
INVARIANCE AND LOCALIZATION

FOR CYCLIC HOMOLOGY

OF DG ALGEBRAS1

Bernhard Keller

May 13, 1996

Abstract. We show that two flat differential graded algebras whose derived categories are
equivalent by a derived functor have isomorphic cyclic homology. In particular, ‘ordinary’ algebras
over a field which are derived equivalent [48] share their cyclic homology, and iterated tilting [19]
[3] preserves cyclic homology. This completes results of Rickard’s [48] and Happel’s [18]. It also
extends well known results on preservation of cyclic homology under Morita equivalence [10], [39],
[25], [26], [41], [42].

We then show that under suitable flatness hypotheses, an exact sequence of derived categories
of DG algebras yields a long exact sequence in cyclic homology. This may be viewed as an analogue
of Thomason-Trobaugh’s [51] and Yao’s [58] localization theorems in K-theory (cf. also [55]).

I am grateful to the referee for his careful reading of the manuscript.

Summary

This paper is concerned with cyclic homology of (unbounded, non-commutative) differential
Z-graded algebras. The case of positively graded DG algebras was first considered by Vigué-
Burghelea [53] and T. Goodwillie [15]. We need the slightly more general setting to allow for the
algebras appearing in Morita theory for derived categories. For simplicity, in this summary, we
only state the results for the special case of ‘ordinary’ algebras. We point out however, that the
range of possible applications is greatly enlarged if one admits general differential graded algebras.

Let k be a commutative ring. In this summary, all k-algebras are assumed to be projective over
k. Let A and B be k-algebras. Consider the full subcategory rep (A,B) of the derived category of
A-B-bimodules formed by the bimodule complexes X which when restricted to B become quasi-
isomorphic to perfect complexes (i.e. finite complexes of finitely generated projective B-modules).
Generalizing results of C. Kassel [25] [26] we show in (2.4) that each such complex X gives rise to
a morphism in cyclic homology

HC∗ (X) : HC∗(A)→ HC∗(B).

This morphism is functorial in the sense that if we view A as an A-A-bimodule complex, then
HC∗(A) = 1 and if Y ∈ rep (B,C) then HC∗(X ⊗L

B Y ) = HC∗(Y ) ◦ HC∗(X). This implies in
particular that HC∗ is an invariant for Morita equivalence of derived categories [48] [49], that is, if
the derived functor ?⊗L

A X : DA→ DB is an equivalence, then HC∗(X) is invertible.
Moreover, we show that HC∗(X) only depends on the class of X in the Grothendieck group

of the triangulated category rep (A,B). These Grothendieck groups are naturally viewed as the
morphism spaces of a category whose objects are all algebras. A K-theoretic equivalence is an
isomorphism of this category. Thus, cyclic homology is invariant under K-theoretic equivalence.
For example, a finite-dimensional algebra of finite global dimension over an algebraically closed field
is K-theoretically equivalent to its largest semi-simple quotient (2.5). Thus, if k is an algebraically
closed field, the cyclic homology of a finite-dimensional algebra A of finite global dimension only
depends on the number of isomorphism classes of simple A-modules. This yields the ‘no loops
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conjecture’ in the algebraically closed case, which was first proved by H. Lenzing [36]. We refer to
K. Igusa’s article [22] for a proof under more general hypotheses.

The second part of the paper is concerned with the proof of the following ‘localization theorem’
(3.1): Let A, B and C be algebras over a field k (for simplicity). Suppose that L ∈ rep (A,B) and
M ∈ rep (B,C) are such that the sequence

0→ DA
?⊗L

AL
−→ DB

?⊗L

BM
−→ DC → 0

is exact, i.e. DA is identified with an épaisse subcategory of DB and ?⊗L
BM induces an equivalence

from (DB)/(DA) onto DC. Then the theorem states that there is a canonical long exact sequence

HC∗ (A)
HC∗ (L)
−→ HC∗ (B)

HC∗ (M)
−→ HC∗ (C)→ HC∗−1 (A).

This theorem may be viewed as an analogue in cyclic homology of the localization theorems of
Thomason-Trobaugh [51] and Yao [58] (cf. also [55]). It is also a first step towards an excision
theorem à la Wodzicki [57] in the context of derived categories (cf. 3.3 b).

Exact sequences of derived categories as considered above arise for example in the localization
of rings with respect to multiplicative subsets admitting a calculus of fractions (4.1). They always
yield a recollement setup [2] and conversely, by König’s theorem [27], a recollement setup between
derived categories of algebras yields an exact sequence of derived categories in the above sense.

We emphasize that our localization theorem does not supersede the result on central localization
obtained by Geller–Reid–Weibel [14, Prop. A.3], Loday (unpublished, cf. however [37, 3.4]), Jon
Bloch (unpublished), and Brylinski [5] (cf. also C. A. Weibel’s recent book [56, 9.1.8.3], and [38,
1.1.17]). Neither does our theorem supersede the results on étale descent by Weibel–Geller [54].
We hope to establish the precise relationship with these results in a future paper.
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1. Hochschild homology

1.1 Notations. We refer to section 7 for notations and basic results concerning DG algebras and
their (relative) derived categories. Let k be a commutative ring and A a DG k-algebra (7.1). We
write ⊗ for the tensor product of DG k-modules over k. The bar resolution of A is the chain
complex R (A) whose n-th component is the DG k-module A⊗A⊗n⊗A, n ∈ N. The components
R (A)n vanish for n < 0. The complex R (A) is endowed with the differential given by

d(a0 ⊗ a1 ⊗ . . .⊗ an+1) =

n
∑

i=0

(−1)ia0 ⊗ . . .⊗ ai−1 ⊗ aiai+1 ⊗ ai+2 ⊗ . . .⊗ an+1.
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The total complex of R (A) will also be denoted by R (A) (we always form the total complex
using direct sums, not products). It is viewed as a DG A-A-bimodule. The multiplication map
A⊗A→ A induces a morphism of DG bimodules

ε : R (A)→ A.

The Hochschild complex is the DG k-module

H(A) = R (A)⊗Ae A ,

where Ae = Aop ⊗A. Its homology is the Hochschild homology of A

HHn (A) = HnH(A) , n ∈ Z.

These definitions agree with those in [38, 5.3.2].
In this context, Hochschild’s interpretation [21] reads as follows: The mapping cone over ε :

R (A) → A is contractile when considered as a right (or left) DG A-module. So, a fortiori, ε is
a relative quasi-isomorphism (7.4) of DG Aop ⊗ A-modules. The filtration of R (A) by the total
complexes of the chains

. . .→ 0→ R (A)p → R (A)p−1 → . . .→ R (A)0 → 0→ . . . , p ∈ N ,

satisfies the hypotheses of lemma 7.5 and thus R (A) is relatively closed. So by lemma 7.4, for any
relative quasi-isomorphism P → A of DG bimodules with relatively closed P , we have a canonical
homotopy equivalence R (A) ∼→ P . Whence a canonical homotopy equivalence

H(A) ∼→ P ⊗Ae A.

and canonical isomorphisms HHnA
∼→ Hn(P ⊗AeA). So H(A) identifies with the image of A under

the total relative left derived functor of the tensor product functor ?⊗Ae A.

1.2 Comparison. Keep the assumptions of 1.1. For two DG A-modules L and M , we denote by
HomA (L,M) the cochain complex of k-modules whose n-th component consists of the morphisms
of graded A-modules f : L→M which are homogeneous of degree n. The differential is given by
d(f) = dM ◦ f − (−1)nf ◦ dL. It is easy to check that HomA (L,L) is a DG algebra (cf. example
7.1 b). If A and L are concentrated in degree 0, then so is HomA (L,L) and its only non-vanishing
component is HomA(L,L).

Let P and Q be two closed DG A-modules (7.4) and suppose that the smallest full triangulated
subcategory of HA containing P and closed under forming direct summands contains Q as well.

Lemma.

a) The embedding

HomA (P, P )→HomA (P ⊕Q,P ⊕Q) , f 7→

[

f 0
0 0

]

,

induces a homotopy equivalence

H(HomA (P, P )) ∼→ H(HomA (P ⊕Q,P ⊕Q)).

b) The composition morphisms

HomA (P,Q)⊗B HomA (Q,P ) → HomA (Q,Q) resp.

HomA (P,Q) ⊗B P → Q

where B = HomA (P, P ), are homotopy equivalences of DG k-modules, resp. DG A-modules.
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Proof. a) Put B = HomA (P, P ) and C = HomA (P ⊕Q,P ⊕Q). Let η be the composition

C ⊗B R (B)⊗B C
ε∗−→ C ⊗B B ⊗B C

µ
−→ C.

The n-th component of C ⊗B R (B) ⊗B C is isomorphic to Ce⊗B⊗n ⊗ eC, where e ∈ C denotes
the idempotent associated with P . This is clearly isomorphic to a direct summand of a module
of the form K ⊗ Ce for some DG k-module K, where Ce = Cop ⊗ C. Using lemma 7.5 with the
same filtration as above for R (A) we see that C ⊗B R (B) ⊗B C is relatively closed over Ce. We
will prove that η is a relative quasi-isomorphism. Since the obvious morphism

(C ⊗B R (B)⊗B C)⊗Ce C → R(C)⊗Ce C

is compatible with the augmentations η and ε, it will then have to be a homotopy equivalence by
lemma 7.4. The claim will follow because the composition

R (B)⊗Be B ∼→ (C ⊗B R (B)⊗B C)⊗Ce C → R(C)⊗Ce C

equals the canonical map H(B)→ H(C).
Thus it remains to be proved that η is a relative quasi-isomorphism. For this, let U and V be

arbitrary DG A-modules and consider the chain complex R(U, V ) with components

HomA (P, V )⊗B⊗n ⊗HomA (U,P ) , n ∈ N ,

and the differential

d(b0 ⊗ b1 ⊗ . . .⊗ bn ⊗ bn+1) =

n
∑

i=0

(−1)ib0 ⊗ . . .⊗ bi−1 ⊗ bibi+1 ⊗ bi+2 ⊗ . . .⊗ bn+1 ,

and denote by T (U, V ) the total complex of the mapping cone of the morphism

R(U, V )→HomA (U, V )

induced by the composition

HomA (P, V )⊗HomA (U,P )→HomA (U, V ).

It is clear that R(P, P ) identifies with R (B) and T (P, P ) with the mapping cone over ε. Similarly,
T (P ⊕Q,P ⊕Q) identifies with the mapping cone over η. We have to show that it is k-contractile,
i.e. vanishes as an object of Hk. Now we know that T (P, P ) vanishes in Hk. Let us view T (P, ?)
as a triangle functor from HA to Hk. Its kernel is clearly a triangulated subcategory containing P
and closed under forming direct summands. Hence by the assumption,the kernel contains Q as well
and hence P ⊕Q. So the complex T (P, P ⊕Q) is k-contractile. Now we consider T (?, P ⊕Q) as a
triangle functor HA→ (Hk)op. As we have just seen, its kernel contains P . So by the assumption,
it contains P ⊕Q as well.

b) Let U and V be arbitrary DG A-modules and consider the composition morphism

HomA (P, V )⊗B HomA (U,P )→HomA (U, V )

and the total complex of its mapping cone, which will be denoted by T (U, V ). For U = V = P ,
we clearly have an isomorphism of DG k-modules and thus T (P, P ) is contractile. So the kernel
of T (P, ?) viewed as a functor HA → Hk contains P . Since it is a full triangulated subcategory
of HA, the assumption then implies that it contains Q as well. So T (P,Q) is contractile. By
considering the kernel of T (?, Q) we find in a similar way that T (Q,Q) is contractile. The second
homotopy equivalence is proved similarly.
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2. Invariance of cyclic homology

2.1 Precyclic modules and mixed complexes. C. Kassel has defined the notion of a mixed
complex [24] and associated a mixed complex with each cyclic module (cf. also [38, 2.5.13]).
Following [42], we shall slightly modify this construction so as to make it functorial with respect
to morphisms between cyclic modules which do not necessarily commute with the degeneracy
operators. These arise from algebra homomorphisms which do not respect the unit. We use the
notations and terminology of [38] (in particular, we use the term ‘precyclic’ for what has also been
called ‘semi-cyclic’).

If C is a precyclic module (=cyclic module without degeneracy operators) we associate a mixed
complex M to C as follows: The underlying DG module of M is the mapping cone over (1 − t)
viewed as a morphism of complexes (C, b′) → (C, b). So its underlying module is C ⊕ C; it is
endowed with the grading whose nth component is Cn ⊕ Cn−1 and the differential is

[

b 1− t
0 −b′

]

.

By definition, the operator B : M →M is

[

0 0
N 0

]

.

If C is endowed with degeneracy operators, one easily checks that the morphism [1 (1− t)s] yields
a morphism of mixed complexes between M and (C, b, (1−t)sN), which is the usual mixed complex
associated with C. This morphism is an homotopy equivalence of the underlying DG modules and
hence induces isomorphisms in Hochschild and cyclic homology. Note that M is functorial with
respect to morphisms of precyclic modules and that this does not hold for (C, b, (1 − t)sN).

2.2 The mixed derived category. Let us recall Kassel’s interpretation [24] of mixed complexes:
Let Λ be the DG algebra generated by an indeterminate ε of chain degree 1 with ε2 = 0 and dε = 0.
The underlying complex of Λ is

. . . 0→ kε
0
→ k → 0 . . . .

Let C be a right DG module over Λ and put

Bc := (−1)pcε , bc := dc , c ∈ Cp.

