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ABSTRACT. The Lichtenbaum-Quillen conjecture, relating the algebraic K-theory of rings of integers in
number fields to their étale cohomology, has been one of the main factors of development of algebraic K-
theory in the beginning of the 1980s. Soulé and Dwyer-Friedlander mapped algebraic K-theory of a ring
of integers to its f-adic cohomology by means of a ‘Chern character’; that they proved surjective. Here,
on the contrary, we map étale cohomology to algebraic K-theory, providing a right inverse to these Chern
characters. This gives a different proof of surjectivity, which avoids Dwyer-Friedlander’s use of ‘secondary
transfer’. The constructions and results of this paper concern a much wider class of rings than rings of

integers in number fields.

Introduction.

It is usual to try and map algebraic K-theory to cohomology theories, for example étale
cohomology. In this paper, we do the opposite: we map étale cohomology to algebraic
K-theory.

This approach was initiated in [K1], where we defined under certain conditions anti-
Chern classes:

B9 HI(R, L) — Ko j(RZJ1),

for a semi-local ring R in which the prime number [ is invertible. Their construction was
then partly conjectural, depending on results that are now available in [K2] and [K3].
Here we construct these anti-Chern classes in cases where the Kato conjecture, relating
Milnor’s K-theory to étale cohomology, is known. More precisely, let R be a commutative
semi-local ring, in which the prime number [ is invertible. If [ = 2, assume a minor technical
condition on R, for example that /=1 € R. In section 2, we construct homomorphisms:

B30 HOY (R, ZJ1(i)) — Kyi(R,Z/1Y) (i >0)
Bt HY R, Z)1(1)) — Koy _1(R,ZJ1") (i > 1)
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for all R, ‘
B9 H*(R,ZJ1"(7)) — Koi_1(R,Z1") (i > 2)

for R of geometric origin (for example a field),
B0 HY (P, 2/2"(i)) — Kyi—s(F,Z/2") (i > 3)
for F' a field,
B HI(FZ)17(i) — Ko ;(F,Z/1Y) (i >3, all j > 0,alll # charF)

for F' a higher local field in the sense of Kato [Ka]. The direct sum of all these homomor-
phisms is then shown to be split injective: this is the main result of the paper.

We then consider special cases, among which that of global fields and their rings of
integers. If F'is a number field and Og is its ring of integers localised away from [, we get
split injections:

H*(0s,Zy(i+ 1)) — K2(0s5) @ Zy,
Hl(Os, Zl(l)) — ](22‘_1(05) R 7.

These maps are right inverse to the Chern characters
ChH_LQ : ](22‘(05) ® L — H2(05, Zl(l + 1)) and Chi71 : ](22‘_1(05) ® L — Hl(Os, Zl(l))

defined by Soulé and Dwyer-Friedlander. This provides another proof that the Chern
characters are surjective. Split surjectivity of ch;; seems to be new. See below for a
comparison of this proof with earlier ones. We prove that H*(Og,Z/l1"(i + 1)) is a direct
summand of K;(Og)/l”, which also seems new.

Following the comments of the referee of an earlier version of this paper, I have refrained
for clarity from giving results that depend on conjectures, except in §6. Yet it is worth
pointing out that the (generalised) Kato conjecture, which predicts that the Galois symbols
(2.1) below should be isomorphisms for a large class of semi-local rings including fields, is
believed to be true by many people. Under this conjecture, the anti-Chern classes 3"/ can
be defined with no other restriction than ¢ > 7, and the split injectivity results can similarly
be proven without other restrictions.

Also for clarity, and to keep statements as elementary as possible, I have refrained from
mentioning étale K-theory when not needed, concentrating on results about algebraic K-
theory. Yet étale K-theory is used in an essential way in §3 to prove the split injectivity of
the anti-Chern classes.

This paper is organised as follows. In §1 we define twisted variants of Milnor’s K-theory
(twisted Milnor K-groups), and map them to algebraic K-theory with coefficients. This
move is aimed to make the definition of the anti-Chern classes more illuminating here than
in [K1]. In §2 we map the twisted Milnor K-groups to étale cohomology, and prove that
these maps are isomorphisms when the Kato conjecture holds. Taking the inverse of these
isomorphisms, we get under the Kato conjecture the anti-Chern classes 3%/ above. In §3,
we prove that the anti-Chern classes are split, using étale K-theory. Following a suggestion
of Rick Jardine, I organised the proof more methodically here than in [K1], first proving
that the Fj-terms of the descent spectral sequence for étale K-theory corresponding to the
anti-Chern classes consist of universal cycles, then deducing the splitting.
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In §4, we consider a higher local field F' of dimension n and prove isomorphisms (for all
i >0):

HYF,ZJ1"(0)) @ HHF,Z) (i + 1) & - ® H?(F,Z)1"(i + 5)) — Kqi( F,Z/1")

HYF,Z)1Gi+ 1) ® HY(F,Z) 1P+ 2) B - & HYNE, 21+t + 1)) — Koipr(F,Z)17)

where s = min(i,[5]) and t = min(z, [”T_l]), away from the characteristic p of the final
residue field of F. This result seems to be new. One can conjecture that these isomorphisms
still hold for I = p, when F is of characteristic 0; consequences of this conjecture are
examined in §6 for n = 1.

In §5, we consider global fields and both globalise and /-adicise the earlier results, getting
back the surjectivity theorems of [DF]. We also observe that Soulé’s [-adic construction
of cyclotomic elements in K-theory factors via the anti-Chern classes through Deligne’s
construction of cyclotomic elements in étale cohomology.

Finally in §6, we consider a local field I of dimension 1. Here, departing from the earlier
practice, we introduce conjectures — with a vengeance. There are 3 conjectures 6.1, 6.2
and 6.3. The first one is the one mentioned two paragraphs ago: it is equivalent to the
Lichtenbaum-Quillen conjecture for F'. Conjecture 6.2 predicts that the torsion in Kq;(F)
is finite (for + = 1 this is a result of Moore, Carroll and Merkurjev), while Conjecture
6.3 relates Ko;_y(F)inq (defined in Definition 6.1) to Wagoner’s Kio% (F), extending a
conjecture of [K4], §7.

