
INTRODUCTION TO ABELIAN AND DERIVED CATEGORIES

BERNHARD KELLER

Abstract. This is an account of three 1-hour lectures given at the Instruc-

tional Conference on Representation Theory of Algebraic Groups and Related
Finite Groups, Isaac Newton Institute, Cambridge, 6–11 January 1997.

In section 1, we define abelian categories following Grothendieck [12]. We
then characterize module categories among abelian categories. Finally we

sketch a proof of Mitchell’s full embedding theorem [25]: each small abelian
category embeds fully and exactly into a module category.

We come to our main topic in section 2, where we define the derived cate-
gory of an abelian category following Verdier [33] and the total right derived

functor of an additive functor following Deligne [6].
We treat the basics of triangulated categories including K0-groups and the

example of perfect complexes over a ring in section 3.

Section 4 is devoted to Rickard’s Morita theory for derived categories [29].
We give his characterization of derived equivalences, list the most important
invariants under derived equivalence, and conclude by stating the simplest
version of Broué’s conjecture [2].

1. Abelian categories

1.1. Definition and basic properties. A Z-category is a category C whose mor-
phism sets HomC(X,Y ) are abelian groups such that all composition maps

HomC(Y,Z)×HomC(X,Y )→ HomC(X,Z)

are bilinear. For example, if R is a ring (associative, with 1) and C is the category
having exactly one object, whose endomorphism set is R, then C is a Z-category.
A general Z-category should be thought of as a ‘ring with several objects’ [25].

An additive category is a Z-category A which has a zero object 0 (i.e. we have
HomA(0,X) = 0 = HomA(X, 0) for all X) and such that all pairs of objects
X,Y ∈ C, admit a product in C, i.e. an object X

∏

Y endowed with morphisms
pX : X

∏

Y → X and pY : X
∏

Y → Y such that the map

HomC(U,X
∏

Y )→ HomC(U,X)×HomC(U, Y ) , h 7→ (pX h, pY h)
1
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is bijective. In other words, the pair of maps (pX , pY ) is universal among all pairs
of morphisms (f, g) from an object U to X respectively Y .

U

X
∏

Y Y

X

A
A
A
A
A
A
A
A
AU

f

@
@

@@R

h

HHHHHHHHHj

g

?

pX

-
pY

Universal properties of this type are most conveniently expressed in the language
of representable functors: Recall that a contravariant functor F defined on a cate-
gory C with values in the category of sets is representable if there is an object Z ∈ C
and an isomorphism of functors

ϕ : HomC(?, Z) ∼→ F.

Note that this determines the object Z uniquely up to canonical isomorphism. For
example, the product X

∏

Y represents the product functor

HomC(?,X)×HomC(?, Y ).

Dually, a covariant functor G : C → Sets is corepresentable if it is isomorphic to
HomC(Z, ?) for some Z ∈ C.

Accordingly the coproduct X
∐

Y is defined to corepresent the functor

HomC(X, ?)×HomC(Y, ?)

(if this functor is corepresentable). We leave it to the reader as an exercise to check
that in an additive category, the coproduct of any pair of objects exists and is
canonically isomorphic to their product. We will henceforth write X ⊕ Y for both.

Note that in an additive category, the group law on HomC(X,Y ) is determined
by the underlying category of C. Indeed, for f, g ∈ HomC(X,Y ), we have the
following commutative diagram

X Y

X ⊕X Y ⊕ Y ,

-f+g

?
∆X

-
f⊕g

6
∇Y

where by definition the composition of the diagonal morphism ∆X with both of the
canonical projections X⊕X → X is the identity of X and the codiagonal morphism
∇Y is defined dually.

If R is a ring, the category ModR of (right) R-modules is an additive category.
So are its full subcategories Free R and mod R whose objects are the free, and the
finitely presented R-modules, respectively.

Now let A be an additive category and f : A → B a morphism of A. By
definition, the kernel ker f represents the functor

ker(f∗ : HomA(?, A)→ HomA(?, B)).
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This means that the kernel of f is defined only if this functor is representable, and
in this case, the isomorphism from HomA(?, ker f) to the kernel functor corresponds
to a morphism i : ker f → A such that f i = 0 and i is universal with respect to
this property. Dually, the cokernel cok f corepresents the functor

ker(f∗ : HomA(B, ?)→ HomA(A, ?)).

