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Abstract. Using techniques due to Dwyer–Greenlees–Iyengar we construct weight structures
in triangulated categories generated by compact objects. We apply our result to show that,
for a dg category whose homology vanishes in negative degrees and is semi-simple in degree
0, each simple module over the homology lifts to a dg module which is unique up to isomor-
phism in the derived category. This allows us, in certain situations, to deduce the existence
of a canonical t-structure on the perfect derived category of a dg algebra. From this, we can
obtain a bijection between hearts of t-structures and sets of so-called simple-minded objects
for some dg algebras (including Ginzburg algebras associated to quivers with potentials). In
three appendices, we elucidate the relation between Milnor colimits and homotopy colimits and
clarify the construction of t-structures from sets of compact objects in triangulated categories
as well as the construction of a canonical weight structure on the unbonded derived category
of a non positive dg category.
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1. Introduction

Finite-dimensional modules over an associative unital algebra may be described as built up
from simple modules or as presented by projective modules. The interplay between these two
descriptions is at the heart of the interpretation of Koszul duality for dg algebras (and categories)
given in [18], cf. also [12] [13]. However, in order to apply this theory a dg algebra A, we need the
‘simple dg A-modules’ as an additional datum. Clearly, a necessary condition for the existence
of such dg modules is that the homology H∗(A) should be equipped with a suitable set of
graded simple modules. One may ask whether this condition is also sufficient. Now realizing
modules over the homology H∗(A) as homologies of dg modules over A is in general a hard
problem, cf. for example [5]. In this paper, we treat one class of dg algebras where the problem
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of realizing the simple homology modules has a satisfactory solution. We define this class by
merely imposing conditions on the homology H∗(A): It should be concentrated in degrees ≥ 0
and semi-simple in degree 0. Let us point out that if H0(A) is a field, our result follows from
Propositions 3.3 and 3.9 of [13], as kindly explained to us by Srikanth Iyengar [16]. The class
we consider contains the Koszul duals of smooth dg algebras B whose homology is concentrated
in non positive degrees and finite-dimensional in each degree. Important examples of these are
the Ginzburg dg algebras associated to quivers with potential [14] [22]. The proof of our result
is based on the construction of canonical weight structures on suitable triangulated categories
(section 4) in analogy to results obtained by Pauksztello (Theorem 2.4 of [29]). These weight
structures are also useful in a second application, namely the construction of a t-structure on
the perfect derived category of a dg algebra A in our class (section 8). This t-structure has
as its left aisle the closure under extensions, positive shifts and direct summands of the free
module A. Its heart is a length category whose simple objects are the indecomposable factors
of A in perA. Let us point out that the existence of this t-structure also follows from a recent
result by Rickard-Rouquier [30].

As another application, we establish a bijection between families of ‘simple-minded objects’
(a piece of terminology due to J. Rickard and, independently, to König-Liu [23]) and hearts of
t-structures in suitable triangulated categories (section 9). Further applications will be given in
the forthcoming paper [20].

In establishing our main theorem, we need foundational results on the precise link between
Milnor colimits and homotopy colimits (in the sense of derivators) and on the construction
of t-structures from sets of compact objects. We prove these in two appendices. In another
appendix, we prove the existence of a canonical weight structure on the (unbounded) derived
category of a non positive dg category, in analogy with a result by Bondarko [7, §6].

2. Acknowledgments

The authors thank Chris Brav and David Pauksztello for stimulating conversations on the
material of this paper. They are indebted to Srikanth Iyengar for pointing out reference [13]
and explaining how Propositions 3.3 and 3.9 in that paper imply Corollary 5.7 below in the
case where H0A is a field. They are grateful to Dong Yang for his careful reading of the first
version of this article.

3. Terminology and notations

In this article, ‘graded’ will always mean ‘Z-graded’, and ‘small’ will be frequently used to
mean ‘set-indexed’. A length category is an abelian category where each object has finite length.

We write Σ for the shift functor of any triangulated category. Let

L0
f0→ L1

f1→ L2 → . . .

be a sequence of morphisms in a triangulated category D. Its Milnor colimit [26] is an object,
denoted by Mcolimn≥0 Ln, which fits into the Milnor triangle,∐

n≥0 Ln
1−σ //

∐
n≥0 Ln // Mcolimn≥0 Ln // Σ

∐
n≥0 Ln,

where σ is the morphism with components

Ln
fn // Ln+1

can //
∐
n≥0 Ln.

Thus, the Milnor colimit is determined up to a (non unique) isomorphism. The notion of Milnor
colimit has appeared in the literature under the name of homotopy colimit (see [6, Definition
2.1], [27, Definition 1.6.4]). However, Milnor colimits are not functorial and, in general, they
do not take a sequence of triangles to a triangle of D. Thus, we think it is better to keep this
terminology for the notions appearing in the theory of derivators [24, 25, 11]. For a study of
the relationship between Milnor colimits and homotopy colimits see Appendix 2.
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Let

. . .→ L2
f1→ L1

f0→ L0

be a sequence of morphism in a triangulated category D. Its Milnor limit is an object, denoted
by Mlimn≥0 Ln, which fits into the triangle,

Σ−1
∏
n≥0 Ln

// Mlimn≥0 Ln //
∏
n≥0 Ln

1−σ //
∏
n≥0 Ln,

where σ is the morphism with components

Ln
fn−1 // Ln−1

can //
∏
n≥0 Ln

for n 6= 0, and the zero map in the component 0

0 : L0 →
∏
n≥0

Ln.

As in the case of the Milnor colimit, the Milnor limit is determined up to a (non unique)
isomorphism.

If D is a triangulated category and S is a set of objects of D, we denote by thickD(S)
the smallest full subcategory of D containing S and closed under extensions, shifts and direct
summands.

Let k be a field and A a dg k-algebra. We denote the derived category of A by DA, cf.
[18]. The perfect derived category of A, denoted by perA, is thickDA(A). The finite-dimensional
derived category of A, denoted by DfdA, is the full subcategory of DA formed by those dg
modules M whose homology is of finite total dimension:∑

p∈Z
dimkH

p(M) <∞.

4. Weight structures from compact objects

Let us recall the definition of a weight structure from [7] and [29] (it is called co-t-structure
in [29]): A weight structure on a triangulated category T is a pair of full additive subcategories
T >0 and T ≤0 of T such that

w0) both T >0 and T ≤0 are stable under taking direct factors;
w1) the subcategory T >0 is stable under Σ−1 and the subcategory T ≤0 is stable under Σ;
w2) we have T (X,Y ) = 0 for all X in T >0 and all Y in T ≤0;
w3) for each object X of T , there is a truncation triangle

σ>0(X)→ X → σ≤0(X)→ Σσ>0(X)

with σ>0(X) in T >0 and σ≤0(X) in T ≤0.

Notice that the objects σ>0(X) and σ≤0(X) in the truncation triangle are not functorial in X.
The following theorem and its proof are based on Propositions 3.3 and 3.9 of [13]. Compared
to the main result of [28], the theorem has stronger hypotheses: assumption c) is not present
in [loc. cit.]; but it also has a stronger conclusion: the description of the weight structure in
terms of homology.

Theorem 4.1. Suppose that T is a triangulated category with small coproducts and that S ⊂ T
is a full additive subcategory stable under taking direct summands such that

a) S compactly generates T , i.e. the functors T (S, ?) : T → ModZ , S ∈ S, commute with
small coproducts, and if M ∈ T satisfies T (ΣpS,M) = 0 for all p ∈ Z , S ∈ S, then
M = 0;

b) we have T (L,ΣpM) = 0 for all L and M in S and all integers p < 0;
c) the category ModS of additive functors Sop → ModZ is semi-simple.

For X in T and p ∈ Z, we write HpX for the object L 7→ T (L,ΣpX) of ModS. Then we have:
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1) There is a unique weight structure (T >0, T ≤0) on T such that T ≤0 is formed by the
objects X with HpX = 0 for all p > 0 and T >0 is formed by the objects X with
HpX = 0 for all p ≤ 0.

2) For each object X, there is a truncation triangle

(4.1) σ>0(X)→ X → σ≤0(X)→ Σσ>0(X)

such that the morphism X → σ≤0(X) induces an isomorphism in Hp for p ≤ 0 and the
morphism σ>0(X)→ X induces an isomorphism in Hp for p > 0.

Proof. Let Sum(S) be the closure under small coproducts of S in T .
1st step: The functor H0 : Sum(S) → ModS is an equivalence. Indeed, this functor is fully

faithful because the objects of S are compact in T . It is an equivalence because ModS is
semi-simple and S stable under direct factors.

2nd step: For each object X of T and each integer m, there is a morphism Vm(X)→ X such
that Vm(X) belongs to Σ−mSum(S) and the induced map

Hm(Vm(X))→ HmX

is an isomorphism. Indeed, by the first step, the module HmX is isomorphic to Hm(Vm(X))
for some Vm(X) lying in Σ−mSum(S).

3rd step: For each object X of T , there is a triangle

V (X)→ X → C(X)→ ΣV (X)

such that V (X) is a sum of objects ΣpL, where L ∈ S and p < 0, the map

HpX → Hp(C(X))

is bijective for all p ≤ 0, and the map

Hp(V (X))→ HpX

is surjective for all p > 1. Indeed, we define

V (X) =
∐
m>0

Vm(X)

and C(X) to be the cone over the natural morphism V (X) → X. Then we obtain the claim
because the functors Hp commute with coproducts, the HpM vanishes for all M ∈ S and all
p < 0 and the morphism V (X)→ X induces an isomorphism

H1(V (X))→ H1X.

