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Abstract. We define and investigate deformed n-Calabi—Yau completions of homo-
logically smooth differential graded (= dg) categories. Important examples are: deformed
preprojective algebras of connected non-Dynkin quivers, Ginzburg dg algebras associated
to quivers with potentials and dg categories associated to the category of coherent sheaves
on the canonical bundle of a smooth variety. We show that deformed Calabi—Yau comple-
tions do have the Calabi—Yau property and that their construction is compatible with
derived equivalences and with localizations. In particular, Ginzburg dg algebras have the
Calabi—Yau property. We show that deformed 3-Calabi—Yau completions of algebras of
global dimension at most 2 are quasi-isomorphic to Ginzburg dg algebras and apply this
to the study of cluster-tilted algebras and to the construction of derived equivalences asso-
ciated to mutations of quivers with potentials. In the appendix, Michel Van den Bergh uses
non-commutative differential geometry to give an alternative proof of the fact that Ginz-
burg dg algebras have the Calabi—Yau property.
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1. Introduction

1.1. Context and main results. This article is motivated by the theory which links
cluster algebras [17] to representations of quivers and finite-dimensional algebras, cf. [23]
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2 Keller, Van den Bergh, Deformed Calabi—Yau completions

for a survey. In this theory, Calabi—Yau algebras and categories play an important role.
For example, Geiss—Leclerc—Schréer use the 2-Calabi—Yau property of the category of
modules over a preprojective algebra (cf. [18]), [yama—Reiten [21] study mutations using
tilting modules over 2- and 3-Calabi—Yau algebras related to singularities [45] and Amiot’s
construction [1] of generalized cluster categories relies on dg algebras which are 3-Calabi—
Yau as bimodules. The Calabi—Yau property is also important in Kontsevich—Soibelman’s
recent interpretation of cluster transformations in their study of Donaldson-Thomas in-
variants and stability structures [33].

Let us recall the definition of the Calabi—Yau property for algebras and for triangu-
lated categories: Let A be an (associative, unital) algebra over a field k. We identify
A-bimodules with (right) modules over the enveloping algebra 4° = A ® A°P. Let n be an
integer. Recall that the algebra A is homologically smooth if, as a bimodule, it admits a fi-
nite resolution by finitely generated projective bimodules. Following Ginzburg and Kontse-
vich ([19], Definition 3.2.3), it is n-Calabi—Yau as a bimodule if it is homologically smooth
and, in the derived category of A-bimodules, we have an isomorphism

f:A4Y 5 A4 suchthat f¥ = f,

where, for a bimodule complex M, we denote by M " the derived bimodule dual shifted by
n degrees

MY =3"RHomy:(M, A°).

The bimodule complex RHom (M, A°) is the inverse dualizing complex of [44]. If A4 is
n-Calabi—Yau as a bimodule, the subcategory Z,;(A4) of the derived category % (A) formed
by the modules whose homology is of finite total dimension is n-Calabi—Yau as a triangu-
lated category, 1.e. we have non-degenerate bifunctorial pairings

{,>:Hom(M,X"L) x Hom(L,M) — k
such that, for p + ¢ = n, we have
&gy = (=)<, [
forall f: M —X9Land g: L — XM, cf. [30].

Let 4 be any homologically smooth algebra (or more generally: dg category), and let
n be an integer. One of the main objects of study of this paper is a canonical dg algebra
IT,(A) which we call the n-Calabi—Yau completion or the derived n-preprojective algebra.
If 6 denotes a projective resolution of the shifted bimodule dual 4, we simply put IT,(A4)
equal to the tensor dg algebra

I,(4) =T4(0) =40 0® (0040)D---.
Under Koszul duality, this construction corresponds to Ed Segal’s cyclic completion [38].
If A is the path algebra of a connected non-Dynkin quiver and » = 2, one can show that

I1,(A) is quasi-isomorphic to the preprojective algebra of A, cf. [30], Section 4.2. If A4 is the
endomorphism algebra of a tilting object in the derived category of quasi-coherent sheaves
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on a smooth algebraic variety X of dimension n — 1 (or more generally, the derived endo-
morphism algebra of any compact generator [6]), then the derived category of IT,(A4) is tri-
angle equivalent to the derived category of quasi-coherent sheaves on the total space of the
canonical bundle of X, cf. [40]. We will show that I1,(A4) is always n-Calabi—Yau as a bi-
module and that the construction A4 — I1,(A) is equivariant under derived Morita equi-
valences and compatible with (dg) localizations.

Let ¢ be a Hochschild cycle of degree n — 2 of A4. It yields a canonically defined mor-
phism 0 : § — A of degree 1. We define the deformed n-Calabi—Yau completion or deformed
derived n-preprojective algebra I1,(A, ¢) to be obtained from IT,(A) by deforming the differ-
ential of the tensor algebra using 6. More intrinsically, the dg algebra I1,,(4, ¢) can be con-
structed as a homotopy pushout from the Calabi—Yau completion IT,_;(A4) as suggested in
[14]. One can show that deformed preprojective algebras [13] of connected non-Dynkin
quivers are obtained in this way for n = 2. For n = 3, the (non-complete) Ginzburg dg al-
gebra (cf. [19], Section 4.2) associated with a quiver Q and a potential W becomes an ex-
ample. Indeed, it is quasi-isomorphic to I13(kQ, ¢), where c is the image of W, considered
as an element of the zeroth cyclic homology of 4, under Connes’ map B. We refer to [19]
for a wealth of examples related to the Ginzburg dg algebra. Our main results state that
I1,(A4,c) is n-Calabi-Yau as a bimodule and that the construction taking (4,c¢) to
IT,(4, ¢) is equivariant under derived Morita equivalences and compatible with localiza-
tions. In particular, we obtain that the Ginzburg dg algebra is always 3-Calabi—Yau.
When informed of this fact, Michel Van den Bergh provided an alternative proof [43],
based on non-commutative geometry. He has kindly made his proof available in the appen-
dix to this paper. The Calabi—Yau property of the Ginzburg dg algebra is an important
ingredient of Amiot’s construction [1] of the generalized cluster category associated to an
algebra of global dimension < 2 or a Jacobi-finite quiver with potential. This construction
in turn is an important ingredient in the proof of the periodicity conjecture sketched in [23],
Section 8.

We compute deformed Calabi—Yau completions of most ‘homotopically finitely pre-
sented dg categories’ (cf. Section 6.5 for the definition) and use this to show that deformed
3-Calabi-Yau completions of algebras of global dimension at most 2 are quasi-isomorphic
to Ginzburg dg algebras. A related statement was proved independently by Ginzburg
in [20]. As a corollary, we obtain that cluster-tilted algebras [10] are Jacobian algebras of
quivers with potentials, a result that was proved independently by Buan—Iyama—Reiten—
Smith [8] using completely different methods.

As an application of the derived Morita equivariance of the construction of de-
formed Calabi—Yau completions, we obtain a new construction of the derived equivalence
associated [32] to the mutation of a quiver with potential [15]. Our approach also allows
to generalize the mutation operation: For a given quiver Q, each tilting module over the
path algebra kQ yields a ‘generalized mutation’ of any quiver with potential of the form

(Q.W).

As an example of the localization theorem, we show that deleting a vertex in a quiver
with potential translates into a localization of the associated Ginzburg algebra. In the case
where the associated Jacobian algebras are finite-dimensional, this localization then yields a
Calabi—Yau reduction [22] of the associated generalized cluster categories introduced by
Amiot [1]. A related result was recently obtained by Amiot—Oppermann [2].
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1.2. Contents. Each anti-involution 7 : B = B°P of an algebra B allows one to de-
fine a preduality functor M — Hompg(M, B) from the category of right 4-modules ‘o itself
by letting B act on the target via 7. The most important example for us is the case where
B=A4A® A°® and t(a ® a') = a’ ® a. Bimodule duality is confusing and the general con-
text of an algebra with involution brings some clarification. We develop the necessary ma-
terial in the setting of dg categories in Section 2.

We then introduce and study the inverse dualizing complex of a homologically
smooth dg category in Section 3. We compute it for (most) homotopically finitely presented
dg categories (Section 3.6) and show that it behaves well under derived Morita equivalences
and localizations (Proposition 3.10). In particular, homological smoothness and the
Calabi—Yau property are preserved under localizations.

We define n-Calabi—Yau completions in Section 4 and show that their construction is
compatible with derived Morita equivalences and localizations (Proposition 4.2 and The-
orem 4.6). We show that Calabi—Yau completions do have the Calabi—Yau property in The-
orem 4.8. In Section 5, we construct deformed Calabi—Yau completions, prove that they
have the Calabi-Yau property (Theorem 5.2), identify them with homotopy pushouts
(Proposition 5.5) and show that their construction is compatible with derived Morita equiv-
alences and localizations (Theorem 5.8).

After a reminder on Hochschild and cyclic homology of tensor categories (Section
6.1), we recall the definition of Ginzburg dg algebras in Section 6.2. We interpret them as
deformed Calabi—Yau completions in Theorem 6.3. In Section 6.5, we observe that de-
formed Calabi—Yau completions of homotopically finitely presented dg categories are
closely related to Ginzburg dg algebras. We use this in Theorem 6.10 to show that any de-
formed 3-Calabi—Yau completion of an algebra of global dimension < 2 is a Ginzburg dg
algebra. We apply this in Section 6.11 to show that all cluster-tilted algebras are Jacobian
algebras.

In the final Section 7, we give two more applications of our general results to the
study of mutations and of generalized cluster categories. In Corollary 7.3, we show that
deleting a vertex in a quiver Q translates into a localization of the Ginzburg algebra asso-
ciated with any quiver with potential of the form (Q, W). In Theorem 7.4 we prove that in
the associated generalized cluster categories, the localization yields a Calabi—Yau reduc-
tion. We establish the link to Amiot—Oppermann’s result in Section 7.5. Finally, in Section
7.6, we show that if (Q, W) is a quiver with potential and 7 any tilting module for the path
algebra kQ, there is an associated ‘generalized pre-mutation’ for (Q, ). In particular,
from the classical APR-tilts [4], one obtains the pre-mutation as defined in [15] and the as-
sociated derived equivalence of [32].

In the appendix, Michel Van den Bergh uses non-commutative differential geometry
to give an alternative proof of the fact that Ginzburg dg algebras have the Calabi—Yau

property.
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2. Preduality functors
2.1. From involutions to preduality functors. Let k be a commutative ring and 4 an
(associative, unital) k-algebra. Let 7 be an involution on A, i.e. an isomorphism from 4 to
the opposite algebra 4°P whose square is the identity. Let Mod A4 denote the category of
right 4-modules. If M is a right 4-module, the dual
A" = Homy (M, A)

becomes a left 4-module via the left action of 4 on itself, that is to say, for an element
a € A and an A-linear map f from M to A, we define af by

(af )(m) = af (m),
where m runs through the elements of M. Now for any left A-module N, we define the con-
Jjugate right A-module N to be the abelian group N endowed with the right action by 4
defined by

na = t(a)n,

where 7 is an element of N and a an element of A. In particular, if M is a right 4-module,
we obtain the dual right A-module

MY = M~
The functor
V:ModA — (Mod 4)°P
taking M to VM = M together with the natural transformation

op:M—VVM

given by evaluation defines a preduality functor on the category Mod A, i.e. the composi-
tion

v vy 2y
is the identity. Equivalently, the map f +— ¢ o fV is a bijection

Hom,(L, M) =Homy(M,L")
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bifunctorial in the A-modules L and M. Notice that the left-hand side is in canonical bijec-
tion with the set of sesquilinear forms on L x M, i.e. maps

s:LxM— A4

such that s(la,m) = t(a)s(l/,m) and s(/,ma) = s(I,m)a forall/ € L, m € M and a € A. Simi-
larly, the right-hand side is in bijection with the set of sesquilinear forms on M x L. The
bijection then corresponds to mapping a sesquilinear form s to the form 7 o s o g, where o
exchanges the two factors of the product.

To say that (V, ¢) is preduality is also equivalent to saying that the pair

Mod 4

VOPHV

(Mod 4)°P
together with the morphisms
p:VV®? —id inModA and ¢:id— VPV in (ModA4)®

is a pair of adjoint functors. So a preduality functor could also be called a self-coadjoint
functor.

If (V, ¢) is a preduality functor, then so is (¥, —¢). An A-module M is reflexive for V
is M is an isomorphism. For example, all finitely generated projective 4-modules are re-
flexive. A duality functor is a preduality functor (7, ¢) with invertible ¢. The restriction of
a preduality functor to the subcategory of reflexive objects is a duality functor.

2.2. Extension of preduality functors to module categories. Now let .o/ be a
k-category. By definition, the category Mod.«/ of (right) .«/-modules is the category of
k-linear functors

M : o/°P° — Modk.

Suppose that V' is a preduality functor on .« and ¢ : id — V'V the corresponding adjunc-
tion morphism. A left .</-module is a k-linear functor N : .o/ — Mod k. Its conjugate right
module is the composition N = N o V. The dual left module M* of a right .«Z-module M is
the module given by

X — Hom,, (M, </(?, X)),

where X runs through the objects of .«/. The dual (or, more precisely, V-dual) of a right
</-module M is

MY = M*.
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It is given by
X — Hom,, (M, /(?, VX)),
where X runs through the objects of .«7. Let L and M be right modules. Then the set
Hom(L, M")
is in bijection with the set of sesquilinear forms on L x M, i.e. the families of maps
sy.y : LY X MX — oA (X,VY)

bifunctorial in the objects X and Y of .7. By assumption on ¥, we have a canonical bifunc-
torial bijection

0: AX,VY) > A (Y, VX).
By taking sy y to 0 o sy y o g, where g exchanges the two factors, we obtain a bifunctorial
bijection
Hom(L, M") — Hom(M,L").
It corresponds uniquely to a natural transformation
G: M —VVM,
where VM = M. We conclude that (¥, @) is a preduality functor on Mod.«Z. Notice that
for a representable module <7 (7, X'), we have a canonical isomorphism
V(e (2,X)) S (X, V) S e/(2,VX)

and ¢ is induced by ¢ for such modules. Thus the pair (¥, ¢) is a preduality functor which
canonically extends (7', ¢) from the subcategory of representable modules to all of Mod 4.
By abuse of notation, we will often write (¥, ¢) instead of (V, ¢).

