ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES

BERNHARD KELLER

ABSTRACT. The cyclic homology of an exact category was defined by R. Mc-
Carthy [26] using the methods of F. Waldhausen [36]. McCarthy’s theory
enjoys a number of desirable properties, the most basic being the agreement
property, i.e. the fact that when applied to the category of finitely generated
projective modules over an algebra it specializes to the cyclic homology of the
algebra.

However, we show that McCarthy’s theory cannot be both compatible with
localizations and invariant under functors inducing equivalences in the derived
category.

This is our motivation for introducing a new theory for which all three
properties hold: extension, invariance and localization. Thanks to these prop-
erties, the new theory can be computed explicitly for a number of categories
of modules and sheaves.

INTRODUCTION

Overview of the results. Let k be a commutative ring and A an exact category
in the sense of Quillen [30] which is moreover k-linear, i.e. the groups Homy (A, B),
A, B € A, are endowed with k-module structures such that the composition is
bilinear.

In [26], R. McCarthy has defined the Hochschild, cyclic, negative and periodic
homologies of A. He showed that they enjoy the following properties

(1)

Agreement. For the exact category of finitely generated projective modules
over a (unital) algebra, the homologies agree with those of the algebra.
Ezact sequences. The different homologies are linked by the classical mor-
phisms and long exact sequences.

Additivity. The homologies are additive in the sense that the map induced by
the middle term of a short exact sequence of functors is the sum of the maps
induced by the outer terms.

Products. The homologies admit product structures which agree with the
classical structures in the situation of (1).

Trace maps. There are trace maps linking the Quillen K-theory of A to its
Hochschild resp. negative cyclic homology. Again these are compatible with
the classical maps in the situation of (1),

Now by analogy with K-theory, there are two other properties which we might
expect to hold for a homology theory of exact categories, namely

(6)

Invariance. The theory should be preserved by exact functors inducing equiv-
alences in the bounded derived categories [34] [35].
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(7) Localization. Tt should be compatible with localizations (in a sense to be made
precise).

These properties have been shown to hold for K-theory in many situations [32],
[39], [38]. They have also been proved for cyclic homology of DG algebras in [19].
Unfortunately, the homologies defined by R. McCarthy cannot satisfy (1), (6), and
(7). Indeed, we show in examples 1.8 and 1.9 that a theory satisfying (1), (6),
and (7) necessarily takes non-zero values in arbitrarily negative degrees, whereas
the homologies defined by R. McCarthy are concentrated positive degrees by their
definition. This also shows that McCarthy’s cyclic homology cannot possibly sat-
isfy the natural scheme-theoretic variant of property (1), which states that for the
category vec X of vector bundles on a scheme X with an ample line bundle, there
is a natural isomorphism

HC (vec X) 5 HC(X),

where HC,(X) is the cyclic homology of the scheme X as defined by Loday [22]
and Weibel [37]. Indeed, HC,(X) contains the cohomology H*(X,Ox) as a direct
factor (concentrated in homologically negative degrees).

In this article, we propose a new definition of the Hochschild, cyclic ... homolo-
gies of an exact category and show that the new theories do satisfy (1), (2), (3),
(6) and (7). Thanks to the two last properties, we are able to compute them for
a number of non-trivial examples (finitely generated modules over noetherian alge-
bras of finite global dimension in 1.6, coherent sheaves on projective space in 1.7,
finite-length modules over £[[X]] in 1.8, coherent sheaves on punctured affine space
in 1.9, finitely generated modules over the dual numbers in 2.5). In many other
cases, the computation may be reduced to that of the cyclic homology of a suitable
differential graded algebra (example 2.6). The new theories can also be shown to
satisfy the scheme-theoretic analog of property (1), cf. example 1.10.

We do not doubt that properties (4) and (5) also hold for the new theories.
We provide evidence for this by proving a delooping theorem (1.13) for the new
theories in the case of a flat exact category (i.e. Homu4 (A, B) is a flat k-module for
all A, B € A). We can then construct a natural transformation

HCMC A5 HOMM A

(and similarly for the other homologies) and define trace maps by composing this
morphism with the trace maps constructed by R. McCarthy.

Organization of the article. In section 1, we state the main results of the article
and give some examples: We define the mixed complex of a flat exact category
in 1.4. The homologies associated with the category are derived from its mixed
complex. This ensures the validity of property (2). The main theorem (1.5) states
that properties (1), (6), and (7) hold. We illustrate the strength of (6) and (7)
on some examples (1.6 to 1.8). In (1.12), the additivity property (3) is seen to be
a consequence of the localization property (6). In turn, additivity is the essential
ingredient for proving the delooping theorem in 1.13. Inspired by Kassel’s work
[14] [16] on bivariant theories we show in (1.14) that certain (non-exact) k-linear
functors which admit total derived functors induce maps in the new theories, and
that (6) and (7) continue to hold for this wider class of functors. In the last
paragraph of section 1, we prove a useful lemma which gives a sufficient condition
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for an exact sequence of abelian categories to induce an exact sequence of derived
categories.

In section 2, we restate the main theorem in a setting which contains both the
results of section 1 on exact categories and those of [19] on DG algebras as special
cases. In this more general setting, categories of complexes or of DG modules are
replaced by what we call ‘exact DG categories’ (2.1). Fach exact DG category has
an associated triangulated category which generalizes the homotopy category of a
category of complexes or of DG modules. An exact category gives actually rise to a
pair of exact DG categories: the category of complexes and its full subcategory of
acyclic subcomplexes. This pair is an example of a ‘localization pair’ (2.4). Local-
ization pairs are to be viewed as a more intrinsic variant of Thomason-Trobaugh’s
bicomplicial Waldhausen categories [32]. Each localization pair has associated with
it a mixed complex and a triangulated category. In the case of the localization pair
associated with an exact category, these are respectively the mixed complex of the
exact category and its derived category. The analog of the main theorem holds
for localization pairs (2.4). This includes in particular the results of [19] for DG
algebras as special cases. It improves on [19] in so far as we no longer have to make
any hypothesis on the ground ring or on the underlying DG module of the algebra.
This means, however, that we have to use a more elaborate definition of the mixed
complex of a non-flat DG algebra using resolutions (3.2).

As an application, we compute the mixed complex of the category of finite-
dimensional modules over the dual numbers (2.5). By the same method, we reduce
the computation of the mixed complex of the category of finite-dimensional modules
over a finite-dimensional algebra A to the computation of the mixed complex of
an associated DG algebra (whose homology is the Ext-algebra of the simple A-
modules).

Sections 3 and 4 contain the proof of the main theorem for localization pairs.
They form the technical heart of the article. In section 3, we prove existence and
unicity up to homotopy of resolutions of exact DG categories. We start with the
special case of DG algebras in 3.2. Here the only technical difficulty is that our DG
algebras can have non-vanishing homology in positive and in negative degrees. The
passage from DG algebras to exact DG categories in 3.6 then involves replacing
an algebra by an ‘algebra with several objects’ and taking into account the exact
structure. In fact, we do not only prove existence and unicity of resolutions but,
more precisely, we show that if we quotient the category of exact DG categories
by a suitable homotopy relation, then in the quotient, the multiplicative system of
all functors inducing equivalences in the associated triangulated categories admits
a calculus of right fractions. The corresponding localization is denoted by MP?. It
is equivalent to its full subcategory whose objects are the flat exact DG categories.
Using this equivalence we extend the mixed complex functor from flat exact DG
categories to all exact DG categories.

By the definition of M?", passing from an exact DG category to its associated tri-
angulated category is a functor from M? to the category of triangulated categories.
We define a sequence of M to be exact iff the associated sequence of triangulated
categories 1s exact.

In section 4, we study the ‘completion’ functor M® — M. Its effect is to assign
to each exact DG category a new, larger, exact DG category whose associated
triangulated category admits ‘arbitrary’ coproducts. We deduce from the theorem
of Neeman-Ravenel-Thomason-Trobaugh-Yao (4.12), that the completion functor
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preserves exactness (4.2) and that it becomes an equivalence when restricted to the
full subcategory of M® whose objects are the exact DG categories whose associated
triangulated categories are Karoubian (4.1). The exactness of a sequence of M is
of course defined by passing to the associated triangulated categories. Surprisingly
enough, such sequences are actually exact in the pointed category M, i.e. the
first term is a monomorphism, the second an epimorphism and the two form a
kernel-cokernel pair (4.6). This allows us to associate with each localization pair
a functorial exact sequence of M and in particular a ‘quotient category’ which
depends functorially and exactly on the localization pair (4.7, 4.8). The final step
is now to prove that the mixed complex functor is a ‘O-functor’ on M. This is done
in 4.9 and 4.13. The proof of 4.13 closely follows [19, section 6] but corrects an
error which occurred in [19, lemma 5.2].

Acknowledgment. This work goes back to a question by P. Polo. T thank him
for the interest he has continued to take in the subject.

I am grateful to the referee for his thorough reading of the manuscript. His
remarks and questions have been a great help and encouragement in preparing the
final version of the article.

1. CYCLIC HOMOLOGY OF EXACT CATEGORIES

1.1. Exact categories and categories of complexes. Let k be a commutative
ring and A a k-linear category (i.e. an additive category whose morphism spaces
are k-modules such that the composition is bilinear). Suppose that A is exact in
the sense of [30]. We use the terminology of [7, Ch. 9]: admissible monomorphisms
are called nflations, admissible epimorphisms — deflations, and admissible short
exact sequences — conflations. A complex N over A is acyclic in degree n if d;{,_l
factors as
dn—l

Nn—l Nn

pn—l\& /i:_l
Zn—l

where p?~ ! is a cokernel for d?~? and a deflation, and *~! is a kernel for d” and

an inflation. The complex N is acyclic if it is acyclic in each degree. We denote
by Acb A the category of all acyclic complexes N which are bounded, i.e. we have
N™ = 0 for all large |n|. We denote by C*A the category of all bounded complexes
over A.

If X and Y are two complexes over A, we have a differential Z-graded k-module
Hom 4 (X,Y) whose nth component consists of the homogeneous morphisms f
of degree n of Z-graded objects (X?) — (Y?) and whose differential is given by
d(f) =dy o f—(=1)"fodx, where f is of degree n. Note that for two composable
morphisms

gEHom A (X,)Y), f€Hom 4 (Y, 2)",
we have the Leibniz rule
d(fg) = (df)og+ (—1)"f o dg.

Thus any category of complexes over A4 may be viewed as a differential graded
category in the sense of [13] and [18].
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The homotopy category H' A has the same objects as C°A and its morphisms
X — Y are in bijection with the elements of

HHom 4 (X,Y).

It is a triangulated category. The full subcategory of the acyclic complexes forms a
triangulated subcategory of #*A. The derived category DA is the localization of
HP A with respect to the subcategory of acyclic complexes. Note that this makes
sense although the subcategory of acyclic complexes may not be épaisse (cf. [28]).
Indeed, if T is a triangulated category and & C 7 a full triangulated subcategory
(which need not be épaisse), then the localization 7 /S exists and morphisms in
the localization are given by a calculus of left or right fractions; the kernel of the
localization functor 7 — 7 /S is the épaisse closure of S.

1.2. Reminder on mixed complexes. We use Kassel’s approach [14]. Recall
that a mixed complex is a triple (C,b, B) such that

Ch)=(..2C, =>Cpho1 —...)

is a complex of k-modules and B : C' — C'is a homogeneous morphism of Z-graded
k-modules of degree 1 satisfying 6B 4+ Bb = 0. Let A be the DG algebra generated
by an indeterminate ¢ of chain degree 1 with ¢2 = 0 and de = 0. The underlying
complex of A is

0o ke S k=0,

Then a mixed complex may be identified with a DG left A-module whose underlying
DG k-module is (C,b) and where ¢ acts by B. This interpretation leads to the
following definitions: Suppose that C' = (C,b, B) is a mixed complex. Then the
shifted mized complexr C[1] is the mixed complex such that C[1], = Cp_; for all
p, bep) = —be, and Bepp = —Be. Let f @ € — C’ be a morphism of mixed
complexes. Then the mapping cone over f is the mixed complex

ceanly L)% )

We define Miz to be the category of mixed complexes and DMz to be the mized
deried category, i.e. the derived category of the DG algebra A. Its objects may be
viewed as mixed complexes. Cyclic homology, Hochschild homology etc. may be
interpreted as cohomological functors on DMz, cf. [19, 2.2]. Note that despite
the notation, DMz is not the derived category of the abelian category Miz (the
objects of the derived category of Mixz would be complexes of mixed complexes

).

