Algèbre/Algebra

Sous les catégories dérivées

Bernhard Keller et Dieter Vossieck

Résumé — L'objet de cette Note (¹) est triple: 1° Expliquer la description de D. Happel [3] de la catégorie dérivée d'une algèbre de dimension finie. 2° Simplifier une construction de A. Beilinson, J. Bernstein et P. Deligne [1] qui relie une catégorie dérivée aux catégories dérivées des cœurs de ses *t*-structures. 3° Étayer des fondations demeurées quelque peu bancales.

Beneath the derived categories

Abstract — This Note has three objectives: 1. To explain Happel's description [3] of the derived category of a finite-dimensional algebra. 2. To simplify a construction of A. Beilinson, J. Bernstein and P. Deligne [1] which relates a derived category to the derived categories of the hearts of its t-structures. 3. To buttress foundations which were left somewhat shaky.

1. CATÉGORIES SUSPENDUES. - 1.1. Étant donné une catégorie \mathscr{H} et un foncteur $S: \mathscr{H} \to \mathscr{H}$, nous appelons S-suite une suite de morphismes de la forme $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} SX$.

Une catégorie suspendue consiste en la donnée d'une catégorie additive \mathscr{C} , d'un foncteur additif associant à tout objet $X \in \mathscr{C}$ sa suspension $SX \in \mathscr{C}$, ainsi que d'une classe de S-suites appelées triangles et soumises aux axiomes suivants :

SP0: Toute S-suite isomorphe [6] à un triangle est un triangle.

SP1: Pour tout $X \in \mathcal{C}$, $0 \to X \xrightarrow{1} X \to 0$ est un triangle.

SP2: Si $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} SX$ est un triangle, il en va de même de $Y \xrightarrow{v} Z \xrightarrow{w} SX \xrightarrow{-Su} SY$.

SP3: Étant donné des triangles $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} SX$ et $X' \xrightarrow{u'} Y' \xrightarrow{v'} Z' \xrightarrow{w'} SX'$ et des morphismes $X \xrightarrow{a} X'$ et $Y \xrightarrow{b} Y'$ tels que u'a = bu, il y a un $Z \xrightarrow{c} Z'$ tel que v'b = cv et (Sa) w = w'c.

SP4: Étant donné deux morphismes $X \xrightarrow{u} Y$ et $Y \xrightarrow{v} Z$, il existe un diagramme commutatif (*) dont les deux premières lignes et les deux colonnes centrales sont des triangles [3].

1.2. Exemples. — (a) Soient & une catégorie exacte [5] ayant assez d'injectifs, $\mathscr I$ la sous-catégorie pleine des injectifs de &, $\langle \mathscr I \rangle$ l'idéal de & des morphismes se factorisant par $\mathscr I$ et $\overline{\mathscr E} = \mathscr E/\langle \mathscr I \rangle$. On obtient un foncteur suspension S en associant à tout $X \in \overline{\mathscr E}$ une

suite exacte courte $0 \to X \xrightarrow{i_X} IX \xrightarrow{p_X} SX \to 0$ de $\mathscr E$ telle que $IX \in \mathscr I$ [4]. On obtient une

Note présentée par Pierre GABRIEL.

catégorie suspendue en appelant triangles de \mathscr{E} les S-suites isomorphes aux S-suites $(\overline{e}, \overline{f}, \overline{h})$ associées aux diagrammes commutatifs à lignes exactes de \mathscr{E} de la forme suivante (comparer avec [2], [3]):

1.3. Une catégorie triangulée est par définition une catégorie suspendue où S est une équivalence [1]. Cela est le cas pour $\overline{\mathscr{E}}$ lorsque la catégorie \mathscr{E} est frobeniusienne ([4], [3]). Par exemple, la catégorie $\mathscr{E}(\mathscr{B})$, formée des complexes différentiels d'une catégorie additive \mathscr{B} et munie des suites exactes courtes scindées en chaque degré, est frobeniusienne. On posera $\mathscr{H}(\mathscr{B}) = \overline{\mathscr{E}(\mathscr{B})}$ [3].

