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CHAIN COMPLEXES AND STABLE CATEGORIES

Bernhard Keller

Abstract. Under suitable assumptions, we extend the inclusion of an additive

subcategory X ⊂ A ( = stable category of an exact category with enough injectives)

to an S-functor [15] H0]X → A , where H0]X is the homotopy category of chain

complexes concentrated in positive degrees. We thereby obtain a new proof for the

key result of J. Rickard’s ’Morita theory for Derived categories‘ [17] and a sharpening

of a theorem of Happel [12, 10.10] on the ’module-theoretic description‘ of the derived

category of a finite-dimensional algebra.

1. Notation and Results

1.1 Let B be an additive category. We denote by

• CB the category of chain complexes

K = (. . .→ Kn+1

dK
n+1

→ Kn
dK

n→ Kn−1 → . . .) , Kn ∈ B , n ∈ Z ,

• HB the homotopy catgory CB/N , where N is the ideal of morphisms homo-

topic to 0, endowed with the suspension functor

S : HB → HB , K 7→ SK , (SK)n = Kn−1 , d
SK = −dK

and with the triangles X → Y → Z → SX furnished by the pointwise split

exact sequences of CB (cf. [19]),

• C+B, CbB, C0] B and Cb0] B (resp. H+B, HbB, H0] B and Hb
0] B) the full subcate-

gories of CB (resp. HB) consisting of the right bounded (Kn = 0 ∀n� 0), the

right and left bounded (Kn = 0 ∀n � 0 and ∀n � 0), the positive (Kn = 0

∀n < 0) and the bounded positive (Kn = 0 ∀n < 0 and ∀n � 0) chain

complexes, respectively.

We denote the homotopy class of a morphism of complexes f by f . We identify B

with the full subcategory of HB consisting of the complexes K with Kn = 0 ∀n 6= 0.
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The category B is svelte iff it is equivalent to a small category. In this case, the

contravariant additive functors from B to the category of abelian groups Ab form

the abelian category ModB.

1.2 For the convenience of the reader we include the following list of definitions

from [15]:

a) If H is an arbitrary category endowed with a functor S : H → H, a sequence

of the form

X
u
→ Y

v
→ Z

w
→ SX

will be called an S-sequence. A morphism of S-sequences is given by a commutative

diagram
X

u
→ Y

v
→ Z

w
→ SX

a ↓ b ↓ c ↓ ↓ Sa

X ′
u′
→ Y ′

v′
→ Z ′

w′

→ SX ′

The composition is the obvious one.

A suspended category consists of an additive category C, an additive functor

associating with each X ∈ C its suspension SX ∈ C, and a class of S-sequences

called triangles and subject to the following axioms:

SP0 Each S-sequence isomorphic to a triangle is itself a triangle.

SP1 For each X ∈ C the S-sequence 0→ X
1
→ X → S0 is a triangle.

SP2 If X
u
→ Y

v
→ Z

w
→ SX is a triangle, then so is Y

v
→ Z

w
→ SX

−Su
→ SY .

SP3 If the rows of the following diagram are triangles and the leftmost square is

commutative, there is a c : Z → Z ′ making the whole diagram commutative.

X
u
→ Y

v
→ Z

w
→ SX

a ↓ b ↓ ↓ Sa

X ′
u′
→ Y ′

v′
→ Z ′

w′

→ SX ′

SP4 For any two morphisms X
u
→ Y and Y

v
→ Z there is a commutative diagram

X
u
→ Y

i
→ Z ′ → SX

‖ v ↓ ↓ ‖
X → Z → Y ′ → SX

↓ ↓ ↓ Su

X ′
1
→ X ′

j
→ SY

j ↓ ↓

SY
Si
→ SZ ′

whose first two rows and whose two central columns are triangles.
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b) Let (A, E) be an exact category (cf. appendix A). An object I ∈ A is injective,

if the functor A (?, I) takes conflations to short exact sequences of abelian groups.

Suppose that (A, E) has enough injectives, i.e. that for each X ∈ A there is a

conflation

X
iX→ IX

dX→ SX

with an injective IX. Let I be the ideal of A formed by the morphisms factoring

through an injective. The assignment X 7→ SX defines ’the‘ suspension functor [14]

S : A → A of the residue class category A = A/I. Any conflation X
i
→ Y

d
→ Z of

A provides us with an S-sequence

X
i
→ Y

d
→ Z

e
→ SX ,

where m denotes the residue class of a morphism m of A and where e is determined

by the commutative diagram

X
i
→ Y

d
→ Z

‖ ↓ ↓ e

X
iX→ IX

dX→ SX

.

The stable category is the residue class category A endowed with S and with the S-

sequences isomorphic to S-sequences of the form (i, d, e). It is a suspended category

(compare [12]). If A is a Frobenius category (i.e. A has enough projectives and

enough injectives and an object of A is projective iff it is injective), then A is a

triangulated category, i.e. a suspended category whose suspension is an equivalence.

For example the category CB of 1.1 endowed with the pointwise split exact sequences

is a Frobenius category and the associated stable category is HB.

c) If C and C ′ are two suspended categories, an S-functor from C to C ′ is formed

by an additive functor F : C → C ′ and by a morphism ϕ : FS → SF such that if

X
u
→ Y

v
→ Z

w
→ SX is a triangle of C, then

FX
Fu
→ FY

Fv
→ FZ

(ϕX)(Fw)
−→ SFX

is a triangle of C ′ (we denote all suspension functors by the same character S). When

applied to Y = 0 this condition yields that ϕ is invertible. If (F, ϕ) and (F ′, ϕ′) are

two S-functors from C to C ′, a morphism from (F, ϕ) to (F ′, ϕ′) is determined by a

morphism of functors µ : F → F ′ such that (Sµ)ϕ = ϕ′(µS).

An S-functor (F, ϕ) : C → C ′ is an S-equivalence iff there is an S-functor (G, γ)

such that the composed S-functors (GF, (γF )(Gϕ)) and (FG, (ϕG)(Fγ)) are iso-

morphic to the identical S-functors (1C, 1S) and (1C′ , 1S). One proves that (F, ϕ) is

an S-equivalence iff F is an equivalence of categories.

1.3 Let A be an exact category with enough injectives (1.2). Let X be a full

additive subcategory of the stable category A such that

A (SnX, Y ) = 0 ∀n > 0 , ∀X, Y ∈ X .
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In section 4, we shall construct an S-functor Fb : Hb
0]X → A such that Fb| X is

isomorphic to the inclusion X ⊂ A. If the suspension functor S : A → A is fully

faithful and

A (X,SnY ) = 0 ∀n > 0 , ∀X, Y ∈ X ,

then Fb is fully faithful.

1.4 In addition to the assumptions of 1.3, we now suppose that each sequence

A0 i0
→ A1 → . . .→ Ap

ip
→ Ap+1 → . . . , p ∈ N

of inflations (cf. Appendix A) of A has a direct limit lim
−→

Ap in A and that
∐
In is

injective if (In)n∈N is a family of injectives of A.

In section 6, we shall construct an S-functor F : H0]X → A whose restriction

to Hb
0]X is isomorphic to Fb. In A , the image of a complex X ∈ H0]X under F is

isomorphic to lim
−→

Ap, where the limit is formed in A and

A0 i0
→ A1 → . . .→ Ap

ip
→ Ap+1 → . . . , p ∈ N

is an arbitrary sequence of inflations of A whose image in A is isomorphic to the

sequence

FbX[0 → FbX[1 → . . .→ FbX[p → FbX[p+1 → . . . , p ∈ N.

Here X[p denotes the ’subcomplex‘ of X with (X[p)n = 0 for n > p and (X[p)n = Xn

for n ≤ p. Moreover,

a) F is fully faithful if the suspension functor S : A → A is fully faithful and

A (X,SFY ) = 0

for all X ∈ X and Y ∈ H0]X .

b) In case X is svelte, the functor F has a right adjoint if, for each Y ∈ A and

all n ∈ N, the restriction of A (Sn ?, Y ) to X is a resolvable (8.1) functor.

c) In case F is fully faithful, an object A ∈ A lies in the image of F iff, in A , it

is isomorphic to an object of the form lim
−→

Ap, where the limit is formed in A

and

A0 i0
→ A1 → . . .→ Ap

ip
→ Ap+1 → . . . , p ∈ N

is a sequence of inflations of A such that Ap lies in the image of Fb for all p

and A (SnX, ip) is invertible for each fixed X ∈ X and n ∈ N for all p� 0.

We shall prove c) in 6.4, and a) and b) in sections 7 and 8, respectively.
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1.5 The exact categories occurring in the applications frequently do not satisfy

the assumptions of 1.4 because they have ’too few‘ direct limits. The first step in

such cases is to replace A by a ’larger‘ category A′ satisfying the assumptions of

1.4. It then remains to be shown in a second step that the image of F is essentially

contained in A ⊂ A′ (cf. sections 2 and 3). Whereas the second step requires

an investigation of the fine structure of the A at hand, the first one is possible

in a general setting : For each exact category A , one can construct the countable

envelope E : A → A∼, i.e. a ’universal‘ exact functor to an exact category A∼

which has exact direct limits of sequences of inflations (cf. Appendix B). Countable

sums of injectives of A∼ are injective; if A has enough injectives then so does A∼;

the functor E preserves injectives and induces a fully faithful S-functor A → A∼ ,

which we also denote by E.

Thus, under the assumptions of 1.3, we obtain an S-functor F∼ : H0]X → A
∼

from 1.4 such that the following square is commutative up to isomorphism

X
incl
−→ A

↓ ↓ E

H0]X
F∼

−→ A∼ .

If the suspension functor S : A∼ → A∼ is fully faithful and

A (X,SnY ) = 0 ∀n > 0 , ∀X, Y ∈ X ,

then F∼ is fully faithful (proof in section 7).

2. Application : Homotopy categories

2.1 Let B be an additive category and X ⊂ H+B a full additive subcategory

such that

• HB (SnX, Y ) = 0 ∀n > 0, ∀X, Y ∈ X and

• Xn = 0 ∀n < 0 and ∀n� 0 for each complex X ∈ X .

