ! ˆ.M 0/:

Thus, we have ˆ.M/ � ˆ.M 0/ as claimed.

4.19. Description of the fibers. Our goal in this subsection is to prove Theorem 2.9.
We first determine which fibres are non-empty. Let w be a dimension vector of SC (i.e. a di-
mension vector of S whose support is contained in C ). Let M be a point of M0.w/. Let
L0 D KLR.M/ and .v0; w/ D dimL0. Recall from Section 4.1 that

CK.M/ D KR.M/=KLR.M/

is an injective module over k.ZQ/ isomorphic to DDQ.ˆ.M/; ‹/. For a dimension vec-
tor u of k.ZQ/, let Gru.CK.M// denote the quiver Grassmannian of k.ZQ/-submodules
N � CK.M/ such that dimN D u.

Lemma 4.20. Let v be a dimension vector of the mesh category k.ZQ/. The fiber of
� WM.v; w/!M0.w/ over M is non-empty iff the quiver Grassmannian Grv�v0

.CK.M//

is non-empty.

Proof. Suppose the fiber is non-empty. Then there is a stable RC -module L with the
properties that dimL D .v; w/ and res.L/ DM . The adjunction morphisms yield a commuta-
tive diagram

KL.M/

(( ((

can // KR.M/

KLR.M/

66

66

��

��

KL.resL/
"L

// L //
�L

// KR.resL/.

Here the map �L is injective sinceL is stable. Since the canonical morphismKL.L/! KR.L/

equals .�L/."L/, it follows that its image is contained in that of �L and we obtain a canon-
ical injection KLR.M/! L. The quotient L=KLR.M/ is isomorphic to the image L of L
in CK.M/ D KR.M/=KLR.M/, which is a submodule of dimension v � v0. Conversely, if
U � CK.M/ is a submodule of dimension v � v0, its inverse image L � KR.M/ is a stable
RC -module of dimension vector .v; w/ such that res.L/ DM .
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Lemma 4.21. Let v be a dimension vector of the mesh category k.ZQ/. The fibre of
� WM.v; w/!M0.w/ over M is homeomorphic, in the complex-analytic topology, to the
quiver Grassmannian Grv�v0

.CK.M// of CK.M/ D DDQ.ˆ.M/; ‹/.

Proof. By Lemma 4.20, we can assume that the fiber is non-empty. Hence w� � Cqv0
has non-negative components: these components indicate the multiplicities of the indecompos-
able factors of ˆ.M/ by Lemma 4.14. Consider the following dimension vector of SC :

w0 D w � .Cqv0/�
�1:

Let S be the semi-simple SC -module of dimension vector w0. By Nakajima’s slice theorem
(cf. [28, Theorem 2.4.9] based on [36, Theorem 3.14] based on [35, Section 3.3]), the fibre
of � WM.v; w/!M0.w/ over M is homeomorphic, in the complex-analytic topology, to the
fibre of

� WM.v � v0; w0/!M0.w0/

over S . Moreover, it follows from Lemma 4.14 that CK.M/ is isomorphic to CK.S/. So it
remains to prove the assertion for M D S . In this case, it was shown by Savage–Tingley
in [43, Theorem 5.4], who used input from Shipman’s [44] to improve on a bijection con-
structed in the non-graded case by Lusztig in [32, Theorem 2.26].

4.22. Exactness of ˆ in the non-Dynkin case. Let Q be a connected non-Dynkin
quiver. Our goal in this subsection is to show that the stratifying functor ˆ constructed in
Section 4.1 is exact in a suitable sense. Let H W k.ZQ/! DQ be Happel’s embedding
(cf. Theorem 2.2). Its image consists of the � -orbits in DQ of the indecomposable projec-
tive kQ-modules. Recall that V denotes the category of all finite direct sums of objects in the
image. The category V is the category of ‘vector bundles’ on the ‘non-commutative curve’
whose category of coherent sheaves is the heart of the t -structure on DQ whose left aisle con-
sists of the objects X such that H 1.X/ is a preinjective kQ-module and Hp.X/ vanishes for
all p � 2. In particular, V is an exact category, whose conflations are the sequences which give
rise to triangles in DQ.

Theorem 4.23. The functor ˆ W mod.SC /! V is exact.

Lemma 4.24. The functors KL and KR W Mod.SC /! Mod.RC / are exact.

Proof of Lemma 4.24. By applying the restriction functor to the sequences of part (b)
of Theorem 3.9, we see that res.x^/ D res.PC .x// is projective and res.x_/ D res.IC .x// is
injective for each non-frozen vertex x. Moreover, the restriction of �.x/^ is clearly projective
and that of �.x/_ injective. It follows that the restriction functor preserves projectivity and
thus its right adjointKR is exact. Moreover, we see that res takes finitely cogenerated injective
modules to injective modules. Now in order to check whether a sequence is exact, it suffices
to check whether its image under Hom.‹; I / is exact for each finitely cogenerated injective
module I . Thus, the left adjoint KL of res is also exact.

