
ON THE LICHTENBAUM-QUILLEN CONJECTUREBRUNO KAHNCNRS { URA 212Math�ematiques { Universit�e de Paris 7Case postale 70122 Place Jussieu75251 Paris Cedex 05FranceABSTRACT. The Lichtenbaum-Quillen conjecture, relating the algebraic K-theory of rings of integers innumber �elds to their �etale cohomology, has been one of the main factors of development of algebraic K-theory in the beginning of the 1980s. Soul�e and Dwyer-Friedlander mapped algebraic K-theory of a ringof integers to its `-adic cohomology by means of a `Chern character', that they proved surjective. Here,on the contrary, we map �etale cohomology to algebraic K-theory, providing a right inverse to these Cherncharacters. This gives a di�erent proof of surjectivity, which avoids Dwyer-Friedlander's use of `secondarytransfer'. The constructions and results of this paper concern a much wider class of rings than rings ofintegers in number �elds.Introduction.It is usual to try and map algebraic K-theory to cohomology theories, for example �etalecohomology. In this paper, we do the opposite: we map �etale cohomology to algebraicK-theory.This approach was initiated in [K1], where we de�ned under certain conditions anti-Chern classes: �i;j : Hj(R;Z=l�(i))! K2i�j(R;Z=l�);for a semi-local ring R in which the prime number l is invertible. Their construction wasthen partly conjectural, depending on results that are now available in [K2] and [K3].Here we construct these anti-Chern classes in cases where the Kato conjecture, relatingMilnor's K-theory to �etale cohomology, is known. More precisely, let R be a commutativesemi-local ring, in which the prime number l is invertible. If l = 2, assume a minor technicalcondition on R, for example that p�1 2 R. In section 2, we construct homomorphisms:�i;0 : H0(R;Z=l�(i))! K2i(R;Z=l�) (i � 0)�i;1 : H1(R;Z=l�(i))! K2i�1(R;Z=l�) (i � 1)Typeset by AMS-TEX 1



for all R, �i;2 : H2(R;Z=l�(i))! K2i�1(R;Zl�) (i � 2)for R of geometric origin (for example a �eld),�i;3 : H3(F;Z=2�(i))! K2i�3(F;Z=2�) (i � 3)for F a �eld,�i;j : Hj(F;Z=l�(i))! K2i�j(F;Z=l�) (i � j; all j � 0; all l 6= charF)for F a higher local �eld in the sense of Kato [Ka]. The direct sum of all these homomor-phisms is then shown to be split injective: this is the main result of the paper.We then consider special cases, among which that of global �elds and their rings ofintegers. If F is a number �eld and OS is its ring of integers localised away from l, we getsplit injections: H2(OS;Zl(i+ 1))! K2i(OS)
Zl;H1(OS;Zl(i))! K2i�1(OS)
Zl:These maps are right inverse to the Chern characterschi+1;2 : K2i(OS)
 Zl ! H2(OS; Zl(i+ 1)) and chi;1 : K2i�1(OS)
 Zl ! H1(OS; Zl(i))de�ned by Soul�e and Dwyer-Friedlander. This provides another proof that the Cherncharacters are surjective. Split surjectivity of chi;1 seems to be new. See below for acomparison of this proof with earlier ones. We prove that H2(OS ;Z=l�(i + 1)) is a directsummand of K2i(OS)=l� , which also seems new.Following the comments of the referee of an earlier version of this paper, I have refrainedfor clarity from giving results that depend on conjectures, except in x6. Yet it is worthpointing out that the (generalised) Kato conjecture, which predicts that the Galois symbols(2.1) below should be isomorphisms for a large class of semi-local rings including �elds, isbelieved to be true by many people. Under this conjecture, the anti-Chern classes �i;j canbe de�ned with no other restriction than i � j, and the split injectivity results can similarlybe proven without other restrictions.Also for clarity, and to keep statements as elementary as possible, I have refrained frommentioning �etale K-theory when not needed, concentrating on results about algebraic K-theory. Yet �etale K-theory is used in an essential way in x3 to prove the split injectivity ofthe anti-Chern classes.This paper is organised as follows. In x1 we de�ne twisted variants of Milnor's K-theory(twisted Milnor K-groups), and map them to algebraic K-theory with coe�cients. Thismove is aimed to make the de�nition of the anti-Chern classes more illuminating here thanin [K1]. In x2 we map the twisted Milnor K-groups to �etale cohomology, and prove thatthese maps are isomorphisms when the Kato conjecture holds. Taking the inverse of theseisomorphisms, we get under the Kato conjecture the anti-Chern classes �i;j above. In x3,we prove that the anti-Chern classes are split, using �etale K-theory. Following a suggestionof Rick Jardine, I organised the proof more methodically here than in [K1], �rst provingthat the E2-terms of the descent spectral sequence for �etale K-theory corresponding to theanti-Chern classes consist of universal cycles, then deducing the splitting.2