4th step: For each object X of T , there is a triangle

σ>0(X)→ X → σ≤0X → Σσ>0(X)

such that σ>0(X) lies in T >0 and σ≤0X lies in T ≤0. We iterate the construction of the third
step to obtain a direct system

X → C(X)→ C2(X)→ · · · → Cp(X)→ · · ·
and define

σ≤0(X) = McolimCp(X).

We define σ>0(X) by the above triangle. The compactness of the objects of S in T implies that
each functor Hn, n ∈ Z, takes Milnor colimits to colimits in ModS. Let us show that σ≤0(X)
belongs to T ≤0. Indeed, for n > 0, by construction, the morphisms Cp(X)→ Cp+1(X) induce
the zero map in Hn. Thus, the module

Hn(σ≤0(X)) = Hn(McolimCp(X)) = colimHn(Cp(X))

vanishes for n > 0. Let us show that σ>0(X) belongs to T >0. Indeed, by induction on p, we
see that the object Kp(X) defined by the triangle

Kp(X)→ X → Cp(X)→ ΣKp(X)
4



belongs to T >0. By considering the exact sequence

Hn−1X → Hn−1(Cp(X))→ Hn(Kp(X))→ HnX → Hn(Cp(X))

we see that for each n ≤ 0, the morphism

Hn−1X → Hn−1(Cp(X))

is surjective and the morphism

HnX → Hn(Cp(X))

is injective. By passing to the colimit over p, we obtain that for each n ≤ 0, the morphism

Hn−1X → Hn−1(σ≥0(X))

is surjective and the morphism

HnX → Hn(σ≥0(X))

is injective. By the exact sequence

Hn−1X → Hn−1(σ≥0(X))→ Hn(σ>0(X))→ HnX → Hn(σ≥0(X))

associated with the truncation triangle, this implies that for each n ≤ 0, the moduleHn(σ>0(X))
vanishes.

5th step: For each object X of T and each n ≤ 0, the map HnX → Hn(σ≤0(X)) is an
isomorphism and for n > 0, the map Hn(σ>0(X)) → HnX is an isomorphism. Indeed, the
first claim follows from the fact that X → Cp(X) induces an isomorphism in Hn for all n ≤ 0,
which we obtain by induction from the third step. For the second claim, we consider the exact
sequence

Hn−1X → Hn−1(σ≤0(X))→ Hn(σ>0(X))→ HnX → Hn(σ≤0(X)).

For n = 1, the first map is an isomorphism and the last term vanishes; for n ≥ 2, the second
and the last term vanish.

6th step: If X is an object of T and Y an object of T ≤0, each morphism X → Y factors
through X → σ≤0(X). Indeed, since V (X) is a coproduct of objects Σ−mL, m > 0, L ∈ S, by
the triangle

V (X)→ X → C(X)→ ΣV (X) ,

the given morphism factors through C(X). By induction, one constructs a compatible system
of factorizations

X // Cp(X)
fp // Y.

This system lifts to a factorization X → Mcolim(Cp(X)) → Y , which proves the claim since
σ≥0(X) = Mcolim(Cp(X)).

7th step: For X ∈ T >0 and Y ∈ T≤0, we have T (X,Y ) = 0. Indeed, let f : X → Y be
a morphism. By the 6th step, it factors through X → σ≤0(X). We claim that Z = σ≤0(X)
vanishes. Indeed, by the 4th step, we have HnZ = 0 for n > 0 and by the 5th step, we have
HnZ = 0 for n ≤ 0 since HnX vanishes for n ≤ 0.

8th step: the conclusion. Axioms w0) and w1) are clear, axiom w2) has been shown in the
7th step and axiom w3) in the 4th step. Claim b) has been shown in the 5th step.

√

Although the assignment X 7→ σ≤0X in part 2) of Theorem 4.1 is not uniquely defined up to
isomorphism and it is not functorial, we have the following useful result:

Lemma 4.2. In the situation of Theorem 4.1, we have:

1) σ≤0(X ⊕ Y ) = σ≤0(X)⊕ σ≤0(Y ),
2) σ≤0(ΣpX) = Σpσ≤0(X).
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5. Positive dg algebras

Corollary 5.1. Let k be a commutative associative ring with unit. Let A be a small dg k-linear
category such that:

a) HpA vanishes for p < 0,
b) ModH0(A) is a semisimple abelian category.

Then we have:

1) There exists a weight structure w = ((DA)w>0, (DA)w≤0) on DA such that (DA)w>0 is
formed by those modules X such that HpX = 0 for p ≤ 0 and (DA)w≤0 is formed by
those modules X such that HpX = 0 for p > 0.

2) For each module X there exists a truncation triangle

σ>0(X)→ X → σ≤0(X)→ Σσ>0(X)

such that the morphism X → σ≤0(X) induces an isomorphism in Hp for p ≤ 0 and the
morphism σ>0(X)→ X induces an isomorphism in Hp for p > 0.

Proof. We apply Theorem 4.1 by taking T = DA and S to be the full subcategory of DA formed
by the direct summands of finite direct sums of modules of the form A∧ = A(?, A) where A is an
object of A. Thanks to [18] we know that D is compactly generated by S and that condition a)
implies HomDA(L,ΣpM) = 0 for all L and M in S and all integers p < 0. After restricting
scalars along the functor H0A → S we get an equivalence

ModH0(A)
∼→ ModS.

Thus, condition b) implies that ModS is semisimple.
√

Non-example 5.2. If H0A is not semisimple we do not have a triangle as the one in part 2)
of Corollary 5.1. We can take, for example, the algebra of dual numbers A = k[ε] with ε2 = 0
over field k and consider the complex M equal to the cone over the map ε : A → A. Let S be
the simple A-module. If there was a triangle

σ≥0(M)→M → σ<0(M)→ Σσ≥0(M),

the object σ≥0(M) would have to be isomorphic to S and the object σ<0(M) to ΣS (because
the homology of M is concentrated in degrees 0 and −1 and isomorphic to S in both degrees).
Then the connecting morphism

σ<0(M)→ Σσ≥0(M)

would be a morphism ΣS → ΣS and thus would have to be 0 or an isomorphism. In the first
case, we find that M is decomposable, a contradiction, and in the second case, we find that M
is a zero object, a contradiction as well.

Notation 5.3. In analogy with the case of t-structures, we say that the weight structure of
the Corollary 5.1 is the canonical weight structure. If A is in fact a dg algebra A, we write
SA = σ≤0A.

Lemma 5.4. Let A be an arbitrary dg algebra. If M ∈ DA and P is a direct summand of a
small coproduct of copies of A, then the morphism of k-modules induced by H0

HomDA(P,M)→ HomH0A(H0P,H0M)

is an isomorphism.

Proof. The full subcategory of DA formed by the objects P satisfying the assertion contains A
and is closed under small coproducts and direct summands.

√

Lemma 5.5. Let A be a dg algebra such that in ModH0(A), the module H0A admits a finite
decomposition into indecomposables (e.g. H0A is semisimple). There exists a decomposition into
indecomposables A =

⊕r
i=1Ai of A in DA such that H0A =

⊕r
i=1H

0(Ai) is a decomposition
into indecomposables of H0A in ModH0(A).
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Proof. A decomposition of H0A into indecomposables in the category of H0A-modules gives us
a complete family {e′1, . . . , e′r} of primitive orthogonal idempotents of the ring EndH0A(H0A).
Now, by using the ring isomorphism

H0 : EndDA(A)
∼→ EndH0A(H0A)

we find a complete family {e1, . . . , er} of primitive orthogonal idempotents of the ring EndDA(A).
Since idempotents split in DA, each ei has an image Ai in DA and we obtain that A =

⊕r
i=1Ai

is a decomposition of A into indecomposables in DA.
√

Proposition 5.6. Let A be a dg algebra with homology concentrated in non negative degrees
and such that H0A is a semi-simple ring.

1) Let X be an object of DA with bounded homology and such that each HnX , n ∈ Z, is
a finitely generated H0A-module. If p ∈ Z is an integer such that HnX = 0 for n > p
and HpX 6= 0, then X belongs to the smallest full subcategory susp⊕(Σ−pSA) of DA
containing Σ−pSA and closed under extensions, positive shifts and direct summands.

2) Assume that each HnA, n ∈ Z, is a finitely generated H0A-module. Then if M ∈ perA,
for any truncation triangle

σ>p(M)→M → σ≤p(M)→ Σσ>p(M)

we have σ≤pM ∈ susp⊕(Σ−pSA).

Proof. 1) We will use induction on the width of the interval delimited by those degrees with
non-vanishing homology. By Lemmas 5.4 and 5.5, there are direct summands A1 , . . . , Ar of
A in DA, natural numbers n1 , . . . , nr, and a morphism f :

⊕r
i=1 Σ−pAni

i → X in DA such
that Hpf is an isomorphism in ModH0A. Consider truncation triangles

σ>0(Ai)→ Ai → σ≤0(Ai)→ Σσ>0(Ai),

as the ones in part b) of Theorem 4.1. After Lemma 4.2 we know that the objects σ≤0Ai can be
taken to be direct summands of SA in DA. In particular, the Σ−pAi are objects of susp⊕(SA).
Now notice that X ∈ (DA)w≤p, and so it is right orthogonal to the objects of the wing (DA)w>p.
Hence the morphism f factors through the morphism

⊕r
i=1 Σ−pAni

i →
⊕r

i=1 Σ−pσ≤0(Ai)
ni :⊕r

i=1 Σ−pσ>0(Ai)
ni //

0
))SSSSSSSSSSSSSSSSS

⊕r
i=1 Σ−pAni

i
//

f

��

⊕r
i=1 Σ−pσ≤0(Ai)

ni //

f̃
uu

⊕r
i=1 Σ−p+1σ>0(Ai)

ni

X

Since Hp(f̃) is an isomorphism, for the mapping cone X ′ of f̃ the width of the interval delimited
by those degrees with non-vanishing homology is strictly smaller than that ofX, andHn(X ′) = 0
for n > p − 1. By induction hypothesis we get X ′ ∈ susp⊕(Σ−p+1SA), which implies that
X ∈ susp(Σ−pSA).

