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Abstract. We define and investigate deformed n-Calabi-Yau completions of homolog-
ically smooth differential graded (=dg) categories. Important examples are: deformed
preprojective algebras of connected non Dynkin quivers, Ginzburg dg algebras associated
to quivers with potentials and dg categories associated to the category of coherent sheaves
on the canonical bundle of a smooth variety. We show that deformed Calabi-Yau com-
pletions do have the Calabi-Yau property and that their construction is compatible with
derived equivalences and with localizations. In particular, Ginzburg dg algebras have the
Calabi-Yau property. We show that deformed 3-Calabi-Yau completions of algebras of
global dimension at most 2 are quasi-isomorphic to Ginzburg dg algebras and apply this
to the study of cluster-tilted algebras and to the construction of derived equivalences as-
sociated to mutations of quivers with potentials. In the appendix, Michel Van den Bergh
uses non commutative differential geometry to give an alternative proof of the fact that
Ginzburg dg algebras have the Calabi-Yau property.
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1. Introduction

1.1. Context and main results. This article is motivated by the theory which links
cluster algebras [17] to representations of quivers and finite-dimensional algebras, cf. [23]
for a survey. In this theory, Calabi-Yau algebras and categories play an important rôle.
For example, Geiss-Leclerc-Schröer use the 2-Calabi-Yau property of the category of mod-
ules over a preprojective algebra (cf. [18]), Iyama-Reiten [21] study mutations using tilting
modules over 2- and 3-Calabi-Yau algebras related to singularities [45] and Amiot’s con-
struction [1] of generalized cluster categories relies on dg algebras which are 3-Calabi-Yau as
bimodules. The Calabi-Yau property is also important in Kontsevich-Soibelman’s recent
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interpretation of cluster transformations in their study of Donaldson-Thomas invariants
and stability structures [33].

Let us recall the definition of the Calabi-Yau property for algebras and for triangulated
categories: Let A be an (associative, unital) algebra over a field k. We identify A-bimodules
with (right) modules over the enveloping algebra Ae = A ⊗ Aop. Let n be an integer.
Recall that the algebra A is homologically smooth if, as a bimodule, it admits a finite
resolution by finitely generated projective bimodules. Following Ginzburg and Kontsevich
(Definition 3.2.3 of [19]), it is n-Calabi-Yau as a bimodule if it is homologically smooth
and, in the derived category of A-bimodules, we have an isomorphism

f : A∨ ∼→ A such that f∨ = f ,

where, for a bimodule complex M , we denote by M∨ the derived bimodule dual shifted by
n degrees

M∨ = Σn RHomAe(M,Ae).

The bimodule complex RHomAe(M,Ae) is the inverse dualizing complex of [44]. If A is n-
Calabi-Yau as a bimodule, the subcategory Dfd(A) of the derived category D(A) formed by
the modules whose homology is of finite total dimension is n-Calabi-Yau as a triangulated
category, i.e. we have non degenerate bifunctorial pairings

〈 , 〉 : Hom(M,ΣnL)×Hom(L,M)→ k

such that, for p+ q = n, we have

〈Σpf, g〉 = (−1)pq〈Σqg, f〉

for all f : M → ΣqL and g : L→ ΣpM , cf. [30].
Let A be any homologically smooth algebra (or more generally: dg category), and let

n be an integer. One of the main objects of study of this paper is a canonical dg algebra
Πn(A) which we call the n-Calabi-Yau completion or the derived n-preprojective algebra.
If θ denotes a projective resolution of the shifted bimodule dual A∨, we simply put Πn(A)
equal to the tensor dg algebra

Πn(A) = TA(θ) = A⊕ θ ⊕ (θ ⊗A θ)⊕ · · · .

Under Koszul duality, this construction corresponds to Ed Segal’s cyclic completion [38].
If A is the path algebra of a connected non Dynkin quiver and n = 2, one can show that
Πn(A) is quasi-isomorphic to the preprojective algebra of A, cf. section 4.2 of [30]. If A
is the endomorphism algebra of a tilting object in the derived category of quasi-coherent
sheaves on a smooth algebraic variety X of dimension n−1 (or more generally, the derived
endomorphism algebra of any compact generator [9]), then the derived category of Πn(A)
is triangle equivalent to the derived category of quasi-coherent sheaves on the total space
of the canonical bundle of X, cf. [40]. We will show that Πn(A) is always n-Calabi-Yau
as a bimodule and that the construction A 7→ Πn(A) is equivariant under derived Morita
equivalences and compatible with (dg) localizations.

Let c be a Hochschild cycle of degree n − 2 of A. It yields a canonically defined mor-
phism δ : θ → A of degree 1. We define the deformed n-Calabi-Yau completion or deformed
derived n-preprojective algebra Πn(A, c) to be obtained from Πn(A) by deforming the dif-
ferential of the tensor algebra using δ. More intrinsically, the dg algebra Πn(A, c) can be
constructed as a homotopy pushout from the Calabi-Yau completion Πn−1(A) as suggested
in [14]. One can show that deformed preprojective algebras [13] of connected non Dynkin
quivers are obtained in this way for n = 2. For n = 3, the (non complete) Ginzburg dg
algebra (cf. section 4.2 of [19]) associated with a quiver Q and a potential W becomes an
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example. Indeed, it is quasi-isomorphic to Π3(kQ, c), where c is the image of W , consid-
ered as an element of the zeroth cyclic homology of A, under Connes’ map B. We refer to
[19] for a wealth of examples related to the Ginzburg dg algebra. Our main results state
that Πn(A, c) is n-Calabi-Yau as a bimodule and that the construction taking (A, c) to
Πn(A, c) is equivariant under derived Morita equivalences and compatible with localiza-
tions. In particular, we obtain that the Ginzburg dg algebra is always 3-Calabi-Yau. When
informed of this fact, Michel Van den Bergh provided an alternative proof [43], based on
noncommutative geometry. He has kindly made his proof available in the appendix to this
paper. The Calabi-Yau property of the Ginzburg dg algebra is an important ingredient
of Amiot’s construction [1] of the generalized cluster category associated to an algebra of
global dimension ≤ 2 or a Jacobi-finite quiver with potential. This construction in turn is
an important ingredient in the proof of the periodicity conjecture sketched in section 8 of
[23].

We compute deformed Calabi-Yau completions of most ‘homotopically finitely presented
dg categories’ (cf. section 6.5 for the definition) and use this to show that deformed 3-
Calabi-Yau completions of algebras of global dimension at most 2 are quasi-isomorphic to
Ginzburg dg algebras. A related statement was proved independently by Ginzburg in [20].
As a corollary, we obtain that cluster-tilted algebras [7] are Jacobian algebras of quivers
with potentials, a result that was proved independently by Buan-Iyama-Reiten-Smith [5]
using completely different methods.

As an application of the derived Morita equivariance of the construction of deformed
Calabi-Yau completions, we obtain a new construction of the derived equivalence associated
[32] to the mutation of a quiver with potential [15]. Our approach also allows to generalize
the mutation operation: For a given quiver Q, each tilting module over the path algebra
kQ yields a ‘generalized mutation’ of any quiver with potential of the form (Q,W ).

As an example of the localization theorem, we show that deleting a vertex in a quiver
with potential translates into a localization of the associated Ginzburg algebra. In the case
where the associated Jacobian algebras are finite-dimensional, this localization then yields
a Calabi-Yau reduction [22] of the associated generalized cluster categories introduced by
Amiot [1]. A related result was recently obtained by Amiot-Oppermann [2].

1.2. Contents. Each anti-involution τ : B ∼→ Bop of an algebra B allows one to define a
preduality functor M 7→ HomB(M,B) from the category of right A-modules to itself by
letting B act on the target via τ . The most important example for us is the case where
B = A⊗Aop and τ(a⊗a′) = a′⊗a. Bimodule duality is confusing and the general context
of an algebra with involution brings some clarification. We develop the necessary material
in the setting of dg categories in section 2.

We then introduce and study the inverse dualizing complex of a homologically smooth
dg category in section 3. We compute it for (most) homotopically finitely presented dg
categories (section 3.6) and show that it behaves well under derived Morita equivalences
and localizations (proposition 3.10). In particular, homological smoothness and the Calabi-
Yau property are preserved under localizations.

We define n-Calabi-Yau completions in section 4 and show that their construction is
compatible with derived Morita equivalences and localizations (proposition 4.2 and the-
orem 4.6). We show that Calabi-Yau completions do have the Calabi-Yau property in
theorem 4.8. In section 5, we construct deformed Calabi-Yau completions, prove that they
have the Calabi-Yau property (theorem 5.2), identify them with with homotopy pushouts
(proposition 5.5) and show that their construction is compatible with derived Morita equiv-
alences and localizations (theorem 5.8).
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After a reminder on Hochschild and cyclic homology of tensor categories (section 6.1), we
recall the definition of Ginzburg dg algebras in section 6.2. We interpret them as deformed
Calabi-Yau completions in theorem 6.3. In section 6.5, we observe that deformed Calabi-
Yau completions of homotopically finitely presented dg categories are closely related to
Ginzburg dg algebras. We use this in theorem 6.10 to show that any deformed 3-Calabi-
Yau completion of an algebra of global dimension ≤ 2 is a Ginzburg dg algebra. We apply
this in section 6.11 to show that all cluster-tilted algebras are Jacobian algebras.

In the final section 7, we give two more applications of our general results to the study
of mutations and of generalized cluster categories. In corollary 7.3, we show that deleting
a vertex in a quiver Q translates into a localization of the Ginzburg algebra associated
with any quiver with potential of the form (Q,W ). In theorem 7.4 we prove that in the
associated generalized cluster categories, the localization yields a Calabi-Yau reduction.
We establish the link to Amiot-Oppermann’s result in section 7.5. Finally, in section 7.6,
we show that if (Q,W ) is a quiver with potential and T any tilting module for the path
algebra kQ, there is an associated ‘generalized pre-mutation’ for (Q,W ). In particular,
from the classical APR-tilts [4], one obtains the pre-mutation as defined in [15] and the
associated derived equivalence of [32].

In the appendix, Michel Van den Bergh uses non commutative differential geometry
to give an alternative proof of the fact that Ginzburg dg algebras have the Calabi-Yau
property.
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2. Preduality functors

2.1. From involutions to preduality functors. Let k be a commutative ring and A an
(associative, unital) k-algebra. Let τ be an involution on A, i.e. an isomorphism from A
to the opposite algebra Aop whose square is the identity. Let ModA denote the category
of right A-modules. If M is a right A-module, the dual

A∗ = HomA(M,A)

becomes a left A-module via the left action of A on itself, that is to say, for an element
a ∈ A and an A-linear map f from M to A, we define af by

(af)(m) = af(m) ,

where m runs through the elements of M . Now for any left A-module N , we define the
conjugate right A-module N to be the abelian group N endowed with the right action by
A defined by

na = τ(a)n ,

where n is an element of N and a an element of A. In particular, if M is a right A-module,
we obtain the dual right A-module

M∨ = M∗.
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The functor
V : ModA→ (ModA)op

taking M to VM = M∨ together with the natural transformation

ϕ : M → V VM

given by evaluation defines a preduality functor on the category ModA, i.e. the composition

V
ϕV // V V V

V ϕ // V

is the identity. Equivalently, the map f 7→ ϕ ◦ f∨ is a bijection

HomA(L,M∨) ∼→ HomA(M,L∨)

bifunctorial in the A-modules L and M . Notice that the left hand side is in canonical
bijection with the set of sesquilinear forms on L×M , i.e. maps

s : L×M → A

such that s(la,m) = τ(a)s(l,m) and s(l,ma) = s(l,m)a for all l ∈ L, m ∈ M and a ∈ A.
Similarly, the right hand side is in bijection with the set of sesquilinear forms on M × L.
The bijection then corresponds to mapping a sesquilinear form s to the form τ ◦s◦σ, where
σ exchanges the two factors of the product.

To say that (V, ϕ) is preduality is also equivalent to saying that the pair

ModA

V
��

(ModA)op.

V op

OO

together with the morphisms

ϕ : V V op → id in ModA and ϕ : id→ V opV in (ModA)op

is a pair of adjoint functors. So a preduality functor could also be called a self-coadjoint
functor.

If (V, ϕ) is a preduality functor, then so is (V,−ϕ). An A-module M is reflexive for V
is ϕM is an isomorphism. For example, all finitely generated projective A-modules are
reflexive. A duality functor is a preduality functor (V, ϕ) with invertible ϕ. The restriction
of a preduality functor to the subcategory of reflexive objects is a duality functor.

2.2. Extension of preduality functors to module categories. Now let A be a k-
category. By definition, the category ModA of (right) A-modules is the category of k-linear
functors

M : Aop → Mod k.
Suppose that V is a preduality functor on A and ϕ : id→ V V the corresponding adjunction
morphism. A left A-module is a k-linear functorN : A → Mod k. Its conjugate right module
is the composition N = N ◦ V . The dual left module M∗ of a right A-module M is the
module given by

X 7→ HomA(M,A(?, X)) ,
where X runs through the objects of A. The dual (or, more precisely, V -dual) of a right
A-module M is

M∨ = M∗.

It is given by
X 7→ HomA(M,A(?, V X)) ,
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where X runs through the objects of A. Let L and M be right modules. Then the set

Hom(L,M∨)

is in bijection with the set of sesquilinear forms on L×M , i.e. the families of maps

sX,Y : LY ×MX → A(X,V Y )

bifunctorial in the objects X and Y of A. By assumption on V , we have a canonical
bifunctorial bijection

θ : A(X,V Y )→ A(Y, V X).
By taking sX,Y to θ ◦ sX,Y ◦σ, where σ exchanges the two factors, we obtain a bifunctorial
bijection

Hom(L,M∨)→ Hom(M,L∨).
It corresponds uniquely to a natural transformation

ϕ̃ : M → Ṽ Ṽ M ,

where Ṽ M = M∨. We conclude that (Ṽ , ϕ̃) is a preduality functor on ModA. Notice that
for a representable module A(?, X), we have a canonical isomorphism

Ṽ (A(?, X)) ∼→ A(X,V ?) ∼→ A(?, V X)

and ϕ̃ is induced by ϕ for such modules. Thus the pair (Ṽ , ϕ̃) is a preduality functor which
canonically extends (V, ϕ) from the subcategory of representable modules to all of ModA.
By abuse of notation, we will often write (V, ϕ) instead of (Ṽ , ϕ̃).

