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1 Introduction

1.1 Context

Cluster algebras were invented by S. Fomin and A. Zelevinsky [27] in the
spring of the year 2000 in a project whose aim it was to develop a combinato-
rial approach to the results obtained by G. Lusztig concerning total positivity
in algebraic groups [54] on the one hand and canonical bases in quantum
groups [53] on the other hand (let us stress that canonical bases were discov-
ered independently and simultaneously by M. Kashiwara [45]). Despite great
progress during the last few years [28] [8] [31], we are still relatively far from
these initial aims. Presently, the best results on the link between cluster al-
gebras and canonical bases are probably those of C. Geiss, B. Leclerc and
J. Schröer [38] [39] [35] but even they cannot construct canonical bases from
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cluster variables for the moment. Despite these difficulties, the theory of clus-
ter algebras has witnessed spectacular growth thanks notably to the many
links that have been discovered with a wide range of subjects including

• Poisson geometry [40] [41] . . . ,
• integrable systems [30] . . . ,
• higher Teichmüller spaces [20] [22] [23] [21] . . . ,
• combinatorics and the study of combinatorial polyhedra like the Stasheff

associahedra [18] [17] [52] [25] [58] [26] . . . ,
• commutative and non commutative algebraic geometry, in particular the

study of stability conditions in the sense of Bridgeland [10] [9], Calabi-Yau
algebras [42], Donaldson-Thomas invariants [66] [49] [50] [51] . . . ,

• and last not least the representation theory of quivers and finite-dimensional
algebras, cf. for example the surveys [4] [63] [62].

We refer to the introductory papers [69] [29] [68] [70] [71] and to the cluster
algebras portal [24] for more information on cluster algebras and their links
with other parts of mathematics.

The link between cluster algebras and quiver representations follows the
spirit of categorification: One tries to interpret cluster algebras as combinato-
rial (perhaps K-theoretic) invariants associated with categories of representa-
tions. Thanks to the rich structure of these categories, one can then hope to
prove results on cluster algebras which seem beyond the scope of the purely
combinatorial methods. It turns out that the link becomes especially beauti-
ful if we use a triangulated category constructed from the category of quiver
representations, the so-called cluster category.

In this brief survey, we will review the definition of cluster algebras and
Fomin-Zelevinsky’s classification theorem for cluster-finite cluster algebras
[28]. We will then recall some basic notions on the representations of a quiver
without oriented cycles, introduce the cluster category and describe its link
with the cluster algebra.

2 Cluster algebras

The cluster algebras we will be interested in are associated with antisymmetric
matrices with integer coefficients. Instead of using matrices, we will use quivers
(without loops and 2-cycles), since they are easy to visualize and well-suited
to our later purposes.

2.1 Quivers

Let us recall that a quiver Q is an oriented graph. Thus, it is a quadruple given
by a set Q0 (the set of vertices), a set Q1 (the set of arrows) and two maps
s : Q1 → Q0 and t : Q1 → Q0 which take an arrow to its source respectively
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its target. Our quivers are ‘abstract graphs’ but in practice we draw them as
in this example:

Q : 3
λ

���������
5α

$$ ////// 6

1 ν
// 2

β //

µ
^^>>>>>>>

4.
γ

oo

A loop in a quiver Q is an arrow α whose source coincides with its target;
a 2-cycle is a pair of distinct arrows β 6= γ such that the source of β equals
the target of γ and vice versa. It is clear how to define 3-cycles, connected
components . . . . A quiver is finite if both, its set of vertices and its set of
arrows, are finite.

2.2 Seeds and mutations

Fix an integer n ≥ 1. A seed is a pair (R, u), where

a) R is a finite quiver without loops or 2-cycles with vertex set {1, . . . , n};
b) u is a free generating set {u1, . . . , un} of the field Q(x1, . . . , xn) of fractions

of the polynomial ring Q[x1, . . . , xn] in n indeterminates.