This work builds upon earlier work of (among others) Soulé [Sol]-[So4], Dwyer, Friedlan-
der, Snaith and Thomason [DFST], Dwyer-Friedlander [DF], Thomason [T], Dwyer, Fried-
lander and Mitchell [DFM], Merkurjev-Suslin [MS1]-[MS3] and myself [K1]-[K4]. Con-
cerning the surjectivity of K;(Og) @ Z; — K{(Os), the following remarks are in or-
der. In [Sol], Soulé proved that ¢;2 : K2;—2(0g,Z/1") — H?*(Os,Z/1"(i)) is surjective
for any v when [ > ¢ by an argument of cohomological dimension, hence that c¢;, :
Ky 2(05) @ Zy — H*(Og,Z(7)) is surjective. However he could prove surjectivity of
ci1: K2i—1(0s,Z/1") — HY(Ogs,Z/1"(7)) only when Og contains a primitive {“-th root of
unity, thereby barring a direct proof of surjectivity of Ky;_1(0s) @ Z; — HY(Og,Z(1)).
He overcame this difficulty in [So2] by an argument (due originally to Lichtenbaum) us-
ing Iwasawa theory. A different argument in [Sch] makes use of Tate’s duality theorems
for Galois cohomology of number fields. Dwyer and Friedlander then introduced étale K-
theory and proved in [DF], §8 surjectivity of K;(Os) ® Z; — K{H(Os) = HY(Og,Z(i))
by means of the “secondary transfer”. Our proof of surjectivity is simpler in that it does
not use deep arithmetic theorems like Iwasawa theory or Tate duality, nor a subtle object
like secondary transfer. (It could however be observed that there is a certain similarity
between the idea of a secondary transfer and the crucial Lemma 3.2.1 of [K2].) Also it
gives a slightly stronger result than the earlier ones in that it produces a functorial split-
ting commuting with products and transfer. The word “slightly” is put here because the
Lichtenbaum-Quillen conjecture predicts in any case that K;(Os) ® Z; — K(Og) is an
isomorphism for all 7 > 1! On the other hand, it relies on a stable homotopy theory result
of Dwyer-Friedlander-Mitchell [DFM] and Soulé’s theorem that Ky;_1(Og) — Kai—1(F)
is injective. In [B], Banaszak observes that the existence of a group-theoretic splitting of
Ki(0g) @ Z; — K¢(Og) for even i follows from purely group-theoretic considerations.

3



Special note forl = 2. At several places, for example in Proposition 1.2 and Theorem 5.1, we
make the restrictive assumption when [ = 2 that the ring under consideration either should
contain a square root of —1 or have non-zero characteristic. This is due to the fact that, in
[K3], the maps 3¢ of [K1], Proposition 1.4 are proven to have good properties only in the
two special cases above. In fact, these results should hold under the sole assumption that
the ring is not exceptional (Convention 2 below). Similarly, in §6, there should presumably
be no restriction at all for p = 2.

CONVENTIONS

1. We fix once and for all a prime number [, which is invertible on all schemes considered.

2. A connected scheme X over Z[1/2] is exceptional if the image of its fundamental
group in Z3 by the cyclotomic character is not torsion-free. A scheme X over Z[1/2]
is exceptional if one of its connected components is.

3. Unless necessary for the understanding, we drop the index ét from étale cohomology
groups. For an affine scheme X = SpecR, we usually write H*(R) for H*(X), and
similarly for K-theory.

4. We call an extension of rings (or a morphism of schemes) [-cyclotomic if it is covered
by an extension (or morphism) corresponding to the adjunction of some [-primary
roots of unity, or is a component of such a covered extension.

5. If A is an abelian group and n > 1, ,A denotes the n-torsion of A and A{l} its
[-primary torsion.

1. Twisted Milnor K-groups.

Let I be a field of characteristic # [. Recall Milnor’s K-groups KM (F) = F*®/ /R, where R
is the subgroup generated by Steinberg relations. If [ = 2, assume that F is not exceptional.
We define twisted variants of KM (F)/1":

Let ¢ € Z and E/F be the smallest extension such that |H°(E,Z/I(i))| = [“: this is a
cyclic [-cyclotomic extension with Galois group G.

Definition 1.1. KM(i)(F,Z/1") = (KM(E) @ Z/1"(i))q-
In particular, KM (1)(F,Z/1*) can be identified to the [¥—th roots of unity of F and
KM0)(F,Z/1Y) = KM(F)/1” for all j.

(I don’t know if there is a reasonable definition of K (:)(F,Z/1") when [ = 2 and F is
exceptional.)

Proposition 1.1.
a) If p < v, there are natural homomorphisms KM (i)(F,Z/1") — KM (i)(F,Z/1") and
KM)(F,Z/1") — KM(i)(F,Z/1"), whose composition both ways is multiplication
by l¥=#. These homomorphisms are compatible in a sequence of integers A < p < v.
b) KM(i)(F,Z/1") is a functor in F.
c) Let '/ F be a finite extension. Then there are transfers:

Npip : KO (F L Z)1Y) — KM(G)(F,Z)1Y).
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d)

These transfers are functorial with respect to pull-backs in the sense that they satisfy
the double coset formula.
There are products

KM@(F, 21 @ KN (YF,Z/1) — KX+ i)(F,Z/17),
extending product in Milnor’s K-theory. They are associative, graded commutative

(with respect to the K -theory grading), natural in I' and satisfy the projection formula
with respect to the product of ¢).

Proof of Proposition 1.1. We mostly construct the maps of the theorem, leaving functoriality
claims to the reader except to point out non obvious things.

a)

Let E/F correspond to g and E'/F correspond to v, so that ¥ C E C FE'. We
define KM (i)(F,Z/1") — KM(:)(F,Z/1") by taking coinvariants under Gal(E/F) of
the composition:

- M - - M - - vy - M vy
K (E)QZ[/I"(1) — K; (E"YQRZJ)I"i) — K(E")YQZ/)I"(i) — (K (E"NYQZ](D))a,
where the first map is induced by functoriality, the second one by the inclusion

ZJM10) — Z]1"(7)

and A = Gal(E'/E). Similarly, we define KM (i)(F,Z/1") — KM (i)(F,Z/1*) by

taking coinvariants of the composition:

(B (BN @Z/1(0)a — (KM(E") @ Z/1(i))a
|
KM(E"Ya @ Z/1"() — KM(E) @ Z/1"(i),

J

where the first map is induced by the projection Z/I"(¢) — Z/I*(i) and the last one
is induced by transfer in Milnor’s K-theory [Kal, §1.7. To check the claim about the
composition both ways, we may reduce to the case £ = F. Then the claim follows from
the following facts: [E' : F] = [¥~#; the composition KM (F) — KM(E') — KM(F)
is multiplication by [E' : F]; the composition KM(E")a — KM(F) — KM(E') is
multiplication by [E': F].

