
CORRECTIONS TO ‘ON TRIANGULATED ORBIT
CATEGORIES’

BERNHARD KELLER

1. Description of the triangulated hull

The description of the triangulated hull of the orbit category given in section 7 of
[3] is probably not correct in general. One obtains a correct description by replacing
the quotient Db(B)/ per(B) by its full subcategory generated by the image of A
(considered as a B-module via the projection B → A). The error occurs in the last
three lines of the proof of theorem 5.1 of [3]: It is true that each object of Db(B) is
an extension of two objects which lie in the image of D(mod A) but it is not clear
(and most probably not true) that these objects can be chosen to have bounded
homology.

At least if k is algebraically closed, there is nevertheless a description of the
triangulated hull of the orbit category of the form

Dfd(B′)/ per(B′)

for a suitable dg algebra B′, where Dfd(B′) denotes the full subcategory of the
derived category formed by all dg modules whose homology is of finite total dimen-
sion. One obtains B′ as follows: Let A# be the Koszul dual dg algebra of A (in the
sense of [2]). Our hypotheses imply that A# has its homology of finite total dimen-
sion and that it is derived Morita equivalent to A. Let Y be the dg A#-bimodule
corresponding to the dg A-bimodule X. Then we can take B′ = A ⊕ Y [−1] with
the multiplication of the trivial extension.

2. On the Calabi-Yau property for higher cluster categories

I thank Alex Dugas for his message of February 26, 2009, where he points out
that the proof of the Calabi-Yau property for higher cluster categories which is
implicit in section 8.4 of [3] is incomplete. The following sections are meant to fill
in the gap.

Moreover, as pointed out by Alex Dugas, in characteristic different from 2, it
is not true that τ is isomorphic to the identity functor of the category of finitely
generated projective modules over the algebra Λ(Ln). This was erroneously claimed
at the end of section 7.4 of [3].

2.1. Functors induced in orbit categories, after Asashiba [1]. Let k be a
field, C a k-linear category, F : C → C an automorphism and C/F the orbit category:
its objects are the same as those of C and, if X and Y are two objects, the space
of morphisms from X to Y is ⊕

p∈Z
C(X, F pY ).
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The composition of a morphism f : Y → F qZ with a morphism g : X → F pY is
given by (F pf) ◦ g. Let π : C → C/F be the projection functor. It is endowed with
a canonical isomorphism of functors φ : π ◦ F → π given by πX = 1FX for each
object X of C.

Let C′ be another k-linear category. A (left) F -invariant functor from C to C′ is
given by a pair (H, η), where H : C → C′ is a k-linear functor and η : HF → H
a functor isomorphism. A morphism of F -invariant functors (H, η) → (H ′, η′) is
given by a morphism of functors α : H → H ′ such that the square

HF

αF

��

η // H

α

��
H ′F

η′
// H ′

commutes. In this way, we obtain the category invF (C, C′) of F -invariant functors.
In particular, (π, φ) is an F -invariant functor and if we compose an arbitrary functor
K : C/F → C′ with π, it naturally becomes F -invariant. Moreover, an arbitrary
morphism of functors α : K → K ′ from C/F to C′ yields an F -invariant morphism
απ : Kπ → K ′π. We thus obtain a functor

(π, φ)∗ : funk(C/F, C′) → invF (C, C′)
and it is not hard to check that this functor is an isomorphism of categories. For
example, if (H, η) is an F -invariant functor, it induces a k-linear functor H which
takes a morphism f : X → FY to the composition

HX
Hf // HFY

αFY // FHY.

An F -equivariant functor is a pair (H,α) formed by a k-linear functor H : C → C
and an isomorphism of functors η : HF → HF . A morphism of F -equivariant
functors is defined in the natural way. The composition of F -equivariant functors
(H,α) and (H ′, α′) is defined as the functor HH ′ endowed with the composed
isomorphism (α′H)(H ′α). If (H,α) is an F -equivariant functor, then πH : C →
C/F becomes an F -invariant functor in a natural way and we obtain in fact functors

equF (C, C) → invF (C, C/F ) = funk(C/F, C/F ).

The composed functor takes an F -equivariant functor (H,α) to the functor H
induced by (H,α). It takes a morphism f : X → FY to the composition

HX
Hf // HFY

αFY // FHY.

For example, the functor F itself can be made into the F -equivariant functor
(F,1F 2) and this F -equivariant functor induces a functor isomorphic to the identity
functor in the orbit category. On the other hand, the functor (F,−1F 2) will not
induce a functor isomorphic to the identity functor in general.

The composed functor

equF (C, C) → invF (C, C/F ) = funk(C/F, C/F ).

takes compositions of F -equivariant functors to the compositions of the k-linear
functors which they induce.

For an automorphism ε : F → F , let us denote by ∆(ε) the functor induced in
C/F by the F -equivariant functor (1, ε). Then, the functor induced by (F,−1F 2)
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is isomorphic to ∆(−1F ), since (F,−1F 2) is the composition of (F,1F 2) with
(1,−1F ).

2.2. Self commutation morphisms. Keep the hypotheses of the preceding sec-
tion. Let F1 and F2 be two k-linear functors endowed with commutation morphisms

φij : FiFj → FjFi , 1 ≤ i, j ≤ 2.

