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Abstract. Cluster algebras were invented by Sergey Fomin and Andrei Zelevinsky at the
beginning of the year 2000. Their motivations came from Lie theory and more precisely
from the study of the so-called canonical bases in quantum groups and that of total
positivity in algebraic groups. Since then, cluster algebras have been linked to many other
subjects ranging from higher Teichmüller theory through discrete dynamical systems
to combinatorics, algebraic geometry and representation theory. According to Fomin-
Zelevinsky’s philosophy, each cluster algebra should admit a ‘canonical’ basis, which
should contain the cluster monomials. This led them to formulate, about ten years ago,
the conjecture on the linear independence of the cluster monomials. In these notes,
we give a concise introduction to cluster algebras and sketch the ingredients of a proof
of the conjecture. The proof is valid for all cluster algebras associated with quivers
and was obtained in recent joint work with G. Cerulli Irelli, D. Labardini-Fragoso and
P.-G. Plamondon.
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1. Introduction

1.1. Context. Cluster algebras, invented [37] by Sergey Fomin and Andrei Zele-
vinsky around the year 2000, are commutative algebras whose generators and rela-
tions are constructed in a recursive manner. Among these algebras, there are the
algebras of homogeneous coordinates on the Grassmannians, on the flag varieties
and on many other varieties which play an important role in geometry and repre-
sentation theory. Fomin and Zelevinsky’s main aim was to set up a combinatorial
framework for the study of the so-called canonical bases which these algebras pos-
sess [60] [78] and which are closely related to the notion of total positivity [79]
[34] in the associated varieties. It has rapidly turned out that the combinatorics
of cluster algebras also appear in many other subjects, for example in

• Poisson geometry [49] [50] [51] [52] [8] . . . ;

• discrete dynamical systems [25] [40] [57] [61] [65] [63] [74] . . . ;

• higher Teichmüller spaces [28] [29] [30] [31] [32] . . . ;

• combinatorics and in particular the study of polyhedra like the Stasheff as-
sociahedra [18] [19] [35] [36] [56] [73] [80] [82] [81] [96] . . . ;
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• commutative and non commutative algebraic geometry and in particular the
study of stability conditions in the sense of Bridgeland [9], Calabi-Yau alge-
bras [53] [58] , Donaldson-Thomas invariants in geometry [59] [71] [72] [92]
[99] . . . and in string theory [1] [2] [12] [13] [14] [43] [44] [45] . . . ;

• in the representation theory of quivers and finite-dimensional algebras, cf.
for example the survey articles [3] [5] [48] [65] [76] [94] [93] [95] . . .

as well as in mirror symmetry [54], KP solitons [70], hyperbolic 3-manifolds [84],
. . . . We refer to the introductory articles [34] [39] [101] [102] [103] [104] and to
the cluster algebras portal [33] for more information on cluster algebras and their
links with other subjects in mathematics (and physics).

The link between cluster algebras and quiver representations follows the spirit
of categorification: One tries to interpret cluster data as combinatorial (in some
cases K-theoretic) invariants associated with categories of representations. Thanks
to the rich structure of these categories, one can then hope to prove results on clus-
ter algebras which seem beyond the scope of the purely combinatorial methods.
At the end of this article, we present a recent result of this type, namely the linear
independence of the cluster monomials conjectured in [37] and recently proved in
[16] (for the skew-symmetric case). Our proof is based on a triangulated cate-
gory constructed from a category of quiver representations, the so-called cluster
category.

In section 2, we will review the definition of cluster algebras and Fomin-
Zelevinsky’s classification theorem for cluster-finite cluster algebras [38]. We will
then state the theorem on the linear independence of cluster monomials. In sec-
tion 3, we briefly describe the main tools used in its proof: the cluster category
and the cluster character.

2. Cluster algebras

The cluster algebras we will be interested in are associated with antisymmetric
matrices with integer coefficients. Instead of using matrices, we will use quivers
(without loops and 2-cycles), since they are easy to visualize and well-suited to our
later purposes.