(note that this is the kernel and not the cokernel of a morphism between functors).
Finally, one defines the image im f = ker(B → cok f) and the coimage coim f =
cok(ker f → A). Now suppose that these four objects are well-defined for f . It is
then easy to see that there is a unique morphism f making the following diagram
commutative

A B

ker f coim f im f cok f

HHHHj

-f

HHHHj����*

-
f

����*

By definition [4] [12], an abelian category is an additive category A such that each
morphism of A admits a kernel and a cokernel and that the canonical morphism f
is invertible for each morphism f .

This definition implies in particular that in an abelian category a morphism f is
invertible iff it is both, a monomorphism (i.e. ker f = 0) and an epimorphism (i.e.
cok f = 0).

Clearly, if R is a ring, the category ModR is abelian. If X is a topological space,
the category ShX of sheaves of abelian groups on X (cf. [10] [16]) is abelian as
well. One of the principal aims of Grothendieck’s study [12] of abelian categories
was to develop a unified homology theory for these two classes of examples.

It may be helpful to point out two non-examples: If the ring R is not semi-
simple, the category ProjR of projective modules over R is not abelian since in
this case there exist morphisms between projective R-modules which do not admit
a cokernel in ProjR. But there are also examples of non-abelian categories where
each morphism does admit a kernel and a cokernel: This holds for the category of
filtered abelian groups

A =
⋃

n∈N

An.

Indeed, if 0 6= A, the canonical morphism from A to the filtered group A(1) defined
by

A(1)p = Ap+1

is monomorphic and epimorphic but not invertible.
A functor between abelian categories is left exact if it preserves kernels, right

exact if it preserves cokernels, and exact if it is both right and left exact. Recall
that a functor F : A → B is said to be fully faithful if it induces bijections

HomA(A,B)→ HomB(FA,FB)

for all objects A,B ∈ A.

Theorem (Mitchell [24]) Let A0 be an abelian category whose objects form a set
(i.e. a small category). Then there is a ring R and a fully faithful exact functor

F : A0 → ModR.
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This theorem, known as the ‘full embedding theorem’, allows us to deal with
objects of an abelian category ‘as if they were modules’. More precisely, any theo-
rem about modules involving only a finite diagram and such notions as exactness,
existence or vanishing of morphisms . . . holds true in any abelian category A (to
deduce this from the theorem, construct a full small abelian subcategory A0 ⊂ A
containing all the objects involved).

However, it is important to note that not all theorems about module categories
carry over to arbitrary abelian categories. For example, the product of an arbi-
trary set-indexed family of exact sequences of modules is exact; but the analogous
statement for sheaves is false, in general. This is not in contradiction with the full
embedding theorem, since the functor A0 → ModR obtained may not commute
with infinite products.

1.2. Characterization of module categories and Morita equivalence. Let
R be a ring and A = ModR the category of R-modules. Then it is easy to check
that A has the following properties

• It is cocomplete, i.e. for each set-indexed family (Mi)i∈I of objects of A, there
exists the coproduct

⊕

i∈I Mi (which corepresents
∏

i∈I HomA(Mi, ?)).
• It has a generator P = R (the free R-module of rank 1), i.e. for each M ∈ A,

there is an epimorphism
⊕

I P →M for some set I.
• The generator P is projective, i.e. the functor HomA(P, ?) : A → ModZ is

exact.
• The generator P is compact, i.e. the functor HomA(P, ?) : A → ModZ

commutes with arbitrary set-indexed coproducts.

This proves the necessity of the condition of the following

Theorem [7] [8] Let A be an arbitrary abelian category and R a ring. Then A
is equivalent to ModR if and only if A is cocomplete and has a compact projective
generator P with HomA(P, P ) ∼= R.

To prove the sufficiency, one shows that the functor F : HomA(P, ?) : A →
ModR is an equivalence. In particular, we can take A to be a module category as
well:

Corollary (Morita) Let R and S be two rings. Then the following conditions are
equivalent:

i) There is an equivalence of categories F : ModR→ ModS.
ii) There is an R-S-bimodule X such that the functor ?⊗R X : ModR→ ModS

is an equivalence.
iii) There is a finitely generated projective S-module P such that P generates

ModS and R is isomorphic to HomS(P, P ).

The equivalence between i) and iii) follows from the theorem, once it is shown
that a projective S-module P is compact iff it is finitely generated. This is left to
the reader as an easy exercise. Clearly ii) implies i). To prove that iii) implies ii),
one notes that P has a structure of R-S-bimodule and puts X = P . Then it is not
hard to verify that ii) holds.

