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Abstract. In these notes, we present Kontsevich’s theorem on the deforma-
tion quantization of Poisson manifolds, his formality theorem and Tamarkin’s
algebraic version of the formality theorem. We also introduce the necessary
material from deformation theory.
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CHAPTER 1

Presentation of the main results

In this chapter, we state the main results of M. Kontsevich’s eprint [32]. In
sections 1.1 and 3.1, we largely follow the lucid presentation of [45].

1. Every Poisson manifold admits a formal quantization

1.1. Deformations and Poisson structures. Let k be a commutative ring
and A a k-algebra (i.e. a k-module endowed with a k-bilinear map from A× A to
A). Denote by k[[t]] the ring of formal power series in an indeterminate t, and by
A[[t]] the k[[t]]-module of formal power series

∞∑

n=0

antn

with coefficients in A. Let ∗ be a formal deformation of the multiplication of A, i.e.
a k[[t]]-bilinear map

A[[t]]×A[[t]]→ A[[t]]

such that we have

u ∗ v ≡ uv mod tA[[t]]

for all power series u, v ∈ A[[t]]. The product of two elements a, b of A is then of
the form

a ∗ b = ab + B1(a, b) t + · · ·+ Bn(a, b) tn + · · ·
for a sequence of k-bilinear maps Bi, and these determine the product ∗ because it
is k[[t]]-bilinear. We put B0(a, b) = ab and we write

∗ =

∞∑

n=0

Bn tn.

Let J be the group of k[[t]]-module automorphisms g of A[[t]] such that

g(u) ≡ u mod tA[[t]]

for all u ∈ A[[t]]. We define two formal deformations ∗ and ∗′ to be equivalent if
there is an element g ∈ J such that

g(u ∗ v) = g(u) ∗′ g(v)

for all u, v ∈ A[[t]]. Note that, for g ∈ J and a ∈ A, we have

g(a) = a + g1(a) t + g2(a) t2 + · · ·+ gn(a) tn + · · ·
for certain k-linear maps gi : A → A, and that these determine g because it is
k[[t]]-linear.

One can show (cf. Cor. 4.5) that if A is associative and admits a unit element
1A, then each associative formal deformation ∗ of the multiplication of A admits
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6 1. MAIN RESULTS

a unit element 1∗. Moreover, such an associative formal deformation ∗ is always
equivalent to an associative formal deformation ∗′ such that 1∗′ = 1A.

Suppose that A is associative and commutative.

Lemma 1.1. Let ∗ be an associative (but not necessarily commutative) formal
deformation of the multiplication of A. For a, b ∈ A, put {a, b} = B1(a, b)−B1(b, a).

a) The map {, } is a Poisson bracket on A, i.e. a k-bilinear map such that
- the bracket {, } is a Lie bracket and
- for all a, b, c ∈ A, we have {a, bc} = {a, b}c + b{a, c}.

b) The bracket {, } only depends on the equivalence class of ∗.
Proof. a) The map

(u, v) 7→ 1

t
(u ∗ v − v ∗ u)

clearly defines a Lie bracket on A[[t]]. Let us denote it by [, ]. The bracket {, }
equals the reduction modulo t of [, ]. Therefore, it is still a Lie bracket. The second
equality follows from

[u, vw] = [u, v]w + u[v, w]

for all u, v, w ∈ A[[t]].
b) If g ∈ J yields the equivalence of ∗ with ∗′, then we have

B1(a, b) + g1(ab) = B′
1(a, b) + g1(a)b + ag1(b)

for all a, b ∈ A. Thus the difference B1(a, b)−B′
1(a, b) is symmetric in a, b and does

not contribute to {, }. √

Theorem 1.2 (Kontsevich [32]). If A is the algebra of smooth functions on a
differentiable manifold M , then each Poisson bracket on A lifts to an associative
formal deformation.

In other words, the map

{equivalence classes of formal deformations of A} −→ {Poisson brackets on A}
is surjective if A is the algebra of smooth functions on a differentiable manifold
M . Moreover, Kontsevich constructs a section of this map. His construction is
canonical and explicit for M = Rn; it is canonical (up to equivalence) for general
manifolds M . Below, we give two simple examples of formal deformations arising
from Kontsevich’s construction for M = Rn where the Poisson bracket is given
respectively by a constant and by a linear bivector field. We also give a class
of examples, due to Mathieu [41], of finite-dimensional Poisson algebras whose
brackets do not lift to formal deformations.

1.2. Example: The Moyal-Weyl product. Let M = R2. Consider the
Poisson bracket given by

{f, g} = µ ◦
(

∂

∂x1
∧ ∂

∂x2

)
(f ⊗ g) =

∂f

∂x1

∂g

∂x2
− ∂f

∂x2

∂g

∂x1
,

where µ is the multiplication of functions on M . Then Kontsevich’s construction
yields the associative (!) formal deformation given by

f ∗ g =

∞∑

n=0

∂nf

∂xn
1

∂ng

∂xn
2

tn

n!
.
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More generally, for n ≥ 2, let M = Rn, and let τij be a real number, 1 ≤ i < j ≤ n.
Consider the Poisson bracket defined by

{f, g} =
∑

i<j

τij µ ◦
(

∂

∂xi

∧ ∂

∂xj

)
(f ⊗ g).

Let L be the Lie algebra of the group of translations of Rn. Then the bracket {, }
is given by the operator

r =
∑

i<j

τij

∂

∂xi

∧ ∂

∂xj

considered as an element of Λ2L. Let r ∈ L⊗ L be a preimage of r and let

F = exp(tr)

viewed as an element of U(L) ⊗ U(L)[[t]], where U(L) is the universal enveloping
algebra of L. Then the bracket {, } comes from the associative formal deformation
given by

f ∗ g = µ ◦ F (f ⊗ g).

The associativity of this product follows from the identity (cf. [19])

((∆⊗ id)(F )) · (F ⊗ 1) = ((id ⊗∆)(F )) · (1⊗ F )

in U(L)⊗U(L)⊗U(L)[[t]], where ∆ is the comultiplication of U(L). The equivalence
class of ∗ is independent of the choice of r. If

r =

n∑

i,j=1

σij

∂

∂xi

⊗ ∂

∂xj

then

f ∗ g =
∞∑

n=0

∑

i1,j1,...,in,jn

σi1j1σi2j2 . . . σinjn

∂nf

∂xi1 . . . ∂xin

∂ng

∂xj1 . . . ∂xjn

tn

n!
.

If we choose (σij ) antisymmetric, we obtain what is known as the Moyal-Weyl
product associated with {, }.

1.3. Example: The dual of a Lie algebra. Let g be a finite-dimensional
real Lie algebra. Let g∗ denote the dual over R of g and A the algebra of smooth
functions on g∗. For f ∈ A and x ∈ g∗, we can view the differential (df)x as an
element of g. Using this identification we define a Poisson bracket on A by

{f, g}(x) = x ([(df)x, (dg)x]) , x ∈ g∗.

Kontsevich’s construction yields a canonical associative product ∗ on A[[t]]. This
product is closely linked to that of the enveloping algebra of g: Let S(g) be the
symmetric algebra on g. We identify it with the algebra of polynomial functions
on g∗. It is not hard to show that the subspace B = S(g)[t] of A[[t]] formed by the
polynomials in t whose coefficients are polynomial functions on g∗ is a subalgebra
for ∗. Moreover, the inclusion g→ B induces an isomorphism

Uhom(g) ∼→ B

where Uhom(g) is the homogeneous enveloping algebra, i.e. the R[t]-algebra gen-
erated by g with relations XY − Y X − t [X, Y ], X, Y ∈ g. Thus the quotient
B/(t− 1)B is isomorphic to the enveloping algebra U(g).
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1.4. Mathieu’s examples [41]. Let g be a finite-dimensional real Lie algebra
such that g⊗RC is simple and not isomorphic to sln(C) for any n ≥ 2. The bracket
of g uniquely extends to a Poisson bracket on the symmetric algebra S(g). The
ideal I of S(g) generated by all monomials of degree 2 is a Poisson ideal (i.e.
we have {f, I} ⊂ I for all f ∈ S(g)). So the quotient A = S(g)/I becomes a
(finite-dimensional) Poisson algebra. Assume that its bracket comes from a formal
deformation ∗. Let B be the associative algebra A[[t]] endowed with ∗ and let BL

be the Lie algebra obtained by endowing B with the commutator with respect to its
multiplication. Then BL is a formal deformation of the Lie algebra AL = (A, {, }).
Now AL is isomorphic to R⊕ g. Since g⊗C is simple, we have H2(AL, AL) = 0 so
that AL is rigid and BL is isomorphic to AL ⊗R[[t]] (as a Lie algebra over R[[t]]).
Let K be the algebraic closure of the fraction field of R[[t]]. By extending the scalars
to K we find that BL⊗R[[t]] K is isomorphic to AL⊗R[[t]] K = K ⊕ (g⊗R K). But
BL ⊗R[[t]] K is the Lie algebra associated with the finite-dimensional associative
K-algebra B⊗R[[t]] K. Since K is algebraically closed, this algebra is isomorphic to
M ⊕J , where M is a product of matrix rings over K and J is nilpotent. Therefore,
the only simple quotients of its associated Lie algebra are isomorphic to sln(K) for
certain n ≥ 2. However, by assumption, AL ⊗R[[t]] K admits the simple quotient
g⊗RK. This contradiction shows that the bracket of A cannot come from a formal
deformation.

2. Kontsevich’s explicit formula

Let d ≥ 1 be an integer and M a non empty open subset of Rd. Let A be the
algebra of smooth functions on M and {, } a Poisson bracket on A. In this situation,
Kontsevich [32] gives an explicit formula for a canonical formal quantization ∗K .
We describe his formula in this section.

Recall that derivations of the algebra A are given by vector fields on M . From
this fact, one deduces the

Lemma 2.1. There are unique smooth functions αij , 1 ≤ i < j ≤ d, such that

{, } =
∑

i<j

αij ∂

∂xi

∧ ∂

∂xj

,

i.e. for all smooth functions f and g, we have

{f, g} =
∑

i<j

αij

(
∂f

∂xi

∂g

∂xj

− ∂g

∂xi

∂f

∂xj

)
.

We write the quantization to be constructed in the form

∗K =

∞∑

n=0

Bntn.

