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Abstract. We review the definition of a Calabi-Yau triangulated category and survey
examples coming from the representation theory of quivers and finite-dimensional alge-
bras. Our main motivation comes from the links between quiver representations and
Fomin-Zelevinsky’s cluster algebras.
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1. Introduction

These notes reflect the contents of three lectures given at the workshop preceding
the XII International Conference on Representations of Algebras (ICRA XII) held
in August 2007 at Torun.

The notion of Calabi-Yau triangulated category was introduced by Kontsevich
in the late nineties [41]. It appears in

e mathematical physics, notably string theory and conformal field theory,

e algebraic geometry, notably mirror symmetry,

integrable systems,
o
e representation theory of quivers and finite-dimensional algebras.

In representation theory, triangulated Calabi-Yau categories have become popular
thanks to their application in the categorification of Fomin-Zelevinsky’s cluster
algebras, cf. the surveys [2] [32] [49] [55].

In this brief account, we review basic notions on triangulated categories, discuss
the Calabi-Yau property and, most importantly, describe two classes of examples:
Calabi-Yau categories arising as orbit categories and Calabi-Yau categories arising
as (subcategories of) derived categories.

2. Triangulated categories, Serre functors

2.1. k-categories. Let k be a commutative ring, for example the ring of integers.
A E-category is a category C where each set of morphisms C(X,Y) is endowed with
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a structure of k-module in such a way that the composition maps
ClY,Z)xC(X,Y)—C(X,Z)

are bilinear for all objects X, Y and Z of C. For example, if R is a k-algebra (asso-
ciative, with 1), then we have a k-category C with one object whose endomorphism
algebra is R. Clearly, up to isomorphism, all k-categories with one object arise in
this way. A general k-category should simply be thought of as a ‘ring with several
objects’ [48].

Let C be a k-category. For two objects X and Y of C, a product of X by Y is
an object XY endowed with morphisms px : X7Y — X and py : X7Y —- Y
such that for each pair of morphisms (f, g) from an object Z to X respectively Y,
there is a unique morphism h from Z to X7Y such that pxoh = f and pyoh = g.

N

XWY?Y

Z

J

X

A product of two objects may or may not exist but if it exists, it is unique up to
a unique isomorphism. It is best to formulate such universal properties using the
concept of a representable functor: A functor

F:C°° — Modk

from the opposite category of C to the category of k-modules is representable if
there is an object U of C and an isomorphism of functors

C(?7,U) > F.
For example, if two objects X and Y of C admit a product, then the map
C(Z,X7Y)—C(Z,X)xC(Z,Y), h— (hopx,hopy)

is bijective for each object Z and its existence means that the product X7Y rep-
resents the product functor

C(?7,X)xC(?,Y):C?” — Mod k.

We will often use the formalism of representable functors to transfer notions and
constructions from the category of k-modules to an arbitrary k-category. For
instance, we define an object N of C to be a zero object if C(?, N) is the zero
functor. A functor

G:C — Modk
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is corepresentable if there is an object U of C and an isomorphism of functors
c(U,?) = G.

For instance, the coproduct X LI'Y defined to be a corepresentative of the product
(1) functor
C(X,?7) x C(Y, 7).

A k-linear category is a k-category C such that C has a zero object and any two
objects of C have a product. For example, if R is a k-algebra, the category of free
(right) R-modules is k-linear. So are the categories of respectively, all R-modules,
all projective R-modules, all flat R-modules .. ..

It is a useful exercise to show that if C is a k-linear category, then the canonical
morphism from the coproduct to the product

XUY — XnY

is an isomorphism for any objects X and Y. One therefore writes X &Y for both.
It is also instructive to show that the structure of abelian group on C(X,Y) is fully
determined by the underlying category of C.

2.2. Triangulated categories. As before, let £ be a commutative ring. A tri-
angulated k-category is a k-linear category 7 endowed with

a) an autoequivalence ¥ : 7 — 7 called the suspension functor (or shift, or
translation functor);

b) a class of sequences

u v w

X Y A XX

called triangles which is stable under isomorphism in the sense of the com-
mutative diagram

X Y Z X
L
X’ Y’ zZ' X’

whose vertical arrows are isomorphisms.
These data have to satisfy the following axioms:

TO For each object X of 7, the sequence

1x

0 X X >0

is a triangle;
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T1 for each morphism u : X — Y of 7, there is a triangle

u

X Y A X

T2 asequence of three morphisms (u, v, w) is a triangle if and only if the sequence
(v,w,—3(u)) is a triangle;

T3 if (u,v,w) and (v, v’, w') are triangles and a, b morphisms such that bu = v/a,
then there is a morphism ¢ which makes the following diagram commutative

u v w

X Y Z ¥X
N
X — Y — 7 — XX/,

T4 for all composable morphisms
Xty -—tsz,

there is an octahedron

/
X/ \

%Z

!

Y

where an arrow [U+——V denotes a morphism U — XV, the cyclically
oriented triangles are triangles of 7, the triangles with poset orientation are
commutative, and so are the two squares containing the center.

A whole little theory can be deduced from these axioms, cf. [59] [60]. In developping
this theory, one may assume that ¥ is not only an autoequivalence but in fact an
automorphism, cf. [40]. In the rest of this paragraph, we make this assumption.
The most important consequence of the axioms (which follows from T0-T3 alone)
is that for each triangle

u v w

X Y Z XX,

the long induced sequences

~£>T(UX)£>)T(UY) U”)T(U Z)%...
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and
T (X U)=—TY,U)=—T(Z,U)<—---

are exact. It is also important to notice that if (u, v, w) is a triangle, then (u, v, —w)
is not a triangle, in general. Finally, note that by applying T2 three times, we find
that if (u,v,w) is a triangle, then so is (—Xu, —¥v, —Xw). This last sequence is
clearly isomorphic to (Xu, ¥v, —Xw), which is therefore a triangle. We will need
this observation below.

