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Abstract. We define and investigate deformed n-Calabi–Yau completions of homo-
logically smooth di¤erential graded (¼ dg) categories. Important examples are: deformed
preprojective algebras of connected non-Dynkin quivers, Ginzburg dg algebras associated
to quivers with potentials and dg categories associated to the category of coherent sheaves
on the canonical bundle of a smooth variety. We show that deformed Calabi–Yau comple-
tions do have the Calabi–Yau property and that their construction is compatible with
derived equivalences and with localizations. In particular, Ginzburg dg algebras have the
Calabi–Yau property. We show that deformed 3-Calabi–Yau completions of algebras of
global dimension at most 2 are quasi-isomorphic to Ginzburg dg algebras and apply this
to the study of cluster-tilted algebras and to the construction of derived equivalences asso-
ciated to mutations of quivers with potentials. In the appendix, Michel Van den Bergh uses
non-commutative di¤erential geometry to give an alternative proof of the fact that Ginz-
burg dg algebras have the Calabi–Yau property.
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1. Introduction

1.1. Context and main results. This article is motivated by the theory which links
cluster algebras [17] to representations of quivers and finite-dimensional algebras, cf. [23]
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for a survey. In this theory, Calabi–Yau algebras and categories play an important rôle.
For example, Geiss–Leclerc–Schröer use the 2-Calabi–Yau property of the category of
modules over a preprojective algebra (cf. [18]), Iyama–Reiten [21] study mutations using
tilting modules over 2- and 3-Calabi–Yau algebras related to singularities [45] and Amiot’s
construction [1] of generalized cluster categories relies on dg algebras which are 3-Calabi–
Yau as bimodules. The Calabi–Yau property is also important in Kontsevich–Soibelman’s
recent interpretation of cluster transformations in their study of Donaldson–Thomas in-
variants and stability structures [33].

Let us recall the definition of the Calabi–Yau property for algebras and for triangu-
lated categories: Let A be an (associative, unital) algebra over a field k. We identify
A-bimodules with (right) modules over the enveloping algebra Ae ¼ AnAop. Let n be an
integer. Recall that the algebra A is homologically smooth if, as a bimodule, it admits a fi-
nite resolution by finitely generated projective bimodules. Following Ginzburg and Kontse-
vich ([19], Definition 3.2.3), it is n-Calabi–Yau as a bimodule if it is homologically smooth
and, in the derived category of A-bimodules, we have an isomorphism

f : A4!@ A such that f4¼ f ;

where, for a bimodule complex M, we denote by M4 the derived bimodule dual shifted by
n degrees

M4¼ Sn RHomA eðM;AeÞ:

The bimodule complex RHomA eðM;AeÞ is the inverse dualizing complex of [44]. If A is
n-Calabi–Yau as a bimodule, the subcategory DfdðAÞ of the derived category DðAÞ formed
by the modules whose homology is of finite total dimension is n-Calabi–Yau as a triangu-

lated category, i.e. we have non-degenerate bifunctorial pairings

h ; i : HomðM;SnLÞ �HomðL;MÞ ! k

such that, for pþ q ¼ n, we have

hSpf ; gi ¼ ð�1ÞpqhSqg; f i

for all f : M ! SqL and g : L! SpM, cf. [30].

Let A be any homologically smooth algebra (or more generally: dg category), and let
n be an integer. One of the main objects of study of this paper is a canonical dg algebra
PnðAÞ which we call the n-Calabi–Yau completion or the derived n-preprojective algebra.
If y denotes a projective resolution of the shifted bimodule dual A4, we simply put PnðAÞ
equal to the tensor dg algebra

PnðAÞ ¼ TAðyÞ ¼ Al yl ðynA yÞl � � � :

Under Koszul duality, this construction corresponds to Ed Segal’s cyclic completion [38].
If A is the path algebra of a connected non-Dynkin quiver and n ¼ 2, one can show that
PnðAÞ is quasi-isomorphic to the preprojective algebra of A, cf. [30], Section 4.2. If A is the
endomorphism algebra of a tilting object in the derived category of quasi-coherent sheaves
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on a smooth algebraic variety X of dimension n� 1 (or more generally, the derived endo-
morphism algebra of any compact generator [6]), then the derived category of PnðAÞ is tri-
angle equivalent to the derived category of quasi-coherent sheaves on the total space of the
canonical bundle of X , cf. [40]. We will show that PnðAÞ is always n-Calabi–Yau as a bi-
module and that the construction A 7! PnðAÞ is equivariant under derived Morita equi-
valences and compatible with (dg) localizations.

Let c be a Hochschild cycle of degree n� 2 of A. It yields a canonically defined mor-
phism d : y! A of degree 1. We define the deformed n-Calabi–Yau completion or deformed

derived n-preprojective algebra PnðA; cÞ to be obtained from PnðAÞ by deforming the di¤er-
ential of the tensor algebra using d. More intrinsically, the dg algebra PnðA; cÞ can be con-
structed as a homotopy pushout from the Calabi–Yau completion Pn�1ðAÞ as suggested in
[14]. One can show that deformed preprojective algebras [13] of connected non-Dynkin
quivers are obtained in this way for n ¼ 2. For n ¼ 3, the (non-complete) Ginzburg dg al-
gebra (cf. [19], Section 4.2) associated with a quiver Q and a potential W becomes an ex-
ample. Indeed, it is quasi-isomorphic to P3ðkQ; cÞ, where c is the image of W , considered
as an element of the zeroth cyclic homology of A, under Connes’ map B. We refer to [19]
for a wealth of examples related to the Ginzburg dg algebra. Our main results state that
PnðA; cÞ is n-Calabi–Yau as a bimodule and that the construction taking ðA; cÞ to
PnðA; cÞ is equivariant under derived Morita equivalences and compatible with localiza-
tions. In particular, we obtain that the Ginzburg dg algebra is always 3-Calabi–Yau.
When informed of this fact, Michel Van den Bergh provided an alternative proof [43],
based on non-commutative geometry. He has kindly made his proof available in the appen-
dix to this paper. The Calabi–Yau property of the Ginzburg dg algebra is an important
ingredient of Amiot’s construction [1] of the generalized cluster category associated to an
algebra of global dimensione 2 or a Jacobi-finite quiver with potential. This construction
in turn is an important ingredient in the proof of the periodicity conjecture sketched in [23],
Section 8.

We compute deformed Calabi–Yau completions of most ‘homotopically finitely pre-
sented dg categories’ (cf. Section 6.5 for the definition) and use this to show that deformed
3-Calabi–Yau completions of algebras of global dimension at most 2 are quasi-isomorphic
to Ginzburg dg algebras. A related statement was proved independently by Ginzburg
in [20]. As a corollary, we obtain that cluster-tilted algebras [10] are Jacobian algebras of
quivers with potentials, a result that was proved independently by Buan–Iyama–Reiten–
Smith [8] using completely di¤erent methods.

As an application of the derived Morita equivariance of the construction of de-
formed Calabi–Yau completions, we obtain a new construction of the derived equivalence
associated [32] to the mutation of a quiver with potential [15]. Our approach also allows
to generalize the mutation operation: For a given quiver Q, each tilting module over the
path algebra kQ yields a ‘generalized mutation’ of any quiver with potential of the form
ðQ;WÞ.

As an example of the localization theorem, we show that deleting a vertex in a quiver
with potential translates into a localization of the associated Ginzburg algebra. In the case
where the associated Jacobian algebras are finite-dimensional, this localization then yields a
Calabi–Yau reduction [22] of the associated generalized cluster categories introduced by
Amiot [1]. A related result was recently obtained by Amiot–Oppermann [2].
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1.2. Contents. Each anti-involution t : B!@ Bop of an algebra B allows one to de-
fine a preduality functor M 7! HomBðM;BÞ from the category of right A-modules to itself

by letting B act on the target via t. The most important example for us is the case where
B ¼ AnAop and tðan a 0Þ ¼ a 0n a. Bimodule duality is confusing and the general con-
text of an algebra with involution brings some clarification. We develop the necessary ma-
terial in the setting of dg categories in Section 2.

We then introduce and study the inverse dualizing complex of a homologically
smooth dg category in Section 3. We compute it for (most) homotopically finitely presented
dg categories (Section 3.6) and show that it behaves well under derived Morita equivalences
and localizations (Proposition 3.10). In particular, homological smoothness and the
Calabi–Yau property are preserved under localizations.

We define n-Calabi–Yau completions in Section 4 and show that their construction is
compatible with derived Morita equivalences and localizations (Proposition 4.2 and The-
orem 4.6). We show that Calabi–Yau completions do have the Calabi–Yau property in The-
orem 4.8. In Section 5, we construct deformed Calabi–Yau completions, prove that they
have the Calabi–Yau property (Theorem 5.2), identify them with homotopy pushouts
(Proposition 5.5) and show that their construction is compatible with derived Morita equiv-
alences and localizations (Theorem 5.8).

After a reminder on Hochschild and cyclic homology of tensor categories (Section
6.1), we recall the definition of Ginzburg dg algebras in Section 6.2. We interpret them as
deformed Calabi–Yau completions in Theorem 6.3. In Section 6.5, we observe that de-
formed Calabi–Yau completions of homotopically finitely presented dg categories are
closely related to Ginzburg dg algebras. We use this in Theorem 6.10 to show that any de-
formed 3-Calabi–Yau completion of an algebra of global dimensione 2 is a Ginzburg dg
algebra. We apply this in Section 6.11 to show that all cluster-tilted algebras are Jacobian
algebras.

In the final Section 7, we give two more applications of our general results to the
study of mutations and of generalized cluster categories. In Corollary 7.3, we show that
deleting a vertex in a quiver Q translates into a localization of the Ginzburg algebra asso-
ciated with any quiver with potential of the form ðQ;WÞ. In Theorem 7.4 we prove that in
the associated generalized cluster categories, the localization yields a Calabi–Yau reduc-
tion. We establish the link to Amiot–Oppermann’s result in Section 7.5. Finally, in Section
7.6, we show that if ðQ;WÞ is a quiver with potential and T any tilting module for the path
algebra kQ, there is an associated ‘generalized pre-mutation’ for ðQ;WÞ. In particular,
from the classical APR-tilts [4], one obtains the pre-mutation as defined in [15] and the as-
sociated derived equivalence of [32].

In the appendix, Michel Van den Bergh uses non-commutative di¤erential geometry
to give an alternative proof of the fact that Ginzburg dg algebras have the Calabi–Yau
property.
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2. Preduality functors

2.1. From involutions to preduality functors. Let k be a commutative ring and A an
(associative, unital) k-algebra. Let t be an involution on A, i.e. an isomorphism from A to
the opposite algebra Aop whose square is the identity. Let Mod A denote the category of
right A-modules. If M is a right A-module, the dual

A� ¼ HomAðM;AÞ

becomes a left A-module via the left action of A on itself, that is to say, for an element
a A A and an A-linear map f from M to A, we define af by

ðaf ÞðmÞ ¼ af ðmÞ;

where m runs through the elements of M. Now for any left A-module N, we define the con-

jugate right A-module N to be the abelian group N endowed with the right action by A

defined by

na ¼ tðaÞn;

where n is an element of N and a an element of A. In particular, if M is a right A-module,
we obtain the dual right A-module

M4¼M �:

The functor

V : Mod A! ðMod AÞop

taking M to VM ¼M4 together with the natural transformation

j : M ! VVM

given by evaluation defines a preduality functor on the category Mod A, i.e. the composi-
tion

V �!jV
VVV �!Vj

V

is the identity. Equivalently, the map f 7! j � f4 is a bijection

HomAðL;M4Þ !@ HomAðM;L4Þ
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bifunctorial in the A-modules L and M. Notice that the left-hand side is in canonical bijec-
tion with the set of sesquilinear forms on L�M, i.e. maps

s : L�M ! A

such that sðla;mÞ ¼ tðaÞsðl;mÞ and sðl;maÞ ¼ sðl;mÞa for all l A L, m A M and a A A. Simi-
larly, the right-hand side is in bijection with the set of sesquilinear forms on M � L. The
bijection then corresponds to mapping a sesquilinear form s to the form t � s � s, where s

exchanges the two factors of the product.

To say that ðV ; jÞ is preduality is also equivalent to saying that the pair

Mod A

V op

x???
???yV

ðMod AÞop

together with the morphisms

j : VV op ! id in Mod A and j : id! V opV in ðMod AÞop

is a pair of adjoint functors. So a preduality functor could also be called a self-coadjoint
functor.

If ðV ; jÞ is a preduality functor, then so is ðV ;�jÞ. An A-module M is reflexive for V

is jM is an isomorphism. For example, all finitely generated projective A-modules are re-
flexive. A duality functor is a preduality functor ðV ; jÞ with invertible j. The restriction of
a preduality functor to the subcategory of reflexive objects is a duality functor.

2.2. Extension of preduality functors to module categories. Now let A be a
k-category. By definition, the category ModA of (right) A-modules is the category of
k-linear functors

M : Aop !Mod k:

Suppose that V is a preduality functor on A and j : id! VV the corresponding adjunc-
tion morphism. A left A-module is a k-linear functor N : A!Mod k. Its conjugate right

module is the composition N ¼ N � V . The dual left module M � of a right A-module M is
the module given by

X 7! HomA

�
M;Að?;XÞ

�
;

where X runs through the objects of A. The dual (or, more precisely, V-dual ) of a right
A-module M is

M4¼M �:
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It is given by

X 7! HomA

�
M;Að?;VXÞ

�
;

where X runs through the objects of A. Let L and M be right modules. Then the set

HomðL;M4Þ

is in bijection with the set of sesquilinear forms on L�M, i.e. the families of maps

sX ;Y : LY �MX !AðX ;VYÞ

bifunctorial in the objects X and Y of A. By assumption on V , we have a canonical bifunc-
torial bijection

y : AðX ;VYÞ !AðY ;VXÞ:

By taking sX ;Y to y � sX ;Y � s, where s exchanges the two factors, we obtain a bifunctorial
bijection

HomðL;M4Þ ! HomðM;L4Þ:

It corresponds uniquely to a natural transformation

~jj : M ! ~VV ~VVM;

where ~VVM ¼M4. We conclude that ð ~VV ; ~jjÞ is a preduality functor on ModA. Notice that
for a representable module Að?;X Þ, we have a canonical isomorphism

~VV
�
Að?;XÞ

�
!@ AðX ;V?Þ !@ Að?;VX Þ

and ~jj is induced by j for such modules. Thus the pair ð ~VV ; ~jjÞ is a preduality functor which
canonically extends ðV ; jÞ from the subcategory of representable modules to all of Mod A.
By abuse of notation, we will often write ðV ; jÞ instead of ð ~VV ; ~jjÞ.