2.3. Dg categories. Concerning dg categories, we follow the terminology and nota-
tions of [28]. Let us recall the most important points: We fix a commutative ground ring k.
Let o7 be small dg k-category, i.e. a small category enriched over the tensor category % (k)
of complexes over k. A dg .o7-module is a dg functor

M : AP — Gag(k)

with values in the dg category of complexes over k. In particular, each object X of .o/ gives
rise to the free module (= representable module) X* = .«/(?, X). The category of dg mod-
ules €(.o7) has as morphisms the morphisms of graded .«/-modules, homogeneous of degree
0 which commute with the differential. It is endowed with a structure of Frobenius category
whose conflations are the short exact sequences of dg modules which split as sequences of
graded modules. The projective-injectives are the contractible dg modules. The associated
stable category is the homotopy category #(.<7). It is triangulated and its suspension func-
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tor takes a dg module M to ZM = M[1] whose underlying graded module has components
(M[1](X))" = M(X)"*" and whose differential is dyq) = —dy. The category of strictly
perfect dg modules is the smallest subcategory of the Frobenius category %(.«/) which con-
tains the free dg modules and is stable under shifts, extensions and passage to direct sum-
mands. The derived category Z(.</) is the localization of the category # (/) with respect
to the class of quasi-isomorphisms. It is a triangulated category with suspension functor X.
For each dg module M and each free module X*, we have a canonical isomorphism

Homg (. (X",2"M) = H"(M(X)).

The derived category is compactly generated, in the sense of [35], by the free modules X*,
X € /. An object of Z(.<7) is defined to be perfect if it is a compact object. The perfect
derived category per(.<Z) is the full subcategory of perfect objects of Z(.<7). A dg functor
F: of — % is a Morita functor if restriction along F is an equivalence from 2% to 2.</.
Equivalently, the total left derived functor of the induction along F' is an equivalence. Still
equivalently, the morphisms

A(X,Y) — B(FX,FY)

are quasi-ismorphisms for all X, Y in .o/ and the objects F..oZ/(7, X)) = #(?, FX) generate
the perfect derived category per(#) as an idempotent complete triangulated category. In
the localization of the category of dg categories with respect to the class of Morita functors,
the set of morphisms from a dg category .«7 to a dg category & is in canonical bijection
with the set of isomorphism classes in (.7 °? ® %) of dg .o/-#-bimodules X such that
X(?,A) is perfect as a dg #-module for each object A4 of .o, cf. [41]. Two dg categories
are derived Morita equivalent if they become isomorphic in this localization. Equivalently,
they are linked by a chain of Morita functors.

2.4. Preduality functors on dg categories. Let .o/ be a small dg category and (V,¢) a
preduality dg functor on .«Z. Thus, V is a dg functor ./ — .&/°? and ¢ : id — V'V a natural
transformation such that the map f — V' (f) o ¢ is a bijection

A(X,VY) = A(Y,VX)

for all objects X and Y of .«Z. As in the case of the module category over a k-linear cate-
gory treated in Section 2.2, we have a natural extension of (V, ¢) to the category %4, (/) of
(right) dg .«/-modules.

Suppose from now on that .o/ is an exact dg category. Recall that this means that the
dg Yoneda functor

A — Cag(f), X — X

induces an equivalence onto a full subcategory which is stable under shifts and under
graded split extensions. In particular, the category .o/ then has a canonical shift functor £
and each morphism f of Z°.c/ has a cone C(f) whose image under the Yoneda functor is
the cone on f”. In the underlying graded category .27, the cone on a morphism f from X
to Y splits as C(f) = Y ®@EX. Let i : Y — C(f) be the inclusion and 4 : X — C(f) the
inclusion considered as a morphism of degree —1. Then the pair (7, %) is universal among

AUTHOR'S COPY | AUTORENEXEMPLAR



AUTHOR’'S COPY | AUTORENEXEMPLAR

Keller, Van den Bergh, Deformed Calabi—Yau completions 9

the pairs consisting of a closed morphism j: ¥ — Z and a morphism / : X — Z of degree
—1 such that jo f = d(/).

h

TN

Since ./ is exact, the opposite dg category o7 °P is also exact. If f : X — Y is a closed
morphism in .o/, we can form its cone C’'(f) in .«Z°P. In .o/, it is endowed with morphisms
i":C(f) = Y and i’ : C'(f) — Y such that foi’ =d(h') and which are universal with
this property. It follows that C’(f) splits as 2! ¥ @ X and that its differential is given by

the matrix
—dy f
0 dy|
Thus, the shift XC’(f) endowed with the canonical morphisms Y — XC’(f) and

X — 2C'(f) is uniquely isomorphic to the cone C(—f) on the opposite of f.

Since V' is a dg functor, it preserves cones. So if /' : X — Y is a closed morphism, we
obtain a canonical isomorphism

LVCy(f) = C(=Vf)

compatible with the (closed) inclusion i of VX and the inclusion /# (homogeneous of degree
—1)of VY.

Let n be an integer. Since V is a dg functor from .o/ to .7 °P, we have a canonical iso-
morphism

| 29 Yy 78
From ¢, we get a canonical isomorphism
Yid — (") (E'V)
and it is not hard to check that (X" V) is still a preduality dg functor.

Let X be an object of .o/ and f : X — VX a closed morphism. The morphism f is
(V, p)-symmetric (respectively antisymmetric) if

f=V(f)og (respectively f =—V(f)ogp).
The object X is reflexive (respectively homotopy reflexive) if ¢ : X — VVX is an isomor-

phism (respectively if H°(p) is an isomorphism). The analogue of the following proposition
in a triangulated setting is due to Balmer [5], Theorem 1.6:
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Proposition 2.5. The cone on a V-antisymmetric closed morphism carries a canonical
XV -symmetric form. More precisely, let f: X — XV be a closed and (V , p)-antisymmetric
morphism. Let

g: C(f) = ZV(C()))
be given by the matrix

{O id

VXPEX - 2ZVVX @XVEX.
Xp O

Then g is a closed (2V ,\)-symmetric morphism. If X is (homotopy) reflexive, then g is inver-
tible (up to homotopy).

Proof. By the above discussion and the assumption that /' = —V(f) o ¢, the mor-
phism ¢ is indeed well-defined and closed.

X s 2.4 iy c(f)
T
vx L ovx L sve(y)

Clearly it is symmetric. We have a morphism of graded split exact sequences

0 VX c(f) — X —— 0
L s
0 VX SVC(f) —— SVVX —— 0.

This implies that C(f') is reflexive if X is. By considering the corresponding triangles in
H'(.</), we obtain that H(g) is an isomorphism if H%(pX) is an isomorphism. []

Now let g : ¥ — V'Y be a closed symmetric morphism and suppose that f : X — Y
is a closed morphism such that

(Vf)ogo f=0.

We then have a complex of closed morphisms

Y S Y(Vf)og VX,

and we can form its totalization, i.e. the object Z such that for U in .o/, the complex
o/ (U, Z) is functorially isomorphic to the total complex of

L, y) Y v,

A(U, X)
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where we think of .«/(U, Y) as the zeroth column of the double complex. The underlying
graded object of Z is isomorphic to ' VX @ Y @ ZX.

Proposition 2.6. The graded morphism h : Z — VZ given by idyy @ g @ ¢y is closed
and V-symmetric. It is invertible (respectively invertible up to homotopy) if g is.

Proof. We have a commutative diagram of complexes

Y f (VF)og

Y VX
(ﬂxl gl lidx
| 42.¢ VY VX.
V6)(vvy) VF

Therefore the morphism # is closed. It is symmetric because g and idy @ ¢ are symmetric
]

2.7. Induction and preduality. Let .o/ and % be two dg categories each endowed
with a dg preduality functor denoted by (7, ). Let F : .o/ — % be a dg functor. For a dg
o/-module M, we denote by

FM or M®,, 2%,

its induction along F. We assume that we are given a morphism of dg functors
FV — VF.

We wish to extend it to a compatibility morphism between induction along F and predual-
ity with respect to V.

For each object X of o7, we have the representable left .o7-module .«/(X, 7). Its image
under induction along F is #(FX,?) and the predual of the image is

B(FX,V?) = B(?, VFX).

On the other hand, the predual of .«7(X,?) is .2/(7, VX) and its image under induction is
A(?, FVX). Thus, the given morphism FV — VF yields a natural transformation

F.(M") — (F.M)"
defined at first for representable and then for arbitrary dg .o/-modules M.

If M is a right dg .«/-module, then its dual

M*: X — Hom, (M, (?,X))

is a left dg .«/-module and we have a natural transformation

F.(M*) — (F.M)".
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By composing the natural transformations constructed so far, we obtain, for each dg
right .«/-module M, a natural transformation

F.(MY)— (F.MY)
or, in the other notation,

Lemma 2.8. (a) Under the natural transformation (2.7.1), an element f ® b is sent to
the map

(2.8.1) m® x — (=D (b £(m)x.

(b) If the underlying graded «/-module of M is finitely generated projective, the trans-
Sformation (2.7.1) is invertible and its inverse sends an element g to

S mi @ V(g(m; ®id)),

where Y m; @ m} is the Casimir element for M, i.e. the pre-image of the identity under the
canonical isomorphism

M ®.,Homy(M,A) — Hom_ (M, M).
Proof. These are straightforward verifications. []

Let 9.o/ denote the derived category of .o/. We still denote by M +— M the total
derived functor of the duality functor and by ?®,% the total derived functor
9. — 9% of the induction functor.

Lemma 2.9. Suppose that FV — VF is a pointwise homotopy equivalence. Then the
morphism

MV®A93—’ (M®ﬂ<%j)v

is a quasi-isomorphism for all perfect M. It is a quasi-isomorphism for all M if (F?,X) is
perfect over of for all X in A, for example if F is a Morita functor.

Proof- The canonical morphism
(0M: MV®A.@—> (M@O/e@)v

is a quasi-isomorphism for each representable dg module M = .«/(?, X), by the assumption
on F and V. Since ¢ is a morphism between triangle functors, it is still a quasi-isomorphism
for each perfect dg module M. Finally, if Z(F?, X) is perfect over . for all X in %, then
the derived tensor product ? ® ., # preserves arbitrary products. Then ¢ is a morphism be-
tween triangle functors taking arbitrary sums to products and hence is a quasi-isomorphism
for each object M of Z.o/. [
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Now for a given right dg .«/-module M, we wish to study the dg k-module
Homy (M ®., %,(M @, A)")
(whose n-th component is formed by the maps of graded #-modules which are homoge-

neous of degree n). We can think of its elements as sesquilinear forms on M ® , 4. We
have an isomorphism

Homy (M ®., %, (M ®,,A)") = Hom, (M, (M ®,, A))
and the right-hand side is the target of a natural transformation with source
(M®.,28) ®,M".
Thus we obtain a natural transformation
(2.9.1) M’ ®,8Q, M — Homy(MQ.,%,(M®,2A)).
Notice that the right-hand side carries a natural involution, namely the map taking f to

fV o . The left-hand side also carries a natural involution, namely the one which on ten-
sors of homogeneous elements is given by

m @b my — (=) my @ Vb @ my,
where p, g, r are the degrees of my, f and m,, respectively.
Lemma 2.10. The map (2.9.1) is strictly compatible with these involutions.

Proof. This is a straightforward verification. []

3. The inverse dualizing complex

3.1. Duality for bimodules. Let & be a commutative ring and .o/ a dg k-category. We
may and will assume that .o is cofibrant over £, i.e. each morphism complex .o/ (X, Y) is
cofibrant in the category of dg k-modules. This always holds if & is a field. Let .o7° be the dg
category .o/ ® .7 °P. We endow it with the involution V" taking a pair of objects (X, Y) to
(Y, X) and given on morphisms by

f®g'_) (_1)qu®f,

where f is of degree p and g of degree ¢. Note that (V,¢), where the morphism ¢ is the
identity, is a preduality on .«/° in the sense of Section 2.4.

By a bimodule we mean a right dg module M over .«/°. Via the morphism

MRA =M (ARQAP) S APRIMR oA
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14 Keller, Van den Bergh, Deformed Calabi—Yau completions
taking m @ (a ® b) to (=1)?"*HDp & m ® a, the right .«z°-module structure yields left

and right .«7-module structures on M. The right module structure on .</€ itself is given by
the multiplication of .«/°:

feyf'®y)=1"®4'g.

So right multiplication yields the ‘inner’ bimodule structure on .o/, whereas the left
o/ °-module structure on .«/° yields the ‘outer’ bimodule structure.

As we have seen in Section 2.4, from (V,¢), we obtain a natural preduality on the
exact dg category of dg .o/°-modules which takes a dg module M to the conjugate M of
the dual M* defined by

M*:(X,Y)— Hom:(M,(?,(X,Y))).

