WEIGHT STRUCTURES AND SIMPLE DG MODULES FOR POSITIVE DG
ALGEBRAS

BERNHARD KELLER AND PEDRO NICOLAS

ABSTRACT. Using techniques due to Dwyer—Greenlees—Iyengar we construct weight structures
in triangulated categories generated by compact objects. We apply our result to show that,
for a dg category whose homology vanishes in negative degrees and is semi-simple in degree
0, each simple module over the homology lifts to a dg module which is unique up to isomor-
phism in the derived category. This allows us, in certain situations, to deduce the existence
of a canonical t-structure on the perfect derived category of a dg algebra. From this, we can
obtain a bijection between hearts of ¢t-structures and sets of so-called simple-minded objects
for some dg algebras (including Ginzburg algebras associated to quivers with potentials). In
three appendices, we elucidate the relation between Milnor colimits and homotopy colimits and
clarify the construction of t-structures from sets of compact objects in triangulated categories
as well as the construction of a canonical weight structure on the unbonded derived category
of a non positive dg category.
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1. INTRODUCTION

Finite-dimensional modules over an associative unital algebra may be described as built up
from simple modules or as presented by projective modules. The interplay between these two
descriptions is at the heart of the interpretation of Koszul duality for dg algebras (and categories)
given in [18], cf. also [12] [13]. However, in order to apply this theory a dg algebra A, we need the
‘simple dg A-modules’ as an additional datum. Clearly, a necessary condition for the existence
of such dg modules is that the homology H*(A) should be equipped with a suitable set of
graded simple modules. One may ask whether this condition is also sufficient. Now realizing
modules over the homology H*(A) as homologies of dg modules over A is in general a hard
problem, cf. for example [5]. In this paper, we treat one class of dg algebras where the problem
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of realizing the simple homology modules has a satisfactory solution. We define this class by
merely imposing conditions on the homology H*(A): It should be concentrated in degrees > 0
and semi-simple in degree 0. Let us point out that if HY(A) is a field, our result follows from
Propositions 3.3 and 3.9 of [13], as kindly explained to us by Srikanth Iyengar [16]. The class
we consider contains the Koszul duals of smooth dg algebras B whose homology is concentrated
in non positive degrees and finite-dimensional in each degree. Important examples of these are
the Ginzburg dg algebras associated to quivers with potential [14] [22]. The proof of our result
is based on the construction of canonical weight structures on suitable triangulated categories
(section 4) in analogy to results obtained by Pauksztello (Theorem 2.4 of [29]). These weight
structures are also useful in a second application, namely the construction of a t-structure on
the perfect derived category of a dg algebra A in our class (section 8). This ¢-structure has
as its left aisle the closure under extensions, positive shifts and direct summands of the free
module A. Its heart is a length category whose simple objects are the indecomposable factors
of A in per A. Let us point out that the existence of this t-structure also follows from a recent
result by Rickard-Rouquier [30].

As another application, we establish a bijection between families of ‘simple-minded objects’
(a piece of terminology due to J. Rickard and, independently, to Konig-Liu [23]) and hearts of
t-structures in suitable triangulated categories (section 9). Further applications will be given in
the forthcoming paper [20].

In establishing our main theorem, we need foundational results on the precise link between
Milnor colimits and homotopy colimits (in the sense of derivators) and on the construction
of t-structures from sets of compact objects. We prove these in two appendices. In another
appendix, we prove the existence of a canonical weight structure on the (unbounded) derived
category of a non positive dg category, in analogy with a result by Bondarko [7, §6].

2. ACKNOWLEDGMENTS

The authors thank Chris Brav and David Pauksztello for stimulating conversations on the
material of this paper. They are indebted to Srikanth Iyengar for pointing out reference [13]
and explaining how Propositions 3.3 and 3.9 in that paper imply Corollary 5.7 below in the
case where HA is a field. They are grateful to Dong Yang for his careful reading of the first
version of this article.

3. TERMINOLOGY AND NOTATIONS

In this article, ‘graded’ will always mean ‘Z-graded’, and ‘small’ will be frequently used to
mean ‘set-indexed’. A length category is an abelian category where each object has finite length.
We write X for the shift functor of any triangulated category. Let

Lof#LlféLzﬁ...

be a sequence of morphisms in a triangulated category D. Its Milnor colimit [26] is an object,
denoted by Mcolim,,>q Ly, which fits into the Milnor triangle,

1-0 .
HnZO Ln E— n>0 Ln —_— MCO|Imn20 Ln — ano an

where ¢ is the morphism with components

Ly L Lnt1 == 1,50 Ln-

Thus, the Milnor colimit is determined up to a (non unique) isomorphism. The notion of Milnor
colimit has appeared in the literature under the name of homotopy colimit (see [6, Definition
2.1], [27, Definition 1.6.4]). However, Milnor colimits are not functorial and, in general, they
do not take a sequence of triangles to a triangle of D. Thus, we think it is better to keep this
terminology for the notions appearing in the theory of derivators [24, 25, 11]. For a study of
the relationship between Milnor colimits and homotopy colimits see Appendix 2.
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Let
...—>L2£L1&LQ

be a sequence of morphism in a triangulated category D. Its Milnor limit is an object, denoted
by Mlim;,,>¢ L,,, which fits into the triangle,

_ . 1-
S Tpso Ln —= Mlimpo Ly — [ 150 Ln —> [ 1,150 Lns
where ¢ is the morphism with components

Jn—
L, Il L, L ano L,

for n # 0, and the zero map in the component 0

0:Ly— HLn.
n>0

As in the case of the Milnor colimit, the Milnor limit is determined up to a (non unique)
isomorphism.

If D is a triangulated category and S is a set of objects of D, we denote by thickp(S)
the smallest full subcategory of D containing S and closed under extensions, shifts and direct
summands.

Let k£ be a field and A a dg k-algebra. We denote the derived category of A by DA, cf.
[18]. The perfect derived category of A, denoted by per A, is thickpa(A). The finite-dimensional
derived category of A, denoted by DrqA, is the full subcategory of DA formed by those dg
modules M whose homology is of finite total dimension:

> " dimy, HP(M) < occ.
pEZ

4. WEIGHT STRUCTURES FROM COMPACT OBJECTS

Let us recall the definition of a weight structure from [7] and [29] (it is called co-t-structure

in [29]): A weight structure on a triangulated category 7 is a pair of full additive subcategories
7>% and T=0 of T such that

w0) both 729 and 7=° are stable under taking direct factors;

wl) the subcategory 7Y is stable under ¥~! and the subcategory 7=" is stable under X;

w2) we have T(X,Y) =0 for all X in 7> and all Y in 7=0;

w3) for each object X of T, there is a truncation triangle

0'>0(X) - X = Ugo(X) — ZO’>0<X>
with 050(X) in 7>Y and o<o(X) in T=°.

Notice that the objects 0~(X) and 0<¢(X) in the truncation triangle are not functorial in X.
The following theorem and its proof are based on Propositions 3.3 and 3.9 of [13]. Compared
to the main result of [28], the theorem has stronger hypotheses: assumption c¢) is not present

in [loc. cit.]; but it also has a stronger conclusion: the description of the weight structure in
terms of homology.

Theorem 4.1. Suppose that T is a triangulated category with small coproducts and that S C T
is a full additive subcategory stable under taking direct summands such that

a) S compactly generates T, i.e. the functors T(S,?7) : T — ModZ, S € S, commute with
small coproducts, and if M € T satisfies T(XPS,M) =0 forallp € Z, S € S, then
M =0;
b) we have T(L,XPM) =0 for all L and M in S and all integers p < 0;
c) the category Mod S of additive functors S — Mod Z is semi-simple.
For X inT and p € Z, we write HP X for the object L — T (L,XPX) of Mod S. Then we have:
3



1) There is a unique weight structure (T>°, T=%) on T such that T=° is formed by the
objects X with HPX = 0 for all p > 0 and T>° is formed by the objects X with
HPX =0 for allp <0.
2) For each object X, there is a truncation triangle
(4.1) 050(X) = X = 0<0(X) = Zo0(X)
such that the morphism X — o<o(X) induces an isomorphism in HP for p <0 and the
morphism oso(X) — X induces an isomorphism in HP for p > 0.