2.3. Dg categories. Concerning dg categories, we follow the terminology and notations
of [28]. Let us recall the most important points: We fix a commutative ground ring k. Let
A be small dg k-category, i.e. a small category enriched over the tensor category C(k) of
complexes over k. A dg A-module is a dg functor

M : Aop → Cdg(k)

with values in the dg category of complexes over k. In particular, each object X of A
gives rise to the free module (=representable module) X∧ = A(?, X). The category of
dg modules C(A) has as morphisms the morphisms of graded A-modules, homogeneous of
degree 0 which commute with the differential. It is endowed with a structure of Frobenius
category whose conflations are the short exact sequences of dg modules which split as
sequences of graded modules. The projective-injectives are the contractible dg modules.
The associated stable category is the homotopy category H(A). It is triangulated and
its suspension functor takes a dg module M to ΣM = M [1] whose underlying graded
module has components (M [1](X))p = M(X)p+1 and whose differential is dM [1] = −dM .
The category of strictly perfect dg modules is the smallest subcategory of the Frobenius
category C(A) which contains the free dg modules and is stable under shifts, extensions and
passage to direct summands. The derived category D(A) is the localization of the category
H(A) with respect to the class of quasi-isomorphisms. It is a triangulated category with
suspension functor Σ. For each dg moduleM and each free moduleX∧, we have a canonical
isomorphism

HomD(A)(X
∧,ΣnM) = Hn(M(X)).

The derived category is compactly generated, in the sense of [35], by the free modules X∧,
X ∈ A. An object of D(A) is defined to be perfect if it is a compact object. The perfect
derived category per(A) is the full subcategory of perfect objects of D(A). A dg functor
F : A → B is a Morita functor if restriction along F is an equivalence from DB to DA.
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Equivalently, the total left derived functor of the induction along F is an equivalence. Still
equivalently, the morphisms

A(X,Y )→ B(FX,FY )
are quasi-ismorphisms for all X, Y in A and the objects F∗A(?, X) = B(?, FX) generate
the perfect derived category per(B) as an idempotent complete triangulated category. In
the localization of the category of dg categories with respect to the class of Morita functors,
the set of morphisms from a dg category A to a dg category B is in canonical bijection with
the set of isomorphism classes in D(Aop ⊗B) of dg A-B-bimodules X such that X(?, A) is
perfect as a dg B-module for each object A of A, cf. [41]. Two dg categories are derived
Morita equivalent if they become isomorphic in this localization. Equivalently, they are
linked by a chain of Morita functors.

2.4. Preduality functors on dg categories. Let A be a small dg category and (V, ϕ) a
preduality dg functor on A. Thus, V is a dg functor A → Aop and ϕ : id→ V V a natural
transformation such that the map f 7→ V (f) ◦ ϕ is a bijection

A(X,V Y )→ A(Y, V X)

for all objects X and Y of A. As in the case of the module category over a k-linear category
treated in section 2.2, we have a natural extension of (V, ϕ) to the category Cdg(A) of (right)
dg A-modules.

Suppose from now on that A is an exact dg category. Recall that this means that the
dg Yoneda functor

A → Cdg(A) , X 7→ X∧

induces an equivalence onto a full subcategory which is stable under shifts and under graded
split extensions. In particular, the category A then has a canonical shift functor Σ and
each morphism f of Z0A has a cone C(f) whose image under the Yoneda functor is the
cone on f∧. In the underlying graded category Agr, the cone on a morphism f from X to
Y splits as C(f) = Y ⊕ ΣX. Let i : Y → C(f) be the inclusion and h : X → C(f) the
inclusion considered as a morphism of degree −1. Then the pair (i, h) is universal among
the pairs consisting of a closed morphism j : Y → Z and a morphism l : X → Z of degree
−1 such that j ◦ f = d(l).

X
f //

h

$$

l ��?
??

??
??

? Y

j

��

i // C(f)

}}
Z

Since A is exact, the opposite dg category Aop is also exact. If f : X → Y is a closed
morphism in A, we can form its cone C ′(f) in Aop. In A, it is endowed with morphisms
i′ : C(f) → Y and h′ : C ′(f) → Y such that f ◦ i′ = d(h′) and which are universal with
this property. It follows that C ′(f) splits as Σ−1Y ⊕X and that its differential is given by
the matrix [

−dY f
0 dX

]
.

Thus, the shift ΣC ′(f) endowed with the canonical morphisms Y → ΣC ′(f) and X →
ΣC ′(f) is uniquely isomorphic to the cone C(−f) on the opposite of f .

Since V is a dg functor, it preserves cones. So if f : X → Y is a closed morphism, we
obtain a canonical isomorphism

ΣV CA(f) ∼→ C(−V f)
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compatible with the (closed) inclusion i of V X and the inclusion h (homogeneous of degree
−1) of V Y .

Let n be an integer. Since V is a dg functor from A to Aop, we have a canonical
isomorphism

V Σn ∼→ Σ−nV.

From ϕ, we get a canonical isomorphism

ψ : id→ (ΣnV )(ΣnV )

and it is not hard to check that (ΣnV, ψ) is still a preduality dg functor.
Let X be an object of A and f : X → V X a closed morphism. The morphism f is

(V, ϕ)-symmetric (respectively antisymmetric) if

f = V (f) ◦ ϕ (respectively f = −V (f) ◦ ϕ ).

The object X is reflexive (respectively homotopy reflexive) if ϕ : X → V V X is an isomor-
phism (respectively if H0(ϕ) is an isomorphism). The analogue of the following proposition
in a triangulated setting is due to Balmer [8, Theorem 1.6].

Proposition 2.5. The cone on a V -antisymmetric closed morphism carries a canonical
ΣV -symmetric form. More precisely, let f : X → X∨ be a closed and (V, ϕ)-antisymmetric
morphism. Let

g : C(f)→ ΣV (C(f))
be given by the matrix[

0 id
Σϕ 0

]
: V X ⊕ ΣX → ΣV V X ⊕ ΣV ΣX.

Then g is a closed (ΣV, ψ)-symmetric morphism. If X is (homotopy) reflexive, then g is
invertible (up to homotopy).

Proof. By the above discussion and the assumption that f = −V (f) ◦ ϕ, the morphism g
is indeed well-defined and closed.

X
f //

h

&&

ϕ

��

V X

id

��

i // C(f)

g

��
V V X

h

88
−V f // V X

i // ΣV C(f).

Clearly it is symmetric. We have a morphism of graded split exact sequences

0 // V X

id

��

// C(f)

g

��

// ΣX //

Σϕ

��

0

0 // V X // ΣV C(f) // ΣV V X // 0.

This implies that C(f) is reflexive if X is. By considering the corresponding triangles in
H0(A), we obtain that H0(g) is an isomorphism if H0(ϕX) is an isomorphism.

√

Now let g : Y → V Y be a closed symmetric morphism and suppose that f : X → Y is
a closed morphism such that

(V f) ◦ g ◦ f = 0.
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We then have a complex of closed morphisms

X
f // Y

(V f)◦g // V X

and we can form its totalization, i.e. the object Z such that for U in A, the complex
A(U,Z) is functorially isomorphic to the total complex of

A(U,X)
f∗ // A(U, Y )

(V f)∗◦g∗ // A(U, V X) ,

where we think of A(U, Y ) as the zeroth column of the double complex. The underlying
graded object of Z is isomorphic to Σ−1V X ⊕ Y ⊕ ΣX.

Proposition 2.6. The graded morphism h : Z → V Z given by idV X ⊕ g ⊕ ϕX is closed
and V -symmetric. It is invertible (respectively invertible up to homotopy) if g is.

Proof. We have a commutative diagram of complexes

X

ϕX

��

f // Y

g

��

(V F )◦g // V X

idX

��
V V X

(V G)(V V f)
// V Y

V F
// V X.

Therefore the morphism h is closed. It is symmetric because g and idX ⊕ϕ are symmetric.√

2.7. Induction and preduality. Let A and B be two dg categories each endowed with
a dg preduality functor denoted by (V, ϕ). Let F : A → B be a dg functor. For a dg
A-module M , we denote by

F∗M or M ⊗A B
its induction along F . We assume that we are given a morphism of dg functors

FV → V F.

We wish to extend it to a compatibility morphism between induction along F and predu-
ality with respect to V .

For each object X of A, we have the representable left A-module A(X, ?). Its image
under induction along F is B(FX, ?) and the predual of the image is

B(FX, V ?) ∼→ B(?, V FX).

On the other hand, the predual of A(X, ?) is A(?, V X) and its image under induction is
B(?, FV X). Thus, the given morphism FV → V F yields a natural transformation

F∗(M∨)→ (F∗M)∨

defined at first for representable and then for arbitrary dg A-modules M .
If M is a right dg A-module, then its dual

M∗ : X 7→ HomA(M,A(?, X))

is a left dg A-module and we have a natural transformation

F∗(M∗)→ (F∗M)∗.

By composing the natural transformations constructed so far, we obtain, for each dg
right A-module M , a natural transformation

F∗(M∨)→ (F∗M∨)
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or, in the other notation,

(2.7.1) M∨ ⊗A B → (M ⊗A B)∨.

Lemma 2.8. a) Under the natural transformation 2.7.1, an element f ⊗ b is sent to
the map

(2.8.1) m⊗ x 7→ (−1)|f ||b|V (b)f(m)x.

b) If the underlying graded A-module of M is finitely generated projective, the trans-
formation 2.7.1 is invertible and its inverse sends an element g to∑

m∗
i ⊗ V (g(mi ⊗ id)).

where
∑
mi ⊗m∗

i is the Casimir element for M , i.e. the pre-image of the identity
under the canonical isomorphism

M ⊗A HomA(M,A)→ HomA(M,M).

Proof. These are straightforward verifications.
√

Let DA denote the derived category of A. We still denote by M 7→M∨ the total derived
functor of the duality functor and by ? ⊗A B the total derived functor DA → DB of the
induction functor.

Lemma 2.9. Suppose that FV → V F is a pointwise homotopy equivalence. Then the
morphism

M∨ ⊗A B → (M ⊗A B)∨

is a quasi-isomorphism for all perfect M . It is a quasi-isomorphism for all M if B(F?, X)
is perfect over A for all X in B, for example if F is a Morita functor.

Proof. The canonical morphism

ϕM : M∨ ⊗A B → (M ⊗A B)∨

is a quasi-isomorphism for each representable dg module M = A(?, X), by the assumption
on F and V . Since ϕ is a morphism between triangle functors, it is still a quasi-isomorphism
for each perfect dg module M . Finally, if B(F?, X) is perfect over A for all X in B, then the
derived tensor product ?⊗AB preserves arbitrary products. Then ϕ is a morphism between
triangle functors taking arbitrary sums to products and hence is a quasi-isomorphism for
each object M of DA.

√

Now for a given right dg A-module M , we wish to study the dg k-module

HomB(M ⊗A B, (M ⊗A B)∨)

(whose nth component is formed by the maps of graded B-modules which are homogeneous
of degree n). We can think of its elements as sesquilinear forms on M ⊗A B. We have an
isomorphism

HomB(M ⊗A B, (M ⊗A B)∨) = HomA(M, (M ⊗A B)∨)

and the right hand side is the target of a natural transformation with source

(M ⊗A B)∨ ⊗AM∗.

Thus we obtain a natural transformation

(2.9.1) M∨ ⊗A B ⊗AM∗ → HomB(M ⊗A B, (M ⊗A B)∨).
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Notice that the right hand side carries a natural involution, namely the map taking f to
f∨ ◦ ϕ. The left hand side also carries a natural involution, namely the one which on
tensors of homogeneous elements is given by

m1 ⊗ b⊗m2 7→ (−1)pq+pr+qrm2 ⊗ V b⊗m1 ,

where p, q, r are the degrees of m1, f and m2, respectively.

Lemma 2.10. The map 2.9.1 is strictly compatible with these involutions.

Proof. This is a straightforward verification.
√

3. The inverse dualizing complex

3.1. Duality for bimodules. Let k be a commutative ring and A a dg k-category. We
may and will assume that A is cofibrant over k, i.e. each morphism complex A(X,Y ) is
cofibrant in the category of dg k-modules. This always holds if k is a field. Let Ae be the
dg category A ⊗Aop. We endow it with the involution V taking a pair of objects (X,Y )
to (Y,X) and given on morphisms by

f ⊗ g 7→ (−1)pqg ⊗ f ,
where f is of degree p and g of degree q. Note that (V, ϕ), where the morphism ϕ is the
identity, is a preduality on Ae in the sense of section 2.4.

By a bimodule we mean a right dg module M over Ae. Via the morphism

M ⊗Ae = M ⊗ (A⊗Aop) ∼→ Aop ⊗M ⊗A
taking m⊗ (a⊗ b) to (−1)|b|(|m|+|a|)b⊗m⊗a, the right Ae-module structure yields left and
right A-module structures on M . The right module structure on Ae itself is given by the
multiplication of Ae:

(f ⊗ g)(f ′ ⊗ g′) = ff ′ ⊗ g′g.
So right multiplication yields the ‘inner’ bimodule structure on Ae, whereas the left Ae-
module structure on Ae yields the ‘outer’ bimodule structure.

As we have seen in section 2.4, from (V, ϕ), we obtain a natural preduality on the exact
dg category of dg Ae-modules which takes a dg module M to the conjugate M∨ of the
dual M∗ defined by

M∗ : (X,Y ) 7→ HomAe(M,Ae(?, (X,Y ))).

Lemma 3.2. Let F : A → B be a dg functor and P an A-bimodule. We identify F∗P =
P ⊗Ae Be with B ⊗A P ⊗A B via the map p⊗ (x⊗ y) 7→ (−1)|y||p⊗x|y ⊗ p⊗ x.

a) The canonical morphism constructed in section 2.4

B ⊗A P∨ ⊗A B → (B ⊗A P ⊗A B)∨

takes b1 ⊗ f ⊗ b2 to the map

x1 ⊗ p⊗ x2 7→
∑
±b1f(p)1x2 ⊗ x1f(p)2b2 ,

where the sign is given by the Koszul sign rule and f(p) =
∑
f(p)1 ⊗ f(p)2.

b) If the underlying graded module of P is finitely generated projective, the inverse

(B ⊗A P ⊗A B)∨ → B ⊗A P∨ ⊗A B
of the morphism in a) takes a map g to∑

±g(pi)1 ⊗ p∗i ⊗ g(pi)2 ,

where the sign is given by the Koszul sign rule, we have g(pi) =
∑
g(pi)1 ⊗ g(pi)2

and
∑
pi ⊗ p∗i is the Casimir element for P .
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Proof. This is a special case of lemma 2.8.
√

3.3. Definition of the inverse dualizing complex. As in section 3.1, we let k be a
commutative ring and A a dg k-category which is cofibrant over k. We endow Ae = A⊗Aop

with the preduality (V, ϕ) of section 3.1. By A, we also denote the bimodule

(X,Y ) 7→ A(X,Y ).