We shall construct an S-functor G : H+X → H+B such that G| X is isomorphic to

the inclusion X ⊂ H+B (cf. [17, 10.1]). Moreover

a) G is fully faithful iff HB (SnX, Y ) = 0 ∀n 6= 0, ∀X, Y ∈ X .

b) In case X is svelte, G has a right S-adjoint if, for each Y ∈ H+B, the restric-

tion of H+B ( ?, Y ) to X is a resolvable (8.1) functor.

c) G is an S-equivalence if G is fully faithful and HbB lies in the smallest full

triangulated subcategory of H+B which contains X and is closed under iso-

morphisms.



Keller 6

The following sections contain preliminaries to the proof, which we give in 2.5.

2.2 We recall [18] that, for an inverse system of abelian groups

. . .→ Ap
ap

→ Ap−1 → . . . , p ∈ Z ,

the first right derived functor of lim
←−

may be defined by the exact sequence

0→ lim
←−

Ap →
∏

p∈Z

Ap
α
→

∏

p∈Z

Ap → lim
←−

1Ap → 0 ,

where α is given by the components

∏

p∈Z

Ap
can
−→ Aq+1 ⊕ Aq

[−θ 1]
−→ Aq , θ = aq+1.

Now let

K0 k0

→ K1 → . . .→ Kp kp

→ Kp+1 → . . . , p ∈ N

be a sequence in CB such that

a) kpn admits a retraction in B, ∀n, ∀ p and

b) lim
−→

Kp =: K exists in CB (i.e. lim
−→

Kp
n = Kn exists in B, ∀n).

Proposition. (compare [18]) There is an exact sequence

0→ lim
←−

1HB (SKp, L)
δ
→HB (K,L)

can
−→ lim

←−
HB (Kp, L)→ 0,

which is functorial in L ∈ HB. Here can is induced by the canonical morphisms

Kp → K (for δ see the remark below).

Proof. For M ∈ CB, the complex of abelian groups Hom (M,L) is defined by

the components

Hom (M,L)i =
∏

n∈Z

B(Mn−i, Ln) , i ∈ Z

and the differential

(fn)n∈Z 7→ (dn+1 fn+1 − (−1)ifn dn−i+1)n∈Z.

We have Hi Hom (M,L) ∼→HB (SiM,L). If we identify Hom (K,L) with lim
←−

Hom (Kp, L),

we obtain an exact sequence of complexes

0→ Hom (K,L)→
∏

p∈N

Hom (Kp, L)
ϕ
→

∏

p∈N

Hom (Kp, L) ,

where ϕi maps a family (f pn) to (f pn − f
p+1
n kpn). Since, by assumption a), the maps

B(Kp
n−i , Ln)← B(Kp+1

n−i , Ln) , p ∈ N , n ∈ Z
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are surjective, we have

Cokϕi = lim
←−

1
∏

n∈Z

B(Kp
n−i , Ln) = 0.

From the long exact homology sequence associated with

0→ Hom (K,L)→
∏

p∈N

Hom (Kp, L)
ϕ
→

∏

p∈N

Hom (Kp, L)→ 0 ,

we extract the sequence

0→ CokH1 ϕ→ HB (K,L)→ KerH0 ϕ→ 0,

which identifies with the sequence of the assumption.

Example. For K ∈ CB, the sequence of ’subcomplexes‘ K[ p , p ∈ N defined in 1.4

satisfies the assumptions of the proposition.

Remark. In order to evaluate δ at the residue class g of

(gp) ∈
∏

p∈N

HB (SKp, L) ,

we first solve the system

gpn = f pn − f
p+1
n kpn , p ∈ N ,

for each fixed n ∈ N, which is possible thanks to condition a). The morphisms

ep : Kp → L with the components

epn = dn+1f
p
n+1 + f pn dn

then form a compatible family (i.e. ep+1kp = ep ∀ p) of morphisms homotopic to 0.

The corresponding morphism e : K → L equals δg. In general, it is not homotopic

to 0.

2.3 In the following remarks, we collect some facts about HB and H+B.

a) For a complex K, we denote by IK the complex given by

(IK)n = Kn ⊕Kn−1 , d
IK =

[
0 1
0 0

]

and by iK : K → IK the morphism of complexes with components
[

1
dn

]
: Kn → Kn ⊕Kn−1.

Obviously, a morphism of complexes h : K → L is homotopic to 0 iff h factors

through iK. This implies that f : K → L admits a retraction iff
[
f
ik

]
: K →  L⊕ IK
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admits a retraction. In particular, K is homotopic to 0 iff iK admits a retraction,

that is to say iff K is a retract of a direct sum of complexes of the form

. . .→ 0→ B
1
−→ B → 0→ . . . .

b) A morphism between right bounded complexes f : K → L is invertible iff H∧n f

is invertible ∀n. Since this assertion involves only two complexes, we may assume

for the proof that B is svelte. The canonical embedding

H+B → H+ModB

then carries f to a quasi-isomorphism between right bounded complexes of free

(hence projective) modules. It is well known that such a quasi-isomorphism is

invertible in the homotopy category.

c) A complex K ∈ H+B with H∧nK = 0 ∀n < 0 is homotopy equivalent to a

complex K ′ with K ′n = 0, ∀n < 0. Using the technique of b), we can guarantee the

existence of a family rn ∈ B(Kn, Kn+1) , n < 0 such that

1Kn
= dn+1rn + rn−1dn ,

∀n < 0. We set Ln = 0 for n < 0, L0 = K0 and Ln = Kn ⊕K−n for n > 0. With

dL1 = [dK1 r−1d0r−1] , dLn = dKn ⊕ (r−ndn+1r−n) , n > 1 ,

L becomes a differential complex and f : L→ K with

f 0 = 1K0
and fn = [1Kn

0] , n > 0 ,

yields an isomorphism f . (We do not assume that idempotents split in B.)

d) Let f : K → L be a morphism of right bounded complexes. If H∧n f is

invertible for all n < 0, there is a commutative diagram

K
f
→ L

‖ ↑ g

K
f ′

→ L′

in H+B, where g is invertible and the components f ′n admit retractions for all n ∈ Z

and are invertible for all n < 0. We can replace f by
[
f
iK

]
: K → L⊕ IK

and hence may assume that the fn admit retractions ∀n ∈ Z. The assumptions then

imply H∧n Cok f = 0, ∀n < 0; thus, by c), there is an isomorphism h : M → Cok f ,

where Mn = 0, ∀n < 0. We define g and f ′ by base change

0→ K
f
→ L → Cok f → 0

‖ ↑ g ↑ h

0→ K
f ′

→ L′ → M → 0.
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2.4 As we see from proposition 2.2, the direct limit lim
−→

Kp formed in CB does

not have a universal property in HB, in general. For certain sequences Kp, we now

characterize lim
−→

Kp withinHB in a different way. For short, we denote the restriction

of the functor HB (Sn ?, , K) to B by H∧n K. If B is svelte, we can interpret H∧nK

as the n-th homology object of the complex

. . .→ B(?, Kn)→ B(?, Kn−1)→ . . . .

Now let

C0 c0
→ C1 → . . .→ Cp cp

→ Cp+1 → . . . , p ∈ N

be a sequence in H+B. We assume that it is admissible, that is to say that

(∗)

{
there is an n0 such that H∧n C

p = 0 ∀n < n0, ∀ p and
H∧n c

p is invertible for each fixed n and all p� 0.

From 2.3 c) and d), it is easy to see that this is the case iff, inHB, the given sequence

is isomorphic to the image of a sequence

K0 k0

→ K1 → . . .→ Kp kp

→ Kp+1 → . . . , p ∈ N

of CB satisfying

(∗∗)

{
there is an n0 such that Kp

n = 0 ∀n < n0, ∀ p and
for each fixed n, kpn admits a retraction ∀ p and is invertible ∀ p� 0.

The limit envelope (cf. remark a) of the admissible sequence (Cp) consists in a

complex C together with morphisms ϕp ∈ HB (Cp, C) such that ϕp+1cp = ϕp, ∀ p

and that H∧n ϕ
p is invertible for each fixed n and all p� 0. We show that the limit

envelope exists and is unique up to (non unique) isomorphism. For this, we first

choose isomorphisms f p : Kp → Cp with cpf p = f p+1kp, ∀ p. From (∗∗), it is clear

that the direct limit lim
−→

Kp = K formed in CB together with the obvious morphisms

ψp ∈ HB (Cp, K) forms a limit envelope. Now let C, (ϕp)p∈N be the data of another

limit envelope. By 2.2, there is a morphism f ∈ HB (K,C) such that the diagrams

Kp → K
f p ↓ ↓ f

Cp ϕp

→ C

commute. In particular, fψp = ϕp for all p and, since H∧n ψ
p and H∧n ϕ

p are invertible

for p� 0, H∧n f is invertible ∀n. By 2.3 b), f must be invertible.

Remarks. a) In case B is svelte, we can interpret the morphism

H+B (C, ?)
can
−→ lim

←−
H+B (Cp, ?)
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as a projective cover in Mod (H+B)op : Indeed, can is surjective by 2.2, and if an

endomorphism g∧ = H+B (g, ?) of H+B (C, ?) satisfies can g∧ = can , we conclude

that g is invertible by the above argument.

b) We shall need later that for L ∈ HbB and p� 0 the maps

HB (L, cp) : HB (L,Cp)→ HB (L,Cp+1)

and HB (L, ϕp) : HB (L,Cp)→HB (L,C)

are invertible. Indeed this immediately follows from (∗∗).

2.5 We prove 2.1. Let B+ be the category whose objects are the sequences

B = (B0, B1, . . . , Bp, . . .) , p ∈ N

of objects of B and whose morphisms f : B → C bijectively correspond to the

’matrices‘

[fqp] ∈
∏

p

∐

q

B (Bp, Cq).