2) Since A has homology concentrated in non negative degrees, then M ∈ D+A. Therefore,
X = σ≤pM has bounded homology. Note that the hypothesis implies that each HnM , n ∈ Z,
is finitely generated as a module over H0A. This implies that each HnX , n ∈ Z, is finitely
generated as a module over H0A. Now we can use part 1) of the proposition.

√

Corollary 5.7. Let k be a commutative associative ring with unit. Let A be a dg k-algebra such
that:

a) HpA vanishes for p < 0,
b) ModH0(A) is a semisimple abelian category.

Then for each graded simple module S over the graded ring H∗A, there is a dg A-module S̃,

unique up to isomorphism in the derived category DA, such that the graded H∗A-module H∗(S̃)
is isomorphic to S.
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Proof. First step: The graded simple modules over H∗A are precisely the simple modules over
H0A, regarded as graded H∗A-modules (concentrated in degree 0) by restricting scalars along
H∗A→ H0A. Clearly, simple H0A-modules become simple graded H∗A-modules. Conversely,
if S is a graded simple H∗A-module, then it has to be concentrated in degree 0. This implies
that it is killed by

⊕
p>0H

pA. In other words, it is a (necessarily simple) H0A-module.

Second step: There exists a decomposition into indecomposables A =
⊕r

i=1Ai of A in DA
such that H0A =

⊕r
i=1H

0(Ai) is a decomposition into simples of H0A in ModH0(A). This is
Lemma 5.5.

Third step: the graded H∗A-modules H∗(σ≤0Ai) , 1 ≤ i ≤ r, are graded simple H∗A-modules,
and every graded simple H∗A-module is of this form. Thanks to the first step, it suffices to
prove that Hp(σ≤0Ai) = 0 for p 6= 0, and that with H0(σ≤0Ai) , 1 ≤ i ≤ r, we get all the
simple H0A-modules. This follows from the particular properties of the weight structure we are
considering.

Fourth step: if S̃ ∈ DA is a module such that H∗(S̃) is a graded H∗A-module isomorphic

to H∗(σ≤0Ai) for some 1 ≤ i ≤ r, then S̃ is isomorphic to σ≤0(Ai) in DA. Indeed, the proof

of part 1 of Proposition 5.6 can be used to show that the map f̃ : σ≤0(Ai) → S̃ there is an
isomorphism.

√

Remark 5.8. The result above remains valid for small dg categories A such that HpA = 0 for
p < 0 and ModH0(A) is semi-simple and each simple is compact.

6. The Koszul dual

Throughout this section A will be a dg algebra with homology concentrated in non negative
degrees and such that H0A is a semi-simple ring. Recall from Notation 5.3 that SA = σ≤0(A).

Notation 6.1. We write B = REnd(SA). It should be thought thought of as the ‘Koszul dual’
of A.

Lemma 6.2. B has homology concentrated in non positive degrees.

Proof. We have to prove that

Hp RHom(SA, SA) = HomDA(SA,Σ
pSA) = 0

for p > 0. After applying HomDA(?,ΣpSA) to the triangle

σ>0(A)→ A→ SA → Σσ>0(A)

we get the exact sequence

Hom(σ>0(A),Σp−1SA)→ Hom(SA,Σ
pSA)→ Hp(SA).

Of course, Hp(SA) = 0 for p > 0. On the other hand, by definition of weight structure we have

Hom(σ>0(A),Σp−1SA) = 0

for p > 0.
√

Lemma 6.3. 1) For each X ∈ DA we have X ∼= Mlimp≥0 σ≤pX.
2) For every pair of objects X and Y of DA we have

Hom(X,Y ) = limq colimpHom(σ≤pX,σ≤qY ).

Proof. 1) Given X ∈ DA we can form triangles

σ>0(X)→ X → σ≤0(X)→ Σσ>0(X),

σ>1(σ>0X)→ σ>0X → σ≤1(σ>0X)→ Σσ>1(σ>0X),

. . .
8



Thanks to statement (2) of Theorem 4.1, we can take all these triangles so that the maps induce
isomorphisms at the level of convenient homologies. Using the octahedron axiom of triangulated
categories we prove that in the triangle

σ>1σ>0X → X → C → Σσ>1σ>0X,

over the composition

σ>1(σ>0X)→ σ>0(X)→ X,

the object C belongs to (DA)w≤1. Thus

σ>1σ>0X → X → C → Σσ>1σ>0X

is the truncation triangle corresponding to the weight structure ((DA)w≤1, (DA)w≥1), and we
can write C = σ≤1(X) and σ>1(σ>0)X = σ>1(X). Moreover, we still have an isomorphism

HpX
∼→ Hp(σ≤1X)

for p ≤ 1. Indeed, for p ≤ 0 we have the following diagram with exact rows

0 // HpX //

��

Hp(σ≤0X) // Hp+1(σ>0X)

o
��

0 // Hp(σ≤1X) // Hp(σ≤0X) // Hp+1(σ≤1σ>0X),

and for p = 1 we have the following diagram with exact rows

H1(σ>1X) // H1(σ>0X) //

o
��

H1(σ≤1σ>0X) //

��

H2(σ>1X) // H2(σ>0X)

o
��

H1(σ>1X) // H1X // H1(σ≤1X) // H2(σ>1X) // H2X,

which implies that H1(σ≤1σ>0X)→ H1(σ≤1X) is an isomorphism, and so from the square

H1(σ>0X)
∼ //

o
��

H1(σ≤1σ>0X)

o
��

H1X // H1(σ≤1X)

we deduce that H1X → H1(σ≤1X) is an isomorphism.
Repeating this construction we get a commutative diagram

. . . // σ≤2X // σ≤1X // σ≤0X

. . . // X

g2

OO

X

g1

OO

X

g0

OO

. . . // σ>2X //

OO

σ>1X //

OO

σ>0X

OO

where the morphisms Hn(gp) : HnX → Hn(σ≤pX) are isomorphisms for n ≤ p. Consider now
the induced map

X → Mlimp≥0 σ≤pX.

For each n ∈ Z we get a map

HnX → Hn(Mlimp≥0 σ≤pX) = limp≥0H
n(σ≤pX)

9



induced by
. . . // Hn(σ≤2X) // Hn(σ≤1X) // Hn(σ≤0X)

. . . // HnX

Hng2

OO

HnX

Hng1

OO

HnX

Hng0

OO

. . . // Hn(σ>2X) //

OO

Hn(σ>1X) //

OO

Hn(σ>0X)

OO

For each n ∈ Z, almost every map Hn(gp) is an isomorphism, and so the map HnX →
Hn(Mlimp≥0 σ≤pX) is an isomorphism.

2) Given X , Y ∈ DA, we have Y = Mlimq≥0 σ≤qY , and so

Hom(X,Y ) = Hom(X,Mlimq σ≤qY ) = limq Hom(X,σ≤qY ).

After applying Hom(?, σ≤qY ) to the commutative diagram (see the proof of part 1))

. . . // Σσ>2X // Σσ>1X // Σσ>0X

. . . // σ≤2X //

OO

σ≤1X //

OO

σ≤0X

OO

. . . // X

OO

X

OO

X

OO

. . . // σ>2X //

OO

σ>1X //

OO

σ>0X

OO

we get the commutative diagram

Hom(Σσ>0X,σ≤qY ) //

��

Hom(Σσ>1X,σ≤qY ) //

��

Hom(Σσ>2X,σ≤qY ) //

��

. . .

Hom(σ≤0X,σ≤qY )

��

// Hom(σ≤1X,σ≤qY )

��

// Hom(σ≤2X,σ≤qY )

��

// . . .

Hom(X,σ≤qY )

��

Hom(X,σ≤qY )

��

Hom(X,σ≤qY )

��

. . .

Hom(σ>0X,σ≤qY ) // Hom(σ>1X,σ≤qY ) // Hom(σ>2X,σ≤qY ) // . . .

For p� 0 we have Hom(σ>pX,σ≤qY ) = 0 = Hom(Σσ>pX,σ≤qY ), and so the map Hom(σ≤pX,σ≤qY )→
Hom(X,σ≤qY ) is an isomorphism. Hence,

Hom(X,Y ) = limq≥0 Hom(X,σ≤qY ) = limq≥0 colimp≥0 Hom(σ≤pX,σ≤qY ).
√

Proposition 6.4. Assume that each HpA , p ∈ Z, is a finitely generated H0A-module. Then
the functor

RHom(?, SA) : (perA)op → D(Bop),

which has its image in D−(Bop), is fully faithful.

Proof. For the first claim it suffices to notice that

HomDA(Σ−pX,σ≤0A) = 0

for X ∈ perA and p� 0, since every object in perA has left bounded homology.
We prove the second claim in several steps.

10



First step: The functor RHom(?, SA) : thick(SA)op → D(Bop) is fully faithful. Indeed, we can
do finite dévissage using the fact that the map

RHom(?, SA) : HomDA(SA, SA)→ HomD(Bop)(B,B)

is an isomorphism.
Second step: preservation of truncation of perfect objects. Here we will use both the weight

structure on DA (see Corollary 5.1) and the canonical weight structure on D(Bop) (see Appen-
dix 1). The truncation triangle for A corresponding to the weight structure of Corollary 5.1
is

σ>0(A)→ A→ SA → Σσ>0(A).