For smooth functions f, g, we will express Bn(f, g) as a linear combination of sums
of products of partial derivatives of the αij and of f and g. To describe the terms
explicitly, we need a little combinatorics: A quiver Γ is given by

• a set Γ0, whose elements are called the vertices of Γ,
• a set Γ1, whose elements are called the arrows of Γ,
• two maps s : Γ1 → Γ0 and t : Γ1 → Γ0, which, with an arrow, associate

its source and its target.
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Figure 1. A quiver

In practice, quivers are given by drawings as in figure 1, where Γ0 equals {1, 2, 3, 4},
Γ1 has 7 elements and, for example, s(c) = 3, t(c) = 1. An arrow l of a quiver is
a loop if s(l) = t(l). A pair (a, b) of arrows is a double arrow if s(a) = s(b) and
t(a) = t(b).

Let n ≥ 0. We define Gn to be the set of quivers Γ such that

• Γ0 = {1, . . . , n} ∪ {L, R}, where L and R are two symbols,
• Γ1 = {a1, b1, . . . , an, bn}, where the ai and bi are symbols,
• for each i, we have s(ai) = s(bi) = i, and
• Γ has neither loops nor double arrows.

The unique quiver in G0 has only the two vertices L and R and no arrow. The set
G1 contains exactly two quivers, namely

L 1
a1oo b1 // R and L 1

b1oo a1 // R .

Figure 2 shows two among the 36 quivers in G2 and one among the 160000 quivers
in G4. In general, Gn contains (n(n + 1))n quivers. Given smooth functions f , g

Figure 2. Quivers in Gn for n = 2 and n = 4

and a quiver Γ ∈ Gn, we will define a function BΓ,α(f, g). For example, for the last
quiver of figure 2, we have

BΓ,α(f, g) =
∑ (

∂i3α
i1,j1

) (
∂j1∂j4α

i2,j2
) (

∂i2∂i4α
i3 ,j3

)
(∂i1∂j3f) (∂j2g) ,
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where i1, j1, . . . , i4, j4 range from 1 to d (the dimension of M ⊂ Rd) and ∂k denotes
the partial derivative with respect to xk. Note that each vertex v of the quiver
corresponds to a factor and that the partial derivatives with respect to xik

or xjk

correspond to the edges ak or bk with target v. For a general quiver Γ in Gn, we
define BΓ,α(f, g) to be

∑



n∏

i=1


 ∏

a∈Γ(?,i)

∂I(a)


αI(ai),I(bi)


 (

∏

a∈Γ(?,L)

∂I(a))(f)(
∏

a∈Γ(?,R)

∂I(a))(g) ,

where Γ(?, v) denotes the set of arrows with target v and the sum ranges over all
maps I from Γ1 to {1, . . . , d}.

We will define

Bn =
∑

Γ∈Gn

wΓBΓ,α

for certain universal constants wΓ ∈ R, which we now construct. For this, let H
denote the upper half plane im z > 0. We endow H with the hyperbolic metric. Its
geodesics are the vertical half lines and the half circles whose center is on the real
axis. For two distinct points p, q of H, we define l(p, q) to be the geodesic from p
to q and we define l(p,∞) to be the vertical half line going from p to infinity. We
denote by ϕ(p, q) the angle from l(p,∞) to l(p, q). As we see from figure 3, we have

ϕ(p, q) = arg(
q − p

q − p
) =

1

2i
log

(
q − p

q − p
· q − p

q − p

)
.

This shows that (p, q) 7→ ϕ(p, q) is analytic. It is also clear that it admits a

Figure 3. Planimetry

continuous extension to the set of pairs of complex numbers (p, q) such that im p ≥
0, im q ≥ 0 and p 6= q.

Now for n ≥ 0, let Hn be the set of n-tuples (p1, . . . , pn) of distinct points of H.
Given Γ in Gn, we interpret Hn geometrically as the set of all ‘geodesic drawings’
of Γ in the closure of H: the vertices 1, . . . , n of Γ correspond to the pi, the vertices
L and R to the points 0 and 1 of the real axis and each arrow of Γ is represented
by a geodesic segment from its source point to its target point, cf. figure 4. With
this in mind, for each arrow a of Γ, we define the function ϕa : Hn → R by

ϕa(p1, . . . , pn) = ϕ(ps(a), pt(a)) ,
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Figure 4. Geodesic drawing of a quiver

where we put pL = 0 and pR = 1. Finally, we define

wΓ =
1

(2π)n

∫

Hn

n∧

i=1

(dϕai
∧ dϕbi

).

Note that the integrand is a 2n-form, and the integral is taken over a naturally
oriented 2n-dimensional manifold.

Lemma 2.2. The integral converges absolutely.

For this, one shows that the integrand admits a continuous extension to a
compactification of Hn, cf. [32].

Theorem 2.3 (Kontsevich [32]). The formula

f ∗K g =

∞∑

n=0

tn

n!

∑

Γ∈Gn

wΓBΓ,α(f, g)

defines a formal quantization of the given Poisson bracket. Its equivalence class is
independent of the choice of coordinates in M .

The essential point is that ∗K is associative. Kontsevich deduces this from
Stokes’ theorem applied to compactifications of configuration spaces Hn. He re-
marks in passing that the formula has a certain physical interpretation. This claim
was made precise by Cattaneo and Felder in [4].

3. A more precise version of Kontsevich’s theorem and its link with

the Duflo isomorphism

3.1. Formal quantizations. Let M be a differentiable manifold and A the
algebra of smooth functions on M . Let m ≥ 1. A multidifferential operator on M
is a map P : Am → A compatible with restrictions to open subsets and such that,
in each system x1, . . . , xn of local coordinates on M , we have

P (f1, . . . , fm) =
∑

aν1,...,νm

(
∂|ν1|

∂xν1

1

f1

)
· · ·

(
∂|νm|

∂xνm

1

fm

)
,

where the νi are multi-indices and the aν1,...,νm
are smooth functions which vanish

for almost all (ν1, . . . , νm).
A star product on M is an associative formal deformation ∗ =

∑
Bntn such that

the Bn are bidifferential operators. Note that the multiplication B0 of A is such
an operator. Let Jd denote the group of R[[t]]-module automorphisms g =

∑
gntn

of A[[t]] such that g0 is the identity and all gn are differential operators. Two star
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products ∗ and ∗′ are equivalent if there is a g ∈ Jd such that g(u ∗ v) = g(u) ∗′ g(v)
for all u, v ∈ A[[t]].

As in lemma 1.1, each star product ∗ on M gives rise to a Poisson bracket
{, }. We call ∗ a formal quantization of {, }. The Moyal-Weyl product (1.2) is an
example.

Theorem 3.1 (Kontsevich [32]). a) Each Poisson bracket on A admits
a formal quantization, canonical up to equivalence.

b) There is a bijection [π] 7→ [∗π] from the set of equivalence classes of Pois-
son brackets

π = 0 + π1t + · · ·+ πntn + · · ·
on the commutative R[[t]]-algebra A[[t]] to the set of equivalence classes of
star products on M . Moreover, if π corresponds to ∗π, then the Poisson
bracket on A associated with ∗π equals the coefficient π1 of t in π.

In b), two Poisson brackets are equivalent if they are conjugate by an R[[t]]-algebra
automorphism belonging to Jd. The canonical quantization of a given Poisson
bracket {, } in a) is obtained by applying b) to π = {, } t.

3.2. Isomorphism of cohomology algebras. Let π be as in theorem 3.1 and
let n ≥ 2. By reduction, π defines a Poisson bracket on A[[t]]/(tn). In particular,
this space becomes a Lie algebra over R[t]/(tn). The associated Chevalley-Eilenberg
complex (cf. section 5.2 of chapter 2) with coefficients in A[[t]]/(tn) admits a
subcomplex, which we denote by

CPois(A[[t]]/(tn), π) ,

whose pth component is formed by the cochains which are derivations in each
argument (for the commutative multiplication of A[[t]]/(tn)). We define

(3.1) CPois(A[[t]], π)

to be the inverse limit of the system of complexes CPois(A[[t]]/(tn), π), n ≥ 2.
Let ∗ be a formal deformation of the multiplication of A and let n ≥ 2. By

reduction, the multiplication ∗ defines an associative R[t]/(tn)-algebra structure on
A[[t]]/(tn). We denote by

Cstar(A[[t]]/(tn), ∗)
the subcomplex of the associated Hochschild complex (cf. section 2 of chap-
ter 2) with coefficients in A[[t]]/(tn) whose p-cochains have coefficients which are
p-differential operators. We define

(3.2) Cstar(A[[t]], ∗)
to be the inverse limit of the system of complexes Cstar(A[[t]]/(tn), ∗), n ≥ 2. Let
µ denote the commutative multiplication of A[[t]]. The complexes (3.1) and (3.2)
are endowed with (associative) cup products extending the multiplications µ and ∗
on their 0th components. Their homologies

H∗
Pois(A[[t]], π) and H∗

star(A[[t]], ∗)
become graded commutative algebras when endowed with the multiplications in-
duced by the cup products.
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Theorem 3.2 (Kontsevich [32]). Suppose that M is an open subset of Rn.
Then for each Poisson bracket π as in the preceding theorem, there is a canonical
quasi-isomorphism

Ψπ : CPois(A[[t]], π) → Cstar(A[[t]], ∗π)

which induces an algebra isomorphism

H∗
Pois(A[[t]], π) → H∗

star(A[[t]], ∗π).

The existence of the quasi-isomorphism Ψπ follows easily from Kontsevich’s
formality theorem 4.1 below, cf. section 6 of chapter 2. In contrast, the fact that
Ψπ is compatible with the algebra structure in cohomology is highly non trivial.
In the case where M is the dual of a finite-dimensional Lie algebra (cf. 1.3) and
π = t {, }, it is easy to see that Ψπ induces an algebra isomorphism

H∗(g, S(g)) ∼→ HH∗(U(g), U(g)) ,

where the right hand side denotes the Hochschild cohomology algebra of U(g). In
particular, in degree 0, we obtain an algebra isomorphism

S(g)g ∼→ Z(U(g))

from the algebra of g-invariant polynomials on g∗ to the center of U(g). Kontsevich
shows that it coincides with the Duflo isomorphism [11] [12].