In x4, we consider a higher local �eld F of dimension n and prove isomorphisms (for alli � 0):H0(F;Z=l�(i))
H2(F;Z=l�(i+ 1))� � � � �H2s(F;Z=l�(i+ s)) �=�! K2i(F;Z=l�)H1(F;Z=l�(i+1))�H3(F;Z=l�(i+2)� � � ��H2t+1(F;Z=l�(i+ t+1)) �=�! K2i+1(F;Z=l�)where s = min(i; [n2 ]) and t = min(i; [n�12 ]), away from the characteristic p of the �nalresidue �eld of F . This result seems to be new. One can conjecture that these isomorphismsstill hold for l = p, when F is of characteristic 0; consequences of this conjecture areexamined in x6 for n = 1.In x5, we consider global �elds and both globalise and l-adicise the earlier results, gettingback the surjectivity theorems of [DF]. We also observe that Soul�e's l-adic constructionof cyclotomic elements in K-theory factors via the anti-Chern classes through Deligne'sconstruction of cyclotomic elements in �etale cohomology.Finally in x6, we consider a local �eld F of dimension 1. Here, departing from the earlierpractice, we introduce conjectures { with a vengeance. There are 3 conjectures 6.1, 6.2and 6.3. The �rst one is the one mentioned two paragraphs ago: it is equivalent to theLichtenbaum-Quillen conjecture for F . Conjecture 6.2 predicts that the torsion in K2i(F )is �nite (for i = 1 this is a result of Moore, Carroll and Merkurjev), while Conjecture6.3 relates K2i�1(F )ind (de�ned in De�nition 6.1) to Wagoner's Ktop2i�1(F ), extending aconjecture of [K4], x7.This work builds upon earlier work of (among others) Soul�e [So1]{[So4], Dwyer, Friedlan-der, Snaith and Thomason [DFST], Dwyer-Friedlander [DF], Thomason [T], Dwyer, Fried-lander and Mitchell [DFM], Merkurjev-Suslin [MS1]{[MS3] and myself [K1]{[K4]. Con-cerning the surjectivity of Ki(OS) 
 Zl ! K̂�eti (OS), the following remarks are in or-der. In [So1], Soul�e proved that ci;2 : K2i�2(OS ;Z=l�) ! H2(OS ;Z=l�(i)) is surjectivefor any � when l � i by an argument of cohomological dimension, hence that ci;2 :K2i�2(OS) 
 Zl ! H2(OS ;Zl(i)) is surjective. However he could prove surjectivity ofci;1 : K2i�1(OS;Z=l�)! H1(OS;Z=l�(i)) only when OS contains a primitive l�-th root ofunity, thereby barring a direct proof of surjectivity of K2i�1(OS) 
Zl ! H1(OS;Zl(i)).He overcame this di�culty in [So2] by an argument (due originally to Lichtenbaum) us-ing Iwasawa theory. A di�erent argument in [Sch] makes use of Tate's duality theoremsfor Galois cohomology of number �elds. Dwyer and Friedlander then introduced �etale K-theory and proved in [DF], x8 surjectivity of Ki(OS) 
Zl ! K̂�eti (OS) �= H1(OS ;Zl(i))by means of the \secondary transfer". Our proof of surjectivity is simpler in that it doesnot use deep arithmetic theorems like Iwasawa theory or Tate duality, nor a subtle objectlike secondary transfer. (It could however be observed that there is a certain similaritybetween the idea of a secondary transfer and the crucial Lemma 3.2.1 of [K2].) Also itgives a slightly stronger result than the earlier ones in that it produces a functorial split-ting commuting with products and transfer. The word \slightly" is put here because theLichtenbaum-Quillen conjecture predicts in any case that Ki(OS) 
Zl ! K̂�eti (OS) is anisomorphism for all i � 1! On the other hand, it relies on a stable homotopy theory resultof Dwyer-Friedlander-Mitchell [DFM] and Soul�e's theorem that K2i�1(OS) ! K2i�1(F )is injective. In [B], Banaszak observes that the existence of a group-theoretic splitting ofKi(OS)
Zl! K̂�eti (OS) for even i follows from purely group-theoretic considerations.3



Special note for l = 2. At several places, for example in Proposition 1.2 and Theorem 5.1, wemake the restrictive assumption when l = 2 that the ring under consideration either shouldcontain a square root of �1 or have non-zero characteristic. This is due to the fact that, in[K3], the maps �i of [K1], Proposition 1.4 are proven to have good properties only in thetwo special cases above. In fact, these results should hold under the sole assumption thatthe ring is not exceptional (Convention 2 below). Similarly, in x6, there should presumablybe no restriction at all for p = 2.CONVENTIONS1. We �x once and for all a prime number l, which is invertible on all schemes considered.2. A connected scheme X over Z[1=2] is exceptional if the image of its fundamentalgroup in Z�2 by the cyclotomic character is not torsion-free. A scheme X over Z[1=2]is exceptional if one of its connected components is.3. Unless necessary for the understanding, we drop the index �et from �etale cohomologygroups. For an a�ne scheme X = SpecR, we usually write H�(R) for H�(X), andsimilarly for K-theory.4. We call an extension of rings (or a morphism of schemes) l-cyclotomic if it is coveredby an extension (or morphism) corresponding to the adjunction of some l-primaryroots of unity, or is a component of such a covered extension.5. If A is an abelian group and n � 1, nA denotes the n-torsion of A and Aflg itsl-primary torsion.1. Twisted Milnor K-groups.Let F be a �eld of characteristic 6= l. Recall Milnor'sK-groups KMj (F ) = F �
j=<, where <is the subgroup generated by Steinberg relations. If l = 2, assume that F is not exceptional.We de�ne twisted variants of KMj (F )=l�:Let i 2 Zand E=F be the smallest extension such that jH0(E;Z=l�(i))j = l� : this is acyclic l-cyclotomic extension with Galois group G.De�nition 1.1. KMj (i)(F;Z=l�) = (KMj (E)
Z=l�(i))G.In particular, KM0 (1)(F;Z=l�) can be identi�ed to the l��th roots of unity of F andKMj (0)(F;Z=l�) = KMj (F )=l� for all j:(I don't know if there is a reasonable de�nition of KMj (i)(F;Z=l�) when l = 2 and F isexceptional.)Proposition 1.1.a) If � � �, there are natural homomorphisms KMj (i)(F;Z=l�) ! KMj (i)(F;Z=l�) andKMj (i)(F;Z=l�) ! KMj (i)(F;Z=l�), whose composition both ways is multiplicationby l���. These homomorphisms are compatible in a sequence of integers � � � � �.b) KMj (i)(F;Z=l�) is a functor in F .c) Let F 0=F be a �nite extension. Then there are transfers:NF 0=F : KMj (i)(F 0;Z=l�)! KMj (i)(F;Z=l�):4