After applying RHom(?, SA) and rotating we gt the triangle

B → RHom(A,SA)→ RHom(σ>0A,SA)→ RHom(SA,ΣSA),

where B ∈ D−(Bop)w≥0 and RHom(σ>0A,SA) ∈ D−(Bop)w<0. If X is an arbitrary perfect
module, then one can prove that RHom(σ≤pX,SA) belongs to D−(Bop)w≥−p by using part 2)
of Proposition 5.6 together with Remark 10.1, and one can prove that RHom(σ>pX,SA) ∈
D−(Bop)w<p by using the orthogonality property of weight structures.

Third step: the claim. Put F = RHom(?, SA). Let X and Y be two objects of perA. Thanks
to Lemma 6.3, Theorem 10.2, step 2 and step 1 of this proof, and Proposition 5.6, we have the
following commutative diagram

Hom(X,Y ) // Hom(FY, FX)

limq colimpHom(σ≥−qFY, σ≥−pFX)

limq colimpHom(σ≤pX,σ≤qY )
∼ // limq colimpHom(Fσ≤qY, Fσ≤pX)

√

7. Reminder on t-structures

A t-structure [3] on a triangulated category D is a pair t = (D≤0,D≥0) of strictly full trian-
gulated subcategories of D such that:

1) D≤0 is closed under Σ and D≥0 is closed under Σ−1,
2) HomD(M,Σ−1N) = 0 for each M ∈ D≤0 and N ∈ D≥0,
3) for each M ∈ D there exists a triangle in D

M≤0 →M →M≥1 → ΣM≤0,

with M≤0 ∈ D≤0 and Σ(M≥1) ∈ D≥0.

It is easy to prove that each one of the two subcategories completely determines the other
one in the following sense: an object N ∈ D belongs to D≥0 (resp. D≤0) if and only if we have

HomD(M,Σ−1N) = 0

for each M ∈ D≤0 (resp. for each N ∈ D≥0).
It is also easy to prove that the triangle above is unique up to a unique isomorphism extending

the identity morphism 1M . Hence, for each M ∈ D we can make choices of the objects M≤0

and M≥1 so that the map M 7→M≤0 underlies a functor (?)≤0 : D → D≤0 right adjoint to the
inclusion, and the map M 7→ Σ((Σ−1M)≥1) underlies a functor (?)≥0 : D → D≥0 left adjoint to
the inclusion.

The heart of t is the full subcategory H(t) of D formed by those objects which are in D≤0

and also in D≥0. It is an abelian category, and the functor

H0 : D → H(t) , M 7→ (M≤0)≥0,
11



which is said to be the 0th homology functor of t, is homological, i.e. takes triangles to long
exact sequences.

A t-structure t = (D≤0,D≥0) is non degenerate if we have⋂
n∈Z

ΣnD≤0 = {0} =
⋂
n∈Z

ΣnD≥0.

This property implies that an object M of D:

- vanishes if and only if H0(ΣnM) = 0 for each n ∈ Z,
- belongs to D≤0 if and only if H0(ΣnM) = 0 for n > 0,
- belongs to D≥0 if and only if H0(ΣnM) = 0 for n < 0.

The t-structure t is bounded if we have:⋃
n∈Z

ΣnD≤0 = D =
⋃
n∈Z

ΣnD≥0.

Note that any bounded t-structure t is non degenerate. Indeed, if t is bounded, any object M
is a finite extension of shifts of objects of the form H0(ΣnM) , n ∈ Z. But if M ∈

⋂
n∈Z ΣnD≤0

or M ∈
⋂
n∈Z ΣnD≥0, then we have H0(ΣnM) = 0 for each n ∈ Z.

A left aisle (resp. right aisle) in a triangulated category D is a full subcategory U containing
a zero object 0 of D, closed under Σ (resp. Σ−1), closed under extensions, and such that the
inclusion functor U → D admits a right (resp. left) adjoint. We have already mentioned that
if t = (D≤0,D≥0) is a t-structure on D, then D≤0 is a left aisle in D and D≥0 is a right aisle
in D. Moreover, it is proved in [21, §1] that the map (D≤0,D≥0) 7→ D≤0 underlies a bijection
between the set of t-structures on D and the set of left aisles in D, and similarly for right aisles.
We will refer to D≤0 (resp. D≥0) as the left (resp. right) aisle of t.

Example 7.1. It is shown in Appendix 3 that if A is a dg algebra, there exists a t-structure
tA on its unbounded derived category DA such that D≥0 is formed by those modules whose
ordinary homology is concentrated in non negative degrees, and D≤0 is formed by those modules
M which fit into a triangles ∐

i≥0

Li →
∐
i≥0

Li →M → Σ
∐
i≥0

Li ,

where Li is an i-fold extension of small coproducts of non negative shifts of A. Therefore, if
A has homology concentrated in non positive degrees, it is not difficult to prove that D≤0 is
formed by those modules whose ordinary homology is concentrated in non positive degrees.
In this case, if we assume moreover, as we may, that the components of A vanish in strictly
positive degrees, the functors (?)≤0 and (?)≥0 are given by the usual intelligent truncations, and
the associated 0th homology functor gives the ordinary homology in degree 0. Therefore, we
say that the t-structure tA is the canonical one. It is a non degenerate t-structure, whose heart
is equivalent to the category of unital right modules over the ring H0(A):

H0 : H(tA)
∼→ ModH0(A)

(see for example [22, Lemma 5.2.b)]).
Assume now that A is a dg algebra over a field k, and let us consider the finite-dimensional

derived category DfdA (see § 3). The canonical t-structure on DA restricts to a bounded t-

structure tfdA on DfdA, whose heart is equivalent to the category of finite-dimensional unital
right modules over the k-algebra H0(A):

H0 : H(tfdA )
∼→ modH0(A).

In particular, H(tfdA ) is a length category. If, moreover, H0(A) is finite-dimensional, then H(tfdA )
has a finite number of isoclasses of simple objects.
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8. Application to the construction of t-structures

Theorem 8.1. Let k be a commutative associative ring with unit, and let A be a dg k-algebra
such that:

a) HpA = 0 for p < 0,
b) H0A is a semi-simple k-algebra, and
c) each HpA , p ∈ Z, is a finitely generated H0A-module.

Then the perfect derived category perA admits a bounded t-structure whose left (resp. right)
aisle is the smallest full subcategory containing A and closed under extensions, positive (resp.
negative) shifts and direct summands. Its heart is a length category whose simple objects are
the indecomposable direct summands of A in perA.

Remark 8.2. Suppose k is a field and H0A is isomorphic to a product of copies of k. Then
the theorem follows from Proposition 3.4 of Rickard-Rouquier’s [30] applied to the triangulated
category T = perA and to the set S formed by a system of representatives of the indecomposable
direct factors of A in perA.

Proof. Consider the functor RHom(?, SA) : (DA)op → D(Bop). Thanks to Proposition 6.4,
we know its restriction to (perA)op is fully faithful. Notice that the obvious morphism of dg
algebras B → H0B (using the intelligent truncation) and the isomorphism of ordinary algebras
H0B → H0A allow us to regard H0A as a dg B-module. Moreover, we have isomorphisms

RHom(A,SA)
∼→ SA

∼←H0A

compatible with the structure of left dg B-modules of RHom(A,SA) and H0A. Thus

RHom(?, SA) : (perA)op ∼→ thickD(Bop)(H
0A)

is an equivalence. The picture of the situation is the following:

(DA)op

RHom(?,SA)

��

(perA)op

o
��

_?
oo

D(Bop) thick(H0A)_?
oo

Let us consider a full subcategory A of the heart H of the canonical t-structure on D(Bop)
formed by those objects with a finite composition series in which the composition factors are
direct summands of H0A. It is not difficult to prove that thick(H0A) is precisely the full
subcategory T of D(Bop) formed by those modules M such that HpM = 0 for almos every
p ∈ Z and HpM ∈ A for each p ∈ Z. With this description it is easy to check that the canonical
t-structure restricts to a t-structure on T whose heart is A. The simple objects of this heart
are given by the simple H0A-modules, i.e. the indecomposable direct summands of H0A, which
corresponds bijectively to the indecomposable direct summands of A.

√

A triangulated category can be recovered from the heart of a bounded t-structure by closing
under extensions and shifts. Taking this into account, we have:

Corollary 8.3. Let A be as in Theorem 8.1. Then perA is the smallest full triangulated
subcategory of DA closed under extensions, shifts and containing the indecomposable direct
summands of A .

Remark 8.4. Notice that the simple objects of the heart are also in bijection with the simple
modules over H0(A).

Corollary 8.5. Let A be an algebra as in Theorem 8.1. If we assume moreover that A is formal,
then per(H∗A) admits a canonical t-structure whose left (resp. right) aisle is the smallest full
subcategory containing H∗A and closed under extensions, positive (resp. negative) shifts and
direct summands. Its heart is a length category whose simples are the indecomposable direct
summands of H∗A in per(H∗A).
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Remark 8.6. Theorem 8.1 should be compared with a result by O. Schnürer [32] which states
the existence of a canonical t-structure on the perfect derived category of a dg algebra B posi-
tively graded, with B0 semi-simple and whose differential vanishes on B0. The main motivation
for Schnürer’s theorem was to prove that certain categories of sheaves, endowed with a perverse
t-structure, are t-equivalent to the perfect derived category of a certain dg algebra B endowed
with a canonical t-structure (see [31]). In practice, B is the homology algebra H∗A of a formal
dg algebra A satisfying conditions of Theorem 8.1, and so the existence of a canonical t-structure
on perB follows from Theorem 8.1 and Corollary 8.5.