Lemma 3.2. Let F: .o/ — % be a dg functor and P an .o/ -bimodule. We identify
F,P=P® B with BR_, P&, B via the map p® (x® y) — (—l)m |p®x|y ®p R x

(a) The canonical morphism constructed in Section 2.4
BRyP ®yB— (BRyP®yA)
takes by ® f ® by to the map
X1 ® p@xz = 30 +bif(p)x2 @ x1f(p)syh2,
where the sign is given by the Koszul sign rule and f(p) = f(p); ® f(p),
(b) If the underlying graded module of P is finitely generated projective, the inverse
(BR,/PR,B) - BR,P ®,%
of the morphism in (a) takes a map g to
22 +9(pi)) ® pi ® g(pi)ys

where the sign is given by the Koszul sign rule, we have g(p;) = g(pi); ® g(pi), and
> pi ® p;i is the Casimir element for P.

Proof. This is a special case of Lemma 2.8. []

3.3. Definition of the inverse dualizing complex. As in Section 3.1, we let £ be a com-
mutative ring and .« a dg k-category which is cofibrant over k. We endow .7° = .o/ ® .o/ °P
with the preduality (7, ¢) of Section 3.1. By .o/, we also denote the bimodule

(X,Y) — A(X,Y).
We define the inverse dualizing complex ®., to be any cofibrant replacement of the image

of the bimodule .«7 under the total derived functor of the preduality functor M — M"Y de-
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fined in Section 3.1. Thus, if .o/ is given by a dg algebra A4, then ®,, is a cofibrant replace-
ment of

RHomy< (A4, A°)

considered as an object of 2(A4°), i.e. a right dg 4°-module, via the canonical involution on
A¢®. Thus, the morphism set is computed using the ‘inner’ bimodule structure of 4¢ and the
right A®-action on ®, comes from the twisted right multiplication

@®0).(x®y)=V(x®y)(a®b) = (y®x)(a®b) = ya® bx,

which corresponds to the ‘outer’ bimodule structure. In this case, the homology H'®,, is

the space of outer double derivations of A4, i.e. the quotient of the space of derivations of

A with values in 4° by the subspace of inner derivations. The inverse dualizing complex

owes its name to the following lemma. Let Z;(.27) denote the full subcategory of Z(.</)

formed by the dg modules M such that each dg k-module M (X), X € .o, is perfect. If k

is a field and .7 is given by a dg algebra, this means that the sum ) dim H”(M) is finite.
?

Lemma 3.4. Suppose that k is a field and </ is homologically smooth. For any dg
module L and any dg module M in Py (</), there is a canonical isomorphism

Hom%{(L ®,<// QM, M) =D HOIIlg;_y/(M, L),

where D = Homy (?, k). In particular, if ®,, is isomorphic to ¥™".o/ in D (/°), then Dy ()
is n-Calabi—Yau as a triangulated category.

Proof- This is a small variation of [30], Lemma 4.1. []

3.5. Quivers, tensor categories, cyclic derivatives. In this section, we collect prelimi-
nary material for the computation in Section 3.6. Let Q be a graded k-quiver, i.e. Q consists
of a set of objects Qy and, for all objects x and y, a Z-graded k-module Q(x, y). Let # be
the discrete k-category on Qy: It has the set of objects Qpy, each endomorphism algebra is
isomorphic to k and all morphisms between different objects vanish. By abuse of notation,
we also denote by Q the Z-bimodule (x, y)+— Q(x,y). Recall that the tensor product
L ®4 M of a right by a left Z-module is given by

(L ®s M)(x, y) = L1L(z, ) ® M(x,2),

where z ranges over the objects of %. The path category of Q is the tensor category T4 (Q):
It has the set of objects Oy and the bimodule of morphisms

2000 (0®,0 @
with the natural composition. We put .7 = T4(Q).
Now assume that Q is finitely generated and free as an #Z°-module. Fix a basis «;,
1 <i<n of Qandlet Y o ®af be the Casimir element of the #°-bimodule Q, i.e. the

preimage of the identity under the canonical isomorphism

0 ® - Hom,<(Q, #°) — Homy< (0, Q).
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The cyclic derivative with respect to «; [37] is the unique map

0y, : Ta(0) — T4(Q),

taking a composition f, ... f5; of elements of Q to the sum
Z“z‘*(ﬁj)ﬁjﬂ BBy ':Bj—l'
J

3.6. Computation for a homotopically finitely presented dg category. Let k be a com-
mutative ring and Q a graded k-quiver whose set of objects is finite and whose bimodule of
morphisms is finitely generated and projective over k. Let # be the k-category with the
same objects as Q and whose only non-zero morphisms are the scalar multiples of the iden-
tities. Let .7 be a dg category of the form (Tg/g(Q), d), where T4(Q) is the tensor dg cate-
gory (cf. Section 3.5)

ADO0D(Q0®20) D - D(O®yp - ®s0) D

and the differential d is such that Q admits a finite filtration

(3.6.1) FhcFicFc---cFy=0,
such that all F, have the same objects as Q, the bimodule of arrows of Fy vanishes and
d(F,) is contained in T4 (F,_;) for all p = 1. As shown in [42], cf. also [28], in the Morita
homotopy category of dg categories, the dg category (74(Q),d) is homotopically finitely
presented and every homotopically finitely presented dg category is a retract of such a dg
category. Our aim in this section is to compute the inverse dualizing complex ®,, for

of :~(T0)9(Q), d). For this, we first need to construct a cofibrant resolution of .o/ over .o/°€.
Let f be the unique bimodule derivation

A — A Qy Qg A,

which takes an element v : x — y of Q toid, ® v ® id. Notice that f vanishes on # < /.
If we haven = 1 and a = v; ... v, for elements v; : x; — x;_; of O, we have

~ n—1

fla)=1, @i ®@v2...0+ D 01... 01 VR Vit1... 0+ V... 01 v, ® 1.

i=2
Let us denote by
P Qg Qp A — ARy QQy A

the .o/-bilinear extension of f. Notice that p is a retraction of the inclusion of
A Ry O Ry o into o Ry .o gy .. Let 0 be the composition

A @y Q@ A A @y @ ALl ®y @ Qs .
Proposition 3.7. (a) We have 6% =0 and o ®, 0 ®, o endowed with d is a cofibrant
dg bimodule.
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(b) The diagram
0— .4 ®p0Qud LA Qyd — .o —0,
where of Q45 0 Qg o is endowed with 6 and
A(URUVRW) =uw@w—u® vw,
is a complex of dg modules. The cone p.o/ over the morphism
(3.7.1) A Ry OQy A5 oA QyoA

is a cofibrant resolution of </ and is strictly perfect (cf. Section 2.3). In particular, the dg cat-
egory of is homologically smooth.

Remark 3.8. If instead of the finite filtration (3.6.1), we have a countable exhaus-
tive filtration Fy = F; = --- = Q satisfying the same conditions, then the cone p.«/ of
part (b) is still a cofibrant resolution of .o/ (but .o/ is no longer homologically smooth

in general).

Proof. (a) Let us consider the commutator dop—pod as a graded map from
oA Rgp A Qg o to itself. Its restriction to

A SRRy A Qp R

is a bimodule derivation. Since p is bilinear, the composition p(d o p — p o d) still restricts
to a bimodule derivation on .«Z. For v € Q, we have

pldop—pod)(v) = pd(v) - p*d(v) = 0.

Thus, the composition p(dop—pod) vanishes on Q, thus on .o/ and thus on
A Qg A Ry .of. It follows that we have

8% = pdpd = p*d* = 0.
To check that (o ®, .o ®,4.97/,0) is cofibrant it suffices to observe that J takes
A QupF, @y A 10 A Ry F,—1 @z .o/ for each p = 1 and that the subquotient is a finitely
generated free dg bimodule. Since the filtration by the F), is finite, it also follows that
(o Ry oA ®y.o,0) is perfect. Since Z is perfect over ¢ and

&f@@&i - e@®‘%e<ﬁge,
it follows that the cone over

0 A Ry0QpAd Y oyt —0

is indeed cofibrant and perfect in Z(/¢). [
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Let @, = (p/)” be the image under the preduality functor M — M defined in Sec-
tion 3.1 of the cofibrant resolution p.«/ given by the cone over the morphism

A Ry ORy A 2 oA Ry oA

of (3.7.1). Since the cone is stricly perfect, so is ®,,. In particular, it is cofibrant and is there-
fore (homotopy equivalent to) the inverse dualizing complex. Let us make ®,, more ex-
plicit. By definition, X®,, is isomorphic to the cone of the induced morphism

Hom&/e(&/ ®% %, %e) — Homp/e(&i ®ﬁ Q ®ﬁ &7, =Q¢e)

endowed with the bimodule structure coming from the ‘outer’ structure on .o/°. Using
Lemma 3.2, we obtain that O is isomorphic to the cone over the morphism of dg modules

A Qup R Qg A — A Ry Q" Qy A
which takes an element id, ® id; ® id, of ./ ®; 2" R4 o to
id, (X (—1)"1eC ®@id,, —id,, ® # ® ) id,

where )" id, ® id} is the Casimir element of the #°-module # and ) o; ® «; is the Casi-
mir element of the #°-module Q and «; : x; — y;. The differential of o7 ®, Z" ®, is that
of the tensor product (where #" carries the zero differential). To describe the differential of
A Ry 0¥ Ry o/, we consider of ®y 0¥ Xy o/ as a dg submodule of the tensor algebra
over Z of Q @ QY. Then the differential of an element id,, ® o ® id,, equals the cyclic de-
rivative (cf. Section 3.5) with respect to o; of

W =21 1)legd(ey).

This determines the differential because .«/ ®, Q¥ ®4 -7 is a dg .«7-bimodule whose under-
lying graded module is generated by the elements id,, ® o ® id,,.

3.9. Compatibility with Morita functors and localizations. Keep the hypotheses of
Section 3.3. Let # be another dg category and F : .o/ — % a dg functor. The dg functor F
is a localization functor if the (total left derived functor of) induction along F induces an
equivalence

(D) N> DR
for some localizing subcategory ./ of Z.o/ (namely the kernel of the induction functor).
Equivalently, restriction along F is an equivalence from %% onto a full subcategory of
9.o/ (whose inclusion admits a left adjoint given by the induction functor). The localiza-

tions F : .o/ — % such that the kernel ./ of the induced functor F, : (/) — Z(%) is
compactly generated are precisely the dg quotients in the sense of Drinfeld [16], [26].

Proposition 3.10.  Assume that F : of — A is a localization functor.
(a) The functor F° : o/° — B° induced by F is still a localization functor. It sends the

bimodule <f to the bimodule .
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(b) The restriction (F®)" along F°® is monoidal for the derived functors of the tensor
products ®,, and ®y4 (but does not preserve the unit in general).

(c) If of is homologically smooth, then so is B and the left derived functor of induction
along F¢ : o/° — B° sends Oy to Oy. In particular, for each dg #-module L, we have the
projection formula

L L
(3.10.1) F.((FL)®y0y) > L®y;04.

(d) If the dg category </ is homologically smooth and n-Calabi—Yau as a bimodule for
some integer n (cf. Section 4.7), then B has the same properties.

(e) If F is even a Morita functor, so is F¢: o/ — %° and the induced equivalence
D(A°) — D(H°) is naturally a monoidal functor for the derived functors of the tensor prod-
ucts ® ., and Qy. It commutes with the total derived functors of the preduality functors and
sends © . to Oy.

Remark 3.11. If 4 is an (ordinary) algebra and 4 — B a localization of A4 in the
sense that the induced functor

proj(4) — proj(B)
between the categories of finitely generated projective modules is a localization of catego-

ries, it may well happen that A4 is homologically smooth but B is not. For example, if 4 is
the path algebra of the quiver

& &
13233
X2 X1

over a field k, then A is finite-dimensional and of global dimension 2 but its localization B
obtained by inverting x| and x; is the 2 x 2-matrix algebra over the algebra kle]/ (%) of
dual numbers. More generally, as shown in [36], every finitely presented k-algebra can be
obtained in a similar way from a finite-dimensional algebra of global dimension at most 2.
This is not in contradiction with part (c) of the proposition, because there, we consider de-
rived localizations. In fact, in our example, the algebra B is the zeroth homology of the dg
quotient B obtained from A by inverting x; and x, and this generalizes to the setup of [36].

Proof. Let us first describe the induction functor (/%) — 2(#4°) induced by F.
For this, let us denote by X the .«7-%-bimodule (4, B) — #(B, FA) and by X' the #-dual
bimodule (B, A) — %(FA, B), which is isomorphic to RHomy4(X, %#). Then the induction
along F is isomorphic to the derived tensor product with X and the restriction along F is
isomorphic to the derived tensor product with X’. From the fact that F is a localization
functor, it follows that the canonical morphism

L
X'®,X— B

is an isomorphism in Z(%°). Moreover, since X is perfect over %, the canonical mor-
phism

L
X ®4 X' — RHomy(X, X)
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is an isomorphism in Z(.</¢). The action of &/ on X yields a bimodule morphism
o/ — RHomy (X, X) and thus a morphism

L
&{—>X®5X/

in Z(.</°). Now we can describe the induction functor Z(.o/¢) — Z(#°): It is isomorphic
to

L L
M—X Q®,M®.,X.

L
In particular, the bimodule M = ./ is sent to X' ®_,, X = %. The restriction functor
D(A°) — 2(/°) is isomorphic to

L L
N—X®,N®,X

Since X’ C>L<)&/ X is isomorphic to .7, this shows part (b): the restriction functor is monoidal.
If we compose it with the induction functor, we find the identity functor because
X'®.,X = %. 1t follows that the induction functor Z(/¢) — 2(4°) is a localization
functor and sends .o/ to %4, which is part (a). If .7 is homologically smooth, then .7 is per-
fect in Z(/°) and so its dual @, is sent to the dual @4 of its image %, by Lemma 2.9.
Thus, we have

X" ®,0,0,X 0y

L
By applying L ®_, ? to this isomorphism, we get the projection formula (3.10.1). This ends
the proof of (c). Part (d) is immediate from (c) and (a).