Notice that in the quiver R of a seed, all arrows between any two given vertices
point in the same direction (since R does not have 2-cycles). Let (R, u) be a
seed and k a vertex of R. The mutation µk(R, u) of (R, u) at k is the seed
(R′, u′), where

a) R′ is obtained from R as follows:
1) reverse all arrows incident with k;
2) for all vertices i 6= j distinct from k, modify the number of arrows

between i and j as follows:

R R′

i
r //

s ��::: j

k
t

AA���
i

r+st // j

t�����

k
s

]]:::

i
r // j

t�����

k
s

]]:::
i

r−st //

s ��::: j

k
t

AA���

where r, s, t are non negative integers, an arrow i
l // j with l ≥ 0

means that l arrows go from i to j and an arrow i
l // j with l ≤ 0

means that −l arrows go from j to i.
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b) u′ is obtained from u by replacing the element uk with

u′k =
1

uk

 ∏
arrows i→ k

ui +
∏

arrows k → j

uj

 . (1)

In the exchange relation (1), if there are no arrows from i with target k, the
product is taken over the empty set and equals 1. It is not hard to see that
µk(R, u) is indeed a seed and that µk is an involution: we have µk(µk(R, u)) =
(R, u).

2.3 Examples of mutations

Let R be the cyclic quiver

1

2 3

EE�������� ��22222222

oo

(2)

and u = {x1, x2, x3}. If we mutate at k = 1, we obtain the quiver

1

2 3
���������� YY333333333

and the set of fractions given by u′1 = (x2 + x3)/x1, u′2 = u2 = x2 and
u′3 = u3 = x3. Now, if we mutate again at 1, we obtain the original seed. This
is a general fact: Mutation at k is an involution. If, on the other hand, we
mutate (R′, u′) at 2, we obtain the quiver

1

2 3

EE��������

XX1111111

and the set u′′ given by u′′1 = u′1 = (x2 + x3)/x1, u′2 = x1+x2+x3

x1x2
and u′′3 =

u′3 = x3.
Let us consider the following, more complicated quiver glued together from

four 3-cycles:

1

2 3

4
5

6.

FF��� ��222

oo
EE���

��:: AA��
��333

ssgggg kkWWWW

(3)
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If we successively perform mutations at the vertices 5, 3, 1 and 6, we obtain
the sequence of quivers (we use [46])

1

2 3

4
5

6

FF��� ��222

]];; ����
33ggggoo ++WWWW

1

2 3

4
5

6

EE���
XX111

��]];; BB��
33ggggoo ++WWWW

1

2 3

4
5

6

�����
��222OO

33ggggoo ++WWWW

1

2 3

4
5

6.

�����
��222OO

//__________
kkWWWW

Notice that the last quiver no longer has any oriented cycles and is in fact an
orientation of the Dynkin diagram of type D6. The sequence of new fractions
appearing in these steps is

u′5 =
x3x4 + x2x6

x5
, u′3 =

x3x4 + x1x5 + x2x6
x3x5

,

u′1 =
x2x3x4 + x23x4 + x1x2x5 + x22x6 + x2x3x6

x1x3x5
, u′6 =

x3x4 + x4x5 + x2x6
x5x6

.

It is remarkable that all the denominators appearing here are monomials and
that all the coefficients in the numerators are positive.

Finally, let us consider the quiver

1

2 3

4 5 6

7 8 9 10.

EE���� ��2222

oo
FF���� ��3333 FF���� ��2222

oo
FF���� ��2222

oo
EE���� ��2222 FF���� ��2222

oo oo oo

(4)

One can show [48] that it is impossible to transform it into a quiver without
oriented cycles by a finite sequence of mutations. However, its mutation class
(the set of all quivers obtained from it by iterated mutations) contains many
quivers with just one oriented cycle, for example

1

2
3

4

5

67

8
9

10
��
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In fact, in this example, the mutation class is finite and it can be completely
computed using, for example, [46]: It consists of 5739 quivers up to isomor-
phism. The above quivers are members of the mutation class containing rel-
atively few arrows. The initial quiver is the unique member of its mutation
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class with the largest number of arrows. Here are some other quivers in the
mutation class with a relatively large number of arrows:

◦
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mm\\\
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��...
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Only 84 among the 5739 quivers in the mutation class contain double arrows
(and none contain arrows of multiplicity ≥ 3). Here is a typical example

1

2

3 4

5

6

7

8

9

10

66mmmm ''PPPP

RR%%%%%
00aaaaaaaaa

II����
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00̀`````

2
wwww

{{www

@@����

((QQQQ

JJ�����XX111

The quivers (2), (3) and (4) are part of a family which appears in the study
of the cluster algebra structure on the coordinate algebra of the subgroup
of upper unitriangular matrices in SLn(C), cf. [39]. The study of coordinate
algebras on varieties associated with reductive algebraic groups (in particular,
double Bruhat cells) has provided a major impetus for the development of
cluster algebras, cf. [8].