We define the inverse dualizing complex ΘA to be any cofibrant replacement of the image of
the bimodule A under the total derived functor of the preduality functor M 7→M∨ defined
in section 3.1. Thus, if A is given by a dg algebra A, then ΘA is a cofibrant replacement of

RHomAe(A,Ae)

considered as an object of D(Ae), i.e. a right dg Ae-module, via the canonical involution
on Ae. Thus, the morphism set is computed using the ‘inner’ bimodule structure of Ae

and the right Ae-action on ΘA comes from the twisted right multiplication

(a⊗ b).(x⊗ y) = V (x⊗ y)(a⊗ b) = (y ⊗ x)(a⊗ b) = ya⊗ bx
which corresponds to the ‘outer’ bimodule structure. In this case, the homology H1ΘA is
the space of outer double derivations of A, i.e. the quotient of the space of derivations of
A with values in Ae by the subspace of inner derivations. The inverse dualizing complex
owes its name to the following lemma. Let Dfd(A) denote the full subcategory of D(A)
formed by the dg modules M such that each dg k-module M(X), X ∈ A, is perfect. If k
is a field and A is given by a dg algebra, this means that the sum

∑
p dimHp(M) is finite.

Lemma 3.4. Suppose that k is a field and A is homologically smooth. For any dg module
L and any dg module M in Dfd(A), there is a canonical isomorphism

HomDA(L⊗A ΘA,M) ∼→ DHomDA(M,L) ,

where D = Homk(?, k). In particular, if ΘA is isomorphic to Σ−nA in D(Ae), then Dfd(A)
is n-Calabi-Yau as a triangulated category.

Proof. This is a small variation on lemma 4.1 in [30].
√

3.5. Quivers, tensor categories, cyclic derivatives. In this section, we collect pre-
liminary material for the computation in section 3.6. Let Q be a graded k-quiver, i.e. Q
consists of a set of objects Q0 and, for all objects x and y, a Z-graded k-module Q(x, y).
Let R be the discrete k-category on Q0: It has the set of objects Q0, each endomorphism
algebra is isomorphic to k and all morphisms between different objects vanish. By abuse
of notation, we also denote by Q the R-bimodule (x, y) 7→ Q(x, y). Recall that the tensor
product L⊗RM of a right by a left R-module is given by

(L⊗RM)(x, y) =
∐
z

L(z, y)⊗M(x, z) ,

where z ranges over the objects of R. The path category of Q is the tensor category TR(Q):
It has the set of objects Q0 and the bimodule of morphisms

R⊕Q⊕ (Q⊗R Q)⊕ . . .
with the natural composition. We put A = TR(Q).

Now assume that Q is finitely generated and free as an Re-module. Fix a basis αi,
1 ≤ i ≤ n, of Q and let

∑
αi ⊗ α∗i be the Casimir element of the Re-bimodule Q, i.e. the

preimage of the identity under the canonical isomorphism

Q⊗Re HomRe(Q,Re)→ HomRe(Q,Q).
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The cyclic derivative with respect to αi [37] is the unique map

∂αi : TR(Q)→ TR(Q)

taking a composition β1 . . . βs of elements of Q to the sum∑
j

α∗i (βj)βj+1 . . . βsβ1 . . . βj−1.

3.6. Computation for a homotopically finitely presented dg category. Let k be a
commutative ring andQ a graded k-quiver whose set of objects is finite and whose bimodule
of morphisms is finitely generated and projective over k. Let R be the k-category with
the same objects as Q and whose only non zero morphisms are the scalar multiples of the
identities. Let A be a dg category of the form (TR(Q), d), where TR(Q) is the tensor dg
category (cf. section 3.5)

R⊕Q⊕ (Q⊗R Q)⊕ . . .⊕ (Q⊗R · · · ⊗R Q)⊕ . . .
and the differential d is such that Q admits a finite filtration

(3.6.1) F0 ⊂ F1 ⊂ F2 ⊂ . . . ⊂ FN = Q

such that all Fp have the same objects as Q, the bimodule of arrows of F0 vanishes and
d(Fp) is contained in TR(Fp−1) for all p ≥ 1. As shown in [42], cf. also [28], in the Morita
homotopy category of dg categories, the dg category (TR(Q), d) is homotopically finitely
presented and every homotopically finitely presented dg category is a retract of such a
dg category. Our aim in this section is to compute the inverse dualizing complex ΘA for
A = (TR(Q), d). For this, we first need to construct a cofibrant resolution of A over Ae.
Let β̃ be the unique bimodule derivation

A → A⊗R Q⊗R A

which takes an element v : x→ y of Q to idy ⊗ v ⊗ idx. Notice that β̃ vanishes on R ⊂ A.
If we have n ≥ 1 and a = v1 . . . vn for elements vi : xi → xi−1 of Q, we have

β̃(a) = 1x0 ⊗ v1 ⊗ v2 . . . vn +
n−1∑
i=2

v1 . . . vi−1 ⊗ vi ⊗ vi+1 . . . vn + v1 . . . vn−1 ⊗ vn ⊗ 1xn .

Let us denote by
ρ : A⊗R A⊗R A → A⊗R Q⊗R A

the A-bilinear extension of β̃. Notice that ρ is a retraction of the inclusion of A⊗RQ⊗RA
into A⊗R A⊗R A. Let δ be the composition

A⊗R Q⊗R A
d // A⊗R A⊗R A

ρ // A⊗R ⊗Q⊗R A .

Proposition 3.7. a) We have δ2 = 0 and A⊗RQ⊗RA endowed with δ is a cofibrant
dg bimodule.

b) The diagram

0 // A⊗R Q⊗R A
eα // A⊗R A // A // 0 ,

where A⊗R Q⊗R A is endowed with δ and

α̃(u⊗ v ⊗ w) = uv ⊗ w − u⊗ vw ,
is a complex of dg modules. The cone pA over the morphism

(3.7.1) A⊗R Q⊗R A
eα // A⊗R A
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is a cofibrant resolution of A and is strictly perfect (cf. section 2.3). In particular,
the dg category A is homologically smooth.

Remark 3.8. If instead of the finite filtration 3.6.1, we have a countable exhaustive filtra-
tion F0 ⊂ F1 ⊂ . . . Q satisfying the same conditions, then the cone pA of part b) is still a
cofibrant resolution of A (but A is no longer homologically smooth in general).

Proof. a) Let us consider the commutator d ◦ρ−ρ ◦d as a graded map from A⊗RA⊗RA
to itself. Its restriction to

A ∼→ R⊗R A⊗R R
is a bimodule derivation. Since ρ is bilinear, the composition ρ(d ◦ ρ− ρ ◦ d) still restricts
to a bimodule derivation on A. For v ∈ Q, we have

ρ(d ◦ ρ− ρ ◦ d)(v) = ρd(v)− ρ2d(v) = 0.

Thus, the composition ρ(d◦ρ−ρ◦d) vanishes on Q, thus on A and thus on A⊗RA⊗RA.
It follows that we have

δ2 = ρdρd = ρ2d2 = 0.

To check that (A⊗RA⊗RA, δ) is cofibrant it suffices to observe that δ takes A⊗RFp⊗RA
to A⊗R Fp−1 ⊗RA for each p ≥ 1 and that the subquotient is a finitely generated free dg
bimodule. Since the filtration by the Fp is finite, it also follows that (A⊗R A⊗R A, δ) is
perfect. Since R is perfect over Re and

A⊗R A = R⊗Re Ae ,

it follows that the cone over

0 // A⊗R Q⊗R A
eα // A⊗R A // 0

is indeed cofibrant and perfect in D(Ae).
√

Let ΘA = (pA)∨ be the image under the preduality functor M 7→ M∨ defined in
section 3.1 of the cofibrant resolution pA given by the cone over the morphism

A⊗R Q⊗R A
eα // A⊗R A

of 3.7.1. Since the cone is stricly perfect, so is ΘA. In particular, it is cofibrant and is
therefore (homotopy equivalent to) the inverse dualizing complex. Let us make ΘA more
explicit. By definition, ΣΘA is isomorphic to the cone of the induced morphism

HomAe(A⊗R A,Ae) // HomAe(A⊗R Q⊗R A,Ae)

endowed with the bimodule structure coming from the ‘outer’ structure on Ae. Using
lemma 3.2, we obtain that ΣΘ is isomorphic to the cone over the morphism of dg modules

A⊗R R∨ ⊗R A // A⊗R Q∨ ⊗R A.

which takes an element idx ⊗ id∗x ⊗ idx of A⊗R R∨ ⊗R A to

idx(
∑

(−1)|α
∗
i |α⊗i αi ⊗ idxi − idxi ⊗ α∗i ⊗ αi)idx ,

where
∑

idx⊗ id∗x is the Casimir element of the Re-module R and
∑
αi⊗α∗i is the Casimir

element of the Re-module Q and αi : xi → yi. The differential of A ⊗R R∨⊗R is that of
the tensor product (where R∨ carries the zero differential). To describe the differential of
A⊗RQ∨⊗RA, we consider A⊗RQ∨⊗RA as a dg submodule of the tensor algebra over R
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of Q⊕Q∨. Then the differential of an element idxi ⊗ α∗i ⊗ idyi equals the cyclic derivative
(cf. section 3.5) with respect to αi of

W =
∑

j

(−1)|αj |α∗j d(αj).

This determines the differential becauseA⊗RQ∨⊗RA is a dgA-bimodule whose underlying
graded module is generated by the elements idxi ⊗ α∗i ⊗ idyi .

3.9. Compatibility with Morita functors and localizations. Keep the hypotheses of
section 3.3. Let B be another dg category and F : A → B a dg functor. The dg functor F
is a localization functor if the (total left derived functor of) induction along F induces an
equivalence

(DA)/N ∼→ DB
for some localizing subcategory N of DA (namely the kernel of the induction functor).
Equivalently, restriction along F is an equivalence from DB onto a full subcategory of DA
(whose inclusion admits a left adjoint given by the induction functor). The localizations
F : A → B such that the kernel N of the induced functor F∗ : D(A)→ D(B) is compactly
generated are precisely the dg quotients in the sense of Drinfeld [16] [26].

Proposition 3.10. Assume that F : A → B is a localization functor.
a) The functor F e : Ae → Be induced by F is still a localization functor. It sends the

bimodule A to the bimodule B.
b) The restriction (F e)∗ along F e is monoidal for the derived functors of the tensor

products ⊗A and ⊗B (but does not preserve the unit in general).
c) If A is homologically smooth, then so is B and the left derived functor of induction

along F e : Ae → Be sends ΘA to ΘB. In particular, for each dg B-module L, we
have the projection formula

(3.10.1) F∗((F ∗L)
L
⊗A ΘA) ∼→ L

L
⊗B ΘB.

d) If the dg category A is homologically smooth and n-Calabi-Yau as a bimodule for
some integer n (cf. section 4.7), then B has the same properties.

e) If F is even a Morita functor, so is F e : Ae → Be and the induced equivalence
D(Ae) → D(Be) is naturally a monoidal functor for the derived functors of the
tensor products ⊗A and ⊗B. It commutes with the total derived functors of the
preduality functors and sends ΘA to ΘB.

Remark 3.11. If A is an (ordinary) algebra and A→ B a localization of A in the sense
that the induced functor

proj(A)→ proj(B)
between the categories of finitely generated projective modules is a localization of categories,
it may well happen that A is homologically smooth but B is not. For example, if A is the
path algebra of the quiver

1
ε2 //
x2

// 2
ε1 //
x1

// 3

over a field k, then A is finite-dimensional and of global dimension 2 but its localization
B obtained by inverting x1 and x2 is the 2 × 2-matrix algebra over the algebra k[ε]/(ε2)
of dual numbers. More generally, as shown in [36], every finitely presented k-algebra can
be obtained in a similar way from a finite-dimensional algebra of global dimension at most
2. This is not in contradiction with part c) of the Proposition, because there, we consider
derived localizations. In fact, in our example, the algebra B is the zeroth homology of the
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dg quotient B̃ obtained from A by inverting x1 and x2 and this generalizes to the setup of
[36].

Proof. Let us first describe the induction functor D(Ae)→ D(Be) induced by F . For this,
let us denote by X the A-B-bimodule (A,B) 7→ B(B,FA) and by X ′ the B-dual bimodule
(B,A) 7→ B(FA,B), which is isomorphic to RHomB(X,B). Then the induction along F is
isomorphic to the derived tensor product with X and the restriction along F is isomorphic
to the derived tensor product with X ′. From the fact that F is a localization functor, it
follows that the canonical morphism

X ′ L
⊗A X → B

is an isomorphism in D(Be). Moreover, since X is perfect over B, the canonical morphism

X
L
⊗B X ′ → RHomB(X,X)

is an isomorphism in D(Ae). The action of A on X yields a bimodule morphism A →
RHomB(X,X) and thus a morphism

A → X
L
⊗B X ′

in D(Ae). Now we can describe the induction functor D(Ae)→ D(Be): It is isomorphic to

M 7→ X ′ L
⊗AM

L
⊗A X.

In particular, the bimodule M = A is sent to X ′ L
⊗A X ∼→ B. The restriction functor

D(Be)→ D(Ae) is isomorphic to

N 7→ X
L
⊗B N

L
⊗B X ′.

Since X ′ L
⊗AX is isomorphic to A, this shows part b): the restriction functor is monoidal. If

we compose it with the induction functor, we find the identity functor because X ′ L
⊗AX ∼→

B. It follows that the induction functor D(Ae)→ D(Be) is a localization functor and sends
A to B, which is part a). If A is homologically smooth, then A is perfect in D(Ae) and so
its dual ΘA is sent to the dual ΘB of its image B, by lemma 2.9. Thus, we have

X∗ ⊗A ΘA ⊗A X ∼→ ΘB.

By applying L
L
⊗A? to this isomorphism, we get the projection formula 3.10.1. This ends

the proof of c). Part d) is immediate from c) and a).

Let us prove e): If F is a Morita functor, the canonical morphism A → X
L
⊗B X ′ is also

invertible and then the description of the induction functor via X and X ′ shows that it is
monoidal. The commutation of the induction functor with the preduality functor follows
from lemma 2.9. Now the last assertion follows from a).

√

4. Calabi-Yau completions

4.1. Definition and Morita equivariance. Let k be a commutative ring and A a dg
k-category whose morphism complexes are cofibrant over k. Let n be an integer and
Θ = ΘA the inverse dualizing complex of section 3.3. Put θ = Σn−1ΘA. The n-Calabi-Yau
completion of A is the tensor dg category

Πn(A) = TA(θ) = A⊕ θ ⊕ (θ ⊗A θ)⊕ . . . .



DEFORMED CALABI-YAU COMPLETIONS 17

We also call it the derived n-preprojective dg category of A (whence the notation Πn).
Notice that we have canonical inclusion and projection functors

A → Πn(A)→ A.

Up to a quasi-isomorphism (canonical up to homotopy), it is independent of the choice of
cofibrant replacement made in the definition of ΘA.