These transfers are functorial with respect to pull-backs in the sense that they satisfythe double coset formula.d) There are productsKMj (i)(F;Z=l�)
KMj0 (i0)(F;Z=l�)! KMj+j0(i+ i0)(F;Z=l�);extending product in Milnor's K-theory. They are associative, graded commutative(with respect to theK-theory grading), natural in F and satisfy the projection formulawith respect to the product of c).Proof of Proposition 1.1. Wemostly construct the maps of the theorem, leaving functorialityclaims to the reader except to point out non obvious things.a) Let E=F correspond to � and E 0=F correspond to �, so that F � E � E 0. Wede�ne KMj (i)(F;Z=l�)! KMj (i)(F;Z=l�) by taking coinvariants under Gal(E=F ) ofthe composition:KMj (E)
Z=l�(i)! KMj (E 0)
Z=l�(i)! K(E 0)
Z=l�(i)! (KMj (E 0)
Z=l�(i))�;where the �rst map is induced by functoriality, the second one by the inclusionZ=l�(i) ,!Z=l�(i)and � = Gal(E 0=E). Similarly, we de�ne KMj (i)(F;Z=l�) ! KMj (i)(F;Z=l�) bytaking coinvariants of the composition:(KMj (E 0)
Z=l�(i))� ! (KMj (E 0)
Z=l�(i))�kKMj (E 0)� 
Z=l�(i)! KMj (E)
Z=l�(i);where the �rst map is induced by the projection Z=l�(i) � Z=l�(i) and the last oneis induced by transfer in Milnor's K-theory [Ka], x1.7. To check the claim about thecomposition both ways, we may reduce to the case E = F . Then the claim follows fromthe following facts: [E 0 : F ] = l���; the composition KMj (F ) ! KMj (E 0) ! KMj (F )is multiplication by [E 0 : F ]; the composition KMj (E 0)� ! KMj (F ) ! KMj (E 0)� ismultiplication by [E0 : F ].b) Let F ! F 0 be an extension, E 0 = E 
F F 0 (a Galois algebra over F 0) and E1=F 0 bethe extension analogous to E=F for the �eld F 0. Then G = Gal(E=F ) acts on E 0, E 0is a product of copies of E1 which are permuted transitively by G and the stabiliserof one of them is Gal(E1=F 0). By Shapiro's lemma:H0(G;�KMj (E1)
Z=l�(i))= H0(Gal(E1=F 0); KMj (E1)
Z=l�(i)) =: KMj (i)(F 0;Z=l�):We then de�ne KMj (i)(F;Z=l�) ! KMj (i)(F 0;Z=l�) by taking coinvariants under Gof the natural homomorphism KMj (E)
Z=l�(i)! �KMj (E1)
Z=l�(i).5



c) We proceed as in b), taking coinvariants under G of the homomorphism�KMj (E1)
Z=l�(i)! KMj (i)(E;Z=l�)obtained by summing and then applying the Milnor K-theory transfer relative to theextension E1=E.d) Let Ei and Ei0 be the extensions of F used to de�neKMj (i)(F;Z=l�) and KMj (i0)(F;Z=l�).We de�ne the product out of the one in Milnor K-theory so that(NEi=Fx) � (NEi0=F y) = NEi=F (x(NEi0=F y)Ei)for (x; y) 2 KMj (i)(Ei;Z=l�)�KMj0 (i0)(Ei0;Z=l�), and, if F = Ei,x �NEi0=F y = NEi0=F (xEi0y)(this shows that there is exactly one product extending that in Milnor's K-theory andsatisfying the projection formula). �Remark 1.1. By construction of KMj (i), N : KMj (i)(E;Z=l�)G ! KMj (i)(F;Z=l�) is anisomorphism for the extension E=F used to de�ne KMj (i)(F;Z=l�).Proposition 1.2. There exists a collection of homomorphisms�i;mF : KM2i�m(m� i)(F;Z=l�)! Km(F;Z=l�);such that:a) �1;2 : Z=l�(1)G ! K2(F;Z=l�) coincides with the Bott element construction via thehomomorphism Z=l�(1)G !Z=l�(i)G given by the norm (here G = Gal(F (�l� )=F ).b) �m;m is the composite KMm (F )=l� ! Km(F )=l� ! Km(F;Z=l�).c) The homomorphisms �i;mF commute to products, extension of scalars and transfer. Ifl = 2, we must assume that �elds considered either contain p�1 or have nonzerocharacteristic.Proof. We construct the �i;mF in 4 steps:Step 1: the case m = 2i. We must construct a homomorphism �i;2i : Z=l�(i)G !K2i(F;Z=l�). Since F is not exceptional if l = 2, the G-module Z=l�(i) is cohomologicallytrivial and the norm induces an isomorphism Z=l�(i)G ! Z=l�(i)G = H0(F;Z=l�(i)). Wecompose this isomorphism with the map �iF : H0(F;Z=l�(i)) ! K2i(F;Z=l�) de�ned in[K3]. For i = 1, we get the Bott element construction by [K3], Theorem 6.1 (ii).Step 2: the case m = i. In this case, the de�nition is forced by b).Step 3: the case where jH0(F;Z=l�(m � i))j = l� . In this case, we de�ne �i;m as thecomposite:KM2i�m(m� i)(F;Z=l�) = H0(F;Z=l�(m� i))
KM2i�m(F )=l�! K2(m�i)(F;Z=l�)
K2i�m(F;Z=l�) product�! Km(F;Z=l�);6



where the �rst arrow is �m�i;2(m�i) 
 �2i�m;2i�m.Step 4: the general case. Let E=F be the extension used to de�ne KM2i�m(m�i)(F;Z=l�).We de�ne �i;m as the composite:KM2i�m(m� i)(F;Z=l�) = KM2i�m(m� i)(E;Z=l�)G �i;m�! Km(E;Z=l�)G! Km(F;Z=l�)where G = Gal(E=F ) and the last map induced by transfer in K-theory.Property c) is straightforward, in view of the construction of the �i;m and [K3], Theorem6.1. �EXTENSION TO SEMI-LOCAL RINGSIf R is a semi-local ring, its Milnor K-theory is de�ned exactly as for a �eld. However,a transfer is not yet de�ned generally in this larger context: this is probably related tothe fact that the de�nition of Milnor's K-theory by means of Steinberg relations shouldbe modi�ed when a residue �eld of R has too few elements. In particular, a good transfershould exist for the Milnor K-groups as de�ned in a �nite 
at extension of semi-local ringsat least when all their residue �elds are in�nite.In any case, the lack of a transfer causes that some of the de�nitions and constructionsof Proposition 1.1 and 1.2 only carry out partially for semi-local rings. So,a) In Proposition 1.1, the de�nition of the morphism KMm (i)(R;Z=l�)! KMm (i)(R;Z=l�)for � requires the existence of a transfer. Similarly (and obviously) do c) and theprojection formula in d). On the contrary, and in spite of the appearances, de�nitionof the product does not use the existence of a transfer: the two formulas used in itsde�nition and involving transfer could be translated without it (but would becomevery clumsy).b) Similarly in Proposition 1.2, the homomorphisms �i;m do not commute to an unde�nedtransfer. But they don't need transfer in Milnor's K-theory to be de�ned (transfer isused in algebraic K-theory only).Note that, for m � 2, transfer exists in Milnor's K-theory of rings with many units(in particular semi-local rings with in�nite residue �elds) as it coincides with its algebraicK-theory in this range [vdK].2. Anti-Chern classes.Let R be a commutative semi-local ring in which l is invertible. Kummer theory andcup-product in �etale cohomology de�ne homomorphisms (the Galois symbols):(2.1) uj : KMj (R)=l� ! Hj(R;Z=l�(m)):In many cases, uj is known to be an isomorphism. The following theorem collects some ofthese cases. See [K2], (0.6) for a more extensive list of such examples.7