4. On the proofs

4.1. Deformation theory. Let A be the algebra of smooth functions on a
differentiable manifold M . The main theorem 3.1 asserts that two deformation
problems are equivalent: that of deforming the zero Poisson bracket on A and that
of deforming the commutative multiplication µ on A. Now ‘every’ deformation
problem can be described in terms of a differential graded Lie algebra (=dg Lie
algebra). In our case, we denote the corresponding dg Lie algebras by LPois(M)
and Lstar(M); their underlying complexes are

CPois(A, 0)[1] and Cstar(A, µ)[1] ,

where, for a complex K, we denote by K[1] the shifted complex: K[1]p = Kp+1,
dK[1] = −dK .

In deformation theory, one shows that if f : L → L′ is a quasi-isomorphism
of differential graded Lie algebras (i.e. a morphism inducing isomorphisms in ho-
mology), then f induces an equivalence between the corresponding deformation
problems. Therefore, to prove the main theorem 3.1, it is enough to show that
there is a chain

LPois(M)← L1 → . . .← Ln → Lstar(M)

of quasi-isomorphisms. Now in general, one can show that the existence of such a
chain linking two dg Lie algebras L and L′ is equivalent to that of an L∞-quasi-
isomorphism U : L→ L′, i.e. a sequence of morphisms

Un : L⊗n → L′ , n ≥ 1 ,

which are homogeneous of degree 1−n, graded antisymmetric and satisfy a sequence
of compatibility conditions with the brackets and the differentials of L and L′. We
will review the relevant facts from deformation theory in more detail in chapter 2.
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4.2. Kontsevich’s proof. In the case where M is an open subset of Rn,
Kontsevich [32] explicitly constructed an L∞-quasi-isomorphism

(4.1) UM : LPois(M)→ Lstar(M).

using integrals on configuration spaces. His formulas allowed him to write down an
explicit star product for a given Poisson bracket on M ⊂ Rn and in particular for
the canonical Poisson bracket on the dual of a finite dimensional Lie algebra (cf.
1.3).

Kontsevich’s L∞-morphism (4.1) is equivariant with respect to the group of
affine transformations of Rn. Using this fact and a sophisticated gluing procedure
Kontsevich proved the

Theorem 4.1 (Formality Theorem [32]). For each differentiable manifold M ,
there is an L∞-quasi-isomorphism UM : LPois(M)→ Lstar(M).

4.3. Formality. A dg Lie algebra L is formal if it is linked to the dg Lie alge-
bra H∗L (endowed with d = 0 and the bracket induced from that of L) by a chain of
quasi-isomorphisms (equivalently: by an L∞-quasi-isomorphism). The Hochschild-
Kostant-Rosenberg theorem [27] yields that, for a differentiable manifold M , the
homology of Lstar(M) is isomorphic to LPois(M). Therefore, Kontsevich’s formal-
ity theorem 4.1 means that for each differentiable manifold M , the dg Lie algebra
Lstar(M) is formal.

4.4. Tamarkin’s proof. In [51], D. Tamarkin gave a new proof of Kontse-
vich’s formality theorem 4.1 for the case of M = Rn. More precisely, he proved
the following purely algebraic statement: Let k be a field of characteristic 0, let V
be a finite-dimensional k-vector space and SV the symmetric algebra on V . The
problem of deforming the multiplication of SV is described by the dg Lie algebra

Lalg(V
∗) = CHoch(SV, µ)[1] ,

i.e. the shifted Hochschild complex endowed with the Gerstenhaber bracket, cf.
section 3 of chapter 2.

Theorem 4.2 (Tamarkin [51]). The dg Lie algebra Lalg(V
∗) is formal.

It is easy see, cf. Lemma 1.2 of chapter 3, that for k = R, the dg Lie algebra
Lalg(V

∗) is linked to Lstar(V
∗) by a chain of quasi-isomorphisms. Thus, Tamarkin’s

theorem is equivalent to the formality theorem for k = R and M = Rn. We outline
Tamarkin’s proof in chapter 3.

5. Notes

Kontsevich’s theorem 1.2 solves a conjecture which goes back to the pioneering
work [1] by Bayen-Fronsdal-Lichnerowicz-Sternheimer. An account of the history
and the motivations from physics can be found in [8] and [55]. Kontsevich’s proof
[32] of the isomorphism of cohomology algebras of Theorem 3.2 was made precise
by Manchon-Torossian [39]. T. Mochizuki [44] proves that this isomorphism lifts
to an A∞-quasi-isomorphism.

The linear map underlying the Duflo isomorphism was constructed by M. Duflo
in [11]. There he also showed that it was an algebra isomorphism for solvable and
semisimple Lie algebras. Later, he showed in [12] that it is an isomorphism for
arbitrary finite-dimensional Lie algebras.
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Kontsevich deduces the formality theorem for arbitrary Poisson manifolds from
the case of an open set in Rn. The proof of this ‘globalization theorem’ in [32]
is not very detailed. More details are given in the appendix to [33]. Alternative
approaches to globalization are due to Cattaneo-Felder-Tomassini [5] and V. Dol-
gushev [9].

In an algebraic context, the quantization problem was studied by Kontsevich
[34] and A. Yekutieli [56].

Covariant versions of the formality theorem were conjectured by B. Tsygan [53]
and proved by B. Shoikhet [48].

In studying the non uniqueness of the formality morphism Kontsevich has dis-
covered surprising links to motives and the Grothendieck-Teichmueller group, cf.
[33] and [50].



CHAPTER 2

Deformation theory

1. Notations

Let k be a commutative ring. A graded k-module is a sequence K = (Kp),
p ∈ Z, of k-modules Kp. A morphism of degree n between graded k-modules is a
sequence f : K → L of morphisms fp : Kp → Lp+n. Such morphisms are composed
in the natural way. A complex K is a graded k-module endowed with a differential,
i.e. an endomorphism d : K → K of degree 1 such that d2 = 0. The suspension
or shift of a graded k-module K is the graded k-module denoted by SK or K[1]
with (K[1])p = Kp+1, p ∈ Z. If K is a complex with differential d, its suspension
SK = K[1] is endowed with the differential −d.

The tensor product L⊗K of two graded k-modules is the Z-graded k-module
with components

(L⊗K)n =
⊕

p+q=n

Lp ⊗k Kq.

The tensor product of two morphisms f and g is defined by

(f ⊗ g)(x⊗ y) = (−1)pqf(x)⊗ g(y)

where g is of degree p and x of degree q. The flip τ : L⊗K → K ⊗L is defined by

τ(x ⊗ y) = (−1)pqy ⊗ x ,

where x is of degree p and y of degree q. Let L be a graded k-module. A multipli-
cation map µ : L⊗L→ L is graded commutative if µ ◦ τ = µ. The tensor coalgebra
T c(L) is the direct sum of the tensor powers L⊗n, n ≥ 0. Its comultiplication is
defined by

∆(x1, . . . , xn) =

n∑

i=0

(x1, . . . , xi)⊗ (xi+1, . . . , xn)

and its counit η : T c(L)→ k is the canonical projection. The flips yield an action of
the symmetric group Sn on the nth tensor power of L, for each n. The symmetric
coalgebra Symc(L) is the subcoalgebra of T c(L) whose underlying graded module
is the sum of the fixed point modules of Sn on L⊗n, n ≥ 0.

2. R-deformations and the Hochschild complex

Let k be a field and A an associative k-algebra with multiplication µ. Let
R be a commutative local k-algebra whose maximal ideal m is finite-dimensional
over k (and thus nilpotent). The truncated polynomial rings k[t]/(tn), n ≥ 1, are
good examples to keep in mind. An R-deformation of the multiplication of A is an
associative R-bilinear multiplication ∗ on A⊗k R which, modulo m, reduces to the

17
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multiplication µ of A, i.e. the square

(A⊗k R)⊗R (A⊗k R) //

∗

��

A⊗k A

µ

��
A⊗k R // A

commutes. An infinitesimal deformation is a k[t]/(t2)-deformation. Two R-defor-
mations are equivalent if there is an R-module automorphism g : A⊗k R→ A⊗k R
which, modulo m, reduces to the identity of A, such that

g(u ∗ v) = g(u) ∗′ g(v)

for all u, v in A⊗k R. Note that, by R-bilinearity, an R-deformation is determined
by the restriction of ∗ to A⊗k A and, in fact, by its component

A⊗k A→ A⊗k m.

We denote by Defo(A, R) the set of equivalence classes of R-deformations of A. In
fact, we obtain a functor, the deformation functor associated with the associative
algebra A

R → Sets , R 7→ Defo(A, R) ,

where R denotes the category of test algebras, i.e. of commutative local k-algebras
with finite-dimensional maximal ideal.

If ∗ is a formal deformation (in the sense of 1.1 of chapter 1) then, for each
n ≥ 1, its reduction modulo (tn) is a k[t]/(tn)-deformation. We obtain a map

{formal deformations} // lim←−{ k[t]/(tn)− deformations} .

It is not hard to see that this map is bijective and that the equivalence relations
on both sides correspond to each other. Thus, the study of formal deformations
reduces to that of the deformation functor.

Let us take a closer look at infinitesimal deformations: an infinitesimal defor-
mation ∗ is determined by a k-linear map B1 : A⊗k A→ A such that

a ∗ b = ab + B1(a, b)t

for all a, b in A. The associativity of ∗ translates into

(2.1) aB1(b, c)−B1(ab, c) + B1(a, bc)−B1(a, b)c = 0

for all a, b, c in A and two infinitesimal deformations corresponding to B1 and B′
1

are equivalent iff there is a k-linear map g1 : A→ A such that

(2.2) B′
1(a, b)− B1(a, b) = ag1(b)− g1(ab) + g1(a)b

for all a, b in A.
The Hochschild complex of A is the complex C(A, A) with vanishing components

in degrees p < 0 and whose pth component, for p ≥ 0, is the space Homk(A⊗p, A).
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By definition, the differential of a p-cochain f is the (p + 1)-cochain defined1 by

(−1)p(df)(a0, . . . , ap) = a0f(a1, . . . , ap)−
p−1∑

i=0

(−1)if(a0, . . . , aiai+1, . . . , ap)

+ (−1)p−1f(a0, . . . , ap−1)ap.

The Hochschild cohomology HH(A, A) of A (with coefficients in A) is by definition
the homology of the Hochschild complex.

