
ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIESBERNHARD KELLERAbstract. The cyclic homology of an exact category was de�ned by R. Mc-Carthy [26] using the methods of F. Waldhausen [36]. McCarthy's theoryenjoys a number of desirable properties, the most basic being the agreementproperty, i.e. the fact that when applied to the category of �nitely generatedprojective modules over an algebra it specializes to the cyclic homology of thealgebra.However, we show that McCarthy's theory cannot be both compatible withlocalizations and invariant under functors inducing equivalences in the derivedcategory.This is our motivation for introducing a new theory for which all threeproperties hold: extension, invariance and localization. Thanks to these prop-erties, the new theory can be computed explicitly for a number of categoriesof modules and sheaves. IntroductionOverview of the results. Let k be a commutative ring and A an exact categoryin the sense of Quillen [30] which is moreover k-linear, i.e. the groups Homk(A;B),A;B 2 A, are endowed with k-module structures such that the composition isbilinear.In [26], R. McCarthy has de�ned the Hochschild, cyclic, negative and periodichomologies of A. He showed that they enjoy the following properties(1) Agreement. For the exact category of �nitely generated projective modulesover a (unital) algebra, the homologies agree with those of the algebra.(2) Exact sequences. The di�erent homologies are linked by the classical mor-phisms and long exact sequences.(3) Additivity. The homologies are additive in the sense that the map induced bythe middle term of a short exact sequence of functors is the sum of the mapsinduced by the outer terms.(4) Products. The homologies admit product structures which agree with theclassical structures in the situation of (1).(5) Trace maps. There are trace maps linking the Quillen K-theory of A to itsHochschild resp. negative cyclic homology. Again these are compatible withthe classical maps in the situation of (1),Now by analogy with K-theory, there are two other properties which we mightexpect to hold for a homology theory of exact categories, namely(6) Invariance. The theory should be preserved by exact functors inducing equiv-alences in the bounded derived categories [34] [35].Date: September 27, 1997.1991 Mathematics Subject Classi�cation. 16E40, 18E10, 18E30, 18F25.Key words and phrases. Cyclic homology, Exact category, Derived category.1



2 BERNHARD KELLER(7) Localization. It should be compatible with localizations (in a sense to be madeprecise).These properties have been shown to hold for K-theory in many situations [32],[39], [38]. They have also been proved for cyclic homology of DG algebras in [19].Unfortunately, the homologies de�ned by R. McCarthy cannot satisfy (1), (6), and(7). Indeed, we show in examples 1.8 and 1.9 that a theory satisfying (1), (6),and (7) necessarily takes non-zero values in arbitrarily negative degrees, whereasthe homologies de�ned by R. McCarthy are concentrated positive degrees by theirde�nition. This also shows that McCarthy's cyclic homology cannot possibly sat-isfy the natural scheme-theoretic variant of property (1), which states that for thecategory vecX of vector bundles on a scheme X with an ample line bundle, thereis a natural isomorphism HC�(vecX) �! HC�(X) ;where HC�(X) is the cyclic homology of the scheme X as de�ned by Loday [22]and Weibel [37]. Indeed, HC�(X) contains the cohomologyH�(X;OX ) as a directfactor (concentrated in homologically negative degrees).In this article, we propose a new de�nition of the Hochschild, cyclic : : : homolo-gies of an exact category and show that the new theories do satisfy (1), (2), (3),(6) and (7). Thanks to the two last properties, we are able to compute them fora number of non-trivial examples (�nitely generated modules over noetherian alge-bras of �nite global dimension in 1.6, coherent sheaves on projective space in 1.7,�nite-length modules over k[[X]] in 1.8, coherent sheaves on punctured a�ne spacein 1.9, �nitely generated modules over the dual numbers in 2.5). In many othercases, the computation may be reduced to that of the cyclic homology of a suitabledi�erential graded algebra (example 2.6). The new theories can also be shown tosatisfy the scheme-theoretic analog of property (1), cf. example 1.10.We do not doubt that properties (4) and (5) also hold for the new theories.We provide evidence for this by proving a delooping theorem (1.13) for the newtheories in the case of a 
at exact category (i.e. HomA(A;B) is a 
at k-module forall A;B 2 A). We can then construct a natural transformationHC McC� A! HC new� A(and similarly for the other homologies) and de�ne trace maps by composing thismorphism with the trace maps constructed by R. McCarthy.Organization of the article. In section 1, we state the main results of the articleand give some examples: We de�ne the mixed complex of a 
at exact categoryin 1.4. The homologies associated with the category are derived from its mixedcomplex. This ensures the validity of property (2). The main theorem (1.5) statesthat properties (1), (6), and (7) hold. We illustrate the strength of (6) and (7)on some examples (1.6 to 1.8). In (1.12), the additivity property (3) is seen to bea consequence of the localization property (6). In turn, additivity is the essentialingredient for proving the delooping theorem in 1.13. Inspired by Kassel's work[14] [16] on bivariant theories we show in (1.14) that certain (non-exact) k-linearfunctors which admit total derived functors induce maps in the new theories, andthat (6) and (7) continue to hold for this wider class of functors. In the lastparagraph of section 1, we prove a useful lemma which gives a su�cient condition



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 3for an exact sequence of abelian categories to induce an exact sequence of derivedcategories.In section 2, we restate the main theorem in a setting which contains both theresults of section 1 on exact categories and those of [19] on DG algebras as specialcases. In this more general setting, categories of complexes or of DG modules arereplaced by what we call `exact DG categories' (2.1). Each exact DG category hasan associated triangulated category which generalizes the homotopy category of acategory of complexes or of DG modules. An exact category gives actually rise to apair of exact DG categories: the category of complexes and its full subcategory ofacyclic subcomplexes. This pair is an example of a `localization pair' (2.4). Local-ization pairs are to be viewed as a more intrinsic variant of Thomason-Trobaugh'sbicomplicialWaldhausen categories [32]. Each localization pair has associated withit a mixed complex and a triangulated category. In the case of the localization pairassociated with an exact category, these are respectively the mixed complex of theexact category and its derived category. The analog of the main theorem holdsfor localization pairs (2.4). This includes in particular the results of [19] for DGalgebras as special cases. It improves on [19] in so far as we no longer have to makeany hypothesis on the ground ring or on the underlying DG module of the algebra.This means, however, that we have to use a more elaborate de�nition of the mixedcomplex of a non-
at DG algebra using resolutions (3.2).As an application, we compute the mixed complex of the category of �nite-dimensional modules over the dual numbers (2.5). By the same method, we reducethe computation of the mixed complex of the category of �nite-dimensional modulesover a �nite-dimensional algebra A to the computation of the mixed complex ofan associated DG algebra (whose homology is the Ext-algebra of the simple A-modules).Sections 3 and 4 contain the proof of the main theorem for localization pairs.They form the technical heart of the article. In section 3, we prove existence andunicity up to homotopy of resolutions of exact DG categories. We start with thespecial case of DG algebras in 3.2. Here the only technical di�culty is that our DGalgebras can have non-vanishing homology in positive and in negative degrees. Thepassage from DG algebras to exact DG categories in 3.6 then involves replacingan algebra by an `algebra with several objects' and taking into account the exactstructure. In fact, we do not only prove existence and unicity of resolutions but,more precisely, we show that if we quotient the category of exact DG categoriesby a suitable homotopy relation, then in the quotient, the multiplicative system ofall functors inducing equivalences in the associated triangulated categories admitsa calculus of right fractions. The corresponding localization is denoted byMb. Itis equivalent to its full subcategory whose objects are the 
at exact DG categories.Using this equivalence we extend the mixed complex functor from 
at exact DGcategories to all exact DG categories.By the de�nition ofMb, passing from an exact DG category to its associated tri-angulated category is a functor fromMb to the category of triangulated categories.We de�ne a sequence ofMb to be exact i� the associated sequence of triangulatedcategories is exact.In section 4, we study the `completion' functorMb !M. Its e�ect is to assignto each exact DG category a new, larger, exact DG category whose associatedtriangulated category admits `arbitrary' coproducts. We deduce from the theoremof Neeman-Ravenel-Thomason-Trobaugh-Yao (4.12), that the completion functor



4 BERNHARD KELLERpreserves exactness (4.2) and that it becomes an equivalence when restricted to thefull subcategory ofMb whose objects are the exact DG categories whose associatedtriangulated categories are Karoubian (4.1). The exactness of a sequence ofM isof course de�ned by passing to the associated triangulated categories. Surprisinglyenough, such sequences are actually exact in the pointed category M, i.e. the�rst term is a monomorphism, the second an epimorphism and the two form akernel-cokernel pair (4.6). This allows us to associate with each localization paira functorial exact sequence of M and in particular a `quotient category' whichdepends functorially and exactly on the localization pair (4.7, 4.8). The �nal stepis now to prove that the mixed complex functor is a `@-functor' onM. This is donein 4.9 and 4.13. The proof of 4.13 closely follows [19, section 6] but corrects anerror which occurred in [19, lemma 5.2].Acknowledgment. This work goes back to a question by P. Polo. I thank himfor the interest he has continued to take in the subject.I am grateful to the referee for his thorough reading of the manuscript. Hisremarks and questions have been a great help and encouragement in preparing the�nal version of the article.1. Cyclic homology of exact categories1.1. Exact categories and categories of complexes. Let k be a commutativering and A a k-linear category (i.e. an additive category whose morphism spacesare k-modules such that the composition is bilinear). Suppose that A is exact inthe sense of [30]. We use the terminology of [7, Ch. 9]: admissible monomorphismsare called in
ations, admissible epimorphisms { de
ations, and admissible shortexact sequences { con
ations. A complex N over A is acyclic in degree n if dn�1Nfactors as Nn�1 NnZn�1 -dn�1QQQspn�1 ���3in�1where pn�1 is a cokernel for dn�2 and a de
ation, and in�1 is a kernel for dn andan in
ation. The complex N is acyclic if it is acyclic in each degree. We denoteby AcbA the category of all acyclic complexes N which are bounded, i.e. we haveNn = 0 for all large jnj. We denote by CbA the category of all bounded complexesover A.If X and Y are two complexes over A, we have a di�erential Z-graded k-moduleHomA (X;Y ) whose nth component consists of the homogeneous morphisms fof degree n of Z-graded objects (Xp) ! (Y q) and whose di�erential is given byd(f) = dY � f � (�1)nf � dX , where f is of degree n. Note that for two composablemorphisms g 2 HomA (X;Y ) ; f 2 HomA (Y; Z)n ;we have the Leibniz rule d(fg) = (df) � g + (�1)nf � dg:Thus any category of complexes over A may be viewed as a di�erential gradedcategory in the sense of [13] and [18].



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 5The homotopy category HbA has the same objects as CbA and its morphismsX ! Y are in bijection with the elements ofH0HomA (X;Y ):It is a triangulated category. The full subcategory of the acyclic complexes forms atriangulated subcategory of HbA. The derived category DbA is the localization ofHbA with respect to the subcategory of acyclic complexes. Note that this makessense although the subcategory of acyclic complexes may not be �epaisse (cf. [28]).Indeed, if T is a triangulated category and S � T a full triangulated subcategory(which need not be �epaisse), then the localization T =S exists and morphisms inthe localization are given by a calculus of left or right fractions; the kernel of thelocalization functor T ! T =S is the �epaisse closure of S.1.2. Reminder on mixed complexes. We use Kassel's approach [14]. Recallthat a mixed complex is a triple (C; b;B) such that(C; b) = (: : :! Cp ! Cp�1 ! : : : )is a complex of k-modules and B : C ! C is a homogeneous morphism of Z-gradedk-modules of degree 1 satisfying bB +Bb = 0. Let � be the DG algebra generatedby an indeterminate " of chain degree 1 with "2 = 0 and d" = 0. The underlyingcomplex of � is � � �0! k" 0! k ! 0 � � � :Then a mixed complex may be identi�ed with a DG left �-module whose underlyingDG k-module is (C; b) and where " acts by B. This interpretation leads to thefollowing de�nitions: Suppose that C = (C; b;B) is a mixed complex. Then theshifted mixed complex C[1] is the mixed complex such that C[1]p = Cp�1 for allp, bC[1] = �bC , and BC[1] = �BC . Let f : C ! C 0 be a morphism of mixedcomplexes. Then the mapping cone over f is the mixed complex(C 0 �C[1]; � bC0 f0 �bC � ; � BC0 00 �BC �):We de�neMix to be the category of mixed complexes and DMix to be the mixedderived category, i.e. the derived category of the DG algebra �. Its objects may beviewed as mixed complexes. Cyclic homology, Hochschild homology etc. may beinterpreted as cohomological functors on DMix , cf. [19, 2.2]. Note that despitethe notation, DMix is not the derived category of the abelian categoryMix (theobjects of the derived category of Mix would be complexes of mixed complexes: : : ).1.3. The mixed complex of a 
at DG category. Let B be a small DG category,i.e. a category enriched in di�erential graded k-modules (cf. for example [18]).Assume that B is 
at, i.e. B (A;B) 
k N is acyclic for each acyclic DG k-moduleN and all A;B 2 B. In analogy with the construction of Hochschild-Mitchellhomology [27] and with the case of DG algebras [9], [33], we associate a precyclicchain complex with B as follows: For each n 2N, its n-th term isaB(Bn; B0)
 B(Bn�1; Bn)
 B(Bn�2; Bn�1)
 : : :
 B(B0; B1)