Proof. Let Sum(S) be the closure under small coproducts of S in 7.
1st step: The functor HY : Sum(S) — Mod S is an equivalence. Indeed, this functor is fully
faithful because the objects of S are compact in 7. It is an equivalence because Mod S is
semi-simple and S stable under direct factors.
2nd step: For each object X of T and each integer m, there is a morphism Vi, (X) — X such
that Vi (X) belongs to ¥~"Sum(S) and the induced map
H™ (Vi (X)) - H™X
is an isomorphism. Indeed, by the first step, the module H™X is isomorphic to H™(V,,(X))
for some V,,(X) lying in 37™Sum(S).
3rd step: For each object X of T, there is a triangle
V(X)—= X = CX) = XV(X)
such that V(X) is a sum of objects ¥PL, where L € S and p < 0, the map
HPX — HP(C(X))
is bijective for all p < 0, and the map
HP(V(X)) — HPX
is surjective for all p > 1. Indeed, we define
V(X) =[] Vim(X)
m>0
and C'(X) to be the cone over the natural morphism V(X) — X. Then we obtain the claim
because the functors HP commute with coproducts, the HP M vanishes for all M € S and all
p < 0 and the morphism V(X) — X induces an isomorphism
HY V(X)) — H'X.
4th step: For each object X of T, there is a triangle
O‘>0(X) - X — O‘S()X — EO‘>0(X)

such that oso(X) lies in T>0 and 0<oX lies in T=". We iterate the construction of the third
step to obtain a direct system

X—-CX)=»CHX) = = CP(X)— -
and define
0<0(X) = Mcolim CP(X).
We define o~¢(X) by the above triangle. The compactness of the objects of S in T implies that
each functor H", n € Z, takes Milnor colimits to colimits in Mod S. Let us show that o< (X)
belongs to T='. Indeed, for n > 0, by construction, the morphisms C?(X) — CP*!(X) induce
the zero map in H". Thus, the module
H"(0<0(X)) = H"(Mcolim C?(X)) = colim H"(C?(X))
vanishes for n > 0. Let us show that o-¢(X) belongs to 7>°. Indeed, by induction on p, we
see that the object K, (X) defined by the triangle

Ky(X) = X - CP(X) = XK, (X)
4



belongs to 7-°. By considering the exact sequence
H"'X — H"(CP(X)) —» H"(Ky(X)) - H"X — H"(CP(X))
we see that for each n < 0, the morphism
H" X — H"(CP(X))
is surjective and the morphism
H"X — H"(CP(X))
is injective. By passing to the colimit over p, we obtain that for each n < 0, the morphism

H" X — H" Hos0(X))
is surjective and the morphism
H'X — Hn(o‘zo(X))
is injective. By the exact sequence

H" 'X — H" Y(050(X)) = H"(050(X)) = H"X — H"(0>0(X))

associated with the truncation triangle, this implies that for each n < 0, the module H" (05¢(X))
vanishes.

5th step: For each object X of T and each n < 0, the map H"X — H™(0<o(X)) is an
isomorphism and for n > 0, the map H"(0s9(X)) — H"X is an isomorphism. Indeed, the
first claim follows from the fact that X — CP(X) induces an isomorphism in H" for all n <0,
which we obtain by induction from the third step. For the second claim, we consider the exact
sequence

H'™ X = H" Y (0<o(X)) = H(050(X)) = H"X — H"(0<0(X)).

For n = 1, the first map is an isomorphism and the last term vanishes; for n > 2, the second
and the last term vanish.

6th step: If X is an object of T and Y an object of T=, each morphism X — Y factors
through X — 0<o(X). Indeed, since V(X) is a coproduct of objects ¥~™L, m >0, L € S, by
the triangle

V(X)—= X - CX)—=2V(X),

the given morphism factors through C(X). By induction, one constructs a compatible system
of factorizations

X ——=cr(x) Ly

This system lifts to a factorization X — Mcolim(CP(X)) — Y, which proves the claim since
0>0(X) = Mcolim(CP(X)).

7th step: For X € T°% and Y € T<o, we have T(X,Y) = 0. Indeed, let f : X — Y be
a morphism. By the 6th step, it factors through X — 0<¢(X). We claim that Z = o<o(X)
vanishes. Indeed, by the 4th step, we have H"Z = 0 for n > 0 and by the 5th step, we have
H"Z =0 for n < 0 since H"X vanishes for n < 0.

8th step: the conclusion. Axioms w0) and wl) are clear, axiom w2) has been shown in the
7th step and axiom w3) in the 4th step. Claim b) has been shown in the 5th step. V

Although the assignment X — o< X in part 2) of Theorem 4.1 is not uniquely defined up to
isomorphism and it is not functorial, we have the following useful result:

Lemma 4.2. In the situation of Theorem 4.1, we have:

1) Ugo(X &b Y) = O'SQ(X) &b Ugo(Y),
2) 0<o(XPX) = XPo<o(X).



5. POSITIVE DG ALGEBRAS

Corollary 5.1. Let k be a commutative associative ring with unit. Let A be a small dg k-linear
category such that:

a) HP A vanishes for p <0,

b) Mod H(A) is a semisimple abelian category.
Then we have:

1) There exists a weight structure w = ((DA)Y>Y (DA)*<) on DA such that (D.A)*>0 is
formed by those modules X such that HPX = 0 for p < 0 and (DA)Y< is formed by
those modules X such that HPX =0 for p > 0.

2) For each module X there exists a truncation triangle

O'>0(X) — X — O'SQ(X) — ZO’>0(X)

such that the morphism X — o<o(X) induces an isomorphism in HP for p <0 and the
morphism o-o(X) — X induces an isomorphism in HP for p > 0.

Proof. We apply Theorem 4.1 by taking 7 = DA and S to be the full subcategory of DA formed
by the direct summands of finite direct sums of modules of the form A" = A(?, A) where A is an
object of A. Thanks to [18] we know that D is compactly generated by S and that condition a)
implies Homp A (L, ¥PM) = 0 for all L and M in S and all integers p < 0. After restricting
scalars along the functor HA — S we get an equivalence

Mod H?(A) = Mod S.
Thus, condition b) implies that Mod S is semisimple. Vv

Non-example 5.2. If H°A is not semisimple we do not have a triangle as the one in part 2)
of Corollary 5.1. We can take, for example, the algebra of dual numbers A = k[¢] with €2 = 0
over field k and consider the complex M equal to the cone over the map ¢ : A — A. Let S be
the simple A-module. If there was a triangle

Jzo(M) - M — O'<0(M) — EO’ZQ(M),

the object o>¢(M) would have to be isomorphic to S and the object oo(M) to XS (because
the homology of M is concentrated in degrees 0 and —1 and isomorphic to S in both degrees).
Then the connecting morphism

O‘<0(M) — EO‘Z()(M)
would be a morphism »5 — X5 and thus would have to be 0 or an isomorphism. In the first
case, we find that M is decomposable, a contradiction, and in the second case, we find that M
is a zero object, a contradiction as well.

Notation 5.3. In analogy with the case of t-structures, we say that the weight structure of
the Corollary 5.1 is the canonical weight structure. If A is in fact a dg algebra A, we write
Sa = o0<pA.

Lemma 5.4. Let A be an arbitrary dg algebra. If M € DA and P is a direct summand of a
small coproduct of copies of A, then the morphism of k-modules induced by H

Homp 4 (P, M) — Hom o 4 (H°P, H' M)
s an tsomorphism.

Proof. The full subcategory of DA formed by the objects P satisfying the assertion contains A
and is closed under small coproducts and direct summands. v

Lemma 5.5. Let A be a dg algebra such that in Mod H°(A), the module HYA admits a finite
decomposition into indecomposables (e.g. HY A is semisimple). There exists a decomposition into
indecomposables A = @._, A; of A in DA such that H'A = @_, H(A;) is a decomposition
into indecomposables of H°A in Mod HY(A).



Proof. A decomposition of H?A into indecomposables in the category of HY A-modules gives us
a complete family {e},...,e.} of primitive orthogonal idempotents of the ring Endzo4(HYA).
Now, by using the ring isomorphism

H° : Endpa(A) = Endpgo(HPA)

we find a complete family {e1, ..., e, } of primitive orthogonal idempotents of the ring Endp 4 (A).
Since idempotents split in DA, each e; has an image A; in DA and we obtain that A = @;_; A;
is a decomposition of A into indecomposables in DA.

Proposition 5.6. Let A be a dg algebra with homology concentrated in non negative degrees
and such that HYA is a semi-simple ring.

1) Let X be an object of DA with bounded homology and such that each H"X , n € Z, is
a finitely generated H° A-module. If p € Z is an integer such that H"X = 0 for n > p
and HPX # 0, then X belongs to the smallest full subcategory susp®(X"PS4) of DA
containing ¥PS, and closed under extensions, positive shifts and direct summands.