Example 8.7. Let A be a dg algebra over a field k such that in each degree its homology is
of finite dimension and vanishes for large degrees. Let S1 , . . . , Sr, be a family of perfect
A-modules such that:

a) HomDA(Si, Sj) =

{
0 if i 6= j,

k · 1Si if i = j.

b) HomDA(Si,Σ
pSj) = 0 for each p < 0.

Then the derived endomorphism dg algebra B = REndA(
⊕r

i=1 Si) satisfies the conditions of
Theorem 8.1. Indeed, the homology groups of B vanish in degrees < 0 by condition b) and they
are finite-dimensional and vanish in degrees � 0 because the Si are perfect.

Non-example 8.8. Here we show that condition b) of our theorem is not redundant. Indeed,
let A be a finite-dimensional algebra of infinite global dimension over a field k. We will show
that perA does not admit a canonical t-structure. Indeed, assume perA admits a t-structure
t such that per(A)t≤0 is the smallest full subcategory of perA containing A and closed under
extensions, shifts and direct summands. Then, by dévissage, we deduce that per(A)t≥0 is the
full subcategory of perA formed by those objects with ordinary homology concentrated in non
negative degrees. On the other hand, it is clear that the objects of per(A)t≤0 have ordinary
homology concentrated in non positive degrees. Thus, if P belongs to perA, then in the triangle

P t≤0 → P → P t≥1 → Σ(P t≤0) ,

the object P t≤0 only has homology in non positive degrees and the object P t≥1 only has homol-
ogy in strictly positive degrees. Therefore, this is the triangle for the natural t-structure and
so the truncation functors of the given t-structure t on perA coincide with those of the natural
t-structure. It follows that perA is stable under the natural truncation functor P 7→ τ≥0P . This
is a contradiction since we may take P = (P1 → P0) to be the beginning of a projective resolu-
tion of an A-module of infinite projective dimension. Thus, perA does not admit a canonical
t-structure.

9. Application to hearts and simple-minded objects

Let k be an algebraically closed field, and let A be a dg k-algebra such that:

1) in each degree its homology is of finite dimension,
2) its homology vanishes for large degrees,
3) A is homologically smooth, i.e. A is a compact object of the unbounded derived category

of dg A-A-bimodules.

Remark 9.1. Note that these conditions are invariant under derived Morita equivalence. The
reader can find the proof of the invariance of condition 3) in [33, Lemma 2.6].

Example 9.2. Let A be an ordinary finite-dimensional algebra over a perfect field k. Then
A is homologically smooth if and only if it has finite global dimension. That the finiteness of
the global dimension is necessary already appeared in Cartan-Eilenberg’s book [9, Proposition
IX.7.6]. That it is a sufficient condition can be proved by using, for example, the ideas of the
proof of [15, Lemma 1.5].
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Example 9.3. We can also take A to be the non complete Ginzburg dg algebra associated to
a Jacobi-finite quiver with potential [14] [22]. The fact that in this case A satisfies condition 3)
has been proved in [17]. That condition 1) also holds has been proved in [2].

Following Rickard (unpublished) and Koenig-Liu [23], we define a family of simple-minded
objects to be a finite family S1 , . . . , Sr of objects of DfdA such that:

a) HomDA(Si, Sj) =

{
0 if i 6= j,

k · 1Si if i = j.

b) HomDA(Si,Σ
tSj) = 0 for each t < 0.

c) DfdA is the smallest full triangulated subcategory ofDA containing the objects S1, . . . , Sr.

Example 9.4. Let t be a bounded t-structure on DfdA whose heart H(t) is a length category
with a finite number of isoclasses of simple objects. Then we can take S1 , . . . , Sr to be a
family of representatives of those isoclasses.

Two families S1 , . . . , Sr and S′1 , . . . , S
′
r′ of simple-minded objects of DfdA are equivalent

if they have the same closure under extensions.

Corollary 9.5. Taking representatives of the isoclasses of the simple objects of the heart yields
a bijection between:

1) Bounded t-structrures on DfdA whose heart is a length category with a finite number of
isoclasses of simple objects.

2) Equivalence classes of families of simple-minded objects of Dfd(A).

Proof. First step: from t-structures to simple-minded objects. We have already observed in
Example 9.4 that, from such a t-structure on DfdA, one gets a family of simple-minded objects
of DfdA by considering the simples of the corresponding heart.

Second step: from simple-minded objects to t-structures. Conversely, let S1 , . . . , Sr be a
family of simple-minded objects of DfdA. Put S =

⊕r
i=1 Si and B = REndA(S). The adjoint

pair

DA
RHomA(S,?)

��
DB

?⊗L
BS

OO

induces mutually quasi-inverse triangle functors

DfdA

RHomA(S,?)

��
perB.

?⊗L
BS

OO

Under these equivalences, the objects Si correspond to the indecomposable direct summands of
B in perB. As noticed in Example 8.7, B satisfies the hypothesis of Theorem 8.1. Therefore,
there exists a bounded t-structure on perB whose heart is a length category such that the
indecomposable direct summands of B in perB are the representatives of the isoclasses of
the simple objects. This t-structure is mapped by ? ⊗L

B S to a bounded t-structure on DfdA
whose heart is a length category such that the simple-minded objects we started with are the
representatives of the isoclasses of the simple objects.

Third step: the bijection. By using that a bounded t-structure is completely determined
by its heart (see for example [8, Lemma 2.3]) it is easy to check that steps 1 and 2 define a
bijection.

√

Corollary 9.6. S1 , . . . , Sr and S′1 , . . . , S
′
r′ are two equivalent families of simple-minded

objects of DfdA if and only if r = r′ and, up to reordering, Si ∼= S′i.

Proof. After Corollary 9.5, two equivalent families of simple-minded objects are families of
representatives of the isoclasses of the simple modules of the same length category.

√
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10. Appendix 1: A weight structure for negative dg algebras

Let B be a dg algebra with homology concentrated in non positive degrees. Consider the
following full subcategories of DB:

• Dw≤0, formed by those modules with homology concentrated in non positive degrees,
• Dw≥0, formed by those modules X satisfying Hom(X,Y ) = 0 for each Y ∈ Dw<0 =

ΣDw≤0.

Remark 10.1. Note that ΣpB ∈ Dw≥0 for each p ≤ 0.

The following result is an unbounded analogue of a result by Bondarko, cf. §6 of [7].

Theorem 10.2. 1) The pair (Dw≤0,Dw≥0) is a weight structure on DB.
2) Dw≤0 is the smallest full subcategory Susp(B) of DB containing B and closed under

positive shifts, extensions and arbitrary coproducts.
3) For any object X of DB we have X ∼= Mcolimp≥0 σ≥−pX.
4) For any pair X and Y of objects of DB we have

Hom(X,Y ) = limq≥0 colimp≥0 Hom(σ≥−qX,σ≥−pY ).

Proof. 2) It is clear that B ∈ Dw≤0, and that Dw≤0 is closed under extensions, positive shifts
and arbitrary coproducts. Therefore Susp(B) is contained in Dw≤0. Now, for an object M of
Dw≤0 we can form a sequence of triangles

B0
u→M

v→M0 → ΣB0,

B1 →M0 →M1 → ΣB1,

. . .

by taking Bp =
∐
q≥p
∐

Hom(ΣqB,Mp) ΣqB and defining Bp → Mp as the obvious map. This

yields a diagram

M0
// M1

// M2
// . . .

M

v

OO

1 // M

OO

1 // M

OO

// . . .

L0

u

OO

// L1

OO

// L2

OO

// . . .

where each Lp is a p-fold extension of coproducts of non negative shifts of B. Thanks to Verdier’s
3× 3 lemma (see [3, Proposition 1.1.11]) we know there exists a triangle

L→M → McolimMp → ΣL,

where L fits in a triangle of the form∐
p≥0

Lp → L→
∐
p≥0

ΣLp → Σ
∐
p≥0

Lp.

Thus, it is clear that L ∈ Susp(B). On the other hand, for each n ≥ 0 we have

Hom(ΣnB,McolimMp) = colimHom(ΣnB,McolimMp) = 0

because the morphisms

Hom(ΣnB,Mp)→ Hom(ΣnB,Mp+1)

vanish. Thus McolimMp has homology concentrated in degrees ≥ 1. But, in fact, for each n ≥ 1
we have an exact sequence

HnM → Hn(McolimM)→ Hn+1L,

where HnM = 0 by hypothesis and Hn+1L = 0 because B has homology concentrated in non
positive degrees. This proves that McolimMp = 0, and so M ∼= L ∈ Susp(B).
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1) It is clear that Dw≤0 and Dw≥0 are closed under finite coproducts and direct summands. It
is also clear that Dw≤0 is closed under positive shifts and Dw≥0 is closed under negative shifts.
The ortohogonality axiom hols by definition of Dw≥0. It remains to prove the existence of a
truncation triangle. Let M be an object of DB. Thanks to [18, §3.1] we can assume that M
has a filtration

0 = M−1 ⊂M0 ⊂M1 ⊂ · · · ⊂Mn−1 ⊂Mn · · · ⊂M
in the category CB of dg B-modules such that

F1) M = colimn≥0Mn,
F2) each Mn−1 →Mn in an inflation in CB, i.e. it is a degreewise split-injection,
F3) Mn/Mn−1 is a small coproduct of (positive or negative) shifts of B.

