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CHAIN COMPLEXES AND STABLE CATEGORIES

Bernhard Keller

ABSTRACT. Under suitable assumptions, we extend the inclusion of an additive
subcategory X C A ( = stable category of an exact category with enough injectives)
to an S-functor [15] Ho X — A, where Hy X is the homotopy category of chain
complexes concentrated in positive degrees. We thereby obtain a new proof for the
key result of J. Rickard’s "Morita theory for Derived categories‘ [17] and a sharpening
of a theorem of Happel [12, 10.10] on the 'module-theoretic description‘ of the derived
category of a finite-dimensional algebra.

1. NOTATION AND RESULTS

1.1 Let B be an additive category. We denote by

CB the category of chain complexes
dffﬂ dk
K=(..—-K,1 5 K,>K,1—...),K,€éB,neZ,

HB the homotopy catgory CB/N', where N is the ideal of morphisms homo-
topic to 0, endowed with the suspension functor

S:HB—HB, K+— SK, (SK), = K,_,, d°% = —d*

and with the triangles X — Y — Z — SX furnished by the pointwise split
exact sequences of CB (cf. [19]),

C+B, CB, Cy B and CS] B (resp. H.B, HyB, Hg B and Hg] B) the full subcate-
gories of CB (resp. HB) consisting of the right bounded (K,, = 0 Vn < 0), the
right and left bounded (K, =0 Vn < 0 and Vn > 0), the positive (K,, =0
Vn < 0) and the bounded positive (K, = 0 Vn < 0 and Vn > 0) chain
complexes, respectively.

We denote the homotopy class of a morphism of complexes f by f. We identify B
with the full subcategory of HB consisting of the complexes K with K,, =0V n # 0.
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The category B is svelte iff it is equivalent to a small category. In this case, the
contravariant additive functors from B to the category of abelian groups .4b form
the abelian category Mod B.

1.2 For the convenience of the reader we include the following list of definitions
from [15]:
a) If H is an arbitrary category endowed with a functor S : H — H, a sequence
of the form
X35Y 35725 8X
will be called an S-sequence. A morphism of S-sequences is given by a commutative
diagram
X 5 Y 5 Z 5 SX
a | bl cl 1l Sa
XYy Nz M ex
The composition is the obvious one.
A suspended category consists of an additive category C, an additive functor
associating with each X € C its suspension SX € C, and a class of S-sequences
called triangles and subject to the following axioms:

SP0O Each S-sequence isomorphic to a triangle is itself a triangle.
SP1 For each X € C the S-sequence 0 — X L X5 S0isa triangle.
SP2 If X %Y % Z % SX is a triangle, then sois Y % Z % SX =2 Sy

SP3 If the rows of the following diagram are triangles and the leftmost square is
commutative, there is a ¢ : Z — Z’ making the whole diagram commutative.

X 5y 5 7z 2 sx

a | b | 1 Sa

’

X %y %oz % sy
SP4 For any two morphisms X %Y and Y % Z there is a commutative diagram

X % v 4H 7z o SX

| v l |
X — Z - Y — 58X
! I 1 Su
X L x 4 gy
il
sy 2 sz

whose first two rows and whose two central columns are triangles.
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b) Let (A, £) be an exact category (cf. appendix A). An object I € A is injective,
if the functor A (7, I) takes conflations to short exact sequences of abelian groups.
Suppose that (A, &) has enough injectives, i.e. that for each X € A there is a
conflation

XS5 Ix % ox
with an injective I.X. Let Z be the ideal of A formed by the morphisms factoring
through an injective. The assignment X — SX defines 'the‘ suspension functor [14]
S: A — A of the residue class category A = A/Z. Any conflation X LYy 4 7 of
A provides us with an S-sequence

XLy Lz2sx,

where T denotes the residue class of a morphism m of A and where e is determined
by the commutative diagram

X 5 v 4 z
!

I le
X % 1x % gx

The stable category is the residue class category A endowed with S and with the S-
sequences isomorphic to S-sequences of the form (4, d, €). It is a suspended category
(compare [12]). If A is a Frobenius category (i.e. A has enough projectives and
enough injectives and an object of A is projective iff it is injective), then A is a
triangulated category, i.e. a suspended category whose suspension is an equivalence.
For example the category CB of 1.1 endowed with the pointwise split exact sequences
is a Frobenius category and the associated stable category is HB.

c¢) If C and C’ are two suspended categories, an S-functor from C to C’ is formed
by an additive functor F': C — C’ and by a morphism ¢ : F'S — SF such that if
X 32Y 5 Z5 SX is a triangle of C, then

rx B py By py X0 opy

is a triangle of C’ (we denote all suspension functors by the same character S). When
applied to Y = 0 this condition yields that ¢ is invertible. If (F, @) and (F’,¢') are
two S-functors from C to C', a morphism from (F, ) to (F’,¢') is determined by a
morphism of functors p : F' — F’ such that (Su)p = ¢'(1S).

An S-functor (F,¢) : C — (' is an S-equivalence iff there is an S-functor (G, )
such that the composed S-functors (GF, (vF)(Gy)) and (FG, (¢G)(F7)) are iso-
morphic to the identical S-functors (1¢,1s) and (1¢, 1g). One proves that (F, ) is
an S-equivalence iff F' is an equivalence of categories.

1.3 Let A be an exact category with enough injectives (1.2). Let X be a full
additive subcategory of the stable category A such that

A(S"X,Y)=0VYn>0,VX,Y € X.
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In section 4, we shall construct an S-functor F, : Hg]& — A such that Fy| X is
isomorphic to the inclusion X C A. If the suspension functor S : A — A is fully
faithful and

AX,S"Y)=0Vn>0,VX Y eX,

then Fy is fully faithful.

1.4 In addition to the assumptions of 1.3, we now suppose that each sequence
AL A S A B At peN

of inflations (cf. Appendix A) of A has a direct limit lim AP in A and that [] 1, is
injective if (I,,)nen is a family of injectives of A.

In section 6, we shall construct an S-functor F : Hoy X — A whose restriction
to Hg] X is isomorphic to Fy,. In A, the image of a complex X € Ho X under F is
1somorphic to lii)n AP where the limit is formed in A and

AL A Bt peN

is an arbitrary sequence of inflations of A whose image in A is isomorphic to the
sequence

FbX[0—>FbX[1—>...—)FbXLp—>FbXLp+1—)”"pGN.

Here X7, denotes the 'subcomplex of X with (X,), = 0 for n > p and (X)), = X,
for n < p. Moreover,

a) F is fully faithful if the suspension functor S : A — A is fully faithful and
A(X,SFY)=0
forall X € X andY € Hg X.

b) In case X is svelte, the functor F' has a right adjoint if, for each Y € A and
all n € N, the restriction of A(S"7,Y) to X is a resolvable (8.1) functor.

c) In case F' is fully faithful, an object A € A lies in the image of F iff, in A, it
s isomorphic to an object of the form lii)n AP where the limit is formed in A
and

AL A Bt peN

is a sequence of inflations of A such that AP lies in the image of Fy for all p
and A (S"X, ) is invertible for each fizred X € X andn € N for all p > 0.

We shall prove ¢) in 6.4, and a) and b) in sections 7 and 8, respectively.
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1.5 The exact categories occurring in the applications frequently do not satisfy
the assumptions of 1.4 because they have 'too few* direct limits. The first step in
such cases is to replace A by a ’larger* category A’ satisfying the assumptions of
1.4. It then remains to be shown in a second step that the image of F' is essentially
contained in A C A’ (cf. sections 2 and 3). Whereas the second step requires
an investigation of the fine structure of the A at hand, the first one is possible
in a general setting : For each exact category A, one can construct the countable
envelope F : A — A™~, i.e. a 'universal’ exact functor to an exact category A~
which has exact direct limits of sequences of inflations (cf. Appendix B). Countable
sums of injectives of A~ are injective; if A has enough injectives then so does A™;
the functor E preserves injectives and induces a fully faithful S-functor 4 — A~
which we also denote by F.

Thus, under the assumptions of 1.3, we obtain an S-functor F'~ : Hy X — A~
from 1.4 such that the following square is commutative up to isomorphism

X %A
L LE
HyX T A~
If the suspension functor S : A~ — A~ is fully faithful and
AX,S"Y)=0Vn>0,VX,Y e X,

then F~ is fully faithful (proof in section 7).
2. APPLICATION : HOMOTOPY CATEGORIES

2.1 Let B be an additive category and X C H,B a full additive subcategory
such that

e HB(S"X,Y)=0Vn>0,VX,Y € X and
e X, =0Vn<0andVn > 0 for each complex X € X.