1.3. The mixed complex of a flat DG category. Let B be asmall DG category,
i.e. a category enriched in differential graded k-modules (cf. for example [18]).
Assume that B is flat, i.e. B(A, B) @, N is acyclic for each acyclic DG k-module
N and all A,B € B. In analogy with the construction of Hochschild-Mitchell
homology [27] and with the case of DG algebras [9], [33], we associate a precyclic
chain complex with B as follows: For each n € N, its n-th term is

HB(Bn, By) @ B(Bn-1,Bn) @ B(Bn_2,Bn-1) @ ...® B(By, B1)
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where the sum runs over all sequences By, ..., B, of objects of B. The degeneracy
maps are given by

dz(fna afiafi—1a~" afO) :{ (f”’ ’fifi_l’”.f()) lfl>0

(=) 4 (fofu, ... f1) ifi=0
where o = (deg fo)(deg f1 + - - - + deg fn—1). The cyclic operator is given by

to(fazts-- s Jo) = (D)"Y (fo, faz1, fazos oy J1).

We associate a mixed complex C'(B) with this precyclic chain complex as described
in [19, Sect. 2]. We view C'(B) as an object of the mixed derived category DMix
as explained above (1.2). By definition, the cyclic homology of B is the cyclic
homology of the mixed complex C(B), and similarly for the other variants of the
theory (Hochschild, periodic, negative, ... ). The cyclic complex of a DG category
which is not necessarily flat will be defined via a flat resolution in section 3.2.

1.4. The mixed complex associated with an exact category (flat case). In
the setting of (1.1), suppose that A is small and flat over k, i.e. A(A, B) is a flat
k-module for all A, B € A (this holds, for example, if k is a field; an important non-
example is the category of finitely generated abelian groups viewed as a Z-linear
category). Then the mixed complex associated with the exact category A is defined
to be

C(A) = Cone(C(Ac’A) — C(C*A)).

Here, Ac’A and C°A are viewed as differential graded categories and C is the
functor defined in (1.3). Clearly C'(A) is functorial with respect to exact functors.

The definition of C'(A) for exact categories which are not necessarily flat over
the ground ring is given in section 3.9 using flat resolutions.

1.5. The main theorem. Let k& be a commutative ring. All exact categories
below are assumed to be k-linear and small. By an exact functor, we always mean
a k-linear exact functor. Statements b) and c¢) below will be extended to certain
non-exact functors in section 1.14.

A factor-dense subcategory A’ of an additive category A is a full subcategory
such that each object of A is a direct factor of a finite direct sum of objects of
A’. An equivalence up to factors is an additive functor A — B which induces an
equivalence onto a factor-dense subcategory of 5. A sequence

0T T2 77 50

of triangulated categories is exact up to factors if 7' identifies with a factor-dense
subcategory of the kernel of @ and @ induces an equivalence from 7/ ker @ onto a
factor-dense subcategory of 7.

Theorem. a) If A is a k-algebra, there is a natural isomorphism in the mized
derived category

C(A) = C(proj A).

b) If F: A — B is an exact functor between exact categories which induces an
equivalence up to factors D’ A — DB, then I induces an isomorphism in the
maxed derived category

C(A) = C(B).
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o) If Fie Al =5 Aand G: A— A" are exact functors between eract categories
such that the sequence
0— DA - DP'A—-DA" -0
is exact up to factors, then there is a canonical morphism 0(F,G) such that
the sequence

C(A) = O(A) = c(amy 229,

1s a triangle in the mized derived category.

A

The theorem is a consequence of (2.4) below. Statement b) is often applied in
the following situation: Suppose that A C B is a full subcategory closed under
extensions. Consider the conditions

a) For each B € B, there is an acyclic complex of B
0—-B—>Ay— ... A4,—0

with 4; € A for all <.
b) For each conflation A — B — B’ of B with A € A, there is a commutative
diagram

A B B’

A A/ A//
whose second row is a conflation of A.

If b) (or its dual) holds, then the inclusion induces a fully faithful functor DA —
D*B. If moreover condition a) (or its dual) holds, then this functor is an equivalence

(cf. also 1.15).

1.6. Example: Algebras of finite global dimension. Let A be a noetherian
algebra of finite global dimension over a commutative ring k. Let mod A denote the
category of all finitely generated A-modules. I claim that the inclusion proj A —
mod A induces an isomorphism

C(proj A) = C(mod A)

in the mixed derived category. Indeed, the inclusion is an exact functor and the
induced functor D’ proj A — D’ mod A is an equivalence by the above remark. So
the claim follows from (1.5 b). If we combine it with (1.5 a), we find that if A is
noetherian of finite global dimension, then we have a canonical isomorphism

C(A) = C(mod A)
in the mixed derived category.
1.7. Example: Projective space. Suppose that k is a field. Let n be a positive
integer and V' a vector space of dimension n 4+ 1 over k. Let A be the algebra
of upper triangular matrices (a;;)o<i j<n with a;; € S77'V for j > i and a;; = 0
for j < i. Let P be the projectivization of V' and coh P the category of coherent
sheaves on P. There is a canonical fully faithful functor

proj A = coh P
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taking the indecomposable projective right A-module e;; A to the sheaf Op(—i). By
a theorem of Beilinson’s [1], this functor induces an equivalence

Db proj A = D° coh P.
Thus by (1.5 b) and (1.5 a), we have isomorphisms
C(coh P) & C(proj A) & C(A).
By [23, 1.2.15], we know that the inclusion of the diagonal matrices D C A induces

an isomorphism C'(D) = C'(A) in the mixed derived category. So we finally get the
isomorphism

C(coh P) = P C(k).
=0
1.8. Example: Nilpotent matrices. Suppose that k is a field. Let A be the
category of finite-length modules over the power series ring over k in one variable.
An object of AV is a finite-dimensional vector space endowed with a nilpotent endo-
morphism. The category A embeds into mod k[X] and its image equals the kernel
of the localization functor mod k[X] — mod k[X, X~1]. At the level of derived
categories, we obtain a short exact sequence

0 —= D°N —= D’ mod k[X] — D’ mod k[X, X~'] — 0.
Hence by (1.5 ¢), we have a triangle
C(N) = C(mod k[X]) — C(mod k[X, X ~1]) — C(N)[1]
in the mixed derived category. By example (1.6), it is isomorphic to a triangle
C(N) — C(k[X]) = C(K[X, X7Y]) = C(M)[1].

Now if we take homology in degree 0, then the second morphism identifies with the
injection k[X] — k[X, X~1] so that we get

HC_y N = cok(k[X] — k[X, X™1]).

To deduce this isomorphism, we have only used the statements in theorem (1.5).
Thus, any homology theory satisfying theorem (1.5) must take non-zero values in
negative degrees. The theories defined by R. McCarthy in [26] are concentrated in
positive degrees by definition. So they cannot satisfy theorem (1.5).

1.9. Example: Punctured affine space. Let k be a field, n > 2 and A the
category coh X of coherent sheaves on the scheme X = A"\ {0}. We will show
that any homology theory satisfying theorem (1.5) is non-zero in degree —n + 1
when evaluated at the category A.

This phenomenon admits the following simple explanation: The inclusion of the
category of algebraic vector bundles vec X into coh X yields an equivalence in the
bounded derived categories. Now at least for the theory defined in (1.4), we know
from theorem (1.10) below that the cyclic homology of vec X is the cyclic homology
of the scheme X in the sense of Loday [22] and Weibel [37]. The latter contains the
cohomology of the scheme with coefficients in the structure sheaf as a direct factor
and in the case of punctured affine space X we have H"~1(X , Ox) # 0.

To compute HC'_,, 41 (A), we use the exact sequence of abelian categories

0N ->M-=3A-0.
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where M is the category of finitely generated modules over A = k[Xy,...,X,] and
N its full subcategory formed by the modules supported in {0}, i.e. such that all the
X; act nilpotently. Using example b) of 1.15, we see that the functor D’ A" — D M
1s fully faithful. Thus we obtain an exact sequence of derived categories

0— DN = DM — DA 0.
and an exact sequence
HC_,y1 (M) > HC_p41 (A) = HC_,, (N) = HC_,, (M)
by theorem (1.5 ¢). We know from (1.5 a) and example (1.6) that 7 C; (M) vanishes

for all 2 < 0. Thus we have an isomorphism
HC_py1 (A) S HC_, (N).

To compute HC'_,, (M), we need to introduce some notation: For two subsets I, J of
the set {1,...,n} let MY denote the category of modules over A = k[X1,...,X,]
where the X;, ¢ € [ act nilpotently and the X;, j € J, invertibly, and which are
finitely generated as modules over A[Xj_1| j € J]. Note that if INJ # (§, then M7
is the zero category. If I or J is empty, we omit the corresponding symbol from
the notation. Thus M is the category of finitely generated A-modules as defined
before, and N'= My, 3.
We will show by induction on r = |I| that HC), (M) = 0 for p < —r and that

HC—T (M{) = A{a
where we define

A = AIXT R e TUJY DY JAIXT ke Tu g\ {i}].
i€l

In particular, we have

JE—

HC_, M= AIXTY XS AT XX
i=1

n

To start with the induction, note that we have HCy (M7) = A[Xj_1| Jj € J] and

HC, (MY) =0 for p < 0 by (1.5 a) and example (1.6). For the step from r to
r+1let jo41 & J and put J* = JU{jry1}, It = T U{j,41}. Consider the exact
sequence of abelian categories

0= My =M= Mo

By example b) of 1.15, this sequence induces an exact sequence in the derived
categories. So from (1.5 c) we get the exact sequence

HC_p (M) = HC_, (M{") > HC_,_y (M) = HC_._y (MF).
Using the induction hypothesis we see that this sequence is isomorphic to
A} 5 AT S HO__y (MTy) 0.

It follows that HC_,_; (M7, ) identifies with A{Jr JA] = A,
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1.10. Cyclic homology of schemes. Let X be a scheme over a field k which
admits an ample line bundle (for example a quasi-projective variety). Let vec(X)
denote the category of locally finitely generated free sheaves on X (i.e. the category
of algebraic vector bundles). Tt is an exact subcategory of the category of quasi-
coherent sheaves on X.

Theorem. [20] There is a canonical isomorphism
HC(X) S HC . (vec(X)).

Here HC,(X) denotes the cyclic homology of the scheme X as defined by Loday
[22] and Weibel [37]. For an affine scheme X = Spec(A), the category vec(X) is
equivalent to proj A and on the other hand, Weibel has shown in [loc. cit.] that
HC.(X) is canonically isomorphic to HC,(A). So the theorem reduces to (1.5 a)
in this case.

It will be shown in [20] that the theorem above generalizes to arbitrary quasi-
compact quasi-separated schemes if we replace the exact category vec(X) by the
localization pair (2.4) associated with the category of perfect complexes on X.

1.11. A counterexample to devissage. Suppose that k is a field. Let A =
k[e]/(€?). In (2.5) below we will show that H H.(mod A) = A @y k[T] where T is
of homological degree —1. As a graded k-module, this is clearly non isomorphic
to HH.(modk) = k[u], where u is of homological degree 2. This example shows
that the analogue of the dévissage theorem 4 of [30] does not hold for the invariant
A— HH.(mod A).

1.12. Application: Additivity. Let k be a commutative ring and A a small
k-linear exact category. Let con.A denote the category of conflations

c:ALBAC

of A. It becomes an exact category if we endow it with the componentwise confla-
tions. Let P :conA — A be the functor ¢ — C and R : con A — A the functor
e— A

Theorem. The functors P and R induce an isomorphism wn the mized derived
category

C(conA) = C(A) & C(A).
Proof. Let I : A — con A denote the functor
A (A2 A450).
Then we have a short exact sequence of derived categories
0—D'AL D con 4 DA 0.
Hence by (1.5 ¢), we have a triangle

(A) 29 c(eonA) ZEh o4y = CA)[]

in DMixz . Now the functor R satisfies BRI = 14. So the triangle splits and we get
the 1somorphism of the theorem. V4
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1.13. Application: Delooping. Let k be a commutative ring and A a small
k-linear flat exact category. Recall from 1.4 that

C(A) = Cone(C (A A) — C(C°A)).

This definition clearly defines a functor from the category of small exact flat cat-
egories and exact functors to the category of mixed complexes. Hence 1t admits a
natural extension to a functor from simplicial exact categories to simplicial mixed
complexes. In particular, if Sq.A denotes the Waldhausen construction (see [36],
[26, 3.1]), we have a simplicial object of mixed complexes C'(S,.A). We denote
by Tot C'(S,.A) the mixed complex obtained by passing from the simplicial object
C'(SsA) to its associated reduced chain complex (whose components are mixed
complexes) and then to the (sum) total mixed complex.