Using the fact that B has homology concentrated in non positive degrees, we can form a
commutative square

L′1
//

��

ΣL0

��
M1/M0

// ΣM0

where the vertical morphisms are degree-wise split injections and L′1 (resp. L0) is the direct
summand of M1/M0 (resp. M0) formed by the non positive shifts of B. Taking the co-cone L1

of L′1 → ΣL0 we get a morphism of degree-wise split short exact sequences of dg B-modules

L0
//

��

L1
//

��

L′1

��
M0

// M1
// M1/M0,

where the vertical arrows are degree-wise split injections. We write L′1 = L1/L0. In this way,
we can form morphisms of degree-wise split short exact sequences of dg B-modules

Ln−1
//

��

Ln //

��

Ln/Ln−1

��
Mn−1

// Mn
// Mn/Mn−1

for each n ≥ 0, where the vertical arrows are degree-wise split injections and Ln/Ln−1 is the
direct summand of Mn/Mn−1 formed by the non positive shifts of B. This yields a sequence of
degree-wise split short exact sequences of dg B-modules

0 = L−1
//

��

L0
//

��

L1
//

��

. . . Ln−1
//

��

Ln

��

. . .

0 = M−1
//

��

M0
//

��

M1
//

��

. . . Mn−1
//

��

Mn

��

. . .

0 = N−1
// N0

// N1
// . . . Nn−1

// Nn
. . . ,

where for each n ≥ 0 there is a morphisms of degree-wise split short exact sequences of dg
B-modules

Mn−1
//

��

Mn
//

��

Mn/Mn−1

��
Nn−1

// Nn
// Nn/Nn−1
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where the vertical arrows are degree-wise split surjections and Nn/Nn−1 is the direct summand
of Mn/Mn−1 formed by the positive shifts of B. Write L = colimn≥0 Ln and N = colimn≥0Nn.
The short exact sequence of dg B-modules

0→ L→M → N → 0

induces a triangle

L→M → N → ΣL

in DB. Note that L = Mcolimn≥0 Ln and N = McolimnNn. Since Dw<0 is closed under small
coproducts, positive shifts and extensions, then N ∈ Dw<0. On the other hand, if Y ∈ Dw<0

then

Hom(L, Y ) = limn≥0 Hom(Ln, Y ) = 0,

which proves that L ∈ Dw≥0.
3) We can construct a commutative diagram as follows:

σ≥0X //

f0
��

σ≥−1X //

f−1

��

σ≥−2X //

f−2

��

. . .

X

��

X

��

X

��

. . .

σ<0X // σ<−1X // σ>−2X // . . .

which induces a morphism

f : Mcolimp≥0 σ≥−pX → X.

For each n ∈ Z this yields a morphism

Hn(f) : colimp≥0H
n(σ≥−pX)→ HnX

induced by the commutative diagram

Hn(σ≥0X) //

Hn(f0)

��

Hn(σ≥−1X) //

Hn(f−1)

��

Hn(σ≥−2X) //

Hn(f−2)

��

. . .

HnX

��

HnX

��

HnX

��

. . .

Hn(σ<0X) // Hn(σ<−1X) // Hn(σ>−2X) // . . .

We deduce that Hn(f) is an isomorphism from the fact that almost every map Hn(f−p) , p ≥ 0,
is an isomorphism.

4) Note that we have

Hom(X,Y ) = Hom(Mcolimq≥0 σ≥−qX,Y ) = limq≥0 Hom(σ≥−qX,Y ).

Now for a fix q ≥ 0, we apply Hom(σ≥−qX, ?) to the diagram

σ≥0Y //

��

σ≥−1Y //

��

σ≥−2Y //

��

. . .

Y

��

Y

��

Y

��

. . .

σ<0Y // σ<−1Y // σ>−2Y // . . .

18



to get the diagram

Hom(σ≥−qX,σ≥0Y ) //

��

Hom(σ≥−qX,σ≥−1Y ) //

��

Hom(σ≥−qX,σ≥−2Y ) //

��

. . .

Hom(σ≥−qX,Y )

��

Hom(σ≥−qX,Y )

��

Hom(σ≥−qX,Y )

��

. . .

Hom(σ≥−qX,σ<0Y ) // Hom(σ≥−qX,σ<−1Y ) // Hom(σ≥−qX,σ>−2Y ) // . . .

in which Hom(σ≥−qX,σ<−pY ) = 0 for p� 0. Thus the induced morphism

colimp≥0 Hom(σ≥−qX,σ≥−pY )→ Hom(σ≥−qX,Y )

is an isomorphism.
√

11. Appendix 2: Milnor colimits versus homotopy colimits

Let D be a triangulated derivator defined on the 2-category of small categories (see [11] and
the notation therein). Let us denote by e the 1-point category. For any small category I, we
will write p : I → e to refer to the unique possible functor. We have an adjoint pair of triangle
functors

D(e)

p∗

��
D(I)

p!

OO

and, by definition, if F ∈ D(I) we say that p!F is the homotopy colimit of F . Sometimes this
will be denoted by hocolimF or Γ!(F, I).

In this Appendix, we will show that if a triangulated categoryD is at the base of a triangulated
derivator, then Milnor colimits of sequences of morphisms of D are isomorphic to homotopy
colimits.

The key tool will be the diagram functor (see [11, §1.10]):

dI : D(I)→ Hom(Iop,D(e))

(sometimes we shall omit the subscript I). If F is an object of D(I), we say that dIF is the
diagram or presheaf associated to F . Given a presheaf F ∈ Hom(Iop,D(e)), we say that an
object G ∈ D(I) is lifts F if dI(G) is isomorphic to F in Hom(Iop,D(e)).

For each i ∈ I, we denote by ?⊗ i : D(e)→ Hom(Iop,D(e)) the left adjoint of the functor (?)i
evaluation at i:

Hom(Iop,D(e))

(?)i
��

D(e)

?⊗i

OO

For j ∈ I and X in D(e), we have the canonical isomorphism

(X ⊗ i)j =
∐

Hom(j,i)

X.

Lemma 11.1. For each i in I, the triangle

D(I)
dI // Hom(Iop,D(e))

D(e)

i!

OO

?⊗i

88ppppppppppp

commutes up to a canonical isomorphism.
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Proof. Recall that by axiom Der4d, for each functor u : J → I and each object j of I, we have
a canonical isomorphism

j∗u! = p! l
∗ ,

where the functors are those of the square

j\J l //

p

��

J

u

��
e

j
// I

and j\J is the comma-category of pairs (j′, u(j′) → j). Let us specialize J to e and u to the
inclusion determined by the object i of I. Then we get a canonical isomorphism

j∗i! = p! p
∗ ,

where now i\J = i\e is the discrete category Hom(j, i) and p the unique functor Hom(j, i)→ e.
By axiom Der1, the composition p! p

∗ is the coproduct composed with the diagonal functor. So
for each object X of D(e), we get a canonical isomorphism

(i!X)j =
∐

Hom(j,i)

X = (X ⊗ i)j .

One checks that these isomorphisms yield a canonical isomorphism as claimed.
√

Remark 11.2. For Iop = N and n ∈ N, the object X ⊗ n is the presheaf

0→ . . .→ 0→ X
1→ X

1→ X → . . . ,

where the first X appears in position n and by the lemma, the triangle

D(Nop)
dNop // Hom(N,D(e))

D(e)

n!

OO

?⊗n

77oooooooooooo

commutes up to isomorphism.

Proposition 11.3. 1) Given an object X of Hom(N,D(e)), there exists an object of D(Nop)
which lifts X.

2) Given a morphism f : X → X ′ in Hom(N,D(e)) there exists a morphism f̃ : X̃ → X̃ ′

in D(Nop) such that dNop(f̃) is isomorphic to f .
3) The homotopy colimit of an object X of D(Nop) is isomorphic to the Milnor colimit of

its associated diagram dNopX.

Proof. 1) Step 1: an exact category with global dimension 1. Every additive category can be
endowed with an exact structure by taking as conflations the split exact pairs (see [19] and the
terminology therein). Let us consider D(e) as an exact category in this way, and let us regard
Hom(N,D(e)) as an exact category with the pointwise split exact structure. Let us calculate a
projective resolution of an arbitrary object of this category. Given an object X of Hom(N,D(e)),
i.e. a sequence of morphisms in D(e)

X0
x0→ X1

x1→ X2
x2→ . . . ,

we can start the projective resolution by considering the deflation

P0 =
∐
n∈N

Xn ⊗ n→ X
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defined by using the counit of the adjunctions (?⊗n, (?)n). It turns out that Hom(N,D(e)) has

global dimension 1. Indeed, in the kernel P1
u→ P0 of the former deflation we can take

P1 =
∐
n∈N

Xn ⊗ (n+ 1),

which is a projective object. An explicit diagram might help

0 //

��

X0
//[

1

−x0

]
��

X0 ⊕X1
// 1 0

−x0 1
0 −x1


��

. . .

X0
//

��

X0 ⊕X1
//

[ x0 1 ]
��

X0 ⊕X1 ⊕X2
//

[ x1x0 x1 1 ]
��

. . .

X0
x0 // X1

x1 // X2
// . . .

Step 2: lifting a projective resolution along the diagram functor. Put

P̃1 =
∐
n∈N

(n+ 1)!(Xn)

and

P̃0 =
∐
n∈N

n!(Xn).

For each n ∈ N, let an ∈ HomD(Nop)((n+ 1)!X,n!X) be the image of the identity 1n!(Xn) by the
composition of the morphisms

HomD(Nop)(n!(Xn), n!(Xn))
∼→ HomD(e)(Xn, n

∗n!(Xn))

→ HomD(e)(Xn, (n+ 1)∗n!(Xn))
∼→ HomD(Nop)((n+ 1)!(Xn), n!(Xn))

induced by the adjoint pairs (n!, n
∗) and ((n+ 1)!, (n+ 1)∗) and the 2-arrow

D(e) D(Nop)

n∗

ii

(n+1)∗

uu
� �� �KS
(αn+1

n )∗

coming from the only possible 2-arrow

e

n+1
((

n

66
�� ��
�� α

n+1
n Nop.