It follows from the formulas (2.1) and (2.2) that there is a canonical bijection
between the set of equivalence classes of infinitesimal deformations and the space
HH2(A, A). It is also useful to note that the 1-cocyles of C(A, A) are precisely the
derivations of A with the 1-coboundaries corresponding to the inner derivations.
Finally, the 0-coboundaries vanish and the space of 0-cocycles equals the center of
A.

In order to describe non infinitesimal deformations of A, we need a finer struc-
ture on the Hochschild complex, namely the Gerstenhaber bracket.

3. The Gerstenhaber bracket

We keep the notations of the preceding section. Let f be a Hochschild p-cochain
and g a q-cochain. The Gerstenhaber product of f by g is the (p + q − 1)-cochain
defined by

(f • g)(a1, . . . , ap+q−1) =
p∑

i=0

(−1)i(q+1)f(a1, . . . , ai, g(ai+1, . . . , ai+q), ai+q+1, . . . , ap+q−1)

The Gerstenhaber product is not associative in general. However, its associator

A(f, g, h) = (f • g) • h− f • (g • h)

is (super) symmetric in g and h in the sense that

A(f, g, h) = (−1)(q−1)(r−1)A(f, h, g)

for a q-cochain g and an r-cochain h, cf. figure 1. One checks that this implies that
the Gerstenhaber bracket defined by

[f, g] = f • g − (−1)(p−1)(q−1)g • f

satisfies the (super) Jacobi identity (3.2) below. Moreover, the Hochschild differ-
ential is expressed in terms of the Gerstenhaber bracket and the multiplication µ
of A as

(3.1) df = −[µ, f ].

It follows that the shifted (cf. section 1) Hochschild complex

LAs(A) = C(A, A)[1]

endowed with the Gerstenhaber bracket is a differential graded Lie algebra in the
sense of the

1The sign differs by a factor (−1)p from that in [3]. This is justified by formula (3.1) below
and the relation of the Hochschild complex with the Hochschild resolution of the bimodule A.
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Figure 1. Terms occuring in (f • g) • h

Definition 3.1. A Z-graded Lie algebra is a Z-graded vector space L endowed
with a Lie bracket, i.e. a linear map

[, ] : L⊗ L→ L

homogeneous of degree 0 which is

• antisymmetric, i.e. [x, y] = (−1)pq [y, x] for all x ∈ Lp and all y ∈ Lq and
• satisfies the Jacobi identity

(3.2) [x, [y, z]] = [[x, y], z] + (−1)pq [y, [x, z]]

for all x ∈ Lp, y ∈ Lq and z ∈ L.

A differential graded (=dg) Lie algebra is a Z-graded Lie algebra L endowed with
a differential d which is a derivation with respect to the bracket, i.e.

d([x, y]) = [dx, y] + (−1)p[x, dy]

for all x ∈ Lp and y ∈ L.

Note that if L is a dg Lie algebra, L0 is an ordinary Lie algebra. For example,
if L = LAs(A), then L0 = gl(A).

Now let R ∈ R be a test algebra (section 2). Let ∗ be an R-deformation and
let B : A⊗A→ A⊗m be such that

a ∗ b = ab + B(a, b)

for all a, b ∈ A. We view B as a homogeneous element of degree 1 of the dg Lie
algebra LAs(A) ⊗k m. Then one checks that the associativity of ∗ is expressed by
the Maurer-Cartan equation

dB +
1

2
[B, B] = 0 ,

where we suppose that the ground field k is not of characteristic 2. We see that
the solutions of this equation bijectively correspond to the R-deformations of the
multiplication of A. The aim of the next section is to express the equivalence of
two R-deformations in terms of the dg Lie algebra LAs(A)⊗k m.
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4. The Maurer-Cartan equation

From now on, we suppose that the ground field k is of characteristic 0.
Let L be a differential graded Lie algebra (cf. section 3). Let MC(L) denote

the set of solutions x ∈ L1 of the Maurer-Cartan equation

(4.1) d(x) +
1

2
[x, x] = 0.

For x ∈MC(L), define TxMC(L) to be the space of vectors X ∈ L1 such that

d(X) + [x, X ] = 0.

Note that if L1 is finite-dimensional, then MC(L) is an intersection of quadrics
and TxMC(L) is the (scheme-theoretic) tangent space at x of the algebraic variety
MC(L). For x, y ∈ L, put (ad x)(y) = [x, y].

Lemma 4.1. Let x ∈MC(L).

a) The map dx = d + adx satisfies d2
x = 0.

b) A vector X ∈ L1 belongs to TxMC(L) iff dxX = 0.
c) For X0 ∈ L0, the map y 7→ dyX0 yields a vector field on MC(L), i.e.

dyX0 ∈ TyMC(L) for all y ∈MC(L).

Proof. a) is an easy computation, b) is immediate from a) and c) follows from
b) and a).

√

Now suppose that L0 is a nilpotent Lie algebra (i.e. there is an N � 0 such
that each composition of at least N maps ad(X)|L0

, X ∈ L0, vanishes). Suppose
moreover that the action of L0 on L1 is nilpotent (i.e. ad X0 induces a nilpotent
endomorphism of L1 for each X0 ∈ L0). Denote by Aff(L1) the group of affine
transformations of the vector space L1 (the semi-direct product of the group of
translations by that of linear transformations). Thanks to our nilpotency hypothe-
ses, the Lie algebra antihomomorphism

L0 → Lie(Aff(L1)) , X0 7→ (x 7→ dxX0 = dX0 + [x, X0])

integrates to a group antihomomorphism

exp(L0)→ Aff(L1)

so that we obtain a right action of exp(L0) on L1 by affine automorphisms. By
point c) of the lemma, this action leaves MC(L) invariant, so that we have a well
defined orbit set MC(L)/ exp(L0). Notice that for x ∈MC(L), the ‘normal space’
to the orbit x exp(L0) at x is

TxMC(L)/Tx(x exp(L0)) = (ker dx)/(im dx) = H1(L, dx).

Now let R ∈ R be a test algebra (section 2) and L an arbitrary dg Lie algebra.
We define

MC(L, R) = MC(L⊗k m).

Clearly, the dg Lie algebra L ⊗k m satisfies the nilpotency assumptions we made
above. We can thus define

MC(L, R) = MC(L⊗k m)/ exp(L0 ⊗k m).

This definition is motivated by the
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Lemma 4.2. Let A be an associative algebra. Then the dg Lie algebra LAs(A)
controls the deformations of the multiplication of A, i.e. there are bijections

Defo(A, R)→MC(LAs(A), R)

functorial in R ∈ R.

To prove the lemma, one checks that the bijection given at the end of section 3
is compatible with the equivalence relations.

A morphism of dg Lie algebras f : L1 → L2 is a linear map homogeneous of
degree 0 such that

f ◦ d = d ◦ f and f([x, y]) = [f(x), f(y)]

for all x, y ∈ L1. It is a quasi-isomorphism of dg Lie algebras if it induces an
isomorphism in homology.

Theorem 4.3 (Quasi-isomorphism theorem). Let f : L1 → L2 be a quasi-
isomorphism of dg Lie algebras and let R ∈ R. Then f induces a bijection

(4.2) MC(L1, R) ∼→MC(L2, R).

Note that the conclusion of the theorem concerns the solutions of systems
of quadratic equations whereas the hypothesis that f is a quasi-isomorphism is
linear in nature. The following proposition can be interpreted by saying that the
map 4.2 induces bijections in the ‘differential graded tangent spaces’. It is proved
by considering the (finite!) filtrations induced by the mi ⊂ m.

Proposition 4.4. Let f : L1 → L2 be a quasi-isomorphism of dg Lie algebras
and let R ∈ R. Then for each x ∈MC(L1, R), the morphism

(4.3) (L1 ⊗m, d + ad(x)) // (L2 ⊗m, d + ad(f(x)))

induced by f is a quasi-isomorphism.

As a simple application of the quasi-isomorphism theorem, we prove the

Corollary 4.5. Let A be an associative algebra with unit 1. For each R ∈ R,
each R-deformation of the multiplication of A is equivalent to an R-deformation
admitting the unit 1.

Proof. Let LAs,1(A) be the subspace of LAs(A) generated by all cochains
f which vanish if one of their arguments equals 1. Then the subspace LAs,1(A)
is a dg Lie subalgebra of LAs(A). For R ∈ R, the subset MC(LAs,1(A), R) of
MC(LAs(A), R) corresponds precisely to the R-deformations admitting the unit 1.
Now by [3, Ch. IX ], the inclusion of LAs,1(A) into LAs(A) is a quasi-isomorphism.
Therefore, the claim follows from the quasi-isomorphism theorem.

√

5. Deformations of star products, Lie brackets, Poisson brackets

As we have seen in Lemma 4.2, the R-deformations of an associative algebra
A are controlled by the dg Lie algebra LAs(A). Similarly, there are dg Lie alge-
bras Lstar(M) and LPois(M) which control the deformation problems appearing
in Kontsevich’s theorem 3.1, where M is a differentiable manifold. We will now
describe these dg Lie algebras in more detail. Let A be the algebra of smooth
functions on M .
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5.1. Star products. Let k = R and R ∈ R. An R-star product on M is an
R-deformation ∗ of the multiplication of A such that the map

(a, b) 7→ (id⊗ ϕ)(a ∗ b)

is a bidifferential operator for each linear form ϕ on m. Two R-starproducts are
equivalent if there is an R-linear map g : A⊗ R→ A⊗R as in section 2 such that
the map

a 7→ (id⊗ ϕ)(g(a))

is a differential operator for each linear form ϕ on m. Let Lstar(M) be the subspace
of LAs(A) whose p-cochains are p-differential operators. Then Lstar(M) is a dg Lie
subalgebra of LAs(A) and, for each R ∈ R, there is a canonical bijection between

MC(Lstar(M), R)

and the set of equivalence classes of R-star products on M . In other words,
Lstar(M) controls the problem of deforming the commutative multiplication of
M into a star product. Following [32] we use the notation

Dpoly(M) = Lstar(M).