The composition of morphisms is given by ’matrix multiplication‘. By B 7→ (B, 0, . . .) ,

we identify B with a full subcategory of B+. By [11, I, 3.2], the category C+B+ en-

dowed with the pointwise split conflations is a Frobenius category, i.e. an exact

category with enough projectives and enough injectives such that projectives and

injectives coincide. The projective-injective objects of C+B+ are the complexes ho-

motopic to 0. Thus C+B+ coincides with the homotopy category H+B+. Now it is

clear that A = C+B
+ and the subcategory X ⊂ A = H+B

+ satisfy the assumptions

of 1.4. We obtain an S-functor F : H0]X → H+B
+. Let X ∈ H0]X . We want to

show that, up to isomorphism, FX lies in H+B. The terms of the sequence

FX[0
a0
→ FX[1 → . . .→ FX[p

ap

→ FX[p+1 → . . .

are successive extensions of the objects SpXp, p ∈ N. Hence, up to isomorphism,

they lie in H+B. For p > 0, the third corner of a triangle over ap−1 is isomorphic to

SpXp , a complex whose components vanish in degrees < p. We conclude that the

sequence of the FX[p is admissible (2.4). From 1.4, we see that its limit envelope is

isomorphic to FX. Thus, up to isomorphism, FX lies in H+B, since this is true of

the FX[p . Therefore, the functor F gives rise to an S-functor H0]X → H+B, which

we extend to G : H+X → H+B using [15, 2.2].

We want to prove 2.1 a). Let X ∈ X and Y ∈ H0]X . The groupH+B (X,SFY[p)

vanishes because SFY[p is obtained from the Sn+1Yn , 0 ≤ n ≤ p by successive

extensions. Since X is bounded and the SFY[p form an admissible sequence with

limit envelope FY , we have

H+B (X,SFY[p)
∼→H+B (X,SFY )

for p� 0. The assertion follows from 1.4 a).
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2.1 b) immediately follows from 1.4 b) and [15, 1.5].

We want to prove 2.1 c). A complex Y ∈ C0]X is the limit of the sequence

Y[0
i0
→ Y[1 → . . .→ Y[p

ip
→ Y[p+1 → . . . .

By assumption, the Y[p all lie in the essential image of F | Hb
0]X . Since the objects

of X are bounded complexes, the map H+B (SnX, ip) is invertible for each fixed

X ∈ X and n ∈ N for all p� 0. The assertion follows from 1.4 c).

3. Application : Finite-dimensional algebras

3.1 Let Λ be a finite-dimensional algebra over a field k, modΛ (resp. modc Λ)

the category of finitely (resp. countably) generated right Λ-modules, ν : modΛ→

modΛ (resp. modc Λ→ modc Λ) the Nakayama-functor ?⊗Λ Hom(Λ, k) , µ its right

adjoint HomΛ(Hom (Λ, k), ?) and A (resp. Ac) the following Frobenius category :

Its objects are the sequences M = (Mn, mn)n∈Z of Λ-modules Mn ∈ modΛ (resp.

Mn ∈ modc Λ) and of morphisms mn ∈ HomΛ(νMn,Mn−1) such that mnνmn+1 = 0

for all n and Mn = 0 for all n� 0. A morphism f : M →M ′ is given by a sequence

fn ∈ HomΛ(Mn,M
′
n) such that m′nνfn = fn−1mn for all n.

We choose the suspension functor S : Ac → Ac as follows: For M ∈ Ac, n ∈ Z

let i′n : Mn → In be an injective envelope in modc Λ and let i′′n ∈ Hom(Mn, µIn−1)

be the morphism corresponding to i′n−1mn ∈ Hom(νMn, In−1). The projective-

injective module IM ∈ Ac is given by

(IM)n = In ⊕ µIn−1 ,

[
0 ϕ
0 0

]
: νIn ⊕ νµIn−1 → In−1 ⊕ µIn−2 ,

where ϕ : µν → 1 is the adjunction morphism. We put SM = Cok iM , where iM
has the components [

i′n
i′′n

]
: Mn → In ⊕ µIn−1.

Let P and Pc be the full subcategories of the projectives of modΛ and modc Λ,

respectively.

Theorem. (cf. [12, 10.10]) The functor Pc → Ac which associates with P ∈ Pc
the sequence M with M0 = P and Mn = 0 ∀n 6= 0 extends to a fully faithful S-

functor H : H+Pc → Ac. If Λ has finite global dimension, H gives rise to an

S-equivalence H+P
∼→ A.

Proof. The full subcategory Uc ⊂ Ac consisting of the sequences M with Mn =

0 ∀n < 0, is an abelian category with enough injectives (which are injective in Ac

as well). It has countable unions and countable sums of injectives are injective. For

M ∈ Uc , the structure morphism ν(SM)1 → (SM)0 is surjective, which implies

that Uc (SM,N) vanishes for each N ∈ modc Λ identified with the full subcategory
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of all U ∈ Uc with Un = 0 ∀n > 0. In particular, Uc (SnP,Q) vanishes for P,Q ∈ Pc,

n > 0. Thus we obtain an S-functor F : H0] Pc → Uc from 1.4. In order to show

that F is fully faithful, we have to check that Uc (P, SFY ) = 0 for all P ∈ Pc,

Y ∈ H0] Pc. This is clear, since

Uc (P, SFY ) ∼→ modc Λ(P, S(FY )0)
∼→ Ext1

Λ (P, (FY )0) = 0.

Using [15, 2.2], we infer the first part of the assertion.

Now suppose gldim Λ < N ∈ N. The construction of S shows that SN moves

the support of an M ∈ A to the left : We have (SNM)n = 0 for n < 1, if Mn = 0

holds for n < 0. By [15, 2.2] it is therefore enough to show that F gives rise to an

S-equivalence H0] P → U , where U = Uc ∩ A. Let X ∈ H0] P. We want to show

that, up to isomorphism, FX lies in U by ’constructing‘ FX using the procedure of

1.4 : The terms of the sequence

FbX[0 → FbX[1 → . . .→ FbX[p → FbX[p+1 → . . . , p ∈ N

are successive extensions of objects SnP , P ∈ P, n ∈ N and are therefore isomorphic

to objects of U . Hence we can choose a sequence

Y 0 j0

→ Y 1 → . . .→ Y p jp

→ Y p+1 → . . . , p ∈ N

of morphisms of U whose image in Uc is isomorphic to the sequence of the FbX[p.

Moreover, we may assume the jp to be injective (5.2). In Uc , the cokernel of jp−1 is

isomorphic to

FCok (X[p−1 → X[p)
∼→ SpXp

for p ≥ 1. We choose isomorphisms f p : SpXp → Cok jp−1. Because SpXp has no

injective summand, f p is an isomorphism onto a direct summand of Cok jp−1 whose

complement is projective-injective. Hence the pre-image Ap ⊂ Y p of Im f p also has

a projective-injective complement. We put A0 = Y 0 and obtain the ’subsequence‘

A0 i0
→ A1 → . . . Ap

ip
→ Ap+1 → . . . , p ∈ N ,

which, in U , is isomorphic to the sequence of the Y p and which satisfies Cok ip−1 ∼=
SpXp in U . Because (SpXp)n vanishes for p� 0, ipn is invertible for p� 0 and lim

−→
Ap

lies in U . Hence, up to isomorphism, FX lies in U and there is a fully faithful S-

functor G : H0] P → U whose composition with the inclusion U → Uc is isomorphic

to F . Let M ∈ U be such that Mn = 0 for all n� 0. We want to show that M lies

in the image of Gb = G| Hb
0]P. We use induction over the set of lexicographically

ordered pairs (b, d), where b is the greatest index with Mb 6= 0 and d is the projective

dimension of Mb . If (b, d) = (0, 0), then M is in P. If (b, d) > (0, 0), we choose

projective covers q′′n : Pn →Mn, n ∈ Z in modΛ and we define X = (Xn, xn) by

Xn = νPn+1 ⊕ Pn for n ≥ 0, Xn = 0 for n < 0 and xn =

[
0 1
0 0

]
for n > 0.
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Let p : X → M be the epimorphism with components pn = [q′n q
′′
n], where q′n =

mn+1 νq
′′
n+1. For M ′ = Ker p, we obviously have (d′, b′) < (d, b) and, in U , X is

isomorphic to an object of P. By the triangle

M ′ → X
p
→M → SM ′

and the full faithfulness of Gb , it follows that M is in the essential image of Gb since

M ′ and X are. In order to show that an arbitrary M ∈ U is in the image of G, we

consider the sequence

M[0
i0
→M[1 → . . .→M[p

ip
→M[p+1 → . . . , p ∈ N

of submodules of M , where (M[p)n = Mn for n ≤ p and (M[p)n = 0 for n > p. We

have lim
−→

M[p
∼→ M and we already know that M[p is in the image of Gb ∀ p. Since

the module (SnX)k vanishes for almost all k for each fixed X ∈ P and n ∈ N, it is

clear that U (SnX, ip) is invertible for all p � 0. The assertion follows from 1.4 c).
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4. Construction of Fb

4.1 Let A be an exact category with enough injectives. A complex A is acyclic,

iff there are conflations

ZnA
jn→ An

qn→ Zn−1A

of A such that dn = jn−1 qn, ∀n. If A is acyclic and B is isomorphic to A in HA,

then B is a retract of the acyclic complex A ⊕ IB (2.3 a). If idempotents split in

A , it follows that B itself is acyclic.

Lemma.

a) We have HA (A, I) = 0, if I has injective components and A is left bounded

and acyclic.

b) For each left bounded complex K, there is a triangle

aK → K → iK → SaK

in H−A ( = homotopy category of left bounded complexes), where aK is acyclic

and iK has injective components.

c) The inclusion of the full subcategory of acyclic complexes into H−A admits the

right S-adjoint K 7→ aK.

Proof. c) follows from a) and b) by [15, 1.6]. The proof of a) proceeds as in

the case of an abelian category. With b) however, the argument of [13, I, 4.6] seems

to fail. Suppose that Kn = 0 ∀n > 0. First, we inductively construct a sequence of

’fibre summations‘ (j ′n, j
′′
n, q
′
n, q
′′
n), n ∈ Z,

- -

@
@

@
@R

@
@

@
@R

@
@

@
@R

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

�
�

�
��

@
@

@
@R

@
@

@
@R
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Zn+1 Zn Zn−1

In+2 In+1 In

q′n+2 q′n+1 q′n

q′′n+2 q′′n+1 q′′n

j ′n+1 j ′n

j ′′n+1 j ′′n

dn+1 dn

in A such that In is injective, j ′′n is an inflation, j ′n q
′
n+1 = dn and j ′n q

′′
n+1 = 0.