Let us prove (e): If F is a Morita functor, the canonical morphism &/ — X (>L§% X' is
also invertible and then the description of the induction functor via X and X’ shows that it
is monoidal. The commutation of the induction functor with the preduality functor follows
from Lemma 2.9. Now the last assertion follows from (a). []

4. Calabi—Yau completions
4.1. Definition and Morita equivariance. Let k be a commutative ring and ./ a dg
k-category whose morphism complexes are cofibrant over k. Let n be an integer and

® = O, the inverse dualizing complex of Section 3.3. Put § = "~ 1@,,. The n-Calabi- Yau
completion of </ is the tensor dg category

0,(A)=Ty0) =4 DO0D0R,0)® .

We also call it the derived n-preprojective dg category of </ (whence the notation IT,). No-
tice that we have canonical inclusion and projection functors

of — I,(d) — o.
Up to a quasi-isomorphism (canonical up to homotopy), it is independent of the choice of

cofibrant replacement made in the definition of @,,.
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Proposition 4.2. Let F:.of — % be a Morita functor. Then F yields a canonical
Morita functor I1,,(F) : I1,(o/) — I1,(#) such that we have a commutative diagram

o —— I, (A) —— o

‘| [ |

B —— I,(8) — A.

Proof.  Let F° be the induced functor from .«7° to #° and denote by F** the restric-
tion along F°. By part (e) of Proposition 3.10, we can find a quasi-isomorphism
¢ : 0, — F*0y4 and by part (a), it induces quasi-isomorphisms between the (derived) ten-
Sor powers

Hib//n N F*(gg/}n)
for all n = 1. Thus, the pair (F, ¢) yields a dg functor
I1,(F) : Toy(0r) — T5(02),
which is quasi-fully faithful. It remains to be shown that the image generates the derived
category of II,(#). Now clearly the image contains all representable functors

I1,(%)(?, FX) associated with objects FX in the image of F. But for an arbitrary object
M of the derived category of I1,(#), we have

Hom(I1,(%)(?, FX), M) = Homy (#(?, FX), M | ) = M(FX).
Now since F is a Morita functor, the object M vanishes iff M (FX) is acyclic for all X in 7.
Thus, the right orthogonal of the image of IT,(F) vanishes and so the image is all of the
derived category. [

4.3. Morphisms between restrictions. We keep the notations and assumptions of
Section 4.1. Let i : Z(o/) — 9(I1,(/)) be the restriction along the projection onto the first
component IT,(./) — /.

Lemma 4.4. Let L and M be in 9.o/.

(a) We have a canonical isomorphism

RHomyy, () (iL,iM) = RHom (L, M) @ X" RHom (L ®,, O, M),

where @, is the inverse dualizing complex (Section 3.3).

(b) If k is a field, </ is homologically smooth and M belongs to %y (/) (cf. Section
3.3), we have a canonical isomorphism

RHomyy, () (iL,iM) = RHom_ (L, M) ® £"DRHom_ (M, L),

where D is the duality functor Homy (7, k).
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Proof.:  'We may and will assume that L is cofibrant over .«/. Then we have an exact
sequence of dg modules over I, (/) = T (0):

441) 0= (L)®,0®, Ts(0) % (L) ®., T,0) L iL -0,

where o takes /@ x ® u to Ix ® u — [ ® xu and f is the multiplication of iL. Clearly the
cone over « is a cobrant resolution p(iL) of iL over T.,(60). Since 0 acts by zero in iL and
iM, the morphism « induces zero in Homy ) (?,iM). So we find a canonical isomorphism
in the derived category of k-modules

Homy, (g (p(iL),iM) = Hom (L, M) ® ™' Hom (L ®,, 0, M).
This implies part (a). Part (b) follows from part (a) and Lemma 3.4. [J

4.5. Compatibility with localizations. We keep the notations and assumptions of
Section 4.1. We say that a sequence of dg categories

02 abaoo
is exact if the induced sequence
0— ()% a(t) 5 a(8) -0
is exact, i.e. the composition vanishes, Z(./") identifies with a full triangulated subcategory
of Z(.o/) and the triangle quotient of Z(.«/) by Z(./") identifies via F, with Z(%). In this

case, the dg functor F : .o/ — % is a localization in the sense of Section 3.9 (but not each
localization is obtained in this way as shown in [24]).

Theorem 4.6. Assume that </ is homologically smooth.

(@) Let F: .o/ — A be a localization functor. Then F yields a canonical localization
Sunctor I1,,(F) : I1,,(o/) — I1,(#) such that we have a commutative diagram

o —— I, (d) —— o

/| [ |

B —— I,(B) — A.
(b) If we have an exact sequence of dg categories
0 Sata_o

then the kernel of the functor 11,(F), : 2(I,(<2)) — 2(I1,(#)) is the localizing subcate-
gory generated by the objects T1,(</)(?,N), N € N

Proof. We may and will assume that F : .o/ — 4 is the identity on the set of objects.
Let (F©)" : €(#°) — €(/°) be the restriction functor. Let us put ®, = (F¢)"(@4). Notice
that for any objects A, A’ of .o/ (equivalently: %), we have @/,(4, A’) = @4(4, A’) and that
in @/, the morphisms of ./ act via F : &/ — %. According to part (c) of Proposition 3.10,
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we have a canonical morphism of dg modules ¢ : 0., — 0/, whose image under the induc-
tion along F¢ is invertible in Z(%°). The morphism ¢ yields morphisms of dg modules be-
tween the tensor powers

0t @ ®y 0y = 038y @yl — 03y @yl
Thus, the pair (F,¢) yields a dg functor G : I1,,(«/) — I1,(%). Clearly, G is compatible

with the canonical inclusion and projection functors. It remains to be shown that the re-
striction along G is a fully faithful functor

7 (I,(%)) — 2 (1, (A)).

Let L be a dg I1,(%)-module. It is given by its underlying dg #-module and a morphism of
dg #-modules

A L®y0s — L.

The dg module G*L is given by the restriction of L to .o/ and the morphism of dg
o/-modules deduced from A and ¢

L®., 0y Ky ®., 05 =5 L®y0y N

Let us use this description of G* to show that it is fully faithful. Let L be a dg I1,(%)-
module. We may and will assume that L is cofibrant. Since IT,(#) is cofibrant as a right

dg #-module, the restriction of L to 4 is then cofibrant. We have an exact sequence of
cofibrant dg I1,,(#)-modules

0— L®y0sRyTs(0s) = LRyTy(0s) — L — 0,

where a(/ ® x @ u) = Ix ® u — I ® xu. This makes it clear that the cone over the mor-
phism

L®y0s3®5Ts(03) — LRy Ts(04)

is homotopy equivalent to L. Let M be another dg II,(#)-module. By applying
Homy(7, M) to the above morphism, we obtain a morphism of dg k-modules

Homy (L, M) — Homy(L ® 404, M)
whose cone (shifted by one degree to the right) computes morphisms from L to M in the
derived category of I1,(#). An analogous reasoning yields the morphisms between G*L
and G*M in the derived category of I1,(.<7). Thus, to conclude that G* is fully faithful, it
suffices to check that for all M, F* induces bijections
HOl’Ilg(%) (L, M) — Homg(ﬂ) (F*L, F*M)

and

L L
Homy, ) (L ®y4 05, M) — Homg ) (F* (L) ®, 0., F*M).
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The first bijection follows from the full faithfulness of F*. The second one is a consequence
of the full faithfulness of F* and of the projection formula (3.10.1). This ends the proof of
(a). To prove (b), it suffices to show that the image of IT,(F)" is exactly the full subcategory

of the dg modules over IT,(.e7) which are right orthogonal to all the representable dg mod-
ules IT,(.o7)(?, N) for N in ./". We have

RHomyy, () (I,(+/)(?, N), M) = RHom,, («/(?, N), M),
which shows that if M is in the image of IT,(F)", it is right orthogonal to the IT,(.<7)(?, N).

Conversely, if M satisfies this condition, then the underlying .o7-module of M is quasi-
isomorphic to F*L for some dg #-module L. The structural morphism

M, 0,— M,
then yields a morphism F*L ® , 0., — F*L hence a morphism
F(F'L®y04)— L
and thus by the projection formula (3.10.1), a morphism
L®y05 — L.

Thus, L carries a canonical structure of dg module over IT,(%) and it is clear that M is
isomorphic to the image under IT,(F)" of L endowed with this structure. []

4.7. The Calabi—Yau property. We keep the notations and assumptions of Section
4.1. In particular, the symbol n denotes a fixed integer. On the category of dg .o/ °-modules,
we consider the composition V), of the preduality functor V" with the shift X". It is part of a
canonical preduality functor (V,,¢,) (by Section 2.4). We also use the notation V,, for the
derived functor of V. Slightly modifying the terminology of Ginzburg and Kontsevich (cf.
[19], Definition 3.2.3), we say that the dg category .«7 is n-Calabi—Yau as a bimodule if, in
2(/°), there is an isomorphism

fiod — Vo,
which is (V,,, ¢,)-symmetric, i.e. such that V,(f)g, = f.

Theorem 4.8. If .o/ is homologically smooth, its n-Calabi—Yau completion I1,(.) is
homologically smooth and n-Calabi-Yau as a bimodule.

Proof- Let # be the n-Calabi—Yau completion. We have a short exact sequence of
#°-modules

0— Ty(0) ®y0®., Ty(0) = Ty(0) ® Tey(0) — Ty (0) — 0,
where the morphism o takes an element f of (X, Y) to 1y ® f — f ® 1y and the second

map is composition. Thus, in the derived category of #°, the bimodule 7., (0) is isomorphic
to the cone on the morphism o. We deduce first that 7,(0) is perfect as a bimodule: Indeed,
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the objects
Ty(0)®y 0y Ty(0)=0Qy #° and Ty(0) @y Ty(0) = A ®yc B°

are perfect since they are induced from perfect .7 °-modules (all tensor products are also
derived tensor products since #° is cofibrant over .o7°).

To prove the second part of the assertion, we first notice that 0 is the V,,_;-dual of .«/.
Since the bimodule .7 is perfect, it is homotopically V;,_-reflexive and so, up to homotopy,
o/ is also the V,_i-dual of 6. By Lemma 2.9, for perfect modules, the induction functor
? ®. B° commutes with the preduality V), up to isomorphism in the derived category.
Thus, in 2(%°), the objects

0@,# and QA
are still V),_;-dual to each other. So by Proposition 2.5, in order to show that % is
n-Calabi—Yau as a bimodule, it suffices to show that « is V,_;-antisymmetric. Now as
seen in Section 2.7, we have a natural homotopy equivalence
Vie1(0) ®.¢ B° @0 0° — Homye (0 ®,y¢ B, Viyo1 (0 @0 #°)).
The right-hand side is quasi-isomorphic to the following dg k-modules:
Hom < (0, V-1 (60) @,y #°) = Hom<(0, / @, #°) = Hom (0, 8 ®,, A),
where we use the fact that 6 is cofibrant. So we get a natural quasi-isomorphism
Vie1(0) ® ¢ B° @,y 0° — Hom (0, B ® ,; B).

Let us lift the morphism /4 : x — 1 ® x along this quasi-isomorphism: Let ¢ be the Casimir
element in 0 ®_,- 0%, i.e. the image of 1 € k under the morphism

k — Hom_/¢(0,0) = 0 ®,,: 0.
We let 4 be the image of id ® ¢ under the composition
(Vie10) ®e (AP @1 0) @y 07 — (Vi10) ®.pe (B @ B) @y 07
Then clearly y) maps to 4 and the transpose conjugate of y) maps to p: x — x ® 1. Since a
equals p — A, it follows that « is indeed V;_;-antisymmetric. []
5. Deformed Calabi—Yau completions
5.1. Construction and Calabi—Yau property. Let k be a commutative ring and .o7 a
dg k-category such that .«/(X, Y) is cofibrant as a dg k-module for all objects X and Y of
o/ . We assume that <7 is homologically smooth. Let ® be the inverse dualizing complex (cf.

Section 3.3), 7 an integer, 0 = " '@ and I1,(.«#) = T.,(0) the n-Calabi—Yau completion.
It is natural to deform I, (.7) by adding an .o/-bilinear (super-)derivation D of degree 1 to
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its differential. Such a derivation is determined by its restriction to the generating bimodule
0. It has to satisfy

0= (d+D)* =d(D) + D>

Since the right-hand side is a degree 2 derivation, it suffices to check this identity on the
generating bimodule 0. Assume that D takes 0 to ./ = T.,(0). Then D? vanishes and the
condition reduces to d(D) = 0. Thus, we see that each closed bimodule morphism c¢ of de-
gree 1 from 6 to .o/ gives rise to a ‘deformation’

I.(, ¢)

of I1,(.<7), obtained by adding ¢ to the differential of I1,(.«/). A standard argument shows
that two homotopic morphisms ¢ and ¢’ yield quasi-isomorphic dg categories I1,, (.7, ¢) and
I, (<7, ¢'). Thus, up to quasi-ismorphism, the deformation IT,(.«Z, ¢) only depends on the
image of ¢ in the derived category of bimodules (recall that 6 is cofibrant). Now notice
that since the bimodule .¢7 is perfect, we have the following isomorphisms:

L
Homg (¢ (2" '©,2./) = Homy o) (¥, 2> " of) = H* (A @.pc A™Y)
L €
=H" (A Qe A) =Tor” (A, o) = HH, (),
where HH denotes Hochschild homology.