Proof of Theorem 4.23. Let

(4.24.1) 0!M 0 !M !M 00 ! 0
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be an exact sequence of mod.SC /. We know (for example from the appendix of [24]) that in
order to show that the sequence

0! ˆ.M 0/! ˆ.M/! ˆ.M 00/! 0

is a conflation of the exact category V , it suffices to show that the sequence

0! Hom.ˆ.M 00/; ‹/! Hom.ˆ.M/; ‹/! Hom.ˆ.M 0/; ‹/! 0

is exact in the abelian category of left exact functors Lex.Vop/ � Mod.Vop/. By Lemma 4.24,
the images of the sequence (4.24.1) underKL andKR are exact. By the Snake Lemma, we thus
have an exact sequence

0! KK.M 0/! KK.M/! KK.M 00/! CK.M 0/! CK.M/! CK.M 00/! 0:

Since we have
CK.M/.x/ D DHom.ˆ.M/;H.x//;

we deduce that the sequence

0! Hom.ˆ.M 00/; ‹/! Hom.ˆ.M/; ‹/! Hom.ˆ.M 0/; ‹/

is exact in the category Mod.Vop/ and thus in Lex.Vop/. In order to show that the morphism

Hom.ˆ.M/; ‹/! Hom.ˆ.M 0/; ‹/

is epimorphic in Lex.Vop/ it suffices to show that its cokernel U in Mod.Vop/ is effaceable,
i.e. that for each element f of U.V /, V 2 V , there is an inflation V ! V 0 such that the map
U.V /! U.V 0/ takes f to zero. Now the cokernelU is a subfunctor of the k-dual of KK.M 00/,
and KK.M 00/ is right bounded. Now all the Auslander–Reiten sequences

0! H.x/!
M
x!y

H.y/! H.��1.x//! 0;

where x is a vertex of ZQ0 and the sum ranges over all arrows of ZQ with source x, are
conflations of V . In particular, the maps

0! H.x/!
M
x!y

H.y/

are inflations. This shows that each right bounded left V -module is effaceable. Thus, the k-dual
of KK.M 00/ and its submodule U are effaceable, as claimed.

Corollary 4.25. Let U be a finite-dimensional semi-simple SC -module and let M be
a finite-dimensional SC -module. Then ˆ induces a surjection

Ext1SC
.U;M/! Ext1DQ

.ˆ.U /;ˆ.M//:

Proof. We may assume that U is a simple SC -module S��1.x/. If M is also a simple
SC -module S��1.y/, the claim is easy to check using part (b) of Theorem 3.9. For the general
case, we use induction on the length of M and the fact that both functors Ext1

SC
.U; ‹/ and

Ext1
DQ

.ˆ.U /;ˆ.‹// are right exact. For Ext1
SC
.U; ‹/, this is again a consequence of part (b) of

Theorem 3.9, which yields a resolution of length 1.
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5. The Dynkin case

5.1. The singularity category of SC . Suppose that Q is a connected acyclic quiver.
By part (b) of Theorem 3.9, if Q is not a Dynkin quiver, the category SC is the path cate-
gory of an (infinite) quiver and thus is of global dimension one. On the other hand, if Q is
a Dynkin quiver, by part (a) of Theorem 3.9, the category SC is of infinite global dimension.
We will show that its singularity category (defined via Gorenstein projective/injective modules)
is equivalent to the derived category of Q. We will then use this equivalence to construct the
stratifying functor ˆ W mod SC ! DQ as outlined in Section 2.14.

5.2. Construction of resolutions. From now on, we suppose thatQ is a Dynkin quiver
and C is a configuration in ZQ satisfying Assumption 3.4. We have the restriction functor and
its right and left adjoints, which we denote by the same symbols as in the case whereC D ZQ0
considered in Section 2.10:

Mod.RC /

res
��

Mod.SC /.

KL

OO

KR

OO

The Kan extensions KL and KR are fully faithful so that res is a localization of abelian cat-
egories in the sense of [10]. Recall from Lemma 4.5 that an object M belongs to the image
of KR if and only if, for each RC -module N with res.N / D 0, we have Hom.N;M/ D 0

and Ext1.N;M/ D 0.

Lemma 5.3. The following hold.

(a) Each RC -module N with res.N / D 0 is the union of its submodules of finite length.

(b) An RC -module M belongs to the image of KR if and only if we have

Hom.Sx;M/ D 0 and Ext1.Sx;M/ D 0

for each non-frozen vertex x.

Proof. (a) Let N be an RC -module such that res.N / D 0. Then N is a module over
the quotient of RC by the ideal generated by the identities of the objects �.x/, x 2 ZQ0.
Now this quotient is equivalent to the category of indecomposable objects of the derived cat-
egory DQ. Since Q is a Dynkin quiver, the projective DQ-modules DQ.‹; u/, u 2 DQ, are
of finite length. Thus, each DQ-module is the union of its submodules of finite length and the
same holds for the RC -modules whose restriction to SC vanishes. Thus, the claim holds forN .

(b) Of course, the condition is necessary. Suppose conversely that it holds for some
RC -module M . By part (a), it follows that we have Hom.N;M/ D 0 for each RC -module N
with res.N / D 0. Thus, the adjunction morphism M ! KR res.M/ is injective and we have
an exact sequence

0!M ! KR res.M/!M 0 ! 0;

where res.M 0/ D 0. We have the exact sequence

Hom.Sx; KR res.M//! Hom.Sx;M 0/! Ext1.Sx;M/;
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where the first and the last term vanish. Thus, the module M 0 has no submodules of finite
length. By part (a), we must have M 0 D 0.