2.3. Stable categories. Suppose that A is a finite-dimensional algebra over a
field k and that A is selfinjective, i.e. injective as a right module over itself. For
example, this happens if A is the group algebra of a finite group. Let mod A denote
the category of finite-dimensional right modules over A. For two A-modules L and
M, let P(L, M) be the space of morphisms from L to M which factor through a
projective A-module. Then the stable category modA, whose objects are the same
as those of mod A and whose morphisms are given by the quotient spaces

Hom(L, M) = Hom(L, M)/P(L, M)

carries a canonical structure of triangulated category. Its suspension functor is
obtained (on objects) by choosing, for each finite-dimensional A-module L, a short
exact sequence

0 L IM XM 0.

Its triangles are defined to be the sequences isomorphic to standard triangles,
i.e. images in modA of sequences (a, b, ¢) obtained from short exact sequences of
modules by fitting them into diagrams

0 L—%>M—2sN 0
.
0 L L S 0

This construction generalizes from categories of finite-dimensional modules over
selfinjective algebras to arbitrary Frobenius categories, c¢f. [24] [25] [40]. Here, an
important example is the following: Let A be an additive category and & the
category of complexes of objects of A. Then £ is an additive category. We endow
it with the class of all componentwise split short exact sequences. Then £ becomes
an exact category in the sense of Quillen, it has enough projectives and an object
is projective iff it is injective iff it admits a contracting homotopy. Thus £ is a
Frobenius category. The associated stable category is the homotopy category HA.
It is triangulated and its suspension functor is (up to isomorphism) the functor
taking a complex X to the complex ¥ X = X[1], where X[1]? = XP*! p € Z, and
dX[l] = —dx.
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2.4. Derived categories. Let k be a commutative ring and A a k-algebra (asso-
ciative, with 1). Let Mod A denote the category of all right A-modules. The derived
category D(A) of the abelian category Mod A has as its objects all complexes

-~*>Mpid>MP+1*>--~

of A-modules; its morphisms are obtained from the morphisms of complexes by
formally inverting all quasi-isomorphisms. It takes some work to deduce the fun-
damental properties of the derived category from this quick definition, cf. [60] [35].
In particular, one shows that the k-linear structure of the category of complexes is
inherited by the derived category. Thus, the derived category has direct sums and
they are given by direct sums of complexes. Even better, the derived category is
triangulated: Its suspension functor takes a complex M to the complex XM with
components (XM)P = MPT! and with differential —dys. Its triangles are those
sequences isomorphic to standard triangles and the standard triangles

L M N XL

are canonically associated with short exact sequences of complexes (L, M, N). The
triangles of the derived category are the ‘mothers’ of all the long exact sequences
appearing in homological algebra.

The canonical functor CA — DA factors canonically through a triangle functor
HA — DA.

If k is a field, we denote by D°(A) the full triangulated subcategory of D(A)
whose objects are the complexes whose homology modules are finite-dimensional
over k and vanish for all but finitely many indices.

2.5. Triangle functors. We will denote the suspension functors of all triangu-
lated categories by 3. Let S and 7 be triangulated k-categories. A triangle functor
from S to 7 is a pair (F, ¢), where F': S — 7 is a k-linear functor and

¢o:FY —3YF
an isomorphism of functors such that for each triangle (u,v,w) of S, the sequence

X)(Fw
Y Fu ry Fu rz (¢X)(Fw) SEX

is a triangle of 7. The pair (17, 1) is the identity triangle functor. If (F,¢) and
(G, ) are two triangle functors, their composition (FG,(¢G)(F1))) is a triangle
functor. A triangle functor (F, ¢) is strict if ¢ is the identity.

An important example is the following: We have seen that if (u,v,w) is a
triangle of , then (Xu,Yv, —Yw) is always a triangle. This means that the pair
(2, —1x2) formed by the suspension functor and the opposite of the identity of its
square is a triangle functor. Notice that the pair (3, 1x52) is not a triangle functor
in general. Often, one simply writes ¥ for the triangle functor (X, —1s2). This
sometimes leads to confusion because of the implicit sign.



Calabi-Yau triangulated categories 7

Suppose that (F, ¢) and (G, ) are triangle functors from S to 7. A morphism
of triangle functors is a morphism of functors «: F' — G such that the square

FZLEF

GZT)EG

commutes. Clearly, the identity morphism is a morphism of triangle functors and
so is the composition of two morphisms of triangle functors. Thus, the triangle
functors from S to 7 form a category.

In fact, as one easily checks, triangulated categories, triangle functors and their
morphisms together form a 2-category (i.e. a category enriched in categories), and
more precisely a sub-2-category of the 2-category of categories. Now in any 2-
category, one has natural notions of adjoint and equivalence. For the 2-category
of triangulated categories, these give rise to the notion of triangle adjoint and tri-
angle equivalence. Fortunately, to check whether a triangle functor has a triangle
adjoint (respectively is a triangle equivalence) it suffices to check the correspond-
ing property for the underlying k-linear functor, cf. [40] [60]. It is not hard to
show that for each triangulated category 7, there is a natural triangle equivalence
T — T', where the suspension functor of 7’ is an automorphism (and not just an
autoequivalence), cf. [40].

2.6. Serre functors and the Calabi-Yau condition. Suppose that £ is a field
and that 7 is a triangulated k-category which is Hom-finite, i.e. for any two objects
X and Y of 7, the morphism space 7 (X,Y) is finite-dimensional. Let D denote
the duality functor Homy(?, k). A right Serre functor for T is given by a triangle
functor (S,0) : T — T together with a family of isomorphisms (called trace maps)

tx :7T(?,5X) — DT(X,?)
functorial in X € 7 and such that! for all X € 7, we have
tx oX to(0X), = —(DX)o (tyxX).
Notice the minus sign. It is needed in the proof of the following proposition.

Proposition 2.1 (Bondal-Kapranov [9], [58]). a) 7 admits a right Serre func-
tor iff, for each object X of T, the functor

DT(X,?): T° — Modk

is representable.

1The author thanks Guodong Zhou, Bill Crawley-Boevey and Andrew Hubery for pointing
out that a compatibility condition is needed here if ‘weakly Calabi-Yau’ is to be different from
‘Calabi-Yau’. The condition was unfortunately omitted in the published version.
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(ii) If T admits a right Serre functor, it is unique up to canonical isomorphism
of triangle functors.

A Serre functor for T is a right Serre functor which moreover is an equivalence.
We then say that 7 has Serre duality. For example, if X is a smooth projective
variety of dimension d over a field, then the bounded derived category of coherent
sheaves on X is Hom-finite and admits a Serre functor given by F — F ® wld],
where w is the canonical bundle.

Let d be an integer. The triangulated category 7 is weakly d-Calabi- Yau if it
admits a Serre functor S and there is an isomorphism of k-linear functors

PILIREN )

It is d-Calabi- Yau if it admits a Serre functor and there is an isomorphism of

triangle functors
(Sv U) = (27 *122)d )

where (X, —1x2) is the suspension triangle functor defined in section 2.5.