Then (C, b,B) is an (unbounded) mixed complex, and in this way the category of (unbounded)
mixed complexes identifies with the category of DG Λ-modules. The (Hochschild) homology HH∗C
identifies with H−∗C. By [24, Prop. 1.3], we have a canonical isomorphism

HC∗C
∼→ H−∗(C ⊗L

Λ k) ,

where k denotes the trivial left Λ-module. So both, Hochschild and cyclic homology descend to
cohomological functors on the derived category DΛ. We use the notation DMix = DΛ and call
this the mixed derived category. Note that despite the notation, this is not the derived category
of the abelian category of mixed complexes (the objects of this category would be complexes of
mixed complexes . . . ). We still denote by HH∗ and HC∗ the corresponding cohomological functors
on the mixed derived category.

2.3 A bimodule category. Let A and B be DG k-algebras. Let hrep (A,B) be the full subcat-
egory of the homotopy category H (Aop ⊗ B) formed by the DG bimodules X such that XB is
small (7.10) and closed (7.4) as a DG B-module. Clearly hrep (A,B) is a triangulated subcategory
of H(Aop ⊗ B). Let Σ be the class of quasi-isomorphisms of hrep (A,B). It is worth noting that
a morphism s : X → Y of Σ induces a homotopy equivalence XB → YB of DG B-modules since
both restrictions XB and YB are closed as DG B-modules. Clearly, Σ is a multiplicative system in
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the sense of Verdier [52]. We define rep (A,B) to be the localization of hrep (A,B) at Σ (compare
with [25] [26]). Observe that if C is a third DG k-algebra we have a well defined functor

rep (A,B) × rep (B,C)→ rep (A,C) , (X,Y ) 7→ X ⊗B Y.

Thanks to the following lemma, if A is closed as a DG k-module, then we may regard any
DG A-B-bimodule whose image in DB is small as an object of rep (A,B). The lemma also shows
that if A and B are ordinary algebras which are projective over k, then Kassel’s [25] [26] category
Rep (A,B) identifies with a full subcategory of rep (A,B).

Lemma. If A is closed as a DG k-module, then the canonical functor

H (Aop ⊗ B)→ D (Aop ⊗B)

induces an equivalence of rep (A,B) onto the full subcategory of D (Aop ⊗ B) formed by the DG
bimodules X such that XB is a small in DB. Moreover, if C is flat as a DG k-module, the
following diagram is commutative up to canonical isomorphism

rep (A,B)× rep (B,C)
⊗B−→ rep (A,C)

↓ ↓

D (Aop ⊗B)×D (Bop ⊗ C)
⊗L

B−→ D (A⊗ C).

Proof. Since A is closed as a DG k-module, the bimodule A⊗B is closed as a DG B-module.
It follows that XB is closed for each closed DG bimodule X . It is then easy to check that the
functor

D (Aop ⊗B)→H (Aop ⊗B) , X 7→ pX

induces a quasi-inverse to the functor of the claim. To prove the second assertion, we consider the
diagram

pX ⊗B pY −→ X ⊗B pY
↓ ↓

pX ⊗B Y −→ X ⊗B Y.

Here the top arrow is a quasi-isomorphism because C is flat as a DG k-module. The left vertical
arrow is a quasi-isomorphism because A is flat as a DG k-module. The right vertical arrow is a
quasi-isomorphism because XB is closed as a DG B-module. Thus the bottom arrow is a quasi-
isomorphism.

2.4 The cyclic functor. In analogy with Kassel’s construction [25] [26], we define ALG to be the
‘category’ whose objects are the DG algebrasA and whose morphisms A→ B bijectively correspond
to the isomorphism classes of DG A-B-bimodules AXB of rep (A,B) (we write ‘category’ since these
classes usually do not form sets). The identity of A is the class of AAA. The composition of AXB

with BYC is the tensor product AX⊗BYC . Let Alg be the category with the same objects as ALG

and whose morphisms are the k-linear maps of differential graded rings (not necessarily preserving
the unit). A typical example of a morphism in Alg is the embedding

A→HomA (A⊕A,A⊕A) , a 7→

[

a 0
0 0

]

.

We have the canonical functor Alg → ALG which associates with a morphism ϕ : A → B the
bimodule ϕ(1A)BB with the A-B-action given by a.ϕ(1)b.b′ := ϕ(a)bb′. Note that ϕBB with the
action a.b.b′ = ϕ(a)bb′ is not in general a bimodule in our sense since 1 ⊗ 1 need not act by
the identity. Note also that the functor Alg → ALG is not faithful. For example, it maps all
inner automorphisms to the identity (if ϕ : A → A is conjugation by u then a 7→ ua defines an
isomorphism of A-A-bimodules AAA

∼→ ϕAA).
Let A and B be two DG algebras. Denote by K0 (A,B) the Grothendieck group of the trian-

gulated category rep (A,B). We define ALG0 to be the category whose objects are those of ALG
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and whose morphisms A → B bijectively correspond to elements of K0 (A,B). The composition
K0 (A,B)×K0 (B,C)→ K0 (A,C) is induced by the tensor product over B. A K-theoretic equiva-
lence is an isomorphism of ALG0. We have a canonical functor ALG→ ALG0 which is universal
among functors F from ALG to an additive category which satisfy F (Y ) = F (X) + F (Z) for all
triangles X → Y → Z → SX of rep (A,B).

Each DG algebra yields a cyclic module and each morphism of Alg yields a morphism of
precyclic modules. By applying the construction of 2.2, we obtain a functor

C : Alg→ DMix .

Our aim is to extend it to a functor defined on all of ALG and then to show that it descends to
a functor defined on ALG0. We have to define the morphism C(X) associated with a bimodule

AXB which is small and closed over B. For this, consider the morphisms of DG algebras

A
αX−→ HomB (B ⊕X,B ⊕X)

βX
←− B

given by
αX(a)(b, x) = (0, ax) and βX(b′)(b, x) = (b′b, 0).

By 7.10, the DG B-module XB is contained in the smallest full triangulated subcategory of HB
containing BB and closed under forming direct summands. So by lemma 1.2, C(βX) is invertible
in DMix . Thus we have a well-defined morphism

C(X) := C(βX)−1 ◦ C(αX).

in the mixed derived category.

Theorem.

a) The morphism C(X) only depends on the isomorphism class of X in rep (A,B). The assign-
ment X 7→ C(X) defines a functor extending

C : Alg→ DMix

to the category ALG. This extension is unique.

b) If X → Y → Z → SX is a triangle of rep (A,B), then C(Y ) = C(X) + C(Z). Hence
C induces a functor ALG0 → DMix . In particular, cyclic homology is invariant under
K-theoretic equivalence.

Remark. The image of βX in ALG is the class of the bimodule HomB (B ⊕X,B). We claim
that this is an invertible morphism of ALG; indeed, its inverse is the class of B⊕X by lemma 1.2
b). So if Σ denotes the class of morphisms of Alg which are of the form βX or which are homotopy
equivalences of the underlying DG k-modules, then the canonical functor Alg→ ALG makes all
members of Σ invertible. The proof of the theorem will show that an arbitrary functor defined
on Alg and making all members of Σ invertible extends to a unique functor on ALG. We may
therefore view ALG as the localization of Alg with respect to Σ.

Proof. a) Let X and X ′ be two isomorphic objects of rep (A,B). To prove that C(X) = C(X ′),
we may assume that we are given a quasi-isomorphism s : X → X ′ of DG bimodules inducing a
split surjection of the underlying graded bimodules. Let

0→ N → X ′ s
→ X → 0

be short exact. Note that the restriction NB is contractile since s induces a homotopy equivalence
X ′

B → XB. Let U ⊂ HomB (B ⊕X ′, B ⊕X ′) be the subalgebra formed by the f with f(N) ⊂ N .
We have a k-split short exact sequence

0→ U →HomB (B ⊕X ′, B ⊕X ′)→HomB (N,B ⊕X)→ 0.
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The third term is contractile since NB is contractile. Thus the inclusion b1 : U → HomB (B ⊕
X ′, B ⊕ X ′) is an homotopy equivalence. Note that αX′ and βX′ factor through b1 and that
moreover we have a commutative diagram

A
αX′

−→ EndB (B ⊕X ′)
βX′

←− B
‖ ↑ b3 ‖

A
a2−→ U

b2←− B
‖ ↓ b1 ‖

A
αX−→ EndB (B ⊕X)

βX
←− B.

Here C(βX′), C(βX) and C(b1) are invertible. Therefore, the same holds for C(b2) and C(b3).
Thus we have the identities

C(X ′) = C(βX′)−1 ◦ C(αX′) = C(b2)
−1 ◦ C(a2) = C(βX)−1 ◦ C(αX) = C(X).

in the mixed derived category.
Let us show that C(X ⊗B Y ) = C(Y ) ◦C(X). Consider the following commutative diagram of

DG algebras
C
↓ βY

B
αY−→ EndC (C ⊕ Y )

↓ βX ↓ γ

A
αX−→ EndB (B ⊕X)

δ
−→ EndC (C ⊕ Y ⊕X ⊗B Y )

Here the morphism γ is the canonical inclusion and the morphism δ comes from the action of
EndB (B ⊕X) on (B ⊕X)⊗B Y

∼→ Y ⊕ (X ⊗B Y ). Since C(βX), C(βY ) and C(γ βY ) lie in Σ, we
can conclude that we have

C(Y ) ◦ C(X) = C(γ βY )−1C(δ αX)

in DMix . On the other hand, the commutative diagram

A
δαX−→ EndC (C ⊕ Y ⊕X ⊗B Y )

γβY
←− C

‖ ↑ can ‖

A
αX⊗Y
−→ EndC (C ⊕X ⊗B Y )

βX⊗Y
←− C ,

shows that C(X ⊗B Y ) = C(γ βY )−1C(δ αX).
Let us show that AAA is mapped to the identity in DMix . Indeed, we have

C( AAA) = C( AA⊗A AA) = C( AAA) ◦ C( AAA)

by what we just proved. On the other hand, it is clear from lemma 1.2 that C(αA) and hence
C( AAA) becomes invertible in DMix . The claim follows. Note that the claim implies C(αA) =
C(βA), which we will now use to show that C(ϕBB) = C(ϕ). Put X = ϕBB. Then by definition,
we have C(X) = C(βX)−1C(αX), where the morphisms

A
αX−→ EndB (B ⊕ ϕB)

βX
←− B

are given by

αX : a 7→

[

0 0
0 ϕ(a)

]

and βX : b 7→

[

b 0
0 0

]

.

We have αX = ϕ ◦ αA, where ϕ is extended ‘componentwise’ to ‘2x2–matrices’. Since C(αA) =
C(βA), we have C(ϕ ◦αA) = C(ϕ ◦βA) and C(X) = C(βX)−1 ◦C(ϕ ◦ βA). The claim is now clear
from the commutative diagram

A
ϕ
−→ B

βA ↓ ↓ βX

EndA (A⊕A)
ϕ
−→ EndB (B ⊕ ϕB).
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To prove unicity, we have to prove that the diagram

A
can (αX)
−→ EndB (B ⊕X)

1 ↓ ↑ can (βX)

A
X
−→ B

is commutative in ALG. Now we have

can (βX) = HomB (B ⊕X,B) , can (αX) = HomB (B ⊕X,X).

By lemma 1.2 b), we have
can (βX)−1 = B ⊕X

and HomB (B ⊕X,X) and B ⊕X are inverse to each other in ALG. Thus

can (βX)−1 ◦ can (αX) = X.

b) We may assume that the triangle comes from a short exact sequence of DG bimodules

0→ X
i
→ Y

p
→ Z → 0

which splits as a sequence of graded bimodules. Let T be the algebra of “upper triangular 2 × 2
matrices” with coefficients in B

T :=

[

B B
0 B

]

.

Endow the left A-module X ⊕ Y with the right T -action defined by

(x, y).

[

b11 b12
0 b22

]

:= (x b11, i(x b12) + y b22).

Then X ⊕ Y becomes an A-T -bimodule. It is easy to check that it is small and closed over T .
Consider the sequence of T -B-bimodules

0→ Te11 → Te22 → Te11/Te22 → 0.

If we tensor this sequence over T with X ⊕ Y we find the original sequence

0→ X
i
→ Y

p
→ Z → 0.

In particular, we have

C(Y ) = C(Te22 ⊗B (X ⊕ Y )) = C(Te22) ◦ C(X ⊕ Y )

and similarly for C(X) and C(Z). So it will be enough to prove the claim for Te11, Te22, Te22/Te11.
Now by Kadison’s argument [23], the two canonical projections B → T induce an isomorphism
C(T ) ∼→ C(B)⊕C(B). It follows that the two canonical inclusions B → T induce an isomorphism
C(B)⊕ C(B)→ C(T ). Using these isomorphisms one easily verifies that

C(Te22) = C(Te11) + C(Te22/Te11).

2.5 Finite-dimensional algebras of finite global dimension. Suppose that k is a field and
that A is a finite-dimensional ‘ordinary’ k-algebra of finite global dimension. Suppose moreover
that HomA(S, S) = k for each simple A-module S and that A/r is a product of copies of k, where
r is the Jacobson radical of A. Let E ⊂ A be a semisimple subalgebra such that A = E ⊕ r. The
last assertion of the following proposition was deduced by K. Igusa [22, Cor. 5.7] from results of
T. Goodwillie [16] in the case of a field k of characteristic zero. An important special case was first
proved by C. Cibils [7].
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Proposition. The inclusion E → A yields a K-theoretic equivalence E ∼→ A. In particular,
the canonical morphism C(E) → C(A) is an isomorphism in the mixed derived category and we
have an isomorphism HC∗(E) ∼→ HC∗(A).