2.3. Dg categories. Concerning dg categories, we follow the terminology and nota-
tions of [28]. Let us recall the most important points: We fix a commutative ground ring k.
Let A be small dg k-category, i.e. a small category enriched over the tensor category CðkÞ
of complexes over k. A dg A-module is a dg functor

M : Aop ! CdgðkÞ

with values in the dg category of complexes over k. In particular, each object X of A gives
rise to the free module (¼ representable module) X5¼Að?;X Þ. The category of dg mod-
ules CðAÞ has as morphisms the morphisms of graded A-modules, homogeneous of degree
0 which commute with the di¤erential. It is endowed with a structure of Frobenius category
whose conflations are the short exact sequences of dg modules which split as sequences of
graded modules. The projective-injectives are the contractible dg modules. The associated
stable category is the homotopy category HðAÞ. It is triangulated and its suspension func-
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tor takes a dg module M to SM ¼M½1� whose underlying graded module has components�
M½1�ðXÞ

�p ¼MðX Þpþ1 and whose di¤erential is dM½1� ¼ �dM . The category of strictly

perfect dg modules is the smallest subcategory of the Frobenius category CðAÞ which con-
tains the free dg modules and is stable under shifts, extensions and passage to direct sum-
mands. The derived category DðAÞ is the localization of the category HðAÞ with respect
to the class of quasi-isomorphisms. It is a triangulated category with suspension functor S.
For each dg module M and each free module X5, we have a canonical isomorphism

HomDðAÞðX5;SnMÞ ¼ H n
�
MðX Þ

�
:

The derived category is compactly generated, in the sense of [35], by the free modules X5,
X A A. An object of DðAÞ is defined to be perfect if it is a compact object. The perfect

derived category perðAÞ is the full subcategory of perfect objects of DðAÞ. A dg functor
F : A! B is a Morita functor if restriction along F is an equivalence from DB to DA.
Equivalently, the total left derived functor of the induction along F is an equivalence. Still
equivalently, the morphisms

AðX ;Y Þ ! BðFX ;FYÞ

are quasi-ismorphisms for all X , Y in A and the objects F�Að?;X Þ ¼ Bð?;FXÞ generate
the perfect derived category perðBÞ as an idempotent complete triangulated category. In
the localization of the category of dg categories with respect to the class of Morita functors,
the set of morphisms from a dg category A to a dg category B is in canonical bijection
with the set of isomorphism classes in DðAop nBÞ of dg A-B-bimodules X such that
X ð?;AÞ is perfect as a dg B-module for each object A of A, cf. [41]. Two dg categories
are derived Morita equivalent if they become isomorphic in this localization. Equivalently,
they are linked by a chain of Morita functors.

2.4. Preduality functors on dg categories. Let A be a small dg category and ðV ; jÞ a
preduality dg functor on A. Thus, V is a dg functor A!Aop and j : id! VV a natural
transformation such that the map f 7! Vð f Þ � j is a bijection

AðX ;VY Þ !AðY ;VXÞ

for all objects X and Y of A. As in the case of the module category over a k-linear cate-
gory treated in Section 2.2, we have a natural extension of ðV ; jÞ to the category CdgðAÞ of
(right) dg A-modules.

Suppose from now on that A is an exact dg category. Recall that this means that the
dg Yoneda functor

A! CdgðAÞ; X 7! X5

induces an equivalence onto a full subcategory which is stable under shifts and under
graded split extensions. In particular, the category A then has a canonical shift functor S
and each morphism f of Z0A has a cone Cð f Þ whose image under the Yoneda functor is
the cone on f5. In the underlying graded category Agr, the cone on a morphism f from X

to Y splits as Cð f Þ ¼ Y lSX . Let i : Y ! Cð f Þ be the inclusion and h : X ! Cð f Þ the
inclusion considered as a morphism of degree �1. Then the pair ði; hÞ is universal among
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the pairs consisting of a closed morphism j : Y ! Z and a morphism l : X ! Z of degree
�1 such that j � f ¼ dðlÞ.

X ���!f Y ���!i Cð f Þ

l

???yj

Z

�����!

:::::::::::::b

h

Since A is exact, the opposite dg category Aop is also exact. If f : X ! Y is a closed
morphism in A, we can form its cone C 0ð f Þ in Aop. In A, it is endowed with morphisms
i 0 : Cð f Þ ! Y and h 0 : C 0ð f Þ ! Y such that f � i 0 ¼ dðh 0Þ and which are universal with
this property. It follows that C 0ð f Þ splits as S�1Y lX and that its di¤erential is given by
the matrix

�dY f

0 dX

� �
:

Thus, the shift SC 0ð f Þ endowed with the canonical morphisms Y ! SC 0ð f Þ and
X ! SC 0ð f Þ is uniquely isomorphic to the cone Cð�f Þ on the opposite of f .

Since V is a dg functor, it preserves cones. So if f : X ! Y is a closed morphism, we
obtain a canonical isomorphism

SVCAð f Þ !@ Cð�Vf Þ

compatible with the (closed) inclusion i of VX and the inclusion h (homogeneous of degree
�1) of VY .

Let n be an integer. Since V is a dg functor from A to Aop, we have a canonical iso-
morphism

VSn !@ S�nV :

From j, we get a canonical isomorphism

c : id! ðSnVÞðSnVÞ

and it is not hard to check that ðSnV ;cÞ is still a preduality dg functor.

Let X be an object of A and f : X ! VX a closed morphism. The morphism f is
ðV ; jÞ-symmetric (respectively antisymmetric) if

f ¼ Vð f Þ � j ðrespectively f ¼ �Vð f Þ � jÞ:

The object X is reflexive (respectively homotopy reflexive) if j : X ! VVX is an isomor-
phism (respectively if H 0ðjÞ is an isomorphism). The analogue of the following proposition
in a triangulated setting is due to Balmer [5], Theorem 1.6:
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Proposition 2.5. The cone on a V-antisymmetric closed morphism carries a canonical

SV-symmetric form. More precisely, let f : X ! X4 be a closed and ðV ; jÞ-antisymmetric

morphism. Let

g : Cð f Þ ! SV
�
Cð f Þ

�
be given by the matrix

0 id

Sj 0

� �
: VX lSX ! SVVX lSVSX :

Then g is a closed ðSV ;cÞ-symmetric morphism. If X is (homotopy) reflexive, then g is inver-

tible (up to homotopy).

Proof. By the above discussion and the assumption that f ¼ �Vð f Þ � j, the mor-
phism g is indeed well-defined and closed.

X ���!f VX ���!i Cð f Þ

j

???y
???yid

???yg

VVX ���!�Vf
VX ���!i SVCð f Þ

h

h

Clearly it is symmetric. We have a morphism of graded split exact sequences

0 ���! VX ���! Cð f Þ ���! SX ���! 0???yid g

???y
???ySj

0 ���! VX ���! SVCð f Þ ���! SVVX ���! 0:

This implies that Cð f Þ is reflexive if X is. By considering the corresponding triangles in
H 0ðAÞ, we obtain that H 0ðgÞ is an isomorphism if H 0ðjXÞ is an isomorphism. r

Now let g : Y ! VY be a closed symmetric morphism and suppose that f : X ! Y

is a closed morphism such that

ðVf Þ � g � f ¼ 0:

We then have a complex of closed morphisms

X ���!f Y ���!ðVf Þ�g
VX ;

and we can form its totalization, i.e. the object Z such that for U in A, the complex
AðU ;ZÞ is functorially isomorphic to the total complex of

AðU ;XÞ ����!f�
AðU ;Y Þ ����!ðVf Þ��g�

AðU ;VX Þ;
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where we think of AðU ;YÞ as the zeroth column of the double complex. The underlying
graded object of Z is isomorphic to S�1VX lY lSX .

Proposition 2.6. The graded morphism h : Z ! VZ given by idVX l gl jX is closed

and V-symmetric. It is invertible (respectively invertible up to homotopy) if g is.

Proof. We have a commutative diagram of complexes

X �����!f
Y �����!ðVFÞ�g

VX

jX

???y g

???y
???yidX

VVX �����!
ðVGÞðVVf Þ

VY �����!
VF

VX :

Therefore the morphism h is closed. It is symmetric because g and idX l j are symmetric.
r

2.7. Induction and preduality. Let A and B be two dg categories each endowed
with a dg preduality functor denoted by ðV ; jÞ. Let F : A! B be a dg functor. For a dg
A-module M, we denote by

F�M or M nAB;

its induction along F . We assume that we are given a morphism of dg functors

FV ! VF :

We wish to extend it to a compatibility morphism between induction along F and predual-
ity with respect to V .

For each object X of A, we have the representable left A-module AðX ; ?Þ. Its image
under induction along F is BðFX ; ?Þ and the predual of the image is

BðFX ;V?Þ !@ Bð?;VFXÞ:

On the other hand, the predual of AðX ; ?Þ is Að?;VXÞ and its image under induction is
Bð?;FVXÞ. Thus, the given morphism FV ! VF yields a natural transformation

F�ðM4Þ ! ðF�MÞ4

defined at first for representable and then for arbitrary dg A-modules M.

If M is a right dg A-module, then its dual

M � : X 7! HomA

�
M;Að?;XÞ

�
is a left dg A-module and we have a natural transformation

F�ðM �Þ ! ðF�MÞ�:
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By composing the natural transformations constructed so far, we obtain, for each dg
right A-module M, a natural transformation

F�ðM4Þ ! ðF�M4Þ

or, in the other notation,

M4nA B! ðM nA BÞ4:ð2:7:1Þ

Lemma 2.8. (a) Under the natural transformation (2.7.1), an element f n b is sent to

the map

mn x 7! ð�1Þj f j jbjVðbÞ f ðmÞx:ð2:8:1Þ

(b) If the underlying graded A-module of M is finitely generated projective, the trans-

formation (2.7.1) is invertible and its inverse sends an element g to

P
m�i nV

�
gðmi n idÞ

�
;

where
P

mi nm�i is the Casimir element for M, i.e. the pre-image of the identity under the

canonical isomorphism

M nA HomAðM;AÞ ! HomAðM;MÞ:

Proof. These are straightforward verifications. r

Let DA denote the derived category of A. We still denote by M 7!M4 the total
derived functor of the duality functor and by ?nA B the total derived functor
DA! DB of the induction functor.

Lemma 2.9. Suppose that FV ! VF is a pointwise homotopy equivalence. Then the

morphism

M4nA B! ðM nABÞ4

is a quasi-isomorphism for all perfect M. It is a quasi-isomorphism for all M if BðF?;XÞ is

perfect over A for all X in B, for example if F is a Morita functor.

Proof. The canonical morphism

jM : M4nA B! ðM nA BÞ4

is a quasi-isomorphism for each representable dg module M ¼Að?;XÞ, by the assumption
on F and V . Since j is a morphism between triangle functors, it is still a quasi-isomorphism
for each perfect dg module M. Finally, if BðF?;X Þ is perfect over A for all X in B, then
the derived tensor product ?nAB preserves arbitrary products. Then j is a morphism be-
tween triangle functors taking arbitrary sums to products and hence is a quasi-isomorphism
for each object M of DA. r
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Now for a given right dg A-module M, we wish to study the dg k-module

HomB

�
M nA B; ðM nABÞ4

�

(whose n-th component is formed by the maps of graded B-modules which are homoge-
neous of degree n). We can think of its elements as sesquilinear forms on M nA B. We
have an isomorphism

HomB

�
M nAB; ðM nABÞ4

�
¼ HomA

�
M; ðM nA BÞ4

�

and the right-hand side is the target of a natural transformation with source

ðM nABÞ4nA M �:

Thus we obtain a natural transformation

M4nA BnA M � ! HomB

�
M nA B; ðM nABÞ4

�
:ð2:9:1Þ

Notice that the right-hand side carries a natural involution, namely the map taking f to
f4� j. The left-hand side also carries a natural involution, namely the one which on ten-
sors of homogeneous elements is given by

m1 n bnm2 7! ð�1Þpqþprþqr
m2 nVbnm1;

where p, q, r are the degrees of m1, f and m2, respectively.

Lemma 2.10. The map (2.9.1) is strictly compatible with these involutions.

Proof. This is a straightforward verification. r

3. The inverse dualizing complex

3.1. Duality for bimodules. Let k be a commutative ring and A a dg k-category. We
may and will assume that A is cofibrant over k, i.e. each morphism complex AðX ;YÞ is
cofibrant in the category of dg k-modules. This always holds if k is a field. Let Ae be the dg
category AnAop. We endow it with the involution V taking a pair of objects ðX ;Y Þ to
ðY ;X Þ and given on morphisms by

f n g 7! ð�1Þpq
gn f ;

where f is of degree p and g of degree q. Note that ðV ; jÞ, where the morphism j is the
identity, is a preduality on Ae in the sense of Section 2.4.

By a bimodule we mean a right dg module M over Ae. Via the morphism

M nAe ¼M n ðAnAopÞ !@ Aop nM nA
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taking mn ðan bÞ to ð�1ÞjbjðjmjþjajÞbnmn a, the right Ae-module structure yields left
and right A-module structures on M. The right module structure on Ae itself is given by
the multiplication of Ae:

ð f n gÞð f 0n g 0Þ ¼ ff 0n g 0g:

So right multiplication yields the ‘inner’ bimodule structure on Ae, whereas the left
Ae-module structure on Ae yields the ‘outer’ bimodule structure.

As we have seen in Section 2.4, from ðV ; jÞ, we obtain a natural preduality on the
exact dg category of dg Ae-modules which takes a dg module M to the conjugate M4 of
the dual M � defined by

M � : ðX ;YÞ 7! HomA e

�
M;Ae

�
?; ðX ;Y Þ

��
:

Lemma 3.2. Let F : A! B be a dg functor and P an A-bimodule. We identify

F�P ¼ PnA e Be with BnA PnA B via the map pn ðxn yÞ 7! ð�1Þjyj jpnxj
yn pn x.

(a) The canonical morphism constructed in Section 2.4

BnA P4nAB! ðBnA PnA BÞ4

takes b1 n f n b2 to the map

x1 n pn x2 7!
P

Gb1 f ðpÞ1x2 n x1 f ðpÞ2b2;

where the sign is given by the Koszul sign rule and f ðpÞ ¼
P

f ðpÞ1 n f ðpÞ2.

(b) If the underlying graded module of P is finitely generated projective, the inverse

ðBnA PnA BÞ4! BnA P4nA B

of the morphism in (a) takes a map g to

P
GgðpiÞ1 n p�i n gðpiÞ2;

where the sign is given by the Koszul sign rule, we have gðpiÞ ¼
P

gðpiÞ1 n gðpiÞ2 andP
pi n p�i is the Casimir element for P.