Consider now the morphism

P̃1
ũ→ P̃0

in D(Nop) determined by

P̃1
ũ // P̃0

(n+ 1)!(Xn)

OO

[ an −(n+ 1)!(xn) ]
t

// n!(Xn)⊕ (n+ 1)!(Xn+1)

OO

Remark 11.2 tells us that the diagram functor dNop sends ũ to u : P1 → P0.
Step 3: a triangle over the lifted morphism. Now consider a triangle

P̃1
ũ→ P̃0 → X̃ → ΣP̃1
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in D(Nop). For each m ∈ N, after applying the triangle functor m∗ : D(Nop) → D(e) we get a
triangle ⊕m−1

n=0 Xn
um //

⊕m
n=0Xn

// dNop(X̃)m
// Σ
⊕m−1

n=0 Xn

in D(e). Since um is a section, dNop(X̃)m is the cokernel of um and so dNop(X̃)m ∼= Xm.
2) Given a morphism f : X → X ′ in Hom(N,D(e)), we can consider as before the projective

resolutions

P1
u→ P0 → X

and

P ′1
u′→ P ′0 → X ′.

By using f : X → X ′ we can define a morphism g : P0 → P ′0 making commutative the square

P0
//

g

��

X

f

��
P ′0

// X

and the universal property of the cokernel guarantees the existence of a morphism of conflations

P1
u //

h
��

P0
//

g

��

X

f

��
P ′1

u′ // P ′0
// X

Thanks to Remark 11.2, we can prove that there exists a commutative square

P̃1
ũ //

h̃
��

P̃0

g̃
��

P̃ ′1
ũ′ // P̃ ′0

in D(Nop) which is mapped to

P1
u //

h
��

P0

g

��
P ′1

u′ // P ′0

by dNop . The commutative square in D(Nop) can be completed to a morphism of triangles

P̃1
ũ //

h̃
��

P̃0

g̃
��

// X̃ //

f̃
��

ΣP̃1

��

P̃ ′1
ũ′ // P̃ ′0

// X̃ ′ // ΣP̃ ′1

For each m ∈ N, we apply the triangle functor m∗ and obtain a morphism of triangles⊕m−1
n=0 Xn

um //

��

⊕m
n=0Xn

//

��

(dNopX̃)m

��

// Σ
⊕m−1

n=0 Xn

��⊕m−1
n=0 X

′
n

u′m //
⊕m

n=0X
′
n

// (dNopX̃ ′)m
// Σ
⊕m−1

n=0 X
′
n

Since both um and u′m are sections, (dNopX̃)m is the cokernel of um and (dNopX̃ ′)m is the

cokernel of u′m. Thus, dNop(f̃)m is isomorphic to fm.
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3) Given an object X ∈ D(Nop) we consider a triangle

Y →
∐
n∈N

n!n
∗X

ε→ X → ΣY

where ε is defined by using the counit of the adjunctions (n!, n
∗). For each n ∈ N, let an ∈

HomD(Nop)((n+ 1)!n
∗X,n!n

∗X) be the image of the identity 1n!n∗X by the composition of the
morphisms

HomD(Nop)(n!n
∗X,n!n

∗X)
∼→ HomD(e)(n

∗X,n∗n!n
∗X)

→ HomD(e)(n
∗X, (n+ 1)∗n!n

∗X)
∼→ HomD(Nop)((n+ 1)!n

∗X,n!n
∗X)

induced by the adjoint pairs (n!, n
∗) and ((n+ 1)!, (n+ 1)∗) and the 2-arrow

D(e) D(Nop)

n∗

ii

(n+1)∗

uu
� �� �KS
(αn+1

n )∗

coming from the only possible 2-arrow

e

n+1
((

n

66
�� ��
�� α

n+1
n Nop.

Consider the morphism ∐
n∈N

(n+ 1)!n
∗X

u→
∐
n∈N

n!n
∗X

described by ∐
n∈N(n+ 1)!n

∗X
u //

∐
n∈N n!n

∗X

(n+ 1)!n
∗X

OO

[ an −xn ]
t

// n!n
∗X ⊕ (n+ 1)!(n+ 1)∗X

OO

Since the composition εu vanishes, there exists a morphism ϕ making commutative the diagram∐
n∈N(n+ 1)!n

∗X

u

��

ϕ

xxppppppppppppp
0

&&NNNNNNNNNNNNN

Y //
∐
n∈N n!n

∗X
ε // X // ΣY

For each m ∈ N, after applying the triangle functor m∗ we get a triangle

m∗Y //
∐
n∈Nm∗n!n

∗X
m∗ε // m∗X // Σm∗Y

By using Remark 11.2 we know that∐
n∈N

m∗n!n
∗X =

m⊕
n=0

n∗X,

and it is easy to check that the nth composite of the morphism m∗ε is the morphism

(αmn )∗ : n∗X → m∗X

given by the unique 2-arrow

e

m
((

n

66
�� ��
�� α

m
n Nop.
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Thus, m∗ε is a section, with retraction given by

[ 0 . . . 0 1 ]t : m∗X →
m⊕
n=0

n∗X.

¿From this, we deduce that the morphism

m∗Y →
m⊕
n=0

n∗X

is the kernel of m∗ε. On the other hand, it is easy to check that the kernel of m∗ε is m∗u.
Therefore, m∗ϕ is an isomorphism for each m ∈ N, and the conservative axiom of derivators
(see [11, Definition 1.11]) says that ϕ is an isomorphism. Finally, if we apply the triangle functor
hocolim to the triangle∐

n∈N(n+ 1)!n
∗X

u //
∐
n∈N n!n

∗X
ε // X // Σ

∐
n∈N(n+ 1)!n

∗X

we get the triangle∐
n∈N n∗X

1−σ //
∐
n∈N n∗X // hocolimX // Σ

∐
n∈N n∗X.

The nth composite of σ is the composition

n∗X
(αn+1

n )∗ // (n+ 1)∗X →
∐
n∈N n∗X,

where αn+1
n is the only possible 2-arrow

e

n+1
((

n

66
�� ��
�� α

n+1
n Nop.

Therefore,

hocolimX ∼= Mcolim dNopX.
√

If X is an object of Hom(N,D(e)) given by

X0
x0→ X1

x1→ X2 → . . . ,

we denote by ΣX the object Hom(N,D(e)) given by

ΣX0
Σx0→ ΣX1

Σx1→ ΣX2 → . . .

If D is a triangulated category and f : X → Y is a morphism in the category Hom(N,D):

X0
//

f0
��

X1
//

f1
��

X2
//

f2
��

. . .

Y0
// Y1

// Y2
// . . . ,

we write Mcolim f to refere to a morphism which fits in a morphism of triangles∐
n∈NXn

1−σ //

∐
n∈N fn

��

∐
n∈NXn //

∐
n∈N fn

��

McolimXn
//

Mcolim f

��

Σ
∐
n∈NXn

��∐
n∈N Yn

1−σ //
∐
n∈N Yn // McolimYn // Σ

∐
n∈N Yn
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Corollary 11.4. Let

X
f→ Y → Z → ΣX

be a diagram in Hom(N,D(e)) such that for each n ∈ N the corresponding diagram

Xn
fn→ Yn → Zn → ΣXn

is a triangle in D(e). There exists a triangle

McolimX
Mcolim f // McolimY // McolimZ ′ // ΣMcolimX

in D(e), where Z ′ is an object of Hom(N,D(e)) such that Z ′n
∼= Zn for each n ∈ N.

Proof. Part 2) of Proposition 11.3 tells us that there exists a morphism f̃ : X̃ → Ỹ in D(Nop)

such that dNop(f̃) = f . Let us complete this morphism to a triangle

X̃
f̃→ Ỹ → Z̃ → ΣX̃

in D(Nop). For a natural number n ∈ N the triangle functor n∗ sends this triangle to a triangle

Xn
fn→ Yn → n∗Z̃ → ΣXn,

which proves that n∗Z̃ ∼= Zn. On the other hand, by using part 1) of Proposition 11.3 we get
that the triangle functor hocolim sends the triangle in D(Nop) to a triangle

McolimX
Mcolim f // McolimY // hocolim Z̃ // ΣMcolimX.

Finally, part 3) of Proposition 11.3 tells us that

hocolim Z̃ ∼= Mcolim dNop(Z̃).
√

12. Appendix 3: From compact objects to t-structures

It is well known that from a set S of compact objects of a triangulated category D with small
coproducts one can produce in a natural way an interesting t-structure tS . For example, in [4,
Theorem III.2.3], it is proved that if YS is the full subcategory of D formed by those objects
Y such that HomD(ΣnS, Y ) = 0 for each n ≥ 0 and each S ∈ S, then YS is the right aisle of
a t-structure. In fact, this can be deduced from [1, Theorem A.1]. For the convenience of the
reader we will include here the statement and the proof of that theorem:

Theorem 12.1. Let D be a triangulated category with small coproducts, and let S be a set of
compact objects of D. Then:

1) the smallest full subcategory SuspD(S) of D containing S and closed under extensions,
positive shifts and small coproducts is a left aisle,

2) every object X of SuspD(S) fits in a triangle∐
i≥0

Xi → X →
∐
i≥0

ΣXi →
∐
i≥0

ΣXi

where Xi is an i-fold extension of small coproducts of non negative shifts of objects of
S.