2) Assume that each H"A, n € Z, is a finitely generated H* A-module. Then if M € per A,
for any truncation triangle

osp(M) = M — 0<p(M) = Xosp(M)
we have o<, M € susp®(L7PSy).

Proof. 1) We will use induction on the width of the interval delimited by those degrees with
non-vanishing homology. By Lemmas 5.4 and 5.5, there are direct summands Ay, ..., A, of
A in DA, natural numbers n;, ..., n,, and a morphism f : @;_; XPA" — X in DA such
that HPf is an isomorphism in Mod H°A. Consider truncation triangles

0'>0(Ai) — Az — UgO(Ai) — 20>0(Ai),

as the ones in part b) of Theorem 4.1. After Lemma 4.2 we know that the objects 0<pA; can be
taken to be direct summands of S in DA. In particular, the X 7P A; are objects of susp®(S4).
Now notice that X € (DA)*<P, and so it is right orthogonal to the objects of the wing (DA)“>P.
Hence the morphism f factors through the morphism @;_; X PA" — @;_; ¥ Po<g(A4;)™:

Di_1 X Pos0(A)" ——= P X PAY —— @;zrl Y Pocg(Ai)" —— @i TP o o(A)™

X

Since H p(f) is an isomorphism, for the mapping cone X’ of fthe width of the interval delimited
by those degrees with non-vanishing homology is strictly smaller than that of X, and H"(X’) =0
for n > p — 1. By induction hypothesis we get X’ € susp®(X7P*1S,), which implies that
X €susp(X7PSy).

2) Since A has homology concentrated in non negative degrees, then M € DT A. Therefore,
X = 0<pM has bounded homology. Note that the hypothesis implies that each H"M , n € Z,
is finitely generated as a module over H°A. This implies that each H"X , n € Z, is finitely
generated as a module over HYA. Now we can use part 1) of the proposition. vV

Corollary 5.7. Let k be a commutative associative ring with unit. Let A be a dg k-algebra such
that:

a) HPA wvanishes for p <0,

b) Mod H°(A) is a semisimple abelian category.

Then for each graded simple module S over the graded ring H*A, there is a dg A-module g,

unique up to isomorphism in the derived category DA, such that the graded H* A-module H*(S)
18 isomorphic to S.



Proof. First step: The graded simple modules over H*A are precisely the simple modules over
H'A, regarded as graded H* A-modules (concentrated in degree 0) by restricting scalars along
H*A — HCA. Clearly, simple H°A-modules become simple graded H* A-modules. Conversely,
if S is a graded simple H* A-module, then it has to be concentrated in degree 0. This implies
that it is killed by €, HPA. In other words, it is a (necessarily simple) H 0 A-module.

Second step: There exists a decomposition into indecomposables A = @;_, A; of A in DA
such that HYA = @)_, H(A;) is a decomposition into simples of H’A in Mod H°(A). This is
Lemma 5.5.

Third step: the graded H* A-modules H*(0<0A;), 1 <i <r, are graded simple H* A-modules,
and every graded simple H* A-module is of this form. Thanks to the first step, it suffices to
prove that HP(o<gA;) = 0 for p # 0, and that with H%(0<0A;), 1 < i < r, we get all the
simple H%A-modules. This follows from the particular properties of the weight structure we are
considering. N N

Fourth step: if S € DA is a module such that H*(S) is a graded H*A-module isomorphic
to H*(0<0A;) for some 1 < i <r, then S is isomorphic to 0<0(A;) in DA. Indeed, the proof

of part 1 of Proposition 5.6 can be used to show that the map f : o<o(4;) — S there is an
isomorphism. vV

Remark 5.8. The result above remains valid for small dg categories A such that HP.A = 0 for
p < 0 and Mod H°(A) is semi-simple and each simple is compact.
6. THE KOSzZUL DUAL

Throughout this section A will be a dg algebra with homology concentrated in non negative
degrees and such that H°A is a semi-simple ring. Recall from Notation 5.3 that Sx = o<o(A).

Notation 6.1. We write B = REnd(S4). It should be thought thought of as the ‘Koszul dual’
of A.

Lemma 6.2. B has homology concentrated in non positive degrees.
Proof. We have to prove that
HP RHom(S4,S4) = Hompa(Sa,¥PS4) =0
for p > 0. After applying Homp4(?,3PS4) to the triangle
050(A) > A — Sa — Xos0(A)
we get the exact sequence
Hom(o-o(A), 2P7154) — Hom(S4, XPS,) — HP(S,).
Of course, HP(S4) = 0 for p > 0. On the other hand, by definition of weight structure we have
Hom(os0(A),XP71S4) =0
for p > 0. vV

Lemma 6.3. 1) For each X € DA we have X = Mlimp>g o<, X.
2) For every pair of objects X andY of DA we have

Hom(X,Y) = lim, colim, Hom(o<, X, 0<,Y).
Proof. 1) Given X € DA we can form triangles
O'>0(X) - X = O'So(X) — 20>0(X),

U>1(O’>0X) — O‘>0X — J§1(0'>0X) — EU>1(O’>0X),



Thanks to statement (2) of Theorem 4.1, we can take all these triangles so that the maps induce
isomorphisms at the level of convenient homologies. Using the octahedron axiom of triangulated
categories we prove that in the triangle

O'>]_O'>0X - X—->C— EO’>]_O'>0X,

over the composition
O'>1(0'>0X) — U>0<X) — X,
the object C' belongs to (DA)*¥<!. Thus

O'>]_O'>[)X - X—->C— EO’>]_O'>0X

is the truncation triangle corresponding to the weight structure ((DA)*<!, (DA)*Z1), and we
can write C = 0<1(X) and 0-1(0>0)X = 0>1(X). Moreover, we still have an isomorphism

HPX :) Hp(dng)

for p < 1. Indeed, for p < 0 we have the following diagram with exact rows

0 HPX HP(0<0X) —— HP"(050X)

| |

0 —— HP(0<1X) — HP(0<0X) — HP*'(0<1050X),

and for p = 1 we have the following diagram with exact rows

HY(051X) — H'(050X) —= H'(0<1050X) — H*(051X) — H*(0>0X)

3 | i

HY (01 X)— H'X HY (01 X) —— H?*(051X) — H?X,

which implies that H!(0<1050X) — H'(0<1X) is an isomorphism, and so from the square

H'Y(050X) —> H'(0<1050X)

i |

H'X Hl(0<1X)

we deduce that H'X — H'(0<1X) is an isomorphism.
Repeating this construction we get a commutative diagram

e — O'SQX *>O'§1X *>O'§0X

S

=X X X

]

> 052X ——> 051X ——> 050X

where the morphisms H"(g,) : H"X — H"(0<,X) are isomorphisms for n < p. Consider now
the induced map

X — Mlimpzo USPX'

For each n € Z we get a map

H'X — Hn(l\/”impzo O'ng) = |imp20 Hn(O'SpX)
9



induced by
+—— H"(0<2X) — H"(0<1X) — H"(0<0X)

H”92T H"ng H"QOT

H"X H"X H'X

T T !

o ——>= H"(052X) —— H"(051X) —— H"(0>0X)

For each n € Z, almost every map H"(g,) is an isomorphism, and so the map H"X —
H"(Mlimp>0 0<,X) is an isomorphism.
2) Given X , Y € DA, we have Y = Mlimg> 0<,Y, and so

Hom(X,Y) = Hom(X, Mlim; 0<,Y") = lim; Hom(X, o0<,Y").
After applying Hom(?,0<,Y") to the commutative diagram (see the proof of part 1))

e — 20’>2X _— 20’>1X e Z:O'>0‘>(

e > USQX 4>O’§1X 4>0'§0X

> 052X ——> 051 X —— 050X
we get the commutative diagram

Hom(Ea>0X, quY) —— Hom(Za>1X, GSqY) —_— HOm(EO'>2X, USqY) —_—

Hom(O'S(]X, O'SqY) —_— Hom(a<1X, O'SqY)

Hom(JSQX, USqY) —_—

Hom(X,0<,Y) =———= Hom(X,0<,Y) =———=Hom(X,0<,Y) ———

Hom(cr>0X, O'SqY) —_— Hom(a>1X, USqY)

Hom(0>2X, USqY) —_— .
For p > 0 we have Hom(0,X,0<,Y) = 0 = Hom(X0+,X, 0<,Y), and so the map Hom(o<, X, 0<,Y) —
Hom(X,0<,Y) is an isomorphism. Hence,

Hom(X,Y) = limg>o Hom(X, 0<,Y") = limg>( colimy,>o Hom(o<, X, 0<,Y).