2.1. Quivers and quiver mutation. Let us recall that a quiver Q is an oriented
graph. Thus, it is a quadruple given by a set Q0 (the set of vertices), a set Q1 (the
set of arrows) and two maps s : Q1 → Q0 and t : Q1 → Q0 which take an arrow to
its source respectively its target. Our quivers are ‘abstract graphs’ but in practice
we draw them as in this example:

Q : 3
λ
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µ
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A loop in a quiver Q is an arrow α whose source coincides with its target; a 2-cycle
is a pair of distinct arrows β 6= γ such that the source of β equals the target of
γ and vice versa. It is clear how to define 3-cycles, connected components . . . . A
quiver is finite if both, its set of vertices and its set of arrows, are finite.

By convention, in the sequel, by a quiver we always mean a finite quiver without
loops nor 2-cycles whose set of vertices is the set of integers from 1 to n for some
n ≥ 1. Up to an isomorphism fixing the vertices, such a quiver Q is given by
the antisymmetric matrix B = BQ whose coefficient bij is the difference between
the number of arrows from i to j and the number of arrows from j to i for all
1 ≤ i, j ≤ n. Conversely, each antisymmetric matrix B with integer coefficients
comes from a quiver.

Let Q be a quiver and k a vertex of Q. The mutation µk(Q) is the quiver
obtained from Q as follows:

1) for each subquiver i
β // k

α // j , we add a new arrow [αβ] : i→ j;

2) we reverse all arrows with source or target k;

3) we remove the arrows in a maximal set of pairwise disjoint 2-cycles.

If B is the antisymmetric matrix associated with Q and B′ the one associated with
µk(Q), we have

b′ij =

{
−bij if i = k or j = k ;
bij + sgn(bik) max(0, bikbkj) else.

This is the matrix mutation rule for antisymmetric (more generally: antisymmetriz-
able) matrices introduced by Fomin-Zelevinsky in [37], cf. also [41].

One checks easily that µk is an involution. For example, the quivers

1

2 3

EE�������� ��22222222

oo

et

1

2 3
���������� YY333333333

(2.1)

are linked by a mutation at the vertex 1. Notice that these quivers are drastically
different: The first one is a cycle, the second one the Hasse diagram of a linearly
ordered set. Now let us consider the quiver

1

2 3

4 5 6

7 8 9 10.

EE���� ��2222

oo
FF���� ��3333 FF���� ��2222

oo
FF���� ��2222

oo
EE���� ��2222 FF���� ��2222

oo oo oo

(2.2)
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One can show [67] that it is impossible to transform it into a quiver without
oriented cycles by a finite sequence of mutations. However, its mutation class (the
set of all quivers obtained from it by iterated mutations) contains many quivers
with just one oriented cycle, for example
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In fact, in this example, the mutation class is finite and it can be completely com-
puted using, for example, [64]: It consists of 5739 quivers up to isomorphism. The
quiver (2.4) belongs to a family which appears in the study of the cluster algebra
structure on the coordinate algebra of the subgroup of upper unitriangular matri-
ces in SLn(C), cf. [47]. The study of coordinate algebras on varieties associated
with reductive algebraic groups (in particular, double Bruhat cells) has provided
a major impetus for the development of cluster algebras, cf. [7].

2.2. Seeds and mutations. Fix an integer n ≥ 1. A seed is a pair (R, u), where

a) R is a finite quiver without loops or 2-cycles with vertex set {1, . . . , n};

b) u is a free generating set {u1, . . . , un} of the field Q(x1, . . . , xn) of fractions
of the polynomial ring Q[x1, . . . , xn] in n indeterminates.

Notice that in the quiver R of a seed, all arrows between any two given vertices
point in the same direction (since R does not have 2-cycles). Let (R, u) be a seed
and k a vertex of R. The mutation µk(R, u) of (R, u) at k is the seed (R′, u′),
where

a) R′ = µk(R); b) u′ is obtained from u by replacing the element uk with

u′k =
1

uk

 ∏
arrows i→ k

ui +
∏

arrows k → j

uj

 . (2.3)

In the exchange relation (2.3), if there are no arrows from i with target k, the
product is taken over the empty set and equals 1. It is not hard to see that µk(R, u)
is indeed a seed and that µk is an involution: we have µk(µk(R, u)) = (R, u).