Theorem. There is a canonical isomorphism in the mived derived category
Tot C'(S,A) = C(A)[1].
Proof. Consider the sequence
0 = consty A = PySe A — SeA =0

of simplicial exact categories: here const, A denotes the constant simplicial category
with value A and P,S,.A is the ‘path object” of S,.A (see [26, 3.3]). Let Z,,.4 denote

the category whose objects are the sequences
Ag— A1 — ... = A,

of inflations of A. The nth component of the above sequence is given (up to
equivalence) by

0= AL 7,487, A0

where F' maps A € A to the constant sequence

AS AL L4

and GG maps a sequence Ag — ... —> A, to
Al/Ao — ... An/AO

This is clearly a (split) exact sequence of exact categories. By the additivity (1.12),
this implies that in

C(const, A) = C(P,SeA) = C(SpA)

the first morphism 1s a quasi-isomorphism onto the kernel of the second, which
is surjective in each component. Now if B, is a simplicial exact category, then
Tot C'(B,) is filtered by a complete, bounded below filtration with subquotients the
C(B,,) suitably shifted. This implies that the morphism

Tot C'(consty A) — Tot C(FPeSe.A)
is a quasi-isomorphism onto the kernel of the morphism
Tot C'(PySeA) — Tot C(SeA)

which is surjective in each component. Hence we have a canonical triangle in the
mixed derived category

Tot C'(consty A) = Tot C'(PySeA) — Tot C'(S,.A) = Tot C(const, A)[1].
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Now we have a canonical isomorphism of mixed complexes Tot C'(const, A) =
C(A). Moreover P, S, A is contractible as a simplicial object, so Tot C'(P,S,.A) is a
zero object in DMz . So we have a canonical isomorphism Tot C'(S,.A) — C(A)[1]
in DMix .

1.14. Extended functoriality. Let k& be a commutative ring, .4 and B small k-
linear exact categories and F : A — B a k-linear functor which is not necessarily
exact. Inspired by Kassel’s work [14] [16] we would like to assign to F' a morphism
C(A) = C(B) of the mixed derived category. For this, we assume that the functor
F is right derivable, i.e. that A admits a full exact subcategory A’ C A satisfying
conditions a) and b) of the remark following theorem 1.5 and such that the restric-
tion of F to A’ is exact. Then the total derived functor RF : D* A — DbB exists in
the sense of Deligne [4] and we have a diagram (commutative up to isomorphism)

FlA’
DA —— DB

DA —— Db A.

Accordingly, we define the morphism C(RF) in the mixed derived category by the
commutative diagram

C(A) —w C(A).

We see that if RF is an equivalence up to factors, then C'(RF) is an isomorphism
by (1.5 b). Similarly, one can define C(LF) if F is left derivable (left to the reader).

In (1.5 ¢), instead of supposing that F' and G are exact, it is enough to assume
that they are right derivable and that the sequence

0 DA BE pb g BG pbyr .

is exact up to factors (similarly with ‘right’ replaced by ‘left’ for F', G, or both).
Then we still have a canonical triangle

C(RF)
—_—

C(RG) C 3(RF,RG) C

C(A) C(A) (A”) (A
This is not a consequence of (1.5 ¢) but of its proof: Indeed, in the proof, we pass
from an exact category to the corresponding localization pair (2.4), to objects of
the categories £° and £, and finally to objects of the category M (4.8). For an
exact category A, denote by M (A) the corresponding object of M. Each object M
of M has an associated triangulated category 7M and 7M(A) is a triangulated
category whose subcategory of compact objects is equivalent up to factors to DA
(4.8). The object M(A) is functorial in A and an exact functor A" — A induc-
ing an equivalence up to factors in the derived categories induces an isomorphism

M(A") = M(A) (4.8). Tt follows that we can define M(RF) for a right derivable
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functor F' in the natural way. Moreover, it follows from (4.8) that under the above
hypotheses, the sequence

M(RF) M(RG),

0— M(A") M(A) (A" =0
is an exact sequence of M (4.6). Now the assertion follows from (4.9 b).

1.15. Localization: Abelian vs. derived categories. We refer to [6] for an
introduction to the localization theory of abelian categories.

Let B be an abelian category and A a Serre subcategory. By definition, we have
an exact sequence of abelian categories

0>A—=>B—>B/A-0.

Such a sequence may or may not induce an exact sequence of derived categories,
as we will see in the (non-) examples below. A sufficient condition is given in the
following lemma. Even if the induced sequence in the derived categories is not exact,
statement a) of the lemma shows that we have an exact sequence of localization
pairs, which still yields information on cyclic homology by theorem 2.4 below.

Lemma. a) We have an exact sequence of triangulated categories
0— DsA = DB =D (B/A) =0,
where D&B denotes the full subcategory of complexres whose homology lies in

A.

b) We have an exact sequence of derived categories
0— DA — DB —DB/A) =0
iff the canonical functor D' A — DZ‘B 1s an equivalence and this holds iff it
s fully faithful.
c¢) The condition of b) holds and the canonical functor D* A — DY B is an equiv-
alence in each of the following cases

cl) For each exact sequence 0 > A — B — C = 0 of A with A € A, there is
a commutative diagram with exact rows

0 A B C 0

0 A A/ A// 0

where A’ and A" belong to A.
c2) The abelian category A is generated by objects X of projective dimension
at most 1 (i.e. we have Ext'y(X,7) =0 for all i > 2).

Proof. a) The canonical functor C*(B)/C’(A) — C*(B/A) is easily seen to be
an equivalence. Its quasi-inverse induces a quasi-inverse to the canonical functor
D(B) /DY (A) — D*(B/A).

b) By a), the canonical functor is an equivalence iff the sequence is exact. If the
functor is fully faithful, then it is an equivalence by devissage.

cl) is well-known [10].

c2) For i < 1 and L, M € A, we have isomorphisms

Ext’y (L, M) = Extiz(L, M)
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since A is a Serre subcategory. Now fix M € A and, for L € A, put EYL =
Ext'y (L, M) and F%L = Extz(L, M). The canonical map

EYL — E5L

is clearly a morphism of §-functors and it is invertible for i = 0, 1. To show that it
is invertible for all ¢ € N, it is enough to show that the functor £ : A — Mod Z
is effaceable for ¢ > 2. This is immediate from the assumption. Thus the canonical
map

Ext’y (L, M) = Extiz(L, M)

is an isomorphism for all L, M € A and all i € N. By devissage, this implies that
the canonical functor

D'A — DYB
is fully faithful. V4

Example. a) Localization of non-commutative rings. Let B be a right co-
herent algebra and S C B a subset such that

a) 1€ Sand SSCS,

b) For s € S and b € B, there are t € S and ¢ € B such that c¢s = tb.
c) Fort € S and ¢ € B, there are s € S and b € B such that c¢s = tb.
d) For each s € S| left multiplication by s is injective.

That is to say that S is a multiplicative subset (a) satisfying both Ore conditions
(b,c) and consisting of left non-zero divisors (d), cf. [5]. The ring of fractions B[S™!]
is again right coherent. Let B = mod B denote the category of finitely presented
right B-modules and A the kernel of the localization functor mod B — mod B[S™1].
It is well-known (and easy to check) that the canonical functor B/A — mod B[S™!]
is an equivalence. Thus we have an exact sequence of abelian categories

0= A—modB — modB[S_l] — 0.

The category A is generated by the B/sB, s € S, which are clearly of projective
dimension at most 1 in mod B. So by the lemma, we have an exact sequence of
derived categories

0 — DA — D’ mod B — D’ mod B[S™!] = 0.

b) Modules supported on a closed affine subscheme. Let B be a com-
mutative noetherian ring and I C B an ideal. Let B = mod B be the category of
finitely generated B-modules and A its full subcategory consisting of the modules
annihilated by some power of I. Let S = B\ I. Then we have an exact sequence
of abelian categories

0 — A —modB — mod B[S™!] = 0

and 1t does induce an exact sequence of derived categories. Indeed, we can use
condition cl): Let 0 & N — M — L — 0 be an exact sequence of B-modules with
N € A. Then by the Artin—Rees lemma [25, Theorem 8.5], there is an integer ¢ > 0
such that I"M NN = " ¢(I°M N N) for all n > ¢. So if we choose n such that
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I""¢N = 0, we have a diagram with exact rows

0 N M L 0
1
0 N M/T"M —— M/(I"M + N) 0

whose second row belongs to A.

¢) A Non-example. Let k be a field and B the algebra of upper triangular 3 x 3
matrices over k divided by the ideal generated by the matrix £13. Denote by .S; the
simple right B-module given by the character sending " a;xEjx to a;;. Let B be
the category of all finitely generated A-modules and A the full subcategory whose
objects are the finite direct sums of copies of S and S3. We have Ext}B(Sl, S3) =
0= Ext}B(Sg,Sl). So A is closed under extensions. Clearly it is closed under
subobjects and quotients. Thus 1t 1s a Serre subcategory. As an abelian category,
A is semisimple and in particular Exti(Sl, S3) = 0. On the other hand, an easy
computation shows that Ext%(S),S3) = k. Hence the canonical functor D*A —
DZ‘B is not an equivalence in this case.

2. ExacT DG CATEGORIES

2.1. Definitions. Let k be a commutative ring and B a small DG k-category (cf.
[18)).

For example, let A be a small k-linear category. Then the category B = CA of
chain complexes

A= (AP S A4+ 5 ) peZ, d*=0,

over A becomes a DG k-category if we take B(A, B) to be the morphism complex
(the n-th component of B(A, B) is formed by the families f = (f?) of morphisms
AP — B"*P and the differential is given by d(f) = do f — (—1)"f o d).

Recall that a DG (right) B-module is a DG functor M : B°? — Dif k, where Dif k
denotes the category of differential graded k-modules. The module M is given by
differential graded k-modules M (B), B € B, and morphisms of chain complexes

B(B,C) — (Dif k) (M(C), M(B)), b~ M(b)

such that M (b)M (a) = (—=1)P2M (ab) for a € B(B,C)? and b € B(A, B)!. For
a DG module M, we denote by M]J1] the shifted module: By definition, we have
MI[1(B)Y = ]\4(3)”"’1 and dymiys) = —dp(p) for all B € B, p € Z; moreover,
for b € B(B,C)F we have M[1](b)? = (—=1)?YM (b)?*tL. A morphism of graded B-
modules f : M — N is the datum of a morphism of Z-graded k-modules f(B) :
M(B) — N(B) for each B € B such that we have f(B)M(b) = N(b) f(C) for each
b€ B(B,C). A morphism of differential graded B-modules is a morphism f of
graded B-modules such that f(B) commutes with the differential for each B € B.
If f: M — N is a morphism of DG modules, the mapping cone Cone(f) is the DG
module K defined by K(f)(B)? = N(B)’ & M(B)P+!,

: B SEPH] OG0
QB = | g7 —difly, | KOO :[ ) (—1)P7 0 (b)

for B,C' € B, p,q € Z, and b € B(B,()?. The category of DG B-modules is

denoted by Dif B. Tt carries an exact structure in the sense of Quillen [30] whose



16 BERNHARD KELLER

admissible short exact sequences are the short exact sequences

0 L5MEB NS0

which split as sequences of graded B-modules.
We denote by Z° B the category with the same objects as B and whose morphisms
A — B correspond bijectively to the elements of

7° B(A, B).

In the example B = CA, the category Z° B is the category of chain complexes
and morphisms of chain complexes (commuting with the differential).
Clearly, the functor

Y :Z°B = Dif B, B—YB = B" = B(?,B)

is fully faithful (V" stands for “Yoneda’). A DG B-module is representable if it is
isomorphic to a functor of the form Y B for some B € B. The category B is an exact
DG category if the full subcategory of of Dif B formed by the representable functors
is stable under the translation functors M — Mn], n € Z, and closed under
extensions. A typical example of an exact DG category is the category B = CA.

It is easy to see that each extension of Y A[1] by Y B in Dif B is isomorphic to the
mapping cone Cone(g) of some morphism of DG B-modules g =Y f: YA - YV B.
Whence the

Lemma. The category B is an exact DG category if and only if the following two
conditions hold

a) For each A € B and each n € Z, there is an object A[n] in B and an isomor-
phism of DG B-modules

Y(Afn]) = (Y A)[n]

b) For each morphism f : A — B of Z° B, there is an object Cone(f) of B and
an isomorphism of DG B-modules

Y (Cone(f)) = Cone(Y f).

If B is an exact DG category, then Z° B becomes a Frobenius category for the
exact structure induced from Dif B, 1.e. an exact category with enough injectives,
enough projectives and where the classes of projectives and injectives coincide. The
stable category associated with a Frobenius category is obtained by dividing by the
ideal of morphisms factoring through a projective-injective; 1t is a triangulated
category (cf. [12], [11], [21]). By abuse of notation, we will denote the stable
category associated with Z° B by B. In the example of B = CA, the stable category
B is nothing but the homotopy category of complexes over A.

2.2. Examples of exact DG categories. a) Categories of complexes. Let A
be an additive category and B a full subcategory of the category CA of complexes
over A which is closed under (degreewise split) extensions and shifts. Then B is an
exact DG category whose mapping cones are the usual mapping cones of complexes.

b) Exact DG subcategories. Let B be an exact DG category and B’ an exact
DG subcategory, 1.e. a full DG subcategory such that 7" B’ is closed in Z° B under
shifts and extensions. Then B’ is an exact DG category.

b) Examples arising from Frobenius categories. Let £ be a Frobenius
category. Let B be the category of acyclic complexes with projective-injective com-
ponents over £. This is an exact DG category by example a). The zero cycle functor
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induces a triangle equivalence B — £. Hence, up to triangle equivalence, all stable
categories of Frobenius categories are obtained as stable categories of exact DG
categories.