Theorem 2.1. uj is an isomorphism in the following cases:a) (classical) j = 1, any l, any R.b) ([MS1], [Su], [L]) j = 2, any l, R is a �eld, a semi-local ring of geometric origin or asemi-localisation of a ring of integers of a number �eld.c) ([R], [MS2]) j = 3, l = 2, R is a �eld.d) [Ka] R is a \higher local �eld" in the sense of Kato, any j, any l.It has been announced by Rost that u4 is an isomorphism for l = 2 and any �eld.In this section we construct homomorphisms �i;j : Hj(R;Z=l�(i))! K2i�j(R;Z=l�) forcertain pairs j � i (depending on the nature of R) along the lines of [K1], using [K2] andthe constructions of section 1.For all j � i there is a natural homomorphism(2.2) ui;j : KMj (i)(R;Z=l�)! Hj(R;Z=l�(i+ j))de�ned by the composition:KMj (i)(R;Z=l�) = (KMj (S)
Z=l�(i))G! (Hj(S;Z=l�(j))
Z=l�(i))G= (Hj(S;Z=l�(i+ j))G ! Hj(R;Z=l�(i+ j));where the �rst arrow is induced by the Galois symbol uj and the second one by corestrictionin cohomology. Note that we don't use a transfer in Milnor'sK-theory, so the ui;j are de�nedfor any semi-local ring.Theorem 2.2. Let R be a semi-local ring; if l = 2, assume that R is not exceptional. Thenui;j is an isomorphism in the following cases:a) j = 1, any l, any R.b) j = 2, any l, R is a �eld, a semi-local ring of geometric origin or a semi-localisationof a ring of integers of a number �eld.c) j = 3, l = 2, R is a non-exceptional �eld.d) R is a \higher local �eld" in the sense of Kato, any j, any l.Proof By [K2], Theorem 1 (2), in the said cases the corestriction (Hj(S;Z=l�(i + j))G !Hj(R;Z=l�(i + j)) is an isomorphism. Theorem 2.2 follows from this, Theorem 2.1 andRemark 1.1. �Remark 2.1. Note that, in all the cases of Theorem 2.2, there is a transfer de�ned onMilnor's K-groups (compare end of x1). So the problems about transfer outlined at theend of x1 do not arise in these cases.De�nition 2.1. Let j � i. In the cases a)-d) of Theorem 2.2, the (i; j)-th anti-Chern class�i;j is the composition:Hj(R;Z=l�(i)) (ui�j;j )�1�! KMj (i� j)(R;Z=l�) �i;2i�j�! K2i�j(R;Z=l�):8



Theorem 2.3. The anti-Chern classes of de�nition 2.1 are natural in R and commute withproduct and transfer in �etale cohomology and K-theory.In other words, they satisfy properties (i) - (iv) of Conjecture 3 in [K1].3. Injectivity of the anti-Chern classes.The aim of this section is to prove:Theorem 3.1. Under the conditions of De�nition 2.1, for any m � 0 the direct sum ofthe anti-Chern classes �i;2i�m for i � m and2i�m � 1 in case a) of Theorem 2.2,2i�m � 2 in case b) of Theorem 2.2,2i�m � 3 in case c) of Theorem 2.2,2i�m � cdl(F ) in case d) of Theorem 2.2,is split injective.Proof (compare [K1], proof of Theorem 4 b)). We use the �etale K-theory of [DF]. Recall(loc:cit:) that to any scheme X over Z[1=l] one associates abelian groups K�etm(X;Z=l�)(m 2Z; � � 1), such that:(i) the theory X 7! K�et� (X;Z=l�) is endowed with a graded product when l� > 2, iscontravariant in X for arbitrary morphisms and covariant (\transfer") for �nite mor-phisms;(ii) there is a natural transformation K�(�;Z=l�)! K�et� (�;Z=l�), which commutes withproducts and transfer;(iii) for X of �nite l-cohomological dimension, there is a strongly convergent spectralsequence Epq2 (X;Z=l�)) K�et�p�q(X;Z=l�), withEpq2 (X;Z=l�) = � Hp(X�et;Z=l�(�q=2)) if p � 0 and q is even, � 00 otherwise.This spectral sequence is endowed with products, contravariant in X for arbitrary mor-phisms and covariant for �nite morphisms in a way compatible with the correspondingproperties of the abutment [DF]. (Note: we use the standard \cohomological" indexing ofspectral sequences as in [Q3], x8, not the Bous�eld-Kan indexing as in [DF].)De�nition 3.1. We call the spectral sequence of (iii) above the descent spectral sequencefor the �etale K-theory of X .Lemma 3.1. Let R and j be as in Theorem 2.2 a), b), c), d). Assume that R has �nitel-cohomological dimension. Then, all the elements of Ejq2 (R;Z=l�) are universal cycles forany q � �2j.Proof In �ve steps: 9



1) j = 0. Consider the composition:(3.1) H0(R;Z=l�(i)) �iR�! K2i(R;Z=l�)! K�et2i(R;Z=l�)! E0;�2i2 (R;Z=l�) = H0(R;Z=l�(i));where �iR is the map constructed in [K3] and K�et2i (R;Z=l�) ! E0i2 (R;Z=l�) is theedge homomorphism of the descent spectral sequence for �etale K-theory of R. In[K3], Theorem 6.1 (v), it is proven that �iR is a section of a natural map chi;0 :K2i(R;Z=l�) ! H0(R;Z=l�(i)). It is proven in [K1], Lemma. 2.1 a) that chi;0factors as the composite K2i(R;Z=l�) ! K�et2i(R;Z=l�) ! E0;�2i2 (R;Z=l�) in (3.1).It follows that the composition (3.1) is the identity. In particular, K�et2i(R;Z=l�) !E0;�2i2 (R;Z=l�) is surjective and E0:�2i2 (R;Z=l�) consists entirely of universal cycles.2) j = 1, q = �2. Consider the composition:H1(R;Z=l�(1)) = K1(R)=l� ! K1(R;Z=l�)! K�et1 (R;Z=l�)(3.2) ! E1;�22 (R;Z=l�) = H1(R;Z=l�(1));where the �rst equality is Theorem 2.1 a) (Kummer theory) and the homomorphismK�et1 (R;Z=l�)! E1;�22 (R;Z=l�)is an \edge homomorphism" coming from the fact thatE0;�12 (R;Z=l�) = 0. It is shownin [K1], Lemma 2.1 b), that this composition is the identity. Thus E1;�22 (R;Z=l�)consists entirely of universal cycles.3) q = �2j. In the cases of Theorem 2.2, the cup-productH1(R;Z=l�(1))
j ! Hj(R;Z=l�(j))is surjective. Since the descent spectral sequence is multiplicative, it follows thatEj;�2i2 (R;Z=l�) consists entirely of universal cycles.4) q = �2(i+ j), k � 0 such that H0(R;Z=l�(i)) has order l� . Trivially, the productE0;�2i2 (R;Z=l�)
 Ej;�2j2 (R;Z=l�) = H0(R;Z=l�(i))
Hj(R;Z=l�(j))! Hj(R;Z=l�(i+ j)) = Ej;�2(i+j)2 (R;Z=l�)is bijective. By 2) and 3) Ej;�2(i+j)2 (R;Z=l�) consists entirely of universal cycles, sincethe descent spectral sequence is multiplicative.5) The general case. Consider i and j as in 4). Let S=R be the smallest �etale extensionsuch that the �etale sheaf Z=l�(i) becomes constant over S, and G = Gal(S=R). By[K2], Theorem 1 (2), the corestriction (Hj(S;Z=l�(i+ j))G ! Hj(R;Z=l�(i+ j)) isan isomorphism. Since the descent spectral sequence is compatible with transfer, by4) Ej;�2(i+j)2 (R;Z=l�) consists entirely of universal cycles. �Let F jK�et� (X;Z=l�) be the �ltration de�ned on K�et� (X;Z=l�) by the descent spectralsequence. 10