2.3. Examples of seed mutations. Let R be the cyclic quiver

1

2 3

EE�������� ��22222222

oo

(2.4)
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and u = {x1, x2, x3}. If we mutate at k = 1, we obtain the quiver

1

2 3
���������� YY333333333

and the set of fractions given by u′1 = (x2+x3)/x1, u′2 = u2 = x2 and u′3 = u3 = x3.
Now, if we mutate again at 1, we obtain the original seed. This is a general fact:
Mutation at k is an involution. If, on the other hand, we mutate (R′, u′) at 2, we
obtain the quiver

1

2 3

EE��������

XX1111111

and the set u′′ given by u′′1 = u′1 = (x2 +x3)/x1, u′2 = x1+x2+x3

x1x2
and u′′3 = u′3 = x3.

2.4. Definition of cluster algebras. Let Q be a finite quiver without loops or
2-cycles with vertex set {1, . . . , n}. Consider the seed (Q, x) consisting of Q and
the set x formed by the variables x1, . . . , xn. Following [37] we define

• the clusters with respect to Q to be the sets u appearing in seeds (R, u)
obtained from (Q, x) by iterated mutation,

• the cluster variables for Q to be the elements of all clusters,

• the cluster algebra AQ to be the Q-subalgebra of the field Q(x1, . . . , xn)
generated by all the cluster variables.

Thus the cluster algebra consists of all Q-linear combinations of monomials in the
cluster variables. It is useful to define another combinatorial object associated with
this recursive construction: The exchange graph associated with Q is the graph
whose vertices are the seeds modulo simultaneous renumbering of the vertices and
the associated cluster variables and whose edges correspond to mutations.

2.5. The example A3. Let us consider the quiver

Q : 1 // 2 // 3

obtained by endowing the Dynkin diagram A3 with a linear orientation. By apply-
ing the recursive construction to the initial seed (Q, x) one finds exactly fourteen
seeds (modulo simultaneous renumbering of vertices and cluster variables). These
are the vertices of the exchange graph, which is isomorphic to the third Stasheff
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associahedron [98] [19]:
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The vertex labeled 1 corresponds to (Q, x), the vertex 2 to µ2(Q, x), which is given
by

1
&&

2oo 3oo , {x1,
x1 + x3

x2
, x3} ,

and the vertex 3 to µ1(Q, x), which is given by

1 2oo // 3 , {1 + x3

x1
, x2, x3}.

We find a total of 9 cluster variables, namely

x1 , x2 , x3,
1 + x2

x1
,
x1 + x3 + x2x3

x1x2
,
x1 + x1x2 + x3 + x2x3

x1x2x3
,

x1 + x3

x2
,
x1 + x1x2 + x3

x2x3
,

1 + x2

x3
.

Again we observe that all denominators are monomials. Notice also that 9 = 3 + 6
and that 3 is the rank of the root system associated with A3 and 6 its number of
positive roots. Moreover, if we look at the denominators of the non trivial cluster
variables (those other than x1, x2, x3), we see a natural bijection with the positive
roots

α1, α1 + α2, α1 + α2 + α3, α2, α2 + α3, α3

of the root system of A3, where α1, α2, α3 denote the three simple roots.

2.6. Cluster algebras with finitely many cluster variables. The phenom-
ena observed in the above example are explained by the following key theorem:
Let Q be a connected quiver. If its underlying graph is a simply laced Dynkin
diagram ∆, we say that Q is a Dynkin quiver of type ∆.