Proof. This is a special case of Lemma 2.8. r

3.3. Definition of the inverse dualizing complex. As in Section 3.1, we let k be a com-
mutative ring and A a dg k-category which is cofibrant over k. We endow Ae ¼AnAop

with the preduality ðV ; jÞ of Section 3.1. By A, we also denote the bimodule

ðX ;YÞ 7!AðX ;YÞ:

We define the inverse dualizing complex YA to be any cofibrant replacement of the image
of the bimodule A under the total derived functor of the preduality functor M 7!M4 de-
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fined in Section 3.1. Thus, if A is given by a dg algebra A, then YA is a cofibrant replace-
ment of

RHomA eðA;AeÞ

considered as an object of DðAeÞ, i.e. a right dg Ae-module, via the canonical involution on
Ae. Thus, the morphism set is computed using the ‘inner’ bimodule structure of Ae and the
right Ae-action on YA comes from the twisted right multiplication

ðan bÞ:ðxn yÞ ¼ Vðxn yÞðan bÞ ¼ ðyn xÞðan bÞ ¼ yan bx;

which corresponds to the ‘outer’ bimodule structure. In this case, the homology H 1YA is
the space of outer double derivations of A, i.e. the quotient of the space of derivations of
A with values in Ae by the subspace of inner derivations. The inverse dualizing complex
owes its name to the following lemma. Let DfdðAÞ denote the full subcategory of DðAÞ
formed by the dg modules M such that each dg k-module MðXÞ, X A A, is perfect. If k

is a field and A is given by a dg algebra, this means that the sum
P

p

dim H pðMÞ is finite.

Lemma 3.4. Suppose that k is a field and A is homologically smooth. For any dg
module L and any dg module M in DfdðAÞ, there is a canonical isomorphism

HomDAðLnAYA;MÞ !@ D HomDAðM;LÞ;

where D ¼ Homkð?; kÞ. In particular, if YA is isomorphic to S�nA in DðAeÞ, then DfdðAÞ
is n-Calabi–Yau as a triangulated category.

Proof. This is a small variation of [30], Lemma 4.1. r

3.5. Quivers, tensor categories, cyclic derivatives. In this section, we collect prelimi-
nary material for the computation in Section 3.6. Let Q be a graded k-quiver, i.e. Q consists
of a set of objects Q0 and, for all objects x and y, a Z-graded k-module Qðx; yÞ. Let R be
the discrete k-category on Q0: It has the set of objects Q0, each endomorphism algebra is
isomorphic to k and all morphisms between di¤erent objects vanish. By abuse of notation,
we also denote by Q the R-bimodule ðx; yÞ 7! Qðx; yÞ. Recall that the tensor product
LnR M of a right by a left R-module is given by

ðLnR MÞðx; yÞ ¼
‘
z

Lðz; yÞnMðx; zÞ;

where z ranges over the objects of R. The path category of Q is the tensor category TRðQÞ:
It has the set of objects Q0 and the bimodule of morphisms

RlQl ðQnR QÞl � � �

with the natural composition. We put A ¼ TRðQÞ.

Now assume that Q is finitely generated and free as an Re-module. Fix a basis ai,
1e ie n, of Q and let

P
ai n a�i be the Casimir element of the Re-bimodule Q, i.e. the

preimage of the identity under the canonical isomorphism

QnR e HomR eðQ;ReÞ ! HomR eðQ;QÞ:
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The cyclic derivative with respect to ai [37] is the unique map

qai
: TRðQÞ ! TRðQÞ;

taking a composition b1 . . . bs of elements of Q to the sum

P
j

a�i ðbjÞbjþ1 . . . bsb1 . . . bj�1:

3.6. Computation for a homotopically finitely presented dg category. Let k be a com-
mutative ring and Q a graded k-quiver whose set of objects is finite and whose bimodule of
morphisms is finitely generated and projective over k. Let R be the k-category with the
same objects as Q and whose only non-zero morphisms are the scalar multiples of the iden-
tities. Let A be a dg category of the form

�
TRðQÞ; d

�
, where TRðQÞ is the tensor dg cate-

gory (cf. Section 3.5)

RlQl ðQnR QÞl � � �l ðQnR � � �nR QÞl � � �

and the di¤erential d is such that Q admits a finite filtration

F0 HF1 HF2 H � � �HFN ¼ Q;ð3:6:1Þ

such that all Fp have the same objects as Q, the bimodule of arrows of F0 vanishes and
dðFpÞ is contained in TRðFp�1Þ for all pf 1. As shown in [42], cf. also [28], in the Morita
homotopy category of dg categories, the dg category

�
TRðQÞ; d

�
is homotopically finitely

presented and every homotopically finitely presented dg category is a retract of such a dg
category. Our aim in this section is to compute the inverse dualizing complex YA for
A ¼

�
TRðQÞ; d

�
. For this, we first need to construct a cofibrant resolution of A over Ae.

Let ~bb be the unique bimodule derivation

A!AnR QnRA;

which takes an element v : x! y of Q to idy n vn idx. Notice that ~bb vanishes on RHA.
If we have nf 1 and a ¼ v1 . . . vn for elements vi : xi ! xi�1 of Q, we have

~bbðaÞ ¼ 1x0
n v1 n v2 . . . vn þ

Pn�1

i¼2

v1 . . . vi�1 n vi n viþ1 . . . vn þ v1 . . . vn�1 n vn n 1xn
:

Let us denote by

r : AnRAnRA!AnR QnRA

the A-bilinear extension of ~bb. Notice that r is a retraction of the inclusion of
AnR QnRA into AnRAnR A. Let d be the composition

AnR QnRA!d AnRAnR A!r AnRnQnR A:

Proposition 3.7. (a) We have d2 ¼ 0 and AnR QnRA endowed with d is a cofibrant

dg bimodule.
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(b) The diagram

0!AnR QnR A!~aa AnRA!A! 0;

where AnR QnRA is endowed with d and

~aaðun vnwÞ ¼ uvnw� un vw;

is a complex of dg modules. The cone pA over the morphism

AnR QnRA!~aa AnRAð3:7:1Þ

is a cofibrant resolution of A and is strictly perfect (cf. Section 2.3). In particular, the dg cat-

egory A is homologically smooth.

Remark 3.8. If instead of the finite filtration (3.6.1), we have a countable exhaus-
tive filtration F0 HF1 H � � �HQ satisfying the same conditions, then the cone pA of
part (b) is still a cofibrant resolution of A (but A is no longer homologically smooth
in general).

Proof. (a) Let us consider the commutator d � r� r � d as a graded map from
AnRAnRA to itself. Its restriction to

A!@ RnRAnR R

is a bimodule derivation. Since r is bilinear, the composition rðd � r� r � dÞ still restricts
to a bimodule derivation on A. For v A Q, we have

rðd � r� r � dÞðvÞ ¼ rdðvÞ � r2dðvÞ ¼ 0:

Thus, the composition rðd � r� r � dÞ vanishes on Q, thus on A and thus on
AnRAnRA. It follows that we have

d2 ¼ rdrd ¼ r2d 2 ¼ 0:

To check that ðAnR AnRA; dÞ is cofibrant it su‰ces to observe that d takes
AnR Fp nRA to AnR Fp�1 nRA for each pf 1 and that the subquotient is a finitely
generated free dg bimodule. Since the filtration by the Fp is finite, it also follows that
ðAnRAnR A; dÞ is perfect. Since R is perfect over Re and

AnRA ¼ RnR e Ae;

it follows that the cone over

0!AnR QnRA!~aa AnRA! 0

is indeed cofibrant and perfect in DðAeÞ. r
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Let YA ¼ ðpAÞ4 be the image under the preduality functor M 7!M4 defined in Sec-
tion 3.1 of the cofibrant resolution pA given by the cone over the morphism

AnR QnRA!~aa AnRA

of (3.7.1). Since the cone is stricly perfect, so is YA. In particular, it is cofibrant and is there-
fore (homotopy equivalent to) the inverse dualizing complex. Let us make YA more ex-
plicit. By definition, SYA is isomorphic to the cone of the induced morphism

HomA eðAnRA;AeÞ ! HomA eðAnR QnRA;AeÞ

endowed with the bimodule structure coming from the ‘outer’ structure on Ae. Using
Lemma 3.2, we obtain that SY is isomorphic to the cone over the morphism of dg modules

AnR R4nRA!AnR Q4nRA:

which takes an element idx n id�x n idx of AnR R4nRA to

idx

�P
ð�1Þja

�
i jani ai n idxi

� idxi
n a�i n ai

�
idx;

where
P

idx n id�x is the Casimir element of the Re-module R and
P

ai n a�i is the Casi-
mir element of the Re-module Q and ai : xi ! yi. The di¤erential of AnR R4nR is that
of the tensor product (where R4 carries the zero di¤erential). To describe the di¤erential of
AnR Q4nRA, we consider AnR Q4nRA as a dg submodule of the tensor algebra
over R of QlQ4. Then the di¤erential of an element idxi

n a�i n idyi
equals the cyclic de-

rivative (cf. Section 3.5) with respect to ai of

W ¼
P

j

ð�1Þjaj ja�j dðajÞ:

This determines the di¤erential because AnR Q4nRA is a dg A-bimodule whose under-
lying graded module is generated by the elements idxi

n a�i n idyi
.

3.9. Compatibility with Morita functors and localizations. Keep the hypotheses of
Section 3.3. Let B be another dg category and F : A! B a dg functor. The dg functor F

is a localization functor if the (total left derived functor of) induction along F induces an
equivalence

ðDAÞ=N!@ DB

for some localizing subcategory N of DA (namely the kernel of the induction functor).
Equivalently, restriction along F is an equivalence from DB onto a full subcategory of
DA (whose inclusion admits a left adjoint given by the induction functor). The localiza-
tions F : A! B such that the kernel N of the induced functor F� : DðAÞ ! DðBÞ is
compactly generated are precisely the dg quotients in the sense of Drinfeld [16], [26].

Proposition 3.10. Assume that F : A! B is a localization functor.

(a) The functor F e : Ae ! Be induced by F is still a localization functor. It sends the

bimodule A to the bimodule B.
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(b) The restriction ðF eÞ� along F e is monoidal for the derived functors of the tensor

products nA and nB (but does not preserve the unit in general).

(c) If A is homologically smooth, then so is B and the left derived functor of induction

along F e : Ae ! Be sends YA to YB. In particular, for each dg B-module L, we have the

projection formula

F�
�
ðF �LÞn

L

A YA

�
!@ Ln

L

BYB:ð3:10:1Þ

(d) If the dg category A is homologically smooth and n-Calabi–Yau as a bimodule for

some integer n (cf. Section 4.7), then B has the same properties.

(e) If F is even a Morita functor, so is F e : Ae ! Be and the induced equivalence

DðAeÞ ! DðBeÞ is naturally a monoidal functor for the derived functors of the tensor prod-

ucts nA and nB. It commutes with the total derived functors of the preduality functors and

sends YA to YB.

Remark 3.11. If A is an (ordinary) algebra and A! B a localization of A in the
sense that the induced functor

projðAÞ ! projðBÞ

between the categories of finitely generated projective modules is a localization of catego-
ries, it may well happen that A is homologically smooth but B is not. For example, if A is
the path algebra of the quiver

1 x
e2

x2

2 x
e1

x1

3

over a field k, then A is finite-dimensional and of global dimension 2 but its localization B

obtained by inverting x1 and x2 is the 2� 2-matrix algebra over the algebra k½e�=ðe2Þ of
dual numbers. More generally, as shown in [36], every finitely presented k-algebra can be
obtained in a similar way from a finite-dimensional algebra of global dimension at most 2.
This is not in contradiction with part (c) of the proposition, because there, we consider de-

rived localizations. In fact, in our example, the algebra B is the zeroth homology of the dg
quotient ~BB obtained from A by inverting x1 and x2 and this generalizes to the setup of [36].

Proof. Let us first describe the induction functor DðAeÞ ! DðBeÞ induced by F .
For this, let us denote by X the A-B-bimodule ðA;BÞ 7! BðB;FAÞ and by X 0 the B-dual
bimodule ðB;AÞ 7! BðFA;BÞ, which is isomorphic to RHomBðX ;BÞ. Then the induction
along F is isomorphic to the derived tensor product with X and the restriction along F is
isomorphic to the derived tensor product with X 0. From the fact that F is a localization
functor, it follows that the canonical morphism

X 0n
L

A X ! B

is an isomorphism in DðBeÞ. Moreover, since X is perfect over B, the canonical mor-
phism

X n
L

B X 0 ! RHomBðX ;XÞ
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is an isomorphism in DðAeÞ. The action of A on X yields a bimodule morphism
A! RHomBðX ;X Þ and thus a morphism

A! X n
L

B X 0

in DðAeÞ. Now we can describe the induction functor DðAeÞ ! DðBeÞ: It is isomorphic
to

M 7! X 0n
L

A M n
L

A X :

In particular, the bimodule M ¼A is sent to X 0n
L

A X!@ B. The restriction functor
DðBeÞ ! DðAeÞ is isomorphic to

N 7! X n
L

B N n
L

B X 0:

Since X 0n
L

A X is isomorphic to A, this shows part (b): the restriction functor is monoidal.
If we compose it with the induction functor, we find the identity functor because

X 0n
L

A X!@ B. It follows that the induction functor DðAeÞ ! DðBeÞ is a localization
functor and sends A to B, which is part (a). If A is homologically smooth, then A is per-
fect in DðAeÞ and so its dual YA is sent to the dual YB of its image B, by Lemma 2.9.
Thus, we have

X �nAYAnA X!@ YB:

By applying Ln
L

A ? to this isomorphism, we get the projection formula (3.10.1). This ends
the proof of (c). Part (d) is immediate from (c) and (a).

Let us prove (e): If F is a Morita functor, the canonical morphism A! X n
L

B X 0 is
also invertible and then the description of the induction functor via X and X 0 shows that it
is monoidal. The commutation of the induction functor with the preduality functor follows
from Lemma 2.9. Now the last assertion follows from (a). r

4. Calabi–Yau completions

4.1. Definition and Morita equivariance. Let k be a commutative ring and A a dg
k-category whose morphism complexes are cofibrant over k. Let n be an integer and
Y ¼ YA the inverse dualizing complex of Section 3.3. Put y ¼ Sn�1YA. The n-Calabi–Yau

completion of A is the tensor dg category

PnðAÞ ¼ TAðyÞ ¼Al yl ðynA yÞl � � � :

We also call it the derived n-preprojective dg category of A (whence the notation Pn). No-
tice that we have canonical inclusion and projection functors

A! PnðAÞ !A:

Up to a quasi-isomorphism (canonical up to homotopy), it is independent of the choice of
cofibrant replacement made in the definition of YA.
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Proposition 4.2. Let F : A! B be a Morita functor. Then F yields a canonical

Morita functor PnðFÞ : PnðAÞ ! PnðBÞ such that we have a commutative diagram

A ���! PnðAÞ ���! A

F

???y
???yPnðFÞ

???yF

B ���! PnðBÞ ���! B:

Proof. Let F e be the induced functor from Ae to Be and denote by F e� the restric-
tion along F e. By part (e) of Proposition 3.10, we can find a quasi-isomorphism
j : YA ! F e�YB and by part (a), it induces quasi-isomorphisms between the (derived) ten-
sor powers

y
nAn
A ! F �ðynBn

B Þ

for all nf 1. Thus, the pair ðF ; jÞ yields a dg functor

PnðFÞ : TAðyAÞ ! TBðyBÞ;

which is quasi-fully faithful. It remains to be shown that the image generates the derived
category of PnðBÞ. Now clearly the image contains all representable functors
PnðBÞð?;FXÞ associated with objects FX in the image of F . But for an arbitrary object
M of the derived category of PnðBÞ, we have

Hom
�
PnðBÞð?;FXÞ;M

�
¼ HomB

�
Bð?;FXÞ;M jB

�
¼MðFXÞ:

Now since F is a Morita functor, the object M vanishes i¤ MðFXÞ is acyclic for all X in A.
Thus, the right orthogonal of the image of PnðFÞ vanishes and so the image is all of the
derived category. r

4.3. Morphisms between restrictions. We keep the notations and assumptions of
Section 4.1. Let i : DðAÞ ! D

�
PnðAÞ

�
be the restriction along the projection onto the first

component PnðAÞ !A.