Lemma 3.2. Under the hypothesis of Lemma 3.1, the image of the compositionHj(R;Z=l�(i)) �i;j�! K2i�j(R;Z=l�)! K�et2i�j(R;Z=l�)is contained in F jK�et2i�j(R;Z=l�).Proof. By the same method as in Lemma 3.1, we reduce to the special cases j = 0 andi = j = 1. In both cases the lemma is trivial, because K�et2i(R;Z=l�) = F 0K�et2i(R;Z=l�) andK�et1 (R;Z=l�) = F 1K�et1 (R;Z=l�). �Proof of Theorem 3.1. By a direct limit argument (compare [K2], (3.2), Proposition 3.2.1),we reduce to the case where R has �nite cohomological dimension. Then it su�ces to showthat, for all (i; j), the compositionHj(R;Z=l�(i)) �i;j�! K2i�j(R;Z=l�)! F jK�et2i�j(R;Z=l�)! Ej;�2i1 (R;Z=l�) = Ej;�2i2 (R;Z=l�) = Hj(R;Z=l�(i))is the identity. This is checked as in Lemmas 3.1 and 3.2 by reduction to the special casesj = 0 and i = j = 1. These special cases have already been seen in steps 1) and 2) of theproof of Lemma 3.1. �Remark 3.1. Let us record here that the proof of Theorem 3.1 produces \Chern characters"chi;2i�m : Km(R;Z=l�) ! H2i�m(R;Z=l�(i)), for the same values of (i;m) as in Theorem3.1, which are left inverse to the �i;2i�m. They are de�ned �rst when R has �nite l-cohomological dimension, using the descent spectral sequence for �etale K-theory, then ingeneral by writing R as a direct limit of semi-local rings of �nite l-cohomological dimension.Remark 3.2. I don't know if, in the descent spectral sequence for the �etale K-theory con-sidered in [DF], Ejq2 (R;Z=l�) consists of universal cycles for �2j � q � 0. But if one usesthe unbounded below version of �etale K-theory Ktop� (R;Z=l�) as in [T], one can extend theconstruction of �i;j to values of i smaller than j, as classes with values in Ktop� (R;Z=l�),and prove that Ejq2 consists of universal cycles for all q 2 Zin the corresponding descentspectral sequence. See [K1] for details.Theorem 3.2. For any scheme X over Z[1=l],a) H0(X;Z=l�(i)) is a direct summand of K2i(X;Z=l�) for all i � 0;b) H1(X;Z=l�(i)) is a direct summand of H0(XZar;K2i�1(Z=l�)) for all i � 1, whereK2i�1(Z=l�) denotes the Zariski sheaf associated to the presheaf U 7! K2i�1(U;Z=l�).Proof. a) has already been seen in [K3], Theorem 6.1 (v). For b), we can globalise the localanti-Chern classes �i;1 into�i;1X : H1(X;Z=l�(i)) = H0(XZar;H1(Z=l�(i)))! H0(XZar;K2i�1(Z=l�));where H1(Z=l�(i)) denotes the Zariski sheaf associated to �etale cohomology. Composingwith the globalisation of the Chern character chi;1 of Remark 3.1, we get the identity. �11



4. Higher local �elds.Let F be a higher local �eld in the sense of Kato [Ka]. By de�nition, there is a chain of�elds F0; : : : ; Fn = F such that: F0 is a �nite �eld; For 1 � r � n, Fr is complete for adiscrete valuation, with residue �eld Fr�1.We call n the dimension of F and charF0 its essential residue characteristic. Let l 6=charF . It follows from x3 that, for all i � 0, there are split injections (given by theanti-Chern classes of x2):(4.1) H0(F;Z=l�(i))�H2(F;Z=l�(i+ 1))� � � � �H2s(F;Z=l�(i+ s))! K2i(F;Z=l�)(4.2)H1(F;Z=l�(i+ 1))�H3(F;Z=l�(i+ 2))� � � ��H2t+1(F;Z=l�(i+ t+ 1))! K2i+1(F;Z=l�)where s = min(i; �n2�) and t = min(i; �n�12 �). In this section, we prove:Theorem 4.1. Assume that l is not the essential residue characteristic of F . Then theinjections (4.1) and (4.2) are isomorphisms.Proof. For any scheme X , let F jK�(X;Z=l�) denote the �ltration induced on K�(X;Z=l�)by the �ltration on �etale K-theory and the map K�(X;Z=l�)! K�et� (X;Z=l�).Lemma 4.1. For all m � 0, Fm+1Km(F;Z=l�) = 0.Lemma 4.1 implies Theorem 4.1, since by Lemmas 3.1 and 3.2 the compositions of(4.1) and (4.2) with Km(F;Z=l�) ! K�etm(R;Z=l�) ! K�etm(R;Z=l�)=Fm+1K�etm(R;Z=l�) areisomorphisms.Proof of Lemma 4.1. By induction on n = dimF . For n = 0, this follows from Quillen'scomputation of the K-theory of �nite �elds [Q1]. Assume n > 0 and that Lemma 4.1 istrue for Fn�1 . By [Su], Corollary 3.11, there is for all m � 0 an exact sequence:(4.3) 0! Km(Fn�1 ;Z=l�)! Km(F;Z=l�)! Km�1(Fn�1;Z=l�)! 0:There are corresponding exact sequences for �etale K-theory and Galois cohomology, andone can show that they are compatible with the comparison maps and descent spectralsequences. It follows that (4.3) induces for all j � m a zero-sequence:0! F jKm(Fn�1;Z=l�)! F jKm(F;Z=l�) @�! F j�1Km�1(Fn�1;Z=l�)! 0:By assumption on Fn�1, the left and right terms are 0 for j = m+1, so it is enough to showthat this sequence is exact at the middle term for any j. Let x 2 F jKm(F;Z=l�) be such that@x = 0. By Suslin's theorem, x comes fromKm(Fn�1;Z=l�) and we have to see that it lies inF jKm(Fn�1;Z=l�). But let � be a prime element of F : then f�g �x 2 F j+1Km+1(F;Z=l�)and @(f�g � x) = x 2 F jKm(Fn�1;Z=l�). �12