By definition, R is Morita equivalent to S if the conditions of the corollary hold.
In the best known example, R is the ring of n × n matrices over S and P is Sn

(realized as a set of row vectors on which R acts from the right).
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1.3. On the proof of the full embedding theorem. The following sketch of
the proof of the full embedding theorem is to give the reader an idea of some more
advanced techniques of the theory of abelian categories. We follow Freyd [7].

The proof rests on the following

Theorem (Mitchell) Let A be a cocomplete abelian category with a projective
generator P . Then each small full abelian subcategory A0 ⊂ A admits a fully
faithful exact functor F : A0 →֒ ModR for some ring R.

Note that the generator P is not supposed to be compact. For the proof, one
chooses Q to be a large sum of copies of P ; so large indeed that for each object A
of A0 there exists an epimorphism Q→ A. Since P is a generator and A0 is small,
this is possible. Now one takes R = HomA(Q,Q) and checks that the restriction F
of HomA(Q, ?) to A0 is fully faithful (cf. [7, Theorem 4.44]).

This proof is still of the same level of difficulty as the proofs of the preced-
ing section. Now, however, we will need some deeper results: As a first trial at
‘embedding’ A0, consider the Yoneda embedding

Y : Aop
0 → Fun(A0,ModZ) , A 7→ HomA0

(A, ?).

Here, Fun(A0,ModZ) denotes the category of additive functors from A0 to ModZ
(note that this is indeed a category since A0 is small). Recall that A0 should be
thought of as a ‘ring with several objects’ and accordingly, Fun(A0,ModZ) is viewed
as the category of modules over this ‘multi-ring’. From this viewpoint, we have
already got quite close to our aim of embedding A0 in a module category. However,
the Yoneda functor is not exact (only left exact). To remedy this, we observe that
the HomA0

(A, ?) are not arbitrary functors : they are left exact. We therefore
restrict the domain of the Yoneda functor to the category Lex = Lex(A0,ModZ)
of left exact functors A0 → ModZ

Y : Aop
0 → Lex .

The crucial point of the proof is to show that the category of left exact functors is
abelian [8]. It is then not hard to see that it is also cocomplete, has a generator
(to wit, the direct sum of the functors HomA(A, ?), A ∈ A0), and has exact filtered
direct limits. In other words, it is a Grothendieck category (Grothendieck invented,
but did not name, Grothendieck categories in [12]; cf. [28] for a comprehensive
account of the subject). Now as a Grothendieck category, the category Lex is also
complete and has an injective cogenerator. So we have embedded Aop

0 in a complete
abelian category with an injective cogenerator. Looking at this through a mirror
we see that we have embedded A0 in Lexop, a cocomplete abelian category with a
projective generator. Now we obtain the required embedding A0 → ModR from
the theorem above.

2. Derived categories and derived functors

Derived categories are a ‘formalism for hyperhomology’ [34]. Used at first only
by the circle around Grothendieck they have now become wide-spread in a number
of subjects beyond algebraic geometry, and have found their way into graduate text
books [35], [17], [22], [16]. We refer to L. Illusie’s account [15] for a brief history of
the origins of derived categories.
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In order to illustrate the relation between the language of classical homological
algebra and that of derived categories, let us consider the example of the Lyndon-
Hochschild-Serre spectral sequence: Recall that if G is a group, H a normal sub-
group, and A a G-module, then this sequence reads as follows

Epq
2 = Hp(G/H,Hq(H,A))⇒ Hp+q(G,A).(1)

The corresponding statement in the language of derived categories is

RFixG/H ◦RFixH = RFixG ,(2)

where the equality denotes a canonical isomorphism between functors defined on
the derived category D+ ModZG with values in D+ ModZ and RFixG the total
right derived functor of the fixed point functor FixG : ModZG → ModZ defined
by

FixG M = {m ∈M | gm = m , ∀g ∈ G}.

Of course, the composition formula (2) is based on the observation that FixG/H ◦FixH =
FixG. It is stronger than (1) in the sense that (1) can be derived from (2) by stan-
dard techniques [34]. The precise meaning of (2) will become clear below. To link
the two formulas, we have to evaluate RFixG at the module A. This is done by
applying the functor Fix to an injective resolution

I . : 0→ I0 → I1 → . . .

of A. By definition, RFixG A is the complex thus obtained. The link between (1)
and (2) is then the formula

HnRFixG A = Rn FixG A = Hn(G,A) ,

where Rn FixG is the n-th right derived functor of FixG in the sense of Cartan-
Eilenberg [5].