It is helpful to translate these conditions in terms of trace forms. Without
restriction of generality, let us suppose that the suspension functor of 7 is an
automorphism (and not just an autoequivalence).

Proposition 2.2. Suppose that T admits a Serre functor.
a) T is weakly d-Calabi- Yau iff there is a family of linear forms
tx :T(X,2X) -k, XeT,

such that for all objects X and Y, the induced pairing (f,g) — tx(f o g)
between T(X,Y) and T(Y,%%X) is non degenerate and, for all morphisms
g: X =Y and f:Y — XX of T, we have

tx(fog)=ty((Z)o f).

b) 7 is d-Calabi-Yau iff there is a family of linear forms tx : T(X,%4X) — k
satisfying the conditions of a) and such that moreover, for all morphisms
g: X —=>YPY and f:Y — XX of T with p+ q = d, we have

tx((BPf)og) = (=) ty ((E%9) o f).
For each object X of 7, we have the graded algebra
A=Ext"(X,X) = ®pezT (X, XPX)

whose multiplication is given by f-g = (P f) og where g is supposed homogeneous
of degree p. Suppose that 7 is d-Calabi-Yau. Then we have the linear form
t : A — k whose restriction to the component A? is

tx : ExtY (X, X) — k
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and which vanishes on all other components. Then the pairing
(a,b) = t(ab)

is non degenerate on A and supersymmetric in the sense that, for a of degree p
and b of degree ¢, we have

(a,b) = (=1)P9(b, a).

For example, if d = 2, then the finite-dimensional vector space Ext' (X, X) carries
a non degenerate antisymmetric form and thus has to be even dimensional. Notice
that in order to deduce this, we need 7 to be 2-Calabi-Yau and not just weakly
2-Calabi-Yau.

2.7. Derived functors. In practice, Serre functors (and other triangle functors)
are often given by total derived functors. Let k be a commutative ring and A a k-
algebra. A complex of right A-modules P is cofibrant if for each quasi-isomorphism
p: L — M with surjective components and each morphism f : P — M, there is a
lifting g : P — L such that pg = f.

L L1
K 7
g,—" lp z‘i
e
P T> M M

Dually, a complex of right A-modules I is fibrant if for each quasi-isomorphism
i : L — M with injective components and each morphism f : L. — I, there is an
extension g : M — I such that gi = f.

One can show (cf. e.g. [34]) that for each complex L, there are quasi-isomorphisms

pPL — L and L —iL

where pL is cofibrant and iL is fibrant. For example, if L is an A-module (consid-
ered as a complex concentrated in degree 0) and we have a projective resolution

=P —-Ph—-M-—0,
then pM is homotopy equivalent to the complex
=P —-FPh—=-0—0—....

One can show that the assignments p and i give rise to functors from the de-
rived category DA to the homotopy category HA which are fully faithful and left
(respectively right) adjoint to the quotient functor HA — DA.

Now suppose that k is a field and A and B are k-algebras. Let X be a complex
of A-B-bimodules, i.e. an object of the derived category D(A° ® B) (the symbol



10 Bernhard Keller

® stands for the tensor product over the ground field). For a complex L of right A-
modules, we write L® 4 X for the complex of right B-modules whose nth component
is
(LeaX)"= P LPos X"
ptg=n
and whose differential is defined by

dm®z)=(dmn)@z+ (—1)’m ® (dx),

where m € LP, x € X9. Clearly, the complex L ® 4 X is functorial in L. The
functor ? ® 4 X admits a right adjoint: For a complex M of right B-modules,
we write Hompg (X, M) for the complex of right A-modules whose nth component
is formed by the morphisms f : X — M of graded B-modules homogeneous of
degree n (and which are not required to commute with the differential) and whose
differential is defined by

d(f) =dpo f—(=1)"fodx.

It is not hard to check that the functors ? ® 4 X and Homp(X,?) induce a pair of
adjoint functors between the homotopy categories of A- and B-modules. The left
derived functor

L
7®a X : D(A) — D(B)
takes a complex L to (pL) ® 4 X and the right derived functor
RHomp(X,?): D(B) — D(A)

takes a complex M to Homp(X,iM). These are triangle functors (since they are
compositions of triangle functors) and it is not hard to show that they are adjoints:
We have a canonical isomorphism

L
HomDB(L XA )(7 M) = HomDA(L, RHomB(X, M))

3. Examples: Orbit categories

3.1. Serre functors for finite-dimensional algebras. Let k be a field and
A a finite-dimensional k-algebra (associative, with 1). Then the bounded derived
category D’(A) is known to be Hom-finite and the decomposition theorem holds in
Db(A): indecomposable objects have local endomorphism rings and each object is
a finite direct sum of indecomposables [25]. We refer to [loc. cit.] and [50] for the
notion of almost split triangle.

Theorem 3.1. The following are equivalent

(i) D*A has a Serre functor S.

(ii) DA has almost split triangles.
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(iii) A is of finite global dimension.

The equivalence between (i) and (ii) is proved in [50] and the equivalence be-
tween (ii) and (iii) in [26]. If the conditions of the theorem hold, then the Serre
functor of D’(A) is given by the left derived functor

L
S:?®ADA,

where DA denotes the A-bimodule Homy (A, k) and the Auslander-Reiten transla-
tion is given by
T=%"1o8.

3.2. Cluster categories. Now assume that the algebra A considered in the pre-
ceding paragraph is the path algebra kQ of a finite quiver ) without oriented
cycles. Then A is finite-dimensional and of global dimension 1. Let d be an inte-
ger. Suppose that d > 2 or that d = 1 and @ is a Dynkin quiver (i.e. its underlying
graph is a disjoint union of Dynkin diagrams of type A, D or E). It is natural to
try and ‘force’ the triangulated category D°(A) to become a Calabi-Yau category
by ‘quotienting’ D¥(A) by the action of the autoequivalence ¥?S~!. Surprisingly,
this actually works: The d-cluster category of @ is the k-linear category

cy =D (kQ)/ (5571,

obtained as the orbit category of the bounded derived category under the action
of the automorphism group generated by £¢S~!. By definition, this means that
its objects are the same as those of D’(kQ) and its morphisms are given by

Hom (o (L, M) = & Hompig) (L, (54577 M)
PEL

with the natural composition. Let us write 7 : D*(kQ) — Cg) for the projection
functor. Clearly we have an isomorphism of k-linear functors

ands—l =

and 7 is universal among the k-linear functors defined on D’(kQ) and endowed
with such an isomorphism. It is not hard to check that the d-cluster category is
Hom-finite.