¢) Exact envelopes of DG categories. Let A be a DG category. Up to
equivalence, the category Dif A contains a unique smallest subcategory containing
the YA, A € A, closed under shifts and (graded split) extensions. This subcategory
will be denote by dgfree A. It is an exact DG category and the functor A — dgfree A
is universal among DG functors from A to exact DG categories. The category
dgfree A may also be constructed more explicitly as follows (cf. also [13, 2.2]):
First define ZA to be the category whose objects are the pairs (A, r) consisting of
an object A € A and an integer r; the DG module of morphisms from (A,r) to
(B, s) is in bijection with

Hom 4 (A, B)[s — 7).

The composition of a morphism f : (A,7) — (B, s) of degree n with g : (B,s) —
(C,t) of degree m is given by

(_1)n+m+nr+ms

goza [ = goaf.

Now the objects of dgfree A are the sequences (Ay,...,A,) of objects of Z.A to-
gether with matrices § = (d;;) of morphisms J;; € Homza (A;, 4;) such that
dij = 0fori > j and

d(di;) + 25#@51@ =0
3

for all é,j. The DG module of morphisms from (Aj, ..., Ap) to (B1,...,Bm) is
given by matrices f = (fi;), fij € Homza (A;, B;). The differential of a homoge-
neous morphism f of degree n is defined to be

dgaf+60f—(=1)"f o6

where dz 4 is applied to each entry of the matrix f and § o f and f o are matrix
products. The canonical functor ® : ZA — Dif A sends an object (A4,r) to A*[r]
and the canonical functor dgfree A — Dif A sends an object (A;,..., Ay) to the
graded module ®A; @ - & P A, endowed with the differential d + ®4.

d) Functor categories. Let A be a small DG category (for example any k-
category) and B an exact DG category. We will define an exact DG category
Fun (A, B) whose objects are k-linear DG functors A — B. If F' and G are two
such functors, let Hom (F, G)" denote the set of homogeneous morphisms of degree
n of the underlying graded functors; thus an element ¢ of Hom (F, G)™ is the datum
of a morphism ¢A € Homg (FA, GA)” such that (Gf)(¢A) = (=1)"" (A" )(F )
for each f € Hom 4 (A, A)", m € Z. The differential of Hom (F,G) is defined
by (de)(A) = d(wA). Then it is straightforward to check that Fun (A, B) is an
exact DG category (the mapping cone over ¢ € Z° Hom (F,G) is given by A
Cone(p(A)).

We define Rep(A, B) to be the localization of the stable category of Fun (A, B)
at the class of morphisms f : F' — G such that fA : FA — G'A becomes invertible
in Bforall Ac A

e) Filtered objects. Let F : A — B be a DG functor between exact DG
categories. Let Fil 7' be the DG category whose objects are pairs (A,¢), where
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AeAandi: FA — B is an inflation of Z° B. By definition, the DG module of

-7
K3

morphisms from (A4, F A BN B) to (4, FA" = B’) is the pullback of the diagram

Hom i (B, B)

Hom 4 (A, A') —— Homp (FA,B).

Then Fil F' is an exact DG category and a morphism (u, v) of Z° Fil F is invertible
in the stable category iff u and v become invertible in the stable categories of A
resp. B.

2.3. DG functors between exact DG categories. Let B and B’ be exact DG
categories and let ' : B — B’ be a DG functor. Recall from [18, 1.1, 1.2] that this
means in particular that F' is k-linear.

Lemma. For each A,B € B, n € Z and f € 7Z°B(A, B) there are canonical
1somorphisms

F(A[n]) = (FA)[n] and F(Cone(f)) = Cone(F' f).

Proof. We use the terminology of [18, 6.1]. Define the B-5'-bimodule X by X (4, B) =
B(A,FB) for A € B, B € B. Clearly the functor Tx : Dif B — Dif B’ admits
canonical isomorphisms as in the claim. Now we have a canonical isomorphism
TxY = Y F. Whence the claim. V4

2.4. Localization pairs. A localization pair B is an exact DG category By en-
dowed with a full subcategory By C Bi such that 7° By is an exact subcategory of
7° B, which is stable under shifts and closed under extensions. Then By identifies
with a full triangulated subcategory of By. This suffices for the localization B /By
to be well-defined (it is not necessary for By to be épaisse; the kernel of the quotient
functor B1 — Bi/Bo is the épaisse closure of By). By definition, the triangulated
category associated with the localization pair B is

TB:=B1/Bs.

For example, if A is an exact k-linear category, then the pair consisting of C®.A
and of its subcategory of acyclic complexes 1s a localization pair and the associated
triangulated category is the derived category of A.

Similarly, if A is a DG algebra, then dgfree A endowed with the zero subcategory
is a localization pair (which will also be denoted by dgfree A). The associated
triangulated category is equivalent to a full subcategory of the category per A of
perfect objects (=compact objects = small objects [19, 7.10]) in the derived category
DA. Moreover, each perfect object is a direct factor (in DA) of an object of
dgfree A (this follows from the proof of the theorem of Ravenel-Neeman [31], [29],
as explained in [18, 5.2]).

A DG k-module M is flat (resp. closed) if M @, N (resp. Homy (M, N)) is
acyclic for each (possibly unbounded) acyclic DG k-module N. A DG category A
is flat if A(A, B) is a flat DG k-module for all A, B € A. A localization pair B is
flat if By, and hence By, are flat DG categories. Similarly, one defines the notion of
closed DG category and closed localization pair.
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The mized complex associated with a flat localization pair B is the cone
C(B) := Cone(C'(By) — C(B1)).
The definition of C'(B) for an arbitrary localization pair B will be given in (3.9).

If B and B’ are localization pairs, an eract functor F : B — B is an exact functor
B} — By taking Bf to By. Such a functor induces a triangulated functor

TB = TB

and a morphism C(F) : C(B') — C(B) in the category of mixed complexes (and
therefore in the mixed derived category).

Theorem. a) If A is a DG algebra over k, there is a canonical isomorphism
C(A) = C(dgfree A) in the mized derived category.

b) If FF: B' — B is an exact functor between localization pairs such that F in-
duces an equivalence up to factors TB' — TB, then I induces an isomorphism
C(B') = C(B) in the mized derived category.

c) If we have exact functors between localization pairs

BLBE 5"
such that the sequence of triangulated categories
0=TB -TB—=TB"—=0

1s exact up to factors, then there is a canonical triangle

o) K o) LS cwry 29D o

i the mixed derived category.
The theorem will be proved in (4.11).

2.5. Example: Dual numbers. Let k be a field and A = k[¢]/(¢?). Using the
above theorem we will compute C'(mod A). Consider the following categories: the
category B of bounded complexes over mod A; the category B’ of right bounded
complexes over mod A which are acyclic in all degrees < 0; the smallest full subcat-
egory B" of B’ closed under shifts and degreewise split extensions and containing
the complex

P=(AS5AS5A4A50=0---),

where the last component A is in degree 0. Then B gives rise to a localization
pair if we consider i1t together with its full subcategory of acyclic complexes and
similarly for B’ and B”. We denote these localization pairs by the same symbols.
Then clearly the inclusion functors

B—B « B

induce equivalences in the associated triangulated categories. Finally, we have
TB" & B” and this category is generated by P as a triangulated category. Now
consider B = k[T] as a differential graded algebra with differential zero where the
generator T' is of (cohomological) degree 1. Then we have a morphism of DG

algebras
¢: B —Homy (P, P)

mapping 7 to the morphism P — P[1] which is the identity in all degrees except 0.
The morphism ¢ is in fact a quasi-isomorphism. Hence the functor @ — Q ®p P



20 BERNHARD KELLER

induces an equivalence from 7 (dgfree B) onto 7B”. Tt follows from theorem (2.4)
that we have isomorphisms

C(mod A) & C(B") & C(B).
in the mixed derived category. For example, we have H H,(mod A) = HH.(B) =

A® B as graded k-modules, where T is of (homological) degree —1 and ¢ of degree
0.

2.6. Example: Finite-dimensional algebras. Let k be a field and A a finite-
dimensional algebra over k. If A is of finite global dimension, we have C'(mod 4) =
C(A) by example (1.6). In the general case, let Sp,...S, be a system of represen-
tatives of the simple A-modules and P a projective resolution of the direct sum of
the S;. Put B = Hom 4 (P, P). Note that the homology of B is the Ext-algebra

@ EXtZ(SZ', Sj).
iJ

Then the argument of example (2.5) shows that we have an isomorphism
C(mod A) = C'(B)

in the mixed derived category. J. Rickard asks: Are there finite-dimensional alge-
bras A such that some H H, (mod A) or HC,, (mod A) is infinite-dimensional ?

2.7. Mayer-Vietoris squares and triangles. A triangle functor F : 7 — 7"
is a localization functor if it induces an equivalence T /ker F = T". A square of
triangle functors

S G.s//

3

7‘ > /7-//

1s a Mayer-Vietoris square if all four functors are localization functors and the
induced triangle functor ker G' — ker L is an equivalence.

Theorem. Let

B/ —F> B —G> B//
HI { \H {HII
K L

¢ —C — "

be a diagram of localization pairs and exact functors such that in the associated
triangulated categories, the lines induce exact sequences and the right hand square
induces a Mayer-Vietoris square. Then if § denotes the composition

9(K,L) cHHNT™ c(n]

c(e”) (e (B[] C(B)[1]
(which is well defined in the mired derived category), the sequence
cB) S cB)ece) S oe S o,
where

o= [ ~C(G) ] L g=[Cw"), (L),
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is a triangle (the Mayer-Vietoris triangle associated with the square).

The theorem will be proved in (4.11). The corresponding Mayer-Vietoris se-
quence in homology can of course be derived from the homology sequence obtained
from the localization theorem. However, the existence of a functorial Mayer-Vietoris
triangle does not follow from the existence of triangles for localizations.

3. HoMOoTOPY AND LOCALIZATION

3.1. Homotopy between morphisms of DG algebras. Let k be a commutative
ring. Let a, 8: A — B be morphisms of DG algebras. An «-3-derivation of degree
7 1s a morphism A : A — B of graded k-modules which is homogeneous of degree
r and satisfies

Afzy) = Ax)B(y) + (=1)""a(z)A(y)
for all z € A”, y € A. For example, the map o — 3 is an «-f-derivation of degree
0. An homotopy from « to [ is an «a-F-derivation h of degree —1 such that

a—fB=dgh+ hdy.

The morphism « is homotopic to 3 if there 1s an homotopy from «a to §. Clearly
homotopy is a bifunctorial relation on the set of morphisms from A to B. An
homotopy equivalence is a morphism which becomes invertible after quotienting the
category of DG algebras by the equivalence relation generated by the homotopy
relation.

For a given DG algebra B, there is a ‘universal’ pair of homotopic morphisms
p1,p2 : B — B constructed as follows: Let Y = B[—1] viewed as a B-B-bimodule.
Note that the right action of B on Y is right B-multiplication whereas the left
action is twisted left B-multiplication:

vy =(-1)Mry, ye B" x € BY
and that dpj_1] = —dp. Let B’ be the algebra of upper triangular matrices

(0 5)

View B’ as a subalgebra of the graded endomorphism algebra of B & B[1] and as
such, endow it with the differential given by the supercommutator with

(0 %)

Then B’ is a DG algebra (it is a subalgebra of the graded endomorphism algebra
of the mapping cone over the identity of B). The two diagonal projections py,ps :
B’ — B are DG algebra morphisms and the map

. by
ho(o b2)|—>y

1s an homotopy from p; to ps. It is universal in the sense that if 4 is an homotopy
from a to 8 : A — B, then the map

e (00 50)

i1s a morphism of DG algebras such that pyy = «, p2y = § and hyy = h and clearly
it 1s the unique morphism with these properties.
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Note that both p; are homotopy equivalences of the underlying chain complexes

and that the diagonal map
b 0
d:b— ( 0 b )

is a DG algebra morphism satisfying p1 6 = 15 = p2 4.

Hence if F' is a functor defined on the category of DG algebras which inverts
morphisms inducing homotopy equivalences of the underlying chain complexes, then
F(8) is invertible and we have F'(p;) = F(p2) and hence F(«) = F(5) for each pair
of homotopic morphisms. In particular, homotopic morphisms A — B induce the
same morphism C(A) — C(B) in the mixed derived category. We leave it to the
reader as an exercise to provide a direct proof of this fact.

3.2. Resolutions of DG algebras. Let k be a commutative ring. Let A be a DG
k-algebra. Recall that by definition, A is flat if A ®y N is acyclic for each (possibly
unbounded) acyclic DG k-module N. This is the case for example if A is closed as
a DG k-module, i.e. Homy (A, N) is acyclic for each acyclic complex N (cf. [19,
7.5]).

A flat (resp. closed) resolution of A is a morphism of DG algebras ¢ : B = A
inducing an isomorphism in homology and such that B is flat (resp. closed) as a
DG k-module. Part a) of the following lemma is well-known for the case of DG
algebras concentrated in negative degrees [23, 5.3.6].