Let F' — F' be an extension, &' = FX ®@p F' (a Galois algebra over F') and Eq/F' be
the extension analogous to E/F for the field F'. Then ¢ = Gal(E/F) acts on E', E’
is a product of copies of Fq which are permuted transitively by G and the stabiliser
of one of them is Gal(E;/F"). By Shapiro’s lemma:

Ho(G, &K M (Ey) @ Z/1"(i))
= Ho(Gal(Ey/F'), KM(Ey) @ Z/1"(i)) =: KM (i)(F',Z/1").

We then define KM(i)(F,Z/1¥) — KM(i)(F',Z/1”) by taking coinvariants under G
of the natural homomorphism KM (E)® Z/1"(i) — @K M(Ey) @ Z/1°(i).
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¢) We proceed as in b), taking coinvariants under G of the homomorphism
SKM(E) @ Z/1°(i) — KM(i)(E,Z/1")

obtained by summing and then applying the Milnor K-theory transfer relative to the
extension Fy/FE.

d) Let F; and F; be the extensions of I used to define
KM(i)(F,Z/1") and KM(i")(F,Z/1").
We define the product out of the one in Milnor K-theory so that
(Ng,yre) (Ng,/ry) = Ng,yr(2(NEg, /rY)E,)
for (z,y) € K]]'V[(i)(Ei,Z/l”) X K]].\,/[(i')(Ei:,Z/l”), and, if F' = F;,

-Ng,/ry = Ng,/r(2E,Y)

(this shows that there is exactly one product extending that in Milnor’s K-theory and
satisfying the projection formula). O

Remark 1.1. By construction of KM (i), N : KM(i)(E,Z/l")g — KM(i)(F,Z/1") is an
isomorphism for the extension £/F used to define KM (i)(F,Z/1").

Proposition 1.2. There exists a collection of homomorphisms
ng™ s KM (m = O)(F,ZJ1Y) — K (F,Z/1"),

such that:

a) nt? L Z/1"(1)g — K3(F,Z/1") coincides with the Bott element construction via the
homomorphism Z/1"(1)g — Z/1*(i)S given by the norm (here G = Gal(F(up)/F).

b) ™™ is the composite KM (F)/1¥ — K,,(F)/I* — K. ,(F,Z/I").

¢) The homomorphisms n%m commute to products, extension of scalars and transfer. If
[ = 2, we must assume that fields considered either contain \/—1 or have nonzero
characteristic.

Proof. We construct the n%m in 4 steps:

Step 1: the case m = 2i. We must construct a homomorphism n%%* : Z/I¥(i)g —
Ky (F,Z/l”). Since F is not exceptional if [ = 2, the G-module Z/I¥(7) is cohomologically
trivial and the norm induces an isomorphism Z/I*(i)g — Z/1"(1)% = H(F,Z/1"(7)). We
compose this isomorphism with the map 8% : HO(F,Z/1"(i)) — Kq(F,Z/1") defined in
[K3]. For i = 1, we get the Bott element construction by [K3], Theorem 6.1 (ii).

Step 2: the case m = ¢. In this case, the definition is forced by b).

Step 3: the case where |HO(F,Z/l"(m — i))| = [*. In this case, we define n"™ as the
composite:

KX (m—i)(F,Z)1")= H(F,Z/1"(m —i)) @ K3, (F)/l”

product
—

= Koty (FLZ]1") @ Ko (F,Z]17) K.(FZ]1Y),
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where the first arrow is 5™~ H2(m—1) g p2i—m2i—m

Step 4: the general case. Let I//F be the extension used to define K37 (m—i)(F,Z/1).
We define "™ as the composite:

KM (m—i)\(F,2/1") = KX (m =B, Z)1) e ™ K(E, 21 )

2i—m

— Kn(F,Z)1")

where G = Glal(E/F') and the last map induced by transfer in K-theory.

Property c) is straightforward, in view of the construction of the n*™ and [K3], Theorem
6.1. O

EXTENSION TO SEMI-LOCAL RINGS

If R is a semi-local ring, its Milnor K-theory is defined exactly as for a field. However,
a transfer is not yet defined generally in this larger context: this is probably related to
the fact that the definition of Milnor’s K-theory by means of Steinberg relations should
be modified when a residue field of R has too few elements. In particular, a good transfer
should exist for the Milnor K-groups as defined in a finite flat extension of semi-local rings
at least when all their residue fields are infinite.

In any case, the lack of a transfer causes that some of the definitions and constructions

of Proposition 1.1 and 1.2 only carry out partially for semi-local rings. So,

a) In Proposition 1.1, the definition of the morphism K2 (i)(R,Z/1¥) — KM (i)(R,Z/1")
for v requires the existence of a transfer. Similarly (and obviously) do c¢) and the
projection formula in d). On the contrary, and in spite of the appearances, definition
of the product does not use the existence of a transfer: the two formulas used in its
definition and involving transfer could be translated without it (but would become
very clumsy).

b) Similarly in Proposition 1.2, the homomorphisms %™ do not commute to an undefined
transfer. But they don’t need transfer in Milnor’s K-theory to be defined (transfer is
used in algebraic K-theory only).

Note that, for m < 2, transfer exists in Milnor’s K-theory of rings with many units
(in particular semi-local rings with infinite residue fields) as it coincides with its algebraic
K -theory in this range [vdK].

2. Anti-Chern classes.

Let R be a commutative semi-local ring in which [ is invertible. Kummer theory and
cup-product in étale cohomology define homomorphisms (the Galois symbols):

(2.1) w KM(R)/1Y — HY(R,Z/1"(m)).

In many cases, u/ is known to be an isomorphism. The following theorem collects some of
these cases. See [K2], (0.6) for a more extensive list of such examples.