The cluster category Cq is defined as the d-cluster category with d = 2. In
the case where the underlying graph of @ is a Dynkin diagram of type A,, the
cluster category was introduced by Caldero-Chapoton-Schiffler [15] with a very
different, more geometric description. In the general case, it was introduced in-
dependently by Buan-Marsh-Reineke-Reiten-Todorov [3]. The d-cluster category
was introduced in [37] and first analyzed in [57].

Theorem 3.2 ([37]). Suppose thatd > 2 ord > 1 and Q is a Dynkin quiver. Then
the d-cluster category has a natural structure of triangulated category such that the
projection functor w becomes a strict triangle functor. Moreover, the d-cluster
category is d-Calabi- Yau.
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Figure 1. The Auslander-Reiten quiver of the derived category of As

In general, the orbit category of a triangulated category under an autoequiva-
lence no longer admits a structure of triangulated category. The proof of the theo-
rem heavily relies on the fact that kQ is of global dimension 1. The construction of
the d-cluster category (and the theorem) generalize to bounded derived categories
of hereditary abelian categories (satisfying suitable finiteness conditions). We refer
to [63] for the case where d = 2.

Theorem 3.3 ([3]). The decomposition theorem holds in the d-cluster category and
its Auslander-Reiten quiver identifies with the quotient of that of the derived cate-
gory D°(kQ) under the action of the automorphism induced by X481 = Rd-17-1,

We recall from [24] [25] that if @ is a Dynkin quiver, the Auslander-Reiten
quiver of D®(kQ) is the repetition ZQ and that D (kQ) is standard, i.e. its category
of indecomposables admits a presentation by the quiver Z@) together with the mesh
relations. For the quiver @) obtained by endowing the Dynkin diagram As with the
linear orientation, the quiver Z@ is recalled in Figure 1. Vertices corresponding
to modules (identified with complexes concentrated in degree 0) are marked by e®.
We have denoted the ith indecomposable projective module by P; and the functor
¥287! = 7713 by F. We obtain a ‘fundamental domain’ for the action of F by
taking the full subquiver whose vertices lie between the sclices formed by the P;
and the F'P;. According to the theorem, we obtain the Auslander-Reiten quiver of
the cluster category C4, by identifying the vertices P; and F'P; in this subquiver.
Thus, we obtain a Moebius strip.

3.3. Cluster categories and cluster algebras. The motivation for introducing
the cluster category in [3] was to explain the similarities, discovered in [46], between
the combinatorics of Fomin-Zelevinsky’s cluster algebras and those of tilting theory
over hereditary algebras. The following theorem shows that indeed, the link is very
close. Let us assume that the ground field k is algebraically closed. As above, we
denote by @ a finite quiver without oriented cycles and by Cq its cluster category.
We suppose that the set of vertices of @ is {1,...,n}. An object M of Cq is rigid
if Ext(le (M, M) = 0. We refer to [21] [22] for the cluster algebra associated with an
antisymmetric matrix B. By definition, the cluster algebra Aq associated with a
quiver @ with vertex set {1,...,n} is the one associated with the matrix B whose
(i, j)-coefficient equals the number of arrows from ¢ to j minus the number of
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arrows from j to . In [32], the reader can find a translation of Fomin-Zelevinsky’s
construction of A into the quiver language.

Theorem 3.4. There is a canonical bijection M — Xp; between the isomorphism
classes of indecomposable Tigid objects of the cluster category and the cluster vari-
ables of the cluster algebra associated with Q. Moreover, under this bijection, the
clusters of Ag correspond exactly to the n-tuples of indecomposable rigid objects
whose direct sum is rigid.

The theorem is proved in [16] on the basis of the previous results obtained by
many authors notably Buan-Marsh-Reiten-Todorov [13], Buan-Marsh-Reiten [4],
Buan-Marsh-Reineke-Reiten-Todorov [3], Caldero-Chapoton [14], Marsh-Reineke-
Zelevinsky [46], ... . The two main ingredients of the proof are the Calabi-Yau
property of the cluster category and an explicit formula for X, proved by Caldero-
Chapoton in [14]. An alternative proof was given by A. Hubery [29] for quivers
whose underlying graph is an extended simply laced Dynkin diagram.

The combinatorics of d-cluster categories with finitely many indecomposables
are closely related to those of the generalized Coxeter complexes introduced in [20)].
This was shown in [57], ¢f. also [39] [62] [64] [61].

3.4. A characterization of cluster categories. As above, let us assume that
k is an algebraically closed field. An object T of a triangulated 2-Calabi-Yau
category C is cluster-tilting [39] (or mazimal 1-orthogonal in the terminology of
[30]) if it is rigid and each object X satisfying Ext' (T, X) = 0 is a direct factor of
a finite direct sum of copies of T. Now let @) be a finite quiver without oriented
cycles. Then the cluster category Cg has the following properties:

a) it is a triangulated weakly 2-Calabi-Yau category,

b) it contains a cluster-tilting object T whose endomorphism algebra has its
quiver without oriented cycles (one can take T' = 7(kQ) and then has
Ench (T) = ]{?Q),

c) it is algebraic, i.e. triangle equivalent to the stable category of some Frobenius
category (this is shown in [37]).

Theorem 3.5 ([38]). If C is a triangulated category with the properties a), b) and
¢) and Q the quiver of a cluster-tilting object as in b), then C is triangle equivalent
to the cluster category Cg.

3.5. Additively finite Calabi-Yau triangulated categories. Let us now as-
sume that @ is a Dynkin quiver and k is algebraically closed. Let d > 1 be an
integer. Then the d-cluster category Cgi ) has the following properties:

a) it is a weakly d-Calabi-Yau triangulated category,
b) it has only finitely many isomorphism classes of indecomposables,

¢) it is algebraic and standard.
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Theorem 3.6 ([1]). IfC is a triangulated weakly 2-Calabi- Yau category with these
properties, then C is an orbit category Cégd)/G for some cyclic group of automor-

phisms G of C((Qd).

In fact, Amiot [1] gives the classification of all the algebraic standard tri-
angulated categories with finitely many indecomposables. She also shows that
if an algebraic triangulated category has ‘enough’ indecomposables, it is auto-
matically standard. However, if there are ‘too few’ indecomposables, it may be
non standard. Namely, as shown in [1], the k-linear categories underlying the
1-Calabi-Yau triangulated categories with finitely many isomorphism classes of
indecomposables are precisely the categories of finite-dimensional projective mod-
ules over deformed preprojective algebras of generalized Dynkin type introduced
by Biatkowsky-Erdmann-Skowroniski [5]. Using this one deduces that there are non
standard 1-Calabi-Yau triangulated categories in characteristic 2 (by [5]) and also
in characteristic 3 (by [6]).