Proposition 4.2. Let F : A → B be a Morita functor. Then F yields a canonical Morita
functor Πn(F ) : Πn(A)→ Πn(B) such that we have a commutative diagram

A

F

��

// Πn(A)

Πn(F )

��

// A

F

��
B // Πn(B) // B.

Proof. Let F e be the induced functor from Ae to Be and denote by F e∗ the restriction along
F e. By part e) of proposition 3.10, we can find a quasi-isomorphism ϕ : ΘA → F e∗ΘB and
by part a), it induces quasi-isomorphisms between the (derived) tensor powers

θ⊗An
A → F ∗(θ⊗Bn

B )

for all n ≥ 1. Thus, the pair (F,ϕ) yields a dg functor

Πn(F ) : TA(θA)→ TB(θB) ,

which is quasi fully faithful. It remains to be shown that the image generates the derived
category of Πn(B). Now clearly the image contains all representable functors Πn(B)(?, FX)
associated with objects FX in the image of F . But for an arbitrary object M of the derived
category of Πn(B), we have

Hom(Πn(B)(?, FX),M) = HomB(B(?, FX),M |B) = M(FX).

Now since F is a Morita functor, the object M vanishes iff M(FX) is acyclic for all X in
A. Thus, the right orthogonal of the image of Πn(F ) vanishes and so the image is all of
the derived category.

√

4.3. Morphisms between restrictions. We keep the notations and assumptions of sec-
tion 4.1. Let i : D(A) → D(Πn(A)) be the restriction along the projection onto the first
component Πn(A)→ A.

Lemma 4.4. Let L and M be in DA.
a) We have a canonical isomorphism

RHomΠn(A)(iL, iM) = RHomA(L,M)⊕ Σ−n RHomA(L⊗A ΘA,M) ,

where ΘA is the inverse dualizing complex (section 3.3).
b) If k is a field, A is homologically smooth and M belongs to Dfd(A) (cf. section 3.3),

we have a canonical isomorphism

RHomΠn(A)(iL, iM) = RHomA(L,M)⊕ Σ−nDRHomA(M,L) ,

where D is the duality functor Homk(?, k).

Proof. We may and will assume that L is cofibrant over A. Then we have an exact sequence
of dg modules over Πn(A) = TA(θ)

(4.4.1) 0 // (iL)⊗A θ ⊗A TA(θ) α // (iL)⊗A TA(θ)
β // iL // 0 ,
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where α takes l⊗x⊗u to lx⊗u− l⊗xu and β is the multiplication of iL. Clearly the cone
over α is a cobrant resolution p(iL) of iL over TA(θ). Since θ acts by zero in iL and iM ,
the morphism α induces zero in HomTA(θ)(?, iM). So we find a canonical isomorphism in
the derived category of k-modules

HomTA(θ)(p(iL), iM) = HomA(L,M)⊕ Σ−1 HomA(L⊗A θ,M).

This implies part a). Part b) follows from part a) and Lemma 3.4.
√

4.5. Compatibility with localizations. We keep the notations and assumptions of sec-
tion 4.1. We say that a sequence of dg categories

0 // N G // A F // B // 0

is exact if the induced sequence

0 // D(N )
G∗ // D(A)

F∗ // D(B) // 0

is exact, i.e. the composition vanishes, D(N ) identifies with a full triangulated subcategory
of D(A) and the triangle quotient of D(A) by D(N ) identifies via F∗ with D(B). In this
case, the dg functor F : A → B is a localization in the sense of section 3.9 (but not each
localization is obtained in this way as shown in [24]).

Theorem 4.6. Assume that A is homologically smooth.
a) Let F : A → B be a localization functor. Then F yields a canonical localization

functor Πn(F ) : Πn(A)→ Πn(B) such that we have a commutative diagram

A

F

��

// Πn(A)

Πn(F )

��

// A

F

��
B // Πn(B) // B.

b) If we have an exact sequence of dg categories

0 // N G // A F // B // 0 ,

then the kernel of the functor Πn(F )∗ : D(Πn(A)) → D(Πn(B)) is the localizing
subcategory generated by the objects Πn(A)(?, N), N ∈ N .

Proof. We may and will assume that F : A → B is the identity on the set of objects. Let
(F e)∗ : C(Be)→ C(Ae) be the restriction functor. Let us put Θ′

B = (F e)∗(ΘB). Notice that
for any objects A,A′ of A (equivalently: B), we have Θ′

B(A,A′) = ΘB(A,A′) and that in
Θ′
B, the morphisms of A act via F : A → B. According to part c) of proposition 3.10, we

have a canonical morphism of dg modules ϕ : θA → θ′B whose image under the induction
along F e is invertible in D(Be). The morphism ϕ yields morphisms of dg modules between
the tensor powers

θA ⊗A · · · ⊗A θA → θ′B ⊗A · · · ⊗A θ′B → θB ⊗B · · · ⊗B θB.
Thus, the pair (F,ϕ) yields a dg functor G : Πn(A) → Πn(B). Clearly, G is compatible
with the canonical inclusion and projection functors. It remains to be shown that the
restriction along G is a fully faithful functor

D(Πn(B))→ D(Πn(A)).

Let L be a dg Πn(B)-module. It is given by its underlying dg B-module and a morphism
of dg B-modules

λ : L⊗B θB → L.
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The dg module G∗L is given by the restriction of L to A and the morphism of dg A-modules
deduced from λ and ϕ

L⊗A θA
id⊗ϕ // L⊗A θB

can // L⊗B θB
λ // L.

Let us use this description of G∗ to show that it is fully faithful. Let L be a dg Πn(B)-
module. We may and will assume that L is cofibrant. Since Πn(B) is cofibrant as a right
dg B-module, the restriction of L to B is then cofibrant. We have an exact sequence of
cofibrant dg Πn(B)-modules

0 // L⊗B θB ⊗B TB(θB) α // L⊗B TB(θB) // L // 0 ,

where α(l⊗ x⊗ u) = lx⊗ u− l⊗ xu. This makes it clear that the cone over the morphism

L⊗B θB ⊗B TB(θB) // L⊗B TB(θB)

is homotopy equivalent to L. LetM be another dg Πn(B)-module. By applying HomB(?,M)
to the above morphism, we obtain a morphism of dg k-modules

HomB(L,M)→ HomB(L⊗B θB,M)

whose cone (shifted by one degree to the right) computes morphisms from L to M in the
derived category of Πn(B). An analogous reasoning yields the morphisms between G∗L
and G∗M in the derived category of Πn(A). Thus, to conclude that G∗ is fully faithful, it
suffices to check that for all M , F ∗ induces bijections

HomD(B)(L,M)→ HomD(A)(F
∗L,F ∗M)

and

HomD(B)(L
L
⊗B θB,M)→ HomD(A)(F

∗(L)
L
⊗A θA, F ∗M).

The first bijection follows from the full faithfulness of F ∗. The second one is a consequence
of the full faithfulness of F ∗ and of the projection formula 3.10.1. This ends the proof of a).
To prove b), it suffices to show that the image of Πn(F )∗ is exactly the full subcategory of
the dg modules over Πn(A) which are right orthogonal to all the representable dg modules
Πn(A)(?, N) for N in N . We have

RHomΠn(A)(Πn(A)(?, N),M) = RHomA(A(?, N),M) ,

which shows that if M is in the image of Πn(F )∗, it is right orthogonal to the Πn(A)(?, N).
Conversely, if M satisfies this condition, then the underlying A-module of M is quasi-
isomorphic to F ∗L for some dg B-module L. The structural morphism

M ⊗A θA →M

then yields a morphism F ∗L⊗A θA → F ∗L hence a morphism

F∗(F ∗L⊗A θA)→ L

and thus by the projection formula 3.10.1, a morphism

L⊗B θB → L

Thus, L carries a canonical structure of dg module over Πn(B) and it is clear that M is
isomorphic to the image under Πn(F )∗ of L endowed with this structure.

√
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4.7. The Calabi-Yau property. We keep the notations and assumptions of section 4.1.
In particular, the symbol n denotes a fixed integer. On the category of dg Ae-modules, we
consider the composition Vn of the preduality functor V with the shift Σn. It is part of a
canonical preduality functor (Vn, ϕn) (by section 2.4). We also use the notation Vn for the
derived functor of Vn. Slightly modifying the terminology of Ginzburg and Kontsevich (cf.
Definition 3.2.3 of [19]), we say that the dg category A is n-Calabi-Yau as a bimodule if,
in D(Ae), there is an isomorphism

f : A → VnA
which is (Vn, ϕn)-symmetric, i.e. such that Vn(f)ϕn = f .

Theorem 4.8. If A is homologically smooth, its n-Calabi-Yau completion Πn(A) is ho-
mologically smooth and n-Calabi-Yau as a bimodule.

Proof. Let B be the n-Calabi-Yau completion. We have a short exact sequence of Be-
modules

0 // TA(θ)⊗A θ ⊗A TA(θ) α // TA(θ)⊗A TA(θ) // TA(θ) // 0 ,

where the morphism α takes an element f of θ(X,Y ) to 1Y ⊗f−f⊗1X and the second map
is composition. Thus, in the derived category of Be, the bimodule TA(θ) is isomorphic to
the cone on the morphism α. We deduce first that TA(θ) is perfect as a bimodule: Indeed,
the objects

TA(θ)⊗A θ ⊗A TA(θ) = θ ⊗Ae Be and TA(θ)⊗A TA(θ) = A⊗Ae Be

are perfect since they are induced from perfect Ae-modules (all tensor products are also
derived tensor products since Be is cofibrant over Ae).

To prove the second part of the assertion, we first notice that θ is the Vn−1-dual of A.
Since the bimodule A is perfect, it is homotopically Vn−1-reflexive and so, up to homotopy,
A is also the Vn−1-dual of θ. By lemma 2.9, for perfect modules, the induction functor
? ⊗Ae Be commutes with the preduality Vn up to isomorphism in the derived category.
Thus, in D(Be), the objects

θ ⊗Ae B and A⊗Ae B
are still Vn−1-dual to each other. So by proposition 2.5, in order to show that B is n-
Calabi-Yau as a bimodule, it suffices to show that α is Vn−1-antisymmetric. Now as seen
in section 2.7, we have a natural homotopy equivalence

Vn−1(θ)⊗Ae Be ⊗Ae θ∗ → HomBe(θ ⊗Ae Be, Vn−1(θ ⊗Ae Be)).

The right hand side is quasi-isomorphic to the following dg k-modules:

HomAe(θ, Vn−1(θ)⊗Ae Be) ∼→ HomAe(θ,A⊗Ae Be) = HomAe(θ,B ⊗A B) ,

where we use the fact that θ is cofibrant. So we get a natural quasi-isomorphism

Vn−1(θ)⊗Ae Be ⊗Ae θ∗ → HomAe(θ,B ⊗A B).

Let us lift the morphism λ : x 7→ 1⊗x along this quasi-isomorphism: Let c be the Casimir
element in θ ⊗Ae θ∗, i.e. the image of 1 ∈ k under the morphism

k → HomAe(θ, θ) ∼→ θ ⊗Ae θ∗.

We let λ̃ be the image of id⊗ c under the composition

(Vn−1θ)⊗Ae (Aop ⊗k θ)⊗Ae θ∗ → (Vn−1θ)⊗Ae (Bop ⊗k B)⊗Ae θ∗.

Then clearly λ̃ maps to λ and the transpose conjugate of λ̃ maps to ρ : x 7→ x⊗ 1. Since
α equals ρ− λ, it follows that α is indeed Vn−1-antisymmetric.

√
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5. Deformed Calabi-Yau completions

5.1. Construction and Calabi-Yau property. Let k be a commutative ring and A a
dg k-category such that A(X,Y ) is cofibrant as a dg k-module for all objects X and Y of
A. We assume that A is homologically smooth. Let Θ be the inverse dualizing complex (cf.
section 3.3), n an integer, θ = Σn−1Θ and Πn(A) = TA(θ) the n-Calabi-Yau completion. It
is natural to deform Πn(A) by adding an A-bilinear (super-)derivation D of degree 1 to its
differential. Such a derivation is determined by its restriction to the generating bimodule
θ. It has to satisfy

0 = (d+D)2 = d(D) +D2.

Since the right hand side is a degree 2 derivation, it suffices to check this identity on the
generating bimodule θ. Assume that D takes θ to A ⊂ TA(θ). Then D2 vanishes and the
condition reduces to d(D) = 0. Thus, we see that each closed bimodule morphism c of
degree 1 from θ to A gives rise to a ‘deformation’

Πn(A, c)

of Πn(A), obtained by adding c to the differential of Πn(A). A standard argument shows
that two homotopic morphisms c and c′ yield quasi-isomorphic dg categories Πn(A, c) and
Πn(A, c′). Thus, up to quasi-ismorphism, the deformation Πn(A, c) only depends on the
image of c in the derived category of bimodules (recall that θ is cofibrant). Now notice
that since the bimodule A is perfect, we have the following isomorphisms:

HomD(Ae)(Σ
n−1Θ,ΣA) = HomD(Ae)(A∨,Σ2−nA) = H2−n(A

L
⊗Ae A∨∨)

= H2−n(A
L
⊗Ae A) = TorA

e

n−2(A,A) = HHn−2(A) ,

where HH denotes Hochschild homology.

Theorem 5.2. The deformed n-Calabi-Yau completion Πn(A, c) associated with an ele-
ment c of HHn−2(A) is homologically smooth and n-Calabi-Yau.

Proof. This is a variation on the proof of theorem 4.8 where we have to take into account
the new component of the differential of TA(θ). Let B be the deformed n-Calabi-Yau
completion. We still have a short exact sequence of Be-modules

0 // TA(θ)⊗A θ ⊗A TA(θ) α // TA(θ)⊗A TA(θ) // TA(θ) // 0 ,

where the morphism α takes an element f of θ(X,Y ) to 1Y ⊗ f − f ⊗ 1X and the second
map is composition. Notice that here the differentials of the tensor algebras TA(θ) are
deformed but that the one of the middle factor θ on the left is not! The map α is indeed
compatible with the differential: For an element x of θ, we have

d(α(x)) = d(1⊗ x− x⊗ 1) = 1⊗ (dx+ cx)− (dx+ cx)⊗ 1 = 1⊗ dx− dx⊗ 1 ,

where the last equality holds because cx belongs to A and the tensor product is over A.
Now we can proceed as in the proof of theorem 4.8. We obtain that for arbitrary c, the dg
category B is smooth and n-Calabi-Yau.