Lemma 5.4. The following hold.

(a) For each finitely generated projective SC -module P , the canonical morphism

KLP ! KRP

is invertible.

(b) For each finitely generated projective RC -module P , the canonical morphism

P ! KR.resP /

is invertible.

(c) For each finitely generated projective RC -module P , the module KLR.res.P // is iso-
morphic to the submodule of P generated by the images of all morphisms �.x/^ ! P ,
x 2 C .

Proof. (a) It suffices to show that KLP belongs to the image of KR. We check the
condition of part (b) of Lemma 5.3. Let z be a non-frozen vertex. By part (e) of Corollary 3.6,
we have

D RHom.Sz; KLP / D RHom.KLP;†2S��1.z//:

This last object vanishes since KLP is a direct sum of projectives �.y/^, y 2 ZQ0, and
��1.z/ is a non-frozen vertex.

(b) By part (a), it suffices to prove the assertion for P D �.x/^ for any vertex x of ZQ.
If we apply KR ı res to the exact sequence

0! �.x/^ ! �.x/^ ! S�.x/ ! 0;

we obtain the exact sequence

0! KR.res.�.x/^//! KR.�.x/
^/! KR.S�.x//:

By part (a), we have an isomorphism �.x/^ ���! KR.�.x/
^/ and we have a monomorphism

KR.S�.x//! �.x/_. Thus, we have an exact sequence

0! KR.res.�.x/^//! �.x/^ ! �.x/_

and one checks that the morphism �.x/^ ! �.x/_ is non-zero. Thus, its image is S�.x/ and
we find that KR.res.�.x/^// is the kernel of �.x/^ ! S�.x/. But this is �.x/^.

(c) By definition, KLR.res.P // is the sum of the images in KR.res.P // of all the mor-
phisms

KL.res.�.x/^//! KR.res.P //

induced by morphisms �.x/^ ! P . Now trivially, we have KL.res.�.x/^// ���! �.x/^ and
by part a), we have P �

��! KR.res.P //. This implies the claim.

The following lemma will be of great use.
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Lemma 5.5. Let x be a vertex of ZQ. Let P be a finitely generated projective SC -mod-
ule and let I be a finitely cogenerated injective SC -module.

(a) The image under Hom.res.‹/; P / of the resolution

(5.5.1) 0! .†�1x/^ ! PC .x/! x^ ! 0

of x^
D

constructed in Theorem 3.7 is acyclic.

(b) The image under Hom.I; res.‹// of the coresolution

(5.5.2) 0! x_ ! IC .x/! .†x/_ ! 0

of x_
D

constructed in Theorem 3.7 is acyclic.

Proof. (a) We have Hom.res.‹/; P / D Hom.‹;KR.P // and by Lemma 5.4, we know
that KR.P / is isomorphic to KL.P /, which is a finite direct sum of projective RC -modules
�.y/^ associated with the vertices y of ZQ. So the claim is that RHom.x^

D
; �.y/^/ vanishes.

Since x^
D

is a finite-dimensional module concentrated on non-frozen vertices, it suffices to
show that RHom.Sz; �.y/^/ vanishes for each non-frozen vertex z. Now by part (e) of Corol-
lary 3.6, we have

D RHom.Sz; �.y/^/ D RHom.�.y/^; †2S�.z//

and the last object is isomorphic to a shift of DS�.z/.�.y// D 0. The proof of (b) is dual.

5.6. The weak Gorenstein property. The next lemma implies that the category SC is
weakly Gorenstein of dimension 1 in the sense that we have

Extp
SC
.M;P / D 0 D Extp

SC
.I;M/

for all p � 2 and each finite-dimensional module M , each finitely generated projective mod-
ule P and each finitely cogenerated injective module I .

Lemma 5.7. The following hold.

(a) We have Extp
SC
.I;M/ D 0 for all p � 2, for each finitely cogenerated injective SC -mod-

ule I and each pointwise finite-dimensional right bounded SC -module M .

(b) We have Extp
SC
.M;P / D 0 for all p � 2, for each finitely generated projective SC -mod-

ule P and each pointwise finite-dimensional left bounded SC -module M .

Proof. (a) We may and will assume that I D �.x/_ for some vertex x in C .
First step: IfM is finite-dimensional, then Extp

SC
.�.x/_;M/ is finite-dimensional for all

integers p and vanishes for all p � 2. It suffices to prove the statement for a simple module
M D S�.y/. Now the injective resolution of S�.y/ in part (a) of Theorem 3.9 is the complex
of SC -modules

0! �.y/_ ! IC .y/! IC .†y/! IC .†
2y/! � � � ;

which is spliced together from �.y/_ ! y_ and the sequences

.†p�1y/_ ! IC .†
p�1y/! .†py/_; p � 1;
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which are extracted from the co-resolutions

0! .†p�1y/_D ! .†p�1y/_ ! IC .†
p�1y/! .†py/_ ! 0

constructed in part (a) of Theorem 3.7. Now the fact that Extp
SC
.�.x/_; S� .y// vanishes

for p � 2 follows from Lemma 5.5.
Second step: The claim. SinceM is right-bounded and pointwise finite-dimensional, it is

the inverse limit of a countable system

� � � !Mi !Mi�1 ! � � � !M1 !M0

of finite-dimensional modules. We have

RHom.�.x/_;M/ D Rlim RHom.�.x/_;Mi /:

Since the homology of each complex RHom.�.x/_;Mi / is finite-dimensional (by the first
step), we obtain that

Extp.�.x/_;M/ D lim Extp.�.x/_;Mi /

for each integer p. By the first step, this implies the claim.
The proof of (b) is dual.