We shall construct an S-functor G : Hy X — H, B such that G| X is isomorphic to
the inclusion X C HB (cf. [17, 10.1]). Moreover

a) G is fully faithful iff HB (S"X,Y)=0Vn #0,VX,Y € X.

b) In case X is svelte, G has a right S-adjoint if, for each Y € H, B, the restric-
tion of HyB(?,Y) to X is a resolvable (8.1) functor.

c) G is an S-equivalence if G is fully faithful and HyB lies in the smallest full
triangulated subcategory of H,B which contains X and is closed under iso-
morphisms.
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The following sections contain preliminaries to the proof, which we give in 2.5.
2.2 We recall [18] that, for an inverse system of abelian groups
L AP At ,DEZL,
the first right derived functor of l(iin may be defined by the exact sequence
0 — lim A — 114" = HAP—>1<i£11Ap—>O,
pEZ pEZ

where « is given by the components

HAp Call pq+1 gy ga (-0 1] AT 0 = qt,

pEZ

Now let .
KOS K 5 s KPP E Rt peN

be a sequence in CB such that

a) kP admits a retraction in B, Vn, ¥V p and

b) lim K? =: K exists in CB (i.e. lim K}, = K, exists in B, Vn).

PROPOSITION. (compare [18]) There is an exact sequence
0 — lim' HB (SK”, L) % HB (K, L) 5 lim HB (K?, L) — 0,

which is functorial in L € HB. Here can is induced by the canonical morphisms
K? — K (for § see the remark below).

PROOF. For M € CB, the complex of abelian groups Hom (M, L) is defined by

the components
Hom (M, L); H B(M,_;, L 1 €7

nez
and the differential

(fn)nEZ = (dn+1 fn+1 - (_1)an dn—i—i—l)nEZ‘

We have H; Hom (M, L) = HB (S'M, L). If we identify Hom (K, L) with lim Hom (K, L),
we obtain an exact sequence of complexes

0 — Hom (K, L) — [[ Hom(K?,L) 5 [[ Hom (K?, L),

peEN peEN

where o; maps a family (fZ) to (f? — f2T'kP). Since, by assumption a), the maps

B(K?

n—i»

n><_B(Kp+1 L,),peN,necZ

n—?
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are surjective, we have

Cok g, =lim' T B(K% ;. L,) =0.

nezZ

From the long exact homology sequence associated with

0 — Hom(K,L) — [[ Hom(K”, L) % [ Hom(K”,L) — 0,

peEN pEN

we extract the sequence
0 — CokH; ¢ — HB (K, L) — KerHyp — 0,
which identifies with the sequence of the assumption.

EXAMPLE. For K € CB, the sequence of 'subcomplexes’ K[, , p € N defined in 1.4
satisfies the assumptions of the proposition.

REMARK. In order to evaluate ¢ at the residue class g of

(g7) € [ HB(SK*, L),

pEN

we first solve the system
gh=fI— fIrEE peN,

for each fixed n € N, which is possible thanks to condition a). The morphisms
e’ . K? — [ with the components

p P P
€ = dn+1 n+1 + fn dn

then form a compatible family (i.e. eP™ kP = e? Vp) of morphisms homotopic to 0.
The corresponding morphism e : K — L equals dg. In general, it is not homotopic
to 0.

2.3 In the following remarks, we collect some facts about HB and H_B.
a) For a complex K, we denote by I K the complex given by

. IK 01

and by ix : K — I K the morphism of complexes with components

ldl ]:KnHKn@Kn_l.

Obviously, a morphism of complexes h : K — L is homotopic to 0 iff h factors
through ig. This implies that f : K — L admits a retraction iff

lf}:K%L@]K
23
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admits a retraction. In particular, K is homotopic to 0 iff ix admits a retraction,
that is to say iff K is a retract of a direct sum of complexes of the form

. —-0-5B--B->0—...

b) A morphism between right bounded complezes f : K — L is invertible iff H, f
is invertible Vn. Since this assertion involves only two complexes, we may assume
for the proof that B is svelte. The canonical embedding

H.B — H.ModB

then carries f to a quasi-isomorphism between right bounded complexes of free
(hence projective) modules. It is well known that such a quasi-isomorphism is
invertible in the homotopy category.

c) A compler K € H, B with Hy K = 0 Vn < 0 is homotopy equivalent to a
complex K' with K =0, ¥n < 0. Using the technique of b), we can guarantee the
existence of a family r, € B(K,,, K,41), n < 0 such that

1k, = dpi1rn +1rpoad,
Vn<0. Weset L, =0forn <0, Lo = Ky and L, = K, ® K_, for n > 0. With
dy = [df roydor—], df = df & (r_pdniar—n), n>1,
L becomes a differential complex and f: L — K with
fO=1g, and f" =[lg, 0], n >0,

yields an isomorphism f. (We do not assume that idempotents split in B.)
d) Let f : K — L be a morphism of right bounded complexes. If H) f is
wnwvertible for all n < 0, there is a commutative diagram

K LI
I 17
K L

in H, B, where g is invertible and the components f! admit retractions for alln € Z

n

and are invertible for all n < 0. We can replace f by

[ f 1 K —- L& IK
(37¢

and hence may assume that the f,, admit retractions Vn € Z. The assumptions then
imply H2 Cok f = 0, Vn < 0; thus, by ¢), there is an isomorphism h : M — Cok f,

where M,, =0, Vn < 0. We define g and f’ by base change

0-K L 1 = Cokf —0
I Tg Th
00— K N L — M —=0.
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2.4 As we see from proposition 2.2, the direct limit lim K? formed in CB does
not have a universal property in HB, in general. For certain sequences K?, we now
characterize lim K? within HB in a different way. For short, we denote the restriction

of the functor HB (S"?, , K) to B by H, K. If B is svelte, we can interpret H) K
as the n-th homology object of the complex

.= B(",K,) = B(?, K1) — ...

Now let _ B
St sor S ettt . peN

be a sequence in H,B. We assume that it is admissible, that is to say that

(%) there is an ng such that H) C? = 0 Vn < ng, Vp and
H” ¢ is invertible for each fixed n and all p > 0.

From 2.3 c¢) and d), it is easy to see that this is the case iff, in HB, the given sequence
is isomorphic to the image of a sequence

KOE R SRk E gt peN
of CB satisfying

(%) there is an ng such that K2 =0 Vn < ng, Vp and
for each fixed n, kP admits a retraction V p and is invertible Vp > 0.

The limit envelope (cf. remark a) of the admissible sequence (C?) consists in a
complex C' together with morphisms ¢? € HB (C?,C) such that @P1eP = P, Vp
and that H) P is invertible for each fixed n and all p > 0. We show that the limit
envelope exists and is unique up to (non unique) isomorphism. For this, we first
choose isomorphisms f? : K? — CP with P fP = fPH1kP VY p. From (*%), it is clear
that the direct limit lim K* = K formed in CB together with the obvious morphisms
YP € HB (CP, K) forms a limit envelope. Now let C', (¢”),en be the data of another
limit envelope. By 2.2, there is a morphism f € HB (K, C) such that the diagrams

K= K
Pl Lf
cr Ao

commute. In particular, fi)? = ¢ for all p and, since H" 1P and H/ ¢P are invertible
for p > 0, H) f is invertible Vn. By 2.3 b), f must be invertible.

REMARKS. a) In case B is svelte, we can interpret the morphism

H.B(C,?) 5 imH, B(CP,?)
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as a projective cover in Mod (H,B) : Indeed, can is surjective by 2.2, and if an
endomorphism g = H,B(g,?) of H,B(C,?) satisfies cang" = can, we conclude
that g is invertible by the above argument.

b) We shall need later that for L € H,B and p > 0 the maps

HB(L,cP) : HB(L,C?) — HB(L,C"™)
and  HB(L,¢") : HB(L,C?) — HB(L,C)

are invertible. Indeed this immediately follows from (xx).

2.5 We prove 2.1. Let Bt be the category whose objects are the sequences
B = (Bo,Bl,...,Bp,...), pEN

of objects of B and whose morphisms f : B — C bijectively correspond to the
‘matrices’

[fap) € ITTI B (By, Co).