6 BERNHARD KELLERwhere the sum runs over all sequences B0; : : : ; Bn of objects of B. The degeneracymaps are given bydi(fn; : : : ; fi; fi�1; : : : ; f0) = � (fn; : : : ; fifi�1; : : : f0) if i > 0(�1)(n+�)(f0fn; : : : ; f1) if i = 0where � = (deg f0)(deg f1 + � � �+ deg fn�1). The cyclic operator is given bytn(fn�1; : : : ; f0) = (�1)n+�(f0; fn�1; fn�2; : : : ; f1):We associate a mixed complex C(B) with this precyclic chain complex as describedin [19, Sect. 2]. We view C(B) as an object of the mixed derived category DMixas explained above (1.2). By de�nition, the cyclic homology of B is the cyclichomology of the mixed complex C(B), and similarly for the other variants of thetheory (Hochschild, periodic, negative, : : : ). The cyclic complex of a DG categorywhich is not necessarily 
at will be de�ned via a 
at resolution in section 3.2.1.4. The mixed complex associated with an exact category (
at case). Inthe setting of (1.1), suppose that A is small and 
at over k, i.e. A (A;B) is a 
atk-module for all A;B 2 A (this holds, for example, if k is a �eld; an important non-example is the category of �nitely generated abelian groups viewed as a Z-linearcategory). Then the mixed complex associated with the exact category A is de�nedto be C(A) = Cone(C(AcbA) �! C(CbA)):Here, AcbA and CbA are viewed as di�erential graded categories and C is thefunctor de�ned in (1.3). Clearly C(A) is functorial with respect to exact functors.The de�nition of C(A) for exact categories which are not necessarily 
at overthe ground ring is given in section 3.9 using 
at resolutions.1.5. The main theorem. Let k be a commutative ring. All exact categoriesbelow are assumed to be k-linear and small. By an exact functor, we always meana k-linear exact functor. Statements b) and c) below will be extended to certainnon-exact functors in section 1.14.A factor-dense subcategory A0 of an additive category A is a full subcategorysuch that each object of A is a direct factor of a �nite direct sum of objects ofA0. An equivalence up to factors is an additive functor A ! B which induces anequivalence onto a factor-dense subcategory of B. A sequence0! T 0 ! T Q! T 00 ! 0of triangulated categories is exact up to factors if T 0 identi�es with a factor-densesubcategory of the kernel of Q and Q induces an equivalence from T = kerQ onto afactor-dense subcategory of T 00.Theorem. a) If A is a k-algebra, there is a natural isomorphism in the mixedderived category C(A) �! C(projA):b) If F : A ! B is an exact functor between exact categories which induces anequivalence up to factors DbA ! DbB, then F induces an isomorphism in themixed derived category C(A) �! C(B):



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 7c) If F : A0 ! A and G : A ! A00 are exact functors between exact categoriessuch that the sequence0! DbA0 !DbA! DbA00 ! 0is exact up to factors, then there is a canonical morphism @(F;G) such thatthe sequence C(A0)! C(A)! C(A00) @(F;G)����! C(A0)[1]is a triangle in the mixed derived category.The theorem is a consequence of (2.4) below. Statement b) is often applied inthe following situation: Suppose that A � B is a full subcategory closed underextensions. Consider the conditionsa) For each B 2 B, there is an acyclic complex of B0! B ! A0 ! : : :! An ! 0with Ai 2 A for all i.b) For each con
ation A ! B ! B0 of B with A 2 A, there is a commutativediagram A B B0A A0 A00?1 - ? - ?- -whose second row is a con
ation of A.If b) (or its dual) holds, then the inclusion induces a fully faithful functor DbA !DbB. If moreover condition a) (or its dual) holds, then this functor is an equivalence(cf. also 1.15).1.6. Example: Algebras of �nite global dimension. Let A be a noetherianalgebra of �nite global dimension over a commutative ring k. Let modA denote thecategory of all �nitely generated A-modules. I claim that the inclusion projA !modA induces an isomorphismC(projA) �! C(modA)in the mixed derived category. Indeed, the inclusion is an exact functor and theinduced functor Db projA! DbmodA is an equivalence by the above remark. Sothe claim follows from (1.5 b). If we combine it with (1.5 a), we �nd that if A isnoetherian of �nite global dimension, then we have a canonical isomorphismC(A) �! C(modA)in the mixed derived category.1.7. Example: Projective space. Suppose that k is a �eld. Let n be a positiveinteger and V a vector space of dimension n + 1 over k. Let A be the algebraof upper triangular matrices (aij)0�i;j�n with aij 2 Sj�iV for j � i and aij = 0for j < i. Let P be the projectivization of V and cohP the category of coherentsheaves on P. There is a canonical fully faithful functorprojA! cohP



8 BERNHARD KELLERtaking the indecomposable projective right A-module eiiA to the sheaf OP(�i). Bya theorem of Beilinson's [1], this functor induces an equivalenceDb projA �!Db cohP:Thus by (1.5 b) and (1.5 a), we have isomorphismsC(cohP) � C(projA) � C(A):By [23, 1.2.15], we know that the inclusion of the diagonal matrices D � A inducesan isomorphismC(D) �! C(A) in the mixed derived category. So we �nally get theisomorphism C(cohP) �! nMi=0 C(k):1.8. Example: Nilpotent matrices. Suppose that k is a �eld. Let N be thecategory of �nite-length modules over the power series ring over k in one variable.An object of N is a �nite-dimensional vector space endowed with a nilpotent endo-morphism. The category N embeds into modk[X] and its image equals the kernelof the localization functor modk[X] ! modk[X;X�1]. At the level of derivedcategories, we obtain a short exact sequence0!DbN ! Dbmodk[X]!Dbmodk[X;X�1]! 0:Hence by (1.5 c), we have a triangleC(N )! C(modk[X])! C(modk[X;X�1])! C(N )[1]in the mixed derived category. By example (1.6), it is isomorphic to a triangleC(N )! C(k[X])! C(k[X;X�1])! C(N )[1]:Now if we take homology in degree 0, then the second morphism identi�es with theinjection k[X]! k[X;X�1] so that we getHC�1N = cok(k[X]! k[X;X�1]):To deduce this isomorphism, we have only used the statements in theorem (1.5).Thus, any homology theory satisfying theorem (1.5) must take non-zero values innegative degrees. The theories de�ned by R. McCarthy in [26] are concentrated inpositive degrees by de�nition. So they cannot satisfy theorem (1.5).1.9. Example: Punctured a�ne space. Let k be a �eld, n � 2 and A thecategory cohX of coherent sheaves on the scheme X = An n f0g. We will showthat any homology theory satisfying theorem (1.5) is non-zero in degree �n + 1when evaluated at the category A.This phenomenon admits the following simple explanation: The inclusion of thecategory of algebraic vector bundles vecX into cohX yields an equivalence in thebounded derived categories. Now at least for the theory de�ned in (1.4), we knowfrom theorem (1.10) below that the cyclic homology of vecX is the cyclic homologyof the scheme X in the sense of Loday [22] and Weibel [37]. The latter contains thecohomology of the scheme with coe�cients in the structure sheaf as a direct factorand in the case of punctured a�ne space X we have Hn�1(X;OX) 6= 0.To compute HC�n+1 (A), we use the exact sequence of abelian categories0!N !M!A! 0:



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 9whereM is the category of �nitely generated modules over A = k[X1; : : : ; Xn] andN its full subcategory formed by the modules supported in f0g, i.e. such that all theXi act nilpotently. Using example b) of 1.15, we see that the functor DbN ! DbMis fully faithful. Thus we obtain an exact sequence of derived categories0!DbN ! DbM!DbA ! 0:and an exact sequenceHC�n+1 (M)! HC�n+1 (A)! HC�n (N )! HC�n (M)by theorem (1.5 c). We know from (1.5 a) and example (1.6) thatHCi (M) vanishesfor all i < 0. Thus we have an isomorphismHC�n+1 (A) �! HC�n (N ):To computeHC�n (N ), we need to introduce some notation: For two subsets I; J ofthe set f1; : : : ; ng letMJI denote the category of modules over A = k[X1; : : : ; Xn]where the Xi, i 2 I act nilpotently and the Xj , j 2 J , invertibly, and which are�nitely generated as modules over A[X�1j j j 2 J ]. Note that if I \ J 6= ;, thenMJIis the zero category. If I or J is empty, we omit the corresponding symbol fromthe notation. Thus M is the category of �nitely generated A-modules as de�nedbefore, and N =Mf1;::: ;ng.We will show by induction on r = jIj that HCp (MJI ) = 0 for p < �r and thatHC�r (MJI ) = AJI ;where we de�neAJI = A[X�1k j k 2 I [ J ]=Xi2I A[X�1k j k 2 I [ J n fig]:In particular, we haveHC�nM = A[X�11 ; : : : ; X�1n ]= nXi=1 A[X�11 ; : : : ; dX�1i ; : : :X�1n ]:To start with the induction, note that we have HC0 (MJ ) = A[X�1j j j 2 J ] andHCp (MJ ) = 0 for p < 0 by (1.5 a) and example (1.6). For the step from r tor + 1 let jr+1 62 J and put J+ = J [ fjr+1g, I+ = I [ fjr+1g. Consider the exactsequence of abelian categories0!MJI+ !MJI !MJ+I ! 0:By example b) of 1.15, this sequence induces an exact sequence in the derivedcategories. So from (1.5 c) we get the exact sequenceHC�r (MJI )! HC�r (MJ+I )! HC�r�1 (MJI+ )! HC�r�1 (MJI ):Using the induction hypothesis we see that this sequence is isomorphic toAJI ! AJ+I ! HC�r�1 (MJI+)! 0:It follows that HC�r�1 (MJI+ ) identi�es with AJ+I =AJI �! AJI+ .



10 BERNHARD KELLER1.10. Cyclic homology of schemes. Let X be a scheme over a �eld k whichadmits an ample line bundle (for example a quasi-projective variety). Let vec(X)denote the category of locally �nitely generated free sheaves on X (i.e. the categoryof algebraic vector bundles). It is an exact subcategory of the category of quasi-coherent sheaves on X.Theorem. [20] There is a canonical isomorphismHC�(X) �! HC�(vec(X)):Here HC�(X) denotes the cyclic homology of the scheme X as de�ned by Loday[22] and Weibel [37]. For an a�ne scheme X = Spec(A), the category vec(X) isequivalent to projA and on the other hand, Weibel has shown in [loc. cit.] thatHC�(X) is canonically isomorphic to HC�(A). So the theorem reduces to (1.5 a)in this case.It will be shown in [20] that the theorem above generalizes to arbitrary quasi-compact quasi-separated schemes if we replace the exact category vec(X) by thelocalization pair (2.4) associated with the category of perfect complexes on X.1.11. A counterexample to devissage. Suppose that k is a �eld. Let A =k["]=("2). In (2.5) below we will show that HH�(modA) = A 
k k[T ] where T isof homological degree �1. As a graded k-module, this is clearly non isomorphicto HH�(modk) = k[u], where u is of homological degree 2. This example showsthat the analogue of the d�evissage theorem 4 of [30] does not hold for the invariantA 7! HH�(modA).1.12. Application: Additivity. Let k be a commutative ring and A a smallk-linear exact category. Let conA denote the category of con
ations" : A i! B d! Cof A. It becomes an exact category if we endow it with the componentwise con
a-tions. Let P : conA ! A be the functor " 7! C and R : conA ! A the functor" 7! A.Theorem. The functors P and R induce an isomorphism in the mixed derivedcategory C(conA) �! C(A)� C(A):Proof. Let I : A ! conA denote the functorA 7! (A 1A��! A �! 0):Then we have a short exact sequence of derived categories0!DbA I!Db conA P!DbA ! 0:Hence by (1.5 c), we have a triangleC(A) C(I)���! C(conA) C(P )���! C(A)! C(A)[1]in DMix . Now the functor R satis�es RI = 1A. So the triangle splits and we getthe isomorphism of the theorem. p



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 111.13. Application: Delooping. Let k be a commutative ring and A a smallk-linear 
at exact category. Recall from 1.4 thatC(A) = Cone(C(AcbA) �! C(CbA)):This de�nition clearly de�nes a functor from the category of small exact 
at cat-egories and exact functors to the category of mixed complexes. Hence it admits anatural extension to a functor from simplicial exact categories to simplicial mixedcomplexes. In particular, if S�A denotes the Waldhausen construction (see [36],[26, 3.1]), we have a simplicial object of mixed complexes C(S�A). We denoteby TotC(S�A) the mixed complex obtained by passing from the simplicial objectC(S�A) to its associated reduced chain complex (whose components are mixedcomplexes) and then to the (sum) total mixed complex.Theorem. There is a canonical isomorphism in the mixed derived categoryTotC(S�A) �! C(A)[1]:Proof. Consider the sequence0! const�A! P�S�A! S�A! 0of simplicial exact categories: here const�A denotes the constant simplicial categorywith value A and P�S�A is the `path object' of S�A (see [26, 3.3]). Let InA denotethe category whose objects are the sequencesA0 ! A1 ! : : :! Anof in
ations of A. The nth component of the above sequence is given (up toequivalence) by 0!A F! InA G! In�1A! 0where F maps A 2 A to the constant sequenceA 1! A 1! : : : 1! Aand G maps a sequence A0 ! : : :! An toA1=A0 ! : : :! An=A0:This is clearly a (split) exact sequence of exact categories. By the additivity (1.12),this implies that in C(constnA)! C(PnS�A)! C(SnA)the �rst morphism is a quasi-isomorphism onto the kernel of the second, whichis surjective in each component. Now if B� is a simplicial exact category, thenTotC(B�) is �ltered by a complete, bounded below �ltration with subquotients theC(Bn) suitably shifted. This implies that the morphismTotC(const�A)! TotC(P�S�A)is a quasi-isomorphism onto the kernel of the morphismTotC(P�S�A)! TotC(S�A) ;which is surjective in each component. Hence we have a canonical triangle in themixed derived categoryTotC(const�A)! TotC(P�S�A)! TotC(S�A)! TotC(const�A)[1]:



12 BERNHARD KELLERNow we have a canonical isomorphism of mixed complexes TotC(const�A) �!C(A). Moreover P�S�A is contractible as a simplicial object, so TotC(P�S�A) is azero object in DMix . So we have a canonical isomorphism TotC(S�A)! C(A)[1]in DMix . p1.14. Extended functoriality. Let k be a commutative ring, A and B small k-linear exact categories and F : A ! B a k-linear functor which is not necessarilyexact. Inspired by Kassel's work [14] [16] we would like to assign to F a morphismC(A)! C(B) of the mixed derived category. For this, we assume that the functorF is right derivable, i.e. that A admits a full exact subcategory A0 � A satisfyingconditions a) and b) of the remark following theorem 1.5 and such that the restric-tion of F to A0 is exact. Then the total derived functor RF : DbA ! DbB exists inthe sense of Deligne [4] and we have a diagram (commutative up to isomorphism)DbA0 DbBDbA0 DbA:?1 -F jA0-� 6RFAccordingly, we de�ne the morphism C(RF ) in the mixed derived category by thecommutative diagram C(A0) C(B)C(A0) C(A):?1 -C(F jA0)-� 6C(RF )We see that if RF is an equivalence up to factors, then C(RF ) is an isomorphismby (1.5 b). Similarly, one can de�ne C(LF ) if F is left derivable (left to the reader).In (1.5 c), instead of supposing that F and G are exact, it is enough to assumethat they are right derivable and that the sequence0!DbA0 RF��! DbA RG��! DbA00 ! 0:is exact up to factors (similarly with `right' replaced by `left' for F , G, or both).Then we still have a canonical triangleC(A0) C(RF )����! C(A) C(RG)����! C(A00) @(RF;RG)�������! C(A0)[1]:This is not a consequence of (1.5 c) but of its proof: Indeed, in the proof, we passfrom an exact category to the corresponding localization pair (2.4), to objects ofthe categories Lb and L, and �nally to objects of the category M (4.8). For anexact category A, denote byM (A) the corresponding object ofM. Each object MofM has an associated triangulated category TM and TM (A) is a triangulatedcategory whose subcategory of compact objects is equivalent up to factors to DbA(4.8). The object M (A) is functorial in A and an exact functor A0 ! A induc-ing an equivalence up to factors in the derived categories induces an isomorphismM (A0) ! M (A) (4.8). It follows that we can de�ne M (RF ) for a right derivable



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 13functor F in the natural way. Moreover, it follows from (4.8) that under the abovehypotheses, the sequence0!M (A0) M(RF )�����!M (A) M(RG)�����!M (A00)! 0is an exact sequence ofM (4.6). Now the assertion follows from (4.9 b).1.15. Localization: Abelian vs. derived categories. We refer to [6] for anintroduction to the localization theory of abelian categories.Let B be an abelian category and A a Serre subcategory. By de�nition, we havean exact sequence of abelian categories0!A! B ! B=A ! 0:Such a sequence may or may not induce an exact sequence of derived categories,as we will see in the (non-) examples below. A su�cient condition is given in thefollowing lemma. Even if the induced sequence in the derived categories is not exact,statement a) of the lemma shows that we have an exact sequence of localizationpairs, which still yields information on cyclic homology by theorem 2.4 below.Lemma. a) We have an exact sequence of triangulated categories0!DbBA! DbB ! Db(B=A)! 0 ;where DbAB denotes the full subcategory of complexes whose homology lies inA.b) We have an exact sequence of derived categories0!DbA ! DbB ! Db(B=A)! 0i� the canonical functor DbA ! DbAB is an equivalence and this holds i� itis fully faithful.c) The condition of b) holds and the canonical functor DbA ! DbAB is an equiv-alence in each of the following casesc1) For each exact sequence 0! A! B ! C ! 0 of A with A 2 A, there isa commutative diagram with exact rows0 A B C 00 A A0 A00 0- ?1 - ? - ? -- - - -where A0 and A00 belong to A.c2) The abelian category A is generated by objects X of projective dimensionat most 1 (i.e. we have ExtiA(X; ?) = 0 for all i � 2).Proof. a) The canonical functor Cb(B)=Cb(A) ! Cb(B=A) is easily seen to bean equivalence. Its quasi-inverse induces a quasi-inverse to the canonical functorDb(B)=DbA(A)!Db(B=A).b) By a), the canonical functor is an equivalence i� the sequence is exact. If thefunctor is fully faithful, then it is an equivalence by devissage.c1) is well-known [10].c2) For i � 1 and L;M 2 A, we have isomorphismsExtiA(L;M ) �! ExtiB(L;M )



14 BERNHARD KELLERsince A is a Serre subcategory. Now �x M 2 A and, for L 2 A, put EiAL =ExtiA(L;M ) and EiBL = ExtiB(L;M ). The canonical mapEiAL! EiBLis clearly a morphism of �-functors and it is invertible for i = 0; 1. To show that itis invertible for all i 2 N, it is enough to show that the functor EiB : A ! ModZis e�aceable for i � 2. This is immediate from the assumption. Thus the canonicalmap ExtiA(L;M ) �! ExtiB(L;M )is an isomorphism for all L;M 2 A and all i 2 N. By devissage, this implies thatthe canonical functor DbA ! DbABis fully faithful. pExample. a) Localization of non-commutative rings. Let B be a right co-herent algebra and S � B a subset such thata) 1 2 S and SS � S,b) For s 2 S and b 2 B, there are t 2 S and c 2 B such that cs = tb.c) For t 2 S and c 2 B, there are s 2 S and b 2 B such that cs = tb.d) For each s 2 S, left multiplication by s is injective.That is to say that S is a multiplicative subset (a) satisfying both Ore conditions(b,c) and consisting of left non-zero divisors (d), cf. [5]. The ring of fractions B[S�1]is again right coherent. Let B = modB denote the category of �nitely presentedright B-modules and A the kernel of the localization functor modB ! modB[S�1].It is well-known (and easy to check) that the canonical functor B=A ! modB[S�1]is an equivalence. Thus we have an exact sequence of abelian categories0!A ! modB ! modB[S�1]! 0:The category A is generated by the B=sB, s 2 S, which are clearly of projectivedimension at most 1 in modB. So by the lemma, we have an exact sequence ofderived categories0!DbA ! DbmodB !DbmodB[S�1]! 0:b) Modules supported on a closed a�ne subscheme. Let B be a com-mutative noetherian ring and I � B an ideal. Let B = modB be the category of�nitely generated B-modules and A its full subcategory consisting of the modulesannihilated by some power of I. Let S = B n I. Then we have an exact sequenceof abelian categories 0!A ! modB ! modB[S�1]! 0and it does induce an exact sequence of derived categories. Indeed, we can usecondition c1): Let 0! N !M ! L! 0 be an exact sequence of B-modules withN 2 A. Then by the Artin{Rees lemma [25, Theorem 8.5], there is an integer c � 0such that InM \ N = In�c(IcM \ N ) for all n > c. So if we choose n such that



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 15In�cN = 0, we have a diagram with exact rows0 N M L 00 N M=InM M=(InM +N ) 0- ?1 - ? - ? -- - - -whose second row belongs to A.c) A Non-example. Let k be a �eld and B the algebra of upper triangular 3�3matrices over k divided by the ideal generated by the matrix E13. Denote by Si thesimple right B-module given by the character sending P ajkEjk to aii. Let B bethe category of all �nitely generated A-modules and A the full subcategory whoseobjects are the �nite direct sums of copies of S1 and S3. We have Ext1B(S1; S3) =0 = Ext1B(S3; S1). So A is closed under extensions. Clearly it is closed undersubobjects and quotients. Thus it is a Serre subcategory. As an abelian category,A is semisimple and in particular Ext2A(S1; S3) = 0. On the other hand, an easycomputation shows that Ext2B(S1; S3) = k. Hence the canonical functor DbA !DbAB is not an equivalence in this case.2. Exact DG categories2.1. De�nitions. Let k be a commutative ring and B a small DG k-category (cf.[18]).For example, let A be a small k-linear category. Then the category B = CA ofchain complexes A = (: : :Ap d! Ap+1 ! : : : ) ; p 2 Z ; d2 = 0 ;over A becomes a DG k-category if we take B(A;B) to be the morphism complex(the n-th component of B(A;B) is formed by the families f = (fp) of morphismsAp ! Bn+p and the di�erential is given by d(f) = d � f � (�1)nf � d).Recall that a DG (right) B-module is a DG functorM : Bop ! Dif k, where Dif kdenotes the category of di�erential graded k-modules. The module M is given bydi�erential graded k-modulesM (B), B 2 B, and morphisms of chain complexesB (B;C)! (Dif k) (M (C);M (B)) ; b 7!M (b)such that M (b)M (a) = (�1)pqM (ab) for a 2 B (B;C)q and b 2 B (A;B)p. Fora DG module M , we denote by M [1] the shifted module: By de�nition, we haveM [1](B)p = M (B)p+1 and dM [1](B) = �dM(B) for all B 2 B, p 2 Z; moreover,for b 2 B (B;C)p we have M [1](b)q = (�1)pqM (b)q+1. A morphism of graded B-modules f : M ! N is the datum of a morphism of Z-graded k-modules f(B) :M (B)! N (B) for each B 2 B such that we have f(B)M (b) = N (b)f(C) for eachb 2 B (B;C). A morphism of di�erential graded B-modules is a morphism f ofgraded B-modules such that f(B) commutes with the di�erential for each B 2 B.If f :M ! N is a morphism of DG modules, the mapping cone Cone(f) is the DGmodule K de�ned by K(f)(B)p = N (B)p �M (B)p+1;dpK(f)(B) = " dpN(B) f(B)p+10 �dp+1M(B) # ; K(f)(b)p = � N (b)p 00 (�1)pqM (b) � :for B;C 2 B, p; q 2 Z, and b 2 B (B;C)q. The category of DG B-modules isdenoted by Dif B. It carries an exact structure in the sense of Quillen [30] whose



16 BERNHARD KELLERadmissible short exact sequences are the short exact sequences0! L i!M p! N ! 0which split as sequences of graded B-modules.We denote by Z0 B the category with the same objects as B and whose morphismsA! B correspond bijectively to the elements ofZ0 B(A;B):In the example B = CA, the category Z0 B is the category of chain complexesand morphisms of chain complexes (commuting with the di�erential).Clearly, the functorY : Z0 B ! Dif B ; B 7! Y B = B^ = B(?; B)is fully faithful (Y stands for `Yoneda'). A DG B-module is representable if it isisomorphic to a functor of the form Y B for some B 2 B. The category B is an exactDG category if the full subcategory of of Dif B formed by the representable functorsis stable under the translation functors M 7! M [n], n 2 Z, and closed underextensions. A typical example of an exact DG category is the category B = CA.It is easy to see that each extension of Y A[1] by Y B in Dif B is isomorphic to themapping cone Cone(g) of some morphism of DG B-modules g = Y f : Y A ! Y B.Whence theLemma. The category B is an exact DG category if and only if the following twoconditions holda) For each A 2 B and each n 2 Z, there is an object A[n] in B and an isomor-phism of DG B-modules Y (A[n]) �! (Y A)[n]b) For each morphism f : A ! B of Z0 B, there is an object Cone(f) of B andan isomorphism of DG B-modulesY (Cone(f)) �! Cone(Y f):If B is an exact DG category, then Z0 B becomes a Frobenius category for theexact structure induced from Dif B, i.e. an exact category with enough injectives,enough projectives and where the classes of projectives and injectives coincide. Thestable category associated with a Frobenius category is obtained by dividing by theideal of morphisms factoring through a projective-injective; it is a triangulatedcategory (cf. [12], [11], [21]). By abuse of notation, we will denote the stablecategory associated with Z0B by B. In the example of B = CA, the stable categoryB is nothing but the homotopy category of complexes over A.2.2. Examples of exact DG categories. a) Categories of complexes. Let Abe an additive category and B a full subcategory of the category CA of complexesover A which is closed under (degreewise split) extensions and shifts. Then B is anexact DG category whose mapping cones are the usual mapping cones of complexes.b) Exact DG subcategories. Let B be an exact DG category and B0 an exactDG subcategory, i.e. a full DG subcategory such that Z0 B0 is closed in Z0 B undershifts and extensions. Then B0 is an exact DG category.b) Examples arising from Frobenius categories. Let E be a Frobeniuscategory. Let B be the category of acyclic complexes with projective-injective com-ponents over E . This is an exact DG category by example a). The zero cycle functor