5.2. Lie brackets and the Chevalley-Eilenberg complex. Suppose that
k is a field of characteristic 0. Let g be a Lie algebra over k. For R ∈ R, the
set of equivalence classes of R-deformations of the Lie bracket of g is defined in
analogy with the case of an associative multiplication (cf. section 2). The Chevalley-
Eilenberg complex CCE(g, g) of g has the components Homk(Λpg, g) in degrees p ≥ 0
and vanishing components in negative degrees. Its differential is defined2 by

(−1)p(df)(X0, . . . , Xp) =
∑

i<j

(−1)i+j+1f([Xi, Xj ], . . . , X̂i, . . . , X̂j , . . . , Xp)

−
∑

i

(−1)i[Xi, f(X0, . . . , X̂i, . . . , Xp)].

As usual, the symbol X̂ indicates that X is to be omitted. The Richardson-
Nijenhuis product of a p-cochain f by a q-cochain g is the (p + q − 1)-cochain
defined by

(f • g) =
∑

sign(σ)f(g(Xσ(1), . . . , Xσ(q)), Xσ(q+1), . . . , Xσ(p+q−1)) ,

where σ runs through the permutations which are increasing on {1, . . . , q} and
{q + 1, . . . , p + q − 1}. The Richardson-Nijenhuis bracket of a p-cochain f by a
q-cochain g is the commutator

[f, g] = f • g − (−1)(p−1)(q−1)g • f.

If we let β denote the Lie bracket of g, we have

df = −[β, f ].

As in section 3, one checks that the shifted complex

LLie(g) = CCE(g, g)[1]

endowed with the Richardson-Nijenhuis bracket is a dg Lie algebra. It controls the
R-deformations of the Lie bracket of g.

2with the same modification of the sign as for the Hochschild differential in section 2
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5.3. Poisson brackets. Suppose that k is a field of characteristic 0 and A
a Poisson algebra over k. For R ∈ R, a Poisson R-deformation of the bracket of
A is an R-linear Poisson bracket π on the commutative algebra A ⊗k R which,
modulo m, reduces to the bracket of A. Note that we deform only the bracket, the
commutative multiplication of A remains unchanged. Two Poisson R-deformations
are equivalent if they are conjugate by an automorphism of the commutative algebra
A⊗k R which, modulo m, induces the identity on A.

Let LPois(A) be the subspace of LLie(A) formed by the cochains which are
derivations in each argument. Then LPois(A) is a differential graded Lie subalgebra
of LLie(A). The dg Lie algebra LPois(A) controls the Poisson deformations of the
bracket of A.

Now suppose that k = R and that A is the algebra of smooth functions on a
Poisson manifold M . Let Tpoly(M) be the graded space with vanishing components
in degrees < −1 and whose pth component is the space of (p + 1)-polyvector fields
on M , i.e. the space Γ(M, Λ(p+1)TM) of global sections of the (p + 1)th exterior
power of the tangent bundle TM of M . For vector fields ξi and functions fj , we
define

(ξ1 ∧ . . . ∧ ξp)(f1 ∧ . . . ∧ fp) =
1

p!
det(ξi(fj)).

This yields a canonical isomorphism of Lp
Pois(A) with Tpoly(M)p. Thus we obtain

a dg Lie algebra structure on the graded space Tpoly(M). Its bracket is uniquely
determined by the following conditions:

T 0
poly(M) is the Lie algebra of vector fields on M ,(5.1)

[ξ, f ] = ξ(f) ,(5.2)

[α, β ∧ γ] = [α, β] ∧ γ + (−1)(p−1)qβ ∧ [α, γ] ,(5.3)

where ξ is a vector field, f a smooth function, and α, β, γ are polyvector fields of
degree p, q and r, respectively.

6. Quasi-isomorphisms and L∞-morphisms of dg Lie algebras

We will sketch a conceptual approach to the notions and results of this section
in section 7.

Let L1 and L2 be two dg Lie algebras. By definition, an L∞-morphism f :
L1 → L2 is given by a sequence of maps

fn : L⊗n
1 → L2 , n ≥ 1 ,

homogeneous of degree 1− n and such that the following conditions are satisfied:

• The morphism fn is graded antisymmetric, i.e. we have

fn(x1, . . . , xi, xi+1, . . . xn) = −(−1)|xi| |xi+1|fn(x1, . . . , xi+1, xi, . . . , xn)

for all homogeneous x1, . . . , xn of L1.
• We have f1 ◦ d = d ◦ f1, i.e. the map f1 is a morphism of complexes.
• We have

f1([x1, x2]) = [f1(x1), f1(x2)] + d(f2(x1, x2)) + f2(d(x1), x2) + (−1)|x1|f2(x1, d(x2))

for all homogeneous x1, x2 in L. This means that f1 is compatible with
the brackets up to a homotopy given by f2. In particular, f1 induces a
morphism of graded Lie algebras from H∗L1 to H∗L2.
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• More generally, for each n ≥ 1 and all homogeneous elements x1, . . . , xn

of L1, we have

(6.1) (−1)n
∑

i<j

(−1)sfn−1([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn)

=
1

2

∑

p+q=n

∑

σ

(−1)pn+t[fp(xσ(1), . . . , xσ(p)), fq(xσ(p+1), . . . , xσ(n))]+

d(fn(x1, . . . , xn))− (−1)n−1
n∑

i=1

(−1)ufn(x1, . . . , d(xi), . . . , xn).

Here, σ runs through all (p, q)-shuffles, i.e. all permutations of {1, . . . , n}
which are increasing on {1, . . . , p} and on {p + 1, . . . , p + q}; the expo-
nents s, t and u are respectively the numbers of transpositions of odd el-
ements in passing from (x1, . . . , xn) to (xi, xj , x1, . . . , x̂i, . . . , x̂j , . . . , xn),
from (fp, fq, x1, . . . , xn) to

(fp, xσ(1), . . . , xσ(p), fq , xσ(p+1), . . . , xσ(n))

and from (d, x1, . . . , xn) to (x1, . . . , d, xi, . . . , xn).

Roughly speaking, an L∞-morphism is a map between dg Lie algebras which is
compatible with the brackets up to a given coherent system of higher homotopies.
An L∞-quasi-isomorphism is an L∞-morphism whose first component is a quasi-
isomorphism. The importance of this notion is apparent from the

Theorem 6.1. The following are equivalent

(i) There is an L∞-quasi-isomorphism L1 → L2.
(ii) There is a diagram of two quasi-isomorphisms of dg Lie algebras

L1 ← L3 → L2.

(iii) There is a chain of quasi-isomorphisms of dg Lie algebras

L1 ← L3 → L4 ← · · · → Ln ← L2

The dg Lie algebras L1 and L2 are homotopy equivalent if they satisfy the
conditions of the theorem. A dg Lie algebra L is formal if it is homotopy equivalent
to its homology H∗L (viewed as a dg Lie algebra with vanishing differential). The
quasi-isomorphism theorem 4.3 implies that homotopy equivalent dg Lie algebras
yield equivalent deformation problems. More precisely, we have the

Theorem 6.2 (L∞-quasi-isomorphism theorem). Let f : L1 → L2 be an L∞-
quasi-isomorphism of dg Lie algebras. Then, for each test algebra R ∈ R (sec-
tion 2), the map

x 7→
∑

n≥1

1

n!
fn(x, . . . , x)

induces a bijection

MC(L1, R) ∼→MC(L2, R).

Here and below, the R-multilinear extension of fn : L⊗n
1 → L2 to the nth tensor

power over R of L1 ⊗k m is still denoted by fn. In analogy with proposition 4.4,
we also have quasi-isomorphisms in the ‘differential graded tangent spaces’:
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Proposition 6.3. Let f : L1 → L2 be an L∞-quasi-isomorphism of dg Lie
algebras and let R ∈ R. Then, for each x ∈MC(L1, R), the map

y 7→
∑

n≥1

1

(n− 1)!
fn(x, . . . , x, y)

is a quasi-isomorphism

(L1 ⊗m, d + ad(x)) // (L2 ⊗m, d + ad(f(x))).

7. Formal deformation theory via Quillen’s equivalence

In this section, we describe the framework for formal deformation theory pro-
vided by Quillen’s equivalence between the homotopy category of dg Lie algebras
and that of (certain) dg cocommutative coalgebras. In this way, we will obtain a
better understanding of L∞-morphisms and L∞-algebras, i.e. a formal manifolds
[32]. We follow V. Hinich’s article [24].

7.1. From test algebras to test coalgebras. Let k be a field of caracteris-
tic 0 and A an associative k-algebra. Let R = k⊕m be a test algebra (cf. section 2).
Since R is finite-dimensional, its dual space C = Homk(R, k) is naturally a coalge-
bra. We have a natural isomorphism of vector spaces

A⊗k R ∼→ Homk(C, A)

and the canonical multiplication on the left corresponds to the convolution product
defined by

f · g = µ ◦ (f ⊗ g) ◦∆

for all f, g linear maps C → A, where µ is the multiplication of A and ∆ the
comultiplication on C. The R-deformations of A then correspond to the associative
Homk(C, k)-bilinear multiplications on Homk(C, A) which induce the multiplication
of A after passage to the quotient

Homk(C, A) → Homk(k, A) = A.

This description has the advantage that it naturally generalizes to certain infinite
dimensional coalgebras. For example, if C is the coalgebra k[T ] with

∆(f(T )) = f(T ⊗ 1 + 1⊗ T ) ,

then Homk(C, A) identifies with the power series algebra A[[t]] and our description
yields precisely the associative formal deformations of the multiplication of A (in
the sense of 1.1 of chapter 1). The appropriate class of test coalgebras to consider is
that of cocommutative cocomplete augmented coalgebras, i.e. cocommutative coas-
sociative coalgebras C endowed with a counit η : C → k and an augmentation
ε : k → C such that, if C = C/ε(C) is the reduction of C, then each element

of C is annihilated by a sufficiently high iterate C → C
⊗i

of the comultiplication
induced by ∆. Note that the dual of a test coalgebra C is a complete local ring
with maximal ideal Homk(C, k).
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7.2. The Maurer-Cartan equation. Let L be a dg Lie algebra. For a test
algebra R = k ⊕m, the set

MC(R, L) = MC(L⊗k m)

of equivalence classes of solutions of the Maurer-Cartan equation (4.1) only depends
on the ‘piece’

L0 → L1 → L2

of the dg Lie algebra L. In order to capture the whole information given by L,
we have to allow R to have components in several degrees and to have a non
zero differential. If we combine this observation with the remarks of the preceding
paragraph, we arrive at the notion of a dg test coalgebra, i.e. a test coalgebra
endowed with a Z-grading and a coalgebra differential d : C → C of degree 1. This
means that d2 = 0 and that d is a coderivation, i.e.