The composition of morphisms is given by 'matrix multiplication‘. By B — (B,0,...),
we identify B with a full subcategory of BT. By [11, I, 3.2], the category CyB* en-
dowed with the pointwise split conflations is a Frobenius category, i.e. an exact
category with enough projectives and enough injectives such that projectives and
injectives coincide. The projective-injective objects of C,.B* are the complexes ho-
motopic to 0. Thus C.B* coincides with the homotopy category H,B*. Now it is
clear that A = C.B" and the subcategory X C A = H,B™ satisfy the assumptions
of 1.4. We obtain an S-functor F' : Hg X — H BT, Let X € Ho X. We want to
show that, up to isomorphism, F'.X lies in H,B. The terms of the sequence

FXo S FXy— ... > FXp S FXpoy — ..

are successive extensions of the objects SPX,,, p € N. Hence, up to isomorphism,
they lie in H,B. For p > 0, the third corner of a triangle over aP~! is isomorphic to
SP X, , a complex whose components vanish in degrees < p. We conclude that the
sequence of the F' X7, is admissible (2.4). From 1.4, we see that its limit envelope is
isomorphic to F'X. Thus, up to isomorphism, F'X lies in H B, since this is true of
the F°X},. Therefore, the functor F' gives rise to an S-functor Hoy X — H, B, which
we extend to G : H, X — H, B using [15, 2.2].

We want to prove 2.1 a). Let X € X and Y € Hyp X. The group H B (X, SFY},)
vanishes because SF'Y, is obtained from the Sy, 0 < n < p by successive
extensions. Since X is bounded and the SFY[, form an admissible sequence with
limit envelope F'Y, we have

M. B (X, SFY,,) = H,B(X,SFY)

for p > 0. The assertion follows from 1.4 a).
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2.1 b) immediately follows from 1.4 b) and [15, 1.5].
We want to prove 2.1 ¢). A complex Y € CyX is the limit of the sequence

Yoo ¥y — . . =V, B Y0 — .

By assumption, the Y}, all lie in the essential image of F| Hg} X. Since the objects
of X are bounded complexes, the map H, B (S"X, ) is invertible for each fixed
X € X and n € N for all p > 0. The assertion follows from 1.4 ¢).

3. APPLICATION : FINITE-DIMENSIONAL ALGEBRAS

3.1 Let A be a finite-dimensional algebra over a field &k, mod A (resp. mod.A)
the category of finitely (resp. countably) generated right A-modules, v : mod A —
mod A (resp. mod. A — mod, A) the Nakayama-functor 7®, Hom (A, k), u its right
adjoint Hom s (Hom (A, k),7) and A (resp. A.) the following Frobenius category :
Its objects are the sequences M = (M, my)nez of A-modules M, € modA (resp.
M,, € mod, A) and of morphisms m,, € Hom (v M,,, M,,_1) such that m,vm, 1 =0
for all n and M,, = 0 for all n < 0. A morphism f : M — M’ is given by a sequence
fn € Hom y(M,,, M) such that m! vf, = f,—1m, for all n.

We choose the suspension functor S : A. — A, as follows: For M € A., n € Z
let @/ : M,, — I, be an injective envelope in mod. A and let i/ € Hom (M,,, pul,,—1)
be the morphism corresponding to i/, ; m, € Hom (vM,,I,,_1). The projective-
injective module IM € A, is given by

0
(IM)n =1L, ®pul,_1, [ 0 Sg ] vl @vply 1 — Ly @ ply o,

where ¢ : uv — 1 is the adjunction morphism. We put SM = Coki,;, where iy,
has the components

2'/
[ i;’b ] M, — L, ® ul, .

n

Let P and P. be the full subcategories of the projectives of mod A and mod,. A,
respectively.

THEOREM. (cf. [12, 10.10]) The functor P. — A. which associates with P € P,
the sequence M with My = P and M, = 0 Vn # 0 extends to a fully faithful S-
functor H : HyP, — A.. If A has finite global dimension, H gives rise to an
S-equivalence Hy P = A.

PROOF. The full subcategory U, C A, consisting of the sequences M with M, =
0 Vn < 0, is an abelian category with enough injectives (which are injective in A,
as well). It has countable unions and countable sums of injectives are injective. For
M € U,, the structure morphism v(SM); — (SM) is surjective, which implies
that U. (SM, N) vanishes for each N € mod. A identified with the full subcategory
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ofall U € U, with U,, = 0V n > 0. In particular, U, (S™P, Q) vanishes for P,(Q € P.,
n > 0. Thus we obtain an S-functor F' : Hg P. — U, from 1.4. In order to show
that F' is fully faithful, we have to check that U, (P,SFY) = 0 for all P € P,
Y € Hg P.. This is clear, since

U. (P, SFY) = mod, A(P, S(FY)) = Ext) (P, (FY),) = 0.

Using [15, 2.2], we infer the first part of the assertion.

Now suppose gldimA < N € N. The construction of S shows that S moves
the support of an M € A to the left : We have (SYM), =0 forn < 1, if M,, =0
holds for n < 0. By [15, 2.2] it is therefore enough to show that F' gives rise to an
S-equivalence Hy P — U, where U = U, N A. Let X € HyP. We want to show
that, up to isomorphism, F'X lies in U by ’constructing’ F'X using the procedure of
1.4 : The terms of the sequence

X0 — Xy — ... > X, - B Xp— ..., peEN

are successive extensions of objects S" P, P € P, n € N and are therefore isomorphic
to objects of U. Hence we can choose a sequence

VOLyl o sy Zyrtt L peN

of morphisms of & whose image in U, is isomorphic to the sequence of the £}, X,
Moreover, we may assume the j7 to be injective (5.2). In U, , the cokernel of j7~! is
isomorphic to

FCok (X[p—l — X[p) = Spo

for p > 1. We choose isomorphisms f? : SPX,, — Cok jP~!. Because SPX, has no
injective summand, f? is an isomorphism onto a direct summand of Cok j7~! whose
complement is projective-injective. Hence the pre-image A? C Y? of Im f? also has
a projective-injective complement. We put A = Y° and obtain the subsequence’

AL A B gt peN,

which, in U, is isomorphic to the sequence of the Y? and which satisfies Cok 7~ =
SPX, inU. Because (SPX,), vanishes for p > 0, i, is invertible for p > 0 and lim A?
lies in U. Hence, up to isomorphism, F'X lies in U and there is a fully faithful S-
functor G': Ho) P — U whose composition with the inclusion U — U, is isomorphic
to F'. Let M € U be such that M, = 0 for all n > 0. We want to show that M lies
in the image of G = G| Hg} P. We use induction over the set of lexicographically
ordered pairs (b, d), where b is the greatest index with M, # 0 and d is the projective
dimension of M, . If (b,d) = (0,0), then M is in P. If (b,d) > (0,0), we choose
projective covers ¢! : P, — M,, n € Z in mod A and we define X = (X,,, z,) by

Xn:VPnH@PnfornZO,anoforn<Oandxn:[O 1] for n > 0.

0 0
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Let p : X — M be the epimorphism with components p, = [¢/, ¢7], where ¢/, =
Mpt1vqn . For M’ = Kerp, we obviously have (d',0') < (d,b) and, in U, X is
isomorphic to an object of P. By the triangle

M — X2 M- SM

and the full faithfulness of GGy , it follows that M is in the essential image of G, since
M’ and X are. In order to show that an arbitrary M € U is in the image of G, we
consider the sequence

i0 i
Mo S My — ... — My 5 My — ..., peN

of submodules of M, where (Mp,), = M, for n < p and (Mp,), = 0 for n > p. We
have lim M), = M and we already know that My, is in the image of G}, Vp. Since
the module (S"X); vanishes for almost all k& for each fixed X € P and n € N, it is
clear that U (S™X, ) is invertible for all p > 0. The assertion follows from 1.4 c).
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4. CONSTRUCTION OF F),

4.1 Let A be an exact category with enough injectives. A complex A is acyclic,
iff there are conflations

J q
ZnA = n = n—lA

of A such that d,, = j,_1¢,, Vn. If A is acyclic and B is isomorphic to A in HA,
then B is a retract of the acyclic complex A @ IB (2.3 a). If idempotents split in
A, it follows that B itself is acyclic.

LEMMA.

a) We have HA (A, 1) = 0, if I has injective components and A is left bounded
and acyclic.

b) For each left bounded complex K, there is a triangle
aK - K — iK — SaK

in H_A ( = homotopy category of left bounded complezes), where aK is acyclic
and 1K has injective components.

c) The inclusion of the full subcategory of acyclic complezes into H_A admits the
right S-adjoint K — aK.