2.1. Definition of derived categories. Let A be an abelian category (for exam-
ple, the category ModR of modules over a ring R). We denote by CA the category
of differential complexes

A• = (. . .→ An dn

A→ An+1 → . . . ) , An ∈ A , n ∈ Z , d2 = 0.

Recall that a morphism of complexes f : A• → B• is null-homotopic if fn = dB hn+
hn+1dA for all n ∈ Z for some family of morphisms hn : An → Bn−1. Clearly, any
composition gfe is null-homotopic if f is null-homotopic. The homotopy category
HA has the same objects as CA. Its morphisms from A• to B• are the classes of
morphisms of complexes f : A• → B• modulo the null-homotopic morphisms.

Note that the homology functor Hn : CA → A induces a well-defined functor
HA → A. We define a quasi-isomorphism to be a morphism s : A• → A′• of
HA such that the induced morphisms Hns : HnA• → HnA′• are invertible for
all n ∈ Z. We denote by Σ the class of all quasi-isomorphisms. Our aim is to
define the derived category DA as the ‘localization’ of HA at the class Σ. Now by
construction, HA is a Z-category (even an additive category), and should be viewed
as a ‘ring with several objects’. The following lemma states that the analogues
of the Ore conditions in the localization theory of rings hold for the class Σ (the
assumption that the elements to be made invertible be non-zero divisors is weakened
into condition c).

Lemma 1
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a) Identities are quasi-isomorphisms and compositions of quasi-isomorphisms
are quasi-isomorphisms.

b) Each diagram

A′• s
← A• f

→ B• (resp. A′• f ′

→ B′• s′

← B•)

of HA, where s (resp. s′) is a quasi-isomorphism, may be embedded into a
square

A• B•

A′• B′•

-f

?

s

?
s′

-
f ′

which commutes in HA.
c) Let f be a morphism of HA. Then there is a quasi-isomorphism s such that

sf = 0 in HA if and only if there is a quasi-isomorphism t such that ft = 0
in HA.

The lemma is proved for example in [17, 1.6.7]. Clearly condition a) would
also be true for the pre-image of Σ in the category of complexes. However, for
b) and c) to hold, it is essential to pass to the homotopy category. Historically
[15], this observation was the main reason for inserting the homotopy category
between the category of complexes and the derived category (the latter can also be
defined directly as an ‘abstract localization’ [9] of the category of complexes at the
pre-image of Σ).

Now we define [33] the derived category DA to be the localization of the homotopy
category at the class of quasi-isomorphisms. This means that the derived category
has the same objects as the homotopy category and that morphisms in the derived
category from A• to B• are given by ‘left fractions’ “s−1 ◦ f”, i.e. equivalence
classes of diagrams

B′•

A• B•

�
��f

@
@I s

where s is a quasi-isomorphism and a pair (f, s) is equivalent to (f ′, s′) iff there is
a commutative diagram of HA

B′•

A• B′′′• B

B′′•

?�
�

���f

-f ′′

@
@

@@R
f ′

@
@

@@I s

�s′′

�
�

��	
s′

6
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where s′′ is a quasi-isomorphism. Composition is defined by

“t−1g”◦“s−1f” = “(s′t)−1 ◦ g′f” ,

where s′ ∈ Σ and g′ are constructed using condition b) as in the following commu-
tative diagram of HA

C ′′•

B′• C ′•

A• B• C•.

�
���g′

@
@@I s′

�
���f

@
@@I s

�
���g

@
@@I t

One can then check that composition is associative and admits the obvious mor-
phisms as identities.

Using ‘right fractions’ instead of left fractions we would have obtained an isomor-
phic category (use lemma 1 b). We have a canonical functor HA → DA sending
a morphism f : A• → B• to the fraction “1−1

B f”. This functor makes all quasi-
isomorphisms invertible and is universal among functors with this property. The
following lemma yields a more concrete description of some morphisms of the de-
rived category. In part c) we use the following notation: An object A ∈ A is
identified with the complex . . . → 0 → A → 0 → . . . having A in degree 0. If
K• is an arbitrary complex, we denote by K•[n] the complex with components
K•[n]p = Kn+p and differential dK[n] = (−1)ndK .