We put In = Zn = 0 for n > 0 and Z0 = K0, q
′
1 = 1. When the construction is

completed up to Zn , we choose j ′′n : Zn → In as an inflation with injective In. From

(dn j
′
n+1) q

′
n+2 = dn dn+1 = 0 and (dn j

′
n+1) q

′′
n+2 = 0, it follows that dn j

′
n+1 = 0 .
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Hence there is a j ′n ∈ A (Zn, Kn−1) such that j ′n q
′
n+1 = dn and j ′n q

′′
n+1 = 0. We

define Zn−1 as the fibre sum of In and Kn−1. – By construction, iK := (In, j
′′
n−1 q

′′
n)

is a chain complex and f : K → iK with fn = j ′′n q
′
n+1 is a morphism of chain

complexes. The mapping cone C over f has the differential dCn = jn−1 qn , where

jn = [j ′n j
′′
n]
t and qn = [q′n q

′′
n]. Since the sequences

Zn
jn→ Kn−1 ⊕ In

qn→ Zn−1

are conflations by construction, C is acyclic.

4.2 We use the notations and hypotheses of 1.3. In addition, we suppose for

simplicity that X is closed under isomorphisms in A , which obviously does not

entail any restriction of generality. Let X be the full subcategory of A with the

same objects as X (in particular, X contains each injective).

Let Ub be the full subcategory of CA consisting of the complexes X which satisfy

• X is acyclic and left bounded,

• Xn ∈ X , ∀n ∈ Z and Xn is injective ∀n < 0.

Endowed with the pointwise split conflations Ub is an exact subcategory of CA with

enough injectives : the complexes homotopic to 0 lying in Ub (cf. 2.5).

Since the X ∈ Ub are acyclic, they admit conflations

Zn
jn→ Xn

qn→ Zn−1 , n ∈ Z

such that dn = jn−1 qn, ∀n. The functor Z−1 : Ub → A is exact and preserves

injectives. It induces an S-functor Z−1 : Ub → A . On the other hand, the canonical

S-functor

Qb : Ub → H
b
0]X , (Xn, dn) 7→ (Xn, dn)

is an S-equivalence by the following lemma. By composing Z−1 with an S-quasiinverse

of Qb we obtain Fb : Hb
0]X → A . The assertion of 1.3 about the full faithfulness of

Fb is easily established by the induction argument of [1].

Lemma. Qb is an S-equivalence.

Proof. 1st step : The suspended category Ub is generated by the objects aY , Y ∈

X (that is to say that any full suspended subcategory of Ub which contains the

aY , Y ∈ X contains each object of Ub , up to isomorphism) : For X ∈ Ub , let X0]

be the ’factor complex‘ of X with (X0])n = Xn for n ≥ 0 and (X0])n = 0 for n < 0.

Since the kernel of X → X0] is left bounded and has injective components, we have

X ∼→ a(X0]). The assertion follows, because X0] lies in the suspended category

Hb
0]X , which is generated by the Y ∈ X .
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2nd step : The assertion : Since the QbaY , Y ∈ X generate Hb
0]X and since

the suspension functors of both, Ub and Hb
0]X , are fully faithful, the argument of [1]

shows that it is enough to check that the maps

Ub(S
naY, aY ′) → Hb

0]X (SnQbaY,QbaY
′) and

Ub(aY, S
naY ′) → Hb

0]X (QbaY, S
nQbaY

′)

are bijective for all n ≥ 0 and all Y, Y ′ ∈ X . For example, we have

Ub (S
naY, aY ′) ∼→ Ub (S

naY, Y ′) ,

and, since aY is nothing else than an injective resolution

. . .→ 0→ Y → I−1 → . . .→ I−n → I−n−1 → . . .

of Y , the latter group identifies with the (−n)-th homology group of the complex

. . .← 0← A (Y, Y ′)← A (I−1, Y
′)← . . .← A (I−n, Y

′)← . . . ,

hence with

A (SnY, Y ′) =

{
A (Y, Y ′) n = 0
0 n > 0,

which was to be shown.

5. The filtered category

5.1 Let A be an exact category. The filtered category FA has the sequences

X = (X0 i 0
X−→ X1 → . . .→ Xp i

p

X−→ Xp+1 → . . .) , p ∈ N

of inflations of A as objects. The morphisms f : X → Y bijectively correspond to

the sequences f p ∈ A(Xp, Y p) with i pY f
p = f p+1i pX , ∀ p. We endow FA with the

exact structure FE consisting of the pairs of composable morphisms (j, e) such that

(jp, ep) is a conflation of A, ∀ p.

Example. For each X ∈ FA, there is a functorial conflation

X ′′
j
→ X ′

e
→ X

with the components

∐

p≤r−1

Xp j r

−→
∐

q≤r

Xq er

−→ Xr , r ∈ N ,

where er is given by the canonical morphisms Xq → Xr and where j r is given by

Xp [1 −θ]t

−→ Xp ⊕Xp+1 can
−→

∐

q≤r

Xq , θ = i pX .
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Observe that X ′′ and X ′ are sequences of split inflations ( = inflations admitting a

retraction).

Lemma. If A has enough injectives, then so does FA. In this case, the injectives

of FA are the sequences with injective components.

Proof. We first show that each sequence I with injective components is injective

in FA. The sequence I is isomorphic to a product of sequences of the form

J = (0→ . . .→ 0→ Jn
1
→ Jn+1 1

→ Jn+2 → . . .) ,

where n ∈ N and Jn is injective in A. It remains to be shown that such a J is

injective. If n > 0, then, for X ∈ FA, we have

FA (X, J) ∼← FA (X≥n, J) ,

where (X≥n)
p = 0 for p < n and (X≥n)

p = Cok (Xn−1 → Xp) for p ≥ n. Since

X 7→ X≥n is an exact functor, we may assume n = 0. Then we have

FA (X, J) ∼→ lim
←−
A (Xp, J0) ,

where the transition maps A (Xp, J0)← A (Xp+1, J0) are surjective. By the Mittag-

Leffler criterion [9, 0III, 13.1], the functor FA (?, J) is exact.

Given X ∈ FA, we now construct a conflation

X
j
→ I

e
→ Y ,

where I has injective components. In particular, this conflation shows that an

injective X has injective components. We first choose a conflation

X0 j0

→ I0 e0
→ Y 0

with an injective I0. When p ≥ 0 and (jp, ep) has been constructed, we form a

diagram

Xp
i

p

X−→ Xp+1 → Xp+1
p

jp ↓ ↓
[
k

l

]
↓ l

Ip
[1 0]t

−→ Ip ⊕ J
[0 1]
−→ J

ep ↓ ↓ ep+1 ↓

Y p
i

p

Y−→ Y p+1 → Y p+1
p ,

where the first row is a conflation for i pX , the third column is a conflation with

injective J and the morphism k is chosen such that ki pX = jp. By the snake lemma,

the diagram can be completed in such a way that the pair consisting of jp+1 = [k l]t

and ep+1 is a conflation and i pY is an inflation.
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5.2 In addition, we now suppose that A has enough injectives. Let AN be the

category of sequences

A0 a0
→ A1 → . . .→ Ap

ap

→ Ap+1 → . . . , p ∈ N

of morphisms of A and let R : FA → AN be the functor which associates the

sequence

X0 i0
X→ X1 → . . .→ Xp i

p

X→ Xp+1 → . . .

with X ∈ FA.

Lemma. The functor R is an epivalence (i.e. it is full and dense and a morphism

f is invertible if Rf is invertible).

Proof. 1st step : R is full : A morphism RX → RY is given by a sequence

gp ∈ A (Xp, Y p) with ipY g
p = gp+1ipX , ∀ p. We inductively construct a sequence

f p ∈ A (Xp, Y p) such that f p = gp and ipY f
p = f p+1 ipX , ∀ p. We put f 0 = g0.

Suppose f 0, . . . , f p have been constructed. Since ipY f
p = ipY g

p = gp+1ipX , there is

an injective I and there are morphisms h ∈ A (Xp, I) and k ∈ A (I, Y p+1) such

that ipY f
p − gp+1ipX = kh. Since ipX is an inflation, there is an l ∈ A (Xp+1, I) with

h = l ipX . We put f p+1 = gp+1 + kl.

2nd step : R is dense : We can factor an arbitrary morphism a : X → Y as

a = si, where

i =

[
a
j

]
: X → Y ⊕ I, s = [1 0] : Y ⊕ I → Y

and j : X → I is an inflation with injective I. Observe that i is an inflation and that

s is invertible. Thus a sequence of composable morphisms ap, p ∈ N is isomorphic

to the sequence ip, p ∈ N, where the inflations ip result from the factorizations

a0 = s1 i0 , a1 s1 = s2 i1 , . . . , ap sp = sp+1 ip . . . , p ∈ N.

3rd step : A morphism f : X → Y is invertible if Rf is invertible : With the

notations of example 5.1, f gives rise to a morphism of triangles

X ′′ → X ′ → X → SX ′′

↓ f ′′ ↓ f ′ ↓ f ↓ Sf ′′

Y ′′ → Y ′ → Y → SY ′′.

It remains to be shown that f ′′ and f ′ are invertible. Clearly, the restriction of

R to the full subcategory of FA consisting of the sequences of split inflations is

fully faithful. Hence it is enough to show that Rf ′′ and Rf ′ are invertible. By

assumption, the components f p of Rf are invertible whence so are the components

∐

p≤r−1

f p :
∐

p≤r−1

Xp →
∐

p≤r−1

Y p , r ∈ N ,
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of Rf ′′ and similarly those of Rf ′.

5.3 In addition, we now suppose that each sequence X ∈ FA has a direct limit

lim
−→

Xp in A.

Lemma. The functor lim
−→

: FA → A is exact.

Proof. Let

A
j
→ B

e
→ C

be a conflation in FA. Since A has enough injectives, it is enough to show that the

induced sequence

0← A (lim
−→

Ap, I)← A (lim
−→

Bp, I)← A (lim
−→

Cp, I)← 0

is exact for each injective I of A. Since the transition maps A (Cp, I)← A (Cp+1, I)

are surjective, this follows from the Mittag-Leffler criterion [9, 0III, 13.1] (or from 5.1:

lim
−→

has the diagonal functor as a right adjoint and the latter preserves injectives).