√

Remark 5.3. The formulas in lemma 4.4 remain true when we replace the Calabi-Yau
completion Πn(A) with the deformed Calabi-Yau completion Πn(A, c). Indeed, the se-
quence 4.4.1 in the proof of the lemma remains well-defined and exact when replace TA(θ)
with Πn(A, c).
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5.4. Deformed Calabi-Yau completions as homotopy pushouts. The slightly ad
hoc construction of the deformed Calabi-Yau completion given in section 5.1 can be viewed
more intrinsically as a homotopy pushout. Let us explain this in more detail. Let k, A and
Θ be as in section 5.1 and let c be an element of HHn−2(A). We may lift c to a morphism
of dg bimodules

c̃ : Θ[n− 2]→ A.
This morphism extends uniquely to a morphism of dg categories

[id, c̃] : Πn−1(A)→ A

which is the identity on A and given by c̃ on Θ[n− 2]. We also have the projection

[id, 0] : Πn−1(A)→ A.

Now let i : A → Πn(A, c) be the canonical inclusion.

Proposition 5.5. The square

Πn−1(A)

[id,ec]
��

[id,0] // A

i
��

A
i

// Πn(A, c)

is a homotopy pushout square for the model category structure on the category of dg cate-
gories introduced in [39].

Notice that the square is not commutative in the category of dg categories. The proof
will show in particular that it becomes commutative in the homotopy category.

The proposition is a special case of the following general fact: Let A be any (small) dg
category and X a cofibrant A-bimodule. Let f : X → A be a bimodule morphism. We also
view f as a morphism of degree 1 from X[1] to A. Let TA(X[1]) denote the tensor category
TA(X[1]) whose differential has been deformed using f : X[1] → A as an additional
component. Let the morphisms [id, f ], [id, 0] from TA(X) to A and i : A → TA(X[1], f) be
defined analogously to the above morphisms. Proposition 5.5 is now clearly a special case
of the following

Proposition 5.6. The square

TA(X)

[id,f ]

��

[id,0] // A

i
��

A
i

// TA(X[1], f)

is a homotopy pushout square for the model category structure on the category of dg cate-
gories introduced in [39].

Proof. We may and will assume that A is cofibrant and that X is cofibrant as a bimodule.
To compute the homotopy pushout of the angle

TA(X)

[id,f ]

��

[id,0] // A

A
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it is then enough to replace the morphism [id, 0] by a cofibration and to compute the
pushout in the category of dg categories. To replace [id, 0] by a homotopy pushout, we
consider the natural inclusion

j : X → IX

of X into the cone IX over the identity of X. Clearly, the morphism [id, 0] factors as
the cofibration TA(X) → TA(IX) followed by the trivial fibration TA(IX) → A. So to
compute the homotopy pushout, it is enough to compute the homotopy pushout of the
angle

TA(X)

[id,f ]

��

// TA(IX)

A
We claim that this is given by the commutative squre

TA(X)

[id,f ]

��

// TA(IX)

��
A // TA(X[1], f).

Indeed, we have a pushout diagram of dg bimodules

X

f

��

j // IX

��
A // A⊕X[1]

where A ⊕ X[1] is endowed with the differential of the mapping cone over f . Using this
one easily checks that TA(X[1], f) has the correct universal property.

√

5.7. Compatibility with Morita functors and localizations. As in section 5.1, let n
be an integer, k a commutative ring and A a homologically smooth dg k-category such that
A(X,Y ) is cofibrant as a dg k-module for all objects X and Y of A. Consider the deformed
n-Calabi-Yau completion B = Πn(A, c) associated with an element c of HHn−2(A).

Now let B be another dg k-category satisfying the same hypotheses as A. Assume that
we have a localization functor F : A → B and let c′ be the element of HHn−2(B) obtained
as the image of c under the map induced by F , cf. [25].

Theorem 5.8. a) Under the above hypotheses, there is a canonical localization func-
tor G : Πn(A, c)→ Πn(B, c′) such that we have a commutative diagram

A

F

��

// Πn(A, c)

G
��

B // Πn(B, c′).

The functor G is a Morita functor if F is.
b) If we have an exact sequence of dg categories (cf. section 4.5)

0 // N G // A F // B // 0

then the kernel of the induced functor

G∗ : D(Πn(A, c))→ D(Πn(B, c′))



24 BERNHARD KELLER WITH AN APPENDIX BY MICHEL VAN DEN BERGH

is the localizing subcategory generated by the dg modules Πn(A, c)(?, N), where N
belongs to N .

Proof. We have a commutative square of isomorphisms

Hn−2(A
L
⊗Ae A) //

��

HomAe(θA,A)

��

Hn−2(B
L
⊗Be B) // HomBe(θB,B),

where the vertical arrows are induced by F . This yields a commutative square in D(Ae),
where we also write F ∗ for (F e)∗,

θA
c //

ϕ

��

A

F

��
F ∗θB

F ∗c′ // F ∗B.

We would like to lift it to a strictly commutative square of dg modules. We choose an
arbitrary lift c̃ of c. After replacing θB by a homotopy equivalent cofibrant dg module,
we may choose a dg module morphism c̃′ : θB → B lifting c′ such that c̃′ induces a split
surjection of graded Be-modules. The same then holds for the morphism F ∗c̃′ of dg Ae-
modules. Therefore, we can choose a lift ϕ̃ of ϕ such that the square of dg modules

θA
ec //

eϕ
��

A

F

��
F ∗θB

F ∗ec′ // F ∗B.

commutes strictly. As in the proof of theorem 4.6, the morphisms F and ϕ̃ then induce a
dg functor

G : Πn(A, c)→ Πn(B, c′).
It remains to be checked that the restriction G∗ is a fully faithful functor from D(Πn(B, c′))
to D(Πn(A, c)). Let L be a dg Πn(B, c′)-module. It is given by its underlying dg B-module
and a morphism of graded modules homogeneous of degree 0

λ : L⊗B θB → L

such that
(dλ)(l ⊗ x) = lc′(x)

for all l in L and x in θB. Suppose that L is cofibrant as a Πn(B, c′)-module. Since
the underlying B-module of Πn(B, c′) is cofibrant (even with the deformed differential),
the underlying B-module of L is cofibrant. We have an exact sequence of cofibrant dg
Πn(B)-modules

0 // L⊗B θB ⊗B TB(θB) α // L⊗B TB(θB) // L // 0 ,

where α(l⊗ x⊗ u) = lx⊗ u− l⊗ xu. Notice that the map α is a morphism of dg modules
despite the deformation of the differential on TB(θB), analogously to what we have seen in
the proof of theorem 5.2. The sequence shows that the cone over the morphism

L⊗B θB ⊗B TB(θB) // L⊗B TB(θB)
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is homotopy equivalent to L. Let M be another dg Πn(B, c′)-module. By applying
HomB(?,M) to the above morphism, we obtain a morphism of dg k-modules

HomB(L,M)→ HomB(L⊗B θB,M)

whose cone (shifted by one degree to the right) computes morphisms from L to M in the
derived category of Πn(B, c′). An analogous reasoning yields the morphisms between G∗L
and G∗M in the derived category of Πn(A, c). Thus, to conclude that G∗ is fully faithful,
it suffices to check that for all M , the dg functor F ∗ induces bijections

HomD(B)(L,M)→ HomD(A)(F
∗L,F ∗M)

and
HomD(B)(L

L
⊗B θB,M)→ HomD(A)(F

∗(L)
L
⊗A θA, F ∗M).

As in the proof of theorem 4.6, the first bijection follows from the full faithfulness of F ∗

and the second one is a consequence of the full faithfulness of F ∗ and of the projection
formula 3.10.1. This ends the proof of a). The proof of b) is entirely analogous to that of
part b) of theorem 4.6 and left to the reader.

√

6. Ginzburg dg categories

6.1. Reminder on Hochschild and cyclic homology. Let k be a commutative ring
and Q a graded k-quiver, cf. section 3.5. We put A = TR(Q). The bimodule A has the
small resolution

(6.1.1) 0 // A⊗R Q⊗R A
eα // A⊗R A // A // 0 ,

where the map α̃ takes a tensor u⊗ v ⊗ w to uv ⊗ w − u⊗ vw and the right hand map is
composition. By tensoring this resolution with A over Ae we obtain the following complex
which computes Hochschild homology:

0 // (Q⊗R A)⊗Re R α // A⊗Re R // 0 ,

where α takes a tensor v ⊗ u with factors of degree p and q to vu− (−1)pquv.
Let β̃ be the unique bimodule derivation

A → A⊗R Q⊗R A
which takes an element v : x→ y of Q to idy ⊗ v ⊗ idx. If we have n ≥ 1 and a = v1 . . . vn

for elements vi : xi → xi−1 of Q, we have

β̃(a) = 1x0 ⊗ v1 ⊗ v2 . . . vn +
n−1∑
i=2

v1 . . . vi−1 ⊗ vi ⊗ vi+1 . . . vn + v1 . . . vn−1 ⊗ vn ⊗ 1xn

and
α̃β̃(a) = −1x0 ⊗ a+ a⊗ 1xn .

The map β̃ induces a (unique) map β making the following square commutative

A
eβ //

��

A⊗R Q⊗R A

��
A⊗Re R

β // (Q⊗R A)⊗Re R ,

where the left vertical map takes a path a from x to y to a ⊗ 1x1y and the right vertical
map takes a⊗v⊗b to (−1)pq(v⊗ba)⊗1x, where a is of degree p and vb is of degree q. Note
that the tensor product M ⊗Re R of an R-bimodule M with R over Re identifies with the
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quotient of M by the dg submodule generated by all differences m1x − 1xm for m ∈ M
and x an object of R. If we make this identification, the map β takes a path v1 . . . vn of Q
to the sum ∑

i

±vi ⊗ vi+1vi+2 . . . vnv1 . . . vi−1 ,

where the sign is computed by the Koszul sign rule from the degrees of the vj . We clearly
have α ◦β = 0. The following complex is to be continued in a 2-periodic fashion to the left

(6.1.2) . . . α // A⊗Re R
β // (Q⊗R A)⊗Re R α // A⊗Re R // 0 .

It is the small cyclic complex Csm(A) and computes cyclic homology (cf. chapter 3 of [34]).
We sometimes consider its components as columns. If A = R, cyclic homology is two-
periodic, the module HC1(R) vanishes and HC0(R) is a sum of copies of k indexed by Q0.
If k contains Q, and A is arbitrary, then the reduced small cyclic complex Csm(A)/Csm(R)
is quasi-isomorphic to the quotient of its rightmost column by the image of α, i.e. to the
cokernel of the map

(Q⊗R A)⊗Re R α // A⊗Re R.
The inclusion of the subcomplex of the two rightmost terms induces the canonical morphism
from Hochschild to cyclic homology. The corresponding quotient complex is isomorphic
to the original complex shifted by two degrees to the left. The short exact sequence thus
obtained induces the long exact sequence (known as the SBI-sequence)

HHn(A) I // HCn(A) S // HCn−2(A) B // HHn−1(A).

In particular, the rightmost arrow β of the small cyclic complex induces Connes’ connecting
map

B : HCn(A)→ HHn+1(A).
If the ring k contains Q and the quiver Q is concentrated in degree 0, then in the exact
sequence

HH2(A)→ HC2(A)→ HC0(A)→ HH1(A)→ HC1(A) ,
the terms HH2(A) and HC1(A) vanish (as we see by considering the small cyclic complex),
the map S induces an isomorphism HC2(A) ∼→ HC0(R), and the map B induces an
isomorphism from the reduced zeroth cyclic homology of A to its first Hochschild homology.

6.2. Ginzburg dg categories. Let Q be a graded k-quiver such that the set of objects
Q0 is finite and Q(x, y) is a finitely generated graded projective k-module for all objects
x and y. We fix an integer n and a superpotential of degree n − 3, i.e. an element W in
(A ⊗Re R)/ imα of degree n − 3. So W is a linear combination of cycles considered up
to cyclic permutation ‘with signs’. Notice that W need not be homogeneous with respect
to the grading by path length. We can view W as an element in HCn−3(A) and if the
ring k contains Q, every element of HCn−3(A) has such a representative. Let R be the
discrete category on Q0 and Q∨ the dual of the R-bimodule Q over Re (endowed with the
canonical involution). Let

∑
vi⊗ v∗i be the Casimir element of Q⊗Re Q∨, i.e. the element

which, under the canonical isomorphism

Q⊗Re Q∨ → HomRe(Q,Q) ,

corresponds to the identity of Q.
The Ginzburg dg category Γn(Q,W ), due to V. Ginzburg (section 4.2 of [19]) for a

quiver Q concentrated in degree 0 and n = 3, is defined as the tensor category over R of
the bimodule

Q̃ = Q⊕Q∨[n− 2]⊕R[n− 1]
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endowed with the unique differential which
a) vanishes on Q,
b) takes the element v∗i of Q∨[n− 2] to the cyclic derivative ∂viW (cf. section 3.5),
c) takes the element idx of R[n − 1] to (−1)nidx(

∑
[vi, v

∗
i ])idx, where [, ] denotes the

supercommutator.
Let A be the path category of Q and c = β(W ) the image of W in

HHn−2(A) = TorA
e

n−2(A,A).

Thanks to the small resolution 6.1.1, the path category A is homologically smooth. By
theorem 5.2, the associated deformed n-Calabi-Yau completion Πn(A, c) is homologically
smooth and n-Calabi-Yau.

Theorem 6.3. The deformed n-Calabi-Yau completion Πn(A, c) is quasi-isomorphic to the
Ginzburg dg category Γn(A,W ). In particular, the Ginzburg dg category is homologically
smooth and n-Calabi-Yau.

Remark 6.4. If we use the theorem and proposition 5.5, we obtain that the Ginzburg dg
category is given, up to isomorphism in the homotopy category of dg categories in the sense
of [39], by the homotopy pushout square

Πn−1(A)

[id,ec]
��

[id,0] // A

i
��

A
i

// Γn(A,W ).

I thank Ben Davison [14] for suggesting this statement.

Proof. We first apply the computation of the inverse dualizing complex of section 3.6 to
the special case where A = TR(Q) with d = 0. We obtain that the non deformed CY-
completion is quasi-isomorphic to the tensor category over R of the bimodule Q⊕Q∨[n−
2]⊕R[n− 1] endowed with the unique differential which vanishes on Q and Q∨ and takes
the element idx of R[n− 1] to (−1)n−2idx(

∑
[vi, v

∗
i ])idx. The deforming component of the

differential of Πn(A, c) is the map θ → A given by the contraction with c = β(W ) in

Σn−1 RHomAe(A,Ae)⊗ (A
L
⊗Ae A)→ ΣA.

This last map identifies with

Σn−1 HomAe(P,Ae)⊗ (P ⊗Ae A)→ ΣA ,

where P is the cofibrant resolution of A constructed in proposition 3.7. The complex
P ⊗Ae A is isomorphic to

0 // (Q⊗R A)⊗Re R α // A⊗Re R // 0

and c lies in the subcomplex (Q ⊗R A) ⊗Re R. The complex Σn−1 HomAe(P,Ae) is iso-
morphic to

0→ A⊗R A → A⊗R Q∨ ⊗R A → 0.