Lemma 4.4. Let L and M be in DA.

(a) We have a canonical isomorphism

RHomPnðAÞðiL; iMÞ ¼ RHomAðL;MÞlS�n RHomAðLnAYA;MÞ;

where YA is the inverse dualizing complex (Section 3.3).

(b) If k is a field, A is homologically smooth and M belongs to DfdðAÞ (cf. Section

3.3), we have a canonical isomorphism

RHomPnðAÞðiL; iMÞ ¼ RHomAðL;MÞlS�nD RHomAðM;LÞ;

where D is the duality functor Homkð?; kÞ.
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Proof. We may and will assume that L is cofibrant over A. Then we have an exact
sequence of dg modules over PnðAÞ ¼ TAðyÞ:

0! ðiLÞnA ynA TAðyÞ !a ðiLÞnA TAðyÞ !b iL! 0;ð4:4:1Þ

where a takes l n xn u to lxn u� l n xu and b is the multiplication of iL. Clearly the
cone over a is a cobrant resolution pðiLÞ of iL over TAðyÞ. Since y acts by zero in iL and
iM, the morphism a induces zero in HomTAðyÞð?; iMÞ. So we find a canonical isomorphism
in the derived category of k-modules

HomTAðyÞ
�
pðiLÞ; iM

�
¼ HomAðL;MÞlS�1 HomAðLnA y;MÞ:

This implies part (a). Part (b) follows from part (a) and Lemma 3.4. r

4.5. Compatibility with localizations. We keep the notations and assumptions of
Section 4.1. We say that a sequence of dg categories

0!N!G A!F B! 0

is exact if the induced sequence

0! DðNÞ !G� DðAÞ !F� DðBÞ ! 0

is exact, i.e. the composition vanishes, DðNÞ identifies with a full triangulated subcategory
of DðAÞ and the triangle quotient of DðAÞ by DðNÞ identifies via F� with DðBÞ. In this
case, the dg functor F : A! B is a localization in the sense of Section 3.9 (but not each
localization is obtained in this way as shown in [24]).

Theorem 4.6. Assume that A is homologically smooth.

(a) Let F : A! B be a localization functor. Then F yields a canonical localization

functor PnðFÞ : PnðAÞ ! PnðBÞ such that we have a commutative diagram

A ���! PnðAÞ ���! A

F

???y
???yPnðFÞ

???yF

B ���! PnðBÞ ���! B:

(b) If we have an exact sequence of dg categories

0!N!G A!F B! 0;

then the kernel of the functor PnðFÞ� : D
�
PnðAÞ

�
! D

�
PnðBÞ

�
is the localizing subcate-

gory generated by the objects PnðAÞð?;NÞ, N A N.

Proof. We may and will assume that F : A! B is the identity on the set of objects.
Let ðF eÞ� : CðBeÞ ! CðAeÞ be the restriction functor. Let us put Y 0B ¼ ðF eÞ�ðYBÞ. Notice
that for any objects A, A 0 of A (equivalently: B), we have Y 0BðA;A 0Þ ¼ YBðA;A 0Þ and that
in Y 0B, the morphisms of A act via F : A! B. According to part (c) of Proposition 3.10,
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we have a canonical morphism of dg modules j : yA ! y 0B whose image under the induc-
tion along F e is invertible in DðBeÞ. The morphism j yields morphisms of dg modules be-
tween the tensor powers

yA nA � � �nA yA ! y 0BnA � � �nA y 0B ! yB nB � � �nB yB:

Thus, the pair ðF ; jÞ yields a dg functor G : PnðAÞ ! PnðBÞ. Clearly, G is compatible
with the canonical inclusion and projection functors. It remains to be shown that the re-
striction along G is a fully faithful functor

D
�
PnðBÞ

�
! D

�
PnðAÞ

�
:

Let L be a dg PnðBÞ-module. It is given by its underlying dg B-module and a morphism of
dg B-modules

l : LnB yB ! L:

The dg module G�L is given by the restriction of L to A and the morphism of dg
A-modules deduced from l and j

LnA yA ��!idnj
LnA yB ��!can

LnB yB ��!l L:

Let us use this description of G� to show that it is fully faithful. Let L be a dg PnðBÞ-
module. We may and will assume that L is cofibrant. Since PnðBÞ is cofibrant as a right
dg B-module, the restriction of L to B is then cofibrant. We have an exact sequence of
cofibrant dg PnðBÞ-modules

0! LnB yBnB TBðyBÞ !a LnB TBðyBÞ ! L! 0;

where aðl n xn uÞ ¼ lxn u� l n xu. This makes it clear that the cone over the mor-
phism

LnB yBnB TBðyBÞ ! LnB TBðyBÞ

is homotopy equivalent to L. Let M be another dg PnðBÞ-module. By applying
HomBð?;MÞ to the above morphism, we obtain a morphism of dg k-modules

HomBðL;MÞ ! HomBðLnB yB;MÞ

whose cone (shifted by one degree to the right) computes morphisms from L to M in the
derived category of PnðBÞ. An analogous reasoning yields the morphisms between G�L
and G�M in the derived category of PnðAÞ. Thus, to conclude that G� is fully faithful, it
su‰ces to check that for all M, F � induces bijections

HomDðBÞðL;MÞ ! HomDðAÞðF �L;F �MÞ

and

HomDðBÞðLn
L

B yB;MÞ ! HomDðAÞ
�
F �ðLÞn

L

A yA;F �M
�
:
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The first bijection follows from the full faithfulness of F �. The second one is a consequence
of the full faithfulness of F � and of the projection formula (3.10.1). This ends the proof of
(a). To prove (b), it su‰ces to show that the image of PnðFÞ� is exactly the full subcategory
of the dg modules over PnðAÞ which are right orthogonal to all the representable dg mod-
ules PnðAÞð?;NÞ for N in N. We have

RHomPnðAÞ
�
PnðAÞð?;NÞ;M

�
¼ RHomA

�
Að?;NÞ;M

�
;

which shows that if M is in the image of PnðFÞ�, it is right orthogonal to the PnðAÞð?;NÞ.
Conversely, if M satisfies this condition, then the underlying A-module of M is quasi-
isomorphic to F �L for some dg B-module L. The structural morphism

M nA yA !M;

then yields a morphism F �LnA yA ! F �L hence a morphism

F�ðF �LnA yAÞ ! L

and thus by the projection formula (3.10.1), a morphism

LnB yB ! L:

Thus, L carries a canonical structure of dg module over PnðBÞ and it is clear that M is
isomorphic to the image under PnðFÞ� of L endowed with this structure. r

4.7. The Calabi–Yau property. We keep the notations and assumptions of Section
4.1. In particular, the symbol n denotes a fixed integer. On the category of dg Ae-modules,
we consider the composition Vn of the preduality functor V with the shift Sn. It is part of a
canonical preduality functor ðVn; jnÞ (by Section 2.4). We also use the notation Vn for the
derived functor of Vn. Slightly modifying the terminology of Ginzburg and Kontsevich (cf.
[19], Definition 3.2.3), we say that the dg category A is n-Calabi–Yau as a bimodule if, in
DðAeÞ, there is an isomorphism

f : A! VnA;

which is ðVn; jnÞ-symmetric, i.e. such that Vnð f Þjn ¼ f .

Theorem 4.8. If A is homologically smooth, its n-Calabi–Yau completion PnðAÞ is

homologically smooth and n-Calabi–Yau as a bimodule.

Proof. Let B be the n-Calabi–Yau completion. We have a short exact sequence of
Be-modules

0! TAðyÞnA ynA TAðyÞ !a TAðyÞnA TAðyÞ ! TAðyÞ ! 0;

where the morphism a takes an element f of yðX ;YÞ to 1Y n f � f n 1X and the second
map is composition. Thus, in the derived category of Be, the bimodule TAðyÞ is isomorphic
to the cone on the morphism a. We deduce first that TAðyÞ is perfect as a bimodule: Indeed,
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the objects

TAðyÞnA ynA TAðyÞ ¼ ynA e Be and TAðyÞnA TAðyÞ ¼AnA e Be

are perfect since they are induced from perfect Ae-modules (all tensor products are also
derived tensor products since Be is cofibrant over Ae).

To prove the second part of the assertion, we first notice that y is the Vn�1-dual of A.
Since the bimodule A is perfect, it is homotopically Vn�1-reflexive and so, up to homotopy,
A is also the Vn�1-dual of y. By Lemma 2.9, for perfect modules, the induction functor
?nA e Be commutes with the preduality Vn up to isomorphism in the derived category.
Thus, in DðBeÞ, the objects

ynA e B and AnA e B

are still Vn�1-dual to each other. So by Proposition 2.5, in order to show that B is
n-Calabi–Yau as a bimodule, it su‰ces to show that a is Vn�1-antisymmetric. Now as
seen in Section 2.7, we have a natural homotopy equivalence

Vn�1ðyÞnA e Be nA e y� ! HomB e

�
ynA e Be;Vn�1ðynA e BeÞ

�
:

The right-hand side is quasi-isomorphic to the following dg k-modules:

HomA e

�
y;Vn�1ðyÞnA e Be

�
!@ HomA eðy;AnA e BeÞ ¼ HomA eðy;BnABÞ;

where we use the fact that y is cofibrant. So we get a natural quasi-isomorphism

Vn�1ðyÞnA e Be nA e y� ! HomA eðy;BnA BÞ:

Let us lift the morphism l : x 7! 1n x along this quasi-isomorphism: Let c be the Casimir
element in ynA e y�, i.e. the image of 1 A k under the morphism

k ! HomA eðy; yÞ!@ ynA e y�:

We let ~ll be the image of idn c under the composition

ðVn�1yÞnA e ðAop nk yÞnA e y� ! ðVn�1yÞnA e ðBop nk BÞnA e y�:

Then clearly ~ll maps to l and the transpose conjugate of ~ll maps to r : x 7! xn 1. Since a

equals r� l, it follows that a is indeed Vn�1-antisymmetric. r

5. Deformed Calabi–Yau completions

5.1. Construction and Calabi–Yau property. Let k be a commutative ring and A a
dg k-category such that AðX ;Y Þ is cofibrant as a dg k-module for all objects X and Y of
A. We assume that A is homologically smooth. Let Y be the inverse dualizing complex (cf.
Section 3.3), n an integer, y ¼ Sn�1Y and PnðAÞ ¼ TAðyÞ the n-Calabi–Yau completion.
It is natural to deform PnðAÞ by adding an A-bilinear (super-)derivation D of degree 1 to
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its di¤erential. Such a derivation is determined by its restriction to the generating bimodule
y. It has to satisfy

0 ¼ ðd þDÞ2 ¼ dðDÞ þD2:

Since the right-hand side is a degree 2 derivation, it su‰ces to check this identity on the
generating bimodule y. Assume that D takes y to AHTAðyÞ. Then D2 vanishes and the
condition reduces to dðDÞ ¼ 0. Thus, we see that each closed bimodule morphism c of de-
gree 1 from y to A gives rise to a ‘deformation’

PnðA; cÞ

of PnðAÞ, obtained by adding c to the di¤erential of PnðAÞ. A standard argument shows
that two homotopic morphisms c and c 0 yield quasi-isomorphic dg categories PnðA; cÞ and
PnðA; c 0Þ. Thus, up to quasi-ismorphism, the deformation PnðA; cÞ only depends on the
image of c in the derived category of bimodules (recall that y is cofibrant). Now notice
that since the bimodule A is perfect, we have the following isomorphisms:

HomDðA eÞðSn�1Y;SAÞ ¼ HomDðA eÞðA4;S2�nAÞ ¼ H 2�nðAn
L

A e A44Þ

¼ H 2�nðAn
L

A e AÞ ¼ TorA
e

n�2ðA;AÞ ¼ HHn�2ðAÞ;

where HH denotes Hochschild homology.

Theorem 5.2. The deformed n-Calabi–Yau completion PnðA; cÞ associated with an

element c of HHn�2ðAÞ is homologically smooth and n-Calabi–Yau.

Proof. This is a variation on the proof of Theorem 4.8 where we have to take into
account the new component of the di¤erential of TAðyÞ. Let B be the deformed n-Calabi–
Yau completion. We still have a short exact sequence of Be-modules

0! TAðyÞnA ynA TAðyÞ !a TAðyÞnA TAðyÞ ! TAðyÞ ! 0;

where the morphism a takes an element f of yðX ;YÞ to 1Y n f � f n 1X and the second
map is composition. Notice that here the di¤erentials of the tensor algebras TAðyÞ are de-
formed but that the one of the middle factor y on the left is not! The map a is indeed com-
patible with the di¤erential: For an element x of y, we have

d
�
aðxÞ

�
¼ dð1n x� xn 1Þ ¼ 1n ðdxþ cxÞ � ðdxþ cxÞn 1 ¼ 1n dx� dxn 1;

where the last equality holds because cx belongs to A and the tensor product is over A.
Now we can proceed as in the proof of Theorem 4.8. We obtain that for arbitrary c, the
dg category B is smooth and n-Calabi–Yau. r

Remark 5.3. The formulas in Lemma 4.4 remain true when we replace the Calabi–
Yau completion PnðAÞ with the deformed Calabi–Yau completion PnðA; cÞ. Indeed, the
sequence (4.4.1) in the proof of the lemma remains well-defined and exact when we replace
TAðyÞ with PnðA; cÞ.
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5.4. Deformed Calabi–Yau completions as homotopy pushouts. The slightly ad hoc
construction of the deformed Calabi–Yau completion given in Section 5.1 can be viewed
more intrinsically as a homotopy pushout. Let us explain this in more detail. Let k, A
and Y be as in Section 5.1 and let c be an element of HHn�2ðAÞ. We may lift c to a mor-
phism of dg bimodules

~cc : Y½n� 2� !A:

This morphism extends uniquely to a morphism of dg categories

½id; ~cc� : Pn�1ðAÞ !A

which is the identity on A and given by ~cc on Y½n� 2�. We also have the projection

½id; 0� : Pn�1ðAÞ !A:

Now let i : A! PnðA; cÞ be the canonical inclusion.