Theorem 2.7 ([38]). a) Each cluster variable of AQ is a Laurent polynomial
with integer coefficients [37].
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b) The cluster algebra AQ has only a finite number of cluster variables if and
only if Q is mutation equivalent to a Dynkin quiver R. In this case, the
underlying graph ∆ of R is unique up to isomorphism and is called the cluster
type of Q.

c) If Q is a Dynkin quiver of type ∆, then the non initial cluster variables of
AQ are in bijection with the positive roots of the root system Φ of ∆; more
precisely, if α1, . . . , αn are the simple roots, then for each positive root
α = d1α1 + · · · + dnαn, there is a unique non initial cluster variable Xα

whose denominator is xd11 . . . xdnn .

2.8. Two conjectures on cluster algebras. A cluster monomial is a product
of non negative powers of cluster variables belonging to the same cluster. The
construction of a ‘canonical basis’ of the cluster algebra AQ is an important and
largely open problem, cf. for example [37] [97] [26] [15]. It is expected that such a
basis should contain all cluster monomials. Whence the following conjecture.

Conjecture 2.9 ([37]). The cluster monomials are linearly independent over the
field Q.

If Q is a Dynkin quiver, one knows [11] that the cluster monomials form a basis
of AQ. If Q is acyclic, i.e. does not have any oriented cycles, the conjecture follows
from a theorem by Geiss-Leclerc-Schröer [46], who show the existence of a ‘generic
basis’ containing the cluster monomials. The conjecture has also been shown for
classes of cluster algebras with coefficients (cf. section 4.1 of [62]), for example in
the papers [42] [46] [22] [21]. It is known for all cluster algebras associated with
surfaces [36]. It was proved for all cluster algebras whose exchange matrix is of
full rank in [24] and [89]. In fact, the condition on the rank may be dropped:

Theorem 2.10 ([16]). The conjecture holds for all cluster algebras associated with
quivers.

We will outline the proof of the theorem below. In [16] it is proved more gen-
erally for all skew-symmetric cluster algebras with coefficients in a semi-field. Its
generalization to skew-symmetrizable cluster algebras is still open. Before embark-
ing on the proof, let us mention another important and largely open conjecture.

Conjecture 2.11 ([38]). The cluster variables are Laurent polynomials with non
negative integer coefficients in the variables of each cluster.

For quivers with two vertices, an explicit and manifestly positive formula for
the cluster variables is given in [77]. The technique of monoidal categorification
developed by Leclerc [75] and Hernandez-Leclerc [55] has recently allowed to prove
the conjecture first for the quivers of type An and D4, cf. [55], and then for each
bipartite quiver [85], i.e. a quiver where each vertex is a source or a sink. The
positivity of all cluster variables with respect to the initial seed of an acyclic quiver
is shown by Fan Qin [91] and by Nakajima [85, Appendix]. This is also proved by
Efimov [27], who moreover shows the positivity of all cluster variables belonging to
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an acyclic seed with respect to the initial variables of an arbitrary quiver. Efimov
combines the techniques of [72] with those of [83]. A proof of the full conjecture
for acyclic quivers using Nakajima quiver varieties is announced by Kimura–Qin
[69]. The conjecture has been shown in a combinatorial way by Musiker-Schiffler-
Williams [82] for all the quivers associated with triangulations of surfaces (with
boundary and marked points) and by Di Francesco-Kedem [25] for the quivers and
the cluster variables associated with the T -system of type A, with respect to the
initial cluster.

We refer to [39] and [41] for numerous other conjectures on cluster algebras and
to [24], cf. also [83] and [90] [89], for the solution of a large number of them using
additive categorification.

3. On the proof of the independence conjecture

3.1. The proper Laurent property. Let x be a set of indeterminates x1, . . . ,
xn. Recall that a monomial in x is a product of non negative powers of the xi.
A Laurent monomial in x is a product of integer powers of the xi. It is proper if
at least one of the factors xi appears with a strictly negative exponent. A proper
Laurent polynomial in x is a Q-linear combination of proper Laurent monomials.
Notice that the space of Laurent polynomials in x decomposes as the direct sum

P (x)⊕ L(x)

of the space of polynomials P (x) and the space L(x) of proper Laurent polynomials.
Now let Q be a quiver and AQ the associated cluster algebra. Following [17],

we define AQ to have the proper Laurent property if, for all clusters u and v of AQ,
each monomial in v containing at least one variable not in u with an exponent > 0
is a proper Laurent polynomial in u. Thus, these monomials lie in L(u) and there
cannot be any linear relation between them and the monomials in u. This yields
the following lemma.