Therefore, the deforming component of the differential vanishes on the left hand component
A⊗RA. Now it is clear that the deforming component of the differential vanishes onR[n−1]
and takes an element v∗ of Q∨[n − 2] to (v∗ ⊗ id) ◦ β(W ). For v = v∗i , clearly this equals
the cyclic derivative ∂viW .

√
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6.5. Deformed Calabi-Yau completions of homotopically finitely presented dg
categories. Let k be a commutative ring and Q a graded k-quiver whose set of objects is
finite and whose bimodule of morphisms is finitely generated and projective over k. Let A
be a dg category of the form (TR(Q), d), where the differential d satisfies the condition of
section 3.6. Let n be an integer, Q∨ = HomRe(Q,Re) and

Q̃ = Q⊕Q∨[n− 2]⊕R[n− 1].

Let
∑
αj ⊗ α∗j be the Casimir element of Q and let W be the element

W =
∑

(−1)|αj |α∗jd(αj)

of TR(Q̃). Let W ′ be an element of HCn−3(A) and c ∈ HHn−2(A) its image under Connes’
map B.

Proposition 6.6. The deformed n-Calabi-Yau completion Πn(A, c) is isomorphic to the
tensor category TR(Q̃), endowed with the unique differential d such that for each i, we have

d(αi) = ∂α∗i
(W +W ′) and d(α∗i ) = ∂αi(W +W ′)

and for an object x of Q, the element idx of Σn−1R is taken to

d(idx) = (−1)nidx(
∑

[αi, α
∗
i ])idx

where [, ] is the supercommutator.

Proof. This follows from the description of the inverse dualizing complex ofA in section 3.6.
The details of the computation are similar to those in the proof of Theorem 6.3 and left to
the reader.

√

6.7. 3-Calabi-Yau completions of 2-dimensional dg categories. Let k be a com-
mutative ring and A a dg category Morita equivalent to (TR(V ), d) for a graded k-quiver
V whose set of objects is finite and whose bimodule of arrows is finitely generated free
over k and concentrated in degrees −1 and 0 (the differential d is arbitrary). The following
proposition shows in particular that Π3(A) is Morita-equivalent to a Ginzburg dg category.

Let B be the path category B = TR(V 0⊕ (V −1)∨) of the sum of the 0th component of V
with the ∨-dual of V −1 placed in degree 0. Let W be the class in HC0(B) of the element∑

j

v∗j d(vj) ,

where
∑
vj ⊗ v∗j is a Casimir element for V −1. Let W ′ ∈ HC0(A) and c′ ∈ HH1(A) its

image under Connes’ map B. For example we can have W ′ = 0 and c = 0.

Proposition 6.8. The deformed 3-Calabi-Yau completion Π3(A, c) is derived Morita-equi-
valent to the deformed 3-Calabi-Yau completion Π3(B,W +W ′) and thus to the Ginzburg
algebra Γ3(V 0 ⊕ (V −1)∨,W +W ′).

Proof. This is a special case of 6.6.
√

6.9. 3-CY completions of algebras of global dimension 2. Let k be a field and A an
algebra given as the quotient kQ′/I of the path algebra of a finite quiver Q′ by an ideal
I contained in the square of the ideal J generated by the arrows of Q′. Assume that A is
of global dimension ≤ 2 (but not necessarily of finite dimension over k). We construct a
quiver Q and a superpotential W as follows: Let R be the union over all pairs of vertices
(i, j) of a set of representatives of the vectors belonging to a basis of

TorA
2 (Sj , DSi) = ej(I/(IJ + JI))ei ,
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where D = Homk(?, k) and Si is the simple right module associated with the vertex i. We
think of these representatives as ‘minimal relations’ from i to j, cf. [10]. For each such
representative r, let ρr be a new arrow from j to i. We define Q to be obtained from Q′

by adding all the arrows ρr. We define a potential by

W =
∑
r∈R

rρr.

Now let W ′ ∈ HC0(A) and c ∈ HH1(A,A) its image under Connes’ map B. Let W̃ ′ be an
element of HC0(kQ) which lifts W ′ along the canonical surjection kQ→ kQ′ → A taking
all arrows ρr to 0. For example, we can have W ′ = 0 and W̃ ′ = 0.

Theorem 6.10. The deformed 3-Calabi-Yau completion Π3(A, c) is quasi-isomorphic to
the Ginzburg dg algebra Γ3(Q,W + W̃ ′).

A very similar result was independently obtained by Ginzburg [20] in a slightly different
setting.

Proof. For each vertex i of A let Pi be the indecomposable projective eiA. Let A be the
full subcategory of the module category formed by the Pi. By induction, one constructs a
graded R-bimodule V and a differential d on TR(V ) such that

1) V n vanishes in degrees n ≥ 1, V 0 is free with basis Q′ and V −1 is free with basis
R;

2) the differential d sends the basis element r ∈ R of V −1 to the element r of TR(V 0);
3) for all n ≥ 1, the differential d maps V −n−1 to Tn and induces an isomorphism

from V −n−1 onto H−n(Tn), where Tn denotes the dg category TR(V 0⊕· · ·⊕V −n).
Notice that a) the image d(V ) lies in the square of the ideal generated by V in TR(V ) and
that b) we have a canonical quasi-isomorphism between F = (TR(V ), d) and A. The point
a) implies that we have isomorphisms

V −n(i, j) ∼= TorF1+n(Si, DSj)

for all i, j and n (thanks to remark 3.8, we can use the bimodule resolution of part b) of
proposition 3.7). The point b) implies that we have isomorphisms

TorF1+n(Si, DSj) ∼= TorA1+n(Si, DSj).

Thus, we have V n = 0 for all n different from 0 and −1. Now we can apply proposition 6.8
to conclude.

√

6.11. Application to cluster-tilted algebras. Let k be an algebraically closed field. If
A is a finite-dimensional k-algebra of finite global dimension, its generalized cluster-category
CA is defined as the full triangulated subcategory of the triangle quotient

Db(A⊕ (DA)[−3])/ per(A⊕ (DA)[−3])

generated by the image of the free module A, cf. [27] and [1]. Here, the dg algebra
A ⊕ (DA)[−3] is the trivial extension of A by the dg bimodule (DA)[−3], where D =
Homk(?, k). In general, the category CA has infinite-dimensional morphism spaces. As
shown in [27], if A is the path algebra of a quiver Q without oriented cycles, then CA is
triangle equivalent to the cluster category CQ as defined in [6], cf. also [11] for the case
where Q is Dynkin of type A.

The generalized cluster category C(Q,W ) of a finite quiver Q with potential W is defined
as the triangle quotient

per(Γ3(Q,W ))/Db(Γ3(Q,W ) ,
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cf. [1]. In general, it has infinite-dimensional morphism spaces. If Q does not have oriented
cycles (and so W = 0), then C(Q,0) is equivalent to the cluster category CQ, cf. [1]. For
arbitrary (Q,W ), the endomorphism algebra of the image of the free module Γ3(Q,W ) in
C(Q,W ) is isomorphic to the Jacobian algebra H0(Γ3(Q,W )).

Recall [29] that a tilting module over an algebra B is a B-module T such that the total
derived functor of the tensor product by T over the endomorphism algebra EndB(T ) is an
equivalence

D(EndB(T )) ∼→ D(B).

The endomorphism algebra A of a tilting module T over a hereditary algebra B is of global
dimension at most 2. A module M is basic if each indecomposable module occurs with
multiplicity at most 1 as a direct factor of M . If T is a basic tilting module over the path
algebra B = kQ′′ of a finite quiver without oriented cycles, the endomorphism algebra Ã
of the image of T in CQ′′ is called the cluster-tilted algebra associated with T , cf. [7].

Theorem 6.12. Let A = kQ′/I be a k-algebra of global dimension at most 2 as in sec-
tion 6.9 and define (Q,W ) as there. Let Γ = Γ3(Q,W ).

a) The category C(Q,W ) is canonically triangle equivalent to the cluster category CA.
The equivalence takes Γ to the image π(A) of A in CA and thus induces an isomor-
phism from the Jacobian algebra P(Q,W ) onto the endomorphism algebra Ã of the
image of A in CA.

b) If T is a basic tilting module over kQ′′ for a quiver without oriented cycles Q′′ and
A is the endomorphism algebra of T , then C(Q,W ) is triangle equivalent to CQ′′ by
an equivalence which takes Γ to the image of T in CQ′′. Thus, the endomorphism
algebra Ã of T in CQ′′ is isomorphic to the Jacobian algebra H0(Γ).

The quiver of Ã in part b) was first described by Assem-Brüstle-Schiffler [3]. The
fact that cluster-tilted algebras are Jacobian algebras was independently proved by Buan-
Iyama-Reiten-Smith [5] using an entirely different method.

Proof. a) By theorem 6.10, the 3-Calabi-Yau completion Π = Π3(A) is quasi-isomorphic
to Γ = Γ3(Q,W ). Thus we have an equivalence of triangulated categories

C(Q,W )
∼→ per(Π)/Dfd(Π)

taking the free module Γ to Π. Moreover, we have an equivalence of triangulated categories

per(Π)/Dfd(Π) ∼→ CA
taking the free module Π to the image π(A) of the free module A, cf. the proof of theorem
7.1 in [27] or Lemmas 4.13 to 4.15 in [1]. The claim follows because H0(Γ) is isomorphic
to the endomorphism algebra of Γ in C(Q,W ) by theorem 3.6 of [1].

b) If A is the endomorphism algebra of T , then A is derived equivalent to the path algebra
kQ′′ and therefore CA is equivalent to CQ′′ . The claim now follows from part a).

√

7. Particular cases of localization and Morita equivalence

7.1. Deleting a vertex is localization. Let k be a field and Q a finite quiver (possibly
with oriented cycles). Let A be the path algebra kQ. Notice that A may be of infinite
dimension. Let i be a vertex of Q and ei the associated idempotent. Let Pi = eiA be
the associated projective indecomposable. Let N ⊂ D(A) be the localizing subcategory
generated by Pi. Let B = A/AeiA. Notice that B is the path algebra of the quiver Q′

obtained from Q by deleting the vertex i and all arrows starting or ending at this vertex.
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Lemma 7.2. The functor

?
L
⊗A B : D(A)→ D(B)

induces an equivalence from D(A)/N onto D(B). Thus, the morphism A → B is a local-
ization of dg categories (cf. section 3.9).

Proof. Since N is generated by a compact object, we know (cf. for example [35]) that for
each object X of D(A), there is a triangle, unique up to unique isomorphism,

(7.2.1) XN → X → XN⊥ → ΣXN

with XN in N and XN⊥
in the right orthogonal subcategory N⊥. Moreover, the projection

functor D(A)→ D(A)/N induces an equivalence from N⊥ onto D(A)/N . Let us compute
the triangle 7.2.1 for X = Pj , where Pj = ejA is the projective associated with a vertex j
of Q. If we have j = i, the morphism XN → X is the identity of Pi. If we have j 6= i, let
Mj be the set of minimal elements of the set of paths p from i to j, where we have p ≤ p′
if p′ = pu for a path u from i to i. Then each morphism Pi → Pj uniquely factors through
the morphism ⊕

Mj

Pi → Pj

whose component associated with p ∈ Mj is the left multiplication by p. Moreover, this
morphism is injective. It follows easily that it induces a bijection

HomD(A)(Σ
mPi,

⊕
Mj

Pi)→ HomD(A)(Σ
mPi, Pj)

for each m ∈ Z and this implies that it induces a bijection

HomD(A)(N,
⊕
Mj

Pi)→ HomD(A)(N,Pj)

for each N ∈ N . It follows that the morphism⊕
Mj

Pi → Pj

is the universal morphism XN → X for X = Pj . Therefore, the object PN
⊥

j is the cokernel
of ⊕

Mj

Pi → Pj .

Now it is easy to check that for all vertices j and l, the morphism space

HomD(A)(P
N⊥
j ,ΣmPN

⊥
l )

vanishes for m 6= 0 and is canonically isomorphic to el(A/AeiA)ej for m = 0. This

shows that the functor ?
L
⊗A (A/AeiA) : D(A) → D(A/AeiA) induces an equivalence

from the subcategory of compact objects of D(A)/N onto the perfect derived category
of D(B) = D(A/AeiA). Since this functor commutes with arbitrary coproducts, it does
indeed induce an equivalence from D(A)/N onto D(B).

√

Recall that Q is a finite quiver, possibly with oriented cycles, k is a field and A is the
path algebra kQ. The quiver Q′ is obtained from Q by deleting the vertex i and all arrows
starting or ending at i and B = A/AeiA. Now let W be a potential on Q, i.e. an element
of HC0(A) and let W ′ be the image of W in HC0(B).
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Corollary 7.3. The canonical functor

Γ3(Q,W )→ Γ3(Q′,W ′)

is a localization.

Proof. By the functoriality of Connes’ map B, the class c′ = B(W ′) is the image of c =
B(W ) under the map HH1(A,A) → HH1(B,B) induced by A → B. By the localization
theorem 5.8 and the above lemma 7.2, we have an induced localization functor

Π3(A, c)→ Π3(B, c′)

and by theorem 6.3, this yields a localization functor between the Ginzburg dg algebras.√

Let us put Γ = Γ3(Q,W ) and Γ′ = Γ3(Q′,W ′). Notice that in zeroth homology, the
induced morphism between the Jacobian algebras is the natural quotient map

P(Q,W )→ P(Q′,W ′).

Let us compare the generalized cluster categories

C(Q,W ) = per(Γ)/Dfd(Γ)

and C(Q′,W ′) under the assumption that these categories have finite-dimensional morphism
spaces. We refer to [1] for a thorough analysis of this situation. Let P̃i = eiΓ and let P i

be the image of P̃i under the projection functor π : per(Γ)→ C.

Theorem 7.4. The triangulated category C(Q′,W ′) is triangle equivalent to the Calabi-Yau
reduction in the sense of Iyama-Yoshino (section 4 of [22]) of C(Q,W ) at P i.

Proof. Let us put C = C(Q,W ) and C′ = C(Q′,W ′). Let Z be the full subcategory of C
formed by the objects M such that Ext1(P i,M) vanishes. By definition, the Calabi-Yau
reduction at P i is the quotient Z/(P i) of Z by the ideal of morphisms factoring through
a finite direct sum of copies of P i. To construct a functor from Z to C′, we consider the
fundamental domain F ⊂ per(Γ) as defined in section 2.2 of [1]. Thus, the subcategory F
can be described as the full subcategory

per(Γ) ∩ D≤0 ∩ ⊥(D≤−2) ,

where D≤0 is the left aisle of the canonical t-structure on D(Γ). Alternatively, the subcate-
gory F can be described as the full subcategory whose objects are the cones on morphisms
between objects of the closure add(Γ) of the free module Γ under finite direct sums and
direct factors. We know from [loc. cit.] that the projection induces a k-linear equivalence
F ∼→ C. Now we consider the composition

Z ⊂ C ∼→ F → F ′ ∼→ C′

where F ′ is the fundamental domain for C′. Let us denote this functor by F . Its restriction
to the full subcategory T whose objects are the P j associated with all vertices j identifies
with the canonical projection functor

P(Q,W )→ P(Q′,W ′).