Les catégories suspendues jouissent d'à peu près la moitié des propriétés usuelles des catégories triangulées.

1.4. Étant donné deux catégories suspendues $\mathscr C$ et $\mathscr C'$, un S-foncteur de $\mathscr C$ à $\mathscr C'$ est formé d'un foncteur additif $F \colon \mathscr C \to \mathscr C'$ et d'un morphisme $\varphi \colon FS \to SF$ tel que, pour tout

triangle $X \xrightarrow{u} Y \xrightarrow{v} Z \xrightarrow{w} SX$ de \mathscr{C} , $FX \xrightarrow{Fu} FY \xrightarrow{Fv} FZ \xrightarrow{(\phi X) (F w)} SFX$ soit un triangle de \mathscr{C}' . Cette condition, appliquée au cas Y = 0, implique que ϕ est inversible. Si (F, ϕ) et (F', ϕ') sont deux S-foncteurs de \mathscr{C} à \mathscr{C}' , un *morphisme* de (F, ϕ) à (F', ϕ') est déterminé par un morphisme de foncteurs $\mu: F \to F'$ tel que $(S \mu) \phi = \phi'(\mu S)$.

On dit qu'un S-foncteur $(F, \varphi) \colon \mathscr{C} \to \mathscr{C}'$ est une S-équivalence s'il y a un S-foncteur $(G, \psi) \colon \mathscr{C}' \to \mathscr{C}$ tel que les S-foncteurs composés $(GF, (\psi F)(G \varphi))$ et $(FG, (\varphi G)(F \psi))$ soient isomorphes aux S-foncteurs identiques $(\mathbf{1}_{\mathscr{C}}, \mathbf{1}_S)$ et $(\mathbf{1}_{\mathscr{C}'}, \mathbf{1}_S)$. En fait, (F, φ) est une S-équivalence si et seulement si F est une équivalence de catégories.

1.5. Soit $\mathscr{H}^+_{\leq 0}(\mathscr{I})$ la sous-catégorie pleine de $\mathscr{H}(\mathscr{I})$ (1.2, 1.3) formée des complexes bornés à gauche et acycliques pour $n \geq 0$, c'est-à-dire admettant des suites exactes courtes

 $0 \to Z^n X \xrightarrow{j^n} X^n \xrightarrow{q^n} Z^{n+1} X \to 0$ de $\mathscr E$ telles que $j^{n+1} q^n = d_X^n$. L'application $X \mapsto Z^0 X$ fournit un S-foncteur $Z^0 \colon \mathscr H^+_{\leq 0}(\mathscr I) \to \overline{\mathscr E}$.

1.6. Soient $(R, \rho): \mathscr{S} \to \mathscr{T}$ et $(L, \lambda): \mathscr{T} \to \mathscr{S}$ deux S-foncteurs tels que L soit adjoint à gauche à R. Si $\Psi: \mathbf{1}_{\mathscr{T}} \to RL$ et $\Phi: LR \to \mathbf{1}_{\mathscr{S}}$ sont des morphismes d'adjonction « compatibles », les conditions suivantes sont équivalentes : (i) $\lambda = (\Phi \operatorname{SL})(L \, \rho^{-1} \, L)(LS \, \Psi)$; (ii) $\rho^{-1} = (RS \, \Phi)(R \, \lambda \, R)(\Psi \, SR)$; (iii) $\Phi \, S = (S \, \Phi)(\lambda \, R)(L \, \rho)$; (iv) $S \, \Psi = (\rho \, L)(R \, \lambda)(\Psi \, S)$. Si elles sont remplies, nous disons que Φ et Ψ sont des morphismes de S-adjonction compatibles et que (L, λ) est S-adjoint à gauche à (R, ρ) .