Vv

Proposition 6.4. Assume that each HPA , p € Z, is a finitely generated H° A-module. Then
the functor

RHom(?,S54) : (per A)°? — D(B°P),
which has its image in D~ (B°P), is fully faithful.

Proof. For the first claim it suffices to notice that
HomDA(E_pX, US()A) =0

for X € per A and p > 0, since every object in per A has left bounded homology.
We prove the second claim in several steps.
10



First step: The functor RHom(?,S4) : thick(S4)% — D(BP) is fully faithful. Indeed, we can
do finite dévissage using the fact that the map

RHom(?,S4) : Hompa(Sa, Sa) — Homppger) (B, B)

is an isomorphism.

Second step: preservation of truncation of perfect objects. Here we will use both the weight
structure on DA (see Corollary 5.1) and the canonical weight structure on D(B°P) (see Appen-
dix 1). The truncation triangle for A corresponding to the weight structure of Corollary 5.1
is

050(A) = A — Sa — Xos0(A).
After applying RHom(?,.54) and rotating we gt the triangle
B — RHom(A, S4) — RHom(o>0A, S4) — RHom(S4,%54),

where B € D~ (B°)%¥2% and RHom(0+0A4,S4) € D~ (B°)*<0. If X is an arbitrary perfect
module, then one can prove that RHom(o<,X, S4) belongs to D~ (B°P)¥="P by using part 2)
of Proposition 5.6 together with Remark 10.1, and one can prove that RHom(o>,X,S4) €
D~ (B°P)¥<P by using the orthogonality property of weight structures.

Third step: the claim. Put F = RHom(?,S4). Let X and Y be two objects of per A. Thanks
to Lemma 6.3, Theorem 10.2, step 2 and step 1 of this proof, and Proposition 5.6, we have the
following commutative diagram

Hom(X,Y) Hom(FY, FX)

lim, colim, Hom(o>_,FY, 0> _,FX)

limg colim, Hom(o<, X, 0<,Y) limg colim, Hom(Fo<,Y, Fo<,X)

v

7. REMINDER ON t-STRUCTURES

A t-structure [3] on a triangulated category D is a pair t = (D=, D=9) of strictly full trian-
gulated subcategories of D such that:
1) D=V is closed under ¥ and D=° is closed under X7,
2) Homp(M,~"'N) = 0 for each M € D=0 and N € D=9,
3) for each M € D there exists a triangle in D

M=0 - M — M=t - 2 M=°,
with M=0 € D=0 and %(M=1) € D20,

It is easy to prove that each one of the two subcategories completely determines the other
one in the following sense: an object N € D belongs to D20 (resp. D=Y) if and only if we have

Homp (M, X7IN) =0

for each M € D=V (resp. for each N € D=9).

It is also easy to prove that the triangle above is unique up to a unique isomorphism extending
the identity morphism 1,;. Hence, for each M € D we can make choices of the objects M=?
and M= so that the map M +— M=C underlies a functor (?)<° : D — D= right adjoint to the
inclusion, and the map M + S((X71M)=1) underlies a functor (7)2° : D — D20 left adjoint to
the inclusion.

The heart of t is the full subcategory H(t) of D formed by those objects which are in D=?
and also in D20, It is an abelian category, and the functor

HY:D — H(t), M (M=),
11



which is said to be the 0th homology functor of t, is homological, i.e. takes triangles to long
exact sequences.
A t-structure t = (D=0, D=) is non degenerate if we have

() ="D=0 = {0} = (| ="D>".

neZ neZ

This property implies that an object M of D:

- vanishes if and only if H°(X"M) = 0 for each n € Z,
- belongs to D=0 if and only if H°(X"M) = 0 for n > 0,
- belongs to D=0 if and only if H(X"M) = 0 for n < 0.

The t-structure ¢ is bounded if we have:

U yp0 = p = U »p20,
nez nez

Note that any bounded t-structure ¢ is non degenerate. Indeed, if ¢ is bounded, any object M
is a finite extension of shifts of objects of the form H(X"M), n € Z. But if M € oz ¥"D="
or M € ez 2"D=Y, then we have H’(X"M) = 0 for each n € Z.

A left aisle (resp. right aisle) in a triangulated category D is a full subcategory U containing
a zero object 0 of D, closed under ¥ (resp. Y1), closed under extensions, and such that the
inclusion functor 4 — D admits a right (resp. left) adjoint. We have already mentioned that
if t = (D=Y,D29) is a t-structure on D, then D=L is a left aisle in D and D=V is a right aisle
in D. Moreover, it is proved in [21, §1] that the map (D<=, DZ%) i D=0 underlies a bijection
between the set of t-structures on D and the set of left aisles in D, and similarly for right aisles.
We will refer to D=0 (resp. D=Y) as the left (resp. right) aisle of t.

Example 7.1. It is shown in Appendix 3 that if A is a dg algebra, there exists a t-structure
ta on its unbounded derived category DA such that D20 is formed by those modules whose
ordinary homology is concentrated in non negative degrees, and D=" is formed by those modules

M which fit into a triangles
[Mzi—J[Lzi»M—<]]L.
i>0 i>0 i>0

where L; is an i-fold extension of small coproducts of non negative shifts of A. Therefore, if
A has homology concentrated in non positive degrees, it is not difficult to prove that D=V is
formed by those modules whose ordinary homology is concentrated in non positive degrees.
In this case, if we assume moreover, as we may, that the components of A vanish in strictly
positive degrees, the functors (7)< and (?7)2° are given by the usual intelligent truncations, and
the associated 0th homology functor gives the ordinary homology in degree 0. Therefore, we
say that the t-structure ¢4 is the canonical one. It is a non degenerate t-structure, whose heart
is equivalent to the category of unital right modules over the ring H°(A):

H®: H(ta) = Mod H°(A)

(see for example [22, Lemma 5.2.b)]).

Assume now that A is a dg algebra over a field k, and let us consider the finite-dimensional
derived category DysqA (see § 3). The canonical t-structure on DA restricts to a bounded t-
structure tid on DyqA, whose heart is equivalent to the category of finite-dimensional unital

right modules over the k-algebra HO(A):
H® : H(t7") 5 mod HO(A).

In particular, H(tid) is a length category. If, moreover, H°(A) is finite-dimensional, then ’H(tﬁd)
has a finite number of isoclasses of simple objects.
12



8. APPLICATION TO THE CONSTRUCTION OF t-STRUCTURES

Theorem 8.1. Let k be a commutative associative ring with unit, and let A be a dg k-algebra
such that:

a) HPA =0 for p <0,

b) H°A is a semi-simple k-algebra, and

c) each HPA, p € Z, is a finitely generated H® A-module.
Then the perfect derived category per A admits a bounded t-structure whose left (resp. right)
aisle is the smallest full subcategory containing A and closed under extensions, positive (resp.
negative) shifts and direct summands. Its heart is a length category whose simple objects are
the indecomposable direct summands of A in per A.

Remark 8.2. Suppose k is a field and H°A is isomorphic to a product of copies of k. Then
the theorem follows from Proposition 3.4 of Rickard-Rouquier’s [30] applied to the triangulated
category T = per A and to the set S formed by a system of representatives of the indecomposable
direct factors of A in per A.

Proof. Consider the functor RHom(?,S4) : (DA)°® — D(B°P). Thanks to Proposition 6.4,
we know its restriction to (per A)°P is fully faithful. Notice that the obvious morphism of dg
algebras B — HYB (using the intelligent truncation) and the isomorphism of ordinary algebras
HB — HYA allow us to regard H°A as a dg B-module. Moreover, we have isomorphisms

RHom(A, S4) = Sa<H°A
compatible with the structure of left dg B-modules of RHom(A4,S4) and HYA. Thus
RHom(?,S4) : (per A)°? = thiCkD(Bop)(HoA)

is an equivalence. The picture of the situation is the following:

(DAY~ (per A)°®

RHOm(?,SA)\L l?