Using part a) of the lemma we define the mized compler associated with A to
be C'(A) = C'(B) where ¢ : B — A is any flat resolution. Thanks to parts b) and
c) of the lemma, C'(A) is well-defined up to canonical isomorphism in DMz and
functorial with respect to morphisms of DG algebras. This definition can easily be
generalized from DG algebras to small DG categories (Left to the reader. Homotopy
1s defined only between functors which coincide on objects, and quasi-isomorphisms
between small DG k-categories are required to induce bijections between objects).

Note that the lemma shows that in the category of DG algebras and homo-
topy classes of morphisms, the class of quasi-isomorphisms admits a calculus of
right fractions [8] and that the corresponding localization is equivalent to its full
subcategory whose objects are the closed DG algebras.

Lemma. a) There is a closed (hence flat) resolution ¢ : B — A.
b) FEach diagram of DG algebras

Sy

©

f
Al —— A
where ¢ is a quasi-isomorphism, can be completed to a square commutative
up to homotopy
f
B — B

i

[ ®

A/—f"A

where @' is a quasi-isomorphism.
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c) Ifo,: A— A and v : A" = A" are morphisms of DG algebras such that
~ 1s a quasi-isomorphism and ya s homotopic to vf3, then there is a closed
resolution ¢ : B — A such that ap is homotopic to [e.

Proof. a) We endow the category of DG k-modules with the following exact struc-
ture (cf. [24, XTI, 15]): A sequence

0=+K—=L—-+M=0
1s a conflation iff the sequences
0->K'—> L —-S>M'->0
and 0 > H"K - H"L — H"M =0

are exact for all n € Z. Then the class F formed by all direct sums of shifted copies
of the DG modules (=complexes)

...0—=k—=0... and ...0—>ki>k—>0...

contains enough projectives. Choose a deflation pg : Vj — A with Vy € F. Let By =
T(Vy) be the DG tensor algebra on V5 and ¢ : By — A the morphism extending
po. Clearly ¢q : By — A 1s still a deflation. Choose a morphism p; : Vi — By with
V1 € F which induces a deflation onto the kernel of ¢y. Let By be the DG algebra
obtained by endowing the free product By i T'(V1[1]) with the unique differential
whose restriction to By is the differential of By and whose restriction to Vi[1] is
—dy, +p1. Let ¢1 : By — A be the unique morphism of algebras whose restriction
to By is ¢ and whose restriction to V1[1] vanishes. Then ¢ is compatible with the
differential. Continuing in this way we obtain a direct system B,, p € N, of DG
algebras and a compatible family of morphisms ¢, : B, = A. We let B = h%me
and take ¢ : B — A to be the morphism induced by the ¢,. Then B is closed:
indeed, each B, is closed and B fits into the Milnor triangle

P B, = P B, = B~ (6P B[]

PEN gEN peEN

where ¢ has the components

B, 2% B, @ By 5 DB, , 1 = incl.
gEN
Clearly ¢ is a deflation. It is easy to see that it induces in fact an isomorphism in
homology.

b) Choose a surjective morphism p : V' — A with contractible V' € F. Then
the inclusion B — B #; T'(V) is an homotopy equivalence and the morphism B *j,
T(V) — A defined by ¢ and p is a surjective resolution. Therefore we may and will
assume that ¢ : B — A is surjective. Form the pullback diagram

B 1 n

i

[ ®

prpm=—y
Then clearly ¢’ is a quasi-isomorphism.
c) We may and will assume that v : A” — A” is a deflation (cf. the proof
of b). Let m : A — A” be a homotopy from ya to v3. As in the proof of a),
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we choose a deflation py : Vo — A with Vj € F, we let By = T(Vy) and take
wo : By — A to be the morphism induced by pg. Since v is a deflation, the
morphism mpg equals yh{ for some hj : Vy — A’ which is homogeneous of degree
—1. By construction, the composition of apy — Bpo — d by — h{y d with 5 vanishes.
Since ker# is acyclic and V; € F, there is an hf : Vo — kery C A’ such that
apg — fBpg — dhy — hyd = dhi + hiyd. We put by = hj + hf and ay = apy,
Ba = Bypo. We extend hg to an ag-Fyg-derivation hg : By — A’ of degree —1. Now
we choose a morphism py : Vi — By with V4 in F inducing a deflation onto ker .
We define By, ¢1, a1 and §; as in the proof of a). We will now construct an
homotopy h; between a; and ;. Note first that we have

0 = (Ozo —60) op1 = dh0p1 —|—h0dp1 = d(hopl) + (hopl)d

So hgpy defines a morphism of complexes V;[1] — A’. We claim that its image is
contained in ker y. Indeed, we have vhy = myy since both are vag-vyGy-derivations
of degree —1 which coincide on V. Therefore, we have vhopy = mypop; = 0, as
we claimed. Since Vi belongs to F and kery is acyclic, we can choose a graded
morphism A : V1[1] — A" of degree —1 such that d h} + ki dy,[1) = —hop1. We now
define hy : By x; T(V1[1]) to be the unique ay-f1-derivation of degree —1 which
restricts to hg on By and to A} on Vi[1]. Tt is then easy to check that oy — 8; and
d hy + hy d coincide on By and Vi[1] and hence on By = By, T(V1[1]).
Continuing in this way, we obtain a direct system as in the proof of a), and in
addition we have a compatible family of graded morphisms h, of degree —1. We
define B = h%me and let ¢ : B — A be the morphism induced by the ¢,. Then
the morphism induced by the h, yields a homotopy between a¢ and Fe. V4

3.3. Homotopy between functors. Let k be a commutative ring and A, B small
exact DG categories. Let F, G : A — B be DG functors.

An a-homotopy from F to G is the datum of a morphism of DG functors « :
F — G such that oA is an inflation of Z° B which becomes invertible in H°B for
all A € A.

A b-homotopy from F to G is the datum of

e a morphism A : FA — GA of Z° B which becomes invertible in H°J3 for all

A € A (but which will not be functorial in A, in general)
e a morphism of graded k-modules homogeneous of degree —1

h="h(A,B): A(A, B) - B(FA,GB)
for all A, B € A such that we have

(nB)(Ff) = (Gf)(nA) = d(h(f))+ h(d(f))
h(fg) = h(f)(Fg)+ (=1)"(Gf)h(g)

for all composable morphisms f, g of A, where f is of degree n.

A e-homotopy from F to G is an isomorphism from F to GG in Rep(A, B).

Let # = a,b or ¢. We write ~, for the smallest equivalence relation containing
all pairs (F, G) such that there is an z-homotopy from F to (i. Using statement a)
of the following lemma, we define F' to be homotopic to G if we have F' ~, G for
x=a,b,c.

Lemma. a) The relations ~g, ~p and ~. coincide.
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b) There is a universal pair Py, Py : B' = B of a-homotopic DG functors (i.e. for
each pair F, G : A — B of a-homotopic functors there is a functor ® : A — B
such that Py ® = I, P, ® = (G ). Moreover, there is a DG functor D : B — B’
such that Py D = 13 = P> D and D induces an equivalence in the associated
stable categories and an isomorphism of DG k-modules

B(A,B) — B (DA, DB)
fordl A,B € B.

Proof. a)If a : F' — G is an a-homotopy, then by putting nA = a4 and h(A4,B) =0
for all A, B € A we obtain a b-homotopy. Now suppose that we have an arbitrary
b-homotopy (1, k) from F to G. Consider the sequences

GA—-TA— (FA)1],Ac A

where JA = Cone (nA). By the assumption on nA, the term IA is a zero object
of B. We will now make A — IA into a DG functor A — B such that the above
sequence becomes a sequence of DG functors. This will clearly imply that F' is
isomorphic to G in Rep (A, B). To define the morphisms

A(A,B) = B(IA, IB)
we identify B (I A, IB) with the module of matrices

B(GA,GB)  B(FA[l],GB) ] - [ B(GA,GB) B(FA GB)[-1]
B(GA, FB[1]) B(FA[],FB[1]) B(GA,FB[1]) B(FA,FB)

Then the morphism A (A, B) = B(IA, IB) is given by

el

It is easy to check that this defines a morphism of complexes and a functor which
1s moreover compatible with the above sequences.

Finally, suppose that F is isomorphic to GG in Rep (A, B). Then we apply lemma
3.5 below to B = Fun (A, B) and to the class ¥ of morphisms ¢ such that ¢A
is invertible in B for all A € A. We conclude that there is a finite sequence
connecting F' to GG and consisting of inflations of Fun (A, B) which become invertible
in Rep (A, B). This clearly implies F' ~, G.

b) Let B’ be the full exact DG subcategory of Fil B (cf. example 2.2 f) whose
objects are the inflations ¢ : By — Bs which become invertible in 5. The DG
functors

Pi:B =B , i—Bj,j=12,
D:B—B , B~ (BYB).
satisfy the claim. Let a be an a-homotopy from F' to G. Then clearly
d: A B, Am (FAX GA)

satisfies P, ® = F, P, ® = 5. V4
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3.4. Homotopy invariance (exact DG categories). Let A and B be small
exact DG categories and /' : A — B a DG functor. We say that /' is a resolution
if F' induces an equivalence A — B. It is a pure resolution if moreover I induces a
quasi-isomorphism

A(AB)@V = B(FAFB)@V

for each DG k-module V', and all A, B € B. Note that if F' is a resolution and A,
B are flat, then F' is automatically a pure resolution.

Lemma. a) If F is a pure resolution, then I induces an isomorphism C(A) —
C(B) in DMiz .

b) Two homotopic DG functors A — B induce the same morphism C(A) —
C(B) in DMiz .

Proof. a) Let A’ be the full DG category of B formed by the objects FA, A € A.

The assumption that F' induces a quasi-isomorphism
AA,B)@V - B(FAFB)@V

for each DG k-module V| and all A/B € B implies that F induces a quasi-
isomorphism C'(A) — C(A’). The DG category version of lemma 1.2 of [19] implies
that the inclusion A’ C B induces a quasi-isomorphism C'(A") — C(B).

b) This follows from a) and lemma 3.3 b). 4

3.5. Isomorphisms in Localizations. If C is a small category, we denote by Iso C
the category with the same objects as C and whose morphisms are the isomorphisms
of C and by Quot C the localization of C at the class of all morphisms.

Let £ be a Frobenius category and ¥ a multiplicative system [34] in £. Let Ty,
denote the category whose objects are those of £ and whose morphisms are the
inflations of & which become invertible in £[%71].

Lemma. The canonical functor Quot (ZIs) — Iso (E£[X71]) is an isomorphism of
categories.

Proof. Let Es, be the category whose objects are those of £ and whose morphisms
are those of £ which become invertible in £[X7!]. Then, since ¥ admits a calculus
of fractions, the canonical functor Quot (£y;) — Iso (£[X71]) is an isomorphism. So
it remains to be proved that the canonical functor Quot (Zg) — Quot (£5) is an
isomorphism. Let € denote the class of morphisms of 7y, which become invertible
in £. Clearly Quot (Zs) identifies with Quot (Zs[Q271]). So it is enough to prove
that the canonical functor F' : Zs[Q7!] — £y is an isomorphism. We will construct
an inverse (G to this functor.

Let Q : Iy — Tx[Q~!] be the quotient functor. Let f : X — Y be a morphism
of £5.. Choose an inflation 7 : X — I with injective /. Consider the morphisms

[{]LX%Y@Iam [%ﬂ:X%Y@L

Define
1y

cn=a| 'y ea 1)

?

Let us show that this does not depend on the choice of the inflation 7. Indeed, let
i’ : X — I’ be another inflation with injective I’. The claim will follow once we
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prove that the following diagram becomes commutative after applying @

YalI

A [e1 e2]

i T
A
»
Yol
We have to prove that
/ / /
QU « D=0 « )=Q(] 0 |)
0 i 7

To show the first equality, choose j : I — I' such that ¢ = ji. Then [f i ¢'] is the
composition of [f i 0]* followed by
_ 1; 0
s=1y & [ ] 15 :| .
The functor ) maps s to the identity of Y @I 1’ since its composition with ¢y is the
identity and @Q(¢y) is invertible. The second equality is proved similarly. Now let

us show that G(7f) = G(7)G(f). Indeed, this now follows from the commutativity
of the diagram

x YT v garay
Ly U
v lg 4] Za
Lz
Z

where j : Y — J 1s an inflation with injective J and

g 0 1, 0
uv=| 0 1y and v = 0 0
j 0 0 1,

The fact that G(1x) = 1gx follows from G(1x) = G(1%) = G(1x)? because
G(1x) is invertible (it is a composition of two isomorphisms of £.). This means
that we have
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iff: X —>Yandi: X — [isan inflation with injective /. We will use this to show
that G(f) = Q(f) if f is an inflation which becomes invertible in £[¥7!]. Indeed,

in this case, we have ¢ = jf for some j : Y — I. Therefore

HREEE

and

which implies that
cn=al e L =am

If follows that G is full. But clearly, the composition F'G' is the identity of £5;.
Thus, F' and G are inverse isomorphisms. V4

3.6. Resolutions of exact DG categories. Let k& be a commutative ring and
A a small exact DG category. A DG functor F' : B — A is a flat (resp. closed)
resolution if it is a resolution (3.4) and B is a flat (resp. closed) exact DG category
(2.4).