7



Theorem 2.1. u/ is an isomorphism in the following cases:
a) (classical) j = 1, any [, any R.
b) ([MS1], [Su], [L]) j = 2, any |, R is a field, a semi-local ring of geometric origin or a
semi-localisation of a ring of integers of a number field.
c) ([R], [MS2])j =3,1=2, R is a field.
d) [Ka] R is a “higher local field” in the sense of Kato, any j, any [.

It has been announced by Rost that u* is an isomorphism for [ = 2 and any field.

In this section we construct homomorphisms 349 : H/(R,Z /(1)) — Ka;—;j(R,Z/1") for
certain pairs j < ¢ (depending on the nature of R) along the lines of [K1], using [K2] and
the constructions of section 1.

For all j <7 there is a natural homomorphism

(2.2) ul  KM()(R,Z)1Y) — HI (R, Z/1"(i + j))
defined by the composition:
KM ()R, Z/17) = (K}(S) @ Z/1"())g — (HI(S, Z/1"(7)) © Z/I"(i)

= (H/(S,Z/I"(i 4+ j))a — H (R, Z]I"(i + j)),

where the first arrow is induced by the Galois symbol u/ and the second one by corestriction
in cohomology. Note that we don’t use a transfer in Milnor’s K -theory, so the u*/ are defined
for any semi-local ring.

Theorem 2.2. Let R be a semi-local ring; if | = 2, assume that R is not exceptional. Then
u'’ is an isomorphism in the following cases:

a) j=1,anyl, any R.

b) j =2, anyl, R is a field, a semi-local ring of geometric origin or a semi-localisation
of a ring of integers of a number field.

c) j=3,1=2, R is a non-exceptional field.

d) R is a “higher local field” in the sense of Kato, any j, any [.

Proof By [K2], Theorem 1 (2), in the said cases the corestriction (H7(S,Z/1"(i + j))a —
HI(R,Z/1"(i + j)) is an isomorphism. Theorem 2.2 follows from this, Theorem 2.1 and
Remark 1.1. O

Remark 2.1. Note that, in all the cases of Theorem 2.2, there is a transfer defined on
Milnor’s K-groups (compare end of §1). So the problems about transfer outlined at the
end of §1 do not arise in these cases.

Definition 2.1. Let j <. In the cases a)-d) of Theorem 2.2, the (¢, j)-th anti-Chern class

£ is the composition:

(ui—j,j)—l

Hi(R,Z/()) =2 KM= YR ZN) " Kl j(RZI).



Theorem 2.3. The anti-Chern classes of definition 2.1 are natural in R and commute with
product and transfer in étale cohomology and K -theory.

In other words, they satisfy properties (i) - (iv) of Conjecture 3 in [K1].

3. Injectivity of the anti-Chern classes.

The aim of this section is to prove:

Theorem 3.1. Under the conditions of Definition 2.1, for any m > 0 the direct sum of
the anti-Chern classes 39%=™ for i < m and

2t —m < 1 in case a) of Theorem 2.2,
2t —m < 2 in case b) of Theorem 2.2,
2t —m < 3 in case ¢) of Theorem 2.2,

2t —m < ¢d)(F) in case d) of Theorem 2.2,

is split injective.

Proof (compare [K1], proof of Theorem 4 b)). We use the étale K-theory of [DF]. Recall
(loc.cit.) that to any scheme X over Z[1/l] one associates abelian groups K5 (X,Z/1*)
(m € Z,v > 1), such that:

(i) the theory X — K&(X,Z/l") is endowed with a graded product when ¥ > 2, is
contravariant in X for arbitrary morphisms and covariant (“transfer”) for finite mor-
phisms;

(i) there is a natural transformation K.(—,Z/l*) — K& (—,Z/1"), which commutes with
products and transfer;

(iii) for X of finite [-cohomological dimension, there is a strongly convergent spectral
sequence FY(X,Z/1") = K¢ _ (X,Z/1"), with

EPYX. 7)) = { HP( X, Z]l"(—q/2)) if p>0andqiseven, <0

otherwise.

This spectral sequence is endowed with products, contravariant in X for arbitrary mor-
phisms and covariant for finite morphisms in a way compatible with the corresponding
properties of the abutment [DF]. (Note: we use the standard “cohomological” indexing of
spectral sequences as in [Q3], §8, not the Bousfield-Kan indexing as in [DF].)

Definition 3.1. We call the spectral sequence of (iii) above the descent spectral sequence
for the étale K-theory of X.

Lemma 3.1. Let R and j be as in Theorem 2.2 a), b), c), d). Assume that R has finite
I-cohomological dimension. Then, all the elements of EJ*(R,Z/1") are universal cycles for
any ¢ < —2j.

Proof In five steps:



1)

2)

5)

j = 0. Consider the composition:

(3.1) HOR, ZJ1"(0) 22 Ko R, 2)1Y) — KEHR,Z1Y)
— E9T(R,Z/1Y) = HY(R,Z/1" (1)),

where 3% is the map constructed in [K3] and K$/(R,Z/1") — EY(R,Z/1") is the
edge homomorphism of the descent spectral sequence for étale K-theory of R. In
[K3], Theorem 6.1 (v), it is proven that §% is a section of a natural map ch;g :
Ky(R,ZJ1") — H(R,Z/1"(i)). Tt is proven in [K1], Lemma. 2.1 a) that ch;g
factors as the composite Kyi(R,Z/1¥) — KSR, Z/1¥) — ES™*(R,Z/1*) in (3.1).
It follows that the composition (3.1) is the identity. In particular, K¢{(R,Z/l") —
EY 7 (R,Z/1") is surjective and ES- "2 (R,Z/1”) consists entirely of universal cycles.

j =1, ¢=—2. Consider the composition:

(3.2) HY(R,Z/1"(1)) = K1(R)/I" — K{(R,Z/I") — K{{(R,Z/1")
— Ey "3 (R,ZJ1Y) = HYR,Z/1*(1)),

where the first equality is Theorem 2.1 a) (Kummer theory) and the homomorphism
K{'(R,Z[1") — By (R ZJ1)

is an “edge homomorphism” coming from the fact that E5' "' (R,Z/1") = 0. Tt is shown
in [K1], Lemma 2.1 b), that this composition is the identity. Thus E21’_2(R,Z/l”)
consists entirely of universal cycles.

g = —2j. In the cases of Theorem 2.2, the cup-product
HY(R,Z/1"(1)% — HY (R, Z/(j))

is surjective. Since the descent spectral sequence is multiplicative, it follows that
EJ7*(R,Z/1") consists entirely of universal cycles.

q=—2(t+7), k > 0 such that H°(R,Z/1*(i)) has order [“. Trivially, the product

ES TR B/ © B TH(RZI) = HOR,ZI0) © HI(R.Z/1()
—~ HI(R,Z/1"(i + j)) = E§ 0T (R,2/17)

is bijective. By 2) and 3) Eg’_wﬂ)(R, Z/1") consists entirely of universal cycles, since
the descent spectral sequence is multiplicative.