2.4 Definition of cluster algebras

Let Q be a finite quiver without loops or 2-cycles with vertex set {1, . . . , n}.
Consider the seed (Q, x) consisting of Q and the set x formed by the variables
x1, . . . , xn. Following [27] we define

• the clusters with respect to Q to be the sets u appearing in seeds (R, u)
obtained from (Q, x) by iterated mutation,

• the cluster variables for Q to be the elements of all clusters,
• the cluster algebra AQ to be the Q-subalgebra of the field Q(x1, . . . , xn)

generated by all the cluster variables.

Thus the cluster algebra consists of all Q-linear combinations of monomials in
the cluster variables. It is useful to define another combinatorial object associ-
ated with this recursive construction: The exchange graph associated with Q
is the graph whose vertices are the seeds modulo simultaneous renumbering of
the vertices and the associated cluster variables and whose edges correspond
to mutations.
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2.5 The example A3

Let us consider the quiver

Q : 1 // 2 // 3

obtained by endowing the Dynkin diagram A3 with a linear orientation. By
applying the recursive construction to the initial seed (Q, x) one finds exactly
fourteen seeds (modulo simultaneous renumbering of vertices and cluster vari-
ables). These are the vertices of the exchange graph, which is isomorphic to
the third Stasheff associahedron [65] [18]:

/.-,()*+2

◦
◦

◦ /.-,()*+3

◦

◦

◦

/.-,()*+1

◦

◦

◦

◦

◦

PPPPPPPPPPPPPP

$$$$$$$$$$$

qqqqqqqqqqq

����
----- MMMMMM

******

��� ���
???

???

���

uuuuu

,,,,

�����

������

������

::::::::::::

ttttttttttttttttt

111

The vertex labeled 1 corresponds to (Q, x), the vertex 2 to µ2(Q, x), which is
given by

1
&&

2oo 3oo , {x1,
x1 + x3
x2

, x3} ,

and the vertex 3 to µ1(Q, x), which is given by

1 2oo // 3 , {1 + x3
x1

, x2, x3}.

We find a total of 9 cluster variables, namely

x1 , x2 , x3,
1 + x2
x1

,
x1 + x3 + x2x3

x1x2
,
x1 + x1x2 + x3 + x2x3

x1x2x3
,

x1 + x3
x2

,
x1 + x1x2 + x3

x2x3
,

1 + x2
x3

.

Again we observe that all denominators are monomials. Notice also that 9 =
3 + 6 and that 3 is the rank of the root system associated with A3 and 6
its number of positive roots. Moreover, if we look at the denominators of the
non trivial cluster variables (those other than x1, x2, x3), we see a natural
bijection with the positive roots

α1, α1 + α2, α1 + α2 + α3, α2, α2 + α3, α3

of the root system of A3, where α1, α2, α3 denote the three simple roots.
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2.6 Cluster algebras with finitely many cluster variables

The phenomena observed in the above example are explained by the following
key theorem:

Theorem 1 (Fomin-Zelevinsky [28]). Let Q be a finite connected quiver
without loops or 2-cycles with vertex set {1, . . . , n}. Let AQ be the associated
cluster algebra.

a) All cluster variables are Laurent polynomials, i.e. their denominators are
monomials.

b) The number of cluster variables is finite iff Q is mutation equivalent to an
orientation of a simply laced Dynkin diagram ∆. In this case, ∆ is unique
and the non trivial cluster variables are in bijection with the positive roots
of ∆; namely, if we denote the simple roots by α1, . . . , αn, then for each
positive root

∑
diαi, there is a unique non trivial cluster variable whose

denominator is
∏
xdii .

3 Categorification

We refer to the books [64] [33] [2] and [1] for a wealth of information on the
representation theory of quivers and finite-dimensional algebras. Here, we will
only need very basic notions.

Let Q be a finite quiver without oriented cycles. For example, Q can be
an orientation of a simply laced Dynkin diagram or the quiver

2
β

%%KKKKKK

1 γ
//

α
99tttttt

3.