PROOF. ¢) follows from a) and b) by [15, 1.6]. The proof of a) proceeds as in
the case of an abelian category. With b) however, the argument of [13, I, 4.6] seems
to fail. Suppose that K, =0 Vn > 0. First, we inductively construct a sequence of
"fibre summations‘ (5,7, 4¢.,4"), n € Z,

d, dn
Ky = K, K1
OA)) g q;z+1 4 q,
.]n—i—l J
Zn+1 Zn Zn— 1
" jx—H " jg "
qn+2 Qn+1 qn
]n+2 In—‘,-l [n

in A such that I, is injective, j; is an inflation, j} ¢, ., = d, and j, q,,., = 0.
We put I, = Z, = 0 for n > 0 and Zy, = Ky, ¢§ = 1. When the construction is
completed up to Z,, , we choose j/ : Z,, — I, as an inflation with injective [,,. From
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Hence there is a j/, € A(Z,, K,—1) such that j;, ¢,., = d, and j,q,,, = 0. We
define Z,,_; as the fibre sum of I,, and K,,_;. — By construction, iK := (I,,7"_, q")
is a chain complex and f : K — iK with f, = j, ¢, is a morphism of chain
complexes. The mapping cone C over f has the differential d = j,_; ¢, , where

Jn =75, 1" and g, = [}, ¢//]. Since the sequences
Zn ]_n> n—1 D In &) Zn—l

are conflations by construction, C' is acyclic.

4.2 We use the notations and hypotheses of 1.3. In addition, we suppose for
simplicity that X is closed under isomorphisms in A, which obviously does not
entail any restriction of generality. Let X be the full subcategory of A with the
same objects as X (in particular, X’ contains each injective).

Let Uy be the full subcategory of C.A consisting of the complexes X which satisfy

e X is acyclic and left bounded,
e X, € X VneZand X, is injective Vn < 0.

Endowed with the pointwise split conflations U, is an exact subcategory of C.A with
enough injectives : the complexes homotopic to 0 lying in U, (cf. 2.5).
Since the X € U, are acyclic, they admit conflations

Z, X, 7 | oncZ

such that d,, = j,_1¢n, Vn. The functor Z_; : U, — A is exact and preserves
injectives. It induces an S-functor Z_; : U, — A. On the other hand, the canonical
S-functor

Qy:Uy — HG X, (Xn,dn) — (X, dy)

is an S-equivalence by the following lemma. By composing Z_; with an S-quasiinverse
of (), we obtain Fy, : Hg} X — A. The assertion of 1.3 about the full faithfulness of
F, is easily established by the induction argument of [1].

LEMMA. @y is an S-equivalence.

PROOF. Ist step : The suspended category Uy is generated by the objects aY , Y €
X (that is to say that any full suspended subcategory of U, which contains the
aY , Y € X contains each object of U, , up to isomorphism) : For X € Uy, let X
be the 'factor complex' of X with (X)), = X,, for n > 0 and (X)), = 0 for n < 0.
Since the kernel of X — Xy is left bounded and has injective components, we have
X = a(Xg). The assertion follows, because X lies in the suspended category
Hg} X, which is generated by the Y € X.
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2nd step : The assertion : Since the QpaY , Y € X generate Hg} X and since
the suspension functors of both, i, and Hg] X, are fully faithful, the argument of [1]
shows that it is enough to check that the maps

Up(S"aY,aY’) — Hg} X(S"QpaY, QpaY’) and
Up(aY,S5"aY") — HjX(QuaY, S"QuaY”)

are bijective for all n > 0 and all Y, Y’ € X. For example, we have
Uy (S"aY,aY’) = Uy (S"aY,Y"),
and, since aY is nothing else than an injective resolution
= 0=Y T 1 —-... 1 ,—-1,1—...
of Y, the latter group identifies with the (—n)-th homology group of the complex
00— AYY ) — ALY — o= AL, Y) —
hence with

AY,Y) n=0

A(Sny’yl):{o n>0

which was to be shown.
5. THE FILTERED CATEGORY

5.1 Let A be an exact category. The filtered category F.A has the sequences
79 ik
X=X"5Xx'—». Xt L XP! o ) peEN

of inflations of A as objects. The morphisms f : X — Y bijectively correspond to
the sequences fP € A(XP?,Y?) with if fP = fPTi% Vp. We endow F.A with the
exact structure FE consisting of the pairs of composable morphisms (4, e) such that
(j7, €P) is a conflation of A, V p.

ExaMPLE. For each X € FA, there is a functorial conflation
X" L X5 X
with the components

1 x* 2 [ x5 X7, reN,
p<r—1 qsr
where e” is given by the canonical morphisms X9 — X" and where 5" is given by

Xp[l;eltXp@Xp-i-l%HXq’ 0=i%.

q<r
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Observe that X” and X’ are sequences of split inflations ( = inflations admitting a
retraction).

LEMMA. If A has enough injectives, then so does FA. In this case, the injectives
of FA are the sequences with injective components.

PrRoOOF. We first show that each sequence I with injective components is injective
in FA. The sequence [ is isomorphic to a product of sequences of the form

J=0— ... =0 J" 5 L g2 )

where n € N and J" is injective in A. It remains to be shown that such a J is
injective. If n > 0, then, for X € FA, we have

FAX,J) & FA(Xsn, J),

where (X>,)? = 0 for p < n and (X>,)? = Cok (X" ! — X?) for p > n. Since
X — X5, is an exact functor, we may assume n = 0. Then we have

FA(X,J) = 1limA(XP,J%),

where the transition maps A (X7, J°) « A (XPTL J°) are surjective. By the Mittag-
Leffler criterion [9, Oy, 13.1], the functor FA (7, J) is exact.
Given X € FA, we now construct a conflation

XxXLrsy,

where [ has injective components. In particular, this conflation shows that an
injective X has injective components. We first choose a conflation

-0 0
X515 Y?

with an injective 7°. When p > 0 and (j7,eP) has been constructed, we form a

diagram
Xp i pean — X}g;—i—l
1 LY L
W opey 2Ly
epl lep—irl l

YP i) yptl N }/pp-ﬁ-l7
where the first row is a conflation for %, the third column is a conflation with
injective J and the morphism k is chosen such that ki% = j7. By the snake lemma,
the diagram can be completed in such a way that the pair consisting of j7™! = [k []*
and eP*! is a conflation and % is an inflation.
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5.2 In addition, we now suppose that A has enough injectives. Let AN be the
category of sequences

AL Al —>Apa—_p>Ap+1—>...,p€N

of morphisms of 4 and let R : FA — AN be the functor which associates the
sequence

X0§X1—>...—>Xp X xPHl
with X € FA.

LEMMA. The functor R is an epivalence (i.e. it is full and dense and a morphism
f s invertible if Rf is invertible).

PROOF. 1st step : R is full : A morphism RX — RY is given by a sequence
P € A(XPYP) with igP = ¢grt1i% Vp. We inductively construct a sequence
fP € A(XP,YP) such that fr = gP and b fP = prrl 5 Vp We put f0 = ¢°
Suppose fO,..., f? have been constructed. Since & fP = i¥.gP = gPT1i% | there is
an injective I and there are morphisms h € A(XP,I) and k € A(I,Yp“) such
that i, f* — gP*t1i% = kh. Since i% is an inflation, there is an [ € A (X?*! ) with
h = li%. We put fPH = gttt + kI

2nd step : R is dense : We can factor an arbitrary morphism a : X — Y as
a = si, where

z:[ﬂ X Yol s=10:Y®l—Y

and 7 : X — [ is an inflation with injective I. Observe that ¢ is an inflation and that
S is invertible. Thus a sequence of composable morphisms aP, p € N is isomorphic
to the sequence i, p € N, where the inflations ? result from the factorizations

=5 atst =52, . aPsP=s"TNP .. peN.

3rd step : A morphism f : X — Y is invertible if Rf is invertible : With the
notations of example 5.1, f gives rise to a morphism of triangles

XL — X’_ — X_ — SXL
L Lf Lf LSr”
Yy —-—YY —-Y — SY

It remains to be shown that f” and f’ are invertible. Clearly, the restriction of
R to the full subcategory of F.A consisting of the sequences of split inflations is
fully faithful. Hence it is enough to show that Rf” and Rf’ are invertible. By
assumption, the components f? of Rf are invertible whence so are the components

T 7: I Xx*— [] Y*.reN,

p<r—1 p<r—1 p<r—1
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of Rf” and similarly those of Rf’.

5.3 In addition, we now suppose that each sequence X € FA has a direct limit
lim X? in A.

LEMMA. The functor lim : FA — A is ezact.