The general case. Consider ¢ and j as in 4). Let S/R be the smallest étale extension
such that the étale sheaf Z/{¥(i) becomes constant over S, and G = Gal(S/R). By
[K2], Theorem 1 (2), the corestriction (H7(S,Z/1"(i + j))a — H/(R,Z/I"(i + j)) is
an isomorphism. Since the descent spectral sequence is compatible with transfer, by
4) Eg’_wﬂ)(R, Z]1”) consists entirely of universal cycles. O

Let FV/KE(X,Z/1*) be the filtration defined on K¢'(X,Z/I*) by the descent spectral
sequence.
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Lemma 3.2. Under the hypothesis of Lemma 3.1, the image of the composition

HI(R,ZJ1()) 22 Ky j(R,ZJ1Y) — K& (R, ZJ1Y)

j
is contained in FIKS}_;(R,Z[1").

Proof. By the same method as in Lemma 3.1, we reduce to the special cases j = 0 and
i = j = 1. In both cases the lemma is trivial, because K${(R,Z/1*) = FOKSHR,Z/1V) and
KR, ZJIY) = FYK{Y(R,Z/1Y). O

Proof of Theorem 3.1. By a direct limit argument (compare [K2], (3.2), Proposition 3.2.1),
we reduce to the case where R has finite cohomological dimension. Then it suffices to show
that, for all (7, j), the composition

HI(R,ZJ1"()) 22 Ko y(R,ZJ1Y) — FIKE (R, Z/1Y)

2i—j

— BITH(RZN) = BTH(R, /1) = HI(R,Z1()

is the identity. This is checked as in Lemmas 3.1 and 3.2 by reduction to the special cases
j=0and ¢ =j = 1. These special cases have already been seen in steps 1) and 2) of the
proof of Lemma 3.1. O

Remark 3.1. Let us record here that the proof of Theorem 3.1 produces “Chern characters”
chini—m » Kn(R,ZJ1Y) — H*=™(R,Z/1*(1)), for the same values of (i,m) as in Theorem
3.1, which are left inverse to the 3%?*=™. They are defined first when R has finite [-
cohomological dimension, using the descent spectral sequence for étale K-theory, then in
general by writing R as a direct limit of semi-local rings of finite {-cohomological dimension.

Remark 3.2. 1 don’t know if, in the descent spectral sequence for the étale K-theory con-
sidered in [DF], qu(R, Z/1") consists of universal cycles for —2j < ¢ < 0. But if one uses
the unbounded below version of étale K-theory KL°’(R,Z/1") as in [T], one can extend the
construction of 3%/ to values of ¢ smaller than j, as classes with values in KiOp(R,Z/l”),
and prove that qu consists of universal cycles for all ¢ € Z in the corresponding descent
spectral sequence. See [K1] for details.

Theorem 3.2. For any scheme X over Z[1/l],
a) HY(X,Z/1"(x)) is a direct summand of K;(X,Z/1") for all i > 0;
b) HY(X,Z/1(3)) is a direct summand of H*(X z4y,K2;—1(Z/1")) for all i > 1, where
K2i-1(Z/1") denotes the Zariski sheaf associated to the presheaf U — Kq;_1(U,Z/1").

Proof. a) has already been seen in [K3], Theorem 6.1 (v). For b), we can globalise the local
anti-Chern classes 3%! into

B HYX,Z/1(i)) = HY(X 207, H(Z/1°(2))) — H(X gar, K2ia(Z/1Y)),

where H'(Z/1"(7)) denotes the Zariski sheaf associated to étale cohomology. Composing
with the globalisation of the Chern character ch;; of Remark 3.1, we get the identity. O
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4. Higher local fields.

Let F' be a higher local field in the sense of Kato [Ka]. By definition, there is a chain of
fields Fy,...,F, = I such that: Fy is a finite field; For 1 < r < n, F, is complete for a
discrete valuation, with residue field Fj._q.

We call n the dimension of F' and charky its essential residue characteristic. Let | #
charF. It follows from §3 that, for all ¢ > 0, there are split injections (given by the
anti-Chern classes of §2):

(4.1)  HYF,ZJI'G)® H*(F,Z)I"G+ 1)@ - & H*(F,Z/1"(i + 5)) — Kqy(F, Z/1")

(4.2)
HYF,Z)I'G+ 1)@ H3NFZ/1(i+2) - @ H* T Z/1P (i 4+t + 1)) — Koy (F,Z /1Y)

where s = min(i, [2]) and ¢ = min(i, [251]). In this section, we prove:

Theorem 4.1. Assume that | is not the essential residue characteristic of I'. Then the
injections (4.1) and (4.2) are isomorphisms.

Proof. For any scheme X, let FVK,(X,Z/l") denote the filtration induced on K.(X,Z/l")
by the filtration on étale K-theory and the map K.(X,Z/l¥) — K¢(X,Z/1").

Lemma 4.1. Forallm >0, F™" 'K, (F,Z/1") = 0.
Lemma 4.1 implies Theorem 4.1, since by Lemmas 3.1 and 3.2 the compositions of

(4.1) and (4.2) with K, (F,Z/1") — KE(R,Z/I") — KE(R,Z/1*)/F" T KSR, Z/1”) are

isomorphisms.

Proof of Lemma 4.1. By induction on n = dimF. For n = 0, this follows from Quillen’s
computation of the K-theory of finite fields [Q1]. Assume n > 0 and that Lemma 4.1 is
true for F,_y. By [Su], Corollary 3.11, there is for all m > 0 an exact sequence:

(4.3) 0 — Kp(Fpe1,Z)1") — Ko(F,Z)1Y) — Koy (Fe1, Z/17) — 0.