Lemma 2

a) The category DA is additive and the canonical functors CA → HA → DA
are additive.

b) If the complex I• is left bounded (i.e. In = 0 for all n≪ 0) and has injective
components, then the canonical morphism

HomHA(A•, I•)→ HomDA(A•, I•)

is invertible for all complexes A•. Dually, the canonical morphism

HomHA(P •, B•)→ HomDA(P •, B•)

is invertible if P • is right bounded with projective components and B• is any
complex.

c) For all A,B ∈ A, there is a canonical isomorphism

∂ : Extn
A(A,B) ∼→ HomDA(A,B[n]).

The calculus of fractions yields part a) of the lemma (cf. [9]). Part b) follows
from [14, I, Lemma 4.5]. Part c) is in [14, I, §6].

Let us prove c) in the case where A has enough injectives (i.e. each object admits
a monomorphism into an injective). In this case, the object B admits an injective
resolution, i.e. a quasi-isomorphism s : B → I• of the form

. . . → 0 → B → 0 → 0 → . . .
↓ ↓ ↓ ↓

. . . → 0 → I0 → I1 → I2 → . . .
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where the Ip are injective. Then, since s becomes invertible in DA, it induces an
isomorphism

HomDA(A,B[n]) ∼→ HomDA(A, I•[n]).

By part b) of the lemma, we have the isomorphism

HomDA(A, I•[n]) ∼← HomHA(A, I•[n]).

Finally, the last group is exactly the n-th homology of the complex HomA(A, I•),
which identifies with Extn

A(A,B) by (the most common) definition.
In two very special cases, we can directly describe the derived category in terms of

the module category (cf. [17, Exercise I.18]): First suppose that A = Mod k, where
k is a field (or more generally, suppose that A is semi-simple, i.e. Ext1A(A,B) = 0
for all A,B ∈ A). Then the functor A• 7→ H∗A• establishes an equivalence between
DA and the category of Z-graded k-vector spaces. In the second case, suppose that
A is hereditary (i.e. Ext2A(A,B) = 0 for all A,B ∈ A). Then each object A• of
DA is quasi-isomorphic to the sum of the (HnA•)[−n], n ∈ Z. Morphisms from
A• to B• are then in bijection with the families (fn, εn), n ∈ Z, of morphisms
fn : HnA• → HnB• and extensions εn ∈ Ext1A(HnA•,Hn−1B•).

2.2. Definition of derived functors. The difficulty in finding a general definition
of derived functors is to establish a framework which allows one to derive in full
generality as many as possible of the pleasant properties found in the examples.
This seems to be best achieved by Deligne’s definition [6], which we will give in this
section (compare with Grothendieck-Verdier’s definition in [33]).

Let A and B be abelian categories and F : A → B an additive functor (for
example, the fixed point functor FixG : ModZG → ModZ from the introduction
of this section). Then F clearly induces a functor CA → CB (obtained by applying
F componentwise) and a functor HA → HB. By abuse of notation, both will be
denoted by F as well. We are looking for a functor ? : DA → DB so as to make
the following square commutative

HA
F
→ HB

↓ ↓

DA
?
→ DB

However, if F is not exact, it will not transform quasi-isomorphisms into quasi-
isomorphisms and the functor in question cannot exist. What we will define then
is a functor RF called the ‘total right derived functor’, which will be a ‘right
approximation’ to an induced functor. More precisely, for a given A• ∈ DA, we
will not define RF (A•) directly but only the functor

(rF )(?, A•) : (DB)op → ModZ

which, if representable, will be represented by RF (A•). For X• ∈ DB, we define
(rF )(X•, A•) to be the set of ‘left F -fractions’, i.e. equivalence classes of diagrams

FA′• A′•

X• A•

�
���

f

@
@@I s
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where f is a morphism of DB and s a quasi-isomorphism of HA. Equivalence
is defined in complete analogy with section 2.1. We say that RF is defined at
A• ∈ DA if the functor (rF )(?, A•) is representable and if this is the case, then the
value RFA• is defined by the isomorphism

HomDB(?, (RF )(A•)) ∼→ (rF )(?, A•).

The link between this definition and more classical constructions is established by
the

Proposition Suppose that A has enough injectives and A• is left bounded. Then
RF is defined at A• and we have

RFA• = FI•

where A• → I• is a quasi-isomorphism with a left bounded complex with injective
components.