5. Global �elds.Theorem 5.1. Let A be a Dedekind domain with quotient �eld a global �eld. Assume thatl is invertible in A and, if l = 2, that either p�1 2 A or that A has nonzero characteristic.Then, for any i � 1, there is a split injection:�i;0 � �i+1;2 : H0(A;Z=l�(i))�H2(A;Z=l�(i+ 1))! K2i(A;Z=l�)which commutes with products, change of rings and transfer. If A is �nitely generated overZ, there is a split injection H2(A;Zl(i+ 1))! K2i(A)
Zl which commutes with changeof rings and transfer. It is right inverse to the Chern character chi+1;2 : K2i(A) 
Zl !H2(A;Zl(i+ 1)) constructed in [DF].Note. Theorem 5.1 is wrong for a complete curve over a �nite �eld.Proof. The map �i;0 : H0(A;Z=l�(i)) ! K2i(A;Z=l�) is already constructed in [K3]. BySoul�e's theorem, the second Chern class K2(A)=l� ! H2(A;Z=l�(2)) is an isomorphism forall � ([So1], Lemma 10; [K4], app. 2). Moreover, the descent theorem of [K2], Theorem 1(2) holds trivially for H2 even though A is \global" because cdl(A) = 2. (Here we are usingthat SpecA is not complete.) Therefore, we get global anti-Chern classes�i+1;2 : H2(A;Z=l�(i+ 1))! K2i(A;Z=l�)in the same way as in x2. Split injectivity is proven exactly as in x3.To go to the in�nite level, we pass to the limit on �i+1;2, getting a map:lim �H2(A;Z=l�(i+ 1))! lim �K2i(A;Z=l�):By the hypothesis on A, H1(A;Z=l�(i+ 1)) is �nite for all � and the surjectionH2(A;Zl(i+ 1))! lim �H2(A;Z=l�(i+ 1))is bijective. Similarly, �nite generation of K�(A) ([Q2], [Gr]) and the exact sequences0! K2i(A)=l� ! K2i(A;Z=l�)! l�K2i�1(A)! 0yield an isomorphism K2i(A)
Zl �=�! lim �K2i(A;Z=l�). Hence the above map translatesas: H2(A;Zl(i+ 1))! K2i(A)
Zl:The last claim follows from Theorem 3.1. �Remark 5.1. Of course, the splitting of Theorem 5.1 also commutes with products in alge-braic and �etale K-theories at the in�nite level. But this statement is empty: the productin the l-adic cohomology of A is trivial, since cdl(A) = 2. The Quillen-Lichtenbaum con-jecture therefore predicts that algebraic K-theory products K2i(A)�K2j(A)! K2(i+j)(A)are 0 (away from 2 in case A is exceptional). Similarly, it predicts that products K2i(A)�K2j�1(A)! K2(i+j)�1(A) are 0. Can one prove these vanishings directly?Here is a re�nement of Theorem 5.1: 13



Theorem 5.2. The map �i+1;2 : H2(A;Z=l�(i+1))! K2i(A;Z=l�) lands into K2i(A)=l�.The same holds replacing A by any integrally closed subring of Q (in characteristic 0) orFq(t) (in positive characteristic).Proof. The �rst claim is a consequence of the following commutative diagram:H2(A;Zl(i+ 1)) ����! K2i(A)
Zl??y ??yH2(A;Z=l�(i+ 1)) ����! K2i(A;Z=l�)and the observation that i) the left vertical map is surjective (because cdl(A) = 2) and ii)the right vertical map factors through K2i(A)=l� (because lim � l�K2i�1(A) = 0 by Quillen's�nite generation theorem). The second claim follows by taking a direct limit. �Remark 5.2. The proof of this in [K1], Remark 4.2, in the positive characteristic case, isabsurd for i > 2 (resp. correct for i = 2).The following corollary seems new:Corollary 5.1. The compositionK2i(A)=l� chi+1;2�! K2i(A;Z=l�)! H2(A;Z=l�(i+ 1))is split surjective for all i � 0 and � � 1.Remark 5.3. Theorem 5.2 is deep. If F is a �eld of cohomological dimension 2 that is notcontained in Q or Fq(t), the compositeH2(F;Z=l�(i+ 1))! K2i(F;Z=l�)! l�K2i�1(F )is not zero in general for i > 1. Indeed, in positive characteristic or if trdeg(F=Q) � 2,F contains two elements t1; t2 which are algebraically independent over the prime �eld.Assume that F contains a primitive l�-th root of unity �. Taking i = 2 and� = (t1) � (t2) � [�] 2 H2(F;Z=l�(3));where (ti) 2 H1(F;Z=l�(1)) and [�] 2 H0(F;Z=l�(1)), the image of � in l�K3(F ) isft1; t2; �g, which is in general nonzero (eg. F = k(t1; t2), k algebraically closed). Onecan produce a similar counterexample in characteristic zero for a �nitely generated �eld oftranscendance degree 1 over Q. In the arithmetic case, as the proof shows, Theorem 5.2 istrue for �niteness reasons.Theorem 5.3. Under the hypotheses of Theorem 5.1, the local anti-Chern classes �i;1globalise as split injections �i;1 : H1(A;Z=l�(i))! K2i�1(A;Z=l�)(i � 1). They yield splitinjections H1(A;Zl(i))! K2i�1(A)
Zl. All these splittings commute to change of ringsand transfer. They are right inverse to the Chern characterschi;1 : K2i�1(A)
Zl! H1(A;Zl(i))14