There are corresponding exact sequences for étale K-theory and Galois cohomology, and
one can show that they are compatible with the comparison maps and descent spectral
sequences. It follows that (4.3) induces for all 7 < m a zero-sequence:

0— FIK, (F,_,Z)I") — FIK, (F,Z/1") == FI~VK,,_(F,_{,Z/I") — 0.

By assumption on F},_q, the left and right terms are 0 for 7 = m+1, so it is enough to show
that this sequence is exact at the middle term for any j. Let € F? K,,(F,Z/l”) be such that
dz = 0. By Suslin’s theorem, & comes from K, (F,,—1,Z/l”) and we have to see that it lies in
FIK, (F,_1,Z/1"). But let © be a prime element of F: then {r}-2 € F/It K, (F,Z/1")
and 9({r} @) =2 € FIK,(F,_1,Z/1"). O
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5. Global fields.

Theorem 5.1. Let A be a Dedekind domain with quotient field a global field. Assume that
[ is invertible in A and, if | = 2, that either n/—1 € A or that A has nonzero characteristic.
Then, for any 1 > 1, there is a split injection:

B0 B HOA T & HHAZ/G 4 1) — Ko A Z /1)

which commutes with products, change of rings and transfer. If A is finitely generated over
Z, there is a split injection H*(A,Z)(i+ 1)) — K3;(A) @ Z; which commutes with change
of rings and transfer. It is right inverse to the Chern character chiy1 2 @ Koi(A) @ Zy —
H?*(A,Z(t+ 1)) constructed in [DF].

Note. Theorem 5.1 is wrong for a complete curve over a finite field.

Proof. The map 30 : HO(A,Z/1"(i)) — Ky(A,Z/1*) is already constructed in [K3]. By
Soulé’s theorem, the second Chern class Ko(A)/l¥ — H*(A,Z/1”(2)) is an isomorphism for
all v ([Sol], Lemma 10; [K4], app. 2). Moreover, the descent theorem of [K2], Theorem 1
(2) holds trivially for H? even though A is “global” because cd;(A) = 2. (Here we are using
that SpecA is not complete.) Therefore, we get global anti-Chern classes

ﬁH_LQ :H2(A,Z/ly(i + 1)) N I(Qi(A,Z/lV)

in the same way as in §2. Split injectivity is proven exactly as in §3.
To go to the infinite level, we pass to the limit on $t12, getting a map:

. 2 vy . - v
lim H (A ZJ1"(i4 1)) — thIxQZ(A,Z/l ).
By the hypothesis on A, H(A,Z/I*(i + 1)) is finite for all ¥ and the surjection
2 . . 2 vy
H*(AZi(i+ 1)) — lim # (A, Z)1"(i 4 1))
is bijective. Similarly, finite generation of K.(A) ([Q2], [Gr]) and the exact sequences
0— ](22‘(14)/[1/ — ](%(A,Z/ly) — 11/1(22‘_1(14) — 0

yield an isomorphism Ky;(A) ® Z; = h;n]x’gi(A, Z/1"). Hence the above map translates
as:

HY (A, Zy(i + 1)) — Ky(A) R Zy.
The last claim follows from Theorem 3.1. O

Remark 5.1. Of course, the splitting of Theorem 5.1 also commutes with products in alge-
braic and étale K-theories at the infinite level. But this statement is empty: the product
in the [-adic cohomology of A is trivial, since ¢d;(A) = 2. The Quillen-Lichtenbaum con-
jecture therefore predicts that algebraic K-theory products Koi(A) x Kyj(A) — Koy jy(A)
are 0 (away from 2 in case A is exceptional). Similarly, it predicts that products Ko;(A) x
Kyj 1(A) — Ky(iyjy—1(A) are 0. Can one prove these vanishings directly?

Here is a refinement of Theorem 5.1:
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Theorem 5.2. The map 3112 1 HX2(A,Z/1"(i+ 1)) — Ky;(A,Z /1) lands into Kq;(A)/1".
The same holds replacing A by any integrally closed subring of Q (in characteristic 0) or
F,(t) (in positive characteristic).

Proof. The first claim is a consequence of the following commutative diagram:

H2(A, Zl(l + 1)) _ ](Qi(A) ® 7

l l

H2(A L)1+ 1)) ——— Kyy( A, ZJ1Y)

and the observation that i) the left vertical map is surjective (because c¢d;(A) = 2) and ii)
the right vertical map factors through Ky;(A)/l” (because th wK2;—1(A) =0 by Quillen’s

finite generation theorem). The second claim follows by taking a direct limit. O

Remark 5.2. The proof of this in [K1], Remark 4.2, in the positive characteristic case, is
absurd for ¢ > 2 (resp. correct for 7 = 2).

The following corollary seems new:

Corollary 5.1. The composition
Ko A)/1" 55 Ky (A 1Y) — HA(A L)1 + 1))

is split surjective for all ¢ > 0 and v > 1.

Remark 5.3. Theorem 5.2 is deep. If Fis a field of cohomological dimension 2 that is not

contained in Q or F,(t), the composite
HY(F,Z[1"(i 4+ 1)) = Ky(F,Z/1") — p Kyi_1(F)

is not zero in general for ¢ > 1. Indeed, in positive characteristic or if trdeg(#/Q) > 2,
F contains two elements ¢1,{; which are algebraically independent over the prime field.
Asgsume that F' contains a primitive [”-th root of unity (. Taking ¢ = 2 and

a=(t)(ts)-[¢] € HY(F,Z/1"(3)),

where (¢;) € HY(F,Z/1"(1)) and [¢] € H°(F,Z/1"(1)), the image of a in p K3(F) is
{t1,t2,(}, which is in general nonzero (eg. F = k(t1,t2), k algebraically closed). One
can produce a similar counterexample in characteristic zero for a finitely generated field of
transcendance degree 1 over Q. In the arithmetic case, as the proof shows, Theorem 5.2 is
true for finiteness reasons.

Theorem 5.3. Under the hypotheses of Theorem 5.1, the local anti-Chern classes 3!
globalise as split injections 31 : HY(A,Z/1"(3)) — Koi_1(A,Z/1¥)(i > 1). They yield split
injections HY(A,Z(1)) — Kqi—1(A) ® Z;. All these splittings commute to change of rings
and transfer. They are right inverse to the Chern characters

chiy i Kooy (A) @ Zy — H' (A, Zy(i))
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constructed in [DF]. The l-adic splittings for odd and even K-groups of Theorem 5.1 and
this theorem commute to products.