In particular, since P(Q,W ) is isomorphic to T by theorem 2.1 of [1], the restriction induces
an equivalence

T /(P i)→ T ′
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where T ′ ⊂ C′ is the full subcategory of the P j , j 6= i. We will show below that the functor
Z/(P i) → C′ induced by F is naturally a triangle functor. Since this triangle functor
induces an equivalence between the cluster-tilting subcategories

T /(P i)→ T ′ ,
it is itself an equivalence by lemma 4.5 of [31].

It remains to be shown that the functor F : Z/(P i) → C′ induced by F is naturally a
triangle functor. Let q : C → F be a k-linear quasi-inverse of the projection F → C. Let

X
u // Y

v // Z
w // ΣX

be a triangle of C such that X, Y and Z lie in Z. Notice that v induces a surjection

C(P i, Y )→ C(P i, Z).

Form a triangle in per(Γ)

X ′ // q(Y )
q(v) // q(Z) // ΣX ′ .

Claim: The object τ≤0X
′ lies in F . The object q(X) is isomorphic to τ≤0X

′ by an iso-
morphism canonical up to a morphism factoring through q(Y ). Moreover, the image of the
morphism τ≤0X

′ → X ′ under the composed functor per(Γ)→ per(Γ′)→ C′ is invertible.
Indeed, from the triangle

Σ−1q(Z) // X ′ // q(Y )
q(v) // q(Z) ,

we see that X ′ is left orthogonal to D≤−2. If M belongs to D≤0, we have, using the
Calabi-Yau property and the fact that τ>0X

′ belongs to Dfd(Γ), the isomorphisms

Hom(Σ−1τ>0X
′,Σ2M) = DHom(Σ−1M,Σ−1τ>0X

′) = 0.

Now from the triangle

Σ−1τ>0X
′ // τ≤0X

′ // X ′ // τ>0X
′ ,

we see that τ≤0X
′ belongs to ⊥D≤−2 and of course, it belongs to D≤0. Thus, it belongs to

F . By our assumption, the object τ>0X
′ has finite-dimensional homology. Thus, the image

of τ≤0X
′ in C is isomorphic to π(X ′). By the uniqueness of the triangle on the morphism

v : Y → Z, we obtain that X is isomorphic to π(τ≤0X
′) by a morphism canonical up

to a morphism factoring through Y . Thus, since τ≤0X
′ belongs to F , the object q(X) is

isomorphic to τ≤0X
′ by an isomorphism canonical up to a morphism factoring through

q(Y ). Finally, the homology of τ>0X
′ is concentrated in degree 1, and we have an exact

sequence
H0(q(Y ))→ H0(q(X))→ H1(τ>0X

′)→ 0.
In particular, we have an exact sequence

Hom(P̃i, q(Y ))→ Hom(P̃i, q(Z))→ Hom(P̃i, τ>0X
′)→ 0.

Since Hom(P̃i, q(U)) is isomorphic to HomC(P i, U) for each U in C, it follows that τ>0X
′

is right orthogonal to ΣmP̃i for all m ∈ Z. Thus it is right orthogonal to the kernel of the
localization functor L : DΓ → DΓ′. Therefore, for each object M of DΓ, the localization
functor induces a bijection

Hom(M, τ>0X
′)→ Hom(LM,Lτ>0X

′).

If, for M , we take the objects ΣmP̃j associated with the vertices of Q, we obtain that
Lτ>0X

′ has its homology of finite total dimension. This implies the last part of the claim.



34 BERNHARD KELLER WITH AN APPENDIX BY MICHEL VAN DEN BERGH

Now let us show that the functor F : Z/(P i)→ C′ induced by F is naturally a triangle
functor. In any triangulated category, by default, we denote the suspension functor by Σ
and a quasi-inverse of Σ by Ω. However, we denote the desuspension functor of the ‘reduced’
category Z = Z/(P i) by Ωr. We will construct a natural isomorphism ϕ : ΩF ∼→ FΩr and
show that the pair (F ,ϕ) transforms triangles into triangles. Let Z be an object of Z and
P → Z a right approximation of Z by add(P i). Form the triangle

ΩrZ → P → Z → ΣΩrZ

of C. The object ΩrZ still belongs to Z and its image in Z is the desuspension of the image
of Z. Now form a triangle of per(Γ)

O → q(P )→ q(Z)→ ΣO.

Let us denote the composition of the localization functor L : per(Γ) → per(Γ′) with the
projection per(Γ′)→ C′ by L′ : per(Γ)→ C′. By the claim, we have an isomorphism

q(ΩrZ) ∼→ τ≤0O

canonical up to a morphism factoring through q(P ) and the morphism L′τ≤0O → L′O is
invertible. The triangle

Ωq(Z)→ O → q(P )→ q(Z)

and the triangle structure on L′ yield an isomorphism ΩL′q(Z)→ L′Ωq(Z)→ L′O. Thus,
we obtain a canonical composed isomorphism

ΩFZ = ΩL′q(Z) ∼→ L′Ωq(Z) ∼→ L′O ∼← L′(τ≤0O) ∼← L′qΩr(Z) = FΩr(Z)

and we define ϕ(Z) to be this isomorphism. One checks that ϕ(Z) is natural in the object
Z of Z. Now let a standard triangle of Z be given. Then in C, with P → Z as above, we
have a morphism of triangles, where the first and fourth vertical morphisms are identities

ΩZ

��

// ΩrZ //

��

P

��

// Z

��
ΩZ // X // Y // Z.

Notice that the second morphism is not canonical; in fact, any morphism making the first
square commutative lifts the given morphism in Z. We will show that (F ,ϕ) takes the
triangle ΩrZ → X → Y → Z of Z to a triangle of C′. For this, we form a morphism of
triangles in per(Γ)

Ωq(Z) //

��

O

��

// qP

��

// qZ

��
Ωq(Z) // X ′ // qY // qZ

.

Its image under π : per(Γ)→ C becomes isomorphic to the given morphism after possibly
adding a morphism factoring through ΩZ → P to the given morphism ΩZ → X. Thus, we
may assume that the image under π is isomorphic to the given morphism. By the claim,
the image of this morphism under L′q is then isomorphic to

ΩL′q(Z) //

��

L′τ≤0O

��

// L′qP

��

// L′qZ

��
ΩL′q(Z) // L′τ≤0X

′ // L′qY // L′qZ

.
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We deduce that (F ,ϕ) takes the triangle ΩZ → X → Y → Z to the triangle

ΩL′q(Z)→ L′τ≤0X
′ → L′qY → L′qZ

of C′.
√

7.5. Deleting a sink in global dimension 2. As a second example of localization, let us
consider a finite-dimensional basic algebra A over an algebraically closed field k. Assume
that Pi is the indecomposable projective module corresponding to a sink i of the quiver
of A. Let ei be the corresponding idempotent of A. Let B = A/AeiA. Then it is easy to
check that the projection map

A→ B

is a localization of dg categories. Indeed, the localizing subcategory N of D(A) generated
by Pi consists of all coproducts of shifted copies of Pi and its right orthogonal subcategory
N⊥ is the localizing subcategory generated by the Pj , j 6= i. Clearly, this subcategory is

equivalent to D(B) by the functor ?
L
⊗A B.

From now on, let us assume that A (and thus B) are of global dimension at most 2.
Then A is in particular homologically smooth and by theorem 4.6, we obtain a localization
of the corresponding 3-Calabi-Yau completions

Π3(A)→ Π3(B).

Using theorem 6.10, we can identify these dg algebras with Ginzburg algebras Γ3(Q,W )
and Γ3(Q′,W ′). It is not hard to check that Q′ is obtained from Q by omitting the vertex
corresponding to i and all arrows starting or ending at it and thatW ′ is obtained fromW by
deleting all cycles passing through this vertex. Thus, the results of section 7.1 apply and we
obtain that if C(Q′,W ′) is Hom-finite, then it is the Calabi-Yau reduction [22] of C(Q,W )
at the image of eiΓ3(Q,W ). This example was treated previously by Amiot-Oppermann
[2] using different methods.

7.6. Generalized mutations. Let k be an algebraically closed field and Q a finite quiver
(possibly with oriented cycles). Let W be a potential on Q. Let T be a tilting module over
kQ, i.e. a module such that if B is the endomorphism algebra of T , the derived functor

?
L
⊗B T : D(B)→ D(kQ)

is an equivalence, cf. [29]. If X is a projective resolution of T as a B-kQ-bimodule, then
?⊗BX is a Morita functor from the dg category of bounded complexes of finitely generated
projective B-modules to the corresponding category of kQ-modules. This functor yields
an isomorphism

HC0(B) ∼→ HC0(kQ).
We let WB ∈ HC0(B) be the element corresponding to W ∈ HC0(kQ). Let cB and c
be the images in Hochschild homology of WB and W under Connes’ map B. Then by
theorem 5.8, we have an induced Morita functor

Π3(B, cB)→ Π3(kQ, c)

and by theorem 6.3 and theorem 6.10, we obtain an induced Morita functor between
Ginzburg algebras

Γ3(Q′,W ′ +W ′′)→ Γ3(Q,W ) ,
where the quiver Q′ is obtained from the quiver of B by adding a new arrow ρr : j → i for
each minimal relation r : i→ j, the potential W ′ is

W ′ =
∑

ρrr
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and the potential W ′′ lifts WB along the surjection kQ′ → B taking all arrows ρr to zero.
This construction is linked to mutation of quivers with potentials in the sense of [15] as
follows: Let i be a vertex of Q which is the source of at least one arrow and let T be the
direct sum of the projectives Pj , j 6= i, and of Ti defined by the exact sequence

0→ Pi →
⊕

α:i→j

Pj → Ti → 0 ,

where the sum is taken over all arrows α with source i and the corresponding component
of the map from Pi to the sum is the left multiplication by α. Then the passage from
B = End(T ) to kQ is given by an APR-tilt [4]. In this case, one can check that (Q′,W ′)
is the ‘pre-mutation’ of Q at i in the sense of [15], i.e. Q′ is obtained from Q by

1) adding an arrow [αβ] : j → l for each subquiver

l
β // i

α // l

of Q and
2) replacing each arrow β : l → i by an arrow β∗ : i→ l and each arrow α : i→ j by

an arrow α∗ : j → i;
and the potential W ′ is equal to [W ] +

∑
[αβ]β∗α∗ where [W ] is obtained from W by

replacing each occurrence of a composition αβ in a cycle passing through i by [αβ].

Appendix A. Ginzburg’s algebra is Calabi-Yau of dimension three
by Michel Van den Bergh

A.1. Introduction. To a quasi-free algebra A and an element z ∈ A (a “super potential”)
Ginzburg associates in [19] a certain DG-algebra D(A, z). He proves that if D(A, z) has
no negative cohomology then it is 3-Calabi-Yau (see [19, Remark 5.3.2] but beware that
Ginzburg uses homological grading). It was recently observed by Keller that D(A, z) is
always 3-Calabi-Yau. Below we give a proof of this fact using the formalism of non-
commutative differential geometry.

A.2. Notations and conventions. Throughout we work over the semi-simple base ring
l = ke1 + · · · + ked where e2i = ei and k is a field. In other words all our rings R are
implicitly equipped with a ring homomorphism l → R. Unadorned tensor products are
over k.

A.3. Pairings of bimodules. Duality for bimodules is confusing so here we write out
our conventions. This is a copy of [47, §3.1]. Let B be an arbitrary graded k-algebra. We
equip B ⊗ B with the outer B-bimodule structure. If Q is a graded B-bimodule then Q∗

is by definition HomBe(Q,B ⊗B). This is still a B-bimodule through the surviving inner
bimodule structure on B ⊗B.

A pairing (or bilinear map) between graded B-bimodules P,Q is a homogeneous map of
degree n

(A.3.1) 〈−,−〉 : P ×Q→ B ⊗B

such that 〈p,−〉 is linear for the outer bimodule structure on B⊗B and 〈−, q〉 is linear for
the inner bimodule structure on B ⊗ B. The obvious example is of course when P is the
bimodule dual Q∗ of Q and 〈−,−〉 is the evaluation pairing. We say that the pairing is
non-degenerate if P , Q are finitely generated graded projective bimodules and the pairing
induces an isomorphism P ∼= Σn(Q∗).
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Example A.4. Let P = Σn(B ⊗l B), Q = B ⊗l B. It is easy to see that the pairing

〈a⊗ b, c⊗ d〉 = (−1)|a||b|+|a||c|+|b||c|−n|c|
∑

i

ceib⊗ aeid

for a, b, c, d ∈ B is well-defined and non-degenerate of degree n.

The opposite pairing of 〈−,−〉 is defined by

〈−,−〉opp : Q× P → B ⊗B : (q, p) 7→ (−1)(n+|p)(n+|q|)σ〈p, q〉

where “σ” denotes the interchange operator: σ(a ⊗ b) = (−1)|a||b|(b ⊗ a). So although
the definition of a pairing of bimodules is asymmetric it is not important which bimodule
appears on the left or right.

If P = Q then we say that a pairing 〈−,−〉 is (anti-)symmetric if

〈p, p′〉 = (−)〈p, p′〉opp

If B is a DG-algebra and P , Q are DG-bimodules then we say that (A.3.1) is a DG-pairing
if it is compatible with the differential, i.e. if

d〈p, q〉 = 〈dp, q〉+ (−1)|p|+n〈p, dq〉

If a DG-pairing is non-degenerate then obviously it induces an isomorphism of DG-modules
P ∼= Σn(Q∗).

A.5. Differentials and double derivations. If B is a graded algebra then we denote
by ΩB/l the bimodule of relative differentials for B/l. ΩB/l fits in an exact sequence

(A.5.1) 0→ ΩB/l
ϕ−→ B ⊗l B → B → 0

We denote the generators of ΩB/l by Db, b ∈ B where ϕ(Db) = b⊗ 1− 1⊗ b.
With respect to signs we assume that D has homological degree zero. If B is equipped

with a differential d then we extend it to ΩB/l by putting d(Db) = D(db).