Let k be an algebraically closed field. Recall that a representation of Q is a
diagram of finite-dimensional vector spaces of the shape given by Q. Thus, in
the above example, a representation of Q is a (not necessarily commutative)
diagram

V2 Vβ

%%LLLLLL

V1
Vγ

//

Vα
99rrrrrr

V3

formed by three finite-dimensional vector spaces and three linear maps. A
morphism of representations is a morphism of diagrams. We thus obtain the
category of representations rep(Q). Notice that it is an abelian category (since
it is a category of diagrams in an abelian category, that of finite-dimensional
vector spaces): Sums, kernels and cokernels in the category rep(Q) are com-
puted componentwise. We denote by DQ its bounded derived category. Thus,
the objects of DQ are the bounded complexes
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. . . // V p
d // V p+1 // . . .

of representations and its morphisms are obtained from morphisms of com-
plexes by formally inverting all quasi-isomorphisms (=morphisms inducing
isomorphisms in homology). The category DQ is still an additive category
(direct sums are given by direct sums of complexes) but it is almost never
abelian. In fact, it is abelian if and only if Q does not have any arrows. But
it is always triangulated. This means that DQ is additive and endowed with

a) a suspension functor Σ : DQ ∼→ DQ, namely the functor taking a complex
V to V [1], where V [1]p = V p+1 for all p ∈ Z and dV [1] = −dV ;

b) a class of triangles, namely the sequences

U // V // W // ΣU

which are ‘induced’ from short exact sequences of complexes.

The triangulated category DQ admits a Serre functor, i.e. an autoequivalence
S : DQ ∼→ DQ which makes the Serre duality formula true: We have

DHom(X,Y ) ∼→ Hom(Y, SX)

bifunctorially in X, Y belonging to DQ, where D denotes the duality functor
Homk(?, k) over the ground field k. The cluster category is defined as the orbit
category

CQ = DQ/(S−1 ◦Σ2)Z

of DQ under the action of the cyclic group generated by the automorphism
S−1 ◦ Σ2. Thus, its objects are the same as those of DQ and its morphisms
are defined by

HomCQ(X,Y ) =
⊕
p∈Z

HomDQ(X, (S−1 ◦Σ2)pY ).

One can show [47] that CQ admits a structure of triangulated category such
that the projection functor DQ → CQ becomes a triangle functor (in general,
the orbit category of a triangulated category under the action of an automor-
phism group is no longer triangulated). It is not hard to see that the cluster
category has finite-dimensional morphism spaces, and that it admits a Serre
functor induced by that of the derived category. The definition of the cluster
category then immediately yields an isomorphism

S ∼→ Σ2

and this means that CQ is 2-Calabi-Yau: A k-linear triangulated category with
finite-dimensional morphism spaces is d-Calabi-Yau if it admits a Serre functor
S and if S is isomorphic to Σd (the dth power of the suspension functor) as
a triangle functor. The definition of the cluster category is due to Buan-
Marsh-Reineke-Reiten-Todorov [5] (for arbitrary Q without oriented cycles)
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and, independently and with a very different, more geometric description, to
Caldero-Chapoton-Schiffler [13] (for Q of type An).

To state the close relationship between the cluster category CQ and the
cluster algebra AQ, we need some notation: For two objects L and M of CQ,
we write

Ext1(L,M) = HomCQ(L,ΣM).

Notice that it follows from the Calabi-Yau property that we have a canonical
isomorphism

Ext1(L,M) ∼→ D Ext1(M,L).

An object L of CQ is rigid if we have Ext1(L,L) = 0. It is indecomposable if
it is non zero and in each decomposition L = L1 ⊕ L2, we have L1 = 0 or
L2 = 0.

Theorem 2 ([15]). Let Q be a finite quiver without oriented cycles with ver-
tex set {1, . . . , n}.

a) There is an explicit bijection L 7→ XL from the set of isomorphism classes
of rigid indecomposables of the cluster category CQ onto the set of cluster
variables of the cluster algebra AQ.

b) Under this bijection, the clusters correspond exactly to the cluster-tilting
subsets, i.e. the sets T1, . . . , Tn of rigid indecomposables such that

Ext1(Ti, Tj) = 0

for all i, j.
c) If L and M are rigid indecomposables such that the space Ext1(L,M) is

one-dimensional, then we have the generalized exchange relation

XL =
XB +XB′

XM
(5)

where B and B′ are the middle terms of ‘the’ non split triangles

L // B // M // ΣL and M // B′ // L // ΣM

and we define

XB =

s∏
i=1

XBi ,

where B = B1 ⊕ · · · ⊕Bs is a decomposition into indecomposables.