Question 5.8. Are the injective SC -modules of projective dimension at most 1 and the
projective SC -modules of injective dimension at most 1?

We do not know the answer if C is the set of all vertices of ZQ. On the other hand, in
certain cases, the classes of projective and injective SC -modules coincide, for example when C
is chosen so that SC is the category of projective modules over the repetitive algebra of an
algebra B derived equivalent to the Dynkin quiver Q (in particular if B D kQ as in Leclerc–
Plamondon’s [31]), cf. also Section 5.24.

5.9. Coherence. We consider the category SC D S associated with the set C of all
vertices of ZQ. Let T be the full subcategory of R whose objects are all the vertices of ZQ.
The following proposition implies in particular part (a) of Proposition 2.15.

Proposition 5.10. The following hold.

(a) The category T is hereditary and thus coherent.

(b) The category R is coherent.

(c) The category S is coherent.

Remark 5.11. We do not know under what conditions on C the category SC is coher-
ent. Clearly, this holds if SC happens to be locally bounded, i.e. if, for each object x of SC ,
there are at most finitely many objects y such that SC .x; y/ ¤ 0 or SC .y; x/ ¤ 0. By the
proposition, it also holds for C D ZQ0.

Proof of Proposition 5.10. (a) Let eR be the path category of ZeQ and let eT be the path
category of ZQ. The projection eR! R induces a functor P W eT ! T . It is not hard to see
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that there is a well-defined inverse functor S W T ! eT such that

S.˛xˇx/ D �

sX
iD1

˛i�.˛i /

whenever we have a mesh of ZeQ with arrows

�.x/
ˇx
���! �.x/

˛x
���! x

and arrows
�.x/

�.˛i /
���! yi

˛i
���! x; 1 � i � s:

Thus, the category T is isomorphic to eT , which is hereditary since it is the path category of
a quiver.

(b) Let f W P1 ! P0 be a morphism in proj.R/. We need to show that its kernel is finitely
generated. Since it is a submodule of P1, it is pointwise finite-dimensional and right bounded.
Thus, it has a projective cover and it suffices to show that Hom.ker.f /; Su/ vanishes for all but
finitely many vertices u of ZeQ. We first consider vertices u of the form �.x/ for some vertex x
of ZQ. We have the exact sequence

0 �! ker.f / �! P1
f
�! im.f / �! 0

and deduce the exactness of the sequence

Hom.P1; Su/! Hom.ker.f /; Su/! Ext1.im.f /; Su/! 0:

Thus, it suffices to show that Ext1.im.f /; Su/ vanishes for all but finitely many u. We have

0! im.f /! P0 ! cok.f /! 0

and so we have
Ext1.im.f /; Su/ ���! Ext2.cok.f /; Su/:

Now for u D �.x/, the module Su is of injective dimension at most 1 and so both terms vanish.
We deduce that Hom.P1; Su/! Hom.ker.f /; Su/ is surjective. Thus, there are at most finitely
many vertices u D �.x/ such that Hom.ker.f /; Su/ is non-zero. It remains to study the case
where u D x for some vertex x of ZQ. Now since Sx is a T -module, we have an injection

HomR.ker.f /; Sx/ � HomT .resT .ker.f //; Sx/:

So it suffices to show that the right hand term vanishes for almost all vertices x of ZQ.
Now resT .ker.f // identifies with the kernel of the restriction resT .f / W resT .P1/! resT .P0/.
The restriction of a module �.x/^ to T is isomorphic to �.x/^ and the restriction of a mod-
ule x^

R
to x^

T
. Thus the restrictions of P0 and P1 to T are finitely generated projective and by

part (a), the kernel ker.resT .f // is finitely generated. This shows that Hom.resT .ker.f //; Sx/
vanishes for almost all vertices x of ZQ.

(c) Let f W P0 ! P1 be a morphism of proj.S/. Then

f ˝S R W P1 ˝S R! P0 ˝S R
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is a morphism of proj.R/ and its restriction to S identifies with f . We have

ker.f / ���! resS .ker.f ˝S R//:

By part (b), the module ker.f ˝S R/ is finitely generated. Now the claim follows because for
each vertex u of ZeQ, the module resS .u

^
R
/ is finitely generated: This is clear for the vertices

u D �.x/, x 2 ZQ0; for the vertices u D x, x 2 ZQ, it follows from part (a) of Theorem 3.7.

5.12. Two Frobenius categories. Recall that, for a k-category C , a C -module M is
Gorenstein projective [7] if there is an acyclic complex

P W � � � ! P1 ! P0 ! P�1 ! � � �

of finitely generated projective modules such thatM is isomorphic to the cokernel of P1 ! P0
and that the complex Hom.P; P 0/ is still acyclic for each finitely generated projective C -mod-
ule P 0. Dually, a C -module M is Gorenstein injective if there is an ayclic complex of finitely
cogenerated injective C -modules

I W � � � ! I�1 ! I 0 ! I 1 ! � � �

such thatM is isomorphic to the kernel of I 0 ! I 1 and the complex Hom.I 0; I / is still acyclic
for each finitely cogenerated injective SC -module I 0. By [2, Proposition 5.1], the full subcate-
gories gpr.C/ and gin.C/ formed by the Gorenstein projective, respectively injective, modules
are closed under extensions in Mod.C/. It then follows easily that they are Frobenius exact cate-
gories and that their subcategories of projective-injective objects are the subcategory of finitely
generated projective C -modules, respectively finitely cogenerated injective C -modules.