Proposition 5.5. The square

Pn�1ðAÞ ���!½id;0� A

½id; ~cc�

???y
???yi

A ���!
i

PnðA; cÞ

is a homotopy pushout square for the model category structure on the category of dg catego-

ries introduced in [39].

Notice that the square is not commutative in the category of dg categories. The proof
will show in particular that it becomes commutative in the homotopy category.

The proposition is a special case of the following general fact: Let A be any (small)
dg category and X a cofibrant A-bimodule. Let f : X !A be a bimodule morphism.
We also view f as a morphism of degree 1 from X ½1� to A. Let TAðX ½1�Þ denote the
tensor category TAðX ½1�Þ whose di¤erential has been deformed using f : X ½1� !A as
an additional component. Let the morphisms ½id; f �, ½id; 0� from TAðXÞ to A and
i : A! TAðX ½1�; f Þ be defined analogously to the above morphisms. Proposition 5.5 is
now clearly a special case of the following:

Proposition 5.6. The square

TAðXÞ ���!½id;0� A

½id; f �

???y
???yi

A ���!
i

TAðX ½1�; f Þ

is a homotopy pushout square for the model category structure on the category of dg catego-

ries introduced in [39].
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Proof. We may and will assume that A is cofibrant and that X is cofibrant as a bi-
module. To compute the homotopy pushout of the angle

TAðX Þ ���!½id;0� A

½id; f �

???y
A;

it is then enough to replace the morphism ½id; 0� by a cofibration and to compute the push-
out in the category of dg categories. To replace ½id; 0� by a homotopy pushout, we consider
the natural inclusion

j : X ! IX

of X into the cone IX over the identity of X . Clearly, the morphism ½id; 0� factors as the
cofibration TAðX Þ ! TAðIXÞ followed by the trivial fibration TAðIXÞ !A. So to com-
pute the homotopy pushout, it is enough to compute the homotopy pushout of the angle

TAðX Þ ���! TAðIXÞ

½id; f �

???y
A:

We claim that this is given by the commutative square

TAðXÞ �����! TAðIXÞ

½id; f �

???y
???y

A ���! TAðX ½1�; f Þ:

Indeed, we have a pushout diagram of dg bimodules

X �����!j
IX

f

???y
???y

A ���! AlX ½1�;

where AlX ½1� is endowed with the di¤erential of the mapping cone over f . Using this
one easily checks that TAðX ½1�; f Þ has the correct universal property. r

5.7. Compatibility with Morita functors and localizations. As in Section 5.1, let n

be an integer, k a commutative ring and A a homologically smooth dg k-category such
that AðX ;Y Þ is cofibrant as a dg k-module for all objects X and Y of A. Consider the
deformed n-Calabi–Yau completion B ¼ PnðA; cÞ associated with an element c of
HHn�2ðAÞ.

Now let B be another dg k-category satisfying the same hypotheses as A. Assume
that we have a localization functor F : A! B and let c 0 be the element of HHn�2ðBÞ ob-
tained as the image of c under the map induced by F , cf. [25].

28 Keller, Van den Bergh, Deformed Calabi–Yau completions

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 



Theorem 5.8. (a) Under the above hypotheses, there is a canonical localization functor

G : PnðA; cÞ ! PnðB; c 0Þ such that we have a commutative diagram

A ���! PnðA; cÞ

F

???y
???yG

B ���! PnðB; c 0Þ:

The functor G is a Morita functor if F is.

(b) If we have an exact sequence of dg categories (cf. Section 4.5)

0!N!G A!F B! 0;

then the kernel of the induced functor

G� : D
�
PnðA; cÞ

�
! D

�
PnðB; c 0Þ

�

is the localizing subcategory generated by the dg modules PnðA; cÞð?;NÞ, where N belongs

to N.

Proof. We have a commutative square of isomorphisms

Hn�2ðAn
L

A e AÞ ���! HomA eðyA;AÞ???y
???y

Hn�2ðBn
L

B e BÞ ���! HomB eðyB;BÞ;

where the vertical arrows are induced by F . This yields a commutative square in DðAeÞ,
where we also write F � for ðF eÞ�,

yA ���!c A

j

???y
???yF

F �yB ���!F �c 0
F �B:

We would like to lift it to a strictly commutative square of dg modules. We choose an
arbitrary lift ~cc of c. After replacing yB by a homotopy equivalent cofibrant dg module,
we may choose a dg module morphism ~cc 0 : yB ! B lifting c 0 such that ~cc 0 induces a split
surjection of graded Be-modules. The same then holds for the morphism F �~cc 0 of dg
Ae-modules. Therefore, we can choose a lift ~jj of j such that the square of dg modules

yA ���!~cc A

~jj

???y
???yF

F �yB ���!F �~cc 0
F �B
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commutes strictly. As in the proof of Theorem 4.6, the morphisms F and ~jj then induce a
dg functor

G : PnðA; cÞ ! PnðB; c 0Þ:

It remains to be checked that the restriction G� is a fully faithful functor from
D
�
PnðB; c 0Þ

�
to D

�
PnðA; cÞ

�
. Let L be a dg PnðB; c 0Þ-module. It is given by its underlying

dg B-module and a morphism of graded modules homogeneous of degree 0

l : LnB yB ! L

such that

ðdlÞðl n xÞ ¼ lc 0ðxÞ

for all l in L and x in yB. Suppose that L is cofibrant as a PnðB; c 0Þ-module. Since the
underlying B-module of PnðB; c 0Þ is cofibrant (even with the deformed di¤erential), the
underlying B-module of L is cofibrant. We have an exact sequence of cofibrant dg
PnðBÞ-modules

0! LnB yBnB TBðyBÞ !a LnB TBðyBÞ ! L! 0;

where aðl n xn uÞ ¼ lxn u� l n xu. Notice that the map a is a morphism of dg mod-
ules despite the deformation of the di¤erential on TBðyBÞ, analogously to what we have
seen in the proof of Theorem 5.2. The sequence shows that the cone over the mor-
phism

LnB yBnB TBðyBÞ ! LnB TBðyBÞ

is homotopy equivalent to L. Let M be another dg PnðB; c 0Þ-module. By applying
HomBð?;MÞ to the above morphism, we obtain a morphism of dg k-modules

HomBðL;MÞ ! HomBðLnB yB;MÞ;

whose cone (shifted by one degree to the right) computes morphisms from L to M in the
derived category of PnðB; c 0Þ. An analogous reasoning yields the morphisms between G�L
and G�M in the derived category of PnðA; cÞ. Thus, to conclude that G� is fully faithful, it
su‰ces to check that for all M, the dg functor F � induces bijections

HomDðBÞðL;MÞ ! HomDðAÞðF �L;F �MÞ

and

HomDðBÞðLn
L

B yB;MÞ ! HomDðAÞ
�
F �ðLÞn

L

A yA;F �M
�
:

As in the proof of Theorem 4.6, the first bijection follows from the full faithfulness of F �

and the second one is a consequence of the full faithfulness of F � and of the projection for-
mula (3.10.1). This ends the proof of (a). The proof of (b) is entirely analogous to that of
part (b) of Theorem 4.6 and left to the reader. r
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6. Ginzburg dg categories

6.1. Reminder on Hochschild and cyclic homology. Let k be a commutative ring and
Q a graded k-quiver, cf. Section 3.5. We put A ¼ TRðQÞ. The bimodule A has the small

resolution

0!AnR QnRA!~aa AnR A!A! 0;ð6:1:1Þ

where the map ~aa takes a tensor un vnw to uvnw� un vw and the right-hand map is
composition. By tensoring this resolution with A over Ae we obtain the following complex
which computes Hochschild homology:

0! ðQnRAÞnR e R!a AnR e R! 0;

where a takes a tensor vn u with factors of degree p and q to vu� ð�1Þpq
uv.

Let ~bb be the unique bimodule derivation

A!AnR QnRA;

which takes an element v : x! y of Q to idy n vn idx. If we have nf 1 and a ¼ v1 . . . vn

for elements vi : xi ! xi�1 of Q, we have

~bbðaÞ ¼ 1x0
n v1 n v2 . . . vn þ

Pn�1

i¼2

v1 . . . vi�1 n vi n viþ1 . . . vn þ v1 . . . vn�1 n vn n 1xn

and

~aa~bbðaÞ ¼ �1x0
n aþ an 1xn

:

The map ~bb induces a (unique) map b making the following square commutative:

A �������!~bb
AnR QnR A???y

???y
AnR e R ���!b ðQnRAÞnR e R;

where the left-vertical map takes a path a from x to y to an 1x1y and the right-vertical
map takes an vn b to ð�1Þpqðvn baÞn 1x, where a is of degree p and vb is of degree q.
Note that the tensor product M nR e R of an R-bimodule M with R over Re identifies with
the quotient of M by the dg submodule generated by all di¤erences m1x � 1xm for m A M

and x an object of R. If we make this identification, the map b takes a path v1 . . . vn of Q to
the sum P

i

Gvi n viþ1viþ2 . . . vnv1 . . . vi�1;

where the sign is computed by the Koszul sign rule from the degrees of the vj. We clearly
have a � b ¼ 0. The following complex is to be continued in a 2-periodic fashion to the
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left:

� � � !a AnR e R!b ðQnR AÞnR e R!a AnR e R! 0:ð6:1:2Þ

It is the small cyclic complex CsmðAÞ and computes cyclic homology (cf. [34], Chapter 3).
We sometimes consider its components as columns. If A ¼ R, cyclic homology is two-
periodic, the module HC1ðRÞ vanishes and HC0ðRÞ is a sum of copies of k indexed by Q0.
If k contains Q, and A is arbitrary, then the reduced small cyclic complex CsmðAÞ=CsmðRÞ
is quasi-isomorphic to the quotient of its rightmost column by the image of a, i.e. to the
cokernel of the map

ðQnRAÞnR e R!a AnR e R:

The inclusion of the subcomplex of the two rightmost terms induces the canonical mor-
phism from Hochschild to cyclic homology. The corresponding quotient complex is iso-
morphic to the original complex shifted by two degrees to the left. The short exact sequence
thus obtained induces the long exact sequence (known as the SBI-sequence)

HHnðAÞ !
I

HCnðAÞ !
S

HCn�2ðAÞ !
B

HHn�1ðAÞ:

In particular, the rightmost arrow b of the small cyclic complex induces Connes’ connecting
map

B : HCnðAÞ ! HHnþ1ðAÞ:

If the ring k contains Q and the quiver Q is concentrated in degree 0, then in the exact
sequence

HH2ðAÞ ! HC2ðAÞ ! HC0ðAÞ ! HH1ðAÞ ! HC1ðAÞ;

the terms HH2ðAÞ and HC1ðAÞ vanish (as we see by considering the small cyclic com-
plex), the map S induces an isomorphism HC2ðAÞ !@ HC0ðRÞ, and the map B induces
an isomorphism from the reduced zeroth cyclic homology of A to its first Hochschild
homology.

6.2. Ginzburg dg categories. Let Q be a graded k-quiver such that the set of objects
Q0 is finite and Qðx; yÞ is a finitely generated graded projective k-module for all objects
x and y. We fix an integer n and a superpotential of degree n� 3, i.e. an element W in
ðAnR e RÞ=im a of degree n� 3. So W is a linear combination of cycles considered up to
cyclic permutation ‘with signs’. Notice that W need not be homogeneous with respect to
the grading by path length. We can view W as an element in HCn�3ðAÞ and if the ring k

contains Q, every element of HCn�3ðAÞ has such a representative. Let R be the discrete
category on Q0 and Q4 the dual of the R-bimodule Q over Re (endowed with the canonical
involution). Let

P
vi n v�i be the Casimir element of QnR e Q4, i.e. the element which,

under the canonical isomorphism

QnR e Q4! HomR eðQ;QÞ;

corresponds to the identity of Q.
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The Ginzburg dg category GnðQ;WÞ, due to V. Ginzburg ([19], Section 4.2) for a
quiver Q concentrated in degree 0 and n ¼ 3, is defined as the tensor category over R of
the bimodule

~QQ ¼ QlQ4½n� 2�lR½n� 1�

endowed with the unique di¤erential which

(a) vanishes on Q,

(b) takes the element v�i of Q4½n� 2� to the cyclic derivative qvi
W (cf. Section 3.5),

(c) takes the element idx of R½n� 1� to ð�1Þn idxð
P
½vi; v

�
i �Þ idx, where ½ ; � denotes the

supercommutator.

Let A be the path category of Q and c ¼ bðWÞ the image of W in

HHn�2ðAÞ ¼ TorA
e

n�2ðA;AÞ:

Thanks to the small resolution (6.1.1), the path category A is homologically smooth. By
Theorem 5.2, the associated deformed n-Calabi–Yau completion PnðA; cÞ is homologi-
cally smooth and n-Calabi–Yau.

Theorem 6.3. The deformed n-Calabi–Yau completion PnðA; cÞ is quasi-isomorphic

to the Ginzburg dg category GnðA;WÞ. In particular, the Ginzburg dg category is homologi-

cally smooth and n-Calabi–Yau.

Remark 6.4. If we use the theorem and Proposition 5.5, we obtain that the Ginz-
burg dg category is given, up to isomorphism in the homotopy category of dg categories
in the sense of [39], by the homotopy pushout square

Pn�1ðAÞ �������!½id;0�
A

½id; ~cc �

???y
???yi

A �������!
i

GnðA;WÞ:

I thank Ben Davison [14] for suggesting this statement.

Proof. We first apply the computation of the inverse dualizing complex of Section
3.6 to the special case where A ¼ TRðQÞ with d ¼ 0. We obtain that the non-deformed
CY-completion is quasi-isomorphic to the tensor category over R of the bimodule
QlQ4½n� 2�lR½n� 1� endowed with the unique di¤erential which vanishes on Q and
Q4 and takes the element idx of R½n� 1� to ð�1Þn�2 idxð

P
½vi; v

�
i �Þ idx. The deforming com-

ponent of the di¤erential of PnðA; cÞ is the map y!A given by the contraction with
c ¼ bðWÞ in

Sn�1 RHomA eðA;AeÞn ðAn
L

A e AÞ ! SA:
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This last map identifies with

Sn�1 HomA eðP;AeÞn ðPnA e AÞ ! SA;

where P is the cofibrant resolution of A constructed in Proposition 3.7. The complex
PnA e A is isomorphic to

0! ðQnRAÞnR e R!a AnR e R! 0;

and c lies in the subcomplex ðQnRAÞnR e R. The complex Sn�1 HomA eðP;AeÞ is iso-
morphic to

0!AnRA!AnR Q4nRA! 0:

Therefore, the deforming component of the di¤erential vanishes on the left-hand compo-
nent AnRA. Now it is clear that the deforming component of the di¤erential vanishes
on R½n� 1� and takes an element v� of Q4½n� 2� to ðv�n idÞ � bðWÞ. For v ¼ v�i , clearly
this equals the cyclic derivative qvi

W . r

6.5. Deformed Calabi–Yau completions of homotopically finitely presented dg catego-

ries. Let k be a commutative ring and Q a graded k-quiver whose set of objects is finite
and whose bimodule of morphisms is finitely generated and projective over k. Let A be
a dg category of the form

�
TRðQÞ; d

�
, where the di¤erential d satisfies the condition of

Section 3.6. Let n be an integer, Q4¼ HomR eðQ;ReÞ and

~QQ ¼ QlQ4½n� 2�lR½n� 1�:

Let
P

aj n a�j be the Casimir element of Q and let W be the element

W ¼
P
ð�1Þjaj ja�j dðajÞ

of TRð ~QQÞ. Let W 0 be an element of HCn�3ðAÞ and c A HHn�2ðAÞ its image under Connes’
map B.