Example. By forming limits, we obtain the conflation

∐

p∈N

Xp ι
−→

∐

q∈N

Xq ε
−→ lim

−→
Xp

from the conflation (j, e) of example 5.1.

6. Construction of F

6.1 We use the notations and hypotheses of 1.4. It is easy to see that A has

countable sums, too, and that the canonical functor A → A and the suspension

functor S : A → A commute with countable sums.

Observe further that CA has direct limits over sequences of (pointwise split)

inflations and that these can be computed by taking the limit in each component.

Let L be the full subcategory of CA consisting of the A = lim
−→

Ap, where

A0 i0→ A1 → . . . Ap
ip
→ Ap+1 → . . . , p ∈ N

is a sequence of inflations with left bounded, acyclic Ap. By lemma 5.3 the A ∈ L

are acyclic themselves (but they are not left bounded in general).

Lemma.

a) We have HA (A, I) = 0 if I has injective components and A lies in L.

b) For each complex K ∈ CA there is a triangle

aK → K → iK → SaK

in HA, where iK has injective components and aK lies in L.
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Remark. This implies that the inclusion of the subcategory of complexes with

injective components into HA admits the left S-adjoint K 7→ iK. The essential

image of L in HA is the kernel of this S-functor and therefore is a triangulated

subcategory. If idempotents split in A, then L is closed under isomorphisms in HA

(cf. 4.1) and we conclude that L is closed under extensions in CA.

Proof. a) If A is left bounded, the assertion holds according to 4.1 a). In the

general case, example 5.3 provides us with a triangle

∐

p∈N

Ap →
∐

q∈N

Aq → A→ S
∐

p∈N

Ap

in HA. By applying HA (?, I) to this triangle we obtain an exact sequence from

which the assertion follows, because
∐
SAp ∼→ S

∐
Ap and the Ap are left bounded.

b) We inductively construct a morphism

K[0 → K[1 → . . .→ K[p → K[p+1 → . . .
f 0 ↓ ↓ f 1 ↓ f p ↓ f p+1

I0 → I1 → . . .→ Ip → Ip+1 → . . .

in FCA such that Ip has injective components and the mapping cone Cf p is left

bounded and acyclic ∀ p. By definition SaK := lim
−→

Cf p then lies in L and, because

countable sums of injectives of A are injective, iK := lim
−→

Ip has injective compo-

nents. We obtain f 0 : K[0 → I0 from lemma 4.1 b). Suppose that f p has been

constructed. We choose an acyclic complex

0→ Kp+1
ε
→ Jp

dp

→ Jp−1
dp−1

→ Jp−2 → . . .

with injective Jn, n ≤ p. A classical argument of homological algebra [3, V, 1.1]

shows that there is a sequence of morphisms gn ∈ A(Jn, I
p
n), n ≤ p such that

gp ε = f pp d
K
p+1 and dngn = gn−1dn, ∀n ≤ p. In other words, g makes the square

SpKp+1
d
→ K[p

e ↓ ↓ f p

J
g
→ Ip

commutative in CA, where J is the complex

. . .→ 0→ Jp
dp

→ Jp−1 → . . .→ Jn
dn→ Jn−1 → . . . , n ≤ p ,

the morphism e is furnished by ε and the morphism d by dKp+1. We obtain f p+1 :

K[p+1 → Ip+1 by applying the mapping cone functor to the above square.

6.2 Let U be the full subcategory of CA consisting of the complexes X satisfying

• X lies in L,
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• Xn ∈ X , ∀n and Xn is injective ∀n < 0.

As in 4.2, we have the S-functors Z−1 : U → A and

Q : U → H0]X , (Xn, dn) 7→ (Xn, dn).

According to the following lemma, Q is an S-equivalence. We put F = Z−1Q
−,

where Q− is an S-quassiinverse of Q. Obviously, we have F | Hb
0]X

∼→ Fb.

Lemma. Q is an S-equivalence.

Proof. We first show that Q is fully faithful. Let X, Y ∈ U . If X lies in Ub, we

have

U (X, Y ) ∼←HA (X, Y[N) ∼← U (X, a(Y[N))

for N � 0, hence the assertion follows from 4.2. In general, X is homotopy equiva-

lent to aX = lim
−→

Xp, where

X0 i0
→ X1 → . . .Xp ip

→ Xp+1 . . . , p ∈ N

is a sequence of inflations of complexes Xp ∈ Ub as the proof of 6.1 b) shows. By

example 5.3, there is a triangle
∐

p∈N

Xp →
∐

q∈N

Xq → X → S
∐

p∈N

Xp

in HA. Its ’image‘ in HA is isomorphic to a triangle
∐

p∈N

QXp →
∐

q∈N

QXq → QX → S
∐

p∈N

QXp.

The bijectivity of

Q(X, Y ) : HA (X, Y )→ HA (QX,QY )

now follows from the above special case by the 5-lemma.

In order to show that X ∈ H0]X is in the image of Q, we choose a sequence

Y 0 i0
→ Y 1 → . . .→ Y p ip

→ Y p+1 → . . . , p ∈ N

of inflations of Ub whose image in H0]X is isomorphic to the sequence of the X[p,

p ∈ N (4.2 and 5.2). Then the direct limit lim
−→

Y p = Y formed in CA lies in L. For

each fixed n ∈ N and for q > p ≥ n, the morphism Y p
n → Y q

n of A is a section with

an injective cokernel. Since countable sums of injectives of A are injective, Y p
n → Yn

is a section with an injective cokernel, too. Thus Yn lies in X and Y in U . Clearly,

QY yields a limit envelope (2.4) of the QY p. Hence QY ∼= X.

6.3 Let

C0 c0
→ C1 → . . .→ Cp cp

→ Cp+1 → . . . , p ∈ N

be an admissible sequence (2.4) with limit envelope C in H0]X . For short we set

H = Hb
0]X .
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Lemma.

a) There is a sequence of inflations

A0 i0
→ A1 → . . .→ Ap

ip
→ Ap+1 → . . . , p ∈ N

in A such that the sequence of the ip is isomorphic to the sequence of the F cp.

For any such sequence we have lim
−→

Ap ∼= FC in A.

b) There are short exact sequences

0→ lim
←−

1H (SCp, Y )
δ′
→ H (C, Y )

can
→ lim

←−
H (Cp, Y )→ 0

and

0→ lim
←−

1A(SFCp, Y ′)
δ′′
→ A(FC, Y ′)

can
→ lim

←−
A (FCp, Y ′)→ 0,

which are functorial in Y ∈ H and Y ′ ∈ A , respectively, and which, for

Y ′ = FY , fit into a commutative diagram

0→ lim
←−

1H (SCp, Y )
δ′
→ H (C, Y )

can
→ lim

←−
H (Cp, Y ) → 0

↓ ↓ ↓

0→ lim
←−

1A(SFCp, FY )
δ′′
→ A(FC, FY )

can
→ lim

←−
A (FCp, FY ) → 0,

whose vertical morphisms are given by ’applying F ‘. Here the morphisms can

are induced by the canonical morphisms Cp → C.

Proof. a) We choose a sequence

X0 j0

→ X1 → . . .→ Xp jp

→ Xp+1 → . . . , p ∈ N

of inflations in U whose image in H is isomorphic to the sequence of the cp (6.2 and

5.2). As in the proof of the essential surjectivity of Q in 6.2, we see that X = lim
−→

Xp

lies in U and that QX is a limit envelope of the sequence of the QXp. Thus there

are compatible isomorphisms f p : Xp → Q−Cp and f : X → Q−C in HA. If we

put Ap = Z−1X
p and ip = Z−1j

p, then the sequence of the ip is isomorphic to the

sequence of the F cp and lim
−→

Ap ∼→ Z−1X is isomorphic to FC in A. The rest of the

assertion follows from 5.2. For the proof of b), we need the full exact subcategory V

of CA consisting of the acyclic complexes whose components are injective in degrees

< 0. We consider the triangle

∐
Xp ι
→

∐
Xq ε
→ X → S

∐
Xp
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in V which we construct from the sequence of the Xp according to example 5.3.

Using the isomorphisms f p and f we transform it into a triangle

∐
Q−Cp u

→
∐
Q−Cq v

→ Q−C → S
∐
Q−Cp

in V . We now apply the functor V (?, Q−Y ) = H to this triangle and consider the

sequence

0→ CokHSu→ HQ−C → KerHv → 0

which we extract from the corresponding long exact sequence. By the definition of

u and v it is isomorphic to

0→ lim
←−

1 U (SQ−Cp, Q−Y )
δ
→ U (Q−C,Q−Y )

can
→ lim

←−
U (Q−Cp, Q−Y )→ 0

(cf. 2.2). We define δ′ to be the composition

lim
←−

1H (SCp, Y )
α
→ lim
←−

1 U (SQ−Cp, Q−Y )
δ
→ U (Q−C,Q−Y )

β
→H (C, Y ),

where α is provided by Q− and β by Q. Clearly, Z−1 gives rise to an S-functor

V → A which commutes with countable sums. The ’image‘ of the above triangle

under Z−1 is isomorphic to a triangle

∐
FCp →

∐
FCq → FC → S

∐
FCp.

As above, we derive a short exact sequence

0→ lim
←−

1A(SFCp, Y ′)
δ′′
→ A (FC, Y ′)

can
→ lim

←−
A (FCp, Y ′)→ 0

from this triangle. It is clear that, for Y ′ = FY , Z−1 yields a morphism from (δ, can )

to (δ′′, can ), and, by definition, Q− yields a morphism from

0→ lim
←−

1H (SCp, Y )
δ′
→ H (C, Y )

can
→ lim

←−
H (Cp, Y )→ 0

to (δ, can ).

6.4 The description of FX as a direct limit given in 1.4 follows at once from 6.3

a).

We want to prove 1.4 c). The pre-image

X0 j0

→ X1 → . . .→ Xp jp

→ Xp+1 → . . . , p ∈ N

of the sequence of the Ap under Fb is an admissible sequence (2.4). By 6.3 a) we

have FX ∼= A for its limit envelope X.