Assume that B is equipped with a graded double Poisson bracket of degree n (see [46,
§2.1]). Then there is a well-defined anti-symmetric pairing of degree on ΩB/l of degree n
which is determined by

〈Dη,Dξ〉 = {{η, ξ}}

We define TB/l = Ω∗B/l. We may identify TB/l with the bimodule of double derivations

TB/l = DerB/l(B,B ⊗B)

If b ∈ B and δ ∈ TB/l then we write δ(b) = δ(b)′⊗ δ(b)′′. TB/l contains a canonical element
E given by

E(a) =
∑

i

aei ⊗ ei − ei ⊗ eia

Remark A.6. We may write E(a) = [a, ξ] where ξ =
∑

i ei⊗ ei ∈ l⊗ l. If, as in [12], one
works over a more general separable k-algebra then one must replace ξ by the separability
idempotent in le.
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A.7. The graded cotangent bundle. Now let A be a quasi-free finitely generated k-
algebra and put TA = TA(ΣTA/l). According to [46, §3.2] TA carries a canonical graded
double Poisson bracket of degree 1: the so-called double Schouten-Nijenhuis bracket.1 Thus
according to §A.5 we get an induced anti-symmetric pairing on ΩTA/l of degree 1.

Lemma A.8. This pairing is non-degenerate.

Proof. This can be deduced from the fact that the double Schouten-Nijenhuis bracket is
actually induced from a bisymplectic form [12, 46]. To help the reader let us give a proof
here. We have a standard exact sequence

0→ TA⊗A ΩA/l ⊗A TA α−→ ΩTA/l
β−→ Σ(TA⊗A TA/l ⊗A TA)→ 0

with for ω ∈ ΩA/l, δ ∈ TA/l

α(1⊗ ω ⊗ 1) = ω

β(Dδ) = 1⊗ δ ⊗ 1

Hence we have for a ∈ A
〈1⊗Dδ ⊗ 1, α(Da)〉 = 〈Dδ,Da〉 = {{δ, a}} = δ(a) = 〈β(Dδ), Da〉

where on the right we have the standard (non-degenerate) pairing between TA/l and ΩA/l,
extended to a (still non-degenerate) pairing between TA⊗ATA/l⊗ATA and TA⊗AΩA/l⊗A

TA. It follows that α and β are adjoint.
Thus one gets a commutative diagram

0 −−−−→ TA⊗A ΩA/l ⊗A TA α−−−−→ ΩTA/l
β−−−−→ Σ(TA⊗A TA/l ⊗A TA) −−−−→ 0∥∥∥ y ∥∥∥

0 −−−−→ TA⊗A T∗A/l ⊗A TA −−−−→
β∗

Σ(Ω∗TA/l) −−−−→α∗
Σ(TA⊗A Ω∗A/l ⊗A TA) −−−−→ 0

Hence the middle arrow is an isomorphism
√

Now fix a “super potential” z ∈
∑
eiAei. Contraction with Dz defines a differential d

on TA [19] (see also [47, §3.1]). On generators we have

da = 0 for a ∈ A
dδ = δ(z)′′δ(z)′ for δ ∈ TA/l

We will denote resulting DG-algebra by T(A, z).

In the commutative case it is well-known that contraction with a 1-form is a derivation
for the Gerstenhaber structure on the graded cotangent bundle and hence in particular it
is compatible with the Schouten bracket. A similar result is true in the non-commutative
case.

Lemma A.9. T(A, z) is a DG-Gerstenhaber algebra with product of degree zero and double
bracket of degree one.

Proof. We only need to check compatibility of the differential with the double bracket.
This can be done on generators. The only non-trivial verification is

(A.9.1) d{{δ,∆}} = {{dδ,∆}}+ {{δ, d∆}}
for δ,∆ ∈ TA/l.

1In [46] this bracket had degree −1 since we used the opposite grading.



DEFORMED CALABI-YAU COMPLETIONS 39

Following the notations of [46, §3.2] we have

{{δ,∆}} = {{δ,∆}}l + {{δ,∆}}r

with

{{δ,∆}}l = {{δ,∆}}′l ⊗ {{δ,∆}}
′′
l ∈ TA/l ⊗A

{{δ,∆}}r = {{δ,∆}}′r ⊗ {{δ,∆}}
′′
r ∈ A⊗ TA/l

so that we have

d{{δ,∆}} = d{{δ,∆}}l + d{{δ,∆}}r

with

d{{δ,∆}}l = {{δ,∆}}′l(z)
′′{{δ,∆}}′l(z)

′ ⊗ {{δ,∆}}′′l
d{{δ,∆}}r = {{δ,∆}}′r ⊗ {{δ,∆}}

′′
r (z)

′′{{δ,∆}}′′r (z)
′

By definition we have

{{δ,∆}}l = σ23 ◦ ((δ ⊗ 1)∆− (1⊗∆)δ)

{{δ,∆}}r = σ12 ◦ ((1⊗ δ)∆− (∆⊗ 1)δ)

which after inspection becomes

d{{δ,∆}}l = ∆(z)′′δ(∆(z)′)′ ⊗ δ(∆(z)′)′′ −∆(δ(z)′′)′′δ(z)′ ⊗∆(δ(z)′′)′

d{{δ,∆}}r = δ(∆(z)′′)′ ⊗ δ(∆(z)′′)′′∆(z)′ −∆(δ(z)′)′′ ⊗ δ(z)′′∆(δ(z)′)′

On the other hand we have

{{dδ,∆}} = −σ∆(δ(z)′′δ(z)′)

= −∆(δ(z)′′)′′δ(z)′ ⊗∆(δ(z)′′)′ −∆(δ(z)′)′′ ⊗ δ(z)′′∆(δ(z)′)′

and

{{δ, d∆}} = δ(∆(z)′′∆(z)′)

= δ(∆(z)′′)′ ⊗ δ(∆(z)′′)′′∆(z)′ + ∆(z)′′δ(∆(z)′)′ ⊗ δ(∆(z)′)′′

so that (A.9.1) indeed holds.
√

We immediately deduce

Lemma A.10. The pairing on ΩTA/l is compatible with d.

Proof. We have to prove for ω, ω′ ∈ ΩTA/l

d〈ω, ω′〉 = 〈dω, ω′〉+ (−1)|ω
′|+1〈ω, dω′〉

One verifies that it is sufficient to check this on TA-bimodule generators of ΩTA/l. The
only interesting case to consider is ω = Dδ, ω′ = D∆ and δ,∆ ∈ TA/l. In that case the
result is a direct concequence of Lemma A.9 and in particular (A.9.1).

√
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A.11. Ginzburg’s algebra. Let A, z,TA be as in the previous section. We have E ∈
TA/l ⊂ TA. We immediately check that dE = 0. So E defines a (presumably always non-
trivial) cohomology class in TA. Ginzburg’s idea is to kill this class through adjunction of
an extra variable c of degree −2 commuting with l. So Ginzburg’s algebra is

D(A, z) = T(A, z) ∗l l[c]

where |c| = −2 and dc = E. To simplify the notations we will write T = T(A, z) and
D = D(A, z) in this section.

We have a presentation

0→ ΩD/l
ϕ−→ D⊗l D→ D→ 0

where ϕ is as in (A.5.1). It is easy to see that as graded D-bimodule we have

ΩD/l = (D⊗T ΩT/l ⊗T D)⊕ (D⊗l lDc⊗l D)

Put I =
∑

i ei ⊗ ei. Then D is quasi-isomorphic to coneϕ and coneϕ is given by

P = (D⊗l lI⊗l D)⊕ Σ(D⊗T ΩT/l ⊗T D)⊕ Σ(D⊗l lDc⊗l D)

with total differential

dP I = 0

dPω = ϕT(ω)− dTω for ω ∈ ΩT

dP (Dc) = [c, I]−D(E)

We define a symmetric pairing of degree 3 on P by putting

〈Dc, I〉P =
∑

i

ei ⊗ ei

〈ω, ω′〉P = (−1)|ω|T−1〈ω, ω′〉T
and assigning the value zero on other combinations of generators of P taken from I,ΩT/l, Dc.
Note that in P we have |I| = 0, |Dc| = −3 and |ω|P = |ω|T − 1 for ω ∈ ΩT/l. The require-
ment of symmetry yields

〈I, Dc〉P = (−1)(|I|+3)(|Dc|+3)σ〈Dc, I〉P
=

∑
i

ei ⊗ ei

By combining Example A.4 with Lemma A.8 we see that 〈−,−〉P is non-degenerate.
We claim that 〈−,−〉P is compatible with the differential. By symmetry this amounts

to six verifications which we now carry out.

Case 1 One has
dD〈Dc,Dc〉P = 0

and

〈dPDc,Dc〉P = 〈[c, I]−D(E), Dc〉P
=

∑
i

(ei ⊗ cei − eic⊗ ei)

=
∑

i

(ei ⊗ eic− cei ⊗ ei)
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and

〈Dc, dPDc〉P = 〈Dc, [c, I]−D(E)〉P
=

∑
i

(cei ⊗ ei − ei ⊗ eic)

so that
dD〈Dc,Dc〉P = 〈dPDc,Dc〉P + (−1)|Dc|+3〈Dc, dPDc〉P

Case 2 One has for u ∈ T
dD〈Dc,Du〉P = 0

and

〈dPDc,Du〉P = 〈[c, I]−D(E), Du〉P
= −(−1)|E|T−1〈D(E), Du〉T
= −{{E, u}}

= −
∑

i

(uei ⊗ ei − ei ⊗ eiu)

and

〈Dc, dPDu〉P = 〈Dc, [u, I]−DdTu〉

=
∑

i

uei ⊗ ei − ei ⊗ eiu

so that
dD〈Dc,Du〉P = 〈dPDc,Du〉P + (−1)|Dc|+3〈Dc, dPDu〉P

Case 3 One has
dD〈Dc, I〉P = 0

and

〈dPDc, I〉P = 〈[c, I]−D(E), I〉P
= 0

and

〈Dc, dP I〉P = 0

Hence this case is trivial.

Case 4 One has for ω, ω′ ∈ ΩT/l

dD〈ω, ω′〉P = (−1)|ω|T−1dT〈ω, ω′〉T
= (−1)|ω|T−1〈dTω, ω

′〉T + (−1)|ω|T−1(−1)|ω|T+1〈ω, dTω
′〉T

= (−1)|ω|T−1〈dTω, ω
′〉T + 〈ω, dTω

′〉T
and

〈dPω, ω
′〉P = 〈ϕT(ω)− dTω, ω

′〉P
= −(−1)|ωT|+1−1〈〈dTω, ω

′〉T
= (−1)|ωT|−1〈dTω, ω

′〉T
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and

〈ω, dPω
′〉P = 〈ω, ϕT(ω′)− dT(ω′)〉P

= −(−1)|ω|T−1〈ω, dT(ω′)〉T
= (−1)|ω|T〈ω, dT(ω)〉T

so that we get
dD〈ω, ω′〉P = 〈dPω, ω

′〉P + (−1)|ω|T〈ω, dPω
′〉P

which is correct since |ω|T = |ω|P + 3(mod 2).

Case 5 One has for ω ∈ ΩT/l

dD〈ω, I〉P = 0

and

〈dPω, I〉P = 〈ϕT(ω)− dc(ω), I〉
= 0

and

〈ω, dP I〉P = 0

So nothing to prove here!

Case 6 The last case is about 〈I, I〉P but this is trivial.

We can now conclude

Theorem A.12. The Ginzburg algebra D is 3-Calabi-Yau.

Proof. We need to prove

(A.12.1) RHomDe(D,D⊗D) ∼= Σ−3D

in D(De) and moreover this isomorphism must be self dual. We have

RHomDe(D,D⊗D) ∼= HomDe(P,D⊗D)
∼= Σ−3P

∼= Σ−3D

where the second isomorphism is obtained from the pairing 〈−,−〉P . Self duality follows
from the fact that 〈−,−〉P is symmetric.

√

A.13. A word on quivers. Assume now that V is a finitely generated l-bimodule and
put A = TlV . Thus A is the path algebra of a quiver. We remind the reader on the
concrete interpretation of D(A, z) in this case. This is taken from [19]. Let (ti)i a k-basis
of V where for each i we have t(i), h(i) such that ti ∈ et(i)V eh(i).

Then we may define operations(
∂

∂ti

)+

: A/[A,A]→ A

∂

∂ti
: A→ A⊗A

where the second one is the element of TA/l with the property

∂tj

∂ti
= δij(et(i) ⊗ eh(i))
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and the first one is obtained from the first by the following commutative diagram

A −−−−→ A/[A,A]

∂

∂ti

y y“
∂

∂ti

”+

A⊗A a⊗b7→ba−−−−−→ A

By [46, Prop. 6.2.2(2)] we have

(A.13.1) E =
∑

i

[
∂

∂ti
, ti

]
as elements of TA/l.

Pick z ∈ ⊕ieiAei.

Lemma A.14. [19] As graded algebras there is a canonical isomorphism

D(A, z) = Tl(V ⊕ ΣV ∗ ⊕ kc)

Furthermore if ti is the dual basis to ti then the differential on D(A, z) is given by

(A.14.1)

dti = 0

dti =
(
∂z

∂xi

)+

dc =
∑

i

[
ti, t

i
]

Proof. Put ti = ∂
∂ti

. We get T(A, z) = Tl(V ⊕ V ∗) where (ti) is the basis for V ∗, dual to
(ti)i.

The differential d on T(A, z) has the property.

dti = 0

dti =
(
∂z

∂xi

)+

Finally the algebra D(A, z) is obtained by adjoining c such that

dc = E =
∑

i

[
ti, t

i
] √

where we have used (A.13.1).
√

A.15. A word on Ext-algebras. The advantage of the presentation (A.14.1) is that we
can immediately read off the A∞-structure on the Ext-algebra of D(A, z). This works
more generally as follows. Assume that W is a finite dimensional l-bimodule and we have
a DG-algebra structure on B = TlW compatible with the canonical augmentation B → l.
Then for w ∈W we may write

dw =
∞∑

n=1

b∗n(w)

where the b∗n are maps
b∗n : W →W⊗n

of degree 1. Dualizing we get maps of degree 1

bn : (W ∗)⊗n →W ∗
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which define an A∞ structure on Σ−1(W ∗) (without unit). It follows from tbe bar-cobar
machinery that the A∞-algebra l ⊕ Σ−1(W ∗) corresponds to RHomB(l, l).

Now let V,A, z,D(A, z) be as before and assume that z contains no linear terms. We
put W = V ⊕ΣV ∗ ⊕ kc. Thus D(A, z) = TlW and the Ext-algebra of D(A, z) as a graded
vector space2 is l ⊕ Σ−1W ∗ = l ⊕ Σ−1V ∗ ⊕ Σ−2V ⊕ kΣ−1(c∗).

One checks that the A∞-operations are the pairings V ∗ ⊗ V → l and V ⊗ V ∗ → l as
well n-ary operations (V ∗)⊗n → Σ−1V which are obtained from the degree n + 1-part
zn+1 ∈ V ⊗(n+1) of the superpotential z.
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