Remark. For each i, let Pi → Si be a projective cover and let rad (Pi, Pj) be the space of
non-invertible maps Pi → Pj . For each i, we have a canonical sequence

n
⊕

j=1

rad (Pj , Pi)⊗ rad (Pi, Pj)
µ
→ rad (Pi, Pi)→ Ext1A(Si, Si)→ 0 ,

where µ (f ⊗ g) = fg. According to a result of Cibils’ [8, 2.1], we also have an exact sequence

n
⊕

i,j=1

rad (Pj , Pi)⊗ rad (Pi, Pj)
∂
→

n
⊕

i=1

rad (Pi, Pi)→ HC0 (A)/HC0 (E)→ 0 ,

where ∂(f ⊗ g) = fg − gf . We conclude that we have a surjection

HC0 (A)/HC0 (E)→
n

⊕

i=1

Ext1A(Si, Si).

In particular, under the above hypotheses, the algebra A ‘has no loops’, i.e. we have Ext1A(Si, Si) =
0 for all i. An even stronger statement was first proved by H. Lenzing in [36]. We refer the reader
to [22] for a proof of the ‘no loops conjecture’ in more general situations.

Proof. Let S1, . . . , Sn be a system of representatives of the isomorphism classes of simple
A-modules and put X =

⊕n
i=1 Si. We identify HomA(X,X) with E and we view X as an E-A-

bimodule. Since A is finite-dimensional of finite global dimension, each simple A-module has a
finite resolution by finitely generated projective A-modules. So XA is small in DA. For each i, let
Pi → Si be a projective cover. Put P ∗

i = HomA(Pi, A) and let Y =
⊕n

i=1 P
∗
i . We view Y as an

A-E-bimodule.
We claim that C(Y ) is inverse to C(X). Indeed, it is clear that

(pSi)⊗A P
∗
j

∼→ Si ⊗A P
∗
j

∼→

{

0 i 6= j
k i = j

.

So X ⊗A Y ∼→ E and C(Y ) ◦ C(X) = 1. It remains to be shown that the images of A and
Y ⊗E X =

⊕n
i=1 P

∗
i ⊗ Si in K0 (A,A) coincide. For this we note first that a DG A-A-bimodule

U is small iff UA is small in DA. Indeed, A ⊗ A is clearly small as a right A-module and hence
each small DG A-A-bimodule is small as a right A-module. To prove the converse, note first that
Aop⊗A is of finite global dimension and hence that AAA is small in D(Aop⊗A). Now the formula

RHomA−A (U, V ) ∼→ RHomA−A ( AAA,RHomA (UA, VA))

shows that U is small if UA is small. Thus K0 (A,A) identifies with the Grothendieck group of
the triangulated category of small objects in D(Aop ⊗ A) and hence with K0 (Aop ⊗ A). Since
A is finite-dimensional of finite global dimension and HomA(Pi, Si) = k for all i, we have an
isomorphism

K0 (Aop ⊗A) ∼→ HomZ(K0 (A),K0 (A))

which sends [U ] to the map defined by P 7→ P ⊗A U , where P is a finitely generated projective
A-module. Under this map, both A and Y ⊗E X , correspond to the identity.

2.6 Equivalences in the flat case. Let A and B be DG k-algebras and X a DG A-B-bimodule
which is closed over B. Recall that a DG k-module M is flat if the functor ? ⊗ M preserves
acyclicity. Since M may be unbounded to the right, this is not, in general, equivalent to requiring
that each Mn, n ∈ Z, be a flat k-module.
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Theorem. If A and B are flat as DG k-modules and

?⊗L
A X : DA→ DB

is an equivalence (cf. 7.6), then X is small over B and C(X) is invertible.

Remarks. a) In the situation of the theorem, we have HC∗A
∼→ HC∗B. In particular,

two derived equivalent algebras [49] have isomorphic cyclic homology (this answers a question
of J. Rickard’s, who proved the corresponding statement for Hochschild homology in [49]).

b) If there is a quasi-isomorphism of DG algebras ϕ : A→ B, the functor ?⊗L
A B : DA→ DB

is an equivalence for arbitrary A and B (example 7.6). So the theorem does not hold without some
flatness hypothesis.

c) It is immediate to verify that an invertible morphism X of ALG yields an equivalence
?⊗L

A X : DA→ DB. Conversely, if the functor ?⊗L
A X is an equivalence and the algebras A and

B are closed as DG k-modules (i.e. the functor Hom k (A, ?) preserves acyclicity), then X has an
inverse as a morphism of ALG. To wit, it is given by the bimodule XT = pHomB (XB, B), where
p has to be taken in H(Aop ⊗ B), cf. [31, 6.2]. So for the case where A and B are projective as
DG k-modules, the theorem follows from theorem 2.4.

Proof. Note first that XB = A⊗L
A X is small. Now consider the morphisms of DG algebras

A
a1−→ EndB (X)

a2−→ EndB (B ⊕X)
βX
←− B

where a1 is given by the left action of A on X and a2 is the canonical morphism, so that αX = a2 a1.
We will prove that C(αX) lies in Σ. Let us first show that a2 lies in Σ. Indeed, XB = A ⊗L

A X
is a small generator of DB so that by lemma 7.10, the modules P = XB and Q = BB satisfy the
hypotheses of lemma 1.2.

To prove that C(a1) is invertible we first note that A → EndB (X) is a quasi-isomorphism.
Indeed, thanks to the canonical isomorphisms (cf. 7.4)

HnA ∼← HomDA(A,SnA) and HnHomB (X,SnX) ∼← HomDB(X,SnX) ,

this follows from the full faithfulness of ?⊗L
AX . The morphism a1 also induces quasi-isomorphisms

between the tensor powers ofA and of EndB (X). Indeed, A is flat as a DG k-module by assumption,
and the same holds for EndB (X), by the following lemma.

2.7 Lemma. Let B be a DG k-algebra which is flat as a DG k-module.

a) If U and V are small closed DG B-modules, the functor ?⊗kHomB (U, V ) preserves acyclic-
ity.

b) Suppose moreover that k is coherent and of finite global dimension. If U and V are arbitrary
closed DG B-modules, the functor ?⊗k HomB (U, V ) preserves acyclicity.

Proof. a) The assertion is clear for U = V = B since then HomB (U, V ) = B and B is flat over
k. Now fix U = B. Since V is contained in the smallest triangulated subcategory of HB containing
B and closed under direct summands (lemma 7.10), we can conclude that ? ⊗k HomB (B, V )
preserves acyclicity. If we now fix V and let U vary, we obtain the assertion.

b) If U is small, the class of V for which ⊗HomB (U, V ) preserves acyclicity is clearly closed
under forming direct sums. By a) it therefore contains all closed V . Under our hypotheses on k,
a product of flat DG k-modules is a flat DG k-module (cf. Appendix 8.3). This implies that for
fixed closed V the class of U for which ⊗HomB (U, V ) preserves acyclicity is closed under direct
sums. So this class contains all closed modules.

2.8 Triangular matrices. Let B be a DG k-algebra which is flat as a DG k-module.

Lemma. If
P → BB → Q→ SP

11



is a triangle of HB such that P and Q are small and closed and we have HomDB(P, SnQ) = 0 for
all n ∈ Z, then the morphism

[C(P ) C(Q)] : C(EndB (P ))⊕ C(EndB (Q)) −→ C(EndB (P ⊕Q)) ∼← C(B)

is an isomorphism of DMix .

Proof. Let A = EndB (P ⊕Q) and let X = P ⊕Q viewed as a DG A-B-bimodule. Then the
hypotheses of lemma 2.6 are clearly satisfied so that we have an isomorphism

C(X) : C(A) ∼→ C(B).

Now let A0 ⊂ A be the DG subalgebra consisting of the morphisms f with f(P ) ⊂ P . If we
identify A with the ‘algebra of matrices’

[

EndB (P ) HomB (Q,P )
HomB (P,Q) EndB (Q)

]

then A0 corresponds to the subalgebra of ‘upper triangular matrices’

[

EndB (P ) HomB (Q,P )
0 EndB (Q)

]

.

The inclusion A0 → A is a quasi-isomorphism because HomB (P,Q) is acyclic (since its n-th
homology identifies with HomDB(P, SnQ)). By lemma 2.7, the functors ?⊗A0 and ?⊗A preserve
acyclicity and thus C(A0)

∼→ C(A). The method of Kadison’s [23] (cf. [38, 1.2.15]) shows that the
inclusion

[

EndB (P ) 0
0 EndB (Q)

]

⊂

[

EndB (P ) HomB (Q,P )
0 EndB (Q)

]

induces an isomorphism C(EndB (P )) ⊕ C(EndB (Q)) ∼→ C(A0). It is clear that the composition

C(EndB (P ))⊕ C(EndB (Q)) ∼→ C(A0)
∼→ C(A)

C(X)
−→ C(B)

has the components C(P ) and C(Q).

2.9 A split exact sequence. Let A, B and C be DG algebras which are flat as DG k-modules
and

A
L
→ B

M
→ C

a sequence of ALG (recall from 2.4 that morphisms of ALG are isomorphism classes of certain
DG bimodules; by abuse of notation, we will use the same symbol to refer to a bimodule and to
the corresponding morphism of ALG). Write TL for ? ⊗L

A L and TM for ? ⊗L
B M . Suppose that

the associated sequence

0→ DA
TL−→ DB

TM−→ DC → 0 ,

is exact, i.e. TL is fully faithful, TM ◦ TL = 0 and TL induces an equivalence

DB/TL(DA) ∼→ DC.

Proposition.

a) The object HomB (L,B) is small in DA if and only if HomC (M,C) is small in DB.

b) If HomB (L,B) is small in DA, the sequence

C(A)
C(L)
→ C(B)

C(M)
→ C(C)

is split exact in DMix .
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Proof. The functor TL admits the right adjoint HL = HomB (L, ?) and the functor TM the
right adjoint HM = Hom C (M, ?). It then follows from [52, Ch. 1, §2, no 6] that the adjunction
morphisms fit into a triangle

TLHLB → B → HMTMB → STLHL.

and that
HomDB(TLHLB,S

nHMTMB) = 0

for all n ∈ Z.
Let us prove a). Suppose that HLB is small. Then it belongs to the smallest triangulated

subcategory of DA containing A and closed under forming direct summands (7.10). Since LB =
TLA is small, it follows that TLHLB is small. By the triangle, it follows that HMTMB is small.
We claim that then HMC has to be small. Indeed, TMB is a small generator of DC: It is a
generator because TM : DB → DC is the localization functor and it is small because TM has
the adjoint HM which commutes with infinite sums since MC is small. So C is contained in
the smallest triangulated subcategory of DC containing TMB and closed under forming direct
summands (7.10). Therefore, if HMTMB is small, the same holds for HMC.

Conversely, suppose that HMC is small. We have just seen that TMB is small. So it is
contained in the smallest triangulated subcategory of DC containing C and closed under forming
direct summands. So HMTMC is small as well and so is TLHLB. Hence HLB is small, since TL

is fully faithful and commutes with infinite direct sums.
Let us prove b). Put P = pTLHLB and Q = pHMTMB. We will show that the sequence

P → B → Q → SP satisfies the assumptions of lemma 2.8 and that we have the following
commutative diagram in ALG

A
L
−→ B

M
−→ C

↓ ‖ ‖

EndB (L)
L
−→ B

M
−→ C

HomB (P,L) ↓ ‖ ↑ Q⊗B M

EndB (P )
P
−→ B

Q
←− EndB (Q)

where the vertical morphisms are invertible. The assertion is then clear.
We have seen in the proof of a) that P and Q are small. So the assumptions of lemma 2.8 are

satisfied.
We claim that P and LB may be obtained from one another by shifts, extensions and forming

direct summands. By lemma 1.2 b) this will imply that HomB (P,L) and HomB (L,P ) are inverse
to each other in ALG, and that the lower left square of the above diagram is commutative. It
suffices to show that P and LB are both small generators of TL(DA) ∼← DA (7.10). This is clear
for LB. We already know that P is small. To prove that it is a generator, take M ∈ DA. Then
TLM may be obtained from B by applying shifts, extensions and infinite sums. Hence the same
holds for TLM

∼→ TLHLTLM with respect to P ∼→ TLHLB.
Let us prove that A → EndB (L) induces an isomorphism in Hochschild homology. Indeed,

since TL is fully faithful, the morphism A → EndB (L) is a quasi-isomorphism so that our claim
follows from lemma 2.7.

Finally, we have to prove that Q ⊗B M becomes invertible in DMix . By lemma 2.6, it is
enough to show that the bimodule Q⊗B M yields an equivalence DEndB (Q)→ DC. Indeed, this
functor maps B to TMB, which is clearly a small generator for DC ∼← DB/TL(DA). Since we have
HomDB(TLX,Q) = 0 for all X ∈ DA, we have

HomDB(Q,SnQ) ∼→ Hom (DB)/TL(DA)(Q,S
nQ)

and therefore

HnEndB (Q) ∼→ HomDB(Q,SnQ) ∼→ HomDC(Q⊗B M,SnQ⊗B M).
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This implies that Q⊗B M yields a fully faithful functor.

3. Localization for DG algebras

3.1 Statement of the theorem. We use the notations of section 2.4. Assume moreover that k
is left coherent of finite global dimension and that A, B, and C are DG algebras which are flat
as DG k-modules. Recall that we write TL for the functor ? ⊗L

A L if L is a left A-module. The
following theorem will be proved in sections 5 and 6.

Theorem. If A
L
→ B

M
→ C is a sequence of ALG such that the derived sequence

0→ DA
TL−→ DB

TM−→ DC → 0

is exact, then there is a canonical triangle

C(A)
C(L)
→ C(B)

C(M)
→ C(C)→ SC(A)

in the mixed derived category.