PROPOSITION. — Soient \mathscr{G} , \mathscr{F} deux catégories triangulées, $(R, \rho): \mathscr{G} \to \mathscr{F}$ un S-foncteur, L un adjoint à gauche à R, $\Phi: LR \to 1_{\mathscr{G}}$ et $\Psi: 1_{\mathscr{F}} \to RL$ des morphismes d'adjonction compatibles et $\lambda = (\Phi SL)(L \rho^{-1} L)(LS \Psi)$. Alors (L, λ) est un S-foncteur S-adjoint à gauche à (R, ρ) .

Exemple. — Soient $\mathcal{H}_b^+(\mathscr{E})$ et $\mathcal{H}_b^+(\mathscr{I})$ les sous-catégories pleines de $\mathcal{H}(\mathscr{E})$ et $\mathcal{H}(\mathscr{I})$ (1.3) formées des complexes bornés à gauche et « acycliques en grands degrés » (1.5). L'inclusion $\mathcal{H}_b^+(\mathscr{I}) \to \mathcal{H}_b^+(\mathscr{E})$ admet un S-adjoint à gauche i.

2. L'extension d'une catégorie suspendue. -2.1. A toute catégorie suspendue $\mathscr C$ est associée une catégorie triangulée $\mathbf Z\mathscr C$ qui est tendue, c'est-à-dire telle que $\mathbf S$ y soit un

automorphisme [6]. Un objet de $\mathbb{Z}\mathscr{C}$ est un couple $(p, X) = :_p X$ tel que $p \in \mathbb{Z}$ et $X \in \mathscr{C}$. On pose $\operatorname{Hom}_{\mathbb{Z}\mathscr{C}}(_pX, _qY) = \varinjlim_{n \geq p} \operatorname{Hom}_{\mathscr{C}}(S^{n-p}X, S^{n-q}Y)$.

La composition de $Z\mathscr{C}$ est fournie par les morphismes composés $S^{n-p}X \to S^{n-q}Y \to S^{n-r}Z$ de \mathscr{C} . On munit $Z\mathscr{C}$ d'un foncteur suspension S tel que $S_pX = {}_{p-1}X$ et de triangles ${}_pX \to {}_qY \to {}_rZ \to {}_{p-1}X$ associés aux S-suites $S^{n-p}X \stackrel{u}{\to} S^{n-q}Y \stackrel{v}{\to} S^{n-r}Z \stackrel{w}{\to} SS^{n-p}X$ de \mathscr{C} telles que $(u, v, (-1)^n w)$ soit un triangle.

PROPOSITION. — Posons $EX = {}_{0}X$ et notons $\varepsilon X : ESX \to SEX$ l'image canonique de $\mathbf{1}_{SX}$. Munie de S et des triangles ci-dessus, $\mathbf{Z}\mathscr{C}$ est une catégorie triangulée tendue et $(E, \varepsilon) : \mathscr{C} \to \mathbf{Z}\mathscr{C}$ un S-foncteur. C'est une S-équivalence si \mathscr{C} est triangulée.

2.2. Notons $\mathcal{H}om_S(\mathcal{C}, \mathcal{C}')$ la catégorie des S-foncteurs de \mathcal{C} dans \mathcal{C}' et $\mathcal{H}om_t(\mathcal{C}, \mathcal{C}')$ la sous-catégorie pleine formée des (F, φ) tels que FS = SF et $\varphi = 1$.

PROPOSITION. — Soit $\mathscr C$ une catégorie suspendue. Pour toute catégorie triangulée $\mathscr T$, le foncteur $\mathscr Hom_S((E,\varepsilon),\mathscr T):\mathscr Hom_S(\mathbf Z\mathscr C,\mathscr T)\to\mathscr Hom_S(\mathscr C,\mathscr T)$ est une équivalence. Si $\mathscr T$ est tendue, le foncteur induit de $\mathscr Hom_t(\mathbf Z\mathscr C,\mathscr T)$ dans $\mathscr Hom_S(\mathscr C,\mathscr T)$ est un isomorphisme.