Proof. To construct 35! at a finite level, it suffices by Theorem 3.2 to observe that
Kyi1(AZ)1") — HY(Azar, Koio1(Z)17))

is bijective. Surjectivity is obvious for dimension reasons, and injectivity follows from
Soulé’s theorem that

](22‘_1(14, Z/ZU) — Iﬁrgi_l(F, Z/ZU)

is injective, where F' is the quotient field of A ([Sol], Theorem 3, [So4], proof of Theorem
1). The claims about functoriality and products follow from Theorem 2.3. The [-adic case
follows as in the proof of Theorem 5.1 from a passage to the limit. O

Remark 5.5. Assume that charF =0, A = Op[1/l],let A,, = A[jn] and

E =1lim(A,)"/(A,)"".

—

In [So2], Lemma 1 and [So3], (4.3), Soulé defines and studies a map

E(i—1)g — Kyi_1(A) @ Z,

for any 7 > 2. Deligne [D] studies a similar map

E(i— 1) = HY(A,Z(i)).

In [So3] it is observed that D = ch;3 o 5. For the same reason, one sees easily that
S = B4 o D. This gives a slightly more precise information on the maps S and D (which
are isomorphisms modulo finite groups).

6. Local fields.

Let F be a finite extension of Q,. Recall from Theorem 4.1 that, for [ # p, the anti-Chern
classes of §2 yield isomorphisms

HYNF,Z)1"(i)) = Kyi_((F,Z]1")

and
HO(F,Z/1"(i)) & HY(F,Z/I"(i + 1)) — Kyi(F,Z/1").

Agsume that F contains a square root of —1 if p = 2. By Remark 3.1, the following
conjecture is equivalent to the ”Lichtenbaum-Quillen” conjecture for the local field F.

15



Conjecture 6.1. The split injections of Theorem 3.1:
B Y Z )1+ 1)) — Kyipr(F,Z]1Y)
B0 Bt HO R Z)1V(0) & HA(F, L)1 (i + 1)) — Kyy(F,Z/1)
are isomorphisms even when [ = p.

This conjecture holds for ¢ = 0 and 1 by [MS1], [MS3], [Le]. It is not impossible that
Panin’s theorem [Pa] be sufficient to prove it, using syntomic cohomology, however I don’t
know how to do this.

In this section we look at consequences of Conjecture 6.1. Set d = [F': Q,].

We compare algebraic and topological K-theory, as in [K4], §7. Recall from [W] the
topological or p-adic K-theory of F, KiOp(F). There is a natural homomorphism ¢, :
K.(F) — K2P(F). The following are basic results of Wagoner.

Proposition 6.0. [W] For i even, K!°’(F) is finite. For i odd and > 1, it is the direct sum
of Ki(k) and a finitely generated Z,-module of rank d = [F : Q,], where k is the residue
field of I'. For 1 = 1, it is isomorphic to the profinite completion of F*.

o e . ~top = . -
Proposition 6.1. (Wagoner). For all i > 0, K;™'(F) — lim K;(F,Z/n).
Proof. By [K4], proof of Theorem 7.2, there are exact sequences:
0— K;°(F)/n — K(F,Z/n)— ,K/°(F) — 0.

Since, by [W], KfOp(F) is the direct sum of a finite group and a finitely generated Z,-
module, Proposition 6.1 follows. O
Corollary 6.1. For all i > 1, the maps %' and 3*tH? of §2 induce split injections ﬁi’l :
HYF,Z(1)) — K3 (F) and 5% HY(F,Z(i + 1)) — K°(F), with finite p-primary
cokernel. Under Conjecture 6.1, they are isomorphisms.
Proof. In view of Theorem 3.1, the split injections just come from Proposition 6.1 and
the inverse limit over n > 1 of the maps %' and 3'*!? for K-theory and cohomology
modulo n (note that K;(F,Z/n) is finite for all n, i by [Pa]). By Theorem 4.1, 8! is an
isomorphism when n is prime to p, hence Coker 3! is a Z,-module. Its finiteness follows
from Proposition 6.0 and the fact that H'(F,Z,(i)) has Z,rank dif i > 1 and d+1ifi =1
(compare [Sch], Satz 4 ii)). Similarly, 8°° @& #'T5? is an isomorphism for n prime to p by
Theorem 4.1. Since HO(F,Z(i)) = 0 for i # 0, it follows similarly that Coker 312 is a
Z,-module, finite by Proposition 6.0. The last claim is obvious. O

Variant. For all © > 0, there is a split surjection with finite p-primary kernel

K{(F) — [T &7(F)
l

where | runs through all primes and K¢'(F); denotes the l-adic étale K -theory of [DF].
Under Conjecture 6.1, it is an isomorphism.

Proof. As the Kf4(F,Z/n) are finite, [[, K{(F); — lim KEY(F,Z/n)is an isomorphism. O
Remark 6.1. By Tate duality, H?(F,Z(i + 1)) is canonically isomorphic to H°(F,Q/Z(:)).

Therefore, under Conjecture 6.1, K,°P(F) should be isomorphic to HO(F,Q/Z(i)) (and is,
away from p).

We now study the comparison maps ¢; : K;(F) — K;°°(F).

16



Proposition 6.2. For all i > 0, Ker ¢; is divisible without torsion prime to p. For i odd,
it is uniquely divisible. For 1 even, ¢; is surjective.

Proof. By [K4], Theorem 7.2, for all ¢ Ker ¢; is divisible, Coker ¢; is torsion-free and

there is a canonical isomorphism Coker ¢; ® Q/Z =, (Ker ¢i—1)tors- By Proposition 6.0,
for i even K[°’(F) is finite and for i odd K!°’(F) ® Q;/Z; = 0 for | # p; Proposition 6.2
follows. O

Corollary 6.2. Fori even > 0, K;(F) is the direct sum of the finite group K:°’(F) and a
divisible group D; without torsion prime to p. Ko;_1(F)iors is finite and its prime-to-p part
is isomorphic to the prime-to-p part of H*(F,Q/Z(i)). If Conjecture 6.1 holds, Ko;_1(F)tors
is isomorphic to HY(F,Q/Z(1)).