3.2 Remarks a) In particular, Hochschild and cyclic homology of the three algebras are related
by a long exact sequence, thanks to the interpretation of Hochschild and cyclic homology as
cohomological functors on the mixed derived category (cf. 2.2).

b) We point out that an exact sequence

0→ DA
TL−→ DB

TM−→ DC → 0

always gives rise to a recollement setup in the sense of [2, 1.4]. The correspondence with the
paradigmatic categories is as follows:

DB ↔ D+ (X) , DA↔ D+ (U) (sic!) , DC ↔ D+ (F ) ,

where X is a ringed topological space, F a closed subset of X , U the complementary open subset,
D+ (X) the right bounded derived category of sheaves of modules over the ringed space X , etc.
The correspondence between functors is as follows:

j! ↔ ?⊗L
A L , j∗ ↔ RHomB (L, ?) ∼→?⊗L

B LT , j∗ ↔ RHomA (LT , ?) ,

i∗ ↔ ?⊗L
B M , i∗ ↔ RHomC (M, ?) ∼→?⊗L

C MT , i! ↔ RHomB (MT , ?) ,

where LT = HomB (L,B) and MT = HomC (M,C) (recall that LB and MC are small and closed).
Conversely, if A, B and C are ‘ordinary’ algebras which admit a recollement setup between

their derived categories, then there is an exact sequence as above. This follows readily from König’s
theorem [27] using [32]. More precisely, if in König’s notations we have a recollement setup

D−(ModB) →←
←
D−(ModA) →←

←
D−(ModC),

given by triples of adjoint functors (i∗, i∗, i
!) and (j!, j

∗, j∗), where

i∗ : D−(ModB)→ D−(ModA) and j∗ : D−(ModA)→ D−(ModC) ,

then we have an exact sequence

0← DB
TM←− DA

TL←− DC ← 0

(note the reversal of the arrows), where MB is isomorphic to i∗AA and LA is isomorphic to j!BB

(we do not claim that j! is isomorphic to TL or that i∗ is isomorphic to TM ). So we have a triangle

SC(C)← C(B)← C(A)← C(C)
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in the mixed derived category. According to 2.9, this triangle splits if RHomB (M,B) is small
over A. This latter condition holds for example if, in König’s terminology, the recollement setup
possesses a symmetric recollement [27, Thm. 3]. We refer to [27] and the references therein for a
number of examples of recollement situations in the context of finite-dimensional algebras.

c) Suppose that k is a field. Let A and B be DG algebras and L a DG A-B-bimodule such that
LB is small and closed, so that L gives rise to a morphism of ALG. Suppose that TL : DA→ DB
is fully faithful. Then, one can find a DG algebra C and a B-C-bimodule M such that MC is small
and closed and the sequence

0→ DA
TL−→ DB

TM−→ DC → 0

is exact. Indeed, we may assume that L is closed over Aop ⊗ B so that the functors TL =?⊗A L
and HL = HomB (L, ?) preserve acyclicity and TLK is closed for each DG A-module K (k is a
field !). For a DG B-module N denote by Φ : TLHLN → N the adjunction morphism. Let M ′ be
the mapping cone over Φ : TLHLB → B. Note that M ′ is closed over B and that it inherits a left
B-module structure. We put C = HomB (M ′,M ′) and we choose for M a DG bimodule which is
closed over Bop ⊗ C and quasi-isomorphic to HomC (M ′, C).

3.3 Examples. a) In the situation of 2.8, we can apply the theorem to A = EndB (pP ), C =
EndB (pQ) and the bimodules M = HomB (P,B) and L = HomB (Q,M).

b) The theorem also holds for small DG categories instead of DG algebras, as our proof will
show. This allows us to establish the following link with M. Wodzicki’s theorem [57]: Let B be
an ordinary flat k-algebra and I ⊂ B an ideal with idempotent local units (i.e. such that for each
finite family of elements ai of I there exists an idempotent u = u2 ∈ I such that uai = aiu = ai

for all i). We assume that I is flat over k as well. We can then consider the category I whose
objects are the idempotents of I and whose morphisms u → u′ are in bijection with uIu′. The
ideal I yields an I-B-bimodule and it is easy to check that the sequence

0→ DI
TI−→ DB

TB/I
−→ D(B/I)→ 0

is exact. Hence the theorem yields a triangle

C(I)→ C(B)→ C(B/I)→ SC(I)

in the mixed derived category. We refer to 5.4 for the definition of C(I). We have a canonical
isomorphism C(I) → C(I) and the sequences in cyclic and Hochschild homology induced by the
triangle identify with those of [57]. Now suppose I ⊂ B is an arbitraryH-unital ideal and C = B/I.
Let U ⊂ DB be the kernel of the functor ?⊗L

BC : DB → DC. Then one can show that the sequence

0→ U → DB → DC → 0

is an exact sequence of triangulated categories. In general, however, U need not be of the form
DA for a DG category A. A counterexample is given in [33].

c) We refer to the next section for the example of localization of an ordinary algebra with
respect to a multiplicative set.

4. Localization at a left denominator set

4.1 Rings of left fractions. As in section 3.1, suppose that k is coherent and of finite global
dimension. Let B be an (ordinary) k-algebra which is flat over k. Suppose that S ⊂ B is a left
denominator set, i.e. it satisfies (cf. [12], [11])

• 1 ∈ S, SS ⊂ S,

• For s ∈ S and b ∈ B, there are t ∈ S and c ∈ B such that cs = tb.

• If b ∈ B and s ∈ S satisfy bs = 0 there is t ∈ S such that tb = 0.

15



Then there is an algebra B[S−1] and an algebra homomorphism B → B[S−1] universal among all
algebra morphisms making the elements of S invertible. Moreover, the elements of B[S−1] may be
taken to be left fractions s−1b, i.e. equivalence classes (s|b) of pairs (s, b) modulo the relation which
identifies (s, b) with (s′, b′) if there are c, c′ ∈ B such that cs = c′s′ belongs to S and cb = c′b′.

In other words, if Σ denotes the category whose objects are the B-module homomorphisms

λ(s) : B → B , b 7→ sb , s ∈ S

and whose morphisms are the commutative ‘triangles’

B
λ(s)
→ B

‖ ↓ λ(b)

B
λ(t)
→ B

where s, t ∈ S, b ∈ B, then B[S−1] identifies with the colimit of the functor F : Σ→ ModB, λ(s) 7→
range (λ(s)). The axioms above imply that Σ is filtered. So B[S−1] = lim

−→
F is flat as a right B-

module (and as a k-module).
We have a pair of adjoint functors

ModB
?⊗B B[S−1] ↓ ↑ res

ModB[S−1].

Note that the tensor product functor ? ⊗B B[S−1] is not exact in general; it is exact if S also
satisfies the axioms for a right denominator set. Hence in general, ModB[S−1] will not identify
with a localization of the abelian category ModB. However, as we will see below, the derived
category DB[S−1] always identifies with a localization of DB.

Now for each s ∈ S, let L(s) be the complex

. . .→ 0→ B
λ(s)
→ B → 0→ . . .

concentrated in (cochain) degrees 0 and 1, where λ(s) denotes left multiplication by s. For s, t ∈ S,
put As,t = HomB (L(t), L(s)) and let

A =
⊕

s,t∈S

As,t.

The composition of graded maps makes A into a differential graded algebra (without unity), which
identifies with a subalgebra of

HomB (
⊕

t∈S

L(t),
⊕

s∈S

L(s)).

In particular, the module X =
⊕

t∈S L(t) has a natural structure of DG A-B-bimodule.

Proposition.

a) The sequence

0→ DA
TX→ DB

TB[S−1]
→ DB[S−1]→ 0

is exact. There is a canonical triangle in the mixed derived category

C(A)
C(X)
→ C(B)

C(B[S−1])
→ C(B[S−1])→ SC(A).

b) If S′ ⊂ S is a subset such that each s ∈ S is product of elements of S′ and if A′ =
⊕

s,t∈S′ As,t

and X ′ =
⊕

t∈S′ L(t), then statement a) also holds for A′ and X ′ instead of A and X.
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Remark. Of course, the DG algebra A is unique only up to derived equivalence. In more
particular situations, there will be DG algebras with more concrete descriptions which are derived
equivalent to A. We give two examples of this.

Examples. a) Let k be a field of characteristic zero, B = k[x] and S = {1, x, x2, ...}. Then
of course B[S−1] = k[x, x−1]. There are (very) many DG algebras A such that one has an exact
sequence

0→ DA→ Dk[x]→ Dk[x, x−1]→ 0.

The most natural choice for A is probably the algebra whose underlying complex is

. . .→ 0→ k.1→ k.ξ → 0→ . . .

where 1 is in (cohomological) degree 0, ξ is in degree 1, the differential and the multiplication of
A vanish. There is a DG A-B-bimodule X whose restriction to B is homotopy equivalent to a
projective resolution

P = (0→ k[x]
x
→ k[x]→ 0)

of the trivial k[x]-module k concentrated in degree 0. Moreover, the action of ξ ∈ A corresponds to
a generator of Ext1k[x](k, k). The derived functor associated withX yields a fully faithful embedding
of DA into DB whose image is the triangulated subcategory with infinite sums generated by the
trivial k[x]-module k. In fact, this subcategory is the kernel of Dk[x]→ Dk[x, x−1].

If one forgets the grading, A is just the algebra of dual numbers. By modification of the degrees
one gets that HC∗(A) = k[u] ⊕ k[w], as a graded k-module, where u is of (homological) degree 2
and the second factor k[w] is concentrated in (homological) degree −1. In the associated sequence

HC∗(A)→ HC∗(k[x])→ HC∗(k[x, x
−1])→ HC∗−1 (A)

the first arrow vanishes and the sequence splits.
b) Suppose that B is an ordinary commutative algebra. Let Y be the closed subset of X =

Spec (B) defined by an ideal generated by a finite family f = (f1, . . . , fn) of elements of B and
let U be the complement of Y . Let S be the multiplicative system generated by f1, . . . , fn. Then
DB and D(BS) identify with the (unbounded) derived categories DX resp. DU of quasi-coherent
sheaves on X resp. U (cf. [4]). For any m > 0, the kernel U of the quotient functor is generated
[4] by the Koszul complex

L (fm) =
n

⊗

i=1

L (fm
i ).

We put
Xm = L (fm) and Am = HomB (Lm, Lm) = Lm ⊗B L∗

m.

Then we have an exact sequence of the required type. Note that for eachm we have an isomorphism
C(Am)→ C(Am+1) induced by the bimodule HomB (Lm+1, Lm).

Proof. a) Let U ⊂ DB be the kernel of the functor

L = L(?⊗B B[S−1]) : DB → DB[S−1].

We will first show that L induces an equivalence from DB/U onto DB[S−1]. For this let R :
DB[S−1] → DB be the restriction functor. We may view R as the right derived functor of the
(exact) restriction functor at the module level. This latter functor is right adjoint to ?⊗B B[S−1].
Thus, R is right adjoint to L (cf. for example [35]). To prove that we have the equivalence
DB/U → DB[S−1] it is therefore enough to show that R is fully faithful (8.1 a). In other words,
we have to show that the adjunction morphism LRM → M is invertible for each M ∈ DB[S−1].
Since both, L and R, commute with infinite sums, it is enough to check this for the generator
B[S−1] of DB[S−1]. In this case, the adjunction morphism is the canonical morphism

B[S−1]⊗L
B B[S−1]→ B[S−1].
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It is invertible because B[S−1] is flat as a right B-module. Thus the sequence

0→ U → DB
TB[S−1]
→ DB[S−1]→ 0

is exact. We will now show that TX induces an equivalence DA ∼→ U . By [31, 4.1], it is enough
to show that the L(s), s ∈ S, are closed and small and generate U . Now, up to a shift, L(s) is
the mapping cone over λ(s) : B → B viewed as a morphism between B-modules concentrated in
degree 0. So L(s) is closed and small. Clearly, L(s) belongs to U for each s ∈ S. Let U ′ ⊂ U be
the smallest triangulated subcategory of U containing the L(s) and closed under forming infinite
sums. We claim that U ′ contains the complex

L∞ = (. . .→ 0→ B → B[S−1]→ 0→ . . .).

Indeed, for each s ∈ S, we have a canonical morphism L(s)→ L∞ given by the diagram

B
λ(s)
→ B

‖ ↓ λ(s−1)
B → B[S−1]

and these morphisms yield an isomorphism between L∞ and the direct limit of the L(s), s ∈ S. It
follows that L∞ belongs to U ′ by 8.2. On the other hand, L∞ generates U by lemma 8.1 b) since
B generates DB.

b) By the octahedral axiom, the triangulated subcategory generated by the L(s), s ∈ S′,
contains all the L(s), s ∈ S. Now the claim follows from the proof of a).

4.2 Analytic isomorphisms. Keep the assumptions on k from section 3.1. Let B1 and B2 be
two flat k-algebras and S1 ⊂ B1, S2 ⊂ B2 two sets of left denominators. Let A1 and A2 be the
associated DG algebras constructed as in section 4.1 so that we have an exact sequence

0→ DA1 → DB1 → DB1[S
−1
1 ]→ 0 ,

and similarly for B2. Suppose that f : B1 → B2 is an algebra homomorphism such that

a) f(S1) = S2 and

b) for each s ∈ S1, the map f yields a quasi-isomorphism

0→ B1
λ(s)
→ B1 → 0

↓ ↓

0→ B2
λ(s)
→ B2 → 0

These conditions hold if f is an analytic isomorphism along S in the sense of Weibel-Yao [55].
Indeed, in this case, condition c) of the following lemma is satisfied by proposition 5.1 of [loc. cit.].

Lemma. Condition b) is equivalent to the following condition
c) f induces a quasi-isomorphism

0→ B1 → B1[S
−1]→ 0

↓ ↓
0→ B2 → B2[S

−1]→ 0.