D(B°P) < thick(H" A)

Let us consider a full subcategory A of the heart H of the canonical ¢-structure on D(B°P)
formed by those objects with a finite composition series in which the composition factors are
direct summands of H°A. It is not difficult to prove that thick(H%A) is precisely the full
subcategory T of D(B°P) formed by those modules M such that HPM = 0 for almos every
p € Z and HPM € A for each p € Z. With this description it is easy to check that the canonical
t-structure restricts to a t-structure on 7 whose heart is \A. The simple objects of this heart
are given by the simple H% A-modules, i.e. the indecomposable direct summands of HY A, which
corresponds bijectively to the indecomposable direct summands of A. vV

A triangulated category can be recovered from the heart of a bounded ¢-structure by closing
under extensions and shifts. Taking this into account, we have:

Corollary 8.3. Let A be as in Theorem 8.1. Then per A is the smallest full triangulated
subcategory of DA closed under extensions, shifts and containing the indecomposable direct
summands of A .

Remark 8.4. Notice that the simple objects of the heart are also in bijection with the simple
modules over H°(A).

Corollary 8.5. Let A be an algebra as in Theorem 8.1. If we assume moreover that A is formal,
then per(H*A) admits a canonical t-structure whose left (resp. right) aisle is the smallest full
subcategory containing H*A and closed under extensions, positive (resp. negative) shifts and
direct summands. Its heart is a length category whose simples are the indecomposable direct
summands of H*A in per(H*A).
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Remark 8.6. Theorem 8.1 should be compared with a result by O. Schniirer [32] which states
the existence of a canonical t-structure on the perfect derived category of a dg algebra B posi-
tively graded, with BY semi-simple and whose differential vanishes on B?. The main motivation
for Schniirer’s theorem was to prove that certain categories of sheaves, endowed with a perverse
t-structure, are t-equivalent to the perfect derived category of a certain dg algebra B endowed
with a canonical ¢-structure (see [31]). In practice, B is the homology algebra H*A of a formal
dg algebra A satisfying conditions of Theorem 8.1, and so the existence of a canonical t-structure
on per B follows from Theorem 8.1 and Corollary 8.5.

Example 8.7. Let A be a dg algebra over a field k£ such that in each degree its homology is
of finite dimension and vanishes for large degrees. Let Sy, ..., Sy, be a family of perfect
A-modules such that:

0 if i £ 7,
k-lg, ifi=j.
b) Hompa(S;,¥PS;) = 0 for each p < 0.
Then the derived endomorphism dg algebra B = REnd4(@D;_; S;) satisfies the conditions of

Theorem 8.1. Indeed, the homology groups of B vanish in degrees < 0 by condition b) and they
are finite-dimensional and vanish in degrees > 0 because the S; are perfect.

a) HomDA(Si, Sj) =

Non-example 8.8. Here we show that condition b) of our theorem is not redundant. Indeed,
let A be a finite-dimensional algebra of infinite global dimension over a field k. We will show
that per A does not admit a canonical t-structure. Indeed, assume per A admits a t-structure
t such that per(A)'=% is the smallest full subcategory of per A containing A and closed under
extensions, shifts and direct summands. Then, by dévissage, we deduce that per(A4)'=° is the
full subcategory of per A formed by those objects with ordinary homology concentrated in non
negative degrees. On the other hand, it is clear that the objects of per(A)'=Y have ordinary
homology concentrated in non positive degrees. Thus, if P belongs to per A, then in the triangle

P'=0 5 p— PP (PR

the object P only has homology in non positive degrees and the object P!=! only has homol-
ogy in strictly positive degrees. Therefore, this is the triangle for the natural ¢-structure and
so the truncation functors of the given t-structure ¢ on per A coincide with those of the natural
t-structure. It follows that per A is stable under the natural truncation functor P — 7>0P. This
is a contradiction since we may take P = (P, — Py) to be the beginning of a projective resolu-
tion of an A-module of infinite projective dimension. Thus, per A does not admit a canonical
t-structure.

9. APPLICATION TO HEARTS AND SIMPLE-MINDED OBJECTS

Let k& be an algebraically closed field, and let A be a dg k-algebra such that:

1) in each degree its homology is of finite dimension,

2) its homology vanishes for large degrees,

3) A is homologically smooth, i.e. A is a compact object of the unbounded derived category
of dg A-A-bimodules.

Remark 9.1. Note that these conditions are invariant under derived Morita equivalence. The
reader can find the proof of the invariance of condition 3) in [33, Lemma 2.6].

Example 9.2. Let A be an ordinary finite-dimensional algebra over a perfect field k. Then
A is homologically smooth if and only if it has finite global dimension. That the finiteness of
the global dimension is necessary already appeared in Cartan-Eilenberg’s book [9, Proposition
IX.7.6]. That it is a sufficient condition can be proved by using, for example, the ideas of the
proof of [15, Lemma 1.5].
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Example 9.3. We can also take A to be the non complete Ginzburg dg algebra associated to
a Jacobi-finite quiver with potential [14] [22]. The fact that in this case A satisfies condition 3)
has been proved in [17]. That condition 1) also holds has been proved in [2].

Following Rickard (unpublished) and Koenig-Liu [23], we define a family of simple-minded
objects to be a finite family Sy, ..., S, of objects of DyqA such that:

0 if i # 7,
k-1g, ifi=j.
b) Homp4(S;, X!S;) = 0 for each ¢ < 0.
c) DyqA is the smallest full triangulated subcategory of DA containing the objects Sy, ..., S,.

a) HompA(Si, Sj) =

Example 9.4. Let t be a bounded t-structure on D¢yA whose heart H(t) is a length category
with a finite number of isoclasses of simple objects. Then we can take S;, ..., S, to be a
family of representatives of those isoclasses.

Two families S1, ..., S, and S, ..., S., of simple-minded objects of DyqA are equivalent
if they have the same closure under extensions.

Corollary 9.5. Taking representatives of the isoclasses of the simple objects of the heart yields
a bijection between:
1) Bounded t-structrures on DpqA whose heart is a length category with a finite number of
isoclasses of simple objects.
2) Equivalence classes of families of simple-minded objects of Dyq(A).

Proof. First step: from t-structures to simple-minded objects. We have already observed in
Example 9.4 that, from such a t-structure on Dz A, one gets a family of simple-minded objects
of DyqA by considering the simples of the corresponding heart.

Second step: from simple-minded objects to t-structures. Conversely, let S7, ..., S, be a
family of simple-minded objects of DygA. Put S = @)_; S; and B = REnd(S). The adjoint
pair

DA
?®%ST \LRHomA(S,?)

DB
induces mutually quasi-inverse triangle functors

DfdA
?®55T lRHomA(S,?)
per B.

Under these equivalences, the objects S; correspond to the indecomposable direct summands of
B in per B. As noticed in Example 8.7, B satisfies the hypothesis of Theorem 8.1. Therefore,
there exists a bounded ¢-structure on per B whose heart is a length category such that the
indecomposable direct summands of B in per B are the representatives of the isoclasses of
the simple objects. This t-structure is mapped by 7 ®% S to a bounded t-structure on DyqA
whose heart is a length category such that the simple-minded objects we started with are the
representatives of the isoclasses of the simple objects.

Third step: the bijection. By using that a bounded t-structure is completely determined
by its heart (see for example [8, Lemma 2.3]) it is easy to check that steps 1 and 2 define a
bijection. V
Corollary 9.6. Si, ..., S, and S}, ..., S, are two equivalent families of simple-minded
objects of DyqA if and only if r =" and, up to reordering, S; = S;.

Proof. After Corollary 9.5, two equivalent families of simple-minded objects are families of
representatives of the isoclasses of the simple modules of the same length category. Vv
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10. APPENDIX 1: A WEIGHT STRUCTURE FOR NEGATIVE DG ALGEBRAS
Let B be a dg algebra with homology concentrated in non positive degrees. Consider the
following full subcategories of DB:

e D=0 formed by those modules with homology concentrated in non positive degrees,
e D¥Z0 formed by those modules X satisfying Hom(X,Y) = 0 for each Y € D¥<0 =
SDw=0,

Remark 10.1. Note that X?B € D*29 for each p < 0.
The following result is an unbounded analogue of a result by Bondarko, cf. §6 of [7].

Theorem 10.2. 1) The pair (DV<9,D"2%) is a weight structure on DB.
2) DW=V js the smallest full subcategory Susp(B) of DB containing B and closed under
positive shifts, extensions and arbitrary coproducts.
3) For any object X of DB we have X = Mcolim,>po>_pX.
4) For any pair X andY of objects of DB we have

Hom(X,Y") = limy>g colimp>g Hom(o>_, X, 0>_,Y).