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 17induces a triangle equivalence B ! E . Hence, up to triangle equivalence, all stablecategories of Frobenius categories are obtained as stable categories of exact DGcategories.c) Exact envelopes of DG categories. Let A be a DG category. Up toequivalence, the category DifA contains a unique smallest subcategory containingthe Y A, A 2 A, closed under shifts and (graded split) extensions. This subcategorywill be denote by dgfreeA. It is an exact DG category and the functor A! dgfreeAis universal among DG functors from A to exact DG categories. The categorydgfreeA may also be constructed more explicitly as follows (cf. also [13, 2.2]):First de�ne ZA to be the category whose objects are the pairs (A; r) consisting ofan object A 2 A and an integer r; the DG module of morphisms from (A; r) to(B; s) is in bijection with HomA (A;B)[s� r]:The composition of a morphism f : (A; r) ! (B; s) of degree n with g : (B; s) !(C; t) of degree m is given byg �ZA f = (�1)n+m+nr+msg �A f:Now the objects of dgfreeA are the sequences (A1; : : : ; An) of objects of ZA to-gether with matrices � = (�ij) of morphisms �ij 2 HomZA (Aj ; Ai) such that�ij = 0 for i � j and d(�ij) +Xk �ik�kj = 0for all i; j. The DG module of morphisms from (A1; : : : ; An) to (B1; : : : ; Bm) isgiven by matrices f = (fij), fij 2 HomZA (Aj ; Bi). The di�erential of a homoge-neous morphism f of degree n is de�ned to bedZAf + � � f � (�1)nf � �where dZA is applied to each entry of the matrix f and � � f and f � � are matrixproducts. The canonical functor � : ZA ! DifA sends an object (A; r) to A^[r]and the canonical functor dgfreeA ! DifA sends an object (A1; : : : ; An) to thegraded module �A1 � � � � ��An endowed with the di�erential d+��.d) Functor categories. Let A be a small DG category (for example any k-category) and B an exact DG category. We will de�ne an exact DG categoryFun (A;B) whose objects are k-linear DG functors A ! B. If F and G are twosuch functors, let Hom (F;G)n denote the set of homogeneous morphisms of degreen of the underlying graded functors; thus an element ' ofHom (F;G)n is the datumof a morphism 'A 2 HomB (FA;GA)n such that (Gf)('A) = (�1)nm('A0)(Ff)for each f 2 HomA (A;A0)m, m 2 Z. The di�erential of Hom (F;G) is de�nedby (d')(A) = d('A). Then it is straightforward to check that Fun (A;B) is anexact DG category (the mapping cone over ' 2 Z0Hom (F;G) is given by A 7!Cone('(A))).We de�ne Rep(A;B) to be the localization of the stable category of Fun (A;B)at the class of morphisms f : F ! G such that fA : FA! GA becomes invertiblein B for all A 2 A.e) Filtered objects. Let F : A ! B be a DG functor between exact DGcategories. Let FilF be the DG category whose objects are pairs (A; i), where



18 BERNHARD KELLERA 2 A and i : FA ! B is an in
ation of Z0 B. By de�nition, the DG module ofmorphisms from (A;FA i! B) to (A0; FA0 i0! B0) is the pullback of the diagramHomB (B;B0)HomA (A;A0) HomB (FA;B0):?i�-Then FilF is an exact DG category and a morphism (u; v) of Z0 FilF is invertiblein the stable category i� u and v become invertible in the stable categories of Aresp. B.2.3. DG functors between exact DG categories. Let B and B0 be exact DGcategories and let F : B ! B0 be a DG functor. Recall from [18, 1.1, 1.2] that thismeans in particular that F is k-linear.Lemma. For each A;B 2 B, n 2 Z and f 2 Z0B (A;B) there are canonicalisomorphisms F (A[n]) �! (FA)[n] and F (Cone(f)) �! Cone(Ff):Proof. We use the terminology of [18, 6.1]. De�ne the B-B0-bimoduleX byX (A;B) =B (A;FB) for A 2 B0, B 2 B. Clearly the functor TX : Dif B ! Dif B0 admitscanonical isomorphisms as in the claim. Now we have a canonical isomorphismTXY �! Y F . Whence the claim. p2.4. Localization pairs. A localization pair B is an exact DG category B1 en-dowed with a full subcategory B0 � B1 such that Z0B0 is an exact subcategory ofZ0 B1 which is stable under shifts and closed under extensions. Then B0 identi�eswith a full triangulated subcategory of B1. This su�ces for the localization B1=B0to be well-de�ned (it is not necessary for B0 to be �epaisse; the kernel of the quotientfunctor B1 ! B1=B0 is the �epaisse closure of B0). By de�nition, the triangulatedcategory associated with the localization pair B isT B := B1=B0:For example, if A is an exact k-linear category, then the pair consisting of CbAand of its subcategory of acyclic complexes is a localization pair and the associatedtriangulated category is the derived category of A.Similarly, if A is a DG algebra, then dgfreeA endowed with the zero subcategoryis a localization pair (which will also be denoted by dgfreeA). The associatedtriangulated category is equivalent to a full subcategory of the category perA ofperfect objects (=compact objects = small objects [19, 7.10]) in the derived categoryDA. Moreover, each perfect object is a direct factor (in DA) of an object ofdgfreeA (this follows from the proof of the theorem of Ravenel-Neeman [31], [29],as explained in [18, 5.2]).A DG k-module M is 
at (resp. closed) if M 
k N (resp. Hom k (M;N )) isacyclic for each (possibly unbounded) acyclic DG k-module N . A DG category Ais 
at if A (A;B) is a 
at DG k-module for all A;B 2 A. A localization pair B is
at if B0, and hence B1, are 
at DG categories. Similarly, one de�nes the notion ofclosed DG category and closed localization pair.



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 19The mixed complex associated with a 
at localization pair B is the coneC(B) := Cone(C(B0)! C(B1)):The de�nition of C(B) for an arbitrary localization pair B will be given in (3.9).If B and B0 are localization pairs, an exact functor F : B0 ! B is an exact functorB01 ! B1 taking B00 to B0. Such a functor induces a triangulated functorT B0 ! T Band a morphism C(F ) : C(B0) ! C(B) in the category of mixed complexes (andtherefore in the mixed derived category).Theorem. a) If A is a DG algebra over k, there is a canonical isomorphismC(A) �! C(dgfreeA) in the mixed derived category.b) If F : B0 ! B is an exact functor between localization pairs such that F in-duces an equivalence up to factors T B0 ! T B, then F induces an isomorphismC(B0) �! C(B) in the mixed derived category.c) If we have exact functors between localization pairsB0 F! B G! B00such that the sequence of triangulated categories0! T B0 ! T B ! T B00 ! 0is exact up to factors, then there is a canonical triangleC(B0) C(F )! C(B) C(G)! C(B00) @(F;G)����! C(B0)[1]in the mixed derived category.The theorem will be proved in (4.11).2.5. Example: Dual numbers. Let k be a �eld and A = k["]=("2). Using theabove theorem we will compute C(modA). Consider the following categories: thecategory B of bounded complexes over modA; the category B0 of right boundedcomplexes over modA which are acyclic in all degrees � 0; the smallest full subcat-egory B00 of B0 closed under shifts and degreewise split extensions and containingthe complex P = (� � �A "! A "! A! 0! 0 � � � );where the last component A is in degree 0. Then B gives rise to a localizationpair if we consider it together with its full subcategory of acyclic complexes andsimilarly for B0 and B00. We denote these localization pairs by the same symbols.Then clearly the inclusion functorsB ! B0  B00induce equivalences in the associated triangulated categories. Finally, we haveT B00 � B00 and this category is generated by P as a triangulated category. Nowconsider B = k[T ] as a di�erential graded algebra with di�erential zero where thegenerator T is of (cohomological) degree 1. Then we have a morphism of DGalgebras ' : B !HomA (P; P )mapping T to the morphism P ! P [1] which is the identity in all degrees except 0.The morphism ' is in fact a quasi-isomorphism. Hence the functor Q 7! Q 
B P



20 BERNHARD KELLERinduces an equivalence from T (dgfreeB) onto T B00. It follows from theorem (2.4)that we have isomorphismsC(modA) � C(B00) � C(B):in the mixed derived category. For example, we have HH�(modA) �! HH�(B) �!A
B as graded k-modules, where T is of (homological) degree �1 and " of degree0.2.6. Example: Finite-dimensional algebras. Let k be a �eld and A a �nite-dimensional algebra over k. If A is of �nite global dimension, we have C(modA) �!C(A) by example (1.6). In the general case, let S1; : : :Sn be a system of represen-tatives of the simple A-modules and P a projective resolution of the direct sum ofthe Si. Put B = HomA (P; P ). Note that the homology of B is the Ext-algebraMi;j Ext�A(Si; Sj):Then the argument of example (2.5) shows that we have an isomorphismC(modA) �! C(B)in the mixed derived category. J. Rickard asks: Are there �nite-dimensional alge-bras A such that some HHn (modA) or HCn (modA) is in�nite-dimensional ?2.7. Mayer-Vietoris squares and triangles. A triangle functor F : T ! T 00is a localization functor if it induces an equivalence T = kerF �! T 00. A square oftriangle functors S S00T T 00? -G ?-Lis a Mayer-Vietoris square if all four functors are localization functors and theinduced triangle functor kerG! kerL is an equivalence.Theorem. Let B0 B B00C0 C C00?H0 -F -G?H ?H00-K -Lbe a diagram of localization pairs and exact functors such that in the associatedtriangulated categories, the lines induce exact sequences and the right hand squareinduces a Mayer-Vietoris square. Then if � denotes the compositionC(C00) @(K;L)����! C(C0)[1] C(H0)[1]�1�������! C(B0)[1] C(F )[1]�����! C(B)[1](which is well de�ned in the mixed derived category), the sequenceC(B) �! C(B00)� C(C) �! C(C00) �! C(B)[1] ;where � = � �C(G)C(H) � ; � = [C(H 00); C(L)] ;



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 21is a triangle (the Mayer-Vietoris triangle associated with the square).The theorem will be proved in (4.11). The corresponding Mayer-Vietoris se-quence in homology can of course be derived from the homology sequence obtainedfrom the localization theorem. However, the existence of a functorial Mayer-Vietoristriangle does not follow from the existence of triangles for localizations.3. Homotopy and Localization3.1. Homotopy betweenmorphisms of DG algebras. Let k be a commutativering. Let �; � : A! B be morphisms of DG algebras. An �-�-derivation of degreer is a morphism � : A ! B of graded k-modules which is homogeneous of degreer and satis�es �(xy) = �(x)�(y) + (�1)r n�(x)�(y)for all x 2 An, y 2 A. For example, the map �� � is an �-�-derivation of degree0. An homotopy from � to � is an �-�-derivation h of degree �1 such that�� � = dBh+ hdA:The morphism � is homotopic to � if there is an homotopy from � to �. Clearlyhomotopy is a bifunctorial relation on the set of morphisms from A to B. Anhomotopy equivalence is a morphism which becomes invertible after quotienting thecategory of DG algebras by the equivalence relation generated by the homotopyrelation.For a given DG algebra B, there is a `universal' pair of homotopic morphismsp1; p2 : B0 ! B constructed as follows: Let Y = B[�1] viewed as a B-B-bimodule.Note that the right action of B on Y is right B-multiplication whereas the leftaction is twisted left B-multiplication:x:y = (�1)pqxy ; y 2 Bp; x 2 Bqand that dB[�1] = �dB . Let B0 be the algebra of upper triangular matrices� B Y0 B � :View B0 as a subalgebra of the graded endomorphism algebra of B � B[1] and assuch, endow it with the di�erential given by the supercommutator with� d 10 �d � :Then B0 is a DG algebra (it is a subalgebra of the graded endomorphism algebraof the mapping cone over the identity of B). The two diagonal projections p1; p2 :B0 ! B are DG algebra morphisms and the maph0 : � b1 y0 b2 � 7! yis an homotopy from p1 to p2. It is universal in the sense that if h is an homotopyfrom � to � : A! B, then the map
 : a 7! � �(a) h(a)0 �(a) �is a morphism of DG algebras such that p1
 = �, p2
 = � and h0
 = h and clearlyit is the unique morphism with these properties.



22 BERNHARD KELLERNote that both pi are homotopy equivalences of the underlying chain complexesand that the diagonal map � : b 7! � b 00 b �is a DG algebra morphism satisfying p1 � = 1B = p2 �.Hence if F is a functor de�ned on the category of DG algebras which invertsmorphisms inducing homotopy equivalences of the underlying chain complexes, thenF (�) is invertible and we have F (p1) = F (p2) and hence F (�) = F (�) for each pairof homotopic morphisms. In particular, homotopic morphisms A ! B induce thesame morphism C(A) ! C(B) in the mixed derived category. We leave it to thereader as an exercise to provide a direct proof of this fact.3.2. Resolutions of DG algebras. Let k be a commutative ring. Let A be a DGk-algebra. Recall that by de�nition, A is 
at if A
k N is acyclic for each (possiblyunbounded) acyclic DG k-module N . This is the case for example if A is closed asa DG k-module, i.e. Hom k (A;N ) is acyclic for each acyclic complex N (cf. [19,7.5]).A 
at (resp. closed) resolution of A is a morphism of DG algebras ' : B ! Ainducing an isomorphism in homology and such that B is 
at (resp. closed) as aDG k-module. Part a) of the following lemma is well-known for the case of DGalgebras concentrated in negative degrees [23, 5.3.6].Using part a) of the lemma we de�ne the mixed complex associated with A tobe C(A) = C(B) where ' : B ! A is any 
at resolution. Thanks to parts b) andc) of the lemma, C(A) is well-de�ned up to canonical isomorphism in DMix andfunctorial with respect to morphisms of DG algebras. This de�nition can easily begeneralized fromDG algebras to smallDG categories (Left to the reader. Homotopyis de�ned only between functors which coincide on objects, and quasi-isomorphismsbetween small DG k-categories are required to induce bijections between objects).Note that the lemma shows that in the category of DG algebras and homo-topy classes of morphisms, the class of quasi-isomorphisms admits a calculus ofright fractions [8] and that the corresponding localization is equivalent to its fullsubcategory whose objects are the closed DG algebras.Lemma. a) There is a closed (hence 
at) resolution ' : B ! A.b) Each diagram of DG algebras BA0 A?'-fwhere ' is a quasi-isomorphism, can be completed to a square commutativeup to homotopy B0 BA0 A?'0 -f ?'-fwhere '0 is a quasi-isomorphism.