For each SC -module M , choose exact sequences

0! �M ! PM !M ! 0 and 0!M ! IM ! †M ! 0;

where PM is projective and IM injective. For example, if x is a vertex of ZQ, we can use the
restrictions to SC of the sequences of RC -modules

0! x^ ! ��1.x/^ ! S��1.x/ ! 0 and 0! S�.x/ ! �.x/_ ! x_ ! 0

so that �S��1.x/ D res.x^/ and †S�.x/ D res.x_/.

Lemma 5.13. If M is a finite-dimensional SC -module, then the module �M is Goren-
stein projective and the module †M is Gorenstein injective.

Proof. Since the category gpr.SC / is closed under extensions in Mod.SC /, it suffices
to prove the claim when M is a simple module associated with a vertex in C . Let P be the
complex obtained by splicing together the restrictions to SC of the sequences

0! .†p�1x/^ ! P.†px/! .†px/^ ! 0

extracted from the resolution of .†px/^
D

from Theorem 3.7, where p 2 Z. By Lemma 5.5,
the complex Hom.P; P 0/ is still acyclic for each finitely generated SC -module P 0. Hence
�S��1.x/ D res.x^/ is Gorenstein projective. The proof for †S�.x/ is dual.
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For future reference, we record the following easy consequences of the definition of
Gorenstein modules.

Lemma 5.14. Let x be a non-frozen vertex. Let L be a Gorenstein projective module
and let M be a Gorenstein injective module. We have isomorphisms

Ext1.L;�S��1.x// D Hom.L; S��1.x//=Hom.L; ��1.x/^/;

Ext1.†S�.x/;M/ D Hom.S�.x/;M/=Hom.�.x/_;M/:

Proof. This follows at once by applying the functor Hom.L; ‹/ to the sequence

0! �S��1.x/ ! ��1.x/^ ! S��1.x/ ! 0

and using the fact that Ext1.L; ��1.x/^/ vanishes because L is Gorenstein projective. Simi-
larly for the second isomorphism.

Lemma 5.15. Let L and M be finite-dimensional SC -modules. Let L! I be an in-
jection into an injective module and let P !M be a surjection from a projective module. We
have canonical isomorphisms

Ext1.†L;†M/ ���! Ext1.L;M/=Ext1.I;M/;

Ext1.�L;�M/ ���! Ext1.L;M/=Ext1.L; P /:

Proof. We have Ext1.†L;†M/ ���! Ext2.†L;M/. If we apply Ext1.‹;M/ to the se-
quence

0! L! I ! †L! 0;

we get the first isomorphism. The proof of the second one is dual.

5.16. Link to the derived category. The stable categories gpr.SC / and gin.SC / of the
Frobenius categories gpr.SC / respectively gin.SC / are canonically triangulated. In accordance
with our overall convention, we write † for their suspension functors. We will show that these
categories are triangle equivalent to DQ.

Lemma 5.17. For all vertices x and y of ZQ and all integers p, we have isomorphisms

gin.SC /.†S�.x/; †
p†S�.y// D DQ.H.x/;†

pH.y//

D gpr.SC /.�S��1.x/; †
p�S��1.y//:

Proof. First step: The claim for p � 2. Let us abbreviate †S�.x/ by Fx. We have

gin.SC /.F x;†pFy/ D Extp
SC
.F x;†S�.y// D ExtpC1

SC
.†S�.x/; S�.y//:

Now by the sequence
0!M ! IM ! †M ! 0;

where M D S�.x/, and part (a) of Lemma 5.7, this last space is isomorphic to

Extp
SC
.S�.x/; S�.y// D DQ.H.x/;†

pH.y//;

where we have used Corollary 3.10 for the last isomorphism.
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Second step: The claim for arbitrary p. Let us first note that by the sequences

0! .†p�1y/_ ! IC .†
py/! .†py/_ ! 0

of Theorem 3.7, which become exact when restricted to SC , we have isomorphisms in gin.SC /:

†mFy D †m†S�.y/ D †
m res.y_/ D res..†my/_/ D †S�.†my/ D F†

my

for all m 2 Z. We deduce that, for a given p 2 Z and any q � 2 � p, we have

gin.SC /.F x;†pFy/ D gin.SC /.F x;†pCqF.†�qy//:

By the first step, this last space is isomorphic to

DQ.H.x/;†
pCq.H.†�qy/// D DQ.H.x/;†

pH.y//:

The proof of the second isomorphism is analogous.

Theorem 5.18. There are triangle equivalences

F W DQ
�
��! gin.SC / respectively F 0 W DQ

�
��! gpr.SC /

taking H.x/ to †S�.x/ respectively �S�.x/ (sic!) for each vertex x of ZQ.