constructed in [DF]. The l-adic splittings for odd and even K-groups of Theorem 5.1 andthis theorem commute to products.Proof. To construct �i;1 at a �nite level, it su�ces by Theorem 3.2 to observe thatK2i�1(A;Z=l�)! H0(AZar;K2i�1(Z=l�))is bijective. Surjectivity is obvious for dimension reasons, and injectivity follows fromSoul�e's theorem that K2i�1(A;Z=l�)! K2i�1(F;Z=l�)is injective, where F is the quotient �eld of A ([So1], Theorem 3, [So4], proof of Theorem1). The claims about functoriality and products follow from Theorem 2.3. The l-adic casefollows as in the proof of Theorem 5.1 from a passage to the limit. �Remark 5.5. Assume that charF = 0, A = OF [1=l], let An = A[�ln ] andE = lim �(An)�=(An)�ln :In [So2], Lemma 1 and [So3], (4.3), Soul�e de�nes and studies a mapE(i� 1)G S�! K2i�1(A)
Zlfor any i � 2. Deligne [D] studies a similar mapE(i� 1)G D�! H1(A;Zl(i)):In [So3] it is observed that D = chi;1 � S. For the same reason, one sees easily thatS = �i;1 �D. This gives a slightly more precise information on the maps S and D (whichare isomorphisms modulo �nite groups).6. Local �elds.Let F be a �nite extension of Qp. Recall from Theorem 4.1 that, for l 6= p, the anti-Chernclasses of x2 yield isomorphismsH1(F;Z=l�(i)) �=�! K2i�1(F;Z=l�)and H0(F;Z=l�(i))�H2(F;Z=l�(i+ 1)) �=�! K2i(F;Z=l�):Assume that F contains a square root of �1 if p = 2. By Remark 3.1, the followingconjecture is equivalent to the "Lichtenbaum-Quillen" conjecture for the local �eld F .15



Conjecture 6.1. The split injections of Theorem 3.1:�i+1;1 : H1(F;Z=l�(i+ 1))! K2i+1(F;Z=l�)�i;0 � �i+1;2 : H0(F;Z=l�(i))�H2(F;Z=l�(i+ 1))! K2i(F;Z=l�)are isomorphisms even when l = p.This conjecture holds for i = 0 and 1 by [MS1], [MS3], [Le]. It is not impossible thatPanin's theorem [Pa] be su�cient to prove it, using syntomic cohomology, however I don'tknow how to do this.In this section we look at consequences of Conjecture 6.1. Set d = [F : Qp].We compare algebraic and topological K-theory, as in [K4], x7. Recall from [W] thetopological or p-adic K-theory of F , Ktop� (F ). There is a natural homomorphism �� :K�(F )! Ktop� (F ). The following are basic results of Wagoner.Proposition 6.0. [W] For i even, Ktopi (F ) is �nite. For i odd and > 1, it is the direct sumof Ki(k) and a �nitely generated Zp-module of rank d = [F : Qp], where k is the residue�eld of F . For i = 1, it is isomorphic to the pro�nite completion of F �.Proposition 6.1. (Wagoner). For all i � 0, Ktopi (F ) �=�! lim �Ki(F;Z=n).Proof. By [K4], proof of Theorem 7.2, there are exact sequences:0! Ktopi (F )=n! Ki(F;Z=n)! nKtopi�1(F )! 0:Since, by [W], Ktopi (F ) is the direct sum of a �nite group and a �nitely generated Zp-module, Proposition 6.1 follows. �Corollary 6.1. For all i � 1, the maps �i;1 and �i+1;2 of x2 induce split injections �̂i;1 :H1(F; Ẑ(i)) ! Ktop2i�1(F ) and �̂i+1;2 : H2(F; Ẑ(i + 1)) ! Ktop2i (F ), with �nite p-primarycokernel. Under Conjecture 6.1, they are isomorphisms.Proof. In view of Theorem 3.1, the split injections just come from Proposition 6.1 andthe inverse limit over n � 1 of the maps �i;1 and �i+1;2 for K-theory and cohomologymodulo n (note that Ki(F;Z=n) is �nite for all n, i by [Pa]). By Theorem 4.1, �i;1 is anisomorphism when n is prime to p, hence Coker �̂i;1 is a Zp-module. Its �niteness followsfrom Proposition 6.0 and the fact that H1(F;Zp(i)) hasZp-rank d if i > 1 and d+1 if i = 1(compare [Sch], Satz 4 ii)). Similarly, �i;0 � �i+1;2 is an isomorphism for n prime to p byTheorem 4.1. Since H0(F; Ẑ(i)) = 0 for i 6= 0, it follows similarly that Coker �̂i+1;2 is aZp-module, �nite by Proposition 6.0. The last claim is obvious. �Variant. For all i � 0, there is a split surjection with �nite p-primary kernelKtopi (F )!Yl K̂�eti (F )lwhere l runs through all primes and K̂�eti (F )l denotes the l-adic �etale K-theory of [DF].Under Conjecture 6.1, it is an isomorphism.Proof. As the K�eti (F;Z=n) are �nite, Ql K̂�eti (F )l ! lim �K�eti (F;Z=n) is an isomorphism. �Remark 6.1. By Tate duality, H2(F; Ẑ(i+ 1)) is canonically isomorphic to H0(F;Q=Z(i)).Therefore, under Conjecture 6.1, Ktop2i (F ) should be isomorphic to H0(F;Q=Z(i)) (and is,away from p).We now study the comparison maps �i : Ki(F )! Ktopi (F ).16