Proof. 2) Tt is clear that B € D¥<Y and that D¥<Y is closed under extensions, positive shifts
and arbitrary coproducts. Therefore Susp(B) is contained in D¥<Y. Now, for an object M of
DY<0 we can form a sequence of triangles

By =% M = My — YBy,
Bl—>M0—>M1—>ZB1,

by taking B, = ]_[qu HHom(ZquMp) Y4B and defining B, — M), as the obvious map. This
yields a diagram

M, M, M,
M——sM—> M
Ly Ly Ly

where each L, is a p-fold extension of coproducts of non negative shifts of B. Thanks to Verdier’s
3 x 3 lemma (see [3, Proposition 1.1.11]) we know there exists a triangle

L — M — Mcolim M, — XL,

where L fits in a triangle of the form
Mz == 128 = =] L»-
=20 p>0 p>0
Thus, it is clear that L € Susp(B). On the other hand, for each n > 0 we have
Hom (X" B, Mcolim M,,) = colim Hom(X" B, Mcolim M) = 0
because the morphisms
Hom(X"B, M) — Hom(X" B, M,11)

vanish. Thus Mcolim M, has homology concentrated in degrees > 1. But, in fact, for each n > 1
we have an exact sequence

H"M — H"(Mcolim M) — H" 1L,
where H"M = 0 by hypothesis and H"'L = 0 because B has homology concentrated in non

positive degrees. This proves that Mcolim M,, = 0, and so M = L € Susp(B).
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1) It is clear that D¥<? and D*¥=? are closed under finite coproducts and direct summands. It
is also clear that D¥<? is closed under positive shifts and D*=0 is closed under negative shifts.
The ortohogonality axiom hols by definition of D¥Z°. It remains to prove the existence of a
truncation triangle. Let M be an object of DB. Thanks to [18, §3.1] we can assume that M
has a filtration

0O=MCcMycMyC---CM,_1CM,---CM
in the category CB of dg B-modules such that

F1) M = colim,>0 My,
F2) each M,,_; — M, in an inflation in CB, i.e. it is a degreewise split-injection,
F3) M, /M,_, is a small coproduct of (positive or negative) shifts of B.

Using the fact that B has homology concentrated in non positive degrees, we can form a
commutative square

Ly ——= YL,
M /My — M

where the vertical morphisms are degree-wise split injections and L) (resp. Lg) is the direct
summand of M7 /My (resp. My) formed by the non positive shifts of B. Taking the co-cone L
of L} — XLy we get a morphism of degree-wise split short exact sequences of dg B-modules

Lo I L

L]

My — My — M, /My,

where the vertical arrows are degree-wise split injections. We write Lj = L;/Lg. In this way,
we can form morphisms of degree-wise split short exact sequences of dg B-modules

Ln—l Ln Ln/Lnf 1

o

Mn—l —_— Mn —— Mn/M'rL—l

for each n > 0, where the vertical arrows are degree-wise split injections and L,,/L,_1 is the
direct summand of M,, /M,,_; formed by the non positive shifts of B. This yields a sequence of
degree-wise split short exact sequences of dg B-modules

0= Lfl LO Ll s Lnfl — Ln
0=M_ My M M,—1 — M,
O:N,l NO Ny NnilﬁNn ey

where for each n > 0 there is a morphisms of degree-wise split short exact sequences of dg
B-modules

Mn—l I Mn I Mn/Mn—l

o

Nn,1 Nn Nn/anl
17




where the vertical arrows are degree-wise split surjections and N,,/N,,_1 is the direct summand
of M, /M,_; formed by the positive shifts of B. Write L = colim,>o L, and N = colim;,>¢ Ny,.
The short exact sequence of dg B-modules

0—L—->M-—>N-=0
induces a triangle
L—+M—N—3XL

in DB. Note that L = Mcolim;,>9 L, and N = Mcolim,, N,,. Since D*<0 is closed under small
coproducts, positive shifts and extensions, then N € D¥<?. On the other hand, if Y € D¥<0
then

Hom(L,Y) = lim,>0 Hom(L,,Y) =0,

which proves that L € D%=9.
3) We can construct a commutative diagram as follows:

UZ()X HUZ_lX *)O'E_QX _

Pk

X X X

o

00X —>=0<c 1 X —=0> 292X —— -

which induces a morphism
f : Mcolimpzo O'Z_pX — X.
For each n € Z this yields a morphism
Hn(f) : C0|imp20 Hn(O'Z_pX) — H"X
induced by the commutative diagram
Hn(O'zoX) —— Hn(dzle) —— Hn(O'E,QX) —_— -
lH”(fo) \LHn(fl) lH"(fz)
H'X ———H"X H"X

| | |

H"(00X) —> HW0c 1 X) —= H"(05_3X) —> - -

We deduce that H"(f) is an isomorphism from the fact that almost every map H"(f_,), p >0,
is an isomorphism.
4) Note that we have

Hom(X, Y) = Hom(l\/lcoliquo O'Z_qX, Y) = Iiquo Hom(aZ_qX, Y)
Now for a fix ¢ > 0, we apply Hom(o>_,X,?) to the diagram

0'20Y4>0271Y —>0’272Y —_—

L

Y Y Y

N

0<cgY —=01Y —=0> oY —— ...
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to get the diagram

HOm(O'Z_qX, 0’20Y) —— HOm(UZ_qX, JZ_1Y) —— HOm(UZ_q)(7 O'Z_QY) —_—

| | |

Hom(os_4X,Y) =——— Hom(0>_,X,Y) =——— Hom(o>_,X,Y)

| | |

HOm(O'Z_qX, 0’<0Y) —— HOm(UZ_qX, J<_1Y) —— HOm(JZ_qX, O’>_2Y) —_—

in which Hom(o>_,X,0._,Y) = 0 for p > 0. Thus the induced morphism
colimy>o Hom(o>_¢X,0>_,Y) = Hom(o>_,X,Y)

is an isomorphism. vV

11. APPENDIX 2: MILNOR COLIMITS VERSUS HOMOTOPY COLIMITS

Let D be a triangulated derivator defined on the 2-category of small categories (see [11] and
the notation therein). Let us denote by e the 1-point category. For any small category I, we
will write p: I — e to refer to the unique possible functor. We have an adjoint pair of triangle
functors

D(e)

ol

(1)
and, by definition, if F' € D(I) we say that pF' is the homotopy colimit of F. Sometimes this
will be denoted by hocolim F or I'(F, I).
In this Appendix, we will show that if a triangulated category D is at the base of a triangulated
derivator, then Milnor colimits of sequences of morphisms of D are isomorphic to homotopy

colimits.
The key tool will be the diagram functor (see [11, §1.10]):

dr : D(I) — Hom(I°?,D(e))
(sometimes we shall omit the subscript I). If F' is an object of D(I), we say that d;F' is the
diagram or presheaf associated to F'. Given a presheaf F' € Hom(/°P,D(e)), we say that an
object G € D(I) is lifts F' if d;(G) is isomorphic to F' in Hom(I°P,D(e)).
For each i € I, we denote by 7®1i : D(e) — Hom(I°P,D(e)) the left adjoint of the functor (?);
evaluation at i:

Hom(1°,D(e))

7®z¢ \L(?)i

D(e)
For j € I and X in D(e), we have the canonical isomorphism
(xei);= [ X
Hom(j,7)
Lemma 11.1. For each i in I, the triangle

D(I) —2~ Hom (1, D(e))

i
=

D(e)

commutes up to a canonical isomorphism.



Proof. Recall that by axiom Der4d, for each functor u : J — I and each object j of I, we have
a canonical isomorphism

Ju=pl*,

where the functors are those of the square
J
lu
I

and j\J is the comma-category of pairs (j',u(j') — j). Let us specialize J to e and u to the
inclusion determined by the object ¢ of I. Then we get a canonical isomorphism

H

Ji=pp*,

where now i\J = i\e is the discrete category Hom(j, ) and p the unique functor Hom(j,7) — e.
By axiom Derl, the composition p; p* is the coproduct composed with the diagonal functor. So
for each object X of D(e), we get a canonical isomorphism

(1 X); H X = (X ®1i);.

Hom(j,4)
One checks that these isomorphisms yield a canonical isomorphism as claimed. V
Remark 11.2. For /°°? = N and n € N, the object X ® n is the presheaf
05...20>X535X5x ...,

where the first X appears in position n and by the lemma, the triangle

D(NOP) > Hom(N, D(e))
n,T
7®n
D(e)
commutes up to isomorphism.
Proposition 11.3. 1) Given an object X of Hom(N,D(e)), there exists an object of D(INP)

which lifts X .