∆ ◦ d = (id⊗ d + d⊗ id) ◦∆.

For a dg test coalgebra C, the graded space Homk(C, L), whose n-th component
consists of the homogeneous k-linear maps of degree n, becomes a dg Lie algebra
for the differential

d(f) = d ◦ f − (−1)|f |f ◦ d

and the convolution bracket

[f, g] = [, ]L ◦ (f ⊗ g) ◦∆.

We define the set of twisting cochains C → L to be the set

Tw(C, L) = MC(Homk(C, L))

of solutions of the Maurer-Cartan equation (4.1). For example, if we take C = k[T ]
(as in 7.1) concentrated in degree 0 and with d = 0 and if L = LAs(A) for an
associative algebra A (as in section 3), then Tw(C, L) naturally identifies with the
associative formal deformations of the multiplication of A (as in paragraph 1.1 of
chapter 1).

7.3. The bar and the cobar constructions. Let Lie be the category of dg
Lie algebras and Cog that of dg test coalgebras.

Lemma and Definition 7.1. a) For L ∈ Lie, the functor

Tw(?, L) : Cogop → Sets

is representable. We denote a representative by BL.
b) For C ∈ Com, the functor

Tw(C, ?) : Lie→ Sets

is representable. We denote a representative by ΩC.
c) We have canonical bijections

HomLie(ΩC, L) = Tw(C, L) = HomCog(C, ΩL).

In particular, B and Ω are a pair of adjoint functors between Lie and Cog.
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Note that c) is a reformulation of a) and b). Explicitly, part a) of the Lemma
claims that there is a dg test coalgebra BL and a twisting cochain τ : BL → L
which is universal, i.e. for each twisting cochain τ ′ : C → L there is a unique
morphism of dg test coalgebras f : BL→ C such that τ ′ = τ ◦f . Concretely, BL is
given by the bar construction on L, i.e. the graded symmetric (section 1) coalgebra
Symc(L[1]) on the suspension L[1] of L endowed with the unique coderivation d
such that the evident morphism τ : Symc(L[1])→ L of degree 1 becomes a twisting
cochain:

dL ◦ τ + τ ◦ d− 1

2
[τ, τ ] = 0.

Note that if L is concentrated in degree 0, the underlying complex of BL is the
homological Chevalley-Eilenberg complex which computes H∗(L, k).

Dually, part b) claims that there is a dg Lie algebra ΩC and a twisting cochain
τ : C → ΩC which is co-universal. Explicitly, ΩC is given by the free graded
(section 1) Lie algebra on C[−1] endowed with the unique derivation d such that
the evident morphism τ : C → ΩC of degree 1 becomes a twisting cochain.

7.4. Quillen’s equivalence. A morphism f : C → C ′ of Cog is a weak equiv-
alence if Ωf is a quasi-isomorphism. The following lemma is not hard to show:

Lemma 7.2. a) The functor B : Lie→ Cog takes quasi-isomorphisms to
weak equivalences.

b) For each L ∈ Lie, the adjunction morphism ΩBL→ L is a quasi-isomor-
phism, and for each C ∈ Cog, the adjunction morphism C → BΩC is a
weak equivalence.

Let Ho(Lie) be the localization of the category Lie at the class of quasi-isomor-
phisms, i.e. the category whose objects are the same as those of Lie and whose mor-
phisms are obtained from those of Lie by formally inverting all quasi-isomorphisms.
Analogously, let Ho(Cog) be the localization of Cog at the class of weak equiva-
lences. We refer to these localizations as homotopy categories. From the lemma,
we immediately obtain the

Theorem 7.3 ([46],[24]). The functors B and Ω induce quasi-inverse equiva-
lences between homotopy categories Ho(Lie) and Ho(Cog).

Quillen’s equivalence is the equivalence B : Ho(Lie)→ Ho(Cog).

7.5. Morphisms in the homotopy categories. Let L′, L be dg Lie alge-
bras. In general, the map

HomLie(L
′, L)→ HomHo(Lie)(L

′, L)

will not be surjective. However, if L′ = ΩC for some C ∈ Cog, it is surjective
and we can describe the image in terms of equivalence classes of solutions of the
Maurer-Cartan equation: Put

Tw(C, L) = MC(Homk(C, L)).

Theorem 7.4 ([24]). The maps

HomLie(ΩC, L)→ HomHo(Lie)(ΩC, L) and HomCog(C, BL)→ HomHo(Cog)(C, BL)

are surjective and we have bijections

HomHo(Lie)(ΩC, L) = Tw(C, L) = HomHo(Cog)(C, BL).
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7.6. Formal deformation problems. A formal deformation problem is a
representable functor

F = HomHo(Cog)(?, C) : Ho(Cog)op → Sets .

If L is a dg Lie algebra, the problem of deforming the zero solution of the Maurer-
Cartan equation in L is the functor

Tw(?, L) : Ho(Cog)op → Sets .

It is a formal deformation problem since it is represented by ΩL, by theorem 7.4.
Conversely, this theorem yields that for each formal deformation problem F there
is a dg Lie algebra L, unique up to isomorphism in Ho(Lie), such that

F ∼→ Tw(?, L).

In summary, we have bijections between isomorphism classes of formal defor-
mation problems, homotopy types of dg Lie algebras and homotopy types of dg
cocomplete cocommutative coalgebras.

7.7. Link with L∞-morphisms. Let L and L′ be dg Lie algebras. In sec-
tion 6, we have defined the notion of L∞-morphism from L to L′.

Lemma 7.5. There is a canonical bijection between the set of L∞-morphisms
L → L′ and the set of morphisms of dg coalgebras BL → BL′. Under this bijec-
tion, the L∞-quasi-isomorphisms correspond to the weak equivalences. The dg Lie
algebras L and L′ are homotopy equivalent iff they are isomorphic in the homotopy
category Ho(Lie).

Let us deduce the L∞-quasi-isomorphism theorem 6.2: If R is a test algebra,
then we have a bijection (cf. paragraph 7.1)

MC(L, R) = Tw(DR, L) = HomHo(Cog)(DR, BL) ,

where DR = Homk(R, k) is the coalgebra dual to the (finite-dimensional) alge-
bra R. The lemma shows that the right hand side is preserved under L∞-quasi-
isomorphisms. It is easy to check the explicit formula in theorem 6.2.

7.8. L∞-algebras and fibrant coalgebras. Let C ∈ Cog.

Proposition 7.6. The following are equivalent

(i) There is a graded vector space L such that the underlying graded aug-
mented coalgebra of C is isomorphic to Symc(L[1]).

(ii) For each morphism i : D → E of Cog such that i is injective (on the
underlying vector spaces) and Ω(i) is a quasi-isomorphism, and for each
morphism f : D → C of Cog, there is a morphism i : E → C such that
h ◦ i = f .

D
f //

i

��

C

E

h

>>

Suppose that C is fibrant, i.e. it satisfies the properties of the proposition. Then
the graded space L[1] of (i) is isomorphic to the space Prim(C) of primitive elements
of C (i.e. the kernel of the map C → C×C induced by the comultiplication). Note



30 2. DEFORMATION THEORY

however that there is no canonical isomorphism between C and Symc(Prim(C)).
The differential d of C yields a sequence of graded maps

Qn : L⊗n → L , n ≥ 1 ,

which are homogeneous of degree 2−n, graded antisymmetric and satisfy quadratic
equations which express the fact that d2 = 0. The first two of these equation
imply that Q2

1 = 0 (so (L, Q1) is a complex) and that Q2 : L ⊗ L → L is a
map of complexes which induces a graded Lie bracket in homology. By definition,
the space L endowed with the Qn becomes an L∞-algebra. Each dg Lie algebra
is naturally an L∞-algebra but there are many other examples. By definition,
morphisms between L∞-algebras correspond bijectively to morphisms between the
corresponding objects of Cog. Thus we have a fully faithful functor

B∞ : {L∞-algebras} → Cog ,

which extends the bar construction B : Lie → Cog. It is easy to see that the
category of L∞-algebras admits products and that the product of L1 with L2 is
L1⊕L2 with the natural maps Qn. An L∞-algebra L is linear contractible if Qn = 0
for n ≥ 2 and the complex (L, Q1) is contractible. It is minimal if Q1 vanishes.

Proposition 7.7. Each L∞-algebra L is isomorphic to the product M ⊕ C of
a minimal L∞-algebra M and a linear contractible L∞-algebra C.

It follows from the proposition that an L∞-algebra C is contractible iff B∞C
is isomorphic to zero in Ho(Cog). Moreover, an L∞-algebra M is minimal iff we
have

f : M →M is invertible⇔ B∞(f) becomes invertible in Ho(Cog).

7.9. Formal manifolds. A formal (graded) manifold is a graded cocomplete
coalgebra C which is isomorphic to the symmetric coalgebra Symc(V ) of some
graded vector space V . However, the isomorphism C ∼→ Symc(V ) is not part of the
structure. For a formal manifold P , a P -point of C is a morphism of coaugmented
coalgebras P → C. The formal manifold C comes with a distinguished point k → C
given by the coaugmentation. Its tangent space at the distinguished point is

T0C = Prim(C) = ker(C → C ⊗ C).

Let d : C → C be a coalgebra differential, homogeneous of degree 1. Geometrically,
we view d as a vector field of degree 1 on the formal manifold C satisfying [d, d] = 0.
Let us call the datum of C with d a Q-manifold. If L is a graded vector space such
that C ∼= Symc(L[1]), then d corresponds to a structure of L∞-algebra on L. By
lemma 7.5, morphisms of Q-manifolds are in bijection with L∞-morphisms. One
defines the notion of homotopy between morphisms of Q-manifolds using polynomial
families of morphisms. Then one can show [24] that the homotopy category of Q-
manifolds is equivalent to the homotopy categories Ho(Cog) and Ho(Lie).

8. Notes

According to Goldman and Millson [22], the philosophy of controlling defor-
mation problems by differential graded Lie algebras is due to Schlessinger-Stasheff
[47] and P. Deligne. The quasi-isomorphism theorem 4.3 is stated and proved in
this generality in [32]. The material presented in section 7 is due to Quillen [46],
Hinich-Schechtman [26], Kontsevich [32], Hinich [24], . . .