PROOF. Let .
ALBSC
be a conflation in F.A. Since A has enough injectives, it is enough to show that the
induced sequence

00— A(limA?,I) — A(lim B*,I) «— A(lim C?, ) < 0

is exact for each injective I of A. Since the transition maps A (C?, I) «+— A (CP*1 )
are surjective, this follows from the Mittag-Leffler criterion [9, Oy, 13.1] (or from 5.1:
lii)n has the diagonal functor as a right adjoint and the latter preserves injectives).

ExaMPLE. By forming limits, we obtain the conflation

I x7 = I X = lim X”

peEN qeN

from the conflation (j,e) of example 5.1.
6. CONSTRUCTION OF F

6.1 We use the notations and hypotheses of 1.4. It is easy to see that A has
countable sums, too, and that the canonical functor A — A and the suspension
functor S : A — A commute with countable sums.

Observe further that CA has direct limits over sequences of (pointwise split)
inflations and that these can be computed by taking the limit in each component.

Let £ be the full subcategory of CA consisting of the A = lim A?, where

AV B AL Aap gt L peN

is a sequence of inflations with left bounded, acyclic A?. By lemma 5.3 the A € L
are acyclic themselves (but they are not left bounded in general).

LEMMA.

a) We have HA(A,I) =0 if I has injective components and A lies in L.
b) For each complex K € CA there is a triangle
aK — K — 1K — SaK

in HA, where iK has injective components and aK lies in L.
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REMARK. This implies that the inclusion of the subcategory of complexes with
injective components into ‘H.A admits the left S-adjoint K +— iK. The essential
image of £ in HA is the kernel of this S-functor and therefore is a triangulated
subcategory. If idempotents split in A, then £ is closed under isomorphisms in ‘H.A
(cf. 4.1) and we conclude that £ is closed under extensions in C.A.

PROOF. a) If A is left bounded, the assertion holds according to 4.1 a). In the
general case, example 5.3 provides us with a triangle

[[A - J[A—>A— S]] A

peEN qeN pEN

in HA. By applying H.A(?,1) to this triangle we obtain an exact sequence from
which the assertion follows, because [[ SAP = S[] AP and the AP are left bounded.
b) We inductively construct a morphism

Ko — Kp—...— Kp— Kpg— ...
I L L Lt
I - I'— ... —» IP— Il

in FCA such that I? has injective components and the mapping cone C'f? is left
bounded and acyclic V p. By definition SaK := lim C'f? then lies in £ and, because
countable sums of injectives of A are injective, /" := lim I” has injective compo-
nents. We obtain f° : Ky — I° from lemma 4.1 b). Suppose that f? has been
constructed. We choose an acyclic complex

€ d dp—1
0—>Kp+1—>Jp—p> p—1 = Jp_2—>...

with injective J,, n < p. A classical argument of homological algebra [3, V, 1.1]
shows that there is a sequence of morphisms ¢, € A(J,,I%), n < p such that
gpe = [} d{ﬁrl and d,g, = gn_1d,, Vn < p. In other words, g makes the square
SPK, S K,
el L
J Lo

commutative in CA, where J is the complex
d
.—>O—>Jp—p>Jp_1—>...—>Jn@>Jn_1—>... ,n<p,

the morphism e is furnished by ¢ and the morphism d by d{fH. We obtain fP*1 :
Kppy1 — IP*! by applying the mapping cone functor to the above square.

6.2 Let U be the full subcategory of CA consisting of the complexes X satisfying

e X liesin L,
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e X, € X, Vn and X, is injective Vn < 0.
As in 4.2, we have the S-functors Z_; : U4 — A and
Q U — HO} X, (Xm dn) = (Xnad_n)

According to the following lemma, () is an S-equivalence. We put F = Z_1Q~,
where (O~ is an S-quassiinverse of (). Obviously, we have F| Hg] X = F,.

LEMMA. @ is an S-equivalence.

Proor. We first show that @ is fully faithful. Let XY e . If X lies in U, we
have
Q(Xv Y) & HA (Xv Y[N) - L—{(X>G(Y[N))

for N > 0, hence the assertion follows from 4.2. In general, X is homotopy equiva-
lent to aX = lim X?, where

XOP xt o xpE xrtl | peN

is a sequence of inflations of complexes X? € U, as the proof of 6.1 b) shows. By
example 5.3, there is a triangle

HXp—> HXq—>X—>SHXp
peN qeN peN
in HA. Its 'image‘ in H.A is isomorphic to a triangle
[Tex?— J] QX' — QX — S]] QX"
peN qgeN peN

The bijectivity of
QIX,Y) : HA(X,Y) - HA(QX, QY)

now follows from the above special case by the 5-lemma.
In order to show that X € Hy & is in the image of (), we choose a sequence

YOOu vyl LyrByrtl L peN

of inflations of U, whose image in Hg X is isomorphic to the sequence of the Xp,,
p € N (4.2 and 5.2). Then the direct limit lim Y” =Y formed in CA lies in £. For
each fixed n € N and for ¢ > p > n, the morphism Y? — Y9 of A is a section with
an injective cokernel. Since countable sums of injectives of A are injective, Y? — Y,
is a section with an injective cokernel, too. Thus Y,, lies in X and Y in Y. Clearly,
QY yields a limit envelope (2.4) of the QY?. Hence QY = X.

6.3 Let _ B
COC—O>C'1—>...—>C’pc—p>C'p+1—>...,pEN

be an admissible sequence (2.4) with limit envelope C' in Hg X. For short we set
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LEMMA.

a) There is a sequence of inflations
AV S AN s AP At , peN

in A such that the sequence of the i is isomorphic to the sequence of the F ¢cP.
For any such sequence we have lim AP 2 FC in A.

b) There are short exact sequences
0 — lim' 7 (SC?,Y) & H(C,Y) B limH (C7,Y) — 0
and
0 — lim' A(SFC?,Y") & A(FC,Y") B lim A (FC?,Y") — 0,

which are functorial in'Y € H and Y' € A, respectively, and which, for

Y’ = FY, fit into a commutative diagram

0— lm'H(SCry) & H(CY) U ImH(CY) —0
! ! !
0— lm'ASFC?, FY) & AFC,FY) &' lmA(FC? FY) —0,

whose vertical morphisms are given by ‘applying F' . Here the morphisms can
are induced by the canonical morphisms C? — C.

PRrROOF. a) We choose a sequence
0 "
XL Xt s XxrLxrtt . peN

of inflations in & whose image in H is isomorphic to the sequence of the ¢? (6.2 and
5.2). As in the proof of the essential surjectivity of @ in 6.2, we see that X = lin XP
lies in U and that QX is a limit envelope of the sequence of the QXP. Thus there
are compatible isomorphisms f? : X? — Q C? and f : X — Q~C in HA. If we
put A? = Z_1XP? and i? = Z_,jP, then the sequence of the 7 is isomorphic to the
sequence of the F' ¢P and lii)n AP = 71 X is isomorphic to F'C' in A. The rest of the
assertion follows from 5.2. For the proof of b), we need the full exact subcategory V
of CA consisting of the acyclic complexes whose components are injective in degrees
< 0. We consider the triangle

[Ix? 5J[x?5 X — ST[Xx”
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in )V which we construct from the sequence of the X? according to example 5.3.
Using the isomorphisms f? and f we transform it into a triangle

[Tecr BJ[Q C1>%Q C—S[[Qcr

in V. We now apply the functor V (?,Q~Y) = H to this triangle and consider the
sequence

0— CokHSu — HQ C — Ker Hv — 0

which we extract from the corresponding long exact sequence. By the definition of
u and T it is isomorphic to

0— lm'Y (SQ™CP,Q7Y) S UQC,Q7Y) ™ limU (QCP,Q7Y) — 0
(cf. 2.2). We define 0’ to be the composition
lim! M (SC?,Y) = ' U (SQ™C7,Q7Y) S U(QC,Q7Y) B H(C,Y),

where « is provided by Q~ and 3 by ). Clearly, Z_; gives rise to an S-functor
YV — A which commutes with countable sums. The ’image’ of the above triangle
under Z_; is isomorphic to a triangle

HFCP — HFC'q — FC — SHFCP.
As above, we derive a short exact sequence
0 — lim' A(SFC?,Y") & A(FC,Y") @ lim A (FCP,Y") — 0

from this triangle. It is clear that, for Y’ = FY', Z_; yields a morphism from (4, can)
to (0", can), and, by definition, @~ yields a morphism from

0 — lim!' H (SC, V) & H(C,Y) B lim M (C7,Y) — 0

to (0, can).

6.4 The description of F'X as a direct limit given in 1.4 follows at once from 6.3

a).