Theorem 5.2. The deformed n-Calabi—Yau completion T1,(.</, ¢) associated with an
element ¢ of HH,_»(.</) is homologically smooth and n-Calabi—Yau.

Proof. This is a variation on the proof of Theorem 4.8 where we have to take into
account the new component of the differential of 7', (6). Let % be the deformed n-Calabi—
Yau completion. We still have a short exact sequence of %°-modules

0= Ty(0)®y0®yTy(0) > Ty(0) @y Tey(0) — Toy(0) — 0,

where the morphism o takes an element f of (X, Y) to 1y ® f — f ® 1y and the second
map is composition. Notice that here the differentials of the tensor algebras 7.,(0) are de-
formed but that the one of the middle factor # on the left is not! The map « is indeed com-
patible with the differential: For an element x of 6, we have

da(x)) =d1®x—x®1)=1® (dx+cx) — (dx+cx) ®1 =1 ®dx—dx®1,

where the last equality holds because cx belongs to o7 and the tensor product is over .o7.
Now we can proceed as in the proof of Theorem 4.8. We obtain that for arbitrary c, the
dg category 4 is smooth and n-Calabi-Yau. []

Remark 5.3. The formulas in Lemma 4.4 remain true when we replace the Calabi—
Yau completion IT,(.e7) with the deformed Calabi—Yau completion I1,(.«, ¢). Indeed, the
sequence (4.4.1) in the proof of the lemma remains well-defined and exact when we replace
T.,(0) with I1,,(.«Z, ¢).
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5.4. Deformed Calabi-Yau completions as homotopy pushouts. The slightly ad hoc
construction of the deformed Calabi—Yau completion given in Section 5.1 can be viewed
more intrinsically as a homotopy pushout. Let us explain this in more detail. Let k, .o/
and O be as in Section 5.1 and let ¢ be an element of HH, ,(.<7). We may lift ¢ to a mor-
phism of dg bimodules

¢:0n—-2] — .
This morphism extends uniquely to a morphism of dg categories
[id, ¢] : -1 () — o
which is the identity on .o/ and given by ¢ on ®[n — 2|. We also have the projection
[id,0] : I, (&) — .
Now let i : .o/ — I1,(.<Z, ¢) be the canonical inclusion.

Proposition 5.5. The square

M, () 2%

| |

A — T,(A, )

1

is a homotopy pushout square for the model category structure on the category of dg catego-
ries introduced in [39].

Notice that the square is not commutative in the category of dg categories. The proof
will show in particular that it becomes commutative in the homotopy category.

The proposition is a special case of the following general fact: Let .«/ be any (small)
dg category and X a cofibrant .«Z-bimodule. Let f : X — .o/ be a bimodule morphism.
We also view f as a morphism of degree 1 from X[1] to 7. Let T,(X[1]) denote the
tensor category 7., (X[1]) whose differential has been deformed using f : X[l] — &/ as
an additional component. Let the morphisms [id, f], [id,0] from 7.(X) to ./ and
i:of — Ty(X[1],f) be defined analogously to the above morphisms. Proposition 5.5 is
now clearly a special case of the following:

Proposition 5.6. The square

fid, 0]
Ty (X) — .

of
lid, /] J{i

o —— Ty(X[1], 1)

1

is a homotopy pushout square for the model category structure on the category of dg catego-
ries introduced in [39].
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Proof. We may and will assume that .o7 is cofibrant and that X is cofibrant as a bi-
module. To compute the homotopy pushout of the angle

T.,0x) 2% o

lid,f ]l

A,

it is then enough to replace the morphism [id, 0] by a cofibration and to compute the push-
out in the category of dg categories. To replace [id, 0] by a homotopy pushout, we consider
the natural inclusion

Jj: X —-IX
of X into the cone IX over the identity of X. Clearly, the morphism [id, 0] factors as the

cofibration 7.,(X) — T (IX) followed by the trivial fibration 7.,(IX) — /. So to com-
pute the homotopy pushout, it is enough to compute the homotopy pushout of the angle

T,(X) — Ty(IX)

[id-,f]J

o
We claim that this is given by the commutative square

Ty,(X) — T,(IX)

Indeed, we have a pushout diagram of dg bimodules

¥y —. . x

]

o —— o @ X]1],

where .7 @ X[1] is endowed with the differential of the mapping cone over f. Using this
one easily checks that 7, (X[1], f) has the correct universal property. []

5.7. Compatibility with Morita functors and localizations. As in Section 5.1, let n
be an integer, k a commutative ring and .o/ a homologically smooth dg k-category such
that .o/(X, Y) is cofibrant as a dg k-module for all objects X and Y of .o/. Consider the
deformed n-Calabi-Yau completion # =I1,(</,c) associated with an element ¢ of
HH, (/).

Now let 4 be another dg k-category satisfying the same hypotheses as .o7. Assume
that we have a localization functor F : .o/ — 2% and let ¢’ be the element of HH,_,(#) ob-
tained as the image of ¢ under the map induced by F, cf. [25].
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Theorem 5.8. (a) Under the above hypotheses, there is a canonical localization functor
G :11,(, c) = I1,(%B, ) such that we have a commutative diagram

o —— I,(A,c)

Fl lG

B —— I1,(8,c).
The functor G is a Morita functor if F is.

(b) If we have an exact sequence of dg categories (cf. Section 4.5)
0SS ata_o
then the kernel of the induced functor
G.: 2(I,(A,c)) — 2(I1,(%,"))

is the localizing subcategory generated by the dg modules 11,,(.<Z,¢)(?, N), where N belongs
to N

Proof. We have a commutative square of isomorphisms

L
anZ(Ja{ ®ij° JZ{) — HOH’ILQ/C(QQ{, &/)

| l

L
Hn_2(=@®ﬂe.@) E— Homﬂe(ﬁ%,@),

where the vertical arrows are induced by F. This yields a commutative square in &(./°),
where we also write F* for (F¢)",

0,91—C>,,Q/

Fre!
F*0p —— F*%.

We would like to lift it to a strictly commutative square of dg modules. We choose an
arbitrary lift ¢ of ¢. After replacing 04 by a homotopy equivalent cofibrant dg module,
we may choose a dg module morphism ¢’ : 05 — 2 lifting ¢’ such that ¢’ induces a split
surjection of graded #°-modules. The same then holds for the morphism F*¢’ of dg
o/ °-modules. Therefore, we can choose a lift ¢ of ¢ such that the square of dg modules
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commutes strictly. As in the proof of Theorem 4.6, the morphisms F and ¢ then induce a
dg functor

G :I,(oZ,c) — I, (4,c).
It remains to be checked that the restriction G* is a fully faithful functor from

2(1,(%,c")) to 2(I,(Z, ¢)). Let L be a dg I1,(#, ¢’)-module. It is given by its underlying
dg #-module and a morphism of graded modules homogeneous of degree 0

A L®gzOy — L
such that
(dA) (Il ® x) = Ic'(x)

for all / in L and x in 054. Suppose that L is cofibrant as a I1,(%, ¢’)-module. Since the
underlying #-module of I1,(%4,¢’) is cofibrant (even with the deformed differential), the
underlying %#-module of L is cofibrant. We have an exact sequence of cofibrant dg
I1,,(#)-modules

00— L®y0sRs5T303) = L®yTs0s) — L— 0,

where o(/ @ x ® u) = Ix ® u — | ® xu. Notice that the map « is a morphism of dg mod-
ules despite the deformation of the differential on 74(04), analogously to what we have
seen in the proof of Theorem 5.2. The sequence shows that the cone over the mor-
phism

L®y0sRyTy(05) — LRy Ty(0z)

is homotopy equivalent to L. Let M be another dg I1,(%,c’)-module. By applying
Homy(?, M) to the above morphism, we obtain a morphism of dg k-modules

Homy (L, M) — Homy(L ®4 04, M),

whose cone (shifted by one degree to the right) computes morphisms from L to M in the
derived category of I, (4, ¢’). An analogous reasoning yields the morphisms between G*L
and G* M in the derived category of I1,(.<Z, ¢). Thus, to conclude that G* is fully faithful, it
suffices to check that for all M, the dg functor F* induces bijections

and

L * L *
As in the proof of Theorem 4.6, the first bijection follows from the full faithfulness of F*
and the second one is a consequence of the full faithfulness of F* and of the projection for-

mula (3.10.1). This ends the proof of (a). The proof of (b) is entirely analogous to that of
part (b) of Theorem 4.6 and left to the reader. [
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6. Ginzburg dg categories

6.1. Reminder on Hochschild and cyclic homology. Let k£ be a commutative ring and
Q a graded k-quiver, cf. Section 3.5. We put .o/ = T»(Q). The bimodule .7 has the small
resolution

(6.1.1) 0> ARy0QpA % ARyt — oA — 0,
where the map & takes a tensor u @ v ® w to uv ® w — u ® vw and the right-hand map is

composition. By tensoring this resolution with .o/ over .«/¢ we obtain the following complex
which computes Hochschild homology:

0 (Q®ypA) Rpe B A Qpe B — 0,
where o takes a tensor v ® u with factors of degree p and ¢ to vu — (—1)"uv.
Let 8 be the unique bimodule derivation
A — A Ry Q Qg A,

which takes an element v: x — y of Q to id, ® v®id,. f we haven = 1 and a = v; ...,
for elements v; : x; — x;_1 of Q, we have

n—1

ﬁ(a)zlx(,@vl@vz...vn—i—Zvl...v,-,l®v,-®v,»+1...vn+vl...vn,1®vn®1xn

i=2
and
&[)N’(a) =—1,®a+a®ly,.

The map f induces a (unique) map S making the following square commutative:

x4 A Rz Oy A

| l

ARy B~ (Q®yAt) Ry A,

where the left-vertical map takes a path a from x to y to a ® 1,1, and the right-vertical
map takes ¢« ®@ v ® b to (—1)" (v ® ba) ® 1,, where a is of degree p and vb is of degree q.
Note that the tensor product M ®- Z of an #-bimodule M with Z over %° identifies with
the quotient of M by the dg submodule generated by all differences m1, — 1,m for me M
and x an object of #. If we make this identification, the map £ takes a path v;...v, of O to
the sum

> 0 @ Uit 1Vi2 . VplL ..,
i

where the sign is computed by the Koszul sign rule from the degrees of the v;. We clearly
have oo f = 0. The following complex is to be continued in a 2-periodic fashion to the
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left:
6.12) LA Ry R (O®yA) @pe B L A @y B — 0.

It is the small cyclic complex Cgy(.o/) and computes cyclic homology (cf. [34], Chapter 3).
We sometimes consider its components as columns. If .o = £, cyclic homology is two-
periodic, the module HC(Z) vanishes and HCy(2) is a sum of copies of k indexed by Qy.
If k contains @, and .¢/ is arbitrary, then the reduced small cyclic complex Cyn (7)) Csm ()
is quasi-isomorphic to the quotient of its rightmost column by the image of «, i.e. to the
cokernel of the map

(O®pA) Qupe RS A Qpe R.

The inclusion of the subcomplex of the two rightmost terms induces the canonical mor-
phism from Hochschild to cyclic homology. The corresponding quotient complex is iso-
morphic to the original complex shifted by two degrees to the left. The short exact sequence
thus obtained induces the long exact sequence (known as the SBI-sequence)

HH,() L HC\(o4) > HC, () 2 HH,_\ (7).

In particular, the rightmost arrow f§ of the small cyclic complex induces Connes’ connecting
map

B: HC,(#) — HH, (7).

If the ring k contains @ and the quiver Q is concentrated in degree 0, then in the exact
sequence

HHz(JZf) — ch(&{) — HC()(JZ%) — HH](JZ/) — HCl(&%),

the terms HH,(.«/) and HC,(.</) vanish (as we see by considering the small cyclic com-
plex), the map S induces an isomorphism HC(o/) = HCy(#), and the map B induces
an isomorphism from the reduced zeroth cyclic homology of .o/ to its first Hochschild
homology.

6.2. Ginzburg dg categories. Let Q be a graded k-quiver such that the set of objects
Qo is finite and Q(x, y) is a finitely generated graded projective k-module for all objects
x and y. We fix an integer n and a superpotential of degree n — 3, i.e. an element W in
(o @ze #)/imo of degree n — 3. So W is a linear combination of cycles considered up to
cyclic permutation ‘with signs’. Notice that /¥ need not be homogeneous with respect to
the grading by path length. We can view W as an element in HC,_3(./) and if the ring k
contains (, every element of HC,_3(.</) has such a representative. Let # be the discrete
category on Qp and QY the dual of the #-bimodule Q over #° (endowed with the canonical
involution). Let > v; ® v/ be the Casimir element of Q ®4c 0V, i.e. the element which,
under the canonical isomorphism

Q ®;%e Qv - HOmg,'ge(Q, Q)7

corresponds to the identity of Q.
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The Ginzburg dg category T',(Q, W), due to V. Ginzburg ([19], Section 4.2) for a

quiver Q concentrated in degree 0 and n = 3, is defined as the tensor category over # of
the bimodule

0=0®0Q"n-2l@%h-1]
endowed with the unique differential which
(a) vanishes on Q,
(b) takes the element v} of QV[n — 2] to the cyclic derivative d,, W (cf. Section 3.5),

(c) takes the element id, of Z[n — 1] to (—1)"id.(}_[vs, v}]) idy, where [, ] denotes the
supercommutator.

Let .7 be the path category of Q and ¢ = (W) the image of W in
HH, (/) = Tor?, (A, o).