Remark 5.19. Let kQ denote the path category of Q considered as a full subcategory
of RC via the embedding i 7! .i; 0/. We have a functor kQ! gpr.SC / taking x to res.x^/.
It gives rise to a kQ-SC -bimodule X given by

X.u; x/ D Hom.u^; res.x^//; x 2 Q0; u 2 �.C /:

Since gpr.SC / is a Frobenius category, we have a canonical triangle functor

can W Db.gpr.SC //! gpr.SC /

cf. for example [27, 39]. Now we can describe the equivalence F 0 W DQ
�
��! gpr.SC / as the

composition

DQ

‹
L
˝kQX
�����! Db.gpr.SC //

can
�����! gpr.SC /:

Of course, there is an analogous description for F .

Proof. By Lemma 5.17, when x and y are vertices of Q and p is a non-zero integer,
we have

gin.SC /.†S�.x/; †
pS�.y// D DQ.H.x/;†

pH.y// D 0:

Moreover, the endomorphism algebra of the sum of the †S�.x/, x 2 Q0, is isomorphic to the
path algebra kQ. Since gin.SC / is an algebraic triangulated category, it follows that we have
a fully faithful triangle functor F W DQ ! gin.SC / taking H.x/ to †S�.x/ for each x 2 Q0.
Now recall that for an arbitrary vertex x of ZQ, the module †S�.x/ is isomorphic to res.x_/.
By restricting the co-resolution

0! Sx ! x_ !
M
x!y

y_ ! ��1.x/_ ! 0
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of part (d) of Lemma 3.5 to SC we obtain an exact sequence

0! res.x_/!
M
x!y

res.y_/! res.��1.x/_/! 0:

Starting from the vertices of the slice Q � ZQ and ‘knitting’ to the left and to the right,
we use the triangles associated with these sequences to check that F takes each vertex x of ZQ
to res.x_/ D †S�.x/.

Now fix an object M in gin.SC /. Clearly the functor

Hom.F.‹/;M/ W D
op
Q ! Mod k

is cohomological. Moreover, the isomorphism

Hom.FH.x/;M/ D Hom.S�.x/;M/=Hom.�.x/_;M/;

where morphisms on the left are taken in gin.SC / and those on the right in Mod.SC /, shows
that Hom.FH.x/;M/ is only non-zero if S�.x/ occurs in the socle of M and that its dimen-
sion is bounded by the dimension of the socle ofM . SinceM is a submodule of a finite sum of
modules �.y/_, y 2 ZQ0, it follows that Hom.F.‹/;M/ takes values in the finite-dimensional
vector spaces and vanishes on all but finitely many indecomposable objects of DQ. In particu-
lar, Hom.F.‹/;M/ is a finitely generated cohomological functor on DQ. This implies that it is
representable. Thus, the functor F admits a right adjoint F� and for each objectM of gin.SC /,
we have a canonical triangle

FF�M !M ! GM ! †FF�M;

where GM is right orthogonal to the image of DQ under F . We will show that this right
orthogonal subcategory vanishes. Indeed, suppose that M is an object in the right orthogonal.
Since M is a submodule of a finite direct sum of modules �.y/_, y 2 ZQ0, it has a finite-
dimensional socle. We proceed by induction on its dimension. If it is zero, then M has to
be zero. So suppose that S�.x/ is a simple submodule in the socle of M . Since M is right
orthogonal to the image of F , we have

0 D Hom.FH.x/;M/ D Hom.S�.x/;M/=Hom.�.x/_;M/:

Thus the inclusion S�.x/ !M extends to a map �.x/_ !M . This map is injective since it
induces an injection in the socles. Since �.x/_ is an injective module, it is actually a direct
summand and M is the direct sum of �.x/_ and a submodule M 0, whose socle is of strictly
smaller dimension than that of M and which still belongs to the right orthogonal of the image
of F . By the induction hypothesis, M 0 must be injective and so M is injective.

5.20. Description of ˆ via Kan extensions. Let

ˆ W mod.SC /! DQ

be the composition of � W mod.SC /! gpr.SC / with the quasi-inverse of the equivalence
F 0 W DQ ! gpr.SC / of Theorem 5.18. Notice that ˆ is a ı-functor as the composition of
the ı-functor�with a triangle equivalence. Equivalently, we could defineˆ as the composition
of † W mod.SC /! gin.SC / with the quasi-inverse of the equivalence F W DQ ! gin.SC /.
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122 Keller and Scherotzke, Graded quiver varieties and derived categories

Let us now prove Proposition 2.13, which claims that for M 2 mod.S/, we have functo-
rial isomorphisms of k.ZQ/-modules

KK.M/ D HomDQ
.H.‹/; �ˆ.M// and CK.M/ D DHomDQ

.ˆ.M/;H.‹//;

where H is Happel’s embedding (Theorem 2.2).

Proof of Proposition 2.13. We only prove the second isomorphism, the proof of the first
one being similar. Let P !M be a surjection with finitely generated projective P .

First step: We have a canonical isomorphism

cok.KR.P /! KR.M// ���! CK.M/:

Indeed, by definition, CK.M/ is the cokernel of the canonical morphism KL.M/! KR.M/.
Now we have a commutative diagram

KL.P /

��

// KR.P /

��

KL.M/ // KR.M/.

Here the top horizontal arrow is an isomorphism by Lemma 5.4 and the left vertical arrow is
surjective since KL is right exact. The claim follows.