By definition, the mized complex associated with A is C'(B), where B — A is a
flat resolution. By 3.4 and the following lemma, this is well-defined up to canonical
isomorphism in DMix and functorial with respect to A.

Lemma. a) FEach exact DG category A admits a closed resolution B — A.
b) Each diagram of exact DG categories and DG functors

B

\F
A =S4

where I 1s a resolution, may be completed to a square

B~ B

F'{ \F
A~ A

which is commutative up to homotopy and where I’ is a resolution.

c) Suppose that KL : A = A" are DG functors and there is a DG functor
G: A — A" inducing a stable equivalence A” = A" and such that GK is
homotopic to GL. Then there is a closed resolution F : B — A such that K I’
1s homotopic to LF.

Proof. a) We imitate the proof of (3.2 a): We choose a deflation
po = po(A, B) : Vo (A, B) > A(A, B)
with Vo(A, B) € F for all A, B € A. We let By = T'(Vy) be the category with the

same objects as A and whose morphisms A — B are parametrized by the direct
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sum of the
Vo (Bn-1,B) @ Vo (Bp—2,Bn-1) ® ...@ Vo (4, B1)

where By, ..., B,_1 runs through all finite sequences of objects of A, n > 0. We
let Fy : By — A be the functor extending pg etc.

This construction yields a DG functor F’ : B’ — A which is bijective on objects
and induces quasi-isomorphisms

B' (A, B) = A(F'A, F'B)

for all A, B € B'. The DG category B’ is closed but will not be exact, in general.
We put B = dgfree B’ and let ' : B — A be the functor induced by F’ (cf. example
2.2 ¢).

b) In a first step, we will replace F' by a functor which induces deflations in
the morphism spaces and a surjection of the object sets. Indeed, let B’ be the full
subcategory of Fil /' (cf. example 2.2 ¢) formed by the pairs (B,i: FF'B — A) where
1 becomes invertible in B. Then the functors

B—B |, Bw(B,1:FB— FB)

B—=B , (Byi:FB— A)— B
are inverse to each other up to homotopy and the functor

F':B - A, (B,i: FB— A)— A

is surjective on objects. Using the method of he proof of (3.2 b) we can modify it
so as to induce deflations of the morphism spaces. Let us therefore assume that F
is surjective on objects and induces deflations of the morphism spaces. For each
object A’ of A’, we choose a preimage G'A’ of GA’ under F. Now let B’ be the
category with the same objects as A’ and whose morphism spaces are given by
pullback diagrams

B (A1, 4y) —— B (G145, G/ L)

Then B’ is an exact DG category and the obvious functors F' : B/ — A’ and
G’ : B' — B yield a commutative diagram as in the claim.

¢) As in the proof of b) we may and will assume that K induces surjections of the
morphism sets and deflations in the morphism spaces. Using 3.3 we may assume
that we have a b-homotopy (1, k) : GK — GL.

For all A, B € A, choose a deflation py : V5(A4, B) = A (A, B) and let By = T(V)
and Fy : By — A be the functor extending py as in the proof of a).

Bo=T(Vo) B A &4 4 & 47
For each A € By, choose a morphism
nA : KIFgA — LFyA

of Z° A such that G(7A) = nA (this is possible, since G induces deflations in the
morphism spaces). Let A, B € By. Since GG induces a deflation, there is a morphism
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hf such that the following diagram becomes commutative

i

Vo(A,B) — + A' (KA, LB)

A(A, B) -~ A" (GKA,GLB).
Then the morphism
Vo (A,B) - A" (KA, LB), aw (7B)(Ka) — (La)(n4) — d(hj(a)) — hy(d(a))

factors through the acyclic subcomplex ker G C A’ (KA, LB). Since V4 (A, B)
belongs to F, it equals d h{j + h{ d for some h{ : Vu(A, B) = ker G C A’ (KA, LB).
We put hg = hjy + hy. We can then extend hg uniquely to By in such a way that
(7, ho) defines a b-homotopy from KFy to LFy. Now we construct By as in the
proof of a) by choosing morphisms p; : V} (4, B) — By (A, B) inducing deflations
onto the kernel of

By (A, B) = A(A, B)
and letting By = By #x T'(V1[1]). To extend hg to By we first note that we have
0=@B)(KFof) — (LFof)(7A) = d(ho(f)) + ho(d(f))

for f belonging to the kernel of F. So hgp; defines a morphism of complexes
Vi[l] = A’ (KA, LB). Moreover, its composition with G vanishes.

Vi (4, B) ker G
P

Bo (A, B) —2+ A/ (KA, LB)
Fy G

A(A, B) —— A" (GKA,GLB)
So it factors through ker G, which is acyclic, and since V;[1] belongs to F, we have
hop1 = d by + hydy,

for some morphism A} : Vi[1] —» A'(KA, LB) of degree —1. We can then define
a unique b-homotopy (1, k1) from KFy to LFy : By — A’ by requiring that hy
restricts to hg on By and to A} on Vi[1]. By iterating this construction we obtain a
direct system of DG categories B, and a compatible family of s-homotopies (n, ;)
from K F, to LF,. Passage to the limit yields the result. V4

3.7. Morphisms of mixed complexes. Let MorMixz be the category of mor-
phisms C7 — (5 of mixed complexes. If we identify a mixed complex with a
DG A-module as in (1.2), a morphism f : C; — C3 of mixed complexes may be
identified with the DG module Cy & C5 over the DG algebra

(6 4)



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 31

where €15 acts by (c1,¢2) — (0, f(e1)). Using this identification we view MorMix
as a category of DG modules and we define DMorMix to be the associated de-
rived category. Note that a morphism of DMorMiz is invertible iff both of its
components are invertible in DMz .

3.8. Homotopy invariance (localization pairs). Let k be a commutative ring.
Let F,G : B — B’ be exact functors between localization pairs. By definition, F' is
homotopic to G if the underlying exact functors By — B} are homotopic (3.3). The
functor F' is a pure (resp. closed, resp. flat) resolution if this holds for the induced
functors By — B} and By — Bj.

For a localization pair B = (By, B1), the object Cm(B) € DMorMiz is defined

to be the morphism
of Miz . This is clearly functorial in B.

Lemma. a) IfF is a pure resolution, then F induces an isomorphism Cm(B) —
Cm(B') in DMorMizx .

b) If F,G : B = B’ are homotopic, they induce the same morphism Cm(B) —
Cm(B') in DMorMizx .

Proof. Statement a) follows from (3.4) and the fact that a morphism of DMor Mix
is invertible iff its two components are invertible.

b) Suppose that we have an a-homotopy between F : By — B} and I’ : B} —
B. Then we do not necessarily have F'(Bgy) C Bj. However, suppose that By is
saturated in By, i.e. the image of Bf in B} is closed under isomorphisms. Then we
do have F'(By) C B). Now for any B}, C B}, there is a saturation sat($8}) C B} and
by a), the inclusion yields an isomorphism C'm(Bg, By) = Cm(sat(By), B}). So we
may assume that Bj is saturated and then the claim is proved by a variant of the

proof of (3.4 b). V4

3.9. Resolutions of localization pairs. If A = (Ag,.4;) is a localization pair,
a (flat resp. closed) resolution of A is a morphism of localization pairs B — A
such that By — A; and By — A are (flat resp. closed) resolutions of exact DG
categories.

Using part a) of the following lemma, for a localization pair A, we define the ob-
ject Cm(A) to be Cm(B), where B — A is a flat resolution. Thanks to 3.8 and the
lemma, this is well-defined up to canonical isomorphism in DMorMiz and func-
torial in A. The mized compler associated with A is defined to be Cone(C'm(A)).

If Ais a (not necessarily flat) exact category, the mixed complex of A is defined
to be the mixed complex associated with the localization pair Ac’A C CPA.

Lemma. a) For each localization pair A, there is a closed resolution F' : B — A.
b) FEach diagram of localization pairs

=

./4/ »>

=
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where F' is a resolution, may be completed to a square

B/LB

F’{ \F
G
A — A
where F' is a resolution and GF' is homotopic to FG'.

c) Suppose that K, L : A — A" are exact functors between localization pairs and
there is an eract functor G : A" — A" which is a resolution of A" and such
that GK is homotopic to GL. Then there is a resolution F : B — A such that
KF is homotopic to LF.

Proof. This is a straightforward consequence of lemmas 3.6 and 3.8. For example,
to prove a), we choose a flat resolution Iy : By — A; and let By be the preimage
of Ay under F;. V4

4. COMPLETION, COKERNELS

4.1. The categories M" and M. Let U be a universe containing an infinite set.
A category C is a U-category if it is small and the set C (X,Y") belongs to U for
all XY € C. It is U-small if the set of its morphisms belongs to U. It has U-
coproducts if each family (X;);er of objects of C indexed by a set I of U admits a
coproduct in C.

Fix k a commutative ring belonging to U. The ‘strict’ category M5,
objects the U-small exact DG categories. Its morphisms are the DG functors.

The homotopy category /\/lztp is obtained from M?¢,, by identifying homotopic DG

has as

functors. Finally, the category M? is obtained from /\/lztp by localization at the
class of DG functors inducing equivalences in the stable categories. In (3.6), we
have shown that this class admits a calculus of right fractions [8] and we have
constructed the cyclic functor

C: M= DMix | A C(A).

A triangulated category T is compactly U-generated if it is a U-category having
U-coproducts and admitting a family (X;)ier, I € U, of compact objects such that
T coincides with its smallest triangulated subcategory containing all X; and stable
under U-coproducts. In this case, the family (X;) is a family of U-generators of
7. Such a category is Karoubian (as shown in [2]), i.e. idempotents split in 7.

Let A be a U-small DG category. Let AT be the DG category of all DG modules
P such that P is closed and P(A) belongs to U for all A € A. Then A" is an exact
DG category and the associated stable category AT is a compactly U-generated
triangulated category. This results by inspection of the proofs from section 3 of
[18].

The assignment A + AT is functorial in the following sense: Let A, B be U-
small DG categories and F' : A — B a DG functor. Then the tensor product by
the bimodule (A, B) + B(B, F A) yields an induced functor F* : A* — Bt well-
defined up to canonical isomorphism. The associated functor A* — BT preserves
compactness and commutes with arbitrary coproducts. If F' induces an equivalence
in the stable categories, then so does F'T.
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We denote by My, the category whose objects are the exact DG U-categories
A such that A is compactly U-generated. The morphisms of M, are DG functors
F: A — B such that the induced functor A — B preserves compactness and
commutes with arbitrary coproducts. The category My, is obtained from M,
by identifying homotopic DG functors. Finally, the category M is the localization
of Mpyp at the class of DG functors inducing equivalences in the stable categories.
As for MP, this class admits a calculus of right fractions by (3.6).

An exact DG category A is stably Karoubian if A is Karoubian. If 4 is a DG
category in M?, then AT is stably Karoubian since A% is compactly U-generated.
Clearly, there is a minimal Karoubian triangulated subcategory A, of AT con-
taining A. If we let A%, be the preimage of Ay, in AT, then the stable category
of A%, is clearly isomorphic to Ak .. However, A% .. will not be U-small in gen-
eral. Therefore, define Agg4, to be a minimal full subcategory of A% . containing

A such that

a) Agar 18 closed under shifts and mapping cones,
b) for each A € Ak, and each idempotent e of AT (A, A), A4 contains objects
A’ and A” which in AT become isomorphic to the kernel and the image of e.

Then clearly Agq, is U-small and its stable category is still equivalent to Ag,, .
In particular, it is stably Karoubian. By the theorem of Neeman-Ravenel (4.12),
Ak qr is In fact equivalent to the subcategory of compact objects of AT.

Let MY be the full subcategory of M® whose objects are the stably Karoubian
categories.

Proposition. The functor
M M, A AT

admits a fully faithful right adjoint B — B¢. The functors A v+ AT and B — B¢
induce quasi-inverse equivalences M%M = M.

The proposition shows that F+ : AT — Bt is invertible in M iff F is an
equivalence up to factors. For A in M?, we have a canonical isomorphism Ag ., =
(A1), In particular, we have an equivalence up to factors

A (AT)e.

For B € M, we define the mixed complex
C(B) .= C(B°).