Under the hypotheses of the proposition, the quasi-isomorphism A• → I• always
exists [17, 1.7.7]. Viewed in the homotopy categoryHA it is functorial in A• since it
is in fact the universal morphism from A• to a left bounded complex with injective
components. For example, if A• is concentrated in degree 0, i.e. A• = A for some
A ∈ A, then I• may be chosen to be an injective resolution of A and we find that

HnRFA = (RnF )(A) ,

the n-th right derived functor of F in the sense of Cartan-Eilenberg [5].
We suggest it to the reader as an exercise to prove the identity

RFixG/H ◦RFixH = RFixG

of the introduction of this subsection, where all derived functors are defined on the
full subcategory of left bounded complexes D+ ModZG of DModZG.

3. Triangulated categories

3.1. Definition and examples. Let A be an abelian category (for example, the
category ModR of modules over a ring R). One can show that the derived category
DA is abelian only if all short exact sequences of A split. This deficiency is partly
compensated by the so-called triangulated structure of DA, which we are about to
define. In this section, to ease the notation, we will write X instead of X• when
speaking of the ‘complex X’. Most of the material of this section first appears in
[33].

A standard triangle of DA is a sequence

X
Qi
→ Y

Qp
→ Z

∂ε
→ X[1] ,

where Q : CA → DA is the canonical functor,

ε : 0→ X
i
→ Y

p
→ Z → 0

a short exact sequence of complexes, and ∂ε a certain morphism of DA, functorial
in ε, and which lifts the connecting morphism H•Z → H•+1X of the long exact
homology sequence associated with ε. More precisely, ∂ε is the fraction ′′s−1 ◦ j′′

where j is the inclusion of the subcomplex Z into the complex X ′[1] with compo-
nents Zn ⊕ Y n+1 and differential

[

dZ p
0 −dY

]

,
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and s : X[1]→ X ′[1] is the morphism

[

0
i

]

.

A triangle of DA is a sequence (u′, v′, w′) of DA isomorphic to a standard tri-
angle, i.e. such that we have a commutative diagram

X ′ u′

→ Y ′ v′

→ Z ′ w′

→ X ′[1]
x ↓ ↓ ↓ ↓ x[1]
X → Y → Z → X[1] ,

where the vertical arrows are isomorphisms of DA and the bottom row is a standard
triangle.

Lemma 3

T1 For each object X, the sequence

0→ X
1
→ X → 0[1]

is a triangle.
T2 If (u, v, w) is a triangle, then so is (v, w,−u[1]).
T3 If (u, v, w) and (u′, v′, w′) are triangles and x, y morphisms such that yu =

u′x, then there is a morphism z such that zv = v′y and (x[1])w = w′z.

X
u
→ Y

v
→ Z

w
→ X[1]

x ↓ y ↓ z ↓ ↓ x[1]

X ′ u′

→ Y ′ v′

→ Z ′ w′

→ X ′[1].

T4 For each pair of morphisms

X
u
→ Y

v
→ Z

there is a commutative diagram

X
u
→ Y

x
→ Z ′ → X[1]

‖ v ↓ ↓ w ‖

X → Z
y
→ Y ′ s

→ X[1]
↓ ↓ t ↓ u[1]

X ′ 1
→ X ′ r

→ Y [1]
r ↓ ↓

Y [1]
x[1]
→ Z ′[1] ,

where the first two rows and the two central columns are triangles.

Property T4 can be given a more symmetric form if we represent a morphism

X → Y [1] by the symbol X
+
→ Y and write a triangle in the form

X Y

Z

-
@

@
@I�

�
�	

+

With this notation, the diagram of T4 can be written as an octahedron in which
4 faces represent triangles. The other 4 as well as two of the 3 squares ’containing
the center‘ are commutative.
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A triangulated category is an additive category T endowed with an autoequivalence
X 7→ X[1] and a class of sequences (called triangles) of the form

X → Y → Z → X[1]

which is stable under isomorphisms and satisfies properties T1 through T4.
Note that ‘being abelian’ is a property of an additive category, whereas ‘being

triangulated’ is the datum of extra structure.
A whole little theory can be deduced from the axioms of triangulated categories.

This theory is nevertheless much poorer than that of abelian categories. The main
reason for this is the non-uniqueness of the morphism z in axiom T3.