We want to prove 1.4 ¢). The pre-image

X5 xt o Lxr o xrtl L, peN

of the sequence of the AP under F}, is an admissible sequence (2.4). By 6.3 a) we
have FFX = A for its limit envelope X.

7. FULL FAITHFULNESS OF F' AND F™
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7.1 We want to prove 1.4 a). Of course, we have A (X,S5"Y) =0 for n > 0 and
X,Y € X and this implies the full faithfulness of Fj by the argument of [1]. Now
let X,Y € Hg X. If we apply 6.3 b) to the admissible sequence of the X, p € N,
we see that it is enough to show that F' induces bijections

HO}&(X[p7Y) — A(FX[p,FY) and HO]&(SX[},,Y) — A(SFX[p,FY)

for each p. Thus we may assume that X lies in Hg} X. Choose N € N such that
X,, =0 for all n > N. The conflation

Yivn =Y — Yy
of Cy X yields the triangle
FYn = FY — FYyni — SFY|n.
Since S is fully faithful, A (FX,7?) is a homological functor and the sequences
A(SFX,FYniy) = A(SFX,SFY|y) = A(SFX,SFY) — ...
and
A(SFX, FYniy) = A(FX, FY|x) = A(FX, FY) — A(FX, FYNq)
are exact. It remains to be shown that
ASFX, FYny1) =0=A(FX,FYnyy).

By induction with respect to the greatest index n with X, # 0, this easily follows
from the assumption.

7.2 We prove the criterion for the full faithfulness of ™~ given in 1.5. Let X € X
and Y € Ho X. According to 1.4, we can choose a sequence of inflations

AL A A et peN

in A~ which is isomorphic to the sequence of the F~(SY), in A~. By remark B.2
a) we have
A (EX,lim A7) & lim A~ (EX, A?)
hence
A~ (EX,SFY) & lim A~(EX, F~(SY),) =0,

since F~|H X is fully faithful by the argument of [1]. Now the assertion follows
from 1.4 a).

8. EXISTENCE OF A RIGHT ADJOINT
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8.1 Let B be a svelte additive category. A functor F' € Mod B is resolvable iff it
has a resolution by representable functors, i.e. iff there is an exact sequence

=P —>P—-F—F—-0

in Mod B such that each P; is representable [2, Ch. I, §2, Ex. 6]. It is not hard to
establish that the full subcategory of resolvable functors is closed under extensions,
kernels of epimorphisms and cokernels of monomorphisms in Mod B.

THEOREM. Let H : (HyB)% — Ab be a cohomological functor [19] such that the
restriction of HS™ to B wvanishes for all n < 0 and is a resolvable functor for all

n € Z. There is an X € H,B and an isomorphism between H and the restriction

of HyB(?, X)) to HyBB.

PROOF. For a cohomological functor G and n € N, we write G|,, as an abbrevia-
tion of GS™| B. We may assume that H|,, vanishes for all n < 0. We shall construct
a sequence of positive complexes

KOE R SRkrE gl peN
and a sequence of morphisms
o’ KP— H (X = HyB (7, X) for X € HyB)

such that @PT1kP = P, Vp and that ¢P|, is invertible for p > n. Thus the ¢? induce

an isomorphism
lim K?» = H.
—

The construction will show that k? is invertible for p > n. Hence K = lim K7 exists
in C. B and we have isomorphisms

HB (7, K)| HyB < lim K7 = H.

For the construction of K% we use the beginning of a resolution

B(?2,d)
—

B(7,A) B(?,B) = H|y— 0
of H|p in Mod B. We define
KO:(...—>0—>Ai>B—>O—>...),

where B occurs in degree 0. There is a unique morphism 7 : B — H satisfying
(nB)(1p) = (¢B)(1p). The morphism 7 can also be characterized by the equation
e = (n]o) w, where, for any U € B and n € N, w denotes the canonical isomorphism

B(?,U) = S*U|,, f+— S"f.
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Of course, we have 773 = 0. Because of the triangle
AL BE KO 54,

we can conclude that n = °% for some ©° : K0 — H. The commutative diagram
with exact rows

B(?,d) €
B(?,A) — (2,B) — H|, —0
lw R lw TQOO‘O
A\|0 d—\o) §|0 ﬂ—IO) f(\0|0 — 0

shows that °|, is invertible.
For the construction of K*, we choose an epimorphism

v B(2,C) — Hl,
in Mod B. We define ¢ : SC' — H by (1|1) w = x and we consider
[°¢]: KO@® SC — H.
Clearly, [¢° ¢]|; is an epimorphism. Since
KO, = Ker B(?,d) and SC|, & B(?,0)
are resolvable, there is an exact sequence
B(2,D) % (K9 50), " H|, -0
in ModB. Let f: SD — K°@ SC be such that pu = (?|1)w We put
Kl=(..»0-D2Kac 9K 0 ..)

and we choose k° : K° — K as the obvious 'embedding of the subcomplex‘ K.
Since K! is the mapping cone over f, it fits into a triangle

SD L K@ scE K — SSD.

Because [¢° ¢] f = 0, it follows that [¢° 1] = ¢! @ for some ¢! : K' — H. This also
implies ! 0 = ¥ since u| K = k°. Obviously, k* induces an isomorphism

K%y = K1y,
which implies that ¢'|o is invertible. That ('|; is invertible follows from the com-
mutative diagram

— = — — 0

sp, % ®aso), YU mH, o
I || T ols
sp, % (Keso), I K, —o0,

gl)
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whose first row is exact by the construction of f and whose second row is exact by
the above triangle. Note that K} vanishes for n > 2 and that K|, is a resolvable
functor.

By essentially the same procedure, one constructs K1, kP and P! for p > 1
using the additional induction hypotheses that K? vanishes for n > p+ 1 and that
KP|,41 is resolvable.

8.2 We want to prove 1.4 b). For Y € A, we obtain a complex X € Hy X and a
family ¢? € A(FX(,,Y), p € N from 8.1 such that, for X’ € Hg] X and p > 0, the
map

oo F(X' X)) : Hy X (X', X[,) = A(FX',Y)
is bijective. By 5.2 thereisa ¢ € A (FX,Y) which ’extends‘ all the ¢P. In particular,
we have a bijection

0.0 F(X', X): Hy X (X', X) — A(FX',Y)

VX' e Hg} X. Let X" € HyX. By applying Lemma 6.3 to the sequence X[’;,

p € N, we obtain the bijectivity of

0.0 F(X", X) : Hy X (X", X) — A(FX")Y).

APPENDIX A : EXACT CATEGORIES

A.1 Motivated by [7], we exhibit a subset of Quillen’s system of axioms [16]
which is equivalent to the whole system. We use the terminology of [7] : Let A be
an additive category. A pair (i,d) of composable morphisms

XLy 4z

is exact, if 7 is a kernel of d and d a cokernel of 7. Let &£ be a class of exact pairs closed
under isomorphism and satisfying the following axioms Ex0, Ex1, Ex2 and Ex2.
The deflations mentioned in these axioms are by definition the second components
of the conflations (i,d) € €. The first components ¢ are inflations.

Ex0 1j is a deflation.
Ex1 The composition of two deflations is a deflation.

Ex2 For each f € A(Z',Z) and each deflation d € A(Y, Z), there is a cartesian
square
Y/ il) Z/
fl Lf
y 4 7,

where d’ is a deflation.
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Ex2° For each f € A(X, X’) and each inflation i € A(X,Y), there is a cocartesian
square

where ¢’ is an inflation.

PROPOSITION. (A, ) is an ezact category in the sense of [16].

Proor. We first translate Quillen’s axioms into our terminology :

a) For all X, Z € A, the pair
xWxgz g

is a conflation.
b) Axioms Ex1, Ex1°, Ex2 and Ex2° hold.

c¢) If the morphism d has a kernel and if de is a deflation for some morphism e,
then d is a deflation.

¢)? If the morphism ¢ has a cokernel and if ki is an inflation for some morphism

k, then 7 is an inflation.
1st step : In the setting of Ex2 (resp. Ex2° ) the pair

y' T ey U g (resp. X Sy g x VY Y’)
is a conflation : We consider Ex2. Let (i,d) € £. The morphism i : X — Y’

defined by f'i' =i, d'i’ = 0 is obviously a kernel of d’. Thus we have a morphism

of conflations § ,
X 5 vy 4 g
T
X 45 v 4 Zz

Now we form the commutative diagram

X 45 v 4 7
il L I
y L B & 7
dll le/

z 5 7
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whose upper left square is cocartesian (Ex2°). Obviously, e and €’ are kernels of j
and j', respectively, so that (j,e) and (j',¢’) are conflations. Since i = f'i’, we can
define an isomorphism g : £ — Z' @Y by

y 0 . —d
o[ 8] =[]

([h 7] with hd' = 7' f' — j is an inverse of g). The pair (gj,eg™ ') equals

y' F2L ey U o

2nd step: axioms c¢) and ¢) : Let
v Sy Lz
be given as in ¢) and let ¢ : X — Y be a kernel of d. By the first step,
d de]:Y®Y' — Z

is a deflation. Hence, so is

wm:u@w%’ﬁl.