Lemma 3.2 ([17]). If AQ has the proper Laurent property, then its cluster mono-
mials are linearly independent.

In the following section, we describe explicit expressions for the cluster mono-
mials which allow one to check that the proper Laurent property holds for the
cluster algebra AQ associated with an arbitrary quiver.

3.3. Cluster categories. Let Q be a quiver (in the sense of our convention in
section 2.1). Let W be a generic potential on Q in the sense of [23]. The cluster
category CQ,W of (Q,W ) was defined by Claire Amiot [4]. She showed that for
acyclic quivers Q, which have W = 0 as their only potential, her definition ex-
tended the classical one by Buan–Marsh–Reineke–Reiten–Todorov [6]. The cluster
category is a triangulated category in the sense of Verdier [100]. This means that
CQ,W is additive and endowed with

a) a suspension functor Σ : CQ,W ∼→ CQ,W
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b) a class of triangles, i.e. sequences of the form

U // V // W // ΣU .

These data have to satisfy suitable axioms, cf. [100]. An object X of a triangulated
category is rigid if we have Hom(X,ΣX) = 0. The category CQ,W is endowed with
a canonical rigid object Γ which decomposes as a direct sum of n indecomposable
summands Γ1, . . . , Γn with local endomorphism algebras. The full subcategory
addΓ is formed by all finite direct sums of these summands. Its (split) Grothendieck
group K0(addΓ) has the classes of the Γi as a basis and thus canonically identifies
with Zn. The endomorphism algebra of Γ is isomorphic to the Jacobian algebra
J(Q,W ), cf. [23]. As in [90, Definition 3.9], define P to be the full subcategory of
all objects X of CQ,W such that

• there exists a triangle TX1 → TX0 → X → ΣTX1 , with TX0 and TX1 in addΓ;

• there exists a triangle T 0
ΣX → T 1

ΣX → ΣX → ΣT 0
ΣX , with T 0

ΣX and T 1
ΣX in

addΓ; and

• the space HomC(Γ,ΣX) is finite-dimensional.

Define the index [20] of an object X of P as

indΓX = [TX0 ]− [TX1 ] ∈ K0(addΓ) ∼= Zn.

3.4. Proof via the cluster character. Let us keep the notations of section 3.3.
The cluster character [10] [86] [88] [90] is the map CC : Obj(P) −→ Z[x±1

1 , . . . , x±1
n ]

defined by

CC(X) = xindΓX
∑
e

χ
(
Gre(HomC(Γ,ΣX))

)
xBe , (3.1)

where

• B is the skew-symmetric matrix associated to Q;

• Gre(HomC(Γ,ΣX)) is the quiver Grassmannian (see Section 2.3 of [10]). It is
the projective variety whose closed points are the submodules with dimension
vector e of the EndC(Γ)-module HomC(Γ,ΣX);

• χ is the Euler–Poincaré characteristic of the underlying topological space.

The following proposition shows that the cluster category is ‘not much larger’
than the category mod J(Q,W ) of finite-dimensional (right) modules over the Ja-
cobian algebra. In the special case where this algebra is finite-dimensional, the
proposition follows from a result of [66].

Proposition 3.5 ([90]). The functor F = HomC(Γ,Σ(?)) induces an equivalence
of additive categories

P/(Γ)
∼ // mod J(Q,W ) ,

where (Γ) denotes the ideal of morphisms factoring through a direct sum of copies
of Γ.
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The mutation of certain rigid objects like Γ inside CQ,W is studied in [68]. It is
a categorical lift of the mutation operation on seeds. A reachable object is a direct
factor of an object obtained by iterated mutation from Γ. Any reachable object
is rigid and lies in the subcategory P [90, Section 3.3]. The following theorem
generalizes results obtained in [10] [11] [86].