We mention only two consequences of the axioms: a) They are actually self-dual,
in the sense that the opposite category T op also carries a canonical triangulated
structure. b) Applying the functor HomT (U, ?) or HomT (?, V ) to a triangle yields
a long exact sequence of abelian groups. By the 5-lemma, this implies for example
that if in axiom T3, two of the three vertical morphisms are invertible, then so is
the third.

For later use, we record a number of examples of triangulated categories: If
A is abelian, then not only the derived category DA is triangulated but also the
homotopy category HA. Here the triangles are constructed from componentwise
split short exact sequences of complexes.

If T is a triangulated category, a full triangulated subcategory of T is a full sub-
category S ⊂ T such that S[1] = S and that whenever we have a triangle (X,Y,Z)
of T such that X and Z belong to T there is an object Y ′ of S isomorphic to Y .
For example, the full subcategory HbA of bounded complexes (i.e. Xp = 0 for
all |p| ≫ 0) of HA is a full triangulated subcategory, and so is the full subcate-
gory DbA of bounded complexes of DA. One can show that this subcategory also
identifies with the localization of HbA at the class of quasi-isomorphisms between
bounded complexes. Note that the categories HA and HbA are in fact defined for
any additive category A.

If T is a triangulated category and X a class of objects of T , there is a smallest
strictly (=closed under isomorphism) full triangulated subcategory Tria (X ) of T
containing X . It is called the triangulated subcategory generated by X . For example,
the category DbA is generated by A (identified with the category of complexes
concentrated in degree 0).
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If R is a ring, a very important triangulated category is the full subcategory
perR ⊂ DModR formed by the perfect complexes, i.e. the complexes quasi-
isomorphic to bounded complexes with components in projR, the category of finitely
generated projective R-modules. The subcategory perR may be intrinsically char-
acterized [29, 6.3] as the subcategory of compact objects of DModR, i.e. objects X
whose associated functor Hom(X, ?) commutes with arbitrary set-indexed coprod-
ucts. Note that by lemma 2, the canonical functor

Hb proj R→ perR

is an equivalence so that the category perR is relatively accessible to explicit com-
putations.

3.2. Grothendieck groups. Then Grothendieck group K0 (T ) of a triangulated
category T is defined [13] as the quotient of the free abelian group on the iso-
morphism classes [X] of objects of T divided by the subgroup generated by the
relators

[X]− [Y ] + [Z]

where (X,Y,Z) runs through the triangles of T .
For example, if R is a right coherent ring, then the category modR of finitely

presented R-modules is abelian and the K0-group of the triangulated category
Db mod R is isomorphic to G0R = K0(mod R) via the Euler characteristic:

[M•] 7→
∑

i∈Z

(−1)i[HiM•].

If R is any ring, the K0-group of the triangulated category perR is isomorphic to
K0R via the morphism

[P •] 7→
∑

i∈Z

(−1)i[P i] , P • ∈ Hb proj R.

Note that this shows that any two rings with the ‘same’ derived category, will have
isomorphic K0-groups. To make this more precise, we need the notion of a triangle
equivalence (cf. below)

3.3. Triangle functors. Let S, T be triangulated categories. A triangle functor
S → T is a pair (F,ϕ) formed by an additive functor F : S → T and a functorial
isomorphism

ϕX : F (X[1]) ∼→ (FX)[1] ,

such that the sequence

FX
Fu
→ FY

Fv
→ FZ

(ϕX) Fw
−→ (FX)[1]

is a triangle of T for each triangle (u, v, w) of S.
For example, if A and B are abelian categories and F : A → B is an additive

functor, one can show [6] that the domain of definition of the right derived functor
RF is a strictly full triangulated subcategory S of DA and that RF : S → DB
becomes a triangle functor in a canonical way.

A triangle functor (F,ϕ) is a triangle equivalence if the functor F is an equiv-
alence. We leave it to the reader as an exercise to define ‘morphisms of triangle
functors’, and ‘quasi-inverse triangle functors’, and to show that a triangle functor
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admits a ‘quasi-inverse triangle functor’ if and only if it is a triangle equivalence
[18].

4. Morita theory for derived categories

The following theorem is the precise analogue of the Morita theorem of section
1.2 in the framework of derived categories.

Let k be a commutative ring. A k-category is a category whose morphism spaces
are k-modules such that the composition maps are bilinear (we have already en-
countered the case k = Z in section 1.1). A functor between k-categories is k-linear
if it induces k-linear maps in the morphism spaces.