Proposition 6.6. The deformed n-Calabi–Yau completion PnðA; cÞ is isomorphic to

the tensor category TRð ~QQÞ, endowed with the unique di¤erential d such that for each i, we

have

dðaiÞ ¼ qa�
i
ðW þW 0Þ and dða�i Þ ¼ qai

ðW þW 0Þ;

and for an object x of Q, the element idx of Sn�1R is taken to

dðidxÞ ¼ ð�1Þn idxð
P
½ai; a

�
i �Þ idx

where ½ ; � is the supercommutator.

Proof. This follows from the description of the inverse dualizing complex of A in
Section 3.6. The details of the computation are similar to those in the proof of Theorem
6.3 and left to the reader. r
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6.7. 3-Calabi–Yau completions of 2-dimensional dg categories. Let k be a commuta-
tive ring and A a dg category Morita equivalent to

�
TRðVÞ; d

�
for a graded k-quiver

V whose set of objects is finite and whose bimodule of arrows is finitely generated free
over k and concentrated in degrees �1 and 0 (the di¤erential d is arbitrary). The follow-
ing proposition shows in particular that P3ðAÞ is Morita-equivalent to a Ginzburg dg
category.

Let B be the path category B ¼ TR

�
V 0 l ðV�1Þ4

�
of the sum of the 0th component

of V with the4-dual of V�1 placed in degree 0. Let W be the class in HC0ðBÞ of the ele-
ment

P
j

v�j dðvjÞ;

where
P

vj n v�j is a Casimir element for V�1. Let W 0 A HC0ðAÞ and c 0 A HH1ðAÞ its
image under Connes’ map B. For example we can have W 0 ¼ 0 and c ¼ 0.

Proposition 6.8. The deformed 3-Calabi–Yau completion P3ðA; cÞ is derived Morita-

equivalent to the deformed 3-Calabi–Yau completion P3ðB;W þW 0Þ and thus to the

Ginzburg algebra G3

�
V 0 l ðV�1Þ4;W þW 0�.

Proof. This is a special case of 6.6. r

6.9. 3-CY completions of algebras of global dimension 2. Let k be a field and A an
algebra given as the quotient kQ 0=I of the path algebra of a finite quiver Q 0 by an ideal I

contained in the square of the ideal J generated by the arrows of Q 0. Assume that A is
of global dimensione 2 (but not necessarily of finite dimension over k). We construct a
quiver Q and a superpotential W as follows: Let R be the union over all pairs of vertices
ði; jÞ of a set of representatives of the vectors belonging to a basis of

TorA
2 ðSj;DSiÞ ¼ ej

�
I=ðIJ þ JIÞ

�
ei;

where D ¼ Homkð?; kÞ and Si is the simple right module associated with the vertex i. We
think of these representatives as ‘minimal relations’ from i to j, cf. [10]. For each such
representative r, let rr be a new arrow from j to i. We define Q to be obtained from Q 0 by
adding all the arrows rr. We define a potential by

W ¼
P
r AR

rrr:

Now let W 0 A HC0ðAÞ and c A HH1ðA;AÞ its image under Connes’ map B. Let ~WW 0 be an
element of HC0ðkQÞ which lifts W 0 along the canonical surjection kQ! kQ 0 ! A taking
all arrows rr to 0. For example, we can have W 0 ¼ 0 and ~WW 0 ¼ 0.

Theorem 6.10. The deformed 3-Calabi–Yau completion P3ðA; cÞ is quasi-isomorphic

to the Ginzburg dg algebra G3ðQ;W þ ~WW 0Þ.

A very similar result was independently obtained by Ginzburg [20] in a slightly di¤er-
ent setting.
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Proof. For each vertex i of A let Pi be the indecomposable projective eiA. Let A be
the full subcategory of the module category formed by the Pi. By induction, one constructs
a graded R-bimodule V and a di¤erential d on TRðVÞ such that

(1) V n vanishes in degrees nf 1, V 0 is free with basis Q 0 and V�1 is free with basis
R;

(2) the di¤erential d sends the basis element r A R of V�1 to the element r of
TRðV 0Þ;

(3) for all nf 1, the di¤erential d maps V�n�1 to Tn and induces an isomorphism
from V�n�1 onto H�nðTnÞ, where Tn denotes the dg category TRðV 0 l � � �lV�nÞ.

Notice that (a) the image dðVÞ lies in the square of the ideal generated by V in TRðVÞ and
that (b) we have a canonical quasi-isomorphism between F ¼

�
TRðVÞ; d

�
and A. The

point (a) implies that we have isomorphisms

V�nði; jÞGTorF1þnðSi;DSjÞ

for all i, j and n (thanks to Remark 3.8, we can use the bimodule resolution of part (b) of
Proposition 3.7). The point (b) implies that we have isomorphisms

TorF1þnðSi;DSjÞGTorA1þnðSi;DSjÞ:

Thus, we have V n ¼ 0 for all n di¤erent from 0 and �1. Now we can apply Proposition 6.8
to conclude. r

6.11. Application to cluster-tilted algebras. Let k be an algebraically closed field. If A

is a finite-dimensional k-algebra of finite global dimension, its generalized cluster-category

CA is defined as the full triangulated subcategory of the triangle quotient

Db
�
Al ðDAÞ½�3�

�
=per

�
Al ðDAÞ½�3�

�
generated by the image of the free module A, cf. [27] and [1]. Here, the dg algebra
Al ðDAÞ½�3� is the trivial extension of A by the dg bimodule ðDAÞ½�3�, where
D ¼ Homkð?; kÞ. In general, the category CA has infinite-dimensional morphism spaces.
As shown in [27], if A is the path algebra of a quiver Q without oriented cycles, then CA is
triangle equivalent to the cluster category CQ as defined in [9], cf. also [11] for the case
where Q is Dynkin of type A.

The generalized cluster category CðQ;WÞ of a finite quiver Q with potential W is
defined as the triangle quotient

per
�
G3ðQ;WÞ

�
=Db

�
G3ðQ;WÞ

�
;

cf. [1]. In general, it has infinite-dimensional morphism spaces. If Q does not have oriented
cycles (and so W ¼ 0), then CðQ;0Þ is equivalent to the cluster category CQ, cf. [1]. For
arbitrary ðQ;WÞ, the endomorphism algebra of the image of the free module G3ðQ;WÞ in
CðQ;WÞ is isomorphic to the Jacobian algebra H 0

�
G3ðQ;WÞ

�
.
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Recall [29] that a tilting module over an algebra B is a B-module T such that the total
derived functor of the tensor product by T over the endomorphism algebra EndBðTÞ is an
equivalence

D
�
EndBðTÞ

�
!@ DðBÞ:

The endomorphism algebra A of a tilting module T over a hereditary algebra B is of
global dimension at most 2. A module M is basic if each indecomposable module occurs
with multiplicity at most 1 as a direct factor of M. If T is a basic tilting module over
the path algebra B ¼ kQ 00 of a finite quiver without oriented cycles, the endomorphism
algebra ~AA of the image of T in CQ 00 is called the cluster-tilted algebra associated with T ,
cf. [10].

Theorem 6.12. Let A ¼ kQ 0=I be a k-algebra of global dimension at most 2 as in

Section 6.9 and define ðQ;WÞ as there. Let G ¼ G3ðQ;W Þ.

(a) The category CðQ;WÞ is canonically triangle equivalent to the cluster category CA.

The equivalence takes G to the image pðAÞ of A in CA and thus induces an isomorphism

from the Jacobian algebra PðQ;WÞ onto the endomorphism algebra ~AA of the image of A

in CA.

(b) If T is a basic tilting module over kQ 00 for a quiver without oriented cycles Q 00 and

A is the endomorphism algebra of T , then CðQ;WÞ is triangle equivalent to CQ 00 by an equiv-

alence which takes G to the image of T in CQ 00 . Thus, the endomorphism algebra ~AA of T in

CQ 00 is isomorphic to the Jacobian algebra H 0ðGÞ.

The quiver of ~AA in part (b) was first described by Assem–Brüstle–Schi¿er [3]. The
fact that cluster-tilted algebras are Jacobian algebras was independently proved by Buan–
Iyama–Reiten–Smith [8] using an entirely di¤erent method.

Proof. (a) By Theorem 6.10, the 3-Calabi–Yau completion P ¼ P3ðAÞ is quasi-
isomorphic to G ¼ G3ðQ;W Þ. Thus we have an equivalence of triangulated categories

CðQ;WÞ !@ perðPÞ=DfdðPÞ,

taking the free module G to P. Moreover, we have an equivalence of triangulated cate-
gories

perðPÞ=DfdðPÞ!@ CA,

taking the free module P to the image pðAÞ of the free module A, cf. [27], the proof of
Theorem 7.1, or [1], Lemmas 4.13 to 4.15. The claim follows because H 0ðGÞ is isomorphic
to the endomorphism algebra of G in CðQ;WÞ by [1], Theorem 3.6.

(b) If A is the endomorphism algebra of T , then A is derived equivalent to the path
algebra kQ 00 and therefore CA is equivalent to CQ 00 . The claim now follows from part
(a). r
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7. Particular cases of localization and Morita equivalence

7.1. Deleting a vertex is localization. Let k be a field and Q a finite quiver (pos-
sibly with oriented cycles). Let A be the path algebra kQ. Notice that A may be of in-
finite dimension. Let i be a vertex of Q and ei the associated idempotent. Let Pi ¼ eiA

be the associated projective indecomposable. Let NHDðAÞ be the localizing subcate-
gory generated by Pi. Let B ¼ A=AeiA. Notice that B is the path algebra of the quiver
Q 0 obtained from Q by deleting the vertex i and all arrows starting or ending at this
vertex.

Lemma 7.2. The functor

?n
L

A B : DðAÞ ! DðBÞ

induces an equivalence from DðAÞ=N onto DðBÞ. Thus, the morphism A! B is a localiza-

tion of dg categories (cf. Section 3.9).

Proof. Since N is generated by a compact object, we know (see for example [35])
that for each object X of DðAÞ, there is a triangle, unique up to unique isomorphism,

XN ! X ! X N? ! SXNð7:2:1Þ

with XN in N and X N?
in the right orthogonal subcategory N?. Moreover, the projec-

tion functor DðAÞ ! DðAÞ=N induces an equivalence from N? onto DðAÞ=N. Let us
compute the triangle (7.2.1) for X ¼ Pj, where Pj ¼ ejA is the projective associated with a
vertex j of Q. If we have j ¼ i, the morphism XN ! X is the identity of Pi. If we have
j 3 i, let Mj be the set of minimal elements of the set of paths p from i to j, where we
have pe p 0 if p 0 ¼ pu for a path u from i to i. Then each morphism Pi ! Pj uniquely
factors through the morphism

L
Mj

Pi ! Pj;

whose component associated with p A Mj is the left multiplication by p. Moreover, this
morphism is injective. It follows easily that it induces a bijection

HomDðAÞ

�
SmPi;

L
Mj

Pi

�
! HomDðAÞðSmPi;PjÞ

for each m A Z and this implies that it induces a bijection

HomDðAÞ

�
N;

L
Mj

Pi

�
! HomDðAÞðN;PjÞ

for each N A N. It follows that the morphism

L
Mj

Pi ! Pj
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is the universal morphism XN ! X for X ¼ Pj. Therefore, the object PN?

j is the cokernel
of

L
Mj

Pi ! Pj:

Now it is easy to check that for all vertices j and l, the morphism space

HomDðAÞðPN?

j ;SmPN?

l Þ

vanishes for m3 0 and is canonically isomorphic to elðA=AeiAÞej for m ¼ 0. This

shows that the functor ?n
L

A ðA=AeiAÞ : DðAÞ ! DðA=AeiAÞ induces an equivalence from
the subcategory of compact objects of DðAÞ=N onto the perfect derived category of
DðBÞ ¼ DðA=AeiAÞ. Since this functor commutes with arbitrary coproducts, it does indeed
induce an equivalence from DðAÞ=N onto DðBÞ. r

Recall that Q is a finite quiver, possibly with oriented cycles, k is a field and A is the
path algebra kQ. The quiver Q 0 is obtained from Q by deleting the vertex i and all arrows
starting or ending at i and B ¼ A=AeiA. Now let W be a potential on Q, i.e. an element of
HC0ðAÞ and let W 0 be the image of W in HC0ðBÞ.

Corollary 7.3. The canonical functor

G3ðQ;WÞ ! G3ðQ 0;W 0Þ

is a localization.

Proof. By the functoriality of Connes’ map B, the class c 0 ¼ BðW 0Þ is the image of
c ¼ BðWÞ under the map HH1ðA;AÞ ! HH1ðB;BÞ induced by A! B. By the localization
Theorem 5.8 and the above Lemma 7.2, we have an induced localization functor

P3ðA; cÞ ! P3ðB; c 0Þ

and by Theorem 6.3, this yields a localization functor between the Ginzburg dg algebras.
r

Let us put G ¼ G3ðQ;WÞ and G 0 ¼ G3ðQ 0;W 0Þ. Notice that in zeroth homology, the
induced morphism between the Jacobian algebras is the natural quotient map

PðQ;WÞ ! PðQ 0;W 0Þ:

Let us compare the generalized cluster categories

CðQ;WÞ ¼ perðGÞ=DfdðGÞ;

and CðQ 0;W 0Þ under the assumption that these categories have finite-dimensional morphism
spaces. We refer to [1] for a thorough analysis of this situation. Let ~PPi ¼ eiG and let Pi be
the image of ~PPi under the projection functor p : perðGÞ ! C.
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Theorem 7.4. The triangulated category CðQ 0;W 0Þ is triangle equivalent to the Calabi–

Yau reduction in the sense of Iyama–Yoshino ([22], Section 4) of CðQ;W Þ at Pi.