7. Full faithfulness of F and F∼
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7.1 We want to prove 1.4 a). Of course, we have A (X,SnY ) = 0 for n > 0 and

X, Y ∈ X and this implies the full faithfulness of Fb by the argument of [1]. Now

let X, Y ∈ H0]X . If we apply 6.3 b) to the admissible sequence of the X[p, p ∈ N,

we see that it is enough to show that F induces bijections

H0]X (X[p, Y )→ A (FX[p, FY ) and H0]X (SX[p, Y )→ A (SFX[p, FY )

for each p. Thus we may assume that X lies in Hb
0]X . Choose N ∈ N such that

Xn = 0 for all n ≥ N . The conflation

Y[N → Y → YN+1]

of C0]X yields the triangle

FY[N → FY → FYN+1] → SFY[N .

Since S is fully faithful, A (FX, ?) is a homological functor and the sequences

A (SFX, FYN+1])→ A (SFX, SFY[N)→ A (SFX, SFY )→ . . .

and

A(SFX, FYN+1])→ A (FX, FY[N)→ A (FX, FY )→ A (FX, FYN+1])

are exact. It remains to be shown that

A(SFX, FYN+1]) = 0 = A (FX, FYN+1]).

By induction with respect to the greatest index n with Xn 6= 0, this easily follows

from the assumption.

7.2 We prove the criterion for the full faithfulness of F∼ given in 1.5. Let X ∈ X

and Y ∈ H0]X . According to 1.4, we can choose a sequence of inflations

A0 i0
→ A1 → . . . Ap

ip
→ Ap+1 → . . . , p ∈ N

in A∼ which is isomorphic to the sequence of the F∼(SY )[p in A∼. By remark B.2

a) we have

A∼ (EX, lim
−→

Ap) ∼← lim
−→
A∼ (EX,Ap)

hence

A∼ (EX, SFY ) ∼← lim
−→
A∼(EX,F∼(SY )[p) = 0 ,

since F∼| Hb
0]X is fully faithful by the argument of [1]. Now the assertion follows

from 1.4 a).

8. Existence of a right adjoint
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8.1 Let B be a svelte additive category. A functor F ∈ ModB is resolvable iff it

has a resolution by representable functors, i.e. iff there is an exact sequence

. . .→ P2 → P1 → P0 → F → 0

in ModB such that each Pi is representable [2, Ch. I, §2, Ex. 6]. It is not hard to

establish that the full subcategory of resolvable functors is closed under extensions,

kernels of epimorphisms and cokernels of monomorphisms in ModB.

Theorem. Let H : (HbB)op → Ab be a cohomological functor [19] such that the

restriction of HSn to B vanishes for all n � 0 and is a resolvable functor for all

n ∈ Z. There is an X ∈ H+B and an isomorphism between H and the restriction

of H+B(?, X) to HbB.

Proof. For a cohomological functor G and n ∈ N, we write G|n as an abbrevia-

tion of GSn| B. We may assume that H|n vanishes for all n < 0. We shall construct

a sequence of positive complexes

K0 k0

→ K1 → . . .→ Kp kp

→ Kp+1 → . . . , p ∈ N

and a sequence of morphisms

ϕp : K̂p → H (X̂ = HbB (?, X) for X ∈ HbB)

such that ϕp+1k̂p = ϕp, ∀ p and that ϕp|n is invertible for p ≥ n. Thus the ϕp induce

an isomorphism

lim
−→

K̂p ∼→ H.

The construction will show that kpn is invertible for p ≥ n. Hence K = lim
−→

Kp exists

in C+B and we have isomorphisms

HB (?, K)| HbB
∼← lim
−→

K̂p ∼→ H.

For the construction of K0, we use the beginning of a resolution

B (?, A)
B (?,d)
−→ B (?, B)

ε
→ H|0 → 0

of H|0 in ModB. We define

K0 = (. . .→ 0→ A
d
→ B → 0→ . . .) ,

where B occurs in degree 0. There is a unique morphism η : B̂ → H satisfying

(ηB)(1B) = (εB)(1B). The morphism η can also be characterized by the equation

ε = (η|0)ω, where, for any U ∈ B and n ∈ N, ω denotes the canonical isomorphism

B (?, U) ∼→ ŜnU |n , f 7→ Snf.
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Of course, we have η d̂ = 0. Because of the triangle

A
d
→ B

u
→ K0 → SA,

we can conclude that η = ϕ0 û for some ϕ0 : K̂0 → H. The commutative diagram

with exact rows

B (?, A)
B (?,d)
−→ B (?, B)

ε
→ H|0 → 0

↓ ω ↓ ω ↑ ϕ0|0

Â|0
d̂|0
−→ B̂|0

û|0
→ K̂0|0 → 0

shows that ϕ0|0 is invertible.

For the construction of K1, we choose an epimorphism

χ : B (?, C)→ H|1

in ModB. We define ψ : ŜC → H by (ψ|1)ω = χ and we consider

[ϕ0 ψ] : K̂0 ⊕ ŜC → H.

Clearly, [ϕ0 ψ]|1 is an epimorphism. Since

K̂0|1
∼→ KerB (?, d) and ŜC|1

∼← B (?, C)

are resolvable, there is an exact sequence

B (?, D)
µ
→ (K̂0 ⊕ ŜC)|1

[ϕ0 ψ]|1
−→ H|1 → 0

in ModB. Let f : SD → K0 ⊕ SC be such that µ = (f̂ |1)ω. We put

K1 = (. . .→ 0→ D
f1→ K0

1 ⊕ C
[d1 0]
−→ K0

0 → 0→ . . .)

and we choose k0 : K0 → K1 as the obvious ’embedding of the subcomplex‘ K0.

Since K1 is the mapping cone over f , it fits into a triangle

SD
f
→ K0 ⊕ SC

u
→ K1 → SSD.

Because [ϕ0 ψ] f̂ = 0, it follows that [ϕ0 ψ] = ϕ1 û for some ϕ1 : K̂1 → H. This also

implies ϕ1 k̂0 = ϕ0 since u|K0 = k0. Obviously, k0 induces an isomorphism

K̂0|0
∼→ K̂1|0 ,

which implies that ϕ1|0 is invertible. That ϕ1|1 is invertible follows from the com-

mutative diagram

ŜD|1
f̂ |1
−→ (K̂0 ⊕ ŜC)|1

[ϕ0 ψ]|1
−→ H|1 → 0

‖ ‖ ↑ ϕ1|1

ŜD|1
f̂ |1
−→ (K̂0 ⊕ ŜC)|1

û|1
−→ K̂1|1 → 0 ,
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whose first row is exact by the construction of f and whose second row is exact by

the above triangle. Note that K1
n vanishes for n > 2 and that K1|2 is a resolvable

functor.

By essentially the same procedure, one constructs Kp+1, kp and ϕp+1 for p ≥ 1

using the additional induction hypotheses that Kp
n vanishes for n > p+ 1 and that

Kp|p+1 is resolvable.

8.2 We want to prove 1.4 b). For Y ∈ A , we obtain a complex X ∈ H0]X and a

family ϕp ∈ A (FX[ p, Y ), p ∈ N from 8.1 such that, for X ′ ∈ Hb
0]X and p� 0, the

map

ϕp∗ ◦ F (X ′, X[ p) : H0]X (X ′, X[ p)→ A (FX ′, Y )

is bijective. By 5.2 there is a ϕ ∈ A (FX, Y ) which ’extends‘ all the ϕp. In particular,

we have a bijection

ϕ∗ ◦ F (X ′, X) : H0]X (X ′, X)→ A (FX ′, Y )

∀X ′ ∈ Hb
0]X . Let X ′′ ∈ H0]X . By applying Lemma 6.3 to the sequence X ′′[ p ,

p ∈ N, we obtain the bijectivity of

ϕ∗ ◦ F (X ′′, X) : H0]X (X ′′, X)→ A (FX ′′, Y ).

Appendix A : Exact categories

A.1 Motivated by [7], we exhibit a subset of Quillen’s system of axioms [16]

which is equivalent to the whole system. We use the terminology of [7] : Let A be

an additive category. A pair (i, d) of composable morphisms

X
i
→ Y

d
→ Z

is exact, if i is a kernel of d and d a cokernel of i. Let E be a class of exact pairs closed

under isomorphism and satisfying the following axioms Ex0, Ex1, Ex2 and Ex2op.

The deflations mentioned in these axioms are by definition the second components

of the conflations (i, d) ∈ E . The first components i are inflations.

Ex0 10 is a deflation.

Ex1 The composition of two deflations is a deflation.

Ex2 For each f ∈ A(Z ′, Z) and each deflation d ∈ A(Y, Z), there is a cartesian

square

Y ′
d′
→ Z ′

f ′ ↓ ↓ f

Y
d
→ Z ,

where d′ is a deflation.
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Ex2op For each f ∈ A(X,X ′) and each inflation i ∈ A(X, Y ), there is a cocartesian

square

X
i
→ Y

f ↓ ↓ f ′

X ′
i′
→ Y ′ ,

where i′ is an inflation.

Proposition. (A, E) is an exact category in the sense of [16].

Proof. We first translate Quillen’s axioms into our terminology :

a) For all X,Z ∈ A, the pair

X
[1 0]t

−→ X ⊕ Z
[0 1]
−→ Z

is a conflation.

b) Axioms Ex1, Ex1op, Ex2 and Ex2op hold.

c) If the morphism d has a kernel and if de is a deflation for some morphism e,

then d is a deflation.

c)op If the morphism i has a cokernel and if ki is an inflation for some morphism

k, then i is an inflation.

1st step : In the setting of Ex2 (resp. Ex2op ) the pair

Y ′
[−d′ f ′]t

−→ Z ′ ⊕ Y
[f d]
−→ Z (resp. X

[−i f ]t

−→ Y ⊕X ′
[f ′ i′]
−→ Y ′)

is a conflation : We consider Ex2. Let (i, d) ∈ E . The morphism i′ : X → Y ′

defined by f ′ i′ = i, d′ i′ = 0 is obviously a kernel of d′. Thus we have a morphism

of conflations
X

i′
→ Y ′

d′
→ Z ′

‖ ↓ f ′ ↓ f

X
i
→ Y

d
→ Z.