We assume that φii is a scalar multiple of the identity morphism of FiFi, say
φii = εi1FiFi

, and that φij is the inverse of φji for all i, j. Let F = F1F2. Then the
φij yield a natural autocommutation morphism FF → FF , namely the composition

F1F2F1F2
F1φ21F2// F1F1F2F2

φ11∗φ22// F1F1F2F2
F1φ12F2// F1F2F1F2.

Now since the φii are multiples of the identity morphisms and φ12 is the inverse of
φ21, this composition is equal to ε1ε21FF .

It follows that if we make F1 and F2 into F -equivariant functors using the φij ,
then the functor induced in C/F by their composition is isomorphic to the functor
induced by (1, ε1ε21F ), i.e. to ∆(ε1ε21F ). In other words, if F i is the functor
induced by the natural F -equivariant functor associated with Fi, then F 1F 2 is
isomorphic to ∆(ε1ε21F ) and the inverse of F 1 is isomorphic to the composition
F2 ∆(ε1ε21F ).

2.3. Serre functors. Keep the hypotheses of section 2.1. Assume moreover that
C is Hom-finite and admits a Serre functor S : C → C endowed with trace maps

tX : C(X, SX) → k.

Define a morphism σF : FS → SF by requiring that we have

tFX((σF X) ◦ Ff) = tX(f)

for all morphisms f : X → SX. Now define trace maps on C/F by requiring that
tπX vanishes on all morphisms X → F pSX for p 6= 0 and coincides with tX on the
morphisms X → SX.

Lemma 2.1. a) The F -equivariant functor (S, σ−1
F ) induces the Serre functor

of C/F and the tπX are trace maps.
b) We have σS = 1S2 and, if F = F1F2 for two automorphisms F1 and F2,

we have
σF = (σF1F2)(F1σF2).

2.4. The triangulated case and the Calabi-Yau property. Keep the hypothe-
ses of section 2.1. Assume moreover that C is endowed with the structure of a
triangulated category with suspension functor Σ and that F : C → C is a triangle
functor. Thus, F is endowed with an isomorphism of functors α : FΣ → ΣF such
that, for each triangle

X
u // Y

v // Z
w // ΣX,

the sequence (Fu, Fv, (αX)(Fw)) is a triangle. Thus, the pair (Σ, α−1) is an F -
equivariant functor. By definition, the suspension functor of the orbit category
C/F is induced by this F -equivariant functor. In particular, we have a canonical
isomorphism πΣ ∼→ Σπ.
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Now consider the case where F = Σ. Thus, we have to make Σ into a triangle
functor. The canonical way to do this is to take (Σ,−1Σ2). This pair is always a tri-
angle functor, due to the fact that if (u, v, w) is a triangle, then so is (Σu, Σv,−Σw).
On the other hand, the pair (Σ,1Σ) is not, in general, a triangle functor. So we
consider for F the triangle functor (Σ,−1Σ2). Then, according to the above defini-
tion, the suspension functor of C/F = C/Σ is induced by the Σ-equivariant functor
(Σ,−1Σ2) and, contrary to what one might have expected, this functor is not, in
general, isomorphic to the identity functor but to the functor ∆(−1Σ).

On the other hand, consider for F the square of the triangle functor (Σ,−1Σ2).
This square is (Σ2,1Σ3). Now the suspension functor of C/F = C/Σ2 is induced by
(Σ,1Σ3) and its square is induced by (Σ2,1Σ4). Thus the square of the suspension
functor of C/Σ2 is indeed isomorphic to the identity functor, as one would expect.

Now assume that C is Hom-finite and admits a Serre functor S. Following Bondal-
Kapranov and Van den Bergh, we canonically make S into a triangle functor. Sur-
prisingly enough, in the notations of section 2.3, this canonical enhancement of
S into a triangle functor is (S,−σΣ). Notice the sign! Now fix an integer d and
consider the triangle functors F1 = (S,−σΣ) and

F2 = (Σ,−1Σ2)−d = (Σ−d, (−1)d1Σ1−d).

The structure of triangle functor on F1 and F2 yields commutation morphisms φ12,
φ21 and φ22. Moreover, we endow F1 with the identical autocommutation morphism
φ11. Then the φij yield a commutation morphism between S = F1 and F = F1F2.
This morphism is not the one defined in section 2.3 but differs from that one by the
sign (−1)d because of the ‘twist’ in the triangle functor structure of S. Thus the
functor induced in C/F by this equivariant functor is ∆((−1)d)SC/F , where SC/F

is the Serre functor. The functor induced by the equivariant enhancement of F2

obtained from the φij is the (−d)th power of the suspension functor ΣC/F . The
functor induced by the equivariant enhancement of F1F2 is isomorphic, according
to section 2.2, to ∆(ε1ε21F ). Now ε1 = 1 and ε2 = (−1)d. So we find that the
composition of equivariant functors F1F2 induces ∆((−1)d) and we have

∆((−1)d)SC/F Σ−d
C/F

∼→ ∆((−1)d)

as k-linear functors C/F → C/F . This implies that

SC/F
∼→ Σd

C/F

at least as k-linear functors. It should not be hard to upgrade this to an isomorphism
of triangle functors.

2.5. Another proof. One could give another proof of the Calabi-Yau property of
higher cluster categories by adapting the proof that Claire Amiot gives for the or-
dinary cluster category in her thesis (Corollary 4.4, page 102; the thesis is available
at her home page). Amiot shows that the cluster category is triangle equivalent to
a subquotient of the derived category of a dg algebra and uses a general theorem
on the construction of Serre functors for quotients.
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