Second step: For each vertex x of ZQ, we have a canonical isomorphism

.KR.M/=KR.P //.x/
�
��! Ext1.S��1.x/;M/=Ext1.S��1.x/; P /:

Recall the sequence
0! res.x^/! ��1.x/^ ! S��1.x/ ! 0:

It shows that �.S��1.x// is isomorphic to res.x^/. Now we have isomorphisms

.KR.M//.x/ D Hom.x^; KR.M// D Hom.res.x^/;M/ D Hom.�S��1.x/;M/

and similarly for P instead of M . Now by definition, we have

Ext1.S��1.x/;M/ D Hom.�S��1.x/;M/=Hom.��1.x/^;M/

and similarly for P instead of M . The claim follows because each morphism ��1.x/^ !M

factors through P !M .
Third step: For each vertex x of ZQ, we have canonical isomorphisms

Ext1.S��1.x/;M/=Ext1.S��1.x/;P /
�
��! gpr.SC /.�S��1.x/;†�M/DDDQ.ˆM;H.x//:

Indeed, since Ext2.S��1.x/; P / vanishes (Lemma 5.7), we have an isomorphism

Ext1.S��1.x/;M/=Ext1.S��1.x/; P /
�
��! Ext2.S��1.x/; �M/:

Now we clearly have an isomorphism

Ext2.S��1.x/; �M/ D Ext1.�S��1.x/; �M/

and the last space identifies with gpr.SC /.�S��1.x/; †�M/. Now we have F 0ˆM D �M
and

F 0.��1H.x// D F 0.H.��1.x/// D �S�.��1.x// D �S��1.x/;
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whence the isomorphism

gpr.SC /.�S��1.x/; †�M/ D DQ.�
�1H.x/;†ˆM/:

Finally, we get

DQ.�
�1H.x/;†ˆM/ D DQ.H.x/; �†ˆM/

D DQ.H.x/; �ˆM/

D DDQ.ˆM;H.x//:

5.21. The regular category as a Gorenstein–Auslander category. Our goal in this
subsection is to prove Theorem 2.17. We need the following lemma.

Lemma 5.22. Let x be a vertex of ZQ. The adjunction morphisms fit into exact se-
quences

0! x_D ! x_ ! KR res.x_/! .†x/_D ! 0

and
0! .†�1x/^D ! KL res.x^/! x^ ! x^D ! 0:

Proof. To compute KR res.x_/, we use the injective coresolution

0! res.x_/! IC .x/! IC .†x/

obtained by splicing the exact sequences

0! res.x_/! IC .x/! res..†x/_/! 0;

0! res..†x/_/! IC .†x/! res..†2x/_/! 0

from part (a) of Theorem 3.7. We find that KR res.x_/ is the kernel of the composition

IC .x/ // // .†x/_ // // .†x/_=.†x/_
D
// // IC .†x/.

Thus, KR res.x_/ is also the kernel of the composition f of the first two morphisms in this
sequence. Now we have the diagram with exact rows and columns

x_=x_
D
// // ker.f /

��

��

// // .†x/_
D
��

��

x_=x_
D
// // IC .x/

f
����

// // .†x/_

����

.†x/_=.†x/_
D

.†x/_=.†x/_
D

.

This shows the claim. The proof of the second assertion is dual.

The following theorem implies Theorem 2.17 when we take C to be the set of all vertices
of ZQ.
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124 Keller and Scherotzke, Graded quiver varieties and derived categories

Theorem 5.23. The restriction functor induces equivalences

proj.RC /! gpr.SC / and inj.RC /! gin.SC /:

It yields isomorphisms from the quiver ZeQC onto the Auslander–Reiten quivers of gpr.SC /
and gin.SC / so that the vertices of C correspond to the projective-injective vertices.

Proof. By Theorem 5.18, each non-injective indecomposable object of gin.SC / is of
the form res.x_/ for some non-frozen vertex x of ZeQ and of course the indecomposable
injective object �.x/_

SC
is the restriction of �.x/_

RC
. Thus, the restriction functor is essentially

surjective. Let us show that it is fully faithful. Let u and v be any vertices of ZeQ. We need to
show that the adjunction morphism

v_ ! KR.res v_/

induces a bijection
Hom.u_; v_/! Hom.u_; KR.res v_//:

If v D �.y/ for some non-frozen vertex y, then the adjunction morphism �.v/_! KR.res v_/
is itself invertible. So let us assume that v is a non-frozen vertex y. By Lemma 5.22, the adjunc-
tion morphism y_ ! KR.resy_/ is the composition of the epimorphism p in the sequence

(5.23.1) 0! y_D ! y_
p
! y_=y_D ! 0

with the monomorphism i in the sequence

(5.23.2) 0! y_=y_D
i
! KR.resy_/! .†y/_D ! 0:

The sequence (5.23.1) yields the exact sequence

Hom.u_; y_D/! Hom.u_; y_/! Hom.u_; y_=y_D/! Ext1.u_; y_D/:

Now y_
D

is an iterated extension of objects Sz , z 2 ZQ0. We have

RHom.u_; Sz/ D D RHom.†�2S��1.z/; u
_/

by Corollary 3.6 and so

Hom.u_; Sz/ D D Ext2.Sz; u_/ D 0 and Ext1.u_; Sz/ D D Ext1.Sz; u_/ D 0:

Thus, the map Hom.u_; p/ is bijective. The sequence (5.23.2) yields the exact sequence

0! Hom.u_; y_=y_D/! Hom.u_; KR.res.y_//! Hom.u_; .†y/_D/:

We have Hom.u_; .†y/_
D
/ D 0 because .†y/_

D
is also an extension of simples Sz , z 2 ZQ0.