Proof. Let us put C ¼ CðQ;WÞ and C 0 ¼ CðQ 0;W 0Þ. Let Z be the full subcategory of
C formed by the objects M such that Ext1ðPi;MÞ vanishes. By definition, the Calabi–Yau
reduction at Pi is the quotient Z=ðPiÞ of Z by the ideal of morphisms factoring through
a finite direct sum of copies of Pi. To construct a functor from Z to C 0, we consider the
fundamental domain FH perðGÞ as defined in [1], Section 2.2. Thus, the subcategory F
can be described as the full subcategory

perðGÞXDe0 X
?ðDe�2Þ;

where De0 is the left aisle of the canonical t-structure on DðGÞ. Alternatively, the subcate-
gory F can be described as the full subcategory whose objects are the cones on morphisms
between objects of the closure addðGÞ of the free module G under finite direct sums and
direct factors. We know from [loc. cit.] that the projection induces a k-linear equivalence
F!@ C. Now we consider the composition

ZHC!@ F!F 0 !@ C 0;

where F 0 is the fundamental domain for C 0. Let us denote this functor by F . Its restriction
to the full subcategory T whose objects are the Pj associated with all vertices j identifies
with the canonical projection functor

PðQ;WÞ ! PðQ 0;W 0Þ:

In particular, since PðQ;WÞ is isomorphic to T by [1], Theorem 2.1, the restriction induces
an equivalence

T=ðPiÞ !T 0;

where T 0HC 0 is the full subcategory of the Pj, j 3 i. We will show below that the func-
tor Z=ðPiÞ ! C 0 induced by F is naturally a triangle functor. Since this triangle functor
induces an equivalence between the cluster-tilting subcategories

T=ðPiÞ !T 0;

it is itself an equivalence by [31], Lemma 4.5.

It remains to be shown that the functor F : Z=ðPiÞ ! C 0 induced by F is naturally
a triangle functor. Let q : C!F be a k-linear quasi-inverse of the projection F! C.
Let

X !u Y !v Z !w SX

be a triangle of C such that X , Y and Z lie in Z. Notice that v induces a surjection

CðPi;YÞ ! CðPi;ZÞ:
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Form a triangle in perðGÞ

X 0 �! qðY Þ �!qðvÞ qðZÞ �! SX 0:

Claim. The object te0X 0 lies in F. The object qðXÞ is isomorphic to te0X 0 by

an isomorphism canonical up to a morphism factoring through qðY Þ. Moreover, the image

of the morphism te0X 0 ! X 0 under the composed functor perðGÞ ! perðG 0Þ ! C 0 is inver-

tible.

Indeed, from the triangle

S�1qðZÞ �! X 0 �! qðY Þ �!qðvÞ qðZÞ;

we see that X 0 is left orthogonal to De�2. If M belongs to De0, we have, using the Calabi–
Yau property and the fact that t>0X 0 belongs to DfdðGÞ, the isomorphisms

HomðS�1t>0X 0;S2MÞ ¼ D HomðS�1M;S�1t>0X 0Þ ¼ 0:

Now from the triangle

S�1t>0X 0 ! te0X 0 ! X 0 ! t>0X 0;

we see that te0X 0 belongs to ?De�2 and of course, it belongs to De0. Thus, it belongs
to F. By our assumption, the object t>0X 0 has finite-dimensional homology. Thus, the im-
age of te0X 0 in C is isomorphic to pðX 0Þ. By the uniqueness of the triangle on the mor-
phism v : Y ! Z, we obtain that X is isomorphic to pðte0X 0Þ by a morphism canonical
up to a morphism factoring through Y . Thus, since te0X 0 belongs to F, the object qðX Þ
is isomorphic to te0X 0 by an isomorphism canonical up to a morphism factoring through
qðYÞ. Finally, the homology of t>0X 0 is concentrated in degree 1, and we have an exact
sequence

H 0
�
qðYÞ

�
! H 0

�
qðX Þ

�
! H 1ðt>0X 0Þ ! 0:

In particular, we have an exact sequence

Hom
�
~PPi; qðYÞ

�
! Hom

�
~PPi; qðZÞ

�
! Homð ~PPi; t>0X 0Þ ! 0:

Since Hom
�
~PPi; qðUÞ

�
is isomorphic to HomCðPi;UÞ for each U in C, it follows that t>0X 0

is right orthogonal to Sm ~PPi for all m A Z. Thus it is right orthogonal to the kernel of the
localization functor L : DG! DG 0. Therefore, for each object M of DG, the localization
functor induces a bijection

HomðM; t>0X 0Þ ! HomðLM;Lt>0X 0Þ:

If, for M, we take the objects Sm ~PPj associated with the vertices of Q, we obtain that Lt>0X 0

has its homology of finite total dimension. This implies the last part of the claim.

Now let us show that the functor F : Z=ðPiÞ ! C 0 induced by F is naturally a tri-
angle functor. In any triangulated category, by default, we denote the suspension functor
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by S and a quasi-inverse of S by W. However, we denote the desuspension functor of
the ‘reduced’ category Z ¼Z=ðPiÞ by Wr. We will construct a natural isomorphism
j : WF !@ FWr and show that the pair ðF ; jÞ transforms triangles into triangles. Let Z

be an object of Z and P! Z a right approximation of Z by addðPiÞ. Form the
triangle

WrZ ! P! Z ! SWrZ

of C. The object WrZ still belongs to Z and its image in Z is the desuspension of the image
of Z. Now form a triangle of perðGÞ:

O! qðPÞ ! qðZÞ ! SO:

Let us denote the composition of the localization functor L : perðGÞ ! perðG 0Þ with the
projection perðG 0Þ ! C 0 by L 0 : perðGÞ ! C 0. By the claim, we have an isomorphism

qðWrZÞ!@ te0O

canonical up to a morphism factoring through qðPÞ and the morphism L 0te0O! L 0O is
invertible. The triangle

WqðZÞ ! O! qðPÞ ! qðZÞ;

and the triangle structure on L 0 yield an isomorphism WL 0qðZÞ ! L 0WqðZÞ ! L 0O. Thus,
we obtain a canonical composed isomorphism

WFZ ¼ WL 0qðZÞ!@ L 0WqðZÞ!@ L 0O @ L 0ðte0OÞ  @ L 0qWrðZÞ ¼ FWrðZÞ;

and we define jðZÞ to be this isomorphism. One checks that jðZÞ is natural in the object
Z of Z. Now let a standard triangle of Z be given. Then in C, with P! Z as above,
we have a morphism of triangles, where the first and fourth vertical morphisms are iden-
tities:

WZ ���! WrZ ���! P ���! Z???y
???y

???y
???y

WZ ���! X ���! Y ���! Z:

Notice that the second morphism is not canonical; in fact, any morphism making the first
square commutative lifts the given morphism in Z. We will show that ðF ; jÞ takes the
triangle WrZ ! X ! Y ! Z of Z to a triangle of C 0. For this, we form a morphism of
triangles in perðGÞ:

WqðZÞ ���! O ���! qP ���! qZ???y
???y

???y
???y

WqðZÞ ���! X 0 ���! qY ���! qZ:
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Its image under p : perðGÞ ! C becomes isomorphic to the given morphism after possibly
adding a morphism factoring through WZ ! P to the given morphism WZ ! X . Thus, we
may assume that the image under p is isomorphic to the given morphism. By the claim, the
image of this morphism under L 0q is then isomorphic to

WL 0qðZÞ ���! L 0te0O ���! L 0qP ���! L 0qZ???y
???y

???y
???y

WL 0qðZÞ ���! L 0te0X 0 ���! L 0qY ���! L 0qZ:

We deduce that ðF ; jÞ takes the triangle WZ ! X ! Y ! Z to the triangle

WL 0qðZÞ ! L 0te0X 0 ! L 0qY ! L 0qZ

of C 0. r

7.5. Deleting a sink in global dimension 2. As a second example of localization, let us
consider a finite-dimensional basic algebra A over an algebraically closed field k. Assume
that Pi is the indecomposable projective module corresponding to a sink i of the quiver of
A. Let ei be the corresponding idempotent of A. Let B ¼ A=AeiA. Then it is easy to check
that the projection map

A! B

is a localization of dg categories. Indeed, the localizing subcategory N of DðAÞ generated
by Pi consists of all coproducts of shifted copies of Pi and its right orthogonal subcategory
N? is the localizing subcategory generated by the Pj, j 3 i. Clearly, this subcategory is

equivalent to DðBÞ by the functor ?n
L

A B.

From now on, let us assume that A (and thus B) are of global dimension at most 2.
Then A is in particular homologically smooth and by Theorem 4.6, we obtain a localization
of the corresponding 3-Calabi–Yau completions

P3ðAÞ ! P3ðBÞ:

Using Theorem 6.10, we can identify these dg algebras with Ginzburg algebras G3ðQ;W Þ
and G3ðQ 0;W 0Þ. It is not hard to check that Q 0 is obtained from Q by omitting the vertex
corresponding to i and all arrows starting or ending at it and that W 0 is obtained from
W by deleting all cycles passing through this vertex. Thus, the results of Section 7.1 apply
and we obtain that if CðQ 0;W 0Þ is Hom-finite, then it is the Calabi–Yau reduction [22]
of CðQ;WÞ at the image of eiG3ðQ;WÞ. This example was treated previously by Amiot–
Oppermann [2] using di¤erent methods.

7.6. Generalized mutations. Let k be an algebraically closed field and Q a finite
quiver (possibly with oriented cycles). Let W be a potential on Q. Let T be a tilting module
over kQ, i.e. a module such that if B is the endomorphism algebra of T , the derived functor

?n
L

B T : DðBÞ ! DðkQÞ
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is an equivalence, cf. [29]. If X is a projective resolution of T as a B-kQ-bimodule, then
?nB X is a Morita functor from the dg category of bounded complexes of finitely gener-
ated projective B-modules to the corresponding category of kQ-modules. This functor
yields an isomorphism

HC0ðBÞ!@ HC0ðkQÞ:

We let WB A HC0ðBÞ be the element corresponding to W A HC0ðkQÞ. Let cB and c be the
images in Hochschild homology of WB and W under Connes’ map B. Then by Theorem
5.8, we have an induced Morita functor

P3ðB; cBÞ ! P3ðkQ; cÞ;

and by Theorem 6.3 and Theorem 6.10, we obtain an induced Morita functor between
Ginzburg algebras

G3ðQ 0;W 0 þW 00Þ ! G3ðQ;WÞ;

where the quiver Q 0 is obtained from the quiver of B by adding a new arrow rr : j ! i for
each minimal relation r : i! j, the potential W 0 is

W 0 ¼
P

rrr;

and the potential W 00 lifts WB along the surjection kQ 0 ! B taking all arrows rr to zero.
This construction is linked to mutation of quivers with potentials in the sense of [15] as fol-
lows: Let i be a vertex of Q which is the source of at least one arrow and let T be the direct
sum of the projectives Pj, j 3 i, and of Ti defined by the exact sequence

0! Pi !
L
a:i!j

Pj ! Ti ! 0;

where the sum is taken over all arrows a with source i and the corresponding component
of the map from Pi to the sum is the left multiplication by a. Then the passage from
B ¼ EndðTÞ to kQ is given by an APR-tilt [4]. In this case, one can check that ðQ 0;W 0Þ is
the ‘pre-mutation’ of Q at i in the sense of [15], i.e. Q 0 is obtained from Q by

(1) adding an arrow ½ab� : j ! l for each subquiver

l !b i!a l

of Q and

(2) replacing each arrow b : l ! i by an arrow b� : i! l and each arrow a : i! j by
an arrow a� : j ! i;

and the potential W 0 is equal to ½W � þ
P
½ab�b�a� where ½W � is obtained from W by

replacing each occurrence of a composition ab in a cycle passing through i by ½ab�.
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Appendix A. Ginzburg’s algebra is Calabi–Yau of dimension three

A.1. Introduction. To a quasi-free algebra A and an element z A A (a ‘‘super poten-
tial’’) Ginzburg associates in [19] a certain DG-algebra DðA; zÞ. He proves that if DðA; zÞ
has no negative cohomology then it is 3-Calabi–Yau (see [19], Remark 5.3.2, but beware
that Ginzburg uses homological grading). It was recently observed by Keller that DðA; zÞ
is always 3-Calabi–Yau. Below we give a proof of this fact using the formalism of non-
commutative di¤erential geometry.

A.2. Notations and conventions. Throughout we work over the semi-simple base
ring l ¼ ke1 þ � � � þ ked where e2

i ¼ ei and k is a field. In other words all our rings R are
implicitly equipped with a ring homomorphism l ! R. Unadorned tensor products are
over k.

A.3. Pairings of bimodules. Duality for bimodules is confusing so here we write out
our conventions. This is a copy of [47], §3.1. Let B be an arbitrary graded k-algebra. We
equip BnB with the outer B-bimodule structure. If Q is a graded B-bimodule then Q�

is by definition HomB eðQ;BnBÞ. This is still a B-bimodule through the surviving inner
bimodule structure on BnB.

A pairing (or bilinear map) between graded B-bimodules P, Q is a homogeneous map
of degree n,

h�;�i : P�Q! BnBðA:3:1Þ

such that hp;�i is linear for the outer bimodule structure on BnB and h�; qi is linear for
the inner bimodule structure on BnB. The obvious example is of course when P is the
bimodule dual Q� of Q and h�;�i is the evaluation pairing. We say that the pairing is
non-degenerate if P, Q are finitely generated graded projective bimodules and the pairing
induces an isomorphism PGSnðQ�Þ.

Example A.4. Let P ¼ SnðBnl BÞ, Q ¼ Bnl B. It is easy to see that the pairing

han b; cn di ¼ ð�1Þjaj jbjþjaj jcjþjbj jcj�njcjP
i

ceibn aeid

for a; b; c; d A B is well-defined and non-degenerate of degree n.

The opposite pairing of h�;�i is defined by

h�;�iopp : Q� P! BnB : ðq; pÞ 7! ð�1ÞðnþjpjÞðnþjqjÞshp; qi;

where ‘‘s’’ denotes the interchange operator: sðan bÞ ¼ ð�1Þjaj jbjðbn aÞ. So although the
definition of a pairing of bimodules is asymmetric it is not important which bimodule
appears on the left or right.

If P ¼ Q then we say that a pairing h�;�i is (anti-)symmetric if

hp; p 0i ¼ ð�Þhp; p 0iopp:
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If B is a DG-algebra and P, Q are DG-bimodules then we say that (A.3.1) is a DG-pairing
if it is compatible with the di¤erential, i.e. if

dhp; qi ¼ hdp; qiþ ð�1Þjpjþnhp; dqi:

If a DG-pairing is non-degenerate then obviously it induces an isomorphism of DG-modules

PGSnðQ�Þ.

A.5. Di¤erentials and double derivations. If B is a graded algebra then we denote by
WB=l the bimodule of relative di¤erentials for B=l. WB=l fits in an exact sequence

0! WB=l !
j

Bnl B! B! 0:ðA:5:1Þ

We denote the generators of WB=l by Db, b A B where jðDbÞ ¼ bn 1� 1n b.

With respect to signs we assume that D has homological degree zero. If B is equipped
with a di¤erential d then we extend it to WB=l by putting dðDbÞ ¼ DðdbÞ.