Now we form the commutative diagram

X
i
→ Y

d
→ Z

i′ ↓ ↓ j ′ ‖

Y ′
j
→ E

e
→ Z

d′ ↓ ↓ e′

Z ′
1
→ Z ′,
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whose upper left square is cocartesian (Ex2op). Obviously, e and e′ are kernels of j

and j ′, respectively, so that (j, e) and (j ′, e′) are conflations. Since i = f ′ i′, we can

define an isomorphism g : E → Z ′ ⊕ Y by

g j ′ =

[
0
1Y

]
, g j =

[
−d′

f ′

]

([h j ′] with h d′ = j ′ f ′ − j is an inverse of g). The pair (gj, eg−1) equals

Y ′
[−d′ f ′]t

−→ Z ′ ⊕ Y
[f d]
−→ Z.

2nd step: axioms c) and c) op : Let

Y ′
e
→ Y

d
→ Z

be given as in c) and let i : X → Y be a kernel of d. By the first step,

[d de] : Y ⊕ Y ′ → Z

is a deflation. Hence, so is

[d 0] = [d de]

[
1Y −e
0 1Y ′

]
.

Thus i⊕ 1Y ′ is an inflation, and, because of the cocartesian square

X ⊕ Y ′
i⊕1
−→ Y ⊕ Y ′

[1 0] ↓ ↓ [1 0]

X
i
−→ Y,

i is an inflation. Since [d 0] is a cokernel of i⊕ 1Y ′ , d is a cokernel of i, so (i, d) is a

conflation.

3rd step : Axiom b) : Only Ex1op remains to be proved. Let

X
i
→ Y

d
→ Z be a conflation and Y

j
→ Y ′

an inflation. By Ex2op and the first step, we have a bicartesion square

Y
j
→ Y ′

d ↓ ↓ d′

Z
k
→ Z ′ ,

where [d′ k] is a deflation. Because of the cartesian square

Y ′ ⊕ Y
1⊕d
−→ Y ′ ⊕ Z

[0 1] ↓ ↓ [0 1]

Y
d
−→ Z,
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1Y ′ ⊕ d is a deflation, too. Consequently,

[d′ k]

[
1Y ′ 0
0 d

]
= [d′ kd]

is a deflation by Ex1. We have [d′ kd] = d′ [1Y ′ j]. Thus, by the second step, d′ is

a deflation, since d′ has the kernel ji. Hence (d′, ji) is a conflation.

4th step : Axiom a) : Because of the cartesian square

Z
1
→ Z

↓ ↓
0 → 0,

it follows from Ex0 and Ex2 that 1Z is a deflation. Because of the cocartesian square

X
[1 0]t

−→ X ⊕ Z
↓ ↓ [0 1]
0 −→ Z,

the assertion now follows from Ex2op.

A.2 Proposition. (cf. [5, II]) If (A, E) is a svelte, exact category, there is

an equivalence G : Aop →M onto a full subcategory M of an abelian category such

thatM is closed under extensions and that E is formed by the composable pairs (i, d)

inducing exact sequences

0→ GZ
Gd
→ GY

Gi
→ GX → 0.

We sketch a proof (cf. [4, 7.3, Ex. G]) which is based on the localisation theory

of abelian categories [5, III]. Let ModA be the category of contravariant functors

from A to the category of abelian groups and let SexA be the full subcategory of

left exact functors, i.e. the functors F ∈ ModA which transform conflations (i, d)

into exact sequences

0→ FZ
Fd
→ FY

Fi
→ FX.

We show first that SexA is an abelian category. Let C ⊂ ModA be the full sub-

category of effaceable functors, i.e. functors F such that, for each pair consisting of

an object Z ∈ A and an element z ∈ FZ, there is a deflation d : Y → Z such that

(Fd)(z) = 0. With [5, III, Prop. 8], we infer from

Ex0’ Identities are deflations.

and Ex1 that C is a localising subcategory of ModA, i.e. that C is closed under

forming subobjects, quotients, extensions and direct limits in ModA. From
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Ex2’ For each f ∈ A(Z ′, Z) and for each deflation d ∈ A(Y, Z), there is a commu-

tative square

Y ′
d′
→ Z ′

f ′ ↓ ↓ f

Y
d
→ Z ,

where d′ is a deflation.

we derive that any effaceable subfunctor of a left exact functor vanishes and that

any extension of a left exact functor by an effaceable functor splits. By [5, III,

Lemme 1] this means that SexA consists of the objects in ModA which are closed

with respect to C. Thus SexA is equivalent to the abelian category (ModA)/C. We

claim that the equivalence G : A 7→ A∧ = A( ?, A) from A onto the full subcategory

M of SexA consisting of the representable functors satisfies the requirements of the

assertion. First, it is clear from the definition of SexA that for each conflation (i, d),

the sequence

0→ X∧
i∧
→ Y

d∧
→ Z∧ → 0

is exact in SexA. Now let

0→ X∧
j
→ F

e
→ Z∧ → 0

be an arbitrary exact sequence of SexA. Since e is an epimorphism of SexA, the

cokernel Cok e = C formed in ModA is effaceable. In particular, there is a deflation

d : Y → Z such that Cd : CZ → CY carries the image of 1Z to 0. This means that

there is a commutative diagram

0→ U∧
i∧
→ Y ∧

d∧
→ Z∧ → 0

f ↓ ↓ g ‖

0→ X∧
j
→ F

e
→ Z∧ → 0,

where i = Ker d. Using Ex2op, we form the commutative diagram

U
i
→ Y

d
→ Z

f ↓ ↓ f ′ ‖

X
i′
→ V

d′
→ Z ,

where the morphism d′ defined by d′i′ = 0 , d′f ′ = d is obviously a cokernel of i′.

Since the embedding A → SexA carries the rows of the diagram to short exact

sequences, the image of the left square must be cocartesian, whence there is an

isomorphism

0→ X∧
i′∧
→ V ∧

d′∧
→ Z∧ → 0

‖ ↓ ‖

0→ X∧
j
→ F

e
→ Y ∧ → 0.
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Remark. It is not hard to show that Ex2 follows from Ex2’ and Ex2op. Thus

the axioms given in 5.2 could be ’weakened‘ even more.

A.3 Let A be an additive category with a class of exact pairs E . For each full

subcategory B of A, denote by B ∩ E the class of composable pairs (i, d)

X
i
→ Y

d
→ Z

in E such that X, Y and Z lie in B.

Lemma. (A, E) is an exact category iff, for each svelte subcategory U of A there

is a svelte exact category (B,F) such that B is a full subcategory of A containing U

and that F is a subclass of E containing U ∩ E .

Proof. If the condition is satisfied, then Ex0 and Ex1 clearly hold for (A, E).

In order to prove Ex2, we consider a B containing Y, Z, Z ′ and Ker d. The cartesian

square formed in B from d, f is cartesian in A as well, since, by the first step of the

proof of A.1, the sequence

Y ′
[−d′ f ′]t

−→ Z ′ ⊕ Y
[f d]
−→ Z

lies in F ⊂ E and therefore is an exact pair in A.

In order to show that the condition is necessary, we construct an ascending

chain Bn, n ∈ N of full svelte subcategories of A : The subcategory B0 contains all

the objects of U ; the subcategory Bn+1 contains each object B which occurs in a

cartesian (resp. cocartesian) square

B → C
↓ ↓ f

B′
d′
→ C ′

(resp.
A′

i′
→ B′

g ↓ ↓
A → B

)

where d′ is a deflation and B′, C, C ′ lie in Bn (resp. where i′ is an inflation and

A′, A, B′ lie in Bn). Since the isomorphism class of such a B is determined by d′ and

f (resp. i′ and g), Bn+1 is svelte. Let B be the union of the Bn, n ∈ N. Clearly, B

is an additive subcategory of A and (B,B ∩ E) satisfies Ex0, Ex2, and Ex2op. Now

let d, e be two composable deflations (with respect to B ∩ E) and let i be a kernel

of d. We form the cartesian square

X ′
e′
→ X

i′ ↓ ↓ i
Y ′

e
→ Y.

Clearly, i′ is a kernel of de and therefore (i′, de) ∈ E . Since X ′ lies in B by definition,

it follows that (i′, de) ∈ B ∩ E .

Appendix B : The countable envelope
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B.1 Let (A, E) be an exact category. By definition, (A, E) is countably complete

if

• each sequence X ∈ FA (5.1) has a direct limit lim
−→

Xp in A and

• the functor lim
−→

: FA → A is exact.

The countable envelope of A is the category A∼ with the same objects as FA in

which morphisms X → Y bijectively correspond to the elements of

lim
←−

p lim
−→

qA (Xp, Y q)

(cf. [10, 8.2.5]) together with the class E∼ consisting of the pairs of composable

morphisms of A∼ which are isomorphic to images of conflations of FA under the

canonical functor FA → A∼. The functor E : A → A∼ associates the ’constant

sequence‘ ipEA = 1A, ∀ p with A ∈ A.

Proposition.

a) (A∼, E∼) is a countably complete exact category.

b) For each countably complete exact category B, the functor

E∗ : Homex (A∼,B)→ Homex (A,B) , G 7→ GE

induces an equivalence of the full subcategory of functors G satisfying lim
−→

GXp ∼→

G lim
−→

Xp, ∀X ∈ FA∼ onto Homex (A,B) , the category of exact functors from

A to B.

c) The functor E induces bijections of the extension groups. It preserves projec-

tives and injectives.

d) Countable sums of injectives of A∼ are injective. If A has enough injectives

(resp. projectives), the class of countable sums of objects EI , I an injective of

A (resp. EP , P a projective of A), contains enough injectives (resp. projec-

tives) for A∼.

Remark. Note that the morphisms between two objects of Homex (A,B) do not

form a set in general.

We shall prove the proposition in B.2 - B.5. The following examples are based

on remark B.6.

Examples. a) For an additive category B endowed with the split conflations, B∼

is equivalent to the category B+ of 2.5. Moreover, we have

(Cb0]B)∼ ∼→ (C0]B)∼ ∼→ C0]B
∼ .
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b) Let k be a field and S a locally finite-dimensional k-category [6]. Let modpf S

be the category of ’pointwise finite modules‘, i.e. of k-linear functors M : Sop →

mod k such that dimMx <∞ for each x ∈ S. The countable envelope (modpf S)∼

identifies with the category of ’pointwise countable‘ modulesM , i.e. k-linear functors

M : Sop → mod k such that Mx has countable dimension for each x ∈ S (compare

section 3).