Proof. The complex
0→ Bi → Bi[S

−1
i ]→ 0

is the filtered direct limit of the complexes

0→ Bi
λ(s)
→ Bi → 0

in the category of complexes of Bi-modules (4.1). Thus condition b) implies c). To prove the
converse, consider the cube
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We want to show that the (total complex associated with the) top face is acyclic. Since the bottom
face is contractile, it is enough to show that the whole cube is acyclic. This is clear since the front
and the back face are acyclic by assumption.

4.3 Excision. Keep the notations and assumptions of section 4.2.

Lemma.

a) The morphism f induces a quasi-isomorphism A1 → A2. In particular, we have an isomor-
phism C(A1)→ C(A2) in DMix .

b) There is a canonical ‘Mayer-Vietoris triangle’ in DMix

C(B1)→ C(B2)⊕ C(B1[S
−1
1 ])→ C(B2[S

−1
2 ])→ SC(B1).

Proof. The complex (A1)s,t is isomorphic to the total complex associated with the square

A1
λ(t)
→ A1

ρ(s) ↓ ↓ ρ(s)

A1
λ(t)
→ A1

where ρ(s) denotes right multiplication by s. By regarding the rows, we see that condition b)
implies that f induces a quasi-isomorphism (A1)s,t → (A2)s,t.

To prove b), we note that we have a morphism of triangles in DMix

C(A1) → C(B1) → C(B1[S
−1
1 ]) → SC(A1)

↓ ↓ ↓ ↓
C(A2) → C(B2) → C(B2[S

−1
2 ]) → SC(A2)

by proposition 4.1 and theorem 3.1. By a), the morphism C(A1) → C(A2) is invertible. The
sequence appears as the Mayer-Vietoris sequence associated (cf. [2, 1.1.13]) with the octahedron
over the composition

C(A1)→ C(B1)→ C(B2).

5. Model categories

5.1 Motivation. To prove theorem 3.1, we introduce ‘model categories’, which are a slight
generalization of categories of DG modules. We then prove the corresponding theorem for model
categories.
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5.2 Definitions. Let T be a triangulated category with infinite sums, i.e. for each family (Xi)i∈I

of T , the coproduct
⊕

i∈I Xi exists in T . It is then easy to check [30, 6.7] that the coproduct
underlies a canonical triangle functor

⊕

:
∏

i∈I Ti → T , where Ti = T for all i.
A localizing subcategory of T is a full triangulated subcategory U of T which is closed under

forming infinite direct sums with respect to T . A set of generators for T is a set of objects X ⊂ T
such that T coincides with its smallest localizing subcategory containing X . An object X ∈ T is
small if the functor HomT (X, ?) commutes with infinite sums.

Let E be an exact category in the sense of Quillen [46]. We use the following terminology due to
Gabriel-Roiter [13, §9]: admissible short exact sequence = conflation; admissible monomorphism =
inflation; admissible epimorphism = deflation. We refer to [29, App. A] for a proof that Quillen’s
‘obscure axiom’ is redundant and that each exact category fully and fully exactly embeds into an
abelian category.

The morphism spaces of E will be denoted by E (X,Y ) or Hom E(X,Y ). Suppose that E is
endowed with the following additional structure

S1 For allX,Y ∈ E we are given a DG k-moduleHom E (X,Y ) such that the pair (obj E , Hom E (, ))
is a DG category.

S2 There is given a functorial morphism

Hom E (X,Y )→ Hom E (X,Y ) , X, Y ∈ E ,

which makes the identity into a DG functor from the exact category E viewed as a DG
category concentrated in degree 0 to the DG category (obj E , Hom E (, )).

We assume that E is a model category, i.e. the following hold

P1 E is a Frobenius category [17] with infinite direct sums. The associated stable category E
admits a set of small generators.

P2 If X → Y → Z is a conflation of E , the sequences

0→Hom E (?, X)→ Hom E (?, Y ) →Hom E (?, Z)→ 0

0→Hom E (Z, ?)→ Hom E (Y, ?) →Hom E (X, ?)→ 0

split in the category of graded E-modules (left resp. right modules with respect to the DG
structure). Moreover, if I is projective-injective in E , the DG E-modules Hom E (?, I) and
Hom E (I, ?) are contractile.

P3 The canonical morphism (which is well defined by P2)

E (X,Y )→ H0Hom E (X,Y )

is invertible if X is small in E and Y ∈ E arbitrary.

P4 For all X,Y ∈ E , the functor ?⊗Hom E (X,Y ) preserves acyclicity of DG k-modules.

If E ′ is another model category, a model functor F : E → E ′ is a pair consisting of an exact
functor preserving projectivity and a DG functor such that the square

E (X,Y ) −→ Hom E (X,Y )
F ↓ ↓ F

E ′ (FX,FY ) −→ Hom E′ (FX,FY )

commutes.
Denote by Eb the full subcategory of E whose objects are the ones whose images in E are small,

and by S a stable skeleton for Eb, i.e. a small full subcategory of Eb whose image in E is dense in
the subcategory of small objects of E . By P1, a stable skeleton exists.
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Lemma. The functor
E → HpS , X 7→ Hom E (?, X)|S

is a triangle equivalence.

Proof. Note first that by P2, we have a well defined triangle functor F : E → HS mapping
X to Hom E (?, X)|S. We claim that F commutes with direct sums. Let (Yi)i∈I be a family of
objects of E . We have to check that

Hn
⊕

i∈I

Hom E (X,Yi) −→ HnHom E (X,
⊕

i∈I

Yi)

is bijective for each n ∈ Z and each X ∈ S. By P1 and P2, we have canonical isomorphisms

HnHom E (U, V ) ∼→ Hn−1Hom E (U, SV ) , U, V ∈ E ,

so that it is enough to consider the case n = 0. Since X is small in E , the claim then follows from
the commutative diagram

H0Hom E (X,
⊕

Yi)
∼← E (X,

⊕

Yi)
↑ ↑∼

⊕

H0Hom E (X,Yi)
∼←

⊕

E (X,Yi).

By definition, F maps the X ∈ S to free S-modules and it follows from P2 and P3 that F induces
bijections

E (X,SnY ) ∼→ HomHS(FX,SnFY ) , X, Y ∈ S.

By ‘infinite devissage’ (cf. [31, 4.2 b]), it follows that F is fully faithful. Since the X ∈ S generate
E and since they are mapped to free modules, the image of E under F is contained in HpS.

Remarks. a) Suppose that k is coherent of finite global dimension and let A be a small DG
category such that A (A,B) is a flat DG k module for all A,B ∈ A. Let CpA denote the preimage
of HpA in CA. Then E = CpA is a model category in the obvious way (cf. sections 1 and 2 of [31]
and lemma 8.3). In particular, each DG algebra A which is flat as a DG k-module gives rise to the
model category CpA.

b) It was proved in [31, 4.3] that if E0 is an exact category with property P1, there is always a
triangle equivalence E0

∼→ E where E is a model category.

5.3 Filtered objects. Let E be a model category. We define Fil (E), the category of filtered
objects, to be the category whose objects are the inflations

X0
i
→ X1

of E , and whose morphisms f : X → X ′ are commutative diagrams of F

X0
i
→ X1

f0 ↓ ↓ f1

X ′
0

i′
→ X ′

1.

By definition, a sequence X
i
→ Y

p
→ Z is a conflation of Fil (E) if each of its components (i0, p0)

and (i1, p1) is a conflation of E . For X,X ′ ∈ Fil (E), we define HomFil (E) (X,X ′) to be the DG
submodule of

Hom E (X0, X
′
0)⊕Hom E (X1, X

′
1)

consisting of the (u0, u1) with i′ u0 = u1 i.

Lemma. Fil (E) is a model category.
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Remark. By definition, the category of cofiltered objects Cof (E) is the category of deflations

X1
p
→ X2 of E endowed with the analogous exact structure and the DG structure such that

HomCof (E) (X,X ′) is formed by the (u1, u2) in

HomCof (E) (X1, X
′
1)⊕HomCof (E) (X2, X

′
2)

such that u2 p = p′ u1. We have a model functor

Fil (E)→ Cof (E) , (X0
i
→ X1) 7→ (X1 → Cok i)

which is an equivalence both of exact categories and of DG categories. Note that Cof (E) 6= Fil (Eop)
and that Eop is not even a model category (the notion of small object is not self-dual).

Proof. It is easy to see that Fil (E) is a Frobenius category (cf. [29, section 5]) and that
an object of Fil (E) is projective-injective iff its components are projective-injective. It is clear

that Fil (E) has infinite direct sums. We claim that it is generated by the objects (X
1
→ X) and

(0→ X), where X ranges over the small objects of E . These objects are small since we have

Fil (E) ((X
1
→ X), Y ) ∼→ E (X,Y0)

Fil (E) ((0→ X), Y ) ∼→ E (X,Y1).

Clearly, the localizing subcategory they generate contains all objects (Y
1
→ Y ) and (0 → Y ),

Y ∈ E . The claim follows since for each Y ∈ Fil (E) we have the conflation

Y0
1
→ Y0 → 0

‖ ↓ i ↓

Y0
j
→ Y1 → Cok j.

In the sequel, we will write
Yλ → Y → Y ρ

for this conflation.
To prove P2, let X → Y → Z be a conflation of Fil (E). We form the diagram

Xλ → Yλ → Zλ

↓ ↓ ↓
X → Y → Z
↓ ↓ ↓

Xρ → Y ρ → Zρ

whose rows and columns are conflations of Fil (E). We have to show that the middle row of the
following diagram is split exact as a sequence of graded Fil (E)-modules.

0 0 0
↓ ↓ ↓

0→ HomFil (E) (?, Xλ) → HomFil (E) (?, Yλ) → HomFil (E) (?, Zλ) → 0
↓ ↓ ↓

0→ HomFil (E) (?, X) → HomFil (E) (?, Y ) → HomFil (E) (?, Z) → 0
↓ ↓ ↓

0→ HomFil (E) (?, Xρ) → HomFil (E) (?, Y ρ) → HomFil (E) (?, Zρ) → 0
↓ ↓ ↓
0 0 0

It will be enough to show that this holds for the top row, the bottom row, and all the columns.
For U = (U0

u
→ U1) ∈ Fil (E), we have

HomFil (E) (U,Xλ) ∼→Hom E (U1, X0) and HomFil (E) (U,Xρ)
∼→Hom E (Coku,X1)
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so that it is clear that the top row and the bottom row split. Let us show that the columns split.
To do this for the first column, we choose a splitting ρ of the morphism

Hom E (?, X0)→Hom E (?, X1).

Then it is easy to check that
(u0, u1) 7→ (u0, ρ(u1))

defines a splitting of
HomFil (E) (U,Xλ)→HomFil (E) (U,X)

(which of course is functorial in U ∈ Fil (E)). The assertion for the sequence

0→HomFil (E) (Z, ?)→HomFil (E) (Y, ?)→HomFil (E) (X, ?)→ 0

is proved similarly.
If I is projective-injective in Fil (E) then it is a direct sum of two objects of the form (I0

∼→ I1)

and (0→ I1). Now we have for X = (X0
i
→ X1)

HomFil (E) ((I0
∼→ I1), X) ∼→ Hom E (I0, X0)

HomFil (E) ((0→ I1), X) ∼→ Hom E (I1, X1)
HomFil (E) (X, I0

∼→ I1))
∼→ Hom E (X1, I1)

HomFil (E) (X, 0→ I1)
∼→ Hom E (Cok i, I1)

so that the second condition of P2 is now clear.
It is enough to prove P3 for X of the form (X0

∼→ X1) resp. (0 → X1). In the first case, we
have a commutative square

Fil (E) (X,Y ) → H0HomFil (E) (X,Y )

∼↓ ↓∼
E (X0, Y0)

∼→ H0Hom E (X0, Y0)

and in the second case, we have a commutative square

Fil (E) (X,Y ) → H0HomFil (E) (X,Y )

∼↓ ↓∼
E (X1, Y1)

∼→ H0Hom E (X1, Y1).

Finally, to prove P4, we may assume that X is of the form (X0
∼→ X1) or (0→ X1) and similarly

for Y . The assertion then easily follows from the corresponding statement for E .

5.4 Hochschild and Cyclic homology of model categories. We leave it to the reader to
generalize the definitions and results of sections 1 and 2 from DG algebras to small DG categories.
In the sequel, we will assume this generalization has been carried out. For example, the precyclic
chain complex C(A) associated with a small DG category A has the components C(A)n given by

⊕

HomA (An−1, An)⊗HomA (An−2, An−1)⊗ . . .⊗HomA (A1, A2)⊗HomA (An, A1)

where the sum ranges over all sequences A1, A2, . . . , An of objects of A. Note that this sum is well
defined since A is small. The cyclic operator and the degeneracy operators are given by the usual
formulae. The homology of the total complex is the Hochschild-Mitchell homology of A (cf. [44]).

Let E be a model category. For each stable skeleton S of Eb we have a precyclic chain complex
C(S) (defined using the DG structure of E) and if S ⊂ S′ are two skeleta, we have a canonical
morphism C(S) → C(S′). Lemma 1.2 shows that it is invertible in DMix . In particular, if S
and S′ are two stable skeleta, we always have a canonical isomorphism C(S) → C(S ′) of DMix
defined by the commutative diagram

C(S) ∼→ C(S ∪ S′)
↓ ‖

C(S′) ∼→ C(S ∪ S′)
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So if we define C(Eb) := C(S) for some fixed stable skeleton S of Eb, we obtain a precyclic object
well defined up to canonical isomorphism in DMix .

It is important to note that this construction is different from the one used by R. McCarthy
in [42] to define ‘naive’ cyclic homology HCs

∗. Indeed, our construction entirely relies on the the
differential graded structure of E , which is not present in the categories considered by R. McCarthy.