2) Given a morphism f : X — X' in Hom(N,D(e)) there exists a morphism f : X — X'
in D(N°P) such that dxov(f) is isomorphic to f.

3) The homotopy colimit of an object X of D(N°P) is isomorphic to the Milnor colimit of
its associated diagram dnor X .

Proof. 1) Step 1: an exact category with global dimension 1. Every additive category can be
endowed with an exact structure by taking as conflations the split exact pairs (see [19] and the
terminology therein). Let us consider D(e) as an exact category in this way, and let us regard
Hom(N,DD(e)) as an exact category with the pointwise split exact structure. Let us calculate a
projective resolution of an arbitrary object of this category. Given an object X of Hom(N, D(e)),
i.e. a sequence of morphisms in D(e)

Xo B X, B X, 58 ..,
we can start the projective resolution by considering the deflation

Py = HXn®n—>X

neN
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defined by using the counit of the adjunctions (? ®n, (?),). It turns out that Hom(N, D(e)) has
global dimension 1. Indeed, in the kernel P; — Py of the former deflation we can take

P= ] Xa®(n+1)
neN

which is a projective object. An explicit diagram might help
0 Xo Xo® Xy

BREEREE

Xo—= X0 X1 — X0 X1 Xg —— -+~

J/ l[a}o 1] \L[wlxo z 1]

Xo—— X, = Xo

Step 2: lifting a projective resolution along the diagram functor. Put
P =[] (n+1(X0)
neN

and

Py=[] m(xn).

neN

For each n € N, let a,, € Hompnop)((n+1)1X,171X) be the image of the identity 1, (x,,) by the
composition of the morphisms

HomD(Nop)(ng (Xn), n (Xn)) :> HomD(e) (Xn, TL*TLI (Xn))
— Hompey (X, (n + 1)"n1(X,,))
= Hompner) (1 + 1)1(X,), 11(X,))
induced by the adjoint pairs (n,n*) and ((n + 1)1, (n + 1)*) and the 2-arrow
(n+1)*
//—”—\
D(e) fiant)* D(NCP)
\_*/

n

coming from the only possible 2-arrow

n+1
e” YariNeP.
\«..____,_/
Consider now the morphism
P55 P
in D(IN°P) determined by
]51 - 150
T [an —(n+1(zn) | T
(n+ 1)i(Xn) n(Xn) & (n+ 1)1(Xng1)

Remark 11.2 tells us that the diagram functor dnor sends @ to u : P, — Py.
Step 3: a triangle over the lifted morphism. Now consider a triangle
ﬁl E} ﬁo — 5(: — Zﬁl
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in D(N°P). For each m € N, after applying the triangle functor m* : D(N°P) — D(e) we get a
triangle
@;n:_ol Xn ﬂ) @nmzo Xn - dN°P (X)m —X @21:_01 Xn

in D(e). Since u,, is a section, dnor (X )y, is the cokernel of u,, and so dnor (X )m = Xpy.
2) Given a morphism f : X — X’ in Hom(IN,D(e)), we can consider as before the projective
resolutions

P4 P =X
and
Pl P X
By using f : X — X’ we can define a morphism g : Py — P making commutative the square
Ph—X
N
Pl——X
and the universal property of the cokernel guarantees the existence of a morphism of conflations
P —+P—=X
N
PP —>X

Thanks to Remark 11.2, we can prove that there exists a commutative square

P — B

in D(IN°P) which is mapped to
P —— P
o
u/
P—F
by dner. The commutative square in D(N°P) can be completed to a morphism of triangles

~ u ~

P1 Po X 2151
i
P~ p X > P

For each m € N, we apply the triangle functor m* and obtain a morphism of triangles

DTy Xy~ B X — (dnov X ) —— S DI Xa

N | |

—_ um - —
D X, > B X, — (dneov X' )y — DI X),

Since both wu,, and wu), are sections, (dNoij )m is the cokernel of u,, and (dNopX " is the

cokernel of u),. Thus, dnep (f)m is isomorphic to fy,.
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3) Given an object X € D(IN°P) we consider a triangle
Y= [ mnX 5 X -3y
neN
where ¢ is defined by using the counit of the adjunctions (ny,n*). For each n € N, let a, €
Hompop) (2 + 1)in* X, nn* X) be the image of the identity 1,,,+x by the composition of the
morphisms
Hompner) (min* X, mn* X') = Homp ) (n* X, n*nin* X)
— Hompey (n* X, (n + 1)* nin* X)
= Hompyer)((n + 1)1n* X, nyn* X)
induced by the adjoint pairs (ny,n*) and ((n + 1), (n + 1)*) and the 2-arrow
(nt1)*
/’V—\
D(e) fiant)* D(NP)
\—//

n*

coming from the only possible 2-arrow
n+1
e /mNop'
~_

n

Consider the morphism

H (n4+1)n*Xx & H nn* X
neN neN
described by

[pen(n + X ——* [oen i X

| e !

(n+1)n*X nn* X @ (n+1)i(n+1)"*X

Since the composition eu vanishes, there exists a morphism ¢ making commutative the diagram

HneN(” +1)n* X

R

HnEN n!n*X X Y

Y

For each m € N, after applying the triangle functor m* we get a triangle

m*Y —— HnGN m*n!n*X *>m*€ m*X —=Xm*Y
By using Remark 11.2 we know that
m
H m'nn*X = @n*X,
neN n=0
and it is easy to check that the nth composite of the morphism m*e is the morphism
() :n*X - m*X

given by the unique 2-arrow



Thus, m*e is a section, with retraction given by
m
[0 ... 0 1 ]t:m*X%@n*X.
n=0
JFrom this, we deduce that the morphism
m
m'Y — @ n*X
n=0

is the kernel of m*e. On the other hand, it is easy to check that the kernel of m*e is m*u.
Therefore, m*p is an isomorphism for each m € N, and the conservative axiom of derivators
(see [11, Definition 1.11]) says that ¢ is an isomorphism. Finally, if we apply the triangle functor
hocolim to the triangle

[Ten(n+1)m*X =[], cnun*X ——> X —= S [,en(n+ 1in*X
we get the triangle

* 1- * . *
HnENn X HU' HnENn X — hocolim X — ZL[nENn X.

The nth composite of ¢ is the composition

(an )" % *
n*X (n+1)"X = [pen "X,
where ! is the only possible 2-arrow
n+1
e /@NOP.
\\——'/

n

Therefore,
hocolim X = Mcolim dnpor X.

If X is an object of Hom(IN,D(e)) given by
XoﬂXngg—)...,
we denote by ¥X the object Hom(N,D(e)) given by

Y X 2K vX, B NX,

If D is a triangulated category and f : X — Y is a morphism in the category Hom(N, D):

Xo X1 Xo
ifo ifl ib

we write Mcolim f to refere to a morphism which fits in a morphism of triangles

1— .
HnEN XTL *O; HnEN XTL — Mcolim XTL —X HnGN X”
iuneN fn iHneN fn iMcolimf i

1— X
HnEN Yo — HnEN Yy —— McolimY,, ——X HneN Yy,
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Corollary 11.4. Let
Xhyszonx
be a diagram in Hom(N,D(e)) such that for each n € N the corresponding diagram
X, 8y, - 7z, > vXx,
is a triangle in D(e). There exists a triangle

Mcolim f

Mcolim X Mcolim Y —— Mcolim Z' —— ¥ Mcolim X
in D(e), where Z' is an object of Hom(IN,D(e)) such that Z| = Z,, for each n € N.