Theorem 3.6 ([90]). The cluster character CC induces a surjection from the set
of isomorphism classes of (rigid) reachable objects of P onto the set of all cluster
monomials of AQ.

The theorem shows that each cluster monomial is given by the explicit for-
mula (3.1). Now one can use this formula and the homological properties of the
category P to show the proper Laurent property for the cluster algebra AQ, cf.
[16], and thus the linear independence of the cluster monomials. Once this is
established, it is not hard to deduce the following corollary.

Corollary 3.7. The surjection of Theorem 3.6 is a bijection.

The beauty of this last result is only diminished by the condition of ‘reacha-
bility’. However, in general, this cannot be removed as shown in example 4.3 of
[87].
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Diderot - Paris 7, Juillet 2008.

[5] Aslak Bakke Buan and Robert Marsh, Cluster-tilting theory, Trends in representa-
tion theory of algebras and related topics, Contemp. Math., vol. 406, Amer. Math.
Soc., Providence, RI, 2006, pp. 1–30.

[6] Aslak Bakke Buan, Robert J. Marsh, Markus Reineke, Idun Reiten, and Gordana
Todorov, Tilting theory and cluster combinatorics, Advances in Mathematics 204
(2) (2006), 572–618.

[7] Arkady Berenstein, Sergey Fomin, and Andrei Zelevinsky, Cluster algebras. III.
Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), no. 1, 1–52.

[8] Arkady Berenstein and Andrei Zelevinsky, Quantum cluster algebras, Adv. Math.
195 (2005), no. 2, 405–455.

[9] Tom Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2)
166 (2007), no. 2, 317–345.

[10] Philippe Caldero and Frédéric Chapoton, Cluster algebras as Hall algebras of quiver
representations, Comment. Math. Helv. 81 (2006), no. 3, 595–616.



Cluster algebras and cluster monomials 11

[11] Philippe Caldero and Bernhard Keller, From triangulated categories to cluster al-
gebras, Inv. Math. 172 (2008), 169–211.
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pp. 647–684.

[30] , Cluster ensembles, quantization and the dilogarithm, Annales scientifiques
de l’ENS 42 (2009), no. 6, 865–930.

[31] , Cluster ensembles, quantization and the dilogarithm. II. The intertwiner,
Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, Progr. Math.,
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London Mathematical Society Lecture Note Series, vol. 375, Cambridge University
Press, 2010, pp. 76–160.

[66] Bernhard Keller and Idun Reiten, Cluster-tilted algebras are Gorenstein and stably
Calabi-Yau, Advances in Mathematics 211 (2007), 123–151.

[67] Bernhard Keller and Idun Reiten, Acyclic Calabi-Yau categories, Compos. Math.
144 (2008), no. 5, 1332–1348, With an appendix by Michel Van den Bergh.

[68] Bernhard Keller and Dong Yang, Derived equivalences from mutations of quivers
with potential, Advances in Mathematics 26 (2011), 2118–2168.



14 Bernhard Keller

[69] Yoshiyuki Kimura and Fan Qin, Quiver varieties and quantum cluster algebras, in
preparation.

[70] Yuji Kodama and Lauren K. Williams, KP solitons, total positivity, and cluster
algebras, Proc. Natl. Acad. Sci. USA 108 (2011), no. 22, 8984–8989.

[71] Maxim Kontsevich and Yan Soibelman, Stability structures, Donaldson-Thomas
invariants and cluster transformations, arXiv:0811.2435 [math.AG].

[72] , Cohomological Hall algebra, exponential Hodge structures and motivic
Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2,
231–352.

[73] Christian Krattenthaler, The F -triangle of the generalised cluster complex, Topics in
discrete mathematics, Algorithms Combin., vol. 26, Springer, Berlin, 2006, pp. 93–
126.

[74] Atsuo Kuniba, Tomoki Nakanishi, and Junji Suzuki, T -systems and Y -systems in
integrable systems, Journal of Physics A: Mathematical and Theoretical 44 (2011),
no. 10, 103001.
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