Let F : E → E ′ be a model functor preserving smallness of objects, i.e. taking Eb to E ′b. We
complete the image of a stable skeleton S of Eb under F to a stable skeleton S′ of E ′b. Then F
yields a morphism of precyclic objects C(S) → C(S′). Thus, by composition with the canonical
isomorphism, F yields a well defined morphism C(F ) : C(Eb) → C(E ′b) of DMix . One easily
checks that this yields a functor from model categories to DMix .

Suppose that F : E → E ′ is a model functor inducing an equivalence E → E ′. Then by lemma
5.2, the morphism

Hom E (X,Y )→Hom E′ (FX,FY )

is a quasi-isomorphism for all X,Y ∈ Eb. By property P4, this implies that if S is some stable
skeleton of Eb, the induced morphism of precyclic chain complexes

C(S)→ C(FS)

is a quasi-isomorphism, hence that

C(F ) : C(Eb)→ C(E ′b)

is invertible in DMix .
Let F1, F2 : E → E ′ be two model functors and ϕ : F1 → F2 a morphism of the underlying

functors between exact categories such that

ϕX : F1X → F2X

is a deflation which becomes invertible in E ′ for each X ∈ E .

Lemma. We have C(F1) = C(F2) in DMix .

Proof. Let E ′+ ⊂ Cof (E ′) be the full subcategory on the deflations X = (X1 → X2) which
become invertible in E ′ (equivalently, which have a projective-injective kernel). It is easy to see
that E ′+ with the structure inherited from Cof (E ′) becomes a model category. Let P1, P2 and F
be the model functors

P1 : E ′+ → E
′ , X 7→ X1

P2 : E ′+ → E
′ , X 7→ X2

F : E → E ′+ , X 7→ (F1X
ϕX
→ F2X).

Clearly, P1 F = F1 and P2F = F2. Since C(?) is a functor, it suffices to prove that C(P1) = C(P2)
in DMix . Now let D be the model functor

D : E → E ′ , X 7→ (X
1
→ X).

It is easy to see that D induces an equivalence E → E ′. Thus C(D) is invertible in DMix . Since
P1D = P2D (both are the identity), we can conclude that C(P1) = C(P2).

5.5 DG algebras. Suppose that k is coherent of finite global dimension and let A be a DG
algebra which is flat as a DG k module. Let E the model category CpA (cf. remark a) in 5.2). If
we compute C(Eb) using a stable skeleton containing AA, we obtain a morphism C(A)→ C(Eb) of
precyclic modules whose image becomes invertible in DMix . To see this, we use lemma 1.2 and
the fact that C(?) viewed as a functor from DG categories to precyclic modules commutes with
direct limits.
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If AXB : A → B is a morphism of ALG, then ? ⊗A X : CpA → CpB is a model functor
preserving smallness of objects and we have a commutative diagram of DMix

C(A)
C(X)
−→ C(B)

↓ ↓

C((CpA)b)
C(?⊗AX)
−→ C((CpB)b)

whose vertical morphisms are invertible. Thus the functor C defined in this section extends the
one of section 2.4. We leave it to the reader to adapt these remarks to the case of DG categories.

5.6 The localization theorem for model categories. Let

E
F
−→ F

G
−→ G

be a sequence of model categories and model functors commuting with direct sums and preserving
smallness of objects.

Suppose that F : E → F is fully faithful, that GF = 0 and that G induces an equivalence
F/F (E) ∼→ G.

Theorem. There is a canonical triangle

C(Eb)
C(F )
−→ C(Fb)

C(G)
−→ C(Gb)→ SC(Eb)

in the mixed derived category.
By section 5.5, this generalizes theorem 3.1.

6. Proof of the localization theorem for model categories

6.1 Lifting the exact sequence. By assumption, the sequence of stable categories

0→ E
F
−→ F

G
−→ G → 0

is exact, but the sequence

0→ E
F
−→ F

G
−→ G → 0

need not be exact in any sense. Usually, we will even have G F 6= 0. We shall therefore replace E ,
F , and G by model categories with equivalent stable categories so as to have an ‘exact sequence’
even before the transition to the associated stable categories. This would not be possible if we
were to work with categories of DG modules only.

Let T ⊂ F be the essential image of F and T ⊥ ⊂ F the full subcategory on the objects Y ∈ F
with HomF (X,Y ) = 0 for all X ∈ T . Let F1 ⊂ Fil (F) be the category whose objects are the
admissible monomorphisms

X0
i
→ X1

of F such that X0 ∈ T and Cok i ∈ T ⊥. We endow F1 with the exact structure and the DG
structure inherited from Fil (F). We will prove below that F1 is a model category.

Let E1 ⊂ F1 be the full subcategory on the objects X = (X0
i
→ X1) with invertible i (invertible

in F !) and let G1 ⊂ F1 be the full subcategory on the X with X0 = 0. Both inherit from F1 the
structure of model categories. The inclusion G1 ⊂ F1 admits the right adjoint X 7→ Xρ mapping
X to 0→ Cok i. The functors

F1 → F , X 7→ X1

E → E1 , X 7→ (FX
1
−→ FX)

G1 → G , (0→ X1) 7→ GX1
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fit into a diagram of model categories and functors

E1
incl
−→ F1

ρ
−→ G1

↑ ↓ ↓

E
F
−→ F

G
−→ G.

Here vertical functors induce equivalences in the associated stable categories, the left hand square
is commutative, and the right hand square is commutative up to the natural transformation

G(X1)→ G(Cok (X0 → X1))

which is a deflation for each X ∈ F1 and becomes invertible in G. By lemma 5.4 this diagram
yields a truly commutative diagram in DMix and we may thus replace the given sequence by the
sequence E1 → F1 → G1.

Lemma. F1 is a model category, and the functor F1 → F , X 7→ X1 induces an equivalence
F1

∼→ F .

Proof. It is easy to see that F1 is a Frobenius category. Let us prove that the functor F :
F1 → F , X 7→ X1 induces an equivalence F1

∼→ F . We claim that F is essentially surjective. By
Brown’s representability theorem (cf. e.g. [31, 5.2]) the inclusion T → F admits a right adjoint.
Therefore (cf. [28, 1.1]), for each M ∈ T , there is a triangle

MT →M →MT ⊥

→ SMT

of F with MT ∈ T and MT ⊥

∈ T ⊥. Let f : MT → M be a preimage in F of the morphism
MT →M of F . Let j : M → I be an inflation with injective I. Then i = [f j]t : MT →M ⊕ I is
an object of F1 whose image in F is isomorphic to M . To prove that F is fully faithful, we note
that for each Y ∈ F1, we have the conflation

Y0
1
→ Y0 → 0

‖ ↓ i ↓

Y0
i
→ Y1 → Cok i

By devissage it is therefore enough to check that F induces bijections

F1 (X,X ′) ∼→ F (X1, X
′
1)

when X and X ′ are of the type Y0
∼→ Y1 or 0 → Y1. For example, if X = (X0

∼→ X1) and X ′ =
(0 → X ′

1) then clearly F1 (X,X ′) = 0. But since X1
∼← X0 ∈ T and X ′

1
∼→ Cok (0→ X ′

1) ∈ T
⊥,

we also have F (X1, X
′
1) = 0 as well. The other three cases are left to the reader.

It is now clear that F1 satisfies P1. Properties P2, P3, and P4 immediately carry over from
Fil (F) to F1.

6.2 Plan of the proof for the lifted sequence. We keep the notations of 6.1. We fix stable
skeleta R ⊂ Eb

1 , S ⊂ Fb
1 , T ⊂ Gb

1 with R ⊂ S and Xρ ∈ T for each X ∈ S. If we use these to
compute the corresponding precyclic chain complexes, then the inclusion E1 ⊂ F1 and the functor
ρ : F1 → G1 induce morphisms of precyclic chain complexes

C(Eb
1)

C(incl )
→ C(Fb

1)
C(ρ)
→ C(Gb

1) (1)

whose composition is zero, since Xρ = 0 for each X ∈ E1. By our flatness assumptions, C(incl ) is
injective. To prove the assertion of theorem 5.6, it will then be enough to show that the induced
morphism CokC(incl )→ C(Gb

1) becomes invertible in DMix . We will prove this by exhibiting an
exact sequence of S-S-bimodules whose image under the relative left derived functor of the tensor
product ? ⊗Se I, where I (X,Y ) = S (X,Y ), identifies with the image of the sequence (1) under
the totalizing functor. The details of the general argument are given in 7.7.
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6.3 The bimodule sequence. For given Y ∈ F1, we have the conflation

Yλ → Y → Y ρ

given by

Y0
1
→ Y0 → 0

‖ ↓ i ↓

Y0
i
→ Y1 → Cok i.

If we apply HomF1 (X, ?) to this conflation we obtain an exact sequence

0→HomF1 (X,Yλ)→HomF1 (X,Y )→HomF1 (X,Y ρ)→ 0.

Now we let X and Y vary in S, and view the above sequence as a sequence of S-S-bimodules. We
will now choose suitable relatively acyclic resolutions of the terms of the sequence.

6.4 Resolution of the second and the third term. For the second term, we take the bar
resolution with respect to S.

For the third term, note that we have an isomorphism

HomF1 (X,Y ρ) ∼→Hom G1 (Xρ, Y ρ).

We take the bar resolution with respect to T , and view its terms as S-S-bimodules via the functor
ρ. These terms are of the form

⊕

HomG1 (Gn, Y
ρ)⊗Hom G1 (Gn−1, Gn)⊗ . . .⊗HomG1 (G0, G1)⊗HomG1 (Xρ, G0) ,

where the sum runs over all G0, . . . , Gn of T . They are relatively acyclic for I by lemma 7.8.
Indeed, we have the isomorphism of S-modules

HomG1 (Xρ, G0)
∼→HomF1 (X,G0)

and here the right hand side is closed as an S-module by lemma 5.2.

6.5 Resolution of the first term We consider the subcomplex of the bar resolution over S whose
terms are the

⊕

Hom E1 (En, Yλ)⊗Hom E1 (En−1, En)⊗ . . .⊗Hom E1 (E0, E1)⊗HomF1 (X,E0) ,

where the E0, . . . , En run through R. Since Hom E1 (X,E0) is free over S, they are relatively
acyclic for I by lemma 7.8. If we had Yλ ∈ Eb

1 , we could assume Y ∈ R, and the sequence would
admit a splitting over R. However, in general, Yλ will not be small in E1 (nor in F1). To prove that
the sequence always yields a relative resolution we replace Yλ by a variable Z ∈ E1 and consider
the total complex of the augmented sequence

. . .→
⊕

Hom E1 (E0, Z)⊗HomF1 (X,E0)→ HomF1 (X,Z)→ 0→ . . .

as a triangle functor of Z ∈ E1 with values in Hk. Since X and the En are small, this functor
commutes with direct sums. It vanishes for Z ∈ R. So it vanishes for each Z ∈ E1 and in particular
for Yλ. This proves the assertion.

6.6 Image under the tensor product We now compute the tensor products over Se with I of
each of the relative resolutions we constructed.

The image of the bar resolution of the middle term is the Hochschild complex, as is well known.
We would like to show that the image of the resolution of the third and the first term also

identify with the corresponding Hochschild complexes.
The terms of the first resolution are sums of objects of the form

Hom E1 (En, Yλ)⊗ L⊗HomF1 (X,E0)
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where X and Y denote ‘variable objects’ of S and L is some DG k-module. The tensor product
over Se with I is isomorphic to

HomF1 (X,E0)⊗S Hom E1 (En, Yλ)⊗ L.

Since HomF1 (?, E0) is free over S, it is clear that the canonical morphism

HomF1 (X,E0)⊗S Hom E1 (En, Yλ)→Hom E1 (En, E0)

is an isomorphism. It is now trivial to check that we do obtain the Hochschild complex with respect
to R.

The terms of the third resolution are sums of objects of the form

Hom G1 (Gn, Y
ρ)⊗ L⊗HomG1 (Xρ, G0)

where X and Y denote ‘variable objects’ of S and L is some DG k-module. The tensor product
over Se with I is isomorphic to

HomG1 (Xρ, G0)⊗S Hom G1 (Gn, Y
ρ)⊗ L.

We would like to show that the canonical morphism

Hom G1 (Xρ, G0)⊗S HomG1 (Gn, Y
ρ)→HomG1 (Gn, G0)

is an homotopy equivalence. Now we have an isomorphism

Hom G1 (Xρ, G0)
∼→HomF1 (X,G0) ,

and G0 ∈ F1 (though G0 is not necessarily small in F1). Moreover Hom G1 (Gn, Y
ρ) viewed as a

functor of Y is a model functor F1 → Ck which induces a functor F1 →Hk commuting with direct
sums. Now the claim follows by the

Lemma. If M : F1 → Ck is a model functor inducing a functor F1 → Hk commuting with
direct sums, then the canonical morphism

HomF1 (?, X)⊗S M →MX

is an homotopy equivalence for each F1.

Proof. Indeed for X ∈ S, the canonical morphism is an isomorphism of complexes. Since both
sides yield triangle functors F1 →Hk commuting with direct sums, the claim follows at once.

6.7 Conclusion. Let L′, M ′ and N ′ be the relative resolutions we have constructed. They are
linked by canonical morphisms

L′ i
→M ′ → N ′

which, after tensoring over Se with I, yield the morphisms of precyclic chain complexes

C(Eb
1)

C(incl )
−→ C(Fb

1)→ C(Gb
1)

induced by the functors E1 → F1 → G1. By our flatness hypotheses, C(incl ) is injective. According
to 7.7, in order to conclude that C(Gb

1) is quasi-isomorphic to the cokernel of C(incl ), we have to
check that i splits in the category of graded k-modules and that Cok i is still relatively acyclic for
I.

Now indeed, L′ has the components
⊕

Hom E1 (En, Yλ)⊗Hom E1 (En−1, En)⊗ . . .⊗Hom E1 (E0, E1)⊗HomF1 (X,E0).