Thus ¢ @ 1y is an inflation, and, because of the cocartesian square

XYy 2L ygy
[ropl  L[10]
X =Y

Y

i is an inflation. Since [d 0] is a cokernel of ¢ @ 1y, d is a cokernel of 7, so (i,d) is a
conflation.
3rd step : Axziom b) : Only Ex1° remains to be proved. Let

X 5Y % Z be a conflation and Y % v
an inflation. By Ex2° and the first step, we have a bicartesion square

y Loy
d| L d
z 5 7.

where [d’ k| is a deflation. Because of the cartesian square

Vey ¥ yviagz
01] ] 1[01]

y -4 2z,
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1y @ d is a deflation, too. Consequently,

[d k] [ 16” 21 =[d' kd

is a deflation by Ex1. We have [d’ kd] = d'[1y+ j]. Thus, by the second step, d’ is
a deflation, since d’ has the kernel ji. Hence (d’, ji) is a conflation.
4th step : Axiom a) : Because of the cartesian square

Lz
!
0

o — N\

N ,

it follows from Ex0 and Ex2 that 14 is a deflation. Because of the cocartesian square

x Y% xgz
! 1 [01]
0 — Z,

the assertion now follows from Ex2°P.

A.2 PRrOPOSITION. (cf. [5, 1)) If (A, &) is a svelte, exact category, there is
an equivalence G : A’ — M onto a full subcategory M of an abelian category such
that M is closed under extensions and that £ is formed by the composable pairs (i, d)
imducing exact sequences

0—Gz%ay % ax —o.

We sketch a proof (cf. [4, 7.3, Ex. G]) which is based on the localisation theory
of abelian categories [5, III]. Let Mod.A be the category of contravariant functors
from A to the category of abelian groups and let Sex A be the full subcategory of
left exact functors, i.e. the functors F' € Mod . A which transform conflations (i, d)

into exact sequences '
0—FzXFry B FX.

We show first that Sex.A is an abelian category. Let C C Mod A be the full sub-
category of effaceable functors, i.e. functors F' such that, for each pair consisting of
an object Z € A and an element z € F'Z, there is a deflation d : Y — Z such that
(F'd)(z) = 0. With [5, III, Prop. 8], we infer from

Ex0Q’ Identities are deflations.

and Ex1 that C is a localising subcategory of Mod A, i.e. that C is closed under
forming subobjects, quotients, extensions and direct limits in Mod .A. From
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Ex2’ For each f € A(Z', Z) and for each deflation d € A(Y, Z), there is a commu-
tative square
Y/ il) Z/
[l Lf
Yy 4 7.

where d’ is a deflation.

we derive that any effaceable subfunctor of a left exact functor vanishes and that
any extension of a left exact functor by an effaceable functor splits. By [5, III,
Lemme 1] this means that Sex A consists of the objects in Mod .A which are closed
with respect to C. Thus Sex A4 is equivalent to the abelian category (Mod.A)/C. We
claim that the equivalence G : A — A" = A(7, A) from A onto the full subcategory
M of Sex A consisting of the representable functors satisfies the requirements of the
assertion. First, it is clear from the definition of Sex.A that for each conflation (i, d),
the sequence
0-X "Ly L 20 —0
is exact in Sex.4. Now let

0-X "L FS20 50

be an arbitrary exact sequence of Sex.A. Since e is an epimorphism of Sex.A4, the
cokernel Cok e = C formed in Mod A is effaceable. In particular, there is a deflation
d:Y — Z such that Cd : CZ — CY carries the image of 17 to 0. This means that
there is a commutative diagram

0— UM 5 vy &ozh o
fl Ly |
0o— X~ L F 5 720 S0,

where 1 = Kerd. Using Ex2°?, we form the commutative diagram

ULy 4 gz
Y I
X 5 v 4 7z,

where the morphism d’ defined by d'i' = 0, d'f’ = d is obviously a cokernel of 7’.
Since the embedding A — Sex.A carries the rows of the diagram to short exact
sequences, the image of the left square must be cocartesian, whence there is an
isomorphism
0 XN 5ovr Bozn o
- ||
0o— X" L F 5 YN 0.



KELLER 32

REMARK. It is not hard to show that Ex2 follows from Ex2’ and Ex2°. Thus
the axioms given in 5.2 could be 'weakened‘ even more.

A.3 Let A be an additive category with a class of exact pairs £. For each full
subcategory B of A, denote by BN E the class of composable pairs (i, d)

X5y 4z
in £ such that X, Y and Z lie in B.

LEMMA. (A, &) is an exact category iff, for each svelte subcategory U of A there
is a svelte exact category (B, F) such that B is a full subcategory of A containing U
and that F is a subclass of € containing U N E.

PROOF. If the condition is satisfied, then Ex0 and Ex1 clearly hold for (A4, ¢&).
In order to prove Ex2, we consider a B containing Y, Z, Z’ and Kerd. The cartesian
square formed in B from d, f is cartesian in A as well, since, by the first step of the
proof of A.1, the sequence

y' " ey 14
lies in F C & and therefore is an exact pair in A.

In order to show that the condition is necessary, we construct an ascending
chain B,,, n € N of full svelte subcategories of A : The subcategory B, contains all
the objects of U ; the subcategory B, ., contains each object B which occurs in a
cartesian (resp. cocartesian) square

B — C A/ Z_/> B/
| L (resp. ¢ | 1)
B % ¢ A —> B

where d' is a deflation and B’,C,C" lie in B, (resp. where i’ is an inflation and
A', A, B’ lie in B,,)). Since the isomorphism class of such a B is determined by d’ and
f (resp. i" and g), B, is svelte. Let B be the union of the B,,, n € N. Clearly, B
is an additive subcategory of A and (B, B N &) satisfies Ex0, Ex2, and Ex2°. Now
let d, e be two composable deflations (with respect to BN E) and let i be a kernel
of d. We form the cartesian square

X 5 X
i | li
Y 5 v

Clearly, ¢’ is a kernel of de and therefore (i, de) € £. Since X' lies in B by definition,
it follows that (i',de) € BN E.

APPENDIX B : THE COUNTABLE ENVELOPE
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B.1 Let (A, £) be an exact category. By definition, (A, &) is countably complete
if

e each sequence X € FA (5.1) has a direct limit lim X? in A and
e the functor lim : FA — A'is exact.

The countable envelope of A is the category A~ with the same objects as FA in
which morphisms X — Y bijectively correspond to the elements of

lim , lim ; A (X”, Y)

(cf. [10, 8.2.5]) together with the class £~ consisting of the pairs of composable
morphisms of A~ which are isomorphic to images of conflations of F.A under the
canonical functor FA — A~. The functor £ : A — A~ associates the ’constant
sequence’ i, = 14, Vp with A € A.

PROPOSITION.
a) (A~,E™) is a countably complete exact category.

b) For each countably complete exact category B, the functor
E*: Hom,, (A~,B) — Hom,, (A,B), G+— GE

induces an equivalence of the full subcategory of functors G satisfying lim GXP =

Glln X?, VX € FA™ onto Hom,, (A, B), the category of exact functors from
A to B.

c) The functor E induces bijections of the extension groups. It preserves projec-
tives and injectives.

d) Countable sums of injectives of A~ are injective. If A has enough injectives
(resp. projectives), the class of countable sums of objects E1, I an injective of
A (resp. EP, P a projective of A), contains enough injectives (resp. projec-
tives) for A™~.

REMARK. Note that the morphisms between two objects of Hom,, (A, B) do not
form a set in general.

We shall prove the proposition in B.2 - B.5. The following examples are based
on remark B.6.

ExXAMPLES. a) For an additive category B endowed with the split conflations, B~
is equivalent to the category BT of 2.5. Moreover, we have

(ChB)™ = (CyB)™ = CyB™ .
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b) Let k be a field and S a locally finite-dimensional k-category [6]. Let mod, S
be the category of 'pointwise finite modules‘, i.e. of k-linear functors M : S? —
mod k such that dim Mz < oo for each € S. The countable envelope (mod, s S)™
identifies with the category of "pointwise countable' modules M, i.e. k-linear functors
M : 8 — mod k such that Mx has countable dimension for each x € § (compare
section 3).