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 23c) If �; � : A ! A0 and 
 : A0 ! A00 are morphisms of DG algebras such that
 is a quasi-isomorphism and 
� is homotopic to 
�, then there is a closedresolution ' : B ! A such that �' is homotopic to �'.Proof. a) We endow the category of DG k-modules with the following exact struc-ture (cf. [24, XII, 15]): A sequence0! K ! L!M ! 0is a con
ation i� the sequences0! Kn ! Ln !Mn ! 0and 0! HnK ! HnL ! HnM ! 0are exact for all n 2 Z. Then the class F formed by all direct sums of shifted copiesof the DG modules (=complexes): : :0! k! 0 : : : and : : :0! k 1! k ! 0 : : :contains enough projectives. Choose a de
ation p0 : V0 ! A with V0 2 F . Let B0 =T (V0) be the DG tensor algebra on V0 and '0 : B0 ! A the morphism extendingp0. Clearly '0 : B0 ! A is still a de
ation. Choose a morphism p1 : V1 ! B0 withV1 2 F which induces a de
ation onto the kernel of '0. Let B1 be the DG algebraobtained by endowing the free product B0 �k T (V1[1]) with the unique di�erentialwhose restriction to B0 is the di�erential of B0 and whose restriction to V1[1] is�dV1 + p1. Let '1 : B1 ! A be the unique morphism of algebras whose restrictionto B0 is '0 and whose restriction to V1[1] vanishes. Then '1 is compatible with thedi�erential. Continuing in this way we obtain a direct system Bp, p 2 N, of DGalgebras and a compatible family of morphisms 'p : Bp ! A. We let B = lim�!Bpand take ' : B ! A to be the morphism induced by the 'p. Then B is closed:indeed, each Bp is closed and B �ts into the Milnor triangleMp2NBp ��!Mq2NBq can��! B ! (Mp2NBp)[1]where � has the componentsBp [1 ��]���! Bp � Bp+1 can��!Mq2NBq ; � = incl:Clearly ' is a de
ation. It is easy to see that it induces in fact an isomorphism inhomology.b) Choose a surjective morphism p : V ! A with contractible V 2 F . Thenthe inclusion B ! B �k T (V ) is an homotopy equivalence and the morphism B �kT (V )! A de�ned by ' and p is a surjective resolution. Therefore we may and willassume that ' : B ! A is surjective. Form the pullback diagramB0 BA0 A:?'0 -f 0 ?'-fThen clearly '0 is a quasi-isomorphism.c) We may and will assume that 
 : A0 ! A00 is a de
ation (cf. the proofof b). Let m : A ! A00 be a homotopy from 
� to 
�. As in the proof of a),



24 BERNHARD KELLERwe choose a de
ation p0 : V0 ! A with V0 2 F , we let B0 = T (V0) and take'0 : B0 ! A to be the morphism induced by p0. Since 
 is a de
ation, themorphism mp0 equals 
h00 for some h00 : V0 ! A0 which is homogeneous of degree�1. By construction, the composition of �p0 � �p0 � d h00 � h00 d with 
 vanishes.Since ker 
 is acyclic and V0 2 F , there is an h000 : V0 ! ker 
 � A0 such that�p0 � �p0 � d h00 � h00 d = d h000 + h000 d. We put h0 = h00 + h000 and �0 = �'0,�0 = �'0. We extend h0 to an �0-�0-derivation h0 : B0 ! A0 of degree �1. Nowwe choose a morphism p1 : V1 ! B0 with V1 in F inducing a de
ation onto ker'0.We de�ne B1, '1, �1 and �1 as in the proof of a). We will now construct anhomotopy h1 between �1 and �1. Note �rst that we have0 = (�0 � �0) � p1 = d h0 p1 + h0 d p1 = d (h0p1) + (h0p1) d:So h0p1 de�nes a morphism of complexes V1[1] ! A0. We claim that its image iscontained in ker 
. Indeed, we have 
h0 = m'0 since both are 
�0-
�0-derivationsof degree �1 which coincide on V0. Therefore, we have 
h0p1 = m'0p1 = 0, aswe claimed. Since V1 belongs to F and ker 
 is acyclic, we can choose a gradedmorphism h01 : V1[1]! A0 of degree �1 such that d h01+h01dV1[1] = �h0p1. We nowde�ne h1 : B0 �k T (V1[1]) to be the unique �1-�1-derivation of degree �1 whichrestricts to h0 on B0 and to h01 on V1[1]. It is then easy to check that �1 � �1 andd h1 + h1 d coincide on B0 and V1[1] and hence on B1 = B0 �k T (V1[1]).Continuing in this way, we obtain a direct system as in the proof of a), and inaddition we have a compatible family of graded morphisms hp of degree �1. Wede�ne B = lim�!Bp and let ' : B ! A be the morphism induced by the 'p. Thenthe morphism induced by the hp yields a homotopy between �' and �'. p3.3. Homotopy between functors. Let k be a commutative ring and A, B smallexact DG categories. Let F;G : A ! B be DG functors.An a-homotopy from F to G is the datum of a morphism of DG functors � :F ! G such that �A is an in
ation of Z0 B which becomes invertible in H0B forall A 2 A.A b-homotopy from F to G is the datum of� a morphism �A : FA! GA of Z0B which becomes invertible in H0B for allA 2 A (but which will not be functorial in A, in general)� a morphism of graded k-modules homogeneous of degree �1h = h(A;B) : A (A;B)! B (FA;GB)for all A;B 2 A such that we have(�B)(Ff) � (Gf)(�A) = d(h(f)) + h(d(f))h(fg) = h(f)(Fg) + (�1)n(Gf)h(g)for all composable morphisms f; g of A, where f is of degree n.A c-homotopy from F to G is an isomorphism from F to G in Rep(A;B).Let x = a; b or c. We write �x for the smallest equivalence relation containingall pairs (F;G) such that there is an x-homotopy from F to G. Using statement a)of the following lemma, we de�ne F to be homotopic to G if we have F �x G forx = a; b; c.Lemma. a) The relations �a, �b and �c coincide.



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 25b) There is a universal pair P1; P2 : B0 ! B of a-homotopic DG functors (i.e. foreach pair F;G : A ! B of a-homotopic functors there is a functor � : A ! Bsuch that P1� = F , P2� = G). Moreover, there is a DG functor D : B ! B0such that P1D = 1B = P2D and D induces an equivalence in the associatedstable categories and an isomorphism of DG k-modulesB (A;B)! B0 (DA;DB)for all A;B 2 B.Proof. a) If � : F ! G is an a-homotopy, then by putting �A = �A and h(A;B) = 0for all A;B 2 A we obtain a b-homotopy. Now suppose that we have an arbitraryb-homotopy (�; h) from F to G. Consider the sequencesGA! IA! (FA)[1]; A 2 Awhere IA = Cone (�A). By the assumption on �A, the term IA is a zero objectof B. We will now make A 7! IA into a DG functor A ! B such that the abovesequence becomes a sequence of DG functors. This will clearly imply that F isisomorphic to G in Rep (A;B). To de�ne the morphismsA (A;B)! B (IA; IB)we identify B (IA; IB) with the module of matrices� B (GA;GB) B(FA[1]; GB)B (GA;FB[1]) B(FA[1]; FB[1]) � �! � B (GA;GB) B (FA;GB)[�1]B (GA;FB[1]) B (FA;FB) � :Then the morphism A (A;B)! B (IA; IB) is given byf 7! � Gf h(f)0 Ff � :It is easy to check that this de�nes a morphism of complexes and a functor whichis moreover compatible with the above sequences.Finally, suppose that F is isomorphic to G in Rep (A;B). Then we apply lemma3.5 below to B = Fun (A;B) and to the class � of morphisms ' such that 'Ais invertible in B for all A 2 A. We conclude that there is a �nite sequenceconnecting F to G and consisting of in
ations of Fun (A;B) which become invertiblein Rep (A;B). This clearly implies F �a G.b) Let B0 be the full exact DG subcategory of FilB (cf. example 2.2 f) whoseobjects are the in
ations i : B1 ! B2 which become invertible in B. The DGfunctors Pj : B0 ! B ; i 7! Bj ; j = 1; 2 ;D : B ! B0 ; B 7! (B 1! B):satisfy the claim. Let � be an a-homotopy from F to G. Then clearly� : A ! B0 ; A 7! (FA �A! GA)satis�es P1� = F , P2� = G. p



26 BERNHARD KELLER3.4. Homotopy invariance (exact DG categories). Let A and B be smallexact DG categories and F : A ! B a DG functor. We say that F is a resolutionif F induces an equivalence A ! B. It is a pure resolution if moreover F induces aquasi-isomorphism A (A;B) 
 V ! B (FA;FB)
 Vfor each DG k-module V , and all A;B 2 B. Note that if F is a resolution and A,B are 
at, then F is automatically a pure resolution.Lemma. a) If F is a pure resolution, then F induces an isomorphism C(A)!C(B) in DMix .b) Two homotopic DG functors A ! B induce the same morphism C(A) !C(B) in DMix .Proof. a) Let A0 be the full DG category of B formed by the objects FA, A 2 A.The assumption that F induces a quasi-isomorphismA (A;B) 
 V ! B (FA;FB)
 Vfor each DG k-module V , and all A;B 2 B implies that F induces a quasi-isomorphismC(A)! C(A0). The DG category version of lemma 1.2 of [19] impliesthat the inclusion A0 � B induces a quasi-isomorphism C(A0)! C(B).b) This follows from a) and lemma 3.3 b). p3.5. Isomorphisms in Localizations. If C is a small category, we denote by Iso Cthe category with the same objects as C and whose morphisms are the isomorphismsof C and by Quot C the localization of C at the class of all morphisms.Let E be a Frobenius category and � a multiplicative system [34] in E. Let I�denote the category whose objects are those of E and whose morphisms are thein
ations of E which become invertible in E [��1].Lemma. The canonical functor Quot (I�) ! Iso (E [��1]) is an isomorphism ofcategories.Proof. Let E� be the category whose objects are those of E and whose morphismsare those of E which become invertible in E [��1]. Then, since � admits a calculusof fractions, the canonical functor Quot (E�)! Iso (E [��1]) is an isomorphism. Soit remains to be proved that the canonical functor Quot (I�) ! Quot (E�) is anisomorphism. Let 
 denote the class of morphisms of I� which become invertiblein E . Clearly Quot (I�) identi�es with Quot (I�[
�1]). So it is enough to provethat the canonical functor F : I�[
�1]! E� is an isomorphism. We will constructan inverse G to this functor.Let Q : I� ! I�[
�1] be the quotient functor. Let f : X ! Y be a morphismof E�. Choose an in
ation i : X ! I with injective I. Consider the morphisms� fi � : X ! Y � I and � 1Y0 � : X ! Y � I:De�ne G(f) = Q(� 1Y0 �)�1 �Q(� fi �):Let us show that this does not depend on the choice of the in
ation i. Indeed, leti0 : X ! I 0 be another in
ation with injective I 0. The claim will follow once we



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 27prove that the following diagram becomes commutative after applying QY � IX Y � I � I 0 YY � I 0?[�1 �2]������[f i]t-[f i i0]t@@@@@R[f i0]t @@@@@I �Y��Y�����	 �Y6[�1 �3]We have to prove thatQ(24 fi0 35) = Q(24 fii0 35) = Q(24 f0i0 35):To show the �rst equality, choose j : I ! I 0 such that i0 = ji. Then [f i i0]t is thecomposition of [f i 0]t followed bys = 1Y � � 1I 0j 1I0 � :The functor Qmaps s to the identity of Y �I�I 0 since its composition with �Y is theidentity and Q(�Y ) is invertible. The second equality is proved similarly. Now letus show that G(gf ) = G(g)G(f ). Indeed, this now follows from the commutativityof the diagram X Y � I Z � I � JY Z � JZ-[f i]t -u6�Y -[g j]t 6v6�Zwhere j : Y ! J is an in
ation with injective J andu = 24 g 00 1Ij 0 35 and v = 24 1Z 00 00 1J 35 :The fact that G(1X ) = 1GX follows from G(1X) = G(12X ) = G(1X )2 becauseG(1X) is invertible (it is a composition of two isomorphisms of E.). This meansthat we have Q(� 1Xi �) = Q(� 1X0 �)



28 BERNHARD KELLERif f : X ! Y and i : X ! I is an in
ation with injective I. We will use this to showthat G(f) = Q(f) if f is an in
ation which becomes invertible in E [��1]. Indeed,in this case, we have i = jf for some j : Y ! I. Therefore� fi � = � fjf � = � 1Yj � � fand Q(� fi �) = Q(� 1Yj �) �Q(f) = Q(� 1Y0 �) �Q(f)which implies that G(f ) = Q(� 1Y0 �)�1 �Q(� fi �) = Q(f):If follows that G is full. But clearly, the composition FG is the identity of E�.Thus, F and G are inverse isomorphisms. p3.6. Resolutions of exact DG categories. Let k be a commutative ring andA a small exact DG category. A DG functor F : B ! A is a 
at (resp. closed)resolution if it is a resolution (3.4) and B is a 
at (resp. closed) exact DG category(2.4).By de�nition, the mixed complex associated with A is C(B), where B ! A is a
at resolution. By 3.4 and the following lemma, this is well-de�ned up to canonicalisomorphism in DMix and functorial with respect to A.Lemma. a) Each exact DG category A admits a closed resolution B ! A.b) Each diagram of exact DG categories and DG functorsBA0 A?F-Gwhere F is a resolution, may be completed to a squareB0 BA0 A?F 0 -G0 ?F-Gwhich is commutative up to homotopy and where F 0 is a resolution.c) Suppose that K;L : A ! A0 are DG functors and there is a DG functorG : A0 ! A00 inducing a stable equivalence A0 �! A00 and such that GK ishomotopic to GL. Then there is a closed resolution F : B ! A such that KFis homotopic to LF .Proof. a) We imitate the proof of (3.2 a): We choose a de
ationp0 = p0(A;B) : V0(A;B)!A (A;B)with V0(A;B) 2 F for all A;B 2 A. We let B0 = T (V0) be the category with thesame objects as A and whose morphisms A ! B are parametrized by the direct