Since we have
Hom E1 (En, Yλ) ∼= HomF1 (En, Y ) ,

and since R ⊂ S, the morphism L′ → M ′ sends this isomorphically onto a partial sum of the
component

⊕

HomF1 (Fn, Y )⊗HomF1 (Fn−1, Fn)⊗ . . .⊗HomF1 (F0, F1)⊗HomF1 (X,F0)

of M ′, where the F0, . . . , Fn run through S. In particular, i is k-split and its cokernel still has
relatively acyclic components for I.
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7. Differential graded algebras, derived categories

7.1 DG algebras. Let k be a commutative ring and A a differential graded k-algebra (=DG
algebra), i.e. a Z-graded associative k-algebra with one

A =
∐

p∈Z

Ap

endowed with a k-linear differential d : A→ A which is homogeneous of degree 1 (i.e. dAp ⊂ Ap+1

for each p) and satisfies the graded Leibniz rule

d(ab) = (da) b+ (−1)pa db , ∀ a ∈ Ap , ∀ b ∈ A.

It turns out to be convenient not to impose any a priori finiteness conditions on A. In particular,
we do not assume that A is a chain algebra as in [6] or [15].

Examples. a) If B is an ’ordinary‘ k-algebra, it gives rise to a DG algebra A defined by

Ap =

{

B p = 0
0 p 6= 0.

Conversely, any DG algebra A which is concentrated in degree 0 (i.e. Ap=0 for all p 6= 0) is obtained
in this way from an ’ordinary‘ algebra.

b) If B is a k-algebra and

M = (. . .→M i d
→M i+1 → . . .) , i ∈ Z , dd = 0

a complex of right B-modules, we consider the DG algebra A = HomB (M,M) with the compo-
nents

Ap =
∏

−i+j=p

HomB(M i,M j)

and the differential defined by

d(f i) = (d ◦ f i − (−1)pf i+1 ◦ d) , (f i) ∈ Ap.

Note that even if M i = 0 for all i ≫ 0, there may occur non-vanishing components of A in
arbitrarily small and arbitrarily large degrees.

7.2 DG modules. A differential graded module over A (=DG A-module) is a Z-graded right
A-module

M =
∐

p∈Z

Mp

endowed with a k-linear differential d : M → M which is homogeneous of degree 1 and satisfies
the graded Leibniz rule

d(ma) = (dm) a+ (−1)pmda , ∀m ∈Mp , ∀ a ∈ A.

We sometimes use the notation Mp for the component M−p. Differential graded left A-modules
are defined similarly. The Leibniz rule then reads

d(am) = (da)m+ (−1)pa (dm) , ∀ a ∈ Ap , ∀m ∈M.

A morphism of DG A-modules f : M → N is a morphism of the underlying graded A-modules
which is homogeneous of degree 0 and commutes with the differential.

Examples. a) In the situation of example 7.1 a), the category of DG A-modules identifies with
the category of differential complexes of right B-modules.
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b) In the situation of example 7.1 b), each complex N of right B-modules gives rise to a
DG A-module HomB (M,N) endowed with the A-action (gj)(f i) = (gi+p ◦ f i), where (gj) ∈
HomB(M,N)q and (f i) ∈ Ap. On the other hand, M becomes itself a DG left A-module for the
action (f i)(mj) = (f i(mi)).

7.3 The homotopy category. Let f : M → N be a morphism of DG A-modules. We say that
f is null-homotopic if we have f = dr + rd, where r : M → N is a morphism of the underlying
graded A-modules which is homogeneous of degree −1. A DG module is contractile if its identity
morphism is null-homotopic.

The homotopy category HA has the DG A-modules as objects. Its morphisms are classes f
of morphisms f of DG A-modules modulo null-homotopic morphisms. Isomorphisms of HA are
called homotopy equivalences.

Define the suspension functor S : HA→HA by

(SM)p = Mp+1 , dSM = −dM , µSM (m, a) = µM (m, a) ,

for m ∈M and a ∈ A, where µM and µSM are the multiplication maps of the respective modules.
Define a standard triangle of HA to be a sequence

L
f
→M

g
→ Cn(f)

h
→ SL ,

where f : L→M is a morphism of DG modules, Cn(f) = M ⊕ SL as a graded k-module,

dCn(f) =

[

dM f
0 dSL

]

, µCn(f)(

[

m
l

]

, a) =

[

ma
la

]

,

for m ∈ M , l ∈ Lp, the morphism g is the canonical injection M → Cn(f), and −h (note the
sign) is the canonical projection. As usual, Cn(f) is called the mapping cone over f .

Lemma. Endowed with the suspension functor S and the triangles isomorphic to standard
triangles, the category HA becomes a triangulated category in the sense of Verdier [52]. Moreover,
each short exact sequence of DG A-modules

0→ L
f
→M

g
→ N → 0

which splits in the category of graded A-modules gives rise to a triangle of HA

L
f
→M

g
→ N

rds
−→ SL ,

where r and s are morphisms of graded A-modules satisfying rf = 1L, gs = 1N , rs = 0.

In the situation of example 7.1 a), the category HA identifies with the homotopy category of
complexes of right B-modules. To prove the lemma, one may proceed as in [20]. Alternatively
[31], one can make the category of DG modules into a Frobenius category whose associated stable
category identifies with HA, which therefore automatically carries a triangulated structure [17].

7.4 Derived categories, Resolutions. A DG A-module N is acyclic (resp. relatively acyclic)
if we have H∗N = 0 (resp. if the underlying DG k-module of N is contractile). Here, as always,
H∗N denotes the Z-graded k-module with components

HpN = Ker (d : Np → Np+1)/dNp−1.

A morphism of DG A-modules s : M → M ′ is a (relative) quasi-isomorphism if its mapping
cone Cn(s) is (relatively) acyclic.

By definition, the (relative) derived category of A is the localization (cf. [52])

DA := (HA)[Σ−1] , (DrelA = (HA)[Σ−1
rel]) ,
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where Σ (resp. Σrel) denotes the class of all homotopy classes of (relative) quasi-isomorphisms. In
the situation of example 7.1 a), the category DA identifies with the (unbounded) derived category
of the category of right B-modules. If k is a field, we have Σ = Σrel and DA = DrelA.

The (relative) derived category inherits by localization a triangulated structure from HA. So
by definition, each triangle of HA maps to a triangle of DA and DrelA. Moreover, if

0→ L
i
→M

p
→ N → 0

is a short exact sequence of DG A-modules, then p induces a canonical quasi-isomorphism

Cn(i)→ N ,

where Cn(i) is the mapping cone (resp. a canoncial relative quasi-isomorphism, if the sequence
has k-split components). Thus the sequence yields a canonical triangle

L→M → N → SN

of DA (resp. DrelA).
It is not hard to check that DA and DrelA have infinite direct sums and that these are given

by the ordinary sums of DG A-modules.
Let AA denote the free DG A-module on one generator. Let M be any A-module. Then it is

easy to check that the map

HomHA(AA, N)→ H0M , f 7→ f(1)

is bijective. In particular, each quasi-isomorphism s : M →M ′ induces a bijection

HomHA(AA,M)
s∗→ HomHA(AA,M

′). (2)

As an immediate consequence, we have a bijection

HomHA(AA,M) ∼→ lim
−→

HomHA(AA,M
′) = HomDA(AA,M). (3)

Here lim
−→

is taken over the filtering category of quasi-isomorphims s : M → M ′ with domain M .

We note in passing that this implies

HomDA(AA,M) ∼→ H0M (4)

A DG A-module sharing the two equivalent properties (2) and (3) with AA is called closed (‘having
property (P)’ in the terminology of [31]). We denote by HpA the full subcategory of HA formed
by the closed objects. Property (3) combined with the 5-lemma shows that the mapping cone over
a morphism of closed objects is still closed. So HpA is a triangulated subcategory of HA.

Similarly, if K is an (ordinary) k-module and M a DG A-module, the canonical map

HomHA(K ⊗k AA,M)→ H0Hom k(K,M)

is bijective. As above, we conclude that we have a bijection

HomHA(K ⊗k AA,M) ∼→ HomDrelA(K ⊗k AA,M). (5)

A DG A-module sharing this property with K ⊗k AA is called relatively closed. We denote by
Hp,relA the full subcategory of HA formed by the relatively closed objects. It is a triangulated
subcategory of HA.

Proposition.

a) For each M ∈ HA, there is a (relative) quasi-isomorphism

pM →M (resp. prelM →M )

where pM is closed (resp. prelM is relatively closed). If we have two (relative) quasi-
isomorphisms ϕ : P → M and ϕ′ : P ′ → M with (relatively) closed P and P ′, there is a
unique homotopy equivalence ψ : P ∼→ P ′ such that ϕ′ ψ = ϕ.
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b) The assignment M 7→ pM may be completed to a triangle functor which commutes with
infinite sums and induces a triangle equivalence DA ∼→ HpA. Similarly, the assignment
M 7→ prelM yields a triangle equivalence DrelA

∼→Hp,relA.

In the situation of example 7.1 a), if M is concentrated in degree 0, then pM may be chosen
as a projective resolution of M0. If M is a right bounded complex, pM is a ’projective resolution
of the complex M ‘ (cf. [20]). For arbitrary M over an ’ordinary‘ k-algebra, pM is a K-projective
resolution in the sense of [50]. The proof for an arbitrary DG algebra may be found in [31]. The
proof in the relative case is completely analogous.

7.5 Closed objects. Keep the assumptions of 7.4. In the absolute case, the following proposition
results from [31, sect. 3]. The relative case is proved similarly.

Proposition. A DG A-module is closed (resp. relatively closed) if and only if it is homotopy
equivalent to a DG module P admitting a filtration

0 = F−1 ⊂ F0 ⊂ F1 ⊂ . . . Fp ⊂ Fp+1 . . . ⊂ P , p ∈ N

such that

(F1) P is the union of the Fp, p ∈ N,

(F2) the inclusion morphism Fp−1 ⊂ Fp splits in the category of graded A-modules, ∀ p ∈ N,

(F3) each subquotient Fp/Fp−1 is isomorphic as a DG module to a direct summand of a direct sum
of DG modules SnAA, n ∈ N (resp. SnK ⊗k AA, where K is a DG k-module and n ∈ N).

Note that (F1) and (F2) imply that the following sequence (∗) is split exact in the category of
graded A-modules and thus (lemma 7.4) produces a triangle in HA

∐

p∈N

Fp
Φ
−→

∐

q∈N

Fq
can
−→ P ;

here Φ has the components

Fp
[1 −ι]t

−→ Fp ⊕ Fp+1
can
−→

∐

q∈N

Fq , ι = incl .

By lemma 7.3 it follows that HpA (resp. Hp,relA) coincides with its smallest full triangulated
subcategory containing AA (resp. K ⊗k A for each k-module K) and closed under infinite sums.
By proposition 7.4 b), the same holds for DA (resp. DrelA). This gives rise to an ’induction
principle‘ as illustrated by the following fact: If T is a triangulated category admitting infinite
sums and F1, F2 : DA → T are two triangle functors commuting with infinite sums, then a
morphism µ : F1 → F2 of triangle functors is invertible if (and only if) µAA : F1AA → F2AA is
invertible. Indeed, the full subcategory of DA formed by the DG modules U with invertible µU
is a triangulated subcategory by the 5-lemma, contains AA by assumption, and is closed under
infinite sums since F1 and F2 commute with infinite sums.

7.6 Left derived tensor functors. Let A and B be DG algebras, and AXB a DG A-B-bimodule,
i.e.

X =
∐

p∈Z

Xp

is a graded left A-module and a graded right B-module, the two actions commute and coincide on
k, and X is endowed with a homogeneous k-linear differential d of degree 1 satisfying

d(axb) = (da)xb+ (−1)pa (dx) b + (−1)p+qax (db)
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for all a ∈ Ap, x ∈ Xq, b ∈ B. We define the DG algebra Aop ⊗k B by

(Aop ⊗k B)n =
∐

p+q=n

Ap ⊗Bq ,

d(a⊗ b) = (da)⊗ b+ (−1)pa⊗ (db) ,

(a⊗ b)(a′ ⊗ b′) = (−1)qp′+pp′

a′a⊗ bb′ ,

for all a ∈ Ap, b ∈ Bq, a′ ∈ Ap′

, b′ ∈ B. We may then view X as a (right) DG Aop ⊗k B-module
via

x.(a⊗ b) = (−1)rpaxb , ∀x ∈ Xr , ∀ a ∈ Ap , ∀ b ∈ B.

Let M be a DG A-module. We define M ⊗k X to be the DG B-module with the action of B on
X and with the DG structure

(M ⊗k X)n =
∐

p+q=n

Mp ⊗k X
q , d(m⊗ x) = (dm)⊗ x+ (−1)pm⊗ (dx) ,

for all m ∈ Mp , x ∈ X . The k-submodule generated by all differences ma ⊗ x − m ⊗ ax is
stable under d and under multiplication by elements of B. So M ⊗A X , the quotient modulo this
submodule, is a well defined DG B-module, which is moreover functorial in M and X . We call
M a flat DG A-module if M ⊗A N is acyclic for each acyclic left DG A-module N (cf. 8.3). The
functor ? ⊗A X yields a triangle functor HA → HB which will be denoted by the same symbol.
We define the left derived functor

?⊗L
A X : DA→ DB

by N ⊗L
AX := (pN)⊗AX . If the canonical morphism N ⊗L

AX → N ⊗AX is a quasi-isomorphism,
then N is called acyclic for X . Note that ?⊗L

AX commutes with infinite sums since p and ?⊗AX
do. The following lemma is proved in [34].