This means that C'(B) = C(S) for some U-small stably Karoubian DG subcategory
S C B containing a set of compact U-generators for B. Since for A € MP?, the
canonical morphism A — Ag,, induces an isomorphism C'(A) — C(Agqr), we
have an isomorphism

C(A) = C(AT)
which is functorial in A4 € M.
Proof of the Proposition. We construct the right adjoint B — B¢. Let B be an
object of M. Consider the set Cp(B) of stably Karoubian exact DG subcategories

R of B such that R is U-small and contains a family of U-generators for 5. The set
Cp(B) is non-empty and if R, R’ belong to C'p(B) there is R” € Cp(B) containing
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both R and R'. By the theorem of Neeman-Ravenel (4.12), the inclusion functors
then yield equivalences

R =R &R

We put B¢ = R for some R € Cp(B). This is independent of the choice of R up
to canonical isomorphism. Now let F': By — B2 be a functor such that F': B —
B> preserves compactness and commutes with arbitrary coproducts. We choose
R1 € Cp(By) arbitrarily and Ry € Cp(B2) such that FRy; C Ra. This yields a
well-defined morphism F¢ : Bf — B§ of M and it is easy to check that B — B¢
is a functor. We will now construct a natural transformation B — B°T. By (3.6),
we may and will assume that B (and hence B =R C B) is a closed DG category.
Let I be the R-R-bimodule (X,Y) — R (X,Y) and I — I a closed resolution over
R ®R such that f(X, Y) e Uforall X, Y € R. Since R is closed, the DG module
M @r [ is closed for each R-module M such that M(X) is a closed DG k-module
for all X € R. In particular, we have a well-defined DG functor

B—RY, B—B(?,B)or I

The associated functor in the stable categories commutes with arbitrary coproducts
and induces an equivalence of R onto its image in RT. So this functor is indeed an
equivalence B — RT. If F': By — Bs is a DG functor as above, then we have to
show that the diagram

B — 2 B,

(F)*

RT Ry

commutes in M. We will even show that it commutes up to homotopy. Indeed
with the obvious notations, the canonical morphism Is — I yields an isomorphism

B1 (VaX) R, fl R, Ro (_a FV) ®R, fz - Bl(VaX) R, fl R, R2(_a FV)
of R;’, for each X € B;. Now consider the composition

B1 (V’X) R, fl R, Ro (_aFr?) ®R, fz = B (VaX) R, Ro (_aFr?) QR fz
— Ba(—, FX)®g, I,

where the first morphism is induced by the canonical morphism I, = I, and the
second by the canonical morphism

Bl (V,X) ®R2 (—,Fr?) —)Bz (—,FX)

The above composition is clearly invertible in R;’ for X € R1. By infinite dévissage,
this suffices to conclude that it is an isomorphism for arbitrary X € B.

Finally, for A € Mga,, we have a canonical isomorphism A4 — (AT)¢ in M.
Indeed, we can take for R € C'p(AT) the image of the Yoneda embedding A +
A (7, A). This is clearly natural in A € Mgg,. V4
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4.2. Exact sequences in M’ and M. Let
AL S
be a sequence of M.
Lemma. The induced sequence
0> AT 5 BT 5 CT >0
15 exact in M if and only if the sequence of triangulated categories
0—-A—-B—-C—0
1s exact up to factors.
Proof. By the theorem of Neeman-Ravenel (4.12), the sequence
0> AT 5 BT 5 CT >0

1s exact iff the subcategories of compact objects form a sequence which is exact up to
factors. Now we know that the subcategory of compact objects of At is equivalent
to Ag 4. Clearly, exactness up to factors is preserved by passage between A4 and

Arar. The claim follows. Vv

4.3. The categories £’ and £. This is a relative version of (4.1). Let £%,, denote
the category whose objects are the localization pairs Ay C A; with U-small A;.
Morphisms are morphisms of localization pairs. The category Eztp is obtained
by identifying homotopic morhisms and the category £° is obtained from Eth by
localization at the class of morphisms ' : A — B inducing equivalences A; = B;,
i=20,1. In (3.9), we have shown that this class admits a calculus of right fractions

and we have constructed the functor
Cm: L° — DMorMiz | A= Cm(A).

Let L be the category whose objects are pairs A : Ag C Ay of exact DG
categories belonging to M such that Ag is saturated, i.e. its image in 4, is closed
under isomorphism. By definition the morphisms A — A’ of L are DG functors
F: Ay — A} of My, such that F Ay C Aj. The category Ly is obtained from
Lg¢r by identifying homotopic functors. The category £ is deduced from Ly, by
localizing at the class of functors inducing equivalences in the associated stable
categories. This class admits a calculus of right fractions by lemma 3.9.

For a localization pair A = (Ao, A1), we let AT € £ be the pair consisting of
AT and the saturation of the image of Al in Af. This yields a functor £* — L.

A pair A = (Ao, A1) of L is stably Karoubian if both Ay and A; are stably
Karoubian. In analogy with (4.1), one can construct a canonical morphism A —
Afcar to astably Karoubian pair Aga,. The canonical morphism AT — (A4 )t is
an isomorphism. The following proposition now shows that A4 — Ak, is universal
among the morphisms from A to an object of £4 ., the full subcategory of £°
whose objects are the stable Karoubian localization pairs.

Proposition. The functor
Lr—L, Ao AT

induces an equivalence L4, = L.
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The proof of the proposition is a variation on the proof of (4.1). Let B — B¢
denote an quasi-inverse functor. For B € £, we define the object

C'm(B) := Cm(B°).

This means that Cm(B) = Cm(S) for a localization pair (Sp, S1) such that S; C B;
is a U-small stably Karoubian DG subcategory containing a set of compact U-
generators for By, i = 1,2. As in (4.1), we have an isomorphism

Cm(A) = Cm(AT)

which is functorial in A € £°.

4.4. Exact sequences of M. As in (4.1) let U be a universe containing an
infinite set and k& a commutative ring in U. Let the sequence

0sALBS S0

of M, be ezxact, 1.e. the following conditions hold

a) We have GF = 0.

b) The functor F' admits a right adjoint DG functor F, such that the adjunction
morphism 14 — F,F is invertible.

c¢) The functor G admits a right adjoint DG functor G, such that the adjunction
morphism GG, — 1¢ is invertible.

d) For each B € B, the sequence

FF,B— B— G,GB

1s a conflation of B.

Note that the adjoint functors F, and G, are not required to be morphisms of
M. In general, they will induce functors in the stable categories which do not
preserve compactness. However, they commute with arbitrary coproducts by the
following lemma.

Lemma. Let 8§ be a compactly generated triangulated category, T a triangulated
category with arbitrary coproducts and F : 8 — T a triangle functor preserving
compactness and commuting with arbitrary coproducts. If F, s right adjoint to F,
then F, commutes with arbitrary coproducts. Moreover I detects compactness, 1.e.
an object X of 8§ is compact iff so s FX.

Proof. Let A € § be small and B;, ¢« € I, a family of 7 with I € U. Using the
compactness of F'A and A we obtain the following chain of isomorphisms

SAF(IB) =T EFAILB) = [17(FAB) =TT (A F,B)
el el i€l i€l
= SA ] FB).
i€l
Since § is compactly generated, it follows that F, commutes with coproducts.

The second assertion 1s immediate from the faithfulness of F and the fact that it
commutes with arbitrary coproducts. V4
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4.5. Exact sequences of My;,. By definition, an eract sequence of My is a
sequence satisfying the hypothesis of part a) of the following lemma. Note that
each exact sequence of M, yields an exact sequence of M.

Lemma. a) Let A BB % bea sequence of My, such that the induced
sequence of triangulated categories
0—-A -8B —-C—0
1s exact. Then there is an exact sequence
0oALBEco0

of Myir and a commutative diagram of My

A B c

]

./4/ »> B/ »> C/

such that the vertical arrows induce equivalences in the associated stable cat-
eqories.
b) Let A’ L B bea morphism of My, inducing a fully faithful functor A’ — B'.
Then there is an exact sequence (F',G') of Mpp.
Proof. a) The proof is the one of [19, 6.1]. For completeness, we give the construc-
tion: Let A = A’ and let B be the full subcategory of Fil I/ whose objects are the
pairs (A,7: FYA — B) such that we have
B/ (FA, coki) =0

for all A € A. Let C be the subcategory of B whose objects are the pairs with
A = 0. We have the functors

A—=B , A (A1:F'A— F'A)
B—=¢C , (Aji:F'A— B)w~ (0,0 coki)
B—B , (Ai:FFA—-B)— B
cC—¢C , (0,0=0)=GC.
This construction also yields a proof of b). V4

4.6. Exact sequences of M. By definition, an exact sequence of M is a sequence
satisfying the hypothesis of part a) of the following

Theorem. a) Let A’ LB S ¢ bea sequence of M such that the induced
sequence of triangulated categories
0—-A -8B —-C—0

is exact. Then the morphism F' is a monomorphism of M, the morphism G’
1s an epimorphism and the diagram

./4/ > B/

|

0 —— ¢
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1s a pullback and a pushout in M.

b) Let A’ P B bea morphism of M such that the induced functor A’ — B’ is
fully faithful. Then there is an exvact sequence (F',G') of M.

Proof. a) Since M is obtained from My, by localizing at a class admitting a
calculus of right fractions, and by lemma 4.5, we may assume that we have in fact
an exact sequence of My,

0ALBS coo.

Again by the calculus of right fractions, to prove that F' is a monomorphism and that
the above square is cartesian, it 1s enough to prove the corresponding assertions
in Mpip. Let X € M. Recall the category Fun(X,.A) from example 2.2 e).
Let fun(X,.A) denote the subcategory of functors H € Fun (X, .A) such that the
induced functor in the stable categories preserves compactness and commutes with
arbitrary coproducts. Denote by X the class of morphisms s of the stable category
of Fun (X, A) such that sX is invertible in A for all X € X'. Clearly this system is
compatible with the triangulated structure and if H isin fun (X', A) and s : H — H'
is a morphism of ¥ then H' belongs to fun (X, A). Let rep(X,.A) denote the
localization of the stable category of fun (X, .A) at the class of morphisms of ¥
between objects of fun (A, A4). By what we have just seen, rep (X', .A) identifies
with a full subcategory of Rep (&X',.A), the localization of the stable category of
Fun (X', A) at X. Consider the sequences

Fun (X, A) LN Fun(X, B) G, Fun (X, C)

fun (X, A) —— fun(X,B) —— fun (X,C),

The functors F and (F,), are a pair of adjoint functors, they are compatible with
Y. and the composition (Fp)* F, 18 1somorphic to the identity. Hence F, induces
a fully faithful functor Rep (X, .A) — Rep(X,B). Moreover F, takes rep (X,.A)
to rep(X, B). So it induces a fully faithful functor rep (X', A) — rep (X, B). Now
by definition, the morphisms from & to A of My, are the isomorphism classes
of functors in rep (X, .A). So the map induced by F on the sets of morphisms of
My 1s injective and F' is a monomorphism of My;,. Now suppose that we have
H € rep (X, B) such that GH = 0 in Mys,. Then by the triangles

FF,HX - HX - G,GHX - SFF,HX , X € X,

H becomes isomorphic to FF,H in rep (X, B). Since F detects compactness (4.4)
and F, commutes with arbitrary coproducts it follows that F,H belongs to the

categay rep (X, A). So the square of the assertion is a pullback.
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We will now show that G is an epimorphism of My, and that the square is a
pushout in My,,. Indeed, consider the sequences

Fun (C, ¥) —<+ Fun (B,.¥) —— Fun (A4, .)

fun (C, ) —Z—+ fun (B, X) — fun (A, X)

As above, we see that G* induces a fully faithful functor rep (C, ') — rep (B, X).
Now suppose that we have H : B — & such that HF' = 0 in Mpys,. Then as above
we see that H is isomorphic to HG,G in rep (B, X'). We claim that HG, belongs
to rep (C, X). Indeed, the functor induced by G, in the stable categories commutes
with arbitrary coproducts. Hence so does HG\,. Moreover, we know from the
theorem of Neeman-Ravenel (4.12) that the compact objects of C are direct factors
of objects G B, where B is compact in B. For such an object, HG,(GB) = HB is
compact by assumption. Whence the claim.

The fact that G is an epimorphism of M and that the square is a pushout in M
is now easily deduced from the calculus of fractions and lemma 4.5.

b) results from 4.5 b) by the calculus of fractions. 4

4.7. Comparison of £ and short exact sequences of M. Denote by Ex the
category of exact sequences of M. Let A = (Ap, A1) be an object of £. The
inclusion functor Ay — A, is fully faithful so that by (4.6) we have an exact
sequence

0—->Ag—= A =5 A =0

of M, where A, is unique up to unique isomorphism in M. We thus obtain a
functor

d:L— Ex.

On the other hand, suppose that

c 0 ALEBECcS0

is an exact sequence of M. We define ¥(g) to be the pair consisting of B and the
saturation of the image of F'A in B.

Lemma. The functors ® and ¥ are quasi-inverse equivalences.