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 29sum of the V0 (Bn�1; B) 
 V0 (Bn�2; Bn�1)
 : : :
 V0 (A;B1)where B1; : : : ; Bn�1 runs through all �nite sequences of objects of A, n � 0. Welet F0 : B0 !A be the functor extending p0 etc.This construction yields a DG functor F 0 : B0 ! A which is bijective on objectsand induces quasi-isomorphismsB0 (A;B)!A (F 0A;F 0B)for all A;B 2 B0. The DG category B0 is closed but will not be exact, in general.We put B = dgfreeB0 and let F : B ! A be the functor induced by F 0 (cf. example2.2 c).b) In a �rst step, we will replace F by a functor which induces de
ations inthe morphism spaces and a surjection of the object sets. Indeed, let B0 be the fullsubcategory of FilF (cf. example 2.2 e) formed by the pairs (B; i : FB ! A) wherei becomes invertible in B. Then the functorsB ! B0 ; B 7! (B;1 : FB ! FB)B0 ! B ; (B; i : FB ! A) 7! Bare inverse to each other up to homotopy and the functorF 0 : B0 !A ; (B; i : FB ! A) 7! Ais surjective on objects. Using the method of he proof of (3.2 b) we can modify itso as to induce de
ations of the morphism spaces. Let us therefore assume that Fis surjective on objects and induces de
ations of the morphism spaces. For eachobject A0 of A0, we choose a preimage G0A0 of GA0 under F . Now let B0 be thecategory with the same objects as A0 and whose morphism spaces are given bypullback diagrams B0 (A01; A02) B0 (G0A01; G0A02)A0 (A01; A02) A (GA01; GA02):-? ?-Then B0 is an exact DG category and the obvious functors F 0 : B0 ! A0 andG0 : B0 ! B yield a commutative diagram as in the claim.c) As in the proof of b) we may and will assume that K induces surjections of themorphism sets and de
ations in the morphism spaces. Using 3.3 we may assumethat we have a b-homotopy (�; h) : GK ! GL.For allA;B 2 A, choose a de
ation p0 : V0(A;B)!A (A;B) and let B0 = T (V0)and F0 : B0 !A be the functor extending p0 as in the proof of a).B0 = T (V0) F0!A K;L��! A0 G!A00For each A 2 B0, choose a morphism~�A : KF0A! LF0Aof Z0A such that G(~�A) = �A (this is possible, since G induces de
ations in themorphism spaces). Let A;B 2 B0. Since G induces a de
ation, there is a morphism



30 BERNHARD KELLERh00 such that the following diagram becomes commutativeV0 (A;B) A0 (KA;LB)A (A;B) A00 (GKA;GLB):?p0 -h00 ?-hThen the morphismV0 (A;B)!A0 (KA;LB) ; a 7! (~�B)(Ka) � (La)(~�A) � d(h00(a))� h00(d(a))factors through the acyclic subcomplex kerG � A0 (KA;LB). Since V0 (A;B)belongs to F , it equals d h000 + h000 d for some h000 : V0(A;B)! kerG � A0 (KA;LB).We put h0 = h00 + h000 . We can then extend h0 uniquely to B0 in such a way that(~�; h0) de�nes a b-homotopy from KF0 to LF0. Now we construct B1 as in theproof of a) by choosing morphisms p1 : V1 (A;B) ! B0 (A;B) inducing de
ationsonto the kernel of B0 (A;B)!A (A;B)and letting B1 = B0 �k T (V1[1]). To extend h0 to B1 we �rst note that we have0 = (~�B)(KF0f) � (LF0f)(~�A) = d(h0(f)) + h0(d(f))for f belonging to the kernel of F0. So h0 p1 de�nes a morphism of complexesV1[1]!A0 (KA;LB). Moreover, its composition with G vanishes.V1 (A;B) kerGB0 (A;B) A0 (KA;LB)A (A;B) A00 (GKA;GLB)?p1 - ??F0 -h0 ?G-hSo it factors through kerG, which is acyclic, and since V1[1] belongs to F , we haveh0 p1 = d h01 + h01dV1[1]for some morphism h01 : V1[1] ! A0(KA;LB) of degree �1. We can then de�nea unique b-homotopy (�; h1) from KF1 to LF1 : B1 ! A0 by requiring that h1restricts to h0 on B0 and to h01 on V1[1]. By iterating this construction we obtain adirect system of DG categories Bp and a compatible family of b-homotopies (�; hp)from KFp to LFp. Passage to the limit yields the result. p3.7. Morphisms of mixed complexes. Let MorMix be the category of mor-phisms C1 ! C2 of mixed complexes. If we identify a mixed complex with aDG �-module as in (1.2), a morphism f : C1 ! C2 of mixed complexes may beidenti�ed with the DG module C1 �C2 over the DG algebra� � �0 � �



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 31where e12 acts by (c1; c2) 7! (0; f(c1)). Using this identi�cation we viewMorMixas a category of DG modules and we de�ne DMorMix to be the associated de-rived category. Note that a morphism of DMorMix is invertible i� both of itscomponents are invertible in DMix .3.8. Homotopy invariance (localization pairs). Let k be a commutative ring.Let F;G : B ! B0 be exact functors between localization pairs. By de�nition, F ishomotopic to G if the underlying exact functors B1 ! B01 are homotopic (3.3). Thefunctor F is a pure (resp. closed, resp. 
at) resolution if this holds for the inducedfunctors B1 ! B01 and B0 ! B00.For a localization pair B = (B0;B1), the object Cm(B) 2 DMorMix is de�nedto be the morphism C(B0)! C(B1)ofMix . This is clearly functorial in B.Lemma. a) If F is a pure resolution, then F induces an isomorphism Cm(B) !Cm(B0) in DMorMix .b) If F;G : B ! B0 are homotopic, they induce the same morphism Cm(B) !Cm(B0) in DMorMix .Proof. Statement a) follows from (3.4) and the fact that a morphism of DMorMixis invertible i� its two components are invertible.b) Suppose that we have an a-homotopy between F : B1 ! B01 and F 0 : B1 !B01. Then we do not necessarily have F 0(B0) � B00. However, suppose that B00 issaturated in B01, i.e. the image of B00 in B01 is closed under isomorphisms. Then wedo have F 0(B0) � B00. Now for any B00 � B01, there is a saturation sat(B00) � B01 andby a), the inclusion yields an isomorphism Cm(B00;B01) �! Cm(sat(B00);B01). So wemay assume that B00 is saturated and then the claim is proved by a variant of theproof of (3.4 b). p3.9. Resolutions of localization pairs. If A = (A0;A1) is a localization pair,a (
at resp. closed) resolution of A is a morphism of localization pairs B ! Asuch that B1 ! A1 and B0 ! A0 are (
at resp. closed) resolutions of exact DGcategories.Using part a) of the following lemma, for a localization pair A, we de�ne the ob-ject Cm(A) to be Cm(B), where B ! A is a 
at resolution. Thanks to 3.8 and thelemma, this is well-de�ned up to canonical isomorphism in DMorMix and func-torial in A. The mixed complex associated with A is de�ned to be Cone(Cm(A)).If A is a (not necessarily 
at) exact category, the mixed complex of A is de�nedto be the mixed complex associated with the localization pair AcbA � CbA.Lemma. a) For each localization pair A, there is a closed resolution F : B ! A.b) Each diagram of localization pairs BA0 A?F-G



32 BERNHARD KELLERwhere F is a resolution, may be completed to a squareB0 BA0 A?F 0 -G0 ?F-Gwhere F 0 is a resolution and GF 0 is homotopic to FG0.c) Suppose that K;L : A! A0 are exact functors between localization pairs andthere is an exact functor G : A0 ! A00 which is a resolution of A00 and suchthat GK is homotopic to GL. Then there is a resolution F : B ! A such thatKF is homotopic to LF .Proof. This is a straightforward consequence of lemmas 3.6 and 3.8. For example,to prove a), we choose a 
at resolution F1 : B1 ! A1 and let B0 be the preimageof A0 under F1. p4. Completion, Cokernels4.1. The categoriesMb andM. Let U be a universe containing an in�nite set.A category C is a U-category if it is small and the set C (X;Y ) belongs to U forall X;Y 2 C. It is U-small if the set of its morphisms belongs to U. It has U-coproducts if each family (Xi)i2I of objects of C indexed by a set I of U admits acoproduct in C.Fix k a commutative ring belonging to U. The `strict' category Mbstr has asobjects the U-small exact DG categories. Its morphisms are the DG functors.The homotopy categoryMbhtp is obtained fromMbstr by identifying homotopic DGfunctors. Finally, the category Mb is obtained fromMbhtp by localization at theclass of DG functors inducing equivalences in the stable categories. In (3.6), wehave shown that this class admits a calculus of right fractions [8] and we haveconstructed the cyclic functorC :Mb !DMix ; A 7! C(A):A triangulated category T is compactly U-generated if it is a U-category havingU-coproducts and admitting a family (Xi)i2I , I 2U, of compact objects such thatT coincides with its smallest triangulated subcategory containing all Xi and stableunder U-coproducts. In this case, the family (Xi) is a family of U-generators ofT . Such a category is Karoubian (as shown in [2]), i.e. idempotents split in T .Let A be aU-small DG category. Let A+ be the DG category of all DG modulesP such that P is closed and P (A) belongs to U for all A 2 A. Then A+ is an exactDG category and the associated stable category A+ is a compactly U-generatedtriangulated category. This results by inspection of the proofs from section 3 of[18].The assignment A 7! A+ is functorial in the following sense: Let A;B be U-small DG categories and F : A ! B a DG functor. Then the tensor product bythe bimodule (A;B) 7! B(B;FA) yields an induced functor F+ : A+ ! B+ well-de�ned up to canonical isomorphism. The associated functor A+ ! B+ preservescompactness and commutes with arbitrary coproducts. If F induces an equivalencein the stable categories, then so does F+.



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 33We denote byMstr the category whose objects are the exact DG U-categoriesA such that A is compactlyU-generated. The morphisms ofMstr are DG functorsF : A ! B such that the induced functor A ! B preserves compactness andcommutes with arbitrary coproducts. The category Mhtp is obtained fromMstrby identifying homotopic DG functors. Finally, the categoryM is the localizationofMhtp at the class of DG functors inducing equivalences in the stable categories.As forMb, this class admits a calculus of right fractions by (3.6).An exact DG category A is stably Karoubian if A is Karoubian. If A is a DGcategory inMb, then A+ is stably Karoubian since A+ is compactly U-generated.Clearly, there is a minimal Karoubian triangulated subcategory AKar of A+ con-taining A. If we let A0Kar be the preimage of AKar in A+, then the stable categoryof A0Kar is clearly isomorphic to AKar. However, A0Kar will not be U-small in gen-eral. Therefore, de�ne AKar to be a minimal full subcategory of A0Kar containingA such thata) AKar is closed under shifts and mapping cones,b) for each A 2 AKar and each idempotent e ofA+ (A;A), AKar contains objectsA0 and A00 which in A+ become isomorphic to the kernel and the image of e.Then clearly AKar is U-small and its stable category is still equivalent to AKar .In particular, it is stably Karoubian. By the theorem of Neeman-Ravenel (4.12),AKar is in fact equivalent to the subcategory of compact objects of A+.LetMbKar be the full subcategory ofMb whose objects are the stably Karoubiancategories.Proposition. The functor Mb !M ; A 7! A+admits a fully faithful right adjoint B 7! Bc. The functors A 7! A+ and B 7! Bcinduce quasi-inverse equivalencesMbKar �!M.The proposition shows that F+ : A+ ! B+ is invertible in M i� F is anequivalence up to factors. For A inMb, we have a canonical isomorphism AKar �!(A+)c. In particular, we have an equivalence up to factorsA ! (A+)c:For B 2M, we de�ne the mixed complexC(B) := C(Bc):This means that C(B) = C(S) for someU-small stably Karoubian DG subcategoryS � B containing a set of compact U-generators for B. Since for A 2 Mb, thecanonical morphism A ! AKar induces an isomorphism C(A) ! C(AKar), wehave an isomorphism C(A) �! C(A+)which is functorial in A 2Mb.Proof of the Proposition. We construct the right adjoint B 7! Bc. Let B be anobject ofM. Consider the set Cp(B) of stably Karoubian exact DG subcategoriesR of B such that R is U-small and contains a family ofU-generators for B. The setCp(B) is non-empty and if R;R0 belong to Cp(B) there is R00 2 Cp(B) containing