Lemma. The functor F = ?⊗L
AX is an equivalence if and only if the following conditions hold

a) F induces bijections

HomDA(A,SnA) ∼→ HomDB(XB, S
nXB) , ∀n ∈ Z ,

b) the functor HomDB(XB, ?) commutes with infinite sums,

c) the smallest full triangulated subcategory of DB containing XB and closed under infinite
sums coincides with DB.

Example. Suppose that ϕ : B → A is a quasi-isomorphism, i.e. a morphism of DG algebras
inducing an isomorphism H∗B ∼→ H∗A. Then

?⊗L
A AB : DA→ DB and ?⊗L

B AA : DB → DA

are equivalences.

7.7 Relative derived tensor functors. Let A and B be DG algebras, and AXB a DG A-B-
bimodule (cf. 7.6). We define the relative left derived functor

?⊗Lrel
A X : DrelA→ DrelB

by N ⊗Lrel
A X := (prelN)⊗AX . If the canonical morphism N ⊗Lrel

A X → N ⊗A X is an homotopy
equivalence, then N is called relatively acyclic for X .

Suppose that we have a commutative diagram of HA

L′ → L
↓ ↓

M ′ → M ,
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where L′ andM ′ are relatively acyclic and the horizontal morphisms are relative quasi-isomorphisms.
Then we can compute the image of L→M under ?⊗Lrel

A X as L′ ⊗A X →M ′ ⊗A X . Indeed, the
composition

prelL
′ → L′ → L

is a relative quasi-isomorphism with relatively closed domain and the resulting relative quasi-
isomorphism L′ ⊗Lrel

A X ∼→ L ⊗Lrel
A X is compatible with morphisms by the following commutive

diagram of HA
prelL

′ → L′ → L
↓ ↓ ↓

prelM
′ → M ′ → M.

Now let
0→ L→M → N → 0

be a short exact sequence of DG A-modules which admits a splitting in the category of graded
k-modules. Suppose that it fits into a commutative diagram

0 → L → M → N → 0
↑ ↑ ↑

L′ i
→ M ′ → N ′

whose vertical morphisms are relative quasi-isomorphisms and whose second row is a complex with
relatively acyclic terms for X . Then (L,M,N) fits into a canonical triangle of DrelA and hence
(L′ ⊗A X,M ′ ⊗A X,N ′ ⊗A X) fits into a triangle of DrelB. However, we will need to know that
this triangle comes from a canonical short exact sequence of B-modules.

For this, suppose that i and i ⊗A X are both split monomorphic as morphisms of graded
k-modules and that Cok i is relatively acyclic for X as well. Then clearly Cok i → N and
hence Cok i → N ′ are relative quasi-isomorphisms. Therefore (Cok i) ⊗A X → N ′ ⊗A X is
a relative quasi-isomorphism and, since ? ⊗A X commutes with cokernels, the canonical map
Cok (L′ ⊗A X →M ′ ⊗A X) → (Cok i) ⊗A X is an isomorphism. So we have a commutative dia-
gram

0 → L′ ⊗A X
i⊗AX
−→ M ′ ⊗A X → N ′ ⊗A X

‖ ‖ ↑

0 → L′ ⊗A X
i⊗AX
−→ M ′ ⊗A X → Cok (i⊗A X) → 0

where the last vertical morphism is a relative quasi-isomorphism.

7.8 Relatively acyclic objects for Hochschild homology. Let A be a DG algebra and put
Ae = Aop⊗A. Then A becomes a left Ae-module in a canonical way. Recall that ⊗ without index
means tensor product over k.

Lemma. If P is a closed DG A-module and M an arbitrary left DG A-module, then M ⊗P is
relatively acyclic (7.7) for the Ae-k-bimodule A.

Proof. We have to construct a relative quasi-isomorphism prel(P⊗M)→ P⊗M with relatively
closed prel(P ⊗M) over Ae and show that the induced morphism

prel(M ⊗ P )⊗Ae A→ (M ⊗ P )⊗Ae A

is an homotopy equivalence over k. For this, we choose a relative quasi-isomorphism prelM →M
with relatively acyclic prelM over A. Then clearly (prelM) ⊗ P → M ⊗ P is a relative quasi-
isomorphism with relatively closed (prelM) ⊗ P over Ae. So we put prel(P ⊗M) = P ⊗ prelM .
We then have to show that the induced morphism

(prelM)⊗ P )⊗Ae A→ (M ⊗ P )⊗Ae A

is an homotopy equivalence. Now if U is a left DG A-module and V a right DG A-module, then
we have a canonical isomorphism of DG A-modules

(U ⊗ V )⊗Ae A ∼→ U ⊗A V.

34



Using this isomorphism we are reduced to showing that

P ⊗A prelM → P ⊗A M

is an homotopy equivalence. This is clear for P = A since prelM → M is a relative quasi-
isomorphism. It then follows for any P by the structure of closed objects (7.4).

7.9 Relative equivalences. The following result is given for completeness. We shall neither
prove it nor use it. Let A and B be DG algebras, and AXB a DG A-B-bimodule (cf. 7.6).

Lemma. The functor F = ? ⊗Lrel
A X is an equivalence if and only if the following conditions

hold

a) For each k-module K the canonical morphism

A⊗k K →HomB (XB,K ⊗k XB) ,

is a homotopy equivalence of DG k-modules.

b) the functor HomDrelB(XB, ?) commutes with infinite sums,

c) the smallest full triangulated subcategory of DB containing K ⊗k XB for each k-module K
and closed under infinite sums coincides with DrelB.

In interpreting condition a) note that as an object of Hk the complex HomB (M,N) is well
defined and functorial in M,N ∈ DrelA. The existence of an equivalence between the relative
derived categories of A and B turns out to be too restrictive a hypothesis for our purposes.

7.10 Small objects. Let A be a DG algebra. A closed object P of HA is small if the functor

HomHA(P, ?) : HA→ Mod k

commutes with direct sums. It is a generator of HpA if the smallest full triangulated subcategory
of HpA containing P and closed under infinite direct sums coincides with HpA. For example
P = AA is a small generator, or more generally, in the situation of lemma 7.6, P = pXA is a small
generator. It is remarkable that two small generators are always obtained from each other by a
finite sequence of ‘finitistic’ constructions (no infinite sums are needed), as it is made precise in
the following proposition.

Proposition.

a) If P is a small generator of HpA, then the full subcategory of HpA formed by the small objects
coincides with the smallest full triangulated category of HpA containing P and closed under
forming direct summands.

b) If P is small, then the functor

HomA (P, ?) : HpA→ Hk

commutes with direct sums.

Statement a) is proved in [31, 5.3] and goes back to [45] resp. [47]. Statement b) clearly holds
for P = AA and hence, by a), for any small P .

8. Appendix

8.1 Localization and adjoints. Suppose that S and T are triangulated categories and

T
L ↓↑ R
S

a pair of adjoint triangle functors.
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Lemma.

a) If R is fully faithful, the sequence

0→ KerL→ T
L
→ S → 0

is exact.

b) If S and T admit infinite direct sums, R commutes with infinite direct sums and T is gener-
ated (5.2) by the object G, then KerL is generated by the object G′ occuring in the triangle

G′ → G→ RLG→ SG′.

Proof. a) The canonical functor T /KerL→ S is clearly essentially surjective. To prove that it
is fully faithful, it is enough to show that the restriction of the localization functor to ImR is fully
faithful. By prop. 5.3 on page 286 of [52], this follows from the fact that HomT (N,RLX) = 0 for
each N ∈ KerL, X ∈ T .

b) Put N = KerL. For each X ∈ T , define XN by the triangle

XN → X → RLX → SXN .

One checks that XN belongs to N and that it represents the restriction of the functor HomT (?, X)
to N . Hence the functor X 7→ XN defines a right adjoint to the inclusion functor. Such an adjoint
becomes a triangle functor in a canonical way [30, 6.7]. Moreover, the fact that the identity functor
and RL commute with infinite sums implies that the functor X 7→ XN commutes with infinite
sums. Finally, this functor is clearly essentially surjective since it is right adjoint to a fully faithfull
functor. It follows that if G generates T then GN generates N , the image of T under the functor
X 7→ XN .

8.2 Filtered direct limits. Let A be a DG algebra and U ⊂ DA a full triangulated category
stable with respect to forming infinite sums. Let (Mi)i∈I be a filtered direct system in the category
of DG modules such that Mi ∈ U for each i ∈ I.

Lemma. The direct limit M = lim
−→

Mi belongs to U .

Proof. Since I is filtered, there is a resolution

. . .→ C1 → C0 →M → 0

of M by DG A-modules which are direct sums of copies of the Mi. Hence M is quasi-isomorphic
to a DG module admitting a countable filtration whose subquotients belong do U . By the ‘Milnor
triangle’ [43] (cf. for example [31, 3.1]) we conclude that M belongs to U .

8.3 Products of flat DG k-modules. Let k be a ring (associative with 1). A theorem of
S. U. Chase asserts that if (and only if) k is left coherent, then every product of flat right k-
modules is flat [1, 19.20]. We need the analogous assertion for flat DG k-modules. First recall from
(7.6) that a DG k-module M is flat if M ⊗N is acyclic for each acyclic left k-module N . If M is
a bounded complex, it is flat as a DG module if its components are flat k-modules. However, for
unbounded complexes M this will not suffice in general. The proof of the following lemma shows
among other things that if k is of finite global dimension, then M is flat as a DG module iff in the
homotopy category it is an extension of a purely acyclic module by a closed module.

Lemma. Suppose that k is left coherent and of finite global dimension. Then every product of
flat DG k-modules is flat as a DG k-module.

Proof. If N is a complex of k-modules we denote by σ≥nN resp. τ≤nN the subcomplexes

(. . . 0→ 0→ Nn → Nn+1 → . . .) resp. (. . .→ Nn−2 → Nn−1 → ZnN → 0 . . .).
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First step: Each acyclic DG k-module N is homotopy equivalent to a direct limit (in the category
of DG modules) of left bounded acyclic DG modules. Indeed, let

0→ N → I0 → I1 → . . .→ Ip → Ip+1 → . . .

be a Cartan-Eilenberg resolution [40, XII, 11] of N , i.e. a complex of DG modules such that the
induced sequences

0→ N q → I0,q → I1,q → . . .→ Ip,q → Ip+1,q → . . .

0→ Zq N → Zq I0 → Zq I1 → . . .→ Zq Ip → Zq Ip+1 → . . .

are injective resolutions for each q. Since k has finite global dimension, we may suppose that Ip = 0
for all p≫ 0. Since each Zq Ip is injective, the Ip are contractile. We conclude that N is homotopy
equivalent to N ′, the total complex associated with

0→ N → I0 → I1 → . . .→ Ip → Ip+1 → . . . .

We define N ′
r as the total complex associated with

0→ σ≥rN → σ≥rI
0 → . . .→ σ≥rI

p → σ≥rI
p+1 → . . .

Then N ′ is clearly isomorphic to the direct limit of the N ′
r.

2nd step: Each DG k-module with flat components is flat as a DG k-module. Let X be a DG
module with flat components and N an acyclic left DG k-module. The complex X is a direct limit
of the left bounded complexes σ≥nX , n → −∞. So in order to show that X ⊗k N is acyclic, we
may suppose that X is itself left bounded. By the first step, N is homotopy equivalent to a direct
limit of left bounded acyclic complexes. We may assume that N itself is left-bounded. After these
reductions it is clear that X⊗kN is acyclic since it is the total complex of a first quadrant complex
with acyclic columns.

3rd step: Let N be a DG k-module. Then N ⊗k M is acyclic for each DG k-module M iff this
holds for each DG k-module M concentrated in degree 0. Suppose that N ⊗k M is acyclic for each
DG k-module M concentrated in degree 0. Then it also holds if M is bounded (by devissage) and
if M is right bounded (by passage to the limit over the σ≥nM , n → −∞). Finally, it holds for
arbitrary M by passage to the limit of the τ≤nM , n→∞.

4th step: Let N by a DG k-module. Then N ⊗k M is acyclic for each DG k-module M iff each
sequence

0→ ZnN → Nn → Zn+1N → 0 , n ∈ Z ,

is pure exact in the sense of P. M. Cohn [9, p. 383] (i.e. its tensor product with an arbitrary left
k-module is exact). By the third step, the condition is sufficient. Conversely, suppose that N⊗kM
is acyclic for each k-module M . Taking M = k we see that N is acyclic. Therefore we have
BnN ∼→ ZnN for each n ∈ Z. If M is arbitrary, we see that we have (Zn N)⊗M ∼→ Zn (N ⊗M)
by considering the diagram

(BnN)⊗M ∼→ (ZnN)⊗M
↓ ↓

Bn (N ⊗M) ∼→ Zn (N ⊗M),

whose left vertical arrow is clearly an isomorphism.
5th step: The assertion. Let Xi, i ∈ I, be a family of flat DG k-modules. For each i we choose

a triangle
Pi → Xi → Ni → SPi

where Ni is acyclic, and Pi is closed. We may and will assume that Pi has projective components.
If M is any left DG k-module, we have a commutative square

Pi ⊗k M → Xi ⊗k M
↑ ↑

Pi ⊗k pM → Xi ⊗k pM
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whose bottom morphism and whose vertical morphisms are quasi-isomorphisms. Thus Ni ⊗M is
acyclic. By the third step, Ni is spliced up from pure exact sequences. Now products of pure exact
sequences are pure exact (by [9, thm. 2.4]), so that (

∏

i∈I Ni)⊗k M is acyclic as well for each DG
module M , by the third step. In particular, if N is an acyclic left DG k-module, the third term of
the sequence

(
∏

i∈I

Pi)⊗k N → (
∏

i∈I

Xi)⊗k N → (
∏

i∈I

Ni)⊗k N → S(
∏

i∈I

Pi)⊗k N

is acyclic. By Chase’s theorem and the second step, the same holds for the first term. The assertion
follows.
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