CHAPTER 3

On Tamarkin’s approach

1. Tamarkin’s theorem

Let k be a field of characteristic 0, let V be a finite-dimensional k-vector space
and SV the symmetric algebra on V . The problem of deforming the multiplication
of SV is described by the dg Lie algebra

LAs(SV ) = C(SV, SV )[1] ,

i.e. the shifted Hochschild complex endowed with the Gerstenhaber bracket (cf.
section 3 of chapter 2).

Theorem 1.1 (Tamarkin [51]). The dg Lie algebra LAs(SV ) is formal.

1.1. Kontsevich’s formality theorem follows for M = Rn. We keep the
above notations and let k = R. We consider the dual M = V ∗ as a Poisson
manifold with vanishing bracket. Let LAs,md(SV ) be the subcomplex of LAs(SV )
whose components are formed by the cochains which are multidifferential operators
with polynomial coefficients. The following lemma results from suitable variants of
the Hochschild-Kostant-Rosenberg theorem [27].

Lemma 1.2. LAs,md(SV ) is a dg Lie subalgebra of LAs(SV ) and of Lstar(V
∗).

Moreover, both inclusions are quasi-isomorphisms.

It now follows from Tamarkin’s theorem that Lstar(V
∗) is linked to its homology

by a chain of quasi-isomorphisms of dg Lie algebras, so that we obtain Kontsevich’s
formality theorem 4.1 of chapter 1 using the quasi-isomorphism theorem 4.3 of
chapter 2.

1.2. Outline of Tamarkin’s approach. We essentially follow Kontsevich’s
presentation [33]. The basic idea (which, according to [51], goes back to B. Tsygan)
consists in using the additional structure present on the Hochschild complex in the
form of the cup product. We use the notations introduced in section 1 of chapter 2.

A Gerstenhaber algebra is given by a Z-graded vector space G, a graded com-
mutative associative multiplication on G and a Lie bracket on G[1] such that for
each x ∈ Gp, the bracket [x, ?] is a derivation of degree p + 1 of the associative
algebra G. A dg Gerstenhaber algebra is a Gerstenhaber algebra endowed with a
differential which is a derivation for both operations, the multiplication and the
bracket.

If A is an associative algebra, the cup product of a Hochschild p-cochain f by
a q-cochain g is the (p + q)-cochain f ∪ g defined by

(f ∪ g)(a1, . . . , ap+q) = (−1)pqf(a1, . . . , ap)g(ap+1, . . . , ap+q).

31
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Lemma 1.3 (Gerstenhaber [15]). a) Endowed with the cup product and
the Hochschild differential the Hochschild complex becomes a dg associative
algebra.

b) Hochschild cohomology endowed with the cup product and the Gerstenhaber
bracket is a Gerstenhaber algebra.

Remark 1.4. It is important to note that the Hochschild complex itself is
not, in general, a Gerstenhaber algebra for the cup product and the Gerstenhaber
bracket. For example, the cup product of cochains is not commutative in general.

Let us examine the Gerstenhaber algebra structure on the Hochschild cohomol-
ogy of a commutative k-algebra A. It is easy to see that we have an isomorphism
of Lie algebras

Derk(A, A) ∼→ HH1(A, A) ,

where Derk(A, A) denotes the space of k-linear derivations from A to itself. The
bracket on Derk(A, A) admits a unique extension which makes the exterior algebra
ΛA Derk(A, A) into a Gerstenhaber algebra (where the elements of Derk(A, A) are in
degree 1). The above isomorphism uniquely extends to a morphism of Gerstenhaber
algebras

ΛA Derk(A, A)→ HH∗(A, A).

By the Hochschild-Kostant-Rosenberg theorem [27], this is an isomorphism if k is
perfect and A is the algebra of polynomial functions on a smooth affine variety over
k. It is also invertible if k is an arbitrary field and A = SV the symmetric algebra
on a finite-dimensional vector space V (use the Koszul resolution as in [36, 3.3.3]).
Thus we have an isomorphism of Gerstenhaber algebras

ΛSV Derk(SV, SV ) ∼→ HH∗(SV, SV ).

A quasi-isomorphism of dg Gerstenhaber algebras is a morphism of dg Ger-
stenhaber algebras which induces isomorphisms in homology. A dg Gerstenhaber
algebra G is formal if it is linked to its homology H∗G (considered as a dg Ger-
stenhaber algebra with vanishing differential) by a sequence of quasi-isomorphisms
of dg Gerstenhaber algebras.

Proposition 1.5. Let V be a finite-dimensional vector space and G a dg Ger-
stenhaber algebra such that H∗G is isomorphic to HH∗(SV, SV ). Then G is formal.

Though non-trivial, the proposition is not deep. Proofs can be found in section 3
of [51], in [25], or in [20]. The deep part of Tamarkin’s contribution is contained
in the following theorem.

Theorem 1.6. For each associative (not necessarily commutative) k-algebra

A, there is a dg Gerstenhaber algebra G̃ such that

a) H∗G̃ is isomorphic to HH∗(A, A) as a Gerstenhaber algebra and

b) G̃ is linked to LAs(A) by a sequence of quasi-isomorphisms of dg Lie al-
gebras.

Together, the proposition and the theorem imply Tamarkin’s formality theo-
rem 1.1: Indeed, it follows from a) and the proposition that for A = SV , the dg

Gerstenhaber algebra G̃ is formal. In particular, it is formal as dg Lie algebra. So
we obtain sequences of quasi-isomorphisms of dg Lie algebras

H∗(G̃)[1] G̃[1] LAs(SV ).
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Since we have isomorphisms of dg Lie algebras

H∗LAs(SV ) = HH∗(SV, SV )[1] = H∗(G̃)[1] ,

it follows that LAs(SV ) is formal as a dg Lie algebra, as claimed by theorem 1.1.
Tamarkin’s proof of theorem 1.6 uses the language of operads [42]. Its two

main ingredients are the following theorems

1) Deligne’s question [7] has a positive answer: There is a homotopy action
of the (normalized singular chain operad of) the little squares operad on
the Hochschild cochain complex of any associative algebra.

2) The little squares operad is formal.

In the sequel, we will succinctly introduce the language of operads, present these
two theorems and show how they imply theorem 1.6.

2. Operads

2.1. A first example: The associative operad. Let k be a field, Vec k
the category of k-vector spaces and A the category of associative (non unital) k-
algebras. For n ≥ 1, we consider the functor

Tn : A → Vec k , A 7→ A⊗n.

A natural n-ary operation is a morphism of functors Tn → T1, i.e. a morphism of
vector spaces

A⊗n → A

which is functorial in the algebra A. For example, the multiplication of A yields a
natural binary operation and the identical map a natural unary operation. Denote
by As(n) the space of natural n-ary operations. It is a right Σn-module: If λ ∈ As(n)
and σ is a permutation of {1, . . . , n}, then the operation λσ is defined by

a1 ⊗ . . .⊗ an 7→ λ(aσ(1), aσ(2), . . . , aσ(n)).

If we have natural operations λ ∈ As(n) and µi ∈ As(ki), 1 ≤ i ≤ n, then the
composition λ(µ1, . . . , µn) defined by

a1 ⊗ . . .⊗ aN 7→ λ(µ1(a1, . . . , ak1
), . . . , µn(aN−kn+1, . . . , aN )) , N =

∑
ki ,

belongs to As(k1 + . . . + kn). Thus we obtain a composition map

γ : As(n)⊗As(k1)⊗ . . .⊗As(kn)→ As(k1 + . . . + kn).

It is clear that composition is compatible in a suitable way with the actions of
the symmetric groups and that the identity of A yields a ‘neutral element’ for the
composition. The spaces As(n), n ≥ 1, together with the actions of the symmetric
groups, the composition and the identity morphism form the associative operad. It
is not hard to show that As(n) is in fact a free k[Σn]-module and to describe the
compositions explicitly, cf. for example [2, 0.10].

2.2. Operads and their algebras. More generally, an operad of vector spaces
is given by a sequence O(n), n ≥ 1, of vector spaces, a right action of Σn on O(n)
for each n ≥ 1, composition maps

γ : O(n) ⊗O(k1)⊗ . . .⊗O(kn)→ O(k1 + . . . + kn)

for all integers n, k1, . . . , kn ≥ 1, and a distinguished element 1 ∈ O(1). One
imposes natural conditions to the effect that
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- composition is compatible with the actions of the symmetric groups,
- composition is associative,
- composition admits 1 as a neutral element.

(The reader can find the complete definition in [21], for example). Morphisms of
operads are defined in the natural way.

If V is a vector space, the endomorphism operad Endop(V ) has the components
Hom(V ⊗n, V ) with the natural action of Σn, n ≥ 1, and the natural composition.
If O is an operad, an algebra over O (=O-algebra) is a vector space A together with
a morphism of operads

ρ : O → Endop(A).

For example, one can check that the algebras over the associative operad are pre-
cisely the associative algebras. Similarly, there is the commutative operad Com
with Com(n) = k (the trivial module) for all n ≥ 1 whose algebras are precisely
the commutative k-algebras. Another example is the Lie operad Lie whose algebras
are precisely the Lie algebras over k.

If O is an operad and Alg(O) the category of algebras over O, the forgetful
functor

Alg(O)→ Vec k

admits a left adjoint: the free algebra functor, which takes a vector space V to

F (O, V ) =
∑

n≥1

O(n) ⊗Σn
V ⊗n.

This shows that the Σn-module O(n) can be recovered from the free algebra F (O, kn)
as the (1, . . . , 1)-component of the natural Nn-grading. For example, we thus ob-
tain a description of Lie(n), n ≥ 1, as the (1, . . . , 1)-component of the free Lie
algebra on n generators.

The definition of an operad still makes sense if we replace the category of
vector spaces by that of topological spaces and the tensor product by the cartesian
product. This yields the notion of a topological operad and of an algebra over such
an operad. More generally, we may replace the category of vector spaces by any
symmetric monoidal category (cf. [38]). We thus obtain the notion of graded operad
and differential graded (=dg) operad. The Gerstenhaber operad Gerst is the graded
operad whose algebras are the Gerstenhaber algebras (1.2). We have a natural
morphism of graded operads Com → Gerst. The restriction of a Gerstenhaber
algebra along this morphism is its underlying commutative algebra. Similarly, we
have a canonical morphism Σ Lie→ Gerst, where Σ Lie denotes the graded operad
whose algebras are the suspensions L[1], where L is a (graded) Lie algebra. More
generally, for any graded operad O, the suspended operad ΣO whose algebras are
the suspensions A[1] of O-algebras A, is given by

(ΣO)(n) ∼→ O(n)[n− 1]⊗ sgnn ,

where sgnn is the sign representation of the symmetric group Σn. We have

Gerst(2) = Lie(2)[1]⊗ sgn2⊕Com(2).