34 BERNHARD KELLERboth R and R0. By the theorem of Neeman-Ravenel (4.12), the inclusion functorsthen yield equivalences R �!R00 � R0:We put Bc = R for some R 2 Cp(B). This is independent of the choice of R upto canonical isomorphism. Now let F : B1 ! B2 be a functor such that F : B1 !B2 preserves compactness and commutes with arbitrary coproducts. We chooseR1 2 Cp(B1) arbitrarily and R2 2 Cp(B2) such that FR1 � R2. This yields awell-de�ned morphism F c : Bc1 ! Bc2 of M and it is easy to check that B 7! Bcis a functor. We will now construct a natural transformation B ! Bc+. By (3.6),we may and will assume that B (and hence Bc = R � B) is a closed DG category.Let I be the R-R-bimodule (X;Y ) 7! R (X;Y ) and ~I ! I a closed resolution overR
R such that ~I(X;Y ) 2U for all X;Y 2 R. Since R is closed, the DG moduleM 
R ~I is closed for each R-moduleM such that M (X) is a closed DG k-modulefor all X 2 R. In particular, we have a well-de�ned DG functorB ! R+ ; B 7! B (?; B)
R ~I:The associated functor in the stable categories commutes with arbitrary coproductsand induces an equivalence of R onto its image in R+. So this functor is indeed anequivalence B ! R+. If F : B1 ! B2 is a DG functor as above, then we have toshow that the diagram B1 B2R+1 R+2? -F ?-(F c)+commutes in M. We will even show that it commutes up to homotopy. Indeedwith the obvious notations, the canonical morphism ~I2 ! I2 yields an isomorphismB1 (?; X)
R1 ~I1 
R1 R2 (�; F?)
R2 ~I2 ! B1(?; X)
R1 ~I1 
R1 R2(�; F?)of R+2 , for each X 2 B1. Now consider the compositionB1 (?; X)
R1 ~I1 
R1 R2 (�; F?)
R2 ~I2 ! B1 (?; X) 
R1 R2 (�; F?) 
R2 ~I2! B2 (�; FX) 
R2 ~I2 ;where the �rst morphism is induced by the canonical morphism ~I1 ! I1 and thesecond by the canonical morphismB1 (?; X)
R2 (�; F?)! B2 (�; FX):The above composition is clearly invertible inR+2 forX 2 R1. By in�nite d�evissage,this su�ces to conclude that it is an isomorphism for arbitrary X 2 B1.Finally, for A 2 MKar , we have a canonical isomorphism A ! (A+)c in M.Indeed, we can take for R 2 Cp(A+) the image of the Yoneda embedding A 7!A (?; A). This is clearly natural in A 2MKar. p



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 354.2. Exact sequences inMb and M. LetA F! B G! Cbe a sequence ofMb.Lemma. The induced sequence0!A+ ! B+ ! C+ ! 0is exact inM if and only if the sequence of triangulated categories0!A ! B ! C ! 0is exact up to factors.Proof. By the theorem of Neeman-Ravenel (4.12), the sequence0!A+ ! B+ ! C+ ! 0is exact i� the subcategories of compact objects form a sequence which is exact up tofactors. Now we know that the subcategory of compact objects of A+ is equivalentto AKar . Clearly, exactness up to factors is preserved by passage between A andAKar. The claim follows. p4.3. The categories Lb and L. This is a relative version of (4.1). Let Lbstr denotethe category whose objects are the localization pairs A0 � A1 with U-small A1.Morphisms are morphisms of localization pairs. The category Lbhtp is obtainedby identifying homotopic morhisms and the category Lb is obtained from Lbhtp bylocalization at the class of morphisms F : A ! B inducing equivalences Ai �! Bi,i = 0; 1. In (3.9), we have shown that this class admits a calculus of right fractionsand we have constructed the functorCm : Lb!DMorMix ; A 7! Cm(A):Let Lstr be the category whose objects are pairs A : A0 � A1 of exact DGcategories belonging toM such that A0 is saturated, i.e. its image in A1 is closedunder isomorphism. By de�nition the morphisms A! A0 of Lstr are DG functorsF : A1 ! A01 ofMstr such that FA0 � A00. The category Lhtp is obtained fromLstr by identifying homotopic functors. The category L is deduced from Lhtp bylocalizing at the class of functors inducing equivalences in the associated stablecategories. This class admits a calculus of right fractions by lemma 3.9.For a localization pair A = (A0;A1), we let A+ 2 L be the pair consisting ofA+1 and the saturation of the image of A+0 in A+1 . This yields a functor Lb ! L.A pair A = (A0;A1) of Lb is stably Karoubian if both A0 and A1 are stablyKaroubian. In analogy with (4.1), one can construct a canonical morphism A !AKar to a stably Karoubian pair AKar. The canonical morphismA+ ! (AKar)+ isan isomorphism. The following proposition now shows that A ! AKar is universalamong the morphisms from A to an object of LbKar, the full subcategory of Lbwhose objects are the stable Karoubian localization pairs.Proposition. The functor Lb ! L ; A! A+induces an equivalence LbKar �! L.



36 BERNHARD KELLERThe proof of the proposition is a variation on the proof of (4.1). Let B 7! Bcdenote an quasi-inverse functor. For B 2 L, we de�ne the objectCm(B) := Cm(Bc):This means that Cm(B) = Cm(S) for a localization pair (S0;S1) such that Si � Biis a U-small stably Karoubian DG subcategory containing a set of compact U-generators for Bi, i = 1; 2. As in (4.1), we have an isomorphismCm(A) �! Cm(A+)which is functorial in A 2 Lb.4.4. Exact sequences of Mstr. As in (4.1) let U be a universe containing anin�nite set and k a commutative ring in U. Let the sequence0!A F! B G! C ! 0ofMstr be exact, i.e. the following conditions holda) We have GF = 0.b) The functor F admits a right adjoint DG functor F� such that the adjunctionmorphism 1A ! F�F is invertible.c) The functor G admits a right adjoint DG functor G� such that the adjunctionmorphism GG� ! 1C is invertible.d) For each B 2 B, the sequenceFF�B ! B ! G�GBis a con
ation of B.Note that the adjoint functors F� and G� are not required to be morphisms ofMstr. In general, they will induce functors in the stable categories which do notpreserve compactness. However, they commute with arbitrary coproducts by thefollowing lemma.Lemma. Let S be a compactly generated triangulated category, T a triangulatedcategory with arbitrary coproducts and F : S ! T a triangle functor preservingcompactness and commuting with arbitrary coproducts. If F� is right adjoint to F ,then F� commutes with arbitrary coproducts. Moreover F detects compactness, i.e.an object X of S is compact i� so is FX.Proof. Let A 2 S be small and Bi, i 2 I, a family of T with I 2 U. Using thecompactness of FA and A we obtain the following chain of isomorphismsS (A;F�(ai2I Bi)) �! T (FA;ai2I Bi) �! ai2I T (FA;Bi) �!ai2I T (A;F�Bi)�! S (A;ai2I F�Bi):Since S is compactly generated, it follows that F� commutes with coproducts.The second assertion is immediate from the faithfulness of F and the fact that itcommutes with arbitrary coproducts. p



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 374.5. Exact sequences of Mhtp. By de�nition, an exact sequence of Mhtp is asequence satisfying the hypothesis of part a) of the following lemma. Note thateach exact sequence ofMstr yields an exact sequence ofMhtp.Lemma. a) Let A0 F 0! B0 G0! C0 be a sequence of Mhtp such that the inducedsequence of triangulated categories0!A0 ! B0 ! C0 ! 0is exact. Then there is an exact sequence0!A F! B G! C ! 0ofMstr and a commutative diagram ofMhtpA B CA0 B0 C0? - ? - ?- -such that the vertical arrows induce equivalences in the associated stable cat-egories.b) Let A0 F 0! B0 be a morphism ofMhtp inducing a fully faithful functor A0 ! B0.Then there is an exact sequence (F 0; G0) ofMhtp.Proof. a) The proof is the one of [19, 6.1]. For completeness, we give the construc-tion: Let A = A0 and let B be the full subcategory of FilF 0 whose objects are thepairs (A; i : F 0A! B) such that we haveB0(FA; cok i) = 0for all A 2 A. Let C be the subcategory of B whose objects are the pairs withA = 0. We have the functorsA! B ; A 7! (A;1 : F 0A! F 0A)B ! C ; (A; i : F 0A! B) 7! (0; 0! cok i)B ! B0 ; (A; i : F 0A! B) 7! BC ! C0 ; (0; 0! C) 7! G0C:This construction also yields a proof of b). p4.6. Exact sequences ofM. By de�nition, an exact sequence ofM is a sequencesatisfying the hypothesis of part a) of the followingTheorem. a) Let A0 F 0! B0 G0! C0 be a sequence of M such that the inducedsequence of triangulated categories0!A0 ! B0 ! C0 ! 0is exact. Then the morphism F 0 is a monomorphism ofM, the morphism G0is an epimorphism and the diagramA0 B00 C0? - ?-



38 BERNHARD KELLERis a pullback and a pushout inM.b) Let A0 F 0! B0 be a morphism of M such that the induced functor A0 ! B0 isfully faithful. Then there is an exact sequence (F 0; G0) ofM.Proof. a) Since M is obtained from Mhtp by localizing at a class admitting acalculus of right fractions, and by lemma 4.5, we may assume that we have in factan exact sequence ofMstr 0!A F! B G! C ! 0:Again by the calculus of right fractions, to prove that F is a monomorphismand thatthe above square is cartesian, it is enough to prove the corresponding assertionsin Mhtp. Let X 2 M. Recall the category Fun (X ;A) from example 2.2 e).Let fun(X ;A) denote the subcategory of functors H 2 Fun (X ;A) such that theinduced functor in the stable categories preserves compactness and commutes witharbitrary coproducts. Denote by � the class of morphisms s of the stable categoryof Fun (X ;A) such that sX is invertible in A for all X 2 X . Clearly this system iscompatible with the triangulated structure and ifH is in fun (X ;A) and s : H ! H 0is a morphism of � then H 0 belongs to fun (X ;A). Let rep(X ;A) denote thelocalization of the stable category of fun (X ;A) at the class of morphisms of �between objects of fun (X ;A). By what we have just seen, rep (X ;A) identi�eswith a full subcategory of Rep (X ;A), the localization of the stable category ofFun (X ;A) at �. Consider the sequencesFun (X ;A) Fun(X ;B) Fun (X ; C)fun (X ;A) fun(X ;B) fun (X ; C) ;-F� -G�6 - 6 - 6The functors F� and (F�)� are a pair of adjoint functors, they are compatible with� and the composition (F�)� F� is isomorphic to the identity. Hence F� inducesa fully faithful functor Rep (X ;A) ! Rep(X ;B). Moreover F� takes rep (X ;A)to rep(X ;B). So it induces a fully faithful functor rep (X ;A) ! rep (X ;B). Nowby de�nition, the morphisms from X to A of Mhtp are the isomorphism classesof functors in rep (X ;A). So the map induced by F on the sets of morphisms ofMhtp is injective and F is a monomorphism ofMhtp. Now suppose that we haveH 2 rep (X ;B) such that GH = 0 inMhtp. Then by the trianglesFF�HX ! HX ! G�GHX ! SFF�HX ; X 2 X ;H becomes isomorphic to FF�H in rep (X ;B). Since F detects compactness (4.4)and F� commutes with arbitrary coproducts it follows that F�H belongs to thecategory rep (X ;A). So the square of the assertion is a pullback.



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 39We will now show that G is an epimorphism ofMhtp and that the square is apushout inMhtp. Indeed, consider the sequencesFun (C;X ) Fun (B;X ) Fun (A;X )fun (C;X ) fun (B;X ) fun (A;X )-G� -6 -G� 6 - 6As above, we see that G� induces a fully faithful functor rep (C;X ) ! rep (B;X ).Now suppose that we have H : B ! X such that HF = 0 inMhtp. Then as abovewe see that H is isomorphic to HG�G in rep (B;X ). We claim that HG� belongsto rep (C;X ). Indeed, the functor induced by G� in the stable categories commuteswith arbitrary coproducts. Hence so does HG�. Moreover, we know from thetheorem of Neeman-Ravenel (4.12) that the compact objects of C are direct factorsof objects GB, where B is compact in B. For such an object, HG�(GB) �! HB iscompact by assumption. Whence the claim.The fact that G is an epimorphism ofM and that the square is a pushout inMis now easily deduced from the calculus of fractions and lemma 4.5.b) results from 4.5 b) by the calculus of fractions. p4.7. Comparison of L and short exact sequences of M. Denote by Ex thecategory of exact sequences of M. Let A = (A0;A1) be an object of L. Theinclusion functor A0 ! A1 is fully faithful so that by (4.6) we have an exactsequence 0!A0 !A1 !A2 ! 0of M, where A2 is unique up to unique isomorphism in M. We thus obtain afunctor � : L ! Ex :On the other hand, suppose that" : 0!A F! B G! C ! 0is an exact sequence ofM. We de�ne 	(") to be the pair consisting of B and thesaturation of the image of FA in B.Lemma. The functors � and 	 are quasi-inverse equivalences.Proof. Let Adm be the category of admissible monos of M i.e. of morphismsF : A ! B ofM such that the functor F : A ! B is fully faithful. By (4.6), thecanonical functor Ex! Adm is an equivalence. So it is enough to show that�0 : L ! Adm ; (A0;A1) 7! (A0 !A1)is an equivalence whose quasi-inverse functor is 	0 : Adm! L de�ned as follows:By de�nition the image of F : A ! B under 	 is the pair formed by B1 = B andthe saturation B0 of the image of F . Clearly we have 	0�0 = 1. On the other hand,



