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A REMARK ON
THE GENERALIZED

SMASHING CONJECTURE

Bernhard Keller

Using one of Wodzicki’s examples of H-unital algebras [14] we exhibit
a ring whose derived category contains a smashing subcategory which
is not generated by small objects. This disproves the generalization to
arbitrary triangulated categories of a conjecture due to Ravenel [8, 1.33]
and, originally, Bousfield [2, 3.4].

1. Statement of the conjecture

We refer to [7] for a nicely written analysis of the following
setup: Let S be a triangulated category [13] admitting arbitrary
(set-indexed) coproducts. An object X € S is small if the functor
Hom (X, ?) commutes with arbitrary coproducts. We denote the
full subcategory on the small objects of S by S°. We suppose that
S’ is equivalent to a small category. A full subcategory of S is
localizing if it is a triangulated subcategory in the sense of Verdier
which is closed under forming coproducts with respect to S. We
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suppose that S is generated by S, i.e. coincides with its smallest
localizing subcategory containing S°.

A localizing subcategory R C S is smashing if the inclusion
R — S admits a right adjoint commuting with arbitrary coprod-
ucts. Suppose that R is generated by small objects. Since S°
is equivalent to a small category, the small generators of R may
be assumed to form a set. Hence R is smashing by Brown’s rep-
resentability theorem [3]. The “generalized smashing conjecture”
states the converse (which is disproved below):

Every smashing subcategory is generated by small ob-
jects.

Remarks. a) I thank D. Ravenel for pointing out the following
facts: The “generalized smashing conjecture” is not the generaliza-
tion of Ravenel’s Smashing Conjecture [8, 10.6], but rather of his
conjecture [8, 1.33] due originally to Bousfield [2, 3.4]. This lat-
ter conjecture is now known to be false due to the failure of the
telescope conjecture [8, 10.5]. The proof of this involves very hard
homotopy theory (cf. [10] for an outline of the argument). More
information on the conjectures of [8] is to be found in [9].

b) The quotient functor j* : & — S/R admits a right adjoint
4, iff the inclusion functor i, : R — S admits a right adjoint ', cf.
[13]. One easily checks that in this case, the functor j, commutes
with arbitrary coproducts iff the functor 7' does. This leads to
an equivalent formulation of the smashing conjecture where the
inclusion functor is replaced by the quotient functor.

2. An example

Let A be a ring with unit and DA the (unbounded) derived
category [13] of the category of (right, unitary) A-modules. We
identify A-modules with complexes concentrated in degree 0. The
unbounded derived category was studied in [12],[1],[5]. It has arbi-
trary coproducts. An object of DA is small iff it is isomorphic to
a perfect complex (=finite complex of finitely generated projective
modules) [11]. Moreover, DA is generated by the right A-module
A. Hence § = DA satisfies the above assumptions.

Let I be a two-sided ideal of A and R C DA the localizing
subcategory generated by the right A-module I. Suppose that
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e we have Tor; (A/I,A/I) =0 for all i > 0 and

e the ideal I is contained in the Jacobson radical of A.

Proposition. The subcategory R — DA is smashing but R
contains no non-zero small object of DA.

Note that if I satisfies both conditions and is moreover finitely
generated, then we have I = 0, by Nakayama’s lemma. In particu-
lar, no noetherian ring contains a non-trivial ideal satisfying both
conditions. This is not surprising since at least for a commutative
noetherian ring R the “generalized smashing conjecture” is true,
as follows from the algebraic counterpart [6] of Hopkins—Smith’s
theorem on the classification of thick subcategories [4] (cf. [9] for a
comprehensive account).

Now let k be a field and [ an integer > 2. Consider the (non-
noetherian) algebra

B=k[t,t" # = k[
n=0

l72

and its augmentation ideal J C B, which is generated by ¢, tlil, o,

This algebra is Wozicki’s example 3 of [14, 4.7]. He proved in [loc.
cit.] that J is H-unital. Since B is the augmented algebra obtained
from .J by adjoining a unit, this means that Tor? (k, k) = 0 for all
i > 0 (cf. section 3 of [loc. cit.]). Now let A be the localization of
B at J and let I be the maximal ideal of A. Localization preserves
the vanishing of the Tor and I equals the Jacobson radical of A.
Thus I satisfies both conditions.

3. Proof of the proposition

We keep the assumptions preceding the proposition. We refer
to [12], [1], [5] for the definition and the basic properties of the
unbounded left derived functor @ of the tensor product over A. In
particular, this functor commutes with arbitrary coproducts. The
proposition is immediate from the two following lemmas.

Lemma 1. The functor X — X ®£‘ I s right adjoint to the
inclusion R — & = DA.
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Proof. Let X be an object of DA. Consider the triangle
X®A[—>X—>X®A(A/I)HE(X® I)

We will show that the object X ®£‘ I belongs to R and that the
object X ®@% (A/I) is R-local, i.e. for each object R € R we have
Hom (R, X @Y A/I) = 0. The assertion of the lemma is immediate
from the Hom-sequence associated with the triangle.

For the generator X = A of DA, the object A ®£‘ I =1 clearly
belongs to R. Since ?®£‘I commutes with arbitrary coproducts, the
object X ®£‘ I belongs to R for arbitrary X € DA. Now we claim
that the morphism R ®Ig I — R is invertible for R € R. Indeed,
since 7 ®£ﬂ I commutes with arbitrary coproducts, it is enough to
check this for X = I. By the above triangle, we only have to show
that I ®£‘ A/I = 0. This is clear from the triangle

1&% (A/T) = AJT — (A/T) % (A/1) — =1 &% (A/1)

since the morphism A/I — (A/I) ®@% (A/I) is invertible by the
assumption. To prove that X ® (ﬁl/] is R-local, let R € R and
Y € DA. We have A/I = A/[ (A/I) and thus the morphism
Y ol (A/1) — (v @ (A/1)) ok A/I is invertible as well. Now if
f:R—Y ®% (A/I) is a morphism, then by the diagram

v e/ = (vek(A/n) ek /)
f1 1 f ek (A/D)
R — R &Y (A/T)

we have f = 0 since R®% (A4/I) = 0 by the invertibility of Rk I —
R.

Lemma 2. If R € DA is small and belongs to R, then R = 0.

Proof. We may assume that R is a perfect complex. Since R
belongs to R, the morphism R ®£‘ I — R is invertible (see the
proof of lemma 1). So R ®Y% (4/I) = R ®y4 (A/I) is acyclic.
On the other hand, R ®4 (A/I) is a right bounded complex of
projective A/I-modules. Hence it is null-homotopic. We will de-
duce that R is null-homotopic. We proceed by induction on the
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length of R. If R = R is concentrated in degree 0, then R is a
finitely generated projective A-module with R°® (A/I) = 0. Hence
R° = 0 by Nakayama’s lemma. For general R we may assume that
R =0fori>0. Then d*: R~ — R induces a split surjection
R ® (A/I) — R°® (A/I). Since R~ and R° are finitely gener-
ated projective, Nakayama’s lemma implies that d—* is itself a split
surjection. Therefore R is homotopy equivalent to the truncated
complex

R’:(...R—>Ri+1—>...—>R72—>Kerd_1—>0—>...).

By the induction hypothesis, R’ is null-homotopic.
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