It is instructive to review Riedtmann’s classification of representation-finite
selfinjective algebras [51] [52] [53] [54] from the point of view of Calabi-Yau trian-
gulated categories: In [27] and [28], Holm and Jgrgensen determine which stable
module categories are actually d-cluster categories. In [7], Biatkowski and Skowron-
ski extract the Calabi-Yau categories from Riedtmann’s lists.

4. Examples: Derived categories

4.1. Serre functors: A key lemma. Let k be a field and A a k-algebra (asso-
ciative, with 1). We do not assume that A is of finite dimension over k. Recall that
DA denotes the (unbounded) derived category of the category of right A-modules
and Db(A) its full subcategory formed by the complexes whose homology is of fi-
nite total dimension. We write per(A) for the full triangulated subcategory of DA
formed by the perfect complexes, i.e. those quasi-isomorphic to a bounded complex
of finitely generated projective modules. An object P of DA lies in per(A) iff the
functor Homp 4 (P, ?) commutes with infinite direct sums. The algebra A is homo-
logically smooth if A, considered as a bimodule over itself, belongs to per(A°? ® A).
In other words, A is homologically smooth iff the bimodule A admits a finite res-
olution by finitely generated projective bimodules.

If M is a right module over an algebra B, then Homp(M, B) is a left B-
module, i.e. a B°?-module. If we are given a morphism 7 : B — B°P  we can
convert Homp (M, B) again into a right B-module using the restriction along 7.
This applies in particular to the algebra B = A°? ® A, which we endow with the
morphism

T:APRQA— (APQA)P, z2Qy—yQa.

This amounts to viewing Hom gopga (M, A°? @ A) as a bimodule using the ‘inner’
bimodule structure on A°? @ A. We write D for the k-dual Homg(?, k).
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Lemma 4.1. Suppose that A is homologically smooth. Define
Q = RHom gorga (A, AP @ A)

and view it as an object of D(A°? ® A). Then for all objects L of DA and M of
DY A, we have a canonical isomorphism

L
DHompa(M,L) = Hompa(L ®4 Q, M).
If we have an isomorphism Q = X~%A in D(A°? ® A), then DA is d-Calabi- Yau.

Proof. Let us write A® for A°? ® A, DM for Homy (M, k), Hom for RHom and ® for

L
®. Since M is perfect in D(k) and A is perfect in D(A®), the following canonical
morphisms are invertible in D(k)

L®4aQ®4s DM = (L ®; DM) ® g
— Homy (M, L) ® sc
— Hom 4 (A, Homy (M, L)) = Hom4 (M, L).

If we use again that M is perfect in D(k), we obtain the isomorphisms

Homk(HomA(Mv L)ak) = Homk(L ®A Q@A .DM,k)
= Hom (L ®4 Q,Homy (DM, k))
= Hom (L @ Q, M).

We obtain the first claim by taking zeroth homology. For the second claim, we first
have to check that DPA is Hom-finite. For this, we notice first that D’ A is contained
in per(A). Indeed, A is contained in the thick subcategory of D(A®) generated

L
by A¢€. This implies that M = M ®4 A is contained in the thick triangulated
subcategory generated by

L L
Mo@is(APRA)=Me, A

for each M in D(A). Now if M is perfect in D(k), then M ®j A is perfect in
D(A) and so M is perfect in D(A). Clearly, if M € D(A) is perfect in D(k), then
M = Hom4(A, M) is perfect in D(k) and so Hom4 (P, M) is perfect in D(k) for
each P in per(A). In particular, Hom (L, M) is perfect in D(k) for all L, M in
Db(A). According to the first statement, the category D°(A) admits a left Serre
functor (in the sense of [50]) given by ?7®4 Q. If Q is isomorphic to A[—d] in D(A®),
then ?®4 Q is isomorphic to ?®4 A[—d] = ¥ =% when restricted to D°(A) and this
is what we had to show. O

4.2. Two examples. Let V be an n-dimensional vector space and A the sym-
metric algebra on V. We compute the complex Q using the Koszul bimodule
resolution pA, which is of the form

0> AQAN" @A — ... 2 AN A—>A—0
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where we put A” = A’V. We find that Hom 4 (pA4, A¢) is isomorphic, as a complex
of bimodules, to (pA)[—n] and hence quasi-isomorphic to A[—n|. Thus the category
Db(A) is n-Calabi-Yau (recall that the objects of this category are the complexes
of A-modules whose homology is of finite total dimension).

Now let @ be a finite connected non Dynkin quiver. The double quiver Q is
obtained by adjoining an arrow a* : j — ¢ for each arrow a : i — j of Q. The
preprojective algebra A = I1(Q) is defined to be the quotient of the path algebra
of @ by the ideal generated by the sum of the commutators

S fa.a’],

where a runs through the arrows of ). Since @ is not Dynkin, the preprojective
algebra is a Koszul algebra (this was shown for quivers () with bipartite orientation
n [47], for quivers without oriented cycles in [10, Cor. 4.3] following notes by
B. Crawley-Boevey and in [45] for general quivers). Moreover, it is not hard to
show that if A" denotes the Koszul dual algebra of A, then there is an isomorphism
of graded A'-modules
DA' = A'Y(-2),

where D denotes the graded dual and () the degree shift. Now using again the
Koszul bimodule resolution to compute €2, one obtains that €2 is quasi-isomorphic
to A[—2]. Thus D*(A(Q)) is 2-Calabi-Yau.

Recall that according to Crawley-Boevey’s description of the preprojective al-
gebra [18], we have

1(Q) = Tp(Extp. (B, B°),

where B = kQ and T’p denotes the tensor algebra in the category of B-B-bimodules.
If @ is not a Dynkin quiver, then 2 has its homology concentrated in degree 1,
and if we use a cofibrant resolution of {2 to compute the tensor algebra, we find a
quasi-isomorphism of differential graded algebras

I(Q) = Ts(Q[1]) ,

where T now denotes the tensor algebra in the category of complexes of B-B-
bimodules. This construction generalizes: If B is any homologically smooth dg
algebra and n any integer, we can form the ‘derived preprojective algebra’

IL,(B) = Tp(Qfn — 1)
and show that D(IL,,(B)) is n-Calabi-Yau, cf. [33].