Thanks to the small resolution (6.1.1), the path category .o/ is homologically smooth. By
Theorem 5.2, the associated deformed n-Calabi—Yau completion IT,(.Z, ¢) is homologi-
cally smooth and n-Calabi—Yau.

Theorem 6.3. The deformed n-Calabi—Yau completion 11,(</, ¢) is quasi-isomorphic
to the Ginzburg dg category U, (o/, W). In particular, the Ginzburg dg category is homologi-
cally smooth and n-Calabi—Yau.

Remark 6.4. If we use the theorem and Proposition 5.5, we obtain that the Ginz-
burg dg category is given, up to isomorphism in the homotopy category of dg categories
in the sense of [39], by the homotopy pushout square

M, () [id, 0] of

| |

A —— (L, W).

I thank Ben Davison [14] for suggesting this statement.

Proof.  We first apply the computation of the inverse dualizing complex of Section
3.6 to the special case where .7 = T»(Q) with d = 0. We obtain that the non-deformed
CY-completion is quasi-isomorphic to the tensor category over % of the bimodule
0@ QV[n—2] ®Zn— 1] endowed with the unique differential which vanishes on Q and
Q" and takes the element id, of Z[n — 1] to (—=1)" %id(>_[v, v}]) id,. The deforming com-
ponent of the differential of IT,(.«7,c) is the map 0 — .o/ given by the contraction with
c=pB(W)in

L
"' RHom < (o, o) @ (A ® ¢ A) — ZoA.
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This last map identifies with
2" 'Hom ¢(P, #°) ® (P ® /) — XA,

where P is the cofibrant resolution of .o/ constructed in Proposition 3.7. The complex
P ®_ - o/ is isomorphic to

0= (0®pA) Qp R = A Qzp A — 0,

and ¢ lies in the subcomplex (Q ®,.%) ®4: #. The complex X"~ ! Hom (P, «/°) is iso-
morphic to

Oﬁcﬁy@@cdﬁ,d@e%Qv ®@=%HO

Therefore, the deforming component of the differential vanishes on the left-hand compo-
nent o/ ®,4.«/. Now it is clear that the deforming component of the differential vanishes
on #[n — 1] and takes an element v* of Q¥[n — 2] to (v* ®1id) o f(W). For v = v}, clearly
this equals the cyclic derivative d,, W. [

6.5. Deformed Calabi—Yau completions of homotopically finitely presented dg catego-
ries. Let k be a commutative ring and Q a graded k-quiver whose set of objects is finite
and whose bimodule of morphisms is finitely generated and projective over k. Let .o/ be
a dg category of the form (T,%(Q),d), where the differential d satisfies the condition of
Section 3.6. Let n be an integer, Q¥ = Homy:(Q, #°) and

0=0®0"n-21@®%h-1].
Let > o ® o be the Casimir element of Q and let ¥ be the element
W= (1) d(x)

of T4(Q). Let W' be an element of HC,_3(.«/) and ¢ € HH,,_»(.+/) its image under Connes’
map B.

Proposition 6.6. The deformed n-Calabi—Yau completion I1,(.o/, c) is isomorphic to

the tensor category Tx(Q), endowed with the unique differential d such that for each i, we
have

d(w) = 0y (WHW') and d(a)) = 0, (W + W'),
and for an object x of Q, the element id, of 2"~ ' & is taken to
d(id,) = (~1)"idy (X, 1) id
where [,] is the supercommutator.
Proof. This follows from the description of the inverse dualizing complex of .« in

Section 3.6. The details of the computation are similar to those in the proof of Theorem
6.3 and left to the reader. [
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6.7. 3-Calabi—Yau completions of 2-dimensional dg categories. Let k be a commuta-
tive ring and .« a dg category Morita equivalent to (T_%(V),d) for a graded k-quiver
V' whose set of objects is finite and whose bimodule of arrows is finitely generated free
over k and concentrated in degrees —1 and 0 (the differential d is arbitrary). The follow-
ing proposition shows in particular that IT3(.e/) is Morita-equivalent to a Ginzburg dg
category.

Let % be the path category # = T. %(VO ® (V‘l)v) of the sum of the Oth component
of V' with the v-dual of V! placed in degree 0. Let W be the class in HCy(#) of the ele-
ment

2. v7d(v)),

where > v; ® v is a Casimir element for V-l Let W' e HCy(o/) and ¢’ € HH (/) its
image under Connes’ map B. For example we can have W’ = 0 and ¢ = 0.

Proposition 6.8. The deformed 3-Calabi—Yau completion T15(.o/, ¢) is derived Morita-
equivalent to the deformed 3-Calabi—Yau completion TI5(%B, W + W') and thus to the
Ginzburg algebra Ts(V° @ (V1) W + W').

Proof. This is a special case of 6.6. []

6.9. 3-CY completions of algebras of global dimension 2. Let k be a field and 4 an
algebra given as the quotient kQ’/I of the path algebra of a finite quiver Q' by an ideal 1
contained in the square of the ideal J generated by the arrows of Q’. Assume that A is
of global dimension < 2 (but not necessarily of finite dimension over k). We construct a
quiver Q and a superpotential W as follows: Let R be the union over all pairs of vertices
(i, j) of a set of representatives of the vectors belonging to a basis of

Tor; (S;, DS;) = ¢;(I/(1T + JI))e,

where D = Homy (?,k) and S; is the simple right module associated with the vertex i. We
think of these representatives as ‘minimal relations’ from i to j, cf. [10]. For each such
representative r, let p, be a new arrow from j to i. We define Q to be obtained from Q' by
adding all the arrows p,. We define a potential by

W =73 rp,.
reR

Now let W’ e HCy(A) and ¢ € HH(A, A) its image under Connes’ map B. Let W' be an
element of HCy(kQ) which lifts W' along the canonical surjection kQ — kQ' — A taking
all arrows p, to 0. For example, we can have W' =0 and W' = 0.

Theorem 6.10.  The deformed 3-Calabi-Yau completion T13(4, c) is quasi-isomorphic
to the Ginzburg dg algebra T's(Q, W + W').

A very similar result was independently obtained by Ginzburg [20] in a slightly differ-
ent setting.
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Proof. For each vertex i of 4 let P; be the indecomposable projective ¢;4. Let .« be
the full subcategory of the module category formed by the P;. By induction, one constructs
a graded #-bimodule V" and a differential d on T'»(V) such that

(1) V" vanishes in degrees n = 1, V'° is free with basis Q" and V' ~! is free with basis
R;

(2) the differential d sends the basis element r€ R of V' ~! to the element r of
Ta(VY);

(3) for all n = 1, the differential ¢ maps ¥ ~"~! to T, and induces an isomorphism
from V—"~! onto H~"(T,), where T, denotes the dg category Tx(V'®---® V™).

Notice that (a) the image d(V') lies in the square of the ideal generated by V in T4(}V') and
that (b) we have a canonical quasi-isomorphism between 7 = (T4(V),d) and /. The
point (a) implies that we have isomorphisms

V"(i, j) = Tor{,,(Si, DS;)

for all i, j and n (thanks to Remark 3.8, we can use the bimodule resolution of part (b) of
Proposition 3.7). The point (b) implies that we have isomorphisms

Tor{,,(S;, DS;) = Tory”,,(S:, DS)).

Thus, we have V" = 0 for all n different from 0 and —1. Now we can apply Proposition 6.8
to conclude. []

6.11. Application to cluster-tilted algebras. Let k be an algebraically closed field. If 4
is a finite-dimensional k-algebra of finite global dimension, its generalized cluster-category
%4 is defined as the full triangulated subcategory of the triangle quotient

9" (A @ (DA)[-3]) /per(4 @ (DA)[-3))

generated by the image of the free module A4, cf. [27] and [1]. Here, the dg algebra
A® (DA)[-3] is the trivial extension of 4 by the dg bimodule (DA)[—3], where
D = Homy(7,k). In general, the category %4 has infinite-dimensional morphism spaces.
As shown in [27], if 4 is the path algebra of a quiver Q without oriented cycles, then %4 is
triangle equivalent to the cluster category %, as defined in [9], cf. also [11] for the case
where Q is Dynkin of type 4.

The generalized cluster category %o, w) of a finite quiver Q with potential W is
defined as the triangle quotient

per(I3(Q, W)) /2" (T3(Q, W)),

cf. [1]. In general, it has infinite-dimensional morphism spaces. If Q does not have oriented
cycles (and so W = 0), then % ¢ ) is equivalent to the cluster category %o, cf. [1]. For
arbitrary (Q, W), the endomorphism algebra of the image of the free module I';(Q, W) in
%0, w) is isomorphic to the Jacobian algebra H®(T'3(Q, W)).
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Recall [29] that a tilting module over an algebra B is a B-module T such that the total
derived functor of the tensor product by 7" over the endomorphism algebra Endg(7T) is an
equivalence

2 (Endp(T)) = 2(B).

The endomorphism algebra A of a tilting module 7 over a hereditary algebra B is of
global dimension at most 2. A module M is basic if each indecomposable module occurs
with multiplicity at most 1 as a direct factor of M. If T is a basic tilting module over
the path algebra B = kQ" of a finite quiver without oriented cycles, the endomorphism
algebra A of the image of T in %o 1s called the cluster-tilted algebra associated with T,
cf. [10].

Theorem 6.12. Let A =kQ'/I be a k-algebra of global dimension at most 2 as in
Section 6.9 and define (Q, W) as there. Let T' =T3(Q, W).

(@) The category € g, wy is canonically triangle equivalent to the cluster category 6.
The equivalence takes T to the image n(A) of A in €4 and thus induces an isomorphism
from the Jacobian algebra 2(Q, W) onto the endomorphism algebra A of the image of A
in (gA.

(b) If T is a basic tilting module over kQ" for a quiver without oriented cycles Q" and
A is the endomorphism algebra of T, then € g w) is triangle equivalent to 6o by an equiv-
alence which takes T to the image of T in €or. Thus, the endomorphism algebra A of T in
%o is isomorphic to the Jacobian algebra H°(T).

The quiver of 4 in part (b) was first described by Assem—Briistle—Schiffler [3]. The
fact that cluster-tilted algebras are Jacobian algebras was independently proved by Buan-—
Iyama—Reiten—Smith [8] using an entirely different method.

Proof. (a) By Theorem 6.10, the 3-Calabi—Yau completion IT = IT3(A4) is quasi-
isomorphic to I' = I'3(Q, W). Thus we have an equivalence of triangulated categories

0. w) — per(Il)/Zp(I0),

taking the free module I' to I1. Moreover, we have an equivalence of triangulated cate-
gories

per(I1)/ Z 1 (IT) = 64,

taking the free module IT to the image n(A4) of the free module A, cf. [27], the proof of
Theorem 7.1, or [1], Lemmas 4.13 to 4.15. The claim follows because H°(T") is isomorphic
to the endomorphism algebra of I" in %o ) by [1], Theorem 3.6.

(b) If A is the endomorphism algebra of T, then A is derived equivalent to the path
algebra kQ" and therefore %, is equivalent to %pr. The claim now follows from part

(2). O
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7. Particular cases of localization and Morita equivalence

7.1. Deleting a vertex is localization. Let k be a field and Q a finite quiver (pos-
sibly with oriented cycles). Let 4 be the path algebra kQ. Notice that 4 may be of in-
finite dimension. Let i be a vertex of Q and e; the associated idempotent. Let P; = ¢;4
be the associated projective indecomposable. Let 4" = Z(A4) be the localizing subcate-
gory generated by P;. Let B= A/Ae;A. Notice that B is the path algebra of the quiver
Q' obtained from Q by deleting the vertex i and all arrows starting or ending at this
vertex.

Lemma 7.2. The functor
L
?®4B: 9(A) — 2(B)

induces an equivalence from Z(A)/ N onto Z(B). Thus, the morphism A — B is a localiza-
tion of dg categories (cf. Section 3.9).

Proof. Since ./ is generated by a compact object, we know (see for example [35])
that for each object X of Z(A4), there is a triangle, unique up to unique isomorphism,

(7.2.1) Xy—X—-X"" -3x,

with X, in 4" and X' in the right orthogonal subcategory ./"*. Moreover, the projec-
tion functor Z(A4) — %(A)/./" induces an equivalence from ./ onto Z(A4)/./". Let us
compute the triangle (7.2.1) for X = P;, where P; = ¢;A4 is the projective associated with a
vertex j of Q. If we have j =i, the morphism Xy — X is the identity of P;. If we have
J * i, let .; be the set of minimal elements of the set of paths p from i to j, where we
have p < p’ if p’ = pu for a path u from i to i. Then each morphism P; — P; uniquely
factors through the morphism

D P — P,

whose component associated with p € .#; is the left multiplication by p. Moreover, this
morphism is injective. It follows easily that it induces a bijection

Homg(A) <2mP,', @Pl> — H0m9<A)(EmP,-, Pj)

for each m € Z and this implies that it induces a bijection

HOH]Q(A) (N, @ P,') — HOIHQ(A)(N, Pj)
for each N e /. It follows that the morphism

DP— P
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is the universal morphism X - — X for X = P;. Therefore, the object P]:“VL is the cokernel
of

DP— P

Now it is easy to check that for all vertices j and /, the morphism space
AL L
Homg 4 (P} ,Z"P;"")

vanishes for m + 0 and is canonically isomorphic to e;(A4/AejA)e; for m =0. This

shows that the functor 7 é 4(A/AeiA) : D(A) — Z(A/Ae;A) induces an equivalence from
the subcategory of compact objects of %(A4)/. 4" onto the perfect derived category of
9(B) = 2(A/Ae;A). Since this functor commutes with arbitrary coproducts, it does indeed
induce an equivalence from Z(A4)/./" onto Z(B). [

Recall that Q is a finite quiver, possibly with oriented cycles, & is a field and A is the
path algebra kQ. The quiver Q’ is obtained from Q by deleting the vertex i and all arrows

starting or ending at i and B = A/Ae;A. Now let W be a potential on Q, i.e. an element of
HCy(A) and let W' be the image of W in HCy(B).