Proposition 6.2. For all i > 0, Ker �i is divisible without torsion prime to p. For i odd,it is uniquely divisible. For i even, �i is surjective.Proof. By [K4], Theorem 7.2, for all i Ker �i is divisible, Coker �i is torsion-free andthere is a canonical isomorphism Coker �i 
Q=Z �=�! (Ker �i�1)tors. By Proposition 6.0,for i even Ktopi (F ) is �nite and for i odd Ktopi (F ) 
 Ql=Zl = 0 for l 6= p; Proposition 6.2follows. �Corollary 6.2. For i even > 0, Ki(F ) is the direct sum of the �nite group Ktopi (F ) and adivisible group Di without torsion prime to p. K2i�1(F )tors is �nite and its prime-to-p partis isomorphic to the prime-to-p part ofH0(F;Q=Z(i)). If Conjecture 6.1 holds, K2i�1(F )torsis isomorphic to H0(F;Q=Z(i)).Remark 6.2. A reformulation of Corollaries 6.1 and 6.2, under Conjecture 6.1, is an exactsequence, for all n:0! H0(F;Z=n(i))! K2i�1(F ) n�! K2i�1(F )! H1(F;Z=n(i))! K2i�2(F ) n�! K2i�2(F )! H2(F;Z=n(i))! 0:These exact sequences exist at least when n is prime to p.Proposition 6.3. For all i � 0, corank(K2i(F )fpg) + corank(K2i+1(F )
Qp=Zp) = d.Proof. By [K4], proof of Theorem 7.2, there is an exact sequence:0! K2i�1(F )
Qp=Zp! Ktop2i�1(F )
Qp=Zp! K2i�2(F )fpg ! Ktop2i�2(F )fpg ! 0:Proposition 6.3 follows from this exact sequence and Proposition 6.0. �The following conjecture was proved by Merkurjev [Me] for i = 1.Conjecture 6.2. For all i � 0, corank(K2i(F )fpg) = 0.We now re�ne the map �i, for i odd, under Conjecture 6.1, just as in [K4], Lemma 7.1.The following de�nes indecomposable algebraic K-theory of odd degree.De�nition 6.1. For a �eld K and an integer i � 1, we let K2i�1(K)ind = K2i�1(K)=<;where < is the subgroup of K2i�1(K) generated by the NL=K(K1(L) �K2i�2(L)), where Lruns through all �nite extensions of K and NL=K is the transfer in algebraic K-theory.Proposition 6.4. Under Conjecture 6.1, the homomorphism �2i�1 factors as�2i�1 : K2i�1(F )ind ! Ktop2i�1(F ):Proof. Considering the commutative diagramK1(F )
K2i�2(F ) ����! K2i�1(F )??y ??yK1(F )
Ktop2i�2(F ) ����! Ktop2i�1(F )??y ??yK1(F; Ẑ)
K2i�2(F; Ẑ) ����! K2i�1(F; Ẑ)17



it is enough, in view of Proposition 6.1, to prove that the productK1(F; Ẑ)
K2i�2(F; Ẑ)! K2i�1(F; Ẑ)is identically 0 under Conjecture 6.1 (then we may use the transfer). But there is anothercommutative diagram:H1(F; Ẑ(1))
H2(F; Ẑ(i)) ����! H3(F; Ẑ(i+ 1))�1;1
�2;i??y �3;i+1??yK1(F; Ẑ)
K2i�2(F; Ẑ) ����! K2i�1(F; Ẑ):By Conjecture 6.1, the left vertical map is an isomorphism, and by cohomological dimensionH3(F; Ẑ(i + 1)) = 0. This proves that the product is 0. (Is there a proof independent ofConjecture 6.1?)Lemma 6.1. (compare Corollary 5.1). Let chi;2 : K2i�2(F;Z=n)! H2(F;Z=n(i)) be theChern character of Remark 3.1. Then the compositionK2i�2(F )=n chi;2�! K2i�2(F;Z=n)! H2(F;Z=n(i))is surjective for all i > 0 and n � 1.Proof. It su�ces to show that �i;2 : H2(F;Z=n(i)) ! K2i�2(F;Z=n) factors throughK2i�2(F )=n. Let F0 be the algebraic closure of Q in F . Since F0 and F have the sameabsolute Galois group, the natural mapH2(F0;Z=n(i))! H2(F; Z=n(i)) is an isomorphism.By Theorem 5.2, H2(F0;Z=n(i))! K2i�2(F0;Z=n) factors through K2i�2(F0)=n; thereforethe same is true for F . �Lemma 6.2. Ker (K2i�1(F )! K2i�1(F )ind) is divisible.Proof. Let E=F be a �nite extension: then NE=F : K2i�2(E) ! K2i�2(F ) is onto. Thisfollows from the commutative diagram (where n = [E : F ])K2i�2(E)=n ����! H2(E;Z=n(i))N??y Cor??yK2i�2(F )=n ����! H2(F;Z=n(i))in which the horizontal maps are surjective by Lemma 6.1 and Cor is surjective by coho-mological dimension. Let (x; y) 2 K1(F ) � K2i�2(F ), n � 1 and E = F ( npx). Choosez 2 K2i�2(E) such that N(z) = y. Then, by the projection formula, x � y = nNE=F (� � z),where � 2 E� satis�es �n = x. This proves the claim. �Proposition 6.5. Under Conjecture 6.1, the compositeH0(F;Q=Z(i))! K2i�1(F )tors ! (K2i�1(F )ind)torsis an isomorphism.This follows from Corollary 6.2 and Lemma 6.2.18



Proposition 6.6. We assume Conjecture 6.1. It follows that Ker �2i�1 is uniquely divis-ible and Coker �2i�1 is torsion-free, without cotorsion prime to p. If Conjecture 6.2 holds,Coker �2i�1 is uniquely divisible.Proof. Obviously, �2i�1 and �2i�1 have the same cokernel, hence the second claim, observ-ing that Conjecture 6.2 implies that K2i�1(F ) 
 Qp=Zp and Ktop2i�1(F ) 
 Qp=Zp have thesame corank. Since Ker �2i�1 is divisible, Ker �2i�1 is divisible as well; its torsion is con-tained in (K2i�1(F )ind)tors. But the latter is �nite by Proposition 6.5; therefore Ker �2i�1is torsion-free. �Just as in [K4], we propose a last conjecture on �2i�1. As in op. cit., x7, one de�nesrelative groups: K2i�1(A;M)ind = Ker (K2i�1(F )ind ! K2i�1(k));Ktop2i�1(A;M) = Ker (Ktop2i�1(A)K2i�1(k));where A is the valuation ring of F , M its maximal ideal and the �rst reduction mapis de�ned in the same way as for i = 2 in loc. cit. Similarly, K2i�1(A;M)ind is nat-urally a Z(p)-module, where Z(p) is the localisation of Zat p, and �2i�1 induces a map�2i�1 : K2i�1(A;M)ind ! Ktop2i�1(A;M) with uniquely divisible kernel and cokernel underConjectures 6.1 and 6.2. Let Zh(p) be the henselisation of Z(p).Conjecture 6.3. The map �2i�1 : K2i�1(A;M)ind ! Ktop2i�1(A;M) is injective; thereexists on K2i�1(A;M)ind a natural structure of a Zh(p)-module for which it is �nitely gen-erated; moreover, �2i�1 induces an isomorphism:K2i�1(A;M)ind 
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