4.3. Calabi-Yau quotients of path algebras. Let k be a field of characteristic
0. Let @ be a finite connected quiver and I an ideal of the path algebra kQ which
is homogeneous (for path length) and generated in degrees > 2. Let A = kQ/I be
the quotient of the path algebra by the ideal I.

Theorem 4.2 ([8]). If D°(A) is weakly 2-Calabi-Yau, then Q is isomorphic to
the double quiver of some non Dynkin quiver R and kQ/I is isomorphic to the
preprojective algebra of R.
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As we have seen in the preceding paragraph, the converse also holds. Let
[kQ, kQ] be the k-linear subspace of kQ generated by all commutators uv — vu,
where u, v belong to kQ. A potential on @Q is an element W € kQ/[kQ, kQ)].
Equivalently, a potential is a linear combination of cycles (=cyclic equivalence
classes of cyclic paths). For an arrow a of @, the cyclic derivative with respect to
a is the unique linear map

0
5o ¢ hQ/ Q. kQ] — kQ
which takes the class of a path p to the sum

Zvu

p=uav

taken over all decompositions of the path p (where u and v are paths of length
>0).

Theorem 4.3 ([8]). If D(A) is weakly 3-Calabi-Yau, there is a homogeneous
potential W in kQ/[kQ, kQ)] such that I is generated by the cyclic derivatives

QW, a an arrow of Q.

da
Let us consider the following basic example: We have seen that the polynomial
algebra A = k[x,y, z] yields a 3-Calabi-Yau category D°(A). Now we can write
A as the quotient of the path algebra of a quiver @) with 3 loops z, y, z by a
homogeneous ideal I generated in degree 2. According to the theorem, there must
be a potential whose cyclic derivatives generate the ideal I. Indeed, if we take

W =axyz —xzy

the three cyclic derivatives yield three commutators which generate I.
The converse of the theorem is not true: Consider the cyclic quiver @

with the potential W = abe. The quotient of the path algebra by the cyclic deriva-
tives be, ca, ab is a 6-dimensional self-injective algebra whose bounded derived
category does not have a Serre functor (by Theorem 3.1) and a fortiori is not 3-
Calabi-Yau. Nevertheless, there is a canonical 3-Calabi-Yau category associated
with this quiver potential, as we will see in the next section.

5. 3-Calabi-Yau categories from potentials, after
Kontsevich-Soibelman

5.1. Ao.-categories. We refer to [36] for an introduction to A.-structures and
to [44] [56] for more detailed studies. An A -category A is given by
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e a set of objects obj(A),

e for all objects X and Y a Z-graded vector space

AXY)=EPAX,Y),

PEZL

e for all sequences X, ..., X, of objects a linear map
My A(Xn—1,Xn) @ A(Xp—2, Xn1) ® ... @ A(Xo, X1) — A(Xo, X»)
homogeneous of degree 2 — n
such that the following hold
e m is a differential on A(X,Y), for all objects X, Y,
e my is a derivation for mq, i.e. we have
mgo (M ®1+1®mp)=0
on A(X1, Xs) ® A(Xo, X1) for all triples of objects Xg, X1, Xo,

e more generally, for each n > 0 and all (n + 1)-tuples of objects Xo, ..., X,,
we have the identity

Z (=D)"™**m, 10 (1% @m, ©1%) =0
r+s+t=n

on A(Xn,th) (9 A(Xn,%anl) R...Q A(X07X1)7

e cach graded space H*(A(U,U)), U € obj(.A), contains a twosided unit for
the composition maps on the H*(A(X,Y)), X,Y € obj(A) induced by mso.

If A is an A-algebra, it has a well-defined homology category H* A, whose mor-
phism spaces are the H*(A(X,Y)), X,Y € obj(A) and whose composition is in-
duced by ma. If A is minimal (i.e. mq = 0), then A can be viewed as a deformation
of its homology category.

For example, if B is a finite-dimensional algebra and S1,...,.S, are the simple
B-modules (up to isomorphism), then there is a minimal A..-category S, canonical
up to Ay.-isomorphism, whose objects are the S;, whose morphism spaces are the
Ext:(S:,S;), whose my is the Yoneda composition and whose higher m; encode
more subtle information. One can define the derived category DA of an A-
category A and show that in this example, there is a triangle equivalence DS —
DB.
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5.2. Cyclic structures and potentials. We follow section 10 of [42]. Let A be
a minimal A..-category whose morphism spaces are of finite total dimension and
let d be an integer. A cyclic structure on A is the datum of bilinear forms

() AX)Y)x AY,X) — k
homogeneous of degree —d and such that

a) the form (,) is non degenerate for all X,Y and

b) for each n > 0 and all Xy, ..., X,, the map
Wn+1 : A(Xn—lan) X A(Xn—th—Q) ®...0 -A(X07X1) & A(XnyXO) — k

taking (aq,...,an4+1) to {((My(a1,...,an),ant1)) is cyclically invariant, i.e.
we have
wn+1(a1, . 7an+1) = ﬂ:wn+1(a2, ey an+1, al)

where the sign depends on n and the parities of the homogeneous elements
a; in the natural way.

Notice that if we fix the bilinear form (, ), then the datum of the compositions m;,
1 > 2, is equivalent to that of the linear forms w;, i > 3.

One can define the perfect derived category per(A) as the thick triangulated
subcategory of DA generated by the representable A..-modules A(?, X), X € A,
and show that per(A) is Hom-finite.

Proposition 5.1. If A has a cyclic structure of degree d, then per(A) is d-Calabi-
Yau.

If Q is a quiver without loops or 2-cycles and W a potential on @, the idea is now
to construct an A.-category A(Q, W) with a cyclic structure of degree 3 (whose
objects are simply the vertices of @)). By the proposition, the perfect derived
category per(A(Q,W)) is then a 3-Calabi-Yau category associated with (@, W).
We will sketch the construction of A = A(Q, W) below. One can show that per(.A)
carries a canonical t-structure whose heart has as its simples the representable
modules associated with the vertices of ). The heart is in fact equivalent to the
category of finite-dimensional modules over the Jacobi algebra associated with
(Q,W). The mutations of the quiver potential (Q, W) (in the sense of [19]) can
be interpreted as tiltings of the ¢-structure on the 3-Calabi-Yau category per(.A)
similar to those used by Bridgeland [11] [12], ¢f. also Iyama-Reiten’s study [31] of
mutation versus tilting in the 3-dimensional case and forthcoming work by Chuang-
Rouquier [17] and Kontsevich-Soibelman [43].