If O is a topological operad, then, thanks to the Künneth theorem, the (sin-
gular) homologies H∗(O(n), k) naturally form a graded operad. More subtly, the
normalized singular chain complexes N∗(O(n), k) (the quotients of the complexes of
singular chains by all degenerate chains) form a dg operad, thanks to the Eilenberg-
Zilber theorem (cf. [37, VIII.8]).
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2.3. Little squares. The little squares operad C2 is an example of a topolog-
ical operad. It is defined as follows: Let J be the open unit interval ]0, 1[. A little
square is an affine embedding with parallel oriented axes of J2 into itself. In other
words, it is a map

c : J2 → J2 , (t1, t2)→ ((1− t1)x1 + t1y1, (1− t2)x2 + t2y2) ,

where 0 ≤ xi < yi ≤ 1. The nth component of the little squares operad C2 is the set
of all n-tuples (c1, . . . , cn) of little squares with disjoint images. We identify this set
with a subspace of the space of maps (with the compact open topology) from the
disjoint union of n copies of J2 to J2. The group Σn acts on C2(n) by permuting
the squares:

(c1, . . . , cn) σ = (cσ(1), cσ(2), . . . , cσ(n)).

For c ∈ C2(n) and di ∈ C2(ki), 1 ≤ i ≤ n, the composition γ(c, d1, . . . , dn) is defined
via the composition of maps

∐n
i=1

∐
ki

J2 (d1,...,dn) // ∐
n J2 c // J2

Finally, the unit element is the identity map id ∈ C2(1). By sending each square
to its center we obtain a homotopy equivalence between C2(n) and the space of
n-tuples of distinct points in J2. In particular, we see that C2(2) is homotopy
equivalent to the circle.

Let Y be a topological space with a base point ∗. Define its second loop space
Ω2Y to be the space of all continuous maps f : [0, 1]2 → Y which send the boundary
of the unit square to the base point ∗. We see that Ω2Y carries a natural structure of
C2-algebra. Conversely, if X is a connected topological space which is a C2-algebra,
then X is weakly equivalent to Ω2Y for some topological space with base point Y ,
cf. [42].

Theorem 2.1 (Cohen [6]). Let k be a field of characteristic 0. The homol-
ogy operad H∗(C2, k) of the little squares operad is isomorphic to the Gerstenhaber
operad Gerst.

As a simple instance of the theorem, note that

H∗(C2(2), k) ∼→ H∗(S
1, k) ∼→ kµ⊕ kλ = Gerst(2) ,

where µ corresponds to the commutative multiplication (of degree 0) and λ to the
bracket (of cohomological degree −1) of a Gerstenhaber algebra.

3. Application in Tamarkin’s proof

3.1. Homotopy action of the Gerstenhaber operad on Hochschild

cochains. Let O, P be dg operads. By definition, a quasi-isomorphism O → P
is a morphism of dg operads such that O(n) → P (n) is a quasi-isomorphism of
complexes for each n ≥ 1. The homotopy category of operads Ho(Op) is obtained
from the category of dg operads by formally inverting all quasi-isomorphisms. A dg
operad O is formal if, in Ho(Op), O is isomorphic to H∗O viewed as a dg operad
with vanishing differential. An homotopy action of the dg operad O on a dg vector
space C is by definition a morphism

ρ : O → Endop(C)
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in Ho(Op). Such a morphism induces a structure of H∗(O)-algebra on the homology
H∗(C). In general, it is a highly non trivial problem to determine whether a given
H∗(O)-action on H∗(C) lifts to a homotopy action of O on C.

Let A be an associative algebra. We know that the Lie algebra structure on
HH∗(A, A)[1] extends to a Gerstenhaber algebra structure. This means that we
have a commutative triangle of graded operads

Σ Lie

��

λ // Endop(HH∗(A, A))

Gerst

ϕ

66
m

m
m

m
m

m
m

m
m

m
m

m

We also know that the Lie structure on HH∗(A, A)[1] comes from a Lie algebra
structure on the shifted Hochschild complex C(A, A)[1] itself. So we have a canon-
ical lift of λ to morphism of operads

Σ Lie
Λ // Endop(C(A, A)).

Theorem 3.1 (Tamarkin). The morphism ϕ lifts to a morphism

Φ : Gerst→ Endop(C(A, A))

of Ho(Op) such that the triangle

Σ Lie

��

Λ // Endop(C(A, A))

Gerst

Φ

77
o

o
o

o
o

o
o

o
o

o
o

commutes in Ho(Op).

Theorem 1.6 follows from this theorem: for G̃, one takes the ‘restriction along Φ’
of the algebra C(A, A). Since Φ is not a morphism of operads but only a morphism
in Ho(Op), some work is required to define the restriction. The main point is the

Theorem 3.2 (Hinich [23, 4.7.4]). If α : O → O′ is a quasi-isomorphism of dg
operads over a field of characteristic 0, then the restriction along α is an equivalence

Ho(Alg(O′))→ Ho(Alg(O)) ,

where Ho(Alg(O)) is the localization of the category of dg O-algebras with respect
to the class of quasi-isomorphisms.

3.2. On the proof of Theorem 3.1. Let us fix an isomorphism

α : Gerst→ H∗(C2, k)

as in Cohen’s theorem 2.1. The morphism Φ of theorem 3.1 is constructed as a
composition of two morphisms of Ho(Op):

Gerst
Φ1 // N∗(C2, k)

Φ2 // Endop(C(A, A)).

Here, N∗ denotes the normalized singular cochain complex defined at the end of
section 2.2 and Φ1 is an isomorphism inducing α in homology. The existence of Φ1

is immediate from the
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Theorem 3.3. If k is a field of characteristic 0, the normalized singular chains
operad N∗(C2, k) of the little squares operad is formal.

The existence of a suitable morphism Φ2 follows from the

Theorem 3.4. There is a morphism Φ2 : N∗(C2, k) → Endop(C(A, A)) of
Ho(Op) such that the triangle

Endop(HH∗(A, A))

Gerst

ϕ
77

n
n

n
n

n
n

n
n

n
n

n
n

n

α
// N∗(C2)

H∗(Φ2)

OO

commutes.

The morphism Φ is defined as the composition Φ2 ◦Φ1. It is then clear that Φ
lifts ϕ and it only remains to prove the commutativity of the triangle in theorem 3.1.
For this, one needs a slightly more precise version of theorem 3.4: Let P be the
dg suboperad of EndopC(A, A) generated by the cup-product and by the brace
operations: If f0, . . . , fp are Hochschild cochains, the brace operation is given by
an expression of the form (cf. [43])

f0{f1, . . . , fp} =
∑
±f0 ◦ (id⊗i0 ⊗ f1 ⊗ id⊗i1 ⊗ . . .⊗ id⊗ip−1 ⊗ fp ⊗ id⊗ip)

where the sequence i0, . . . , ip ranges over all possibilities such that the composition
with f0 makes sense. Note that if fi is of degree ri, then the degree r of the resulting
cochain satisfies

r − 1 =
∑

i

(ri − 1).

It follows that the complexes (Σ−1P )(n) are all concentrated in degrees ≥ 0. The
Gerstenhaber bracket is expressed in terms of brace operations so that Λ factors
as the composition of the inclusion of P with a morphism Λ. Similarly, ϕ factors
as the composition of the map H∗(P ) → Endop(HH∗(A, A)) with a morphism ϕ.
And even a very superficial inspection of the proofs [43] [2] [35] of theorem 3.4
yields the

Porism 3.5. The morphism Φ2 of Theorem 3.4 factors through the morphism

P → Endop(C(A, A)).

It remains to prove that the following diagram is commutative

Lie

��

Λ // Σ−1P // Σ−1 Endop(C(A, A))

Σ−1 Gerst

Φ

99
r

r
r

r
r

r
r

r
r

r

Clearly, it induces a commutative diagram in homology. Since the Σ−1P (n) are all
concentrated in degrees ≥ 0, the proof is completed by the following easy

Lemma 3.6. Let O and O′ be dg operads such that O(n) is concentrated in
degree 0 and O′(n) in degrees ≥ 0 for all n ≥ 1. Then the map

HomHo(Op)(O, O′)→ HomOp(H
∗O, H∗O′)

is bijective.
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4. Notes

Tamarkin’s proof [51] of his theorem relies on Kazhdan-Etingof’s biquanti-
zation theory [13], and thus, ultimately, on the existence of a rational Drinfeld
associator [10]. The proof was streamlined in [49] and presented with more details
in [25]. We have essentially followed Kontsevich’s interpretation [33], where the
use of Drinfeld associators becomes more transparent: they appear naturally in the
construction of the formality isomorphism Φ1 in [52].

A comprehensive reference on operads is [40]. The first sections of [21] also
offer a nice introduction to the subject.

Theorem 3.3 on the formality of the little squares operad was first announced
by Getzler-Jones in [18]. However, the proof contained an error. A correct proof
was given by Tamarkin in [52] using work by Fiedorowicz [14] and the existence
of a rational Drinfeld associator [10]. Later, Kontsevich [33] gave a different proof
and also proved that, more generally, the little d-cubes operad is formal for all
d ≥ 0.

Theorem 3.4 on the homotopy action of the little squares operad on the Hochschild
complex goes back to a question formulated by Deligne in [7]. It was proved in [54]
by correcting a method proposed in [18]. It also results by combining [51] with [52].
A geometric proof was given in [35] and purely topologico-combinatorial proofs in
[43] and [2]. In [31], a conceptual approach was proposed and a closely related
statement proved in a ‘non-linear’ context. A proof involving an operad related to
Connes-Kreimer’s renormalization Hopf algebra was given in [30]. A generalization
of the theorem to little cubes was announced in [33] and proved in [28].

The brace operations on two arguments were introduced in [15] and on an
arbitrary number of arguments in [29] and [17]. Their action on the Hochschild
complex was systematized in [16].
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