The relation (5) in part c) of the theorem can be generalized to the case
where the extension group is of higher dimension, cf. [14] [43] [67]. One can
show using [7] that relation (5) generalizes the exchange relation (1) which
appeared in the definition of the mutation.

The proof of the theorem builds on work by many authors notably Buan-
Marsh-Reiten-Todorov [11], Buan-Marsh-Reiten [6], Buan-Marsh-Reineke-
Reiten-Todorov [5], Marsh-Reineke-Zelevinsky [57], . . . and especially on
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Caldero-Chapoton’s explicit formula for XL proved in [12] for orientations
of simply laced Dynkin diagrams. We include the formula below. Another
crucial ingredient of the proof is the Calabi-Yau property of the cluster cate-
gory. An alternative proof of part c) was given by A. Hubery [43] for quivers
whose underlying graph is an extended simply laced Dynkin diagram.

The theorem does shed new light on cluster algebras. In particular, we
have the following

Corollary 1 (Qin [61], Nakajima [59]). Suppose that Q does not have
oriented cycles. Then all cluster variables of AQ belong to N[x±1 , . . . , x

±
n ].

This settles a conjecture of Fomin-Zelevinsky [27] in the case of cluster
algebras associated with acyclic quivers. The proof is based on Lusztig’s [56]
and in this sense it does not quite live up to the hopes that cluster theory
ought to explain Lusztig’s results. However, it does show that the conjecture
is true for this important class of cluster algebras.

4 Caldero-Chapoton’s formula

We describe the bijection of part a) of theorem 2. Let k be an algebraically
closed field and Q a finite quiver without oriented cycles with vertex set
{1, . . . , n}. Let L be an object of the cluster category CQ. With L, we will
associate an element XL of the field Q(x1, . . . , xn). According to [5], the object
L decomposes into a sum of indecomposables Li, 1 ≤ i ≤ s, unique up to
isomorphism and permutation. By defining

XL =

s∏
i=1

XLi

we reduce to the case where L is indecomposable. Now again by [5], if L is in-
decomposable, it is either isomorphic to an object π(V ), or an object Σπ(Pi),
where π : DQ → CQ is the canonical projection functor, Σ is the suspension
functor of CQ, V is a representation of Q (identified with a complex of rep-
resentations concentrated in degree 0) and Pi is the projective representation
associated with a vertex i (Pi is characterized by the existence of a functorial
isomorphism

Hom(Pi,W ) = Wi

for each representation W ). If L is isomorphic to Σπ(Pi), we put XL = xi. If
L is isomorphic to π(V ), we define

XL = XV =
1∏n

i=1 x
di
i

∑
0≤e≤d

χ(Gre(V ))

n∏
i=1

x
∑
j→i ej+

∑
i→j(dj−ej)

i ,

where di = dimVi, 1 ≤ i ≤ n, the sum is taken over all elements e ∈ Nn
such that 0 ≤ ei ≤ di for all i, the quiver Grassmannian Gre(V ) is the variety
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of n-tuples of subspaces Ui ⊂ Vi such that dimUi = ei and the Ui form a
subrepresentation of V , the Euler characteristic χ is taken with respect to
étale cohomology (or with respect to singular cohomology with coefficients
in a field if k = C) and the sums in the exponent of xi are taken over all
arrows j → i respectively all arrows i → j. This formula was invented by
P. Caldero and F. Chapoton in [12] for the case of a quiver whose underlying
graph is a simply laced Dynkin diagram. It is still valid for arbitrary quivers
without oriented cycles [15] and further generalizes to arbitrary triangulated
2-Calabi-Yau categories containing a cluster-tilting object [60].

5 Some further developments

The extension of the results presented here to quivers containing oriented
cycles is the subject of ongoing research. In a series of papers [38] [34] [39]
[35] [36], Geiss-Leclerc-Schröer have obtained remarkable results for a class of
quivers which are important in the study of (dual semi-)canonical bases. They
use an analogue [37] of the Caldero-Chapoton map due ultimately to Lusztig
[55]. The class they consider has been further enlarged by Buan-Iyama-Reiten-
Scott [3]. Thanks to their results, an analogue of Caldero-Chapoton’s formula
and a version of theorem 2 was proved in [32] for an even larger class.

Building on [57] Derksen-Weyman-Zelevinsky are developing a represen-
tation-theoretic model for mutation of general quivers in [19]. Their approach
is related to Kontsevich-Soibelman’s work [51], where 3-Calabi-Yau categories
play an important rôle, as was already the case in [44].
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