Thus, the map Hom.u_; i/ is also bijective and the functor res is indeed fully faithful on the
subcategory inj.RC /. The proof for proj.RC / is dual. The last assertion is clear.

5.24. Frobenius models for derived categories of Dynkin quivers. Let k be an alge-
braically closed field. In this subsection, by a Frobenius category, we mean a k-linear, Hom-
finite Krull–Schmidt category E endowed with the structure of an exact category for which it
is Frobenius.
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LetQ be a Dynkin quiver. A Frobenius model for DQ is a Frobenius category E together
with a triangle equivalence F W DQ

�
��! E . For example, if C � ZQ0 is a set of vertices sat-

isfying condition (R) of Section 3.3, then the category EC D gpr.SC / becomes a Frobenius
model of DQ: It is a Frobenius category by Section 5.12 and its stable category is equivalent
to DQ by Theorem 5.18. Now for an arbitrary Frobenius category E , consider the following
properties:

(P1) For each indecomposable non-projective object X of E , there is an almost split sequence
starting and an almost split sequence ending at X .

(P2) For each indecomposable projective object P of E , the E-module radE.‹; P / and the
Eop-module radE.P; ‹/ are finitely generated with simple tops.

(P3) E is standard, i.e. its category of indecomposables is equivalent to the mesh category of
its Auslander–Reiten quiver (cf. [42, Section 2.3, p. 63]).

The existence of almost split triangles in the stable category E implies condition (P1) so that
this condition holds in particular in all Frobenius models of DQ. For E D EC D gpr.SC / as
above, the category of indecomposables of E is equivalent to the mesh category RC , by Theo-
rem 5.23. We deduce that such categories also satisfy (P2) and (P3). We do not know Frobenius
models of DQ which do not satisfy (P2). On the other hand, in many cases, condition (P3) does
not hold. For example, let us assume that Q is the quiver 1! 2! 3 and A the algebra given
by the quiver

1
ˇ
�! 2

˛
�! 3

with the relation ˛ˇ D 0. Then the category Cb.projA/ of bounded complexes of finitely gen-
erated projective A-modules becomes a Frobenius model for DQ because A is derived equiv-
alent to the path algebra kQ. It is not hard to compute the Auslander–Reiten quiver of the
category E D Cb.projA/ and to check that it satisfies (P2). However, it is not standard be-
cause the simple E-module SP associated with the complex

P D .� � � ! 0! P3 D P3 ! 0! � � �/

is of projective dimension 2 whereas in a standard Frobenius category satisfying (P2), the
simple module associated with a projective object is always of projective dimension � 1.

The Frobenius models of DQ naturally form a 2-category: If .E; F / and .E 0; F 0/ are two
Frobenius models of DQ, a 1-morphism .E; F /! .E 0; F 0/ is an exact functor G W E ! E 0

together with an isomorphism ˛ W G ı F �
��! F 0. We leave it to the reader to define the 2-mor-

phisms and to show that a 1-morphism is an equivalence in this 2-category iff its underlying
exact functor is an equivalence. For example, an inclusion C � C 0 of sets of vertices satisfy-
ing (R) yields a 1-morphism G W EC ! EC 0 which annihilates all indecomposable projectives
associated with the vertices in C but not C 0. The following corollary results from Section 5.12,
Theorem 5.18, Theorem 5.23 and the above discussion.

Corollary 5.25. The map taking C to .EC ; FC / induces a bijection from the set of
subsets C � ZQ0 satisfying condition (R) of Section 3.3 onto the set of equivalence classes of
Frobenius models .E; F / of DQ satisfying (P2)–(P3). The inverse bijection sends a Frobenius
model .E; F / to the set C � ZQ0 such that the indecomposable projectives of E correspond
to the vertices ��1.c/, c 2 C , of the Auslander–Reiten quiver of E .
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Proof. The only thing left to check is that if E is a Frobenius model of DQ satisfying
conditions (P2) and (P3), then the corresponding set C satisfies condition (R). Indeed, let x be
a vertex of ZQ. LetX be the corresponding indecomposable object of E . Since E is Frobenius,
we can find an inflation X ! I , where I is injective. In particular, there is a non-zero mor-
phism from X to an indecomposable injective object. Thus, there is a path p from x to ��1.c/
for some c in C such that the class of p in RC is non-zero. Let us assume, as we may, that
this path is of minimal length. It is the composition of the canonical arrow c ! ��1.c/ with
a path p0 from x to c. Suppose that the class of p0 in k.ZQ/ vanishes. Then the morphism
corresponding to p0 vanishes in the stable category E . This implies that the class of p0 in RC

is a linear combination of paths factoring through vertices ��1.c0/ which lie between x and c
for the ordering given by the existence of a path. But then we obtain a path with non-zero class
in RC from x to some ��1.c0/, which contradicts the minimality of the length of p.
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