Proof. Let Adm be the category of admissible monos of M i.e. of morphisms
F: A —= B of M such that the functor F : A — B is fully faithful. By (4.6), the

canonical functor Ex — Adm is an equivalence. So it is enough to show that
P - L — Adm, (./40,./41) — (./40 — ./41)

Is an equivalence whose quasi-inverse functor is ¥’ : Adm — £ defined as follows:
By definition the image of F': A — B under ¥ is the pair formed by B; = B and
the saturation By of the image of F'. Clearly we have ¥/®' = 1. On the other hand,
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we have a canonical morphism ®' ¥’ — 1 given for F' : A — B by the square
F

A

B

ncl

By — By
This morphism is clearly functorial and invertible in Adm. V4

4.8. Cokernels. Consider the functor
M Ex, A= (05 AS A).

By (4.6), this functor admits a left adjoint. By (4.7), it follows that the functor
I M— L, A— (Sat(0), A)

admits a left adjoint, where Sat(0) is the saturation of the zero subcategory, i.e. the
subcategory of injectives of A. We denote the left adjoint by I. If A = (Ag, A1)
is an object of L, we also write Ay /Ag for I A. Note that by definition, we have
an exact sequence

0—)./40—>./41 —)./41/./40—>0

of M.
Now suppose that A = Bt for a localization pair B = (By, B1). Put QtB =
I, BT. Then we have an exact sequence of M

0= B =Bf =QTB—=0
yielding an exact sequence of triangulated categories
0—Bf - Bf -QtB—-0
By the theorem of Neeman-Ravenel (4.12), if we pass to the subcategories of com-
pact objects, we obtain a sequence which is exact up to factors
0= B =B Q"B =0

Now for each object A of M?, the canonical functor 4 — At is an equivalence up
to factors (4.1). Hence we have a diagram of triangulated categories

0 Bl e B QB

0

0 By By B1/Bg 0.

The first two vertical functors are equivalences up to factors and hence (exercise)
so is the third. Recall that 78 = B /By by definition. So we have an equivalence
up to factors

TB—QtB°.
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By construction, this equivalence is functorial in B, up to isomorphism of triangu-
lated functors. In particular, if F' : B — B’ induces an equivalence up to factors
TB — THB’, then it induces an isomorphism of M

QTB— QB
by corollary 4.12 ¢) and if
BLBE 5"
yields a sequence
0=TB -TB—=TB"—=0

which is exact up to factors, then by corollary 4.12 b), the sequence (F,G) induces
an exact sequence

0—-QtB - QtB—-QtB" -0
of M.
4.9. Cokernels and Cones. If
0 ALBSCH0
is an exact sequence of M, we put, in the notations of (4.7),
Cm(e) == Cm(¥(e)).
For each object
X = (X1 = X2) € DMorMizx |
we define 0.X to be the connecting morphism of the canonical triangle
Xo L X, — Cone() 25 Xy[1].
Theorem. a) The square

L o, DMorMix

Iy { {Cone

¢ . DPMix

1s commutative up to natural isomorphism.
b) For each exact sequence € of M, there is a commutative diagram of DMix

Cm(e)q Cm(e)s — Cone(Cm(e))

c(c)
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whose vertical morphisms are invertible. This diagram is functorial i ¢. In
particular, if we define O¢ by the commutative square

Cone(Cm(e)) 2oty Cm(e)q

C(A) —Z— (A1

then we have a functorial triangle

C(A) = C(B) = C(C) B c(A)1].

Proof. For a pair (Ap, A1), we have the adjunction morphism ¢ : (Ag, A1) —
(Sat(0),.A;/Ag). We therefore obtain a natural morphism

Cone(Cm(Ag, A1) = Cone(Cm(Sat(0), A1/ Ag)) = C(A1/Ao).

We will show that the morphism w = Cone(Cm(p)) is invertible. This will show
a). By the equivalence £ = Ex, we may assume that we have an exact sequence

0sALBS S0

of My such that A, B and C are closed DG categories and and A; = B and
Ay = Sat(FA). Then the adjunction morphism is induced by the functor G and is
given by the square

Sat(FA) —— B

Sat(0) C

To compute the image of this morphism under Cone oC'm, we have to choose suit-
able U-small subcategories. In the notations of the proof of proposition 4.1, let

S € Cp(B) and R € Cp(A) such that FR C S§. Consider the square

C(FR) —— C(S)
c(G)

¢(0)

incl C(T)
If we interpret its rows as objects of DMorMaiz | it represents the image of the
adjunction morphism under the functor C'm. Now the functor F' is fully faithful, so
we have an isomorphism C(R) = C(FR). Hence we are reduced to showing that
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the square

o

represents a morphism of DMorMiz whose image under the Cone-functor is in-
vertible in DMz . This is proved in 4.13. The above argument also proves b). +/

4.10. Mayer-Vietoris-diagrams. Let

0 A B c 0
0 el 0

be a diagram of M whose rows are exact such that K is invertible. We use the
notations of (4.9).

Lemma. Ifé denotes the composition

ey = e LM ey = e,

the sequence
cB) 3 cEe)eCB) S o)

s a triangle of DMix .

Proof. We are given a morphism ¢ — ¢’ of exact sequences of M. It induces
amorphism Cm(e) — Cm(e’) of DMorMix whose first component Cm(e); —
Cm(e’)y is invertible. After replacing C'm(e) and C'm(e’) by isomorphic objects,
we may assume that the morphism is given by a morphism

X, — X!
0 1

of MorMiz , where i and 7’ are componentwise injective and f is a quasi-isomor-
phism. After replacing Xy — X3 by
X, = X, ®x, Xa

we may even assume that f is an isomorphism of Mz . Then we have a diagram
with exact rows in Miz. By passing to the associated triangles in DMix we
obtain the assertion. V4
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4.11. Proofs of theorems 2.4 and 2.7. Let B = (By, B1) a be localization pair.
We have a natural isomorphism C'm(B) = C'm(B%) by (4.3). This yields the first
isomorphism in

Cone(C'm(B)) = Cone(Cm(B1)) = C(I,BY) = C(QTB).

The second one is (4.9 a). Now theorem 2.4 follows from 4.8 and 4.9 b), and theorem
2.7 follows from 4.8 and 4.10.

4.12. The theorem of Neeman-Ravenel-Thomason-Trobaugh-Yao. Let §
be a triangulated category admitting arbitrary set-indexed coproducts. An object
X of 8 is compact if the functor Homg (X, 7) commutes with arbitrary coproducts.
The category & is compactly generated if it contains a set of compact objects C'
such that 7 coincides with its smallest triangulated subcategory containing C' and
stable under forming coproducts.

The following theorem is due to Neeman [29, 2.1]. His proof is based on ideas of
Ravenel [31]. Important special cases are due to Thomason-Trobaugh [32] and Yao

[39].

Theorem. Let R and S be compactly generated triangulated categories. Suppose
that R 1s a set of compact objects generating R. Let F': R = 8 be a fully faithful
functor commuting with arbitrary coproducts and such that F X is compact for each
X eR PutT=8/R.

The functors F': R — & and G : § — T preserve compactness. The natural
Junctor S¢/R® — T¢ is fully faithful and T¢ is the closure of ils image under
forming direct factors.

The theorem (and its proof) admit the following

Corollary.  a) Suppose that S is a triangulated category admitting arbitrary co-
products which is generated by a set R of compact objects. Then an object of
S s compact iff it 1s a direct factor of a finite extension of objects of R.
b) Suppose that R, S, and T are compactly generated triangulated categories.
Then a sequence

0=-R—-8—=T=0

of triangle functors preserving compactness and commuting with coproducts
15 exact iff the induced sequence

0=+R =8 =T°—=0
is exact up to factors (2.4).
c) Suppose that R and 8 are compactly generated triangulated categories. Then a
triangle functor R — S preserving compactness and commuting with arbitrary

coproducts 1s an equivalence iff it induces an equivalence up to factors R® —
8¢. This holds iff it induces an equivalence R = 8§°.

Proof of the Corollary. Part a) is lemma 2.2 of [29]. The necessity in b) follows from
the theorem. Now suppose that the second sequence is exact. Then R — & is fully
faithful by the principle of infinite dévissage (cf. for example Lemma 4.2 b) of [18]).
We then have to show that the canonical functor §/R — 7 is an equivalence. Now
by the theorem, we know that §¢/R¢ identifies with a factor-dense subcategory of
(§/R)¢. By the assumption, §¢/R° also identifies with a factor-dense subcategory
of T¢. Hence the functor (R/S)° — T°¢ is an equivalence onto a factor-dense
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subcategory. By the principle of infinite dévissage, it follows that R/S — T is
an equivalence onto a factor-dense subcategory. Since this subcategory has infinite
direct sums, it is in fact closed under forming direct summands [2, 3.2] and thus it
coincides with 7. c¢) is the special case where § = 0. The last statement is clear
because R¢ and &¢ are closed under forming direct summands. V4

4.13. Localization. Let
0-ALBS o0

be an exact sequence of My such that A, B and C are closed DG categories. In
the notations of the proof of 4.1, let R € Cp(A), S € Cp(B), and T € Cp(C) denote
U-small subcategories such that FR C S and GS C 7.

Theorem. The functor G induces a quasi-isomorphism
Cone(C(R) = C(8)) = C(T).

Remark 1. The proof of the corresponding assertion in [19, section 6] contained an
error: To prove that the functor £ — HS of [19, Lemma 5.2] commutes with infinite
sums, it is not enough to check that its composition with homology commutes with
infinite sums. It i1s true that there is an equivalence £ — DS, but probably in
general, the functor £ — HS does not have its image in H,S. To correct the
mistake, one needs that § is a closed DG category. We could not have reduced to
this case with the methods at our disposal in [19], but we are now able to do so
thanks to the results of section 3. The mistake is corrected in the proof below.

Proof. We adapt (and correct) the argument of section 6 of [19]. Consider the
sequence

0= B(X,FF,Y) > B(X,Y) > B(X,G,GY) 50

as a sequence of S-S-bimodules (X and Y denote ‘variable’ objects of §). We
will show that the image of this sequence under the relative left derived functor of
? ®ge I, where I(X,Y) = B(X,Y), is isomorphic to the sequence

H(R)— H(S)— H(T)

where H(S) denotes the Hochschild-Mitchell complex (= b-complex) of S. More
precisely, if

0—-L—>M-—>N-=>0

denotes the bimodule sequence, we will construct a diagram of S-S-bimodules

r M’ N’
0 L M N 0

whose vertical morphisms are quasi-isomorphisms. It follows that the canonical
morphism from the cone over L' — M’ to N’ is a quasi-isomorphism. As in the
proof of proposition 4.1, we denote by I a closed resolution of the $-S-bimodule
I. We will show that the image of the top row under the functor 7 ®ge I is quasi-
isomorphic to

H(R) = H(S) — H(T).
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It follows that the canonical morphism from the cone over H(R) — H(S) to H(T)
is a quasi-isomorphism. This implies that the cone over C'(R) — C(S) is canonically
quasi-isomorphic to C'(7).

We now construct the resolutions L/, M’, and N’. For the second term, we take
a variation on the bar resolution over §.

For the first term, we take the submodule of the bar resolution over B which is
given by the

P BFALFEY)©S(FAu_1,FA) @+ @8 (FAy, FA1) @8 (X, FAg)
where Ag, ..., A, run through R. Since FFR C 8§, this is well defined. We have to

show that it is actually a resolution of the first term. For this we have to show that
the DG k-module
.= P B(FA), FZ)© S(X,FAg) =+ B(X,FZ) -0
Ao

is acyclic for each 7 = F,Y, Y € §. Indeed, view this DG module as a triangle
functor from A to Dk, with Z varying in A. Clearly, the functor vanishes for 7 € R.
Moreover, it commutes with arbitrary direct sums. Thus it vanishes for arbitrary
Z7eA

Note that the third term N’ = B (X, G,GY) is isomorphic to 7 (GX,GY). We
take the bar resolution over 7, which we view as an §-8-bimodule via the functor
G.

We will now compute the tensor products of L', M’, and N’ with I over 8¢. For
M’ this amounts to computing

(S(Bn,Y)® 0@ 8 (X,By)) @se I
where O is a closed DG k-module. Since §(B,,7) and S (7, By) are free, this is
quasi-isomorphic to
(8(Bn,Y) 20 ®8(X,By)) @se I =
N

S(X,By) ®@s S(Bn,Y)®0
S (Bn, Bo) ® O
so that we do obtain the b-complex over §.

For L', we have to compute

(A(A,, F,Y)20® 8 (X, FAg)) @se [
Since S (7, F'Ap) is free, this is quasi-isomorphic to
(AAn, F,Y) 200 S (X, FAg)) @s- I S(X,FAy) @s A(An, F,Y)® O
A(An, F,FA)) @O
R(FAn, FA))® O,

RN INY

which is the required result.
Finally, for N’, we have to compute

(T (Cn, GY) © 0 @ B(X,G,C)) @se 1.
Let U = C(Cy,G?) viewed as a functor from B to DG k-modules. Consider the
composition
(UaB(?,Z2)0s- I — (U@B(?, %)) @ I
= B Z)esU—=U(Z).
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for Z € B. Clearly, it i1s invertible for Z € §. Moreover, U viewed as a functor
B — Dk commutes with arbitrary coproducts. Thus we have an isomorphism for

all Z € B. For 7 = G ,Cy we find

U(Z)© 0 =C(Cn, GG,Co) @0 =T (Cp,Co) @O,

which is the required result. V4

(1]

(30]
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