5.3. Construction of A(Q,W). Let @ be a finite quiver and W a potential
on Q. We would like to construct an A.-category A(Q,W) endowed with a
cyclic structure of degree 3 associated with (Q,W). This will be done directly
in [43]. Here, we present an alternative approach via the A.-Koszul dual: The
graded morphism spaces of A = A(Q,W) will be finite-dimensional so that the
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datum of A will be equivalent to that of the A, -cocategory with morphism spaces
DA(X,Y), X,Y € obj(A). Now the datum of this A-cocategory is equivalent
to the datum of its completed cobar category, whose objects are those of A, whose
morphisms are obtained by forming the completed path category over the k-quiver
with morphism spaces Y DA(X,Y) (where ¥ is the shift of grading) and whose
differential has components given on the generators by the cocompositions Dm.,.
We will describe this completed cobar category with its differential. It turns out
to be isomorphic to the (completed) differential graded category G = D4 (kQ, W)
introduced by Ginzburg in [23]: Its objects are the vertices of Q). Its morphism
spaces are those of the completed graded path category which is generated by

e the arrows of @ (they all have degree 0),

e an arrow a* : j — i of degree —1 for each arrow a : i — j of Q,

e loops t; : i — i of degree —2 associated with each vertex ¢ of Q.
The differential of G is defined on the generators as follows:

e da = 0 for each arrow a of @,

o d(a*) = a%W for each arrow a of @,

o d(t;) = e;(3_,la,a*])e; for each vertex i of @, where e; is the idempotent
associated with ¢ and the sum runs over the set of arrows of Q.

One checks that d? = 0, which is equivalent to the A.-conditions. Here is the
quiver of the Ginzburg dg category associated with the cyclic quiver at the end of
section 4 with the potential W = abc :

t2

/\

1<—3Qt3

The differential is given by
d(a*) =bc, d(b*) =ca, d(c*) =ab, d(t;) = cc* = b"b,

We obtain a triangulated 3-Calabi-Yau category equivalent to per(A(Q,W)) b
taking the full subcategory D%, (G) formed by the dg modules whose homologies
are of finite total dimension and are nilpotent as modules over the Jacobi algebra.

References

[1] Claire Amiot, On the structure of triangulated categories with finitely many inde-
composables, arXivimath/0612141v2 [math.CT], to appear in Bull. SMF.



Calabi-Yau triangulated categories 21

2]

(18]

(19]

20]

Aslak Bakke Buan and Robert Marsh, Cluster-tilting theory, Trends in representation
theory of algebras and related topics, Contemp. Math., vol. 406, Amer. Math. Soc.,
Providence, RI, 2006, pp. 1-30.

Aslak Bakke Buan, Robert J. Marsh, Markus Reineke, Idun Reiten, and Gordana
Todorov, Tilting theory and cluster combinatorics, Advances in Mathematics 204
(2) (2006), 572-618.

Aslak Bakke Buan, Robert J. Marsh, and Idun Reiten, Cluster mutation via quiver
representations, Comm. Math. Helv. 83 (2008), 143-177.

Jerzy Biatkowski, Karin Erdmann, and Andrzej Skowronski, Deformed preprojective
algebras of generalized Dynkin type, Trans. Amer. Math. Soc. 359 (2007), no. 6,
2625-2650 (electronic).

Jerzy Biatkowski and Andrzej Skowroniski, Nonstandard additively finite triangulated
categories of Calabi- Yau dimension one in characteristic 3, preprint, 2007, to appear
in Algebra and Discrete Mathematics.

, Calabi-Yau stable module categories of finite type, Colloq. Math. 109 (2007),
no. 2, 257-269.

Raf Bocklandt, Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra
212 (2008), no. 1, 14-32.

A. 1. Bondal and M. M. Kapranov, Representable functors, Serre functors, and re-
constructions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 6, 1183-1205, 1337.

Sheila Brenner, Michael C. R. Butler, and Alastair D. King, Periodic algebras which
are almost Koszul, Algebr. Represent. Theory 5 (2002), no. 4, 331-367.

Tom Bridgeland, Stability conditions and Hall algebras, Talk at the meeting ‘Recent
developments in Hall algebras’, Luminy, November 2006.

, t-structures on some local Calabi- Yau varieties, J. Algebra 289 (2005), no. 2,
453-483.

Aslak Bakke Buan, Robert J. Marsh, Idun Reiten, and Gordana Todorov, Clusters
and seeds in acyclic cluster algebras, Proc. Amer. Math. Soc. 135 (2007), no. 10,

3049-3060 (electronic), With an appendix coauthored in addition by P. Caldero and
B. Keller.

Philippe Caldero and Frédéric Chapoton, Cluster algebras as Hall algebras of quiver
representations, Comment. Math. Helv. 81 (2006), no. 3, 595-616.

Philippe Caldero, Frédéric Chapoton, and Ralf Schiffler, Quivers with relations aris-
ing from clusters (A case), Trans. Amer. Math. Soc. 358 (2006), no. 5, 1347-1364.

Philippe Caldero and Bernhard Keller, From triangulated categories to cluster alge-
bras. II, Ann. Sci. Ecole Norm. Sup. (4) 39 (2006), no. 6, 983-1009.

Joe Chuang and Raphaél Rouquier, book in preparation.

William Crawley-Boevey, Preprojective algebras, differential operators and a Conze
embedding for deformations of Kleinian singularities, Comment. Math. Helv. 74
(1999), no. 4, 548-574.

Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and
their representations I: Mutations, arXiv:0704.0649v2.

Sergey Fomin and Nathan Reading, Generalized cluster complezes and Cozeter com-
binatorics, Int. Math. Res. Not. (2005), no. 44, 2709-2757.



22

[21]
[22]

[23]
[24]

[25]

[26]

Bernhard Keller

Sergey Fomin and Andrei Zelevinsky, Cluster algebras. I. Foundations, J. Amer.
Math. Soc. 15 (2002), no. 2, 497-529 (electronic).

, Cluster algebras I'V: Coefficients, Compositio Mathematica 143 (2007), 112—
164.

Victor Ginzburg, Calabi-Yau algebras, arXivimath/0612139v3 [math.AG].

Dieter Happel, On the derived category of a finite-dimensional algebra, Comment.
Math. Helv. 62 (1987), no. 3, 339-389.

, Triangulated categories in the representation theory of finite-dimensional
algebras, Cambridge University Press, Cambridge, 1988.