Corollary 7.3. The canonical functor
FS(Qv W) - F3(Q/a W/)
is a localization.
Proof. By the functoriality of Connes’ map B, the class ¢/ = B(W’) is the image of
¢ = B(W) under the map HH,(A4,A) — HH,(B, B) induced by 4 — B. By the localization
Theorem 5.8 and the above Lemma 7.2, we have an induced localization functor

H3 (A, C) — H3 (B, C/)

and by Theorem 6.3, this yields a localization functor between the Ginzburg dg algebras.
]

Let us put ' = T'3(Q, W) and T'" = T'3(Q’, W'). Notice that in zeroth homology, the
induced morphism between the Jacobian algebras is the natural quotient map

20, W) — 20", W').
Let us compare the generalized cluster categories
Co.w) = per(I')/Z(T),
and %/, ) under the assumption that these categories have finite-dimensional morphism

spaces. We refer to [1] for a thorough analysis of this situation. Let P; = eI and let P; be
the image of P; under the projection functor 7 : per(I') — %.
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Theorem 7.4.  The triangulated category o',y is triangle equivalent to the Calabi—
Yau reduction in the sense of Iyama—Yoshino ([22], Section 4) of €, w) at P;.

Proof.  Let us put 4 = %o, w) and €' = %o/ ). Let Z be the full subcategory of
% formed by the objects M such that Ext!(P;, M) vanishes. By definition, the Calabi—Yau
reduction at P; is the quotient Z/(P;) of Z by the ideal of morphisms factoring through
a finite direct sum of copies of P;. To construct a functor from Z to 4’, we consider the
fundamental domain & < per(I') as defined in [1], Section 2.2. Thus, the subcategory F#
can be described as the full subcategory

per(l) N Z<o N H(Z<_»),
where 9 < is the left aisle of the canonical #-structure on Z(I"). Alternatively, the subcate-
gory & can be described as the full subcategory whose objects are the cones on morphisms
between objects of the closure add(I") of the free module I" under finite direct sums and

direct factors. We know from [loc. cit.] that the projection induces a k-linear equivalence
F = €. Now we consider the composition

Ycb¢>F -F' >4,
where Z is the fundamental domain for %’. Let us denote this functor by F. Its restriction
to the full subcategory .7~ whose objects are the P; associated with all vertices j identifies
with the canonical projection functor

20, W) — 20"\ W').

In particular, since 2(Q, W) is isomorphic to 7 by [1], Theorem 2.1, the restriction induces
an equivalence

T[(P) — T,
where 7' < €’ is the full subcategory of the P;, j & i. We will show below that the func-
tor & /(P;) — %' induced by F is naturally a triangle functor. Since this triangle functor
induces an equivalence between the cluster-tilting subcategories

T[|(P)— T,
it is itself an equivalence by [31], Lemma 4.5.

It remains to be shown that the functor F : Z/(P;) — %’ induced by F is naturally
a triangle functor. Let ¢ : ¥ — & be a k-linear quasi-inverse of the projection # — .
Let
XLy Lzu3¥Xx

be a triangle of & such that X, Y and Z lie in Z. Notice that v induces a surjection

(P, Y) — (P, Z).
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Form a triangle in per(I")
X' — (V) ™ y(z) — zx".

Claim. The object t<oX' lies in F. The object q(X) is isomorphic to t<oX' by
an isomorphism canonical up to a morphism factoring through q(Y). Moreover, the image
of the morphism t<oX' — X' under the composed functor per(I') — per(I'’) — €' is inver-
tible.

Indeed, from the triangle

)

> 19(Z2) — X' — q(Y q(Z),

we see that X is left orthogonal to Z<_,. If M belongs to % <, we have, using the Calabi—
Yau property and the fact that 7.9 X’ belongs to Z;(I"), the isomorphisms

Hom(z_17>0X/, ZZM) =D Hom(Z_IM, 2_1T>0X,) — O
Now from the triangle
2_1‘L'>0X/ N TgOX, X = T>0X’7

we see that <o X’ belongs to *Z<_, and of course, it belongs to Z <. Thus, it belongs
to Z. By our assumption, the object 7. X’ has finite-dimensional homology. Thus, the im-
age of 1<oX’ in ¥ is isomorphic to z(X’). By the uniqueness of the triangle on the mor-
phism v: Y — Z, we obtain that X is isomorphic to n(r<oX’) by a morphism canonical
up to a morphism factoring through Y. Thus, since t<o X’ belongs to 7, the object g(X)
is isomorphic to 7<oX’ by an isomorphism canonical up to a morphism factoring through
q(Y). Finally, the homology of 79X’ is concentrated in degree 1, and we have an exact
sequence

H(q(Y)) — H(¢(X)) — H'(t=0X") — 0.
In particular, we have an exact sequence
Hom(P;,q(Y)) — Hom(P;,¢(Z)) — Hom(P;,t20X") — 0.
Since Hom(i’i, q(U )) is isomorphic to Homg (P;, U) for each U in %, it follows that 7. X"
is right orthogonal to X P; for all m € Z. Thus it is right orthogonal to the kernel of the
localization functor L : 2T — 2T, Therefore, for each object M of 2T, the localization
functor induces a bijection

Hom(M,7-0X') — Hom(LM, Lt-oX").

If, for M, we take the objects Z'”Pj associated with the vertices of Q, we obtain that Lz-¢X’
has its homology of finite total dimension. This implies the last part of the claim.

Now let us show that the functor F : Z/(P;) — %' induced by F is naturally a tri-
angle functor. In any triangulated category, by default, we denote the suspension functor
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by ¥ and a quasi-inverse of £ by Q. However, we denote the desuspension functor of
the ‘reduced’ category Z = Z/(P;) by Q,. We will construct a natural isomorphism
¢ : QF = FQ, and show that the pair (F,¢) transforms triangles into triangles. Let Z
be an object of Z and P — Z a right approximation of Z by add(P;). Form the
triangle

Q7Z—P—7Z—-307

of €. The object Q,Z still belongs to % and its image in Z is the desuspension of the image
of Z. Now form a triangle of per(I'):

0 — q(P)— q(Z) — XO.

Let us denote the composition of the localization functor L : per(I') — per(I'') with the
projection per(I'") — %' by L' : per(I') — %’. By the claim, we have an isomorphism

q(QrZ) = T§00

canonical up to a morphism factoring through ¢(P) and the morphism L't<¢O — L'O is
invertible. The triangle

Qq(Z) — 0 — q(P) — q(2),

and the triangle structure on L’ yield an isomorphism QL'¢(Z) — L'Qq(Z) — L'O. Thus,
we obtain a canonical composed isomorphism

QFZ = QL'q(Z) > L'Qq(Z) > L'0 & L' (1<,0) & L'qQ,(Z) = FQ.(Z),

and we define ¢(Z) to be this isomorphism. One checks that ¢(Z) is natural in the object
Z of Z. Now let a standard triangle of Z be given. Then in ¥, with P — Z as above,
we have a morphism of triangles, where the first and fourth vertical morphisms are iden-
tities:

QZ — QFf —— P —— 7Z

R

QZ — X — Y — Z.

Notice that the second morphism is not canonical; in fact, any morphism making the first
square commutative lifts the given morphism in Z. We will show that (F,¢) takes the
triangle Q,Z — X — Y — Z of Z to a triangle of %’. For this, we form a morphism of
triangles in per(I'):

Qq(2) o qgP —— qZ
A A
Qq(Z) X’ qY —— qZ.
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Its image under 7 : per(I') — % becomes isomorphic to the given morphism after possibly
adding a morphism factoring through QZ — P to the given morphism QZ — X. Thus, we
may assume that the image under 7 is isomorphic to the given morphism. By the claim, the
image of this morphism under L'q is then isomorphic to

QL'¢(Z) —— L't<)O —— L'qPp —— L'qZ

| N

QL'¢(Z) —— L'teX' —— L'qY —— L'qZ.
We deduce that (F, ) takes the triangle QZ — X — Y — Z to the triangle
QL'¢(Z) — L't<oX' — L'qY — L'qZ
of¢'. O

7.5. Deleting a sink in global dimension 2. As a second example of localization, let us
consider a finite-dimensional basic algebra 4 over an algebraically closed field k. Assume
that P; is the indecomposable projective module corresponding to a sink 7 of the quiver of
A. Let e; be the corresponding idempotent of 4. Let B = A/Ae;A. Then it is easy to check
that the projection map

A— B

is a localization of dg categories. Indeed, the localizing subcategory ./ of Z(A) generated
by P; consists of all coproducts of shifted copies of P; and its right orthogonal subcategory
A+ is the localizing subcategory gegerated by the P;, j # i. Clearly, this subcategory is

equivalent to Z(B) by the functor 7 ® 4 B.

From now on, let us assume that 4 (and thus B) are of global dimension at most 2.
Then A4 is in particular homologically smooth and by Theorem 4.6, we obtain a localization
of the corresponding 3-Calabi—Yau completions

I15(A4) — I3(B).

Using Theorem 6.10, we can identify these dg algebras with Ginzburg algebras I';(Q, W)
and I'3(Q’, W’). It is not hard to check that Q' is obtained from Q by omitting the vertex
corresponding to i and all arrows starting or ending at it and that W’ is obtained from
W by deleting all cycles passing through this vertex. Thus, the results of Section 7.1 apply
and we obtain that if €(Q’, W’) is Hom-finite, then it is the Calabi—Yau reduction [22]
of €(Q, W) at the image of ¢;,I'3(Q, W). This example was treated previously by Amiot—
Oppermann [2] using different methods.

7.6. Generalized mutations. Let k be an algebraically closed field and Q a finite
quiver (possibly with oriented cycles). Let 17 be a potential on Q. Let T be a tilting module

over kQ, i.e. a module such that if B is the endomorphism algebra of 7, the derived functor

Y@, T : 7(B) — 2(kQ)
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is an equivalence, cf. [29]. If X is a projective resolution of 7' as a B-kQ-bimodule, then
? ®p X is a Morita functor from the dg category of bounded complexes of finitely gener-
ated projective B-modules to the corresponding category of kQ-modules. This functor
yields an isomorphism

HCo(B) = HCy(kQ).

We let W € HCy(B) be the element corresponding to W e HCy(kQ). Let ¢p and ¢ be the
images in Hochschild homology of Wg and W under Connes’ map B. Then by Theorem
5.8, we have an induced Morita functor

I5(B, cp) — I3(kQ, ¢),

and by Theorem 6.3 and Theorem 6.10, we obtain an induced Morita functor between
Ginzburg algebras

r3(Q/7 W'+ W”) - r3(Q7 W)7

where the quiver Q' is obtained from the quiver of B by adding a new arrow p, : j — i for
each minimal relation r : i — j, the potential W’ is

w'=73p,r,

and the potential W" lifts Wp along the surjection kQ' — B taking all arrows p, to zero.
This construction is linked to mutation of quivers with potentials in the sense of [15] as fol-
lows: Let i be a vertex of Q which is the source of at least one arrow and let 7" be the direct
sum of the projectives P;, j + i, and of 7; defined by the exact sequence

0—-P— PP —T —0,

oi—j

where the sum is taken over all arrows o with source i and the corresponding component
of the map from P; to the sum is the left multiplication by «. Then the passage from
B =End(T) to kQ is given by an APR-tilt [4]. In this case, one can check that (Q’, W') is
the ‘pre-mutation’ of Q at i in the sense of [15], i.e. Q' is obtained from Q by

(1) adding an arrow [af}] : j — [ for each subquiver
RN

of Q and

(2) replacing each arrow f : / — i by an arrow f* : i — [ and each arrow o : i — j by
an arrow o* : j — i;

and the potential W' is equal to [W]+ > [¢f]f a* where [W] is obtained from W by
replacing each occurrence of a composition «f in a cycle passing through i by [of)].
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Appendix A. Ginzburg’s algebra is Calabi—Yau of dimension three

A.l. Introduction. To a quasi-free algebra 4 and an element z € 4 (a “super poten-
tial”’) Ginzburg associates in [19] a certain DG-algebra D(4, z). He proves that if D(4, z)
has no negative cohomology then it is 3-Calabi—Yau (see [19], Remark 5.3.2, but beware
that Ginzburg uses homological grading). It was recently observed by Keller that D(A4, z)
is always 3-Calabi—Yau. Below we give a proof of this fact using the formalism of non-
commutative differential geometry.

A.2. Notations and conventions. Throughout we work over the semi-simple base
ring [ = key + - - - + ke; where ei2 =¢; and k is a field. In other words all our rings R are
implicitly equipped with a ring homomorphism / — R. Unadorned tensor products are
over k.

A.3. Pairings of bimodules. Duality for bimodules is confusing so here we write out
our conventions. This is a copy of [47], §3.1. Let B be an arbitrary graded k-algebra. We
equip B ® B with the outer B-bimodule structure. If Q is a graded B-bimodule then O*
is by definition Homp:(Q, B® B). This is still a B-bimodule through the surviving inner
bimodule structure on B ® B.