Assume that B is equipped with a graded double Poisson bracket of degree n (see [46],
§2.1). Then there is a well-defined anti-symmetric pairing on WB=l of degree n which is
determined by

hDh;Dxi ¼ ffh; xgg:

We define TB=l ¼ W�B=l . We may identify TB=l with the bimodule of double derivations

TB=l ¼ DerB=lðB;BnBÞ:

If b A B and d A TB=l then we write dðbÞ ¼ dðbÞ0n dðbÞ00. TB=l contains a canonical element
E given by

EðaÞ ¼
P

i

aei n ei � ei n eia:

Remark A.6. We may write EðaÞ ¼ ½a; x� where x ¼
P

i

ei n ei A l n l. If, as in [12],

one works over a more general separable k-algebra then one must replace x by the separa-
bility idempotent in l e.

A.7. The graded cotangent bundle. Now let A be a quasi-free finitely generated
k-algebra and put TA ¼ TAðSTA=lÞ. According to [46], §3.2, TA carries a canonical graded
double Poisson bracket of degree 1: the so-called double Schouten–Nijenhuis bracket.1)
Thus according to §A.5 we get an induced anti-symmetric pairing on WTA=l of degree 1.

Lemma A.8. This pairing is non-degenerate.

1) In [46] this bracket had degree �1 since we used the opposite grading.
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Proof. This can be deduced from the fact that the double Schouten–Nijenhuis
bracket is actually induced from a bisymplectic form [12], [46]. To help the reader let us
give a proof here. We have a standard exact sequence

0! TAnA WA=l nA TA!a WTA=l !
b
SðTAnA TA=l nA TAÞ ! 0

with for o A WA=l , d A TA=l

að1non 1Þ ¼ o;

bðDdÞ ¼ 1n dn 1:

Hence we have for a A A

h1nDdn 1; aðDaÞi ¼ hDd;Dai ¼ ffd; agg ¼ dðaÞ ¼ hbðDdÞ;Dai;

where on the right we have the standard (non-degenerate) pairing between TA=l and
WA=l , extended to a (still non-degenerate) pairing between TAnA TA=l nA TA and
TAnA WA=l nA TA. It follows that a and b are adjoint.

Thus one gets a commutative diagram

0 ���! TAnA WA=l nA TA ���!a WTA=l ���! SðTAnA TA=l nA TAÞ ���! 0����
???y

����
0 ���! TAnA T�A=l nA TA ���! SðW�TA=lÞ ���! SðTAnA W�A=l nA TAÞ ���! 0:

b

b � a�

Hence the middle arrow is an isomorphism. r

Now fix a ‘‘super potential’’ z A
P

eiAei. Contraction with Dz defines a di¤erential d

on TA [19] (see also [47], §3.1). On generators we have

da ¼ 0 for a A A;

dd ¼ dðzÞ00dðzÞ0 for d A TA=l :

We will denote resulting DG-algebra by TðA; zÞ.

In the commutative case it is well known that contraction with a 1-form is a deriva-
tion for the Gerstenhaber structure on the graded cotangent bundle and hence in particular
it is compatible with the Schouten bracket. A similar result is true in the non-commutative
case.

Lemma A.9. TðA; zÞ is a DG-Gerstenhaber algebra with product of degree zero and

double bracket of degree one.
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Proof. We only need to check compatibility of the di¤erential with the double
bracket. This can be done on generators. The only non-trivial verification is

dffd;Dgg ¼ ffdd;Dgg þ ffd; dDggðA:9:1Þ

for d;D A TA=l .

Following the notations of [46], §3.2, we have

ffd;Dgg ¼ ffd;Dggl þ ffd;Dggr

with

ffd;Dggl ¼ ffd;Dgg
0
l n ffd;Dgg

00
l A TA=l nA;

ffd;Dggr ¼ ffd;Dgg
0
r n ffd;Dgg

00
r A AnTA=l ;

so that we have

dffd;Dgg ¼ dffd;Dggl þ dffd;Dggr

with

dffd;Dggl ¼ ffd;Dgg
0
lðzÞ

00ffd;Dgg0lðzÞ
0n ffd;Dgg00l ;

dffd;Dggr ¼ ffd;Dgg
0
r n ffd;Dgg

00
r ðzÞ

00ffd;Dgg00r ðzÞ
0:

By definition we have

ffd;Dggl ¼ s23 �
�
ðdn 1ÞD� ð1nDÞd

�
;

ffd;Dggr ¼ s12 �
�
ð1n dÞD� ðDn 1Þd

�
;

which after inspection becomes

dffd;Dggl ¼ DðzÞ00d
�
DðzÞ0

� 0
n d

�
DðzÞ0

� 00 � D
�
dðzÞ00

� 00
dðzÞ0nD

�
dðzÞ00

� 0
;

dffd;Dggr ¼ d
�
DðzÞ00

� 0
n d

�
DðzÞ00

� 00
DðzÞ0 � D

�
dðzÞ0

� 00
n dðzÞ00D

�
dðzÞ0

� 0
:

On the other hand, we have

ffdd;Dgg ¼ �sD
�
dðzÞ00dðzÞ0

�
¼ �D

�
dðzÞ00

� 00
dðzÞ0nD

�
dðzÞ00

� 0 � D
�
dðzÞ0

� 00
n dðzÞ00D

�
dðzÞ0

� 0
and

ffd; dDgg ¼ d
�
DðzÞ00DðzÞ0

�
¼ d

�
DðzÞ00

� 0
n d

�
DðzÞ00

� 00
DðzÞ0 þ DðzÞ00d

�
DðzÞ0

� 0
n d

�
DðzÞ0

� 00
so that (A.9.1) indeed holds. r
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We immediately deduce

Lemma A.10. The pairing on WTA=l is compatible with d.

Proof. We have to prove for o;o 0 A WTA=l

dho;o 0i ¼ hdo;o 0iþ ð�1Þjo
0jþ1ho; do 0i:

One verifies that it is su‰cient to check this on TA-bimodule generators of WTA=l . The only
interesting case to consider is o ¼ Dd, o 0 ¼ DD and d;D A TA=l . In that case the result is a
direct concequence of Lemma A.9 and in particular (A.9.1). r

A.11. Ginzburg’s algebra. Let A, z, TA be as in the previous section. We have
E A TA=l HTA. We immediately check that dE ¼ 0. So E defines a (presumably always
non-trivial) cohomology class in TA. Ginzburg’s idea is to kill this class through adjunction
of an extra variable c of degree �2 commuting with l. So Ginzburg’s algebra is

DðA; zÞ ¼ TðA; zÞ �l l½c�;

where jcj ¼ �2 and dc ¼ E. To simplify the notations we will write T ¼ TðA; zÞ and
D ¼ DðA; zÞ in this section.

We have a presentation

0! WD=l !
j
Dnl D! D! 0;

where j is as in (A.5.1). It is easy to see that as graded D-bimodule we have

WD=l ¼ ðDnTWT=l nT DÞl ðDnl lDcnl DÞ:

Put I ¼
P

i

ei n ei. Then D is quasi-isomorphic to cone j and cone j is given by

P ¼ ðDnl lInl DÞlSðDnT WT=l nTDÞlSðDnl lDcnl DÞ

with total di¤erential

dPI ¼ 0;

dPo ¼ jTðoÞ � dTo for o A WT;

dPðDcÞ ¼ ½c; I� �DðEÞ:

We define a symmetric pairing of degree 3 on P by putting

hDc; IiP ¼
P

i

ei n ei;

ho;o 0iP ¼ ð�1ÞjojT�1ho;o 0iT;
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and assigning the value zero on other combinations of generators of P taken from I, WT=l ,
Dc. Note that in P we have jIj ¼ 0, jDcj ¼ �3 and jojP ¼ jojT � 1 for o A WT=l . The re-
quirement of symmetry yields

hI;DciP ¼ ð�1ÞðjIjþ3ÞðjDcjþ3ÞshDc; IiP

¼
P

i

ei n ei:

By combining Example A.4 with Lemma A.8 we see that h�;�iP is non-degenerate.

We claim that h�;�iP is compatible with the di¤erential. By symmetry this amounts
to six verifications which we now carry out.

Case 1. One has

dDhDc;DciP ¼ 0;

and

hdPDc;DciP ¼ h½c; I� �DðEÞ;DciP

¼
P

i

ðei n cei � eicn eiÞ

¼
P

i

ðei n eic� cei n eiÞ;

and

hDc; dPDciP ¼ hDc; ½c; I� �DðEÞiP

¼
P

i

ðcei n ei � ei n eicÞ

so that

dDhDc;DciP ¼ hdPDc;DciP þ ð�1ÞjDcjþ3hDc; dPDciP:

Case 2. One has for u A T

dDhDc;DuiP ¼ 0;

and

hdPDc;DuiP ¼ h½c; I� �DðEÞ;DuiP

¼ �ð�1ÞjEjT�1hDðEÞ;DuiT

¼ �ffE; ugg

¼ �
P

i

ðuei n ei � ei n eiuÞ;
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and

hDc; dPDuiP ¼ hDc; ½u; I� �DdTui

¼
P

i

uei n ei � ei n eiu

so that

dDhDc;DuiP ¼ hdPDc;DuiP þ ð�1ÞjDcjþ3hDc; dPDuiP:

Case 3. One has

dDhDc; IiP ¼ 0;

and

hdPDc; IiP ¼ h½c; I� �DðEÞ; IiP

¼ 0;

and

hDc; dPIiP ¼ 0:

Hence this case is trivial.

Case 4. One has for o;o 0 A WT=l

dDho;o
0iP ¼ ð�1ÞjojT�1

dTho;o
0iT

¼ ð�1ÞjojT�1hdTo;o
0iT þ ð�1ÞjojT�1ð�1ÞjojTþ1ho; dTo

0iT

¼ ð�1ÞjojT�1hdTo;o
0iT þ ho; dTo

0iT;

and

hdPo;o
0iP ¼ hjTðoÞ � dTo;o

0iP

¼ �ð�1ÞjoTjþ1�1hdTo;o
0iT

¼ ð�1ÞjoTj�1hdTo;o
0iT;

and

ho; dPo
0iP ¼ ho; jTðo 0Þ � dTðo 0ÞiP

¼ �ð�1ÞjojT�1ho; dTðo 0ÞiT

¼ ð�1ÞjojTho; dTðoÞiT
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so that we get

dDho;o
0iP ¼ hdPo;o

0iP þ ð�1ÞjojTho; dPo
0iP;

which is correct since jojT ¼ jojP þ 3ðmod 2Þ.

Case 5. One has for o A WT=l

dDho; IiP ¼ 0;

and

hdPo; IiP ¼ hjTðoÞ � dcðoÞ; Ii

¼ 0;

and

ho; dPIiP ¼ 0:

So nothing to prove here!

Case 6. The last case is about hI; IiP but this is trivial.

We can now conclude

Theorem A.12. The Ginzburg algebra D is 3-Calabi–Yau.

Proof. We need to prove

RHomD eðD;DnDÞGS�3DðA:12:1Þ

in DðDeÞ and moreover this isomorphism must be self dual. We have

RHomD eðD;DnDÞGHomD eðP;DnDÞ

GS�3P

GS�3D;

where the second isomorphism is obtained from the pairing h�;�iP. Self duality follows
from the fact that h�;�iP is symmetric. r

A.13. A word on quivers. Assume now that V is a finitely generated l-bimodule and
put A ¼ TlV . Thus A is the path algebra of a quiver. We remind the reader on the concrete
interpretation of DðA; zÞ in this case. This is taken from [19]. Let ðtiÞi be a k-basis of V

where for each i we have tðiÞ, hðiÞ such that ti A etðiÞVehðiÞ.
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Then we may define operations

q

qti

� �þ
: A=½A;A� ! A;

q

qti
: A! AnA;

where the second one is the element of TA=l with the property

qt j

qti
¼ d ijðetðiÞn ehðiÞÞ;

and the first one is obtained from the first by the following commutative diagram:

A �����! A=½A;A�
q

qt i

???y
???y� q

qt i

�þ
AnA �����!anb 7! ba

A:

By [46], Proposition 6.2.2(2), we have

E ¼
P

i

q

qti
; ti

� �
ðA:13:1Þ

as elements of TA=l .

Pick z A
L

i

eiAei.

Lemma A.14 ([19]). As graded algebras there is a canonical isomorphism

DðA; zÞ ¼ TlðV lSV �l kcÞ:

Furthermore, if ti is the dual basis to ti, then the di¤erential on DðA; zÞ is given by

dti ¼ 0;

dti ¼
qz

qxi

� �þ
;

dc ¼
P

i

½ti; ti�:

ðA:14:1Þ

Proof. Put ti ¼ q=qti. We get TðA; zÞ ¼ TlðV lV �Þ where ðtiÞ is the basis for V �,
dual to ðtiÞi.
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The di¤erential d on TðA; zÞ has the property

dti ¼ 0;

dti ¼
qz

qxi

� �þ
:

Finally, the algebra DðA; zÞ is obtained by adjoining c such that

dc ¼ E ¼
P

i

½ti; ti�;

where we have used (A.13.1). r

A.15. A word on Ext-algebras. The advantage of the presentation (A.14.1) is that
we can immediately read o¤ the Ay-structure on the Ext-algebra of DðA; zÞ. This works
more generally as follows. Assume that W is a finite dimensional l-bimodule and we have
a DG-algebra structure on B ¼ TlW compatible with the canonical augmentation B! l.
Then for w A W we may write

dw ¼
Py
n¼1

b�n ðwÞ;

where the b�n are maps

b�n : W !Wnn

of degree 1. Dualizing we get maps of degree 1

bn : ðW �Þnn !W �;

which define an Ay structure on S�1ðW �Þ (without unit). It follows from tbe bar-cobar

machinery that the Ay-algebra l lS�1ðW �Þ corresponds to RHomBðl; lÞ.

Now let V , A, z, DðA; zÞ be as before and assume that z contains no linear terms. We
put W ¼ V lSV �l kc. Thus DðA; zÞ ¼ TlW and the Ext-algebra of DðA; zÞ as a graded
vector space2) is l lS�1W � ¼ l lS�1V �lS�2V l kS�1ðc�Þ.

One checks that the Ay-operations are the pairings V �nV ! l and V nV � ! l

as well n-ary operations ðV �Þnn ! S�1V which are obtained from the degree nþ 1-part
znþ1 A Vnðnþ1Þ of the superpotential z.

2) If z contains quadratic terms then this algebra has a non-trivial di¤erential so it is not strictly speaking

the Ext-algebra.
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UMR 7586 du CNRS, Case 7012, Bâtiment Chevaleret, 75205 Paris Cedex 13, France

e-mail: keller@math.jussieu.fr

Departement WNI, Hasselt University, 3590 Diepenbeek, Belgium

e-mail: vdbergh@luc.ac.be

Eingegangen 4. September 2009, in revidierter Fassung 17. März 2010

56 Keller, Van den Bergh, Deformed Calabi–Yau completions

AUTHOR’S COPY | AUTORENEXEMPLAR 

AUTHOR’S COPY | AUTORENEXEMPLAR 