B.2 We want to prove B.1 a). In a first step, we assume that A is svelte. The
functor
L:FA—SexA, X —limA(?, X?)

obviously induces a full embedding of A~ to Sex.A (A.2) and for each conflation
(7,e) of FA, the induced sequence

0—LXHE Ly XLz —o0
is exact. We shall show that an arbitrary short exact sequence
0—LX 5FLLZ—0

of Sex A is isomorphic to the image of a conflation of F.A. Since Sex A is abelian,
it will then follow that (A~,E™) is an exact category.
By base change along the canonical morphism A (7, Z") — LZ, we obtain a short

exact sequence
0—LX - F L A(?,27) =0

from (i,d) for each r € N. Since the cokernel of d” formed in Mod A is effaceable,
there is a deflation ¢" : Q" — Z" such that A (7,¢") = d"a” for some a” : A(7,Q") —
F". Now let P € FA be the sequence of canonical morphisms

[Te"— Il @.,peN

r<p r<p+1
and let f € FA(P,Z) be given by the components
=1yt it ) QT — 2P, pe N
r<p

By construction, f is a deflation of FA whose image in Sex.A factors through d.
Thus there is a commutative diagram with exact rows

0Lz Y p X 1z 0

hl ! I

0—-ILX &% F 4 LZ-0

in Sex A, where k is a kernel of f in F.A. The morphism A is given by a family

e A(Z"® X*®) 1 : N — N some function,
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such that h?™!i%, and h? have the same image in
lim, A (Z7,X9), Vp.

Obviously, we may assume u (p+1) > u (p), Vp. Then we can write h as (Le, )~ LI,
where ¢, : X — X (u) has the components

PP (150 = 1xe and i = i 2L for v > s),
X (p) is the sequence of inflations i@tV #®) and ' € FA(Z', X (1)) has the com-
ponents h?. By cobase change along /', we obtain from (k, f) the required conflation
(7,e) whose image in Sex.A is isomorphic to (7, e)
0— LX(u) 2 Ly LZ —0
Lc,u T ' Ts ||

0— LX 4% F 4 Lz —o.

Le
—

This argument also shows that, for each inflation 7 of A™, there is an isomorphism
s such that si is the image of a morphism j of F A whose components are inflations
of A. Thus, up to ismorphism, a sequence X € F.A™~ is given by a sequence of
morphisms j? € FA (X?, XP™1) such that

G XP Xptla
is an inflation for all p, ¢. The ’diagonal sequence’ Y with

Z'Z;/ — ig(p+1jp’p . XPP _, xptlptl
supplies a direct limit of the X? since, by definition of the morphisms of A™~, we
have
Y & lim EXP % lim, lim , EXP4 2 lim X7,

We see that the embedding A~ — Sex.4 commutes with forming direct limits of
sequences of inflations. Since Sex. A has exact direct limits, it follows that lim :
FA— A~ is exact. o

Now let (A, £) be an arbitrary exact category. We want to show with the aid of
lemma A.3 that (A~,E™) is an exact category. Let U C A~ be a svelte subcategory.
Without restriction of generality, we may assume that I/ is even small. Let the full
subcategory U’ C A~ contain U and, additionally, the terms of a conflation (j, e) of
F A whose image in A™~ is isomorphic to (i, d), for each conflation (i,d) e U N E™
. Let ¥V C A be the full subcategory of the components X? of sequences X € U'.
By A.3 there is a svelte full exact subcategory (B, F) of A such that ¥V C B and
YNE C F. It is clear that B~, which we identify with a full subcategory of A™,
contains U and that F~ contains the class U N E™.
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This construction also shows that, up to isomorphism, each conflation
XLy <4z

of FA™ lies in a subcategory FB~ for some svelte full exact subcategory B C A.
The above construction of li_n} shows that the inclusion B~ C A~ commutes with
li_II)l. We conclude that lin : FAY — A~ is well defined and exact.

REMARK. a) From the above construction of lim : F A~ — A~ we conclude that
for an exact functor G : A~ — B to a countably complete exact category B, we

have lim GX? = Glim X, VX € FA™ iff we have Glim EX? = GX, VX € A™.
In particular, we have

A (EA,lim X?) = lim A™ (EA, X?)

for each A € A and each X € FA™.
b) It is easy to check that the maps f +— (Lc,)~! Lf induce a bijection

lim FA (X, Y (1)) — A™ (X,Y).
Here p runs through the partially ordered set of functions p : N — N with p (p+1) >

w(p), Vp.

B.3 We want to prove B.1 b). We exhibit a fully faithful left adjoint of E*. Let
F : A — B be an exact functor. There is a unique functor F'~ which makes the
square

FA 5 FB
L] | lim
A~ 2B

commutative. F'~ is exact, we have
F”EA:Ii_n}(FA: FA=.)5FA VAec A

and, by remark B.2 a), we have lim F~X? = F~lim X?, VX € FA™. On the
other hand, if im GX? = G li_r)n XP? holds for all X € FA~ for some exact functor
G : A~ — B, we have

(GE)~X =lim F(GE)X = lim GEX” = Glim EX? = GX.

B.4 We want to prove B.1 ¢). For a projective P of A, the functor
A”(EPY) = lim A (P, YY)
is exact in Y. If I is injective in A, then ET is injective in F.A (5.1) and

A (X, EI) & lim FA(X, (EI)(n)) = FA(X, EI)
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is an exact functor of X. That E induces bijections of the extension groups follows
from the

LEMMA. For XY € A~ and n € N, we have
lim Ext’ (X, Y (1)) = Ext’~ (X, Y).

PRroOOF. Let F, X be the left hand side of the above isomorphism. By remark B.2
b), we have Fo X = A~ (X,Y). Since, for n > 0, the F,, form an exact J-functor
which is effaceable for n > 0, the assertion follows from [8, 2.2.1].

B.5 We want to prove B.1 d). If (I,,),en is a family of injectives of A™, we have

A (X, T 1) & lim A™ (EXP, [ 1) < lim [T A™(EX?, I,)

neN neN neN

because of lim EX? = X and remark B.2 a). Since the transition maps
A~ (EX?. 1) — [[ A~ (EX?, 1)

are surjective, A~ (7,[]I,) is an exact functor by the Mittag-Leffler criterion [9, Oy,
13.1].
If A has enough projectives, it is clear from the conflations (example 5.3)

[[EX” S ][EX?S X, X e A~

that the class of countable sums of projectives EP, P projective in A, contains
enough projectives for A™.
If A has enough injectives, then, for each X € A™, there is a conflation

XLjsx

in F.A such that J has injective components (5.1). In A™, J is isomorphic to a sum
of objects EI, I an injective of A. This implies the last assertion of B.1 d).

B.6 LEMMA. In the situation of B.1 b), an exact functor G : A~ — B with
lim GX? = Glim X7, VX € FA™ induces bijections

A™(X,Y) — B(GX,GY) and Ext'\.(X,Y) — Extz(GX,GY),
for all X, Y € A~ iff the restriction F' = GE gives rise to bijections
[T A(A, B,) — B(FA, ] FB,) and []Ext}(A, B,) — Extg(FA, [ FB,)

for all A € A and all families (By)nen in A.
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REMARK. If A has enough projectives, the condition of the proposition is satis-
fied if F' preserves projectives and the map

[TAPP,Q,) — B(FP, T FQ.)

is bijective for all projectives P and all families of projectives (Q)nen in A. If,
moreover, the class of countable sums of objects F'P, P a projective of A, contains
enough projectives for B, then G is an equivalence. This implies the assertions of
examples B.1 a) and b).

PROOF. By lemma B.4, the condition is necessary. Suppose it is satisfied and
let Y € A~. We consider the conflation (example 5.3)

HFYP — HFYq — GY.
From the corresponding long exact sequence, we conclude that the maps
lim Exty(FA, FY?) — Extg(FA,GY)
are bijective for n = 0, 1. Consequently, G induces bijections
Ext~(FAY) — Extg(FAGY), n=0,1.
We now consider the corresponding conflation
[[EX? L [[EX* % X
for X € A™~. Since B has exact countable sums, we have
Extgz(J[ FX?, GY) = [ Extg(F X", GY).

By the 5-lemma, the assertion now follows from the long exact sequences associated
with (j,e) and (Gy, Ge).
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