2.3. Exemple. - 1.5 et 2.2 fournissent des S-foncteurs

$$\mathscr{H}_{b}^{+}(\mathscr{I}) \overset{F}{\leftarrow} \mathbb{Z} \mathscr{H}_{\leq 0}^{+}(\mathscr{I}) \overset{\mathbb{Z}\mathbb{Z}^{0}}{\rightarrow} \mathbb{Z} \overline{\mathscr{E}}.$$

Si F est un quasi-inverse de F et $G = (ZZ^0)F$, on a $GX \cong_n Z^nX$ lorsque n est grand.

Il s'ensuit que $\mathcal{H}_b^+(\mathcal{I})/\mathcal{H}^b(\mathcal{I}) \stackrel{\sim}{\to} \mathbf{Z} \overline{\mathcal{E}}$, où $\mathcal{H}^b(\mathcal{I})$ est formée des complexes bornés. Si \mathcal{E} est frobeniusienne et que E^- est un quasi-inverse de E, on posera $\mathbf{Z} = E^- G \colon \mathcal{H}_b^+(\mathcal{I}) \to \overline{\mathcal{E}}$.

3. APPLICATIONS. -3.1. Soient A une algèbre de dimension finie sur un corps k, \mathcal{M}_A la catégorie des A-modules à droite, $v: \mathcal{M}_A \to \mathcal{M}_A$ le foncteur de Nakayama $? \bigotimes_A \operatorname{Hom}_k(A, k)$ et \mathscr{E} la catégorie frobeniusienne suivante: Les objets sont les suites $(M_i, m_i)_{i \in \mathbb{Z}}$ de A-modules M_i et d'applications $m_i \in \operatorname{Hom}_A(v M_i, M_{i+1})$ telles que $m_{i+1} \circ v m_i = 0$ pour tout i et $M_i = 0$ pour presque tout i. Un morphisme $(M_i, m_i) \to (N_i, n_i)$ est fourni par une suite de $f_i \in \operatorname{Hom}_A(M_i, N_i)$ telle que $n_i \circ v f_i = f_{i+1} \circ m_i$ pour tout i.

Théorème [3]. — Le foncteur $\mathcal{M}_A \to \overline{\mathcal{E}}$ qui associe à M la suite (M_i, m_i) telle que $M_0 = M$ et $M_i = 0$ pour $i \neq 0$ se prolonge en un S-foncteur pleinement fidèle de $\mathcal{D}^b(\mathcal{M}_A)$ (= la catégorie dérivée des complexes bornés de \mathcal{M}_A) dans $\overline{\mathcal{E}}$. Celui-ci est une S-équivalence si gldim $A < \infty$.

L'essentiel de la démonstration réside dans la construction d'un prolongement, que nous obtenons par composition :

$$\mathcal{D}^b(\mathcal{M}_A) \to \mathcal{H}_b^+(\mathcal{J}_A) \to \mathcal{H}_b^+(\mathcal{E}) \xrightarrow{i} \mathcal{H}_b^+(\mathcal{I}) \xrightarrow{Z} \overline{\mathcal{E}}.$$

Ici \mathscr{J}_A désigne la sous-catégorie pleine de \mathscr{M}_A formée des injectifs, le premier S-foncteur est un quasi-inverse de la S-équivalence canonique, le deuxième est induit par le foncteur $\mathscr{M}_A \to \mathscr{E}$ ci-dessus, i et Z sont définis en 1.6 et 2.3.

3.2. Notons $\mathcal{H}^b(\mathcal{B})$ la sous-catégorie pleine de $\mathcal{H}(\mathcal{B})$ (1.2) formée des complexes bornés et identifions les objets de \mathcal{B} à des complexes concentrés en degré 0.