Remark 6.2. A reformulation of Corollaries 6.1 and 6.2, under Conjecture 6.1, is an exact
sequence, for all n:

0— HY(FZ/n(i)) = Koi _1(F) = Ko _1(F) — HYF,Z/n(7))
— Kyi_o(F) == Kq;_o(F) — H*(F,Z/n(i)) — 0.
These exact sequences exist at least when n is prime to p.

Proposition 6.3. For all i > 0, corank(Kq;(F){p}) + corank(Kzi11(F) ® Q,/Z,) = d.
Proof. By [K4], proof of Theorem 7.2, there is an exact sequence:

0 = Koia(F) 0 Qu/Zy — KL, (F) © QT — Kaima F)p} — KL2,(F)p} — 0.
Proposition 6.3 follows from this exact sequence and Proposition 6.0. O

The following conjecture was proved by Merkurjev [Me] for ¢ = 1.

Conjecture 6.2. For all © > 0, corank(Ks;(F){p}) = 0.

We now refine the map ¢;, for i odd, under Conjecture 6.1, just as in [K4], Lemma 7.1.
The following defines indecomposable algebraic K -theory of odd degree.

Definition 6.1. For a field K and an integer ¢ > 1, we let Ko;_1(K )ing = Koi—1(K)/R,
where R is the subgroup of Ky;_1(K) generated by the Ny /g (K1(L)- Ko;_9(L)), where L
runs through all finite extensions of K" and Ny x is the transfer in algebraic K-theory.

Proposition 6.4. Under Conjecture 6.1, the homomorphism ¢9;_1 factors as
Gaicy + Kaia(Fing — K337 (F).
Proof. Considering the commutative diagram

Ki{(FY® Ky;_o(F) —— Kq_1(F)

! !

Ki(F) 0 Ky (F) ——— K% (F)

! !

K(F,2) @ Kyi_y(F,2Z) —— Kq;_1(F,Z)
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it is enough, in view of Proposition 6.1, to prove that the product
K\(F,2)® Kyi_o(F,Z) — Kq;_1(F,Z)

is identically 0 under Conjecture 6.1 (then we may use the transfer). But there is another
commutative diagram:

HYF,Z(1)) @ H*(F,Z(i)) —— H3(F,Z(i + 1))

51,1®52,il 53,i+1l
K\(F,2)® Kyi_o(F,Z) ——— Ky_1(F, 7).
By Conjecture 6.1, the left vertical map is an isomorphism, and by cohomological dimension

H3(F,Z(i + 1)) = 0. This proves that the product is 0. (Is there a proof independent of
Conjecture 6.17)

Lemma 6.1. (compare Corollary 5.1). Let ch; 5 : Kaj—o(F,Z/n) — H*(F,Z/n(t)) be the
Chern character of Remark 3.1. Then the composition

Chi)g

Kai—o(F)/n == Koi—o(F,Z/n) — H*(F,Z/n(i))
is surjective for all ¢ > 0 and n > 1.

Proof. Tt suffices to show that 3% : H*(F,Z/n(i)) — Kq;i_o(F,Z/n) factors through
Kai—o(F)/n. Let Fy be the algebraic closure of Q in F. Since Fy and F' have the same
absolute Galois group, the natural map H?(Fy,Z/n(i)) — H*(F, Z/n(i))is an isomorphism.
By Theorem 5.2, H(Fy,Z/n(1)) — Ka;_o(Fo,Z/n) factors through Ks;_o(Fy)/n; therefore
the same is true for F. O

Lemma 6.2. Ker (Ky—1(F) — Kai—1(F)ina) is divisible.

Proof. Let E/F be a finite extension: then Ng/p : Ky;_o(E) — Kg;_(F) is onto. This
follows from the commutative diagram (where n = [F : F])

Kyio(E)/n ——— H2(E,Z/n(i))
Ko o(F)/n ——— H*(F,Z[n(i))

in which the horizontal maps are surjective by Lemma 6.1 and C'or is surjective by coho-
mological dimension. Let (z,y) € K1(F) x Kg;_3(F), n > 1 and E = F({/x). Choose
z € Ky;_2(F) such that N(z) = y. Then, by the projection formula, z -y = nNg, (£ - 2),
where £ € F* satisfies £ = z. This proves the claim. O

Proposition 6.5. Under Conjecture 6.1, the composite

HO(F7 Q/Z(l)) - ]‘/rZi—l(F)tors - (I(Zi—l(F)ind)tors
is an isomorphism.

This follows from Corollary 6.2 and Lemma 6.2.
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Proposition 6.6. We assume Conjecture 6.1. It follows that Ker ¢,; , is uniquely divis-
ible and Coker ¢,;_, is torsion-free, without cotorsion prime to p. If Conjecture 6.2 holds,
Coker ¢y;_, is uniquely divisible.

Proof. Obviously, ¢s;_1 and ¢, , have the same cokernel, hence the second claim, observ-
ing that Conjecture 6.2 implies that Ky_1(F) ©® Q,/Z, and K}?” (F)® Q,/Z, have the

same corank. Since Ker ¢;_; is divisible, Ker ¢,; , is divisible as well; its torsion is con-

tained in (Kg;_1(F)ina)iors- But the latter is finite by Proposition 6.5; therefore Ker ¢,;_;
is torsion-free. O

Just as in [K4], we propose a last conjecture on ¢,; ;. As in op. cit., §7, one defines
relative groups:

Koi1(A, M)ing = Ker (Koi—1(F)ing — Kai—1(k));
(;fp (A, M) = Ker (Ixmp (A)K9;—1(k));

where A is the valuation ring of F, M its maximal ideal and the first reduction map
is defined in the same way as for ¢ = 2 in loc. cit. Similarly, Ko;_1(A, M);nq is nat-
urally a Z,-module, where Z,) is the localisation of Z at p, and ¢o; 4 induces a map

Gyt Koi_q 1(A, M)ipa — I';ff (A, M) with uniquely divisible kernel and cokernel under
Conjectures 6.1 and 6.2. Let Z(hp) be the henselisation of Z,).

Conjecture 6.3. The map ¢y;_y : Koi1(A, M)ing — K352 (A, M) is injective; there
exists on Kg;_1(A, M)inq a natural structure of a Z(p)—module for which it is finitely gen-

erated; moreover, ¢, 4 induces an isomorphism:

Koo (A, M)ing Dz Ty =k K32 (A, M)
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