B.2 We want to prove B.1 a). In a first step, we assume that A is svelte. The

functor

L : FA → SexA , X 7→ lim
−→
A (?, Xp)

obviously induces a full embedding of A∼ to SexA (A.2) and for each conflation

(j, e) of FA, the induced sequence

0→ LX
Lj
→ LY

Le
→ LZ → 0

is exact. We shall show that an arbitrary short exact sequence

0→ LX
i
→ F

d
→ LZ → 0

of SexA is isomorphic to the image of a conflation of FA. Since SexA is abelian,

it will then follow that (A∼, E∼) is an exact category.

By base change along the canonical morphism A (?, Zr)→ LZ, we obtain a short

exact sequence

0→ LX → F r dr

→ A (?, Zr)→ 0

from (i, d) for each r ∈ N. Since the cokernel of dr formed in ModA is effaceable,

there is a deflation qr : Qr → Zr such that A (?, qr) = drar for some ar : A (?, Qr)→

F r. Now let P ∈ FA be the sequence of canonical morphisms

∐

r≤p

Qr →
∐

r≤p+1

Qr , p ∈ N

and let f ∈ FA (P, Z) be given by the components

f p = [ip−1
Z ip−2

Z . . . i0Z q
0, ip−1

Z . . . i1Z q
1, . . . , qp] :

∐

r≤p

Qr → Zp , p ∈ N.

By construction, f is a deflation of FA whose image in SexA factors through d.

Thus there is a commutative diagram with exact rows

0→ LZ ′
Lk
→ LP

Lf
→ LZ → 0

h ↓ ↓ ‖

0→ LX
i
→ F

d
→ LZ → 0

in SexA , where k is a kernel of f in FA. The morphism h is given by a family

hp ∈ A (Z ′p, Xµ (p)) , µ : N→ N some function,



Keller 35

such that hp+1 ipZ′ and hp have the same image in

lim
−→

qA (Z ′p, Xq) , ∀ p.

Obviously, we may assume µ (p+1) > µ (p), ∀ p. Then we can write h as (Lcµ)
−1 Lh′ ,

where cµ : X → X(µ) has the components

i
µ (p), p
X (is,sX = 1Xs and ir,sX = ir−1

X ir−2
X . . . isX for r > s),

X(µ) is the sequence of inflations i
µ (p+1), µ (p)
X and h′ ∈ FA (Z ′, X(µ)) has the com-

ponents hp. By cobase change along h′, we obtain from (k, f) the required conflation

(j, e) whose image in SexA is isomorphic to (i, e)

0→ LX(µ)
Lj
→ LY

Le
→ LZ → 0

Lcµ ↑ ↑ s ‖

0→ LX
i
→ F

d
→ LZ → 0.

This argument also shows that, for each inflation i ofA∼, there is an isomorphism

s such that si is the image of a morphism j of FA whose components are inflations

of A. Thus, up to ismorphism, a sequence X ∈ FA∼ is given by a sequence of

morphisms jp ∈ FA (Xp, Xp+1) such that

jp,q : Xp,q → Xp+1, q

is an inflation for all p, q. The ’diagonal sequence‘ Y with

ipY = ipXp+1j
p,p : Xp,p → Xp+1,p+1

supplies a direct limit of the Xp since, by definition of the morphisms of A∼, we

have

Y ∼← lim
−→

EXp,p ∼→ lim
−→

p lim
−→

q EX
p,q ∼→ lim

−→
Xp.

We see that the embedding A∼ → SexA commutes with forming direct limits of

sequences of inflations. Since SexA has exact direct limits, it follows that lim
−→

:

FA → A∼ is exact.

Now let (A, E) be an arbitrary exact category. We want to show with the aid of

lemma A.3 that (A∼, E∼) is an exact category. Let U ⊂ A∼ be a svelte subcategory.

Without restriction of generality, we may assume that U is even small. Let the full

subcategory U ′ ⊂ A∼ contain U and, additionally, the terms of a conflation (j, e) of

FA whose image in A∼ is isomorphic to (i, d), for each conflation (i, d) ∈ U ∩ E∼

. Let V ⊂ A be the full subcategory of the components Xp of sequences X ∈ U ′.

By A.3 there is a svelte full exact subcategory (B,F) of A such that V ⊂ B and

V ∩ E ⊂ F . It is clear that B∼, which we identify with a full subcategory of A∼ ,

contains U and that F∼ contains the class U ∩ E∼.
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This construction also shows that, up to isomorphism, each conflation

X
i
→ Y

d
→ Z

of FA∼ lies in a subcategory FB∼ for some svelte full exact subcategory B ⊂ A.

The above construction of lim
−→

shows that the inclusion B∼ ⊂ A∼ commutes with

lim
−→

. We conclude that lim
−→

: FA∼ → A∼ is well defined and exact.

Remark. a) From the above construction of lim
−→

: FA∼ → A∼, we conclude that

for an exact functor G : A∼ → B to a countably complete exact category B, we

have lim
−→

GXp ∼→ G lim
−→

Xp, ∀X ∈ FA∼ iff we have G lim
−→

EXp ∼→ GX, ∀X ∈ A∼.

In particular, we have

A∼ (EA, lim
−→

Xp) ∼→ lim
−→
A∼ (EA,Xp)

for each A ∈ A and each X ∈ FA∼.

b) It is easy to check that the maps f 7→ (Lcµ)
−1 Lf induce a bijection

lim
−→
FA (X, Y (µ))→ A∼ (X, Y ).

Here µ runs through the partially ordered set of functions µ : N→ N with µ (p+1) >

µ (p), ∀ p .

B.3 We want to prove B.1 b). We exhibit a fully faithful left adjoint of E∗. Let

F : A → B be an exact functor. There is a unique functor F∼ which makes the

square

FA
FF
−→ FB

L ↓ ↓ lim
−→

A∼
F∼

−→ B

commutative. F∼ is exact, we have

F∼EA = lim
−→

(FA = FA = ...) ∼→ FA , ∀A ∈ A

and, by remark B.2 a), we have lim
−→

F∼Xp ∼→ F∼ lim
−→

Xp, ∀X ∈ FA∼. On the

other hand, if lim
−→

GXp ∼→ G lim
−→

Xp holds for all X ∈ FA∼ for some exact functor

G : A∼ → B, we have

(GE)∼X = lim
−→
F(GE)X = lim

−→
GEXp ∼→ G lim

−→
EXp ∼→ GX.

B.4 We want to prove B.1 c). For a projective P of A, the functor

A∼ (EP, Y ) = lim
−→
A (P, Y q)

is exact in Y . If I is injective in A, then EI is injective in FA (5.1) and

A∼ (X,EI) ∼← lim
−→
FA (X, (EI)(µ)) = FA (X,EI)
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is an exact functor of X. That E induces bijections of the extension groups follows

from the

Lemma. For X, Y ∈ A∼ and n ∈ N, we have

lim
−→

ExtnFA(X, Y (µ)) ∼→ ExtnA∼(X, Y ).

Proof. Let FnX be the left hand side of the above isomorphism. By remark B.2

b), we have F0X
∼→ A∼ (X, Y ). Since, for n ≥ 0, the Fn form an exact ∂-functor

which is effaceable for n > 0, the assertion follows from [8, 2.2.1].

B.5 We want to prove B.1 d). If (In)n∈N is a family of injectives of A∼, we have

A∼ (X,
∐

n∈N

In)
∼← lim
←−
A∼ (EXp,

∐

n∈N

In)
∼← lim
←−

∐

n∈N

A∼ (EXp, In)

because of lim
−→

EXp ∼→ X and remark B.2 a). Since the transition maps

∐
A∼ (EXp, In)←

∐
A∼ (EXp, In)

are surjective, A∼ (?,
∐
In) is an exact functor by the Mittag-Leffler criterion [9, 0III,

13.1].

If A has enough projectives, it is clear from the conflations (example 5.3)

∐
EXp ι

→
∐
EXq ε

→ X , X ∈ A∼

that the class of countable sums of projectives EP , P projective in A, contains

enough projectives for A∼.

If A has enough injectives, then, for each X ∈ A∼, there is a conflation

X ′
j
→ J

e
→ X

in FA such that J has injective components (5.1). In A∼, J is isomorphic to a sum

of objects EI, I an injective of A. This implies the last assertion of B.1 d).

B.6 Lemma. In the situation of B.1 b), an exact functor G : A∼ → B with

lim
−→

GXp ∼→ G lim
−→

Xp, ∀X ∈ FA∼ induces bijections

A∼(X, Y )→ B(GX,GY ) and Ext1
A∼(X, Y )→ Ext1

B(GX,GY ),

for all X, Y ∈ A∼ iff the restriction F = GE gives rise to bijections

∐
A(A,Bn)→ B(FA,

∐
FBn) and

∐
Ext1

A(A,Bn)→ Ext1
B(FA,

∐
FBn)

for all A ∈ A and all families (Bn)n∈N in A.
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Remark. If A has enough projectives, the condition of the proposition is satis-

fied if F preserves projectives and the map

∐
A(P,Qn)→ B(FP,

∐
FQn)

is bijective for all projectives P and all families of projectives (Qn)n∈N in A. If,

moreover, the class of countable sums of objects FP , P a projective of A, contains

enough projectives for B, then G is an equivalence. This implies the assertions of

examples B.1 a) and b).

Proof. By lemma B.4, the condition is necessary. Suppose it is satisfied and

let Y ∈ A∼. We consider the conflation (example 5.3)

∐
FY p →

∐
FY q → GY.

From the corresponding long exact sequence, we conclude that the maps

lim
−→

ExtnB(FA, FY
q)→ ExtnB(FA,GY )

are bijective for n = 0, 1. Consequently, G induces bijections

ExtnA∼(EA, Y )→ ExtnB(FA,GY ) , n = 0, 1.

We now consider the corresponding conflation

∐
EXp j

→
∐
EXq e

→ X

for X ∈ A∼. Since B has exact countable sums, we have

Ext1
B(

∐
FXp, GY ) ∼→

∏
Ext1

B(FX
p, GY ).

By the 5-lemma, the assertion now follows from the long exact sequences associated

with (j, e) and (Gj,Ge).
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