Dieter Happel, Auslander-Reiten triangles in derived categories of finite-dimensional
algebras, Proc. Amer. Math. Soc. 112 (1991), no. 3, 641-648.

Torsten Holm and Peter Jgrgensen, Cluster categories and selfinjective algebras: type
A, arXiv:math/0610728v1 [math.RT].

, Cluster categories and selfinjective algebras: type D, arXiv:math/0612451v1
[math.RT].

Andrew Hubery, Acyclic cluster algebras via Ringel-Hall algebras, Preprint available
at the author’s home page.

Osamu Iyama, Higher-dimensional Auslander-Reiten theory on mazximal orthogonal
subcategories, Adv. Math. 210 (2007), no. 1, 22-50.

Osamu Iyama and Idun Reiten, Fomin-Zelevinsky mutation and tilting modules over
Calabi-Yau algebras, arXiv:math.RT /0605136, to appear in Amer. J. Math.

Bernhard Keller, Categorification of acyclic cluster algebras: an introduction, to
appear in the proceedings of the conference ‘Higher structures in Geometry and
Physics 2007, Birkhauser.

, Deformed CY-completions and their duals, 2008, in preparation.

_, Deriving DG categories, Ann. Sci. Ecole Norm. Sup. (4) 27 (1994), no. 1,

63-102.

, Introduction to abelian and derived categories, Representations of reductive
groups, Publ. Newton Inst., Cambridge Univ. Press, Cambridge, 1998, pp. 41-61.

, Introduction to A-infinity algebras and modules, Homology Homotopy Appl.
3 (2001), no. 1, 1-35 (electronic).

, On triangulated orbit categories, Doc. Math. 10 (2005), 551-581.

Bernhard Keller and Idun Reiten, Acyclic Calabi-Yau categories are clus-
ter categories, preprint, 2006, with an appendix by Michel Van den Bergh,
arXiv:math.RT/0610594.

, Cluster-tilted algebras are Gorenstein and stably Calabi- Yau, Advances in
Mathematics 211 (2007), 123-151.

Bernhard Keller and Dieter Vossieck, Sous les catégories dérivées, C. R. Acad. Sci.
Paris Sér. I Math. 305 (1987), no. 6, 225-228.

Maxim Kontsevich, Triangulated categories and geometry, Course at the Ecole Nor-
male Supérieure, Paris, Notes taken by J. Bellaiche, J.-F. Dat, I. Marin, G. Racinet
and H. Randriambololona, 1998.



Calabi-Yau triangulated categories 23

[42]
[43]
[44]
[45]

(46]

Maxim Kontsevich and Yan Soibelman, Notes on A-infinity algebras, A-infinity cat-
egories and non-commutative geometry. I, arXive:math.RA /0606241.

, Stability structures, Donaldson-Thomas invariants and cluster transforma-
tions, preprint in preparation.
Kenji Lefevre-Hasegawa, Sur les A -catégories, These de doctorat, Université Denis
Diderot — Paris 7, November 2003, arXiv:math.CT/0310337.

Anton Malkin, Viktor Ostrik, and Maxim Vybornov, Quiver varieties and Lusztig’s
algebra, Adv. Math. 203 (2006), no. 2, 514-536.

Robert Marsh, Markus Reineke, and Andrei Zelevinsky, Generalized associahedra
via quiver representations, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171-4186
(electronic).

Roberto Martinez-Villa, Applications of Koszul algebras: the preprojective algebra,
Representation theory of algebras (Cocoyoc, 1994), CMS Conf. Proc., vol. 18, Amer.
Math. Soc., Providence, RI, 1996, pp. 487-504.

Barry Mitchell, Rings with several objects, Advances in Math. 8 (1972), 1-161.

Idun Reiten, Tilting theory and cluster algebras, preprint available at
www.institut.math.jussieu.fr/ = keller/ictp2006 /lecturenotes/reiten.pdf.

Idun Reiten and Michel Van den Bergh, Noetherian hereditary abelian categories
satisfying Serre duality, J. Amer. Math. Soc. 15 (2002), no. 2, 295-366 (electronic).

Christine Riedtmann, Algebren, Darstellungskicher, ﬁberlagerungen und zurick,
Comment. Math. Helv. 55 (1980), no. 2, 199-224.

, Representation-finite self-injective algebras of class A, Representation the-
ory, IT (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979), Lecture
Notes in Math., vol. 832, Springer, Berlin, 1980, pp. 449-520.

, Configurations of ZD,,, J. Algebra 82 (1983), no. 2, 309-327.

, Representation-finite self-injective algebras of class D,,, Compositio Math.
49 (1983), no. 2, 231-282.

Claus Michael Ringel, Some remarks concerning tilting modules and tilted algebras.
Origin. Relevance. Future., Handbook of Tilting Theory, LMS Lecture Note Series,
vol. 332, Cambridge Univ. Press, Cambridge, 2007, pp. 49-104.

Paul Seidel, Fukaya categories and Picard-Lefschetz theory, to appear in the ETH
Lecture Notes series of the European Math. Soc.

Hugh Thomas, Defining an m-cluster category, arXiv:math.RT /0607173, to appear
in J. Algebra.

Michel Van den Bergh, The signs of Serre duality, Appendix A to R. Bocklandt,
Graded Calabi-Yau algebras of dimension 3, Journal of Pure and Applied Algebra
212 (2008), 14-32.

Jean-Louis Verdier, Catégories dérivées, état 0, SGA 4.5, Lec. Notes in Math., vol.
569, Springer—Verlag, 1977, pp. 262-308 (French).

, Des catégories dérivées des catégories abéliennes, Astérisque, vol. 239,
Société Mathématique de France, 1996 (French).

Anette Wraalsen, Rigid objects in higher cluster categories, arXiv:0712.2970
[math.RT].



24 Bernhard Keller

[62] Bin  Zhu, Generalized  cluster  complexes wvia  quiver representations,
arXiv:math.RT /0607155, to appear in Journal of Algebraic Combinatorics.

[63] Bin Zhu, Equivalences between cluster categories, J. Algebra 304 (2006), no. 2, 832—
850.

[64] Bin Zhu and Yu Zhou, Cluster combinatorics of d-cluster categories,
arXiv:0712.1381v1 [math.RT].

Bernhard Keller, U.F.R. de mathématiques, Institut de mathématiques de Jussieu,
U.M.R. 7586 du CNRS, Université Denis Diderot — Paris 7, Case 7012, 2 place Jussieu,
75251 Paris, Cedex 05, France

E-mail: keller@math.jussieu.fr