Proof. Part 2) of Proposition 11.3 tells us that there exists a morphism f : X — Y in D(IN°P)
such that dnor(f) = f. Let us complete this morphism to a triangle
X i> Y 575X
in D(N°P). For a natural number n € N the triangle functor n* sends this triangle to a triangle
X, v, 50 Z - X,

which proves that n*Z = Z,. On the other hand, by using part 1) of Proposition 11.3 we get
that the triangle functor hocolim sends the triangle in D(N°P) to a triangle

. Mcolim f
Mcolim X

McolimY — hocolim Z — X Mcolim X.
Finally, part 3) of Proposition 11.3 tells us that
hocolim Z 2 Mcolim dnes (Z).
Vv

12. APPENDIX 3: FROM COMPACT OBJECTS TO #-STRUCTURES

It is well known that from a set S of compact objects of a triangulated category D with small
coproducts one can produce in a natural way an interesting ¢-structure ts. For example, in [4,
Theorem II1.2.3], it is proved that if Vs is the full subcategory of D formed by those objects
Y such that Homp(3™S,Y) = 0 for each n > 0 and each S € S, then Vs is the right aisle of
a t-structure. In fact, this can be deduced from [1, Theorem A.1]. For the convenience of the
reader we will include here the statement and the proof of that theorem:

Theorem 12.1. Let D be a triangulated category with small coproducts, and let S be a set of
compact objects of D. Then:

1) the smallest full subcategory Suspp(S) of D containing S and closed under extensions,
positive shifts and small coproducts is a left aisle,
2) every object X of Suspp(S) fits in a triangle

HXi S X > HEXZ» — HZXi
>0 >0 >0

where X; is an i-fold extension of small coproducts of non negative shifts of objects of

S.
Proof. Let M be an object of D, and let us consider an approximation
PQ — M

of M with respect to the full subcategory of D formed by the small coproducts of non negative
shifts of objects of S. Let us consider a triangle

P M By, = 2R
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and a new approximation
P =Yy
with respect to the same subcategory. By iterating this procedure we get a diagram of the form

MLy, Loy

e

Py P
This diagram yields a diagram
NX —2 s vX, L NX,
YO Yo Yl Y1 Y2
go
M—sM—r M
fo
Py = Xo b X1 i Xo

in which every column is a triangle. The octahedron axiom implies that each X; is an -
fold extension of small coproducts of non negative shifts of objects of S. Now, by using [3,
Proposition 1.1.11] (i.e. , Verdier’s 3 x 3 lemma) we get a diagram

Hizo M Hz‘zo Y; Hizo 2Xj —— X Hizo M
1—shift 1—shift
Hizo M——-s Hizo Y; ano 2Xj—— X Hizo M
M McolimY; X’ XM

)Y HiZO M —X HiZO Yi — X HiZO 2Xi — ¥2 HiZO M

where the columns and rows are triangles. It is clear that 71X’ € Suspp(S). On the other
hand, for each S € S and each n > 0 we have
Homp (XS, Mcolim Y;) 2 colim;eny Homp (X"S,Y;) =0
because the induced morphisms
Homp(X"S,Y;) — Homp(X"S,Yit1)
vanish. v

Of course, one would like to express the objects of the left aisle of s in terms of the objects
of S, for instance as a kind of colimit. In [4, Proposition III.2.6] it is proved that this is the case
when S satisfies a certain vanishing condition. Here we give an alternative proof of this result:

Theorem 12.2. Let D be a triangulated category with small coproducts, and let S be a set of
compact objects in D such that
Homp(S, EnS/) =0
for all S;S" € S and each n > 1. Then every object of Suspp(S) is the Milnor colimit of a
sequence Xg — X1 — Xo — ... where X; is an i-fold extension of small coproducts of non
negative shifts of objects of S.
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Proof. Given M € D we will inductively construct a commutative diagram

Xy L x, X, g>0
\J/ﬂ/
0 Tq
M

such that:

a) X; is an i-fold extension of small coproducts of non negative shifts of objects of S,
b) m; induces a surjection

7/ : Homp (XS, X;) — Homp(X"S, M)
foreach S €S, n>0.

For i = 0 we take Xo = [[ges 150 nomp(sns,ar) XS and the obvious morphism

mo : Xg — M.
Suppose for some i > 0 we have constructed X; and ;. Consider the triangle

C; R X, M — 2C;

induced by m;. Consider Z; = [[gcs 1,50 Hhomp(sns,c,) £ and the obvious morphism

Bi: Z; — Cj.
The triangle

Zi X, X — X7

defines X; 1 up to non unique isomorphism. Note that the surjectivity required for 7TZ~/\+1 comes

from the surjectivity of 7/
Define X, to be the Milnor colimit of the sequence f; , ¢ > 0:

1- P
[Tiso Xi — [Tiso Xi Xoo E]lis0 X

Consider the morphism

9:[7r0 ™ ... ] :HXi—>M.
i>0
Since w41 f; = m; for every i > 0, we have (1 — o) = 0, and so we obtain a morphism
Moo : Xoo — M such that w1 = 6. If we prove that 7, induces an isomorphism

7l Homp(2™S, X)) = Homp(X"S, M)
for every S € S, n > 0, then we have
Homp (X"S, Cone(ms)) = 0
for every S € S, n > 1. For the case n = 0, let us consider the exact sequence
Homp (S, Xoo) — Homp (S, M) — Homp (.S, Cone(ms)) — Homp (S, XX )

Since S is compact, there exists a short exact sequence

[ Homp(S,2X;) — Homp(S, 5 Xo0) — | [ Homp (S, 27 X;)

i>0 i>0

iFrom the hypothesis on the set S and the construction of the objects X; we can deduce that
both the left and the right hand side of the former sequence vanish, and so Homp (S, £ X ) = 0.
Therefore, then we would have

Homp (X"S, Cone(ms)) =0
for every S € §, n > 0. This, by infinite dévissage, implies that
Homp (N, Cone(ms)) = 0

for each N € Susp(S). Hence, we have proved that Suspp(S) is an aisle in D.
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A

Let us prove the required bijectivity for ms..

7l = 0" and the fact that 6" is surjective (thanks to the surjectivity of the m

the compactness of the S € §). Now consider the commutative diagram

(1—0)"

A
[Tis0 Homp (55, X;) =2 [ [ ;50 Homp(2"S, X;) ¥, Homp (57, Xs0) —— 0

K l”g"

Homp (X™S, M)
The map " is surjective since the map

(2(1 = 0))" : [JHomp(£"8,5X;) — [ [ Homp(S"S, £X;)
>0 >0

The surjectivity follows from the identity
17> 0 and

is injective. If we prove that the kernel of #" is contained in the image of (1 — ¢)”, then we

obtain the injectivity of 72, by an easy diagram chase. Let
g = [ go 91 ... ]t:ZnS%HXZ’
i>0
be such that
[m0 m . ][g90 g1 .- }tz77090+7r191+-'-=0-
Notice that there exists an s > 0 such that gs41 = gs+2 = -+ = 0. Then
mogo + -+ msgs =0
implies
Ts(fs—1--- fogo+ fs—1... fig1 + -+ g5) =0
and so the morphism

Js—1-. Jogo+ fs—1.. . fron+ -+ gs
factors through as,:

fs_l...fogo—i-fs_l...flgl—i—-"—i—gs:Oés")/s22nS—>CS—>X5.

By construction of Zs; we have that +, factors through Ss, and so

Js—1-- fogo+ fs—1--. [rg1 + -+ + gs = asfss.

This implies

Jsoo fogo+ fsoo frgr + -+ fsgs = fsasBsEs =0,
since fsasBs = 0 by construction of fs;. Therefore, the morphism

h:xtS — [ X
i>0
with non-vanishing components
S = X — [ X
i>0

induced by

g+t fror fig+ fror o fogo 1 XS = X
with 0 < r < s, satisfies p"(h) = g.

v

In practice, every triangulated category is at the basis of a triangulated derivator (see [10]).
If we assume that our triangulated category D satisfies this property, we can use Appendix 1
to get rid of the extra hypothesis on the set S of compact objects, to simplify the proof of

Theorem 12.2 and to enhance the proof of Theorem 12.1.

Theorem 12.3. Let D be a triangulated derivator, and let S be a set of compact objects of

D(e). Then:

1) the smallest full subcategory Suspp.)(S) of D(e) containing S and closed under exten-

sions, positive shifts and small coproducts is a left aisle,
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2) every object of Suspy ) (S) is the Milnor colimit of a sequence Xo — X1 — Xo — ...
where X; is an i-fold extension of small coproducts of non negative shifts of objects of

S.

Proof. The proof starts as the one of Theorem12.1. Thus, starting from an object M of D(e)
we produce a diagram of the form

DX, e nx, 2L v X,
Yo = V) —2 =Y,
go
M——sM—sNM
fo
Po=Xo X -1 Xy

in which every column is a triangle, each X; is an i-fold extension of small coproducts of non
negative shifts of objects of S and

Homp (X" S, Mcolim Y;) = 0

for each S € § and each n > 0. Let us regard the rows of this diagram as objects X , M and
Y of the category Hom(IN,ID(e)) of presheaves. Thanks to Corollary 11.4 we know that there
exists a triangle

Mcolim X’ — M — McolimY — ¥ Mcolim X’,

where X' € Hom(N, D(e)) is such that Xj = X; for each i > 0. In particular, X; € Suspp.)(S)
for all 4 > 0, which implies that Mcolim X’ € Suspp.)(S).
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