The following theorem is due to J. Rickard [29] [31]. A direct proof can be found
in [21].

Theorem (Rickard) Let A and B be k-algebras which are flat as modules over k.
The following are equivalent

i) There is a k-linear triangle equivalence (F,ϕ) : DModA→ DModB.
ii) There is a complex of A-B-modules X• such that the total left derived functor

L(?⊗A X•) : DModA→ DModB

is an equivalence.
iii) There is a complex T of B-modules such that the following conditions hold

a) T is perfect,
b) T generates DModB as a triangulated category with infinite direct sums,
c) we have

HomDB(T, T [n]) = 0 for n 6= 0 and HomDB(T, T ) ∼= A ;

Condition b) in iii) means that DModB coincides with its smallest strictly full
triangulated subcategory stable under forming arbitrary (set-indexed) coproducts.

The implication from ii) to i) is clear. To prove the implication from i) to iii),
one puts T = FA (where A is regarded as the free right A-module of rank one
concentrated in degree 0). Since F is a triangle equivalence, it is then enough
to check that the analogues of a), b), and c) hold for the object A of DModA.
Properties a) and c) are clear. Checking property b) is non-trivial [21]. The hard
part of the proof is the implication from iii) to ii). Indeed, motivated by the proof
of the classical Morita theorem we would like to put X = T . The problem is that
although A acts on T as an object of the derived category, it does not act on the
individual components of T , so that T is not a complex of bimodules as required
in ii). We refer to [19] for a direct solution of this problem.

Condition b) of iii) may be replaced by the condition that the direct summands
of T generate per B as a triangulated category, which is easier to check in practice.

If the algebras A and B are even projective as modules over k, then the complex
X• may be chosen to be bounded and with components which are projective from
both sides. In this case, the tensor product functor ? ⊗A X• is exact and induces
in the derived category a functor isomorphic to its total left derived functor.

By definition [31], the algebra A is derived equivalent to B if the conditions of
the theorem hold. In this case, T is called a tilting complex, X a two-sided tilting
complex and L(?⊗A X) a standard equivalence.

We know that any equivalence between module categories is given by the tensor
product with a bimodule. Strangely enough, in the setting of derived categories, it
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is an open question whether all k-linear triangle equivalences are (isomorphic to)
standard equivalences.

One of the main motivations for considering derived categories is the fact that
they contain a large amount of information about classical homological invariants.
The following theorem illustrates this point.

Theorem If A is derived equivalent to B, then

a) there is a triangle equivalence perA ∼→ perB (and conversely, if there is such
an equivalence, then A is derived equivalent to B);

b) if A and B are right coherent, there is a triangle equivalence Db mod A ∼→
Db mod B (and conversely, if A and B are right coherent and there is such
an equivalence, then A is derived equivalent to B);

c) there is an isomorphism K0A
∼→ K0B and, if A and B are right coherent, an

isomorphism G0A
∼→ G0B;

d) the algebras A and B have isomorphic centers, isomorphic Hochschild homol-
ogy and cohomology and isomorphic cyclic homology.

The theorem is proved in [29], [31] and, for the case of cyclic homology, in [20].
A large number of derived equivalent (and Morita non equivalent) algebras is

provided by Broué’s conjecture [2], [3], which, in its simplest form, is the following
statement

Conjecture (Broué) Let k be an algebraically closed field of characteristic p and
let G be a finite group with abelian p-Sylow subgroups. Then Bpr(G) (the principal
block of of kG) is derived equivalent to Bpr(NG(P )), where P is a p-Sylow subgroup.

We refer to [30] for a proof of the conjecture for blocks of group algebras with
cyclic p-Sylows.

5. Notes on the references

Chapter I of Kashiwara-Schapira’s monograph [17] is a concise and very well-
written introduction to derived categories (readers may want to consult [14, Chapter
I] or [11] to fill in some details). A modern text on homological algebra including
derived categories is Weibel’s book [35]. Gelfand-Manin [22] give a comprehensive
overview of the same subject.

J. Rickard’s paper [29] is the original reference for Morita theory for derived
categories. The link with derived equivalences is established in [31]. Reference [21]
contains direct proofs of the results of [29] and [31].

The articles [32], [26], and [1] by N. Spaltenstein, A. Neeman and M. Boekstedt
contain important advances in the treatment of unbounded complexes. These have
lead to an improved understanding [27], [23] of the original applications of derived
categories in Grothendieck’s duality theory [14].
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