 $(S^n F_i) f = 0.$

Théorème. — Soient & une catégorie frobeniusienne, $\mathcal B$ une catégorie additive et $F:\mathcal B\to \overline{\mathcal E}$ un foncteur additif tel que

(*)
$$\operatorname{Hom}_{\bar{\mathscr{E}}}(S^n FA, FB) = 0, \quad \forall A, B \in \mathscr{B}, et \forall n > 0.$$

- (a) F se prolonge en un S-foncteur $\tilde{F}: \mathcal{H}^b(\mathcal{B}) \to \overline{\mathcal{E}}$. Pour que \tilde{F} soit pleinement fidèle il faut et il suffit que F le soit et que $Hom_{\tilde{\mathcal{E}}}(FA, S^nFB) = 0$, pour tous A, $B \in \mathcal{B}$ et n > 0.
- (b) Si la catégorie \mathscr{B} est exacte et que l'image de toute suite exacte courte $0 \to A \xrightarrow{e} B \xrightarrow{f} C \to 0$ se laisse insérer dans un triangle $FA \xrightarrow{Fe} FB \xrightarrow{Ff} FC \to SFA$, alors \widetilde{F} se décompose en $\mathscr{H}^b(\mathscr{B}) \xrightarrow{can} \mathscr{D}^b(\mathscr{B}) \xrightarrow{\widehat{F}} \overline{\mathscr{E}}$. Dans ce cas, pour que \widehat{F} soit pleinement fidèle, il faut et il suffit que F le soit et qu'il existe pour tous $A, A' \in \mathscr{B}, n > 0$ et $f \in Hom_{\overline{F}}(FA', S^nFA)$ une suite exacte courte $0 \to A \xrightarrow{f} B \to C \to 0$ de \mathscr{B} vérifiant

Nous exhibons la construction de \widetilde{F} , qui est due à B. Keller (comparer avec [1]); Soient \mathscr{X} et $\overline{\mathscr{X}}$ les sous-catégories pleines de \mathscr{E} et $\overline{\mathscr{E}}$ formées des objets isomorphes dans $\overline{\mathscr{E}}$ aux images de F. Il suffit de trouver un prolongement $\widetilde{I}: \mathscr{H}^b(\overline{\mathscr{X}}) \to \overline{\mathscr{E}}$ de l'inclusion

I: $\overline{\mathcal{X}} \to \overline{\mathcal{E}}$. Or $\mathscr{H}^b(\mathscr{X}) \xrightarrow{\operatorname{can}} \mathscr{H}^b(\overline{\mathscr{X}})$ et la restriction de $Z \circ i$ à $\mathscr{H}^b(\mathscr{X})$ s'annullent sur $\mathscr{H}^b(\mathscr{I})$. On a donc un diagramme commutatif de S-foncteurs:

K est une S-équivalence. On pose $\tilde{I} = HK^-$, K^- étant un quasi-inverse de K.

(¹) Nous remercions P. Gabriel pour ses conseils dans l'élaboration de nos résultats. Note reçue le 18 mai 1987, acceptée le 25 mai 1987.

RÉFÉRENCES BIBLIOGRAPHIQUES

- [1] A. A. BEILINSON, J. BERNSTEIN et P. DELIGNE, Faisceaux pervers, Astérisque, 100, 1982.
- [2] S. I. GELFAND, Fibrés sur P_n et problèmes d'algèbre linéaire, appendice à la traduction russe de Vector bundles on complex projective spaces par C. OKONEK, M. SCHNEIDER et H. SPINDLER, Moscou, Mir, 1984.
 - [3] D. HAPPEL, On the derived category of a finite-dimensional algebra, Comment. Math. Helv. (à paraître).
 - [4] A. Heller, The loop-space functor in homological algebra, Trans. Amer. Math. Soc., 96, 1960, p. 382-394.
- [5] D. QUILLEN, Higher Algebraic K-theory I, Algebraic K-theory I, Lecture Notes in Math., n° 341, Springer, 1973, p. 85-147.
- [6] J.-L. Verdier, Catégories dérivées, état 0, SGA 41/2, Lecture Notes in Math., n° 569, Springer, 1977, p. 262-311.

B. K.: Mathematik, G 28.2, E.T.H.-Zentrum, 8092 Zürich, Suisse;

D. V.: Mathematisches Institut, Universität Zürich, Rämistrasse 74, 8051 Zürich, Suisse.