Proof. Let M be an object of D, and let us consider an approximation

P0 →M

of M with respect to the full subcategory of D formed by the small coproducts of non negative
shifts of objects of S. Let us consider a triangle

P0
f0→M

g0→ Y0 → ΣP0
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and a new approximation
P1 → Y0

with respect to the same subcategory. By iterating this procedure we get a diagram of the form

M
g0 // Y0

y0 //

~~ ~>
~>

~>
~>

Y1

~~ ~>
~>

~>
~>

P0

f0

OO

P1

OO

. . .

This diagram yields a diagram

ΣX0
Σx0 // ΣX1

Σx1 // ΣX2
// . . .

Y0
y0 //

OO

Y1
y1 //

OO

Y2
//

OO

. . .

M
1 //

g0

OO

M
1 //

OO

M //

OO

. . .

P0 = X0
l0 //

f0

OO

X1
l1 //

OO

X2

OO

// . . .

in which every column is a triangle. The octahedron axiom implies that each Xi is an i-
fold extension of small coproducts of non negative shifts of objects of S. Now, by using [3,
Proposition 1.1.11] (i.e. , Verdier’s 3× 3 lemma) we get a diagram∐

i≥0M //

1−shift
��

∐
i≥0 Yi //

1−shift
��

∐
i≥0 ΣXi //

��

Σ
∐
i≥0M

��∐
i≥0M //

��

∐
i≥0 Yi //

��

∐
n≥0 ΣXi //

��

Σ
∐
i≥0M

��
M //

��

McolimYi //

��

X ′ //

��

ΣM

��
Σ
∐
i≥0M // Σ

∐
i≥0 Yi // Σ

∐
i≥0 ΣXi // Σ2

∐
i≥0M

where the columns and rows are triangles. It is clear that Σ−1X ′ ∈ SuspD(S). On the other
hand, for each S ∈ S and each n ≥ 0 we have

HomD(ΣnS,McolimYi) ∼= colimi∈NHomD(ΣnS, Yi) = 0

because the induced morphisms

HomD(ΣnS, Yi)→ HomD(ΣnS, Yi+1)

vanish.
√

Of course, one would like to express the objects of the left aisle of tS in terms of the objects
of S, for instance as a kind of colimit. In [4, Proposition III.2.6] it is proved that this is the case
when S satisfies a certain vanishing condition. Here we give an alternative proof of this result:

Theorem 12.2. Let D be a triangulated category with small coproducts, and let S be a set of
compact objects in D such that

HomD(S,ΣnS′) = 0

for all S, S′ ∈ S and each n ≥ 1. Then every object of SuspD(S) is the Milnor colimit of a
sequence X0 → X1 → X2 → . . . where Xi is an i-fold extension of small coproducts of non
negative shifts of objects of S.
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Proof. Given M ∈ D we will inductively construct a commutative diagram

X0
f0 //

π0 !!BBBBBBBB X1
f1 //

π1

��

. . . // Xq
fq //

πq
vvmmmmmmmmmmmmmmm . . . , q ≥ 0

M

such that:

a) Xi is an i-fold extension of small coproducts of non negative shifts of objects of S,
b) πi induces a surjection

π∧i : HomD(ΣnS,Xi)→ HomD(ΣnS,M)

for each S ∈ S , n ≥ 0.

For i = 0 we take X0 =
∐
S∈S

∐
n≥0

∐
HomD(ΣnS,M) ΣnS and the obvious morphism

π0 : X0 →M.

Suppose for some i ≥ 0 we have constructed Xi and πi. Consider the triangle

Ci
αi→ Xi

πi→M → ΣCi

induced by πi. Consider Zi =
∐
S∈S

∐
n≥0

∐
HomD(ΣnS,Ci)

ΣnS and the obvious morphism

βi : Zi → Ci.

The triangle

Zi
αiβi→ Xi → Xi+1 → ΣZi

defines Xi+1 up to non unique isomorphism. Note that the surjectivity required for π∧i+1 comes
from the surjectivity of π∧i .

Define X∞ to be the Milnor colimit of the sequence fi , i ≥ 0:∐
i≥0Xi

1−σ //
∐
i≥0Xi

ψ // X∞ // Σ
∐
i≥0Xi.

Consider the morphism

θ =
[
π0 π1 . . .

]
:
∐
i≥0

Xi →M.

Since πi+1fi = πi for every i ≥ 0, we have θ(1 − σ) = 0, and so we obtain a morphism
π∞ : X∞ →M such that π∞ψ = θ. If we prove that π∞ induces an isomorphism

π∧∞ : HomD(ΣnS,X∞)
∼→ HomD(ΣnS,M)

for every S ∈ S , n ≥ 0, then we have

HomD(ΣnS,Cone(π∞)) = 0

for every S ∈ S , n ≥ 1. For the case n = 0, let us consider the exact sequence

HomD(S,X∞)
∼→ HomD(S,M)→ HomD(S,Cone(π∞))→ HomD(S,ΣX∞)

Since S is compact, there exists a short exact sequence∐
i≥0

HomD(S,ΣXi)→ HomD(S,ΣX∞)→
∐
i≥0

HomD(S,Σ2Xi)

¿From the hypothesis on the set S and the construction of the objects Xi we can deduce that
both the left and the right hand side of the former sequence vanish, and so HomD(S,ΣX∞) = 0.
Therefore, then we would have

HomD(ΣnS,Cone(π∞)) = 0

for every S ∈ S , n ≥ 0. This, by infinite dévissage, implies that

HomD(N,Cone(π∞)) = 0

for each N ∈ Susp(S). Hence, we have proved that SuspD(S) is an aisle in D.
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Let us prove the required bijectivity for π∧∞. The surjectivity follows from the identity
π∧∞ψ

∧ = θ∧ and the fact that θ∧ is surjective (thanks to the surjectivity of the π∧i , i ≥ 0 and
the compactness of the S ∈ S). Now consider the commutative diagram∐

i≥0 HomD(ΣnS,Xi)
(1−σ)∧//

∐
i≥0 HomD(ΣnS,Xi)

ψ∧ //

θ∧ ))TTTTTTTTTTTTTTT
HomD(ΣnS,X∞) //

π∧∞
��

0

HomD(ΣnS,M)

The map ψ∧ is surjective since the map

(Σ(1− σ))∧ :
∐
i≥0

HomD(ΣnS,ΣXi)→
∐
i≥0

HomD(ΣnS,ΣXi)

is injective. If we prove that the kernel of θ∧ is contained in the image of (1 − σ)∧, then we
obtain the injectivity of π∧∞ by an easy diagram chase. Let

g =
[
g0 g1 . . .

]t
: ΣnS →

∐
i≥0

Xi

be such that [
π0 π1 . . .

] [
g0 g1 . . .

]t
= π0g0 + π1g1 + · · · = 0.

Notice that there exists an s ≥ 0 such that gs+1 = gs+2 = · · · = 0. Then

π0g0 + · · ·+ πsgs = 0

implies
πs(fs−1 . . . f0g0 + fs−1 . . . f1g1 + · · ·+ gs) = 0

and so the morphism
fs−1 . . . f0g0 + fs−1 . . . f1g1 + · · ·+ gs

factors through αs:

fs−1 . . . f0g0 + fs−1 . . . f1g1 + · · ·+ gs = αsγs : ΣnS → Cs → Xs.

By construction of Zs we have that γs factors through βs, and so

fs−1 . . . f0g0 + fs−1 . . . f1g1 + · · ·+ gs = αsβsξs.

This implies
fs . . . f0g0 + fs . . . f1g1 + · · ·+ fsgs = fsαsβsξs = 0,

since fsαsβs = 0 by construction of fs. Therefore, the morphism

h : ΣnS →
∐
i≥0

Xi

with non-vanishing components

ΣnS → Xr →
∐
i≥0

Xi

induced by
gr + · · ·+ fr−1 . . . f1g1 + fr−1 . . . f0g0 : ΣnS → Xr

with 0 ≤ r ≤ s, satisfies ϕ∧(h) = g.
√

In practice, every triangulated category is at the basis of a triangulated derivator (see [10]).
If we assume that our triangulated category D satisfies this property, we can use Appendix 1
to get rid of the extra hypothesis on the set S of compact objects, to simplify the proof of
Theorem 12.2 and to enhance the proof of Theorem 12.1.

Theorem 12.3. Let D be a triangulated derivator, and let S be a set of compact objects of
D(e). Then:

1) the smallest full subcategory SuspD(e)(S) of D(e) containing S and closed under exten-
sions, positive shifts and small coproducts is a left aisle,
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2) every object of SuspD(e)(S) is the Milnor colimit of a sequence X0 → X1 → X2 → . . .
where Xi is an i-fold extension of small coproducts of non negative shifts of objects of
S.

Proof. The proof starts as the one of Theorem12.1. Thus, starting from an object M of D(e)
we produce a diagram of the form

ΣX0
Σx0 // ΣX1

Σx1 // ΣX2
// . . .

Y0
y0 //

OO

Y1
y1 //

OO

Y2
//

OO

. . .

M
1 //

g0

OO

M
1 //

OO

M //

OO

. . .

P0 = X0
l0 //

f0

OO

X1
l1 //

OO

X2

OO

// . . .

in which every column is a triangle, each Xi is an i-fold extension of small coproducts of non
negative shifts of objects of S and

HomD(e)(Σ
nS,McolimYi) = 0

for each S ∈ S and each n ≥ 0. Let us regard the rows of this diagram as objects X , M and
Y of the category Hom(N,D(e)) of presheaves. Thanks to Corollary 11.4 we know that there
exists a triangle

McolimX ′ →M → McolimY → ΣMcolimX ′,

where X ′ ∈ Hom(N,D(e)) is such that X ′i
∼= Xi for each i ≥ 0. In particular, X ′i ∈ SuspD(e)(S)

for all i ≥ 0, which implies that McolimX ′ ∈ SuspD(e)(S).
√
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