40 BERNHARD KELLERwe have a canonical morphism �0	0 ! 1 given for F : A ! B by the squareincl A BB0 B0:? -F ?1-This morphism is clearly functorial and invertible in Adm. p4.8. Cokernels. Consider the functorM! Ex ; A ! (0!A 1!A):By (4.6), this functor admits a left adjoint. By (4.7), it follows that the functorI :M!L ; A ! (Sat(0);A)admits a left adjoint, where Sat(0) is the saturation of the zero subcategory, i.e. thesubcategory of injectives of A. We denote the left adjoint by I�. If A = (A0;A1)is an object of L, we also write A1=A0 for I�A. Note that by de�nition, we havean exact sequence 0! A0 !A1 !A1=A0 ! 0ofM.Now suppose that A = B+ for a localization pair B = (B0;B1). Put Q+B =I�B+. Then we have an exact sequence ofM0! B+0 ! B+1 ! Q+B ! 0yielding an exact sequence of triangulated categories0! B+0 ! B+1 ! Q+B ! 0By the theorem of Neeman-Ravenel (4.12), if we pass to the subcategories of com-pact objects, we obtain a sequence which is exact up to factors0! B+0 c ! B+1 c ! Q+B c ! 0Now for each object A ofMb, the canonical functor A ! A+c is an equivalence upto factors (4.1). Hence we have a diagram of triangulated categories0 B+0 c B+1 c Q+B c 00 B0 B1 B1=B0 0:- - - -- -6 -6 -6The �rst two vertical functors are equivalences up to factors and hence (exercise)so is the third. Recall that T B = B1=B0 by de�nition. So we have an equivalenceup to factors T B ! Q+B c:



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 41By construction, this equivalence is functorial in B, up to isomorphism of triangu-lated functors. In particular, if F : B ! B0 induces an equivalence up to factorsT B ! T B0, then it induces an isomorphism ofMQ+B ! Q+B0by corollary 4.12 c) and if B0 F! B G! B00yields a sequence 0! T B0 ! T B ! T B00 ! 0which is exact up to factors, then by corollary 4.12 b), the sequence (F;G) inducesan exact sequence 0! Q+B0 ! Q+B ! Q+B00 ! 0ofM.4.9. Cokernels and Cones. If" : 0!A F! B G! C ! 0is an exact sequence ofM, we put, in the notations of (4.7),Cm(") := Cm(	(")):For each object X = (X1 ! X2) 2 DMorMix ;we de�ne @X to be the connecting morphism of the canonical triangleX0 f! X1 ! Cone(X) @X��! X1[1]:Theorem. a) The square L DMorMixM DMix?I� -Cm ?Cone-Cis commutative up to natural isomorphism.b) For each exact sequence " ofM, there is a commutative diagram of DMixCm(")1 Cm(")2 Cone(Cm("))C(A) C(B) C(C)? - ? - ?- -



42 BERNHARD KELLERwhose vertical morphisms are invertible. This diagram is functorial in ". Inparticular, if we de�ne @" by the commutative squareCone(Cm(")) Cm(")1C(A) C(A)[1]? -@Cm(") ?-@"then we have a functorial triangleC(A)! C(B)! C(C) @"! C(A)[1]:Proof. For a pair (A0;A1), we have the adjunction morphism ' : (A0;A1) !(Sat(0);A1=A0). We therefore obtain a natural morphismCone(Cm(A0;A1)) !�! Cone(Cm(Sat(0);A1=A0)) �! C(A1=A0):We will show that the morphism ! = Cone(Cm(')) is invertible. This will showa). By the equivalence L �! Ex, we may assume that we have an exact sequence0!A F! B G! C ! 0of Mstr such that A, B and C are closed DG categories and and A1 = B andA0 = Sat(FA). Then the adjunction morphism is induced by the functor G and isgiven by the square Sat(FA) BSat(0) C? - ?G-To compute the image of this morphism under Cone �Cm, we have to choose suit-able U-small subcategories. In the notations of the proof of proposition 4.1, letS 2 Cp(B) and R 2 Cp(A) such that FR � S. Consider the squareC(FR) C(S)C(0) C(T )? - ?C(G)-inclIf we interpret its rows as objects of DMorMix , it represents the image of theadjunction morphism under the functor Cm. Now the functor F is fully faithful, sowe have an isomorphism C(R) �! C(FR). Hence we are reduced to showing that



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 43the square C(R) C(S)0 C(T )? -C(F ) ?C(G)-represents a morphism of DMorMix whose image under the Cone-functor is in-vertible in DMix . This is proved in 4.13. The above argument also proves b). p4.10. Mayer-Vietoris-diagrams. Let0 A B C 00 A0 B0 C0 0- ?K -F ?L -G ?M -- -F 0 -G0 -be a diagram of M whose rows are exact such that K is invertible. We use thenotations of (4.9).Lemma. If � denotes the compositionC(C0)! C(A0)[1] C(K)[1]�1������! C(A)[1]! C(B)[1] ;the sequenceC(B) �! C(C)� C(B0) �! C(C0) �C(B)[1]! C(B)[1] ; � = � �C(G)C(L) � ; � = [C(M ); C(G0)] ;is a triangle of DMix .Proof. We are given a morphism " ! "0 of exact sequences of M. It inducesamorphism Cm(") ! Cm("0) of DMorMix whose �rst component Cm(")1 !Cm("0)1 is invertible. After replacing Cm(") and Cm("0) by isomorphic objects,we may assume that the morphism is given by a morphismX0 X1X 00 X01?f -i ?g-i0ofMorMix , where i and i0 are componentwise injective and f is a quasi-isomor-phism. After replacing X0 ! X1 byX 00 ! X 00 �X0 X1we may even assume that f is an isomorphism ofMix . Then we have a diagramwith exact rows inMix . By passing to the associated triangles in DMix weobtain the assertion. p



44 BERNHARD KELLER4.11. Proofs of theorems 2.4 and 2.7. Let B = (B0;B1) a be localization pair.We have a natural isomorphism Cm(B) �! Cm(B+) by (4.3). This yields the �rstisomorphism inCone(Cm(B)) �! Cone(Cm(B+)) �! C(I�B+) = C(Q+B):The second one is (4.9 a). Now theorem 2.4 follows from 4.8 and 4.9 b), and theorem2.7 follows from 4.8 and 4.10.4.12. The theorem of Neeman-Ravenel-Thomason-Trobaugh-Yao. Let Sbe a triangulated category admitting arbitrary set-indexed coproducts. An objectX of S is compact if the functor HomS (X; ?) commutes with arbitrary coproducts.The category S is compactly generated if it contains a set of compact objects Csuch that T coincides with its smallest triangulated subcategory containing C andstable under forming coproducts.The following theorem is due to Neeman [29, 2.1]. His proof is based on ideas ofRavenel [31]. Important special cases are due to Thomason-Trobaugh [32] and Yao[39].Theorem. Let R and S be compactly generated triangulated categories. Supposethat R is a set of compact objects generating R. Let F : R ! S be a fully faithfulfunctor commuting with arbitrary coproducts and such that FX is compact for eachX 2 R. Put T = S=R.The functors F : R ! S and G : S ! T preserve compactness. The naturalfunctor Sc=Rc ! T c is fully faithful and T c is the closure of its image underforming direct factors.The theorem (and its proof) admit the followingCorollary. a) Suppose that S is a triangulated category admitting arbitrary co-products which is generated by a set R of compact objects. Then an object ofS is compact i� it is a direct factor of a �nite extension of objects of R.b) Suppose that R, S, and T are compactly generated triangulated categories.Then a sequence 0!R! S ! T ! 0of triangle functors preserving compactness and commuting with coproductsis exact i� the induced sequence0!Rc ! Sc ! T c ! 0is exact up to factors (2.4).c) Suppose that R and S are compactly generated triangulated categories. Then atriangle functor R ! S preserving compactness and commuting with arbitrarycoproducts is an equivalence i� it induces an equivalence up to factors Rc !Sc. This holds i� it induces an equivalence Rc �! Sc.Proof of the Corollary. Part a) is lemma2.2 of [29]. The necessity in b) follows fromthe theorem. Now suppose that the second sequence is exact. Then R ! S is fullyfaithful by the principle of in�nite d�evissage (cf. for example Lemma 4.2 b) of [18]).We then have to show that the canonical functor S=R ! T is an equivalence. Nowby the theorem, we know that Sc=Rc identi�es with a factor-dense subcategory of(S=R)c. By the assumption, Sc=Rc also identi�es with a factor-dense subcategoryof T c. Hence the functor (R=S)c ! T c is an equivalence onto a factor-dense



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 45subcategory. By the principle of in�nite d�evissage, it follows that R=S ! T isan equivalence onto a factor-dense subcategory. Since this subcategory has in�nitedirect sums, it is in fact closed under forming direct summands [2, 3.2] and thus itcoincides with T . c) is the special case where S = 0. The last statement is clearbecause Rc and Sc are closed under forming direct summands. p4.13. Localization. Let 0!A F! B G! C ! 0be an exact sequence ofMstr such that A;B and C are closed DG categories. Inthe notations of the proof of 4.1, let R 2 Cp(A), S 2 Cp(B), and T 2 Cp(C) denoteU-small subcategories such that FR � S and GS � T .Theorem. The functor G induces a quasi-isomorphismCone(C(R)! C(S))! C(T ):Remark 1. The proof of the corresponding assertion in [19, section 6] contained anerror: To prove that the functor E ! HS of [19, Lemma 5.2] commutes with in�nitesums, it is not enough to check that its composition with homology commutes within�nite sums. It is true that there is an equivalence E ! DS, but probably ingeneral, the functor E ! HS does not have its image in HpS. To correct themistake, one needs that S is a closed DG category. We could not have reduced tothis case with the methods at our disposal in [19], but we are now able to do sothanks to the results of section 3. The mistake is corrected in the proof below.Proof. We adapt (and correct) the argument of section 6 of [19]. Consider thesequence 0! B (X;FF�Y )! B (X;Y )! B (X;G�GY )! 0as a sequence of S-S-bimodules (X and Y denote `variable' objects of S). Wewill show that the image of this sequence under the relative left derived functor of?
Se I, where I(X;Y ) = B (X;Y ), is isomorphic to the sequenceH(R)! H(S)! H(T )where H(S) denotes the Hochschild-Mitchell complex (= b-complex) of S. Moreprecisely, if 0! L!M ! N ! 0denotes the bimodule sequence, we will construct a diagram of S-S-bimodulesL0 M 0 N 00 L M N 0? - ? - ?- - - -whose vertical morphisms are quasi-isomorphisms. It follows that the canonicalmorphism from the cone over L0 ! M 0 to N 0 is a quasi-isomorphism. As in theproof of proposition 4.1, we denote by ~I a closed resolution of the S-S-bimoduleI. We will show that the image of the top row under the functor ?
Se ~I is quasi-isomorphic to H(R)! H(S)! H(T ):



46 BERNHARD KELLERIt follows that the canonical morphism from the cone over H(R)! H(S) to H(T )is a quasi-isomorphism. This implies that the cone over C(R)! C(S) is canonicallyquasi-isomorphic to C(T ).We now construct the resolutions L0, M 0, and N 0. For the second term, we takea variation on the bar resolution over S.For the �rst term, we take the submodule of the bar resolution over B which isgiven by theMB (FAn; FF�Y )
 S (FAn�1; FAn) 
 � � � 
 S (FA0; FA1)
 S (X;FA0)where A0; : : : ; An run through R. Since FR � S, this is well de�ned. We have toshow that it is actually a resolution of the �rst term. For this we have to show thatthe DG k-module: : :!MA0 B (FA0; FZ)
 S(X;FA0)! B (X;FZ)! 0is acyclic for each Z = F�Y , Y 2 S. Indeed, view this DG module as a trianglefunctor fromA to Dk, with Z varying in A. Clearly, the functor vanishes for Z 2 R.Moreover, it commutes with arbitrary direct sums. Thus it vanishes for arbitraryZ 2 A.Note that the third term N 0 = B (X;G�GY ) is isomorphic to T (GX;GY ). Wetake the bar resolution over T , which we view as an S-S-bimodule via the functorG.We will now compute the tensor products of L0,M 0, and N 0 with ~I over Se. ForM 0, this amounts to computing(S (Bn; Y ) 
O 
 S (X;B0))
Se ~Iwhere O is a closed DG k-module. Since S (Bn; ?) and S (?; B0) are free, this isquasi-isomorphic to(S (Bn; Y ) 
O 
 S (X;B0))
Se I �! S (X;B0)
S S (Bn; Y ) 
O�! S (Bn; B0)
Oso that we do obtain the b-complex over S.For L0, we have to compute(A (An; F�Y ) 
O 
 S (X;FA0)) 
Se ~ISince S (?; FA0) is free, this is quasi-isomorphic to(A (An; F�Y )
 O 
 S (X;FA0))
Se I �! S (X;FA0)
S A (An; F�Y )
 O�! A (An; F�FA0) 
O�! R (FAn; FA0)
 O ;which is the required result.Finally, for N 0, we have to compute(T (Cn; GY )
 O 
 B (X;G�C0)) 
Se ~I:Let U = C (Cn; G?) viewed as a functor from B to DG k-modules. Consider thecomposition (U 
 B (?; Z))
Se ~I ! (U 
 B (?; Z))
Se I�! B (?; Z)
S U ! U (Z):



ON THE CYCLIC HOMOLOGY OF EXACT CATEGORIES 47for Z 2 B. Clearly, it is invertible for Z 2 S. Moreover, U viewed as a functorB ! Dk commutes with arbitrary coproducts. Thus we have an isomorphism forall Z 2 B. For Z = G�C0 we �ndU (Z) 
O = C (Cn; GG�C0) 
O �! T (Cn; C0)
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