A pairing (or bilinear map) between graded B-bimodules P, Q is a homogeneous map
of degree n,

(A3.1) (—,—>:PxQ—B®B
such that {p, —) is linear for the outer bimodule structure on B ® B and {—, ¢ is linear for
the inner bimodule structure on B ® B. The obvious example is of course when P is the
bimodule dual Q* of Q and {(—,—) is the evaluation pairing. We say that the pairing is
non-degenerate if P, Q are finitely generated graded projective bimodules and the pairing
induces an isomorphism P =~ X"(Q%).

Example A4. Let P=%X"(B®,;B), Q0 = B®, B. Itis easy to see that the pairing

a®b,c®d> = (71)\4\ |b]+a le|+[b] \C\*”\C\Z ceb ® aeid

for a, b, c,d € B is well-defined and non-degenerate of degree n.
The opposite pairing of (—, —) is defined by
(== :QxP—B®B:(q,p)— (=) Ms(p, g,
where “¢” denotes the interchange operator: a(a ® b) = (—1)/"/(b ® a). So although the
definition of a pairing of bimodules is asymmetric it is not important which bimodule
appears on the left or right.

If P = Q then we say that a pairing {—, —) is (anti-)symmetric if

<P>P/> = (_)<P,P/>0pp-
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If B is a DG-algebra and P, Q are DG-bimodules then we say that (A.3.1) is a DG-pairing
if it is compatible with the differential, i.e. if

d{p,q> = <dp,q> + (=1)I"""(p,dg>.

If a DG-pairing is non-degenerate then obviously it induces an isomorphism of DG-modules
P=3"(0%).

A.5. Differentials and double derivations. If B is a graded algebra then we denote by
Qg the bimodule of relative differentials for B/I. Qp/; fits in an exact sequence

(A.5.1) 0— Qg > B®B— B— 0.
We denote the generators of Qp/; by Db, b € B where p(Db) =b®@ 1 —1® b.

With respect to signs we assume that D has homological degree zero. If B is equipped
with a differential d then we extend it to Qp/; by putting d(Db) = D(db).

Assume that B is equipped with a graded double Poisson bracket of degree n (see [46],
§2.1). Then there is a well-defined anti-symmetric pairing on Qp/; of degree n which is
determined by

(Dn, DSy = {{n,CH.
We define T/ = Qp n We may identify T/ with the bimodule of double derivations
—”—B/l = DeI'B/](B, B® B)

If b e Band 6 € Ty, then we write 5(b) = 5(b)’ ® 5(b)". Ty, contains a canonical element
E given by

E(a) = Zaei ®Re —e ® ea.

Remark A.6. We may write E(a) = [a,&] where £ =) ¢; ® ¢; € [ ® I. If, as in [12],

one works over a more general separable k-algebra then one must replace & by the separa-
bility idempotent in /€.

A.7. The graded cotangent bundle. Now let 4 be a quasi-free finitely generated
k-algebra and put TA = T4(XT 4/;). According to [46], §3.2, T A4 carries a canonical graded
double Poisson bracket of degree 1: the so-called double Schouten—Nijenhuis bracket.
Thus according to §A.5 we get an induced anti-symmetric pairing on Qv 4/; of degree 1.

Lemma A.8. This pairing is non-degenerate.
) In [46] this bracket had degree —1 since we used the opposite grading.
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Proof. This can be deduced from the fact that the double Schouten—Nijenhuis
bracket is actually induced from a bisymplectic form [12], [46]. To help the reader let us
give a proof here. We have a standard exact sequence

0= TA®,Quy®TAL Q) LETA®, Ty ®,TA) — 0
with for w e Qy/, 6 € Ty,

t(1®o®l)=aw,
(DO =1R6® 1.

Hence we have for a € A
(1 ® DS ® 1,4(Da)y = (D8, Day = {5, a}} = 3(a) = <B(DS), Da,

where on the right we have the standard (non-degenerate) pairing between T,/ and
Q,/, extended to a (still non-degenerate) pairing between TA®, T, ®,4 T4 and
TA®,4Q4 ®, TA. 1t follows that « and f are adjoint.

Thus one gets a commutative diagram

0 — TA®uQu®,TAd —— Qi —L T4, T, ®,TA) — 0

l \

0 — TA® Ty ®@uTAd —— ZQhyy) —— HTA®,Q), ®,T4) — 0.

Hence the middle arrow is an isomorphism. []

Now fix a “super potential” z € ) e¢;4e;. Contraction with Dz defines a differential d
on TA [19] (see also [47], §3.1). On generators we have

da=0 foraeA,
ds =6(z)"5(z)" fordeTyy.

We will denote resulting DG-algebra by T (4, z).

In the commutative case it is well known that contraction with a 1-form is a deriva-
tion for the Gerstenhaber structure on the graded cotangent bundle and hence in particular
it is compatible with the Schouten bracket. A similar result is true in the non-commutative
case.

Lemma A.9. T(A4,z) is a DG-Gerstenhaber algebra with product of degree zero and
double bracket of degree one.
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Proof. We only need to check compatibility of the differential with the double
bracket. This can be done on generators. The only non-trivial verification is

(A9.1) d{{o,A}} = {do, A} + {0,dA}}
ford,Ae T .
Following the notations of [46], §3.2, we have
{{o,A} = {{o,A}, + {0, A},
with
o.Ml = {{0.A}, @ {0,A8 € T4y ® 4,
{o,A}, = {{0,A}, ® {0,A}, € A® Ty,
so that we have
d{{o, Al = df{o,Al}, + df{o, A},
with
df{o, Al = {0, AR1(2)" {0, Ali(2)" @ {o. Al
a0, Al = {0, A%, ® {0, A} (2)" {0, A}/ ()"
By definition we have
{{0,A}; = 0230 (0 ® DA — (1 ® A)d),
0.4}, = 0120 (1@ 0)A - (A® 1)9),

which after inspection becomes

d{{o,A}; = A(z)"5(A(2)") ®(A(2)")" — AB(2)")"3(2) ® A(6(2)"),
d{s, A}, =(A(2)") ®(A(2)")'Az) — AB(2)")" ®(z)"A(6(2)") .
On the other hand, we have
{(do, A} = —aA(6(2)"5(z)")
=-A((2)")"3(2) ® A((2)") — A(B(2)") ®(2)"A(6(z)")’
and
{{0,dA} =0(A(2)"A(2)")
=0(A(2)") ®@(A(2)")"A(2) + A(2)"5(A2)") ®(A(z)")"

so that (A.9.1) indeed holds. [
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We immediately deduce
Lemma A.10.  The pairing on Qv 4, is compatible with d.
Proof.  We have to prove for o, 0’ € Qy 4,
dlw, "> = {dw,o"> + (=) w, do'.
One verifies that it is sufficient to check this on T A-bimodule generators of Q4. The only
interesting case to consider is @ = D, @' = DA and 6,A € T 4;. In that case the result is a

direct concequence of Lemma A.9 and in particular (A.9.1). [

A.11. Ginzburg’s algebra. Let A, z, TA be as in the previous section. We have
E e Ty, = TA. We immediately check that dE = 0. So E defines a (presumably always
non-trivial) cohomology class in T A. Ginzburg’s idea is to kill this class through adjunction
of an extra variable ¢ of degree —2 commuting with /. So Ginzburg’s algebra is

D(A4,z) = T(4,2) % I[],

where |¢|] = =2 and dc = E. To simplify the notations we will write T = T(4,z) and
D = D(4,z) in this section.

We have a presentation
0-Qpy HDRD— D0,
where ¢ is as in (A.5.1). It is easy to see that as graded D-bimodule we have
Qp) = (DQ7Qr @7 D) @ (D®,[IDc ®; D).
Putl = Z e; ® e;. Then D is quasi-isomorphic to cone ¢ and cone ¢ is given by
P=(D®1® D) @Z(DRr Q) ®7D) ®ED®,/Dc®;D)
with total differential

dpl =0,
dpw = pp(w) — drow  for w € Qr,

dp(Dc) = [¢, 1] — D(E).
We define a symmetric pairing of degree 3 on P by putting
<DC, |]>P = Zei ® i,
i

<CO, CU/>p = (_l)wh_l <CO, w/>Tv
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and assigning the value zero on other combinations of generators of P taken from [, Qr/,

Dc. Note that in P we have [I| =0, |[Dc| = =3 and |w|p = |w|; — 1 for w € Qy/;. The re-
quirement of symmetry yields

1, Deyp = (=) P Ha(pe 1y,
=Y e ®e;.
By combining Example A.4 with Lemma A.8 we see that {—, —)p is non-degenerate.

We claim that {—, —)p is compatible with the differential. By symmetry this amounts
to six verifications which we now carry out.

Case 1. One has

d»{Dc,Dcyp =0,

and
{dpDc, Dcyp ={[c,I] = D(E), Dcyp
=2 (ei®cei —eic @ e;)
=2 (e ®eic —ce; @ ei),
and
{De¢,dpDcyp =<{Dc,[c,I] — D(E))p
= Z(cel- ®ei—e ®eic)
so that

do{Dc,Dcyp = {dpDc, Dcdp + (—1)P3¢De, dpDedp.
Case2. OnehasforueT
dn{Dc,Duyp =0,
and
(dpDe, Duyp = <[e,1] = D(E), Dudp
~(=1)!F T D(E), Duys

= —{E,uj
= —Z(uei ®e —e ®eu),
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and
{Dc,dpDuyp = {Dc,[u,l] — Ddyu)
=>ue;®e; —e; @ eju
so that
do{Dc, Dudp = {dpDc, Dudp + (—1)P""*(De, dpDud p.

Case 3. One has

do<{Dc,[}p =0,
and
(dpDe,1yp = <o, 1] = D(E), 1y,
=0,
and
{Dc,dplyp = 0.

Hence this case is trivial.
Case 4. One has for w,w’ € Qr/
dolw,0'yp = (=1) " dr{w, 0>y
= (=)o, 0"y + (1) (=D o, dro’yy

= (-1 Kdyo, 0"y + <o, dro’ )y,

and
{dpw, o) p = Lpp(w) — drw,w')p
= (=D dro, 0y
= (=) drow, o'y,
and

{o,dp ) p = {0, pp(0") — dr(e')>p
= —(=D)""" Ko, dy()r

= (=DM ¢, dr(w)>y
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so that we get

d{0,0")p = {dpw, 'Y p + (1) o, dpor') p,
which is correct since |w|; = |@|p + 3(mod 2).

Case 5. One has for w € Qy

do{w,1)p =0,
and
(dpw, 1yp = {py(®) — de(w), 1)
=0,
and
{w,dpl)p = 0.

So nothing to prove here!
Case 6. The last case is about <[, [, but this is trivial.
We can now conclude
Theorem A.12. The Ginzburg algebra ® is 3-Calabi—Yau.
Proof.  We need to prove
(A.12.1) RHomgp:(D,D® D) =X 3D
in D(D°) and moreover this isomorphism must be self dual. We have

RHomp:(D, D ® D) =~ Homp: (P, D ® D)
~373p

>33,

where the second isomorphism is obtained from the pairing {—, —>p. Self duality follows

from the fact that {—, —>p is symmetric. []

A.13. A word on quivers. Assume now that V is a finitely generated /-bimodule and
put A = T;V. Thus 4 is the path algebra of a quiver. We remind the reader on the concrete
interpretation of D(4, z) in this case. This is taken from [19]. Let (#;); be a k-basis of V'

where for each i we have #(7), h(i) such that #; € e,;) Vey ;).
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Then we may define operations

(g) AJ[A, A 4,

0
—:A—- AR A
ot ®4,

where the second one is the element of T 4/, with the property

ot/ i
FT 0" (ex1) ® eniy),
and the first one is obtained from the first by the following commutative diagram:

A —— A)[4,4]

A.

A@A a®bw— ba

By [46], Proposition 6.2.2(2), we have

0
(A.13.1) E—Zi:[%,z]
as elements of T ;.
Pick z € @ e;Ae;.
Lemma A.14 ([19]). As graded algebras there is a canonical isomorphism
D(A,z) =TiI(VOEIV* @ kc).

Furthermore, if t' is the dual basis to t;, then the differential on D(A, z) is given by

dt' =0,
dz\"
(A.14.1) dt; = <6xi) ;
de = S[t;, 1.

1

Proof. Put t; = 0/0t". We get T(A4,z) = Ty(V ® V*) where () is the basis for V'*,
dual to (7;),.
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The differential d on T (A, z) has the property
dt' =0,
oz \"
dli = | — .
&)
Finally, the algebra (4, z) is obtained by adjoining ¢ such that

de = E =3 [t; 1],

where we have used (A.13.1). [

A.15. A word on Ext-algebras. The advantage of the presentation (A.14.1) is that
we can immediately read off the 4. -structure on the Ext-algebra of D(4,z). This works
more generally as follows. Assume that W is a finite dimensional /-bimodule and we have
a DG-algebra structure on B = T;W compatible with the canonical augmentation B — /.
Then for w e W we may write

dw = ib;(w),
where the b, are maps
by: W — W&
of degree 1. Dualizing we get maps of degree 1
by (WH)®" — W,

which define an 4, structure on X! (W*) (without unit). It follows from tbe bar-cobar
machinery that the 4,,-algebra / @ ' (W*) corresponds to RHomp(/, /).

Now let V, A, z, D(A, z) be as before and assume that z contains no linear terms. We
put W=V @ZV* @ kc. Thus D(A4,z) = T;W and the Ext-algebra of D(4, z) as a graded
vector space? is [ @X W =1V @IV @ kX (¢Y).

One checks that the A4, -operations are the pairings V*® V —/land V® V* — [
as well n-ary operations (¥*)®" — £~!'V which are obtained from the degree n + 1-part
Zne1 € VO of the superpotential z.

2 If z contains quadratic terms then this algebra has a non-trivial differential so it is not strictly speaking
the Ext-algebra.
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